applied-ai-018 commited on
Commit
516d366
·
verified ·
1 Parent(s): eb64a60

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/llama-3b/global_step100/bf16_zero_pp_rank_177_mp_rank_00_optim_states.pt +3 -0
  2. ckpts/llama-3b/global_step100/bf16_zero_pp_rank_20_mp_rank_03_optim_states.pt +3 -0
  3. ckpts/llama-3b/global_step100/bf16_zero_pp_rank_214_mp_rank_01_optim_states.pt +3 -0
  4. venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_indexing.cpython-310.pyc +0 -0
  5. venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/conftest.py +68 -0
  6. venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_arithmetic.py +385 -0
  7. venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_comparison.py +39 -0
  8. venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_concat.py +69 -0
  9. venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_construction.py +245 -0
  10. venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_dtypes.py +294 -0
  11. venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_function.py +203 -0
  12. venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_reduction.py +125 -0
  13. venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_repr.py +67 -0
  14. venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/__init__.cpython-310.pyc +0 -0
  15. venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/conftest.cpython-310.pyc +0 -0
  16. venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/generate_legacy_storage_files.cpython-310.pyc +0 -0
  17. venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/test_clipboard.cpython-310.pyc +0 -0
  18. venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/test_common.cpython-310.pyc +0 -0
  19. venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/test_compression.cpython-310.pyc +0 -0
  20. venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/test_feather.cpython-310.pyc +0 -0
  21. venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/test_fsspec.cpython-310.pyc +0 -0
  22. venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/test_gbq.cpython-310.pyc +0 -0
  23. venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/test_gcs.cpython-310.pyc +0 -0
  24. venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/test_html.cpython-310.pyc +0 -0
  25. venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/test_http_headers.cpython-310.pyc +0 -0
  26. venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/test_orc.cpython-310.pyc +0 -0
  27. venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/test_parquet.cpython-310.pyc +0 -0
  28. venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/test_pickle.cpython-310.pyc +0 -0
  29. venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/test_s3.cpython-310.pyc +0 -0
  30. venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/test_spss.cpython-310.pyc +0 -0
  31. venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/test_sql.cpython-310.pyc +0 -0
  32. venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/test_stata.cpython-310.pyc +0 -0
  33. venv/lib/python3.10/site-packages/pandas/tests/io/json/__init__.py +0 -0
  34. venv/lib/python3.10/site-packages/pandas/tests/io/json/test_compression.py +130 -0
  35. venv/lib/python3.10/site-packages/pandas/tests/io/json/test_deprecated_kwargs.py +21 -0
  36. venv/lib/python3.10/site-packages/pandas/tests/io/json/test_json_table_schema.py +873 -0
  37. venv/lib/python3.10/site-packages/pandas/tests/io/json/test_readlines.py +543 -0
  38. venv/lib/python3.10/site-packages/pandas/tests/io/json/test_ujson.py +1087 -0
  39. venv/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/__init__.cpython-310.pyc +0 -0
  40. venv/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/common.cpython-310.pyc +0 -0
  41. venv/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/conftest.cpython-310.pyc +0 -0
  42. venv/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_append.cpython-310.pyc +0 -0
  43. venv/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_categorical.cpython-310.pyc +0 -0
  44. venv/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_compat.cpython-310.pyc +0 -0
  45. venv/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_complex.cpython-310.pyc +0 -0
  46. venv/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_errors.cpython-310.pyc +0 -0
  47. venv/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_file_handling.cpython-310.pyc +0 -0
  48. venv/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_keys.cpython-310.pyc +0 -0
  49. venv/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_put.cpython-310.pyc +0 -0
  50. venv/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_pytables_missing.cpython-310.pyc +0 -0
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_177_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:163e02a237da82f144fc1024f84d195c18ccdc31ff7c654a8a82571cec6f7c7d
3
+ size 41830148
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_20_mp_rank_03_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ab0fc2e5a020ab5fffe26c86381c4dfe24605997577c2a0ddd45679a9821eb0
3
+ size 41830330
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_214_mp_rank_01_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8d3ba90236e9d4be14419a32fa3f527d664fe39c31255ad308838e8f878aba5
3
+ size 41830148
venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/__pycache__/test_indexing.cpython-310.pyc ADDED
Binary file (804 Bytes). View file
 
venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/conftest.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ from pandas.core.arrays.integer import (
6
+ Int8Dtype,
7
+ Int16Dtype,
8
+ Int32Dtype,
9
+ Int64Dtype,
10
+ UInt8Dtype,
11
+ UInt16Dtype,
12
+ UInt32Dtype,
13
+ UInt64Dtype,
14
+ )
15
+
16
+
17
+ @pytest.fixture(
18
+ params=[
19
+ Int8Dtype,
20
+ Int16Dtype,
21
+ Int32Dtype,
22
+ Int64Dtype,
23
+ UInt8Dtype,
24
+ UInt16Dtype,
25
+ UInt32Dtype,
26
+ UInt64Dtype,
27
+ ]
28
+ )
29
+ def dtype(request):
30
+ """Parametrized fixture returning integer 'dtype'"""
31
+ return request.param()
32
+
33
+
34
+ @pytest.fixture
35
+ def data(dtype):
36
+ """
37
+ Fixture returning 'data' array with valid and missing values according to
38
+ parametrized integer 'dtype'.
39
+
40
+ Used to test dtype conversion with and without missing values.
41
+ """
42
+ return pd.array(
43
+ list(range(8)) + [np.nan] + list(range(10, 98)) + [np.nan] + [99, 100],
44
+ dtype=dtype,
45
+ )
46
+
47
+
48
+ @pytest.fixture
49
+ def data_missing(dtype):
50
+ """
51
+ Fixture returning array with exactly one NaN and one valid integer,
52
+ according to parametrized integer 'dtype'.
53
+
54
+ Used to test dtype conversion with and without missing values.
55
+ """
56
+ return pd.array([np.nan, 1], dtype=dtype)
57
+
58
+
59
+ @pytest.fixture(params=["data", "data_missing"])
60
+ def all_data(request, data, data_missing):
61
+ """Parametrized fixture returning 'data' or 'data_missing' integer arrays.
62
+
63
+ Used to test dtype conversion with and without missing values.
64
+ """
65
+ if request.param == "data":
66
+ return data
67
+ elif request.param == "data_missing":
68
+ return data_missing
venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_arithmetic.py ADDED
@@ -0,0 +1,385 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import operator
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ import pandas as pd
7
+ import pandas._testing as tm
8
+ from pandas.core import ops
9
+ from pandas.core.arrays import FloatingArray
10
+
11
+ # Basic test for the arithmetic array ops
12
+ # -----------------------------------------------------------------------------
13
+
14
+
15
+ @pytest.mark.parametrize(
16
+ "opname, exp",
17
+ [("add", [1, 3, None, None, 9]), ("mul", [0, 2, None, None, 20])],
18
+ ids=["add", "mul"],
19
+ )
20
+ def test_add_mul(dtype, opname, exp):
21
+ a = pd.array([0, 1, None, 3, 4], dtype=dtype)
22
+ b = pd.array([1, 2, 3, None, 5], dtype=dtype)
23
+
24
+ # array / array
25
+ expected = pd.array(exp, dtype=dtype)
26
+
27
+ op = getattr(operator, opname)
28
+ result = op(a, b)
29
+ tm.assert_extension_array_equal(result, expected)
30
+
31
+ op = getattr(ops, "r" + opname)
32
+ result = op(a, b)
33
+ tm.assert_extension_array_equal(result, expected)
34
+
35
+
36
+ def test_sub(dtype):
37
+ a = pd.array([1, 2, 3, None, 5], dtype=dtype)
38
+ b = pd.array([0, 1, None, 3, 4], dtype=dtype)
39
+
40
+ result = a - b
41
+ expected = pd.array([1, 1, None, None, 1], dtype=dtype)
42
+ tm.assert_extension_array_equal(result, expected)
43
+
44
+
45
+ def test_div(dtype):
46
+ a = pd.array([1, 2, 3, None, 5], dtype=dtype)
47
+ b = pd.array([0, 1, None, 3, 4], dtype=dtype)
48
+
49
+ result = a / b
50
+ expected = pd.array([np.inf, 2, None, None, 1.25], dtype="Float64")
51
+ tm.assert_extension_array_equal(result, expected)
52
+
53
+
54
+ @pytest.mark.parametrize("zero, negative", [(0, False), (0.0, False), (-0.0, True)])
55
+ def test_divide_by_zero(zero, negative):
56
+ # https://github.com/pandas-dev/pandas/issues/27398, GH#22793
57
+ a = pd.array([0, 1, -1, None], dtype="Int64")
58
+ result = a / zero
59
+ expected = FloatingArray(
60
+ np.array([np.nan, np.inf, -np.inf, 1], dtype="float64"),
61
+ np.array([False, False, False, True]),
62
+ )
63
+ if negative:
64
+ expected *= -1
65
+ tm.assert_extension_array_equal(result, expected)
66
+
67
+
68
+ def test_floordiv(dtype):
69
+ a = pd.array([1, 2, 3, None, 5], dtype=dtype)
70
+ b = pd.array([0, 1, None, 3, 4], dtype=dtype)
71
+
72
+ result = a // b
73
+ # Series op sets 1//0 to np.inf, which IntegerArray does not do (yet)
74
+ expected = pd.array([0, 2, None, None, 1], dtype=dtype)
75
+ tm.assert_extension_array_equal(result, expected)
76
+
77
+
78
+ def test_floordiv_by_int_zero_no_mask(any_int_ea_dtype):
79
+ # GH 48223: Aligns with non-masked floordiv
80
+ # but differs from numpy
81
+ # https://github.com/pandas-dev/pandas/issues/30188#issuecomment-564452740
82
+ ser = pd.Series([0, 1], dtype=any_int_ea_dtype)
83
+ result = 1 // ser
84
+ expected = pd.Series([np.inf, 1.0], dtype="Float64")
85
+ tm.assert_series_equal(result, expected)
86
+
87
+ ser_non_nullable = ser.astype(ser.dtype.numpy_dtype)
88
+ result = 1 // ser_non_nullable
89
+ expected = expected.astype(np.float64)
90
+ tm.assert_series_equal(result, expected)
91
+
92
+
93
+ def test_mod(dtype):
94
+ a = pd.array([1, 2, 3, None, 5], dtype=dtype)
95
+ b = pd.array([0, 1, None, 3, 4], dtype=dtype)
96
+
97
+ result = a % b
98
+ expected = pd.array([0, 0, None, None, 1], dtype=dtype)
99
+ tm.assert_extension_array_equal(result, expected)
100
+
101
+
102
+ def test_pow_scalar():
103
+ a = pd.array([-1, 0, 1, None, 2], dtype="Int64")
104
+ result = a**0
105
+ expected = pd.array([1, 1, 1, 1, 1], dtype="Int64")
106
+ tm.assert_extension_array_equal(result, expected)
107
+
108
+ result = a**1
109
+ expected = pd.array([-1, 0, 1, None, 2], dtype="Int64")
110
+ tm.assert_extension_array_equal(result, expected)
111
+
112
+ result = a**pd.NA
113
+ expected = pd.array([None, None, 1, None, None], dtype="Int64")
114
+ tm.assert_extension_array_equal(result, expected)
115
+
116
+ result = a**np.nan
117
+ expected = FloatingArray(
118
+ np.array([np.nan, np.nan, 1, np.nan, np.nan], dtype="float64"),
119
+ np.array([False, False, False, True, False]),
120
+ )
121
+ tm.assert_extension_array_equal(result, expected)
122
+
123
+ # reversed
124
+ a = a[1:] # Can't raise integers to negative powers.
125
+
126
+ result = 0**a
127
+ expected = pd.array([1, 0, None, 0], dtype="Int64")
128
+ tm.assert_extension_array_equal(result, expected)
129
+
130
+ result = 1**a
131
+ expected = pd.array([1, 1, 1, 1], dtype="Int64")
132
+ tm.assert_extension_array_equal(result, expected)
133
+
134
+ result = pd.NA**a
135
+ expected = pd.array([1, None, None, None], dtype="Int64")
136
+ tm.assert_extension_array_equal(result, expected)
137
+
138
+ result = np.nan**a
139
+ expected = FloatingArray(
140
+ np.array([1, np.nan, np.nan, np.nan], dtype="float64"),
141
+ np.array([False, False, True, False]),
142
+ )
143
+ tm.assert_extension_array_equal(result, expected)
144
+
145
+
146
+ def test_pow_array():
147
+ a = pd.array([0, 0, 0, 1, 1, 1, None, None, None])
148
+ b = pd.array([0, 1, None, 0, 1, None, 0, 1, None])
149
+ result = a**b
150
+ expected = pd.array([1, 0, None, 1, 1, 1, 1, None, None])
151
+ tm.assert_extension_array_equal(result, expected)
152
+
153
+
154
+ def test_rpow_one_to_na():
155
+ # https://github.com/pandas-dev/pandas/issues/22022
156
+ # https://github.com/pandas-dev/pandas/issues/29997
157
+ arr = pd.array([np.nan, np.nan], dtype="Int64")
158
+ result = np.array([1.0, 2.0]) ** arr
159
+ expected = pd.array([1.0, np.nan], dtype="Float64")
160
+ tm.assert_extension_array_equal(result, expected)
161
+
162
+
163
+ @pytest.mark.parametrize("other", [0, 0.5])
164
+ def test_numpy_zero_dim_ndarray(other):
165
+ arr = pd.array([1, None, 2])
166
+ result = arr + np.array(other)
167
+ expected = arr + other
168
+ tm.assert_equal(result, expected)
169
+
170
+
171
+ # Test generic characteristics / errors
172
+ # -----------------------------------------------------------------------------
173
+
174
+
175
+ def test_error_invalid_values(data, all_arithmetic_operators, using_infer_string):
176
+ op = all_arithmetic_operators
177
+ s = pd.Series(data)
178
+ ops = getattr(s, op)
179
+
180
+ if using_infer_string:
181
+ import pyarrow as pa
182
+
183
+ errs = (TypeError, pa.lib.ArrowNotImplementedError, NotImplementedError)
184
+ else:
185
+ errs = TypeError
186
+
187
+ # invalid scalars
188
+ msg = "|".join(
189
+ [
190
+ r"can only perform ops with numeric values",
191
+ r"IntegerArray cannot perform the operation mod",
192
+ r"unsupported operand type",
193
+ r"can only concatenate str \(not \"int\"\) to str",
194
+ "not all arguments converted during string",
195
+ "ufunc '.*' not supported for the input types, and the inputs could not",
196
+ "ufunc '.*' did not contain a loop with signature matching types",
197
+ "Addition/subtraction of integers and integer-arrays with Timestamp",
198
+ "has no kernel",
199
+ "not implemented",
200
+ "The 'out' kwarg is necessary. Use numpy.strings.multiply without it.",
201
+ ]
202
+ )
203
+ with pytest.raises(errs, match=msg):
204
+ ops("foo")
205
+ with pytest.raises(errs, match=msg):
206
+ ops(pd.Timestamp("20180101"))
207
+
208
+ # invalid array-likes
209
+ str_ser = pd.Series("foo", index=s.index)
210
+ # with pytest.raises(TypeError, match=msg):
211
+ if (
212
+ all_arithmetic_operators
213
+ in [
214
+ "__mul__",
215
+ "__rmul__",
216
+ ]
217
+ and not using_infer_string
218
+ ): # (data[~data.isna()] >= 0).all():
219
+ res = ops(str_ser)
220
+ expected = pd.Series(["foo" * x for x in data], index=s.index)
221
+ expected = expected.fillna(np.nan)
222
+ # TODO: doing this fillna to keep tests passing as we make
223
+ # assert_almost_equal stricter, but the expected with pd.NA seems
224
+ # more-correct than np.nan here.
225
+ tm.assert_series_equal(res, expected)
226
+ else:
227
+ with pytest.raises(errs, match=msg):
228
+ ops(str_ser)
229
+
230
+ msg = "|".join(
231
+ [
232
+ "can only perform ops with numeric values",
233
+ "cannot perform .* with this index type: DatetimeArray",
234
+ "Addition/subtraction of integers and integer-arrays "
235
+ "with DatetimeArray is no longer supported. *",
236
+ "unsupported operand type",
237
+ r"can only concatenate str \(not \"int\"\) to str",
238
+ "not all arguments converted during string",
239
+ "cannot subtract DatetimeArray from ndarray",
240
+ "has no kernel",
241
+ "not implemented",
242
+ ]
243
+ )
244
+ with pytest.raises(errs, match=msg):
245
+ ops(pd.Series(pd.date_range("20180101", periods=len(s))))
246
+
247
+
248
+ # Various
249
+ # -----------------------------------------------------------------------------
250
+
251
+
252
+ # TODO test unsigned overflow
253
+
254
+
255
+ def test_arith_coerce_scalar(data, all_arithmetic_operators):
256
+ op = tm.get_op_from_name(all_arithmetic_operators)
257
+ s = pd.Series(data)
258
+ other = 0.01
259
+
260
+ result = op(s, other)
261
+ expected = op(s.astype(float), other)
262
+ expected = expected.astype("Float64")
263
+
264
+ # rmod results in NaN that wasn't NA in original nullable Series -> unmask it
265
+ if all_arithmetic_operators == "__rmod__":
266
+ mask = (s == 0).fillna(False).to_numpy(bool)
267
+ expected.array._mask[mask] = False
268
+
269
+ tm.assert_series_equal(result, expected)
270
+
271
+
272
+ @pytest.mark.parametrize("other", [1.0, np.array(1.0)])
273
+ def test_arithmetic_conversion(all_arithmetic_operators, other):
274
+ # if we have a float operand we should have a float result
275
+ # if that is equal to an integer
276
+ op = tm.get_op_from_name(all_arithmetic_operators)
277
+
278
+ s = pd.Series([1, 2, 3], dtype="Int64")
279
+ result = op(s, other)
280
+ assert result.dtype == "Float64"
281
+
282
+
283
+ def test_cross_type_arithmetic():
284
+ df = pd.DataFrame(
285
+ {
286
+ "A": pd.Series([1, 2, np.nan], dtype="Int64"),
287
+ "B": pd.Series([1, np.nan, 3], dtype="UInt8"),
288
+ "C": [1, 2, 3],
289
+ }
290
+ )
291
+
292
+ result = df.A + df.C
293
+ expected = pd.Series([2, 4, np.nan], dtype="Int64")
294
+ tm.assert_series_equal(result, expected)
295
+
296
+ result = (df.A + df.C) * 3 == 12
297
+ expected = pd.Series([False, True, None], dtype="boolean")
298
+ tm.assert_series_equal(result, expected)
299
+
300
+ result = df.A + df.B
301
+ expected = pd.Series([2, np.nan, np.nan], dtype="Int64")
302
+ tm.assert_series_equal(result, expected)
303
+
304
+
305
+ @pytest.mark.parametrize("op", ["mean"])
306
+ def test_reduce_to_float(op):
307
+ # some reduce ops always return float, even if the result
308
+ # is a rounded number
309
+ df = pd.DataFrame(
310
+ {
311
+ "A": ["a", "b", "b"],
312
+ "B": [1, None, 3],
313
+ "C": pd.array([1, None, 3], dtype="Int64"),
314
+ }
315
+ )
316
+
317
+ # op
318
+ result = getattr(df.C, op)()
319
+ assert isinstance(result, float)
320
+
321
+ # groupby
322
+ result = getattr(df.groupby("A"), op)()
323
+
324
+ expected = pd.DataFrame(
325
+ {"B": np.array([1.0, 3.0]), "C": pd.array([1, 3], dtype="Float64")},
326
+ index=pd.Index(["a", "b"], name="A"),
327
+ )
328
+ tm.assert_frame_equal(result, expected)
329
+
330
+
331
+ @pytest.mark.parametrize(
332
+ "source, neg_target, abs_target",
333
+ [
334
+ ([1, 2, 3], [-1, -2, -3], [1, 2, 3]),
335
+ ([1, 2, None], [-1, -2, None], [1, 2, None]),
336
+ ([-1, 0, 1], [1, 0, -1], [1, 0, 1]),
337
+ ],
338
+ )
339
+ def test_unary_int_operators(any_signed_int_ea_dtype, source, neg_target, abs_target):
340
+ dtype = any_signed_int_ea_dtype
341
+ arr = pd.array(source, dtype=dtype)
342
+ neg_result, pos_result, abs_result = -arr, +arr, abs(arr)
343
+ neg_target = pd.array(neg_target, dtype=dtype)
344
+ abs_target = pd.array(abs_target, dtype=dtype)
345
+
346
+ tm.assert_extension_array_equal(neg_result, neg_target)
347
+ tm.assert_extension_array_equal(pos_result, arr)
348
+ assert not tm.shares_memory(pos_result, arr)
349
+ tm.assert_extension_array_equal(abs_result, abs_target)
350
+
351
+
352
+ def test_values_multiplying_large_series_by_NA():
353
+ # GH#33701
354
+
355
+ result = pd.NA * pd.Series(np.zeros(10001))
356
+ expected = pd.Series([pd.NA] * 10001)
357
+
358
+ tm.assert_series_equal(result, expected)
359
+
360
+
361
+ def test_bitwise(dtype):
362
+ left = pd.array([1, None, 3, 4], dtype=dtype)
363
+ right = pd.array([None, 3, 5, 4], dtype=dtype)
364
+
365
+ result = left | right
366
+ expected = pd.array([None, None, 3 | 5, 4 | 4], dtype=dtype)
367
+ tm.assert_extension_array_equal(result, expected)
368
+
369
+ result = left & right
370
+ expected = pd.array([None, None, 3 & 5, 4 & 4], dtype=dtype)
371
+ tm.assert_extension_array_equal(result, expected)
372
+
373
+ result = left ^ right
374
+ expected = pd.array([None, None, 3 ^ 5, 4 ^ 4], dtype=dtype)
375
+ tm.assert_extension_array_equal(result, expected)
376
+
377
+ # TODO: desired behavior when operating with boolean? defer?
378
+
379
+ floats = right.astype("Float64")
380
+ with pytest.raises(TypeError, match="unsupported operand type"):
381
+ left | floats
382
+ with pytest.raises(TypeError, match="unsupported operand type"):
383
+ left & floats
384
+ with pytest.raises(TypeError, match="unsupported operand type"):
385
+ left ^ floats
venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_comparison.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import pandas as pd
4
+ import pandas._testing as tm
5
+ from pandas.tests.arrays.masked_shared import (
6
+ ComparisonOps,
7
+ NumericOps,
8
+ )
9
+
10
+
11
+ class TestComparisonOps(NumericOps, ComparisonOps):
12
+ @pytest.mark.parametrize("other", [True, False, pd.NA, -1, 0, 1])
13
+ def test_scalar(self, other, comparison_op, dtype):
14
+ ComparisonOps.test_scalar(self, other, comparison_op, dtype)
15
+
16
+ def test_compare_to_int(self, dtype, comparison_op):
17
+ # GH 28930
18
+ op_name = f"__{comparison_op.__name__}__"
19
+ s1 = pd.Series([1, None, 3], dtype=dtype)
20
+ s2 = pd.Series([1, None, 3], dtype="float")
21
+
22
+ method = getattr(s1, op_name)
23
+ result = method(2)
24
+
25
+ method = getattr(s2, op_name)
26
+ expected = method(2).astype("boolean")
27
+ expected[s2.isna()] = pd.NA
28
+
29
+ tm.assert_series_equal(result, expected)
30
+
31
+
32
+ def test_equals():
33
+ # GH-30652
34
+ # equals is generally tested in /tests/extension/base/methods, but this
35
+ # specifically tests that two arrays of the same class but different dtype
36
+ # do not evaluate equal
37
+ a1 = pd.array([1, 2, None], dtype="Int64")
38
+ a2 = pd.array([1, 2, None], dtype="Int32")
39
+ assert a1.equals(a2) is False
venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_concat.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ import pandas._testing as tm
6
+
7
+
8
+ @pytest.mark.parametrize(
9
+ "to_concat_dtypes, result_dtype",
10
+ [
11
+ (["Int64", "Int64"], "Int64"),
12
+ (["UInt64", "UInt64"], "UInt64"),
13
+ (["Int8", "Int8"], "Int8"),
14
+ (["Int8", "Int16"], "Int16"),
15
+ (["UInt8", "Int8"], "Int16"),
16
+ (["Int32", "UInt32"], "Int64"),
17
+ (["Int64", "UInt64"], "Float64"),
18
+ (["Int64", "boolean"], "object"),
19
+ (["UInt8", "boolean"], "object"),
20
+ ],
21
+ )
22
+ def test_concat_series(to_concat_dtypes, result_dtype):
23
+ # we expect the same dtypes as we would get with non-masked inputs,
24
+ # just masked where available.
25
+
26
+ result = pd.concat([pd.Series([0, 1, pd.NA], dtype=t) for t in to_concat_dtypes])
27
+ expected = pd.concat([pd.Series([0, 1, pd.NA], dtype=object)] * 2).astype(
28
+ result_dtype
29
+ )
30
+ tm.assert_series_equal(result, expected)
31
+
32
+ # order doesn't matter for result
33
+ result = pd.concat(
34
+ [pd.Series([0, 1, pd.NA], dtype=t) for t in to_concat_dtypes[::-1]]
35
+ )
36
+ expected = pd.concat([pd.Series([0, 1, pd.NA], dtype=object)] * 2).astype(
37
+ result_dtype
38
+ )
39
+ tm.assert_series_equal(result, expected)
40
+
41
+
42
+ @pytest.mark.parametrize(
43
+ "to_concat_dtypes, result_dtype",
44
+ [
45
+ (["Int64", "int64"], "Int64"),
46
+ (["UInt64", "uint64"], "UInt64"),
47
+ (["Int8", "int8"], "Int8"),
48
+ (["Int8", "int16"], "Int16"),
49
+ (["UInt8", "int8"], "Int16"),
50
+ (["Int32", "uint32"], "Int64"),
51
+ (["Int64", "uint64"], "Float64"),
52
+ (["Int64", "bool"], "object"),
53
+ (["UInt8", "bool"], "object"),
54
+ ],
55
+ )
56
+ def test_concat_series_with_numpy(to_concat_dtypes, result_dtype):
57
+ # we expect the same dtypes as we would get with non-masked inputs,
58
+ # just masked where available.
59
+
60
+ s1 = pd.Series([0, 1, pd.NA], dtype=to_concat_dtypes[0])
61
+ s2 = pd.Series(np.array([0, 1], dtype=to_concat_dtypes[1]))
62
+ result = pd.concat([s1, s2], ignore_index=True)
63
+ expected = pd.Series([0, 1, pd.NA, 0, 1], dtype=object).astype(result_dtype)
64
+ tm.assert_series_equal(result, expected)
65
+
66
+ # order doesn't matter for result
67
+ result = pd.concat([s2, s1], ignore_index=True)
68
+ expected = pd.Series([0, 1, 0, 1, pd.NA], dtype=object).astype(result_dtype)
69
+ tm.assert_series_equal(result, expected)
venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_construction.py ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ import pandas._testing as tm
6
+ from pandas.api.types import is_integer
7
+ from pandas.core.arrays import IntegerArray
8
+ from pandas.core.arrays.integer import (
9
+ Int8Dtype,
10
+ Int32Dtype,
11
+ Int64Dtype,
12
+ )
13
+
14
+
15
+ @pytest.fixture(params=[pd.array, IntegerArray._from_sequence])
16
+ def constructor(request):
17
+ """Fixture returning parametrized IntegerArray from given sequence.
18
+
19
+ Used to test dtype conversions.
20
+ """
21
+ return request.param
22
+
23
+
24
+ def test_uses_pandas_na():
25
+ a = pd.array([1, None], dtype=Int64Dtype())
26
+ assert a[1] is pd.NA
27
+
28
+
29
+ def test_from_dtype_from_float(data):
30
+ # construct from our dtype & string dtype
31
+ dtype = data.dtype
32
+
33
+ # from float
34
+ expected = pd.Series(data)
35
+ result = pd.Series(data.to_numpy(na_value=np.nan, dtype="float"), dtype=str(dtype))
36
+ tm.assert_series_equal(result, expected)
37
+
38
+ # from int / list
39
+ expected = pd.Series(data)
40
+ result = pd.Series(np.array(data).tolist(), dtype=str(dtype))
41
+ tm.assert_series_equal(result, expected)
42
+
43
+ # from int / array
44
+ expected = pd.Series(data).dropna().reset_index(drop=True)
45
+ dropped = np.array(data.dropna()).astype(np.dtype(dtype.type))
46
+ result = pd.Series(dropped, dtype=str(dtype))
47
+ tm.assert_series_equal(result, expected)
48
+
49
+
50
+ def test_conversions(data_missing):
51
+ # astype to object series
52
+ df = pd.DataFrame({"A": data_missing})
53
+ result = df["A"].astype("object")
54
+ expected = pd.Series(np.array([pd.NA, 1], dtype=object), name="A")
55
+ tm.assert_series_equal(result, expected)
56
+
57
+ # convert to object ndarray
58
+ # we assert that we are exactly equal
59
+ # including type conversions of scalars
60
+ result = df["A"].astype("object").values
61
+ expected = np.array([pd.NA, 1], dtype=object)
62
+ tm.assert_numpy_array_equal(result, expected)
63
+
64
+ for r, e in zip(result, expected):
65
+ if pd.isnull(r):
66
+ assert pd.isnull(e)
67
+ elif is_integer(r):
68
+ assert r == e
69
+ assert is_integer(e)
70
+ else:
71
+ assert r == e
72
+ assert type(r) == type(e)
73
+
74
+
75
+ def test_integer_array_constructor():
76
+ values = np.array([1, 2, 3, 4], dtype="int64")
77
+ mask = np.array([False, False, False, True], dtype="bool")
78
+
79
+ result = IntegerArray(values, mask)
80
+ expected = pd.array([1, 2, 3, np.nan], dtype="Int64")
81
+ tm.assert_extension_array_equal(result, expected)
82
+
83
+ msg = r".* should be .* numpy array. Use the 'pd.array' function instead"
84
+ with pytest.raises(TypeError, match=msg):
85
+ IntegerArray(values.tolist(), mask)
86
+
87
+ with pytest.raises(TypeError, match=msg):
88
+ IntegerArray(values, mask.tolist())
89
+
90
+ with pytest.raises(TypeError, match=msg):
91
+ IntegerArray(values.astype(float), mask)
92
+ msg = r"__init__\(\) missing 1 required positional argument: 'mask'"
93
+ with pytest.raises(TypeError, match=msg):
94
+ IntegerArray(values)
95
+
96
+
97
+ def test_integer_array_constructor_copy():
98
+ values = np.array([1, 2, 3, 4], dtype="int64")
99
+ mask = np.array([False, False, False, True], dtype="bool")
100
+
101
+ result = IntegerArray(values, mask)
102
+ assert result._data is values
103
+ assert result._mask is mask
104
+
105
+ result = IntegerArray(values, mask, copy=True)
106
+ assert result._data is not values
107
+ assert result._mask is not mask
108
+
109
+
110
+ @pytest.mark.parametrize(
111
+ "a, b",
112
+ [
113
+ ([1, None], [1, np.nan]),
114
+ ([None], [np.nan]),
115
+ ([None, np.nan], [np.nan, np.nan]),
116
+ ([np.nan, np.nan], [np.nan, np.nan]),
117
+ ],
118
+ )
119
+ def test_to_integer_array_none_is_nan(a, b):
120
+ result = pd.array(a, dtype="Int64")
121
+ expected = pd.array(b, dtype="Int64")
122
+ tm.assert_extension_array_equal(result, expected)
123
+
124
+
125
+ @pytest.mark.parametrize(
126
+ "values",
127
+ [
128
+ ["foo", "bar"],
129
+ "foo",
130
+ 1,
131
+ 1.0,
132
+ pd.date_range("20130101", periods=2),
133
+ np.array(["foo"]),
134
+ [[1, 2], [3, 4]],
135
+ [np.nan, {"a": 1}],
136
+ ],
137
+ )
138
+ def test_to_integer_array_error(values):
139
+ # error in converting existing arrays to IntegerArrays
140
+ msg = "|".join(
141
+ [
142
+ r"cannot be converted to IntegerDtype",
143
+ r"invalid literal for int\(\) with base 10:",
144
+ r"values must be a 1D list-like",
145
+ r"Cannot pass scalar",
146
+ r"int\(\) argument must be a string",
147
+ ]
148
+ )
149
+ with pytest.raises((ValueError, TypeError), match=msg):
150
+ pd.array(values, dtype="Int64")
151
+
152
+ with pytest.raises((ValueError, TypeError), match=msg):
153
+ IntegerArray._from_sequence(values)
154
+
155
+
156
+ def test_to_integer_array_inferred_dtype(constructor):
157
+ # if values has dtype -> respect it
158
+ result = constructor(np.array([1, 2], dtype="int8"))
159
+ assert result.dtype == Int8Dtype()
160
+ result = constructor(np.array([1, 2], dtype="int32"))
161
+ assert result.dtype == Int32Dtype()
162
+
163
+ # if values have no dtype -> always int64
164
+ result = constructor([1, 2])
165
+ assert result.dtype == Int64Dtype()
166
+
167
+
168
+ def test_to_integer_array_dtype_keyword(constructor):
169
+ result = constructor([1, 2], dtype="Int8")
170
+ assert result.dtype == Int8Dtype()
171
+
172
+ # if values has dtype -> override it
173
+ result = constructor(np.array([1, 2], dtype="int8"), dtype="Int32")
174
+ assert result.dtype == Int32Dtype()
175
+
176
+
177
+ def test_to_integer_array_float():
178
+ result = IntegerArray._from_sequence([1.0, 2.0], dtype="Int64")
179
+ expected = pd.array([1, 2], dtype="Int64")
180
+ tm.assert_extension_array_equal(result, expected)
181
+
182
+ with pytest.raises(TypeError, match="cannot safely cast non-equivalent"):
183
+ IntegerArray._from_sequence([1.5, 2.0], dtype="Int64")
184
+
185
+ # for float dtypes, the itemsize is not preserved
186
+ result = IntegerArray._from_sequence(
187
+ np.array([1.0, 2.0], dtype="float32"), dtype="Int64"
188
+ )
189
+ assert result.dtype == Int64Dtype()
190
+
191
+
192
+ def test_to_integer_array_str():
193
+ result = IntegerArray._from_sequence(["1", "2", None], dtype="Int64")
194
+ expected = pd.array([1, 2, np.nan], dtype="Int64")
195
+ tm.assert_extension_array_equal(result, expected)
196
+
197
+ with pytest.raises(
198
+ ValueError, match=r"invalid literal for int\(\) with base 10: .*"
199
+ ):
200
+ IntegerArray._from_sequence(["1", "2", ""], dtype="Int64")
201
+
202
+ with pytest.raises(
203
+ ValueError, match=r"invalid literal for int\(\) with base 10: .*"
204
+ ):
205
+ IntegerArray._from_sequence(["1.5", "2.0"], dtype="Int64")
206
+
207
+
208
+ @pytest.mark.parametrize(
209
+ "bool_values, int_values, target_dtype, expected_dtype",
210
+ [
211
+ ([False, True], [0, 1], Int64Dtype(), Int64Dtype()),
212
+ ([False, True], [0, 1], "Int64", Int64Dtype()),
213
+ ([False, True, np.nan], [0, 1, np.nan], Int64Dtype(), Int64Dtype()),
214
+ ],
215
+ )
216
+ def test_to_integer_array_bool(
217
+ constructor, bool_values, int_values, target_dtype, expected_dtype
218
+ ):
219
+ result = constructor(bool_values, dtype=target_dtype)
220
+ assert result.dtype == expected_dtype
221
+ expected = pd.array(int_values, dtype=target_dtype)
222
+ tm.assert_extension_array_equal(result, expected)
223
+
224
+
225
+ @pytest.mark.parametrize(
226
+ "values, to_dtype, result_dtype",
227
+ [
228
+ (np.array([1], dtype="int64"), None, Int64Dtype),
229
+ (np.array([1, np.nan]), None, Int64Dtype),
230
+ (np.array([1, np.nan]), "int8", Int8Dtype),
231
+ ],
232
+ )
233
+ def test_to_integer_array(values, to_dtype, result_dtype):
234
+ # convert existing arrays to IntegerArrays
235
+ result = IntegerArray._from_sequence(values, dtype=to_dtype)
236
+ assert result.dtype == result_dtype()
237
+ expected = pd.array(values, dtype=result_dtype())
238
+ tm.assert_extension_array_equal(result, expected)
239
+
240
+
241
+ def test_integer_array_from_boolean():
242
+ # GH31104
243
+ expected = pd.array(np.array([True, False]), dtype="Int64")
244
+ result = pd.array(np.array([True, False], dtype=object), dtype="Int64")
245
+ tm.assert_extension_array_equal(result, expected)
venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_dtypes.py ADDED
@@ -0,0 +1,294 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas.core.dtypes.generic import ABCIndex
5
+
6
+ import pandas as pd
7
+ import pandas._testing as tm
8
+ from pandas.core.arrays.integer import (
9
+ Int8Dtype,
10
+ UInt32Dtype,
11
+ )
12
+
13
+
14
+ def test_dtypes(dtype):
15
+ # smoke tests on auto dtype construction
16
+
17
+ if dtype.is_signed_integer:
18
+ assert np.dtype(dtype.type).kind == "i"
19
+ else:
20
+ assert np.dtype(dtype.type).kind == "u"
21
+ assert dtype.name is not None
22
+
23
+
24
+ @pytest.mark.parametrize("op", ["sum", "min", "max", "prod"])
25
+ def test_preserve_dtypes(op):
26
+ # for ops that enable (mean would actually work here
27
+ # but generally it is a float return value)
28
+ df = pd.DataFrame(
29
+ {
30
+ "A": ["a", "b", "b"],
31
+ "B": [1, None, 3],
32
+ "C": pd.array([1, None, 3], dtype="Int64"),
33
+ }
34
+ )
35
+
36
+ # op
37
+ result = getattr(df.C, op)()
38
+ if op in {"sum", "prod", "min", "max"}:
39
+ assert isinstance(result, np.int64)
40
+ else:
41
+ assert isinstance(result, int)
42
+
43
+ # groupby
44
+ result = getattr(df.groupby("A"), op)()
45
+
46
+ expected = pd.DataFrame(
47
+ {"B": np.array([1.0, 3.0]), "C": pd.array([1, 3], dtype="Int64")},
48
+ index=pd.Index(["a", "b"], name="A"),
49
+ )
50
+ tm.assert_frame_equal(result, expected)
51
+
52
+
53
+ def test_astype_nansafe():
54
+ # see gh-22343
55
+ arr = pd.array([np.nan, 1, 2], dtype="Int8")
56
+ msg = "cannot convert NA to integer"
57
+
58
+ with pytest.raises(ValueError, match=msg):
59
+ arr.astype("uint32")
60
+
61
+
62
+ @pytest.mark.parametrize("dropna", [True, False])
63
+ def test_construct_index(all_data, dropna):
64
+ # ensure that we do not coerce to different Index dtype or non-index
65
+
66
+ all_data = all_data[:10]
67
+ if dropna:
68
+ other = np.array(all_data[~all_data.isna()])
69
+ else:
70
+ other = all_data
71
+
72
+ result = pd.Index(pd.array(other, dtype=all_data.dtype))
73
+ expected = pd.Index(other, dtype=all_data.dtype)
74
+ assert all_data.dtype == expected.dtype # dont coerce to object
75
+
76
+ tm.assert_index_equal(result, expected)
77
+
78
+
79
+ @pytest.mark.parametrize("dropna", [True, False])
80
+ def test_astype_index(all_data, dropna):
81
+ # as an int/uint index to Index
82
+
83
+ all_data = all_data[:10]
84
+ if dropna:
85
+ other = all_data[~all_data.isna()]
86
+ else:
87
+ other = all_data
88
+
89
+ dtype = all_data.dtype
90
+ idx = pd.Index(np.array(other))
91
+ assert isinstance(idx, ABCIndex)
92
+
93
+ result = idx.astype(dtype)
94
+ expected = idx.astype(object).astype(dtype)
95
+ tm.assert_index_equal(result, expected)
96
+
97
+
98
+ def test_astype(all_data):
99
+ all_data = all_data[:10]
100
+
101
+ ints = all_data[~all_data.isna()]
102
+ mixed = all_data
103
+ dtype = Int8Dtype()
104
+
105
+ # coerce to same type - ints
106
+ s = pd.Series(ints)
107
+ result = s.astype(all_data.dtype)
108
+ expected = pd.Series(ints)
109
+ tm.assert_series_equal(result, expected)
110
+
111
+ # coerce to same other - ints
112
+ s = pd.Series(ints)
113
+ result = s.astype(dtype)
114
+ expected = pd.Series(ints, dtype=dtype)
115
+ tm.assert_series_equal(result, expected)
116
+
117
+ # coerce to same numpy_dtype - ints
118
+ s = pd.Series(ints)
119
+ result = s.astype(all_data.dtype.numpy_dtype)
120
+ expected = pd.Series(ints._data.astype(all_data.dtype.numpy_dtype))
121
+ tm.assert_series_equal(result, expected)
122
+
123
+ # coerce to same type - mixed
124
+ s = pd.Series(mixed)
125
+ result = s.astype(all_data.dtype)
126
+ expected = pd.Series(mixed)
127
+ tm.assert_series_equal(result, expected)
128
+
129
+ # coerce to same other - mixed
130
+ s = pd.Series(mixed)
131
+ result = s.astype(dtype)
132
+ expected = pd.Series(mixed, dtype=dtype)
133
+ tm.assert_series_equal(result, expected)
134
+
135
+ # coerce to same numpy_dtype - mixed
136
+ s = pd.Series(mixed)
137
+ msg = "cannot convert NA to integer"
138
+ with pytest.raises(ValueError, match=msg):
139
+ s.astype(all_data.dtype.numpy_dtype)
140
+
141
+ # coerce to object
142
+ s = pd.Series(mixed)
143
+ result = s.astype("object")
144
+ expected = pd.Series(np.asarray(mixed, dtype=object))
145
+ tm.assert_series_equal(result, expected)
146
+
147
+
148
+ def test_astype_copy():
149
+ arr = pd.array([1, 2, 3, None], dtype="Int64")
150
+ orig = pd.array([1, 2, 3, None], dtype="Int64")
151
+
152
+ # copy=True -> ensure both data and mask are actual copies
153
+ result = arr.astype("Int64", copy=True)
154
+ assert result is not arr
155
+ assert not tm.shares_memory(result, arr)
156
+ result[0] = 10
157
+ tm.assert_extension_array_equal(arr, orig)
158
+ result[0] = pd.NA
159
+ tm.assert_extension_array_equal(arr, orig)
160
+
161
+ # copy=False
162
+ result = arr.astype("Int64", copy=False)
163
+ assert result is arr
164
+ assert np.shares_memory(result._data, arr._data)
165
+ assert np.shares_memory(result._mask, arr._mask)
166
+ result[0] = 10
167
+ assert arr[0] == 10
168
+ result[0] = pd.NA
169
+ assert arr[0] is pd.NA
170
+
171
+ # astype to different dtype -> always needs a copy -> even with copy=False
172
+ # we need to ensure that also the mask is actually copied
173
+ arr = pd.array([1, 2, 3, None], dtype="Int64")
174
+ orig = pd.array([1, 2, 3, None], dtype="Int64")
175
+
176
+ result = arr.astype("Int32", copy=False)
177
+ assert not tm.shares_memory(result, arr)
178
+ result[0] = 10
179
+ tm.assert_extension_array_equal(arr, orig)
180
+ result[0] = pd.NA
181
+ tm.assert_extension_array_equal(arr, orig)
182
+
183
+
184
+ def test_astype_to_larger_numpy():
185
+ a = pd.array([1, 2], dtype="Int32")
186
+ result = a.astype("int64")
187
+ expected = np.array([1, 2], dtype="int64")
188
+ tm.assert_numpy_array_equal(result, expected)
189
+
190
+ a = pd.array([1, 2], dtype="UInt32")
191
+ result = a.astype("uint64")
192
+ expected = np.array([1, 2], dtype="uint64")
193
+ tm.assert_numpy_array_equal(result, expected)
194
+
195
+
196
+ @pytest.mark.parametrize("dtype", [Int8Dtype(), "Int8", UInt32Dtype(), "UInt32"])
197
+ def test_astype_specific_casting(dtype):
198
+ s = pd.Series([1, 2, 3], dtype="Int64")
199
+ result = s.astype(dtype)
200
+ expected = pd.Series([1, 2, 3], dtype=dtype)
201
+ tm.assert_series_equal(result, expected)
202
+
203
+ s = pd.Series([1, 2, 3, None], dtype="Int64")
204
+ result = s.astype(dtype)
205
+ expected = pd.Series([1, 2, 3, None], dtype=dtype)
206
+ tm.assert_series_equal(result, expected)
207
+
208
+
209
+ def test_astype_floating():
210
+ arr = pd.array([1, 2, None], dtype="Int64")
211
+ result = arr.astype("Float64")
212
+ expected = pd.array([1.0, 2.0, None], dtype="Float64")
213
+ tm.assert_extension_array_equal(result, expected)
214
+
215
+
216
+ def test_astype_dt64():
217
+ # GH#32435
218
+ arr = pd.array([1, 2, 3, pd.NA]) * 10**9
219
+
220
+ result = arr.astype("datetime64[ns]")
221
+
222
+ expected = np.array([1, 2, 3, "NaT"], dtype="M8[s]").astype("M8[ns]")
223
+ tm.assert_numpy_array_equal(result, expected)
224
+
225
+
226
+ def test_construct_cast_invalid(dtype):
227
+ msg = "cannot safely"
228
+ arr = [1.2, 2.3, 3.7]
229
+ with pytest.raises(TypeError, match=msg):
230
+ pd.array(arr, dtype=dtype)
231
+
232
+ with pytest.raises(TypeError, match=msg):
233
+ pd.Series(arr).astype(dtype)
234
+
235
+ arr = [1.2, 2.3, 3.7, np.nan]
236
+ with pytest.raises(TypeError, match=msg):
237
+ pd.array(arr, dtype=dtype)
238
+
239
+ with pytest.raises(TypeError, match=msg):
240
+ pd.Series(arr).astype(dtype)
241
+
242
+
243
+ @pytest.mark.parametrize("in_series", [True, False])
244
+ def test_to_numpy_na_nan(in_series):
245
+ a = pd.array([0, 1, None], dtype="Int64")
246
+ if in_series:
247
+ a = pd.Series(a)
248
+
249
+ result = a.to_numpy(dtype="float64", na_value=np.nan)
250
+ expected = np.array([0.0, 1.0, np.nan], dtype="float64")
251
+ tm.assert_numpy_array_equal(result, expected)
252
+
253
+ result = a.to_numpy(dtype="int64", na_value=-1)
254
+ expected = np.array([0, 1, -1], dtype="int64")
255
+ tm.assert_numpy_array_equal(result, expected)
256
+
257
+ result = a.to_numpy(dtype="bool", na_value=False)
258
+ expected = np.array([False, True, False], dtype="bool")
259
+ tm.assert_numpy_array_equal(result, expected)
260
+
261
+
262
+ @pytest.mark.parametrize("in_series", [True, False])
263
+ @pytest.mark.parametrize("dtype", ["int32", "int64", "bool"])
264
+ def test_to_numpy_dtype(dtype, in_series):
265
+ a = pd.array([0, 1], dtype="Int64")
266
+ if in_series:
267
+ a = pd.Series(a)
268
+
269
+ result = a.to_numpy(dtype=dtype)
270
+ expected = np.array([0, 1], dtype=dtype)
271
+ tm.assert_numpy_array_equal(result, expected)
272
+
273
+
274
+ @pytest.mark.parametrize("dtype", ["int64", "bool"])
275
+ def test_to_numpy_na_raises(dtype):
276
+ a = pd.array([0, 1, None], dtype="Int64")
277
+ with pytest.raises(ValueError, match=dtype):
278
+ a.to_numpy(dtype=dtype)
279
+
280
+
281
+ def test_astype_str():
282
+ a = pd.array([1, 2, None], dtype="Int64")
283
+ expected = np.array(["1", "2", "<NA>"], dtype=f"{tm.ENDIAN}U21")
284
+
285
+ tm.assert_numpy_array_equal(a.astype(str), expected)
286
+ tm.assert_numpy_array_equal(a.astype("str"), expected)
287
+
288
+
289
+ def test_astype_boolean():
290
+ # https://github.com/pandas-dev/pandas/issues/31102
291
+ a = pd.array([1, 0, -1, 2, None], dtype="Int64")
292
+ result = a.astype("boolean")
293
+ expected = pd.array([True, False, True, True, None], dtype="boolean")
294
+ tm.assert_extension_array_equal(result, expected)
venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_function.py ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ import pandas._testing as tm
6
+ from pandas.core.arrays import FloatingArray
7
+
8
+
9
+ @pytest.mark.parametrize("ufunc", [np.abs, np.sign])
10
+ # np.sign emits a warning with nans, <https://github.com/numpy/numpy/issues/15127>
11
+ @pytest.mark.filterwarnings("ignore:invalid value encountered in sign:RuntimeWarning")
12
+ def test_ufuncs_single_int(ufunc):
13
+ a = pd.array([1, 2, -3, np.nan])
14
+ result = ufunc(a)
15
+ expected = pd.array(ufunc(a.astype(float)), dtype="Int64")
16
+ tm.assert_extension_array_equal(result, expected)
17
+
18
+ s = pd.Series(a)
19
+ result = ufunc(s)
20
+ expected = pd.Series(pd.array(ufunc(a.astype(float)), dtype="Int64"))
21
+ tm.assert_series_equal(result, expected)
22
+
23
+
24
+ @pytest.mark.parametrize("ufunc", [np.log, np.exp, np.sin, np.cos, np.sqrt])
25
+ def test_ufuncs_single_float(ufunc):
26
+ a = pd.array([1, 2, -3, np.nan])
27
+ with np.errstate(invalid="ignore"):
28
+ result = ufunc(a)
29
+ expected = FloatingArray(ufunc(a.astype(float)), mask=a._mask)
30
+ tm.assert_extension_array_equal(result, expected)
31
+
32
+ s = pd.Series(a)
33
+ with np.errstate(invalid="ignore"):
34
+ result = ufunc(s)
35
+ expected = pd.Series(expected)
36
+ tm.assert_series_equal(result, expected)
37
+
38
+
39
+ @pytest.mark.parametrize("ufunc", [np.add, np.subtract])
40
+ def test_ufuncs_binary_int(ufunc):
41
+ # two IntegerArrays
42
+ a = pd.array([1, 2, -3, np.nan])
43
+ result = ufunc(a, a)
44
+ expected = pd.array(ufunc(a.astype(float), a.astype(float)), dtype="Int64")
45
+ tm.assert_extension_array_equal(result, expected)
46
+
47
+ # IntegerArray with numpy array
48
+ arr = np.array([1, 2, 3, 4])
49
+ result = ufunc(a, arr)
50
+ expected = pd.array(ufunc(a.astype(float), arr), dtype="Int64")
51
+ tm.assert_extension_array_equal(result, expected)
52
+
53
+ result = ufunc(arr, a)
54
+ expected = pd.array(ufunc(arr, a.astype(float)), dtype="Int64")
55
+ tm.assert_extension_array_equal(result, expected)
56
+
57
+ # IntegerArray with scalar
58
+ result = ufunc(a, 1)
59
+ expected = pd.array(ufunc(a.astype(float), 1), dtype="Int64")
60
+ tm.assert_extension_array_equal(result, expected)
61
+
62
+ result = ufunc(1, a)
63
+ expected = pd.array(ufunc(1, a.astype(float)), dtype="Int64")
64
+ tm.assert_extension_array_equal(result, expected)
65
+
66
+
67
+ def test_ufunc_binary_output():
68
+ a = pd.array([1, 2, np.nan])
69
+ result = np.modf(a)
70
+ expected = np.modf(a.to_numpy(na_value=np.nan, dtype="float"))
71
+ expected = (pd.array(expected[0]), pd.array(expected[1]))
72
+
73
+ assert isinstance(result, tuple)
74
+ assert len(result) == 2
75
+
76
+ for x, y in zip(result, expected):
77
+ tm.assert_extension_array_equal(x, y)
78
+
79
+
80
+ @pytest.mark.parametrize("values", [[0, 1], [0, None]])
81
+ def test_ufunc_reduce_raises(values):
82
+ arr = pd.array(values)
83
+
84
+ res = np.add.reduce(arr)
85
+ expected = arr.sum(skipna=False)
86
+ tm.assert_almost_equal(res, expected)
87
+
88
+
89
+ @pytest.mark.parametrize(
90
+ "pandasmethname, kwargs",
91
+ [
92
+ ("var", {"ddof": 0}),
93
+ ("var", {"ddof": 1}),
94
+ ("std", {"ddof": 0}),
95
+ ("std", {"ddof": 1}),
96
+ ("kurtosis", {}),
97
+ ("skew", {}),
98
+ ("sem", {}),
99
+ ],
100
+ )
101
+ def test_stat_method(pandasmethname, kwargs):
102
+ s = pd.Series(data=[1, 2, 3, 4, 5, 6, np.nan, np.nan], dtype="Int64")
103
+ pandasmeth = getattr(s, pandasmethname)
104
+ result = pandasmeth(**kwargs)
105
+ s2 = pd.Series(data=[1, 2, 3, 4, 5, 6], dtype="Int64")
106
+ pandasmeth = getattr(s2, pandasmethname)
107
+ expected = pandasmeth(**kwargs)
108
+ assert expected == result
109
+
110
+
111
+ def test_value_counts_na():
112
+ arr = pd.array([1, 2, 1, pd.NA], dtype="Int64")
113
+ result = arr.value_counts(dropna=False)
114
+ ex_index = pd.Index([1, 2, pd.NA], dtype="Int64")
115
+ assert ex_index.dtype == "Int64"
116
+ expected = pd.Series([2, 1, 1], index=ex_index, dtype="Int64", name="count")
117
+ tm.assert_series_equal(result, expected)
118
+
119
+ result = arr.value_counts(dropna=True)
120
+ expected = pd.Series([2, 1], index=arr[:2], dtype="Int64", name="count")
121
+ assert expected.index.dtype == arr.dtype
122
+ tm.assert_series_equal(result, expected)
123
+
124
+
125
+ def test_value_counts_empty():
126
+ # https://github.com/pandas-dev/pandas/issues/33317
127
+ ser = pd.Series([], dtype="Int64")
128
+ result = ser.value_counts()
129
+ idx = pd.Index([], dtype=ser.dtype)
130
+ assert idx.dtype == ser.dtype
131
+ expected = pd.Series([], index=idx, dtype="Int64", name="count")
132
+ tm.assert_series_equal(result, expected)
133
+
134
+
135
+ def test_value_counts_with_normalize():
136
+ # GH 33172
137
+ ser = pd.Series([1, 2, 1, pd.NA], dtype="Int64")
138
+ result = ser.value_counts(normalize=True)
139
+ expected = pd.Series([2, 1], index=ser[:2], dtype="Float64", name="proportion") / 3
140
+ assert expected.index.dtype == ser.dtype
141
+ tm.assert_series_equal(result, expected)
142
+
143
+
144
+ @pytest.mark.parametrize("skipna", [True, False])
145
+ @pytest.mark.parametrize("min_count", [0, 4])
146
+ def test_integer_array_sum(skipna, min_count, any_int_ea_dtype):
147
+ dtype = any_int_ea_dtype
148
+ arr = pd.array([1, 2, 3, None], dtype=dtype)
149
+ result = arr.sum(skipna=skipna, min_count=min_count)
150
+ if skipna and min_count == 0:
151
+ assert result == 6
152
+ else:
153
+ assert result is pd.NA
154
+
155
+
156
+ @pytest.mark.parametrize("skipna", [True, False])
157
+ @pytest.mark.parametrize("method", ["min", "max"])
158
+ def test_integer_array_min_max(skipna, method, any_int_ea_dtype):
159
+ dtype = any_int_ea_dtype
160
+ arr = pd.array([0, 1, None], dtype=dtype)
161
+ func = getattr(arr, method)
162
+ result = func(skipna=skipna)
163
+ if skipna:
164
+ assert result == (0 if method == "min" else 1)
165
+ else:
166
+ assert result is pd.NA
167
+
168
+
169
+ @pytest.mark.parametrize("skipna", [True, False])
170
+ @pytest.mark.parametrize("min_count", [0, 9])
171
+ def test_integer_array_prod(skipna, min_count, any_int_ea_dtype):
172
+ dtype = any_int_ea_dtype
173
+ arr = pd.array([1, 2, None], dtype=dtype)
174
+ result = arr.prod(skipna=skipna, min_count=min_count)
175
+ if skipna and min_count == 0:
176
+ assert result == 2
177
+ else:
178
+ assert result is pd.NA
179
+
180
+
181
+ @pytest.mark.parametrize(
182
+ "values, expected", [([1, 2, 3], 6), ([1, 2, 3, None], 6), ([None], 0)]
183
+ )
184
+ def test_integer_array_numpy_sum(values, expected):
185
+ arr = pd.array(values, dtype="Int64")
186
+ result = np.sum(arr)
187
+ assert result == expected
188
+
189
+
190
+ @pytest.mark.parametrize("op", ["sum", "prod", "min", "max"])
191
+ def test_dataframe_reductions(op):
192
+ # https://github.com/pandas-dev/pandas/pull/32867
193
+ # ensure the integers are not cast to float during reductions
194
+ df = pd.DataFrame({"a": pd.array([1, 2], dtype="Int64")})
195
+ result = df.max()
196
+ assert isinstance(result["a"], np.int64)
197
+
198
+
199
+ # TODO(jreback) - these need testing / are broken
200
+
201
+ # shift
202
+
203
+ # set_index (destroys type)
venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_reduction.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ from pandas import (
6
+ DataFrame,
7
+ Series,
8
+ array,
9
+ )
10
+ import pandas._testing as tm
11
+
12
+
13
+ @pytest.mark.parametrize(
14
+ "op, expected",
15
+ [
16
+ ["sum", np.int64(3)],
17
+ ["prod", np.int64(2)],
18
+ ["min", np.int64(1)],
19
+ ["max", np.int64(2)],
20
+ ["mean", np.float64(1.5)],
21
+ ["median", np.float64(1.5)],
22
+ ["var", np.float64(0.5)],
23
+ ["std", np.float64(0.5**0.5)],
24
+ ["skew", pd.NA],
25
+ ["kurt", pd.NA],
26
+ ["any", True],
27
+ ["all", True],
28
+ ],
29
+ )
30
+ def test_series_reductions(op, expected):
31
+ ser = Series([1, 2], dtype="Int64")
32
+ result = getattr(ser, op)()
33
+ tm.assert_equal(result, expected)
34
+
35
+
36
+ @pytest.mark.parametrize(
37
+ "op, expected",
38
+ [
39
+ ["sum", Series([3], index=["a"], dtype="Int64")],
40
+ ["prod", Series([2], index=["a"], dtype="Int64")],
41
+ ["min", Series([1], index=["a"], dtype="Int64")],
42
+ ["max", Series([2], index=["a"], dtype="Int64")],
43
+ ["mean", Series([1.5], index=["a"], dtype="Float64")],
44
+ ["median", Series([1.5], index=["a"], dtype="Float64")],
45
+ ["var", Series([0.5], index=["a"], dtype="Float64")],
46
+ ["std", Series([0.5**0.5], index=["a"], dtype="Float64")],
47
+ ["skew", Series([pd.NA], index=["a"], dtype="Float64")],
48
+ ["kurt", Series([pd.NA], index=["a"], dtype="Float64")],
49
+ ["any", Series([True], index=["a"], dtype="boolean")],
50
+ ["all", Series([True], index=["a"], dtype="boolean")],
51
+ ],
52
+ )
53
+ def test_dataframe_reductions(op, expected):
54
+ df = DataFrame({"a": array([1, 2], dtype="Int64")})
55
+ result = getattr(df, op)()
56
+ tm.assert_series_equal(result, expected)
57
+
58
+
59
+ @pytest.mark.parametrize(
60
+ "op, expected",
61
+ [
62
+ ["sum", array([1, 3], dtype="Int64")],
63
+ ["prod", array([1, 3], dtype="Int64")],
64
+ ["min", array([1, 3], dtype="Int64")],
65
+ ["max", array([1, 3], dtype="Int64")],
66
+ ["mean", array([1, 3], dtype="Float64")],
67
+ ["median", array([1, 3], dtype="Float64")],
68
+ ["var", array([pd.NA], dtype="Float64")],
69
+ ["std", array([pd.NA], dtype="Float64")],
70
+ ["skew", array([pd.NA], dtype="Float64")],
71
+ ["any", array([True, True], dtype="boolean")],
72
+ ["all", array([True, True], dtype="boolean")],
73
+ ],
74
+ )
75
+ def test_groupby_reductions(op, expected):
76
+ df = DataFrame(
77
+ {
78
+ "A": ["a", "b", "b"],
79
+ "B": array([1, None, 3], dtype="Int64"),
80
+ }
81
+ )
82
+ result = getattr(df.groupby("A"), op)()
83
+ expected = DataFrame(expected, index=pd.Index(["a", "b"], name="A"), columns=["B"])
84
+
85
+ tm.assert_frame_equal(result, expected)
86
+
87
+
88
+ @pytest.mark.parametrize(
89
+ "op, expected",
90
+ [
91
+ ["sum", Series([4, 4], index=["B", "C"], dtype="Float64")],
92
+ ["prod", Series([3, 3], index=["B", "C"], dtype="Float64")],
93
+ ["min", Series([1, 1], index=["B", "C"], dtype="Float64")],
94
+ ["max", Series([3, 3], index=["B", "C"], dtype="Float64")],
95
+ ["mean", Series([2, 2], index=["B", "C"], dtype="Float64")],
96
+ ["median", Series([2, 2], index=["B", "C"], dtype="Float64")],
97
+ ["var", Series([2, 2], index=["B", "C"], dtype="Float64")],
98
+ ["std", Series([2**0.5, 2**0.5], index=["B", "C"], dtype="Float64")],
99
+ ["skew", Series([pd.NA, pd.NA], index=["B", "C"], dtype="Float64")],
100
+ ["kurt", Series([pd.NA, pd.NA], index=["B", "C"], dtype="Float64")],
101
+ ["any", Series([True, True, True], index=["A", "B", "C"], dtype="boolean")],
102
+ ["all", Series([True, True, True], index=["A", "B", "C"], dtype="boolean")],
103
+ ],
104
+ )
105
+ def test_mixed_reductions(op, expected, using_infer_string):
106
+ if op in ["any", "all"] and using_infer_string:
107
+ expected = expected.astype("bool")
108
+ df = DataFrame(
109
+ {
110
+ "A": ["a", "b", "b"],
111
+ "B": [1, None, 3],
112
+ "C": array([1, None, 3], dtype="Int64"),
113
+ }
114
+ )
115
+
116
+ # series
117
+ result = getattr(df.C, op)()
118
+ tm.assert_equal(result, expected["C"])
119
+
120
+ # frame
121
+ if op in ["any", "all"]:
122
+ result = getattr(df, op)()
123
+ else:
124
+ result = getattr(df, op)(numeric_only=True)
125
+ tm.assert_series_equal(result, expected)
venv/lib/python3.10/site-packages/pandas/tests/arrays/integer/test_repr.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ from pandas.core.arrays.integer import (
6
+ Int8Dtype,
7
+ Int16Dtype,
8
+ Int32Dtype,
9
+ Int64Dtype,
10
+ UInt8Dtype,
11
+ UInt16Dtype,
12
+ UInt32Dtype,
13
+ UInt64Dtype,
14
+ )
15
+
16
+
17
+ def test_dtypes(dtype):
18
+ # smoke tests on auto dtype construction
19
+
20
+ if dtype.is_signed_integer:
21
+ assert np.dtype(dtype.type).kind == "i"
22
+ else:
23
+ assert np.dtype(dtype.type).kind == "u"
24
+ assert dtype.name is not None
25
+
26
+
27
+ @pytest.mark.parametrize(
28
+ "dtype, expected",
29
+ [
30
+ (Int8Dtype(), "Int8Dtype()"),
31
+ (Int16Dtype(), "Int16Dtype()"),
32
+ (Int32Dtype(), "Int32Dtype()"),
33
+ (Int64Dtype(), "Int64Dtype()"),
34
+ (UInt8Dtype(), "UInt8Dtype()"),
35
+ (UInt16Dtype(), "UInt16Dtype()"),
36
+ (UInt32Dtype(), "UInt32Dtype()"),
37
+ (UInt64Dtype(), "UInt64Dtype()"),
38
+ ],
39
+ )
40
+ def test_repr_dtype(dtype, expected):
41
+ assert repr(dtype) == expected
42
+
43
+
44
+ def test_repr_array():
45
+ result = repr(pd.array([1, None, 3]))
46
+ expected = "<IntegerArray>\n[1, <NA>, 3]\nLength: 3, dtype: Int64"
47
+ assert result == expected
48
+
49
+
50
+ def test_repr_array_long():
51
+ data = pd.array([1, 2, None] * 1000)
52
+ expected = (
53
+ "<IntegerArray>\n"
54
+ "[ 1, 2, <NA>, 1, 2, <NA>, 1, 2, <NA>, 1,\n"
55
+ " ...\n"
56
+ " <NA>, 1, 2, <NA>, 1, 2, <NA>, 1, 2, <NA>]\n"
57
+ "Length: 3000, dtype: Int64"
58
+ )
59
+ result = repr(data)
60
+ assert result == expected
61
+
62
+
63
+ def test_frame_repr(data_missing):
64
+ df = pd.DataFrame({"A": data_missing})
65
+ result = repr(df)
66
+ expected = " A\n0 <NA>\n1 1"
67
+ assert result == expected
venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (183 Bytes). View file
 
venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/conftest.cpython-310.pyc ADDED
Binary file (5.36 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/generate_legacy_storage_files.cpython-310.pyc ADDED
Binary file (8.29 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/test_clipboard.cpython-310.pyc ADDED
Binary file (12.1 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/test_common.cpython-310.pyc ADDED
Binary file (22.3 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/test_compression.cpython-310.pyc ADDED
Binary file (11 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/test_feather.cpython-310.pyc ADDED
Binary file (9.17 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/test_fsspec.cpython-310.pyc ADDED
Binary file (9.35 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/test_gbq.cpython-310.pyc ADDED
Binary file (904 Bytes). View file
 
venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/test_gcs.cpython-310.pyc ADDED
Binary file (7 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/test_html.cpython-310.pyc ADDED
Binary file (52 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/test_http_headers.cpython-310.pyc ADDED
Binary file (4.44 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/test_orc.cpython-310.pyc ADDED
Binary file (9.98 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/test_parquet.cpython-310.pyc ADDED
Binary file (40.7 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/test_pickle.cpython-310.pyc ADDED
Binary file (20.6 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/test_s3.cpython-310.pyc ADDED
Binary file (1.27 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/test_spss.cpython-310.pyc ADDED
Binary file (4.76 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/test_sql.cpython-310.pyc ADDED
Binary file (108 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/io/__pycache__/test_stata.cpython-310.pyc ADDED
Binary file (81.7 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/io/json/__init__.py ADDED
File without changes
venv/lib/python3.10/site-packages/pandas/tests/io/json/test_compression.py ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from io import (
2
+ BytesIO,
3
+ StringIO,
4
+ )
5
+
6
+ import pytest
7
+
8
+ import pandas.util._test_decorators as td
9
+
10
+ import pandas as pd
11
+ import pandas._testing as tm
12
+
13
+
14
+ def test_compression_roundtrip(compression):
15
+ df = pd.DataFrame(
16
+ [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
17
+ index=["A", "B"],
18
+ columns=["X", "Y", "Z"],
19
+ )
20
+
21
+ with tm.ensure_clean() as path:
22
+ df.to_json(path, compression=compression)
23
+ tm.assert_frame_equal(df, pd.read_json(path, compression=compression))
24
+
25
+ # explicitly ensure file was compressed.
26
+ with tm.decompress_file(path, compression) as fh:
27
+ result = fh.read().decode("utf8")
28
+ data = StringIO(result)
29
+ tm.assert_frame_equal(df, pd.read_json(data))
30
+
31
+
32
+ def test_read_zipped_json(datapath):
33
+ uncompressed_path = datapath("io", "json", "data", "tsframe_v012.json")
34
+ uncompressed_df = pd.read_json(uncompressed_path)
35
+
36
+ compressed_path = datapath("io", "json", "data", "tsframe_v012.json.zip")
37
+ compressed_df = pd.read_json(compressed_path, compression="zip")
38
+
39
+ tm.assert_frame_equal(uncompressed_df, compressed_df)
40
+
41
+
42
+ @td.skip_if_not_us_locale
43
+ @pytest.mark.single_cpu
44
+ def test_with_s3_url(compression, s3_public_bucket, s3so):
45
+ # Bucket created in tests/io/conftest.py
46
+ df = pd.read_json(StringIO('{"a": [1, 2, 3], "b": [4, 5, 6]}'))
47
+
48
+ with tm.ensure_clean() as path:
49
+ df.to_json(path, compression=compression)
50
+ with open(path, "rb") as f:
51
+ s3_public_bucket.put_object(Key="test-1", Body=f)
52
+
53
+ roundtripped_df = pd.read_json(
54
+ f"s3://{s3_public_bucket.name}/test-1",
55
+ compression=compression,
56
+ storage_options=s3so,
57
+ )
58
+ tm.assert_frame_equal(df, roundtripped_df)
59
+
60
+
61
+ def test_lines_with_compression(compression):
62
+ with tm.ensure_clean() as path:
63
+ df = pd.read_json(StringIO('{"a": [1, 2, 3], "b": [4, 5, 6]}'))
64
+ df.to_json(path, orient="records", lines=True, compression=compression)
65
+ roundtripped_df = pd.read_json(path, lines=True, compression=compression)
66
+ tm.assert_frame_equal(df, roundtripped_df)
67
+
68
+
69
+ def test_chunksize_with_compression(compression):
70
+ with tm.ensure_clean() as path:
71
+ df = pd.read_json(StringIO('{"a": ["foo", "bar", "baz"], "b": [4, 5, 6]}'))
72
+ df.to_json(path, orient="records", lines=True, compression=compression)
73
+
74
+ with pd.read_json(
75
+ path, lines=True, chunksize=1, compression=compression
76
+ ) as res:
77
+ roundtripped_df = pd.concat(res)
78
+ tm.assert_frame_equal(df, roundtripped_df)
79
+
80
+
81
+ def test_write_unsupported_compression_type():
82
+ df = pd.read_json(StringIO('{"a": [1, 2, 3], "b": [4, 5, 6]}'))
83
+ with tm.ensure_clean() as path:
84
+ msg = "Unrecognized compression type: unsupported"
85
+ with pytest.raises(ValueError, match=msg):
86
+ df.to_json(path, compression="unsupported")
87
+
88
+
89
+ def test_read_unsupported_compression_type():
90
+ with tm.ensure_clean() as path:
91
+ msg = "Unrecognized compression type: unsupported"
92
+ with pytest.raises(ValueError, match=msg):
93
+ pd.read_json(path, compression="unsupported")
94
+
95
+
96
+ @pytest.mark.parametrize(
97
+ "infer_string", [False, pytest.param(True, marks=td.skip_if_no("pyarrow"))]
98
+ )
99
+ @pytest.mark.parametrize("to_infer", [True, False])
100
+ @pytest.mark.parametrize("read_infer", [True, False])
101
+ def test_to_json_compression(
102
+ compression_only, read_infer, to_infer, compression_to_extension, infer_string
103
+ ):
104
+ with pd.option_context("future.infer_string", infer_string):
105
+ # see gh-15008
106
+ compression = compression_only
107
+
108
+ # We'll complete file extension subsequently.
109
+ filename = "test."
110
+ filename += compression_to_extension[compression]
111
+
112
+ df = pd.DataFrame({"A": [1]})
113
+
114
+ to_compression = "infer" if to_infer else compression
115
+ read_compression = "infer" if read_infer else compression
116
+
117
+ with tm.ensure_clean(filename) as path:
118
+ df.to_json(path, compression=to_compression)
119
+ result = pd.read_json(path, compression=read_compression)
120
+ tm.assert_frame_equal(result, df)
121
+
122
+
123
+ def test_to_json_compression_mode(compression):
124
+ # GH 39985 (read_json does not support user-provided binary files)
125
+ expected = pd.DataFrame({"A": [1]})
126
+
127
+ with BytesIO() as buffer:
128
+ expected.to_json(buffer, compression=compression)
129
+ # df = pd.read_json(buffer, compression=compression)
130
+ # tm.assert_frame_equal(expected, df)
venv/lib/python3.10/site-packages/pandas/tests/io/json/test_deprecated_kwargs.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Tests for the deprecated keyword arguments for `read_json`.
3
+ """
4
+ from io import StringIO
5
+
6
+ import pandas as pd
7
+ import pandas._testing as tm
8
+
9
+ from pandas.io.json import read_json
10
+
11
+
12
+ def test_good_kwargs():
13
+ df = pd.DataFrame({"A": [2, 4, 6], "B": [3, 6, 9]}, index=[0, 1, 2])
14
+
15
+ with tm.assert_produces_warning(None):
16
+ data1 = StringIO(df.to_json(orient="split"))
17
+ tm.assert_frame_equal(df, read_json(data1, orient="split"))
18
+ data2 = StringIO(df.to_json(orient="columns"))
19
+ tm.assert_frame_equal(df, read_json(data2, orient="columns"))
20
+ data3 = StringIO(df.to_json(orient="index"))
21
+ tm.assert_frame_equal(df, read_json(data3, orient="index"))
venv/lib/python3.10/site-packages/pandas/tests/io/json/test_json_table_schema.py ADDED
@@ -0,0 +1,873 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Tests for Table Schema integration."""
2
+ from collections import OrderedDict
3
+ from io import StringIO
4
+ import json
5
+
6
+ import numpy as np
7
+ import pytest
8
+
9
+ from pandas.core.dtypes.dtypes import (
10
+ CategoricalDtype,
11
+ DatetimeTZDtype,
12
+ PeriodDtype,
13
+ )
14
+
15
+ import pandas as pd
16
+ from pandas import DataFrame
17
+ import pandas._testing as tm
18
+
19
+ from pandas.io.json._table_schema import (
20
+ as_json_table_type,
21
+ build_table_schema,
22
+ convert_json_field_to_pandas_type,
23
+ convert_pandas_type_to_json_field,
24
+ set_default_names,
25
+ )
26
+
27
+
28
+ @pytest.fixture
29
+ def df_schema():
30
+ return DataFrame(
31
+ {
32
+ "A": [1, 2, 3, 4],
33
+ "B": ["a", "b", "c", "c"],
34
+ "C": pd.date_range("2016-01-01", freq="d", periods=4),
35
+ "D": pd.timedelta_range("1h", periods=4, freq="min"),
36
+ },
37
+ index=pd.Index(range(4), name="idx"),
38
+ )
39
+
40
+
41
+ @pytest.fixture
42
+ def df_table():
43
+ return DataFrame(
44
+ {
45
+ "A": [1, 2, 3, 4],
46
+ "B": ["a", "b", "c", "c"],
47
+ "C": pd.date_range("2016-01-01", freq="d", periods=4),
48
+ "D": pd.timedelta_range("1h", periods=4, freq="min"),
49
+ "E": pd.Series(pd.Categorical(["a", "b", "c", "c"])),
50
+ "F": pd.Series(pd.Categorical(["a", "b", "c", "c"], ordered=True)),
51
+ "G": [1.0, 2.0, 3, 4.0],
52
+ "H": pd.date_range("2016-01-01", freq="d", periods=4, tz="US/Central"),
53
+ },
54
+ index=pd.Index(range(4), name="idx"),
55
+ )
56
+
57
+
58
+ class TestBuildSchema:
59
+ def test_build_table_schema(self, df_schema, using_infer_string):
60
+ result = build_table_schema(df_schema, version=False)
61
+ expected = {
62
+ "fields": [
63
+ {"name": "idx", "type": "integer"},
64
+ {"name": "A", "type": "integer"},
65
+ {"name": "B", "type": "string"},
66
+ {"name": "C", "type": "datetime"},
67
+ {"name": "D", "type": "duration"},
68
+ ],
69
+ "primaryKey": ["idx"],
70
+ }
71
+ if using_infer_string:
72
+ expected["fields"][2] = {"name": "B", "type": "any", "extDtype": "string"}
73
+ assert result == expected
74
+ result = build_table_schema(df_schema)
75
+ assert "pandas_version" in result
76
+
77
+ def test_series(self):
78
+ s = pd.Series([1, 2, 3], name="foo")
79
+ result = build_table_schema(s, version=False)
80
+ expected = {
81
+ "fields": [
82
+ {"name": "index", "type": "integer"},
83
+ {"name": "foo", "type": "integer"},
84
+ ],
85
+ "primaryKey": ["index"],
86
+ }
87
+ assert result == expected
88
+ result = build_table_schema(s)
89
+ assert "pandas_version" in result
90
+
91
+ def test_series_unnamed(self):
92
+ result = build_table_schema(pd.Series([1, 2, 3]), version=False)
93
+ expected = {
94
+ "fields": [
95
+ {"name": "index", "type": "integer"},
96
+ {"name": "values", "type": "integer"},
97
+ ],
98
+ "primaryKey": ["index"],
99
+ }
100
+ assert result == expected
101
+
102
+ def test_multiindex(self, df_schema, using_infer_string):
103
+ df = df_schema
104
+ idx = pd.MultiIndex.from_product([("a", "b"), (1, 2)])
105
+ df.index = idx
106
+
107
+ result = build_table_schema(df, version=False)
108
+ expected = {
109
+ "fields": [
110
+ {"name": "level_0", "type": "string"},
111
+ {"name": "level_1", "type": "integer"},
112
+ {"name": "A", "type": "integer"},
113
+ {"name": "B", "type": "string"},
114
+ {"name": "C", "type": "datetime"},
115
+ {"name": "D", "type": "duration"},
116
+ ],
117
+ "primaryKey": ["level_0", "level_1"],
118
+ }
119
+ if using_infer_string:
120
+ expected["fields"][0] = {
121
+ "name": "level_0",
122
+ "type": "any",
123
+ "extDtype": "string",
124
+ }
125
+ expected["fields"][3] = {"name": "B", "type": "any", "extDtype": "string"}
126
+ assert result == expected
127
+
128
+ df.index.names = ["idx0", None]
129
+ expected["fields"][0]["name"] = "idx0"
130
+ expected["primaryKey"] = ["idx0", "level_1"]
131
+ result = build_table_schema(df, version=False)
132
+ assert result == expected
133
+
134
+
135
+ class TestTableSchemaType:
136
+ @pytest.mark.parametrize("int_type", [int, np.int16, np.int32, np.int64])
137
+ def test_as_json_table_type_int_data(self, int_type):
138
+ int_data = [1, 2, 3]
139
+ assert as_json_table_type(np.array(int_data, dtype=int_type).dtype) == "integer"
140
+
141
+ @pytest.mark.parametrize("float_type", [float, np.float16, np.float32, np.float64])
142
+ def test_as_json_table_type_float_data(self, float_type):
143
+ float_data = [1.0, 2.0, 3.0]
144
+ assert (
145
+ as_json_table_type(np.array(float_data, dtype=float_type).dtype) == "number"
146
+ )
147
+
148
+ @pytest.mark.parametrize("bool_type", [bool, np.bool_])
149
+ def test_as_json_table_type_bool_data(self, bool_type):
150
+ bool_data = [True, False]
151
+ assert (
152
+ as_json_table_type(np.array(bool_data, dtype=bool_type).dtype) == "boolean"
153
+ )
154
+
155
+ @pytest.mark.parametrize(
156
+ "date_data",
157
+ [
158
+ pd.to_datetime(["2016"]),
159
+ pd.to_datetime(["2016"], utc=True),
160
+ pd.Series(pd.to_datetime(["2016"])),
161
+ pd.Series(pd.to_datetime(["2016"], utc=True)),
162
+ pd.period_range("2016", freq="Y", periods=3),
163
+ ],
164
+ )
165
+ def test_as_json_table_type_date_data(self, date_data):
166
+ assert as_json_table_type(date_data.dtype) == "datetime"
167
+
168
+ @pytest.mark.parametrize(
169
+ "str_data",
170
+ [pd.Series(["a", "b"], dtype=object), pd.Index(["a", "b"], dtype=object)],
171
+ )
172
+ def test_as_json_table_type_string_data(self, str_data):
173
+ assert as_json_table_type(str_data.dtype) == "string"
174
+
175
+ @pytest.mark.parametrize(
176
+ "cat_data",
177
+ [
178
+ pd.Categorical(["a"]),
179
+ pd.Categorical([1]),
180
+ pd.Series(pd.Categorical([1])),
181
+ pd.CategoricalIndex([1]),
182
+ pd.Categorical([1]),
183
+ ],
184
+ )
185
+ def test_as_json_table_type_categorical_data(self, cat_data):
186
+ assert as_json_table_type(cat_data.dtype) == "any"
187
+
188
+ # ------
189
+ # dtypes
190
+ # ------
191
+ @pytest.mark.parametrize("int_dtype", [int, np.int16, np.int32, np.int64])
192
+ def test_as_json_table_type_int_dtypes(self, int_dtype):
193
+ assert as_json_table_type(int_dtype) == "integer"
194
+
195
+ @pytest.mark.parametrize("float_dtype", [float, np.float16, np.float32, np.float64])
196
+ def test_as_json_table_type_float_dtypes(self, float_dtype):
197
+ assert as_json_table_type(float_dtype) == "number"
198
+
199
+ @pytest.mark.parametrize("bool_dtype", [bool, np.bool_])
200
+ def test_as_json_table_type_bool_dtypes(self, bool_dtype):
201
+ assert as_json_table_type(bool_dtype) == "boolean"
202
+
203
+ @pytest.mark.parametrize(
204
+ "date_dtype",
205
+ [
206
+ np.dtype("<M8[ns]"),
207
+ PeriodDtype("D"),
208
+ DatetimeTZDtype("ns", "US/Central"),
209
+ ],
210
+ )
211
+ def test_as_json_table_type_date_dtypes(self, date_dtype):
212
+ # TODO: datedate.date? datetime.time?
213
+ assert as_json_table_type(date_dtype) == "datetime"
214
+
215
+ @pytest.mark.parametrize("td_dtype", [np.dtype("<m8[ns]")])
216
+ def test_as_json_table_type_timedelta_dtypes(self, td_dtype):
217
+ assert as_json_table_type(td_dtype) == "duration"
218
+
219
+ @pytest.mark.parametrize("str_dtype", [object]) # TODO(GH#14904) flesh out dtypes?
220
+ def test_as_json_table_type_string_dtypes(self, str_dtype):
221
+ assert as_json_table_type(str_dtype) == "string"
222
+
223
+ def test_as_json_table_type_categorical_dtypes(self):
224
+ assert as_json_table_type(pd.Categorical(["a"]).dtype) == "any"
225
+ assert as_json_table_type(CategoricalDtype()) == "any"
226
+
227
+
228
+ class TestTableOrient:
229
+ def test_build_series(self):
230
+ s = pd.Series([1, 2], name="a")
231
+ s.index.name = "id"
232
+ result = s.to_json(orient="table", date_format="iso")
233
+ result = json.loads(result, object_pairs_hook=OrderedDict)
234
+
235
+ assert "pandas_version" in result["schema"]
236
+ result["schema"].pop("pandas_version")
237
+
238
+ fields = [{"name": "id", "type": "integer"}, {"name": "a", "type": "integer"}]
239
+
240
+ schema = {"fields": fields, "primaryKey": ["id"]}
241
+
242
+ expected = OrderedDict(
243
+ [
244
+ ("schema", schema),
245
+ (
246
+ "data",
247
+ [
248
+ OrderedDict([("id", 0), ("a", 1)]),
249
+ OrderedDict([("id", 1), ("a", 2)]),
250
+ ],
251
+ ),
252
+ ]
253
+ )
254
+
255
+ assert result == expected
256
+
257
+ def test_read_json_from_to_json_results(self):
258
+ # GH32383
259
+ df = DataFrame(
260
+ {
261
+ "_id": {"row_0": 0},
262
+ "category": {"row_0": "Goods"},
263
+ "recommender_id": {"row_0": 3},
264
+ "recommender_name_jp": {"row_0": "浦田"},
265
+ "recommender_name_en": {"row_0": "Urata"},
266
+ "name_jp": {"row_0": "博多人形(松尾吉将まつお よしまさ)"},
267
+ "name_en": {"row_0": "Hakata Dolls Matsuo"},
268
+ }
269
+ )
270
+
271
+ result1 = pd.read_json(StringIO(df.to_json()))
272
+ result2 = DataFrame.from_dict(json.loads(df.to_json()))
273
+ tm.assert_frame_equal(result1, df)
274
+ tm.assert_frame_equal(result2, df)
275
+
276
+ def test_to_json(self, df_table, using_infer_string):
277
+ df = df_table
278
+ df.index.name = "idx"
279
+ result = df.to_json(orient="table", date_format="iso")
280
+ result = json.loads(result, object_pairs_hook=OrderedDict)
281
+
282
+ assert "pandas_version" in result["schema"]
283
+ result["schema"].pop("pandas_version")
284
+
285
+ fields = [
286
+ {"name": "idx", "type": "integer"},
287
+ {"name": "A", "type": "integer"},
288
+ {"name": "B", "type": "string"},
289
+ {"name": "C", "type": "datetime"},
290
+ {"name": "D", "type": "duration"},
291
+ {
292
+ "constraints": {"enum": ["a", "b", "c"]},
293
+ "name": "E",
294
+ "ordered": False,
295
+ "type": "any",
296
+ },
297
+ {
298
+ "constraints": {"enum": ["a", "b", "c"]},
299
+ "name": "F",
300
+ "ordered": True,
301
+ "type": "any",
302
+ },
303
+ {"name": "G", "type": "number"},
304
+ {"name": "H", "type": "datetime", "tz": "US/Central"},
305
+ ]
306
+
307
+ if using_infer_string:
308
+ fields[2] = {"name": "B", "type": "any", "extDtype": "string"}
309
+
310
+ schema = {"fields": fields, "primaryKey": ["idx"]}
311
+ data = [
312
+ OrderedDict(
313
+ [
314
+ ("idx", 0),
315
+ ("A", 1),
316
+ ("B", "a"),
317
+ ("C", "2016-01-01T00:00:00.000"),
318
+ ("D", "P0DT1H0M0S"),
319
+ ("E", "a"),
320
+ ("F", "a"),
321
+ ("G", 1.0),
322
+ ("H", "2016-01-01T06:00:00.000Z"),
323
+ ]
324
+ ),
325
+ OrderedDict(
326
+ [
327
+ ("idx", 1),
328
+ ("A", 2),
329
+ ("B", "b"),
330
+ ("C", "2016-01-02T00:00:00.000"),
331
+ ("D", "P0DT1H1M0S"),
332
+ ("E", "b"),
333
+ ("F", "b"),
334
+ ("G", 2.0),
335
+ ("H", "2016-01-02T06:00:00.000Z"),
336
+ ]
337
+ ),
338
+ OrderedDict(
339
+ [
340
+ ("idx", 2),
341
+ ("A", 3),
342
+ ("B", "c"),
343
+ ("C", "2016-01-03T00:00:00.000"),
344
+ ("D", "P0DT1H2M0S"),
345
+ ("E", "c"),
346
+ ("F", "c"),
347
+ ("G", 3.0),
348
+ ("H", "2016-01-03T06:00:00.000Z"),
349
+ ]
350
+ ),
351
+ OrderedDict(
352
+ [
353
+ ("idx", 3),
354
+ ("A", 4),
355
+ ("B", "c"),
356
+ ("C", "2016-01-04T00:00:00.000"),
357
+ ("D", "P0DT1H3M0S"),
358
+ ("E", "c"),
359
+ ("F", "c"),
360
+ ("G", 4.0),
361
+ ("H", "2016-01-04T06:00:00.000Z"),
362
+ ]
363
+ ),
364
+ ]
365
+ expected = OrderedDict([("schema", schema), ("data", data)])
366
+
367
+ assert result == expected
368
+
369
+ def test_to_json_float_index(self):
370
+ data = pd.Series(1, index=[1.0, 2.0])
371
+ result = data.to_json(orient="table", date_format="iso")
372
+ result = json.loads(result, object_pairs_hook=OrderedDict)
373
+ result["schema"].pop("pandas_version")
374
+
375
+ expected = OrderedDict(
376
+ [
377
+ (
378
+ "schema",
379
+ {
380
+ "fields": [
381
+ {"name": "index", "type": "number"},
382
+ {"name": "values", "type": "integer"},
383
+ ],
384
+ "primaryKey": ["index"],
385
+ },
386
+ ),
387
+ (
388
+ "data",
389
+ [
390
+ OrderedDict([("index", 1.0), ("values", 1)]),
391
+ OrderedDict([("index", 2.0), ("values", 1)]),
392
+ ],
393
+ ),
394
+ ]
395
+ )
396
+
397
+ assert result == expected
398
+
399
+ def test_to_json_period_index(self):
400
+ idx = pd.period_range("2016", freq="Q-JAN", periods=2)
401
+ data = pd.Series(1, idx)
402
+ result = data.to_json(orient="table", date_format="iso")
403
+ result = json.loads(result, object_pairs_hook=OrderedDict)
404
+ result["schema"].pop("pandas_version")
405
+
406
+ fields = [
407
+ {"freq": "QE-JAN", "name": "index", "type": "datetime"},
408
+ {"name": "values", "type": "integer"},
409
+ ]
410
+
411
+ schema = {"fields": fields, "primaryKey": ["index"]}
412
+ data = [
413
+ OrderedDict([("index", "2015-11-01T00:00:00.000"), ("values", 1)]),
414
+ OrderedDict([("index", "2016-02-01T00:00:00.000"), ("values", 1)]),
415
+ ]
416
+ expected = OrderedDict([("schema", schema), ("data", data)])
417
+
418
+ assert result == expected
419
+
420
+ def test_to_json_categorical_index(self):
421
+ data = pd.Series(1, pd.CategoricalIndex(["a", "b"]))
422
+ result = data.to_json(orient="table", date_format="iso")
423
+ result = json.loads(result, object_pairs_hook=OrderedDict)
424
+ result["schema"].pop("pandas_version")
425
+
426
+ expected = OrderedDict(
427
+ [
428
+ (
429
+ "schema",
430
+ {
431
+ "fields": [
432
+ {
433
+ "name": "index",
434
+ "type": "any",
435
+ "constraints": {"enum": ["a", "b"]},
436
+ "ordered": False,
437
+ },
438
+ {"name": "values", "type": "integer"},
439
+ ],
440
+ "primaryKey": ["index"],
441
+ },
442
+ ),
443
+ (
444
+ "data",
445
+ [
446
+ OrderedDict([("index", "a"), ("values", 1)]),
447
+ OrderedDict([("index", "b"), ("values", 1)]),
448
+ ],
449
+ ),
450
+ ]
451
+ )
452
+
453
+ assert result == expected
454
+
455
+ def test_date_format_raises(self, df_table):
456
+ msg = (
457
+ "Trying to write with `orient='table'` and `date_format='epoch'`. Table "
458
+ "Schema requires dates to be formatted with `date_format='iso'`"
459
+ )
460
+ with pytest.raises(ValueError, match=msg):
461
+ df_table.to_json(orient="table", date_format="epoch")
462
+
463
+ # others work
464
+ df_table.to_json(orient="table", date_format="iso")
465
+ df_table.to_json(orient="table")
466
+
467
+ def test_convert_pandas_type_to_json_field_int(self, index_or_series):
468
+ kind = index_or_series
469
+ data = [1, 2, 3]
470
+ result = convert_pandas_type_to_json_field(kind(data, name="name"))
471
+ expected = {"name": "name", "type": "integer"}
472
+ assert result == expected
473
+
474
+ def test_convert_pandas_type_to_json_field_float(self, index_or_series):
475
+ kind = index_or_series
476
+ data = [1.0, 2.0, 3.0]
477
+ result = convert_pandas_type_to_json_field(kind(data, name="name"))
478
+ expected = {"name": "name", "type": "number"}
479
+ assert result == expected
480
+
481
+ @pytest.mark.parametrize(
482
+ "dt_args,extra_exp", [({}, {}), ({"utc": True}, {"tz": "UTC"})]
483
+ )
484
+ @pytest.mark.parametrize("wrapper", [None, pd.Series])
485
+ def test_convert_pandas_type_to_json_field_datetime(
486
+ self, dt_args, extra_exp, wrapper
487
+ ):
488
+ data = [1.0, 2.0, 3.0]
489
+ data = pd.to_datetime(data, **dt_args)
490
+ if wrapper is pd.Series:
491
+ data = pd.Series(data, name="values")
492
+ result = convert_pandas_type_to_json_field(data)
493
+ expected = {"name": "values", "type": "datetime"}
494
+ expected.update(extra_exp)
495
+ assert result == expected
496
+
497
+ def test_convert_pandas_type_to_json_period_range(self):
498
+ arr = pd.period_range("2016", freq="Y-DEC", periods=4)
499
+ result = convert_pandas_type_to_json_field(arr)
500
+ expected = {"name": "values", "type": "datetime", "freq": "YE-DEC"}
501
+ assert result == expected
502
+
503
+ @pytest.mark.parametrize("kind", [pd.Categorical, pd.CategoricalIndex])
504
+ @pytest.mark.parametrize("ordered", [True, False])
505
+ def test_convert_pandas_type_to_json_field_categorical(self, kind, ordered):
506
+ data = ["a", "b", "c"]
507
+ if kind is pd.Categorical:
508
+ arr = pd.Series(kind(data, ordered=ordered), name="cats")
509
+ elif kind is pd.CategoricalIndex:
510
+ arr = kind(data, ordered=ordered, name="cats")
511
+
512
+ result = convert_pandas_type_to_json_field(arr)
513
+ expected = {
514
+ "name": "cats",
515
+ "type": "any",
516
+ "constraints": {"enum": data},
517
+ "ordered": ordered,
518
+ }
519
+ assert result == expected
520
+
521
+ @pytest.mark.parametrize(
522
+ "inp,exp",
523
+ [
524
+ ({"type": "integer"}, "int64"),
525
+ ({"type": "number"}, "float64"),
526
+ ({"type": "boolean"}, "bool"),
527
+ ({"type": "duration"}, "timedelta64"),
528
+ ({"type": "datetime"}, "datetime64[ns]"),
529
+ ({"type": "datetime", "tz": "US/Hawaii"}, "datetime64[ns, US/Hawaii]"),
530
+ ({"type": "any"}, "object"),
531
+ (
532
+ {
533
+ "type": "any",
534
+ "constraints": {"enum": ["a", "b", "c"]},
535
+ "ordered": False,
536
+ },
537
+ CategoricalDtype(categories=["a", "b", "c"], ordered=False),
538
+ ),
539
+ (
540
+ {
541
+ "type": "any",
542
+ "constraints": {"enum": ["a", "b", "c"]},
543
+ "ordered": True,
544
+ },
545
+ CategoricalDtype(categories=["a", "b", "c"], ordered=True),
546
+ ),
547
+ ({"type": "string"}, "object"),
548
+ ],
549
+ )
550
+ def test_convert_json_field_to_pandas_type(self, inp, exp):
551
+ field = {"name": "foo"}
552
+ field.update(inp)
553
+ assert convert_json_field_to_pandas_type(field) == exp
554
+
555
+ @pytest.mark.parametrize("inp", ["geopoint", "geojson", "fake_type"])
556
+ def test_convert_json_field_to_pandas_type_raises(self, inp):
557
+ field = {"type": inp}
558
+ with pytest.raises(
559
+ ValueError, match=f"Unsupported or invalid field type: {inp}"
560
+ ):
561
+ convert_json_field_to_pandas_type(field)
562
+
563
+ def test_categorical(self):
564
+ s = pd.Series(pd.Categorical(["a", "b", "a"]))
565
+ s.index.name = "idx"
566
+ result = s.to_json(orient="table", date_format="iso")
567
+ result = json.loads(result, object_pairs_hook=OrderedDict)
568
+ result["schema"].pop("pandas_version")
569
+
570
+ fields = [
571
+ {"name": "idx", "type": "integer"},
572
+ {
573
+ "constraints": {"enum": ["a", "b"]},
574
+ "name": "values",
575
+ "ordered": False,
576
+ "type": "any",
577
+ },
578
+ ]
579
+
580
+ expected = OrderedDict(
581
+ [
582
+ ("schema", {"fields": fields, "primaryKey": ["idx"]}),
583
+ (
584
+ "data",
585
+ [
586
+ OrderedDict([("idx", 0), ("values", "a")]),
587
+ OrderedDict([("idx", 1), ("values", "b")]),
588
+ OrderedDict([("idx", 2), ("values", "a")]),
589
+ ],
590
+ ),
591
+ ]
592
+ )
593
+
594
+ assert result == expected
595
+
596
+ @pytest.mark.parametrize(
597
+ "idx,nm,prop",
598
+ [
599
+ (pd.Index([1]), "index", "name"),
600
+ (pd.Index([1], name="myname"), "myname", "name"),
601
+ (
602
+ pd.MultiIndex.from_product([("a", "b"), ("c", "d")]),
603
+ ["level_0", "level_1"],
604
+ "names",
605
+ ),
606
+ (
607
+ pd.MultiIndex.from_product(
608
+ [("a", "b"), ("c", "d")], names=["n1", "n2"]
609
+ ),
610
+ ["n1", "n2"],
611
+ "names",
612
+ ),
613
+ (
614
+ pd.MultiIndex.from_product(
615
+ [("a", "b"), ("c", "d")], names=["n1", None]
616
+ ),
617
+ ["n1", "level_1"],
618
+ "names",
619
+ ),
620
+ ],
621
+ )
622
+ def test_set_names_unset(self, idx, nm, prop):
623
+ data = pd.Series(1, idx)
624
+ result = set_default_names(data)
625
+ assert getattr(result.index, prop) == nm
626
+
627
+ @pytest.mark.parametrize(
628
+ "idx",
629
+ [
630
+ pd.Index([], name="index"),
631
+ pd.MultiIndex.from_arrays([["foo"], ["bar"]], names=("level_0", "level_1")),
632
+ pd.MultiIndex.from_arrays([["foo"], ["bar"]], names=("foo", "level_1")),
633
+ ],
634
+ )
635
+ def test_warns_non_roundtrippable_names(self, idx):
636
+ # GH 19130
637
+ df = DataFrame(index=idx)
638
+ df.index.name = "index"
639
+ with tm.assert_produces_warning():
640
+ set_default_names(df)
641
+
642
+ def test_timestamp_in_columns(self):
643
+ df = DataFrame(
644
+ [[1, 2]], columns=[pd.Timestamp("2016"), pd.Timedelta(10, unit="s")]
645
+ )
646
+ result = df.to_json(orient="table")
647
+ js = json.loads(result)
648
+ assert js["schema"]["fields"][1]["name"] == "2016-01-01T00:00:00.000"
649
+ assert js["schema"]["fields"][2]["name"] == "P0DT0H0M10S"
650
+
651
+ @pytest.mark.parametrize(
652
+ "case",
653
+ [
654
+ pd.Series([1], index=pd.Index([1], name="a"), name="a"),
655
+ DataFrame({"A": [1]}, index=pd.Index([1], name="A")),
656
+ DataFrame(
657
+ {"A": [1]},
658
+ index=pd.MultiIndex.from_arrays([["a"], [1]], names=["A", "a"]),
659
+ ),
660
+ ],
661
+ )
662
+ def test_overlapping_names(self, case):
663
+ with pytest.raises(ValueError, match="Overlapping"):
664
+ case.to_json(orient="table")
665
+
666
+ def test_mi_falsey_name(self):
667
+ # GH 16203
668
+ df = DataFrame(
669
+ np.random.default_rng(2).standard_normal((4, 4)),
670
+ index=pd.MultiIndex.from_product([("A", "B"), ("a", "b")]),
671
+ )
672
+ result = [x["name"] for x in build_table_schema(df)["fields"]]
673
+ assert result == ["level_0", "level_1", 0, 1, 2, 3]
674
+
675
+
676
+ class TestTableOrientReader:
677
+ @pytest.mark.parametrize(
678
+ "index_nm",
679
+ [None, "idx", pytest.param("index", marks=pytest.mark.xfail), "level_0"],
680
+ )
681
+ @pytest.mark.parametrize(
682
+ "vals",
683
+ [
684
+ {"ints": [1, 2, 3, 4]},
685
+ {"objects": ["a", "b", "c", "d"]},
686
+ {"objects": ["1", "2", "3", "4"]},
687
+ {"date_ranges": pd.date_range("2016-01-01", freq="d", periods=4)},
688
+ {"categoricals": pd.Series(pd.Categorical(["a", "b", "c", "c"]))},
689
+ {
690
+ "ordered_cats": pd.Series(
691
+ pd.Categorical(["a", "b", "c", "c"], ordered=True)
692
+ )
693
+ },
694
+ {"floats": [1.0, 2.0, 3.0, 4.0]},
695
+ {"floats": [1.1, 2.2, 3.3, 4.4]},
696
+ {"bools": [True, False, False, True]},
697
+ {
698
+ "timezones": pd.date_range(
699
+ "2016-01-01", freq="d", periods=4, tz="US/Central"
700
+ ) # added in # GH 35973
701
+ },
702
+ ],
703
+ )
704
+ def test_read_json_table_orient(self, index_nm, vals, recwarn):
705
+ df = DataFrame(vals, index=pd.Index(range(4), name=index_nm))
706
+ out = df.to_json(orient="table")
707
+ result = pd.read_json(out, orient="table")
708
+ tm.assert_frame_equal(df, result)
709
+
710
+ @pytest.mark.parametrize("index_nm", [None, "idx", "index"])
711
+ @pytest.mark.parametrize(
712
+ "vals",
713
+ [{"timedeltas": pd.timedelta_range("1h", periods=4, freq="min")}],
714
+ )
715
+ def test_read_json_table_orient_raises(self, index_nm, vals, recwarn):
716
+ df = DataFrame(vals, index=pd.Index(range(4), name=index_nm))
717
+ out = df.to_json(orient="table")
718
+ with pytest.raises(NotImplementedError, match="can not yet read "):
719
+ pd.read_json(out, orient="table")
720
+
721
+ @pytest.mark.parametrize(
722
+ "index_nm",
723
+ [None, "idx", pytest.param("index", marks=pytest.mark.xfail), "level_0"],
724
+ )
725
+ @pytest.mark.parametrize(
726
+ "vals",
727
+ [
728
+ {"ints": [1, 2, 3, 4]},
729
+ {"objects": ["a", "b", "c", "d"]},
730
+ {"objects": ["1", "2", "3", "4"]},
731
+ {"date_ranges": pd.date_range("2016-01-01", freq="d", periods=4)},
732
+ {"categoricals": pd.Series(pd.Categorical(["a", "b", "c", "c"]))},
733
+ {
734
+ "ordered_cats": pd.Series(
735
+ pd.Categorical(["a", "b", "c", "c"], ordered=True)
736
+ )
737
+ },
738
+ {"floats": [1.0, 2.0, 3.0, 4.0]},
739
+ {"floats": [1.1, 2.2, 3.3, 4.4]},
740
+ {"bools": [True, False, False, True]},
741
+ {
742
+ "timezones": pd.date_range(
743
+ "2016-01-01", freq="d", periods=4, tz="US/Central"
744
+ ) # added in # GH 35973
745
+ },
746
+ ],
747
+ )
748
+ def test_read_json_table_period_orient(self, index_nm, vals, recwarn):
749
+ df = DataFrame(
750
+ vals,
751
+ index=pd.Index(
752
+ (pd.Period(f"2022Q{q}") for q in range(1, 5)), name=index_nm
753
+ ),
754
+ )
755
+ out = df.to_json(orient="table")
756
+ result = pd.read_json(out, orient="table")
757
+ tm.assert_frame_equal(df, result)
758
+
759
+ @pytest.mark.parametrize(
760
+ "idx",
761
+ [
762
+ pd.Index(range(4)),
763
+ pd.date_range(
764
+ "2020-08-30",
765
+ freq="d",
766
+ periods=4,
767
+ )._with_freq(None),
768
+ pd.date_range(
769
+ "2020-08-30", freq="d", periods=4, tz="US/Central"
770
+ )._with_freq(None),
771
+ pd.MultiIndex.from_product(
772
+ [
773
+ pd.date_range("2020-08-30", freq="d", periods=2, tz="US/Central"),
774
+ ["x", "y"],
775
+ ],
776
+ ),
777
+ ],
778
+ )
779
+ @pytest.mark.parametrize(
780
+ "vals",
781
+ [
782
+ {"floats": [1.1, 2.2, 3.3, 4.4]},
783
+ {"dates": pd.date_range("2020-08-30", freq="d", periods=4)},
784
+ {
785
+ "timezones": pd.date_range(
786
+ "2020-08-30", freq="d", periods=4, tz="Europe/London"
787
+ )
788
+ },
789
+ ],
790
+ )
791
+ def test_read_json_table_timezones_orient(self, idx, vals, recwarn):
792
+ # GH 35973
793
+ df = DataFrame(vals, index=idx)
794
+ out = df.to_json(orient="table")
795
+ result = pd.read_json(out, orient="table")
796
+ tm.assert_frame_equal(df, result)
797
+
798
+ def test_comprehensive(self):
799
+ df = DataFrame(
800
+ {
801
+ "A": [1, 2, 3, 4],
802
+ "B": ["a", "b", "c", "c"],
803
+ "C": pd.date_range("2016-01-01", freq="d", periods=4),
804
+ # 'D': pd.timedelta_range('1h', periods=4, freq='min'),
805
+ "E": pd.Series(pd.Categorical(["a", "b", "c", "c"])),
806
+ "F": pd.Series(pd.Categorical(["a", "b", "c", "c"], ordered=True)),
807
+ "G": [1.1, 2.2, 3.3, 4.4],
808
+ "H": pd.date_range("2016-01-01", freq="d", periods=4, tz="US/Central"),
809
+ "I": [True, False, False, True],
810
+ },
811
+ index=pd.Index(range(4), name="idx"),
812
+ )
813
+
814
+ out = StringIO(df.to_json(orient="table"))
815
+ result = pd.read_json(out, orient="table")
816
+ tm.assert_frame_equal(df, result)
817
+
818
+ @pytest.mark.parametrize(
819
+ "index_names",
820
+ [[None, None], ["foo", "bar"], ["foo", None], [None, "foo"], ["index", "foo"]],
821
+ )
822
+ def test_multiindex(self, index_names):
823
+ # GH 18912
824
+ df = DataFrame(
825
+ [["Arr", "alpha", [1, 2, 3, 4]], ["Bee", "Beta", [10, 20, 30, 40]]],
826
+ index=[["A", "B"], ["Null", "Eins"]],
827
+ columns=["Aussprache", "Griechisch", "Args"],
828
+ )
829
+ df.index.names = index_names
830
+ out = StringIO(df.to_json(orient="table"))
831
+ result = pd.read_json(out, orient="table")
832
+ tm.assert_frame_equal(df, result)
833
+
834
+ def test_empty_frame_roundtrip(self):
835
+ # GH 21287
836
+ df = DataFrame(columns=["a", "b", "c"])
837
+ expected = df.copy()
838
+ out = StringIO(df.to_json(orient="table"))
839
+ result = pd.read_json(out, orient="table")
840
+ tm.assert_frame_equal(expected, result)
841
+
842
+ def test_read_json_orient_table_old_schema_version(self):
843
+ df_json = """
844
+ {
845
+ "schema":{
846
+ "fields":[
847
+ {"name":"index","type":"integer"},
848
+ {"name":"a","type":"string"}
849
+ ],
850
+ "primaryKey":["index"],
851
+ "pandas_version":"0.20.0"
852
+ },
853
+ "data":[
854
+ {"index":0,"a":1},
855
+ {"index":1,"a":2.0},
856
+ {"index":2,"a":"s"}
857
+ ]
858
+ }
859
+ """
860
+ expected = DataFrame({"a": [1, 2.0, "s"]})
861
+ result = pd.read_json(StringIO(df_json), orient="table")
862
+ tm.assert_frame_equal(expected, result)
863
+
864
+ @pytest.mark.parametrize("freq", ["M", "2M", "Q", "2Q", "Y", "2Y"])
865
+ def test_read_json_table_orient_period_depr_freq(self, freq, recwarn):
866
+ # GH#9586
867
+ df = DataFrame(
868
+ {"ints": [1, 2]},
869
+ index=pd.PeriodIndex(["2020-01", "2021-06"], freq=freq),
870
+ )
871
+ out = df.to_json(orient="table")
872
+ result = pd.read_json(out, orient="table")
873
+ tm.assert_frame_equal(df, result)
venv/lib/python3.10/site-packages/pandas/tests/io/json/test_readlines.py ADDED
@@ -0,0 +1,543 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections.abc import Iterator
2
+ from io import StringIO
3
+ from pathlib import Path
4
+
5
+ import numpy as np
6
+ import pytest
7
+
8
+ import pandas as pd
9
+ from pandas import (
10
+ DataFrame,
11
+ read_json,
12
+ )
13
+ import pandas._testing as tm
14
+
15
+ from pandas.io.json._json import JsonReader
16
+
17
+ pytestmark = pytest.mark.filterwarnings(
18
+ "ignore:Passing a BlockManager to DataFrame:DeprecationWarning"
19
+ )
20
+
21
+
22
+ @pytest.fixture
23
+ def lines_json_df():
24
+ df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
25
+ return df.to_json(lines=True, orient="records")
26
+
27
+
28
+ @pytest.fixture(params=["ujson", "pyarrow"])
29
+ def engine(request):
30
+ if request.param == "pyarrow":
31
+ pytest.importorskip("pyarrow.json")
32
+ return request.param
33
+
34
+
35
+ def test_read_jsonl():
36
+ # GH9180
37
+ result = read_json(StringIO('{"a": 1, "b": 2}\n{"b":2, "a" :1}\n'), lines=True)
38
+ expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"])
39
+ tm.assert_frame_equal(result, expected)
40
+
41
+
42
+ def test_read_jsonl_engine_pyarrow(datapath, engine):
43
+ result = read_json(
44
+ datapath("io", "json", "data", "line_delimited.json"),
45
+ lines=True,
46
+ engine=engine,
47
+ )
48
+ expected = DataFrame({"a": [1, 3, 5], "b": [2, 4, 6]})
49
+ tm.assert_frame_equal(result, expected)
50
+
51
+
52
+ def test_read_datetime(request, engine):
53
+ # GH33787
54
+ if engine == "pyarrow":
55
+ # GH 48893
56
+ reason = "Pyarrow only supports a file path as an input and line delimited json"
57
+ request.applymarker(pytest.mark.xfail(reason=reason, raises=ValueError))
58
+
59
+ df = DataFrame(
60
+ [([1, 2], ["2020-03-05", "2020-04-08T09:58:49+00:00"], "hector")],
61
+ columns=["accounts", "date", "name"],
62
+ )
63
+ json_line = df.to_json(lines=True, orient="records")
64
+
65
+ if engine == "pyarrow":
66
+ result = read_json(StringIO(json_line), engine=engine)
67
+ else:
68
+ result = read_json(StringIO(json_line), engine=engine)
69
+ expected = DataFrame(
70
+ [[1, "2020-03-05", "hector"], [2, "2020-04-08T09:58:49+00:00", "hector"]],
71
+ columns=["accounts", "date", "name"],
72
+ )
73
+ tm.assert_frame_equal(result, expected)
74
+
75
+
76
+ def test_read_jsonl_unicode_chars():
77
+ # GH15132: non-ascii unicode characters
78
+ # \u201d == RIGHT DOUBLE QUOTATION MARK
79
+
80
+ # simulate file handle
81
+ json = '{"a": "foo”", "b": "bar"}\n{"a": "foo", "b": "bar"}\n'
82
+ json = StringIO(json)
83
+ result = read_json(json, lines=True)
84
+ expected = DataFrame([["foo\u201d", "bar"], ["foo", "bar"]], columns=["a", "b"])
85
+ tm.assert_frame_equal(result, expected)
86
+
87
+ # simulate string
88
+ json = '{"a": "foo”", "b": "bar"}\n{"a": "foo", "b": "bar"}\n'
89
+ result = read_json(StringIO(json), lines=True)
90
+ expected = DataFrame([["foo\u201d", "bar"], ["foo", "bar"]], columns=["a", "b"])
91
+ tm.assert_frame_equal(result, expected)
92
+
93
+
94
+ def test_to_jsonl():
95
+ # GH9180
96
+ df = DataFrame([[1, 2], [1, 2]], columns=["a", "b"])
97
+ result = df.to_json(orient="records", lines=True)
98
+ expected = '{"a":1,"b":2}\n{"a":1,"b":2}\n'
99
+ assert result == expected
100
+
101
+ df = DataFrame([["foo}", "bar"], ['foo"', "bar"]], columns=["a", "b"])
102
+ result = df.to_json(orient="records", lines=True)
103
+ expected = '{"a":"foo}","b":"bar"}\n{"a":"foo\\"","b":"bar"}\n'
104
+ assert result == expected
105
+ tm.assert_frame_equal(read_json(StringIO(result), lines=True), df)
106
+
107
+ # GH15096: escaped characters in columns and data
108
+ df = DataFrame([["foo\\", "bar"], ['foo"', "bar"]], columns=["a\\", "b"])
109
+ result = df.to_json(orient="records", lines=True)
110
+ expected = '{"a\\\\":"foo\\\\","b":"bar"}\n{"a\\\\":"foo\\"","b":"bar"}\n'
111
+ assert result == expected
112
+ tm.assert_frame_equal(read_json(StringIO(result), lines=True), df)
113
+
114
+
115
+ def test_to_jsonl_count_new_lines():
116
+ # GH36888
117
+ df = DataFrame([[1, 2], [1, 2]], columns=["a", "b"])
118
+ actual_new_lines_count = df.to_json(orient="records", lines=True).count("\n")
119
+ expected_new_lines_count = 2
120
+ assert actual_new_lines_count == expected_new_lines_count
121
+
122
+
123
+ @pytest.mark.parametrize("chunksize", [1, 1.0])
124
+ def test_readjson_chunks(request, lines_json_df, chunksize, engine):
125
+ # Basic test that read_json(chunks=True) gives the same result as
126
+ # read_json(chunks=False)
127
+ # GH17048: memory usage when lines=True
128
+
129
+ if engine == "pyarrow":
130
+ # GH 48893
131
+ reason = (
132
+ "Pyarrow only supports a file path as an input and line delimited json"
133
+ "and doesn't support chunksize parameter."
134
+ )
135
+ request.applymarker(pytest.mark.xfail(reason=reason, raises=ValueError))
136
+
137
+ unchunked = read_json(StringIO(lines_json_df), lines=True)
138
+ with read_json(
139
+ StringIO(lines_json_df), lines=True, chunksize=chunksize, engine=engine
140
+ ) as reader:
141
+ chunked = pd.concat(reader)
142
+
143
+ tm.assert_frame_equal(chunked, unchunked)
144
+
145
+
146
+ def test_readjson_chunksize_requires_lines(lines_json_df, engine):
147
+ msg = "chunksize can only be passed if lines=True"
148
+ with pytest.raises(ValueError, match=msg):
149
+ with read_json(
150
+ StringIO(lines_json_df), lines=False, chunksize=2, engine=engine
151
+ ) as _:
152
+ pass
153
+
154
+
155
+ def test_readjson_chunks_series(request, engine):
156
+ if engine == "pyarrow":
157
+ # GH 48893
158
+ reason = (
159
+ "Pyarrow only supports a file path as an input and line delimited json"
160
+ "and doesn't support chunksize parameter."
161
+ )
162
+ request.applymarker(pytest.mark.xfail(reason=reason))
163
+
164
+ # Test reading line-format JSON to Series with chunksize param
165
+ s = pd.Series({"A": 1, "B": 2})
166
+
167
+ strio = StringIO(s.to_json(lines=True, orient="records"))
168
+ unchunked = read_json(strio, lines=True, typ="Series", engine=engine)
169
+
170
+ strio = StringIO(s.to_json(lines=True, orient="records"))
171
+ with read_json(
172
+ strio, lines=True, typ="Series", chunksize=1, engine=engine
173
+ ) as reader:
174
+ chunked = pd.concat(reader)
175
+
176
+ tm.assert_series_equal(chunked, unchunked)
177
+
178
+
179
+ def test_readjson_each_chunk(request, lines_json_df, engine):
180
+ if engine == "pyarrow":
181
+ # GH 48893
182
+ reason = (
183
+ "Pyarrow only supports a file path as an input and line delimited json"
184
+ "and doesn't support chunksize parameter."
185
+ )
186
+ request.applymarker(pytest.mark.xfail(reason=reason, raises=ValueError))
187
+
188
+ # Other tests check that the final result of read_json(chunksize=True)
189
+ # is correct. This checks the intermediate chunks.
190
+ with read_json(
191
+ StringIO(lines_json_df), lines=True, chunksize=2, engine=engine
192
+ ) as reader:
193
+ chunks = list(reader)
194
+ assert chunks[0].shape == (2, 2)
195
+ assert chunks[1].shape == (1, 2)
196
+
197
+
198
+ def test_readjson_chunks_from_file(request, engine):
199
+ if engine == "pyarrow":
200
+ # GH 48893
201
+ reason = (
202
+ "Pyarrow only supports a file path as an input and line delimited json"
203
+ "and doesn't support chunksize parameter."
204
+ )
205
+ request.applymarker(pytest.mark.xfail(reason=reason, raises=ValueError))
206
+
207
+ with tm.ensure_clean("test.json") as path:
208
+ df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
209
+ df.to_json(path, lines=True, orient="records")
210
+ with read_json(path, lines=True, chunksize=1, engine=engine) as reader:
211
+ chunked = pd.concat(reader)
212
+ unchunked = read_json(path, lines=True, engine=engine)
213
+ tm.assert_frame_equal(unchunked, chunked)
214
+
215
+
216
+ @pytest.mark.parametrize("chunksize", [None, 1])
217
+ def test_readjson_chunks_closes(chunksize):
218
+ with tm.ensure_clean("test.json") as path:
219
+ df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
220
+ df.to_json(path, lines=True, orient="records")
221
+ reader = JsonReader(
222
+ path,
223
+ orient=None,
224
+ typ="frame",
225
+ dtype=True,
226
+ convert_axes=True,
227
+ convert_dates=True,
228
+ keep_default_dates=True,
229
+ precise_float=False,
230
+ date_unit=None,
231
+ encoding=None,
232
+ lines=True,
233
+ chunksize=chunksize,
234
+ compression=None,
235
+ nrows=None,
236
+ )
237
+ with reader:
238
+ reader.read()
239
+ assert (
240
+ reader.handles.handle.closed
241
+ ), f"didn't close stream with chunksize = {chunksize}"
242
+
243
+
244
+ @pytest.mark.parametrize("chunksize", [0, -1, 2.2, "foo"])
245
+ def test_readjson_invalid_chunksize(lines_json_df, chunksize, engine):
246
+ msg = r"'chunksize' must be an integer >=1"
247
+
248
+ with pytest.raises(ValueError, match=msg):
249
+ with read_json(
250
+ StringIO(lines_json_df), lines=True, chunksize=chunksize, engine=engine
251
+ ) as _:
252
+ pass
253
+
254
+
255
+ @pytest.mark.parametrize("chunksize", [None, 1, 2])
256
+ def test_readjson_chunks_multiple_empty_lines(chunksize):
257
+ j = """
258
+
259
+ {"A":1,"B":4}
260
+
261
+
262
+
263
+ {"A":2,"B":5}
264
+
265
+
266
+
267
+
268
+
269
+
270
+
271
+ {"A":3,"B":6}
272
+ """
273
+ orig = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
274
+ test = read_json(StringIO(j), lines=True, chunksize=chunksize)
275
+ if chunksize is not None:
276
+ with test:
277
+ test = pd.concat(test)
278
+ tm.assert_frame_equal(orig, test, obj=f"chunksize: {chunksize}")
279
+
280
+
281
+ def test_readjson_unicode(request, monkeypatch, engine):
282
+ if engine == "pyarrow":
283
+ # GH 48893
284
+ reason = (
285
+ "Pyarrow only supports a file path as an input and line delimited json"
286
+ "and doesn't support chunksize parameter."
287
+ )
288
+ request.applymarker(pytest.mark.xfail(reason=reason, raises=ValueError))
289
+
290
+ with tm.ensure_clean("test.json") as path:
291
+ monkeypatch.setattr("locale.getpreferredencoding", lambda do_setlocale: "cp949")
292
+ with open(path, "w", encoding="utf-8") as f:
293
+ f.write('{"£©µÀÆÖÞßéöÿ":["АБВГДабвгд가"]}')
294
+
295
+ result = read_json(path, engine=engine)
296
+ expected = DataFrame({"£©µÀÆÖÞßéöÿ": ["АБВГДабвгд가"]})
297
+ tm.assert_frame_equal(result, expected)
298
+
299
+
300
+ @pytest.mark.parametrize("nrows", [1, 2])
301
+ def test_readjson_nrows(nrows, engine):
302
+ # GH 33916
303
+ # Test reading line-format JSON to Series with nrows param
304
+ jsonl = """{"a": 1, "b": 2}
305
+ {"a": 3, "b": 4}
306
+ {"a": 5, "b": 6}
307
+ {"a": 7, "b": 8}"""
308
+ result = read_json(StringIO(jsonl), lines=True, nrows=nrows)
309
+ expected = DataFrame({"a": [1, 3, 5, 7], "b": [2, 4, 6, 8]}).iloc[:nrows]
310
+ tm.assert_frame_equal(result, expected)
311
+
312
+
313
+ @pytest.mark.parametrize("nrows,chunksize", [(2, 2), (4, 2)])
314
+ def test_readjson_nrows_chunks(request, nrows, chunksize, engine):
315
+ # GH 33916
316
+ # Test reading line-format JSON to Series with nrows and chunksize param
317
+ if engine == "pyarrow":
318
+ # GH 48893
319
+ reason = (
320
+ "Pyarrow only supports a file path as an input and line delimited json"
321
+ "and doesn't support chunksize parameter."
322
+ )
323
+ request.applymarker(pytest.mark.xfail(reason=reason, raises=ValueError))
324
+
325
+ jsonl = """{"a": 1, "b": 2}
326
+ {"a": 3, "b": 4}
327
+ {"a": 5, "b": 6}
328
+ {"a": 7, "b": 8}"""
329
+
330
+ if engine != "pyarrow":
331
+ with read_json(
332
+ StringIO(jsonl), lines=True, nrows=nrows, chunksize=chunksize, engine=engine
333
+ ) as reader:
334
+ chunked = pd.concat(reader)
335
+ else:
336
+ with read_json(
337
+ jsonl, lines=True, nrows=nrows, chunksize=chunksize, engine=engine
338
+ ) as reader:
339
+ chunked = pd.concat(reader)
340
+ expected = DataFrame({"a": [1, 3, 5, 7], "b": [2, 4, 6, 8]}).iloc[:nrows]
341
+ tm.assert_frame_equal(chunked, expected)
342
+
343
+
344
+ def test_readjson_nrows_requires_lines(engine):
345
+ # GH 33916
346
+ # Test ValueError raised if nrows is set without setting lines in read_json
347
+ jsonl = """{"a": 1, "b": 2}
348
+ {"a": 3, "b": 4}
349
+ {"a": 5, "b": 6}
350
+ {"a": 7, "b": 8}"""
351
+ msg = "nrows can only be passed if lines=True"
352
+ with pytest.raises(ValueError, match=msg):
353
+ read_json(jsonl, lines=False, nrows=2, engine=engine)
354
+
355
+
356
+ def test_readjson_lines_chunks_fileurl(request, datapath, engine):
357
+ # GH 27135
358
+ # Test reading line-format JSON from file url
359
+ if engine == "pyarrow":
360
+ # GH 48893
361
+ reason = (
362
+ "Pyarrow only supports a file path as an input and line delimited json"
363
+ "and doesn't support chunksize parameter."
364
+ )
365
+ request.applymarker(pytest.mark.xfail(reason=reason, raises=ValueError))
366
+
367
+ df_list_expected = [
368
+ DataFrame([[1, 2]], columns=["a", "b"], index=[0]),
369
+ DataFrame([[3, 4]], columns=["a", "b"], index=[1]),
370
+ DataFrame([[5, 6]], columns=["a", "b"], index=[2]),
371
+ ]
372
+ os_path = datapath("io", "json", "data", "line_delimited.json")
373
+ file_url = Path(os_path).as_uri()
374
+ with read_json(file_url, lines=True, chunksize=1, engine=engine) as url_reader:
375
+ for index, chuck in enumerate(url_reader):
376
+ tm.assert_frame_equal(chuck, df_list_expected[index])
377
+
378
+
379
+ def test_chunksize_is_incremental():
380
+ # See https://github.com/pandas-dev/pandas/issues/34548
381
+ jsonl = (
382
+ """{"a": 1, "b": 2}
383
+ {"a": 3, "b": 4}
384
+ {"a": 5, "b": 6}
385
+ {"a": 7, "b": 8}\n"""
386
+ * 1000
387
+ )
388
+
389
+ class MyReader:
390
+ def __init__(self, contents) -> None:
391
+ self.read_count = 0
392
+ self.stringio = StringIO(contents)
393
+
394
+ def read(self, *args):
395
+ self.read_count += 1
396
+ return self.stringio.read(*args)
397
+
398
+ def __iter__(self) -> Iterator:
399
+ self.read_count += 1
400
+ return iter(self.stringio)
401
+
402
+ reader = MyReader(jsonl)
403
+ assert len(list(read_json(reader, lines=True, chunksize=100))) > 1
404
+ assert reader.read_count > 10
405
+
406
+
407
+ @pytest.mark.parametrize("orient_", ["split", "index", "table"])
408
+ def test_to_json_append_orient(orient_):
409
+ # GH 35849
410
+ # Test ValueError when orient is not 'records'
411
+ df = DataFrame({"col1": [1, 2], "col2": ["a", "b"]})
412
+ msg = (
413
+ r"mode='a' \(append\) is only supported when "
414
+ "lines is True and orient is 'records'"
415
+ )
416
+ with pytest.raises(ValueError, match=msg):
417
+ df.to_json(mode="a", orient=orient_)
418
+
419
+
420
+ def test_to_json_append_lines():
421
+ # GH 35849
422
+ # Test ValueError when lines is not True
423
+ df = DataFrame({"col1": [1, 2], "col2": ["a", "b"]})
424
+ msg = (
425
+ r"mode='a' \(append\) is only supported when "
426
+ "lines is True and orient is 'records'"
427
+ )
428
+ with pytest.raises(ValueError, match=msg):
429
+ df.to_json(mode="a", lines=False, orient="records")
430
+
431
+
432
+ @pytest.mark.parametrize("mode_", ["r", "x"])
433
+ def test_to_json_append_mode(mode_):
434
+ # GH 35849
435
+ # Test ValueError when mode is not supported option
436
+ df = DataFrame({"col1": [1, 2], "col2": ["a", "b"]})
437
+ msg = (
438
+ f"mode={mode_} is not a valid option."
439
+ "Only 'w' and 'a' are currently supported."
440
+ )
441
+ with pytest.raises(ValueError, match=msg):
442
+ df.to_json(mode=mode_, lines=False, orient="records")
443
+
444
+
445
+ def test_to_json_append_output_consistent_columns():
446
+ # GH 35849
447
+ # Testing that resulting output reads in as expected.
448
+ # Testing same columns, new rows
449
+ df1 = DataFrame({"col1": [1, 2], "col2": ["a", "b"]})
450
+ df2 = DataFrame({"col1": [3, 4], "col2": ["c", "d"]})
451
+
452
+ expected = DataFrame({"col1": [1, 2, 3, 4], "col2": ["a", "b", "c", "d"]})
453
+ with tm.ensure_clean("test.json") as path:
454
+ # Save dataframes to the same file
455
+ df1.to_json(path, lines=True, orient="records")
456
+ df2.to_json(path, mode="a", lines=True, orient="records")
457
+
458
+ # Read path file
459
+ result = read_json(path, lines=True)
460
+ tm.assert_frame_equal(result, expected)
461
+
462
+
463
+ def test_to_json_append_output_inconsistent_columns():
464
+ # GH 35849
465
+ # Testing that resulting output reads in as expected.
466
+ # Testing one new column, one old column, new rows
467
+ df1 = DataFrame({"col1": [1, 2], "col2": ["a", "b"]})
468
+ df3 = DataFrame({"col2": ["e", "f"], "col3": ["!", "#"]})
469
+
470
+ expected = DataFrame(
471
+ {
472
+ "col1": [1, 2, None, None],
473
+ "col2": ["a", "b", "e", "f"],
474
+ "col3": [np.nan, np.nan, "!", "#"],
475
+ }
476
+ )
477
+ with tm.ensure_clean("test.json") as path:
478
+ # Save dataframes to the same file
479
+ df1.to_json(path, mode="a", lines=True, orient="records")
480
+ df3.to_json(path, mode="a", lines=True, orient="records")
481
+
482
+ # Read path file
483
+ result = read_json(path, lines=True)
484
+ tm.assert_frame_equal(result, expected)
485
+
486
+
487
+ def test_to_json_append_output_different_columns():
488
+ # GH 35849
489
+ # Testing that resulting output reads in as expected.
490
+ # Testing same, differing and new columns
491
+ df1 = DataFrame({"col1": [1, 2], "col2": ["a", "b"]})
492
+ df2 = DataFrame({"col1": [3, 4], "col2": ["c", "d"]})
493
+ df3 = DataFrame({"col2": ["e", "f"], "col3": ["!", "#"]})
494
+ df4 = DataFrame({"col4": [True, False]})
495
+
496
+ expected = DataFrame(
497
+ {
498
+ "col1": [1, 2, 3, 4, None, None, None, None],
499
+ "col2": ["a", "b", "c", "d", "e", "f", np.nan, np.nan],
500
+ "col3": [np.nan, np.nan, np.nan, np.nan, "!", "#", np.nan, np.nan],
501
+ "col4": [None, None, None, None, None, None, True, False],
502
+ }
503
+ ).astype({"col4": "float"})
504
+ with tm.ensure_clean("test.json") as path:
505
+ # Save dataframes to the same file
506
+ df1.to_json(path, mode="a", lines=True, orient="records")
507
+ df2.to_json(path, mode="a", lines=True, orient="records")
508
+ df3.to_json(path, mode="a", lines=True, orient="records")
509
+ df4.to_json(path, mode="a", lines=True, orient="records")
510
+
511
+ # Read path file
512
+ result = read_json(path, lines=True)
513
+ tm.assert_frame_equal(result, expected)
514
+
515
+
516
+ def test_to_json_append_output_different_columns_reordered():
517
+ # GH 35849
518
+ # Testing that resulting output reads in as expected.
519
+ # Testing specific result column order.
520
+ df1 = DataFrame({"col1": [1, 2], "col2": ["a", "b"]})
521
+ df2 = DataFrame({"col1": [3, 4], "col2": ["c", "d"]})
522
+ df3 = DataFrame({"col2": ["e", "f"], "col3": ["!", "#"]})
523
+ df4 = DataFrame({"col4": [True, False]})
524
+
525
+ # df4, df3, df2, df1 (in that order)
526
+ expected = DataFrame(
527
+ {
528
+ "col4": [True, False, None, None, None, None, None, None],
529
+ "col2": [np.nan, np.nan, "e", "f", "c", "d", "a", "b"],
530
+ "col3": [np.nan, np.nan, "!", "#", np.nan, np.nan, np.nan, np.nan],
531
+ "col1": [None, None, None, None, 3, 4, 1, 2],
532
+ }
533
+ ).astype({"col4": "float"})
534
+ with tm.ensure_clean("test.json") as path:
535
+ # Save dataframes to the same file
536
+ df4.to_json(path, mode="a", lines=True, orient="records")
537
+ df3.to_json(path, mode="a", lines=True, orient="records")
538
+ df2.to_json(path, mode="a", lines=True, orient="records")
539
+ df1.to_json(path, mode="a", lines=True, orient="records")
540
+
541
+ # Read path file
542
+ result = read_json(path, lines=True)
543
+ tm.assert_frame_equal(result, expected)
venv/lib/python3.10/site-packages/pandas/tests/io/json/test_ujson.py ADDED
@@ -0,0 +1,1087 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import calendar
2
+ import datetime
3
+ import decimal
4
+ import json
5
+ import locale
6
+ import math
7
+ import re
8
+ import time
9
+
10
+ import dateutil
11
+ import numpy as np
12
+ import pytest
13
+ import pytz
14
+
15
+ import pandas._libs.json as ujson
16
+ from pandas.compat import IS64
17
+
18
+ from pandas import (
19
+ DataFrame,
20
+ DatetimeIndex,
21
+ Index,
22
+ NaT,
23
+ PeriodIndex,
24
+ Series,
25
+ Timedelta,
26
+ Timestamp,
27
+ date_range,
28
+ )
29
+ import pandas._testing as tm
30
+
31
+
32
+ def _clean_dict(d):
33
+ """
34
+ Sanitize dictionary for JSON by converting all keys to strings.
35
+
36
+ Parameters
37
+ ----------
38
+ d : dict
39
+ The dictionary to convert.
40
+
41
+ Returns
42
+ -------
43
+ cleaned_dict : dict
44
+ """
45
+ return {str(k): v for k, v in d.items()}
46
+
47
+
48
+ @pytest.fixture(
49
+ params=[None, "split", "records", "values", "index"] # Column indexed by default.
50
+ )
51
+ def orient(request):
52
+ return request.param
53
+
54
+
55
+ class TestUltraJSONTests:
56
+ @pytest.mark.skipif(not IS64, reason="not compliant on 32-bit, xref #15865")
57
+ def test_encode_decimal(self):
58
+ sut = decimal.Decimal("1337.1337")
59
+ encoded = ujson.ujson_dumps(sut, double_precision=15)
60
+ decoded = ujson.ujson_loads(encoded)
61
+ assert decoded == 1337.1337
62
+
63
+ sut = decimal.Decimal("0.95")
64
+ encoded = ujson.ujson_dumps(sut, double_precision=1)
65
+ assert encoded == "1.0"
66
+
67
+ decoded = ujson.ujson_loads(encoded)
68
+ assert decoded == 1.0
69
+
70
+ sut = decimal.Decimal("0.94")
71
+ encoded = ujson.ujson_dumps(sut, double_precision=1)
72
+ assert encoded == "0.9"
73
+
74
+ decoded = ujson.ujson_loads(encoded)
75
+ assert decoded == 0.9
76
+
77
+ sut = decimal.Decimal("1.95")
78
+ encoded = ujson.ujson_dumps(sut, double_precision=1)
79
+ assert encoded == "2.0"
80
+
81
+ decoded = ujson.ujson_loads(encoded)
82
+ assert decoded == 2.0
83
+
84
+ sut = decimal.Decimal("-1.95")
85
+ encoded = ujson.ujson_dumps(sut, double_precision=1)
86
+ assert encoded == "-2.0"
87
+
88
+ decoded = ujson.ujson_loads(encoded)
89
+ assert decoded == -2.0
90
+
91
+ sut = decimal.Decimal("0.995")
92
+ encoded = ujson.ujson_dumps(sut, double_precision=2)
93
+ assert encoded == "1.0"
94
+
95
+ decoded = ujson.ujson_loads(encoded)
96
+ assert decoded == 1.0
97
+
98
+ sut = decimal.Decimal("0.9995")
99
+ encoded = ujson.ujson_dumps(sut, double_precision=3)
100
+ assert encoded == "1.0"
101
+
102
+ decoded = ujson.ujson_loads(encoded)
103
+ assert decoded == 1.0
104
+
105
+ sut = decimal.Decimal("0.99999999999999944")
106
+ encoded = ujson.ujson_dumps(sut, double_precision=15)
107
+ assert encoded == "1.0"
108
+
109
+ decoded = ujson.ujson_loads(encoded)
110
+ assert decoded == 1.0
111
+
112
+ @pytest.mark.parametrize("ensure_ascii", [True, False])
113
+ def test_encode_string_conversion(self, ensure_ascii):
114
+ string_input = "A string \\ / \b \f \n \r \t </script> &"
115
+ not_html_encoded = '"A string \\\\ \\/ \\b \\f \\n \\r \\t <\\/script> &"'
116
+ html_encoded = (
117
+ '"A string \\\\ \\/ \\b \\f \\n \\r \\t \\u003c\\/script\\u003e \\u0026"'
118
+ )
119
+
120
+ def helper(expected_output, **encode_kwargs):
121
+ output = ujson.ujson_dumps(
122
+ string_input, ensure_ascii=ensure_ascii, **encode_kwargs
123
+ )
124
+
125
+ assert output == expected_output
126
+ assert string_input == json.loads(output)
127
+ assert string_input == ujson.ujson_loads(output)
128
+
129
+ # Default behavior assumes encode_html_chars=False.
130
+ helper(not_html_encoded)
131
+
132
+ # Make sure explicit encode_html_chars=False works.
133
+ helper(not_html_encoded, encode_html_chars=False)
134
+
135
+ # Make sure explicit encode_html_chars=True does the encoding.
136
+ helper(html_encoded, encode_html_chars=True)
137
+
138
+ @pytest.mark.parametrize(
139
+ "long_number", [-4342969734183514, -12345678901234.56789012, -528656961.4399388]
140
+ )
141
+ def test_double_long_numbers(self, long_number):
142
+ sut = {"a": long_number}
143
+ encoded = ujson.ujson_dumps(sut, double_precision=15)
144
+
145
+ decoded = ujson.ujson_loads(encoded)
146
+ assert sut == decoded
147
+
148
+ def test_encode_non_c_locale(self):
149
+ lc_category = locale.LC_NUMERIC
150
+
151
+ # We just need one of these locales to work.
152
+ for new_locale in ("it_IT.UTF-8", "Italian_Italy"):
153
+ if tm.can_set_locale(new_locale, lc_category):
154
+ with tm.set_locale(new_locale, lc_category):
155
+ assert ujson.ujson_loads(ujson.ujson_dumps(4.78e60)) == 4.78e60
156
+ assert ujson.ujson_loads("4.78", precise_float=True) == 4.78
157
+ break
158
+
159
+ def test_decimal_decode_test_precise(self):
160
+ sut = {"a": 4.56}
161
+ encoded = ujson.ujson_dumps(sut)
162
+ decoded = ujson.ujson_loads(encoded, precise_float=True)
163
+ assert sut == decoded
164
+
165
+ def test_encode_double_tiny_exponential(self):
166
+ num = 1e-40
167
+ assert num == ujson.ujson_loads(ujson.ujson_dumps(num))
168
+ num = 1e-100
169
+ assert num == ujson.ujson_loads(ujson.ujson_dumps(num))
170
+ num = -1e-45
171
+ assert num == ujson.ujson_loads(ujson.ujson_dumps(num))
172
+ num = -1e-145
173
+ assert np.allclose(num, ujson.ujson_loads(ujson.ujson_dumps(num)))
174
+
175
+ @pytest.mark.parametrize("unicode_key", ["key1", "بن"])
176
+ def test_encode_dict_with_unicode_keys(self, unicode_key):
177
+ unicode_dict = {unicode_key: "value1"}
178
+ assert unicode_dict == ujson.ujson_loads(ujson.ujson_dumps(unicode_dict))
179
+
180
+ @pytest.mark.parametrize(
181
+ "double_input", [math.pi, -math.pi] # Should work with negatives too.
182
+ )
183
+ def test_encode_double_conversion(self, double_input):
184
+ output = ujson.ujson_dumps(double_input)
185
+ assert round(double_input, 5) == round(json.loads(output), 5)
186
+ assert round(double_input, 5) == round(ujson.ujson_loads(output), 5)
187
+
188
+ def test_encode_with_decimal(self):
189
+ decimal_input = 1.0
190
+ output = ujson.ujson_dumps(decimal_input)
191
+
192
+ assert output == "1.0"
193
+
194
+ def test_encode_array_of_nested_arrays(self):
195
+ nested_input = [[[[]]]] * 20
196
+ output = ujson.ujson_dumps(nested_input)
197
+
198
+ assert nested_input == json.loads(output)
199
+ assert nested_input == ujson.ujson_loads(output)
200
+
201
+ def test_encode_array_of_doubles(self):
202
+ doubles_input = [31337.31337, 31337.31337, 31337.31337, 31337.31337] * 10
203
+ output = ujson.ujson_dumps(doubles_input)
204
+
205
+ assert doubles_input == json.loads(output)
206
+ assert doubles_input == ujson.ujson_loads(output)
207
+
208
+ def test_double_precision(self):
209
+ double_input = 30.012345678901234
210
+ output = ujson.ujson_dumps(double_input, double_precision=15)
211
+
212
+ assert double_input == json.loads(output)
213
+ assert double_input == ujson.ujson_loads(output)
214
+
215
+ for double_precision in (3, 9):
216
+ output = ujson.ujson_dumps(double_input, double_precision=double_precision)
217
+ rounded_input = round(double_input, double_precision)
218
+
219
+ assert rounded_input == json.loads(output)
220
+ assert rounded_input == ujson.ujson_loads(output)
221
+
222
+ @pytest.mark.parametrize(
223
+ "invalid_val",
224
+ [
225
+ 20,
226
+ -1,
227
+ "9",
228
+ None,
229
+ ],
230
+ )
231
+ def test_invalid_double_precision(self, invalid_val):
232
+ double_input = 30.12345678901234567890
233
+ expected_exception = ValueError if isinstance(invalid_val, int) else TypeError
234
+ msg = (
235
+ r"Invalid value '.*' for option 'double_precision', max is '15'|"
236
+ r"an integer is required \(got type |"
237
+ r"object cannot be interpreted as an integer"
238
+ )
239
+ with pytest.raises(expected_exception, match=msg):
240
+ ujson.ujson_dumps(double_input, double_precision=invalid_val)
241
+
242
+ def test_encode_string_conversion2(self):
243
+ string_input = "A string \\ / \b \f \n \r \t"
244
+ output = ujson.ujson_dumps(string_input)
245
+
246
+ assert string_input == json.loads(output)
247
+ assert string_input == ujson.ujson_loads(output)
248
+ assert output == '"A string \\\\ \\/ \\b \\f \\n \\r \\t"'
249
+
250
+ @pytest.mark.parametrize(
251
+ "unicode_input",
252
+ ["Räksmörgås اسامة بن محمد بن عوض بن لادن", "\xe6\x97\xa5\xd1\x88"],
253
+ )
254
+ def test_encode_unicode_conversion(self, unicode_input):
255
+ enc = ujson.ujson_dumps(unicode_input)
256
+ dec = ujson.ujson_loads(enc)
257
+
258
+ assert enc == json.dumps(unicode_input)
259
+ assert dec == json.loads(enc)
260
+
261
+ def test_encode_control_escaping(self):
262
+ escaped_input = "\x19"
263
+ enc = ujson.ujson_dumps(escaped_input)
264
+ dec = ujson.ujson_loads(enc)
265
+
266
+ assert escaped_input == dec
267
+ assert enc == json.dumps(escaped_input)
268
+
269
+ def test_encode_unicode_surrogate_pair(self):
270
+ surrogate_input = "\xf0\x90\x8d\x86"
271
+ enc = ujson.ujson_dumps(surrogate_input)
272
+ dec = ujson.ujson_loads(enc)
273
+
274
+ assert enc == json.dumps(surrogate_input)
275
+ assert dec == json.loads(enc)
276
+
277
+ def test_encode_unicode_4bytes_utf8(self):
278
+ four_bytes_input = "\xf0\x91\x80\xb0TRAILINGNORMAL"
279
+ enc = ujson.ujson_dumps(four_bytes_input)
280
+ dec = ujson.ujson_loads(enc)
281
+
282
+ assert enc == json.dumps(four_bytes_input)
283
+ assert dec == json.loads(enc)
284
+
285
+ def test_encode_unicode_4bytes_utf8highest(self):
286
+ four_bytes_input = "\xf3\xbf\xbf\xbfTRAILINGNORMAL"
287
+ enc = ujson.ujson_dumps(four_bytes_input)
288
+
289
+ dec = ujson.ujson_loads(enc)
290
+
291
+ assert enc == json.dumps(four_bytes_input)
292
+ assert dec == json.loads(enc)
293
+
294
+ def test_encode_unicode_error(self):
295
+ string = "'\udac0'"
296
+ msg = (
297
+ r"'utf-8' codec can't encode character '\\udac0' "
298
+ r"in position 1: surrogates not allowed"
299
+ )
300
+ with pytest.raises(UnicodeEncodeError, match=msg):
301
+ ujson.ujson_dumps([string])
302
+
303
+ def test_encode_array_in_array(self):
304
+ arr_in_arr_input = [[[[]]]]
305
+ output = ujson.ujson_dumps(arr_in_arr_input)
306
+
307
+ assert arr_in_arr_input == json.loads(output)
308
+ assert output == json.dumps(arr_in_arr_input)
309
+ assert arr_in_arr_input == ujson.ujson_loads(output)
310
+
311
+ @pytest.mark.parametrize(
312
+ "num_input",
313
+ [
314
+ 31337,
315
+ -31337, # Negative number.
316
+ -9223372036854775808, # Large negative number.
317
+ ],
318
+ )
319
+ def test_encode_num_conversion(self, num_input):
320
+ output = ujson.ujson_dumps(num_input)
321
+ assert num_input == json.loads(output)
322
+ assert output == json.dumps(num_input)
323
+ assert num_input == ujson.ujson_loads(output)
324
+
325
+ def test_encode_list_conversion(self):
326
+ list_input = [1, 2, 3, 4]
327
+ output = ujson.ujson_dumps(list_input)
328
+
329
+ assert list_input == json.loads(output)
330
+ assert list_input == ujson.ujson_loads(output)
331
+
332
+ def test_encode_dict_conversion(self):
333
+ dict_input = {"k1": 1, "k2": 2, "k3": 3, "k4": 4}
334
+ output = ujson.ujson_dumps(dict_input)
335
+
336
+ assert dict_input == json.loads(output)
337
+ assert dict_input == ujson.ujson_loads(output)
338
+
339
+ @pytest.mark.parametrize("builtin_value", [None, True, False])
340
+ def test_encode_builtin_values_conversion(self, builtin_value):
341
+ output = ujson.ujson_dumps(builtin_value)
342
+ assert builtin_value == json.loads(output)
343
+ assert output == json.dumps(builtin_value)
344
+ assert builtin_value == ujson.ujson_loads(output)
345
+
346
+ def test_encode_datetime_conversion(self):
347
+ datetime_input = datetime.datetime.fromtimestamp(time.time())
348
+ output = ujson.ujson_dumps(datetime_input, date_unit="s")
349
+ expected = calendar.timegm(datetime_input.utctimetuple())
350
+
351
+ assert int(expected) == json.loads(output)
352
+ assert int(expected) == ujson.ujson_loads(output)
353
+
354
+ def test_encode_date_conversion(self):
355
+ date_input = datetime.date.fromtimestamp(time.time())
356
+ output = ujson.ujson_dumps(date_input, date_unit="s")
357
+
358
+ tup = (date_input.year, date_input.month, date_input.day, 0, 0, 0)
359
+ expected = calendar.timegm(tup)
360
+
361
+ assert int(expected) == json.loads(output)
362
+ assert int(expected) == ujson.ujson_loads(output)
363
+
364
+ @pytest.mark.parametrize(
365
+ "test",
366
+ [datetime.time(), datetime.time(1, 2, 3), datetime.time(10, 12, 15, 343243)],
367
+ )
368
+ def test_encode_time_conversion_basic(self, test):
369
+ output = ujson.ujson_dumps(test)
370
+ expected = f'"{test.isoformat()}"'
371
+ assert expected == output
372
+
373
+ def test_encode_time_conversion_pytz(self):
374
+ # see gh-11473: to_json segfaults with timezone-aware datetimes
375
+ test = datetime.time(10, 12, 15, 343243, pytz.utc)
376
+ output = ujson.ujson_dumps(test)
377
+ expected = f'"{test.isoformat()}"'
378
+ assert expected == output
379
+
380
+ def test_encode_time_conversion_dateutil(self):
381
+ # see gh-11473: to_json segfaults with timezone-aware datetimes
382
+ test = datetime.time(10, 12, 15, 343243, dateutil.tz.tzutc())
383
+ output = ujson.ujson_dumps(test)
384
+ expected = f'"{test.isoformat()}"'
385
+ assert expected == output
386
+
387
+ @pytest.mark.parametrize(
388
+ "decoded_input", [NaT, np.datetime64("NaT"), np.nan, np.inf, -np.inf]
389
+ )
390
+ def test_encode_as_null(self, decoded_input):
391
+ assert ujson.ujson_dumps(decoded_input) == "null", "Expected null"
392
+
393
+ def test_datetime_units(self):
394
+ val = datetime.datetime(2013, 8, 17, 21, 17, 12, 215504)
395
+ stamp = Timestamp(val).as_unit("ns")
396
+
397
+ roundtrip = ujson.ujson_loads(ujson.ujson_dumps(val, date_unit="s"))
398
+ assert roundtrip == stamp._value // 10**9
399
+
400
+ roundtrip = ujson.ujson_loads(ujson.ujson_dumps(val, date_unit="ms"))
401
+ assert roundtrip == stamp._value // 10**6
402
+
403
+ roundtrip = ujson.ujson_loads(ujson.ujson_dumps(val, date_unit="us"))
404
+ assert roundtrip == stamp._value // 10**3
405
+
406
+ roundtrip = ujson.ujson_loads(ujson.ujson_dumps(val, date_unit="ns"))
407
+ assert roundtrip == stamp._value
408
+
409
+ msg = "Invalid value 'foo' for option 'date_unit'"
410
+ with pytest.raises(ValueError, match=msg):
411
+ ujson.ujson_dumps(val, date_unit="foo")
412
+
413
+ def test_encode_to_utf8(self):
414
+ unencoded = "\xe6\x97\xa5\xd1\x88"
415
+
416
+ enc = ujson.ujson_dumps(unencoded, ensure_ascii=False)
417
+ dec = ujson.ujson_loads(enc)
418
+
419
+ assert enc == json.dumps(unencoded, ensure_ascii=False)
420
+ assert dec == json.loads(enc)
421
+
422
+ def test_decode_from_unicode(self):
423
+ unicode_input = '{"obj": 31337}'
424
+
425
+ dec1 = ujson.ujson_loads(unicode_input)
426
+ dec2 = ujson.ujson_loads(str(unicode_input))
427
+
428
+ assert dec1 == dec2
429
+
430
+ def test_encode_recursion_max(self):
431
+ # 8 is the max recursion depth
432
+
433
+ class O2:
434
+ member = 0
435
+
436
+ class O1:
437
+ member = 0
438
+
439
+ decoded_input = O1()
440
+ decoded_input.member = O2()
441
+ decoded_input.member.member = decoded_input
442
+
443
+ with pytest.raises(OverflowError, match="Maximum recursion level reached"):
444
+ ujson.ujson_dumps(decoded_input)
445
+
446
+ def test_decode_jibberish(self):
447
+ jibberish = "fdsa sda v9sa fdsa"
448
+ msg = "Unexpected character found when decoding 'false'"
449
+ with pytest.raises(ValueError, match=msg):
450
+ ujson.ujson_loads(jibberish)
451
+
452
+ @pytest.mark.parametrize(
453
+ "broken_json",
454
+ [
455
+ "[", # Broken array start.
456
+ "{", # Broken object start.
457
+ "]", # Broken array end.
458
+ "}", # Broken object end.
459
+ ],
460
+ )
461
+ def test_decode_broken_json(self, broken_json):
462
+ msg = "Expected object or value"
463
+ with pytest.raises(ValueError, match=msg):
464
+ ujson.ujson_loads(broken_json)
465
+
466
+ @pytest.mark.parametrize("too_big_char", ["[", "{"])
467
+ def test_decode_depth_too_big(self, too_big_char):
468
+ with pytest.raises(ValueError, match="Reached object decoding depth limit"):
469
+ ujson.ujson_loads(too_big_char * (1024 * 1024))
470
+
471
+ @pytest.mark.parametrize(
472
+ "bad_string",
473
+ [
474
+ '"TESTING', # Unterminated.
475
+ '"TESTING\\"', # Unterminated escape.
476
+ "tru", # Broken True.
477
+ "fa", # Broken False.
478
+ "n", # Broken None.
479
+ ],
480
+ )
481
+ def test_decode_bad_string(self, bad_string):
482
+ msg = (
483
+ "Unexpected character found when decoding|"
484
+ "Unmatched ''\"' when when decoding 'string'"
485
+ )
486
+ with pytest.raises(ValueError, match=msg):
487
+ ujson.ujson_loads(bad_string)
488
+
489
+ @pytest.mark.parametrize(
490
+ "broken_json, err_msg",
491
+ [
492
+ (
493
+ '{{1337:""}}',
494
+ "Key name of object must be 'string' when decoding 'object'",
495
+ ),
496
+ ('{{"key":"}', "Unmatched ''\"' when when decoding 'string'"),
497
+ ("[[[true", "Unexpected character found when decoding array value (2)"),
498
+ ],
499
+ )
500
+ def test_decode_broken_json_leak(self, broken_json, err_msg):
501
+ for _ in range(1000):
502
+ with pytest.raises(ValueError, match=re.escape(err_msg)):
503
+ ujson.ujson_loads(broken_json)
504
+
505
+ @pytest.mark.parametrize(
506
+ "invalid_dict",
507
+ [
508
+ "{{{{31337}}}}", # No key.
509
+ '{{{{"key":}}}}', # No value.
510
+ '{{{{"key"}}}}', # No colon or value.
511
+ ],
512
+ )
513
+ def test_decode_invalid_dict(self, invalid_dict):
514
+ msg = (
515
+ "Key name of object must be 'string' when decoding 'object'|"
516
+ "No ':' found when decoding object value|"
517
+ "Expected object or value"
518
+ )
519
+ with pytest.raises(ValueError, match=msg):
520
+ ujson.ujson_loads(invalid_dict)
521
+
522
+ @pytest.mark.parametrize(
523
+ "numeric_int_as_str", ["31337", "-31337"] # Should work with negatives.
524
+ )
525
+ def test_decode_numeric_int(self, numeric_int_as_str):
526
+ assert int(numeric_int_as_str) == ujson.ujson_loads(numeric_int_as_str)
527
+
528
+ def test_encode_null_character(self):
529
+ wrapped_input = "31337 \x00 1337"
530
+ output = ujson.ujson_dumps(wrapped_input)
531
+
532
+ assert wrapped_input == json.loads(output)
533
+ assert output == json.dumps(wrapped_input)
534
+ assert wrapped_input == ujson.ujson_loads(output)
535
+
536
+ alone_input = "\x00"
537
+ output = ujson.ujson_dumps(alone_input)
538
+
539
+ assert alone_input == json.loads(output)
540
+ assert output == json.dumps(alone_input)
541
+ assert alone_input == ujson.ujson_loads(output)
542
+ assert '" \\u0000\\r\\n "' == ujson.ujson_dumps(" \u0000\r\n ")
543
+
544
+ def test_decode_null_character(self):
545
+ wrapped_input = '"31337 \\u0000 31337"'
546
+ assert ujson.ujson_loads(wrapped_input) == json.loads(wrapped_input)
547
+
548
+ def test_encode_list_long_conversion(self):
549
+ long_input = [
550
+ 9223372036854775807,
551
+ 9223372036854775807,
552
+ 9223372036854775807,
553
+ 9223372036854775807,
554
+ 9223372036854775807,
555
+ 9223372036854775807,
556
+ ]
557
+ output = ujson.ujson_dumps(long_input)
558
+
559
+ assert long_input == json.loads(output)
560
+ assert long_input == ujson.ujson_loads(output)
561
+
562
+ @pytest.mark.parametrize("long_input", [9223372036854775807, 18446744073709551615])
563
+ def test_encode_long_conversion(self, long_input):
564
+ output = ujson.ujson_dumps(long_input)
565
+
566
+ assert long_input == json.loads(output)
567
+ assert output == json.dumps(long_input)
568
+ assert long_input == ujson.ujson_loads(output)
569
+
570
+ @pytest.mark.parametrize("bigNum", [2**64, -(2**63) - 1])
571
+ def test_dumps_ints_larger_than_maxsize(self, bigNum):
572
+ encoding = ujson.ujson_dumps(bigNum)
573
+ assert str(bigNum) == encoding
574
+
575
+ with pytest.raises(
576
+ ValueError,
577
+ match="Value is too big|Value is too small",
578
+ ):
579
+ assert ujson.ujson_loads(encoding) == bigNum
580
+
581
+ @pytest.mark.parametrize(
582
+ "int_exp", ["1337E40", "1.337E40", "1337E+9", "1.337e+40", "1.337E-4"]
583
+ )
584
+ def test_decode_numeric_int_exp(self, int_exp):
585
+ assert ujson.ujson_loads(int_exp) == json.loads(int_exp)
586
+
587
+ def test_loads_non_str_bytes_raises(self):
588
+ msg = "a bytes-like object is required, not 'NoneType'"
589
+ with pytest.raises(TypeError, match=msg):
590
+ ujson.ujson_loads(None)
591
+
592
+ @pytest.mark.parametrize("val", [3590016419, 2**31, 2**32, (2**32) - 1])
593
+ def test_decode_number_with_32bit_sign_bit(self, val):
594
+ # Test that numbers that fit within 32 bits but would have the
595
+ # sign bit set (2**31 <= x < 2**32) are decoded properly.
596
+ doc = f'{{"id": {val}}}'
597
+ assert ujson.ujson_loads(doc)["id"] == val
598
+
599
+ def test_encode_big_escape(self):
600
+ # Make sure no Exception is raised.
601
+ for _ in range(10):
602
+ base = "\u00e5".encode()
603
+ escape_input = base * 1024 * 1024 * 2
604
+ ujson.ujson_dumps(escape_input)
605
+
606
+ def test_decode_big_escape(self):
607
+ # Make sure no Exception is raised.
608
+ for _ in range(10):
609
+ base = "\u00e5".encode()
610
+ quote = b'"'
611
+
612
+ escape_input = quote + (base * 1024 * 1024 * 2) + quote
613
+ ujson.ujson_loads(escape_input)
614
+
615
+ def test_to_dict(self):
616
+ d = {"key": 31337}
617
+
618
+ class DictTest:
619
+ def toDict(self):
620
+ return d
621
+
622
+ o = DictTest()
623
+ output = ujson.ujson_dumps(o)
624
+
625
+ dec = ujson.ujson_loads(output)
626
+ assert dec == d
627
+
628
+ def test_default_handler(self):
629
+ class _TestObject:
630
+ def __init__(self, val) -> None:
631
+ self.val = val
632
+
633
+ @property
634
+ def recursive_attr(self):
635
+ return _TestObject("recursive_attr")
636
+
637
+ def __str__(self) -> str:
638
+ return str(self.val)
639
+
640
+ msg = "Maximum recursion level reached"
641
+ with pytest.raises(OverflowError, match=msg):
642
+ ujson.ujson_dumps(_TestObject("foo"))
643
+ assert '"foo"' == ujson.ujson_dumps(_TestObject("foo"), default_handler=str)
644
+
645
+ def my_handler(_):
646
+ return "foobar"
647
+
648
+ assert '"foobar"' == ujson.ujson_dumps(
649
+ _TestObject("foo"), default_handler=my_handler
650
+ )
651
+
652
+ def my_handler_raises(_):
653
+ raise TypeError("I raise for anything")
654
+
655
+ with pytest.raises(TypeError, match="I raise for anything"):
656
+ ujson.ujson_dumps(_TestObject("foo"), default_handler=my_handler_raises)
657
+
658
+ def my_int_handler(_):
659
+ return 42
660
+
661
+ assert (
662
+ ujson.ujson_loads(
663
+ ujson.ujson_dumps(_TestObject("foo"), default_handler=my_int_handler)
664
+ )
665
+ == 42
666
+ )
667
+
668
+ def my_obj_handler(_):
669
+ return datetime.datetime(2013, 2, 3)
670
+
671
+ assert ujson.ujson_loads(
672
+ ujson.ujson_dumps(datetime.datetime(2013, 2, 3))
673
+ ) == ujson.ujson_loads(
674
+ ujson.ujson_dumps(_TestObject("foo"), default_handler=my_obj_handler)
675
+ )
676
+
677
+ obj_list = [_TestObject("foo"), _TestObject("bar")]
678
+ assert json.loads(json.dumps(obj_list, default=str)) == ujson.ujson_loads(
679
+ ujson.ujson_dumps(obj_list, default_handler=str)
680
+ )
681
+
682
+ def test_encode_object(self):
683
+ class _TestObject:
684
+ def __init__(self, a, b, _c, d) -> None:
685
+ self.a = a
686
+ self.b = b
687
+ self._c = _c
688
+ self.d = d
689
+
690
+ def e(self):
691
+ return 5
692
+
693
+ # JSON keys should be all non-callable non-underscore attributes, see GH-42768
694
+ test_object = _TestObject(a=1, b=2, _c=3, d=4)
695
+ assert ujson.ujson_loads(ujson.ujson_dumps(test_object)) == {
696
+ "a": 1,
697
+ "b": 2,
698
+ "d": 4,
699
+ }
700
+
701
+ def test_ujson__name__(self):
702
+ # GH 52898
703
+ assert ujson.__name__ == "pandas._libs.json"
704
+
705
+
706
+ class TestNumpyJSONTests:
707
+ @pytest.mark.parametrize("bool_input", [True, False])
708
+ def test_bool(self, bool_input):
709
+ b = bool(bool_input)
710
+ assert ujson.ujson_loads(ujson.ujson_dumps(b)) == b
711
+
712
+ def test_bool_array(self):
713
+ bool_array = np.array(
714
+ [True, False, True, True, False, True, False, False], dtype=bool
715
+ )
716
+ output = np.array(ujson.ujson_loads(ujson.ujson_dumps(bool_array)), dtype=bool)
717
+ tm.assert_numpy_array_equal(bool_array, output)
718
+
719
+ def test_int(self, any_int_numpy_dtype):
720
+ klass = np.dtype(any_int_numpy_dtype).type
721
+ num = klass(1)
722
+
723
+ assert klass(ujson.ujson_loads(ujson.ujson_dumps(num))) == num
724
+
725
+ def test_int_array(self, any_int_numpy_dtype):
726
+ arr = np.arange(100, dtype=int)
727
+ arr_input = arr.astype(any_int_numpy_dtype)
728
+
729
+ arr_output = np.array(
730
+ ujson.ujson_loads(ujson.ujson_dumps(arr_input)), dtype=any_int_numpy_dtype
731
+ )
732
+ tm.assert_numpy_array_equal(arr_input, arr_output)
733
+
734
+ def test_int_max(self, any_int_numpy_dtype):
735
+ if any_int_numpy_dtype in ("int64", "uint64") and not IS64:
736
+ pytest.skip("Cannot test 64-bit integer on 32-bit platform")
737
+
738
+ klass = np.dtype(any_int_numpy_dtype).type
739
+
740
+ # uint64 max will always overflow,
741
+ # as it's encoded to signed.
742
+ if any_int_numpy_dtype == "uint64":
743
+ num = np.iinfo("int64").max
744
+ else:
745
+ num = np.iinfo(any_int_numpy_dtype).max
746
+
747
+ assert klass(ujson.ujson_loads(ujson.ujson_dumps(num))) == num
748
+
749
+ def test_float(self, float_numpy_dtype):
750
+ klass = np.dtype(float_numpy_dtype).type
751
+ num = klass(256.2013)
752
+
753
+ assert klass(ujson.ujson_loads(ujson.ujson_dumps(num))) == num
754
+
755
+ def test_float_array(self, float_numpy_dtype):
756
+ arr = np.arange(12.5, 185.72, 1.7322, dtype=float)
757
+ float_input = arr.astype(float_numpy_dtype)
758
+
759
+ float_output = np.array(
760
+ ujson.ujson_loads(ujson.ujson_dumps(float_input, double_precision=15)),
761
+ dtype=float_numpy_dtype,
762
+ )
763
+ tm.assert_almost_equal(float_input, float_output)
764
+
765
+ def test_float_max(self, float_numpy_dtype):
766
+ klass = np.dtype(float_numpy_dtype).type
767
+ num = klass(np.finfo(float_numpy_dtype).max / 10)
768
+
769
+ tm.assert_almost_equal(
770
+ klass(ujson.ujson_loads(ujson.ujson_dumps(num, double_precision=15))), num
771
+ )
772
+
773
+ def test_array_basic(self):
774
+ arr = np.arange(96)
775
+ arr = arr.reshape((2, 2, 2, 2, 3, 2))
776
+
777
+ tm.assert_numpy_array_equal(
778
+ np.array(ujson.ujson_loads(ujson.ujson_dumps(arr))), arr
779
+ )
780
+
781
+ @pytest.mark.parametrize("shape", [(10, 10), (5, 5, 4), (100, 1)])
782
+ def test_array_reshaped(self, shape):
783
+ arr = np.arange(100)
784
+ arr = arr.reshape(shape)
785
+
786
+ tm.assert_numpy_array_equal(
787
+ np.array(ujson.ujson_loads(ujson.ujson_dumps(arr))), arr
788
+ )
789
+
790
+ def test_array_list(self):
791
+ arr_list = [
792
+ "a",
793
+ [],
794
+ {},
795
+ {},
796
+ [],
797
+ 42,
798
+ 97.8,
799
+ ["a", "b"],
800
+ {"key": "val"},
801
+ ]
802
+ arr = np.array(arr_list, dtype=object)
803
+ result = np.array(ujson.ujson_loads(ujson.ujson_dumps(arr)), dtype=object)
804
+ tm.assert_numpy_array_equal(result, arr)
805
+
806
+ def test_array_float(self):
807
+ dtype = np.float32
808
+
809
+ arr = np.arange(100.202, 200.202, 1, dtype=dtype)
810
+ arr = arr.reshape((5, 5, 4))
811
+
812
+ arr_out = np.array(ujson.ujson_loads(ujson.ujson_dumps(arr)), dtype=dtype)
813
+ tm.assert_almost_equal(arr, arr_out)
814
+
815
+ def test_0d_array(self):
816
+ # gh-18878
817
+ msg = re.escape(
818
+ "array(1) (numpy-scalar) is not JSON serializable at the moment"
819
+ )
820
+ with pytest.raises(TypeError, match=msg):
821
+ ujson.ujson_dumps(np.array(1))
822
+
823
+ def test_array_long_double(self):
824
+ msg = re.compile(
825
+ "1234.5.* \\(numpy-scalar\\) is not JSON serializable at the moment"
826
+ )
827
+ with pytest.raises(TypeError, match=msg):
828
+ ujson.ujson_dumps(np.longdouble(1234.5))
829
+
830
+
831
+ class TestPandasJSONTests:
832
+ def test_dataframe(self, orient):
833
+ dtype = np.int64
834
+
835
+ df = DataFrame(
836
+ [[1, 2, 3], [4, 5, 6]],
837
+ index=["a", "b"],
838
+ columns=["x", "y", "z"],
839
+ dtype=dtype,
840
+ )
841
+ encode_kwargs = {} if orient is None else {"orient": orient}
842
+ assert (df.dtypes == dtype).all()
843
+
844
+ output = ujson.ujson_loads(ujson.ujson_dumps(df, **encode_kwargs))
845
+ assert (df.dtypes == dtype).all()
846
+
847
+ # Ensure proper DataFrame initialization.
848
+ if orient == "split":
849
+ dec = _clean_dict(output)
850
+ output = DataFrame(**dec)
851
+ else:
852
+ output = DataFrame(output)
853
+
854
+ # Corrections to enable DataFrame comparison.
855
+ if orient == "values":
856
+ df.columns = [0, 1, 2]
857
+ df.index = [0, 1]
858
+ elif orient == "records":
859
+ df.index = [0, 1]
860
+ elif orient == "index":
861
+ df = df.transpose()
862
+
863
+ assert (df.dtypes == dtype).all()
864
+ tm.assert_frame_equal(output, df)
865
+
866
+ def test_dataframe_nested(self, orient):
867
+ df = DataFrame(
868
+ [[1, 2, 3], [4, 5, 6]], index=["a", "b"], columns=["x", "y", "z"]
869
+ )
870
+
871
+ nested = {"df1": df, "df2": df.copy()}
872
+ kwargs = {} if orient is None else {"orient": orient}
873
+
874
+ exp = {
875
+ "df1": ujson.ujson_loads(ujson.ujson_dumps(df, **kwargs)),
876
+ "df2": ujson.ujson_loads(ujson.ujson_dumps(df, **kwargs)),
877
+ }
878
+ assert ujson.ujson_loads(ujson.ujson_dumps(nested, **kwargs)) == exp
879
+
880
+ def test_series(self, orient):
881
+ dtype = np.int64
882
+ s = Series(
883
+ [10, 20, 30, 40, 50, 60],
884
+ name="series",
885
+ index=[6, 7, 8, 9, 10, 15],
886
+ dtype=dtype,
887
+ ).sort_values()
888
+ assert s.dtype == dtype
889
+
890
+ encode_kwargs = {} if orient is None else {"orient": orient}
891
+
892
+ output = ujson.ujson_loads(ujson.ujson_dumps(s, **encode_kwargs))
893
+ assert s.dtype == dtype
894
+
895
+ if orient == "split":
896
+ dec = _clean_dict(output)
897
+ output = Series(**dec)
898
+ else:
899
+ output = Series(output)
900
+
901
+ if orient in (None, "index"):
902
+ s.name = None
903
+ output = output.sort_values()
904
+ s.index = ["6", "7", "8", "9", "10", "15"]
905
+ elif orient in ("records", "values"):
906
+ s.name = None
907
+ s.index = [0, 1, 2, 3, 4, 5]
908
+
909
+ assert s.dtype == dtype
910
+ tm.assert_series_equal(output, s)
911
+
912
+ def test_series_nested(self, orient):
913
+ s = Series(
914
+ [10, 20, 30, 40, 50, 60], name="series", index=[6, 7, 8, 9, 10, 15]
915
+ ).sort_values()
916
+ nested = {"s1": s, "s2": s.copy()}
917
+ kwargs = {} if orient is None else {"orient": orient}
918
+
919
+ exp = {
920
+ "s1": ujson.ujson_loads(ujson.ujson_dumps(s, **kwargs)),
921
+ "s2": ujson.ujson_loads(ujson.ujson_dumps(s, **kwargs)),
922
+ }
923
+ assert ujson.ujson_loads(ujson.ujson_dumps(nested, **kwargs)) == exp
924
+
925
+ def test_index(self):
926
+ i = Index([23, 45, 18, 98, 43, 11], name="index")
927
+
928
+ # Column indexed.
929
+ output = Index(ujson.ujson_loads(ujson.ujson_dumps(i)), name="index")
930
+ tm.assert_index_equal(i, output)
931
+
932
+ dec = _clean_dict(ujson.ujson_loads(ujson.ujson_dumps(i, orient="split")))
933
+ output = Index(**dec)
934
+
935
+ tm.assert_index_equal(i, output)
936
+ assert i.name == output.name
937
+
938
+ tm.assert_index_equal(i, output)
939
+ assert i.name == output.name
940
+
941
+ output = Index(
942
+ ujson.ujson_loads(ujson.ujson_dumps(i, orient="values")), name="index"
943
+ )
944
+ tm.assert_index_equal(i, output)
945
+
946
+ output = Index(
947
+ ujson.ujson_loads(ujson.ujson_dumps(i, orient="records")), name="index"
948
+ )
949
+ tm.assert_index_equal(i, output)
950
+
951
+ output = Index(
952
+ ujson.ujson_loads(ujson.ujson_dumps(i, orient="index")), name="index"
953
+ )
954
+ tm.assert_index_equal(i, output)
955
+
956
+ def test_datetime_index(self):
957
+ date_unit = "ns"
958
+
959
+ # freq doesn't round-trip
960
+ rng = DatetimeIndex(list(date_range("1/1/2000", periods=20)), freq=None)
961
+ encoded = ujson.ujson_dumps(rng, date_unit=date_unit)
962
+
963
+ decoded = DatetimeIndex(np.array(ujson.ujson_loads(encoded)))
964
+ tm.assert_index_equal(rng, decoded)
965
+
966
+ ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng)
967
+ decoded = Series(ujson.ujson_loads(ujson.ujson_dumps(ts, date_unit=date_unit)))
968
+
969
+ idx_values = decoded.index.values.astype(np.int64)
970
+ decoded.index = DatetimeIndex(idx_values)
971
+ tm.assert_series_equal(ts, decoded)
972
+
973
+ @pytest.mark.parametrize(
974
+ "invalid_arr",
975
+ [
976
+ "[31337,]", # Trailing comma.
977
+ "[,31337]", # Leading comma.
978
+ "[]]", # Unmatched bracket.
979
+ "[,]", # Only comma.
980
+ ],
981
+ )
982
+ def test_decode_invalid_array(self, invalid_arr):
983
+ msg = (
984
+ "Expected object or value|Trailing data|"
985
+ "Unexpected character found when decoding array value"
986
+ )
987
+ with pytest.raises(ValueError, match=msg):
988
+ ujson.ujson_loads(invalid_arr)
989
+
990
+ @pytest.mark.parametrize("arr", [[], [31337]])
991
+ def test_decode_array(self, arr):
992
+ assert arr == ujson.ujson_loads(str(arr))
993
+
994
+ @pytest.mark.parametrize("extreme_num", [9223372036854775807, -9223372036854775808])
995
+ def test_decode_extreme_numbers(self, extreme_num):
996
+ assert extreme_num == ujson.ujson_loads(str(extreme_num))
997
+
998
+ @pytest.mark.parametrize("too_extreme_num", [f"{2**64}", f"{-2**63-1}"])
999
+ def test_decode_too_extreme_numbers(self, too_extreme_num):
1000
+ with pytest.raises(
1001
+ ValueError,
1002
+ match="Value is too big|Value is too small",
1003
+ ):
1004
+ ujson.ujson_loads(too_extreme_num)
1005
+
1006
+ def test_decode_with_trailing_whitespaces(self):
1007
+ assert {} == ujson.ujson_loads("{}\n\t ")
1008
+
1009
+ def test_decode_with_trailing_non_whitespaces(self):
1010
+ with pytest.raises(ValueError, match="Trailing data"):
1011
+ ujson.ujson_loads("{}\n\t a")
1012
+
1013
+ @pytest.mark.parametrize("value", [f"{2**64}", f"{-2**63-1}"])
1014
+ def test_decode_array_with_big_int(self, value):
1015
+ with pytest.raises(
1016
+ ValueError,
1017
+ match="Value is too big|Value is too small",
1018
+ ):
1019
+ ujson.ujson_loads(value)
1020
+
1021
+ @pytest.mark.parametrize(
1022
+ "float_number",
1023
+ [
1024
+ 1.1234567893,
1025
+ 1.234567893,
1026
+ 1.34567893,
1027
+ 1.4567893,
1028
+ 1.567893,
1029
+ 1.67893,
1030
+ 1.7893,
1031
+ 1.893,
1032
+ 1.3,
1033
+ ],
1034
+ )
1035
+ @pytest.mark.parametrize("sign", [-1, 1])
1036
+ def test_decode_floating_point(self, sign, float_number):
1037
+ float_number *= sign
1038
+ tm.assert_almost_equal(
1039
+ float_number, ujson.ujson_loads(str(float_number)), rtol=1e-15
1040
+ )
1041
+
1042
+ def test_encode_big_set(self):
1043
+ s = set()
1044
+
1045
+ for x in range(100000):
1046
+ s.add(x)
1047
+
1048
+ # Make sure no Exception is raised.
1049
+ ujson.ujson_dumps(s)
1050
+
1051
+ def test_encode_empty_set(self):
1052
+ assert "[]" == ujson.ujson_dumps(set())
1053
+
1054
+ def test_encode_set(self):
1055
+ s = {1, 2, 3, 4, 5, 6, 7, 8, 9}
1056
+ enc = ujson.ujson_dumps(s)
1057
+ dec = ujson.ujson_loads(enc)
1058
+
1059
+ for v in dec:
1060
+ assert v in s
1061
+
1062
+ @pytest.mark.parametrize(
1063
+ "td",
1064
+ [
1065
+ Timedelta(days=366),
1066
+ Timedelta(days=-1),
1067
+ Timedelta(hours=13, minutes=5, seconds=5),
1068
+ Timedelta(hours=13, minutes=20, seconds=30),
1069
+ Timedelta(days=-1, nanoseconds=5),
1070
+ Timedelta(nanoseconds=1),
1071
+ Timedelta(microseconds=1, nanoseconds=1),
1072
+ Timedelta(milliseconds=1, microseconds=1, nanoseconds=1),
1073
+ Timedelta(milliseconds=999, microseconds=999, nanoseconds=999),
1074
+ ],
1075
+ )
1076
+ def test_encode_timedelta_iso(self, td):
1077
+ # GH 28256
1078
+ result = ujson.ujson_dumps(td, iso_dates=True)
1079
+ expected = f'"{td.isoformat()}"'
1080
+
1081
+ assert result == expected
1082
+
1083
+ def test_encode_periodindex(self):
1084
+ # GH 46683
1085
+ p = PeriodIndex(["2022-04-06", "2022-04-07"], freq="D")
1086
+ df = DataFrame(index=p)
1087
+ assert df.to_json() == "{}"
venv/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (192 Bytes). View file
 
venv/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/common.cpython-310.pyc ADDED
Binary file (1.5 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/conftest.cpython-310.pyc ADDED
Binary file (407 Bytes). View file
 
venv/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_append.cpython-310.pyc ADDED
Binary file (24.2 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_categorical.cpython-310.pyc ADDED
Binary file (4.46 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_compat.cpython-310.pyc ADDED
Binary file (2.59 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_complex.cpython-310.pyc ADDED
Binary file (4.91 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_errors.cpython-310.pyc ADDED
Binary file (8.54 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_file_handling.cpython-310.pyc ADDED
Binary file (11.7 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_keys.cpython-310.pyc ADDED
Binary file (3.38 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_put.cpython-310.pyc ADDED
Binary file (10.4 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_pytables_missing.cpython-310.pyc ADDED
Binary file (794 Bytes). View file