Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step120/zero/23.attention.dense.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step120/zero/23.attention.dense.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step120/zero/23.attention.dense.weight/fp32.pt +3 -0
- ckpts/universal/global_step120/zero/4.mlp.dense_4h_to_h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step120/zero/4.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
- ckpts/universal/global_step80/zero/11.post_attention_layernorm.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step80/zero/11.post_attention_layernorm.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/sympy/physics/quantum/__init__.py +59 -0
- venv/lib/python3.10/site-packages/sympy/physics/quantum/anticommutator.py +149 -0
- venv/lib/python3.10/site-packages/sympy/physics/quantum/boson.py +259 -0
- venv/lib/python3.10/site-packages/sympy/physics/quantum/cg.py +754 -0
- venv/lib/python3.10/site-packages/sympy/physics/quantum/circuitplot.py +370 -0
- venv/lib/python3.10/site-packages/sympy/physics/quantum/circuitutils.py +488 -0
- venv/lib/python3.10/site-packages/sympy/physics/quantum/commutator.py +239 -0
- venv/lib/python3.10/site-packages/sympy/physics/quantum/constants.py +59 -0
- venv/lib/python3.10/site-packages/sympy/physics/quantum/dagger.py +97 -0
- venv/lib/python3.10/site-packages/sympy/physics/quantum/density.py +319 -0
- venv/lib/python3.10/site-packages/sympy/physics/quantum/gate.py +1305 -0
- venv/lib/python3.10/site-packages/sympy/physics/quantum/grover.py +345 -0
- venv/lib/python3.10/site-packages/sympy/physics/quantum/identitysearch.py +853 -0
- venv/lib/python3.10/site-packages/sympy/physics/quantum/innerproduct.py +137 -0
- venv/lib/python3.10/site-packages/sympy/physics/quantum/matrixcache.py +103 -0
- venv/lib/python3.10/site-packages/sympy/physics/quantum/matrixutils.py +272 -0
- venv/lib/python3.10/site-packages/sympy/physics/quantum/operator.py +650 -0
- venv/lib/python3.10/site-packages/sympy/physics/quantum/operatorordering.py +329 -0
- venv/lib/python3.10/site-packages/sympy/physics/quantum/operatorset.py +280 -0
- venv/lib/python3.10/site-packages/sympy/physics/quantum/pauli.py +675 -0
- venv/lib/python3.10/site-packages/sympy/physics/quantum/piab.py +72 -0
- venv/lib/python3.10/site-packages/sympy/physics/quantum/qapply.py +206 -0
- venv/lib/python3.10/site-packages/sympy/physics/quantum/qexpr.py +413 -0
- venv/lib/python3.10/site-packages/sympy/physics/quantum/qubit.py +811 -0
- venv/lib/python3.10/site-packages/sympy/physics/quantum/represent.py +574 -0
- venv/lib/python3.10/site-packages/sympy/physics/quantum/sho1d.py +679 -0
- venv/lib/python3.10/site-packages/sympy/physics/quantum/shor.py +173 -0
- venv/lib/python3.10/site-packages/sympy/physics/quantum/spin.py +2149 -0
- venv/lib/python3.10/site-packages/sympy/physics/quantum/state.py +1014 -0
- venv/lib/python3.10/site-packages/sympy/physics/tests/__init__.py +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/test_clebsch_gordan.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/test_hydrogen.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/test_paulialgebra.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/test_physics_matrices.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/test_pring.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/test_qho_1d.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/test_secondquant.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/test_sho.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sympy/physics/tests/test_clebsch_gordan.py +191 -0
- venv/lib/python3.10/site-packages/sympy/physics/tests/test_hydrogen.py +126 -0
- venv/lib/python3.10/site-packages/sympy/physics/tests/test_paulialgebra.py +57 -0
- venv/lib/python3.10/site-packages/sympy/physics/tests/test_physics_matrices.py +84 -0
ckpts/universal/global_step120/zero/23.attention.dense.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:426d6c6394407e9c24f4ddbc1dbe70edc996db8b8ea15f7ce8b3590d9dfb7fa2
|
3 |
+
size 16778396
|
ckpts/universal/global_step120/zero/23.attention.dense.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d57d535b9f12397255d4e01dd224d194a43fd2147c593b19a621270632756ff
|
3 |
+
size 16778411
|
ckpts/universal/global_step120/zero/23.attention.dense.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae266dafcf6748aef6a8fe8dd577aeeb93189c3f38405555ef20e3d43358e65d
|
3 |
+
size 16778317
|
ckpts/universal/global_step120/zero/4.mlp.dense_4h_to_h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ae33f5ac7d6312d2d02e2afa76b205805a4d8b792c9b56974860cd06cfecf95
|
3 |
+
size 33555627
|
ckpts/universal/global_step120/zero/4.mlp.dense_4h_to_h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c17fbe5bdd5a9e31ba468700ff65eae3a041e62403d3321b60d836a8e8068e59
|
3 |
+
size 33555533
|
ckpts/universal/global_step80/zero/11.post_attention_layernorm.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3336c200516023b0e733cf0c424b80a32509ef5cecb22de948fd3fc113786a31
|
3 |
+
size 9387
|
ckpts/universal/global_step80/zero/11.post_attention_layernorm.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:916cc8719b994251eb46cbea8c09b7edbec899ce039f0e1aef9a190db645af8d
|
3 |
+
size 9293
|
venv/lib/python3.10/site-packages/sympy/physics/quantum/__init__.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Names exposed by 'from sympy.physics.quantum import *'
|
2 |
+
|
3 |
+
__all__ = [
|
4 |
+
'AntiCommutator',
|
5 |
+
|
6 |
+
'qapply',
|
7 |
+
|
8 |
+
'Commutator',
|
9 |
+
|
10 |
+
'Dagger',
|
11 |
+
|
12 |
+
'HilbertSpaceError', 'HilbertSpace', 'TensorProductHilbertSpace',
|
13 |
+
'TensorPowerHilbertSpace', 'DirectSumHilbertSpace', 'ComplexSpace', 'L2',
|
14 |
+
'FockSpace',
|
15 |
+
|
16 |
+
'InnerProduct',
|
17 |
+
|
18 |
+
'Operator', 'HermitianOperator', 'UnitaryOperator', 'IdentityOperator',
|
19 |
+
'OuterProduct', 'DifferentialOperator',
|
20 |
+
|
21 |
+
'represent', 'rep_innerproduct', 'rep_expectation', 'integrate_result',
|
22 |
+
'get_basis', 'enumerate_states',
|
23 |
+
|
24 |
+
'KetBase', 'BraBase', 'StateBase', 'State', 'Ket', 'Bra', 'TimeDepState',
|
25 |
+
'TimeDepBra', 'TimeDepKet', 'OrthogonalKet', 'OrthogonalBra',
|
26 |
+
'OrthogonalState', 'Wavefunction',
|
27 |
+
|
28 |
+
'TensorProduct', 'tensor_product_simp',
|
29 |
+
|
30 |
+
'hbar', 'HBar',
|
31 |
+
|
32 |
+
]
|
33 |
+
from .anticommutator import AntiCommutator
|
34 |
+
|
35 |
+
from .qapply import qapply
|
36 |
+
|
37 |
+
from .commutator import Commutator
|
38 |
+
|
39 |
+
from .dagger import Dagger
|
40 |
+
|
41 |
+
from .hilbert import (HilbertSpaceError, HilbertSpace,
|
42 |
+
TensorProductHilbertSpace, TensorPowerHilbertSpace,
|
43 |
+
DirectSumHilbertSpace, ComplexSpace, L2, FockSpace)
|
44 |
+
|
45 |
+
from .innerproduct import InnerProduct
|
46 |
+
|
47 |
+
from .operator import (Operator, HermitianOperator, UnitaryOperator,
|
48 |
+
IdentityOperator, OuterProduct, DifferentialOperator)
|
49 |
+
|
50 |
+
from .represent import (represent, rep_innerproduct, rep_expectation,
|
51 |
+
integrate_result, get_basis, enumerate_states)
|
52 |
+
|
53 |
+
from .state import (KetBase, BraBase, StateBase, State, Ket, Bra,
|
54 |
+
TimeDepState, TimeDepBra, TimeDepKet, OrthogonalKet,
|
55 |
+
OrthogonalBra, OrthogonalState, Wavefunction)
|
56 |
+
|
57 |
+
from .tensorproduct import TensorProduct, tensor_product_simp
|
58 |
+
|
59 |
+
from .constants import hbar, HBar
|
venv/lib/python3.10/site-packages/sympy/physics/quantum/anticommutator.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""The anti-commutator: ``{A,B} = A*B + B*A``."""
|
2 |
+
|
3 |
+
from sympy.core.expr import Expr
|
4 |
+
from sympy.core.mul import Mul
|
5 |
+
from sympy.core.numbers import Integer
|
6 |
+
from sympy.core.singleton import S
|
7 |
+
from sympy.printing.pretty.stringpict import prettyForm
|
8 |
+
|
9 |
+
from sympy.physics.quantum.operator import Operator
|
10 |
+
from sympy.physics.quantum.dagger import Dagger
|
11 |
+
|
12 |
+
__all__ = [
|
13 |
+
'AntiCommutator'
|
14 |
+
]
|
15 |
+
|
16 |
+
#-----------------------------------------------------------------------------
|
17 |
+
# Anti-commutator
|
18 |
+
#-----------------------------------------------------------------------------
|
19 |
+
|
20 |
+
|
21 |
+
class AntiCommutator(Expr):
|
22 |
+
"""The standard anticommutator, in an unevaluated state.
|
23 |
+
|
24 |
+
Explanation
|
25 |
+
===========
|
26 |
+
|
27 |
+
Evaluating an anticommutator is defined [1]_ as: ``{A, B} = A*B + B*A``.
|
28 |
+
This class returns the anticommutator in an unevaluated form. To evaluate
|
29 |
+
the anticommutator, use the ``.doit()`` method.
|
30 |
+
|
31 |
+
Canonical ordering of an anticommutator is ``{A, B}`` for ``A < B``. The
|
32 |
+
arguments of the anticommutator are put into canonical order using
|
33 |
+
``__cmp__``. If ``B < A``, then ``{A, B}`` is returned as ``{B, A}``.
|
34 |
+
|
35 |
+
Parameters
|
36 |
+
==========
|
37 |
+
|
38 |
+
A : Expr
|
39 |
+
The first argument of the anticommutator {A,B}.
|
40 |
+
B : Expr
|
41 |
+
The second argument of the anticommutator {A,B}.
|
42 |
+
|
43 |
+
Examples
|
44 |
+
========
|
45 |
+
|
46 |
+
>>> from sympy import symbols
|
47 |
+
>>> from sympy.physics.quantum import AntiCommutator
|
48 |
+
>>> from sympy.physics.quantum import Operator, Dagger
|
49 |
+
>>> x, y = symbols('x,y')
|
50 |
+
>>> A = Operator('A')
|
51 |
+
>>> B = Operator('B')
|
52 |
+
|
53 |
+
Create an anticommutator and use ``doit()`` to multiply them out.
|
54 |
+
|
55 |
+
>>> ac = AntiCommutator(A,B); ac
|
56 |
+
{A,B}
|
57 |
+
>>> ac.doit()
|
58 |
+
A*B + B*A
|
59 |
+
|
60 |
+
The commutator orders it arguments in canonical order:
|
61 |
+
|
62 |
+
>>> ac = AntiCommutator(B,A); ac
|
63 |
+
{A,B}
|
64 |
+
|
65 |
+
Commutative constants are factored out:
|
66 |
+
|
67 |
+
>>> AntiCommutator(3*x*A,x*y*B)
|
68 |
+
3*x**2*y*{A,B}
|
69 |
+
|
70 |
+
Adjoint operations applied to the anticommutator are properly applied to
|
71 |
+
the arguments:
|
72 |
+
|
73 |
+
>>> Dagger(AntiCommutator(A,B))
|
74 |
+
{Dagger(A),Dagger(B)}
|
75 |
+
|
76 |
+
References
|
77 |
+
==========
|
78 |
+
|
79 |
+
.. [1] https://en.wikipedia.org/wiki/Commutator
|
80 |
+
"""
|
81 |
+
is_commutative = False
|
82 |
+
|
83 |
+
def __new__(cls, A, B):
|
84 |
+
r = cls.eval(A, B)
|
85 |
+
if r is not None:
|
86 |
+
return r
|
87 |
+
obj = Expr.__new__(cls, A, B)
|
88 |
+
return obj
|
89 |
+
|
90 |
+
@classmethod
|
91 |
+
def eval(cls, a, b):
|
92 |
+
if not (a and b):
|
93 |
+
return S.Zero
|
94 |
+
if a == b:
|
95 |
+
return Integer(2)*a**2
|
96 |
+
if a.is_commutative or b.is_commutative:
|
97 |
+
return Integer(2)*a*b
|
98 |
+
|
99 |
+
# [xA,yB] -> xy*[A,B]
|
100 |
+
ca, nca = a.args_cnc()
|
101 |
+
cb, ncb = b.args_cnc()
|
102 |
+
c_part = ca + cb
|
103 |
+
if c_part:
|
104 |
+
return Mul(Mul(*c_part), cls(Mul._from_args(nca), Mul._from_args(ncb)))
|
105 |
+
|
106 |
+
# Canonical ordering of arguments
|
107 |
+
#The Commutator [A,B] is on canonical form if A < B.
|
108 |
+
if a.compare(b) == 1:
|
109 |
+
return cls(b, a)
|
110 |
+
|
111 |
+
def doit(self, **hints):
|
112 |
+
""" Evaluate anticommutator """
|
113 |
+
A = self.args[0]
|
114 |
+
B = self.args[1]
|
115 |
+
if isinstance(A, Operator) and isinstance(B, Operator):
|
116 |
+
try:
|
117 |
+
comm = A._eval_anticommutator(B, **hints)
|
118 |
+
except NotImplementedError:
|
119 |
+
try:
|
120 |
+
comm = B._eval_anticommutator(A, **hints)
|
121 |
+
except NotImplementedError:
|
122 |
+
comm = None
|
123 |
+
if comm is not None:
|
124 |
+
return comm.doit(**hints)
|
125 |
+
return (A*B + B*A).doit(**hints)
|
126 |
+
|
127 |
+
def _eval_adjoint(self):
|
128 |
+
return AntiCommutator(Dagger(self.args[0]), Dagger(self.args[1]))
|
129 |
+
|
130 |
+
def _sympyrepr(self, printer, *args):
|
131 |
+
return "%s(%s,%s)" % (
|
132 |
+
self.__class__.__name__, printer._print(
|
133 |
+
self.args[0]), printer._print(self.args[1])
|
134 |
+
)
|
135 |
+
|
136 |
+
def _sympystr(self, printer, *args):
|
137 |
+
return "{%s,%s}" % (
|
138 |
+
printer._print(self.args[0]), printer._print(self.args[1]))
|
139 |
+
|
140 |
+
def _pretty(self, printer, *args):
|
141 |
+
pform = printer._print(self.args[0], *args)
|
142 |
+
pform = prettyForm(*pform.right(prettyForm(',')))
|
143 |
+
pform = prettyForm(*pform.right(printer._print(self.args[1], *args)))
|
144 |
+
pform = prettyForm(*pform.parens(left='{', right='}'))
|
145 |
+
return pform
|
146 |
+
|
147 |
+
def _latex(self, printer, *args):
|
148 |
+
return "\\left\\{%s,%s\\right\\}" % tuple([
|
149 |
+
printer._print(arg, *args) for arg in self.args])
|
venv/lib/python3.10/site-packages/sympy/physics/quantum/boson.py
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Bosonic quantum operators."""
|
2 |
+
|
3 |
+
from sympy.core.mul import Mul
|
4 |
+
from sympy.core.numbers import Integer
|
5 |
+
from sympy.core.singleton import S
|
6 |
+
from sympy.functions.elementary.complexes import conjugate
|
7 |
+
from sympy.functions.elementary.exponential import exp
|
8 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
9 |
+
from sympy.physics.quantum import Operator
|
10 |
+
from sympy.physics.quantum import HilbertSpace, FockSpace, Ket, Bra, IdentityOperator
|
11 |
+
from sympy.functions.special.tensor_functions import KroneckerDelta
|
12 |
+
|
13 |
+
|
14 |
+
__all__ = [
|
15 |
+
'BosonOp',
|
16 |
+
'BosonFockKet',
|
17 |
+
'BosonFockBra',
|
18 |
+
'BosonCoherentKet',
|
19 |
+
'BosonCoherentBra'
|
20 |
+
]
|
21 |
+
|
22 |
+
|
23 |
+
class BosonOp(Operator):
|
24 |
+
"""A bosonic operator that satisfies [a, Dagger(a)] == 1.
|
25 |
+
|
26 |
+
Parameters
|
27 |
+
==========
|
28 |
+
|
29 |
+
name : str
|
30 |
+
A string that labels the bosonic mode.
|
31 |
+
|
32 |
+
annihilation : bool
|
33 |
+
A bool that indicates if the bosonic operator is an annihilation (True,
|
34 |
+
default value) or creation operator (False)
|
35 |
+
|
36 |
+
Examples
|
37 |
+
========
|
38 |
+
|
39 |
+
>>> from sympy.physics.quantum import Dagger, Commutator
|
40 |
+
>>> from sympy.physics.quantum.boson import BosonOp
|
41 |
+
>>> a = BosonOp("a")
|
42 |
+
>>> Commutator(a, Dagger(a)).doit()
|
43 |
+
1
|
44 |
+
"""
|
45 |
+
|
46 |
+
@property
|
47 |
+
def name(self):
|
48 |
+
return self.args[0]
|
49 |
+
|
50 |
+
@property
|
51 |
+
def is_annihilation(self):
|
52 |
+
return bool(self.args[1])
|
53 |
+
|
54 |
+
@classmethod
|
55 |
+
def default_args(self):
|
56 |
+
return ("a", True)
|
57 |
+
|
58 |
+
def __new__(cls, *args, **hints):
|
59 |
+
if not len(args) in [1, 2]:
|
60 |
+
raise ValueError('1 or 2 parameters expected, got %s' % args)
|
61 |
+
|
62 |
+
if len(args) == 1:
|
63 |
+
args = (args[0], S.One)
|
64 |
+
|
65 |
+
if len(args) == 2:
|
66 |
+
args = (args[0], Integer(args[1]))
|
67 |
+
|
68 |
+
return Operator.__new__(cls, *args)
|
69 |
+
|
70 |
+
def _eval_commutator_BosonOp(self, other, **hints):
|
71 |
+
if self.name == other.name:
|
72 |
+
# [a^\dagger, a] = -1
|
73 |
+
if not self.is_annihilation and other.is_annihilation:
|
74 |
+
return S.NegativeOne
|
75 |
+
|
76 |
+
elif 'independent' in hints and hints['independent']:
|
77 |
+
# [a, b] = 0
|
78 |
+
return S.Zero
|
79 |
+
|
80 |
+
return None
|
81 |
+
|
82 |
+
def _eval_commutator_FermionOp(self, other, **hints):
|
83 |
+
return S.Zero
|
84 |
+
|
85 |
+
def _eval_anticommutator_BosonOp(self, other, **hints):
|
86 |
+
if 'independent' in hints and hints['independent']:
|
87 |
+
# {a, b} = 2 * a * b, because [a, b] = 0
|
88 |
+
return 2 * self * other
|
89 |
+
|
90 |
+
return None
|
91 |
+
|
92 |
+
def _eval_adjoint(self):
|
93 |
+
return BosonOp(str(self.name), not self.is_annihilation)
|
94 |
+
|
95 |
+
def __mul__(self, other):
|
96 |
+
|
97 |
+
if other == IdentityOperator(2):
|
98 |
+
return self
|
99 |
+
|
100 |
+
if isinstance(other, Mul):
|
101 |
+
args1 = tuple(arg for arg in other.args if arg.is_commutative)
|
102 |
+
args2 = tuple(arg for arg in other.args if not arg.is_commutative)
|
103 |
+
x = self
|
104 |
+
for y in args2:
|
105 |
+
x = x * y
|
106 |
+
return Mul(*args1) * x
|
107 |
+
|
108 |
+
return Mul(self, other)
|
109 |
+
|
110 |
+
def _print_contents_latex(self, printer, *args):
|
111 |
+
if self.is_annihilation:
|
112 |
+
return r'{%s}' % str(self.name)
|
113 |
+
else:
|
114 |
+
return r'{{%s}^\dagger}' % str(self.name)
|
115 |
+
|
116 |
+
def _print_contents(self, printer, *args):
|
117 |
+
if self.is_annihilation:
|
118 |
+
return r'%s' % str(self.name)
|
119 |
+
else:
|
120 |
+
return r'Dagger(%s)' % str(self.name)
|
121 |
+
|
122 |
+
def _print_contents_pretty(self, printer, *args):
|
123 |
+
from sympy.printing.pretty.stringpict import prettyForm
|
124 |
+
pform = printer._print(self.args[0], *args)
|
125 |
+
if self.is_annihilation:
|
126 |
+
return pform
|
127 |
+
else:
|
128 |
+
return pform**prettyForm('\N{DAGGER}')
|
129 |
+
|
130 |
+
|
131 |
+
class BosonFockKet(Ket):
|
132 |
+
"""Fock state ket for a bosonic mode.
|
133 |
+
|
134 |
+
Parameters
|
135 |
+
==========
|
136 |
+
|
137 |
+
n : Number
|
138 |
+
The Fock state number.
|
139 |
+
|
140 |
+
"""
|
141 |
+
|
142 |
+
def __new__(cls, n):
|
143 |
+
return Ket.__new__(cls, n)
|
144 |
+
|
145 |
+
@property
|
146 |
+
def n(self):
|
147 |
+
return self.label[0]
|
148 |
+
|
149 |
+
@classmethod
|
150 |
+
def dual_class(self):
|
151 |
+
return BosonFockBra
|
152 |
+
|
153 |
+
@classmethod
|
154 |
+
def _eval_hilbert_space(cls, label):
|
155 |
+
return FockSpace()
|
156 |
+
|
157 |
+
def _eval_innerproduct_BosonFockBra(self, bra, **hints):
|
158 |
+
return KroneckerDelta(self.n, bra.n)
|
159 |
+
|
160 |
+
def _apply_from_right_to_BosonOp(self, op, **options):
|
161 |
+
if op.is_annihilation:
|
162 |
+
return sqrt(self.n) * BosonFockKet(self.n - 1)
|
163 |
+
else:
|
164 |
+
return sqrt(self.n + 1) * BosonFockKet(self.n + 1)
|
165 |
+
|
166 |
+
|
167 |
+
class BosonFockBra(Bra):
|
168 |
+
"""Fock state bra for a bosonic mode.
|
169 |
+
|
170 |
+
Parameters
|
171 |
+
==========
|
172 |
+
|
173 |
+
n : Number
|
174 |
+
The Fock state number.
|
175 |
+
|
176 |
+
"""
|
177 |
+
|
178 |
+
def __new__(cls, n):
|
179 |
+
return Bra.__new__(cls, n)
|
180 |
+
|
181 |
+
@property
|
182 |
+
def n(self):
|
183 |
+
return self.label[0]
|
184 |
+
|
185 |
+
@classmethod
|
186 |
+
def dual_class(self):
|
187 |
+
return BosonFockKet
|
188 |
+
|
189 |
+
@classmethod
|
190 |
+
def _eval_hilbert_space(cls, label):
|
191 |
+
return FockSpace()
|
192 |
+
|
193 |
+
|
194 |
+
class BosonCoherentKet(Ket):
|
195 |
+
"""Coherent state ket for a bosonic mode.
|
196 |
+
|
197 |
+
Parameters
|
198 |
+
==========
|
199 |
+
|
200 |
+
alpha : Number, Symbol
|
201 |
+
The complex amplitude of the coherent state.
|
202 |
+
|
203 |
+
"""
|
204 |
+
|
205 |
+
def __new__(cls, alpha):
|
206 |
+
return Ket.__new__(cls, alpha)
|
207 |
+
|
208 |
+
@property
|
209 |
+
def alpha(self):
|
210 |
+
return self.label[0]
|
211 |
+
|
212 |
+
@classmethod
|
213 |
+
def dual_class(self):
|
214 |
+
return BosonCoherentBra
|
215 |
+
|
216 |
+
@classmethod
|
217 |
+
def _eval_hilbert_space(cls, label):
|
218 |
+
return HilbertSpace()
|
219 |
+
|
220 |
+
def _eval_innerproduct_BosonCoherentBra(self, bra, **hints):
|
221 |
+
if self.alpha == bra.alpha:
|
222 |
+
return S.One
|
223 |
+
else:
|
224 |
+
return exp(-(abs(self.alpha)**2 + abs(bra.alpha)**2 - 2 * conjugate(bra.alpha) * self.alpha)/2)
|
225 |
+
|
226 |
+
def _apply_from_right_to_BosonOp(self, op, **options):
|
227 |
+
if op.is_annihilation:
|
228 |
+
return self.alpha * self
|
229 |
+
else:
|
230 |
+
return None
|
231 |
+
|
232 |
+
|
233 |
+
class BosonCoherentBra(Bra):
|
234 |
+
"""Coherent state bra for a bosonic mode.
|
235 |
+
|
236 |
+
Parameters
|
237 |
+
==========
|
238 |
+
|
239 |
+
alpha : Number, Symbol
|
240 |
+
The complex amplitude of the coherent state.
|
241 |
+
|
242 |
+
"""
|
243 |
+
|
244 |
+
def __new__(cls, alpha):
|
245 |
+
return Bra.__new__(cls, alpha)
|
246 |
+
|
247 |
+
@property
|
248 |
+
def alpha(self):
|
249 |
+
return self.label[0]
|
250 |
+
|
251 |
+
@classmethod
|
252 |
+
def dual_class(self):
|
253 |
+
return BosonCoherentKet
|
254 |
+
|
255 |
+
def _apply_operator_BosonOp(self, op, **options):
|
256 |
+
if not op.is_annihilation:
|
257 |
+
return self.alpha * self
|
258 |
+
else:
|
259 |
+
return None
|
venv/lib/python3.10/site-packages/sympy/physics/quantum/cg.py
ADDED
@@ -0,0 +1,754 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#TODO:
|
2 |
+
# -Implement Clebsch-Gordan symmetries
|
3 |
+
# -Improve simplification method
|
4 |
+
# -Implement new simplifications
|
5 |
+
"""Clebsch-Gordon Coefficients."""
|
6 |
+
|
7 |
+
from sympy.concrete.summations import Sum
|
8 |
+
from sympy.core.add import Add
|
9 |
+
from sympy.core.expr import Expr
|
10 |
+
from sympy.core.function import expand
|
11 |
+
from sympy.core.mul import Mul
|
12 |
+
from sympy.core.power import Pow
|
13 |
+
from sympy.core.relational import Eq
|
14 |
+
from sympy.core.singleton import S
|
15 |
+
from sympy.core.symbol import (Wild, symbols)
|
16 |
+
from sympy.core.sympify import sympify
|
17 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
18 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
19 |
+
from sympy.printing.pretty.stringpict import prettyForm, stringPict
|
20 |
+
|
21 |
+
from sympy.functions.special.tensor_functions import KroneckerDelta
|
22 |
+
from sympy.physics.wigner import clebsch_gordan, wigner_3j, wigner_6j, wigner_9j
|
23 |
+
from sympy.printing.precedence import PRECEDENCE
|
24 |
+
|
25 |
+
__all__ = [
|
26 |
+
'CG',
|
27 |
+
'Wigner3j',
|
28 |
+
'Wigner6j',
|
29 |
+
'Wigner9j',
|
30 |
+
'cg_simp'
|
31 |
+
]
|
32 |
+
|
33 |
+
#-----------------------------------------------------------------------------
|
34 |
+
# CG Coefficients
|
35 |
+
#-----------------------------------------------------------------------------
|
36 |
+
|
37 |
+
|
38 |
+
class Wigner3j(Expr):
|
39 |
+
"""Class for the Wigner-3j symbols.
|
40 |
+
|
41 |
+
Explanation
|
42 |
+
===========
|
43 |
+
|
44 |
+
Wigner 3j-symbols are coefficients determined by the coupling of
|
45 |
+
two angular momenta. When created, they are expressed as symbolic
|
46 |
+
quantities that, for numerical parameters, can be evaluated using the
|
47 |
+
``.doit()`` method [1]_.
|
48 |
+
|
49 |
+
Parameters
|
50 |
+
==========
|
51 |
+
|
52 |
+
j1, m1, j2, m2, j3, m3 : Number, Symbol
|
53 |
+
Terms determining the angular momentum of coupled angular momentum
|
54 |
+
systems.
|
55 |
+
|
56 |
+
Examples
|
57 |
+
========
|
58 |
+
|
59 |
+
Declare a Wigner-3j coefficient and calculate its value
|
60 |
+
|
61 |
+
>>> from sympy.physics.quantum.cg import Wigner3j
|
62 |
+
>>> w3j = Wigner3j(6,0,4,0,2,0)
|
63 |
+
>>> w3j
|
64 |
+
Wigner3j(6, 0, 4, 0, 2, 0)
|
65 |
+
>>> w3j.doit()
|
66 |
+
sqrt(715)/143
|
67 |
+
|
68 |
+
See Also
|
69 |
+
========
|
70 |
+
|
71 |
+
CG: Clebsch-Gordan coefficients
|
72 |
+
|
73 |
+
References
|
74 |
+
==========
|
75 |
+
|
76 |
+
.. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988.
|
77 |
+
"""
|
78 |
+
|
79 |
+
is_commutative = True
|
80 |
+
|
81 |
+
def __new__(cls, j1, m1, j2, m2, j3, m3):
|
82 |
+
args = map(sympify, (j1, m1, j2, m2, j3, m3))
|
83 |
+
return Expr.__new__(cls, *args)
|
84 |
+
|
85 |
+
@property
|
86 |
+
def j1(self):
|
87 |
+
return self.args[0]
|
88 |
+
|
89 |
+
@property
|
90 |
+
def m1(self):
|
91 |
+
return self.args[1]
|
92 |
+
|
93 |
+
@property
|
94 |
+
def j2(self):
|
95 |
+
return self.args[2]
|
96 |
+
|
97 |
+
@property
|
98 |
+
def m2(self):
|
99 |
+
return self.args[3]
|
100 |
+
|
101 |
+
@property
|
102 |
+
def j3(self):
|
103 |
+
return self.args[4]
|
104 |
+
|
105 |
+
@property
|
106 |
+
def m3(self):
|
107 |
+
return self.args[5]
|
108 |
+
|
109 |
+
@property
|
110 |
+
def is_symbolic(self):
|
111 |
+
return not all(arg.is_number for arg in self.args)
|
112 |
+
|
113 |
+
# This is modified from the _print_Matrix method
|
114 |
+
def _pretty(self, printer, *args):
|
115 |
+
m = ((printer._print(self.j1), printer._print(self.m1)),
|
116 |
+
(printer._print(self.j2), printer._print(self.m2)),
|
117 |
+
(printer._print(self.j3), printer._print(self.m3)))
|
118 |
+
hsep = 2
|
119 |
+
vsep = 1
|
120 |
+
maxw = [-1]*3
|
121 |
+
for j in range(3):
|
122 |
+
maxw[j] = max([ m[j][i].width() for i in range(2) ])
|
123 |
+
D = None
|
124 |
+
for i in range(2):
|
125 |
+
D_row = None
|
126 |
+
for j in range(3):
|
127 |
+
s = m[j][i]
|
128 |
+
wdelta = maxw[j] - s.width()
|
129 |
+
wleft = wdelta //2
|
130 |
+
wright = wdelta - wleft
|
131 |
+
|
132 |
+
s = prettyForm(*s.right(' '*wright))
|
133 |
+
s = prettyForm(*s.left(' '*wleft))
|
134 |
+
|
135 |
+
if D_row is None:
|
136 |
+
D_row = s
|
137 |
+
continue
|
138 |
+
D_row = prettyForm(*D_row.right(' '*hsep))
|
139 |
+
D_row = prettyForm(*D_row.right(s))
|
140 |
+
if D is None:
|
141 |
+
D = D_row
|
142 |
+
continue
|
143 |
+
for _ in range(vsep):
|
144 |
+
D = prettyForm(*D.below(' '))
|
145 |
+
D = prettyForm(*D.below(D_row))
|
146 |
+
D = prettyForm(*D.parens())
|
147 |
+
return D
|
148 |
+
|
149 |
+
def _latex(self, printer, *args):
|
150 |
+
label = map(printer._print, (self.j1, self.j2, self.j3,
|
151 |
+
self.m1, self.m2, self.m3))
|
152 |
+
return r'\left(\begin{array}{ccc} %s & %s & %s \\ %s & %s & %s \end{array}\right)' % \
|
153 |
+
tuple(label)
|
154 |
+
|
155 |
+
def doit(self, **hints):
|
156 |
+
if self.is_symbolic:
|
157 |
+
raise ValueError("Coefficients must be numerical")
|
158 |
+
return wigner_3j(self.j1, self.j2, self.j3, self.m1, self.m2, self.m3)
|
159 |
+
|
160 |
+
|
161 |
+
class CG(Wigner3j):
|
162 |
+
r"""Class for Clebsch-Gordan coefficient.
|
163 |
+
|
164 |
+
Explanation
|
165 |
+
===========
|
166 |
+
|
167 |
+
Clebsch-Gordan coefficients describe the angular momentum coupling between
|
168 |
+
two systems. The coefficients give the expansion of a coupled total angular
|
169 |
+
momentum state and an uncoupled tensor product state. The Clebsch-Gordan
|
170 |
+
coefficients are defined as [1]_:
|
171 |
+
|
172 |
+
.. math ::
|
173 |
+
C^{j_3,m_3}_{j_1,m_1,j_2,m_2} = \left\langle j_1,m_1;j_2,m_2 | j_3,m_3\right\rangle
|
174 |
+
|
175 |
+
Parameters
|
176 |
+
==========
|
177 |
+
|
178 |
+
j1, m1, j2, m2 : Number, Symbol
|
179 |
+
Angular momenta of states 1 and 2.
|
180 |
+
|
181 |
+
j3, m3: Number, Symbol
|
182 |
+
Total angular momentum of the coupled system.
|
183 |
+
|
184 |
+
Examples
|
185 |
+
========
|
186 |
+
|
187 |
+
Define a Clebsch-Gordan coefficient and evaluate its value
|
188 |
+
|
189 |
+
>>> from sympy.physics.quantum.cg import CG
|
190 |
+
>>> from sympy import S
|
191 |
+
>>> cg = CG(S(3)/2, S(3)/2, S(1)/2, -S(1)/2, 1, 1)
|
192 |
+
>>> cg
|
193 |
+
CG(3/2, 3/2, 1/2, -1/2, 1, 1)
|
194 |
+
>>> cg.doit()
|
195 |
+
sqrt(3)/2
|
196 |
+
>>> CG(j1=S(1)/2, m1=-S(1)/2, j2=S(1)/2, m2=+S(1)/2, j3=1, m3=0).doit()
|
197 |
+
sqrt(2)/2
|
198 |
+
|
199 |
+
|
200 |
+
Compare [2]_.
|
201 |
+
|
202 |
+
See Also
|
203 |
+
========
|
204 |
+
|
205 |
+
Wigner3j: Wigner-3j symbols
|
206 |
+
|
207 |
+
References
|
208 |
+
==========
|
209 |
+
|
210 |
+
.. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988.
|
211 |
+
.. [2] `Clebsch-Gordan Coefficients, Spherical Harmonics, and d Functions
|
212 |
+
<https://pdg.lbl.gov/2020/reviews/rpp2020-rev-clebsch-gordan-coefs.pdf>`_
|
213 |
+
in P.A. Zyla *et al.* (Particle Data Group), Prog. Theor. Exp. Phys.
|
214 |
+
2020, 083C01 (2020).
|
215 |
+
"""
|
216 |
+
precedence = PRECEDENCE["Pow"] - 1
|
217 |
+
|
218 |
+
def doit(self, **hints):
|
219 |
+
if self.is_symbolic:
|
220 |
+
raise ValueError("Coefficients must be numerical")
|
221 |
+
return clebsch_gordan(self.j1, self.j2, self.j3, self.m1, self.m2, self.m3)
|
222 |
+
|
223 |
+
def _pretty(self, printer, *args):
|
224 |
+
bot = printer._print_seq(
|
225 |
+
(self.j1, self.m1, self.j2, self.m2), delimiter=',')
|
226 |
+
top = printer._print_seq((self.j3, self.m3), delimiter=',')
|
227 |
+
|
228 |
+
pad = max(top.width(), bot.width())
|
229 |
+
bot = prettyForm(*bot.left(' '))
|
230 |
+
top = prettyForm(*top.left(' '))
|
231 |
+
|
232 |
+
if not pad == bot.width():
|
233 |
+
bot = prettyForm(*bot.right(' '*(pad - bot.width())))
|
234 |
+
if not pad == top.width():
|
235 |
+
top = prettyForm(*top.right(' '*(pad - top.width())))
|
236 |
+
s = stringPict('C' + ' '*pad)
|
237 |
+
s = prettyForm(*s.below(bot))
|
238 |
+
s = prettyForm(*s.above(top))
|
239 |
+
return s
|
240 |
+
|
241 |
+
def _latex(self, printer, *args):
|
242 |
+
label = map(printer._print, (self.j3, self.m3, self.j1,
|
243 |
+
self.m1, self.j2, self.m2))
|
244 |
+
return r'C^{%s,%s}_{%s,%s,%s,%s}' % tuple(label)
|
245 |
+
|
246 |
+
|
247 |
+
class Wigner6j(Expr):
|
248 |
+
"""Class for the Wigner-6j symbols
|
249 |
+
|
250 |
+
See Also
|
251 |
+
========
|
252 |
+
|
253 |
+
Wigner3j: Wigner-3j symbols
|
254 |
+
|
255 |
+
"""
|
256 |
+
def __new__(cls, j1, j2, j12, j3, j, j23):
|
257 |
+
args = map(sympify, (j1, j2, j12, j3, j, j23))
|
258 |
+
return Expr.__new__(cls, *args)
|
259 |
+
|
260 |
+
@property
|
261 |
+
def j1(self):
|
262 |
+
return self.args[0]
|
263 |
+
|
264 |
+
@property
|
265 |
+
def j2(self):
|
266 |
+
return self.args[1]
|
267 |
+
|
268 |
+
@property
|
269 |
+
def j12(self):
|
270 |
+
return self.args[2]
|
271 |
+
|
272 |
+
@property
|
273 |
+
def j3(self):
|
274 |
+
return self.args[3]
|
275 |
+
|
276 |
+
@property
|
277 |
+
def j(self):
|
278 |
+
return self.args[4]
|
279 |
+
|
280 |
+
@property
|
281 |
+
def j23(self):
|
282 |
+
return self.args[5]
|
283 |
+
|
284 |
+
@property
|
285 |
+
def is_symbolic(self):
|
286 |
+
return not all(arg.is_number for arg in self.args)
|
287 |
+
|
288 |
+
# This is modified from the _print_Matrix method
|
289 |
+
def _pretty(self, printer, *args):
|
290 |
+
m = ((printer._print(self.j1), printer._print(self.j3)),
|
291 |
+
(printer._print(self.j2), printer._print(self.j)),
|
292 |
+
(printer._print(self.j12), printer._print(self.j23)))
|
293 |
+
hsep = 2
|
294 |
+
vsep = 1
|
295 |
+
maxw = [-1]*3
|
296 |
+
for j in range(3):
|
297 |
+
maxw[j] = max([ m[j][i].width() for i in range(2) ])
|
298 |
+
D = None
|
299 |
+
for i in range(2):
|
300 |
+
D_row = None
|
301 |
+
for j in range(3):
|
302 |
+
s = m[j][i]
|
303 |
+
wdelta = maxw[j] - s.width()
|
304 |
+
wleft = wdelta //2
|
305 |
+
wright = wdelta - wleft
|
306 |
+
|
307 |
+
s = prettyForm(*s.right(' '*wright))
|
308 |
+
s = prettyForm(*s.left(' '*wleft))
|
309 |
+
|
310 |
+
if D_row is None:
|
311 |
+
D_row = s
|
312 |
+
continue
|
313 |
+
D_row = prettyForm(*D_row.right(' '*hsep))
|
314 |
+
D_row = prettyForm(*D_row.right(s))
|
315 |
+
if D is None:
|
316 |
+
D = D_row
|
317 |
+
continue
|
318 |
+
for _ in range(vsep):
|
319 |
+
D = prettyForm(*D.below(' '))
|
320 |
+
D = prettyForm(*D.below(D_row))
|
321 |
+
D = prettyForm(*D.parens(left='{', right='}'))
|
322 |
+
return D
|
323 |
+
|
324 |
+
def _latex(self, printer, *args):
|
325 |
+
label = map(printer._print, (self.j1, self.j2, self.j12,
|
326 |
+
self.j3, self.j, self.j23))
|
327 |
+
return r'\left\{\begin{array}{ccc} %s & %s & %s \\ %s & %s & %s \end{array}\right\}' % \
|
328 |
+
tuple(label)
|
329 |
+
|
330 |
+
def doit(self, **hints):
|
331 |
+
if self.is_symbolic:
|
332 |
+
raise ValueError("Coefficients must be numerical")
|
333 |
+
return wigner_6j(self.j1, self.j2, self.j12, self.j3, self.j, self.j23)
|
334 |
+
|
335 |
+
|
336 |
+
class Wigner9j(Expr):
|
337 |
+
"""Class for the Wigner-9j symbols
|
338 |
+
|
339 |
+
See Also
|
340 |
+
========
|
341 |
+
|
342 |
+
Wigner3j: Wigner-3j symbols
|
343 |
+
|
344 |
+
"""
|
345 |
+
def __new__(cls, j1, j2, j12, j3, j4, j34, j13, j24, j):
|
346 |
+
args = map(sympify, (j1, j2, j12, j3, j4, j34, j13, j24, j))
|
347 |
+
return Expr.__new__(cls, *args)
|
348 |
+
|
349 |
+
@property
|
350 |
+
def j1(self):
|
351 |
+
return self.args[0]
|
352 |
+
|
353 |
+
@property
|
354 |
+
def j2(self):
|
355 |
+
return self.args[1]
|
356 |
+
|
357 |
+
@property
|
358 |
+
def j12(self):
|
359 |
+
return self.args[2]
|
360 |
+
|
361 |
+
@property
|
362 |
+
def j3(self):
|
363 |
+
return self.args[3]
|
364 |
+
|
365 |
+
@property
|
366 |
+
def j4(self):
|
367 |
+
return self.args[4]
|
368 |
+
|
369 |
+
@property
|
370 |
+
def j34(self):
|
371 |
+
return self.args[5]
|
372 |
+
|
373 |
+
@property
|
374 |
+
def j13(self):
|
375 |
+
return self.args[6]
|
376 |
+
|
377 |
+
@property
|
378 |
+
def j24(self):
|
379 |
+
return self.args[7]
|
380 |
+
|
381 |
+
@property
|
382 |
+
def j(self):
|
383 |
+
return self.args[8]
|
384 |
+
|
385 |
+
@property
|
386 |
+
def is_symbolic(self):
|
387 |
+
return not all(arg.is_number for arg in self.args)
|
388 |
+
|
389 |
+
# This is modified from the _print_Matrix method
|
390 |
+
def _pretty(self, printer, *args):
|
391 |
+
m = (
|
392 |
+
(printer._print(
|
393 |
+
self.j1), printer._print(self.j3), printer._print(self.j13)),
|
394 |
+
(printer._print(
|
395 |
+
self.j2), printer._print(self.j4), printer._print(self.j24)),
|
396 |
+
(printer._print(self.j12), printer._print(self.j34), printer._print(self.j)))
|
397 |
+
hsep = 2
|
398 |
+
vsep = 1
|
399 |
+
maxw = [-1]*3
|
400 |
+
for j in range(3):
|
401 |
+
maxw[j] = max([ m[j][i].width() for i in range(3) ])
|
402 |
+
D = None
|
403 |
+
for i in range(3):
|
404 |
+
D_row = None
|
405 |
+
for j in range(3):
|
406 |
+
s = m[j][i]
|
407 |
+
wdelta = maxw[j] - s.width()
|
408 |
+
wleft = wdelta //2
|
409 |
+
wright = wdelta - wleft
|
410 |
+
|
411 |
+
s = prettyForm(*s.right(' '*wright))
|
412 |
+
s = prettyForm(*s.left(' '*wleft))
|
413 |
+
|
414 |
+
if D_row is None:
|
415 |
+
D_row = s
|
416 |
+
continue
|
417 |
+
D_row = prettyForm(*D_row.right(' '*hsep))
|
418 |
+
D_row = prettyForm(*D_row.right(s))
|
419 |
+
if D is None:
|
420 |
+
D = D_row
|
421 |
+
continue
|
422 |
+
for _ in range(vsep):
|
423 |
+
D = prettyForm(*D.below(' '))
|
424 |
+
D = prettyForm(*D.below(D_row))
|
425 |
+
D = prettyForm(*D.parens(left='{', right='}'))
|
426 |
+
return D
|
427 |
+
|
428 |
+
def _latex(self, printer, *args):
|
429 |
+
label = map(printer._print, (self.j1, self.j2, self.j12, self.j3,
|
430 |
+
self.j4, self.j34, self.j13, self.j24, self.j))
|
431 |
+
return r'\left\{\begin{array}{ccc} %s & %s & %s \\ %s & %s & %s \\ %s & %s & %s \end{array}\right\}' % \
|
432 |
+
tuple(label)
|
433 |
+
|
434 |
+
def doit(self, **hints):
|
435 |
+
if self.is_symbolic:
|
436 |
+
raise ValueError("Coefficients must be numerical")
|
437 |
+
return wigner_9j(self.j1, self.j2, self.j12, self.j3, self.j4, self.j34, self.j13, self.j24, self.j)
|
438 |
+
|
439 |
+
|
440 |
+
def cg_simp(e):
|
441 |
+
"""Simplify and combine CG coefficients.
|
442 |
+
|
443 |
+
Explanation
|
444 |
+
===========
|
445 |
+
|
446 |
+
This function uses various symmetry and properties of sums and
|
447 |
+
products of Clebsch-Gordan coefficients to simplify statements
|
448 |
+
involving these terms [1]_.
|
449 |
+
|
450 |
+
Examples
|
451 |
+
========
|
452 |
+
|
453 |
+
Simplify the sum over CG(a,alpha,0,0,a,alpha) for all alpha to
|
454 |
+
2*a+1
|
455 |
+
|
456 |
+
>>> from sympy.physics.quantum.cg import CG, cg_simp
|
457 |
+
>>> a = CG(1,1,0,0,1,1)
|
458 |
+
>>> b = CG(1,0,0,0,1,0)
|
459 |
+
>>> c = CG(1,-1,0,0,1,-1)
|
460 |
+
>>> cg_simp(a+b+c)
|
461 |
+
3
|
462 |
+
|
463 |
+
See Also
|
464 |
+
========
|
465 |
+
|
466 |
+
CG: Clebsh-Gordan coefficients
|
467 |
+
|
468 |
+
References
|
469 |
+
==========
|
470 |
+
|
471 |
+
.. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988.
|
472 |
+
"""
|
473 |
+
if isinstance(e, Add):
|
474 |
+
return _cg_simp_add(e)
|
475 |
+
elif isinstance(e, Sum):
|
476 |
+
return _cg_simp_sum(e)
|
477 |
+
elif isinstance(e, Mul):
|
478 |
+
return Mul(*[cg_simp(arg) for arg in e.args])
|
479 |
+
elif isinstance(e, Pow):
|
480 |
+
return Pow(cg_simp(e.base), e.exp)
|
481 |
+
else:
|
482 |
+
return e
|
483 |
+
|
484 |
+
|
485 |
+
def _cg_simp_add(e):
|
486 |
+
#TODO: Improve simplification method
|
487 |
+
"""Takes a sum of terms involving Clebsch-Gordan coefficients and
|
488 |
+
simplifies the terms.
|
489 |
+
|
490 |
+
Explanation
|
491 |
+
===========
|
492 |
+
|
493 |
+
First, we create two lists, cg_part, which is all the terms involving CG
|
494 |
+
coefficients, and other_part, which is all other terms. The cg_part list
|
495 |
+
is then passed to the simplification methods, which return the new cg_part
|
496 |
+
and any additional terms that are added to other_part
|
497 |
+
"""
|
498 |
+
cg_part = []
|
499 |
+
other_part = []
|
500 |
+
|
501 |
+
e = expand(e)
|
502 |
+
for arg in e.args:
|
503 |
+
if arg.has(CG):
|
504 |
+
if isinstance(arg, Sum):
|
505 |
+
other_part.append(_cg_simp_sum(arg))
|
506 |
+
elif isinstance(arg, Mul):
|
507 |
+
terms = 1
|
508 |
+
for term in arg.args:
|
509 |
+
if isinstance(term, Sum):
|
510 |
+
terms *= _cg_simp_sum(term)
|
511 |
+
else:
|
512 |
+
terms *= term
|
513 |
+
if terms.has(CG):
|
514 |
+
cg_part.append(terms)
|
515 |
+
else:
|
516 |
+
other_part.append(terms)
|
517 |
+
else:
|
518 |
+
cg_part.append(arg)
|
519 |
+
else:
|
520 |
+
other_part.append(arg)
|
521 |
+
|
522 |
+
cg_part, other = _check_varsh_871_1(cg_part)
|
523 |
+
other_part.append(other)
|
524 |
+
cg_part, other = _check_varsh_871_2(cg_part)
|
525 |
+
other_part.append(other)
|
526 |
+
cg_part, other = _check_varsh_872_9(cg_part)
|
527 |
+
other_part.append(other)
|
528 |
+
return Add(*cg_part) + Add(*other_part)
|
529 |
+
|
530 |
+
|
531 |
+
def _check_varsh_871_1(term_list):
|
532 |
+
# Sum( CG(a,alpha,b,0,a,alpha), (alpha, -a, a)) == KroneckerDelta(b,0)
|
533 |
+
a, alpha, b, lt = map(Wild, ('a', 'alpha', 'b', 'lt'))
|
534 |
+
expr = lt*CG(a, alpha, b, 0, a, alpha)
|
535 |
+
simp = (2*a + 1)*KroneckerDelta(b, 0)
|
536 |
+
sign = lt/abs(lt)
|
537 |
+
build_expr = 2*a + 1
|
538 |
+
index_expr = a + alpha
|
539 |
+
return _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, b, lt), (a, b), build_expr, index_expr)
|
540 |
+
|
541 |
+
|
542 |
+
def _check_varsh_871_2(term_list):
|
543 |
+
# Sum((-1)**(a-alpha)*CG(a,alpha,a,-alpha,c,0),(alpha,-a,a))
|
544 |
+
a, alpha, c, lt = map(Wild, ('a', 'alpha', 'c', 'lt'))
|
545 |
+
expr = lt*CG(a, alpha, a, -alpha, c, 0)
|
546 |
+
simp = sqrt(2*a + 1)*KroneckerDelta(c, 0)
|
547 |
+
sign = (-1)**(a - alpha)*lt/abs(lt)
|
548 |
+
build_expr = 2*a + 1
|
549 |
+
index_expr = a + alpha
|
550 |
+
return _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, c, lt), (a, c), build_expr, index_expr)
|
551 |
+
|
552 |
+
|
553 |
+
def _check_varsh_872_9(term_list):
|
554 |
+
# Sum( CG(a,alpha,b,beta,c,gamma)*CG(a,alpha',b,beta',c,gamma), (gamma, -c, c), (c, abs(a-b), a+b))
|
555 |
+
a, alpha, alphap, b, beta, betap, c, gamma, lt = map(Wild, (
|
556 |
+
'a', 'alpha', 'alphap', 'b', 'beta', 'betap', 'c', 'gamma', 'lt'))
|
557 |
+
# Case alpha==alphap, beta==betap
|
558 |
+
|
559 |
+
# For numerical alpha,beta
|
560 |
+
expr = lt*CG(a, alpha, b, beta, c, gamma)**2
|
561 |
+
simp = S.One
|
562 |
+
sign = lt/abs(lt)
|
563 |
+
x = abs(a - b)
|
564 |
+
y = abs(alpha + beta)
|
565 |
+
build_expr = a + b + 1 - Piecewise((x, x > y), (0, Eq(x, y)), (y, y > x))
|
566 |
+
index_expr = a + b - c
|
567 |
+
term_list, other1 = _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, b, beta, c, gamma, lt), (a, alpha, b, beta), build_expr, index_expr)
|
568 |
+
|
569 |
+
# For symbolic alpha,beta
|
570 |
+
x = abs(a - b)
|
571 |
+
y = a + b
|
572 |
+
build_expr = (y + 1 - x)*(x + y + 1)
|
573 |
+
index_expr = (c - x)*(x + c) + c + gamma
|
574 |
+
term_list, other2 = _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, b, beta, c, gamma, lt), (a, alpha, b, beta), build_expr, index_expr)
|
575 |
+
|
576 |
+
# Case alpha!=alphap or beta!=betap
|
577 |
+
# Note: this only works with leading term of 1, pattern matching is unable to match when there is a Wild leading term
|
578 |
+
# For numerical alpha,alphap,beta,betap
|
579 |
+
expr = CG(a, alpha, b, beta, c, gamma)*CG(a, alphap, b, betap, c, gamma)
|
580 |
+
simp = KroneckerDelta(alpha, alphap)*KroneckerDelta(beta, betap)
|
581 |
+
sign = S.One
|
582 |
+
x = abs(a - b)
|
583 |
+
y = abs(alpha + beta)
|
584 |
+
build_expr = a + b + 1 - Piecewise((x, x > y), (0, Eq(x, y)), (y, y > x))
|
585 |
+
index_expr = a + b - c
|
586 |
+
term_list, other3 = _check_cg_simp(expr, simp, sign, S.One, term_list, (a, alpha, alphap, b, beta, betap, c, gamma), (a, alpha, alphap, b, beta, betap), build_expr, index_expr)
|
587 |
+
|
588 |
+
# For symbolic alpha,alphap,beta,betap
|
589 |
+
x = abs(a - b)
|
590 |
+
y = a + b
|
591 |
+
build_expr = (y + 1 - x)*(x + y + 1)
|
592 |
+
index_expr = (c - x)*(x + c) + c + gamma
|
593 |
+
term_list, other4 = _check_cg_simp(expr, simp, sign, S.One, term_list, (a, alpha, alphap, b, beta, betap, c, gamma), (a, alpha, alphap, b, beta, betap), build_expr, index_expr)
|
594 |
+
|
595 |
+
return term_list, other1 + other2 + other4
|
596 |
+
|
597 |
+
|
598 |
+
def _check_cg_simp(expr, simp, sign, lt, term_list, variables, dep_variables, build_index_expr, index_expr):
|
599 |
+
""" Checks for simplifications that can be made, returning a tuple of the
|
600 |
+
simplified list of terms and any terms generated by simplification.
|
601 |
+
|
602 |
+
Parameters
|
603 |
+
==========
|
604 |
+
|
605 |
+
expr: expression
|
606 |
+
The expression with Wild terms that will be matched to the terms in
|
607 |
+
the sum
|
608 |
+
|
609 |
+
simp: expression
|
610 |
+
The expression with Wild terms that is substituted in place of the CG
|
611 |
+
terms in the case of simplification
|
612 |
+
|
613 |
+
sign: expression
|
614 |
+
The expression with Wild terms denoting the sign that is on expr that
|
615 |
+
must match
|
616 |
+
|
617 |
+
lt: expression
|
618 |
+
The expression with Wild terms that gives the leading term of the
|
619 |
+
matched expr
|
620 |
+
|
621 |
+
term_list: list
|
622 |
+
A list of all of the terms is the sum to be simplified
|
623 |
+
|
624 |
+
variables: list
|
625 |
+
A list of all the variables that appears in expr
|
626 |
+
|
627 |
+
dep_variables: list
|
628 |
+
A list of the variables that must match for all the terms in the sum,
|
629 |
+
i.e. the dependent variables
|
630 |
+
|
631 |
+
build_index_expr: expression
|
632 |
+
Expression with Wild terms giving the number of elements in cg_index
|
633 |
+
|
634 |
+
index_expr: expression
|
635 |
+
Expression with Wild terms giving the index terms have when storing
|
636 |
+
them to cg_index
|
637 |
+
|
638 |
+
"""
|
639 |
+
other_part = 0
|
640 |
+
i = 0
|
641 |
+
while i < len(term_list):
|
642 |
+
sub_1 = _check_cg(term_list[i], expr, len(variables))
|
643 |
+
if sub_1 is None:
|
644 |
+
i += 1
|
645 |
+
continue
|
646 |
+
if not build_index_expr.subs(sub_1).is_number:
|
647 |
+
i += 1
|
648 |
+
continue
|
649 |
+
sub_dep = [(x, sub_1[x]) for x in dep_variables]
|
650 |
+
cg_index = [None]*build_index_expr.subs(sub_1)
|
651 |
+
for j in range(i, len(term_list)):
|
652 |
+
sub_2 = _check_cg(term_list[j], expr.subs(sub_dep), len(variables) - len(dep_variables), sign=(sign.subs(sub_1), sign.subs(sub_dep)))
|
653 |
+
if sub_2 is None:
|
654 |
+
continue
|
655 |
+
if not index_expr.subs(sub_dep).subs(sub_2).is_number:
|
656 |
+
continue
|
657 |
+
cg_index[index_expr.subs(sub_dep).subs(sub_2)] = j, expr.subs(lt, 1).subs(sub_dep).subs(sub_2), lt.subs(sub_2), sign.subs(sub_dep).subs(sub_2)
|
658 |
+
if not any(i is None for i in cg_index):
|
659 |
+
min_lt = min(*[ abs(term[2]) for term in cg_index ])
|
660 |
+
indices = [ term[0] for term in cg_index]
|
661 |
+
indices.sort()
|
662 |
+
indices.reverse()
|
663 |
+
[ term_list.pop(j) for j in indices ]
|
664 |
+
for term in cg_index:
|
665 |
+
if abs(term[2]) > min_lt:
|
666 |
+
term_list.append( (term[2] - min_lt*term[3])*term[1] )
|
667 |
+
other_part += min_lt*(sign*simp).subs(sub_1)
|
668 |
+
else:
|
669 |
+
i += 1
|
670 |
+
return term_list, other_part
|
671 |
+
|
672 |
+
|
673 |
+
def _check_cg(cg_term, expr, length, sign=None):
|
674 |
+
"""Checks whether a term matches the given expression"""
|
675 |
+
# TODO: Check for symmetries
|
676 |
+
matches = cg_term.match(expr)
|
677 |
+
if matches is None:
|
678 |
+
return
|
679 |
+
if sign is not None:
|
680 |
+
if not isinstance(sign, tuple):
|
681 |
+
raise TypeError('sign must be a tuple')
|
682 |
+
if not sign[0] == (sign[1]).subs(matches):
|
683 |
+
return
|
684 |
+
if len(matches) == length:
|
685 |
+
return matches
|
686 |
+
|
687 |
+
|
688 |
+
def _cg_simp_sum(e):
|
689 |
+
e = _check_varsh_sum_871_1(e)
|
690 |
+
e = _check_varsh_sum_871_2(e)
|
691 |
+
e = _check_varsh_sum_872_4(e)
|
692 |
+
return e
|
693 |
+
|
694 |
+
|
695 |
+
def _check_varsh_sum_871_1(e):
|
696 |
+
a = Wild('a')
|
697 |
+
alpha = symbols('alpha')
|
698 |
+
b = Wild('b')
|
699 |
+
match = e.match(Sum(CG(a, alpha, b, 0, a, alpha), (alpha, -a, a)))
|
700 |
+
if match is not None and len(match) == 2:
|
701 |
+
return ((2*a + 1)*KroneckerDelta(b, 0)).subs(match)
|
702 |
+
return e
|
703 |
+
|
704 |
+
|
705 |
+
def _check_varsh_sum_871_2(e):
|
706 |
+
a = Wild('a')
|
707 |
+
alpha = symbols('alpha')
|
708 |
+
c = Wild('c')
|
709 |
+
match = e.match(
|
710 |
+
Sum((-1)**(a - alpha)*CG(a, alpha, a, -alpha, c, 0), (alpha, -a, a)))
|
711 |
+
if match is not None and len(match) == 2:
|
712 |
+
return (sqrt(2*a + 1)*KroneckerDelta(c, 0)).subs(match)
|
713 |
+
return e
|
714 |
+
|
715 |
+
|
716 |
+
def _check_varsh_sum_872_4(e):
|
717 |
+
alpha = symbols('alpha')
|
718 |
+
beta = symbols('beta')
|
719 |
+
a = Wild('a')
|
720 |
+
b = Wild('b')
|
721 |
+
c = Wild('c')
|
722 |
+
cp = Wild('cp')
|
723 |
+
gamma = Wild('gamma')
|
724 |
+
gammap = Wild('gammap')
|
725 |
+
cg1 = CG(a, alpha, b, beta, c, gamma)
|
726 |
+
cg2 = CG(a, alpha, b, beta, cp, gammap)
|
727 |
+
match1 = e.match(Sum(cg1*cg2, (alpha, -a, a), (beta, -b, b)))
|
728 |
+
if match1 is not None and len(match1) == 6:
|
729 |
+
return (KroneckerDelta(c, cp)*KroneckerDelta(gamma, gammap)).subs(match1)
|
730 |
+
match2 = e.match(Sum(cg1**2, (alpha, -a, a), (beta, -b, b)))
|
731 |
+
if match2 is not None and len(match2) == 4:
|
732 |
+
return S.One
|
733 |
+
return e
|
734 |
+
|
735 |
+
|
736 |
+
def _cg_list(term):
|
737 |
+
if isinstance(term, CG):
|
738 |
+
return (term,), 1, 1
|
739 |
+
cg = []
|
740 |
+
coeff = 1
|
741 |
+
if not isinstance(term, (Mul, Pow)):
|
742 |
+
raise NotImplementedError('term must be CG, Add, Mul or Pow')
|
743 |
+
if isinstance(term, Pow) and term.exp.is_number:
|
744 |
+
if term.exp.is_number:
|
745 |
+
[ cg.append(term.base) for _ in range(term.exp) ]
|
746 |
+
else:
|
747 |
+
return (term,), 1, 1
|
748 |
+
if isinstance(term, Mul):
|
749 |
+
for arg in term.args:
|
750 |
+
if isinstance(arg, CG):
|
751 |
+
cg.append(arg)
|
752 |
+
else:
|
753 |
+
coeff *= arg
|
754 |
+
return cg, coeff, coeff/abs(coeff)
|
venv/lib/python3.10/site-packages/sympy/physics/quantum/circuitplot.py
ADDED
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Matplotlib based plotting of quantum circuits.
|
2 |
+
|
3 |
+
Todo:
|
4 |
+
|
5 |
+
* Optimize printing of large circuits.
|
6 |
+
* Get this to work with single gates.
|
7 |
+
* Do a better job checking the form of circuits to make sure it is a Mul of
|
8 |
+
Gates.
|
9 |
+
* Get multi-target gates plotting.
|
10 |
+
* Get initial and final states to plot.
|
11 |
+
* Get measurements to plot. Might need to rethink measurement as a gate
|
12 |
+
issue.
|
13 |
+
* Get scale and figsize to be handled in a better way.
|
14 |
+
* Write some tests/examples!
|
15 |
+
"""
|
16 |
+
|
17 |
+
from __future__ import annotations
|
18 |
+
|
19 |
+
from sympy.core.mul import Mul
|
20 |
+
from sympy.external import import_module
|
21 |
+
from sympy.physics.quantum.gate import Gate, OneQubitGate, CGate, CGateS
|
22 |
+
|
23 |
+
|
24 |
+
__all__ = [
|
25 |
+
'CircuitPlot',
|
26 |
+
'circuit_plot',
|
27 |
+
'labeller',
|
28 |
+
'Mz',
|
29 |
+
'Mx',
|
30 |
+
'CreateOneQubitGate',
|
31 |
+
'CreateCGate',
|
32 |
+
]
|
33 |
+
|
34 |
+
np = import_module('numpy')
|
35 |
+
matplotlib = import_module(
|
36 |
+
'matplotlib', import_kwargs={'fromlist': ['pyplot']},
|
37 |
+
catch=(RuntimeError,)) # This is raised in environments that have no display.
|
38 |
+
|
39 |
+
if np and matplotlib:
|
40 |
+
pyplot = matplotlib.pyplot
|
41 |
+
Line2D = matplotlib.lines.Line2D
|
42 |
+
Circle = matplotlib.patches.Circle
|
43 |
+
|
44 |
+
#from matplotlib import rc
|
45 |
+
#rc('text',usetex=True)
|
46 |
+
|
47 |
+
class CircuitPlot:
|
48 |
+
"""A class for managing a circuit plot."""
|
49 |
+
|
50 |
+
scale = 1.0
|
51 |
+
fontsize = 20.0
|
52 |
+
linewidth = 1.0
|
53 |
+
control_radius = 0.05
|
54 |
+
not_radius = 0.15
|
55 |
+
swap_delta = 0.05
|
56 |
+
labels: list[str] = []
|
57 |
+
inits: dict[str, str] = {}
|
58 |
+
label_buffer = 0.5
|
59 |
+
|
60 |
+
def __init__(self, c, nqubits, **kwargs):
|
61 |
+
if not np or not matplotlib:
|
62 |
+
raise ImportError('numpy or matplotlib not available.')
|
63 |
+
self.circuit = c
|
64 |
+
self.ngates = len(self.circuit.args)
|
65 |
+
self.nqubits = nqubits
|
66 |
+
self.update(kwargs)
|
67 |
+
self._create_grid()
|
68 |
+
self._create_figure()
|
69 |
+
self._plot_wires()
|
70 |
+
self._plot_gates()
|
71 |
+
self._finish()
|
72 |
+
|
73 |
+
def update(self, kwargs):
|
74 |
+
"""Load the kwargs into the instance dict."""
|
75 |
+
self.__dict__.update(kwargs)
|
76 |
+
|
77 |
+
def _create_grid(self):
|
78 |
+
"""Create the grid of wires."""
|
79 |
+
scale = self.scale
|
80 |
+
wire_grid = np.arange(0.0, self.nqubits*scale, scale, dtype=float)
|
81 |
+
gate_grid = np.arange(0.0, self.ngates*scale, scale, dtype=float)
|
82 |
+
self._wire_grid = wire_grid
|
83 |
+
self._gate_grid = gate_grid
|
84 |
+
|
85 |
+
def _create_figure(self):
|
86 |
+
"""Create the main matplotlib figure."""
|
87 |
+
self._figure = pyplot.figure(
|
88 |
+
figsize=(self.ngates*self.scale, self.nqubits*self.scale),
|
89 |
+
facecolor='w',
|
90 |
+
edgecolor='w'
|
91 |
+
)
|
92 |
+
ax = self._figure.add_subplot(
|
93 |
+
1, 1, 1,
|
94 |
+
frameon=True
|
95 |
+
)
|
96 |
+
ax.set_axis_off()
|
97 |
+
offset = 0.5*self.scale
|
98 |
+
ax.set_xlim(self._gate_grid[0] - offset, self._gate_grid[-1] + offset)
|
99 |
+
ax.set_ylim(self._wire_grid[0] - offset, self._wire_grid[-1] + offset)
|
100 |
+
ax.set_aspect('equal')
|
101 |
+
self._axes = ax
|
102 |
+
|
103 |
+
def _plot_wires(self):
|
104 |
+
"""Plot the wires of the circuit diagram."""
|
105 |
+
xstart = self._gate_grid[0]
|
106 |
+
xstop = self._gate_grid[-1]
|
107 |
+
xdata = (xstart - self.scale, xstop + self.scale)
|
108 |
+
for i in range(self.nqubits):
|
109 |
+
ydata = (self._wire_grid[i], self._wire_grid[i])
|
110 |
+
line = Line2D(
|
111 |
+
xdata, ydata,
|
112 |
+
color='k',
|
113 |
+
lw=self.linewidth
|
114 |
+
)
|
115 |
+
self._axes.add_line(line)
|
116 |
+
if self.labels:
|
117 |
+
init_label_buffer = 0
|
118 |
+
if self.inits.get(self.labels[i]): init_label_buffer = 0.25
|
119 |
+
self._axes.text(
|
120 |
+
xdata[0]-self.label_buffer-init_label_buffer,ydata[0],
|
121 |
+
render_label(self.labels[i],self.inits),
|
122 |
+
size=self.fontsize,
|
123 |
+
color='k',ha='center',va='center')
|
124 |
+
self._plot_measured_wires()
|
125 |
+
|
126 |
+
def _plot_measured_wires(self):
|
127 |
+
ismeasured = self._measurements()
|
128 |
+
xstop = self._gate_grid[-1]
|
129 |
+
dy = 0.04 # amount to shift wires when doubled
|
130 |
+
# Plot doubled wires after they are measured
|
131 |
+
for im in ismeasured:
|
132 |
+
xdata = (self._gate_grid[ismeasured[im]],xstop+self.scale)
|
133 |
+
ydata = (self._wire_grid[im]+dy,self._wire_grid[im]+dy)
|
134 |
+
line = Line2D(
|
135 |
+
xdata, ydata,
|
136 |
+
color='k',
|
137 |
+
lw=self.linewidth
|
138 |
+
)
|
139 |
+
self._axes.add_line(line)
|
140 |
+
# Also double any controlled lines off these wires
|
141 |
+
for i,g in enumerate(self._gates()):
|
142 |
+
if isinstance(g, (CGate, CGateS)):
|
143 |
+
wires = g.controls + g.targets
|
144 |
+
for wire in wires:
|
145 |
+
if wire in ismeasured and \
|
146 |
+
self._gate_grid[i] > self._gate_grid[ismeasured[wire]]:
|
147 |
+
ydata = min(wires), max(wires)
|
148 |
+
xdata = self._gate_grid[i]-dy, self._gate_grid[i]-dy
|
149 |
+
line = Line2D(
|
150 |
+
xdata, ydata,
|
151 |
+
color='k',
|
152 |
+
lw=self.linewidth
|
153 |
+
)
|
154 |
+
self._axes.add_line(line)
|
155 |
+
def _gates(self):
|
156 |
+
"""Create a list of all gates in the circuit plot."""
|
157 |
+
gates = []
|
158 |
+
if isinstance(self.circuit, Mul):
|
159 |
+
for g in reversed(self.circuit.args):
|
160 |
+
if isinstance(g, Gate):
|
161 |
+
gates.append(g)
|
162 |
+
elif isinstance(self.circuit, Gate):
|
163 |
+
gates.append(self.circuit)
|
164 |
+
return gates
|
165 |
+
|
166 |
+
def _plot_gates(self):
|
167 |
+
"""Iterate through the gates and plot each of them."""
|
168 |
+
for i, gate in enumerate(self._gates()):
|
169 |
+
gate.plot_gate(self, i)
|
170 |
+
|
171 |
+
def _measurements(self):
|
172 |
+
"""Return a dict ``{i:j}`` where i is the index of the wire that has
|
173 |
+
been measured, and j is the gate where the wire is measured.
|
174 |
+
"""
|
175 |
+
ismeasured = {}
|
176 |
+
for i,g in enumerate(self._gates()):
|
177 |
+
if getattr(g,'measurement',False):
|
178 |
+
for target in g.targets:
|
179 |
+
if target in ismeasured:
|
180 |
+
if ismeasured[target] > i:
|
181 |
+
ismeasured[target] = i
|
182 |
+
else:
|
183 |
+
ismeasured[target] = i
|
184 |
+
return ismeasured
|
185 |
+
|
186 |
+
def _finish(self):
|
187 |
+
# Disable clipping to make panning work well for large circuits.
|
188 |
+
for o in self._figure.findobj():
|
189 |
+
o.set_clip_on(False)
|
190 |
+
|
191 |
+
def one_qubit_box(self, t, gate_idx, wire_idx):
|
192 |
+
"""Draw a box for a single qubit gate."""
|
193 |
+
x = self._gate_grid[gate_idx]
|
194 |
+
y = self._wire_grid[wire_idx]
|
195 |
+
self._axes.text(
|
196 |
+
x, y, t,
|
197 |
+
color='k',
|
198 |
+
ha='center',
|
199 |
+
va='center',
|
200 |
+
bbox={"ec": 'k', "fc": 'w', "fill": True, "lw": self.linewidth},
|
201 |
+
size=self.fontsize
|
202 |
+
)
|
203 |
+
|
204 |
+
def two_qubit_box(self, t, gate_idx, wire_idx):
|
205 |
+
"""Draw a box for a two qubit gate. Does not work yet.
|
206 |
+
"""
|
207 |
+
# x = self._gate_grid[gate_idx]
|
208 |
+
# y = self._wire_grid[wire_idx]+0.5
|
209 |
+
print(self._gate_grid)
|
210 |
+
print(self._wire_grid)
|
211 |
+
# unused:
|
212 |
+
# obj = self._axes.text(
|
213 |
+
# x, y, t,
|
214 |
+
# color='k',
|
215 |
+
# ha='center',
|
216 |
+
# va='center',
|
217 |
+
# bbox=dict(ec='k', fc='w', fill=True, lw=self.linewidth),
|
218 |
+
# size=self.fontsize
|
219 |
+
# )
|
220 |
+
|
221 |
+
def control_line(self, gate_idx, min_wire, max_wire):
|
222 |
+
"""Draw a vertical control line."""
|
223 |
+
xdata = (self._gate_grid[gate_idx], self._gate_grid[gate_idx])
|
224 |
+
ydata = (self._wire_grid[min_wire], self._wire_grid[max_wire])
|
225 |
+
line = Line2D(
|
226 |
+
xdata, ydata,
|
227 |
+
color='k',
|
228 |
+
lw=self.linewidth
|
229 |
+
)
|
230 |
+
self._axes.add_line(line)
|
231 |
+
|
232 |
+
def control_point(self, gate_idx, wire_idx):
|
233 |
+
"""Draw a control point."""
|
234 |
+
x = self._gate_grid[gate_idx]
|
235 |
+
y = self._wire_grid[wire_idx]
|
236 |
+
radius = self.control_radius
|
237 |
+
c = Circle(
|
238 |
+
(x, y),
|
239 |
+
radius*self.scale,
|
240 |
+
ec='k',
|
241 |
+
fc='k',
|
242 |
+
fill=True,
|
243 |
+
lw=self.linewidth
|
244 |
+
)
|
245 |
+
self._axes.add_patch(c)
|
246 |
+
|
247 |
+
def not_point(self, gate_idx, wire_idx):
|
248 |
+
"""Draw a NOT gates as the circle with plus in the middle."""
|
249 |
+
x = self._gate_grid[gate_idx]
|
250 |
+
y = self._wire_grid[wire_idx]
|
251 |
+
radius = self.not_radius
|
252 |
+
c = Circle(
|
253 |
+
(x, y),
|
254 |
+
radius,
|
255 |
+
ec='k',
|
256 |
+
fc='w',
|
257 |
+
fill=False,
|
258 |
+
lw=self.linewidth
|
259 |
+
)
|
260 |
+
self._axes.add_patch(c)
|
261 |
+
l = Line2D(
|
262 |
+
(x, x), (y - radius, y + radius),
|
263 |
+
color='k',
|
264 |
+
lw=self.linewidth
|
265 |
+
)
|
266 |
+
self._axes.add_line(l)
|
267 |
+
|
268 |
+
def swap_point(self, gate_idx, wire_idx):
|
269 |
+
"""Draw a swap point as a cross."""
|
270 |
+
x = self._gate_grid[gate_idx]
|
271 |
+
y = self._wire_grid[wire_idx]
|
272 |
+
d = self.swap_delta
|
273 |
+
l1 = Line2D(
|
274 |
+
(x - d, x + d),
|
275 |
+
(y - d, y + d),
|
276 |
+
color='k',
|
277 |
+
lw=self.linewidth
|
278 |
+
)
|
279 |
+
l2 = Line2D(
|
280 |
+
(x - d, x + d),
|
281 |
+
(y + d, y - d),
|
282 |
+
color='k',
|
283 |
+
lw=self.linewidth
|
284 |
+
)
|
285 |
+
self._axes.add_line(l1)
|
286 |
+
self._axes.add_line(l2)
|
287 |
+
|
288 |
+
def circuit_plot(c, nqubits, **kwargs):
|
289 |
+
"""Draw the circuit diagram for the circuit with nqubits.
|
290 |
+
|
291 |
+
Parameters
|
292 |
+
==========
|
293 |
+
|
294 |
+
c : circuit
|
295 |
+
The circuit to plot. Should be a product of Gate instances.
|
296 |
+
nqubits : int
|
297 |
+
The number of qubits to include in the circuit. Must be at least
|
298 |
+
as big as the largest ``min_qubits`` of the gates.
|
299 |
+
"""
|
300 |
+
return CircuitPlot(c, nqubits, **kwargs)
|
301 |
+
|
302 |
+
def render_label(label, inits={}):
|
303 |
+
"""Slightly more flexible way to render labels.
|
304 |
+
|
305 |
+
>>> from sympy.physics.quantum.circuitplot import render_label
|
306 |
+
>>> render_label('q0')
|
307 |
+
'$\\\\left|q0\\\\right\\\\rangle$'
|
308 |
+
>>> render_label('q0', {'q0':'0'})
|
309 |
+
'$\\\\left|q0\\\\right\\\\rangle=\\\\left|0\\\\right\\\\rangle$'
|
310 |
+
"""
|
311 |
+
init = inits.get(label)
|
312 |
+
if init:
|
313 |
+
return r'$\left|%s\right\rangle=\left|%s\right\rangle$' % (label, init)
|
314 |
+
return r'$\left|%s\right\rangle$' % label
|
315 |
+
|
316 |
+
def labeller(n, symbol='q'):
|
317 |
+
"""Autogenerate labels for wires of quantum circuits.
|
318 |
+
|
319 |
+
Parameters
|
320 |
+
==========
|
321 |
+
|
322 |
+
n : int
|
323 |
+
number of qubits in the circuit.
|
324 |
+
symbol : string
|
325 |
+
A character string to precede all gate labels. E.g. 'q_0', 'q_1', etc.
|
326 |
+
|
327 |
+
>>> from sympy.physics.quantum.circuitplot import labeller
|
328 |
+
>>> labeller(2)
|
329 |
+
['q_1', 'q_0']
|
330 |
+
>>> labeller(3,'j')
|
331 |
+
['j_2', 'j_1', 'j_0']
|
332 |
+
"""
|
333 |
+
return ['%s_%d' % (symbol,n-i-1) for i in range(n)]
|
334 |
+
|
335 |
+
class Mz(OneQubitGate):
|
336 |
+
"""Mock-up of a z measurement gate.
|
337 |
+
|
338 |
+
This is in circuitplot rather than gate.py because it's not a real
|
339 |
+
gate, it just draws one.
|
340 |
+
"""
|
341 |
+
measurement = True
|
342 |
+
gate_name='Mz'
|
343 |
+
gate_name_latex='M_z'
|
344 |
+
|
345 |
+
class Mx(OneQubitGate):
|
346 |
+
"""Mock-up of an x measurement gate.
|
347 |
+
|
348 |
+
This is in circuitplot rather than gate.py because it's not a real
|
349 |
+
gate, it just draws one.
|
350 |
+
"""
|
351 |
+
measurement = True
|
352 |
+
gate_name='Mx'
|
353 |
+
gate_name_latex='M_x'
|
354 |
+
|
355 |
+
class CreateOneQubitGate(type):
|
356 |
+
def __new__(mcl, name, latexname=None):
|
357 |
+
if not latexname:
|
358 |
+
latexname = name
|
359 |
+
return type(name + "Gate", (OneQubitGate,),
|
360 |
+
{'gate_name': name, 'gate_name_latex': latexname})
|
361 |
+
|
362 |
+
def CreateCGate(name, latexname=None):
|
363 |
+
"""Use a lexical closure to make a controlled gate.
|
364 |
+
"""
|
365 |
+
if not latexname:
|
366 |
+
latexname = name
|
367 |
+
onequbitgate = CreateOneQubitGate(name, latexname)
|
368 |
+
def ControlledGate(ctrls,target):
|
369 |
+
return CGate(tuple(ctrls),onequbitgate(target))
|
370 |
+
return ControlledGate
|
venv/lib/python3.10/site-packages/sympy/physics/quantum/circuitutils.py
ADDED
@@ -0,0 +1,488 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Primitive circuit operations on quantum circuits."""
|
2 |
+
|
3 |
+
from functools import reduce
|
4 |
+
|
5 |
+
from sympy.core.sorting import default_sort_key
|
6 |
+
from sympy.core.containers import Tuple
|
7 |
+
from sympy.core.mul import Mul
|
8 |
+
from sympy.core.symbol import Symbol
|
9 |
+
from sympy.core.sympify import sympify
|
10 |
+
from sympy.utilities import numbered_symbols
|
11 |
+
from sympy.physics.quantum.gate import Gate
|
12 |
+
|
13 |
+
__all__ = [
|
14 |
+
'kmp_table',
|
15 |
+
'find_subcircuit',
|
16 |
+
'replace_subcircuit',
|
17 |
+
'convert_to_symbolic_indices',
|
18 |
+
'convert_to_real_indices',
|
19 |
+
'random_reduce',
|
20 |
+
'random_insert'
|
21 |
+
]
|
22 |
+
|
23 |
+
|
24 |
+
def kmp_table(word):
|
25 |
+
"""Build the 'partial match' table of the Knuth-Morris-Pratt algorithm.
|
26 |
+
|
27 |
+
Note: This is applicable to strings or
|
28 |
+
quantum circuits represented as tuples.
|
29 |
+
"""
|
30 |
+
|
31 |
+
# Current position in subcircuit
|
32 |
+
pos = 2
|
33 |
+
# Beginning position of candidate substring that
|
34 |
+
# may reappear later in word
|
35 |
+
cnd = 0
|
36 |
+
# The 'partial match' table that helps one determine
|
37 |
+
# the next location to start substring search
|
38 |
+
table = []
|
39 |
+
table.append(-1)
|
40 |
+
table.append(0)
|
41 |
+
|
42 |
+
while pos < len(word):
|
43 |
+
if word[pos - 1] == word[cnd]:
|
44 |
+
cnd = cnd + 1
|
45 |
+
table.append(cnd)
|
46 |
+
pos = pos + 1
|
47 |
+
elif cnd > 0:
|
48 |
+
cnd = table[cnd]
|
49 |
+
else:
|
50 |
+
table.append(0)
|
51 |
+
pos = pos + 1
|
52 |
+
|
53 |
+
return table
|
54 |
+
|
55 |
+
|
56 |
+
def find_subcircuit(circuit, subcircuit, start=0, end=0):
|
57 |
+
"""Finds the subcircuit in circuit, if it exists.
|
58 |
+
|
59 |
+
Explanation
|
60 |
+
===========
|
61 |
+
|
62 |
+
If the subcircuit exists, the index of the start of
|
63 |
+
the subcircuit in circuit is returned; otherwise,
|
64 |
+
-1 is returned. The algorithm that is implemented
|
65 |
+
is the Knuth-Morris-Pratt algorithm.
|
66 |
+
|
67 |
+
Parameters
|
68 |
+
==========
|
69 |
+
|
70 |
+
circuit : tuple, Gate or Mul
|
71 |
+
A tuple of Gates or Mul representing a quantum circuit
|
72 |
+
subcircuit : tuple, Gate or Mul
|
73 |
+
A tuple of Gates or Mul to find in circuit
|
74 |
+
start : int
|
75 |
+
The location to start looking for subcircuit.
|
76 |
+
If start is the same or past end, -1 is returned.
|
77 |
+
end : int
|
78 |
+
The last place to look for a subcircuit. If end
|
79 |
+
is less than 1 (one), then the length of circuit
|
80 |
+
is taken to be end.
|
81 |
+
|
82 |
+
Examples
|
83 |
+
========
|
84 |
+
|
85 |
+
Find the first instance of a subcircuit:
|
86 |
+
|
87 |
+
>>> from sympy.physics.quantum.circuitutils import find_subcircuit
|
88 |
+
>>> from sympy.physics.quantum.gate import X, Y, Z, H
|
89 |
+
>>> circuit = X(0)*Z(0)*Y(0)*H(0)
|
90 |
+
>>> subcircuit = Z(0)*Y(0)
|
91 |
+
>>> find_subcircuit(circuit, subcircuit)
|
92 |
+
1
|
93 |
+
|
94 |
+
Find the first instance starting at a specific position:
|
95 |
+
|
96 |
+
>>> find_subcircuit(circuit, subcircuit, start=1)
|
97 |
+
1
|
98 |
+
|
99 |
+
>>> find_subcircuit(circuit, subcircuit, start=2)
|
100 |
+
-1
|
101 |
+
|
102 |
+
>>> circuit = circuit*subcircuit
|
103 |
+
>>> find_subcircuit(circuit, subcircuit, start=2)
|
104 |
+
4
|
105 |
+
|
106 |
+
Find the subcircuit within some interval:
|
107 |
+
|
108 |
+
>>> find_subcircuit(circuit, subcircuit, start=2, end=2)
|
109 |
+
-1
|
110 |
+
"""
|
111 |
+
|
112 |
+
if isinstance(circuit, Mul):
|
113 |
+
circuit = circuit.args
|
114 |
+
|
115 |
+
if isinstance(subcircuit, Mul):
|
116 |
+
subcircuit = subcircuit.args
|
117 |
+
|
118 |
+
if len(subcircuit) == 0 or len(subcircuit) > len(circuit):
|
119 |
+
return -1
|
120 |
+
|
121 |
+
if end < 1:
|
122 |
+
end = len(circuit)
|
123 |
+
|
124 |
+
# Location in circuit
|
125 |
+
pos = start
|
126 |
+
# Location in the subcircuit
|
127 |
+
index = 0
|
128 |
+
# 'Partial match' table
|
129 |
+
table = kmp_table(subcircuit)
|
130 |
+
|
131 |
+
while (pos + index) < end:
|
132 |
+
if subcircuit[index] == circuit[pos + index]:
|
133 |
+
index = index + 1
|
134 |
+
else:
|
135 |
+
pos = pos + index - table[index]
|
136 |
+
index = table[index] if table[index] > -1 else 0
|
137 |
+
|
138 |
+
if index == len(subcircuit):
|
139 |
+
return pos
|
140 |
+
|
141 |
+
return -1
|
142 |
+
|
143 |
+
|
144 |
+
def replace_subcircuit(circuit, subcircuit, replace=None, pos=0):
|
145 |
+
"""Replaces a subcircuit with another subcircuit in circuit,
|
146 |
+
if it exists.
|
147 |
+
|
148 |
+
Explanation
|
149 |
+
===========
|
150 |
+
|
151 |
+
If multiple instances of subcircuit exists, the first instance is
|
152 |
+
replaced. The position to being searching from (if different from
|
153 |
+
0) may be optionally given. If subcircuit cannot be found, circuit
|
154 |
+
is returned.
|
155 |
+
|
156 |
+
Parameters
|
157 |
+
==========
|
158 |
+
|
159 |
+
circuit : tuple, Gate or Mul
|
160 |
+
A quantum circuit.
|
161 |
+
subcircuit : tuple, Gate or Mul
|
162 |
+
The circuit to be replaced.
|
163 |
+
replace : tuple, Gate or Mul
|
164 |
+
The replacement circuit.
|
165 |
+
pos : int
|
166 |
+
The location to start search and replace
|
167 |
+
subcircuit, if it exists. This may be used
|
168 |
+
if it is known beforehand that multiple
|
169 |
+
instances exist, and it is desirable to
|
170 |
+
replace a specific instance. If a negative number
|
171 |
+
is given, pos will be defaulted to 0.
|
172 |
+
|
173 |
+
Examples
|
174 |
+
========
|
175 |
+
|
176 |
+
Find and remove the subcircuit:
|
177 |
+
|
178 |
+
>>> from sympy.physics.quantum.circuitutils import replace_subcircuit
|
179 |
+
>>> from sympy.physics.quantum.gate import X, Y, Z, H
|
180 |
+
>>> circuit = X(0)*Z(0)*Y(0)*H(0)*X(0)*H(0)*Y(0)
|
181 |
+
>>> subcircuit = Z(0)*Y(0)
|
182 |
+
>>> replace_subcircuit(circuit, subcircuit)
|
183 |
+
(X(0), H(0), X(0), H(0), Y(0))
|
184 |
+
|
185 |
+
Remove the subcircuit given a starting search point:
|
186 |
+
|
187 |
+
>>> replace_subcircuit(circuit, subcircuit, pos=1)
|
188 |
+
(X(0), H(0), X(0), H(0), Y(0))
|
189 |
+
|
190 |
+
>>> replace_subcircuit(circuit, subcircuit, pos=2)
|
191 |
+
(X(0), Z(0), Y(0), H(0), X(0), H(0), Y(0))
|
192 |
+
|
193 |
+
Replace the subcircuit:
|
194 |
+
|
195 |
+
>>> replacement = H(0)*Z(0)
|
196 |
+
>>> replace_subcircuit(circuit, subcircuit, replace=replacement)
|
197 |
+
(X(0), H(0), Z(0), H(0), X(0), H(0), Y(0))
|
198 |
+
"""
|
199 |
+
|
200 |
+
if pos < 0:
|
201 |
+
pos = 0
|
202 |
+
|
203 |
+
if isinstance(circuit, Mul):
|
204 |
+
circuit = circuit.args
|
205 |
+
|
206 |
+
if isinstance(subcircuit, Mul):
|
207 |
+
subcircuit = subcircuit.args
|
208 |
+
|
209 |
+
if isinstance(replace, Mul):
|
210 |
+
replace = replace.args
|
211 |
+
elif replace is None:
|
212 |
+
replace = ()
|
213 |
+
|
214 |
+
# Look for the subcircuit starting at pos
|
215 |
+
loc = find_subcircuit(circuit, subcircuit, start=pos)
|
216 |
+
|
217 |
+
# If subcircuit was found
|
218 |
+
if loc > -1:
|
219 |
+
# Get the gates to the left of subcircuit
|
220 |
+
left = circuit[0:loc]
|
221 |
+
# Get the gates to the right of subcircuit
|
222 |
+
right = circuit[loc + len(subcircuit):len(circuit)]
|
223 |
+
# Recombine the left and right side gates into a circuit
|
224 |
+
circuit = left + replace + right
|
225 |
+
|
226 |
+
return circuit
|
227 |
+
|
228 |
+
|
229 |
+
def _sympify_qubit_map(mapping):
|
230 |
+
new_map = {}
|
231 |
+
for key in mapping:
|
232 |
+
new_map[key] = sympify(mapping[key])
|
233 |
+
return new_map
|
234 |
+
|
235 |
+
|
236 |
+
def convert_to_symbolic_indices(seq, start=None, gen=None, qubit_map=None):
|
237 |
+
"""Returns the circuit with symbolic indices and the
|
238 |
+
dictionary mapping symbolic indices to real indices.
|
239 |
+
|
240 |
+
The mapping is 1 to 1 and onto (bijective).
|
241 |
+
|
242 |
+
Parameters
|
243 |
+
==========
|
244 |
+
|
245 |
+
seq : tuple, Gate/Integer/tuple or Mul
|
246 |
+
A tuple of Gate, Integer, or tuple objects, or a Mul
|
247 |
+
start : Symbol
|
248 |
+
An optional starting symbolic index
|
249 |
+
gen : object
|
250 |
+
An optional numbered symbol generator
|
251 |
+
qubit_map : dict
|
252 |
+
An existing mapping of symbolic indices to real indices
|
253 |
+
|
254 |
+
All symbolic indices have the format 'i#', where # is
|
255 |
+
some number >= 0.
|
256 |
+
"""
|
257 |
+
|
258 |
+
if isinstance(seq, Mul):
|
259 |
+
seq = seq.args
|
260 |
+
|
261 |
+
# A numbered symbol generator
|
262 |
+
index_gen = numbered_symbols(prefix='i', start=-1)
|
263 |
+
cur_ndx = next(index_gen)
|
264 |
+
|
265 |
+
# keys are symbolic indices; values are real indices
|
266 |
+
ndx_map = {}
|
267 |
+
|
268 |
+
def create_inverse_map(symb_to_real_map):
|
269 |
+
rev_items = lambda item: (item[1], item[0])
|
270 |
+
return dict(map(rev_items, symb_to_real_map.items()))
|
271 |
+
|
272 |
+
if start is not None:
|
273 |
+
if not isinstance(start, Symbol):
|
274 |
+
msg = 'Expected Symbol for starting index, got %r.' % start
|
275 |
+
raise TypeError(msg)
|
276 |
+
cur_ndx = start
|
277 |
+
|
278 |
+
if gen is not None:
|
279 |
+
if not isinstance(gen, numbered_symbols().__class__):
|
280 |
+
msg = 'Expected a generator, got %r.' % gen
|
281 |
+
raise TypeError(msg)
|
282 |
+
index_gen = gen
|
283 |
+
|
284 |
+
if qubit_map is not None:
|
285 |
+
if not isinstance(qubit_map, dict):
|
286 |
+
msg = ('Expected dict for existing map, got ' +
|
287 |
+
'%r.' % qubit_map)
|
288 |
+
raise TypeError(msg)
|
289 |
+
ndx_map = qubit_map
|
290 |
+
|
291 |
+
ndx_map = _sympify_qubit_map(ndx_map)
|
292 |
+
# keys are real indices; keys are symbolic indices
|
293 |
+
inv_map = create_inverse_map(ndx_map)
|
294 |
+
|
295 |
+
sym_seq = ()
|
296 |
+
for item in seq:
|
297 |
+
# Nested items, so recurse
|
298 |
+
if isinstance(item, Gate):
|
299 |
+
result = convert_to_symbolic_indices(item.args,
|
300 |
+
qubit_map=ndx_map,
|
301 |
+
start=cur_ndx,
|
302 |
+
gen=index_gen)
|
303 |
+
sym_item, new_map, cur_ndx, index_gen = result
|
304 |
+
ndx_map.update(new_map)
|
305 |
+
inv_map = create_inverse_map(ndx_map)
|
306 |
+
|
307 |
+
elif isinstance(item, (tuple, Tuple)):
|
308 |
+
result = convert_to_symbolic_indices(item,
|
309 |
+
qubit_map=ndx_map,
|
310 |
+
start=cur_ndx,
|
311 |
+
gen=index_gen)
|
312 |
+
sym_item, new_map, cur_ndx, index_gen = result
|
313 |
+
ndx_map.update(new_map)
|
314 |
+
inv_map = create_inverse_map(ndx_map)
|
315 |
+
|
316 |
+
elif item in inv_map:
|
317 |
+
sym_item = inv_map[item]
|
318 |
+
|
319 |
+
else:
|
320 |
+
cur_ndx = next(gen)
|
321 |
+
ndx_map[cur_ndx] = item
|
322 |
+
inv_map[item] = cur_ndx
|
323 |
+
sym_item = cur_ndx
|
324 |
+
|
325 |
+
if isinstance(item, Gate):
|
326 |
+
sym_item = item.__class__(*sym_item)
|
327 |
+
|
328 |
+
sym_seq = sym_seq + (sym_item,)
|
329 |
+
|
330 |
+
return sym_seq, ndx_map, cur_ndx, index_gen
|
331 |
+
|
332 |
+
|
333 |
+
def convert_to_real_indices(seq, qubit_map):
|
334 |
+
"""Returns the circuit with real indices.
|
335 |
+
|
336 |
+
Parameters
|
337 |
+
==========
|
338 |
+
|
339 |
+
seq : tuple, Gate/Integer/tuple or Mul
|
340 |
+
A tuple of Gate, Integer, or tuple objects or a Mul
|
341 |
+
qubit_map : dict
|
342 |
+
A dictionary mapping symbolic indices to real indices.
|
343 |
+
|
344 |
+
Examples
|
345 |
+
========
|
346 |
+
|
347 |
+
Change the symbolic indices to real integers:
|
348 |
+
|
349 |
+
>>> from sympy import symbols
|
350 |
+
>>> from sympy.physics.quantum.circuitutils import convert_to_real_indices
|
351 |
+
>>> from sympy.physics.quantum.gate import X, Y, H
|
352 |
+
>>> i0, i1 = symbols('i:2')
|
353 |
+
>>> index_map = {i0 : 0, i1 : 1}
|
354 |
+
>>> convert_to_real_indices(X(i0)*Y(i1)*H(i0)*X(i1), index_map)
|
355 |
+
(X(0), Y(1), H(0), X(1))
|
356 |
+
"""
|
357 |
+
|
358 |
+
if isinstance(seq, Mul):
|
359 |
+
seq = seq.args
|
360 |
+
|
361 |
+
if not isinstance(qubit_map, dict):
|
362 |
+
msg = 'Expected dict for qubit_map, got %r.' % qubit_map
|
363 |
+
raise TypeError(msg)
|
364 |
+
|
365 |
+
qubit_map = _sympify_qubit_map(qubit_map)
|
366 |
+
real_seq = ()
|
367 |
+
for item in seq:
|
368 |
+
# Nested items, so recurse
|
369 |
+
if isinstance(item, Gate):
|
370 |
+
real_item = convert_to_real_indices(item.args, qubit_map)
|
371 |
+
|
372 |
+
elif isinstance(item, (tuple, Tuple)):
|
373 |
+
real_item = convert_to_real_indices(item, qubit_map)
|
374 |
+
|
375 |
+
else:
|
376 |
+
real_item = qubit_map[item]
|
377 |
+
|
378 |
+
if isinstance(item, Gate):
|
379 |
+
real_item = item.__class__(*real_item)
|
380 |
+
|
381 |
+
real_seq = real_seq + (real_item,)
|
382 |
+
|
383 |
+
return real_seq
|
384 |
+
|
385 |
+
|
386 |
+
def random_reduce(circuit, gate_ids, seed=None):
|
387 |
+
"""Shorten the length of a quantum circuit.
|
388 |
+
|
389 |
+
Explanation
|
390 |
+
===========
|
391 |
+
|
392 |
+
random_reduce looks for circuit identities in circuit, randomly chooses
|
393 |
+
one to remove, and returns a shorter yet equivalent circuit. If no
|
394 |
+
identities are found, the same circuit is returned.
|
395 |
+
|
396 |
+
Parameters
|
397 |
+
==========
|
398 |
+
|
399 |
+
circuit : Gate tuple of Mul
|
400 |
+
A tuple of Gates representing a quantum circuit
|
401 |
+
gate_ids : list, GateIdentity
|
402 |
+
List of gate identities to find in circuit
|
403 |
+
seed : int or list
|
404 |
+
seed used for _randrange; to override the random selection, provide a
|
405 |
+
list of integers: the elements of gate_ids will be tested in the order
|
406 |
+
given by the list
|
407 |
+
|
408 |
+
"""
|
409 |
+
from sympy.core.random import _randrange
|
410 |
+
|
411 |
+
if not gate_ids:
|
412 |
+
return circuit
|
413 |
+
|
414 |
+
if isinstance(circuit, Mul):
|
415 |
+
circuit = circuit.args
|
416 |
+
|
417 |
+
ids = flatten_ids(gate_ids)
|
418 |
+
|
419 |
+
# Create the random integer generator with the seed
|
420 |
+
randrange = _randrange(seed)
|
421 |
+
|
422 |
+
# Look for an identity in the circuit
|
423 |
+
while ids:
|
424 |
+
i = randrange(len(ids))
|
425 |
+
id = ids.pop(i)
|
426 |
+
if find_subcircuit(circuit, id) != -1:
|
427 |
+
break
|
428 |
+
else:
|
429 |
+
# no identity was found
|
430 |
+
return circuit
|
431 |
+
|
432 |
+
# return circuit with the identity removed
|
433 |
+
return replace_subcircuit(circuit, id)
|
434 |
+
|
435 |
+
|
436 |
+
def random_insert(circuit, choices, seed=None):
|
437 |
+
"""Insert a circuit into another quantum circuit.
|
438 |
+
|
439 |
+
Explanation
|
440 |
+
===========
|
441 |
+
|
442 |
+
random_insert randomly chooses a location in the circuit to insert
|
443 |
+
a randomly selected circuit from amongst the given choices.
|
444 |
+
|
445 |
+
Parameters
|
446 |
+
==========
|
447 |
+
|
448 |
+
circuit : Gate tuple or Mul
|
449 |
+
A tuple or Mul of Gates representing a quantum circuit
|
450 |
+
choices : list
|
451 |
+
Set of circuit choices
|
452 |
+
seed : int or list
|
453 |
+
seed used for _randrange; to override the random selections, give
|
454 |
+
a list two integers, [i, j] where i is the circuit location where
|
455 |
+
choice[j] will be inserted.
|
456 |
+
|
457 |
+
Notes
|
458 |
+
=====
|
459 |
+
|
460 |
+
Indices for insertion should be [0, n] if n is the length of the
|
461 |
+
circuit.
|
462 |
+
"""
|
463 |
+
from sympy.core.random import _randrange
|
464 |
+
|
465 |
+
if not choices:
|
466 |
+
return circuit
|
467 |
+
|
468 |
+
if isinstance(circuit, Mul):
|
469 |
+
circuit = circuit.args
|
470 |
+
|
471 |
+
# get the location in the circuit and the element to insert from choices
|
472 |
+
randrange = _randrange(seed)
|
473 |
+
loc = randrange(len(circuit) + 1)
|
474 |
+
choice = choices[randrange(len(choices))]
|
475 |
+
|
476 |
+
circuit = list(circuit)
|
477 |
+
circuit[loc: loc] = choice
|
478 |
+
return tuple(circuit)
|
479 |
+
|
480 |
+
# Flatten the GateIdentity objects (with gate rules) into one single list
|
481 |
+
|
482 |
+
|
483 |
+
def flatten_ids(ids):
|
484 |
+
collapse = lambda acc, an_id: acc + sorted(an_id.equivalent_ids,
|
485 |
+
key=default_sort_key)
|
486 |
+
ids = reduce(collapse, ids, [])
|
487 |
+
ids.sort(key=default_sort_key)
|
488 |
+
return ids
|
venv/lib/python3.10/site-packages/sympy/physics/quantum/commutator.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""The commutator: [A,B] = A*B - B*A."""
|
2 |
+
|
3 |
+
from sympy.core.add import Add
|
4 |
+
from sympy.core.expr import Expr
|
5 |
+
from sympy.core.mul import Mul
|
6 |
+
from sympy.core.power import Pow
|
7 |
+
from sympy.core.singleton import S
|
8 |
+
from sympy.printing.pretty.stringpict import prettyForm
|
9 |
+
|
10 |
+
from sympy.physics.quantum.dagger import Dagger
|
11 |
+
from sympy.physics.quantum.operator import Operator
|
12 |
+
|
13 |
+
|
14 |
+
__all__ = [
|
15 |
+
'Commutator'
|
16 |
+
]
|
17 |
+
|
18 |
+
#-----------------------------------------------------------------------------
|
19 |
+
# Commutator
|
20 |
+
#-----------------------------------------------------------------------------
|
21 |
+
|
22 |
+
|
23 |
+
class Commutator(Expr):
|
24 |
+
"""The standard commutator, in an unevaluated state.
|
25 |
+
|
26 |
+
Explanation
|
27 |
+
===========
|
28 |
+
|
29 |
+
Evaluating a commutator is defined [1]_ as: ``[A, B] = A*B - B*A``. This
|
30 |
+
class returns the commutator in an unevaluated form. To evaluate the
|
31 |
+
commutator, use the ``.doit()`` method.
|
32 |
+
|
33 |
+
Canonical ordering of a commutator is ``[A, B]`` for ``A < B``. The
|
34 |
+
arguments of the commutator are put into canonical order using ``__cmp__``.
|
35 |
+
If ``B < A``, then ``[B, A]`` is returned as ``-[A, B]``.
|
36 |
+
|
37 |
+
Parameters
|
38 |
+
==========
|
39 |
+
|
40 |
+
A : Expr
|
41 |
+
The first argument of the commutator [A,B].
|
42 |
+
B : Expr
|
43 |
+
The second argument of the commutator [A,B].
|
44 |
+
|
45 |
+
Examples
|
46 |
+
========
|
47 |
+
|
48 |
+
>>> from sympy.physics.quantum import Commutator, Dagger, Operator
|
49 |
+
>>> from sympy.abc import x, y
|
50 |
+
>>> A = Operator('A')
|
51 |
+
>>> B = Operator('B')
|
52 |
+
>>> C = Operator('C')
|
53 |
+
|
54 |
+
Create a commutator and use ``.doit()`` to evaluate it:
|
55 |
+
|
56 |
+
>>> comm = Commutator(A, B)
|
57 |
+
>>> comm
|
58 |
+
[A,B]
|
59 |
+
>>> comm.doit()
|
60 |
+
A*B - B*A
|
61 |
+
|
62 |
+
The commutator orders it arguments in canonical order:
|
63 |
+
|
64 |
+
>>> comm = Commutator(B, A); comm
|
65 |
+
-[A,B]
|
66 |
+
|
67 |
+
Commutative constants are factored out:
|
68 |
+
|
69 |
+
>>> Commutator(3*x*A, x*y*B)
|
70 |
+
3*x**2*y*[A,B]
|
71 |
+
|
72 |
+
Using ``.expand(commutator=True)``, the standard commutator expansion rules
|
73 |
+
can be applied:
|
74 |
+
|
75 |
+
>>> Commutator(A+B, C).expand(commutator=True)
|
76 |
+
[A,C] + [B,C]
|
77 |
+
>>> Commutator(A, B+C).expand(commutator=True)
|
78 |
+
[A,B] + [A,C]
|
79 |
+
>>> Commutator(A*B, C).expand(commutator=True)
|
80 |
+
[A,C]*B + A*[B,C]
|
81 |
+
>>> Commutator(A, B*C).expand(commutator=True)
|
82 |
+
[A,B]*C + B*[A,C]
|
83 |
+
|
84 |
+
Adjoint operations applied to the commutator are properly applied to the
|
85 |
+
arguments:
|
86 |
+
|
87 |
+
>>> Dagger(Commutator(A, B))
|
88 |
+
-[Dagger(A),Dagger(B)]
|
89 |
+
|
90 |
+
References
|
91 |
+
==========
|
92 |
+
|
93 |
+
.. [1] https://en.wikipedia.org/wiki/Commutator
|
94 |
+
"""
|
95 |
+
is_commutative = False
|
96 |
+
|
97 |
+
def __new__(cls, A, B):
|
98 |
+
r = cls.eval(A, B)
|
99 |
+
if r is not None:
|
100 |
+
return r
|
101 |
+
obj = Expr.__new__(cls, A, B)
|
102 |
+
return obj
|
103 |
+
|
104 |
+
@classmethod
|
105 |
+
def eval(cls, a, b):
|
106 |
+
if not (a and b):
|
107 |
+
return S.Zero
|
108 |
+
if a == b:
|
109 |
+
return S.Zero
|
110 |
+
if a.is_commutative or b.is_commutative:
|
111 |
+
return S.Zero
|
112 |
+
|
113 |
+
# [xA,yB] -> xy*[A,B]
|
114 |
+
ca, nca = a.args_cnc()
|
115 |
+
cb, ncb = b.args_cnc()
|
116 |
+
c_part = ca + cb
|
117 |
+
if c_part:
|
118 |
+
return Mul(Mul(*c_part), cls(Mul._from_args(nca), Mul._from_args(ncb)))
|
119 |
+
|
120 |
+
# Canonical ordering of arguments
|
121 |
+
# The Commutator [A, B] is in canonical form if A < B.
|
122 |
+
if a.compare(b) == 1:
|
123 |
+
return S.NegativeOne*cls(b, a)
|
124 |
+
|
125 |
+
def _expand_pow(self, A, B, sign):
|
126 |
+
exp = A.exp
|
127 |
+
if not exp.is_integer or not exp.is_constant() or abs(exp) <= 1:
|
128 |
+
# nothing to do
|
129 |
+
return self
|
130 |
+
base = A.base
|
131 |
+
if exp.is_negative:
|
132 |
+
base = A.base**-1
|
133 |
+
exp = -exp
|
134 |
+
comm = Commutator(base, B).expand(commutator=True)
|
135 |
+
|
136 |
+
result = base**(exp - 1) * comm
|
137 |
+
for i in range(1, exp):
|
138 |
+
result += base**(exp - 1 - i) * comm * base**i
|
139 |
+
return sign*result.expand()
|
140 |
+
|
141 |
+
def _eval_expand_commutator(self, **hints):
|
142 |
+
A = self.args[0]
|
143 |
+
B = self.args[1]
|
144 |
+
|
145 |
+
if isinstance(A, Add):
|
146 |
+
# [A + B, C] -> [A, C] + [B, C]
|
147 |
+
sargs = []
|
148 |
+
for term in A.args:
|
149 |
+
comm = Commutator(term, B)
|
150 |
+
if isinstance(comm, Commutator):
|
151 |
+
comm = comm._eval_expand_commutator()
|
152 |
+
sargs.append(comm)
|
153 |
+
return Add(*sargs)
|
154 |
+
elif isinstance(B, Add):
|
155 |
+
# [A, B + C] -> [A, B] + [A, C]
|
156 |
+
sargs = []
|
157 |
+
for term in B.args:
|
158 |
+
comm = Commutator(A, term)
|
159 |
+
if isinstance(comm, Commutator):
|
160 |
+
comm = comm._eval_expand_commutator()
|
161 |
+
sargs.append(comm)
|
162 |
+
return Add(*sargs)
|
163 |
+
elif isinstance(A, Mul):
|
164 |
+
# [A*B, C] -> A*[B, C] + [A, C]*B
|
165 |
+
a = A.args[0]
|
166 |
+
b = Mul(*A.args[1:])
|
167 |
+
c = B
|
168 |
+
comm1 = Commutator(b, c)
|
169 |
+
comm2 = Commutator(a, c)
|
170 |
+
if isinstance(comm1, Commutator):
|
171 |
+
comm1 = comm1._eval_expand_commutator()
|
172 |
+
if isinstance(comm2, Commutator):
|
173 |
+
comm2 = comm2._eval_expand_commutator()
|
174 |
+
first = Mul(a, comm1)
|
175 |
+
second = Mul(comm2, b)
|
176 |
+
return Add(first, second)
|
177 |
+
elif isinstance(B, Mul):
|
178 |
+
# [A, B*C] -> [A, B]*C + B*[A, C]
|
179 |
+
a = A
|
180 |
+
b = B.args[0]
|
181 |
+
c = Mul(*B.args[1:])
|
182 |
+
comm1 = Commutator(a, b)
|
183 |
+
comm2 = Commutator(a, c)
|
184 |
+
if isinstance(comm1, Commutator):
|
185 |
+
comm1 = comm1._eval_expand_commutator()
|
186 |
+
if isinstance(comm2, Commutator):
|
187 |
+
comm2 = comm2._eval_expand_commutator()
|
188 |
+
first = Mul(comm1, c)
|
189 |
+
second = Mul(b, comm2)
|
190 |
+
return Add(first, second)
|
191 |
+
elif isinstance(A, Pow):
|
192 |
+
# [A**n, C] -> A**(n - 1)*[A, C] + A**(n - 2)*[A, C]*A + ... + [A, C]*A**(n-1)
|
193 |
+
return self._expand_pow(A, B, 1)
|
194 |
+
elif isinstance(B, Pow):
|
195 |
+
# [A, C**n] -> C**(n - 1)*[C, A] + C**(n - 2)*[C, A]*C + ... + [C, A]*C**(n-1)
|
196 |
+
return self._expand_pow(B, A, -1)
|
197 |
+
|
198 |
+
# No changes, so return self
|
199 |
+
return self
|
200 |
+
|
201 |
+
def doit(self, **hints):
|
202 |
+
""" Evaluate commutator """
|
203 |
+
A = self.args[0]
|
204 |
+
B = self.args[1]
|
205 |
+
if isinstance(A, Operator) and isinstance(B, Operator):
|
206 |
+
try:
|
207 |
+
comm = A._eval_commutator(B, **hints)
|
208 |
+
except NotImplementedError:
|
209 |
+
try:
|
210 |
+
comm = -1*B._eval_commutator(A, **hints)
|
211 |
+
except NotImplementedError:
|
212 |
+
comm = None
|
213 |
+
if comm is not None:
|
214 |
+
return comm.doit(**hints)
|
215 |
+
return (A*B - B*A).doit(**hints)
|
216 |
+
|
217 |
+
def _eval_adjoint(self):
|
218 |
+
return Commutator(Dagger(self.args[1]), Dagger(self.args[0]))
|
219 |
+
|
220 |
+
def _sympyrepr(self, printer, *args):
|
221 |
+
return "%s(%s,%s)" % (
|
222 |
+
self.__class__.__name__, printer._print(
|
223 |
+
self.args[0]), printer._print(self.args[1])
|
224 |
+
)
|
225 |
+
|
226 |
+
def _sympystr(self, printer, *args):
|
227 |
+
return "[%s,%s]" % (
|
228 |
+
printer._print(self.args[0]), printer._print(self.args[1]))
|
229 |
+
|
230 |
+
def _pretty(self, printer, *args):
|
231 |
+
pform = printer._print(self.args[0], *args)
|
232 |
+
pform = prettyForm(*pform.right(prettyForm(',')))
|
233 |
+
pform = prettyForm(*pform.right(printer._print(self.args[1], *args)))
|
234 |
+
pform = prettyForm(*pform.parens(left='[', right=']'))
|
235 |
+
return pform
|
236 |
+
|
237 |
+
def _latex(self, printer, *args):
|
238 |
+
return "\\left[%s,%s\\right]" % tuple([
|
239 |
+
printer._print(arg, *args) for arg in self.args])
|
venv/lib/python3.10/site-packages/sympy/physics/quantum/constants.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Constants (like hbar) related to quantum mechanics."""
|
2 |
+
|
3 |
+
from sympy.core.numbers import NumberSymbol
|
4 |
+
from sympy.core.singleton import Singleton
|
5 |
+
from sympy.printing.pretty.stringpict import prettyForm
|
6 |
+
import mpmath.libmp as mlib
|
7 |
+
|
8 |
+
#-----------------------------------------------------------------------------
|
9 |
+
# Constants
|
10 |
+
#-----------------------------------------------------------------------------
|
11 |
+
|
12 |
+
__all__ = [
|
13 |
+
'hbar',
|
14 |
+
'HBar',
|
15 |
+
]
|
16 |
+
|
17 |
+
|
18 |
+
class HBar(NumberSymbol, metaclass=Singleton):
|
19 |
+
"""Reduced Plank's constant in numerical and symbolic form [1]_.
|
20 |
+
|
21 |
+
Examples
|
22 |
+
========
|
23 |
+
|
24 |
+
>>> from sympy.physics.quantum.constants import hbar
|
25 |
+
>>> hbar.evalf()
|
26 |
+
1.05457162000000e-34
|
27 |
+
|
28 |
+
References
|
29 |
+
==========
|
30 |
+
|
31 |
+
.. [1] https://en.wikipedia.org/wiki/Planck_constant
|
32 |
+
"""
|
33 |
+
|
34 |
+
is_real = True
|
35 |
+
is_positive = True
|
36 |
+
is_negative = False
|
37 |
+
is_irrational = True
|
38 |
+
|
39 |
+
__slots__ = ()
|
40 |
+
|
41 |
+
def _as_mpf_val(self, prec):
|
42 |
+
return mlib.from_float(1.05457162e-34, prec)
|
43 |
+
|
44 |
+
def _sympyrepr(self, printer, *args):
|
45 |
+
return 'HBar()'
|
46 |
+
|
47 |
+
def _sympystr(self, printer, *args):
|
48 |
+
return 'hbar'
|
49 |
+
|
50 |
+
def _pretty(self, printer, *args):
|
51 |
+
if printer._use_unicode:
|
52 |
+
return prettyForm('\N{PLANCK CONSTANT OVER TWO PI}')
|
53 |
+
return prettyForm('hbar')
|
54 |
+
|
55 |
+
def _latex(self, printer, *args):
|
56 |
+
return r'\hbar'
|
57 |
+
|
58 |
+
# Create an instance for everyone to use.
|
59 |
+
hbar = HBar()
|
venv/lib/python3.10/site-packages/sympy/physics/quantum/dagger.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Hermitian conjugation."""
|
2 |
+
|
3 |
+
from sympy.core import Expr, Mul
|
4 |
+
from sympy.functions.elementary.complexes import adjoint
|
5 |
+
|
6 |
+
__all__ = [
|
7 |
+
'Dagger'
|
8 |
+
]
|
9 |
+
|
10 |
+
|
11 |
+
class Dagger(adjoint):
|
12 |
+
"""General Hermitian conjugate operation.
|
13 |
+
|
14 |
+
Explanation
|
15 |
+
===========
|
16 |
+
|
17 |
+
Take the Hermetian conjugate of an argument [1]_. For matrices this
|
18 |
+
operation is equivalent to transpose and complex conjugate [2]_.
|
19 |
+
|
20 |
+
Parameters
|
21 |
+
==========
|
22 |
+
|
23 |
+
arg : Expr
|
24 |
+
The SymPy expression that we want to take the dagger of.
|
25 |
+
|
26 |
+
Examples
|
27 |
+
========
|
28 |
+
|
29 |
+
Daggering various quantum objects:
|
30 |
+
|
31 |
+
>>> from sympy.physics.quantum.dagger import Dagger
|
32 |
+
>>> from sympy.physics.quantum.state import Ket, Bra
|
33 |
+
>>> from sympy.physics.quantum.operator import Operator
|
34 |
+
>>> Dagger(Ket('psi'))
|
35 |
+
<psi|
|
36 |
+
>>> Dagger(Bra('phi'))
|
37 |
+
|phi>
|
38 |
+
>>> Dagger(Operator('A'))
|
39 |
+
Dagger(A)
|
40 |
+
|
41 |
+
Inner and outer products::
|
42 |
+
|
43 |
+
>>> from sympy.physics.quantum import InnerProduct, OuterProduct
|
44 |
+
>>> Dagger(InnerProduct(Bra('a'), Ket('b')))
|
45 |
+
<b|a>
|
46 |
+
>>> Dagger(OuterProduct(Ket('a'), Bra('b')))
|
47 |
+
|b><a|
|
48 |
+
|
49 |
+
Powers, sums and products::
|
50 |
+
|
51 |
+
>>> A = Operator('A')
|
52 |
+
>>> B = Operator('B')
|
53 |
+
>>> Dagger(A*B)
|
54 |
+
Dagger(B)*Dagger(A)
|
55 |
+
>>> Dagger(A+B)
|
56 |
+
Dagger(A) + Dagger(B)
|
57 |
+
>>> Dagger(A**2)
|
58 |
+
Dagger(A)**2
|
59 |
+
|
60 |
+
Dagger also seamlessly handles complex numbers and matrices::
|
61 |
+
|
62 |
+
>>> from sympy import Matrix, I
|
63 |
+
>>> m = Matrix([[1,I],[2,I]])
|
64 |
+
>>> m
|
65 |
+
Matrix([
|
66 |
+
[1, I],
|
67 |
+
[2, I]])
|
68 |
+
>>> Dagger(m)
|
69 |
+
Matrix([
|
70 |
+
[ 1, 2],
|
71 |
+
[-I, -I]])
|
72 |
+
|
73 |
+
References
|
74 |
+
==========
|
75 |
+
|
76 |
+
.. [1] https://en.wikipedia.org/wiki/Hermitian_adjoint
|
77 |
+
.. [2] https://en.wikipedia.org/wiki/Hermitian_transpose
|
78 |
+
"""
|
79 |
+
|
80 |
+
def __new__(cls, arg):
|
81 |
+
if hasattr(arg, 'adjoint'):
|
82 |
+
obj = arg.adjoint()
|
83 |
+
elif hasattr(arg, 'conjugate') and hasattr(arg, 'transpose'):
|
84 |
+
obj = arg.conjugate().transpose()
|
85 |
+
if obj is not None:
|
86 |
+
return obj
|
87 |
+
return Expr.__new__(cls, arg)
|
88 |
+
|
89 |
+
def __mul__(self, other):
|
90 |
+
from sympy.physics.quantum import IdentityOperator
|
91 |
+
if isinstance(other, IdentityOperator):
|
92 |
+
return self
|
93 |
+
|
94 |
+
return Mul(self, other)
|
95 |
+
|
96 |
+
adjoint.__name__ = "Dagger"
|
97 |
+
adjoint._sympyrepr = lambda a, b: "Dagger(%s)" % b._print(a.args[0])
|
venv/lib/python3.10/site-packages/sympy/physics/quantum/density.py
ADDED
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from itertools import product
|
2 |
+
|
3 |
+
from sympy.core.add import Add
|
4 |
+
from sympy.core.containers import Tuple
|
5 |
+
from sympy.core.function import expand
|
6 |
+
from sympy.core.mul import Mul
|
7 |
+
from sympy.core.singleton import S
|
8 |
+
from sympy.functions.elementary.exponential import log
|
9 |
+
from sympy.matrices.dense import MutableDenseMatrix as Matrix
|
10 |
+
from sympy.printing.pretty.stringpict import prettyForm
|
11 |
+
from sympy.physics.quantum.dagger import Dagger
|
12 |
+
from sympy.physics.quantum.operator import HermitianOperator
|
13 |
+
from sympy.physics.quantum.represent import represent
|
14 |
+
from sympy.physics.quantum.matrixutils import numpy_ndarray, scipy_sparse_matrix, to_numpy
|
15 |
+
from sympy.physics.quantum.tensorproduct import TensorProduct, tensor_product_simp
|
16 |
+
from sympy.physics.quantum.trace import Tr
|
17 |
+
|
18 |
+
|
19 |
+
class Density(HermitianOperator):
|
20 |
+
"""Density operator for representing mixed states.
|
21 |
+
|
22 |
+
TODO: Density operator support for Qubits
|
23 |
+
|
24 |
+
Parameters
|
25 |
+
==========
|
26 |
+
|
27 |
+
values : tuples/lists
|
28 |
+
Each tuple/list should be of form (state, prob) or [state,prob]
|
29 |
+
|
30 |
+
Examples
|
31 |
+
========
|
32 |
+
|
33 |
+
Create a density operator with 2 states represented by Kets.
|
34 |
+
|
35 |
+
>>> from sympy.physics.quantum.state import Ket
|
36 |
+
>>> from sympy.physics.quantum.density import Density
|
37 |
+
>>> d = Density([Ket(0), 0.5], [Ket(1),0.5])
|
38 |
+
>>> d
|
39 |
+
Density((|0>, 0.5),(|1>, 0.5))
|
40 |
+
|
41 |
+
"""
|
42 |
+
@classmethod
|
43 |
+
def _eval_args(cls, args):
|
44 |
+
# call this to qsympify the args
|
45 |
+
args = super()._eval_args(args)
|
46 |
+
|
47 |
+
for arg in args:
|
48 |
+
# Check if arg is a tuple
|
49 |
+
if not (isinstance(arg, Tuple) and len(arg) == 2):
|
50 |
+
raise ValueError("Each argument should be of form [state,prob]"
|
51 |
+
" or ( state, prob )")
|
52 |
+
|
53 |
+
return args
|
54 |
+
|
55 |
+
def states(self):
|
56 |
+
"""Return list of all states.
|
57 |
+
|
58 |
+
Examples
|
59 |
+
========
|
60 |
+
|
61 |
+
>>> from sympy.physics.quantum.state import Ket
|
62 |
+
>>> from sympy.physics.quantum.density import Density
|
63 |
+
>>> d = Density([Ket(0), 0.5], [Ket(1),0.5])
|
64 |
+
>>> d.states()
|
65 |
+
(|0>, |1>)
|
66 |
+
|
67 |
+
"""
|
68 |
+
return Tuple(*[arg[0] for arg in self.args])
|
69 |
+
|
70 |
+
def probs(self):
|
71 |
+
"""Return list of all probabilities.
|
72 |
+
|
73 |
+
Examples
|
74 |
+
========
|
75 |
+
|
76 |
+
>>> from sympy.physics.quantum.state import Ket
|
77 |
+
>>> from sympy.physics.quantum.density import Density
|
78 |
+
>>> d = Density([Ket(0), 0.5], [Ket(1),0.5])
|
79 |
+
>>> d.probs()
|
80 |
+
(0.5, 0.5)
|
81 |
+
|
82 |
+
"""
|
83 |
+
return Tuple(*[arg[1] for arg in self.args])
|
84 |
+
|
85 |
+
def get_state(self, index):
|
86 |
+
"""Return specific state by index.
|
87 |
+
|
88 |
+
Parameters
|
89 |
+
==========
|
90 |
+
|
91 |
+
index : index of state to be returned
|
92 |
+
|
93 |
+
Examples
|
94 |
+
========
|
95 |
+
|
96 |
+
>>> from sympy.physics.quantum.state import Ket
|
97 |
+
>>> from sympy.physics.quantum.density import Density
|
98 |
+
>>> d = Density([Ket(0), 0.5], [Ket(1),0.5])
|
99 |
+
>>> d.states()[1]
|
100 |
+
|1>
|
101 |
+
|
102 |
+
"""
|
103 |
+
state = self.args[index][0]
|
104 |
+
return state
|
105 |
+
|
106 |
+
def get_prob(self, index):
|
107 |
+
"""Return probability of specific state by index.
|
108 |
+
|
109 |
+
Parameters
|
110 |
+
===========
|
111 |
+
|
112 |
+
index : index of states whose probability is returned.
|
113 |
+
|
114 |
+
Examples
|
115 |
+
========
|
116 |
+
|
117 |
+
>>> from sympy.physics.quantum.state import Ket
|
118 |
+
>>> from sympy.physics.quantum.density import Density
|
119 |
+
>>> d = Density([Ket(0), 0.5], [Ket(1),0.5])
|
120 |
+
>>> d.probs()[1]
|
121 |
+
0.500000000000000
|
122 |
+
|
123 |
+
"""
|
124 |
+
prob = self.args[index][1]
|
125 |
+
return prob
|
126 |
+
|
127 |
+
def apply_op(self, op):
|
128 |
+
"""op will operate on each individual state.
|
129 |
+
|
130 |
+
Parameters
|
131 |
+
==========
|
132 |
+
|
133 |
+
op : Operator
|
134 |
+
|
135 |
+
Examples
|
136 |
+
========
|
137 |
+
|
138 |
+
>>> from sympy.physics.quantum.state import Ket
|
139 |
+
>>> from sympy.physics.quantum.density import Density
|
140 |
+
>>> from sympy.physics.quantum.operator import Operator
|
141 |
+
>>> A = Operator('A')
|
142 |
+
>>> d = Density([Ket(0), 0.5], [Ket(1),0.5])
|
143 |
+
>>> d.apply_op(A)
|
144 |
+
Density((A*|0>, 0.5),(A*|1>, 0.5))
|
145 |
+
|
146 |
+
"""
|
147 |
+
new_args = [(op*state, prob) for (state, prob) in self.args]
|
148 |
+
return Density(*new_args)
|
149 |
+
|
150 |
+
def doit(self, **hints):
|
151 |
+
"""Expand the density operator into an outer product format.
|
152 |
+
|
153 |
+
Examples
|
154 |
+
========
|
155 |
+
|
156 |
+
>>> from sympy.physics.quantum.state import Ket
|
157 |
+
>>> from sympy.physics.quantum.density import Density
|
158 |
+
>>> from sympy.physics.quantum.operator import Operator
|
159 |
+
>>> A = Operator('A')
|
160 |
+
>>> d = Density([Ket(0), 0.5], [Ket(1),0.5])
|
161 |
+
>>> d.doit()
|
162 |
+
0.5*|0><0| + 0.5*|1><1|
|
163 |
+
|
164 |
+
"""
|
165 |
+
|
166 |
+
terms = []
|
167 |
+
for (state, prob) in self.args:
|
168 |
+
state = state.expand() # needed to break up (a+b)*c
|
169 |
+
if (isinstance(state, Add)):
|
170 |
+
for arg in product(state.args, repeat=2):
|
171 |
+
terms.append(prob*self._generate_outer_prod(arg[0],
|
172 |
+
arg[1]))
|
173 |
+
else:
|
174 |
+
terms.append(prob*self._generate_outer_prod(state, state))
|
175 |
+
|
176 |
+
return Add(*terms)
|
177 |
+
|
178 |
+
def _generate_outer_prod(self, arg1, arg2):
|
179 |
+
c_part1, nc_part1 = arg1.args_cnc()
|
180 |
+
c_part2, nc_part2 = arg2.args_cnc()
|
181 |
+
|
182 |
+
if (len(nc_part1) == 0 or len(nc_part2) == 0):
|
183 |
+
raise ValueError('Atleast one-pair of'
|
184 |
+
' Non-commutative instance required'
|
185 |
+
' for outer product.')
|
186 |
+
|
187 |
+
# Muls of Tensor Products should be expanded
|
188 |
+
# before this function is called
|
189 |
+
if (isinstance(nc_part1[0], TensorProduct) and len(nc_part1) == 1
|
190 |
+
and len(nc_part2) == 1):
|
191 |
+
op = tensor_product_simp(nc_part1[0]*Dagger(nc_part2[0]))
|
192 |
+
else:
|
193 |
+
op = Mul(*nc_part1)*Dagger(Mul(*nc_part2))
|
194 |
+
|
195 |
+
return Mul(*c_part1)*Mul(*c_part2) * op
|
196 |
+
|
197 |
+
def _represent(self, **options):
|
198 |
+
return represent(self.doit(), **options)
|
199 |
+
|
200 |
+
def _print_operator_name_latex(self, printer, *args):
|
201 |
+
return r'\rho'
|
202 |
+
|
203 |
+
def _print_operator_name_pretty(self, printer, *args):
|
204 |
+
return prettyForm('\N{GREEK SMALL LETTER RHO}')
|
205 |
+
|
206 |
+
def _eval_trace(self, **kwargs):
|
207 |
+
indices = kwargs.get('indices', [])
|
208 |
+
return Tr(self.doit(), indices).doit()
|
209 |
+
|
210 |
+
def entropy(self):
|
211 |
+
""" Compute the entropy of a density matrix.
|
212 |
+
|
213 |
+
Refer to density.entropy() method for examples.
|
214 |
+
"""
|
215 |
+
return entropy(self)
|
216 |
+
|
217 |
+
|
218 |
+
def entropy(density):
|
219 |
+
"""Compute the entropy of a matrix/density object.
|
220 |
+
|
221 |
+
This computes -Tr(density*ln(density)) using the eigenvalue decomposition
|
222 |
+
of density, which is given as either a Density instance or a matrix
|
223 |
+
(numpy.ndarray, sympy.Matrix or scipy.sparse).
|
224 |
+
|
225 |
+
Parameters
|
226 |
+
==========
|
227 |
+
|
228 |
+
density : density matrix of type Density, SymPy matrix,
|
229 |
+
scipy.sparse or numpy.ndarray
|
230 |
+
|
231 |
+
Examples
|
232 |
+
========
|
233 |
+
|
234 |
+
>>> from sympy.physics.quantum.density import Density, entropy
|
235 |
+
>>> from sympy.physics.quantum.spin import JzKet
|
236 |
+
>>> from sympy import S
|
237 |
+
>>> up = JzKet(S(1)/2,S(1)/2)
|
238 |
+
>>> down = JzKet(S(1)/2,-S(1)/2)
|
239 |
+
>>> d = Density((up,S(1)/2),(down,S(1)/2))
|
240 |
+
>>> entropy(d)
|
241 |
+
log(2)/2
|
242 |
+
|
243 |
+
"""
|
244 |
+
if isinstance(density, Density):
|
245 |
+
density = represent(density) # represent in Matrix
|
246 |
+
|
247 |
+
if isinstance(density, scipy_sparse_matrix):
|
248 |
+
density = to_numpy(density)
|
249 |
+
|
250 |
+
if isinstance(density, Matrix):
|
251 |
+
eigvals = density.eigenvals().keys()
|
252 |
+
return expand(-sum(e*log(e) for e in eigvals))
|
253 |
+
elif isinstance(density, numpy_ndarray):
|
254 |
+
import numpy as np
|
255 |
+
eigvals = np.linalg.eigvals(density)
|
256 |
+
return -np.sum(eigvals*np.log(eigvals))
|
257 |
+
else:
|
258 |
+
raise ValueError(
|
259 |
+
"numpy.ndarray, scipy.sparse or SymPy matrix expected")
|
260 |
+
|
261 |
+
|
262 |
+
def fidelity(state1, state2):
|
263 |
+
""" Computes the fidelity [1]_ between two quantum states
|
264 |
+
|
265 |
+
The arguments provided to this function should be a square matrix or a
|
266 |
+
Density object. If it is a square matrix, it is assumed to be diagonalizable.
|
267 |
+
|
268 |
+
Parameters
|
269 |
+
==========
|
270 |
+
|
271 |
+
state1, state2 : a density matrix or Matrix
|
272 |
+
|
273 |
+
|
274 |
+
Examples
|
275 |
+
========
|
276 |
+
|
277 |
+
>>> from sympy import S, sqrt
|
278 |
+
>>> from sympy.physics.quantum.dagger import Dagger
|
279 |
+
>>> from sympy.physics.quantum.spin import JzKet
|
280 |
+
>>> from sympy.physics.quantum.density import fidelity
|
281 |
+
>>> from sympy.physics.quantum.represent import represent
|
282 |
+
>>>
|
283 |
+
>>> up = JzKet(S(1)/2,S(1)/2)
|
284 |
+
>>> down = JzKet(S(1)/2,-S(1)/2)
|
285 |
+
>>> amp = 1/sqrt(2)
|
286 |
+
>>> updown = (amp*up) + (amp*down)
|
287 |
+
>>>
|
288 |
+
>>> # represent turns Kets into matrices
|
289 |
+
>>> up_dm = represent(up*Dagger(up))
|
290 |
+
>>> down_dm = represent(down*Dagger(down))
|
291 |
+
>>> updown_dm = represent(updown*Dagger(updown))
|
292 |
+
>>>
|
293 |
+
>>> fidelity(up_dm, up_dm)
|
294 |
+
1
|
295 |
+
>>> fidelity(up_dm, down_dm) #orthogonal states
|
296 |
+
0
|
297 |
+
>>> fidelity(up_dm, updown_dm).evalf().round(3)
|
298 |
+
0.707
|
299 |
+
|
300 |
+
References
|
301 |
+
==========
|
302 |
+
|
303 |
+
.. [1] https://en.wikipedia.org/wiki/Fidelity_of_quantum_states
|
304 |
+
|
305 |
+
"""
|
306 |
+
state1 = represent(state1) if isinstance(state1, Density) else state1
|
307 |
+
state2 = represent(state2) if isinstance(state2, Density) else state2
|
308 |
+
|
309 |
+
if not isinstance(state1, Matrix) or not isinstance(state2, Matrix):
|
310 |
+
raise ValueError("state1 and state2 must be of type Density or Matrix "
|
311 |
+
"received type=%s for state1 and type=%s for state2" %
|
312 |
+
(type(state1), type(state2)))
|
313 |
+
|
314 |
+
if state1.shape != state2.shape and state1.is_square:
|
315 |
+
raise ValueError("The dimensions of both args should be equal and the "
|
316 |
+
"matrix obtained should be a square matrix")
|
317 |
+
|
318 |
+
sqrt_state1 = state1**S.Half
|
319 |
+
return Tr((sqrt_state1*state2*sqrt_state1)**S.Half).doit()
|
venv/lib/python3.10/site-packages/sympy/physics/quantum/gate.py
ADDED
@@ -0,0 +1,1305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""An implementation of gates that act on qubits.
|
2 |
+
|
3 |
+
Gates are unitary operators that act on the space of qubits.
|
4 |
+
|
5 |
+
Medium Term Todo:
|
6 |
+
|
7 |
+
* Optimize Gate._apply_operators_Qubit to remove the creation of many
|
8 |
+
intermediate Qubit objects.
|
9 |
+
* Add commutation relationships to all operators and use this in gate_sort.
|
10 |
+
* Fix gate_sort and gate_simp.
|
11 |
+
* Get multi-target UGates plotting properly.
|
12 |
+
* Get UGate to work with either sympy/numpy matrices and output either
|
13 |
+
format. This should also use the matrix slots.
|
14 |
+
"""
|
15 |
+
|
16 |
+
from itertools import chain
|
17 |
+
import random
|
18 |
+
|
19 |
+
from sympy.core.add import Add
|
20 |
+
from sympy.core.containers import Tuple
|
21 |
+
from sympy.core.mul import Mul
|
22 |
+
from sympy.core.numbers import (I, Integer)
|
23 |
+
from sympy.core.power import Pow
|
24 |
+
from sympy.core.numbers import Number
|
25 |
+
from sympy.core.singleton import S as _S
|
26 |
+
from sympy.core.sorting import default_sort_key
|
27 |
+
from sympy.core.sympify import _sympify
|
28 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
29 |
+
from sympy.printing.pretty.stringpict import prettyForm, stringPict
|
30 |
+
|
31 |
+
from sympy.physics.quantum.anticommutator import AntiCommutator
|
32 |
+
from sympy.physics.quantum.commutator import Commutator
|
33 |
+
from sympy.physics.quantum.qexpr import QuantumError
|
34 |
+
from sympy.physics.quantum.hilbert import ComplexSpace
|
35 |
+
from sympy.physics.quantum.operator import (UnitaryOperator, Operator,
|
36 |
+
HermitianOperator)
|
37 |
+
from sympy.physics.quantum.matrixutils import matrix_tensor_product, matrix_eye
|
38 |
+
from sympy.physics.quantum.matrixcache import matrix_cache
|
39 |
+
|
40 |
+
from sympy.matrices.matrices import MatrixBase
|
41 |
+
|
42 |
+
from sympy.utilities.iterables import is_sequence
|
43 |
+
|
44 |
+
__all__ = [
|
45 |
+
'Gate',
|
46 |
+
'CGate',
|
47 |
+
'UGate',
|
48 |
+
'OneQubitGate',
|
49 |
+
'TwoQubitGate',
|
50 |
+
'IdentityGate',
|
51 |
+
'HadamardGate',
|
52 |
+
'XGate',
|
53 |
+
'YGate',
|
54 |
+
'ZGate',
|
55 |
+
'TGate',
|
56 |
+
'PhaseGate',
|
57 |
+
'SwapGate',
|
58 |
+
'CNotGate',
|
59 |
+
# Aliased gate names
|
60 |
+
'CNOT',
|
61 |
+
'SWAP',
|
62 |
+
'H',
|
63 |
+
'X',
|
64 |
+
'Y',
|
65 |
+
'Z',
|
66 |
+
'T',
|
67 |
+
'S',
|
68 |
+
'Phase',
|
69 |
+
'normalized',
|
70 |
+
'gate_sort',
|
71 |
+
'gate_simp',
|
72 |
+
'random_circuit',
|
73 |
+
'CPHASE',
|
74 |
+
'CGateS',
|
75 |
+
]
|
76 |
+
|
77 |
+
#-----------------------------------------------------------------------------
|
78 |
+
# Gate Super-Classes
|
79 |
+
#-----------------------------------------------------------------------------
|
80 |
+
|
81 |
+
_normalized = True
|
82 |
+
|
83 |
+
|
84 |
+
def _max(*args, **kwargs):
|
85 |
+
if "key" not in kwargs:
|
86 |
+
kwargs["key"] = default_sort_key
|
87 |
+
return max(*args, **kwargs)
|
88 |
+
|
89 |
+
|
90 |
+
def _min(*args, **kwargs):
|
91 |
+
if "key" not in kwargs:
|
92 |
+
kwargs["key"] = default_sort_key
|
93 |
+
return min(*args, **kwargs)
|
94 |
+
|
95 |
+
|
96 |
+
def normalized(normalize):
|
97 |
+
r"""Set flag controlling normalization of Hadamard gates by `1/\sqrt{2}`.
|
98 |
+
|
99 |
+
This is a global setting that can be used to simplify the look of various
|
100 |
+
expressions, by leaving off the leading `1/\sqrt{2}` of the Hadamard gate.
|
101 |
+
|
102 |
+
Parameters
|
103 |
+
----------
|
104 |
+
normalize : bool
|
105 |
+
Should the Hadamard gate include the `1/\sqrt{2}` normalization factor?
|
106 |
+
When True, the Hadamard gate will have the `1/\sqrt{2}`. When False, the
|
107 |
+
Hadamard gate will not have this factor.
|
108 |
+
"""
|
109 |
+
global _normalized
|
110 |
+
_normalized = normalize
|
111 |
+
|
112 |
+
|
113 |
+
def _validate_targets_controls(tandc):
|
114 |
+
tandc = list(tandc)
|
115 |
+
# Check for integers
|
116 |
+
for bit in tandc:
|
117 |
+
if not bit.is_Integer and not bit.is_Symbol:
|
118 |
+
raise TypeError('Integer expected, got: %r' % tandc[bit])
|
119 |
+
# Detect duplicates
|
120 |
+
if len(set(tandc)) != len(tandc):
|
121 |
+
raise QuantumError(
|
122 |
+
'Target/control qubits in a gate cannot be duplicated'
|
123 |
+
)
|
124 |
+
|
125 |
+
|
126 |
+
class Gate(UnitaryOperator):
|
127 |
+
"""Non-controlled unitary gate operator that acts on qubits.
|
128 |
+
|
129 |
+
This is a general abstract gate that needs to be subclassed to do anything
|
130 |
+
useful.
|
131 |
+
|
132 |
+
Parameters
|
133 |
+
----------
|
134 |
+
label : tuple, int
|
135 |
+
A list of the target qubits (as ints) that the gate will apply to.
|
136 |
+
|
137 |
+
Examples
|
138 |
+
========
|
139 |
+
|
140 |
+
|
141 |
+
"""
|
142 |
+
|
143 |
+
_label_separator = ','
|
144 |
+
|
145 |
+
gate_name = 'G'
|
146 |
+
gate_name_latex = 'G'
|
147 |
+
|
148 |
+
#-------------------------------------------------------------------------
|
149 |
+
# Initialization/creation
|
150 |
+
#-------------------------------------------------------------------------
|
151 |
+
|
152 |
+
@classmethod
|
153 |
+
def _eval_args(cls, args):
|
154 |
+
args = Tuple(*UnitaryOperator._eval_args(args))
|
155 |
+
_validate_targets_controls(args)
|
156 |
+
return args
|
157 |
+
|
158 |
+
@classmethod
|
159 |
+
def _eval_hilbert_space(cls, args):
|
160 |
+
"""This returns the smallest possible Hilbert space."""
|
161 |
+
return ComplexSpace(2)**(_max(args) + 1)
|
162 |
+
|
163 |
+
#-------------------------------------------------------------------------
|
164 |
+
# Properties
|
165 |
+
#-------------------------------------------------------------------------
|
166 |
+
|
167 |
+
@property
|
168 |
+
def nqubits(self):
|
169 |
+
"""The total number of qubits this gate acts on.
|
170 |
+
|
171 |
+
For controlled gate subclasses this includes both target and control
|
172 |
+
qubits, so that, for examples the CNOT gate acts on 2 qubits.
|
173 |
+
"""
|
174 |
+
return len(self.targets)
|
175 |
+
|
176 |
+
@property
|
177 |
+
def min_qubits(self):
|
178 |
+
"""The minimum number of qubits this gate needs to act on."""
|
179 |
+
return _max(self.targets) + 1
|
180 |
+
|
181 |
+
@property
|
182 |
+
def targets(self):
|
183 |
+
"""A tuple of target qubits."""
|
184 |
+
return self.label
|
185 |
+
|
186 |
+
@property
|
187 |
+
def gate_name_plot(self):
|
188 |
+
return r'$%s$' % self.gate_name_latex
|
189 |
+
|
190 |
+
#-------------------------------------------------------------------------
|
191 |
+
# Gate methods
|
192 |
+
#-------------------------------------------------------------------------
|
193 |
+
|
194 |
+
def get_target_matrix(self, format='sympy'):
|
195 |
+
"""The matrix representation of the target part of the gate.
|
196 |
+
|
197 |
+
Parameters
|
198 |
+
----------
|
199 |
+
format : str
|
200 |
+
The format string ('sympy','numpy', etc.)
|
201 |
+
"""
|
202 |
+
raise NotImplementedError(
|
203 |
+
'get_target_matrix is not implemented in Gate.')
|
204 |
+
|
205 |
+
#-------------------------------------------------------------------------
|
206 |
+
# Apply
|
207 |
+
#-------------------------------------------------------------------------
|
208 |
+
|
209 |
+
def _apply_operator_IntQubit(self, qubits, **options):
|
210 |
+
"""Redirect an apply from IntQubit to Qubit"""
|
211 |
+
return self._apply_operator_Qubit(qubits, **options)
|
212 |
+
|
213 |
+
def _apply_operator_Qubit(self, qubits, **options):
|
214 |
+
"""Apply this gate to a Qubit."""
|
215 |
+
|
216 |
+
# Check number of qubits this gate acts on.
|
217 |
+
if qubits.nqubits < self.min_qubits:
|
218 |
+
raise QuantumError(
|
219 |
+
'Gate needs a minimum of %r qubits to act on, got: %r' %
|
220 |
+
(self.min_qubits, qubits.nqubits)
|
221 |
+
)
|
222 |
+
|
223 |
+
# If the controls are not met, just return
|
224 |
+
if isinstance(self, CGate):
|
225 |
+
if not self.eval_controls(qubits):
|
226 |
+
return qubits
|
227 |
+
|
228 |
+
targets = self.targets
|
229 |
+
target_matrix = self.get_target_matrix(format='sympy')
|
230 |
+
|
231 |
+
# Find which column of the target matrix this applies to.
|
232 |
+
column_index = 0
|
233 |
+
n = 1
|
234 |
+
for target in targets:
|
235 |
+
column_index += n*qubits[target]
|
236 |
+
n = n << 1
|
237 |
+
column = target_matrix[:, int(column_index)]
|
238 |
+
|
239 |
+
# Now apply each column element to the qubit.
|
240 |
+
result = 0
|
241 |
+
for index in range(column.rows):
|
242 |
+
# TODO: This can be optimized to reduce the number of Qubit
|
243 |
+
# creations. We should simply manipulate the raw list of qubit
|
244 |
+
# values and then build the new Qubit object once.
|
245 |
+
# Make a copy of the incoming qubits.
|
246 |
+
new_qubit = qubits.__class__(*qubits.args)
|
247 |
+
# Flip the bits that need to be flipped.
|
248 |
+
for bit, target in enumerate(targets):
|
249 |
+
if new_qubit[target] != (index >> bit) & 1:
|
250 |
+
new_qubit = new_qubit.flip(target)
|
251 |
+
# The value in that row and column times the flipped-bit qubit
|
252 |
+
# is the result for that part.
|
253 |
+
result += column[index]*new_qubit
|
254 |
+
return result
|
255 |
+
|
256 |
+
#-------------------------------------------------------------------------
|
257 |
+
# Represent
|
258 |
+
#-------------------------------------------------------------------------
|
259 |
+
|
260 |
+
def _represent_default_basis(self, **options):
|
261 |
+
return self._represent_ZGate(None, **options)
|
262 |
+
|
263 |
+
def _represent_ZGate(self, basis, **options):
|
264 |
+
format = options.get('format', 'sympy')
|
265 |
+
nqubits = options.get('nqubits', 0)
|
266 |
+
if nqubits == 0:
|
267 |
+
raise QuantumError(
|
268 |
+
'The number of qubits must be given as nqubits.')
|
269 |
+
|
270 |
+
# Make sure we have enough qubits for the gate.
|
271 |
+
if nqubits < self.min_qubits:
|
272 |
+
raise QuantumError(
|
273 |
+
'The number of qubits %r is too small for the gate.' % nqubits
|
274 |
+
)
|
275 |
+
|
276 |
+
target_matrix = self.get_target_matrix(format)
|
277 |
+
targets = self.targets
|
278 |
+
if isinstance(self, CGate):
|
279 |
+
controls = self.controls
|
280 |
+
else:
|
281 |
+
controls = []
|
282 |
+
m = represent_zbasis(
|
283 |
+
controls, targets, target_matrix, nqubits, format
|
284 |
+
)
|
285 |
+
return m
|
286 |
+
|
287 |
+
#-------------------------------------------------------------------------
|
288 |
+
# Print methods
|
289 |
+
#-------------------------------------------------------------------------
|
290 |
+
|
291 |
+
def _sympystr(self, printer, *args):
|
292 |
+
label = self._print_label(printer, *args)
|
293 |
+
return '%s(%s)' % (self.gate_name, label)
|
294 |
+
|
295 |
+
def _pretty(self, printer, *args):
|
296 |
+
a = stringPict(self.gate_name)
|
297 |
+
b = self._print_label_pretty(printer, *args)
|
298 |
+
return self._print_subscript_pretty(a, b)
|
299 |
+
|
300 |
+
def _latex(self, printer, *args):
|
301 |
+
label = self._print_label(printer, *args)
|
302 |
+
return '%s_{%s}' % (self.gate_name_latex, label)
|
303 |
+
|
304 |
+
def plot_gate(self, axes, gate_idx, gate_grid, wire_grid):
|
305 |
+
raise NotImplementedError('plot_gate is not implemented.')
|
306 |
+
|
307 |
+
|
308 |
+
class CGate(Gate):
|
309 |
+
"""A general unitary gate with control qubits.
|
310 |
+
|
311 |
+
A general control gate applies a target gate to a set of targets if all
|
312 |
+
of the control qubits have a particular values (set by
|
313 |
+
``CGate.control_value``).
|
314 |
+
|
315 |
+
Parameters
|
316 |
+
----------
|
317 |
+
label : tuple
|
318 |
+
The label in this case has the form (controls, gate), where controls
|
319 |
+
is a tuple/list of control qubits (as ints) and gate is a ``Gate``
|
320 |
+
instance that is the target operator.
|
321 |
+
|
322 |
+
Examples
|
323 |
+
========
|
324 |
+
|
325 |
+
"""
|
326 |
+
|
327 |
+
gate_name = 'C'
|
328 |
+
gate_name_latex = 'C'
|
329 |
+
|
330 |
+
# The values this class controls for.
|
331 |
+
control_value = _S.One
|
332 |
+
|
333 |
+
simplify_cgate = False
|
334 |
+
|
335 |
+
#-------------------------------------------------------------------------
|
336 |
+
# Initialization
|
337 |
+
#-------------------------------------------------------------------------
|
338 |
+
|
339 |
+
@classmethod
|
340 |
+
def _eval_args(cls, args):
|
341 |
+
# _eval_args has the right logic for the controls argument.
|
342 |
+
controls = args[0]
|
343 |
+
gate = args[1]
|
344 |
+
if not is_sequence(controls):
|
345 |
+
controls = (controls,)
|
346 |
+
controls = UnitaryOperator._eval_args(controls)
|
347 |
+
_validate_targets_controls(chain(controls, gate.targets))
|
348 |
+
return (Tuple(*controls), gate)
|
349 |
+
|
350 |
+
@classmethod
|
351 |
+
def _eval_hilbert_space(cls, args):
|
352 |
+
"""This returns the smallest possible Hilbert space."""
|
353 |
+
return ComplexSpace(2)**_max(_max(args[0]) + 1, args[1].min_qubits)
|
354 |
+
|
355 |
+
#-------------------------------------------------------------------------
|
356 |
+
# Properties
|
357 |
+
#-------------------------------------------------------------------------
|
358 |
+
|
359 |
+
@property
|
360 |
+
def nqubits(self):
|
361 |
+
"""The total number of qubits this gate acts on.
|
362 |
+
|
363 |
+
For controlled gate subclasses this includes both target and control
|
364 |
+
qubits, so that, for examples the CNOT gate acts on 2 qubits.
|
365 |
+
"""
|
366 |
+
return len(self.targets) + len(self.controls)
|
367 |
+
|
368 |
+
@property
|
369 |
+
def min_qubits(self):
|
370 |
+
"""The minimum number of qubits this gate needs to act on."""
|
371 |
+
return _max(_max(self.controls), _max(self.targets)) + 1
|
372 |
+
|
373 |
+
@property
|
374 |
+
def targets(self):
|
375 |
+
"""A tuple of target qubits."""
|
376 |
+
return self.gate.targets
|
377 |
+
|
378 |
+
@property
|
379 |
+
def controls(self):
|
380 |
+
"""A tuple of control qubits."""
|
381 |
+
return tuple(self.label[0])
|
382 |
+
|
383 |
+
@property
|
384 |
+
def gate(self):
|
385 |
+
"""The non-controlled gate that will be applied to the targets."""
|
386 |
+
return self.label[1]
|
387 |
+
|
388 |
+
#-------------------------------------------------------------------------
|
389 |
+
# Gate methods
|
390 |
+
#-------------------------------------------------------------------------
|
391 |
+
|
392 |
+
def get_target_matrix(self, format='sympy'):
|
393 |
+
return self.gate.get_target_matrix(format)
|
394 |
+
|
395 |
+
def eval_controls(self, qubit):
|
396 |
+
"""Return True/False to indicate if the controls are satisfied."""
|
397 |
+
return all(qubit[bit] == self.control_value for bit in self.controls)
|
398 |
+
|
399 |
+
def decompose(self, **options):
|
400 |
+
"""Decompose the controlled gate into CNOT and single qubits gates."""
|
401 |
+
if len(self.controls) == 1:
|
402 |
+
c = self.controls[0]
|
403 |
+
t = self.gate.targets[0]
|
404 |
+
if isinstance(self.gate, YGate):
|
405 |
+
g1 = PhaseGate(t)
|
406 |
+
g2 = CNotGate(c, t)
|
407 |
+
g3 = PhaseGate(t)
|
408 |
+
g4 = ZGate(t)
|
409 |
+
return g1*g2*g3*g4
|
410 |
+
if isinstance(self.gate, ZGate):
|
411 |
+
g1 = HadamardGate(t)
|
412 |
+
g2 = CNotGate(c, t)
|
413 |
+
g3 = HadamardGate(t)
|
414 |
+
return g1*g2*g3
|
415 |
+
else:
|
416 |
+
return self
|
417 |
+
|
418 |
+
#-------------------------------------------------------------------------
|
419 |
+
# Print methods
|
420 |
+
#-------------------------------------------------------------------------
|
421 |
+
|
422 |
+
def _print_label(self, printer, *args):
|
423 |
+
controls = self._print_sequence(self.controls, ',', printer, *args)
|
424 |
+
gate = printer._print(self.gate, *args)
|
425 |
+
return '(%s),%s' % (controls, gate)
|
426 |
+
|
427 |
+
def _pretty(self, printer, *args):
|
428 |
+
controls = self._print_sequence_pretty(
|
429 |
+
self.controls, ',', printer, *args)
|
430 |
+
gate = printer._print(self.gate)
|
431 |
+
gate_name = stringPict(self.gate_name)
|
432 |
+
first = self._print_subscript_pretty(gate_name, controls)
|
433 |
+
gate = self._print_parens_pretty(gate)
|
434 |
+
final = prettyForm(*first.right(gate))
|
435 |
+
return final
|
436 |
+
|
437 |
+
def _latex(self, printer, *args):
|
438 |
+
controls = self._print_sequence(self.controls, ',', printer, *args)
|
439 |
+
gate = printer._print(self.gate, *args)
|
440 |
+
return r'%s_{%s}{\left(%s\right)}' % \
|
441 |
+
(self.gate_name_latex, controls, gate)
|
442 |
+
|
443 |
+
def plot_gate(self, circ_plot, gate_idx):
|
444 |
+
"""
|
445 |
+
Plot the controlled gate. If *simplify_cgate* is true, simplify
|
446 |
+
C-X and C-Z gates into their more familiar forms.
|
447 |
+
"""
|
448 |
+
min_wire = int(_min(chain(self.controls, self.targets)))
|
449 |
+
max_wire = int(_max(chain(self.controls, self.targets)))
|
450 |
+
circ_plot.control_line(gate_idx, min_wire, max_wire)
|
451 |
+
for c in self.controls:
|
452 |
+
circ_plot.control_point(gate_idx, int(c))
|
453 |
+
if self.simplify_cgate:
|
454 |
+
if self.gate.gate_name == 'X':
|
455 |
+
self.gate.plot_gate_plus(circ_plot, gate_idx)
|
456 |
+
elif self.gate.gate_name == 'Z':
|
457 |
+
circ_plot.control_point(gate_idx, self.targets[0])
|
458 |
+
else:
|
459 |
+
self.gate.plot_gate(circ_plot, gate_idx)
|
460 |
+
else:
|
461 |
+
self.gate.plot_gate(circ_plot, gate_idx)
|
462 |
+
|
463 |
+
#-------------------------------------------------------------------------
|
464 |
+
# Miscellaneous
|
465 |
+
#-------------------------------------------------------------------------
|
466 |
+
|
467 |
+
def _eval_dagger(self):
|
468 |
+
if isinstance(self.gate, HermitianOperator):
|
469 |
+
return self
|
470 |
+
else:
|
471 |
+
return Gate._eval_dagger(self)
|
472 |
+
|
473 |
+
def _eval_inverse(self):
|
474 |
+
if isinstance(self.gate, HermitianOperator):
|
475 |
+
return self
|
476 |
+
else:
|
477 |
+
return Gate._eval_inverse(self)
|
478 |
+
|
479 |
+
def _eval_power(self, exp):
|
480 |
+
if isinstance(self.gate, HermitianOperator):
|
481 |
+
if exp == -1:
|
482 |
+
return Gate._eval_power(self, exp)
|
483 |
+
elif abs(exp) % 2 == 0:
|
484 |
+
return self*(Gate._eval_inverse(self))
|
485 |
+
else:
|
486 |
+
return self
|
487 |
+
else:
|
488 |
+
return Gate._eval_power(self, exp)
|
489 |
+
|
490 |
+
class CGateS(CGate):
|
491 |
+
"""Version of CGate that allows gate simplifications.
|
492 |
+
I.e. cnot looks like an oplus, cphase has dots, etc.
|
493 |
+
"""
|
494 |
+
simplify_cgate=True
|
495 |
+
|
496 |
+
|
497 |
+
class UGate(Gate):
|
498 |
+
"""General gate specified by a set of targets and a target matrix.
|
499 |
+
|
500 |
+
Parameters
|
501 |
+
----------
|
502 |
+
label : tuple
|
503 |
+
A tuple of the form (targets, U), where targets is a tuple of the
|
504 |
+
target qubits and U is a unitary matrix with dimension of
|
505 |
+
len(targets).
|
506 |
+
"""
|
507 |
+
gate_name = 'U'
|
508 |
+
gate_name_latex = 'U'
|
509 |
+
|
510 |
+
#-------------------------------------------------------------------------
|
511 |
+
# Initialization
|
512 |
+
#-------------------------------------------------------------------------
|
513 |
+
|
514 |
+
@classmethod
|
515 |
+
def _eval_args(cls, args):
|
516 |
+
targets = args[0]
|
517 |
+
if not is_sequence(targets):
|
518 |
+
targets = (targets,)
|
519 |
+
targets = Gate._eval_args(targets)
|
520 |
+
_validate_targets_controls(targets)
|
521 |
+
mat = args[1]
|
522 |
+
if not isinstance(mat, MatrixBase):
|
523 |
+
raise TypeError('Matrix expected, got: %r' % mat)
|
524 |
+
#make sure this matrix is of a Basic type
|
525 |
+
mat = _sympify(mat)
|
526 |
+
dim = 2**len(targets)
|
527 |
+
if not all(dim == shape for shape in mat.shape):
|
528 |
+
raise IndexError(
|
529 |
+
'Number of targets must match the matrix size: %r %r' %
|
530 |
+
(targets, mat)
|
531 |
+
)
|
532 |
+
return (targets, mat)
|
533 |
+
|
534 |
+
@classmethod
|
535 |
+
def _eval_hilbert_space(cls, args):
|
536 |
+
"""This returns the smallest possible Hilbert space."""
|
537 |
+
return ComplexSpace(2)**(_max(args[0]) + 1)
|
538 |
+
|
539 |
+
#-------------------------------------------------------------------------
|
540 |
+
# Properties
|
541 |
+
#-------------------------------------------------------------------------
|
542 |
+
|
543 |
+
@property
|
544 |
+
def targets(self):
|
545 |
+
"""A tuple of target qubits."""
|
546 |
+
return tuple(self.label[0])
|
547 |
+
|
548 |
+
#-------------------------------------------------------------------------
|
549 |
+
# Gate methods
|
550 |
+
#-------------------------------------------------------------------------
|
551 |
+
|
552 |
+
def get_target_matrix(self, format='sympy'):
|
553 |
+
"""The matrix rep. of the target part of the gate.
|
554 |
+
|
555 |
+
Parameters
|
556 |
+
----------
|
557 |
+
format : str
|
558 |
+
The format string ('sympy','numpy', etc.)
|
559 |
+
"""
|
560 |
+
return self.label[1]
|
561 |
+
|
562 |
+
#-------------------------------------------------------------------------
|
563 |
+
# Print methods
|
564 |
+
#-------------------------------------------------------------------------
|
565 |
+
def _pretty(self, printer, *args):
|
566 |
+
targets = self._print_sequence_pretty(
|
567 |
+
self.targets, ',', printer, *args)
|
568 |
+
gate_name = stringPict(self.gate_name)
|
569 |
+
return self._print_subscript_pretty(gate_name, targets)
|
570 |
+
|
571 |
+
def _latex(self, printer, *args):
|
572 |
+
targets = self._print_sequence(self.targets, ',', printer, *args)
|
573 |
+
return r'%s_{%s}' % (self.gate_name_latex, targets)
|
574 |
+
|
575 |
+
def plot_gate(self, circ_plot, gate_idx):
|
576 |
+
circ_plot.one_qubit_box(
|
577 |
+
self.gate_name_plot,
|
578 |
+
gate_idx, int(self.targets[0])
|
579 |
+
)
|
580 |
+
|
581 |
+
|
582 |
+
class OneQubitGate(Gate):
|
583 |
+
"""A single qubit unitary gate base class."""
|
584 |
+
|
585 |
+
nqubits = _S.One
|
586 |
+
|
587 |
+
def plot_gate(self, circ_plot, gate_idx):
|
588 |
+
circ_plot.one_qubit_box(
|
589 |
+
self.gate_name_plot,
|
590 |
+
gate_idx, int(self.targets[0])
|
591 |
+
)
|
592 |
+
|
593 |
+
def _eval_commutator(self, other, **hints):
|
594 |
+
if isinstance(other, OneQubitGate):
|
595 |
+
if self.targets != other.targets or self.__class__ == other.__class__:
|
596 |
+
return _S.Zero
|
597 |
+
return Operator._eval_commutator(self, other, **hints)
|
598 |
+
|
599 |
+
def _eval_anticommutator(self, other, **hints):
|
600 |
+
if isinstance(other, OneQubitGate):
|
601 |
+
if self.targets != other.targets or self.__class__ == other.__class__:
|
602 |
+
return Integer(2)*self*other
|
603 |
+
return Operator._eval_anticommutator(self, other, **hints)
|
604 |
+
|
605 |
+
|
606 |
+
class TwoQubitGate(Gate):
|
607 |
+
"""A two qubit unitary gate base class."""
|
608 |
+
|
609 |
+
nqubits = Integer(2)
|
610 |
+
|
611 |
+
#-----------------------------------------------------------------------------
|
612 |
+
# Single Qubit Gates
|
613 |
+
#-----------------------------------------------------------------------------
|
614 |
+
|
615 |
+
|
616 |
+
class IdentityGate(OneQubitGate):
|
617 |
+
"""The single qubit identity gate.
|
618 |
+
|
619 |
+
Parameters
|
620 |
+
----------
|
621 |
+
target : int
|
622 |
+
The target qubit this gate will apply to.
|
623 |
+
|
624 |
+
Examples
|
625 |
+
========
|
626 |
+
|
627 |
+
"""
|
628 |
+
gate_name = '1'
|
629 |
+
gate_name_latex = '1'
|
630 |
+
|
631 |
+
# Short cut version of gate._apply_operator_Qubit
|
632 |
+
def _apply_operator_Qubit(self, qubits, **options):
|
633 |
+
# Check number of qubits this gate acts on (see gate._apply_operator_Qubit)
|
634 |
+
if qubits.nqubits < self.min_qubits:
|
635 |
+
raise QuantumError(
|
636 |
+
'Gate needs a minimum of %r qubits to act on, got: %r' %
|
637 |
+
(self.min_qubits, qubits.nqubits)
|
638 |
+
)
|
639 |
+
return qubits # no computation required for IdentityGate
|
640 |
+
|
641 |
+
def get_target_matrix(self, format='sympy'):
|
642 |
+
return matrix_cache.get_matrix('eye2', format)
|
643 |
+
|
644 |
+
def _eval_commutator(self, other, **hints):
|
645 |
+
return _S.Zero
|
646 |
+
|
647 |
+
def _eval_anticommutator(self, other, **hints):
|
648 |
+
return Integer(2)*other
|
649 |
+
|
650 |
+
|
651 |
+
class HadamardGate(HermitianOperator, OneQubitGate):
|
652 |
+
"""The single qubit Hadamard gate.
|
653 |
+
|
654 |
+
Parameters
|
655 |
+
----------
|
656 |
+
target : int
|
657 |
+
The target qubit this gate will apply to.
|
658 |
+
|
659 |
+
Examples
|
660 |
+
========
|
661 |
+
|
662 |
+
>>> from sympy import sqrt
|
663 |
+
>>> from sympy.physics.quantum.qubit import Qubit
|
664 |
+
>>> from sympy.physics.quantum.gate import HadamardGate
|
665 |
+
>>> from sympy.physics.quantum.qapply import qapply
|
666 |
+
>>> qapply(HadamardGate(0)*Qubit('1'))
|
667 |
+
sqrt(2)*|0>/2 - sqrt(2)*|1>/2
|
668 |
+
>>> # Hadamard on bell state, applied on 2 qubits.
|
669 |
+
>>> psi = 1/sqrt(2)*(Qubit('00')+Qubit('11'))
|
670 |
+
>>> qapply(HadamardGate(0)*HadamardGate(1)*psi)
|
671 |
+
sqrt(2)*|00>/2 + sqrt(2)*|11>/2
|
672 |
+
|
673 |
+
"""
|
674 |
+
gate_name = 'H'
|
675 |
+
gate_name_latex = 'H'
|
676 |
+
|
677 |
+
def get_target_matrix(self, format='sympy'):
|
678 |
+
if _normalized:
|
679 |
+
return matrix_cache.get_matrix('H', format)
|
680 |
+
else:
|
681 |
+
return matrix_cache.get_matrix('Hsqrt2', format)
|
682 |
+
|
683 |
+
def _eval_commutator_XGate(self, other, **hints):
|
684 |
+
return I*sqrt(2)*YGate(self.targets[0])
|
685 |
+
|
686 |
+
def _eval_commutator_YGate(self, other, **hints):
|
687 |
+
return I*sqrt(2)*(ZGate(self.targets[0]) - XGate(self.targets[0]))
|
688 |
+
|
689 |
+
def _eval_commutator_ZGate(self, other, **hints):
|
690 |
+
return -I*sqrt(2)*YGate(self.targets[0])
|
691 |
+
|
692 |
+
def _eval_anticommutator_XGate(self, other, **hints):
|
693 |
+
return sqrt(2)*IdentityGate(self.targets[0])
|
694 |
+
|
695 |
+
def _eval_anticommutator_YGate(self, other, **hints):
|
696 |
+
return _S.Zero
|
697 |
+
|
698 |
+
def _eval_anticommutator_ZGate(self, other, **hints):
|
699 |
+
return sqrt(2)*IdentityGate(self.targets[0])
|
700 |
+
|
701 |
+
|
702 |
+
class XGate(HermitianOperator, OneQubitGate):
|
703 |
+
"""The single qubit X, or NOT, gate.
|
704 |
+
|
705 |
+
Parameters
|
706 |
+
----------
|
707 |
+
target : int
|
708 |
+
The target qubit this gate will apply to.
|
709 |
+
|
710 |
+
Examples
|
711 |
+
========
|
712 |
+
|
713 |
+
"""
|
714 |
+
gate_name = 'X'
|
715 |
+
gate_name_latex = 'X'
|
716 |
+
|
717 |
+
def get_target_matrix(self, format='sympy'):
|
718 |
+
return matrix_cache.get_matrix('X', format)
|
719 |
+
|
720 |
+
def plot_gate(self, circ_plot, gate_idx):
|
721 |
+
OneQubitGate.plot_gate(self,circ_plot,gate_idx)
|
722 |
+
|
723 |
+
def plot_gate_plus(self, circ_plot, gate_idx):
|
724 |
+
circ_plot.not_point(
|
725 |
+
gate_idx, int(self.label[0])
|
726 |
+
)
|
727 |
+
|
728 |
+
def _eval_commutator_YGate(self, other, **hints):
|
729 |
+
return Integer(2)*I*ZGate(self.targets[0])
|
730 |
+
|
731 |
+
def _eval_anticommutator_XGate(self, other, **hints):
|
732 |
+
return Integer(2)*IdentityGate(self.targets[0])
|
733 |
+
|
734 |
+
def _eval_anticommutator_YGate(self, other, **hints):
|
735 |
+
return _S.Zero
|
736 |
+
|
737 |
+
def _eval_anticommutator_ZGate(self, other, **hints):
|
738 |
+
return _S.Zero
|
739 |
+
|
740 |
+
|
741 |
+
class YGate(HermitianOperator, OneQubitGate):
|
742 |
+
"""The single qubit Y gate.
|
743 |
+
|
744 |
+
Parameters
|
745 |
+
----------
|
746 |
+
target : int
|
747 |
+
The target qubit this gate will apply to.
|
748 |
+
|
749 |
+
Examples
|
750 |
+
========
|
751 |
+
|
752 |
+
"""
|
753 |
+
gate_name = 'Y'
|
754 |
+
gate_name_latex = 'Y'
|
755 |
+
|
756 |
+
def get_target_matrix(self, format='sympy'):
|
757 |
+
return matrix_cache.get_matrix('Y', format)
|
758 |
+
|
759 |
+
def _eval_commutator_ZGate(self, other, **hints):
|
760 |
+
return Integer(2)*I*XGate(self.targets[0])
|
761 |
+
|
762 |
+
def _eval_anticommutator_YGate(self, other, **hints):
|
763 |
+
return Integer(2)*IdentityGate(self.targets[0])
|
764 |
+
|
765 |
+
def _eval_anticommutator_ZGate(self, other, **hints):
|
766 |
+
return _S.Zero
|
767 |
+
|
768 |
+
|
769 |
+
class ZGate(HermitianOperator, OneQubitGate):
|
770 |
+
"""The single qubit Z gate.
|
771 |
+
|
772 |
+
Parameters
|
773 |
+
----------
|
774 |
+
target : int
|
775 |
+
The target qubit this gate will apply to.
|
776 |
+
|
777 |
+
Examples
|
778 |
+
========
|
779 |
+
|
780 |
+
"""
|
781 |
+
gate_name = 'Z'
|
782 |
+
gate_name_latex = 'Z'
|
783 |
+
|
784 |
+
def get_target_matrix(self, format='sympy'):
|
785 |
+
return matrix_cache.get_matrix('Z', format)
|
786 |
+
|
787 |
+
def _eval_commutator_XGate(self, other, **hints):
|
788 |
+
return Integer(2)*I*YGate(self.targets[0])
|
789 |
+
|
790 |
+
def _eval_anticommutator_YGate(self, other, **hints):
|
791 |
+
return _S.Zero
|
792 |
+
|
793 |
+
|
794 |
+
class PhaseGate(OneQubitGate):
|
795 |
+
"""The single qubit phase, or S, gate.
|
796 |
+
|
797 |
+
This gate rotates the phase of the state by pi/2 if the state is ``|1>`` and
|
798 |
+
does nothing if the state is ``|0>``.
|
799 |
+
|
800 |
+
Parameters
|
801 |
+
----------
|
802 |
+
target : int
|
803 |
+
The target qubit this gate will apply to.
|
804 |
+
|
805 |
+
Examples
|
806 |
+
========
|
807 |
+
|
808 |
+
"""
|
809 |
+
gate_name = 'S'
|
810 |
+
gate_name_latex = 'S'
|
811 |
+
|
812 |
+
def get_target_matrix(self, format='sympy'):
|
813 |
+
return matrix_cache.get_matrix('S', format)
|
814 |
+
|
815 |
+
def _eval_commutator_ZGate(self, other, **hints):
|
816 |
+
return _S.Zero
|
817 |
+
|
818 |
+
def _eval_commutator_TGate(self, other, **hints):
|
819 |
+
return _S.Zero
|
820 |
+
|
821 |
+
|
822 |
+
class TGate(OneQubitGate):
|
823 |
+
"""The single qubit pi/8 gate.
|
824 |
+
|
825 |
+
This gate rotates the phase of the state by pi/4 if the state is ``|1>`` and
|
826 |
+
does nothing if the state is ``|0>``.
|
827 |
+
|
828 |
+
Parameters
|
829 |
+
----------
|
830 |
+
target : int
|
831 |
+
The target qubit this gate will apply to.
|
832 |
+
|
833 |
+
Examples
|
834 |
+
========
|
835 |
+
|
836 |
+
"""
|
837 |
+
gate_name = 'T'
|
838 |
+
gate_name_latex = 'T'
|
839 |
+
|
840 |
+
def get_target_matrix(self, format='sympy'):
|
841 |
+
return matrix_cache.get_matrix('T', format)
|
842 |
+
|
843 |
+
def _eval_commutator_ZGate(self, other, **hints):
|
844 |
+
return _S.Zero
|
845 |
+
|
846 |
+
def _eval_commutator_PhaseGate(self, other, **hints):
|
847 |
+
return _S.Zero
|
848 |
+
|
849 |
+
|
850 |
+
# Aliases for gate names.
|
851 |
+
H = HadamardGate
|
852 |
+
X = XGate
|
853 |
+
Y = YGate
|
854 |
+
Z = ZGate
|
855 |
+
T = TGate
|
856 |
+
Phase = S = PhaseGate
|
857 |
+
|
858 |
+
|
859 |
+
#-----------------------------------------------------------------------------
|
860 |
+
# 2 Qubit Gates
|
861 |
+
#-----------------------------------------------------------------------------
|
862 |
+
|
863 |
+
|
864 |
+
class CNotGate(HermitianOperator, CGate, TwoQubitGate):
|
865 |
+
"""Two qubit controlled-NOT.
|
866 |
+
|
867 |
+
This gate performs the NOT or X gate on the target qubit if the control
|
868 |
+
qubits all have the value 1.
|
869 |
+
|
870 |
+
Parameters
|
871 |
+
----------
|
872 |
+
label : tuple
|
873 |
+
A tuple of the form (control, target).
|
874 |
+
|
875 |
+
Examples
|
876 |
+
========
|
877 |
+
|
878 |
+
>>> from sympy.physics.quantum.gate import CNOT
|
879 |
+
>>> from sympy.physics.quantum.qapply import qapply
|
880 |
+
>>> from sympy.physics.quantum.qubit import Qubit
|
881 |
+
>>> c = CNOT(1,0)
|
882 |
+
>>> qapply(c*Qubit('10')) # note that qubits are indexed from right to left
|
883 |
+
|11>
|
884 |
+
|
885 |
+
"""
|
886 |
+
gate_name = 'CNOT'
|
887 |
+
gate_name_latex = r'\text{CNOT}'
|
888 |
+
simplify_cgate = True
|
889 |
+
|
890 |
+
#-------------------------------------------------------------------------
|
891 |
+
# Initialization
|
892 |
+
#-------------------------------------------------------------------------
|
893 |
+
|
894 |
+
@classmethod
|
895 |
+
def _eval_args(cls, args):
|
896 |
+
args = Gate._eval_args(args)
|
897 |
+
return args
|
898 |
+
|
899 |
+
@classmethod
|
900 |
+
def _eval_hilbert_space(cls, args):
|
901 |
+
"""This returns the smallest possible Hilbert space."""
|
902 |
+
return ComplexSpace(2)**(_max(args) + 1)
|
903 |
+
|
904 |
+
#-------------------------------------------------------------------------
|
905 |
+
# Properties
|
906 |
+
#-------------------------------------------------------------------------
|
907 |
+
|
908 |
+
@property
|
909 |
+
def min_qubits(self):
|
910 |
+
"""The minimum number of qubits this gate needs to act on."""
|
911 |
+
return _max(self.label) + 1
|
912 |
+
|
913 |
+
@property
|
914 |
+
def targets(self):
|
915 |
+
"""A tuple of target qubits."""
|
916 |
+
return (self.label[1],)
|
917 |
+
|
918 |
+
@property
|
919 |
+
def controls(self):
|
920 |
+
"""A tuple of control qubits."""
|
921 |
+
return (self.label[0],)
|
922 |
+
|
923 |
+
@property
|
924 |
+
def gate(self):
|
925 |
+
"""The non-controlled gate that will be applied to the targets."""
|
926 |
+
return XGate(self.label[1])
|
927 |
+
|
928 |
+
#-------------------------------------------------------------------------
|
929 |
+
# Properties
|
930 |
+
#-------------------------------------------------------------------------
|
931 |
+
|
932 |
+
# The default printing of Gate works better than those of CGate, so we
|
933 |
+
# go around the overridden methods in CGate.
|
934 |
+
|
935 |
+
def _print_label(self, printer, *args):
|
936 |
+
return Gate._print_label(self, printer, *args)
|
937 |
+
|
938 |
+
def _pretty(self, printer, *args):
|
939 |
+
return Gate._pretty(self, printer, *args)
|
940 |
+
|
941 |
+
def _latex(self, printer, *args):
|
942 |
+
return Gate._latex(self, printer, *args)
|
943 |
+
|
944 |
+
#-------------------------------------------------------------------------
|
945 |
+
# Commutator/AntiCommutator
|
946 |
+
#-------------------------------------------------------------------------
|
947 |
+
|
948 |
+
def _eval_commutator_ZGate(self, other, **hints):
|
949 |
+
"""[CNOT(i, j), Z(i)] == 0."""
|
950 |
+
if self.controls[0] == other.targets[0]:
|
951 |
+
return _S.Zero
|
952 |
+
else:
|
953 |
+
raise NotImplementedError('Commutator not implemented: %r' % other)
|
954 |
+
|
955 |
+
def _eval_commutator_TGate(self, other, **hints):
|
956 |
+
"""[CNOT(i, j), T(i)] == 0."""
|
957 |
+
return self._eval_commutator_ZGate(other, **hints)
|
958 |
+
|
959 |
+
def _eval_commutator_PhaseGate(self, other, **hints):
|
960 |
+
"""[CNOT(i, j), S(i)] == 0."""
|
961 |
+
return self._eval_commutator_ZGate(other, **hints)
|
962 |
+
|
963 |
+
def _eval_commutator_XGate(self, other, **hints):
|
964 |
+
"""[CNOT(i, j), X(j)] == 0."""
|
965 |
+
if self.targets[0] == other.targets[0]:
|
966 |
+
return _S.Zero
|
967 |
+
else:
|
968 |
+
raise NotImplementedError('Commutator not implemented: %r' % other)
|
969 |
+
|
970 |
+
def _eval_commutator_CNotGate(self, other, **hints):
|
971 |
+
"""[CNOT(i, j), CNOT(i,k)] == 0."""
|
972 |
+
if self.controls[0] == other.controls[0]:
|
973 |
+
return _S.Zero
|
974 |
+
else:
|
975 |
+
raise NotImplementedError('Commutator not implemented: %r' % other)
|
976 |
+
|
977 |
+
|
978 |
+
class SwapGate(TwoQubitGate):
|
979 |
+
"""Two qubit SWAP gate.
|
980 |
+
|
981 |
+
This gate swap the values of the two qubits.
|
982 |
+
|
983 |
+
Parameters
|
984 |
+
----------
|
985 |
+
label : tuple
|
986 |
+
A tuple of the form (target1, target2).
|
987 |
+
|
988 |
+
Examples
|
989 |
+
========
|
990 |
+
|
991 |
+
"""
|
992 |
+
gate_name = 'SWAP'
|
993 |
+
gate_name_latex = r'\text{SWAP}'
|
994 |
+
|
995 |
+
def get_target_matrix(self, format='sympy'):
|
996 |
+
return matrix_cache.get_matrix('SWAP', format)
|
997 |
+
|
998 |
+
def decompose(self, **options):
|
999 |
+
"""Decompose the SWAP gate into CNOT gates."""
|
1000 |
+
i, j = self.targets[0], self.targets[1]
|
1001 |
+
g1 = CNotGate(i, j)
|
1002 |
+
g2 = CNotGate(j, i)
|
1003 |
+
return g1*g2*g1
|
1004 |
+
|
1005 |
+
def plot_gate(self, circ_plot, gate_idx):
|
1006 |
+
min_wire = int(_min(self.targets))
|
1007 |
+
max_wire = int(_max(self.targets))
|
1008 |
+
circ_plot.control_line(gate_idx, min_wire, max_wire)
|
1009 |
+
circ_plot.swap_point(gate_idx, min_wire)
|
1010 |
+
circ_plot.swap_point(gate_idx, max_wire)
|
1011 |
+
|
1012 |
+
def _represent_ZGate(self, basis, **options):
|
1013 |
+
"""Represent the SWAP gate in the computational basis.
|
1014 |
+
|
1015 |
+
The following representation is used to compute this:
|
1016 |
+
|
1017 |
+
SWAP = |1><1|x|1><1| + |0><0|x|0><0| + |1><0|x|0><1| + |0><1|x|1><0|
|
1018 |
+
"""
|
1019 |
+
format = options.get('format', 'sympy')
|
1020 |
+
targets = [int(t) for t in self.targets]
|
1021 |
+
min_target = _min(targets)
|
1022 |
+
max_target = _max(targets)
|
1023 |
+
nqubits = options.get('nqubits', self.min_qubits)
|
1024 |
+
|
1025 |
+
op01 = matrix_cache.get_matrix('op01', format)
|
1026 |
+
op10 = matrix_cache.get_matrix('op10', format)
|
1027 |
+
op11 = matrix_cache.get_matrix('op11', format)
|
1028 |
+
op00 = matrix_cache.get_matrix('op00', format)
|
1029 |
+
eye2 = matrix_cache.get_matrix('eye2', format)
|
1030 |
+
|
1031 |
+
result = None
|
1032 |
+
for i, j in ((op01, op10), (op10, op01), (op00, op00), (op11, op11)):
|
1033 |
+
product = nqubits*[eye2]
|
1034 |
+
product[nqubits - min_target - 1] = i
|
1035 |
+
product[nqubits - max_target - 1] = j
|
1036 |
+
new_result = matrix_tensor_product(*product)
|
1037 |
+
if result is None:
|
1038 |
+
result = new_result
|
1039 |
+
else:
|
1040 |
+
result = result + new_result
|
1041 |
+
|
1042 |
+
return result
|
1043 |
+
|
1044 |
+
|
1045 |
+
# Aliases for gate names.
|
1046 |
+
CNOT = CNotGate
|
1047 |
+
SWAP = SwapGate
|
1048 |
+
def CPHASE(a,b): return CGateS((a,),Z(b))
|
1049 |
+
|
1050 |
+
|
1051 |
+
#-----------------------------------------------------------------------------
|
1052 |
+
# Represent
|
1053 |
+
#-----------------------------------------------------------------------------
|
1054 |
+
|
1055 |
+
|
1056 |
+
def represent_zbasis(controls, targets, target_matrix, nqubits, format='sympy'):
|
1057 |
+
"""Represent a gate with controls, targets and target_matrix.
|
1058 |
+
|
1059 |
+
This function does the low-level work of representing gates as matrices
|
1060 |
+
in the standard computational basis (ZGate). Currently, we support two
|
1061 |
+
main cases:
|
1062 |
+
|
1063 |
+
1. One target qubit and no control qubits.
|
1064 |
+
2. One target qubits and multiple control qubits.
|
1065 |
+
|
1066 |
+
For the base of multiple controls, we use the following expression [1]:
|
1067 |
+
|
1068 |
+
1_{2**n} + (|1><1|)^{(n-1)} x (target-matrix - 1_{2})
|
1069 |
+
|
1070 |
+
Parameters
|
1071 |
+
----------
|
1072 |
+
controls : list, tuple
|
1073 |
+
A sequence of control qubits.
|
1074 |
+
targets : list, tuple
|
1075 |
+
A sequence of target qubits.
|
1076 |
+
target_matrix : sympy.Matrix, numpy.matrix, scipy.sparse
|
1077 |
+
The matrix form of the transformation to be performed on the target
|
1078 |
+
qubits. The format of this matrix must match that passed into
|
1079 |
+
the `format` argument.
|
1080 |
+
nqubits : int
|
1081 |
+
The total number of qubits used for the representation.
|
1082 |
+
format : str
|
1083 |
+
The format of the final matrix ('sympy', 'numpy', 'scipy.sparse').
|
1084 |
+
|
1085 |
+
Examples
|
1086 |
+
========
|
1087 |
+
|
1088 |
+
References
|
1089 |
+
----------
|
1090 |
+
[1] http://www.johnlapeyre.com/qinf/qinf_html/node6.html.
|
1091 |
+
"""
|
1092 |
+
controls = [int(x) for x in controls]
|
1093 |
+
targets = [int(x) for x in targets]
|
1094 |
+
nqubits = int(nqubits)
|
1095 |
+
|
1096 |
+
# This checks for the format as well.
|
1097 |
+
op11 = matrix_cache.get_matrix('op11', format)
|
1098 |
+
eye2 = matrix_cache.get_matrix('eye2', format)
|
1099 |
+
|
1100 |
+
# Plain single qubit case
|
1101 |
+
if len(controls) == 0 and len(targets) == 1:
|
1102 |
+
product = []
|
1103 |
+
bit = targets[0]
|
1104 |
+
# Fill product with [I1,Gate,I2] such that the unitaries,
|
1105 |
+
# I, cause the gate to be applied to the correct Qubit
|
1106 |
+
if bit != nqubits - 1:
|
1107 |
+
product.append(matrix_eye(2**(nqubits - bit - 1), format=format))
|
1108 |
+
product.append(target_matrix)
|
1109 |
+
if bit != 0:
|
1110 |
+
product.append(matrix_eye(2**bit, format=format))
|
1111 |
+
return matrix_tensor_product(*product)
|
1112 |
+
|
1113 |
+
# Single target, multiple controls.
|
1114 |
+
elif len(targets) == 1 and len(controls) >= 1:
|
1115 |
+
target = targets[0]
|
1116 |
+
|
1117 |
+
# Build the non-trivial part.
|
1118 |
+
product2 = []
|
1119 |
+
for i in range(nqubits):
|
1120 |
+
product2.append(matrix_eye(2, format=format))
|
1121 |
+
for control in controls:
|
1122 |
+
product2[nqubits - 1 - control] = op11
|
1123 |
+
product2[nqubits - 1 - target] = target_matrix - eye2
|
1124 |
+
|
1125 |
+
return matrix_eye(2**nqubits, format=format) + \
|
1126 |
+
matrix_tensor_product(*product2)
|
1127 |
+
|
1128 |
+
# Multi-target, multi-control is not yet implemented.
|
1129 |
+
else:
|
1130 |
+
raise NotImplementedError(
|
1131 |
+
'The representation of multi-target, multi-control gates '
|
1132 |
+
'is not implemented.'
|
1133 |
+
)
|
1134 |
+
|
1135 |
+
|
1136 |
+
#-----------------------------------------------------------------------------
|
1137 |
+
# Gate manipulation functions.
|
1138 |
+
#-----------------------------------------------------------------------------
|
1139 |
+
|
1140 |
+
|
1141 |
+
def gate_simp(circuit):
|
1142 |
+
"""Simplifies gates symbolically
|
1143 |
+
|
1144 |
+
It first sorts gates using gate_sort. It then applies basic
|
1145 |
+
simplification rules to the circuit, e.g., XGate**2 = Identity
|
1146 |
+
"""
|
1147 |
+
|
1148 |
+
# Bubble sort out gates that commute.
|
1149 |
+
circuit = gate_sort(circuit)
|
1150 |
+
|
1151 |
+
# Do simplifications by subing a simplification into the first element
|
1152 |
+
# which can be simplified. We recursively call gate_simp with new circuit
|
1153 |
+
# as input more simplifications exist.
|
1154 |
+
if isinstance(circuit, Add):
|
1155 |
+
return sum(gate_simp(t) for t in circuit.args)
|
1156 |
+
elif isinstance(circuit, Mul):
|
1157 |
+
circuit_args = circuit.args
|
1158 |
+
elif isinstance(circuit, Pow):
|
1159 |
+
b, e = circuit.as_base_exp()
|
1160 |
+
circuit_args = (gate_simp(b)**e,)
|
1161 |
+
else:
|
1162 |
+
return circuit
|
1163 |
+
|
1164 |
+
# Iterate through each element in circuit, simplify if possible.
|
1165 |
+
for i in range(len(circuit_args)):
|
1166 |
+
# H,X,Y or Z squared is 1.
|
1167 |
+
# T**2 = S, S**2 = Z
|
1168 |
+
if isinstance(circuit_args[i], Pow):
|
1169 |
+
if isinstance(circuit_args[i].base,
|
1170 |
+
(HadamardGate, XGate, YGate, ZGate)) \
|
1171 |
+
and isinstance(circuit_args[i].exp, Number):
|
1172 |
+
# Build a new circuit taking replacing the
|
1173 |
+
# H,X,Y,Z squared with one.
|
1174 |
+
newargs = (circuit_args[:i] +
|
1175 |
+
(circuit_args[i].base**(circuit_args[i].exp % 2),) +
|
1176 |
+
circuit_args[i + 1:])
|
1177 |
+
# Recursively simplify the new circuit.
|
1178 |
+
circuit = gate_simp(Mul(*newargs))
|
1179 |
+
break
|
1180 |
+
elif isinstance(circuit_args[i].base, PhaseGate):
|
1181 |
+
# Build a new circuit taking old circuit but splicing
|
1182 |
+
# in simplification.
|
1183 |
+
newargs = circuit_args[:i]
|
1184 |
+
# Replace PhaseGate**2 with ZGate.
|
1185 |
+
newargs = newargs + (ZGate(circuit_args[i].base.args[0])**
|
1186 |
+
(Integer(circuit_args[i].exp/2)), circuit_args[i].base**
|
1187 |
+
(circuit_args[i].exp % 2))
|
1188 |
+
# Append the last elements.
|
1189 |
+
newargs = newargs + circuit_args[i + 1:]
|
1190 |
+
# Recursively simplify the new circuit.
|
1191 |
+
circuit = gate_simp(Mul(*newargs))
|
1192 |
+
break
|
1193 |
+
elif isinstance(circuit_args[i].base, TGate):
|
1194 |
+
# Build a new circuit taking all the old elements.
|
1195 |
+
newargs = circuit_args[:i]
|
1196 |
+
|
1197 |
+
# Put an Phasegate in place of any TGate**2.
|
1198 |
+
newargs = newargs + (PhaseGate(circuit_args[i].base.args[0])**
|
1199 |
+
Integer(circuit_args[i].exp/2), circuit_args[i].base**
|
1200 |
+
(circuit_args[i].exp % 2))
|
1201 |
+
|
1202 |
+
# Append the last elements.
|
1203 |
+
newargs = newargs + circuit_args[i + 1:]
|
1204 |
+
# Recursively simplify the new circuit.
|
1205 |
+
circuit = gate_simp(Mul(*newargs))
|
1206 |
+
break
|
1207 |
+
return circuit
|
1208 |
+
|
1209 |
+
|
1210 |
+
def gate_sort(circuit):
|
1211 |
+
"""Sorts the gates while keeping track of commutation relations
|
1212 |
+
|
1213 |
+
This function uses a bubble sort to rearrange the order of gate
|
1214 |
+
application. Keeps track of Quantum computations special commutation
|
1215 |
+
relations (e.g. things that apply to the same Qubit do not commute with
|
1216 |
+
each other)
|
1217 |
+
|
1218 |
+
circuit is the Mul of gates that are to be sorted.
|
1219 |
+
"""
|
1220 |
+
# Make sure we have an Add or Mul.
|
1221 |
+
if isinstance(circuit, Add):
|
1222 |
+
return sum(gate_sort(t) for t in circuit.args)
|
1223 |
+
if isinstance(circuit, Pow):
|
1224 |
+
return gate_sort(circuit.base)**circuit.exp
|
1225 |
+
elif isinstance(circuit, Gate):
|
1226 |
+
return circuit
|
1227 |
+
if not isinstance(circuit, Mul):
|
1228 |
+
return circuit
|
1229 |
+
|
1230 |
+
changes = True
|
1231 |
+
while changes:
|
1232 |
+
changes = False
|
1233 |
+
circ_array = circuit.args
|
1234 |
+
for i in range(len(circ_array) - 1):
|
1235 |
+
# Go through each element and switch ones that are in wrong order
|
1236 |
+
if isinstance(circ_array[i], (Gate, Pow)) and \
|
1237 |
+
isinstance(circ_array[i + 1], (Gate, Pow)):
|
1238 |
+
# If we have a Pow object, look at only the base
|
1239 |
+
first_base, first_exp = circ_array[i].as_base_exp()
|
1240 |
+
second_base, second_exp = circ_array[i + 1].as_base_exp()
|
1241 |
+
|
1242 |
+
# Use SymPy's hash based sorting. This is not mathematical
|
1243 |
+
# sorting, but is rather based on comparing hashes of objects.
|
1244 |
+
# See Basic.compare for details.
|
1245 |
+
if first_base.compare(second_base) > 0:
|
1246 |
+
if Commutator(first_base, second_base).doit() == 0:
|
1247 |
+
new_args = (circuit.args[:i] + (circuit.args[i + 1],) +
|
1248 |
+
(circuit.args[i],) + circuit.args[i + 2:])
|
1249 |
+
circuit = Mul(*new_args)
|
1250 |
+
changes = True
|
1251 |
+
break
|
1252 |
+
if AntiCommutator(first_base, second_base).doit() == 0:
|
1253 |
+
new_args = (circuit.args[:i] + (circuit.args[i + 1],) +
|
1254 |
+
(circuit.args[i],) + circuit.args[i + 2:])
|
1255 |
+
sign = _S.NegativeOne**(first_exp*second_exp)
|
1256 |
+
circuit = sign*Mul(*new_args)
|
1257 |
+
changes = True
|
1258 |
+
break
|
1259 |
+
return circuit
|
1260 |
+
|
1261 |
+
|
1262 |
+
#-----------------------------------------------------------------------------
|
1263 |
+
# Utility functions
|
1264 |
+
#-----------------------------------------------------------------------------
|
1265 |
+
|
1266 |
+
|
1267 |
+
def random_circuit(ngates, nqubits, gate_space=(X, Y, Z, S, T, H, CNOT, SWAP)):
|
1268 |
+
"""Return a random circuit of ngates and nqubits.
|
1269 |
+
|
1270 |
+
This uses an equally weighted sample of (X, Y, Z, S, T, H, CNOT, SWAP)
|
1271 |
+
gates.
|
1272 |
+
|
1273 |
+
Parameters
|
1274 |
+
----------
|
1275 |
+
ngates : int
|
1276 |
+
The number of gates in the circuit.
|
1277 |
+
nqubits : int
|
1278 |
+
The number of qubits in the circuit.
|
1279 |
+
gate_space : tuple
|
1280 |
+
A tuple of the gate classes that will be used in the circuit.
|
1281 |
+
Repeating gate classes multiple times in this tuple will increase
|
1282 |
+
the frequency they appear in the random circuit.
|
1283 |
+
"""
|
1284 |
+
qubit_space = range(nqubits)
|
1285 |
+
result = []
|
1286 |
+
for i in range(ngates):
|
1287 |
+
g = random.choice(gate_space)
|
1288 |
+
if g == CNotGate or g == SwapGate:
|
1289 |
+
qubits = random.sample(qubit_space, 2)
|
1290 |
+
g = g(*qubits)
|
1291 |
+
else:
|
1292 |
+
qubit = random.choice(qubit_space)
|
1293 |
+
g = g(qubit)
|
1294 |
+
result.append(g)
|
1295 |
+
return Mul(*result)
|
1296 |
+
|
1297 |
+
|
1298 |
+
def zx_basis_transform(self, format='sympy'):
|
1299 |
+
"""Transformation matrix from Z to X basis."""
|
1300 |
+
return matrix_cache.get_matrix('ZX', format)
|
1301 |
+
|
1302 |
+
|
1303 |
+
def zy_basis_transform(self, format='sympy'):
|
1304 |
+
"""Transformation matrix from Z to Y basis."""
|
1305 |
+
return matrix_cache.get_matrix('ZY', format)
|
venv/lib/python3.10/site-packages/sympy/physics/quantum/grover.py
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Grover's algorithm and helper functions.
|
2 |
+
|
3 |
+
Todo:
|
4 |
+
|
5 |
+
* W gate construction (or perhaps -W gate based on Mermin's book)
|
6 |
+
* Generalize the algorithm for an unknown function that returns 1 on multiple
|
7 |
+
qubit states, not just one.
|
8 |
+
* Implement _represent_ZGate in OracleGate
|
9 |
+
"""
|
10 |
+
|
11 |
+
from sympy.core.numbers import pi
|
12 |
+
from sympy.core.sympify import sympify
|
13 |
+
from sympy.core.basic import Atom
|
14 |
+
from sympy.functions.elementary.integers import floor
|
15 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
16 |
+
from sympy.matrices.dense import eye
|
17 |
+
from sympy.core.numbers import NegativeOne
|
18 |
+
from sympy.physics.quantum.qapply import qapply
|
19 |
+
from sympy.physics.quantum.qexpr import QuantumError
|
20 |
+
from sympy.physics.quantum.hilbert import ComplexSpace
|
21 |
+
from sympy.physics.quantum.operator import UnitaryOperator
|
22 |
+
from sympy.physics.quantum.gate import Gate
|
23 |
+
from sympy.physics.quantum.qubit import IntQubit
|
24 |
+
|
25 |
+
__all__ = [
|
26 |
+
'OracleGate',
|
27 |
+
'WGate',
|
28 |
+
'superposition_basis',
|
29 |
+
'grover_iteration',
|
30 |
+
'apply_grover'
|
31 |
+
]
|
32 |
+
|
33 |
+
|
34 |
+
def superposition_basis(nqubits):
|
35 |
+
"""Creates an equal superposition of the computational basis.
|
36 |
+
|
37 |
+
Parameters
|
38 |
+
==========
|
39 |
+
|
40 |
+
nqubits : int
|
41 |
+
The number of qubits.
|
42 |
+
|
43 |
+
Returns
|
44 |
+
=======
|
45 |
+
|
46 |
+
state : Qubit
|
47 |
+
An equal superposition of the computational basis with nqubits.
|
48 |
+
|
49 |
+
Examples
|
50 |
+
========
|
51 |
+
|
52 |
+
Create an equal superposition of 2 qubits::
|
53 |
+
|
54 |
+
>>> from sympy.physics.quantum.grover import superposition_basis
|
55 |
+
>>> superposition_basis(2)
|
56 |
+
|0>/2 + |1>/2 + |2>/2 + |3>/2
|
57 |
+
"""
|
58 |
+
|
59 |
+
amp = 1/sqrt(2**nqubits)
|
60 |
+
return sum([amp*IntQubit(n, nqubits=nqubits) for n in range(2**nqubits)])
|
61 |
+
|
62 |
+
class OracleGateFunction(Atom):
|
63 |
+
"""Wrapper for python functions used in `OracleGate`s"""
|
64 |
+
|
65 |
+
def __new__(cls, function):
|
66 |
+
if not callable(function):
|
67 |
+
raise TypeError('Callable expected, got: %r' % function)
|
68 |
+
obj = Atom.__new__(cls)
|
69 |
+
obj.function = function
|
70 |
+
return obj
|
71 |
+
|
72 |
+
def _hashable_content(self):
|
73 |
+
return type(self), self.function
|
74 |
+
|
75 |
+
def __call__(self, *args):
|
76 |
+
return self.function(*args)
|
77 |
+
|
78 |
+
|
79 |
+
class OracleGate(Gate):
|
80 |
+
"""A black box gate.
|
81 |
+
|
82 |
+
The gate marks the desired qubits of an unknown function by flipping
|
83 |
+
the sign of the qubits. The unknown function returns true when it
|
84 |
+
finds its desired qubits and false otherwise.
|
85 |
+
|
86 |
+
Parameters
|
87 |
+
==========
|
88 |
+
|
89 |
+
qubits : int
|
90 |
+
Number of qubits.
|
91 |
+
|
92 |
+
oracle : callable
|
93 |
+
A callable function that returns a boolean on a computational basis.
|
94 |
+
|
95 |
+
Examples
|
96 |
+
========
|
97 |
+
|
98 |
+
Apply an Oracle gate that flips the sign of ``|2>`` on different qubits::
|
99 |
+
|
100 |
+
>>> from sympy.physics.quantum.qubit import IntQubit
|
101 |
+
>>> from sympy.physics.quantum.qapply import qapply
|
102 |
+
>>> from sympy.physics.quantum.grover import OracleGate
|
103 |
+
>>> f = lambda qubits: qubits == IntQubit(2)
|
104 |
+
>>> v = OracleGate(2, f)
|
105 |
+
>>> qapply(v*IntQubit(2))
|
106 |
+
-|2>
|
107 |
+
>>> qapply(v*IntQubit(3))
|
108 |
+
|3>
|
109 |
+
"""
|
110 |
+
|
111 |
+
gate_name = 'V'
|
112 |
+
gate_name_latex = 'V'
|
113 |
+
|
114 |
+
#-------------------------------------------------------------------------
|
115 |
+
# Initialization/creation
|
116 |
+
#-------------------------------------------------------------------------
|
117 |
+
|
118 |
+
@classmethod
|
119 |
+
def _eval_args(cls, args):
|
120 |
+
if len(args) != 2:
|
121 |
+
raise QuantumError(
|
122 |
+
'Insufficient/excessive arguments to Oracle. Please ' +
|
123 |
+
'supply the number of qubits and an unknown function.'
|
124 |
+
)
|
125 |
+
sub_args = (args[0],)
|
126 |
+
sub_args = UnitaryOperator._eval_args(sub_args)
|
127 |
+
if not sub_args[0].is_Integer:
|
128 |
+
raise TypeError('Integer expected, got: %r' % sub_args[0])
|
129 |
+
|
130 |
+
function = args[1]
|
131 |
+
if not isinstance(function, OracleGateFunction):
|
132 |
+
function = OracleGateFunction(function)
|
133 |
+
|
134 |
+
return (sub_args[0], function)
|
135 |
+
|
136 |
+
@classmethod
|
137 |
+
def _eval_hilbert_space(cls, args):
|
138 |
+
"""This returns the smallest possible Hilbert space."""
|
139 |
+
return ComplexSpace(2)**args[0]
|
140 |
+
|
141 |
+
#-------------------------------------------------------------------------
|
142 |
+
# Properties
|
143 |
+
#-------------------------------------------------------------------------
|
144 |
+
|
145 |
+
@property
|
146 |
+
def search_function(self):
|
147 |
+
"""The unknown function that helps find the sought after qubits."""
|
148 |
+
return self.label[1]
|
149 |
+
|
150 |
+
@property
|
151 |
+
def targets(self):
|
152 |
+
"""A tuple of target qubits."""
|
153 |
+
return sympify(tuple(range(self.args[0])))
|
154 |
+
|
155 |
+
#-------------------------------------------------------------------------
|
156 |
+
# Apply
|
157 |
+
#-------------------------------------------------------------------------
|
158 |
+
|
159 |
+
def _apply_operator_Qubit(self, qubits, **options):
|
160 |
+
"""Apply this operator to a Qubit subclass.
|
161 |
+
|
162 |
+
Parameters
|
163 |
+
==========
|
164 |
+
|
165 |
+
qubits : Qubit
|
166 |
+
The qubit subclass to apply this operator to.
|
167 |
+
|
168 |
+
Returns
|
169 |
+
=======
|
170 |
+
|
171 |
+
state : Expr
|
172 |
+
The resulting quantum state.
|
173 |
+
"""
|
174 |
+
if qubits.nqubits != self.nqubits:
|
175 |
+
raise QuantumError(
|
176 |
+
'OracleGate operates on %r qubits, got: %r'
|
177 |
+
% (self.nqubits, qubits.nqubits)
|
178 |
+
)
|
179 |
+
# If function returns 1 on qubits
|
180 |
+
# return the negative of the qubits (flip the sign)
|
181 |
+
if self.search_function(qubits):
|
182 |
+
return -qubits
|
183 |
+
else:
|
184 |
+
return qubits
|
185 |
+
|
186 |
+
#-------------------------------------------------------------------------
|
187 |
+
# Represent
|
188 |
+
#-------------------------------------------------------------------------
|
189 |
+
|
190 |
+
def _represent_ZGate(self, basis, **options):
|
191 |
+
"""
|
192 |
+
Represent the OracleGate in the computational basis.
|
193 |
+
"""
|
194 |
+
nbasis = 2**self.nqubits # compute it only once
|
195 |
+
matrixOracle = eye(nbasis)
|
196 |
+
# Flip the sign given the output of the oracle function
|
197 |
+
for i in range(nbasis):
|
198 |
+
if self.search_function(IntQubit(i, nqubits=self.nqubits)):
|
199 |
+
matrixOracle[i, i] = NegativeOne()
|
200 |
+
return matrixOracle
|
201 |
+
|
202 |
+
|
203 |
+
class WGate(Gate):
|
204 |
+
"""General n qubit W Gate in Grover's algorithm.
|
205 |
+
|
206 |
+
The gate performs the operation ``2|phi><phi| - 1`` on some qubits.
|
207 |
+
``|phi> = (tensor product of n Hadamards)*(|0> with n qubits)``
|
208 |
+
|
209 |
+
Parameters
|
210 |
+
==========
|
211 |
+
|
212 |
+
nqubits : int
|
213 |
+
The number of qubits to operate on
|
214 |
+
|
215 |
+
"""
|
216 |
+
|
217 |
+
gate_name = 'W'
|
218 |
+
gate_name_latex = 'W'
|
219 |
+
|
220 |
+
@classmethod
|
221 |
+
def _eval_args(cls, args):
|
222 |
+
if len(args) != 1:
|
223 |
+
raise QuantumError(
|
224 |
+
'Insufficient/excessive arguments to W gate. Please ' +
|
225 |
+
'supply the number of qubits to operate on.'
|
226 |
+
)
|
227 |
+
args = UnitaryOperator._eval_args(args)
|
228 |
+
if not args[0].is_Integer:
|
229 |
+
raise TypeError('Integer expected, got: %r' % args[0])
|
230 |
+
return args
|
231 |
+
|
232 |
+
#-------------------------------------------------------------------------
|
233 |
+
# Properties
|
234 |
+
#-------------------------------------------------------------------------
|
235 |
+
|
236 |
+
@property
|
237 |
+
def targets(self):
|
238 |
+
return sympify(tuple(reversed(range(self.args[0]))))
|
239 |
+
|
240 |
+
#-------------------------------------------------------------------------
|
241 |
+
# Apply
|
242 |
+
#-------------------------------------------------------------------------
|
243 |
+
|
244 |
+
def _apply_operator_Qubit(self, qubits, **options):
|
245 |
+
"""
|
246 |
+
qubits: a set of qubits (Qubit)
|
247 |
+
Returns: quantum object (quantum expression - QExpr)
|
248 |
+
"""
|
249 |
+
if qubits.nqubits != self.nqubits:
|
250 |
+
raise QuantumError(
|
251 |
+
'WGate operates on %r qubits, got: %r'
|
252 |
+
% (self.nqubits, qubits.nqubits)
|
253 |
+
)
|
254 |
+
|
255 |
+
# See 'Quantum Computer Science' by David Mermin p.92 -> W|a> result
|
256 |
+
# Return (2/(sqrt(2^n)))|phi> - |a> where |a> is the current basis
|
257 |
+
# state and phi is the superposition of basis states (see function
|
258 |
+
# create_computational_basis above)
|
259 |
+
basis_states = superposition_basis(self.nqubits)
|
260 |
+
change_to_basis = (2/sqrt(2**self.nqubits))*basis_states
|
261 |
+
return change_to_basis - qubits
|
262 |
+
|
263 |
+
|
264 |
+
def grover_iteration(qstate, oracle):
|
265 |
+
"""Applies one application of the Oracle and W Gate, WV.
|
266 |
+
|
267 |
+
Parameters
|
268 |
+
==========
|
269 |
+
|
270 |
+
qstate : Qubit
|
271 |
+
A superposition of qubits.
|
272 |
+
oracle : OracleGate
|
273 |
+
The black box operator that flips the sign of the desired basis qubits.
|
274 |
+
|
275 |
+
Returns
|
276 |
+
=======
|
277 |
+
|
278 |
+
Qubit : The qubits after applying the Oracle and W gate.
|
279 |
+
|
280 |
+
Examples
|
281 |
+
========
|
282 |
+
|
283 |
+
Perform one iteration of grover's algorithm to see a phase change::
|
284 |
+
|
285 |
+
>>> from sympy.physics.quantum.qapply import qapply
|
286 |
+
>>> from sympy.physics.quantum.qubit import IntQubit
|
287 |
+
>>> from sympy.physics.quantum.grover import OracleGate
|
288 |
+
>>> from sympy.physics.quantum.grover import superposition_basis
|
289 |
+
>>> from sympy.physics.quantum.grover import grover_iteration
|
290 |
+
>>> numqubits = 2
|
291 |
+
>>> basis_states = superposition_basis(numqubits)
|
292 |
+
>>> f = lambda qubits: qubits == IntQubit(2)
|
293 |
+
>>> v = OracleGate(numqubits, f)
|
294 |
+
>>> qapply(grover_iteration(basis_states, v))
|
295 |
+
|2>
|
296 |
+
|
297 |
+
"""
|
298 |
+
wgate = WGate(oracle.nqubits)
|
299 |
+
return wgate*oracle*qstate
|
300 |
+
|
301 |
+
|
302 |
+
def apply_grover(oracle, nqubits, iterations=None):
|
303 |
+
"""Applies grover's algorithm.
|
304 |
+
|
305 |
+
Parameters
|
306 |
+
==========
|
307 |
+
|
308 |
+
oracle : callable
|
309 |
+
The unknown callable function that returns true when applied to the
|
310 |
+
desired qubits and false otherwise.
|
311 |
+
|
312 |
+
Returns
|
313 |
+
=======
|
314 |
+
|
315 |
+
state : Expr
|
316 |
+
The resulting state after Grover's algorithm has been iterated.
|
317 |
+
|
318 |
+
Examples
|
319 |
+
========
|
320 |
+
|
321 |
+
Apply grover's algorithm to an even superposition of 2 qubits::
|
322 |
+
|
323 |
+
>>> from sympy.physics.quantum.qapply import qapply
|
324 |
+
>>> from sympy.physics.quantum.qubit import IntQubit
|
325 |
+
>>> from sympy.physics.quantum.grover import apply_grover
|
326 |
+
>>> f = lambda qubits: qubits == IntQubit(2)
|
327 |
+
>>> qapply(apply_grover(f, 2))
|
328 |
+
|2>
|
329 |
+
|
330 |
+
"""
|
331 |
+
if nqubits <= 0:
|
332 |
+
raise QuantumError(
|
333 |
+
'Grover\'s algorithm needs nqubits > 0, received %r qubits'
|
334 |
+
% nqubits
|
335 |
+
)
|
336 |
+
if iterations is None:
|
337 |
+
iterations = floor(sqrt(2**nqubits)*(pi/4))
|
338 |
+
|
339 |
+
v = OracleGate(nqubits, oracle)
|
340 |
+
iterated = superposition_basis(nqubits)
|
341 |
+
for iter in range(iterations):
|
342 |
+
iterated = grover_iteration(iterated, v)
|
343 |
+
iterated = qapply(iterated)
|
344 |
+
|
345 |
+
return iterated
|
venv/lib/python3.10/site-packages/sympy/physics/quantum/identitysearch.py
ADDED
@@ -0,0 +1,853 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import deque
|
2 |
+
from sympy.core.random import randint
|
3 |
+
|
4 |
+
from sympy.external import import_module
|
5 |
+
from sympy.core.basic import Basic
|
6 |
+
from sympy.core.mul import Mul
|
7 |
+
from sympy.core.numbers import Number, equal_valued
|
8 |
+
from sympy.core.power import Pow
|
9 |
+
from sympy.core.singleton import S
|
10 |
+
from sympy.physics.quantum.represent import represent
|
11 |
+
from sympy.physics.quantum.dagger import Dagger
|
12 |
+
|
13 |
+
__all__ = [
|
14 |
+
# Public interfaces
|
15 |
+
'generate_gate_rules',
|
16 |
+
'generate_equivalent_ids',
|
17 |
+
'GateIdentity',
|
18 |
+
'bfs_identity_search',
|
19 |
+
'random_identity_search',
|
20 |
+
|
21 |
+
# "Private" functions
|
22 |
+
'is_scalar_sparse_matrix',
|
23 |
+
'is_scalar_nonsparse_matrix',
|
24 |
+
'is_degenerate',
|
25 |
+
'is_reducible',
|
26 |
+
]
|
27 |
+
|
28 |
+
np = import_module('numpy')
|
29 |
+
scipy = import_module('scipy', import_kwargs={'fromlist': ['sparse']})
|
30 |
+
|
31 |
+
|
32 |
+
def is_scalar_sparse_matrix(circuit, nqubits, identity_only, eps=1e-11):
|
33 |
+
"""Checks if a given scipy.sparse matrix is a scalar matrix.
|
34 |
+
|
35 |
+
A scalar matrix is such that B = bI, where B is the scalar
|
36 |
+
matrix, b is some scalar multiple, and I is the identity
|
37 |
+
matrix. A scalar matrix would have only the element b along
|
38 |
+
it's main diagonal and zeroes elsewhere.
|
39 |
+
|
40 |
+
Parameters
|
41 |
+
==========
|
42 |
+
|
43 |
+
circuit : Gate tuple
|
44 |
+
Sequence of quantum gates representing a quantum circuit
|
45 |
+
nqubits : int
|
46 |
+
Number of qubits in the circuit
|
47 |
+
identity_only : bool
|
48 |
+
Check for only identity matrices
|
49 |
+
eps : number
|
50 |
+
The tolerance value for zeroing out elements in the matrix.
|
51 |
+
Values in the range [-eps, +eps] will be changed to a zero.
|
52 |
+
"""
|
53 |
+
|
54 |
+
if not np or not scipy:
|
55 |
+
pass
|
56 |
+
|
57 |
+
matrix = represent(Mul(*circuit), nqubits=nqubits,
|
58 |
+
format='scipy.sparse')
|
59 |
+
|
60 |
+
# In some cases, represent returns a 1D scalar value in place
|
61 |
+
# of a multi-dimensional scalar matrix
|
62 |
+
if (isinstance(matrix, int)):
|
63 |
+
return matrix == 1 if identity_only else True
|
64 |
+
|
65 |
+
# If represent returns a matrix, check if the matrix is diagonal
|
66 |
+
# and if every item along the diagonal is the same
|
67 |
+
else:
|
68 |
+
# Due to floating pointing operations, must zero out
|
69 |
+
# elements that are "very" small in the dense matrix
|
70 |
+
# See parameter for default value.
|
71 |
+
|
72 |
+
# Get the ndarray version of the dense matrix
|
73 |
+
dense_matrix = matrix.todense().getA()
|
74 |
+
# Since complex values can't be compared, must split
|
75 |
+
# the matrix into real and imaginary components
|
76 |
+
# Find the real values in between -eps and eps
|
77 |
+
bool_real = np.logical_and(dense_matrix.real > -eps,
|
78 |
+
dense_matrix.real < eps)
|
79 |
+
# Find the imaginary values between -eps and eps
|
80 |
+
bool_imag = np.logical_and(dense_matrix.imag > -eps,
|
81 |
+
dense_matrix.imag < eps)
|
82 |
+
# Replaces values between -eps and eps with 0
|
83 |
+
corrected_real = np.where(bool_real, 0.0, dense_matrix.real)
|
84 |
+
corrected_imag = np.where(bool_imag, 0.0, dense_matrix.imag)
|
85 |
+
# Convert the matrix with real values into imaginary values
|
86 |
+
corrected_imag = corrected_imag * complex(1j)
|
87 |
+
# Recombine the real and imaginary components
|
88 |
+
corrected_dense = corrected_real + corrected_imag
|
89 |
+
|
90 |
+
# Check if it's diagonal
|
91 |
+
row_indices = corrected_dense.nonzero()[0]
|
92 |
+
col_indices = corrected_dense.nonzero()[1]
|
93 |
+
# Check if the rows indices and columns indices are the same
|
94 |
+
# If they match, then matrix only contains elements along diagonal
|
95 |
+
bool_indices = row_indices == col_indices
|
96 |
+
is_diagonal = bool_indices.all()
|
97 |
+
|
98 |
+
first_element = corrected_dense[0][0]
|
99 |
+
# If the first element is a zero, then can't rescale matrix
|
100 |
+
# and definitely not diagonal
|
101 |
+
if (first_element == 0.0 + 0.0j):
|
102 |
+
return False
|
103 |
+
|
104 |
+
# The dimensions of the dense matrix should still
|
105 |
+
# be 2^nqubits if there are elements all along the
|
106 |
+
# the main diagonal
|
107 |
+
trace_of_corrected = (corrected_dense/first_element).trace()
|
108 |
+
expected_trace = pow(2, nqubits)
|
109 |
+
has_correct_trace = trace_of_corrected == expected_trace
|
110 |
+
|
111 |
+
# If only looking for identity matrices
|
112 |
+
# first element must be a 1
|
113 |
+
real_is_one = abs(first_element.real - 1.0) < eps
|
114 |
+
imag_is_zero = abs(first_element.imag) < eps
|
115 |
+
is_one = real_is_one and imag_is_zero
|
116 |
+
is_identity = is_one if identity_only else True
|
117 |
+
return bool(is_diagonal and has_correct_trace and is_identity)
|
118 |
+
|
119 |
+
|
120 |
+
def is_scalar_nonsparse_matrix(circuit, nqubits, identity_only, eps=None):
|
121 |
+
"""Checks if a given circuit, in matrix form, is equivalent to
|
122 |
+
a scalar value.
|
123 |
+
|
124 |
+
Parameters
|
125 |
+
==========
|
126 |
+
|
127 |
+
circuit : Gate tuple
|
128 |
+
Sequence of quantum gates representing a quantum circuit
|
129 |
+
nqubits : int
|
130 |
+
Number of qubits in the circuit
|
131 |
+
identity_only : bool
|
132 |
+
Check for only identity matrices
|
133 |
+
eps : number
|
134 |
+
This argument is ignored. It is just for signature compatibility with
|
135 |
+
is_scalar_sparse_matrix.
|
136 |
+
|
137 |
+
Note: Used in situations when is_scalar_sparse_matrix has bugs
|
138 |
+
"""
|
139 |
+
|
140 |
+
matrix = represent(Mul(*circuit), nqubits=nqubits)
|
141 |
+
|
142 |
+
# In some cases, represent returns a 1D scalar value in place
|
143 |
+
# of a multi-dimensional scalar matrix
|
144 |
+
if (isinstance(matrix, Number)):
|
145 |
+
return matrix == 1 if identity_only else True
|
146 |
+
|
147 |
+
# If represent returns a matrix, check if the matrix is diagonal
|
148 |
+
# and if every item along the diagonal is the same
|
149 |
+
else:
|
150 |
+
# Added up the diagonal elements
|
151 |
+
matrix_trace = matrix.trace()
|
152 |
+
# Divide the trace by the first element in the matrix
|
153 |
+
# if matrix is not required to be the identity matrix
|
154 |
+
adjusted_matrix_trace = (matrix_trace/matrix[0]
|
155 |
+
if not identity_only
|
156 |
+
else matrix_trace)
|
157 |
+
|
158 |
+
is_identity = equal_valued(matrix[0], 1) if identity_only else True
|
159 |
+
|
160 |
+
has_correct_trace = adjusted_matrix_trace == pow(2, nqubits)
|
161 |
+
|
162 |
+
# The matrix is scalar if it's diagonal and the adjusted trace
|
163 |
+
# value is equal to 2^nqubits
|
164 |
+
return bool(
|
165 |
+
matrix.is_diagonal() and has_correct_trace and is_identity)
|
166 |
+
|
167 |
+
if np and scipy:
|
168 |
+
is_scalar_matrix = is_scalar_sparse_matrix
|
169 |
+
else:
|
170 |
+
is_scalar_matrix = is_scalar_nonsparse_matrix
|
171 |
+
|
172 |
+
|
173 |
+
def _get_min_qubits(a_gate):
|
174 |
+
if isinstance(a_gate, Pow):
|
175 |
+
return a_gate.base.min_qubits
|
176 |
+
else:
|
177 |
+
return a_gate.min_qubits
|
178 |
+
|
179 |
+
|
180 |
+
def ll_op(left, right):
|
181 |
+
"""Perform a LL operation.
|
182 |
+
|
183 |
+
A LL operation multiplies both left and right circuits
|
184 |
+
with the dagger of the left circuit's leftmost gate, and
|
185 |
+
the dagger is multiplied on the left side of both circuits.
|
186 |
+
|
187 |
+
If a LL is possible, it returns the new gate rule as a
|
188 |
+
2-tuple (LHS, RHS), where LHS is the left circuit and
|
189 |
+
and RHS is the right circuit of the new rule.
|
190 |
+
If a LL is not possible, None is returned.
|
191 |
+
|
192 |
+
Parameters
|
193 |
+
==========
|
194 |
+
|
195 |
+
left : Gate tuple
|
196 |
+
The left circuit of a gate rule expression.
|
197 |
+
right : Gate tuple
|
198 |
+
The right circuit of a gate rule expression.
|
199 |
+
|
200 |
+
Examples
|
201 |
+
========
|
202 |
+
|
203 |
+
Generate a new gate rule using a LL operation:
|
204 |
+
|
205 |
+
>>> from sympy.physics.quantum.identitysearch import ll_op
|
206 |
+
>>> from sympy.physics.quantum.gate import X, Y, Z
|
207 |
+
>>> x = X(0); y = Y(0); z = Z(0)
|
208 |
+
>>> ll_op((x, y, z), ())
|
209 |
+
((Y(0), Z(0)), (X(0),))
|
210 |
+
|
211 |
+
>>> ll_op((y, z), (x,))
|
212 |
+
((Z(0),), (Y(0), X(0)))
|
213 |
+
"""
|
214 |
+
|
215 |
+
if (len(left) > 0):
|
216 |
+
ll_gate = left[0]
|
217 |
+
ll_gate_is_unitary = is_scalar_matrix(
|
218 |
+
(Dagger(ll_gate), ll_gate), _get_min_qubits(ll_gate), True)
|
219 |
+
|
220 |
+
if (len(left) > 0 and ll_gate_is_unitary):
|
221 |
+
# Get the new left side w/o the leftmost gate
|
222 |
+
new_left = left[1:len(left)]
|
223 |
+
# Add the leftmost gate to the left position on the right side
|
224 |
+
new_right = (Dagger(ll_gate),) + right
|
225 |
+
# Return the new gate rule
|
226 |
+
return (new_left, new_right)
|
227 |
+
|
228 |
+
return None
|
229 |
+
|
230 |
+
|
231 |
+
def lr_op(left, right):
|
232 |
+
"""Perform a LR operation.
|
233 |
+
|
234 |
+
A LR operation multiplies both left and right circuits
|
235 |
+
with the dagger of the left circuit's rightmost gate, and
|
236 |
+
the dagger is multiplied on the right side of both circuits.
|
237 |
+
|
238 |
+
If a LR is possible, it returns the new gate rule as a
|
239 |
+
2-tuple (LHS, RHS), where LHS is the left circuit and
|
240 |
+
and RHS is the right circuit of the new rule.
|
241 |
+
If a LR is not possible, None is returned.
|
242 |
+
|
243 |
+
Parameters
|
244 |
+
==========
|
245 |
+
|
246 |
+
left : Gate tuple
|
247 |
+
The left circuit of a gate rule expression.
|
248 |
+
right : Gate tuple
|
249 |
+
The right circuit of a gate rule expression.
|
250 |
+
|
251 |
+
Examples
|
252 |
+
========
|
253 |
+
|
254 |
+
Generate a new gate rule using a LR operation:
|
255 |
+
|
256 |
+
>>> from sympy.physics.quantum.identitysearch import lr_op
|
257 |
+
>>> from sympy.physics.quantum.gate import X, Y, Z
|
258 |
+
>>> x = X(0); y = Y(0); z = Z(0)
|
259 |
+
>>> lr_op((x, y, z), ())
|
260 |
+
((X(0), Y(0)), (Z(0),))
|
261 |
+
|
262 |
+
>>> lr_op((x, y), (z,))
|
263 |
+
((X(0),), (Z(0), Y(0)))
|
264 |
+
"""
|
265 |
+
|
266 |
+
if (len(left) > 0):
|
267 |
+
lr_gate = left[len(left) - 1]
|
268 |
+
lr_gate_is_unitary = is_scalar_matrix(
|
269 |
+
(Dagger(lr_gate), lr_gate), _get_min_qubits(lr_gate), True)
|
270 |
+
|
271 |
+
if (len(left) > 0 and lr_gate_is_unitary):
|
272 |
+
# Get the new left side w/o the rightmost gate
|
273 |
+
new_left = left[0:len(left) - 1]
|
274 |
+
# Add the rightmost gate to the right position on the right side
|
275 |
+
new_right = right + (Dagger(lr_gate),)
|
276 |
+
# Return the new gate rule
|
277 |
+
return (new_left, new_right)
|
278 |
+
|
279 |
+
return None
|
280 |
+
|
281 |
+
|
282 |
+
def rl_op(left, right):
|
283 |
+
"""Perform a RL operation.
|
284 |
+
|
285 |
+
A RL operation multiplies both left and right circuits
|
286 |
+
with the dagger of the right circuit's leftmost gate, and
|
287 |
+
the dagger is multiplied on the left side of both circuits.
|
288 |
+
|
289 |
+
If a RL is possible, it returns the new gate rule as a
|
290 |
+
2-tuple (LHS, RHS), where LHS is the left circuit and
|
291 |
+
and RHS is the right circuit of the new rule.
|
292 |
+
If a RL is not possible, None is returned.
|
293 |
+
|
294 |
+
Parameters
|
295 |
+
==========
|
296 |
+
|
297 |
+
left : Gate tuple
|
298 |
+
The left circuit of a gate rule expression.
|
299 |
+
right : Gate tuple
|
300 |
+
The right circuit of a gate rule expression.
|
301 |
+
|
302 |
+
Examples
|
303 |
+
========
|
304 |
+
|
305 |
+
Generate a new gate rule using a RL operation:
|
306 |
+
|
307 |
+
>>> from sympy.physics.quantum.identitysearch import rl_op
|
308 |
+
>>> from sympy.physics.quantum.gate import X, Y, Z
|
309 |
+
>>> x = X(0); y = Y(0); z = Z(0)
|
310 |
+
>>> rl_op((x,), (y, z))
|
311 |
+
((Y(0), X(0)), (Z(0),))
|
312 |
+
|
313 |
+
>>> rl_op((x, y), (z,))
|
314 |
+
((Z(0), X(0), Y(0)), ())
|
315 |
+
"""
|
316 |
+
|
317 |
+
if (len(right) > 0):
|
318 |
+
rl_gate = right[0]
|
319 |
+
rl_gate_is_unitary = is_scalar_matrix(
|
320 |
+
(Dagger(rl_gate), rl_gate), _get_min_qubits(rl_gate), True)
|
321 |
+
|
322 |
+
if (len(right) > 0 and rl_gate_is_unitary):
|
323 |
+
# Get the new right side w/o the leftmost gate
|
324 |
+
new_right = right[1:len(right)]
|
325 |
+
# Add the leftmost gate to the left position on the left side
|
326 |
+
new_left = (Dagger(rl_gate),) + left
|
327 |
+
# Return the new gate rule
|
328 |
+
return (new_left, new_right)
|
329 |
+
|
330 |
+
return None
|
331 |
+
|
332 |
+
|
333 |
+
def rr_op(left, right):
|
334 |
+
"""Perform a RR operation.
|
335 |
+
|
336 |
+
A RR operation multiplies both left and right circuits
|
337 |
+
with the dagger of the right circuit's rightmost gate, and
|
338 |
+
the dagger is multiplied on the right side of both circuits.
|
339 |
+
|
340 |
+
If a RR is possible, it returns the new gate rule as a
|
341 |
+
2-tuple (LHS, RHS), where LHS is the left circuit and
|
342 |
+
and RHS is the right circuit of the new rule.
|
343 |
+
If a RR is not possible, None is returned.
|
344 |
+
|
345 |
+
Parameters
|
346 |
+
==========
|
347 |
+
|
348 |
+
left : Gate tuple
|
349 |
+
The left circuit of a gate rule expression.
|
350 |
+
right : Gate tuple
|
351 |
+
The right circuit of a gate rule expression.
|
352 |
+
|
353 |
+
Examples
|
354 |
+
========
|
355 |
+
|
356 |
+
Generate a new gate rule using a RR operation:
|
357 |
+
|
358 |
+
>>> from sympy.physics.quantum.identitysearch import rr_op
|
359 |
+
>>> from sympy.physics.quantum.gate import X, Y, Z
|
360 |
+
>>> x = X(0); y = Y(0); z = Z(0)
|
361 |
+
>>> rr_op((x, y), (z,))
|
362 |
+
((X(0), Y(0), Z(0)), ())
|
363 |
+
|
364 |
+
>>> rr_op((x,), (y, z))
|
365 |
+
((X(0), Z(0)), (Y(0),))
|
366 |
+
"""
|
367 |
+
|
368 |
+
if (len(right) > 0):
|
369 |
+
rr_gate = right[len(right) - 1]
|
370 |
+
rr_gate_is_unitary = is_scalar_matrix(
|
371 |
+
(Dagger(rr_gate), rr_gate), _get_min_qubits(rr_gate), True)
|
372 |
+
|
373 |
+
if (len(right) > 0 and rr_gate_is_unitary):
|
374 |
+
# Get the new right side w/o the rightmost gate
|
375 |
+
new_right = right[0:len(right) - 1]
|
376 |
+
# Add the rightmost gate to the right position on the right side
|
377 |
+
new_left = left + (Dagger(rr_gate),)
|
378 |
+
# Return the new gate rule
|
379 |
+
return (new_left, new_right)
|
380 |
+
|
381 |
+
return None
|
382 |
+
|
383 |
+
|
384 |
+
def generate_gate_rules(gate_seq, return_as_muls=False):
|
385 |
+
"""Returns a set of gate rules. Each gate rules is represented
|
386 |
+
as a 2-tuple of tuples or Muls. An empty tuple represents an arbitrary
|
387 |
+
scalar value.
|
388 |
+
|
389 |
+
This function uses the four operations (LL, LR, RL, RR)
|
390 |
+
to generate the gate rules.
|
391 |
+
|
392 |
+
A gate rule is an expression such as ABC = D or AB = CD, where
|
393 |
+
A, B, C, and D are gates. Each value on either side of the
|
394 |
+
equal sign represents a circuit. The four operations allow
|
395 |
+
one to find a set of equivalent circuits from a gate identity.
|
396 |
+
The letters denoting the operation tell the user what
|
397 |
+
activities to perform on each expression. The first letter
|
398 |
+
indicates which side of the equal sign to focus on. The
|
399 |
+
second letter indicates which gate to focus on given the
|
400 |
+
side. Once this information is determined, the inverse
|
401 |
+
of the gate is multiplied on both circuits to create a new
|
402 |
+
gate rule.
|
403 |
+
|
404 |
+
For example, given the identity, ABCD = 1, a LL operation
|
405 |
+
means look at the left value and multiply both left sides by the
|
406 |
+
inverse of the leftmost gate A. If A is Hermitian, the inverse
|
407 |
+
of A is still A. The resulting new rule is BCD = A.
|
408 |
+
|
409 |
+
The following is a summary of the four operations. Assume
|
410 |
+
that in the examples, all gates are Hermitian.
|
411 |
+
|
412 |
+
LL : left circuit, left multiply
|
413 |
+
ABCD = E -> AABCD = AE -> BCD = AE
|
414 |
+
LR : left circuit, right multiply
|
415 |
+
ABCD = E -> ABCDD = ED -> ABC = ED
|
416 |
+
RL : right circuit, left multiply
|
417 |
+
ABC = ED -> EABC = EED -> EABC = D
|
418 |
+
RR : right circuit, right multiply
|
419 |
+
AB = CD -> ABD = CDD -> ABD = C
|
420 |
+
|
421 |
+
The number of gate rules generated is n*(n+1), where n
|
422 |
+
is the number of gates in the sequence (unproven).
|
423 |
+
|
424 |
+
Parameters
|
425 |
+
==========
|
426 |
+
|
427 |
+
gate_seq : Gate tuple, Mul, or Number
|
428 |
+
A variable length tuple or Mul of Gates whose product is equal to
|
429 |
+
a scalar matrix
|
430 |
+
return_as_muls : bool
|
431 |
+
True to return a set of Muls; False to return a set of tuples
|
432 |
+
|
433 |
+
Examples
|
434 |
+
========
|
435 |
+
|
436 |
+
Find the gate rules of the current circuit using tuples:
|
437 |
+
|
438 |
+
>>> from sympy.physics.quantum.identitysearch import generate_gate_rules
|
439 |
+
>>> from sympy.physics.quantum.gate import X, Y, Z
|
440 |
+
>>> x = X(0); y = Y(0); z = Z(0)
|
441 |
+
>>> generate_gate_rules((x, x))
|
442 |
+
{((X(0),), (X(0),)), ((X(0), X(0)), ())}
|
443 |
+
|
444 |
+
>>> generate_gate_rules((x, y, z))
|
445 |
+
{((), (X(0), Z(0), Y(0))), ((), (Y(0), X(0), Z(0))),
|
446 |
+
((), (Z(0), Y(0), X(0))), ((X(0),), (Z(0), Y(0))),
|
447 |
+
((Y(0),), (X(0), Z(0))), ((Z(0),), (Y(0), X(0))),
|
448 |
+
((X(0), Y(0)), (Z(0),)), ((Y(0), Z(0)), (X(0),)),
|
449 |
+
((Z(0), X(0)), (Y(0),)), ((X(0), Y(0), Z(0)), ()),
|
450 |
+
((Y(0), Z(0), X(0)), ()), ((Z(0), X(0), Y(0)), ())}
|
451 |
+
|
452 |
+
Find the gate rules of the current circuit using Muls:
|
453 |
+
|
454 |
+
>>> generate_gate_rules(x*x, return_as_muls=True)
|
455 |
+
{(1, 1)}
|
456 |
+
|
457 |
+
>>> generate_gate_rules(x*y*z, return_as_muls=True)
|
458 |
+
{(1, X(0)*Z(0)*Y(0)), (1, Y(0)*X(0)*Z(0)),
|
459 |
+
(1, Z(0)*Y(0)*X(0)), (X(0)*Y(0), Z(0)),
|
460 |
+
(Y(0)*Z(0), X(0)), (Z(0)*X(0), Y(0)),
|
461 |
+
(X(0)*Y(0)*Z(0), 1), (Y(0)*Z(0)*X(0), 1),
|
462 |
+
(Z(0)*X(0)*Y(0), 1), (X(0), Z(0)*Y(0)),
|
463 |
+
(Y(0), X(0)*Z(0)), (Z(0), Y(0)*X(0))}
|
464 |
+
"""
|
465 |
+
|
466 |
+
if isinstance(gate_seq, Number):
|
467 |
+
if return_as_muls:
|
468 |
+
return {(S.One, S.One)}
|
469 |
+
else:
|
470 |
+
return {((), ())}
|
471 |
+
|
472 |
+
elif isinstance(gate_seq, Mul):
|
473 |
+
gate_seq = gate_seq.args
|
474 |
+
|
475 |
+
# Each item in queue is a 3-tuple:
|
476 |
+
# i) first item is the left side of an equality
|
477 |
+
# ii) second item is the right side of an equality
|
478 |
+
# iii) third item is the number of operations performed
|
479 |
+
# The argument, gate_seq, will start on the left side, and
|
480 |
+
# the right side will be empty, implying the presence of an
|
481 |
+
# identity.
|
482 |
+
queue = deque()
|
483 |
+
# A set of gate rules
|
484 |
+
rules = set()
|
485 |
+
# Maximum number of operations to perform
|
486 |
+
max_ops = len(gate_seq)
|
487 |
+
|
488 |
+
def process_new_rule(new_rule, ops):
|
489 |
+
if new_rule is not None:
|
490 |
+
new_left, new_right = new_rule
|
491 |
+
|
492 |
+
if new_rule not in rules and (new_right, new_left) not in rules:
|
493 |
+
rules.add(new_rule)
|
494 |
+
# If haven't reached the max limit on operations
|
495 |
+
if ops + 1 < max_ops:
|
496 |
+
queue.append(new_rule + (ops + 1,))
|
497 |
+
|
498 |
+
queue.append((gate_seq, (), 0))
|
499 |
+
rules.add((gate_seq, ()))
|
500 |
+
|
501 |
+
while len(queue) > 0:
|
502 |
+
left, right, ops = queue.popleft()
|
503 |
+
|
504 |
+
# Do a LL
|
505 |
+
new_rule = ll_op(left, right)
|
506 |
+
process_new_rule(new_rule, ops)
|
507 |
+
# Do a LR
|
508 |
+
new_rule = lr_op(left, right)
|
509 |
+
process_new_rule(new_rule, ops)
|
510 |
+
# Do a RL
|
511 |
+
new_rule = rl_op(left, right)
|
512 |
+
process_new_rule(new_rule, ops)
|
513 |
+
# Do a RR
|
514 |
+
new_rule = rr_op(left, right)
|
515 |
+
process_new_rule(new_rule, ops)
|
516 |
+
|
517 |
+
if return_as_muls:
|
518 |
+
# Convert each rule as tuples into a rule as muls
|
519 |
+
mul_rules = set()
|
520 |
+
for rule in rules:
|
521 |
+
left, right = rule
|
522 |
+
mul_rules.add((Mul(*left), Mul(*right)))
|
523 |
+
|
524 |
+
rules = mul_rules
|
525 |
+
|
526 |
+
return rules
|
527 |
+
|
528 |
+
|
529 |
+
def generate_equivalent_ids(gate_seq, return_as_muls=False):
|
530 |
+
"""Returns a set of equivalent gate identities.
|
531 |
+
|
532 |
+
A gate identity is a quantum circuit such that the product
|
533 |
+
of the gates in the circuit is equal to a scalar value.
|
534 |
+
For example, XYZ = i, where X, Y, Z are the Pauli gates and
|
535 |
+
i is the imaginary value, is considered a gate identity.
|
536 |
+
|
537 |
+
This function uses the four operations (LL, LR, RL, RR)
|
538 |
+
to generate the gate rules and, subsequently, to locate equivalent
|
539 |
+
gate identities.
|
540 |
+
|
541 |
+
Note that all equivalent identities are reachable in n operations
|
542 |
+
from the starting gate identity, where n is the number of gates
|
543 |
+
in the sequence.
|
544 |
+
|
545 |
+
The max number of gate identities is 2n, where n is the number
|
546 |
+
of gates in the sequence (unproven).
|
547 |
+
|
548 |
+
Parameters
|
549 |
+
==========
|
550 |
+
|
551 |
+
gate_seq : Gate tuple, Mul, or Number
|
552 |
+
A variable length tuple or Mul of Gates whose product is equal to
|
553 |
+
a scalar matrix.
|
554 |
+
return_as_muls: bool
|
555 |
+
True to return as Muls; False to return as tuples
|
556 |
+
|
557 |
+
Examples
|
558 |
+
========
|
559 |
+
|
560 |
+
Find equivalent gate identities from the current circuit with tuples:
|
561 |
+
|
562 |
+
>>> from sympy.physics.quantum.identitysearch import generate_equivalent_ids
|
563 |
+
>>> from sympy.physics.quantum.gate import X, Y, Z
|
564 |
+
>>> x = X(0); y = Y(0); z = Z(0)
|
565 |
+
>>> generate_equivalent_ids((x, x))
|
566 |
+
{(X(0), X(0))}
|
567 |
+
|
568 |
+
>>> generate_equivalent_ids((x, y, z))
|
569 |
+
{(X(0), Y(0), Z(0)), (X(0), Z(0), Y(0)), (Y(0), X(0), Z(0)),
|
570 |
+
(Y(0), Z(0), X(0)), (Z(0), X(0), Y(0)), (Z(0), Y(0), X(0))}
|
571 |
+
|
572 |
+
Find equivalent gate identities from the current circuit with Muls:
|
573 |
+
|
574 |
+
>>> generate_equivalent_ids(x*x, return_as_muls=True)
|
575 |
+
{1}
|
576 |
+
|
577 |
+
>>> generate_equivalent_ids(x*y*z, return_as_muls=True)
|
578 |
+
{X(0)*Y(0)*Z(0), X(0)*Z(0)*Y(0), Y(0)*X(0)*Z(0),
|
579 |
+
Y(0)*Z(0)*X(0), Z(0)*X(0)*Y(0), Z(0)*Y(0)*X(0)}
|
580 |
+
"""
|
581 |
+
|
582 |
+
if isinstance(gate_seq, Number):
|
583 |
+
return {S.One}
|
584 |
+
elif isinstance(gate_seq, Mul):
|
585 |
+
gate_seq = gate_seq.args
|
586 |
+
|
587 |
+
# Filter through the gate rules and keep the rules
|
588 |
+
# with an empty tuple either on the left or right side
|
589 |
+
|
590 |
+
# A set of equivalent gate identities
|
591 |
+
eq_ids = set()
|
592 |
+
|
593 |
+
gate_rules = generate_gate_rules(gate_seq)
|
594 |
+
for rule in gate_rules:
|
595 |
+
l, r = rule
|
596 |
+
if l == ():
|
597 |
+
eq_ids.add(r)
|
598 |
+
elif r == ():
|
599 |
+
eq_ids.add(l)
|
600 |
+
|
601 |
+
if return_as_muls:
|
602 |
+
convert_to_mul = lambda id_seq: Mul(*id_seq)
|
603 |
+
eq_ids = set(map(convert_to_mul, eq_ids))
|
604 |
+
|
605 |
+
return eq_ids
|
606 |
+
|
607 |
+
|
608 |
+
class GateIdentity(Basic):
|
609 |
+
"""Wrapper class for circuits that reduce to a scalar value.
|
610 |
+
|
611 |
+
A gate identity is a quantum circuit such that the product
|
612 |
+
of the gates in the circuit is equal to a scalar value.
|
613 |
+
For example, XYZ = i, where X, Y, Z are the Pauli gates and
|
614 |
+
i is the imaginary value, is considered a gate identity.
|
615 |
+
|
616 |
+
Parameters
|
617 |
+
==========
|
618 |
+
|
619 |
+
args : Gate tuple
|
620 |
+
A variable length tuple of Gates that form an identity.
|
621 |
+
|
622 |
+
Examples
|
623 |
+
========
|
624 |
+
|
625 |
+
Create a GateIdentity and look at its attributes:
|
626 |
+
|
627 |
+
>>> from sympy.physics.quantum.identitysearch import GateIdentity
|
628 |
+
>>> from sympy.physics.quantum.gate import X, Y, Z
|
629 |
+
>>> x = X(0); y = Y(0); z = Z(0)
|
630 |
+
>>> an_identity = GateIdentity(x, y, z)
|
631 |
+
>>> an_identity.circuit
|
632 |
+
X(0)*Y(0)*Z(0)
|
633 |
+
|
634 |
+
>>> an_identity.equivalent_ids
|
635 |
+
{(X(0), Y(0), Z(0)), (X(0), Z(0), Y(0)), (Y(0), X(0), Z(0)),
|
636 |
+
(Y(0), Z(0), X(0)), (Z(0), X(0), Y(0)), (Z(0), Y(0), X(0))}
|
637 |
+
"""
|
638 |
+
|
639 |
+
def __new__(cls, *args):
|
640 |
+
# args should be a tuple - a variable length argument list
|
641 |
+
obj = Basic.__new__(cls, *args)
|
642 |
+
obj._circuit = Mul(*args)
|
643 |
+
obj._rules = generate_gate_rules(args)
|
644 |
+
obj._eq_ids = generate_equivalent_ids(args)
|
645 |
+
|
646 |
+
return obj
|
647 |
+
|
648 |
+
@property
|
649 |
+
def circuit(self):
|
650 |
+
return self._circuit
|
651 |
+
|
652 |
+
@property
|
653 |
+
def gate_rules(self):
|
654 |
+
return self._rules
|
655 |
+
|
656 |
+
@property
|
657 |
+
def equivalent_ids(self):
|
658 |
+
return self._eq_ids
|
659 |
+
|
660 |
+
@property
|
661 |
+
def sequence(self):
|
662 |
+
return self.args
|
663 |
+
|
664 |
+
def __str__(self):
|
665 |
+
"""Returns the string of gates in a tuple."""
|
666 |
+
return str(self.circuit)
|
667 |
+
|
668 |
+
|
669 |
+
def is_degenerate(identity_set, gate_identity):
|
670 |
+
"""Checks if a gate identity is a permutation of another identity.
|
671 |
+
|
672 |
+
Parameters
|
673 |
+
==========
|
674 |
+
|
675 |
+
identity_set : set
|
676 |
+
A Python set with GateIdentity objects.
|
677 |
+
gate_identity : GateIdentity
|
678 |
+
The GateIdentity to check for existence in the set.
|
679 |
+
|
680 |
+
Examples
|
681 |
+
========
|
682 |
+
|
683 |
+
Check if the identity is a permutation of another identity:
|
684 |
+
|
685 |
+
>>> from sympy.physics.quantum.identitysearch import (
|
686 |
+
... GateIdentity, is_degenerate)
|
687 |
+
>>> from sympy.physics.quantum.gate import X, Y, Z
|
688 |
+
>>> x = X(0); y = Y(0); z = Z(0)
|
689 |
+
>>> an_identity = GateIdentity(x, y, z)
|
690 |
+
>>> id_set = {an_identity}
|
691 |
+
>>> another_id = (y, z, x)
|
692 |
+
>>> is_degenerate(id_set, another_id)
|
693 |
+
True
|
694 |
+
|
695 |
+
>>> another_id = (x, x)
|
696 |
+
>>> is_degenerate(id_set, another_id)
|
697 |
+
False
|
698 |
+
"""
|
699 |
+
|
700 |
+
# For now, just iteratively go through the set and check if the current
|
701 |
+
# gate_identity is a permutation of an identity in the set
|
702 |
+
for an_id in identity_set:
|
703 |
+
if (gate_identity in an_id.equivalent_ids):
|
704 |
+
return True
|
705 |
+
return False
|
706 |
+
|
707 |
+
|
708 |
+
def is_reducible(circuit, nqubits, begin, end):
|
709 |
+
"""Determines if a circuit is reducible by checking
|
710 |
+
if its subcircuits are scalar values.
|
711 |
+
|
712 |
+
Parameters
|
713 |
+
==========
|
714 |
+
|
715 |
+
circuit : Gate tuple
|
716 |
+
A tuple of Gates representing a circuit. The circuit to check
|
717 |
+
if a gate identity is contained in a subcircuit.
|
718 |
+
nqubits : int
|
719 |
+
The number of qubits the circuit operates on.
|
720 |
+
begin : int
|
721 |
+
The leftmost gate in the circuit to include in a subcircuit.
|
722 |
+
end : int
|
723 |
+
The rightmost gate in the circuit to include in a subcircuit.
|
724 |
+
|
725 |
+
Examples
|
726 |
+
========
|
727 |
+
|
728 |
+
Check if the circuit can be reduced:
|
729 |
+
|
730 |
+
>>> from sympy.physics.quantum.identitysearch import is_reducible
|
731 |
+
>>> from sympy.physics.quantum.gate import X, Y, Z
|
732 |
+
>>> x = X(0); y = Y(0); z = Z(0)
|
733 |
+
>>> is_reducible((x, y, z), 1, 0, 3)
|
734 |
+
True
|
735 |
+
|
736 |
+
Check if an interval in the circuit can be reduced:
|
737 |
+
|
738 |
+
>>> is_reducible((x, y, z), 1, 1, 3)
|
739 |
+
False
|
740 |
+
|
741 |
+
>>> is_reducible((x, y, y), 1, 1, 3)
|
742 |
+
True
|
743 |
+
"""
|
744 |
+
|
745 |
+
current_circuit = ()
|
746 |
+
# Start from the gate at "end" and go down to almost the gate at "begin"
|
747 |
+
for ndx in reversed(range(begin, end)):
|
748 |
+
next_gate = circuit[ndx]
|
749 |
+
current_circuit = (next_gate,) + current_circuit
|
750 |
+
|
751 |
+
# If a circuit as a matrix is equivalent to a scalar value
|
752 |
+
if (is_scalar_matrix(current_circuit, nqubits, False)):
|
753 |
+
return True
|
754 |
+
|
755 |
+
return False
|
756 |
+
|
757 |
+
|
758 |
+
def bfs_identity_search(gate_list, nqubits, max_depth=None,
|
759 |
+
identity_only=False):
|
760 |
+
"""Constructs a set of gate identities from the list of possible gates.
|
761 |
+
|
762 |
+
Performs a breadth first search over the space of gate identities.
|
763 |
+
This allows the finding of the shortest gate identities first.
|
764 |
+
|
765 |
+
Parameters
|
766 |
+
==========
|
767 |
+
|
768 |
+
gate_list : list, Gate
|
769 |
+
A list of Gates from which to search for gate identities.
|
770 |
+
nqubits : int
|
771 |
+
The number of qubits the quantum circuit operates on.
|
772 |
+
max_depth : int
|
773 |
+
The longest quantum circuit to construct from gate_list.
|
774 |
+
identity_only : bool
|
775 |
+
True to search for gate identities that reduce to identity;
|
776 |
+
False to search for gate identities that reduce to a scalar.
|
777 |
+
|
778 |
+
Examples
|
779 |
+
========
|
780 |
+
|
781 |
+
Find a list of gate identities:
|
782 |
+
|
783 |
+
>>> from sympy.physics.quantum.identitysearch import bfs_identity_search
|
784 |
+
>>> from sympy.physics.quantum.gate import X, Y, Z
|
785 |
+
>>> x = X(0); y = Y(0); z = Z(0)
|
786 |
+
>>> bfs_identity_search([x], 1, max_depth=2)
|
787 |
+
{GateIdentity(X(0), X(0))}
|
788 |
+
|
789 |
+
>>> bfs_identity_search([x, y, z], 1)
|
790 |
+
{GateIdentity(X(0), X(0)), GateIdentity(Y(0), Y(0)),
|
791 |
+
GateIdentity(Z(0), Z(0)), GateIdentity(X(0), Y(0), Z(0))}
|
792 |
+
|
793 |
+
Find a list of identities that only equal to 1:
|
794 |
+
|
795 |
+
>>> bfs_identity_search([x, y, z], 1, identity_only=True)
|
796 |
+
{GateIdentity(X(0), X(0)), GateIdentity(Y(0), Y(0)),
|
797 |
+
GateIdentity(Z(0), Z(0))}
|
798 |
+
"""
|
799 |
+
|
800 |
+
if max_depth is None or max_depth <= 0:
|
801 |
+
max_depth = len(gate_list)
|
802 |
+
|
803 |
+
id_only = identity_only
|
804 |
+
|
805 |
+
# Start with an empty sequence (implicitly contains an IdentityGate)
|
806 |
+
queue = deque([()])
|
807 |
+
|
808 |
+
# Create an empty set of gate identities
|
809 |
+
ids = set()
|
810 |
+
|
811 |
+
# Begin searching for gate identities in given space.
|
812 |
+
while (len(queue) > 0):
|
813 |
+
current_circuit = queue.popleft()
|
814 |
+
|
815 |
+
for next_gate in gate_list:
|
816 |
+
new_circuit = current_circuit + (next_gate,)
|
817 |
+
|
818 |
+
# Determines if a (strict) subcircuit is a scalar matrix
|
819 |
+
circuit_reducible = is_reducible(new_circuit, nqubits,
|
820 |
+
1, len(new_circuit))
|
821 |
+
|
822 |
+
# In many cases when the matrix is a scalar value,
|
823 |
+
# the evaluated matrix will actually be an integer
|
824 |
+
if (is_scalar_matrix(new_circuit, nqubits, id_only) and
|
825 |
+
not is_degenerate(ids, new_circuit) and
|
826 |
+
not circuit_reducible):
|
827 |
+
ids.add(GateIdentity(*new_circuit))
|
828 |
+
|
829 |
+
elif (len(new_circuit) < max_depth and
|
830 |
+
not circuit_reducible):
|
831 |
+
queue.append(new_circuit)
|
832 |
+
|
833 |
+
return ids
|
834 |
+
|
835 |
+
|
836 |
+
def random_identity_search(gate_list, numgates, nqubits):
|
837 |
+
"""Randomly selects numgates from gate_list and checks if it is
|
838 |
+
a gate identity.
|
839 |
+
|
840 |
+
If the circuit is a gate identity, the circuit is returned;
|
841 |
+
Otherwise, None is returned.
|
842 |
+
"""
|
843 |
+
|
844 |
+
gate_size = len(gate_list)
|
845 |
+
circuit = ()
|
846 |
+
|
847 |
+
for i in range(numgates):
|
848 |
+
next_gate = gate_list[randint(0, gate_size - 1)]
|
849 |
+
circuit = circuit + (next_gate,)
|
850 |
+
|
851 |
+
is_scalar = is_scalar_matrix(circuit, nqubits, False)
|
852 |
+
|
853 |
+
return circuit if is_scalar else None
|
venv/lib/python3.10/site-packages/sympy/physics/quantum/innerproduct.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Symbolic inner product."""
|
2 |
+
|
3 |
+
from sympy.core.expr import Expr
|
4 |
+
from sympy.functions.elementary.complexes import conjugate
|
5 |
+
from sympy.printing.pretty.stringpict import prettyForm
|
6 |
+
from sympy.physics.quantum.dagger import Dagger
|
7 |
+
from sympy.physics.quantum.state import KetBase, BraBase
|
8 |
+
|
9 |
+
__all__ = [
|
10 |
+
'InnerProduct'
|
11 |
+
]
|
12 |
+
|
13 |
+
|
14 |
+
# InnerProduct is not an QExpr because it is really just a regular commutative
|
15 |
+
# number. We have gone back and forth about this, but we gain a lot by having
|
16 |
+
# it subclass Expr. The main challenges were getting Dagger to work
|
17 |
+
# (we use _eval_conjugate) and represent (we can use atoms and subs). Having
|
18 |
+
# it be an Expr, mean that there are no commutative QExpr subclasses,
|
19 |
+
# which simplifies the design of everything.
|
20 |
+
|
21 |
+
class InnerProduct(Expr):
|
22 |
+
"""An unevaluated inner product between a Bra and a Ket [1].
|
23 |
+
|
24 |
+
Parameters
|
25 |
+
==========
|
26 |
+
|
27 |
+
bra : BraBase or subclass
|
28 |
+
The bra on the left side of the inner product.
|
29 |
+
ket : KetBase or subclass
|
30 |
+
The ket on the right side of the inner product.
|
31 |
+
|
32 |
+
Examples
|
33 |
+
========
|
34 |
+
|
35 |
+
Create an InnerProduct and check its properties:
|
36 |
+
|
37 |
+
>>> from sympy.physics.quantum import Bra, Ket
|
38 |
+
>>> b = Bra('b')
|
39 |
+
>>> k = Ket('k')
|
40 |
+
>>> ip = b*k
|
41 |
+
>>> ip
|
42 |
+
<b|k>
|
43 |
+
>>> ip.bra
|
44 |
+
<b|
|
45 |
+
>>> ip.ket
|
46 |
+
|k>
|
47 |
+
|
48 |
+
In simple products of kets and bras inner products will be automatically
|
49 |
+
identified and created::
|
50 |
+
|
51 |
+
>>> b*k
|
52 |
+
<b|k>
|
53 |
+
|
54 |
+
But in more complex expressions, there is ambiguity in whether inner or
|
55 |
+
outer products should be created::
|
56 |
+
|
57 |
+
>>> k*b*k*b
|
58 |
+
|k><b|*|k>*<b|
|
59 |
+
|
60 |
+
A user can force the creation of a inner products in a complex expression
|
61 |
+
by using parentheses to group the bra and ket::
|
62 |
+
|
63 |
+
>>> k*(b*k)*b
|
64 |
+
<b|k>*|k>*<b|
|
65 |
+
|
66 |
+
Notice how the inner product <b|k> moved to the left of the expression
|
67 |
+
because inner products are commutative complex numbers.
|
68 |
+
|
69 |
+
References
|
70 |
+
==========
|
71 |
+
|
72 |
+
.. [1] https://en.wikipedia.org/wiki/Inner_product
|
73 |
+
"""
|
74 |
+
is_complex = True
|
75 |
+
|
76 |
+
def __new__(cls, bra, ket):
|
77 |
+
if not isinstance(ket, KetBase):
|
78 |
+
raise TypeError('KetBase subclass expected, got: %r' % ket)
|
79 |
+
if not isinstance(bra, BraBase):
|
80 |
+
raise TypeError('BraBase subclass expected, got: %r' % ket)
|
81 |
+
obj = Expr.__new__(cls, bra, ket)
|
82 |
+
return obj
|
83 |
+
|
84 |
+
@property
|
85 |
+
def bra(self):
|
86 |
+
return self.args[0]
|
87 |
+
|
88 |
+
@property
|
89 |
+
def ket(self):
|
90 |
+
return self.args[1]
|
91 |
+
|
92 |
+
def _eval_conjugate(self):
|
93 |
+
return InnerProduct(Dagger(self.ket), Dagger(self.bra))
|
94 |
+
|
95 |
+
def _sympyrepr(self, printer, *args):
|
96 |
+
return '%s(%s,%s)' % (self.__class__.__name__,
|
97 |
+
printer._print(self.bra, *args), printer._print(self.ket, *args))
|
98 |
+
|
99 |
+
def _sympystr(self, printer, *args):
|
100 |
+
sbra = printer._print(self.bra)
|
101 |
+
sket = printer._print(self.ket)
|
102 |
+
return '%s|%s' % (sbra[:-1], sket[1:])
|
103 |
+
|
104 |
+
def _pretty(self, printer, *args):
|
105 |
+
# Print state contents
|
106 |
+
bra = self.bra._print_contents_pretty(printer, *args)
|
107 |
+
ket = self.ket._print_contents_pretty(printer, *args)
|
108 |
+
# Print brackets
|
109 |
+
height = max(bra.height(), ket.height())
|
110 |
+
use_unicode = printer._use_unicode
|
111 |
+
lbracket, _ = self.bra._pretty_brackets(height, use_unicode)
|
112 |
+
cbracket, rbracket = self.ket._pretty_brackets(height, use_unicode)
|
113 |
+
# Build innerproduct
|
114 |
+
pform = prettyForm(*bra.left(lbracket))
|
115 |
+
pform = prettyForm(*pform.right(cbracket))
|
116 |
+
pform = prettyForm(*pform.right(ket))
|
117 |
+
pform = prettyForm(*pform.right(rbracket))
|
118 |
+
return pform
|
119 |
+
|
120 |
+
def _latex(self, printer, *args):
|
121 |
+
bra_label = self.bra._print_contents_latex(printer, *args)
|
122 |
+
ket = printer._print(self.ket, *args)
|
123 |
+
return r'\left\langle %s \right. %s' % (bra_label, ket)
|
124 |
+
|
125 |
+
def doit(self, **hints):
|
126 |
+
try:
|
127 |
+
r = self.ket._eval_innerproduct(self.bra, **hints)
|
128 |
+
except NotImplementedError:
|
129 |
+
try:
|
130 |
+
r = conjugate(
|
131 |
+
self.bra.dual._eval_innerproduct(self.ket.dual, **hints)
|
132 |
+
)
|
133 |
+
except NotImplementedError:
|
134 |
+
r = None
|
135 |
+
if r is not None:
|
136 |
+
return r
|
137 |
+
return self
|
venv/lib/python3.10/site-packages/sympy/physics/quantum/matrixcache.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A cache for storing small matrices in multiple formats."""
|
2 |
+
|
3 |
+
from sympy.core.numbers import (I, Rational, pi)
|
4 |
+
from sympy.core.power import Pow
|
5 |
+
from sympy.functions.elementary.exponential import exp
|
6 |
+
from sympy.matrices.dense import Matrix
|
7 |
+
|
8 |
+
from sympy.physics.quantum.matrixutils import (
|
9 |
+
to_sympy, to_numpy, to_scipy_sparse
|
10 |
+
)
|
11 |
+
|
12 |
+
|
13 |
+
class MatrixCache:
|
14 |
+
"""A cache for small matrices in different formats.
|
15 |
+
|
16 |
+
This class takes small matrices in the standard ``sympy.Matrix`` format,
|
17 |
+
and then converts these to both ``numpy.matrix`` and
|
18 |
+
``scipy.sparse.csr_matrix`` matrices. These matrices are then stored for
|
19 |
+
future recovery.
|
20 |
+
"""
|
21 |
+
|
22 |
+
def __init__(self, dtype='complex'):
|
23 |
+
self._cache = {}
|
24 |
+
self.dtype = dtype
|
25 |
+
|
26 |
+
def cache_matrix(self, name, m):
|
27 |
+
"""Cache a matrix by its name.
|
28 |
+
|
29 |
+
Parameters
|
30 |
+
----------
|
31 |
+
name : str
|
32 |
+
A descriptive name for the matrix, like "identity2".
|
33 |
+
m : list of lists
|
34 |
+
The raw matrix data as a SymPy Matrix.
|
35 |
+
"""
|
36 |
+
try:
|
37 |
+
self._sympy_matrix(name, m)
|
38 |
+
except ImportError:
|
39 |
+
pass
|
40 |
+
try:
|
41 |
+
self._numpy_matrix(name, m)
|
42 |
+
except ImportError:
|
43 |
+
pass
|
44 |
+
try:
|
45 |
+
self._scipy_sparse_matrix(name, m)
|
46 |
+
except ImportError:
|
47 |
+
pass
|
48 |
+
|
49 |
+
def get_matrix(self, name, format):
|
50 |
+
"""Get a cached matrix by name and format.
|
51 |
+
|
52 |
+
Parameters
|
53 |
+
----------
|
54 |
+
name : str
|
55 |
+
A descriptive name for the matrix, like "identity2".
|
56 |
+
format : str
|
57 |
+
The format desired ('sympy', 'numpy', 'scipy.sparse')
|
58 |
+
"""
|
59 |
+
m = self._cache.get((name, format))
|
60 |
+
if m is not None:
|
61 |
+
return m
|
62 |
+
raise NotImplementedError(
|
63 |
+
'Matrix with name %s and format %s is not available.' %
|
64 |
+
(name, format)
|
65 |
+
)
|
66 |
+
|
67 |
+
def _store_matrix(self, name, format, m):
|
68 |
+
self._cache[(name, format)] = m
|
69 |
+
|
70 |
+
def _sympy_matrix(self, name, m):
|
71 |
+
self._store_matrix(name, 'sympy', to_sympy(m))
|
72 |
+
|
73 |
+
def _numpy_matrix(self, name, m):
|
74 |
+
m = to_numpy(m, dtype=self.dtype)
|
75 |
+
self._store_matrix(name, 'numpy', m)
|
76 |
+
|
77 |
+
def _scipy_sparse_matrix(self, name, m):
|
78 |
+
# TODO: explore different sparse formats. But sparse.kron will use
|
79 |
+
# coo in most cases, so we use that here.
|
80 |
+
m = to_scipy_sparse(m, dtype=self.dtype)
|
81 |
+
self._store_matrix(name, 'scipy.sparse', m)
|
82 |
+
|
83 |
+
|
84 |
+
sqrt2_inv = Pow(2, Rational(-1, 2), evaluate=False)
|
85 |
+
|
86 |
+
# Save the common matrices that we will need
|
87 |
+
matrix_cache = MatrixCache()
|
88 |
+
matrix_cache.cache_matrix('eye2', Matrix([[1, 0], [0, 1]]))
|
89 |
+
matrix_cache.cache_matrix('op11', Matrix([[0, 0], [0, 1]])) # |1><1|
|
90 |
+
matrix_cache.cache_matrix('op00', Matrix([[1, 0], [0, 0]])) # |0><0|
|
91 |
+
matrix_cache.cache_matrix('op10', Matrix([[0, 0], [1, 0]])) # |1><0|
|
92 |
+
matrix_cache.cache_matrix('op01', Matrix([[0, 1], [0, 0]])) # |0><1|
|
93 |
+
matrix_cache.cache_matrix('X', Matrix([[0, 1], [1, 0]]))
|
94 |
+
matrix_cache.cache_matrix('Y', Matrix([[0, -I], [I, 0]]))
|
95 |
+
matrix_cache.cache_matrix('Z', Matrix([[1, 0], [0, -1]]))
|
96 |
+
matrix_cache.cache_matrix('S', Matrix([[1, 0], [0, I]]))
|
97 |
+
matrix_cache.cache_matrix('T', Matrix([[1, 0], [0, exp(I*pi/4)]]))
|
98 |
+
matrix_cache.cache_matrix('H', sqrt2_inv*Matrix([[1, 1], [1, -1]]))
|
99 |
+
matrix_cache.cache_matrix('Hsqrt2', Matrix([[1, 1], [1, -1]]))
|
100 |
+
matrix_cache.cache_matrix(
|
101 |
+
'SWAP', Matrix([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]))
|
102 |
+
matrix_cache.cache_matrix('ZX', sqrt2_inv*Matrix([[1, 1], [1, -1]]))
|
103 |
+
matrix_cache.cache_matrix('ZY', Matrix([[I, 0], [0, -I]]))
|
venv/lib/python3.10/site-packages/sympy/physics/quantum/matrixutils.py
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Utilities to deal with sympy.Matrix, numpy and scipy.sparse."""
|
2 |
+
|
3 |
+
from sympy.core.expr import Expr
|
4 |
+
from sympy.core.numbers import I
|
5 |
+
from sympy.core.singleton import S
|
6 |
+
from sympy.matrices.matrices import MatrixBase
|
7 |
+
from sympy.matrices import eye, zeros
|
8 |
+
from sympy.external import import_module
|
9 |
+
|
10 |
+
__all__ = [
|
11 |
+
'numpy_ndarray',
|
12 |
+
'scipy_sparse_matrix',
|
13 |
+
'sympy_to_numpy',
|
14 |
+
'sympy_to_scipy_sparse',
|
15 |
+
'numpy_to_sympy',
|
16 |
+
'scipy_sparse_to_sympy',
|
17 |
+
'flatten_scalar',
|
18 |
+
'matrix_dagger',
|
19 |
+
'to_sympy',
|
20 |
+
'to_numpy',
|
21 |
+
'to_scipy_sparse',
|
22 |
+
'matrix_tensor_product',
|
23 |
+
'matrix_zeros'
|
24 |
+
]
|
25 |
+
|
26 |
+
# Conditionally define the base classes for numpy and scipy.sparse arrays
|
27 |
+
# for use in isinstance tests.
|
28 |
+
|
29 |
+
np = import_module('numpy')
|
30 |
+
if not np:
|
31 |
+
class numpy_ndarray:
|
32 |
+
pass
|
33 |
+
else:
|
34 |
+
numpy_ndarray = np.ndarray # type: ignore
|
35 |
+
|
36 |
+
scipy = import_module('scipy', import_kwargs={'fromlist': ['sparse']})
|
37 |
+
if not scipy:
|
38 |
+
class scipy_sparse_matrix:
|
39 |
+
pass
|
40 |
+
sparse = None
|
41 |
+
else:
|
42 |
+
sparse = scipy.sparse
|
43 |
+
scipy_sparse_matrix = sparse.spmatrix # type: ignore
|
44 |
+
|
45 |
+
|
46 |
+
def sympy_to_numpy(m, **options):
|
47 |
+
"""Convert a SymPy Matrix/complex number to a numpy matrix or scalar."""
|
48 |
+
if not np:
|
49 |
+
raise ImportError
|
50 |
+
dtype = options.get('dtype', 'complex')
|
51 |
+
if isinstance(m, MatrixBase):
|
52 |
+
return np.array(m.tolist(), dtype=dtype)
|
53 |
+
elif isinstance(m, Expr):
|
54 |
+
if m.is_Number or m.is_NumberSymbol or m == I:
|
55 |
+
return complex(m)
|
56 |
+
raise TypeError('Expected MatrixBase or complex scalar, got: %r' % m)
|
57 |
+
|
58 |
+
|
59 |
+
def sympy_to_scipy_sparse(m, **options):
|
60 |
+
"""Convert a SymPy Matrix/complex number to a numpy matrix or scalar."""
|
61 |
+
if not np or not sparse:
|
62 |
+
raise ImportError
|
63 |
+
dtype = options.get('dtype', 'complex')
|
64 |
+
if isinstance(m, MatrixBase):
|
65 |
+
return sparse.csr_matrix(np.array(m.tolist(), dtype=dtype))
|
66 |
+
elif isinstance(m, Expr):
|
67 |
+
if m.is_Number or m.is_NumberSymbol or m == I:
|
68 |
+
return complex(m)
|
69 |
+
raise TypeError('Expected MatrixBase or complex scalar, got: %r' % m)
|
70 |
+
|
71 |
+
|
72 |
+
def scipy_sparse_to_sympy(m, **options):
|
73 |
+
"""Convert a scipy.sparse matrix to a SymPy matrix."""
|
74 |
+
return MatrixBase(m.todense())
|
75 |
+
|
76 |
+
|
77 |
+
def numpy_to_sympy(m, **options):
|
78 |
+
"""Convert a numpy matrix to a SymPy matrix."""
|
79 |
+
return MatrixBase(m)
|
80 |
+
|
81 |
+
|
82 |
+
def to_sympy(m, **options):
|
83 |
+
"""Convert a numpy/scipy.sparse matrix to a SymPy matrix."""
|
84 |
+
if isinstance(m, MatrixBase):
|
85 |
+
return m
|
86 |
+
elif isinstance(m, numpy_ndarray):
|
87 |
+
return numpy_to_sympy(m)
|
88 |
+
elif isinstance(m, scipy_sparse_matrix):
|
89 |
+
return scipy_sparse_to_sympy(m)
|
90 |
+
elif isinstance(m, Expr):
|
91 |
+
return m
|
92 |
+
raise TypeError('Expected sympy/numpy/scipy.sparse matrix, got: %r' % m)
|
93 |
+
|
94 |
+
|
95 |
+
def to_numpy(m, **options):
|
96 |
+
"""Convert a sympy/scipy.sparse matrix to a numpy matrix."""
|
97 |
+
dtype = options.get('dtype', 'complex')
|
98 |
+
if isinstance(m, (MatrixBase, Expr)):
|
99 |
+
return sympy_to_numpy(m, dtype=dtype)
|
100 |
+
elif isinstance(m, numpy_ndarray):
|
101 |
+
return m
|
102 |
+
elif isinstance(m, scipy_sparse_matrix):
|
103 |
+
return m.todense()
|
104 |
+
raise TypeError('Expected sympy/numpy/scipy.sparse matrix, got: %r' % m)
|
105 |
+
|
106 |
+
|
107 |
+
def to_scipy_sparse(m, **options):
|
108 |
+
"""Convert a sympy/numpy matrix to a scipy.sparse matrix."""
|
109 |
+
dtype = options.get('dtype', 'complex')
|
110 |
+
if isinstance(m, (MatrixBase, Expr)):
|
111 |
+
return sympy_to_scipy_sparse(m, dtype=dtype)
|
112 |
+
elif isinstance(m, numpy_ndarray):
|
113 |
+
if not sparse:
|
114 |
+
raise ImportError
|
115 |
+
return sparse.csr_matrix(m)
|
116 |
+
elif isinstance(m, scipy_sparse_matrix):
|
117 |
+
return m
|
118 |
+
raise TypeError('Expected sympy/numpy/scipy.sparse matrix, got: %r' % m)
|
119 |
+
|
120 |
+
|
121 |
+
def flatten_scalar(e):
|
122 |
+
"""Flatten a 1x1 matrix to a scalar, return larger matrices unchanged."""
|
123 |
+
if isinstance(e, MatrixBase):
|
124 |
+
if e.shape == (1, 1):
|
125 |
+
e = e[0]
|
126 |
+
if isinstance(e, (numpy_ndarray, scipy_sparse_matrix)):
|
127 |
+
if e.shape == (1, 1):
|
128 |
+
e = complex(e[0, 0])
|
129 |
+
return e
|
130 |
+
|
131 |
+
|
132 |
+
def matrix_dagger(e):
|
133 |
+
"""Return the dagger of a sympy/numpy/scipy.sparse matrix."""
|
134 |
+
if isinstance(e, MatrixBase):
|
135 |
+
return e.H
|
136 |
+
elif isinstance(e, (numpy_ndarray, scipy_sparse_matrix)):
|
137 |
+
return e.conjugate().transpose()
|
138 |
+
raise TypeError('Expected sympy/numpy/scipy.sparse matrix, got: %r' % e)
|
139 |
+
|
140 |
+
|
141 |
+
# TODO: Move this into sympy.matricies.
|
142 |
+
def _sympy_tensor_product(*matrices):
|
143 |
+
"""Compute the kronecker product of a sequence of SymPy Matrices.
|
144 |
+
"""
|
145 |
+
from sympy.matrices.expressions.kronecker import matrix_kronecker_product
|
146 |
+
|
147 |
+
return matrix_kronecker_product(*matrices)
|
148 |
+
|
149 |
+
|
150 |
+
def _numpy_tensor_product(*product):
|
151 |
+
"""numpy version of tensor product of multiple arguments."""
|
152 |
+
if not np:
|
153 |
+
raise ImportError
|
154 |
+
answer = product[0]
|
155 |
+
for item in product[1:]:
|
156 |
+
answer = np.kron(answer, item)
|
157 |
+
return answer
|
158 |
+
|
159 |
+
|
160 |
+
def _scipy_sparse_tensor_product(*product):
|
161 |
+
"""scipy.sparse version of tensor product of multiple arguments."""
|
162 |
+
if not sparse:
|
163 |
+
raise ImportError
|
164 |
+
answer = product[0]
|
165 |
+
for item in product[1:]:
|
166 |
+
answer = sparse.kron(answer, item)
|
167 |
+
# The final matrices will just be multiplied, so csr is a good final
|
168 |
+
# sparse format.
|
169 |
+
return sparse.csr_matrix(answer)
|
170 |
+
|
171 |
+
|
172 |
+
def matrix_tensor_product(*product):
|
173 |
+
"""Compute the matrix tensor product of sympy/numpy/scipy.sparse matrices."""
|
174 |
+
if isinstance(product[0], MatrixBase):
|
175 |
+
return _sympy_tensor_product(*product)
|
176 |
+
elif isinstance(product[0], numpy_ndarray):
|
177 |
+
return _numpy_tensor_product(*product)
|
178 |
+
elif isinstance(product[0], scipy_sparse_matrix):
|
179 |
+
return _scipy_sparse_tensor_product(*product)
|
180 |
+
|
181 |
+
|
182 |
+
def _numpy_eye(n):
|
183 |
+
"""numpy version of complex eye."""
|
184 |
+
if not np:
|
185 |
+
raise ImportError
|
186 |
+
return np.array(np.eye(n, dtype='complex'))
|
187 |
+
|
188 |
+
|
189 |
+
def _scipy_sparse_eye(n):
|
190 |
+
"""scipy.sparse version of complex eye."""
|
191 |
+
if not sparse:
|
192 |
+
raise ImportError
|
193 |
+
return sparse.eye(n, n, dtype='complex')
|
194 |
+
|
195 |
+
|
196 |
+
def matrix_eye(n, **options):
|
197 |
+
"""Get the version of eye and tensor_product for a given format."""
|
198 |
+
format = options.get('format', 'sympy')
|
199 |
+
if format == 'sympy':
|
200 |
+
return eye(n)
|
201 |
+
elif format == 'numpy':
|
202 |
+
return _numpy_eye(n)
|
203 |
+
elif format == 'scipy.sparse':
|
204 |
+
return _scipy_sparse_eye(n)
|
205 |
+
raise NotImplementedError('Invalid format: %r' % format)
|
206 |
+
|
207 |
+
|
208 |
+
def _numpy_zeros(m, n, **options):
|
209 |
+
"""numpy version of zeros."""
|
210 |
+
dtype = options.get('dtype', 'float64')
|
211 |
+
if not np:
|
212 |
+
raise ImportError
|
213 |
+
return np.zeros((m, n), dtype=dtype)
|
214 |
+
|
215 |
+
|
216 |
+
def _scipy_sparse_zeros(m, n, **options):
|
217 |
+
"""scipy.sparse version of zeros."""
|
218 |
+
spmatrix = options.get('spmatrix', 'csr')
|
219 |
+
dtype = options.get('dtype', 'float64')
|
220 |
+
if not sparse:
|
221 |
+
raise ImportError
|
222 |
+
if spmatrix == 'lil':
|
223 |
+
return sparse.lil_matrix((m, n), dtype=dtype)
|
224 |
+
elif spmatrix == 'csr':
|
225 |
+
return sparse.csr_matrix((m, n), dtype=dtype)
|
226 |
+
|
227 |
+
|
228 |
+
def matrix_zeros(m, n, **options):
|
229 |
+
""""Get a zeros matrix for a given format."""
|
230 |
+
format = options.get('format', 'sympy')
|
231 |
+
if format == 'sympy':
|
232 |
+
return zeros(m, n)
|
233 |
+
elif format == 'numpy':
|
234 |
+
return _numpy_zeros(m, n, **options)
|
235 |
+
elif format == 'scipy.sparse':
|
236 |
+
return _scipy_sparse_zeros(m, n, **options)
|
237 |
+
raise NotImplementedError('Invaild format: %r' % format)
|
238 |
+
|
239 |
+
|
240 |
+
def _numpy_matrix_to_zero(e):
|
241 |
+
"""Convert a numpy zero matrix to the zero scalar."""
|
242 |
+
if not np:
|
243 |
+
raise ImportError
|
244 |
+
test = np.zeros_like(e)
|
245 |
+
if np.allclose(e, test):
|
246 |
+
return 0.0
|
247 |
+
else:
|
248 |
+
return e
|
249 |
+
|
250 |
+
|
251 |
+
def _scipy_sparse_matrix_to_zero(e):
|
252 |
+
"""Convert a scipy.sparse zero matrix to the zero scalar."""
|
253 |
+
if not np:
|
254 |
+
raise ImportError
|
255 |
+
edense = e.todense()
|
256 |
+
test = np.zeros_like(edense)
|
257 |
+
if np.allclose(edense, test):
|
258 |
+
return 0.0
|
259 |
+
else:
|
260 |
+
return e
|
261 |
+
|
262 |
+
|
263 |
+
def matrix_to_zero(e):
|
264 |
+
"""Convert a zero matrix to the scalar zero."""
|
265 |
+
if isinstance(e, MatrixBase):
|
266 |
+
if zeros(*e.shape) == e:
|
267 |
+
e = S.Zero
|
268 |
+
elif isinstance(e, numpy_ndarray):
|
269 |
+
e = _numpy_matrix_to_zero(e)
|
270 |
+
elif isinstance(e, scipy_sparse_matrix):
|
271 |
+
e = _scipy_sparse_matrix_to_zero(e)
|
272 |
+
return e
|
venv/lib/python3.10/site-packages/sympy/physics/quantum/operator.py
ADDED
@@ -0,0 +1,650 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Quantum mechanical operators.
|
2 |
+
|
3 |
+
TODO:
|
4 |
+
|
5 |
+
* Fix early 0 in apply_operators.
|
6 |
+
* Debug and test apply_operators.
|
7 |
+
* Get cse working with classes in this file.
|
8 |
+
* Doctests and documentation of special methods for InnerProduct, Commutator,
|
9 |
+
AntiCommutator, represent, apply_operators.
|
10 |
+
"""
|
11 |
+
|
12 |
+
from sympy.core.add import Add
|
13 |
+
from sympy.core.expr import Expr
|
14 |
+
from sympy.core.function import (Derivative, expand)
|
15 |
+
from sympy.core.mul import Mul
|
16 |
+
from sympy.core.numbers import oo
|
17 |
+
from sympy.core.singleton import S
|
18 |
+
from sympy.printing.pretty.stringpict import prettyForm
|
19 |
+
from sympy.physics.quantum.dagger import Dagger
|
20 |
+
from sympy.physics.quantum.qexpr import QExpr, dispatch_method
|
21 |
+
from sympy.matrices import eye
|
22 |
+
|
23 |
+
__all__ = [
|
24 |
+
'Operator',
|
25 |
+
'HermitianOperator',
|
26 |
+
'UnitaryOperator',
|
27 |
+
'IdentityOperator',
|
28 |
+
'OuterProduct',
|
29 |
+
'DifferentialOperator'
|
30 |
+
]
|
31 |
+
|
32 |
+
#-----------------------------------------------------------------------------
|
33 |
+
# Operators and outer products
|
34 |
+
#-----------------------------------------------------------------------------
|
35 |
+
|
36 |
+
|
37 |
+
class Operator(QExpr):
|
38 |
+
"""Base class for non-commuting quantum operators.
|
39 |
+
|
40 |
+
An operator maps between quantum states [1]_. In quantum mechanics,
|
41 |
+
observables (including, but not limited to, measured physical values) are
|
42 |
+
represented as Hermitian operators [2]_.
|
43 |
+
|
44 |
+
Parameters
|
45 |
+
==========
|
46 |
+
|
47 |
+
args : tuple
|
48 |
+
The list of numbers or parameters that uniquely specify the
|
49 |
+
operator. For time-dependent operators, this will include the time.
|
50 |
+
|
51 |
+
Examples
|
52 |
+
========
|
53 |
+
|
54 |
+
Create an operator and examine its attributes::
|
55 |
+
|
56 |
+
>>> from sympy.physics.quantum import Operator
|
57 |
+
>>> from sympy import I
|
58 |
+
>>> A = Operator('A')
|
59 |
+
>>> A
|
60 |
+
A
|
61 |
+
>>> A.hilbert_space
|
62 |
+
H
|
63 |
+
>>> A.label
|
64 |
+
(A,)
|
65 |
+
>>> A.is_commutative
|
66 |
+
False
|
67 |
+
|
68 |
+
Create another operator and do some arithmetic operations::
|
69 |
+
|
70 |
+
>>> B = Operator('B')
|
71 |
+
>>> C = 2*A*A + I*B
|
72 |
+
>>> C
|
73 |
+
2*A**2 + I*B
|
74 |
+
|
75 |
+
Operators do not commute::
|
76 |
+
|
77 |
+
>>> A.is_commutative
|
78 |
+
False
|
79 |
+
>>> B.is_commutative
|
80 |
+
False
|
81 |
+
>>> A*B == B*A
|
82 |
+
False
|
83 |
+
|
84 |
+
Polymonials of operators respect the commutation properties::
|
85 |
+
|
86 |
+
>>> e = (A+B)**3
|
87 |
+
>>> e.expand()
|
88 |
+
A*B*A + A*B**2 + A**2*B + A**3 + B*A*B + B*A**2 + B**2*A + B**3
|
89 |
+
|
90 |
+
Operator inverses are handle symbolically::
|
91 |
+
|
92 |
+
>>> A.inv()
|
93 |
+
A**(-1)
|
94 |
+
>>> A*A.inv()
|
95 |
+
1
|
96 |
+
|
97 |
+
References
|
98 |
+
==========
|
99 |
+
|
100 |
+
.. [1] https://en.wikipedia.org/wiki/Operator_%28physics%29
|
101 |
+
.. [2] https://en.wikipedia.org/wiki/Observable
|
102 |
+
"""
|
103 |
+
|
104 |
+
@classmethod
|
105 |
+
def default_args(self):
|
106 |
+
return ("O",)
|
107 |
+
|
108 |
+
#-------------------------------------------------------------------------
|
109 |
+
# Printing
|
110 |
+
#-------------------------------------------------------------------------
|
111 |
+
|
112 |
+
_label_separator = ','
|
113 |
+
|
114 |
+
def _print_operator_name(self, printer, *args):
|
115 |
+
return self.__class__.__name__
|
116 |
+
|
117 |
+
_print_operator_name_latex = _print_operator_name
|
118 |
+
|
119 |
+
def _print_operator_name_pretty(self, printer, *args):
|
120 |
+
return prettyForm(self.__class__.__name__)
|
121 |
+
|
122 |
+
def _print_contents(self, printer, *args):
|
123 |
+
if len(self.label) == 1:
|
124 |
+
return self._print_label(printer, *args)
|
125 |
+
else:
|
126 |
+
return '%s(%s)' % (
|
127 |
+
self._print_operator_name(printer, *args),
|
128 |
+
self._print_label(printer, *args)
|
129 |
+
)
|
130 |
+
|
131 |
+
def _print_contents_pretty(self, printer, *args):
|
132 |
+
if len(self.label) == 1:
|
133 |
+
return self._print_label_pretty(printer, *args)
|
134 |
+
else:
|
135 |
+
pform = self._print_operator_name_pretty(printer, *args)
|
136 |
+
label_pform = self._print_label_pretty(printer, *args)
|
137 |
+
label_pform = prettyForm(
|
138 |
+
*label_pform.parens(left='(', right=')')
|
139 |
+
)
|
140 |
+
pform = prettyForm(*pform.right(label_pform))
|
141 |
+
return pform
|
142 |
+
|
143 |
+
def _print_contents_latex(self, printer, *args):
|
144 |
+
if len(self.label) == 1:
|
145 |
+
return self._print_label_latex(printer, *args)
|
146 |
+
else:
|
147 |
+
return r'%s\left(%s\right)' % (
|
148 |
+
self._print_operator_name_latex(printer, *args),
|
149 |
+
self._print_label_latex(printer, *args)
|
150 |
+
)
|
151 |
+
|
152 |
+
#-------------------------------------------------------------------------
|
153 |
+
# _eval_* methods
|
154 |
+
#-------------------------------------------------------------------------
|
155 |
+
|
156 |
+
def _eval_commutator(self, other, **options):
|
157 |
+
"""Evaluate [self, other] if known, return None if not known."""
|
158 |
+
return dispatch_method(self, '_eval_commutator', other, **options)
|
159 |
+
|
160 |
+
def _eval_anticommutator(self, other, **options):
|
161 |
+
"""Evaluate [self, other] if known."""
|
162 |
+
return dispatch_method(self, '_eval_anticommutator', other, **options)
|
163 |
+
|
164 |
+
#-------------------------------------------------------------------------
|
165 |
+
# Operator application
|
166 |
+
#-------------------------------------------------------------------------
|
167 |
+
|
168 |
+
def _apply_operator(self, ket, **options):
|
169 |
+
return dispatch_method(self, '_apply_operator', ket, **options)
|
170 |
+
|
171 |
+
def matrix_element(self, *args):
|
172 |
+
raise NotImplementedError('matrix_elements is not defined')
|
173 |
+
|
174 |
+
def inverse(self):
|
175 |
+
return self._eval_inverse()
|
176 |
+
|
177 |
+
inv = inverse
|
178 |
+
|
179 |
+
def _eval_inverse(self):
|
180 |
+
return self**(-1)
|
181 |
+
|
182 |
+
def __mul__(self, other):
|
183 |
+
|
184 |
+
if isinstance(other, IdentityOperator):
|
185 |
+
return self
|
186 |
+
|
187 |
+
return Mul(self, other)
|
188 |
+
|
189 |
+
|
190 |
+
class HermitianOperator(Operator):
|
191 |
+
"""A Hermitian operator that satisfies H == Dagger(H).
|
192 |
+
|
193 |
+
Parameters
|
194 |
+
==========
|
195 |
+
|
196 |
+
args : tuple
|
197 |
+
The list of numbers or parameters that uniquely specify the
|
198 |
+
operator. For time-dependent operators, this will include the time.
|
199 |
+
|
200 |
+
Examples
|
201 |
+
========
|
202 |
+
|
203 |
+
>>> from sympy.physics.quantum import Dagger, HermitianOperator
|
204 |
+
>>> H = HermitianOperator('H')
|
205 |
+
>>> Dagger(H)
|
206 |
+
H
|
207 |
+
"""
|
208 |
+
|
209 |
+
is_hermitian = True
|
210 |
+
|
211 |
+
def _eval_inverse(self):
|
212 |
+
if isinstance(self, UnitaryOperator):
|
213 |
+
return self
|
214 |
+
else:
|
215 |
+
return Operator._eval_inverse(self)
|
216 |
+
|
217 |
+
def _eval_power(self, exp):
|
218 |
+
if isinstance(self, UnitaryOperator):
|
219 |
+
# so all eigenvalues of self are 1 or -1
|
220 |
+
if exp.is_even:
|
221 |
+
from sympy.core.singleton import S
|
222 |
+
return S.One # is identity, see Issue 24153.
|
223 |
+
elif exp.is_odd:
|
224 |
+
return self
|
225 |
+
# No simplification in all other cases
|
226 |
+
return Operator._eval_power(self, exp)
|
227 |
+
|
228 |
+
|
229 |
+
class UnitaryOperator(Operator):
|
230 |
+
"""A unitary operator that satisfies U*Dagger(U) == 1.
|
231 |
+
|
232 |
+
Parameters
|
233 |
+
==========
|
234 |
+
|
235 |
+
args : tuple
|
236 |
+
The list of numbers or parameters that uniquely specify the
|
237 |
+
operator. For time-dependent operators, this will include the time.
|
238 |
+
|
239 |
+
Examples
|
240 |
+
========
|
241 |
+
|
242 |
+
>>> from sympy.physics.quantum import Dagger, UnitaryOperator
|
243 |
+
>>> U = UnitaryOperator('U')
|
244 |
+
>>> U*Dagger(U)
|
245 |
+
1
|
246 |
+
"""
|
247 |
+
|
248 |
+
def _eval_adjoint(self):
|
249 |
+
return self._eval_inverse()
|
250 |
+
|
251 |
+
|
252 |
+
class IdentityOperator(Operator):
|
253 |
+
"""An identity operator I that satisfies op * I == I * op == op for any
|
254 |
+
operator op.
|
255 |
+
|
256 |
+
Parameters
|
257 |
+
==========
|
258 |
+
|
259 |
+
N : Integer
|
260 |
+
Optional parameter that specifies the dimension of the Hilbert space
|
261 |
+
of operator. This is used when generating a matrix representation.
|
262 |
+
|
263 |
+
Examples
|
264 |
+
========
|
265 |
+
|
266 |
+
>>> from sympy.physics.quantum import IdentityOperator
|
267 |
+
>>> IdentityOperator()
|
268 |
+
I
|
269 |
+
"""
|
270 |
+
@property
|
271 |
+
def dimension(self):
|
272 |
+
return self.N
|
273 |
+
|
274 |
+
@classmethod
|
275 |
+
def default_args(self):
|
276 |
+
return (oo,)
|
277 |
+
|
278 |
+
def __init__(self, *args, **hints):
|
279 |
+
if not len(args) in (0, 1):
|
280 |
+
raise ValueError('0 or 1 parameters expected, got %s' % args)
|
281 |
+
|
282 |
+
self.N = args[0] if (len(args) == 1 and args[0]) else oo
|
283 |
+
|
284 |
+
def _eval_commutator(self, other, **hints):
|
285 |
+
return S.Zero
|
286 |
+
|
287 |
+
def _eval_anticommutator(self, other, **hints):
|
288 |
+
return 2 * other
|
289 |
+
|
290 |
+
def _eval_inverse(self):
|
291 |
+
return self
|
292 |
+
|
293 |
+
def _eval_adjoint(self):
|
294 |
+
return self
|
295 |
+
|
296 |
+
def _apply_operator(self, ket, **options):
|
297 |
+
return ket
|
298 |
+
|
299 |
+
def _apply_from_right_to(self, bra, **options):
|
300 |
+
return bra
|
301 |
+
|
302 |
+
def _eval_power(self, exp):
|
303 |
+
return self
|
304 |
+
|
305 |
+
def _print_contents(self, printer, *args):
|
306 |
+
return 'I'
|
307 |
+
|
308 |
+
def _print_contents_pretty(self, printer, *args):
|
309 |
+
return prettyForm('I')
|
310 |
+
|
311 |
+
def _print_contents_latex(self, printer, *args):
|
312 |
+
return r'{\mathcal{I}}'
|
313 |
+
|
314 |
+
def __mul__(self, other):
|
315 |
+
|
316 |
+
if isinstance(other, (Operator, Dagger)):
|
317 |
+
return other
|
318 |
+
|
319 |
+
return Mul(self, other)
|
320 |
+
|
321 |
+
def _represent_default_basis(self, **options):
|
322 |
+
if not self.N or self.N == oo:
|
323 |
+
raise NotImplementedError('Cannot represent infinite dimensional' +
|
324 |
+
' identity operator as a matrix')
|
325 |
+
|
326 |
+
format = options.get('format', 'sympy')
|
327 |
+
if format != 'sympy':
|
328 |
+
raise NotImplementedError('Representation in format ' +
|
329 |
+
'%s not implemented.' % format)
|
330 |
+
|
331 |
+
return eye(self.N)
|
332 |
+
|
333 |
+
|
334 |
+
class OuterProduct(Operator):
|
335 |
+
"""An unevaluated outer product between a ket and bra.
|
336 |
+
|
337 |
+
This constructs an outer product between any subclass of ``KetBase`` and
|
338 |
+
``BraBase`` as ``|a><b|``. An ``OuterProduct`` inherits from Operator as they act as
|
339 |
+
operators in quantum expressions. For reference see [1]_.
|
340 |
+
|
341 |
+
Parameters
|
342 |
+
==========
|
343 |
+
|
344 |
+
ket : KetBase
|
345 |
+
The ket on the left side of the outer product.
|
346 |
+
bar : BraBase
|
347 |
+
The bra on the right side of the outer product.
|
348 |
+
|
349 |
+
Examples
|
350 |
+
========
|
351 |
+
|
352 |
+
Create a simple outer product by hand and take its dagger::
|
353 |
+
|
354 |
+
>>> from sympy.physics.quantum import Ket, Bra, OuterProduct, Dagger
|
355 |
+
>>> from sympy.physics.quantum import Operator
|
356 |
+
|
357 |
+
>>> k = Ket('k')
|
358 |
+
>>> b = Bra('b')
|
359 |
+
>>> op = OuterProduct(k, b)
|
360 |
+
>>> op
|
361 |
+
|k><b|
|
362 |
+
>>> op.hilbert_space
|
363 |
+
H
|
364 |
+
>>> op.ket
|
365 |
+
|k>
|
366 |
+
>>> op.bra
|
367 |
+
<b|
|
368 |
+
>>> Dagger(op)
|
369 |
+
|b><k|
|
370 |
+
|
371 |
+
In simple products of kets and bras outer products will be automatically
|
372 |
+
identified and created::
|
373 |
+
|
374 |
+
>>> k*b
|
375 |
+
|k><b|
|
376 |
+
|
377 |
+
But in more complex expressions, outer products are not automatically
|
378 |
+
created::
|
379 |
+
|
380 |
+
>>> A = Operator('A')
|
381 |
+
>>> A*k*b
|
382 |
+
A*|k>*<b|
|
383 |
+
|
384 |
+
A user can force the creation of an outer product in a complex expression
|
385 |
+
by using parentheses to group the ket and bra::
|
386 |
+
|
387 |
+
>>> A*(k*b)
|
388 |
+
A*|k><b|
|
389 |
+
|
390 |
+
References
|
391 |
+
==========
|
392 |
+
|
393 |
+
.. [1] https://en.wikipedia.org/wiki/Outer_product
|
394 |
+
"""
|
395 |
+
is_commutative = False
|
396 |
+
|
397 |
+
def __new__(cls, *args, **old_assumptions):
|
398 |
+
from sympy.physics.quantum.state import KetBase, BraBase
|
399 |
+
|
400 |
+
if len(args) != 2:
|
401 |
+
raise ValueError('2 parameters expected, got %d' % len(args))
|
402 |
+
|
403 |
+
ket_expr = expand(args[0])
|
404 |
+
bra_expr = expand(args[1])
|
405 |
+
|
406 |
+
if (isinstance(ket_expr, (KetBase, Mul)) and
|
407 |
+
isinstance(bra_expr, (BraBase, Mul))):
|
408 |
+
ket_c, kets = ket_expr.args_cnc()
|
409 |
+
bra_c, bras = bra_expr.args_cnc()
|
410 |
+
|
411 |
+
if len(kets) != 1 or not isinstance(kets[0], KetBase):
|
412 |
+
raise TypeError('KetBase subclass expected'
|
413 |
+
', got: %r' % Mul(*kets))
|
414 |
+
|
415 |
+
if len(bras) != 1 or not isinstance(bras[0], BraBase):
|
416 |
+
raise TypeError('BraBase subclass expected'
|
417 |
+
', got: %r' % Mul(*bras))
|
418 |
+
|
419 |
+
if not kets[0].dual_class() == bras[0].__class__:
|
420 |
+
raise TypeError(
|
421 |
+
'ket and bra are not dual classes: %r, %r' %
|
422 |
+
(kets[0].__class__, bras[0].__class__)
|
423 |
+
)
|
424 |
+
|
425 |
+
# TODO: make sure the hilbert spaces of the bra and ket are
|
426 |
+
# compatible
|
427 |
+
obj = Expr.__new__(cls, *(kets[0], bras[0]), **old_assumptions)
|
428 |
+
obj.hilbert_space = kets[0].hilbert_space
|
429 |
+
return Mul(*(ket_c + bra_c)) * obj
|
430 |
+
|
431 |
+
op_terms = []
|
432 |
+
if isinstance(ket_expr, Add) and isinstance(bra_expr, Add):
|
433 |
+
for ket_term in ket_expr.args:
|
434 |
+
for bra_term in bra_expr.args:
|
435 |
+
op_terms.append(OuterProduct(ket_term, bra_term,
|
436 |
+
**old_assumptions))
|
437 |
+
elif isinstance(ket_expr, Add):
|
438 |
+
for ket_term in ket_expr.args:
|
439 |
+
op_terms.append(OuterProduct(ket_term, bra_expr,
|
440 |
+
**old_assumptions))
|
441 |
+
elif isinstance(bra_expr, Add):
|
442 |
+
for bra_term in bra_expr.args:
|
443 |
+
op_terms.append(OuterProduct(ket_expr, bra_term,
|
444 |
+
**old_assumptions))
|
445 |
+
else:
|
446 |
+
raise TypeError(
|
447 |
+
'Expected ket and bra expression, got: %r, %r' %
|
448 |
+
(ket_expr, bra_expr)
|
449 |
+
)
|
450 |
+
|
451 |
+
return Add(*op_terms)
|
452 |
+
|
453 |
+
@property
|
454 |
+
def ket(self):
|
455 |
+
"""Return the ket on the left side of the outer product."""
|
456 |
+
return self.args[0]
|
457 |
+
|
458 |
+
@property
|
459 |
+
def bra(self):
|
460 |
+
"""Return the bra on the right side of the outer product."""
|
461 |
+
return self.args[1]
|
462 |
+
|
463 |
+
def _eval_adjoint(self):
|
464 |
+
return OuterProduct(Dagger(self.bra), Dagger(self.ket))
|
465 |
+
|
466 |
+
def _sympystr(self, printer, *args):
|
467 |
+
return printer._print(self.ket) + printer._print(self.bra)
|
468 |
+
|
469 |
+
def _sympyrepr(self, printer, *args):
|
470 |
+
return '%s(%s,%s)' % (self.__class__.__name__,
|
471 |
+
printer._print(self.ket, *args), printer._print(self.bra, *args))
|
472 |
+
|
473 |
+
def _pretty(self, printer, *args):
|
474 |
+
pform = self.ket._pretty(printer, *args)
|
475 |
+
return prettyForm(*pform.right(self.bra._pretty(printer, *args)))
|
476 |
+
|
477 |
+
def _latex(self, printer, *args):
|
478 |
+
k = printer._print(self.ket, *args)
|
479 |
+
b = printer._print(self.bra, *args)
|
480 |
+
return k + b
|
481 |
+
|
482 |
+
def _represent(self, **options):
|
483 |
+
k = self.ket._represent(**options)
|
484 |
+
b = self.bra._represent(**options)
|
485 |
+
return k*b
|
486 |
+
|
487 |
+
def _eval_trace(self, **kwargs):
|
488 |
+
# TODO if operands are tensorproducts this may be will be handled
|
489 |
+
# differently.
|
490 |
+
|
491 |
+
return self.ket._eval_trace(self.bra, **kwargs)
|
492 |
+
|
493 |
+
|
494 |
+
class DifferentialOperator(Operator):
|
495 |
+
"""An operator for representing the differential operator, i.e. d/dx
|
496 |
+
|
497 |
+
It is initialized by passing two arguments. The first is an arbitrary
|
498 |
+
expression that involves a function, such as ``Derivative(f(x), x)``. The
|
499 |
+
second is the function (e.g. ``f(x)``) which we are to replace with the
|
500 |
+
``Wavefunction`` that this ``DifferentialOperator`` is applied to.
|
501 |
+
|
502 |
+
Parameters
|
503 |
+
==========
|
504 |
+
|
505 |
+
expr : Expr
|
506 |
+
The arbitrary expression which the appropriate Wavefunction is to be
|
507 |
+
substituted into
|
508 |
+
|
509 |
+
func : Expr
|
510 |
+
A function (e.g. f(x)) which is to be replaced with the appropriate
|
511 |
+
Wavefunction when this DifferentialOperator is applied
|
512 |
+
|
513 |
+
Examples
|
514 |
+
========
|
515 |
+
|
516 |
+
You can define a completely arbitrary expression and specify where the
|
517 |
+
Wavefunction is to be substituted
|
518 |
+
|
519 |
+
>>> from sympy import Derivative, Function, Symbol
|
520 |
+
>>> from sympy.physics.quantum.operator import DifferentialOperator
|
521 |
+
>>> from sympy.physics.quantum.state import Wavefunction
|
522 |
+
>>> from sympy.physics.quantum.qapply import qapply
|
523 |
+
>>> f = Function('f')
|
524 |
+
>>> x = Symbol('x')
|
525 |
+
>>> d = DifferentialOperator(1/x*Derivative(f(x), x), f(x))
|
526 |
+
>>> w = Wavefunction(x**2, x)
|
527 |
+
>>> d.function
|
528 |
+
f(x)
|
529 |
+
>>> d.variables
|
530 |
+
(x,)
|
531 |
+
>>> qapply(d*w)
|
532 |
+
Wavefunction(2, x)
|
533 |
+
|
534 |
+
"""
|
535 |
+
|
536 |
+
@property
|
537 |
+
def variables(self):
|
538 |
+
"""
|
539 |
+
Returns the variables with which the function in the specified
|
540 |
+
arbitrary expression is evaluated
|
541 |
+
|
542 |
+
Examples
|
543 |
+
========
|
544 |
+
|
545 |
+
>>> from sympy.physics.quantum.operator import DifferentialOperator
|
546 |
+
>>> from sympy import Symbol, Function, Derivative
|
547 |
+
>>> x = Symbol('x')
|
548 |
+
>>> f = Function('f')
|
549 |
+
>>> d = DifferentialOperator(1/x*Derivative(f(x), x), f(x))
|
550 |
+
>>> d.variables
|
551 |
+
(x,)
|
552 |
+
>>> y = Symbol('y')
|
553 |
+
>>> d = DifferentialOperator(Derivative(f(x, y), x) +
|
554 |
+
... Derivative(f(x, y), y), f(x, y))
|
555 |
+
>>> d.variables
|
556 |
+
(x, y)
|
557 |
+
"""
|
558 |
+
|
559 |
+
return self.args[-1].args
|
560 |
+
|
561 |
+
@property
|
562 |
+
def function(self):
|
563 |
+
"""
|
564 |
+
Returns the function which is to be replaced with the Wavefunction
|
565 |
+
|
566 |
+
Examples
|
567 |
+
========
|
568 |
+
|
569 |
+
>>> from sympy.physics.quantum.operator import DifferentialOperator
|
570 |
+
>>> from sympy import Function, Symbol, Derivative
|
571 |
+
>>> x = Symbol('x')
|
572 |
+
>>> f = Function('f')
|
573 |
+
>>> d = DifferentialOperator(Derivative(f(x), x), f(x))
|
574 |
+
>>> d.function
|
575 |
+
f(x)
|
576 |
+
>>> y = Symbol('y')
|
577 |
+
>>> d = DifferentialOperator(Derivative(f(x, y), x) +
|
578 |
+
... Derivative(f(x, y), y), f(x, y))
|
579 |
+
>>> d.function
|
580 |
+
f(x, y)
|
581 |
+
"""
|
582 |
+
|
583 |
+
return self.args[-1]
|
584 |
+
|
585 |
+
@property
|
586 |
+
def expr(self):
|
587 |
+
"""
|
588 |
+
Returns the arbitrary expression which is to have the Wavefunction
|
589 |
+
substituted into it
|
590 |
+
|
591 |
+
Examples
|
592 |
+
========
|
593 |
+
|
594 |
+
>>> from sympy.physics.quantum.operator import DifferentialOperator
|
595 |
+
>>> from sympy import Function, Symbol, Derivative
|
596 |
+
>>> x = Symbol('x')
|
597 |
+
>>> f = Function('f')
|
598 |
+
>>> d = DifferentialOperator(Derivative(f(x), x), f(x))
|
599 |
+
>>> d.expr
|
600 |
+
Derivative(f(x), x)
|
601 |
+
>>> y = Symbol('y')
|
602 |
+
>>> d = DifferentialOperator(Derivative(f(x, y), x) +
|
603 |
+
... Derivative(f(x, y), y), f(x, y))
|
604 |
+
>>> d.expr
|
605 |
+
Derivative(f(x, y), x) + Derivative(f(x, y), y)
|
606 |
+
"""
|
607 |
+
|
608 |
+
return self.args[0]
|
609 |
+
|
610 |
+
@property
|
611 |
+
def free_symbols(self):
|
612 |
+
"""
|
613 |
+
Return the free symbols of the expression.
|
614 |
+
"""
|
615 |
+
|
616 |
+
return self.expr.free_symbols
|
617 |
+
|
618 |
+
def _apply_operator_Wavefunction(self, func, **options):
|
619 |
+
from sympy.physics.quantum.state import Wavefunction
|
620 |
+
var = self.variables
|
621 |
+
wf_vars = func.args[1:]
|
622 |
+
|
623 |
+
f = self.function
|
624 |
+
new_expr = self.expr.subs(f, func(*var))
|
625 |
+
new_expr = new_expr.doit()
|
626 |
+
|
627 |
+
return Wavefunction(new_expr, *wf_vars)
|
628 |
+
|
629 |
+
def _eval_derivative(self, symbol):
|
630 |
+
new_expr = Derivative(self.expr, symbol)
|
631 |
+
return DifferentialOperator(new_expr, self.args[-1])
|
632 |
+
|
633 |
+
#-------------------------------------------------------------------------
|
634 |
+
# Printing
|
635 |
+
#-------------------------------------------------------------------------
|
636 |
+
|
637 |
+
def _print(self, printer, *args):
|
638 |
+
return '%s(%s)' % (
|
639 |
+
self._print_operator_name(printer, *args),
|
640 |
+
self._print_label(printer, *args)
|
641 |
+
)
|
642 |
+
|
643 |
+
def _print_pretty(self, printer, *args):
|
644 |
+
pform = self._print_operator_name_pretty(printer, *args)
|
645 |
+
label_pform = self._print_label_pretty(printer, *args)
|
646 |
+
label_pform = prettyForm(
|
647 |
+
*label_pform.parens(left='(', right=')')
|
648 |
+
)
|
649 |
+
pform = prettyForm(*pform.right(label_pform))
|
650 |
+
return pform
|
venv/lib/python3.10/site-packages/sympy/physics/quantum/operatorordering.py
ADDED
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Functions for reordering operator expressions."""
|
2 |
+
|
3 |
+
import warnings
|
4 |
+
|
5 |
+
from sympy.core.add import Add
|
6 |
+
from sympy.core.mul import Mul
|
7 |
+
from sympy.core.numbers import Integer
|
8 |
+
from sympy.core.power import Pow
|
9 |
+
from sympy.physics.quantum import Operator, Commutator, AntiCommutator
|
10 |
+
from sympy.physics.quantum.boson import BosonOp
|
11 |
+
from sympy.physics.quantum.fermion import FermionOp
|
12 |
+
|
13 |
+
__all__ = [
|
14 |
+
'normal_order',
|
15 |
+
'normal_ordered_form'
|
16 |
+
]
|
17 |
+
|
18 |
+
|
19 |
+
def _expand_powers(factors):
|
20 |
+
"""
|
21 |
+
Helper function for normal_ordered_form and normal_order: Expand a
|
22 |
+
power expression to a multiplication expression so that that the
|
23 |
+
expression can be handled by the normal ordering functions.
|
24 |
+
"""
|
25 |
+
|
26 |
+
new_factors = []
|
27 |
+
for factor in factors.args:
|
28 |
+
if (isinstance(factor, Pow)
|
29 |
+
and isinstance(factor.args[1], Integer)
|
30 |
+
and factor.args[1] > 0):
|
31 |
+
for n in range(factor.args[1]):
|
32 |
+
new_factors.append(factor.args[0])
|
33 |
+
else:
|
34 |
+
new_factors.append(factor)
|
35 |
+
|
36 |
+
return new_factors
|
37 |
+
|
38 |
+
|
39 |
+
def _normal_ordered_form_factor(product, independent=False, recursive_limit=10,
|
40 |
+
_recursive_depth=0):
|
41 |
+
"""
|
42 |
+
Helper function for normal_ordered_form_factor: Write multiplication
|
43 |
+
expression with bosonic or fermionic operators on normally ordered form,
|
44 |
+
using the bosonic and fermionic commutation relations. The resulting
|
45 |
+
operator expression is equivalent to the argument, but will in general be
|
46 |
+
a sum of operator products instead of a simple product.
|
47 |
+
"""
|
48 |
+
|
49 |
+
factors = _expand_powers(product)
|
50 |
+
|
51 |
+
new_factors = []
|
52 |
+
n = 0
|
53 |
+
while n < len(factors) - 1:
|
54 |
+
|
55 |
+
if isinstance(factors[n], BosonOp):
|
56 |
+
# boson
|
57 |
+
if not isinstance(factors[n + 1], BosonOp):
|
58 |
+
new_factors.append(factors[n])
|
59 |
+
|
60 |
+
elif factors[n].is_annihilation == factors[n + 1].is_annihilation:
|
61 |
+
if (independent and
|
62 |
+
str(factors[n].name) > str(factors[n + 1].name)):
|
63 |
+
new_factors.append(factors[n + 1])
|
64 |
+
new_factors.append(factors[n])
|
65 |
+
n += 1
|
66 |
+
else:
|
67 |
+
new_factors.append(factors[n])
|
68 |
+
|
69 |
+
elif not factors[n].is_annihilation:
|
70 |
+
new_factors.append(factors[n])
|
71 |
+
|
72 |
+
else:
|
73 |
+
if factors[n + 1].is_annihilation:
|
74 |
+
new_factors.append(factors[n])
|
75 |
+
else:
|
76 |
+
if factors[n].args[0] != factors[n + 1].args[0]:
|
77 |
+
if independent:
|
78 |
+
c = 0
|
79 |
+
else:
|
80 |
+
c = Commutator(factors[n], factors[n + 1])
|
81 |
+
new_factors.append(factors[n + 1] * factors[n] + c)
|
82 |
+
else:
|
83 |
+
c = Commutator(factors[n], factors[n + 1])
|
84 |
+
new_factors.append(
|
85 |
+
factors[n + 1] * factors[n] + c.doit())
|
86 |
+
n += 1
|
87 |
+
|
88 |
+
elif isinstance(factors[n], FermionOp):
|
89 |
+
# fermion
|
90 |
+
if not isinstance(factors[n + 1], FermionOp):
|
91 |
+
new_factors.append(factors[n])
|
92 |
+
|
93 |
+
elif factors[n].is_annihilation == factors[n + 1].is_annihilation:
|
94 |
+
if (independent and
|
95 |
+
str(factors[n].name) > str(factors[n + 1].name)):
|
96 |
+
new_factors.append(factors[n + 1])
|
97 |
+
new_factors.append(factors[n])
|
98 |
+
n += 1
|
99 |
+
else:
|
100 |
+
new_factors.append(factors[n])
|
101 |
+
|
102 |
+
elif not factors[n].is_annihilation:
|
103 |
+
new_factors.append(factors[n])
|
104 |
+
|
105 |
+
else:
|
106 |
+
if factors[n + 1].is_annihilation:
|
107 |
+
new_factors.append(factors[n])
|
108 |
+
else:
|
109 |
+
if factors[n].args[0] != factors[n + 1].args[0]:
|
110 |
+
if independent:
|
111 |
+
c = 0
|
112 |
+
else:
|
113 |
+
c = AntiCommutator(factors[n], factors[n + 1])
|
114 |
+
new_factors.append(-factors[n + 1] * factors[n] + c)
|
115 |
+
else:
|
116 |
+
c = AntiCommutator(factors[n], factors[n + 1])
|
117 |
+
new_factors.append(
|
118 |
+
-factors[n + 1] * factors[n] + c.doit())
|
119 |
+
n += 1
|
120 |
+
|
121 |
+
elif isinstance(factors[n], Operator):
|
122 |
+
|
123 |
+
if isinstance(factors[n + 1], (BosonOp, FermionOp)):
|
124 |
+
new_factors.append(factors[n + 1])
|
125 |
+
new_factors.append(factors[n])
|
126 |
+
n += 1
|
127 |
+
else:
|
128 |
+
new_factors.append(factors[n])
|
129 |
+
|
130 |
+
else:
|
131 |
+
new_factors.append(factors[n])
|
132 |
+
|
133 |
+
n += 1
|
134 |
+
|
135 |
+
if n == len(factors) - 1:
|
136 |
+
new_factors.append(factors[-1])
|
137 |
+
|
138 |
+
if new_factors == factors:
|
139 |
+
return product
|
140 |
+
else:
|
141 |
+
expr = Mul(*new_factors).expand()
|
142 |
+
return normal_ordered_form(expr,
|
143 |
+
recursive_limit=recursive_limit,
|
144 |
+
_recursive_depth=_recursive_depth + 1,
|
145 |
+
independent=independent)
|
146 |
+
|
147 |
+
|
148 |
+
def _normal_ordered_form_terms(expr, independent=False, recursive_limit=10,
|
149 |
+
_recursive_depth=0):
|
150 |
+
"""
|
151 |
+
Helper function for normal_ordered_form: loop through each term in an
|
152 |
+
addition expression and call _normal_ordered_form_factor to perform the
|
153 |
+
factor to an normally ordered expression.
|
154 |
+
"""
|
155 |
+
|
156 |
+
new_terms = []
|
157 |
+
for term in expr.args:
|
158 |
+
if isinstance(term, Mul):
|
159 |
+
new_term = _normal_ordered_form_factor(
|
160 |
+
term, recursive_limit=recursive_limit,
|
161 |
+
_recursive_depth=_recursive_depth, independent=independent)
|
162 |
+
new_terms.append(new_term)
|
163 |
+
else:
|
164 |
+
new_terms.append(term)
|
165 |
+
|
166 |
+
return Add(*new_terms)
|
167 |
+
|
168 |
+
|
169 |
+
def normal_ordered_form(expr, independent=False, recursive_limit=10,
|
170 |
+
_recursive_depth=0):
|
171 |
+
"""Write an expression with bosonic or fermionic operators on normal
|
172 |
+
ordered form, where each term is normally ordered. Note that this
|
173 |
+
normal ordered form is equivalent to the original expression.
|
174 |
+
|
175 |
+
Parameters
|
176 |
+
==========
|
177 |
+
|
178 |
+
expr : expression
|
179 |
+
The expression write on normal ordered form.
|
180 |
+
|
181 |
+
recursive_limit : int (default 10)
|
182 |
+
The number of allowed recursive applications of the function.
|
183 |
+
|
184 |
+
Examples
|
185 |
+
========
|
186 |
+
|
187 |
+
>>> from sympy.physics.quantum import Dagger
|
188 |
+
>>> from sympy.physics.quantum.boson import BosonOp
|
189 |
+
>>> from sympy.physics.quantum.operatorordering import normal_ordered_form
|
190 |
+
>>> a = BosonOp("a")
|
191 |
+
>>> normal_ordered_form(a * Dagger(a))
|
192 |
+
1 + Dagger(a)*a
|
193 |
+
"""
|
194 |
+
|
195 |
+
if _recursive_depth > recursive_limit:
|
196 |
+
warnings.warn("Too many recursions, aborting")
|
197 |
+
return expr
|
198 |
+
|
199 |
+
if isinstance(expr, Add):
|
200 |
+
return _normal_ordered_form_terms(expr,
|
201 |
+
recursive_limit=recursive_limit,
|
202 |
+
_recursive_depth=_recursive_depth,
|
203 |
+
independent=independent)
|
204 |
+
elif isinstance(expr, Mul):
|
205 |
+
return _normal_ordered_form_factor(expr,
|
206 |
+
recursive_limit=recursive_limit,
|
207 |
+
_recursive_depth=_recursive_depth,
|
208 |
+
independent=independent)
|
209 |
+
else:
|
210 |
+
return expr
|
211 |
+
|
212 |
+
|
213 |
+
def _normal_order_factor(product, recursive_limit=10, _recursive_depth=0):
|
214 |
+
"""
|
215 |
+
Helper function for normal_order: Normal order a multiplication expression
|
216 |
+
with bosonic or fermionic operators. In general the resulting operator
|
217 |
+
expression will not be equivalent to original product.
|
218 |
+
"""
|
219 |
+
|
220 |
+
factors = _expand_powers(product)
|
221 |
+
|
222 |
+
n = 0
|
223 |
+
new_factors = []
|
224 |
+
while n < len(factors) - 1:
|
225 |
+
|
226 |
+
if (isinstance(factors[n], BosonOp) and
|
227 |
+
factors[n].is_annihilation):
|
228 |
+
# boson
|
229 |
+
if not isinstance(factors[n + 1], BosonOp):
|
230 |
+
new_factors.append(factors[n])
|
231 |
+
else:
|
232 |
+
if factors[n + 1].is_annihilation:
|
233 |
+
new_factors.append(factors[n])
|
234 |
+
else:
|
235 |
+
if factors[n].args[0] != factors[n + 1].args[0]:
|
236 |
+
new_factors.append(factors[n + 1] * factors[n])
|
237 |
+
else:
|
238 |
+
new_factors.append(factors[n + 1] * factors[n])
|
239 |
+
n += 1
|
240 |
+
|
241 |
+
elif (isinstance(factors[n], FermionOp) and
|
242 |
+
factors[n].is_annihilation):
|
243 |
+
# fermion
|
244 |
+
if not isinstance(factors[n + 1], FermionOp):
|
245 |
+
new_factors.append(factors[n])
|
246 |
+
else:
|
247 |
+
if factors[n + 1].is_annihilation:
|
248 |
+
new_factors.append(factors[n])
|
249 |
+
else:
|
250 |
+
if factors[n].args[0] != factors[n + 1].args[0]:
|
251 |
+
new_factors.append(-factors[n + 1] * factors[n])
|
252 |
+
else:
|
253 |
+
new_factors.append(-factors[n + 1] * factors[n])
|
254 |
+
n += 1
|
255 |
+
|
256 |
+
else:
|
257 |
+
new_factors.append(factors[n])
|
258 |
+
|
259 |
+
n += 1
|
260 |
+
|
261 |
+
if n == len(factors) - 1:
|
262 |
+
new_factors.append(factors[-1])
|
263 |
+
|
264 |
+
if new_factors == factors:
|
265 |
+
return product
|
266 |
+
else:
|
267 |
+
expr = Mul(*new_factors).expand()
|
268 |
+
return normal_order(expr,
|
269 |
+
recursive_limit=recursive_limit,
|
270 |
+
_recursive_depth=_recursive_depth + 1)
|
271 |
+
|
272 |
+
|
273 |
+
def _normal_order_terms(expr, recursive_limit=10, _recursive_depth=0):
|
274 |
+
"""
|
275 |
+
Helper function for normal_order: look through each term in an addition
|
276 |
+
expression and call _normal_order_factor to perform the normal ordering
|
277 |
+
on the factors.
|
278 |
+
"""
|
279 |
+
|
280 |
+
new_terms = []
|
281 |
+
for term in expr.args:
|
282 |
+
if isinstance(term, Mul):
|
283 |
+
new_term = _normal_order_factor(term,
|
284 |
+
recursive_limit=recursive_limit,
|
285 |
+
_recursive_depth=_recursive_depth)
|
286 |
+
new_terms.append(new_term)
|
287 |
+
else:
|
288 |
+
new_terms.append(term)
|
289 |
+
|
290 |
+
return Add(*new_terms)
|
291 |
+
|
292 |
+
|
293 |
+
def normal_order(expr, recursive_limit=10, _recursive_depth=0):
|
294 |
+
"""Normal order an expression with bosonic or fermionic operators. Note
|
295 |
+
that this normal order is not equivalent to the original expression, but
|
296 |
+
the creation and annihilation operators in each term in expr is reordered
|
297 |
+
so that the expression becomes normal ordered.
|
298 |
+
|
299 |
+
Parameters
|
300 |
+
==========
|
301 |
+
|
302 |
+
expr : expression
|
303 |
+
The expression to normal order.
|
304 |
+
|
305 |
+
recursive_limit : int (default 10)
|
306 |
+
The number of allowed recursive applications of the function.
|
307 |
+
|
308 |
+
Examples
|
309 |
+
========
|
310 |
+
|
311 |
+
>>> from sympy.physics.quantum import Dagger
|
312 |
+
>>> from sympy.physics.quantum.boson import BosonOp
|
313 |
+
>>> from sympy.physics.quantum.operatorordering import normal_order
|
314 |
+
>>> a = BosonOp("a")
|
315 |
+
>>> normal_order(a * Dagger(a))
|
316 |
+
Dagger(a)*a
|
317 |
+
"""
|
318 |
+
if _recursive_depth > recursive_limit:
|
319 |
+
warnings.warn("Too many recursions, aborting")
|
320 |
+
return expr
|
321 |
+
|
322 |
+
if isinstance(expr, Add):
|
323 |
+
return _normal_order_terms(expr, recursive_limit=recursive_limit,
|
324 |
+
_recursive_depth=_recursive_depth)
|
325 |
+
elif isinstance(expr, Mul):
|
326 |
+
return _normal_order_factor(expr, recursive_limit=recursive_limit,
|
327 |
+
_recursive_depth=_recursive_depth)
|
328 |
+
else:
|
329 |
+
return expr
|
venv/lib/python3.10/site-packages/sympy/physics/quantum/operatorset.py
ADDED
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" A module for mapping operators to their corresponding eigenstates
|
2 |
+
and vice versa
|
3 |
+
|
4 |
+
It contains a global dictionary with eigenstate-operator pairings.
|
5 |
+
If a new state-operator pair is created, this dictionary should be
|
6 |
+
updated as well.
|
7 |
+
|
8 |
+
It also contains functions operators_to_state and state_to_operators
|
9 |
+
for mapping between the two. These can handle both classes and
|
10 |
+
instances of operators and states. See the individual function
|
11 |
+
descriptions for details.
|
12 |
+
|
13 |
+
TODO List:
|
14 |
+
- Update the dictionary with a complete list of state-operator pairs
|
15 |
+
"""
|
16 |
+
|
17 |
+
from sympy.physics.quantum.cartesian import (XOp, YOp, ZOp, XKet, PxOp, PxKet,
|
18 |
+
PositionKet3D)
|
19 |
+
from sympy.physics.quantum.operator import Operator
|
20 |
+
from sympy.physics.quantum.state import StateBase, BraBase, Ket
|
21 |
+
from sympy.physics.quantum.spin import (JxOp, JyOp, JzOp, J2Op, JxKet, JyKet,
|
22 |
+
JzKet)
|
23 |
+
|
24 |
+
__all__ = [
|
25 |
+
'operators_to_state',
|
26 |
+
'state_to_operators'
|
27 |
+
]
|
28 |
+
|
29 |
+
#state_mapping stores the mappings between states and their associated
|
30 |
+
#operators or tuples of operators. This should be updated when new
|
31 |
+
#classes are written! Entries are of the form PxKet : PxOp or
|
32 |
+
#something like 3DKet : (ROp, ThetaOp, PhiOp)
|
33 |
+
|
34 |
+
#frozenset is used so that the reverse mapping can be made
|
35 |
+
#(regular sets are not hashable because they are mutable
|
36 |
+
state_mapping = { JxKet: frozenset((J2Op, JxOp)),
|
37 |
+
JyKet: frozenset((J2Op, JyOp)),
|
38 |
+
JzKet: frozenset((J2Op, JzOp)),
|
39 |
+
Ket: Operator,
|
40 |
+
PositionKet3D: frozenset((XOp, YOp, ZOp)),
|
41 |
+
PxKet: PxOp,
|
42 |
+
XKet: XOp }
|
43 |
+
|
44 |
+
op_mapping = {v: k for k, v in state_mapping.items()}
|
45 |
+
|
46 |
+
|
47 |
+
def operators_to_state(operators, **options):
|
48 |
+
""" Returns the eigenstate of the given operator or set of operators
|
49 |
+
|
50 |
+
A global function for mapping operator classes to their associated
|
51 |
+
states. It takes either an Operator or a set of operators and
|
52 |
+
returns the state associated with these.
|
53 |
+
|
54 |
+
This function can handle both instances of a given operator or
|
55 |
+
just the class itself (i.e. both XOp() and XOp)
|
56 |
+
|
57 |
+
There are multiple use cases to consider:
|
58 |
+
|
59 |
+
1) A class or set of classes is passed: First, we try to
|
60 |
+
instantiate default instances for these operators. If this fails,
|
61 |
+
then the class is simply returned. If we succeed in instantiating
|
62 |
+
default instances, then we try to call state._operators_to_state
|
63 |
+
on the operator instances. If this fails, the class is returned.
|
64 |
+
Otherwise, the instance returned by _operators_to_state is returned.
|
65 |
+
|
66 |
+
2) An instance or set of instances is passed: In this case,
|
67 |
+
state._operators_to_state is called on the instances passed. If
|
68 |
+
this fails, a state class is returned. If the method returns an
|
69 |
+
instance, that instance is returned.
|
70 |
+
|
71 |
+
In both cases, if the operator class or set does not exist in the
|
72 |
+
state_mapping dictionary, None is returned.
|
73 |
+
|
74 |
+
Parameters
|
75 |
+
==========
|
76 |
+
|
77 |
+
arg: Operator or set
|
78 |
+
The class or instance of the operator or set of operators
|
79 |
+
to be mapped to a state
|
80 |
+
|
81 |
+
Examples
|
82 |
+
========
|
83 |
+
|
84 |
+
>>> from sympy.physics.quantum.cartesian import XOp, PxOp
|
85 |
+
>>> from sympy.physics.quantum.operatorset import operators_to_state
|
86 |
+
>>> from sympy.physics.quantum.operator import Operator
|
87 |
+
>>> operators_to_state(XOp)
|
88 |
+
|x>
|
89 |
+
>>> operators_to_state(XOp())
|
90 |
+
|x>
|
91 |
+
>>> operators_to_state(PxOp)
|
92 |
+
|px>
|
93 |
+
>>> operators_to_state(PxOp())
|
94 |
+
|px>
|
95 |
+
>>> operators_to_state(Operator)
|
96 |
+
|psi>
|
97 |
+
>>> operators_to_state(Operator())
|
98 |
+
|psi>
|
99 |
+
"""
|
100 |
+
|
101 |
+
if not (isinstance(operators, Operator)
|
102 |
+
or isinstance(operators, set) or issubclass(operators, Operator)):
|
103 |
+
raise NotImplementedError("Argument is not an Operator or a set!")
|
104 |
+
|
105 |
+
if isinstance(operators, set):
|
106 |
+
for s in operators:
|
107 |
+
if not (isinstance(s, Operator)
|
108 |
+
or issubclass(s, Operator)):
|
109 |
+
raise NotImplementedError("Set is not all Operators!")
|
110 |
+
|
111 |
+
ops = frozenset(operators)
|
112 |
+
|
113 |
+
if ops in op_mapping: # ops is a list of classes in this case
|
114 |
+
#Try to get an object from default instances of the
|
115 |
+
#operators...if this fails, return the class
|
116 |
+
try:
|
117 |
+
op_instances = [op() for op in ops]
|
118 |
+
ret = _get_state(op_mapping[ops], set(op_instances), **options)
|
119 |
+
except NotImplementedError:
|
120 |
+
ret = op_mapping[ops]
|
121 |
+
|
122 |
+
return ret
|
123 |
+
else:
|
124 |
+
tmp = [type(o) for o in ops]
|
125 |
+
classes = frozenset(tmp)
|
126 |
+
|
127 |
+
if classes in op_mapping:
|
128 |
+
ret = _get_state(op_mapping[classes], ops, **options)
|
129 |
+
else:
|
130 |
+
ret = None
|
131 |
+
|
132 |
+
return ret
|
133 |
+
else:
|
134 |
+
if operators in op_mapping:
|
135 |
+
try:
|
136 |
+
op_instance = operators()
|
137 |
+
ret = _get_state(op_mapping[operators], op_instance, **options)
|
138 |
+
except NotImplementedError:
|
139 |
+
ret = op_mapping[operators]
|
140 |
+
|
141 |
+
return ret
|
142 |
+
elif type(operators) in op_mapping:
|
143 |
+
return _get_state(op_mapping[type(operators)], operators, **options)
|
144 |
+
else:
|
145 |
+
return None
|
146 |
+
|
147 |
+
|
148 |
+
def state_to_operators(state, **options):
|
149 |
+
""" Returns the operator or set of operators corresponding to the
|
150 |
+
given eigenstate
|
151 |
+
|
152 |
+
A global function for mapping state classes to their associated
|
153 |
+
operators or sets of operators. It takes either a state class
|
154 |
+
or instance.
|
155 |
+
|
156 |
+
This function can handle both instances of a given state or just
|
157 |
+
the class itself (i.e. both XKet() and XKet)
|
158 |
+
|
159 |
+
There are multiple use cases to consider:
|
160 |
+
|
161 |
+
1) A state class is passed: In this case, we first try
|
162 |
+
instantiating a default instance of the class. If this succeeds,
|
163 |
+
then we try to call state._state_to_operators on that instance.
|
164 |
+
If the creation of the default instance or if the calling of
|
165 |
+
_state_to_operators fails, then either an operator class or set of
|
166 |
+
operator classes is returned. Otherwise, the appropriate
|
167 |
+
operator instances are returned.
|
168 |
+
|
169 |
+
2) A state instance is returned: Here, state._state_to_operators
|
170 |
+
is called for the instance. If this fails, then a class or set of
|
171 |
+
operator classes is returned. Otherwise, the instances are returned.
|
172 |
+
|
173 |
+
In either case, if the state's class does not exist in
|
174 |
+
state_mapping, None is returned.
|
175 |
+
|
176 |
+
Parameters
|
177 |
+
==========
|
178 |
+
|
179 |
+
arg: StateBase class or instance (or subclasses)
|
180 |
+
The class or instance of the state to be mapped to an
|
181 |
+
operator or set of operators
|
182 |
+
|
183 |
+
Examples
|
184 |
+
========
|
185 |
+
|
186 |
+
>>> from sympy.physics.quantum.cartesian import XKet, PxKet, XBra, PxBra
|
187 |
+
>>> from sympy.physics.quantum.operatorset import state_to_operators
|
188 |
+
>>> from sympy.physics.quantum.state import Ket, Bra
|
189 |
+
>>> state_to_operators(XKet)
|
190 |
+
X
|
191 |
+
>>> state_to_operators(XKet())
|
192 |
+
X
|
193 |
+
>>> state_to_operators(PxKet)
|
194 |
+
Px
|
195 |
+
>>> state_to_operators(PxKet())
|
196 |
+
Px
|
197 |
+
>>> state_to_operators(PxBra)
|
198 |
+
Px
|
199 |
+
>>> state_to_operators(XBra)
|
200 |
+
X
|
201 |
+
>>> state_to_operators(Ket)
|
202 |
+
O
|
203 |
+
>>> state_to_operators(Bra)
|
204 |
+
O
|
205 |
+
"""
|
206 |
+
|
207 |
+
if not (isinstance(state, StateBase) or issubclass(state, StateBase)):
|
208 |
+
raise NotImplementedError("Argument is not a state!")
|
209 |
+
|
210 |
+
if state in state_mapping: # state is a class
|
211 |
+
state_inst = _make_default(state)
|
212 |
+
try:
|
213 |
+
ret = _get_ops(state_inst,
|
214 |
+
_make_set(state_mapping[state]), **options)
|
215 |
+
except (NotImplementedError, TypeError):
|
216 |
+
ret = state_mapping[state]
|
217 |
+
elif type(state) in state_mapping:
|
218 |
+
ret = _get_ops(state,
|
219 |
+
_make_set(state_mapping[type(state)]), **options)
|
220 |
+
elif isinstance(state, BraBase) and state.dual_class() in state_mapping:
|
221 |
+
ret = _get_ops(state,
|
222 |
+
_make_set(state_mapping[state.dual_class()]))
|
223 |
+
elif issubclass(state, BraBase) and state.dual_class() in state_mapping:
|
224 |
+
state_inst = _make_default(state)
|
225 |
+
try:
|
226 |
+
ret = _get_ops(state_inst,
|
227 |
+
_make_set(state_mapping[state.dual_class()]))
|
228 |
+
except (NotImplementedError, TypeError):
|
229 |
+
ret = state_mapping[state.dual_class()]
|
230 |
+
else:
|
231 |
+
ret = None
|
232 |
+
|
233 |
+
return _make_set(ret)
|
234 |
+
|
235 |
+
|
236 |
+
def _make_default(expr):
|
237 |
+
# XXX: Catching TypeError like this is a bad way of distinguishing between
|
238 |
+
# classes and instances. The logic using this function should be rewritten
|
239 |
+
# somehow.
|
240 |
+
try:
|
241 |
+
ret = expr()
|
242 |
+
except TypeError:
|
243 |
+
ret = expr
|
244 |
+
|
245 |
+
return ret
|
246 |
+
|
247 |
+
|
248 |
+
def _get_state(state_class, ops, **options):
|
249 |
+
# Try to get a state instance from the operator INSTANCES.
|
250 |
+
# If this fails, get the class
|
251 |
+
try:
|
252 |
+
ret = state_class._operators_to_state(ops, **options)
|
253 |
+
except NotImplementedError:
|
254 |
+
ret = _make_default(state_class)
|
255 |
+
|
256 |
+
return ret
|
257 |
+
|
258 |
+
|
259 |
+
def _get_ops(state_inst, op_classes, **options):
|
260 |
+
# Try to get operator instances from the state INSTANCE.
|
261 |
+
# If this fails, just return the classes
|
262 |
+
try:
|
263 |
+
ret = state_inst._state_to_operators(op_classes, **options)
|
264 |
+
except NotImplementedError:
|
265 |
+
if isinstance(op_classes, (set, tuple, frozenset)):
|
266 |
+
ret = tuple(_make_default(x) for x in op_classes)
|
267 |
+
else:
|
268 |
+
ret = _make_default(op_classes)
|
269 |
+
|
270 |
+
if isinstance(ret, set) and len(ret) == 1:
|
271 |
+
return ret[0]
|
272 |
+
|
273 |
+
return ret
|
274 |
+
|
275 |
+
|
276 |
+
def _make_set(ops):
|
277 |
+
if isinstance(ops, (tuple, list, frozenset)):
|
278 |
+
return set(ops)
|
279 |
+
else:
|
280 |
+
return ops
|
venv/lib/python3.10/site-packages/sympy/physics/quantum/pauli.py
ADDED
@@ -0,0 +1,675 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Pauli operators and states"""
|
2 |
+
|
3 |
+
from sympy.core.add import Add
|
4 |
+
from sympy.core.mul import Mul
|
5 |
+
from sympy.core.numbers import I
|
6 |
+
from sympy.core.power import Pow
|
7 |
+
from sympy.core.singleton import S
|
8 |
+
from sympy.functions.elementary.exponential import exp
|
9 |
+
from sympy.physics.quantum import Operator, Ket, Bra
|
10 |
+
from sympy.physics.quantum import ComplexSpace
|
11 |
+
from sympy.matrices import Matrix
|
12 |
+
from sympy.functions.special.tensor_functions import KroneckerDelta
|
13 |
+
|
14 |
+
__all__ = [
|
15 |
+
'SigmaX', 'SigmaY', 'SigmaZ', 'SigmaMinus', 'SigmaPlus', 'SigmaZKet',
|
16 |
+
'SigmaZBra', 'qsimplify_pauli'
|
17 |
+
]
|
18 |
+
|
19 |
+
|
20 |
+
class SigmaOpBase(Operator):
|
21 |
+
"""Pauli sigma operator, base class"""
|
22 |
+
|
23 |
+
@property
|
24 |
+
def name(self):
|
25 |
+
return self.args[0]
|
26 |
+
|
27 |
+
@property
|
28 |
+
def use_name(self):
|
29 |
+
return bool(self.args[0]) is not False
|
30 |
+
|
31 |
+
@classmethod
|
32 |
+
def default_args(self):
|
33 |
+
return (False,)
|
34 |
+
|
35 |
+
def __new__(cls, *args, **hints):
|
36 |
+
return Operator.__new__(cls, *args, **hints)
|
37 |
+
|
38 |
+
def _eval_commutator_BosonOp(self, other, **hints):
|
39 |
+
return S.Zero
|
40 |
+
|
41 |
+
|
42 |
+
class SigmaX(SigmaOpBase):
|
43 |
+
"""Pauli sigma x operator
|
44 |
+
|
45 |
+
Parameters
|
46 |
+
==========
|
47 |
+
|
48 |
+
name : str
|
49 |
+
An optional string that labels the operator. Pauli operators with
|
50 |
+
different names commute.
|
51 |
+
|
52 |
+
Examples
|
53 |
+
========
|
54 |
+
|
55 |
+
>>> from sympy.physics.quantum import represent
|
56 |
+
>>> from sympy.physics.quantum.pauli import SigmaX
|
57 |
+
>>> sx = SigmaX()
|
58 |
+
>>> sx
|
59 |
+
SigmaX()
|
60 |
+
>>> represent(sx)
|
61 |
+
Matrix([
|
62 |
+
[0, 1],
|
63 |
+
[1, 0]])
|
64 |
+
"""
|
65 |
+
|
66 |
+
def __new__(cls, *args, **hints):
|
67 |
+
return SigmaOpBase.__new__(cls, *args, **hints)
|
68 |
+
|
69 |
+
def _eval_commutator_SigmaY(self, other, **hints):
|
70 |
+
if self.name != other.name:
|
71 |
+
return S.Zero
|
72 |
+
else:
|
73 |
+
return 2 * I * SigmaZ(self.name)
|
74 |
+
|
75 |
+
def _eval_commutator_SigmaZ(self, other, **hints):
|
76 |
+
if self.name != other.name:
|
77 |
+
return S.Zero
|
78 |
+
else:
|
79 |
+
return - 2 * I * SigmaY(self.name)
|
80 |
+
|
81 |
+
def _eval_commutator_BosonOp(self, other, **hints):
|
82 |
+
return S.Zero
|
83 |
+
|
84 |
+
def _eval_anticommutator_SigmaY(self, other, **hints):
|
85 |
+
return S.Zero
|
86 |
+
|
87 |
+
def _eval_anticommutator_SigmaZ(self, other, **hints):
|
88 |
+
return S.Zero
|
89 |
+
|
90 |
+
def _eval_adjoint(self):
|
91 |
+
return self
|
92 |
+
|
93 |
+
def _print_contents_latex(self, printer, *args):
|
94 |
+
if self.use_name:
|
95 |
+
return r'{\sigma_x^{(%s)}}' % str(self.name)
|
96 |
+
else:
|
97 |
+
return r'{\sigma_x}'
|
98 |
+
|
99 |
+
def _print_contents(self, printer, *args):
|
100 |
+
return 'SigmaX()'
|
101 |
+
|
102 |
+
def _eval_power(self, e):
|
103 |
+
if e.is_Integer and e.is_positive:
|
104 |
+
return SigmaX(self.name).__pow__(int(e) % 2)
|
105 |
+
|
106 |
+
def _represent_default_basis(self, **options):
|
107 |
+
format = options.get('format', 'sympy')
|
108 |
+
if format == 'sympy':
|
109 |
+
return Matrix([[0, 1], [1, 0]])
|
110 |
+
else:
|
111 |
+
raise NotImplementedError('Representation in format ' +
|
112 |
+
format + ' not implemented.')
|
113 |
+
|
114 |
+
|
115 |
+
class SigmaY(SigmaOpBase):
|
116 |
+
"""Pauli sigma y operator
|
117 |
+
|
118 |
+
Parameters
|
119 |
+
==========
|
120 |
+
|
121 |
+
name : str
|
122 |
+
An optional string that labels the operator. Pauli operators with
|
123 |
+
different names commute.
|
124 |
+
|
125 |
+
Examples
|
126 |
+
========
|
127 |
+
|
128 |
+
>>> from sympy.physics.quantum import represent
|
129 |
+
>>> from sympy.physics.quantum.pauli import SigmaY
|
130 |
+
>>> sy = SigmaY()
|
131 |
+
>>> sy
|
132 |
+
SigmaY()
|
133 |
+
>>> represent(sy)
|
134 |
+
Matrix([
|
135 |
+
[0, -I],
|
136 |
+
[I, 0]])
|
137 |
+
"""
|
138 |
+
|
139 |
+
def __new__(cls, *args, **hints):
|
140 |
+
return SigmaOpBase.__new__(cls, *args)
|
141 |
+
|
142 |
+
def _eval_commutator_SigmaZ(self, other, **hints):
|
143 |
+
if self.name != other.name:
|
144 |
+
return S.Zero
|
145 |
+
else:
|
146 |
+
return 2 * I * SigmaX(self.name)
|
147 |
+
|
148 |
+
def _eval_commutator_SigmaX(self, other, **hints):
|
149 |
+
if self.name != other.name:
|
150 |
+
return S.Zero
|
151 |
+
else:
|
152 |
+
return - 2 * I * SigmaZ(self.name)
|
153 |
+
|
154 |
+
def _eval_anticommutator_SigmaX(self, other, **hints):
|
155 |
+
return S.Zero
|
156 |
+
|
157 |
+
def _eval_anticommutator_SigmaZ(self, other, **hints):
|
158 |
+
return S.Zero
|
159 |
+
|
160 |
+
def _eval_adjoint(self):
|
161 |
+
return self
|
162 |
+
|
163 |
+
def _print_contents_latex(self, printer, *args):
|
164 |
+
if self.use_name:
|
165 |
+
return r'{\sigma_y^{(%s)}}' % str(self.name)
|
166 |
+
else:
|
167 |
+
return r'{\sigma_y}'
|
168 |
+
|
169 |
+
def _print_contents(self, printer, *args):
|
170 |
+
return 'SigmaY()'
|
171 |
+
|
172 |
+
def _eval_power(self, e):
|
173 |
+
if e.is_Integer and e.is_positive:
|
174 |
+
return SigmaY(self.name).__pow__(int(e) % 2)
|
175 |
+
|
176 |
+
def _represent_default_basis(self, **options):
|
177 |
+
format = options.get('format', 'sympy')
|
178 |
+
if format == 'sympy':
|
179 |
+
return Matrix([[0, -I], [I, 0]])
|
180 |
+
else:
|
181 |
+
raise NotImplementedError('Representation in format ' +
|
182 |
+
format + ' not implemented.')
|
183 |
+
|
184 |
+
|
185 |
+
class SigmaZ(SigmaOpBase):
|
186 |
+
"""Pauli sigma z operator
|
187 |
+
|
188 |
+
Parameters
|
189 |
+
==========
|
190 |
+
|
191 |
+
name : str
|
192 |
+
An optional string that labels the operator. Pauli operators with
|
193 |
+
different names commute.
|
194 |
+
|
195 |
+
Examples
|
196 |
+
========
|
197 |
+
|
198 |
+
>>> from sympy.physics.quantum import represent
|
199 |
+
>>> from sympy.physics.quantum.pauli import SigmaZ
|
200 |
+
>>> sz = SigmaZ()
|
201 |
+
>>> sz ** 3
|
202 |
+
SigmaZ()
|
203 |
+
>>> represent(sz)
|
204 |
+
Matrix([
|
205 |
+
[1, 0],
|
206 |
+
[0, -1]])
|
207 |
+
"""
|
208 |
+
|
209 |
+
def __new__(cls, *args, **hints):
|
210 |
+
return SigmaOpBase.__new__(cls, *args)
|
211 |
+
|
212 |
+
def _eval_commutator_SigmaX(self, other, **hints):
|
213 |
+
if self.name != other.name:
|
214 |
+
return S.Zero
|
215 |
+
else:
|
216 |
+
return 2 * I * SigmaY(self.name)
|
217 |
+
|
218 |
+
def _eval_commutator_SigmaY(self, other, **hints):
|
219 |
+
if self.name != other.name:
|
220 |
+
return S.Zero
|
221 |
+
else:
|
222 |
+
return - 2 * I * SigmaX(self.name)
|
223 |
+
|
224 |
+
def _eval_anticommutator_SigmaX(self, other, **hints):
|
225 |
+
return S.Zero
|
226 |
+
|
227 |
+
def _eval_anticommutator_SigmaY(self, other, **hints):
|
228 |
+
return S.Zero
|
229 |
+
|
230 |
+
def _eval_adjoint(self):
|
231 |
+
return self
|
232 |
+
|
233 |
+
def _print_contents_latex(self, printer, *args):
|
234 |
+
if self.use_name:
|
235 |
+
return r'{\sigma_z^{(%s)}}' % str(self.name)
|
236 |
+
else:
|
237 |
+
return r'{\sigma_z}'
|
238 |
+
|
239 |
+
def _print_contents(self, printer, *args):
|
240 |
+
return 'SigmaZ()'
|
241 |
+
|
242 |
+
def _eval_power(self, e):
|
243 |
+
if e.is_Integer and e.is_positive:
|
244 |
+
return SigmaZ(self.name).__pow__(int(e) % 2)
|
245 |
+
|
246 |
+
def _represent_default_basis(self, **options):
|
247 |
+
format = options.get('format', 'sympy')
|
248 |
+
if format == 'sympy':
|
249 |
+
return Matrix([[1, 0], [0, -1]])
|
250 |
+
else:
|
251 |
+
raise NotImplementedError('Representation in format ' +
|
252 |
+
format + ' not implemented.')
|
253 |
+
|
254 |
+
|
255 |
+
class SigmaMinus(SigmaOpBase):
|
256 |
+
"""Pauli sigma minus operator
|
257 |
+
|
258 |
+
Parameters
|
259 |
+
==========
|
260 |
+
|
261 |
+
name : str
|
262 |
+
An optional string that labels the operator. Pauli operators with
|
263 |
+
different names commute.
|
264 |
+
|
265 |
+
Examples
|
266 |
+
========
|
267 |
+
|
268 |
+
>>> from sympy.physics.quantum import represent, Dagger
|
269 |
+
>>> from sympy.physics.quantum.pauli import SigmaMinus
|
270 |
+
>>> sm = SigmaMinus()
|
271 |
+
>>> sm
|
272 |
+
SigmaMinus()
|
273 |
+
>>> Dagger(sm)
|
274 |
+
SigmaPlus()
|
275 |
+
>>> represent(sm)
|
276 |
+
Matrix([
|
277 |
+
[0, 0],
|
278 |
+
[1, 0]])
|
279 |
+
"""
|
280 |
+
|
281 |
+
def __new__(cls, *args, **hints):
|
282 |
+
return SigmaOpBase.__new__(cls, *args)
|
283 |
+
|
284 |
+
def _eval_commutator_SigmaX(self, other, **hints):
|
285 |
+
if self.name != other.name:
|
286 |
+
return S.Zero
|
287 |
+
else:
|
288 |
+
return -SigmaZ(self.name)
|
289 |
+
|
290 |
+
def _eval_commutator_SigmaY(self, other, **hints):
|
291 |
+
if self.name != other.name:
|
292 |
+
return S.Zero
|
293 |
+
else:
|
294 |
+
return I * SigmaZ(self.name)
|
295 |
+
|
296 |
+
def _eval_commutator_SigmaZ(self, other, **hints):
|
297 |
+
return 2 * self
|
298 |
+
|
299 |
+
def _eval_commutator_SigmaMinus(self, other, **hints):
|
300 |
+
return SigmaZ(self.name)
|
301 |
+
|
302 |
+
def _eval_anticommutator_SigmaZ(self, other, **hints):
|
303 |
+
return S.Zero
|
304 |
+
|
305 |
+
def _eval_anticommutator_SigmaX(self, other, **hints):
|
306 |
+
return S.One
|
307 |
+
|
308 |
+
def _eval_anticommutator_SigmaY(self, other, **hints):
|
309 |
+
return I * S.NegativeOne
|
310 |
+
|
311 |
+
def _eval_anticommutator_SigmaPlus(self, other, **hints):
|
312 |
+
return S.One
|
313 |
+
|
314 |
+
def _eval_adjoint(self):
|
315 |
+
return SigmaPlus(self.name)
|
316 |
+
|
317 |
+
def _eval_power(self, e):
|
318 |
+
if e.is_Integer and e.is_positive:
|
319 |
+
return S.Zero
|
320 |
+
|
321 |
+
def _print_contents_latex(self, printer, *args):
|
322 |
+
if self.use_name:
|
323 |
+
return r'{\sigma_-^{(%s)}}' % str(self.name)
|
324 |
+
else:
|
325 |
+
return r'{\sigma_-}'
|
326 |
+
|
327 |
+
def _print_contents(self, printer, *args):
|
328 |
+
return 'SigmaMinus()'
|
329 |
+
|
330 |
+
def _represent_default_basis(self, **options):
|
331 |
+
format = options.get('format', 'sympy')
|
332 |
+
if format == 'sympy':
|
333 |
+
return Matrix([[0, 0], [1, 0]])
|
334 |
+
else:
|
335 |
+
raise NotImplementedError('Representation in format ' +
|
336 |
+
format + ' not implemented.')
|
337 |
+
|
338 |
+
|
339 |
+
class SigmaPlus(SigmaOpBase):
|
340 |
+
"""Pauli sigma plus operator
|
341 |
+
|
342 |
+
Parameters
|
343 |
+
==========
|
344 |
+
|
345 |
+
name : str
|
346 |
+
An optional string that labels the operator. Pauli operators with
|
347 |
+
different names commute.
|
348 |
+
|
349 |
+
Examples
|
350 |
+
========
|
351 |
+
|
352 |
+
>>> from sympy.physics.quantum import represent, Dagger
|
353 |
+
>>> from sympy.physics.quantum.pauli import SigmaPlus
|
354 |
+
>>> sp = SigmaPlus()
|
355 |
+
>>> sp
|
356 |
+
SigmaPlus()
|
357 |
+
>>> Dagger(sp)
|
358 |
+
SigmaMinus()
|
359 |
+
>>> represent(sp)
|
360 |
+
Matrix([
|
361 |
+
[0, 1],
|
362 |
+
[0, 0]])
|
363 |
+
"""
|
364 |
+
|
365 |
+
def __new__(cls, *args, **hints):
|
366 |
+
return SigmaOpBase.__new__(cls, *args)
|
367 |
+
|
368 |
+
def _eval_commutator_SigmaX(self, other, **hints):
|
369 |
+
if self.name != other.name:
|
370 |
+
return S.Zero
|
371 |
+
else:
|
372 |
+
return SigmaZ(self.name)
|
373 |
+
|
374 |
+
def _eval_commutator_SigmaY(self, other, **hints):
|
375 |
+
if self.name != other.name:
|
376 |
+
return S.Zero
|
377 |
+
else:
|
378 |
+
return I * SigmaZ(self.name)
|
379 |
+
|
380 |
+
def _eval_commutator_SigmaZ(self, other, **hints):
|
381 |
+
if self.name != other.name:
|
382 |
+
return S.Zero
|
383 |
+
else:
|
384 |
+
return -2 * self
|
385 |
+
|
386 |
+
def _eval_commutator_SigmaMinus(self, other, **hints):
|
387 |
+
return SigmaZ(self.name)
|
388 |
+
|
389 |
+
def _eval_anticommutator_SigmaZ(self, other, **hints):
|
390 |
+
return S.Zero
|
391 |
+
|
392 |
+
def _eval_anticommutator_SigmaX(self, other, **hints):
|
393 |
+
return S.One
|
394 |
+
|
395 |
+
def _eval_anticommutator_SigmaY(self, other, **hints):
|
396 |
+
return I
|
397 |
+
|
398 |
+
def _eval_anticommutator_SigmaMinus(self, other, **hints):
|
399 |
+
return S.One
|
400 |
+
|
401 |
+
def _eval_adjoint(self):
|
402 |
+
return SigmaMinus(self.name)
|
403 |
+
|
404 |
+
def _eval_mul(self, other):
|
405 |
+
return self * other
|
406 |
+
|
407 |
+
def _eval_power(self, e):
|
408 |
+
if e.is_Integer and e.is_positive:
|
409 |
+
return S.Zero
|
410 |
+
|
411 |
+
def _print_contents_latex(self, printer, *args):
|
412 |
+
if self.use_name:
|
413 |
+
return r'{\sigma_+^{(%s)}}' % str(self.name)
|
414 |
+
else:
|
415 |
+
return r'{\sigma_+}'
|
416 |
+
|
417 |
+
def _print_contents(self, printer, *args):
|
418 |
+
return 'SigmaPlus()'
|
419 |
+
|
420 |
+
def _represent_default_basis(self, **options):
|
421 |
+
format = options.get('format', 'sympy')
|
422 |
+
if format == 'sympy':
|
423 |
+
return Matrix([[0, 1], [0, 0]])
|
424 |
+
else:
|
425 |
+
raise NotImplementedError('Representation in format ' +
|
426 |
+
format + ' not implemented.')
|
427 |
+
|
428 |
+
|
429 |
+
class SigmaZKet(Ket):
|
430 |
+
"""Ket for a two-level system quantum system.
|
431 |
+
|
432 |
+
Parameters
|
433 |
+
==========
|
434 |
+
|
435 |
+
n : Number
|
436 |
+
The state number (0 or 1).
|
437 |
+
|
438 |
+
"""
|
439 |
+
|
440 |
+
def __new__(cls, n):
|
441 |
+
if n not in (0, 1):
|
442 |
+
raise ValueError("n must be 0 or 1")
|
443 |
+
return Ket.__new__(cls, n)
|
444 |
+
|
445 |
+
@property
|
446 |
+
def n(self):
|
447 |
+
return self.label[0]
|
448 |
+
|
449 |
+
@classmethod
|
450 |
+
def dual_class(self):
|
451 |
+
return SigmaZBra
|
452 |
+
|
453 |
+
@classmethod
|
454 |
+
def _eval_hilbert_space(cls, label):
|
455 |
+
return ComplexSpace(2)
|
456 |
+
|
457 |
+
def _eval_innerproduct_SigmaZBra(self, bra, **hints):
|
458 |
+
return KroneckerDelta(self.n, bra.n)
|
459 |
+
|
460 |
+
def _apply_from_right_to_SigmaZ(self, op, **options):
|
461 |
+
if self.n == 0:
|
462 |
+
return self
|
463 |
+
else:
|
464 |
+
return S.NegativeOne * self
|
465 |
+
|
466 |
+
def _apply_from_right_to_SigmaX(self, op, **options):
|
467 |
+
return SigmaZKet(1) if self.n == 0 else SigmaZKet(0)
|
468 |
+
|
469 |
+
def _apply_from_right_to_SigmaY(self, op, **options):
|
470 |
+
return I * SigmaZKet(1) if self.n == 0 else (-I) * SigmaZKet(0)
|
471 |
+
|
472 |
+
def _apply_from_right_to_SigmaMinus(self, op, **options):
|
473 |
+
if self.n == 0:
|
474 |
+
return SigmaZKet(1)
|
475 |
+
else:
|
476 |
+
return S.Zero
|
477 |
+
|
478 |
+
def _apply_from_right_to_SigmaPlus(self, op, **options):
|
479 |
+
if self.n == 0:
|
480 |
+
return S.Zero
|
481 |
+
else:
|
482 |
+
return SigmaZKet(0)
|
483 |
+
|
484 |
+
def _represent_default_basis(self, **options):
|
485 |
+
format = options.get('format', 'sympy')
|
486 |
+
if format == 'sympy':
|
487 |
+
return Matrix([[1], [0]]) if self.n == 0 else Matrix([[0], [1]])
|
488 |
+
else:
|
489 |
+
raise NotImplementedError('Representation in format ' +
|
490 |
+
format + ' not implemented.')
|
491 |
+
|
492 |
+
|
493 |
+
class SigmaZBra(Bra):
|
494 |
+
"""Bra for a two-level quantum system.
|
495 |
+
|
496 |
+
Parameters
|
497 |
+
==========
|
498 |
+
|
499 |
+
n : Number
|
500 |
+
The state number (0 or 1).
|
501 |
+
|
502 |
+
"""
|
503 |
+
|
504 |
+
def __new__(cls, n):
|
505 |
+
if n not in (0, 1):
|
506 |
+
raise ValueError("n must be 0 or 1")
|
507 |
+
return Bra.__new__(cls, n)
|
508 |
+
|
509 |
+
@property
|
510 |
+
def n(self):
|
511 |
+
return self.label[0]
|
512 |
+
|
513 |
+
@classmethod
|
514 |
+
def dual_class(self):
|
515 |
+
return SigmaZKet
|
516 |
+
|
517 |
+
|
518 |
+
def _qsimplify_pauli_product(a, b):
|
519 |
+
"""
|
520 |
+
Internal helper function for simplifying products of Pauli operators.
|
521 |
+
"""
|
522 |
+
if not (isinstance(a, SigmaOpBase) and isinstance(b, SigmaOpBase)):
|
523 |
+
return Mul(a, b)
|
524 |
+
|
525 |
+
if a.name != b.name:
|
526 |
+
# Pauli matrices with different labels commute; sort by name
|
527 |
+
if a.name < b.name:
|
528 |
+
return Mul(a, b)
|
529 |
+
else:
|
530 |
+
return Mul(b, a)
|
531 |
+
|
532 |
+
elif isinstance(a, SigmaX):
|
533 |
+
|
534 |
+
if isinstance(b, SigmaX):
|
535 |
+
return S.One
|
536 |
+
|
537 |
+
if isinstance(b, SigmaY):
|
538 |
+
return I * SigmaZ(a.name)
|
539 |
+
|
540 |
+
if isinstance(b, SigmaZ):
|
541 |
+
return - I * SigmaY(a.name)
|
542 |
+
|
543 |
+
if isinstance(b, SigmaMinus):
|
544 |
+
return (S.Half + SigmaZ(a.name)/2)
|
545 |
+
|
546 |
+
if isinstance(b, SigmaPlus):
|
547 |
+
return (S.Half - SigmaZ(a.name)/2)
|
548 |
+
|
549 |
+
elif isinstance(a, SigmaY):
|
550 |
+
|
551 |
+
if isinstance(b, SigmaX):
|
552 |
+
return - I * SigmaZ(a.name)
|
553 |
+
|
554 |
+
if isinstance(b, SigmaY):
|
555 |
+
return S.One
|
556 |
+
|
557 |
+
if isinstance(b, SigmaZ):
|
558 |
+
return I * SigmaX(a.name)
|
559 |
+
|
560 |
+
if isinstance(b, SigmaMinus):
|
561 |
+
return -I * (S.One + SigmaZ(a.name))/2
|
562 |
+
|
563 |
+
if isinstance(b, SigmaPlus):
|
564 |
+
return I * (S.One - SigmaZ(a.name))/2
|
565 |
+
|
566 |
+
elif isinstance(a, SigmaZ):
|
567 |
+
|
568 |
+
if isinstance(b, SigmaX):
|
569 |
+
return I * SigmaY(a.name)
|
570 |
+
|
571 |
+
if isinstance(b, SigmaY):
|
572 |
+
return - I * SigmaX(a.name)
|
573 |
+
|
574 |
+
if isinstance(b, SigmaZ):
|
575 |
+
return S.One
|
576 |
+
|
577 |
+
if isinstance(b, SigmaMinus):
|
578 |
+
return - SigmaMinus(a.name)
|
579 |
+
|
580 |
+
if isinstance(b, SigmaPlus):
|
581 |
+
return SigmaPlus(a.name)
|
582 |
+
|
583 |
+
elif isinstance(a, SigmaMinus):
|
584 |
+
|
585 |
+
if isinstance(b, SigmaX):
|
586 |
+
return (S.One - SigmaZ(a.name))/2
|
587 |
+
|
588 |
+
if isinstance(b, SigmaY):
|
589 |
+
return - I * (S.One - SigmaZ(a.name))/2
|
590 |
+
|
591 |
+
if isinstance(b, SigmaZ):
|
592 |
+
# (SigmaX(a.name) - I * SigmaY(a.name))/2
|
593 |
+
return SigmaMinus(b.name)
|
594 |
+
|
595 |
+
if isinstance(b, SigmaMinus):
|
596 |
+
return S.Zero
|
597 |
+
|
598 |
+
if isinstance(b, SigmaPlus):
|
599 |
+
return S.Half - SigmaZ(a.name)/2
|
600 |
+
|
601 |
+
elif isinstance(a, SigmaPlus):
|
602 |
+
|
603 |
+
if isinstance(b, SigmaX):
|
604 |
+
return (S.One + SigmaZ(a.name))/2
|
605 |
+
|
606 |
+
if isinstance(b, SigmaY):
|
607 |
+
return I * (S.One + SigmaZ(a.name))/2
|
608 |
+
|
609 |
+
if isinstance(b, SigmaZ):
|
610 |
+
#-(SigmaX(a.name) + I * SigmaY(a.name))/2
|
611 |
+
return -SigmaPlus(a.name)
|
612 |
+
|
613 |
+
if isinstance(b, SigmaMinus):
|
614 |
+
return (S.One + SigmaZ(a.name))/2
|
615 |
+
|
616 |
+
if isinstance(b, SigmaPlus):
|
617 |
+
return S.Zero
|
618 |
+
|
619 |
+
else:
|
620 |
+
return a * b
|
621 |
+
|
622 |
+
|
623 |
+
def qsimplify_pauli(e):
|
624 |
+
"""
|
625 |
+
Simplify an expression that includes products of pauli operators.
|
626 |
+
|
627 |
+
Parameters
|
628 |
+
==========
|
629 |
+
|
630 |
+
e : expression
|
631 |
+
An expression that contains products of Pauli operators that is
|
632 |
+
to be simplified.
|
633 |
+
|
634 |
+
Examples
|
635 |
+
========
|
636 |
+
|
637 |
+
>>> from sympy.physics.quantum.pauli import SigmaX, SigmaY
|
638 |
+
>>> from sympy.physics.quantum.pauli import qsimplify_pauli
|
639 |
+
>>> sx, sy = SigmaX(), SigmaY()
|
640 |
+
>>> sx * sy
|
641 |
+
SigmaX()*SigmaY()
|
642 |
+
>>> qsimplify_pauli(sx * sy)
|
643 |
+
I*SigmaZ()
|
644 |
+
"""
|
645 |
+
if isinstance(e, Operator):
|
646 |
+
return e
|
647 |
+
|
648 |
+
if isinstance(e, (Add, Pow, exp)):
|
649 |
+
t = type(e)
|
650 |
+
return t(*(qsimplify_pauli(arg) for arg in e.args))
|
651 |
+
|
652 |
+
if isinstance(e, Mul):
|
653 |
+
|
654 |
+
c, nc = e.args_cnc()
|
655 |
+
|
656 |
+
nc_s = []
|
657 |
+
while nc:
|
658 |
+
curr = nc.pop(0)
|
659 |
+
|
660 |
+
while (len(nc) and
|
661 |
+
isinstance(curr, SigmaOpBase) and
|
662 |
+
isinstance(nc[0], SigmaOpBase) and
|
663 |
+
curr.name == nc[0].name):
|
664 |
+
|
665 |
+
x = nc.pop(0)
|
666 |
+
y = _qsimplify_pauli_product(curr, x)
|
667 |
+
c1, nc1 = y.args_cnc()
|
668 |
+
curr = Mul(*nc1)
|
669 |
+
c = c + c1
|
670 |
+
|
671 |
+
nc_s.append(curr)
|
672 |
+
|
673 |
+
return Mul(*c) * Mul(*nc_s)
|
674 |
+
|
675 |
+
return e
|
venv/lib/python3.10/site-packages/sympy/physics/quantum/piab.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""1D quantum particle in a box."""
|
2 |
+
|
3 |
+
from sympy.core.numbers import pi
|
4 |
+
from sympy.core.singleton import S
|
5 |
+
from sympy.core.symbol import Symbol
|
6 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
7 |
+
from sympy.functions.elementary.trigonometric import sin
|
8 |
+
from sympy.sets.sets import Interval
|
9 |
+
|
10 |
+
from sympy.physics.quantum.operator import HermitianOperator
|
11 |
+
from sympy.physics.quantum.state import Ket, Bra
|
12 |
+
from sympy.physics.quantum.constants import hbar
|
13 |
+
from sympy.functions.special.tensor_functions import KroneckerDelta
|
14 |
+
from sympy.physics.quantum.hilbert import L2
|
15 |
+
|
16 |
+
m = Symbol('m')
|
17 |
+
L = Symbol('L')
|
18 |
+
|
19 |
+
|
20 |
+
__all__ = [
|
21 |
+
'PIABHamiltonian',
|
22 |
+
'PIABKet',
|
23 |
+
'PIABBra'
|
24 |
+
]
|
25 |
+
|
26 |
+
|
27 |
+
class PIABHamiltonian(HermitianOperator):
|
28 |
+
"""Particle in a box Hamiltonian operator."""
|
29 |
+
|
30 |
+
@classmethod
|
31 |
+
def _eval_hilbert_space(cls, label):
|
32 |
+
return L2(Interval(S.NegativeInfinity, S.Infinity))
|
33 |
+
|
34 |
+
def _apply_operator_PIABKet(self, ket, **options):
|
35 |
+
n = ket.label[0]
|
36 |
+
return (n**2*pi**2*hbar**2)/(2*m*L**2)*ket
|
37 |
+
|
38 |
+
|
39 |
+
class PIABKet(Ket):
|
40 |
+
"""Particle in a box eigenket."""
|
41 |
+
|
42 |
+
@classmethod
|
43 |
+
def _eval_hilbert_space(cls, args):
|
44 |
+
return L2(Interval(S.NegativeInfinity, S.Infinity))
|
45 |
+
|
46 |
+
@classmethod
|
47 |
+
def dual_class(self):
|
48 |
+
return PIABBra
|
49 |
+
|
50 |
+
def _represent_default_basis(self, **options):
|
51 |
+
return self._represent_XOp(None, **options)
|
52 |
+
|
53 |
+
def _represent_XOp(self, basis, **options):
|
54 |
+
x = Symbol('x')
|
55 |
+
n = Symbol('n')
|
56 |
+
subs_info = options.get('subs', {})
|
57 |
+
return sqrt(2/L)*sin(n*pi*x/L).subs(subs_info)
|
58 |
+
|
59 |
+
def _eval_innerproduct_PIABBra(self, bra):
|
60 |
+
return KroneckerDelta(bra.label[0], self.label[0])
|
61 |
+
|
62 |
+
|
63 |
+
class PIABBra(Bra):
|
64 |
+
"""Particle in a box eigenbra."""
|
65 |
+
|
66 |
+
@classmethod
|
67 |
+
def _eval_hilbert_space(cls, label):
|
68 |
+
return L2(Interval(S.NegativeInfinity, S.Infinity))
|
69 |
+
|
70 |
+
@classmethod
|
71 |
+
def dual_class(self):
|
72 |
+
return PIABKet
|
venv/lib/python3.10/site-packages/sympy/physics/quantum/qapply.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Logic for applying operators to states.
|
2 |
+
|
3 |
+
Todo:
|
4 |
+
* Sometimes the final result needs to be expanded, we should do this by hand.
|
5 |
+
"""
|
6 |
+
|
7 |
+
from sympy.core.add import Add
|
8 |
+
from sympy.core.mul import Mul
|
9 |
+
from sympy.core.power import Pow
|
10 |
+
from sympy.core.singleton import S
|
11 |
+
from sympy.core.sympify import sympify
|
12 |
+
|
13 |
+
from sympy.physics.quantum.anticommutator import AntiCommutator
|
14 |
+
from sympy.physics.quantum.commutator import Commutator
|
15 |
+
from sympy.physics.quantum.dagger import Dagger
|
16 |
+
from sympy.physics.quantum.innerproduct import InnerProduct
|
17 |
+
from sympy.physics.quantum.operator import OuterProduct, Operator
|
18 |
+
from sympy.physics.quantum.state import State, KetBase, BraBase, Wavefunction
|
19 |
+
from sympy.physics.quantum.tensorproduct import TensorProduct
|
20 |
+
|
21 |
+
__all__ = [
|
22 |
+
'qapply'
|
23 |
+
]
|
24 |
+
|
25 |
+
|
26 |
+
#-----------------------------------------------------------------------------
|
27 |
+
# Main code
|
28 |
+
#-----------------------------------------------------------------------------
|
29 |
+
|
30 |
+
def qapply(e, **options):
|
31 |
+
"""Apply operators to states in a quantum expression.
|
32 |
+
|
33 |
+
Parameters
|
34 |
+
==========
|
35 |
+
|
36 |
+
e : Expr
|
37 |
+
The expression containing operators and states. This expression tree
|
38 |
+
will be walked to find operators acting on states symbolically.
|
39 |
+
options : dict
|
40 |
+
A dict of key/value pairs that determine how the operator actions
|
41 |
+
are carried out.
|
42 |
+
|
43 |
+
The following options are valid:
|
44 |
+
|
45 |
+
* ``dagger``: try to apply Dagger operators to the left
|
46 |
+
(default: False).
|
47 |
+
* ``ip_doit``: call ``.doit()`` in inner products when they are
|
48 |
+
encountered (default: True).
|
49 |
+
|
50 |
+
Returns
|
51 |
+
=======
|
52 |
+
|
53 |
+
e : Expr
|
54 |
+
The original expression, but with the operators applied to states.
|
55 |
+
|
56 |
+
Examples
|
57 |
+
========
|
58 |
+
|
59 |
+
>>> from sympy.physics.quantum import qapply, Ket, Bra
|
60 |
+
>>> b = Bra('b')
|
61 |
+
>>> k = Ket('k')
|
62 |
+
>>> A = k * b
|
63 |
+
>>> A
|
64 |
+
|k><b|
|
65 |
+
>>> qapply(A * b.dual / (b * b.dual))
|
66 |
+
|k>
|
67 |
+
>>> qapply(k.dual * A / (k.dual * k), dagger=True)
|
68 |
+
<b|
|
69 |
+
>>> qapply(k.dual * A / (k.dual * k))
|
70 |
+
<k|*|k><b|/<k|k>
|
71 |
+
"""
|
72 |
+
from sympy.physics.quantum.density import Density
|
73 |
+
|
74 |
+
dagger = options.get('dagger', False)
|
75 |
+
|
76 |
+
if e == 0:
|
77 |
+
return S.Zero
|
78 |
+
|
79 |
+
# This may be a bit aggressive but ensures that everything gets expanded
|
80 |
+
# to its simplest form before trying to apply operators. This includes
|
81 |
+
# things like (A+B+C)*|a> and A*(|a>+|b>) and all Commutators and
|
82 |
+
# TensorProducts. The only problem with this is that if we can't apply
|
83 |
+
# all the Operators, we have just expanded everything.
|
84 |
+
# TODO: don't expand the scalars in front of each Mul.
|
85 |
+
e = e.expand(commutator=True, tensorproduct=True)
|
86 |
+
|
87 |
+
# If we just have a raw ket, return it.
|
88 |
+
if isinstance(e, KetBase):
|
89 |
+
return e
|
90 |
+
|
91 |
+
# We have an Add(a, b, c, ...) and compute
|
92 |
+
# Add(qapply(a), qapply(b), ...)
|
93 |
+
elif isinstance(e, Add):
|
94 |
+
result = 0
|
95 |
+
for arg in e.args:
|
96 |
+
result += qapply(arg, **options)
|
97 |
+
return result.expand()
|
98 |
+
|
99 |
+
# For a Density operator call qapply on its state
|
100 |
+
elif isinstance(e, Density):
|
101 |
+
new_args = [(qapply(state, **options), prob) for (state,
|
102 |
+
prob) in e.args]
|
103 |
+
return Density(*new_args)
|
104 |
+
|
105 |
+
# For a raw TensorProduct, call qapply on its args.
|
106 |
+
elif isinstance(e, TensorProduct):
|
107 |
+
return TensorProduct(*[qapply(t, **options) for t in e.args])
|
108 |
+
|
109 |
+
# For a Pow, call qapply on its base.
|
110 |
+
elif isinstance(e, Pow):
|
111 |
+
return qapply(e.base, **options)**e.exp
|
112 |
+
|
113 |
+
# We have a Mul where there might be actual operators to apply to kets.
|
114 |
+
elif isinstance(e, Mul):
|
115 |
+
c_part, nc_part = e.args_cnc()
|
116 |
+
c_mul = Mul(*c_part)
|
117 |
+
nc_mul = Mul(*nc_part)
|
118 |
+
if isinstance(nc_mul, Mul):
|
119 |
+
result = c_mul*qapply_Mul(nc_mul, **options)
|
120 |
+
else:
|
121 |
+
result = c_mul*qapply(nc_mul, **options)
|
122 |
+
if result == e and dagger:
|
123 |
+
return Dagger(qapply_Mul(Dagger(e), **options))
|
124 |
+
else:
|
125 |
+
return result
|
126 |
+
|
127 |
+
# In all other cases (State, Operator, Pow, Commutator, InnerProduct,
|
128 |
+
# OuterProduct) we won't ever have operators to apply to kets.
|
129 |
+
else:
|
130 |
+
return e
|
131 |
+
|
132 |
+
|
133 |
+
def qapply_Mul(e, **options):
|
134 |
+
|
135 |
+
ip_doit = options.get('ip_doit', True)
|
136 |
+
|
137 |
+
args = list(e.args)
|
138 |
+
|
139 |
+
# If we only have 0 or 1 args, we have nothing to do and return.
|
140 |
+
if len(args) <= 1 or not isinstance(e, Mul):
|
141 |
+
return e
|
142 |
+
rhs = args.pop()
|
143 |
+
lhs = args.pop()
|
144 |
+
|
145 |
+
# Make sure we have two non-commutative objects before proceeding.
|
146 |
+
if (not isinstance(rhs, Wavefunction) and sympify(rhs).is_commutative) or \
|
147 |
+
(not isinstance(lhs, Wavefunction) and sympify(lhs).is_commutative):
|
148 |
+
return e
|
149 |
+
|
150 |
+
# For a Pow with an integer exponent, apply one of them and reduce the
|
151 |
+
# exponent by one.
|
152 |
+
if isinstance(lhs, Pow) and lhs.exp.is_Integer:
|
153 |
+
args.append(lhs.base**(lhs.exp - 1))
|
154 |
+
lhs = lhs.base
|
155 |
+
|
156 |
+
# Pull OuterProduct apart
|
157 |
+
if isinstance(lhs, OuterProduct):
|
158 |
+
args.append(lhs.ket)
|
159 |
+
lhs = lhs.bra
|
160 |
+
|
161 |
+
# Call .doit() on Commutator/AntiCommutator.
|
162 |
+
if isinstance(lhs, (Commutator, AntiCommutator)):
|
163 |
+
comm = lhs.doit()
|
164 |
+
if isinstance(comm, Add):
|
165 |
+
return qapply(
|
166 |
+
e.func(*(args + [comm.args[0], rhs])) +
|
167 |
+
e.func(*(args + [comm.args[1], rhs])),
|
168 |
+
**options
|
169 |
+
)
|
170 |
+
else:
|
171 |
+
return qapply(e.func(*args)*comm*rhs, **options)
|
172 |
+
|
173 |
+
# Apply tensor products of operators to states
|
174 |
+
if isinstance(lhs, TensorProduct) and all(isinstance(arg, (Operator, State, Mul, Pow)) or arg == 1 for arg in lhs.args) and \
|
175 |
+
isinstance(rhs, TensorProduct) and all(isinstance(arg, (Operator, State, Mul, Pow)) or arg == 1 for arg in rhs.args) and \
|
176 |
+
len(lhs.args) == len(rhs.args):
|
177 |
+
result = TensorProduct(*[qapply(lhs.args[n]*rhs.args[n], **options) for n in range(len(lhs.args))]).expand(tensorproduct=True)
|
178 |
+
return qapply_Mul(e.func(*args), **options)*result
|
179 |
+
|
180 |
+
# Now try to actually apply the operator and build an inner product.
|
181 |
+
try:
|
182 |
+
result = lhs._apply_operator(rhs, **options)
|
183 |
+
except (NotImplementedError, AttributeError):
|
184 |
+
try:
|
185 |
+
result = rhs._apply_from_right_to(lhs, **options)
|
186 |
+
except (NotImplementedError, AttributeError):
|
187 |
+
if isinstance(lhs, BraBase) and isinstance(rhs, KetBase):
|
188 |
+
result = InnerProduct(lhs, rhs)
|
189 |
+
if ip_doit:
|
190 |
+
result = result.doit()
|
191 |
+
else:
|
192 |
+
result = None
|
193 |
+
|
194 |
+
# TODO: I may need to expand before returning the final result.
|
195 |
+
if result == 0:
|
196 |
+
return S.Zero
|
197 |
+
elif result is None:
|
198 |
+
if len(args) == 0:
|
199 |
+
# We had two args to begin with so args=[].
|
200 |
+
return e
|
201 |
+
else:
|
202 |
+
return qapply_Mul(e.func(*(args + [lhs])), **options)*rhs
|
203 |
+
elif isinstance(result, InnerProduct):
|
204 |
+
return result*qapply_Mul(e.func(*args), **options)
|
205 |
+
else: # result is a scalar times a Mul, Add or TensorProduct
|
206 |
+
return qapply(e.func(*args)*result, **options)
|
venv/lib/python3.10/site-packages/sympy/physics/quantum/qexpr.py
ADDED
@@ -0,0 +1,413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.expr import Expr
|
2 |
+
from sympy.core.symbol import Symbol
|
3 |
+
from sympy.core.sympify import sympify
|
4 |
+
from sympy.matrices.dense import Matrix
|
5 |
+
from sympy.printing.pretty.stringpict import prettyForm
|
6 |
+
from sympy.core.containers import Tuple
|
7 |
+
from sympy.utilities.iterables import is_sequence
|
8 |
+
|
9 |
+
from sympy.physics.quantum.dagger import Dagger
|
10 |
+
from sympy.physics.quantum.matrixutils import (
|
11 |
+
numpy_ndarray, scipy_sparse_matrix,
|
12 |
+
to_sympy, to_numpy, to_scipy_sparse
|
13 |
+
)
|
14 |
+
|
15 |
+
__all__ = [
|
16 |
+
'QuantumError',
|
17 |
+
'QExpr'
|
18 |
+
]
|
19 |
+
|
20 |
+
|
21 |
+
#-----------------------------------------------------------------------------
|
22 |
+
# Error handling
|
23 |
+
#-----------------------------------------------------------------------------
|
24 |
+
|
25 |
+
class QuantumError(Exception):
|
26 |
+
pass
|
27 |
+
|
28 |
+
|
29 |
+
def _qsympify_sequence(seq):
|
30 |
+
"""Convert elements of a sequence to standard form.
|
31 |
+
|
32 |
+
This is like sympify, but it performs special logic for arguments passed
|
33 |
+
to QExpr. The following conversions are done:
|
34 |
+
|
35 |
+
* (list, tuple, Tuple) => _qsympify_sequence each element and convert
|
36 |
+
sequence to a Tuple.
|
37 |
+
* basestring => Symbol
|
38 |
+
* Matrix => Matrix
|
39 |
+
* other => sympify
|
40 |
+
|
41 |
+
Strings are passed to Symbol, not sympify to make sure that variables like
|
42 |
+
'pi' are kept as Symbols, not the SymPy built-in number subclasses.
|
43 |
+
|
44 |
+
Examples
|
45 |
+
========
|
46 |
+
|
47 |
+
>>> from sympy.physics.quantum.qexpr import _qsympify_sequence
|
48 |
+
>>> _qsympify_sequence((1,2,[3,4,[1,]]))
|
49 |
+
(1, 2, (3, 4, (1,)))
|
50 |
+
|
51 |
+
"""
|
52 |
+
|
53 |
+
return tuple(__qsympify_sequence_helper(seq))
|
54 |
+
|
55 |
+
|
56 |
+
def __qsympify_sequence_helper(seq):
|
57 |
+
"""
|
58 |
+
Helper function for _qsympify_sequence
|
59 |
+
This function does the actual work.
|
60 |
+
"""
|
61 |
+
#base case. If not a list, do Sympification
|
62 |
+
if not is_sequence(seq):
|
63 |
+
if isinstance(seq, Matrix):
|
64 |
+
return seq
|
65 |
+
elif isinstance(seq, str):
|
66 |
+
return Symbol(seq)
|
67 |
+
else:
|
68 |
+
return sympify(seq)
|
69 |
+
|
70 |
+
# base condition, when seq is QExpr and also
|
71 |
+
# is iterable.
|
72 |
+
if isinstance(seq, QExpr):
|
73 |
+
return seq
|
74 |
+
|
75 |
+
#if list, recurse on each item in the list
|
76 |
+
result = [__qsympify_sequence_helper(item) for item in seq]
|
77 |
+
|
78 |
+
return Tuple(*result)
|
79 |
+
|
80 |
+
|
81 |
+
#-----------------------------------------------------------------------------
|
82 |
+
# Basic Quantum Expression from which all objects descend
|
83 |
+
#-----------------------------------------------------------------------------
|
84 |
+
|
85 |
+
class QExpr(Expr):
|
86 |
+
"""A base class for all quantum object like operators and states."""
|
87 |
+
|
88 |
+
# In sympy, slots are for instance attributes that are computed
|
89 |
+
# dynamically by the __new__ method. They are not part of args, but they
|
90 |
+
# derive from args.
|
91 |
+
|
92 |
+
# The Hilbert space a quantum Object belongs to.
|
93 |
+
__slots__ = ('hilbert_space', )
|
94 |
+
|
95 |
+
is_commutative = False
|
96 |
+
|
97 |
+
# The separator used in printing the label.
|
98 |
+
_label_separator = ''
|
99 |
+
|
100 |
+
@property
|
101 |
+
def free_symbols(self):
|
102 |
+
return {self}
|
103 |
+
|
104 |
+
def __new__(cls, *args, **kwargs):
|
105 |
+
"""Construct a new quantum object.
|
106 |
+
|
107 |
+
Parameters
|
108 |
+
==========
|
109 |
+
|
110 |
+
args : tuple
|
111 |
+
The list of numbers or parameters that uniquely specify the
|
112 |
+
quantum object. For a state, this will be its symbol or its
|
113 |
+
set of quantum numbers.
|
114 |
+
|
115 |
+
Examples
|
116 |
+
========
|
117 |
+
|
118 |
+
>>> from sympy.physics.quantum.qexpr import QExpr
|
119 |
+
>>> q = QExpr(0)
|
120 |
+
>>> q
|
121 |
+
0
|
122 |
+
>>> q.label
|
123 |
+
(0,)
|
124 |
+
>>> q.hilbert_space
|
125 |
+
H
|
126 |
+
>>> q.args
|
127 |
+
(0,)
|
128 |
+
>>> q.is_commutative
|
129 |
+
False
|
130 |
+
"""
|
131 |
+
|
132 |
+
# First compute args and call Expr.__new__ to create the instance
|
133 |
+
args = cls._eval_args(args, **kwargs)
|
134 |
+
if len(args) == 0:
|
135 |
+
args = cls._eval_args(tuple(cls.default_args()), **kwargs)
|
136 |
+
inst = Expr.__new__(cls, *args)
|
137 |
+
# Now set the slots on the instance
|
138 |
+
inst.hilbert_space = cls._eval_hilbert_space(args)
|
139 |
+
return inst
|
140 |
+
|
141 |
+
@classmethod
|
142 |
+
def _new_rawargs(cls, hilbert_space, *args, **old_assumptions):
|
143 |
+
"""Create new instance of this class with hilbert_space and args.
|
144 |
+
|
145 |
+
This is used to bypass the more complex logic in the ``__new__``
|
146 |
+
method in cases where you already have the exact ``hilbert_space``
|
147 |
+
and ``args``. This should be used when you are positive these
|
148 |
+
arguments are valid, in their final, proper form and want to optimize
|
149 |
+
the creation of the object.
|
150 |
+
"""
|
151 |
+
|
152 |
+
obj = Expr.__new__(cls, *args, **old_assumptions)
|
153 |
+
obj.hilbert_space = hilbert_space
|
154 |
+
return obj
|
155 |
+
|
156 |
+
#-------------------------------------------------------------------------
|
157 |
+
# Properties
|
158 |
+
#-------------------------------------------------------------------------
|
159 |
+
|
160 |
+
@property
|
161 |
+
def label(self):
|
162 |
+
"""The label is the unique set of identifiers for the object.
|
163 |
+
|
164 |
+
Usually, this will include all of the information about the state
|
165 |
+
*except* the time (in the case of time-dependent objects).
|
166 |
+
|
167 |
+
This must be a tuple, rather than a Tuple.
|
168 |
+
"""
|
169 |
+
if len(self.args) == 0: # If there is no label specified, return the default
|
170 |
+
return self._eval_args(list(self.default_args()))
|
171 |
+
else:
|
172 |
+
return self.args
|
173 |
+
|
174 |
+
@property
|
175 |
+
def is_symbolic(self):
|
176 |
+
return True
|
177 |
+
|
178 |
+
@classmethod
|
179 |
+
def default_args(self):
|
180 |
+
"""If no arguments are specified, then this will return a default set
|
181 |
+
of arguments to be run through the constructor.
|
182 |
+
|
183 |
+
NOTE: Any classes that override this MUST return a tuple of arguments.
|
184 |
+
Should be overridden by subclasses to specify the default arguments for kets and operators
|
185 |
+
"""
|
186 |
+
raise NotImplementedError("No default arguments for this class!")
|
187 |
+
|
188 |
+
#-------------------------------------------------------------------------
|
189 |
+
# _eval_* methods
|
190 |
+
#-------------------------------------------------------------------------
|
191 |
+
|
192 |
+
def _eval_adjoint(self):
|
193 |
+
obj = Expr._eval_adjoint(self)
|
194 |
+
if obj is None:
|
195 |
+
obj = Expr.__new__(Dagger, self)
|
196 |
+
if isinstance(obj, QExpr):
|
197 |
+
obj.hilbert_space = self.hilbert_space
|
198 |
+
return obj
|
199 |
+
|
200 |
+
@classmethod
|
201 |
+
def _eval_args(cls, args):
|
202 |
+
"""Process the args passed to the __new__ method.
|
203 |
+
|
204 |
+
This simply runs args through _qsympify_sequence.
|
205 |
+
"""
|
206 |
+
return _qsympify_sequence(args)
|
207 |
+
|
208 |
+
@classmethod
|
209 |
+
def _eval_hilbert_space(cls, args):
|
210 |
+
"""Compute the Hilbert space instance from the args.
|
211 |
+
"""
|
212 |
+
from sympy.physics.quantum.hilbert import HilbertSpace
|
213 |
+
return HilbertSpace()
|
214 |
+
|
215 |
+
#-------------------------------------------------------------------------
|
216 |
+
# Printing
|
217 |
+
#-------------------------------------------------------------------------
|
218 |
+
|
219 |
+
# Utilities for printing: these operate on raw SymPy objects
|
220 |
+
|
221 |
+
def _print_sequence(self, seq, sep, printer, *args):
|
222 |
+
result = []
|
223 |
+
for item in seq:
|
224 |
+
result.append(printer._print(item, *args))
|
225 |
+
return sep.join(result)
|
226 |
+
|
227 |
+
def _print_sequence_pretty(self, seq, sep, printer, *args):
|
228 |
+
pform = printer._print(seq[0], *args)
|
229 |
+
for item in seq[1:]:
|
230 |
+
pform = prettyForm(*pform.right(sep))
|
231 |
+
pform = prettyForm(*pform.right(printer._print(item, *args)))
|
232 |
+
return pform
|
233 |
+
|
234 |
+
# Utilities for printing: these operate prettyForm objects
|
235 |
+
|
236 |
+
def _print_subscript_pretty(self, a, b):
|
237 |
+
top = prettyForm(*b.left(' '*a.width()))
|
238 |
+
bot = prettyForm(*a.right(' '*b.width()))
|
239 |
+
return prettyForm(binding=prettyForm.POW, *bot.below(top))
|
240 |
+
|
241 |
+
def _print_superscript_pretty(self, a, b):
|
242 |
+
return a**b
|
243 |
+
|
244 |
+
def _print_parens_pretty(self, pform, left='(', right=')'):
|
245 |
+
return prettyForm(*pform.parens(left=left, right=right))
|
246 |
+
|
247 |
+
# Printing of labels (i.e. args)
|
248 |
+
|
249 |
+
def _print_label(self, printer, *args):
|
250 |
+
"""Prints the label of the QExpr
|
251 |
+
|
252 |
+
This method prints self.label, using self._label_separator to separate
|
253 |
+
the elements. This method should not be overridden, instead, override
|
254 |
+
_print_contents to change printing behavior.
|
255 |
+
"""
|
256 |
+
return self._print_sequence(
|
257 |
+
self.label, self._label_separator, printer, *args
|
258 |
+
)
|
259 |
+
|
260 |
+
def _print_label_repr(self, printer, *args):
|
261 |
+
return self._print_sequence(
|
262 |
+
self.label, ',', printer, *args
|
263 |
+
)
|
264 |
+
|
265 |
+
def _print_label_pretty(self, printer, *args):
|
266 |
+
return self._print_sequence_pretty(
|
267 |
+
self.label, self._label_separator, printer, *args
|
268 |
+
)
|
269 |
+
|
270 |
+
def _print_label_latex(self, printer, *args):
|
271 |
+
return self._print_sequence(
|
272 |
+
self.label, self._label_separator, printer, *args
|
273 |
+
)
|
274 |
+
|
275 |
+
# Printing of contents (default to label)
|
276 |
+
|
277 |
+
def _print_contents(self, printer, *args):
|
278 |
+
"""Printer for contents of QExpr
|
279 |
+
|
280 |
+
Handles the printing of any unique identifying contents of a QExpr to
|
281 |
+
print as its contents, such as any variables or quantum numbers. The
|
282 |
+
default is to print the label, which is almost always the args. This
|
283 |
+
should not include printing of any brackets or parentheses.
|
284 |
+
"""
|
285 |
+
return self._print_label(printer, *args)
|
286 |
+
|
287 |
+
def _print_contents_pretty(self, printer, *args):
|
288 |
+
return self._print_label_pretty(printer, *args)
|
289 |
+
|
290 |
+
def _print_contents_latex(self, printer, *args):
|
291 |
+
return self._print_label_latex(printer, *args)
|
292 |
+
|
293 |
+
# Main printing methods
|
294 |
+
|
295 |
+
def _sympystr(self, printer, *args):
|
296 |
+
"""Default printing behavior of QExpr objects
|
297 |
+
|
298 |
+
Handles the default printing of a QExpr. To add other things to the
|
299 |
+
printing of the object, such as an operator name to operators or
|
300 |
+
brackets to states, the class should override the _print/_pretty/_latex
|
301 |
+
functions directly and make calls to _print_contents where appropriate.
|
302 |
+
This allows things like InnerProduct to easily control its printing the
|
303 |
+
printing of contents.
|
304 |
+
"""
|
305 |
+
return self._print_contents(printer, *args)
|
306 |
+
|
307 |
+
def _sympyrepr(self, printer, *args):
|
308 |
+
classname = self.__class__.__name__
|
309 |
+
label = self._print_label_repr(printer, *args)
|
310 |
+
return '%s(%s)' % (classname, label)
|
311 |
+
|
312 |
+
def _pretty(self, printer, *args):
|
313 |
+
pform = self._print_contents_pretty(printer, *args)
|
314 |
+
return pform
|
315 |
+
|
316 |
+
def _latex(self, printer, *args):
|
317 |
+
return self._print_contents_latex(printer, *args)
|
318 |
+
|
319 |
+
#-------------------------------------------------------------------------
|
320 |
+
# Represent
|
321 |
+
#-------------------------------------------------------------------------
|
322 |
+
|
323 |
+
def _represent_default_basis(self, **options):
|
324 |
+
raise NotImplementedError('This object does not have a default basis')
|
325 |
+
|
326 |
+
def _represent(self, *, basis=None, **options):
|
327 |
+
"""Represent this object in a given basis.
|
328 |
+
|
329 |
+
This method dispatches to the actual methods that perform the
|
330 |
+
representation. Subclases of QExpr should define various methods to
|
331 |
+
determine how the object will be represented in various bases. The
|
332 |
+
format of these methods is::
|
333 |
+
|
334 |
+
def _represent_BasisName(self, basis, **options):
|
335 |
+
|
336 |
+
Thus to define how a quantum object is represented in the basis of
|
337 |
+
the operator Position, you would define::
|
338 |
+
|
339 |
+
def _represent_Position(self, basis, **options):
|
340 |
+
|
341 |
+
Usually, basis object will be instances of Operator subclasses, but
|
342 |
+
there is a chance we will relax this in the future to accommodate other
|
343 |
+
types of basis sets that are not associated with an operator.
|
344 |
+
|
345 |
+
If the ``format`` option is given it can be ("sympy", "numpy",
|
346 |
+
"scipy.sparse"). This will ensure that any matrices that result from
|
347 |
+
representing the object are returned in the appropriate matrix format.
|
348 |
+
|
349 |
+
Parameters
|
350 |
+
==========
|
351 |
+
|
352 |
+
basis : Operator
|
353 |
+
The Operator whose basis functions will be used as the basis for
|
354 |
+
representation.
|
355 |
+
options : dict
|
356 |
+
A dictionary of key/value pairs that give options and hints for
|
357 |
+
the representation, such as the number of basis functions to
|
358 |
+
be used.
|
359 |
+
"""
|
360 |
+
if basis is None:
|
361 |
+
result = self._represent_default_basis(**options)
|
362 |
+
else:
|
363 |
+
result = dispatch_method(self, '_represent', basis, **options)
|
364 |
+
|
365 |
+
# If we get a matrix representation, convert it to the right format.
|
366 |
+
format = options.get('format', 'sympy')
|
367 |
+
result = self._format_represent(result, format)
|
368 |
+
return result
|
369 |
+
|
370 |
+
def _format_represent(self, result, format):
|
371 |
+
if format == 'sympy' and not isinstance(result, Matrix):
|
372 |
+
return to_sympy(result)
|
373 |
+
elif format == 'numpy' and not isinstance(result, numpy_ndarray):
|
374 |
+
return to_numpy(result)
|
375 |
+
elif format == 'scipy.sparse' and \
|
376 |
+
not isinstance(result, scipy_sparse_matrix):
|
377 |
+
return to_scipy_sparse(result)
|
378 |
+
|
379 |
+
return result
|
380 |
+
|
381 |
+
|
382 |
+
def split_commutative_parts(e):
|
383 |
+
"""Split into commutative and non-commutative parts."""
|
384 |
+
c_part, nc_part = e.args_cnc()
|
385 |
+
c_part = list(c_part)
|
386 |
+
return c_part, nc_part
|
387 |
+
|
388 |
+
|
389 |
+
def split_qexpr_parts(e):
|
390 |
+
"""Split an expression into Expr and noncommutative QExpr parts."""
|
391 |
+
expr_part = []
|
392 |
+
qexpr_part = []
|
393 |
+
for arg in e.args:
|
394 |
+
if not isinstance(arg, QExpr):
|
395 |
+
expr_part.append(arg)
|
396 |
+
else:
|
397 |
+
qexpr_part.append(arg)
|
398 |
+
return expr_part, qexpr_part
|
399 |
+
|
400 |
+
|
401 |
+
def dispatch_method(self, basename, arg, **options):
|
402 |
+
"""Dispatch a method to the proper handlers."""
|
403 |
+
method_name = '%s_%s' % (basename, arg.__class__.__name__)
|
404 |
+
if hasattr(self, method_name):
|
405 |
+
f = getattr(self, method_name)
|
406 |
+
# This can raise and we will allow it to propagate.
|
407 |
+
result = f(arg, **options)
|
408 |
+
if result is not None:
|
409 |
+
return result
|
410 |
+
raise NotImplementedError(
|
411 |
+
"%s.%s cannot handle: %r" %
|
412 |
+
(self.__class__.__name__, basename, arg)
|
413 |
+
)
|
venv/lib/python3.10/site-packages/sympy/physics/quantum/qubit.py
ADDED
@@ -0,0 +1,811 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Qubits for quantum computing.
|
2 |
+
|
3 |
+
Todo:
|
4 |
+
* Finish implementing measurement logic. This should include POVM.
|
5 |
+
* Update docstrings.
|
6 |
+
* Update tests.
|
7 |
+
"""
|
8 |
+
|
9 |
+
|
10 |
+
import math
|
11 |
+
|
12 |
+
from sympy.core.add import Add
|
13 |
+
from sympy.core.mul import Mul
|
14 |
+
from sympy.core.numbers import Integer
|
15 |
+
from sympy.core.power import Pow
|
16 |
+
from sympy.core.singleton import S
|
17 |
+
from sympy.functions.elementary.complexes import conjugate
|
18 |
+
from sympy.functions.elementary.exponential import log
|
19 |
+
from sympy.core.basic import _sympify
|
20 |
+
from sympy.external.gmpy import SYMPY_INTS
|
21 |
+
from sympy.matrices import Matrix, zeros
|
22 |
+
from sympy.printing.pretty.stringpict import prettyForm
|
23 |
+
|
24 |
+
from sympy.physics.quantum.hilbert import ComplexSpace
|
25 |
+
from sympy.physics.quantum.state import Ket, Bra, State
|
26 |
+
|
27 |
+
from sympy.physics.quantum.qexpr import QuantumError
|
28 |
+
from sympy.physics.quantum.represent import represent
|
29 |
+
from sympy.physics.quantum.matrixutils import (
|
30 |
+
numpy_ndarray, scipy_sparse_matrix
|
31 |
+
)
|
32 |
+
from mpmath.libmp.libintmath import bitcount
|
33 |
+
|
34 |
+
__all__ = [
|
35 |
+
'Qubit',
|
36 |
+
'QubitBra',
|
37 |
+
'IntQubit',
|
38 |
+
'IntQubitBra',
|
39 |
+
'qubit_to_matrix',
|
40 |
+
'matrix_to_qubit',
|
41 |
+
'matrix_to_density',
|
42 |
+
'measure_all',
|
43 |
+
'measure_partial',
|
44 |
+
'measure_partial_oneshot',
|
45 |
+
'measure_all_oneshot'
|
46 |
+
]
|
47 |
+
|
48 |
+
#-----------------------------------------------------------------------------
|
49 |
+
# Qubit Classes
|
50 |
+
#-----------------------------------------------------------------------------
|
51 |
+
|
52 |
+
|
53 |
+
class QubitState(State):
|
54 |
+
"""Base class for Qubit and QubitBra."""
|
55 |
+
|
56 |
+
#-------------------------------------------------------------------------
|
57 |
+
# Initialization/creation
|
58 |
+
#-------------------------------------------------------------------------
|
59 |
+
|
60 |
+
@classmethod
|
61 |
+
def _eval_args(cls, args):
|
62 |
+
# If we are passed a QubitState or subclass, we just take its qubit
|
63 |
+
# values directly.
|
64 |
+
if len(args) == 1 and isinstance(args[0], QubitState):
|
65 |
+
return args[0].qubit_values
|
66 |
+
|
67 |
+
# Turn strings into tuple of strings
|
68 |
+
if len(args) == 1 and isinstance(args[0], str):
|
69 |
+
args = tuple( S.Zero if qb == "0" else S.One for qb in args[0])
|
70 |
+
else:
|
71 |
+
args = tuple( S.Zero if qb == "0" else S.One if qb == "1" else qb for qb in args)
|
72 |
+
args = tuple(_sympify(arg) for arg in args)
|
73 |
+
|
74 |
+
# Validate input (must have 0 or 1 input)
|
75 |
+
for element in args:
|
76 |
+
if element not in (S.Zero, S.One):
|
77 |
+
raise ValueError(
|
78 |
+
"Qubit values must be 0 or 1, got: %r" % element)
|
79 |
+
return args
|
80 |
+
|
81 |
+
@classmethod
|
82 |
+
def _eval_hilbert_space(cls, args):
|
83 |
+
return ComplexSpace(2)**len(args)
|
84 |
+
|
85 |
+
#-------------------------------------------------------------------------
|
86 |
+
# Properties
|
87 |
+
#-------------------------------------------------------------------------
|
88 |
+
|
89 |
+
@property
|
90 |
+
def dimension(self):
|
91 |
+
"""The number of Qubits in the state."""
|
92 |
+
return len(self.qubit_values)
|
93 |
+
|
94 |
+
@property
|
95 |
+
def nqubits(self):
|
96 |
+
return self.dimension
|
97 |
+
|
98 |
+
@property
|
99 |
+
def qubit_values(self):
|
100 |
+
"""Returns the values of the qubits as a tuple."""
|
101 |
+
return self.label
|
102 |
+
|
103 |
+
#-------------------------------------------------------------------------
|
104 |
+
# Special methods
|
105 |
+
#-------------------------------------------------------------------------
|
106 |
+
|
107 |
+
def __len__(self):
|
108 |
+
return self.dimension
|
109 |
+
|
110 |
+
def __getitem__(self, bit):
|
111 |
+
return self.qubit_values[int(self.dimension - bit - 1)]
|
112 |
+
|
113 |
+
#-------------------------------------------------------------------------
|
114 |
+
# Utility methods
|
115 |
+
#-------------------------------------------------------------------------
|
116 |
+
|
117 |
+
def flip(self, *bits):
|
118 |
+
"""Flip the bit(s) given."""
|
119 |
+
newargs = list(self.qubit_values)
|
120 |
+
for i in bits:
|
121 |
+
bit = int(self.dimension - i - 1)
|
122 |
+
if newargs[bit] == 1:
|
123 |
+
newargs[bit] = 0
|
124 |
+
else:
|
125 |
+
newargs[bit] = 1
|
126 |
+
return self.__class__(*tuple(newargs))
|
127 |
+
|
128 |
+
|
129 |
+
class Qubit(QubitState, Ket):
|
130 |
+
"""A multi-qubit ket in the computational (z) basis.
|
131 |
+
|
132 |
+
We use the normal convention that the least significant qubit is on the
|
133 |
+
right, so ``|00001>`` has a 1 in the least significant qubit.
|
134 |
+
|
135 |
+
Parameters
|
136 |
+
==========
|
137 |
+
|
138 |
+
values : list, str
|
139 |
+
The qubit values as a list of ints ([0,0,0,1,1,]) or a string ('011').
|
140 |
+
|
141 |
+
Examples
|
142 |
+
========
|
143 |
+
|
144 |
+
Create a qubit in a couple of different ways and look at their attributes:
|
145 |
+
|
146 |
+
>>> from sympy.physics.quantum.qubit import Qubit
|
147 |
+
>>> Qubit(0,0,0)
|
148 |
+
|000>
|
149 |
+
>>> q = Qubit('0101')
|
150 |
+
>>> q
|
151 |
+
|0101>
|
152 |
+
|
153 |
+
>>> q.nqubits
|
154 |
+
4
|
155 |
+
>>> len(q)
|
156 |
+
4
|
157 |
+
>>> q.dimension
|
158 |
+
4
|
159 |
+
>>> q.qubit_values
|
160 |
+
(0, 1, 0, 1)
|
161 |
+
|
162 |
+
We can flip the value of an individual qubit:
|
163 |
+
|
164 |
+
>>> q.flip(1)
|
165 |
+
|0111>
|
166 |
+
|
167 |
+
We can take the dagger of a Qubit to get a bra:
|
168 |
+
|
169 |
+
>>> from sympy.physics.quantum.dagger import Dagger
|
170 |
+
>>> Dagger(q)
|
171 |
+
<0101|
|
172 |
+
>>> type(Dagger(q))
|
173 |
+
<class 'sympy.physics.quantum.qubit.QubitBra'>
|
174 |
+
|
175 |
+
Inner products work as expected:
|
176 |
+
|
177 |
+
>>> ip = Dagger(q)*q
|
178 |
+
>>> ip
|
179 |
+
<0101|0101>
|
180 |
+
>>> ip.doit()
|
181 |
+
1
|
182 |
+
"""
|
183 |
+
|
184 |
+
@classmethod
|
185 |
+
def dual_class(self):
|
186 |
+
return QubitBra
|
187 |
+
|
188 |
+
def _eval_innerproduct_QubitBra(self, bra, **hints):
|
189 |
+
if self.label == bra.label:
|
190 |
+
return S.One
|
191 |
+
else:
|
192 |
+
return S.Zero
|
193 |
+
|
194 |
+
def _represent_default_basis(self, **options):
|
195 |
+
return self._represent_ZGate(None, **options)
|
196 |
+
|
197 |
+
def _represent_ZGate(self, basis, **options):
|
198 |
+
"""Represent this qubits in the computational basis (ZGate).
|
199 |
+
"""
|
200 |
+
_format = options.get('format', 'sympy')
|
201 |
+
n = 1
|
202 |
+
definite_state = 0
|
203 |
+
for it in reversed(self.qubit_values):
|
204 |
+
definite_state += n*it
|
205 |
+
n = n*2
|
206 |
+
result = [0]*(2**self.dimension)
|
207 |
+
result[int(definite_state)] = 1
|
208 |
+
if _format == 'sympy':
|
209 |
+
return Matrix(result)
|
210 |
+
elif _format == 'numpy':
|
211 |
+
import numpy as np
|
212 |
+
return np.array(result, dtype='complex').transpose()
|
213 |
+
elif _format == 'scipy.sparse':
|
214 |
+
from scipy import sparse
|
215 |
+
return sparse.csr_matrix(result, dtype='complex').transpose()
|
216 |
+
|
217 |
+
def _eval_trace(self, bra, **kwargs):
|
218 |
+
indices = kwargs.get('indices', [])
|
219 |
+
|
220 |
+
#sort index list to begin trace from most-significant
|
221 |
+
#qubit
|
222 |
+
sorted_idx = list(indices)
|
223 |
+
if len(sorted_idx) == 0:
|
224 |
+
sorted_idx = list(range(0, self.nqubits))
|
225 |
+
sorted_idx.sort()
|
226 |
+
|
227 |
+
#trace out for each of index
|
228 |
+
new_mat = self*bra
|
229 |
+
for i in range(len(sorted_idx) - 1, -1, -1):
|
230 |
+
# start from tracing out from leftmost qubit
|
231 |
+
new_mat = self._reduced_density(new_mat, int(sorted_idx[i]))
|
232 |
+
|
233 |
+
if (len(sorted_idx) == self.nqubits):
|
234 |
+
#in case full trace was requested
|
235 |
+
return new_mat[0]
|
236 |
+
else:
|
237 |
+
return matrix_to_density(new_mat)
|
238 |
+
|
239 |
+
def _reduced_density(self, matrix, qubit, **options):
|
240 |
+
"""Compute the reduced density matrix by tracing out one qubit.
|
241 |
+
The qubit argument should be of type Python int, since it is used
|
242 |
+
in bit operations
|
243 |
+
"""
|
244 |
+
def find_index_that_is_projected(j, k, qubit):
|
245 |
+
bit_mask = 2**qubit - 1
|
246 |
+
return ((j >> qubit) << (1 + qubit)) + (j & bit_mask) + (k << qubit)
|
247 |
+
|
248 |
+
old_matrix = represent(matrix, **options)
|
249 |
+
old_size = old_matrix.cols
|
250 |
+
#we expect the old_size to be even
|
251 |
+
new_size = old_size//2
|
252 |
+
new_matrix = Matrix().zeros(new_size)
|
253 |
+
|
254 |
+
for i in range(new_size):
|
255 |
+
for j in range(new_size):
|
256 |
+
for k in range(2):
|
257 |
+
col = find_index_that_is_projected(j, k, qubit)
|
258 |
+
row = find_index_that_is_projected(i, k, qubit)
|
259 |
+
new_matrix[i, j] += old_matrix[row, col]
|
260 |
+
|
261 |
+
return new_matrix
|
262 |
+
|
263 |
+
|
264 |
+
class QubitBra(QubitState, Bra):
|
265 |
+
"""A multi-qubit bra in the computational (z) basis.
|
266 |
+
|
267 |
+
We use the normal convention that the least significant qubit is on the
|
268 |
+
right, so ``|00001>`` has a 1 in the least significant qubit.
|
269 |
+
|
270 |
+
Parameters
|
271 |
+
==========
|
272 |
+
|
273 |
+
values : list, str
|
274 |
+
The qubit values as a list of ints ([0,0,0,1,1,]) or a string ('011').
|
275 |
+
|
276 |
+
See also
|
277 |
+
========
|
278 |
+
|
279 |
+
Qubit: Examples using qubits
|
280 |
+
|
281 |
+
"""
|
282 |
+
@classmethod
|
283 |
+
def dual_class(self):
|
284 |
+
return Qubit
|
285 |
+
|
286 |
+
|
287 |
+
class IntQubitState(QubitState):
|
288 |
+
"""A base class for qubits that work with binary representations."""
|
289 |
+
|
290 |
+
@classmethod
|
291 |
+
def _eval_args(cls, args, nqubits=None):
|
292 |
+
# The case of a QubitState instance
|
293 |
+
if len(args) == 1 and isinstance(args[0], QubitState):
|
294 |
+
return QubitState._eval_args(args)
|
295 |
+
# otherwise, args should be integer
|
296 |
+
elif not all(isinstance(a, (int, Integer)) for a in args):
|
297 |
+
raise ValueError('values must be integers, got (%s)' % (tuple(type(a) for a in args),))
|
298 |
+
# use nqubits if specified
|
299 |
+
if nqubits is not None:
|
300 |
+
if not isinstance(nqubits, (int, Integer)):
|
301 |
+
raise ValueError('nqubits must be an integer, got (%s)' % type(nqubits))
|
302 |
+
if len(args) != 1:
|
303 |
+
raise ValueError(
|
304 |
+
'too many positional arguments (%s). should be (number, nqubits=n)' % (args,))
|
305 |
+
return cls._eval_args_with_nqubits(args[0], nqubits)
|
306 |
+
# For a single argument, we construct the binary representation of
|
307 |
+
# that integer with the minimal number of bits.
|
308 |
+
if len(args) == 1 and args[0] > 1:
|
309 |
+
#rvalues is the minimum number of bits needed to express the number
|
310 |
+
rvalues = reversed(range(bitcount(abs(args[0]))))
|
311 |
+
qubit_values = [(args[0] >> i) & 1 for i in rvalues]
|
312 |
+
return QubitState._eval_args(qubit_values)
|
313 |
+
# For two numbers, the second number is the number of bits
|
314 |
+
# on which it is expressed, so IntQubit(0,5) == |00000>.
|
315 |
+
elif len(args) == 2 and args[1] > 1:
|
316 |
+
return cls._eval_args_with_nqubits(args[0], args[1])
|
317 |
+
else:
|
318 |
+
return QubitState._eval_args(args)
|
319 |
+
|
320 |
+
@classmethod
|
321 |
+
def _eval_args_with_nqubits(cls, number, nqubits):
|
322 |
+
need = bitcount(abs(number))
|
323 |
+
if nqubits < need:
|
324 |
+
raise ValueError(
|
325 |
+
'cannot represent %s with %s bits' % (number, nqubits))
|
326 |
+
qubit_values = [(number >> i) & 1 for i in reversed(range(nqubits))]
|
327 |
+
return QubitState._eval_args(qubit_values)
|
328 |
+
|
329 |
+
def as_int(self):
|
330 |
+
"""Return the numerical value of the qubit."""
|
331 |
+
number = 0
|
332 |
+
n = 1
|
333 |
+
for i in reversed(self.qubit_values):
|
334 |
+
number += n*i
|
335 |
+
n = n << 1
|
336 |
+
return number
|
337 |
+
|
338 |
+
def _print_label(self, printer, *args):
|
339 |
+
return str(self.as_int())
|
340 |
+
|
341 |
+
def _print_label_pretty(self, printer, *args):
|
342 |
+
label = self._print_label(printer, *args)
|
343 |
+
return prettyForm(label)
|
344 |
+
|
345 |
+
_print_label_repr = _print_label
|
346 |
+
_print_label_latex = _print_label
|
347 |
+
|
348 |
+
|
349 |
+
class IntQubit(IntQubitState, Qubit):
|
350 |
+
"""A qubit ket that store integers as binary numbers in qubit values.
|
351 |
+
|
352 |
+
The differences between this class and ``Qubit`` are:
|
353 |
+
|
354 |
+
* The form of the constructor.
|
355 |
+
* The qubit values are printed as their corresponding integer, rather
|
356 |
+
than the raw qubit values. The internal storage format of the qubit
|
357 |
+
values in the same as ``Qubit``.
|
358 |
+
|
359 |
+
Parameters
|
360 |
+
==========
|
361 |
+
|
362 |
+
values : int, tuple
|
363 |
+
If a single argument, the integer we want to represent in the qubit
|
364 |
+
values. This integer will be represented using the fewest possible
|
365 |
+
number of qubits.
|
366 |
+
If a pair of integers and the second value is more than one, the first
|
367 |
+
integer gives the integer to represent in binary form and the second
|
368 |
+
integer gives the number of qubits to use.
|
369 |
+
List of zeros and ones is also accepted to generate qubit by bit pattern.
|
370 |
+
|
371 |
+
nqubits : int
|
372 |
+
The integer that represents the number of qubits.
|
373 |
+
This number should be passed with keyword ``nqubits=N``.
|
374 |
+
You can use this in order to avoid ambiguity of Qubit-style tuple of bits.
|
375 |
+
Please see the example below for more details.
|
376 |
+
|
377 |
+
Examples
|
378 |
+
========
|
379 |
+
|
380 |
+
Create a qubit for the integer 5:
|
381 |
+
|
382 |
+
>>> from sympy.physics.quantum.qubit import IntQubit
|
383 |
+
>>> from sympy.physics.quantum.qubit import Qubit
|
384 |
+
>>> q = IntQubit(5)
|
385 |
+
>>> q
|
386 |
+
|5>
|
387 |
+
|
388 |
+
We can also create an ``IntQubit`` by passing a ``Qubit`` instance.
|
389 |
+
|
390 |
+
>>> q = IntQubit(Qubit('101'))
|
391 |
+
>>> q
|
392 |
+
|5>
|
393 |
+
>>> q.as_int()
|
394 |
+
5
|
395 |
+
>>> q.nqubits
|
396 |
+
3
|
397 |
+
>>> q.qubit_values
|
398 |
+
(1, 0, 1)
|
399 |
+
|
400 |
+
We can go back to the regular qubit form.
|
401 |
+
|
402 |
+
>>> Qubit(q)
|
403 |
+
|101>
|
404 |
+
|
405 |
+
Please note that ``IntQubit`` also accepts a ``Qubit``-style list of bits.
|
406 |
+
So, the code below yields qubits 3, not a single bit ``1``.
|
407 |
+
|
408 |
+
>>> IntQubit(1, 1)
|
409 |
+
|3>
|
410 |
+
|
411 |
+
To avoid ambiguity, use ``nqubits`` parameter.
|
412 |
+
Use of this keyword is recommended especially when you provide the values by variables.
|
413 |
+
|
414 |
+
>>> IntQubit(1, nqubits=1)
|
415 |
+
|1>
|
416 |
+
>>> a = 1
|
417 |
+
>>> IntQubit(a, nqubits=1)
|
418 |
+
|1>
|
419 |
+
"""
|
420 |
+
@classmethod
|
421 |
+
def dual_class(self):
|
422 |
+
return IntQubitBra
|
423 |
+
|
424 |
+
def _eval_innerproduct_IntQubitBra(self, bra, **hints):
|
425 |
+
return Qubit._eval_innerproduct_QubitBra(self, bra)
|
426 |
+
|
427 |
+
class IntQubitBra(IntQubitState, QubitBra):
|
428 |
+
"""A qubit bra that store integers as binary numbers in qubit values."""
|
429 |
+
|
430 |
+
@classmethod
|
431 |
+
def dual_class(self):
|
432 |
+
return IntQubit
|
433 |
+
|
434 |
+
|
435 |
+
#-----------------------------------------------------------------------------
|
436 |
+
# Qubit <---> Matrix conversion functions
|
437 |
+
#-----------------------------------------------------------------------------
|
438 |
+
|
439 |
+
|
440 |
+
def matrix_to_qubit(matrix):
|
441 |
+
"""Convert from the matrix repr. to a sum of Qubit objects.
|
442 |
+
|
443 |
+
Parameters
|
444 |
+
----------
|
445 |
+
matrix : Matrix, numpy.matrix, scipy.sparse
|
446 |
+
The matrix to build the Qubit representation of. This works with
|
447 |
+
SymPy matrices, numpy matrices and scipy.sparse sparse matrices.
|
448 |
+
|
449 |
+
Examples
|
450 |
+
========
|
451 |
+
|
452 |
+
Represent a state and then go back to its qubit form:
|
453 |
+
|
454 |
+
>>> from sympy.physics.quantum.qubit import matrix_to_qubit, Qubit
|
455 |
+
>>> from sympy.physics.quantum.represent import represent
|
456 |
+
>>> q = Qubit('01')
|
457 |
+
>>> matrix_to_qubit(represent(q))
|
458 |
+
|01>
|
459 |
+
"""
|
460 |
+
# Determine the format based on the type of the input matrix
|
461 |
+
format = 'sympy'
|
462 |
+
if isinstance(matrix, numpy_ndarray):
|
463 |
+
format = 'numpy'
|
464 |
+
if isinstance(matrix, scipy_sparse_matrix):
|
465 |
+
format = 'scipy.sparse'
|
466 |
+
|
467 |
+
# Make sure it is of correct dimensions for a Qubit-matrix representation.
|
468 |
+
# This logic should work with sympy, numpy or scipy.sparse matrices.
|
469 |
+
if matrix.shape[0] == 1:
|
470 |
+
mlistlen = matrix.shape[1]
|
471 |
+
nqubits = log(mlistlen, 2)
|
472 |
+
ket = False
|
473 |
+
cls = QubitBra
|
474 |
+
elif matrix.shape[1] == 1:
|
475 |
+
mlistlen = matrix.shape[0]
|
476 |
+
nqubits = log(mlistlen, 2)
|
477 |
+
ket = True
|
478 |
+
cls = Qubit
|
479 |
+
else:
|
480 |
+
raise QuantumError(
|
481 |
+
'Matrix must be a row/column vector, got %r' % matrix
|
482 |
+
)
|
483 |
+
if not isinstance(nqubits, Integer):
|
484 |
+
raise QuantumError('Matrix must be a row/column vector of size '
|
485 |
+
'2**nqubits, got: %r' % matrix)
|
486 |
+
# Go through each item in matrix, if element is non-zero, make it into a
|
487 |
+
# Qubit item times the element.
|
488 |
+
result = 0
|
489 |
+
for i in range(mlistlen):
|
490 |
+
if ket:
|
491 |
+
element = matrix[i, 0]
|
492 |
+
else:
|
493 |
+
element = matrix[0, i]
|
494 |
+
if format in ('numpy', 'scipy.sparse'):
|
495 |
+
element = complex(element)
|
496 |
+
if element != 0.0:
|
497 |
+
# Form Qubit array; 0 in bit-locations where i is 0, 1 in
|
498 |
+
# bit-locations where i is 1
|
499 |
+
qubit_array = [int(i & (1 << x) != 0) for x in range(nqubits)]
|
500 |
+
qubit_array.reverse()
|
501 |
+
result = result + element*cls(*qubit_array)
|
502 |
+
|
503 |
+
# If SymPy simplified by pulling out a constant coefficient, undo that.
|
504 |
+
if isinstance(result, (Mul, Add, Pow)):
|
505 |
+
result = result.expand()
|
506 |
+
|
507 |
+
return result
|
508 |
+
|
509 |
+
|
510 |
+
def matrix_to_density(mat):
|
511 |
+
"""
|
512 |
+
Works by finding the eigenvectors and eigenvalues of the matrix.
|
513 |
+
We know we can decompose rho by doing:
|
514 |
+
sum(EigenVal*|Eigenvect><Eigenvect|)
|
515 |
+
"""
|
516 |
+
from sympy.physics.quantum.density import Density
|
517 |
+
eigen = mat.eigenvects()
|
518 |
+
args = [[matrix_to_qubit(Matrix(
|
519 |
+
[vector, ])), x[0]] for x in eigen for vector in x[2] if x[0] != 0]
|
520 |
+
if (len(args) == 0):
|
521 |
+
return S.Zero
|
522 |
+
else:
|
523 |
+
return Density(*args)
|
524 |
+
|
525 |
+
|
526 |
+
def qubit_to_matrix(qubit, format='sympy'):
|
527 |
+
"""Converts an Add/Mul of Qubit objects into it's matrix representation
|
528 |
+
|
529 |
+
This function is the inverse of ``matrix_to_qubit`` and is a shorthand
|
530 |
+
for ``represent(qubit)``.
|
531 |
+
"""
|
532 |
+
return represent(qubit, format=format)
|
533 |
+
|
534 |
+
|
535 |
+
#-----------------------------------------------------------------------------
|
536 |
+
# Measurement
|
537 |
+
#-----------------------------------------------------------------------------
|
538 |
+
|
539 |
+
|
540 |
+
def measure_all(qubit, format='sympy', normalize=True):
|
541 |
+
"""Perform an ensemble measurement of all qubits.
|
542 |
+
|
543 |
+
Parameters
|
544 |
+
==========
|
545 |
+
|
546 |
+
qubit : Qubit, Add
|
547 |
+
The qubit to measure. This can be any Qubit or a linear combination
|
548 |
+
of them.
|
549 |
+
format : str
|
550 |
+
The format of the intermediate matrices to use. Possible values are
|
551 |
+
('sympy','numpy','scipy.sparse'). Currently only 'sympy' is
|
552 |
+
implemented.
|
553 |
+
|
554 |
+
Returns
|
555 |
+
=======
|
556 |
+
|
557 |
+
result : list
|
558 |
+
A list that consists of primitive states and their probabilities.
|
559 |
+
|
560 |
+
Examples
|
561 |
+
========
|
562 |
+
|
563 |
+
>>> from sympy.physics.quantum.qubit import Qubit, measure_all
|
564 |
+
>>> from sympy.physics.quantum.gate import H
|
565 |
+
>>> from sympy.physics.quantum.qapply import qapply
|
566 |
+
|
567 |
+
>>> c = H(0)*H(1)*Qubit('00')
|
568 |
+
>>> c
|
569 |
+
H(0)*H(1)*|00>
|
570 |
+
>>> q = qapply(c)
|
571 |
+
>>> measure_all(q)
|
572 |
+
[(|00>, 1/4), (|01>, 1/4), (|10>, 1/4), (|11>, 1/4)]
|
573 |
+
"""
|
574 |
+
m = qubit_to_matrix(qubit, format)
|
575 |
+
|
576 |
+
if format == 'sympy':
|
577 |
+
results = []
|
578 |
+
|
579 |
+
if normalize:
|
580 |
+
m = m.normalized()
|
581 |
+
|
582 |
+
size = max(m.shape) # Max of shape to account for bra or ket
|
583 |
+
nqubits = int(math.log(size)/math.log(2))
|
584 |
+
for i in range(size):
|
585 |
+
if m[i] != 0.0:
|
586 |
+
results.append(
|
587 |
+
(Qubit(IntQubit(i, nqubits=nqubits)), m[i]*conjugate(m[i]))
|
588 |
+
)
|
589 |
+
return results
|
590 |
+
else:
|
591 |
+
raise NotImplementedError(
|
592 |
+
"This function cannot handle non-SymPy matrix formats yet"
|
593 |
+
)
|
594 |
+
|
595 |
+
|
596 |
+
def measure_partial(qubit, bits, format='sympy', normalize=True):
|
597 |
+
"""Perform a partial ensemble measure on the specified qubits.
|
598 |
+
|
599 |
+
Parameters
|
600 |
+
==========
|
601 |
+
|
602 |
+
qubits : Qubit
|
603 |
+
The qubit to measure. This can be any Qubit or a linear combination
|
604 |
+
of them.
|
605 |
+
bits : tuple
|
606 |
+
The qubits to measure.
|
607 |
+
format : str
|
608 |
+
The format of the intermediate matrices to use. Possible values are
|
609 |
+
('sympy','numpy','scipy.sparse'). Currently only 'sympy' is
|
610 |
+
implemented.
|
611 |
+
|
612 |
+
Returns
|
613 |
+
=======
|
614 |
+
|
615 |
+
result : list
|
616 |
+
A list that consists of primitive states and their probabilities.
|
617 |
+
|
618 |
+
Examples
|
619 |
+
========
|
620 |
+
|
621 |
+
>>> from sympy.physics.quantum.qubit import Qubit, measure_partial
|
622 |
+
>>> from sympy.physics.quantum.gate import H
|
623 |
+
>>> from sympy.physics.quantum.qapply import qapply
|
624 |
+
|
625 |
+
>>> c = H(0)*H(1)*Qubit('00')
|
626 |
+
>>> c
|
627 |
+
H(0)*H(1)*|00>
|
628 |
+
>>> q = qapply(c)
|
629 |
+
>>> measure_partial(q, (0,))
|
630 |
+
[(sqrt(2)*|00>/2 + sqrt(2)*|10>/2, 1/2), (sqrt(2)*|01>/2 + sqrt(2)*|11>/2, 1/2)]
|
631 |
+
"""
|
632 |
+
m = qubit_to_matrix(qubit, format)
|
633 |
+
|
634 |
+
if isinstance(bits, (SYMPY_INTS, Integer)):
|
635 |
+
bits = (int(bits),)
|
636 |
+
|
637 |
+
if format == 'sympy':
|
638 |
+
if normalize:
|
639 |
+
m = m.normalized()
|
640 |
+
|
641 |
+
possible_outcomes = _get_possible_outcomes(m, bits)
|
642 |
+
|
643 |
+
# Form output from function.
|
644 |
+
output = []
|
645 |
+
for outcome in possible_outcomes:
|
646 |
+
# Calculate probability of finding the specified bits with
|
647 |
+
# given values.
|
648 |
+
prob_of_outcome = 0
|
649 |
+
prob_of_outcome += (outcome.H*outcome)[0]
|
650 |
+
|
651 |
+
# If the output has a chance, append it to output with found
|
652 |
+
# probability.
|
653 |
+
if prob_of_outcome != 0:
|
654 |
+
if normalize:
|
655 |
+
next_matrix = matrix_to_qubit(outcome.normalized())
|
656 |
+
else:
|
657 |
+
next_matrix = matrix_to_qubit(outcome)
|
658 |
+
|
659 |
+
output.append((
|
660 |
+
next_matrix,
|
661 |
+
prob_of_outcome
|
662 |
+
))
|
663 |
+
|
664 |
+
return output
|
665 |
+
else:
|
666 |
+
raise NotImplementedError(
|
667 |
+
"This function cannot handle non-SymPy matrix formats yet"
|
668 |
+
)
|
669 |
+
|
670 |
+
|
671 |
+
def measure_partial_oneshot(qubit, bits, format='sympy'):
|
672 |
+
"""Perform a partial oneshot measurement on the specified qubits.
|
673 |
+
|
674 |
+
A oneshot measurement is equivalent to performing a measurement on a
|
675 |
+
quantum system. This type of measurement does not return the probabilities
|
676 |
+
like an ensemble measurement does, but rather returns *one* of the
|
677 |
+
possible resulting states. The exact state that is returned is determined
|
678 |
+
by picking a state randomly according to the ensemble probabilities.
|
679 |
+
|
680 |
+
Parameters
|
681 |
+
----------
|
682 |
+
qubits : Qubit
|
683 |
+
The qubit to measure. This can be any Qubit or a linear combination
|
684 |
+
of them.
|
685 |
+
bits : tuple
|
686 |
+
The qubits to measure.
|
687 |
+
format : str
|
688 |
+
The format of the intermediate matrices to use. Possible values are
|
689 |
+
('sympy','numpy','scipy.sparse'). Currently only 'sympy' is
|
690 |
+
implemented.
|
691 |
+
|
692 |
+
Returns
|
693 |
+
-------
|
694 |
+
result : Qubit
|
695 |
+
The qubit that the system collapsed to upon measurement.
|
696 |
+
"""
|
697 |
+
import random
|
698 |
+
m = qubit_to_matrix(qubit, format)
|
699 |
+
|
700 |
+
if format == 'sympy':
|
701 |
+
m = m.normalized()
|
702 |
+
possible_outcomes = _get_possible_outcomes(m, bits)
|
703 |
+
|
704 |
+
# Form output from function
|
705 |
+
random_number = random.random()
|
706 |
+
total_prob = 0
|
707 |
+
for outcome in possible_outcomes:
|
708 |
+
# Calculate probability of finding the specified bits
|
709 |
+
# with given values
|
710 |
+
total_prob += (outcome.H*outcome)[0]
|
711 |
+
if total_prob >= random_number:
|
712 |
+
return matrix_to_qubit(outcome.normalized())
|
713 |
+
else:
|
714 |
+
raise NotImplementedError(
|
715 |
+
"This function cannot handle non-SymPy matrix formats yet"
|
716 |
+
)
|
717 |
+
|
718 |
+
|
719 |
+
def _get_possible_outcomes(m, bits):
|
720 |
+
"""Get the possible states that can be produced in a measurement.
|
721 |
+
|
722 |
+
Parameters
|
723 |
+
----------
|
724 |
+
m : Matrix
|
725 |
+
The matrix representing the state of the system.
|
726 |
+
bits : tuple, list
|
727 |
+
Which bits will be measured.
|
728 |
+
|
729 |
+
Returns
|
730 |
+
-------
|
731 |
+
result : list
|
732 |
+
The list of possible states which can occur given this measurement.
|
733 |
+
These are un-normalized so we can derive the probability of finding
|
734 |
+
this state by taking the inner product with itself
|
735 |
+
"""
|
736 |
+
|
737 |
+
# This is filled with loads of dirty binary tricks...You have been warned
|
738 |
+
|
739 |
+
size = max(m.shape) # Max of shape to account for bra or ket
|
740 |
+
nqubits = int(math.log(size, 2) + .1) # Number of qubits possible
|
741 |
+
|
742 |
+
# Make the output states and put in output_matrices, nothing in them now.
|
743 |
+
# Each state will represent a possible outcome of the measurement
|
744 |
+
# Thus, output_matrices[0] is the matrix which we get when all measured
|
745 |
+
# bits return 0. and output_matrices[1] is the matrix for only the 0th
|
746 |
+
# bit being true
|
747 |
+
output_matrices = []
|
748 |
+
for i in range(1 << len(bits)):
|
749 |
+
output_matrices.append(zeros(2**nqubits, 1))
|
750 |
+
|
751 |
+
# Bitmasks will help sort how to determine possible outcomes.
|
752 |
+
# When the bit mask is and-ed with a matrix-index,
|
753 |
+
# it will determine which state that index belongs to
|
754 |
+
bit_masks = []
|
755 |
+
for bit in bits:
|
756 |
+
bit_masks.append(1 << bit)
|
757 |
+
|
758 |
+
# Make possible outcome states
|
759 |
+
for i in range(2**nqubits):
|
760 |
+
trueness = 0 # This tells us to which output_matrix this value belongs
|
761 |
+
# Find trueness
|
762 |
+
for j in range(len(bit_masks)):
|
763 |
+
if i & bit_masks[j]:
|
764 |
+
trueness += j + 1
|
765 |
+
# Put the value in the correct output matrix
|
766 |
+
output_matrices[trueness][i] = m[i]
|
767 |
+
return output_matrices
|
768 |
+
|
769 |
+
|
770 |
+
def measure_all_oneshot(qubit, format='sympy'):
|
771 |
+
"""Perform a oneshot ensemble measurement on all qubits.
|
772 |
+
|
773 |
+
A oneshot measurement is equivalent to performing a measurement on a
|
774 |
+
quantum system. This type of measurement does not return the probabilities
|
775 |
+
like an ensemble measurement does, but rather returns *one* of the
|
776 |
+
possible resulting states. The exact state that is returned is determined
|
777 |
+
by picking a state randomly according to the ensemble probabilities.
|
778 |
+
|
779 |
+
Parameters
|
780 |
+
----------
|
781 |
+
qubits : Qubit
|
782 |
+
The qubit to measure. This can be any Qubit or a linear combination
|
783 |
+
of them.
|
784 |
+
format : str
|
785 |
+
The format of the intermediate matrices to use. Possible values are
|
786 |
+
('sympy','numpy','scipy.sparse'). Currently only 'sympy' is
|
787 |
+
implemented.
|
788 |
+
|
789 |
+
Returns
|
790 |
+
-------
|
791 |
+
result : Qubit
|
792 |
+
The qubit that the system collapsed to upon measurement.
|
793 |
+
"""
|
794 |
+
import random
|
795 |
+
m = qubit_to_matrix(qubit)
|
796 |
+
|
797 |
+
if format == 'sympy':
|
798 |
+
m = m.normalized()
|
799 |
+
random_number = random.random()
|
800 |
+
total = 0
|
801 |
+
result = 0
|
802 |
+
for i in m:
|
803 |
+
total += i*i.conjugate()
|
804 |
+
if total > random_number:
|
805 |
+
break
|
806 |
+
result += 1
|
807 |
+
return Qubit(IntQubit(result, int(math.log(max(m.shape), 2) + .1)))
|
808 |
+
else:
|
809 |
+
raise NotImplementedError(
|
810 |
+
"This function cannot handle non-SymPy matrix formats yet"
|
811 |
+
)
|
venv/lib/python3.10/site-packages/sympy/physics/quantum/represent.py
ADDED
@@ -0,0 +1,574 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Logic for representing operators in state in various bases.
|
2 |
+
|
3 |
+
TODO:
|
4 |
+
|
5 |
+
* Get represent working with continuous hilbert spaces.
|
6 |
+
* Document default basis functionality.
|
7 |
+
"""
|
8 |
+
|
9 |
+
from sympy.core.add import Add
|
10 |
+
from sympy.core.expr import Expr
|
11 |
+
from sympy.core.mul import Mul
|
12 |
+
from sympy.core.numbers import I
|
13 |
+
from sympy.core.power import Pow
|
14 |
+
from sympy.integrals.integrals import integrate
|
15 |
+
from sympy.physics.quantum.dagger import Dagger
|
16 |
+
from sympy.physics.quantum.commutator import Commutator
|
17 |
+
from sympy.physics.quantum.anticommutator import AntiCommutator
|
18 |
+
from sympy.physics.quantum.innerproduct import InnerProduct
|
19 |
+
from sympy.physics.quantum.qexpr import QExpr
|
20 |
+
from sympy.physics.quantum.tensorproduct import TensorProduct
|
21 |
+
from sympy.physics.quantum.matrixutils import flatten_scalar
|
22 |
+
from sympy.physics.quantum.state import KetBase, BraBase, StateBase
|
23 |
+
from sympy.physics.quantum.operator import Operator, OuterProduct
|
24 |
+
from sympy.physics.quantum.qapply import qapply
|
25 |
+
from sympy.physics.quantum.operatorset import operators_to_state, state_to_operators
|
26 |
+
|
27 |
+
__all__ = [
|
28 |
+
'represent',
|
29 |
+
'rep_innerproduct',
|
30 |
+
'rep_expectation',
|
31 |
+
'integrate_result',
|
32 |
+
'get_basis',
|
33 |
+
'enumerate_states'
|
34 |
+
]
|
35 |
+
|
36 |
+
#-----------------------------------------------------------------------------
|
37 |
+
# Represent
|
38 |
+
#-----------------------------------------------------------------------------
|
39 |
+
|
40 |
+
|
41 |
+
def _sympy_to_scalar(e):
|
42 |
+
"""Convert from a SymPy scalar to a Python scalar."""
|
43 |
+
if isinstance(e, Expr):
|
44 |
+
if e.is_Integer:
|
45 |
+
return int(e)
|
46 |
+
elif e.is_Float:
|
47 |
+
return float(e)
|
48 |
+
elif e.is_Rational:
|
49 |
+
return float(e)
|
50 |
+
elif e.is_Number or e.is_NumberSymbol or e == I:
|
51 |
+
return complex(e)
|
52 |
+
raise TypeError('Expected number, got: %r' % e)
|
53 |
+
|
54 |
+
|
55 |
+
def represent(expr, **options):
|
56 |
+
"""Represent the quantum expression in the given basis.
|
57 |
+
|
58 |
+
In quantum mechanics abstract states and operators can be represented in
|
59 |
+
various basis sets. Under this operation the follow transforms happen:
|
60 |
+
|
61 |
+
* Ket -> column vector or function
|
62 |
+
* Bra -> row vector of function
|
63 |
+
* Operator -> matrix or differential operator
|
64 |
+
|
65 |
+
This function is the top-level interface for this action.
|
66 |
+
|
67 |
+
This function walks the SymPy expression tree looking for ``QExpr``
|
68 |
+
instances that have a ``_represent`` method. This method is then called
|
69 |
+
and the object is replaced by the representation returned by this method.
|
70 |
+
By default, the ``_represent`` method will dispatch to other methods
|
71 |
+
that handle the representation logic for a particular basis set. The
|
72 |
+
naming convention for these methods is the following::
|
73 |
+
|
74 |
+
def _represent_FooBasis(self, e, basis, **options)
|
75 |
+
|
76 |
+
This function will have the logic for representing instances of its class
|
77 |
+
in the basis set having a class named ``FooBasis``.
|
78 |
+
|
79 |
+
Parameters
|
80 |
+
==========
|
81 |
+
|
82 |
+
expr : Expr
|
83 |
+
The expression to represent.
|
84 |
+
basis : Operator, basis set
|
85 |
+
An object that contains the information about the basis set. If an
|
86 |
+
operator is used, the basis is assumed to be the orthonormal
|
87 |
+
eigenvectors of that operator. In general though, the basis argument
|
88 |
+
can be any object that contains the basis set information.
|
89 |
+
options : dict
|
90 |
+
Key/value pairs of options that are passed to the underlying method
|
91 |
+
that finds the representation. These options can be used to
|
92 |
+
control how the representation is done. For example, this is where
|
93 |
+
the size of the basis set would be set.
|
94 |
+
|
95 |
+
Returns
|
96 |
+
=======
|
97 |
+
|
98 |
+
e : Expr
|
99 |
+
The SymPy expression of the represented quantum expression.
|
100 |
+
|
101 |
+
Examples
|
102 |
+
========
|
103 |
+
|
104 |
+
Here we subclass ``Operator`` and ``Ket`` to create the z-spin operator
|
105 |
+
and its spin 1/2 up eigenstate. By defining the ``_represent_SzOp``
|
106 |
+
method, the ket can be represented in the z-spin basis.
|
107 |
+
|
108 |
+
>>> from sympy.physics.quantum import Operator, represent, Ket
|
109 |
+
>>> from sympy import Matrix
|
110 |
+
|
111 |
+
>>> class SzUpKet(Ket):
|
112 |
+
... def _represent_SzOp(self, basis, **options):
|
113 |
+
... return Matrix([1,0])
|
114 |
+
...
|
115 |
+
>>> class SzOp(Operator):
|
116 |
+
... pass
|
117 |
+
...
|
118 |
+
>>> sz = SzOp('Sz')
|
119 |
+
>>> up = SzUpKet('up')
|
120 |
+
>>> represent(up, basis=sz)
|
121 |
+
Matrix([
|
122 |
+
[1],
|
123 |
+
[0]])
|
124 |
+
|
125 |
+
Here we see an example of representations in a continuous
|
126 |
+
basis. We see that the result of representing various combinations
|
127 |
+
of cartesian position operators and kets give us continuous
|
128 |
+
expressions involving DiracDelta functions.
|
129 |
+
|
130 |
+
>>> from sympy.physics.quantum.cartesian import XOp, XKet, XBra
|
131 |
+
>>> X = XOp()
|
132 |
+
>>> x = XKet()
|
133 |
+
>>> y = XBra('y')
|
134 |
+
>>> represent(X*x)
|
135 |
+
x*DiracDelta(x - x_2)
|
136 |
+
>>> represent(X*x*y)
|
137 |
+
x*DiracDelta(x - x_3)*DiracDelta(x_1 - y)
|
138 |
+
|
139 |
+
"""
|
140 |
+
|
141 |
+
format = options.get('format', 'sympy')
|
142 |
+
if format == 'numpy':
|
143 |
+
import numpy as np
|
144 |
+
if isinstance(expr, QExpr) and not isinstance(expr, OuterProduct):
|
145 |
+
options['replace_none'] = False
|
146 |
+
temp_basis = get_basis(expr, **options)
|
147 |
+
if temp_basis is not None:
|
148 |
+
options['basis'] = temp_basis
|
149 |
+
try:
|
150 |
+
return expr._represent(**options)
|
151 |
+
except NotImplementedError as strerr:
|
152 |
+
#If no _represent_FOO method exists, map to the
|
153 |
+
#appropriate basis state and try
|
154 |
+
#the other methods of representation
|
155 |
+
options['replace_none'] = True
|
156 |
+
|
157 |
+
if isinstance(expr, (KetBase, BraBase)):
|
158 |
+
try:
|
159 |
+
return rep_innerproduct(expr, **options)
|
160 |
+
except NotImplementedError:
|
161 |
+
raise NotImplementedError(strerr)
|
162 |
+
elif isinstance(expr, Operator):
|
163 |
+
try:
|
164 |
+
return rep_expectation(expr, **options)
|
165 |
+
except NotImplementedError:
|
166 |
+
raise NotImplementedError(strerr)
|
167 |
+
else:
|
168 |
+
raise NotImplementedError(strerr)
|
169 |
+
elif isinstance(expr, Add):
|
170 |
+
result = represent(expr.args[0], **options)
|
171 |
+
for args in expr.args[1:]:
|
172 |
+
# scipy.sparse doesn't support += so we use plain = here.
|
173 |
+
result = result + represent(args, **options)
|
174 |
+
return result
|
175 |
+
elif isinstance(expr, Pow):
|
176 |
+
base, exp = expr.as_base_exp()
|
177 |
+
if format in ('numpy', 'scipy.sparse'):
|
178 |
+
exp = _sympy_to_scalar(exp)
|
179 |
+
base = represent(base, **options)
|
180 |
+
# scipy.sparse doesn't support negative exponents
|
181 |
+
# and warns when inverting a matrix in csr format.
|
182 |
+
if format == 'scipy.sparse' and exp < 0:
|
183 |
+
from scipy.sparse.linalg import inv
|
184 |
+
exp = - exp
|
185 |
+
base = inv(base.tocsc()).tocsr()
|
186 |
+
if format == 'numpy':
|
187 |
+
return np.linalg.matrix_power(base, exp)
|
188 |
+
return base ** exp
|
189 |
+
elif isinstance(expr, TensorProduct):
|
190 |
+
new_args = [represent(arg, **options) for arg in expr.args]
|
191 |
+
return TensorProduct(*new_args)
|
192 |
+
elif isinstance(expr, Dagger):
|
193 |
+
return Dagger(represent(expr.args[0], **options))
|
194 |
+
elif isinstance(expr, Commutator):
|
195 |
+
A = expr.args[0]
|
196 |
+
B = expr.args[1]
|
197 |
+
return represent(Mul(A, B) - Mul(B, A), **options)
|
198 |
+
elif isinstance(expr, AntiCommutator):
|
199 |
+
A = expr.args[0]
|
200 |
+
B = expr.args[1]
|
201 |
+
return represent(Mul(A, B) + Mul(B, A), **options)
|
202 |
+
elif isinstance(expr, InnerProduct):
|
203 |
+
return represent(Mul(expr.bra, expr.ket), **options)
|
204 |
+
elif not isinstance(expr, (Mul, OuterProduct)):
|
205 |
+
# For numpy and scipy.sparse, we can only handle numerical prefactors.
|
206 |
+
if format in ('numpy', 'scipy.sparse'):
|
207 |
+
return _sympy_to_scalar(expr)
|
208 |
+
return expr
|
209 |
+
|
210 |
+
if not isinstance(expr, (Mul, OuterProduct)):
|
211 |
+
raise TypeError('Mul expected, got: %r' % expr)
|
212 |
+
|
213 |
+
if "index" in options:
|
214 |
+
options["index"] += 1
|
215 |
+
else:
|
216 |
+
options["index"] = 1
|
217 |
+
|
218 |
+
if "unities" not in options:
|
219 |
+
options["unities"] = []
|
220 |
+
|
221 |
+
result = represent(expr.args[-1], **options)
|
222 |
+
last_arg = expr.args[-1]
|
223 |
+
|
224 |
+
for arg in reversed(expr.args[:-1]):
|
225 |
+
if isinstance(last_arg, Operator):
|
226 |
+
options["index"] += 1
|
227 |
+
options["unities"].append(options["index"])
|
228 |
+
elif isinstance(last_arg, BraBase) and isinstance(arg, KetBase):
|
229 |
+
options["index"] += 1
|
230 |
+
elif isinstance(last_arg, KetBase) and isinstance(arg, Operator):
|
231 |
+
options["unities"].append(options["index"])
|
232 |
+
elif isinstance(last_arg, KetBase) and isinstance(arg, BraBase):
|
233 |
+
options["unities"].append(options["index"])
|
234 |
+
|
235 |
+
next_arg = represent(arg, **options)
|
236 |
+
if format == 'numpy' and isinstance(next_arg, np.ndarray):
|
237 |
+
# Must use np.matmult to "matrix multiply" two np.ndarray
|
238 |
+
result = np.matmul(next_arg, result)
|
239 |
+
else:
|
240 |
+
result = next_arg*result
|
241 |
+
last_arg = arg
|
242 |
+
|
243 |
+
# All three matrix formats create 1 by 1 matrices when inner products of
|
244 |
+
# vectors are taken. In these cases, we simply return a scalar.
|
245 |
+
result = flatten_scalar(result)
|
246 |
+
|
247 |
+
result = integrate_result(expr, result, **options)
|
248 |
+
|
249 |
+
return result
|
250 |
+
|
251 |
+
|
252 |
+
def rep_innerproduct(expr, **options):
|
253 |
+
"""
|
254 |
+
Returns an innerproduct like representation (e.g. ``<x'|x>``) for the
|
255 |
+
given state.
|
256 |
+
|
257 |
+
Attempts to calculate inner product with a bra from the specified
|
258 |
+
basis. Should only be passed an instance of KetBase or BraBase
|
259 |
+
|
260 |
+
Parameters
|
261 |
+
==========
|
262 |
+
|
263 |
+
expr : KetBase or BraBase
|
264 |
+
The expression to be represented
|
265 |
+
|
266 |
+
Examples
|
267 |
+
========
|
268 |
+
|
269 |
+
>>> from sympy.physics.quantum.represent import rep_innerproduct
|
270 |
+
>>> from sympy.physics.quantum.cartesian import XOp, XKet, PxOp, PxKet
|
271 |
+
>>> rep_innerproduct(XKet())
|
272 |
+
DiracDelta(x - x_1)
|
273 |
+
>>> rep_innerproduct(XKet(), basis=PxOp())
|
274 |
+
sqrt(2)*exp(-I*px_1*x/hbar)/(2*sqrt(hbar)*sqrt(pi))
|
275 |
+
>>> rep_innerproduct(PxKet(), basis=XOp())
|
276 |
+
sqrt(2)*exp(I*px*x_1/hbar)/(2*sqrt(hbar)*sqrt(pi))
|
277 |
+
|
278 |
+
"""
|
279 |
+
|
280 |
+
if not isinstance(expr, (KetBase, BraBase)):
|
281 |
+
raise TypeError("expr passed is not a Bra or Ket")
|
282 |
+
|
283 |
+
basis = get_basis(expr, **options)
|
284 |
+
|
285 |
+
if not isinstance(basis, StateBase):
|
286 |
+
raise NotImplementedError("Can't form this representation!")
|
287 |
+
|
288 |
+
if "index" not in options:
|
289 |
+
options["index"] = 1
|
290 |
+
|
291 |
+
basis_kets = enumerate_states(basis, options["index"], 2)
|
292 |
+
|
293 |
+
if isinstance(expr, BraBase):
|
294 |
+
bra = expr
|
295 |
+
ket = (basis_kets[1] if basis_kets[0].dual == expr else basis_kets[0])
|
296 |
+
else:
|
297 |
+
bra = (basis_kets[1].dual if basis_kets[0]
|
298 |
+
== expr else basis_kets[0].dual)
|
299 |
+
ket = expr
|
300 |
+
|
301 |
+
prod = InnerProduct(bra, ket)
|
302 |
+
result = prod.doit()
|
303 |
+
|
304 |
+
format = options.get('format', 'sympy')
|
305 |
+
return expr._format_represent(result, format)
|
306 |
+
|
307 |
+
|
308 |
+
def rep_expectation(expr, **options):
|
309 |
+
"""
|
310 |
+
Returns an ``<x'|A|x>`` type representation for the given operator.
|
311 |
+
|
312 |
+
Parameters
|
313 |
+
==========
|
314 |
+
|
315 |
+
expr : Operator
|
316 |
+
Operator to be represented in the specified basis
|
317 |
+
|
318 |
+
Examples
|
319 |
+
========
|
320 |
+
|
321 |
+
>>> from sympy.physics.quantum.cartesian import XOp, PxOp, PxKet
|
322 |
+
>>> from sympy.physics.quantum.represent import rep_expectation
|
323 |
+
>>> rep_expectation(XOp())
|
324 |
+
x_1*DiracDelta(x_1 - x_2)
|
325 |
+
>>> rep_expectation(XOp(), basis=PxOp())
|
326 |
+
<px_2|*X*|px_1>
|
327 |
+
>>> rep_expectation(XOp(), basis=PxKet())
|
328 |
+
<px_2|*X*|px_1>
|
329 |
+
|
330 |
+
"""
|
331 |
+
|
332 |
+
if "index" not in options:
|
333 |
+
options["index"] = 1
|
334 |
+
|
335 |
+
if not isinstance(expr, Operator):
|
336 |
+
raise TypeError("The passed expression is not an operator")
|
337 |
+
|
338 |
+
basis_state = get_basis(expr, **options)
|
339 |
+
|
340 |
+
if basis_state is None or not isinstance(basis_state, StateBase):
|
341 |
+
raise NotImplementedError("Could not get basis kets for this operator")
|
342 |
+
|
343 |
+
basis_kets = enumerate_states(basis_state, options["index"], 2)
|
344 |
+
|
345 |
+
bra = basis_kets[1].dual
|
346 |
+
ket = basis_kets[0]
|
347 |
+
|
348 |
+
return qapply(bra*expr*ket)
|
349 |
+
|
350 |
+
|
351 |
+
def integrate_result(orig_expr, result, **options):
|
352 |
+
"""
|
353 |
+
Returns the result of integrating over any unities ``(|x><x|)`` in
|
354 |
+
the given expression. Intended for integrating over the result of
|
355 |
+
representations in continuous bases.
|
356 |
+
|
357 |
+
This function integrates over any unities that may have been
|
358 |
+
inserted into the quantum expression and returns the result.
|
359 |
+
It uses the interval of the Hilbert space of the basis state
|
360 |
+
passed to it in order to figure out the limits of integration.
|
361 |
+
The unities option must be
|
362 |
+
specified for this to work.
|
363 |
+
|
364 |
+
Note: This is mostly used internally by represent(). Examples are
|
365 |
+
given merely to show the use cases.
|
366 |
+
|
367 |
+
Parameters
|
368 |
+
==========
|
369 |
+
|
370 |
+
orig_expr : quantum expression
|
371 |
+
The original expression which was to be represented
|
372 |
+
|
373 |
+
result: Expr
|
374 |
+
The resulting representation that we wish to integrate over
|
375 |
+
|
376 |
+
Examples
|
377 |
+
========
|
378 |
+
|
379 |
+
>>> from sympy import symbols, DiracDelta
|
380 |
+
>>> from sympy.physics.quantum.represent import integrate_result
|
381 |
+
>>> from sympy.physics.quantum.cartesian import XOp, XKet
|
382 |
+
>>> x_ket = XKet()
|
383 |
+
>>> X_op = XOp()
|
384 |
+
>>> x, x_1, x_2 = symbols('x, x_1, x_2')
|
385 |
+
>>> integrate_result(X_op*x_ket, x*DiracDelta(x-x_1)*DiracDelta(x_1-x_2))
|
386 |
+
x*DiracDelta(x - x_1)*DiracDelta(x_1 - x_2)
|
387 |
+
>>> integrate_result(X_op*x_ket, x*DiracDelta(x-x_1)*DiracDelta(x_1-x_2),
|
388 |
+
... unities=[1])
|
389 |
+
x*DiracDelta(x - x_2)
|
390 |
+
|
391 |
+
"""
|
392 |
+
if not isinstance(result, Expr):
|
393 |
+
return result
|
394 |
+
|
395 |
+
options['replace_none'] = True
|
396 |
+
if "basis" not in options:
|
397 |
+
arg = orig_expr.args[-1]
|
398 |
+
options["basis"] = get_basis(arg, **options)
|
399 |
+
elif not isinstance(options["basis"], StateBase):
|
400 |
+
options["basis"] = get_basis(orig_expr, **options)
|
401 |
+
|
402 |
+
basis = options.pop("basis", None)
|
403 |
+
|
404 |
+
if basis is None:
|
405 |
+
return result
|
406 |
+
|
407 |
+
unities = options.pop("unities", [])
|
408 |
+
|
409 |
+
if len(unities) == 0:
|
410 |
+
return result
|
411 |
+
|
412 |
+
kets = enumerate_states(basis, unities)
|
413 |
+
coords = [k.label[0] for k in kets]
|
414 |
+
|
415 |
+
for coord in coords:
|
416 |
+
if coord in result.free_symbols:
|
417 |
+
#TODO: Add support for sets of operators
|
418 |
+
basis_op = state_to_operators(basis)
|
419 |
+
start = basis_op.hilbert_space.interval.start
|
420 |
+
end = basis_op.hilbert_space.interval.end
|
421 |
+
result = integrate(result, (coord, start, end))
|
422 |
+
|
423 |
+
return result
|
424 |
+
|
425 |
+
|
426 |
+
def get_basis(expr, *, basis=None, replace_none=True, **options):
|
427 |
+
"""
|
428 |
+
Returns a basis state instance corresponding to the basis specified in
|
429 |
+
options=s. If no basis is specified, the function tries to form a default
|
430 |
+
basis state of the given expression.
|
431 |
+
|
432 |
+
There are three behaviors:
|
433 |
+
|
434 |
+
1. The basis specified in options is already an instance of StateBase. If
|
435 |
+
this is the case, it is simply returned. If the class is specified but
|
436 |
+
not an instance, a default instance is returned.
|
437 |
+
|
438 |
+
2. The basis specified is an operator or set of operators. If this
|
439 |
+
is the case, the operator_to_state mapping method is used.
|
440 |
+
|
441 |
+
3. No basis is specified. If expr is a state, then a default instance of
|
442 |
+
its class is returned. If expr is an operator, then it is mapped to the
|
443 |
+
corresponding state. If it is neither, then we cannot obtain the basis
|
444 |
+
state.
|
445 |
+
|
446 |
+
If the basis cannot be mapped, then it is not changed.
|
447 |
+
|
448 |
+
This will be called from within represent, and represent will
|
449 |
+
only pass QExpr's.
|
450 |
+
|
451 |
+
TODO (?): Support for Muls and other types of expressions?
|
452 |
+
|
453 |
+
Parameters
|
454 |
+
==========
|
455 |
+
|
456 |
+
expr : Operator or StateBase
|
457 |
+
Expression whose basis is sought
|
458 |
+
|
459 |
+
Examples
|
460 |
+
========
|
461 |
+
|
462 |
+
>>> from sympy.physics.quantum.represent import get_basis
|
463 |
+
>>> from sympy.physics.quantum.cartesian import XOp, XKet, PxOp, PxKet
|
464 |
+
>>> x = XKet()
|
465 |
+
>>> X = XOp()
|
466 |
+
>>> get_basis(x)
|
467 |
+
|x>
|
468 |
+
>>> get_basis(X)
|
469 |
+
|x>
|
470 |
+
>>> get_basis(x, basis=PxOp())
|
471 |
+
|px>
|
472 |
+
>>> get_basis(x, basis=PxKet)
|
473 |
+
|px>
|
474 |
+
|
475 |
+
"""
|
476 |
+
|
477 |
+
if basis is None and not replace_none:
|
478 |
+
return None
|
479 |
+
|
480 |
+
if basis is None:
|
481 |
+
if isinstance(expr, KetBase):
|
482 |
+
return _make_default(expr.__class__)
|
483 |
+
elif isinstance(expr, BraBase):
|
484 |
+
return _make_default(expr.dual_class())
|
485 |
+
elif isinstance(expr, Operator):
|
486 |
+
state_inst = operators_to_state(expr)
|
487 |
+
return (state_inst if state_inst is not None else None)
|
488 |
+
else:
|
489 |
+
return None
|
490 |
+
elif (isinstance(basis, Operator) or
|
491 |
+
(not isinstance(basis, StateBase) and issubclass(basis, Operator))):
|
492 |
+
state = operators_to_state(basis)
|
493 |
+
if state is None:
|
494 |
+
return None
|
495 |
+
elif isinstance(state, StateBase):
|
496 |
+
return state
|
497 |
+
else:
|
498 |
+
return _make_default(state)
|
499 |
+
elif isinstance(basis, StateBase):
|
500 |
+
return basis
|
501 |
+
elif issubclass(basis, StateBase):
|
502 |
+
return _make_default(basis)
|
503 |
+
else:
|
504 |
+
return None
|
505 |
+
|
506 |
+
|
507 |
+
def _make_default(expr):
|
508 |
+
# XXX: Catching TypeError like this is a bad way of distinguishing
|
509 |
+
# instances from classes. The logic using this function should be
|
510 |
+
# rewritten somehow.
|
511 |
+
try:
|
512 |
+
expr = expr()
|
513 |
+
except TypeError:
|
514 |
+
return expr
|
515 |
+
|
516 |
+
return expr
|
517 |
+
|
518 |
+
|
519 |
+
def enumerate_states(*args, **options):
|
520 |
+
"""
|
521 |
+
Returns instances of the given state with dummy indices appended
|
522 |
+
|
523 |
+
Operates in two different modes:
|
524 |
+
|
525 |
+
1. Two arguments are passed to it. The first is the base state which is to
|
526 |
+
be indexed, and the second argument is a list of indices to append.
|
527 |
+
|
528 |
+
2. Three arguments are passed. The first is again the base state to be
|
529 |
+
indexed. The second is the start index for counting. The final argument
|
530 |
+
is the number of kets you wish to receive.
|
531 |
+
|
532 |
+
Tries to call state._enumerate_state. If this fails, returns an empty list
|
533 |
+
|
534 |
+
Parameters
|
535 |
+
==========
|
536 |
+
|
537 |
+
args : list
|
538 |
+
See list of operation modes above for explanation
|
539 |
+
|
540 |
+
Examples
|
541 |
+
========
|
542 |
+
|
543 |
+
>>> from sympy.physics.quantum.cartesian import XBra, XKet
|
544 |
+
>>> from sympy.physics.quantum.represent import enumerate_states
|
545 |
+
>>> test = XKet('foo')
|
546 |
+
>>> enumerate_states(test, 1, 3)
|
547 |
+
[|foo_1>, |foo_2>, |foo_3>]
|
548 |
+
>>> test2 = XBra('bar')
|
549 |
+
>>> enumerate_states(test2, [4, 5, 10])
|
550 |
+
[<bar_4|, <bar_5|, <bar_10|]
|
551 |
+
|
552 |
+
"""
|
553 |
+
|
554 |
+
state = args[0]
|
555 |
+
|
556 |
+
if len(args) not in (2, 3):
|
557 |
+
raise NotImplementedError("Wrong number of arguments!")
|
558 |
+
|
559 |
+
if not isinstance(state, StateBase):
|
560 |
+
raise TypeError("First argument is not a state!")
|
561 |
+
|
562 |
+
if len(args) == 3:
|
563 |
+
num_states = args[2]
|
564 |
+
options['start_index'] = args[1]
|
565 |
+
else:
|
566 |
+
num_states = len(args[1])
|
567 |
+
options['index_list'] = args[1]
|
568 |
+
|
569 |
+
try:
|
570 |
+
ret = state._enumerate_state(num_states, **options)
|
571 |
+
except NotImplementedError:
|
572 |
+
ret = []
|
573 |
+
|
574 |
+
return ret
|
venv/lib/python3.10/site-packages/sympy/physics/quantum/sho1d.py
ADDED
@@ -0,0 +1,679 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Simple Harmonic Oscillator 1-Dimension"""
|
2 |
+
|
3 |
+
from sympy.core.numbers import (I, Integer)
|
4 |
+
from sympy.core.singleton import S
|
5 |
+
from sympy.core.symbol import Symbol
|
6 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
7 |
+
from sympy.physics.quantum.constants import hbar
|
8 |
+
from sympy.physics.quantum.operator import Operator
|
9 |
+
from sympy.physics.quantum.state import Bra, Ket, State
|
10 |
+
from sympy.physics.quantum.qexpr import QExpr
|
11 |
+
from sympy.physics.quantum.cartesian import X, Px
|
12 |
+
from sympy.functions.special.tensor_functions import KroneckerDelta
|
13 |
+
from sympy.physics.quantum.hilbert import ComplexSpace
|
14 |
+
from sympy.physics.quantum.matrixutils import matrix_zeros
|
15 |
+
|
16 |
+
#------------------------------------------------------------------------------
|
17 |
+
|
18 |
+
class SHOOp(Operator):
|
19 |
+
"""A base class for the SHO Operators.
|
20 |
+
|
21 |
+
We are limiting the number of arguments to be 1.
|
22 |
+
|
23 |
+
"""
|
24 |
+
|
25 |
+
@classmethod
|
26 |
+
def _eval_args(cls, args):
|
27 |
+
args = QExpr._eval_args(args)
|
28 |
+
if len(args) == 1:
|
29 |
+
return args
|
30 |
+
else:
|
31 |
+
raise ValueError("Too many arguments")
|
32 |
+
|
33 |
+
@classmethod
|
34 |
+
def _eval_hilbert_space(cls, label):
|
35 |
+
return ComplexSpace(S.Infinity)
|
36 |
+
|
37 |
+
class RaisingOp(SHOOp):
|
38 |
+
"""The Raising Operator or a^dagger.
|
39 |
+
|
40 |
+
When a^dagger acts on a state it raises the state up by one. Taking
|
41 |
+
the adjoint of a^dagger returns 'a', the Lowering Operator. a^dagger
|
42 |
+
can be rewritten in terms of position and momentum. We can represent
|
43 |
+
a^dagger as a matrix, which will be its default basis.
|
44 |
+
|
45 |
+
Parameters
|
46 |
+
==========
|
47 |
+
|
48 |
+
args : tuple
|
49 |
+
The list of numbers or parameters that uniquely specify the
|
50 |
+
operator.
|
51 |
+
|
52 |
+
Examples
|
53 |
+
========
|
54 |
+
|
55 |
+
Create a Raising Operator and rewrite it in terms of position and
|
56 |
+
momentum, and show that taking its adjoint returns 'a':
|
57 |
+
|
58 |
+
>>> from sympy.physics.quantum.sho1d import RaisingOp
|
59 |
+
>>> from sympy.physics.quantum import Dagger
|
60 |
+
|
61 |
+
>>> ad = RaisingOp('a')
|
62 |
+
>>> ad.rewrite('xp').doit()
|
63 |
+
sqrt(2)*(m*omega*X - I*Px)/(2*sqrt(hbar)*sqrt(m*omega))
|
64 |
+
|
65 |
+
>>> Dagger(ad)
|
66 |
+
a
|
67 |
+
|
68 |
+
Taking the commutator of a^dagger with other Operators:
|
69 |
+
|
70 |
+
>>> from sympy.physics.quantum import Commutator
|
71 |
+
>>> from sympy.physics.quantum.sho1d import RaisingOp, LoweringOp
|
72 |
+
>>> from sympy.physics.quantum.sho1d import NumberOp
|
73 |
+
|
74 |
+
>>> ad = RaisingOp('a')
|
75 |
+
>>> a = LoweringOp('a')
|
76 |
+
>>> N = NumberOp('N')
|
77 |
+
>>> Commutator(ad, a).doit()
|
78 |
+
-1
|
79 |
+
>>> Commutator(ad, N).doit()
|
80 |
+
-RaisingOp(a)
|
81 |
+
|
82 |
+
Apply a^dagger to a state:
|
83 |
+
|
84 |
+
>>> from sympy.physics.quantum import qapply
|
85 |
+
>>> from sympy.physics.quantum.sho1d import RaisingOp, SHOKet
|
86 |
+
|
87 |
+
>>> ad = RaisingOp('a')
|
88 |
+
>>> k = SHOKet('k')
|
89 |
+
>>> qapply(ad*k)
|
90 |
+
sqrt(k + 1)*|k + 1>
|
91 |
+
|
92 |
+
Matrix Representation
|
93 |
+
|
94 |
+
>>> from sympy.physics.quantum.sho1d import RaisingOp
|
95 |
+
>>> from sympy.physics.quantum.represent import represent
|
96 |
+
>>> ad = RaisingOp('a')
|
97 |
+
>>> represent(ad, basis=N, ndim=4, format='sympy')
|
98 |
+
Matrix([
|
99 |
+
[0, 0, 0, 0],
|
100 |
+
[1, 0, 0, 0],
|
101 |
+
[0, sqrt(2), 0, 0],
|
102 |
+
[0, 0, sqrt(3), 0]])
|
103 |
+
|
104 |
+
"""
|
105 |
+
|
106 |
+
def _eval_rewrite_as_xp(self, *args, **kwargs):
|
107 |
+
return (S.One/sqrt(Integer(2)*hbar*m*omega))*(
|
108 |
+
S.NegativeOne*I*Px + m*omega*X)
|
109 |
+
|
110 |
+
def _eval_adjoint(self):
|
111 |
+
return LoweringOp(*self.args)
|
112 |
+
|
113 |
+
def _eval_commutator_LoweringOp(self, other):
|
114 |
+
return S.NegativeOne
|
115 |
+
|
116 |
+
def _eval_commutator_NumberOp(self, other):
|
117 |
+
return S.NegativeOne*self
|
118 |
+
|
119 |
+
def _apply_operator_SHOKet(self, ket, **options):
|
120 |
+
temp = ket.n + S.One
|
121 |
+
return sqrt(temp)*SHOKet(temp)
|
122 |
+
|
123 |
+
def _represent_default_basis(self, **options):
|
124 |
+
return self._represent_NumberOp(None, **options)
|
125 |
+
|
126 |
+
def _represent_XOp(self, basis, **options):
|
127 |
+
# This logic is good but the underlying position
|
128 |
+
# representation logic is broken.
|
129 |
+
# temp = self.rewrite('xp').doit()
|
130 |
+
# result = represent(temp, basis=X)
|
131 |
+
# return result
|
132 |
+
raise NotImplementedError('Position representation is not implemented')
|
133 |
+
|
134 |
+
def _represent_NumberOp(self, basis, **options):
|
135 |
+
ndim_info = options.get('ndim', 4)
|
136 |
+
format = options.get('format','sympy')
|
137 |
+
matrix = matrix_zeros(ndim_info, ndim_info, **options)
|
138 |
+
for i in range(ndim_info - 1):
|
139 |
+
value = sqrt(i + 1)
|
140 |
+
if format == 'scipy.sparse':
|
141 |
+
value = float(value)
|
142 |
+
matrix[i + 1, i] = value
|
143 |
+
if format == 'scipy.sparse':
|
144 |
+
matrix = matrix.tocsr()
|
145 |
+
return matrix
|
146 |
+
|
147 |
+
#--------------------------------------------------------------------------
|
148 |
+
# Printing Methods
|
149 |
+
#--------------------------------------------------------------------------
|
150 |
+
|
151 |
+
def _print_contents(self, printer, *args):
|
152 |
+
arg0 = printer._print(self.args[0], *args)
|
153 |
+
return '%s(%s)' % (self.__class__.__name__, arg0)
|
154 |
+
|
155 |
+
def _print_contents_pretty(self, printer, *args):
|
156 |
+
from sympy.printing.pretty.stringpict import prettyForm
|
157 |
+
pform = printer._print(self.args[0], *args)
|
158 |
+
pform = pform**prettyForm('\N{DAGGER}')
|
159 |
+
return pform
|
160 |
+
|
161 |
+
def _print_contents_latex(self, printer, *args):
|
162 |
+
arg = printer._print(self.args[0])
|
163 |
+
return '%s^{\\dagger}' % arg
|
164 |
+
|
165 |
+
class LoweringOp(SHOOp):
|
166 |
+
"""The Lowering Operator or 'a'.
|
167 |
+
|
168 |
+
When 'a' acts on a state it lowers the state up by one. Taking
|
169 |
+
the adjoint of 'a' returns a^dagger, the Raising Operator. 'a'
|
170 |
+
can be rewritten in terms of position and momentum. We can
|
171 |
+
represent 'a' as a matrix, which will be its default basis.
|
172 |
+
|
173 |
+
Parameters
|
174 |
+
==========
|
175 |
+
|
176 |
+
args : tuple
|
177 |
+
The list of numbers or parameters that uniquely specify the
|
178 |
+
operator.
|
179 |
+
|
180 |
+
Examples
|
181 |
+
========
|
182 |
+
|
183 |
+
Create a Lowering Operator and rewrite it in terms of position and
|
184 |
+
momentum, and show that taking its adjoint returns a^dagger:
|
185 |
+
|
186 |
+
>>> from sympy.physics.quantum.sho1d import LoweringOp
|
187 |
+
>>> from sympy.physics.quantum import Dagger
|
188 |
+
|
189 |
+
>>> a = LoweringOp('a')
|
190 |
+
>>> a.rewrite('xp').doit()
|
191 |
+
sqrt(2)*(m*omega*X + I*Px)/(2*sqrt(hbar)*sqrt(m*omega))
|
192 |
+
|
193 |
+
>>> Dagger(a)
|
194 |
+
RaisingOp(a)
|
195 |
+
|
196 |
+
Taking the commutator of 'a' with other Operators:
|
197 |
+
|
198 |
+
>>> from sympy.physics.quantum import Commutator
|
199 |
+
>>> from sympy.physics.quantum.sho1d import LoweringOp, RaisingOp
|
200 |
+
>>> from sympy.physics.quantum.sho1d import NumberOp
|
201 |
+
|
202 |
+
>>> a = LoweringOp('a')
|
203 |
+
>>> ad = RaisingOp('a')
|
204 |
+
>>> N = NumberOp('N')
|
205 |
+
>>> Commutator(a, ad).doit()
|
206 |
+
1
|
207 |
+
>>> Commutator(a, N).doit()
|
208 |
+
a
|
209 |
+
|
210 |
+
Apply 'a' to a state:
|
211 |
+
|
212 |
+
>>> from sympy.physics.quantum import qapply
|
213 |
+
>>> from sympy.physics.quantum.sho1d import LoweringOp, SHOKet
|
214 |
+
|
215 |
+
>>> a = LoweringOp('a')
|
216 |
+
>>> k = SHOKet('k')
|
217 |
+
>>> qapply(a*k)
|
218 |
+
sqrt(k)*|k - 1>
|
219 |
+
|
220 |
+
Taking 'a' of the lowest state will return 0:
|
221 |
+
|
222 |
+
>>> from sympy.physics.quantum import qapply
|
223 |
+
>>> from sympy.physics.quantum.sho1d import LoweringOp, SHOKet
|
224 |
+
|
225 |
+
>>> a = LoweringOp('a')
|
226 |
+
>>> k = SHOKet(0)
|
227 |
+
>>> qapply(a*k)
|
228 |
+
0
|
229 |
+
|
230 |
+
Matrix Representation
|
231 |
+
|
232 |
+
>>> from sympy.physics.quantum.sho1d import LoweringOp
|
233 |
+
>>> from sympy.physics.quantum.represent import represent
|
234 |
+
>>> a = LoweringOp('a')
|
235 |
+
>>> represent(a, basis=N, ndim=4, format='sympy')
|
236 |
+
Matrix([
|
237 |
+
[0, 1, 0, 0],
|
238 |
+
[0, 0, sqrt(2), 0],
|
239 |
+
[0, 0, 0, sqrt(3)],
|
240 |
+
[0, 0, 0, 0]])
|
241 |
+
|
242 |
+
"""
|
243 |
+
|
244 |
+
def _eval_rewrite_as_xp(self, *args, **kwargs):
|
245 |
+
return (S.One/sqrt(Integer(2)*hbar*m*omega))*(
|
246 |
+
I*Px + m*omega*X)
|
247 |
+
|
248 |
+
def _eval_adjoint(self):
|
249 |
+
return RaisingOp(*self.args)
|
250 |
+
|
251 |
+
def _eval_commutator_RaisingOp(self, other):
|
252 |
+
return S.One
|
253 |
+
|
254 |
+
def _eval_commutator_NumberOp(self, other):
|
255 |
+
return self
|
256 |
+
|
257 |
+
def _apply_operator_SHOKet(self, ket, **options):
|
258 |
+
temp = ket.n - Integer(1)
|
259 |
+
if ket.n is S.Zero:
|
260 |
+
return S.Zero
|
261 |
+
else:
|
262 |
+
return sqrt(ket.n)*SHOKet(temp)
|
263 |
+
|
264 |
+
def _represent_default_basis(self, **options):
|
265 |
+
return self._represent_NumberOp(None, **options)
|
266 |
+
|
267 |
+
def _represent_XOp(self, basis, **options):
|
268 |
+
# This logic is good but the underlying position
|
269 |
+
# representation logic is broken.
|
270 |
+
# temp = self.rewrite('xp').doit()
|
271 |
+
# result = represent(temp, basis=X)
|
272 |
+
# return result
|
273 |
+
raise NotImplementedError('Position representation is not implemented')
|
274 |
+
|
275 |
+
def _represent_NumberOp(self, basis, **options):
|
276 |
+
ndim_info = options.get('ndim', 4)
|
277 |
+
format = options.get('format', 'sympy')
|
278 |
+
matrix = matrix_zeros(ndim_info, ndim_info, **options)
|
279 |
+
for i in range(ndim_info - 1):
|
280 |
+
value = sqrt(i + 1)
|
281 |
+
if format == 'scipy.sparse':
|
282 |
+
value = float(value)
|
283 |
+
matrix[i,i + 1] = value
|
284 |
+
if format == 'scipy.sparse':
|
285 |
+
matrix = matrix.tocsr()
|
286 |
+
return matrix
|
287 |
+
|
288 |
+
|
289 |
+
class NumberOp(SHOOp):
|
290 |
+
"""The Number Operator is simply a^dagger*a
|
291 |
+
|
292 |
+
It is often useful to write a^dagger*a as simply the Number Operator
|
293 |
+
because the Number Operator commutes with the Hamiltonian. And can be
|
294 |
+
expressed using the Number Operator. Also the Number Operator can be
|
295 |
+
applied to states. We can represent the Number Operator as a matrix,
|
296 |
+
which will be its default basis.
|
297 |
+
|
298 |
+
Parameters
|
299 |
+
==========
|
300 |
+
|
301 |
+
args : tuple
|
302 |
+
The list of numbers or parameters that uniquely specify the
|
303 |
+
operator.
|
304 |
+
|
305 |
+
Examples
|
306 |
+
========
|
307 |
+
|
308 |
+
Create a Number Operator and rewrite it in terms of the ladder
|
309 |
+
operators, position and momentum operators, and Hamiltonian:
|
310 |
+
|
311 |
+
>>> from sympy.physics.quantum.sho1d import NumberOp
|
312 |
+
|
313 |
+
>>> N = NumberOp('N')
|
314 |
+
>>> N.rewrite('a').doit()
|
315 |
+
RaisingOp(a)*a
|
316 |
+
>>> N.rewrite('xp').doit()
|
317 |
+
-1/2 + (m**2*omega**2*X**2 + Px**2)/(2*hbar*m*omega)
|
318 |
+
>>> N.rewrite('H').doit()
|
319 |
+
-1/2 + H/(hbar*omega)
|
320 |
+
|
321 |
+
Take the Commutator of the Number Operator with other Operators:
|
322 |
+
|
323 |
+
>>> from sympy.physics.quantum import Commutator
|
324 |
+
>>> from sympy.physics.quantum.sho1d import NumberOp, Hamiltonian
|
325 |
+
>>> from sympy.physics.quantum.sho1d import RaisingOp, LoweringOp
|
326 |
+
|
327 |
+
>>> N = NumberOp('N')
|
328 |
+
>>> H = Hamiltonian('H')
|
329 |
+
>>> ad = RaisingOp('a')
|
330 |
+
>>> a = LoweringOp('a')
|
331 |
+
>>> Commutator(N,H).doit()
|
332 |
+
0
|
333 |
+
>>> Commutator(N,ad).doit()
|
334 |
+
RaisingOp(a)
|
335 |
+
>>> Commutator(N,a).doit()
|
336 |
+
-a
|
337 |
+
|
338 |
+
Apply the Number Operator to a state:
|
339 |
+
|
340 |
+
>>> from sympy.physics.quantum import qapply
|
341 |
+
>>> from sympy.physics.quantum.sho1d import NumberOp, SHOKet
|
342 |
+
|
343 |
+
>>> N = NumberOp('N')
|
344 |
+
>>> k = SHOKet('k')
|
345 |
+
>>> qapply(N*k)
|
346 |
+
k*|k>
|
347 |
+
|
348 |
+
Matrix Representation
|
349 |
+
|
350 |
+
>>> from sympy.physics.quantum.sho1d import NumberOp
|
351 |
+
>>> from sympy.physics.quantum.represent import represent
|
352 |
+
>>> N = NumberOp('N')
|
353 |
+
>>> represent(N, basis=N, ndim=4, format='sympy')
|
354 |
+
Matrix([
|
355 |
+
[0, 0, 0, 0],
|
356 |
+
[0, 1, 0, 0],
|
357 |
+
[0, 0, 2, 0],
|
358 |
+
[0, 0, 0, 3]])
|
359 |
+
|
360 |
+
"""
|
361 |
+
|
362 |
+
def _eval_rewrite_as_a(self, *args, **kwargs):
|
363 |
+
return ad*a
|
364 |
+
|
365 |
+
def _eval_rewrite_as_xp(self, *args, **kwargs):
|
366 |
+
return (S.One/(Integer(2)*m*hbar*omega))*(Px**2 + (
|
367 |
+
m*omega*X)**2) - S.Half
|
368 |
+
|
369 |
+
def _eval_rewrite_as_H(self, *args, **kwargs):
|
370 |
+
return H/(hbar*omega) - S.Half
|
371 |
+
|
372 |
+
def _apply_operator_SHOKet(self, ket, **options):
|
373 |
+
return ket.n*ket
|
374 |
+
|
375 |
+
def _eval_commutator_Hamiltonian(self, other):
|
376 |
+
return S.Zero
|
377 |
+
|
378 |
+
def _eval_commutator_RaisingOp(self, other):
|
379 |
+
return other
|
380 |
+
|
381 |
+
def _eval_commutator_LoweringOp(self, other):
|
382 |
+
return S.NegativeOne*other
|
383 |
+
|
384 |
+
def _represent_default_basis(self, **options):
|
385 |
+
return self._represent_NumberOp(None, **options)
|
386 |
+
|
387 |
+
def _represent_XOp(self, basis, **options):
|
388 |
+
# This logic is good but the underlying position
|
389 |
+
# representation logic is broken.
|
390 |
+
# temp = self.rewrite('xp').doit()
|
391 |
+
# result = represent(temp, basis=X)
|
392 |
+
# return result
|
393 |
+
raise NotImplementedError('Position representation is not implemented')
|
394 |
+
|
395 |
+
def _represent_NumberOp(self, basis, **options):
|
396 |
+
ndim_info = options.get('ndim', 4)
|
397 |
+
format = options.get('format', 'sympy')
|
398 |
+
matrix = matrix_zeros(ndim_info, ndim_info, **options)
|
399 |
+
for i in range(ndim_info):
|
400 |
+
value = i
|
401 |
+
if format == 'scipy.sparse':
|
402 |
+
value = float(value)
|
403 |
+
matrix[i,i] = value
|
404 |
+
if format == 'scipy.sparse':
|
405 |
+
matrix = matrix.tocsr()
|
406 |
+
return matrix
|
407 |
+
|
408 |
+
|
409 |
+
class Hamiltonian(SHOOp):
|
410 |
+
"""The Hamiltonian Operator.
|
411 |
+
|
412 |
+
The Hamiltonian is used to solve the time-independent Schrodinger
|
413 |
+
equation. The Hamiltonian can be expressed using the ladder operators,
|
414 |
+
as well as by position and momentum. We can represent the Hamiltonian
|
415 |
+
Operator as a matrix, which will be its default basis.
|
416 |
+
|
417 |
+
Parameters
|
418 |
+
==========
|
419 |
+
|
420 |
+
args : tuple
|
421 |
+
The list of numbers or parameters that uniquely specify the
|
422 |
+
operator.
|
423 |
+
|
424 |
+
Examples
|
425 |
+
========
|
426 |
+
|
427 |
+
Create a Hamiltonian Operator and rewrite it in terms of the ladder
|
428 |
+
operators, position and momentum, and the Number Operator:
|
429 |
+
|
430 |
+
>>> from sympy.physics.quantum.sho1d import Hamiltonian
|
431 |
+
|
432 |
+
>>> H = Hamiltonian('H')
|
433 |
+
>>> H.rewrite('a').doit()
|
434 |
+
hbar*omega*(1/2 + RaisingOp(a)*a)
|
435 |
+
>>> H.rewrite('xp').doit()
|
436 |
+
(m**2*omega**2*X**2 + Px**2)/(2*m)
|
437 |
+
>>> H.rewrite('N').doit()
|
438 |
+
hbar*omega*(1/2 + N)
|
439 |
+
|
440 |
+
Take the Commutator of the Hamiltonian and the Number Operator:
|
441 |
+
|
442 |
+
>>> from sympy.physics.quantum import Commutator
|
443 |
+
>>> from sympy.physics.quantum.sho1d import Hamiltonian, NumberOp
|
444 |
+
|
445 |
+
>>> H = Hamiltonian('H')
|
446 |
+
>>> N = NumberOp('N')
|
447 |
+
>>> Commutator(H,N).doit()
|
448 |
+
0
|
449 |
+
|
450 |
+
Apply the Hamiltonian Operator to a state:
|
451 |
+
|
452 |
+
>>> from sympy.physics.quantum import qapply
|
453 |
+
>>> from sympy.physics.quantum.sho1d import Hamiltonian, SHOKet
|
454 |
+
|
455 |
+
>>> H = Hamiltonian('H')
|
456 |
+
>>> k = SHOKet('k')
|
457 |
+
>>> qapply(H*k)
|
458 |
+
hbar*k*omega*|k> + hbar*omega*|k>/2
|
459 |
+
|
460 |
+
Matrix Representation
|
461 |
+
|
462 |
+
>>> from sympy.physics.quantum.sho1d import Hamiltonian
|
463 |
+
>>> from sympy.physics.quantum.represent import represent
|
464 |
+
|
465 |
+
>>> H = Hamiltonian('H')
|
466 |
+
>>> represent(H, basis=N, ndim=4, format='sympy')
|
467 |
+
Matrix([
|
468 |
+
[hbar*omega/2, 0, 0, 0],
|
469 |
+
[ 0, 3*hbar*omega/2, 0, 0],
|
470 |
+
[ 0, 0, 5*hbar*omega/2, 0],
|
471 |
+
[ 0, 0, 0, 7*hbar*omega/2]])
|
472 |
+
|
473 |
+
"""
|
474 |
+
|
475 |
+
def _eval_rewrite_as_a(self, *args, **kwargs):
|
476 |
+
return hbar*omega*(ad*a + S.Half)
|
477 |
+
|
478 |
+
def _eval_rewrite_as_xp(self, *args, **kwargs):
|
479 |
+
return (S.One/(Integer(2)*m))*(Px**2 + (m*omega*X)**2)
|
480 |
+
|
481 |
+
def _eval_rewrite_as_N(self, *args, **kwargs):
|
482 |
+
return hbar*omega*(N + S.Half)
|
483 |
+
|
484 |
+
def _apply_operator_SHOKet(self, ket, **options):
|
485 |
+
return (hbar*omega*(ket.n + S.Half))*ket
|
486 |
+
|
487 |
+
def _eval_commutator_NumberOp(self, other):
|
488 |
+
return S.Zero
|
489 |
+
|
490 |
+
def _represent_default_basis(self, **options):
|
491 |
+
return self._represent_NumberOp(None, **options)
|
492 |
+
|
493 |
+
def _represent_XOp(self, basis, **options):
|
494 |
+
# This logic is good but the underlying position
|
495 |
+
# representation logic is broken.
|
496 |
+
# temp = self.rewrite('xp').doit()
|
497 |
+
# result = represent(temp, basis=X)
|
498 |
+
# return result
|
499 |
+
raise NotImplementedError('Position representation is not implemented')
|
500 |
+
|
501 |
+
def _represent_NumberOp(self, basis, **options):
|
502 |
+
ndim_info = options.get('ndim', 4)
|
503 |
+
format = options.get('format', 'sympy')
|
504 |
+
matrix = matrix_zeros(ndim_info, ndim_info, **options)
|
505 |
+
for i in range(ndim_info):
|
506 |
+
value = i + S.Half
|
507 |
+
if format == 'scipy.sparse':
|
508 |
+
value = float(value)
|
509 |
+
matrix[i,i] = value
|
510 |
+
if format == 'scipy.sparse':
|
511 |
+
matrix = matrix.tocsr()
|
512 |
+
return hbar*omega*matrix
|
513 |
+
|
514 |
+
#------------------------------------------------------------------------------
|
515 |
+
|
516 |
+
class SHOState(State):
|
517 |
+
"""State class for SHO states"""
|
518 |
+
|
519 |
+
@classmethod
|
520 |
+
def _eval_hilbert_space(cls, label):
|
521 |
+
return ComplexSpace(S.Infinity)
|
522 |
+
|
523 |
+
@property
|
524 |
+
def n(self):
|
525 |
+
return self.args[0]
|
526 |
+
|
527 |
+
|
528 |
+
class SHOKet(SHOState, Ket):
|
529 |
+
"""1D eigenket.
|
530 |
+
|
531 |
+
Inherits from SHOState and Ket.
|
532 |
+
|
533 |
+
Parameters
|
534 |
+
==========
|
535 |
+
|
536 |
+
args : tuple
|
537 |
+
The list of numbers or parameters that uniquely specify the ket
|
538 |
+
This is usually its quantum numbers or its symbol.
|
539 |
+
|
540 |
+
Examples
|
541 |
+
========
|
542 |
+
|
543 |
+
Ket's know about their associated bra:
|
544 |
+
|
545 |
+
>>> from sympy.physics.quantum.sho1d import SHOKet
|
546 |
+
|
547 |
+
>>> k = SHOKet('k')
|
548 |
+
>>> k.dual
|
549 |
+
<k|
|
550 |
+
>>> k.dual_class()
|
551 |
+
<class 'sympy.physics.quantum.sho1d.SHOBra'>
|
552 |
+
|
553 |
+
Take the Inner Product with a bra:
|
554 |
+
|
555 |
+
>>> from sympy.physics.quantum import InnerProduct
|
556 |
+
>>> from sympy.physics.quantum.sho1d import SHOKet, SHOBra
|
557 |
+
|
558 |
+
>>> k = SHOKet('k')
|
559 |
+
>>> b = SHOBra('b')
|
560 |
+
>>> InnerProduct(b,k).doit()
|
561 |
+
KroneckerDelta(b, k)
|
562 |
+
|
563 |
+
Vector representation of a numerical state ket:
|
564 |
+
|
565 |
+
>>> from sympy.physics.quantum.sho1d import SHOKet, NumberOp
|
566 |
+
>>> from sympy.physics.quantum.represent import represent
|
567 |
+
|
568 |
+
>>> k = SHOKet(3)
|
569 |
+
>>> N = NumberOp('N')
|
570 |
+
>>> represent(k, basis=N, ndim=4)
|
571 |
+
Matrix([
|
572 |
+
[0],
|
573 |
+
[0],
|
574 |
+
[0],
|
575 |
+
[1]])
|
576 |
+
|
577 |
+
"""
|
578 |
+
|
579 |
+
@classmethod
|
580 |
+
def dual_class(self):
|
581 |
+
return SHOBra
|
582 |
+
|
583 |
+
def _eval_innerproduct_SHOBra(self, bra, **hints):
|
584 |
+
result = KroneckerDelta(self.n, bra.n)
|
585 |
+
return result
|
586 |
+
|
587 |
+
def _represent_default_basis(self, **options):
|
588 |
+
return self._represent_NumberOp(None, **options)
|
589 |
+
|
590 |
+
def _represent_NumberOp(self, basis, **options):
|
591 |
+
ndim_info = options.get('ndim', 4)
|
592 |
+
format = options.get('format', 'sympy')
|
593 |
+
options['spmatrix'] = 'lil'
|
594 |
+
vector = matrix_zeros(ndim_info, 1, **options)
|
595 |
+
if isinstance(self.n, Integer):
|
596 |
+
if self.n >= ndim_info:
|
597 |
+
return ValueError("N-Dimension too small")
|
598 |
+
if format == 'scipy.sparse':
|
599 |
+
vector[int(self.n), 0] = 1.0
|
600 |
+
vector = vector.tocsr()
|
601 |
+
elif format == 'numpy':
|
602 |
+
vector[int(self.n), 0] = 1.0
|
603 |
+
else:
|
604 |
+
vector[self.n, 0] = S.One
|
605 |
+
return vector
|
606 |
+
else:
|
607 |
+
return ValueError("Not Numerical State")
|
608 |
+
|
609 |
+
|
610 |
+
class SHOBra(SHOState, Bra):
|
611 |
+
"""A time-independent Bra in SHO.
|
612 |
+
|
613 |
+
Inherits from SHOState and Bra.
|
614 |
+
|
615 |
+
Parameters
|
616 |
+
==========
|
617 |
+
|
618 |
+
args : tuple
|
619 |
+
The list of numbers or parameters that uniquely specify the ket
|
620 |
+
This is usually its quantum numbers or its symbol.
|
621 |
+
|
622 |
+
Examples
|
623 |
+
========
|
624 |
+
|
625 |
+
Bra's know about their associated ket:
|
626 |
+
|
627 |
+
>>> from sympy.physics.quantum.sho1d import SHOBra
|
628 |
+
|
629 |
+
>>> b = SHOBra('b')
|
630 |
+
>>> b.dual
|
631 |
+
|b>
|
632 |
+
>>> b.dual_class()
|
633 |
+
<class 'sympy.physics.quantum.sho1d.SHOKet'>
|
634 |
+
|
635 |
+
Vector representation of a numerical state bra:
|
636 |
+
|
637 |
+
>>> from sympy.physics.quantum.sho1d import SHOBra, NumberOp
|
638 |
+
>>> from sympy.physics.quantum.represent import represent
|
639 |
+
|
640 |
+
>>> b = SHOBra(3)
|
641 |
+
>>> N = NumberOp('N')
|
642 |
+
>>> represent(b, basis=N, ndim=4)
|
643 |
+
Matrix([[0, 0, 0, 1]])
|
644 |
+
|
645 |
+
"""
|
646 |
+
|
647 |
+
@classmethod
|
648 |
+
def dual_class(self):
|
649 |
+
return SHOKet
|
650 |
+
|
651 |
+
def _represent_default_basis(self, **options):
|
652 |
+
return self._represent_NumberOp(None, **options)
|
653 |
+
|
654 |
+
def _represent_NumberOp(self, basis, **options):
|
655 |
+
ndim_info = options.get('ndim', 4)
|
656 |
+
format = options.get('format', 'sympy')
|
657 |
+
options['spmatrix'] = 'lil'
|
658 |
+
vector = matrix_zeros(1, ndim_info, **options)
|
659 |
+
if isinstance(self.n, Integer):
|
660 |
+
if self.n >= ndim_info:
|
661 |
+
return ValueError("N-Dimension too small")
|
662 |
+
if format == 'scipy.sparse':
|
663 |
+
vector[0, int(self.n)] = 1.0
|
664 |
+
vector = vector.tocsr()
|
665 |
+
elif format == 'numpy':
|
666 |
+
vector[0, int(self.n)] = 1.0
|
667 |
+
else:
|
668 |
+
vector[0, self.n] = S.One
|
669 |
+
return vector
|
670 |
+
else:
|
671 |
+
return ValueError("Not Numerical State")
|
672 |
+
|
673 |
+
|
674 |
+
ad = RaisingOp('a')
|
675 |
+
a = LoweringOp('a')
|
676 |
+
H = Hamiltonian('H')
|
677 |
+
N = NumberOp('N')
|
678 |
+
omega = Symbol('omega')
|
679 |
+
m = Symbol('m')
|
venv/lib/python3.10/site-packages/sympy/physics/quantum/shor.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Shor's algorithm and helper functions.
|
2 |
+
|
3 |
+
Todo:
|
4 |
+
|
5 |
+
* Get the CMod gate working again using the new Gate API.
|
6 |
+
* Fix everything.
|
7 |
+
* Update docstrings and reformat.
|
8 |
+
"""
|
9 |
+
|
10 |
+
import math
|
11 |
+
import random
|
12 |
+
|
13 |
+
from sympy.core.mul import Mul
|
14 |
+
from sympy.core.singleton import S
|
15 |
+
from sympy.functions.elementary.exponential import log
|
16 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
17 |
+
from sympy.core.numbers import igcd
|
18 |
+
from sympy.ntheory import continued_fraction_periodic as continued_fraction
|
19 |
+
from sympy.utilities.iterables import variations
|
20 |
+
|
21 |
+
from sympy.physics.quantum.gate import Gate
|
22 |
+
from sympy.physics.quantum.qubit import Qubit, measure_partial_oneshot
|
23 |
+
from sympy.physics.quantum.qapply import qapply
|
24 |
+
from sympy.physics.quantum.qft import QFT
|
25 |
+
from sympy.physics.quantum.qexpr import QuantumError
|
26 |
+
|
27 |
+
|
28 |
+
class OrderFindingException(QuantumError):
|
29 |
+
pass
|
30 |
+
|
31 |
+
|
32 |
+
class CMod(Gate):
|
33 |
+
"""A controlled mod gate.
|
34 |
+
|
35 |
+
This is black box controlled Mod function for use by shor's algorithm.
|
36 |
+
TODO: implement a decompose property that returns how to do this in terms
|
37 |
+
of elementary gates
|
38 |
+
"""
|
39 |
+
|
40 |
+
@classmethod
|
41 |
+
def _eval_args(cls, args):
|
42 |
+
# t = args[0]
|
43 |
+
# a = args[1]
|
44 |
+
# N = args[2]
|
45 |
+
raise NotImplementedError('The CMod gate has not been completed.')
|
46 |
+
|
47 |
+
@property
|
48 |
+
def t(self):
|
49 |
+
"""Size of 1/2 input register. First 1/2 holds output."""
|
50 |
+
return self.label[0]
|
51 |
+
|
52 |
+
@property
|
53 |
+
def a(self):
|
54 |
+
"""Base of the controlled mod function."""
|
55 |
+
return self.label[1]
|
56 |
+
|
57 |
+
@property
|
58 |
+
def N(self):
|
59 |
+
"""N is the type of modular arithmetic we are doing."""
|
60 |
+
return self.label[2]
|
61 |
+
|
62 |
+
def _apply_operator_Qubit(self, qubits, **options):
|
63 |
+
"""
|
64 |
+
This directly calculates the controlled mod of the second half of
|
65 |
+
the register and puts it in the second
|
66 |
+
This will look pretty when we get Tensor Symbolically working
|
67 |
+
"""
|
68 |
+
n = 1
|
69 |
+
k = 0
|
70 |
+
# Determine the value stored in high memory.
|
71 |
+
for i in range(self.t):
|
72 |
+
k += n*qubits[self.t + i]
|
73 |
+
n *= 2
|
74 |
+
|
75 |
+
# The value to go in low memory will be out.
|
76 |
+
out = int(self.a**k % self.N)
|
77 |
+
|
78 |
+
# Create array for new qbit-ket which will have high memory unaffected
|
79 |
+
outarray = list(qubits.args[0][:self.t])
|
80 |
+
|
81 |
+
# Place out in low memory
|
82 |
+
for i in reversed(range(self.t)):
|
83 |
+
outarray.append((out >> i) & 1)
|
84 |
+
|
85 |
+
return Qubit(*outarray)
|
86 |
+
|
87 |
+
|
88 |
+
def shor(N):
|
89 |
+
"""This function implements Shor's factoring algorithm on the Integer N
|
90 |
+
|
91 |
+
The algorithm starts by picking a random number (a) and seeing if it is
|
92 |
+
coprime with N. If it is not, then the gcd of the two numbers is a factor
|
93 |
+
and we are done. Otherwise, it begins the period_finding subroutine which
|
94 |
+
finds the period of a in modulo N arithmetic. This period, if even, can
|
95 |
+
be used to calculate factors by taking a**(r/2)-1 and a**(r/2)+1.
|
96 |
+
These values are returned.
|
97 |
+
"""
|
98 |
+
a = random.randrange(N - 2) + 2
|
99 |
+
if igcd(N, a) != 1:
|
100 |
+
return igcd(N, a)
|
101 |
+
r = period_find(a, N)
|
102 |
+
if r % 2 == 1:
|
103 |
+
shor(N)
|
104 |
+
answer = (igcd(a**(r/2) - 1, N), igcd(a**(r/2) + 1, N))
|
105 |
+
return answer
|
106 |
+
|
107 |
+
|
108 |
+
def getr(x, y, N):
|
109 |
+
fraction = continued_fraction(x, y)
|
110 |
+
# Now convert into r
|
111 |
+
total = ratioize(fraction, N)
|
112 |
+
return total
|
113 |
+
|
114 |
+
|
115 |
+
def ratioize(list, N):
|
116 |
+
if list[0] > N:
|
117 |
+
return S.Zero
|
118 |
+
if len(list) == 1:
|
119 |
+
return list[0]
|
120 |
+
return list[0] + ratioize(list[1:], N)
|
121 |
+
|
122 |
+
|
123 |
+
def period_find(a, N):
|
124 |
+
"""Finds the period of a in modulo N arithmetic
|
125 |
+
|
126 |
+
This is quantum part of Shor's algorithm. It takes two registers,
|
127 |
+
puts first in superposition of states with Hadamards so: ``|k>|0>``
|
128 |
+
with k being all possible choices. It then does a controlled mod and
|
129 |
+
a QFT to determine the order of a.
|
130 |
+
"""
|
131 |
+
epsilon = .5
|
132 |
+
# picks out t's such that maintains accuracy within epsilon
|
133 |
+
t = int(2*math.ceil(log(N, 2)))
|
134 |
+
# make the first half of register be 0's |000...000>
|
135 |
+
start = [0 for x in range(t)]
|
136 |
+
# Put second half into superposition of states so we have |1>x|0> + |2>x|0> + ... |k>x>|0> + ... + |2**n-1>x|0>
|
137 |
+
factor = 1/sqrt(2**t)
|
138 |
+
qubits = 0
|
139 |
+
for arr in variations(range(2), t, repetition=True):
|
140 |
+
qbitArray = list(arr) + start
|
141 |
+
qubits = qubits + Qubit(*qbitArray)
|
142 |
+
circuit = (factor*qubits).expand()
|
143 |
+
# Controlled second half of register so that we have:
|
144 |
+
# |1>x|a**1 %N> + |2>x|a**2 %N> + ... + |k>x|a**k %N >+ ... + |2**n-1=k>x|a**k % n>
|
145 |
+
circuit = CMod(t, a, N)*circuit
|
146 |
+
# will measure first half of register giving one of the a**k%N's
|
147 |
+
|
148 |
+
circuit = qapply(circuit)
|
149 |
+
for i in range(t):
|
150 |
+
circuit = measure_partial_oneshot(circuit, i)
|
151 |
+
# Now apply Inverse Quantum Fourier Transform on the second half of the register
|
152 |
+
|
153 |
+
circuit = qapply(QFT(t, t*2).decompose()*circuit, floatingPoint=True)
|
154 |
+
for i in range(t):
|
155 |
+
circuit = measure_partial_oneshot(circuit, i + t)
|
156 |
+
if isinstance(circuit, Qubit):
|
157 |
+
register = circuit
|
158 |
+
elif isinstance(circuit, Mul):
|
159 |
+
register = circuit.args[-1]
|
160 |
+
else:
|
161 |
+
register = circuit.args[-1].args[-1]
|
162 |
+
|
163 |
+
n = 1
|
164 |
+
answer = 0
|
165 |
+
for i in range(len(register)/2):
|
166 |
+
answer += n*register[i + t]
|
167 |
+
n = n << 1
|
168 |
+
if answer == 0:
|
169 |
+
raise OrderFindingException(
|
170 |
+
"Order finder returned 0. Happens with chance %f" % epsilon)
|
171 |
+
#turn answer into r using continued fractions
|
172 |
+
g = getr(answer, 2**t, N)
|
173 |
+
return g
|
venv/lib/python3.10/site-packages/sympy/physics/quantum/spin.py
ADDED
@@ -0,0 +1,2149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Quantum mechanical angular momemtum."""
|
2 |
+
|
3 |
+
from sympy.concrete.summations import Sum
|
4 |
+
from sympy.core.add import Add
|
5 |
+
from sympy.core.containers import Tuple
|
6 |
+
from sympy.core.expr import Expr
|
7 |
+
from sympy.core.mul import Mul
|
8 |
+
from sympy.core.numbers import (I, Integer, Rational, pi)
|
9 |
+
from sympy.core.singleton import S
|
10 |
+
from sympy.core.symbol import (Dummy, symbols)
|
11 |
+
from sympy.core.sympify import sympify
|
12 |
+
from sympy.functions.combinatorial.factorials import (binomial, factorial)
|
13 |
+
from sympy.functions.elementary.exponential import exp
|
14 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
15 |
+
from sympy.functions.elementary.trigonometric import (cos, sin)
|
16 |
+
from sympy.simplify.simplify import simplify
|
17 |
+
from sympy.matrices import zeros
|
18 |
+
from sympy.printing.pretty.stringpict import prettyForm, stringPict
|
19 |
+
from sympy.printing.pretty.pretty_symbology import pretty_symbol
|
20 |
+
|
21 |
+
from sympy.physics.quantum.qexpr import QExpr
|
22 |
+
from sympy.physics.quantum.operator import (HermitianOperator, Operator,
|
23 |
+
UnitaryOperator)
|
24 |
+
from sympy.physics.quantum.state import Bra, Ket, State
|
25 |
+
from sympy.functions.special.tensor_functions import KroneckerDelta
|
26 |
+
from sympy.physics.quantum.constants import hbar
|
27 |
+
from sympy.physics.quantum.hilbert import ComplexSpace, DirectSumHilbertSpace
|
28 |
+
from sympy.physics.quantum.tensorproduct import TensorProduct
|
29 |
+
from sympy.physics.quantum.cg import CG
|
30 |
+
from sympy.physics.quantum.qapply import qapply
|
31 |
+
|
32 |
+
|
33 |
+
__all__ = [
|
34 |
+
'm_values',
|
35 |
+
'Jplus',
|
36 |
+
'Jminus',
|
37 |
+
'Jx',
|
38 |
+
'Jy',
|
39 |
+
'Jz',
|
40 |
+
'J2',
|
41 |
+
'Rotation',
|
42 |
+
'WignerD',
|
43 |
+
'JxKet',
|
44 |
+
'JxBra',
|
45 |
+
'JyKet',
|
46 |
+
'JyBra',
|
47 |
+
'JzKet',
|
48 |
+
'JzBra',
|
49 |
+
'JzOp',
|
50 |
+
'J2Op',
|
51 |
+
'JxKetCoupled',
|
52 |
+
'JxBraCoupled',
|
53 |
+
'JyKetCoupled',
|
54 |
+
'JyBraCoupled',
|
55 |
+
'JzKetCoupled',
|
56 |
+
'JzBraCoupled',
|
57 |
+
'couple',
|
58 |
+
'uncouple'
|
59 |
+
]
|
60 |
+
|
61 |
+
|
62 |
+
def m_values(j):
|
63 |
+
j = sympify(j)
|
64 |
+
size = 2*j + 1
|
65 |
+
if not size.is_Integer or not size > 0:
|
66 |
+
raise ValueError(
|
67 |
+
'Only integer or half-integer values allowed for j, got: : %r' % j
|
68 |
+
)
|
69 |
+
return size, [j - i for i in range(int(2*j + 1))]
|
70 |
+
|
71 |
+
|
72 |
+
#-----------------------------------------------------------------------------
|
73 |
+
# Spin Operators
|
74 |
+
#-----------------------------------------------------------------------------
|
75 |
+
|
76 |
+
|
77 |
+
class SpinOpBase:
|
78 |
+
"""Base class for spin operators."""
|
79 |
+
|
80 |
+
@classmethod
|
81 |
+
def _eval_hilbert_space(cls, label):
|
82 |
+
# We consider all j values so our space is infinite.
|
83 |
+
return ComplexSpace(S.Infinity)
|
84 |
+
|
85 |
+
@property
|
86 |
+
def name(self):
|
87 |
+
return self.args[0]
|
88 |
+
|
89 |
+
def _print_contents(self, printer, *args):
|
90 |
+
return '%s%s' % (self.name, self._coord)
|
91 |
+
|
92 |
+
def _print_contents_pretty(self, printer, *args):
|
93 |
+
a = stringPict(str(self.name))
|
94 |
+
b = stringPict(self._coord)
|
95 |
+
return self._print_subscript_pretty(a, b)
|
96 |
+
|
97 |
+
def _print_contents_latex(self, printer, *args):
|
98 |
+
return r'%s_%s' % ((self.name, self._coord))
|
99 |
+
|
100 |
+
def _represent_base(self, basis, **options):
|
101 |
+
j = options.get('j', S.Half)
|
102 |
+
size, mvals = m_values(j)
|
103 |
+
result = zeros(size, size)
|
104 |
+
for p in range(size):
|
105 |
+
for q in range(size):
|
106 |
+
me = self.matrix_element(j, mvals[p], j, mvals[q])
|
107 |
+
result[p, q] = me
|
108 |
+
return result
|
109 |
+
|
110 |
+
def _apply_op(self, ket, orig_basis, **options):
|
111 |
+
state = ket.rewrite(self.basis)
|
112 |
+
# If the state has only one term
|
113 |
+
if isinstance(state, State):
|
114 |
+
ret = (hbar*state.m)*state
|
115 |
+
# state is a linear combination of states
|
116 |
+
elif isinstance(state, Sum):
|
117 |
+
ret = self._apply_operator_Sum(state, **options)
|
118 |
+
else:
|
119 |
+
ret = qapply(self*state)
|
120 |
+
if ret == self*state:
|
121 |
+
raise NotImplementedError
|
122 |
+
return ret.rewrite(orig_basis)
|
123 |
+
|
124 |
+
def _apply_operator_JxKet(self, ket, **options):
|
125 |
+
return self._apply_op(ket, 'Jx', **options)
|
126 |
+
|
127 |
+
def _apply_operator_JxKetCoupled(self, ket, **options):
|
128 |
+
return self._apply_op(ket, 'Jx', **options)
|
129 |
+
|
130 |
+
def _apply_operator_JyKet(self, ket, **options):
|
131 |
+
return self._apply_op(ket, 'Jy', **options)
|
132 |
+
|
133 |
+
def _apply_operator_JyKetCoupled(self, ket, **options):
|
134 |
+
return self._apply_op(ket, 'Jy', **options)
|
135 |
+
|
136 |
+
def _apply_operator_JzKet(self, ket, **options):
|
137 |
+
return self._apply_op(ket, 'Jz', **options)
|
138 |
+
|
139 |
+
def _apply_operator_JzKetCoupled(self, ket, **options):
|
140 |
+
return self._apply_op(ket, 'Jz', **options)
|
141 |
+
|
142 |
+
def _apply_operator_TensorProduct(self, tp, **options):
|
143 |
+
# Uncoupling operator is only easily found for coordinate basis spin operators
|
144 |
+
# TODO: add methods for uncoupling operators
|
145 |
+
if not isinstance(self, (JxOp, JyOp, JzOp)):
|
146 |
+
raise NotImplementedError
|
147 |
+
result = []
|
148 |
+
for n in range(len(tp.args)):
|
149 |
+
arg = []
|
150 |
+
arg.extend(tp.args[:n])
|
151 |
+
arg.append(self._apply_operator(tp.args[n]))
|
152 |
+
arg.extend(tp.args[n + 1:])
|
153 |
+
result.append(tp.__class__(*arg))
|
154 |
+
return Add(*result).expand()
|
155 |
+
|
156 |
+
# TODO: move this to qapply_Mul
|
157 |
+
def _apply_operator_Sum(self, s, **options):
|
158 |
+
new_func = qapply(self*s.function)
|
159 |
+
if new_func == self*s.function:
|
160 |
+
raise NotImplementedError
|
161 |
+
return Sum(new_func, *s.limits)
|
162 |
+
|
163 |
+
def _eval_trace(self, **options):
|
164 |
+
#TODO: use options to use different j values
|
165 |
+
#For now eval at default basis
|
166 |
+
|
167 |
+
# is it efficient to represent each time
|
168 |
+
# to do a trace?
|
169 |
+
return self._represent_default_basis().trace()
|
170 |
+
|
171 |
+
|
172 |
+
class JplusOp(SpinOpBase, Operator):
|
173 |
+
"""The J+ operator."""
|
174 |
+
|
175 |
+
_coord = '+'
|
176 |
+
|
177 |
+
basis = 'Jz'
|
178 |
+
|
179 |
+
def _eval_commutator_JminusOp(self, other):
|
180 |
+
return 2*hbar*JzOp(self.name)
|
181 |
+
|
182 |
+
def _apply_operator_JzKet(self, ket, **options):
|
183 |
+
j = ket.j
|
184 |
+
m = ket.m
|
185 |
+
if m.is_Number and j.is_Number:
|
186 |
+
if m >= j:
|
187 |
+
return S.Zero
|
188 |
+
return hbar*sqrt(j*(j + S.One) - m*(m + S.One))*JzKet(j, m + S.One)
|
189 |
+
|
190 |
+
def _apply_operator_JzKetCoupled(self, ket, **options):
|
191 |
+
j = ket.j
|
192 |
+
m = ket.m
|
193 |
+
jn = ket.jn
|
194 |
+
coupling = ket.coupling
|
195 |
+
if m.is_Number and j.is_Number:
|
196 |
+
if m >= j:
|
197 |
+
return S.Zero
|
198 |
+
return hbar*sqrt(j*(j + S.One) - m*(m + S.One))*JzKetCoupled(j, m + S.One, jn, coupling)
|
199 |
+
|
200 |
+
def matrix_element(self, j, m, jp, mp):
|
201 |
+
result = hbar*sqrt(j*(j + S.One) - mp*(mp + S.One))
|
202 |
+
result *= KroneckerDelta(m, mp + 1)
|
203 |
+
result *= KroneckerDelta(j, jp)
|
204 |
+
return result
|
205 |
+
|
206 |
+
def _represent_default_basis(self, **options):
|
207 |
+
return self._represent_JzOp(None, **options)
|
208 |
+
|
209 |
+
def _represent_JzOp(self, basis, **options):
|
210 |
+
return self._represent_base(basis, **options)
|
211 |
+
|
212 |
+
def _eval_rewrite_as_xyz(self, *args, **kwargs):
|
213 |
+
return JxOp(args[0]) + I*JyOp(args[0])
|
214 |
+
|
215 |
+
|
216 |
+
class JminusOp(SpinOpBase, Operator):
|
217 |
+
"""The J- operator."""
|
218 |
+
|
219 |
+
_coord = '-'
|
220 |
+
|
221 |
+
basis = 'Jz'
|
222 |
+
|
223 |
+
def _apply_operator_JzKet(self, ket, **options):
|
224 |
+
j = ket.j
|
225 |
+
m = ket.m
|
226 |
+
if m.is_Number and j.is_Number:
|
227 |
+
if m <= -j:
|
228 |
+
return S.Zero
|
229 |
+
return hbar*sqrt(j*(j + S.One) - m*(m - S.One))*JzKet(j, m - S.One)
|
230 |
+
|
231 |
+
def _apply_operator_JzKetCoupled(self, ket, **options):
|
232 |
+
j = ket.j
|
233 |
+
m = ket.m
|
234 |
+
jn = ket.jn
|
235 |
+
coupling = ket.coupling
|
236 |
+
if m.is_Number and j.is_Number:
|
237 |
+
if m <= -j:
|
238 |
+
return S.Zero
|
239 |
+
return hbar*sqrt(j*(j + S.One) - m*(m - S.One))*JzKetCoupled(j, m - S.One, jn, coupling)
|
240 |
+
|
241 |
+
def matrix_element(self, j, m, jp, mp):
|
242 |
+
result = hbar*sqrt(j*(j + S.One) - mp*(mp - S.One))
|
243 |
+
result *= KroneckerDelta(m, mp - 1)
|
244 |
+
result *= KroneckerDelta(j, jp)
|
245 |
+
return result
|
246 |
+
|
247 |
+
def _represent_default_basis(self, **options):
|
248 |
+
return self._represent_JzOp(None, **options)
|
249 |
+
|
250 |
+
def _represent_JzOp(self, basis, **options):
|
251 |
+
return self._represent_base(basis, **options)
|
252 |
+
|
253 |
+
def _eval_rewrite_as_xyz(self, *args, **kwargs):
|
254 |
+
return JxOp(args[0]) - I*JyOp(args[0])
|
255 |
+
|
256 |
+
|
257 |
+
class JxOp(SpinOpBase, HermitianOperator):
|
258 |
+
"""The Jx operator."""
|
259 |
+
|
260 |
+
_coord = 'x'
|
261 |
+
|
262 |
+
basis = 'Jx'
|
263 |
+
|
264 |
+
def _eval_commutator_JyOp(self, other):
|
265 |
+
return I*hbar*JzOp(self.name)
|
266 |
+
|
267 |
+
def _eval_commutator_JzOp(self, other):
|
268 |
+
return -I*hbar*JyOp(self.name)
|
269 |
+
|
270 |
+
def _apply_operator_JzKet(self, ket, **options):
|
271 |
+
jp = JplusOp(self.name)._apply_operator_JzKet(ket, **options)
|
272 |
+
jm = JminusOp(self.name)._apply_operator_JzKet(ket, **options)
|
273 |
+
return (jp + jm)/Integer(2)
|
274 |
+
|
275 |
+
def _apply_operator_JzKetCoupled(self, ket, **options):
|
276 |
+
jp = JplusOp(self.name)._apply_operator_JzKetCoupled(ket, **options)
|
277 |
+
jm = JminusOp(self.name)._apply_operator_JzKetCoupled(ket, **options)
|
278 |
+
return (jp + jm)/Integer(2)
|
279 |
+
|
280 |
+
def _represent_default_basis(self, **options):
|
281 |
+
return self._represent_JzOp(None, **options)
|
282 |
+
|
283 |
+
def _represent_JzOp(self, basis, **options):
|
284 |
+
jp = JplusOp(self.name)._represent_JzOp(basis, **options)
|
285 |
+
jm = JminusOp(self.name)._represent_JzOp(basis, **options)
|
286 |
+
return (jp + jm)/Integer(2)
|
287 |
+
|
288 |
+
def _eval_rewrite_as_plusminus(self, *args, **kwargs):
|
289 |
+
return (JplusOp(args[0]) + JminusOp(args[0]))/2
|
290 |
+
|
291 |
+
|
292 |
+
class JyOp(SpinOpBase, HermitianOperator):
|
293 |
+
"""The Jy operator."""
|
294 |
+
|
295 |
+
_coord = 'y'
|
296 |
+
|
297 |
+
basis = 'Jy'
|
298 |
+
|
299 |
+
def _eval_commutator_JzOp(self, other):
|
300 |
+
return I*hbar*JxOp(self.name)
|
301 |
+
|
302 |
+
def _eval_commutator_JxOp(self, other):
|
303 |
+
return -I*hbar*J2Op(self.name)
|
304 |
+
|
305 |
+
def _apply_operator_JzKet(self, ket, **options):
|
306 |
+
jp = JplusOp(self.name)._apply_operator_JzKet(ket, **options)
|
307 |
+
jm = JminusOp(self.name)._apply_operator_JzKet(ket, **options)
|
308 |
+
return (jp - jm)/(Integer(2)*I)
|
309 |
+
|
310 |
+
def _apply_operator_JzKetCoupled(self, ket, **options):
|
311 |
+
jp = JplusOp(self.name)._apply_operator_JzKetCoupled(ket, **options)
|
312 |
+
jm = JminusOp(self.name)._apply_operator_JzKetCoupled(ket, **options)
|
313 |
+
return (jp - jm)/(Integer(2)*I)
|
314 |
+
|
315 |
+
def _represent_default_basis(self, **options):
|
316 |
+
return self._represent_JzOp(None, **options)
|
317 |
+
|
318 |
+
def _represent_JzOp(self, basis, **options):
|
319 |
+
jp = JplusOp(self.name)._represent_JzOp(basis, **options)
|
320 |
+
jm = JminusOp(self.name)._represent_JzOp(basis, **options)
|
321 |
+
return (jp - jm)/(Integer(2)*I)
|
322 |
+
|
323 |
+
def _eval_rewrite_as_plusminus(self, *args, **kwargs):
|
324 |
+
return (JplusOp(args[0]) - JminusOp(args[0]))/(2*I)
|
325 |
+
|
326 |
+
|
327 |
+
class JzOp(SpinOpBase, HermitianOperator):
|
328 |
+
"""The Jz operator."""
|
329 |
+
|
330 |
+
_coord = 'z'
|
331 |
+
|
332 |
+
basis = 'Jz'
|
333 |
+
|
334 |
+
def _eval_commutator_JxOp(self, other):
|
335 |
+
return I*hbar*JyOp(self.name)
|
336 |
+
|
337 |
+
def _eval_commutator_JyOp(self, other):
|
338 |
+
return -I*hbar*JxOp(self.name)
|
339 |
+
|
340 |
+
def _eval_commutator_JplusOp(self, other):
|
341 |
+
return hbar*JplusOp(self.name)
|
342 |
+
|
343 |
+
def _eval_commutator_JminusOp(self, other):
|
344 |
+
return -hbar*JminusOp(self.name)
|
345 |
+
|
346 |
+
def matrix_element(self, j, m, jp, mp):
|
347 |
+
result = hbar*mp
|
348 |
+
result *= KroneckerDelta(m, mp)
|
349 |
+
result *= KroneckerDelta(j, jp)
|
350 |
+
return result
|
351 |
+
|
352 |
+
def _represent_default_basis(self, **options):
|
353 |
+
return self._represent_JzOp(None, **options)
|
354 |
+
|
355 |
+
def _represent_JzOp(self, basis, **options):
|
356 |
+
return self._represent_base(basis, **options)
|
357 |
+
|
358 |
+
|
359 |
+
class J2Op(SpinOpBase, HermitianOperator):
|
360 |
+
"""The J^2 operator."""
|
361 |
+
|
362 |
+
_coord = '2'
|
363 |
+
|
364 |
+
def _eval_commutator_JxOp(self, other):
|
365 |
+
return S.Zero
|
366 |
+
|
367 |
+
def _eval_commutator_JyOp(self, other):
|
368 |
+
return S.Zero
|
369 |
+
|
370 |
+
def _eval_commutator_JzOp(self, other):
|
371 |
+
return S.Zero
|
372 |
+
|
373 |
+
def _eval_commutator_JplusOp(self, other):
|
374 |
+
return S.Zero
|
375 |
+
|
376 |
+
def _eval_commutator_JminusOp(self, other):
|
377 |
+
return S.Zero
|
378 |
+
|
379 |
+
def _apply_operator_JxKet(self, ket, **options):
|
380 |
+
j = ket.j
|
381 |
+
return hbar**2*j*(j + 1)*ket
|
382 |
+
|
383 |
+
def _apply_operator_JxKetCoupled(self, ket, **options):
|
384 |
+
j = ket.j
|
385 |
+
return hbar**2*j*(j + 1)*ket
|
386 |
+
|
387 |
+
def _apply_operator_JyKet(self, ket, **options):
|
388 |
+
j = ket.j
|
389 |
+
return hbar**2*j*(j + 1)*ket
|
390 |
+
|
391 |
+
def _apply_operator_JyKetCoupled(self, ket, **options):
|
392 |
+
j = ket.j
|
393 |
+
return hbar**2*j*(j + 1)*ket
|
394 |
+
|
395 |
+
def _apply_operator_JzKet(self, ket, **options):
|
396 |
+
j = ket.j
|
397 |
+
return hbar**2*j*(j + 1)*ket
|
398 |
+
|
399 |
+
def _apply_operator_JzKetCoupled(self, ket, **options):
|
400 |
+
j = ket.j
|
401 |
+
return hbar**2*j*(j + 1)*ket
|
402 |
+
|
403 |
+
def matrix_element(self, j, m, jp, mp):
|
404 |
+
result = (hbar**2)*j*(j + 1)
|
405 |
+
result *= KroneckerDelta(m, mp)
|
406 |
+
result *= KroneckerDelta(j, jp)
|
407 |
+
return result
|
408 |
+
|
409 |
+
def _represent_default_basis(self, **options):
|
410 |
+
return self._represent_JzOp(None, **options)
|
411 |
+
|
412 |
+
def _represent_JzOp(self, basis, **options):
|
413 |
+
return self._represent_base(basis, **options)
|
414 |
+
|
415 |
+
def _print_contents_pretty(self, printer, *args):
|
416 |
+
a = prettyForm(str(self.name))
|
417 |
+
b = prettyForm('2')
|
418 |
+
return a**b
|
419 |
+
|
420 |
+
def _print_contents_latex(self, printer, *args):
|
421 |
+
return r'%s^2' % str(self.name)
|
422 |
+
|
423 |
+
def _eval_rewrite_as_xyz(self, *args, **kwargs):
|
424 |
+
return JxOp(args[0])**2 + JyOp(args[0])**2 + JzOp(args[0])**2
|
425 |
+
|
426 |
+
def _eval_rewrite_as_plusminus(self, *args, **kwargs):
|
427 |
+
a = args[0]
|
428 |
+
return JzOp(a)**2 + \
|
429 |
+
S.Half*(JplusOp(a)*JminusOp(a) + JminusOp(a)*JplusOp(a))
|
430 |
+
|
431 |
+
|
432 |
+
class Rotation(UnitaryOperator):
|
433 |
+
"""Wigner D operator in terms of Euler angles.
|
434 |
+
|
435 |
+
Defines the rotation operator in terms of the Euler angles defined by
|
436 |
+
the z-y-z convention for a passive transformation. That is the coordinate
|
437 |
+
axes are rotated first about the z-axis, giving the new x'-y'-z' axes. Then
|
438 |
+
this new coordinate system is rotated about the new y'-axis, giving new
|
439 |
+
x''-y''-z'' axes. Then this new coordinate system is rotated about the
|
440 |
+
z''-axis. Conventions follow those laid out in [1]_.
|
441 |
+
|
442 |
+
Parameters
|
443 |
+
==========
|
444 |
+
|
445 |
+
alpha : Number, Symbol
|
446 |
+
First Euler Angle
|
447 |
+
beta : Number, Symbol
|
448 |
+
Second Euler angle
|
449 |
+
gamma : Number, Symbol
|
450 |
+
Third Euler angle
|
451 |
+
|
452 |
+
Examples
|
453 |
+
========
|
454 |
+
|
455 |
+
A simple example rotation operator:
|
456 |
+
|
457 |
+
>>> from sympy import pi
|
458 |
+
>>> from sympy.physics.quantum.spin import Rotation
|
459 |
+
>>> Rotation(pi, 0, pi/2)
|
460 |
+
R(pi,0,pi/2)
|
461 |
+
|
462 |
+
With symbolic Euler angles and calculating the inverse rotation operator:
|
463 |
+
|
464 |
+
>>> from sympy import symbols
|
465 |
+
>>> a, b, c = symbols('a b c')
|
466 |
+
>>> Rotation(a, b, c)
|
467 |
+
R(a,b,c)
|
468 |
+
>>> Rotation(a, b, c).inverse()
|
469 |
+
R(-c,-b,-a)
|
470 |
+
|
471 |
+
See Also
|
472 |
+
========
|
473 |
+
|
474 |
+
WignerD: Symbolic Wigner-D function
|
475 |
+
D: Wigner-D function
|
476 |
+
d: Wigner small-d function
|
477 |
+
|
478 |
+
References
|
479 |
+
==========
|
480 |
+
|
481 |
+
.. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988.
|
482 |
+
"""
|
483 |
+
|
484 |
+
@classmethod
|
485 |
+
def _eval_args(cls, args):
|
486 |
+
args = QExpr._eval_args(args)
|
487 |
+
if len(args) != 3:
|
488 |
+
raise ValueError('3 Euler angles required, got: %r' % args)
|
489 |
+
return args
|
490 |
+
|
491 |
+
@classmethod
|
492 |
+
def _eval_hilbert_space(cls, label):
|
493 |
+
# We consider all j values so our space is infinite.
|
494 |
+
return ComplexSpace(S.Infinity)
|
495 |
+
|
496 |
+
@property
|
497 |
+
def alpha(self):
|
498 |
+
return self.label[0]
|
499 |
+
|
500 |
+
@property
|
501 |
+
def beta(self):
|
502 |
+
return self.label[1]
|
503 |
+
|
504 |
+
@property
|
505 |
+
def gamma(self):
|
506 |
+
return self.label[2]
|
507 |
+
|
508 |
+
def _print_operator_name(self, printer, *args):
|
509 |
+
return 'R'
|
510 |
+
|
511 |
+
def _print_operator_name_pretty(self, printer, *args):
|
512 |
+
if printer._use_unicode:
|
513 |
+
return prettyForm('\N{SCRIPT CAPITAL R}' + ' ')
|
514 |
+
else:
|
515 |
+
return prettyForm("R ")
|
516 |
+
|
517 |
+
def _print_operator_name_latex(self, printer, *args):
|
518 |
+
return r'\mathcal{R}'
|
519 |
+
|
520 |
+
def _eval_inverse(self):
|
521 |
+
return Rotation(-self.gamma, -self.beta, -self.alpha)
|
522 |
+
|
523 |
+
@classmethod
|
524 |
+
def D(cls, j, m, mp, alpha, beta, gamma):
|
525 |
+
"""Wigner D-function.
|
526 |
+
|
527 |
+
Returns an instance of the WignerD class corresponding to the Wigner-D
|
528 |
+
function specified by the parameters.
|
529 |
+
|
530 |
+
Parameters
|
531 |
+
===========
|
532 |
+
|
533 |
+
j : Number
|
534 |
+
Total angular momentum
|
535 |
+
m : Number
|
536 |
+
Eigenvalue of angular momentum along axis after rotation
|
537 |
+
mp : Number
|
538 |
+
Eigenvalue of angular momentum along rotated axis
|
539 |
+
alpha : Number, Symbol
|
540 |
+
First Euler angle of rotation
|
541 |
+
beta : Number, Symbol
|
542 |
+
Second Euler angle of rotation
|
543 |
+
gamma : Number, Symbol
|
544 |
+
Third Euler angle of rotation
|
545 |
+
|
546 |
+
Examples
|
547 |
+
========
|
548 |
+
|
549 |
+
Return the Wigner-D matrix element for a defined rotation, both
|
550 |
+
numerical and symbolic:
|
551 |
+
|
552 |
+
>>> from sympy.physics.quantum.spin import Rotation
|
553 |
+
>>> from sympy import pi, symbols
|
554 |
+
>>> alpha, beta, gamma = symbols('alpha beta gamma')
|
555 |
+
>>> Rotation.D(1, 1, 0,pi, pi/2,-pi)
|
556 |
+
WignerD(1, 1, 0, pi, pi/2, -pi)
|
557 |
+
|
558 |
+
See Also
|
559 |
+
========
|
560 |
+
|
561 |
+
WignerD: Symbolic Wigner-D function
|
562 |
+
|
563 |
+
"""
|
564 |
+
return WignerD(j, m, mp, alpha, beta, gamma)
|
565 |
+
|
566 |
+
@classmethod
|
567 |
+
def d(cls, j, m, mp, beta):
|
568 |
+
"""Wigner small-d function.
|
569 |
+
|
570 |
+
Returns an instance of the WignerD class corresponding to the Wigner-D
|
571 |
+
function specified by the parameters with the alpha and gamma angles
|
572 |
+
given as 0.
|
573 |
+
|
574 |
+
Parameters
|
575 |
+
===========
|
576 |
+
|
577 |
+
j : Number
|
578 |
+
Total angular momentum
|
579 |
+
m : Number
|
580 |
+
Eigenvalue of angular momentum along axis after rotation
|
581 |
+
mp : Number
|
582 |
+
Eigenvalue of angular momentum along rotated axis
|
583 |
+
beta : Number, Symbol
|
584 |
+
Second Euler angle of rotation
|
585 |
+
|
586 |
+
Examples
|
587 |
+
========
|
588 |
+
|
589 |
+
Return the Wigner-D matrix element for a defined rotation, both
|
590 |
+
numerical and symbolic:
|
591 |
+
|
592 |
+
>>> from sympy.physics.quantum.spin import Rotation
|
593 |
+
>>> from sympy import pi, symbols
|
594 |
+
>>> beta = symbols('beta')
|
595 |
+
>>> Rotation.d(1, 1, 0, pi/2)
|
596 |
+
WignerD(1, 1, 0, 0, pi/2, 0)
|
597 |
+
|
598 |
+
See Also
|
599 |
+
========
|
600 |
+
|
601 |
+
WignerD: Symbolic Wigner-D function
|
602 |
+
|
603 |
+
"""
|
604 |
+
return WignerD(j, m, mp, 0, beta, 0)
|
605 |
+
|
606 |
+
def matrix_element(self, j, m, jp, mp):
|
607 |
+
result = self.__class__.D(
|
608 |
+
jp, m, mp, self.alpha, self.beta, self.gamma
|
609 |
+
)
|
610 |
+
result *= KroneckerDelta(j, jp)
|
611 |
+
return result
|
612 |
+
|
613 |
+
def _represent_base(self, basis, **options):
|
614 |
+
j = sympify(options.get('j', S.Half))
|
615 |
+
# TODO: move evaluation up to represent function/implement elsewhere
|
616 |
+
evaluate = sympify(options.get('doit'))
|
617 |
+
size, mvals = m_values(j)
|
618 |
+
result = zeros(size, size)
|
619 |
+
for p in range(size):
|
620 |
+
for q in range(size):
|
621 |
+
me = self.matrix_element(j, mvals[p], j, mvals[q])
|
622 |
+
if evaluate:
|
623 |
+
result[p, q] = me.doit()
|
624 |
+
else:
|
625 |
+
result[p, q] = me
|
626 |
+
return result
|
627 |
+
|
628 |
+
def _represent_default_basis(self, **options):
|
629 |
+
return self._represent_JzOp(None, **options)
|
630 |
+
|
631 |
+
def _represent_JzOp(self, basis, **options):
|
632 |
+
return self._represent_base(basis, **options)
|
633 |
+
|
634 |
+
def _apply_operator_uncoupled(self, state, ket, *, dummy=True, **options):
|
635 |
+
a = self.alpha
|
636 |
+
b = self.beta
|
637 |
+
g = self.gamma
|
638 |
+
j = ket.j
|
639 |
+
m = ket.m
|
640 |
+
if j.is_number:
|
641 |
+
s = []
|
642 |
+
size = m_values(j)
|
643 |
+
sz = size[1]
|
644 |
+
for mp in sz:
|
645 |
+
r = Rotation.D(j, m, mp, a, b, g)
|
646 |
+
z = r.doit()
|
647 |
+
s.append(z*state(j, mp))
|
648 |
+
return Add(*s)
|
649 |
+
else:
|
650 |
+
if dummy:
|
651 |
+
mp = Dummy('mp')
|
652 |
+
else:
|
653 |
+
mp = symbols('mp')
|
654 |
+
return Sum(Rotation.D(j, m, mp, a, b, g)*state(j, mp), (mp, -j, j))
|
655 |
+
|
656 |
+
def _apply_operator_JxKet(self, ket, **options):
|
657 |
+
return self._apply_operator_uncoupled(JxKet, ket, **options)
|
658 |
+
|
659 |
+
def _apply_operator_JyKet(self, ket, **options):
|
660 |
+
return self._apply_operator_uncoupled(JyKet, ket, **options)
|
661 |
+
|
662 |
+
def _apply_operator_JzKet(self, ket, **options):
|
663 |
+
return self._apply_operator_uncoupled(JzKet, ket, **options)
|
664 |
+
|
665 |
+
def _apply_operator_coupled(self, state, ket, *, dummy=True, **options):
|
666 |
+
a = self.alpha
|
667 |
+
b = self.beta
|
668 |
+
g = self.gamma
|
669 |
+
j = ket.j
|
670 |
+
m = ket.m
|
671 |
+
jn = ket.jn
|
672 |
+
coupling = ket.coupling
|
673 |
+
if j.is_number:
|
674 |
+
s = []
|
675 |
+
size = m_values(j)
|
676 |
+
sz = size[1]
|
677 |
+
for mp in sz:
|
678 |
+
r = Rotation.D(j, m, mp, a, b, g)
|
679 |
+
z = r.doit()
|
680 |
+
s.append(z*state(j, mp, jn, coupling))
|
681 |
+
return Add(*s)
|
682 |
+
else:
|
683 |
+
if dummy:
|
684 |
+
mp = Dummy('mp')
|
685 |
+
else:
|
686 |
+
mp = symbols('mp')
|
687 |
+
return Sum(Rotation.D(j, m, mp, a, b, g)*state(
|
688 |
+
j, mp, jn, coupling), (mp, -j, j))
|
689 |
+
|
690 |
+
def _apply_operator_JxKetCoupled(self, ket, **options):
|
691 |
+
return self._apply_operator_coupled(JxKetCoupled, ket, **options)
|
692 |
+
|
693 |
+
def _apply_operator_JyKetCoupled(self, ket, **options):
|
694 |
+
return self._apply_operator_coupled(JyKetCoupled, ket, **options)
|
695 |
+
|
696 |
+
def _apply_operator_JzKetCoupled(self, ket, **options):
|
697 |
+
return self._apply_operator_coupled(JzKetCoupled, ket, **options)
|
698 |
+
|
699 |
+
class WignerD(Expr):
|
700 |
+
r"""Wigner-D function
|
701 |
+
|
702 |
+
The Wigner D-function gives the matrix elements of the rotation
|
703 |
+
operator in the jm-representation. For the Euler angles `\alpha`,
|
704 |
+
`\beta`, `\gamma`, the D-function is defined such that:
|
705 |
+
|
706 |
+
.. math ::
|
707 |
+
<j,m| \mathcal{R}(\alpha, \beta, \gamma ) |j',m'> = \delta_{jj'} D(j, m, m', \alpha, \beta, \gamma)
|
708 |
+
|
709 |
+
Where the rotation operator is as defined by the Rotation class [1]_.
|
710 |
+
|
711 |
+
The Wigner D-function defined in this way gives:
|
712 |
+
|
713 |
+
.. math ::
|
714 |
+
D(j, m, m', \alpha, \beta, \gamma) = e^{-i m \alpha} d(j, m, m', \beta) e^{-i m' \gamma}
|
715 |
+
|
716 |
+
Where d is the Wigner small-d function, which is given by Rotation.d.
|
717 |
+
|
718 |
+
The Wigner small-d function gives the component of the Wigner
|
719 |
+
D-function that is determined by the second Euler angle. That is the
|
720 |
+
Wigner D-function is:
|
721 |
+
|
722 |
+
.. math ::
|
723 |
+
D(j, m, m', \alpha, \beta, \gamma) = e^{-i m \alpha} d(j, m, m', \beta) e^{-i m' \gamma}
|
724 |
+
|
725 |
+
Where d is the small-d function. The Wigner D-function is given by
|
726 |
+
Rotation.D.
|
727 |
+
|
728 |
+
Note that to evaluate the D-function, the j, m and mp parameters must
|
729 |
+
be integer or half integer numbers.
|
730 |
+
|
731 |
+
Parameters
|
732 |
+
==========
|
733 |
+
|
734 |
+
j : Number
|
735 |
+
Total angular momentum
|
736 |
+
m : Number
|
737 |
+
Eigenvalue of angular momentum along axis after rotation
|
738 |
+
mp : Number
|
739 |
+
Eigenvalue of angular momentum along rotated axis
|
740 |
+
alpha : Number, Symbol
|
741 |
+
First Euler angle of rotation
|
742 |
+
beta : Number, Symbol
|
743 |
+
Second Euler angle of rotation
|
744 |
+
gamma : Number, Symbol
|
745 |
+
Third Euler angle of rotation
|
746 |
+
|
747 |
+
Examples
|
748 |
+
========
|
749 |
+
|
750 |
+
Evaluate the Wigner-D matrix elements of a simple rotation:
|
751 |
+
|
752 |
+
>>> from sympy.physics.quantum.spin import Rotation
|
753 |
+
>>> from sympy import pi
|
754 |
+
>>> rot = Rotation.D(1, 1, 0, pi, pi/2, 0)
|
755 |
+
>>> rot
|
756 |
+
WignerD(1, 1, 0, pi, pi/2, 0)
|
757 |
+
>>> rot.doit()
|
758 |
+
sqrt(2)/2
|
759 |
+
|
760 |
+
Evaluate the Wigner-d matrix elements of a simple rotation
|
761 |
+
|
762 |
+
>>> rot = Rotation.d(1, 1, 0, pi/2)
|
763 |
+
>>> rot
|
764 |
+
WignerD(1, 1, 0, 0, pi/2, 0)
|
765 |
+
>>> rot.doit()
|
766 |
+
-sqrt(2)/2
|
767 |
+
|
768 |
+
See Also
|
769 |
+
========
|
770 |
+
|
771 |
+
Rotation: Rotation operator
|
772 |
+
|
773 |
+
References
|
774 |
+
==========
|
775 |
+
|
776 |
+
.. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988.
|
777 |
+
"""
|
778 |
+
|
779 |
+
is_commutative = True
|
780 |
+
|
781 |
+
def __new__(cls, *args, **hints):
|
782 |
+
if not len(args) == 6:
|
783 |
+
raise ValueError('6 parameters expected, got %s' % args)
|
784 |
+
args = sympify(args)
|
785 |
+
evaluate = hints.get('evaluate', False)
|
786 |
+
if evaluate:
|
787 |
+
return Expr.__new__(cls, *args)._eval_wignerd()
|
788 |
+
return Expr.__new__(cls, *args)
|
789 |
+
|
790 |
+
@property
|
791 |
+
def j(self):
|
792 |
+
return self.args[0]
|
793 |
+
|
794 |
+
@property
|
795 |
+
def m(self):
|
796 |
+
return self.args[1]
|
797 |
+
|
798 |
+
@property
|
799 |
+
def mp(self):
|
800 |
+
return self.args[2]
|
801 |
+
|
802 |
+
@property
|
803 |
+
def alpha(self):
|
804 |
+
return self.args[3]
|
805 |
+
|
806 |
+
@property
|
807 |
+
def beta(self):
|
808 |
+
return self.args[4]
|
809 |
+
|
810 |
+
@property
|
811 |
+
def gamma(self):
|
812 |
+
return self.args[5]
|
813 |
+
|
814 |
+
def _latex(self, printer, *args):
|
815 |
+
if self.alpha == 0 and self.gamma == 0:
|
816 |
+
return r'd^{%s}_{%s,%s}\left(%s\right)' % \
|
817 |
+
(
|
818 |
+
printer._print(self.j), printer._print(
|
819 |
+
self.m), printer._print(self.mp),
|
820 |
+
printer._print(self.beta) )
|
821 |
+
return r'D^{%s}_{%s,%s}\left(%s,%s,%s\right)' % \
|
822 |
+
(
|
823 |
+
printer._print(
|
824 |
+
self.j), printer._print(self.m), printer._print(self.mp),
|
825 |
+
printer._print(self.alpha), printer._print(self.beta), printer._print(self.gamma) )
|
826 |
+
|
827 |
+
def _pretty(self, printer, *args):
|
828 |
+
top = printer._print(self.j)
|
829 |
+
|
830 |
+
bot = printer._print(self.m)
|
831 |
+
bot = prettyForm(*bot.right(','))
|
832 |
+
bot = prettyForm(*bot.right(printer._print(self.mp)))
|
833 |
+
|
834 |
+
pad = max(top.width(), bot.width())
|
835 |
+
top = prettyForm(*top.left(' '))
|
836 |
+
bot = prettyForm(*bot.left(' '))
|
837 |
+
if pad > top.width():
|
838 |
+
top = prettyForm(*top.right(' '*(pad - top.width())))
|
839 |
+
if pad > bot.width():
|
840 |
+
bot = prettyForm(*bot.right(' '*(pad - bot.width())))
|
841 |
+
if self.alpha == 0 and self.gamma == 0:
|
842 |
+
args = printer._print(self.beta)
|
843 |
+
s = stringPict('d' + ' '*pad)
|
844 |
+
else:
|
845 |
+
args = printer._print(self.alpha)
|
846 |
+
args = prettyForm(*args.right(','))
|
847 |
+
args = prettyForm(*args.right(printer._print(self.beta)))
|
848 |
+
args = prettyForm(*args.right(','))
|
849 |
+
args = prettyForm(*args.right(printer._print(self.gamma)))
|
850 |
+
|
851 |
+
s = stringPict('D' + ' '*pad)
|
852 |
+
|
853 |
+
args = prettyForm(*args.parens())
|
854 |
+
s = prettyForm(*s.above(top))
|
855 |
+
s = prettyForm(*s.below(bot))
|
856 |
+
s = prettyForm(*s.right(args))
|
857 |
+
return s
|
858 |
+
|
859 |
+
def doit(self, **hints):
|
860 |
+
hints['evaluate'] = True
|
861 |
+
return WignerD(*self.args, **hints)
|
862 |
+
|
863 |
+
def _eval_wignerd(self):
|
864 |
+
j = self.j
|
865 |
+
m = self.m
|
866 |
+
mp = self.mp
|
867 |
+
alpha = self.alpha
|
868 |
+
beta = self.beta
|
869 |
+
gamma = self.gamma
|
870 |
+
if alpha == 0 and beta == 0 and gamma == 0:
|
871 |
+
return KroneckerDelta(m, mp)
|
872 |
+
if not j.is_number:
|
873 |
+
raise ValueError(
|
874 |
+
'j parameter must be numerical to evaluate, got %s' % j)
|
875 |
+
r = 0
|
876 |
+
if beta == pi/2:
|
877 |
+
# Varshalovich Equation (5), Section 4.16, page 113, setting
|
878 |
+
# alpha=gamma=0.
|
879 |
+
for k in range(2*j + 1):
|
880 |
+
if k > j + mp or k > j - m or k < mp - m:
|
881 |
+
continue
|
882 |
+
r += (S.NegativeOne)**k*binomial(j + mp, k)*binomial(j - mp, k + m - mp)
|
883 |
+
r *= (S.NegativeOne)**(m - mp) / 2**j*sqrt(factorial(j + m) *
|
884 |
+
factorial(j - m) / (factorial(j + mp)*factorial(j - mp)))
|
885 |
+
else:
|
886 |
+
# Varshalovich Equation(5), Section 4.7.2, page 87, where we set
|
887 |
+
# beta1=beta2=pi/2, and we get alpha=gamma=pi/2 and beta=phi+pi,
|
888 |
+
# then we use the Eq. (1), Section 4.4. page 79, to simplify:
|
889 |
+
# d(j, m, mp, beta+pi) = (-1)**(j-mp)*d(j, m, -mp, beta)
|
890 |
+
# This happens to be almost the same as in Eq.(10), Section 4.16,
|
891 |
+
# except that we need to substitute -mp for mp.
|
892 |
+
size, mvals = m_values(j)
|
893 |
+
for mpp in mvals:
|
894 |
+
r += Rotation.d(j, m, mpp, pi/2).doit()*(cos(-mpp*beta) + I*sin(-mpp*beta))*\
|
895 |
+
Rotation.d(j, mpp, -mp, pi/2).doit()
|
896 |
+
# Empirical normalization factor so results match Varshalovich
|
897 |
+
# Tables 4.3-4.12
|
898 |
+
# Note that this exact normalization does not follow from the
|
899 |
+
# above equations
|
900 |
+
r = r*I**(2*j - m - mp)*(-1)**(2*m)
|
901 |
+
# Finally, simplify the whole expression
|
902 |
+
r = simplify(r)
|
903 |
+
r *= exp(-I*m*alpha)*exp(-I*mp*gamma)
|
904 |
+
return r
|
905 |
+
|
906 |
+
|
907 |
+
Jx = JxOp('J')
|
908 |
+
Jy = JyOp('J')
|
909 |
+
Jz = JzOp('J')
|
910 |
+
J2 = J2Op('J')
|
911 |
+
Jplus = JplusOp('J')
|
912 |
+
Jminus = JminusOp('J')
|
913 |
+
|
914 |
+
|
915 |
+
#-----------------------------------------------------------------------------
|
916 |
+
# Spin States
|
917 |
+
#-----------------------------------------------------------------------------
|
918 |
+
|
919 |
+
|
920 |
+
class SpinState(State):
|
921 |
+
"""Base class for angular momentum states."""
|
922 |
+
|
923 |
+
_label_separator = ','
|
924 |
+
|
925 |
+
def __new__(cls, j, m):
|
926 |
+
j = sympify(j)
|
927 |
+
m = sympify(m)
|
928 |
+
if j.is_number:
|
929 |
+
if 2*j != int(2*j):
|
930 |
+
raise ValueError(
|
931 |
+
'j must be integer or half-integer, got: %s' % j)
|
932 |
+
if j < 0:
|
933 |
+
raise ValueError('j must be >= 0, got: %s' % j)
|
934 |
+
if m.is_number:
|
935 |
+
if 2*m != int(2*m):
|
936 |
+
raise ValueError(
|
937 |
+
'm must be integer or half-integer, got: %s' % m)
|
938 |
+
if j.is_number and m.is_number:
|
939 |
+
if abs(m) > j:
|
940 |
+
raise ValueError('Allowed values for m are -j <= m <= j, got j, m: %s, %s' % (j, m))
|
941 |
+
if int(j - m) != j - m:
|
942 |
+
raise ValueError('Both j and m must be integer or half-integer, got j, m: %s, %s' % (j, m))
|
943 |
+
return State.__new__(cls, j, m)
|
944 |
+
|
945 |
+
@property
|
946 |
+
def j(self):
|
947 |
+
return self.label[0]
|
948 |
+
|
949 |
+
@property
|
950 |
+
def m(self):
|
951 |
+
return self.label[1]
|
952 |
+
|
953 |
+
@classmethod
|
954 |
+
def _eval_hilbert_space(cls, label):
|
955 |
+
return ComplexSpace(2*label[0] + 1)
|
956 |
+
|
957 |
+
def _represent_base(self, **options):
|
958 |
+
j = self.j
|
959 |
+
m = self.m
|
960 |
+
alpha = sympify(options.get('alpha', 0))
|
961 |
+
beta = sympify(options.get('beta', 0))
|
962 |
+
gamma = sympify(options.get('gamma', 0))
|
963 |
+
size, mvals = m_values(j)
|
964 |
+
result = zeros(size, 1)
|
965 |
+
# breaks finding angles on L930
|
966 |
+
for p, mval in enumerate(mvals):
|
967 |
+
if m.is_number:
|
968 |
+
result[p, 0] = Rotation.D(
|
969 |
+
self.j, mval, self.m, alpha, beta, gamma).doit()
|
970 |
+
else:
|
971 |
+
result[p, 0] = Rotation.D(self.j, mval,
|
972 |
+
self.m, alpha, beta, gamma)
|
973 |
+
return result
|
974 |
+
|
975 |
+
def _eval_rewrite_as_Jx(self, *args, **options):
|
976 |
+
if isinstance(self, Bra):
|
977 |
+
return self._rewrite_basis(Jx, JxBra, **options)
|
978 |
+
return self._rewrite_basis(Jx, JxKet, **options)
|
979 |
+
|
980 |
+
def _eval_rewrite_as_Jy(self, *args, **options):
|
981 |
+
if isinstance(self, Bra):
|
982 |
+
return self._rewrite_basis(Jy, JyBra, **options)
|
983 |
+
return self._rewrite_basis(Jy, JyKet, **options)
|
984 |
+
|
985 |
+
def _eval_rewrite_as_Jz(self, *args, **options):
|
986 |
+
if isinstance(self, Bra):
|
987 |
+
return self._rewrite_basis(Jz, JzBra, **options)
|
988 |
+
return self._rewrite_basis(Jz, JzKet, **options)
|
989 |
+
|
990 |
+
def _rewrite_basis(self, basis, evect, **options):
|
991 |
+
from sympy.physics.quantum.represent import represent
|
992 |
+
j = self.j
|
993 |
+
args = self.args[2:]
|
994 |
+
if j.is_number:
|
995 |
+
if isinstance(self, CoupledSpinState):
|
996 |
+
if j == int(j):
|
997 |
+
start = j**2
|
998 |
+
else:
|
999 |
+
start = (2*j - 1)*(2*j + 1)/4
|
1000 |
+
else:
|
1001 |
+
start = 0
|
1002 |
+
vect = represent(self, basis=basis, **options)
|
1003 |
+
result = Add(
|
1004 |
+
*[vect[start + i]*evect(j, j - i, *args) for i in range(2*j + 1)])
|
1005 |
+
if isinstance(self, CoupledSpinState) and options.get('coupled') is False:
|
1006 |
+
return uncouple(result)
|
1007 |
+
return result
|
1008 |
+
else:
|
1009 |
+
i = 0
|
1010 |
+
mi = symbols('mi')
|
1011 |
+
# make sure not to introduce a symbol already in the state
|
1012 |
+
while self.subs(mi, 0) != self:
|
1013 |
+
i += 1
|
1014 |
+
mi = symbols('mi%d' % i)
|
1015 |
+
break
|
1016 |
+
# TODO: better way to get angles of rotation
|
1017 |
+
if isinstance(self, CoupledSpinState):
|
1018 |
+
test_args = (0, mi, (0, 0))
|
1019 |
+
else:
|
1020 |
+
test_args = (0, mi)
|
1021 |
+
if isinstance(self, Ket):
|
1022 |
+
angles = represent(
|
1023 |
+
self.__class__(*test_args), basis=basis)[0].args[3:6]
|
1024 |
+
else:
|
1025 |
+
angles = represent(self.__class__(
|
1026 |
+
*test_args), basis=basis)[0].args[0].args[3:6]
|
1027 |
+
if angles == (0, 0, 0):
|
1028 |
+
return self
|
1029 |
+
else:
|
1030 |
+
state = evect(j, mi, *args)
|
1031 |
+
lt = Rotation.D(j, mi, self.m, *angles)
|
1032 |
+
return Sum(lt*state, (mi, -j, j))
|
1033 |
+
|
1034 |
+
def _eval_innerproduct_JxBra(self, bra, **hints):
|
1035 |
+
result = KroneckerDelta(self.j, bra.j)
|
1036 |
+
if bra.dual_class() is not self.__class__:
|
1037 |
+
result *= self._represent_JxOp(None)[bra.j - bra.m]
|
1038 |
+
else:
|
1039 |
+
result *= KroneckerDelta(
|
1040 |
+
self.j, bra.j)*KroneckerDelta(self.m, bra.m)
|
1041 |
+
return result
|
1042 |
+
|
1043 |
+
def _eval_innerproduct_JyBra(self, bra, **hints):
|
1044 |
+
result = KroneckerDelta(self.j, bra.j)
|
1045 |
+
if bra.dual_class() is not self.__class__:
|
1046 |
+
result *= self._represent_JyOp(None)[bra.j - bra.m]
|
1047 |
+
else:
|
1048 |
+
result *= KroneckerDelta(
|
1049 |
+
self.j, bra.j)*KroneckerDelta(self.m, bra.m)
|
1050 |
+
return result
|
1051 |
+
|
1052 |
+
def _eval_innerproduct_JzBra(self, bra, **hints):
|
1053 |
+
result = KroneckerDelta(self.j, bra.j)
|
1054 |
+
if bra.dual_class() is not self.__class__:
|
1055 |
+
result *= self._represent_JzOp(None)[bra.j - bra.m]
|
1056 |
+
else:
|
1057 |
+
result *= KroneckerDelta(
|
1058 |
+
self.j, bra.j)*KroneckerDelta(self.m, bra.m)
|
1059 |
+
return result
|
1060 |
+
|
1061 |
+
def _eval_trace(self, bra, **hints):
|
1062 |
+
|
1063 |
+
# One way to implement this method is to assume the basis set k is
|
1064 |
+
# passed.
|
1065 |
+
# Then we can apply the discrete form of Trace formula here
|
1066 |
+
# Tr(|i><j| ) = \Sum_k <k|i><j|k>
|
1067 |
+
#then we do qapply() on each each inner product and sum over them.
|
1068 |
+
|
1069 |
+
# OR
|
1070 |
+
|
1071 |
+
# Inner product of |i><j| = Trace(Outer Product).
|
1072 |
+
# we could just use this unless there are cases when this is not true
|
1073 |
+
|
1074 |
+
return (bra*self).doit()
|
1075 |
+
|
1076 |
+
|
1077 |
+
class JxKet(SpinState, Ket):
|
1078 |
+
"""Eigenket of Jx.
|
1079 |
+
|
1080 |
+
See JzKet for the usage of spin eigenstates.
|
1081 |
+
|
1082 |
+
See Also
|
1083 |
+
========
|
1084 |
+
|
1085 |
+
JzKet: Usage of spin states
|
1086 |
+
|
1087 |
+
"""
|
1088 |
+
|
1089 |
+
@classmethod
|
1090 |
+
def dual_class(self):
|
1091 |
+
return JxBra
|
1092 |
+
|
1093 |
+
@classmethod
|
1094 |
+
def coupled_class(self):
|
1095 |
+
return JxKetCoupled
|
1096 |
+
|
1097 |
+
def _represent_default_basis(self, **options):
|
1098 |
+
return self._represent_JxOp(None, **options)
|
1099 |
+
|
1100 |
+
def _represent_JxOp(self, basis, **options):
|
1101 |
+
return self._represent_base(**options)
|
1102 |
+
|
1103 |
+
def _represent_JyOp(self, basis, **options):
|
1104 |
+
return self._represent_base(alpha=pi*Rational(3, 2), **options)
|
1105 |
+
|
1106 |
+
def _represent_JzOp(self, basis, **options):
|
1107 |
+
return self._represent_base(beta=pi/2, **options)
|
1108 |
+
|
1109 |
+
|
1110 |
+
class JxBra(SpinState, Bra):
|
1111 |
+
"""Eigenbra of Jx.
|
1112 |
+
|
1113 |
+
See JzKet for the usage of spin eigenstates.
|
1114 |
+
|
1115 |
+
See Also
|
1116 |
+
========
|
1117 |
+
|
1118 |
+
JzKet: Usage of spin states
|
1119 |
+
|
1120 |
+
"""
|
1121 |
+
|
1122 |
+
@classmethod
|
1123 |
+
def dual_class(self):
|
1124 |
+
return JxKet
|
1125 |
+
|
1126 |
+
@classmethod
|
1127 |
+
def coupled_class(self):
|
1128 |
+
return JxBraCoupled
|
1129 |
+
|
1130 |
+
|
1131 |
+
class JyKet(SpinState, Ket):
|
1132 |
+
"""Eigenket of Jy.
|
1133 |
+
|
1134 |
+
See JzKet for the usage of spin eigenstates.
|
1135 |
+
|
1136 |
+
See Also
|
1137 |
+
========
|
1138 |
+
|
1139 |
+
JzKet: Usage of spin states
|
1140 |
+
|
1141 |
+
"""
|
1142 |
+
|
1143 |
+
@classmethod
|
1144 |
+
def dual_class(self):
|
1145 |
+
return JyBra
|
1146 |
+
|
1147 |
+
@classmethod
|
1148 |
+
def coupled_class(self):
|
1149 |
+
return JyKetCoupled
|
1150 |
+
|
1151 |
+
def _represent_default_basis(self, **options):
|
1152 |
+
return self._represent_JyOp(None, **options)
|
1153 |
+
|
1154 |
+
def _represent_JxOp(self, basis, **options):
|
1155 |
+
return self._represent_base(gamma=pi/2, **options)
|
1156 |
+
|
1157 |
+
def _represent_JyOp(self, basis, **options):
|
1158 |
+
return self._represent_base(**options)
|
1159 |
+
|
1160 |
+
def _represent_JzOp(self, basis, **options):
|
1161 |
+
return self._represent_base(alpha=pi*Rational(3, 2), beta=-pi/2, gamma=pi/2, **options)
|
1162 |
+
|
1163 |
+
|
1164 |
+
class JyBra(SpinState, Bra):
|
1165 |
+
"""Eigenbra of Jy.
|
1166 |
+
|
1167 |
+
See JzKet for the usage of spin eigenstates.
|
1168 |
+
|
1169 |
+
See Also
|
1170 |
+
========
|
1171 |
+
|
1172 |
+
JzKet: Usage of spin states
|
1173 |
+
|
1174 |
+
"""
|
1175 |
+
|
1176 |
+
@classmethod
|
1177 |
+
def dual_class(self):
|
1178 |
+
return JyKet
|
1179 |
+
|
1180 |
+
@classmethod
|
1181 |
+
def coupled_class(self):
|
1182 |
+
return JyBraCoupled
|
1183 |
+
|
1184 |
+
|
1185 |
+
class JzKet(SpinState, Ket):
|
1186 |
+
"""Eigenket of Jz.
|
1187 |
+
|
1188 |
+
Spin state which is an eigenstate of the Jz operator. Uncoupled states,
|
1189 |
+
that is states representing the interaction of multiple separate spin
|
1190 |
+
states, are defined as a tensor product of states.
|
1191 |
+
|
1192 |
+
Parameters
|
1193 |
+
==========
|
1194 |
+
|
1195 |
+
j : Number, Symbol
|
1196 |
+
Total spin angular momentum
|
1197 |
+
m : Number, Symbol
|
1198 |
+
Eigenvalue of the Jz spin operator
|
1199 |
+
|
1200 |
+
Examples
|
1201 |
+
========
|
1202 |
+
|
1203 |
+
*Normal States:*
|
1204 |
+
|
1205 |
+
Defining simple spin states, both numerical and symbolic:
|
1206 |
+
|
1207 |
+
>>> from sympy.physics.quantum.spin import JzKet, JxKet
|
1208 |
+
>>> from sympy import symbols
|
1209 |
+
>>> JzKet(1, 0)
|
1210 |
+
|1,0>
|
1211 |
+
>>> j, m = symbols('j m')
|
1212 |
+
>>> JzKet(j, m)
|
1213 |
+
|j,m>
|
1214 |
+
|
1215 |
+
Rewriting the JzKet in terms of eigenkets of the Jx operator:
|
1216 |
+
Note: that the resulting eigenstates are JxKet's
|
1217 |
+
|
1218 |
+
>>> JzKet(1,1).rewrite("Jx")
|
1219 |
+
|1,-1>/2 - sqrt(2)*|1,0>/2 + |1,1>/2
|
1220 |
+
|
1221 |
+
Get the vector representation of a state in terms of the basis elements
|
1222 |
+
of the Jx operator:
|
1223 |
+
|
1224 |
+
>>> from sympy.physics.quantum.represent import represent
|
1225 |
+
>>> from sympy.physics.quantum.spin import Jx, Jz
|
1226 |
+
>>> represent(JzKet(1,-1), basis=Jx)
|
1227 |
+
Matrix([
|
1228 |
+
[ 1/2],
|
1229 |
+
[sqrt(2)/2],
|
1230 |
+
[ 1/2]])
|
1231 |
+
|
1232 |
+
Apply innerproducts between states:
|
1233 |
+
|
1234 |
+
>>> from sympy.physics.quantum.innerproduct import InnerProduct
|
1235 |
+
>>> from sympy.physics.quantum.spin import JxBra
|
1236 |
+
>>> i = InnerProduct(JxBra(1,1), JzKet(1,1))
|
1237 |
+
>>> i
|
1238 |
+
<1,1|1,1>
|
1239 |
+
>>> i.doit()
|
1240 |
+
1/2
|
1241 |
+
|
1242 |
+
*Uncoupled States:*
|
1243 |
+
|
1244 |
+
Define an uncoupled state as a TensorProduct between two Jz eigenkets:
|
1245 |
+
|
1246 |
+
>>> from sympy.physics.quantum.tensorproduct import TensorProduct
|
1247 |
+
>>> j1,m1,j2,m2 = symbols('j1 m1 j2 m2')
|
1248 |
+
>>> TensorProduct(JzKet(1,0), JzKet(1,1))
|
1249 |
+
|1,0>x|1,1>
|
1250 |
+
>>> TensorProduct(JzKet(j1,m1), JzKet(j2,m2))
|
1251 |
+
|j1,m1>x|j2,m2>
|
1252 |
+
|
1253 |
+
A TensorProduct can be rewritten, in which case the eigenstates that make
|
1254 |
+
up the tensor product is rewritten to the new basis:
|
1255 |
+
|
1256 |
+
>>> TensorProduct(JzKet(1,1),JxKet(1,1)).rewrite('Jz')
|
1257 |
+
|1,1>x|1,-1>/2 + sqrt(2)*|1,1>x|1,0>/2 + |1,1>x|1,1>/2
|
1258 |
+
|
1259 |
+
The represent method for TensorProduct's gives the vector representation of
|
1260 |
+
the state. Note that the state in the product basis is the equivalent of the
|
1261 |
+
tensor product of the vector representation of the component eigenstates:
|
1262 |
+
|
1263 |
+
>>> represent(TensorProduct(JzKet(1,0),JzKet(1,1)))
|
1264 |
+
Matrix([
|
1265 |
+
[0],
|
1266 |
+
[0],
|
1267 |
+
[0],
|
1268 |
+
[1],
|
1269 |
+
[0],
|
1270 |
+
[0],
|
1271 |
+
[0],
|
1272 |
+
[0],
|
1273 |
+
[0]])
|
1274 |
+
>>> represent(TensorProduct(JzKet(1,1),JxKet(1,1)), basis=Jz)
|
1275 |
+
Matrix([
|
1276 |
+
[ 1/2],
|
1277 |
+
[sqrt(2)/2],
|
1278 |
+
[ 1/2],
|
1279 |
+
[ 0],
|
1280 |
+
[ 0],
|
1281 |
+
[ 0],
|
1282 |
+
[ 0],
|
1283 |
+
[ 0],
|
1284 |
+
[ 0]])
|
1285 |
+
|
1286 |
+
See Also
|
1287 |
+
========
|
1288 |
+
|
1289 |
+
JzKetCoupled: Coupled eigenstates
|
1290 |
+
sympy.physics.quantum.tensorproduct.TensorProduct: Used to specify uncoupled states
|
1291 |
+
uncouple: Uncouples states given coupling parameters
|
1292 |
+
couple: Couples uncoupled states
|
1293 |
+
|
1294 |
+
"""
|
1295 |
+
|
1296 |
+
@classmethod
|
1297 |
+
def dual_class(self):
|
1298 |
+
return JzBra
|
1299 |
+
|
1300 |
+
@classmethod
|
1301 |
+
def coupled_class(self):
|
1302 |
+
return JzKetCoupled
|
1303 |
+
|
1304 |
+
def _represent_default_basis(self, **options):
|
1305 |
+
return self._represent_JzOp(None, **options)
|
1306 |
+
|
1307 |
+
def _represent_JxOp(self, basis, **options):
|
1308 |
+
return self._represent_base(beta=pi*Rational(3, 2), **options)
|
1309 |
+
|
1310 |
+
def _represent_JyOp(self, basis, **options):
|
1311 |
+
return self._represent_base(alpha=pi*Rational(3, 2), beta=pi/2, gamma=pi/2, **options)
|
1312 |
+
|
1313 |
+
def _represent_JzOp(self, basis, **options):
|
1314 |
+
return self._represent_base(**options)
|
1315 |
+
|
1316 |
+
|
1317 |
+
class JzBra(SpinState, Bra):
|
1318 |
+
"""Eigenbra of Jz.
|
1319 |
+
|
1320 |
+
See the JzKet for the usage of spin eigenstates.
|
1321 |
+
|
1322 |
+
See Also
|
1323 |
+
========
|
1324 |
+
|
1325 |
+
JzKet: Usage of spin states
|
1326 |
+
|
1327 |
+
"""
|
1328 |
+
|
1329 |
+
@classmethod
|
1330 |
+
def dual_class(self):
|
1331 |
+
return JzKet
|
1332 |
+
|
1333 |
+
@classmethod
|
1334 |
+
def coupled_class(self):
|
1335 |
+
return JzBraCoupled
|
1336 |
+
|
1337 |
+
|
1338 |
+
# Method used primarily to create coupled_n and coupled_jn by __new__ in
|
1339 |
+
# CoupledSpinState
|
1340 |
+
# This same method is also used by the uncouple method, and is separated from
|
1341 |
+
# the CoupledSpinState class to maintain consistency in defining coupling
|
1342 |
+
def _build_coupled(jcoupling, length):
|
1343 |
+
n_list = [ [n + 1] for n in range(length) ]
|
1344 |
+
coupled_jn = []
|
1345 |
+
coupled_n = []
|
1346 |
+
for n1, n2, j_new in jcoupling:
|
1347 |
+
coupled_jn.append(j_new)
|
1348 |
+
coupled_n.append( (n_list[n1 - 1], n_list[n2 - 1]) )
|
1349 |
+
n_sort = sorted(n_list[n1 - 1] + n_list[n2 - 1])
|
1350 |
+
n_list[n_sort[0] - 1] = n_sort
|
1351 |
+
return coupled_n, coupled_jn
|
1352 |
+
|
1353 |
+
|
1354 |
+
class CoupledSpinState(SpinState):
|
1355 |
+
"""Base class for coupled angular momentum states."""
|
1356 |
+
|
1357 |
+
def __new__(cls, j, m, jn, *jcoupling):
|
1358 |
+
# Check j and m values using SpinState
|
1359 |
+
SpinState(j, m)
|
1360 |
+
# Build and check coupling scheme from arguments
|
1361 |
+
if len(jcoupling) == 0:
|
1362 |
+
# Use default coupling scheme
|
1363 |
+
jcoupling = []
|
1364 |
+
for n in range(2, len(jn)):
|
1365 |
+
jcoupling.append( (1, n, Add(*[jn[i] for i in range(n)])) )
|
1366 |
+
jcoupling.append( (1, len(jn), j) )
|
1367 |
+
elif len(jcoupling) == 1:
|
1368 |
+
# Use specified coupling scheme
|
1369 |
+
jcoupling = jcoupling[0]
|
1370 |
+
else:
|
1371 |
+
raise TypeError("CoupledSpinState only takes 3 or 4 arguments, got: %s" % (len(jcoupling) + 3) )
|
1372 |
+
# Check arguments have correct form
|
1373 |
+
if not isinstance(jn, (list, tuple, Tuple)):
|
1374 |
+
raise TypeError('jn must be Tuple, list or tuple, got %s' %
|
1375 |
+
jn.__class__.__name__)
|
1376 |
+
if not isinstance(jcoupling, (list, tuple, Tuple)):
|
1377 |
+
raise TypeError('jcoupling must be Tuple, list or tuple, got %s' %
|
1378 |
+
jcoupling.__class__.__name__)
|
1379 |
+
if not all(isinstance(term, (list, tuple, Tuple)) for term in jcoupling):
|
1380 |
+
raise TypeError(
|
1381 |
+
'All elements of jcoupling must be list, tuple or Tuple')
|
1382 |
+
if not len(jn) - 1 == len(jcoupling):
|
1383 |
+
raise ValueError('jcoupling must have length of %d, got %d' %
|
1384 |
+
(len(jn) - 1, len(jcoupling)))
|
1385 |
+
if not all(len(x) == 3 for x in jcoupling):
|
1386 |
+
raise ValueError('All elements of jcoupling must have length 3')
|
1387 |
+
# Build sympified args
|
1388 |
+
j = sympify(j)
|
1389 |
+
m = sympify(m)
|
1390 |
+
jn = Tuple( *[sympify(ji) for ji in jn] )
|
1391 |
+
jcoupling = Tuple( *[Tuple(sympify(
|
1392 |
+
n1), sympify(n2), sympify(ji)) for (n1, n2, ji) in jcoupling] )
|
1393 |
+
# Check values in coupling scheme give physical state
|
1394 |
+
if any(2*ji != int(2*ji) for ji in jn if ji.is_number):
|
1395 |
+
raise ValueError('All elements of jn must be integer or half-integer, got: %s' % jn)
|
1396 |
+
if any(n1 != int(n1) or n2 != int(n2) for (n1, n2, _) in jcoupling):
|
1397 |
+
raise ValueError('Indices in jcoupling must be integers')
|
1398 |
+
if any(n1 < 1 or n2 < 1 or n1 > len(jn) or n2 > len(jn) for (n1, n2, _) in jcoupling):
|
1399 |
+
raise ValueError('Indices must be between 1 and the number of coupled spin spaces')
|
1400 |
+
if any(2*ji != int(2*ji) for (_, _, ji) in jcoupling if ji.is_number):
|
1401 |
+
raise ValueError('All coupled j values in coupling scheme must be integer or half-integer')
|
1402 |
+
coupled_n, coupled_jn = _build_coupled(jcoupling, len(jn))
|
1403 |
+
jvals = list(jn)
|
1404 |
+
for n, (n1, n2) in enumerate(coupled_n):
|
1405 |
+
j1 = jvals[min(n1) - 1]
|
1406 |
+
j2 = jvals[min(n2) - 1]
|
1407 |
+
j3 = coupled_jn[n]
|
1408 |
+
if sympify(j1).is_number and sympify(j2).is_number and sympify(j3).is_number:
|
1409 |
+
if j1 + j2 < j3:
|
1410 |
+
raise ValueError('All couplings must have j1+j2 >= j3, '
|
1411 |
+
'in coupling number %d got j1,j2,j3: %d,%d,%d' % (n + 1, j1, j2, j3))
|
1412 |
+
if abs(j1 - j2) > j3:
|
1413 |
+
raise ValueError("All couplings must have |j1+j2| <= j3, "
|
1414 |
+
"in coupling number %d got j1,j2,j3: %d,%d,%d" % (n + 1, j1, j2, j3))
|
1415 |
+
if int(j1 + j2) == j1 + j2:
|
1416 |
+
pass
|
1417 |
+
jvals[min(n1 + n2) - 1] = j3
|
1418 |
+
if len(jcoupling) > 0 and jcoupling[-1][2] != j:
|
1419 |
+
raise ValueError('Last j value coupled together must be the final j of the state')
|
1420 |
+
# Return state
|
1421 |
+
return State.__new__(cls, j, m, jn, jcoupling)
|
1422 |
+
|
1423 |
+
def _print_label(self, printer, *args):
|
1424 |
+
label = [printer._print(self.j), printer._print(self.m)]
|
1425 |
+
for i, ji in enumerate(self.jn, start=1):
|
1426 |
+
label.append('j%d=%s' % (
|
1427 |
+
i, printer._print(ji)
|
1428 |
+
))
|
1429 |
+
for jn, (n1, n2) in zip(self.coupled_jn[:-1], self.coupled_n[:-1]):
|
1430 |
+
label.append('j(%s)=%s' % (
|
1431 |
+
','.join(str(i) for i in sorted(n1 + n2)), printer._print(jn)
|
1432 |
+
))
|
1433 |
+
return ','.join(label)
|
1434 |
+
|
1435 |
+
def _print_label_pretty(self, printer, *args):
|
1436 |
+
label = [self.j, self.m]
|
1437 |
+
for i, ji in enumerate(self.jn, start=1):
|
1438 |
+
symb = 'j%d' % i
|
1439 |
+
symb = pretty_symbol(symb)
|
1440 |
+
symb = prettyForm(symb + '=')
|
1441 |
+
item = prettyForm(*symb.right(printer._print(ji)))
|
1442 |
+
label.append(item)
|
1443 |
+
for jn, (n1, n2) in zip(self.coupled_jn[:-1], self.coupled_n[:-1]):
|
1444 |
+
n = ','.join(pretty_symbol("j%d" % i)[-1] for i in sorted(n1 + n2))
|
1445 |
+
symb = prettyForm('j' + n + '=')
|
1446 |
+
item = prettyForm(*symb.right(printer._print(jn)))
|
1447 |
+
label.append(item)
|
1448 |
+
return self._print_sequence_pretty(
|
1449 |
+
label, self._label_separator, printer, *args
|
1450 |
+
)
|
1451 |
+
|
1452 |
+
def _print_label_latex(self, printer, *args):
|
1453 |
+
label = [
|
1454 |
+
printer._print(self.j, *args),
|
1455 |
+
printer._print(self.m, *args)
|
1456 |
+
]
|
1457 |
+
for i, ji in enumerate(self.jn, start=1):
|
1458 |
+
label.append('j_{%d}=%s' % (i, printer._print(ji, *args)) )
|
1459 |
+
for jn, (n1, n2) in zip(self.coupled_jn[:-1], self.coupled_n[:-1]):
|
1460 |
+
n = ','.join(str(i) for i in sorted(n1 + n2))
|
1461 |
+
label.append('j_{%s}=%s' % (n, printer._print(jn, *args)) )
|
1462 |
+
return self._label_separator.join(label)
|
1463 |
+
|
1464 |
+
@property
|
1465 |
+
def jn(self):
|
1466 |
+
return self.label[2]
|
1467 |
+
|
1468 |
+
@property
|
1469 |
+
def coupling(self):
|
1470 |
+
return self.label[3]
|
1471 |
+
|
1472 |
+
@property
|
1473 |
+
def coupled_jn(self):
|
1474 |
+
return _build_coupled(self.label[3], len(self.label[2]))[1]
|
1475 |
+
|
1476 |
+
@property
|
1477 |
+
def coupled_n(self):
|
1478 |
+
return _build_coupled(self.label[3], len(self.label[2]))[0]
|
1479 |
+
|
1480 |
+
@classmethod
|
1481 |
+
def _eval_hilbert_space(cls, label):
|
1482 |
+
j = Add(*label[2])
|
1483 |
+
if j.is_number:
|
1484 |
+
return DirectSumHilbertSpace(*[ ComplexSpace(x) for x in range(int(2*j + 1), 0, -2) ])
|
1485 |
+
else:
|
1486 |
+
# TODO: Need hilbert space fix, see issue 5732
|
1487 |
+
# Desired behavior:
|
1488 |
+
#ji = symbols('ji')
|
1489 |
+
#ret = Sum(ComplexSpace(2*ji + 1), (ji, 0, j))
|
1490 |
+
# Temporary fix:
|
1491 |
+
return ComplexSpace(2*j + 1)
|
1492 |
+
|
1493 |
+
def _represent_coupled_base(self, **options):
|
1494 |
+
evect = self.uncoupled_class()
|
1495 |
+
if not self.j.is_number:
|
1496 |
+
raise ValueError(
|
1497 |
+
'State must not have symbolic j value to represent')
|
1498 |
+
if not self.hilbert_space.dimension.is_number:
|
1499 |
+
raise ValueError(
|
1500 |
+
'State must not have symbolic j values to represent')
|
1501 |
+
result = zeros(self.hilbert_space.dimension, 1)
|
1502 |
+
if self.j == int(self.j):
|
1503 |
+
start = self.j**2
|
1504 |
+
else:
|
1505 |
+
start = (2*self.j - 1)*(1 + 2*self.j)/4
|
1506 |
+
result[start:start + 2*self.j + 1, 0] = evect(
|
1507 |
+
self.j, self.m)._represent_base(**options)
|
1508 |
+
return result
|
1509 |
+
|
1510 |
+
def _eval_rewrite_as_Jx(self, *args, **options):
|
1511 |
+
if isinstance(self, Bra):
|
1512 |
+
return self._rewrite_basis(Jx, JxBraCoupled, **options)
|
1513 |
+
return self._rewrite_basis(Jx, JxKetCoupled, **options)
|
1514 |
+
|
1515 |
+
def _eval_rewrite_as_Jy(self, *args, **options):
|
1516 |
+
if isinstance(self, Bra):
|
1517 |
+
return self._rewrite_basis(Jy, JyBraCoupled, **options)
|
1518 |
+
return self._rewrite_basis(Jy, JyKetCoupled, **options)
|
1519 |
+
|
1520 |
+
def _eval_rewrite_as_Jz(self, *args, **options):
|
1521 |
+
if isinstance(self, Bra):
|
1522 |
+
return self._rewrite_basis(Jz, JzBraCoupled, **options)
|
1523 |
+
return self._rewrite_basis(Jz, JzKetCoupled, **options)
|
1524 |
+
|
1525 |
+
|
1526 |
+
class JxKetCoupled(CoupledSpinState, Ket):
|
1527 |
+
"""Coupled eigenket of Jx.
|
1528 |
+
|
1529 |
+
See JzKetCoupled for the usage of coupled spin eigenstates.
|
1530 |
+
|
1531 |
+
See Also
|
1532 |
+
========
|
1533 |
+
|
1534 |
+
JzKetCoupled: Usage of coupled spin states
|
1535 |
+
|
1536 |
+
"""
|
1537 |
+
|
1538 |
+
@classmethod
|
1539 |
+
def dual_class(self):
|
1540 |
+
return JxBraCoupled
|
1541 |
+
|
1542 |
+
@classmethod
|
1543 |
+
def uncoupled_class(self):
|
1544 |
+
return JxKet
|
1545 |
+
|
1546 |
+
def _represent_default_basis(self, **options):
|
1547 |
+
return self._represent_JzOp(None, **options)
|
1548 |
+
|
1549 |
+
def _represent_JxOp(self, basis, **options):
|
1550 |
+
return self._represent_coupled_base(**options)
|
1551 |
+
|
1552 |
+
def _represent_JyOp(self, basis, **options):
|
1553 |
+
return self._represent_coupled_base(alpha=pi*Rational(3, 2), **options)
|
1554 |
+
|
1555 |
+
def _represent_JzOp(self, basis, **options):
|
1556 |
+
return self._represent_coupled_base(beta=pi/2, **options)
|
1557 |
+
|
1558 |
+
|
1559 |
+
class JxBraCoupled(CoupledSpinState, Bra):
|
1560 |
+
"""Coupled eigenbra of Jx.
|
1561 |
+
|
1562 |
+
See JzKetCoupled for the usage of coupled spin eigenstates.
|
1563 |
+
|
1564 |
+
See Also
|
1565 |
+
========
|
1566 |
+
|
1567 |
+
JzKetCoupled: Usage of coupled spin states
|
1568 |
+
|
1569 |
+
"""
|
1570 |
+
|
1571 |
+
@classmethod
|
1572 |
+
def dual_class(self):
|
1573 |
+
return JxKetCoupled
|
1574 |
+
|
1575 |
+
@classmethod
|
1576 |
+
def uncoupled_class(self):
|
1577 |
+
return JxBra
|
1578 |
+
|
1579 |
+
|
1580 |
+
class JyKetCoupled(CoupledSpinState, Ket):
|
1581 |
+
"""Coupled eigenket of Jy.
|
1582 |
+
|
1583 |
+
See JzKetCoupled for the usage of coupled spin eigenstates.
|
1584 |
+
|
1585 |
+
See Also
|
1586 |
+
========
|
1587 |
+
|
1588 |
+
JzKetCoupled: Usage of coupled spin states
|
1589 |
+
|
1590 |
+
"""
|
1591 |
+
|
1592 |
+
@classmethod
|
1593 |
+
def dual_class(self):
|
1594 |
+
return JyBraCoupled
|
1595 |
+
|
1596 |
+
@classmethod
|
1597 |
+
def uncoupled_class(self):
|
1598 |
+
return JyKet
|
1599 |
+
|
1600 |
+
def _represent_default_basis(self, **options):
|
1601 |
+
return self._represent_JzOp(None, **options)
|
1602 |
+
|
1603 |
+
def _represent_JxOp(self, basis, **options):
|
1604 |
+
return self._represent_coupled_base(gamma=pi/2, **options)
|
1605 |
+
|
1606 |
+
def _represent_JyOp(self, basis, **options):
|
1607 |
+
return self._represent_coupled_base(**options)
|
1608 |
+
|
1609 |
+
def _represent_JzOp(self, basis, **options):
|
1610 |
+
return self._represent_coupled_base(alpha=pi*Rational(3, 2), beta=-pi/2, gamma=pi/2, **options)
|
1611 |
+
|
1612 |
+
|
1613 |
+
class JyBraCoupled(CoupledSpinState, Bra):
|
1614 |
+
"""Coupled eigenbra of Jy.
|
1615 |
+
|
1616 |
+
See JzKetCoupled for the usage of coupled spin eigenstates.
|
1617 |
+
|
1618 |
+
See Also
|
1619 |
+
========
|
1620 |
+
|
1621 |
+
JzKetCoupled: Usage of coupled spin states
|
1622 |
+
|
1623 |
+
"""
|
1624 |
+
|
1625 |
+
@classmethod
|
1626 |
+
def dual_class(self):
|
1627 |
+
return JyKetCoupled
|
1628 |
+
|
1629 |
+
@classmethod
|
1630 |
+
def uncoupled_class(self):
|
1631 |
+
return JyBra
|
1632 |
+
|
1633 |
+
|
1634 |
+
class JzKetCoupled(CoupledSpinState, Ket):
|
1635 |
+
r"""Coupled eigenket of Jz
|
1636 |
+
|
1637 |
+
Spin state that is an eigenket of Jz which represents the coupling of
|
1638 |
+
separate spin spaces.
|
1639 |
+
|
1640 |
+
The arguments for creating instances of JzKetCoupled are ``j``, ``m``,
|
1641 |
+
``jn`` and an optional ``jcoupling`` argument. The ``j`` and ``m`` options
|
1642 |
+
are the total angular momentum quantum numbers, as used for normal states
|
1643 |
+
(e.g. JzKet).
|
1644 |
+
|
1645 |
+
The other required parameter in ``jn``, which is a tuple defining the `j_n`
|
1646 |
+
angular momentum quantum numbers of the product spaces. So for example, if
|
1647 |
+
a state represented the coupling of the product basis state
|
1648 |
+
`\left|j_1,m_1\right\rangle\times\left|j_2,m_2\right\rangle`, the ``jn``
|
1649 |
+
for this state would be ``(j1,j2)``.
|
1650 |
+
|
1651 |
+
The final option is ``jcoupling``, which is used to define how the spaces
|
1652 |
+
specified by ``jn`` are coupled, which includes both the order these spaces
|
1653 |
+
are coupled together and the quantum numbers that arise from these
|
1654 |
+
couplings. The ``jcoupling`` parameter itself is a list of lists, such that
|
1655 |
+
each of the sublists defines a single coupling between the spin spaces. If
|
1656 |
+
there are N coupled angular momentum spaces, that is ``jn`` has N elements,
|
1657 |
+
then there must be N-1 sublists. Each of these sublists making up the
|
1658 |
+
``jcoupling`` parameter have length 3. The first two elements are the
|
1659 |
+
indices of the product spaces that are considered to be coupled together.
|
1660 |
+
For example, if we want to couple `j_1` and `j_4`, the indices would be 1
|
1661 |
+
and 4. If a state has already been coupled, it is referenced by the
|
1662 |
+
smallest index that is coupled, so if `j_2` and `j_4` has already been
|
1663 |
+
coupled to some `j_{24}`, then this value can be coupled by referencing it
|
1664 |
+
with index 2. The final element of the sublist is the quantum number of the
|
1665 |
+
coupled state. So putting everything together, into a valid sublist for
|
1666 |
+
``jcoupling``, if `j_1` and `j_2` are coupled to an angular momentum space
|
1667 |
+
with quantum number `j_{12}` with the value ``j12``, the sublist would be
|
1668 |
+
``(1,2,j12)``, N-1 of these sublists are used in the list for
|
1669 |
+
``jcoupling``.
|
1670 |
+
|
1671 |
+
Note the ``jcoupling`` parameter is optional, if it is not specified, the
|
1672 |
+
default coupling is taken. This default value is to coupled the spaces in
|
1673 |
+
order and take the quantum number of the coupling to be the maximum value.
|
1674 |
+
For example, if the spin spaces are `j_1`, `j_2`, `j_3`, `j_4`, then the
|
1675 |
+
default coupling couples `j_1` and `j_2` to `j_{12}=j_1+j_2`, then,
|
1676 |
+
`j_{12}` and `j_3` are coupled to `j_{123}=j_{12}+j_3`, and finally
|
1677 |
+
`j_{123}` and `j_4` to `j=j_{123}+j_4`. The jcoupling value that would
|
1678 |
+
correspond to this is:
|
1679 |
+
|
1680 |
+
``((1,2,j1+j2),(1,3,j1+j2+j3))``
|
1681 |
+
|
1682 |
+
Parameters
|
1683 |
+
==========
|
1684 |
+
|
1685 |
+
args : tuple
|
1686 |
+
The arguments that must be passed are ``j``, ``m``, ``jn``, and
|
1687 |
+
``jcoupling``. The ``j`` value is the total angular momentum. The ``m``
|
1688 |
+
value is the eigenvalue of the Jz spin operator. The ``jn`` list are
|
1689 |
+
the j values of argular momentum spaces coupled together. The
|
1690 |
+
``jcoupling`` parameter is an optional parameter defining how the spaces
|
1691 |
+
are coupled together. See the above description for how these coupling
|
1692 |
+
parameters are defined.
|
1693 |
+
|
1694 |
+
Examples
|
1695 |
+
========
|
1696 |
+
|
1697 |
+
Defining simple spin states, both numerical and symbolic:
|
1698 |
+
|
1699 |
+
>>> from sympy.physics.quantum.spin import JzKetCoupled
|
1700 |
+
>>> from sympy import symbols
|
1701 |
+
>>> JzKetCoupled(1, 0, (1, 1))
|
1702 |
+
|1,0,j1=1,j2=1>
|
1703 |
+
>>> j, m, j1, j2 = symbols('j m j1 j2')
|
1704 |
+
>>> JzKetCoupled(j, m, (j1, j2))
|
1705 |
+
|j,m,j1=j1,j2=j2>
|
1706 |
+
|
1707 |
+
Defining coupled spin states for more than 2 coupled spaces with various
|
1708 |
+
coupling parameters:
|
1709 |
+
|
1710 |
+
>>> JzKetCoupled(2, 1, (1, 1, 1))
|
1711 |
+
|2,1,j1=1,j2=1,j3=1,j(1,2)=2>
|
1712 |
+
>>> JzKetCoupled(2, 1, (1, 1, 1), ((1,2,2),(1,3,2)) )
|
1713 |
+
|2,1,j1=1,j2=1,j3=1,j(1,2)=2>
|
1714 |
+
>>> JzKetCoupled(2, 1, (1, 1, 1), ((2,3,1),(1,2,2)) )
|
1715 |
+
|2,1,j1=1,j2=1,j3=1,j(2,3)=1>
|
1716 |
+
|
1717 |
+
Rewriting the JzKetCoupled in terms of eigenkets of the Jx operator:
|
1718 |
+
Note: that the resulting eigenstates are JxKetCoupled
|
1719 |
+
|
1720 |
+
>>> JzKetCoupled(1,1,(1,1)).rewrite("Jx")
|
1721 |
+
|1,-1,j1=1,j2=1>/2 - sqrt(2)*|1,0,j1=1,j2=1>/2 + |1,1,j1=1,j2=1>/2
|
1722 |
+
|
1723 |
+
The rewrite method can be used to convert a coupled state to an uncoupled
|
1724 |
+
state. This is done by passing coupled=False to the rewrite function:
|
1725 |
+
|
1726 |
+
>>> JzKetCoupled(1, 0, (1, 1)).rewrite('Jz', coupled=False)
|
1727 |
+
-sqrt(2)*|1,-1>x|1,1>/2 + sqrt(2)*|1,1>x|1,-1>/2
|
1728 |
+
|
1729 |
+
Get the vector representation of a state in terms of the basis elements
|
1730 |
+
of the Jx operator:
|
1731 |
+
|
1732 |
+
>>> from sympy.physics.quantum.represent import represent
|
1733 |
+
>>> from sympy.physics.quantum.spin import Jx
|
1734 |
+
>>> from sympy import S
|
1735 |
+
>>> represent(JzKetCoupled(1,-1,(S(1)/2,S(1)/2)), basis=Jx)
|
1736 |
+
Matrix([
|
1737 |
+
[ 0],
|
1738 |
+
[ 1/2],
|
1739 |
+
[sqrt(2)/2],
|
1740 |
+
[ 1/2]])
|
1741 |
+
|
1742 |
+
See Also
|
1743 |
+
========
|
1744 |
+
|
1745 |
+
JzKet: Normal spin eigenstates
|
1746 |
+
uncouple: Uncoupling of coupling spin states
|
1747 |
+
couple: Coupling of uncoupled spin states
|
1748 |
+
|
1749 |
+
"""
|
1750 |
+
|
1751 |
+
@classmethod
|
1752 |
+
def dual_class(self):
|
1753 |
+
return JzBraCoupled
|
1754 |
+
|
1755 |
+
@classmethod
|
1756 |
+
def uncoupled_class(self):
|
1757 |
+
return JzKet
|
1758 |
+
|
1759 |
+
def _represent_default_basis(self, **options):
|
1760 |
+
return self._represent_JzOp(None, **options)
|
1761 |
+
|
1762 |
+
def _represent_JxOp(self, basis, **options):
|
1763 |
+
return self._represent_coupled_base(beta=pi*Rational(3, 2), **options)
|
1764 |
+
|
1765 |
+
def _represent_JyOp(self, basis, **options):
|
1766 |
+
return self._represent_coupled_base(alpha=pi*Rational(3, 2), beta=pi/2, gamma=pi/2, **options)
|
1767 |
+
|
1768 |
+
def _represent_JzOp(self, basis, **options):
|
1769 |
+
return self._represent_coupled_base(**options)
|
1770 |
+
|
1771 |
+
|
1772 |
+
class JzBraCoupled(CoupledSpinState, Bra):
|
1773 |
+
"""Coupled eigenbra of Jz.
|
1774 |
+
|
1775 |
+
See the JzKetCoupled for the usage of coupled spin eigenstates.
|
1776 |
+
|
1777 |
+
See Also
|
1778 |
+
========
|
1779 |
+
|
1780 |
+
JzKetCoupled: Usage of coupled spin states
|
1781 |
+
|
1782 |
+
"""
|
1783 |
+
|
1784 |
+
@classmethod
|
1785 |
+
def dual_class(self):
|
1786 |
+
return JzKetCoupled
|
1787 |
+
|
1788 |
+
@classmethod
|
1789 |
+
def uncoupled_class(self):
|
1790 |
+
return JzBra
|
1791 |
+
|
1792 |
+
#-----------------------------------------------------------------------------
|
1793 |
+
# Coupling/uncoupling
|
1794 |
+
#-----------------------------------------------------------------------------
|
1795 |
+
|
1796 |
+
|
1797 |
+
def couple(expr, jcoupling_list=None):
|
1798 |
+
""" Couple a tensor product of spin states
|
1799 |
+
|
1800 |
+
This function can be used to couple an uncoupled tensor product of spin
|
1801 |
+
states. All of the eigenstates to be coupled must be of the same class. It
|
1802 |
+
will return a linear combination of eigenstates that are subclasses of
|
1803 |
+
CoupledSpinState determined by Clebsch-Gordan angular momentum coupling
|
1804 |
+
coefficients.
|
1805 |
+
|
1806 |
+
Parameters
|
1807 |
+
==========
|
1808 |
+
|
1809 |
+
expr : Expr
|
1810 |
+
An expression involving TensorProducts of spin states to be coupled.
|
1811 |
+
Each state must be a subclass of SpinState and they all must be the
|
1812 |
+
same class.
|
1813 |
+
|
1814 |
+
jcoupling_list : list or tuple
|
1815 |
+
Elements of this list are sub-lists of length 2 specifying the order of
|
1816 |
+
the coupling of the spin spaces. The length of this must be N-1, where N
|
1817 |
+
is the number of states in the tensor product to be coupled. The
|
1818 |
+
elements of this sublist are the same as the first two elements of each
|
1819 |
+
sublist in the ``jcoupling`` parameter defined for JzKetCoupled. If this
|
1820 |
+
parameter is not specified, the default value is taken, which couples
|
1821 |
+
the first and second product basis spaces, then couples this new coupled
|
1822 |
+
space to the third product space, etc
|
1823 |
+
|
1824 |
+
Examples
|
1825 |
+
========
|
1826 |
+
|
1827 |
+
Couple a tensor product of numerical states for two spaces:
|
1828 |
+
|
1829 |
+
>>> from sympy.physics.quantum.spin import JzKet, couple
|
1830 |
+
>>> from sympy.physics.quantum.tensorproduct import TensorProduct
|
1831 |
+
>>> couple(TensorProduct(JzKet(1,0), JzKet(1,1)))
|
1832 |
+
-sqrt(2)*|1,1,j1=1,j2=1>/2 + sqrt(2)*|2,1,j1=1,j2=1>/2
|
1833 |
+
|
1834 |
+
|
1835 |
+
Numerical coupling of three spaces using the default coupling method, i.e.
|
1836 |
+
first and second spaces couple, then this couples to the third space:
|
1837 |
+
|
1838 |
+
>>> couple(TensorProduct(JzKet(1,1), JzKet(1,1), JzKet(1,0)))
|
1839 |
+
sqrt(6)*|2,2,j1=1,j2=1,j3=1,j(1,2)=2>/3 + sqrt(3)*|3,2,j1=1,j2=1,j3=1,j(1,2)=2>/3
|
1840 |
+
|
1841 |
+
Perform this same coupling, but we define the coupling to first couple
|
1842 |
+
the first and third spaces:
|
1843 |
+
|
1844 |
+
>>> couple(TensorProduct(JzKet(1,1), JzKet(1,1), JzKet(1,0)), ((1,3),(1,2)) )
|
1845 |
+
sqrt(2)*|2,2,j1=1,j2=1,j3=1,j(1,3)=1>/2 - sqrt(6)*|2,2,j1=1,j2=1,j3=1,j(1,3)=2>/6 + sqrt(3)*|3,2,j1=1,j2=1,j3=1,j(1,3)=2>/3
|
1846 |
+
|
1847 |
+
Couple a tensor product of symbolic states:
|
1848 |
+
|
1849 |
+
>>> from sympy import symbols
|
1850 |
+
>>> j1,m1,j2,m2 = symbols('j1 m1 j2 m2')
|
1851 |
+
>>> couple(TensorProduct(JzKet(j1,m1), JzKet(j2,m2)))
|
1852 |
+
Sum(CG(j1, m1, j2, m2, j, m1 + m2)*|j,m1 + m2,j1=j1,j2=j2>, (j, m1 + m2, j1 + j2))
|
1853 |
+
|
1854 |
+
"""
|
1855 |
+
a = expr.atoms(TensorProduct)
|
1856 |
+
for tp in a:
|
1857 |
+
# Allow other tensor products to be in expression
|
1858 |
+
if not all(isinstance(state, SpinState) for state in tp.args):
|
1859 |
+
continue
|
1860 |
+
# If tensor product has all spin states, raise error for invalid tensor product state
|
1861 |
+
if not all(state.__class__ is tp.args[0].__class__ for state in tp.args):
|
1862 |
+
raise TypeError('All states must be the same basis')
|
1863 |
+
expr = expr.subs(tp, _couple(tp, jcoupling_list))
|
1864 |
+
return expr
|
1865 |
+
|
1866 |
+
|
1867 |
+
def _couple(tp, jcoupling_list):
|
1868 |
+
states = tp.args
|
1869 |
+
coupled_evect = states[0].coupled_class()
|
1870 |
+
|
1871 |
+
# Define default coupling if none is specified
|
1872 |
+
if jcoupling_list is None:
|
1873 |
+
jcoupling_list = []
|
1874 |
+
for n in range(1, len(states)):
|
1875 |
+
jcoupling_list.append( (1, n + 1) )
|
1876 |
+
|
1877 |
+
# Check jcoupling_list valid
|
1878 |
+
if not len(jcoupling_list) == len(states) - 1:
|
1879 |
+
raise TypeError('jcoupling_list must be length %d, got %d' %
|
1880 |
+
(len(states) - 1, len(jcoupling_list)))
|
1881 |
+
if not all( len(coupling) == 2 for coupling in jcoupling_list):
|
1882 |
+
raise ValueError('Each coupling must define 2 spaces')
|
1883 |
+
if any(n1 == n2 for n1, n2 in jcoupling_list):
|
1884 |
+
raise ValueError('Spin spaces cannot couple to themselves')
|
1885 |
+
if all(sympify(n1).is_number and sympify(n2).is_number for n1, n2 in jcoupling_list):
|
1886 |
+
j_test = [0]*len(states)
|
1887 |
+
for n1, n2 in jcoupling_list:
|
1888 |
+
if j_test[n1 - 1] == -1 or j_test[n2 - 1] == -1:
|
1889 |
+
raise ValueError('Spaces coupling j_n\'s are referenced by smallest n value')
|
1890 |
+
j_test[max(n1, n2) - 1] = -1
|
1891 |
+
|
1892 |
+
# j values of states to be coupled together
|
1893 |
+
jn = [state.j for state in states]
|
1894 |
+
mn = [state.m for state in states]
|
1895 |
+
|
1896 |
+
# Create coupling_list, which defines all the couplings between all
|
1897 |
+
# the spaces from jcoupling_list
|
1898 |
+
coupling_list = []
|
1899 |
+
n_list = [ [i + 1] for i in range(len(states)) ]
|
1900 |
+
for j_coupling in jcoupling_list:
|
1901 |
+
# Least n for all j_n which is coupled as first and second spaces
|
1902 |
+
n1, n2 = j_coupling
|
1903 |
+
# List of all n's coupled in first and second spaces
|
1904 |
+
j1_n = list(n_list[n1 - 1])
|
1905 |
+
j2_n = list(n_list[n2 - 1])
|
1906 |
+
coupling_list.append( (j1_n, j2_n) )
|
1907 |
+
# Set new j_n to be coupling of all j_n in both first and second spaces
|
1908 |
+
n_list[ min(n1, n2) - 1 ] = sorted(j1_n + j2_n)
|
1909 |
+
|
1910 |
+
if all(state.j.is_number and state.m.is_number for state in states):
|
1911 |
+
# Numerical coupling
|
1912 |
+
# Iterate over difference between maximum possible j value of each coupling and the actual value
|
1913 |
+
diff_max = [ Add( *[ jn[n - 1] - mn[n - 1] for n in coupling[0] +
|
1914 |
+
coupling[1] ] ) for coupling in coupling_list ]
|
1915 |
+
result = []
|
1916 |
+
for diff in range(diff_max[-1] + 1):
|
1917 |
+
# Determine available configurations
|
1918 |
+
n = len(coupling_list)
|
1919 |
+
tot = binomial(diff + n - 1, diff)
|
1920 |
+
|
1921 |
+
for config_num in range(tot):
|
1922 |
+
diff_list = _confignum_to_difflist(config_num, diff, n)
|
1923 |
+
|
1924 |
+
# Skip the configuration if non-physical
|
1925 |
+
# This is a lazy check for physical states given the loose restrictions of diff_max
|
1926 |
+
if any(d > m for d, m in zip(diff_list, diff_max)):
|
1927 |
+
continue
|
1928 |
+
|
1929 |
+
# Determine term
|
1930 |
+
cg_terms = []
|
1931 |
+
coupled_j = list(jn)
|
1932 |
+
jcoupling = []
|
1933 |
+
for (j1_n, j2_n), coupling_diff in zip(coupling_list, diff_list):
|
1934 |
+
j1 = coupled_j[ min(j1_n) - 1 ]
|
1935 |
+
j2 = coupled_j[ min(j2_n) - 1 ]
|
1936 |
+
j3 = j1 + j2 - coupling_diff
|
1937 |
+
coupled_j[ min(j1_n + j2_n) - 1 ] = j3
|
1938 |
+
m1 = Add( *[ mn[x - 1] for x in j1_n] )
|
1939 |
+
m2 = Add( *[ mn[x - 1] for x in j2_n] )
|
1940 |
+
m3 = m1 + m2
|
1941 |
+
cg_terms.append( (j1, m1, j2, m2, j3, m3) )
|
1942 |
+
jcoupling.append( (min(j1_n), min(j2_n), j3) )
|
1943 |
+
# Better checks that state is physical
|
1944 |
+
if any(abs(term[5]) > term[4] for term in cg_terms):
|
1945 |
+
continue
|
1946 |
+
if any(term[0] + term[2] < term[4] for term in cg_terms):
|
1947 |
+
continue
|
1948 |
+
if any(abs(term[0] - term[2]) > term[4] for term in cg_terms):
|
1949 |
+
continue
|
1950 |
+
coeff = Mul( *[ CG(*term).doit() for term in cg_terms] )
|
1951 |
+
state = coupled_evect(j3, m3, jn, jcoupling)
|
1952 |
+
result.append(coeff*state)
|
1953 |
+
return Add(*result)
|
1954 |
+
else:
|
1955 |
+
# Symbolic coupling
|
1956 |
+
cg_terms = []
|
1957 |
+
jcoupling = []
|
1958 |
+
sum_terms = []
|
1959 |
+
coupled_j = list(jn)
|
1960 |
+
for j1_n, j2_n in coupling_list:
|
1961 |
+
j1 = coupled_j[ min(j1_n) - 1 ]
|
1962 |
+
j2 = coupled_j[ min(j2_n) - 1 ]
|
1963 |
+
if len(j1_n + j2_n) == len(states):
|
1964 |
+
j3 = symbols('j')
|
1965 |
+
else:
|
1966 |
+
j3_name = 'j' + ''.join(["%s" % n for n in j1_n + j2_n])
|
1967 |
+
j3 = symbols(j3_name)
|
1968 |
+
coupled_j[ min(j1_n + j2_n) - 1 ] = j3
|
1969 |
+
m1 = Add( *[ mn[x - 1] for x in j1_n] )
|
1970 |
+
m2 = Add( *[ mn[x - 1] for x in j2_n] )
|
1971 |
+
m3 = m1 + m2
|
1972 |
+
cg_terms.append( (j1, m1, j2, m2, j3, m3) )
|
1973 |
+
jcoupling.append( (min(j1_n), min(j2_n), j3) )
|
1974 |
+
sum_terms.append((j3, m3, j1 + j2))
|
1975 |
+
coeff = Mul( *[ CG(*term) for term in cg_terms] )
|
1976 |
+
state = coupled_evect(j3, m3, jn, jcoupling)
|
1977 |
+
return Sum(coeff*state, *sum_terms)
|
1978 |
+
|
1979 |
+
|
1980 |
+
def uncouple(expr, jn=None, jcoupling_list=None):
|
1981 |
+
""" Uncouple a coupled spin state
|
1982 |
+
|
1983 |
+
Gives the uncoupled representation of a coupled spin state. Arguments must
|
1984 |
+
be either a spin state that is a subclass of CoupledSpinState or a spin
|
1985 |
+
state that is a subclass of SpinState and an array giving the j values
|
1986 |
+
of the spaces that are to be coupled
|
1987 |
+
|
1988 |
+
Parameters
|
1989 |
+
==========
|
1990 |
+
|
1991 |
+
expr : Expr
|
1992 |
+
The expression containing states that are to be coupled. If the states
|
1993 |
+
are a subclass of SpinState, the ``jn`` and ``jcoupling`` parameters
|
1994 |
+
must be defined. If the states are a subclass of CoupledSpinState,
|
1995 |
+
``jn`` and ``jcoupling`` will be taken from the state.
|
1996 |
+
|
1997 |
+
jn : list or tuple
|
1998 |
+
The list of the j-values that are coupled. If state is a
|
1999 |
+
CoupledSpinState, this parameter is ignored. This must be defined if
|
2000 |
+
state is not a subclass of CoupledSpinState. The syntax of this
|
2001 |
+
parameter is the same as the ``jn`` parameter of JzKetCoupled.
|
2002 |
+
|
2003 |
+
jcoupling_list : list or tuple
|
2004 |
+
The list defining how the j-values are coupled together. If state is a
|
2005 |
+
CoupledSpinState, this parameter is ignored. This must be defined if
|
2006 |
+
state is not a subclass of CoupledSpinState. The syntax of this
|
2007 |
+
parameter is the same as the ``jcoupling`` parameter of JzKetCoupled.
|
2008 |
+
|
2009 |
+
Examples
|
2010 |
+
========
|
2011 |
+
|
2012 |
+
Uncouple a numerical state using a CoupledSpinState state:
|
2013 |
+
|
2014 |
+
>>> from sympy.physics.quantum.spin import JzKetCoupled, uncouple
|
2015 |
+
>>> from sympy import S
|
2016 |
+
>>> uncouple(JzKetCoupled(1, 0, (S(1)/2, S(1)/2)))
|
2017 |
+
sqrt(2)*|1/2,-1/2>x|1/2,1/2>/2 + sqrt(2)*|1/2,1/2>x|1/2,-1/2>/2
|
2018 |
+
|
2019 |
+
Perform the same calculation using a SpinState state:
|
2020 |
+
|
2021 |
+
>>> from sympy.physics.quantum.spin import JzKet
|
2022 |
+
>>> uncouple(JzKet(1, 0), (S(1)/2, S(1)/2))
|
2023 |
+
sqrt(2)*|1/2,-1/2>x|1/2,1/2>/2 + sqrt(2)*|1/2,1/2>x|1/2,-1/2>/2
|
2024 |
+
|
2025 |
+
Uncouple a numerical state of three coupled spaces using a CoupledSpinState state:
|
2026 |
+
|
2027 |
+
>>> uncouple(JzKetCoupled(1, 1, (1, 1, 1), ((1,3,1),(1,2,1)) ))
|
2028 |
+
|1,-1>x|1,1>x|1,1>/2 - |1,0>x|1,0>x|1,1>/2 + |1,1>x|1,0>x|1,0>/2 - |1,1>x|1,1>x|1,-1>/2
|
2029 |
+
|
2030 |
+
Perform the same calculation using a SpinState state:
|
2031 |
+
|
2032 |
+
>>> uncouple(JzKet(1, 1), (1, 1, 1), ((1,3,1),(1,2,1)) )
|
2033 |
+
|1,-1>x|1,1>x|1,1>/2 - |1,0>x|1,0>x|1,1>/2 + |1,1>x|1,0>x|1,0>/2 - |1,1>x|1,1>x|1,-1>/2
|
2034 |
+
|
2035 |
+
Uncouple a symbolic state using a CoupledSpinState state:
|
2036 |
+
|
2037 |
+
>>> from sympy import symbols
|
2038 |
+
>>> j,m,j1,j2 = symbols('j m j1 j2')
|
2039 |
+
>>> uncouple(JzKetCoupled(j, m, (j1, j2)))
|
2040 |
+
Sum(CG(j1, m1, j2, m2, j, m)*|j1,m1>x|j2,m2>, (m1, -j1, j1), (m2, -j2, j2))
|
2041 |
+
|
2042 |
+
Perform the same calculation using a SpinState state
|
2043 |
+
|
2044 |
+
>>> uncouple(JzKet(j, m), (j1, j2))
|
2045 |
+
Sum(CG(j1, m1, j2, m2, j, m)*|j1,m1>x|j2,m2>, (m1, -j1, j1), (m2, -j2, j2))
|
2046 |
+
|
2047 |
+
"""
|
2048 |
+
a = expr.atoms(SpinState)
|
2049 |
+
for state in a:
|
2050 |
+
expr = expr.subs(state, _uncouple(state, jn, jcoupling_list))
|
2051 |
+
return expr
|
2052 |
+
|
2053 |
+
|
2054 |
+
def _uncouple(state, jn, jcoupling_list):
|
2055 |
+
if isinstance(state, CoupledSpinState):
|
2056 |
+
jn = state.jn
|
2057 |
+
coupled_n = state.coupled_n
|
2058 |
+
coupled_jn = state.coupled_jn
|
2059 |
+
evect = state.uncoupled_class()
|
2060 |
+
elif isinstance(state, SpinState):
|
2061 |
+
if jn is None:
|
2062 |
+
raise ValueError("Must specify j-values for coupled state")
|
2063 |
+
if not isinstance(jn, (list, tuple)):
|
2064 |
+
raise TypeError("jn must be list or tuple")
|
2065 |
+
if jcoupling_list is None:
|
2066 |
+
# Use default
|
2067 |
+
jcoupling_list = []
|
2068 |
+
for i in range(1, len(jn)):
|
2069 |
+
jcoupling_list.append(
|
2070 |
+
(1, 1 + i, Add(*[jn[j] for j in range(i + 1)])) )
|
2071 |
+
if not isinstance(jcoupling_list, (list, tuple)):
|
2072 |
+
raise TypeError("jcoupling must be a list or tuple")
|
2073 |
+
if not len(jcoupling_list) == len(jn) - 1:
|
2074 |
+
raise ValueError("Must specify 2 fewer coupling terms than the number of j values")
|
2075 |
+
coupled_n, coupled_jn = _build_coupled(jcoupling_list, len(jn))
|
2076 |
+
evect = state.__class__
|
2077 |
+
else:
|
2078 |
+
raise TypeError("state must be a spin state")
|
2079 |
+
j = state.j
|
2080 |
+
m = state.m
|
2081 |
+
coupling_list = []
|
2082 |
+
j_list = list(jn)
|
2083 |
+
|
2084 |
+
# Create coupling, which defines all the couplings between all the spaces
|
2085 |
+
for j3, (n1, n2) in zip(coupled_jn, coupled_n):
|
2086 |
+
# j's which are coupled as first and second spaces
|
2087 |
+
j1 = j_list[n1[0] - 1]
|
2088 |
+
j2 = j_list[n2[0] - 1]
|
2089 |
+
# Build coupling list
|
2090 |
+
coupling_list.append( (n1, n2, j1, j2, j3) )
|
2091 |
+
# Set new value in j_list
|
2092 |
+
j_list[min(n1 + n2) - 1] = j3
|
2093 |
+
|
2094 |
+
if j.is_number and m.is_number:
|
2095 |
+
diff_max = [ 2*x for x in jn ]
|
2096 |
+
diff = Add(*jn) - m
|
2097 |
+
|
2098 |
+
n = len(jn)
|
2099 |
+
tot = binomial(diff + n - 1, diff)
|
2100 |
+
|
2101 |
+
result = []
|
2102 |
+
for config_num in range(tot):
|
2103 |
+
diff_list = _confignum_to_difflist(config_num, diff, n)
|
2104 |
+
if any(d > p for d, p in zip(diff_list, diff_max)):
|
2105 |
+
continue
|
2106 |
+
|
2107 |
+
cg_terms = []
|
2108 |
+
for coupling in coupling_list:
|
2109 |
+
j1_n, j2_n, j1, j2, j3 = coupling
|
2110 |
+
m1 = Add( *[ jn[x - 1] - diff_list[x - 1] for x in j1_n ] )
|
2111 |
+
m2 = Add( *[ jn[x - 1] - diff_list[x - 1] for x in j2_n ] )
|
2112 |
+
m3 = m1 + m2
|
2113 |
+
cg_terms.append( (j1, m1, j2, m2, j3, m3) )
|
2114 |
+
coeff = Mul( *[ CG(*term).doit() for term in cg_terms ] )
|
2115 |
+
state = TensorProduct(
|
2116 |
+
*[ evect(j, j - d) for j, d in zip(jn, diff_list) ] )
|
2117 |
+
result.append(coeff*state)
|
2118 |
+
return Add(*result)
|
2119 |
+
else:
|
2120 |
+
# Symbolic coupling
|
2121 |
+
m_str = "m1:%d" % (len(jn) + 1)
|
2122 |
+
mvals = symbols(m_str)
|
2123 |
+
cg_terms = [(j1, Add(*[mvals[n - 1] for n in j1_n]),
|
2124 |
+
j2, Add(*[mvals[n - 1] for n in j2_n]),
|
2125 |
+
j3, Add(*[mvals[n - 1] for n in j1_n + j2_n])) for j1_n, j2_n, j1, j2, j3 in coupling_list[:-1] ]
|
2126 |
+
cg_terms.append(*[(j1, Add(*[mvals[n - 1] for n in j1_n]),
|
2127 |
+
j2, Add(*[mvals[n - 1] for n in j2_n]),
|
2128 |
+
j, m) for j1_n, j2_n, j1, j2, j3 in [coupling_list[-1]] ])
|
2129 |
+
cg_coeff = Mul(*[CG(*cg_term) for cg_term in cg_terms])
|
2130 |
+
sum_terms = [ (m, -j, j) for j, m in zip(jn, mvals) ]
|
2131 |
+
state = TensorProduct( *[ evect(j, m) for j, m in zip(jn, mvals) ] )
|
2132 |
+
return Sum(cg_coeff*state, *sum_terms)
|
2133 |
+
|
2134 |
+
|
2135 |
+
def _confignum_to_difflist(config_num, diff, list_len):
|
2136 |
+
# Determines configuration of diffs into list_len number of slots
|
2137 |
+
diff_list = []
|
2138 |
+
for n in range(list_len):
|
2139 |
+
prev_diff = diff
|
2140 |
+
# Number of spots after current one
|
2141 |
+
rem_spots = list_len - n - 1
|
2142 |
+
# Number of configurations of distributing diff among the remaining spots
|
2143 |
+
rem_configs = binomial(diff + rem_spots - 1, diff)
|
2144 |
+
while config_num >= rem_configs:
|
2145 |
+
config_num -= rem_configs
|
2146 |
+
diff -= 1
|
2147 |
+
rem_configs = binomial(diff + rem_spots - 1, diff)
|
2148 |
+
diff_list.append(prev_diff - diff)
|
2149 |
+
return diff_list
|
venv/lib/python3.10/site-packages/sympy/physics/quantum/state.py
ADDED
@@ -0,0 +1,1014 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Dirac notation for states."""
|
2 |
+
|
3 |
+
from sympy.core.cache import cacheit
|
4 |
+
from sympy.core.containers import Tuple
|
5 |
+
from sympy.core.expr import Expr
|
6 |
+
from sympy.core.function import Function
|
7 |
+
from sympy.core.numbers import oo, equal_valued
|
8 |
+
from sympy.core.singleton import S
|
9 |
+
from sympy.functions.elementary.complexes import conjugate
|
10 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
11 |
+
from sympy.integrals.integrals import integrate
|
12 |
+
from sympy.printing.pretty.stringpict import stringPict
|
13 |
+
from sympy.physics.quantum.qexpr import QExpr, dispatch_method
|
14 |
+
|
15 |
+
__all__ = [
|
16 |
+
'KetBase',
|
17 |
+
'BraBase',
|
18 |
+
'StateBase',
|
19 |
+
'State',
|
20 |
+
'Ket',
|
21 |
+
'Bra',
|
22 |
+
'TimeDepState',
|
23 |
+
'TimeDepBra',
|
24 |
+
'TimeDepKet',
|
25 |
+
'OrthogonalKet',
|
26 |
+
'OrthogonalBra',
|
27 |
+
'OrthogonalState',
|
28 |
+
'Wavefunction'
|
29 |
+
]
|
30 |
+
|
31 |
+
|
32 |
+
#-----------------------------------------------------------------------------
|
33 |
+
# States, bras and kets.
|
34 |
+
#-----------------------------------------------------------------------------
|
35 |
+
|
36 |
+
# ASCII brackets
|
37 |
+
_lbracket = "<"
|
38 |
+
_rbracket = ">"
|
39 |
+
_straight_bracket = "|"
|
40 |
+
|
41 |
+
|
42 |
+
# Unicode brackets
|
43 |
+
# MATHEMATICAL ANGLE BRACKETS
|
44 |
+
_lbracket_ucode = "\N{MATHEMATICAL LEFT ANGLE BRACKET}"
|
45 |
+
_rbracket_ucode = "\N{MATHEMATICAL RIGHT ANGLE BRACKET}"
|
46 |
+
# LIGHT VERTICAL BAR
|
47 |
+
_straight_bracket_ucode = "\N{LIGHT VERTICAL BAR}"
|
48 |
+
|
49 |
+
# Other options for unicode printing of <, > and | for Dirac notation.
|
50 |
+
|
51 |
+
# LEFT-POINTING ANGLE BRACKET
|
52 |
+
# _lbracket = "\u2329"
|
53 |
+
# _rbracket = "\u232A"
|
54 |
+
|
55 |
+
# LEFT ANGLE BRACKET
|
56 |
+
# _lbracket = "\u3008"
|
57 |
+
# _rbracket = "\u3009"
|
58 |
+
|
59 |
+
# VERTICAL LINE
|
60 |
+
# _straight_bracket = "\u007C"
|
61 |
+
|
62 |
+
|
63 |
+
class StateBase(QExpr):
|
64 |
+
"""Abstract base class for general abstract states in quantum mechanics.
|
65 |
+
|
66 |
+
All other state classes defined will need to inherit from this class. It
|
67 |
+
carries the basic structure for all other states such as dual, _eval_adjoint
|
68 |
+
and label.
|
69 |
+
|
70 |
+
This is an abstract base class and you should not instantiate it directly,
|
71 |
+
instead use State.
|
72 |
+
"""
|
73 |
+
|
74 |
+
@classmethod
|
75 |
+
def _operators_to_state(self, ops, **options):
|
76 |
+
""" Returns the eigenstate instance for the passed operators.
|
77 |
+
|
78 |
+
This method should be overridden in subclasses. It will handle being
|
79 |
+
passed either an Operator instance or set of Operator instances. It
|
80 |
+
should return the corresponding state INSTANCE or simply raise a
|
81 |
+
NotImplementedError. See cartesian.py for an example.
|
82 |
+
"""
|
83 |
+
|
84 |
+
raise NotImplementedError("Cannot map operators to states in this class. Method not implemented!")
|
85 |
+
|
86 |
+
def _state_to_operators(self, op_classes, **options):
|
87 |
+
""" Returns the operators which this state instance is an eigenstate
|
88 |
+
of.
|
89 |
+
|
90 |
+
This method should be overridden in subclasses. It will be called on
|
91 |
+
state instances and be passed the operator classes that we wish to make
|
92 |
+
into instances. The state instance will then transform the classes
|
93 |
+
appropriately, or raise a NotImplementedError if it cannot return
|
94 |
+
operator instances. See cartesian.py for examples,
|
95 |
+
"""
|
96 |
+
|
97 |
+
raise NotImplementedError(
|
98 |
+
"Cannot map this state to operators. Method not implemented!")
|
99 |
+
|
100 |
+
@property
|
101 |
+
def operators(self):
|
102 |
+
"""Return the operator(s) that this state is an eigenstate of"""
|
103 |
+
from .operatorset import state_to_operators # import internally to avoid circular import errors
|
104 |
+
return state_to_operators(self)
|
105 |
+
|
106 |
+
def _enumerate_state(self, num_states, **options):
|
107 |
+
raise NotImplementedError("Cannot enumerate this state!")
|
108 |
+
|
109 |
+
def _represent_default_basis(self, **options):
|
110 |
+
return self._represent(basis=self.operators)
|
111 |
+
|
112 |
+
#-------------------------------------------------------------------------
|
113 |
+
# Dagger/dual
|
114 |
+
#-------------------------------------------------------------------------
|
115 |
+
|
116 |
+
@property
|
117 |
+
def dual(self):
|
118 |
+
"""Return the dual state of this one."""
|
119 |
+
return self.dual_class()._new_rawargs(self.hilbert_space, *self.args)
|
120 |
+
|
121 |
+
@classmethod
|
122 |
+
def dual_class(self):
|
123 |
+
"""Return the class used to construct the dual."""
|
124 |
+
raise NotImplementedError(
|
125 |
+
'dual_class must be implemented in a subclass'
|
126 |
+
)
|
127 |
+
|
128 |
+
def _eval_adjoint(self):
|
129 |
+
"""Compute the dagger of this state using the dual."""
|
130 |
+
return self.dual
|
131 |
+
|
132 |
+
#-------------------------------------------------------------------------
|
133 |
+
# Printing
|
134 |
+
#-------------------------------------------------------------------------
|
135 |
+
|
136 |
+
def _pretty_brackets(self, height, use_unicode=True):
|
137 |
+
# Return pretty printed brackets for the state
|
138 |
+
# Ideally, this could be done by pform.parens but it does not support the angled < and >
|
139 |
+
|
140 |
+
# Setup for unicode vs ascii
|
141 |
+
if use_unicode:
|
142 |
+
lbracket, rbracket = getattr(self, 'lbracket_ucode', ""), getattr(self, 'rbracket_ucode', "")
|
143 |
+
slash, bslash, vert = '\N{BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT}', \
|
144 |
+
'\N{BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT}', \
|
145 |
+
'\N{BOX DRAWINGS LIGHT VERTICAL}'
|
146 |
+
else:
|
147 |
+
lbracket, rbracket = getattr(self, 'lbracket', ""), getattr(self, 'rbracket', "")
|
148 |
+
slash, bslash, vert = '/', '\\', '|'
|
149 |
+
|
150 |
+
# If height is 1, just return brackets
|
151 |
+
if height == 1:
|
152 |
+
return stringPict(lbracket), stringPict(rbracket)
|
153 |
+
# Make height even
|
154 |
+
height += (height % 2)
|
155 |
+
|
156 |
+
brackets = []
|
157 |
+
for bracket in lbracket, rbracket:
|
158 |
+
# Create left bracket
|
159 |
+
if bracket in {_lbracket, _lbracket_ucode}:
|
160 |
+
bracket_args = [ ' ' * (height//2 - i - 1) +
|
161 |
+
slash for i in range(height // 2)]
|
162 |
+
bracket_args.extend(
|
163 |
+
[' ' * i + bslash for i in range(height // 2)])
|
164 |
+
# Create right bracket
|
165 |
+
elif bracket in {_rbracket, _rbracket_ucode}:
|
166 |
+
bracket_args = [ ' ' * i + bslash for i in range(height // 2)]
|
167 |
+
bracket_args.extend([ ' ' * (
|
168 |
+
height//2 - i - 1) + slash for i in range(height // 2)])
|
169 |
+
# Create straight bracket
|
170 |
+
elif bracket in {_straight_bracket, _straight_bracket_ucode}:
|
171 |
+
bracket_args = [vert] * height
|
172 |
+
else:
|
173 |
+
raise ValueError(bracket)
|
174 |
+
brackets.append(
|
175 |
+
stringPict('\n'.join(bracket_args), baseline=height//2))
|
176 |
+
return brackets
|
177 |
+
|
178 |
+
def _sympystr(self, printer, *args):
|
179 |
+
contents = self._print_contents(printer, *args)
|
180 |
+
return '%s%s%s' % (getattr(self, 'lbracket', ""), contents, getattr(self, 'rbracket', ""))
|
181 |
+
|
182 |
+
def _pretty(self, printer, *args):
|
183 |
+
from sympy.printing.pretty.stringpict import prettyForm
|
184 |
+
# Get brackets
|
185 |
+
pform = self._print_contents_pretty(printer, *args)
|
186 |
+
lbracket, rbracket = self._pretty_brackets(
|
187 |
+
pform.height(), printer._use_unicode)
|
188 |
+
# Put together state
|
189 |
+
pform = prettyForm(*pform.left(lbracket))
|
190 |
+
pform = prettyForm(*pform.right(rbracket))
|
191 |
+
return pform
|
192 |
+
|
193 |
+
def _latex(self, printer, *args):
|
194 |
+
contents = self._print_contents_latex(printer, *args)
|
195 |
+
# The extra {} brackets are needed to get matplotlib's latex
|
196 |
+
# rendered to render this properly.
|
197 |
+
return '{%s%s%s}' % (getattr(self, 'lbracket_latex', ""), contents, getattr(self, 'rbracket_latex', ""))
|
198 |
+
|
199 |
+
|
200 |
+
class KetBase(StateBase):
|
201 |
+
"""Base class for Kets.
|
202 |
+
|
203 |
+
This class defines the dual property and the brackets for printing. This is
|
204 |
+
an abstract base class and you should not instantiate it directly, instead
|
205 |
+
use Ket.
|
206 |
+
"""
|
207 |
+
|
208 |
+
lbracket = _straight_bracket
|
209 |
+
rbracket = _rbracket
|
210 |
+
lbracket_ucode = _straight_bracket_ucode
|
211 |
+
rbracket_ucode = _rbracket_ucode
|
212 |
+
lbracket_latex = r'\left|'
|
213 |
+
rbracket_latex = r'\right\rangle '
|
214 |
+
|
215 |
+
@classmethod
|
216 |
+
def default_args(self):
|
217 |
+
return ("psi",)
|
218 |
+
|
219 |
+
@classmethod
|
220 |
+
def dual_class(self):
|
221 |
+
return BraBase
|
222 |
+
|
223 |
+
def __mul__(self, other):
|
224 |
+
"""KetBase*other"""
|
225 |
+
from sympy.physics.quantum.operator import OuterProduct
|
226 |
+
if isinstance(other, BraBase):
|
227 |
+
return OuterProduct(self, other)
|
228 |
+
else:
|
229 |
+
return Expr.__mul__(self, other)
|
230 |
+
|
231 |
+
def __rmul__(self, other):
|
232 |
+
"""other*KetBase"""
|
233 |
+
from sympy.physics.quantum.innerproduct import InnerProduct
|
234 |
+
if isinstance(other, BraBase):
|
235 |
+
return InnerProduct(other, self)
|
236 |
+
else:
|
237 |
+
return Expr.__rmul__(self, other)
|
238 |
+
|
239 |
+
#-------------------------------------------------------------------------
|
240 |
+
# _eval_* methods
|
241 |
+
#-------------------------------------------------------------------------
|
242 |
+
|
243 |
+
def _eval_innerproduct(self, bra, **hints):
|
244 |
+
"""Evaluate the inner product between this ket and a bra.
|
245 |
+
|
246 |
+
This is called to compute <bra|ket>, where the ket is ``self``.
|
247 |
+
|
248 |
+
This method will dispatch to sub-methods having the format::
|
249 |
+
|
250 |
+
``def _eval_innerproduct_BraClass(self, **hints):``
|
251 |
+
|
252 |
+
Subclasses should define these methods (one for each BraClass) to
|
253 |
+
teach the ket how to take inner products with bras.
|
254 |
+
"""
|
255 |
+
return dispatch_method(self, '_eval_innerproduct', bra, **hints)
|
256 |
+
|
257 |
+
def _apply_from_right_to(self, op, **options):
|
258 |
+
"""Apply an Operator to this Ket as Operator*Ket
|
259 |
+
|
260 |
+
This method will dispatch to methods having the format::
|
261 |
+
|
262 |
+
``def _apply_from_right_to_OperatorName(op, **options):``
|
263 |
+
|
264 |
+
Subclasses should define these methods (one for each OperatorName) to
|
265 |
+
teach the Ket how to implement OperatorName*Ket
|
266 |
+
|
267 |
+
Parameters
|
268 |
+
==========
|
269 |
+
|
270 |
+
op : Operator
|
271 |
+
The Operator that is acting on the Ket as op*Ket
|
272 |
+
options : dict
|
273 |
+
A dict of key/value pairs that control how the operator is applied
|
274 |
+
to the Ket.
|
275 |
+
"""
|
276 |
+
return dispatch_method(self, '_apply_from_right_to', op, **options)
|
277 |
+
|
278 |
+
|
279 |
+
class BraBase(StateBase):
|
280 |
+
"""Base class for Bras.
|
281 |
+
|
282 |
+
This class defines the dual property and the brackets for printing. This
|
283 |
+
is an abstract base class and you should not instantiate it directly,
|
284 |
+
instead use Bra.
|
285 |
+
"""
|
286 |
+
|
287 |
+
lbracket = _lbracket
|
288 |
+
rbracket = _straight_bracket
|
289 |
+
lbracket_ucode = _lbracket_ucode
|
290 |
+
rbracket_ucode = _straight_bracket_ucode
|
291 |
+
lbracket_latex = r'\left\langle '
|
292 |
+
rbracket_latex = r'\right|'
|
293 |
+
|
294 |
+
@classmethod
|
295 |
+
def _operators_to_state(self, ops, **options):
|
296 |
+
state = self.dual_class()._operators_to_state(ops, **options)
|
297 |
+
return state.dual
|
298 |
+
|
299 |
+
def _state_to_operators(self, op_classes, **options):
|
300 |
+
return self.dual._state_to_operators(op_classes, **options)
|
301 |
+
|
302 |
+
def _enumerate_state(self, num_states, **options):
|
303 |
+
dual_states = self.dual._enumerate_state(num_states, **options)
|
304 |
+
return [x.dual for x in dual_states]
|
305 |
+
|
306 |
+
@classmethod
|
307 |
+
def default_args(self):
|
308 |
+
return self.dual_class().default_args()
|
309 |
+
|
310 |
+
@classmethod
|
311 |
+
def dual_class(self):
|
312 |
+
return KetBase
|
313 |
+
|
314 |
+
def __mul__(self, other):
|
315 |
+
"""BraBase*other"""
|
316 |
+
from sympy.physics.quantum.innerproduct import InnerProduct
|
317 |
+
if isinstance(other, KetBase):
|
318 |
+
return InnerProduct(self, other)
|
319 |
+
else:
|
320 |
+
return Expr.__mul__(self, other)
|
321 |
+
|
322 |
+
def __rmul__(self, other):
|
323 |
+
"""other*BraBase"""
|
324 |
+
from sympy.physics.quantum.operator import OuterProduct
|
325 |
+
if isinstance(other, KetBase):
|
326 |
+
return OuterProduct(other, self)
|
327 |
+
else:
|
328 |
+
return Expr.__rmul__(self, other)
|
329 |
+
|
330 |
+
def _represent(self, **options):
|
331 |
+
"""A default represent that uses the Ket's version."""
|
332 |
+
from sympy.physics.quantum.dagger import Dagger
|
333 |
+
return Dagger(self.dual._represent(**options))
|
334 |
+
|
335 |
+
|
336 |
+
class State(StateBase):
|
337 |
+
"""General abstract quantum state used as a base class for Ket and Bra."""
|
338 |
+
pass
|
339 |
+
|
340 |
+
|
341 |
+
class Ket(State, KetBase):
|
342 |
+
"""A general time-independent Ket in quantum mechanics.
|
343 |
+
|
344 |
+
Inherits from State and KetBase. This class should be used as the base
|
345 |
+
class for all physical, time-independent Kets in a system. This class
|
346 |
+
and its subclasses will be the main classes that users will use for
|
347 |
+
expressing Kets in Dirac notation [1]_.
|
348 |
+
|
349 |
+
Parameters
|
350 |
+
==========
|
351 |
+
|
352 |
+
args : tuple
|
353 |
+
The list of numbers or parameters that uniquely specify the
|
354 |
+
ket. This will usually be its symbol or its quantum numbers. For
|
355 |
+
time-dependent state, this will include the time.
|
356 |
+
|
357 |
+
Examples
|
358 |
+
========
|
359 |
+
|
360 |
+
Create a simple Ket and looking at its properties::
|
361 |
+
|
362 |
+
>>> from sympy.physics.quantum import Ket
|
363 |
+
>>> from sympy import symbols, I
|
364 |
+
>>> k = Ket('psi')
|
365 |
+
>>> k
|
366 |
+
|psi>
|
367 |
+
>>> k.hilbert_space
|
368 |
+
H
|
369 |
+
>>> k.is_commutative
|
370 |
+
False
|
371 |
+
>>> k.label
|
372 |
+
(psi,)
|
373 |
+
|
374 |
+
Ket's know about their associated bra::
|
375 |
+
|
376 |
+
>>> k.dual
|
377 |
+
<psi|
|
378 |
+
>>> k.dual_class()
|
379 |
+
<class 'sympy.physics.quantum.state.Bra'>
|
380 |
+
|
381 |
+
Take a linear combination of two kets::
|
382 |
+
|
383 |
+
>>> k0 = Ket(0)
|
384 |
+
>>> k1 = Ket(1)
|
385 |
+
>>> 2*I*k0 - 4*k1
|
386 |
+
2*I*|0> - 4*|1>
|
387 |
+
|
388 |
+
Compound labels are passed as tuples::
|
389 |
+
|
390 |
+
>>> n, m = symbols('n,m')
|
391 |
+
>>> k = Ket(n,m)
|
392 |
+
>>> k
|
393 |
+
|nm>
|
394 |
+
|
395 |
+
References
|
396 |
+
==========
|
397 |
+
|
398 |
+
.. [1] https://en.wikipedia.org/wiki/Bra-ket_notation
|
399 |
+
"""
|
400 |
+
|
401 |
+
@classmethod
|
402 |
+
def dual_class(self):
|
403 |
+
return Bra
|
404 |
+
|
405 |
+
|
406 |
+
class Bra(State, BraBase):
|
407 |
+
"""A general time-independent Bra in quantum mechanics.
|
408 |
+
|
409 |
+
Inherits from State and BraBase. A Bra is the dual of a Ket [1]_. This
|
410 |
+
class and its subclasses will be the main classes that users will use for
|
411 |
+
expressing Bras in Dirac notation.
|
412 |
+
|
413 |
+
Parameters
|
414 |
+
==========
|
415 |
+
|
416 |
+
args : tuple
|
417 |
+
The list of numbers or parameters that uniquely specify the
|
418 |
+
ket. This will usually be its symbol or its quantum numbers. For
|
419 |
+
time-dependent state, this will include the time.
|
420 |
+
|
421 |
+
Examples
|
422 |
+
========
|
423 |
+
|
424 |
+
Create a simple Bra and look at its properties::
|
425 |
+
|
426 |
+
>>> from sympy.physics.quantum import Bra
|
427 |
+
>>> from sympy import symbols, I
|
428 |
+
>>> b = Bra('psi')
|
429 |
+
>>> b
|
430 |
+
<psi|
|
431 |
+
>>> b.hilbert_space
|
432 |
+
H
|
433 |
+
>>> b.is_commutative
|
434 |
+
False
|
435 |
+
|
436 |
+
Bra's know about their dual Ket's::
|
437 |
+
|
438 |
+
>>> b.dual
|
439 |
+
|psi>
|
440 |
+
>>> b.dual_class()
|
441 |
+
<class 'sympy.physics.quantum.state.Ket'>
|
442 |
+
|
443 |
+
Like Kets, Bras can have compound labels and be manipulated in a similar
|
444 |
+
manner::
|
445 |
+
|
446 |
+
>>> n, m = symbols('n,m')
|
447 |
+
>>> b = Bra(n,m) - I*Bra(m,n)
|
448 |
+
>>> b
|
449 |
+
-I*<mn| + <nm|
|
450 |
+
|
451 |
+
Symbols in a Bra can be substituted using ``.subs``::
|
452 |
+
|
453 |
+
>>> b.subs(n,m)
|
454 |
+
<mm| - I*<mm|
|
455 |
+
|
456 |
+
References
|
457 |
+
==========
|
458 |
+
|
459 |
+
.. [1] https://en.wikipedia.org/wiki/Bra-ket_notation
|
460 |
+
"""
|
461 |
+
|
462 |
+
@classmethod
|
463 |
+
def dual_class(self):
|
464 |
+
return Ket
|
465 |
+
|
466 |
+
#-----------------------------------------------------------------------------
|
467 |
+
# Time dependent states, bras and kets.
|
468 |
+
#-----------------------------------------------------------------------------
|
469 |
+
|
470 |
+
|
471 |
+
class TimeDepState(StateBase):
|
472 |
+
"""Base class for a general time-dependent quantum state.
|
473 |
+
|
474 |
+
This class is used as a base class for any time-dependent state. The main
|
475 |
+
difference between this class and the time-independent state is that this
|
476 |
+
class takes a second argument that is the time in addition to the usual
|
477 |
+
label argument.
|
478 |
+
|
479 |
+
Parameters
|
480 |
+
==========
|
481 |
+
|
482 |
+
args : tuple
|
483 |
+
The list of numbers or parameters that uniquely specify the ket. This
|
484 |
+
will usually be its symbol or its quantum numbers. For time-dependent
|
485 |
+
state, this will include the time as the final argument.
|
486 |
+
"""
|
487 |
+
|
488 |
+
#-------------------------------------------------------------------------
|
489 |
+
# Initialization
|
490 |
+
#-------------------------------------------------------------------------
|
491 |
+
|
492 |
+
@classmethod
|
493 |
+
def default_args(self):
|
494 |
+
return ("psi", "t")
|
495 |
+
|
496 |
+
#-------------------------------------------------------------------------
|
497 |
+
# Properties
|
498 |
+
#-------------------------------------------------------------------------
|
499 |
+
|
500 |
+
@property
|
501 |
+
def label(self):
|
502 |
+
"""The label of the state."""
|
503 |
+
return self.args[:-1]
|
504 |
+
|
505 |
+
@property
|
506 |
+
def time(self):
|
507 |
+
"""The time of the state."""
|
508 |
+
return self.args[-1]
|
509 |
+
|
510 |
+
#-------------------------------------------------------------------------
|
511 |
+
# Printing
|
512 |
+
#-------------------------------------------------------------------------
|
513 |
+
|
514 |
+
def _print_time(self, printer, *args):
|
515 |
+
return printer._print(self.time, *args)
|
516 |
+
|
517 |
+
_print_time_repr = _print_time
|
518 |
+
_print_time_latex = _print_time
|
519 |
+
|
520 |
+
def _print_time_pretty(self, printer, *args):
|
521 |
+
pform = printer._print(self.time, *args)
|
522 |
+
return pform
|
523 |
+
|
524 |
+
def _print_contents(self, printer, *args):
|
525 |
+
label = self._print_label(printer, *args)
|
526 |
+
time = self._print_time(printer, *args)
|
527 |
+
return '%s;%s' % (label, time)
|
528 |
+
|
529 |
+
def _print_label_repr(self, printer, *args):
|
530 |
+
label = self._print_sequence(self.label, ',', printer, *args)
|
531 |
+
time = self._print_time_repr(printer, *args)
|
532 |
+
return '%s,%s' % (label, time)
|
533 |
+
|
534 |
+
def _print_contents_pretty(self, printer, *args):
|
535 |
+
label = self._print_label_pretty(printer, *args)
|
536 |
+
time = self._print_time_pretty(printer, *args)
|
537 |
+
return printer._print_seq((label, time), delimiter=';')
|
538 |
+
|
539 |
+
def _print_contents_latex(self, printer, *args):
|
540 |
+
label = self._print_sequence(
|
541 |
+
self.label, self._label_separator, printer, *args)
|
542 |
+
time = self._print_time_latex(printer, *args)
|
543 |
+
return '%s;%s' % (label, time)
|
544 |
+
|
545 |
+
|
546 |
+
class TimeDepKet(TimeDepState, KetBase):
|
547 |
+
"""General time-dependent Ket in quantum mechanics.
|
548 |
+
|
549 |
+
This inherits from ``TimeDepState`` and ``KetBase`` and is the main class
|
550 |
+
that should be used for Kets that vary with time. Its dual is a
|
551 |
+
``TimeDepBra``.
|
552 |
+
|
553 |
+
Parameters
|
554 |
+
==========
|
555 |
+
|
556 |
+
args : tuple
|
557 |
+
The list of numbers or parameters that uniquely specify the ket. This
|
558 |
+
will usually be its symbol or its quantum numbers. For time-dependent
|
559 |
+
state, this will include the time as the final argument.
|
560 |
+
|
561 |
+
Examples
|
562 |
+
========
|
563 |
+
|
564 |
+
Create a TimeDepKet and look at its attributes::
|
565 |
+
|
566 |
+
>>> from sympy.physics.quantum import TimeDepKet
|
567 |
+
>>> k = TimeDepKet('psi', 't')
|
568 |
+
>>> k
|
569 |
+
|psi;t>
|
570 |
+
>>> k.time
|
571 |
+
t
|
572 |
+
>>> k.label
|
573 |
+
(psi,)
|
574 |
+
>>> k.hilbert_space
|
575 |
+
H
|
576 |
+
|
577 |
+
TimeDepKets know about their dual bra::
|
578 |
+
|
579 |
+
>>> k.dual
|
580 |
+
<psi;t|
|
581 |
+
>>> k.dual_class()
|
582 |
+
<class 'sympy.physics.quantum.state.TimeDepBra'>
|
583 |
+
"""
|
584 |
+
|
585 |
+
@classmethod
|
586 |
+
def dual_class(self):
|
587 |
+
return TimeDepBra
|
588 |
+
|
589 |
+
|
590 |
+
class TimeDepBra(TimeDepState, BraBase):
|
591 |
+
"""General time-dependent Bra in quantum mechanics.
|
592 |
+
|
593 |
+
This inherits from TimeDepState and BraBase and is the main class that
|
594 |
+
should be used for Bras that vary with time. Its dual is a TimeDepBra.
|
595 |
+
|
596 |
+
Parameters
|
597 |
+
==========
|
598 |
+
|
599 |
+
args : tuple
|
600 |
+
The list of numbers or parameters that uniquely specify the ket. This
|
601 |
+
will usually be its symbol or its quantum numbers. For time-dependent
|
602 |
+
state, this will include the time as the final argument.
|
603 |
+
|
604 |
+
Examples
|
605 |
+
========
|
606 |
+
|
607 |
+
>>> from sympy.physics.quantum import TimeDepBra
|
608 |
+
>>> b = TimeDepBra('psi', 't')
|
609 |
+
>>> b
|
610 |
+
<psi;t|
|
611 |
+
>>> b.time
|
612 |
+
t
|
613 |
+
>>> b.label
|
614 |
+
(psi,)
|
615 |
+
>>> b.hilbert_space
|
616 |
+
H
|
617 |
+
>>> b.dual
|
618 |
+
|psi;t>
|
619 |
+
"""
|
620 |
+
|
621 |
+
@classmethod
|
622 |
+
def dual_class(self):
|
623 |
+
return TimeDepKet
|
624 |
+
|
625 |
+
|
626 |
+
class OrthogonalState(State, StateBase):
|
627 |
+
"""General abstract quantum state used as a base class for Ket and Bra."""
|
628 |
+
pass
|
629 |
+
|
630 |
+
class OrthogonalKet(OrthogonalState, KetBase):
|
631 |
+
"""Orthogonal Ket in quantum mechanics.
|
632 |
+
|
633 |
+
The inner product of two states with different labels will give zero,
|
634 |
+
states with the same label will give one.
|
635 |
+
|
636 |
+
>>> from sympy.physics.quantum import OrthogonalBra, OrthogonalKet
|
637 |
+
>>> from sympy.abc import m, n
|
638 |
+
>>> (OrthogonalBra(n)*OrthogonalKet(n)).doit()
|
639 |
+
1
|
640 |
+
>>> (OrthogonalBra(n)*OrthogonalKet(n+1)).doit()
|
641 |
+
0
|
642 |
+
>>> (OrthogonalBra(n)*OrthogonalKet(m)).doit()
|
643 |
+
<n|m>
|
644 |
+
"""
|
645 |
+
|
646 |
+
@classmethod
|
647 |
+
def dual_class(self):
|
648 |
+
return OrthogonalBra
|
649 |
+
|
650 |
+
def _eval_innerproduct(self, bra, **hints):
|
651 |
+
|
652 |
+
if len(self.args) != len(bra.args):
|
653 |
+
raise ValueError('Cannot multiply a ket that has a different number of labels.')
|
654 |
+
|
655 |
+
for arg, bra_arg in zip(self.args, bra.args):
|
656 |
+
diff = arg - bra_arg
|
657 |
+
diff = diff.expand()
|
658 |
+
|
659 |
+
is_zero = diff.is_zero
|
660 |
+
|
661 |
+
if is_zero is False:
|
662 |
+
return S.Zero # i.e. Integer(0)
|
663 |
+
|
664 |
+
if is_zero is None:
|
665 |
+
return None
|
666 |
+
|
667 |
+
return S.One # i.e. Integer(1)
|
668 |
+
|
669 |
+
|
670 |
+
class OrthogonalBra(OrthogonalState, BraBase):
|
671 |
+
"""Orthogonal Bra in quantum mechanics.
|
672 |
+
"""
|
673 |
+
|
674 |
+
@classmethod
|
675 |
+
def dual_class(self):
|
676 |
+
return OrthogonalKet
|
677 |
+
|
678 |
+
|
679 |
+
class Wavefunction(Function):
|
680 |
+
"""Class for representations in continuous bases
|
681 |
+
|
682 |
+
This class takes an expression and coordinates in its constructor. It can
|
683 |
+
be used to easily calculate normalizations and probabilities.
|
684 |
+
|
685 |
+
Parameters
|
686 |
+
==========
|
687 |
+
|
688 |
+
expr : Expr
|
689 |
+
The expression representing the functional form of the w.f.
|
690 |
+
|
691 |
+
coords : Symbol or tuple
|
692 |
+
The coordinates to be integrated over, and their bounds
|
693 |
+
|
694 |
+
Examples
|
695 |
+
========
|
696 |
+
|
697 |
+
Particle in a box, specifying bounds in the more primitive way of using
|
698 |
+
Piecewise:
|
699 |
+
|
700 |
+
>>> from sympy import Symbol, Piecewise, pi, N
|
701 |
+
>>> from sympy.functions import sqrt, sin
|
702 |
+
>>> from sympy.physics.quantum.state import Wavefunction
|
703 |
+
>>> x = Symbol('x', real=True)
|
704 |
+
>>> n = 1
|
705 |
+
>>> L = 1
|
706 |
+
>>> g = Piecewise((0, x < 0), (0, x > L), (sqrt(2//L)*sin(n*pi*x/L), True))
|
707 |
+
>>> f = Wavefunction(g, x)
|
708 |
+
>>> f.norm
|
709 |
+
1
|
710 |
+
>>> f.is_normalized
|
711 |
+
True
|
712 |
+
>>> p = f.prob()
|
713 |
+
>>> p(0)
|
714 |
+
0
|
715 |
+
>>> p(L)
|
716 |
+
0
|
717 |
+
>>> p(0.5)
|
718 |
+
2
|
719 |
+
>>> p(0.85*L)
|
720 |
+
2*sin(0.85*pi)**2
|
721 |
+
>>> N(p(0.85*L))
|
722 |
+
0.412214747707527
|
723 |
+
|
724 |
+
Additionally, you can specify the bounds of the function and the indices in
|
725 |
+
a more compact way:
|
726 |
+
|
727 |
+
>>> from sympy import symbols, pi, diff
|
728 |
+
>>> from sympy.functions import sqrt, sin
|
729 |
+
>>> from sympy.physics.quantum.state import Wavefunction
|
730 |
+
>>> x, L = symbols('x,L', positive=True)
|
731 |
+
>>> n = symbols('n', integer=True, positive=True)
|
732 |
+
>>> g = sqrt(2/L)*sin(n*pi*x/L)
|
733 |
+
>>> f = Wavefunction(g, (x, 0, L))
|
734 |
+
>>> f.norm
|
735 |
+
1
|
736 |
+
>>> f(L+1)
|
737 |
+
0
|
738 |
+
>>> f(L-1)
|
739 |
+
sqrt(2)*sin(pi*n*(L - 1)/L)/sqrt(L)
|
740 |
+
>>> f(-1)
|
741 |
+
0
|
742 |
+
>>> f(0.85)
|
743 |
+
sqrt(2)*sin(0.85*pi*n/L)/sqrt(L)
|
744 |
+
>>> f(0.85, n=1, L=1)
|
745 |
+
sqrt(2)*sin(0.85*pi)
|
746 |
+
>>> f.is_commutative
|
747 |
+
False
|
748 |
+
|
749 |
+
All arguments are automatically sympified, so you can define the variables
|
750 |
+
as strings rather than symbols:
|
751 |
+
|
752 |
+
>>> expr = x**2
|
753 |
+
>>> f = Wavefunction(expr, 'x')
|
754 |
+
>>> type(f.variables[0])
|
755 |
+
<class 'sympy.core.symbol.Symbol'>
|
756 |
+
|
757 |
+
Derivatives of Wavefunctions will return Wavefunctions:
|
758 |
+
|
759 |
+
>>> diff(f, x)
|
760 |
+
Wavefunction(2*x, x)
|
761 |
+
|
762 |
+
"""
|
763 |
+
|
764 |
+
#Any passed tuples for coordinates and their bounds need to be
|
765 |
+
#converted to Tuples before Function's constructor is called, to
|
766 |
+
#avoid errors from calling is_Float in the constructor
|
767 |
+
def __new__(cls, *args, **options):
|
768 |
+
new_args = [None for i in args]
|
769 |
+
ct = 0
|
770 |
+
for arg in args:
|
771 |
+
if isinstance(arg, tuple):
|
772 |
+
new_args[ct] = Tuple(*arg)
|
773 |
+
else:
|
774 |
+
new_args[ct] = arg
|
775 |
+
ct += 1
|
776 |
+
|
777 |
+
return super().__new__(cls, *new_args, **options)
|
778 |
+
|
779 |
+
def __call__(self, *args, **options):
|
780 |
+
var = self.variables
|
781 |
+
|
782 |
+
if len(args) != len(var):
|
783 |
+
raise NotImplementedError(
|
784 |
+
"Incorrect number of arguments to function!")
|
785 |
+
|
786 |
+
ct = 0
|
787 |
+
#If the passed value is outside the specified bounds, return 0
|
788 |
+
for v in var:
|
789 |
+
lower, upper = self.limits[v]
|
790 |
+
|
791 |
+
#Do the comparison to limits only if the passed symbol is actually
|
792 |
+
#a symbol present in the limits;
|
793 |
+
#Had problems with a comparison of x > L
|
794 |
+
if isinstance(args[ct], Expr) and \
|
795 |
+
not (lower in args[ct].free_symbols
|
796 |
+
or upper in args[ct].free_symbols):
|
797 |
+
continue
|
798 |
+
|
799 |
+
if (args[ct] < lower) == True or (args[ct] > upper) == True:
|
800 |
+
return S.Zero
|
801 |
+
|
802 |
+
ct += 1
|
803 |
+
|
804 |
+
expr = self.expr
|
805 |
+
|
806 |
+
#Allows user to make a call like f(2, 4, m=1, n=1)
|
807 |
+
for symbol in list(expr.free_symbols):
|
808 |
+
if str(symbol) in options.keys():
|
809 |
+
val = options[str(symbol)]
|
810 |
+
expr = expr.subs(symbol, val)
|
811 |
+
|
812 |
+
return expr.subs(zip(var, args))
|
813 |
+
|
814 |
+
def _eval_derivative(self, symbol):
|
815 |
+
expr = self.expr
|
816 |
+
deriv = expr._eval_derivative(symbol)
|
817 |
+
|
818 |
+
return Wavefunction(deriv, *self.args[1:])
|
819 |
+
|
820 |
+
def _eval_conjugate(self):
|
821 |
+
return Wavefunction(conjugate(self.expr), *self.args[1:])
|
822 |
+
|
823 |
+
def _eval_transpose(self):
|
824 |
+
return self
|
825 |
+
|
826 |
+
@property
|
827 |
+
def free_symbols(self):
|
828 |
+
return self.expr.free_symbols
|
829 |
+
|
830 |
+
@property
|
831 |
+
def is_commutative(self):
|
832 |
+
"""
|
833 |
+
Override Function's is_commutative so that order is preserved in
|
834 |
+
represented expressions
|
835 |
+
"""
|
836 |
+
return False
|
837 |
+
|
838 |
+
@classmethod
|
839 |
+
def eval(self, *args):
|
840 |
+
return None
|
841 |
+
|
842 |
+
@property
|
843 |
+
def variables(self):
|
844 |
+
"""
|
845 |
+
Return the coordinates which the wavefunction depends on
|
846 |
+
|
847 |
+
Examples
|
848 |
+
========
|
849 |
+
|
850 |
+
>>> from sympy.physics.quantum.state import Wavefunction
|
851 |
+
>>> from sympy import symbols
|
852 |
+
>>> x,y = symbols('x,y')
|
853 |
+
>>> f = Wavefunction(x*y, x, y)
|
854 |
+
>>> f.variables
|
855 |
+
(x, y)
|
856 |
+
>>> g = Wavefunction(x*y, x)
|
857 |
+
>>> g.variables
|
858 |
+
(x,)
|
859 |
+
|
860 |
+
"""
|
861 |
+
var = [g[0] if isinstance(g, Tuple) else g for g in self._args[1:]]
|
862 |
+
return tuple(var)
|
863 |
+
|
864 |
+
@property
|
865 |
+
def limits(self):
|
866 |
+
"""
|
867 |
+
Return the limits of the coordinates which the w.f. depends on If no
|
868 |
+
limits are specified, defaults to ``(-oo, oo)``.
|
869 |
+
|
870 |
+
Examples
|
871 |
+
========
|
872 |
+
|
873 |
+
>>> from sympy.physics.quantum.state import Wavefunction
|
874 |
+
>>> from sympy import symbols
|
875 |
+
>>> x, y = symbols('x, y')
|
876 |
+
>>> f = Wavefunction(x**2, (x, 0, 1))
|
877 |
+
>>> f.limits
|
878 |
+
{x: (0, 1)}
|
879 |
+
>>> f = Wavefunction(x**2, x)
|
880 |
+
>>> f.limits
|
881 |
+
{x: (-oo, oo)}
|
882 |
+
>>> f = Wavefunction(x**2 + y**2, x, (y, -1, 2))
|
883 |
+
>>> f.limits
|
884 |
+
{x: (-oo, oo), y: (-1, 2)}
|
885 |
+
|
886 |
+
"""
|
887 |
+
limits = [(g[1], g[2]) if isinstance(g, Tuple) else (-oo, oo)
|
888 |
+
for g in self._args[1:]]
|
889 |
+
return dict(zip(self.variables, tuple(limits)))
|
890 |
+
|
891 |
+
@property
|
892 |
+
def expr(self):
|
893 |
+
"""
|
894 |
+
Return the expression which is the functional form of the Wavefunction
|
895 |
+
|
896 |
+
Examples
|
897 |
+
========
|
898 |
+
|
899 |
+
>>> from sympy.physics.quantum.state import Wavefunction
|
900 |
+
>>> from sympy import symbols
|
901 |
+
>>> x, y = symbols('x, y')
|
902 |
+
>>> f = Wavefunction(x**2, x)
|
903 |
+
>>> f.expr
|
904 |
+
x**2
|
905 |
+
|
906 |
+
"""
|
907 |
+
return self._args[0]
|
908 |
+
|
909 |
+
@property
|
910 |
+
def is_normalized(self):
|
911 |
+
"""
|
912 |
+
Returns true if the Wavefunction is properly normalized
|
913 |
+
|
914 |
+
Examples
|
915 |
+
========
|
916 |
+
|
917 |
+
>>> from sympy import symbols, pi
|
918 |
+
>>> from sympy.functions import sqrt, sin
|
919 |
+
>>> from sympy.physics.quantum.state import Wavefunction
|
920 |
+
>>> x, L = symbols('x,L', positive=True)
|
921 |
+
>>> n = symbols('n', integer=True, positive=True)
|
922 |
+
>>> g = sqrt(2/L)*sin(n*pi*x/L)
|
923 |
+
>>> f = Wavefunction(g, (x, 0, L))
|
924 |
+
>>> f.is_normalized
|
925 |
+
True
|
926 |
+
|
927 |
+
"""
|
928 |
+
|
929 |
+
return equal_valued(self.norm, 1)
|
930 |
+
|
931 |
+
@property # type: ignore
|
932 |
+
@cacheit
|
933 |
+
def norm(self):
|
934 |
+
"""
|
935 |
+
Return the normalization of the specified functional form.
|
936 |
+
|
937 |
+
This function integrates over the coordinates of the Wavefunction, with
|
938 |
+
the bounds specified.
|
939 |
+
|
940 |
+
Examples
|
941 |
+
========
|
942 |
+
|
943 |
+
>>> from sympy import symbols, pi
|
944 |
+
>>> from sympy.functions import sqrt, sin
|
945 |
+
>>> from sympy.physics.quantum.state import Wavefunction
|
946 |
+
>>> x, L = symbols('x,L', positive=True)
|
947 |
+
>>> n = symbols('n', integer=True, positive=True)
|
948 |
+
>>> g = sqrt(2/L)*sin(n*pi*x/L)
|
949 |
+
>>> f = Wavefunction(g, (x, 0, L))
|
950 |
+
>>> f.norm
|
951 |
+
1
|
952 |
+
>>> g = sin(n*pi*x/L)
|
953 |
+
>>> f = Wavefunction(g, (x, 0, L))
|
954 |
+
>>> f.norm
|
955 |
+
sqrt(2)*sqrt(L)/2
|
956 |
+
|
957 |
+
"""
|
958 |
+
|
959 |
+
exp = self.expr*conjugate(self.expr)
|
960 |
+
var = self.variables
|
961 |
+
limits = self.limits
|
962 |
+
|
963 |
+
for v in var:
|
964 |
+
curr_limits = limits[v]
|
965 |
+
exp = integrate(exp, (v, curr_limits[0], curr_limits[1]))
|
966 |
+
|
967 |
+
return sqrt(exp)
|
968 |
+
|
969 |
+
def normalize(self):
|
970 |
+
"""
|
971 |
+
Return a normalized version of the Wavefunction
|
972 |
+
|
973 |
+
Examples
|
974 |
+
========
|
975 |
+
|
976 |
+
>>> from sympy import symbols, pi
|
977 |
+
>>> from sympy.functions import sin
|
978 |
+
>>> from sympy.physics.quantum.state import Wavefunction
|
979 |
+
>>> x = symbols('x', real=True)
|
980 |
+
>>> L = symbols('L', positive=True)
|
981 |
+
>>> n = symbols('n', integer=True, positive=True)
|
982 |
+
>>> g = sin(n*pi*x/L)
|
983 |
+
>>> f = Wavefunction(g, (x, 0, L))
|
984 |
+
>>> f.normalize()
|
985 |
+
Wavefunction(sqrt(2)*sin(pi*n*x/L)/sqrt(L), (x, 0, L))
|
986 |
+
|
987 |
+
"""
|
988 |
+
const = self.norm
|
989 |
+
|
990 |
+
if const is oo:
|
991 |
+
raise NotImplementedError("The function is not normalizable!")
|
992 |
+
else:
|
993 |
+
return Wavefunction((const)**(-1)*self.expr, *self.args[1:])
|
994 |
+
|
995 |
+
def prob(self):
|
996 |
+
r"""
|
997 |
+
Return the absolute magnitude of the w.f., `|\psi(x)|^2`
|
998 |
+
|
999 |
+
Examples
|
1000 |
+
========
|
1001 |
+
|
1002 |
+
>>> from sympy import symbols, pi
|
1003 |
+
>>> from sympy.functions import sin
|
1004 |
+
>>> from sympy.physics.quantum.state import Wavefunction
|
1005 |
+
>>> x, L = symbols('x,L', real=True)
|
1006 |
+
>>> n = symbols('n', integer=True)
|
1007 |
+
>>> g = sin(n*pi*x/L)
|
1008 |
+
>>> f = Wavefunction(g, (x, 0, L))
|
1009 |
+
>>> f.prob()
|
1010 |
+
Wavefunction(sin(pi*n*x/L)**2, x)
|
1011 |
+
|
1012 |
+
"""
|
1013 |
+
|
1014 |
+
return Wavefunction(self.expr*conjugate(self.expr), *self.variables)
|
venv/lib/python3.10/site-packages/sympy/physics/tests/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (187 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/test_clebsch_gordan.cpython-310.pyc
ADDED
Binary file (7.86 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/test_hydrogen.cpython-310.pyc
ADDED
Binary file (5.26 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/test_paulialgebra.cpython-310.pyc
ADDED
Binary file (1.62 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/test_physics_matrices.cpython-310.pyc
ADDED
Binary file (2.59 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/test_pring.cpython-310.pyc
ADDED
Binary file (1.74 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/test_qho_1d.cpython-310.pyc
ADDED
Binary file (2.27 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/test_secondquant.cpython-310.pyc
ADDED
Binary file (38 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/tests/__pycache__/test_sho.cpython-310.pyc
ADDED
Binary file (1.07 kB). View file
|
|
venv/lib/python3.10/site-packages/sympy/physics/tests/test_clebsch_gordan.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.numbers import (I, pi, Rational)
|
2 |
+
from sympy.core.singleton import S
|
3 |
+
from sympy.core.symbol import symbols
|
4 |
+
from sympy.functions.elementary.exponential import exp
|
5 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
6 |
+
from sympy.functions.elementary.trigonometric import (cos, sin)
|
7 |
+
from sympy.functions.special.spherical_harmonics import Ynm
|
8 |
+
from sympy.matrices.dense import Matrix
|
9 |
+
from sympy.physics.wigner import (clebsch_gordan, wigner_9j, wigner_6j, gaunt,
|
10 |
+
real_gaunt, racah, dot_rot_grad_Ynm, wigner_3j, wigner_d_small, wigner_d)
|
11 |
+
from sympy.testing.pytest import raises
|
12 |
+
|
13 |
+
# for test cases, refer : https://en.wikipedia.org/wiki/Table_of_Clebsch%E2%80%93Gordan_coefficients
|
14 |
+
|
15 |
+
def test_clebsch_gordan_docs():
|
16 |
+
assert clebsch_gordan(Rational(3, 2), S.Half, 2, Rational(3, 2), S.Half, 2) == 1
|
17 |
+
assert clebsch_gordan(Rational(3, 2), S.Half, 1, Rational(3, 2), Rational(-1, 2), 1) == sqrt(3)/2
|
18 |
+
assert clebsch_gordan(Rational(3, 2), S.Half, 1, Rational(-1, 2), S.Half, 0) == -sqrt(2)/2
|
19 |
+
|
20 |
+
|
21 |
+
def test_clebsch_gordan():
|
22 |
+
# Argument order: (j_1, j_2, j, m_1, m_2, m)
|
23 |
+
|
24 |
+
h = S.One
|
25 |
+
k = S.Half
|
26 |
+
l = Rational(3, 2)
|
27 |
+
i = Rational(-1, 2)
|
28 |
+
n = Rational(7, 2)
|
29 |
+
p = Rational(5, 2)
|
30 |
+
assert clebsch_gordan(k, k, 1, k, k, 1) == 1
|
31 |
+
assert clebsch_gordan(k, k, 1, k, k, 0) == 0
|
32 |
+
assert clebsch_gordan(k, k, 1, i, i, -1) == 1
|
33 |
+
assert clebsch_gordan(k, k, 1, k, i, 0) == sqrt(2)/2
|
34 |
+
assert clebsch_gordan(k, k, 0, k, i, 0) == sqrt(2)/2
|
35 |
+
assert clebsch_gordan(k, k, 1, i, k, 0) == sqrt(2)/2
|
36 |
+
assert clebsch_gordan(k, k, 0, i, k, 0) == -sqrt(2)/2
|
37 |
+
assert clebsch_gordan(h, k, l, 1, k, l) == 1
|
38 |
+
assert clebsch_gordan(h, k, l, 1, i, k) == 1/sqrt(3)
|
39 |
+
assert clebsch_gordan(h, k, k, 1, i, k) == sqrt(2)/sqrt(3)
|
40 |
+
assert clebsch_gordan(h, k, k, 0, k, k) == -1/sqrt(3)
|
41 |
+
assert clebsch_gordan(h, k, l, 0, k, k) == sqrt(2)/sqrt(3)
|
42 |
+
assert clebsch_gordan(h, h, S(2), 1, 1, S(2)) == 1
|
43 |
+
assert clebsch_gordan(h, h, S(2), 1, 0, 1) == 1/sqrt(2)
|
44 |
+
assert clebsch_gordan(h, h, S(2), 0, 1, 1) == 1/sqrt(2)
|
45 |
+
assert clebsch_gordan(h, h, 1, 1, 0, 1) == 1/sqrt(2)
|
46 |
+
assert clebsch_gordan(h, h, 1, 0, 1, 1) == -1/sqrt(2)
|
47 |
+
assert clebsch_gordan(l, l, S(3), l, l, S(3)) == 1
|
48 |
+
assert clebsch_gordan(l, l, S(2), l, k, S(2)) == 1/sqrt(2)
|
49 |
+
assert clebsch_gordan(l, l, S(3), l, k, S(2)) == 1/sqrt(2)
|
50 |
+
assert clebsch_gordan(S(2), S(2), S(4), S(2), S(2), S(4)) == 1
|
51 |
+
assert clebsch_gordan(S(2), S(2), S(3), S(2), 1, S(3)) == 1/sqrt(2)
|
52 |
+
assert clebsch_gordan(S(2), S(2), S(3), 1, 1, S(2)) == 0
|
53 |
+
assert clebsch_gordan(p, h, n, p, 1, n) == 1
|
54 |
+
assert clebsch_gordan(p, h, p, p, 0, p) == sqrt(5)/sqrt(7)
|
55 |
+
assert clebsch_gordan(p, h, l, k, 1, l) == 1/sqrt(15)
|
56 |
+
|
57 |
+
|
58 |
+
def test_wigner():
|
59 |
+
def tn(a, b):
|
60 |
+
return (a - b).n(64) < S('1e-64')
|
61 |
+
assert tn(wigner_9j(1, 1, 1, 1, 1, 1, 1, 1, 0, prec=64), Rational(1, 18))
|
62 |
+
assert wigner_9j(3, 3, 2, 3, 3, 2, 3, 3, 2) == 3221*sqrt(
|
63 |
+
70)/(246960*sqrt(105)) - 365/(3528*sqrt(70)*sqrt(105))
|
64 |
+
assert wigner_6j(5, 5, 5, 5, 5, 5) == Rational(1, 52)
|
65 |
+
assert tn(wigner_6j(8, 8, 8, 8, 8, 8, prec=64), Rational(-12219, 965770))
|
66 |
+
# regression test for #8747
|
67 |
+
half = S.Half
|
68 |
+
assert wigner_9j(0, 0, 0, 0, half, half, 0, half, half) == half
|
69 |
+
assert (wigner_9j(3, 5, 4,
|
70 |
+
7 * half, 5 * half, 4,
|
71 |
+
9 * half, 9 * half, 0)
|
72 |
+
== -sqrt(Rational(361, 205821000)))
|
73 |
+
assert (wigner_9j(1, 4, 3,
|
74 |
+
5 * half, 4, 5 * half,
|
75 |
+
5 * half, 2, 7 * half)
|
76 |
+
== -sqrt(Rational(3971, 373403520)))
|
77 |
+
assert (wigner_9j(4, 9 * half, 5 * half,
|
78 |
+
2, 4, 4,
|
79 |
+
5, 7 * half, 7 * half)
|
80 |
+
== -sqrt(Rational(3481, 5042614500)))
|
81 |
+
|
82 |
+
|
83 |
+
def test_gaunt():
|
84 |
+
def tn(a, b):
|
85 |
+
return (a - b).n(64) < S('1e-64')
|
86 |
+
assert gaunt(1, 0, 1, 1, 0, -1) == -1/(2*sqrt(pi))
|
87 |
+
assert isinstance(gaunt(1, 1, 0, -1, 1, 0).args[0], Rational)
|
88 |
+
assert isinstance(gaunt(0, 1, 1, 0, -1, 1).args[0], Rational)
|
89 |
+
|
90 |
+
assert tn(gaunt(
|
91 |
+
10, 10, 12, 9, 3, -12, prec=64), (Rational(-98, 62031)) * sqrt(6279)/sqrt(pi))
|
92 |
+
def gaunt_ref(l1, l2, l3, m1, m2, m3):
|
93 |
+
return (
|
94 |
+
sqrt((2 * l1 + 1) * (2 * l2 + 1) * (2 * l3 + 1) / (4 * pi)) *
|
95 |
+
wigner_3j(l1, l2, l3, 0, 0, 0) *
|
96 |
+
wigner_3j(l1, l2, l3, m1, m2, m3)
|
97 |
+
)
|
98 |
+
threshold = 1e-10
|
99 |
+
l_max = 3
|
100 |
+
l3_max = 24
|
101 |
+
for l1 in range(l_max + 1):
|
102 |
+
for l2 in range(l_max + 1):
|
103 |
+
for l3 in range(l3_max + 1):
|
104 |
+
for m1 in range(-l1, l1 + 1):
|
105 |
+
for m2 in range(-l2, l2 + 1):
|
106 |
+
for m3 in range(-l3, l3 + 1):
|
107 |
+
args = l1, l2, l3, m1, m2, m3
|
108 |
+
g = gaunt(*args)
|
109 |
+
g0 = gaunt_ref(*args)
|
110 |
+
assert abs(g - g0) < threshold
|
111 |
+
if m1 + m2 + m3 != 0:
|
112 |
+
assert abs(g) < threshold
|
113 |
+
if (l1 + l2 + l3) % 2:
|
114 |
+
assert abs(g) < threshold
|
115 |
+
assert gaunt(1, 1, 0, 0, 2, -2) is S.Zero
|
116 |
+
|
117 |
+
|
118 |
+
def test_realgaunt():
|
119 |
+
# All non-zero values corresponding to l values from 0 to 2
|
120 |
+
for l in range(3):
|
121 |
+
for m in range(-l, l+1):
|
122 |
+
assert real_gaunt(0, l, l, 0, m, m) == 1/(2*sqrt(pi))
|
123 |
+
assert real_gaunt(1, 1, 2, 0, 0, 0) == sqrt(5)/(5*sqrt(pi))
|
124 |
+
assert real_gaunt(1, 1, 2, 1, 1, 0) == -sqrt(5)/(10*sqrt(pi))
|
125 |
+
assert real_gaunt(2, 2, 2, 0, 0, 0) == sqrt(5)/(7*sqrt(pi))
|
126 |
+
assert real_gaunt(2, 2, 2, 0, 2, 2) == -sqrt(5)/(7*sqrt(pi))
|
127 |
+
assert real_gaunt(2, 2, 2, -2, -2, 0) == -sqrt(5)/(7*sqrt(pi))
|
128 |
+
assert real_gaunt(1, 1, 2, -1, 0, -1) == sqrt(15)/(10*sqrt(pi))
|
129 |
+
assert real_gaunt(1, 1, 2, 0, 1, 1) == sqrt(15)/(10*sqrt(pi))
|
130 |
+
assert real_gaunt(1, 1, 2, 1, 1, 2) == sqrt(15)/(10*sqrt(pi))
|
131 |
+
assert real_gaunt(1, 1, 2, -1, 1, -2) == -sqrt(15)/(10*sqrt(pi))
|
132 |
+
assert real_gaunt(1, 1, 2, -1, -1, 2) == -sqrt(15)/(10*sqrt(pi))
|
133 |
+
assert real_gaunt(2, 2, 2, 0, 1, 1) == sqrt(5)/(14*sqrt(pi))
|
134 |
+
assert real_gaunt(2, 2, 2, 1, 1, 2) == sqrt(15)/(14*sqrt(pi))
|
135 |
+
assert real_gaunt(2, 2, 2, -1, -1, 2) == -sqrt(15)/(14*sqrt(pi))
|
136 |
+
|
137 |
+
assert real_gaunt(-2, -2, -2, -2, -2, 0) is S.Zero # m test
|
138 |
+
assert real_gaunt(-2, 1, 0, 1, 1, 1) is S.Zero # l test
|
139 |
+
assert real_gaunt(-2, -1, -2, -1, -1, 0) is S.Zero # m and l test
|
140 |
+
assert real_gaunt(-2, -2, -2, -2, -2, -2) is S.Zero # m and k test
|
141 |
+
assert real_gaunt(-2, -1, -2, -1, -1, -1) is S.Zero # m, l and k test
|
142 |
+
|
143 |
+
x = symbols('x', integer=True)
|
144 |
+
v = [0]*6
|
145 |
+
for i in range(len(v)):
|
146 |
+
v[i] = x # non literal ints fail
|
147 |
+
raises(ValueError, lambda: real_gaunt(*v))
|
148 |
+
v[i] = 0
|
149 |
+
|
150 |
+
|
151 |
+
def test_racah():
|
152 |
+
assert racah(3,3,3,3,3,3) == Rational(-1,14)
|
153 |
+
assert racah(2,2,2,2,2,2) == Rational(-3,70)
|
154 |
+
assert racah(7,8,7,1,7,7, prec=4).is_Float
|
155 |
+
assert racah(5.5,7.5,9.5,6.5,8,9) == -719*sqrt(598)/1158924
|
156 |
+
assert abs(racah(5.5,7.5,9.5,6.5,8,9, prec=4) - (-0.01517)) < S('1e-4')
|
157 |
+
|
158 |
+
|
159 |
+
def test_dot_rota_grad_SH():
|
160 |
+
theta, phi = symbols("theta phi")
|
161 |
+
assert dot_rot_grad_Ynm(1, 1, 1, 1, 1, 0) != \
|
162 |
+
sqrt(30)*Ynm(2, 2, 1, 0)/(10*sqrt(pi))
|
163 |
+
assert dot_rot_grad_Ynm(1, 1, 1, 1, 1, 0).doit() == \
|
164 |
+
sqrt(30)*Ynm(2, 2, 1, 0)/(10*sqrt(pi))
|
165 |
+
assert dot_rot_grad_Ynm(1, 5, 1, 1, 1, 2) != \
|
166 |
+
0
|
167 |
+
assert dot_rot_grad_Ynm(1, 5, 1, 1, 1, 2).doit() == \
|
168 |
+
0
|
169 |
+
assert dot_rot_grad_Ynm(3, 3, 3, 3, theta, phi).doit() == \
|
170 |
+
15*sqrt(3003)*Ynm(6, 6, theta, phi)/(143*sqrt(pi))
|
171 |
+
assert dot_rot_grad_Ynm(3, 3, 1, 1, theta, phi).doit() == \
|
172 |
+
sqrt(3)*Ynm(4, 4, theta, phi)/sqrt(pi)
|
173 |
+
assert dot_rot_grad_Ynm(3, 2, 2, 0, theta, phi).doit() == \
|
174 |
+
3*sqrt(55)*Ynm(5, 2, theta, phi)/(11*sqrt(pi))
|
175 |
+
assert dot_rot_grad_Ynm(3, 2, 3, 2, theta, phi).doit().expand() == \
|
176 |
+
-sqrt(70)*Ynm(4, 4, theta, phi)/(11*sqrt(pi)) + \
|
177 |
+
45*sqrt(182)*Ynm(6, 4, theta, phi)/(143*sqrt(pi))
|
178 |
+
|
179 |
+
|
180 |
+
def test_wigner_d():
|
181 |
+
half = S(1)/2
|
182 |
+
alpha, beta, gamma = symbols("alpha, beta, gamma", real=True)
|
183 |
+
d = wigner_d_small(half, beta).subs({beta: pi/2})
|
184 |
+
d_ = Matrix([[1, 1], [-1, 1]])/sqrt(2)
|
185 |
+
assert d == d_
|
186 |
+
|
187 |
+
D = wigner_d(half, alpha, beta, gamma)
|
188 |
+
assert D[0, 0] == exp(I*alpha/2)*exp(I*gamma/2)*cos(beta/2)
|
189 |
+
assert D[0, 1] == exp(I*alpha/2)*exp(-I*gamma/2)*sin(beta/2)
|
190 |
+
assert D[1, 0] == -exp(-I*alpha/2)*exp(I*gamma/2)*sin(beta/2)
|
191 |
+
assert D[1, 1] == exp(-I*alpha/2)*exp(-I*gamma/2)*cos(beta/2)
|
venv/lib/python3.10/site-packages/sympy/physics/tests/test_hydrogen.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.numbers import (I, Rational, oo, pi)
|
2 |
+
from sympy.core.singleton import S
|
3 |
+
from sympy.core.symbol import symbols
|
4 |
+
from sympy.functions.elementary.exponential import exp
|
5 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
6 |
+
from sympy.functions.elementary.trigonometric import (cos, sin)
|
7 |
+
from sympy.integrals.integrals import integrate
|
8 |
+
from sympy.simplify.simplify import simplify
|
9 |
+
from sympy.physics.hydrogen import R_nl, E_nl, E_nl_dirac, Psi_nlm
|
10 |
+
from sympy.testing.pytest import raises
|
11 |
+
|
12 |
+
n, r, Z = symbols('n r Z')
|
13 |
+
|
14 |
+
|
15 |
+
def feq(a, b, max_relative_error=1e-12, max_absolute_error=1e-12):
|
16 |
+
a = float(a)
|
17 |
+
b = float(b)
|
18 |
+
# if the numbers are close enough (absolutely), then they are equal
|
19 |
+
if abs(a - b) < max_absolute_error:
|
20 |
+
return True
|
21 |
+
# if not, they can still be equal if their relative error is small
|
22 |
+
if abs(b) > abs(a):
|
23 |
+
relative_error = abs((a - b)/b)
|
24 |
+
else:
|
25 |
+
relative_error = abs((a - b)/a)
|
26 |
+
return relative_error <= max_relative_error
|
27 |
+
|
28 |
+
|
29 |
+
def test_wavefunction():
|
30 |
+
a = 1/Z
|
31 |
+
R = {
|
32 |
+
(1, 0): 2*sqrt(1/a**3) * exp(-r/a),
|
33 |
+
(2, 0): sqrt(1/(2*a**3)) * exp(-r/(2*a)) * (1 - r/(2*a)),
|
34 |
+
(2, 1): S.Half * sqrt(1/(6*a**3)) * exp(-r/(2*a)) * r/a,
|
35 |
+
(3, 0): Rational(2, 3) * sqrt(1/(3*a**3)) * exp(-r/(3*a)) *
|
36 |
+
(1 - 2*r/(3*a) + Rational(2, 27) * (r/a)**2),
|
37 |
+
(3, 1): Rational(4, 27) * sqrt(2/(3*a**3)) * exp(-r/(3*a)) *
|
38 |
+
(1 - r/(6*a)) * r/a,
|
39 |
+
(3, 2): Rational(2, 81) * sqrt(2/(15*a**3)) * exp(-r/(3*a)) * (r/a)**2,
|
40 |
+
(4, 0): Rational(1, 4) * sqrt(1/a**3) * exp(-r/(4*a)) *
|
41 |
+
(1 - 3*r/(4*a) + Rational(1, 8) * (r/a)**2 - Rational(1, 192) * (r/a)**3),
|
42 |
+
(4, 1): Rational(1, 16) * sqrt(5/(3*a**3)) * exp(-r/(4*a)) *
|
43 |
+
(1 - r/(4*a) + Rational(1, 80) * (r/a)**2) * (r/a),
|
44 |
+
(4, 2): Rational(1, 64) * sqrt(1/(5*a**3)) * exp(-r/(4*a)) *
|
45 |
+
(1 - r/(12*a)) * (r/a)**2,
|
46 |
+
(4, 3): Rational(1, 768) * sqrt(1/(35*a**3)) * exp(-r/(4*a)) * (r/a)**3,
|
47 |
+
}
|
48 |
+
for n, l in R:
|
49 |
+
assert simplify(R_nl(n, l, r, Z) - R[(n, l)]) == 0
|
50 |
+
|
51 |
+
|
52 |
+
def test_norm():
|
53 |
+
# Maximum "n" which is tested:
|
54 |
+
n_max = 2 # it works, but is slow, for n_max > 2
|
55 |
+
for n in range(n_max + 1):
|
56 |
+
for l in range(n):
|
57 |
+
assert integrate(R_nl(n, l, r)**2 * r**2, (r, 0, oo)) == 1
|
58 |
+
|
59 |
+
def test_psi_nlm():
|
60 |
+
r=S('r')
|
61 |
+
phi=S('phi')
|
62 |
+
theta=S('theta')
|
63 |
+
assert (Psi_nlm(1, 0, 0, r, phi, theta) == exp(-r) / sqrt(pi))
|
64 |
+
assert (Psi_nlm(2, 1, -1, r, phi, theta)) == S.Half * exp(-r / (2)) * r \
|
65 |
+
* (sin(theta) * exp(-I * phi) / (4 * sqrt(pi)))
|
66 |
+
assert (Psi_nlm(3, 2, 1, r, phi, theta, 2) == -sqrt(2) * sin(theta) \
|
67 |
+
* exp(I * phi) * cos(theta) / (4 * sqrt(pi)) * S(2) / 81 \
|
68 |
+
* sqrt(2 * 2 ** 3) * exp(-2 * r / (3)) * (r * 2) ** 2)
|
69 |
+
|
70 |
+
def test_hydrogen_energies():
|
71 |
+
assert E_nl(n, Z) == -Z**2/(2*n**2)
|
72 |
+
assert E_nl(n) == -1/(2*n**2)
|
73 |
+
|
74 |
+
assert E_nl(1, 47) == -S(47)**2/(2*1**2)
|
75 |
+
assert E_nl(2, 47) == -S(47)**2/(2*2**2)
|
76 |
+
|
77 |
+
assert E_nl(1) == -S.One/(2*1**2)
|
78 |
+
assert E_nl(2) == -S.One/(2*2**2)
|
79 |
+
assert E_nl(3) == -S.One/(2*3**2)
|
80 |
+
assert E_nl(4) == -S.One/(2*4**2)
|
81 |
+
assert E_nl(100) == -S.One/(2*100**2)
|
82 |
+
|
83 |
+
raises(ValueError, lambda: E_nl(0))
|
84 |
+
|
85 |
+
|
86 |
+
def test_hydrogen_energies_relat():
|
87 |
+
# First test exact formulas for small "c" so that we get nice expressions:
|
88 |
+
assert E_nl_dirac(2, 0, Z=1, c=1) == 1/sqrt(2) - 1
|
89 |
+
assert simplify(E_nl_dirac(2, 0, Z=1, c=2) - ( (8*sqrt(3) + 16)
|
90 |
+
/ sqrt(16*sqrt(3) + 32) - 4)) == 0
|
91 |
+
assert simplify(E_nl_dirac(2, 0, Z=1, c=3) - ( (54*sqrt(2) + 81)
|
92 |
+
/ sqrt(108*sqrt(2) + 162) - 9)) == 0
|
93 |
+
|
94 |
+
# Now test for almost the correct speed of light, without floating point
|
95 |
+
# numbers:
|
96 |
+
assert simplify(E_nl_dirac(2, 0, Z=1, c=137) - ( (352275361 + 10285412 *
|
97 |
+
sqrt(1173)) / sqrt(704550722 + 20570824 * sqrt(1173)) - 18769)) == 0
|
98 |
+
assert simplify(E_nl_dirac(2, 0, Z=82, c=137) - ( (352275361 + 2571353 *
|
99 |
+
sqrt(12045)) / sqrt(704550722 + 5142706*sqrt(12045)) - 18769)) == 0
|
100 |
+
|
101 |
+
# Test using exact speed of light, and compare against the nonrelativistic
|
102 |
+
# energies:
|
103 |
+
for n in range(1, 5):
|
104 |
+
for l in range(n):
|
105 |
+
assert feq(E_nl_dirac(n, l), E_nl(n), 1e-5, 1e-5)
|
106 |
+
if l > 0:
|
107 |
+
assert feq(E_nl_dirac(n, l, False), E_nl(n), 1e-5, 1e-5)
|
108 |
+
|
109 |
+
Z = 2
|
110 |
+
for n in range(1, 5):
|
111 |
+
for l in range(n):
|
112 |
+
assert feq(E_nl_dirac(n, l, Z=Z), E_nl(n, Z), 1e-4, 1e-4)
|
113 |
+
if l > 0:
|
114 |
+
assert feq(E_nl_dirac(n, l, False, Z), E_nl(n, Z), 1e-4, 1e-4)
|
115 |
+
|
116 |
+
Z = 3
|
117 |
+
for n in range(1, 5):
|
118 |
+
for l in range(n):
|
119 |
+
assert feq(E_nl_dirac(n, l, Z=Z), E_nl(n, Z), 1e-3, 1e-3)
|
120 |
+
if l > 0:
|
121 |
+
assert feq(E_nl_dirac(n, l, False, Z), E_nl(n, Z), 1e-3, 1e-3)
|
122 |
+
|
123 |
+
# Test the exceptions:
|
124 |
+
raises(ValueError, lambda: E_nl_dirac(0, 0))
|
125 |
+
raises(ValueError, lambda: E_nl_dirac(1, -1))
|
126 |
+
raises(ValueError, lambda: E_nl_dirac(1, 0, False))
|
venv/lib/python3.10/site-packages/sympy/physics/tests/test_paulialgebra.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.numbers import I
|
2 |
+
from sympy.core.symbol import symbols
|
3 |
+
from sympy.physics.paulialgebra import Pauli
|
4 |
+
from sympy.testing.pytest import XFAIL
|
5 |
+
from sympy.physics.quantum import TensorProduct
|
6 |
+
|
7 |
+
sigma1 = Pauli(1)
|
8 |
+
sigma2 = Pauli(2)
|
9 |
+
sigma3 = Pauli(3)
|
10 |
+
|
11 |
+
tau1 = symbols("tau1", commutative = False)
|
12 |
+
|
13 |
+
|
14 |
+
def test_Pauli():
|
15 |
+
|
16 |
+
assert sigma1 == sigma1
|
17 |
+
assert sigma1 != sigma2
|
18 |
+
|
19 |
+
assert sigma1*sigma2 == I*sigma3
|
20 |
+
assert sigma3*sigma1 == I*sigma2
|
21 |
+
assert sigma2*sigma3 == I*sigma1
|
22 |
+
|
23 |
+
assert sigma1*sigma1 == 1
|
24 |
+
assert sigma2*sigma2 == 1
|
25 |
+
assert sigma3*sigma3 == 1
|
26 |
+
|
27 |
+
assert sigma1**0 == 1
|
28 |
+
assert sigma1**1 == sigma1
|
29 |
+
assert sigma1**2 == 1
|
30 |
+
assert sigma1**3 == sigma1
|
31 |
+
assert sigma1**4 == 1
|
32 |
+
|
33 |
+
assert sigma3**2 == 1
|
34 |
+
|
35 |
+
assert sigma1*2*sigma1 == 2
|
36 |
+
|
37 |
+
|
38 |
+
def test_evaluate_pauli_product():
|
39 |
+
from sympy.physics.paulialgebra import evaluate_pauli_product
|
40 |
+
|
41 |
+
assert evaluate_pauli_product(I*sigma2*sigma3) == -sigma1
|
42 |
+
|
43 |
+
# Check issue 6471
|
44 |
+
assert evaluate_pauli_product(-I*4*sigma1*sigma2) == 4*sigma3
|
45 |
+
|
46 |
+
assert evaluate_pauli_product(
|
47 |
+
1 + I*sigma1*sigma2*sigma1*sigma2 + \
|
48 |
+
I*sigma1*sigma2*tau1*sigma1*sigma3 + \
|
49 |
+
((tau1**2).subs(tau1, I*sigma1)) + \
|
50 |
+
sigma3*((tau1**2).subs(tau1, I*sigma1)) + \
|
51 |
+
TensorProduct(I*sigma1*sigma2*sigma1*sigma2, 1)
|
52 |
+
) == 1 -I + I*sigma3*tau1*sigma2 - 1 - sigma3 - I*TensorProduct(1,1)
|
53 |
+
|
54 |
+
|
55 |
+
@XFAIL
|
56 |
+
def test_Pauli_should_work():
|
57 |
+
assert sigma1*sigma3*sigma1 == -sigma3
|
venv/lib/python3.10/site-packages/sympy/physics/tests/test_physics_matrices.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.physics.matrices import msigma, mgamma, minkowski_tensor, pat_matrix, mdft
|
2 |
+
from sympy.core.numbers import (I, Rational)
|
3 |
+
from sympy.core.singleton import S
|
4 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
5 |
+
from sympy.matrices.dense import (Matrix, eye, zeros)
|
6 |
+
from sympy.testing.pytest import warns_deprecated_sympy
|
7 |
+
|
8 |
+
|
9 |
+
def test_parallel_axis_theorem():
|
10 |
+
# This tests the parallel axis theorem matrix by comparing to test
|
11 |
+
# matrices.
|
12 |
+
|
13 |
+
# First case, 1 in all directions.
|
14 |
+
mat1 = Matrix(((2, -1, -1), (-1, 2, -1), (-1, -1, 2)))
|
15 |
+
assert pat_matrix(1, 1, 1, 1) == mat1
|
16 |
+
assert pat_matrix(2, 1, 1, 1) == 2*mat1
|
17 |
+
|
18 |
+
# Second case, 1 in x, 0 in all others
|
19 |
+
mat2 = Matrix(((0, 0, 0), (0, 1, 0), (0, 0, 1)))
|
20 |
+
assert pat_matrix(1, 1, 0, 0) == mat2
|
21 |
+
assert pat_matrix(2, 1, 0, 0) == 2*mat2
|
22 |
+
|
23 |
+
# Third case, 1 in y, 0 in all others
|
24 |
+
mat3 = Matrix(((1, 0, 0), (0, 0, 0), (0, 0, 1)))
|
25 |
+
assert pat_matrix(1, 0, 1, 0) == mat3
|
26 |
+
assert pat_matrix(2, 0, 1, 0) == 2*mat3
|
27 |
+
|
28 |
+
# Fourth case, 1 in z, 0 in all others
|
29 |
+
mat4 = Matrix(((1, 0, 0), (0, 1, 0), (0, 0, 0)))
|
30 |
+
assert pat_matrix(1, 0, 0, 1) == mat4
|
31 |
+
assert pat_matrix(2, 0, 0, 1) == 2*mat4
|
32 |
+
|
33 |
+
|
34 |
+
def test_Pauli():
|
35 |
+
#this and the following test are testing both Pauli and Dirac matrices
|
36 |
+
#and also that the general Matrix class works correctly in a real world
|
37 |
+
#situation
|
38 |
+
sigma1 = msigma(1)
|
39 |
+
sigma2 = msigma(2)
|
40 |
+
sigma3 = msigma(3)
|
41 |
+
|
42 |
+
assert sigma1 == sigma1
|
43 |
+
assert sigma1 != sigma2
|
44 |
+
|
45 |
+
# sigma*I -> I*sigma (see #354)
|
46 |
+
assert sigma1*sigma2 == sigma3*I
|
47 |
+
assert sigma3*sigma1 == sigma2*I
|
48 |
+
assert sigma2*sigma3 == sigma1*I
|
49 |
+
|
50 |
+
assert sigma1*sigma1 == eye(2)
|
51 |
+
assert sigma2*sigma2 == eye(2)
|
52 |
+
assert sigma3*sigma3 == eye(2)
|
53 |
+
|
54 |
+
assert sigma1*2*sigma1 == 2*eye(2)
|
55 |
+
assert sigma1*sigma3*sigma1 == -sigma3
|
56 |
+
|
57 |
+
|
58 |
+
def test_Dirac():
|
59 |
+
gamma0 = mgamma(0)
|
60 |
+
gamma1 = mgamma(1)
|
61 |
+
gamma2 = mgamma(2)
|
62 |
+
gamma3 = mgamma(3)
|
63 |
+
gamma5 = mgamma(5)
|
64 |
+
|
65 |
+
# gamma*I -> I*gamma (see #354)
|
66 |
+
assert gamma5 == gamma0 * gamma1 * gamma2 * gamma3 * I
|
67 |
+
assert gamma1 * gamma2 + gamma2 * gamma1 == zeros(4)
|
68 |
+
assert gamma0 * gamma0 == eye(4) * minkowski_tensor[0, 0]
|
69 |
+
assert gamma2 * gamma2 != eye(4) * minkowski_tensor[0, 0]
|
70 |
+
assert gamma2 * gamma2 == eye(4) * minkowski_tensor[2, 2]
|
71 |
+
|
72 |
+
assert mgamma(5, True) == \
|
73 |
+
mgamma(0, True)*mgamma(1, True)*mgamma(2, True)*mgamma(3, True)*I
|
74 |
+
|
75 |
+
def test_mdft():
|
76 |
+
with warns_deprecated_sympy():
|
77 |
+
assert mdft(1) == Matrix([[1]])
|
78 |
+
with warns_deprecated_sympy():
|
79 |
+
assert mdft(2) == 1/sqrt(2)*Matrix([[1,1],[1,-1]])
|
80 |
+
with warns_deprecated_sympy():
|
81 |
+
assert mdft(4) == Matrix([[S.Half, S.Half, S.Half, S.Half],
|
82 |
+
[S.Half, -I/2, Rational(-1,2), I/2],
|
83 |
+
[S.Half, Rational(-1,2), S.Half, Rational(-1,2)],
|
84 |
+
[S.Half, I/2, Rational(-1,2), -I/2]])
|