diff --git a/.gitattributes b/.gitattributes index aa914d5612c26cde13a2e14a198eb26635baa5dc..df58a4a76c3faf9d977b58a8ceea4f3dade9e9c1 100644 --- a/.gitattributes +++ b/.gitattributes @@ -148,3 +148,6 @@ venv/lib/python3.10/site-packages/triton/third_party/cuda/bin/ptxas filter=lfs d venv/lib/python3.10/site-packages/torch/bin/protoc filter=lfs diff=lfs merge=lfs -text venv/lib/python3.10/site-packages/torch/bin/protoc-3.13.0.0 filter=lfs diff=lfs merge=lfs -text venv/lib/python3.10/site-packages/triton/third_party/cuda/bin/nvdisasm filter=lfs diff=lfs merge=lfs -text +venv/lib/python3.10/site-packages/torch/lib/libtorch_python.so filter=lfs diff=lfs merge=lfs -text +venv/lib/python3.10/site-packages/torch/lib/libcusparseLt-f80c68d1.so.0 filter=lfs diff=lfs merge=lfs -text +venv/lib/python3.10/site-packages/pyarrow/libarrow_acero.so.1600 filter=lfs diff=lfs merge=lfs -text diff --git a/ckpts/universal/global_step20/mp_rank_01_model_states.pt b/ckpts/universal/global_step20/mp_rank_01_model_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..fc599df260f23a65182ff5f39a51d31ed4e4fce4 --- /dev/null +++ b/ckpts/universal/global_step20/mp_rank_01_model_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3054d4175f039469ad55167090ec83f5389bbb93415dfb894c919cf1d0555cf3 +size 4230020 diff --git a/ckpts/universal/global_step20/mp_rank_02_model_states.pt b/ckpts/universal/global_step20/mp_rank_02_model_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..efebbd9ad42034dd328801d256fe689e9a943231 --- /dev/null +++ b/ckpts/universal/global_step20/mp_rank_02_model_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:28bc7d19f509edecc0170ba2ab6c7411a909cff777d8e91fdb2d92928e4d9dae +size 4230020 diff --git a/ckpts/universal/global_step40/zero/11.attention.query_key_value.weight/exp_avg.pt b/ckpts/universal/global_step40/zero/11.attention.query_key_value.weight/exp_avg.pt new file mode 100644 index 0000000000000000000000000000000000000000..584a42a6b998d9e36bb3aec721d53bffc3657ace --- /dev/null +++ b/ckpts/universal/global_step40/zero/11.attention.query_key_value.weight/exp_avg.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2002b66f9e3a20583660bc8a5d42d749a3e00b8bb7f4587d2a9c913a390d20eb +size 50332828 diff --git a/ckpts/universal/global_step40/zero/11.attention.query_key_value.weight/fp32.pt b/ckpts/universal/global_step40/zero/11.attention.query_key_value.weight/fp32.pt new file mode 100644 index 0000000000000000000000000000000000000000..236c53d02391cdade05373c69b62e751e2dc749a --- /dev/null +++ b/ckpts/universal/global_step40/zero/11.attention.query_key_value.weight/fp32.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a57df360496dae10c25dd7c1428cd53a02ed910f6deb63a9a06f298b2a3f88b1 +size 50332749 diff --git a/lm-evaluation-harness/tests/testdata/anli_r1-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/anli_r1-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..4450c0628e9d9a6f8ff90c9efa0c5e5b1b7e4069 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/anli_r1-v0-loglikelihood @@ -0,0 +1 @@ +3a84baf2f170e138c6ce0bc9f06f905def35d705fa2b8781f10c87aef404c4cb \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/arc_challenge-v2.0-loglikelihood b/lm-evaluation-harness/tests/testdata/arc_challenge-v2.0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..53b28b5b86050168e13400d47dbf169de133d035 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/arc_challenge-v2.0-loglikelihood @@ -0,0 +1 @@ +8ebbbc510644ede7bf53496c381e276d5a1eec14828870e8b7e611f231e6d5f6 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/arithmetic_4ds-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/arithmetic_4ds-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..154cf9c5946ed829ce7e2f173a2b03554fe789a1 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/arithmetic_4ds-v0-loglikelihood @@ -0,0 +1 @@ +d915830b8621e66331383bb2ae4c60acebf008e2f94741092ef4c33ea5441037 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_adjunct_island-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/blimp_adjunct_island-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..85f0e8fb2af3101c8a916368f957ab4968fd132b --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_adjunct_island-v0-loglikelihood @@ -0,0 +1 @@ +976a5cac4bdb724632eebd4cb9e522203ce3da8d5525288a597c86e80469f3f2 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_animate_subject_trans-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/blimp_animate_subject_trans-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..07106a905853aad9876257f308e3af5900066253 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_animate_subject_trans-v0-loglikelihood @@ -0,0 +1 @@ +2a84231e7b79f517427e57e2099c88fed3d60a7efab4ef9506e263b4091d5cfa \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_coordinate_structure_constraint_complex_left_branch-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/blimp_coordinate_structure_constraint_complex_left_branch-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..8970b32aff4c8e5f815453c87bc241e8ca2f01e5 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_coordinate_structure_constraint_complex_left_branch-v0-loglikelihood @@ -0,0 +1 @@ +7e1cc5b9f71abfbe56c4bdf343a1e5632785b66a986b8e904a41ed8f45a2c33e \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_coordinate_structure_constraint_object_extraction-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/blimp_coordinate_structure_constraint_object_extraction-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..f1edb69cb10b150f68b62dad3a18b5248bba95d1 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_coordinate_structure_constraint_object_extraction-v0-loglikelihood @@ -0,0 +1 @@ +23ddafdff7b1ebe331b146e23b2c21aa109fe57aa1ce8ca201a0d239fcbdd166 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_determiner_noun_agreement_2-v0-res.json b/lm-evaluation-harness/tests/testdata/blimp_determiner_noun_agreement_2-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..bc2dc6e1ed3ad7f38496a2de9610db4d145fc41f --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_determiner_noun_agreement_2-v0-res.json @@ -0,0 +1 @@ +{"results": {"blimp_determiner_noun_agreement_2": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_determiner_noun_agreement_2": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_determiner_noun_agreement_with_adj_irregular_2-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/blimp_determiner_noun_agreement_with_adj_irregular_2-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..13176ac613358d8dbdb6031f8220a3dcddac815f --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_determiner_noun_agreement_with_adj_irregular_2-v0-loglikelihood @@ -0,0 +1 @@ +ccc64b4d5e80c081d5161aae5828212ba49d277ca8c5a4281f181744727a6a99 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_existential_there_quantifiers_2-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/blimp_existential_there_quantifiers_2-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..4b1a428c4d32831cc6181054631c723408b8382a --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_existential_there_quantifiers_2-v0-loglikelihood @@ -0,0 +1 @@ +6e6add7baff4217f383425bef58288202018e041b24084edcaa5df8af08f820c \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_inchoative-v0-res.json b/lm-evaluation-harness/tests/testdata/blimp_inchoative-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..8d1b39c2d44fc9651099252fbb4c5d4e37c4668d --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_inchoative-v0-res.json @@ -0,0 +1 @@ +{"results": {"blimp_inchoative": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_inchoative": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_principle_A_case_1-v0-res.json b/lm-evaluation-harness/tests/testdata/blimp_principle_A_case_1-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..f325c2e3e34f2d07f90e32517bf236339bd63b48 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_principle_A_case_1-v0-res.json @@ -0,0 +1 @@ +{"results": {"blimp_principle_A_case_1": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_principle_A_case_1": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_regular_plural_subject_verb_agreement_2-v0-res.json b/lm-evaluation-harness/tests/testdata/blimp_regular_plural_subject_verb_agreement_2-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..6d64b97e20bb4688afca5e708f7fc41243ecca14 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_regular_plural_subject_verb_agreement_2-v0-res.json @@ -0,0 +1 @@ +{"results": {"blimp_regular_plural_subject_verb_agreement_2": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_regular_plural_subject_verb_agreement_2": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_superlative_quantifiers_1-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/blimp_superlative_quantifiers_1-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..b7d2819cb3b61b90bd5efee98e890b486fc02f39 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_superlative_quantifiers_1-v0-loglikelihood @@ -0,0 +1 @@ +8a01f6a5ea87a01c0c9b0c7b3bc4de4711bf0ff050976976651182b9ed34a0d4 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/boolq-v1-loglikelihood b/lm-evaluation-harness/tests/testdata/boolq-v1-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..7811121c9fda0c7ec33c2c36639c8ed8febccb05 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/boolq-v1-loglikelihood @@ -0,0 +1 @@ +6577e0d88572772ef08e64f624c0e3df0953286ae1f118ccef15623b59ffeabf \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/cb-v0-res.json b/lm-evaluation-harness/tests/testdata/cb-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..ba386fd6c7e67c5048d2f4a4240e1b308dca7db5 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/cb-v0-res.json @@ -0,0 +1 @@ +{"results": {"cb": {"acc": 0.3392857142857143, "acc_stderr": 0.06384226561930825, "f1": 0.2819143819143819}}, "versions": {"cb": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/cola-v0-res.json b/lm-evaluation-harness/tests/testdata/cola-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..462e5d9401318226da067adcc39b27a09157a127 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/cola-v0-res.json @@ -0,0 +1 @@ +{"results": {"cola": {"mcc": -0.04538802810223175, "mcc_stderr": 0.023100371589225246}}, "versions": {"cola": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/crows_pairs_english-v0-res.json b/lm-evaluation-harness/tests/testdata/crows_pairs_english-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..c4210f5f11540d44476cdf99252e9268ca85a6e0 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/crows_pairs_english-v0-res.json @@ -0,0 +1 @@ +{"results": {"crows_pairs_english": {"likelihood_difference": 0.3367363060632734, "likelihood_difference_stderr": 0.005827747024053628, "pct_stereotype": 0.5062611806797853, "pct_stereotype_stderr": 0.012212341600228745}}, "versions": {"crows_pairs_english": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/crows_pairs_english_disability-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/crows_pairs_english_disability-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..50c7b025631010289ee73762c8f493d8888122d3 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/crows_pairs_english_disability-v0-loglikelihood @@ -0,0 +1 @@ +90c1bcfdeec0ff51d891ee8cf00ae2a5ec61bab6739faea9865809b8ffed2cdb \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/crows_pairs_english_physical_appearance-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/crows_pairs_english_physical_appearance-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..fedfdac52d966f6edcdb229456858da1959b24d1 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/crows_pairs_english_physical_appearance-v0-loglikelihood @@ -0,0 +1 @@ +d1823f5038afafa7a5338e42531720480c8ccf4e177789526caf294d52d56e89 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/crows_pairs_english_race_color-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/crows_pairs_english_race_color-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..9feec03298368b126f4c7361084fb894b8170ffd --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/crows_pairs_english_race_color-v0-loglikelihood @@ -0,0 +1 @@ +0a750596d77cd96502dc414ff699a399b1b91c2078adeec1d3dd982b3d591089 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/crows_pairs_french-v0-res.json b/lm-evaluation-harness/tests/testdata/crows_pairs_french-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..77195255653eaebf9f1d542df02b9720c1f37df8 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/crows_pairs_french-v0-res.json @@ -0,0 +1 @@ +{"results": {"crows_pairs_french": {"likelihood_difference": 0.3367363060632734, "likelihood_difference_stderr": 0.005827747024053628, "pct_stereotype": 0.5062611806797853, "pct_stereotype_stderr": 0.012212341600228745}}, "versions": {"crows_pairs_french": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/crows_pairs_french_autre-v0-res.json b/lm-evaluation-harness/tests/testdata/crows_pairs_french_autre-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..44d8ff96e413cf6eb458a896d47321a0f3996b70 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/crows_pairs_french_autre-v0-res.json @@ -0,0 +1 @@ +{"results": {"crows_pairs_french_autre": {"likelihood_difference": 0.3517045997290783, "likelihood_difference_stderr": 0.07647821858130377, "pct_stereotype": 0.23076923076923078, "pct_stereotype_stderr": 0.12162606385262997}}, "versions": {"crows_pairs_french_autre": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/crows_pairs_french_physical_appearance-v0-res.json b/lm-evaluation-harness/tests/testdata/crows_pairs_french_physical_appearance-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..eea3efa006503d2062660ae0e0625c85b4196899 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/crows_pairs_french_physical_appearance-v0-res.json @@ -0,0 +1 @@ +{"results": {"crows_pairs_french_physical_appearance": {"likelihood_difference": 0.3221673223187262, "likelihood_difference_stderr": 0.026978346460100555, "pct_stereotype": 0.4027777777777778, "pct_stereotype_stderr": 0.05820650942569533}}, "versions": {"crows_pairs_french_physical_appearance": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-astronomy-v0-res.json b/lm-evaluation-harness/tests/testdata/hendrycksTest-astronomy-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..d3626ccf80f233702478886fffeede1f587ad2fb --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-astronomy-v0-res.json @@ -0,0 +1 @@ +{"results": {"hendrycksTest-astronomy": {"acc": 0.2565789473684211, "acc_norm": 0.29605263157894735, "acc_norm_stderr": 0.03715062154998904, "acc_stderr": 0.0355418036802569}}, "versions": {"hendrycksTest-astronomy": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-clinical_knowledge-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/hendrycksTest-clinical_knowledge-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..86f54245d557e0091d1166b7ffb2029520e566e9 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-clinical_knowledge-v0-loglikelihood @@ -0,0 +1 @@ +fbcb7ce507e0675d811e71e10a67c8d05a6605e29036f46776e04a6588cefbda \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-college_biology-v0-res.json b/lm-evaluation-harness/tests/testdata/hendrycksTest-college_biology-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..6705b9cad27c7f1eb647b513861646faaccad584 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-college_biology-v0-res.json @@ -0,0 +1 @@ +{"results": {"hendrycksTest-college_biology": {"acc": 0.24305555555555555, "acc_norm": 0.2361111111111111, "acc_norm_stderr": 0.03551446610810826, "acc_stderr": 0.03586879280080341}}, "versions": {"hendrycksTest-college_biology": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-college_physics-v0-res.json b/lm-evaluation-harness/tests/testdata/hendrycksTest-college_physics-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..97e56f2ae62e6b0012d49c6a7a55614a6d6eaf58 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-college_physics-v0-res.json @@ -0,0 +1 @@ +{"results": {"hendrycksTest-college_physics": {"acc": 0.23529411764705882, "acc_norm": 0.23529411764705882, "acc_norm_stderr": 0.04220773659171453, "acc_stderr": 0.04220773659171452}}, "versions": {"hendrycksTest-college_physics": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-computer_security-v0-res.json b/lm-evaluation-harness/tests/testdata/hendrycksTest-computer_security-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..60f02eba9cb04602d8b67d67269d8b82e0930721 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-computer_security-v0-res.json @@ -0,0 +1 @@ +{"results": {"hendrycksTest-computer_security": {"acc": 0.24, "acc_norm": 0.27, "acc_norm_stderr": 0.044619604333847394, "acc_stderr": 0.042923469599092816}}, "versions": {"hendrycksTest-computer_security": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-formal_logic-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/hendrycksTest-formal_logic-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..ef6bec3f70adb9b8df43583cf76e6cd865831b0b --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-formal_logic-v0-loglikelihood @@ -0,0 +1 @@ +c0d0f0c008a5f3faf2f6f4268d87bbc09c40bb66ae08cf38eea0bf2e519c5a59 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_european_history-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_european_history-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..eec5858ef9a22ba66ee0627646b5ce98f2b0326d --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_european_history-v0-loglikelihood @@ -0,0 +1 @@ +d8070e113be9d420fef5578cb69c70df4ea5118f9b18553023fd9efd5ff0b7f4 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_physics-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_physics-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..49a780bc97953db32716ccc580390c5d21cfc252 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_physics-v0-loglikelihood @@ -0,0 +1 @@ +dae59e82d3d4d8dec82239d9620b72cc47bb6efbe2f1c2f9b9d23e849c9c5e32 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-human_aging-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/hendrycksTest-human_aging-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..d34fa529800590ecc8e199fdb9d141c99b8c6876 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-human_aging-v0-loglikelihood @@ -0,0 +1 @@ +0880b3a78f8d7b17ffc612031427b9085367cf65dabe2a68c4b64e3171d17e88 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-management-v0-res.json b/lm-evaluation-harness/tests/testdata/hendrycksTest-management-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..7a84623fabf793b7748d34c18f4c358649f31a97 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-management-v0-res.json @@ -0,0 +1 @@ +{"results": {"hendrycksTest-management": {"acc": 0.24271844660194175, "acc_norm": 0.2621359223300971, "acc_norm_stderr": 0.043546310772605956, "acc_stderr": 0.04245022486384495}}, "versions": {"hendrycksTest-management": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-miscellaneous-v0-res.json b/lm-evaluation-harness/tests/testdata/hendrycksTest-miscellaneous-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..5c7859eb3a80a849deee7d67d37f71a84c8eeaf6 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-miscellaneous-v0-res.json @@ -0,0 +1 @@ +{"results": {"hendrycksTest-miscellaneous": {"acc": 0.23499361430395913, "acc_norm": 0.2515964240102171, "acc_norm_stderr": 0.015517322365529622, "acc_stderr": 0.015162024152278445}}, "versions": {"hendrycksTest-miscellaneous": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-philosophy-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/hendrycksTest-philosophy-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..3ea8ef0a0e3ddf5cc42c6305e1885e163399f38c --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-philosophy-v0-loglikelihood @@ -0,0 +1 @@ +a419204da36c2b7a70fa8909a3a804260cc3283c7e07917534dfb76216c77f46 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-security_studies-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/hendrycksTest-security_studies-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..6aa9b5ec005a326616b812b816b95329ad9349a2 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-security_studies-v0-loglikelihood @@ -0,0 +1 @@ +92dfffe2acf3278256486d3e1cf1edb5a739ad0a54c0f9c67695f7a411ed5f76 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/lambada-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/lambada-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..efd450a8f2a4ca067f7380af809fdda48d1ee465 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/lambada-v0-loglikelihood @@ -0,0 +1 @@ +6829e6a8aa5922e6c92dd31403cc060f242dc0ede4a775e085a70da095ab2e20 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/lambada_openai_mt_fr-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/lambada_openai_mt_fr-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..3c444f66611959e4c13451d306fba403261ecfbb --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/lambada_openai_mt_fr-v0-loglikelihood @@ -0,0 +1 @@ +5d16f4a0c51dc6d7b6df2ebeba2bbfa51e700b843779b559b3d90183d7b02a11 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/lambada_standard_cloze-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/lambada_standard_cloze-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..0a7b76241f898374a3a75952e16fe15af9a6d48e --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/lambada_standard_cloze-v0-loglikelihood @@ -0,0 +1 @@ +b604f00bc9f2a77ef41f8cfdb5a8509b3ae9266893b9e90abc665f5399ecba4e \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/math_geometry-v1-greedy_until b/lm-evaluation-harness/tests/testdata/math_geometry-v1-greedy_until new file mode 100644 index 0000000000000000000000000000000000000000..1c7362fe44e4432f56f18932b4b429d5cf573399 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/math_geometry-v1-greedy_until @@ -0,0 +1 @@ +46bc4cb219b6903397da782699a684bdbb982c0c954ff82e6beeed5c84878f42 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/math_prealgebra-v0-res.json b/lm-evaluation-harness/tests/testdata/math_prealgebra-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..b3ada8a6be4d86b71a0c6b92c605d3c8a25a29a2 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/math_prealgebra-v0-res.json @@ -0,0 +1 @@ +{"results": {"math_prealgebra": {"acc": 0.0, "acc_stderr": 0.0}}, "versions": {"math_prealgebra": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/mc_taco-v0-res.json b/lm-evaluation-harness/tests/testdata/mc_taco-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..fc36d1ed3ff4d02330a13eb7431d5413b4c484e5 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/mc_taco-v0-res.json @@ -0,0 +1 @@ +{"results": {"mc_taco": {"em": 0.07732732732732733, "f1": 0.41600515965511614}}, "versions": {"mc_taco": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/mnli-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/mnli-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..433b76d01094a18991412513044f0933eb0bf3f5 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/mnli-v0-loglikelihood @@ -0,0 +1 @@ +4fc7b56b8f1e37e38f4a052b227baec2df914c898c3405d3e994726ba4fba976 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/mnli_mismatched-v0-res.json b/lm-evaluation-harness/tests/testdata/mnli_mismatched-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..261deed96275da1af0c8a0616b0af6247cfaf1c0 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/mnli_mismatched-v0-res.json @@ -0,0 +1 @@ +{"results": {"mnli_mismatched": {"acc": 0.3360455655004068, "acc_stderr": 0.004763973908606819}}, "versions": {"mnli_mismatched": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/mutual_plus-v1-loglikelihood b/lm-evaluation-harness/tests/testdata/mutual_plus-v1-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..f4ba9d37310a19cc7928fd0d599776d8a9da8dba --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/mutual_plus-v1-loglikelihood @@ -0,0 +1 @@ +b846bb9db109535f59a93d1ce340cf09f68bdf4fed5b8decd168784220fe07fa \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/pile_nih-exporter-v1-res.json b/lm-evaluation-harness/tests/testdata/pile_nih-exporter-v1-res.json new file mode 100644 index 0000000000000000000000000000000000000000..0e40fc8268a77618471344585bc1a1586fd69e0f --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/pile_nih-exporter-v1-res.json @@ -0,0 +1 @@ +{"results": {"pile_nih-exporter": {"bits_per_byte": 0.00035193728014978225, "byte_perplexity": 1.0002439740903082, "word_perplexity": 1.0016712202288802}}, "versions": {"pile_nih-exporter": 1}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/pile_pile-cc-v0-loglikelihood_rolling b/lm-evaluation-harness/tests/testdata/pile_pile-cc-v0-loglikelihood_rolling new file mode 100644 index 0000000000000000000000000000000000000000..d5369ed3c97838d67c2900cfac4aaeb5881ec884 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/pile_pile-cc-v0-loglikelihood_rolling @@ -0,0 +1 @@ +731fdef4a43949b179ba0c540148ebc2fa41583dd583ef580dd812076c66a451 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/pile_stackexchange-v0-res.json b/lm-evaluation-harness/tests/testdata/pile_stackexchange-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..76fdd0a6dd2f8ca39611601c5cb514664d5dccbc --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/pile_stackexchange-v0-res.json @@ -0,0 +1 @@ +{"results": {"pile_stackexchange": {"bits_per_byte": 0.0002288815898835956, "byte_perplexity": 1.0002289077852733, "word_perplexity": 1.0016993562258851}}, "versions": {"pile_stackexchange": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/pile_stackexchange-v1-res.json b/lm-evaluation-harness/tests/testdata/pile_stackexchange-v1-res.json new file mode 100644 index 0000000000000000000000000000000000000000..2773302990f71e46f7f44f5d2e2b624a52ddb54d --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/pile_stackexchange-v1-res.json @@ -0,0 +1 @@ +{"results": {"pile_stackexchange": {"bits_per_byte": 0.0003302063346758449, "byte_perplexity": 1.0002289077852733, "word_perplexity": 1.0016993562258851}}, "versions": {"pile_stackexchange": 1}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/pile_wikipedia-v0-loglikelihood_rolling b/lm-evaluation-harness/tests/testdata/pile_wikipedia-v0-loglikelihood_rolling new file mode 100644 index 0000000000000000000000000000000000000000..e44bd2762803a9b922febf4fe8bfd459e95174b9 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/pile_wikipedia-v0-loglikelihood_rolling @@ -0,0 +1 @@ +ef9ec0dd408316ca6537228a6812e839f14b30608973081d41efc47c138338da \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/piqa-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/piqa-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..b01b1fe5d8c699f855bff57061d6d63715c7f058 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/piqa-v0-loglikelihood @@ -0,0 +1 @@ +6048a3a2bb3ad1e6a3d98139618e06b4d7de766edd685bd38837596199c3f69f \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/qa4mre_2012-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/qa4mre_2012-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..0e67fac5f7d54c19e42cae4cfc850089c7c61187 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/qa4mre_2012-v0-loglikelihood @@ -0,0 +1 @@ +7e17261820acb365966cb9431d93aec983b14393eaeefbc96e30a11cf58bc6df \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/qa4mre_2013-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/qa4mre_2013-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..43243706d9b743cec2965545f3f4436a3e5d7551 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/qa4mre_2013-v0-loglikelihood @@ -0,0 +1 @@ +52fc431e94c67f983e28ebc70cf45e6c14116b0ae77dc1bf22347c705a65d054 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/record-v0-res.json b/lm-evaluation-harness/tests/testdata/record-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..006c381372178097b36bfac48795e6fbdc242b1a --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/record-v0-res.json @@ -0,0 +1 @@ +{"results": {"record": {"em": 0.1521, "em_stderr": 0.0035913575128186616, "f1": 0.1581870634920636, "f1_stderr": 0.0036146895141474576}}, "versions": {"record": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/webqs-v0-res.json b/lm-evaluation-harness/tests/testdata/webqs-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..9f0fdc76cab096c80a87295773054510803ba218 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/webqs-v0-res.json @@ -0,0 +1 @@ +{"results": {"webqs": {"acc": 0.0, "acc_stderr": 0.0}}, "versions": {"webqs": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/wmt20-en-ta-v0-greedy_until b/lm-evaluation-harness/tests/testdata/wmt20-en-ta-v0-greedy_until new file mode 100644 index 0000000000000000000000000000000000000000..1b40263f154461098d6ee820bc0d003c03a6962c --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/wmt20-en-ta-v0-greedy_until @@ -0,0 +1 @@ +5fc556fa90bca7f1b1396e97e392eac8080b0ad53488358799b8fc0b21a94cb1 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/wmt20-km-en-v0-greedy_until b/lm-evaluation-harness/tests/testdata/wmt20-km-en-v0-greedy_until new file mode 100644 index 0000000000000000000000000000000000000000..a6f148661093f5f97c85e96ab2c01da6e40c1547 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/wmt20-km-en-v0-greedy_until @@ -0,0 +1 @@ +fb4ec81bb89c70df7e21b43e0e882915b7b71a2a85bb8d4b59e0c7938baaa4c2 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/wmt20-ps-en-v0-res.json b/lm-evaluation-harness/tests/testdata/wmt20-ps-en-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..00c9c742e4d34830628a52aa34cfd7faaa86516c --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/wmt20-ps-en-v0-res.json @@ -0,0 +1 @@ +{"results": {"wmt20-ps-en": {"bleu": 0.0, "bleu_stderr": 0.0, "chrf": 0.015192865365105723, "chrf_stderr": 0.00011334541381539086, "ter": 1.0, "ter_stderr": 0.0}}, "versions": {"wmt20-ps-en": 0}} \ No newline at end of file diff --git a/venv/lib/python3.10/site-packages/pyarrow/libarrow_acero.so.1600 b/venv/lib/python3.10/site-packages/pyarrow/libarrow_acero.so.1600 new file mode 100644 index 0000000000000000000000000000000000000000..1c14cb612e843ca35fac943a7b646ca97a172313 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pyarrow/libarrow_acero.so.1600 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e21d6d8ddaa7046449919a1333468e09fa6d549f0f66d9aafd682f9c979ab9a8 +size 2077120 diff --git a/venv/lib/python3.10/site-packages/torch/lib/libcusparseLt-f80c68d1.so.0 b/venv/lib/python3.10/site-packages/torch/lib/libcusparseLt-f80c68d1.so.0 new file mode 100644 index 0000000000000000000000000000000000000000..183f672e16db7fb231a95df213334e45ca6429c2 --- /dev/null +++ b/venv/lib/python3.10/site-packages/torch/lib/libcusparseLt-f80c68d1.so.0 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:be6f24534f1aa85998fb58a61b9e7124281ab539cbde11f0f40d9d25795c8728 +size 43229425 diff --git a/venv/lib/python3.10/site-packages/torch/lib/libtorch_python.so b/venv/lib/python3.10/site-packages/torch/lib/libtorch_python.so new file mode 100644 index 0000000000000000000000000000000000000000..6a2568203b824075fcebe033c6652269b83e586e --- /dev/null +++ b/venv/lib/python3.10/site-packages/torch/lib/libtorch_python.so @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f452fe2cde17aa2cf5d6d8a01ca0e818120cb47efee7161dfa93703a0b02aa1d +size 25990913 diff --git a/venv/lib/python3.10/site-packages/transformers/models/biogpt/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/biogpt/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..ec3d6966ac419d648a7d50801414c7ece1f7325d --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/biogpt/__init__.py @@ -0,0 +1,63 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available + + +_import_structure = { + "configuration_biogpt": ["BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BioGptConfig"], + "tokenization_biogpt": ["BioGptTokenizer"], +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_biogpt"] = [ + "BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST", + "BioGptForCausalLM", + "BioGptForTokenClassification", + "BioGptForSequenceClassification", + "BioGptModel", + "BioGptPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig + from .tokenization_biogpt import BioGptTokenizer + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_biogpt import ( + BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, + BioGptForCausalLM, + BioGptForSequenceClassification, + BioGptForTokenClassification, + BioGptModel, + BioGptPreTrainedModel, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/venv/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..55a3df92f2593661fbd45fff1f926f1d23593ec0 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/configuration_biogpt.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/configuration_biogpt.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..82ceb5c6f98d05fdd34706c48e18b58dce3305a9 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/configuration_biogpt.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/convert_biogpt_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/convert_biogpt_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7d266c6905739fd15df898f06a82ace1899ac00b Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/convert_biogpt_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/modeling_biogpt.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/modeling_biogpt.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0895589d1d078474fea5d75a61e246be4ab4d952 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/modeling_biogpt.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/tokenization_biogpt.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/tokenization_biogpt.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6988c0df6562eceff6a1cb8786be5bb2c975e3c8 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/biogpt/__pycache__/tokenization_biogpt.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/biogpt/configuration_biogpt.py b/venv/lib/python3.10/site-packages/transformers/models/biogpt/configuration_biogpt.py new file mode 100644 index 0000000000000000000000000000000000000000..1b4155c0aea3bbb20ae2947162440a66336c2db5 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/biogpt/configuration_biogpt.py @@ -0,0 +1,134 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Team and Microsoft Research AI4Science All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" BioGPT model configuration""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class BioGptConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`BioGptModel`]. It is used to instantiate an + BioGPT model according to the specified arguments, defining the model architecture. Instantiating a configuration + with the defaults will yield a similar configuration to that of the BioGPT + [microsoft/biogpt](https://huggingface.co/microsoft/biogpt) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 42384): + Vocabulary size of the BioGPT model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`BioGptModel`]. + hidden_size (`int`, *optional*, defaults to 1024): + Dimension of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 24): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 4096): + Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + max_position_embeddings (`int`, *optional*, defaults to 1024): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + scale_embedding (`bool`, *optional*, defaults to `True`): + Scale embeddings by diving by sqrt(d_model). + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + layerdrop (`float`, *optional*, defaults to 0.0): + Please refer to the paper about LayerDrop: https://arxiv.org/abs/1909.11556 for further details + activation_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for activations inside the fully connected layer. + pad_token_id (`int`, *optional*, defaults to 1): + Padding token id. + bos_token_id (`int`, *optional*, defaults to 0): + Beginning of stream token id. + eos_token_id (`int`, *optional*, defaults to 2): + End of stream token id. + + Example: + + ```python + >>> from transformers import BioGptModel, BioGptConfig + + >>> # Initializing a BioGPT microsoft/biogpt style configuration + >>> configuration = BioGptConfig() + + >>> # Initializing a model from the microsoft/biogpt style configuration + >>> model = BioGptModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "biogpt" + + def __init__( + self, + vocab_size=42384, + hidden_size=1024, + num_hidden_layers=24, + num_attention_heads=16, + intermediate_size=4096, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=1024, + initializer_range=0.02, + layer_norm_eps=1e-12, + scale_embedding=True, + use_cache=True, + layerdrop=0.0, + activation_dropout=0.0, + pad_token_id=1, + bos_token_id=0, + eos_token_id=2, + **kwargs, + ): + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.intermediate_size = intermediate_size + self.hidden_act = hidden_act + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.scale_embedding = scale_embedding + self.use_cache = use_cache + self.layerdrop = layerdrop + self.activation_dropout = activation_dropout + super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) diff --git a/venv/lib/python3.10/site-packages/transformers/models/biogpt/convert_biogpt_original_pytorch_checkpoint_to_pytorch.py b/venv/lib/python3.10/site-packages/transformers/models/biogpt/convert_biogpt_original_pytorch_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..c930a850462c820a0be1bb3fcee197e3f4571c13 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/biogpt/convert_biogpt_original_pytorch_checkpoint_to_pytorch.py @@ -0,0 +1,292 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import argparse +import json +import os +import re +import shutil + +import torch + +from transformers import BioGptConfig, BioGptForCausalLM +from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES +from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE +from transformers.utils import WEIGHTS_NAME, logging + + +logging.set_verbosity_warning() + +json_indent = 2 + + +# modified from https://github.com/facebookresearch/fairseq/blob/dd74992d0d143155998e9ed4076826bcea80fb06/fairseq/data/dictionary.py#L18 +class Dictionary: + """A mapping from symbols to consecutive integers""" + + def __init__( + self, + *, # begin keyword-only arguments + bos="", + pad="", + eos="", + unk="", + extra_special_symbols=None, + ): + self.bos_word, self.unk_word, self.pad_word, self.eos_word = bos, unk, pad, eos + self.symbols = [] + self.count = [] + self.indices = {} + self.bos_index = self.add_symbol(bos) + self.pad_index = self.add_symbol(pad) + self.eos_index = self.add_symbol(eos) + self.unk_index = self.add_symbol(unk) + if extra_special_symbols: + for s in extra_special_symbols: + self.add_symbol(s) + self.nspecial = len(self.symbols) + + def __eq__(self, other): + return self.indices == other.indices + + def __getitem__(self, idx): + if idx < len(self.symbols): + return self.symbols[idx] + return self.unk_word + + def __len__(self): + """Returns the number of symbols in the dictionary""" + return len(self.symbols) + + def __contains__(self, sym): + return sym in self.indices + + @classmethod + def load(cls, f): + """Loads the dictionary from a text file with the format: + + ``` + + + ... + ``` + """ + d = cls() + d.add_from_file(f) + return d + + def add_symbol(self, word, n=1, overwrite=False): + """Adds a word to the dictionary""" + if word in self.indices and not overwrite: + idx = self.indices[word] + self.count[idx] = self.count[idx] + n + return idx + else: + idx = len(self.symbols) + self.indices[word] = idx + self.symbols.append(word) + self.count.append(n) + return idx + + def _load_meta(self, lines): + return 0 + + def add_from_file(self, f): + """ + Loads a pre-existing dictionary from a text file and adds its symbols to this instance. + """ + if isinstance(f, str): + try: + with open(f, "r", encoding="utf-8") as fd: + self.add_from_file(fd) + except FileNotFoundError as fnfe: + raise fnfe + except UnicodeError: + raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(f)) + return + + lines = f.readlines() + indices_start_line = self._load_meta(lines) + + for line in lines[indices_start_line:]: + try: + line, field = line.rstrip().rsplit(" ", 1) + if field == "#fairseq:overwrite": + overwrite = True + line, field = line.rsplit(" ", 1) + else: + overwrite = False + count = int(field) + word = line + if word in self and not overwrite: + raise RuntimeError( + "Duplicate word found when loading Dictionary: '{}'. " + "Duplicate words can overwrite earlier ones by adding the " + "#fairseq:overwrite flag at the end of the corresponding row " + "in the dictionary file. If using the Camembert model, please " + "download an updated copy of the model file.".format(word) + ) + self.add_symbol(word, n=count, overwrite=overwrite) + except ValueError: + raise ValueError("Incorrect dictionary format, expected ' [flags]'") + + +def rewrite_dict_keys(d): + # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, + # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er': 7} + d2 = dict((re.sub(r"@@$", "", k), v) if k.endswith("@@") else (re.sub(r"$", "", k), v) for k, v in d.items()) + keep_keys = " ".split() + # restore the special tokens + for k in keep_keys: + del d2[f"{k}"] + d2[k] = d[k] # restore + return d2 + + +def convert_biogpt_checkpoint_to_pytorch(biogpt_checkpoint_path, pytorch_dump_folder_path): + # prep + if not os.path.exists(biogpt_checkpoint_path): + raise ValueError(f"path {biogpt_checkpoint_path} does not exist!") + os.makedirs(pytorch_dump_folder_path, exist_ok=True) + print(f"Writing results to {pytorch_dump_folder_path}") + + # handle various types of models + + checkpoint_file = os.path.join(biogpt_checkpoint_path, "checkpoint.pt") + if not os.path.isfile(checkpoint_file): + raise ValueError(f"path to the file {checkpoint_file} does not exist!") + chkpt = torch.load(checkpoint_file, map_location="cpu") + + args = chkpt["cfg"]["model"] + + # dicts + dict_file = os.path.join(biogpt_checkpoint_path, "dict.txt") + if not os.path.isfile(dict_file): + raise ValueError(f"path to the file {dict_file} does not exist!") + src_dict = Dictionary.load(dict_file) + src_vocab = rewrite_dict_keys(src_dict.indices) + src_vocab_size = len(src_vocab) + src_vocab_file = os.path.join(pytorch_dump_folder_path, VOCAB_FILES_NAMES["vocab_file"]) + print(f"Generating {src_vocab_file} of {src_vocab_size} records") + with open(src_vocab_file, "w", encoding="utf-8") as f: + f.write(json.dumps(src_vocab, ensure_ascii=False, indent=json_indent)) + + # merges_file (bpecodes) + bpecodes_file = os.path.join(biogpt_checkpoint_path, "bpecodes") + if not os.path.isfile(bpecodes_file): + raise ValueError(f"path to the file {bpecodes_file} does not exist!") + + merges_file = os.path.join(pytorch_dump_folder_path, VOCAB_FILES_NAMES["merges_file"]) + shutil.copyfile(bpecodes_file, merges_file) + + # model config + biogpt_model_config_file = os.path.join(pytorch_dump_folder_path, "config.json") + + model_conf = { + "activation_dropout": args["activation_dropout"], + "architectures": ["BioGptForCausalLM"], + "attention_probs_dropout_prob": args["attention_dropout"], + "bos_token_id": 0, + "eos_token_id": 2, + "hidden_act": args["activation_fn"], + "hidden_dropout_prob": args["dropout"], + "hidden_size": args["decoder_embed_dim"], + "initializer_range": 0.02, + "intermediate_size": args["decoder_ffn_embed_dim"], + "layer_norm_eps": 1e-12, + "layerdrop": args["decoder_layerdrop"], + "max_position_embeddings": args["max_target_positions"], + "model_type": "biogpt", + "num_attention_heads": args["decoder_attention_heads"], + "num_hidden_layers": args["decoder_layers"], + "pad_token_id": 1, + "scale_embedding": not args["no_scale_embedding"], + "tie_word_embeddings": args["share_decoder_input_output_embed"], + "vocab_size": src_vocab_size, + } + + # good hparam defaults to start with + + print(f"Generating {biogpt_model_config_file}") + with open(biogpt_model_config_file, "w", encoding="utf-8") as f: + f.write(json.dumps(model_conf, ensure_ascii=False, indent=json_indent)) + + # tokenizer config + biogpt_tokenizer_config_file = os.path.join(pytorch_dump_folder_path, TOKENIZER_CONFIG_FILE) + + tokenizer_conf = { + "bos_token": "", + "eos_token": "", + "model_max_length": 1024, + "pad_token": "", + "special_tokens_map_file": None, + "tokenizer_class": "BioGptTokenizer", + "unk_token": "", + } + + print(f"Generating {biogpt_tokenizer_config_file}") + with open(biogpt_tokenizer_config_file, "w", encoding="utf-8") as f: + f.write(json.dumps(tokenizer_conf, ensure_ascii=False, indent=json_indent)) + + # model + model_state_dict = chkpt["model"] + + # remove unneeded keys + ignore_keys = [ + "decoder.version", + ] + for k in ignore_keys: + model_state_dict.pop(k, None) + + layer_names = list(model_state_dict.keys()) + for layer_name in layer_names: + if layer_name.endswith("output_projection.weight"): + model_state_dict[layer_name.replace("decoder.", "")] = model_state_dict.pop(layer_name) + else: + model_state_dict[layer_name.replace("decoder", "biogpt")] = model_state_dict.pop(layer_name) + + config = BioGptConfig.from_pretrained(pytorch_dump_folder_path) + model_new = BioGptForCausalLM(config) + + # check that it loads ok + model_new.load_state_dict(model_state_dict) + + # save + pytorch_weights_dump_path = os.path.join(pytorch_dump_folder_path, WEIGHTS_NAME) + print(f"Generating {pytorch_weights_dump_path}") + torch.save(model_state_dict, pytorch_weights_dump_path) + + print("Conversion is done!") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--biogpt_checkpoint_path", + default=None, + type=str, + required=True, + help=( + "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," + " bpecodes, etc." + ), + ) + parser.add_argument( + "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." + ) + args = parser.parse_args() + convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path) diff --git a/venv/lib/python3.10/site-packages/transformers/models/biogpt/modeling_biogpt.py b/venv/lib/python3.10/site-packages/transformers/models/biogpt/modeling_biogpt.py new file mode 100644 index 0000000000000000000000000000000000000000..30df3e0847a6319acaf3f042eb394bf902b84e8a --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/biogpt/modeling_biogpt.py @@ -0,0 +1,924 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Team and Microsoft Research AI4Science All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch BioGPT model.""" + + +import math +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask +from ...modeling_outputs import ( + BaseModelOutputWithPastAndCrossAttentions, + CausalLMOutputWithCrossAttentions, + SequenceClassifierOutputWithPast, + TokenClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, +) +from .configuration_biogpt import BioGptConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "microsoft/biogpt" +_CONFIG_FOR_DOC = "BioGptConfig" + + +from ..deprecated._archive_maps import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +# Copied from transformers.models.opt.modeling_opt.OPTLearnedPositionalEmbedding with OPT->BioGpt +class BioGptLearnedPositionalEmbedding(nn.Embedding): + """ + This module learns positional embeddings up to a fixed maximum size. + """ + + def __init__(self, num_embeddings: int, embedding_dim: int): + # BioGpt is set up so that if padding_idx is specified then offset the embedding ids by 2 + # and adjust num_embeddings appropriately. Other models don't have this hack + self.offset = 2 + super().__init__(num_embeddings + self.offset, embedding_dim) + + def forward(self, attention_mask: torch.LongTensor, past_key_values_length: int = 0): + """`input_ids_shape` is expected to be [bsz x seqlen].""" + attention_mask = attention_mask.long() + + # create positions depending on attention_mask + positions = (torch.cumsum(attention_mask, dim=1).type_as(attention_mask) * attention_mask).long() - 1 + + # cut positions if `past_key_values_length` is > 0 + positions = positions[:, past_key_values_length:] + + return super().forward(positions + self.offset) + + +# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->BioGpt +class BioGptAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + is_decoder: bool = False, + bias: bool = True, + is_causal: bool = False, + config: Optional[BioGptConfig] = None, + ): + super().__init__() + self.embed_dim = embed_dim + self.num_heads = num_heads + self.dropout = dropout + self.head_dim = embed_dim // num_heads + self.config = config + + if (self.head_dim * num_heads) != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + self.is_decoder = is_decoder + self.is_causal = is_causal + + self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states: torch.Tensor, + key_value_states: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + + bsz, tgt_len, _ = hidden_states.size() + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + # `past_key_value[0].shape[2] == key_value_states.shape[1]` + # is checking that the `sequence_length` of the `past_key_value` is the same as + # the provided `key_value_states` to support prefix tuning + if ( + is_cross_attention + and past_key_value is not None + and past_key_value[0].shape[2] == key_value_states.shape[1] + ): + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, bsz) + value_states = self._shape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) + key_states = key_states.reshape(*proj_shape) + value_states = value_states.reshape(*proj_shape) + + src_len = key_states.size(1) + attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) + + if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): + raise ValueError( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, tgt_len, src_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + if layer_head_mask is not None: + if layer_head_mask.size() != (self.num_heads,): + raise ValueError( + f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" + f" {layer_head_mask.size()}" + ) + attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + if output_attentions: + # this operation is a bit awkward, but it's required to + # make sure that attn_weights keeps its gradient. + # In order to do so, attn_weights have to be reshaped + # twice and have to be reused in the following + attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) + else: + attn_weights_reshaped = None + + attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + + attn_output = torch.bmm(attn_probs, value_states) + + if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) + attn_output = attn_output.transpose(1, 2) + + # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be + # partitioned across GPUs when using tensor-parallelism. + attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) + + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights_reshaped, past_key_value + + +class BioGptDecoderLayer(nn.Module): + def __init__(self, config: BioGptConfig): + super().__init__() + self.embed_dim = config.hidden_size + + self.self_attn = BioGptAttention( + embed_dim=self.embed_dim, + num_heads=config.num_attention_heads, + dropout=config.attention_probs_dropout_prob, + is_decoder=True, + ) + self.dropout = config.hidden_dropout_prob + self.activation_fn = ACT2FN[config.hidden_act] + self.activation_dropout = config.activation_dropout + + self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) + + self.fc1 = nn.Linear(self.embed_dim, config.intermediate_size) + self.fc2 = nn.Linear(config.intermediate_size, self.embed_dim) + self.final_layer_norm = nn.LayerNorm(self.embed_dim) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = True, + ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size + `(encoder_attention_heads,)`. + past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + """ + residual = hidden_states + + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Self Attention + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + # add present self-attn cache to positions 1,2 of present_key_value tuple + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + past_key_value=self_attn_past_key_value, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + output_attentions=output_attentions, + ) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + # Fully Connected + residual = hidden_states + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.fc1(hidden_states) + hidden_states = self.activation_fn(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) + hidden_states = self.fc2(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights,) + + if use_cache: + outputs += (present_key_value,) + + return outputs + + +class BioGptPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = BioGptConfig + base_model_prefix = "biogpt" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +BIOGPT_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use + it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`~BioGptConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +BIOGPT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert *input_ids* indices into associated vectors than the + model's internal embedding lookup matrix. + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape + `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape + `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare BioGPT Model transformer outputting raw hidden-states without any specific head on top.", + BIOGPT_START_DOCSTRING, +) +class BioGptModel(BioGptPreTrainedModel): + def __init__(self, config: BioGptConfig): + super().__init__(config) + self.config = config + self.layerdrop = config.layerdrop + self.dropout = config.hidden_dropout_prob + self.embed_dim = config.hidden_size + self.padding_idx = config.pad_token_id + self.embed_scale = math.sqrt(config.hidden_size) if config.scale_embedding else 1.0 + + self.embed_tokens = nn.Embedding(config.vocab_size, self.embed_dim, self.padding_idx) + self.embed_positions = BioGptLearnedPositionalEmbedding(config.max_position_embeddings, self.embed_dim) + + self.layers = nn.ModuleList([BioGptDecoderLayer(config) for _ in range(config.num_hidden_layers)]) + self.layer_norm = nn.LayerNorm(self.embed_dim) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + @add_start_docstrings_to_model_forward(BIOGPT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPastAndCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # retrieve input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input = input_ids + input_shape = input.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + input = inputs_embeds[:, :, -1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + # past_key_values_length + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input) * self.embed_scale + + if attention_mask is None: + attention_mask = torch.ones( + (inputs_embeds.shape[0], inputs_embeds.shape[1] + past_key_values_length), + dtype=torch.bool, + device=inputs_embeds.device, + ) + elif attention_mask.shape[1] != past_key_values_length + input_shape[1]: + raise ValueError( + f"The provided attention mask has length {attention_mask.shape[1]}, but its length should be " + f"{past_key_values_length + input_shape[1]} (sum of the lengths of current and past inputs)" + ) + + # embed positions + positions = self.embed_positions(attention_mask, past_key_values_length) + + attention_mask = _prepare_4d_causal_attention_mask( + attention_mask, input_shape, inputs_embeds, past_key_values_length + ) + + hidden_states = inputs_embeds + positions + + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + all_cross_attentions = None + next_decoder_cache = () if use_cache else None + + for idx, decoder_layer in enumerate(self.layers): + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + if output_hidden_states: + all_hidden_states += (hidden_states,) + if self.training: + dropout_probability = torch.rand([]) + if dropout_probability < self.layerdrop: + continue + + past_key_value = past_key_values[idx] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + attention_mask, + head_mask[idx] if head_mask is not None else None, + None, + output_attentions, + use_cache, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=attention_mask, + layer_head_mask=(head_mask[idx] if head_mask is not None else None), + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + ) + + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + hidden_states = self.layer_norm(hidden_states) + + next_cache = next_decoder_cache if use_cache else None + + if not return_dict: + return tuple( + v + for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + cross_attentions=all_cross_attentions, + ) + + +@add_start_docstrings( + """BioGPT Model with a `language modeling` head on top for CLM fine-tuning.""", BIOGPT_START_DOCSTRING +) +class BioGptForCausalLM(BioGptPreTrainedModel): + _tied_weights_keys = ["output_projection.weight"] + + def __init__(self, config): + super().__init__(config) + + self.biogpt = BioGptModel(config) + self.output_projection = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.output_projection + + def set_output_embeddings(self, new_embeddings): + self.output_projection = new_embeddings + + @add_start_docstrings_to_model_forward(BIOGPT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=CausalLMOutputWithCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set + `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` + are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.biogpt( + input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + prediction_scores = self.output_projection(sequence_output) + + lm_loss = None + if labels is not None: + # we are doing next-token prediction; shift prediction scores and input ids by one + shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() + labels = labels[:, 1:].contiguous() + loss_fct = CrossEntropyLoss() + lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (prediction_scores,) + outputs[1:] + return ((lm_loss,) + output) if lm_loss is not None else output + + return CausalLMOutputWithCrossAttentions( + loss=lm_loss, + logits=prediction_scores, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + def prepare_inputs_for_generation( + self, input_ids, attention_mask, inputs_embeds=None, past_key_values=None, **kwargs + ): + # only last tokens for inputs_ids if past is defined in kwargs + if past_key_values is not None: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = input_ids.shape[1] - 1 + + input_ids = input_ids[:, remove_prefix_length:] + + if inputs_embeds is not None and past_key_values is None: + model_inputs = {"inputs_embeds": inputs_embeds} + else: + model_inputs = {"input_ids": input_ids} + + model_inputs.update( + { + "attention_mask": attention_mask, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + } + ) + + return model_inputs + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past + + +@add_start_docstrings( + """ + BioGPT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for + Named-Entity-Recognition (NER) tasks. + """, + BIOGPT_START_DOCSTRING, +) +class BioGptForTokenClassification(BioGptPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.biogpt = BioGptModel(config) + if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None: + classifier_dropout = config.classifier_dropout + else: + classifier_dropout = config.hidden_dropout_prob + self.dropout = nn.Dropout(classifier_dropout) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + self.post_init() + + @add_start_docstrings_to_model_forward(BIOGPT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, TokenClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.biogpt( + input_ids, + past_key_values=past_key_values, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = transformer_outputs[0] + hidden_states = self.dropout(hidden_states) + logits = self.classifier(hidden_states) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + # Only keep active parts of the loss + if attention_mask is not None: + active_loss = attention_mask.view(-1) == 1 + active_logits = logits.view(-1, self.num_labels) + active_labels = torch.where( + active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) + ) + loss = loss_fct(active_logits, active_labels) + else: + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + transformer_outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + +@add_start_docstrings( + """ + The BioGpt Model transformer with a sequence classification head on top (linear layer). + + [`BioGptForSequenceClassification`] uses the last token in order to do the classification, as other causal models + (e.g. GPT-2) do. + + Since it does classification on the last token, it is required to know the position of the last token. If a + `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If + no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the + padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in + each row of the batch). + """, + BIOGPT_START_DOCSTRING, +) +class BioGptForSequenceClassification(BioGptPreTrainedModel): + def __init__(self, config: BioGptConfig): + super().__init__(config) + self.num_labels = config.num_labels + self.biogpt = BioGptModel(config) + self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(BIOGPT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=SequenceClassifierOutputWithPast, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, SequenceClassifierOutputWithPast]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.biogpt( + input_ids, + past_key_values=past_key_values, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + logits = self.score(hidden_states) + + if input_ids is not None: + batch_size, sequence_length = input_ids.shape[:2] + else: + batch_size, sequence_length = inputs_embeds.shape[:2] + + if self.config.pad_token_id is None: + sequence_length = -1 + else: + if input_ids is not None: + sequence_length = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device) + else: + sequence_length = -1 + logger.warning( + f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " + "unexpected if using padding tokens in conjunction with `inputs_embeds.`" + ) + + pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_length] + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(pooled_logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(pooled_logits, labels) + if not return_dict: + output = (pooled_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutputWithPast( + loss=loss, + logits=pooled_logits, + past_key_values=transformer_outputs.past_key_values, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + def get_input_embeddings(self): + return self.biogpt.embed_tokens + + def set_input_embeddings(self, value): + self.biogpt.embed_tokens = value diff --git a/venv/lib/python3.10/site-packages/transformers/models/biogpt/tokenization_biogpt.py b/venv/lib/python3.10/site-packages/transformers/models/biogpt/tokenization_biogpt.py new file mode 100644 index 0000000000000000000000000000000000000000..e16742ec5aa4f0eb2be900aac4c74bb1221761cc --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/biogpt/tokenization_biogpt.py @@ -0,0 +1,357 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Team and Microsoft Research AI4Science. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes for BioGPT.""" +import json +import os +from typing import List, Optional, Tuple + +from ...tokenization_utils import PreTrainedTokenizer +from ...utils import logging + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = { + "vocab_file": "vocab.json", + "merges_file": "merges.txt", +} + + +def get_pairs(word): + """ + Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length + strings) + """ + pairs = set() + prev_char = word[0] + for char in word[1:]: + pairs.add((prev_char, char)) + prev_char = char + return pairs + + +class BioGptTokenizer(PreTrainedTokenizer): + """ + Construct an FAIRSEQ Transformer tokenizer. Moses tokenization followed by Byte-Pair Encoding. + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + Path to the vocabulary file. + merges_file (`str`): + Merges file. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + bos_token (`str`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + sep_token (`str`, *optional*, defaults to `""`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + + def __init__( + self, + vocab_file, + merges_file, + unk_token="", + bos_token="", + eos_token="", + sep_token="", + pad_token="", + **kwargs, + ): + try: + import sacremoses + except ImportError: + raise ImportError( + "You need to install sacremoses to use BioGptTokenizer. " + "See https://pypi.org/project/sacremoses/ for installation." + ) + + self.lang = "en" + self.sm = sacremoses + # cache of sm.MosesTokenizer instance + self.cache_moses_tokenizer = {} + self.cache_moses_detokenizer = {} + + """ Initialisation""" + with open(vocab_file, encoding="utf-8") as vocab_handle: + self.encoder = json.load(vocab_handle) + self.decoder = {v: k for k, v in self.encoder.items()} + with open(merges_file, encoding="utf-8") as merges_handle: + merges = merges_handle.read().split("\n")[:-1] + merges = [tuple(merge.split()[:2]) for merge in merges] + self.bpe_ranks = dict(zip(merges, range(len(merges)))) + self.cache = {} + + super().__init__( + bos_token=bos_token, + eos_token=eos_token, + sep_token=sep_token, + unk_token=unk_token, + pad_token=pad_token, + **kwargs, + ) + + @property + def vocab_size(self): + """Returns vocab size""" + return len(self.encoder) + + def get_vocab(self): + return dict(self.encoder, **self.added_tokens_encoder) + + def moses_tokenize(self, text, lang): + if lang not in self.cache_moses_tokenizer: + moses_tokenizer = self.sm.MosesTokenizer(lang=lang) + self.cache_moses_tokenizer[lang] = moses_tokenizer + return self.cache_moses_tokenizer[lang].tokenize( + text, aggressive_dash_splits=True, return_str=False, escape=True + ) + + def moses_detokenize(self, tokens, lang): + if lang not in self.cache_moses_detokenizer: + moses_detokenizer = self.sm.MosesDetokenizer(lang=lang) + self.cache_moses_detokenizer[lang] = moses_detokenizer + return self.cache_moses_detokenizer[lang].detokenize(tokens) + + def bpe(self, token): + word = tuple(token[:-1]) + (token[-1] + "",) + if token in self.cache: + return self.cache[token] + pairs = get_pairs(word) + + if not pairs: + return token + "" + + while True: + bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) + if bigram not in self.bpe_ranks: + break + first, second = bigram + new_word = [] + i = 0 + while i < len(word): + try: + j = word.index(first, i) + except ValueError: + new_word.extend(word[i:]) + break + else: + new_word.extend(word[i:j]) + i = j + + if word[i] == first and i < len(word) - 1 and word[i + 1] == second: + new_word.append(first + second) + i += 2 + else: + new_word.append(word[i]) + i += 1 + new_word = tuple(new_word) + word = new_word + if len(word) == 1: + break + else: + pairs = get_pairs(word) + word = " ".join(word) + if word == "\n ": + word = "\n" + self.cache[token] = word + return word + + def _tokenize(self, text, bypass_tokenizer=False): + """Returns a tokenized string.""" + if bypass_tokenizer: + text = text.split() + else: + text = self.moses_tokenize(text, self.lang) + + split_tokens = [] + for token in text: + if token: + split_tokens.extend(list(self.bpe(token).split(" "))) + + return split_tokens + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.encoder.get(token, self.encoder.get(self.unk_token)) + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + return self.decoder.get(index, self.unk_token) + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + # remove BPE + tokens = [t.replace(" ", "").replace("", " ") for t in tokens] + tokens = "".join(tokens).split() + # detokenize + text = self.moses_detokenize(tokens, self.lang) + return text + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A BioGPT sequence has the following format: + + - single sequence: ` X ` + - pair of sequences: ` A B ` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + if token_ids_1 is None: + return [self.sep_token_id] + token_ids_0 + sep = [self.sep_token_id] + return sep + token_ids_0 + sep + token_ids_1 + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + # no bos used in fairseq + if token_ids_1 is not None: + return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + return [1] + ([0] * len(token_ids_0)) + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. A FAIRSEQ + Transformer sequence pair mask has the following format: + + ``` + 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 + | first sequence | second sequence | + ``` + + If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). + """ + sep = [self.sep_token_id] + + # no bos used in fairseq + if token_ids_1 is None: + return len(token_ids_0 + sep) * [0] + return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + merge_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] + ) + + with open(vocab_file, "w", encoding="utf-8") as f: + f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") + + index = 0 + with open(merge_file, "w", encoding="utf-8") as writer: + for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): + if index != token_index: + logger.warning( + f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." + " Please check that the tokenizer is not corrupted!" + ) + index = token_index + writer.write(" ".join(bpe_tokens) + "\n") + index += 1 + + return vocab_file, merge_file + + def __getstate__(self): + state = self.__dict__.copy() + state["sm"] = None + return state + + def __setstate__(self, d): + self.__dict__ = d + + try: + import sacremoses + except ImportError: + raise ImportError( + "You need to install sacremoses to use XLMTokenizer. " + "See https://pypi.org/project/sacremoses/ for installation." + ) + + self.sm = sacremoses diff --git a/venv/lib/python3.10/site-packages/transformers/models/fsmt/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/fsmt/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..65aba047469da14c6b25523fba31432e823ec47d --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/fsmt/__init__.py @@ -0,0 +1,49 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available + + +_import_structure = { + "configuration_fsmt": ["FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP", "FSMTConfig"], + "tokenization_fsmt": ["FSMTTokenizer"], +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_fsmt"] = ["FSMTForConditionalGeneration", "FSMTModel", "PretrainedFSMTModel"] + + +if TYPE_CHECKING: + from .configuration_fsmt import FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP, FSMTConfig + from .tokenization_fsmt import FSMTTokenizer + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_fsmt import FSMTForConditionalGeneration, FSMTModel, PretrainedFSMTModel + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/venv/lib/python3.10/site-packages/transformers/models/fsmt/__pycache__/modeling_fsmt.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/fsmt/__pycache__/modeling_fsmt.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9532ced34b799bb8094fb6df0e4ab91cbf851744 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/fsmt/__pycache__/modeling_fsmt.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/fsmt/configuration_fsmt.py b/venv/lib/python3.10/site-packages/transformers/models/fsmt/configuration_fsmt.py new file mode 100644 index 0000000000000000000000000000000000000000..68abe47c019abaae981eb0beedcdbb7c755dff2e --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/fsmt/configuration_fsmt.py @@ -0,0 +1,219 @@ +# coding=utf-8 +# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" FSMT configuration""" + + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class DecoderConfig(PretrainedConfig): + r""" + Configuration class for FSMT's decoder specific things. note: this is a private helper class + """ + + model_type = "fsmt_decoder" + + def __init__(self, vocab_size=0, bos_token_id=0): + super().__init__() + self.vocab_size = vocab_size + self.bos_token_id = bos_token_id + + +class FSMTConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`FSMTModel`]. It is used to instantiate a FSMT + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the FSMT + [facebook/wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + langs (`List[str]`): + A list with source language and target_language (e.g., ['en', 'ru']). + src_vocab_size (`int`): + Vocabulary size of the encoder. Defines the number of different tokens that can be represented by the + `inputs_ids` passed to the forward method in the encoder. + tgt_vocab_size (`int`): + Vocabulary size of the decoder. Defines the number of different tokens that can be represented by the + `inputs_ids` passed to the forward method in the decoder. + d_model (`int`, *optional*, defaults to 1024): + Dimensionality of the layers and the pooler layer. + encoder_layers (`int`, *optional*, defaults to 12): + Number of encoder layers. + decoder_layers (`int`, *optional*, defaults to 12): + Number of decoder layers. + encoder_attention_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer encoder. + decoder_attention_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer decoder. + decoder_ffn_dim (`int`, *optional*, defaults to 4096): + Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. + encoder_ffn_dim (`int`, *optional*, defaults to 4096): + Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. + activation_function (`str` or `Callable`, *optional*, defaults to `"relu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + activation_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for activations inside the fully connected layer. + max_position_embeddings (`int`, *optional*, defaults to 1024): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + init_std (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + scale_embedding (`bool`, *optional*, defaults to `True`): + Scale embeddings by diving by sqrt(d_model). + bos_token_id (`int`, *optional*, defaults to 0) + Beginning of stream token id. + pad_token_id (`int`, *optional*, defaults to 1) + Padding token id. + eos_token_id (`int`, *optional*, defaults to 2) + End of stream token id. + decoder_start_token_id (`int`, *optional*): + This model starts decoding with `eos_token_id` + encoder_layerdrop (`float`, *optional*, defaults to 0.0): + Google "layerdrop arxiv", as its not explainable in one line. + decoder_layerdrop (`float`, *optional*, defaults to 0.0): + Google "layerdrop arxiv", as its not explainable in one line. + is_encoder_decoder (`bool`, *optional*, defaults to `True`): + Whether this is an encoder/decoder model. + tie_word_embeddings (`bool`, *optional*, defaults to `False`): + Whether to tie input and output embeddings. + num_beams (`int`, *optional*, defaults to 5) + Number of beams for beam search that will be used by default in the `generate` method of the model. 1 means + no beam search. + length_penalty (`float`, *optional*, defaults to 1) + Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to + the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log + likelihood of the sequence (i.e. negative), `length_penalty` > 0.0 promotes longer sequences, while + `length_penalty` < 0.0 encourages shorter sequences. + early_stopping (`bool`, *optional*, defaults to `False`) + Flag that will be used by default in the `generate` method of the model. Whether to stop the beam search + when at least `num_beams` sentences are finished per batch or not. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). + forced_eos_token_id (`int`, *optional*, defaults to 2): + The id of the token to force as the last generated token when `max_length` is reached. Usually set to + `eos_token_id`. + + Examples: + + ```python + >>> from transformers import FSMTConfig, FSMTModel + + >>> # Initializing a FSMT facebook/wmt19-en-ru style configuration + >>> config = FSMTConfig() + + >>> # Initializing a model (with random weights) from the configuration + >>> model = FSMTModel(config) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "fsmt" + attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} + + # update the defaults from config file + def __init__( + self, + langs=["en", "de"], + src_vocab_size=42024, + tgt_vocab_size=42024, + activation_function="relu", + d_model=1024, + max_length=200, + max_position_embeddings=1024, + encoder_ffn_dim=4096, + encoder_layers=12, + encoder_attention_heads=16, + encoder_layerdrop=0.0, + decoder_ffn_dim=4096, + decoder_layers=12, + decoder_attention_heads=16, + decoder_layerdrop=0.0, + attention_dropout=0.0, + dropout=0.1, + activation_dropout=0.0, + init_std=0.02, + decoder_start_token_id=2, + is_encoder_decoder=True, + scale_embedding=True, + tie_word_embeddings=False, + num_beams=5, + length_penalty=1.0, + early_stopping=False, + use_cache=True, + pad_token_id=1, + bos_token_id=0, + eos_token_id=2, + forced_eos_token_id=2, + **common_kwargs, + ): + self.langs = langs + self.src_vocab_size = src_vocab_size + self.tgt_vocab_size = tgt_vocab_size + self.d_model = d_model # encoder_embed_dim and decoder_embed_dim + + self.encoder_ffn_dim = encoder_ffn_dim + self.encoder_layers = self.num_hidden_layers = encoder_layers + self.encoder_attention_heads = encoder_attention_heads + self.encoder_layerdrop = encoder_layerdrop + self.decoder_layerdrop = decoder_layerdrop + self.decoder_ffn_dim = decoder_ffn_dim + self.decoder_layers = decoder_layers + self.decoder_attention_heads = decoder_attention_heads + self.max_position_embeddings = max_position_embeddings + self.init_std = init_std # Normal(0, this parameter) + self.activation_function = activation_function + + self.decoder = DecoderConfig(vocab_size=tgt_vocab_size, bos_token_id=eos_token_id) + if "decoder" in common_kwargs: + del common_kwargs["decoder"] + + self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True + + # 3 Types of Dropout + self.attention_dropout = attention_dropout + self.activation_dropout = activation_dropout + self.dropout = dropout + + self.use_cache = use_cache + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + decoder_start_token_id=decoder_start_token_id, + is_encoder_decoder=is_encoder_decoder, + tie_word_embeddings=tie_word_embeddings, + forced_eos_token_id=forced_eos_token_id, + max_length=max_length, + num_beams=num_beams, + length_penalty=length_penalty, + early_stopping=early_stopping, + **common_kwargs, + ) diff --git a/venv/lib/python3.10/site-packages/transformers/models/fsmt/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py b/venv/lib/python3.10/site-packages/transformers/models/fsmt/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..ef2764f0ed10bace714f42f5f74ea6d9a147c613 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/fsmt/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py @@ -0,0 +1,280 @@ +# coding=utf-8 +# Copyright 2018 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# Note: if you intend to run this script make sure you look under scripts/fsmt/ +# to locate the appropriate script to do the work correctly. There is a set of scripts to: +# - download and prepare data and run the conversion script +# - perform eval to get the best hparam into the config +# - generate model_cards - useful if you have multiple models from the same paper + +import argparse +import json +import os +import re +from collections import OrderedDict +from os.path import basename, dirname + +import fairseq +import torch +from fairseq import hub_utils +from fairseq.data.dictionary import Dictionary + +from transformers import FSMTConfig, FSMTForConditionalGeneration +from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES +from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE +from transformers.utils import WEIGHTS_NAME, logging + + +logging.set_verbosity_warning() + +json_indent = 2 + +# based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` +# values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: +# +# * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) +# * `early_stopping`: `False` consistently scored better +# * `length_penalty` varied, so will assign the best one depending on the model +best_score_hparams = { + # fairseq: + "wmt19-ru-en": {"length_penalty": 1.1}, + "wmt19-en-ru": {"length_penalty": 1.15}, + "wmt19-en-de": {"length_penalty": 1.0}, + "wmt19-de-en": {"length_penalty": 1.1}, + # allenai: + "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, + "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, + "wmt16-en-de-12-1": {"length_penalty": 0.8}, + "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, + "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, +} + +# this remaps the different models to their organization names +org_names = {} +for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: + org_names[m] = "facebook" +for m in [ + "wmt16-en-de-dist-12-1", + "wmt16-en-de-dist-6-1", + "wmt16-en-de-12-1", + "wmt19-de-en-6-6-base", + "wmt19-de-en-6-6-big", +]: + org_names[m] = "allenai" + + +def rewrite_dict_keys(d): + # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, + # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er': 7} + d2 = dict((re.sub(r"@@$", "", k), v) if k.endswith("@@") else (re.sub(r"$", "", k), v) for k, v in d.items()) + keep_keys = " ".split() + # restore the special tokens + for k in keep_keys: + del d2[f"{k}"] + d2[k] = d[k] # restore + return d2 + + +def convert_fsmt_checkpoint_to_pytorch(fsmt_checkpoint_path, pytorch_dump_folder_path): + # prep + assert os.path.exists(fsmt_checkpoint_path) + os.makedirs(pytorch_dump_folder_path, exist_ok=True) + print(f"Writing results to {pytorch_dump_folder_path}") + + # handle various types of models + + checkpoint_file = basename(fsmt_checkpoint_path) + fsmt_folder_path = dirname(fsmt_checkpoint_path) + + cls = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel + models = cls.hub_models() + kwargs = {"bpe": "fastbpe", "tokenizer": "moses"} + data_name_or_path = "." + # note: since the model dump is old, fairseq has upgraded its model some + # time later, and it does a whole lot of rewrites and splits on the saved + # weights, therefore we can't use torch.load() directly on the model file. + # see: upgrade_state_dict(state_dict) in fairseq_model.py + print(f"using checkpoint {checkpoint_file}") + chkpt = hub_utils.from_pretrained( + fsmt_folder_path, checkpoint_file, data_name_or_path, archive_map=models, **kwargs + ) + + args = vars(chkpt["args"]["model"]) + + src_lang = args["source_lang"] + tgt_lang = args["target_lang"] + + data_root = dirname(pytorch_dump_folder_path) + model_dir = basename(pytorch_dump_folder_path) + + # dicts + src_dict_file = os.path.join(fsmt_folder_path, f"dict.{src_lang}.txt") + tgt_dict_file = os.path.join(fsmt_folder_path, f"dict.{tgt_lang}.txt") + + src_dict = Dictionary.load(src_dict_file) + src_vocab = rewrite_dict_keys(src_dict.indices) + src_vocab_size = len(src_vocab) + src_vocab_file = os.path.join(pytorch_dump_folder_path, "vocab-src.json") + print(f"Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records") + with open(src_vocab_file, "w", encoding="utf-8") as f: + f.write(json.dumps(src_vocab, ensure_ascii=False, indent=json_indent)) + + # detect whether this is a do_lower_case situation, which can be derived by checking whether we + # have at least one uppercase letter in the source vocab + do_lower_case = True + for k in src_vocab.keys(): + if not k.islower(): + do_lower_case = False + break + + tgt_dict = Dictionary.load(tgt_dict_file) + tgt_vocab = rewrite_dict_keys(tgt_dict.indices) + tgt_vocab_size = len(tgt_vocab) + tgt_vocab_file = os.path.join(pytorch_dump_folder_path, "vocab-tgt.json") + print(f"Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records") + with open(tgt_vocab_file, "w", encoding="utf-8") as f: + f.write(json.dumps(tgt_vocab, ensure_ascii=False, indent=json_indent)) + + # merges_file (bpecodes) + merges_file = os.path.join(pytorch_dump_folder_path, VOCAB_FILES_NAMES["merges_file"]) + for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" + fsmt_merges_file = os.path.join(fsmt_folder_path, fn) + if os.path.exists(fsmt_merges_file): + break + with open(fsmt_merges_file, encoding="utf-8") as fin: + merges = fin.read() + merges = re.sub(r" \d+$", "", merges, 0, re.M) # remove frequency number + print(f"Generating {merges_file}") + with open(merges_file, "w", encoding="utf-8") as fout: + fout.write(merges) + + # model config + fsmt_model_config_file = os.path.join(pytorch_dump_folder_path, "config.json") + + # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - + # may have to modify the tokenizer if a different type is used by a future model + assert args["bpe"] == "fastbpe", f"need to extend tokenizer to support bpe={args['bpe']}" + assert args["tokenizer"] == "moses", f"need to extend tokenizer to support bpe={args['tokenizer']}" + + model_conf = { + "architectures": ["FSMTForConditionalGeneration"], + "model_type": "fsmt", + "activation_dropout": args["activation_dropout"], + "activation_function": "relu", + "attention_dropout": args["attention_dropout"], + "d_model": args["decoder_embed_dim"], + "dropout": args["dropout"], + "init_std": 0.02, + "max_position_embeddings": args["max_source_positions"], + "num_hidden_layers": args["encoder_layers"], + "src_vocab_size": src_vocab_size, + "tgt_vocab_size": tgt_vocab_size, + "langs": [src_lang, tgt_lang], + "encoder_attention_heads": args["encoder_attention_heads"], + "encoder_ffn_dim": args["encoder_ffn_embed_dim"], + "encoder_layerdrop": args["encoder_layerdrop"], + "encoder_layers": args["encoder_layers"], + "decoder_attention_heads": args["decoder_attention_heads"], + "decoder_ffn_dim": args["decoder_ffn_embed_dim"], + "decoder_layerdrop": args["decoder_layerdrop"], + "decoder_layers": args["decoder_layers"], + "bos_token_id": 0, + "pad_token_id": 1, + "eos_token_id": 2, + "is_encoder_decoder": True, + "scale_embedding": not args["no_scale_embedding"], + "tie_word_embeddings": args["share_all_embeddings"], + } + + # good hparam defaults to start with + model_conf["num_beams"] = 5 + model_conf["early_stopping"] = False + if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: + model_conf["length_penalty"] = best_score_hparams[model_dir]["length_penalty"] + else: + model_conf["length_penalty"] = 1.0 + + print(f"Generating {fsmt_model_config_file}") + with open(fsmt_model_config_file, "w", encoding="utf-8") as f: + f.write(json.dumps(model_conf, ensure_ascii=False, indent=json_indent)) + + # tokenizer config + fsmt_tokenizer_config_file = os.path.join(pytorch_dump_folder_path, TOKENIZER_CONFIG_FILE) + + tokenizer_conf = { + "langs": [src_lang, tgt_lang], + "model_max_length": 1024, + "do_lower_case": do_lower_case, + } + + print(f"Generating {fsmt_tokenizer_config_file}") + with open(fsmt_tokenizer_config_file, "w", encoding="utf-8") as f: + f.write(json.dumps(tokenizer_conf, ensure_ascii=False, indent=json_indent)) + + # model + model = chkpt["models"][0] + model_state_dict = model.state_dict() + + # rename keys to start with 'model.' + model_state_dict = OrderedDict(("model." + k, v) for k, v in model_state_dict.items()) + + # remove unneeded keys + ignore_keys = [ + "model.model", + "model.encoder.version", + "model.decoder.version", + "model.encoder_embed_tokens.weight", + "model.decoder_embed_tokens.weight", + "model.encoder.embed_positions._float_tensor", + "model.decoder.embed_positions._float_tensor", + ] + for k in ignore_keys: + model_state_dict.pop(k, None) + + config = FSMTConfig.from_pretrained(pytorch_dump_folder_path) + model_new = FSMTForConditionalGeneration(config) + + # check that it loads ok + model_new.load_state_dict(model_state_dict, strict=False) + + # save + pytorch_weights_dump_path = os.path.join(pytorch_dump_folder_path, WEIGHTS_NAME) + print(f"Generating {pytorch_weights_dump_path}") + torch.save(model_state_dict, pytorch_weights_dump_path) + + print("Conversion is done!") + print("\nLast step is to upload the files to s3") + print(f"cd {data_root}") + print(f"transformers-cli upload {model_dir}") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--fsmt_checkpoint_path", + default=None, + type=str, + required=True, + help=( + "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," + " bpecodes, etc." + ), + ) + parser.add_argument( + "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." + ) + args = parser.parse_args() + convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path) diff --git a/venv/lib/python3.10/site-packages/transformers/models/fsmt/modeling_fsmt.py b/venv/lib/python3.10/site-packages/transformers/models/fsmt/modeling_fsmt.py new file mode 100644 index 0000000000000000000000000000000000000000..4c180c52678b82b80c5a1aa43f42292556c8f1e4 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/fsmt/modeling_fsmt.py @@ -0,0 +1,1386 @@ +# coding=utf-8 +# Copyright 2020 The Facebook AI Research Team Authors and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# Original implementation: https://github.com/pytorch/fairseq/tree/master/examples/wmt19 +# Authors: +# - @alexeib Alexei Baevski +# - @edunov Sergey Edunov +# - @michaelauli Michael Auli +# - @myleott Myle Ott +# - @nng555 Nathan Ng +# - David Grangier +# - Kyra Yee +# +# Paper: Facebook FAIR's WMT19 News Translation Task Submission https://arxiv.org/abs/1907.06616 +# +"""PyTorch Fairseq model, ported from https://github.com/pytorch/fairseq/tree/master/examples/wmt19""" + +import math +from typing import Any, Dict, List, Optional, Tuple, Union + +import torch +from torch import Tensor, nn +from torch.nn import CrossEntropyLoss, LayerNorm + +from ...activations import ACT2FN +from ...integrations.deepspeed import is_deepspeed_zero3_enabled +from ...modeling_outputs import ( + BaseModelOutput, + BaseModelOutputWithPastAndCrossAttentions, + Seq2SeqLMOutput, + Seq2SeqModelOutput, +) +from ...modeling_utils import PreTrainedModel +from ...utils import ( + add_code_sample_docstrings, + add_end_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_fsmt import FSMTConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "facebook/wmt19-ru-en" +_CONFIG_FOR_DOC = "FSMTConfig" + +# See all FSMT models at https://huggingface.co/models?filter=fsmt + +# Porting notes: +# this one is modeled after BartModel* +# +# Currently only translation (fairseq also has weights for LM) +# +# fairseq provides weights for ru-en, en-ru and de-en, en-de pairs. All have been ported. +# - ru-en, en-ru use asymmetric vocab +# - de-en, en-de use a merged single vocab (but the code works as if they are separate) +# +# Differences with Bart: +# - not using bos token +# - 2 separate vocabs (src and target) +# - embed weights aren't tied +# - uses a model Ensemble (but that part isn't ported/implemented yet) - so we +# aren't getting as good of a BLEU score +# - uses a projection layer at the end of the decoder +# - doesn't use final_logits_bias +# - beam search: stops as soon as num_beams == len(hypos) (whereas transformers +# is not satisfied there and will continue searching until the next cycles +# aren't promising something better), comparing BLEU scores - the transformers +# algorithm is slightly superior, therefore using the latter. But if you want +# to match fairseq outputs, you need to pass ``early_stopping=True`` to ``generate()``. +# +# SinusoidalPositionalEmbedding is slightly different from Bart's - generates +# different embeddings. This implementation is copied verbatim from fairseq with +# some small changes to make it work here. +# +# Other changes: +# - doesn't support use_cache as Bart's version does +# +# +# FSMTConfig changes with BartConfig +# +# Differences with BART: +# - src/tgt vocabs aren't shared +# - token embeddings aren't shared +# - needs a language pair +# - scale_embedding are True +# +# some unused args were removed too +# +# +# TODO: +# - port model ensemble (fs uses 4 model checkpoints) +# - solve beam search discrepancies +# docstyle-ignore + +""" + +Here is how to compare BLEU scores against fairseq implementation: + +# en-ru + +export PAIR=en-ru +export DATA_DIR=data/$PAIR +export SAVE_DIR=data/$PAIR +export BS=8 +export NUM_BEAMS=50 +mkdir -p $DATA_DIR +sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source +sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target +echo $PAIR +PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS + +# (fairseq BLEU: 36.4 http://matrix.statmt.org/matrix/output/1914?score_id=37605) + + +# ru-en + +export PAIR=ru-en +export DATA_DIR=data/$PAIR +export SAVE_DIR=data/$PAIR +export BS=8 +export NUM_BEAMS=50 +mkdir -p $DATA_DIR +sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source +sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target +PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS + + +# (fairseq BLEU: 41.3 http://matrix.statmt.org/matrix/output/1907?run_id=6937) + + +# de-en + +export PAIR=de-en +export DATA_DIR=data/$PAIR +export SAVE_DIR=data/$PAIR +export BS=8 +export NUM_BEAMS=50 +mkdir -p $DATA_DIR +sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source +sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target +echo $PAIR +PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS + +# (fairseq BLEU: 42.3 http://matrix.statmt.org/matrix/output/1902?run_id=6750) + + + +# en-de + +export PAIR=en-de +export DATA_DIR=data/$PAIR +export SAVE_DIR=data/$PAIR +export BS=8 +mkdir -p $DATA_DIR +sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source +sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target +echo $PAIR +PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS + +# (fairseq BLEU: 43.1 http://matrix.statmt.org/matrix/output/1909?run_id=6862) + +""" + + +FSMT_START_DOCSTRING = r""" + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`FSMTConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. + +""" +FSMT_GENERATION_EXAMPLE = r""" + Translation example:: + + ```python + >>> from transformers import AutoTokenizer, FSMTForConditionalGeneration + + >>> mname = "facebook/wmt19-ru-en" + >>> model = FSMTForConditionalGeneration.from_pretrained(mname) + >>> tokenizer = AutoTokenizer.from_pretrained(mname) + + >>> src_text = "Машинное обучение - это здорово, не так ли?" + >>> input_ids = tokenizer(src_text, return_tensors="pt").input_ids + >>> outputs = model.generate(input_ids, num_beams=5, num_return_sequences=3) + >>> tokenizer.decode(outputs[0], skip_special_tokens=True) + "Machine learning is great, isn't it?" + ``` + +""" + +FSMT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`FSTMTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + FSMT uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` + is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). + decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, + 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + encoder_outputs (`Tuple(torch.FloatTensor)`, *optional*): + Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden-states at + the output of the last layer of the encoder. Used in the cross-attention of the decoder. + past_key_values (`Tuple(torch.FloatTensor)` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded + representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be + input (see `past_key_values`). This is useful if you want more control over how to convert + `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. + + If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value + of `inputs_embeds`. + use_cache (`bool`, *optional*, defaults to `True`): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +def invert_mask(attention_mask): + """Turns 1->0, 0->1, False->True, True-> False""" + assert attention_mask.dim() == 2 + return attention_mask.eq(0) + + +def triu_onnx(x, diagonal=0): + l = x.shape[0] + arange = torch.arange(l, device=x.device) + mask = arange.expand(l, l) + arange = arange.unsqueeze(-1) + if diagonal: + arange = arange + diagonal + mask = mask >= arange + return x.masked_fill(mask == 0, 0) + + +def _prepare_fsmt_decoder_inputs( + config, + input_ids, + decoder_input_ids=None, + decoder_padding_mask=None, + causal_mask_dtype=torch.float32, +): + """ + Prepare masks that ignore padding tokens in the decoder and a causal mask for the decoder if none are provided. + This mimics the default behavior in fairseq. To override it pass in masks. Note: this is not called during + generation + """ + pad_token_id = config.pad_token_id + if decoder_input_ids is None: + decoder_input_ids = shift_tokens_right(input_ids, pad_token_id) + bsz, tgt_len = decoder_input_ids.size() + if decoder_padding_mask is None: + decoder_padding_mask = make_padding_mask(decoder_input_ids, pad_token_id) + else: + decoder_padding_mask = invert_mask(decoder_padding_mask) + causal_mask = triu_onnx(fill_with_neg_inf(torch.zeros(tgt_len, tgt_len, dtype=causal_mask_dtype)), 1).to( + device=decoder_input_ids.device + ) + return decoder_input_ids, decoder_padding_mask, causal_mask + + +class PretrainedFSMTModel(PreTrainedModel): + config_class = FSMTConfig + base_model_prefix = "model" + + def _init_weights(self, module): + std = self.config.init_std + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, SinusoidalPositionalEmbedding): + pass + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + @property + def dummy_inputs(self): + pad_token = self.config.pad_token_id + input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device) + dummy_inputs = { + "attention_mask": input_ids.ne(pad_token), + "input_ids": input_ids, + } + return dummy_inputs + + +def _make_linear_from_emb(emb): + vocab_size, emb_size = emb.weight.shape + lin_layer = nn.Linear(vocab_size, emb_size, bias=False) + lin_layer.weight.data = emb.weight.data + return lin_layer + + +# Helper Functions, mostly for making masks +def _check_shapes(shape_1, shape2): + if shape_1 != shape2: + raise AssertionError(f"shape mismatch: {shape_1} != {shape2}") + + +def shift_tokens_right(input_ids, pad_token_id): + """Shift input ids one token to the right, and wrap the last non pad token (usually ).""" + + # replace possible -100 values in labels by `pad_token_id` + input_ids.masked_fill_(input_ids == -100, pad_token_id) + + prev_output_tokens = input_ids.clone() + index_of_eos = (input_ids.ne(pad_token_id).sum(dim=1) - 1).unsqueeze(-1) + prev_output_tokens[:, 0] = input_ids.gather(1, index_of_eos).squeeze() + prev_output_tokens[:, 1:] = input_ids[:, :-1] + return prev_output_tokens + + +def make_padding_mask(input_ids, padding_idx=1): + """True for pad tokens""" + padding_mask = input_ids.eq(padding_idx) + if not padding_mask.any(): + padding_mask = None + return padding_mask + + +# Helper Modules + + +class EncoderLayer(nn.Module): + def __init__(self, config: FSMTConfig): + super().__init__() + self.embed_dim = config.d_model + self.self_attn = Attention(self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout) + self.self_attn_layer_norm = LayerNorm(self.embed_dim) + self.dropout = config.dropout + self.activation_fn = ACT2FN[config.activation_function] + self.activation_dropout = config.activation_dropout + self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) + self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) + self.final_layer_norm = LayerNorm(self.embed_dim) + + def forward(self, x, encoder_padding_mask, layer_head_mask, output_attentions=False): + """ + Args: + x (`torch.Tensor`): input to the layer of shape *(seq_len, batch, embed_dim)* + encoder_padding_mask (`torch.ByteTensor`): binary ByteTensor of shape + *(batch, src_len)* where padding elements are indicated by `1`. + for t_tgt, t_src is excluded (or masked out), =0 means it is + included in attention + layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size + *(config.encoder_attention_heads,)*. + + Returns: + encoded output of shape *(seq_len, batch, embed_dim)* + """ + residual = x + x, attn_weights = self.self_attn( + query=x, + key=x, + key_padding_mask=encoder_padding_mask, + layer_head_mask=layer_head_mask, + output_attentions=output_attentions, + ) + x = nn.functional.dropout(x, p=self.dropout, training=self.training) + x = residual + x + x = self.self_attn_layer_norm(x) + + residual = x + x = self.activation_fn(self.fc1(x)) + x = nn.functional.dropout(x, p=self.activation_dropout, training=self.training) + x = self.fc2(x) + x = nn.functional.dropout(x, p=self.dropout, training=self.training) + x = residual + x + x = self.final_layer_norm(x) + return x, attn_weights + + +class FSMTEncoder(nn.Module): + """ + Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`EncoderLayer`]. + + Args: + config: FSMTConfig + """ + + def __init__(self, config: FSMTConfig, embed_tokens): + super().__init__() + self.dropout = config.dropout + self.layerdrop = config.encoder_layerdrop + self.padding_idx = embed_tokens.padding_idx + self.embed_tokens = embed_tokens + embed_dim = embed_tokens.embedding_dim + self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 + self.embed_positions = SinusoidalPositionalEmbedding( + config.max_position_embeddings + self.padding_idx + 1, embed_dim, self.padding_idx + ) + self.layers = nn.ModuleList([EncoderLayer(config) for _ in range(config.encoder_layers)]) # type: List[EncoderLayer] + + def forward( + self, + input_ids: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + inputs_embeds: torch.Tensor = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + """ + Args: + input_ids (`torch.LongTensor`): tokens in the source language of shape + *(batch, src_len)* + attention_mask (`torch.LongTensor`): indicating which indices are padding tokens + inputs_embeds (`torch.FloatTensor`): + embedding vectors of shape *(batch, src_len, embed_dim)* + head_mask (`torch.Tensor` of shape `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + Returns: + BaseModelOutput or Tuple comprised of: + + - **x** (`torch.Tensor`): the last encoder layer's output of shape *(src_len, batch, embed_dim)* + - **encoder_states** (`Tuple(torch.FloatTensor`)): all intermediate hidden states of shape *(src_len, + batch, embed_dim)*. Only populated if *output_hidden_states:* is True. + - **all_attentions** (`Tuple(torch.FloatTensor`)): Attention weights for each layer. + During training might not be of length n_layers because of layer dropout. + """ + # check attention mask and invert + if attention_mask is not None: + attention_mask = invert_mask(attention_mask) + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + embed_pos = self.embed_positions(input_ids) + elif inputs_embeds is not None: + inputs_embeds = inputs_embeds * self.embed_scale + + # We assume zeros hidden states correspond to padding tokens + # and create `position_ids` where inputs_embeds[:, :, 0] == 0 + position_ids = inputs_embeds[:, :, 0].masked_fill( + inputs_embeds[:, :, 0].eq(0), self.embed_positions.padding_idx + ) + + embed_pos = self.embed_positions(position_ids) + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + x = inputs_embeds + embed_pos + x = nn.functional.dropout(x, p=self.dropout, training=self.training) + + # B x T x C -> T x B x C + x = x.transpose(0, 1) + + encoder_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + # check if head_mask has a correct number of layers specified if desired + if head_mask is not None: + assert head_mask.size()[0] == ( + len(self.layers) + ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." + for idx, encoder_layer in enumerate(self.layers): + if output_hidden_states: + x = x.transpose(0, 1) # T x B x C -> B x T x C + encoder_states += (x,) + x = x.transpose(0, 1) # B x T x C -> T x B x C + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + dropout_probability = torch.rand([]) + if self.training and (dropout_probability < self.layerdrop): # skip the layer + attn = None + else: + x, attn = encoder_layer( + x, + attention_mask, + layer_head_mask=(head_mask[idx] if head_mask is not None else None), + output_attentions=output_attentions, + ) + + if output_attentions: + all_attentions = all_attentions + (attn,) + + # T x B x C -> B x T x C + x = x.transpose(0, 1) + + if output_hidden_states: + encoder_states += (x,) + + if not return_dict: + return tuple(v for v in [x, encoder_states, all_attentions] if v is not None) + return BaseModelOutput(last_hidden_state=x, hidden_states=encoder_states, attentions=all_attentions) + + +class DecoderLayer(nn.Module): + def __init__(self, config: FSMTConfig): + super().__init__() + self.embed_dim = config.d_model + + self.self_attn = Attention( + embed_dim=self.embed_dim, + num_heads=config.decoder_attention_heads, + dropout=config.attention_dropout, + ) + self.dropout = config.dropout + self.activation_fn = ACT2FN[config.activation_function] + self.activation_dropout = config.activation_dropout + + self.self_attn_layer_norm = LayerNorm(self.embed_dim) + self.encoder_attn = Attention( + self.embed_dim, + config.decoder_attention_heads, + dropout=config.attention_dropout, + encoder_decoder_attention=True, + ) + self.encoder_attn_layer_norm = LayerNorm(self.embed_dim) + self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) + self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) + self.final_layer_norm = LayerNorm(self.embed_dim) + + def forward( + self, + x, + encoder_hidden_states, + encoder_attn_mask=None, + layer_state=None, + causal_mask=None, + layer_head_mask=None, + cross_attn_layer_head_mask=None, + decoder_padding_mask=None, + output_attentions=False, + ): + residual = x + + if layer_state is None: + layer_state = {} + + # Self Attention + x, self_attn_weights = self.self_attn( + query=x, + key=x, + layer_state=layer_state, # adds keys to layer state + key_padding_mask=decoder_padding_mask, + attn_mask=causal_mask, + layer_head_mask=layer_head_mask, + output_attentions=output_attentions, + ) + x = nn.functional.dropout(x, p=self.dropout, training=self.training) + x = residual + x + x = self.self_attn_layer_norm(x) + + # Cross attention + residual = x + assert self.encoder_attn.cache_key != self.self_attn.cache_key + x, cross_attn_weights = self.encoder_attn( + query=x, + key=encoder_hidden_states, + key_padding_mask=encoder_attn_mask, + layer_state=layer_state, # mutates layer state + layer_head_mask=cross_attn_layer_head_mask, + output_attentions=output_attentions, + ) + x = nn.functional.dropout(x, p=self.dropout, training=self.training) + x = residual + x + x = self.encoder_attn_layer_norm(x) + + # Fully Connected + residual = x + x = self.activation_fn(self.fc1(x)) + x = nn.functional.dropout(x, p=self.activation_dropout, training=self.training) + x = self.fc2(x) + x = nn.functional.dropout(x, p=self.dropout, training=self.training) + x = residual + x + x = self.final_layer_norm(x) + return ( + x, + self_attn_weights, + layer_state, + cross_attn_weights, + ) # layer_state = cache for decoding + + +class FSMTDecoder(nn.Module): + """ + Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`DecoderLayer`] + + Args: + config: FSMTConfig + embed_tokens (nn.Embedding): output embedding + """ + + def __init__(self, config: FSMTConfig, embed_tokens: nn.Embedding): + super().__init__() + self.dropout = config.dropout + self.layerdrop = config.decoder_layerdrop + self.padding_idx = embed_tokens.padding_idx + self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 + self.embed_tokens = embed_tokens + embed_dim = embed_tokens.embedding_dim + self.embed_positions = SinusoidalPositionalEmbedding( + config.max_position_embeddings + self.padding_idx + 1, embed_dim, self.padding_idx + ) + self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.decoder_layers)]) # type: List[DecoderLayer] + + if is_deepspeed_zero3_enabled(): + import deepspeed + + with deepspeed.zero.GatheredParameters(self.embed_tokens.weight, modifier_rank=None): + embed_tokens_weight_shape = self.embed_tokens.weight.shape + else: + embed_tokens_weight_shape = self.embed_tokens.weight.shape + self.output_projection = nn.Linear(embed_tokens_weight_shape[1], embed_tokens_weight_shape[0], bias=False) + self.output_projection.weight = self.embed_tokens.weight + + def forward( + self, + input_ids: torch.Tensor, + encoder_hidden_states: torch.Tensor, + encoder_padding_mask: torch.Tensor, + decoder_padding_mask: torch.Tensor, + decoder_causal_mask: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + use_cache: bool = False, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + """ + Includes several features from "Jointly Learning to Align and Translate with Transformer Models" (Garg et al., + EMNLP 2019). + + Args: + input_ids (`torch.LongTensor` of shape `(batch, tgt_len)`): + previous decoder outputs for teacher forcing + encoder_hidden_states: output from the encoder, used for + encoder-side attention + encoder_padding_mask: for ignoring pad tokens + past_key_values (dict or None): dictionary used for storing state during generation + head_mask (`torch.Tensor` of shape `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`torch.Tensor` of shape `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + Returns: + BaseModelOutputWithPast or tuple: + + - the decoder's features of shape *(batch, tgt_len, embed_dim)* + - the cache + - hidden states + - attentions + """ + # check attention mask and invert + if encoder_padding_mask is not None: + encoder_padding_mask = invert_mask(encoder_padding_mask) + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") + elif input_ids is not None: + # embed positions + positions = self.embed_positions(input_ids) + if use_cache: + input_ids = input_ids[:, -1:] + positions = positions[:, -1:] # happens after we embed them + x = self.embed_tokens(input_ids) * self.embed_scale + elif inputs_embeds is not None: + # We assume zeros hidden states correspond to padding tokens + # and create `position_ids` where inputs_embeds[:, :, 0] == 0 + position_ids = inputs_embeds[:, :, 0].masked_fill( + inputs_embeds[:, :, 0].eq(0), self.embed_positions.padding_idx + ) + positions = self.embed_positions(position_ids) + x = inputs_embeds * self.embed_scale + else: + raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") + + x += positions + x = nn.functional.dropout(x, p=self.dropout, training=self.training) + + # Convert to FSMT output format: (BS, seq_len, model_dim) -> (seq_len, BS, model_dim) + x = x.transpose(0, 1) + encoder_hidden_states = encoder_hidden_states.transpose(0, 1) + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + all_cross_attns = () if output_attentions else None + next_decoder_cache = [] + + # check if head_mask has a correct number of layers specified if desired + for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): + if attn_mask is not None: + assert attn_mask.size()[0] == (len(self.layers)), ( + f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" + f" {head_mask.size()[0]}." + ) + for idx, decoder_layer in enumerate(self.layers): + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + if output_hidden_states: + x = x.transpose(0, 1) + all_hidden_states += (x,) + x = x.transpose(0, 1) + if self.training: + dropout_probability = torch.rand([]) + if dropout_probability < self.layerdrop: + continue + + layer_state = past_key_values[idx] if past_key_values is not None else None + + x, layer_self_attn, layer_past, layer_cross_attn = decoder_layer( + x, + encoder_hidden_states, + encoder_attn_mask=encoder_padding_mask, + decoder_padding_mask=decoder_padding_mask, + layer_state=layer_state, + causal_mask=decoder_causal_mask, + layer_head_mask=(head_mask[idx] if head_mask is not None else None), + cross_attn_layer_head_mask=(cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None), + output_attentions=output_attentions, + ) + + if use_cache: + next_decoder_cache.append(layer_past.copy()) + + if output_attentions: + all_self_attns += (layer_self_attn,) + all_cross_attns += (layer_cross_attn,) + + # add hidden states from the last decoder layer + if output_hidden_states: + x = x.transpose(0, 1) + all_hidden_states += (x,) + x = x.transpose(0, 1) + + # Convert to standard output format: (seq_len, BS, model_dim) -> (BS, seq_len, model_dim) + x = x.transpose(0, 1) + encoder_hidden_states = encoder_hidden_states.transpose(0, 1) + + x = self.output_projection(x) + + next_cache = next_decoder_cache if use_cache else None + + if not return_dict: + return tuple( + v for v in [x, next_cache, all_hidden_states, all_self_attns, all_cross_attns] if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=x, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + cross_attentions=all_cross_attns, + ) + + +def _reorder_buffer(attn_cache, new_order): + for k, input_buffer_k in attn_cache.items(): + if input_buffer_k is not None: + attn_cache[k] = input_buffer_k.index_select(0, new_order) + return attn_cache + + +class Attention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__( + self, + embed_dim, + num_heads, + dropout=0.0, + bias=True, + encoder_decoder_attention=False, # otherwise self_attention + ): + super().__init__() + self.embed_dim = embed_dim + self.num_heads = num_heads + self.dropout = dropout + self.head_dim = embed_dim // num_heads + assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" + self.scaling = self.head_dim**-0.5 + + self.encoder_decoder_attention = encoder_decoder_attention + self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.cache_key = "encoder_decoder" if self.encoder_decoder_attention else "self" + + def _shape(self, tensor, seq_len, bsz): + return tensor.contiguous().view(seq_len, bsz * self.num_heads, self.head_dim).transpose(0, 1) + + def forward( + self, + query, + key: Optional[Tensor], + key_padding_mask: Optional[Tensor] = None, + layer_state: Optional[Dict[str, Optional[Tensor]]] = None, + attn_mask: Optional[Tensor] = None, + layer_head_mask: Optional[Tensor] = None, + output_attentions=False, + ) -> Tuple[Tensor, Optional[Tensor]]: + """Input shape: Time(SeqLen) x Batch x Channel""" + static_kv: bool = self.encoder_decoder_attention + tgt_len, bsz, embed_dim = query.size() + assert embed_dim == self.embed_dim + assert list(query.size()) == [tgt_len, bsz, embed_dim] + # get here for encoder decoder cause of static_kv + if layer_state is not None: # reuse k,v and encoder_padding_mask + saved_state = layer_state.get(self.cache_key, {}) + if "prev_key" in saved_state and static_kv: + # previous time steps are cached - no need to recompute key and value if they are static + key = None + else: + saved_state = None + layer_state = {} + + q = self.q_proj(query) * self.scaling + if static_kv: + if key is None: + k = v = None + else: + k = self.k_proj(key) + v = self.v_proj(key) + else: + k = self.k_proj(query) + v = self.v_proj(query) + + q = self._shape(q, tgt_len, bsz) + if k is not None: + k = self._shape(k, -1, bsz) + if v is not None: + v = self._shape(v, -1, bsz) + + if saved_state is not None: + k, v, key_padding_mask = self._use_saved_state(k, v, saved_state, key_padding_mask, static_kv, bsz) + + # Update cache + layer_state[self.cache_key] = { + "prev_key": k.view(bsz, self.num_heads, -1, self.head_dim), + "prev_value": v.view(bsz, self.num_heads, -1, self.head_dim), + "prev_key_padding_mask": key_padding_mask if not static_kv else None, + } + + assert k is not None + src_len = k.size(1) + attn_weights = torch.bmm(q, k.transpose(1, 2)) + assert attn_weights.size() == (bsz * self.num_heads, tgt_len, src_len) + + if attn_mask is not None: + attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_mask + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + # This is part of a workaround to get around fork/join parallelism not supporting Optional types. + if key_padding_mask is not None and key_padding_mask.dim() == 0: + key_padding_mask = None + assert key_padding_mask is None or key_padding_mask.size()[:2] == ( + bsz, + src_len, + ) + + if key_padding_mask is not None: # don't attend to padding symbols + attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + reshaped = key_padding_mask.unsqueeze(1).unsqueeze(2) + attn_weights = attn_weights.masked_fill(reshaped, torch.finfo(attn_weights.dtype).min) + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + if layer_head_mask is not None: + assert layer_head_mask.size() == ( + self.num_heads, + ), f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}" + attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + if output_attentions: + # make sure that attn_weights are included in graph + attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) + else: + attn_weights_reshaped = None + + attn_probs = nn.functional.dropout( + attn_weights, + p=self.dropout, + training=self.training, + ) + + assert v is not None + attn_output = torch.bmm(attn_probs, v) + assert attn_output.size() == (bsz * self.num_heads, tgt_len, self.head_dim) + attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights_reshaped + + def _use_saved_state(self, k, v, saved_state, key_padding_mask, static_kv, bsz): + # saved states are stored with shape (bsz, num_heads, seq_len, head_dim) + if "prev_key" in saved_state: + _prev_key = saved_state["prev_key"] + assert _prev_key is not None + prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim) + if static_kv: + k = prev_key + else: + assert k is not None + k = torch.cat([prev_key, k], dim=1) + if "prev_value" in saved_state: + _prev_value = saved_state["prev_value"] + assert _prev_value is not None + prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim) + if static_kv: + v = prev_value + else: + assert v is not None + v = torch.cat([prev_value, v], dim=1) + assert k is not None and v is not None + prev_key_padding_mask: Optional[Tensor] = saved_state.get("prev_key_padding_mask", None) + if prev_key_padding_mask is not None: + if static_kv: + new_key_padding_mask = prev_key_padding_mask + else: + new_key_padding_mask = torch.cat([prev_key_padding_mask, key_padding_mask], dim=1) + else: + new_key_padding_mask = key_padding_mask + return k, v, new_key_padding_mask + + +def fill_with_neg_inf(t): + """FP16-compatible function that fills a input_ids with -inf.""" + return t.float().fill_(torch.finfo(t.dtype).min).type_as(t) + + +# Public API +def _get_shape(t): + return getattr(t, "shape", None) + + +@add_start_docstrings( + "The bare FSMT Model outputting raw hidden-states without any specific head on top.", + FSMT_START_DOCSTRING, +) +class FSMTModel(PretrainedFSMTModel): + _tied_weights_keys = ["decoder.embed_tokens.weight", "decoder.output_projection.weight"] + + def __init__(self, config: FSMTConfig): + super().__init__(config) + + padding_idx = config.pad_token_id + encoder_embed_tokens = nn.Embedding(config.src_vocab_size, config.d_model, padding_idx) + decoder_embed_tokens = nn.Embedding(config.tgt_vocab_size, config.d_model, padding_idx) + + self.encoder = FSMTEncoder(config, encoder_embed_tokens) + self.decoder = FSMTDecoder(config, decoder_embed_tokens) + + # Initialize weights and apply final processing + self.post_init() + + def get_encoder(self): + return self.encoder + + def get_decoder(self): + return self.decoder + + def _tie_weights(self): + if self.config.tie_word_embeddings: + self._tie_or_clone_weights(self.decoder.embed_tokens, self.get_input_embeddings()) + self._tie_or_clone_weights(self.decoder.output_projection, self.get_input_embeddings()) + + @add_start_docstrings_to_model_forward(FSMT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=Seq2SeqModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: torch.LongTensor, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.BoolTensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None, + past_key_values: Optional[Tuple[torch.FloatTensor]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]: + if decoder_input_ids is None: + use_cache = False + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # make masks if user doesn't supply + if not use_cache and input_ids is not None: + decoder_input_ids, decoder_padding_mask, causal_mask = _prepare_fsmt_decoder_inputs( + self.config, + input_ids, + decoder_input_ids=decoder_input_ids, + decoder_padding_mask=decoder_attention_mask, + causal_mask_dtype=self.decoder.embed_tokens.weight.dtype, + ) + else: + decoder_padding_mask, causal_mask = None, None + + if decoder_input_ids is None and decoder_inputs_embeds is None: + raise ValueError("Make sure that `decoder_input_ids` or `decoder_inputs_embeds` are passed.") + + if encoder_outputs is None: + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + inputs_embeds=inputs_embeds, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=False + elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): + encoder_outputs = BaseModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + ) + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + decoder_outputs = self.decoder( + decoder_input_ids, + encoder_outputs[0], + attention_mask, + decoder_padding_mask, + decoder_causal_mask=causal_mask, + inputs_embeds=decoder_inputs_embeds, + head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return Seq2SeqModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + def get_input_embeddings(self): + return self.encoder.embed_tokens + + def set_input_embeddings(self, value): + self.encoder.embed_tokens = value + + def get_output_embeddings(self): + return self.decoder.embed_tokens + + def set_output_embeddings(self, value): + self.decoder.embed_tokens = value + + +@add_start_docstrings( + "The FSMT Model with a language modeling head. Can be used for summarization.", FSMT_START_DOCSTRING +) +class FSMTForConditionalGeneration(PretrainedFSMTModel): + base_model_prefix = "model" + _tied_weights_keys = ["decoder.embed_tokens.weight", "decoder.output_projection.weight"] + + def __init__(self, config: FSMTConfig): + super().__init__(config) + base_model = FSMTModel(config) + self.model = base_model + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(FSMT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) + @add_end_docstrings(FSMT_GENERATION_EXAMPLE) + def forward( + self, + input_ids: torch.LongTensor, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.BoolTensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None, + past_key_values: Optional[Tuple[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.Tensor] = None, + decoder_inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if labels is not None: + use_cache = False + + outputs = self.model( + input_ids, + inputs_embeds=inputs_embeds, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_inputs_embeds=decoder_inputs_embeds, + encoder_outputs=encoder_outputs, + decoder_attention_mask=decoder_attention_mask, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + lm_logits = outputs[0] + + masked_lm_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + # TODO(SS): do we need to ignore pad tokens in labels? + masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.tgt_vocab_size), labels.view(-1)) + + if not return_dict: + output = (lm_logits,) + outputs[1:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + + return Seq2SeqLMOutput( + loss=masked_lm_loss, + logits=lm_logits, + past_key_values=outputs.past_key_values, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + def prepare_inputs_for_generation( + self, + decoder_input_ids, + past_key_values=None, + attention_mask=None, + head_mask=None, + decoder_head_mask=None, + cross_attn_head_mask=None, + use_cache=None, + encoder_outputs=None, + **kwargs, + ): + return { + "input_ids": None, # encoder_outputs is defined. input_ids not needed + "encoder_outputs": encoder_outputs, + "past_key_values": past_key_values, + "decoder_input_ids": decoder_input_ids, + "attention_mask": attention_mask, + "head_mask": head_mask, + "decoder_head_mask": decoder_head_mask, + "cross_attn_head_mask": cross_attn_head_mask, + "use_cache": use_cache, # change this to avoid caching (presumably for debugging) + } + + def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): + return shift_tokens_right(labels, self.config.pad_token_id) + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = [] + for layer_past in past_key_values: + # get the correct batch idx from decoder layer's batch dim for cross and self-attn + layer_past_new = { + attn_key: _reorder_buffer(attn_cache, beam_idx) for attn_key, attn_cache in layer_past.items() + } + reordered_past.append(layer_past_new) + return reordered_past + + def get_encoder(self): + return self.model.encoder + + def get_decoder(self): + return self.model.decoder + + def get_output_embeddings(self): + return self.model.decoder.embed_tokens + + def set_output_embeddings(self, value): + self.model.decoder.embed_tokens = value + + +class SinusoidalPositionalEmbedding(nn.Embedding): + """ + This module produces sinusoidal positional embeddings of any length. + + We don't want to save the weight of this embedding since it's not trained (deterministic) and it can be huge. + + Padding symbols are ignored. + + These embeddings get automatically extended in forward if more positions is needed. + """ + + def __init__(self, num_positions, embedding_dim, padding_idx): + self.make_weight(num_positions, embedding_dim, padding_idx) + + def make_weight(self, num_positions, embedding_dim, padding_idx): + weight = self.get_embedding(num_positions, embedding_dim, padding_idx) + if not hasattr(self, "weight"): + # in ___init__ + super().__init__(num_positions, embedding_dim, padding_idx, _weight=weight) + else: + # in forward put the weights on the correct dtype and device of the param + weight = weight.to(dtype=self.weight.dtype, device=self.weight.device) + self.weight = nn.Parameter(weight) + self.weight.detach_() + self.weight.requires_grad = False + + @staticmethod + def get_embedding(num_embeddings, embedding_dim, padding_idx): + """ + Build sinusoidal embeddings. + + This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of + "Attention Is All You Need". + """ + half_dim = embedding_dim // 2 + emb = math.log(10000) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb) + emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0) + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) + if embedding_dim % 2 == 1: + # zero pad + emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) + if padding_idx is not None: + emb[padding_idx, :] = 0 + return emb + + @staticmethod + def make_positions(tensor, padding_idx: int): + """ + Replace non-padding symbols with their position numbers. + + Position numbers begin at padding_idx+1. Padding symbols are ignored. + """ + # The series of casts and type-conversions here are carefully + # balanced to both work with ONNX export and XLA. In particular XLA + # prefers ints, cumsum defaults to output longs, and ONNX doesn't know + # how to handle the dtype kwarg in cumsum. + mask = tensor.ne(padding_idx).int() + return (torch.cumsum(mask, dim=1).type_as(mask) * mask).long() + padding_idx + + def forward( + self, + input, + incremental_state: Optional[Any] = None, + timestep: Optional[Tensor] = None, + ): + """Input is expected to be of size [bsz x seqlen].""" + bsz, seq_len = input.shape[:2] + max_pos = self.padding_idx + 1 + seq_len + if max_pos > self.weight.size(0): + # expand embeddings if needed + self.make_weight(max_pos, self.embedding_dim, self.padding_idx) + positions = self.make_positions(input, self.padding_idx) + return super().forward(positions) diff --git a/venv/lib/python3.10/site-packages/transformers/models/fsmt/tokenization_fsmt.py b/venv/lib/python3.10/site-packages/transformers/models/fsmt/tokenization_fsmt.py new file mode 100644 index 0000000000000000000000000000000000000000..8b0be1f8be24987259aaee01d3165aa03c9218a9 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/fsmt/tokenization_fsmt.py @@ -0,0 +1,519 @@ +# coding=utf-8 +# Copyright 2019 The Open AI Team Authors and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes for FSMT.""" + + +import json +import os +import re +import unicodedata +from typing import Dict, List, Optional, Tuple + +from ...tokenization_utils import PreTrainedTokenizer +from ...utils import logging + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = { + "src_vocab_file": "vocab-src.json", + "tgt_vocab_file": "vocab-tgt.json", + "merges_file": "merges.txt", +} + + +def get_pairs(word): + """ + Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length + strings) + """ + pairs = set() + prev_char = word[0] + for char in word[1:]: + pairs.add((prev_char, char)) + prev_char = char + return pairs + + +def replace_unicode_punct(text): + """ + Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/replace-unicode-punctuation.perl + """ + text = text.replace(",", ",") + text = re.sub(r"。\s*", ". ", text) + text = text.replace("、", ",") + text = text.replace("”", '"') + text = text.replace("“", '"') + text = text.replace("∶", ":") + text = text.replace(":", ":") + text = text.replace("?", "?") + text = text.replace("《", '"') + text = text.replace("》", '"') + text = text.replace(")", ")") + text = text.replace("!", "!") + text = text.replace("(", "(") + text = text.replace(";", ";") + text = text.replace("1", "1") + text = text.replace("」", '"') + text = text.replace("「", '"') + text = text.replace("0", "0") + text = text.replace("3", "3") + text = text.replace("2", "2") + text = text.replace("5", "5") + text = text.replace("6", "6") + text = text.replace("9", "9") + text = text.replace("7", "7") + text = text.replace("8", "8") + text = text.replace("4", "4") + text = re.sub(r".\s*", ". ", text) + text = text.replace("~", "~") + text = text.replace("’", "'") + text = text.replace("…", "...") + text = text.replace("━", "-") + text = text.replace("〈", "<") + text = text.replace("〉", ">") + text = text.replace("【", "[") + text = text.replace("】", "]") + text = text.replace("%", "%") + return text + + +def remove_non_printing_char(text): + """ + Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/remove-non-printing-char.perl + """ + output = [] + for char in text: + cat = unicodedata.category(char) + if cat.startswith("C"): + continue + output.append(char) + return "".join(output) + + +# Porting notes: +# this one is modeled after XLMTokenizer +# +# added: +# - src_vocab_file, +# - tgt_vocab_file, +# - langs, + + +class FSMTTokenizer(PreTrainedTokenizer): + """ + Construct an FAIRSEQ Transformer tokenizer. Based on Byte-Pair Encoding. The tokenization process is the following: + + - Moses preprocessing and tokenization. + - Normalizing all inputs text. + - The arguments `special_tokens` and the function `set_special_tokens`, can be used to add additional symbols (like + "__classify__") to a vocabulary. + - The argument `langs` defines a pair of languages. + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + langs (`List[str]`, *optional*): + A list of two languages to translate from and to, for instance `["en", "ru"]`. + src_vocab_file (`str`, *optional*): + File containing the vocabulary for the source language. + tgt_vocab_file (`st`, *optional*): + File containing the vocabulary for the target language. + merges_file (`str`, *optional*): + File containing the merges. + do_lower_case (`bool`, *optional*, defaults to `False`): + Whether or not to lowercase the input when tokenizing. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + bos_token (`str`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + sep_token (`str`, *optional*, defaults to `""`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + + def __init__( + self, + langs=None, + src_vocab_file=None, + tgt_vocab_file=None, + merges_file=None, + do_lower_case=False, + unk_token="", + bos_token="", + sep_token="", + pad_token="", + **kwargs, + ): + try: + import sacremoses + except ImportError: + raise ImportError( + "You need to install sacremoses to use XLMTokenizer. " + "See https://pypi.org/project/sacremoses/ for installation." + ) + + self.sm = sacremoses + + self.src_vocab_file = src_vocab_file + self.tgt_vocab_file = tgt_vocab_file + self.merges_file = merges_file + self.do_lower_case = do_lower_case + + # cache of sm.MosesPunctNormalizer instance + self.cache_moses_punct_normalizer = {} + # cache of sm.MosesTokenizer instance + self.cache_moses_tokenizer = {} + self.cache_moses_detokenizer = {} + + if langs and len(langs) == 2: + self.src_lang, self.tgt_lang = langs + else: + raise ValueError( + f"arg `langs` needs to be a list of 2 langs, e.g. ['en', 'ru'], but got {langs}. " + "Usually that means that tokenizer can't find a mapping for the given model path " + "in PRETRAINED_VOCAB_FILES_MAP, and other maps of this tokenizer." + ) + + with open(src_vocab_file, encoding="utf-8") as src_vocab_handle: + self.encoder = json.load(src_vocab_handle) + with open(tgt_vocab_file, encoding="utf-8") as tgt_vocab_handle: + tgt_vocab = json.load(tgt_vocab_handle) + self.decoder = {v: k for k, v in tgt_vocab.items()} + with open(merges_file, encoding="utf-8") as merges_handle: + merges = merges_handle.read().split("\n")[:-1] + merges = [tuple(merge.split()[:2]) for merge in merges] + self.bpe_ranks = dict(zip(merges, range(len(merges)))) + self.cache = {} + super().__init__( + langs=langs, + src_vocab_file=src_vocab_file, + tgt_vocab_file=tgt_vocab_file, + merges_file=merges_file, + do_lower_case=do_lower_case, + unk_token=unk_token, + bos_token=bos_token, + sep_token=sep_token, + pad_token=pad_token, + **kwargs, + ) + + # hack override + def get_vocab(self) -> Dict[str, int]: + return self.get_src_vocab() + + # hack override + @property + def vocab_size(self) -> int: + return self.src_vocab_size + + def moses_punct_norm(self, text, lang): + if lang not in self.cache_moses_punct_normalizer: + punct_normalizer = self.sm.MosesPunctNormalizer(lang=lang) + self.cache_moses_punct_normalizer[lang] = punct_normalizer + return self.cache_moses_punct_normalizer[lang].normalize(text) + + def moses_tokenize(self, text, lang): + if lang not in self.cache_moses_tokenizer: + moses_tokenizer = self.sm.MosesTokenizer(lang=lang) + self.cache_moses_tokenizer[lang] = moses_tokenizer + return self.cache_moses_tokenizer[lang].tokenize( + text, aggressive_dash_splits=True, return_str=False, escape=True + ) + + def moses_detokenize(self, tokens, lang): + if lang not in self.cache_moses_detokenizer: + moses_detokenizer = self.sm.MosesDetokenizer(lang=lang) + self.cache_moses_detokenizer[lang] = moses_detokenizer + return self.cache_moses_detokenizer[lang].detokenize(tokens) + + def moses_pipeline(self, text, lang): + text = replace_unicode_punct(text) + text = self.moses_punct_norm(text, lang) + text = remove_non_printing_char(text) + return text + + @property + def src_vocab_size(self): + return len(self.encoder) + + @property + def tgt_vocab_size(self): + return len(self.decoder) + + def get_src_vocab(self): + return dict(self.encoder, **self.added_tokens_encoder) + + def get_tgt_vocab(self): + return dict(self.decoder, **self.added_tokens_decoder) + + def bpe(self, token): + word = tuple(token[:-1]) + (token[-1] + "",) + if token in self.cache: + return self.cache[token] + pairs = get_pairs(word) + + if not pairs: + return token + "" + + while True: + bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) + if bigram not in self.bpe_ranks: + break + first, second = bigram + new_word = [] + i = 0 + while i < len(word): + try: + j = word.index(first, i) + except ValueError: + new_word.extend(word[i:]) + break + else: + new_word.extend(word[i:j]) + i = j + + if word[i] == first and i < len(word) - 1 and word[i + 1] == second: + new_word.append(first + second) + i += 2 + else: + new_word.append(word[i]) + i += 1 + new_word = tuple(new_word) + word = new_word + if len(word) == 1: + break + else: + pairs = get_pairs(word) + word = " ".join(word) + if word == "\n ": + word = "\n" + self.cache[token] = word + return word + + def _tokenize(self, text, lang="en", bypass_tokenizer=False): + """ + Tokenize a string given language code using Moses. + + Details of tokenization: + + - [sacremoses](https://github.com/alvations/sacremoses): port of Moses + - Install with `pip install sacremoses` + + Args: + - lang: ISO language code (default = 'en') (string). Languages should belong of the model supported + languages. However, we don't enforce it. + - bypass_tokenizer: Allow users to preprocess and tokenize the sentences externally (default = False) + (bool). If True, we only apply BPE. + + Returns: + List of tokens. + """ + # ignore `lang` which is currently isn't explicitly passed in tokenization_utils.py and always results in lang=en + # if lang != self.src_lang: + # raise ValueError(f"Expected lang={self.src_lang}, but got {lang}") + lang = self.src_lang + + if self.do_lower_case: + text = text.lower() + + if bypass_tokenizer: + text = text.split() + else: + text = self.moses_pipeline(text, lang=lang) + text = self.moses_tokenize(text, lang=lang) + + split_tokens = [] + for token in text: + if token: + split_tokens.extend(list(self.bpe(token).split(" "))) + + return split_tokens + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.encoder.get(token, self.encoder.get(self.unk_token)) + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + return self.decoder.get(index, self.unk_token) + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + + # remove BPE + tokens = [t.replace(" ", "").replace("", " ") for t in tokens] + tokens = "".join(tokens).split() + # detokenize + text = self.moses_detokenize(tokens, self.tgt_lang) + return text + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A FAIRSEQ Transformer sequence has the following format: + + - single sequence: ` X ` + - pair of sequences: ` A B ` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + sep = [self.sep_token_id] + + # no bos used in fairseq + if token_ids_1 is None: + return token_ids_0 + sep + return token_ids_0 + sep + token_ids_1 + sep + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + # no bos used in fairseq + if token_ids_1 is not None: + return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] + return ([0] * len(token_ids_0)) + [1] + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. A FAIRSEQ + Transformer sequence pair mask has the following format: + + ``` + 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 + | first sequence | second sequence | + ``` + + If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). + + Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An + FAIRSEQ_TRANSFORMER sequence pair mask has the following format: + """ + sep = [self.sep_token_id] + + # no bos used in fairseq + if token_ids_1 is None: + return len(token_ids_0 + sep) * [0] + return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + + src_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["src_vocab_file"] + ) + tgt_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["tgt_vocab_file"] + ) + merges_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] + ) + + with open(src_vocab_file, "w", encoding="utf-8") as f: + f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") + + with open(tgt_vocab_file, "w", encoding="utf-8") as f: + tgt_vocab = {v: k for k, v in self.decoder.items()} + f.write(json.dumps(tgt_vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n") + + index = 0 + with open(merges_file, "w", encoding="utf-8") as writer: + for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): + if index != token_index: + logger.warning( + f"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive." + " Please check that the tokenizer is not corrupted!" + ) + index = token_index + writer.write(" ".join(bpe_tokens) + "\n") + index += 1 + + return src_vocab_file, tgt_vocab_file, merges_file + + def __getstate__(self): + state = self.__dict__.copy() + state["sm"] = None + return state + + def __setstate__(self, d): + self.__dict__ = d + + try: + import sacremoses + except ImportError: + raise ImportError( + "You need to install sacremoses to use XLMTokenizer. " + "See https://pypi.org/project/sacremoses/ for installation." + ) + + self.sm = sacremoses