applied-ai-018 commited on
Commit
5ba0616
·
verified ·
1 Parent(s): 7d8c5f2

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step20/zero/21.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
  2. ckpts/universal/global_step20/zero/23.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt +3 -0
  3. ckpts/universal/global_step20/zero/23.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt +3 -0
  4. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_cdist_backward_cpu_dispatch.h +23 -0
  5. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_cdist_backward_cuda_dispatch.h +23 -0
  6. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_conj_copy_compositeexplicitautograd_dispatch.h +24 -0
  7. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_ctc_loss_backward_native.h +24 -0
  8. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_embedding_bag_sparse_backward_native.h +21 -0
  9. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_empty_affine_quantized_ops.h +39 -0
  10. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_div_cuda_dispatch.h +30 -0
  11. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_log2_ops.h +50 -0
  12. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_mul_compositeexplicitautograd_dispatch.h +30 -0
  13. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_tan_cuda_dispatch.h +24 -0
  14. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_fused_adam_native.h +26 -0
  15. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_fw_primal_ops.h +28 -0
  16. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_linalg_svd_compositeexplicitautogradnonfunctional_dispatch.h +23 -0
  17. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_linalg_svd_cpu_dispatch.h +25 -0
  18. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_make_per_tensor_quantized_tensor_ops.h +39 -0
  19. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_get_ragged_idx_native.h +20 -0
  20. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_spdiags_cpu_dispatch.h +23 -0
  21. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_test_autograd_multiple_dispatch_view_compositeexplicitautograd_dispatch.h +23 -0
  22. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_to_sparse_bsc.h +34 -0
  23. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_transform_bias_rescale_qkv_cuda_dispatch.h +23 -0
  24. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bilinear2d_aa.h +113 -0
  25. venv/lib/python3.10/site-packages/torch/include/ATen/ops/adaptive_avg_pool3d_cpu_dispatch.h +26 -0
  26. venv/lib/python3.10/site-packages/torch/include/ATen/ops/arange_ops.h +72 -0
  27. venv/lib/python3.10/site-packages/torch/include/ATen/ops/arctan2_native.h +23 -0
  28. venv/lib/python3.10/site-packages/torch/include/ATen/ops/atanh_cpu_dispatch.h +26 -0
  29. venv/lib/python3.10/site-packages/torch/include/ATen/ops/avg_pool3d_backward_native.h +28 -0
  30. venv/lib/python3.10/site-packages/torch/include/ATen/ops/binary_cross_entropy_with_logits_native.h +22 -0
  31. venv/lib/python3.10/site-packages/torch/include/ATen/ops/binomial_cpu_dispatch.h +23 -0
  32. venv/lib/python3.10/site-packages/torch/include/ATen/ops/bitwise_left_shift_cuda_dispatch.h +26 -0
  33. venv/lib/python3.10/site-packages/torch/include/ATen/ops/clone_compositeexplicitautograd_dispatch.h +25 -0
  34. venv/lib/python3.10/site-packages/torch/include/ATen/ops/conj_physical_compositeimplicitautograd_dispatch.h +23 -0
  35. venv/lib/python3.10/site-packages/torch/include/ATen/ops/conv1d.h +69 -0
  36. venv/lib/python3.10/site-packages/torch/include/ATen/ops/cudnn_convolution_relu_compositeexplicitautograd_dispatch.h +26 -0
  37. venv/lib/python3.10/site-packages/torch/include/ATen/ops/expand_as_ops.h +28 -0
  38. venv/lib/python3.10/site-packages/torch/include/ATen/ops/fft_hfft_native.h +22 -0
  39. venv/lib/python3.10/site-packages/torch/include/ATen/ops/fft_ifftshift.h +30 -0
  40. venv/lib/python3.10/site-packages/torch/include/ATen/ops/fmax_native.h +23 -0
  41. venv/lib/python3.10/site-packages/torch/include/ATen/ops/fractional_max_pool2d.h +39 -0
  42. venv/lib/python3.10/site-packages/torch/include/ATen/ops/glu_native.h +23 -0
  43. venv/lib/python3.10/site-packages/torch/include/ATen/ops/grid_sampler_3d.h +39 -0
  44. venv/lib/python3.10/site-packages/torch/include/ATen/ops/grid_sampler_compositeimplicitautograd_dispatch.h +23 -0
  45. venv/lib/python3.10/site-packages/torch/include/ATen/ops/histogram.h +53 -0
  46. venv/lib/python3.10/site-packages/torch/include/ATen/ops/index_fill_meta_dispatch.h +24 -0
  47. venv/lib/python3.10/site-packages/torch/include/ATen/ops/int_repr_compositeexplicitautograd_dispatch.h +24 -0
  48. venv/lib/python3.10/site-packages/torch/include/ATen/ops/isneginf_ops.h +39 -0
  49. venv/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_eig_cuda_dispatch.h +25 -0
  50. venv/lib/python3.10/site-packages/torch/include/ATen/ops/linear_backward_ops.h +39 -0
ckpts/universal/global_step20/zero/21.mlp.dense_4h_to_h.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3906011c0b01070e2c74f64b2b988803ab4e2b8d925e608a0d7fee2ce66154c6
3
+ size 33555612
ckpts/universal/global_step20/zero/23.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff20c74dd922c8cd7dba604ad9d31628da769a1b43074f0454a005f26d4903dd
3
+ size 33555612
ckpts/universal/global_step20/zero/23.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79a69df693e1c72331286e2836eba5acfd60c51c6765c54214fbc54ffc124e19
3
+ size 33555627
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_cdist_backward_cpu_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor _cdist_backward(const at::Tensor & grad, const at::Tensor & x1, const at::Tensor & x2, double p, const at::Tensor & cdist);
21
+
22
+ } // namespace cpu
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_cdist_backward_cuda_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API at::Tensor _cdist_backward(const at::Tensor & grad, const at::Tensor & x1, const at::Tensor & x2, double p, const at::Tensor & cdist);
21
+
22
+ } // namespace cuda
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_conj_copy_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor & _conj_copy_out(at::Tensor & out, const at::Tensor & self);
21
+ TORCH_API at::Tensor & _conj_copy_outf(const at::Tensor & self, at::Tensor & out);
22
+
23
+ } // namespace compositeexplicitautograd
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_ctc_loss_backward_native.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor & _ctc_loss_backward_out(const at::Tensor & grad, const at::Tensor & log_probs, const at::Tensor & targets, at::IntArrayRef input_lengths, at::IntArrayRef target_lengths, const at::Tensor & neg_log_likelihood, const at::Tensor & log_alpha, int64_t blank, bool zero_infinity, at::Tensor & out);
20
+ TORCH_API at::Tensor ctc_loss_backward_cpu(const at::Tensor & grad, const at::Tensor & log_probs, const at::Tensor & targets, at::IntArrayRef input_lengths, at::IntArrayRef target_lengths, const at::Tensor & neg_log_likelihood, const at::Tensor & log_alpha, int64_t blank, bool zero_infinity=false);
21
+ TORCH_API at::Tensor ctc_loss_backward_gpu(const at::Tensor & grad, const at::Tensor & log_probs, const at::Tensor & targets, at::IntArrayRef input_lengths, at::IntArrayRef target_lengths, const at::Tensor & neg_log_likelihood, const at::Tensor & log_alpha, int64_t blank, bool zero_infinity=false);
22
+ TORCH_API at::Tensor ctc_loss_backward_tensor(const at::Tensor & grad, const at::Tensor & log_probs, const at::Tensor & targets, const at::Tensor & input_lengths, const at::Tensor & target_lengths, const at::Tensor & neg_log_likelihood, const at::Tensor & log_alpha, int64_t blank, bool zero_infinity=false);
23
+ } // namespace native
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_embedding_bag_sparse_backward_native.h ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor _embedding_bag_sparse_backward_symint(const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offsets, const at::Tensor & offset2bag, const at::Tensor & bag_size, c10::SymInt num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx=-1);
20
+ } // namespace native
21
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_empty_affine_quantized_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _empty_affine_quantized {
18
+ using schema = at::Tensor (c10::SymIntArrayRef, c10::optional<at::ScalarType>, c10::optional<at::Layout>, c10::optional<at::Device>, c10::optional<bool>, double, int64_t, c10::optional<at::MemoryFormat>);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_empty_affine_quantized")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_empty_affine_quantized(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format) -> Tensor")
24
+ static at::Tensor call(c10::SymIntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, double scale, int64_t zero_point, c10::optional<at::MemoryFormat> memory_format);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, c10::SymIntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, double scale, int64_t zero_point, c10::optional<at::MemoryFormat> memory_format);
26
+ };
27
+
28
+ struct TORCH_API _empty_affine_quantized_out {
29
+ using schema = at::Tensor & (c10::SymIntArrayRef, double, int64_t, c10::optional<at::MemoryFormat>, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_empty_affine_quantized")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_empty_affine_quantized.out(SymInt[] size, *, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(c10::SymIntArrayRef size, double scale, int64_t zero_point, c10::optional<at::MemoryFormat> memory_format, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, c10::SymIntArrayRef size, double scale, int64_t zero_point, c10::optional<at::MemoryFormat> memory_format, at::Tensor & out);
37
+ };
38
+
39
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_div_cuda_dispatch.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API ::std::vector<at::Tensor> _foreach_div(at::TensorList self, const at::Scalar & scalar);
21
+ TORCH_API void _foreach_div_(at::TensorList self, const at::Scalar & scalar);
22
+ TORCH_API ::std::vector<at::Tensor> _foreach_div(at::TensorList self, at::TensorList other);
23
+ TORCH_API void _foreach_div_(at::TensorList self, at::TensorList other);
24
+ TORCH_API ::std::vector<at::Tensor> _foreach_div(at::TensorList self, at::ArrayRef<at::Scalar> scalars);
25
+ TORCH_API void _foreach_div_(at::TensorList self, at::ArrayRef<at::Scalar> scalars);
26
+ TORCH_API ::std::vector<at::Tensor> _foreach_div(at::TensorList self, const at::Tensor & other);
27
+ TORCH_API void _foreach_div_(at::TensorList self, const at::Tensor & other);
28
+
29
+ } // namespace cuda
30
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_log2_ops.h ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _foreach_log2 {
18
+ using schema = ::std::vector<at::Tensor> (at::TensorList);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_log2")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_log2(Tensor[] self) -> Tensor[]")
24
+ static ::std::vector<at::Tensor> call(at::TensorList self);
25
+ static ::std::vector<at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self);
26
+ };
27
+
28
+ struct TORCH_API _foreach_log2_ {
29
+ using schema = void (at::TensorList);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_log2_")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_log2_(Tensor(a!)[] self) -> ()")
35
+ static void call(at::TensorList self);
36
+ static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self);
37
+ };
38
+
39
+ struct TORCH_API _foreach_log2_out {
40
+ using schema = void (at::TensorList, at::TensorList);
41
+ using ptr_schema = schema*;
42
+ // See Note [static constexpr char* members for windows NVCC]
43
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_log2")
44
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
45
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_log2.out(Tensor[] self, *, Tensor(a!)[] out) -> ()")
46
+ static void call(at::TensorList self, at::TensorList out);
47
+ static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList out);
48
+ };
49
+
50
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_mul_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API void _foreach_mul_out(at::TensorList out, at::TensorList self, const at::Scalar & scalar);
21
+ TORCH_API void _foreach_mul_outf(at::TensorList self, const at::Scalar & scalar, at::TensorList out);
22
+ TORCH_API void _foreach_mul_out(at::TensorList out, at::TensorList self, at::TensorList other);
23
+ TORCH_API void _foreach_mul_outf(at::TensorList self, at::TensorList other, at::TensorList out);
24
+ TORCH_API void _foreach_mul_out(at::TensorList out, at::TensorList self, at::ArrayRef<at::Scalar> scalars);
25
+ TORCH_API void _foreach_mul_outf(at::TensorList self, at::ArrayRef<at::Scalar> scalars, at::TensorList out);
26
+ TORCH_API void _foreach_mul_out(at::TensorList out, at::TensorList self, const at::Tensor & other);
27
+ TORCH_API void _foreach_mul_outf(at::TensorList self, const at::Tensor & other, at::TensorList out);
28
+
29
+ } // namespace compositeexplicitautograd
30
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_tan_cuda_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API ::std::vector<at::Tensor> _foreach_tan(at::TensorList self);
21
+ TORCH_API void _foreach_tan_(at::TensorList self);
22
+
23
+ } // namespace cuda
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_fused_adam_native.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API ::std::tuple<::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>> _fused_adam(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale={}, const c10::optional<at::Tensor> & found_inf={});
20
+ TORCH_API void _fused_adam_out(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf, at::TensorList out);
21
+ TORCH_API void _fused_adam_kernel_cuda_(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale={}, const c10::optional<at::Tensor> & found_inf={});
22
+ TORCH_API ::std::tuple<::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>> _fused_adam(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale={}, const c10::optional<at::Tensor> & found_inf={});
23
+ TORCH_API void _fused_adam_tensor_lr_out(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf, at::TensorList out);
24
+ TORCH_API void _fused_adam_kernel_cuda_(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale={}, const c10::optional<at::Tensor> & found_inf={});
25
+ } // namespace native
26
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_fw_primal_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _fw_primal {
18
+ using schema = at::Tensor (const at::Tensor &, int64_t);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_fw_primal")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_fw_primal(Tensor(a) self, int level) -> Tensor(a)")
24
+ static at::Tensor call(const at::Tensor & self, int64_t level);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, int64_t level);
26
+ };
27
+
28
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_linalg_svd_compositeexplicitautogradnonfunctional_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautogradnonfunctional {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor> _linalg_svd(const at::Tensor & A, bool full_matrices=false, bool compute_uv=true, c10::optional<c10::string_view> driver=c10::nullopt);
21
+
22
+ } // namespace compositeexplicitautogradnonfunctional
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_linalg_svd_cpu_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor> _linalg_svd(const at::Tensor & A, bool full_matrices=false, bool compute_uv=true, c10::optional<c10::string_view> driver=c10::nullopt);
21
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _linalg_svd_out(at::Tensor & U, at::Tensor & S, at::Tensor & Vh, const at::Tensor & A, bool full_matrices=false, bool compute_uv=true, c10::optional<c10::string_view> driver=c10::nullopt);
22
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _linalg_svd_outf(const at::Tensor & A, bool full_matrices, bool compute_uv, c10::optional<c10::string_view> driver, at::Tensor & U, at::Tensor & S, at::Tensor & Vh);
23
+
24
+ } // namespace cpu
25
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_make_per_tensor_quantized_tensor_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _make_per_tensor_quantized_tensor {
18
+ using schema = at::Tensor (const at::Tensor &, double, int64_t);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_make_per_tensor_quantized_tensor")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_make_per_tensor_quantized_tensor(Tensor self, float scale, int zero_point) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & self, double scale, int64_t zero_point);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, double scale, int64_t zero_point);
26
+ };
27
+
28
+ struct TORCH_API _make_per_tensor_quantized_tensor_out {
29
+ using schema = at::Tensor & (const at::Tensor &, double, int64_t, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_make_per_tensor_quantized_tensor")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_make_per_tensor_quantized_tensor.out(Tensor self, float scale, int zero_point, *, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(const at::Tensor & self, double scale, int64_t zero_point, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, double scale, int64_t zero_point, at::Tensor & out);
37
+ };
38
+
39
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_get_ragged_idx_native.h ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ } // namespace native
20
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_spdiags_cpu_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor _spdiags(const at::Tensor & diagonals, const at::Tensor & offsets, at::IntArrayRef shape, c10::optional<at::Layout> layout=c10::nullopt);
21
+
22
+ } // namespace cpu
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_test_autograd_multiple_dispatch_view_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor _test_autograd_multiple_dispatch_view(const at::Tensor & self);
21
+
22
+ } // namespace compositeexplicitautograd
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_to_sparse_bsc.h ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_to_sparse_bsc_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_to_sparse_bsc.out(Tensor self, int[2] blocksize, int? dense_dim=None, *, Tensor(a!) out) -> Tensor(a!)
26
+ inline at::Tensor & _to_sparse_bsc_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef blocksize, c10::optional<int64_t> dense_dim=c10::nullopt) {
27
+ return at::_ops::_to_sparse_bsc_out::call(self, blocksize, dense_dim, out);
28
+ }
29
+ // aten::_to_sparse_bsc.out(Tensor self, int[2] blocksize, int? dense_dim=None, *, Tensor(a!) out) -> Tensor(a!)
30
+ inline at::Tensor & _to_sparse_bsc_outf(const at::Tensor & self, at::IntArrayRef blocksize, c10::optional<int64_t> dense_dim, at::Tensor & out) {
31
+ return at::_ops::_to_sparse_bsc_out::call(self, blocksize, dense_dim, out);
32
+ }
33
+
34
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_transform_bias_rescale_qkv_cuda_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor> _transform_bias_rescale_qkv(const at::Tensor & qkv, const at::Tensor & qkv_bias, int64_t num_heads);
21
+
22
+ } // namespace cuda
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bilinear2d_aa.h ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_upsample_bilinear2d_aa_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_upsample_bilinear2d_aa.vec(Tensor input, SymInt[]? output_size, bool align_corners, float[]? scale_factors) -> Tensor
26
+ inline at::Tensor _upsample_bilinear2d_aa(const at::Tensor & input, at::OptionalIntArrayRef output_size, bool align_corners, c10::optional<at::ArrayRef<double>> scale_factors) {
27
+ return at::_ops::_upsample_bilinear2d_aa_vec::call(input, output_size.has_value() ? c10::make_optional(c10::fromIntArrayRefSlow(*output_size)) : c10::nullopt, align_corners, scale_factors);
28
+ }
29
+ namespace symint {
30
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
31
+ at::Tensor _upsample_bilinear2d_aa(const at::Tensor & input, at::OptionalIntArrayRef output_size, bool align_corners, c10::optional<at::ArrayRef<double>> scale_factors) {
32
+ return at::_ops::_upsample_bilinear2d_aa_vec::call(input, output_size.has_value() ? c10::make_optional(c10::fromIntArrayRefSlow(*output_size)) : c10::nullopt, align_corners, scale_factors);
33
+ }
34
+ }
35
+
36
+ // aten::_upsample_bilinear2d_aa.vec(Tensor input, SymInt[]? output_size, bool align_corners, float[]? scale_factors) -> Tensor
37
+ inline at::Tensor _upsample_bilinear2d_aa_symint(const at::Tensor & input, at::OptionalSymIntArrayRef output_size, bool align_corners, c10::optional<at::ArrayRef<double>> scale_factors) {
38
+ return at::_ops::_upsample_bilinear2d_aa_vec::call(input, output_size, align_corners, scale_factors);
39
+ }
40
+ namespace symint {
41
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
42
+ at::Tensor _upsample_bilinear2d_aa(const at::Tensor & input, at::OptionalSymIntArrayRef output_size, bool align_corners, c10::optional<at::ArrayRef<double>> scale_factors) {
43
+ return at::_ops::_upsample_bilinear2d_aa_vec::call(input, output_size, align_corners, scale_factors);
44
+ }
45
+ }
46
+
47
+ // aten::_upsample_bilinear2d_aa.out(Tensor self, SymInt[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!)
48
+ inline at::Tensor & _upsample_bilinear2d_aa_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef output_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
49
+ return at::_ops::_upsample_bilinear2d_aa_out::call(self, c10::fromIntArrayRefSlow(output_size), align_corners, scales_h, scales_w, out);
50
+ }
51
+ namespace symint {
52
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
53
+ at::Tensor & _upsample_bilinear2d_aa_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef output_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
54
+ return at::_ops::_upsample_bilinear2d_aa_out::call(self, c10::fromIntArrayRefSlow(output_size), align_corners, scales_h, scales_w, out);
55
+ }
56
+ }
57
+
58
+ // aten::_upsample_bilinear2d_aa.out(Tensor self, SymInt[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!)
59
+ inline at::Tensor & _upsample_bilinear2d_aa_outf(const at::Tensor & self, at::IntArrayRef output_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & out) {
60
+ return at::_ops::_upsample_bilinear2d_aa_out::call(self, c10::fromIntArrayRefSlow(output_size), align_corners, scales_h, scales_w, out);
61
+ }
62
+ namespace symint {
63
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
64
+ at::Tensor & _upsample_bilinear2d_aa_outf(const at::Tensor & self, at::IntArrayRef output_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & out) {
65
+ return at::_ops::_upsample_bilinear2d_aa_out::call(self, c10::fromIntArrayRefSlow(output_size), align_corners, scales_h, scales_w, out);
66
+ }
67
+ }
68
+
69
+ // aten::_upsample_bilinear2d_aa.out(Tensor self, SymInt[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!)
70
+ inline at::Tensor & _upsample_bilinear2d_aa_symint_out(at::Tensor & out, const at::Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
71
+ return at::_ops::_upsample_bilinear2d_aa_out::call(self, output_size, align_corners, scales_h, scales_w, out);
72
+ }
73
+ namespace symint {
74
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
75
+ at::Tensor & _upsample_bilinear2d_aa_out(at::Tensor & out, const at::Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
76
+ return at::_ops::_upsample_bilinear2d_aa_out::call(self, output_size, align_corners, scales_h, scales_w, out);
77
+ }
78
+ }
79
+
80
+ // aten::_upsample_bilinear2d_aa.out(Tensor self, SymInt[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!)
81
+ inline at::Tensor & _upsample_bilinear2d_aa_symint_outf(const at::Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & out) {
82
+ return at::_ops::_upsample_bilinear2d_aa_out::call(self, output_size, align_corners, scales_h, scales_w, out);
83
+ }
84
+ namespace symint {
85
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
86
+ at::Tensor & _upsample_bilinear2d_aa_outf(const at::Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & out) {
87
+ return at::_ops::_upsample_bilinear2d_aa_out::call(self, output_size, align_corners, scales_h, scales_w, out);
88
+ }
89
+ }
90
+
91
+ // aten::_upsample_bilinear2d_aa(Tensor self, SymInt[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor
92
+ inline at::Tensor _upsample_bilinear2d_aa(const at::Tensor & self, at::IntArrayRef output_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
93
+ return at::_ops::_upsample_bilinear2d_aa::call(self, c10::fromIntArrayRefSlow(output_size), align_corners, scales_h, scales_w);
94
+ }
95
+ namespace symint {
96
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
97
+ at::Tensor _upsample_bilinear2d_aa(const at::Tensor & self, at::IntArrayRef output_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
98
+ return at::_ops::_upsample_bilinear2d_aa::call(self, c10::fromIntArrayRefSlow(output_size), align_corners, scales_h, scales_w);
99
+ }
100
+ }
101
+
102
+ // aten::_upsample_bilinear2d_aa(Tensor self, SymInt[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor
103
+ inline at::Tensor _upsample_bilinear2d_aa_symint(const at::Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
104
+ return at::_ops::_upsample_bilinear2d_aa::call(self, output_size, align_corners, scales_h, scales_w);
105
+ }
106
+ namespace symint {
107
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
108
+ at::Tensor _upsample_bilinear2d_aa(const at::Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
109
+ return at::_ops::_upsample_bilinear2d_aa::call(self, output_size, align_corners, scales_h, scales_w);
110
+ }
111
+ }
112
+
113
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/adaptive_avg_pool3d_cpu_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor & adaptive_avg_pool3d_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef output_size);
21
+ TORCH_API at::Tensor & adaptive_avg_pool3d_outf(const at::Tensor & self, at::IntArrayRef output_size, at::Tensor & out);
22
+ TORCH_API at::Tensor & adaptive_avg_pool3d_symint_out(at::Tensor & out, const at::Tensor & self, c10::SymIntArrayRef output_size);
23
+ TORCH_API at::Tensor & adaptive_avg_pool3d_symint_outf(const at::Tensor & self, c10::SymIntArrayRef output_size, at::Tensor & out);
24
+
25
+ } // namespace cpu
26
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/arange_ops.h ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API arange {
18
+ using schema = at::Tensor (const at::Scalar &, c10::optional<at::ScalarType>, c10::optional<at::Layout>, c10::optional<at::Device>, c10::optional<bool>);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::arange")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "arange(Scalar end, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor")
24
+ static at::Tensor call(const at::Scalar & end, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Scalar & end, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
26
+ };
27
+
28
+ struct TORCH_API arange_start {
29
+ using schema = at::Tensor (const at::Scalar &, const at::Scalar &, c10::optional<at::ScalarType>, c10::optional<at::Layout>, c10::optional<at::Device>, c10::optional<bool>);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::arange")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "start")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "arange.start(Scalar start, Scalar end, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor")
35
+ static at::Tensor call(const at::Scalar & start, const at::Scalar & end, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
36
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Scalar & start, const at::Scalar & end, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
37
+ };
38
+
39
+ struct TORCH_API arange_start_step {
40
+ using schema = at::Tensor (const at::Scalar &, const at::Scalar &, const at::Scalar &, c10::optional<at::ScalarType>, c10::optional<at::Layout>, c10::optional<at::Device>, c10::optional<bool>);
41
+ using ptr_schema = schema*;
42
+ // See Note [static constexpr char* members for windows NVCC]
43
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::arange")
44
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "start_step")
45
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "arange.start_step(Scalar start, Scalar end, Scalar step=1, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor")
46
+ static at::Tensor call(const at::Scalar & start, const at::Scalar & end, const at::Scalar & step, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
47
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Scalar & start, const at::Scalar & end, const at::Scalar & step, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
48
+ };
49
+
50
+ struct TORCH_API arange_out {
51
+ using schema = at::Tensor & (const at::Scalar &, at::Tensor &);
52
+ using ptr_schema = schema*;
53
+ // See Note [static constexpr char* members for windows NVCC]
54
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::arange")
55
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
56
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "arange.out(Scalar end, *, Tensor(a!) out) -> Tensor(a!)")
57
+ static at::Tensor & call(const at::Scalar & end, at::Tensor & out);
58
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Scalar & end, at::Tensor & out);
59
+ };
60
+
61
+ struct TORCH_API arange_start_out {
62
+ using schema = at::Tensor & (const at::Scalar &, const at::Scalar &, const at::Scalar &, at::Tensor &);
63
+ using ptr_schema = schema*;
64
+ // See Note [static constexpr char* members for windows NVCC]
65
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::arange")
66
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "start_out")
67
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "arange.start_out(Scalar start, Scalar end, Scalar step=1, *, Tensor(a!) out) -> Tensor(a!)")
68
+ static at::Tensor & call(const at::Scalar & start, const at::Scalar & end, const at::Scalar & step, at::Tensor & out);
69
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Scalar & start, const at::Scalar & end, const at::Scalar & step, at::Tensor & out);
70
+ };
71
+
72
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/arctan2_native.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor arctan2(const at::Tensor & self, const at::Tensor & other);
20
+ TORCH_API at::Tensor & arctan2_out(const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
21
+ TORCH_API at::Tensor & arctan2_(at::Tensor & self, const at::Tensor & other);
22
+ } // namespace native
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/atanh_cpu_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor atanh(const at::Tensor & self);
21
+ TORCH_API at::Tensor & atanh_out(at::Tensor & out, const at::Tensor & self);
22
+ TORCH_API at::Tensor & atanh_outf(const at::Tensor & self, at::Tensor & out);
23
+ TORCH_API at::Tensor & atanh_(at::Tensor & self);
24
+
25
+ } // namespace cpu
26
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/avg_pool3d_backward_native.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+ #include <ATen/ops/avg_pool3d_backward_meta.h>
16
+
17
+ namespace at {
18
+ namespace native {
19
+ struct TORCH_API structured_avg_pool3d_backward_out_cpu : public at::meta::structured_avg_pool3d_backward {
20
+ void impl(const at::Tensor & grad_output, const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, bool ceil_mode, bool count_include_pad, c10::optional<int64_t> divisor_override, const at::Tensor & grad_input);
21
+ };
22
+ struct TORCH_API structured_avg_pool3d_backward_out_cuda : public at::meta::structured_avg_pool3d_backward {
23
+ void impl(const at::Tensor & grad_output, const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, bool ceil_mode, bool count_include_pad, c10::optional<int64_t> divisor_override, const at::Tensor & grad_input);
24
+ };
25
+ TORCH_API at::Tensor mkldnn_avg_pool3d_backward(const at::Tensor & grad_output, const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, bool ceil_mode, bool count_include_pad, c10::optional<int64_t> divisor_override);
26
+ TORCH_API at::Tensor & mkldnn_avg_pool3d_backward_out(const at::Tensor & grad_output, const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, bool ceil_mode, bool count_include_pad, c10::optional<int64_t> divisor_override, at::Tensor & grad_input);
27
+ } // namespace native
28
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/binary_cross_entropy_with_logits_native.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor binary_cross_entropy_with_logits(const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight={}, const c10::optional<at::Tensor> & pos_weight={}, int64_t reduction=at::Reduction::Mean);
20
+ TORCH_API at::Tensor & binary_cross_entropy_with_logits_out(const at::Tensor & self, const at::Tensor & target, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & pos_weight, int64_t reduction, at::Tensor & out);
21
+ } // namespace native
22
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/binomial_cpu_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor binomial(const at::Tensor & count, const at::Tensor & prob, c10::optional<at::Generator> generator=c10::nullopt);
21
+
22
+ } // namespace cpu
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/bitwise_left_shift_cuda_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API at::Tensor bitwise_left_shift(const at::Tensor & self, const at::Tensor & other);
21
+ TORCH_API at::Tensor & bitwise_left_shift_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & other);
22
+ TORCH_API at::Tensor & bitwise_left_shift_outf(const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
23
+ TORCH_API at::Tensor & bitwise_left_shift_(at::Tensor & self, const at::Tensor & other);
24
+
25
+ } // namespace cuda
26
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/clone_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor clone(const at::Tensor & self, c10::optional<at::MemoryFormat> memory_format=c10::nullopt);
21
+ TORCH_API at::Tensor & clone_out(at::Tensor & out, const at::Tensor & self, c10::optional<at::MemoryFormat> memory_format=c10::nullopt);
22
+ TORCH_API at::Tensor & clone_outf(const at::Tensor & self, c10::optional<at::MemoryFormat> memory_format, at::Tensor & out);
23
+
24
+ } // namespace compositeexplicitautograd
25
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/conj_physical_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API at::Tensor conj_physical(const at::Tensor & self);
21
+
22
+ } // namespace compositeimplicitautograd
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/conv1d.h ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/conv1d_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::conv1d(Tensor input, Tensor weight, Tensor? bias=None, SymInt[1] stride=1, SymInt[1] padding=0, SymInt[1] dilation=1, SymInt groups=1) -> Tensor
26
+ inline at::Tensor conv1d(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias={}, at::IntArrayRef stride=1, at::IntArrayRef padding=0, at::IntArrayRef dilation=1, int64_t groups=1) {
27
+ return at::_ops::conv1d::call(input, weight, bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), groups);
28
+ }
29
+ namespace symint {
30
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
31
+ at::Tensor conv1d(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias={}, at::IntArrayRef stride=1, at::IntArrayRef padding=0, at::IntArrayRef dilation=1, int64_t groups=1) {
32
+ return at::_ops::conv1d::call(input, weight, bias, c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(dilation), groups);
33
+ }
34
+ }
35
+
36
+ // aten::conv1d(Tensor input, Tensor weight, Tensor? bias=None, SymInt[1] stride=1, SymInt[1] padding=0, SymInt[1] dilation=1, SymInt groups=1) -> Tensor
37
+ inline at::Tensor conv1d_symint(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias={}, c10::SymIntArrayRef stride=c10::SymInt(1), c10::SymIntArrayRef padding=c10::SymInt(0), c10::SymIntArrayRef dilation=c10::SymInt(1), c10::SymInt groups=1) {
38
+ return at::_ops::conv1d::call(input, weight, bias, stride, padding, dilation, groups);
39
+ }
40
+ namespace symint {
41
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
42
+ at::Tensor conv1d(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias={}, c10::SymIntArrayRef stride=c10::SymInt(1), c10::SymIntArrayRef padding=c10::SymInt(0), c10::SymIntArrayRef dilation=c10::SymInt(1), c10::SymInt groups=1) {
43
+ return at::_ops::conv1d::call(input, weight, bias, stride, padding, dilation, groups);
44
+ }
45
+ }
46
+
47
+ // aten::conv1d.padding(Tensor input, Tensor weight, Tensor? bias=None, SymInt[1] stride=1, str padding="valid", SymInt[1] dilation=1, SymInt groups=1) -> Tensor
48
+ inline at::Tensor conv1d(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, c10::string_view padding, at::IntArrayRef dilation=1, int64_t groups=1) {
49
+ return at::_ops::conv1d_padding::call(input, weight, bias, c10::fromIntArrayRefSlow(stride), padding, c10::fromIntArrayRefSlow(dilation), groups);
50
+ }
51
+ namespace symint {
52
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
53
+ at::Tensor conv1d(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, c10::string_view padding, at::IntArrayRef dilation=1, int64_t groups=1) {
54
+ return at::_ops::conv1d_padding::call(input, weight, bias, c10::fromIntArrayRefSlow(stride), padding, c10::fromIntArrayRefSlow(dilation), groups);
55
+ }
56
+ }
57
+
58
+ // aten::conv1d.padding(Tensor input, Tensor weight, Tensor? bias=None, SymInt[1] stride=1, str padding="valid", SymInt[1] dilation=1, SymInt groups=1) -> Tensor
59
+ inline at::Tensor conv1d_symint(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::string_view padding, c10::SymIntArrayRef dilation=c10::SymInt(1), c10::SymInt groups=1) {
60
+ return at::_ops::conv1d_padding::call(input, weight, bias, stride, padding, dilation, groups);
61
+ }
62
+ namespace symint {
63
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
64
+ at::Tensor conv1d(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::string_view padding, c10::SymIntArrayRef dilation=c10::SymInt(1), c10::SymInt groups=1) {
65
+ return at::_ops::conv1d_padding::call(input, weight, bias, stride, padding, dilation, groups);
66
+ }
67
+ }
68
+
69
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/cudnn_convolution_relu_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor & cudnn_convolution_relu_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, int64_t groups);
21
+ TORCH_API at::Tensor & cudnn_convolution_relu_outf(const at::Tensor & self, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, int64_t groups, at::Tensor & out);
22
+ TORCH_API at::Tensor & cudnn_convolution_relu_symint_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, c10::SymInt groups);
23
+ TORCH_API at::Tensor & cudnn_convolution_relu_symint_outf(const at::Tensor & self, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, c10::SymInt groups, at::Tensor & out);
24
+
25
+ } // namespace compositeexplicitautograd
26
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/expand_as_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API expand_as {
18
+ using schema = at::Tensor (const at::Tensor &, const at::Tensor &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::expand_as")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "expand_as(Tensor(a) self, Tensor other) -> Tensor(a)")
24
+ static at::Tensor call(const at::Tensor & self, const at::Tensor & other);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & other);
26
+ };
27
+
28
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fft_hfft_native.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor fft_hfft_symint(const at::Tensor & self, c10::optional<c10::SymInt> n=c10::nullopt, int64_t dim=-1, c10::optional<c10::string_view> norm=c10::nullopt);
20
+ TORCH_API at::Tensor & fft_hfft_symint_out(const at::Tensor & self, c10::optional<c10::SymInt> n, int64_t dim, c10::optional<c10::string_view> norm, at::Tensor & out);
21
+ } // namespace native
22
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fft_ifftshift.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/fft_ifftshift_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::fft_ifftshift(Tensor self, int[1]? dim=None) -> Tensor
26
+ inline at::Tensor fft_ifftshift(const at::Tensor & self, at::OptionalIntArrayRef dim=c10::nullopt) {
27
+ return at::_ops::fft_ifftshift::call(self, dim);
28
+ }
29
+
30
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fmax_native.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+ #include <ATen/ops/fmax_meta.h>
16
+
17
+ namespace at {
18
+ namespace native {
19
+ struct TORCH_API structured_fmax_out : public at::meta::structured_fmax {
20
+ void impl(const at::Tensor & self, const at::Tensor & other, const at::Tensor & out);
21
+ };
22
+ } // namespace native
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fractional_max_pool2d.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/fractional_max_pool2d_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::fractional_max_pool2d.output(Tensor self, int[2] kernel_size, int[2] output_size, Tensor random_samples, *, Tensor(a!) output, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!))
26
+ inline ::std::tuple<at::Tensor &,at::Tensor &> fractional_max_pool2d_out(at::Tensor & output, at::Tensor & indices, const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef output_size, const at::Tensor & random_samples) {
27
+ return at::_ops::fractional_max_pool2d_output::call(self, kernel_size, output_size, random_samples, output, indices);
28
+ }
29
+ // aten::fractional_max_pool2d.output(Tensor self, int[2] kernel_size, int[2] output_size, Tensor random_samples, *, Tensor(a!) output, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!))
30
+ inline ::std::tuple<at::Tensor &,at::Tensor &> fractional_max_pool2d_outf(const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef output_size, const at::Tensor & random_samples, at::Tensor & output, at::Tensor & indices) {
31
+ return at::_ops::fractional_max_pool2d_output::call(self, kernel_size, output_size, random_samples, output, indices);
32
+ }
33
+
34
+ // aten::fractional_max_pool2d(Tensor self, int[2] kernel_size, int[2] output_size, Tensor random_samples) -> (Tensor, Tensor)
35
+ inline ::std::tuple<at::Tensor,at::Tensor> fractional_max_pool2d(const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef output_size, const at::Tensor & random_samples) {
36
+ return at::_ops::fractional_max_pool2d::call(self, kernel_size, output_size, random_samples);
37
+ }
38
+
39
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/glu_native.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+ #include <ATen/ops/glu_meta.h>
16
+
17
+ namespace at {
18
+ namespace native {
19
+ struct TORCH_API structured_glu_out : public at::meta::structured_glu {
20
+ void impl(const at::Tensor & self, int64_t dim, const at::Tensor & out);
21
+ };
22
+ } // namespace native
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/grid_sampler_3d.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/grid_sampler_3d_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::grid_sampler_3d(Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> Tensor
26
+ inline at::Tensor grid_sampler_3d(const at::Tensor & input, const at::Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners) {
27
+ return at::_ops::grid_sampler_3d::call(input, grid, interpolation_mode, padding_mode, align_corners);
28
+ }
29
+
30
+ // aten::grid_sampler_3d.out(Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners, *, Tensor(a!) out) -> Tensor(a!)
31
+ inline at::Tensor & grid_sampler_3d_out(at::Tensor & out, const at::Tensor & input, const at::Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners) {
32
+ return at::_ops::grid_sampler_3d_out::call(input, grid, interpolation_mode, padding_mode, align_corners, out);
33
+ }
34
+ // aten::grid_sampler_3d.out(Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners, *, Tensor(a!) out) -> Tensor(a!)
35
+ inline at::Tensor & grid_sampler_3d_outf(const at::Tensor & input, const at::Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners, at::Tensor & out) {
36
+ return at::_ops::grid_sampler_3d_out::call(input, grid, interpolation_mode, padding_mode, align_corners, out);
37
+ }
38
+
39
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/grid_sampler_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API at::Tensor grid_sampler(const at::Tensor & input, const at::Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners);
21
+
22
+ } // namespace compositeimplicitautograd
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/histogram.h ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/histogram_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::histogram.bins_tensor_out(Tensor self, Tensor bins, *, Tensor? weight=None, bool density=False, Tensor(a!) hist, Tensor(b!) bin_edges) -> (Tensor(a!) hist, Tensor(b!) bin_edges)
26
+ inline ::std::tuple<at::Tensor &,at::Tensor &> histogram_out(at::Tensor & hist, at::Tensor & bin_edges, const at::Tensor & self, const at::Tensor & bins, const c10::optional<at::Tensor> & weight={}, bool density=false) {
27
+ return at::_ops::histogram_bins_tensor_out::call(self, bins, weight, density, hist, bin_edges);
28
+ }
29
+ // aten::histogram.bins_tensor_out(Tensor self, Tensor bins, *, Tensor? weight=None, bool density=False, Tensor(a!) hist, Tensor(b!) bin_edges) -> (Tensor(a!) hist, Tensor(b!) bin_edges)
30
+ inline ::std::tuple<at::Tensor &,at::Tensor &> histogram_outf(const at::Tensor & self, const at::Tensor & bins, const c10::optional<at::Tensor> & weight, bool density, at::Tensor & hist, at::Tensor & bin_edges) {
31
+ return at::_ops::histogram_bins_tensor_out::call(self, bins, weight, density, hist, bin_edges);
32
+ }
33
+
34
+ // aten::histogram.bins_tensor(Tensor self, Tensor bins, *, Tensor? weight=None, bool density=False) -> (Tensor hist, Tensor bin_edges)
35
+ inline ::std::tuple<at::Tensor,at::Tensor> histogram(const at::Tensor & self, const at::Tensor & bins, const c10::optional<at::Tensor> & weight={}, bool density=false) {
36
+ return at::_ops::histogram_bins_tensor::call(self, bins, weight, density);
37
+ }
38
+
39
+ // aten::histogram.bin_ct_out(Tensor self, int bins=100, *, float[]? range=None, Tensor? weight=None, bool density=False, Tensor(a!) hist, Tensor(b!) bin_edges) -> (Tensor(a!) hist, Tensor(b!) bin_edges)
40
+ inline ::std::tuple<at::Tensor &,at::Tensor &> histogram_out(at::Tensor & hist, at::Tensor & bin_edges, const at::Tensor & self, int64_t bins=100, c10::optional<at::ArrayRef<double>> range=c10::nullopt, const c10::optional<at::Tensor> & weight={}, bool density=false) {
41
+ return at::_ops::histogram_bin_ct_out::call(self, bins, range, weight, density, hist, bin_edges);
42
+ }
43
+ // aten::histogram.bin_ct_out(Tensor self, int bins=100, *, float[]? range=None, Tensor? weight=None, bool density=False, Tensor(a!) hist, Tensor(b!) bin_edges) -> (Tensor(a!) hist, Tensor(b!) bin_edges)
44
+ inline ::std::tuple<at::Tensor &,at::Tensor &> histogram_outf(const at::Tensor & self, int64_t bins, c10::optional<at::ArrayRef<double>> range, const c10::optional<at::Tensor> & weight, bool density, at::Tensor & hist, at::Tensor & bin_edges) {
45
+ return at::_ops::histogram_bin_ct_out::call(self, bins, range, weight, density, hist, bin_edges);
46
+ }
47
+
48
+ // aten::histogram.bin_ct(Tensor self, int bins=100, *, float[]? range=None, Tensor? weight=None, bool density=False) -> (Tensor hist, Tensor bin_edges)
49
+ inline ::std::tuple<at::Tensor,at::Tensor> histogram(const at::Tensor & self, int64_t bins=100, c10::optional<at::ArrayRef<double>> range=c10::nullopt, const c10::optional<at::Tensor> & weight={}, bool density=false) {
50
+ return at::_ops::histogram_bin_ct::call(self, bins, range, weight, density);
51
+ }
52
+
53
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/index_fill_meta_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace meta {
19
+
20
+ TORCH_API at::Tensor & index_fill_(at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Scalar & value);
21
+ TORCH_API at::Tensor & index_fill_(at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & value);
22
+
23
+ } // namespace meta
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/int_repr_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor & int_repr_out(at::Tensor & out, const at::Tensor & self);
21
+ TORCH_API at::Tensor & int_repr_outf(const at::Tensor & self, at::Tensor & out);
22
+
23
+ } // namespace compositeexplicitautograd
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/isneginf_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API isneginf {
18
+ using schema = at::Tensor (const at::Tensor &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::isneginf")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "isneginf(Tensor self) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & self);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self);
26
+ };
27
+
28
+ struct TORCH_API isneginf_out {
29
+ using schema = at::Tensor & (const at::Tensor &, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::isneginf")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "isneginf.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(const at::Tensor & self, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, at::Tensor & out);
37
+ };
38
+
39
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_eig_cuda_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> linalg_eig(const at::Tensor & self);
21
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> linalg_eig_out(at::Tensor & eigenvalues, at::Tensor & eigenvectors, const at::Tensor & self);
22
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> linalg_eig_outf(const at::Tensor & self, at::Tensor & eigenvalues, at::Tensor & eigenvectors);
23
+
24
+ } // namespace cuda
25
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/linear_backward_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API linear_backward {
18
+ using schema = ::std::tuple<at::Tensor,at::Tensor,at::Tensor> (const at::Tensor &, const at::Tensor &, const at::Tensor &, ::std::array<bool,3>);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::linear_backward")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "linear_backward(Tensor self, Tensor grad_output, Tensor weight, bool[3] output_mask) -> (Tensor, Tensor, Tensor)")
24
+ static ::std::tuple<at::Tensor,at::Tensor,at::Tensor> call(const at::Tensor & self, const at::Tensor & grad_output, const at::Tensor & weight, ::std::array<bool,3> output_mask);
25
+ static ::std::tuple<at::Tensor,at::Tensor,at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & grad_output, const at::Tensor & weight, ::std::array<bool,3> output_mask);
26
+ };
27
+
28
+ struct TORCH_API linear_backward_out {
29
+ using schema = ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> (const at::Tensor &, const at::Tensor &, const at::Tensor &, ::std::array<bool,3>, at::Tensor &, at::Tensor &, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::linear_backward")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "linear_backward.out(Tensor self, Tensor grad_output, Tensor weight, bool[3] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))")
35
+ static ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> call(const at::Tensor & self, const at::Tensor & grad_output, const at::Tensor & weight, ::std::array<bool,3> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2);
36
+ static ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & grad_output, const at::Tensor & weight, ::std::array<bool,3> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2);
37
+ };
38
+
39
+ }} // namespace at::_ops