applied-ai-018 commited on
Commit
5268297
·
verified ·
1 Parent(s): ad328de

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step80/zero/4.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
  2. ckpts/universal/global_step80/zero/4.mlp.dense_4h_to_h.weight/exp_avg_sq.pt +3 -0
  3. ckpts/universal/global_step80/zero/4.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
  4. ckpts/universal/global_step80/zero/8.mlp.dense_h_to_4h.weight/fp32.pt +3 -0
  5. venv/lib/python3.10/site-packages/networkx/algorithms/__init__.py +133 -0
  6. venv/lib/python3.10/site-packages/networkx/algorithms/asteroidal.py +170 -0
  7. venv/lib/python3.10/site-packages/networkx/algorithms/chains.py +172 -0
  8. venv/lib/python3.10/site-packages/networkx/algorithms/clique.py +754 -0
  9. venv/lib/python3.10/site-packages/networkx/algorithms/cluster.py +609 -0
  10. venv/lib/python3.10/site-packages/networkx/algorithms/core.py +648 -0
  11. venv/lib/python3.10/site-packages/networkx/algorithms/cuts.py +400 -0
  12. venv/lib/python3.10/site-packages/networkx/algorithms/cycles.py +1231 -0
  13. venv/lib/python3.10/site-packages/networkx/algorithms/d_separation.py +722 -0
  14. venv/lib/python3.10/site-packages/networkx/algorithms/dag.py +1259 -0
  15. venv/lib/python3.10/site-packages/networkx/algorithms/dominance.py +135 -0
  16. venv/lib/python3.10/site-packages/networkx/algorithms/dominating.py +94 -0
  17. venv/lib/python3.10/site-packages/networkx/algorithms/efficiency_measures.py +168 -0
  18. venv/lib/python3.10/site-packages/networkx/algorithms/euler.py +469 -0
  19. venv/lib/python3.10/site-packages/networkx/algorithms/graph_hashing.py +322 -0
  20. venv/lib/python3.10/site-packages/networkx/algorithms/graphical.py +483 -0
  21. venv/lib/python3.10/site-packages/networkx/algorithms/hybrid.py +195 -0
  22. venv/lib/python3.10/site-packages/networkx/algorithms/matching.py +1151 -0
  23. venv/lib/python3.10/site-packages/networkx/algorithms/node_classification.py +218 -0
  24. venv/lib/python3.10/site-packages/networkx/algorithms/non_randomness.py +96 -0
  25. venv/lib/python3.10/site-packages/networkx/algorithms/planarity.py +1402 -0
  26. venv/lib/python3.10/site-packages/networkx/algorithms/polynomials.py +305 -0
  27. venv/lib/python3.10/site-packages/networkx/algorithms/reciprocity.py +97 -0
  28. venv/lib/python3.10/site-packages/networkx/algorithms/regular.py +214 -0
  29. venv/lib/python3.10/site-packages/networkx/algorithms/similarity.py +1777 -0
  30. venv/lib/python3.10/site-packages/networkx/algorithms/simple_paths.py +937 -0
  31. venv/lib/python3.10/site-packages/networkx/algorithms/smallworld.py +403 -0
  32. venv/lib/python3.10/site-packages/networkx/algorithms/sparsifiers.py +295 -0
  33. venv/lib/python3.10/site-packages/networkx/algorithms/structuralholes.py +283 -0
  34. venv/lib/python3.10/site-packages/networkx/algorithms/summarization.py +563 -0
  35. venv/lib/python3.10/site-packages/networkx/algorithms/swap.py +407 -0
  36. venv/lib/python3.10/site-packages/networkx/algorithms/threshold.py +979 -0
  37. venv/lib/python3.10/site-packages/networkx/algorithms/tournament.py +406 -0
  38. venv/lib/python3.10/site-packages/networkx/algorithms/voronoi.py +85 -0
  39. venv/lib/python3.10/site-packages/networkx/algorithms/wiener.py +226 -0
  40. venv/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/dispatch_interface.cpython-310.pyc +0 -0
  41. venv/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_coreviews.cpython-310.pyc +0 -0
  42. venv/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_digraph.cpython-310.pyc +0 -0
  43. venv/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_filters.cpython-310.pyc +0 -0
  44. venv/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_graph.cpython-310.pyc +0 -0
  45. venv/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_graph_historical.cpython-310.pyc +0 -0
  46. venv/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_graphviews.cpython-310.pyc +0 -0
  47. venv/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_reportviews.cpython-310.pyc +0 -0
  48. venv/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_special.cpython-310.pyc +0 -0
  49. venv/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_subgraphviews.cpython-310.pyc +0 -0
  50. venv/lib/python3.10/site-packages/networkx/utils/__pycache__/configs.cpython-310.pyc +0 -0
ckpts/universal/global_step80/zero/4.mlp.dense_4h_to_h.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7aff79bf04b9e6551faf632a2723d842c0488a6e09f733ad21222da95dae8888
3
+ size 33555612
ckpts/universal/global_step80/zero/4.mlp.dense_4h_to_h.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a3ea891200ee09d3ce48863ad37ba1e78090600b3f40bac4944a2686067276a
3
+ size 33555627
ckpts/universal/global_step80/zero/4.mlp.dense_4h_to_h.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47278af3486b147350b48626adce93565f754c202105ed3d3372343b213d37a3
3
+ size 33555533
ckpts/universal/global_step80/zero/8.mlp.dense_h_to_4h.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10019d7a6b490b316e2c33e0dd8f5404f4b642b7fd8a83126df1e4db1ea3eee4
3
+ size 33555533
venv/lib/python3.10/site-packages/networkx/algorithms/__init__.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from networkx.algorithms.assortativity import *
2
+ from networkx.algorithms.asteroidal import *
3
+ from networkx.algorithms.boundary import *
4
+ from networkx.algorithms.broadcasting import *
5
+ from networkx.algorithms.bridges import *
6
+ from networkx.algorithms.chains import *
7
+ from networkx.algorithms.centrality import *
8
+ from networkx.algorithms.chordal import *
9
+ from networkx.algorithms.cluster import *
10
+ from networkx.algorithms.clique import *
11
+ from networkx.algorithms.communicability_alg import *
12
+ from networkx.algorithms.components import *
13
+ from networkx.algorithms.coloring import *
14
+ from networkx.algorithms.core import *
15
+ from networkx.algorithms.covering import *
16
+ from networkx.algorithms.cycles import *
17
+ from networkx.algorithms.cuts import *
18
+ from networkx.algorithms.d_separation import *
19
+ from networkx.algorithms.dag import *
20
+ from networkx.algorithms.distance_measures import *
21
+ from networkx.algorithms.distance_regular import *
22
+ from networkx.algorithms.dominance import *
23
+ from networkx.algorithms.dominating import *
24
+ from networkx.algorithms.efficiency_measures import *
25
+ from networkx.algorithms.euler import *
26
+ from networkx.algorithms.graphical import *
27
+ from networkx.algorithms.hierarchy import *
28
+ from networkx.algorithms.hybrid import *
29
+ from networkx.algorithms.link_analysis import *
30
+ from networkx.algorithms.link_prediction import *
31
+ from networkx.algorithms.lowest_common_ancestors import *
32
+ from networkx.algorithms.isolate import *
33
+ from networkx.algorithms.matching import *
34
+ from networkx.algorithms.minors import *
35
+ from networkx.algorithms.mis import *
36
+ from networkx.algorithms.moral import *
37
+ from networkx.algorithms.non_randomness import *
38
+ from networkx.algorithms.operators import *
39
+ from networkx.algorithms.planarity import *
40
+ from networkx.algorithms.planar_drawing import *
41
+ from networkx.algorithms.polynomials import *
42
+ from networkx.algorithms.reciprocity import *
43
+ from networkx.algorithms.regular import *
44
+ from networkx.algorithms.richclub import *
45
+ from networkx.algorithms.shortest_paths import *
46
+ from networkx.algorithms.similarity import *
47
+ from networkx.algorithms.graph_hashing import *
48
+ from networkx.algorithms.simple_paths import *
49
+ from networkx.algorithms.smallworld import *
50
+ from networkx.algorithms.smetric import *
51
+ from networkx.algorithms.structuralholes import *
52
+ from networkx.algorithms.sparsifiers import *
53
+ from networkx.algorithms.summarization import *
54
+ from networkx.algorithms.swap import *
55
+ from networkx.algorithms.time_dependent import *
56
+ from networkx.algorithms.traversal import *
57
+ from networkx.algorithms.triads import *
58
+ from networkx.algorithms.vitality import *
59
+ from networkx.algorithms.voronoi import *
60
+ from networkx.algorithms.walks import *
61
+ from networkx.algorithms.wiener import *
62
+
63
+ # Make certain subpackages available to the user as direct imports from
64
+ # the `networkx` namespace.
65
+ from networkx.algorithms import approximation
66
+ from networkx.algorithms import assortativity
67
+ from networkx.algorithms import bipartite
68
+ from networkx.algorithms import node_classification
69
+ from networkx.algorithms import centrality
70
+ from networkx.algorithms import chordal
71
+ from networkx.algorithms import cluster
72
+ from networkx.algorithms import clique
73
+ from networkx.algorithms import components
74
+ from networkx.algorithms import connectivity
75
+ from networkx.algorithms import community
76
+ from networkx.algorithms import coloring
77
+ from networkx.algorithms import flow
78
+ from networkx.algorithms import isomorphism
79
+ from networkx.algorithms import link_analysis
80
+ from networkx.algorithms import lowest_common_ancestors
81
+ from networkx.algorithms import operators
82
+ from networkx.algorithms import shortest_paths
83
+ from networkx.algorithms import tournament
84
+ from networkx.algorithms import traversal
85
+ from networkx.algorithms import tree
86
+
87
+ # Make certain functions from some of the previous subpackages available
88
+ # to the user as direct imports from the `networkx` namespace.
89
+ from networkx.algorithms.bipartite import complete_bipartite_graph
90
+ from networkx.algorithms.bipartite import is_bipartite
91
+ from networkx.algorithms.bipartite import projected_graph
92
+ from networkx.algorithms.connectivity import all_pairs_node_connectivity
93
+ from networkx.algorithms.connectivity import all_node_cuts
94
+ from networkx.algorithms.connectivity import average_node_connectivity
95
+ from networkx.algorithms.connectivity import edge_connectivity
96
+ from networkx.algorithms.connectivity import edge_disjoint_paths
97
+ from networkx.algorithms.connectivity import k_components
98
+ from networkx.algorithms.connectivity import k_edge_components
99
+ from networkx.algorithms.connectivity import k_edge_subgraphs
100
+ from networkx.algorithms.connectivity import k_edge_augmentation
101
+ from networkx.algorithms.connectivity import is_k_edge_connected
102
+ from networkx.algorithms.connectivity import minimum_edge_cut
103
+ from networkx.algorithms.connectivity import minimum_node_cut
104
+ from networkx.algorithms.connectivity import node_connectivity
105
+ from networkx.algorithms.connectivity import node_disjoint_paths
106
+ from networkx.algorithms.connectivity import stoer_wagner
107
+ from networkx.algorithms.flow import capacity_scaling
108
+ from networkx.algorithms.flow import cost_of_flow
109
+ from networkx.algorithms.flow import gomory_hu_tree
110
+ from networkx.algorithms.flow import max_flow_min_cost
111
+ from networkx.algorithms.flow import maximum_flow
112
+ from networkx.algorithms.flow import maximum_flow_value
113
+ from networkx.algorithms.flow import min_cost_flow
114
+ from networkx.algorithms.flow import min_cost_flow_cost
115
+ from networkx.algorithms.flow import minimum_cut
116
+ from networkx.algorithms.flow import minimum_cut_value
117
+ from networkx.algorithms.flow import network_simplex
118
+ from networkx.algorithms.isomorphism import could_be_isomorphic
119
+ from networkx.algorithms.isomorphism import fast_could_be_isomorphic
120
+ from networkx.algorithms.isomorphism import faster_could_be_isomorphic
121
+ from networkx.algorithms.isomorphism import is_isomorphic
122
+ from networkx.algorithms.isomorphism.vf2pp import *
123
+ from networkx.algorithms.tree.branchings import maximum_branching
124
+ from networkx.algorithms.tree.branchings import maximum_spanning_arborescence
125
+ from networkx.algorithms.tree.branchings import minimum_branching
126
+ from networkx.algorithms.tree.branchings import minimum_spanning_arborescence
127
+ from networkx.algorithms.tree.branchings import ArborescenceIterator
128
+ from networkx.algorithms.tree.coding import *
129
+ from networkx.algorithms.tree.decomposition import *
130
+ from networkx.algorithms.tree.mst import *
131
+ from networkx.algorithms.tree.operations import *
132
+ from networkx.algorithms.tree.recognition import *
133
+ from networkx.algorithms.tournament import is_tournament
venv/lib/python3.10/site-packages/networkx/algorithms/asteroidal.py ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Algorithms for asteroidal triples and asteroidal numbers in graphs.
3
+
4
+ An asteroidal triple in a graph G is a set of three non-adjacent vertices
5
+ u, v and w such that there exist a path between any two of them that avoids
6
+ closed neighborhood of the third. More formally, v_j, v_k belongs to the same
7
+ connected component of G - N[v_i], where N[v_i] denotes the closed neighborhood
8
+ of v_i. A graph which does not contain any asteroidal triples is called
9
+ an AT-free graph. The class of AT-free graphs is a graph class for which
10
+ many NP-complete problems are solvable in polynomial time. Amongst them,
11
+ independent set and coloring.
12
+ """
13
+ import networkx as nx
14
+ from networkx.utils import not_implemented_for
15
+
16
+ __all__ = ["is_at_free", "find_asteroidal_triple"]
17
+
18
+
19
+ @not_implemented_for("directed")
20
+ @not_implemented_for("multigraph")
21
+ @nx._dispatchable
22
+ def find_asteroidal_triple(G):
23
+ r"""Find an asteroidal triple in the given graph.
24
+
25
+ An asteroidal triple is a triple of non-adjacent vertices such that
26
+ there exists a path between any two of them which avoids the closed
27
+ neighborhood of the third. It checks all independent triples of vertices
28
+ and whether they are an asteroidal triple or not. This is done with the
29
+ help of a data structure called a component structure.
30
+ A component structure encodes information about which vertices belongs to
31
+ the same connected component when the closed neighborhood of a given vertex
32
+ is removed from the graph. The algorithm used to check is the trivial
33
+ one, outlined in [1]_, which has a runtime of
34
+ :math:`O(|V||\overline{E} + |V||E|)`, where the second term is the
35
+ creation of the component structure.
36
+
37
+ Parameters
38
+ ----------
39
+ G : NetworkX Graph
40
+ The graph to check whether is AT-free or not
41
+
42
+ Returns
43
+ -------
44
+ list or None
45
+ An asteroidal triple is returned as a list of nodes. If no asteroidal
46
+ triple exists, i.e. the graph is AT-free, then None is returned.
47
+ The returned value depends on the certificate parameter. The default
48
+ option is a bool which is True if the graph is AT-free, i.e. the
49
+ given graph contains no asteroidal triples, and False otherwise, i.e.
50
+ if the graph contains at least one asteroidal triple.
51
+
52
+ Notes
53
+ -----
54
+ The component structure and the algorithm is described in [1]_. The current
55
+ implementation implements the trivial algorithm for simple graphs.
56
+
57
+ References
58
+ ----------
59
+ .. [1] Ekkehard Köhler,
60
+ "Recognizing Graphs without asteroidal triples",
61
+ Journal of Discrete Algorithms 2, pages 439-452, 2004.
62
+ https://www.sciencedirect.com/science/article/pii/S157086670400019X
63
+ """
64
+ V = set(G.nodes)
65
+
66
+ if len(V) < 6:
67
+ # An asteroidal triple cannot exist in a graph with 5 or less vertices.
68
+ return None
69
+
70
+ component_structure = create_component_structure(G)
71
+ E_complement = set(nx.complement(G).edges)
72
+
73
+ for e in E_complement:
74
+ u = e[0]
75
+ v = e[1]
76
+ u_neighborhood = set(G[u]).union([u])
77
+ v_neighborhood = set(G[v]).union([v])
78
+ union_of_neighborhoods = u_neighborhood.union(v_neighborhood)
79
+ for w in V - union_of_neighborhoods:
80
+ # Check for each pair of vertices whether they belong to the
81
+ # same connected component when the closed neighborhood of the
82
+ # third is removed.
83
+ if (
84
+ component_structure[u][v] == component_structure[u][w]
85
+ and component_structure[v][u] == component_structure[v][w]
86
+ and component_structure[w][u] == component_structure[w][v]
87
+ ):
88
+ return [u, v, w]
89
+ return None
90
+
91
+
92
+ @not_implemented_for("directed")
93
+ @not_implemented_for("multigraph")
94
+ @nx._dispatchable
95
+ def is_at_free(G):
96
+ """Check if a graph is AT-free.
97
+
98
+ The method uses the `find_asteroidal_triple` method to recognize
99
+ an AT-free graph. If no asteroidal triple is found the graph is
100
+ AT-free and True is returned. If at least one asteroidal triple is
101
+ found the graph is not AT-free and False is returned.
102
+
103
+ Parameters
104
+ ----------
105
+ G : NetworkX Graph
106
+ The graph to check whether is AT-free or not.
107
+
108
+ Returns
109
+ -------
110
+ bool
111
+ True if G is AT-free and False otherwise.
112
+
113
+ Examples
114
+ --------
115
+ >>> G = nx.Graph([(0, 1), (0, 2), (1, 2), (1, 3), (1, 4), (4, 5)])
116
+ >>> nx.is_at_free(G)
117
+ True
118
+
119
+ >>> G = nx.cycle_graph(6)
120
+ >>> nx.is_at_free(G)
121
+ False
122
+ """
123
+ return find_asteroidal_triple(G) is None
124
+
125
+
126
+ @not_implemented_for("directed")
127
+ @not_implemented_for("multigraph")
128
+ @nx._dispatchable
129
+ def create_component_structure(G):
130
+ r"""Create component structure for G.
131
+
132
+ A *component structure* is an `nxn` array, denoted `c`, where `n` is
133
+ the number of vertices, where each row and column corresponds to a vertex.
134
+
135
+ .. math::
136
+ c_{uv} = \begin{cases} 0, if v \in N[u] \\
137
+ k, if v \in component k of G \setminus N[u] \end{cases}
138
+
139
+ Where `k` is an arbitrary label for each component. The structure is used
140
+ to simplify the detection of asteroidal triples.
141
+
142
+ Parameters
143
+ ----------
144
+ G : NetworkX Graph
145
+ Undirected, simple graph.
146
+
147
+ Returns
148
+ -------
149
+ component_structure : dictionary
150
+ A dictionary of dictionaries, keyed by pairs of vertices.
151
+
152
+ """
153
+ V = set(G.nodes)
154
+ component_structure = {}
155
+ for v in V:
156
+ label = 0
157
+ closed_neighborhood = set(G[v]).union({v})
158
+ row_dict = {}
159
+ for u in closed_neighborhood:
160
+ row_dict[u] = 0
161
+
162
+ G_reduced = G.subgraph(set(G.nodes) - closed_neighborhood)
163
+ for cc in nx.connected_components(G_reduced):
164
+ label += 1
165
+ for u in cc:
166
+ row_dict[u] = label
167
+
168
+ component_structure[v] = row_dict
169
+
170
+ return component_structure
venv/lib/python3.10/site-packages/networkx/algorithms/chains.py ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Functions for finding chains in a graph."""
2
+
3
+ import networkx as nx
4
+ from networkx.utils import not_implemented_for
5
+
6
+ __all__ = ["chain_decomposition"]
7
+
8
+
9
+ @not_implemented_for("directed")
10
+ @not_implemented_for("multigraph")
11
+ @nx._dispatchable
12
+ def chain_decomposition(G, root=None):
13
+ """Returns the chain decomposition of a graph.
14
+
15
+ The *chain decomposition* of a graph with respect a depth-first
16
+ search tree is a set of cycles or paths derived from the set of
17
+ fundamental cycles of the tree in the following manner. Consider
18
+ each fundamental cycle with respect to the given tree, represented
19
+ as a list of edges beginning with the nontree edge oriented away
20
+ from the root of the tree. For each fundamental cycle, if it
21
+ overlaps with any previous fundamental cycle, just take the initial
22
+ non-overlapping segment, which is a path instead of a cycle. Each
23
+ cycle or path is called a *chain*. For more information, see [1]_.
24
+
25
+ Parameters
26
+ ----------
27
+ G : undirected graph
28
+
29
+ root : node (optional)
30
+ A node in the graph `G`. If specified, only the chain
31
+ decomposition for the connected component containing this node
32
+ will be returned. This node indicates the root of the depth-first
33
+ search tree.
34
+
35
+ Yields
36
+ ------
37
+ chain : list
38
+ A list of edges representing a chain. There is no guarantee on
39
+ the orientation of the edges in each chain (for example, if a
40
+ chain includes the edge joining nodes 1 and 2, the chain may
41
+ include either (1, 2) or (2, 1)).
42
+
43
+ Raises
44
+ ------
45
+ NodeNotFound
46
+ If `root` is not in the graph `G`.
47
+
48
+ Examples
49
+ --------
50
+ >>> G = nx.Graph([(0, 1), (1, 4), (3, 4), (3, 5), (4, 5)])
51
+ >>> list(nx.chain_decomposition(G))
52
+ [[(4, 5), (5, 3), (3, 4)]]
53
+
54
+ Notes
55
+ -----
56
+ The worst-case running time of this implementation is linear in the
57
+ number of nodes and number of edges [1]_.
58
+
59
+ References
60
+ ----------
61
+ .. [1] Jens M. Schmidt (2013). "A simple test on 2-vertex-
62
+ and 2-edge-connectivity." *Information Processing Letters*,
63
+ 113, 241–244. Elsevier. <https://doi.org/10.1016/j.ipl.2013.01.016>
64
+
65
+ """
66
+
67
+ def _dfs_cycle_forest(G, root=None):
68
+ """Builds a directed graph composed of cycles from the given graph.
69
+
70
+ `G` is an undirected simple graph. `root` is a node in the graph
71
+ from which the depth-first search is started.
72
+
73
+ This function returns both the depth-first search cycle graph
74
+ (as a :class:`~networkx.DiGraph`) and the list of nodes in
75
+ depth-first preorder. The depth-first search cycle graph is a
76
+ directed graph whose edges are the edges of `G` oriented toward
77
+ the root if the edge is a tree edge and away from the root if
78
+ the edge is a non-tree edge. If `root` is not specified, this
79
+ performs a depth-first search on each connected component of `G`
80
+ and returns a directed forest instead.
81
+
82
+ If `root` is not in the graph, this raises :exc:`KeyError`.
83
+
84
+ """
85
+ # Create a directed graph from the depth-first search tree with
86
+ # root node `root` in which tree edges are directed toward the
87
+ # root and nontree edges are directed away from the root. For
88
+ # each node with an incident nontree edge, this creates a
89
+ # directed cycle starting with the nontree edge and returning to
90
+ # that node.
91
+ #
92
+ # The `parent` node attribute stores the parent of each node in
93
+ # the DFS tree. The `nontree` edge attribute indicates whether
94
+ # the edge is a tree edge or a nontree edge.
95
+ #
96
+ # We also store the order of the nodes found in the depth-first
97
+ # search in the `nodes` list.
98
+ H = nx.DiGraph()
99
+ nodes = []
100
+ for u, v, d in nx.dfs_labeled_edges(G, source=root):
101
+ if d == "forward":
102
+ # `dfs_labeled_edges()` yields (root, root, 'forward')
103
+ # if it is beginning the search on a new connected
104
+ # component.
105
+ if u == v:
106
+ H.add_node(v, parent=None)
107
+ nodes.append(v)
108
+ else:
109
+ H.add_node(v, parent=u)
110
+ H.add_edge(v, u, nontree=False)
111
+ nodes.append(v)
112
+ # `dfs_labeled_edges` considers nontree edges in both
113
+ # orientations, so we need to not add the edge if it its
114
+ # other orientation has been added.
115
+ elif d == "nontree" and v not in H[u]:
116
+ H.add_edge(v, u, nontree=True)
117
+ else:
118
+ # Do nothing on 'reverse' edges; we only care about
119
+ # forward and nontree edges.
120
+ pass
121
+ return H, nodes
122
+
123
+ def _build_chain(G, u, v, visited):
124
+ """Generate the chain starting from the given nontree edge.
125
+
126
+ `G` is a DFS cycle graph as constructed by
127
+ :func:`_dfs_cycle_graph`. The edge (`u`, `v`) is a nontree edge
128
+ that begins a chain. `visited` is a set representing the nodes
129
+ in `G` that have already been visited.
130
+
131
+ This function yields the edges in an initial segment of the
132
+ fundamental cycle of `G` starting with the nontree edge (`u`,
133
+ `v`) that includes all the edges up until the first node that
134
+ appears in `visited`. The tree edges are given by the 'parent'
135
+ node attribute. The `visited` set is updated to add each node in
136
+ an edge yielded by this function.
137
+
138
+ """
139
+ while v not in visited:
140
+ yield u, v
141
+ visited.add(v)
142
+ u, v = v, G.nodes[v]["parent"]
143
+ yield u, v
144
+
145
+ # Check if the root is in the graph G. If not, raise NodeNotFound
146
+ if root is not None and root not in G:
147
+ raise nx.NodeNotFound(f"Root node {root} is not in graph")
148
+
149
+ # Create a directed version of H that has the DFS edges directed
150
+ # toward the root and the nontree edges directed away from the root
151
+ # (in each connected component).
152
+ H, nodes = _dfs_cycle_forest(G, root)
153
+
154
+ # Visit the nodes again in DFS order. For each node, and for each
155
+ # nontree edge leaving that node, compute the fundamental cycle for
156
+ # that nontree edge starting with that edge. If the fundamental
157
+ # cycle overlaps with any visited nodes, just take the prefix of the
158
+ # cycle up to the point of visited nodes.
159
+ #
160
+ # We repeat this process for each connected component (implicitly,
161
+ # since `nodes` already has a list of the nodes grouped by connected
162
+ # component).
163
+ visited = set()
164
+ for u in nodes:
165
+ visited.add(u)
166
+ # For each nontree edge going out of node u...
167
+ edges = ((u, v) for u, v, d in H.out_edges(u, data="nontree") if d)
168
+ for u, v in edges:
169
+ # Create the cycle or cycle prefix starting with the
170
+ # nontree edge.
171
+ chain = list(_build_chain(H, u, v, visited))
172
+ yield chain
venv/lib/python3.10/site-packages/networkx/algorithms/clique.py ADDED
@@ -0,0 +1,754 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Functions for finding and manipulating cliques.
2
+
3
+ Finding the largest clique in a graph is NP-complete problem, so most of
4
+ these algorithms have an exponential running time; for more information,
5
+ see the Wikipedia article on the clique problem [1]_.
6
+
7
+ .. [1] clique problem:: https://en.wikipedia.org/wiki/Clique_problem
8
+
9
+ """
10
+ from collections import defaultdict, deque
11
+ from itertools import chain, combinations, islice
12
+
13
+ import networkx as nx
14
+ from networkx.utils import not_implemented_for
15
+
16
+ __all__ = [
17
+ "find_cliques",
18
+ "find_cliques_recursive",
19
+ "make_max_clique_graph",
20
+ "make_clique_bipartite",
21
+ "node_clique_number",
22
+ "number_of_cliques",
23
+ "enumerate_all_cliques",
24
+ "max_weight_clique",
25
+ ]
26
+
27
+
28
+ @not_implemented_for("directed")
29
+ @nx._dispatchable
30
+ def enumerate_all_cliques(G):
31
+ """Returns all cliques in an undirected graph.
32
+
33
+ This function returns an iterator over cliques, each of which is a
34
+ list of nodes. The iteration is ordered by cardinality of the
35
+ cliques: first all cliques of size one, then all cliques of size
36
+ two, etc.
37
+
38
+ Parameters
39
+ ----------
40
+ G : NetworkX graph
41
+ An undirected graph.
42
+
43
+ Returns
44
+ -------
45
+ iterator
46
+ An iterator over cliques, each of which is a list of nodes in
47
+ `G`. The cliques are ordered according to size.
48
+
49
+ Notes
50
+ -----
51
+ To obtain a list of all cliques, use
52
+ `list(enumerate_all_cliques(G))`. However, be aware that in the
53
+ worst-case, the length of this list can be exponential in the number
54
+ of nodes in the graph (for example, when the graph is the complete
55
+ graph). This function avoids storing all cliques in memory by only
56
+ keeping current candidate node lists in memory during its search.
57
+
58
+ The implementation is adapted from the algorithm by Zhang, et
59
+ al. (2005) [1]_ to output all cliques discovered.
60
+
61
+ This algorithm ignores self-loops and parallel edges, since cliques
62
+ are not conventionally defined with such edges.
63
+
64
+ References
65
+ ----------
66
+ .. [1] Yun Zhang, Abu-Khzam, F.N., Baldwin, N.E., Chesler, E.J.,
67
+ Langston, M.A., Samatova, N.F.,
68
+ "Genome-Scale Computational Approaches to Memory-Intensive
69
+ Applications in Systems Biology".
70
+ *Supercomputing*, 2005. Proceedings of the ACM/IEEE SC 2005
71
+ Conference, pp. 12, 12--18 Nov. 2005.
72
+ <https://doi.org/10.1109/SC.2005.29>.
73
+
74
+ """
75
+ index = {}
76
+ nbrs = {}
77
+ for u in G:
78
+ index[u] = len(index)
79
+ # Neighbors of u that appear after u in the iteration order of G.
80
+ nbrs[u] = {v for v in G[u] if v not in index}
81
+
82
+ queue = deque(([u], sorted(nbrs[u], key=index.__getitem__)) for u in G)
83
+ # Loop invariants:
84
+ # 1. len(base) is nondecreasing.
85
+ # 2. (base + cnbrs) is sorted with respect to the iteration order of G.
86
+ # 3. cnbrs is a set of common neighbors of nodes in base.
87
+ while queue:
88
+ base, cnbrs = map(list, queue.popleft())
89
+ yield base
90
+ for i, u in enumerate(cnbrs):
91
+ # Use generators to reduce memory consumption.
92
+ queue.append(
93
+ (
94
+ chain(base, [u]),
95
+ filter(nbrs[u].__contains__, islice(cnbrs, i + 1, None)),
96
+ )
97
+ )
98
+
99
+
100
+ @not_implemented_for("directed")
101
+ @nx._dispatchable
102
+ def find_cliques(G, nodes=None):
103
+ """Returns all maximal cliques in an undirected graph.
104
+
105
+ For each node *n*, a *maximal clique for n* is a largest complete
106
+ subgraph containing *n*. The largest maximal clique is sometimes
107
+ called the *maximum clique*.
108
+
109
+ This function returns an iterator over cliques, each of which is a
110
+ list of nodes. It is an iterative implementation, so should not
111
+ suffer from recursion depth issues.
112
+
113
+ This function accepts a list of `nodes` and only the maximal cliques
114
+ containing all of these `nodes` are returned. It can considerably speed up
115
+ the running time if some specific cliques are desired.
116
+
117
+ Parameters
118
+ ----------
119
+ G : NetworkX graph
120
+ An undirected graph.
121
+
122
+ nodes : list, optional (default=None)
123
+ If provided, only yield *maximal cliques* containing all nodes in `nodes`.
124
+ If `nodes` isn't a clique itself, a ValueError is raised.
125
+
126
+ Returns
127
+ -------
128
+ iterator
129
+ An iterator over maximal cliques, each of which is a list of
130
+ nodes in `G`. If `nodes` is provided, only the maximal cliques
131
+ containing all the nodes in `nodes` are returned. The order of
132
+ cliques is arbitrary.
133
+
134
+ Raises
135
+ ------
136
+ ValueError
137
+ If `nodes` is not a clique.
138
+
139
+ Examples
140
+ --------
141
+ >>> from pprint import pprint # For nice dict formatting
142
+ >>> G = nx.karate_club_graph()
143
+ >>> sum(1 for c in nx.find_cliques(G)) # The number of maximal cliques in G
144
+ 36
145
+ >>> max(nx.find_cliques(G), key=len) # The largest maximal clique in G
146
+ [0, 1, 2, 3, 13]
147
+
148
+ The size of the largest maximal clique is known as the *clique number* of
149
+ the graph, which can be found directly with:
150
+
151
+ >>> max(len(c) for c in nx.find_cliques(G))
152
+ 5
153
+
154
+ One can also compute the number of maximal cliques in `G` that contain a given
155
+ node. The following produces a dictionary keyed by node whose
156
+ values are the number of maximal cliques in `G` that contain the node:
157
+
158
+ >>> pprint({n: sum(1 for c in nx.find_cliques(G) if n in c) for n in G})
159
+ {0: 13,
160
+ 1: 6,
161
+ 2: 7,
162
+ 3: 3,
163
+ 4: 2,
164
+ 5: 3,
165
+ 6: 3,
166
+ 7: 1,
167
+ 8: 3,
168
+ 9: 2,
169
+ 10: 2,
170
+ 11: 1,
171
+ 12: 1,
172
+ 13: 2,
173
+ 14: 1,
174
+ 15: 1,
175
+ 16: 1,
176
+ 17: 1,
177
+ 18: 1,
178
+ 19: 2,
179
+ 20: 1,
180
+ 21: 1,
181
+ 22: 1,
182
+ 23: 3,
183
+ 24: 2,
184
+ 25: 2,
185
+ 26: 1,
186
+ 27: 3,
187
+ 28: 2,
188
+ 29: 2,
189
+ 30: 2,
190
+ 31: 4,
191
+ 32: 9,
192
+ 33: 14}
193
+
194
+ Or, similarly, the maximal cliques in `G` that contain a given node.
195
+ For example, the 4 maximal cliques that contain node 31:
196
+
197
+ >>> [c for c in nx.find_cliques(G) if 31 in c]
198
+ [[0, 31], [33, 32, 31], [33, 28, 31], [24, 25, 31]]
199
+
200
+ See Also
201
+ --------
202
+ find_cliques_recursive
203
+ A recursive version of the same algorithm.
204
+
205
+ Notes
206
+ -----
207
+ To obtain a list of all maximal cliques, use
208
+ `list(find_cliques(G))`. However, be aware that in the worst-case,
209
+ the length of this list can be exponential in the number of nodes in
210
+ the graph. This function avoids storing all cliques in memory by
211
+ only keeping current candidate node lists in memory during its search.
212
+
213
+ This implementation is based on the algorithm published by Bron and
214
+ Kerbosch (1973) [1]_, as adapted by Tomita, Tanaka and Takahashi
215
+ (2006) [2]_ and discussed in Cazals and Karande (2008) [3]_. It
216
+ essentially unrolls the recursion used in the references to avoid
217
+ issues of recursion stack depth (for a recursive implementation, see
218
+ :func:`find_cliques_recursive`).
219
+
220
+ This algorithm ignores self-loops and parallel edges, since cliques
221
+ are not conventionally defined with such edges.
222
+
223
+ References
224
+ ----------
225
+ .. [1] Bron, C. and Kerbosch, J.
226
+ "Algorithm 457: finding all cliques of an undirected graph".
227
+ *Communications of the ACM* 16, 9 (Sep. 1973), 575--577.
228
+ <http://portal.acm.org/citation.cfm?doid=362342.362367>
229
+
230
+ .. [2] Etsuji Tomita, Akira Tanaka, Haruhisa Takahashi,
231
+ "The worst-case time complexity for generating all maximal
232
+ cliques and computational experiments",
233
+ *Theoretical Computer Science*, Volume 363, Issue 1,
234
+ Computing and Combinatorics,
235
+ 10th Annual International Conference on
236
+ Computing and Combinatorics (COCOON 2004), 25 October 2006, Pages 28--42
237
+ <https://doi.org/10.1016/j.tcs.2006.06.015>
238
+
239
+ .. [3] F. Cazals, C. Karande,
240
+ "A note on the problem of reporting maximal cliques",
241
+ *Theoretical Computer Science*,
242
+ Volume 407, Issues 1--3, 6 November 2008, Pages 564--568,
243
+ <https://doi.org/10.1016/j.tcs.2008.05.010>
244
+
245
+ """
246
+ if len(G) == 0:
247
+ return
248
+
249
+ adj = {u: {v for v in G[u] if v != u} for u in G}
250
+
251
+ # Initialize Q with the given nodes and subg, cand with their nbrs
252
+ Q = nodes[:] if nodes is not None else []
253
+ cand = set(G)
254
+ for node in Q:
255
+ if node not in cand:
256
+ raise ValueError(f"The given `nodes` {nodes} do not form a clique")
257
+ cand &= adj[node]
258
+
259
+ if not cand:
260
+ yield Q[:]
261
+ return
262
+
263
+ subg = cand.copy()
264
+ stack = []
265
+ Q.append(None)
266
+
267
+ u = max(subg, key=lambda u: len(cand & adj[u]))
268
+ ext_u = cand - adj[u]
269
+
270
+ try:
271
+ while True:
272
+ if ext_u:
273
+ q = ext_u.pop()
274
+ cand.remove(q)
275
+ Q[-1] = q
276
+ adj_q = adj[q]
277
+ subg_q = subg & adj_q
278
+ if not subg_q:
279
+ yield Q[:]
280
+ else:
281
+ cand_q = cand & adj_q
282
+ if cand_q:
283
+ stack.append((subg, cand, ext_u))
284
+ Q.append(None)
285
+ subg = subg_q
286
+ cand = cand_q
287
+ u = max(subg, key=lambda u: len(cand & adj[u]))
288
+ ext_u = cand - adj[u]
289
+ else:
290
+ Q.pop()
291
+ subg, cand, ext_u = stack.pop()
292
+ except IndexError:
293
+ pass
294
+
295
+
296
+ # TODO Should this also be not implemented for directed graphs?
297
+ @nx._dispatchable
298
+ def find_cliques_recursive(G, nodes=None):
299
+ """Returns all maximal cliques in a graph.
300
+
301
+ For each node *v*, a *maximal clique for v* is a largest complete
302
+ subgraph containing *v*. The largest maximal clique is sometimes
303
+ called the *maximum clique*.
304
+
305
+ This function returns an iterator over cliques, each of which is a
306
+ list of nodes. It is a recursive implementation, so may suffer from
307
+ recursion depth issues, but is included for pedagogical reasons.
308
+ For a non-recursive implementation, see :func:`find_cliques`.
309
+
310
+ This function accepts a list of `nodes` and only the maximal cliques
311
+ containing all of these `nodes` are returned. It can considerably speed up
312
+ the running time if some specific cliques are desired.
313
+
314
+ Parameters
315
+ ----------
316
+ G : NetworkX graph
317
+
318
+ nodes : list, optional (default=None)
319
+ If provided, only yield *maximal cliques* containing all nodes in `nodes`.
320
+ If `nodes` isn't a clique itself, a ValueError is raised.
321
+
322
+ Returns
323
+ -------
324
+ iterator
325
+ An iterator over maximal cliques, each of which is a list of
326
+ nodes in `G`. If `nodes` is provided, only the maximal cliques
327
+ containing all the nodes in `nodes` are yielded. The order of
328
+ cliques is arbitrary.
329
+
330
+ Raises
331
+ ------
332
+ ValueError
333
+ If `nodes` is not a clique.
334
+
335
+ See Also
336
+ --------
337
+ find_cliques
338
+ An iterative version of the same algorithm. See docstring for examples.
339
+
340
+ Notes
341
+ -----
342
+ To obtain a list of all maximal cliques, use
343
+ `list(find_cliques_recursive(G))`. However, be aware that in the
344
+ worst-case, the length of this list can be exponential in the number
345
+ of nodes in the graph. This function avoids storing all cliques in memory
346
+ by only keeping current candidate node lists in memory during its search.
347
+
348
+ This implementation is based on the algorithm published by Bron and
349
+ Kerbosch (1973) [1]_, as adapted by Tomita, Tanaka and Takahashi
350
+ (2006) [2]_ and discussed in Cazals and Karande (2008) [3]_. For a
351
+ non-recursive implementation, see :func:`find_cliques`.
352
+
353
+ This algorithm ignores self-loops and parallel edges, since cliques
354
+ are not conventionally defined with such edges.
355
+
356
+ References
357
+ ----------
358
+ .. [1] Bron, C. and Kerbosch, J.
359
+ "Algorithm 457: finding all cliques of an undirected graph".
360
+ *Communications of the ACM* 16, 9 (Sep. 1973), 575--577.
361
+ <http://portal.acm.org/citation.cfm?doid=362342.362367>
362
+
363
+ .. [2] Etsuji Tomita, Akira Tanaka, Haruhisa Takahashi,
364
+ "The worst-case time complexity for generating all maximal
365
+ cliques and computational experiments",
366
+ *Theoretical Computer Science*, Volume 363, Issue 1,
367
+ Computing and Combinatorics,
368
+ 10th Annual International Conference on
369
+ Computing and Combinatorics (COCOON 2004), 25 October 2006, Pages 28--42
370
+ <https://doi.org/10.1016/j.tcs.2006.06.015>
371
+
372
+ .. [3] F. Cazals, C. Karande,
373
+ "A note on the problem of reporting maximal cliques",
374
+ *Theoretical Computer Science*,
375
+ Volume 407, Issues 1--3, 6 November 2008, Pages 564--568,
376
+ <https://doi.org/10.1016/j.tcs.2008.05.010>
377
+
378
+ """
379
+ if len(G) == 0:
380
+ return iter([])
381
+
382
+ adj = {u: {v for v in G[u] if v != u} for u in G}
383
+
384
+ # Initialize Q with the given nodes and subg, cand with their nbrs
385
+ Q = nodes[:] if nodes is not None else []
386
+ cand_init = set(G)
387
+ for node in Q:
388
+ if node not in cand_init:
389
+ raise ValueError(f"The given `nodes` {nodes} do not form a clique")
390
+ cand_init &= adj[node]
391
+
392
+ if not cand_init:
393
+ return iter([Q])
394
+
395
+ subg_init = cand_init.copy()
396
+
397
+ def expand(subg, cand):
398
+ u = max(subg, key=lambda u: len(cand & adj[u]))
399
+ for q in cand - adj[u]:
400
+ cand.remove(q)
401
+ Q.append(q)
402
+ adj_q = adj[q]
403
+ subg_q = subg & adj_q
404
+ if not subg_q:
405
+ yield Q[:]
406
+ else:
407
+ cand_q = cand & adj_q
408
+ if cand_q:
409
+ yield from expand(subg_q, cand_q)
410
+ Q.pop()
411
+
412
+ return expand(subg_init, cand_init)
413
+
414
+
415
+ @nx._dispatchable(returns_graph=True)
416
+ def make_max_clique_graph(G, create_using=None):
417
+ """Returns the maximal clique graph of the given graph.
418
+
419
+ The nodes of the maximal clique graph of `G` are the cliques of
420
+ `G` and an edge joins two cliques if the cliques are not disjoint.
421
+
422
+ Parameters
423
+ ----------
424
+ G : NetworkX graph
425
+
426
+ create_using : NetworkX graph constructor, optional (default=nx.Graph)
427
+ Graph type to create. If graph instance, then cleared before populated.
428
+
429
+ Returns
430
+ -------
431
+ NetworkX graph
432
+ A graph whose nodes are the cliques of `G` and whose edges
433
+ join two cliques if they are not disjoint.
434
+
435
+ Notes
436
+ -----
437
+ This function behaves like the following code::
438
+
439
+ import networkx as nx
440
+
441
+ G = nx.make_clique_bipartite(G)
442
+ cliques = [v for v in G.nodes() if G.nodes[v]["bipartite"] == 0]
443
+ G = nx.bipartite.projected_graph(G, cliques)
444
+ G = nx.relabel_nodes(G, {-v: v - 1 for v in G})
445
+
446
+ It should be faster, though, since it skips all the intermediate
447
+ steps.
448
+
449
+ """
450
+ if create_using is None:
451
+ B = G.__class__()
452
+ else:
453
+ B = nx.empty_graph(0, create_using)
454
+ cliques = list(enumerate(set(c) for c in find_cliques(G)))
455
+ # Add a numbered node for each clique.
456
+ B.add_nodes_from(i for i, c in cliques)
457
+ # Join cliques by an edge if they share a node.
458
+ clique_pairs = combinations(cliques, 2)
459
+ B.add_edges_from((i, j) for (i, c1), (j, c2) in clique_pairs if c1 & c2)
460
+ return B
461
+
462
+
463
+ @nx._dispatchable(returns_graph=True)
464
+ def make_clique_bipartite(G, fpos=None, create_using=None, name=None):
465
+ """Returns the bipartite clique graph corresponding to `G`.
466
+
467
+ In the returned bipartite graph, the "bottom" nodes are the nodes of
468
+ `G` and the "top" nodes represent the maximal cliques of `G`.
469
+ There is an edge from node *v* to clique *C* in the returned graph
470
+ if and only if *v* is an element of *C*.
471
+
472
+ Parameters
473
+ ----------
474
+ G : NetworkX graph
475
+ An undirected graph.
476
+
477
+ fpos : bool
478
+ If True or not None, the returned graph will have an
479
+ additional attribute, `pos`, a dictionary mapping node to
480
+ position in the Euclidean plane.
481
+
482
+ create_using : NetworkX graph constructor, optional (default=nx.Graph)
483
+ Graph type to create. If graph instance, then cleared before populated.
484
+
485
+ Returns
486
+ -------
487
+ NetworkX graph
488
+ A bipartite graph whose "bottom" set is the nodes of the graph
489
+ `G`, whose "top" set is the cliques of `G`, and whose edges
490
+ join nodes of `G` to the cliques that contain them.
491
+
492
+ The nodes of the graph `G` have the node attribute
493
+ 'bipartite' set to 1 and the nodes representing cliques
494
+ have the node attribute 'bipartite' set to 0, as is the
495
+ convention for bipartite graphs in NetworkX.
496
+
497
+ """
498
+ B = nx.empty_graph(0, create_using)
499
+ B.clear()
500
+ # The "bottom" nodes in the bipartite graph are the nodes of the
501
+ # original graph, G.
502
+ B.add_nodes_from(G, bipartite=1)
503
+ for i, cl in enumerate(find_cliques(G)):
504
+ # The "top" nodes in the bipartite graph are the cliques. These
505
+ # nodes get negative numbers as labels.
506
+ name = -i - 1
507
+ B.add_node(name, bipartite=0)
508
+ B.add_edges_from((v, name) for v in cl)
509
+ return B
510
+
511
+
512
+ @nx._dispatchable
513
+ def node_clique_number(G, nodes=None, cliques=None, separate_nodes=False):
514
+ """Returns the size of the largest maximal clique containing each given node.
515
+
516
+ Returns a single or list depending on input nodes.
517
+ An optional list of cliques can be input if already computed.
518
+
519
+ Parameters
520
+ ----------
521
+ G : NetworkX graph
522
+ An undirected graph.
523
+
524
+ cliques : list, optional (default=None)
525
+ A list of cliques, each of which is itself a list of nodes.
526
+ If not specified, the list of all cliques will be computed
527
+ using :func:`find_cliques`.
528
+
529
+ Returns
530
+ -------
531
+ int or dict
532
+ If `nodes` is a single node, returns the size of the
533
+ largest maximal clique in `G` containing that node.
534
+ Otherwise return a dict keyed by node to the size
535
+ of the largest maximal clique containing that node.
536
+
537
+ See Also
538
+ --------
539
+ find_cliques
540
+ find_cliques yields the maximal cliques of G.
541
+ It accepts a `nodes` argument which restricts consideration to
542
+ maximal cliques containing all the given `nodes`.
543
+ The search for the cliques is optimized for `nodes`.
544
+ """
545
+ if cliques is None:
546
+ if nodes is not None:
547
+ # Use ego_graph to decrease size of graph
548
+ # check for single node
549
+ if nodes in G:
550
+ return max(len(c) for c in find_cliques(nx.ego_graph(G, nodes)))
551
+ # handle multiple nodes
552
+ return {
553
+ n: max(len(c) for c in find_cliques(nx.ego_graph(G, n))) for n in nodes
554
+ }
555
+
556
+ # nodes is None--find all cliques
557
+ cliques = list(find_cliques(G))
558
+
559
+ # single node requested
560
+ if nodes in G:
561
+ return max(len(c) for c in cliques if nodes in c)
562
+
563
+ # multiple nodes requested
564
+ # preprocess all nodes (faster than one at a time for even 2 nodes)
565
+ size_for_n = defaultdict(int)
566
+ for c in cliques:
567
+ size_of_c = len(c)
568
+ for n in c:
569
+ if size_for_n[n] < size_of_c:
570
+ size_for_n[n] = size_of_c
571
+ if nodes is None:
572
+ return size_for_n
573
+ return {n: size_for_n[n] for n in nodes}
574
+
575
+
576
+ def number_of_cliques(G, nodes=None, cliques=None):
577
+ """Returns the number of maximal cliques for each node.
578
+
579
+ Returns a single or list depending on input nodes.
580
+ Optional list of cliques can be input if already computed.
581
+ """
582
+ if cliques is None:
583
+ cliques = list(find_cliques(G))
584
+
585
+ if nodes is None:
586
+ nodes = list(G.nodes()) # none, get entire graph
587
+
588
+ if not isinstance(nodes, list): # check for a list
589
+ v = nodes
590
+ # assume it is a single value
591
+ numcliq = len([1 for c in cliques if v in c])
592
+ else:
593
+ numcliq = {}
594
+ for v in nodes:
595
+ numcliq[v] = len([1 for c in cliques if v in c])
596
+ return numcliq
597
+
598
+
599
+ class MaxWeightClique:
600
+ """A class for the maximum weight clique algorithm.
601
+
602
+ This class is a helper for the `max_weight_clique` function. The class
603
+ should not normally be used directly.
604
+
605
+ Parameters
606
+ ----------
607
+ G : NetworkX graph
608
+ The undirected graph for which a maximum weight clique is sought
609
+ weight : string or None, optional (default='weight')
610
+ The node attribute that holds the integer value used as a weight.
611
+ If None, then each node has weight 1.
612
+
613
+ Attributes
614
+ ----------
615
+ G : NetworkX graph
616
+ The undirected graph for which a maximum weight clique is sought
617
+ node_weights: dict
618
+ The weight of each node
619
+ incumbent_nodes : list
620
+ The nodes of the incumbent clique (the best clique found so far)
621
+ incumbent_weight: int
622
+ The weight of the incumbent clique
623
+ """
624
+
625
+ def __init__(self, G, weight):
626
+ self.G = G
627
+ self.incumbent_nodes = []
628
+ self.incumbent_weight = 0
629
+
630
+ if weight is None:
631
+ self.node_weights = {v: 1 for v in G.nodes()}
632
+ else:
633
+ for v in G.nodes():
634
+ if weight not in G.nodes[v]:
635
+ errmsg = f"Node {v!r} does not have the requested weight field."
636
+ raise KeyError(errmsg)
637
+ if not isinstance(G.nodes[v][weight], int):
638
+ errmsg = f"The {weight!r} field of node {v!r} is not an integer."
639
+ raise ValueError(errmsg)
640
+ self.node_weights = {v: G.nodes[v][weight] for v in G.nodes()}
641
+
642
+ def update_incumbent_if_improved(self, C, C_weight):
643
+ """Update the incumbent if the node set C has greater weight.
644
+
645
+ C is assumed to be a clique.
646
+ """
647
+ if C_weight > self.incumbent_weight:
648
+ self.incumbent_nodes = C[:]
649
+ self.incumbent_weight = C_weight
650
+
651
+ def greedily_find_independent_set(self, P):
652
+ """Greedily find an independent set of nodes from a set of
653
+ nodes P."""
654
+ independent_set = []
655
+ P = P[:]
656
+ while P:
657
+ v = P[0]
658
+ independent_set.append(v)
659
+ P = [w for w in P if v != w and not self.G.has_edge(v, w)]
660
+ return independent_set
661
+
662
+ def find_branching_nodes(self, P, target):
663
+ """Find a set of nodes to branch on."""
664
+ residual_wt = {v: self.node_weights[v] for v in P}
665
+ total_wt = 0
666
+ P = P[:]
667
+ while P:
668
+ independent_set = self.greedily_find_independent_set(P)
669
+ min_wt_in_class = min(residual_wt[v] for v in independent_set)
670
+ total_wt += min_wt_in_class
671
+ if total_wt > target:
672
+ break
673
+ for v in independent_set:
674
+ residual_wt[v] -= min_wt_in_class
675
+ P = [v for v in P if residual_wt[v] != 0]
676
+ return P
677
+
678
+ def expand(self, C, C_weight, P):
679
+ """Look for the best clique that contains all the nodes in C and zero or
680
+ more of the nodes in P, backtracking if it can be shown that no such
681
+ clique has greater weight than the incumbent.
682
+ """
683
+ self.update_incumbent_if_improved(C, C_weight)
684
+ branching_nodes = self.find_branching_nodes(P, self.incumbent_weight - C_weight)
685
+ while branching_nodes:
686
+ v = branching_nodes.pop()
687
+ P.remove(v)
688
+ new_C = C + [v]
689
+ new_C_weight = C_weight + self.node_weights[v]
690
+ new_P = [w for w in P if self.G.has_edge(v, w)]
691
+ self.expand(new_C, new_C_weight, new_P)
692
+
693
+ def find_max_weight_clique(self):
694
+ """Find a maximum weight clique."""
695
+ # Sort nodes in reverse order of degree for speed
696
+ nodes = sorted(self.G.nodes(), key=lambda v: self.G.degree(v), reverse=True)
697
+ nodes = [v for v in nodes if self.node_weights[v] > 0]
698
+ self.expand([], 0, nodes)
699
+
700
+
701
+ @not_implemented_for("directed")
702
+ @nx._dispatchable(node_attrs="weight")
703
+ def max_weight_clique(G, weight="weight"):
704
+ """Find a maximum weight clique in G.
705
+
706
+ A *clique* in a graph is a set of nodes such that every two distinct nodes
707
+ are adjacent. The *weight* of a clique is the sum of the weights of its
708
+ nodes. A *maximum weight clique* of graph G is a clique C in G such that
709
+ no clique in G has weight greater than the weight of C.
710
+
711
+ Parameters
712
+ ----------
713
+ G : NetworkX graph
714
+ Undirected graph
715
+ weight : string or None, optional (default='weight')
716
+ The node attribute that holds the integer value used as a weight.
717
+ If None, then each node has weight 1.
718
+
719
+ Returns
720
+ -------
721
+ clique : list
722
+ the nodes of a maximum weight clique
723
+ weight : int
724
+ the weight of a maximum weight clique
725
+
726
+ Notes
727
+ -----
728
+ The implementation is recursive, and therefore it may run into recursion
729
+ depth issues if G contains a clique whose number of nodes is close to the
730
+ recursion depth limit.
731
+
732
+ At each search node, the algorithm greedily constructs a weighted
733
+ independent set cover of part of the graph in order to find a small set of
734
+ nodes on which to branch. The algorithm is very similar to the algorithm
735
+ of Tavares et al. [1]_, other than the fact that the NetworkX version does
736
+ not use bitsets. This style of algorithm for maximum weight clique (and
737
+ maximum weight independent set, which is the same problem but on the
738
+ complement graph) has a decades-long history. See Algorithm B of Warren
739
+ and Hicks [2]_ and the references in that paper.
740
+
741
+ References
742
+ ----------
743
+ .. [1] Tavares, W.A., Neto, M.B.C., Rodrigues, C.D., Michelon, P.: Um
744
+ algoritmo de branch and bound para o problema da clique máxima
745
+ ponderada. Proceedings of XLVII SBPO 1 (2015).
746
+
747
+ .. [2] Warren, Jeffrey S, Hicks, Illya V.: Combinatorial Branch-and-Bound
748
+ for the Maximum Weight Independent Set Problem. Technical Report,
749
+ Texas A&M University (2016).
750
+ """
751
+
752
+ mwc = MaxWeightClique(G, weight)
753
+ mwc.find_max_weight_clique()
754
+ return mwc.incumbent_nodes, mwc.incumbent_weight
venv/lib/python3.10/site-packages/networkx/algorithms/cluster.py ADDED
@@ -0,0 +1,609 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Algorithms to characterize the number of triangles in a graph."""
2
+
3
+ from collections import Counter
4
+ from itertools import chain, combinations
5
+
6
+ import networkx as nx
7
+ from networkx.utils import not_implemented_for
8
+
9
+ __all__ = [
10
+ "triangles",
11
+ "average_clustering",
12
+ "clustering",
13
+ "transitivity",
14
+ "square_clustering",
15
+ "generalized_degree",
16
+ ]
17
+
18
+
19
+ @not_implemented_for("directed")
20
+ @nx._dispatchable
21
+ def triangles(G, nodes=None):
22
+ """Compute the number of triangles.
23
+
24
+ Finds the number of triangles that include a node as one vertex.
25
+
26
+ Parameters
27
+ ----------
28
+ G : graph
29
+ A networkx graph
30
+
31
+ nodes : node, iterable of nodes, or None (default=None)
32
+ If a singleton node, return the number of triangles for that node.
33
+ If an iterable, compute the number of triangles for each of those nodes.
34
+ If `None` (the default) compute the number of triangles for all nodes in `G`.
35
+
36
+ Returns
37
+ -------
38
+ out : dict or int
39
+ If `nodes` is a container of nodes, returns number of triangles keyed by node (dict).
40
+ If `nodes` is a specific node, returns number of triangles for the node (int).
41
+
42
+ Examples
43
+ --------
44
+ >>> G = nx.complete_graph(5)
45
+ >>> print(nx.triangles(G, 0))
46
+ 6
47
+ >>> print(nx.triangles(G))
48
+ {0: 6, 1: 6, 2: 6, 3: 6, 4: 6}
49
+ >>> print(list(nx.triangles(G, [0, 1]).values()))
50
+ [6, 6]
51
+
52
+ Notes
53
+ -----
54
+ Self loops are ignored.
55
+
56
+ """
57
+ if nodes is not None:
58
+ # If `nodes` represents a single node, return only its number of triangles
59
+ if nodes in G:
60
+ return next(_triangles_and_degree_iter(G, nodes))[2] // 2
61
+
62
+ # if `nodes` is a container of nodes, then return a
63
+ # dictionary mapping node to number of triangles.
64
+ return {v: t // 2 for v, d, t, _ in _triangles_and_degree_iter(G, nodes)}
65
+
66
+ # if nodes is None, then compute triangles for the complete graph
67
+
68
+ # dict used to avoid visiting the same nodes twice
69
+ # this allows calculating/counting each triangle only once
70
+ later_nbrs = {}
71
+
72
+ # iterate over the nodes in a graph
73
+ for node, neighbors in G.adjacency():
74
+ later_nbrs[node] = {n for n in neighbors if n not in later_nbrs and n != node}
75
+
76
+ # instantiate Counter for each node to include isolated nodes
77
+ # add 1 to the count if a nodes neighbor's neighbor is also a neighbor
78
+ triangle_counts = Counter(dict.fromkeys(G, 0))
79
+ for node1, neighbors in later_nbrs.items():
80
+ for node2 in neighbors:
81
+ third_nodes = neighbors & later_nbrs[node2]
82
+ m = len(third_nodes)
83
+ triangle_counts[node1] += m
84
+ triangle_counts[node2] += m
85
+ triangle_counts.update(third_nodes)
86
+
87
+ return dict(triangle_counts)
88
+
89
+
90
+ @not_implemented_for("multigraph")
91
+ def _triangles_and_degree_iter(G, nodes=None):
92
+ """Return an iterator of (node, degree, triangles, generalized degree).
93
+
94
+ This double counts triangles so you may want to divide by 2.
95
+ See degree(), triangles() and generalized_degree() for definitions
96
+ and details.
97
+
98
+ """
99
+ if nodes is None:
100
+ nodes_nbrs = G.adj.items()
101
+ else:
102
+ nodes_nbrs = ((n, G[n]) for n in G.nbunch_iter(nodes))
103
+
104
+ for v, v_nbrs in nodes_nbrs:
105
+ vs = set(v_nbrs) - {v}
106
+ gen_degree = Counter(len(vs & (set(G[w]) - {w})) for w in vs)
107
+ ntriangles = sum(k * val for k, val in gen_degree.items())
108
+ yield (v, len(vs), ntriangles, gen_degree)
109
+
110
+
111
+ @not_implemented_for("multigraph")
112
+ def _weighted_triangles_and_degree_iter(G, nodes=None, weight="weight"):
113
+ """Return an iterator of (node, degree, weighted_triangles).
114
+
115
+ Used for weighted clustering.
116
+ Note: this returns the geometric average weight of edges in the triangle.
117
+ Also, each triangle is counted twice (each direction).
118
+ So you may want to divide by 2.
119
+
120
+ """
121
+ import numpy as np
122
+
123
+ if weight is None or G.number_of_edges() == 0:
124
+ max_weight = 1
125
+ else:
126
+ max_weight = max(d.get(weight, 1) for u, v, d in G.edges(data=True))
127
+ if nodes is None:
128
+ nodes_nbrs = G.adj.items()
129
+ else:
130
+ nodes_nbrs = ((n, G[n]) for n in G.nbunch_iter(nodes))
131
+
132
+ def wt(u, v):
133
+ return G[u][v].get(weight, 1) / max_weight
134
+
135
+ for i, nbrs in nodes_nbrs:
136
+ inbrs = set(nbrs) - {i}
137
+ weighted_triangles = 0
138
+ seen = set()
139
+ for j in inbrs:
140
+ seen.add(j)
141
+ # This avoids counting twice -- we double at the end.
142
+ jnbrs = set(G[j]) - seen
143
+ # Only compute the edge weight once, before the inner inner
144
+ # loop.
145
+ wij = wt(i, j)
146
+ weighted_triangles += np.cbrt(
147
+ [(wij * wt(j, k) * wt(k, i)) for k in inbrs & jnbrs]
148
+ ).sum()
149
+ yield (i, len(inbrs), 2 * float(weighted_triangles))
150
+
151
+
152
+ @not_implemented_for("multigraph")
153
+ def _directed_triangles_and_degree_iter(G, nodes=None):
154
+ """Return an iterator of
155
+ (node, total_degree, reciprocal_degree, directed_triangles).
156
+
157
+ Used for directed clustering.
158
+ Note that unlike `_triangles_and_degree_iter()`, this function counts
159
+ directed triangles so does not count triangles twice.
160
+
161
+ """
162
+ nodes_nbrs = ((n, G._pred[n], G._succ[n]) for n in G.nbunch_iter(nodes))
163
+
164
+ for i, preds, succs in nodes_nbrs:
165
+ ipreds = set(preds) - {i}
166
+ isuccs = set(succs) - {i}
167
+
168
+ directed_triangles = 0
169
+ for j in chain(ipreds, isuccs):
170
+ jpreds = set(G._pred[j]) - {j}
171
+ jsuccs = set(G._succ[j]) - {j}
172
+ directed_triangles += sum(
173
+ 1
174
+ for k in chain(
175
+ (ipreds & jpreds),
176
+ (ipreds & jsuccs),
177
+ (isuccs & jpreds),
178
+ (isuccs & jsuccs),
179
+ )
180
+ )
181
+ dtotal = len(ipreds) + len(isuccs)
182
+ dbidirectional = len(ipreds & isuccs)
183
+ yield (i, dtotal, dbidirectional, directed_triangles)
184
+
185
+
186
+ @not_implemented_for("multigraph")
187
+ def _directed_weighted_triangles_and_degree_iter(G, nodes=None, weight="weight"):
188
+ """Return an iterator of
189
+ (node, total_degree, reciprocal_degree, directed_weighted_triangles).
190
+
191
+ Used for directed weighted clustering.
192
+ Note that unlike `_weighted_triangles_and_degree_iter()`, this function counts
193
+ directed triangles so does not count triangles twice.
194
+
195
+ """
196
+ import numpy as np
197
+
198
+ if weight is None or G.number_of_edges() == 0:
199
+ max_weight = 1
200
+ else:
201
+ max_weight = max(d.get(weight, 1) for u, v, d in G.edges(data=True))
202
+
203
+ nodes_nbrs = ((n, G._pred[n], G._succ[n]) for n in G.nbunch_iter(nodes))
204
+
205
+ def wt(u, v):
206
+ return G[u][v].get(weight, 1) / max_weight
207
+
208
+ for i, preds, succs in nodes_nbrs:
209
+ ipreds = set(preds) - {i}
210
+ isuccs = set(succs) - {i}
211
+
212
+ directed_triangles = 0
213
+ for j in ipreds:
214
+ jpreds = set(G._pred[j]) - {j}
215
+ jsuccs = set(G._succ[j]) - {j}
216
+ directed_triangles += np.cbrt(
217
+ [(wt(j, i) * wt(k, i) * wt(k, j)) for k in ipreds & jpreds]
218
+ ).sum()
219
+ directed_triangles += np.cbrt(
220
+ [(wt(j, i) * wt(k, i) * wt(j, k)) for k in ipreds & jsuccs]
221
+ ).sum()
222
+ directed_triangles += np.cbrt(
223
+ [(wt(j, i) * wt(i, k) * wt(k, j)) for k in isuccs & jpreds]
224
+ ).sum()
225
+ directed_triangles += np.cbrt(
226
+ [(wt(j, i) * wt(i, k) * wt(j, k)) for k in isuccs & jsuccs]
227
+ ).sum()
228
+
229
+ for j in isuccs:
230
+ jpreds = set(G._pred[j]) - {j}
231
+ jsuccs = set(G._succ[j]) - {j}
232
+ directed_triangles += np.cbrt(
233
+ [(wt(i, j) * wt(k, i) * wt(k, j)) for k in ipreds & jpreds]
234
+ ).sum()
235
+ directed_triangles += np.cbrt(
236
+ [(wt(i, j) * wt(k, i) * wt(j, k)) for k in ipreds & jsuccs]
237
+ ).sum()
238
+ directed_triangles += np.cbrt(
239
+ [(wt(i, j) * wt(i, k) * wt(k, j)) for k in isuccs & jpreds]
240
+ ).sum()
241
+ directed_triangles += np.cbrt(
242
+ [(wt(i, j) * wt(i, k) * wt(j, k)) for k in isuccs & jsuccs]
243
+ ).sum()
244
+
245
+ dtotal = len(ipreds) + len(isuccs)
246
+ dbidirectional = len(ipreds & isuccs)
247
+ yield (i, dtotal, dbidirectional, float(directed_triangles))
248
+
249
+
250
+ @nx._dispatchable(edge_attrs="weight")
251
+ def average_clustering(G, nodes=None, weight=None, count_zeros=True):
252
+ r"""Compute the average clustering coefficient for the graph G.
253
+
254
+ The clustering coefficient for the graph is the average,
255
+
256
+ .. math::
257
+
258
+ C = \frac{1}{n}\sum_{v \in G} c_v,
259
+
260
+ where :math:`n` is the number of nodes in `G`.
261
+
262
+ Parameters
263
+ ----------
264
+ G : graph
265
+
266
+ nodes : container of nodes, optional (default=all nodes in G)
267
+ Compute average clustering for nodes in this container.
268
+
269
+ weight : string or None, optional (default=None)
270
+ The edge attribute that holds the numerical value used as a weight.
271
+ If None, then each edge has weight 1.
272
+
273
+ count_zeros : bool
274
+ If False include only the nodes with nonzero clustering in the average.
275
+
276
+ Returns
277
+ -------
278
+ avg : float
279
+ Average clustering
280
+
281
+ Examples
282
+ --------
283
+ >>> G = nx.complete_graph(5)
284
+ >>> print(nx.average_clustering(G))
285
+ 1.0
286
+
287
+ Notes
288
+ -----
289
+ This is a space saving routine; it might be faster
290
+ to use the clustering function to get a list and then take the average.
291
+
292
+ Self loops are ignored.
293
+
294
+ References
295
+ ----------
296
+ .. [1] Generalizations of the clustering coefficient to weighted
297
+ complex networks by J. Saramäki, M. Kivelä, J.-P. Onnela,
298
+ K. Kaski, and J. Kertész, Physical Review E, 75 027105 (2007).
299
+ http://jponnela.com/web_documents/a9.pdf
300
+ .. [2] Marcus Kaiser, Mean clustering coefficients: the role of isolated
301
+ nodes and leafs on clustering measures for small-world networks.
302
+ https://arxiv.org/abs/0802.2512
303
+ """
304
+ c = clustering(G, nodes, weight=weight).values()
305
+ if not count_zeros:
306
+ c = [v for v in c if abs(v) > 0]
307
+ return sum(c) / len(c)
308
+
309
+
310
+ @nx._dispatchable(edge_attrs="weight")
311
+ def clustering(G, nodes=None, weight=None):
312
+ r"""Compute the clustering coefficient for nodes.
313
+
314
+ For unweighted graphs, the clustering of a node :math:`u`
315
+ is the fraction of possible triangles through that node that exist,
316
+
317
+ .. math::
318
+
319
+ c_u = \frac{2 T(u)}{deg(u)(deg(u)-1)},
320
+
321
+ where :math:`T(u)` is the number of triangles through node :math:`u` and
322
+ :math:`deg(u)` is the degree of :math:`u`.
323
+
324
+ For weighted graphs, there are several ways to define clustering [1]_.
325
+ the one used here is defined
326
+ as the geometric average of the subgraph edge weights [2]_,
327
+
328
+ .. math::
329
+
330
+ c_u = \frac{1}{deg(u)(deg(u)-1))}
331
+ \sum_{vw} (\hat{w}_{uv} \hat{w}_{uw} \hat{w}_{vw})^{1/3}.
332
+
333
+ The edge weights :math:`\hat{w}_{uv}` are normalized by the maximum weight
334
+ in the network :math:`\hat{w}_{uv} = w_{uv}/\max(w)`.
335
+
336
+ The value of :math:`c_u` is assigned to 0 if :math:`deg(u) < 2`.
337
+
338
+ Additionally, this weighted definition has been generalized to support negative edge weights [3]_.
339
+
340
+ For directed graphs, the clustering is similarly defined as the fraction
341
+ of all possible directed triangles or geometric average of the subgraph
342
+ edge weights for unweighted and weighted directed graph respectively [4]_.
343
+
344
+ .. math::
345
+
346
+ c_u = \frac{T(u)}{2(deg^{tot}(u)(deg^{tot}(u)-1) - 2deg^{\leftrightarrow}(u))},
347
+
348
+ where :math:`T(u)` is the number of directed triangles through node
349
+ :math:`u`, :math:`deg^{tot}(u)` is the sum of in degree and out degree of
350
+ :math:`u` and :math:`deg^{\leftrightarrow}(u)` is the reciprocal degree of
351
+ :math:`u`.
352
+
353
+
354
+ Parameters
355
+ ----------
356
+ G : graph
357
+
358
+ nodes : node, iterable of nodes, or None (default=None)
359
+ If a singleton node, return the number of triangles for that node.
360
+ If an iterable, compute the number of triangles for each of those nodes.
361
+ If `None` (the default) compute the number of triangles for all nodes in `G`.
362
+
363
+ weight : string or None, optional (default=None)
364
+ The edge attribute that holds the numerical value used as a weight.
365
+ If None, then each edge has weight 1.
366
+
367
+ Returns
368
+ -------
369
+ out : float, or dictionary
370
+ Clustering coefficient at specified nodes
371
+
372
+ Examples
373
+ --------
374
+ >>> G = nx.complete_graph(5)
375
+ >>> print(nx.clustering(G, 0))
376
+ 1.0
377
+ >>> print(nx.clustering(G))
378
+ {0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0}
379
+
380
+ Notes
381
+ -----
382
+ Self loops are ignored.
383
+
384
+ References
385
+ ----------
386
+ .. [1] Generalizations of the clustering coefficient to weighted
387
+ complex networks by J. Saramäki, M. Kivelä, J.-P. Onnela,
388
+ K. Kaski, and J. Kertész, Physical Review E, 75 027105 (2007).
389
+ http://jponnela.com/web_documents/a9.pdf
390
+ .. [2] Intensity and coherence of motifs in weighted complex
391
+ networks by J. P. Onnela, J. Saramäki, J. Kertész, and K. Kaski,
392
+ Physical Review E, 71(6), 065103 (2005).
393
+ .. [3] Generalization of Clustering Coefficients to Signed Correlation Networks
394
+ by G. Costantini and M. Perugini, PloS one, 9(2), e88669 (2014).
395
+ .. [4] Clustering in complex directed networks by G. Fagiolo,
396
+ Physical Review E, 76(2), 026107 (2007).
397
+ """
398
+ if G.is_directed():
399
+ if weight is not None:
400
+ td_iter = _directed_weighted_triangles_and_degree_iter(G, nodes, weight)
401
+ clusterc = {
402
+ v: 0 if t == 0 else t / ((dt * (dt - 1) - 2 * db) * 2)
403
+ for v, dt, db, t in td_iter
404
+ }
405
+ else:
406
+ td_iter = _directed_triangles_and_degree_iter(G, nodes)
407
+ clusterc = {
408
+ v: 0 if t == 0 else t / ((dt * (dt - 1) - 2 * db) * 2)
409
+ for v, dt, db, t in td_iter
410
+ }
411
+ else:
412
+ # The formula 2*T/(d*(d-1)) from docs is t/(d*(d-1)) here b/c t==2*T
413
+ if weight is not None:
414
+ td_iter = _weighted_triangles_and_degree_iter(G, nodes, weight)
415
+ clusterc = {v: 0 if t == 0 else t / (d * (d - 1)) for v, d, t in td_iter}
416
+ else:
417
+ td_iter = _triangles_and_degree_iter(G, nodes)
418
+ clusterc = {v: 0 if t == 0 else t / (d * (d - 1)) for v, d, t, _ in td_iter}
419
+ if nodes in G:
420
+ # Return the value of the sole entry in the dictionary.
421
+ return clusterc[nodes]
422
+ return clusterc
423
+
424
+
425
+ @nx._dispatchable
426
+ def transitivity(G):
427
+ r"""Compute graph transitivity, the fraction of all possible triangles
428
+ present in G.
429
+
430
+ Possible triangles are identified by the number of "triads"
431
+ (two edges with a shared vertex).
432
+
433
+ The transitivity is
434
+
435
+ .. math::
436
+
437
+ T = 3\frac{\#triangles}{\#triads}.
438
+
439
+ Parameters
440
+ ----------
441
+ G : graph
442
+
443
+ Returns
444
+ -------
445
+ out : float
446
+ Transitivity
447
+
448
+ Notes
449
+ -----
450
+ Self loops are ignored.
451
+
452
+ Examples
453
+ --------
454
+ >>> G = nx.complete_graph(5)
455
+ >>> print(nx.transitivity(G))
456
+ 1.0
457
+ """
458
+ triangles_contri = [
459
+ (t, d * (d - 1)) for v, d, t, _ in _triangles_and_degree_iter(G)
460
+ ]
461
+ # If the graph is empty
462
+ if len(triangles_contri) == 0:
463
+ return 0
464
+ triangles, contri = map(sum, zip(*triangles_contri))
465
+ return 0 if triangles == 0 else triangles / contri
466
+
467
+
468
+ @nx._dispatchable
469
+ def square_clustering(G, nodes=None):
470
+ r"""Compute the squares clustering coefficient for nodes.
471
+
472
+ For each node return the fraction of possible squares that exist at
473
+ the node [1]_
474
+
475
+ .. math::
476
+ C_4(v) = \frac{ \sum_{u=1}^{k_v}
477
+ \sum_{w=u+1}^{k_v} q_v(u,w) }{ \sum_{u=1}^{k_v}
478
+ \sum_{w=u+1}^{k_v} [a_v(u,w) + q_v(u,w)]},
479
+
480
+ where :math:`q_v(u,w)` are the number of common neighbors of :math:`u` and
481
+ :math:`w` other than :math:`v` (ie squares), and :math:`a_v(u,w) = (k_u -
482
+ (1+q_v(u,w)+\theta_{uv})) + (k_w - (1+q_v(u,w)+\theta_{uw}))`, where
483
+ :math:`\theta_{uw} = 1` if :math:`u` and :math:`w` are connected and 0
484
+ otherwise. [2]_
485
+
486
+ Parameters
487
+ ----------
488
+ G : graph
489
+
490
+ nodes : container of nodes, optional (default=all nodes in G)
491
+ Compute clustering for nodes in this container.
492
+
493
+ Returns
494
+ -------
495
+ c4 : dictionary
496
+ A dictionary keyed by node with the square clustering coefficient value.
497
+
498
+ Examples
499
+ --------
500
+ >>> G = nx.complete_graph(5)
501
+ >>> print(nx.square_clustering(G, 0))
502
+ 1.0
503
+ >>> print(nx.square_clustering(G))
504
+ {0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0}
505
+
506
+ Notes
507
+ -----
508
+ While :math:`C_3(v)` (triangle clustering) gives the probability that
509
+ two neighbors of node v are connected with each other, :math:`C_4(v)` is
510
+ the probability that two neighbors of node v share a common
511
+ neighbor different from v. This algorithm can be applied to both
512
+ bipartite and unipartite networks.
513
+
514
+ References
515
+ ----------
516
+ .. [1] Pedro G. Lind, Marta C. González, and Hans J. Herrmann. 2005
517
+ Cycles and clustering in bipartite networks.
518
+ Physical Review E (72) 056127.
519
+ .. [2] Zhang, Peng et al. Clustering Coefficient and Community Structure of
520
+ Bipartite Networks. Physica A: Statistical Mechanics and its Applications 387.27 (2008): 6869–6875.
521
+ https://arxiv.org/abs/0710.0117v1
522
+ """
523
+ if nodes is None:
524
+ node_iter = G
525
+ else:
526
+ node_iter = G.nbunch_iter(nodes)
527
+ clustering = {}
528
+ for v in node_iter:
529
+ clustering[v] = 0
530
+ potential = 0
531
+ for u, w in combinations(G[v], 2):
532
+ squares = len((set(G[u]) & set(G[w])) - {v})
533
+ clustering[v] += squares
534
+ degm = squares + 1
535
+ if w in G[u]:
536
+ degm += 1
537
+ potential += (len(G[u]) - degm) + (len(G[w]) - degm) + squares
538
+ if potential > 0:
539
+ clustering[v] /= potential
540
+ if nodes in G:
541
+ # Return the value of the sole entry in the dictionary.
542
+ return clustering[nodes]
543
+ return clustering
544
+
545
+
546
+ @not_implemented_for("directed")
547
+ @nx._dispatchable
548
+ def generalized_degree(G, nodes=None):
549
+ r"""Compute the generalized degree for nodes.
550
+
551
+ For each node, the generalized degree shows how many edges of given
552
+ triangle multiplicity the node is connected to. The triangle multiplicity
553
+ of an edge is the number of triangles an edge participates in. The
554
+ generalized degree of node :math:`i` can be written as a vector
555
+ :math:`\mathbf{k}_i=(k_i^{(0)}, \dotsc, k_i^{(N-2)})` where
556
+ :math:`k_i^{(j)}` is the number of edges attached to node :math:`i` that
557
+ participate in :math:`j` triangles.
558
+
559
+ Parameters
560
+ ----------
561
+ G : graph
562
+
563
+ nodes : container of nodes, optional (default=all nodes in G)
564
+ Compute the generalized degree for nodes in this container.
565
+
566
+ Returns
567
+ -------
568
+ out : Counter, or dictionary of Counters
569
+ Generalized degree of specified nodes. The Counter is keyed by edge
570
+ triangle multiplicity.
571
+
572
+ Examples
573
+ --------
574
+ >>> G = nx.complete_graph(5)
575
+ >>> print(nx.generalized_degree(G, 0))
576
+ Counter({3: 4})
577
+ >>> print(nx.generalized_degree(G))
578
+ {0: Counter({3: 4}), 1: Counter({3: 4}), 2: Counter({3: 4}), 3: Counter({3: 4}), 4: Counter({3: 4})}
579
+
580
+ To recover the number of triangles attached to a node:
581
+
582
+ >>> k1 = nx.generalized_degree(G, 0)
583
+ >>> sum([k * v for k, v in k1.items()]) / 2 == nx.triangles(G, 0)
584
+ True
585
+
586
+ Notes
587
+ -----
588
+ Self loops are ignored.
589
+
590
+ In a network of N nodes, the highest triangle multiplicity an edge can have
591
+ is N-2.
592
+
593
+ The return value does not include a `zero` entry if no edges of a
594
+ particular triangle multiplicity are present.
595
+
596
+ The number of triangles node :math:`i` is attached to can be recovered from
597
+ the generalized degree :math:`\mathbf{k}_i=(k_i^{(0)}, \dotsc,
598
+ k_i^{(N-2)})` by :math:`(k_i^{(1)}+2k_i^{(2)}+\dotsc +(N-2)k_i^{(N-2)})/2`.
599
+
600
+ References
601
+ ----------
602
+ .. [1] Networks with arbitrary edge multiplicities by V. Zlatić,
603
+ D. Garlaschelli and G. Caldarelli, EPL (Europhysics Letters),
604
+ Volume 97, Number 2 (2012).
605
+ https://iopscience.iop.org/article/10.1209/0295-5075/97/28005
606
+ """
607
+ if nodes in G:
608
+ return next(_triangles_and_degree_iter(G, nodes))[3]
609
+ return {v: gd for v, d, t, gd in _triangles_and_degree_iter(G, nodes)}
venv/lib/python3.10/site-packages/networkx/algorithms/core.py ADDED
@@ -0,0 +1,648 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Find the k-cores of a graph.
3
+
4
+ The k-core is found by recursively pruning nodes with degrees less than k.
5
+
6
+ See the following references for details:
7
+
8
+ An O(m) Algorithm for Cores Decomposition of Networks
9
+ Vladimir Batagelj and Matjaz Zaversnik, 2003.
10
+ https://arxiv.org/abs/cs.DS/0310049
11
+
12
+ Generalized Cores
13
+ Vladimir Batagelj and Matjaz Zaversnik, 2002.
14
+ https://arxiv.org/pdf/cs/0202039
15
+
16
+ For directed graphs a more general notion is that of D-cores which
17
+ looks at (k, l) restrictions on (in, out) degree. The (k, k) D-core
18
+ is the k-core.
19
+
20
+ D-cores: Measuring Collaboration of Directed Graphs Based on Degeneracy
21
+ Christos Giatsidis, Dimitrios M. Thilikos, Michalis Vazirgiannis, ICDM 2011.
22
+ http://www.graphdegeneracy.org/dcores_ICDM_2011.pdf
23
+
24
+ Multi-scale structure and topological anomaly detection via a new network \
25
+ statistic: The onion decomposition
26
+ L. Hébert-Dufresne, J. A. Grochow, and A. Allard
27
+ Scientific Reports 6, 31708 (2016)
28
+ http://doi.org/10.1038/srep31708
29
+
30
+ """
31
+ import networkx as nx
32
+
33
+ __all__ = [
34
+ "core_number",
35
+ "k_core",
36
+ "k_shell",
37
+ "k_crust",
38
+ "k_corona",
39
+ "k_truss",
40
+ "onion_layers",
41
+ ]
42
+
43
+
44
+ @nx.utils.not_implemented_for("multigraph")
45
+ @nx._dispatchable
46
+ def core_number(G):
47
+ """Returns the core number for each node.
48
+
49
+ A k-core is a maximal subgraph that contains nodes of degree k or more.
50
+
51
+ The core number of a node is the largest value k of a k-core containing
52
+ that node.
53
+
54
+ Parameters
55
+ ----------
56
+ G : NetworkX graph
57
+ An undirected or directed graph
58
+
59
+ Returns
60
+ -------
61
+ core_number : dictionary
62
+ A dictionary keyed by node to the core number.
63
+
64
+ Raises
65
+ ------
66
+ NetworkXNotImplemented
67
+ If `G` is a multigraph or contains self loops.
68
+
69
+ Notes
70
+ -----
71
+ For directed graphs the node degree is defined to be the
72
+ in-degree + out-degree.
73
+
74
+ Examples
75
+ --------
76
+ >>> degrees = [0, 1, 2, 2, 2, 2, 3]
77
+ >>> H = nx.havel_hakimi_graph(degrees)
78
+ >>> nx.core_number(H)
79
+ {0: 1, 1: 2, 2: 2, 3: 2, 4: 1, 5: 2, 6: 0}
80
+ >>> G = nx.DiGraph()
81
+ >>> G.add_edges_from([(1, 2), (2, 1), (2, 3), (2, 4), (3, 4), (4, 3)])
82
+ >>> nx.core_number(G)
83
+ {1: 2, 2: 2, 3: 2, 4: 2}
84
+
85
+ References
86
+ ----------
87
+ .. [1] An O(m) Algorithm for Cores Decomposition of Networks
88
+ Vladimir Batagelj and Matjaz Zaversnik, 2003.
89
+ https://arxiv.org/abs/cs.DS/0310049
90
+ """
91
+ if nx.number_of_selfloops(G) > 0:
92
+ msg = (
93
+ "Input graph has self loops which is not permitted; "
94
+ "Consider using G.remove_edges_from(nx.selfloop_edges(G))."
95
+ )
96
+ raise nx.NetworkXNotImplemented(msg)
97
+ degrees = dict(G.degree())
98
+ # Sort nodes by degree.
99
+ nodes = sorted(degrees, key=degrees.get)
100
+ bin_boundaries = [0]
101
+ curr_degree = 0
102
+ for i, v in enumerate(nodes):
103
+ if degrees[v] > curr_degree:
104
+ bin_boundaries.extend([i] * (degrees[v] - curr_degree))
105
+ curr_degree = degrees[v]
106
+ node_pos = {v: pos for pos, v in enumerate(nodes)}
107
+ # The initial guess for the core number of a node is its degree.
108
+ core = degrees
109
+ nbrs = {v: list(nx.all_neighbors(G, v)) for v in G}
110
+ for v in nodes:
111
+ for u in nbrs[v]:
112
+ if core[u] > core[v]:
113
+ nbrs[u].remove(v)
114
+ pos = node_pos[u]
115
+ bin_start = bin_boundaries[core[u]]
116
+ node_pos[u] = bin_start
117
+ node_pos[nodes[bin_start]] = pos
118
+ nodes[bin_start], nodes[pos] = nodes[pos], nodes[bin_start]
119
+ bin_boundaries[core[u]] += 1
120
+ core[u] -= 1
121
+ return core
122
+
123
+
124
+ def _core_subgraph(G, k_filter, k=None, core=None):
125
+ """Returns the subgraph induced by nodes passing filter `k_filter`.
126
+
127
+ Parameters
128
+ ----------
129
+ G : NetworkX graph
130
+ The graph or directed graph to process
131
+ k_filter : filter function
132
+ This function filters the nodes chosen. It takes three inputs:
133
+ A node of G, the filter's cutoff, and the core dict of the graph.
134
+ The function should return a Boolean value.
135
+ k : int, optional
136
+ The order of the core. If not specified use the max core number.
137
+ This value is used as the cutoff for the filter.
138
+ core : dict, optional
139
+ Precomputed core numbers keyed by node for the graph `G`.
140
+ If not specified, the core numbers will be computed from `G`.
141
+
142
+ """
143
+ if core is None:
144
+ core = core_number(G)
145
+ if k is None:
146
+ k = max(core.values())
147
+ nodes = (v for v in core if k_filter(v, k, core))
148
+ return G.subgraph(nodes).copy()
149
+
150
+
151
+ @nx._dispatchable(preserve_all_attrs=True, returns_graph=True)
152
+ def k_core(G, k=None, core_number=None):
153
+ """Returns the k-core of G.
154
+
155
+ A k-core is a maximal subgraph that contains nodes of degree `k` or more.
156
+
157
+ .. deprecated:: 3.3
158
+ `k_core` will not accept `MultiGraph` objects in version 3.5.
159
+
160
+ Parameters
161
+ ----------
162
+ G : NetworkX graph
163
+ A graph or directed graph
164
+ k : int, optional
165
+ The order of the core. If not specified return the main core.
166
+ core_number : dictionary, optional
167
+ Precomputed core numbers for the graph G.
168
+
169
+ Returns
170
+ -------
171
+ G : NetworkX graph
172
+ The k-core subgraph
173
+
174
+ Raises
175
+ ------
176
+ NetworkXNotImplemented
177
+ The k-core is not defined for multigraphs or graphs with self loops.
178
+
179
+ Notes
180
+ -----
181
+ The main core is the core with `k` as the largest core_number.
182
+
183
+ For directed graphs the node degree is defined to be the
184
+ in-degree + out-degree.
185
+
186
+ Graph, node, and edge attributes are copied to the subgraph.
187
+
188
+ Examples
189
+ --------
190
+ >>> degrees = [0, 1, 2, 2, 2, 2, 3]
191
+ >>> H = nx.havel_hakimi_graph(degrees)
192
+ >>> H.degree
193
+ DegreeView({0: 1, 1: 2, 2: 2, 3: 2, 4: 2, 5: 3, 6: 0})
194
+ >>> nx.k_core(H).nodes
195
+ NodeView((1, 2, 3, 5))
196
+
197
+ See Also
198
+ --------
199
+ core_number
200
+
201
+ References
202
+ ----------
203
+ .. [1] An O(m) Algorithm for Cores Decomposition of Networks
204
+ Vladimir Batagelj and Matjaz Zaversnik, 2003.
205
+ https://arxiv.org/abs/cs.DS/0310049
206
+ """
207
+
208
+ import warnings
209
+
210
+ if G.is_multigraph():
211
+ warnings.warn(
212
+ (
213
+ "\n\n`k_core` will not accept `MultiGraph` objects in version 3.5.\n"
214
+ "Convert it to an undirected graph instead, using::\n\n"
215
+ "\tG = nx.Graph(G)\n"
216
+ ),
217
+ category=DeprecationWarning,
218
+ stacklevel=5,
219
+ )
220
+
221
+ def k_filter(v, k, c):
222
+ return c[v] >= k
223
+
224
+ return _core_subgraph(G, k_filter, k, core_number)
225
+
226
+
227
+ @nx._dispatchable(preserve_all_attrs=True, returns_graph=True)
228
+ def k_shell(G, k=None, core_number=None):
229
+ """Returns the k-shell of G.
230
+
231
+ The k-shell is the subgraph induced by nodes with core number k.
232
+ That is, nodes in the k-core that are not in the (k+1)-core.
233
+
234
+ .. deprecated:: 3.3
235
+ `k_shell` will not accept `MultiGraph` objects in version 3.5.
236
+
237
+ Parameters
238
+ ----------
239
+ G : NetworkX graph
240
+ A graph or directed graph.
241
+ k : int, optional
242
+ The order of the shell. If not specified return the outer shell.
243
+ core_number : dictionary, optional
244
+ Precomputed core numbers for the graph G.
245
+
246
+
247
+ Returns
248
+ -------
249
+ G : NetworkX graph
250
+ The k-shell subgraph
251
+
252
+ Raises
253
+ ------
254
+ NetworkXNotImplemented
255
+ The k-shell is not implemented for multigraphs or graphs with self loops.
256
+
257
+ Notes
258
+ -----
259
+ This is similar to k_corona but in that case only neighbors in the
260
+ k-core are considered.
261
+
262
+ For directed graphs the node degree is defined to be the
263
+ in-degree + out-degree.
264
+
265
+ Graph, node, and edge attributes are copied to the subgraph.
266
+
267
+ Examples
268
+ --------
269
+ >>> degrees = [0, 1, 2, 2, 2, 2, 3]
270
+ >>> H = nx.havel_hakimi_graph(degrees)
271
+ >>> H.degree
272
+ DegreeView({0: 1, 1: 2, 2: 2, 3: 2, 4: 2, 5: 3, 6: 0})
273
+ >>> nx.k_shell(H, k=1).nodes
274
+ NodeView((0, 4))
275
+
276
+ See Also
277
+ --------
278
+ core_number
279
+ k_corona
280
+
281
+
282
+ References
283
+ ----------
284
+ .. [1] A model of Internet topology using k-shell decomposition
285
+ Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt,
286
+ and Eran Shir, PNAS July 3, 2007 vol. 104 no. 27 11150-11154
287
+ http://www.pnas.org/content/104/27/11150.full
288
+ """
289
+
290
+ import warnings
291
+
292
+ if G.is_multigraph():
293
+ warnings.warn(
294
+ (
295
+ "\n\n`k_shell` will not accept `MultiGraph` objects in version 3.5.\n"
296
+ "Convert it to an undirected graph instead, using::\n\n"
297
+ "\tG = nx.Graph(G)\n"
298
+ ),
299
+ category=DeprecationWarning,
300
+ stacklevel=5,
301
+ )
302
+
303
+ def k_filter(v, k, c):
304
+ return c[v] == k
305
+
306
+ return _core_subgraph(G, k_filter, k, core_number)
307
+
308
+
309
+ @nx._dispatchable(preserve_all_attrs=True, returns_graph=True)
310
+ def k_crust(G, k=None, core_number=None):
311
+ """Returns the k-crust of G.
312
+
313
+ The k-crust is the graph G with the edges of the k-core removed
314
+ and isolated nodes found after the removal of edges are also removed.
315
+
316
+ .. deprecated:: 3.3
317
+ `k_crust` will not accept `MultiGraph` objects in version 3.5.
318
+
319
+ Parameters
320
+ ----------
321
+ G : NetworkX graph
322
+ A graph or directed graph.
323
+ k : int, optional
324
+ The order of the shell. If not specified return the main crust.
325
+ core_number : dictionary, optional
326
+ Precomputed core numbers for the graph G.
327
+
328
+ Returns
329
+ -------
330
+ G : NetworkX graph
331
+ The k-crust subgraph
332
+
333
+ Raises
334
+ ------
335
+ NetworkXNotImplemented
336
+ The k-crust is not implemented for multigraphs or graphs with self loops.
337
+
338
+ Notes
339
+ -----
340
+ This definition of k-crust is different than the definition in [1]_.
341
+ The k-crust in [1]_ is equivalent to the k+1 crust of this algorithm.
342
+
343
+ For directed graphs the node degree is defined to be the
344
+ in-degree + out-degree.
345
+
346
+ Graph, node, and edge attributes are copied to the subgraph.
347
+
348
+ Examples
349
+ --------
350
+ >>> degrees = [0, 1, 2, 2, 2, 2, 3]
351
+ >>> H = nx.havel_hakimi_graph(degrees)
352
+ >>> H.degree
353
+ DegreeView({0: 1, 1: 2, 2: 2, 3: 2, 4: 2, 5: 3, 6: 0})
354
+ >>> nx.k_crust(H, k=1).nodes
355
+ NodeView((0, 4, 6))
356
+
357
+ See Also
358
+ --------
359
+ core_number
360
+
361
+ References
362
+ ----------
363
+ .. [1] A model of Internet topology using k-shell decomposition
364
+ Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt,
365
+ and Eran Shir, PNAS July 3, 2007 vol. 104 no. 27 11150-11154
366
+ http://www.pnas.org/content/104/27/11150.full
367
+ """
368
+
369
+ import warnings
370
+
371
+ if G.is_multigraph():
372
+ warnings.warn(
373
+ (
374
+ "\n\n`k_crust` will not accept `MultiGraph` objects in version 3.5.\n"
375
+ "Convert it to an undirected graph instead, using::\n\n"
376
+ "\tG = nx.Graph(G)\n"
377
+ ),
378
+ category=DeprecationWarning,
379
+ stacklevel=5,
380
+ )
381
+
382
+ # Default for k is one less than in _core_subgraph, so just inline.
383
+ # Filter is c[v] <= k
384
+ if core_number is None:
385
+ core_number = nx.core_number(G)
386
+ if k is None:
387
+ k = max(core_number.values()) - 1
388
+ nodes = (v for v in core_number if core_number[v] <= k)
389
+ return G.subgraph(nodes).copy()
390
+
391
+
392
+ @nx._dispatchable(preserve_all_attrs=True, returns_graph=True)
393
+ def k_corona(G, k, core_number=None):
394
+ """Returns the k-corona of G.
395
+
396
+ The k-corona is the subgraph of nodes in the k-core which have
397
+ exactly k neighbors in the k-core.
398
+
399
+ .. deprecated:: 3.3
400
+ `k_corona` will not accept `MultiGraph` objects in version 3.5.
401
+
402
+ Parameters
403
+ ----------
404
+ G : NetworkX graph
405
+ A graph or directed graph
406
+ k : int
407
+ The order of the corona.
408
+ core_number : dictionary, optional
409
+ Precomputed core numbers for the graph G.
410
+
411
+ Returns
412
+ -------
413
+ G : NetworkX graph
414
+ The k-corona subgraph
415
+
416
+ Raises
417
+ ------
418
+ NetworkXNotImplemented
419
+ The k-corona is not defined for multigraphs or graphs with self loops.
420
+
421
+ Notes
422
+ -----
423
+ For directed graphs the node degree is defined to be the
424
+ in-degree + out-degree.
425
+
426
+ Graph, node, and edge attributes are copied to the subgraph.
427
+
428
+ Examples
429
+ --------
430
+ >>> degrees = [0, 1, 2, 2, 2, 2, 3]
431
+ >>> H = nx.havel_hakimi_graph(degrees)
432
+ >>> H.degree
433
+ DegreeView({0: 1, 1: 2, 2: 2, 3: 2, 4: 2, 5: 3, 6: 0})
434
+ >>> nx.k_corona(H, k=2).nodes
435
+ NodeView((1, 2, 3, 5))
436
+
437
+ See Also
438
+ --------
439
+ core_number
440
+
441
+ References
442
+ ----------
443
+ .. [1] k -core (bootstrap) percolation on complex networks:
444
+ Critical phenomena and nonlocal effects,
445
+ A. V. Goltsev, S. N. Dorogovtsev, and J. F. F. Mendes,
446
+ Phys. Rev. E 73, 056101 (2006)
447
+ http://link.aps.org/doi/10.1103/PhysRevE.73.056101
448
+ """
449
+
450
+ import warnings
451
+
452
+ if G.is_multigraph():
453
+ warnings.warn(
454
+ (
455
+ "\n\n`k_corona` will not accept `MultiGraph` objects in version 3.5.\n"
456
+ "Convert it to an undirected graph instead, using::\n\n"
457
+ "\tG = nx.Graph(G)\n"
458
+ ),
459
+ category=DeprecationWarning,
460
+ stacklevel=5,
461
+ )
462
+
463
+ def func(v, k, c):
464
+ return c[v] == k and k == sum(1 for w in G[v] if c[w] >= k)
465
+
466
+ return _core_subgraph(G, func, k, core_number)
467
+
468
+
469
+ @nx.utils.not_implemented_for("directed")
470
+ @nx.utils.not_implemented_for("multigraph")
471
+ @nx._dispatchable(preserve_all_attrs=True, returns_graph=True)
472
+ def k_truss(G, k):
473
+ """Returns the k-truss of `G`.
474
+
475
+ The k-truss is the maximal induced subgraph of `G` which contains at least
476
+ three vertices where every edge is incident to at least `k-2` triangles.
477
+
478
+ Parameters
479
+ ----------
480
+ G : NetworkX graph
481
+ An undirected graph
482
+ k : int
483
+ The order of the truss
484
+
485
+ Returns
486
+ -------
487
+ H : NetworkX graph
488
+ The k-truss subgraph
489
+
490
+ Raises
491
+ ------
492
+ NetworkXNotImplemented
493
+ If `G` is a multigraph or directed graph or if it contains self loops.
494
+
495
+ Notes
496
+ -----
497
+ A k-clique is a (k-2)-truss and a k-truss is a (k+1)-core.
498
+
499
+ Graph, node, and edge attributes are copied to the subgraph.
500
+
501
+ K-trusses were originally defined in [2] which states that the k-truss
502
+ is the maximal induced subgraph where each edge belongs to at least
503
+ `k-2` triangles. A more recent paper, [1], uses a slightly different
504
+ definition requiring that each edge belong to at least `k` triangles.
505
+ This implementation uses the original definition of `k-2` triangles.
506
+
507
+ Examples
508
+ --------
509
+ >>> degrees = [0, 1, 2, 2, 2, 2, 3]
510
+ >>> H = nx.havel_hakimi_graph(degrees)
511
+ >>> H.degree
512
+ DegreeView({0: 1, 1: 2, 2: 2, 3: 2, 4: 2, 5: 3, 6: 0})
513
+ >>> nx.k_truss(H, k=2).nodes
514
+ NodeView((0, 1, 2, 3, 4, 5))
515
+
516
+ References
517
+ ----------
518
+ .. [1] Bounds and Algorithms for k-truss. Paul Burkhardt, Vance Faber,
519
+ David G. Harris, 2018. https://arxiv.org/abs/1806.05523v2
520
+ .. [2] Trusses: Cohesive Subgraphs for Social Network Analysis. Jonathan
521
+ Cohen, 2005.
522
+ """
523
+ if nx.number_of_selfloops(G) > 0:
524
+ msg = (
525
+ "Input graph has self loops which is not permitted; "
526
+ "Consider using G.remove_edges_from(nx.selfloop_edges(G))."
527
+ )
528
+ raise nx.NetworkXNotImplemented(msg)
529
+
530
+ H = G.copy()
531
+
532
+ n_dropped = 1
533
+ while n_dropped > 0:
534
+ n_dropped = 0
535
+ to_drop = []
536
+ seen = set()
537
+ for u in H:
538
+ nbrs_u = set(H[u])
539
+ seen.add(u)
540
+ new_nbrs = [v for v in nbrs_u if v not in seen]
541
+ for v in new_nbrs:
542
+ if len(nbrs_u & set(H[v])) < (k - 2):
543
+ to_drop.append((u, v))
544
+ H.remove_edges_from(to_drop)
545
+ n_dropped = len(to_drop)
546
+ H.remove_nodes_from(list(nx.isolates(H)))
547
+
548
+ return H
549
+
550
+
551
+ @nx.utils.not_implemented_for("multigraph")
552
+ @nx.utils.not_implemented_for("directed")
553
+ @nx._dispatchable
554
+ def onion_layers(G):
555
+ """Returns the layer of each vertex in an onion decomposition of the graph.
556
+
557
+ The onion decomposition refines the k-core decomposition by providing
558
+ information on the internal organization of each k-shell. It is usually
559
+ used alongside the `core numbers`.
560
+
561
+ Parameters
562
+ ----------
563
+ G : NetworkX graph
564
+ An undirected graph without self loops.
565
+
566
+ Returns
567
+ -------
568
+ od_layers : dictionary
569
+ A dictionary keyed by node to the onion layer. The layers are
570
+ contiguous integers starting at 1.
571
+
572
+ Raises
573
+ ------
574
+ NetworkXNotImplemented
575
+ If `G` is a multigraph or directed graph or if it contains self loops.
576
+
577
+ Examples
578
+ --------
579
+ >>> degrees = [0, 1, 2, 2, 2, 2, 3]
580
+ >>> H = nx.havel_hakimi_graph(degrees)
581
+ >>> H.degree
582
+ DegreeView({0: 1, 1: 2, 2: 2, 3: 2, 4: 2, 5: 3, 6: 0})
583
+ >>> nx.onion_layers(H)
584
+ {6: 1, 0: 2, 4: 3, 1: 4, 2: 4, 3: 4, 5: 4}
585
+
586
+ See Also
587
+ --------
588
+ core_number
589
+
590
+ References
591
+ ----------
592
+ .. [1] Multi-scale structure and topological anomaly detection via a new
593
+ network statistic: The onion decomposition
594
+ L. Hébert-Dufresne, J. A. Grochow, and A. Allard
595
+ Scientific Reports 6, 31708 (2016)
596
+ http://doi.org/10.1038/srep31708
597
+ .. [2] Percolation and the effective structure of complex networks
598
+ A. Allard and L. Hébert-Dufresne
599
+ Physical Review X 9, 011023 (2019)
600
+ http://doi.org/10.1103/PhysRevX.9.011023
601
+ """
602
+ if nx.number_of_selfloops(G) > 0:
603
+ msg = (
604
+ "Input graph contains self loops which is not permitted; "
605
+ "Consider using G.remove_edges_from(nx.selfloop_edges(G))."
606
+ )
607
+ raise nx.NetworkXNotImplemented(msg)
608
+ # Dictionaries to register the k-core/onion decompositions.
609
+ od_layers = {}
610
+ # Adjacency list
611
+ neighbors = {v: list(nx.all_neighbors(G, v)) for v in G}
612
+ # Effective degree of nodes.
613
+ degrees = dict(G.degree())
614
+ # Performs the onion decomposition.
615
+ current_core = 1
616
+ current_layer = 1
617
+ # Sets vertices of degree 0 to layer 1, if any.
618
+ isolated_nodes = list(nx.isolates(G))
619
+ if len(isolated_nodes) > 0:
620
+ for v in isolated_nodes:
621
+ od_layers[v] = current_layer
622
+ degrees.pop(v)
623
+ current_layer = 2
624
+ # Finds the layer for the remaining nodes.
625
+ while len(degrees) > 0:
626
+ # Sets the order for looking at nodes.
627
+ nodes = sorted(degrees, key=degrees.get)
628
+ # Sets properly the current core.
629
+ min_degree = degrees[nodes[0]]
630
+ if min_degree > current_core:
631
+ current_core = min_degree
632
+ # Identifies vertices in the current layer.
633
+ this_layer = []
634
+ for n in nodes:
635
+ if degrees[n] > current_core:
636
+ break
637
+ this_layer.append(n)
638
+ # Identifies the core/layer of the vertices in the current layer.
639
+ for v in this_layer:
640
+ od_layers[v] = current_layer
641
+ for n in neighbors[v]:
642
+ neighbors[n].remove(v)
643
+ degrees[n] = degrees[n] - 1
644
+ degrees.pop(v)
645
+ # Updates the layer count.
646
+ current_layer = current_layer + 1
647
+ # Returns the dictionaries containing the onion layer of each vertices.
648
+ return od_layers
venv/lib/python3.10/site-packages/networkx/algorithms/cuts.py ADDED
@@ -0,0 +1,400 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Functions for finding and evaluating cuts in a graph.
2
+
3
+ """
4
+
5
+ from itertools import chain
6
+
7
+ import networkx as nx
8
+
9
+ __all__ = [
10
+ "boundary_expansion",
11
+ "conductance",
12
+ "cut_size",
13
+ "edge_expansion",
14
+ "mixing_expansion",
15
+ "node_expansion",
16
+ "normalized_cut_size",
17
+ "volume",
18
+ ]
19
+
20
+
21
+ # TODO STILL NEED TO UPDATE ALL THE DOCUMENTATION!
22
+
23
+
24
+ @nx._dispatchable(edge_attrs="weight")
25
+ def cut_size(G, S, T=None, weight=None):
26
+ """Returns the size of the cut between two sets of nodes.
27
+
28
+ A *cut* is a partition of the nodes of a graph into two sets. The
29
+ *cut size* is the sum of the weights of the edges "between" the two
30
+ sets of nodes.
31
+
32
+ Parameters
33
+ ----------
34
+ G : NetworkX graph
35
+
36
+ S : collection
37
+ A collection of nodes in `G`.
38
+
39
+ T : collection
40
+ A collection of nodes in `G`. If not specified, this is taken to
41
+ be the set complement of `S`.
42
+
43
+ weight : object
44
+ Edge attribute key to use as weight. If not specified, edges
45
+ have weight one.
46
+
47
+ Returns
48
+ -------
49
+ number
50
+ Total weight of all edges from nodes in set `S` to nodes in
51
+ set `T` (and, in the case of directed graphs, all edges from
52
+ nodes in `T` to nodes in `S`).
53
+
54
+ Examples
55
+ --------
56
+ In the graph with two cliques joined by a single edges, the natural
57
+ bipartition of the graph into two blocks, one for each clique,
58
+ yields a cut of weight one::
59
+
60
+ >>> G = nx.barbell_graph(3, 0)
61
+ >>> S = {0, 1, 2}
62
+ >>> T = {3, 4, 5}
63
+ >>> nx.cut_size(G, S, T)
64
+ 1
65
+
66
+ Each parallel edge in a multigraph is counted when determining the
67
+ cut size::
68
+
69
+ >>> G = nx.MultiGraph(["ab", "ab"])
70
+ >>> S = {"a"}
71
+ >>> T = {"b"}
72
+ >>> nx.cut_size(G, S, T)
73
+ 2
74
+
75
+ Notes
76
+ -----
77
+ In a multigraph, the cut size is the total weight of edges including
78
+ multiplicity.
79
+
80
+ """
81
+ edges = nx.edge_boundary(G, S, T, data=weight, default=1)
82
+ if G.is_directed():
83
+ edges = chain(edges, nx.edge_boundary(G, T, S, data=weight, default=1))
84
+ return sum(weight for u, v, weight in edges)
85
+
86
+
87
+ @nx._dispatchable(edge_attrs="weight")
88
+ def volume(G, S, weight=None):
89
+ """Returns the volume of a set of nodes.
90
+
91
+ The *volume* of a set *S* is the sum of the (out-)degrees of nodes
92
+ in *S* (taking into account parallel edges in multigraphs). [1]
93
+
94
+ Parameters
95
+ ----------
96
+ G : NetworkX graph
97
+
98
+ S : collection
99
+ A collection of nodes in `G`.
100
+
101
+ weight : object
102
+ Edge attribute key to use as weight. If not specified, edges
103
+ have weight one.
104
+
105
+ Returns
106
+ -------
107
+ number
108
+ The volume of the set of nodes represented by `S` in the graph
109
+ `G`.
110
+
111
+ See also
112
+ --------
113
+ conductance
114
+ cut_size
115
+ edge_expansion
116
+ edge_boundary
117
+ normalized_cut_size
118
+
119
+ References
120
+ ----------
121
+ .. [1] David Gleich.
122
+ *Hierarchical Directed Spectral Graph Partitioning*.
123
+ <https://www.cs.purdue.edu/homes/dgleich/publications/Gleich%202005%20-%20hierarchical%20directed%20spectral.pdf>
124
+
125
+ """
126
+ degree = G.out_degree if G.is_directed() else G.degree
127
+ return sum(d for v, d in degree(S, weight=weight))
128
+
129
+
130
+ @nx._dispatchable(edge_attrs="weight")
131
+ def normalized_cut_size(G, S, T=None, weight=None):
132
+ """Returns the normalized size of the cut between two sets of nodes.
133
+
134
+ The *normalized cut size* is the cut size times the sum of the
135
+ reciprocal sizes of the volumes of the two sets. [1]
136
+
137
+ Parameters
138
+ ----------
139
+ G : NetworkX graph
140
+
141
+ S : collection
142
+ A collection of nodes in `G`.
143
+
144
+ T : collection
145
+ A collection of nodes in `G`.
146
+
147
+ weight : object
148
+ Edge attribute key to use as weight. If not specified, edges
149
+ have weight one.
150
+
151
+ Returns
152
+ -------
153
+ number
154
+ The normalized cut size between the two sets `S` and `T`.
155
+
156
+ Notes
157
+ -----
158
+ In a multigraph, the cut size is the total weight of edges including
159
+ multiplicity.
160
+
161
+ See also
162
+ --------
163
+ conductance
164
+ cut_size
165
+ edge_expansion
166
+ volume
167
+
168
+ References
169
+ ----------
170
+ .. [1] David Gleich.
171
+ *Hierarchical Directed Spectral Graph Partitioning*.
172
+ <https://www.cs.purdue.edu/homes/dgleich/publications/Gleich%202005%20-%20hierarchical%20directed%20spectral.pdf>
173
+
174
+ """
175
+ if T is None:
176
+ T = set(G) - set(S)
177
+ num_cut_edges = cut_size(G, S, T=T, weight=weight)
178
+ volume_S = volume(G, S, weight=weight)
179
+ volume_T = volume(G, T, weight=weight)
180
+ return num_cut_edges * ((1 / volume_S) + (1 / volume_T))
181
+
182
+
183
+ @nx._dispatchable(edge_attrs="weight")
184
+ def conductance(G, S, T=None, weight=None):
185
+ """Returns the conductance of two sets of nodes.
186
+
187
+ The *conductance* is the quotient of the cut size and the smaller of
188
+ the volumes of the two sets. [1]
189
+
190
+ Parameters
191
+ ----------
192
+ G : NetworkX graph
193
+
194
+ S : collection
195
+ A collection of nodes in `G`.
196
+
197
+ T : collection
198
+ A collection of nodes in `G`.
199
+
200
+ weight : object
201
+ Edge attribute key to use as weight. If not specified, edges
202
+ have weight one.
203
+
204
+ Returns
205
+ -------
206
+ number
207
+ The conductance between the two sets `S` and `T`.
208
+
209
+ See also
210
+ --------
211
+ cut_size
212
+ edge_expansion
213
+ normalized_cut_size
214
+ volume
215
+
216
+ References
217
+ ----------
218
+ .. [1] David Gleich.
219
+ *Hierarchical Directed Spectral Graph Partitioning*.
220
+ <https://www.cs.purdue.edu/homes/dgleich/publications/Gleich%202005%20-%20hierarchical%20directed%20spectral.pdf>
221
+
222
+ """
223
+ if T is None:
224
+ T = set(G) - set(S)
225
+ num_cut_edges = cut_size(G, S, T, weight=weight)
226
+ volume_S = volume(G, S, weight=weight)
227
+ volume_T = volume(G, T, weight=weight)
228
+ return num_cut_edges / min(volume_S, volume_T)
229
+
230
+
231
+ @nx._dispatchable(edge_attrs="weight")
232
+ def edge_expansion(G, S, T=None, weight=None):
233
+ """Returns the edge expansion between two node sets.
234
+
235
+ The *edge expansion* is the quotient of the cut size and the smaller
236
+ of the cardinalities of the two sets. [1]
237
+
238
+ Parameters
239
+ ----------
240
+ G : NetworkX graph
241
+
242
+ S : collection
243
+ A collection of nodes in `G`.
244
+
245
+ T : collection
246
+ A collection of nodes in `G`.
247
+
248
+ weight : object
249
+ Edge attribute key to use as weight. If not specified, edges
250
+ have weight one.
251
+
252
+ Returns
253
+ -------
254
+ number
255
+ The edge expansion between the two sets `S` and `T`.
256
+
257
+ See also
258
+ --------
259
+ boundary_expansion
260
+ mixing_expansion
261
+ node_expansion
262
+
263
+ References
264
+ ----------
265
+ .. [1] Fan Chung.
266
+ *Spectral Graph Theory*.
267
+ (CBMS Regional Conference Series in Mathematics, No. 92),
268
+ American Mathematical Society, 1997, ISBN 0-8218-0315-8
269
+ <http://www.math.ucsd.edu/~fan/research/revised.html>
270
+
271
+ """
272
+ if T is None:
273
+ T = set(G) - set(S)
274
+ num_cut_edges = cut_size(G, S, T=T, weight=weight)
275
+ return num_cut_edges / min(len(S), len(T))
276
+
277
+
278
+ @nx._dispatchable(edge_attrs="weight")
279
+ def mixing_expansion(G, S, T=None, weight=None):
280
+ """Returns the mixing expansion between two node sets.
281
+
282
+ The *mixing expansion* is the quotient of the cut size and twice the
283
+ number of edges in the graph. [1]
284
+
285
+ Parameters
286
+ ----------
287
+ G : NetworkX graph
288
+
289
+ S : collection
290
+ A collection of nodes in `G`.
291
+
292
+ T : collection
293
+ A collection of nodes in `G`.
294
+
295
+ weight : object
296
+ Edge attribute key to use as weight. If not specified, edges
297
+ have weight one.
298
+
299
+ Returns
300
+ -------
301
+ number
302
+ The mixing expansion between the two sets `S` and `T`.
303
+
304
+ See also
305
+ --------
306
+ boundary_expansion
307
+ edge_expansion
308
+ node_expansion
309
+
310
+ References
311
+ ----------
312
+ .. [1] Vadhan, Salil P.
313
+ "Pseudorandomness."
314
+ *Foundations and Trends
315
+ in Theoretical Computer Science* 7.1–3 (2011): 1–336.
316
+ <https://doi.org/10.1561/0400000010>
317
+
318
+ """
319
+ num_cut_edges = cut_size(G, S, T=T, weight=weight)
320
+ num_total_edges = G.number_of_edges()
321
+ return num_cut_edges / (2 * num_total_edges)
322
+
323
+
324
+ # TODO What is the generalization to two arguments, S and T? Does the
325
+ # denominator become `min(len(S), len(T))`?
326
+ @nx._dispatchable
327
+ def node_expansion(G, S):
328
+ """Returns the node expansion of the set `S`.
329
+
330
+ The *node expansion* is the quotient of the size of the node
331
+ boundary of *S* and the cardinality of *S*. [1]
332
+
333
+ Parameters
334
+ ----------
335
+ G : NetworkX graph
336
+
337
+ S : collection
338
+ A collection of nodes in `G`.
339
+
340
+ Returns
341
+ -------
342
+ number
343
+ The node expansion of the set `S`.
344
+
345
+ See also
346
+ --------
347
+ boundary_expansion
348
+ edge_expansion
349
+ mixing_expansion
350
+
351
+ References
352
+ ----------
353
+ .. [1] Vadhan, Salil P.
354
+ "Pseudorandomness."
355
+ *Foundations and Trends
356
+ in Theoretical Computer Science* 7.1–3 (2011): 1–336.
357
+ <https://doi.org/10.1561/0400000010>
358
+
359
+ """
360
+ neighborhood = set(chain.from_iterable(G.neighbors(v) for v in S))
361
+ return len(neighborhood) / len(S)
362
+
363
+
364
+ # TODO What is the generalization to two arguments, S and T? Does the
365
+ # denominator become `min(len(S), len(T))`?
366
+ @nx._dispatchable
367
+ def boundary_expansion(G, S):
368
+ """Returns the boundary expansion of the set `S`.
369
+
370
+ The *boundary expansion* is the quotient of the size
371
+ of the node boundary and the cardinality of *S*. [1]
372
+
373
+ Parameters
374
+ ----------
375
+ G : NetworkX graph
376
+
377
+ S : collection
378
+ A collection of nodes in `G`.
379
+
380
+ Returns
381
+ -------
382
+ number
383
+ The boundary expansion of the set `S`.
384
+
385
+ See also
386
+ --------
387
+ edge_expansion
388
+ mixing_expansion
389
+ node_expansion
390
+
391
+ References
392
+ ----------
393
+ .. [1] Vadhan, Salil P.
394
+ "Pseudorandomness."
395
+ *Foundations and Trends in Theoretical Computer Science*
396
+ 7.1–3 (2011): 1–336.
397
+ <https://doi.org/10.1561/0400000010>
398
+
399
+ """
400
+ return len(nx.node_boundary(G, S)) / len(S)
venv/lib/python3.10/site-packages/networkx/algorithms/cycles.py ADDED
@@ -0,0 +1,1231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ ========================
3
+ Cycle finding algorithms
4
+ ========================
5
+ """
6
+
7
+ from collections import Counter, defaultdict
8
+ from itertools import combinations, product
9
+ from math import inf
10
+
11
+ import networkx as nx
12
+ from networkx.utils import not_implemented_for, pairwise
13
+
14
+ __all__ = [
15
+ "cycle_basis",
16
+ "simple_cycles",
17
+ "recursive_simple_cycles",
18
+ "find_cycle",
19
+ "minimum_cycle_basis",
20
+ "chordless_cycles",
21
+ "girth",
22
+ ]
23
+
24
+
25
+ @not_implemented_for("directed")
26
+ @not_implemented_for("multigraph")
27
+ @nx._dispatchable
28
+ def cycle_basis(G, root=None):
29
+ """Returns a list of cycles which form a basis for cycles of G.
30
+
31
+ A basis for cycles of a network is a minimal collection of
32
+ cycles such that any cycle in the network can be written
33
+ as a sum of cycles in the basis. Here summation of cycles
34
+ is defined as "exclusive or" of the edges. Cycle bases are
35
+ useful, e.g. when deriving equations for electric circuits
36
+ using Kirchhoff's Laws.
37
+
38
+ Parameters
39
+ ----------
40
+ G : NetworkX Graph
41
+ root : node, optional
42
+ Specify starting node for basis.
43
+
44
+ Returns
45
+ -------
46
+ A list of cycle lists. Each cycle list is a list of nodes
47
+ which forms a cycle (loop) in G.
48
+
49
+ Examples
50
+ --------
51
+ >>> G = nx.Graph()
52
+ >>> nx.add_cycle(G, [0, 1, 2, 3])
53
+ >>> nx.add_cycle(G, [0, 3, 4, 5])
54
+ >>> nx.cycle_basis(G, 0)
55
+ [[3, 4, 5, 0], [1, 2, 3, 0]]
56
+
57
+ Notes
58
+ -----
59
+ This is adapted from algorithm CACM 491 [1]_.
60
+
61
+ References
62
+ ----------
63
+ .. [1] Paton, K. An algorithm for finding a fundamental set of
64
+ cycles of a graph. Comm. ACM 12, 9 (Sept 1969), 514-518.
65
+
66
+ See Also
67
+ --------
68
+ simple_cycles
69
+ minimum_cycle_basis
70
+ """
71
+ gnodes = dict.fromkeys(G) # set-like object that maintains node order
72
+ cycles = []
73
+ while gnodes: # loop over connected components
74
+ if root is None:
75
+ root = gnodes.popitem()[0]
76
+ stack = [root]
77
+ pred = {root: root}
78
+ used = {root: set()}
79
+ while stack: # walk the spanning tree finding cycles
80
+ z = stack.pop() # use last-in so cycles easier to find
81
+ zused = used[z]
82
+ for nbr in G[z]:
83
+ if nbr not in used: # new node
84
+ pred[nbr] = z
85
+ stack.append(nbr)
86
+ used[nbr] = {z}
87
+ elif nbr == z: # self loops
88
+ cycles.append([z])
89
+ elif nbr not in zused: # found a cycle
90
+ pn = used[nbr]
91
+ cycle = [nbr, z]
92
+ p = pred[z]
93
+ while p not in pn:
94
+ cycle.append(p)
95
+ p = pred[p]
96
+ cycle.append(p)
97
+ cycles.append(cycle)
98
+ used[nbr].add(z)
99
+ for node in pred:
100
+ gnodes.pop(node, None)
101
+ root = None
102
+ return cycles
103
+
104
+
105
+ @nx._dispatchable
106
+ def simple_cycles(G, length_bound=None):
107
+ """Find simple cycles (elementary circuits) of a graph.
108
+
109
+ A `simple cycle`, or `elementary circuit`, is a closed path where
110
+ no node appears twice. In a directed graph, two simple cycles are distinct
111
+ if they are not cyclic permutations of each other. In an undirected graph,
112
+ two simple cycles are distinct if they are not cyclic permutations of each
113
+ other nor of the other's reversal.
114
+
115
+ Optionally, the cycles are bounded in length. In the unbounded case, we use
116
+ a nonrecursive, iterator/generator version of Johnson's algorithm [1]_. In
117
+ the bounded case, we use a version of the algorithm of Gupta and
118
+ Suzumura[2]_. There may be better algorithms for some cases [3]_ [4]_ [5]_.
119
+
120
+ The algorithms of Johnson, and Gupta and Suzumura, are enhanced by some
121
+ well-known preprocessing techniques. When G is directed, we restrict our
122
+ attention to strongly connected components of G, generate all simple cycles
123
+ containing a certain node, remove that node, and further decompose the
124
+ remainder into strongly connected components. When G is undirected, we
125
+ restrict our attention to biconnected components, generate all simple cycles
126
+ containing a particular edge, remove that edge, and further decompose the
127
+ remainder into biconnected components.
128
+
129
+ Note that multigraphs are supported by this function -- and in undirected
130
+ multigraphs, a pair of parallel edges is considered a cycle of length 2.
131
+ Likewise, self-loops are considered to be cycles of length 1. We define
132
+ cycles as sequences of nodes; so the presence of loops and parallel edges
133
+ does not change the number of simple cycles in a graph.
134
+
135
+ Parameters
136
+ ----------
137
+ G : NetworkX DiGraph
138
+ A directed graph
139
+
140
+ length_bound : int or None, optional (default=None)
141
+ If length_bound is an int, generate all simple cycles of G with length at
142
+ most length_bound. Otherwise, generate all simple cycles of G.
143
+
144
+ Yields
145
+ ------
146
+ list of nodes
147
+ Each cycle is represented by a list of nodes along the cycle.
148
+
149
+ Examples
150
+ --------
151
+ >>> edges = [(0, 0), (0, 1), (0, 2), (1, 2), (2, 0), (2, 1), (2, 2)]
152
+ >>> G = nx.DiGraph(edges)
153
+ >>> sorted(nx.simple_cycles(G))
154
+ [[0], [0, 1, 2], [0, 2], [1, 2], [2]]
155
+
156
+ To filter the cycles so that they don't include certain nodes or edges,
157
+ copy your graph and eliminate those nodes or edges before calling.
158
+ For example, to exclude self-loops from the above example:
159
+
160
+ >>> H = G.copy()
161
+ >>> H.remove_edges_from(nx.selfloop_edges(G))
162
+ >>> sorted(nx.simple_cycles(H))
163
+ [[0, 1, 2], [0, 2], [1, 2]]
164
+
165
+ Notes
166
+ -----
167
+ When length_bound is None, the time complexity is $O((n+e)(c+1))$ for $n$
168
+ nodes, $e$ edges and $c$ simple circuits. Otherwise, when length_bound > 1,
169
+ the time complexity is $O((c+n)(k-1)d^k)$ where $d$ is the average degree of
170
+ the nodes of G and $k$ = length_bound.
171
+
172
+ Raises
173
+ ------
174
+ ValueError
175
+ when length_bound < 0.
176
+
177
+ References
178
+ ----------
179
+ .. [1] Finding all the elementary circuits of a directed graph.
180
+ D. B. Johnson, SIAM Journal on Computing 4, no. 1, 77-84, 1975.
181
+ https://doi.org/10.1137/0204007
182
+ .. [2] Finding All Bounded-Length Simple Cycles in a Directed Graph
183
+ A. Gupta and T. Suzumura https://arxiv.org/abs/2105.10094
184
+ .. [3] Enumerating the cycles of a digraph: a new preprocessing strategy.
185
+ G. Loizou and P. Thanish, Information Sciences, v. 27, 163-182, 1982.
186
+ .. [4] A search strategy for the elementary cycles of a directed graph.
187
+ J.L. Szwarcfiter and P.E. Lauer, BIT NUMERICAL MATHEMATICS,
188
+ v. 16, no. 2, 192-204, 1976.
189
+ .. [5] Optimal Listing of Cycles and st-Paths in Undirected Graphs
190
+ R. Ferreira and R. Grossi and A. Marino and N. Pisanti and R. Rizzi and
191
+ G. Sacomoto https://arxiv.org/abs/1205.2766
192
+
193
+ See Also
194
+ --------
195
+ cycle_basis
196
+ chordless_cycles
197
+ """
198
+
199
+ if length_bound is not None:
200
+ if length_bound == 0:
201
+ return
202
+ elif length_bound < 0:
203
+ raise ValueError("length bound must be non-negative")
204
+
205
+ directed = G.is_directed()
206
+ yield from ([v] for v, Gv in G.adj.items() if v in Gv)
207
+
208
+ if length_bound is not None and length_bound == 1:
209
+ return
210
+
211
+ if G.is_multigraph() and not directed:
212
+ visited = set()
213
+ for u, Gu in G.adj.items():
214
+ multiplicity = ((v, len(Guv)) for v, Guv in Gu.items() if v in visited)
215
+ yield from ([u, v] for v, m in multiplicity if m > 1)
216
+ visited.add(u)
217
+
218
+ # explicitly filter out loops; implicitly filter out parallel edges
219
+ if directed:
220
+ G = nx.DiGraph((u, v) for u, Gu in G.adj.items() for v in Gu if v != u)
221
+ else:
222
+ G = nx.Graph((u, v) for u, Gu in G.adj.items() for v in Gu if v != u)
223
+
224
+ # this case is not strictly necessary but improves performance
225
+ if length_bound is not None and length_bound == 2:
226
+ if directed:
227
+ visited = set()
228
+ for u, Gu in G.adj.items():
229
+ yield from (
230
+ [v, u] for v in visited.intersection(Gu) if G.has_edge(v, u)
231
+ )
232
+ visited.add(u)
233
+ return
234
+
235
+ if directed:
236
+ yield from _directed_cycle_search(G, length_bound)
237
+ else:
238
+ yield from _undirected_cycle_search(G, length_bound)
239
+
240
+
241
+ def _directed_cycle_search(G, length_bound):
242
+ """A dispatch function for `simple_cycles` for directed graphs.
243
+
244
+ We generate all cycles of G through binary partition.
245
+
246
+ 1. Pick a node v in G which belongs to at least one cycle
247
+ a. Generate all cycles of G which contain the node v.
248
+ b. Recursively generate all cycles of G \\ v.
249
+
250
+ This is accomplished through the following:
251
+
252
+ 1. Compute the strongly connected components SCC of G.
253
+ 2. Select and remove a biconnected component C from BCC. Select a
254
+ non-tree edge (u, v) of a depth-first search of G[C].
255
+ 3. For each simple cycle P containing v in G[C], yield P.
256
+ 4. Add the biconnected components of G[C \\ v] to BCC.
257
+
258
+ If the parameter length_bound is not None, then step 3 will be limited to
259
+ simple cycles of length at most length_bound.
260
+
261
+ Parameters
262
+ ----------
263
+ G : NetworkX DiGraph
264
+ A directed graph
265
+
266
+ length_bound : int or None
267
+ If length_bound is an int, generate all simple cycles of G with length at most length_bound.
268
+ Otherwise, generate all simple cycles of G.
269
+
270
+ Yields
271
+ ------
272
+ list of nodes
273
+ Each cycle is represented by a list of nodes along the cycle.
274
+ """
275
+
276
+ scc = nx.strongly_connected_components
277
+ components = [c for c in scc(G) if len(c) >= 2]
278
+ while components:
279
+ c = components.pop()
280
+ Gc = G.subgraph(c)
281
+ v = next(iter(c))
282
+ if length_bound is None:
283
+ yield from _johnson_cycle_search(Gc, [v])
284
+ else:
285
+ yield from _bounded_cycle_search(Gc, [v], length_bound)
286
+ # delete v after searching G, to make sure we can find v
287
+ G.remove_node(v)
288
+ components.extend(c for c in scc(Gc) if len(c) >= 2)
289
+
290
+
291
+ def _undirected_cycle_search(G, length_bound):
292
+ """A dispatch function for `simple_cycles` for undirected graphs.
293
+
294
+ We generate all cycles of G through binary partition.
295
+
296
+ 1. Pick an edge (u, v) in G which belongs to at least one cycle
297
+ a. Generate all cycles of G which contain the edge (u, v)
298
+ b. Recursively generate all cycles of G \\ (u, v)
299
+
300
+ This is accomplished through the following:
301
+
302
+ 1. Compute the biconnected components BCC of G.
303
+ 2. Select and remove a biconnected component C from BCC. Select a
304
+ non-tree edge (u, v) of a depth-first search of G[C].
305
+ 3. For each (v -> u) path P remaining in G[C] \\ (u, v), yield P.
306
+ 4. Add the biconnected components of G[C] \\ (u, v) to BCC.
307
+
308
+ If the parameter length_bound is not None, then step 3 will be limited to simple paths
309
+ of length at most length_bound.
310
+
311
+ Parameters
312
+ ----------
313
+ G : NetworkX Graph
314
+ An undirected graph
315
+
316
+ length_bound : int or None
317
+ If length_bound is an int, generate all simple cycles of G with length at most length_bound.
318
+ Otherwise, generate all simple cycles of G.
319
+
320
+ Yields
321
+ ------
322
+ list of nodes
323
+ Each cycle is represented by a list of nodes along the cycle.
324
+ """
325
+
326
+ bcc = nx.biconnected_components
327
+ components = [c for c in bcc(G) if len(c) >= 3]
328
+ while components:
329
+ c = components.pop()
330
+ Gc = G.subgraph(c)
331
+ uv = list(next(iter(Gc.edges)))
332
+ G.remove_edge(*uv)
333
+ # delete (u, v) before searching G, to avoid fake 3-cycles [u, v, u]
334
+ if length_bound is None:
335
+ yield from _johnson_cycle_search(Gc, uv)
336
+ else:
337
+ yield from _bounded_cycle_search(Gc, uv, length_bound)
338
+ components.extend(c for c in bcc(Gc) if len(c) >= 3)
339
+
340
+
341
+ class _NeighborhoodCache(dict):
342
+ """Very lightweight graph wrapper which caches neighborhoods as list.
343
+
344
+ This dict subclass uses the __missing__ functionality to query graphs for
345
+ their neighborhoods, and store the result as a list. This is used to avoid
346
+ the performance penalty incurred by subgraph views.
347
+ """
348
+
349
+ def __init__(self, G):
350
+ self.G = G
351
+
352
+ def __missing__(self, v):
353
+ Gv = self[v] = list(self.G[v])
354
+ return Gv
355
+
356
+
357
+ def _johnson_cycle_search(G, path):
358
+ """The main loop of the cycle-enumeration algorithm of Johnson.
359
+
360
+ Parameters
361
+ ----------
362
+ G : NetworkX Graph or DiGraph
363
+ A graph
364
+
365
+ path : list
366
+ A cycle prefix. All cycles generated will begin with this prefix.
367
+
368
+ Yields
369
+ ------
370
+ list of nodes
371
+ Each cycle is represented by a list of nodes along the cycle.
372
+
373
+ References
374
+ ----------
375
+ .. [1] Finding all the elementary circuits of a directed graph.
376
+ D. B. Johnson, SIAM Journal on Computing 4, no. 1, 77-84, 1975.
377
+ https://doi.org/10.1137/0204007
378
+
379
+ """
380
+
381
+ G = _NeighborhoodCache(G)
382
+ blocked = set(path)
383
+ B = defaultdict(set) # graph portions that yield no elementary circuit
384
+ start = path[0]
385
+ stack = [iter(G[path[-1]])]
386
+ closed = [False]
387
+ while stack:
388
+ nbrs = stack[-1]
389
+ for w in nbrs:
390
+ if w == start:
391
+ yield path[:]
392
+ closed[-1] = True
393
+ elif w not in blocked:
394
+ path.append(w)
395
+ closed.append(False)
396
+ stack.append(iter(G[w]))
397
+ blocked.add(w)
398
+ break
399
+ else: # no more nbrs
400
+ stack.pop()
401
+ v = path.pop()
402
+ if closed.pop():
403
+ if closed:
404
+ closed[-1] = True
405
+ unblock_stack = {v}
406
+ while unblock_stack:
407
+ u = unblock_stack.pop()
408
+ if u in blocked:
409
+ blocked.remove(u)
410
+ unblock_stack.update(B[u])
411
+ B[u].clear()
412
+ else:
413
+ for w in G[v]:
414
+ B[w].add(v)
415
+
416
+
417
+ def _bounded_cycle_search(G, path, length_bound):
418
+ """The main loop of the cycle-enumeration algorithm of Gupta and Suzumura.
419
+
420
+ Parameters
421
+ ----------
422
+ G : NetworkX Graph or DiGraph
423
+ A graph
424
+
425
+ path : list
426
+ A cycle prefix. All cycles generated will begin with this prefix.
427
+
428
+ length_bound: int
429
+ A length bound. All cycles generated will have length at most length_bound.
430
+
431
+ Yields
432
+ ------
433
+ list of nodes
434
+ Each cycle is represented by a list of nodes along the cycle.
435
+
436
+ References
437
+ ----------
438
+ .. [1] Finding All Bounded-Length Simple Cycles in a Directed Graph
439
+ A. Gupta and T. Suzumura https://arxiv.org/abs/2105.10094
440
+
441
+ """
442
+ G = _NeighborhoodCache(G)
443
+ lock = {v: 0 for v in path}
444
+ B = defaultdict(set)
445
+ start = path[0]
446
+ stack = [iter(G[path[-1]])]
447
+ blen = [length_bound]
448
+ while stack:
449
+ nbrs = stack[-1]
450
+ for w in nbrs:
451
+ if w == start:
452
+ yield path[:]
453
+ blen[-1] = 1
454
+ elif len(path) < lock.get(w, length_bound):
455
+ path.append(w)
456
+ blen.append(length_bound)
457
+ lock[w] = len(path)
458
+ stack.append(iter(G[w]))
459
+ break
460
+ else:
461
+ stack.pop()
462
+ v = path.pop()
463
+ bl = blen.pop()
464
+ if blen:
465
+ blen[-1] = min(blen[-1], bl)
466
+ if bl < length_bound:
467
+ relax_stack = [(bl, v)]
468
+ while relax_stack:
469
+ bl, u = relax_stack.pop()
470
+ if lock.get(u, length_bound) < length_bound - bl + 1:
471
+ lock[u] = length_bound - bl + 1
472
+ relax_stack.extend((bl + 1, w) for w in B[u].difference(path))
473
+ else:
474
+ for w in G[v]:
475
+ B[w].add(v)
476
+
477
+
478
+ @nx._dispatchable
479
+ def chordless_cycles(G, length_bound=None):
480
+ """Find simple chordless cycles of a graph.
481
+
482
+ A `simple cycle` is a closed path where no node appears twice. In a simple
483
+ cycle, a `chord` is an additional edge between two nodes in the cycle. A
484
+ `chordless cycle` is a simple cycle without chords. Said differently, a
485
+ chordless cycle is a cycle C in a graph G where the number of edges in the
486
+ induced graph G[C] is equal to the length of `C`.
487
+
488
+ Note that some care must be taken in the case that G is not a simple graph
489
+ nor a simple digraph. Some authors limit the definition of chordless cycles
490
+ to have a prescribed minimum length; we do not.
491
+
492
+ 1. We interpret self-loops to be chordless cycles, except in multigraphs
493
+ with multiple loops in parallel. Likewise, in a chordless cycle of
494
+ length greater than 1, there can be no nodes with self-loops.
495
+
496
+ 2. We interpret directed two-cycles to be chordless cycles, except in
497
+ multi-digraphs when any edge in a two-cycle has a parallel copy.
498
+
499
+ 3. We interpret parallel pairs of undirected edges as two-cycles, except
500
+ when a third (or more) parallel edge exists between the two nodes.
501
+
502
+ 4. Generalizing the above, edges with parallel clones may not occur in
503
+ chordless cycles.
504
+
505
+ In a directed graph, two chordless cycles are distinct if they are not
506
+ cyclic permutations of each other. In an undirected graph, two chordless
507
+ cycles are distinct if they are not cyclic permutations of each other nor of
508
+ the other's reversal.
509
+
510
+ Optionally, the cycles are bounded in length.
511
+
512
+ We use an algorithm strongly inspired by that of Dias et al [1]_. It has
513
+ been modified in the following ways:
514
+
515
+ 1. Recursion is avoided, per Python's limitations
516
+
517
+ 2. The labeling function is not necessary, because the starting paths
518
+ are chosen (and deleted from the host graph) to prevent multiple
519
+ occurrences of the same path
520
+
521
+ 3. The search is optionally bounded at a specified length
522
+
523
+ 4. Support for directed graphs is provided by extending cycles along
524
+ forward edges, and blocking nodes along forward and reverse edges
525
+
526
+ 5. Support for multigraphs is provided by omitting digons from the set
527
+ of forward edges
528
+
529
+ Parameters
530
+ ----------
531
+ G : NetworkX DiGraph
532
+ A directed graph
533
+
534
+ length_bound : int or None, optional (default=None)
535
+ If length_bound is an int, generate all simple cycles of G with length at
536
+ most length_bound. Otherwise, generate all simple cycles of G.
537
+
538
+ Yields
539
+ ------
540
+ list of nodes
541
+ Each cycle is represented by a list of nodes along the cycle.
542
+
543
+ Examples
544
+ --------
545
+ >>> sorted(list(nx.chordless_cycles(nx.complete_graph(4))))
546
+ [[1, 0, 2], [1, 0, 3], [2, 0, 3], [2, 1, 3]]
547
+
548
+ Notes
549
+ -----
550
+ When length_bound is None, and the graph is simple, the time complexity is
551
+ $O((n+e)(c+1))$ for $n$ nodes, $e$ edges and $c$ chordless cycles.
552
+
553
+ Raises
554
+ ------
555
+ ValueError
556
+ when length_bound < 0.
557
+
558
+ References
559
+ ----------
560
+ .. [1] Efficient enumeration of chordless cycles
561
+ E. Dias and D. Castonguay and H. Longo and W.A.R. Jradi
562
+ https://arxiv.org/abs/1309.1051
563
+
564
+ See Also
565
+ --------
566
+ simple_cycles
567
+ """
568
+
569
+ if length_bound is not None:
570
+ if length_bound == 0:
571
+ return
572
+ elif length_bound < 0:
573
+ raise ValueError("length bound must be non-negative")
574
+
575
+ directed = G.is_directed()
576
+ multigraph = G.is_multigraph()
577
+
578
+ if multigraph:
579
+ yield from ([v] for v, Gv in G.adj.items() if len(Gv.get(v, ())) == 1)
580
+ else:
581
+ yield from ([v] for v, Gv in G.adj.items() if v in Gv)
582
+
583
+ if length_bound is not None and length_bound == 1:
584
+ return
585
+
586
+ # Nodes with loops cannot belong to longer cycles. Let's delete them here.
587
+ # also, we implicitly reduce the multiplicity of edges down to 1 in the case
588
+ # of multiedges.
589
+ if directed:
590
+ F = nx.DiGraph((u, v) for u, Gu in G.adj.items() if u not in Gu for v in Gu)
591
+ B = F.to_undirected(as_view=False)
592
+ else:
593
+ F = nx.Graph((u, v) for u, Gu in G.adj.items() if u not in Gu for v in Gu)
594
+ B = None
595
+
596
+ # If we're given a multigraph, we have a few cases to consider with parallel
597
+ # edges.
598
+ #
599
+ # 1. If we have 2 or more edges in parallel between the nodes (u, v), we
600
+ # must not construct longer cycles along (u, v).
601
+ # 2. If G is not directed, then a pair of parallel edges between (u, v) is a
602
+ # chordless cycle unless there exists a third (or more) parallel edge.
603
+ # 3. If G is directed, then parallel edges do not form cycles, but do
604
+ # preclude back-edges from forming cycles (handled in the next section),
605
+ # Thus, if an edge (u, v) is duplicated and the reverse (v, u) is also
606
+ # present, then we remove both from F.
607
+ #
608
+ # In directed graphs, we need to consider both directions that edges can
609
+ # take, so iterate over all edges (u, v) and possibly (v, u). In undirected
610
+ # graphs, we need to be a little careful to only consider every edge once,
611
+ # so we use a "visited" set to emulate node-order comparisons.
612
+
613
+ if multigraph:
614
+ if not directed:
615
+ B = F.copy()
616
+ visited = set()
617
+ for u, Gu in G.adj.items():
618
+ if directed:
619
+ multiplicity = ((v, len(Guv)) for v, Guv in Gu.items())
620
+ for v, m in multiplicity:
621
+ if m > 1:
622
+ F.remove_edges_from(((u, v), (v, u)))
623
+ else:
624
+ multiplicity = ((v, len(Guv)) for v, Guv in Gu.items() if v in visited)
625
+ for v, m in multiplicity:
626
+ if m == 2:
627
+ yield [u, v]
628
+ if m > 1:
629
+ F.remove_edge(u, v)
630
+ visited.add(u)
631
+
632
+ # If we're given a directed graphs, we need to think about digons. If we
633
+ # have two edges (u, v) and (v, u), then that's a two-cycle. If either edge
634
+ # was duplicated above, then we removed both from F. So, any digons we find
635
+ # here are chordless. After finding digons, we remove their edges from F
636
+ # to avoid traversing them in the search for chordless cycles.
637
+ if directed:
638
+ for u, Fu in F.adj.items():
639
+ digons = [[u, v] for v in Fu if F.has_edge(v, u)]
640
+ yield from digons
641
+ F.remove_edges_from(digons)
642
+ F.remove_edges_from(e[::-1] for e in digons)
643
+
644
+ if length_bound is not None and length_bound == 2:
645
+ return
646
+
647
+ # Now, we prepare to search for cycles. We have removed all cycles of
648
+ # lengths 1 and 2, so F is a simple graph or simple digraph. We repeatedly
649
+ # separate digraphs into their strongly connected components, and undirected
650
+ # graphs into their biconnected components. For each component, we pick a
651
+ # node v, search for chordless cycles based at each "stem" (u, v, w), and
652
+ # then remove v from that component before separating the graph again.
653
+ if directed:
654
+ separate = nx.strongly_connected_components
655
+
656
+ # Directed stems look like (u -> v -> w), so we use the product of
657
+ # predecessors of v with successors of v.
658
+ def stems(C, v):
659
+ for u, w in product(C.pred[v], C.succ[v]):
660
+ if not G.has_edge(u, w): # omit stems with acyclic chords
661
+ yield [u, v, w], F.has_edge(w, u)
662
+
663
+ else:
664
+ separate = nx.biconnected_components
665
+
666
+ # Undirected stems look like (u ~ v ~ w), but we must not also search
667
+ # (w ~ v ~ u), so we use combinations of v's neighbors of length 2.
668
+ def stems(C, v):
669
+ yield from (([u, v, w], F.has_edge(w, u)) for u, w in combinations(C[v], 2))
670
+
671
+ components = [c for c in separate(F) if len(c) > 2]
672
+ while components:
673
+ c = components.pop()
674
+ v = next(iter(c))
675
+ Fc = F.subgraph(c)
676
+ Fcc = Bcc = None
677
+ for S, is_triangle in stems(Fc, v):
678
+ if is_triangle:
679
+ yield S
680
+ else:
681
+ if Fcc is None:
682
+ Fcc = _NeighborhoodCache(Fc)
683
+ Bcc = Fcc if B is None else _NeighborhoodCache(B.subgraph(c))
684
+ yield from _chordless_cycle_search(Fcc, Bcc, S, length_bound)
685
+
686
+ components.extend(c for c in separate(F.subgraph(c - {v})) if len(c) > 2)
687
+
688
+
689
+ def _chordless_cycle_search(F, B, path, length_bound):
690
+ """The main loop for chordless cycle enumeration.
691
+
692
+ This algorithm is strongly inspired by that of Dias et al [1]_. It has been
693
+ modified in the following ways:
694
+
695
+ 1. Recursion is avoided, per Python's limitations
696
+
697
+ 2. The labeling function is not necessary, because the starting paths
698
+ are chosen (and deleted from the host graph) to prevent multiple
699
+ occurrences of the same path
700
+
701
+ 3. The search is optionally bounded at a specified length
702
+
703
+ 4. Support for directed graphs is provided by extending cycles along
704
+ forward edges, and blocking nodes along forward and reverse edges
705
+
706
+ 5. Support for multigraphs is provided by omitting digons from the set
707
+ of forward edges
708
+
709
+ Parameters
710
+ ----------
711
+ F : _NeighborhoodCache
712
+ A graph of forward edges to follow in constructing cycles
713
+
714
+ B : _NeighborhoodCache
715
+ A graph of blocking edges to prevent the production of chordless cycles
716
+
717
+ path : list
718
+ A cycle prefix. All cycles generated will begin with this prefix.
719
+
720
+ length_bound : int
721
+ A length bound. All cycles generated will have length at most length_bound.
722
+
723
+
724
+ Yields
725
+ ------
726
+ list of nodes
727
+ Each cycle is represented by a list of nodes along the cycle.
728
+
729
+ References
730
+ ----------
731
+ .. [1] Efficient enumeration of chordless cycles
732
+ E. Dias and D. Castonguay and H. Longo and W.A.R. Jradi
733
+ https://arxiv.org/abs/1309.1051
734
+
735
+ """
736
+ blocked = defaultdict(int)
737
+ target = path[0]
738
+ blocked[path[1]] = 1
739
+ for w in path[1:]:
740
+ for v in B[w]:
741
+ blocked[v] += 1
742
+
743
+ stack = [iter(F[path[2]])]
744
+ while stack:
745
+ nbrs = stack[-1]
746
+ for w in nbrs:
747
+ if blocked[w] == 1 and (length_bound is None or len(path) < length_bound):
748
+ Fw = F[w]
749
+ if target in Fw:
750
+ yield path + [w]
751
+ else:
752
+ Bw = B[w]
753
+ if target in Bw:
754
+ continue
755
+ for v in Bw:
756
+ blocked[v] += 1
757
+ path.append(w)
758
+ stack.append(iter(Fw))
759
+ break
760
+ else:
761
+ stack.pop()
762
+ for v in B[path.pop()]:
763
+ blocked[v] -= 1
764
+
765
+
766
+ @not_implemented_for("undirected")
767
+ @nx._dispatchable(mutates_input=True)
768
+ def recursive_simple_cycles(G):
769
+ """Find simple cycles (elementary circuits) of a directed graph.
770
+
771
+ A `simple cycle`, or `elementary circuit`, is a closed path where
772
+ no node appears twice. Two elementary circuits are distinct if they
773
+ are not cyclic permutations of each other.
774
+
775
+ This version uses a recursive algorithm to build a list of cycles.
776
+ You should probably use the iterator version called simple_cycles().
777
+ Warning: This recursive version uses lots of RAM!
778
+ It appears in NetworkX for pedagogical value.
779
+
780
+ Parameters
781
+ ----------
782
+ G : NetworkX DiGraph
783
+ A directed graph
784
+
785
+ Returns
786
+ -------
787
+ A list of cycles, where each cycle is represented by a list of nodes
788
+ along the cycle.
789
+
790
+ Example:
791
+
792
+ >>> edges = [(0, 0), (0, 1), (0, 2), (1, 2), (2, 0), (2, 1), (2, 2)]
793
+ >>> G = nx.DiGraph(edges)
794
+ >>> nx.recursive_simple_cycles(G)
795
+ [[0], [2], [0, 1, 2], [0, 2], [1, 2]]
796
+
797
+ Notes
798
+ -----
799
+ The implementation follows pp. 79-80 in [1]_.
800
+
801
+ The time complexity is $O((n+e)(c+1))$ for $n$ nodes, $e$ edges and $c$
802
+ elementary circuits.
803
+
804
+ References
805
+ ----------
806
+ .. [1] Finding all the elementary circuits of a directed graph.
807
+ D. B. Johnson, SIAM Journal on Computing 4, no. 1, 77-84, 1975.
808
+ https://doi.org/10.1137/0204007
809
+
810
+ See Also
811
+ --------
812
+ simple_cycles, cycle_basis
813
+ """
814
+
815
+ # Jon Olav Vik, 2010-08-09
816
+ def _unblock(thisnode):
817
+ """Recursively unblock and remove nodes from B[thisnode]."""
818
+ if blocked[thisnode]:
819
+ blocked[thisnode] = False
820
+ while B[thisnode]:
821
+ _unblock(B[thisnode].pop())
822
+
823
+ def circuit(thisnode, startnode, component):
824
+ closed = False # set to True if elementary path is closed
825
+ path.append(thisnode)
826
+ blocked[thisnode] = True
827
+ for nextnode in component[thisnode]: # direct successors of thisnode
828
+ if nextnode == startnode:
829
+ result.append(path[:])
830
+ closed = True
831
+ elif not blocked[nextnode]:
832
+ if circuit(nextnode, startnode, component):
833
+ closed = True
834
+ if closed:
835
+ _unblock(thisnode)
836
+ else:
837
+ for nextnode in component[thisnode]:
838
+ if thisnode not in B[nextnode]: # TODO: use set for speedup?
839
+ B[nextnode].append(thisnode)
840
+ path.pop() # remove thisnode from path
841
+ return closed
842
+
843
+ path = [] # stack of nodes in current path
844
+ blocked = defaultdict(bool) # vertex: blocked from search?
845
+ B = defaultdict(list) # graph portions that yield no elementary circuit
846
+ result = [] # list to accumulate the circuits found
847
+
848
+ # Johnson's algorithm exclude self cycle edges like (v, v)
849
+ # To be backward compatible, we record those cycles in advance
850
+ # and then remove from subG
851
+ for v in G:
852
+ if G.has_edge(v, v):
853
+ result.append([v])
854
+ G.remove_edge(v, v)
855
+
856
+ # Johnson's algorithm requires some ordering of the nodes.
857
+ # They might not be sortable so we assign an arbitrary ordering.
858
+ ordering = dict(zip(G, range(len(G))))
859
+ for s in ordering:
860
+ # Build the subgraph induced by s and following nodes in the ordering
861
+ subgraph = G.subgraph(node for node in G if ordering[node] >= ordering[s])
862
+ # Find the strongly connected component in the subgraph
863
+ # that contains the least node according to the ordering
864
+ strongcomp = nx.strongly_connected_components(subgraph)
865
+ mincomp = min(strongcomp, key=lambda ns: min(ordering[n] for n in ns))
866
+ component = G.subgraph(mincomp)
867
+ if len(component) > 1:
868
+ # smallest node in the component according to the ordering
869
+ startnode = min(component, key=ordering.__getitem__)
870
+ for node in component:
871
+ blocked[node] = False
872
+ B[node][:] = []
873
+ dummy = circuit(startnode, startnode, component)
874
+ return result
875
+
876
+
877
+ @nx._dispatchable
878
+ def find_cycle(G, source=None, orientation=None):
879
+ """Returns a cycle found via depth-first traversal.
880
+
881
+ The cycle is a list of edges indicating the cyclic path.
882
+ Orientation of directed edges is controlled by `orientation`.
883
+
884
+ Parameters
885
+ ----------
886
+ G : graph
887
+ A directed/undirected graph/multigraph.
888
+
889
+ source : node, list of nodes
890
+ The node from which the traversal begins. If None, then a source
891
+ is chosen arbitrarily and repeatedly until all edges from each node in
892
+ the graph are searched.
893
+
894
+ orientation : None | 'original' | 'reverse' | 'ignore' (default: None)
895
+ For directed graphs and directed multigraphs, edge traversals need not
896
+ respect the original orientation of the edges.
897
+ When set to 'reverse' every edge is traversed in the reverse direction.
898
+ When set to 'ignore', every edge is treated as undirected.
899
+ When set to 'original', every edge is treated as directed.
900
+ In all three cases, the yielded edge tuples add a last entry to
901
+ indicate the direction in which that edge was traversed.
902
+ If orientation is None, the yielded edge has no direction indicated.
903
+ The direction is respected, but not reported.
904
+
905
+ Returns
906
+ -------
907
+ edges : directed edges
908
+ A list of directed edges indicating the path taken for the loop.
909
+ If no cycle is found, then an exception is raised.
910
+ For graphs, an edge is of the form `(u, v)` where `u` and `v`
911
+ are the tail and head of the edge as determined by the traversal.
912
+ For multigraphs, an edge is of the form `(u, v, key)`, where `key` is
913
+ the key of the edge. When the graph is directed, then `u` and `v`
914
+ are always in the order of the actual directed edge.
915
+ If orientation is not None then the edge tuple is extended to include
916
+ the direction of traversal ('forward' or 'reverse') on that edge.
917
+
918
+ Raises
919
+ ------
920
+ NetworkXNoCycle
921
+ If no cycle was found.
922
+
923
+ Examples
924
+ --------
925
+ In this example, we construct a DAG and find, in the first call, that there
926
+ are no directed cycles, and so an exception is raised. In the second call,
927
+ we ignore edge orientations and find that there is an undirected cycle.
928
+ Note that the second call finds a directed cycle while effectively
929
+ traversing an undirected graph, and so, we found an "undirected cycle".
930
+ This means that this DAG structure does not form a directed tree (which
931
+ is also known as a polytree).
932
+
933
+ >>> G = nx.DiGraph([(0, 1), (0, 2), (1, 2)])
934
+ >>> nx.find_cycle(G, orientation="original")
935
+ Traceback (most recent call last):
936
+ ...
937
+ networkx.exception.NetworkXNoCycle: No cycle found.
938
+ >>> list(nx.find_cycle(G, orientation="ignore"))
939
+ [(0, 1, 'forward'), (1, 2, 'forward'), (0, 2, 'reverse')]
940
+
941
+ See Also
942
+ --------
943
+ simple_cycles
944
+ """
945
+ if not G.is_directed() or orientation in (None, "original"):
946
+
947
+ def tailhead(edge):
948
+ return edge[:2]
949
+
950
+ elif orientation == "reverse":
951
+
952
+ def tailhead(edge):
953
+ return edge[1], edge[0]
954
+
955
+ elif orientation == "ignore":
956
+
957
+ def tailhead(edge):
958
+ if edge[-1] == "reverse":
959
+ return edge[1], edge[0]
960
+ return edge[:2]
961
+
962
+ explored = set()
963
+ cycle = []
964
+ final_node = None
965
+ for start_node in G.nbunch_iter(source):
966
+ if start_node in explored:
967
+ # No loop is possible.
968
+ continue
969
+
970
+ edges = []
971
+ # All nodes seen in this iteration of edge_dfs
972
+ seen = {start_node}
973
+ # Nodes in active path.
974
+ active_nodes = {start_node}
975
+ previous_head = None
976
+
977
+ for edge in nx.edge_dfs(G, start_node, orientation):
978
+ # Determine if this edge is a continuation of the active path.
979
+ tail, head = tailhead(edge)
980
+ if head in explored:
981
+ # Then we've already explored it. No loop is possible.
982
+ continue
983
+ if previous_head is not None and tail != previous_head:
984
+ # This edge results from backtracking.
985
+ # Pop until we get a node whose head equals the current tail.
986
+ # So for example, we might have:
987
+ # (0, 1), (1, 2), (2, 3), (1, 4)
988
+ # which must become:
989
+ # (0, 1), (1, 4)
990
+ while True:
991
+ try:
992
+ popped_edge = edges.pop()
993
+ except IndexError:
994
+ edges = []
995
+ active_nodes = {tail}
996
+ break
997
+ else:
998
+ popped_head = tailhead(popped_edge)[1]
999
+ active_nodes.remove(popped_head)
1000
+
1001
+ if edges:
1002
+ last_head = tailhead(edges[-1])[1]
1003
+ if tail == last_head:
1004
+ break
1005
+ edges.append(edge)
1006
+
1007
+ if head in active_nodes:
1008
+ # We have a loop!
1009
+ cycle.extend(edges)
1010
+ final_node = head
1011
+ break
1012
+ else:
1013
+ seen.add(head)
1014
+ active_nodes.add(head)
1015
+ previous_head = head
1016
+
1017
+ if cycle:
1018
+ break
1019
+ else:
1020
+ explored.update(seen)
1021
+
1022
+ else:
1023
+ assert len(cycle) == 0
1024
+ raise nx.exception.NetworkXNoCycle("No cycle found.")
1025
+
1026
+ # We now have a list of edges which ends on a cycle.
1027
+ # So we need to remove from the beginning edges that are not relevant.
1028
+
1029
+ for i, edge in enumerate(cycle):
1030
+ tail, head = tailhead(edge)
1031
+ if tail == final_node:
1032
+ break
1033
+
1034
+ return cycle[i:]
1035
+
1036
+
1037
+ @not_implemented_for("directed")
1038
+ @not_implemented_for("multigraph")
1039
+ @nx._dispatchable(edge_attrs="weight")
1040
+ def minimum_cycle_basis(G, weight=None):
1041
+ """Returns a minimum weight cycle basis for G
1042
+
1043
+ Minimum weight means a cycle basis for which the total weight
1044
+ (length for unweighted graphs) of all the cycles is minimum.
1045
+
1046
+ Parameters
1047
+ ----------
1048
+ G : NetworkX Graph
1049
+ weight: string
1050
+ name of the edge attribute to use for edge weights
1051
+
1052
+ Returns
1053
+ -------
1054
+ A list of cycle lists. Each cycle list is a list of nodes
1055
+ which forms a cycle (loop) in G. Note that the nodes are not
1056
+ necessarily returned in a order by which they appear in the cycle
1057
+
1058
+ Examples
1059
+ --------
1060
+ >>> G = nx.Graph()
1061
+ >>> nx.add_cycle(G, [0, 1, 2, 3])
1062
+ >>> nx.add_cycle(G, [0, 3, 4, 5])
1063
+ >>> nx.minimum_cycle_basis(G)
1064
+ [[5, 4, 3, 0], [3, 2, 1, 0]]
1065
+
1066
+ References:
1067
+ [1] Kavitha, Telikepalli, et al. "An O(m^2n) Algorithm for
1068
+ Minimum Cycle Basis of Graphs."
1069
+ http://link.springer.com/article/10.1007/s00453-007-9064-z
1070
+ [2] de Pina, J. 1995. Applications of shortest path methods.
1071
+ Ph.D. thesis, University of Amsterdam, Netherlands
1072
+
1073
+ See Also
1074
+ --------
1075
+ simple_cycles, cycle_basis
1076
+ """
1077
+ # We first split the graph in connected subgraphs
1078
+ return sum(
1079
+ (_min_cycle_basis(G.subgraph(c), weight) for c in nx.connected_components(G)),
1080
+ [],
1081
+ )
1082
+
1083
+
1084
+ def _min_cycle_basis(G, weight):
1085
+ cb = []
1086
+ # We extract the edges not in a spanning tree. We do not really need a
1087
+ # *minimum* spanning tree. That is why we call the next function with
1088
+ # weight=None. Depending on implementation, it may be faster as well
1089
+ tree_edges = list(nx.minimum_spanning_edges(G, weight=None, data=False))
1090
+ chords = G.edges - tree_edges - {(v, u) for u, v in tree_edges}
1091
+
1092
+ # We maintain a set of vectors orthogonal to sofar found cycles
1093
+ set_orth = [{edge} for edge in chords]
1094
+ while set_orth:
1095
+ base = set_orth.pop()
1096
+ # kth cycle is "parallel" to kth vector in set_orth
1097
+ cycle_edges = _min_cycle(G, base, weight)
1098
+ cb.append([v for u, v in cycle_edges])
1099
+
1100
+ # now update set_orth so that k+1,k+2... th elements are
1101
+ # orthogonal to the newly found cycle, as per [p. 336, 1]
1102
+ set_orth = [
1103
+ (
1104
+ {e for e in orth if e not in base if e[::-1] not in base}
1105
+ | {e for e in base if e not in orth if e[::-1] not in orth}
1106
+ )
1107
+ if sum((e in orth or e[::-1] in orth) for e in cycle_edges) % 2
1108
+ else orth
1109
+ for orth in set_orth
1110
+ ]
1111
+ return cb
1112
+
1113
+
1114
+ def _min_cycle(G, orth, weight):
1115
+ """
1116
+ Computes the minimum weight cycle in G,
1117
+ orthogonal to the vector orth as per [p. 338, 1]
1118
+ Use (u, 1) to indicate the lifted copy of u (denoted u' in paper).
1119
+ """
1120
+ Gi = nx.Graph()
1121
+
1122
+ # Add 2 copies of each edge in G to Gi.
1123
+ # If edge is in orth, add cross edge; otherwise in-plane edge
1124
+ for u, v, wt in G.edges(data=weight, default=1):
1125
+ if (u, v) in orth or (v, u) in orth:
1126
+ Gi.add_edges_from([(u, (v, 1)), ((u, 1), v)], Gi_weight=wt)
1127
+ else:
1128
+ Gi.add_edges_from([(u, v), ((u, 1), (v, 1))], Gi_weight=wt)
1129
+
1130
+ # find the shortest length in Gi between n and (n, 1) for each n
1131
+ # Note: Use "Gi_weight" for name of weight attribute
1132
+ spl = nx.shortest_path_length
1133
+ lift = {n: spl(Gi, source=n, target=(n, 1), weight="Gi_weight") for n in G}
1134
+
1135
+ # Now compute that short path in Gi, which translates to a cycle in G
1136
+ start = min(lift, key=lift.get)
1137
+ end = (start, 1)
1138
+ min_path_i = nx.shortest_path(Gi, source=start, target=end, weight="Gi_weight")
1139
+
1140
+ # Now we obtain the actual path, re-map nodes in Gi to those in G
1141
+ min_path = [n if n in G else n[0] for n in min_path_i]
1142
+
1143
+ # Now remove the edges that occur two times
1144
+ # two passes: flag which edges get kept, then build it
1145
+ edgelist = list(pairwise(min_path))
1146
+ edgeset = set()
1147
+ for e in edgelist:
1148
+ if e in edgeset:
1149
+ edgeset.remove(e)
1150
+ elif e[::-1] in edgeset:
1151
+ edgeset.remove(e[::-1])
1152
+ else:
1153
+ edgeset.add(e)
1154
+
1155
+ min_edgelist = []
1156
+ for e in edgelist:
1157
+ if e in edgeset:
1158
+ min_edgelist.append(e)
1159
+ edgeset.remove(e)
1160
+ elif e[::-1] in edgeset:
1161
+ min_edgelist.append(e[::-1])
1162
+ edgeset.remove(e[::-1])
1163
+
1164
+ return min_edgelist
1165
+
1166
+
1167
+ @not_implemented_for("directed")
1168
+ @not_implemented_for("multigraph")
1169
+ @nx._dispatchable
1170
+ def girth(G):
1171
+ """Returns the girth of the graph.
1172
+
1173
+ The girth of a graph is the length of its shortest cycle, or infinity if
1174
+ the graph is acyclic. The algorithm follows the description given on the
1175
+ Wikipedia page [1]_, and runs in time O(mn) on a graph with m edges and n
1176
+ nodes.
1177
+
1178
+ Parameters
1179
+ ----------
1180
+ G : NetworkX Graph
1181
+
1182
+ Returns
1183
+ -------
1184
+ int or math.inf
1185
+
1186
+ Examples
1187
+ --------
1188
+ All examples below (except P_5) can easily be checked using Wikipedia,
1189
+ which has a page for each of these famous graphs.
1190
+
1191
+ >>> nx.girth(nx.chvatal_graph())
1192
+ 4
1193
+ >>> nx.girth(nx.tutte_graph())
1194
+ 4
1195
+ >>> nx.girth(nx.petersen_graph())
1196
+ 5
1197
+ >>> nx.girth(nx.heawood_graph())
1198
+ 6
1199
+ >>> nx.girth(nx.pappus_graph())
1200
+ 6
1201
+ >>> nx.girth(nx.path_graph(5))
1202
+ inf
1203
+
1204
+ References
1205
+ ----------
1206
+ .. [1] `Wikipedia: Girth <https://en.wikipedia.org/wiki/Girth_(graph_theory)>`_
1207
+
1208
+ """
1209
+ girth = depth_limit = inf
1210
+ tree_edge = nx.algorithms.traversal.breadth_first_search.TREE_EDGE
1211
+ level_edge = nx.algorithms.traversal.breadth_first_search.LEVEL_EDGE
1212
+ for n in G:
1213
+ # run a BFS from source n, keeping track of distances; since we want
1214
+ # the shortest cycle, no need to explore beyond the current minimum length
1215
+ depth = {n: 0}
1216
+ for u, v, label in nx.bfs_labeled_edges(G, n):
1217
+ du = depth[u]
1218
+ if du > depth_limit:
1219
+ break
1220
+ if label is tree_edge:
1221
+ depth[v] = du + 1
1222
+ else:
1223
+ # if (u, v) is a level edge, the length is du + du + 1 (odd)
1224
+ # otherwise, it's a forward edge; length is du + (du + 1) + 1 (even)
1225
+ delta = label is level_edge
1226
+ length = du + du + 2 - delta
1227
+ if length < girth:
1228
+ girth = length
1229
+ depth_limit = du - delta
1230
+
1231
+ return girth
venv/lib/python3.10/site-packages/networkx/algorithms/d_separation.py ADDED
@@ -0,0 +1,722 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Algorithm for testing d-separation in DAGs.
3
+
4
+ *d-separation* is a test for conditional independence in probability
5
+ distributions that can be factorized using DAGs. It is a purely
6
+ graphical test that uses the underlying graph and makes no reference
7
+ to the actual distribution parameters. See [1]_ for a formal
8
+ definition.
9
+
10
+ The implementation is based on the conceptually simple linear time
11
+ algorithm presented in [2]_. Refer to [3]_, [4]_ for a couple of
12
+ alternative algorithms.
13
+
14
+ The functional interface in NetworkX consists of three functions:
15
+
16
+ - `find_minimal_d_separator` returns a minimal d-separator set ``z``.
17
+ That is, removing any node or nodes from it makes it no longer a d-separator.
18
+ - `is_d_separator` checks if a given set is a d-separator.
19
+ - `is_minimal_d_separator` checks if a given set is a minimal d-separator.
20
+
21
+ D-separators
22
+ ------------
23
+
24
+ Here, we provide a brief overview of d-separation and related concepts that
25
+ are relevant for understanding it:
26
+
27
+ The ideas of d-separation and d-connection relate to paths being open or blocked.
28
+
29
+ - A "path" is a sequence of nodes connected in order by edges. Unlike for most
30
+ graph theory analysis, the direction of the edges is ignored. Thus the path
31
+ can be thought of as a traditional path on the undirected version of the graph.
32
+ - A "candidate d-separator" ``z`` is a set of nodes being considered as
33
+ possibly blocking all paths between two prescribed sets ``x`` and ``y`` of nodes.
34
+ We refer to each node in the candidate d-separator as "known".
35
+ - A "collider" node on a path is a node that is a successor of its two neighbor
36
+ nodes on the path. That is, ``c`` is a collider if the edge directions
37
+ along the path look like ``... u -> c <- v ...``.
38
+ - If a collider node or any of its descendants are "known", the collider
39
+ is called an "open collider". Otherwise it is a "blocking collider".
40
+ - Any path can be "blocked" in two ways. If the path contains a "known" node
41
+ that is not a collider, the path is blocked. Also, if the path contains a
42
+ collider that is not a "known" node, the path is blocked.
43
+ - A path is "open" if it is not blocked. That is, it is open if every node is
44
+ either an open collider or not a "known". Said another way, every
45
+ "known" in the path is a collider and every collider is open (has a
46
+ "known" as a inclusive descendant). The concept of "open path" is meant to
47
+ demonstrate a probabilistic conditional dependence between two nodes given
48
+ prescribed knowledge ("known" nodes).
49
+ - Two sets ``x`` and ``y`` of nodes are "d-separated" by a set of nodes ``z``
50
+ if all paths between nodes in ``x`` and nodes in ``y`` are blocked. That is,
51
+ if there are no open paths from any node in ``x`` to any node in ``y``.
52
+ Such a set ``z`` is a "d-separator" of ``x`` and ``y``.
53
+ - A "minimal d-separator" is a d-separator ``z`` for which no node or subset
54
+ of nodes can be removed with it still being a d-separator.
55
+
56
+ The d-separator blocks some paths between ``x`` and ``y`` but opens others.
57
+ Nodes in the d-separator block paths if the nodes are not colliders.
58
+ But if a collider or its descendant nodes are in the d-separation set, the
59
+ colliders are open, allowing a path through that collider.
60
+
61
+ Illustration of D-separation with examples
62
+ ------------------------------------------
63
+
64
+ A pair of two nodes, ``u`` and ``v``, are d-connected if there is a path
65
+ from ``u`` to ``v`` that is not blocked. That means, there is an open
66
+ path from ``u`` to ``v``.
67
+
68
+ For example, if the d-separating set is the empty set, then the following paths are
69
+ open between ``u`` and ``v``:
70
+
71
+ - u <- n -> v
72
+ - u -> w -> ... -> n -> v
73
+
74
+ If on the other hand, ``n`` is in the d-separating set, then ``n`` blocks
75
+ those paths between ``u`` and ``v``.
76
+
77
+ Colliders block a path if they and their descendants are not included
78
+ in the d-separating set. An example of a path that is blocked when the
79
+ d-separating set is empty is:
80
+
81
+ - u -> w -> ... -> n <- v
82
+
83
+ The node ``n`` is a collider in this path and is not in the d-separating set.
84
+ So ``n`` blocks this path. However, if ``n`` or a descendant of ``n`` is
85
+ included in the d-separating set, then the path through the collider
86
+ at ``n`` (... -> n <- ...) is "open".
87
+
88
+ D-separation is concerned with blocking all paths between nodes from ``x`` to ``y``.
89
+ A d-separating set between ``x`` and ``y`` is one where all paths are blocked.
90
+
91
+ D-separation and its applications in probability
92
+ ------------------------------------------------
93
+
94
+ D-separation is commonly used in probabilistic causal-graph models. D-separation
95
+ connects the idea of probabilistic "dependence" with separation in a graph. If
96
+ one assumes the causal Markov condition [5]_, (every node is conditionally
97
+ independent of its non-descendants, given its parents) then d-separation implies
98
+ conditional independence in probability distributions.
99
+ Symmetrically, d-connection implies dependence.
100
+
101
+ The intuition is as follows. The edges on a causal graph indicate which nodes
102
+ influence the outcome of other nodes directly. An edge from u to v
103
+ implies that the outcome of event ``u`` influences the probabilities for
104
+ the outcome of event ``v``. Certainly knowing ``u`` changes predictions for ``v``.
105
+ But also knowing ``v`` changes predictions for ``u``. The outcomes are dependent.
106
+ Furthermore, an edge from ``v`` to ``w`` would mean that ``w`` and ``v`` are dependent
107
+ and thus that ``u`` could indirectly influence ``w``.
108
+
109
+ Without any knowledge about the system (candidate d-separating set is empty)
110
+ a causal graph ``u -> v -> w`` allows all three nodes to be dependent. But
111
+ if we know the outcome of ``v``, the conditional probabilities of outcomes for
112
+ ``u`` and ``w`` are independent of each other. That is, once we know the outcome
113
+ for ```v`, the probabilities for ``w`` do not depend on the outcome for ``u``.
114
+ This is the idea behind ``v`` blocking the path if it is "known" (in the candidate
115
+ d-separating set).
116
+
117
+ The same argument works whether the direction of the edges are both
118
+ left-going and when both arrows head out from the middle. Having a "known"
119
+ node on a path blocks the collider-free path because those relationships
120
+ make the conditional probabilities independent.
121
+
122
+ The direction of the causal edges does impact dependence precisely in the
123
+ case of a collider e.g. ``u -> v <- w``. In that situation, both ``u`` and ``w``
124
+ influence ``v```. But they do not directly influence each other. So without any
125
+ knowledge of any outcomes, ``u`` and ``w`` are independent. That is the idea behind
126
+ colliders blocking the path. But, if ``v`` is known, the conditional probabilities
127
+ of ``u`` and ``w`` can be dependent. This is the heart of Berkson's Paradox [6]_.
128
+ For example, suppose ``u`` and ``w`` are boolean events (they either happen or do not)
129
+ and ``v`` represents the outcome "at least one of ``u`` and ``w`` occur". Then knowing
130
+ ``v`` is true makes the conditional probabilities of ``u`` and ``w`` dependent.
131
+ Essentially, knowing that at least one of them is true raises the probability of
132
+ each. But further knowledge that ``w`` is true (or false) change the conditional
133
+ probability of ``u`` to either the original value or 1. So the conditional
134
+ probability of ``u`` depends on the outcome of ``w`` even though there is no
135
+ causal relationship between them. When a collider is known, dependence can
136
+ occur across paths through that collider. This is the reason open colliders
137
+ do not block paths.
138
+
139
+ Furthermore, even if ``v`` is not "known", if one of its descendants is "known"
140
+ we can use that information to know more about ``v`` which again makes
141
+ ``u`` and ``w`` potentially dependent. Suppose the chance of ``n`` occurring
142
+ is much higher when ``v`` occurs ("at least one of ``u`` and ``w`` occur").
143
+ Then if we know ``n`` occurred, it is more likely that ``v`` occurred and that
144
+ makes the chance of ``u`` and ``w`` dependent. This is the idea behind why
145
+ a collider does no block a path if any descendant of the collider is "known".
146
+
147
+ When two sets of nodes ``x`` and ``y`` are d-separated by a set ``z``,
148
+ it means that given the outcomes of the nodes in ``z``, the probabilities
149
+ of outcomes of the nodes in ``x`` are independent of the outcomes of the
150
+ nodes in ``y`` and vice versa.
151
+
152
+ Examples
153
+ --------
154
+ A Hidden Markov Model with 5 observed states and 5 hidden states
155
+ where the hidden states have causal relationships resulting in
156
+ a path results in the following causal network. We check that
157
+ early states along the path are separated from late state in
158
+ the path by the d-separator of the middle hidden state.
159
+ Thus if we condition on the middle hidden state, the early
160
+ state probabilities are independent of the late state outcomes.
161
+
162
+ >>> G = nx.DiGraph()
163
+ >>> G.add_edges_from(
164
+ ... [
165
+ ... ("H1", "H2"),
166
+ ... ("H2", "H3"),
167
+ ... ("H3", "H4"),
168
+ ... ("H4", "H5"),
169
+ ... ("H1", "O1"),
170
+ ... ("H2", "O2"),
171
+ ... ("H3", "O3"),
172
+ ... ("H4", "O4"),
173
+ ... ("H5", "O5"),
174
+ ... ]
175
+ ... )
176
+ >>> x, y, z = ({"H1", "O1"}, {"H5", "O5"}, {"H3"})
177
+ >>> nx.is_d_separator(G, x, y, z)
178
+ True
179
+ >>> nx.is_minimal_d_separator(G, x, y, z)
180
+ True
181
+ >>> nx.is_minimal_d_separator(G, x, y, z | {"O3"})
182
+ False
183
+ >>> z = nx.find_minimal_d_separator(G, x | y, {"O2", "O3", "O4"})
184
+ >>> z == {"H2", "H4"}
185
+ True
186
+
187
+ If no minimal_d_separator exists, `None` is returned
188
+
189
+ >>> other_z = nx.find_minimal_d_separator(G, x | y, {"H2", "H3"})
190
+ >>> other_z is None
191
+ True
192
+
193
+
194
+ References
195
+ ----------
196
+
197
+ .. [1] Pearl, J. (2009). Causality. Cambridge: Cambridge University Press.
198
+
199
+ .. [2] Darwiche, A. (2009). Modeling and reasoning with Bayesian networks.
200
+ Cambridge: Cambridge University Press.
201
+
202
+ .. [3] Shachter, Ross D. "Bayes-ball: The rational pastime (for
203
+ determining irrelevance and requisite information in belief networks
204
+ and influence diagrams)." In Proceedings of the Fourteenth Conference
205
+ on Uncertainty in Artificial Intelligence (UAI), (pp. 480–487). 1998.
206
+
207
+ .. [4] Koller, D., & Friedman, N. (2009).
208
+ Probabilistic graphical models: principles and techniques. The MIT Press.
209
+
210
+ .. [5] https://en.wikipedia.org/wiki/Causal_Markov_condition
211
+
212
+ .. [6] https://en.wikipedia.org/wiki/Berkson%27s_paradox
213
+
214
+ """
215
+
216
+ from collections import deque
217
+ from itertools import chain
218
+
219
+ import networkx as nx
220
+ from networkx.utils import UnionFind, not_implemented_for
221
+
222
+ __all__ = [
223
+ "is_d_separator",
224
+ "is_minimal_d_separator",
225
+ "find_minimal_d_separator",
226
+ "d_separated",
227
+ "minimal_d_separator",
228
+ ]
229
+
230
+
231
+ @not_implemented_for("undirected")
232
+ @nx._dispatchable
233
+ def is_d_separator(G, x, y, z):
234
+ """Return whether node sets `x` and `y` are d-separated by `z`.
235
+
236
+ Parameters
237
+ ----------
238
+ G : nx.DiGraph
239
+ A NetworkX DAG.
240
+
241
+ x : node or set of nodes
242
+ First node or set of nodes in `G`.
243
+
244
+ y : node or set of nodes
245
+ Second node or set of nodes in `G`.
246
+
247
+ z : node or set of nodes
248
+ Potential separator (set of conditioning nodes in `G`). Can be empty set.
249
+
250
+ Returns
251
+ -------
252
+ b : bool
253
+ A boolean that is true if `x` is d-separated from `y` given `z` in `G`.
254
+
255
+ Raises
256
+ ------
257
+ NetworkXError
258
+ The *d-separation* test is commonly used on disjoint sets of
259
+ nodes in acyclic directed graphs. Accordingly, the algorithm
260
+ raises a :exc:`NetworkXError` if the node sets are not
261
+ disjoint or if the input graph is not a DAG.
262
+
263
+ NodeNotFound
264
+ If any of the input nodes are not found in the graph,
265
+ a :exc:`NodeNotFound` exception is raised
266
+
267
+ Notes
268
+ -----
269
+ A d-separating set in a DAG is a set of nodes that
270
+ blocks all paths between the two sets. Nodes in `z`
271
+ block a path if they are part of the path and are not a collider,
272
+ or a descendant of a collider. Also colliders that are not in `z`
273
+ block a path. A collider structure along a path
274
+ is ``... -> c <- ...`` where ``c`` is the collider node.
275
+
276
+ https://en.wikipedia.org/wiki/Bayesian_network#d-separation
277
+ """
278
+ try:
279
+ x = {x} if x in G else x
280
+ y = {y} if y in G else y
281
+ z = {z} if z in G else z
282
+
283
+ intersection = x & y or x & z or y & z
284
+ if intersection:
285
+ raise nx.NetworkXError(
286
+ f"The sets are not disjoint, with intersection {intersection}"
287
+ )
288
+
289
+ set_v = x | y | z
290
+ if set_v - G.nodes:
291
+ raise nx.NodeNotFound(f"The node(s) {set_v - G.nodes} are not found in G")
292
+ except TypeError:
293
+ raise nx.NodeNotFound("One of x, y, or z is not a node or a set of nodes in G")
294
+
295
+ if not nx.is_directed_acyclic_graph(G):
296
+ raise nx.NetworkXError("graph should be directed acyclic")
297
+
298
+ # contains -> and <-> edges from starting node T
299
+ forward_deque = deque([])
300
+ forward_visited = set()
301
+
302
+ # contains <- and - edges from starting node T
303
+ backward_deque = deque(x)
304
+ backward_visited = set()
305
+
306
+ ancestors_or_z = set().union(*[nx.ancestors(G, node) for node in x]) | z | x
307
+
308
+ while forward_deque or backward_deque:
309
+ if backward_deque:
310
+ node = backward_deque.popleft()
311
+ backward_visited.add(node)
312
+ if node in y:
313
+ return False
314
+ if node in z:
315
+ continue
316
+
317
+ # add <- edges to backward deque
318
+ backward_deque.extend(G.pred[node].keys() - backward_visited)
319
+ # add -> edges to forward deque
320
+ forward_deque.extend(G.succ[node].keys() - forward_visited)
321
+
322
+ if forward_deque:
323
+ node = forward_deque.popleft()
324
+ forward_visited.add(node)
325
+ if node in y:
326
+ return False
327
+
328
+ # Consider if -> node <- is opened due to ancestor of node in z
329
+ if node in ancestors_or_z:
330
+ # add <- edges to backward deque
331
+ backward_deque.extend(G.pred[node].keys() - backward_visited)
332
+ if node not in z:
333
+ # add -> edges to forward deque
334
+ forward_deque.extend(G.succ[node].keys() - forward_visited)
335
+
336
+ return True
337
+
338
+
339
+ @not_implemented_for("undirected")
340
+ @nx._dispatchable
341
+ def find_minimal_d_separator(G, x, y, *, included=None, restricted=None):
342
+ """Returns a minimal d-separating set between `x` and `y` if possible
343
+
344
+ A d-separating set in a DAG is a set of nodes that blocks all
345
+ paths between the two sets of nodes, `x` and `y`. This function
346
+ constructs a d-separating set that is "minimal", meaning no nodes can
347
+ be removed without it losing the d-separating property for `x` and `y`.
348
+ If no d-separating sets exist for `x` and `y`, this returns `None`.
349
+
350
+ In a DAG there may be more than one minimal d-separator between two
351
+ sets of nodes. Minimal d-separators are not always unique. This function
352
+ returns one minimal d-separator, or `None` if no d-separator exists.
353
+
354
+ Uses the algorithm presented in [1]_. The complexity of the algorithm
355
+ is :math:`O(m)`, where :math:`m` stands for the number of edges in
356
+ the subgraph of G consisting of only the ancestors of `x` and `y`.
357
+ For full details, see [1]_.
358
+
359
+ Parameters
360
+ ----------
361
+ G : graph
362
+ A networkx DAG.
363
+ x : set | node
364
+ A node or set of nodes in the graph.
365
+ y : set | node
366
+ A node or set of nodes in the graph.
367
+ included : set | node | None
368
+ A node or set of nodes which must be included in the found separating set,
369
+ default is None, which means the empty set.
370
+ restricted : set | node | None
371
+ Restricted node or set of nodes to consider. Only these nodes can be in
372
+ the found separating set, default is None meaning all nodes in ``G``.
373
+
374
+ Returns
375
+ -------
376
+ z : set | None
377
+ The minimal d-separating set, if at least one d-separating set exists,
378
+ otherwise None.
379
+
380
+ Raises
381
+ ------
382
+ NetworkXError
383
+ Raises a :exc:`NetworkXError` if the input graph is not a DAG
384
+ or if node sets `x`, `y`, and `included` are not disjoint.
385
+
386
+ NodeNotFound
387
+ If any of the input nodes are not found in the graph,
388
+ a :exc:`NodeNotFound` exception is raised.
389
+
390
+ References
391
+ ----------
392
+ .. [1] van der Zander, Benito, and Maciej Liśkiewicz. "Finding
393
+ minimal d-separators in linear time and applications." In
394
+ Uncertainty in Artificial Intelligence, pp. 637-647. PMLR, 2020.
395
+ """
396
+ if not nx.is_directed_acyclic_graph(G):
397
+ raise nx.NetworkXError("graph should be directed acyclic")
398
+
399
+ try:
400
+ x = {x} if x in G else x
401
+ y = {y} if y in G else y
402
+
403
+ if included is None:
404
+ included = set()
405
+ elif included in G:
406
+ included = {included}
407
+
408
+ if restricted is None:
409
+ restricted = set(G)
410
+ elif restricted in G:
411
+ restricted = {restricted}
412
+
413
+ set_y = x | y | included | restricted
414
+ if set_y - G.nodes:
415
+ raise nx.NodeNotFound(f"The node(s) {set_y - G.nodes} are not found in G")
416
+ except TypeError:
417
+ raise nx.NodeNotFound(
418
+ "One of x, y, included or restricted is not a node or set of nodes in G"
419
+ )
420
+
421
+ if not included <= restricted:
422
+ raise nx.NetworkXError(
423
+ f"Included nodes {included} must be in restricted nodes {restricted}"
424
+ )
425
+
426
+ intersection = x & y or x & included or y & included
427
+ if intersection:
428
+ raise nx.NetworkXError(
429
+ f"The sets x, y, included are not disjoint. Overlap: {intersection}"
430
+ )
431
+
432
+ nodeset = x | y | included
433
+ ancestors_x_y_included = nodeset.union(*[nx.ancestors(G, node) for node in nodeset])
434
+
435
+ z_init = restricted & (ancestors_x_y_included - (x | y))
436
+
437
+ x_closure = _reachable(G, x, ancestors_x_y_included, z_init)
438
+ if x_closure & y:
439
+ return None
440
+
441
+ z_updated = z_init & (x_closure | included)
442
+ y_closure = _reachable(G, y, ancestors_x_y_included, z_updated)
443
+ return z_updated & (y_closure | included)
444
+
445
+
446
+ @not_implemented_for("undirected")
447
+ @nx._dispatchable
448
+ def is_minimal_d_separator(G, x, y, z, *, included=None, restricted=None):
449
+ """Determine if `z` is a minimal d-separator for `x` and `y`.
450
+
451
+ A d-separator, `z`, in a DAG is a set of nodes that blocks
452
+ all paths from nodes in set `x` to nodes in set `y`.
453
+ A minimal d-separator is a d-separator `z` such that removing
454
+ any subset of nodes makes it no longer a d-separator.
455
+
456
+ Note: This function checks whether `z` is a d-separator AND is
457
+ minimal. One can use the function `is_d_separator` to only check if
458
+ `z` is a d-separator. See examples below.
459
+
460
+ Parameters
461
+ ----------
462
+ G : nx.DiGraph
463
+ A NetworkX DAG.
464
+ x : node | set
465
+ A node or set of nodes in the graph.
466
+ y : node | set
467
+ A node or set of nodes in the graph.
468
+ z : node | set
469
+ The node or set of nodes to check if it is a minimal d-separating set.
470
+ The function :func:`is_d_separator` is called inside this function
471
+ to verify that `z` is in fact a d-separator.
472
+ included : set | node | None
473
+ A node or set of nodes which must be included in the found separating set,
474
+ default is ``None``, which means the empty set.
475
+ restricted : set | node | None
476
+ Restricted node or set of nodes to consider. Only these nodes can be in
477
+ the found separating set, default is ``None`` meaning all nodes in ``G``.
478
+
479
+ Returns
480
+ -------
481
+ bool
482
+ Whether or not the set `z` is a minimal d-separator subject to
483
+ `restricted` nodes and `included` node constraints.
484
+
485
+ Examples
486
+ --------
487
+ >>> G = nx.path_graph([0, 1, 2, 3], create_using=nx.DiGraph)
488
+ >>> G.add_node(4)
489
+ >>> nx.is_minimal_d_separator(G, 0, 2, {1})
490
+ True
491
+ >>> # since {1} is the minimal d-separator, {1, 3, 4} is not minimal
492
+ >>> nx.is_minimal_d_separator(G, 0, 2, {1, 3, 4})
493
+ False
494
+ >>> # alternatively, if we only want to check that {1, 3, 4} is a d-separator
495
+ >>> nx.is_d_separator(G, 0, 2, {1, 3, 4})
496
+ True
497
+
498
+ Raises
499
+ ------
500
+ NetworkXError
501
+ Raises a :exc:`NetworkXError` if the input graph is not a DAG.
502
+
503
+ NodeNotFound
504
+ If any of the input nodes are not found in the graph,
505
+ a :exc:`NodeNotFound` exception is raised.
506
+
507
+ References
508
+ ----------
509
+ .. [1] van der Zander, Benito, and Maciej Liśkiewicz. "Finding
510
+ minimal d-separators in linear time and applications." In
511
+ Uncertainty in Artificial Intelligence, pp. 637-647. PMLR, 2020.
512
+
513
+ Notes
514
+ -----
515
+ This function works on verifying that a set is minimal and
516
+ d-separating between two nodes. Uses criterion (a), (b), (c) on
517
+ page 4 of [1]_. a) closure(`x`) and `y` are disjoint. b) `z` contains
518
+ all nodes from `included` and is contained in the `restricted`
519
+ nodes and in the union of ancestors of `x`, `y`, and `included`.
520
+ c) the nodes in `z` not in `included` are contained in both
521
+ closure(x) and closure(y). The closure of a set is the set of nodes
522
+ connected to the set by a directed path in G.
523
+
524
+ The complexity is :math:`O(m)`, where :math:`m` stands for the
525
+ number of edges in the subgraph of G consisting of only the
526
+ ancestors of `x` and `y`.
527
+
528
+ For full details, see [1]_.
529
+ """
530
+ if not nx.is_directed_acyclic_graph(G):
531
+ raise nx.NetworkXError("graph should be directed acyclic")
532
+
533
+ try:
534
+ x = {x} if x in G else x
535
+ y = {y} if y in G else y
536
+ z = {z} if z in G else z
537
+
538
+ if included is None:
539
+ included = set()
540
+ elif included in G:
541
+ included = {included}
542
+
543
+ if restricted is None:
544
+ restricted = set(G)
545
+ elif restricted in G:
546
+ restricted = {restricted}
547
+
548
+ set_y = x | y | included | restricted
549
+ if set_y - G.nodes:
550
+ raise nx.NodeNotFound(f"The node(s) {set_y - G.nodes} are not found in G")
551
+ except TypeError:
552
+ raise nx.NodeNotFound(
553
+ "One of x, y, z, included or restricted is not a node or set of nodes in G"
554
+ )
555
+
556
+ if not included <= z:
557
+ raise nx.NetworkXError(
558
+ f"Included nodes {included} must be in proposed separating set z {x}"
559
+ )
560
+ if not z <= restricted:
561
+ raise nx.NetworkXError(
562
+ f"Separating set {z} must be contained in restricted set {restricted}"
563
+ )
564
+
565
+ intersection = x.intersection(y) or x.intersection(z) or y.intersection(z)
566
+ if intersection:
567
+ raise nx.NetworkXError(
568
+ f"The sets are not disjoint, with intersection {intersection}"
569
+ )
570
+
571
+ nodeset = x | y | included
572
+ ancestors_x_y_included = nodeset.union(*[nx.ancestors(G, n) for n in nodeset])
573
+
574
+ # criterion (a) -- check that z is actually a separator
575
+ x_closure = _reachable(G, x, ancestors_x_y_included, z)
576
+ if x_closure & y:
577
+ return False
578
+
579
+ # criterion (b) -- basic constraint; included and restricted already checked above
580
+ if not (z <= ancestors_x_y_included):
581
+ return False
582
+
583
+ # criterion (c) -- check that z is minimal
584
+ y_closure = _reachable(G, y, ancestors_x_y_included, z)
585
+ if not ((z - included) <= (x_closure & y_closure)):
586
+ return False
587
+ return True
588
+
589
+
590
+ @not_implemented_for("undirected")
591
+ def _reachable(G, x, a, z):
592
+ """Modified Bayes-Ball algorithm for finding d-connected nodes.
593
+
594
+ Find all nodes in `a` that are d-connected to those in `x` by
595
+ those in `z`. This is an implementation of the function
596
+ `REACHABLE` in [1]_ (which is itself a modification of the
597
+ Bayes-Ball algorithm [2]_) when restricted to DAGs.
598
+
599
+ Parameters
600
+ ----------
601
+ G : nx.DiGraph
602
+ A NetworkX DAG.
603
+ x : node | set
604
+ A node in the DAG, or a set of nodes.
605
+ a : node | set
606
+ A (set of) node(s) in the DAG containing the ancestors of `x`.
607
+ z : node | set
608
+ The node or set of nodes conditioned on when checking d-connectedness.
609
+
610
+ Returns
611
+ -------
612
+ w : set
613
+ The closure of `x` in `a` with respect to d-connectedness
614
+ given `z`.
615
+
616
+ References
617
+ ----------
618
+ .. [1] van der Zander, Benito, and Maciej Liśkiewicz. "Finding
619
+ minimal d-separators in linear time and applications." In
620
+ Uncertainty in Artificial Intelligence, pp. 637-647. PMLR, 2020.
621
+
622
+ .. [2] Shachter, Ross D. "Bayes-ball: The rational pastime
623
+ (for determining irrelevance and requisite information in
624
+ belief networks and influence diagrams)." In Proceedings of the
625
+ Fourteenth Conference on Uncertainty in Artificial Intelligence
626
+ (UAI), (pp. 480–487). 1998.
627
+ """
628
+
629
+ def _pass(e, v, f, n):
630
+ """Whether a ball entering node `v` along edge `e` passes to `n` along `f`.
631
+
632
+ Boolean function defined on page 6 of [1]_.
633
+
634
+ Parameters
635
+ ----------
636
+ e : bool
637
+ Directed edge by which the ball got to node `v`; `True` iff directed into `v`.
638
+ v : node
639
+ Node where the ball is.
640
+ f : bool
641
+ Directed edge connecting nodes `v` and `n`; `True` iff directed `n`.
642
+ n : node
643
+ Checking whether the ball passes to this node.
644
+
645
+ Returns
646
+ -------
647
+ b : bool
648
+ Whether the ball passes or not.
649
+
650
+ References
651
+ ----------
652
+ .. [1] van der Zander, Benito, and Maciej Liśkiewicz. "Finding
653
+ minimal d-separators in linear time and applications." In
654
+ Uncertainty in Artificial Intelligence, pp. 637-647. PMLR, 2020.
655
+ """
656
+ is_element_of_A = n in a
657
+ # almost_definite_status = True # always true for DAGs; not so for RCGs
658
+ collider_if_in_Z = v not in z or (e and not f)
659
+ return is_element_of_A and collider_if_in_Z # and almost_definite_status
660
+
661
+ queue = deque([])
662
+ for node in x:
663
+ if bool(G.pred[node]):
664
+ queue.append((True, node))
665
+ if bool(G.succ[node]):
666
+ queue.append((False, node))
667
+ processed = queue.copy()
668
+
669
+ while any(queue):
670
+ e, v = queue.popleft()
671
+ preds = ((False, n) for n in G.pred[v])
672
+ succs = ((True, n) for n in G.succ[v])
673
+ f_n_pairs = chain(preds, succs)
674
+ for f, n in f_n_pairs:
675
+ if (f, n) not in processed and _pass(e, v, f, n):
676
+ queue.append((f, n))
677
+ processed.append((f, n))
678
+
679
+ return {w for (_, w) in processed}
680
+
681
+
682
+ # Deprecated functions:
683
+ def d_separated(G, x, y, z):
684
+ """Return whether nodes sets ``x`` and ``y`` are d-separated by ``z``.
685
+
686
+ .. deprecated:: 3.3
687
+
688
+ This function is deprecated and will be removed in NetworkX v3.5.
689
+ Please use `is_d_separator(G, x, y, z)`.
690
+
691
+ """
692
+ import warnings
693
+
694
+ warnings.warn(
695
+ "d_separated is deprecated and will be removed in NetworkX v3.5."
696
+ "Please use `is_d_separator(G, x, y, z)`.",
697
+ category=DeprecationWarning,
698
+ stacklevel=2,
699
+ )
700
+ return nx.is_d_separator(G, x, y, z)
701
+
702
+
703
+ def minimal_d_separator(G, u, v):
704
+ """Returns a minimal_d-separating set between `x` and `y` if possible
705
+
706
+ .. deprecated:: 3.3
707
+
708
+ minimal_d_separator is deprecated and will be removed in NetworkX v3.5.
709
+ Please use `find_minimal_d_separator(G, x, y)`.
710
+
711
+ """
712
+ import warnings
713
+
714
+ warnings.warn(
715
+ (
716
+ "This function is deprecated and will be removed in NetworkX v3.5."
717
+ "Please use `is_d_separator(G, x, y)`."
718
+ ),
719
+ category=DeprecationWarning,
720
+ stacklevel=2,
721
+ )
722
+ return nx.find_minimal_d_separator(G, u, v)
venv/lib/python3.10/site-packages/networkx/algorithms/dag.py ADDED
@@ -0,0 +1,1259 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Algorithms for directed acyclic graphs (DAGs).
2
+
3
+ Note that most of these functions are only guaranteed to work for DAGs.
4
+ In general, these functions do not check for acyclic-ness, so it is up
5
+ to the user to check for that.
6
+ """
7
+
8
+ import heapq
9
+ from collections import deque
10
+ from functools import partial
11
+ from itertools import chain, combinations, product, starmap
12
+ from math import gcd
13
+
14
+ import networkx as nx
15
+ from networkx.utils import arbitrary_element, not_implemented_for, pairwise
16
+
17
+ __all__ = [
18
+ "descendants",
19
+ "ancestors",
20
+ "topological_sort",
21
+ "lexicographical_topological_sort",
22
+ "all_topological_sorts",
23
+ "topological_generations",
24
+ "is_directed_acyclic_graph",
25
+ "is_aperiodic",
26
+ "transitive_closure",
27
+ "transitive_closure_dag",
28
+ "transitive_reduction",
29
+ "antichains",
30
+ "dag_longest_path",
31
+ "dag_longest_path_length",
32
+ "dag_to_branching",
33
+ "compute_v_structures",
34
+ ]
35
+
36
+ chaini = chain.from_iterable
37
+
38
+
39
+ @nx._dispatchable
40
+ def descendants(G, source):
41
+ """Returns all nodes reachable from `source` in `G`.
42
+
43
+ Parameters
44
+ ----------
45
+ G : NetworkX Graph
46
+ source : node in `G`
47
+
48
+ Returns
49
+ -------
50
+ set()
51
+ The descendants of `source` in `G`
52
+
53
+ Raises
54
+ ------
55
+ NetworkXError
56
+ If node `source` is not in `G`.
57
+
58
+ Examples
59
+ --------
60
+ >>> DG = nx.path_graph(5, create_using=nx.DiGraph)
61
+ >>> sorted(nx.descendants(DG, 2))
62
+ [3, 4]
63
+
64
+ The `source` node is not a descendant of itself, but can be included manually:
65
+
66
+ >>> sorted(nx.descendants(DG, 2) | {2})
67
+ [2, 3, 4]
68
+
69
+ See also
70
+ --------
71
+ ancestors
72
+ """
73
+ return {child for parent, child in nx.bfs_edges(G, source)}
74
+
75
+
76
+ @nx._dispatchable
77
+ def ancestors(G, source):
78
+ """Returns all nodes having a path to `source` in `G`.
79
+
80
+ Parameters
81
+ ----------
82
+ G : NetworkX Graph
83
+ source : node in `G`
84
+
85
+ Returns
86
+ -------
87
+ set()
88
+ The ancestors of `source` in `G`
89
+
90
+ Raises
91
+ ------
92
+ NetworkXError
93
+ If node `source` is not in `G`.
94
+
95
+ Examples
96
+ --------
97
+ >>> DG = nx.path_graph(5, create_using=nx.DiGraph)
98
+ >>> sorted(nx.ancestors(DG, 2))
99
+ [0, 1]
100
+
101
+ The `source` node is not an ancestor of itself, but can be included manually:
102
+
103
+ >>> sorted(nx.ancestors(DG, 2) | {2})
104
+ [0, 1, 2]
105
+
106
+ See also
107
+ --------
108
+ descendants
109
+ """
110
+ return {child for parent, child in nx.bfs_edges(G, source, reverse=True)}
111
+
112
+
113
+ @nx._dispatchable
114
+ def has_cycle(G):
115
+ """Decides whether the directed graph has a cycle."""
116
+ try:
117
+ # Feed the entire iterator into a zero-length deque.
118
+ deque(topological_sort(G), maxlen=0)
119
+ except nx.NetworkXUnfeasible:
120
+ return True
121
+ else:
122
+ return False
123
+
124
+
125
+ @nx._dispatchable
126
+ def is_directed_acyclic_graph(G):
127
+ """Returns True if the graph `G` is a directed acyclic graph (DAG) or
128
+ False if not.
129
+
130
+ Parameters
131
+ ----------
132
+ G : NetworkX graph
133
+
134
+ Returns
135
+ -------
136
+ bool
137
+ True if `G` is a DAG, False otherwise
138
+
139
+ Examples
140
+ --------
141
+ Undirected graph::
142
+
143
+ >>> G = nx.Graph([(1, 2), (2, 3)])
144
+ >>> nx.is_directed_acyclic_graph(G)
145
+ False
146
+
147
+ Directed graph with cycle::
148
+
149
+ >>> G = nx.DiGraph([(1, 2), (2, 3), (3, 1)])
150
+ >>> nx.is_directed_acyclic_graph(G)
151
+ False
152
+
153
+ Directed acyclic graph::
154
+
155
+ >>> G = nx.DiGraph([(1, 2), (2, 3)])
156
+ >>> nx.is_directed_acyclic_graph(G)
157
+ True
158
+
159
+ See also
160
+ --------
161
+ topological_sort
162
+ """
163
+ return G.is_directed() and not has_cycle(G)
164
+
165
+
166
+ @nx._dispatchable
167
+ def topological_generations(G):
168
+ """Stratifies a DAG into generations.
169
+
170
+ A topological generation is node collection in which ancestors of a node in each
171
+ generation are guaranteed to be in a previous generation, and any descendants of
172
+ a node are guaranteed to be in a following generation. Nodes are guaranteed to
173
+ be in the earliest possible generation that they can belong to.
174
+
175
+ Parameters
176
+ ----------
177
+ G : NetworkX digraph
178
+ A directed acyclic graph (DAG)
179
+
180
+ Yields
181
+ ------
182
+ sets of nodes
183
+ Yields sets of nodes representing each generation.
184
+
185
+ Raises
186
+ ------
187
+ NetworkXError
188
+ Generations are defined for directed graphs only. If the graph
189
+ `G` is undirected, a :exc:`NetworkXError` is raised.
190
+
191
+ NetworkXUnfeasible
192
+ If `G` is not a directed acyclic graph (DAG) no topological generations
193
+ exist and a :exc:`NetworkXUnfeasible` exception is raised. This can also
194
+ be raised if `G` is changed while the returned iterator is being processed
195
+
196
+ RuntimeError
197
+ If `G` is changed while the returned iterator is being processed.
198
+
199
+ Examples
200
+ --------
201
+ >>> DG = nx.DiGraph([(2, 1), (3, 1)])
202
+ >>> [sorted(generation) for generation in nx.topological_generations(DG)]
203
+ [[2, 3], [1]]
204
+
205
+ Notes
206
+ -----
207
+ The generation in which a node resides can also be determined by taking the
208
+ max-path-distance from the node to the farthest leaf node. That value can
209
+ be obtained with this function using `enumerate(topological_generations(G))`.
210
+
211
+ See also
212
+ --------
213
+ topological_sort
214
+ """
215
+ if not G.is_directed():
216
+ raise nx.NetworkXError("Topological sort not defined on undirected graphs.")
217
+
218
+ multigraph = G.is_multigraph()
219
+ indegree_map = {v: d for v, d in G.in_degree() if d > 0}
220
+ zero_indegree = [v for v, d in G.in_degree() if d == 0]
221
+
222
+ while zero_indegree:
223
+ this_generation = zero_indegree
224
+ zero_indegree = []
225
+ for node in this_generation:
226
+ if node not in G:
227
+ raise RuntimeError("Graph changed during iteration")
228
+ for child in G.neighbors(node):
229
+ try:
230
+ indegree_map[child] -= len(G[node][child]) if multigraph else 1
231
+ except KeyError as err:
232
+ raise RuntimeError("Graph changed during iteration") from err
233
+ if indegree_map[child] == 0:
234
+ zero_indegree.append(child)
235
+ del indegree_map[child]
236
+ yield this_generation
237
+
238
+ if indegree_map:
239
+ raise nx.NetworkXUnfeasible(
240
+ "Graph contains a cycle or graph changed during iteration"
241
+ )
242
+
243
+
244
+ @nx._dispatchable
245
+ def topological_sort(G):
246
+ """Returns a generator of nodes in topologically sorted order.
247
+
248
+ A topological sort is a nonunique permutation of the nodes of a
249
+ directed graph such that an edge from u to v implies that u
250
+ appears before v in the topological sort order. This ordering is
251
+ valid only if the graph has no directed cycles.
252
+
253
+ Parameters
254
+ ----------
255
+ G : NetworkX digraph
256
+ A directed acyclic graph (DAG)
257
+
258
+ Yields
259
+ ------
260
+ nodes
261
+ Yields the nodes in topological sorted order.
262
+
263
+ Raises
264
+ ------
265
+ NetworkXError
266
+ Topological sort is defined for directed graphs only. If the graph `G`
267
+ is undirected, a :exc:`NetworkXError` is raised.
268
+
269
+ NetworkXUnfeasible
270
+ If `G` is not a directed acyclic graph (DAG) no topological sort exists
271
+ and a :exc:`NetworkXUnfeasible` exception is raised. This can also be
272
+ raised if `G` is changed while the returned iterator is being processed
273
+
274
+ RuntimeError
275
+ If `G` is changed while the returned iterator is being processed.
276
+
277
+ Examples
278
+ --------
279
+ To get the reverse order of the topological sort:
280
+
281
+ >>> DG = nx.DiGraph([(1, 2), (2, 3)])
282
+ >>> list(reversed(list(nx.topological_sort(DG))))
283
+ [3, 2, 1]
284
+
285
+ If your DiGraph naturally has the edges representing tasks/inputs
286
+ and nodes representing people/processes that initiate tasks, then
287
+ topological_sort is not quite what you need. You will have to change
288
+ the tasks to nodes with dependence reflected by edges. The result is
289
+ a kind of topological sort of the edges. This can be done
290
+ with :func:`networkx.line_graph` as follows:
291
+
292
+ >>> list(nx.topological_sort(nx.line_graph(DG)))
293
+ [(1, 2), (2, 3)]
294
+
295
+ Notes
296
+ -----
297
+ This algorithm is based on a description and proof in
298
+ "Introduction to Algorithms: A Creative Approach" [1]_ .
299
+
300
+ See also
301
+ --------
302
+ is_directed_acyclic_graph, lexicographical_topological_sort
303
+
304
+ References
305
+ ----------
306
+ .. [1] Manber, U. (1989).
307
+ *Introduction to Algorithms - A Creative Approach.* Addison-Wesley.
308
+ """
309
+ for generation in nx.topological_generations(G):
310
+ yield from generation
311
+
312
+
313
+ @nx._dispatchable
314
+ def lexicographical_topological_sort(G, key=None):
315
+ """Generate the nodes in the unique lexicographical topological sort order.
316
+
317
+ Generates a unique ordering of nodes by first sorting topologically (for which there are often
318
+ multiple valid orderings) and then additionally by sorting lexicographically.
319
+
320
+ A topological sort arranges the nodes of a directed graph so that the
321
+ upstream node of each directed edge precedes the downstream node.
322
+ It is always possible to find a solution for directed graphs that have no cycles.
323
+ There may be more than one valid solution.
324
+
325
+ Lexicographical sorting is just sorting alphabetically. It is used here to break ties in the
326
+ topological sort and to determine a single, unique ordering. This can be useful in comparing
327
+ sort results.
328
+
329
+ The lexicographical order can be customized by providing a function to the `key=` parameter.
330
+ The definition of the key function is the same as used in python's built-in `sort()`.
331
+ The function takes a single argument and returns a key to use for sorting purposes.
332
+
333
+ Lexicographical sorting can fail if the node names are un-sortable. See the example below.
334
+ The solution is to provide a function to the `key=` argument that returns sortable keys.
335
+
336
+
337
+ Parameters
338
+ ----------
339
+ G : NetworkX digraph
340
+ A directed acyclic graph (DAG)
341
+
342
+ key : function, optional
343
+ A function of one argument that converts a node name to a comparison key.
344
+ It defines and resolves ambiguities in the sort order. Defaults to the identity function.
345
+
346
+ Yields
347
+ ------
348
+ nodes
349
+ Yields the nodes of G in lexicographical topological sort order.
350
+
351
+ Raises
352
+ ------
353
+ NetworkXError
354
+ Topological sort is defined for directed graphs only. If the graph `G`
355
+ is undirected, a :exc:`NetworkXError` is raised.
356
+
357
+ NetworkXUnfeasible
358
+ If `G` is not a directed acyclic graph (DAG) no topological sort exists
359
+ and a :exc:`NetworkXUnfeasible` exception is raised. This can also be
360
+ raised if `G` is changed while the returned iterator is being processed
361
+
362
+ RuntimeError
363
+ If `G` is changed while the returned iterator is being processed.
364
+
365
+ TypeError
366
+ Results from un-sortable node names.
367
+ Consider using `key=` parameter to resolve ambiguities in the sort order.
368
+
369
+ Examples
370
+ --------
371
+ >>> DG = nx.DiGraph([(2, 1), (2, 5), (1, 3), (1, 4), (5, 4)])
372
+ >>> list(nx.lexicographical_topological_sort(DG))
373
+ [2, 1, 3, 5, 4]
374
+ >>> list(nx.lexicographical_topological_sort(DG, key=lambda x: -x))
375
+ [2, 5, 1, 4, 3]
376
+
377
+ The sort will fail for any graph with integer and string nodes. Comparison of integer to strings
378
+ is not defined in python. Is 3 greater or less than 'red'?
379
+
380
+ >>> DG = nx.DiGraph([(1, "red"), (3, "red"), (1, "green"), (2, "blue")])
381
+ >>> list(nx.lexicographical_topological_sort(DG))
382
+ Traceback (most recent call last):
383
+ ...
384
+ TypeError: '<' not supported between instances of 'str' and 'int'
385
+ ...
386
+
387
+ Incomparable nodes can be resolved using a `key` function. This example function
388
+ allows comparison of integers and strings by returning a tuple where the first
389
+ element is True for `str`, False otherwise. The second element is the node name.
390
+ This groups the strings and integers separately so they can be compared only among themselves.
391
+
392
+ >>> key = lambda node: (isinstance(node, str), node)
393
+ >>> list(nx.lexicographical_topological_sort(DG, key=key))
394
+ [1, 2, 3, 'blue', 'green', 'red']
395
+
396
+ Notes
397
+ -----
398
+ This algorithm is based on a description and proof in
399
+ "Introduction to Algorithms: A Creative Approach" [1]_ .
400
+
401
+ See also
402
+ --------
403
+ topological_sort
404
+
405
+ References
406
+ ----------
407
+ .. [1] Manber, U. (1989).
408
+ *Introduction to Algorithms - A Creative Approach.* Addison-Wesley.
409
+ """
410
+ if not G.is_directed():
411
+ msg = "Topological sort not defined on undirected graphs."
412
+ raise nx.NetworkXError(msg)
413
+
414
+ if key is None:
415
+
416
+ def key(node):
417
+ return node
418
+
419
+ nodeid_map = {n: i for i, n in enumerate(G)}
420
+
421
+ def create_tuple(node):
422
+ return key(node), nodeid_map[node], node
423
+
424
+ indegree_map = {v: d for v, d in G.in_degree() if d > 0}
425
+ # These nodes have zero indegree and ready to be returned.
426
+ zero_indegree = [create_tuple(v) for v, d in G.in_degree() if d == 0]
427
+ heapq.heapify(zero_indegree)
428
+
429
+ while zero_indegree:
430
+ _, _, node = heapq.heappop(zero_indegree)
431
+
432
+ if node not in G:
433
+ raise RuntimeError("Graph changed during iteration")
434
+ for _, child in G.edges(node):
435
+ try:
436
+ indegree_map[child] -= 1
437
+ except KeyError as err:
438
+ raise RuntimeError("Graph changed during iteration") from err
439
+ if indegree_map[child] == 0:
440
+ try:
441
+ heapq.heappush(zero_indegree, create_tuple(child))
442
+ except TypeError as err:
443
+ raise TypeError(
444
+ f"{err}\nConsider using `key=` parameter to resolve ambiguities in the sort order."
445
+ )
446
+ del indegree_map[child]
447
+
448
+ yield node
449
+
450
+ if indegree_map:
451
+ msg = "Graph contains a cycle or graph changed during iteration"
452
+ raise nx.NetworkXUnfeasible(msg)
453
+
454
+
455
+ @not_implemented_for("undirected")
456
+ @nx._dispatchable
457
+ def all_topological_sorts(G):
458
+ """Returns a generator of _all_ topological sorts of the directed graph G.
459
+
460
+ A topological sort is a nonunique permutation of the nodes such that an
461
+ edge from u to v implies that u appears before v in the topological sort
462
+ order.
463
+
464
+ Parameters
465
+ ----------
466
+ G : NetworkX DiGraph
467
+ A directed graph
468
+
469
+ Yields
470
+ ------
471
+ topological_sort_order : list
472
+ a list of nodes in `G`, representing one of the topological sort orders
473
+
474
+ Raises
475
+ ------
476
+ NetworkXNotImplemented
477
+ If `G` is not directed
478
+ NetworkXUnfeasible
479
+ If `G` is not acyclic
480
+
481
+ Examples
482
+ --------
483
+ To enumerate all topological sorts of directed graph:
484
+
485
+ >>> DG = nx.DiGraph([(1, 2), (2, 3), (2, 4)])
486
+ >>> list(nx.all_topological_sorts(DG))
487
+ [[1, 2, 4, 3], [1, 2, 3, 4]]
488
+
489
+ Notes
490
+ -----
491
+ Implements an iterative version of the algorithm given in [1].
492
+
493
+ References
494
+ ----------
495
+ .. [1] Knuth, Donald E., Szwarcfiter, Jayme L. (1974).
496
+ "A Structured Program to Generate All Topological Sorting Arrangements"
497
+ Information Processing Letters, Volume 2, Issue 6, 1974, Pages 153-157,
498
+ ISSN 0020-0190,
499
+ https://doi.org/10.1016/0020-0190(74)90001-5.
500
+ Elsevier (North-Holland), Amsterdam
501
+ """
502
+ if not G.is_directed():
503
+ raise nx.NetworkXError("Topological sort not defined on undirected graphs.")
504
+
505
+ # the names of count and D are chosen to match the global variables in [1]
506
+ # number of edges originating in a vertex v
507
+ count = dict(G.in_degree())
508
+ # vertices with indegree 0
509
+ D = deque([v for v, d in G.in_degree() if d == 0])
510
+ # stack of first value chosen at a position k in the topological sort
511
+ bases = []
512
+ current_sort = []
513
+
514
+ # do-while construct
515
+ while True:
516
+ assert all(count[v] == 0 for v in D)
517
+
518
+ if len(current_sort) == len(G):
519
+ yield list(current_sort)
520
+
521
+ # clean-up stack
522
+ while len(current_sort) > 0:
523
+ assert len(bases) == len(current_sort)
524
+ q = current_sort.pop()
525
+
526
+ # "restores" all edges (q, x)
527
+ # NOTE: it is important to iterate over edges instead
528
+ # of successors, so count is updated correctly in multigraphs
529
+ for _, j in G.out_edges(q):
530
+ count[j] += 1
531
+ assert count[j] >= 0
532
+ # remove entries from D
533
+ while len(D) > 0 and count[D[-1]] > 0:
534
+ D.pop()
535
+
536
+ # corresponds to a circular shift of the values in D
537
+ # if the first value chosen (the base) is in the first
538
+ # position of D again, we are done and need to consider the
539
+ # previous condition
540
+ D.appendleft(q)
541
+ if D[-1] == bases[-1]:
542
+ # all possible values have been chosen at current position
543
+ # remove corresponding marker
544
+ bases.pop()
545
+ else:
546
+ # there are still elements that have not been fixed
547
+ # at the current position in the topological sort
548
+ # stop removing elements, escape inner loop
549
+ break
550
+
551
+ else:
552
+ if len(D) == 0:
553
+ raise nx.NetworkXUnfeasible("Graph contains a cycle.")
554
+
555
+ # choose next node
556
+ q = D.pop()
557
+ # "erase" all edges (q, x)
558
+ # NOTE: it is important to iterate over edges instead
559
+ # of successors, so count is updated correctly in multigraphs
560
+ for _, j in G.out_edges(q):
561
+ count[j] -= 1
562
+ assert count[j] >= 0
563
+ if count[j] == 0:
564
+ D.append(j)
565
+ current_sort.append(q)
566
+
567
+ # base for current position might _not_ be fixed yet
568
+ if len(bases) < len(current_sort):
569
+ bases.append(q)
570
+
571
+ if len(bases) == 0:
572
+ break
573
+
574
+
575
+ @nx._dispatchable
576
+ def is_aperiodic(G):
577
+ """Returns True if `G` is aperiodic.
578
+
579
+ A directed graph is aperiodic if there is no integer k > 1 that
580
+ divides the length of every cycle in the graph.
581
+
582
+ Parameters
583
+ ----------
584
+ G : NetworkX DiGraph
585
+ A directed graph
586
+
587
+ Returns
588
+ -------
589
+ bool
590
+ True if the graph is aperiodic False otherwise
591
+
592
+ Raises
593
+ ------
594
+ NetworkXError
595
+ If `G` is not directed
596
+
597
+ Examples
598
+ --------
599
+ A graph consisting of one cycle, the length of which is 2. Therefore ``k = 2``
600
+ divides the length of every cycle in the graph and thus the graph
601
+ is *not aperiodic*::
602
+
603
+ >>> DG = nx.DiGraph([(1, 2), (2, 1)])
604
+ >>> nx.is_aperiodic(DG)
605
+ False
606
+
607
+ A graph consisting of two cycles: one of length 2 and the other of length 3.
608
+ The cycle lengths are coprime, so there is no single value of k where ``k > 1``
609
+ that divides each cycle length and therefore the graph is *aperiodic*::
610
+
611
+ >>> DG = nx.DiGraph([(1, 2), (2, 3), (3, 1), (1, 4), (4, 1)])
612
+ >>> nx.is_aperiodic(DG)
613
+ True
614
+
615
+ A graph consisting of two cycles: one of length 2 and the other of length 4.
616
+ The lengths of the cycles share a common factor ``k = 2``, and therefore
617
+ the graph is *not aperiodic*::
618
+
619
+ >>> DG = nx.DiGraph([(1, 2), (2, 1), (3, 4), (4, 5), (5, 6), (6, 3)])
620
+ >>> nx.is_aperiodic(DG)
621
+ False
622
+
623
+ An acyclic graph, therefore the graph is *not aperiodic*::
624
+
625
+ >>> DG = nx.DiGraph([(1, 2), (2, 3)])
626
+ >>> nx.is_aperiodic(DG)
627
+ False
628
+
629
+ Notes
630
+ -----
631
+ This uses the method outlined in [1]_, which runs in $O(m)$ time
632
+ given $m$ edges in `G`. Note that a graph is not aperiodic if it is
633
+ acyclic as every integer trivial divides length 0 cycles.
634
+
635
+ References
636
+ ----------
637
+ .. [1] Jarvis, J. P.; Shier, D. R. (1996),
638
+ "Graph-theoretic analysis of finite Markov chains,"
639
+ in Shier, D. R.; Wallenius, K. T., Applied Mathematical Modeling:
640
+ A Multidisciplinary Approach, CRC Press.
641
+ """
642
+ if not G.is_directed():
643
+ raise nx.NetworkXError("is_aperiodic not defined for undirected graphs")
644
+ if len(G) == 0:
645
+ raise nx.NetworkXPointlessConcept("Graph has no nodes.")
646
+ s = arbitrary_element(G)
647
+ levels = {s: 0}
648
+ this_level = [s]
649
+ g = 0
650
+ lev = 1
651
+ while this_level:
652
+ next_level = []
653
+ for u in this_level:
654
+ for v in G[u]:
655
+ if v in levels: # Non-Tree Edge
656
+ g = gcd(g, levels[u] - levels[v] + 1)
657
+ else: # Tree Edge
658
+ next_level.append(v)
659
+ levels[v] = lev
660
+ this_level = next_level
661
+ lev += 1
662
+ if len(levels) == len(G): # All nodes in tree
663
+ return g == 1
664
+ else:
665
+ return g == 1 and nx.is_aperiodic(G.subgraph(set(G) - set(levels)))
666
+
667
+
668
+ @nx._dispatchable(preserve_all_attrs=True, returns_graph=True)
669
+ def transitive_closure(G, reflexive=False):
670
+ """Returns transitive closure of a graph
671
+
672
+ The transitive closure of G = (V,E) is a graph G+ = (V,E+) such that
673
+ for all v, w in V there is an edge (v, w) in E+ if and only if there
674
+ is a path from v to w in G.
675
+
676
+ Handling of paths from v to v has some flexibility within this definition.
677
+ A reflexive transitive closure creates a self-loop for the path
678
+ from v to v of length 0. The usual transitive closure creates a
679
+ self-loop only if a cycle exists (a path from v to v with length > 0).
680
+ We also allow an option for no self-loops.
681
+
682
+ Parameters
683
+ ----------
684
+ G : NetworkX Graph
685
+ A directed/undirected graph/multigraph.
686
+ reflexive : Bool or None, optional (default: False)
687
+ Determines when cycles create self-loops in the Transitive Closure.
688
+ If True, trivial cycles (length 0) create self-loops. The result
689
+ is a reflexive transitive closure of G.
690
+ If False (the default) non-trivial cycles create self-loops.
691
+ If None, self-loops are not created.
692
+
693
+ Returns
694
+ -------
695
+ NetworkX graph
696
+ The transitive closure of `G`
697
+
698
+ Raises
699
+ ------
700
+ NetworkXError
701
+ If `reflexive` not in `{None, True, False}`
702
+
703
+ Examples
704
+ --------
705
+ The treatment of trivial (i.e. length 0) cycles is controlled by the
706
+ `reflexive` parameter.
707
+
708
+ Trivial (i.e. length 0) cycles do not create self-loops when
709
+ ``reflexive=False`` (the default)::
710
+
711
+ >>> DG = nx.DiGraph([(1, 2), (2, 3)])
712
+ >>> TC = nx.transitive_closure(DG, reflexive=False)
713
+ >>> TC.edges()
714
+ OutEdgeView([(1, 2), (1, 3), (2, 3)])
715
+
716
+ However, nontrivial (i.e. length greater than 0) cycles create self-loops
717
+ when ``reflexive=False`` (the default)::
718
+
719
+ >>> DG = nx.DiGraph([(1, 2), (2, 3), (3, 1)])
720
+ >>> TC = nx.transitive_closure(DG, reflexive=False)
721
+ >>> TC.edges()
722
+ OutEdgeView([(1, 2), (1, 3), (1, 1), (2, 3), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)])
723
+
724
+ Trivial cycles (length 0) create self-loops when ``reflexive=True``::
725
+
726
+ >>> DG = nx.DiGraph([(1, 2), (2, 3)])
727
+ >>> TC = nx.transitive_closure(DG, reflexive=True)
728
+ >>> TC.edges()
729
+ OutEdgeView([(1, 2), (1, 1), (1, 3), (2, 3), (2, 2), (3, 3)])
730
+
731
+ And the third option is not to create self-loops at all when ``reflexive=None``::
732
+
733
+ >>> DG = nx.DiGraph([(1, 2), (2, 3), (3, 1)])
734
+ >>> TC = nx.transitive_closure(DG, reflexive=None)
735
+ >>> TC.edges()
736
+ OutEdgeView([(1, 2), (1, 3), (2, 3), (2, 1), (3, 1), (3, 2)])
737
+
738
+ References
739
+ ----------
740
+ .. [1] https://www.ics.uci.edu/~eppstein/PADS/PartialOrder.py
741
+ """
742
+ TC = G.copy()
743
+
744
+ if reflexive not in {None, True, False}:
745
+ raise nx.NetworkXError("Incorrect value for the parameter `reflexive`")
746
+
747
+ for v in G:
748
+ if reflexive is None:
749
+ TC.add_edges_from((v, u) for u in nx.descendants(G, v) if u not in TC[v])
750
+ elif reflexive is True:
751
+ TC.add_edges_from(
752
+ (v, u) for u in nx.descendants(G, v) | {v} if u not in TC[v]
753
+ )
754
+ elif reflexive is False:
755
+ TC.add_edges_from((v, e[1]) for e in nx.edge_bfs(G, v) if e[1] not in TC[v])
756
+
757
+ return TC
758
+
759
+
760
+ @not_implemented_for("undirected")
761
+ @nx._dispatchable(preserve_all_attrs=True, returns_graph=True)
762
+ def transitive_closure_dag(G, topo_order=None):
763
+ """Returns the transitive closure of a directed acyclic graph.
764
+
765
+ This function is faster than the function `transitive_closure`, but fails
766
+ if the graph has a cycle.
767
+
768
+ The transitive closure of G = (V,E) is a graph G+ = (V,E+) such that
769
+ for all v, w in V there is an edge (v, w) in E+ if and only if there
770
+ is a non-null path from v to w in G.
771
+
772
+ Parameters
773
+ ----------
774
+ G : NetworkX DiGraph
775
+ A directed acyclic graph (DAG)
776
+
777
+ topo_order: list or tuple, optional
778
+ A topological order for G (if None, the function will compute one)
779
+
780
+ Returns
781
+ -------
782
+ NetworkX DiGraph
783
+ The transitive closure of `G`
784
+
785
+ Raises
786
+ ------
787
+ NetworkXNotImplemented
788
+ If `G` is not directed
789
+ NetworkXUnfeasible
790
+ If `G` has a cycle
791
+
792
+ Examples
793
+ --------
794
+ >>> DG = nx.DiGraph([(1, 2), (2, 3)])
795
+ >>> TC = nx.transitive_closure_dag(DG)
796
+ >>> TC.edges()
797
+ OutEdgeView([(1, 2), (1, 3), (2, 3)])
798
+
799
+ Notes
800
+ -----
801
+ This algorithm is probably simple enough to be well-known but I didn't find
802
+ a mention in the literature.
803
+ """
804
+ if topo_order is None:
805
+ topo_order = list(topological_sort(G))
806
+
807
+ TC = G.copy()
808
+
809
+ # idea: traverse vertices following a reverse topological order, connecting
810
+ # each vertex to its descendants at distance 2 as we go
811
+ for v in reversed(topo_order):
812
+ TC.add_edges_from((v, u) for u in nx.descendants_at_distance(TC, v, 2))
813
+
814
+ return TC
815
+
816
+
817
+ @not_implemented_for("undirected")
818
+ @nx._dispatchable(returns_graph=True)
819
+ def transitive_reduction(G):
820
+ """Returns transitive reduction of a directed graph
821
+
822
+ The transitive reduction of G = (V,E) is a graph G- = (V,E-) such that
823
+ for all v,w in V there is an edge (v,w) in E- if and only if (v,w) is
824
+ in E and there is no path from v to w in G with length greater than 1.
825
+
826
+ Parameters
827
+ ----------
828
+ G : NetworkX DiGraph
829
+ A directed acyclic graph (DAG)
830
+
831
+ Returns
832
+ -------
833
+ NetworkX DiGraph
834
+ The transitive reduction of `G`
835
+
836
+ Raises
837
+ ------
838
+ NetworkXError
839
+ If `G` is not a directed acyclic graph (DAG) transitive reduction is
840
+ not uniquely defined and a :exc:`NetworkXError` exception is raised.
841
+
842
+ Examples
843
+ --------
844
+ To perform transitive reduction on a DiGraph:
845
+
846
+ >>> DG = nx.DiGraph([(1, 2), (2, 3), (1, 3)])
847
+ >>> TR = nx.transitive_reduction(DG)
848
+ >>> list(TR.edges)
849
+ [(1, 2), (2, 3)]
850
+
851
+ To avoid unnecessary data copies, this implementation does not return a
852
+ DiGraph with node/edge data.
853
+ To perform transitive reduction on a DiGraph and transfer node/edge data:
854
+
855
+ >>> DG = nx.DiGraph()
856
+ >>> DG.add_edges_from([(1, 2), (2, 3), (1, 3)], color="red")
857
+ >>> TR = nx.transitive_reduction(DG)
858
+ >>> TR.add_nodes_from(DG.nodes(data=True))
859
+ >>> TR.add_edges_from((u, v, DG.edges[u, v]) for u, v in TR.edges)
860
+ >>> list(TR.edges(data=True))
861
+ [(1, 2, {'color': 'red'}), (2, 3, {'color': 'red'})]
862
+
863
+ References
864
+ ----------
865
+ https://en.wikipedia.org/wiki/Transitive_reduction
866
+
867
+ """
868
+ if not is_directed_acyclic_graph(G):
869
+ msg = "Directed Acyclic Graph required for transitive_reduction"
870
+ raise nx.NetworkXError(msg)
871
+ TR = nx.DiGraph()
872
+ TR.add_nodes_from(G.nodes())
873
+ descendants = {}
874
+ # count before removing set stored in descendants
875
+ check_count = dict(G.in_degree)
876
+ for u in G:
877
+ u_nbrs = set(G[u])
878
+ for v in G[u]:
879
+ if v in u_nbrs:
880
+ if v not in descendants:
881
+ descendants[v] = {y for x, y in nx.dfs_edges(G, v)}
882
+ u_nbrs -= descendants[v]
883
+ check_count[v] -= 1
884
+ if check_count[v] == 0:
885
+ del descendants[v]
886
+ TR.add_edges_from((u, v) for v in u_nbrs)
887
+ return TR
888
+
889
+
890
+ @not_implemented_for("undirected")
891
+ @nx._dispatchable
892
+ def antichains(G, topo_order=None):
893
+ """Generates antichains from a directed acyclic graph (DAG).
894
+
895
+ An antichain is a subset of a partially ordered set such that any
896
+ two elements in the subset are incomparable.
897
+
898
+ Parameters
899
+ ----------
900
+ G : NetworkX DiGraph
901
+ A directed acyclic graph (DAG)
902
+
903
+ topo_order: list or tuple, optional
904
+ A topological order for G (if None, the function will compute one)
905
+
906
+ Yields
907
+ ------
908
+ antichain : list
909
+ a list of nodes in `G` representing an antichain
910
+
911
+ Raises
912
+ ------
913
+ NetworkXNotImplemented
914
+ If `G` is not directed
915
+
916
+ NetworkXUnfeasible
917
+ If `G` contains a cycle
918
+
919
+ Examples
920
+ --------
921
+ >>> DG = nx.DiGraph([(1, 2), (1, 3)])
922
+ >>> list(nx.antichains(DG))
923
+ [[], [3], [2], [2, 3], [1]]
924
+
925
+ Notes
926
+ -----
927
+ This function was originally developed by Peter Jipsen and Franco Saliola
928
+ for the SAGE project. It's included in NetworkX with permission from the
929
+ authors. Original SAGE code at:
930
+
931
+ https://github.com/sagemath/sage/blob/master/src/sage/combinat/posets/hasse_diagram.py
932
+
933
+ References
934
+ ----------
935
+ .. [1] Free Lattices, by R. Freese, J. Jezek and J. B. Nation,
936
+ AMS, Vol 42, 1995, p. 226.
937
+ """
938
+ if topo_order is None:
939
+ topo_order = list(nx.topological_sort(G))
940
+
941
+ TC = nx.transitive_closure_dag(G, topo_order)
942
+ antichains_stacks = [([], list(reversed(topo_order)))]
943
+
944
+ while antichains_stacks:
945
+ (antichain, stack) = antichains_stacks.pop()
946
+ # Invariant:
947
+ # - the elements of antichain are independent
948
+ # - the elements of stack are independent from those of antichain
949
+ yield antichain
950
+ while stack:
951
+ x = stack.pop()
952
+ new_antichain = antichain + [x]
953
+ new_stack = [t for t in stack if not ((t in TC[x]) or (x in TC[t]))]
954
+ antichains_stacks.append((new_antichain, new_stack))
955
+
956
+
957
+ @not_implemented_for("undirected")
958
+ @nx._dispatchable(edge_attrs={"weight": "default_weight"})
959
+ def dag_longest_path(G, weight="weight", default_weight=1, topo_order=None):
960
+ """Returns the longest path in a directed acyclic graph (DAG).
961
+
962
+ If `G` has edges with `weight` attribute the edge data are used as
963
+ weight values.
964
+
965
+ Parameters
966
+ ----------
967
+ G : NetworkX DiGraph
968
+ A directed acyclic graph (DAG)
969
+
970
+ weight : str, optional
971
+ Edge data key to use for weight
972
+
973
+ default_weight : int, optional
974
+ The weight of edges that do not have a weight attribute
975
+
976
+ topo_order: list or tuple, optional
977
+ A topological order for `G` (if None, the function will compute one)
978
+
979
+ Returns
980
+ -------
981
+ list
982
+ Longest path
983
+
984
+ Raises
985
+ ------
986
+ NetworkXNotImplemented
987
+ If `G` is not directed
988
+
989
+ Examples
990
+ --------
991
+ >>> DG = nx.DiGraph([(0, 1, {"cost": 1}), (1, 2, {"cost": 1}), (0, 2, {"cost": 42})])
992
+ >>> list(nx.all_simple_paths(DG, 0, 2))
993
+ [[0, 1, 2], [0, 2]]
994
+ >>> nx.dag_longest_path(DG)
995
+ [0, 1, 2]
996
+ >>> nx.dag_longest_path(DG, weight="cost")
997
+ [0, 2]
998
+
999
+ In the case where multiple valid topological orderings exist, `topo_order`
1000
+ can be used to specify a specific ordering:
1001
+
1002
+ >>> DG = nx.DiGraph([(0, 1), (0, 2)])
1003
+ >>> sorted(nx.all_topological_sorts(DG)) # Valid topological orderings
1004
+ [[0, 1, 2], [0, 2, 1]]
1005
+ >>> nx.dag_longest_path(DG, topo_order=[0, 1, 2])
1006
+ [0, 1]
1007
+ >>> nx.dag_longest_path(DG, topo_order=[0, 2, 1])
1008
+ [0, 2]
1009
+
1010
+ See also
1011
+ --------
1012
+ dag_longest_path_length
1013
+
1014
+ """
1015
+ if not G:
1016
+ return []
1017
+
1018
+ if topo_order is None:
1019
+ topo_order = nx.topological_sort(G)
1020
+
1021
+ dist = {} # stores {v : (length, u)}
1022
+ for v in topo_order:
1023
+ us = [
1024
+ (
1025
+ dist[u][0]
1026
+ + (
1027
+ max(data.values(), key=lambda x: x.get(weight, default_weight))
1028
+ if G.is_multigraph()
1029
+ else data
1030
+ ).get(weight, default_weight),
1031
+ u,
1032
+ )
1033
+ for u, data in G.pred[v].items()
1034
+ ]
1035
+
1036
+ # Use the best predecessor if there is one and its distance is
1037
+ # non-negative, otherwise terminate.
1038
+ maxu = max(us, key=lambda x: x[0]) if us else (0, v)
1039
+ dist[v] = maxu if maxu[0] >= 0 else (0, v)
1040
+
1041
+ u = None
1042
+ v = max(dist, key=lambda x: dist[x][0])
1043
+ path = []
1044
+ while u != v:
1045
+ path.append(v)
1046
+ u = v
1047
+ v = dist[v][1]
1048
+
1049
+ path.reverse()
1050
+ return path
1051
+
1052
+
1053
+ @not_implemented_for("undirected")
1054
+ @nx._dispatchable(edge_attrs={"weight": "default_weight"})
1055
+ def dag_longest_path_length(G, weight="weight", default_weight=1):
1056
+ """Returns the longest path length in a DAG
1057
+
1058
+ Parameters
1059
+ ----------
1060
+ G : NetworkX DiGraph
1061
+ A directed acyclic graph (DAG)
1062
+
1063
+ weight : string, optional
1064
+ Edge data key to use for weight
1065
+
1066
+ default_weight : int, optional
1067
+ The weight of edges that do not have a weight attribute
1068
+
1069
+ Returns
1070
+ -------
1071
+ int
1072
+ Longest path length
1073
+
1074
+ Raises
1075
+ ------
1076
+ NetworkXNotImplemented
1077
+ If `G` is not directed
1078
+
1079
+ Examples
1080
+ --------
1081
+ >>> DG = nx.DiGraph([(0, 1, {"cost": 1}), (1, 2, {"cost": 1}), (0, 2, {"cost": 42})])
1082
+ >>> list(nx.all_simple_paths(DG, 0, 2))
1083
+ [[0, 1, 2], [0, 2]]
1084
+ >>> nx.dag_longest_path_length(DG)
1085
+ 2
1086
+ >>> nx.dag_longest_path_length(DG, weight="cost")
1087
+ 42
1088
+
1089
+ See also
1090
+ --------
1091
+ dag_longest_path
1092
+ """
1093
+ path = nx.dag_longest_path(G, weight, default_weight)
1094
+ path_length = 0
1095
+ if G.is_multigraph():
1096
+ for u, v in pairwise(path):
1097
+ i = max(G[u][v], key=lambda x: G[u][v][x].get(weight, default_weight))
1098
+ path_length += G[u][v][i].get(weight, default_weight)
1099
+ else:
1100
+ for u, v in pairwise(path):
1101
+ path_length += G[u][v].get(weight, default_weight)
1102
+
1103
+ return path_length
1104
+
1105
+
1106
+ @nx._dispatchable
1107
+ def root_to_leaf_paths(G):
1108
+ """Yields root-to-leaf paths in a directed acyclic graph.
1109
+
1110
+ `G` must be a directed acyclic graph. If not, the behavior of this
1111
+ function is undefined. A "root" in this graph is a node of in-degree
1112
+ zero and a "leaf" a node of out-degree zero.
1113
+
1114
+ When invoked, this function iterates over each path from any root to
1115
+ any leaf. A path is a list of nodes.
1116
+
1117
+ """
1118
+ roots = (v for v, d in G.in_degree() if d == 0)
1119
+ leaves = (v for v, d in G.out_degree() if d == 0)
1120
+ all_paths = partial(nx.all_simple_paths, G)
1121
+ # TODO In Python 3, this would be better as `yield from ...`.
1122
+ return chaini(starmap(all_paths, product(roots, leaves)))
1123
+
1124
+
1125
+ @not_implemented_for("multigraph")
1126
+ @not_implemented_for("undirected")
1127
+ @nx._dispatchable(returns_graph=True)
1128
+ def dag_to_branching(G):
1129
+ """Returns a branching representing all (overlapping) paths from
1130
+ root nodes to leaf nodes in the given directed acyclic graph.
1131
+
1132
+ As described in :mod:`networkx.algorithms.tree.recognition`, a
1133
+ *branching* is a directed forest in which each node has at most one
1134
+ parent. In other words, a branching is a disjoint union of
1135
+ *arborescences*. For this function, each node of in-degree zero in
1136
+ `G` becomes a root of one of the arborescences, and there will be
1137
+ one leaf node for each distinct path from that root to a leaf node
1138
+ in `G`.
1139
+
1140
+ Each node `v` in `G` with *k* parents becomes *k* distinct nodes in
1141
+ the returned branching, one for each parent, and the sub-DAG rooted
1142
+ at `v` is duplicated for each copy. The algorithm then recurses on
1143
+ the children of each copy of `v`.
1144
+
1145
+ Parameters
1146
+ ----------
1147
+ G : NetworkX graph
1148
+ A directed acyclic graph.
1149
+
1150
+ Returns
1151
+ -------
1152
+ DiGraph
1153
+ The branching in which there is a bijection between root-to-leaf
1154
+ paths in `G` (in which multiple paths may share the same leaf)
1155
+ and root-to-leaf paths in the branching (in which there is a
1156
+ unique path from a root to a leaf).
1157
+
1158
+ Each node has an attribute 'source' whose value is the original
1159
+ node to which this node corresponds. No other graph, node, or
1160
+ edge attributes are copied into this new graph.
1161
+
1162
+ Raises
1163
+ ------
1164
+ NetworkXNotImplemented
1165
+ If `G` is not directed, or if `G` is a multigraph.
1166
+
1167
+ HasACycle
1168
+ If `G` is not acyclic.
1169
+
1170
+ Examples
1171
+ --------
1172
+ To examine which nodes in the returned branching were produced by
1173
+ which original node in the directed acyclic graph, we can collect
1174
+ the mapping from source node to new nodes into a dictionary. For
1175
+ example, consider the directed diamond graph::
1176
+
1177
+ >>> from collections import defaultdict
1178
+ >>> from operator import itemgetter
1179
+ >>>
1180
+ >>> G = nx.DiGraph(nx.utils.pairwise("abd"))
1181
+ >>> G.add_edges_from(nx.utils.pairwise("acd"))
1182
+ >>> B = nx.dag_to_branching(G)
1183
+ >>>
1184
+ >>> sources = defaultdict(set)
1185
+ >>> for v, source in B.nodes(data="source"):
1186
+ ... sources[source].add(v)
1187
+ >>> len(sources["a"])
1188
+ 1
1189
+ >>> len(sources["d"])
1190
+ 2
1191
+
1192
+ To copy node attributes from the original graph to the new graph,
1193
+ you can use a dictionary like the one constructed in the above
1194
+ example::
1195
+
1196
+ >>> for source, nodes in sources.items():
1197
+ ... for v in nodes:
1198
+ ... B.nodes[v].update(G.nodes[source])
1199
+
1200
+ Notes
1201
+ -----
1202
+ This function is not idempotent in the sense that the node labels in
1203
+ the returned branching may be uniquely generated each time the
1204
+ function is invoked. In fact, the node labels may not be integers;
1205
+ in order to relabel the nodes to be more readable, you can use the
1206
+ :func:`networkx.convert_node_labels_to_integers` function.
1207
+
1208
+ The current implementation of this function uses
1209
+ :func:`networkx.prefix_tree`, so it is subject to the limitations of
1210
+ that function.
1211
+
1212
+ """
1213
+ if has_cycle(G):
1214
+ msg = "dag_to_branching is only defined for acyclic graphs"
1215
+ raise nx.HasACycle(msg)
1216
+ paths = root_to_leaf_paths(G)
1217
+ B = nx.prefix_tree(paths)
1218
+ # Remove the synthetic `root`(0) and `NIL`(-1) nodes from the tree
1219
+ B.remove_node(0)
1220
+ B.remove_node(-1)
1221
+ return B
1222
+
1223
+
1224
+ @not_implemented_for("undirected")
1225
+ @nx._dispatchable
1226
+ def compute_v_structures(G):
1227
+ """Iterate through the graph to compute all v-structures.
1228
+
1229
+ V-structures are triples in the directed graph where
1230
+ two parent nodes point to the same child and the two parent nodes
1231
+ are not adjacent.
1232
+
1233
+ Parameters
1234
+ ----------
1235
+ G : graph
1236
+ A networkx DiGraph.
1237
+
1238
+ Returns
1239
+ -------
1240
+ vstructs : iterator of tuples
1241
+ The v structures within the graph. Each v structure is a 3-tuple with the
1242
+ parent, collider, and other parent.
1243
+
1244
+ Examples
1245
+ --------
1246
+ >>> G = nx.DiGraph()
1247
+ >>> G.add_edges_from([(1, 2), (0, 5), (3, 1), (2, 4), (3, 1), (4, 5), (1, 5)])
1248
+ >>> sorted(nx.compute_v_structures(G))
1249
+ [(0, 5, 1), (0, 5, 4), (1, 5, 4)]
1250
+
1251
+ Notes
1252
+ -----
1253
+ `Wikipedia: Collider in causal graphs <https://en.wikipedia.org/wiki/Collider_(statistics)>`_
1254
+ """
1255
+ for collider, preds in G.pred.items():
1256
+ for common_parents in combinations(preds, r=2):
1257
+ # ensure that the colliders are the same
1258
+ common_parents = sorted(common_parents)
1259
+ yield (common_parents[0], collider, common_parents[1])
venv/lib/python3.10/site-packages/networkx/algorithms/dominance.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Dominance algorithms.
3
+ """
4
+
5
+ from functools import reduce
6
+
7
+ import networkx as nx
8
+ from networkx.utils import not_implemented_for
9
+
10
+ __all__ = ["immediate_dominators", "dominance_frontiers"]
11
+
12
+
13
+ @not_implemented_for("undirected")
14
+ @nx._dispatchable
15
+ def immediate_dominators(G, start):
16
+ """Returns the immediate dominators of all nodes of a directed graph.
17
+
18
+ Parameters
19
+ ----------
20
+ G : a DiGraph or MultiDiGraph
21
+ The graph where dominance is to be computed.
22
+
23
+ start : node
24
+ The start node of dominance computation.
25
+
26
+ Returns
27
+ -------
28
+ idom : dict keyed by nodes
29
+ A dict containing the immediate dominators of each node reachable from
30
+ `start`.
31
+
32
+ Raises
33
+ ------
34
+ NetworkXNotImplemented
35
+ If `G` is undirected.
36
+
37
+ NetworkXError
38
+ If `start` is not in `G`.
39
+
40
+ Notes
41
+ -----
42
+ Except for `start`, the immediate dominators are the parents of their
43
+ corresponding nodes in the dominator tree.
44
+
45
+ Examples
46
+ --------
47
+ >>> G = nx.DiGraph([(1, 2), (1, 3), (2, 5), (3, 4), (4, 5)])
48
+ >>> sorted(nx.immediate_dominators(G, 1).items())
49
+ [(1, 1), (2, 1), (3, 1), (4, 3), (5, 1)]
50
+
51
+ References
52
+ ----------
53
+ .. [1] K. D. Cooper, T. J. Harvey, and K. Kennedy.
54
+ A simple, fast dominance algorithm.
55
+ Software Practice & Experience, 4:110, 2001.
56
+ """
57
+ if start not in G:
58
+ raise nx.NetworkXError("start is not in G")
59
+
60
+ idom = {start: start}
61
+
62
+ order = list(nx.dfs_postorder_nodes(G, start))
63
+ dfn = {u: i for i, u in enumerate(order)}
64
+ order.pop()
65
+ order.reverse()
66
+
67
+ def intersect(u, v):
68
+ while u != v:
69
+ while dfn[u] < dfn[v]:
70
+ u = idom[u]
71
+ while dfn[u] > dfn[v]:
72
+ v = idom[v]
73
+ return u
74
+
75
+ changed = True
76
+ while changed:
77
+ changed = False
78
+ for u in order:
79
+ new_idom = reduce(intersect, (v for v in G.pred[u] if v in idom))
80
+ if u not in idom or idom[u] != new_idom:
81
+ idom[u] = new_idom
82
+ changed = True
83
+
84
+ return idom
85
+
86
+
87
+ @nx._dispatchable
88
+ def dominance_frontiers(G, start):
89
+ """Returns the dominance frontiers of all nodes of a directed graph.
90
+
91
+ Parameters
92
+ ----------
93
+ G : a DiGraph or MultiDiGraph
94
+ The graph where dominance is to be computed.
95
+
96
+ start : node
97
+ The start node of dominance computation.
98
+
99
+ Returns
100
+ -------
101
+ df : dict keyed by nodes
102
+ A dict containing the dominance frontiers of each node reachable from
103
+ `start` as lists.
104
+
105
+ Raises
106
+ ------
107
+ NetworkXNotImplemented
108
+ If `G` is undirected.
109
+
110
+ NetworkXError
111
+ If `start` is not in `G`.
112
+
113
+ Examples
114
+ --------
115
+ >>> G = nx.DiGraph([(1, 2), (1, 3), (2, 5), (3, 4), (4, 5)])
116
+ >>> sorted((u, sorted(df)) for u, df in nx.dominance_frontiers(G, 1).items())
117
+ [(1, []), (2, [5]), (3, [5]), (4, [5]), (5, [])]
118
+
119
+ References
120
+ ----------
121
+ .. [1] K. D. Cooper, T. J. Harvey, and K. Kennedy.
122
+ A simple, fast dominance algorithm.
123
+ Software Practice & Experience, 4:110, 2001.
124
+ """
125
+ idom = nx.immediate_dominators(G, start)
126
+
127
+ df = {u: set() for u in idom}
128
+ for u in idom:
129
+ if len(G.pred[u]) >= 2:
130
+ for v in G.pred[u]:
131
+ if v in idom:
132
+ while v != idom[u]:
133
+ df[v].add(u)
134
+ v = idom[v]
135
+ return df
venv/lib/python3.10/site-packages/networkx/algorithms/dominating.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Functions for computing dominating sets in a graph."""
2
+ from itertools import chain
3
+
4
+ import networkx as nx
5
+ from networkx.utils import arbitrary_element
6
+
7
+ __all__ = ["dominating_set", "is_dominating_set"]
8
+
9
+
10
+ @nx._dispatchable
11
+ def dominating_set(G, start_with=None):
12
+ r"""Finds a dominating set for the graph G.
13
+
14
+ A *dominating set* for a graph with node set *V* is a subset *D* of
15
+ *V* such that every node not in *D* is adjacent to at least one
16
+ member of *D* [1]_.
17
+
18
+ Parameters
19
+ ----------
20
+ G : NetworkX graph
21
+
22
+ start_with : node (default=None)
23
+ Node to use as a starting point for the algorithm.
24
+
25
+ Returns
26
+ -------
27
+ D : set
28
+ A dominating set for G.
29
+
30
+ Notes
31
+ -----
32
+ This function is an implementation of algorithm 7 in [2]_ which
33
+ finds some dominating set, not necessarily the smallest one.
34
+
35
+ See also
36
+ --------
37
+ is_dominating_set
38
+
39
+ References
40
+ ----------
41
+ .. [1] https://en.wikipedia.org/wiki/Dominating_set
42
+
43
+ .. [2] Abdol-Hossein Esfahanian. Connectivity Algorithms.
44
+ http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
45
+
46
+ """
47
+ all_nodes = set(G)
48
+ if start_with is None:
49
+ start_with = arbitrary_element(all_nodes)
50
+ if start_with not in G:
51
+ raise nx.NetworkXError(f"node {start_with} is not in G")
52
+ dominating_set = {start_with}
53
+ dominated_nodes = set(G[start_with])
54
+ remaining_nodes = all_nodes - dominated_nodes - dominating_set
55
+ while remaining_nodes:
56
+ # Choose an arbitrary node and determine its undominated neighbors.
57
+ v = remaining_nodes.pop()
58
+ undominated_nbrs = set(G[v]) - dominating_set
59
+ # Add the node to the dominating set and the neighbors to the
60
+ # dominated set. Finally, remove all of those nodes from the set
61
+ # of remaining nodes.
62
+ dominating_set.add(v)
63
+ dominated_nodes |= undominated_nbrs
64
+ remaining_nodes -= undominated_nbrs
65
+ return dominating_set
66
+
67
+
68
+ @nx._dispatchable
69
+ def is_dominating_set(G, nbunch):
70
+ """Checks if `nbunch` is a dominating set for `G`.
71
+
72
+ A *dominating set* for a graph with node set *V* is a subset *D* of
73
+ *V* such that every node not in *D* is adjacent to at least one
74
+ member of *D* [1]_.
75
+
76
+ Parameters
77
+ ----------
78
+ G : NetworkX graph
79
+
80
+ nbunch : iterable
81
+ An iterable of nodes in the graph `G`.
82
+
83
+ See also
84
+ --------
85
+ dominating_set
86
+
87
+ References
88
+ ----------
89
+ .. [1] https://en.wikipedia.org/wiki/Dominating_set
90
+
91
+ """
92
+ testset = {n for n in nbunch if n in G}
93
+ nbrs = set(chain.from_iterable(G[n] for n in testset))
94
+ return len(set(G) - testset - nbrs) == 0
venv/lib/python3.10/site-packages/networkx/algorithms/efficiency_measures.py ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Provides functions for computing the efficiency of nodes and graphs."""
2
+
3
+ import networkx as nx
4
+ from networkx.exception import NetworkXNoPath
5
+
6
+ from ..utils import not_implemented_for
7
+
8
+ __all__ = ["efficiency", "local_efficiency", "global_efficiency"]
9
+
10
+
11
+ @not_implemented_for("directed")
12
+ @nx._dispatchable
13
+ def efficiency(G, u, v):
14
+ """Returns the efficiency of a pair of nodes in a graph.
15
+
16
+ The *efficiency* of a pair of nodes is the multiplicative inverse of the
17
+ shortest path distance between the nodes [1]_. Returns 0 if no path
18
+ between nodes.
19
+
20
+ Parameters
21
+ ----------
22
+ G : :class:`networkx.Graph`
23
+ An undirected graph for which to compute the average local efficiency.
24
+ u, v : node
25
+ Nodes in the graph ``G``.
26
+
27
+ Returns
28
+ -------
29
+ float
30
+ Multiplicative inverse of the shortest path distance between the nodes.
31
+
32
+ Examples
33
+ --------
34
+ >>> G = nx.Graph([(0, 1), (0, 2), (0, 3), (1, 2), (1, 3)])
35
+ >>> nx.efficiency(G, 2, 3) # this gives efficiency for node 2 and 3
36
+ 0.5
37
+
38
+ Notes
39
+ -----
40
+ Edge weights are ignored when computing the shortest path distances.
41
+
42
+ See also
43
+ --------
44
+ local_efficiency
45
+ global_efficiency
46
+
47
+ References
48
+ ----------
49
+ .. [1] Latora, Vito, and Massimo Marchiori.
50
+ "Efficient behavior of small-world networks."
51
+ *Physical Review Letters* 87.19 (2001): 198701.
52
+ <https://doi.org/10.1103/PhysRevLett.87.198701>
53
+
54
+ """
55
+ try:
56
+ eff = 1 / nx.shortest_path_length(G, u, v)
57
+ except NetworkXNoPath:
58
+ eff = 0
59
+ return eff
60
+
61
+
62
+ @not_implemented_for("directed")
63
+ @nx._dispatchable
64
+ def global_efficiency(G):
65
+ """Returns the average global efficiency of the graph.
66
+
67
+ The *efficiency* of a pair of nodes in a graph is the multiplicative
68
+ inverse of the shortest path distance between the nodes. The *average
69
+ global efficiency* of a graph is the average efficiency of all pairs of
70
+ nodes [1]_.
71
+
72
+ Parameters
73
+ ----------
74
+ G : :class:`networkx.Graph`
75
+ An undirected graph for which to compute the average global efficiency.
76
+
77
+ Returns
78
+ -------
79
+ float
80
+ The average global efficiency of the graph.
81
+
82
+ Examples
83
+ --------
84
+ >>> G = nx.Graph([(0, 1), (0, 2), (0, 3), (1, 2), (1, 3)])
85
+ >>> round(nx.global_efficiency(G), 12)
86
+ 0.916666666667
87
+
88
+ Notes
89
+ -----
90
+ Edge weights are ignored when computing the shortest path distances.
91
+
92
+ See also
93
+ --------
94
+ local_efficiency
95
+
96
+ References
97
+ ----------
98
+ .. [1] Latora, Vito, and Massimo Marchiori.
99
+ "Efficient behavior of small-world networks."
100
+ *Physical Review Letters* 87.19 (2001): 198701.
101
+ <https://doi.org/10.1103/PhysRevLett.87.198701>
102
+
103
+ """
104
+ n = len(G)
105
+ denom = n * (n - 1)
106
+ if denom != 0:
107
+ lengths = nx.all_pairs_shortest_path_length(G)
108
+ g_eff = 0
109
+ for source, targets in lengths:
110
+ for target, distance in targets.items():
111
+ if distance > 0:
112
+ g_eff += 1 / distance
113
+ g_eff /= denom
114
+ # g_eff = sum(1 / d for s, tgts in lengths
115
+ # for t, d in tgts.items() if d > 0) / denom
116
+ else:
117
+ g_eff = 0
118
+ # TODO This can be made more efficient by computing all pairs shortest
119
+ # path lengths in parallel.
120
+ return g_eff
121
+
122
+
123
+ @not_implemented_for("directed")
124
+ @nx._dispatchable
125
+ def local_efficiency(G):
126
+ """Returns the average local efficiency of the graph.
127
+
128
+ The *efficiency* of a pair of nodes in a graph is the multiplicative
129
+ inverse of the shortest path distance between the nodes. The *local
130
+ efficiency* of a node in the graph is the average global efficiency of the
131
+ subgraph induced by the neighbors of the node. The *average local
132
+ efficiency* is the average of the local efficiencies of each node [1]_.
133
+
134
+ Parameters
135
+ ----------
136
+ G : :class:`networkx.Graph`
137
+ An undirected graph for which to compute the average local efficiency.
138
+
139
+ Returns
140
+ -------
141
+ float
142
+ The average local efficiency of the graph.
143
+
144
+ Examples
145
+ --------
146
+ >>> G = nx.Graph([(0, 1), (0, 2), (0, 3), (1, 2), (1, 3)])
147
+ >>> nx.local_efficiency(G)
148
+ 0.9166666666666667
149
+
150
+ Notes
151
+ -----
152
+ Edge weights are ignored when computing the shortest path distances.
153
+
154
+ See also
155
+ --------
156
+ global_efficiency
157
+
158
+ References
159
+ ----------
160
+ .. [1] Latora, Vito, and Massimo Marchiori.
161
+ "Efficient behavior of small-world networks."
162
+ *Physical Review Letters* 87.19 (2001): 198701.
163
+ <https://doi.org/10.1103/PhysRevLett.87.198701>
164
+
165
+ """
166
+ # TODO This summation can be trivially parallelized.
167
+ efficiency_list = (global_efficiency(G.subgraph(G[v])) for v in G)
168
+ return sum(efficiency_list) / len(G)
venv/lib/python3.10/site-packages/networkx/algorithms/euler.py ADDED
@@ -0,0 +1,469 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Eulerian circuits and graphs.
3
+ """
4
+ from itertools import combinations
5
+
6
+ import networkx as nx
7
+
8
+ from ..utils import arbitrary_element, not_implemented_for
9
+
10
+ __all__ = [
11
+ "is_eulerian",
12
+ "eulerian_circuit",
13
+ "eulerize",
14
+ "is_semieulerian",
15
+ "has_eulerian_path",
16
+ "eulerian_path",
17
+ ]
18
+
19
+
20
+ @nx._dispatchable
21
+ def is_eulerian(G):
22
+ """Returns True if and only if `G` is Eulerian.
23
+
24
+ A graph is *Eulerian* if it has an Eulerian circuit. An *Eulerian
25
+ circuit* is a closed walk that includes each edge of a graph exactly
26
+ once.
27
+
28
+ Graphs with isolated vertices (i.e. vertices with zero degree) are not
29
+ considered to have Eulerian circuits. Therefore, if the graph is not
30
+ connected (or not strongly connected, for directed graphs), this function
31
+ returns False.
32
+
33
+ Parameters
34
+ ----------
35
+ G : NetworkX graph
36
+ A graph, either directed or undirected.
37
+
38
+ Examples
39
+ --------
40
+ >>> nx.is_eulerian(nx.DiGraph({0: [3], 1: [2], 2: [3], 3: [0, 1]}))
41
+ True
42
+ >>> nx.is_eulerian(nx.complete_graph(5))
43
+ True
44
+ >>> nx.is_eulerian(nx.petersen_graph())
45
+ False
46
+
47
+ If you prefer to allow graphs with isolated vertices to have Eulerian circuits,
48
+ you can first remove such vertices and then call `is_eulerian` as below example shows.
49
+
50
+ >>> G = nx.Graph([(0, 1), (1, 2), (0, 2)])
51
+ >>> G.add_node(3)
52
+ >>> nx.is_eulerian(G)
53
+ False
54
+
55
+ >>> G.remove_nodes_from(list(nx.isolates(G)))
56
+ >>> nx.is_eulerian(G)
57
+ True
58
+
59
+
60
+ """
61
+ if G.is_directed():
62
+ # Every node must have equal in degree and out degree and the
63
+ # graph must be strongly connected
64
+ return all(
65
+ G.in_degree(n) == G.out_degree(n) for n in G
66
+ ) and nx.is_strongly_connected(G)
67
+ # An undirected Eulerian graph has no vertices of odd degree and
68
+ # must be connected.
69
+ return all(d % 2 == 0 for v, d in G.degree()) and nx.is_connected(G)
70
+
71
+
72
+ @nx._dispatchable
73
+ def is_semieulerian(G):
74
+ """Return True iff `G` is semi-Eulerian.
75
+
76
+ G is semi-Eulerian if it has an Eulerian path but no Eulerian circuit.
77
+
78
+ See Also
79
+ --------
80
+ has_eulerian_path
81
+ is_eulerian
82
+ """
83
+ return has_eulerian_path(G) and not is_eulerian(G)
84
+
85
+
86
+ def _find_path_start(G):
87
+ """Return a suitable starting vertex for an Eulerian path.
88
+
89
+ If no path exists, return None.
90
+ """
91
+ if not has_eulerian_path(G):
92
+ return None
93
+
94
+ if is_eulerian(G):
95
+ return arbitrary_element(G)
96
+
97
+ if G.is_directed():
98
+ v1, v2 = (v for v in G if G.in_degree(v) != G.out_degree(v))
99
+ # Determines which is the 'start' node (as opposed to the 'end')
100
+ if G.out_degree(v1) > G.in_degree(v1):
101
+ return v1
102
+ else:
103
+ return v2
104
+
105
+ else:
106
+ # In an undirected graph randomly choose one of the possibilities
107
+ start = [v for v in G if G.degree(v) % 2 != 0][0]
108
+ return start
109
+
110
+
111
+ def _simplegraph_eulerian_circuit(G, source):
112
+ if G.is_directed():
113
+ degree = G.out_degree
114
+ edges = G.out_edges
115
+ else:
116
+ degree = G.degree
117
+ edges = G.edges
118
+ vertex_stack = [source]
119
+ last_vertex = None
120
+ while vertex_stack:
121
+ current_vertex = vertex_stack[-1]
122
+ if degree(current_vertex) == 0:
123
+ if last_vertex is not None:
124
+ yield (last_vertex, current_vertex)
125
+ last_vertex = current_vertex
126
+ vertex_stack.pop()
127
+ else:
128
+ _, next_vertex = arbitrary_element(edges(current_vertex))
129
+ vertex_stack.append(next_vertex)
130
+ G.remove_edge(current_vertex, next_vertex)
131
+
132
+
133
+ def _multigraph_eulerian_circuit(G, source):
134
+ if G.is_directed():
135
+ degree = G.out_degree
136
+ edges = G.out_edges
137
+ else:
138
+ degree = G.degree
139
+ edges = G.edges
140
+ vertex_stack = [(source, None)]
141
+ last_vertex = None
142
+ last_key = None
143
+ while vertex_stack:
144
+ current_vertex, current_key = vertex_stack[-1]
145
+ if degree(current_vertex) == 0:
146
+ if last_vertex is not None:
147
+ yield (last_vertex, current_vertex, last_key)
148
+ last_vertex, last_key = current_vertex, current_key
149
+ vertex_stack.pop()
150
+ else:
151
+ triple = arbitrary_element(edges(current_vertex, keys=True))
152
+ _, next_vertex, next_key = triple
153
+ vertex_stack.append((next_vertex, next_key))
154
+ G.remove_edge(current_vertex, next_vertex, next_key)
155
+
156
+
157
+ @nx._dispatchable
158
+ def eulerian_circuit(G, source=None, keys=False):
159
+ """Returns an iterator over the edges of an Eulerian circuit in `G`.
160
+
161
+ An *Eulerian circuit* is a closed walk that includes each edge of a
162
+ graph exactly once.
163
+
164
+ Parameters
165
+ ----------
166
+ G : NetworkX graph
167
+ A graph, either directed or undirected.
168
+
169
+ source : node, optional
170
+ Starting node for circuit.
171
+
172
+ keys : bool
173
+ If False, edges generated by this function will be of the form
174
+ ``(u, v)``. Otherwise, edges will be of the form ``(u, v, k)``.
175
+ This option is ignored unless `G` is a multigraph.
176
+
177
+ Returns
178
+ -------
179
+ edges : iterator
180
+ An iterator over edges in the Eulerian circuit.
181
+
182
+ Raises
183
+ ------
184
+ NetworkXError
185
+ If the graph is not Eulerian.
186
+
187
+ See Also
188
+ --------
189
+ is_eulerian
190
+
191
+ Notes
192
+ -----
193
+ This is a linear time implementation of an algorithm adapted from [1]_.
194
+
195
+ For general information about Euler tours, see [2]_.
196
+
197
+ References
198
+ ----------
199
+ .. [1] J. Edmonds, E. L. Johnson.
200
+ Matching, Euler tours and the Chinese postman.
201
+ Mathematical programming, Volume 5, Issue 1 (1973), 111-114.
202
+ .. [2] https://en.wikipedia.org/wiki/Eulerian_path
203
+
204
+ Examples
205
+ --------
206
+ To get an Eulerian circuit in an undirected graph::
207
+
208
+ >>> G = nx.complete_graph(3)
209
+ >>> list(nx.eulerian_circuit(G))
210
+ [(0, 2), (2, 1), (1, 0)]
211
+ >>> list(nx.eulerian_circuit(G, source=1))
212
+ [(1, 2), (2, 0), (0, 1)]
213
+
214
+ To get the sequence of vertices in an Eulerian circuit::
215
+
216
+ >>> [u for u, v in nx.eulerian_circuit(G)]
217
+ [0, 2, 1]
218
+
219
+ """
220
+ if not is_eulerian(G):
221
+ raise nx.NetworkXError("G is not Eulerian.")
222
+ if G.is_directed():
223
+ G = G.reverse()
224
+ else:
225
+ G = G.copy()
226
+ if source is None:
227
+ source = arbitrary_element(G)
228
+ if G.is_multigraph():
229
+ for u, v, k in _multigraph_eulerian_circuit(G, source):
230
+ if keys:
231
+ yield u, v, k
232
+ else:
233
+ yield u, v
234
+ else:
235
+ yield from _simplegraph_eulerian_circuit(G, source)
236
+
237
+
238
+ @nx._dispatchable
239
+ def has_eulerian_path(G, source=None):
240
+ """Return True iff `G` has an Eulerian path.
241
+
242
+ An Eulerian path is a path in a graph which uses each edge of a graph
243
+ exactly once. If `source` is specified, then this function checks
244
+ whether an Eulerian path that starts at node `source` exists.
245
+
246
+ A directed graph has an Eulerian path iff:
247
+ - at most one vertex has out_degree - in_degree = 1,
248
+ - at most one vertex has in_degree - out_degree = 1,
249
+ - every other vertex has equal in_degree and out_degree,
250
+ - and all of its vertices belong to a single connected
251
+ component of the underlying undirected graph.
252
+
253
+ If `source` is not None, an Eulerian path starting at `source` exists if no
254
+ other node has out_degree - in_degree = 1. This is equivalent to either
255
+ there exists an Eulerian circuit or `source` has out_degree - in_degree = 1
256
+ and the conditions above hold.
257
+
258
+ An undirected graph has an Eulerian path iff:
259
+ - exactly zero or two vertices have odd degree,
260
+ - and all of its vertices belong to a single connected component.
261
+
262
+ If `source` is not None, an Eulerian path starting at `source` exists if
263
+ either there exists an Eulerian circuit or `source` has an odd degree and the
264
+ conditions above hold.
265
+
266
+ Graphs with isolated vertices (i.e. vertices with zero degree) are not considered
267
+ to have an Eulerian path. Therefore, if the graph is not connected (or not strongly
268
+ connected, for directed graphs), this function returns False.
269
+
270
+ Parameters
271
+ ----------
272
+ G : NetworkX Graph
273
+ The graph to find an euler path in.
274
+
275
+ source : node, optional
276
+ Starting node for path.
277
+
278
+ Returns
279
+ -------
280
+ Bool : True if G has an Eulerian path.
281
+
282
+ Examples
283
+ --------
284
+ If you prefer to allow graphs with isolated vertices to have Eulerian path,
285
+ you can first remove such vertices and then call `has_eulerian_path` as below example shows.
286
+
287
+ >>> G = nx.Graph([(0, 1), (1, 2), (0, 2)])
288
+ >>> G.add_node(3)
289
+ >>> nx.has_eulerian_path(G)
290
+ False
291
+
292
+ >>> G.remove_nodes_from(list(nx.isolates(G)))
293
+ >>> nx.has_eulerian_path(G)
294
+ True
295
+
296
+ See Also
297
+ --------
298
+ is_eulerian
299
+ eulerian_path
300
+ """
301
+ if nx.is_eulerian(G):
302
+ return True
303
+
304
+ if G.is_directed():
305
+ ins = G.in_degree
306
+ outs = G.out_degree
307
+ # Since we know it is not eulerian, outs - ins must be 1 for source
308
+ if source is not None and outs[source] - ins[source] != 1:
309
+ return False
310
+
311
+ unbalanced_ins = 0
312
+ unbalanced_outs = 0
313
+ for v in G:
314
+ if ins[v] - outs[v] == 1:
315
+ unbalanced_ins += 1
316
+ elif outs[v] - ins[v] == 1:
317
+ unbalanced_outs += 1
318
+ elif ins[v] != outs[v]:
319
+ return False
320
+
321
+ return (
322
+ unbalanced_ins <= 1 and unbalanced_outs <= 1 and nx.is_weakly_connected(G)
323
+ )
324
+ else:
325
+ # We know it is not eulerian, so degree of source must be odd.
326
+ if source is not None and G.degree[source] % 2 != 1:
327
+ return False
328
+
329
+ # Sum is 2 since we know it is not eulerian (which implies sum is 0)
330
+ return sum(d % 2 == 1 for v, d in G.degree()) == 2 and nx.is_connected(G)
331
+
332
+
333
+ @nx._dispatchable
334
+ def eulerian_path(G, source=None, keys=False):
335
+ """Return an iterator over the edges of an Eulerian path in `G`.
336
+
337
+ Parameters
338
+ ----------
339
+ G : NetworkX Graph
340
+ The graph in which to look for an eulerian path.
341
+ source : node or None (default: None)
342
+ The node at which to start the search. None means search over all
343
+ starting nodes.
344
+ keys : Bool (default: False)
345
+ Indicates whether to yield edge 3-tuples (u, v, edge_key).
346
+ The default yields edge 2-tuples
347
+
348
+ Yields
349
+ ------
350
+ Edge tuples along the eulerian path.
351
+
352
+ Warning: If `source` provided is not the start node of an Euler path
353
+ will raise error even if an Euler Path exists.
354
+ """
355
+ if not has_eulerian_path(G, source):
356
+ raise nx.NetworkXError("Graph has no Eulerian paths.")
357
+ if G.is_directed():
358
+ G = G.reverse()
359
+ if source is None or nx.is_eulerian(G) is False:
360
+ source = _find_path_start(G)
361
+ if G.is_multigraph():
362
+ for u, v, k in _multigraph_eulerian_circuit(G, source):
363
+ if keys:
364
+ yield u, v, k
365
+ else:
366
+ yield u, v
367
+ else:
368
+ yield from _simplegraph_eulerian_circuit(G, source)
369
+ else:
370
+ G = G.copy()
371
+ if source is None:
372
+ source = _find_path_start(G)
373
+ if G.is_multigraph():
374
+ if keys:
375
+ yield from reversed(
376
+ [(v, u, k) for u, v, k in _multigraph_eulerian_circuit(G, source)]
377
+ )
378
+ else:
379
+ yield from reversed(
380
+ [(v, u) for u, v, k in _multigraph_eulerian_circuit(G, source)]
381
+ )
382
+ else:
383
+ yield from reversed(
384
+ [(v, u) for u, v in _simplegraph_eulerian_circuit(G, source)]
385
+ )
386
+
387
+
388
+ @not_implemented_for("directed")
389
+ @nx._dispatchable(returns_graph=True)
390
+ def eulerize(G):
391
+ """Transforms a graph into an Eulerian graph.
392
+
393
+ If `G` is Eulerian the result is `G` as a MultiGraph, otherwise the result is a smallest
394
+ (in terms of the number of edges) multigraph whose underlying simple graph is `G`.
395
+
396
+ Parameters
397
+ ----------
398
+ G : NetworkX graph
399
+ An undirected graph
400
+
401
+ Returns
402
+ -------
403
+ G : NetworkX multigraph
404
+
405
+ Raises
406
+ ------
407
+ NetworkXError
408
+ If the graph is not connected.
409
+
410
+ See Also
411
+ --------
412
+ is_eulerian
413
+ eulerian_circuit
414
+
415
+ References
416
+ ----------
417
+ .. [1] J. Edmonds, E. L. Johnson.
418
+ Matching, Euler tours and the Chinese postman.
419
+ Mathematical programming, Volume 5, Issue 1 (1973), 111-114.
420
+ .. [2] https://en.wikipedia.org/wiki/Eulerian_path
421
+ .. [3] http://web.math.princeton.edu/math_alive/5/Notes1.pdf
422
+
423
+ Examples
424
+ --------
425
+ >>> G = nx.complete_graph(10)
426
+ >>> H = nx.eulerize(G)
427
+ >>> nx.is_eulerian(H)
428
+ True
429
+
430
+ """
431
+ if G.order() == 0:
432
+ raise nx.NetworkXPointlessConcept("Cannot Eulerize null graph")
433
+ if not nx.is_connected(G):
434
+ raise nx.NetworkXError("G is not connected")
435
+ odd_degree_nodes = [n for n, d in G.degree() if d % 2 == 1]
436
+ G = nx.MultiGraph(G)
437
+ if len(odd_degree_nodes) == 0:
438
+ return G
439
+
440
+ # get all shortest paths between vertices of odd degree
441
+ odd_deg_pairs_paths = [
442
+ (m, {n: nx.shortest_path(G, source=m, target=n)})
443
+ for m, n in combinations(odd_degree_nodes, 2)
444
+ ]
445
+
446
+ # use the number of vertices in a graph + 1 as an upper bound on
447
+ # the maximum length of a path in G
448
+ upper_bound_on_max_path_length = len(G) + 1
449
+
450
+ # use "len(G) + 1 - len(P)",
451
+ # where P is a shortest path between vertices n and m,
452
+ # as edge-weights in a new graph
453
+ # store the paths in the graph for easy indexing later
454
+ Gp = nx.Graph()
455
+ for n, Ps in odd_deg_pairs_paths:
456
+ for m, P in Ps.items():
457
+ if n != m:
458
+ Gp.add_edge(
459
+ m, n, weight=upper_bound_on_max_path_length - len(P), path=P
460
+ )
461
+
462
+ # find the minimum weight matching of edges in the weighted graph
463
+ best_matching = nx.Graph(list(nx.max_weight_matching(Gp)))
464
+
465
+ # duplicate each edge along each path in the set of paths in Gp
466
+ for m, n in best_matching.edges():
467
+ path = Gp[m][n]["path"]
468
+ G.add_edges_from(nx.utils.pairwise(path))
469
+ return G
venv/lib/python3.10/site-packages/networkx/algorithms/graph_hashing.py ADDED
@@ -0,0 +1,322 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Functions for hashing graphs to strings.
3
+ Isomorphic graphs should be assigned identical hashes.
4
+ For now, only Weisfeiler-Lehman hashing is implemented.
5
+ """
6
+
7
+ from collections import Counter, defaultdict
8
+ from hashlib import blake2b
9
+
10
+ import networkx as nx
11
+
12
+ __all__ = ["weisfeiler_lehman_graph_hash", "weisfeiler_lehman_subgraph_hashes"]
13
+
14
+
15
+ def _hash_label(label, digest_size):
16
+ return blake2b(label.encode("ascii"), digest_size=digest_size).hexdigest()
17
+
18
+
19
+ def _init_node_labels(G, edge_attr, node_attr):
20
+ if node_attr:
21
+ return {u: str(dd[node_attr]) for u, dd in G.nodes(data=True)}
22
+ elif edge_attr:
23
+ return {u: "" for u in G}
24
+ else:
25
+ return {u: str(deg) for u, deg in G.degree()}
26
+
27
+
28
+ def _neighborhood_aggregate(G, node, node_labels, edge_attr=None):
29
+ """
30
+ Compute new labels for given node by aggregating
31
+ the labels of each node's neighbors.
32
+ """
33
+ label_list = []
34
+ for nbr in G.neighbors(node):
35
+ prefix = "" if edge_attr is None else str(G[node][nbr][edge_attr])
36
+ label_list.append(prefix + node_labels[nbr])
37
+ return node_labels[node] + "".join(sorted(label_list))
38
+
39
+
40
+ @nx._dispatchable(edge_attrs={"edge_attr": None}, node_attrs="node_attr")
41
+ def weisfeiler_lehman_graph_hash(
42
+ G, edge_attr=None, node_attr=None, iterations=3, digest_size=16
43
+ ):
44
+ """Return Weisfeiler Lehman (WL) graph hash.
45
+
46
+ The function iteratively aggregates and hashes neighborhoods of each node.
47
+ After each node's neighbors are hashed to obtain updated node labels,
48
+ a hashed histogram of resulting labels is returned as the final hash.
49
+
50
+ Hashes are identical for isomorphic graphs and strong guarantees that
51
+ non-isomorphic graphs will get different hashes. See [1]_ for details.
52
+
53
+ If no node or edge attributes are provided, the degree of each node
54
+ is used as its initial label.
55
+ Otherwise, node and/or edge labels are used to compute the hash.
56
+
57
+ Parameters
58
+ ----------
59
+ G : graph
60
+ The graph to be hashed.
61
+ Can have node and/or edge attributes. Can also have no attributes.
62
+ edge_attr : string, optional (default=None)
63
+ The key in edge attribute dictionary to be used for hashing.
64
+ If None, edge labels are ignored.
65
+ node_attr: string, optional (default=None)
66
+ The key in node attribute dictionary to be used for hashing.
67
+ If None, and no edge_attr given, use the degrees of the nodes as labels.
68
+ iterations: int, optional (default=3)
69
+ Number of neighbor aggregations to perform.
70
+ Should be larger for larger graphs.
71
+ digest_size: int, optional (default=16)
72
+ Size (in bits) of blake2b hash digest to use for hashing node labels.
73
+
74
+ Returns
75
+ -------
76
+ h : string
77
+ Hexadecimal string corresponding to hash of the input graph.
78
+
79
+ Examples
80
+ --------
81
+ Two graphs with edge attributes that are isomorphic, except for
82
+ differences in the edge labels.
83
+
84
+ >>> G1 = nx.Graph()
85
+ >>> G1.add_edges_from(
86
+ ... [
87
+ ... (1, 2, {"label": "A"}),
88
+ ... (2, 3, {"label": "A"}),
89
+ ... (3, 1, {"label": "A"}),
90
+ ... (1, 4, {"label": "B"}),
91
+ ... ]
92
+ ... )
93
+ >>> G2 = nx.Graph()
94
+ >>> G2.add_edges_from(
95
+ ... [
96
+ ... (5, 6, {"label": "B"}),
97
+ ... (6, 7, {"label": "A"}),
98
+ ... (7, 5, {"label": "A"}),
99
+ ... (7, 8, {"label": "A"}),
100
+ ... ]
101
+ ... )
102
+
103
+ Omitting the `edge_attr` option, results in identical hashes.
104
+
105
+ >>> nx.weisfeiler_lehman_graph_hash(G1)
106
+ '7bc4dde9a09d0b94c5097b219891d81a'
107
+ >>> nx.weisfeiler_lehman_graph_hash(G2)
108
+ '7bc4dde9a09d0b94c5097b219891d81a'
109
+
110
+ With edge labels, the graphs are no longer assigned
111
+ the same hash digest.
112
+
113
+ >>> nx.weisfeiler_lehman_graph_hash(G1, edge_attr="label")
114
+ 'c653d85538bcf041d88c011f4f905f10'
115
+ >>> nx.weisfeiler_lehman_graph_hash(G2, edge_attr="label")
116
+ '3dcd84af1ca855d0eff3c978d88e7ec7'
117
+
118
+ Notes
119
+ -----
120
+ To return the WL hashes of each subgraph of a graph, use
121
+ `weisfeiler_lehman_subgraph_hashes`
122
+
123
+ Similarity between hashes does not imply similarity between graphs.
124
+
125
+ References
126
+ ----------
127
+ .. [1] Shervashidze, Nino, Pascal Schweitzer, Erik Jan Van Leeuwen,
128
+ Kurt Mehlhorn, and Karsten M. Borgwardt. Weisfeiler Lehman
129
+ Graph Kernels. Journal of Machine Learning Research. 2011.
130
+ http://www.jmlr.org/papers/volume12/shervashidze11a/shervashidze11a.pdf
131
+
132
+ See also
133
+ --------
134
+ weisfeiler_lehman_subgraph_hashes
135
+ """
136
+
137
+ def weisfeiler_lehman_step(G, labels, edge_attr=None):
138
+ """
139
+ Apply neighborhood aggregation to each node
140
+ in the graph.
141
+ Computes a dictionary with labels for each node.
142
+ """
143
+ new_labels = {}
144
+ for node in G.nodes():
145
+ label = _neighborhood_aggregate(G, node, labels, edge_attr=edge_attr)
146
+ new_labels[node] = _hash_label(label, digest_size)
147
+ return new_labels
148
+
149
+ # set initial node labels
150
+ node_labels = _init_node_labels(G, edge_attr, node_attr)
151
+
152
+ subgraph_hash_counts = []
153
+ for _ in range(iterations):
154
+ node_labels = weisfeiler_lehman_step(G, node_labels, edge_attr=edge_attr)
155
+ counter = Counter(node_labels.values())
156
+ # sort the counter, extend total counts
157
+ subgraph_hash_counts.extend(sorted(counter.items(), key=lambda x: x[0]))
158
+
159
+ # hash the final counter
160
+ return _hash_label(str(tuple(subgraph_hash_counts)), digest_size)
161
+
162
+
163
+ @nx._dispatchable(edge_attrs={"edge_attr": None}, node_attrs="node_attr")
164
+ def weisfeiler_lehman_subgraph_hashes(
165
+ G,
166
+ edge_attr=None,
167
+ node_attr=None,
168
+ iterations=3,
169
+ digest_size=16,
170
+ include_initial_labels=False,
171
+ ):
172
+ """
173
+ Return a dictionary of subgraph hashes by node.
174
+
175
+ Dictionary keys are nodes in `G`, and values are a list of hashes.
176
+ Each hash corresponds to a subgraph rooted at a given node u in `G`.
177
+ Lists of subgraph hashes are sorted in increasing order of depth from
178
+ their root node, with the hash at index i corresponding to a subgraph
179
+ of nodes at most i edges distance from u. Thus, each list will contain
180
+ `iterations` elements - a hash for a subgraph at each depth. If
181
+ `include_initial_labels` is set to `True`, each list will additionally
182
+ have contain a hash of the initial node label (or equivalently a
183
+ subgraph of depth 0) prepended, totalling ``iterations + 1`` elements.
184
+
185
+ The function iteratively aggregates and hashes neighborhoods of each node.
186
+ This is achieved for each step by replacing for each node its label from
187
+ the previous iteration with its hashed 1-hop neighborhood aggregate.
188
+ The new node label is then appended to a list of node labels for each
189
+ node.
190
+
191
+ To aggregate neighborhoods for a node $u$ at each step, all labels of
192
+ nodes adjacent to $u$ are concatenated. If the `edge_attr` parameter is set,
193
+ labels for each neighboring node are prefixed with the value of this attribute
194
+ along the connecting edge from this neighbor to node $u$. The resulting string
195
+ is then hashed to compress this information into a fixed digest size.
196
+
197
+ Thus, at the $i$-th iteration, nodes within $i$ hops influence any given
198
+ hashed node label. We can therefore say that at depth $i$ for node $u$
199
+ we have a hash for a subgraph induced by the $i$-hop neighborhood of $u$.
200
+
201
+ The output can be used to to create general Weisfeiler-Lehman graph kernels,
202
+ or generate features for graphs or nodes - for example to generate 'words' in
203
+ a graph as seen in the 'graph2vec' algorithm.
204
+ See [1]_ & [2]_ respectively for details.
205
+
206
+ Hashes are identical for isomorphic subgraphs and there exist strong
207
+ guarantees that non-isomorphic graphs will get different hashes.
208
+ See [1]_ for details.
209
+
210
+ If no node or edge attributes are provided, the degree of each node
211
+ is used as its initial label.
212
+ Otherwise, node and/or edge labels are used to compute the hash.
213
+
214
+ Parameters
215
+ ----------
216
+ G : graph
217
+ The graph to be hashed.
218
+ Can have node and/or edge attributes. Can also have no attributes.
219
+ edge_attr : string, optional (default=None)
220
+ The key in edge attribute dictionary to be used for hashing.
221
+ If None, edge labels are ignored.
222
+ node_attr : string, optional (default=None)
223
+ The key in node attribute dictionary to be used for hashing.
224
+ If None, and no edge_attr given, use the degrees of the nodes as labels.
225
+ If None, and edge_attr is given, each node starts with an identical label.
226
+ iterations : int, optional (default=3)
227
+ Number of neighbor aggregations to perform.
228
+ Should be larger for larger graphs.
229
+ digest_size : int, optional (default=16)
230
+ Size (in bits) of blake2b hash digest to use for hashing node labels.
231
+ The default size is 16 bits.
232
+ include_initial_labels : bool, optional (default=False)
233
+ If True, include the hashed initial node label as the first subgraph
234
+ hash for each node.
235
+
236
+ Returns
237
+ -------
238
+ node_subgraph_hashes : dict
239
+ A dictionary with each key given by a node in G, and each value given
240
+ by the subgraph hashes in order of depth from the key node.
241
+
242
+ Examples
243
+ --------
244
+ Finding similar nodes in different graphs:
245
+
246
+ >>> G1 = nx.Graph()
247
+ >>> G1.add_edges_from([(1, 2), (2, 3), (2, 4), (3, 5), (4, 6), (5, 7), (6, 7)])
248
+ >>> G2 = nx.Graph()
249
+ >>> G2.add_edges_from([(1, 3), (2, 3), (1, 6), (1, 5), (4, 6)])
250
+ >>> g1_hashes = nx.weisfeiler_lehman_subgraph_hashes(G1, iterations=3, digest_size=8)
251
+ >>> g2_hashes = nx.weisfeiler_lehman_subgraph_hashes(G2, iterations=3, digest_size=8)
252
+
253
+ Even though G1 and G2 are not isomorphic (they have different numbers of edges),
254
+ the hash sequence of depth 3 for node 1 in G1 and node 5 in G2 are similar:
255
+
256
+ >>> g1_hashes[1]
257
+ ['a93b64973cfc8897', 'db1b43ae35a1878f', '57872a7d2059c1c0']
258
+ >>> g2_hashes[5]
259
+ ['a93b64973cfc8897', 'db1b43ae35a1878f', '1716d2a4012fa4bc']
260
+
261
+ The first 2 WL subgraph hashes match. From this we can conclude that it's very
262
+ likely the neighborhood of 2 hops around these nodes are isomorphic.
263
+
264
+ However the 3-hop neighborhoods of ``G1`` and ``G2`` are not isomorphic since the
265
+ 3rd hashes in the lists above are not equal.
266
+
267
+ These nodes may be candidates to be classified together since their local topology
268
+ is similar.
269
+
270
+ Notes
271
+ -----
272
+ To hash the full graph when subgraph hashes are not needed, use
273
+ `weisfeiler_lehman_graph_hash` for efficiency.
274
+
275
+ Similarity between hashes does not imply similarity between graphs.
276
+
277
+ References
278
+ ----------
279
+ .. [1] Shervashidze, Nino, Pascal Schweitzer, Erik Jan Van Leeuwen,
280
+ Kurt Mehlhorn, and Karsten M. Borgwardt. Weisfeiler Lehman
281
+ Graph Kernels. Journal of Machine Learning Research. 2011.
282
+ http://www.jmlr.org/papers/volume12/shervashidze11a/shervashidze11a.pdf
283
+ .. [2] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan,
284
+ Lihui Chen, Yang Liu and Shantanu Jaiswa. graph2vec: Learning
285
+ Distributed Representations of Graphs. arXiv. 2017
286
+ https://arxiv.org/pdf/1707.05005.pdf
287
+
288
+ See also
289
+ --------
290
+ weisfeiler_lehman_graph_hash
291
+ """
292
+
293
+ def weisfeiler_lehman_step(G, labels, node_subgraph_hashes, edge_attr=None):
294
+ """
295
+ Apply neighborhood aggregation to each node
296
+ in the graph.
297
+ Computes a dictionary with labels for each node.
298
+ Appends the new hashed label to the dictionary of subgraph hashes
299
+ originating from and indexed by each node in G
300
+ """
301
+ new_labels = {}
302
+ for node in G.nodes():
303
+ label = _neighborhood_aggregate(G, node, labels, edge_attr=edge_attr)
304
+ hashed_label = _hash_label(label, digest_size)
305
+ new_labels[node] = hashed_label
306
+ node_subgraph_hashes[node].append(hashed_label)
307
+ return new_labels
308
+
309
+ node_labels = _init_node_labels(G, edge_attr, node_attr)
310
+ if include_initial_labels:
311
+ node_subgraph_hashes = {
312
+ k: [_hash_label(v, digest_size)] for k, v in node_labels.items()
313
+ }
314
+ else:
315
+ node_subgraph_hashes = defaultdict(list)
316
+
317
+ for _ in range(iterations):
318
+ node_labels = weisfeiler_lehman_step(
319
+ G, node_labels, node_subgraph_hashes, edge_attr
320
+ )
321
+
322
+ return dict(node_subgraph_hashes)
venv/lib/python3.10/site-packages/networkx/algorithms/graphical.py ADDED
@@ -0,0 +1,483 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Test sequences for graphiness.
2
+ """
3
+ import heapq
4
+
5
+ import networkx as nx
6
+
7
+ __all__ = [
8
+ "is_graphical",
9
+ "is_multigraphical",
10
+ "is_pseudographical",
11
+ "is_digraphical",
12
+ "is_valid_degree_sequence_erdos_gallai",
13
+ "is_valid_degree_sequence_havel_hakimi",
14
+ ]
15
+
16
+
17
+ @nx._dispatchable(graphs=None)
18
+ def is_graphical(sequence, method="eg"):
19
+ """Returns True if sequence is a valid degree sequence.
20
+
21
+ A degree sequence is valid if some graph can realize it.
22
+
23
+ Parameters
24
+ ----------
25
+ sequence : list or iterable container
26
+ A sequence of integer node degrees
27
+
28
+ method : "eg" | "hh" (default: 'eg')
29
+ The method used to validate the degree sequence.
30
+ "eg" corresponds to the Erdős-Gallai algorithm
31
+ [EG1960]_, [choudum1986]_, and
32
+ "hh" to the Havel-Hakimi algorithm
33
+ [havel1955]_, [hakimi1962]_, [CL1996]_.
34
+
35
+ Returns
36
+ -------
37
+ valid : bool
38
+ True if the sequence is a valid degree sequence and False if not.
39
+
40
+ Examples
41
+ --------
42
+ >>> G = nx.path_graph(4)
43
+ >>> sequence = (d for n, d in G.degree())
44
+ >>> nx.is_graphical(sequence)
45
+ True
46
+
47
+ To test a non-graphical sequence:
48
+ >>> sequence_list = [d for n, d in G.degree()]
49
+ >>> sequence_list[-1] += 1
50
+ >>> nx.is_graphical(sequence_list)
51
+ False
52
+
53
+ References
54
+ ----------
55
+ .. [EG1960] Erdős and Gallai, Mat. Lapok 11 264, 1960.
56
+ .. [choudum1986] S.A. Choudum. "A simple proof of the Erdős-Gallai theorem on
57
+ graph sequences." Bulletin of the Australian Mathematical Society, 33,
58
+ pp 67-70, 1986. https://doi.org/10.1017/S0004972700002872
59
+ .. [havel1955] Havel, V. "A Remark on the Existence of Finite Graphs"
60
+ Casopis Pest. Mat. 80, 477-480, 1955.
61
+ .. [hakimi1962] Hakimi, S. "On the Realizability of a Set of Integers as
62
+ Degrees of the Vertices of a Graph." SIAM J. Appl. Math. 10, 496-506, 1962.
63
+ .. [CL1996] G. Chartrand and L. Lesniak, "Graphs and Digraphs",
64
+ Chapman and Hall/CRC, 1996.
65
+ """
66
+ if method == "eg":
67
+ valid = is_valid_degree_sequence_erdos_gallai(list(sequence))
68
+ elif method == "hh":
69
+ valid = is_valid_degree_sequence_havel_hakimi(list(sequence))
70
+ else:
71
+ msg = "`method` must be 'eg' or 'hh'"
72
+ raise nx.NetworkXException(msg)
73
+ return valid
74
+
75
+
76
+ def _basic_graphical_tests(deg_sequence):
77
+ # Sort and perform some simple tests on the sequence
78
+ deg_sequence = nx.utils.make_list_of_ints(deg_sequence)
79
+ p = len(deg_sequence)
80
+ num_degs = [0] * p
81
+ dmax, dmin, dsum, n = 0, p, 0, 0
82
+ for d in deg_sequence:
83
+ # Reject if degree is negative or larger than the sequence length
84
+ if d < 0 or d >= p:
85
+ raise nx.NetworkXUnfeasible
86
+ # Process only the non-zero integers
87
+ elif d > 0:
88
+ dmax, dmin, dsum, n = max(dmax, d), min(dmin, d), dsum + d, n + 1
89
+ num_degs[d] += 1
90
+ # Reject sequence if it has odd sum or is oversaturated
91
+ if dsum % 2 or dsum > n * (n - 1):
92
+ raise nx.NetworkXUnfeasible
93
+ return dmax, dmin, dsum, n, num_degs
94
+
95
+
96
+ @nx._dispatchable(graphs=None)
97
+ def is_valid_degree_sequence_havel_hakimi(deg_sequence):
98
+ r"""Returns True if deg_sequence can be realized by a simple graph.
99
+
100
+ The validation proceeds using the Havel-Hakimi theorem
101
+ [havel1955]_, [hakimi1962]_, [CL1996]_.
102
+ Worst-case run time is $O(s)$ where $s$ is the sum of the sequence.
103
+
104
+ Parameters
105
+ ----------
106
+ deg_sequence : list
107
+ A list of integers where each element specifies the degree of a node
108
+ in a graph.
109
+
110
+ Returns
111
+ -------
112
+ valid : bool
113
+ True if deg_sequence is graphical and False if not.
114
+
115
+ Examples
116
+ --------
117
+ >>> G = nx.Graph([(1, 2), (1, 3), (2, 3), (3, 4), (4, 2), (5, 1), (5, 4)])
118
+ >>> sequence = (d for _, d in G.degree())
119
+ >>> nx.is_valid_degree_sequence_havel_hakimi(sequence)
120
+ True
121
+
122
+ To test a non-valid sequence:
123
+ >>> sequence_list = [d for _, d in G.degree()]
124
+ >>> sequence_list[-1] += 1
125
+ >>> nx.is_valid_degree_sequence_havel_hakimi(sequence_list)
126
+ False
127
+
128
+ Notes
129
+ -----
130
+ The ZZ condition says that for the sequence d if
131
+
132
+ .. math::
133
+ |d| >= \frac{(\max(d) + \min(d) + 1)^2}{4*\min(d)}
134
+
135
+ then d is graphical. This was shown in Theorem 6 in [1]_.
136
+
137
+ References
138
+ ----------
139
+ .. [1] I.E. Zverovich and V.E. Zverovich. "Contributions to the theory
140
+ of graphic sequences", Discrete Mathematics, 105, pp. 292-303 (1992).
141
+ .. [havel1955] Havel, V. "A Remark on the Existence of Finite Graphs"
142
+ Casopis Pest. Mat. 80, 477-480, 1955.
143
+ .. [hakimi1962] Hakimi, S. "On the Realizability of a Set of Integers as
144
+ Degrees of the Vertices of a Graph." SIAM J. Appl. Math. 10, 496-506, 1962.
145
+ .. [CL1996] G. Chartrand and L. Lesniak, "Graphs and Digraphs",
146
+ Chapman and Hall/CRC, 1996.
147
+ """
148
+ try:
149
+ dmax, dmin, dsum, n, num_degs = _basic_graphical_tests(deg_sequence)
150
+ except nx.NetworkXUnfeasible:
151
+ return False
152
+ # Accept if sequence has no non-zero degrees or passes the ZZ condition
153
+ if n == 0 or 4 * dmin * n >= (dmax + dmin + 1) * (dmax + dmin + 1):
154
+ return True
155
+
156
+ modstubs = [0] * (dmax + 1)
157
+ # Successively reduce degree sequence by removing the maximum degree
158
+ while n > 0:
159
+ # Retrieve the maximum degree in the sequence
160
+ while num_degs[dmax] == 0:
161
+ dmax -= 1
162
+ # If there are not enough stubs to connect to, then the sequence is
163
+ # not graphical
164
+ if dmax > n - 1:
165
+ return False
166
+
167
+ # Remove largest stub in list
168
+ num_degs[dmax], n = num_degs[dmax] - 1, n - 1
169
+ # Reduce the next dmax largest stubs
170
+ mslen = 0
171
+ k = dmax
172
+ for i in range(dmax):
173
+ while num_degs[k] == 0:
174
+ k -= 1
175
+ num_degs[k], n = num_degs[k] - 1, n - 1
176
+ if k > 1:
177
+ modstubs[mslen] = k - 1
178
+ mslen += 1
179
+ # Add back to the list any non-zero stubs that were removed
180
+ for i in range(mslen):
181
+ stub = modstubs[i]
182
+ num_degs[stub], n = num_degs[stub] + 1, n + 1
183
+ return True
184
+
185
+
186
+ @nx._dispatchable(graphs=None)
187
+ def is_valid_degree_sequence_erdos_gallai(deg_sequence):
188
+ r"""Returns True if deg_sequence can be realized by a simple graph.
189
+
190
+ The validation is done using the Erdős-Gallai theorem [EG1960]_.
191
+
192
+ Parameters
193
+ ----------
194
+ deg_sequence : list
195
+ A list of integers
196
+
197
+ Returns
198
+ -------
199
+ valid : bool
200
+ True if deg_sequence is graphical and False if not.
201
+
202
+ Examples
203
+ --------
204
+ >>> G = nx.Graph([(1, 2), (1, 3), (2, 3), (3, 4), (4, 2), (5, 1), (5, 4)])
205
+ >>> sequence = (d for _, d in G.degree())
206
+ >>> nx.is_valid_degree_sequence_erdos_gallai(sequence)
207
+ True
208
+
209
+ To test a non-valid sequence:
210
+ >>> sequence_list = [d for _, d in G.degree()]
211
+ >>> sequence_list[-1] += 1
212
+ >>> nx.is_valid_degree_sequence_erdos_gallai(sequence_list)
213
+ False
214
+
215
+ Notes
216
+ -----
217
+
218
+ This implementation uses an equivalent form of the Erdős-Gallai criterion.
219
+ Worst-case run time is $O(n)$ where $n$ is the length of the sequence.
220
+
221
+ Specifically, a sequence d is graphical if and only if the
222
+ sum of the sequence is even and for all strong indices k in the sequence,
223
+
224
+ .. math::
225
+
226
+ \sum_{i=1}^{k} d_i \leq k(k-1) + \sum_{j=k+1}^{n} \min(d_i,k)
227
+ = k(n-1) - ( k \sum_{j=0}^{k-1} n_j - \sum_{j=0}^{k-1} j n_j )
228
+
229
+ A strong index k is any index where d_k >= k and the value n_j is the
230
+ number of occurrences of j in d. The maximal strong index is called the
231
+ Durfee index.
232
+
233
+ This particular rearrangement comes from the proof of Theorem 3 in [2]_.
234
+
235
+ The ZZ condition says that for the sequence d if
236
+
237
+ .. math::
238
+ |d| >= \frac{(\max(d) + \min(d) + 1)^2}{4*\min(d)}
239
+
240
+ then d is graphical. This was shown in Theorem 6 in [2]_.
241
+
242
+ References
243
+ ----------
244
+ .. [1] A. Tripathi and S. Vijay. "A note on a theorem of Erdős & Gallai",
245
+ Discrete Mathematics, 265, pp. 417-420 (2003).
246
+ .. [2] I.E. Zverovich and V.E. Zverovich. "Contributions to the theory
247
+ of graphic sequences", Discrete Mathematics, 105, pp. 292-303 (1992).
248
+ .. [EG1960] Erdős and Gallai, Mat. Lapok 11 264, 1960.
249
+ """
250
+ try:
251
+ dmax, dmin, dsum, n, num_degs = _basic_graphical_tests(deg_sequence)
252
+ except nx.NetworkXUnfeasible:
253
+ return False
254
+ # Accept if sequence has no non-zero degrees or passes the ZZ condition
255
+ if n == 0 or 4 * dmin * n >= (dmax + dmin + 1) * (dmax + dmin + 1):
256
+ return True
257
+
258
+ # Perform the EG checks using the reformulation of Zverovich and Zverovich
259
+ k, sum_deg, sum_nj, sum_jnj = 0, 0, 0, 0
260
+ for dk in range(dmax, dmin - 1, -1):
261
+ if dk < k + 1: # Check if already past Durfee index
262
+ return True
263
+ if num_degs[dk] > 0:
264
+ run_size = num_degs[dk] # Process a run of identical-valued degrees
265
+ if dk < k + run_size: # Check if end of run is past Durfee index
266
+ run_size = dk - k # Adjust back to Durfee index
267
+ sum_deg += run_size * dk
268
+ for v in range(run_size):
269
+ sum_nj += num_degs[k + v]
270
+ sum_jnj += (k + v) * num_degs[k + v]
271
+ k += run_size
272
+ if sum_deg > k * (n - 1) - k * sum_nj + sum_jnj:
273
+ return False
274
+ return True
275
+
276
+
277
+ @nx._dispatchable(graphs=None)
278
+ def is_multigraphical(sequence):
279
+ """Returns True if some multigraph can realize the sequence.
280
+
281
+ Parameters
282
+ ----------
283
+ sequence : list
284
+ A list of integers
285
+
286
+ Returns
287
+ -------
288
+ valid : bool
289
+ True if deg_sequence is a multigraphic degree sequence and False if not.
290
+
291
+ Examples
292
+ --------
293
+ >>> G = nx.MultiGraph([(1, 2), (1, 3), (2, 3), (3, 4), (4, 2), (5, 1), (5, 4)])
294
+ >>> sequence = (d for _, d in G.degree())
295
+ >>> nx.is_multigraphical(sequence)
296
+ True
297
+
298
+ To test a non-multigraphical sequence:
299
+ >>> sequence_list = [d for _, d in G.degree()]
300
+ >>> sequence_list[-1] += 1
301
+ >>> nx.is_multigraphical(sequence_list)
302
+ False
303
+
304
+ Notes
305
+ -----
306
+ The worst-case run time is $O(n)$ where $n$ is the length of the sequence.
307
+
308
+ References
309
+ ----------
310
+ .. [1] S. L. Hakimi. "On the realizability of a set of integers as
311
+ degrees of the vertices of a linear graph", J. SIAM, 10, pp. 496-506
312
+ (1962).
313
+ """
314
+ try:
315
+ deg_sequence = nx.utils.make_list_of_ints(sequence)
316
+ except nx.NetworkXError:
317
+ return False
318
+ dsum, dmax = 0, 0
319
+ for d in deg_sequence:
320
+ if d < 0:
321
+ return False
322
+ dsum, dmax = dsum + d, max(dmax, d)
323
+ if dsum % 2 or dsum < 2 * dmax:
324
+ return False
325
+ return True
326
+
327
+
328
+ @nx._dispatchable(graphs=None)
329
+ def is_pseudographical(sequence):
330
+ """Returns True if some pseudograph can realize the sequence.
331
+
332
+ Every nonnegative integer sequence with an even sum is pseudographical
333
+ (see [1]_).
334
+
335
+ Parameters
336
+ ----------
337
+ sequence : list or iterable container
338
+ A sequence of integer node degrees
339
+
340
+ Returns
341
+ -------
342
+ valid : bool
343
+ True if the sequence is a pseudographic degree sequence and False if not.
344
+
345
+ Examples
346
+ --------
347
+ >>> G = nx.Graph([(1, 2), (1, 3), (2, 3), (3, 4), (4, 2), (5, 1), (5, 4)])
348
+ >>> sequence = (d for _, d in G.degree())
349
+ >>> nx.is_pseudographical(sequence)
350
+ True
351
+
352
+ To test a non-pseudographical sequence:
353
+ >>> sequence_list = [d for _, d in G.degree()]
354
+ >>> sequence_list[-1] += 1
355
+ >>> nx.is_pseudographical(sequence_list)
356
+ False
357
+
358
+ Notes
359
+ -----
360
+ The worst-case run time is $O(n)$ where n is the length of the sequence.
361
+
362
+ References
363
+ ----------
364
+ .. [1] F. Boesch and F. Harary. "Line removal algorithms for graphs
365
+ and their degree lists", IEEE Trans. Circuits and Systems, CAS-23(12),
366
+ pp. 778-782 (1976).
367
+ """
368
+ try:
369
+ deg_sequence = nx.utils.make_list_of_ints(sequence)
370
+ except nx.NetworkXError:
371
+ return False
372
+ return sum(deg_sequence) % 2 == 0 and min(deg_sequence) >= 0
373
+
374
+
375
+ @nx._dispatchable(graphs=None)
376
+ def is_digraphical(in_sequence, out_sequence):
377
+ r"""Returns True if some directed graph can realize the in- and out-degree
378
+ sequences.
379
+
380
+ Parameters
381
+ ----------
382
+ in_sequence : list or iterable container
383
+ A sequence of integer node in-degrees
384
+
385
+ out_sequence : list or iterable container
386
+ A sequence of integer node out-degrees
387
+
388
+ Returns
389
+ -------
390
+ valid : bool
391
+ True if in and out-sequences are digraphic False if not.
392
+
393
+ Examples
394
+ --------
395
+ >>> G = nx.DiGraph([(1, 2), (1, 3), (2, 3), (3, 4), (4, 2), (5, 1), (5, 4)])
396
+ >>> in_seq = (d for n, d in G.in_degree())
397
+ >>> out_seq = (d for n, d in G.out_degree())
398
+ >>> nx.is_digraphical(in_seq, out_seq)
399
+ True
400
+
401
+ To test a non-digraphical scenario:
402
+ >>> in_seq_list = [d for n, d in G.in_degree()]
403
+ >>> in_seq_list[-1] += 1
404
+ >>> nx.is_digraphical(in_seq_list, out_seq)
405
+ False
406
+
407
+ Notes
408
+ -----
409
+ This algorithm is from Kleitman and Wang [1]_.
410
+ The worst case runtime is $O(s \times \log n)$ where $s$ and $n$ are the
411
+ sum and length of the sequences respectively.
412
+
413
+ References
414
+ ----------
415
+ .. [1] D.J. Kleitman and D.L. Wang
416
+ Algorithms for Constructing Graphs and Digraphs with Given Valences
417
+ and Factors, Discrete Mathematics, 6(1), pp. 79-88 (1973)
418
+ """
419
+ try:
420
+ in_deg_sequence = nx.utils.make_list_of_ints(in_sequence)
421
+ out_deg_sequence = nx.utils.make_list_of_ints(out_sequence)
422
+ except nx.NetworkXError:
423
+ return False
424
+ # Process the sequences and form two heaps to store degree pairs with
425
+ # either zero or non-zero out degrees
426
+ sumin, sumout, nin, nout = 0, 0, len(in_deg_sequence), len(out_deg_sequence)
427
+ maxn = max(nin, nout)
428
+ maxin = 0
429
+ if maxn == 0:
430
+ return True
431
+ stubheap, zeroheap = [], []
432
+ for n in range(maxn):
433
+ in_deg, out_deg = 0, 0
434
+ if n < nout:
435
+ out_deg = out_deg_sequence[n]
436
+ if n < nin:
437
+ in_deg = in_deg_sequence[n]
438
+ if in_deg < 0 or out_deg < 0:
439
+ return False
440
+ sumin, sumout, maxin = sumin + in_deg, sumout + out_deg, max(maxin, in_deg)
441
+ if in_deg > 0:
442
+ stubheap.append((-1 * out_deg, -1 * in_deg))
443
+ elif out_deg > 0:
444
+ zeroheap.append(-1 * out_deg)
445
+ if sumin != sumout:
446
+ return False
447
+ heapq.heapify(stubheap)
448
+ heapq.heapify(zeroheap)
449
+
450
+ modstubs = [(0, 0)] * (maxin + 1)
451
+ # Successively reduce degree sequence by removing the maximum out degree
452
+ while stubheap:
453
+ # Take the first value in the sequence with non-zero in degree
454
+ (freeout, freein) = heapq.heappop(stubheap)
455
+ freein *= -1
456
+ if freein > len(stubheap) + len(zeroheap):
457
+ return False
458
+
459
+ # Attach out stubs to the nodes with the most in stubs
460
+ mslen = 0
461
+ for i in range(freein):
462
+ if zeroheap and (not stubheap or stubheap[0][0] > zeroheap[0]):
463
+ stubout = heapq.heappop(zeroheap)
464
+ stubin = 0
465
+ else:
466
+ (stubout, stubin) = heapq.heappop(stubheap)
467
+ if stubout == 0:
468
+ return False
469
+ # Check if target is now totally connected
470
+ if stubout + 1 < 0 or stubin < 0:
471
+ modstubs[mslen] = (stubout + 1, stubin)
472
+ mslen += 1
473
+
474
+ # Add back the nodes to the heap that still have available stubs
475
+ for i in range(mslen):
476
+ stub = modstubs[i]
477
+ if stub[1] < 0:
478
+ heapq.heappush(stubheap, stub)
479
+ else:
480
+ heapq.heappush(zeroheap, stub[0])
481
+ if freeout < 0:
482
+ heapq.heappush(zeroheap, freeout)
483
+ return True
venv/lib/python3.10/site-packages/networkx/algorithms/hybrid.py ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Provides functions for finding and testing for locally `(k, l)`-connected
3
+ graphs.
4
+
5
+ """
6
+ import copy
7
+
8
+ import networkx as nx
9
+
10
+ __all__ = ["kl_connected_subgraph", "is_kl_connected"]
11
+
12
+
13
+ @nx._dispatchable(returns_graph=True)
14
+ def kl_connected_subgraph(G, k, l, low_memory=False, same_as_graph=False):
15
+ """Returns the maximum locally `(k, l)`-connected subgraph of `G`.
16
+
17
+ A graph is locally `(k, l)`-connected if for each edge `(u, v)` in the
18
+ graph there are at least `l` edge-disjoint paths of length at most `k`
19
+ joining `u` to `v`.
20
+
21
+ Parameters
22
+ ----------
23
+ G : NetworkX graph
24
+ The graph in which to find a maximum locally `(k, l)`-connected
25
+ subgraph.
26
+
27
+ k : integer
28
+ The maximum length of paths to consider. A higher number means a looser
29
+ connectivity requirement.
30
+
31
+ l : integer
32
+ The number of edge-disjoint paths. A higher number means a stricter
33
+ connectivity requirement.
34
+
35
+ low_memory : bool
36
+ If this is True, this function uses an algorithm that uses slightly
37
+ more time but less memory.
38
+
39
+ same_as_graph : bool
40
+ If True then return a tuple of the form `(H, is_same)`,
41
+ where `H` is the maximum locally `(k, l)`-connected subgraph and
42
+ `is_same` is a Boolean representing whether `G` is locally `(k,
43
+ l)`-connected (and hence, whether `H` is simply a copy of the input
44
+ graph `G`).
45
+
46
+ Returns
47
+ -------
48
+ NetworkX graph or two-tuple
49
+ If `same_as_graph` is True, then this function returns a
50
+ two-tuple as described above. Otherwise, it returns only the maximum
51
+ locally `(k, l)`-connected subgraph.
52
+
53
+ See also
54
+ --------
55
+ is_kl_connected
56
+
57
+ References
58
+ ----------
59
+ .. [1] Chung, Fan and Linyuan Lu. "The Small World Phenomenon in Hybrid
60
+ Power Law Graphs." *Complex Networks*. Springer Berlin Heidelberg,
61
+ 2004. 89--104.
62
+
63
+ """
64
+ H = copy.deepcopy(G) # subgraph we construct by removing from G
65
+
66
+ graphOK = True
67
+ deleted_some = True # hack to start off the while loop
68
+ while deleted_some:
69
+ deleted_some = False
70
+ # We use `for edge in list(H.edges()):` instead of
71
+ # `for edge in H.edges():` because we edit the graph `H` in
72
+ # the loop. Hence using an iterator will result in
73
+ # `RuntimeError: dictionary changed size during iteration`
74
+ for edge in list(H.edges()):
75
+ (u, v) = edge
76
+ # Get copy of graph needed for this search
77
+ if low_memory:
78
+ verts = {u, v}
79
+ for i in range(k):
80
+ for w in verts.copy():
81
+ verts.update(G[w])
82
+ G2 = G.subgraph(verts).copy()
83
+ else:
84
+ G2 = copy.deepcopy(G)
85
+ ###
86
+ path = [u, v]
87
+ cnt = 0
88
+ accept = 0
89
+ while path:
90
+ cnt += 1 # Found a path
91
+ if cnt >= l:
92
+ accept = 1
93
+ break
94
+ # record edges along this graph
95
+ prev = u
96
+ for w in path:
97
+ if prev != w:
98
+ G2.remove_edge(prev, w)
99
+ prev = w
100
+ # path = shortest_path(G2, u, v, k) # ??? should "Cutoff" be k+1?
101
+ try:
102
+ path = nx.shortest_path(G2, u, v) # ??? should "Cutoff" be k+1?
103
+ except nx.NetworkXNoPath:
104
+ path = False
105
+ # No Other Paths
106
+ if accept == 0:
107
+ H.remove_edge(u, v)
108
+ deleted_some = True
109
+ if graphOK:
110
+ graphOK = False
111
+ # We looked through all edges and removed none of them.
112
+ # So, H is the maximal (k,l)-connected subgraph of G
113
+ if same_as_graph:
114
+ return (H, graphOK)
115
+ return H
116
+
117
+
118
+ @nx._dispatchable
119
+ def is_kl_connected(G, k, l, low_memory=False):
120
+ """Returns True if and only if `G` is locally `(k, l)`-connected.
121
+
122
+ A graph is locally `(k, l)`-connected if for each edge `(u, v)` in the
123
+ graph there are at least `l` edge-disjoint paths of length at most `k`
124
+ joining `u` to `v`.
125
+
126
+ Parameters
127
+ ----------
128
+ G : NetworkX graph
129
+ The graph to test for local `(k, l)`-connectedness.
130
+
131
+ k : integer
132
+ The maximum length of paths to consider. A higher number means a looser
133
+ connectivity requirement.
134
+
135
+ l : integer
136
+ The number of edge-disjoint paths. A higher number means a stricter
137
+ connectivity requirement.
138
+
139
+ low_memory : bool
140
+ If this is True, this function uses an algorithm that uses slightly
141
+ more time but less memory.
142
+
143
+ Returns
144
+ -------
145
+ bool
146
+ Whether the graph is locally `(k, l)`-connected subgraph.
147
+
148
+ See also
149
+ --------
150
+ kl_connected_subgraph
151
+
152
+ References
153
+ ----------
154
+ .. [1] Chung, Fan and Linyuan Lu. "The Small World Phenomenon in Hybrid
155
+ Power Law Graphs." *Complex Networks*. Springer Berlin Heidelberg,
156
+ 2004. 89--104.
157
+
158
+ """
159
+ graphOK = True
160
+ for edge in G.edges():
161
+ (u, v) = edge
162
+ # Get copy of graph needed for this search
163
+ if low_memory:
164
+ verts = {u, v}
165
+ for i in range(k):
166
+ [verts.update(G.neighbors(w)) for w in verts.copy()]
167
+ G2 = G.subgraph(verts)
168
+ else:
169
+ G2 = copy.deepcopy(G)
170
+ ###
171
+ path = [u, v]
172
+ cnt = 0
173
+ accept = 0
174
+ while path:
175
+ cnt += 1 # Found a path
176
+ if cnt >= l:
177
+ accept = 1
178
+ break
179
+ # record edges along this graph
180
+ prev = u
181
+ for w in path:
182
+ if w != prev:
183
+ G2.remove_edge(prev, w)
184
+ prev = w
185
+ # path = shortest_path(G2, u, v, k) # ??? should "Cutoff" be k+1?
186
+ try:
187
+ path = nx.shortest_path(G2, u, v) # ??? should "Cutoff" be k+1?
188
+ except nx.NetworkXNoPath:
189
+ path = False
190
+ # No Other Paths
191
+ if accept == 0:
192
+ graphOK = False
193
+ break
194
+ # return status
195
+ return graphOK
venv/lib/python3.10/site-packages/networkx/algorithms/matching.py ADDED
@@ -0,0 +1,1151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Functions for computing and verifying matchings in a graph."""
2
+ from collections import Counter
3
+ from itertools import combinations, repeat
4
+
5
+ import networkx as nx
6
+ from networkx.utils import not_implemented_for
7
+
8
+ __all__ = [
9
+ "is_matching",
10
+ "is_maximal_matching",
11
+ "is_perfect_matching",
12
+ "max_weight_matching",
13
+ "min_weight_matching",
14
+ "maximal_matching",
15
+ ]
16
+
17
+
18
+ @not_implemented_for("multigraph")
19
+ @not_implemented_for("directed")
20
+ @nx._dispatchable
21
+ def maximal_matching(G):
22
+ r"""Find a maximal matching in the graph.
23
+
24
+ A matching is a subset of edges in which no node occurs more than once.
25
+ A maximal matching cannot add more edges and still be a matching.
26
+
27
+ Parameters
28
+ ----------
29
+ G : NetworkX graph
30
+ Undirected graph
31
+
32
+ Returns
33
+ -------
34
+ matching : set
35
+ A maximal matching of the graph.
36
+
37
+ Examples
38
+ --------
39
+ >>> G = nx.Graph([(1, 2), (1, 3), (2, 3), (2, 4), (3, 5), (4, 5)])
40
+ >>> sorted(nx.maximal_matching(G))
41
+ [(1, 2), (3, 5)]
42
+
43
+ Notes
44
+ -----
45
+ The algorithm greedily selects a maximal matching M of the graph G
46
+ (i.e. no superset of M exists). It runs in $O(|E|)$ time.
47
+ """
48
+ matching = set()
49
+ nodes = set()
50
+ for edge in G.edges():
51
+ # If the edge isn't covered, add it to the matching
52
+ # then remove neighborhood of u and v from consideration.
53
+ u, v = edge
54
+ if u not in nodes and v not in nodes and u != v:
55
+ matching.add(edge)
56
+ nodes.update(edge)
57
+ return matching
58
+
59
+
60
+ def matching_dict_to_set(matching):
61
+ """Converts matching dict format to matching set format
62
+
63
+ Converts a dictionary representing a matching (as returned by
64
+ :func:`max_weight_matching`) to a set representing a matching (as
65
+ returned by :func:`maximal_matching`).
66
+
67
+ In the definition of maximal matching adopted by NetworkX,
68
+ self-loops are not allowed, so the provided dictionary is expected
69
+ to never have any mapping from a key to itself. However, the
70
+ dictionary is expected to have mirrored key/value pairs, for
71
+ example, key ``u`` with value ``v`` and key ``v`` with value ``u``.
72
+
73
+ """
74
+ edges = set()
75
+ for edge in matching.items():
76
+ u, v = edge
77
+ if (v, u) in edges or edge in edges:
78
+ continue
79
+ if u == v:
80
+ raise nx.NetworkXError(f"Selfloops cannot appear in matchings {edge}")
81
+ edges.add(edge)
82
+ return edges
83
+
84
+
85
+ @nx._dispatchable
86
+ def is_matching(G, matching):
87
+ """Return True if ``matching`` is a valid matching of ``G``
88
+
89
+ A *matching* in a graph is a set of edges in which no two distinct
90
+ edges share a common endpoint. Each node is incident to at most one
91
+ edge in the matching. The edges are said to be independent.
92
+
93
+ Parameters
94
+ ----------
95
+ G : NetworkX graph
96
+
97
+ matching : dict or set
98
+ A dictionary or set representing a matching. If a dictionary, it
99
+ must have ``matching[u] == v`` and ``matching[v] == u`` for each
100
+ edge ``(u, v)`` in the matching. If a set, it must have elements
101
+ of the form ``(u, v)``, where ``(u, v)`` is an edge in the
102
+ matching.
103
+
104
+ Returns
105
+ -------
106
+ bool
107
+ Whether the given set or dictionary represents a valid matching
108
+ in the graph.
109
+
110
+ Raises
111
+ ------
112
+ NetworkXError
113
+ If the proposed matching has an edge to a node not in G.
114
+ Or if the matching is not a collection of 2-tuple edges.
115
+
116
+ Examples
117
+ --------
118
+ >>> G = nx.Graph([(1, 2), (1, 3), (2, 3), (2, 4), (3, 5), (4, 5)])
119
+ >>> nx.is_maximal_matching(G, {1: 3, 2: 4}) # using dict to represent matching
120
+ True
121
+
122
+ >>> nx.is_matching(G, {(1, 3), (2, 4)}) # using set to represent matching
123
+ True
124
+
125
+ """
126
+ if isinstance(matching, dict):
127
+ matching = matching_dict_to_set(matching)
128
+
129
+ nodes = set()
130
+ for edge in matching:
131
+ if len(edge) != 2:
132
+ raise nx.NetworkXError(f"matching has non-2-tuple edge {edge}")
133
+ u, v = edge
134
+ if u not in G or v not in G:
135
+ raise nx.NetworkXError(f"matching contains edge {edge} with node not in G")
136
+ if u == v:
137
+ return False
138
+ if not G.has_edge(u, v):
139
+ return False
140
+ if u in nodes or v in nodes:
141
+ return False
142
+ nodes.update(edge)
143
+ return True
144
+
145
+
146
+ @nx._dispatchable
147
+ def is_maximal_matching(G, matching):
148
+ """Return True if ``matching`` is a maximal matching of ``G``
149
+
150
+ A *maximal matching* in a graph is a matching in which adding any
151
+ edge would cause the set to no longer be a valid matching.
152
+
153
+ Parameters
154
+ ----------
155
+ G : NetworkX graph
156
+
157
+ matching : dict or set
158
+ A dictionary or set representing a matching. If a dictionary, it
159
+ must have ``matching[u] == v`` and ``matching[v] == u`` for each
160
+ edge ``(u, v)`` in the matching. If a set, it must have elements
161
+ of the form ``(u, v)``, where ``(u, v)`` is an edge in the
162
+ matching.
163
+
164
+ Returns
165
+ -------
166
+ bool
167
+ Whether the given set or dictionary represents a valid maximal
168
+ matching in the graph.
169
+
170
+ Examples
171
+ --------
172
+ >>> G = nx.Graph([(1, 2), (1, 3), (2, 3), (3, 4), (3, 5)])
173
+ >>> nx.is_maximal_matching(G, {(1, 2), (3, 4)})
174
+ True
175
+
176
+ """
177
+ if isinstance(matching, dict):
178
+ matching = matching_dict_to_set(matching)
179
+ # If the given set is not a matching, then it is not a maximal matching.
180
+ edges = set()
181
+ nodes = set()
182
+ for edge in matching:
183
+ if len(edge) != 2:
184
+ raise nx.NetworkXError(f"matching has non-2-tuple edge {edge}")
185
+ u, v = edge
186
+ if u not in G or v not in G:
187
+ raise nx.NetworkXError(f"matching contains edge {edge} with node not in G")
188
+ if u == v:
189
+ return False
190
+ if not G.has_edge(u, v):
191
+ return False
192
+ if u in nodes or v in nodes:
193
+ return False
194
+ nodes.update(edge)
195
+ edges.add(edge)
196
+ edges.add((v, u))
197
+ # A matching is maximal if adding any new edge from G to it
198
+ # causes the resulting set to match some node twice.
199
+ # Be careful to check for adding selfloops
200
+ for u, v in G.edges:
201
+ if (u, v) not in edges:
202
+ # could add edge (u, v) to edges and have a bigger matching
203
+ if u not in nodes and v not in nodes and u != v:
204
+ return False
205
+ return True
206
+
207
+
208
+ @nx._dispatchable
209
+ def is_perfect_matching(G, matching):
210
+ """Return True if ``matching`` is a perfect matching for ``G``
211
+
212
+ A *perfect matching* in a graph is a matching in which exactly one edge
213
+ is incident upon each vertex.
214
+
215
+ Parameters
216
+ ----------
217
+ G : NetworkX graph
218
+
219
+ matching : dict or set
220
+ A dictionary or set representing a matching. If a dictionary, it
221
+ must have ``matching[u] == v`` and ``matching[v] == u`` for each
222
+ edge ``(u, v)`` in the matching. If a set, it must have elements
223
+ of the form ``(u, v)``, where ``(u, v)`` is an edge in the
224
+ matching.
225
+
226
+ Returns
227
+ -------
228
+ bool
229
+ Whether the given set or dictionary represents a valid perfect
230
+ matching in the graph.
231
+
232
+ Examples
233
+ --------
234
+ >>> G = nx.Graph([(1, 2), (1, 3), (2, 3), (2, 4), (3, 5), (4, 5), (4, 6)])
235
+ >>> my_match = {1: 2, 3: 5, 4: 6}
236
+ >>> nx.is_perfect_matching(G, my_match)
237
+ True
238
+
239
+ """
240
+ if isinstance(matching, dict):
241
+ matching = matching_dict_to_set(matching)
242
+
243
+ nodes = set()
244
+ for edge in matching:
245
+ if len(edge) != 2:
246
+ raise nx.NetworkXError(f"matching has non-2-tuple edge {edge}")
247
+ u, v = edge
248
+ if u not in G or v not in G:
249
+ raise nx.NetworkXError(f"matching contains edge {edge} with node not in G")
250
+ if u == v:
251
+ return False
252
+ if not G.has_edge(u, v):
253
+ return False
254
+ if u in nodes or v in nodes:
255
+ return False
256
+ nodes.update(edge)
257
+ return len(nodes) == len(G)
258
+
259
+
260
+ @not_implemented_for("multigraph")
261
+ @not_implemented_for("directed")
262
+ @nx._dispatchable(edge_attrs="weight")
263
+ def min_weight_matching(G, weight="weight"):
264
+ """Computing a minimum-weight maximal matching of G.
265
+
266
+ Use the maximum-weight algorithm with edge weights subtracted
267
+ from the maximum weight of all edges.
268
+
269
+ A matching is a subset of edges in which no node occurs more than once.
270
+ The weight of a matching is the sum of the weights of its edges.
271
+ A maximal matching cannot add more edges and still be a matching.
272
+ The cardinality of a matching is the number of matched edges.
273
+
274
+ This method replaces the edge weights with 1 plus the maximum edge weight
275
+ minus the original edge weight.
276
+
277
+ new_weight = (max_weight + 1) - edge_weight
278
+
279
+ then runs :func:`max_weight_matching` with the new weights.
280
+ The max weight matching with these new weights corresponds
281
+ to the min weight matching using the original weights.
282
+ Adding 1 to the max edge weight keeps all edge weights positive
283
+ and as integers if they started as integers.
284
+
285
+ You might worry that adding 1 to each weight would make the algorithm
286
+ favor matchings with more edges. But we use the parameter
287
+ `maxcardinality=True` in `max_weight_matching` to ensure that the
288
+ number of edges in the competing matchings are the same and thus
289
+ the optimum does not change due to changes in the number of edges.
290
+
291
+ Read the documentation of `max_weight_matching` for more information.
292
+
293
+ Parameters
294
+ ----------
295
+ G : NetworkX graph
296
+ Undirected graph
297
+
298
+ weight: string, optional (default='weight')
299
+ Edge data key corresponding to the edge weight.
300
+ If key not found, uses 1 as weight.
301
+
302
+ Returns
303
+ -------
304
+ matching : set
305
+ A minimal weight matching of the graph.
306
+
307
+ See Also
308
+ --------
309
+ max_weight_matching
310
+ """
311
+ if len(G.edges) == 0:
312
+ return max_weight_matching(G, maxcardinality=True, weight=weight)
313
+ G_edges = G.edges(data=weight, default=1)
314
+ max_weight = 1 + max(w for _, _, w in G_edges)
315
+ InvG = nx.Graph()
316
+ edges = ((u, v, max_weight - w) for u, v, w in G_edges)
317
+ InvG.add_weighted_edges_from(edges, weight=weight)
318
+ return max_weight_matching(InvG, maxcardinality=True, weight=weight)
319
+
320
+
321
+ @not_implemented_for("multigraph")
322
+ @not_implemented_for("directed")
323
+ @nx._dispatchable(edge_attrs="weight")
324
+ def max_weight_matching(G, maxcardinality=False, weight="weight"):
325
+ """Compute a maximum-weighted matching of G.
326
+
327
+ A matching is a subset of edges in which no node occurs more than once.
328
+ The weight of a matching is the sum of the weights of its edges.
329
+ A maximal matching cannot add more edges and still be a matching.
330
+ The cardinality of a matching is the number of matched edges.
331
+
332
+ Parameters
333
+ ----------
334
+ G : NetworkX graph
335
+ Undirected graph
336
+
337
+ maxcardinality: bool, optional (default=False)
338
+ If maxcardinality is True, compute the maximum-cardinality matching
339
+ with maximum weight among all maximum-cardinality matchings.
340
+
341
+ weight: string, optional (default='weight')
342
+ Edge data key corresponding to the edge weight.
343
+ If key not found, uses 1 as weight.
344
+
345
+
346
+ Returns
347
+ -------
348
+ matching : set
349
+ A maximal matching of the graph.
350
+
351
+ Examples
352
+ --------
353
+ >>> G = nx.Graph()
354
+ >>> edges = [(1, 2, 6), (1, 3, 2), (2, 3, 1), (2, 4, 7), (3, 5, 9), (4, 5, 3)]
355
+ >>> G.add_weighted_edges_from(edges)
356
+ >>> sorted(nx.max_weight_matching(G))
357
+ [(2, 4), (5, 3)]
358
+
359
+ Notes
360
+ -----
361
+ If G has edges with weight attributes the edge data are used as
362
+ weight values else the weights are assumed to be 1.
363
+
364
+ This function takes time O(number_of_nodes ** 3).
365
+
366
+ If all edge weights are integers, the algorithm uses only integer
367
+ computations. If floating point weights are used, the algorithm
368
+ could return a slightly suboptimal matching due to numeric
369
+ precision errors.
370
+
371
+ This method is based on the "blossom" method for finding augmenting
372
+ paths and the "primal-dual" method for finding a matching of maximum
373
+ weight, both methods invented by Jack Edmonds [1]_.
374
+
375
+ Bipartite graphs can also be matched using the functions present in
376
+ :mod:`networkx.algorithms.bipartite.matching`.
377
+
378
+ References
379
+ ----------
380
+ .. [1] "Efficient Algorithms for Finding Maximum Matching in Graphs",
381
+ Zvi Galil, ACM Computing Surveys, 1986.
382
+ """
383
+ #
384
+ # The algorithm is taken from "Efficient Algorithms for Finding Maximum
385
+ # Matching in Graphs" by Zvi Galil, ACM Computing Surveys, 1986.
386
+ # It is based on the "blossom" method for finding augmenting paths and
387
+ # the "primal-dual" method for finding a matching of maximum weight, both
388
+ # methods invented by Jack Edmonds.
389
+ #
390
+ # A C program for maximum weight matching by Ed Rothberg was used
391
+ # extensively to validate this new code.
392
+ #
393
+ # Many terms used in the code comments are explained in the paper
394
+ # by Galil. You will probably need the paper to make sense of this code.
395
+ #
396
+
397
+ class NoNode:
398
+ """Dummy value which is different from any node."""
399
+
400
+ class Blossom:
401
+ """Representation of a non-trivial blossom or sub-blossom."""
402
+
403
+ __slots__ = ["childs", "edges", "mybestedges"]
404
+
405
+ # b.childs is an ordered list of b's sub-blossoms, starting with
406
+ # the base and going round the blossom.
407
+
408
+ # b.edges is the list of b's connecting edges, such that
409
+ # b.edges[i] = (v, w) where v is a vertex in b.childs[i]
410
+ # and w is a vertex in b.childs[wrap(i+1)].
411
+
412
+ # If b is a top-level S-blossom,
413
+ # b.mybestedges is a list of least-slack edges to neighboring
414
+ # S-blossoms, or None if no such list has been computed yet.
415
+ # This is used for efficient computation of delta3.
416
+
417
+ # Generate the blossom's leaf vertices.
418
+ def leaves(self):
419
+ stack = [*self.childs]
420
+ while stack:
421
+ t = stack.pop()
422
+ if isinstance(t, Blossom):
423
+ stack.extend(t.childs)
424
+ else:
425
+ yield t
426
+
427
+ # Get a list of vertices.
428
+ gnodes = list(G)
429
+ if not gnodes:
430
+ return set() # don't bother with empty graphs
431
+
432
+ # Find the maximum edge weight.
433
+ maxweight = 0
434
+ allinteger = True
435
+ for i, j, d in G.edges(data=True):
436
+ wt = d.get(weight, 1)
437
+ if i != j and wt > maxweight:
438
+ maxweight = wt
439
+ allinteger = allinteger and (str(type(wt)).split("'")[1] in ("int", "long"))
440
+
441
+ # If v is a matched vertex, mate[v] is its partner vertex.
442
+ # If v is a single vertex, v does not occur as a key in mate.
443
+ # Initially all vertices are single; updated during augmentation.
444
+ mate = {}
445
+
446
+ # If b is a top-level blossom,
447
+ # label.get(b) is None if b is unlabeled (free),
448
+ # 1 if b is an S-blossom,
449
+ # 2 if b is a T-blossom.
450
+ # The label of a vertex is found by looking at the label of its top-level
451
+ # containing blossom.
452
+ # If v is a vertex inside a T-blossom, label[v] is 2 iff v is reachable
453
+ # from an S-vertex outside the blossom.
454
+ # Labels are assigned during a stage and reset after each augmentation.
455
+ label = {}
456
+
457
+ # If b is a labeled top-level blossom,
458
+ # labeledge[b] = (v, w) is the edge through which b obtained its label
459
+ # such that w is a vertex in b, or None if b's base vertex is single.
460
+ # If w is a vertex inside a T-blossom and label[w] == 2,
461
+ # labeledge[w] = (v, w) is an edge through which w is reachable from
462
+ # outside the blossom.
463
+ labeledge = {}
464
+
465
+ # If v is a vertex, inblossom[v] is the top-level blossom to which v
466
+ # belongs.
467
+ # If v is a top-level vertex, inblossom[v] == v since v is itself
468
+ # a (trivial) top-level blossom.
469
+ # Initially all vertices are top-level trivial blossoms.
470
+ inblossom = dict(zip(gnodes, gnodes))
471
+
472
+ # If b is a sub-blossom,
473
+ # blossomparent[b] is its immediate parent (sub-)blossom.
474
+ # If b is a top-level blossom, blossomparent[b] is None.
475
+ blossomparent = dict(zip(gnodes, repeat(None)))
476
+
477
+ # If b is a (sub-)blossom,
478
+ # blossombase[b] is its base VERTEX (i.e. recursive sub-blossom).
479
+ blossombase = dict(zip(gnodes, gnodes))
480
+
481
+ # If w is a free vertex (or an unreached vertex inside a T-blossom),
482
+ # bestedge[w] = (v, w) is the least-slack edge from an S-vertex,
483
+ # or None if there is no such edge.
484
+ # If b is a (possibly trivial) top-level S-blossom,
485
+ # bestedge[b] = (v, w) is the least-slack edge to a different S-blossom
486
+ # (v inside b), or None if there is no such edge.
487
+ # This is used for efficient computation of delta2 and delta3.
488
+ bestedge = {}
489
+
490
+ # If v is a vertex,
491
+ # dualvar[v] = 2 * u(v) where u(v) is the v's variable in the dual
492
+ # optimization problem (if all edge weights are integers, multiplication
493
+ # by two ensures that all values remain integers throughout the algorithm).
494
+ # Initially, u(v) = maxweight / 2.
495
+ dualvar = dict(zip(gnodes, repeat(maxweight)))
496
+
497
+ # If b is a non-trivial blossom,
498
+ # blossomdual[b] = z(b) where z(b) is b's variable in the dual
499
+ # optimization problem.
500
+ blossomdual = {}
501
+
502
+ # If (v, w) in allowedge or (w, v) in allowedg, then the edge
503
+ # (v, w) is known to have zero slack in the optimization problem;
504
+ # otherwise the edge may or may not have zero slack.
505
+ allowedge = {}
506
+
507
+ # Queue of newly discovered S-vertices.
508
+ queue = []
509
+
510
+ # Return 2 * slack of edge (v, w) (does not work inside blossoms).
511
+ def slack(v, w):
512
+ return dualvar[v] + dualvar[w] - 2 * G[v][w].get(weight, 1)
513
+
514
+ # Assign label t to the top-level blossom containing vertex w,
515
+ # coming through an edge from vertex v.
516
+ def assignLabel(w, t, v):
517
+ b = inblossom[w]
518
+ assert label.get(w) is None and label.get(b) is None
519
+ label[w] = label[b] = t
520
+ if v is not None:
521
+ labeledge[w] = labeledge[b] = (v, w)
522
+ else:
523
+ labeledge[w] = labeledge[b] = None
524
+ bestedge[w] = bestedge[b] = None
525
+ if t == 1:
526
+ # b became an S-vertex/blossom; add it(s vertices) to the queue.
527
+ if isinstance(b, Blossom):
528
+ queue.extend(b.leaves())
529
+ else:
530
+ queue.append(b)
531
+ elif t == 2:
532
+ # b became a T-vertex/blossom; assign label S to its mate.
533
+ # (If b is a non-trivial blossom, its base is the only vertex
534
+ # with an external mate.)
535
+ base = blossombase[b]
536
+ assignLabel(mate[base], 1, base)
537
+
538
+ # Trace back from vertices v and w to discover either a new blossom
539
+ # or an augmenting path. Return the base vertex of the new blossom,
540
+ # or NoNode if an augmenting path was found.
541
+ def scanBlossom(v, w):
542
+ # Trace back from v and w, placing breadcrumbs as we go.
543
+ path = []
544
+ base = NoNode
545
+ while v is not NoNode:
546
+ # Look for a breadcrumb in v's blossom or put a new breadcrumb.
547
+ b = inblossom[v]
548
+ if label[b] & 4:
549
+ base = blossombase[b]
550
+ break
551
+ assert label[b] == 1
552
+ path.append(b)
553
+ label[b] = 5
554
+ # Trace one step back.
555
+ if labeledge[b] is None:
556
+ # The base of blossom b is single; stop tracing this path.
557
+ assert blossombase[b] not in mate
558
+ v = NoNode
559
+ else:
560
+ assert labeledge[b][0] == mate[blossombase[b]]
561
+ v = labeledge[b][0]
562
+ b = inblossom[v]
563
+ assert label[b] == 2
564
+ # b is a T-blossom; trace one more step back.
565
+ v = labeledge[b][0]
566
+ # Swap v and w so that we alternate between both paths.
567
+ if w is not NoNode:
568
+ v, w = w, v
569
+ # Remove breadcrumbs.
570
+ for b in path:
571
+ label[b] = 1
572
+ # Return base vertex, if we found one.
573
+ return base
574
+
575
+ # Construct a new blossom with given base, through S-vertices v and w.
576
+ # Label the new blossom as S; set its dual variable to zero;
577
+ # relabel its T-vertices to S and add them to the queue.
578
+ def addBlossom(base, v, w):
579
+ bb = inblossom[base]
580
+ bv = inblossom[v]
581
+ bw = inblossom[w]
582
+ # Create blossom.
583
+ b = Blossom()
584
+ blossombase[b] = base
585
+ blossomparent[b] = None
586
+ blossomparent[bb] = b
587
+ # Make list of sub-blossoms and their interconnecting edge endpoints.
588
+ b.childs = path = []
589
+ b.edges = edgs = [(v, w)]
590
+ # Trace back from v to base.
591
+ while bv != bb:
592
+ # Add bv to the new blossom.
593
+ blossomparent[bv] = b
594
+ path.append(bv)
595
+ edgs.append(labeledge[bv])
596
+ assert label[bv] == 2 or (
597
+ label[bv] == 1 and labeledge[bv][0] == mate[blossombase[bv]]
598
+ )
599
+ # Trace one step back.
600
+ v = labeledge[bv][0]
601
+ bv = inblossom[v]
602
+ # Add base sub-blossom; reverse lists.
603
+ path.append(bb)
604
+ path.reverse()
605
+ edgs.reverse()
606
+ # Trace back from w to base.
607
+ while bw != bb:
608
+ # Add bw to the new blossom.
609
+ blossomparent[bw] = b
610
+ path.append(bw)
611
+ edgs.append((labeledge[bw][1], labeledge[bw][0]))
612
+ assert label[bw] == 2 or (
613
+ label[bw] == 1 and labeledge[bw][0] == mate[blossombase[bw]]
614
+ )
615
+ # Trace one step back.
616
+ w = labeledge[bw][0]
617
+ bw = inblossom[w]
618
+ # Set label to S.
619
+ assert label[bb] == 1
620
+ label[b] = 1
621
+ labeledge[b] = labeledge[bb]
622
+ # Set dual variable to zero.
623
+ blossomdual[b] = 0
624
+ # Relabel vertices.
625
+ for v in b.leaves():
626
+ if label[inblossom[v]] == 2:
627
+ # This T-vertex now turns into an S-vertex because it becomes
628
+ # part of an S-blossom; add it to the queue.
629
+ queue.append(v)
630
+ inblossom[v] = b
631
+ # Compute b.mybestedges.
632
+ bestedgeto = {}
633
+ for bv in path:
634
+ if isinstance(bv, Blossom):
635
+ if bv.mybestedges is not None:
636
+ # Walk this subblossom's least-slack edges.
637
+ nblist = bv.mybestedges
638
+ # The sub-blossom won't need this data again.
639
+ bv.mybestedges = None
640
+ else:
641
+ # This subblossom does not have a list of least-slack
642
+ # edges; get the information from the vertices.
643
+ nblist = [
644
+ (v, w) for v in bv.leaves() for w in G.neighbors(v) if v != w
645
+ ]
646
+ else:
647
+ nblist = [(bv, w) for w in G.neighbors(bv) if bv != w]
648
+ for k in nblist:
649
+ (i, j) = k
650
+ if inblossom[j] == b:
651
+ i, j = j, i
652
+ bj = inblossom[j]
653
+ if (
654
+ bj != b
655
+ and label.get(bj) == 1
656
+ and ((bj not in bestedgeto) or slack(i, j) < slack(*bestedgeto[bj]))
657
+ ):
658
+ bestedgeto[bj] = k
659
+ # Forget about least-slack edge of the subblossom.
660
+ bestedge[bv] = None
661
+ b.mybestedges = list(bestedgeto.values())
662
+ # Select bestedge[b].
663
+ mybestedge = None
664
+ bestedge[b] = None
665
+ for k in b.mybestedges:
666
+ kslack = slack(*k)
667
+ if mybestedge is None or kslack < mybestslack:
668
+ mybestedge = k
669
+ mybestslack = kslack
670
+ bestedge[b] = mybestedge
671
+
672
+ # Expand the given top-level blossom.
673
+ def expandBlossom(b, endstage):
674
+ # This is an obnoxiously complicated recursive function for the sake of
675
+ # a stack-transformation. So, we hack around the complexity by using
676
+ # a trampoline pattern. By yielding the arguments to each recursive
677
+ # call, we keep the actual callstack flat.
678
+
679
+ def _recurse(b, endstage):
680
+ # Convert sub-blossoms into top-level blossoms.
681
+ for s in b.childs:
682
+ blossomparent[s] = None
683
+ if isinstance(s, Blossom):
684
+ if endstage and blossomdual[s] == 0:
685
+ # Recursively expand this sub-blossom.
686
+ yield s
687
+ else:
688
+ for v in s.leaves():
689
+ inblossom[v] = s
690
+ else:
691
+ inblossom[s] = s
692
+ # If we expand a T-blossom during a stage, its sub-blossoms must be
693
+ # relabeled.
694
+ if (not endstage) and label.get(b) == 2:
695
+ # Start at the sub-blossom through which the expanding
696
+ # blossom obtained its label, and relabel sub-blossoms untili
697
+ # we reach the base.
698
+ # Figure out through which sub-blossom the expanding blossom
699
+ # obtained its label initially.
700
+ entrychild = inblossom[labeledge[b][1]]
701
+ # Decide in which direction we will go round the blossom.
702
+ j = b.childs.index(entrychild)
703
+ if j & 1:
704
+ # Start index is odd; go forward and wrap.
705
+ j -= len(b.childs)
706
+ jstep = 1
707
+ else:
708
+ # Start index is even; go backward.
709
+ jstep = -1
710
+ # Move along the blossom until we get to the base.
711
+ v, w = labeledge[b]
712
+ while j != 0:
713
+ # Relabel the T-sub-blossom.
714
+ if jstep == 1:
715
+ p, q = b.edges[j]
716
+ else:
717
+ q, p = b.edges[j - 1]
718
+ label[w] = None
719
+ label[q] = None
720
+ assignLabel(w, 2, v)
721
+ # Step to the next S-sub-blossom and note its forward edge.
722
+ allowedge[(p, q)] = allowedge[(q, p)] = True
723
+ j += jstep
724
+ if jstep == 1:
725
+ v, w = b.edges[j]
726
+ else:
727
+ w, v = b.edges[j - 1]
728
+ # Step to the next T-sub-blossom.
729
+ allowedge[(v, w)] = allowedge[(w, v)] = True
730
+ j += jstep
731
+ # Relabel the base T-sub-blossom WITHOUT stepping through to
732
+ # its mate (so don't call assignLabel).
733
+ bw = b.childs[j]
734
+ label[w] = label[bw] = 2
735
+ labeledge[w] = labeledge[bw] = (v, w)
736
+ bestedge[bw] = None
737
+ # Continue along the blossom until we get back to entrychild.
738
+ j += jstep
739
+ while b.childs[j] != entrychild:
740
+ # Examine the vertices of the sub-blossom to see whether
741
+ # it is reachable from a neighboring S-vertex outside the
742
+ # expanding blossom.
743
+ bv = b.childs[j]
744
+ if label.get(bv) == 1:
745
+ # This sub-blossom just got label S through one of its
746
+ # neighbors; leave it be.
747
+ j += jstep
748
+ continue
749
+ if isinstance(bv, Blossom):
750
+ for v in bv.leaves():
751
+ if label.get(v):
752
+ break
753
+ else:
754
+ v = bv
755
+ # If the sub-blossom contains a reachable vertex, assign
756
+ # label T to the sub-blossom.
757
+ if label.get(v):
758
+ assert label[v] == 2
759
+ assert inblossom[v] == bv
760
+ label[v] = None
761
+ label[mate[blossombase[bv]]] = None
762
+ assignLabel(v, 2, labeledge[v][0])
763
+ j += jstep
764
+ # Remove the expanded blossom entirely.
765
+ label.pop(b, None)
766
+ labeledge.pop(b, None)
767
+ bestedge.pop(b, None)
768
+ del blossomparent[b]
769
+ del blossombase[b]
770
+ del blossomdual[b]
771
+
772
+ # Now, we apply the trampoline pattern. We simulate a recursive
773
+ # callstack by maintaining a stack of generators, each yielding a
774
+ # sequence of function arguments. We grow the stack by appending a call
775
+ # to _recurse on each argument tuple, and shrink the stack whenever a
776
+ # generator is exhausted.
777
+ stack = [_recurse(b, endstage)]
778
+ while stack:
779
+ top = stack[-1]
780
+ for s in top:
781
+ stack.append(_recurse(s, endstage))
782
+ break
783
+ else:
784
+ stack.pop()
785
+
786
+ # Swap matched/unmatched edges over an alternating path through blossom b
787
+ # between vertex v and the base vertex. Keep blossom bookkeeping
788
+ # consistent.
789
+ def augmentBlossom(b, v):
790
+ # This is an obnoxiously complicated recursive function for the sake of
791
+ # a stack-transformation. So, we hack around the complexity by using
792
+ # a trampoline pattern. By yielding the arguments to each recursive
793
+ # call, we keep the actual callstack flat.
794
+
795
+ def _recurse(b, v):
796
+ # Bubble up through the blossom tree from vertex v to an immediate
797
+ # sub-blossom of b.
798
+ t = v
799
+ while blossomparent[t] != b:
800
+ t = blossomparent[t]
801
+ # Recursively deal with the first sub-blossom.
802
+ if isinstance(t, Blossom):
803
+ yield (t, v)
804
+ # Decide in which direction we will go round the blossom.
805
+ i = j = b.childs.index(t)
806
+ if i & 1:
807
+ # Start index is odd; go forward and wrap.
808
+ j -= len(b.childs)
809
+ jstep = 1
810
+ else:
811
+ # Start index is even; go backward.
812
+ jstep = -1
813
+ # Move along the blossom until we get to the base.
814
+ while j != 0:
815
+ # Step to the next sub-blossom and augment it recursively.
816
+ j += jstep
817
+ t = b.childs[j]
818
+ if jstep == 1:
819
+ w, x = b.edges[j]
820
+ else:
821
+ x, w = b.edges[j - 1]
822
+ if isinstance(t, Blossom):
823
+ yield (t, w)
824
+ # Step to the next sub-blossom and augment it recursively.
825
+ j += jstep
826
+ t = b.childs[j]
827
+ if isinstance(t, Blossom):
828
+ yield (t, x)
829
+ # Match the edge connecting those sub-blossoms.
830
+ mate[w] = x
831
+ mate[x] = w
832
+ # Rotate the list of sub-blossoms to put the new base at the front.
833
+ b.childs = b.childs[i:] + b.childs[:i]
834
+ b.edges = b.edges[i:] + b.edges[:i]
835
+ blossombase[b] = blossombase[b.childs[0]]
836
+ assert blossombase[b] == v
837
+
838
+ # Now, we apply the trampoline pattern. We simulate a recursive
839
+ # callstack by maintaining a stack of generators, each yielding a
840
+ # sequence of function arguments. We grow the stack by appending a call
841
+ # to _recurse on each argument tuple, and shrink the stack whenever a
842
+ # generator is exhausted.
843
+ stack = [_recurse(b, v)]
844
+ while stack:
845
+ top = stack[-1]
846
+ for args in top:
847
+ stack.append(_recurse(*args))
848
+ break
849
+ else:
850
+ stack.pop()
851
+
852
+ # Swap matched/unmatched edges over an alternating path between two
853
+ # single vertices. The augmenting path runs through S-vertices v and w.
854
+ def augmentMatching(v, w):
855
+ for s, j in ((v, w), (w, v)):
856
+ # Match vertex s to vertex j. Then trace back from s
857
+ # until we find a single vertex, swapping matched and unmatched
858
+ # edges as we go.
859
+ while 1:
860
+ bs = inblossom[s]
861
+ assert label[bs] == 1
862
+ assert (labeledge[bs] is None and blossombase[bs] not in mate) or (
863
+ labeledge[bs][0] == mate[blossombase[bs]]
864
+ )
865
+ # Augment through the S-blossom from s to base.
866
+ if isinstance(bs, Blossom):
867
+ augmentBlossom(bs, s)
868
+ # Update mate[s]
869
+ mate[s] = j
870
+ # Trace one step back.
871
+ if labeledge[bs] is None:
872
+ # Reached single vertex; stop.
873
+ break
874
+ t = labeledge[bs][0]
875
+ bt = inblossom[t]
876
+ assert label[bt] == 2
877
+ # Trace one more step back.
878
+ s, j = labeledge[bt]
879
+ # Augment through the T-blossom from j to base.
880
+ assert blossombase[bt] == t
881
+ if isinstance(bt, Blossom):
882
+ augmentBlossom(bt, j)
883
+ # Update mate[j]
884
+ mate[j] = s
885
+
886
+ # Verify that the optimum solution has been reached.
887
+ def verifyOptimum():
888
+ if maxcardinality:
889
+ # Vertices may have negative dual;
890
+ # find a constant non-negative number to add to all vertex duals.
891
+ vdualoffset = max(0, -min(dualvar.values()))
892
+ else:
893
+ vdualoffset = 0
894
+ # 0. all dual variables are non-negative
895
+ assert min(dualvar.values()) + vdualoffset >= 0
896
+ assert len(blossomdual) == 0 or min(blossomdual.values()) >= 0
897
+ # 0. all edges have non-negative slack and
898
+ # 1. all matched edges have zero slack;
899
+ for i, j, d in G.edges(data=True):
900
+ wt = d.get(weight, 1)
901
+ if i == j:
902
+ continue # ignore self-loops
903
+ s = dualvar[i] + dualvar[j] - 2 * wt
904
+ iblossoms = [i]
905
+ jblossoms = [j]
906
+ while blossomparent[iblossoms[-1]] is not None:
907
+ iblossoms.append(blossomparent[iblossoms[-1]])
908
+ while blossomparent[jblossoms[-1]] is not None:
909
+ jblossoms.append(blossomparent[jblossoms[-1]])
910
+ iblossoms.reverse()
911
+ jblossoms.reverse()
912
+ for bi, bj in zip(iblossoms, jblossoms):
913
+ if bi != bj:
914
+ break
915
+ s += 2 * blossomdual[bi]
916
+ assert s >= 0
917
+ if mate.get(i) == j or mate.get(j) == i:
918
+ assert mate[i] == j and mate[j] == i
919
+ assert s == 0
920
+ # 2. all single vertices have zero dual value;
921
+ for v in gnodes:
922
+ assert (v in mate) or dualvar[v] + vdualoffset == 0
923
+ # 3. all blossoms with positive dual value are full.
924
+ for b in blossomdual:
925
+ if blossomdual[b] > 0:
926
+ assert len(b.edges) % 2 == 1
927
+ for i, j in b.edges[1::2]:
928
+ assert mate[i] == j and mate[j] == i
929
+ # Ok.
930
+
931
+ # Main loop: continue until no further improvement is possible.
932
+ while 1:
933
+ # Each iteration of this loop is a "stage".
934
+ # A stage finds an augmenting path and uses that to improve
935
+ # the matching.
936
+
937
+ # Remove labels from top-level blossoms/vertices.
938
+ label.clear()
939
+ labeledge.clear()
940
+
941
+ # Forget all about least-slack edges.
942
+ bestedge.clear()
943
+ for b in blossomdual:
944
+ b.mybestedges = None
945
+
946
+ # Loss of labeling means that we can not be sure that currently
947
+ # allowable edges remain allowable throughout this stage.
948
+ allowedge.clear()
949
+
950
+ # Make queue empty.
951
+ queue[:] = []
952
+
953
+ # Label single blossoms/vertices with S and put them in the queue.
954
+ for v in gnodes:
955
+ if (v not in mate) and label.get(inblossom[v]) is None:
956
+ assignLabel(v, 1, None)
957
+
958
+ # Loop until we succeed in augmenting the matching.
959
+ augmented = 0
960
+ while 1:
961
+ # Each iteration of this loop is a "substage".
962
+ # A substage tries to find an augmenting path;
963
+ # if found, the path is used to improve the matching and
964
+ # the stage ends. If there is no augmenting path, the
965
+ # primal-dual method is used to pump some slack out of
966
+ # the dual variables.
967
+
968
+ # Continue labeling until all vertices which are reachable
969
+ # through an alternating path have got a label.
970
+ while queue and not augmented:
971
+ # Take an S vertex from the queue.
972
+ v = queue.pop()
973
+ assert label[inblossom[v]] == 1
974
+
975
+ # Scan its neighbors:
976
+ for w in G.neighbors(v):
977
+ if w == v:
978
+ continue # ignore self-loops
979
+ # w is a neighbor to v
980
+ bv = inblossom[v]
981
+ bw = inblossom[w]
982
+ if bv == bw:
983
+ # this edge is internal to a blossom; ignore it
984
+ continue
985
+ if (v, w) not in allowedge:
986
+ kslack = slack(v, w)
987
+ if kslack <= 0:
988
+ # edge k has zero slack => it is allowable
989
+ allowedge[(v, w)] = allowedge[(w, v)] = True
990
+ if (v, w) in allowedge:
991
+ if label.get(bw) is None:
992
+ # (C1) w is a free vertex;
993
+ # label w with T and label its mate with S (R12).
994
+ assignLabel(w, 2, v)
995
+ elif label.get(bw) == 1:
996
+ # (C2) w is an S-vertex (not in the same blossom);
997
+ # follow back-links to discover either an
998
+ # augmenting path or a new blossom.
999
+ base = scanBlossom(v, w)
1000
+ if base is not NoNode:
1001
+ # Found a new blossom; add it to the blossom
1002
+ # bookkeeping and turn it into an S-blossom.
1003
+ addBlossom(base, v, w)
1004
+ else:
1005
+ # Found an augmenting path; augment the
1006
+ # matching and end this stage.
1007
+ augmentMatching(v, w)
1008
+ augmented = 1
1009
+ break
1010
+ elif label.get(w) is None:
1011
+ # w is inside a T-blossom, but w itself has not
1012
+ # yet been reached from outside the blossom;
1013
+ # mark it as reached (we need this to relabel
1014
+ # during T-blossom expansion).
1015
+ assert label[bw] == 2
1016
+ label[w] = 2
1017
+ labeledge[w] = (v, w)
1018
+ elif label.get(bw) == 1:
1019
+ # keep track of the least-slack non-allowable edge to
1020
+ # a different S-blossom.
1021
+ if bestedge.get(bv) is None or kslack < slack(*bestedge[bv]):
1022
+ bestedge[bv] = (v, w)
1023
+ elif label.get(w) is None:
1024
+ # w is a free vertex (or an unreached vertex inside
1025
+ # a T-blossom) but we can not reach it yet;
1026
+ # keep track of the least-slack edge that reaches w.
1027
+ if bestedge.get(w) is None or kslack < slack(*bestedge[w]):
1028
+ bestedge[w] = (v, w)
1029
+
1030
+ if augmented:
1031
+ break
1032
+
1033
+ # There is no augmenting path under these constraints;
1034
+ # compute delta and reduce slack in the optimization problem.
1035
+ # (Note that our vertex dual variables, edge slacks and delta's
1036
+ # are pre-multiplied by two.)
1037
+ deltatype = -1
1038
+ delta = deltaedge = deltablossom = None
1039
+
1040
+ # Compute delta1: the minimum value of any vertex dual.
1041
+ if not maxcardinality:
1042
+ deltatype = 1
1043
+ delta = min(dualvar.values())
1044
+
1045
+ # Compute delta2: the minimum slack on any edge between
1046
+ # an S-vertex and a free vertex.
1047
+ for v in G.nodes():
1048
+ if label.get(inblossom[v]) is None and bestedge.get(v) is not None:
1049
+ d = slack(*bestedge[v])
1050
+ if deltatype == -1 or d < delta:
1051
+ delta = d
1052
+ deltatype = 2
1053
+ deltaedge = bestedge[v]
1054
+
1055
+ # Compute delta3: half the minimum slack on any edge between
1056
+ # a pair of S-blossoms.
1057
+ for b in blossomparent:
1058
+ if (
1059
+ blossomparent[b] is None
1060
+ and label.get(b) == 1
1061
+ and bestedge.get(b) is not None
1062
+ ):
1063
+ kslack = slack(*bestedge[b])
1064
+ if allinteger:
1065
+ assert (kslack % 2) == 0
1066
+ d = kslack // 2
1067
+ else:
1068
+ d = kslack / 2.0
1069
+ if deltatype == -1 or d < delta:
1070
+ delta = d
1071
+ deltatype = 3
1072
+ deltaedge = bestedge[b]
1073
+
1074
+ # Compute delta4: minimum z variable of any T-blossom.
1075
+ for b in blossomdual:
1076
+ if (
1077
+ blossomparent[b] is None
1078
+ and label.get(b) == 2
1079
+ and (deltatype == -1 or blossomdual[b] < delta)
1080
+ ):
1081
+ delta = blossomdual[b]
1082
+ deltatype = 4
1083
+ deltablossom = b
1084
+
1085
+ if deltatype == -1:
1086
+ # No further improvement possible; max-cardinality optimum
1087
+ # reached. Do a final delta update to make the optimum
1088
+ # verifiable.
1089
+ assert maxcardinality
1090
+ deltatype = 1
1091
+ delta = max(0, min(dualvar.values()))
1092
+
1093
+ # Update dual variables according to delta.
1094
+ for v in gnodes:
1095
+ if label.get(inblossom[v]) == 1:
1096
+ # S-vertex: 2*u = 2*u - 2*delta
1097
+ dualvar[v] -= delta
1098
+ elif label.get(inblossom[v]) == 2:
1099
+ # T-vertex: 2*u = 2*u + 2*delta
1100
+ dualvar[v] += delta
1101
+ for b in blossomdual:
1102
+ if blossomparent[b] is None:
1103
+ if label.get(b) == 1:
1104
+ # top-level S-blossom: z = z + 2*delta
1105
+ blossomdual[b] += delta
1106
+ elif label.get(b) == 2:
1107
+ # top-level T-blossom: z = z - 2*delta
1108
+ blossomdual[b] -= delta
1109
+
1110
+ # Take action at the point where minimum delta occurred.
1111
+ if deltatype == 1:
1112
+ # No further improvement possible; optimum reached.
1113
+ break
1114
+ elif deltatype == 2:
1115
+ # Use the least-slack edge to continue the search.
1116
+ (v, w) = deltaedge
1117
+ assert label[inblossom[v]] == 1
1118
+ allowedge[(v, w)] = allowedge[(w, v)] = True
1119
+ queue.append(v)
1120
+ elif deltatype == 3:
1121
+ # Use the least-slack edge to continue the search.
1122
+ (v, w) = deltaedge
1123
+ allowedge[(v, w)] = allowedge[(w, v)] = True
1124
+ assert label[inblossom[v]] == 1
1125
+ queue.append(v)
1126
+ elif deltatype == 4:
1127
+ # Expand the least-z blossom.
1128
+ expandBlossom(deltablossom, False)
1129
+
1130
+ # End of a this substage.
1131
+
1132
+ # Paranoia check that the matching is symmetric.
1133
+ for v in mate:
1134
+ assert mate[mate[v]] == v
1135
+
1136
+ # Stop when no more augmenting path can be found.
1137
+ if not augmented:
1138
+ break
1139
+
1140
+ # End of a stage; expand all S-blossoms which have zero dual.
1141
+ for b in list(blossomdual.keys()):
1142
+ if b not in blossomdual:
1143
+ continue # already expanded
1144
+ if blossomparent[b] is None and label.get(b) == 1 and blossomdual[b] == 0:
1145
+ expandBlossom(b, True)
1146
+
1147
+ # Verify that we reached the optimum solution (only for integer weights).
1148
+ if allinteger:
1149
+ verifyOptimum()
1150
+
1151
+ return matching_dict_to_set(mate)
venv/lib/python3.10/site-packages/networkx/algorithms/node_classification.py ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ This module provides the functions for node classification problem.
2
+
3
+ The functions in this module are not imported
4
+ into the top level `networkx` namespace.
5
+ You can access these functions by importing
6
+ the `networkx.algorithms.node_classification` modules,
7
+ then accessing the functions as attributes of `node_classification`.
8
+ For example:
9
+
10
+ >>> from networkx.algorithms import node_classification
11
+ >>> G = nx.path_graph(4)
12
+ >>> G.edges()
13
+ EdgeView([(0, 1), (1, 2), (2, 3)])
14
+ >>> G.nodes[0]["label"] = "A"
15
+ >>> G.nodes[3]["label"] = "B"
16
+ >>> node_classification.harmonic_function(G)
17
+ ['A', 'A', 'B', 'B']
18
+
19
+ References
20
+ ----------
21
+ Zhu, X., Ghahramani, Z., & Lafferty, J. (2003, August).
22
+ Semi-supervised learning using gaussian fields and harmonic functions.
23
+ In ICML (Vol. 3, pp. 912-919).
24
+ """
25
+ import networkx as nx
26
+
27
+ __all__ = ["harmonic_function", "local_and_global_consistency"]
28
+
29
+
30
+ @nx.utils.not_implemented_for("directed")
31
+ @nx._dispatchable(node_attrs="label_name")
32
+ def harmonic_function(G, max_iter=30, label_name="label"):
33
+ """Node classification by Harmonic function
34
+
35
+ Function for computing Harmonic function algorithm by Zhu et al.
36
+
37
+ Parameters
38
+ ----------
39
+ G : NetworkX Graph
40
+ max_iter : int
41
+ maximum number of iterations allowed
42
+ label_name : string
43
+ name of target labels to predict
44
+
45
+ Returns
46
+ -------
47
+ predicted : list
48
+ List of length ``len(G)`` with the predicted labels for each node.
49
+
50
+ Raises
51
+ ------
52
+ NetworkXError
53
+ If no nodes in `G` have attribute `label_name`.
54
+
55
+ Examples
56
+ --------
57
+ >>> from networkx.algorithms import node_classification
58
+ >>> G = nx.path_graph(4)
59
+ >>> G.nodes[0]["label"] = "A"
60
+ >>> G.nodes[3]["label"] = "B"
61
+ >>> G.nodes(data=True)
62
+ NodeDataView({0: {'label': 'A'}, 1: {}, 2: {}, 3: {'label': 'B'}})
63
+ >>> G.edges()
64
+ EdgeView([(0, 1), (1, 2), (2, 3)])
65
+ >>> predicted = node_classification.harmonic_function(G)
66
+ >>> predicted
67
+ ['A', 'A', 'B', 'B']
68
+
69
+ References
70
+ ----------
71
+ Zhu, X., Ghahramani, Z., & Lafferty, J. (2003, August).
72
+ Semi-supervised learning using gaussian fields and harmonic functions.
73
+ In ICML (Vol. 3, pp. 912-919).
74
+ """
75
+ import numpy as np
76
+ import scipy as sp
77
+
78
+ X = nx.to_scipy_sparse_array(G) # adjacency matrix
79
+ labels, label_dict = _get_label_info(G, label_name)
80
+
81
+ if labels.shape[0] == 0:
82
+ raise nx.NetworkXError(
83
+ f"No node on the input graph is labeled by '{label_name}'."
84
+ )
85
+
86
+ n_samples = X.shape[0]
87
+ n_classes = label_dict.shape[0]
88
+ F = np.zeros((n_samples, n_classes))
89
+
90
+ # Build propagation matrix
91
+ degrees = X.sum(axis=0)
92
+ degrees[degrees == 0] = 1 # Avoid division by 0
93
+ # TODO: csr_array
94
+ D = sp.sparse.csr_array(sp.sparse.diags((1.0 / degrees), offsets=0))
95
+ P = (D @ X).tolil()
96
+ P[labels[:, 0]] = 0 # labels[:, 0] indicates IDs of labeled nodes
97
+ # Build base matrix
98
+ B = np.zeros((n_samples, n_classes))
99
+ B[labels[:, 0], labels[:, 1]] = 1
100
+
101
+ for _ in range(max_iter):
102
+ F = (P @ F) + B
103
+
104
+ return label_dict[np.argmax(F, axis=1)].tolist()
105
+
106
+
107
+ @nx.utils.not_implemented_for("directed")
108
+ @nx._dispatchable(node_attrs="label_name")
109
+ def local_and_global_consistency(G, alpha=0.99, max_iter=30, label_name="label"):
110
+ """Node classification by Local and Global Consistency
111
+
112
+ Function for computing Local and global consistency algorithm by Zhou et al.
113
+
114
+ Parameters
115
+ ----------
116
+ G : NetworkX Graph
117
+ alpha : float
118
+ Clamping factor
119
+ max_iter : int
120
+ Maximum number of iterations allowed
121
+ label_name : string
122
+ Name of target labels to predict
123
+
124
+ Returns
125
+ -------
126
+ predicted : list
127
+ List of length ``len(G)`` with the predicted labels for each node.
128
+
129
+ Raises
130
+ ------
131
+ NetworkXError
132
+ If no nodes in `G` have attribute `label_name`.
133
+
134
+ Examples
135
+ --------
136
+ >>> from networkx.algorithms import node_classification
137
+ >>> G = nx.path_graph(4)
138
+ >>> G.nodes[0]["label"] = "A"
139
+ >>> G.nodes[3]["label"] = "B"
140
+ >>> G.nodes(data=True)
141
+ NodeDataView({0: {'label': 'A'}, 1: {}, 2: {}, 3: {'label': 'B'}})
142
+ >>> G.edges()
143
+ EdgeView([(0, 1), (1, 2), (2, 3)])
144
+ >>> predicted = node_classification.local_and_global_consistency(G)
145
+ >>> predicted
146
+ ['A', 'A', 'B', 'B']
147
+
148
+ References
149
+ ----------
150
+ Zhou, D., Bousquet, O., Lal, T. N., Weston, J., & Schölkopf, B. (2004).
151
+ Learning with local and global consistency.
152
+ Advances in neural information processing systems, 16(16), 321-328.
153
+ """
154
+ import numpy as np
155
+ import scipy as sp
156
+
157
+ X = nx.to_scipy_sparse_array(G) # adjacency matrix
158
+ labels, label_dict = _get_label_info(G, label_name)
159
+
160
+ if labels.shape[0] == 0:
161
+ raise nx.NetworkXError(
162
+ f"No node on the input graph is labeled by '{label_name}'."
163
+ )
164
+
165
+ n_samples = X.shape[0]
166
+ n_classes = label_dict.shape[0]
167
+ F = np.zeros((n_samples, n_classes))
168
+
169
+ # Build propagation matrix
170
+ degrees = X.sum(axis=0)
171
+ degrees[degrees == 0] = 1 # Avoid division by 0
172
+ # TODO: csr_array
173
+ D2 = np.sqrt(sp.sparse.csr_array(sp.sparse.diags((1.0 / degrees), offsets=0)))
174
+ P = alpha * ((D2 @ X) @ D2)
175
+ # Build base matrix
176
+ B = np.zeros((n_samples, n_classes))
177
+ B[labels[:, 0], labels[:, 1]] = 1 - alpha
178
+
179
+ for _ in range(max_iter):
180
+ F = (P @ F) + B
181
+
182
+ return label_dict[np.argmax(F, axis=1)].tolist()
183
+
184
+
185
+ def _get_label_info(G, label_name):
186
+ """Get and return information of labels from the input graph
187
+
188
+ Parameters
189
+ ----------
190
+ G : Network X graph
191
+ label_name : string
192
+ Name of the target label
193
+
194
+ Returns
195
+ -------
196
+ labels : numpy array, shape = [n_labeled_samples, 2]
197
+ Array of pairs of labeled node ID and label ID
198
+ label_dict : numpy array, shape = [n_classes]
199
+ Array of labels
200
+ i-th element contains the label corresponding label ID `i`
201
+ """
202
+ import numpy as np
203
+
204
+ labels = []
205
+ label_to_id = {}
206
+ lid = 0
207
+ for i, n in enumerate(G.nodes(data=True)):
208
+ if label_name in n[1]:
209
+ label = n[1][label_name]
210
+ if label not in label_to_id:
211
+ label_to_id[label] = lid
212
+ lid += 1
213
+ labels.append([i, label_to_id[label]])
214
+ labels = np.array(labels)
215
+ label_dict = np.array(
216
+ [label for label, _ in sorted(label_to_id.items(), key=lambda x: x[1])]
217
+ )
218
+ return (labels, label_dict)
venv/lib/python3.10/site-packages/networkx/algorithms/non_randomness.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ r""" Computation of graph non-randomness
2
+ """
3
+
4
+ import math
5
+
6
+ import networkx as nx
7
+ from networkx.utils import not_implemented_for
8
+
9
+ __all__ = ["non_randomness"]
10
+
11
+
12
+ @not_implemented_for("directed")
13
+ @not_implemented_for("multigraph")
14
+ @nx._dispatchable(edge_attrs="weight")
15
+ def non_randomness(G, k=None, weight="weight"):
16
+ """Compute the non-randomness of graph G.
17
+
18
+ The first returned value nr is the sum of non-randomness values of all
19
+ edges within the graph (where the non-randomness of an edge tends to be
20
+ small when the two nodes linked by that edge are from two different
21
+ communities).
22
+
23
+ The second computed value nr_rd is a relative measure that indicates
24
+ to what extent graph G is different from random graphs in terms
25
+ of probability. When it is close to 0, the graph tends to be more
26
+ likely generated by an Erdos Renyi model.
27
+
28
+ Parameters
29
+ ----------
30
+ G : NetworkX graph
31
+ Graph must be symmetric, connected, and without self-loops.
32
+
33
+ k : int
34
+ The number of communities in G.
35
+ If k is not set, the function will use a default community
36
+ detection algorithm to set it.
37
+
38
+ weight : string or None, optional (default=None)
39
+ The name of an edge attribute that holds the numerical value used
40
+ as a weight. If None, then each edge has weight 1, i.e., the graph is
41
+ binary.
42
+
43
+ Returns
44
+ -------
45
+ non-randomness : (float, float) tuple
46
+ Non-randomness, Relative non-randomness w.r.t.
47
+ Erdos Renyi random graphs.
48
+
49
+ Raises
50
+ ------
51
+ NetworkXException
52
+ if the input graph is not connected.
53
+ NetworkXError
54
+ if the input graph contains self-loops.
55
+
56
+ Examples
57
+ --------
58
+ >>> G = nx.karate_club_graph()
59
+ >>> nr, nr_rd = nx.non_randomness(G, 2)
60
+ >>> nr, nr_rd = nx.non_randomness(G, 2, "weight")
61
+
62
+ Notes
63
+ -----
64
+ This computes Eq. (4.4) and (4.5) in Ref. [1]_.
65
+
66
+ If a weight field is passed, this algorithm will use the eigenvalues
67
+ of the weighted adjacency matrix to compute Eq. (4.4) and (4.5).
68
+
69
+ References
70
+ ----------
71
+ .. [1] Xiaowei Ying and Xintao Wu,
72
+ On Randomness Measures for Social Networks,
73
+ SIAM International Conference on Data Mining. 2009
74
+ """
75
+ import numpy as np
76
+
77
+ if not nx.is_connected(G):
78
+ raise nx.NetworkXException("Non connected graph.")
79
+ if len(list(nx.selfloop_edges(G))) > 0:
80
+ raise nx.NetworkXError("Graph must not contain self-loops")
81
+
82
+ if k is None:
83
+ k = len(tuple(nx.community.label_propagation_communities(G)))
84
+
85
+ # eq. 4.4
86
+ eigenvalues = np.linalg.eigvals(nx.to_numpy_array(G, weight=weight))
87
+ nr = float(np.real(np.sum(eigenvalues[:k])))
88
+
89
+ n = G.number_of_nodes()
90
+ m = G.number_of_edges()
91
+ p = (2 * k * m) / (n * (n - k))
92
+
93
+ # eq. 4.5
94
+ nr_rd = (nr - ((n - 2 * k) * p + k)) / math.sqrt(2 * k * p * (1 - p))
95
+
96
+ return nr, nr_rd
venv/lib/python3.10/site-packages/networkx/algorithms/planarity.py ADDED
@@ -0,0 +1,1402 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import defaultdict
2
+
3
+ import networkx as nx
4
+
5
+ __all__ = ["check_planarity", "is_planar", "PlanarEmbedding"]
6
+
7
+
8
+ @nx._dispatchable
9
+ def is_planar(G):
10
+ """Returns True if and only if `G` is planar.
11
+
12
+ A graph is *planar* iff it can be drawn in a plane without
13
+ any edge intersections.
14
+
15
+ Parameters
16
+ ----------
17
+ G : NetworkX graph
18
+
19
+ Returns
20
+ -------
21
+ bool
22
+ Whether the graph is planar.
23
+
24
+ Examples
25
+ --------
26
+ >>> G = nx.Graph([(0, 1), (0, 2)])
27
+ >>> nx.is_planar(G)
28
+ True
29
+ >>> nx.is_planar(nx.complete_graph(5))
30
+ False
31
+
32
+ See Also
33
+ --------
34
+ check_planarity :
35
+ Check if graph is planar *and* return a `PlanarEmbedding` instance if True.
36
+ """
37
+
38
+ return check_planarity(G, counterexample=False)[0]
39
+
40
+
41
+ @nx._dispatchable(returns_graph=True)
42
+ def check_planarity(G, counterexample=False):
43
+ """Check if a graph is planar and return a counterexample or an embedding.
44
+
45
+ A graph is planar iff it can be drawn in a plane without
46
+ any edge intersections.
47
+
48
+ Parameters
49
+ ----------
50
+ G : NetworkX graph
51
+ counterexample : bool
52
+ A Kuratowski subgraph (to proof non planarity) is only returned if set
53
+ to true.
54
+
55
+ Returns
56
+ -------
57
+ (is_planar, certificate) : (bool, NetworkX graph) tuple
58
+ is_planar is true if the graph is planar.
59
+ If the graph is planar `certificate` is a PlanarEmbedding
60
+ otherwise it is a Kuratowski subgraph.
61
+
62
+ Examples
63
+ --------
64
+ >>> G = nx.Graph([(0, 1), (0, 2)])
65
+ >>> is_planar, P = nx.check_planarity(G)
66
+ >>> print(is_planar)
67
+ True
68
+
69
+ When `G` is planar, a `PlanarEmbedding` instance is returned:
70
+
71
+ >>> P.get_data()
72
+ {0: [1, 2], 1: [0], 2: [0]}
73
+
74
+ Notes
75
+ -----
76
+ A (combinatorial) embedding consists of cyclic orderings of the incident
77
+ edges at each vertex. Given such an embedding there are multiple approaches
78
+ discussed in literature to drawing the graph (subject to various
79
+ constraints, e.g. integer coordinates), see e.g. [2].
80
+
81
+ The planarity check algorithm and extraction of the combinatorial embedding
82
+ is based on the Left-Right Planarity Test [1].
83
+
84
+ A counterexample is only generated if the corresponding parameter is set,
85
+ because the complexity of the counterexample generation is higher.
86
+
87
+ See also
88
+ --------
89
+ is_planar :
90
+ Check for planarity without creating a `PlanarEmbedding` or counterexample.
91
+
92
+ References
93
+ ----------
94
+ .. [1] Ulrik Brandes:
95
+ The Left-Right Planarity Test
96
+ 2009
97
+ http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.217.9208
98
+ .. [2] Takao Nishizeki, Md Saidur Rahman:
99
+ Planar graph drawing
100
+ Lecture Notes Series on Computing: Volume 12
101
+ 2004
102
+ """
103
+
104
+ planarity_state = LRPlanarity(G)
105
+ embedding = planarity_state.lr_planarity()
106
+ if embedding is None:
107
+ # graph is not planar
108
+ if counterexample:
109
+ return False, get_counterexample(G)
110
+ else:
111
+ return False, None
112
+ else:
113
+ # graph is planar
114
+ return True, embedding
115
+
116
+
117
+ @nx._dispatchable(returns_graph=True)
118
+ def check_planarity_recursive(G, counterexample=False):
119
+ """Recursive version of :meth:`check_planarity`."""
120
+ planarity_state = LRPlanarity(G)
121
+ embedding = planarity_state.lr_planarity_recursive()
122
+ if embedding is None:
123
+ # graph is not planar
124
+ if counterexample:
125
+ return False, get_counterexample_recursive(G)
126
+ else:
127
+ return False, None
128
+ else:
129
+ # graph is planar
130
+ return True, embedding
131
+
132
+
133
+ @nx._dispatchable(returns_graph=True)
134
+ def get_counterexample(G):
135
+ """Obtains a Kuratowski subgraph.
136
+
137
+ Raises nx.NetworkXException if G is planar.
138
+
139
+ The function removes edges such that the graph is still not planar.
140
+ At some point the removal of any edge would make the graph planar.
141
+ This subgraph must be a Kuratowski subgraph.
142
+
143
+ Parameters
144
+ ----------
145
+ G : NetworkX graph
146
+
147
+ Returns
148
+ -------
149
+ subgraph : NetworkX graph
150
+ A Kuratowski subgraph that proves that G is not planar.
151
+
152
+ """
153
+ # copy graph
154
+ G = nx.Graph(G)
155
+
156
+ if check_planarity(G)[0]:
157
+ raise nx.NetworkXException("G is planar - no counter example.")
158
+
159
+ # find Kuratowski subgraph
160
+ subgraph = nx.Graph()
161
+ for u in G:
162
+ nbrs = list(G[u])
163
+ for v in nbrs:
164
+ G.remove_edge(u, v)
165
+ if check_planarity(G)[0]:
166
+ G.add_edge(u, v)
167
+ subgraph.add_edge(u, v)
168
+
169
+ return subgraph
170
+
171
+
172
+ @nx._dispatchable(returns_graph=True)
173
+ def get_counterexample_recursive(G):
174
+ """Recursive version of :meth:`get_counterexample`."""
175
+
176
+ # copy graph
177
+ G = nx.Graph(G)
178
+
179
+ if check_planarity_recursive(G)[0]:
180
+ raise nx.NetworkXException("G is planar - no counter example.")
181
+
182
+ # find Kuratowski subgraph
183
+ subgraph = nx.Graph()
184
+ for u in G:
185
+ nbrs = list(G[u])
186
+ for v in nbrs:
187
+ G.remove_edge(u, v)
188
+ if check_planarity_recursive(G)[0]:
189
+ G.add_edge(u, v)
190
+ subgraph.add_edge(u, v)
191
+
192
+ return subgraph
193
+
194
+
195
+ class Interval:
196
+ """Represents a set of return edges.
197
+
198
+ All return edges in an interval induce a same constraint on the contained
199
+ edges, which means that all edges must either have a left orientation or
200
+ all edges must have a right orientation.
201
+ """
202
+
203
+ def __init__(self, low=None, high=None):
204
+ self.low = low
205
+ self.high = high
206
+
207
+ def empty(self):
208
+ """Check if the interval is empty"""
209
+ return self.low is None and self.high is None
210
+
211
+ def copy(self):
212
+ """Returns a copy of this interval"""
213
+ return Interval(self.low, self.high)
214
+
215
+ def conflicting(self, b, planarity_state):
216
+ """Returns True if interval I conflicts with edge b"""
217
+ return (
218
+ not self.empty()
219
+ and planarity_state.lowpt[self.high] > planarity_state.lowpt[b]
220
+ )
221
+
222
+
223
+ class ConflictPair:
224
+ """Represents a different constraint between two intervals.
225
+
226
+ The edges in the left interval must have a different orientation than
227
+ the one in the right interval.
228
+ """
229
+
230
+ def __init__(self, left=Interval(), right=Interval()):
231
+ self.left = left
232
+ self.right = right
233
+
234
+ def swap(self):
235
+ """Swap left and right intervals"""
236
+ temp = self.left
237
+ self.left = self.right
238
+ self.right = temp
239
+
240
+ def lowest(self, planarity_state):
241
+ """Returns the lowest lowpoint of a conflict pair"""
242
+ if self.left.empty():
243
+ return planarity_state.lowpt[self.right.low]
244
+ if self.right.empty():
245
+ return planarity_state.lowpt[self.left.low]
246
+ return min(
247
+ planarity_state.lowpt[self.left.low], planarity_state.lowpt[self.right.low]
248
+ )
249
+
250
+
251
+ def top_of_stack(l):
252
+ """Returns the element on top of the stack."""
253
+ if not l:
254
+ return None
255
+ return l[-1]
256
+
257
+
258
+ class LRPlanarity:
259
+ """A class to maintain the state during planarity check."""
260
+
261
+ __slots__ = [
262
+ "G",
263
+ "roots",
264
+ "height",
265
+ "lowpt",
266
+ "lowpt2",
267
+ "nesting_depth",
268
+ "parent_edge",
269
+ "DG",
270
+ "adjs",
271
+ "ordered_adjs",
272
+ "ref",
273
+ "side",
274
+ "S",
275
+ "stack_bottom",
276
+ "lowpt_edge",
277
+ "left_ref",
278
+ "right_ref",
279
+ "embedding",
280
+ ]
281
+
282
+ def __init__(self, G):
283
+ # copy G without adding self-loops
284
+ self.G = nx.Graph()
285
+ self.G.add_nodes_from(G.nodes)
286
+ for e in G.edges:
287
+ if e[0] != e[1]:
288
+ self.G.add_edge(e[0], e[1])
289
+
290
+ self.roots = []
291
+
292
+ # distance from tree root
293
+ self.height = defaultdict(lambda: None)
294
+
295
+ self.lowpt = {} # height of lowest return point of an edge
296
+ self.lowpt2 = {} # height of second lowest return point
297
+ self.nesting_depth = {} # for nesting order
298
+
299
+ # None -> missing edge
300
+ self.parent_edge = defaultdict(lambda: None)
301
+
302
+ # oriented DFS graph
303
+ self.DG = nx.DiGraph()
304
+ self.DG.add_nodes_from(G.nodes)
305
+
306
+ self.adjs = {}
307
+ self.ordered_adjs = {}
308
+
309
+ self.ref = defaultdict(lambda: None)
310
+ self.side = defaultdict(lambda: 1)
311
+
312
+ # stack of conflict pairs
313
+ self.S = []
314
+ self.stack_bottom = {}
315
+ self.lowpt_edge = {}
316
+
317
+ self.left_ref = {}
318
+ self.right_ref = {}
319
+
320
+ self.embedding = PlanarEmbedding()
321
+
322
+ def lr_planarity(self):
323
+ """Execute the LR planarity test.
324
+
325
+ Returns
326
+ -------
327
+ embedding : dict
328
+ If the graph is planar an embedding is returned. Otherwise None.
329
+ """
330
+ if self.G.order() > 2 and self.G.size() > 3 * self.G.order() - 6:
331
+ # graph is not planar
332
+ return None
333
+
334
+ # make adjacency lists for dfs
335
+ for v in self.G:
336
+ self.adjs[v] = list(self.G[v])
337
+
338
+ # orientation of the graph by depth first search traversal
339
+ for v in self.G:
340
+ if self.height[v] is None:
341
+ self.height[v] = 0
342
+ self.roots.append(v)
343
+ self.dfs_orientation(v)
344
+
345
+ # Free no longer used variables
346
+ self.G = None
347
+ self.lowpt2 = None
348
+ self.adjs = None
349
+
350
+ # testing
351
+ for v in self.DG: # sort the adjacency lists by nesting depth
352
+ # note: this sorting leads to non linear time
353
+ self.ordered_adjs[v] = sorted(
354
+ self.DG[v], key=lambda x: self.nesting_depth[(v, x)]
355
+ )
356
+ for v in self.roots:
357
+ if not self.dfs_testing(v):
358
+ return None
359
+
360
+ # Free no longer used variables
361
+ self.height = None
362
+ self.lowpt = None
363
+ self.S = None
364
+ self.stack_bottom = None
365
+ self.lowpt_edge = None
366
+
367
+ for e in self.DG.edges:
368
+ self.nesting_depth[e] = self.sign(e) * self.nesting_depth[e]
369
+
370
+ self.embedding.add_nodes_from(self.DG.nodes)
371
+ for v in self.DG:
372
+ # sort the adjacency lists again
373
+ self.ordered_adjs[v] = sorted(
374
+ self.DG[v], key=lambda x: self.nesting_depth[(v, x)]
375
+ )
376
+ # initialize the embedding
377
+ previous_node = None
378
+ for w in self.ordered_adjs[v]:
379
+ self.embedding.add_half_edge(v, w, ccw=previous_node)
380
+ previous_node = w
381
+
382
+ # Free no longer used variables
383
+ self.DG = None
384
+ self.nesting_depth = None
385
+ self.ref = None
386
+
387
+ # compute the complete embedding
388
+ for v in self.roots:
389
+ self.dfs_embedding(v)
390
+
391
+ # Free no longer used variables
392
+ self.roots = None
393
+ self.parent_edge = None
394
+ self.ordered_adjs = None
395
+ self.left_ref = None
396
+ self.right_ref = None
397
+ self.side = None
398
+
399
+ return self.embedding
400
+
401
+ def lr_planarity_recursive(self):
402
+ """Recursive version of :meth:`lr_planarity`."""
403
+ if self.G.order() > 2 and self.G.size() > 3 * self.G.order() - 6:
404
+ # graph is not planar
405
+ return None
406
+
407
+ # orientation of the graph by depth first search traversal
408
+ for v in self.G:
409
+ if self.height[v] is None:
410
+ self.height[v] = 0
411
+ self.roots.append(v)
412
+ self.dfs_orientation_recursive(v)
413
+
414
+ # Free no longer used variable
415
+ self.G = None
416
+
417
+ # testing
418
+ for v in self.DG: # sort the adjacency lists by nesting depth
419
+ # note: this sorting leads to non linear time
420
+ self.ordered_adjs[v] = sorted(
421
+ self.DG[v], key=lambda x: self.nesting_depth[(v, x)]
422
+ )
423
+ for v in self.roots:
424
+ if not self.dfs_testing_recursive(v):
425
+ return None
426
+
427
+ for e in self.DG.edges:
428
+ self.nesting_depth[e] = self.sign_recursive(e) * self.nesting_depth[e]
429
+
430
+ self.embedding.add_nodes_from(self.DG.nodes)
431
+ for v in self.DG:
432
+ # sort the adjacency lists again
433
+ self.ordered_adjs[v] = sorted(
434
+ self.DG[v], key=lambda x: self.nesting_depth[(v, x)]
435
+ )
436
+ # initialize the embedding
437
+ previous_node = None
438
+ for w in self.ordered_adjs[v]:
439
+ self.embedding.add_half_edge(v, w, ccw=previous_node)
440
+ previous_node = w
441
+
442
+ # compute the complete embedding
443
+ for v in self.roots:
444
+ self.dfs_embedding_recursive(v)
445
+
446
+ return self.embedding
447
+
448
+ def dfs_orientation(self, v):
449
+ """Orient the graph by DFS, compute lowpoints and nesting order."""
450
+ # the recursion stack
451
+ dfs_stack = [v]
452
+ # index of next edge to handle in adjacency list of each node
453
+ ind = defaultdict(lambda: 0)
454
+ # boolean to indicate whether to skip the initial work for an edge
455
+ skip_init = defaultdict(lambda: False)
456
+
457
+ while dfs_stack:
458
+ v = dfs_stack.pop()
459
+ e = self.parent_edge[v]
460
+
461
+ for w in self.adjs[v][ind[v] :]:
462
+ vw = (v, w)
463
+
464
+ if not skip_init[vw]:
465
+ if (v, w) in self.DG.edges or (w, v) in self.DG.edges:
466
+ ind[v] += 1
467
+ continue # the edge was already oriented
468
+
469
+ self.DG.add_edge(v, w) # orient the edge
470
+
471
+ self.lowpt[vw] = self.height[v]
472
+ self.lowpt2[vw] = self.height[v]
473
+ if self.height[w] is None: # (v, w) is a tree edge
474
+ self.parent_edge[w] = vw
475
+ self.height[w] = self.height[v] + 1
476
+
477
+ dfs_stack.append(v) # revisit v after finishing w
478
+ dfs_stack.append(w) # visit w next
479
+ skip_init[vw] = True # don't redo this block
480
+ break # handle next node in dfs_stack (i.e. w)
481
+ else: # (v, w) is a back edge
482
+ self.lowpt[vw] = self.height[w]
483
+
484
+ # determine nesting graph
485
+ self.nesting_depth[vw] = 2 * self.lowpt[vw]
486
+ if self.lowpt2[vw] < self.height[v]: # chordal
487
+ self.nesting_depth[vw] += 1
488
+
489
+ # update lowpoints of parent edge e
490
+ if e is not None:
491
+ if self.lowpt[vw] < self.lowpt[e]:
492
+ self.lowpt2[e] = min(self.lowpt[e], self.lowpt2[vw])
493
+ self.lowpt[e] = self.lowpt[vw]
494
+ elif self.lowpt[vw] > self.lowpt[e]:
495
+ self.lowpt2[e] = min(self.lowpt2[e], self.lowpt[vw])
496
+ else:
497
+ self.lowpt2[e] = min(self.lowpt2[e], self.lowpt2[vw])
498
+
499
+ ind[v] += 1
500
+
501
+ def dfs_orientation_recursive(self, v):
502
+ """Recursive version of :meth:`dfs_orientation`."""
503
+ e = self.parent_edge[v]
504
+ for w in self.G[v]:
505
+ if (v, w) in self.DG.edges or (w, v) in self.DG.edges:
506
+ continue # the edge was already oriented
507
+ vw = (v, w)
508
+ self.DG.add_edge(v, w) # orient the edge
509
+
510
+ self.lowpt[vw] = self.height[v]
511
+ self.lowpt2[vw] = self.height[v]
512
+ if self.height[w] is None: # (v, w) is a tree edge
513
+ self.parent_edge[w] = vw
514
+ self.height[w] = self.height[v] + 1
515
+ self.dfs_orientation_recursive(w)
516
+ else: # (v, w) is a back edge
517
+ self.lowpt[vw] = self.height[w]
518
+
519
+ # determine nesting graph
520
+ self.nesting_depth[vw] = 2 * self.lowpt[vw]
521
+ if self.lowpt2[vw] < self.height[v]: # chordal
522
+ self.nesting_depth[vw] += 1
523
+
524
+ # update lowpoints of parent edge e
525
+ if e is not None:
526
+ if self.lowpt[vw] < self.lowpt[e]:
527
+ self.lowpt2[e] = min(self.lowpt[e], self.lowpt2[vw])
528
+ self.lowpt[e] = self.lowpt[vw]
529
+ elif self.lowpt[vw] > self.lowpt[e]:
530
+ self.lowpt2[e] = min(self.lowpt2[e], self.lowpt[vw])
531
+ else:
532
+ self.lowpt2[e] = min(self.lowpt2[e], self.lowpt2[vw])
533
+
534
+ def dfs_testing(self, v):
535
+ """Test for LR partition."""
536
+ # the recursion stack
537
+ dfs_stack = [v]
538
+ # index of next edge to handle in adjacency list of each node
539
+ ind = defaultdict(lambda: 0)
540
+ # boolean to indicate whether to skip the initial work for an edge
541
+ skip_init = defaultdict(lambda: False)
542
+
543
+ while dfs_stack:
544
+ v = dfs_stack.pop()
545
+ e = self.parent_edge[v]
546
+ # to indicate whether to skip the final block after the for loop
547
+ skip_final = False
548
+
549
+ for w in self.ordered_adjs[v][ind[v] :]:
550
+ ei = (v, w)
551
+
552
+ if not skip_init[ei]:
553
+ self.stack_bottom[ei] = top_of_stack(self.S)
554
+
555
+ if ei == self.parent_edge[w]: # tree edge
556
+ dfs_stack.append(v) # revisit v after finishing w
557
+ dfs_stack.append(w) # visit w next
558
+ skip_init[ei] = True # don't redo this block
559
+ skip_final = True # skip final work after breaking
560
+ break # handle next node in dfs_stack (i.e. w)
561
+ else: # back edge
562
+ self.lowpt_edge[ei] = ei
563
+ self.S.append(ConflictPair(right=Interval(ei, ei)))
564
+
565
+ # integrate new return edges
566
+ if self.lowpt[ei] < self.height[v]:
567
+ if w == self.ordered_adjs[v][0]: # e_i has return edge
568
+ self.lowpt_edge[e] = self.lowpt_edge[ei]
569
+ else: # add constraints of e_i
570
+ if not self.add_constraints(ei, e):
571
+ # graph is not planar
572
+ return False
573
+
574
+ ind[v] += 1
575
+
576
+ if not skip_final:
577
+ # remove back edges returning to parent
578
+ if e is not None: # v isn't root
579
+ self.remove_back_edges(e)
580
+
581
+ return True
582
+
583
+ def dfs_testing_recursive(self, v):
584
+ """Recursive version of :meth:`dfs_testing`."""
585
+ e = self.parent_edge[v]
586
+ for w in self.ordered_adjs[v]:
587
+ ei = (v, w)
588
+ self.stack_bottom[ei] = top_of_stack(self.S)
589
+ if ei == self.parent_edge[w]: # tree edge
590
+ if not self.dfs_testing_recursive(w):
591
+ return False
592
+ else: # back edge
593
+ self.lowpt_edge[ei] = ei
594
+ self.S.append(ConflictPair(right=Interval(ei, ei)))
595
+
596
+ # integrate new return edges
597
+ if self.lowpt[ei] < self.height[v]:
598
+ if w == self.ordered_adjs[v][0]: # e_i has return edge
599
+ self.lowpt_edge[e] = self.lowpt_edge[ei]
600
+ else: # add constraints of e_i
601
+ if not self.add_constraints(ei, e):
602
+ # graph is not planar
603
+ return False
604
+
605
+ # remove back edges returning to parent
606
+ if e is not None: # v isn't root
607
+ self.remove_back_edges(e)
608
+ return True
609
+
610
+ def add_constraints(self, ei, e):
611
+ P = ConflictPair()
612
+ # merge return edges of e_i into P.right
613
+ while True:
614
+ Q = self.S.pop()
615
+ if not Q.left.empty():
616
+ Q.swap()
617
+ if not Q.left.empty(): # not planar
618
+ return False
619
+ if self.lowpt[Q.right.low] > self.lowpt[e]:
620
+ # merge intervals
621
+ if P.right.empty(): # topmost interval
622
+ P.right = Q.right.copy()
623
+ else:
624
+ self.ref[P.right.low] = Q.right.high
625
+ P.right.low = Q.right.low
626
+ else: # align
627
+ self.ref[Q.right.low] = self.lowpt_edge[e]
628
+ if top_of_stack(self.S) == self.stack_bottom[ei]:
629
+ break
630
+ # merge conflicting return edges of e_1,...,e_i-1 into P.L
631
+ while top_of_stack(self.S).left.conflicting(ei, self) or top_of_stack(
632
+ self.S
633
+ ).right.conflicting(ei, self):
634
+ Q = self.S.pop()
635
+ if Q.right.conflicting(ei, self):
636
+ Q.swap()
637
+ if Q.right.conflicting(ei, self): # not planar
638
+ return False
639
+ # merge interval below lowpt(e_i) into P.R
640
+ self.ref[P.right.low] = Q.right.high
641
+ if Q.right.low is not None:
642
+ P.right.low = Q.right.low
643
+
644
+ if P.left.empty(): # topmost interval
645
+ P.left = Q.left.copy()
646
+ else:
647
+ self.ref[P.left.low] = Q.left.high
648
+ P.left.low = Q.left.low
649
+
650
+ if not (P.left.empty() and P.right.empty()):
651
+ self.S.append(P)
652
+ return True
653
+
654
+ def remove_back_edges(self, e):
655
+ u = e[0]
656
+ # trim back edges ending at parent u
657
+ # drop entire conflict pairs
658
+ while self.S and top_of_stack(self.S).lowest(self) == self.height[u]:
659
+ P = self.S.pop()
660
+ if P.left.low is not None:
661
+ self.side[P.left.low] = -1
662
+
663
+ if self.S: # one more conflict pair to consider
664
+ P = self.S.pop()
665
+ # trim left interval
666
+ while P.left.high is not None and P.left.high[1] == u:
667
+ P.left.high = self.ref[P.left.high]
668
+ if P.left.high is None and P.left.low is not None:
669
+ # just emptied
670
+ self.ref[P.left.low] = P.right.low
671
+ self.side[P.left.low] = -1
672
+ P.left.low = None
673
+ # trim right interval
674
+ while P.right.high is not None and P.right.high[1] == u:
675
+ P.right.high = self.ref[P.right.high]
676
+ if P.right.high is None and P.right.low is not None:
677
+ # just emptied
678
+ self.ref[P.right.low] = P.left.low
679
+ self.side[P.right.low] = -1
680
+ P.right.low = None
681
+ self.S.append(P)
682
+
683
+ # side of e is side of a highest return edge
684
+ if self.lowpt[e] < self.height[u]: # e has return edge
685
+ hl = top_of_stack(self.S).left.high
686
+ hr = top_of_stack(self.S).right.high
687
+
688
+ if hl is not None and (hr is None or self.lowpt[hl] > self.lowpt[hr]):
689
+ self.ref[e] = hl
690
+ else:
691
+ self.ref[e] = hr
692
+
693
+ def dfs_embedding(self, v):
694
+ """Completes the embedding."""
695
+ # the recursion stack
696
+ dfs_stack = [v]
697
+ # index of next edge to handle in adjacency list of each node
698
+ ind = defaultdict(lambda: 0)
699
+
700
+ while dfs_stack:
701
+ v = dfs_stack.pop()
702
+
703
+ for w in self.ordered_adjs[v][ind[v] :]:
704
+ ind[v] += 1
705
+ ei = (v, w)
706
+
707
+ if ei == self.parent_edge[w]: # tree edge
708
+ self.embedding.add_half_edge_first(w, v)
709
+ self.left_ref[v] = w
710
+ self.right_ref[v] = w
711
+
712
+ dfs_stack.append(v) # revisit v after finishing w
713
+ dfs_stack.append(w) # visit w next
714
+ break # handle next node in dfs_stack (i.e. w)
715
+ else: # back edge
716
+ if self.side[ei] == 1:
717
+ self.embedding.add_half_edge(w, v, ccw=self.right_ref[w])
718
+ else:
719
+ self.embedding.add_half_edge(w, v, cw=self.left_ref[w])
720
+ self.left_ref[w] = v
721
+
722
+ def dfs_embedding_recursive(self, v):
723
+ """Recursive version of :meth:`dfs_embedding`."""
724
+ for w in self.ordered_adjs[v]:
725
+ ei = (v, w)
726
+ if ei == self.parent_edge[w]: # tree edge
727
+ self.embedding.add_half_edge_first(w, v)
728
+ self.left_ref[v] = w
729
+ self.right_ref[v] = w
730
+ self.dfs_embedding_recursive(w)
731
+ else: # back edge
732
+ if self.side[ei] == 1:
733
+ # place v directly after right_ref[w] in embed. list of w
734
+ self.embedding.add_half_edge(w, v, ccw=self.right_ref[w])
735
+ else:
736
+ # place v directly before left_ref[w] in embed. list of w
737
+ self.embedding.add_half_edge(w, v, cw=self.left_ref[w])
738
+ self.left_ref[w] = v
739
+
740
+ def sign(self, e):
741
+ """Resolve the relative side of an edge to the absolute side."""
742
+ # the recursion stack
743
+ dfs_stack = [e]
744
+ # dict to remember reference edges
745
+ old_ref = defaultdict(lambda: None)
746
+
747
+ while dfs_stack:
748
+ e = dfs_stack.pop()
749
+
750
+ if self.ref[e] is not None:
751
+ dfs_stack.append(e) # revisit e after finishing self.ref[e]
752
+ dfs_stack.append(self.ref[e]) # visit self.ref[e] next
753
+ old_ref[e] = self.ref[e] # remember value of self.ref[e]
754
+ self.ref[e] = None
755
+ else:
756
+ self.side[e] *= self.side[old_ref[e]]
757
+
758
+ return self.side[e]
759
+
760
+ def sign_recursive(self, e):
761
+ """Recursive version of :meth:`sign`."""
762
+ if self.ref[e] is not None:
763
+ self.side[e] = self.side[e] * self.sign_recursive(self.ref[e])
764
+ self.ref[e] = None
765
+ return self.side[e]
766
+
767
+
768
+ class PlanarEmbedding(nx.DiGraph):
769
+ """Represents a planar graph with its planar embedding.
770
+
771
+ The planar embedding is given by a `combinatorial embedding
772
+ <https://en.wikipedia.org/wiki/Graph_embedding#Combinatorial_embedding>`_.
773
+
774
+ .. note:: `check_planarity` is the preferred way to check if a graph is planar.
775
+
776
+ **Neighbor ordering:**
777
+
778
+ In comparison to a usual graph structure, the embedding also stores the
779
+ order of all neighbors for every vertex.
780
+ The order of the neighbors can be given in clockwise (cw) direction or
781
+ counterclockwise (ccw) direction. This order is stored as edge attributes
782
+ in the underlying directed graph. For the edge (u, v) the edge attribute
783
+ 'cw' is set to the neighbor of u that follows immediately after v in
784
+ clockwise direction.
785
+
786
+ In order for a PlanarEmbedding to be valid it must fulfill multiple
787
+ conditions. It is possible to check if these conditions are fulfilled with
788
+ the method :meth:`check_structure`.
789
+ The conditions are:
790
+
791
+ * Edges must go in both directions (because the edge attributes differ)
792
+ * Every edge must have a 'cw' and 'ccw' attribute which corresponds to a
793
+ correct planar embedding.
794
+
795
+ As long as a PlanarEmbedding is invalid only the following methods should
796
+ be called:
797
+
798
+ * :meth:`add_half_edge`
799
+ * :meth:`connect_components`
800
+
801
+ Even though the graph is a subclass of nx.DiGraph, it can still be used
802
+ for algorithms that require undirected graphs, because the method
803
+ :meth:`is_directed` is overridden. This is possible, because a valid
804
+ PlanarGraph must have edges in both directions.
805
+
806
+ **Half edges:**
807
+
808
+ In methods like `add_half_edge` the term "half-edge" is used, which is
809
+ a term that is used in `doubly connected edge lists
810
+ <https://en.wikipedia.org/wiki/Doubly_connected_edge_list>`_. It is used
811
+ to emphasize that the edge is only in one direction and there exists
812
+ another half-edge in the opposite direction.
813
+ While conventional edges always have two faces (including outer face) next
814
+ to them, it is possible to assign each half-edge *exactly one* face.
815
+ For a half-edge (u, v) that is oriented such that u is below v then the
816
+ face that belongs to (u, v) is to the right of this half-edge.
817
+
818
+ See Also
819
+ --------
820
+ is_planar :
821
+ Preferred way to check if an existing graph is planar.
822
+
823
+ check_planarity :
824
+ A convenient way to create a `PlanarEmbedding`. If not planar,
825
+ it returns a subgraph that shows this.
826
+
827
+ Examples
828
+ --------
829
+
830
+ Create an embedding of a star graph (compare `nx.star_graph(3)`):
831
+
832
+ >>> G = nx.PlanarEmbedding()
833
+ >>> G.add_half_edge(0, 1)
834
+ >>> G.add_half_edge(0, 2, ccw=1)
835
+ >>> G.add_half_edge(0, 3, ccw=2)
836
+ >>> G.add_half_edge(1, 0)
837
+ >>> G.add_half_edge(2, 0)
838
+ >>> G.add_half_edge(3, 0)
839
+
840
+ Alternatively the same embedding can also be defined in counterclockwise
841
+ orientation. The following results in exactly the same PlanarEmbedding:
842
+
843
+ >>> G = nx.PlanarEmbedding()
844
+ >>> G.add_half_edge(0, 1)
845
+ >>> G.add_half_edge(0, 3, cw=1)
846
+ >>> G.add_half_edge(0, 2, cw=3)
847
+ >>> G.add_half_edge(1, 0)
848
+ >>> G.add_half_edge(2, 0)
849
+ >>> G.add_half_edge(3, 0)
850
+
851
+ After creating a graph, it is possible to validate that the PlanarEmbedding
852
+ object is correct:
853
+
854
+ >>> G.check_structure()
855
+
856
+ """
857
+
858
+ def __init__(self, incoming_graph_data=None, **attr):
859
+ super().__init__(incoming_graph_data=incoming_graph_data, **attr)
860
+ self.add_edge = self.__forbidden
861
+ self.add_edges_from = self.__forbidden
862
+ self.add_weighted_edges_from = self.__forbidden
863
+
864
+ def __forbidden(self, *args, **kwargs):
865
+ """Forbidden operation
866
+
867
+ Any edge additions to a PlanarEmbedding should be done using
868
+ method `add_half_edge`.
869
+ """
870
+ raise NotImplementedError(
871
+ "Use `add_half_edge` method to add edges to a PlanarEmbedding."
872
+ )
873
+
874
+ def get_data(self):
875
+ """Converts the adjacency structure into a better readable structure.
876
+
877
+ Returns
878
+ -------
879
+ embedding : dict
880
+ A dict mapping all nodes to a list of neighbors sorted in
881
+ clockwise order.
882
+
883
+ See Also
884
+ --------
885
+ set_data
886
+
887
+ """
888
+ embedding = {}
889
+ for v in self:
890
+ embedding[v] = list(self.neighbors_cw_order(v))
891
+ return embedding
892
+
893
+ def set_data(self, data):
894
+ """Inserts edges according to given sorted neighbor list.
895
+
896
+ The input format is the same as the output format of get_data().
897
+
898
+ Parameters
899
+ ----------
900
+ data : dict
901
+ A dict mapping all nodes to a list of neighbors sorted in
902
+ clockwise order.
903
+
904
+ See Also
905
+ --------
906
+ get_data
907
+
908
+ """
909
+ for v in data:
910
+ ref = None
911
+ for w in reversed(data[v]):
912
+ self.add_half_edge(v, w, cw=ref)
913
+ ref = w
914
+
915
+ def remove_node(self, n):
916
+ """Remove node n.
917
+
918
+ Removes the node n and all adjacent edges, updating the
919
+ PlanarEmbedding to account for any resulting edge removal.
920
+ Attempting to remove a non-existent node will raise an exception.
921
+
922
+ Parameters
923
+ ----------
924
+ n : node
925
+ A node in the graph
926
+
927
+ Raises
928
+ ------
929
+ NetworkXError
930
+ If n is not in the graph.
931
+
932
+ See Also
933
+ --------
934
+ remove_nodes_from
935
+
936
+ """
937
+ try:
938
+ for u in self._pred[n]:
939
+ succs_u = self._succ[u]
940
+ un_cw = succs_u[n]["cw"]
941
+ un_ccw = succs_u[n]["ccw"]
942
+ del succs_u[n]
943
+ del self._pred[u][n]
944
+ if n != un_cw:
945
+ succs_u[un_cw]["ccw"] = un_ccw
946
+ succs_u[un_ccw]["cw"] = un_cw
947
+ del self._node[n]
948
+ del self._succ[n]
949
+ del self._pred[n]
950
+ except KeyError as err: # NetworkXError if n not in self
951
+ raise nx.NetworkXError(
952
+ f"The node {n} is not in the planar embedding."
953
+ ) from err
954
+ nx._clear_cache(self)
955
+
956
+ def remove_nodes_from(self, nodes):
957
+ """Remove multiple nodes.
958
+
959
+ Parameters
960
+ ----------
961
+ nodes : iterable container
962
+ A container of nodes (list, dict, set, etc.). If a node
963
+ in the container is not in the graph it is silently ignored.
964
+
965
+ See Also
966
+ --------
967
+ remove_node
968
+
969
+ Notes
970
+ -----
971
+ When removing nodes from an iterator over the graph you are changing,
972
+ a `RuntimeError` will be raised with message:
973
+ `RuntimeError: dictionary changed size during iteration`. This
974
+ happens when the graph's underlying dictionary is modified during
975
+ iteration. To avoid this error, evaluate the iterator into a separate
976
+ object, e.g. by using `list(iterator_of_nodes)`, and pass this
977
+ object to `G.remove_nodes_from`.
978
+
979
+ """
980
+ for n in nodes:
981
+ if n in self._node:
982
+ self.remove_node(n)
983
+ # silently skip non-existing nodes
984
+
985
+ def neighbors_cw_order(self, v):
986
+ """Generator for the neighbors of v in clockwise order.
987
+
988
+ Parameters
989
+ ----------
990
+ v : node
991
+
992
+ Yields
993
+ ------
994
+ node
995
+
996
+ """
997
+ succs = self._succ[v]
998
+ if not succs:
999
+ # v has no neighbors
1000
+ return
1001
+ start_node = next(reversed(succs))
1002
+ yield start_node
1003
+ current_node = succs[start_node]["cw"]
1004
+ while start_node != current_node:
1005
+ yield current_node
1006
+ current_node = succs[current_node]["cw"]
1007
+
1008
+ def add_half_edge(self, start_node, end_node, *, cw=None, ccw=None):
1009
+ """Adds a half-edge from `start_node` to `end_node`.
1010
+
1011
+ If the half-edge is not the first one out of `start_node`, a reference
1012
+ node must be provided either in the clockwise (parameter `cw`) or in
1013
+ the counterclockwise (parameter `ccw`) direction. Only one of `cw`/`ccw`
1014
+ can be specified (or neither in the case of the first edge).
1015
+ Note that specifying a reference in the clockwise (`cw`) direction means
1016
+ inserting the new edge in the first counterclockwise position with
1017
+ respect to the reference (and vice-versa).
1018
+
1019
+ Parameters
1020
+ ----------
1021
+ start_node : node
1022
+ Start node of inserted edge.
1023
+ end_node : node
1024
+ End node of inserted edge.
1025
+ cw, ccw: node
1026
+ End node of reference edge.
1027
+ Omit or pass `None` if adding the first out-half-edge of `start_node`.
1028
+
1029
+
1030
+ Raises
1031
+ ------
1032
+ NetworkXException
1033
+ If the `cw` or `ccw` node is not a successor of `start_node`.
1034
+ If `start_node` has successors, but neither `cw` or `ccw` is provided.
1035
+ If both `cw` and `ccw` are specified.
1036
+
1037
+ See Also
1038
+ --------
1039
+ connect_components
1040
+ """
1041
+
1042
+ succs = self._succ.get(start_node)
1043
+ if succs:
1044
+ # there is already some edge out of start_node
1045
+ leftmost_nbr = next(reversed(self._succ[start_node]))
1046
+ if cw is not None:
1047
+ if cw not in succs:
1048
+ raise nx.NetworkXError("Invalid clockwise reference node.")
1049
+ if ccw is not None:
1050
+ raise nx.NetworkXError("Only one of cw/ccw can be specified.")
1051
+ ref_ccw = succs[cw]["ccw"]
1052
+ super().add_edge(start_node, end_node, cw=cw, ccw=ref_ccw)
1053
+ succs[ref_ccw]["cw"] = end_node
1054
+ succs[cw]["ccw"] = end_node
1055
+ # when (cw == leftmost_nbr), the newly added neighbor is
1056
+ # already at the end of dict self._succ[start_node] and
1057
+ # takes the place of the former leftmost_nbr
1058
+ move_leftmost_nbr_to_end = cw != leftmost_nbr
1059
+ elif ccw is not None:
1060
+ if ccw not in succs:
1061
+ raise nx.NetworkXError("Invalid counterclockwise reference node.")
1062
+ ref_cw = succs[ccw]["cw"]
1063
+ super().add_edge(start_node, end_node, cw=ref_cw, ccw=ccw)
1064
+ succs[ref_cw]["ccw"] = end_node
1065
+ succs[ccw]["cw"] = end_node
1066
+ move_leftmost_nbr_to_end = True
1067
+ else:
1068
+ raise nx.NetworkXError(
1069
+ "Node already has out-half-edge(s), either cw or ccw reference node required."
1070
+ )
1071
+ if move_leftmost_nbr_to_end:
1072
+ # LRPlanarity (via self.add_half_edge_first()) requires that
1073
+ # we keep track of the leftmost neighbor, which we accomplish
1074
+ # by keeping it as the last key in dict self._succ[start_node]
1075
+ succs[leftmost_nbr] = succs.pop(leftmost_nbr)
1076
+
1077
+ else:
1078
+ if cw is not None or ccw is not None:
1079
+ raise nx.NetworkXError("Invalid reference node.")
1080
+ # adding the first edge out of start_node
1081
+ super().add_edge(start_node, end_node, ccw=end_node, cw=end_node)
1082
+
1083
+ def check_structure(self):
1084
+ """Runs without exceptions if this object is valid.
1085
+
1086
+ Checks that the following properties are fulfilled:
1087
+
1088
+ * Edges go in both directions (because the edge attributes differ).
1089
+ * Every edge has a 'cw' and 'ccw' attribute which corresponds to a
1090
+ correct planar embedding.
1091
+
1092
+ Running this method verifies that the underlying Graph must be planar.
1093
+
1094
+ Raises
1095
+ ------
1096
+ NetworkXException
1097
+ This exception is raised with a short explanation if the
1098
+ PlanarEmbedding is invalid.
1099
+ """
1100
+ # Check fundamental structure
1101
+ for v in self:
1102
+ try:
1103
+ sorted_nbrs = set(self.neighbors_cw_order(v))
1104
+ except KeyError as err:
1105
+ msg = f"Bad embedding. Missing orientation for a neighbor of {v}"
1106
+ raise nx.NetworkXException(msg) from err
1107
+
1108
+ unsorted_nbrs = set(self[v])
1109
+ if sorted_nbrs != unsorted_nbrs:
1110
+ msg = "Bad embedding. Edge orientations not set correctly."
1111
+ raise nx.NetworkXException(msg)
1112
+ for w in self[v]:
1113
+ # Check if opposite half-edge exists
1114
+ if not self.has_edge(w, v):
1115
+ msg = "Bad embedding. Opposite half-edge is missing."
1116
+ raise nx.NetworkXException(msg)
1117
+
1118
+ # Check planarity
1119
+ counted_half_edges = set()
1120
+ for component in nx.connected_components(self):
1121
+ if len(component) == 1:
1122
+ # Don't need to check single node component
1123
+ continue
1124
+ num_nodes = len(component)
1125
+ num_half_edges = 0
1126
+ num_faces = 0
1127
+ for v in component:
1128
+ for w in self.neighbors_cw_order(v):
1129
+ num_half_edges += 1
1130
+ if (v, w) not in counted_half_edges:
1131
+ # We encountered a new face
1132
+ num_faces += 1
1133
+ # Mark all half-edges belonging to this face
1134
+ self.traverse_face(v, w, counted_half_edges)
1135
+ num_edges = num_half_edges // 2 # num_half_edges is even
1136
+ if num_nodes - num_edges + num_faces != 2:
1137
+ # The result does not match Euler's formula
1138
+ msg = "Bad embedding. The graph does not match Euler's formula"
1139
+ raise nx.NetworkXException(msg)
1140
+
1141
+ def add_half_edge_ccw(self, start_node, end_node, reference_neighbor):
1142
+ """Adds a half-edge from start_node to end_node.
1143
+
1144
+ The half-edge is added counter clockwise next to the existing half-edge
1145
+ (start_node, reference_neighbor).
1146
+
1147
+ Parameters
1148
+ ----------
1149
+ start_node : node
1150
+ Start node of inserted edge.
1151
+ end_node : node
1152
+ End node of inserted edge.
1153
+ reference_neighbor: node
1154
+ End node of reference edge.
1155
+
1156
+ Raises
1157
+ ------
1158
+ NetworkXException
1159
+ If the reference_neighbor does not exist.
1160
+
1161
+ See Also
1162
+ --------
1163
+ add_half_edge
1164
+ add_half_edge_cw
1165
+ connect_components
1166
+
1167
+ """
1168
+ self.add_half_edge(start_node, end_node, cw=reference_neighbor)
1169
+
1170
+ def add_half_edge_cw(self, start_node, end_node, reference_neighbor):
1171
+ """Adds a half-edge from start_node to end_node.
1172
+
1173
+ The half-edge is added clockwise next to the existing half-edge
1174
+ (start_node, reference_neighbor).
1175
+
1176
+ Parameters
1177
+ ----------
1178
+ start_node : node
1179
+ Start node of inserted edge.
1180
+ end_node : node
1181
+ End node of inserted edge.
1182
+ reference_neighbor: node
1183
+ End node of reference edge.
1184
+
1185
+ Raises
1186
+ ------
1187
+ NetworkXException
1188
+ If the reference_neighbor does not exist.
1189
+
1190
+ See Also
1191
+ --------
1192
+ add_half_edge
1193
+ add_half_edge_ccw
1194
+ connect_components
1195
+ """
1196
+ self.add_half_edge(start_node, end_node, ccw=reference_neighbor)
1197
+
1198
+ def remove_edge(self, u, v):
1199
+ """Remove the edge between u and v.
1200
+
1201
+ Parameters
1202
+ ----------
1203
+ u, v : nodes
1204
+ Remove the half-edges (u, v) and (v, u) and update the
1205
+ edge ordering around the removed edge.
1206
+
1207
+ Raises
1208
+ ------
1209
+ NetworkXError
1210
+ If there is not an edge between u and v.
1211
+
1212
+ See Also
1213
+ --------
1214
+ remove_edges_from : remove a collection of edges
1215
+ """
1216
+ try:
1217
+ succs_u = self._succ[u]
1218
+ succs_v = self._succ[v]
1219
+ uv_cw = succs_u[v]["cw"]
1220
+ uv_ccw = succs_u[v]["ccw"]
1221
+ vu_cw = succs_v[u]["cw"]
1222
+ vu_ccw = succs_v[u]["ccw"]
1223
+ del succs_u[v]
1224
+ del self._pred[v][u]
1225
+ del succs_v[u]
1226
+ del self._pred[u][v]
1227
+ if v != uv_cw:
1228
+ succs_u[uv_cw]["ccw"] = uv_ccw
1229
+ succs_u[uv_ccw]["cw"] = uv_cw
1230
+ if u != vu_cw:
1231
+ succs_v[vu_cw]["ccw"] = vu_ccw
1232
+ succs_v[vu_ccw]["cw"] = vu_cw
1233
+ except KeyError as err:
1234
+ raise nx.NetworkXError(
1235
+ f"The edge {u}-{v} is not in the planar embedding."
1236
+ ) from err
1237
+ nx._clear_cache(self)
1238
+
1239
+ def remove_edges_from(self, ebunch):
1240
+ """Remove all edges specified in ebunch.
1241
+
1242
+ Parameters
1243
+ ----------
1244
+ ebunch: list or container of edge tuples
1245
+ Each pair of half-edges between the nodes given in the tuples
1246
+ will be removed from the graph. The nodes can be passed as:
1247
+
1248
+ - 2-tuples (u, v) half-edges (u, v) and (v, u).
1249
+ - 3-tuples (u, v, k) where k is ignored.
1250
+
1251
+ See Also
1252
+ --------
1253
+ remove_edge : remove a single edge
1254
+
1255
+ Notes
1256
+ -----
1257
+ Will fail silently if an edge in ebunch is not in the graph.
1258
+
1259
+ Examples
1260
+ --------
1261
+ >>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
1262
+ >>> ebunch = [(1, 2), (2, 3)]
1263
+ >>> G.remove_edges_from(ebunch)
1264
+ """
1265
+ for e in ebunch:
1266
+ u, v = e[:2] # ignore edge data
1267
+ # assuming that the PlanarEmbedding is valid, if the half_edge
1268
+ # (u, v) is in the graph, then so is half_edge (v, u)
1269
+ if u in self._succ and v in self._succ[u]:
1270
+ self.remove_edge(u, v)
1271
+
1272
+ def connect_components(self, v, w):
1273
+ """Adds half-edges for (v, w) and (w, v) at some position.
1274
+
1275
+ This method should only be called if v and w are in different
1276
+ components, or it might break the embedding.
1277
+ This especially means that if `connect_components(v, w)`
1278
+ is called it is not allowed to call `connect_components(w, v)`
1279
+ afterwards. The neighbor orientations in both directions are
1280
+ all set correctly after the first call.
1281
+
1282
+ Parameters
1283
+ ----------
1284
+ v : node
1285
+ w : node
1286
+
1287
+ See Also
1288
+ --------
1289
+ add_half_edge
1290
+ """
1291
+ if v in self._succ and self._succ[v]:
1292
+ ref = next(reversed(self._succ[v]))
1293
+ else:
1294
+ ref = None
1295
+ self.add_half_edge(v, w, cw=ref)
1296
+ if w in self._succ and self._succ[w]:
1297
+ ref = next(reversed(self._succ[w]))
1298
+ else:
1299
+ ref = None
1300
+ self.add_half_edge(w, v, cw=ref)
1301
+
1302
+ def add_half_edge_first(self, start_node, end_node):
1303
+ """Add a half-edge and set end_node as start_node's leftmost neighbor.
1304
+
1305
+ The new edge is inserted counterclockwise with respect to the current
1306
+ leftmost neighbor, if there is one.
1307
+
1308
+ Parameters
1309
+ ----------
1310
+ start_node : node
1311
+ end_node : node
1312
+
1313
+ See Also
1314
+ --------
1315
+ add_half_edge
1316
+ connect_components
1317
+ """
1318
+ succs = self._succ.get(start_node)
1319
+ # the leftmost neighbor is the last entry in the
1320
+ # self._succ[start_node] dict
1321
+ leftmost_nbr = next(reversed(succs)) if succs else None
1322
+ self.add_half_edge(start_node, end_node, cw=leftmost_nbr)
1323
+
1324
+ def next_face_half_edge(self, v, w):
1325
+ """Returns the following half-edge left of a face.
1326
+
1327
+ Parameters
1328
+ ----------
1329
+ v : node
1330
+ w : node
1331
+
1332
+ Returns
1333
+ -------
1334
+ half-edge : tuple
1335
+ """
1336
+ new_node = self[w][v]["ccw"]
1337
+ return w, new_node
1338
+
1339
+ def traverse_face(self, v, w, mark_half_edges=None):
1340
+ """Returns nodes on the face that belong to the half-edge (v, w).
1341
+
1342
+ The face that is traversed lies to the right of the half-edge (in an
1343
+ orientation where v is below w).
1344
+
1345
+ Optionally it is possible to pass a set to which all encountered half
1346
+ edges are added. Before calling this method, this set must not include
1347
+ any half-edges that belong to the face.
1348
+
1349
+ Parameters
1350
+ ----------
1351
+ v : node
1352
+ Start node of half-edge.
1353
+ w : node
1354
+ End node of half-edge.
1355
+ mark_half_edges: set, optional
1356
+ Set to which all encountered half-edges are added.
1357
+
1358
+ Returns
1359
+ -------
1360
+ face : list
1361
+ A list of nodes that lie on this face.
1362
+ """
1363
+ if mark_half_edges is None:
1364
+ mark_half_edges = set()
1365
+
1366
+ face_nodes = [v]
1367
+ mark_half_edges.add((v, w))
1368
+ prev_node = v
1369
+ cur_node = w
1370
+ # Last half-edge is (incoming_node, v)
1371
+ incoming_node = self[v][w]["cw"]
1372
+
1373
+ while cur_node != v or prev_node != incoming_node:
1374
+ face_nodes.append(cur_node)
1375
+ prev_node, cur_node = self.next_face_half_edge(prev_node, cur_node)
1376
+ if (prev_node, cur_node) in mark_half_edges:
1377
+ raise nx.NetworkXException("Bad planar embedding. Impossible face.")
1378
+ mark_half_edges.add((prev_node, cur_node))
1379
+
1380
+ return face_nodes
1381
+
1382
+ def is_directed(self):
1383
+ """A valid PlanarEmbedding is undirected.
1384
+
1385
+ All reverse edges are contained, i.e. for every existing
1386
+ half-edge (v, w) the half-edge in the opposite direction (w, v) is also
1387
+ contained.
1388
+ """
1389
+ return False
1390
+
1391
+ def copy(self, as_view=False):
1392
+ if as_view is True:
1393
+ return nx.graphviews.generic_graph_view(self)
1394
+ G = self.__class__()
1395
+ G.graph.update(self.graph)
1396
+ G.add_nodes_from((n, d.copy()) for n, d in self._node.items())
1397
+ super(self.__class__, G).add_edges_from(
1398
+ (u, v, datadict.copy())
1399
+ for u, nbrs in self._adj.items()
1400
+ for v, datadict in nbrs.items()
1401
+ )
1402
+ return G
venv/lib/python3.10/site-packages/networkx/algorithms/polynomials.py ADDED
@@ -0,0 +1,305 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Provides algorithms supporting the computation of graph polynomials.
2
+
3
+ Graph polynomials are polynomial-valued graph invariants that encode a wide
4
+ variety of structural information. Examples include the Tutte polynomial,
5
+ chromatic polynomial, characteristic polynomial, and matching polynomial. An
6
+ extensive treatment is provided in [1]_.
7
+
8
+ For a simple example, the `~sympy.matrices.matrices.MatrixDeterminant.charpoly`
9
+ method can be used to compute the characteristic polynomial from the adjacency
10
+ matrix of a graph. Consider the complete graph ``K_4``:
11
+
12
+ >>> import sympy
13
+ >>> x = sympy.Symbol("x")
14
+ >>> G = nx.complete_graph(4)
15
+ >>> A = nx.adjacency_matrix(G)
16
+ >>> M = sympy.SparseMatrix(A.todense())
17
+ >>> M.charpoly(x).as_expr()
18
+ x**4 - 6*x**2 - 8*x - 3
19
+
20
+
21
+ .. [1] Y. Shi, M. Dehmer, X. Li, I. Gutman,
22
+ "Graph Polynomials"
23
+ """
24
+ from collections import deque
25
+
26
+ import networkx as nx
27
+ from networkx.utils import not_implemented_for
28
+
29
+ __all__ = ["tutte_polynomial", "chromatic_polynomial"]
30
+
31
+
32
+ @not_implemented_for("directed")
33
+ @nx._dispatchable
34
+ def tutte_polynomial(G):
35
+ r"""Returns the Tutte polynomial of `G`
36
+
37
+ This function computes the Tutte polynomial via an iterative version of
38
+ the deletion-contraction algorithm.
39
+
40
+ The Tutte polynomial `T_G(x, y)` is a fundamental graph polynomial invariant in
41
+ two variables. It encodes a wide array of information related to the
42
+ edge-connectivity of a graph; "Many problems about graphs can be reduced to
43
+ problems of finding and evaluating the Tutte polynomial at certain values" [1]_.
44
+ In fact, every deletion-contraction-expressible feature of a graph is a
45
+ specialization of the Tutte polynomial [2]_ (see Notes for examples).
46
+
47
+ There are several equivalent definitions; here are three:
48
+
49
+ Def 1 (rank-nullity expansion): For `G` an undirected graph, `n(G)` the
50
+ number of vertices of `G`, `E` the edge set of `G`, `V` the vertex set of
51
+ `G`, and `c(A)` the number of connected components of the graph with vertex
52
+ set `V` and edge set `A` [3]_:
53
+
54
+ .. math::
55
+
56
+ T_G(x, y) = \sum_{A \in E} (x-1)^{c(A) - c(E)} (y-1)^{c(A) + |A| - n(G)}
57
+
58
+ Def 2 (spanning tree expansion): Let `G` be an undirected graph, `T` a spanning
59
+ tree of `G`, and `E` the edge set of `G`. Let `E` have an arbitrary strict
60
+ linear order `L`. Let `B_e` be the unique minimal nonempty edge cut of
61
+ $E \setminus T \cup {e}$. An edge `e` is internally active with respect to
62
+ `T` and `L` if `e` is the least edge in `B_e` according to the linear order
63
+ `L`. The internal activity of `T` (denoted `i(T)`) is the number of edges
64
+ in $E \setminus T$ that are internally active with respect to `T` and `L`.
65
+ Let `P_e` be the unique path in $T \cup {e}$ whose source and target vertex
66
+ are the same. An edge `e` is externally active with respect to `T` and `L`
67
+ if `e` is the least edge in `P_e` according to the linear order `L`. The
68
+ external activity of `T` (denoted `e(T)`) is the number of edges in
69
+ $E \setminus T$ that are externally active with respect to `T` and `L`.
70
+ Then [4]_ [5]_:
71
+
72
+ .. math::
73
+
74
+ T_G(x, y) = \sum_{T \text{ a spanning tree of } G} x^{i(T)} y^{e(T)}
75
+
76
+ Def 3 (deletion-contraction recurrence): For `G` an undirected graph, `G-e`
77
+ the graph obtained from `G` by deleting edge `e`, `G/e` the graph obtained
78
+ from `G` by contracting edge `e`, `k(G)` the number of cut-edges of `G`,
79
+ and `l(G)` the number of self-loops of `G`:
80
+
81
+ .. math::
82
+ T_G(x, y) = \begin{cases}
83
+ x^{k(G)} y^{l(G)}, & \text{if all edges are cut-edges or self-loops} \\
84
+ T_{G-e}(x, y) + T_{G/e}(x, y), & \text{otherwise, for an arbitrary edge $e$ not a cut-edge or loop}
85
+ \end{cases}
86
+
87
+ Parameters
88
+ ----------
89
+ G : NetworkX graph
90
+
91
+ Returns
92
+ -------
93
+ instance of `sympy.core.add.Add`
94
+ A Sympy expression representing the Tutte polynomial for `G`.
95
+
96
+ Examples
97
+ --------
98
+ >>> C = nx.cycle_graph(5)
99
+ >>> nx.tutte_polynomial(C)
100
+ x**4 + x**3 + x**2 + x + y
101
+
102
+ >>> D = nx.diamond_graph()
103
+ >>> nx.tutte_polynomial(D)
104
+ x**3 + 2*x**2 + 2*x*y + x + y**2 + y
105
+
106
+ Notes
107
+ -----
108
+ Some specializations of the Tutte polynomial:
109
+
110
+ - `T_G(1, 1)` counts the number of spanning trees of `G`
111
+ - `T_G(1, 2)` counts the number of connected spanning subgraphs of `G`
112
+ - `T_G(2, 1)` counts the number of spanning forests in `G`
113
+ - `T_G(0, 2)` counts the number of strong orientations of `G`
114
+ - `T_G(2, 0)` counts the number of acyclic orientations of `G`
115
+
116
+ Edge contraction is defined and deletion-contraction is introduced in [6]_.
117
+ Combinatorial meaning of the coefficients is introduced in [7]_.
118
+ Universality, properties, and applications are discussed in [8]_.
119
+
120
+ Practically, up-front computation of the Tutte polynomial may be useful when
121
+ users wish to repeatedly calculate edge-connectivity-related information
122
+ about one or more graphs.
123
+
124
+ References
125
+ ----------
126
+ .. [1] M. Brandt,
127
+ "The Tutte Polynomial."
128
+ Talking About Combinatorial Objects Seminar, 2015
129
+ https://math.berkeley.edu/~brandtm/talks/tutte.pdf
130
+ .. [2] A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto,
131
+ "Computing the Tutte polynomial in vertex-exponential time"
132
+ 49th Annual IEEE Symposium on Foundations of Computer Science, 2008
133
+ https://ieeexplore.ieee.org/abstract/document/4691000
134
+ .. [3] Y. Shi, M. Dehmer, X. Li, I. Gutman,
135
+ "Graph Polynomials," p. 14
136
+ .. [4] Y. Shi, M. Dehmer, X. Li, I. Gutman,
137
+ "Graph Polynomials," p. 46
138
+ .. [5] A. Nešetril, J. Goodall,
139
+ "Graph invariants, homomorphisms, and the Tutte polynomial"
140
+ https://iuuk.mff.cuni.cz/~andrew/Tutte.pdf
141
+ .. [6] D. B. West,
142
+ "Introduction to Graph Theory," p. 84
143
+ .. [7] G. Coutinho,
144
+ "A brief introduction to the Tutte polynomial"
145
+ Structural Analysis of Complex Networks, 2011
146
+ https://homepages.dcc.ufmg.br/~gabriel/seminars/coutinho_tuttepolynomial_seminar.pdf
147
+ .. [8] J. A. Ellis-Monaghan, C. Merino,
148
+ "Graph polynomials and their applications I: The Tutte polynomial"
149
+ Structural Analysis of Complex Networks, 2011
150
+ https://arxiv.org/pdf/0803.3079.pdf
151
+ """
152
+ import sympy
153
+
154
+ x = sympy.Symbol("x")
155
+ y = sympy.Symbol("y")
156
+ stack = deque()
157
+ stack.append(nx.MultiGraph(G))
158
+
159
+ polynomial = 0
160
+ while stack:
161
+ G = stack.pop()
162
+ bridges = set(nx.bridges(G))
163
+
164
+ e = None
165
+ for i in G.edges:
166
+ if (i[0], i[1]) not in bridges and i[0] != i[1]:
167
+ e = i
168
+ break
169
+ if not e:
170
+ loops = list(nx.selfloop_edges(G, keys=True))
171
+ polynomial += x ** len(bridges) * y ** len(loops)
172
+ else:
173
+ # deletion-contraction
174
+ C = nx.contracted_edge(G, e, self_loops=True)
175
+ C.remove_edge(e[0], e[0])
176
+ G.remove_edge(*e)
177
+ stack.append(G)
178
+ stack.append(C)
179
+ return sympy.simplify(polynomial)
180
+
181
+
182
+ @not_implemented_for("directed")
183
+ @nx._dispatchable
184
+ def chromatic_polynomial(G):
185
+ r"""Returns the chromatic polynomial of `G`
186
+
187
+ This function computes the chromatic polynomial via an iterative version of
188
+ the deletion-contraction algorithm.
189
+
190
+ The chromatic polynomial `X_G(x)` is a fundamental graph polynomial
191
+ invariant in one variable. Evaluating `X_G(k)` for an natural number `k`
192
+ enumerates the proper k-colorings of `G`.
193
+
194
+ There are several equivalent definitions; here are three:
195
+
196
+ Def 1 (explicit formula):
197
+ For `G` an undirected graph, `c(G)` the number of connected components of
198
+ `G`, `E` the edge set of `G`, and `G(S)` the spanning subgraph of `G` with
199
+ edge set `S` [1]_:
200
+
201
+ .. math::
202
+
203
+ X_G(x) = \sum_{S \subseteq E} (-1)^{|S|} x^{c(G(S))}
204
+
205
+
206
+ Def 2 (interpolating polynomial):
207
+ For `G` an undirected graph, `n(G)` the number of vertices of `G`, `k_0 = 0`,
208
+ and `k_i` the number of distinct ways to color the vertices of `G` with `i`
209
+ unique colors (for `i` a natural number at most `n(G)`), `X_G(x)` is the
210
+ unique Lagrange interpolating polynomial of degree `n(G)` through the points
211
+ `(0, k_0), (1, k_1), \dots, (n(G), k_{n(G)})` [2]_.
212
+
213
+
214
+ Def 3 (chromatic recurrence):
215
+ For `G` an undirected graph, `G-e` the graph obtained from `G` by deleting
216
+ edge `e`, `G/e` the graph obtained from `G` by contracting edge `e`, `n(G)`
217
+ the number of vertices of `G`, and `e(G)` the number of edges of `G` [3]_:
218
+
219
+ .. math::
220
+ X_G(x) = \begin{cases}
221
+ x^{n(G)}, & \text{if $e(G)=0$} \\
222
+ X_{G-e}(x) - X_{G/e}(x), & \text{otherwise, for an arbitrary edge $e$}
223
+ \end{cases}
224
+
225
+ This formulation is also known as the Fundamental Reduction Theorem [4]_.
226
+
227
+
228
+ Parameters
229
+ ----------
230
+ G : NetworkX graph
231
+
232
+ Returns
233
+ -------
234
+ instance of `sympy.core.add.Add`
235
+ A Sympy expression representing the chromatic polynomial for `G`.
236
+
237
+ Examples
238
+ --------
239
+ >>> C = nx.cycle_graph(5)
240
+ >>> nx.chromatic_polynomial(C)
241
+ x**5 - 5*x**4 + 10*x**3 - 10*x**2 + 4*x
242
+
243
+ >>> G = nx.complete_graph(4)
244
+ >>> nx.chromatic_polynomial(G)
245
+ x**4 - 6*x**3 + 11*x**2 - 6*x
246
+
247
+ Notes
248
+ -----
249
+ Interpretation of the coefficients is discussed in [5]_. Several special
250
+ cases are listed in [2]_.
251
+
252
+ The chromatic polynomial is a specialization of the Tutte polynomial; in
253
+ particular, ``X_G(x) = T_G(x, 0)`` [6]_.
254
+
255
+ The chromatic polynomial may take negative arguments, though evaluations
256
+ may not have chromatic interpretations. For instance, ``X_G(-1)`` enumerates
257
+ the acyclic orientations of `G` [7]_.
258
+
259
+ References
260
+ ----------
261
+ .. [1] D. B. West,
262
+ "Introduction to Graph Theory," p. 222
263
+ .. [2] E. W. Weisstein
264
+ "Chromatic Polynomial"
265
+ MathWorld--A Wolfram Web Resource
266
+ https://mathworld.wolfram.com/ChromaticPolynomial.html
267
+ .. [3] D. B. West,
268
+ "Introduction to Graph Theory," p. 221
269
+ .. [4] J. Zhang, J. Goodall,
270
+ "An Introduction to Chromatic Polynomials"
271
+ https://math.mit.edu/~apost/courses/18.204_2018/Julie_Zhang_paper.pdf
272
+ .. [5] R. C. Read,
273
+ "An Introduction to Chromatic Polynomials"
274
+ Journal of Combinatorial Theory, 1968
275
+ https://math.berkeley.edu/~mrklug/ReadChromatic.pdf
276
+ .. [6] W. T. Tutte,
277
+ "Graph-polynomials"
278
+ Advances in Applied Mathematics, 2004
279
+ https://www.sciencedirect.com/science/article/pii/S0196885803000411
280
+ .. [7] R. P. Stanley,
281
+ "Acyclic orientations of graphs"
282
+ Discrete Mathematics, 2006
283
+ https://math.mit.edu/~rstan/pubs/pubfiles/18.pdf
284
+ """
285
+ import sympy
286
+
287
+ x = sympy.Symbol("x")
288
+ stack = deque()
289
+ stack.append(nx.MultiGraph(G, contraction_idx=0))
290
+
291
+ polynomial = 0
292
+ while stack:
293
+ G = stack.pop()
294
+ edges = list(G.edges)
295
+ if not edges:
296
+ polynomial += (-1) ** G.graph["contraction_idx"] * x ** len(G)
297
+ else:
298
+ e = edges[0]
299
+ C = nx.contracted_edge(G, e, self_loops=True)
300
+ C.graph["contraction_idx"] = G.graph["contraction_idx"] + 1
301
+ C.remove_edge(e[0], e[0])
302
+ G.remove_edge(*e)
303
+ stack.append(G)
304
+ stack.append(C)
305
+ return polynomial
venv/lib/python3.10/site-packages/networkx/algorithms/reciprocity.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Algorithms to calculate reciprocity in a directed graph."""
2
+ import networkx as nx
3
+ from networkx import NetworkXError
4
+
5
+ from ..utils import not_implemented_for
6
+
7
+ __all__ = ["reciprocity", "overall_reciprocity"]
8
+
9
+
10
+ @not_implemented_for("undirected", "multigraph")
11
+ @nx._dispatchable
12
+ def reciprocity(G, nodes=None):
13
+ r"""Compute the reciprocity in a directed graph.
14
+
15
+ The reciprocity of a directed graph is defined as the ratio
16
+ of the number of edges pointing in both directions to the total
17
+ number of edges in the graph.
18
+ Formally, $r = |{(u,v) \in G|(v,u) \in G}| / |{(u,v) \in G}|$.
19
+
20
+ The reciprocity of a single node u is defined similarly,
21
+ it is the ratio of the number of edges in both directions to
22
+ the total number of edges attached to node u.
23
+
24
+ Parameters
25
+ ----------
26
+ G : graph
27
+ A networkx directed graph
28
+ nodes : container of nodes, optional (default=whole graph)
29
+ Compute reciprocity for nodes in this container.
30
+
31
+ Returns
32
+ -------
33
+ out : dictionary
34
+ Reciprocity keyed by node label.
35
+
36
+ Notes
37
+ -----
38
+ The reciprocity is not defined for isolated nodes.
39
+ In such cases this function will return None.
40
+
41
+ """
42
+ # If `nodes` is not specified, calculate the reciprocity of the graph.
43
+ if nodes is None:
44
+ return overall_reciprocity(G)
45
+
46
+ # If `nodes` represents a single node in the graph, return only its
47
+ # reciprocity.
48
+ if nodes in G:
49
+ reciprocity = next(_reciprocity_iter(G, nodes))[1]
50
+ if reciprocity is None:
51
+ raise NetworkXError("Not defined for isolated nodes.")
52
+ else:
53
+ return reciprocity
54
+
55
+ # Otherwise, `nodes` represents an iterable of nodes, so return a
56
+ # dictionary mapping node to its reciprocity.
57
+ return dict(_reciprocity_iter(G, nodes))
58
+
59
+
60
+ def _reciprocity_iter(G, nodes):
61
+ """Return an iterator of (node, reciprocity)."""
62
+ n = G.nbunch_iter(nodes)
63
+ for node in n:
64
+ pred = set(G.predecessors(node))
65
+ succ = set(G.successors(node))
66
+ overlap = pred & succ
67
+ n_total = len(pred) + len(succ)
68
+
69
+ # Reciprocity is not defined for isolated nodes.
70
+ # Return None.
71
+ if n_total == 0:
72
+ yield (node, None)
73
+ else:
74
+ reciprocity = 2 * len(overlap) / n_total
75
+ yield (node, reciprocity)
76
+
77
+
78
+ @not_implemented_for("undirected", "multigraph")
79
+ @nx._dispatchable
80
+ def overall_reciprocity(G):
81
+ """Compute the reciprocity for the whole graph.
82
+
83
+ See the doc of reciprocity for the definition.
84
+
85
+ Parameters
86
+ ----------
87
+ G : graph
88
+ A networkx graph
89
+
90
+ """
91
+ n_all_edge = G.number_of_edges()
92
+ n_overlap_edge = (n_all_edge - G.to_undirected().number_of_edges()) * 2
93
+
94
+ if n_all_edge == 0:
95
+ raise NetworkXError("Not defined for empty graphs")
96
+
97
+ return n_overlap_edge / n_all_edge
venv/lib/python3.10/site-packages/networkx/algorithms/regular.py ADDED
@@ -0,0 +1,214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Functions for computing and verifying regular graphs."""
2
+ import networkx as nx
3
+ from networkx.utils import not_implemented_for
4
+
5
+ __all__ = ["is_regular", "is_k_regular", "k_factor"]
6
+
7
+
8
+ @nx._dispatchable
9
+ def is_regular(G):
10
+ """Determines whether the graph ``G`` is a regular graph.
11
+
12
+ A regular graph is a graph where each vertex has the same degree. A
13
+ regular digraph is a graph where the indegree and outdegree of each
14
+ vertex are equal.
15
+
16
+ Parameters
17
+ ----------
18
+ G : NetworkX graph
19
+
20
+ Returns
21
+ -------
22
+ bool
23
+ Whether the given graph or digraph is regular.
24
+
25
+ Examples
26
+ --------
27
+ >>> G = nx.DiGraph([(1, 2), (2, 3), (3, 4), (4, 1)])
28
+ >>> nx.is_regular(G)
29
+ True
30
+
31
+ """
32
+ if len(G) == 0:
33
+ raise nx.NetworkXPointlessConcept("Graph has no nodes.")
34
+ n1 = nx.utils.arbitrary_element(G)
35
+ if not G.is_directed():
36
+ d1 = G.degree(n1)
37
+ return all(d1 == d for _, d in G.degree)
38
+ else:
39
+ d_in = G.in_degree(n1)
40
+ in_regular = all(d_in == d for _, d in G.in_degree)
41
+ d_out = G.out_degree(n1)
42
+ out_regular = all(d_out == d for _, d in G.out_degree)
43
+ return in_regular and out_regular
44
+
45
+
46
+ @not_implemented_for("directed")
47
+ @nx._dispatchable
48
+ def is_k_regular(G, k):
49
+ """Determines whether the graph ``G`` is a k-regular graph.
50
+
51
+ A k-regular graph is a graph where each vertex has degree k.
52
+
53
+ Parameters
54
+ ----------
55
+ G : NetworkX graph
56
+
57
+ Returns
58
+ -------
59
+ bool
60
+ Whether the given graph is k-regular.
61
+
62
+ Examples
63
+ --------
64
+ >>> G = nx.Graph([(1, 2), (2, 3), (3, 4), (4, 1)])
65
+ >>> nx.is_k_regular(G, k=3)
66
+ False
67
+
68
+ """
69
+ return all(d == k for n, d in G.degree)
70
+
71
+
72
+ @not_implemented_for("directed")
73
+ @not_implemented_for("multigraph")
74
+ @nx._dispatchable(preserve_edge_attrs=True, returns_graph=True)
75
+ def k_factor(G, k, matching_weight="weight"):
76
+ """Compute a k-factor of G
77
+
78
+ A k-factor of a graph is a spanning k-regular subgraph.
79
+ A spanning k-regular subgraph of G is a subgraph that contains
80
+ each vertex of G and a subset of the edges of G such that each
81
+ vertex has degree k.
82
+
83
+ Parameters
84
+ ----------
85
+ G : NetworkX graph
86
+ Undirected graph
87
+
88
+ matching_weight: string, optional (default='weight')
89
+ Edge data key corresponding to the edge weight.
90
+ Used for finding the max-weighted perfect matching.
91
+ If key not found, uses 1 as weight.
92
+
93
+ Returns
94
+ -------
95
+ G2 : NetworkX graph
96
+ A k-factor of G
97
+
98
+ Examples
99
+ --------
100
+ >>> G = nx.Graph([(1, 2), (2, 3), (3, 4), (4, 1)])
101
+ >>> G2 = nx.k_factor(G, k=1)
102
+ >>> G2.edges()
103
+ EdgeView([(1, 2), (3, 4)])
104
+
105
+ References
106
+ ----------
107
+ .. [1] "An algorithm for computing simple k-factors.",
108
+ Meijer, Henk, Yurai Núñez-Rodríguez, and David Rappaport,
109
+ Information processing letters, 2009.
110
+ """
111
+
112
+ from networkx.algorithms.matching import is_perfect_matching, max_weight_matching
113
+
114
+ class LargeKGadget:
115
+ def __init__(self, k, degree, node, g):
116
+ self.original = node
117
+ self.g = g
118
+ self.k = k
119
+ self.degree = degree
120
+
121
+ self.outer_vertices = [(node, x) for x in range(degree)]
122
+ self.core_vertices = [(node, x + degree) for x in range(degree - k)]
123
+
124
+ def replace_node(self):
125
+ adj_view = self.g[self.original]
126
+ neighbors = list(adj_view.keys())
127
+ edge_attrs = list(adj_view.values())
128
+ for outer, neighbor, edge_attrs in zip(
129
+ self.outer_vertices, neighbors, edge_attrs
130
+ ):
131
+ self.g.add_edge(outer, neighbor, **edge_attrs)
132
+ for core in self.core_vertices:
133
+ for outer in self.outer_vertices:
134
+ self.g.add_edge(core, outer)
135
+ self.g.remove_node(self.original)
136
+
137
+ def restore_node(self):
138
+ self.g.add_node(self.original)
139
+ for outer in self.outer_vertices:
140
+ adj_view = self.g[outer]
141
+ for neighbor, edge_attrs in list(adj_view.items()):
142
+ if neighbor not in self.core_vertices:
143
+ self.g.add_edge(self.original, neighbor, **edge_attrs)
144
+ break
145
+ g.remove_nodes_from(self.outer_vertices)
146
+ g.remove_nodes_from(self.core_vertices)
147
+
148
+ class SmallKGadget:
149
+ def __init__(self, k, degree, node, g):
150
+ self.original = node
151
+ self.k = k
152
+ self.degree = degree
153
+ self.g = g
154
+
155
+ self.outer_vertices = [(node, x) for x in range(degree)]
156
+ self.inner_vertices = [(node, x + degree) for x in range(degree)]
157
+ self.core_vertices = [(node, x + 2 * degree) for x in range(k)]
158
+
159
+ def replace_node(self):
160
+ adj_view = self.g[self.original]
161
+ for outer, inner, (neighbor, edge_attrs) in zip(
162
+ self.outer_vertices, self.inner_vertices, list(adj_view.items())
163
+ ):
164
+ self.g.add_edge(outer, inner)
165
+ self.g.add_edge(outer, neighbor, **edge_attrs)
166
+ for core in self.core_vertices:
167
+ for inner in self.inner_vertices:
168
+ self.g.add_edge(core, inner)
169
+ self.g.remove_node(self.original)
170
+
171
+ def restore_node(self):
172
+ self.g.add_node(self.original)
173
+ for outer in self.outer_vertices:
174
+ adj_view = self.g[outer]
175
+ for neighbor, edge_attrs in adj_view.items():
176
+ if neighbor not in self.core_vertices:
177
+ self.g.add_edge(self.original, neighbor, **edge_attrs)
178
+ break
179
+ self.g.remove_nodes_from(self.outer_vertices)
180
+ self.g.remove_nodes_from(self.inner_vertices)
181
+ self.g.remove_nodes_from(self.core_vertices)
182
+
183
+ # Step 1
184
+ if any(d < k for _, d in G.degree):
185
+ raise nx.NetworkXUnfeasible("Graph contains a vertex with degree less than k")
186
+ g = G.copy()
187
+
188
+ # Step 2
189
+ gadgets = []
190
+ for node, degree in list(g.degree):
191
+ if k < degree / 2.0:
192
+ gadget = SmallKGadget(k, degree, node, g)
193
+ else:
194
+ gadget = LargeKGadget(k, degree, node, g)
195
+ gadget.replace_node()
196
+ gadgets.append(gadget)
197
+
198
+ # Step 3
199
+ matching = max_weight_matching(g, maxcardinality=True, weight=matching_weight)
200
+
201
+ # Step 4
202
+ if not is_perfect_matching(g, matching):
203
+ raise nx.NetworkXUnfeasible(
204
+ "Cannot find k-factor because no perfect matching exists"
205
+ )
206
+
207
+ for edge in g.edges():
208
+ if edge not in matching and (edge[1], edge[0]) not in matching:
209
+ g.remove_edge(edge[0], edge[1])
210
+
211
+ for gadget in gadgets:
212
+ gadget.restore_node()
213
+
214
+ return g
venv/lib/python3.10/site-packages/networkx/algorithms/similarity.py ADDED
@@ -0,0 +1,1777 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Functions measuring similarity using graph edit distance.
2
+
3
+ The graph edit distance is the number of edge/node changes needed
4
+ to make two graphs isomorphic.
5
+
6
+ The default algorithm/implementation is sub-optimal for some graphs.
7
+ The problem of finding the exact Graph Edit Distance (GED) is NP-hard
8
+ so it is often slow. If the simple interface `graph_edit_distance`
9
+ takes too long for your graph, try `optimize_graph_edit_distance`
10
+ and/or `optimize_edit_paths`.
11
+
12
+ At the same time, I encourage capable people to investigate
13
+ alternative GED algorithms, in order to improve the choices available.
14
+ """
15
+
16
+ import math
17
+ import time
18
+ import warnings
19
+ from dataclasses import dataclass
20
+ from itertools import product
21
+
22
+ import networkx as nx
23
+ from networkx.utils import np_random_state
24
+
25
+ __all__ = [
26
+ "graph_edit_distance",
27
+ "optimal_edit_paths",
28
+ "optimize_graph_edit_distance",
29
+ "optimize_edit_paths",
30
+ "simrank_similarity",
31
+ "panther_similarity",
32
+ "generate_random_paths",
33
+ ]
34
+
35
+
36
+ def debug_print(*args, **kwargs):
37
+ print(*args, **kwargs)
38
+
39
+
40
+ @nx._dispatchable(
41
+ graphs={"G1": 0, "G2": 1}, preserve_edge_attrs=True, preserve_node_attrs=True
42
+ )
43
+ def graph_edit_distance(
44
+ G1,
45
+ G2,
46
+ node_match=None,
47
+ edge_match=None,
48
+ node_subst_cost=None,
49
+ node_del_cost=None,
50
+ node_ins_cost=None,
51
+ edge_subst_cost=None,
52
+ edge_del_cost=None,
53
+ edge_ins_cost=None,
54
+ roots=None,
55
+ upper_bound=None,
56
+ timeout=None,
57
+ ):
58
+ """Returns GED (graph edit distance) between graphs G1 and G2.
59
+
60
+ Graph edit distance is a graph similarity measure analogous to
61
+ Levenshtein distance for strings. It is defined as minimum cost
62
+ of edit path (sequence of node and edge edit operations)
63
+ transforming graph G1 to graph isomorphic to G2.
64
+
65
+ Parameters
66
+ ----------
67
+ G1, G2: graphs
68
+ The two graphs G1 and G2 must be of the same type.
69
+
70
+ node_match : callable
71
+ A function that returns True if node n1 in G1 and n2 in G2
72
+ should be considered equal during matching.
73
+
74
+ The function will be called like
75
+
76
+ node_match(G1.nodes[n1], G2.nodes[n2]).
77
+
78
+ That is, the function will receive the node attribute
79
+ dictionaries for n1 and n2 as inputs.
80
+
81
+ Ignored if node_subst_cost is specified. If neither
82
+ node_match nor node_subst_cost are specified then node
83
+ attributes are not considered.
84
+
85
+ edge_match : callable
86
+ A function that returns True if the edge attribute dictionaries
87
+ for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should
88
+ be considered equal during matching.
89
+
90
+ The function will be called like
91
+
92
+ edge_match(G1[u1][v1], G2[u2][v2]).
93
+
94
+ That is, the function will receive the edge attribute
95
+ dictionaries of the edges under consideration.
96
+
97
+ Ignored if edge_subst_cost is specified. If neither
98
+ edge_match nor edge_subst_cost are specified then edge
99
+ attributes are not considered.
100
+
101
+ node_subst_cost, node_del_cost, node_ins_cost : callable
102
+ Functions that return the costs of node substitution, node
103
+ deletion, and node insertion, respectively.
104
+
105
+ The functions will be called like
106
+
107
+ node_subst_cost(G1.nodes[n1], G2.nodes[n2]),
108
+ node_del_cost(G1.nodes[n1]),
109
+ node_ins_cost(G2.nodes[n2]).
110
+
111
+ That is, the functions will receive the node attribute
112
+ dictionaries as inputs. The functions are expected to return
113
+ positive numeric values.
114
+
115
+ Function node_subst_cost overrides node_match if specified.
116
+ If neither node_match nor node_subst_cost are specified then
117
+ default node substitution cost of 0 is used (node attributes
118
+ are not considered during matching).
119
+
120
+ If node_del_cost is not specified then default node deletion
121
+ cost of 1 is used. If node_ins_cost is not specified then
122
+ default node insertion cost of 1 is used.
123
+
124
+ edge_subst_cost, edge_del_cost, edge_ins_cost : callable
125
+ Functions that return the costs of edge substitution, edge
126
+ deletion, and edge insertion, respectively.
127
+
128
+ The functions will be called like
129
+
130
+ edge_subst_cost(G1[u1][v1], G2[u2][v2]),
131
+ edge_del_cost(G1[u1][v1]),
132
+ edge_ins_cost(G2[u2][v2]).
133
+
134
+ That is, the functions will receive the edge attribute
135
+ dictionaries as inputs. The functions are expected to return
136
+ positive numeric values.
137
+
138
+ Function edge_subst_cost overrides edge_match if specified.
139
+ If neither edge_match nor edge_subst_cost are specified then
140
+ default edge substitution cost of 0 is used (edge attributes
141
+ are not considered during matching).
142
+
143
+ If edge_del_cost is not specified then default edge deletion
144
+ cost of 1 is used. If edge_ins_cost is not specified then
145
+ default edge insertion cost of 1 is used.
146
+
147
+ roots : 2-tuple
148
+ Tuple where first element is a node in G1 and the second
149
+ is a node in G2.
150
+ These nodes are forced to be matched in the comparison to
151
+ allow comparison between rooted graphs.
152
+
153
+ upper_bound : numeric
154
+ Maximum edit distance to consider. Return None if no edit
155
+ distance under or equal to upper_bound exists.
156
+
157
+ timeout : numeric
158
+ Maximum number of seconds to execute.
159
+ After timeout is met, the current best GED is returned.
160
+
161
+ Examples
162
+ --------
163
+ >>> G1 = nx.cycle_graph(6)
164
+ >>> G2 = nx.wheel_graph(7)
165
+ >>> nx.graph_edit_distance(G1, G2)
166
+ 7.0
167
+
168
+ >>> G1 = nx.star_graph(5)
169
+ >>> G2 = nx.star_graph(5)
170
+ >>> nx.graph_edit_distance(G1, G2, roots=(0, 0))
171
+ 0.0
172
+ >>> nx.graph_edit_distance(G1, G2, roots=(1, 0))
173
+ 8.0
174
+
175
+ See Also
176
+ --------
177
+ optimal_edit_paths, optimize_graph_edit_distance,
178
+
179
+ is_isomorphic: test for graph edit distance of 0
180
+
181
+ References
182
+ ----------
183
+ .. [1] Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, Patrick
184
+ Martineau. An Exact Graph Edit Distance Algorithm for Solving
185
+ Pattern Recognition Problems. 4th International Conference on
186
+ Pattern Recognition Applications and Methods 2015, Jan 2015,
187
+ Lisbon, Portugal. 2015,
188
+ <10.5220/0005209202710278>. <hal-01168816>
189
+ https://hal.archives-ouvertes.fr/hal-01168816
190
+
191
+ """
192
+ bestcost = None
193
+ for _, _, cost in optimize_edit_paths(
194
+ G1,
195
+ G2,
196
+ node_match,
197
+ edge_match,
198
+ node_subst_cost,
199
+ node_del_cost,
200
+ node_ins_cost,
201
+ edge_subst_cost,
202
+ edge_del_cost,
203
+ edge_ins_cost,
204
+ upper_bound,
205
+ True,
206
+ roots,
207
+ timeout,
208
+ ):
209
+ # assert bestcost is None or cost < bestcost
210
+ bestcost = cost
211
+ return bestcost
212
+
213
+
214
+ @nx._dispatchable(graphs={"G1": 0, "G2": 1})
215
+ def optimal_edit_paths(
216
+ G1,
217
+ G2,
218
+ node_match=None,
219
+ edge_match=None,
220
+ node_subst_cost=None,
221
+ node_del_cost=None,
222
+ node_ins_cost=None,
223
+ edge_subst_cost=None,
224
+ edge_del_cost=None,
225
+ edge_ins_cost=None,
226
+ upper_bound=None,
227
+ ):
228
+ """Returns all minimum-cost edit paths transforming G1 to G2.
229
+
230
+ Graph edit path is a sequence of node and edge edit operations
231
+ transforming graph G1 to graph isomorphic to G2. Edit operations
232
+ include substitutions, deletions, and insertions.
233
+
234
+ Parameters
235
+ ----------
236
+ G1, G2: graphs
237
+ The two graphs G1 and G2 must be of the same type.
238
+
239
+ node_match : callable
240
+ A function that returns True if node n1 in G1 and n2 in G2
241
+ should be considered equal during matching.
242
+
243
+ The function will be called like
244
+
245
+ node_match(G1.nodes[n1], G2.nodes[n2]).
246
+
247
+ That is, the function will receive the node attribute
248
+ dictionaries for n1 and n2 as inputs.
249
+
250
+ Ignored if node_subst_cost is specified. If neither
251
+ node_match nor node_subst_cost are specified then node
252
+ attributes are not considered.
253
+
254
+ edge_match : callable
255
+ A function that returns True if the edge attribute dictionaries
256
+ for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should
257
+ be considered equal during matching.
258
+
259
+ The function will be called like
260
+
261
+ edge_match(G1[u1][v1], G2[u2][v2]).
262
+
263
+ That is, the function will receive the edge attribute
264
+ dictionaries of the edges under consideration.
265
+
266
+ Ignored if edge_subst_cost is specified. If neither
267
+ edge_match nor edge_subst_cost are specified then edge
268
+ attributes are not considered.
269
+
270
+ node_subst_cost, node_del_cost, node_ins_cost : callable
271
+ Functions that return the costs of node substitution, node
272
+ deletion, and node insertion, respectively.
273
+
274
+ The functions will be called like
275
+
276
+ node_subst_cost(G1.nodes[n1], G2.nodes[n2]),
277
+ node_del_cost(G1.nodes[n1]),
278
+ node_ins_cost(G2.nodes[n2]).
279
+
280
+ That is, the functions will receive the node attribute
281
+ dictionaries as inputs. The functions are expected to return
282
+ positive numeric values.
283
+
284
+ Function node_subst_cost overrides node_match if specified.
285
+ If neither node_match nor node_subst_cost are specified then
286
+ default node substitution cost of 0 is used (node attributes
287
+ are not considered during matching).
288
+
289
+ If node_del_cost is not specified then default node deletion
290
+ cost of 1 is used. If node_ins_cost is not specified then
291
+ default node insertion cost of 1 is used.
292
+
293
+ edge_subst_cost, edge_del_cost, edge_ins_cost : callable
294
+ Functions that return the costs of edge substitution, edge
295
+ deletion, and edge insertion, respectively.
296
+
297
+ The functions will be called like
298
+
299
+ edge_subst_cost(G1[u1][v1], G2[u2][v2]),
300
+ edge_del_cost(G1[u1][v1]),
301
+ edge_ins_cost(G2[u2][v2]).
302
+
303
+ That is, the functions will receive the edge attribute
304
+ dictionaries as inputs. The functions are expected to return
305
+ positive numeric values.
306
+
307
+ Function edge_subst_cost overrides edge_match if specified.
308
+ If neither edge_match nor edge_subst_cost are specified then
309
+ default edge substitution cost of 0 is used (edge attributes
310
+ are not considered during matching).
311
+
312
+ If edge_del_cost is not specified then default edge deletion
313
+ cost of 1 is used. If edge_ins_cost is not specified then
314
+ default edge insertion cost of 1 is used.
315
+
316
+ upper_bound : numeric
317
+ Maximum edit distance to consider.
318
+
319
+ Returns
320
+ -------
321
+ edit_paths : list of tuples (node_edit_path, edge_edit_path)
322
+ node_edit_path : list of tuples (u, v)
323
+ edge_edit_path : list of tuples ((u1, v1), (u2, v2))
324
+
325
+ cost : numeric
326
+ Optimal edit path cost (graph edit distance). When the cost
327
+ is zero, it indicates that `G1` and `G2` are isomorphic.
328
+
329
+ Examples
330
+ --------
331
+ >>> G1 = nx.cycle_graph(4)
332
+ >>> G2 = nx.wheel_graph(5)
333
+ >>> paths, cost = nx.optimal_edit_paths(G1, G2)
334
+ >>> len(paths)
335
+ 40
336
+ >>> cost
337
+ 5.0
338
+
339
+ Notes
340
+ -----
341
+ To transform `G1` into a graph isomorphic to `G2`, apply the node
342
+ and edge edits in the returned ``edit_paths``.
343
+ In the case of isomorphic graphs, the cost is zero, and the paths
344
+ represent different isomorphic mappings (isomorphisms). That is, the
345
+ edits involve renaming nodes and edges to match the structure of `G2`.
346
+
347
+ See Also
348
+ --------
349
+ graph_edit_distance, optimize_edit_paths
350
+
351
+ References
352
+ ----------
353
+ .. [1] Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, Patrick
354
+ Martineau. An Exact Graph Edit Distance Algorithm for Solving
355
+ Pattern Recognition Problems. 4th International Conference on
356
+ Pattern Recognition Applications and Methods 2015, Jan 2015,
357
+ Lisbon, Portugal. 2015,
358
+ <10.5220/0005209202710278>. <hal-01168816>
359
+ https://hal.archives-ouvertes.fr/hal-01168816
360
+
361
+ """
362
+ paths = []
363
+ bestcost = None
364
+ for vertex_path, edge_path, cost in optimize_edit_paths(
365
+ G1,
366
+ G2,
367
+ node_match,
368
+ edge_match,
369
+ node_subst_cost,
370
+ node_del_cost,
371
+ node_ins_cost,
372
+ edge_subst_cost,
373
+ edge_del_cost,
374
+ edge_ins_cost,
375
+ upper_bound,
376
+ False,
377
+ ):
378
+ # assert bestcost is None or cost <= bestcost
379
+ if bestcost is not None and cost < bestcost:
380
+ paths = []
381
+ paths.append((vertex_path, edge_path))
382
+ bestcost = cost
383
+ return paths, bestcost
384
+
385
+
386
+ @nx._dispatchable(graphs={"G1": 0, "G2": 1})
387
+ def optimize_graph_edit_distance(
388
+ G1,
389
+ G2,
390
+ node_match=None,
391
+ edge_match=None,
392
+ node_subst_cost=None,
393
+ node_del_cost=None,
394
+ node_ins_cost=None,
395
+ edge_subst_cost=None,
396
+ edge_del_cost=None,
397
+ edge_ins_cost=None,
398
+ upper_bound=None,
399
+ ):
400
+ """Returns consecutive approximations of GED (graph edit distance)
401
+ between graphs G1 and G2.
402
+
403
+ Graph edit distance is a graph similarity measure analogous to
404
+ Levenshtein distance for strings. It is defined as minimum cost
405
+ of edit path (sequence of node and edge edit operations)
406
+ transforming graph G1 to graph isomorphic to G2.
407
+
408
+ Parameters
409
+ ----------
410
+ G1, G2: graphs
411
+ The two graphs G1 and G2 must be of the same type.
412
+
413
+ node_match : callable
414
+ A function that returns True if node n1 in G1 and n2 in G2
415
+ should be considered equal during matching.
416
+
417
+ The function will be called like
418
+
419
+ node_match(G1.nodes[n1], G2.nodes[n2]).
420
+
421
+ That is, the function will receive the node attribute
422
+ dictionaries for n1 and n2 as inputs.
423
+
424
+ Ignored if node_subst_cost is specified. If neither
425
+ node_match nor node_subst_cost are specified then node
426
+ attributes are not considered.
427
+
428
+ edge_match : callable
429
+ A function that returns True if the edge attribute dictionaries
430
+ for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should
431
+ be considered equal during matching.
432
+
433
+ The function will be called like
434
+
435
+ edge_match(G1[u1][v1], G2[u2][v2]).
436
+
437
+ That is, the function will receive the edge attribute
438
+ dictionaries of the edges under consideration.
439
+
440
+ Ignored if edge_subst_cost is specified. If neither
441
+ edge_match nor edge_subst_cost are specified then edge
442
+ attributes are not considered.
443
+
444
+ node_subst_cost, node_del_cost, node_ins_cost : callable
445
+ Functions that return the costs of node substitution, node
446
+ deletion, and node insertion, respectively.
447
+
448
+ The functions will be called like
449
+
450
+ node_subst_cost(G1.nodes[n1], G2.nodes[n2]),
451
+ node_del_cost(G1.nodes[n1]),
452
+ node_ins_cost(G2.nodes[n2]).
453
+
454
+ That is, the functions will receive the node attribute
455
+ dictionaries as inputs. The functions are expected to return
456
+ positive numeric values.
457
+
458
+ Function node_subst_cost overrides node_match if specified.
459
+ If neither node_match nor node_subst_cost are specified then
460
+ default node substitution cost of 0 is used (node attributes
461
+ are not considered during matching).
462
+
463
+ If node_del_cost is not specified then default node deletion
464
+ cost of 1 is used. If node_ins_cost is not specified then
465
+ default node insertion cost of 1 is used.
466
+
467
+ edge_subst_cost, edge_del_cost, edge_ins_cost : callable
468
+ Functions that return the costs of edge substitution, edge
469
+ deletion, and edge insertion, respectively.
470
+
471
+ The functions will be called like
472
+
473
+ edge_subst_cost(G1[u1][v1], G2[u2][v2]),
474
+ edge_del_cost(G1[u1][v1]),
475
+ edge_ins_cost(G2[u2][v2]).
476
+
477
+ That is, the functions will receive the edge attribute
478
+ dictionaries as inputs. The functions are expected to return
479
+ positive numeric values.
480
+
481
+ Function edge_subst_cost overrides edge_match if specified.
482
+ If neither edge_match nor edge_subst_cost are specified then
483
+ default edge substitution cost of 0 is used (edge attributes
484
+ are not considered during matching).
485
+
486
+ If edge_del_cost is not specified then default edge deletion
487
+ cost of 1 is used. If edge_ins_cost is not specified then
488
+ default edge insertion cost of 1 is used.
489
+
490
+ upper_bound : numeric
491
+ Maximum edit distance to consider.
492
+
493
+ Returns
494
+ -------
495
+ Generator of consecutive approximations of graph edit distance.
496
+
497
+ Examples
498
+ --------
499
+ >>> G1 = nx.cycle_graph(6)
500
+ >>> G2 = nx.wheel_graph(7)
501
+ >>> for v in nx.optimize_graph_edit_distance(G1, G2):
502
+ ... minv = v
503
+ >>> minv
504
+ 7.0
505
+
506
+ See Also
507
+ --------
508
+ graph_edit_distance, optimize_edit_paths
509
+
510
+ References
511
+ ----------
512
+ .. [1] Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, Patrick
513
+ Martineau. An Exact Graph Edit Distance Algorithm for Solving
514
+ Pattern Recognition Problems. 4th International Conference on
515
+ Pattern Recognition Applications and Methods 2015, Jan 2015,
516
+ Lisbon, Portugal. 2015,
517
+ <10.5220/0005209202710278>. <hal-01168816>
518
+ https://hal.archives-ouvertes.fr/hal-01168816
519
+ """
520
+ for _, _, cost in optimize_edit_paths(
521
+ G1,
522
+ G2,
523
+ node_match,
524
+ edge_match,
525
+ node_subst_cost,
526
+ node_del_cost,
527
+ node_ins_cost,
528
+ edge_subst_cost,
529
+ edge_del_cost,
530
+ edge_ins_cost,
531
+ upper_bound,
532
+ True,
533
+ ):
534
+ yield cost
535
+
536
+
537
+ @nx._dispatchable(
538
+ graphs={"G1": 0, "G2": 1}, preserve_edge_attrs=True, preserve_node_attrs=True
539
+ )
540
+ def optimize_edit_paths(
541
+ G1,
542
+ G2,
543
+ node_match=None,
544
+ edge_match=None,
545
+ node_subst_cost=None,
546
+ node_del_cost=None,
547
+ node_ins_cost=None,
548
+ edge_subst_cost=None,
549
+ edge_del_cost=None,
550
+ edge_ins_cost=None,
551
+ upper_bound=None,
552
+ strictly_decreasing=True,
553
+ roots=None,
554
+ timeout=None,
555
+ ):
556
+ """GED (graph edit distance) calculation: advanced interface.
557
+
558
+ Graph edit path is a sequence of node and edge edit operations
559
+ transforming graph G1 to graph isomorphic to G2. Edit operations
560
+ include substitutions, deletions, and insertions.
561
+
562
+ Graph edit distance is defined as minimum cost of edit path.
563
+
564
+ Parameters
565
+ ----------
566
+ G1, G2: graphs
567
+ The two graphs G1 and G2 must be of the same type.
568
+
569
+ node_match : callable
570
+ A function that returns True if node n1 in G1 and n2 in G2
571
+ should be considered equal during matching.
572
+
573
+ The function will be called like
574
+
575
+ node_match(G1.nodes[n1], G2.nodes[n2]).
576
+
577
+ That is, the function will receive the node attribute
578
+ dictionaries for n1 and n2 as inputs.
579
+
580
+ Ignored if node_subst_cost is specified. If neither
581
+ node_match nor node_subst_cost are specified then node
582
+ attributes are not considered.
583
+
584
+ edge_match : callable
585
+ A function that returns True if the edge attribute dictionaries
586
+ for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should
587
+ be considered equal during matching.
588
+
589
+ The function will be called like
590
+
591
+ edge_match(G1[u1][v1], G2[u2][v2]).
592
+
593
+ That is, the function will receive the edge attribute
594
+ dictionaries of the edges under consideration.
595
+
596
+ Ignored if edge_subst_cost is specified. If neither
597
+ edge_match nor edge_subst_cost are specified then edge
598
+ attributes are not considered.
599
+
600
+ node_subst_cost, node_del_cost, node_ins_cost : callable
601
+ Functions that return the costs of node substitution, node
602
+ deletion, and node insertion, respectively.
603
+
604
+ The functions will be called like
605
+
606
+ node_subst_cost(G1.nodes[n1], G2.nodes[n2]),
607
+ node_del_cost(G1.nodes[n1]),
608
+ node_ins_cost(G2.nodes[n2]).
609
+
610
+ That is, the functions will receive the node attribute
611
+ dictionaries as inputs. The functions are expected to return
612
+ positive numeric values.
613
+
614
+ Function node_subst_cost overrides node_match if specified.
615
+ If neither node_match nor node_subst_cost are specified then
616
+ default node substitution cost of 0 is used (node attributes
617
+ are not considered during matching).
618
+
619
+ If node_del_cost is not specified then default node deletion
620
+ cost of 1 is used. If node_ins_cost is not specified then
621
+ default node insertion cost of 1 is used.
622
+
623
+ edge_subst_cost, edge_del_cost, edge_ins_cost : callable
624
+ Functions that return the costs of edge substitution, edge
625
+ deletion, and edge insertion, respectively.
626
+
627
+ The functions will be called like
628
+
629
+ edge_subst_cost(G1[u1][v1], G2[u2][v2]),
630
+ edge_del_cost(G1[u1][v1]),
631
+ edge_ins_cost(G2[u2][v2]).
632
+
633
+ That is, the functions will receive the edge attribute
634
+ dictionaries as inputs. The functions are expected to return
635
+ positive numeric values.
636
+
637
+ Function edge_subst_cost overrides edge_match if specified.
638
+ If neither edge_match nor edge_subst_cost are specified then
639
+ default edge substitution cost of 0 is used (edge attributes
640
+ are not considered during matching).
641
+
642
+ If edge_del_cost is not specified then default edge deletion
643
+ cost of 1 is used. If edge_ins_cost is not specified then
644
+ default edge insertion cost of 1 is used.
645
+
646
+ upper_bound : numeric
647
+ Maximum edit distance to consider.
648
+
649
+ strictly_decreasing : bool
650
+ If True, return consecutive approximations of strictly
651
+ decreasing cost. Otherwise, return all edit paths of cost
652
+ less than or equal to the previous minimum cost.
653
+
654
+ roots : 2-tuple
655
+ Tuple where first element is a node in G1 and the second
656
+ is a node in G2.
657
+ These nodes are forced to be matched in the comparison to
658
+ allow comparison between rooted graphs.
659
+
660
+ timeout : numeric
661
+ Maximum number of seconds to execute.
662
+ After timeout is met, the current best GED is returned.
663
+
664
+ Returns
665
+ -------
666
+ Generator of tuples (node_edit_path, edge_edit_path, cost)
667
+ node_edit_path : list of tuples (u, v)
668
+ edge_edit_path : list of tuples ((u1, v1), (u2, v2))
669
+ cost : numeric
670
+
671
+ See Also
672
+ --------
673
+ graph_edit_distance, optimize_graph_edit_distance, optimal_edit_paths
674
+
675
+ References
676
+ ----------
677
+ .. [1] Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, Patrick
678
+ Martineau. An Exact Graph Edit Distance Algorithm for Solving
679
+ Pattern Recognition Problems. 4th International Conference on
680
+ Pattern Recognition Applications and Methods 2015, Jan 2015,
681
+ Lisbon, Portugal. 2015,
682
+ <10.5220/0005209202710278>. <hal-01168816>
683
+ https://hal.archives-ouvertes.fr/hal-01168816
684
+
685
+ """
686
+ # TODO: support DiGraph
687
+
688
+ import numpy as np
689
+ import scipy as sp
690
+
691
+ @dataclass
692
+ class CostMatrix:
693
+ C: ...
694
+ lsa_row_ind: ...
695
+ lsa_col_ind: ...
696
+ ls: ...
697
+
698
+ def make_CostMatrix(C, m, n):
699
+ # assert(C.shape == (m + n, m + n))
700
+ lsa_row_ind, lsa_col_ind = sp.optimize.linear_sum_assignment(C)
701
+
702
+ # Fixup dummy assignments:
703
+ # each substitution i<->j should have dummy assignment m+j<->n+i
704
+ # NOTE: fast reduce of Cv relies on it
705
+ # assert len(lsa_row_ind) == len(lsa_col_ind)
706
+ indexes = zip(range(len(lsa_row_ind)), lsa_row_ind, lsa_col_ind)
707
+ subst_ind = [k for k, i, j in indexes if i < m and j < n]
708
+ indexes = zip(range(len(lsa_row_ind)), lsa_row_ind, lsa_col_ind)
709
+ dummy_ind = [k for k, i, j in indexes if i >= m and j >= n]
710
+ # assert len(subst_ind) == len(dummy_ind)
711
+ lsa_row_ind[dummy_ind] = lsa_col_ind[subst_ind] + m
712
+ lsa_col_ind[dummy_ind] = lsa_row_ind[subst_ind] + n
713
+
714
+ return CostMatrix(
715
+ C, lsa_row_ind, lsa_col_ind, C[lsa_row_ind, lsa_col_ind].sum()
716
+ )
717
+
718
+ def extract_C(C, i, j, m, n):
719
+ # assert(C.shape == (m + n, m + n))
720
+ row_ind = [k in i or k - m in j for k in range(m + n)]
721
+ col_ind = [k in j or k - n in i for k in range(m + n)]
722
+ return C[row_ind, :][:, col_ind]
723
+
724
+ def reduce_C(C, i, j, m, n):
725
+ # assert(C.shape == (m + n, m + n))
726
+ row_ind = [k not in i and k - m not in j for k in range(m + n)]
727
+ col_ind = [k not in j and k - n not in i for k in range(m + n)]
728
+ return C[row_ind, :][:, col_ind]
729
+
730
+ def reduce_ind(ind, i):
731
+ # assert set(ind) == set(range(len(ind)))
732
+ rind = ind[[k not in i for k in ind]]
733
+ for k in set(i):
734
+ rind[rind >= k] -= 1
735
+ return rind
736
+
737
+ def match_edges(u, v, pending_g, pending_h, Ce, matched_uv=None):
738
+ """
739
+ Parameters:
740
+ u, v: matched vertices, u=None or v=None for
741
+ deletion/insertion
742
+ pending_g, pending_h: lists of edges not yet mapped
743
+ Ce: CostMatrix of pending edge mappings
744
+ matched_uv: partial vertex edit path
745
+ list of tuples (u, v) of previously matched vertex
746
+ mappings u<->v, u=None or v=None for
747
+ deletion/insertion
748
+
749
+ Returns:
750
+ list of (i, j): indices of edge mappings g<->h
751
+ localCe: local CostMatrix of edge mappings
752
+ (basically submatrix of Ce at cross of rows i, cols j)
753
+ """
754
+ M = len(pending_g)
755
+ N = len(pending_h)
756
+ # assert Ce.C.shape == (M + N, M + N)
757
+
758
+ # only attempt to match edges after one node match has been made
759
+ # this will stop self-edges on the first node being automatically deleted
760
+ # even when a substitution is the better option
761
+ if matched_uv is None or len(matched_uv) == 0:
762
+ g_ind = []
763
+ h_ind = []
764
+ else:
765
+ g_ind = [
766
+ i
767
+ for i in range(M)
768
+ if pending_g[i][:2] == (u, u)
769
+ or any(
770
+ pending_g[i][:2] in ((p, u), (u, p), (p, p)) for p, q in matched_uv
771
+ )
772
+ ]
773
+ h_ind = [
774
+ j
775
+ for j in range(N)
776
+ if pending_h[j][:2] == (v, v)
777
+ or any(
778
+ pending_h[j][:2] in ((q, v), (v, q), (q, q)) for p, q in matched_uv
779
+ )
780
+ ]
781
+
782
+ m = len(g_ind)
783
+ n = len(h_ind)
784
+
785
+ if m or n:
786
+ C = extract_C(Ce.C, g_ind, h_ind, M, N)
787
+ # assert C.shape == (m + n, m + n)
788
+
789
+ # Forbid structurally invalid matches
790
+ # NOTE: inf remembered from Ce construction
791
+ for k, i in enumerate(g_ind):
792
+ g = pending_g[i][:2]
793
+ for l, j in enumerate(h_ind):
794
+ h = pending_h[j][:2]
795
+ if nx.is_directed(G1) or nx.is_directed(G2):
796
+ if any(
797
+ g == (p, u) and h == (q, v) or g == (u, p) and h == (v, q)
798
+ for p, q in matched_uv
799
+ ):
800
+ continue
801
+ else:
802
+ if any(
803
+ g in ((p, u), (u, p)) and h in ((q, v), (v, q))
804
+ for p, q in matched_uv
805
+ ):
806
+ continue
807
+ if g == (u, u) or any(g == (p, p) for p, q in matched_uv):
808
+ continue
809
+ if h == (v, v) or any(h == (q, q) for p, q in matched_uv):
810
+ continue
811
+ C[k, l] = inf
812
+
813
+ localCe = make_CostMatrix(C, m, n)
814
+ ij = [
815
+ (
816
+ g_ind[k] if k < m else M + h_ind[l],
817
+ h_ind[l] if l < n else N + g_ind[k],
818
+ )
819
+ for k, l in zip(localCe.lsa_row_ind, localCe.lsa_col_ind)
820
+ if k < m or l < n
821
+ ]
822
+
823
+ else:
824
+ ij = []
825
+ localCe = CostMatrix(np.empty((0, 0)), [], [], 0)
826
+
827
+ return ij, localCe
828
+
829
+ def reduce_Ce(Ce, ij, m, n):
830
+ if len(ij):
831
+ i, j = zip(*ij)
832
+ m_i = m - sum(1 for t in i if t < m)
833
+ n_j = n - sum(1 for t in j if t < n)
834
+ return make_CostMatrix(reduce_C(Ce.C, i, j, m, n), m_i, n_j)
835
+ return Ce
836
+
837
+ def get_edit_ops(
838
+ matched_uv, pending_u, pending_v, Cv, pending_g, pending_h, Ce, matched_cost
839
+ ):
840
+ """
841
+ Parameters:
842
+ matched_uv: partial vertex edit path
843
+ list of tuples (u, v) of vertex mappings u<->v,
844
+ u=None or v=None for deletion/insertion
845
+ pending_u, pending_v: lists of vertices not yet mapped
846
+ Cv: CostMatrix of pending vertex mappings
847
+ pending_g, pending_h: lists of edges not yet mapped
848
+ Ce: CostMatrix of pending edge mappings
849
+ matched_cost: cost of partial edit path
850
+
851
+ Returns:
852
+ sequence of
853
+ (i, j): indices of vertex mapping u<->v
854
+ Cv_ij: reduced CostMatrix of pending vertex mappings
855
+ (basically Cv with row i, col j removed)
856
+ list of (x, y): indices of edge mappings g<->h
857
+ Ce_xy: reduced CostMatrix of pending edge mappings
858
+ (basically Ce with rows x, cols y removed)
859
+ cost: total cost of edit operation
860
+ NOTE: most promising ops first
861
+ """
862
+ m = len(pending_u)
863
+ n = len(pending_v)
864
+ # assert Cv.C.shape == (m + n, m + n)
865
+
866
+ # 1) a vertex mapping from optimal linear sum assignment
867
+ i, j = min(
868
+ (k, l) for k, l in zip(Cv.lsa_row_ind, Cv.lsa_col_ind) if k < m or l < n
869
+ )
870
+ xy, localCe = match_edges(
871
+ pending_u[i] if i < m else None,
872
+ pending_v[j] if j < n else None,
873
+ pending_g,
874
+ pending_h,
875
+ Ce,
876
+ matched_uv,
877
+ )
878
+ Ce_xy = reduce_Ce(Ce, xy, len(pending_g), len(pending_h))
879
+ # assert Ce.ls <= localCe.ls + Ce_xy.ls
880
+ if prune(matched_cost + Cv.ls + localCe.ls + Ce_xy.ls):
881
+ pass
882
+ else:
883
+ # get reduced Cv efficiently
884
+ Cv_ij = CostMatrix(
885
+ reduce_C(Cv.C, (i,), (j,), m, n),
886
+ reduce_ind(Cv.lsa_row_ind, (i, m + j)),
887
+ reduce_ind(Cv.lsa_col_ind, (j, n + i)),
888
+ Cv.ls - Cv.C[i, j],
889
+ )
890
+ yield (i, j), Cv_ij, xy, Ce_xy, Cv.C[i, j] + localCe.ls
891
+
892
+ # 2) other candidates, sorted by lower-bound cost estimate
893
+ other = []
894
+ fixed_i, fixed_j = i, j
895
+ if m <= n:
896
+ candidates = (
897
+ (t, fixed_j)
898
+ for t in range(m + n)
899
+ if t != fixed_i and (t < m or t == m + fixed_j)
900
+ )
901
+ else:
902
+ candidates = (
903
+ (fixed_i, t)
904
+ for t in range(m + n)
905
+ if t != fixed_j and (t < n or t == n + fixed_i)
906
+ )
907
+ for i, j in candidates:
908
+ if prune(matched_cost + Cv.C[i, j] + Ce.ls):
909
+ continue
910
+ Cv_ij = make_CostMatrix(
911
+ reduce_C(Cv.C, (i,), (j,), m, n),
912
+ m - 1 if i < m else m,
913
+ n - 1 if j < n else n,
914
+ )
915
+ # assert Cv.ls <= Cv.C[i, j] + Cv_ij.ls
916
+ if prune(matched_cost + Cv.C[i, j] + Cv_ij.ls + Ce.ls):
917
+ continue
918
+ xy, localCe = match_edges(
919
+ pending_u[i] if i < m else None,
920
+ pending_v[j] if j < n else None,
921
+ pending_g,
922
+ pending_h,
923
+ Ce,
924
+ matched_uv,
925
+ )
926
+ if prune(matched_cost + Cv.C[i, j] + Cv_ij.ls + localCe.ls):
927
+ continue
928
+ Ce_xy = reduce_Ce(Ce, xy, len(pending_g), len(pending_h))
929
+ # assert Ce.ls <= localCe.ls + Ce_xy.ls
930
+ if prune(matched_cost + Cv.C[i, j] + Cv_ij.ls + localCe.ls + Ce_xy.ls):
931
+ continue
932
+ other.append(((i, j), Cv_ij, xy, Ce_xy, Cv.C[i, j] + localCe.ls))
933
+
934
+ yield from sorted(other, key=lambda t: t[4] + t[1].ls + t[3].ls)
935
+
936
+ def get_edit_paths(
937
+ matched_uv,
938
+ pending_u,
939
+ pending_v,
940
+ Cv,
941
+ matched_gh,
942
+ pending_g,
943
+ pending_h,
944
+ Ce,
945
+ matched_cost,
946
+ ):
947
+ """
948
+ Parameters:
949
+ matched_uv: partial vertex edit path
950
+ list of tuples (u, v) of vertex mappings u<->v,
951
+ u=None or v=None for deletion/insertion
952
+ pending_u, pending_v: lists of vertices not yet mapped
953
+ Cv: CostMatrix of pending vertex mappings
954
+ matched_gh: partial edge edit path
955
+ list of tuples (g, h) of edge mappings g<->h,
956
+ g=None or h=None for deletion/insertion
957
+ pending_g, pending_h: lists of edges not yet mapped
958
+ Ce: CostMatrix of pending edge mappings
959
+ matched_cost: cost of partial edit path
960
+
961
+ Returns:
962
+ sequence of (vertex_path, edge_path, cost)
963
+ vertex_path: complete vertex edit path
964
+ list of tuples (u, v) of vertex mappings u<->v,
965
+ u=None or v=None for deletion/insertion
966
+ edge_path: complete edge edit path
967
+ list of tuples (g, h) of edge mappings g<->h,
968
+ g=None or h=None for deletion/insertion
969
+ cost: total cost of edit path
970
+ NOTE: path costs are non-increasing
971
+ """
972
+ # debug_print('matched-uv:', matched_uv)
973
+ # debug_print('matched-gh:', matched_gh)
974
+ # debug_print('matched-cost:', matched_cost)
975
+ # debug_print('pending-u:', pending_u)
976
+ # debug_print('pending-v:', pending_v)
977
+ # debug_print(Cv.C)
978
+ # assert list(sorted(G1.nodes)) == list(sorted(list(u for u, v in matched_uv if u is not None) + pending_u))
979
+ # assert list(sorted(G2.nodes)) == list(sorted(list(v for u, v in matched_uv if v is not None) + pending_v))
980
+ # debug_print('pending-g:', pending_g)
981
+ # debug_print('pending-h:', pending_h)
982
+ # debug_print(Ce.C)
983
+ # assert list(sorted(G1.edges)) == list(sorted(list(g for g, h in matched_gh if g is not None) + pending_g))
984
+ # assert list(sorted(G2.edges)) == list(sorted(list(h for g, h in matched_gh if h is not None) + pending_h))
985
+ # debug_print()
986
+
987
+ if prune(matched_cost + Cv.ls + Ce.ls):
988
+ return
989
+
990
+ if not max(len(pending_u), len(pending_v)):
991
+ # assert not len(pending_g)
992
+ # assert not len(pending_h)
993
+ # path completed!
994
+ # assert matched_cost <= maxcost_value
995
+ nonlocal maxcost_value
996
+ maxcost_value = min(maxcost_value, matched_cost)
997
+ yield matched_uv, matched_gh, matched_cost
998
+
999
+ else:
1000
+ edit_ops = get_edit_ops(
1001
+ matched_uv,
1002
+ pending_u,
1003
+ pending_v,
1004
+ Cv,
1005
+ pending_g,
1006
+ pending_h,
1007
+ Ce,
1008
+ matched_cost,
1009
+ )
1010
+ for ij, Cv_ij, xy, Ce_xy, edit_cost in edit_ops:
1011
+ i, j = ij
1012
+ # assert Cv.C[i, j] + sum(Ce.C[t] for t in xy) == edit_cost
1013
+ if prune(matched_cost + edit_cost + Cv_ij.ls + Ce_xy.ls):
1014
+ continue
1015
+
1016
+ # dive deeper
1017
+ u = pending_u.pop(i) if i < len(pending_u) else None
1018
+ v = pending_v.pop(j) if j < len(pending_v) else None
1019
+ matched_uv.append((u, v))
1020
+ for x, y in xy:
1021
+ len_g = len(pending_g)
1022
+ len_h = len(pending_h)
1023
+ matched_gh.append(
1024
+ (
1025
+ pending_g[x] if x < len_g else None,
1026
+ pending_h[y] if y < len_h else None,
1027
+ )
1028
+ )
1029
+ sortedx = sorted(x for x, y in xy)
1030
+ sortedy = sorted(y for x, y in xy)
1031
+ G = [
1032
+ (pending_g.pop(x) if x < len(pending_g) else None)
1033
+ for x in reversed(sortedx)
1034
+ ]
1035
+ H = [
1036
+ (pending_h.pop(y) if y < len(pending_h) else None)
1037
+ for y in reversed(sortedy)
1038
+ ]
1039
+
1040
+ yield from get_edit_paths(
1041
+ matched_uv,
1042
+ pending_u,
1043
+ pending_v,
1044
+ Cv_ij,
1045
+ matched_gh,
1046
+ pending_g,
1047
+ pending_h,
1048
+ Ce_xy,
1049
+ matched_cost + edit_cost,
1050
+ )
1051
+
1052
+ # backtrack
1053
+ if u is not None:
1054
+ pending_u.insert(i, u)
1055
+ if v is not None:
1056
+ pending_v.insert(j, v)
1057
+ matched_uv.pop()
1058
+ for x, g in zip(sortedx, reversed(G)):
1059
+ if g is not None:
1060
+ pending_g.insert(x, g)
1061
+ for y, h in zip(sortedy, reversed(H)):
1062
+ if h is not None:
1063
+ pending_h.insert(y, h)
1064
+ for _ in xy:
1065
+ matched_gh.pop()
1066
+
1067
+ # Initialization
1068
+
1069
+ pending_u = list(G1.nodes)
1070
+ pending_v = list(G2.nodes)
1071
+
1072
+ initial_cost = 0
1073
+ if roots:
1074
+ root_u, root_v = roots
1075
+ if root_u not in pending_u or root_v not in pending_v:
1076
+ raise nx.NodeNotFound("Root node not in graph.")
1077
+
1078
+ # remove roots from pending
1079
+ pending_u.remove(root_u)
1080
+ pending_v.remove(root_v)
1081
+
1082
+ # cost matrix of vertex mappings
1083
+ m = len(pending_u)
1084
+ n = len(pending_v)
1085
+ C = np.zeros((m + n, m + n))
1086
+ if node_subst_cost:
1087
+ C[0:m, 0:n] = np.array(
1088
+ [
1089
+ node_subst_cost(G1.nodes[u], G2.nodes[v])
1090
+ for u in pending_u
1091
+ for v in pending_v
1092
+ ]
1093
+ ).reshape(m, n)
1094
+ if roots:
1095
+ initial_cost = node_subst_cost(G1.nodes[root_u], G2.nodes[root_v])
1096
+ elif node_match:
1097
+ C[0:m, 0:n] = np.array(
1098
+ [
1099
+ 1 - int(node_match(G1.nodes[u], G2.nodes[v]))
1100
+ for u in pending_u
1101
+ for v in pending_v
1102
+ ]
1103
+ ).reshape(m, n)
1104
+ if roots:
1105
+ initial_cost = 1 - node_match(G1.nodes[root_u], G2.nodes[root_v])
1106
+ else:
1107
+ # all zeroes
1108
+ pass
1109
+ # assert not min(m, n) or C[0:m, 0:n].min() >= 0
1110
+ if node_del_cost:
1111
+ del_costs = [node_del_cost(G1.nodes[u]) for u in pending_u]
1112
+ else:
1113
+ del_costs = [1] * len(pending_u)
1114
+ # assert not m or min(del_costs) >= 0
1115
+ if node_ins_cost:
1116
+ ins_costs = [node_ins_cost(G2.nodes[v]) for v in pending_v]
1117
+ else:
1118
+ ins_costs = [1] * len(pending_v)
1119
+ # assert not n or min(ins_costs) >= 0
1120
+ inf = C[0:m, 0:n].sum() + sum(del_costs) + sum(ins_costs) + 1
1121
+ C[0:m, n : n + m] = np.array(
1122
+ [del_costs[i] if i == j else inf for i in range(m) for j in range(m)]
1123
+ ).reshape(m, m)
1124
+ C[m : m + n, 0:n] = np.array(
1125
+ [ins_costs[i] if i == j else inf for i in range(n) for j in range(n)]
1126
+ ).reshape(n, n)
1127
+ Cv = make_CostMatrix(C, m, n)
1128
+ # debug_print(f"Cv: {m} x {n}")
1129
+ # debug_print(Cv.C)
1130
+
1131
+ pending_g = list(G1.edges)
1132
+ pending_h = list(G2.edges)
1133
+
1134
+ # cost matrix of edge mappings
1135
+ m = len(pending_g)
1136
+ n = len(pending_h)
1137
+ C = np.zeros((m + n, m + n))
1138
+ if edge_subst_cost:
1139
+ C[0:m, 0:n] = np.array(
1140
+ [
1141
+ edge_subst_cost(G1.edges[g], G2.edges[h])
1142
+ for g in pending_g
1143
+ for h in pending_h
1144
+ ]
1145
+ ).reshape(m, n)
1146
+ elif edge_match:
1147
+ C[0:m, 0:n] = np.array(
1148
+ [
1149
+ 1 - int(edge_match(G1.edges[g], G2.edges[h]))
1150
+ for g in pending_g
1151
+ for h in pending_h
1152
+ ]
1153
+ ).reshape(m, n)
1154
+ else:
1155
+ # all zeroes
1156
+ pass
1157
+ # assert not min(m, n) or C[0:m, 0:n].min() >= 0
1158
+ if edge_del_cost:
1159
+ del_costs = [edge_del_cost(G1.edges[g]) for g in pending_g]
1160
+ else:
1161
+ del_costs = [1] * len(pending_g)
1162
+ # assert not m or min(del_costs) >= 0
1163
+ if edge_ins_cost:
1164
+ ins_costs = [edge_ins_cost(G2.edges[h]) for h in pending_h]
1165
+ else:
1166
+ ins_costs = [1] * len(pending_h)
1167
+ # assert not n or min(ins_costs) >= 0
1168
+ inf = C[0:m, 0:n].sum() + sum(del_costs) + sum(ins_costs) + 1
1169
+ C[0:m, n : n + m] = np.array(
1170
+ [del_costs[i] if i == j else inf for i in range(m) for j in range(m)]
1171
+ ).reshape(m, m)
1172
+ C[m : m + n, 0:n] = np.array(
1173
+ [ins_costs[i] if i == j else inf for i in range(n) for j in range(n)]
1174
+ ).reshape(n, n)
1175
+ Ce = make_CostMatrix(C, m, n)
1176
+ # debug_print(f'Ce: {m} x {n}')
1177
+ # debug_print(Ce.C)
1178
+ # debug_print()
1179
+
1180
+ maxcost_value = Cv.C.sum() + Ce.C.sum() + 1
1181
+
1182
+ if timeout is not None:
1183
+ if timeout <= 0:
1184
+ raise nx.NetworkXError("Timeout value must be greater than 0")
1185
+ start = time.perf_counter()
1186
+
1187
+ def prune(cost):
1188
+ if timeout is not None:
1189
+ if time.perf_counter() - start > timeout:
1190
+ return True
1191
+ if upper_bound is not None:
1192
+ if cost > upper_bound:
1193
+ return True
1194
+ if cost > maxcost_value:
1195
+ return True
1196
+ if strictly_decreasing and cost >= maxcost_value:
1197
+ return True
1198
+ return False
1199
+
1200
+ # Now go!
1201
+
1202
+ done_uv = [] if roots is None else [roots]
1203
+
1204
+ for vertex_path, edge_path, cost in get_edit_paths(
1205
+ done_uv, pending_u, pending_v, Cv, [], pending_g, pending_h, Ce, initial_cost
1206
+ ):
1207
+ # assert sorted(G1.nodes) == sorted(u for u, v in vertex_path if u is not None)
1208
+ # assert sorted(G2.nodes) == sorted(v for u, v in vertex_path if v is not None)
1209
+ # assert sorted(G1.edges) == sorted(g for g, h in edge_path if g is not None)
1210
+ # assert sorted(G2.edges) == sorted(h for g, h in edge_path if h is not None)
1211
+ # print(vertex_path, edge_path, cost, file = sys.stderr)
1212
+ # assert cost == maxcost_value
1213
+ yield list(vertex_path), list(edge_path), float(cost)
1214
+
1215
+
1216
+ @nx._dispatchable
1217
+ def simrank_similarity(
1218
+ G,
1219
+ source=None,
1220
+ target=None,
1221
+ importance_factor=0.9,
1222
+ max_iterations=1000,
1223
+ tolerance=1e-4,
1224
+ ):
1225
+ """Returns the SimRank similarity of nodes in the graph ``G``.
1226
+
1227
+ SimRank is a similarity metric that says "two objects are considered
1228
+ to be similar if they are referenced by similar objects." [1]_.
1229
+
1230
+ The pseudo-code definition from the paper is::
1231
+
1232
+ def simrank(G, u, v):
1233
+ in_neighbors_u = G.predecessors(u)
1234
+ in_neighbors_v = G.predecessors(v)
1235
+ scale = C / (len(in_neighbors_u) * len(in_neighbors_v))
1236
+ return scale * sum(
1237
+ simrank(G, w, x) for w, x in product(in_neighbors_u, in_neighbors_v)
1238
+ )
1239
+
1240
+ where ``G`` is the graph, ``u`` is the source, ``v`` is the target,
1241
+ and ``C`` is a float decay or importance factor between 0 and 1.
1242
+
1243
+ The SimRank algorithm for determining node similarity is defined in
1244
+ [2]_.
1245
+
1246
+ Parameters
1247
+ ----------
1248
+ G : NetworkX graph
1249
+ A NetworkX graph
1250
+
1251
+ source : node
1252
+ If this is specified, the returned dictionary maps each node
1253
+ ``v`` in the graph to the similarity between ``source`` and
1254
+ ``v``.
1255
+
1256
+ target : node
1257
+ If both ``source`` and ``target`` are specified, the similarity
1258
+ value between ``source`` and ``target`` is returned. If
1259
+ ``target`` is specified but ``source`` is not, this argument is
1260
+ ignored.
1261
+
1262
+ importance_factor : float
1263
+ The relative importance of indirect neighbors with respect to
1264
+ direct neighbors.
1265
+
1266
+ max_iterations : integer
1267
+ Maximum number of iterations.
1268
+
1269
+ tolerance : float
1270
+ Error tolerance used to check convergence. When an iteration of
1271
+ the algorithm finds that no similarity value changes more than
1272
+ this amount, the algorithm halts.
1273
+
1274
+ Returns
1275
+ -------
1276
+ similarity : dictionary or float
1277
+ If ``source`` and ``target`` are both ``None``, this returns a
1278
+ dictionary of dictionaries, where keys are node pairs and value
1279
+ are similarity of the pair of nodes.
1280
+
1281
+ If ``source`` is not ``None`` but ``target`` is, this returns a
1282
+ dictionary mapping node to the similarity of ``source`` and that
1283
+ node.
1284
+
1285
+ If neither ``source`` nor ``target`` is ``None``, this returns
1286
+ the similarity value for the given pair of nodes.
1287
+
1288
+ Raises
1289
+ ------
1290
+ ExceededMaxIterations
1291
+ If the algorithm does not converge within ``max_iterations``.
1292
+
1293
+ NodeNotFound
1294
+ If either ``source`` or ``target`` is not in `G`.
1295
+
1296
+ Examples
1297
+ --------
1298
+ >>> G = nx.cycle_graph(2)
1299
+ >>> nx.simrank_similarity(G)
1300
+ {0: {0: 1.0, 1: 0.0}, 1: {0: 0.0, 1: 1.0}}
1301
+ >>> nx.simrank_similarity(G, source=0)
1302
+ {0: 1.0, 1: 0.0}
1303
+ >>> nx.simrank_similarity(G, source=0, target=0)
1304
+ 1.0
1305
+
1306
+ The result of this function can be converted to a numpy array
1307
+ representing the SimRank matrix by using the node order of the
1308
+ graph to determine which row and column represent each node.
1309
+ Other ordering of nodes is also possible.
1310
+
1311
+ >>> import numpy as np
1312
+ >>> sim = nx.simrank_similarity(G)
1313
+ >>> np.array([[sim[u][v] for v in G] for u in G])
1314
+ array([[1., 0.],
1315
+ [0., 1.]])
1316
+ >>> sim_1d = nx.simrank_similarity(G, source=0)
1317
+ >>> np.array([sim[0][v] for v in G])
1318
+ array([1., 0.])
1319
+
1320
+ References
1321
+ ----------
1322
+ .. [1] https://en.wikipedia.org/wiki/SimRank
1323
+ .. [2] G. Jeh and J. Widom.
1324
+ "SimRank: a measure of structural-context similarity",
1325
+ In KDD'02: Proceedings of the Eighth ACM SIGKDD
1326
+ International Conference on Knowledge Discovery and Data Mining,
1327
+ pp. 538--543. ACM Press, 2002.
1328
+ """
1329
+ import numpy as np
1330
+
1331
+ nodelist = list(G)
1332
+ if source is not None:
1333
+ if source not in nodelist:
1334
+ raise nx.NodeNotFound(f"Source node {source} not in G")
1335
+ else:
1336
+ s_indx = nodelist.index(source)
1337
+ else:
1338
+ s_indx = None
1339
+
1340
+ if target is not None:
1341
+ if target not in nodelist:
1342
+ raise nx.NodeNotFound(f"Target node {target} not in G")
1343
+ else:
1344
+ t_indx = nodelist.index(target)
1345
+ else:
1346
+ t_indx = None
1347
+
1348
+ x = _simrank_similarity_numpy(
1349
+ G, s_indx, t_indx, importance_factor, max_iterations, tolerance
1350
+ )
1351
+
1352
+ if isinstance(x, np.ndarray):
1353
+ if x.ndim == 1:
1354
+ return dict(zip(G, x.tolist()))
1355
+ # else x.ndim == 2
1356
+ return {u: dict(zip(G, row)) for u, row in zip(G, x.tolist())}
1357
+ return float(x)
1358
+
1359
+
1360
+ def _simrank_similarity_python(
1361
+ G,
1362
+ source=None,
1363
+ target=None,
1364
+ importance_factor=0.9,
1365
+ max_iterations=1000,
1366
+ tolerance=1e-4,
1367
+ ):
1368
+ """Returns the SimRank similarity of nodes in the graph ``G``.
1369
+
1370
+ This pure Python version is provided for pedagogical purposes.
1371
+
1372
+ Examples
1373
+ --------
1374
+ >>> G = nx.cycle_graph(2)
1375
+ >>> nx.similarity._simrank_similarity_python(G)
1376
+ {0: {0: 1, 1: 0.0}, 1: {0: 0.0, 1: 1}}
1377
+ >>> nx.similarity._simrank_similarity_python(G, source=0)
1378
+ {0: 1, 1: 0.0}
1379
+ >>> nx.similarity._simrank_similarity_python(G, source=0, target=0)
1380
+ 1
1381
+ """
1382
+ # build up our similarity adjacency dictionary output
1383
+ newsim = {u: {v: 1 if u == v else 0 for v in G} for u in G}
1384
+
1385
+ # These functions compute the update to the similarity value of the nodes
1386
+ # `u` and `v` with respect to the previous similarity values.
1387
+ def avg_sim(s):
1388
+ return sum(newsim[w][x] for (w, x) in s) / len(s) if s else 0.0
1389
+
1390
+ Gadj = G.pred if G.is_directed() else G.adj
1391
+
1392
+ def sim(u, v):
1393
+ return importance_factor * avg_sim(list(product(Gadj[u], Gadj[v])))
1394
+
1395
+ for its in range(max_iterations):
1396
+ oldsim = newsim
1397
+ newsim = {u: {v: sim(u, v) if u != v else 1 for v in G} for u in G}
1398
+ is_close = all(
1399
+ all(
1400
+ abs(newsim[u][v] - old) <= tolerance * (1 + abs(old))
1401
+ for v, old in nbrs.items()
1402
+ )
1403
+ for u, nbrs in oldsim.items()
1404
+ )
1405
+ if is_close:
1406
+ break
1407
+
1408
+ if its + 1 == max_iterations:
1409
+ raise nx.ExceededMaxIterations(
1410
+ f"simrank did not converge after {max_iterations} iterations."
1411
+ )
1412
+
1413
+ if source is not None and target is not None:
1414
+ return newsim[source][target]
1415
+ if source is not None:
1416
+ return newsim[source]
1417
+ return newsim
1418
+
1419
+
1420
+ def _simrank_similarity_numpy(
1421
+ G,
1422
+ source=None,
1423
+ target=None,
1424
+ importance_factor=0.9,
1425
+ max_iterations=1000,
1426
+ tolerance=1e-4,
1427
+ ):
1428
+ """Calculate SimRank of nodes in ``G`` using matrices with ``numpy``.
1429
+
1430
+ The SimRank algorithm for determining node similarity is defined in
1431
+ [1]_.
1432
+
1433
+ Parameters
1434
+ ----------
1435
+ G : NetworkX graph
1436
+ A NetworkX graph
1437
+
1438
+ source : node
1439
+ If this is specified, the returned dictionary maps each node
1440
+ ``v`` in the graph to the similarity between ``source`` and
1441
+ ``v``.
1442
+
1443
+ target : node
1444
+ If both ``source`` and ``target`` are specified, the similarity
1445
+ value between ``source`` and ``target`` is returned. If
1446
+ ``target`` is specified but ``source`` is not, this argument is
1447
+ ignored.
1448
+
1449
+ importance_factor : float
1450
+ The relative importance of indirect neighbors with respect to
1451
+ direct neighbors.
1452
+
1453
+ max_iterations : integer
1454
+ Maximum number of iterations.
1455
+
1456
+ tolerance : float
1457
+ Error tolerance used to check convergence. When an iteration of
1458
+ the algorithm finds that no similarity value changes more than
1459
+ this amount, the algorithm halts.
1460
+
1461
+ Returns
1462
+ -------
1463
+ similarity : numpy array or float
1464
+ If ``source`` and ``target`` are both ``None``, this returns a
1465
+ 2D array containing SimRank scores of the nodes.
1466
+
1467
+ If ``source`` is not ``None`` but ``target`` is, this returns an
1468
+ 1D array containing SimRank scores of ``source`` and that
1469
+ node.
1470
+
1471
+ If neither ``source`` nor ``target`` is ``None``, this returns
1472
+ the similarity value for the given pair of nodes.
1473
+
1474
+ Examples
1475
+ --------
1476
+ >>> G = nx.cycle_graph(2)
1477
+ >>> nx.similarity._simrank_similarity_numpy(G)
1478
+ array([[1., 0.],
1479
+ [0., 1.]])
1480
+ >>> nx.similarity._simrank_similarity_numpy(G, source=0)
1481
+ array([1., 0.])
1482
+ >>> nx.similarity._simrank_similarity_numpy(G, source=0, target=0)
1483
+ 1.0
1484
+
1485
+ References
1486
+ ----------
1487
+ .. [1] G. Jeh and J. Widom.
1488
+ "SimRank: a measure of structural-context similarity",
1489
+ In KDD'02: Proceedings of the Eighth ACM SIGKDD
1490
+ International Conference on Knowledge Discovery and Data Mining,
1491
+ pp. 538--543. ACM Press, 2002.
1492
+ """
1493
+ # This algorithm follows roughly
1494
+ #
1495
+ # S = max{C * (A.T * S * A), I}
1496
+ #
1497
+ # where C is the importance factor, A is the column normalized
1498
+ # adjacency matrix, and I is the identity matrix.
1499
+ import numpy as np
1500
+
1501
+ adjacency_matrix = nx.to_numpy_array(G)
1502
+
1503
+ # column-normalize the ``adjacency_matrix``
1504
+ s = np.array(adjacency_matrix.sum(axis=0))
1505
+ s[s == 0] = 1
1506
+ adjacency_matrix /= s # adjacency_matrix.sum(axis=0)
1507
+
1508
+ newsim = np.eye(len(G), dtype=np.float64)
1509
+ for its in range(max_iterations):
1510
+ prevsim = newsim.copy()
1511
+ newsim = importance_factor * ((adjacency_matrix.T @ prevsim) @ adjacency_matrix)
1512
+ np.fill_diagonal(newsim, 1.0)
1513
+
1514
+ if np.allclose(prevsim, newsim, atol=tolerance):
1515
+ break
1516
+
1517
+ if its + 1 == max_iterations:
1518
+ raise nx.ExceededMaxIterations(
1519
+ f"simrank did not converge after {max_iterations} iterations."
1520
+ )
1521
+
1522
+ if source is not None and target is not None:
1523
+ return float(newsim[source, target])
1524
+ if source is not None:
1525
+ return newsim[source]
1526
+ return newsim
1527
+
1528
+
1529
+ @nx._dispatchable(edge_attrs="weight")
1530
+ def panther_similarity(
1531
+ G, source, k=5, path_length=5, c=0.5, delta=0.1, eps=None, weight="weight"
1532
+ ):
1533
+ r"""Returns the Panther similarity of nodes in the graph `G` to node ``v``.
1534
+
1535
+ Panther is a similarity metric that says "two objects are considered
1536
+ to be similar if they frequently appear on the same paths." [1]_.
1537
+
1538
+ Parameters
1539
+ ----------
1540
+ G : NetworkX graph
1541
+ A NetworkX graph
1542
+ source : node
1543
+ Source node for which to find the top `k` similar other nodes
1544
+ k : int (default = 5)
1545
+ The number of most similar nodes to return.
1546
+ path_length : int (default = 5)
1547
+ How long the randomly generated paths should be (``T`` in [1]_)
1548
+ c : float (default = 0.5)
1549
+ A universal positive constant used to scale the number
1550
+ of sample random paths to generate.
1551
+ delta : float (default = 0.1)
1552
+ The probability that the similarity $S$ is not an epsilon-approximation to (R, phi),
1553
+ where $R$ is the number of random paths and $\phi$ is the probability
1554
+ that an element sampled from a set $A \subseteq D$, where $D$ is the domain.
1555
+ eps : float or None (default = None)
1556
+ The error bound. Per [1]_, a good value is ``sqrt(1/|E|)``. Therefore,
1557
+ if no value is provided, the recommended computed value will be used.
1558
+ weight : string or None, optional (default="weight")
1559
+ The name of an edge attribute that holds the numerical value
1560
+ used as a weight. If None then each edge has weight 1.
1561
+
1562
+ Returns
1563
+ -------
1564
+ similarity : dictionary
1565
+ Dictionary of nodes to similarity scores (as floats). Note:
1566
+ the self-similarity (i.e., ``v``) will not be included in
1567
+ the returned dictionary. So, for ``k = 5``, a dictionary of
1568
+ top 4 nodes and their similarity scores will be returned.
1569
+
1570
+ Raises
1571
+ ------
1572
+ NetworkXUnfeasible
1573
+ If `source` is an isolated node.
1574
+
1575
+ NodeNotFound
1576
+ If `source` is not in `G`.
1577
+
1578
+ Notes
1579
+ -----
1580
+ The isolated nodes in `G` are ignored.
1581
+
1582
+ Examples
1583
+ --------
1584
+ >>> G = nx.star_graph(10)
1585
+ >>> sim = nx.panther_similarity(G, 0)
1586
+
1587
+ References
1588
+ ----------
1589
+ .. [1] Zhang, J., Tang, J., Ma, C., Tong, H., Jing, Y., & Li, J.
1590
+ Panther: Fast top-k similarity search on large networks.
1591
+ In Proceedings of the ACM SIGKDD International Conference
1592
+ on Knowledge Discovery and Data Mining (Vol. 2015-August, pp. 1445–1454).
1593
+ Association for Computing Machinery. https://doi.org/10.1145/2783258.2783267.
1594
+ """
1595
+ import numpy as np
1596
+
1597
+ if source not in G:
1598
+ raise nx.NodeNotFound(f"Source node {source} not in G")
1599
+
1600
+ isolates = set(nx.isolates(G))
1601
+
1602
+ if source in isolates:
1603
+ raise nx.NetworkXUnfeasible(
1604
+ f"Panther similarity is not defined for the isolated source node {source}."
1605
+ )
1606
+
1607
+ G = G.subgraph([node for node in G.nodes if node not in isolates]).copy()
1608
+
1609
+ num_nodes = G.number_of_nodes()
1610
+ if num_nodes < k:
1611
+ warnings.warn(
1612
+ f"Number of nodes is {num_nodes}, but requested k is {k}. "
1613
+ "Setting k to number of nodes."
1614
+ )
1615
+ k = num_nodes
1616
+ # According to [1], they empirically determined
1617
+ # a good value for ``eps`` to be sqrt( 1 / |E| )
1618
+ if eps is None:
1619
+ eps = np.sqrt(1.0 / G.number_of_edges())
1620
+
1621
+ inv_node_map = {name: index for index, name in enumerate(G.nodes)}
1622
+ node_map = np.array(G)
1623
+
1624
+ # Calculate the sample size ``R`` for how many paths
1625
+ # to randomly generate
1626
+ t_choose_2 = math.comb(path_length, 2)
1627
+ sample_size = int((c / eps**2) * (np.log2(t_choose_2) + 1 + np.log(1 / delta)))
1628
+ index_map = {}
1629
+ _ = list(
1630
+ generate_random_paths(
1631
+ G, sample_size, path_length=path_length, index_map=index_map, weight=weight
1632
+ )
1633
+ )
1634
+ S = np.zeros(num_nodes)
1635
+
1636
+ inv_sample_size = 1 / sample_size
1637
+
1638
+ source_paths = set(index_map[source])
1639
+
1640
+ # Calculate the path similarities
1641
+ # between ``source`` (v) and ``node`` (v_j)
1642
+ # using our inverted index mapping of
1643
+ # vertices to paths
1644
+ for node, paths in index_map.items():
1645
+ # Only consider paths where both
1646
+ # ``node`` and ``source`` are present
1647
+ common_paths = source_paths.intersection(paths)
1648
+ S[inv_node_map[node]] = len(common_paths) * inv_sample_size
1649
+
1650
+ # Retrieve top ``k`` similar
1651
+ # Note: the below performed anywhere from 4-10x faster
1652
+ # (depending on input sizes) vs the equivalent ``np.argsort(S)[::-1]``
1653
+ top_k_unsorted = np.argpartition(S, -k)[-k:]
1654
+ top_k_sorted = top_k_unsorted[np.argsort(S[top_k_unsorted])][::-1]
1655
+
1656
+ # Add back the similarity scores
1657
+ top_k_with_val = dict(
1658
+ zip(node_map[top_k_sorted].tolist(), S[top_k_sorted].tolist())
1659
+ )
1660
+
1661
+ # Remove the self-similarity
1662
+ top_k_with_val.pop(source, None)
1663
+ return top_k_with_val
1664
+
1665
+
1666
+ @np_random_state(5)
1667
+ @nx._dispatchable(edge_attrs="weight")
1668
+ def generate_random_paths(
1669
+ G, sample_size, path_length=5, index_map=None, weight="weight", seed=None
1670
+ ):
1671
+ """Randomly generate `sample_size` paths of length `path_length`.
1672
+
1673
+ Parameters
1674
+ ----------
1675
+ G : NetworkX graph
1676
+ A NetworkX graph
1677
+ sample_size : integer
1678
+ The number of paths to generate. This is ``R`` in [1]_.
1679
+ path_length : integer (default = 5)
1680
+ The maximum size of the path to randomly generate.
1681
+ This is ``T`` in [1]_. According to the paper, ``T >= 5`` is
1682
+ recommended.
1683
+ index_map : dictionary, optional
1684
+ If provided, this will be populated with the inverted
1685
+ index of nodes mapped to the set of generated random path
1686
+ indices within ``paths``.
1687
+ weight : string or None, optional (default="weight")
1688
+ The name of an edge attribute that holds the numerical value
1689
+ used as a weight. If None then each edge has weight 1.
1690
+ seed : integer, random_state, or None (default)
1691
+ Indicator of random number generation state.
1692
+ See :ref:`Randomness<randomness>`.
1693
+
1694
+ Returns
1695
+ -------
1696
+ paths : generator of lists
1697
+ Generator of `sample_size` paths each with length `path_length`.
1698
+
1699
+ Examples
1700
+ --------
1701
+ Note that the return value is the list of paths:
1702
+
1703
+ >>> G = nx.star_graph(3)
1704
+ >>> random_path = nx.generate_random_paths(G, 2)
1705
+
1706
+ By passing a dictionary into `index_map`, it will build an
1707
+ inverted index mapping of nodes to the paths in which that node is present:
1708
+
1709
+ >>> G = nx.star_graph(3)
1710
+ >>> index_map = {}
1711
+ >>> random_path = nx.generate_random_paths(G, 3, index_map=index_map)
1712
+ >>> paths_containing_node_0 = [
1713
+ ... random_path[path_idx] for path_idx in index_map.get(0, [])
1714
+ ... ]
1715
+
1716
+ References
1717
+ ----------
1718
+ .. [1] Zhang, J., Tang, J., Ma, C., Tong, H., Jing, Y., & Li, J.
1719
+ Panther: Fast top-k similarity search on large networks.
1720
+ In Proceedings of the ACM SIGKDD International Conference
1721
+ on Knowledge Discovery and Data Mining (Vol. 2015-August, pp. 1445–1454).
1722
+ Association for Computing Machinery. https://doi.org/10.1145/2783258.2783267.
1723
+ """
1724
+ import numpy as np
1725
+
1726
+ randint_fn = (
1727
+ seed.integers if isinstance(seed, np.random.Generator) else seed.randint
1728
+ )
1729
+
1730
+ # Calculate transition probabilities between
1731
+ # every pair of vertices according to Eq. (3)
1732
+ adj_mat = nx.to_numpy_array(G, weight=weight)
1733
+ inv_row_sums = np.reciprocal(adj_mat.sum(axis=1)).reshape(-1, 1)
1734
+ transition_probabilities = adj_mat * inv_row_sums
1735
+
1736
+ node_map = list(G)
1737
+ num_nodes = G.number_of_nodes()
1738
+
1739
+ for path_index in range(sample_size):
1740
+ # Sample current vertex v = v_i uniformly at random
1741
+ node_index = randint_fn(num_nodes)
1742
+ node = node_map[node_index]
1743
+
1744
+ # Add v into p_r and add p_r into the path set
1745
+ # of v, i.e., P_v
1746
+ path = [node]
1747
+
1748
+ # Build the inverted index (P_v) of vertices to paths
1749
+ if index_map is not None:
1750
+ if node in index_map:
1751
+ index_map[node].add(path_index)
1752
+ else:
1753
+ index_map[node] = {path_index}
1754
+
1755
+ starting_index = node_index
1756
+ for _ in range(path_length):
1757
+ # Randomly sample a neighbor (v_j) according
1758
+ # to transition probabilities from ``node`` (v) to its neighbors
1759
+ nbr_index = seed.choice(
1760
+ num_nodes, p=transition_probabilities[starting_index]
1761
+ )
1762
+
1763
+ # Set current vertex (v = v_j)
1764
+ starting_index = nbr_index
1765
+
1766
+ # Add v into p_r
1767
+ nbr_node = node_map[nbr_index]
1768
+ path.append(nbr_node)
1769
+
1770
+ # Add p_r into P_v
1771
+ if index_map is not None:
1772
+ if nbr_node in index_map:
1773
+ index_map[nbr_node].add(path_index)
1774
+ else:
1775
+ index_map[nbr_node] = {path_index}
1776
+
1777
+ yield path
venv/lib/python3.10/site-packages/networkx/algorithms/simple_paths.py ADDED
@@ -0,0 +1,937 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from heapq import heappop, heappush
2
+ from itertools import count
3
+
4
+ import networkx as nx
5
+ from networkx.algorithms.shortest_paths.weighted import _weight_function
6
+ from networkx.utils import not_implemented_for, pairwise
7
+
8
+ __all__ = [
9
+ "all_simple_paths",
10
+ "is_simple_path",
11
+ "shortest_simple_paths",
12
+ "all_simple_edge_paths",
13
+ ]
14
+
15
+
16
+ @nx._dispatchable
17
+ def is_simple_path(G, nodes):
18
+ """Returns True if and only if `nodes` form a simple path in `G`.
19
+
20
+ A *simple path* in a graph is a nonempty sequence of nodes in which
21
+ no node appears more than once in the sequence, and each adjacent
22
+ pair of nodes in the sequence is adjacent in the graph.
23
+
24
+ Parameters
25
+ ----------
26
+ G : graph
27
+ A NetworkX graph.
28
+ nodes : list
29
+ A list of one or more nodes in the graph `G`.
30
+
31
+ Returns
32
+ -------
33
+ bool
34
+ Whether the given list of nodes represents a simple path in `G`.
35
+
36
+ Notes
37
+ -----
38
+ An empty list of nodes is not a path but a list of one node is a
39
+ path. Here's an explanation why.
40
+
41
+ This function operates on *node paths*. One could also consider
42
+ *edge paths*. There is a bijection between node paths and edge
43
+ paths.
44
+
45
+ The *length of a path* is the number of edges in the path, so a list
46
+ of nodes of length *n* corresponds to a path of length *n* - 1.
47
+ Thus the smallest edge path would be a list of zero edges, the empty
48
+ path. This corresponds to a list of one node.
49
+
50
+ To convert between a node path and an edge path, you can use code
51
+ like the following::
52
+
53
+ >>> from networkx.utils import pairwise
54
+ >>> nodes = [0, 1, 2, 3]
55
+ >>> edges = list(pairwise(nodes))
56
+ >>> edges
57
+ [(0, 1), (1, 2), (2, 3)]
58
+ >>> nodes = [edges[0][0]] + [v for u, v in edges]
59
+ >>> nodes
60
+ [0, 1, 2, 3]
61
+
62
+ Examples
63
+ --------
64
+ >>> G = nx.cycle_graph(4)
65
+ >>> nx.is_simple_path(G, [2, 3, 0])
66
+ True
67
+ >>> nx.is_simple_path(G, [0, 2])
68
+ False
69
+
70
+ """
71
+ # The empty list is not a valid path. Could also return
72
+ # NetworkXPointlessConcept here.
73
+ if len(nodes) == 0:
74
+ return False
75
+
76
+ # If the list is a single node, just check that the node is actually
77
+ # in the graph.
78
+ if len(nodes) == 1:
79
+ return nodes[0] in G
80
+
81
+ # check that all nodes in the list are in the graph, if at least one
82
+ # is not in the graph, then this is not a simple path
83
+ if not all(n in G for n in nodes):
84
+ return False
85
+
86
+ # If the list contains repeated nodes, then it's not a simple path
87
+ if len(set(nodes)) != len(nodes):
88
+ return False
89
+
90
+ # Test that each adjacent pair of nodes is adjacent.
91
+ return all(v in G[u] for u, v in pairwise(nodes))
92
+
93
+
94
+ @nx._dispatchable
95
+ def all_simple_paths(G, source, target, cutoff=None):
96
+ """Generate all simple paths in the graph G from source to target.
97
+
98
+ A simple path is a path with no repeated nodes.
99
+
100
+ Parameters
101
+ ----------
102
+ G : NetworkX graph
103
+
104
+ source : node
105
+ Starting node for path
106
+
107
+ target : nodes
108
+ Single node or iterable of nodes at which to end path
109
+
110
+ cutoff : integer, optional
111
+ Depth to stop the search. Only paths of length <= cutoff are returned.
112
+
113
+ Returns
114
+ -------
115
+ path_generator: generator
116
+ A generator that produces lists of simple paths. If there are no paths
117
+ between the source and target within the given cutoff the generator
118
+ produces no output. If it is possible to traverse the same sequence of
119
+ nodes in multiple ways, namely through parallel edges, then it will be
120
+ returned multiple times (once for each viable edge combination).
121
+
122
+ Examples
123
+ --------
124
+ This iterator generates lists of nodes::
125
+
126
+ >>> G = nx.complete_graph(4)
127
+ >>> for path in nx.all_simple_paths(G, source=0, target=3):
128
+ ... print(path)
129
+ ...
130
+ [0, 1, 2, 3]
131
+ [0, 1, 3]
132
+ [0, 2, 1, 3]
133
+ [0, 2, 3]
134
+ [0, 3]
135
+
136
+ You can generate only those paths that are shorter than a certain
137
+ length by using the `cutoff` keyword argument::
138
+
139
+ >>> paths = nx.all_simple_paths(G, source=0, target=3, cutoff=2)
140
+ >>> print(list(paths))
141
+ [[0, 1, 3], [0, 2, 3], [0, 3]]
142
+
143
+ To get each path as the corresponding list of edges, you can use the
144
+ :func:`networkx.utils.pairwise` helper function::
145
+
146
+ >>> paths = nx.all_simple_paths(G, source=0, target=3)
147
+ >>> for path in map(nx.utils.pairwise, paths):
148
+ ... print(list(path))
149
+ [(0, 1), (1, 2), (2, 3)]
150
+ [(0, 1), (1, 3)]
151
+ [(0, 2), (2, 1), (1, 3)]
152
+ [(0, 2), (2, 3)]
153
+ [(0, 3)]
154
+
155
+ Pass an iterable of nodes as target to generate all paths ending in any of several nodes::
156
+
157
+ >>> G = nx.complete_graph(4)
158
+ >>> for path in nx.all_simple_paths(G, source=0, target=[3, 2]):
159
+ ... print(path)
160
+ ...
161
+ [0, 1, 2]
162
+ [0, 1, 2, 3]
163
+ [0, 1, 3]
164
+ [0, 1, 3, 2]
165
+ [0, 2]
166
+ [0, 2, 1, 3]
167
+ [0, 2, 3]
168
+ [0, 3]
169
+ [0, 3, 1, 2]
170
+ [0, 3, 2]
171
+
172
+ The singleton path from ``source`` to itself is considered a simple path and is
173
+ included in the results:
174
+
175
+ >>> G = nx.empty_graph(5)
176
+ >>> list(nx.all_simple_paths(G, source=0, target=0))
177
+ [[0]]
178
+
179
+ >>> G = nx.path_graph(3)
180
+ >>> list(nx.all_simple_paths(G, source=0, target={0, 1, 2}))
181
+ [[0], [0, 1], [0, 1, 2]]
182
+
183
+ Iterate over each path from the root nodes to the leaf nodes in a
184
+ directed acyclic graph using a functional programming approach::
185
+
186
+ >>> from itertools import chain
187
+ >>> from itertools import product
188
+ >>> from itertools import starmap
189
+ >>> from functools import partial
190
+ >>>
191
+ >>> chaini = chain.from_iterable
192
+ >>>
193
+ >>> G = nx.DiGraph([(0, 1), (1, 2), (0, 3), (3, 2)])
194
+ >>> roots = (v for v, d in G.in_degree() if d == 0)
195
+ >>> leaves = (v for v, d in G.out_degree() if d == 0)
196
+ >>> all_paths = partial(nx.all_simple_paths, G)
197
+ >>> list(chaini(starmap(all_paths, product(roots, leaves))))
198
+ [[0, 1, 2], [0, 3, 2]]
199
+
200
+ The same list computed using an iterative approach::
201
+
202
+ >>> G = nx.DiGraph([(0, 1), (1, 2), (0, 3), (3, 2)])
203
+ >>> roots = (v for v, d in G.in_degree() if d == 0)
204
+ >>> leaves = (v for v, d in G.out_degree() if d == 0)
205
+ >>> all_paths = []
206
+ >>> for root in roots:
207
+ ... for leaf in leaves:
208
+ ... paths = nx.all_simple_paths(G, root, leaf)
209
+ ... all_paths.extend(paths)
210
+ >>> all_paths
211
+ [[0, 1, 2], [0, 3, 2]]
212
+
213
+ Iterate over each path from the root nodes to the leaf nodes in a
214
+ directed acyclic graph passing all leaves together to avoid unnecessary
215
+ compute::
216
+
217
+ >>> G = nx.DiGraph([(0, 1), (2, 1), (1, 3), (1, 4)])
218
+ >>> roots = (v for v, d in G.in_degree() if d == 0)
219
+ >>> leaves = [v for v, d in G.out_degree() if d == 0]
220
+ >>> all_paths = []
221
+ >>> for root in roots:
222
+ ... paths = nx.all_simple_paths(G, root, leaves)
223
+ ... all_paths.extend(paths)
224
+ >>> all_paths
225
+ [[0, 1, 3], [0, 1, 4], [2, 1, 3], [2, 1, 4]]
226
+
227
+ If parallel edges offer multiple ways to traverse a given sequence of
228
+ nodes, this sequence of nodes will be returned multiple times:
229
+
230
+ >>> G = nx.MultiDiGraph([(0, 1), (0, 1), (1, 2)])
231
+ >>> list(nx.all_simple_paths(G, 0, 2))
232
+ [[0, 1, 2], [0, 1, 2]]
233
+
234
+ Notes
235
+ -----
236
+ This algorithm uses a modified depth-first search to generate the
237
+ paths [1]_. A single path can be found in $O(V+E)$ time but the
238
+ number of simple paths in a graph can be very large, e.g. $O(n!)$ in
239
+ the complete graph of order $n$.
240
+
241
+ This function does not check that a path exists between `source` and
242
+ `target`. For large graphs, this may result in very long runtimes.
243
+ Consider using `has_path` to check that a path exists between `source` and
244
+ `target` before calling this function on large graphs.
245
+
246
+ References
247
+ ----------
248
+ .. [1] R. Sedgewick, "Algorithms in C, Part 5: Graph Algorithms",
249
+ Addison Wesley Professional, 3rd ed., 2001.
250
+
251
+ See Also
252
+ --------
253
+ all_shortest_paths, shortest_path, has_path
254
+
255
+ """
256
+ for edge_path in all_simple_edge_paths(G, source, target, cutoff):
257
+ yield [source] + [edge[1] for edge in edge_path]
258
+
259
+
260
+ @nx._dispatchable
261
+ def all_simple_edge_paths(G, source, target, cutoff=None):
262
+ """Generate lists of edges for all simple paths in G from source to target.
263
+
264
+ A simple path is a path with no repeated nodes.
265
+
266
+ Parameters
267
+ ----------
268
+ G : NetworkX graph
269
+
270
+ source : node
271
+ Starting node for path
272
+
273
+ target : nodes
274
+ Single node or iterable of nodes at which to end path
275
+
276
+ cutoff : integer, optional
277
+ Depth to stop the search. Only paths of length <= cutoff are returned.
278
+
279
+ Returns
280
+ -------
281
+ path_generator: generator
282
+ A generator that produces lists of simple paths. If there are no paths
283
+ between the source and target within the given cutoff the generator
284
+ produces no output.
285
+ For multigraphs, the list of edges have elements of the form `(u,v,k)`.
286
+ Where `k` corresponds to the edge key.
287
+
288
+ Examples
289
+ --------
290
+
291
+ Print the simple path edges of a Graph::
292
+
293
+ >>> g = nx.Graph([(1, 2), (2, 4), (1, 3), (3, 4)])
294
+ >>> for path in sorted(nx.all_simple_edge_paths(g, 1, 4)):
295
+ ... print(path)
296
+ [(1, 2), (2, 4)]
297
+ [(1, 3), (3, 4)]
298
+
299
+ Print the simple path edges of a MultiGraph. Returned edges come with
300
+ their associated keys::
301
+
302
+ >>> mg = nx.MultiGraph()
303
+ >>> mg.add_edge(1, 2, key="k0")
304
+ 'k0'
305
+ >>> mg.add_edge(1, 2, key="k1")
306
+ 'k1'
307
+ >>> mg.add_edge(2, 3, key="k0")
308
+ 'k0'
309
+ >>> for path in sorted(nx.all_simple_edge_paths(mg, 1, 3)):
310
+ ... print(path)
311
+ [(1, 2, 'k0'), (2, 3, 'k0')]
312
+ [(1, 2, 'k1'), (2, 3, 'k0')]
313
+
314
+ When ``source`` is one of the targets, the empty path starting and ending at
315
+ ``source`` without traversing any edge is considered a valid simple edge path
316
+ and is included in the results:
317
+
318
+ >>> G = nx.Graph()
319
+ >>> G.add_node(0)
320
+ >>> paths = list(nx.all_simple_edge_paths(G, 0, 0))
321
+ >>> for path in paths:
322
+ ... print(path)
323
+ []
324
+ >>> len(paths)
325
+ 1
326
+
327
+
328
+ Notes
329
+ -----
330
+ This algorithm uses a modified depth-first search to generate the
331
+ paths [1]_. A single path can be found in $O(V+E)$ time but the
332
+ number of simple paths in a graph can be very large, e.g. $O(n!)$ in
333
+ the complete graph of order $n$.
334
+
335
+ References
336
+ ----------
337
+ .. [1] R. Sedgewick, "Algorithms in C, Part 5: Graph Algorithms",
338
+ Addison Wesley Professional, 3rd ed., 2001.
339
+
340
+ See Also
341
+ --------
342
+ all_shortest_paths, shortest_path, all_simple_paths
343
+
344
+ """
345
+ if source not in G:
346
+ raise nx.NodeNotFound(f"source node {source} not in graph")
347
+
348
+ if target in G:
349
+ targets = {target}
350
+ else:
351
+ try:
352
+ targets = set(target)
353
+ except TypeError as err:
354
+ raise nx.NodeNotFound(f"target node {target} not in graph") from err
355
+
356
+ cutoff = cutoff if cutoff is not None else len(G) - 1
357
+
358
+ if cutoff >= 0 and targets:
359
+ yield from _all_simple_edge_paths(G, source, targets, cutoff)
360
+
361
+
362
+ def _all_simple_edge_paths(G, source, targets, cutoff):
363
+ # We simulate recursion with a stack, keeping the current path being explored
364
+ # and the outgoing edge iterators at each point in the stack.
365
+ # To avoid unnecessary checks, the loop is structured in a way such that a path
366
+ # is considered for yielding only after a new node/edge is added.
367
+ # We bootstrap the search by adding a dummy iterator to the stack that only yields
368
+ # a dummy edge to source (so that the trivial path has a chance of being included).
369
+
370
+ get_edges = (
371
+ (lambda node: G.edges(node, keys=True))
372
+ if G.is_multigraph()
373
+ else (lambda node: G.edges(node))
374
+ )
375
+
376
+ # The current_path is a dictionary that maps nodes in the path to the edge that was
377
+ # used to enter that node (instead of a list of edges) because we want both a fast
378
+ # membership test for nodes in the path and the preservation of insertion order.
379
+ current_path = {None: None}
380
+ stack = [iter([(None, source)])]
381
+
382
+ while stack:
383
+ # 1. Try to extend the current path.
384
+ next_edge = next((e for e in stack[-1] if e[1] not in current_path), None)
385
+ if next_edge is None:
386
+ # All edges of the last node in the current path have been explored.
387
+ stack.pop()
388
+ current_path.popitem()
389
+ continue
390
+ previous_node, next_node, *_ = next_edge
391
+
392
+ # 2. Check if we've reached a target.
393
+ if next_node in targets:
394
+ yield (list(current_path.values()) + [next_edge])[2:] # remove dummy edge
395
+
396
+ # 3. Only expand the search through the next node if it makes sense.
397
+ if len(current_path) - 1 < cutoff and (
398
+ targets - current_path.keys() - {next_node}
399
+ ):
400
+ current_path[next_node] = next_edge
401
+ stack.append(iter(get_edges(next_node)))
402
+
403
+
404
+ @not_implemented_for("multigraph")
405
+ @nx._dispatchable(edge_attrs="weight")
406
+ def shortest_simple_paths(G, source, target, weight=None):
407
+ """Generate all simple paths in the graph G from source to target,
408
+ starting from shortest ones.
409
+
410
+ A simple path is a path with no repeated nodes.
411
+
412
+ If a weighted shortest path search is to be used, no negative weights
413
+ are allowed.
414
+
415
+ Parameters
416
+ ----------
417
+ G : NetworkX graph
418
+
419
+ source : node
420
+ Starting node for path
421
+
422
+ target : node
423
+ Ending node for path
424
+
425
+ weight : string or function
426
+ If it is a string, it is the name of the edge attribute to be
427
+ used as a weight.
428
+
429
+ If it is a function, the weight of an edge is the value returned
430
+ by the function. The function must accept exactly three positional
431
+ arguments: the two endpoints of an edge and the dictionary of edge
432
+ attributes for that edge. The function must return a number.
433
+
434
+ If None all edges are considered to have unit weight. Default
435
+ value None.
436
+
437
+ Returns
438
+ -------
439
+ path_generator: generator
440
+ A generator that produces lists of simple paths, in order from
441
+ shortest to longest.
442
+
443
+ Raises
444
+ ------
445
+ NetworkXNoPath
446
+ If no path exists between source and target.
447
+
448
+ NetworkXError
449
+ If source or target nodes are not in the input graph.
450
+
451
+ NetworkXNotImplemented
452
+ If the input graph is a Multi[Di]Graph.
453
+
454
+ Examples
455
+ --------
456
+
457
+ >>> G = nx.cycle_graph(7)
458
+ >>> paths = list(nx.shortest_simple_paths(G, 0, 3))
459
+ >>> print(paths)
460
+ [[0, 1, 2, 3], [0, 6, 5, 4, 3]]
461
+
462
+ You can use this function to efficiently compute the k shortest/best
463
+ paths between two nodes.
464
+
465
+ >>> from itertools import islice
466
+ >>> def k_shortest_paths(G, source, target, k, weight=None):
467
+ ... return list(
468
+ ... islice(nx.shortest_simple_paths(G, source, target, weight=weight), k)
469
+ ... )
470
+ >>> for path in k_shortest_paths(G, 0, 3, 2):
471
+ ... print(path)
472
+ [0, 1, 2, 3]
473
+ [0, 6, 5, 4, 3]
474
+
475
+ Notes
476
+ -----
477
+ This procedure is based on algorithm by Jin Y. Yen [1]_. Finding
478
+ the first $K$ paths requires $O(KN^3)$ operations.
479
+
480
+ See Also
481
+ --------
482
+ all_shortest_paths
483
+ shortest_path
484
+ all_simple_paths
485
+
486
+ References
487
+ ----------
488
+ .. [1] Jin Y. Yen, "Finding the K Shortest Loopless Paths in a
489
+ Network", Management Science, Vol. 17, No. 11, Theory Series
490
+ (Jul., 1971), pp. 712-716.
491
+
492
+ """
493
+ if source not in G:
494
+ raise nx.NodeNotFound(f"source node {source} not in graph")
495
+
496
+ if target not in G:
497
+ raise nx.NodeNotFound(f"target node {target} not in graph")
498
+
499
+ if weight is None:
500
+ length_func = len
501
+ shortest_path_func = _bidirectional_shortest_path
502
+ else:
503
+ wt = _weight_function(G, weight)
504
+
505
+ def length_func(path):
506
+ return sum(
507
+ wt(u, v, G.get_edge_data(u, v)) for (u, v) in zip(path, path[1:])
508
+ )
509
+
510
+ shortest_path_func = _bidirectional_dijkstra
511
+
512
+ listA = []
513
+ listB = PathBuffer()
514
+ prev_path = None
515
+ while True:
516
+ if not prev_path:
517
+ length, path = shortest_path_func(G, source, target, weight=weight)
518
+ listB.push(length, path)
519
+ else:
520
+ ignore_nodes = set()
521
+ ignore_edges = set()
522
+ for i in range(1, len(prev_path)):
523
+ root = prev_path[:i]
524
+ root_length = length_func(root)
525
+ for path in listA:
526
+ if path[:i] == root:
527
+ ignore_edges.add((path[i - 1], path[i]))
528
+ try:
529
+ length, spur = shortest_path_func(
530
+ G,
531
+ root[-1],
532
+ target,
533
+ ignore_nodes=ignore_nodes,
534
+ ignore_edges=ignore_edges,
535
+ weight=weight,
536
+ )
537
+ path = root[:-1] + spur
538
+ listB.push(root_length + length, path)
539
+ except nx.NetworkXNoPath:
540
+ pass
541
+ ignore_nodes.add(root[-1])
542
+
543
+ if listB:
544
+ path = listB.pop()
545
+ yield path
546
+ listA.append(path)
547
+ prev_path = path
548
+ else:
549
+ break
550
+
551
+
552
+ class PathBuffer:
553
+ def __init__(self):
554
+ self.paths = set()
555
+ self.sortedpaths = []
556
+ self.counter = count()
557
+
558
+ def __len__(self):
559
+ return len(self.sortedpaths)
560
+
561
+ def push(self, cost, path):
562
+ hashable_path = tuple(path)
563
+ if hashable_path not in self.paths:
564
+ heappush(self.sortedpaths, (cost, next(self.counter), path))
565
+ self.paths.add(hashable_path)
566
+
567
+ def pop(self):
568
+ (cost, num, path) = heappop(self.sortedpaths)
569
+ hashable_path = tuple(path)
570
+ self.paths.remove(hashable_path)
571
+ return path
572
+
573
+
574
+ def _bidirectional_shortest_path(
575
+ G, source, target, ignore_nodes=None, ignore_edges=None, weight=None
576
+ ):
577
+ """Returns the shortest path between source and target ignoring
578
+ nodes and edges in the containers ignore_nodes and ignore_edges.
579
+
580
+ This is a custom modification of the standard bidirectional shortest
581
+ path implementation at networkx.algorithms.unweighted
582
+
583
+ Parameters
584
+ ----------
585
+ G : NetworkX graph
586
+
587
+ source : node
588
+ starting node for path
589
+
590
+ target : node
591
+ ending node for path
592
+
593
+ ignore_nodes : container of nodes
594
+ nodes to ignore, optional
595
+
596
+ ignore_edges : container of edges
597
+ edges to ignore, optional
598
+
599
+ weight : None
600
+ This function accepts a weight argument for convenience of
601
+ shortest_simple_paths function. It will be ignored.
602
+
603
+ Returns
604
+ -------
605
+ path: list
606
+ List of nodes in a path from source to target.
607
+
608
+ Raises
609
+ ------
610
+ NetworkXNoPath
611
+ If no path exists between source and target.
612
+
613
+ See Also
614
+ --------
615
+ shortest_path
616
+
617
+ """
618
+ # call helper to do the real work
619
+ results = _bidirectional_pred_succ(G, source, target, ignore_nodes, ignore_edges)
620
+ pred, succ, w = results
621
+
622
+ # build path from pred+w+succ
623
+ path = []
624
+ # from w to target
625
+ while w is not None:
626
+ path.append(w)
627
+ w = succ[w]
628
+ # from source to w
629
+ w = pred[path[0]]
630
+ while w is not None:
631
+ path.insert(0, w)
632
+ w = pred[w]
633
+
634
+ return len(path), path
635
+
636
+
637
+ def _bidirectional_pred_succ(G, source, target, ignore_nodes=None, ignore_edges=None):
638
+ """Bidirectional shortest path helper.
639
+ Returns (pred,succ,w) where
640
+ pred is a dictionary of predecessors from w to the source, and
641
+ succ is a dictionary of successors from w to the target.
642
+ """
643
+ # does BFS from both source and target and meets in the middle
644
+ if ignore_nodes and (source in ignore_nodes or target in ignore_nodes):
645
+ raise nx.NetworkXNoPath(f"No path between {source} and {target}.")
646
+ if target == source:
647
+ return ({target: None}, {source: None}, source)
648
+
649
+ # handle either directed or undirected
650
+ if G.is_directed():
651
+ Gpred = G.predecessors
652
+ Gsucc = G.successors
653
+ else:
654
+ Gpred = G.neighbors
655
+ Gsucc = G.neighbors
656
+
657
+ # support optional nodes filter
658
+ if ignore_nodes:
659
+
660
+ def filter_iter(nodes):
661
+ def iterate(v):
662
+ for w in nodes(v):
663
+ if w not in ignore_nodes:
664
+ yield w
665
+
666
+ return iterate
667
+
668
+ Gpred = filter_iter(Gpred)
669
+ Gsucc = filter_iter(Gsucc)
670
+
671
+ # support optional edges filter
672
+ if ignore_edges:
673
+ if G.is_directed():
674
+
675
+ def filter_pred_iter(pred_iter):
676
+ def iterate(v):
677
+ for w in pred_iter(v):
678
+ if (w, v) not in ignore_edges:
679
+ yield w
680
+
681
+ return iterate
682
+
683
+ def filter_succ_iter(succ_iter):
684
+ def iterate(v):
685
+ for w in succ_iter(v):
686
+ if (v, w) not in ignore_edges:
687
+ yield w
688
+
689
+ return iterate
690
+
691
+ Gpred = filter_pred_iter(Gpred)
692
+ Gsucc = filter_succ_iter(Gsucc)
693
+
694
+ else:
695
+
696
+ def filter_iter(nodes):
697
+ def iterate(v):
698
+ for w in nodes(v):
699
+ if (v, w) not in ignore_edges and (w, v) not in ignore_edges:
700
+ yield w
701
+
702
+ return iterate
703
+
704
+ Gpred = filter_iter(Gpred)
705
+ Gsucc = filter_iter(Gsucc)
706
+
707
+ # predecessor and successors in search
708
+ pred = {source: None}
709
+ succ = {target: None}
710
+
711
+ # initialize fringes, start with forward
712
+ forward_fringe = [source]
713
+ reverse_fringe = [target]
714
+
715
+ while forward_fringe and reverse_fringe:
716
+ if len(forward_fringe) <= len(reverse_fringe):
717
+ this_level = forward_fringe
718
+ forward_fringe = []
719
+ for v in this_level:
720
+ for w in Gsucc(v):
721
+ if w not in pred:
722
+ forward_fringe.append(w)
723
+ pred[w] = v
724
+ if w in succ:
725
+ # found path
726
+ return pred, succ, w
727
+ else:
728
+ this_level = reverse_fringe
729
+ reverse_fringe = []
730
+ for v in this_level:
731
+ for w in Gpred(v):
732
+ if w not in succ:
733
+ succ[w] = v
734
+ reverse_fringe.append(w)
735
+ if w in pred:
736
+ # found path
737
+ return pred, succ, w
738
+
739
+ raise nx.NetworkXNoPath(f"No path between {source} and {target}.")
740
+
741
+
742
+ def _bidirectional_dijkstra(
743
+ G, source, target, weight="weight", ignore_nodes=None, ignore_edges=None
744
+ ):
745
+ """Dijkstra's algorithm for shortest paths using bidirectional search.
746
+
747
+ This function returns the shortest path between source and target
748
+ ignoring nodes and edges in the containers ignore_nodes and
749
+ ignore_edges.
750
+
751
+ This is a custom modification of the standard Dijkstra bidirectional
752
+ shortest path implementation at networkx.algorithms.weighted
753
+
754
+ Parameters
755
+ ----------
756
+ G : NetworkX graph
757
+
758
+ source : node
759
+ Starting node.
760
+
761
+ target : node
762
+ Ending node.
763
+
764
+ weight: string, function, optional (default='weight')
765
+ Edge data key or weight function corresponding to the edge weight
766
+
767
+ ignore_nodes : container of nodes
768
+ nodes to ignore, optional
769
+
770
+ ignore_edges : container of edges
771
+ edges to ignore, optional
772
+
773
+ Returns
774
+ -------
775
+ length : number
776
+ Shortest path length.
777
+
778
+ Returns a tuple of two dictionaries keyed by node.
779
+ The first dictionary stores distance from the source.
780
+ The second stores the path from the source to that node.
781
+
782
+ Raises
783
+ ------
784
+ NetworkXNoPath
785
+ If no path exists between source and target.
786
+
787
+ Notes
788
+ -----
789
+ Edge weight attributes must be numerical.
790
+ Distances are calculated as sums of weighted edges traversed.
791
+
792
+ In practice bidirectional Dijkstra is much more than twice as fast as
793
+ ordinary Dijkstra.
794
+
795
+ Ordinary Dijkstra expands nodes in a sphere-like manner from the
796
+ source. The radius of this sphere will eventually be the length
797
+ of the shortest path. Bidirectional Dijkstra will expand nodes
798
+ from both the source and the target, making two spheres of half
799
+ this radius. Volume of the first sphere is pi*r*r while the
800
+ others are 2*pi*r/2*r/2, making up half the volume.
801
+
802
+ This algorithm is not guaranteed to work if edge weights
803
+ are negative or are floating point numbers
804
+ (overflows and roundoff errors can cause problems).
805
+
806
+ See Also
807
+ --------
808
+ shortest_path
809
+ shortest_path_length
810
+ """
811
+ if ignore_nodes and (source in ignore_nodes or target in ignore_nodes):
812
+ raise nx.NetworkXNoPath(f"No path between {source} and {target}.")
813
+ if source == target:
814
+ if source not in G:
815
+ raise nx.NodeNotFound(f"Node {source} not in graph")
816
+ return (0, [source])
817
+
818
+ # handle either directed or undirected
819
+ if G.is_directed():
820
+ Gpred = G.predecessors
821
+ Gsucc = G.successors
822
+ else:
823
+ Gpred = G.neighbors
824
+ Gsucc = G.neighbors
825
+
826
+ # support optional nodes filter
827
+ if ignore_nodes:
828
+
829
+ def filter_iter(nodes):
830
+ def iterate(v):
831
+ for w in nodes(v):
832
+ if w not in ignore_nodes:
833
+ yield w
834
+
835
+ return iterate
836
+
837
+ Gpred = filter_iter(Gpred)
838
+ Gsucc = filter_iter(Gsucc)
839
+
840
+ # support optional edges filter
841
+ if ignore_edges:
842
+ if G.is_directed():
843
+
844
+ def filter_pred_iter(pred_iter):
845
+ def iterate(v):
846
+ for w in pred_iter(v):
847
+ if (w, v) not in ignore_edges:
848
+ yield w
849
+
850
+ return iterate
851
+
852
+ def filter_succ_iter(succ_iter):
853
+ def iterate(v):
854
+ for w in succ_iter(v):
855
+ if (v, w) not in ignore_edges:
856
+ yield w
857
+
858
+ return iterate
859
+
860
+ Gpred = filter_pred_iter(Gpred)
861
+ Gsucc = filter_succ_iter(Gsucc)
862
+
863
+ else:
864
+
865
+ def filter_iter(nodes):
866
+ def iterate(v):
867
+ for w in nodes(v):
868
+ if (v, w) not in ignore_edges and (w, v) not in ignore_edges:
869
+ yield w
870
+
871
+ return iterate
872
+
873
+ Gpred = filter_iter(Gpred)
874
+ Gsucc = filter_iter(Gsucc)
875
+
876
+ push = heappush
877
+ pop = heappop
878
+ # Init: Forward Backward
879
+ dists = [{}, {}] # dictionary of final distances
880
+ paths = [{source: [source]}, {target: [target]}] # dictionary of paths
881
+ fringe = [[], []] # heap of (distance, node) tuples for
882
+ # extracting next node to expand
883
+ seen = [{source: 0}, {target: 0}] # dictionary of distances to
884
+ # nodes seen
885
+ c = count()
886
+ # initialize fringe heap
887
+ push(fringe[0], (0, next(c), source))
888
+ push(fringe[1], (0, next(c), target))
889
+ # neighs for extracting correct neighbor information
890
+ neighs = [Gsucc, Gpred]
891
+ # variables to hold shortest discovered path
892
+ # finaldist = 1e30000
893
+ finalpath = []
894
+ dir = 1
895
+ while fringe[0] and fringe[1]:
896
+ # choose direction
897
+ # dir == 0 is forward direction and dir == 1 is back
898
+ dir = 1 - dir
899
+ # extract closest to expand
900
+ (dist, _, v) = pop(fringe[dir])
901
+ if v in dists[dir]:
902
+ # Shortest path to v has already been found
903
+ continue
904
+ # update distance
905
+ dists[dir][v] = dist # equal to seen[dir][v]
906
+ if v in dists[1 - dir]:
907
+ # if we have scanned v in both directions we are done
908
+ # we have now discovered the shortest path
909
+ return (finaldist, finalpath)
910
+
911
+ wt = _weight_function(G, weight)
912
+ for w in neighs[dir](v):
913
+ if dir == 0: # forward
914
+ minweight = wt(v, w, G.get_edge_data(v, w))
915
+ vwLength = dists[dir][v] + minweight
916
+ else: # back, must remember to change v,w->w,v
917
+ minweight = wt(w, v, G.get_edge_data(w, v))
918
+ vwLength = dists[dir][v] + minweight
919
+
920
+ if w in dists[dir]:
921
+ if vwLength < dists[dir][w]:
922
+ raise ValueError("Contradictory paths found: negative weights?")
923
+ elif w not in seen[dir] or vwLength < seen[dir][w]:
924
+ # relaxing
925
+ seen[dir][w] = vwLength
926
+ push(fringe[dir], (vwLength, next(c), w))
927
+ paths[dir][w] = paths[dir][v] + [w]
928
+ if w in seen[0] and w in seen[1]:
929
+ # see if this path is better than the already
930
+ # discovered shortest path
931
+ totaldist = seen[0][w] + seen[1][w]
932
+ if finalpath == [] or finaldist > totaldist:
933
+ finaldist = totaldist
934
+ revpath = paths[1][w][:]
935
+ revpath.reverse()
936
+ finalpath = paths[0][w] + revpath[1:]
937
+ raise nx.NetworkXNoPath(f"No path between {source} and {target}.")
venv/lib/python3.10/site-packages/networkx/algorithms/smallworld.py ADDED
@@ -0,0 +1,403 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Functions for estimating the small-world-ness of graphs.
2
+
3
+ A small world network is characterized by a small average shortest path length,
4
+ and a large clustering coefficient.
5
+
6
+ Small-worldness is commonly measured with the coefficient sigma or omega.
7
+
8
+ Both coefficients compare the average clustering coefficient and shortest path
9
+ length of a given graph against the same quantities for an equivalent random
10
+ or lattice graph.
11
+
12
+ For more information, see the Wikipedia article on small-world network [1]_.
13
+
14
+ .. [1] Small-world network:: https://en.wikipedia.org/wiki/Small-world_network
15
+
16
+ """
17
+ import networkx as nx
18
+ from networkx.utils import not_implemented_for, py_random_state
19
+
20
+ __all__ = ["random_reference", "lattice_reference", "sigma", "omega"]
21
+
22
+
23
+ @not_implemented_for("directed")
24
+ @not_implemented_for("multigraph")
25
+ @py_random_state(3)
26
+ @nx._dispatchable(returns_graph=True)
27
+ def random_reference(G, niter=1, connectivity=True, seed=None):
28
+ """Compute a random graph by swapping edges of a given graph.
29
+
30
+ Parameters
31
+ ----------
32
+ G : graph
33
+ An undirected graph with 4 or more nodes.
34
+
35
+ niter : integer (optional, default=1)
36
+ An edge is rewired approximately `niter` times.
37
+
38
+ connectivity : boolean (optional, default=True)
39
+ When True, ensure connectivity for the randomized graph.
40
+
41
+ seed : integer, random_state, or None (default)
42
+ Indicator of random number generation state.
43
+ See :ref:`Randomness<randomness>`.
44
+
45
+ Returns
46
+ -------
47
+ G : graph
48
+ The randomized graph.
49
+
50
+ Raises
51
+ ------
52
+ NetworkXError
53
+ If there are fewer than 4 nodes or 2 edges in `G`
54
+
55
+ Notes
56
+ -----
57
+ The implementation is adapted from the algorithm by Maslov and Sneppen
58
+ (2002) [1]_.
59
+
60
+ References
61
+ ----------
62
+ .. [1] Maslov, Sergei, and Kim Sneppen.
63
+ "Specificity and stability in topology of protein networks."
64
+ Science 296.5569 (2002): 910-913.
65
+ """
66
+ if len(G) < 4:
67
+ raise nx.NetworkXError("Graph has fewer than four nodes.")
68
+ if len(G.edges) < 2:
69
+ raise nx.NetworkXError("Graph has fewer that 2 edges")
70
+
71
+ from networkx.utils import cumulative_distribution, discrete_sequence
72
+
73
+ local_conn = nx.connectivity.local_edge_connectivity
74
+
75
+ G = G.copy()
76
+ keys, degrees = zip(*G.degree()) # keys, degree
77
+ cdf = cumulative_distribution(degrees) # cdf of degree
78
+ nnodes = len(G)
79
+ nedges = nx.number_of_edges(G)
80
+ niter = niter * nedges
81
+ ntries = int(nnodes * nedges / (nnodes * (nnodes - 1) / 2))
82
+ swapcount = 0
83
+
84
+ for i in range(niter):
85
+ n = 0
86
+ while n < ntries:
87
+ # pick two random edges without creating edge list
88
+ # choose source node indices from discrete distribution
89
+ (ai, ci) = discrete_sequence(2, cdistribution=cdf, seed=seed)
90
+ if ai == ci:
91
+ continue # same source, skip
92
+ a = keys[ai] # convert index to label
93
+ c = keys[ci]
94
+ # choose target uniformly from neighbors
95
+ b = seed.choice(list(G.neighbors(a)))
96
+ d = seed.choice(list(G.neighbors(c)))
97
+ if b in [a, c, d] or d in [a, b, c]:
98
+ continue # all vertices should be different
99
+
100
+ # don't create parallel edges
101
+ if (d not in G[a]) and (b not in G[c]):
102
+ G.add_edge(a, d)
103
+ G.add_edge(c, b)
104
+ G.remove_edge(a, b)
105
+ G.remove_edge(c, d)
106
+
107
+ # Check if the graph is still connected
108
+ if connectivity and local_conn(G, a, b) == 0:
109
+ # Not connected, revert the swap
110
+ G.remove_edge(a, d)
111
+ G.remove_edge(c, b)
112
+ G.add_edge(a, b)
113
+ G.add_edge(c, d)
114
+ else:
115
+ swapcount += 1
116
+ break
117
+ n += 1
118
+ return G
119
+
120
+
121
+ @not_implemented_for("directed")
122
+ @not_implemented_for("multigraph")
123
+ @py_random_state(4)
124
+ @nx._dispatchable(returns_graph=True)
125
+ def lattice_reference(G, niter=5, D=None, connectivity=True, seed=None):
126
+ """Latticize the given graph by swapping edges.
127
+
128
+ Parameters
129
+ ----------
130
+ G : graph
131
+ An undirected graph.
132
+
133
+ niter : integer (optional, default=1)
134
+ An edge is rewired approximately niter times.
135
+
136
+ D : numpy.array (optional, default=None)
137
+ Distance to the diagonal matrix.
138
+
139
+ connectivity : boolean (optional, default=True)
140
+ Ensure connectivity for the latticized graph when set to True.
141
+
142
+ seed : integer, random_state, or None (default)
143
+ Indicator of random number generation state.
144
+ See :ref:`Randomness<randomness>`.
145
+
146
+ Returns
147
+ -------
148
+ G : graph
149
+ The latticized graph.
150
+
151
+ Raises
152
+ ------
153
+ NetworkXError
154
+ If there are fewer than 4 nodes or 2 edges in `G`
155
+
156
+ Notes
157
+ -----
158
+ The implementation is adapted from the algorithm by Sporns et al. [1]_.
159
+ which is inspired from the original work by Maslov and Sneppen(2002) [2]_.
160
+
161
+ References
162
+ ----------
163
+ .. [1] Sporns, Olaf, and Jonathan D. Zwi.
164
+ "The small world of the cerebral cortex."
165
+ Neuroinformatics 2.2 (2004): 145-162.
166
+ .. [2] Maslov, Sergei, and Kim Sneppen.
167
+ "Specificity and stability in topology of protein networks."
168
+ Science 296.5569 (2002): 910-913.
169
+ """
170
+ import numpy as np
171
+
172
+ from networkx.utils import cumulative_distribution, discrete_sequence
173
+
174
+ local_conn = nx.connectivity.local_edge_connectivity
175
+
176
+ if len(G) < 4:
177
+ raise nx.NetworkXError("Graph has fewer than four nodes.")
178
+ if len(G.edges) < 2:
179
+ raise nx.NetworkXError("Graph has fewer that 2 edges")
180
+ # Instead of choosing uniformly at random from a generated edge list,
181
+ # this algorithm chooses nonuniformly from the set of nodes with
182
+ # probability weighted by degree.
183
+ G = G.copy()
184
+ keys, degrees = zip(*G.degree()) # keys, degree
185
+ cdf = cumulative_distribution(degrees) # cdf of degree
186
+
187
+ nnodes = len(G)
188
+ nedges = nx.number_of_edges(G)
189
+ if D is None:
190
+ D = np.zeros((nnodes, nnodes))
191
+ un = np.arange(1, nnodes)
192
+ um = np.arange(nnodes - 1, 0, -1)
193
+ u = np.append((0,), np.where(un < um, un, um))
194
+
195
+ for v in range(int(np.ceil(nnodes / 2))):
196
+ D[nnodes - v - 1, :] = np.append(u[v + 1 :], u[: v + 1])
197
+ D[v, :] = D[nnodes - v - 1, :][::-1]
198
+
199
+ niter = niter * nedges
200
+ # maximal number of rewiring attempts per 'niter'
201
+ max_attempts = int(nnodes * nedges / (nnodes * (nnodes - 1) / 2))
202
+
203
+ for _ in range(niter):
204
+ n = 0
205
+ while n < max_attempts:
206
+ # pick two random edges without creating edge list
207
+ # choose source node indices from discrete distribution
208
+ (ai, ci) = discrete_sequence(2, cdistribution=cdf, seed=seed)
209
+ if ai == ci:
210
+ continue # same source, skip
211
+ a = keys[ai] # convert index to label
212
+ c = keys[ci]
213
+ # choose target uniformly from neighbors
214
+ b = seed.choice(list(G.neighbors(a)))
215
+ d = seed.choice(list(G.neighbors(c)))
216
+ bi = keys.index(b)
217
+ di = keys.index(d)
218
+
219
+ if b in [a, c, d] or d in [a, b, c]:
220
+ continue # all vertices should be different
221
+
222
+ # don't create parallel edges
223
+ if (d not in G[a]) and (b not in G[c]):
224
+ if D[ai, bi] + D[ci, di] >= D[ai, ci] + D[bi, di]:
225
+ # only swap if we get closer to the diagonal
226
+ G.add_edge(a, d)
227
+ G.add_edge(c, b)
228
+ G.remove_edge(a, b)
229
+ G.remove_edge(c, d)
230
+
231
+ # Check if the graph is still connected
232
+ if connectivity and local_conn(G, a, b) == 0:
233
+ # Not connected, revert the swap
234
+ G.remove_edge(a, d)
235
+ G.remove_edge(c, b)
236
+ G.add_edge(a, b)
237
+ G.add_edge(c, d)
238
+ else:
239
+ break
240
+ n += 1
241
+
242
+ return G
243
+
244
+
245
+ @not_implemented_for("directed")
246
+ @not_implemented_for("multigraph")
247
+ @py_random_state(3)
248
+ @nx._dispatchable
249
+ def sigma(G, niter=100, nrand=10, seed=None):
250
+ """Returns the small-world coefficient (sigma) of the given graph.
251
+
252
+ The small-world coefficient is defined as:
253
+ sigma = C/Cr / L/Lr
254
+ where C and L are respectively the average clustering coefficient and
255
+ average shortest path length of G. Cr and Lr are respectively the average
256
+ clustering coefficient and average shortest path length of an equivalent
257
+ random graph.
258
+
259
+ A graph is commonly classified as small-world if sigma>1.
260
+
261
+ Parameters
262
+ ----------
263
+ G : NetworkX graph
264
+ An undirected graph.
265
+ niter : integer (optional, default=100)
266
+ Approximate number of rewiring per edge to compute the equivalent
267
+ random graph.
268
+ nrand : integer (optional, default=10)
269
+ Number of random graphs generated to compute the average clustering
270
+ coefficient (Cr) and average shortest path length (Lr).
271
+ seed : integer, random_state, or None (default)
272
+ Indicator of random number generation state.
273
+ See :ref:`Randomness<randomness>`.
274
+
275
+ Returns
276
+ -------
277
+ sigma : float
278
+ The small-world coefficient of G.
279
+
280
+ Notes
281
+ -----
282
+ The implementation is adapted from Humphries et al. [1]_ [2]_.
283
+
284
+ References
285
+ ----------
286
+ .. [1] The brainstem reticular formation is a small-world, not scale-free,
287
+ network M. D. Humphries, K. Gurney and T. J. Prescott,
288
+ Proc. Roy. Soc. B 2006 273, 503-511, doi:10.1098/rspb.2005.3354.
289
+ .. [2] Humphries and Gurney (2008).
290
+ "Network 'Small-World-Ness': A Quantitative Method for Determining
291
+ Canonical Network Equivalence".
292
+ PLoS One. 3 (4). PMID 18446219. doi:10.1371/journal.pone.0002051.
293
+ """
294
+ import numpy as np
295
+
296
+ # Compute the mean clustering coefficient and average shortest path length
297
+ # for an equivalent random graph
298
+ randMetrics = {"C": [], "L": []}
299
+ for i in range(nrand):
300
+ Gr = random_reference(G, niter=niter, seed=seed)
301
+ randMetrics["C"].append(nx.transitivity(Gr))
302
+ randMetrics["L"].append(nx.average_shortest_path_length(Gr))
303
+
304
+ C = nx.transitivity(G)
305
+ L = nx.average_shortest_path_length(G)
306
+ Cr = np.mean(randMetrics["C"])
307
+ Lr = np.mean(randMetrics["L"])
308
+
309
+ sigma = (C / Cr) / (L / Lr)
310
+
311
+ return float(sigma)
312
+
313
+
314
+ @not_implemented_for("directed")
315
+ @not_implemented_for("multigraph")
316
+ @py_random_state(3)
317
+ @nx._dispatchable
318
+ def omega(G, niter=5, nrand=10, seed=None):
319
+ """Returns the small-world coefficient (omega) of a graph
320
+
321
+ The small-world coefficient of a graph G is:
322
+
323
+ omega = Lr/L - C/Cl
324
+
325
+ where C and L are respectively the average clustering coefficient and
326
+ average shortest path length of G. Lr is the average shortest path length
327
+ of an equivalent random graph and Cl is the average clustering coefficient
328
+ of an equivalent lattice graph.
329
+
330
+ The small-world coefficient (omega) measures how much G is like a lattice
331
+ or a random graph. Negative values mean G is similar to a lattice whereas
332
+ positive values mean G is a random graph.
333
+ Values close to 0 mean that G has small-world characteristics.
334
+
335
+ Parameters
336
+ ----------
337
+ G : NetworkX graph
338
+ An undirected graph.
339
+
340
+ niter: integer (optional, default=5)
341
+ Approximate number of rewiring per edge to compute the equivalent
342
+ random graph.
343
+
344
+ nrand: integer (optional, default=10)
345
+ Number of random graphs generated to compute the maximal clustering
346
+ coefficient (Cr) and average shortest path length (Lr).
347
+
348
+ seed : integer, random_state, or None (default)
349
+ Indicator of random number generation state.
350
+ See :ref:`Randomness<randomness>`.
351
+
352
+
353
+ Returns
354
+ -------
355
+ omega : float
356
+ The small-world coefficient (omega)
357
+
358
+ Notes
359
+ -----
360
+ The implementation is adapted from the algorithm by Telesford et al. [1]_.
361
+
362
+ References
363
+ ----------
364
+ .. [1] Telesford, Joyce, Hayasaka, Burdette, and Laurienti (2011).
365
+ "The Ubiquity of Small-World Networks".
366
+ Brain Connectivity. 1 (0038): 367-75. PMC 3604768. PMID 22432451.
367
+ doi:10.1089/brain.2011.0038.
368
+ """
369
+ import numpy as np
370
+
371
+ # Compute the mean clustering coefficient and average shortest path length
372
+ # for an equivalent random graph
373
+ randMetrics = {"C": [], "L": []}
374
+
375
+ # Calculate initial average clustering coefficient which potentially will
376
+ # get replaced by higher clustering coefficients from generated lattice
377
+ # reference graphs
378
+ Cl = nx.average_clustering(G)
379
+
380
+ niter_lattice_reference = niter
381
+ niter_random_reference = niter * 2
382
+
383
+ for _ in range(nrand):
384
+ # Generate random graph
385
+ Gr = random_reference(G, niter=niter_random_reference, seed=seed)
386
+ randMetrics["L"].append(nx.average_shortest_path_length(Gr))
387
+
388
+ # Generate lattice graph
389
+ Gl = lattice_reference(G, niter=niter_lattice_reference, seed=seed)
390
+
391
+ # Replace old clustering coefficient, if clustering is higher in
392
+ # generated lattice reference
393
+ Cl_temp = nx.average_clustering(Gl)
394
+ if Cl_temp > Cl:
395
+ Cl = Cl_temp
396
+
397
+ C = nx.average_clustering(G)
398
+ L = nx.average_shortest_path_length(G)
399
+ Lr = np.mean(randMetrics["L"])
400
+
401
+ omega = (Lr / L) - (C / Cl)
402
+
403
+ return float(omega)
venv/lib/python3.10/site-packages/networkx/algorithms/sparsifiers.py ADDED
@@ -0,0 +1,295 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Functions for computing sparsifiers of graphs."""
2
+ import math
3
+
4
+ import networkx as nx
5
+ from networkx.utils import not_implemented_for, py_random_state
6
+
7
+ __all__ = ["spanner"]
8
+
9
+
10
+ @not_implemented_for("directed")
11
+ @not_implemented_for("multigraph")
12
+ @py_random_state(3)
13
+ @nx._dispatchable(edge_attrs="weight", returns_graph=True)
14
+ def spanner(G, stretch, weight=None, seed=None):
15
+ """Returns a spanner of the given graph with the given stretch.
16
+
17
+ A spanner of a graph G = (V, E) with stretch t is a subgraph
18
+ H = (V, E_S) such that E_S is a subset of E and the distance between
19
+ any pair of nodes in H is at most t times the distance between the
20
+ nodes in G.
21
+
22
+ Parameters
23
+ ----------
24
+ G : NetworkX graph
25
+ An undirected simple graph.
26
+
27
+ stretch : float
28
+ The stretch of the spanner.
29
+
30
+ weight : object
31
+ The edge attribute to use as distance.
32
+
33
+ seed : integer, random_state, or None (default)
34
+ Indicator of random number generation state.
35
+ See :ref:`Randomness<randomness>`.
36
+
37
+ Returns
38
+ -------
39
+ NetworkX graph
40
+ A spanner of the given graph with the given stretch.
41
+
42
+ Raises
43
+ ------
44
+ ValueError
45
+ If a stretch less than 1 is given.
46
+
47
+ Notes
48
+ -----
49
+ This function implements the spanner algorithm by Baswana and Sen,
50
+ see [1].
51
+
52
+ This algorithm is a randomized las vegas algorithm: The expected
53
+ running time is O(km) where k = (stretch + 1) // 2 and m is the
54
+ number of edges in G. The returned graph is always a spanner of the
55
+ given graph with the specified stretch. For weighted graphs the
56
+ number of edges in the spanner is O(k * n^(1 + 1 / k)) where k is
57
+ defined as above and n is the number of nodes in G. For unweighted
58
+ graphs the number of edges is O(n^(1 + 1 / k) + kn).
59
+
60
+ References
61
+ ----------
62
+ [1] S. Baswana, S. Sen. A Simple and Linear Time Randomized
63
+ Algorithm for Computing Sparse Spanners in Weighted Graphs.
64
+ Random Struct. Algorithms 30(4): 532-563 (2007).
65
+ """
66
+ if stretch < 1:
67
+ raise ValueError("stretch must be at least 1")
68
+
69
+ k = (stretch + 1) // 2
70
+
71
+ # initialize spanner H with empty edge set
72
+ H = nx.empty_graph()
73
+ H.add_nodes_from(G.nodes)
74
+
75
+ # phase 1: forming the clusters
76
+ # the residual graph has V' from the paper as its node set
77
+ # and E' from the paper as its edge set
78
+ residual_graph = _setup_residual_graph(G, weight)
79
+ # clustering is a dictionary that maps nodes in a cluster to the
80
+ # cluster center
81
+ clustering = {v: v for v in G.nodes}
82
+ sample_prob = math.pow(G.number_of_nodes(), -1 / k)
83
+ size_limit = 2 * math.pow(G.number_of_nodes(), 1 + 1 / k)
84
+
85
+ i = 0
86
+ while i < k - 1:
87
+ # step 1: sample centers
88
+ sampled_centers = set()
89
+ for center in set(clustering.values()):
90
+ if seed.random() < sample_prob:
91
+ sampled_centers.add(center)
92
+
93
+ # combined loop for steps 2 and 3
94
+ edges_to_add = set()
95
+ edges_to_remove = set()
96
+ new_clustering = {}
97
+ for v in residual_graph.nodes:
98
+ if clustering[v] in sampled_centers:
99
+ continue
100
+
101
+ # step 2: find neighboring (sampled) clusters and
102
+ # lightest edges to them
103
+ lightest_edge_neighbor, lightest_edge_weight = _lightest_edge_dicts(
104
+ residual_graph, clustering, v
105
+ )
106
+ neighboring_sampled_centers = (
107
+ set(lightest_edge_weight.keys()) & sampled_centers
108
+ )
109
+
110
+ # step 3: add edges to spanner
111
+ if not neighboring_sampled_centers:
112
+ # connect to each neighboring center via lightest edge
113
+ for neighbor in lightest_edge_neighbor.values():
114
+ edges_to_add.add((v, neighbor))
115
+ # remove all incident edges
116
+ for neighbor in residual_graph.adj[v]:
117
+ edges_to_remove.add((v, neighbor))
118
+
119
+ else: # there is a neighboring sampled center
120
+ closest_center = min(
121
+ neighboring_sampled_centers, key=lightest_edge_weight.get
122
+ )
123
+ closest_center_weight = lightest_edge_weight[closest_center]
124
+ closest_center_neighbor = lightest_edge_neighbor[closest_center]
125
+
126
+ edges_to_add.add((v, closest_center_neighbor))
127
+ new_clustering[v] = closest_center
128
+
129
+ # connect to centers with edge weight less than
130
+ # closest_center_weight
131
+ for center, edge_weight in lightest_edge_weight.items():
132
+ if edge_weight < closest_center_weight:
133
+ neighbor = lightest_edge_neighbor[center]
134
+ edges_to_add.add((v, neighbor))
135
+
136
+ # remove edges to centers with edge weight less than
137
+ # closest_center_weight
138
+ for neighbor in residual_graph.adj[v]:
139
+ nbr_cluster = clustering[neighbor]
140
+ nbr_weight = lightest_edge_weight[nbr_cluster]
141
+ if (
142
+ nbr_cluster == closest_center
143
+ or nbr_weight < closest_center_weight
144
+ ):
145
+ edges_to_remove.add((v, neighbor))
146
+
147
+ # check whether iteration added too many edges to spanner,
148
+ # if so repeat
149
+ if len(edges_to_add) > size_limit:
150
+ # an iteration is repeated O(1) times on expectation
151
+ continue
152
+
153
+ # iteration succeeded
154
+ i = i + 1
155
+
156
+ # actually add edges to spanner
157
+ for u, v in edges_to_add:
158
+ _add_edge_to_spanner(H, residual_graph, u, v, weight)
159
+
160
+ # actually delete edges from residual graph
161
+ residual_graph.remove_edges_from(edges_to_remove)
162
+
163
+ # copy old clustering data to new_clustering
164
+ for node, center in clustering.items():
165
+ if center in sampled_centers:
166
+ new_clustering[node] = center
167
+ clustering = new_clustering
168
+
169
+ # step 4: remove intra-cluster edges
170
+ for u in residual_graph.nodes:
171
+ for v in list(residual_graph.adj[u]):
172
+ if clustering[u] == clustering[v]:
173
+ residual_graph.remove_edge(u, v)
174
+
175
+ # update residual graph node set
176
+ for v in list(residual_graph.nodes):
177
+ if v not in clustering:
178
+ residual_graph.remove_node(v)
179
+
180
+ # phase 2: vertex-cluster joining
181
+ for v in residual_graph.nodes:
182
+ lightest_edge_neighbor, _ = _lightest_edge_dicts(residual_graph, clustering, v)
183
+ for neighbor in lightest_edge_neighbor.values():
184
+ _add_edge_to_spanner(H, residual_graph, v, neighbor, weight)
185
+
186
+ return H
187
+
188
+
189
+ def _setup_residual_graph(G, weight):
190
+ """Setup residual graph as a copy of G with unique edges weights.
191
+
192
+ The node set of the residual graph corresponds to the set V' from
193
+ the Baswana-Sen paper and the edge set corresponds to the set E'
194
+ from the paper.
195
+
196
+ This function associates distinct weights to the edges of the
197
+ residual graph (even for unweighted input graphs), as required by
198
+ the algorithm.
199
+
200
+ Parameters
201
+ ----------
202
+ G : NetworkX graph
203
+ An undirected simple graph.
204
+
205
+ weight : object
206
+ The edge attribute to use as distance.
207
+
208
+ Returns
209
+ -------
210
+ NetworkX graph
211
+ The residual graph used for the Baswana-Sen algorithm.
212
+ """
213
+ residual_graph = G.copy()
214
+
215
+ # establish unique edge weights, even for unweighted graphs
216
+ for u, v in G.edges():
217
+ if not weight:
218
+ residual_graph[u][v]["weight"] = (id(u), id(v))
219
+ else:
220
+ residual_graph[u][v]["weight"] = (G[u][v][weight], id(u), id(v))
221
+
222
+ return residual_graph
223
+
224
+
225
+ def _lightest_edge_dicts(residual_graph, clustering, node):
226
+ """Find the lightest edge to each cluster.
227
+
228
+ Searches for the minimum-weight edge to each cluster adjacent to
229
+ the given node.
230
+
231
+ Parameters
232
+ ----------
233
+ residual_graph : NetworkX graph
234
+ The residual graph used by the Baswana-Sen algorithm.
235
+
236
+ clustering : dictionary
237
+ The current clustering of the nodes.
238
+
239
+ node : node
240
+ The node from which the search originates.
241
+
242
+ Returns
243
+ -------
244
+ lightest_edge_neighbor, lightest_edge_weight : dictionary, dictionary
245
+ lightest_edge_neighbor is a dictionary that maps a center C to
246
+ a node v in the corresponding cluster such that the edge from
247
+ the given node to v is the lightest edge from the given node to
248
+ any node in cluster. lightest_edge_weight maps a center C to the
249
+ weight of the aforementioned edge.
250
+
251
+ Notes
252
+ -----
253
+ If a cluster has no node that is adjacent to the given node in the
254
+ residual graph then the center of the cluster is not a key in the
255
+ returned dictionaries.
256
+ """
257
+ lightest_edge_neighbor = {}
258
+ lightest_edge_weight = {}
259
+ for neighbor in residual_graph.adj[node]:
260
+ nbr_center = clustering[neighbor]
261
+ weight = residual_graph[node][neighbor]["weight"]
262
+ if (
263
+ nbr_center not in lightest_edge_weight
264
+ or weight < lightest_edge_weight[nbr_center]
265
+ ):
266
+ lightest_edge_neighbor[nbr_center] = neighbor
267
+ lightest_edge_weight[nbr_center] = weight
268
+ return lightest_edge_neighbor, lightest_edge_weight
269
+
270
+
271
+ def _add_edge_to_spanner(H, residual_graph, u, v, weight):
272
+ """Add the edge {u, v} to the spanner H and take weight from
273
+ the residual graph.
274
+
275
+ Parameters
276
+ ----------
277
+ H : NetworkX graph
278
+ The spanner under construction.
279
+
280
+ residual_graph : NetworkX graph
281
+ The residual graph used by the Baswana-Sen algorithm. The weight
282
+ for the edge is taken from this graph.
283
+
284
+ u : node
285
+ One endpoint of the edge.
286
+
287
+ v : node
288
+ The other endpoint of the edge.
289
+
290
+ weight : object
291
+ The edge attribute to use as distance.
292
+ """
293
+ H.add_edge(u, v)
294
+ if weight:
295
+ H[u][v][weight] = residual_graph[u][v]["weight"][0]
venv/lib/python3.10/site-packages/networkx/algorithms/structuralholes.py ADDED
@@ -0,0 +1,283 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Functions for computing measures of structural holes."""
2
+
3
+ import networkx as nx
4
+
5
+ __all__ = ["constraint", "local_constraint", "effective_size"]
6
+
7
+
8
+ @nx._dispatchable(edge_attrs="weight")
9
+ def mutual_weight(G, u, v, weight=None):
10
+ """Returns the sum of the weights of the edge from `u` to `v` and
11
+ the edge from `v` to `u` in `G`.
12
+
13
+ `weight` is the edge data key that represents the edge weight. If
14
+ the specified key is `None` or is not in the edge data for an edge,
15
+ that edge is assumed to have weight 1.
16
+
17
+ Pre-conditions: `u` and `v` must both be in `G`.
18
+
19
+ """
20
+ try:
21
+ a_uv = G[u][v].get(weight, 1)
22
+ except KeyError:
23
+ a_uv = 0
24
+ try:
25
+ a_vu = G[v][u].get(weight, 1)
26
+ except KeyError:
27
+ a_vu = 0
28
+ return a_uv + a_vu
29
+
30
+
31
+ @nx._dispatchable(edge_attrs="weight")
32
+ def normalized_mutual_weight(G, u, v, norm=sum, weight=None):
33
+ """Returns normalized mutual weight of the edges from `u` to `v`
34
+ with respect to the mutual weights of the neighbors of `u` in `G`.
35
+
36
+ `norm` specifies how the normalization factor is computed. It must
37
+ be a function that takes a single argument and returns a number.
38
+ The argument will be an iterable of mutual weights
39
+ of pairs ``(u, w)``, where ``w`` ranges over each (in- and
40
+ out-)neighbor of ``u``. Commons values for `normalization` are
41
+ ``sum`` and ``max``.
42
+
43
+ `weight` can be ``None`` or a string, if None, all edge weights
44
+ are considered equal. Otherwise holds the name of the edge
45
+ attribute used as weight.
46
+
47
+ """
48
+ scale = norm(mutual_weight(G, u, w, weight) for w in set(nx.all_neighbors(G, u)))
49
+ return 0 if scale == 0 else mutual_weight(G, u, v, weight) / scale
50
+
51
+
52
+ @nx._dispatchable(edge_attrs="weight")
53
+ def effective_size(G, nodes=None, weight=None):
54
+ r"""Returns the effective size of all nodes in the graph ``G``.
55
+
56
+ The *effective size* of a node's ego network is based on the concept
57
+ of redundancy. A person's ego network has redundancy to the extent
58
+ that her contacts are connected to each other as well. The
59
+ nonredundant part of a person's relationships is the effective
60
+ size of her ego network [1]_. Formally, the effective size of a
61
+ node $u$, denoted $e(u)$, is defined by
62
+
63
+ .. math::
64
+
65
+ e(u) = \sum_{v \in N(u) \setminus \{u\}}
66
+ \left(1 - \sum_{w \in N(v)} p_{uw} m_{vw}\right)
67
+
68
+ where $N(u)$ is the set of neighbors of $u$ and $p_{uw}$ is the
69
+ normalized mutual weight of the (directed or undirected) edges
70
+ joining $u$ and $v$, for each vertex $u$ and $v$ [1]_. And $m_{vw}$
71
+ is the mutual weight of $v$ and $w$ divided by $v$ highest mutual
72
+ weight with any of its neighbors. The *mutual weight* of $u$ and $v$
73
+ is the sum of the weights of edges joining them (edge weights are
74
+ assumed to be one if the graph is unweighted).
75
+
76
+ For the case of unweighted and undirected graphs, Borgatti proposed
77
+ a simplified formula to compute effective size [2]_
78
+
79
+ .. math::
80
+
81
+ e(u) = n - \frac{2t}{n}
82
+
83
+ where `t` is the number of ties in the ego network (not including
84
+ ties to ego) and `n` is the number of nodes (excluding ego).
85
+
86
+ Parameters
87
+ ----------
88
+ G : NetworkX graph
89
+ The graph containing ``v``. Directed graphs are treated like
90
+ undirected graphs when computing neighbors of ``v``.
91
+
92
+ nodes : container, optional
93
+ Container of nodes in the graph ``G`` to compute the effective size.
94
+ If None, the effective size of every node is computed.
95
+
96
+ weight : None or string, optional
97
+ If None, all edge weights are considered equal.
98
+ Otherwise holds the name of the edge attribute used as weight.
99
+
100
+ Returns
101
+ -------
102
+ dict
103
+ Dictionary with nodes as keys and the effective size of the node as values.
104
+
105
+ Notes
106
+ -----
107
+ Burt also defined the related concept of *efficiency* of a node's ego
108
+ network, which is its effective size divided by the degree of that
109
+ node [1]_. So you can easily compute efficiency:
110
+
111
+ >>> G = nx.DiGraph()
112
+ >>> G.add_edges_from([(0, 1), (0, 2), (1, 0), (2, 1)])
113
+ >>> esize = nx.effective_size(G)
114
+ >>> efficiency = {n: v / G.degree(n) for n, v in esize.items()}
115
+
116
+ See also
117
+ --------
118
+ constraint
119
+
120
+ References
121
+ ----------
122
+ .. [1] Burt, Ronald S.
123
+ *Structural Holes: The Social Structure of Competition.*
124
+ Cambridge: Harvard University Press, 1995.
125
+
126
+ .. [2] Borgatti, S.
127
+ "Structural Holes: Unpacking Burt's Redundancy Measures"
128
+ CONNECTIONS 20(1):35-38.
129
+ http://www.analytictech.com/connections/v20(1)/holes.htm
130
+
131
+ """
132
+
133
+ def redundancy(G, u, v, weight=None):
134
+ nmw = normalized_mutual_weight
135
+ r = sum(
136
+ nmw(G, u, w, weight=weight) * nmw(G, v, w, norm=max, weight=weight)
137
+ for w in set(nx.all_neighbors(G, u))
138
+ )
139
+ return 1 - r
140
+
141
+ effective_size = {}
142
+ if nodes is None:
143
+ nodes = G
144
+ # Use Borgatti's simplified formula for unweighted and undirected graphs
145
+ if not G.is_directed() and weight is None:
146
+ for v in nodes:
147
+ # Effective size is not defined for isolated nodes
148
+ if len(G[v]) == 0:
149
+ effective_size[v] = float("nan")
150
+ continue
151
+ E = nx.ego_graph(G, v, center=False, undirected=True)
152
+ effective_size[v] = len(E) - (2 * E.size()) / len(E)
153
+ else:
154
+ for v in nodes:
155
+ # Effective size is not defined for isolated nodes
156
+ if len(G[v]) == 0:
157
+ effective_size[v] = float("nan")
158
+ continue
159
+ effective_size[v] = sum(
160
+ redundancy(G, v, u, weight) for u in set(nx.all_neighbors(G, v))
161
+ )
162
+ return effective_size
163
+
164
+
165
+ @nx._dispatchable(edge_attrs="weight")
166
+ def constraint(G, nodes=None, weight=None):
167
+ r"""Returns the constraint on all nodes in the graph ``G``.
168
+
169
+ The *constraint* is a measure of the extent to which a node *v* is
170
+ invested in those nodes that are themselves invested in the
171
+ neighbors of *v*. Formally, the *constraint on v*, denoted `c(v)`,
172
+ is defined by
173
+
174
+ .. math::
175
+
176
+ c(v) = \sum_{w \in N(v) \setminus \{v\}} \ell(v, w)
177
+
178
+ where $N(v)$ is the subset of the neighbors of `v` that are either
179
+ predecessors or successors of `v` and $\ell(v, w)$ is the local
180
+ constraint on `v` with respect to `w` [1]_. For the definition of local
181
+ constraint, see :func:`local_constraint`.
182
+
183
+ Parameters
184
+ ----------
185
+ G : NetworkX graph
186
+ The graph containing ``v``. This can be either directed or undirected.
187
+
188
+ nodes : container, optional
189
+ Container of nodes in the graph ``G`` to compute the constraint. If
190
+ None, the constraint of every node is computed.
191
+
192
+ weight : None or string, optional
193
+ If None, all edge weights are considered equal.
194
+ Otherwise holds the name of the edge attribute used as weight.
195
+
196
+ Returns
197
+ -------
198
+ dict
199
+ Dictionary with nodes as keys and the constraint on the node as values.
200
+
201
+ See also
202
+ --------
203
+ local_constraint
204
+
205
+ References
206
+ ----------
207
+ .. [1] Burt, Ronald S.
208
+ "Structural holes and good ideas".
209
+ American Journal of Sociology (110): 349–399.
210
+
211
+ """
212
+ if nodes is None:
213
+ nodes = G
214
+ constraint = {}
215
+ for v in nodes:
216
+ # Constraint is not defined for isolated nodes
217
+ if len(G[v]) == 0:
218
+ constraint[v] = float("nan")
219
+ continue
220
+ constraint[v] = sum(
221
+ local_constraint(G, v, n, weight) for n in set(nx.all_neighbors(G, v))
222
+ )
223
+ return constraint
224
+
225
+
226
+ @nx._dispatchable(edge_attrs="weight")
227
+ def local_constraint(G, u, v, weight=None):
228
+ r"""Returns the local constraint on the node ``u`` with respect to
229
+ the node ``v`` in the graph ``G``.
230
+
231
+ Formally, the *local constraint on u with respect to v*, denoted
232
+ $\ell(u, v)$, is defined by
233
+
234
+ .. math::
235
+
236
+ \ell(u, v) = \left(p_{uv} + \sum_{w \in N(v)} p_{uw} p_{wv}\right)^2,
237
+
238
+ where $N(v)$ is the set of neighbors of $v$ and $p_{uv}$ is the
239
+ normalized mutual weight of the (directed or undirected) edges
240
+ joining $u$ and $v$, for each vertex $u$ and $v$ [1]_. The *mutual
241
+ weight* of $u$ and $v$ is the sum of the weights of edges joining
242
+ them (edge weights are assumed to be one if the graph is
243
+ unweighted).
244
+
245
+ Parameters
246
+ ----------
247
+ G : NetworkX graph
248
+ The graph containing ``u`` and ``v``. This can be either
249
+ directed or undirected.
250
+
251
+ u : node
252
+ A node in the graph ``G``.
253
+
254
+ v : node
255
+ A node in the graph ``G``.
256
+
257
+ weight : None or string, optional
258
+ If None, all edge weights are considered equal.
259
+ Otherwise holds the name of the edge attribute used as weight.
260
+
261
+ Returns
262
+ -------
263
+ float
264
+ The constraint of the node ``v`` in the graph ``G``.
265
+
266
+ See also
267
+ --------
268
+ constraint
269
+
270
+ References
271
+ ----------
272
+ .. [1] Burt, Ronald S.
273
+ "Structural holes and good ideas".
274
+ American Journal of Sociology (110): 349–399.
275
+
276
+ """
277
+ nmw = normalized_mutual_weight
278
+ direct = nmw(G, u, v, weight=weight)
279
+ indirect = sum(
280
+ nmw(G, u, w, weight=weight) * nmw(G, w, v, weight=weight)
281
+ for w in set(nx.all_neighbors(G, u))
282
+ )
283
+ return (direct + indirect) ** 2
venv/lib/python3.10/site-packages/networkx/algorithms/summarization.py ADDED
@@ -0,0 +1,563 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Graph summarization finds smaller representations of graphs resulting in faster
3
+ runtime of algorithms, reduced storage needs, and noise reduction.
4
+ Summarization has applications in areas such as visualization, pattern mining,
5
+ clustering and community detection, and more. Core graph summarization
6
+ techniques are grouping/aggregation, bit-compression,
7
+ simplification/sparsification, and influence based. Graph summarization
8
+ algorithms often produce either summary graphs in the form of supergraphs or
9
+ sparsified graphs, or a list of independent structures. Supergraphs are the
10
+ most common product, which consist of supernodes and original nodes and are
11
+ connected by edges and superedges, which represent aggregate edges between
12
+ nodes and supernodes.
13
+
14
+ Grouping/aggregation based techniques compress graphs by representing
15
+ close/connected nodes and edges in a graph by a single node/edge in a
16
+ supergraph. Nodes can be grouped together into supernodes based on their
17
+ structural similarities or proximity within a graph to reduce the total number
18
+ of nodes in a graph. Edge-grouping techniques group edges into lossy/lossless
19
+ nodes called compressor or virtual nodes to reduce the total number of edges in
20
+ a graph. Edge-grouping techniques can be lossless, meaning that they can be
21
+ used to re-create the original graph, or techniques can be lossy, requiring
22
+ less space to store the summary graph, but at the expense of lower
23
+ reconstruction accuracy of the original graph.
24
+
25
+ Bit-compression techniques minimize the amount of information needed to
26
+ describe the original graph, while revealing structural patterns in the
27
+ original graph. The two-part minimum description length (MDL) is often used to
28
+ represent the model and the original graph in terms of the model. A key
29
+ difference between graph compression and graph summarization is that graph
30
+ summarization focuses on finding structural patterns within the original graph,
31
+ whereas graph compression focuses on compressions the original graph to be as
32
+ small as possible. **NOTE**: Some bit-compression methods exist solely to
33
+ compress a graph without creating a summary graph or finding comprehensible
34
+ structural patterns.
35
+
36
+ Simplification/Sparsification techniques attempt to create a sparse
37
+ representation of a graph by removing unimportant nodes and edges from the
38
+ graph. Sparsified graphs differ from supergraphs created by
39
+ grouping/aggregation by only containing a subset of the original nodes and
40
+ edges of the original graph.
41
+
42
+ Influence based techniques aim to find a high-level description of influence
43
+ propagation in a large graph. These methods are scarce and have been mostly
44
+ applied to social graphs.
45
+
46
+ *dedensification* is a grouping/aggregation based technique to compress the
47
+ neighborhoods around high-degree nodes in unweighted graphs by adding
48
+ compressor nodes that summarize multiple edges of the same type to
49
+ high-degree nodes (nodes with a degree greater than a given threshold).
50
+ Dedensification was developed for the purpose of increasing performance of
51
+ query processing around high-degree nodes in graph databases and enables direct
52
+ operations on the compressed graph. The structural patterns surrounding
53
+ high-degree nodes in the original is preserved while using fewer edges and
54
+ adding a small number of compressor nodes. The degree of nodes present in the
55
+ original graph is also preserved. The current implementation of dedensification
56
+ supports graphs with one edge type.
57
+
58
+ For more information on graph summarization, see `Graph Summarization Methods
59
+ and Applications: A Survey <https://dl.acm.org/doi/abs/10.1145/3186727>`_
60
+ """
61
+ from collections import Counter, defaultdict
62
+
63
+ import networkx as nx
64
+
65
+ __all__ = ["dedensify", "snap_aggregation"]
66
+
67
+
68
+ @nx._dispatchable(mutates_input={"not copy": 3}, returns_graph=True)
69
+ def dedensify(G, threshold, prefix=None, copy=True):
70
+ """Compresses neighborhoods around high-degree nodes
71
+
72
+ Reduces the number of edges to high-degree nodes by adding compressor nodes
73
+ that summarize multiple edges of the same type to high-degree nodes (nodes
74
+ with a degree greater than a given threshold). Dedensification also has
75
+ the added benefit of reducing the number of edges around high-degree nodes.
76
+ The implementation currently supports graphs with a single edge type.
77
+
78
+ Parameters
79
+ ----------
80
+ G: graph
81
+ A networkx graph
82
+ threshold: int
83
+ Minimum degree threshold of a node to be considered a high degree node.
84
+ The threshold must be greater than or equal to 2.
85
+ prefix: str or None, optional (default: None)
86
+ An optional prefix for denoting compressor nodes
87
+ copy: bool, optional (default: True)
88
+ Indicates if dedensification should be done inplace
89
+
90
+ Returns
91
+ -------
92
+ dedensified networkx graph : (graph, set)
93
+ 2-tuple of the dedensified graph and set of compressor nodes
94
+
95
+ Notes
96
+ -----
97
+ According to the algorithm in [1]_, removes edges in a graph by
98
+ compressing/decompressing the neighborhoods around high degree nodes by
99
+ adding compressor nodes that summarize multiple edges of the same type
100
+ to high-degree nodes. Dedensification will only add a compressor node when
101
+ doing so will reduce the total number of edges in the given graph. This
102
+ implementation currently supports graphs with a single edge type.
103
+
104
+ Examples
105
+ --------
106
+ Dedensification will only add compressor nodes when doing so would result
107
+ in fewer edges::
108
+
109
+ >>> original_graph = nx.DiGraph()
110
+ >>> original_graph.add_nodes_from(
111
+ ... ["1", "2", "3", "4", "5", "6", "A", "B", "C"]
112
+ ... )
113
+ >>> original_graph.add_edges_from(
114
+ ... [
115
+ ... ("1", "C"), ("1", "B"),
116
+ ... ("2", "C"), ("2", "B"), ("2", "A"),
117
+ ... ("3", "B"), ("3", "A"), ("3", "6"),
118
+ ... ("4", "C"), ("4", "B"), ("4", "A"),
119
+ ... ("5", "B"), ("5", "A"),
120
+ ... ("6", "5"),
121
+ ... ("A", "6")
122
+ ... ]
123
+ ... )
124
+ >>> c_graph, c_nodes = nx.dedensify(original_graph, threshold=2)
125
+ >>> original_graph.number_of_edges()
126
+ 15
127
+ >>> c_graph.number_of_edges()
128
+ 14
129
+
130
+ A dedensified, directed graph can be "densified" to reconstruct the
131
+ original graph::
132
+
133
+ >>> original_graph = nx.DiGraph()
134
+ >>> original_graph.add_nodes_from(
135
+ ... ["1", "2", "3", "4", "5", "6", "A", "B", "C"]
136
+ ... )
137
+ >>> original_graph.add_edges_from(
138
+ ... [
139
+ ... ("1", "C"), ("1", "B"),
140
+ ... ("2", "C"), ("2", "B"), ("2", "A"),
141
+ ... ("3", "B"), ("3", "A"), ("3", "6"),
142
+ ... ("4", "C"), ("4", "B"), ("4", "A"),
143
+ ... ("5", "B"), ("5", "A"),
144
+ ... ("6", "5"),
145
+ ... ("A", "6")
146
+ ... ]
147
+ ... )
148
+ >>> c_graph, c_nodes = nx.dedensify(original_graph, threshold=2)
149
+ >>> # re-densifies the compressed graph into the original graph
150
+ >>> for c_node in c_nodes:
151
+ ... all_neighbors = set(nx.all_neighbors(c_graph, c_node))
152
+ ... out_neighbors = set(c_graph.neighbors(c_node))
153
+ ... for out_neighbor in out_neighbors:
154
+ ... c_graph.remove_edge(c_node, out_neighbor)
155
+ ... in_neighbors = all_neighbors - out_neighbors
156
+ ... for in_neighbor in in_neighbors:
157
+ ... c_graph.remove_edge(in_neighbor, c_node)
158
+ ... for out_neighbor in out_neighbors:
159
+ ... c_graph.add_edge(in_neighbor, out_neighbor)
160
+ ... c_graph.remove_node(c_node)
161
+ ...
162
+ >>> nx.is_isomorphic(original_graph, c_graph)
163
+ True
164
+
165
+ References
166
+ ----------
167
+ .. [1] Maccioni, A., & Abadi, D. J. (2016, August).
168
+ Scalable pattern matching over compressed graphs via dedensification.
169
+ In Proceedings of the 22nd ACM SIGKDD International Conference on
170
+ Knowledge Discovery and Data Mining (pp. 1755-1764).
171
+ http://www.cs.umd.edu/~abadi/papers/graph-dedense.pdf
172
+ """
173
+ if threshold < 2:
174
+ raise nx.NetworkXError("The degree threshold must be >= 2")
175
+
176
+ degrees = G.in_degree if G.is_directed() else G.degree
177
+ # Group nodes based on degree threshold
178
+ high_degree_nodes = {n for n, d in degrees if d > threshold}
179
+ low_degree_nodes = G.nodes() - high_degree_nodes
180
+
181
+ auxiliary = {}
182
+ for node in G:
183
+ high_degree_nbrs = frozenset(high_degree_nodes & set(G[node]))
184
+ if high_degree_nbrs:
185
+ if high_degree_nbrs in auxiliary:
186
+ auxiliary[high_degree_nbrs].add(node)
187
+ else:
188
+ auxiliary[high_degree_nbrs] = {node}
189
+
190
+ if copy:
191
+ G = G.copy()
192
+
193
+ compressor_nodes = set()
194
+ for index, (high_degree_nodes, low_degree_nodes) in enumerate(auxiliary.items()):
195
+ low_degree_node_count = len(low_degree_nodes)
196
+ high_degree_node_count = len(high_degree_nodes)
197
+ old_edges = high_degree_node_count * low_degree_node_count
198
+ new_edges = high_degree_node_count + low_degree_node_count
199
+ if old_edges <= new_edges:
200
+ continue
201
+ compression_node = "".join(str(node) for node in high_degree_nodes)
202
+ if prefix:
203
+ compression_node = str(prefix) + compression_node
204
+ for node in low_degree_nodes:
205
+ for high_node in high_degree_nodes:
206
+ if G.has_edge(node, high_node):
207
+ G.remove_edge(node, high_node)
208
+
209
+ G.add_edge(node, compression_node)
210
+ for node in high_degree_nodes:
211
+ G.add_edge(compression_node, node)
212
+ compressor_nodes.add(compression_node)
213
+ return G, compressor_nodes
214
+
215
+
216
+ def _snap_build_graph(
217
+ G,
218
+ groups,
219
+ node_attributes,
220
+ edge_attributes,
221
+ neighbor_info,
222
+ edge_types,
223
+ prefix,
224
+ supernode_attribute,
225
+ superedge_attribute,
226
+ ):
227
+ """
228
+ Build the summary graph from the data structures produced in the SNAP aggregation algorithm
229
+
230
+ Used in the SNAP aggregation algorithm to build the output summary graph and supernode
231
+ lookup dictionary. This process uses the original graph and the data structures to
232
+ create the supernodes with the correct node attributes, and the superedges with the correct
233
+ edge attributes
234
+
235
+ Parameters
236
+ ----------
237
+ G: networkx.Graph
238
+ the original graph to be summarized
239
+ groups: dict
240
+ A dictionary of unique group IDs and their corresponding node groups
241
+ node_attributes: iterable
242
+ An iterable of the node attributes considered in the summarization process
243
+ edge_attributes: iterable
244
+ An iterable of the edge attributes considered in the summarization process
245
+ neighbor_info: dict
246
+ A data structure indicating the number of edges a node has with the
247
+ groups in the current summarization of each edge type
248
+ edge_types: dict
249
+ dictionary of edges in the graph and their corresponding attributes recognized
250
+ in the summarization
251
+ prefix: string
252
+ The prefix to be added to all supernodes
253
+ supernode_attribute: str
254
+ The node attribute for recording the supernode groupings of nodes
255
+ superedge_attribute: str
256
+ The edge attribute for recording the edge types represented by superedges
257
+
258
+ Returns
259
+ -------
260
+ summary graph: Networkx graph
261
+ """
262
+ output = G.__class__()
263
+ node_label_lookup = {}
264
+ for index, group_id in enumerate(groups):
265
+ group_set = groups[group_id]
266
+ supernode = f"{prefix}{index}"
267
+ node_label_lookup[group_id] = supernode
268
+ supernode_attributes = {
269
+ attr: G.nodes[next(iter(group_set))][attr] for attr in node_attributes
270
+ }
271
+ supernode_attributes[supernode_attribute] = group_set
272
+ output.add_node(supernode, **supernode_attributes)
273
+
274
+ for group_id in groups:
275
+ group_set = groups[group_id]
276
+ source_supernode = node_label_lookup[group_id]
277
+ for other_group, group_edge_types in neighbor_info[
278
+ next(iter(group_set))
279
+ ].items():
280
+ if group_edge_types:
281
+ target_supernode = node_label_lookup[other_group]
282
+ summary_graph_edge = (source_supernode, target_supernode)
283
+
284
+ edge_types = [
285
+ dict(zip(edge_attributes, edge_type))
286
+ for edge_type in group_edge_types
287
+ ]
288
+
289
+ has_edge = output.has_edge(*summary_graph_edge)
290
+ if output.is_multigraph():
291
+ if not has_edge:
292
+ for edge_type in edge_types:
293
+ output.add_edge(*summary_graph_edge, **edge_type)
294
+ elif not output.is_directed():
295
+ existing_edge_data = output.get_edge_data(*summary_graph_edge)
296
+ for edge_type in edge_types:
297
+ if edge_type not in existing_edge_data.values():
298
+ output.add_edge(*summary_graph_edge, **edge_type)
299
+ else:
300
+ superedge_attributes = {superedge_attribute: edge_types}
301
+ output.add_edge(*summary_graph_edge, **superedge_attributes)
302
+
303
+ return output
304
+
305
+
306
+ def _snap_eligible_group(G, groups, group_lookup, edge_types):
307
+ """
308
+ Determines if a group is eligible to be split.
309
+
310
+ A group is eligible to be split if all nodes in the group have edges of the same type(s)
311
+ with the same other groups.
312
+
313
+ Parameters
314
+ ----------
315
+ G: graph
316
+ graph to be summarized
317
+ groups: dict
318
+ A dictionary of unique group IDs and their corresponding node groups
319
+ group_lookup: dict
320
+ dictionary of nodes and their current corresponding group ID
321
+ edge_types: dict
322
+ dictionary of edges in the graph and their corresponding attributes recognized
323
+ in the summarization
324
+
325
+ Returns
326
+ -------
327
+ tuple: group ID to split, and neighbor-groups participation_counts data structure
328
+ """
329
+ nbr_info = {node: {gid: Counter() for gid in groups} for node in group_lookup}
330
+ for group_id in groups:
331
+ current_group = groups[group_id]
332
+
333
+ # build nbr_info for nodes in group
334
+ for node in current_group:
335
+ nbr_info[node] = {group_id: Counter() for group_id in groups}
336
+ edges = G.edges(node, keys=True) if G.is_multigraph() else G.edges(node)
337
+ for edge in edges:
338
+ neighbor = edge[1]
339
+ edge_type = edge_types[edge]
340
+ neighbor_group_id = group_lookup[neighbor]
341
+ nbr_info[node][neighbor_group_id][edge_type] += 1
342
+
343
+ # check if group_id is eligible to be split
344
+ group_size = len(current_group)
345
+ for other_group_id in groups:
346
+ edge_counts = Counter()
347
+ for node in current_group:
348
+ edge_counts.update(nbr_info[node][other_group_id].keys())
349
+
350
+ if not all(count == group_size for count in edge_counts.values()):
351
+ # only the nbr_info of the returned group_id is required for handling group splits
352
+ return group_id, nbr_info
353
+
354
+ # if no eligible groups, complete nbr_info is calculated
355
+ return None, nbr_info
356
+
357
+
358
+ def _snap_split(groups, neighbor_info, group_lookup, group_id):
359
+ """
360
+ Splits a group based on edge types and updates the groups accordingly
361
+
362
+ Splits the group with the given group_id based on the edge types
363
+ of the nodes so that each new grouping will all have the same
364
+ edges with other nodes.
365
+
366
+ Parameters
367
+ ----------
368
+ groups: dict
369
+ A dictionary of unique group IDs and their corresponding node groups
370
+ neighbor_info: dict
371
+ A data structure indicating the number of edges a node has with the
372
+ groups in the current summarization of each edge type
373
+ edge_types: dict
374
+ dictionary of edges in the graph and their corresponding attributes recognized
375
+ in the summarization
376
+ group_lookup: dict
377
+ dictionary of nodes and their current corresponding group ID
378
+ group_id: object
379
+ ID of group to be split
380
+
381
+ Returns
382
+ -------
383
+ dict
384
+ The updated groups based on the split
385
+ """
386
+ new_group_mappings = defaultdict(set)
387
+ for node in groups[group_id]:
388
+ signature = tuple(
389
+ frozenset(edge_types) for edge_types in neighbor_info[node].values()
390
+ )
391
+ new_group_mappings[signature].add(node)
392
+
393
+ # leave the biggest new_group as the original group
394
+ new_groups = sorted(new_group_mappings.values(), key=len)
395
+ for new_group in new_groups[:-1]:
396
+ # Assign unused integer as the new_group_id
397
+ # ids are tuples, so will not interact with the original group_ids
398
+ new_group_id = len(groups)
399
+ groups[new_group_id] = new_group
400
+ groups[group_id] -= new_group
401
+ for node in new_group:
402
+ group_lookup[node] = new_group_id
403
+
404
+ return groups
405
+
406
+
407
+ @nx._dispatchable(
408
+ node_attrs="[node_attributes]", edge_attrs="[edge_attributes]", returns_graph=True
409
+ )
410
+ def snap_aggregation(
411
+ G,
412
+ node_attributes,
413
+ edge_attributes=(),
414
+ prefix="Supernode-",
415
+ supernode_attribute="group",
416
+ superedge_attribute="types",
417
+ ):
418
+ """Creates a summary graph based on attributes and connectivity.
419
+
420
+ This function uses the Summarization by Grouping Nodes on Attributes
421
+ and Pairwise edges (SNAP) algorithm for summarizing a given
422
+ graph by grouping nodes by node attributes and their edge attributes
423
+ into supernodes in a summary graph. This name SNAP should not be
424
+ confused with the Stanford Network Analysis Project (SNAP).
425
+
426
+ Here is a high-level view of how this algorithm works:
427
+
428
+ 1) Group nodes by node attribute values.
429
+
430
+ 2) Iteratively split groups until all nodes in each group have edges
431
+ to nodes in the same groups. That is, until all the groups are homogeneous
432
+ in their member nodes' edges to other groups. For example,
433
+ if all the nodes in group A only have edge to nodes in group B, then the
434
+ group is homogeneous and does not need to be split. If all nodes in group B
435
+ have edges with nodes in groups {A, C}, but some also have edges with other
436
+ nodes in B, then group B is not homogeneous and needs to be split into
437
+ groups have edges with {A, C} and a group of nodes having
438
+ edges with {A, B, C}. This way, viewers of the summary graph can
439
+ assume that all nodes in the group have the exact same node attributes and
440
+ the exact same edges.
441
+
442
+ 3) Build the output summary graph, where the groups are represented by
443
+ super-nodes. Edges represent the edges shared between all the nodes in each
444
+ respective groups.
445
+
446
+ A SNAP summary graph can be used to visualize graphs that are too large to display
447
+ or visually analyze, or to efficiently identify sets of similar nodes with similar connectivity
448
+ patterns to other sets of similar nodes based on specified node and/or edge attributes in a graph.
449
+
450
+ Parameters
451
+ ----------
452
+ G: graph
453
+ Networkx Graph to be summarized
454
+ node_attributes: iterable, required
455
+ An iterable of the node attributes used to group nodes in the summarization process. Nodes
456
+ with the same values for these attributes will be grouped together in the summary graph.
457
+ edge_attributes: iterable, optional
458
+ An iterable of the edge attributes considered in the summarization process. If provided, unique
459
+ combinations of the attribute values found in the graph are used to
460
+ determine the edge types in the graph. If not provided, all edges
461
+ are considered to be of the same type.
462
+ prefix: str
463
+ The prefix used to denote supernodes in the summary graph. Defaults to 'Supernode-'.
464
+ supernode_attribute: str
465
+ The node attribute for recording the supernode groupings of nodes. Defaults to 'group'.
466
+ superedge_attribute: str
467
+ The edge attribute for recording the edge types of multiple edges. Defaults to 'types'.
468
+
469
+ Returns
470
+ -------
471
+ networkx.Graph: summary graph
472
+
473
+ Examples
474
+ --------
475
+ SNAP aggregation takes a graph and summarizes it in the context of user-provided
476
+ node and edge attributes such that a viewer can more easily extract and
477
+ analyze the information represented by the graph
478
+
479
+ >>> nodes = {
480
+ ... "A": dict(color="Red"),
481
+ ... "B": dict(color="Red"),
482
+ ... "C": dict(color="Red"),
483
+ ... "D": dict(color="Red"),
484
+ ... "E": dict(color="Blue"),
485
+ ... "F": dict(color="Blue"),
486
+ ... }
487
+ >>> edges = [
488
+ ... ("A", "E", "Strong"),
489
+ ... ("B", "F", "Strong"),
490
+ ... ("C", "E", "Weak"),
491
+ ... ("D", "F", "Weak"),
492
+ ... ]
493
+ >>> G = nx.Graph()
494
+ >>> for node in nodes:
495
+ ... attributes = nodes[node]
496
+ ... G.add_node(node, **attributes)
497
+ >>> for source, target, type in edges:
498
+ ... G.add_edge(source, target, type=type)
499
+ >>> node_attributes = ("color",)
500
+ >>> edge_attributes = ("type",)
501
+ >>> summary_graph = nx.snap_aggregation(
502
+ ... G, node_attributes=node_attributes, edge_attributes=edge_attributes
503
+ ... )
504
+
505
+ Notes
506
+ -----
507
+ The summary graph produced is called a maximum Attribute-edge
508
+ compatible (AR-compatible) grouping. According to [1]_, an
509
+ AR-compatible grouping means that all nodes in each group have the same
510
+ exact node attribute values and the same exact edges and
511
+ edge types to one or more nodes in the same groups. The maximal
512
+ AR-compatible grouping is the grouping with the minimal cardinality.
513
+
514
+ The AR-compatible grouping is the most detailed grouping provided by
515
+ any of the SNAP algorithms.
516
+
517
+ References
518
+ ----------
519
+ .. [1] Y. Tian, R. A. Hankins, and J. M. Patel. Efficient aggregation
520
+ for graph summarization. In Proc. 2008 ACM-SIGMOD Int. Conf.
521
+ Management of Data (SIGMOD’08), pages 567–580, Vancouver, Canada,
522
+ June 2008.
523
+ """
524
+ edge_types = {
525
+ edge: tuple(attrs.get(attr) for attr in edge_attributes)
526
+ for edge, attrs in G.edges.items()
527
+ }
528
+ if not G.is_directed():
529
+ if G.is_multigraph():
530
+ # list is needed to avoid mutating while iterating
531
+ edges = [((v, u, k), etype) for (u, v, k), etype in edge_types.items()]
532
+ else:
533
+ # list is needed to avoid mutating while iterating
534
+ edges = [((v, u), etype) for (u, v), etype in edge_types.items()]
535
+ edge_types.update(edges)
536
+
537
+ group_lookup = {
538
+ node: tuple(attrs[attr] for attr in node_attributes)
539
+ for node, attrs in G.nodes.items()
540
+ }
541
+ groups = defaultdict(set)
542
+ for node, node_type in group_lookup.items():
543
+ groups[node_type].add(node)
544
+
545
+ eligible_group_id, nbr_info = _snap_eligible_group(
546
+ G, groups, group_lookup, edge_types
547
+ )
548
+ while eligible_group_id:
549
+ groups = _snap_split(groups, nbr_info, group_lookup, eligible_group_id)
550
+ eligible_group_id, nbr_info = _snap_eligible_group(
551
+ G, groups, group_lookup, edge_types
552
+ )
553
+ return _snap_build_graph(
554
+ G,
555
+ groups,
556
+ node_attributes,
557
+ edge_attributes,
558
+ nbr_info,
559
+ edge_types,
560
+ prefix,
561
+ supernode_attribute,
562
+ superedge_attribute,
563
+ )
venv/lib/python3.10/site-packages/networkx/algorithms/swap.py ADDED
@@ -0,0 +1,407 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Swap edges in a graph.
2
+ """
3
+
4
+ import math
5
+
6
+ import networkx as nx
7
+ from networkx.utils import py_random_state
8
+
9
+ __all__ = ["double_edge_swap", "connected_double_edge_swap", "directed_edge_swap"]
10
+
11
+
12
+ @nx.utils.not_implemented_for("undirected")
13
+ @py_random_state(3)
14
+ @nx._dispatchable(mutates_input=True, returns_graph=True)
15
+ def directed_edge_swap(G, *, nswap=1, max_tries=100, seed=None):
16
+ """Swap three edges in a directed graph while keeping the node degrees fixed.
17
+
18
+ A directed edge swap swaps three edges such that a -> b -> c -> d becomes
19
+ a -> c -> b -> d. This pattern of swapping allows all possible states with the
20
+ same in- and out-degree distribution in a directed graph to be reached.
21
+
22
+ If the swap would create parallel edges (e.g. if a -> c already existed in the
23
+ previous example), another attempt is made to find a suitable trio of edges.
24
+
25
+ Parameters
26
+ ----------
27
+ G : DiGraph
28
+ A directed graph
29
+
30
+ nswap : integer (optional, default=1)
31
+ Number of three-edge (directed) swaps to perform
32
+
33
+ max_tries : integer (optional, default=100)
34
+ Maximum number of attempts to swap edges
35
+
36
+ seed : integer, random_state, or None (default)
37
+ Indicator of random number generation state.
38
+ See :ref:`Randomness<randomness>`.
39
+
40
+ Returns
41
+ -------
42
+ G : DiGraph
43
+ The graph after the edges are swapped.
44
+
45
+ Raises
46
+ ------
47
+ NetworkXError
48
+ If `G` is not directed, or
49
+ If nswap > max_tries, or
50
+ If there are fewer than 4 nodes or 3 edges in `G`.
51
+ NetworkXAlgorithmError
52
+ If the number of swap attempts exceeds `max_tries` before `nswap` swaps are made
53
+
54
+ Notes
55
+ -----
56
+ Does not enforce any connectivity constraints.
57
+
58
+ The graph G is modified in place.
59
+
60
+ A later swap is allowed to undo a previous swap.
61
+
62
+ References
63
+ ----------
64
+ .. [1] Erdős, Péter L., et al. “A Simple Havel-Hakimi Type Algorithm to Realize
65
+ Graphical Degree Sequences of Directed Graphs.” ArXiv:0905.4913 [Math],
66
+ Jan. 2010. https://doi.org/10.48550/arXiv.0905.4913.
67
+ Published 2010 in Elec. J. Combinatorics (17(1)). R66.
68
+ http://www.combinatorics.org/Volume_17/PDF/v17i1r66.pdf
69
+ .. [2] “Combinatorics - Reaching All Possible Simple Directed Graphs with a given
70
+ Degree Sequence with 2-Edge Swaps.” Mathematics Stack Exchange,
71
+ https://math.stackexchange.com/questions/22272/. Accessed 30 May 2022.
72
+ """
73
+ if nswap > max_tries:
74
+ raise nx.NetworkXError("Number of swaps > number of tries allowed.")
75
+ if len(G) < 4:
76
+ raise nx.NetworkXError("DiGraph has fewer than four nodes.")
77
+ if len(G.edges) < 3:
78
+ raise nx.NetworkXError("DiGraph has fewer than 3 edges")
79
+
80
+ # Instead of choosing uniformly at random from a generated edge list,
81
+ # this algorithm chooses nonuniformly from the set of nodes with
82
+ # probability weighted by degree.
83
+ tries = 0
84
+ swapcount = 0
85
+ keys, degrees = zip(*G.degree()) # keys, degree
86
+ cdf = nx.utils.cumulative_distribution(degrees) # cdf of degree
87
+ discrete_sequence = nx.utils.discrete_sequence
88
+
89
+ while swapcount < nswap:
90
+ # choose source node index from discrete distribution
91
+ start_index = discrete_sequence(1, cdistribution=cdf, seed=seed)[0]
92
+ start = keys[start_index]
93
+ tries += 1
94
+
95
+ if tries > max_tries:
96
+ msg = f"Maximum number of swap attempts ({tries}) exceeded before desired swaps achieved ({nswap})."
97
+ raise nx.NetworkXAlgorithmError(msg)
98
+
99
+ # If the given node doesn't have any out edges, then there isn't anything to swap
100
+ if G.out_degree(start) == 0:
101
+ continue
102
+ second = seed.choice(list(G.succ[start]))
103
+ if start == second:
104
+ continue
105
+
106
+ if G.out_degree(second) == 0:
107
+ continue
108
+ third = seed.choice(list(G.succ[second]))
109
+ if second == third:
110
+ continue
111
+
112
+ if G.out_degree(third) == 0:
113
+ continue
114
+ fourth = seed.choice(list(G.succ[third]))
115
+ if third == fourth:
116
+ continue
117
+
118
+ if (
119
+ third not in G.succ[start]
120
+ and fourth not in G.succ[second]
121
+ and second not in G.succ[third]
122
+ ):
123
+ # Swap nodes
124
+ G.add_edge(start, third)
125
+ G.add_edge(third, second)
126
+ G.add_edge(second, fourth)
127
+ G.remove_edge(start, second)
128
+ G.remove_edge(second, third)
129
+ G.remove_edge(third, fourth)
130
+ swapcount += 1
131
+
132
+ return G
133
+
134
+
135
+ @py_random_state(3)
136
+ @nx._dispatchable(mutates_input=True, returns_graph=True)
137
+ def double_edge_swap(G, nswap=1, max_tries=100, seed=None):
138
+ """Swap two edges in the graph while keeping the node degrees fixed.
139
+
140
+ A double-edge swap removes two randomly chosen edges u-v and x-y
141
+ and creates the new edges u-x and v-y::
142
+
143
+ u--v u v
144
+ becomes | |
145
+ x--y x y
146
+
147
+ If either the edge u-x or v-y already exist no swap is performed
148
+ and another attempt is made to find a suitable edge pair.
149
+
150
+ Parameters
151
+ ----------
152
+ G : graph
153
+ An undirected graph
154
+
155
+ nswap : integer (optional, default=1)
156
+ Number of double-edge swaps to perform
157
+
158
+ max_tries : integer (optional)
159
+ Maximum number of attempts to swap edges
160
+
161
+ seed : integer, random_state, or None (default)
162
+ Indicator of random number generation state.
163
+ See :ref:`Randomness<randomness>`.
164
+
165
+ Returns
166
+ -------
167
+ G : graph
168
+ The graph after double edge swaps.
169
+
170
+ Raises
171
+ ------
172
+ NetworkXError
173
+ If `G` is directed, or
174
+ If `nswap` > `max_tries`, or
175
+ If there are fewer than 4 nodes or 2 edges in `G`.
176
+ NetworkXAlgorithmError
177
+ If the number of swap attempts exceeds `max_tries` before `nswap` swaps are made
178
+
179
+ Notes
180
+ -----
181
+ Does not enforce any connectivity constraints.
182
+
183
+ The graph G is modified in place.
184
+ """
185
+ if G.is_directed():
186
+ raise nx.NetworkXError(
187
+ "double_edge_swap() not defined for directed graphs. Use directed_edge_swap instead."
188
+ )
189
+ if nswap > max_tries:
190
+ raise nx.NetworkXError("Number of swaps > number of tries allowed.")
191
+ if len(G) < 4:
192
+ raise nx.NetworkXError("Graph has fewer than four nodes.")
193
+ if len(G.edges) < 2:
194
+ raise nx.NetworkXError("Graph has fewer than 2 edges")
195
+ # Instead of choosing uniformly at random from a generated edge list,
196
+ # this algorithm chooses nonuniformly from the set of nodes with
197
+ # probability weighted by degree.
198
+ n = 0
199
+ swapcount = 0
200
+ keys, degrees = zip(*G.degree()) # keys, degree
201
+ cdf = nx.utils.cumulative_distribution(degrees) # cdf of degree
202
+ discrete_sequence = nx.utils.discrete_sequence
203
+ while swapcount < nswap:
204
+ # if random.random() < 0.5: continue # trick to avoid periodicities?
205
+ # pick two random edges without creating edge list
206
+ # choose source node indices from discrete distribution
207
+ (ui, xi) = discrete_sequence(2, cdistribution=cdf, seed=seed)
208
+ if ui == xi:
209
+ continue # same source, skip
210
+ u = keys[ui] # convert index to label
211
+ x = keys[xi]
212
+ # choose target uniformly from neighbors
213
+ v = seed.choice(list(G[u]))
214
+ y = seed.choice(list(G[x]))
215
+ if v == y:
216
+ continue # same target, skip
217
+ if (x not in G[u]) and (y not in G[v]): # don't create parallel edges
218
+ G.add_edge(u, x)
219
+ G.add_edge(v, y)
220
+ G.remove_edge(u, v)
221
+ G.remove_edge(x, y)
222
+ swapcount += 1
223
+ if n >= max_tries:
224
+ e = (
225
+ f"Maximum number of swap attempts ({n}) exceeded "
226
+ f"before desired swaps achieved ({nswap})."
227
+ )
228
+ raise nx.NetworkXAlgorithmError(e)
229
+ n += 1
230
+ return G
231
+
232
+
233
+ @py_random_state(3)
234
+ @nx._dispatchable(mutates_input=True)
235
+ def connected_double_edge_swap(G, nswap=1, _window_threshold=3, seed=None):
236
+ """Attempts the specified number of double-edge swaps in the graph `G`.
237
+
238
+ A double-edge swap removes two randomly chosen edges `(u, v)` and `(x,
239
+ y)` and creates the new edges `(u, x)` and `(v, y)`::
240
+
241
+ u--v u v
242
+ becomes | |
243
+ x--y x y
244
+
245
+ If either `(u, x)` or `(v, y)` already exist, then no swap is performed
246
+ so the actual number of swapped edges is always *at most* `nswap`.
247
+
248
+ Parameters
249
+ ----------
250
+ G : graph
251
+ An undirected graph
252
+
253
+ nswap : integer (optional, default=1)
254
+ Number of double-edge swaps to perform
255
+
256
+ _window_threshold : integer
257
+
258
+ The window size below which connectedness of the graph will be checked
259
+ after each swap.
260
+
261
+ The "window" in this function is a dynamically updated integer that
262
+ represents the number of swap attempts to make before checking if the
263
+ graph remains connected. It is an optimization used to decrease the
264
+ running time of the algorithm in exchange for increased complexity of
265
+ implementation.
266
+
267
+ If the window size is below this threshold, then the algorithm checks
268
+ after each swap if the graph remains connected by checking if there is a
269
+ path joining the two nodes whose edge was just removed. If the window
270
+ size is above this threshold, then the algorithm performs do all the
271
+ swaps in the window and only then check if the graph is still connected.
272
+
273
+ seed : integer, random_state, or None (default)
274
+ Indicator of random number generation state.
275
+ See :ref:`Randomness<randomness>`.
276
+
277
+ Returns
278
+ -------
279
+ int
280
+ The number of successful swaps
281
+
282
+ Raises
283
+ ------
284
+
285
+ NetworkXError
286
+
287
+ If the input graph is not connected, or if the graph has fewer than four
288
+ nodes.
289
+
290
+ Notes
291
+ -----
292
+
293
+ The initial graph `G` must be connected, and the resulting graph is
294
+ connected. The graph `G` is modified in place.
295
+
296
+ References
297
+ ----------
298
+ .. [1] C. Gkantsidis and M. Mihail and E. Zegura,
299
+ The Markov chain simulation method for generating connected
300
+ power law random graphs, 2003.
301
+ http://citeseer.ist.psu.edu/gkantsidis03markov.html
302
+ """
303
+ if not nx.is_connected(G):
304
+ raise nx.NetworkXError("Graph not connected")
305
+ if len(G) < 4:
306
+ raise nx.NetworkXError("Graph has fewer than four nodes.")
307
+ n = 0
308
+ swapcount = 0
309
+ deg = G.degree()
310
+ # Label key for nodes
311
+ dk = [n for n, d in G.degree()]
312
+ cdf = nx.utils.cumulative_distribution([d for n, d in G.degree()])
313
+ discrete_sequence = nx.utils.discrete_sequence
314
+ window = 1
315
+ while n < nswap:
316
+ wcount = 0
317
+ swapped = []
318
+ # If the window is small, we just check each time whether the graph is
319
+ # connected by checking if the nodes that were just separated are still
320
+ # connected.
321
+ if window < _window_threshold:
322
+ # This Boolean keeps track of whether there was a failure or not.
323
+ fail = False
324
+ while wcount < window and n < nswap:
325
+ # Pick two random edges without creating the edge list. Choose
326
+ # source nodes from the discrete degree distribution.
327
+ (ui, xi) = discrete_sequence(2, cdistribution=cdf, seed=seed)
328
+ # If the source nodes are the same, skip this pair.
329
+ if ui == xi:
330
+ continue
331
+ # Convert an index to a node label.
332
+ u = dk[ui]
333
+ x = dk[xi]
334
+ # Choose targets uniformly from neighbors.
335
+ v = seed.choice(list(G.neighbors(u)))
336
+ y = seed.choice(list(G.neighbors(x)))
337
+ # If the target nodes are the same, skip this pair.
338
+ if v == y:
339
+ continue
340
+ if x not in G[u] and y not in G[v]:
341
+ G.remove_edge(u, v)
342
+ G.remove_edge(x, y)
343
+ G.add_edge(u, x)
344
+ G.add_edge(v, y)
345
+ swapped.append((u, v, x, y))
346
+ swapcount += 1
347
+ n += 1
348
+ # If G remains connected...
349
+ if nx.has_path(G, u, v):
350
+ wcount += 1
351
+ # Otherwise, undo the changes.
352
+ else:
353
+ G.add_edge(u, v)
354
+ G.add_edge(x, y)
355
+ G.remove_edge(u, x)
356
+ G.remove_edge(v, y)
357
+ swapcount -= 1
358
+ fail = True
359
+ # If one of the swaps failed, reduce the window size.
360
+ if fail:
361
+ window = math.ceil(window / 2)
362
+ else:
363
+ window += 1
364
+ # If the window is large, then there is a good chance that a bunch of
365
+ # swaps will work. It's quicker to do all those swaps first and then
366
+ # check if the graph remains connected.
367
+ else:
368
+ while wcount < window and n < nswap:
369
+ # Pick two random edges without creating the edge list. Choose
370
+ # source nodes from the discrete degree distribution.
371
+ (ui, xi) = discrete_sequence(2, cdistribution=cdf, seed=seed)
372
+ # If the source nodes are the same, skip this pair.
373
+ if ui == xi:
374
+ continue
375
+ # Convert an index to a node label.
376
+ u = dk[ui]
377
+ x = dk[xi]
378
+ # Choose targets uniformly from neighbors.
379
+ v = seed.choice(list(G.neighbors(u)))
380
+ y = seed.choice(list(G.neighbors(x)))
381
+ # If the target nodes are the same, skip this pair.
382
+ if v == y:
383
+ continue
384
+ if x not in G[u] and y not in G[v]:
385
+ G.remove_edge(u, v)
386
+ G.remove_edge(x, y)
387
+ G.add_edge(u, x)
388
+ G.add_edge(v, y)
389
+ swapped.append((u, v, x, y))
390
+ swapcount += 1
391
+ n += 1
392
+ wcount += 1
393
+ # If the graph remains connected, increase the window size.
394
+ if nx.is_connected(G):
395
+ window += 1
396
+ # Otherwise, undo the changes from the previous window and decrease
397
+ # the window size.
398
+ else:
399
+ while swapped:
400
+ (u, v, x, y) = swapped.pop()
401
+ G.add_edge(u, v)
402
+ G.add_edge(x, y)
403
+ G.remove_edge(u, x)
404
+ G.remove_edge(v, y)
405
+ swapcount -= 1
406
+ window = math.ceil(window / 2)
407
+ return swapcount
venv/lib/python3.10/site-packages/networkx/algorithms/threshold.py ADDED
@@ -0,0 +1,979 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Threshold Graphs - Creation, manipulation and identification.
3
+ """
4
+ from math import sqrt
5
+
6
+ import networkx as nx
7
+ from networkx.utils import py_random_state
8
+
9
+ __all__ = ["is_threshold_graph", "find_threshold_graph"]
10
+
11
+
12
+ @nx._dispatchable
13
+ def is_threshold_graph(G):
14
+ """
15
+ Returns `True` if `G` is a threshold graph.
16
+
17
+ Parameters
18
+ ----------
19
+ G : NetworkX graph instance
20
+ An instance of `Graph`, `DiGraph`, `MultiGraph` or `MultiDiGraph`
21
+
22
+ Returns
23
+ -------
24
+ bool
25
+ `True` if `G` is a threshold graph, `False` otherwise.
26
+
27
+ Examples
28
+ --------
29
+ >>> from networkx.algorithms.threshold import is_threshold_graph
30
+ >>> G = nx.path_graph(3)
31
+ >>> is_threshold_graph(G)
32
+ True
33
+ >>> G = nx.barbell_graph(3, 3)
34
+ >>> is_threshold_graph(G)
35
+ False
36
+
37
+ References
38
+ ----------
39
+ .. [1] Threshold graphs: https://en.wikipedia.org/wiki/Threshold_graph
40
+ """
41
+ return is_threshold_sequence([d for n, d in G.degree()])
42
+
43
+
44
+ def is_threshold_sequence(degree_sequence):
45
+ """
46
+ Returns True if the sequence is a threshold degree sequence.
47
+
48
+ Uses the property that a threshold graph must be constructed by
49
+ adding either dominating or isolated nodes. Thus, it can be
50
+ deconstructed iteratively by removing a node of degree zero or a
51
+ node that connects to the remaining nodes. If this deconstruction
52
+ fails then the sequence is not a threshold sequence.
53
+ """
54
+ ds = degree_sequence[:] # get a copy so we don't destroy original
55
+ ds.sort()
56
+ while ds:
57
+ if ds[0] == 0: # if isolated node
58
+ ds.pop(0) # remove it
59
+ continue
60
+ if ds[-1] != len(ds) - 1: # is the largest degree node dominating?
61
+ return False # no, not a threshold degree sequence
62
+ ds.pop() # yes, largest is the dominating node
63
+ ds = [d - 1 for d in ds] # remove it and decrement all degrees
64
+ return True
65
+
66
+
67
+ def creation_sequence(degree_sequence, with_labels=False, compact=False):
68
+ """
69
+ Determines the creation sequence for the given threshold degree sequence.
70
+
71
+ The creation sequence is a list of single characters 'd'
72
+ or 'i': 'd' for dominating or 'i' for isolated vertices.
73
+ Dominating vertices are connected to all vertices present when it
74
+ is added. The first node added is by convention 'd'.
75
+ This list can be converted to a string if desired using "".join(cs)
76
+
77
+ If with_labels==True:
78
+ Returns a list of 2-tuples containing the vertex number
79
+ and a character 'd' or 'i' which describes the type of vertex.
80
+
81
+ If compact==True:
82
+ Returns the creation sequence in a compact form that is the number
83
+ of 'i's and 'd's alternating.
84
+ Examples:
85
+ [1,2,2,3] represents d,i,i,d,d,i,i,i
86
+ [3,1,2] represents d,d,d,i,d,d
87
+
88
+ Notice that the first number is the first vertex to be used for
89
+ construction and so is always 'd'.
90
+
91
+ with_labels and compact cannot both be True.
92
+
93
+ Returns None if the sequence is not a threshold sequence
94
+ """
95
+ if with_labels and compact:
96
+ raise ValueError("compact sequences cannot be labeled")
97
+
98
+ # make an indexed copy
99
+ if isinstance(degree_sequence, dict): # labeled degree sequence
100
+ ds = [[degree, label] for (label, degree) in degree_sequence.items()]
101
+ else:
102
+ ds = [[d, i] for i, d in enumerate(degree_sequence)]
103
+ ds.sort()
104
+ cs = [] # creation sequence
105
+ while ds:
106
+ if ds[0][0] == 0: # isolated node
107
+ (d, v) = ds.pop(0)
108
+ if len(ds) > 0: # make sure we start with a d
109
+ cs.insert(0, (v, "i"))
110
+ else:
111
+ cs.insert(0, (v, "d"))
112
+ continue
113
+ if ds[-1][0] != len(ds) - 1: # Not dominating node
114
+ return None # not a threshold degree sequence
115
+ (d, v) = ds.pop()
116
+ cs.insert(0, (v, "d"))
117
+ ds = [[d[0] - 1, d[1]] for d in ds] # decrement due to removing node
118
+
119
+ if with_labels:
120
+ return cs
121
+ if compact:
122
+ return make_compact(cs)
123
+ return [v[1] for v in cs] # not labeled
124
+
125
+
126
+ def make_compact(creation_sequence):
127
+ """
128
+ Returns the creation sequence in a compact form
129
+ that is the number of 'i's and 'd's alternating.
130
+
131
+ Examples
132
+ --------
133
+ >>> from networkx.algorithms.threshold import make_compact
134
+ >>> make_compact(["d", "i", "i", "d", "d", "i", "i", "i"])
135
+ [1, 2, 2, 3]
136
+ >>> make_compact(["d", "d", "d", "i", "d", "d"])
137
+ [3, 1, 2]
138
+
139
+ Notice that the first number is the first vertex
140
+ to be used for construction and so is always 'd'.
141
+
142
+ Labeled creation sequences lose their labels in the
143
+ compact representation.
144
+
145
+ >>> make_compact([3, 1, 2])
146
+ [3, 1, 2]
147
+ """
148
+ first = creation_sequence[0]
149
+ if isinstance(first, str): # creation sequence
150
+ cs = creation_sequence[:]
151
+ elif isinstance(first, tuple): # labeled creation sequence
152
+ cs = [s[1] for s in creation_sequence]
153
+ elif isinstance(first, int): # compact creation sequence
154
+ return creation_sequence
155
+ else:
156
+ raise TypeError("Not a valid creation sequence type")
157
+
158
+ ccs = []
159
+ count = 1 # count the run lengths of d's or i's.
160
+ for i in range(1, len(cs)):
161
+ if cs[i] == cs[i - 1]:
162
+ count += 1
163
+ else:
164
+ ccs.append(count)
165
+ count = 1
166
+ ccs.append(count) # don't forget the last one
167
+ return ccs
168
+
169
+
170
+ def uncompact(creation_sequence):
171
+ """
172
+ Converts a compact creation sequence for a threshold
173
+ graph to a standard creation sequence (unlabeled).
174
+ If the creation_sequence is already standard, return it.
175
+ See creation_sequence.
176
+ """
177
+ first = creation_sequence[0]
178
+ if isinstance(first, str): # creation sequence
179
+ return creation_sequence
180
+ elif isinstance(first, tuple): # labeled creation sequence
181
+ return creation_sequence
182
+ elif isinstance(first, int): # compact creation sequence
183
+ ccscopy = creation_sequence[:]
184
+ else:
185
+ raise TypeError("Not a valid creation sequence type")
186
+ cs = []
187
+ while ccscopy:
188
+ cs.extend(ccscopy.pop(0) * ["d"])
189
+ if ccscopy:
190
+ cs.extend(ccscopy.pop(0) * ["i"])
191
+ return cs
192
+
193
+
194
+ def creation_sequence_to_weights(creation_sequence):
195
+ """
196
+ Returns a list of node weights which create the threshold
197
+ graph designated by the creation sequence. The weights
198
+ are scaled so that the threshold is 1.0. The order of the
199
+ nodes is the same as that in the creation sequence.
200
+ """
201
+ # Turn input sequence into a labeled creation sequence
202
+ first = creation_sequence[0]
203
+ if isinstance(first, str): # creation sequence
204
+ if isinstance(creation_sequence, list):
205
+ wseq = creation_sequence[:]
206
+ else:
207
+ wseq = list(creation_sequence) # string like 'ddidid'
208
+ elif isinstance(first, tuple): # labeled creation sequence
209
+ wseq = [v[1] for v in creation_sequence]
210
+ elif isinstance(first, int): # compact creation sequence
211
+ wseq = uncompact(creation_sequence)
212
+ else:
213
+ raise TypeError("Not a valid creation sequence type")
214
+ # pass through twice--first backwards
215
+ wseq.reverse()
216
+ w = 0
217
+ prev = "i"
218
+ for j, s in enumerate(wseq):
219
+ if s == "i":
220
+ wseq[j] = w
221
+ prev = s
222
+ elif prev == "i":
223
+ prev = s
224
+ w += 1
225
+ wseq.reverse() # now pass through forwards
226
+ for j, s in enumerate(wseq):
227
+ if s == "d":
228
+ wseq[j] = w
229
+ prev = s
230
+ elif prev == "d":
231
+ prev = s
232
+ w += 1
233
+ # Now scale weights
234
+ if prev == "d":
235
+ w += 1
236
+ wscale = 1 / w
237
+ return [ww * wscale for ww in wseq]
238
+ # return wseq
239
+
240
+
241
+ def weights_to_creation_sequence(
242
+ weights, threshold=1, with_labels=False, compact=False
243
+ ):
244
+ """
245
+ Returns a creation sequence for a threshold graph
246
+ determined by the weights and threshold given as input.
247
+ If the sum of two node weights is greater than the
248
+ threshold value, an edge is created between these nodes.
249
+
250
+ The creation sequence is a list of single characters 'd'
251
+ or 'i': 'd' for dominating or 'i' for isolated vertices.
252
+ Dominating vertices are connected to all vertices present
253
+ when it is added. The first node added is by convention 'd'.
254
+
255
+ If with_labels==True:
256
+ Returns a list of 2-tuples containing the vertex number
257
+ and a character 'd' or 'i' which describes the type of vertex.
258
+
259
+ If compact==True:
260
+ Returns the creation sequence in a compact form that is the number
261
+ of 'i's and 'd's alternating.
262
+ Examples:
263
+ [1,2,2,3] represents d,i,i,d,d,i,i,i
264
+ [3,1,2] represents d,d,d,i,d,d
265
+
266
+ Notice that the first number is the first vertex to be used for
267
+ construction and so is always 'd'.
268
+
269
+ with_labels and compact cannot both be True.
270
+ """
271
+ if with_labels and compact:
272
+ raise ValueError("compact sequences cannot be labeled")
273
+
274
+ # make an indexed copy
275
+ if isinstance(weights, dict): # labeled weights
276
+ wseq = [[w, label] for (label, w) in weights.items()]
277
+ else:
278
+ wseq = [[w, i] for i, w in enumerate(weights)]
279
+ wseq.sort()
280
+ cs = [] # creation sequence
281
+ cutoff = threshold - wseq[-1][0]
282
+ while wseq:
283
+ if wseq[0][0] < cutoff: # isolated node
284
+ (w, label) = wseq.pop(0)
285
+ cs.append((label, "i"))
286
+ else:
287
+ (w, label) = wseq.pop()
288
+ cs.append((label, "d"))
289
+ cutoff = threshold - wseq[-1][0]
290
+ if len(wseq) == 1: # make sure we start with a d
291
+ (w, label) = wseq.pop()
292
+ cs.append((label, "d"))
293
+ # put in correct order
294
+ cs.reverse()
295
+
296
+ if with_labels:
297
+ return cs
298
+ if compact:
299
+ return make_compact(cs)
300
+ return [v[1] for v in cs] # not labeled
301
+
302
+
303
+ # Manipulating NetworkX.Graphs in context of threshold graphs
304
+ @nx._dispatchable(graphs=None, returns_graph=True)
305
+ def threshold_graph(creation_sequence, create_using=None):
306
+ """
307
+ Create a threshold graph from the creation sequence or compact
308
+ creation_sequence.
309
+
310
+ The input sequence can be a
311
+
312
+ creation sequence (e.g. ['d','i','d','d','d','i'])
313
+ labeled creation sequence (e.g. [(0,'d'),(2,'d'),(1,'i')])
314
+ compact creation sequence (e.g. [2,1,1,2,0])
315
+
316
+ Use cs=creation_sequence(degree_sequence,labeled=True)
317
+ to convert a degree sequence to a creation sequence.
318
+
319
+ Returns None if the sequence is not valid
320
+ """
321
+ # Turn input sequence into a labeled creation sequence
322
+ first = creation_sequence[0]
323
+ if isinstance(first, str): # creation sequence
324
+ ci = list(enumerate(creation_sequence))
325
+ elif isinstance(first, tuple): # labeled creation sequence
326
+ ci = creation_sequence[:]
327
+ elif isinstance(first, int): # compact creation sequence
328
+ cs = uncompact(creation_sequence)
329
+ ci = list(enumerate(cs))
330
+ else:
331
+ print("not a valid creation sequence type")
332
+ return None
333
+
334
+ G = nx.empty_graph(0, create_using)
335
+ if G.is_directed():
336
+ raise nx.NetworkXError("Directed Graph not supported")
337
+
338
+ G.name = "Threshold Graph"
339
+
340
+ # add nodes and edges
341
+ # if type is 'i' just add nodea
342
+ # if type is a d connect to everything previous
343
+ while ci:
344
+ (v, node_type) = ci.pop(0)
345
+ if node_type == "d": # dominating type, connect to all existing nodes
346
+ # We use `for u in list(G):` instead of
347
+ # `for u in G:` because we edit the graph `G` in
348
+ # the loop. Hence using an iterator will result in
349
+ # `RuntimeError: dictionary changed size during iteration`
350
+ for u in list(G):
351
+ G.add_edge(v, u)
352
+ G.add_node(v)
353
+ return G
354
+
355
+
356
+ @nx._dispatchable
357
+ def find_alternating_4_cycle(G):
358
+ """
359
+ Returns False if there aren't any alternating 4 cycles.
360
+ Otherwise returns the cycle as [a,b,c,d] where (a,b)
361
+ and (c,d) are edges and (a,c) and (b,d) are not.
362
+ """
363
+ for u, v in G.edges():
364
+ for w in G.nodes():
365
+ if not G.has_edge(u, w) and u != w:
366
+ for x in G.neighbors(w):
367
+ if not G.has_edge(v, x) and v != x:
368
+ return [u, v, w, x]
369
+ return False
370
+
371
+
372
+ @nx._dispatchable(returns_graph=True)
373
+ def find_threshold_graph(G, create_using=None):
374
+ """
375
+ Returns a threshold subgraph that is close to largest in `G`.
376
+
377
+ The threshold graph will contain the largest degree node in G.
378
+
379
+ Parameters
380
+ ----------
381
+ G : NetworkX graph instance
382
+ An instance of `Graph`, or `MultiDiGraph`
383
+ create_using : NetworkX graph class or `None` (default), optional
384
+ Type of graph to use when constructing the threshold graph.
385
+ If `None`, infer the appropriate graph type from the input.
386
+
387
+ Returns
388
+ -------
389
+ graph :
390
+ A graph instance representing the threshold graph
391
+
392
+ Examples
393
+ --------
394
+ >>> from networkx.algorithms.threshold import find_threshold_graph
395
+ >>> G = nx.barbell_graph(3, 3)
396
+ >>> T = find_threshold_graph(G)
397
+ >>> T.nodes # may vary
398
+ NodeView((7, 8, 5, 6))
399
+
400
+ References
401
+ ----------
402
+ .. [1] Threshold graphs: https://en.wikipedia.org/wiki/Threshold_graph
403
+ """
404
+ return threshold_graph(find_creation_sequence(G), create_using)
405
+
406
+
407
+ @nx._dispatchable
408
+ def find_creation_sequence(G):
409
+ """
410
+ Find a threshold subgraph that is close to largest in G.
411
+ Returns the labeled creation sequence of that threshold graph.
412
+ """
413
+ cs = []
414
+ # get a local pointer to the working part of the graph
415
+ H = G
416
+ while H.order() > 0:
417
+ # get new degree sequence on subgraph
418
+ dsdict = dict(H.degree())
419
+ ds = [(d, v) for v, d in dsdict.items()]
420
+ ds.sort()
421
+ # Update threshold graph nodes
422
+ if ds[-1][0] == 0: # all are isolated
423
+ cs.extend(zip(dsdict, ["i"] * (len(ds) - 1) + ["d"]))
424
+ break # Done!
425
+ # pull off isolated nodes
426
+ while ds[0][0] == 0:
427
+ (d, iso) = ds.pop(0)
428
+ cs.append((iso, "i"))
429
+ # find new biggest node
430
+ (d, bigv) = ds.pop()
431
+ # add edges of star to t_g
432
+ cs.append((bigv, "d"))
433
+ # form subgraph of neighbors of big node
434
+ H = H.subgraph(H.neighbors(bigv))
435
+ cs.reverse()
436
+ return cs
437
+
438
+
439
+ # Properties of Threshold Graphs
440
+ def triangles(creation_sequence):
441
+ """
442
+ Compute number of triangles in the threshold graph with the
443
+ given creation sequence.
444
+ """
445
+ # shortcut algorithm that doesn't require computing number
446
+ # of triangles at each node.
447
+ cs = creation_sequence # alias
448
+ dr = cs.count("d") # number of d's in sequence
449
+ ntri = dr * (dr - 1) * (dr - 2) / 6 # number of triangles in clique of nd d's
450
+ # now add dr choose 2 triangles for every 'i' in sequence where
451
+ # dr is the number of d's to the right of the current i
452
+ for i, typ in enumerate(cs):
453
+ if typ == "i":
454
+ ntri += dr * (dr - 1) / 2
455
+ else:
456
+ dr -= 1
457
+ return ntri
458
+
459
+
460
+ def triangle_sequence(creation_sequence):
461
+ """
462
+ Return triangle sequence for the given threshold graph creation sequence.
463
+
464
+ """
465
+ cs = creation_sequence
466
+ seq = []
467
+ dr = cs.count("d") # number of d's to the right of the current pos
468
+ dcur = (dr - 1) * (dr - 2) // 2 # number of triangles through a node of clique dr
469
+ irun = 0 # number of i's in the last run
470
+ drun = 0 # number of d's in the last run
471
+ for i, sym in enumerate(cs):
472
+ if sym == "d":
473
+ drun += 1
474
+ tri = dcur + (dr - 1) * irun # new triangles at this d
475
+ else: # cs[i]="i":
476
+ if prevsym == "d": # new string of i's
477
+ dcur += (dr - 1) * irun # accumulate shared shortest paths
478
+ irun = 0 # reset i run counter
479
+ dr -= drun # reduce number of d's to right
480
+ drun = 0 # reset d run counter
481
+ irun += 1
482
+ tri = dr * (dr - 1) // 2 # new triangles at this i
483
+ seq.append(tri)
484
+ prevsym = sym
485
+ return seq
486
+
487
+
488
+ def cluster_sequence(creation_sequence):
489
+ """
490
+ Return cluster sequence for the given threshold graph creation sequence.
491
+ """
492
+ triseq = triangle_sequence(creation_sequence)
493
+ degseq = degree_sequence(creation_sequence)
494
+ cseq = []
495
+ for i, deg in enumerate(degseq):
496
+ tri = triseq[i]
497
+ if deg <= 1: # isolated vertex or single pair gets cc 0
498
+ cseq.append(0)
499
+ continue
500
+ max_size = (deg * (deg - 1)) // 2
501
+ cseq.append(tri / max_size)
502
+ return cseq
503
+
504
+
505
+ def degree_sequence(creation_sequence):
506
+ """
507
+ Return degree sequence for the threshold graph with the given
508
+ creation sequence
509
+ """
510
+ cs = creation_sequence # alias
511
+ seq = []
512
+ rd = cs.count("d") # number of d to the right
513
+ for i, sym in enumerate(cs):
514
+ if sym == "d":
515
+ rd -= 1
516
+ seq.append(rd + i)
517
+ else:
518
+ seq.append(rd)
519
+ return seq
520
+
521
+
522
+ def density(creation_sequence):
523
+ """
524
+ Return the density of the graph with this creation_sequence.
525
+ The density is the fraction of possible edges present.
526
+ """
527
+ N = len(creation_sequence)
528
+ two_size = sum(degree_sequence(creation_sequence))
529
+ two_possible = N * (N - 1)
530
+ den = two_size / two_possible
531
+ return den
532
+
533
+
534
+ def degree_correlation(creation_sequence):
535
+ """
536
+ Return the degree-degree correlation over all edges.
537
+ """
538
+ cs = creation_sequence
539
+ s1 = 0 # deg_i*deg_j
540
+ s2 = 0 # deg_i^2+deg_j^2
541
+ s3 = 0 # deg_i+deg_j
542
+ m = 0 # number of edges
543
+ rd = cs.count("d") # number of d nodes to the right
544
+ rdi = [i for i, sym in enumerate(cs) if sym == "d"] # index of "d"s
545
+ ds = degree_sequence(cs)
546
+ for i, sym in enumerate(cs):
547
+ if sym == "d":
548
+ if i != rdi[0]:
549
+ print("Logic error in degree_correlation", i, rdi)
550
+ raise ValueError
551
+ rdi.pop(0)
552
+ degi = ds[i]
553
+ for dj in rdi:
554
+ degj = ds[dj]
555
+ s1 += degj * degi
556
+ s2 += degi**2 + degj**2
557
+ s3 += degi + degj
558
+ m += 1
559
+ denom = 2 * m * s2 - s3 * s3
560
+ numer = 4 * m * s1 - s3 * s3
561
+ if denom == 0:
562
+ if numer == 0:
563
+ return 1
564
+ raise ValueError(f"Zero Denominator but Numerator is {numer}")
565
+ return numer / denom
566
+
567
+
568
+ def shortest_path(creation_sequence, u, v):
569
+ """
570
+ Find the shortest path between u and v in a
571
+ threshold graph G with the given creation_sequence.
572
+
573
+ For an unlabeled creation_sequence, the vertices
574
+ u and v must be integers in (0,len(sequence)) referring
575
+ to the position of the desired vertices in the sequence.
576
+
577
+ For a labeled creation_sequence, u and v are labels of vertices.
578
+
579
+ Use cs=creation_sequence(degree_sequence,with_labels=True)
580
+ to convert a degree sequence to a creation sequence.
581
+
582
+ Returns a list of vertices from u to v.
583
+ Example: if they are neighbors, it returns [u,v]
584
+ """
585
+ # Turn input sequence into a labeled creation sequence
586
+ first = creation_sequence[0]
587
+ if isinstance(first, str): # creation sequence
588
+ cs = [(i, creation_sequence[i]) for i in range(len(creation_sequence))]
589
+ elif isinstance(first, tuple): # labeled creation sequence
590
+ cs = creation_sequence[:]
591
+ elif isinstance(first, int): # compact creation sequence
592
+ ci = uncompact(creation_sequence)
593
+ cs = [(i, ci[i]) for i in range(len(ci))]
594
+ else:
595
+ raise TypeError("Not a valid creation sequence type")
596
+
597
+ verts = [s[0] for s in cs]
598
+ if v not in verts:
599
+ raise ValueError(f"Vertex {v} not in graph from creation_sequence")
600
+ if u not in verts:
601
+ raise ValueError(f"Vertex {u} not in graph from creation_sequence")
602
+ # Done checking
603
+ if u == v:
604
+ return [u]
605
+
606
+ uindex = verts.index(u)
607
+ vindex = verts.index(v)
608
+ bigind = max(uindex, vindex)
609
+ if cs[bigind][1] == "d":
610
+ return [u, v]
611
+ # must be that cs[bigind][1]=='i'
612
+ cs = cs[bigind:]
613
+ while cs:
614
+ vert = cs.pop()
615
+ if vert[1] == "d":
616
+ return [u, vert[0], v]
617
+ # All after u are type 'i' so no connection
618
+ return -1
619
+
620
+
621
+ def shortest_path_length(creation_sequence, i):
622
+ """
623
+ Return the shortest path length from indicated node to
624
+ every other node for the threshold graph with the given
625
+ creation sequence.
626
+ Node is indicated by index i in creation_sequence unless
627
+ creation_sequence is labeled in which case, i is taken to
628
+ be the label of the node.
629
+
630
+ Paths lengths in threshold graphs are at most 2.
631
+ Length to unreachable nodes is set to -1.
632
+ """
633
+ # Turn input sequence into a labeled creation sequence
634
+ first = creation_sequence[0]
635
+ if isinstance(first, str): # creation sequence
636
+ if isinstance(creation_sequence, list):
637
+ cs = creation_sequence[:]
638
+ else:
639
+ cs = list(creation_sequence)
640
+ elif isinstance(first, tuple): # labeled creation sequence
641
+ cs = [v[1] for v in creation_sequence]
642
+ i = [v[0] for v in creation_sequence].index(i)
643
+ elif isinstance(first, int): # compact creation sequence
644
+ cs = uncompact(creation_sequence)
645
+ else:
646
+ raise TypeError("Not a valid creation sequence type")
647
+
648
+ # Compute
649
+ N = len(cs)
650
+ spl = [2] * N # length 2 to every node
651
+ spl[i] = 0 # except self which is 0
652
+ # 1 for all d's to the right
653
+ for j in range(i + 1, N):
654
+ if cs[j] == "d":
655
+ spl[j] = 1
656
+ if cs[i] == "d": # 1 for all nodes to the left
657
+ for j in range(i):
658
+ spl[j] = 1
659
+ # and -1 for any trailing i to indicate unreachable
660
+ for j in range(N - 1, 0, -1):
661
+ if cs[j] == "d":
662
+ break
663
+ spl[j] = -1
664
+ return spl
665
+
666
+
667
+ def betweenness_sequence(creation_sequence, normalized=True):
668
+ """
669
+ Return betweenness for the threshold graph with the given creation
670
+ sequence. The result is unscaled. To scale the values
671
+ to the interval [0,1] divide by (n-1)*(n-2).
672
+ """
673
+ cs = creation_sequence
674
+ seq = [] # betweenness
675
+ lastchar = "d" # first node is always a 'd'
676
+ dr = float(cs.count("d")) # number of d's to the right of current pos
677
+ irun = 0 # number of i's in the last run
678
+ drun = 0 # number of d's in the last run
679
+ dlast = 0.0 # betweenness of last d
680
+ for i, c in enumerate(cs):
681
+ if c == "d": # cs[i]=="d":
682
+ # betweenness = amt shared with earlier d's and i's
683
+ # + new isolated nodes covered
684
+ # + new paths to all previous nodes
685
+ b = dlast + (irun - 1) * irun / dr + 2 * irun * (i - drun - irun) / dr
686
+ drun += 1 # update counter
687
+ else: # cs[i]="i":
688
+ if lastchar == "d": # if this is a new run of i's
689
+ dlast = b # accumulate betweenness
690
+ dr -= drun # update number of d's to the right
691
+ drun = 0 # reset d counter
692
+ irun = 0 # reset i counter
693
+ b = 0 # isolated nodes have zero betweenness
694
+ irun += 1 # add another i to the run
695
+ seq.append(float(b))
696
+ lastchar = c
697
+
698
+ # normalize by the number of possible shortest paths
699
+ if normalized:
700
+ order = len(cs)
701
+ scale = 1.0 / ((order - 1) * (order - 2))
702
+ seq = [s * scale for s in seq]
703
+
704
+ return seq
705
+
706
+
707
+ def eigenvectors(creation_sequence):
708
+ """
709
+ Return a 2-tuple of Laplacian eigenvalues and eigenvectors
710
+ for the threshold network with creation_sequence.
711
+ The first value is a list of eigenvalues.
712
+ The second value is a list of eigenvectors.
713
+ The lists are in the same order so corresponding eigenvectors
714
+ and eigenvalues are in the same position in the two lists.
715
+
716
+ Notice that the order of the eigenvalues returned by eigenvalues(cs)
717
+ may not correspond to the order of these eigenvectors.
718
+ """
719
+ ccs = make_compact(creation_sequence)
720
+ N = sum(ccs)
721
+ vec = [0] * N
722
+ val = vec[:]
723
+ # get number of type d nodes to the right (all for first node)
724
+ dr = sum(ccs[::2])
725
+
726
+ nn = ccs[0]
727
+ vec[0] = [1.0 / sqrt(N)] * N
728
+ val[0] = 0
729
+ e = dr
730
+ dr -= nn
731
+ type_d = True
732
+ i = 1
733
+ dd = 1
734
+ while dd < nn:
735
+ scale = 1.0 / sqrt(dd * dd + i)
736
+ vec[i] = i * [-scale] + [dd * scale] + [0] * (N - i - 1)
737
+ val[i] = e
738
+ i += 1
739
+ dd += 1
740
+ if len(ccs) == 1:
741
+ return (val, vec)
742
+ for nn in ccs[1:]:
743
+ scale = 1.0 / sqrt(nn * i * (i + nn))
744
+ vec[i] = i * [-nn * scale] + nn * [i * scale] + [0] * (N - i - nn)
745
+ # find eigenvalue
746
+ type_d = not type_d
747
+ if type_d:
748
+ e = i + dr
749
+ dr -= nn
750
+ else:
751
+ e = dr
752
+ val[i] = e
753
+ st = i
754
+ i += 1
755
+ dd = 1
756
+ while dd < nn:
757
+ scale = 1.0 / sqrt(i - st + dd * dd)
758
+ vec[i] = [0] * st + (i - st) * [-scale] + [dd * scale] + [0] * (N - i - 1)
759
+ val[i] = e
760
+ i += 1
761
+ dd += 1
762
+ return (val, vec)
763
+
764
+
765
+ def spectral_projection(u, eigenpairs):
766
+ """
767
+ Returns the coefficients of each eigenvector
768
+ in a projection of the vector u onto the normalized
769
+ eigenvectors which are contained in eigenpairs.
770
+
771
+ eigenpairs should be a list of two objects. The
772
+ first is a list of eigenvalues and the second a list
773
+ of eigenvectors. The eigenvectors should be lists.
774
+
775
+ There's not a lot of error checking on lengths of
776
+ arrays, etc. so be careful.
777
+ """
778
+ coeff = []
779
+ evect = eigenpairs[1]
780
+ for ev in evect:
781
+ c = sum(evv * uv for (evv, uv) in zip(ev, u))
782
+ coeff.append(c)
783
+ return coeff
784
+
785
+
786
+ def eigenvalues(creation_sequence):
787
+ """
788
+ Return sequence of eigenvalues of the Laplacian of the threshold
789
+ graph for the given creation_sequence.
790
+
791
+ Based on the Ferrer's diagram method. The spectrum is integral
792
+ and is the conjugate of the degree sequence.
793
+
794
+ See::
795
+
796
+ @Article{degree-merris-1994,
797
+ author = {Russel Merris},
798
+ title = {Degree maximal graphs are Laplacian integral},
799
+ journal = {Linear Algebra Appl.},
800
+ year = {1994},
801
+ volume = {199},
802
+ pages = {381--389},
803
+ }
804
+
805
+ """
806
+ degseq = degree_sequence(creation_sequence)
807
+ degseq.sort()
808
+ eiglist = [] # zero is always one eigenvalue
809
+ eig = 0
810
+ row = len(degseq)
811
+ bigdeg = degseq.pop()
812
+ while row:
813
+ if bigdeg < row:
814
+ eiglist.append(eig)
815
+ row -= 1
816
+ else:
817
+ eig += 1
818
+ if degseq:
819
+ bigdeg = degseq.pop()
820
+ else:
821
+ bigdeg = 0
822
+ return eiglist
823
+
824
+
825
+ # Threshold graph creation routines
826
+
827
+
828
+ @py_random_state(2)
829
+ def random_threshold_sequence(n, p, seed=None):
830
+ """
831
+ Create a random threshold sequence of size n.
832
+ A creation sequence is built by randomly choosing d's with
833
+ probability p and i's with probability 1-p.
834
+
835
+ s=nx.random_threshold_sequence(10,0.5)
836
+
837
+ returns a threshold sequence of length 10 with equal
838
+ probably of an i or a d at each position.
839
+
840
+ A "random" threshold graph can be built with
841
+
842
+ G=nx.threshold_graph(s)
843
+
844
+ seed : integer, random_state, or None (default)
845
+ Indicator of random number generation state.
846
+ See :ref:`Randomness<randomness>`.
847
+ """
848
+ if not (0 <= p <= 1):
849
+ raise ValueError("p must be in [0,1]")
850
+
851
+ cs = ["d"] # threshold sequences always start with a d
852
+ for i in range(1, n):
853
+ if seed.random() < p:
854
+ cs.append("d")
855
+ else:
856
+ cs.append("i")
857
+ return cs
858
+
859
+
860
+ # maybe *_d_threshold_sequence routines should
861
+ # be (or be called from) a single routine with a more descriptive name
862
+ # and a keyword parameter?
863
+ def right_d_threshold_sequence(n, m):
864
+ """
865
+ Create a skewed threshold graph with a given number
866
+ of vertices (n) and a given number of edges (m).
867
+
868
+ The routine returns an unlabeled creation sequence
869
+ for the threshold graph.
870
+
871
+ FIXME: describe algorithm
872
+
873
+ """
874
+ cs = ["d"] + ["i"] * (n - 1) # create sequence with n insolated nodes
875
+
876
+ # m <n : not enough edges, make disconnected
877
+ if m < n:
878
+ cs[m] = "d"
879
+ return cs
880
+
881
+ # too many edges
882
+ if m > n * (n - 1) / 2:
883
+ raise ValueError("Too many edges for this many nodes.")
884
+
885
+ # connected case m >n-1
886
+ ind = n - 1
887
+ sum = n - 1
888
+ while sum < m:
889
+ cs[ind] = "d"
890
+ ind -= 1
891
+ sum += ind
892
+ ind = m - (sum - ind)
893
+ cs[ind] = "d"
894
+ return cs
895
+
896
+
897
+ def left_d_threshold_sequence(n, m):
898
+ """
899
+ Create a skewed threshold graph with a given number
900
+ of vertices (n) and a given number of edges (m).
901
+
902
+ The routine returns an unlabeled creation sequence
903
+ for the threshold graph.
904
+
905
+ FIXME: describe algorithm
906
+
907
+ """
908
+ cs = ["d"] + ["i"] * (n - 1) # create sequence with n insolated nodes
909
+
910
+ # m <n : not enough edges, make disconnected
911
+ if m < n:
912
+ cs[m] = "d"
913
+ return cs
914
+
915
+ # too many edges
916
+ if m > n * (n - 1) / 2:
917
+ raise ValueError("Too many edges for this many nodes.")
918
+
919
+ # Connected case when M>N-1
920
+ cs[n - 1] = "d"
921
+ sum = n - 1
922
+ ind = 1
923
+ while sum < m:
924
+ cs[ind] = "d"
925
+ sum += ind
926
+ ind += 1
927
+ if sum > m: # be sure not to change the first vertex
928
+ cs[sum - m] = "i"
929
+ return cs
930
+
931
+
932
+ @py_random_state(3)
933
+ def swap_d(cs, p_split=1.0, p_combine=1.0, seed=None):
934
+ """
935
+ Perform a "swap" operation on a threshold sequence.
936
+
937
+ The swap preserves the number of nodes and edges
938
+ in the graph for the given sequence.
939
+ The resulting sequence is still a threshold sequence.
940
+
941
+ Perform one split and one combine operation on the
942
+ 'd's of a creation sequence for a threshold graph.
943
+ This operation maintains the number of nodes and edges
944
+ in the graph, but shifts the edges from node to node
945
+ maintaining the threshold quality of the graph.
946
+
947
+ seed : integer, random_state, or None (default)
948
+ Indicator of random number generation state.
949
+ See :ref:`Randomness<randomness>`.
950
+ """
951
+ # preprocess the creation sequence
952
+ dlist = [i for (i, node_type) in enumerate(cs[1:-1]) if node_type == "d"]
953
+ # split
954
+ if seed.random() < p_split:
955
+ choice = seed.choice(dlist)
956
+ split_to = seed.choice(range(choice))
957
+ flip_side = choice - split_to
958
+ if split_to != flip_side and cs[split_to] == "i" and cs[flip_side] == "i":
959
+ cs[choice] = "i"
960
+ cs[split_to] = "d"
961
+ cs[flip_side] = "d"
962
+ dlist.remove(choice)
963
+ # don't add or combine may reverse this action
964
+ # dlist.extend([split_to,flip_side])
965
+ # print >>sys.stderr,"split at %s to %s and %s"%(choice,split_to,flip_side)
966
+ # combine
967
+ if seed.random() < p_combine and dlist:
968
+ first_choice = seed.choice(dlist)
969
+ second_choice = seed.choice(dlist)
970
+ target = first_choice + second_choice
971
+ if target >= len(cs) or cs[target] == "d" or first_choice == second_choice:
972
+ return cs
973
+ # OK to combine
974
+ cs[first_choice] = "i"
975
+ cs[second_choice] = "i"
976
+ cs[target] = "d"
977
+ # print >>sys.stderr,"combine %s and %s to make %s."%(first_choice,second_choice,target)
978
+
979
+ return cs
venv/lib/python3.10/site-packages/networkx/algorithms/tournament.py ADDED
@@ -0,0 +1,406 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Functions concerning tournament graphs.
2
+
3
+ A `tournament graph`_ is a complete oriented graph. In other words, it
4
+ is a directed graph in which there is exactly one directed edge joining
5
+ each pair of distinct nodes. For each function in this module that
6
+ accepts a graph as input, you must provide a tournament graph. The
7
+ responsibility is on the caller to ensure that the graph is a tournament
8
+ graph:
9
+
10
+ >>> G = nx.DiGraph([(0, 1), (1, 2), (2, 0)])
11
+ >>> nx.is_tournament(G)
12
+ True
13
+
14
+ To access the functions in this module, you must access them through the
15
+ :mod:`networkx.tournament` module::
16
+
17
+ >>> nx.tournament.is_reachable(G, 0, 1)
18
+ True
19
+
20
+ .. _tournament graph: https://en.wikipedia.org/wiki/Tournament_%28graph_theory%29
21
+
22
+ """
23
+ from itertools import combinations
24
+
25
+ import networkx as nx
26
+ from networkx.algorithms.simple_paths import is_simple_path as is_path
27
+ from networkx.utils import arbitrary_element, not_implemented_for, py_random_state
28
+
29
+ __all__ = [
30
+ "hamiltonian_path",
31
+ "is_reachable",
32
+ "is_strongly_connected",
33
+ "is_tournament",
34
+ "random_tournament",
35
+ "score_sequence",
36
+ ]
37
+
38
+
39
+ def index_satisfying(iterable, condition):
40
+ """Returns the index of the first element in `iterable` that
41
+ satisfies the given condition.
42
+
43
+ If no such element is found (that is, when the iterable is
44
+ exhausted), this returns the length of the iterable (that is, one
45
+ greater than the last index of the iterable).
46
+
47
+ `iterable` must not be empty. If `iterable` is empty, this
48
+ function raises :exc:`ValueError`.
49
+
50
+ """
51
+ # Pre-condition: iterable must not be empty.
52
+ for i, x in enumerate(iterable):
53
+ if condition(x):
54
+ return i
55
+ # If we reach the end of the iterable without finding an element
56
+ # that satisfies the condition, return the length of the iterable,
57
+ # which is one greater than the index of its last element. If the
58
+ # iterable was empty, `i` will not be defined, so we raise an
59
+ # exception.
60
+ try:
61
+ return i + 1
62
+ except NameError as err:
63
+ raise ValueError("iterable must be non-empty") from err
64
+
65
+
66
+ @not_implemented_for("undirected")
67
+ @not_implemented_for("multigraph")
68
+ @nx._dispatchable
69
+ def is_tournament(G):
70
+ """Returns True if and only if `G` is a tournament.
71
+
72
+ A tournament is a directed graph, with neither self-loops nor
73
+ multi-edges, in which there is exactly one directed edge joining
74
+ each pair of distinct nodes.
75
+
76
+ Parameters
77
+ ----------
78
+ G : NetworkX graph
79
+ A directed graph representing a tournament.
80
+
81
+ Returns
82
+ -------
83
+ bool
84
+ Whether the given graph is a tournament graph.
85
+
86
+ Examples
87
+ --------
88
+ >>> G = nx.DiGraph([(0, 1), (1, 2), (2, 0)])
89
+ >>> nx.is_tournament(G)
90
+ True
91
+
92
+ Notes
93
+ -----
94
+ Some definitions require a self-loop on each node, but that is not
95
+ the convention used here.
96
+
97
+ """
98
+ # In a tournament, there is exactly one directed edge joining each pair.
99
+ return (
100
+ all((v in G[u]) ^ (u in G[v]) for u, v in combinations(G, 2))
101
+ and nx.number_of_selfloops(G) == 0
102
+ )
103
+
104
+
105
+ @not_implemented_for("undirected")
106
+ @not_implemented_for("multigraph")
107
+ @nx._dispatchable
108
+ def hamiltonian_path(G):
109
+ """Returns a Hamiltonian path in the given tournament graph.
110
+
111
+ Each tournament has a Hamiltonian path. If furthermore, the
112
+ tournament is strongly connected, then the returned Hamiltonian path
113
+ is a Hamiltonian cycle (by joining the endpoints of the path).
114
+
115
+ Parameters
116
+ ----------
117
+ G : NetworkX graph
118
+ A directed graph representing a tournament.
119
+
120
+ Returns
121
+ -------
122
+ path : list
123
+ A list of nodes which form a Hamiltonian path in `G`.
124
+
125
+ Examples
126
+ --------
127
+ >>> G = nx.DiGraph([(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)])
128
+ >>> nx.is_tournament(G)
129
+ True
130
+ >>> nx.tournament.hamiltonian_path(G)
131
+ [0, 1, 2, 3]
132
+
133
+ Notes
134
+ -----
135
+ This is a recursive implementation with an asymptotic running time
136
+ of $O(n^2)$, ignoring multiplicative polylogarithmic factors, where
137
+ $n$ is the number of nodes in the graph.
138
+
139
+ """
140
+ if len(G) == 0:
141
+ return []
142
+ if len(G) == 1:
143
+ return [arbitrary_element(G)]
144
+ v = arbitrary_element(G)
145
+ hampath = hamiltonian_path(G.subgraph(set(G) - {v}))
146
+ # Get the index of the first node in the path that does *not* have
147
+ # an edge to `v`, then insert `v` before that node.
148
+ index = index_satisfying(hampath, lambda u: v not in G[u])
149
+ hampath.insert(index, v)
150
+ return hampath
151
+
152
+
153
+ @py_random_state(1)
154
+ @nx._dispatchable(graphs=None, returns_graph=True)
155
+ def random_tournament(n, seed=None):
156
+ r"""Returns a random tournament graph on `n` nodes.
157
+
158
+ Parameters
159
+ ----------
160
+ n : int
161
+ The number of nodes in the returned graph.
162
+ seed : integer, random_state, or None (default)
163
+ Indicator of random number generation state.
164
+ See :ref:`Randomness<randomness>`.
165
+
166
+ Returns
167
+ -------
168
+ G : DiGraph
169
+ A tournament on `n` nodes, with exactly one directed edge joining
170
+ each pair of distinct nodes.
171
+
172
+ Notes
173
+ -----
174
+ This algorithm adds, for each pair of distinct nodes, an edge with
175
+ uniformly random orientation. In other words, `\binom{n}{2}` flips
176
+ of an unbiased coin decide the orientations of the edges in the
177
+ graph.
178
+
179
+ """
180
+ # Flip an unbiased coin for each pair of distinct nodes.
181
+ coins = (seed.random() for i in range((n * (n - 1)) // 2))
182
+ pairs = combinations(range(n), 2)
183
+ edges = ((u, v) if r < 0.5 else (v, u) for (u, v), r in zip(pairs, coins))
184
+ return nx.DiGraph(edges)
185
+
186
+
187
+ @not_implemented_for("undirected")
188
+ @not_implemented_for("multigraph")
189
+ @nx._dispatchable
190
+ def score_sequence(G):
191
+ """Returns the score sequence for the given tournament graph.
192
+
193
+ The score sequence is the sorted list of the out-degrees of the
194
+ nodes of the graph.
195
+
196
+ Parameters
197
+ ----------
198
+ G : NetworkX graph
199
+ A directed graph representing a tournament.
200
+
201
+ Returns
202
+ -------
203
+ list
204
+ A sorted list of the out-degrees of the nodes of `G`.
205
+
206
+ Examples
207
+ --------
208
+ >>> G = nx.DiGraph([(1, 0), (1, 3), (0, 2), (0, 3), (2, 1), (3, 2)])
209
+ >>> nx.is_tournament(G)
210
+ True
211
+ >>> nx.tournament.score_sequence(G)
212
+ [1, 1, 2, 2]
213
+
214
+ """
215
+ return sorted(d for v, d in G.out_degree())
216
+
217
+
218
+ @not_implemented_for("undirected")
219
+ @not_implemented_for("multigraph")
220
+ @nx._dispatchable(preserve_edge_attrs={"G": {"weight": 1}})
221
+ def tournament_matrix(G):
222
+ r"""Returns the tournament matrix for the given tournament graph.
223
+
224
+ This function requires SciPy.
225
+
226
+ The *tournament matrix* of a tournament graph with edge set *E* is
227
+ the matrix *T* defined by
228
+
229
+ .. math::
230
+
231
+ T_{i j} =
232
+ \begin{cases}
233
+ +1 & \text{if } (i, j) \in E \\
234
+ -1 & \text{if } (j, i) \in E \\
235
+ 0 & \text{if } i == j.
236
+ \end{cases}
237
+
238
+ An equivalent definition is `T = A - A^T`, where *A* is the
239
+ adjacency matrix of the graph `G`.
240
+
241
+ Parameters
242
+ ----------
243
+ G : NetworkX graph
244
+ A directed graph representing a tournament.
245
+
246
+ Returns
247
+ -------
248
+ SciPy sparse array
249
+ The tournament matrix of the tournament graph `G`.
250
+
251
+ Raises
252
+ ------
253
+ ImportError
254
+ If SciPy is not available.
255
+
256
+ """
257
+ A = nx.adjacency_matrix(G)
258
+ return A - A.T
259
+
260
+
261
+ @not_implemented_for("undirected")
262
+ @not_implemented_for("multigraph")
263
+ @nx._dispatchable
264
+ def is_reachable(G, s, t):
265
+ """Decides whether there is a path from `s` to `t` in the
266
+ tournament.
267
+
268
+ This function is more theoretically efficient than the reachability
269
+ checks than the shortest path algorithms in
270
+ :mod:`networkx.algorithms.shortest_paths`.
271
+
272
+ The given graph **must** be a tournament, otherwise this function's
273
+ behavior is undefined.
274
+
275
+ Parameters
276
+ ----------
277
+ G : NetworkX graph
278
+ A directed graph representing a tournament.
279
+
280
+ s : node
281
+ A node in the graph.
282
+
283
+ t : node
284
+ A node in the graph.
285
+
286
+ Returns
287
+ -------
288
+ bool
289
+ Whether there is a path from `s` to `t` in `G`.
290
+
291
+ Examples
292
+ --------
293
+ >>> G = nx.DiGraph([(1, 0), (1, 3), (1, 2), (2, 3), (2, 0), (3, 0)])
294
+ >>> nx.is_tournament(G)
295
+ True
296
+ >>> nx.tournament.is_reachable(G, 1, 3)
297
+ True
298
+ >>> nx.tournament.is_reachable(G, 3, 2)
299
+ False
300
+
301
+ Notes
302
+ -----
303
+ Although this function is more theoretically efficient than the
304
+ generic shortest path functions, a speedup requires the use of
305
+ parallelism. Though it may in the future, the current implementation
306
+ does not use parallelism, thus you may not see much of a speedup.
307
+
308
+ This algorithm comes from [1].
309
+
310
+ References
311
+ ----------
312
+ .. [1] Tantau, Till.
313
+ "A note on the complexity of the reachability problem for
314
+ tournaments."
315
+ *Electronic Colloquium on Computational Complexity*. 2001.
316
+ <http://eccc.hpi-web.de/report/2001/092/>
317
+ """
318
+
319
+ def two_neighborhood(G, v):
320
+ """Returns the set of nodes at distance at most two from `v`.
321
+
322
+ `G` must be a graph and `v` a node in that graph.
323
+
324
+ The returned set includes the nodes at distance zero (that is,
325
+ the node `v` itself), the nodes at distance one (that is, the
326
+ out-neighbors of `v`), and the nodes at distance two.
327
+
328
+ """
329
+ # TODO This is trivially parallelizable.
330
+ return {
331
+ x for x in G if x == v or x in G[v] or any(is_path(G, [v, z, x]) for z in G)
332
+ }
333
+
334
+ def is_closed(G, nodes):
335
+ """Decides whether the given set of nodes is closed.
336
+
337
+ A set *S* of nodes is *closed* if for each node *u* in the graph
338
+ not in *S* and for each node *v* in *S*, there is an edge from
339
+ *u* to *v*.
340
+
341
+ """
342
+ # TODO This is trivially parallelizable.
343
+ return all(v in G[u] for u in set(G) - nodes for v in nodes)
344
+
345
+ # TODO This is trivially parallelizable.
346
+ neighborhoods = [two_neighborhood(G, v) for v in G]
347
+ return all(not (is_closed(G, S) and s in S and t not in S) for S in neighborhoods)
348
+
349
+
350
+ @not_implemented_for("undirected")
351
+ @not_implemented_for("multigraph")
352
+ @nx._dispatchable(name="tournament_is_strongly_connected")
353
+ def is_strongly_connected(G):
354
+ """Decides whether the given tournament is strongly connected.
355
+
356
+ This function is more theoretically efficient than the
357
+ :func:`~networkx.algorithms.components.is_strongly_connected`
358
+ function.
359
+
360
+ The given graph **must** be a tournament, otherwise this function's
361
+ behavior is undefined.
362
+
363
+ Parameters
364
+ ----------
365
+ G : NetworkX graph
366
+ A directed graph representing a tournament.
367
+
368
+ Returns
369
+ -------
370
+ bool
371
+ Whether the tournament is strongly connected.
372
+
373
+ Examples
374
+ --------
375
+ >>> G = nx.DiGraph([(0, 1), (0, 2), (1, 2), (1, 3), (2, 3), (3, 0)])
376
+ >>> nx.is_tournament(G)
377
+ True
378
+ >>> nx.tournament.is_strongly_connected(G)
379
+ True
380
+ >>> G.remove_edge(3, 0)
381
+ >>> G.add_edge(0, 3)
382
+ >>> nx.is_tournament(G)
383
+ True
384
+ >>> nx.tournament.is_strongly_connected(G)
385
+ False
386
+
387
+ Notes
388
+ -----
389
+ Although this function is more theoretically efficient than the
390
+ generic strong connectivity function, a speedup requires the use of
391
+ parallelism. Though it may in the future, the current implementation
392
+ does not use parallelism, thus you may not see much of a speedup.
393
+
394
+ This algorithm comes from [1].
395
+
396
+ References
397
+ ----------
398
+ .. [1] Tantau, Till.
399
+ "A note on the complexity of the reachability problem for
400
+ tournaments."
401
+ *Electronic Colloquium on Computational Complexity*. 2001.
402
+ <http://eccc.hpi-web.de/report/2001/092/>
403
+
404
+ """
405
+ # TODO This is trivially parallelizable.
406
+ return all(is_reachable(G, u, v) for u in G for v in G)
venv/lib/python3.10/site-packages/networkx/algorithms/voronoi.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Functions for computing the Voronoi cells of a graph."""
2
+ import networkx as nx
3
+ from networkx.utils import groups
4
+
5
+ __all__ = ["voronoi_cells"]
6
+
7
+
8
+ @nx._dispatchable(edge_attrs="weight")
9
+ def voronoi_cells(G, center_nodes, weight="weight"):
10
+ """Returns the Voronoi cells centered at `center_nodes` with respect
11
+ to the shortest-path distance metric.
12
+
13
+ If $C$ is a set of nodes in the graph and $c$ is an element of $C$,
14
+ the *Voronoi cell* centered at a node $c$ is the set of all nodes
15
+ $v$ that are closer to $c$ than to any other center node in $C$ with
16
+ respect to the shortest-path distance metric. [1]_
17
+
18
+ For directed graphs, this will compute the "outward" Voronoi cells,
19
+ as defined in [1]_, in which distance is measured from the center
20
+ nodes to the target node. For the "inward" Voronoi cells, use the
21
+ :meth:`DiGraph.reverse` method to reverse the orientation of the
22
+ edges before invoking this function on the directed graph.
23
+
24
+ Parameters
25
+ ----------
26
+ G : NetworkX graph
27
+
28
+ center_nodes : set
29
+ A nonempty set of nodes in the graph `G` that represent the
30
+ center of the Voronoi cells.
31
+
32
+ weight : string or function
33
+ The edge attribute (or an arbitrary function) representing the
34
+ weight of an edge. This keyword argument is as described in the
35
+ documentation for :func:`~networkx.multi_source_dijkstra_path`,
36
+ for example.
37
+
38
+ Returns
39
+ -------
40
+ dictionary
41
+ A mapping from center node to set of all nodes in the graph
42
+ closer to that center node than to any other center node. The
43
+ keys of the dictionary are the element of `center_nodes`, and
44
+ the values of the dictionary form a partition of the nodes of
45
+ `G`.
46
+
47
+ Examples
48
+ --------
49
+ To get only the partition of the graph induced by the Voronoi cells,
50
+ take the collection of all values in the returned dictionary::
51
+
52
+ >>> G = nx.path_graph(6)
53
+ >>> center_nodes = {0, 3}
54
+ >>> cells = nx.voronoi_cells(G, center_nodes)
55
+ >>> partition = set(map(frozenset, cells.values()))
56
+ >>> sorted(map(sorted, partition))
57
+ [[0, 1], [2, 3, 4, 5]]
58
+
59
+ Raises
60
+ ------
61
+ ValueError
62
+ If `center_nodes` is empty.
63
+
64
+ References
65
+ ----------
66
+ .. [1] Erwig, Martin. (2000),"The graph Voronoi diagram with applications."
67
+ *Networks*, 36: 156--163.
68
+ https://doi.org/10.1002/1097-0037(200010)36:3<156::AID-NET2>3.0.CO;2-L
69
+
70
+ """
71
+ # Determine the shortest paths from any one of the center nodes to
72
+ # every node in the graph.
73
+ #
74
+ # This raises `ValueError` if `center_nodes` is an empty set.
75
+ paths = nx.multi_source_dijkstra_path(G, center_nodes, weight=weight)
76
+ # Determine the center node from which the shortest path originates.
77
+ nearest = {v: p[0] for v, p in paths.items()}
78
+ # Get the mapping from center node to all nodes closer to it than to
79
+ # any other center node.
80
+ cells = groups(nearest)
81
+ # We collect all unreachable nodes under a special key, if there are any.
82
+ unreachable = set(G) - set(nearest)
83
+ if unreachable:
84
+ cells["unreachable"] = unreachable
85
+ return cells
venv/lib/python3.10/site-packages/networkx/algorithms/wiener.py ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Functions related to the Wiener Index of a graph.
2
+
3
+ The Wiener Index is a topological measure of a graph
4
+ related to the distance between nodes and their degree.
5
+ The Schultz Index and Gutman Index are similar measures.
6
+ They are used categorize molecules via the network of
7
+ atoms connected by chemical bonds. The indices are
8
+ correlated with functional aspects of the molecules.
9
+
10
+ References
11
+ ----------
12
+ .. [1] `Wikipedia: Wiener Index <https://en.wikipedia.org/wiki/Wiener_index>`_
13
+ .. [2] M.V. Diudeaa and I. Gutman, Wiener-Type Topological Indices,
14
+ Croatica Chemica Acta, 71 (1998), 21-51.
15
+ https://hrcak.srce.hr/132323
16
+ """
17
+
18
+ import itertools as it
19
+
20
+ import networkx as nx
21
+
22
+ __all__ = ["wiener_index", "schultz_index", "gutman_index"]
23
+
24
+
25
+ @nx._dispatchable(edge_attrs="weight")
26
+ def wiener_index(G, weight=None):
27
+ """Returns the Wiener index of the given graph.
28
+
29
+ The *Wiener index* of a graph is the sum of the shortest-path
30
+ (weighted) distances between each pair of reachable nodes.
31
+ For pairs of nodes in undirected graphs, only one orientation
32
+ of the pair is counted.
33
+
34
+ Parameters
35
+ ----------
36
+ G : NetworkX graph
37
+
38
+ weight : string or None, optional (default: None)
39
+ If None, every edge has weight 1.
40
+ If a string, use this edge attribute as the edge weight.
41
+ Any edge attribute not present defaults to 1.
42
+ The edge weights are used to computing shortest-path distances.
43
+
44
+ Returns
45
+ -------
46
+ number
47
+ The Wiener index of the graph `G`.
48
+
49
+ Raises
50
+ ------
51
+ NetworkXError
52
+ If the graph `G` is not connected.
53
+
54
+ Notes
55
+ -----
56
+ If a pair of nodes is not reachable, the distance is assumed to be
57
+ infinity. This means that for graphs that are not
58
+ strongly-connected, this function returns ``inf``.
59
+
60
+ The Wiener index is not usually defined for directed graphs, however
61
+ this function uses the natural generalization of the Wiener index to
62
+ directed graphs.
63
+
64
+ Examples
65
+ --------
66
+ The Wiener index of the (unweighted) complete graph on *n* nodes
67
+ equals the number of pairs of the *n* nodes, since each pair of
68
+ nodes is at distance one::
69
+
70
+ >>> n = 10
71
+ >>> G = nx.complete_graph(n)
72
+ >>> nx.wiener_index(G) == n * (n - 1) / 2
73
+ True
74
+
75
+ Graphs that are not strongly-connected have infinite Wiener index::
76
+
77
+ >>> G = nx.empty_graph(2)
78
+ >>> nx.wiener_index(G)
79
+ inf
80
+
81
+ References
82
+ ----------
83
+ .. [1] `Wikipedia: Wiener Index <https://en.wikipedia.org/wiki/Wiener_index>`_
84
+ """
85
+ connected = nx.is_strongly_connected(G) if G.is_directed() else nx.is_connected(G)
86
+ if not connected:
87
+ return float("inf")
88
+
89
+ spl = nx.shortest_path_length(G, weight=weight)
90
+ total = sum(it.chain.from_iterable(nbrs.values() for node, nbrs in spl))
91
+ # Need to account for double counting pairs of nodes in undirected graphs.
92
+ return total if G.is_directed() else total / 2
93
+
94
+
95
+ @nx.utils.not_implemented_for("directed")
96
+ @nx.utils.not_implemented_for("multigraph")
97
+ @nx._dispatchable(edge_attrs="weight")
98
+ def schultz_index(G, weight=None):
99
+ r"""Returns the Schultz Index (of the first kind) of `G`
100
+
101
+ The *Schultz Index* [3]_ of a graph is the sum over all node pairs of
102
+ distances times the sum of degrees. Consider an undirected graph `G`.
103
+ For each node pair ``(u, v)`` compute ``dist(u, v) * (deg(u) + deg(v)``
104
+ where ``dist`` is the shortest path length between two nodes and ``deg``
105
+ is the degree of a node.
106
+
107
+ The Schultz Index is the sum of these quantities over all (unordered)
108
+ pairs of nodes.
109
+
110
+ Parameters
111
+ ----------
112
+ G : NetworkX graph
113
+ The undirected graph of interest.
114
+ weight : string or None, optional (default: None)
115
+ If None, every edge has weight 1.
116
+ If a string, use this edge attribute as the edge weight.
117
+ Any edge attribute not present defaults to 1.
118
+ The edge weights are used to computing shortest-path distances.
119
+
120
+ Returns
121
+ -------
122
+ number
123
+ The first kind of Schultz Index of the graph `G`.
124
+
125
+ Examples
126
+ --------
127
+ The Schultz Index of the (unweighted) complete graph on *n* nodes
128
+ equals the number of pairs of the *n* nodes times ``2 * (n - 1)``,
129
+ since each pair of nodes is at distance one and the sum of degree
130
+ of two nodes is ``2 * (n - 1)``.
131
+
132
+ >>> n = 10
133
+ >>> G = nx.complete_graph(n)
134
+ >>> nx.schultz_index(G) == (n * (n - 1) / 2) * (2 * (n - 1))
135
+ True
136
+
137
+ Graph that is disconnected
138
+
139
+ >>> nx.schultz_index(nx.empty_graph(2))
140
+ inf
141
+
142
+ References
143
+ ----------
144
+ .. [1] I. Gutman, Selected properties of the Schultz molecular topological index,
145
+ J. Chem. Inf. Comput. Sci. 34 (1994), 1087–1089.
146
+ https://doi.org/10.1021/ci00021a009
147
+ .. [2] M.V. Diudeaa and I. Gutman, Wiener-Type Topological Indices,
148
+ Croatica Chemica Acta, 71 (1998), 21-51.
149
+ https://hrcak.srce.hr/132323
150
+ .. [3] H. P. Schultz, Topological organic chemistry. 1.
151
+ Graph theory and topological indices of alkanes,i
152
+ J. Chem. Inf. Comput. Sci. 29 (1989), 239–257.
153
+
154
+ """
155
+ if not nx.is_connected(G):
156
+ return float("inf")
157
+
158
+ spl = nx.shortest_path_length(G, weight=weight)
159
+ d = dict(G.degree, weight=weight)
160
+ return sum(dist * (d[u] + d[v]) for u, info in spl for v, dist in info.items()) / 2
161
+
162
+
163
+ @nx.utils.not_implemented_for("directed")
164
+ @nx.utils.not_implemented_for("multigraph")
165
+ @nx._dispatchable(edge_attrs="weight")
166
+ def gutman_index(G, weight=None):
167
+ r"""Returns the Gutman Index for the graph `G`.
168
+
169
+ The *Gutman Index* measures the topology of networks, especially for molecule
170
+ networks of atoms connected by bonds [1]_. It is also called the Schultz Index
171
+ of the second kind [2]_.
172
+
173
+ Consider an undirected graph `G` with node set ``V``.
174
+ The Gutman Index of a graph is the sum over all (unordered) pairs of nodes
175
+ of nodes ``(u, v)``, with distance ``dist(u, v)`` and degrees ``deg(u)``
176
+ and ``deg(v)``, of ``dist(u, v) * deg(u) * deg(v)``
177
+
178
+ Parameters
179
+ ----------
180
+ G : NetworkX graph
181
+
182
+ weight : string or None, optional (default: None)
183
+ If None, every edge has weight 1.
184
+ If a string, use this edge attribute as the edge weight.
185
+ Any edge attribute not present defaults to 1.
186
+ The edge weights are used to computing shortest-path distances.
187
+
188
+ Returns
189
+ -------
190
+ number
191
+ The Gutman Index of the graph `G`.
192
+
193
+ Examples
194
+ --------
195
+ The Gutman Index of the (unweighted) complete graph on *n* nodes
196
+ equals the number of pairs of the *n* nodes times ``(n - 1) * (n - 1)``,
197
+ since each pair of nodes is at distance one and the product of degree of two
198
+ vertices is ``(n - 1) * (n - 1)``.
199
+
200
+ >>> n = 10
201
+ >>> G = nx.complete_graph(n)
202
+ >>> nx.gutman_index(G) == (n * (n - 1) / 2) * ((n - 1) * (n - 1))
203
+ True
204
+
205
+ Graphs that are disconnected
206
+
207
+ >>> G = nx.empty_graph(2)
208
+ >>> nx.gutman_index(G)
209
+ inf
210
+
211
+ References
212
+ ----------
213
+ .. [1] M.V. Diudeaa and I. Gutman, Wiener-Type Topological Indices,
214
+ Croatica Chemica Acta, 71 (1998), 21-51.
215
+ https://hrcak.srce.hr/132323
216
+ .. [2] I. Gutman, Selected properties of the Schultz molecular topological index,
217
+ J. Chem. Inf. Comput. Sci. 34 (1994), 1087–1089.
218
+ https://doi.org/10.1021/ci00021a009
219
+
220
+ """
221
+ if not nx.is_connected(G):
222
+ return float("inf")
223
+
224
+ spl = nx.shortest_path_length(G, weight=weight)
225
+ d = dict(G.degree, weight=weight)
226
+ return sum(dist * d[u] * d[v] for u, vinfo in spl for v, dist in vinfo.items()) / 2
venv/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/dispatch_interface.cpython-310.pyc ADDED
Binary file (4.98 kB). View file
 
venv/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_coreviews.cpython-310.pyc ADDED
Binary file (13.4 kB). View file
 
venv/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_digraph.cpython-310.pyc ADDED
Binary file (13.2 kB). View file
 
venv/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_filters.cpython-310.pyc ADDED
Binary file (5.04 kB). View file
 
venv/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_graph.cpython-310.pyc ADDED
Binary file (31.8 kB). View file
 
venv/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_graph_historical.cpython-310.pyc ADDED
Binary file (707 Bytes). View file
 
venv/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_graphviews.cpython-310.pyc ADDED
Binary file (13.5 kB). View file
 
venv/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_reportviews.cpython-310.pyc ADDED
Binary file (41.1 kB). View file
 
venv/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_special.cpython-310.pyc ADDED
Binary file (5.18 kB). View file
 
venv/lib/python3.10/site-packages/networkx/classes/tests/__pycache__/test_subgraphviews.cpython-310.pyc ADDED
Binary file (12.8 kB). View file
 
venv/lib/python3.10/site-packages/networkx/utils/__pycache__/configs.cpython-310.pyc ADDED
Binary file (9.98 kB). View file