Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step80/zero/29.vocab_parallel_projection.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step80/zero/29.vocab_parallel_projection.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/__init__.py +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/__pycache__/masked_shared.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/__pycache__/test_array.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/__pycache__/test_datetimelike.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/__pycache__/test_datetimes.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/__pycache__/test_ndarray_backed.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/__pycache__/test_period.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/__pycache__/test_timedeltas.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__init__.py +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_arithmetic.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_astype.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_comparison.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_construction.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_function.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_indexing.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_logical.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_ops.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_reduction.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_repr.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_arithmetic.py +139 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_astype.py +53 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_comparison.py +60 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_construction.py +325 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_function.py +126 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_indexing.py +13 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_logical.py +254 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_ops.py +27 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_reduction.py +62 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_repr.py +13 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/datetimes/__init__.py +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/datetimes/test_constructors.py +284 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/datetimes/test_cumulative.py +44 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/datetimes/test_reductions.py +183 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/masked/__init__.py +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/masked/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/masked/__pycache__/test_arithmetic.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/masked/__pycache__/test_arrow_compat.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/masked/__pycache__/test_function.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/masked/__pycache__/test_indexing.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/masked/test_arithmetic.py +248 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/masked/test_arrow_compat.py +209 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/masked/test_function.py +74 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/masked/test_indexing.py +60 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/masked_shared.py +154 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/test_array.py +478 -0
- venv/lib/python3.10/site-packages/pandas/tests/arrays/test_datetimelike.py +1340 -0
ckpts/universal/global_step80/zero/29.vocab_parallel_projection.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d3809ad4f4093105a7755bf0762809537b7f61f2f619bf7c249a15b71b97657
|
3 |
+
size 415237276
|
ckpts/universal/global_step80/zero/29.vocab_parallel_projection.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94d6106a37347803a51c41c9c7ddad11335ae199d032aa8c1365b03c2a38348b
|
3 |
+
size 415237197
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (187 Bytes). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/__pycache__/masked_shared.cpython-310.pyc
ADDED
Binary file (4.33 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/__pycache__/test_array.cpython-310.pyc
ADDED
Binary file (9.32 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/__pycache__/test_datetimelike.cpython-310.pyc
ADDED
Binary file (35.5 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/__pycache__/test_datetimes.cpython-310.pyc
ADDED
Binary file (24.8 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/__pycache__/test_ndarray_backed.cpython-310.pyc
ADDED
Binary file (2.3 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/__pycache__/test_period.cpython-310.pyc
ADDED
Binary file (5.71 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/__pycache__/test_timedeltas.cpython-310.pyc
ADDED
Binary file (10.3 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (195 Bytes). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_arithmetic.cpython-310.pyc
ADDED
Binary file (3.6 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_astype.cpython-310.pyc
ADDED
Binary file (1.58 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_comparison.cpython-310.pyc
ADDED
Binary file (2.3 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_construction.cpython-310.pyc
ADDED
Binary file (8.29 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_function.cpython-310.pyc
ADDED
Binary file (3.38 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_indexing.cpython-310.pyc
ADDED
Binary file (642 Bytes). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_logical.cpython-310.pyc
ADDED
Binary file (6.8 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_ops.cpython-310.pyc
ADDED
Binary file (1.18 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_reduction.cpython-310.pyc
ADDED
Binary file (1.75 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/__pycache__/test_repr.cpython-310.pyc
ADDED
Binary file (653 Bytes). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_arithmetic.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import operator
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
import pandas as pd
|
7 |
+
import pandas._testing as tm
|
8 |
+
|
9 |
+
|
10 |
+
@pytest.fixture
|
11 |
+
def data():
|
12 |
+
"""Fixture returning boolean array with valid and missing values."""
|
13 |
+
return pd.array(
|
14 |
+
[True, False] * 4 + [np.nan] + [True, False] * 44 + [np.nan] + [True, False],
|
15 |
+
dtype="boolean",
|
16 |
+
)
|
17 |
+
|
18 |
+
|
19 |
+
@pytest.fixture
|
20 |
+
def left_array():
|
21 |
+
"""Fixture returning boolean array with valid and missing values."""
|
22 |
+
return pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
|
23 |
+
|
24 |
+
|
25 |
+
@pytest.fixture
|
26 |
+
def right_array():
|
27 |
+
"""Fixture returning boolean array with valid and missing values."""
|
28 |
+
return pd.array([True, False, None] * 3, dtype="boolean")
|
29 |
+
|
30 |
+
|
31 |
+
# Basic test for the arithmetic array ops
|
32 |
+
# -----------------------------------------------------------------------------
|
33 |
+
|
34 |
+
|
35 |
+
@pytest.mark.parametrize(
|
36 |
+
"opname, exp",
|
37 |
+
[
|
38 |
+
("add", [True, True, None, True, False, None, None, None, None]),
|
39 |
+
("mul", [True, False, None, False, False, None, None, None, None]),
|
40 |
+
],
|
41 |
+
ids=["add", "mul"],
|
42 |
+
)
|
43 |
+
def test_add_mul(left_array, right_array, opname, exp):
|
44 |
+
op = getattr(operator, opname)
|
45 |
+
result = op(left_array, right_array)
|
46 |
+
expected = pd.array(exp, dtype="boolean")
|
47 |
+
tm.assert_extension_array_equal(result, expected)
|
48 |
+
|
49 |
+
|
50 |
+
def test_sub(left_array, right_array):
|
51 |
+
msg = (
|
52 |
+
r"numpy boolean subtract, the `-` operator, is (?:deprecated|not supported), "
|
53 |
+
r"use the bitwise_xor, the `\^` operator, or the logical_xor function instead\."
|
54 |
+
)
|
55 |
+
with pytest.raises(TypeError, match=msg):
|
56 |
+
left_array - right_array
|
57 |
+
|
58 |
+
|
59 |
+
def test_div(left_array, right_array):
|
60 |
+
msg = "operator '.*' not implemented for bool dtypes"
|
61 |
+
with pytest.raises(NotImplementedError, match=msg):
|
62 |
+
# check that we are matching the non-masked Series behavior
|
63 |
+
pd.Series(left_array._data) / pd.Series(right_array._data)
|
64 |
+
|
65 |
+
with pytest.raises(NotImplementedError, match=msg):
|
66 |
+
left_array / right_array
|
67 |
+
|
68 |
+
|
69 |
+
@pytest.mark.parametrize(
|
70 |
+
"opname",
|
71 |
+
[
|
72 |
+
"floordiv",
|
73 |
+
"mod",
|
74 |
+
"pow",
|
75 |
+
],
|
76 |
+
)
|
77 |
+
def test_op_int8(left_array, right_array, opname):
|
78 |
+
op = getattr(operator, opname)
|
79 |
+
if opname != "mod":
|
80 |
+
msg = "operator '.*' not implemented for bool dtypes"
|
81 |
+
with pytest.raises(NotImplementedError, match=msg):
|
82 |
+
result = op(left_array, right_array)
|
83 |
+
return
|
84 |
+
result = op(left_array, right_array)
|
85 |
+
expected = op(left_array.astype("Int8"), right_array.astype("Int8"))
|
86 |
+
tm.assert_extension_array_equal(result, expected)
|
87 |
+
|
88 |
+
|
89 |
+
# Test generic characteristics / errors
|
90 |
+
# -----------------------------------------------------------------------------
|
91 |
+
|
92 |
+
|
93 |
+
def test_error_invalid_values(data, all_arithmetic_operators, using_infer_string):
|
94 |
+
# invalid ops
|
95 |
+
|
96 |
+
if using_infer_string:
|
97 |
+
import pyarrow as pa
|
98 |
+
|
99 |
+
err = (TypeError, pa.lib.ArrowNotImplementedError, NotImplementedError)
|
100 |
+
else:
|
101 |
+
err = TypeError
|
102 |
+
|
103 |
+
op = all_arithmetic_operators
|
104 |
+
s = pd.Series(data)
|
105 |
+
ops = getattr(s, op)
|
106 |
+
|
107 |
+
# invalid scalars
|
108 |
+
msg = (
|
109 |
+
"did not contain a loop with signature matching types|"
|
110 |
+
"BooleanArray cannot perform the operation|"
|
111 |
+
"not supported for the input types, and the inputs could not be safely coerced "
|
112 |
+
"to any supported types according to the casting rule ''safe''"
|
113 |
+
)
|
114 |
+
with pytest.raises(TypeError, match=msg):
|
115 |
+
ops("foo")
|
116 |
+
msg = "|".join(
|
117 |
+
[
|
118 |
+
r"unsupported operand type\(s\) for",
|
119 |
+
"Concatenation operation is not implemented for NumPy arrays",
|
120 |
+
"has no kernel",
|
121 |
+
]
|
122 |
+
)
|
123 |
+
with pytest.raises(err, match=msg):
|
124 |
+
ops(pd.Timestamp("20180101"))
|
125 |
+
|
126 |
+
# invalid array-likes
|
127 |
+
if op not in ("__mul__", "__rmul__"):
|
128 |
+
# TODO(extension) numpy's mul with object array sees booleans as numbers
|
129 |
+
msg = "|".join(
|
130 |
+
[
|
131 |
+
r"unsupported operand type\(s\) for",
|
132 |
+
"can only concatenate str",
|
133 |
+
"not all arguments converted during string formatting",
|
134 |
+
"has no kernel",
|
135 |
+
"not implemented",
|
136 |
+
]
|
137 |
+
)
|
138 |
+
with pytest.raises(err, match=msg):
|
139 |
+
ops(pd.Series("foo", index=s.index))
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_astype.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
import pandas._testing as tm
|
6 |
+
|
7 |
+
|
8 |
+
def test_astype():
|
9 |
+
# with missing values
|
10 |
+
arr = pd.array([True, False, None], dtype="boolean")
|
11 |
+
|
12 |
+
with pytest.raises(ValueError, match="cannot convert NA to integer"):
|
13 |
+
arr.astype("int64")
|
14 |
+
|
15 |
+
with pytest.raises(ValueError, match="cannot convert float NaN to"):
|
16 |
+
arr.astype("bool")
|
17 |
+
|
18 |
+
result = arr.astype("float64")
|
19 |
+
expected = np.array([1, 0, np.nan], dtype="float64")
|
20 |
+
tm.assert_numpy_array_equal(result, expected)
|
21 |
+
|
22 |
+
result = arr.astype("str")
|
23 |
+
expected = np.array(["True", "False", "<NA>"], dtype=f"{tm.ENDIAN}U5")
|
24 |
+
tm.assert_numpy_array_equal(result, expected)
|
25 |
+
|
26 |
+
# no missing values
|
27 |
+
arr = pd.array([True, False, True], dtype="boolean")
|
28 |
+
result = arr.astype("int64")
|
29 |
+
expected = np.array([1, 0, 1], dtype="int64")
|
30 |
+
tm.assert_numpy_array_equal(result, expected)
|
31 |
+
|
32 |
+
result = arr.astype("bool")
|
33 |
+
expected = np.array([True, False, True], dtype="bool")
|
34 |
+
tm.assert_numpy_array_equal(result, expected)
|
35 |
+
|
36 |
+
|
37 |
+
def test_astype_to_boolean_array():
|
38 |
+
# astype to BooleanArray
|
39 |
+
arr = pd.array([True, False, None], dtype="boolean")
|
40 |
+
|
41 |
+
result = arr.astype("boolean")
|
42 |
+
tm.assert_extension_array_equal(result, arr)
|
43 |
+
result = arr.astype(pd.BooleanDtype())
|
44 |
+
tm.assert_extension_array_equal(result, arr)
|
45 |
+
|
46 |
+
|
47 |
+
def test_astype_to_integer_array():
|
48 |
+
# astype to IntegerArray
|
49 |
+
arr = pd.array([True, False, None], dtype="boolean")
|
50 |
+
|
51 |
+
result = arr.astype("Int64")
|
52 |
+
expected = pd.array([1, 0, None], dtype="Int64")
|
53 |
+
tm.assert_extension_array_equal(result, expected)
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_comparison.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
import pandas._testing as tm
|
6 |
+
from pandas.arrays import BooleanArray
|
7 |
+
from pandas.tests.arrays.masked_shared import ComparisonOps
|
8 |
+
|
9 |
+
|
10 |
+
@pytest.fixture
|
11 |
+
def data():
|
12 |
+
"""Fixture returning boolean array with valid and missing data"""
|
13 |
+
return pd.array(
|
14 |
+
[True, False] * 4 + [np.nan] + [True, False] * 44 + [np.nan] + [True, False],
|
15 |
+
dtype="boolean",
|
16 |
+
)
|
17 |
+
|
18 |
+
|
19 |
+
@pytest.fixture
|
20 |
+
def dtype():
|
21 |
+
"""Fixture returning BooleanDtype"""
|
22 |
+
return pd.BooleanDtype()
|
23 |
+
|
24 |
+
|
25 |
+
class TestComparisonOps(ComparisonOps):
|
26 |
+
def test_compare_scalar(self, data, comparison_op):
|
27 |
+
self._compare_other(data, comparison_op, True)
|
28 |
+
|
29 |
+
def test_compare_array(self, data, comparison_op):
|
30 |
+
other = pd.array([True] * len(data), dtype="boolean")
|
31 |
+
self._compare_other(data, comparison_op, other)
|
32 |
+
other = np.array([True] * len(data))
|
33 |
+
self._compare_other(data, comparison_op, other)
|
34 |
+
other = pd.Series([True] * len(data))
|
35 |
+
self._compare_other(data, comparison_op, other)
|
36 |
+
|
37 |
+
@pytest.mark.parametrize("other", [True, False, pd.NA])
|
38 |
+
def test_scalar(self, other, comparison_op, dtype):
|
39 |
+
ComparisonOps.test_scalar(self, other, comparison_op, dtype)
|
40 |
+
|
41 |
+
def test_array(self, comparison_op):
|
42 |
+
op = comparison_op
|
43 |
+
a = pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
|
44 |
+
b = pd.array([True, False, None] * 3, dtype="boolean")
|
45 |
+
|
46 |
+
result = op(a, b)
|
47 |
+
|
48 |
+
values = op(a._data, b._data)
|
49 |
+
mask = a._mask | b._mask
|
50 |
+
expected = BooleanArray(values, mask)
|
51 |
+
tm.assert_extension_array_equal(result, expected)
|
52 |
+
|
53 |
+
# ensure we haven't mutated anything inplace
|
54 |
+
result[0] = None
|
55 |
+
tm.assert_extension_array_equal(
|
56 |
+
a, pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
|
57 |
+
)
|
58 |
+
tm.assert_extension_array_equal(
|
59 |
+
b, pd.array([True, False, None] * 3, dtype="boolean")
|
60 |
+
)
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_construction.py
ADDED
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
import pandas._testing as tm
|
6 |
+
from pandas.arrays import BooleanArray
|
7 |
+
from pandas.core.arrays.boolean import coerce_to_array
|
8 |
+
|
9 |
+
|
10 |
+
def test_boolean_array_constructor():
|
11 |
+
values = np.array([True, False, True, False], dtype="bool")
|
12 |
+
mask = np.array([False, False, False, True], dtype="bool")
|
13 |
+
|
14 |
+
result = BooleanArray(values, mask)
|
15 |
+
expected = pd.array([True, False, True, None], dtype="boolean")
|
16 |
+
tm.assert_extension_array_equal(result, expected)
|
17 |
+
|
18 |
+
with pytest.raises(TypeError, match="values should be boolean numpy array"):
|
19 |
+
BooleanArray(values.tolist(), mask)
|
20 |
+
|
21 |
+
with pytest.raises(TypeError, match="mask should be boolean numpy array"):
|
22 |
+
BooleanArray(values, mask.tolist())
|
23 |
+
|
24 |
+
with pytest.raises(TypeError, match="values should be boolean numpy array"):
|
25 |
+
BooleanArray(values.astype(int), mask)
|
26 |
+
|
27 |
+
with pytest.raises(TypeError, match="mask should be boolean numpy array"):
|
28 |
+
BooleanArray(values, None)
|
29 |
+
|
30 |
+
with pytest.raises(ValueError, match="values.shape must match mask.shape"):
|
31 |
+
BooleanArray(values.reshape(1, -1), mask)
|
32 |
+
|
33 |
+
with pytest.raises(ValueError, match="values.shape must match mask.shape"):
|
34 |
+
BooleanArray(values, mask.reshape(1, -1))
|
35 |
+
|
36 |
+
|
37 |
+
def test_boolean_array_constructor_copy():
|
38 |
+
values = np.array([True, False, True, False], dtype="bool")
|
39 |
+
mask = np.array([False, False, False, True], dtype="bool")
|
40 |
+
|
41 |
+
result = BooleanArray(values, mask)
|
42 |
+
assert result._data is values
|
43 |
+
assert result._mask is mask
|
44 |
+
|
45 |
+
result = BooleanArray(values, mask, copy=True)
|
46 |
+
assert result._data is not values
|
47 |
+
assert result._mask is not mask
|
48 |
+
|
49 |
+
|
50 |
+
def test_to_boolean_array():
|
51 |
+
expected = BooleanArray(
|
52 |
+
np.array([True, False, True]), np.array([False, False, False])
|
53 |
+
)
|
54 |
+
|
55 |
+
result = pd.array([True, False, True], dtype="boolean")
|
56 |
+
tm.assert_extension_array_equal(result, expected)
|
57 |
+
result = pd.array(np.array([True, False, True]), dtype="boolean")
|
58 |
+
tm.assert_extension_array_equal(result, expected)
|
59 |
+
result = pd.array(np.array([True, False, True], dtype=object), dtype="boolean")
|
60 |
+
tm.assert_extension_array_equal(result, expected)
|
61 |
+
|
62 |
+
# with missing values
|
63 |
+
expected = BooleanArray(
|
64 |
+
np.array([True, False, True]), np.array([False, False, True])
|
65 |
+
)
|
66 |
+
|
67 |
+
result = pd.array([True, False, None], dtype="boolean")
|
68 |
+
tm.assert_extension_array_equal(result, expected)
|
69 |
+
result = pd.array(np.array([True, False, None], dtype=object), dtype="boolean")
|
70 |
+
tm.assert_extension_array_equal(result, expected)
|
71 |
+
|
72 |
+
|
73 |
+
def test_to_boolean_array_all_none():
|
74 |
+
expected = BooleanArray(np.array([True, True, True]), np.array([True, True, True]))
|
75 |
+
|
76 |
+
result = pd.array([None, None, None], dtype="boolean")
|
77 |
+
tm.assert_extension_array_equal(result, expected)
|
78 |
+
result = pd.array(np.array([None, None, None], dtype=object), dtype="boolean")
|
79 |
+
tm.assert_extension_array_equal(result, expected)
|
80 |
+
|
81 |
+
|
82 |
+
@pytest.mark.parametrize(
|
83 |
+
"a, b",
|
84 |
+
[
|
85 |
+
([True, False, None, np.nan, pd.NA], [True, False, None, None, None]),
|
86 |
+
([True, np.nan], [True, None]),
|
87 |
+
([True, pd.NA], [True, None]),
|
88 |
+
([np.nan, np.nan], [None, None]),
|
89 |
+
(np.array([np.nan, np.nan], dtype=float), [None, None]),
|
90 |
+
],
|
91 |
+
)
|
92 |
+
def test_to_boolean_array_missing_indicators(a, b):
|
93 |
+
result = pd.array(a, dtype="boolean")
|
94 |
+
expected = pd.array(b, dtype="boolean")
|
95 |
+
tm.assert_extension_array_equal(result, expected)
|
96 |
+
|
97 |
+
|
98 |
+
@pytest.mark.parametrize(
|
99 |
+
"values",
|
100 |
+
[
|
101 |
+
["foo", "bar"],
|
102 |
+
["1", "2"],
|
103 |
+
# "foo",
|
104 |
+
[1, 2],
|
105 |
+
[1.0, 2.0],
|
106 |
+
pd.date_range("20130101", periods=2),
|
107 |
+
np.array(["foo"]),
|
108 |
+
np.array([1, 2]),
|
109 |
+
np.array([1.0, 2.0]),
|
110 |
+
[np.nan, {"a": 1}],
|
111 |
+
],
|
112 |
+
)
|
113 |
+
def test_to_boolean_array_error(values):
|
114 |
+
# error in converting existing arrays to BooleanArray
|
115 |
+
msg = "Need to pass bool-like value"
|
116 |
+
with pytest.raises(TypeError, match=msg):
|
117 |
+
pd.array(values, dtype="boolean")
|
118 |
+
|
119 |
+
|
120 |
+
def test_to_boolean_array_from_integer_array():
|
121 |
+
result = pd.array(np.array([1, 0, 1, 0]), dtype="boolean")
|
122 |
+
expected = pd.array([True, False, True, False], dtype="boolean")
|
123 |
+
tm.assert_extension_array_equal(result, expected)
|
124 |
+
|
125 |
+
# with missing values
|
126 |
+
result = pd.array(np.array([1, 0, 1, None]), dtype="boolean")
|
127 |
+
expected = pd.array([True, False, True, None], dtype="boolean")
|
128 |
+
tm.assert_extension_array_equal(result, expected)
|
129 |
+
|
130 |
+
|
131 |
+
def test_to_boolean_array_from_float_array():
|
132 |
+
result = pd.array(np.array([1.0, 0.0, 1.0, 0.0]), dtype="boolean")
|
133 |
+
expected = pd.array([True, False, True, False], dtype="boolean")
|
134 |
+
tm.assert_extension_array_equal(result, expected)
|
135 |
+
|
136 |
+
# with missing values
|
137 |
+
result = pd.array(np.array([1.0, 0.0, 1.0, np.nan]), dtype="boolean")
|
138 |
+
expected = pd.array([True, False, True, None], dtype="boolean")
|
139 |
+
tm.assert_extension_array_equal(result, expected)
|
140 |
+
|
141 |
+
|
142 |
+
def test_to_boolean_array_integer_like():
|
143 |
+
# integers of 0's and 1's
|
144 |
+
result = pd.array([1, 0, 1, 0], dtype="boolean")
|
145 |
+
expected = pd.array([True, False, True, False], dtype="boolean")
|
146 |
+
tm.assert_extension_array_equal(result, expected)
|
147 |
+
|
148 |
+
# with missing values
|
149 |
+
result = pd.array([1, 0, 1, None], dtype="boolean")
|
150 |
+
expected = pd.array([True, False, True, None], dtype="boolean")
|
151 |
+
tm.assert_extension_array_equal(result, expected)
|
152 |
+
|
153 |
+
|
154 |
+
def test_coerce_to_array():
|
155 |
+
# TODO this is currently not public API
|
156 |
+
values = np.array([True, False, True, False], dtype="bool")
|
157 |
+
mask = np.array([False, False, False, True], dtype="bool")
|
158 |
+
result = BooleanArray(*coerce_to_array(values, mask=mask))
|
159 |
+
expected = BooleanArray(values, mask)
|
160 |
+
tm.assert_extension_array_equal(result, expected)
|
161 |
+
assert result._data is values
|
162 |
+
assert result._mask is mask
|
163 |
+
result = BooleanArray(*coerce_to_array(values, mask=mask, copy=True))
|
164 |
+
expected = BooleanArray(values, mask)
|
165 |
+
tm.assert_extension_array_equal(result, expected)
|
166 |
+
assert result._data is not values
|
167 |
+
assert result._mask is not mask
|
168 |
+
|
169 |
+
# mixed missing from values and mask
|
170 |
+
values = [True, False, None, False]
|
171 |
+
mask = np.array([False, False, False, True], dtype="bool")
|
172 |
+
result = BooleanArray(*coerce_to_array(values, mask=mask))
|
173 |
+
expected = BooleanArray(
|
174 |
+
np.array([True, False, True, True]), np.array([False, False, True, True])
|
175 |
+
)
|
176 |
+
tm.assert_extension_array_equal(result, expected)
|
177 |
+
result = BooleanArray(*coerce_to_array(np.array(values, dtype=object), mask=mask))
|
178 |
+
tm.assert_extension_array_equal(result, expected)
|
179 |
+
result = BooleanArray(*coerce_to_array(values, mask=mask.tolist()))
|
180 |
+
tm.assert_extension_array_equal(result, expected)
|
181 |
+
|
182 |
+
# raise errors for wrong dimension
|
183 |
+
values = np.array([True, False, True, False], dtype="bool")
|
184 |
+
mask = np.array([False, False, False, True], dtype="bool")
|
185 |
+
|
186 |
+
# passing 2D values is OK as long as no mask
|
187 |
+
coerce_to_array(values.reshape(1, -1))
|
188 |
+
|
189 |
+
with pytest.raises(ValueError, match="values.shape and mask.shape must match"):
|
190 |
+
coerce_to_array(values.reshape(1, -1), mask=mask)
|
191 |
+
|
192 |
+
with pytest.raises(ValueError, match="values.shape and mask.shape must match"):
|
193 |
+
coerce_to_array(values, mask=mask.reshape(1, -1))
|
194 |
+
|
195 |
+
|
196 |
+
def test_coerce_to_array_from_boolean_array():
|
197 |
+
# passing BooleanArray to coerce_to_array
|
198 |
+
values = np.array([True, False, True, False], dtype="bool")
|
199 |
+
mask = np.array([False, False, False, True], dtype="bool")
|
200 |
+
arr = BooleanArray(values, mask)
|
201 |
+
result = BooleanArray(*coerce_to_array(arr))
|
202 |
+
tm.assert_extension_array_equal(result, arr)
|
203 |
+
# no copy
|
204 |
+
assert result._data is arr._data
|
205 |
+
assert result._mask is arr._mask
|
206 |
+
|
207 |
+
result = BooleanArray(*coerce_to_array(arr), copy=True)
|
208 |
+
tm.assert_extension_array_equal(result, arr)
|
209 |
+
assert result._data is not arr._data
|
210 |
+
assert result._mask is not arr._mask
|
211 |
+
|
212 |
+
with pytest.raises(ValueError, match="cannot pass mask for BooleanArray input"):
|
213 |
+
coerce_to_array(arr, mask=mask)
|
214 |
+
|
215 |
+
|
216 |
+
def test_coerce_to_numpy_array():
|
217 |
+
# with missing values -> object dtype
|
218 |
+
arr = pd.array([True, False, None], dtype="boolean")
|
219 |
+
result = np.array(arr)
|
220 |
+
expected = np.array([True, False, pd.NA], dtype="object")
|
221 |
+
tm.assert_numpy_array_equal(result, expected)
|
222 |
+
|
223 |
+
# also with no missing values -> object dtype
|
224 |
+
arr = pd.array([True, False, True], dtype="boolean")
|
225 |
+
result = np.array(arr)
|
226 |
+
expected = np.array([True, False, True], dtype="bool")
|
227 |
+
tm.assert_numpy_array_equal(result, expected)
|
228 |
+
|
229 |
+
# force bool dtype
|
230 |
+
result = np.array(arr, dtype="bool")
|
231 |
+
expected = np.array([True, False, True], dtype="bool")
|
232 |
+
tm.assert_numpy_array_equal(result, expected)
|
233 |
+
# with missing values will raise error
|
234 |
+
arr = pd.array([True, False, None], dtype="boolean")
|
235 |
+
msg = (
|
236 |
+
"cannot convert to 'bool'-dtype NumPy array with missing values. "
|
237 |
+
"Specify an appropriate 'na_value' for this dtype."
|
238 |
+
)
|
239 |
+
with pytest.raises(ValueError, match=msg):
|
240 |
+
np.array(arr, dtype="bool")
|
241 |
+
|
242 |
+
|
243 |
+
def test_to_boolean_array_from_strings():
|
244 |
+
result = BooleanArray._from_sequence_of_strings(
|
245 |
+
np.array(["True", "False", "1", "1.0", "0", "0.0", np.nan], dtype=object),
|
246 |
+
dtype="boolean",
|
247 |
+
)
|
248 |
+
expected = BooleanArray(
|
249 |
+
np.array([True, False, True, True, False, False, False]),
|
250 |
+
np.array([False, False, False, False, False, False, True]),
|
251 |
+
)
|
252 |
+
|
253 |
+
tm.assert_extension_array_equal(result, expected)
|
254 |
+
|
255 |
+
|
256 |
+
def test_to_boolean_array_from_strings_invalid_string():
|
257 |
+
with pytest.raises(ValueError, match="cannot be cast"):
|
258 |
+
BooleanArray._from_sequence_of_strings(["donkey"], dtype="boolean")
|
259 |
+
|
260 |
+
|
261 |
+
@pytest.mark.parametrize("box", [True, False], ids=["series", "array"])
|
262 |
+
def test_to_numpy(box):
|
263 |
+
con = pd.Series if box else pd.array
|
264 |
+
# default (with or without missing values) -> object dtype
|
265 |
+
arr = con([True, False, True], dtype="boolean")
|
266 |
+
result = arr.to_numpy()
|
267 |
+
expected = np.array([True, False, True], dtype="bool")
|
268 |
+
tm.assert_numpy_array_equal(result, expected)
|
269 |
+
|
270 |
+
arr = con([True, False, None], dtype="boolean")
|
271 |
+
result = arr.to_numpy()
|
272 |
+
expected = np.array([True, False, pd.NA], dtype="object")
|
273 |
+
tm.assert_numpy_array_equal(result, expected)
|
274 |
+
|
275 |
+
arr = con([True, False, None], dtype="boolean")
|
276 |
+
result = arr.to_numpy(dtype="str")
|
277 |
+
expected = np.array([True, False, pd.NA], dtype=f"{tm.ENDIAN}U5")
|
278 |
+
tm.assert_numpy_array_equal(result, expected)
|
279 |
+
|
280 |
+
# no missing values -> can convert to bool, otherwise raises
|
281 |
+
arr = con([True, False, True], dtype="boolean")
|
282 |
+
result = arr.to_numpy(dtype="bool")
|
283 |
+
expected = np.array([True, False, True], dtype="bool")
|
284 |
+
tm.assert_numpy_array_equal(result, expected)
|
285 |
+
|
286 |
+
arr = con([True, False, None], dtype="boolean")
|
287 |
+
with pytest.raises(ValueError, match="cannot convert to 'bool'-dtype"):
|
288 |
+
result = arr.to_numpy(dtype="bool")
|
289 |
+
|
290 |
+
# specify dtype and na_value
|
291 |
+
arr = con([True, False, None], dtype="boolean")
|
292 |
+
result = arr.to_numpy(dtype=object, na_value=None)
|
293 |
+
expected = np.array([True, False, None], dtype="object")
|
294 |
+
tm.assert_numpy_array_equal(result, expected)
|
295 |
+
|
296 |
+
result = arr.to_numpy(dtype=bool, na_value=False)
|
297 |
+
expected = np.array([True, False, False], dtype="bool")
|
298 |
+
tm.assert_numpy_array_equal(result, expected)
|
299 |
+
|
300 |
+
result = arr.to_numpy(dtype="int64", na_value=-99)
|
301 |
+
expected = np.array([1, 0, -99], dtype="int64")
|
302 |
+
tm.assert_numpy_array_equal(result, expected)
|
303 |
+
|
304 |
+
result = arr.to_numpy(dtype="float64", na_value=np.nan)
|
305 |
+
expected = np.array([1, 0, np.nan], dtype="float64")
|
306 |
+
tm.assert_numpy_array_equal(result, expected)
|
307 |
+
|
308 |
+
# converting to int or float without specifying na_value raises
|
309 |
+
with pytest.raises(ValueError, match="cannot convert to 'int64'-dtype"):
|
310 |
+
arr.to_numpy(dtype="int64")
|
311 |
+
|
312 |
+
|
313 |
+
def test_to_numpy_copy():
|
314 |
+
# to_numpy can be zero-copy if no missing values
|
315 |
+
arr = pd.array([True, False, True], dtype="boolean")
|
316 |
+
result = arr.to_numpy(dtype=bool)
|
317 |
+
result[0] = False
|
318 |
+
tm.assert_extension_array_equal(
|
319 |
+
arr, pd.array([False, False, True], dtype="boolean")
|
320 |
+
)
|
321 |
+
|
322 |
+
arr = pd.array([True, False, True], dtype="boolean")
|
323 |
+
result = arr.to_numpy(dtype=bool, copy=True)
|
324 |
+
result[0] = False
|
325 |
+
tm.assert_extension_array_equal(arr, pd.array([True, False, True], dtype="boolean"))
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_function.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
import pandas._testing as tm
|
6 |
+
|
7 |
+
|
8 |
+
@pytest.mark.parametrize(
|
9 |
+
"ufunc", [np.add, np.logical_or, np.logical_and, np.logical_xor]
|
10 |
+
)
|
11 |
+
def test_ufuncs_binary(ufunc):
|
12 |
+
# two BooleanArrays
|
13 |
+
a = pd.array([True, False, None], dtype="boolean")
|
14 |
+
result = ufunc(a, a)
|
15 |
+
expected = pd.array(ufunc(a._data, a._data), dtype="boolean")
|
16 |
+
expected[a._mask] = np.nan
|
17 |
+
tm.assert_extension_array_equal(result, expected)
|
18 |
+
|
19 |
+
s = pd.Series(a)
|
20 |
+
result = ufunc(s, a)
|
21 |
+
expected = pd.Series(ufunc(a._data, a._data), dtype="boolean")
|
22 |
+
expected[a._mask] = np.nan
|
23 |
+
tm.assert_series_equal(result, expected)
|
24 |
+
|
25 |
+
# Boolean with numpy array
|
26 |
+
arr = np.array([True, True, False])
|
27 |
+
result = ufunc(a, arr)
|
28 |
+
expected = pd.array(ufunc(a._data, arr), dtype="boolean")
|
29 |
+
expected[a._mask] = np.nan
|
30 |
+
tm.assert_extension_array_equal(result, expected)
|
31 |
+
|
32 |
+
result = ufunc(arr, a)
|
33 |
+
expected = pd.array(ufunc(arr, a._data), dtype="boolean")
|
34 |
+
expected[a._mask] = np.nan
|
35 |
+
tm.assert_extension_array_equal(result, expected)
|
36 |
+
|
37 |
+
# BooleanArray with scalar
|
38 |
+
result = ufunc(a, True)
|
39 |
+
expected = pd.array(ufunc(a._data, True), dtype="boolean")
|
40 |
+
expected[a._mask] = np.nan
|
41 |
+
tm.assert_extension_array_equal(result, expected)
|
42 |
+
|
43 |
+
result = ufunc(True, a)
|
44 |
+
expected = pd.array(ufunc(True, a._data), dtype="boolean")
|
45 |
+
expected[a._mask] = np.nan
|
46 |
+
tm.assert_extension_array_equal(result, expected)
|
47 |
+
|
48 |
+
# not handled types
|
49 |
+
msg = r"operand type\(s\) all returned NotImplemented from __array_ufunc__"
|
50 |
+
with pytest.raises(TypeError, match=msg):
|
51 |
+
ufunc(a, "test")
|
52 |
+
|
53 |
+
|
54 |
+
@pytest.mark.parametrize("ufunc", [np.logical_not])
|
55 |
+
def test_ufuncs_unary(ufunc):
|
56 |
+
a = pd.array([True, False, None], dtype="boolean")
|
57 |
+
result = ufunc(a)
|
58 |
+
expected = pd.array(ufunc(a._data), dtype="boolean")
|
59 |
+
expected[a._mask] = np.nan
|
60 |
+
tm.assert_extension_array_equal(result, expected)
|
61 |
+
|
62 |
+
ser = pd.Series(a)
|
63 |
+
result = ufunc(ser)
|
64 |
+
expected = pd.Series(ufunc(a._data), dtype="boolean")
|
65 |
+
expected[a._mask] = np.nan
|
66 |
+
tm.assert_series_equal(result, expected)
|
67 |
+
|
68 |
+
|
69 |
+
def test_ufunc_numeric():
|
70 |
+
# np.sqrt on np.bool_ returns float16, which we upcast to Float32
|
71 |
+
# bc we do not have Float16
|
72 |
+
arr = pd.array([True, False, None], dtype="boolean")
|
73 |
+
|
74 |
+
res = np.sqrt(arr)
|
75 |
+
|
76 |
+
expected = pd.array([1, 0, None], dtype="Float32")
|
77 |
+
tm.assert_extension_array_equal(res, expected)
|
78 |
+
|
79 |
+
|
80 |
+
@pytest.mark.parametrize("values", [[True, False], [True, None]])
|
81 |
+
def test_ufunc_reduce_raises(values):
|
82 |
+
arr = pd.array(values, dtype="boolean")
|
83 |
+
|
84 |
+
res = np.add.reduce(arr)
|
85 |
+
if arr[-1] is pd.NA:
|
86 |
+
expected = pd.NA
|
87 |
+
else:
|
88 |
+
expected = arr._data.sum()
|
89 |
+
tm.assert_almost_equal(res, expected)
|
90 |
+
|
91 |
+
|
92 |
+
def test_value_counts_na():
|
93 |
+
arr = pd.array([True, False, pd.NA], dtype="boolean")
|
94 |
+
result = arr.value_counts(dropna=False)
|
95 |
+
expected = pd.Series([1, 1, 1], index=arr, dtype="Int64", name="count")
|
96 |
+
assert expected.index.dtype == arr.dtype
|
97 |
+
tm.assert_series_equal(result, expected)
|
98 |
+
|
99 |
+
result = arr.value_counts(dropna=True)
|
100 |
+
expected = pd.Series([1, 1], index=arr[:-1], dtype="Int64", name="count")
|
101 |
+
assert expected.index.dtype == arr.dtype
|
102 |
+
tm.assert_series_equal(result, expected)
|
103 |
+
|
104 |
+
|
105 |
+
def test_value_counts_with_normalize():
|
106 |
+
ser = pd.Series([True, False, pd.NA], dtype="boolean")
|
107 |
+
result = ser.value_counts(normalize=True)
|
108 |
+
expected = pd.Series([1, 1], index=ser[:-1], dtype="Float64", name="proportion") / 2
|
109 |
+
assert expected.index.dtype == "boolean"
|
110 |
+
tm.assert_series_equal(result, expected)
|
111 |
+
|
112 |
+
|
113 |
+
def test_diff():
|
114 |
+
a = pd.array(
|
115 |
+
[True, True, False, False, True, None, True, None, False], dtype="boolean"
|
116 |
+
)
|
117 |
+
result = pd.core.algorithms.diff(a, 1)
|
118 |
+
expected = pd.array(
|
119 |
+
[None, False, True, False, True, None, None, None, None], dtype="boolean"
|
120 |
+
)
|
121 |
+
tm.assert_extension_array_equal(result, expected)
|
122 |
+
|
123 |
+
ser = pd.Series(a)
|
124 |
+
result = ser.diff()
|
125 |
+
expected = pd.Series(expected)
|
126 |
+
tm.assert_series_equal(result, expected)
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_indexing.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
import pandas._testing as tm
|
6 |
+
|
7 |
+
|
8 |
+
@pytest.mark.parametrize("na", [None, np.nan, pd.NA])
|
9 |
+
def test_setitem_missing_values(na):
|
10 |
+
arr = pd.array([True, False, None], dtype="boolean")
|
11 |
+
expected = pd.array([True, None, None], dtype="boolean")
|
12 |
+
arr[1] = na
|
13 |
+
tm.assert_extension_array_equal(arr, expected)
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_logical.py
ADDED
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import operator
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
import pandas as pd
|
7 |
+
import pandas._testing as tm
|
8 |
+
from pandas.arrays import BooleanArray
|
9 |
+
from pandas.core.ops.mask_ops import (
|
10 |
+
kleene_and,
|
11 |
+
kleene_or,
|
12 |
+
kleene_xor,
|
13 |
+
)
|
14 |
+
from pandas.tests.extension.base import BaseOpsUtil
|
15 |
+
|
16 |
+
|
17 |
+
class TestLogicalOps(BaseOpsUtil):
|
18 |
+
def test_numpy_scalars_ok(self, all_logical_operators):
|
19 |
+
a = pd.array([True, False, None], dtype="boolean")
|
20 |
+
op = getattr(a, all_logical_operators)
|
21 |
+
|
22 |
+
tm.assert_extension_array_equal(op(True), op(np.bool_(True)))
|
23 |
+
tm.assert_extension_array_equal(op(False), op(np.bool_(False)))
|
24 |
+
|
25 |
+
def get_op_from_name(self, op_name):
|
26 |
+
short_opname = op_name.strip("_")
|
27 |
+
short_opname = short_opname if "xor" in short_opname else short_opname + "_"
|
28 |
+
try:
|
29 |
+
op = getattr(operator, short_opname)
|
30 |
+
except AttributeError:
|
31 |
+
# Assume it is the reverse operator
|
32 |
+
rop = getattr(operator, short_opname[1:])
|
33 |
+
op = lambda x, y: rop(y, x)
|
34 |
+
|
35 |
+
return op
|
36 |
+
|
37 |
+
def test_empty_ok(self, all_logical_operators):
|
38 |
+
a = pd.array([], dtype="boolean")
|
39 |
+
op_name = all_logical_operators
|
40 |
+
result = getattr(a, op_name)(True)
|
41 |
+
tm.assert_extension_array_equal(a, result)
|
42 |
+
|
43 |
+
result = getattr(a, op_name)(False)
|
44 |
+
tm.assert_extension_array_equal(a, result)
|
45 |
+
|
46 |
+
result = getattr(a, op_name)(pd.NA)
|
47 |
+
tm.assert_extension_array_equal(a, result)
|
48 |
+
|
49 |
+
@pytest.mark.parametrize(
|
50 |
+
"other", ["a", pd.Timestamp(2017, 1, 1, 12), np.timedelta64(4)]
|
51 |
+
)
|
52 |
+
def test_eq_mismatched_type(self, other):
|
53 |
+
# GH-44499
|
54 |
+
arr = pd.array([True, False])
|
55 |
+
result = arr == other
|
56 |
+
expected = pd.array([False, False])
|
57 |
+
tm.assert_extension_array_equal(result, expected)
|
58 |
+
|
59 |
+
result = arr != other
|
60 |
+
expected = pd.array([True, True])
|
61 |
+
tm.assert_extension_array_equal(result, expected)
|
62 |
+
|
63 |
+
def test_logical_length_mismatch_raises(self, all_logical_operators):
|
64 |
+
op_name = all_logical_operators
|
65 |
+
a = pd.array([True, False, None], dtype="boolean")
|
66 |
+
msg = "Lengths must match"
|
67 |
+
|
68 |
+
with pytest.raises(ValueError, match=msg):
|
69 |
+
getattr(a, op_name)([True, False])
|
70 |
+
|
71 |
+
with pytest.raises(ValueError, match=msg):
|
72 |
+
getattr(a, op_name)(np.array([True, False]))
|
73 |
+
|
74 |
+
with pytest.raises(ValueError, match=msg):
|
75 |
+
getattr(a, op_name)(pd.array([True, False], dtype="boolean"))
|
76 |
+
|
77 |
+
def test_logical_nan_raises(self, all_logical_operators):
|
78 |
+
op_name = all_logical_operators
|
79 |
+
a = pd.array([True, False, None], dtype="boolean")
|
80 |
+
msg = "Got float instead"
|
81 |
+
|
82 |
+
with pytest.raises(TypeError, match=msg):
|
83 |
+
getattr(a, op_name)(np.nan)
|
84 |
+
|
85 |
+
@pytest.mark.parametrize("other", ["a", 1])
|
86 |
+
def test_non_bool_or_na_other_raises(self, other, all_logical_operators):
|
87 |
+
a = pd.array([True, False], dtype="boolean")
|
88 |
+
with pytest.raises(TypeError, match=str(type(other).__name__)):
|
89 |
+
getattr(a, all_logical_operators)(other)
|
90 |
+
|
91 |
+
def test_kleene_or(self):
|
92 |
+
# A clear test of behavior.
|
93 |
+
a = pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
|
94 |
+
b = pd.array([True, False, None] * 3, dtype="boolean")
|
95 |
+
result = a | b
|
96 |
+
expected = pd.array(
|
97 |
+
[True, True, True, True, False, None, True, None, None], dtype="boolean"
|
98 |
+
)
|
99 |
+
tm.assert_extension_array_equal(result, expected)
|
100 |
+
|
101 |
+
result = b | a
|
102 |
+
tm.assert_extension_array_equal(result, expected)
|
103 |
+
|
104 |
+
# ensure we haven't mutated anything inplace
|
105 |
+
tm.assert_extension_array_equal(
|
106 |
+
a, pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
|
107 |
+
)
|
108 |
+
tm.assert_extension_array_equal(
|
109 |
+
b, pd.array([True, False, None] * 3, dtype="boolean")
|
110 |
+
)
|
111 |
+
|
112 |
+
@pytest.mark.parametrize(
|
113 |
+
"other, expected",
|
114 |
+
[
|
115 |
+
(pd.NA, [True, None, None]),
|
116 |
+
(True, [True, True, True]),
|
117 |
+
(np.bool_(True), [True, True, True]),
|
118 |
+
(False, [True, False, None]),
|
119 |
+
(np.bool_(False), [True, False, None]),
|
120 |
+
],
|
121 |
+
)
|
122 |
+
def test_kleene_or_scalar(self, other, expected):
|
123 |
+
# TODO: test True & False
|
124 |
+
a = pd.array([True, False, None], dtype="boolean")
|
125 |
+
result = a | other
|
126 |
+
expected = pd.array(expected, dtype="boolean")
|
127 |
+
tm.assert_extension_array_equal(result, expected)
|
128 |
+
|
129 |
+
result = other | a
|
130 |
+
tm.assert_extension_array_equal(result, expected)
|
131 |
+
|
132 |
+
# ensure we haven't mutated anything inplace
|
133 |
+
tm.assert_extension_array_equal(
|
134 |
+
a, pd.array([True, False, None], dtype="boolean")
|
135 |
+
)
|
136 |
+
|
137 |
+
def test_kleene_and(self):
|
138 |
+
# A clear test of behavior.
|
139 |
+
a = pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
|
140 |
+
b = pd.array([True, False, None] * 3, dtype="boolean")
|
141 |
+
result = a & b
|
142 |
+
expected = pd.array(
|
143 |
+
[True, False, None, False, False, False, None, False, None], dtype="boolean"
|
144 |
+
)
|
145 |
+
tm.assert_extension_array_equal(result, expected)
|
146 |
+
|
147 |
+
result = b & a
|
148 |
+
tm.assert_extension_array_equal(result, expected)
|
149 |
+
|
150 |
+
# ensure we haven't mutated anything inplace
|
151 |
+
tm.assert_extension_array_equal(
|
152 |
+
a, pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
|
153 |
+
)
|
154 |
+
tm.assert_extension_array_equal(
|
155 |
+
b, pd.array([True, False, None] * 3, dtype="boolean")
|
156 |
+
)
|
157 |
+
|
158 |
+
@pytest.mark.parametrize(
|
159 |
+
"other, expected",
|
160 |
+
[
|
161 |
+
(pd.NA, [None, False, None]),
|
162 |
+
(True, [True, False, None]),
|
163 |
+
(False, [False, False, False]),
|
164 |
+
(np.bool_(True), [True, False, None]),
|
165 |
+
(np.bool_(False), [False, False, False]),
|
166 |
+
],
|
167 |
+
)
|
168 |
+
def test_kleene_and_scalar(self, other, expected):
|
169 |
+
a = pd.array([True, False, None], dtype="boolean")
|
170 |
+
result = a & other
|
171 |
+
expected = pd.array(expected, dtype="boolean")
|
172 |
+
tm.assert_extension_array_equal(result, expected)
|
173 |
+
|
174 |
+
result = other & a
|
175 |
+
tm.assert_extension_array_equal(result, expected)
|
176 |
+
|
177 |
+
# ensure we haven't mutated anything inplace
|
178 |
+
tm.assert_extension_array_equal(
|
179 |
+
a, pd.array([True, False, None], dtype="boolean")
|
180 |
+
)
|
181 |
+
|
182 |
+
def test_kleene_xor(self):
|
183 |
+
a = pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
|
184 |
+
b = pd.array([True, False, None] * 3, dtype="boolean")
|
185 |
+
result = a ^ b
|
186 |
+
expected = pd.array(
|
187 |
+
[False, True, None, True, False, None, None, None, None], dtype="boolean"
|
188 |
+
)
|
189 |
+
tm.assert_extension_array_equal(result, expected)
|
190 |
+
|
191 |
+
result = b ^ a
|
192 |
+
tm.assert_extension_array_equal(result, expected)
|
193 |
+
|
194 |
+
# ensure we haven't mutated anything inplace
|
195 |
+
tm.assert_extension_array_equal(
|
196 |
+
a, pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
|
197 |
+
)
|
198 |
+
tm.assert_extension_array_equal(
|
199 |
+
b, pd.array([True, False, None] * 3, dtype="boolean")
|
200 |
+
)
|
201 |
+
|
202 |
+
@pytest.mark.parametrize(
|
203 |
+
"other, expected",
|
204 |
+
[
|
205 |
+
(pd.NA, [None, None, None]),
|
206 |
+
(True, [False, True, None]),
|
207 |
+
(np.bool_(True), [False, True, None]),
|
208 |
+
(np.bool_(False), [True, False, None]),
|
209 |
+
],
|
210 |
+
)
|
211 |
+
def test_kleene_xor_scalar(self, other, expected):
|
212 |
+
a = pd.array([True, False, None], dtype="boolean")
|
213 |
+
result = a ^ other
|
214 |
+
expected = pd.array(expected, dtype="boolean")
|
215 |
+
tm.assert_extension_array_equal(result, expected)
|
216 |
+
|
217 |
+
result = other ^ a
|
218 |
+
tm.assert_extension_array_equal(result, expected)
|
219 |
+
|
220 |
+
# ensure we haven't mutated anything inplace
|
221 |
+
tm.assert_extension_array_equal(
|
222 |
+
a, pd.array([True, False, None], dtype="boolean")
|
223 |
+
)
|
224 |
+
|
225 |
+
@pytest.mark.parametrize("other", [True, False, pd.NA, [True, False, None] * 3])
|
226 |
+
def test_no_masked_assumptions(self, other, all_logical_operators):
|
227 |
+
# The logical operations should not assume that masked values are False!
|
228 |
+
a = pd.arrays.BooleanArray(
|
229 |
+
np.array([True, True, True, False, False, False, True, False, True]),
|
230 |
+
np.array([False] * 6 + [True, True, True]),
|
231 |
+
)
|
232 |
+
b = pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
|
233 |
+
if isinstance(other, list):
|
234 |
+
other = pd.array(other, dtype="boolean")
|
235 |
+
|
236 |
+
result = getattr(a, all_logical_operators)(other)
|
237 |
+
expected = getattr(b, all_logical_operators)(other)
|
238 |
+
tm.assert_extension_array_equal(result, expected)
|
239 |
+
|
240 |
+
if isinstance(other, BooleanArray):
|
241 |
+
other._data[other._mask] = True
|
242 |
+
a._data[a._mask] = False
|
243 |
+
|
244 |
+
result = getattr(a, all_logical_operators)(other)
|
245 |
+
expected = getattr(b, all_logical_operators)(other)
|
246 |
+
tm.assert_extension_array_equal(result, expected)
|
247 |
+
|
248 |
+
|
249 |
+
@pytest.mark.parametrize("operation", [kleene_or, kleene_xor, kleene_and])
|
250 |
+
def test_error_both_scalar(operation):
|
251 |
+
msg = r"Either `left` or `right` need to be a np\.ndarray."
|
252 |
+
with pytest.raises(TypeError, match=msg):
|
253 |
+
# masks need to be non-None, otherwise it ends up in an infinite recursion
|
254 |
+
operation(True, True, np.zeros(1), np.zeros(1))
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_ops.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import pandas._testing as tm
|
3 |
+
|
4 |
+
|
5 |
+
class TestUnaryOps:
|
6 |
+
def test_invert(self):
|
7 |
+
a = pd.array([True, False, None], dtype="boolean")
|
8 |
+
expected = pd.array([False, True, None], dtype="boolean")
|
9 |
+
tm.assert_extension_array_equal(~a, expected)
|
10 |
+
|
11 |
+
expected = pd.Series(expected, index=["a", "b", "c"], name="name")
|
12 |
+
result = ~pd.Series(a, index=["a", "b", "c"], name="name")
|
13 |
+
tm.assert_series_equal(result, expected)
|
14 |
+
|
15 |
+
df = pd.DataFrame({"A": a, "B": [True, False, False]}, index=["a", "b", "c"])
|
16 |
+
result = ~df
|
17 |
+
expected = pd.DataFrame(
|
18 |
+
{"A": expected, "B": [False, True, True]}, index=["a", "b", "c"]
|
19 |
+
)
|
20 |
+
tm.assert_frame_equal(result, expected)
|
21 |
+
|
22 |
+
def test_abs(self):
|
23 |
+
# matching numpy behavior, abs is the identity function
|
24 |
+
arr = pd.array([True, False, None], dtype="boolean")
|
25 |
+
result = abs(arr)
|
26 |
+
|
27 |
+
tm.assert_extension_array_equal(result, arr)
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_reduction.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
|
7 |
+
@pytest.fixture
|
8 |
+
def data():
|
9 |
+
"""Fixture returning boolean array, with valid and missing values."""
|
10 |
+
return pd.array(
|
11 |
+
[True, False] * 4 + [np.nan] + [True, False] * 44 + [np.nan] + [True, False],
|
12 |
+
dtype="boolean",
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
@pytest.mark.parametrize(
|
17 |
+
"values, exp_any, exp_all, exp_any_noskip, exp_all_noskip",
|
18 |
+
[
|
19 |
+
([True, pd.NA], True, True, True, pd.NA),
|
20 |
+
([False, pd.NA], False, False, pd.NA, False),
|
21 |
+
([pd.NA], False, True, pd.NA, pd.NA),
|
22 |
+
([], False, True, False, True),
|
23 |
+
# GH-33253: all True / all False values buggy with skipna=False
|
24 |
+
([True, True], True, True, True, True),
|
25 |
+
([False, False], False, False, False, False),
|
26 |
+
],
|
27 |
+
)
|
28 |
+
def test_any_all(values, exp_any, exp_all, exp_any_noskip, exp_all_noskip):
|
29 |
+
# the methods return numpy scalars
|
30 |
+
exp_any = pd.NA if exp_any is pd.NA else np.bool_(exp_any)
|
31 |
+
exp_all = pd.NA if exp_all is pd.NA else np.bool_(exp_all)
|
32 |
+
exp_any_noskip = pd.NA if exp_any_noskip is pd.NA else np.bool_(exp_any_noskip)
|
33 |
+
exp_all_noskip = pd.NA if exp_all_noskip is pd.NA else np.bool_(exp_all_noskip)
|
34 |
+
|
35 |
+
for con in [pd.array, pd.Series]:
|
36 |
+
a = con(values, dtype="boolean")
|
37 |
+
assert a.any() is exp_any
|
38 |
+
assert a.all() is exp_all
|
39 |
+
assert a.any(skipna=False) is exp_any_noskip
|
40 |
+
assert a.all(skipna=False) is exp_all_noskip
|
41 |
+
|
42 |
+
assert np.any(a.any()) is exp_any
|
43 |
+
assert np.all(a.all()) is exp_all
|
44 |
+
|
45 |
+
|
46 |
+
@pytest.mark.parametrize("dropna", [True, False])
|
47 |
+
def test_reductions_return_types(dropna, data, all_numeric_reductions):
|
48 |
+
op = all_numeric_reductions
|
49 |
+
s = pd.Series(data)
|
50 |
+
if dropna:
|
51 |
+
s = s.dropna()
|
52 |
+
|
53 |
+
if op in ("sum", "prod"):
|
54 |
+
assert isinstance(getattr(s, op)(), np.int_)
|
55 |
+
elif op == "count":
|
56 |
+
# Oddly on the 32 bit build (but not Windows), this is intc (!= intp)
|
57 |
+
assert isinstance(getattr(s, op)(), np.integer)
|
58 |
+
elif op in ("min", "max"):
|
59 |
+
assert isinstance(getattr(s, op)(), np.bool_)
|
60 |
+
else:
|
61 |
+
# "mean", "std", "var", "median", "kurt", "skew"
|
62 |
+
assert isinstance(getattr(s, op)(), np.float64)
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/boolean/test_repr.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
|
4 |
+
def test_repr():
|
5 |
+
df = pd.DataFrame({"A": pd.array([True, False, None], dtype="boolean")})
|
6 |
+
expected = " A\n0 True\n1 False\n2 <NA>"
|
7 |
+
assert repr(df) == expected
|
8 |
+
|
9 |
+
expected = "0 True\n1 False\n2 <NA>\nName: A, dtype: boolean"
|
10 |
+
assert repr(df.A) == expected
|
11 |
+
|
12 |
+
expected = "<BooleanArray>\n[True, False, <NA>]\nLength: 3, dtype: boolean"
|
13 |
+
assert repr(df.A.array) == expected
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/datetimes/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/datetimes/test_constructors.py
ADDED
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from pandas._libs import iNaT
|
5 |
+
|
6 |
+
from pandas.core.dtypes.dtypes import DatetimeTZDtype
|
7 |
+
|
8 |
+
import pandas as pd
|
9 |
+
import pandas._testing as tm
|
10 |
+
from pandas.core.arrays import DatetimeArray
|
11 |
+
|
12 |
+
|
13 |
+
class TestDatetimeArrayConstructor:
|
14 |
+
def test_from_sequence_invalid_type(self):
|
15 |
+
mi = pd.MultiIndex.from_product([np.arange(5), np.arange(5)])
|
16 |
+
with pytest.raises(TypeError, match="Cannot create a DatetimeArray"):
|
17 |
+
DatetimeArray._from_sequence(mi, dtype="M8[ns]")
|
18 |
+
|
19 |
+
def test_only_1dim_accepted(self):
|
20 |
+
arr = np.array([0, 1, 2, 3], dtype="M8[h]").astype("M8[ns]")
|
21 |
+
|
22 |
+
depr_msg = "DatetimeArray.__init__ is deprecated"
|
23 |
+
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
|
24 |
+
with pytest.raises(ValueError, match="Only 1-dimensional"):
|
25 |
+
# 3-dim, we allow 2D to sneak in for ops purposes GH#29853
|
26 |
+
DatetimeArray(arr.reshape(2, 2, 1))
|
27 |
+
|
28 |
+
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
|
29 |
+
with pytest.raises(ValueError, match="Only 1-dimensional"):
|
30 |
+
# 0-dim
|
31 |
+
DatetimeArray(arr[[0]].squeeze())
|
32 |
+
|
33 |
+
def test_freq_validation(self):
|
34 |
+
# GH#24623 check that invalid instances cannot be created with the
|
35 |
+
# public constructor
|
36 |
+
arr = np.arange(5, dtype=np.int64) * 3600 * 10**9
|
37 |
+
|
38 |
+
msg = (
|
39 |
+
"Inferred frequency h from passed values does not "
|
40 |
+
"conform to passed frequency W-SUN"
|
41 |
+
)
|
42 |
+
depr_msg = "DatetimeArray.__init__ is deprecated"
|
43 |
+
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
|
44 |
+
with pytest.raises(ValueError, match=msg):
|
45 |
+
DatetimeArray(arr, freq="W")
|
46 |
+
|
47 |
+
@pytest.mark.parametrize(
|
48 |
+
"meth",
|
49 |
+
[
|
50 |
+
DatetimeArray._from_sequence,
|
51 |
+
pd.to_datetime,
|
52 |
+
pd.DatetimeIndex,
|
53 |
+
],
|
54 |
+
)
|
55 |
+
def test_mixing_naive_tzaware_raises(self, meth):
|
56 |
+
# GH#24569
|
57 |
+
arr = np.array([pd.Timestamp("2000"), pd.Timestamp("2000", tz="CET")])
|
58 |
+
|
59 |
+
msg = (
|
60 |
+
"Cannot mix tz-aware with tz-naive values|"
|
61 |
+
"Tz-aware datetime.datetime cannot be converted "
|
62 |
+
"to datetime64 unless utc=True"
|
63 |
+
)
|
64 |
+
|
65 |
+
for obj in [arr, arr[::-1]]:
|
66 |
+
# check that we raise regardless of whether naive is found
|
67 |
+
# before aware or vice-versa
|
68 |
+
with pytest.raises(ValueError, match=msg):
|
69 |
+
meth(obj)
|
70 |
+
|
71 |
+
def test_from_pandas_array(self):
|
72 |
+
arr = pd.array(np.arange(5, dtype=np.int64)) * 3600 * 10**9
|
73 |
+
|
74 |
+
result = DatetimeArray._from_sequence(arr, dtype="M8[ns]")._with_freq("infer")
|
75 |
+
|
76 |
+
expected = pd.date_range("1970-01-01", periods=5, freq="h")._data
|
77 |
+
tm.assert_datetime_array_equal(result, expected)
|
78 |
+
|
79 |
+
def test_mismatched_timezone_raises(self):
|
80 |
+
depr_msg = "DatetimeArray.__init__ is deprecated"
|
81 |
+
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
|
82 |
+
arr = DatetimeArray(
|
83 |
+
np.array(["2000-01-01T06:00:00"], dtype="M8[ns]"),
|
84 |
+
dtype=DatetimeTZDtype(tz="US/Central"),
|
85 |
+
)
|
86 |
+
dtype = DatetimeTZDtype(tz="US/Eastern")
|
87 |
+
msg = r"dtype=datetime64\[ns.*\] does not match data dtype datetime64\[ns.*\]"
|
88 |
+
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
|
89 |
+
with pytest.raises(TypeError, match=msg):
|
90 |
+
DatetimeArray(arr, dtype=dtype)
|
91 |
+
|
92 |
+
# also with mismatched tzawareness
|
93 |
+
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
|
94 |
+
with pytest.raises(TypeError, match=msg):
|
95 |
+
DatetimeArray(arr, dtype=np.dtype("M8[ns]"))
|
96 |
+
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
|
97 |
+
with pytest.raises(TypeError, match=msg):
|
98 |
+
DatetimeArray(arr.tz_localize(None), dtype=arr.dtype)
|
99 |
+
|
100 |
+
def test_non_array_raises(self):
|
101 |
+
depr_msg = "DatetimeArray.__init__ is deprecated"
|
102 |
+
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
|
103 |
+
with pytest.raises(ValueError, match="list"):
|
104 |
+
DatetimeArray([1, 2, 3])
|
105 |
+
|
106 |
+
def test_bool_dtype_raises(self):
|
107 |
+
arr = np.array([1, 2, 3], dtype="bool")
|
108 |
+
|
109 |
+
depr_msg = "DatetimeArray.__init__ is deprecated"
|
110 |
+
msg = "Unexpected value for 'dtype': 'bool'. Must be"
|
111 |
+
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
|
112 |
+
with pytest.raises(ValueError, match=msg):
|
113 |
+
DatetimeArray(arr)
|
114 |
+
|
115 |
+
msg = r"dtype bool cannot be converted to datetime64\[ns\]"
|
116 |
+
with pytest.raises(TypeError, match=msg):
|
117 |
+
DatetimeArray._from_sequence(arr, dtype="M8[ns]")
|
118 |
+
|
119 |
+
with pytest.raises(TypeError, match=msg):
|
120 |
+
pd.DatetimeIndex(arr)
|
121 |
+
|
122 |
+
with pytest.raises(TypeError, match=msg):
|
123 |
+
pd.to_datetime(arr)
|
124 |
+
|
125 |
+
def test_incorrect_dtype_raises(self):
|
126 |
+
depr_msg = "DatetimeArray.__init__ is deprecated"
|
127 |
+
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
|
128 |
+
with pytest.raises(ValueError, match="Unexpected value for 'dtype'."):
|
129 |
+
DatetimeArray(np.array([1, 2, 3], dtype="i8"), dtype="category")
|
130 |
+
|
131 |
+
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
|
132 |
+
with pytest.raises(ValueError, match="Unexpected value for 'dtype'."):
|
133 |
+
DatetimeArray(np.array([1, 2, 3], dtype="i8"), dtype="m8[s]")
|
134 |
+
|
135 |
+
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
|
136 |
+
with pytest.raises(ValueError, match="Unexpected value for 'dtype'."):
|
137 |
+
DatetimeArray(np.array([1, 2, 3], dtype="i8"), dtype="M8[D]")
|
138 |
+
|
139 |
+
def test_mismatched_values_dtype_units(self):
|
140 |
+
arr = np.array([1, 2, 3], dtype="M8[s]")
|
141 |
+
dtype = np.dtype("M8[ns]")
|
142 |
+
msg = "Values resolution does not match dtype."
|
143 |
+
depr_msg = "DatetimeArray.__init__ is deprecated"
|
144 |
+
|
145 |
+
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
|
146 |
+
with pytest.raises(ValueError, match=msg):
|
147 |
+
DatetimeArray(arr, dtype=dtype)
|
148 |
+
|
149 |
+
dtype2 = DatetimeTZDtype(tz="UTC", unit="ns")
|
150 |
+
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
|
151 |
+
with pytest.raises(ValueError, match=msg):
|
152 |
+
DatetimeArray(arr, dtype=dtype2)
|
153 |
+
|
154 |
+
def test_freq_infer_raises(self):
|
155 |
+
depr_msg = "DatetimeArray.__init__ is deprecated"
|
156 |
+
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
|
157 |
+
with pytest.raises(ValueError, match="Frequency inference"):
|
158 |
+
DatetimeArray(np.array([1, 2, 3], dtype="i8"), freq="infer")
|
159 |
+
|
160 |
+
def test_copy(self):
|
161 |
+
data = np.array([1, 2, 3], dtype="M8[ns]")
|
162 |
+
arr = DatetimeArray._from_sequence(data, copy=False)
|
163 |
+
assert arr._ndarray is data
|
164 |
+
|
165 |
+
arr = DatetimeArray._from_sequence(data, copy=True)
|
166 |
+
assert arr._ndarray is not data
|
167 |
+
|
168 |
+
@pytest.mark.parametrize("unit", ["s", "ms", "us", "ns"])
|
169 |
+
def test_numpy_datetime_unit(self, unit):
|
170 |
+
data = np.array([1, 2, 3], dtype=f"M8[{unit}]")
|
171 |
+
arr = DatetimeArray._from_sequence(data)
|
172 |
+
assert arr.unit == unit
|
173 |
+
assert arr[0].unit == unit
|
174 |
+
|
175 |
+
|
176 |
+
class TestSequenceToDT64NS:
|
177 |
+
def test_tz_dtype_mismatch_raises(self):
|
178 |
+
arr = DatetimeArray._from_sequence(
|
179 |
+
["2000"], dtype=DatetimeTZDtype(tz="US/Central")
|
180 |
+
)
|
181 |
+
with pytest.raises(TypeError, match="data is already tz-aware"):
|
182 |
+
DatetimeArray._from_sequence(arr, dtype=DatetimeTZDtype(tz="UTC"))
|
183 |
+
|
184 |
+
def test_tz_dtype_matches(self):
|
185 |
+
dtype = DatetimeTZDtype(tz="US/Central")
|
186 |
+
arr = DatetimeArray._from_sequence(["2000"], dtype=dtype)
|
187 |
+
result = DatetimeArray._from_sequence(arr, dtype=dtype)
|
188 |
+
tm.assert_equal(arr, result)
|
189 |
+
|
190 |
+
@pytest.mark.parametrize("order", ["F", "C"])
|
191 |
+
def test_2d(self, order):
|
192 |
+
dti = pd.date_range("2016-01-01", periods=6, tz="US/Pacific")
|
193 |
+
arr = np.array(dti, dtype=object).reshape(3, 2)
|
194 |
+
if order == "F":
|
195 |
+
arr = arr.T
|
196 |
+
|
197 |
+
res = DatetimeArray._from_sequence(arr, dtype=dti.dtype)
|
198 |
+
expected = DatetimeArray._from_sequence(arr.ravel(), dtype=dti.dtype).reshape(
|
199 |
+
arr.shape
|
200 |
+
)
|
201 |
+
tm.assert_datetime_array_equal(res, expected)
|
202 |
+
|
203 |
+
|
204 |
+
# ----------------------------------------------------------------------------
|
205 |
+
# Arrow interaction
|
206 |
+
|
207 |
+
|
208 |
+
EXTREME_VALUES = [0, 123456789, None, iNaT, 2**63 - 1, -(2**63) + 1]
|
209 |
+
FINE_TO_COARSE_SAFE = [123_000_000_000, None, -123_000_000_000]
|
210 |
+
COARSE_TO_FINE_SAFE = [123, None, -123]
|
211 |
+
|
212 |
+
|
213 |
+
@pytest.mark.parametrize(
|
214 |
+
("pa_unit", "pd_unit", "pa_tz", "pd_tz", "data"),
|
215 |
+
[
|
216 |
+
("s", "s", "UTC", "UTC", EXTREME_VALUES),
|
217 |
+
("ms", "ms", "UTC", "Europe/Berlin", EXTREME_VALUES),
|
218 |
+
("us", "us", "US/Eastern", "UTC", EXTREME_VALUES),
|
219 |
+
("ns", "ns", "US/Central", "Asia/Kolkata", EXTREME_VALUES),
|
220 |
+
("ns", "s", "UTC", "UTC", FINE_TO_COARSE_SAFE),
|
221 |
+
("us", "ms", "UTC", "Europe/Berlin", FINE_TO_COARSE_SAFE),
|
222 |
+
("ms", "us", "US/Eastern", "UTC", COARSE_TO_FINE_SAFE),
|
223 |
+
("s", "ns", "US/Central", "Asia/Kolkata", COARSE_TO_FINE_SAFE),
|
224 |
+
],
|
225 |
+
)
|
226 |
+
def test_from_arrow_with_different_units_and_timezones_with(
|
227 |
+
pa_unit, pd_unit, pa_tz, pd_tz, data
|
228 |
+
):
|
229 |
+
pa = pytest.importorskip("pyarrow")
|
230 |
+
|
231 |
+
pa_type = pa.timestamp(pa_unit, tz=pa_tz)
|
232 |
+
arr = pa.array(data, type=pa_type)
|
233 |
+
dtype = DatetimeTZDtype(unit=pd_unit, tz=pd_tz)
|
234 |
+
|
235 |
+
result = dtype.__from_arrow__(arr)
|
236 |
+
expected = DatetimeArray._from_sequence(data, dtype=f"M8[{pa_unit}, UTC]").astype(
|
237 |
+
dtype, copy=False
|
238 |
+
)
|
239 |
+
tm.assert_extension_array_equal(result, expected)
|
240 |
+
|
241 |
+
result = dtype.__from_arrow__(pa.chunked_array([arr]))
|
242 |
+
tm.assert_extension_array_equal(result, expected)
|
243 |
+
|
244 |
+
|
245 |
+
@pytest.mark.parametrize(
|
246 |
+
("unit", "tz"),
|
247 |
+
[
|
248 |
+
("s", "UTC"),
|
249 |
+
("ms", "Europe/Berlin"),
|
250 |
+
("us", "US/Eastern"),
|
251 |
+
("ns", "Asia/Kolkata"),
|
252 |
+
("ns", "UTC"),
|
253 |
+
],
|
254 |
+
)
|
255 |
+
def test_from_arrow_from_empty(unit, tz):
|
256 |
+
pa = pytest.importorskip("pyarrow")
|
257 |
+
|
258 |
+
data = []
|
259 |
+
arr = pa.array(data)
|
260 |
+
dtype = DatetimeTZDtype(unit=unit, tz=tz)
|
261 |
+
|
262 |
+
result = dtype.__from_arrow__(arr)
|
263 |
+
expected = DatetimeArray._from_sequence(np.array(data, dtype=f"datetime64[{unit}]"))
|
264 |
+
expected = expected.tz_localize(tz=tz)
|
265 |
+
tm.assert_extension_array_equal(result, expected)
|
266 |
+
|
267 |
+
result = dtype.__from_arrow__(pa.chunked_array([arr]))
|
268 |
+
tm.assert_extension_array_equal(result, expected)
|
269 |
+
|
270 |
+
|
271 |
+
def test_from_arrow_from_integers():
|
272 |
+
pa = pytest.importorskip("pyarrow")
|
273 |
+
|
274 |
+
data = [0, 123456789, None, 2**63 - 1, iNaT, -123456789]
|
275 |
+
arr = pa.array(data)
|
276 |
+
dtype = DatetimeTZDtype(unit="ns", tz="UTC")
|
277 |
+
|
278 |
+
result = dtype.__from_arrow__(arr)
|
279 |
+
expected = DatetimeArray._from_sequence(np.array(data, dtype="datetime64[ns]"))
|
280 |
+
expected = expected.tz_localize("UTC")
|
281 |
+
tm.assert_extension_array_equal(result, expected)
|
282 |
+
|
283 |
+
result = dtype.__from_arrow__(pa.chunked_array([arr]))
|
284 |
+
tm.assert_extension_array_equal(result, expected)
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/datetimes/test_cumulative.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
import pandas._testing as tm
|
4 |
+
from pandas.core.arrays import DatetimeArray
|
5 |
+
|
6 |
+
|
7 |
+
class TestAccumulator:
|
8 |
+
def test_accumulators_freq(self):
|
9 |
+
# GH#50297
|
10 |
+
arr = DatetimeArray._from_sequence(
|
11 |
+
[
|
12 |
+
"2000-01-01",
|
13 |
+
"2000-01-02",
|
14 |
+
"2000-01-03",
|
15 |
+
],
|
16 |
+
dtype="M8[ns]",
|
17 |
+
)._with_freq("infer")
|
18 |
+
result = arr._accumulate("cummin")
|
19 |
+
expected = DatetimeArray._from_sequence(["2000-01-01"] * 3, dtype="M8[ns]")
|
20 |
+
tm.assert_datetime_array_equal(result, expected)
|
21 |
+
|
22 |
+
result = arr._accumulate("cummax")
|
23 |
+
expected = DatetimeArray._from_sequence(
|
24 |
+
[
|
25 |
+
"2000-01-01",
|
26 |
+
"2000-01-02",
|
27 |
+
"2000-01-03",
|
28 |
+
],
|
29 |
+
dtype="M8[ns]",
|
30 |
+
)
|
31 |
+
tm.assert_datetime_array_equal(result, expected)
|
32 |
+
|
33 |
+
@pytest.mark.parametrize("func", ["cumsum", "cumprod"])
|
34 |
+
def test_accumulators_disallowed(self, func):
|
35 |
+
# GH#50297
|
36 |
+
arr = DatetimeArray._from_sequence(
|
37 |
+
[
|
38 |
+
"2000-01-01",
|
39 |
+
"2000-01-02",
|
40 |
+
],
|
41 |
+
dtype="M8[ns]",
|
42 |
+
)._with_freq("infer")
|
43 |
+
with pytest.raises(TypeError, match=f"Accumulation {func}"):
|
44 |
+
arr._accumulate(func)
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/datetimes/test_reductions.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from pandas.core.dtypes.dtypes import DatetimeTZDtype
|
5 |
+
|
6 |
+
import pandas as pd
|
7 |
+
from pandas import NaT
|
8 |
+
import pandas._testing as tm
|
9 |
+
from pandas.core.arrays import DatetimeArray
|
10 |
+
|
11 |
+
|
12 |
+
class TestReductions:
|
13 |
+
@pytest.fixture(params=["s", "ms", "us", "ns"])
|
14 |
+
def unit(self, request):
|
15 |
+
return request.param
|
16 |
+
|
17 |
+
@pytest.fixture
|
18 |
+
def arr1d(self, tz_naive_fixture):
|
19 |
+
"""Fixture returning DatetimeArray with parametrized timezones"""
|
20 |
+
tz = tz_naive_fixture
|
21 |
+
dtype = DatetimeTZDtype(tz=tz) if tz is not None else np.dtype("M8[ns]")
|
22 |
+
arr = DatetimeArray._from_sequence(
|
23 |
+
[
|
24 |
+
"2000-01-03",
|
25 |
+
"2000-01-03",
|
26 |
+
"NaT",
|
27 |
+
"2000-01-02",
|
28 |
+
"2000-01-05",
|
29 |
+
"2000-01-04",
|
30 |
+
],
|
31 |
+
dtype=dtype,
|
32 |
+
)
|
33 |
+
return arr
|
34 |
+
|
35 |
+
def test_min_max(self, arr1d, unit):
|
36 |
+
arr = arr1d
|
37 |
+
arr = arr.as_unit(unit)
|
38 |
+
tz = arr.tz
|
39 |
+
|
40 |
+
result = arr.min()
|
41 |
+
expected = pd.Timestamp("2000-01-02", tz=tz).as_unit(unit)
|
42 |
+
assert result == expected
|
43 |
+
assert result.unit == expected.unit
|
44 |
+
|
45 |
+
result = arr.max()
|
46 |
+
expected = pd.Timestamp("2000-01-05", tz=tz).as_unit(unit)
|
47 |
+
assert result == expected
|
48 |
+
assert result.unit == expected.unit
|
49 |
+
|
50 |
+
result = arr.min(skipna=False)
|
51 |
+
assert result is NaT
|
52 |
+
|
53 |
+
result = arr.max(skipna=False)
|
54 |
+
assert result is NaT
|
55 |
+
|
56 |
+
@pytest.mark.parametrize("tz", [None, "US/Central"])
|
57 |
+
@pytest.mark.parametrize("skipna", [True, False])
|
58 |
+
def test_min_max_empty(self, skipna, tz):
|
59 |
+
dtype = DatetimeTZDtype(tz=tz) if tz is not None else np.dtype("M8[ns]")
|
60 |
+
arr = DatetimeArray._from_sequence([], dtype=dtype)
|
61 |
+
result = arr.min(skipna=skipna)
|
62 |
+
assert result is NaT
|
63 |
+
|
64 |
+
result = arr.max(skipna=skipna)
|
65 |
+
assert result is NaT
|
66 |
+
|
67 |
+
@pytest.mark.parametrize("tz", [None, "US/Central"])
|
68 |
+
@pytest.mark.parametrize("skipna", [True, False])
|
69 |
+
def test_median_empty(self, skipna, tz):
|
70 |
+
dtype = DatetimeTZDtype(tz=tz) if tz is not None else np.dtype("M8[ns]")
|
71 |
+
arr = DatetimeArray._from_sequence([], dtype=dtype)
|
72 |
+
result = arr.median(skipna=skipna)
|
73 |
+
assert result is NaT
|
74 |
+
|
75 |
+
arr = arr.reshape(0, 3)
|
76 |
+
result = arr.median(axis=0, skipna=skipna)
|
77 |
+
expected = type(arr)._from_sequence([NaT, NaT, NaT], dtype=arr.dtype)
|
78 |
+
tm.assert_equal(result, expected)
|
79 |
+
|
80 |
+
result = arr.median(axis=1, skipna=skipna)
|
81 |
+
expected = type(arr)._from_sequence([], dtype=arr.dtype)
|
82 |
+
tm.assert_equal(result, expected)
|
83 |
+
|
84 |
+
def test_median(self, arr1d):
|
85 |
+
arr = arr1d
|
86 |
+
|
87 |
+
result = arr.median()
|
88 |
+
assert result == arr[0]
|
89 |
+
result = arr.median(skipna=False)
|
90 |
+
assert result is NaT
|
91 |
+
|
92 |
+
result = arr.dropna().median(skipna=False)
|
93 |
+
assert result == arr[0]
|
94 |
+
|
95 |
+
result = arr.median(axis=0)
|
96 |
+
assert result == arr[0]
|
97 |
+
|
98 |
+
def test_median_axis(self, arr1d):
|
99 |
+
arr = arr1d
|
100 |
+
assert arr.median(axis=0) == arr.median()
|
101 |
+
assert arr.median(axis=0, skipna=False) is NaT
|
102 |
+
|
103 |
+
msg = r"abs\(axis\) must be less than ndim"
|
104 |
+
with pytest.raises(ValueError, match=msg):
|
105 |
+
arr.median(axis=1)
|
106 |
+
|
107 |
+
@pytest.mark.filterwarnings("ignore:All-NaN slice encountered:RuntimeWarning")
|
108 |
+
def test_median_2d(self, arr1d):
|
109 |
+
arr = arr1d.reshape(1, -1)
|
110 |
+
|
111 |
+
# axis = None
|
112 |
+
assert arr.median() == arr1d.median()
|
113 |
+
assert arr.median(skipna=False) is NaT
|
114 |
+
|
115 |
+
# axis = 0
|
116 |
+
result = arr.median(axis=0)
|
117 |
+
expected = arr1d
|
118 |
+
tm.assert_equal(result, expected)
|
119 |
+
|
120 |
+
# Since column 3 is all-NaT, we get NaT there with or without skipna
|
121 |
+
result = arr.median(axis=0, skipna=False)
|
122 |
+
expected = arr1d
|
123 |
+
tm.assert_equal(result, expected)
|
124 |
+
|
125 |
+
# axis = 1
|
126 |
+
result = arr.median(axis=1)
|
127 |
+
expected = type(arr)._from_sequence([arr1d.median()], dtype=arr.dtype)
|
128 |
+
tm.assert_equal(result, expected)
|
129 |
+
|
130 |
+
result = arr.median(axis=1, skipna=False)
|
131 |
+
expected = type(arr)._from_sequence([NaT], dtype=arr.dtype)
|
132 |
+
tm.assert_equal(result, expected)
|
133 |
+
|
134 |
+
def test_mean(self, arr1d):
|
135 |
+
arr = arr1d
|
136 |
+
|
137 |
+
# manually verified result
|
138 |
+
expected = arr[0] + 0.4 * pd.Timedelta(days=1)
|
139 |
+
|
140 |
+
result = arr.mean()
|
141 |
+
assert result == expected
|
142 |
+
result = arr.mean(skipna=False)
|
143 |
+
assert result is NaT
|
144 |
+
|
145 |
+
result = arr.dropna().mean(skipna=False)
|
146 |
+
assert result == expected
|
147 |
+
|
148 |
+
result = arr.mean(axis=0)
|
149 |
+
assert result == expected
|
150 |
+
|
151 |
+
def test_mean_2d(self):
|
152 |
+
dti = pd.date_range("2016-01-01", periods=6, tz="US/Pacific")
|
153 |
+
dta = dti._data.reshape(3, 2)
|
154 |
+
|
155 |
+
result = dta.mean(axis=0)
|
156 |
+
expected = dta[1]
|
157 |
+
tm.assert_datetime_array_equal(result, expected)
|
158 |
+
|
159 |
+
result = dta.mean(axis=1)
|
160 |
+
expected = dta[:, 0] + pd.Timedelta(hours=12)
|
161 |
+
tm.assert_datetime_array_equal(result, expected)
|
162 |
+
|
163 |
+
result = dta.mean(axis=None)
|
164 |
+
expected = dti.mean()
|
165 |
+
assert result == expected
|
166 |
+
|
167 |
+
@pytest.mark.parametrize("skipna", [True, False])
|
168 |
+
def test_mean_empty(self, arr1d, skipna):
|
169 |
+
arr = arr1d[:0]
|
170 |
+
|
171 |
+
assert arr.mean(skipna=skipna) is NaT
|
172 |
+
|
173 |
+
arr2d = arr.reshape(0, 3)
|
174 |
+
result = arr2d.mean(axis=0, skipna=skipna)
|
175 |
+
expected = DatetimeArray._from_sequence([NaT, NaT, NaT], dtype=arr.dtype)
|
176 |
+
tm.assert_datetime_array_equal(result, expected)
|
177 |
+
|
178 |
+
result = arr2d.mean(axis=1, skipna=skipna)
|
179 |
+
expected = arr # i.e. 1D, empty
|
180 |
+
tm.assert_datetime_array_equal(result, expected)
|
181 |
+
|
182 |
+
result = arr2d.mean(axis=None, skipna=skipna)
|
183 |
+
assert result is NaT
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/masked/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/masked/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (194 Bytes). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/masked/__pycache__/test_arithmetic.cpython-310.pyc
ADDED
Binary file (6.48 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/masked/__pycache__/test_arrow_compat.cpython-310.pyc
ADDED
Binary file (6.35 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/masked/__pycache__/test_function.cpython-310.pyc
ADDED
Binary file (2.54 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/masked/__pycache__/test_indexing.cpython-310.pyc
ADDED
Binary file (2.07 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/masked/test_arithmetic.py
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from typing import Any
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import pytest
|
7 |
+
|
8 |
+
import pandas as pd
|
9 |
+
import pandas._testing as tm
|
10 |
+
|
11 |
+
# integer dtypes
|
12 |
+
arrays = [pd.array([1, 2, 3, None], dtype=dtype) for dtype in tm.ALL_INT_EA_DTYPES]
|
13 |
+
scalars: list[Any] = [2] * len(arrays)
|
14 |
+
# floating dtypes
|
15 |
+
arrays += [pd.array([0.1, 0.2, 0.3, None], dtype=dtype) for dtype in tm.FLOAT_EA_DTYPES]
|
16 |
+
scalars += [0.2, 0.2]
|
17 |
+
# boolean
|
18 |
+
arrays += [pd.array([True, False, True, None], dtype="boolean")]
|
19 |
+
scalars += [False]
|
20 |
+
|
21 |
+
|
22 |
+
@pytest.fixture(params=zip(arrays, scalars), ids=[a.dtype.name for a in arrays])
|
23 |
+
def data(request):
|
24 |
+
"""Fixture returning parametrized (array, scalar) tuple.
|
25 |
+
|
26 |
+
Used to test equivalence of scalars, numpy arrays with array ops, and the
|
27 |
+
equivalence of DataFrame and Series ops.
|
28 |
+
"""
|
29 |
+
return request.param
|
30 |
+
|
31 |
+
|
32 |
+
def check_skip(data, op_name):
|
33 |
+
if isinstance(data.dtype, pd.BooleanDtype) and "sub" in op_name:
|
34 |
+
pytest.skip("subtract not implemented for boolean")
|
35 |
+
|
36 |
+
|
37 |
+
def is_bool_not_implemented(data, op_name):
|
38 |
+
# match non-masked behavior
|
39 |
+
return data.dtype.kind == "b" and op_name.strip("_").lstrip("r") in [
|
40 |
+
"pow",
|
41 |
+
"truediv",
|
42 |
+
"floordiv",
|
43 |
+
]
|
44 |
+
|
45 |
+
|
46 |
+
# Test equivalence of scalars, numpy arrays with array ops
|
47 |
+
# -----------------------------------------------------------------------------
|
48 |
+
|
49 |
+
|
50 |
+
def test_array_scalar_like_equivalence(data, all_arithmetic_operators):
|
51 |
+
data, scalar = data
|
52 |
+
op = tm.get_op_from_name(all_arithmetic_operators)
|
53 |
+
check_skip(data, all_arithmetic_operators)
|
54 |
+
|
55 |
+
scalar_array = pd.array([scalar] * len(data), dtype=data.dtype)
|
56 |
+
|
57 |
+
# TODO also add len-1 array (np.array([scalar], dtype=data.dtype.numpy_dtype))
|
58 |
+
for scalar in [scalar, data.dtype.type(scalar)]:
|
59 |
+
if is_bool_not_implemented(data, all_arithmetic_operators):
|
60 |
+
msg = "operator '.*' not implemented for bool dtypes"
|
61 |
+
with pytest.raises(NotImplementedError, match=msg):
|
62 |
+
op(data, scalar)
|
63 |
+
with pytest.raises(NotImplementedError, match=msg):
|
64 |
+
op(data, scalar_array)
|
65 |
+
else:
|
66 |
+
result = op(data, scalar)
|
67 |
+
expected = op(data, scalar_array)
|
68 |
+
tm.assert_extension_array_equal(result, expected)
|
69 |
+
|
70 |
+
|
71 |
+
def test_array_NA(data, all_arithmetic_operators):
|
72 |
+
data, _ = data
|
73 |
+
op = tm.get_op_from_name(all_arithmetic_operators)
|
74 |
+
check_skip(data, all_arithmetic_operators)
|
75 |
+
|
76 |
+
scalar = pd.NA
|
77 |
+
scalar_array = pd.array([pd.NA] * len(data), dtype=data.dtype)
|
78 |
+
|
79 |
+
mask = data._mask.copy()
|
80 |
+
|
81 |
+
if is_bool_not_implemented(data, all_arithmetic_operators):
|
82 |
+
msg = "operator '.*' not implemented for bool dtypes"
|
83 |
+
with pytest.raises(NotImplementedError, match=msg):
|
84 |
+
op(data, scalar)
|
85 |
+
# GH#45421 check op doesn't alter data._mask inplace
|
86 |
+
tm.assert_numpy_array_equal(mask, data._mask)
|
87 |
+
return
|
88 |
+
|
89 |
+
result = op(data, scalar)
|
90 |
+
# GH#45421 check op doesn't alter data._mask inplace
|
91 |
+
tm.assert_numpy_array_equal(mask, data._mask)
|
92 |
+
|
93 |
+
expected = op(data, scalar_array)
|
94 |
+
tm.assert_numpy_array_equal(mask, data._mask)
|
95 |
+
|
96 |
+
tm.assert_extension_array_equal(result, expected)
|
97 |
+
|
98 |
+
|
99 |
+
def test_numpy_array_equivalence(data, all_arithmetic_operators):
|
100 |
+
data, scalar = data
|
101 |
+
op = tm.get_op_from_name(all_arithmetic_operators)
|
102 |
+
check_skip(data, all_arithmetic_operators)
|
103 |
+
|
104 |
+
numpy_array = np.array([scalar] * len(data), dtype=data.dtype.numpy_dtype)
|
105 |
+
pd_array = pd.array(numpy_array, dtype=data.dtype)
|
106 |
+
|
107 |
+
if is_bool_not_implemented(data, all_arithmetic_operators):
|
108 |
+
msg = "operator '.*' not implemented for bool dtypes"
|
109 |
+
with pytest.raises(NotImplementedError, match=msg):
|
110 |
+
op(data, numpy_array)
|
111 |
+
with pytest.raises(NotImplementedError, match=msg):
|
112 |
+
op(data, pd_array)
|
113 |
+
return
|
114 |
+
|
115 |
+
result = op(data, numpy_array)
|
116 |
+
expected = op(data, pd_array)
|
117 |
+
tm.assert_extension_array_equal(result, expected)
|
118 |
+
|
119 |
+
|
120 |
+
# Test equivalence with Series and DataFrame ops
|
121 |
+
# -----------------------------------------------------------------------------
|
122 |
+
|
123 |
+
|
124 |
+
def test_frame(data, all_arithmetic_operators):
|
125 |
+
data, scalar = data
|
126 |
+
op = tm.get_op_from_name(all_arithmetic_operators)
|
127 |
+
check_skip(data, all_arithmetic_operators)
|
128 |
+
|
129 |
+
# DataFrame with scalar
|
130 |
+
df = pd.DataFrame({"A": data})
|
131 |
+
|
132 |
+
if is_bool_not_implemented(data, all_arithmetic_operators):
|
133 |
+
msg = "operator '.*' not implemented for bool dtypes"
|
134 |
+
with pytest.raises(NotImplementedError, match=msg):
|
135 |
+
op(df, scalar)
|
136 |
+
with pytest.raises(NotImplementedError, match=msg):
|
137 |
+
op(data, scalar)
|
138 |
+
return
|
139 |
+
|
140 |
+
result = op(df, scalar)
|
141 |
+
expected = pd.DataFrame({"A": op(data, scalar)})
|
142 |
+
tm.assert_frame_equal(result, expected)
|
143 |
+
|
144 |
+
|
145 |
+
def test_series(data, all_arithmetic_operators):
|
146 |
+
data, scalar = data
|
147 |
+
op = tm.get_op_from_name(all_arithmetic_operators)
|
148 |
+
check_skip(data, all_arithmetic_operators)
|
149 |
+
|
150 |
+
ser = pd.Series(data)
|
151 |
+
|
152 |
+
others = [
|
153 |
+
scalar,
|
154 |
+
np.array([scalar] * len(data), dtype=data.dtype.numpy_dtype),
|
155 |
+
pd.array([scalar] * len(data), dtype=data.dtype),
|
156 |
+
pd.Series([scalar] * len(data), dtype=data.dtype),
|
157 |
+
]
|
158 |
+
|
159 |
+
for other in others:
|
160 |
+
if is_bool_not_implemented(data, all_arithmetic_operators):
|
161 |
+
msg = "operator '.*' not implemented for bool dtypes"
|
162 |
+
with pytest.raises(NotImplementedError, match=msg):
|
163 |
+
op(ser, other)
|
164 |
+
|
165 |
+
else:
|
166 |
+
result = op(ser, other)
|
167 |
+
expected = pd.Series(op(data, other))
|
168 |
+
tm.assert_series_equal(result, expected)
|
169 |
+
|
170 |
+
|
171 |
+
# Test generic characteristics / errors
|
172 |
+
# -----------------------------------------------------------------------------
|
173 |
+
|
174 |
+
|
175 |
+
def test_error_invalid_object(data, all_arithmetic_operators):
|
176 |
+
data, _ = data
|
177 |
+
|
178 |
+
op = all_arithmetic_operators
|
179 |
+
opa = getattr(data, op)
|
180 |
+
|
181 |
+
# 2d -> return NotImplemented
|
182 |
+
result = opa(pd.DataFrame({"A": data}))
|
183 |
+
assert result is NotImplemented
|
184 |
+
|
185 |
+
msg = r"can only perform ops with 1-d structures"
|
186 |
+
with pytest.raises(NotImplementedError, match=msg):
|
187 |
+
opa(np.arange(len(data)).reshape(-1, len(data)))
|
188 |
+
|
189 |
+
|
190 |
+
def test_error_len_mismatch(data, all_arithmetic_operators):
|
191 |
+
# operating with a list-like with non-matching length raises
|
192 |
+
data, scalar = data
|
193 |
+
op = tm.get_op_from_name(all_arithmetic_operators)
|
194 |
+
|
195 |
+
other = [scalar] * (len(data) - 1)
|
196 |
+
|
197 |
+
err = ValueError
|
198 |
+
msg = "|".join(
|
199 |
+
[
|
200 |
+
r"operands could not be broadcast together with shapes \(3,\) \(4,\)",
|
201 |
+
r"operands could not be broadcast together with shapes \(4,\) \(3,\)",
|
202 |
+
]
|
203 |
+
)
|
204 |
+
if data.dtype.kind == "b" and all_arithmetic_operators.strip("_") in [
|
205 |
+
"sub",
|
206 |
+
"rsub",
|
207 |
+
]:
|
208 |
+
err = TypeError
|
209 |
+
msg = (
|
210 |
+
r"numpy boolean subtract, the `\-` operator, is not supported, use "
|
211 |
+
r"the bitwise_xor, the `\^` operator, or the logical_xor function instead"
|
212 |
+
)
|
213 |
+
elif is_bool_not_implemented(data, all_arithmetic_operators):
|
214 |
+
msg = "operator '.*' not implemented for bool dtypes"
|
215 |
+
err = NotImplementedError
|
216 |
+
|
217 |
+
for other in [other, np.array(other)]:
|
218 |
+
with pytest.raises(err, match=msg):
|
219 |
+
op(data, other)
|
220 |
+
|
221 |
+
s = pd.Series(data)
|
222 |
+
with pytest.raises(err, match=msg):
|
223 |
+
op(s, other)
|
224 |
+
|
225 |
+
|
226 |
+
@pytest.mark.parametrize("op", ["__neg__", "__abs__", "__invert__"])
|
227 |
+
def test_unary_op_does_not_propagate_mask(data, op):
|
228 |
+
# https://github.com/pandas-dev/pandas/issues/39943
|
229 |
+
data, _ = data
|
230 |
+
ser = pd.Series(data)
|
231 |
+
|
232 |
+
if op == "__invert__" and data.dtype.kind == "f":
|
233 |
+
# we follow numpy in raising
|
234 |
+
msg = "ufunc 'invert' not supported for the input types"
|
235 |
+
with pytest.raises(TypeError, match=msg):
|
236 |
+
getattr(ser, op)()
|
237 |
+
with pytest.raises(TypeError, match=msg):
|
238 |
+
getattr(data, op)()
|
239 |
+
with pytest.raises(TypeError, match=msg):
|
240 |
+
# Check that this is still the numpy behavior
|
241 |
+
getattr(data._data, op)()
|
242 |
+
|
243 |
+
return
|
244 |
+
|
245 |
+
result = getattr(ser, op)()
|
246 |
+
expected = result.copy(deep=True)
|
247 |
+
ser[0] = None
|
248 |
+
tm.assert_series_equal(result, expected)
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/masked/test_arrow_compat.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
import pandas._testing as tm
|
6 |
+
|
7 |
+
pytestmark = pytest.mark.filterwarnings(
|
8 |
+
"ignore:Passing a BlockManager to DataFrame:DeprecationWarning"
|
9 |
+
)
|
10 |
+
|
11 |
+
pa = pytest.importorskip("pyarrow")
|
12 |
+
|
13 |
+
from pandas.core.arrays.arrow._arrow_utils import pyarrow_array_to_numpy_and_mask
|
14 |
+
|
15 |
+
arrays = [pd.array([1, 2, 3, None], dtype=dtype) for dtype in tm.ALL_INT_EA_DTYPES]
|
16 |
+
arrays += [pd.array([0.1, 0.2, 0.3, None], dtype=dtype) for dtype in tm.FLOAT_EA_DTYPES]
|
17 |
+
arrays += [pd.array([True, False, True, None], dtype="boolean")]
|
18 |
+
|
19 |
+
|
20 |
+
@pytest.fixture(params=arrays, ids=[a.dtype.name for a in arrays])
|
21 |
+
def data(request):
|
22 |
+
"""
|
23 |
+
Fixture returning parametrized array from given dtype, including integer,
|
24 |
+
float and boolean
|
25 |
+
"""
|
26 |
+
return request.param
|
27 |
+
|
28 |
+
|
29 |
+
def test_arrow_array(data):
|
30 |
+
arr = pa.array(data)
|
31 |
+
expected = pa.array(
|
32 |
+
data.to_numpy(object, na_value=None),
|
33 |
+
type=pa.from_numpy_dtype(data.dtype.numpy_dtype),
|
34 |
+
)
|
35 |
+
assert arr.equals(expected)
|
36 |
+
|
37 |
+
|
38 |
+
def test_arrow_roundtrip(data):
|
39 |
+
df = pd.DataFrame({"a": data})
|
40 |
+
table = pa.table(df)
|
41 |
+
assert table.field("a").type == str(data.dtype.numpy_dtype)
|
42 |
+
|
43 |
+
result = table.to_pandas()
|
44 |
+
assert result["a"].dtype == data.dtype
|
45 |
+
tm.assert_frame_equal(result, df)
|
46 |
+
|
47 |
+
|
48 |
+
def test_dataframe_from_arrow_types_mapper():
|
49 |
+
def types_mapper(arrow_type):
|
50 |
+
if pa.types.is_boolean(arrow_type):
|
51 |
+
return pd.BooleanDtype()
|
52 |
+
elif pa.types.is_integer(arrow_type):
|
53 |
+
return pd.Int64Dtype()
|
54 |
+
|
55 |
+
bools_array = pa.array([True, None, False], type=pa.bool_())
|
56 |
+
ints_array = pa.array([1, None, 2], type=pa.int64())
|
57 |
+
small_ints_array = pa.array([-1, 0, 7], type=pa.int8())
|
58 |
+
record_batch = pa.RecordBatch.from_arrays(
|
59 |
+
[bools_array, ints_array, small_ints_array], ["bools", "ints", "small_ints"]
|
60 |
+
)
|
61 |
+
result = record_batch.to_pandas(types_mapper=types_mapper)
|
62 |
+
bools = pd.Series([True, None, False], dtype="boolean")
|
63 |
+
ints = pd.Series([1, None, 2], dtype="Int64")
|
64 |
+
small_ints = pd.Series([-1, 0, 7], dtype="Int64")
|
65 |
+
expected = pd.DataFrame({"bools": bools, "ints": ints, "small_ints": small_ints})
|
66 |
+
tm.assert_frame_equal(result, expected)
|
67 |
+
|
68 |
+
|
69 |
+
def test_arrow_load_from_zero_chunks(data):
|
70 |
+
# GH-41040
|
71 |
+
|
72 |
+
df = pd.DataFrame({"a": data[0:0]})
|
73 |
+
table = pa.table(df)
|
74 |
+
assert table.field("a").type == str(data.dtype.numpy_dtype)
|
75 |
+
table = pa.table(
|
76 |
+
[pa.chunked_array([], type=table.field("a").type)], schema=table.schema
|
77 |
+
)
|
78 |
+
result = table.to_pandas()
|
79 |
+
assert result["a"].dtype == data.dtype
|
80 |
+
tm.assert_frame_equal(result, df)
|
81 |
+
|
82 |
+
|
83 |
+
def test_arrow_from_arrow_uint():
|
84 |
+
# https://github.com/pandas-dev/pandas/issues/31896
|
85 |
+
# possible mismatch in types
|
86 |
+
|
87 |
+
dtype = pd.UInt32Dtype()
|
88 |
+
result = dtype.__from_arrow__(pa.array([1, 2, 3, 4, None], type="int64"))
|
89 |
+
expected = pd.array([1, 2, 3, 4, None], dtype="UInt32")
|
90 |
+
|
91 |
+
tm.assert_extension_array_equal(result, expected)
|
92 |
+
|
93 |
+
|
94 |
+
def test_arrow_sliced(data):
|
95 |
+
# https://github.com/pandas-dev/pandas/issues/38525
|
96 |
+
|
97 |
+
df = pd.DataFrame({"a": data})
|
98 |
+
table = pa.table(df)
|
99 |
+
result = table.slice(2, None).to_pandas()
|
100 |
+
expected = df.iloc[2:].reset_index(drop=True)
|
101 |
+
tm.assert_frame_equal(result, expected)
|
102 |
+
|
103 |
+
# no missing values
|
104 |
+
df2 = df.fillna(data[0])
|
105 |
+
table = pa.table(df2)
|
106 |
+
result = table.slice(2, None).to_pandas()
|
107 |
+
expected = df2.iloc[2:].reset_index(drop=True)
|
108 |
+
tm.assert_frame_equal(result, expected)
|
109 |
+
|
110 |
+
|
111 |
+
@pytest.fixture
|
112 |
+
def np_dtype_to_arrays(any_real_numpy_dtype):
|
113 |
+
"""
|
114 |
+
Fixture returning actual and expected dtype, pandas and numpy arrays and
|
115 |
+
mask from a given numpy dtype
|
116 |
+
"""
|
117 |
+
np_dtype = np.dtype(any_real_numpy_dtype)
|
118 |
+
pa_type = pa.from_numpy_dtype(np_dtype)
|
119 |
+
|
120 |
+
# None ensures the creation of a bitmask buffer.
|
121 |
+
pa_array = pa.array([0, 1, 2, None], type=pa_type)
|
122 |
+
# Since masked Arrow buffer slots are not required to contain a specific
|
123 |
+
# value, assert only the first three values of the created np.array
|
124 |
+
np_expected = np.array([0, 1, 2], dtype=np_dtype)
|
125 |
+
mask_expected = np.array([True, True, True, False])
|
126 |
+
return np_dtype, pa_array, np_expected, mask_expected
|
127 |
+
|
128 |
+
|
129 |
+
def test_pyarrow_array_to_numpy_and_mask(np_dtype_to_arrays):
|
130 |
+
"""
|
131 |
+
Test conversion from pyarrow array to numpy array.
|
132 |
+
|
133 |
+
Modifies the pyarrow buffer to contain padding and offset, which are
|
134 |
+
considered valid buffers by pyarrow.
|
135 |
+
|
136 |
+
Also tests empty pyarrow arrays with non empty buffers.
|
137 |
+
See https://github.com/pandas-dev/pandas/issues/40896
|
138 |
+
"""
|
139 |
+
np_dtype, pa_array, np_expected, mask_expected = np_dtype_to_arrays
|
140 |
+
data, mask = pyarrow_array_to_numpy_and_mask(pa_array, np_dtype)
|
141 |
+
tm.assert_numpy_array_equal(data[:3], np_expected)
|
142 |
+
tm.assert_numpy_array_equal(mask, mask_expected)
|
143 |
+
|
144 |
+
mask_buffer = pa_array.buffers()[0]
|
145 |
+
data_buffer = pa_array.buffers()[1]
|
146 |
+
data_buffer_bytes = pa_array.buffers()[1].to_pybytes()
|
147 |
+
|
148 |
+
# Add trailing padding to the buffer.
|
149 |
+
data_buffer_trail = pa.py_buffer(data_buffer_bytes + b"\x00")
|
150 |
+
pa_array_trail = pa.Array.from_buffers(
|
151 |
+
type=pa_array.type,
|
152 |
+
length=len(pa_array),
|
153 |
+
buffers=[mask_buffer, data_buffer_trail],
|
154 |
+
offset=pa_array.offset,
|
155 |
+
)
|
156 |
+
pa_array_trail.validate()
|
157 |
+
data, mask = pyarrow_array_to_numpy_and_mask(pa_array_trail, np_dtype)
|
158 |
+
tm.assert_numpy_array_equal(data[:3], np_expected)
|
159 |
+
tm.assert_numpy_array_equal(mask, mask_expected)
|
160 |
+
|
161 |
+
# Add offset to the buffer.
|
162 |
+
offset = b"\x00" * (pa_array.type.bit_width // 8)
|
163 |
+
data_buffer_offset = pa.py_buffer(offset + data_buffer_bytes)
|
164 |
+
mask_buffer_offset = pa.py_buffer(b"\x0E")
|
165 |
+
pa_array_offset = pa.Array.from_buffers(
|
166 |
+
type=pa_array.type,
|
167 |
+
length=len(pa_array),
|
168 |
+
buffers=[mask_buffer_offset, data_buffer_offset],
|
169 |
+
offset=pa_array.offset + 1,
|
170 |
+
)
|
171 |
+
pa_array_offset.validate()
|
172 |
+
data, mask = pyarrow_array_to_numpy_and_mask(pa_array_offset, np_dtype)
|
173 |
+
tm.assert_numpy_array_equal(data[:3], np_expected)
|
174 |
+
tm.assert_numpy_array_equal(mask, mask_expected)
|
175 |
+
|
176 |
+
# Empty array
|
177 |
+
np_expected_empty = np.array([], dtype=np_dtype)
|
178 |
+
mask_expected_empty = np.array([], dtype=np.bool_)
|
179 |
+
|
180 |
+
pa_array_offset = pa.Array.from_buffers(
|
181 |
+
type=pa_array.type,
|
182 |
+
length=0,
|
183 |
+
buffers=[mask_buffer, data_buffer],
|
184 |
+
offset=pa_array.offset,
|
185 |
+
)
|
186 |
+
pa_array_offset.validate()
|
187 |
+
data, mask = pyarrow_array_to_numpy_and_mask(pa_array_offset, np_dtype)
|
188 |
+
tm.assert_numpy_array_equal(data[:3], np_expected_empty)
|
189 |
+
tm.assert_numpy_array_equal(mask, mask_expected_empty)
|
190 |
+
|
191 |
+
|
192 |
+
@pytest.mark.parametrize(
|
193 |
+
"arr", [pa.nulls(10), pa.chunked_array([pa.nulls(4), pa.nulls(6)])]
|
194 |
+
)
|
195 |
+
def test_from_arrow_null(data, arr):
|
196 |
+
res = data.dtype.__from_arrow__(arr)
|
197 |
+
assert res.isna().all()
|
198 |
+
assert len(res) == 10
|
199 |
+
|
200 |
+
|
201 |
+
def test_from_arrow_type_error(data):
|
202 |
+
# ensure that __from_arrow__ returns a TypeError when getting a wrong
|
203 |
+
# array type
|
204 |
+
|
205 |
+
arr = pa.array(data).cast("string")
|
206 |
+
with pytest.raises(TypeError, match=None):
|
207 |
+
# we don't test the exact error message, only the fact that it raises
|
208 |
+
# a TypeError is relevant
|
209 |
+
data.dtype.__from_arrow__(arr)
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/masked/test_function.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from pandas.core.dtypes.common import is_integer_dtype
|
5 |
+
|
6 |
+
import pandas as pd
|
7 |
+
import pandas._testing as tm
|
8 |
+
from pandas.core.arrays import BaseMaskedArray
|
9 |
+
|
10 |
+
arrays = [pd.array([1, 2, 3, None], dtype=dtype) for dtype in tm.ALL_INT_EA_DTYPES]
|
11 |
+
arrays += [
|
12 |
+
pd.array([0.141, -0.268, 5.895, None], dtype=dtype) for dtype in tm.FLOAT_EA_DTYPES
|
13 |
+
]
|
14 |
+
|
15 |
+
|
16 |
+
@pytest.fixture(params=arrays, ids=[a.dtype.name for a in arrays])
|
17 |
+
def data(request):
|
18 |
+
"""
|
19 |
+
Fixture returning parametrized 'data' array with different integer and
|
20 |
+
floating point types
|
21 |
+
"""
|
22 |
+
return request.param
|
23 |
+
|
24 |
+
|
25 |
+
@pytest.fixture()
|
26 |
+
def numpy_dtype(data):
|
27 |
+
"""
|
28 |
+
Fixture returning numpy dtype from 'data' input array.
|
29 |
+
"""
|
30 |
+
# For integer dtype, the numpy conversion must be done to float
|
31 |
+
if is_integer_dtype(data):
|
32 |
+
numpy_dtype = float
|
33 |
+
else:
|
34 |
+
numpy_dtype = data.dtype.type
|
35 |
+
return numpy_dtype
|
36 |
+
|
37 |
+
|
38 |
+
def test_round(data, numpy_dtype):
|
39 |
+
# No arguments
|
40 |
+
result = data.round()
|
41 |
+
expected = pd.array(
|
42 |
+
np.round(data.to_numpy(dtype=numpy_dtype, na_value=None)), dtype=data.dtype
|
43 |
+
)
|
44 |
+
tm.assert_extension_array_equal(result, expected)
|
45 |
+
|
46 |
+
# Decimals argument
|
47 |
+
result = data.round(decimals=2)
|
48 |
+
expected = pd.array(
|
49 |
+
np.round(data.to_numpy(dtype=numpy_dtype, na_value=None), decimals=2),
|
50 |
+
dtype=data.dtype,
|
51 |
+
)
|
52 |
+
tm.assert_extension_array_equal(result, expected)
|
53 |
+
|
54 |
+
|
55 |
+
def test_tolist(data):
|
56 |
+
result = data.tolist()
|
57 |
+
expected = list(data)
|
58 |
+
tm.assert_equal(result, expected)
|
59 |
+
|
60 |
+
|
61 |
+
def test_to_numpy():
|
62 |
+
# GH#56991
|
63 |
+
|
64 |
+
class MyStringArray(BaseMaskedArray):
|
65 |
+
dtype = pd.StringDtype()
|
66 |
+
_dtype_cls = pd.StringDtype
|
67 |
+
_internal_fill_value = pd.NA
|
68 |
+
|
69 |
+
arr = MyStringArray(
|
70 |
+
values=np.array(["a", "b", "c"]), mask=np.array([False, True, False])
|
71 |
+
)
|
72 |
+
result = arr.to_numpy()
|
73 |
+
expected = np.array(["a", pd.NA, "c"])
|
74 |
+
tm.assert_numpy_array_equal(result, expected)
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/masked/test_indexing.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
import pandas as pd
|
7 |
+
|
8 |
+
|
9 |
+
class TestSetitemValidation:
|
10 |
+
def _check_setitem_invalid(self, arr, invalid):
|
11 |
+
msg = f"Invalid value '{str(invalid)}' for dtype {arr.dtype}"
|
12 |
+
msg = re.escape(msg)
|
13 |
+
with pytest.raises(TypeError, match=msg):
|
14 |
+
arr[0] = invalid
|
15 |
+
|
16 |
+
with pytest.raises(TypeError, match=msg):
|
17 |
+
arr[:] = invalid
|
18 |
+
|
19 |
+
with pytest.raises(TypeError, match=msg):
|
20 |
+
arr[[0]] = invalid
|
21 |
+
|
22 |
+
# FIXME: don't leave commented-out
|
23 |
+
# with pytest.raises(TypeError):
|
24 |
+
# arr[[0]] = [invalid]
|
25 |
+
|
26 |
+
# with pytest.raises(TypeError):
|
27 |
+
# arr[[0]] = np.array([invalid], dtype=object)
|
28 |
+
|
29 |
+
# Series non-coercion, behavior subject to change
|
30 |
+
ser = pd.Series(arr)
|
31 |
+
with pytest.raises(TypeError, match=msg):
|
32 |
+
ser[0] = invalid
|
33 |
+
# TODO: so, so many other variants of this...
|
34 |
+
|
35 |
+
_invalid_scalars = [
|
36 |
+
1 + 2j,
|
37 |
+
"True",
|
38 |
+
"1",
|
39 |
+
"1.0",
|
40 |
+
pd.NaT,
|
41 |
+
np.datetime64("NaT"),
|
42 |
+
np.timedelta64("NaT"),
|
43 |
+
]
|
44 |
+
|
45 |
+
@pytest.mark.parametrize(
|
46 |
+
"invalid", _invalid_scalars + [1, 1.0, np.int64(1), np.float64(1)]
|
47 |
+
)
|
48 |
+
def test_setitem_validation_scalar_bool(self, invalid):
|
49 |
+
arr = pd.array([True, False, None], dtype="boolean")
|
50 |
+
self._check_setitem_invalid(arr, invalid)
|
51 |
+
|
52 |
+
@pytest.mark.parametrize("invalid", _invalid_scalars + [True, 1.5, np.float64(1.5)])
|
53 |
+
def test_setitem_validation_scalar_int(self, invalid, any_int_ea_dtype):
|
54 |
+
arr = pd.array([1, 2, None], dtype=any_int_ea_dtype)
|
55 |
+
self._check_setitem_invalid(arr, invalid)
|
56 |
+
|
57 |
+
@pytest.mark.parametrize("invalid", _invalid_scalars + [True])
|
58 |
+
def test_setitem_validation_scalar_float(self, invalid, float_ea_dtype):
|
59 |
+
arr = pd.array([1, 2, None], dtype=float_ea_dtype)
|
60 |
+
self._check_setitem_invalid(arr, invalid)
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/masked_shared.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Tests shared by MaskedArray subclasses.
|
3 |
+
"""
|
4 |
+
import numpy as np
|
5 |
+
import pytest
|
6 |
+
|
7 |
+
import pandas as pd
|
8 |
+
import pandas._testing as tm
|
9 |
+
from pandas.tests.extension.base import BaseOpsUtil
|
10 |
+
|
11 |
+
|
12 |
+
class ComparisonOps(BaseOpsUtil):
|
13 |
+
def _compare_other(self, data, op, other):
|
14 |
+
# array
|
15 |
+
result = pd.Series(op(data, other))
|
16 |
+
expected = pd.Series(op(data._data, other), dtype="boolean")
|
17 |
+
|
18 |
+
# fill the nan locations
|
19 |
+
expected[data._mask] = pd.NA
|
20 |
+
|
21 |
+
tm.assert_series_equal(result, expected)
|
22 |
+
|
23 |
+
# series
|
24 |
+
ser = pd.Series(data)
|
25 |
+
result = op(ser, other)
|
26 |
+
|
27 |
+
# Set nullable dtype here to avoid upcasting when setting to pd.NA below
|
28 |
+
expected = op(pd.Series(data._data), other).astype("boolean")
|
29 |
+
|
30 |
+
# fill the nan locations
|
31 |
+
expected[data._mask] = pd.NA
|
32 |
+
|
33 |
+
tm.assert_series_equal(result, expected)
|
34 |
+
|
35 |
+
# subclass will override to parametrize 'other'
|
36 |
+
def test_scalar(self, other, comparison_op, dtype):
|
37 |
+
op = comparison_op
|
38 |
+
left = pd.array([1, 0, None], dtype=dtype)
|
39 |
+
|
40 |
+
result = op(left, other)
|
41 |
+
|
42 |
+
if other is pd.NA:
|
43 |
+
expected = pd.array([None, None, None], dtype="boolean")
|
44 |
+
else:
|
45 |
+
values = op(left._data, other)
|
46 |
+
expected = pd.arrays.BooleanArray(values, left._mask, copy=True)
|
47 |
+
tm.assert_extension_array_equal(result, expected)
|
48 |
+
|
49 |
+
# ensure we haven't mutated anything inplace
|
50 |
+
result[0] = pd.NA
|
51 |
+
tm.assert_extension_array_equal(left, pd.array([1, 0, None], dtype=dtype))
|
52 |
+
|
53 |
+
|
54 |
+
class NumericOps:
|
55 |
+
# Shared by IntegerArray and FloatingArray, not BooleanArray
|
56 |
+
|
57 |
+
def test_searchsorted_nan(self, dtype):
|
58 |
+
# The base class casts to object dtype, for which searchsorted returns
|
59 |
+
# 0 from the left and 10 from the right.
|
60 |
+
arr = pd.array(range(10), dtype=dtype)
|
61 |
+
|
62 |
+
assert arr.searchsorted(np.nan, side="left") == 10
|
63 |
+
assert arr.searchsorted(np.nan, side="right") == 10
|
64 |
+
|
65 |
+
def test_no_shared_mask(self, data):
|
66 |
+
result = data + 1
|
67 |
+
assert not tm.shares_memory(result, data)
|
68 |
+
|
69 |
+
def test_array(self, comparison_op, dtype):
|
70 |
+
op = comparison_op
|
71 |
+
|
72 |
+
left = pd.array([0, 1, 2, None, None, None], dtype=dtype)
|
73 |
+
right = pd.array([0, 1, None, 0, 1, None], dtype=dtype)
|
74 |
+
|
75 |
+
result = op(left, right)
|
76 |
+
values = op(left._data, right._data)
|
77 |
+
mask = left._mask | right._mask
|
78 |
+
|
79 |
+
expected = pd.arrays.BooleanArray(values, mask)
|
80 |
+
tm.assert_extension_array_equal(result, expected)
|
81 |
+
|
82 |
+
# ensure we haven't mutated anything inplace
|
83 |
+
result[0] = pd.NA
|
84 |
+
tm.assert_extension_array_equal(
|
85 |
+
left, pd.array([0, 1, 2, None, None, None], dtype=dtype)
|
86 |
+
)
|
87 |
+
tm.assert_extension_array_equal(
|
88 |
+
right, pd.array([0, 1, None, 0, 1, None], dtype=dtype)
|
89 |
+
)
|
90 |
+
|
91 |
+
def test_compare_with_booleanarray(self, comparison_op, dtype):
|
92 |
+
op = comparison_op
|
93 |
+
|
94 |
+
left = pd.array([True, False, None] * 3, dtype="boolean")
|
95 |
+
right = pd.array([0] * 3 + [1] * 3 + [None] * 3, dtype=dtype)
|
96 |
+
other = pd.array([False] * 3 + [True] * 3 + [None] * 3, dtype="boolean")
|
97 |
+
|
98 |
+
expected = op(left, other)
|
99 |
+
result = op(left, right)
|
100 |
+
tm.assert_extension_array_equal(result, expected)
|
101 |
+
|
102 |
+
# reversed op
|
103 |
+
expected = op(other, left)
|
104 |
+
result = op(right, left)
|
105 |
+
tm.assert_extension_array_equal(result, expected)
|
106 |
+
|
107 |
+
def test_compare_to_string(self, dtype):
|
108 |
+
# GH#28930
|
109 |
+
ser = pd.Series([1, None], dtype=dtype)
|
110 |
+
result = ser == "a"
|
111 |
+
expected = pd.Series([False, pd.NA], dtype="boolean")
|
112 |
+
|
113 |
+
tm.assert_series_equal(result, expected)
|
114 |
+
|
115 |
+
def test_ufunc_with_out(self, dtype):
|
116 |
+
arr = pd.array([1, 2, 3], dtype=dtype)
|
117 |
+
arr2 = pd.array([1, 2, pd.NA], dtype=dtype)
|
118 |
+
|
119 |
+
mask = arr == arr
|
120 |
+
mask2 = arr2 == arr2
|
121 |
+
|
122 |
+
result = np.zeros(3, dtype=bool)
|
123 |
+
result |= mask
|
124 |
+
# If MaskedArray.__array_ufunc__ handled "out" appropriately,
|
125 |
+
# `result` should still be an ndarray.
|
126 |
+
assert isinstance(result, np.ndarray)
|
127 |
+
assert result.all()
|
128 |
+
|
129 |
+
# result |= mask worked because mask could be cast losslessly to
|
130 |
+
# boolean ndarray. mask2 can't, so this raises
|
131 |
+
result = np.zeros(3, dtype=bool)
|
132 |
+
msg = "Specify an appropriate 'na_value' for this dtype"
|
133 |
+
with pytest.raises(ValueError, match=msg):
|
134 |
+
result |= mask2
|
135 |
+
|
136 |
+
# addition
|
137 |
+
res = np.add(arr, arr2)
|
138 |
+
expected = pd.array([2, 4, pd.NA], dtype=dtype)
|
139 |
+
tm.assert_extension_array_equal(res, expected)
|
140 |
+
|
141 |
+
# when passing out=arr, we will modify 'arr' inplace.
|
142 |
+
res = np.add(arr, arr2, out=arr)
|
143 |
+
assert res is arr
|
144 |
+
tm.assert_extension_array_equal(res, expected)
|
145 |
+
tm.assert_extension_array_equal(arr, expected)
|
146 |
+
|
147 |
+
def test_mul_td64_array(self, dtype):
|
148 |
+
# GH#45622
|
149 |
+
arr = pd.array([1, 2, pd.NA], dtype=dtype)
|
150 |
+
other = np.arange(3, dtype=np.int64).view("m8[ns]")
|
151 |
+
|
152 |
+
result = arr * other
|
153 |
+
expected = pd.array([pd.Timedelta(0), pd.Timedelta(2), pd.NaT])
|
154 |
+
tm.assert_extension_array_equal(result, expected)
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/test_array.py
ADDED
@@ -0,0 +1,478 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
import decimal
|
3 |
+
import re
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import pytest
|
7 |
+
import pytz
|
8 |
+
|
9 |
+
import pandas as pd
|
10 |
+
import pandas._testing as tm
|
11 |
+
from pandas.api.extensions import register_extension_dtype
|
12 |
+
from pandas.arrays import (
|
13 |
+
BooleanArray,
|
14 |
+
DatetimeArray,
|
15 |
+
FloatingArray,
|
16 |
+
IntegerArray,
|
17 |
+
IntervalArray,
|
18 |
+
SparseArray,
|
19 |
+
TimedeltaArray,
|
20 |
+
)
|
21 |
+
from pandas.core.arrays import (
|
22 |
+
NumpyExtensionArray,
|
23 |
+
period_array,
|
24 |
+
)
|
25 |
+
from pandas.tests.extension.decimal import (
|
26 |
+
DecimalArray,
|
27 |
+
DecimalDtype,
|
28 |
+
to_decimal,
|
29 |
+
)
|
30 |
+
|
31 |
+
|
32 |
+
@pytest.mark.parametrize("dtype_unit", ["M8[h]", "M8[m]", "m8[h]", "M8[m]"])
|
33 |
+
def test_dt64_array(dtype_unit):
|
34 |
+
# PR 53817
|
35 |
+
dtype_var = np.dtype(dtype_unit)
|
36 |
+
msg = (
|
37 |
+
r"datetime64 and timedelta64 dtype resolutions other than "
|
38 |
+
r"'s', 'ms', 'us', and 'ns' are deprecated. "
|
39 |
+
r"In future releases passing unsupported resolutions will "
|
40 |
+
r"raise an exception."
|
41 |
+
)
|
42 |
+
with tm.assert_produces_warning(FutureWarning, match=re.escape(msg)):
|
43 |
+
pd.array([], dtype=dtype_var)
|
44 |
+
|
45 |
+
|
46 |
+
@pytest.mark.parametrize(
|
47 |
+
"data, dtype, expected",
|
48 |
+
[
|
49 |
+
# Basic NumPy defaults.
|
50 |
+
([], None, FloatingArray._from_sequence([], dtype="Float64")),
|
51 |
+
([1, 2], None, IntegerArray._from_sequence([1, 2], dtype="Int64")),
|
52 |
+
([1, 2], object, NumpyExtensionArray(np.array([1, 2], dtype=object))),
|
53 |
+
(
|
54 |
+
[1, 2],
|
55 |
+
np.dtype("float32"),
|
56 |
+
NumpyExtensionArray(np.array([1.0, 2.0], dtype=np.dtype("float32"))),
|
57 |
+
),
|
58 |
+
(
|
59 |
+
np.array([], dtype=object),
|
60 |
+
None,
|
61 |
+
NumpyExtensionArray(np.array([], dtype=object)),
|
62 |
+
),
|
63 |
+
(
|
64 |
+
np.array([1, 2], dtype="int64"),
|
65 |
+
None,
|
66 |
+
IntegerArray._from_sequence([1, 2], dtype="Int64"),
|
67 |
+
),
|
68 |
+
(
|
69 |
+
np.array([1.0, 2.0], dtype="float64"),
|
70 |
+
None,
|
71 |
+
FloatingArray._from_sequence([1.0, 2.0], dtype="Float64"),
|
72 |
+
),
|
73 |
+
# String alias passes through to NumPy
|
74 |
+
([1, 2], "float32", NumpyExtensionArray(np.array([1, 2], dtype="float32"))),
|
75 |
+
([1, 2], "int64", NumpyExtensionArray(np.array([1, 2], dtype=np.int64))),
|
76 |
+
# GH#44715 FloatingArray does not support float16, so fall
|
77 |
+
# back to NumpyExtensionArray
|
78 |
+
(
|
79 |
+
np.array([1, 2], dtype=np.float16),
|
80 |
+
None,
|
81 |
+
NumpyExtensionArray(np.array([1, 2], dtype=np.float16)),
|
82 |
+
),
|
83 |
+
# idempotency with e.g. pd.array(pd.array([1, 2], dtype="int64"))
|
84 |
+
(
|
85 |
+
NumpyExtensionArray(np.array([1, 2], dtype=np.int32)),
|
86 |
+
None,
|
87 |
+
NumpyExtensionArray(np.array([1, 2], dtype=np.int32)),
|
88 |
+
),
|
89 |
+
# Period alias
|
90 |
+
(
|
91 |
+
[pd.Period("2000", "D"), pd.Period("2001", "D")],
|
92 |
+
"Period[D]",
|
93 |
+
period_array(["2000", "2001"], freq="D"),
|
94 |
+
),
|
95 |
+
# Period dtype
|
96 |
+
(
|
97 |
+
[pd.Period("2000", "D")],
|
98 |
+
pd.PeriodDtype("D"),
|
99 |
+
period_array(["2000"], freq="D"),
|
100 |
+
),
|
101 |
+
# Datetime (naive)
|
102 |
+
(
|
103 |
+
[1, 2],
|
104 |
+
np.dtype("datetime64[ns]"),
|
105 |
+
DatetimeArray._from_sequence(
|
106 |
+
np.array([1, 2], dtype="M8[ns]"), dtype="M8[ns]"
|
107 |
+
),
|
108 |
+
),
|
109 |
+
(
|
110 |
+
[1, 2],
|
111 |
+
np.dtype("datetime64[s]"),
|
112 |
+
DatetimeArray._from_sequence(
|
113 |
+
np.array([1, 2], dtype="M8[s]"), dtype="M8[s]"
|
114 |
+
),
|
115 |
+
),
|
116 |
+
(
|
117 |
+
np.array([1, 2], dtype="datetime64[ns]"),
|
118 |
+
None,
|
119 |
+
DatetimeArray._from_sequence(
|
120 |
+
np.array([1, 2], dtype="M8[ns]"), dtype="M8[ns]"
|
121 |
+
),
|
122 |
+
),
|
123 |
+
(
|
124 |
+
pd.DatetimeIndex(["2000", "2001"]),
|
125 |
+
np.dtype("datetime64[ns]"),
|
126 |
+
DatetimeArray._from_sequence(["2000", "2001"], dtype="M8[ns]"),
|
127 |
+
),
|
128 |
+
(
|
129 |
+
pd.DatetimeIndex(["2000", "2001"]),
|
130 |
+
None,
|
131 |
+
DatetimeArray._from_sequence(["2000", "2001"], dtype="M8[ns]"),
|
132 |
+
),
|
133 |
+
(
|
134 |
+
["2000", "2001"],
|
135 |
+
np.dtype("datetime64[ns]"),
|
136 |
+
DatetimeArray._from_sequence(["2000", "2001"], dtype="M8[ns]"),
|
137 |
+
),
|
138 |
+
# Datetime (tz-aware)
|
139 |
+
(
|
140 |
+
["2000", "2001"],
|
141 |
+
pd.DatetimeTZDtype(tz="CET"),
|
142 |
+
DatetimeArray._from_sequence(
|
143 |
+
["2000", "2001"], dtype=pd.DatetimeTZDtype(tz="CET")
|
144 |
+
),
|
145 |
+
),
|
146 |
+
# Timedelta
|
147 |
+
(
|
148 |
+
["1h", "2h"],
|
149 |
+
np.dtype("timedelta64[ns]"),
|
150 |
+
TimedeltaArray._from_sequence(["1h", "2h"], dtype="m8[ns]"),
|
151 |
+
),
|
152 |
+
(
|
153 |
+
pd.TimedeltaIndex(["1h", "2h"]),
|
154 |
+
np.dtype("timedelta64[ns]"),
|
155 |
+
TimedeltaArray._from_sequence(["1h", "2h"], dtype="m8[ns]"),
|
156 |
+
),
|
157 |
+
(
|
158 |
+
np.array([1, 2], dtype="m8[s]"),
|
159 |
+
np.dtype("timedelta64[s]"),
|
160 |
+
TimedeltaArray._from_sequence(
|
161 |
+
np.array([1, 2], dtype="m8[s]"), dtype="m8[s]"
|
162 |
+
),
|
163 |
+
),
|
164 |
+
(
|
165 |
+
pd.TimedeltaIndex(["1h", "2h"]),
|
166 |
+
None,
|
167 |
+
TimedeltaArray._from_sequence(["1h", "2h"], dtype="m8[ns]"),
|
168 |
+
),
|
169 |
+
(
|
170 |
+
# preserve non-nano, i.e. don't cast to NumpyExtensionArray
|
171 |
+
TimedeltaArray._simple_new(
|
172 |
+
np.arange(5, dtype=np.int64).view("m8[s]"), dtype=np.dtype("m8[s]")
|
173 |
+
),
|
174 |
+
None,
|
175 |
+
TimedeltaArray._simple_new(
|
176 |
+
np.arange(5, dtype=np.int64).view("m8[s]"), dtype=np.dtype("m8[s]")
|
177 |
+
),
|
178 |
+
),
|
179 |
+
(
|
180 |
+
# preserve non-nano, i.e. don't cast to NumpyExtensionArray
|
181 |
+
TimedeltaArray._simple_new(
|
182 |
+
np.arange(5, dtype=np.int64).view("m8[s]"), dtype=np.dtype("m8[s]")
|
183 |
+
),
|
184 |
+
np.dtype("m8[s]"),
|
185 |
+
TimedeltaArray._simple_new(
|
186 |
+
np.arange(5, dtype=np.int64).view("m8[s]"), dtype=np.dtype("m8[s]")
|
187 |
+
),
|
188 |
+
),
|
189 |
+
# Category
|
190 |
+
(["a", "b"], "category", pd.Categorical(["a", "b"])),
|
191 |
+
(
|
192 |
+
["a", "b"],
|
193 |
+
pd.CategoricalDtype(None, ordered=True),
|
194 |
+
pd.Categorical(["a", "b"], ordered=True),
|
195 |
+
),
|
196 |
+
# Interval
|
197 |
+
(
|
198 |
+
[pd.Interval(1, 2), pd.Interval(3, 4)],
|
199 |
+
"interval",
|
200 |
+
IntervalArray.from_tuples([(1, 2), (3, 4)]),
|
201 |
+
),
|
202 |
+
# Sparse
|
203 |
+
([0, 1], "Sparse[int64]", SparseArray([0, 1], dtype="int64")),
|
204 |
+
# IntegerNA
|
205 |
+
([1, None], "Int16", pd.array([1, None], dtype="Int16")),
|
206 |
+
(
|
207 |
+
pd.Series([1, 2]),
|
208 |
+
None,
|
209 |
+
NumpyExtensionArray(np.array([1, 2], dtype=np.int64)),
|
210 |
+
),
|
211 |
+
# String
|
212 |
+
(
|
213 |
+
["a", None],
|
214 |
+
"string",
|
215 |
+
pd.StringDtype()
|
216 |
+
.construct_array_type()
|
217 |
+
._from_sequence(["a", None], dtype=pd.StringDtype()),
|
218 |
+
),
|
219 |
+
(
|
220 |
+
["a", None],
|
221 |
+
pd.StringDtype(),
|
222 |
+
pd.StringDtype()
|
223 |
+
.construct_array_type()
|
224 |
+
._from_sequence(["a", None], dtype=pd.StringDtype()),
|
225 |
+
),
|
226 |
+
# Boolean
|
227 |
+
(
|
228 |
+
[True, None],
|
229 |
+
"boolean",
|
230 |
+
BooleanArray._from_sequence([True, None], dtype="boolean"),
|
231 |
+
),
|
232 |
+
(
|
233 |
+
[True, None],
|
234 |
+
pd.BooleanDtype(),
|
235 |
+
BooleanArray._from_sequence([True, None], dtype="boolean"),
|
236 |
+
),
|
237 |
+
# Index
|
238 |
+
(pd.Index([1, 2]), None, NumpyExtensionArray(np.array([1, 2], dtype=np.int64))),
|
239 |
+
# Series[EA] returns the EA
|
240 |
+
(
|
241 |
+
pd.Series(pd.Categorical(["a", "b"], categories=["a", "b", "c"])),
|
242 |
+
None,
|
243 |
+
pd.Categorical(["a", "b"], categories=["a", "b", "c"]),
|
244 |
+
),
|
245 |
+
# "3rd party" EAs work
|
246 |
+
([decimal.Decimal(0), decimal.Decimal(1)], "decimal", to_decimal([0, 1])),
|
247 |
+
# pass an ExtensionArray, but a different dtype
|
248 |
+
(
|
249 |
+
period_array(["2000", "2001"], freq="D"),
|
250 |
+
"category",
|
251 |
+
pd.Categorical([pd.Period("2000", "D"), pd.Period("2001", "D")]),
|
252 |
+
),
|
253 |
+
],
|
254 |
+
)
|
255 |
+
def test_array(data, dtype, expected):
|
256 |
+
result = pd.array(data, dtype=dtype)
|
257 |
+
tm.assert_equal(result, expected)
|
258 |
+
|
259 |
+
|
260 |
+
def test_array_copy():
|
261 |
+
a = np.array([1, 2])
|
262 |
+
# default is to copy
|
263 |
+
b = pd.array(a, dtype=a.dtype)
|
264 |
+
assert not tm.shares_memory(a, b)
|
265 |
+
|
266 |
+
# copy=True
|
267 |
+
b = pd.array(a, dtype=a.dtype, copy=True)
|
268 |
+
assert not tm.shares_memory(a, b)
|
269 |
+
|
270 |
+
# copy=False
|
271 |
+
b = pd.array(a, dtype=a.dtype, copy=False)
|
272 |
+
assert tm.shares_memory(a, b)
|
273 |
+
|
274 |
+
|
275 |
+
cet = pytz.timezone("CET")
|
276 |
+
|
277 |
+
|
278 |
+
@pytest.mark.parametrize(
|
279 |
+
"data, expected",
|
280 |
+
[
|
281 |
+
# period
|
282 |
+
(
|
283 |
+
[pd.Period("2000", "D"), pd.Period("2001", "D")],
|
284 |
+
period_array(["2000", "2001"], freq="D"),
|
285 |
+
),
|
286 |
+
# interval
|
287 |
+
([pd.Interval(0, 1), pd.Interval(1, 2)], IntervalArray.from_breaks([0, 1, 2])),
|
288 |
+
# datetime
|
289 |
+
(
|
290 |
+
[pd.Timestamp("2000"), pd.Timestamp("2001")],
|
291 |
+
DatetimeArray._from_sequence(["2000", "2001"], dtype="M8[ns]"),
|
292 |
+
),
|
293 |
+
(
|
294 |
+
[datetime.datetime(2000, 1, 1), datetime.datetime(2001, 1, 1)],
|
295 |
+
DatetimeArray._from_sequence(["2000", "2001"], dtype="M8[ns]"),
|
296 |
+
),
|
297 |
+
(
|
298 |
+
np.array([1, 2], dtype="M8[ns]"),
|
299 |
+
DatetimeArray._from_sequence(np.array([1, 2], dtype="M8[ns]")),
|
300 |
+
),
|
301 |
+
(
|
302 |
+
np.array([1, 2], dtype="M8[us]"),
|
303 |
+
DatetimeArray._simple_new(
|
304 |
+
np.array([1, 2], dtype="M8[us]"), dtype=np.dtype("M8[us]")
|
305 |
+
),
|
306 |
+
),
|
307 |
+
# datetimetz
|
308 |
+
(
|
309 |
+
[pd.Timestamp("2000", tz="CET"), pd.Timestamp("2001", tz="CET")],
|
310 |
+
DatetimeArray._from_sequence(
|
311 |
+
["2000", "2001"], dtype=pd.DatetimeTZDtype(tz="CET", unit="ns")
|
312 |
+
),
|
313 |
+
),
|
314 |
+
(
|
315 |
+
[
|
316 |
+
datetime.datetime(2000, 1, 1, tzinfo=cet),
|
317 |
+
datetime.datetime(2001, 1, 1, tzinfo=cet),
|
318 |
+
],
|
319 |
+
DatetimeArray._from_sequence(
|
320 |
+
["2000", "2001"], dtype=pd.DatetimeTZDtype(tz=cet, unit="ns")
|
321 |
+
),
|
322 |
+
),
|
323 |
+
# timedelta
|
324 |
+
(
|
325 |
+
[pd.Timedelta("1h"), pd.Timedelta("2h")],
|
326 |
+
TimedeltaArray._from_sequence(["1h", "2h"], dtype="m8[ns]"),
|
327 |
+
),
|
328 |
+
(
|
329 |
+
np.array([1, 2], dtype="m8[ns]"),
|
330 |
+
TimedeltaArray._from_sequence(np.array([1, 2], dtype="m8[ns]")),
|
331 |
+
),
|
332 |
+
(
|
333 |
+
np.array([1, 2], dtype="m8[us]"),
|
334 |
+
TimedeltaArray._from_sequence(np.array([1, 2], dtype="m8[us]")),
|
335 |
+
),
|
336 |
+
# integer
|
337 |
+
([1, 2], IntegerArray._from_sequence([1, 2], dtype="Int64")),
|
338 |
+
([1, None], IntegerArray._from_sequence([1, None], dtype="Int64")),
|
339 |
+
([1, pd.NA], IntegerArray._from_sequence([1, pd.NA], dtype="Int64")),
|
340 |
+
([1, np.nan], IntegerArray._from_sequence([1, np.nan], dtype="Int64")),
|
341 |
+
# float
|
342 |
+
([0.1, 0.2], FloatingArray._from_sequence([0.1, 0.2], dtype="Float64")),
|
343 |
+
([0.1, None], FloatingArray._from_sequence([0.1, pd.NA], dtype="Float64")),
|
344 |
+
([0.1, np.nan], FloatingArray._from_sequence([0.1, pd.NA], dtype="Float64")),
|
345 |
+
([0.1, pd.NA], FloatingArray._from_sequence([0.1, pd.NA], dtype="Float64")),
|
346 |
+
# integer-like float
|
347 |
+
([1.0, 2.0], FloatingArray._from_sequence([1.0, 2.0], dtype="Float64")),
|
348 |
+
([1.0, None], FloatingArray._from_sequence([1.0, pd.NA], dtype="Float64")),
|
349 |
+
([1.0, np.nan], FloatingArray._from_sequence([1.0, pd.NA], dtype="Float64")),
|
350 |
+
([1.0, pd.NA], FloatingArray._from_sequence([1.0, pd.NA], dtype="Float64")),
|
351 |
+
# mixed-integer-float
|
352 |
+
([1, 2.0], FloatingArray._from_sequence([1.0, 2.0], dtype="Float64")),
|
353 |
+
(
|
354 |
+
[1, np.nan, 2.0],
|
355 |
+
FloatingArray._from_sequence([1.0, None, 2.0], dtype="Float64"),
|
356 |
+
),
|
357 |
+
# string
|
358 |
+
(
|
359 |
+
["a", "b"],
|
360 |
+
pd.StringDtype()
|
361 |
+
.construct_array_type()
|
362 |
+
._from_sequence(["a", "b"], dtype=pd.StringDtype()),
|
363 |
+
),
|
364 |
+
(
|
365 |
+
["a", None],
|
366 |
+
pd.StringDtype()
|
367 |
+
.construct_array_type()
|
368 |
+
._from_sequence(["a", None], dtype=pd.StringDtype()),
|
369 |
+
),
|
370 |
+
# Boolean
|
371 |
+
([True, False], BooleanArray._from_sequence([True, False], dtype="boolean")),
|
372 |
+
([True, None], BooleanArray._from_sequence([True, None], dtype="boolean")),
|
373 |
+
],
|
374 |
+
)
|
375 |
+
def test_array_inference(data, expected):
|
376 |
+
result = pd.array(data)
|
377 |
+
tm.assert_equal(result, expected)
|
378 |
+
|
379 |
+
|
380 |
+
@pytest.mark.parametrize(
|
381 |
+
"data",
|
382 |
+
[
|
383 |
+
# mix of frequencies
|
384 |
+
[pd.Period("2000", "D"), pd.Period("2001", "Y")],
|
385 |
+
# mix of closed
|
386 |
+
[pd.Interval(0, 1, closed="left"), pd.Interval(1, 2, closed="right")],
|
387 |
+
# Mix of timezones
|
388 |
+
[pd.Timestamp("2000", tz="CET"), pd.Timestamp("2000", tz="UTC")],
|
389 |
+
# Mix of tz-aware and tz-naive
|
390 |
+
[pd.Timestamp("2000", tz="CET"), pd.Timestamp("2000")],
|
391 |
+
np.array([pd.Timestamp("2000"), pd.Timestamp("2000", tz="CET")]),
|
392 |
+
],
|
393 |
+
)
|
394 |
+
def test_array_inference_fails(data):
|
395 |
+
result = pd.array(data)
|
396 |
+
expected = NumpyExtensionArray(np.array(data, dtype=object))
|
397 |
+
tm.assert_extension_array_equal(result, expected)
|
398 |
+
|
399 |
+
|
400 |
+
@pytest.mark.parametrize("data", [np.array(0)])
|
401 |
+
def test_nd_raises(data):
|
402 |
+
with pytest.raises(ValueError, match="NumpyExtensionArray must be 1-dimensional"):
|
403 |
+
pd.array(data, dtype="int64")
|
404 |
+
|
405 |
+
|
406 |
+
def test_scalar_raises():
|
407 |
+
with pytest.raises(ValueError, match="Cannot pass scalar '1'"):
|
408 |
+
pd.array(1)
|
409 |
+
|
410 |
+
|
411 |
+
def test_dataframe_raises():
|
412 |
+
# GH#51167 don't accidentally cast to StringArray by doing inference on columns
|
413 |
+
df = pd.DataFrame([[1, 2], [3, 4]], columns=["A", "B"])
|
414 |
+
msg = "Cannot pass DataFrame to 'pandas.array'"
|
415 |
+
with pytest.raises(TypeError, match=msg):
|
416 |
+
pd.array(df)
|
417 |
+
|
418 |
+
|
419 |
+
def test_bounds_check():
|
420 |
+
# GH21796
|
421 |
+
with pytest.raises(
|
422 |
+
TypeError, match=r"cannot safely cast non-equivalent int(32|64) to uint16"
|
423 |
+
):
|
424 |
+
pd.array([-1, 2, 3], dtype="UInt16")
|
425 |
+
|
426 |
+
|
427 |
+
# ---------------------------------------------------------------------------
|
428 |
+
# A couple dummy classes to ensure that Series and Indexes are unboxed before
|
429 |
+
# getting to the EA classes.
|
430 |
+
|
431 |
+
|
432 |
+
@register_extension_dtype
|
433 |
+
class DecimalDtype2(DecimalDtype):
|
434 |
+
name = "decimal2"
|
435 |
+
|
436 |
+
@classmethod
|
437 |
+
def construct_array_type(cls):
|
438 |
+
"""
|
439 |
+
Return the array type associated with this dtype.
|
440 |
+
|
441 |
+
Returns
|
442 |
+
-------
|
443 |
+
type
|
444 |
+
"""
|
445 |
+
return DecimalArray2
|
446 |
+
|
447 |
+
|
448 |
+
class DecimalArray2(DecimalArray):
|
449 |
+
@classmethod
|
450 |
+
def _from_sequence(cls, scalars, *, dtype=None, copy=False):
|
451 |
+
if isinstance(scalars, (pd.Series, pd.Index)):
|
452 |
+
raise TypeError("scalars should not be of type pd.Series or pd.Index")
|
453 |
+
|
454 |
+
return super()._from_sequence(scalars, dtype=dtype, copy=copy)
|
455 |
+
|
456 |
+
|
457 |
+
def test_array_unboxes(index_or_series):
|
458 |
+
box = index_or_series
|
459 |
+
|
460 |
+
data = box([decimal.Decimal("1"), decimal.Decimal("2")])
|
461 |
+
dtype = DecimalDtype2()
|
462 |
+
# make sure it works
|
463 |
+
with pytest.raises(
|
464 |
+
TypeError, match="scalars should not be of type pd.Series or pd.Index"
|
465 |
+
):
|
466 |
+
DecimalArray2._from_sequence(data, dtype=dtype)
|
467 |
+
|
468 |
+
result = pd.array(data, dtype="decimal2")
|
469 |
+
expected = DecimalArray2._from_sequence(data.values, dtype=dtype)
|
470 |
+
tm.assert_equal(result, expected)
|
471 |
+
|
472 |
+
|
473 |
+
def test_array_to_numpy_na():
|
474 |
+
# GH#40638
|
475 |
+
arr = pd.array([pd.NA, 1], dtype="string[python]")
|
476 |
+
result = arr.to_numpy(na_value=True, dtype=bool)
|
477 |
+
expected = np.array([True, True])
|
478 |
+
tm.assert_numpy_array_equal(result, expected)
|
venv/lib/python3.10/site-packages/pandas/tests/arrays/test_datetimelike.py
ADDED
@@ -0,0 +1,1340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import re
|
4 |
+
import warnings
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import pytest
|
8 |
+
|
9 |
+
from pandas._libs import (
|
10 |
+
NaT,
|
11 |
+
OutOfBoundsDatetime,
|
12 |
+
Timestamp,
|
13 |
+
)
|
14 |
+
from pandas._libs.tslibs.dtypes import freq_to_period_freqstr
|
15 |
+
from pandas.compat.numpy import np_version_gt2
|
16 |
+
|
17 |
+
import pandas as pd
|
18 |
+
from pandas import (
|
19 |
+
DatetimeIndex,
|
20 |
+
Period,
|
21 |
+
PeriodIndex,
|
22 |
+
TimedeltaIndex,
|
23 |
+
)
|
24 |
+
import pandas._testing as tm
|
25 |
+
from pandas.core.arrays import (
|
26 |
+
DatetimeArray,
|
27 |
+
NumpyExtensionArray,
|
28 |
+
PeriodArray,
|
29 |
+
TimedeltaArray,
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
# TODO: more freq variants
|
34 |
+
@pytest.fixture(params=["D", "B", "W", "ME", "QE", "YE"])
|
35 |
+
def freqstr(request):
|
36 |
+
"""Fixture returning parametrized frequency in string format."""
|
37 |
+
return request.param
|
38 |
+
|
39 |
+
|
40 |
+
@pytest.fixture
|
41 |
+
def period_index(freqstr):
|
42 |
+
"""
|
43 |
+
A fixture to provide PeriodIndex objects with different frequencies.
|
44 |
+
|
45 |
+
Most PeriodArray behavior is already tested in PeriodIndex tests,
|
46 |
+
so here we just test that the PeriodArray behavior matches
|
47 |
+
the PeriodIndex behavior.
|
48 |
+
"""
|
49 |
+
# TODO: non-monotone indexes; NaTs, different start dates
|
50 |
+
with warnings.catch_warnings():
|
51 |
+
# suppress deprecation of Period[B]
|
52 |
+
warnings.filterwarnings(
|
53 |
+
"ignore", message="Period with BDay freq", category=FutureWarning
|
54 |
+
)
|
55 |
+
freqstr = freq_to_period_freqstr(1, freqstr)
|
56 |
+
pi = pd.period_range(start=Timestamp("2000-01-01"), periods=100, freq=freqstr)
|
57 |
+
return pi
|
58 |
+
|
59 |
+
|
60 |
+
@pytest.fixture
|
61 |
+
def datetime_index(freqstr):
|
62 |
+
"""
|
63 |
+
A fixture to provide DatetimeIndex objects with different frequencies.
|
64 |
+
|
65 |
+
Most DatetimeArray behavior is already tested in DatetimeIndex tests,
|
66 |
+
so here we just test that the DatetimeArray behavior matches
|
67 |
+
the DatetimeIndex behavior.
|
68 |
+
"""
|
69 |
+
# TODO: non-monotone indexes; NaTs, different start dates, timezones
|
70 |
+
dti = pd.date_range(start=Timestamp("2000-01-01"), periods=100, freq=freqstr)
|
71 |
+
return dti
|
72 |
+
|
73 |
+
|
74 |
+
@pytest.fixture
|
75 |
+
def timedelta_index():
|
76 |
+
"""
|
77 |
+
A fixture to provide TimedeltaIndex objects with different frequencies.
|
78 |
+
Most TimedeltaArray behavior is already tested in TimedeltaIndex tests,
|
79 |
+
so here we just test that the TimedeltaArray behavior matches
|
80 |
+
the TimedeltaIndex behavior.
|
81 |
+
"""
|
82 |
+
# TODO: flesh this out
|
83 |
+
return TimedeltaIndex(["1 Day", "3 Hours", "NaT"])
|
84 |
+
|
85 |
+
|
86 |
+
class SharedTests:
|
87 |
+
index_cls: type[DatetimeIndex | PeriodIndex | TimedeltaIndex]
|
88 |
+
|
89 |
+
@pytest.fixture
|
90 |
+
def arr1d(self):
|
91 |
+
"""Fixture returning DatetimeArray with daily frequency."""
|
92 |
+
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
|
93 |
+
if self.array_cls is PeriodArray:
|
94 |
+
arr = self.array_cls(data, freq="D")
|
95 |
+
else:
|
96 |
+
arr = self.index_cls(data, freq="D")._data
|
97 |
+
return arr
|
98 |
+
|
99 |
+
def test_compare_len1_raises(self, arr1d):
|
100 |
+
# make sure we raise when comparing with different lengths, specific
|
101 |
+
# to the case where one has length-1, which numpy would broadcast
|
102 |
+
arr = arr1d
|
103 |
+
idx = self.index_cls(arr)
|
104 |
+
|
105 |
+
with pytest.raises(ValueError, match="Lengths must match"):
|
106 |
+
arr == arr[:1]
|
107 |
+
|
108 |
+
# test the index classes while we're at it, GH#23078
|
109 |
+
with pytest.raises(ValueError, match="Lengths must match"):
|
110 |
+
idx <= idx[[0]]
|
111 |
+
|
112 |
+
@pytest.mark.parametrize(
|
113 |
+
"result",
|
114 |
+
[
|
115 |
+
pd.date_range("2020", periods=3),
|
116 |
+
pd.date_range("2020", periods=3, tz="UTC"),
|
117 |
+
pd.timedelta_range("0 days", periods=3),
|
118 |
+
pd.period_range("2020Q1", periods=3, freq="Q"),
|
119 |
+
],
|
120 |
+
)
|
121 |
+
def test_compare_with_Categorical(self, result):
|
122 |
+
expected = pd.Categorical(result)
|
123 |
+
assert all(result == expected)
|
124 |
+
assert not any(result != expected)
|
125 |
+
|
126 |
+
@pytest.mark.parametrize("reverse", [True, False])
|
127 |
+
@pytest.mark.parametrize("as_index", [True, False])
|
128 |
+
def test_compare_categorical_dtype(self, arr1d, as_index, reverse, ordered):
|
129 |
+
other = pd.Categorical(arr1d, ordered=ordered)
|
130 |
+
if as_index:
|
131 |
+
other = pd.CategoricalIndex(other)
|
132 |
+
|
133 |
+
left, right = arr1d, other
|
134 |
+
if reverse:
|
135 |
+
left, right = right, left
|
136 |
+
|
137 |
+
ones = np.ones(arr1d.shape, dtype=bool)
|
138 |
+
zeros = ~ones
|
139 |
+
|
140 |
+
result = left == right
|
141 |
+
tm.assert_numpy_array_equal(result, ones)
|
142 |
+
|
143 |
+
result = left != right
|
144 |
+
tm.assert_numpy_array_equal(result, zeros)
|
145 |
+
|
146 |
+
if not reverse and not as_index:
|
147 |
+
# Otherwise Categorical raises TypeError bc it is not ordered
|
148 |
+
# TODO: we should probably get the same behavior regardless?
|
149 |
+
result = left < right
|
150 |
+
tm.assert_numpy_array_equal(result, zeros)
|
151 |
+
|
152 |
+
result = left <= right
|
153 |
+
tm.assert_numpy_array_equal(result, ones)
|
154 |
+
|
155 |
+
result = left > right
|
156 |
+
tm.assert_numpy_array_equal(result, zeros)
|
157 |
+
|
158 |
+
result = left >= right
|
159 |
+
tm.assert_numpy_array_equal(result, ones)
|
160 |
+
|
161 |
+
def test_take(self):
|
162 |
+
data = np.arange(100, dtype="i8") * 24 * 3600 * 10**9
|
163 |
+
np.random.default_rng(2).shuffle(data)
|
164 |
+
|
165 |
+
if self.array_cls is PeriodArray:
|
166 |
+
arr = PeriodArray(data, dtype="period[D]")
|
167 |
+
else:
|
168 |
+
arr = self.index_cls(data)._data
|
169 |
+
idx = self.index_cls._simple_new(arr)
|
170 |
+
|
171 |
+
takers = [1, 4, 94]
|
172 |
+
result = arr.take(takers)
|
173 |
+
expected = idx.take(takers)
|
174 |
+
|
175 |
+
tm.assert_index_equal(self.index_cls(result), expected)
|
176 |
+
|
177 |
+
takers = np.array([1, 4, 94])
|
178 |
+
result = arr.take(takers)
|
179 |
+
expected = idx.take(takers)
|
180 |
+
|
181 |
+
tm.assert_index_equal(self.index_cls(result), expected)
|
182 |
+
|
183 |
+
@pytest.mark.parametrize("fill_value", [2, 2.0, Timestamp(2021, 1, 1, 12).time])
|
184 |
+
def test_take_fill_raises(self, fill_value, arr1d):
|
185 |
+
msg = f"value should be a '{arr1d._scalar_type.__name__}' or 'NaT'. Got"
|
186 |
+
with pytest.raises(TypeError, match=msg):
|
187 |
+
arr1d.take([0, 1], allow_fill=True, fill_value=fill_value)
|
188 |
+
|
189 |
+
def test_take_fill(self, arr1d):
|
190 |
+
arr = arr1d
|
191 |
+
|
192 |
+
result = arr.take([-1, 1], allow_fill=True, fill_value=None)
|
193 |
+
assert result[0] is NaT
|
194 |
+
|
195 |
+
result = arr.take([-1, 1], allow_fill=True, fill_value=np.nan)
|
196 |
+
assert result[0] is NaT
|
197 |
+
|
198 |
+
result = arr.take([-1, 1], allow_fill=True, fill_value=NaT)
|
199 |
+
assert result[0] is NaT
|
200 |
+
|
201 |
+
@pytest.mark.filterwarnings(
|
202 |
+
"ignore:Period with BDay freq is deprecated:FutureWarning"
|
203 |
+
)
|
204 |
+
def test_take_fill_str(self, arr1d):
|
205 |
+
# Cast str fill_value matching other fill_value-taking methods
|
206 |
+
result = arr1d.take([-1, 1], allow_fill=True, fill_value=str(arr1d[-1]))
|
207 |
+
expected = arr1d[[-1, 1]]
|
208 |
+
tm.assert_equal(result, expected)
|
209 |
+
|
210 |
+
msg = f"value should be a '{arr1d._scalar_type.__name__}' or 'NaT'. Got"
|
211 |
+
with pytest.raises(TypeError, match=msg):
|
212 |
+
arr1d.take([-1, 1], allow_fill=True, fill_value="foo")
|
213 |
+
|
214 |
+
def test_concat_same_type(self, arr1d):
|
215 |
+
arr = arr1d
|
216 |
+
idx = self.index_cls(arr)
|
217 |
+
idx = idx.insert(0, NaT)
|
218 |
+
arr = arr1d
|
219 |
+
|
220 |
+
result = arr._concat_same_type([arr[:-1], arr[1:], arr])
|
221 |
+
arr2 = arr.astype(object)
|
222 |
+
expected = self.index_cls(np.concatenate([arr2[:-1], arr2[1:], arr2]))
|
223 |
+
|
224 |
+
tm.assert_index_equal(self.index_cls(result), expected)
|
225 |
+
|
226 |
+
def test_unbox_scalar(self, arr1d):
|
227 |
+
result = arr1d._unbox_scalar(arr1d[0])
|
228 |
+
expected = arr1d._ndarray.dtype.type
|
229 |
+
assert isinstance(result, expected)
|
230 |
+
|
231 |
+
result = arr1d._unbox_scalar(NaT)
|
232 |
+
assert isinstance(result, expected)
|
233 |
+
|
234 |
+
msg = f"'value' should be a {self.scalar_type.__name__}."
|
235 |
+
with pytest.raises(ValueError, match=msg):
|
236 |
+
arr1d._unbox_scalar("foo")
|
237 |
+
|
238 |
+
def test_check_compatible_with(self, arr1d):
|
239 |
+
arr1d._check_compatible_with(arr1d[0])
|
240 |
+
arr1d._check_compatible_with(arr1d[:1])
|
241 |
+
arr1d._check_compatible_with(NaT)
|
242 |
+
|
243 |
+
def test_scalar_from_string(self, arr1d):
|
244 |
+
result = arr1d._scalar_from_string(str(arr1d[0]))
|
245 |
+
assert result == arr1d[0]
|
246 |
+
|
247 |
+
def test_reduce_invalid(self, arr1d):
|
248 |
+
msg = "does not support reduction 'not a method'"
|
249 |
+
with pytest.raises(TypeError, match=msg):
|
250 |
+
arr1d._reduce("not a method")
|
251 |
+
|
252 |
+
@pytest.mark.parametrize("method", ["pad", "backfill"])
|
253 |
+
def test_fillna_method_doesnt_change_orig(self, method):
|
254 |
+
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
|
255 |
+
if self.array_cls is PeriodArray:
|
256 |
+
arr = self.array_cls(data, dtype="period[D]")
|
257 |
+
else:
|
258 |
+
arr = self.array_cls._from_sequence(data)
|
259 |
+
arr[4] = NaT
|
260 |
+
|
261 |
+
fill_value = arr[3] if method == "pad" else arr[5]
|
262 |
+
|
263 |
+
result = arr._pad_or_backfill(method=method)
|
264 |
+
assert result[4] == fill_value
|
265 |
+
|
266 |
+
# check that the original was not changed
|
267 |
+
assert arr[4] is NaT
|
268 |
+
|
269 |
+
def test_searchsorted(self):
|
270 |
+
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
|
271 |
+
if self.array_cls is PeriodArray:
|
272 |
+
arr = self.array_cls(data, dtype="period[D]")
|
273 |
+
else:
|
274 |
+
arr = self.array_cls._from_sequence(data)
|
275 |
+
|
276 |
+
# scalar
|
277 |
+
result = arr.searchsorted(arr[1])
|
278 |
+
assert result == 1
|
279 |
+
|
280 |
+
result = arr.searchsorted(arr[2], side="right")
|
281 |
+
assert result == 3
|
282 |
+
|
283 |
+
# own-type
|
284 |
+
result = arr.searchsorted(arr[1:3])
|
285 |
+
expected = np.array([1, 2], dtype=np.intp)
|
286 |
+
tm.assert_numpy_array_equal(result, expected)
|
287 |
+
|
288 |
+
result = arr.searchsorted(arr[1:3], side="right")
|
289 |
+
expected = np.array([2, 3], dtype=np.intp)
|
290 |
+
tm.assert_numpy_array_equal(result, expected)
|
291 |
+
|
292 |
+
# GH#29884 match numpy convention on whether NaT goes
|
293 |
+
# at the end or the beginning
|
294 |
+
result = arr.searchsorted(NaT)
|
295 |
+
assert result == 10
|
296 |
+
|
297 |
+
@pytest.mark.parametrize("box", [None, "index", "series"])
|
298 |
+
def test_searchsorted_castable_strings(self, arr1d, box, string_storage):
|
299 |
+
arr = arr1d
|
300 |
+
if box is None:
|
301 |
+
pass
|
302 |
+
elif box == "index":
|
303 |
+
# Test the equivalent Index.searchsorted method while we're here
|
304 |
+
arr = self.index_cls(arr)
|
305 |
+
else:
|
306 |
+
# Test the equivalent Series.searchsorted method while we're here
|
307 |
+
arr = pd.Series(arr)
|
308 |
+
|
309 |
+
# scalar
|
310 |
+
result = arr.searchsorted(str(arr[1]))
|
311 |
+
assert result == 1
|
312 |
+
|
313 |
+
result = arr.searchsorted(str(arr[2]), side="right")
|
314 |
+
assert result == 3
|
315 |
+
|
316 |
+
result = arr.searchsorted([str(x) for x in arr[1:3]])
|
317 |
+
expected = np.array([1, 2], dtype=np.intp)
|
318 |
+
tm.assert_numpy_array_equal(result, expected)
|
319 |
+
|
320 |
+
with pytest.raises(
|
321 |
+
TypeError,
|
322 |
+
match=re.escape(
|
323 |
+
f"value should be a '{arr1d._scalar_type.__name__}', 'NaT', "
|
324 |
+
"or array of those. Got 'str' instead."
|
325 |
+
),
|
326 |
+
):
|
327 |
+
arr.searchsorted("foo")
|
328 |
+
|
329 |
+
with pd.option_context("string_storage", string_storage):
|
330 |
+
with pytest.raises(
|
331 |
+
TypeError,
|
332 |
+
match=re.escape(
|
333 |
+
f"value should be a '{arr1d._scalar_type.__name__}', 'NaT', "
|
334 |
+
"or array of those. Got string array instead."
|
335 |
+
),
|
336 |
+
):
|
337 |
+
arr.searchsorted([str(arr[1]), "baz"])
|
338 |
+
|
339 |
+
def test_getitem_near_implementation_bounds(self):
|
340 |
+
# We only check tz-naive for DTA bc the bounds are slightly different
|
341 |
+
# for other tzs
|
342 |
+
i8vals = np.asarray([NaT._value + n for n in range(1, 5)], dtype="i8")
|
343 |
+
if self.array_cls is PeriodArray:
|
344 |
+
arr = self.array_cls(i8vals, dtype="period[ns]")
|
345 |
+
else:
|
346 |
+
arr = self.index_cls(i8vals, freq="ns")._data
|
347 |
+
arr[0] # should not raise OutOfBoundsDatetime
|
348 |
+
|
349 |
+
index = pd.Index(arr)
|
350 |
+
index[0] # should not raise OutOfBoundsDatetime
|
351 |
+
|
352 |
+
ser = pd.Series(arr)
|
353 |
+
ser[0] # should not raise OutOfBoundsDatetime
|
354 |
+
|
355 |
+
def test_getitem_2d(self, arr1d):
|
356 |
+
# 2d slicing on a 1D array
|
357 |
+
expected = type(arr1d)._simple_new(
|
358 |
+
arr1d._ndarray[:, np.newaxis], dtype=arr1d.dtype
|
359 |
+
)
|
360 |
+
result = arr1d[:, np.newaxis]
|
361 |
+
tm.assert_equal(result, expected)
|
362 |
+
|
363 |
+
# Lookup on a 2D array
|
364 |
+
arr2d = expected
|
365 |
+
expected = type(arr2d)._simple_new(arr2d._ndarray[:3, 0], dtype=arr2d.dtype)
|
366 |
+
result = arr2d[:3, 0]
|
367 |
+
tm.assert_equal(result, expected)
|
368 |
+
|
369 |
+
# Scalar lookup
|
370 |
+
result = arr2d[-1, 0]
|
371 |
+
expected = arr1d[-1]
|
372 |
+
assert result == expected
|
373 |
+
|
374 |
+
def test_iter_2d(self, arr1d):
|
375 |
+
data2d = arr1d._ndarray[:3, np.newaxis]
|
376 |
+
arr2d = type(arr1d)._simple_new(data2d, dtype=arr1d.dtype)
|
377 |
+
result = list(arr2d)
|
378 |
+
assert len(result) == 3
|
379 |
+
for x in result:
|
380 |
+
assert isinstance(x, type(arr1d))
|
381 |
+
assert x.ndim == 1
|
382 |
+
assert x.dtype == arr1d.dtype
|
383 |
+
|
384 |
+
def test_repr_2d(self, arr1d):
|
385 |
+
data2d = arr1d._ndarray[:3, np.newaxis]
|
386 |
+
arr2d = type(arr1d)._simple_new(data2d, dtype=arr1d.dtype)
|
387 |
+
|
388 |
+
result = repr(arr2d)
|
389 |
+
|
390 |
+
if isinstance(arr2d, TimedeltaArray):
|
391 |
+
expected = (
|
392 |
+
f"<{type(arr2d).__name__}>\n"
|
393 |
+
"[\n"
|
394 |
+
f"['{arr1d[0]._repr_base()}'],\n"
|
395 |
+
f"['{arr1d[1]._repr_base()}'],\n"
|
396 |
+
f"['{arr1d[2]._repr_base()}']\n"
|
397 |
+
"]\n"
|
398 |
+
f"Shape: (3, 1), dtype: {arr1d.dtype}"
|
399 |
+
)
|
400 |
+
else:
|
401 |
+
expected = (
|
402 |
+
f"<{type(arr2d).__name__}>\n"
|
403 |
+
"[\n"
|
404 |
+
f"['{arr1d[0]}'],\n"
|
405 |
+
f"['{arr1d[1]}'],\n"
|
406 |
+
f"['{arr1d[2]}']\n"
|
407 |
+
"]\n"
|
408 |
+
f"Shape: (3, 1), dtype: {arr1d.dtype}"
|
409 |
+
)
|
410 |
+
|
411 |
+
assert result == expected
|
412 |
+
|
413 |
+
def test_setitem(self):
|
414 |
+
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
|
415 |
+
if self.array_cls is PeriodArray:
|
416 |
+
arr = self.array_cls(data, dtype="period[D]")
|
417 |
+
else:
|
418 |
+
arr = self.index_cls(data, freq="D")._data
|
419 |
+
|
420 |
+
arr[0] = arr[1]
|
421 |
+
expected = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
|
422 |
+
expected[0] = expected[1]
|
423 |
+
|
424 |
+
tm.assert_numpy_array_equal(arr.asi8, expected)
|
425 |
+
|
426 |
+
arr[:2] = arr[-2:]
|
427 |
+
expected[:2] = expected[-2:]
|
428 |
+
tm.assert_numpy_array_equal(arr.asi8, expected)
|
429 |
+
|
430 |
+
@pytest.mark.parametrize(
|
431 |
+
"box",
|
432 |
+
[
|
433 |
+
pd.Index,
|
434 |
+
pd.Series,
|
435 |
+
np.array,
|
436 |
+
list,
|
437 |
+
NumpyExtensionArray,
|
438 |
+
],
|
439 |
+
)
|
440 |
+
def test_setitem_object_dtype(self, box, arr1d):
|
441 |
+
expected = arr1d.copy()[::-1]
|
442 |
+
if expected.dtype.kind in ["m", "M"]:
|
443 |
+
expected = expected._with_freq(None)
|
444 |
+
|
445 |
+
vals = expected
|
446 |
+
if box is list:
|
447 |
+
vals = list(vals)
|
448 |
+
elif box is np.array:
|
449 |
+
# if we do np.array(x).astype(object) then dt64 and td64 cast to ints
|
450 |
+
vals = np.array(vals.astype(object))
|
451 |
+
elif box is NumpyExtensionArray:
|
452 |
+
vals = box(np.asarray(vals, dtype=object))
|
453 |
+
else:
|
454 |
+
vals = box(vals).astype(object)
|
455 |
+
|
456 |
+
arr1d[:] = vals
|
457 |
+
|
458 |
+
tm.assert_equal(arr1d, expected)
|
459 |
+
|
460 |
+
def test_setitem_strs(self, arr1d):
|
461 |
+
# Check that we parse strs in both scalar and listlike
|
462 |
+
|
463 |
+
# Setting list-like of strs
|
464 |
+
expected = arr1d.copy()
|
465 |
+
expected[[0, 1]] = arr1d[-2:]
|
466 |
+
|
467 |
+
result = arr1d.copy()
|
468 |
+
result[:2] = [str(x) for x in arr1d[-2:]]
|
469 |
+
tm.assert_equal(result, expected)
|
470 |
+
|
471 |
+
# Same thing but now for just a scalar str
|
472 |
+
expected = arr1d.copy()
|
473 |
+
expected[0] = arr1d[-1]
|
474 |
+
|
475 |
+
result = arr1d.copy()
|
476 |
+
result[0] = str(arr1d[-1])
|
477 |
+
tm.assert_equal(result, expected)
|
478 |
+
|
479 |
+
@pytest.mark.parametrize("as_index", [True, False])
|
480 |
+
def test_setitem_categorical(self, arr1d, as_index):
|
481 |
+
expected = arr1d.copy()[::-1]
|
482 |
+
if not isinstance(expected, PeriodArray):
|
483 |
+
expected = expected._with_freq(None)
|
484 |
+
|
485 |
+
cat = pd.Categorical(arr1d)
|
486 |
+
if as_index:
|
487 |
+
cat = pd.CategoricalIndex(cat)
|
488 |
+
|
489 |
+
arr1d[:] = cat[::-1]
|
490 |
+
|
491 |
+
tm.assert_equal(arr1d, expected)
|
492 |
+
|
493 |
+
def test_setitem_raises(self, arr1d):
|
494 |
+
arr = arr1d[:10]
|
495 |
+
val = arr[0]
|
496 |
+
|
497 |
+
with pytest.raises(IndexError, match="index 12 is out of bounds"):
|
498 |
+
arr[12] = val
|
499 |
+
|
500 |
+
with pytest.raises(TypeError, match="value should be a.* 'object'"):
|
501 |
+
arr[0] = object()
|
502 |
+
|
503 |
+
msg = "cannot set using a list-like indexer with a different length"
|
504 |
+
with pytest.raises(ValueError, match=msg):
|
505 |
+
# GH#36339
|
506 |
+
arr[[]] = [arr[1]]
|
507 |
+
|
508 |
+
msg = "cannot set using a slice indexer with a different length than"
|
509 |
+
with pytest.raises(ValueError, match=msg):
|
510 |
+
# GH#36339
|
511 |
+
arr[1:1] = arr[:3]
|
512 |
+
|
513 |
+
@pytest.mark.parametrize("box", [list, np.array, pd.Index, pd.Series])
|
514 |
+
def test_setitem_numeric_raises(self, arr1d, box):
|
515 |
+
# We dont case e.g. int64 to our own dtype for setitem
|
516 |
+
|
517 |
+
msg = (
|
518 |
+
f"value should be a '{arr1d._scalar_type.__name__}', "
|
519 |
+
"'NaT', or array of those. Got"
|
520 |
+
)
|
521 |
+
with pytest.raises(TypeError, match=msg):
|
522 |
+
arr1d[:2] = box([0, 1])
|
523 |
+
|
524 |
+
with pytest.raises(TypeError, match=msg):
|
525 |
+
arr1d[:2] = box([0.0, 1.0])
|
526 |
+
|
527 |
+
def test_inplace_arithmetic(self):
|
528 |
+
# GH#24115 check that iadd and isub are actually in-place
|
529 |
+
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
|
530 |
+
if self.array_cls is PeriodArray:
|
531 |
+
arr = self.array_cls(data, dtype="period[D]")
|
532 |
+
else:
|
533 |
+
arr = self.index_cls(data, freq="D")._data
|
534 |
+
|
535 |
+
expected = arr + pd.Timedelta(days=1)
|
536 |
+
arr += pd.Timedelta(days=1)
|
537 |
+
tm.assert_equal(arr, expected)
|
538 |
+
|
539 |
+
expected = arr - pd.Timedelta(days=1)
|
540 |
+
arr -= pd.Timedelta(days=1)
|
541 |
+
tm.assert_equal(arr, expected)
|
542 |
+
|
543 |
+
def test_shift_fill_int_deprecated(self, arr1d):
|
544 |
+
# GH#31971, enforced in 2.0
|
545 |
+
with pytest.raises(TypeError, match="value should be a"):
|
546 |
+
arr1d.shift(1, fill_value=1)
|
547 |
+
|
548 |
+
def test_median(self, arr1d):
|
549 |
+
arr = arr1d
|
550 |
+
if len(arr) % 2 == 0:
|
551 |
+
# make it easier to define `expected`
|
552 |
+
arr = arr[:-1]
|
553 |
+
|
554 |
+
expected = arr[len(arr) // 2]
|
555 |
+
|
556 |
+
result = arr.median()
|
557 |
+
assert type(result) is type(expected)
|
558 |
+
assert result == expected
|
559 |
+
|
560 |
+
arr[len(arr) // 2] = NaT
|
561 |
+
if not isinstance(expected, Period):
|
562 |
+
expected = arr[len(arr) // 2 - 1 : len(arr) // 2 + 2].mean()
|
563 |
+
|
564 |
+
assert arr.median(skipna=False) is NaT
|
565 |
+
|
566 |
+
result = arr.median()
|
567 |
+
assert type(result) is type(expected)
|
568 |
+
assert result == expected
|
569 |
+
|
570 |
+
assert arr[:0].median() is NaT
|
571 |
+
assert arr[:0].median(skipna=False) is NaT
|
572 |
+
|
573 |
+
# 2d Case
|
574 |
+
arr2 = arr.reshape(-1, 1)
|
575 |
+
|
576 |
+
result = arr2.median(axis=None)
|
577 |
+
assert type(result) is type(expected)
|
578 |
+
assert result == expected
|
579 |
+
|
580 |
+
assert arr2.median(axis=None, skipna=False) is NaT
|
581 |
+
|
582 |
+
result = arr2.median(axis=0)
|
583 |
+
expected2 = type(arr)._from_sequence([expected], dtype=arr.dtype)
|
584 |
+
tm.assert_equal(result, expected2)
|
585 |
+
|
586 |
+
result = arr2.median(axis=0, skipna=False)
|
587 |
+
expected2 = type(arr)._from_sequence([NaT], dtype=arr.dtype)
|
588 |
+
tm.assert_equal(result, expected2)
|
589 |
+
|
590 |
+
result = arr2.median(axis=1)
|
591 |
+
tm.assert_equal(result, arr)
|
592 |
+
|
593 |
+
result = arr2.median(axis=1, skipna=False)
|
594 |
+
tm.assert_equal(result, arr)
|
595 |
+
|
596 |
+
def test_from_integer_array(self):
|
597 |
+
arr = np.array([1, 2, 3], dtype=np.int64)
|
598 |
+
data = pd.array(arr, dtype="Int64")
|
599 |
+
if self.array_cls is PeriodArray:
|
600 |
+
expected = self.array_cls(arr, dtype=self.example_dtype)
|
601 |
+
result = self.array_cls(data, dtype=self.example_dtype)
|
602 |
+
else:
|
603 |
+
expected = self.array_cls._from_sequence(arr, dtype=self.example_dtype)
|
604 |
+
result = self.array_cls._from_sequence(data, dtype=self.example_dtype)
|
605 |
+
|
606 |
+
tm.assert_extension_array_equal(result, expected)
|
607 |
+
|
608 |
+
|
609 |
+
class TestDatetimeArray(SharedTests):
|
610 |
+
index_cls = DatetimeIndex
|
611 |
+
array_cls = DatetimeArray
|
612 |
+
scalar_type = Timestamp
|
613 |
+
example_dtype = "M8[ns]"
|
614 |
+
|
615 |
+
@pytest.fixture
|
616 |
+
def arr1d(self, tz_naive_fixture, freqstr):
|
617 |
+
"""
|
618 |
+
Fixture returning DatetimeArray with parametrized frequency and
|
619 |
+
timezones
|
620 |
+
"""
|
621 |
+
tz = tz_naive_fixture
|
622 |
+
dti = pd.date_range("2016-01-01 01:01:00", periods=5, freq=freqstr, tz=tz)
|
623 |
+
dta = dti._data
|
624 |
+
return dta
|
625 |
+
|
626 |
+
def test_round(self, arr1d):
|
627 |
+
# GH#24064
|
628 |
+
dti = self.index_cls(arr1d)
|
629 |
+
|
630 |
+
result = dti.round(freq="2min")
|
631 |
+
expected = dti - pd.Timedelta(minutes=1)
|
632 |
+
expected = expected._with_freq(None)
|
633 |
+
tm.assert_index_equal(result, expected)
|
634 |
+
|
635 |
+
dta = dti._data
|
636 |
+
result = dta.round(freq="2min")
|
637 |
+
expected = expected._data._with_freq(None)
|
638 |
+
tm.assert_datetime_array_equal(result, expected)
|
639 |
+
|
640 |
+
def test_array_interface(self, datetime_index):
|
641 |
+
arr = datetime_index._data
|
642 |
+
copy_false = None if np_version_gt2 else False
|
643 |
+
|
644 |
+
# default asarray gives the same underlying data (for tz naive)
|
645 |
+
result = np.asarray(arr)
|
646 |
+
expected = arr._ndarray
|
647 |
+
assert result is expected
|
648 |
+
tm.assert_numpy_array_equal(result, expected)
|
649 |
+
result = np.array(arr, copy=copy_false)
|
650 |
+
assert result is expected
|
651 |
+
tm.assert_numpy_array_equal(result, expected)
|
652 |
+
|
653 |
+
# specifying M8[ns] gives the same result as default
|
654 |
+
result = np.asarray(arr, dtype="datetime64[ns]")
|
655 |
+
expected = arr._ndarray
|
656 |
+
assert result is expected
|
657 |
+
tm.assert_numpy_array_equal(result, expected)
|
658 |
+
result = np.array(arr, dtype="datetime64[ns]", copy=copy_false)
|
659 |
+
assert result is expected
|
660 |
+
tm.assert_numpy_array_equal(result, expected)
|
661 |
+
result = np.array(arr, dtype="datetime64[ns]")
|
662 |
+
assert result is not expected
|
663 |
+
tm.assert_numpy_array_equal(result, expected)
|
664 |
+
|
665 |
+
# to object dtype
|
666 |
+
result = np.asarray(arr, dtype=object)
|
667 |
+
expected = np.array(list(arr), dtype=object)
|
668 |
+
tm.assert_numpy_array_equal(result, expected)
|
669 |
+
|
670 |
+
# to other dtype always copies
|
671 |
+
result = np.asarray(arr, dtype="int64")
|
672 |
+
assert result is not arr.asi8
|
673 |
+
assert not np.may_share_memory(arr, result)
|
674 |
+
expected = arr.asi8.copy()
|
675 |
+
tm.assert_numpy_array_equal(result, expected)
|
676 |
+
|
677 |
+
# other dtypes handled by numpy
|
678 |
+
for dtype in ["float64", str]:
|
679 |
+
result = np.asarray(arr, dtype=dtype)
|
680 |
+
expected = np.asarray(arr).astype(dtype)
|
681 |
+
tm.assert_numpy_array_equal(result, expected)
|
682 |
+
|
683 |
+
def test_array_object_dtype(self, arr1d):
|
684 |
+
# GH#23524
|
685 |
+
arr = arr1d
|
686 |
+
dti = self.index_cls(arr1d)
|
687 |
+
|
688 |
+
expected = np.array(list(dti))
|
689 |
+
|
690 |
+
result = np.array(arr, dtype=object)
|
691 |
+
tm.assert_numpy_array_equal(result, expected)
|
692 |
+
|
693 |
+
# also test the DatetimeIndex method while we're at it
|
694 |
+
result = np.array(dti, dtype=object)
|
695 |
+
tm.assert_numpy_array_equal(result, expected)
|
696 |
+
|
697 |
+
def test_array_tz(self, arr1d):
|
698 |
+
# GH#23524
|
699 |
+
arr = arr1d
|
700 |
+
dti = self.index_cls(arr1d)
|
701 |
+
copy_false = None if np_version_gt2 else False
|
702 |
+
|
703 |
+
expected = dti.asi8.view("M8[ns]")
|
704 |
+
result = np.array(arr, dtype="M8[ns]")
|
705 |
+
tm.assert_numpy_array_equal(result, expected)
|
706 |
+
|
707 |
+
result = np.array(arr, dtype="datetime64[ns]")
|
708 |
+
tm.assert_numpy_array_equal(result, expected)
|
709 |
+
|
710 |
+
# check that we are not making copies when setting copy=copy_false
|
711 |
+
result = np.array(arr, dtype="M8[ns]", copy=copy_false)
|
712 |
+
assert result.base is expected.base
|
713 |
+
assert result.base is not None
|
714 |
+
result = np.array(arr, dtype="datetime64[ns]", copy=copy_false)
|
715 |
+
assert result.base is expected.base
|
716 |
+
assert result.base is not None
|
717 |
+
|
718 |
+
def test_array_i8_dtype(self, arr1d):
|
719 |
+
arr = arr1d
|
720 |
+
dti = self.index_cls(arr1d)
|
721 |
+
copy_false = None if np_version_gt2 else False
|
722 |
+
|
723 |
+
expected = dti.asi8
|
724 |
+
result = np.array(arr, dtype="i8")
|
725 |
+
tm.assert_numpy_array_equal(result, expected)
|
726 |
+
|
727 |
+
result = np.array(arr, dtype=np.int64)
|
728 |
+
tm.assert_numpy_array_equal(result, expected)
|
729 |
+
|
730 |
+
# check that we are still making copies when setting copy=copy_false
|
731 |
+
result = np.array(arr, dtype="i8", copy=copy_false)
|
732 |
+
assert result.base is not expected.base
|
733 |
+
assert result.base is None
|
734 |
+
|
735 |
+
def test_from_array_keeps_base(self):
|
736 |
+
# Ensure that DatetimeArray._ndarray.base isn't lost.
|
737 |
+
arr = np.array(["2000-01-01", "2000-01-02"], dtype="M8[ns]")
|
738 |
+
dta = DatetimeArray._from_sequence(arr)
|
739 |
+
|
740 |
+
assert dta._ndarray is arr
|
741 |
+
dta = DatetimeArray._from_sequence(arr[:0])
|
742 |
+
assert dta._ndarray.base is arr
|
743 |
+
|
744 |
+
def test_from_dti(self, arr1d):
|
745 |
+
arr = arr1d
|
746 |
+
dti = self.index_cls(arr1d)
|
747 |
+
assert list(dti) == list(arr)
|
748 |
+
|
749 |
+
# Check that Index.__new__ knows what to do with DatetimeArray
|
750 |
+
dti2 = pd.Index(arr)
|
751 |
+
assert isinstance(dti2, DatetimeIndex)
|
752 |
+
assert list(dti2) == list(arr)
|
753 |
+
|
754 |
+
def test_astype_object(self, arr1d):
|
755 |
+
arr = arr1d
|
756 |
+
dti = self.index_cls(arr1d)
|
757 |
+
|
758 |
+
asobj = arr.astype("O")
|
759 |
+
assert isinstance(asobj, np.ndarray)
|
760 |
+
assert asobj.dtype == "O"
|
761 |
+
assert list(asobj) == list(dti)
|
762 |
+
|
763 |
+
@pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
|
764 |
+
def test_to_period(self, datetime_index, freqstr):
|
765 |
+
dti = datetime_index
|
766 |
+
arr = dti._data
|
767 |
+
|
768 |
+
freqstr = freq_to_period_freqstr(1, freqstr)
|
769 |
+
expected = dti.to_period(freq=freqstr)
|
770 |
+
result = arr.to_period(freq=freqstr)
|
771 |
+
assert isinstance(result, PeriodArray)
|
772 |
+
|
773 |
+
tm.assert_equal(result, expected._data)
|
774 |
+
|
775 |
+
def test_to_period_2d(self, arr1d):
|
776 |
+
arr2d = arr1d.reshape(1, -1)
|
777 |
+
|
778 |
+
warn = None if arr1d.tz is None else UserWarning
|
779 |
+
with tm.assert_produces_warning(warn):
|
780 |
+
result = arr2d.to_period("D")
|
781 |
+
expected = arr1d.to_period("D").reshape(1, -1)
|
782 |
+
tm.assert_period_array_equal(result, expected)
|
783 |
+
|
784 |
+
@pytest.mark.parametrize("propname", DatetimeArray._bool_ops)
|
785 |
+
def test_bool_properties(self, arr1d, propname):
|
786 |
+
# in this case _bool_ops is just `is_leap_year`
|
787 |
+
dti = self.index_cls(arr1d)
|
788 |
+
arr = arr1d
|
789 |
+
assert dti.freq == arr.freq
|
790 |
+
|
791 |
+
result = getattr(arr, propname)
|
792 |
+
expected = np.array(getattr(dti, propname), dtype=result.dtype)
|
793 |
+
|
794 |
+
tm.assert_numpy_array_equal(result, expected)
|
795 |
+
|
796 |
+
@pytest.mark.parametrize("propname", DatetimeArray._field_ops)
|
797 |
+
def test_int_properties(self, arr1d, propname):
|
798 |
+
dti = self.index_cls(arr1d)
|
799 |
+
arr = arr1d
|
800 |
+
|
801 |
+
result = getattr(arr, propname)
|
802 |
+
expected = np.array(getattr(dti, propname), dtype=result.dtype)
|
803 |
+
|
804 |
+
tm.assert_numpy_array_equal(result, expected)
|
805 |
+
|
806 |
+
def test_take_fill_valid(self, arr1d, fixed_now_ts):
|
807 |
+
arr = arr1d
|
808 |
+
dti = self.index_cls(arr1d)
|
809 |
+
|
810 |
+
now = fixed_now_ts.tz_localize(dti.tz)
|
811 |
+
result = arr.take([-1, 1], allow_fill=True, fill_value=now)
|
812 |
+
assert result[0] == now
|
813 |
+
|
814 |
+
msg = f"value should be a '{arr1d._scalar_type.__name__}' or 'NaT'. Got"
|
815 |
+
with pytest.raises(TypeError, match=msg):
|
816 |
+
# fill_value Timedelta invalid
|
817 |
+
arr.take([-1, 1], allow_fill=True, fill_value=now - now)
|
818 |
+
|
819 |
+
with pytest.raises(TypeError, match=msg):
|
820 |
+
# fill_value Period invalid
|
821 |
+
arr.take([-1, 1], allow_fill=True, fill_value=Period("2014Q1"))
|
822 |
+
|
823 |
+
tz = None if dti.tz is not None else "US/Eastern"
|
824 |
+
now = fixed_now_ts.tz_localize(tz)
|
825 |
+
msg = "Cannot compare tz-naive and tz-aware datetime-like objects"
|
826 |
+
with pytest.raises(TypeError, match=msg):
|
827 |
+
# Timestamp with mismatched tz-awareness
|
828 |
+
arr.take([-1, 1], allow_fill=True, fill_value=now)
|
829 |
+
|
830 |
+
value = NaT._value
|
831 |
+
msg = f"value should be a '{arr1d._scalar_type.__name__}' or 'NaT'. Got"
|
832 |
+
with pytest.raises(TypeError, match=msg):
|
833 |
+
# require NaT, not iNaT, as it could be confused with an integer
|
834 |
+
arr.take([-1, 1], allow_fill=True, fill_value=value)
|
835 |
+
|
836 |
+
value = np.timedelta64("NaT", "ns")
|
837 |
+
with pytest.raises(TypeError, match=msg):
|
838 |
+
# require appropriate-dtype if we have a NA value
|
839 |
+
arr.take([-1, 1], allow_fill=True, fill_value=value)
|
840 |
+
|
841 |
+
if arr.tz is not None:
|
842 |
+
# GH#37356
|
843 |
+
# Assuming here that arr1d fixture does not include Australia/Melbourne
|
844 |
+
value = fixed_now_ts.tz_localize("Australia/Melbourne")
|
845 |
+
result = arr.take([-1, 1], allow_fill=True, fill_value=value)
|
846 |
+
|
847 |
+
expected = arr.take(
|
848 |
+
[-1, 1],
|
849 |
+
allow_fill=True,
|
850 |
+
fill_value=value.tz_convert(arr.dtype.tz),
|
851 |
+
)
|
852 |
+
tm.assert_equal(result, expected)
|
853 |
+
|
854 |
+
def test_concat_same_type_invalid(self, arr1d):
|
855 |
+
# different timezones
|
856 |
+
arr = arr1d
|
857 |
+
|
858 |
+
if arr.tz is None:
|
859 |
+
other = arr.tz_localize("UTC")
|
860 |
+
else:
|
861 |
+
other = arr.tz_localize(None)
|
862 |
+
|
863 |
+
with pytest.raises(ValueError, match="to_concat must have the same"):
|
864 |
+
arr._concat_same_type([arr, other])
|
865 |
+
|
866 |
+
def test_concat_same_type_different_freq(self, unit):
|
867 |
+
# we *can* concatenate DTI with different freqs.
|
868 |
+
a = pd.date_range("2000", periods=2, freq="D", tz="US/Central", unit=unit)._data
|
869 |
+
b = pd.date_range("2000", periods=2, freq="h", tz="US/Central", unit=unit)._data
|
870 |
+
result = DatetimeArray._concat_same_type([a, b])
|
871 |
+
expected = (
|
872 |
+
pd.to_datetime(
|
873 |
+
[
|
874 |
+
"2000-01-01 00:00:00",
|
875 |
+
"2000-01-02 00:00:00",
|
876 |
+
"2000-01-01 00:00:00",
|
877 |
+
"2000-01-01 01:00:00",
|
878 |
+
]
|
879 |
+
)
|
880 |
+
.tz_localize("US/Central")
|
881 |
+
.as_unit(unit)
|
882 |
+
._data
|
883 |
+
)
|
884 |
+
|
885 |
+
tm.assert_datetime_array_equal(result, expected)
|
886 |
+
|
887 |
+
def test_strftime(self, arr1d):
|
888 |
+
arr = arr1d
|
889 |
+
|
890 |
+
result = arr.strftime("%Y %b")
|
891 |
+
expected = np.array([ts.strftime("%Y %b") for ts in arr], dtype=object)
|
892 |
+
tm.assert_numpy_array_equal(result, expected)
|
893 |
+
|
894 |
+
def test_strftime_nat(self):
|
895 |
+
# GH 29578
|
896 |
+
arr = DatetimeIndex(["2019-01-01", NaT])._data
|
897 |
+
|
898 |
+
result = arr.strftime("%Y-%m-%d")
|
899 |
+
expected = np.array(["2019-01-01", np.nan], dtype=object)
|
900 |
+
tm.assert_numpy_array_equal(result, expected)
|
901 |
+
|
902 |
+
|
903 |
+
class TestTimedeltaArray(SharedTests):
|
904 |
+
index_cls = TimedeltaIndex
|
905 |
+
array_cls = TimedeltaArray
|
906 |
+
scalar_type = pd.Timedelta
|
907 |
+
example_dtype = "m8[ns]"
|
908 |
+
|
909 |
+
def test_from_tdi(self):
|
910 |
+
tdi = TimedeltaIndex(["1 Day", "3 Hours"])
|
911 |
+
arr = tdi._data
|
912 |
+
assert list(arr) == list(tdi)
|
913 |
+
|
914 |
+
# Check that Index.__new__ knows what to do with TimedeltaArray
|
915 |
+
tdi2 = pd.Index(arr)
|
916 |
+
assert isinstance(tdi2, TimedeltaIndex)
|
917 |
+
assert list(tdi2) == list(arr)
|
918 |
+
|
919 |
+
def test_astype_object(self):
|
920 |
+
tdi = TimedeltaIndex(["1 Day", "3 Hours"])
|
921 |
+
arr = tdi._data
|
922 |
+
asobj = arr.astype("O")
|
923 |
+
assert isinstance(asobj, np.ndarray)
|
924 |
+
assert asobj.dtype == "O"
|
925 |
+
assert list(asobj) == list(tdi)
|
926 |
+
|
927 |
+
def test_to_pytimedelta(self, timedelta_index):
|
928 |
+
tdi = timedelta_index
|
929 |
+
arr = tdi._data
|
930 |
+
|
931 |
+
expected = tdi.to_pytimedelta()
|
932 |
+
result = arr.to_pytimedelta()
|
933 |
+
|
934 |
+
tm.assert_numpy_array_equal(result, expected)
|
935 |
+
|
936 |
+
def test_total_seconds(self, timedelta_index):
|
937 |
+
tdi = timedelta_index
|
938 |
+
arr = tdi._data
|
939 |
+
|
940 |
+
expected = tdi.total_seconds()
|
941 |
+
result = arr.total_seconds()
|
942 |
+
|
943 |
+
tm.assert_numpy_array_equal(result, expected.values)
|
944 |
+
|
945 |
+
@pytest.mark.parametrize("propname", TimedeltaArray._field_ops)
|
946 |
+
def test_int_properties(self, timedelta_index, propname):
|
947 |
+
tdi = timedelta_index
|
948 |
+
arr = tdi._data
|
949 |
+
|
950 |
+
result = getattr(arr, propname)
|
951 |
+
expected = np.array(getattr(tdi, propname), dtype=result.dtype)
|
952 |
+
|
953 |
+
tm.assert_numpy_array_equal(result, expected)
|
954 |
+
|
955 |
+
def test_array_interface(self, timedelta_index):
|
956 |
+
arr = timedelta_index._data
|
957 |
+
copy_false = None if np_version_gt2 else False
|
958 |
+
|
959 |
+
# default asarray gives the same underlying data
|
960 |
+
result = np.asarray(arr)
|
961 |
+
expected = arr._ndarray
|
962 |
+
assert result is expected
|
963 |
+
tm.assert_numpy_array_equal(result, expected)
|
964 |
+
result = np.array(arr, copy=copy_false)
|
965 |
+
assert result is expected
|
966 |
+
tm.assert_numpy_array_equal(result, expected)
|
967 |
+
|
968 |
+
# specifying m8[ns] gives the same result as default
|
969 |
+
result = np.asarray(arr, dtype="timedelta64[ns]")
|
970 |
+
expected = arr._ndarray
|
971 |
+
assert result is expected
|
972 |
+
tm.assert_numpy_array_equal(result, expected)
|
973 |
+
result = np.array(arr, dtype="timedelta64[ns]", copy=copy_false)
|
974 |
+
assert result is expected
|
975 |
+
tm.assert_numpy_array_equal(result, expected)
|
976 |
+
result = np.array(arr, dtype="timedelta64[ns]")
|
977 |
+
assert result is not expected
|
978 |
+
tm.assert_numpy_array_equal(result, expected)
|
979 |
+
|
980 |
+
# to object dtype
|
981 |
+
result = np.asarray(arr, dtype=object)
|
982 |
+
expected = np.array(list(arr), dtype=object)
|
983 |
+
tm.assert_numpy_array_equal(result, expected)
|
984 |
+
|
985 |
+
# to other dtype always copies
|
986 |
+
result = np.asarray(arr, dtype="int64")
|
987 |
+
assert result is not arr.asi8
|
988 |
+
assert not np.may_share_memory(arr, result)
|
989 |
+
expected = arr.asi8.copy()
|
990 |
+
tm.assert_numpy_array_equal(result, expected)
|
991 |
+
|
992 |
+
# other dtypes handled by numpy
|
993 |
+
for dtype in ["float64", str]:
|
994 |
+
result = np.asarray(arr, dtype=dtype)
|
995 |
+
expected = np.asarray(arr).astype(dtype)
|
996 |
+
tm.assert_numpy_array_equal(result, expected)
|
997 |
+
|
998 |
+
def test_take_fill_valid(self, timedelta_index, fixed_now_ts):
|
999 |
+
tdi = timedelta_index
|
1000 |
+
arr = tdi._data
|
1001 |
+
|
1002 |
+
td1 = pd.Timedelta(days=1)
|
1003 |
+
result = arr.take([-1, 1], allow_fill=True, fill_value=td1)
|
1004 |
+
assert result[0] == td1
|
1005 |
+
|
1006 |
+
value = fixed_now_ts
|
1007 |
+
msg = f"value should be a '{arr._scalar_type.__name__}' or 'NaT'. Got"
|
1008 |
+
with pytest.raises(TypeError, match=msg):
|
1009 |
+
# fill_value Timestamp invalid
|
1010 |
+
arr.take([0, 1], allow_fill=True, fill_value=value)
|
1011 |
+
|
1012 |
+
value = fixed_now_ts.to_period("D")
|
1013 |
+
with pytest.raises(TypeError, match=msg):
|
1014 |
+
# fill_value Period invalid
|
1015 |
+
arr.take([0, 1], allow_fill=True, fill_value=value)
|
1016 |
+
|
1017 |
+
value = np.datetime64("NaT", "ns")
|
1018 |
+
with pytest.raises(TypeError, match=msg):
|
1019 |
+
# require appropriate-dtype if we have a NA value
|
1020 |
+
arr.take([-1, 1], allow_fill=True, fill_value=value)
|
1021 |
+
|
1022 |
+
|
1023 |
+
@pytest.mark.filterwarnings(r"ignore:Period with BDay freq is deprecated:FutureWarning")
|
1024 |
+
@pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
|
1025 |
+
class TestPeriodArray(SharedTests):
|
1026 |
+
index_cls = PeriodIndex
|
1027 |
+
array_cls = PeriodArray
|
1028 |
+
scalar_type = Period
|
1029 |
+
example_dtype = PeriodIndex([], freq="W").dtype
|
1030 |
+
|
1031 |
+
@pytest.fixture
|
1032 |
+
def arr1d(self, period_index):
|
1033 |
+
"""
|
1034 |
+
Fixture returning DatetimeArray from parametrized PeriodIndex objects
|
1035 |
+
"""
|
1036 |
+
return period_index._data
|
1037 |
+
|
1038 |
+
def test_from_pi(self, arr1d):
|
1039 |
+
pi = self.index_cls(arr1d)
|
1040 |
+
arr = arr1d
|
1041 |
+
assert list(arr) == list(pi)
|
1042 |
+
|
1043 |
+
# Check that Index.__new__ knows what to do with PeriodArray
|
1044 |
+
pi2 = pd.Index(arr)
|
1045 |
+
assert isinstance(pi2, PeriodIndex)
|
1046 |
+
assert list(pi2) == list(arr)
|
1047 |
+
|
1048 |
+
def test_astype_object(self, arr1d):
|
1049 |
+
pi = self.index_cls(arr1d)
|
1050 |
+
arr = arr1d
|
1051 |
+
asobj = arr.astype("O")
|
1052 |
+
assert isinstance(asobj, np.ndarray)
|
1053 |
+
assert asobj.dtype == "O"
|
1054 |
+
assert list(asobj) == list(pi)
|
1055 |
+
|
1056 |
+
def test_take_fill_valid(self, arr1d):
|
1057 |
+
arr = arr1d
|
1058 |
+
|
1059 |
+
value = NaT._value
|
1060 |
+
msg = f"value should be a '{arr1d._scalar_type.__name__}' or 'NaT'. Got"
|
1061 |
+
with pytest.raises(TypeError, match=msg):
|
1062 |
+
# require NaT, not iNaT, as it could be confused with an integer
|
1063 |
+
arr.take([-1, 1], allow_fill=True, fill_value=value)
|
1064 |
+
|
1065 |
+
value = np.timedelta64("NaT", "ns")
|
1066 |
+
with pytest.raises(TypeError, match=msg):
|
1067 |
+
# require appropriate-dtype if we have a NA value
|
1068 |
+
arr.take([-1, 1], allow_fill=True, fill_value=value)
|
1069 |
+
|
1070 |
+
@pytest.mark.parametrize("how", ["S", "E"])
|
1071 |
+
def test_to_timestamp(self, how, arr1d):
|
1072 |
+
pi = self.index_cls(arr1d)
|
1073 |
+
arr = arr1d
|
1074 |
+
|
1075 |
+
expected = DatetimeIndex(pi.to_timestamp(how=how))._data
|
1076 |
+
result = arr.to_timestamp(how=how)
|
1077 |
+
assert isinstance(result, DatetimeArray)
|
1078 |
+
|
1079 |
+
tm.assert_equal(result, expected)
|
1080 |
+
|
1081 |
+
def test_to_timestamp_roundtrip_bday(self):
|
1082 |
+
# Case where infer_freq inside would choose "D" instead of "B"
|
1083 |
+
dta = pd.date_range("2021-10-18", periods=3, freq="B")._data
|
1084 |
+
parr = dta.to_period()
|
1085 |
+
result = parr.to_timestamp()
|
1086 |
+
assert result.freq == "B"
|
1087 |
+
tm.assert_extension_array_equal(result, dta)
|
1088 |
+
|
1089 |
+
dta2 = dta[::2]
|
1090 |
+
parr2 = dta2.to_period()
|
1091 |
+
result2 = parr2.to_timestamp()
|
1092 |
+
assert result2.freq == "2B"
|
1093 |
+
tm.assert_extension_array_equal(result2, dta2)
|
1094 |
+
|
1095 |
+
parr3 = dta.to_period("2B")
|
1096 |
+
result3 = parr3.to_timestamp()
|
1097 |
+
assert result3.freq == "B"
|
1098 |
+
tm.assert_extension_array_equal(result3, dta)
|
1099 |
+
|
1100 |
+
def test_to_timestamp_out_of_bounds(self):
|
1101 |
+
# GH#19643 previously overflowed silently
|
1102 |
+
pi = pd.period_range("1500", freq="Y", periods=3)
|
1103 |
+
msg = "Out of bounds nanosecond timestamp: 1500-01-01 00:00:00"
|
1104 |
+
with pytest.raises(OutOfBoundsDatetime, match=msg):
|
1105 |
+
pi.to_timestamp()
|
1106 |
+
|
1107 |
+
with pytest.raises(OutOfBoundsDatetime, match=msg):
|
1108 |
+
pi._data.to_timestamp()
|
1109 |
+
|
1110 |
+
@pytest.mark.parametrize("propname", PeriodArray._bool_ops)
|
1111 |
+
def test_bool_properties(self, arr1d, propname):
|
1112 |
+
# in this case _bool_ops is just `is_leap_year`
|
1113 |
+
pi = self.index_cls(arr1d)
|
1114 |
+
arr = arr1d
|
1115 |
+
|
1116 |
+
result = getattr(arr, propname)
|
1117 |
+
expected = np.array(getattr(pi, propname))
|
1118 |
+
|
1119 |
+
tm.assert_numpy_array_equal(result, expected)
|
1120 |
+
|
1121 |
+
@pytest.mark.parametrize("propname", PeriodArray._field_ops)
|
1122 |
+
def test_int_properties(self, arr1d, propname):
|
1123 |
+
pi = self.index_cls(arr1d)
|
1124 |
+
arr = arr1d
|
1125 |
+
|
1126 |
+
result = getattr(arr, propname)
|
1127 |
+
expected = np.array(getattr(pi, propname))
|
1128 |
+
|
1129 |
+
tm.assert_numpy_array_equal(result, expected)
|
1130 |
+
|
1131 |
+
def test_array_interface(self, arr1d):
|
1132 |
+
arr = arr1d
|
1133 |
+
|
1134 |
+
# default asarray gives objects
|
1135 |
+
result = np.asarray(arr)
|
1136 |
+
expected = np.array(list(arr), dtype=object)
|
1137 |
+
tm.assert_numpy_array_equal(result, expected)
|
1138 |
+
|
1139 |
+
# to object dtype (same as default)
|
1140 |
+
result = np.asarray(arr, dtype=object)
|
1141 |
+
tm.assert_numpy_array_equal(result, expected)
|
1142 |
+
|
1143 |
+
result = np.asarray(arr, dtype="int64")
|
1144 |
+
tm.assert_numpy_array_equal(result, arr.asi8)
|
1145 |
+
|
1146 |
+
# to other dtypes
|
1147 |
+
msg = r"float\(\) argument must be a string or a( real)? number, not 'Period'"
|
1148 |
+
with pytest.raises(TypeError, match=msg):
|
1149 |
+
np.asarray(arr, dtype="float64")
|
1150 |
+
|
1151 |
+
result = np.asarray(arr, dtype="S20")
|
1152 |
+
expected = np.asarray(arr).astype("S20")
|
1153 |
+
tm.assert_numpy_array_equal(result, expected)
|
1154 |
+
|
1155 |
+
def test_strftime(self, arr1d):
|
1156 |
+
arr = arr1d
|
1157 |
+
|
1158 |
+
result = arr.strftime("%Y")
|
1159 |
+
expected = np.array([per.strftime("%Y") for per in arr], dtype=object)
|
1160 |
+
tm.assert_numpy_array_equal(result, expected)
|
1161 |
+
|
1162 |
+
def test_strftime_nat(self):
|
1163 |
+
# GH 29578
|
1164 |
+
arr = PeriodArray(PeriodIndex(["2019-01-01", NaT], dtype="period[D]"))
|
1165 |
+
|
1166 |
+
result = arr.strftime("%Y-%m-%d")
|
1167 |
+
expected = np.array(["2019-01-01", np.nan], dtype=object)
|
1168 |
+
tm.assert_numpy_array_equal(result, expected)
|
1169 |
+
|
1170 |
+
|
1171 |
+
@pytest.mark.parametrize(
|
1172 |
+
"arr,casting_nats",
|
1173 |
+
[
|
1174 |
+
(
|
1175 |
+
TimedeltaIndex(["1 Day", "3 Hours", "NaT"])._data,
|
1176 |
+
(NaT, np.timedelta64("NaT", "ns")),
|
1177 |
+
),
|
1178 |
+
(
|
1179 |
+
pd.date_range("2000-01-01", periods=3, freq="D")._data,
|
1180 |
+
(NaT, np.datetime64("NaT", "ns")),
|
1181 |
+
),
|
1182 |
+
(pd.period_range("2000-01-01", periods=3, freq="D")._data, (NaT,)),
|
1183 |
+
],
|
1184 |
+
ids=lambda x: type(x).__name__,
|
1185 |
+
)
|
1186 |
+
def test_casting_nat_setitem_array(arr, casting_nats):
|
1187 |
+
expected = type(arr)._from_sequence([NaT, arr[1], arr[2]], dtype=arr.dtype)
|
1188 |
+
|
1189 |
+
for nat in casting_nats:
|
1190 |
+
arr = arr.copy()
|
1191 |
+
arr[0] = nat
|
1192 |
+
tm.assert_equal(arr, expected)
|
1193 |
+
|
1194 |
+
|
1195 |
+
@pytest.mark.parametrize(
|
1196 |
+
"arr,non_casting_nats",
|
1197 |
+
[
|
1198 |
+
(
|
1199 |
+
TimedeltaIndex(["1 Day", "3 Hours", "NaT"])._data,
|
1200 |
+
(np.datetime64("NaT", "ns"), NaT._value),
|
1201 |
+
),
|
1202 |
+
(
|
1203 |
+
pd.date_range("2000-01-01", periods=3, freq="D")._data,
|
1204 |
+
(np.timedelta64("NaT", "ns"), NaT._value),
|
1205 |
+
),
|
1206 |
+
(
|
1207 |
+
pd.period_range("2000-01-01", periods=3, freq="D")._data,
|
1208 |
+
(np.datetime64("NaT", "ns"), np.timedelta64("NaT", "ns"), NaT._value),
|
1209 |
+
),
|
1210 |
+
],
|
1211 |
+
ids=lambda x: type(x).__name__,
|
1212 |
+
)
|
1213 |
+
def test_invalid_nat_setitem_array(arr, non_casting_nats):
|
1214 |
+
msg = (
|
1215 |
+
"value should be a '(Timestamp|Timedelta|Period)', 'NaT', or array of those. "
|
1216 |
+
"Got '(timedelta64|datetime64|int)' instead."
|
1217 |
+
)
|
1218 |
+
|
1219 |
+
for nat in non_casting_nats:
|
1220 |
+
with pytest.raises(TypeError, match=msg):
|
1221 |
+
arr[0] = nat
|
1222 |
+
|
1223 |
+
|
1224 |
+
@pytest.mark.parametrize(
|
1225 |
+
"arr",
|
1226 |
+
[
|
1227 |
+
pd.date_range("2000", periods=4).array,
|
1228 |
+
pd.timedelta_range("2000", periods=4).array,
|
1229 |
+
],
|
1230 |
+
)
|
1231 |
+
def test_to_numpy_extra(arr):
|
1232 |
+
arr[0] = NaT
|
1233 |
+
original = arr.copy()
|
1234 |
+
|
1235 |
+
result = arr.to_numpy()
|
1236 |
+
assert np.isnan(result[0])
|
1237 |
+
|
1238 |
+
result = arr.to_numpy(dtype="int64")
|
1239 |
+
assert result[0] == -9223372036854775808
|
1240 |
+
|
1241 |
+
result = arr.to_numpy(dtype="int64", na_value=0)
|
1242 |
+
assert result[0] == 0
|
1243 |
+
|
1244 |
+
result = arr.to_numpy(na_value=arr[1].to_numpy())
|
1245 |
+
assert result[0] == result[1]
|
1246 |
+
|
1247 |
+
result = arr.to_numpy(na_value=arr[1].to_numpy(copy=False))
|
1248 |
+
assert result[0] == result[1]
|
1249 |
+
|
1250 |
+
tm.assert_equal(arr, original)
|
1251 |
+
|
1252 |
+
|
1253 |
+
@pytest.mark.parametrize("as_index", [True, False])
|
1254 |
+
@pytest.mark.parametrize(
|
1255 |
+
"values",
|
1256 |
+
[
|
1257 |
+
pd.to_datetime(["2020-01-01", "2020-02-01"]),
|
1258 |
+
pd.to_timedelta([1, 2], unit="D"),
|
1259 |
+
PeriodIndex(["2020-01-01", "2020-02-01"], freq="D"),
|
1260 |
+
],
|
1261 |
+
)
|
1262 |
+
@pytest.mark.parametrize(
|
1263 |
+
"klass",
|
1264 |
+
[
|
1265 |
+
list,
|
1266 |
+
np.array,
|
1267 |
+
pd.array,
|
1268 |
+
pd.Series,
|
1269 |
+
pd.Index,
|
1270 |
+
pd.Categorical,
|
1271 |
+
pd.CategoricalIndex,
|
1272 |
+
],
|
1273 |
+
)
|
1274 |
+
def test_searchsorted_datetimelike_with_listlike(values, klass, as_index):
|
1275 |
+
# https://github.com/pandas-dev/pandas/issues/32762
|
1276 |
+
if not as_index:
|
1277 |
+
values = values._data
|
1278 |
+
|
1279 |
+
result = values.searchsorted(klass(values))
|
1280 |
+
expected = np.array([0, 1], dtype=result.dtype)
|
1281 |
+
|
1282 |
+
tm.assert_numpy_array_equal(result, expected)
|
1283 |
+
|
1284 |
+
|
1285 |
+
@pytest.mark.parametrize(
|
1286 |
+
"values",
|
1287 |
+
[
|
1288 |
+
pd.to_datetime(["2020-01-01", "2020-02-01"]),
|
1289 |
+
pd.to_timedelta([1, 2], unit="D"),
|
1290 |
+
PeriodIndex(["2020-01-01", "2020-02-01"], freq="D"),
|
1291 |
+
],
|
1292 |
+
)
|
1293 |
+
@pytest.mark.parametrize(
|
1294 |
+
"arg", [[1, 2], ["a", "b"], [Timestamp("2020-01-01", tz="Europe/London")] * 2]
|
1295 |
+
)
|
1296 |
+
def test_searchsorted_datetimelike_with_listlike_invalid_dtype(values, arg):
|
1297 |
+
# https://github.com/pandas-dev/pandas/issues/32762
|
1298 |
+
msg = "[Unexpected type|Cannot compare]"
|
1299 |
+
with pytest.raises(TypeError, match=msg):
|
1300 |
+
values.searchsorted(arg)
|
1301 |
+
|
1302 |
+
|
1303 |
+
@pytest.mark.parametrize("klass", [list, tuple, np.array, pd.Series])
|
1304 |
+
def test_period_index_construction_from_strings(klass):
|
1305 |
+
# https://github.com/pandas-dev/pandas/issues/26109
|
1306 |
+
strings = ["2020Q1", "2020Q2"] * 2
|
1307 |
+
data = klass(strings)
|
1308 |
+
result = PeriodIndex(data, freq="Q")
|
1309 |
+
expected = PeriodIndex([Period(s) for s in strings])
|
1310 |
+
tm.assert_index_equal(result, expected)
|
1311 |
+
|
1312 |
+
|
1313 |
+
@pytest.mark.parametrize("dtype", ["M8[ns]", "m8[ns]"])
|
1314 |
+
def test_from_pandas_array(dtype):
|
1315 |
+
# GH#24615
|
1316 |
+
data = np.array([1, 2, 3], dtype=dtype)
|
1317 |
+
arr = NumpyExtensionArray(data)
|
1318 |
+
|
1319 |
+
cls = {"M8[ns]": DatetimeArray, "m8[ns]": TimedeltaArray}[dtype]
|
1320 |
+
|
1321 |
+
depr_msg = f"{cls.__name__}.__init__ is deprecated"
|
1322 |
+
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
|
1323 |
+
result = cls(arr)
|
1324 |
+
expected = cls(data)
|
1325 |
+
tm.assert_extension_array_equal(result, expected)
|
1326 |
+
|
1327 |
+
result = cls._from_sequence(arr, dtype=dtype)
|
1328 |
+
expected = cls._from_sequence(data, dtype=dtype)
|
1329 |
+
tm.assert_extension_array_equal(result, expected)
|
1330 |
+
|
1331 |
+
func = {"M8[ns]": pd.to_datetime, "m8[ns]": pd.to_timedelta}[dtype]
|
1332 |
+
result = func(arr).array
|
1333 |
+
expected = func(data).array
|
1334 |
+
tm.assert_equal(result, expected)
|
1335 |
+
|
1336 |
+
# Let's check the Indexes while we're here
|
1337 |
+
idx_cls = {"M8[ns]": DatetimeIndex, "m8[ns]": TimedeltaIndex}[dtype]
|
1338 |
+
result = idx_cls(arr)
|
1339 |
+
expected = idx_cls(data)
|
1340 |
+
tm.assert_index_equal(result, expected)
|