applied-ai-018 commited on
Commit
5cda27d
·
verified ·
1 Parent(s): ca435d7

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step120/zero/10.attention.dense.weight/fp32.pt +3 -0
  2. ckpts/universal/global_step120/zero/20.attention.dense.weight/exp_avg_sq.pt +3 -0
  3. venv/lib/python3.10/site-packages/torch/utils/bottleneck/__init__.py +0 -0
  4. venv/lib/python3.10/site-packages/torch/utils/bottleneck/__main__.py +229 -0
  5. venv/lib/python3.10/site-packages/torch/utils/bottleneck/__pycache__/__init__.cpython-310.pyc +0 -0
  6. venv/lib/python3.10/site-packages/torch/utils/bottleneck/__pycache__/__main__.cpython-310.pyc +0 -0
  7. venv/lib/python3.10/site-packages/torch/utils/data/__pycache__/__init__.cpython-310.pyc +0 -0
  8. venv/lib/python3.10/site-packages/torch/utils/data/__pycache__/backward_compatibility.cpython-310.pyc +0 -0
  9. venv/lib/python3.10/site-packages/torch/utils/data/__pycache__/dataloader.cpython-310.pyc +0 -0
  10. venv/lib/python3.10/site-packages/torch/utils/data/__pycache__/dataset.cpython-310.pyc +0 -0
  11. venv/lib/python3.10/site-packages/torch/utils/data/__pycache__/distributed.cpython-310.pyc +0 -0
  12. venv/lib/python3.10/site-packages/torch/utils/data/__pycache__/graph.cpython-310.pyc +0 -0
  13. venv/lib/python3.10/site-packages/torch/utils/data/__pycache__/graph_settings.cpython-310.pyc +0 -0
  14. venv/lib/python3.10/site-packages/torch/utils/data/__pycache__/sampler.cpython-310.pyc +0 -0
  15. venv/lib/python3.10/site-packages/torch/utils/data/_utils/__init__.py +51 -0
  16. venv/lib/python3.10/site-packages/torch/utils/data/_utils/__pycache__/__init__.cpython-310.pyc +0 -0
  17. venv/lib/python3.10/site-packages/torch/utils/data/_utils/__pycache__/collate.cpython-310.pyc +0 -0
  18. venv/lib/python3.10/site-packages/torch/utils/data/_utils/__pycache__/fetch.cpython-310.pyc +0 -0
  19. venv/lib/python3.10/site-packages/torch/utils/data/_utils/__pycache__/pin_memory.cpython-310.pyc +0 -0
  20. venv/lib/python3.10/site-packages/torch/utils/data/_utils/__pycache__/signal_handling.cpython-310.pyc +0 -0
  21. venv/lib/python3.10/site-packages/torch/utils/data/_utils/__pycache__/worker.cpython-310.pyc +0 -0
  22. venv/lib/python3.10/site-packages/torch/utils/data/_utils/collate.py +316 -0
  23. venv/lib/python3.10/site-packages/torch/utils/data/_utils/fetch.py +54 -0
  24. venv/lib/python3.10/site-packages/torch/utils/data/_utils/pin_memory.py +98 -0
  25. venv/lib/python3.10/site-packages/torch/utils/data/_utils/signal_handling.py +72 -0
  26. venv/lib/python3.10/site-packages/torch/utils/data/_utils/worker.py +329 -0
  27. venv/lib/python3.10/site-packages/torch/utils/data/datapipes/__pycache__/__init__.cpython-310.pyc +0 -0
  28. venv/lib/python3.10/site-packages/torch/utils/data/datapipes/__pycache__/_decorator.cpython-310.pyc +0 -0
  29. venv/lib/python3.10/site-packages/torch/utils/data/datapipes/__pycache__/_hook_iterator.cpython-310.pyc +0 -0
  30. venv/lib/python3.10/site-packages/torch/utils/data/datapipes/__pycache__/_typing.cpython-310.pyc +0 -0
  31. venv/lib/python3.10/site-packages/torch/utils/data/datapipes/__pycache__/datapipe.cpython-310.pyc +0 -0
  32. venv/lib/python3.10/site-packages/torch/utils/data/datapipes/__pycache__/gen_pyi.cpython-310.pyc +0 -0
  33. venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/__init__.py +64 -0
  34. venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/__pycache__/__init__.cpython-310.pyc +0 -0
  35. venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/__pycache__/callable.cpython-310.pyc +0 -0
  36. venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/__pycache__/combinatorics.cpython-310.pyc +0 -0
  37. venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/__pycache__/combining.cpython-310.pyc +0 -0
  38. venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/__pycache__/filelister.cpython-310.pyc +0 -0
  39. venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/__pycache__/fileopener.cpython-310.pyc +0 -0
  40. venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/__pycache__/grouping.cpython-310.pyc +0 -0
  41. venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/__pycache__/routeddecoder.cpython-310.pyc +0 -0
  42. venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/__pycache__/selecting.cpython-310.pyc +0 -0
  43. venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/__pycache__/sharding.cpython-310.pyc +0 -0
  44. venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/__pycache__/streamreader.cpython-310.pyc +0 -0
  45. venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/__pycache__/utils.cpython-310.pyc +0 -0
  46. venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/combinatorics.py +183 -0
  47. venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/combining.py +639 -0
  48. venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/filelister.py +66 -0
  49. venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/grouping.py +300 -0
  50. venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/routeddecoder.py +66 -0
ckpts/universal/global_step120/zero/10.attention.dense.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6dfbf53ff7c578bb6b0b049731ae4f8846bd4a2cd10926ed84a6be8b53e1931e
3
+ size 16778317
ckpts/universal/global_step120/zero/20.attention.dense.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd88d1290414c447426d4af36f9c119f3309ff614df0fce9c1831dc11d19fba6
3
+ size 16778411
venv/lib/python3.10/site-packages/torch/utils/bottleneck/__init__.py ADDED
File without changes
venv/lib/python3.10/site-packages/torch/utils/bottleneck/__main__.py ADDED
@@ -0,0 +1,229 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import cProfile
3
+ import pstats
4
+ import sys
5
+ import os
6
+ from typing import Dict
7
+
8
+ import torch
9
+ from torch.autograd import profiler
10
+ from torch.utils.collect_env import get_env_info
11
+
12
+
13
+ def redirect_argv(new_argv):
14
+ sys.argv[:] = new_argv[:]
15
+
16
+
17
+ def compiled_with_cuda(sysinfo):
18
+ if sysinfo.cuda_compiled_version:
19
+ return f'compiled w/ CUDA {sysinfo.cuda_compiled_version}'
20
+ return 'not compiled w/ CUDA'
21
+
22
+
23
+ env_summary = """
24
+ --------------------------------------------------------------------------------
25
+ Environment Summary
26
+ --------------------------------------------------------------------------------
27
+ PyTorch {pytorch_version}{debug_str} {cuda_compiled}
28
+ Running with Python {py_version} and {cuda_runtime}
29
+
30
+ `{pip_version} list` truncated output:
31
+ {pip_list_output}
32
+ """.strip()
33
+
34
+
35
+ def run_env_analysis():
36
+ print('Running environment analysis...')
37
+ info = get_env_info()
38
+
39
+ result: Dict[str, str] = {}
40
+
41
+ debug_str = ''
42
+ if info.is_debug_build:
43
+ debug_str = ' DEBUG'
44
+
45
+ cuda_avail = ''
46
+ if info.is_cuda_available:
47
+ cuda = info.cuda_runtime_version
48
+ if cuda is not None:
49
+ cuda_avail = 'CUDA ' + cuda
50
+ else:
51
+ cuda = 'CUDA unavailable'
52
+
53
+ pip_version = info.pip_version
54
+ pip_list_output = info.pip_packages
55
+ if pip_list_output is None:
56
+ pip_list_output = 'Unable to fetch'
57
+
58
+ result = {
59
+ 'debug_str': debug_str,
60
+ 'pytorch_version': info.torch_version,
61
+ 'cuda_compiled': compiled_with_cuda(info),
62
+ 'py_version': f'{sys.version_info[0]}.{sys.version_info[1]}',
63
+ 'cuda_runtime': cuda_avail,
64
+ 'pip_version': pip_version,
65
+ 'pip_list_output': pip_list_output,
66
+ }
67
+
68
+ return env_summary.format(**result)
69
+
70
+
71
+ def run_cprofile(code, globs, launch_blocking=False):
72
+ print('Running your script with cProfile')
73
+ prof = cProfile.Profile()
74
+ prof.enable()
75
+ exec(code, globs, None)
76
+ prof.disable()
77
+ return prof
78
+
79
+
80
+ cprof_summary = """
81
+ --------------------------------------------------------------------------------
82
+ cProfile output
83
+ --------------------------------------------------------------------------------
84
+ """.strip()
85
+
86
+
87
+ def print_cprofile_summary(prof, sortby='tottime', topk=15):
88
+ print(cprof_summary)
89
+ cprofile_stats = pstats.Stats(prof).sort_stats(sortby)
90
+ cprofile_stats.print_stats(topk)
91
+
92
+
93
+ def run_autograd_prof(code, globs):
94
+ def run_prof(use_cuda=False):
95
+ with profiler.profile(use_cuda=use_cuda) as prof:
96
+ exec(code, globs, None)
97
+ return prof
98
+
99
+ print('Running your script with the autograd profiler...')
100
+ result = [run_prof(use_cuda=False)]
101
+ if torch.cuda.is_available():
102
+ result.append(run_prof(use_cuda=True))
103
+ else:
104
+ result.append(None)
105
+
106
+ return result
107
+
108
+
109
+ autograd_prof_summary = """
110
+ --------------------------------------------------------------------------------
111
+ autograd profiler output ({mode} mode)
112
+ --------------------------------------------------------------------------------
113
+ {description}
114
+ {cuda_warning}
115
+ {output}
116
+ """.strip()
117
+
118
+
119
+ def print_autograd_prof_summary(prof, mode, sortby='cpu_time', topk=15):
120
+ valid_sortby = ['cpu_time', 'cuda_time', 'cpu_time_total', 'cuda_time_total', 'count']
121
+ if sortby not in valid_sortby:
122
+ warn = ('WARNING: invalid sorting option for autograd profiler results: {}\n'
123
+ 'Expected `cpu_time`, `cpu_time_total`, or `count`. '
124
+ 'Defaulting to `cpu_time`.')
125
+ print(warn.format(sortby))
126
+ sortby = 'cpu_time'
127
+
128
+ if mode == 'CUDA':
129
+ cuda_warning = ('\n\tBecause the autograd profiler uses the CUDA event API,\n'
130
+ '\tthe CUDA time column reports approximately max(cuda_time, cpu_time).\n'
131
+ '\tPlease ignore this output if your code does not use CUDA.\n')
132
+ else:
133
+ cuda_warning = ''
134
+
135
+ sorted_events = sorted(prof.function_events,
136
+ key=lambda x: getattr(x, sortby), reverse=True)
137
+ topk_events = sorted_events[:topk]
138
+
139
+ result = {
140
+ 'mode': mode,
141
+ 'description': f'top {topk} events sorted by {sortby}',
142
+ 'output': torch.autograd.profiler_util._build_table(topk_events),
143
+ 'cuda_warning': cuda_warning
144
+ }
145
+
146
+ print(autograd_prof_summary.format(**result))
147
+
148
+
149
+ descript = """
150
+ `bottleneck` is a tool that can be used as an initial step for debugging
151
+ bottlenecks in your program.
152
+
153
+ It summarizes runs of your script with the Python profiler and PyTorch\'s
154
+ autograd profiler. Because your script will be profiled, please ensure that it
155
+ exits in a finite amount of time.
156
+
157
+ For more complicated uses of the profilers, please see
158
+ https://docs.python.org/3/library/profile.html and
159
+ https://pytorch.org/docs/master/autograd.html#profiler for more information.
160
+ """.strip()
161
+
162
+
163
+ def parse_args():
164
+ parser = argparse.ArgumentParser(description=descript)
165
+ parser.add_argument('scriptfile', type=str,
166
+ help='Path to the script to be run. '
167
+ 'Usually run with `python path/to/script`.')
168
+ parser.add_argument('args', type=str, nargs=argparse.REMAINDER,
169
+ help='Command-line arguments to be passed to the script.')
170
+ return parser.parse_args()
171
+
172
+
173
+ def cpu_time_total(autograd_prof):
174
+ return sum([event.cpu_time_total for event in autograd_prof.function_events])
175
+
176
+
177
+ def main():
178
+ args = parse_args()
179
+
180
+ # Customizable constants.
181
+ scriptfile = args.scriptfile
182
+ scriptargs = [] if args.args is None else args.args
183
+ scriptargs.insert(0, scriptfile)
184
+ cprofile_sortby = 'tottime'
185
+ cprofile_topk = 15
186
+ autograd_prof_sortby = 'cpu_time_total'
187
+ autograd_prof_topk = 15
188
+
189
+ redirect_argv(scriptargs)
190
+
191
+ sys.path.insert(0, os.path.dirname(scriptfile))
192
+ with open(scriptfile, 'rb') as stream:
193
+ code = compile(stream.read(), scriptfile, 'exec')
194
+ globs = {
195
+ '__file__': scriptfile,
196
+ '__name__': '__main__',
197
+ '__package__': None,
198
+ '__cached__': None,
199
+ }
200
+
201
+ print(descript)
202
+
203
+ env_summary = run_env_analysis()
204
+
205
+ if torch.cuda.is_available():
206
+ torch.cuda.init()
207
+ cprofile_prof = run_cprofile(code, globs)
208
+ autograd_prof_cpu, autograd_prof_cuda = run_autograd_prof(code, globs)
209
+
210
+ print(env_summary)
211
+ print_cprofile_summary(cprofile_prof, cprofile_sortby, cprofile_topk)
212
+
213
+ if not torch.cuda.is_available():
214
+ print_autograd_prof_summary(autograd_prof_cpu, 'CPU', autograd_prof_sortby, autograd_prof_topk)
215
+ return
216
+
217
+ # Print both the result of the CPU-mode and CUDA-mode autograd profilers
218
+ # if their execution times are very different.
219
+ cuda_prof_exec_time = cpu_time_total(autograd_prof_cuda)
220
+ if len(autograd_prof_cpu.function_events) > 0:
221
+ cpu_prof_exec_time = cpu_time_total(autograd_prof_cpu)
222
+ pct_diff = (cuda_prof_exec_time - cpu_prof_exec_time) / cuda_prof_exec_time
223
+ if abs(pct_diff) > 0.05:
224
+ print_autograd_prof_summary(autograd_prof_cpu, 'CPU', autograd_prof_sortby, autograd_prof_topk)
225
+
226
+ print_autograd_prof_summary(autograd_prof_cuda, 'CUDA', autograd_prof_sortby, autograd_prof_topk)
227
+
228
+ if __name__ == '__main__':
229
+ main()
venv/lib/python3.10/site-packages/torch/utils/bottleneck/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (190 Bytes). View file
 
venv/lib/python3.10/site-packages/torch/utils/bottleneck/__pycache__/__main__.cpython-310.pyc ADDED
Binary file (6.81 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/data/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.41 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/data/__pycache__/backward_compatibility.cpython-310.pyc ADDED
Binary file (476 Bytes). View file
 
venv/lib/python3.10/site-packages/torch/utils/data/__pycache__/dataloader.cpython-310.pyc ADDED
Binary file (28 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/data/__pycache__/dataset.cpython-310.pyc ADDED
Binary file (19.5 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/data/__pycache__/distributed.cpython-310.pyc ADDED
Binary file (5.06 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/data/__pycache__/graph.cpython-310.pyc ADDED
Binary file (4.6 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/data/__pycache__/graph_settings.cpython-310.pyc ADDED
Binary file (4.85 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/data/__pycache__/sampler.cpython-310.pyc ADDED
Binary file (11 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/data/_utils/__init__.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ r"""Utility classes & functions for data loading. Code in this folder is mostly used by ../dataloder.py.
2
+
3
+ A lot of multiprocessing is used in data loading, which only supports running
4
+ functions defined in global environment (py2 can't serialize static methods).
5
+ Therefore, for code tidiness we put these functions into different files in this
6
+ folder.
7
+ """
8
+
9
+ import sys
10
+ import atexit
11
+
12
+ # old private location of the ExceptionWrapper that some users rely on:
13
+ from torch._utils import ExceptionWrapper
14
+
15
+
16
+ IS_WINDOWS = sys.platform == "win32"
17
+
18
+
19
+ MP_STATUS_CHECK_INTERVAL = 5.0
20
+ r"""Interval (in seconds) to check status of processes to avoid hanging in
21
+ multiprocessing data loading. This is mainly used in getting data from
22
+ another process, in which case we need to periodically check whether the
23
+ sender is alive to prevent hanging."""
24
+
25
+
26
+ python_exit_status = False
27
+ r"""Whether Python is shutting down. This flag is guaranteed to be set before
28
+ the Python core library resources are freed, but Python may already be exiting
29
+ for some time when this is set.
30
+
31
+ Hook to set this flag is `_set_python_exit_flag`, and is inspired by a similar
32
+ hook in Python 3.7 multiprocessing library:
33
+ https://github.com/python/cpython/blob/d4d60134b29290049e28df54f23493de4f1824b6/Lib/multiprocessing/util.py#L277-L327
34
+ """
35
+
36
+
37
+ try:
38
+ import numpy
39
+ HAS_NUMPY = True
40
+ except ModuleNotFoundError:
41
+ HAS_NUMPY = False
42
+
43
+
44
+ def _set_python_exit_flag():
45
+ global python_exit_status
46
+ python_exit_status = True
47
+
48
+ atexit.register(_set_python_exit_flag)
49
+
50
+
51
+ from . import worker, signal_handling, pin_memory, collate, fetch
venv/lib/python3.10/site-packages/torch/utils/data/_utils/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.12 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/data/_utils/__pycache__/collate.cpython-310.pyc ADDED
Binary file (13 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/data/_utils/__pycache__/fetch.cpython-310.pyc ADDED
Binary file (2.28 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/data/_utils/__pycache__/pin_memory.cpython-310.pyc ADDED
Binary file (3.07 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/data/_utils/__pycache__/signal_handling.cpython-310.pyc ADDED
Binary file (2.65 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/data/_utils/__pycache__/worker.cpython-310.pyc ADDED
Binary file (7.73 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/data/_utils/collate.py ADDED
@@ -0,0 +1,316 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ r"""Contains definitions of the methods used by the _BaseDataLoaderIter workers.
2
+
3
+ These methods are used to collate samples fetched from dataset into Tensor(s).
4
+ These **needs** to be in global scope since Py2 doesn't support serializing
5
+ static methods.
6
+
7
+ `default_collate` and `default_convert` are exposed to users via 'dataloader.py'.
8
+ """
9
+
10
+ import collections
11
+ import contextlib
12
+ import copy
13
+ import re
14
+ import torch
15
+
16
+ from typing import Callable, Dict, Optional, Tuple, Type, Union
17
+
18
+ np_str_obj_array_pattern = re.compile(r'[SaUO]')
19
+
20
+
21
+ def default_convert(data):
22
+ r"""
23
+ Convert each NumPy array element into a :class:`torch.Tensor`.
24
+
25
+ If the input is a `Sequence`, `Collection`, or `Mapping`, it tries to convert each element inside to a :class:`torch.Tensor`.
26
+ If the input is not an NumPy array, it is left unchanged.
27
+ This is used as the default function for collation when both `batch_sampler` and `batch_size`
28
+ are NOT defined in :class:`~torch.utils.data.DataLoader`.
29
+
30
+ The general input type to output type mapping is similar to that
31
+ of :func:`~torch.utils.data.default_collate`. See the description there for more details.
32
+
33
+ Args:
34
+ data: a single data point to be converted
35
+
36
+ Examples:
37
+ >>> # xdoctest: +SKIP
38
+ >>> # Example with `int`
39
+ >>> default_convert(0)
40
+ 0
41
+ >>> # Example with NumPy array
42
+ >>> default_convert(np.array([0, 1]))
43
+ tensor([0, 1])
44
+ >>> # Example with NamedTuple
45
+ >>> Point = namedtuple('Point', ['x', 'y'])
46
+ >>> default_convert(Point(0, 0))
47
+ Point(x=0, y=0)
48
+ >>> default_convert(Point(np.array(0), np.array(0)))
49
+ Point(x=tensor(0), y=tensor(0))
50
+ >>> # Example with List
51
+ >>> default_convert([np.array([0, 1]), np.array([2, 3])])
52
+ [tensor([0, 1]), tensor([2, 3])]
53
+ """
54
+ elem_type = type(data)
55
+ if isinstance(data, torch.Tensor):
56
+ return data
57
+ elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
58
+ and elem_type.__name__ != 'string_':
59
+ # array of string classes and object
60
+ if elem_type.__name__ == 'ndarray' \
61
+ and np_str_obj_array_pattern.search(data.dtype.str) is not None:
62
+ return data
63
+ return torch.as_tensor(data)
64
+ elif isinstance(data, collections.abc.Mapping):
65
+ try:
66
+ if isinstance(data, collections.abc.MutableMapping):
67
+ # The mapping type may have extra properties, so we can't just
68
+ # use `type(data)(...)` to create the new mapping.
69
+ # Create a clone and update it if the mapping type is mutable.
70
+ clone = copy.copy(data)
71
+ clone.update({key: default_convert(data[key]) for key in data})
72
+ return clone
73
+ else:
74
+ return elem_type({key: default_convert(data[key]) for key in data})
75
+ except TypeError:
76
+ # The mapping type may not support `copy()` / `update(mapping)`
77
+ # or `__init__(iterable)`.
78
+ return {key: default_convert(data[key]) for key in data}
79
+ elif isinstance(data, tuple) and hasattr(data, '_fields'): # namedtuple
80
+ return elem_type(*(default_convert(d) for d in data))
81
+ elif isinstance(data, tuple):
82
+ return [default_convert(d) for d in data] # Backwards compatibility.
83
+ elif isinstance(data, collections.abc.Sequence) and not isinstance(data, (str, bytes)):
84
+ try:
85
+ if isinstance(data, collections.abc.MutableSequence):
86
+ # The sequence type may have extra properties, so we can't just
87
+ # use `type(data)(...)` to create the new sequence.
88
+ # Create a clone and update it if the sequence type is mutable.
89
+ clone = copy.copy(data) # type: ignore[arg-type]
90
+ for i, d in enumerate(data):
91
+ clone[i] = default_convert(d)
92
+ return clone
93
+ else:
94
+ return elem_type([default_convert(d) for d in data])
95
+ except TypeError:
96
+ # The sequence type may not support `copy()` / `__setitem__(index, item)`
97
+ # or `__init__(iterable)` (e.g., `range`).
98
+ return [default_convert(d) for d in data]
99
+ else:
100
+ return data
101
+
102
+
103
+ default_collate_err_msg_format = (
104
+ "default_collate: batch must contain tensors, numpy arrays, numbers, "
105
+ "dicts or lists; found {}")
106
+
107
+
108
+ def collate(batch, *, collate_fn_map: Optional[Dict[Union[Type, Tuple[Type, ...]], Callable]] = None):
109
+ r"""
110
+ General collate function that handles collection type of element within each batch.
111
+
112
+ The function also opens function registry to deal with specific element types. `default_collate_fn_map`
113
+ provides default collate functions for tensors, numpy arrays, numbers and strings.
114
+
115
+ Args:
116
+ batch: a single batch to be collated
117
+ collate_fn_map: Optional dictionary mapping from element type to the corresponding collate function.
118
+ If the element type isn't present in this dictionary,
119
+ this function will go through each key of the dictionary in the insertion order to
120
+ invoke the corresponding collate function if the element type is a subclass of the key.
121
+
122
+ Examples:
123
+ >>> def collate_tensor_fn(batch, *, collate_fn_map):
124
+ >>> # Extend this function to handle batch of tensors
125
+ ... return torch.stack(batch, 0)
126
+ >>> def custom_collate(batch):
127
+ ... collate_map = {torch.Tensor: collate_tensor_fn}
128
+ ... return collate(batch, collate_fn_map=collate_map)
129
+ >>> # Extend `default_collate` by in-place modifying `default_collate_fn_map`
130
+ >>> default_collate_fn_map.update({torch.Tensor: collate_tensor_fn})
131
+
132
+ Note:
133
+ Each collate function requires a positional argument for batch and a keyword argument
134
+ for the dictionary of collate functions as `collate_fn_map`.
135
+ """
136
+ elem = batch[0]
137
+ elem_type = type(elem)
138
+
139
+ if collate_fn_map is not None:
140
+ if elem_type in collate_fn_map:
141
+ return collate_fn_map[elem_type](batch, collate_fn_map=collate_fn_map)
142
+
143
+ for collate_type in collate_fn_map:
144
+ if isinstance(elem, collate_type):
145
+ return collate_fn_map[collate_type](batch, collate_fn_map=collate_fn_map)
146
+
147
+ if isinstance(elem, collections.abc.Mapping):
148
+ try:
149
+ if isinstance(elem, collections.abc.MutableMapping):
150
+ # The mapping type may have extra properties, so we can't just
151
+ # use `type(data)(...)` to create the new mapping.
152
+ # Create a clone and update it if the mapping type is mutable.
153
+ clone = copy.copy(elem)
154
+ clone.update({key: collate([d[key] for d in batch], collate_fn_map=collate_fn_map) for key in elem})
155
+ return clone
156
+ else:
157
+ return elem_type({key: collate([d[key] for d in batch], collate_fn_map=collate_fn_map) for key in elem})
158
+ except TypeError:
159
+ # The mapping type may not support `copy()` / `update(mapping)`
160
+ # or `__init__(iterable)`.
161
+ return {key: collate([d[key] for d in batch], collate_fn_map=collate_fn_map) for key in elem}
162
+ elif isinstance(elem, tuple) and hasattr(elem, '_fields'): # namedtuple
163
+ return elem_type(*(collate(samples, collate_fn_map=collate_fn_map) for samples in zip(*batch)))
164
+ elif isinstance(elem, collections.abc.Sequence):
165
+ # check to make sure that the elements in batch have consistent size
166
+ it = iter(batch)
167
+ elem_size = len(next(it))
168
+ if not all(len(elem) == elem_size for elem in it):
169
+ raise RuntimeError('each element in list of batch should be of equal size')
170
+ transposed = list(zip(*batch)) # It may be accessed twice, so we use a list.
171
+
172
+ if isinstance(elem, tuple):
173
+ return [collate(samples, collate_fn_map=collate_fn_map) for samples in transposed] # Backwards compatibility.
174
+ else:
175
+ try:
176
+ if isinstance(elem, collections.abc.MutableSequence):
177
+ # The sequence type may have extra properties, so we can't just
178
+ # use `type(data)(...)` to create the new sequence.
179
+ # Create a clone and update it if the sequence type is mutable.
180
+ clone = copy.copy(elem) # type: ignore[arg-type]
181
+ for i, samples in enumerate(transposed):
182
+ clone[i] = collate(samples, collate_fn_map=collate_fn_map)
183
+ return clone
184
+ else:
185
+ return elem_type([collate(samples, collate_fn_map=collate_fn_map) for samples in transposed])
186
+ except TypeError:
187
+ # The sequence type may not support `copy()` / `__setitem__(index, item)`
188
+ # or `__init__(iterable)` (e.g., `range`).
189
+ return [collate(samples, collate_fn_map=collate_fn_map) for samples in transposed]
190
+
191
+ raise TypeError(default_collate_err_msg_format.format(elem_type))
192
+
193
+
194
+ def collate_tensor_fn(batch, *, collate_fn_map: Optional[Dict[Union[Type, Tuple[Type, ...]], Callable]] = None):
195
+ elem = batch[0]
196
+ out = None
197
+ if elem.is_nested:
198
+ raise RuntimeError(
199
+ "Batches of nested tensors are not currently supported by the default collate_fn; "
200
+ "please provide a custom collate_fn to handle them appropriately."
201
+ )
202
+ if elem.layout in {torch.sparse_coo, torch.sparse_csr, torch.sparse_bsr, torch.sparse_csc, torch.sparse_bsc}:
203
+ raise RuntimeError(
204
+ "Batches of sparse tensors are not currently supported by the default collate_fn; "
205
+ "please provide a custom collate_fn to handle them appropriately."
206
+ )
207
+ if torch.utils.data.get_worker_info() is not None:
208
+ # If we're in a background process, concatenate directly into a
209
+ # shared memory tensor to avoid an extra copy
210
+ numel = sum(x.numel() for x in batch)
211
+ storage = elem._typed_storage()._new_shared(numel, device=elem.device)
212
+ out = elem.new(storage).resize_(len(batch), *list(elem.size()))
213
+ return torch.stack(batch, 0, out=out)
214
+
215
+
216
+ def collate_numpy_array_fn(batch, *, collate_fn_map: Optional[Dict[Union[Type, Tuple[Type, ...]], Callable]] = None):
217
+ elem = batch[0]
218
+ # array of string classes and object
219
+ if np_str_obj_array_pattern.search(elem.dtype.str) is not None:
220
+ raise TypeError(default_collate_err_msg_format.format(elem.dtype))
221
+
222
+ return collate([torch.as_tensor(b) for b in batch], collate_fn_map=collate_fn_map)
223
+
224
+
225
+ def collate_numpy_scalar_fn(batch, *, collate_fn_map: Optional[Dict[Union[Type, Tuple[Type, ...]], Callable]] = None):
226
+ return torch.as_tensor(batch)
227
+
228
+
229
+ def collate_float_fn(batch, *, collate_fn_map: Optional[Dict[Union[Type, Tuple[Type, ...]], Callable]] = None):
230
+ return torch.tensor(batch, dtype=torch.float64)
231
+
232
+
233
+ def collate_int_fn(batch, *, collate_fn_map: Optional[Dict[Union[Type, Tuple[Type, ...]], Callable]] = None):
234
+ return torch.tensor(batch)
235
+
236
+
237
+ def collate_str_fn(batch, *, collate_fn_map: Optional[Dict[Union[Type, Tuple[Type, ...]], Callable]] = None):
238
+ return batch
239
+
240
+
241
+ default_collate_fn_map: Dict[Union[Type, Tuple[Type, ...]], Callable] = {torch.Tensor: collate_tensor_fn}
242
+ with contextlib.suppress(ImportError):
243
+ import numpy as np
244
+ # For both ndarray and memmap (subclass of ndarray)
245
+ default_collate_fn_map[np.ndarray] = collate_numpy_array_fn
246
+ # See scalars hierarchy: https://numpy.org/doc/stable/reference/arrays.scalars.html
247
+ # Skip string scalars
248
+ default_collate_fn_map[(np.bool_, np.number, np.object_)] = collate_numpy_scalar_fn
249
+ default_collate_fn_map[float] = collate_float_fn
250
+ default_collate_fn_map[int] = collate_int_fn
251
+ default_collate_fn_map[str] = collate_str_fn
252
+ default_collate_fn_map[bytes] = collate_str_fn
253
+
254
+
255
+ def default_collate(batch):
256
+ r"""
257
+ Take in a batch of data and put the elements within the batch into a tensor with an additional outer dimension - batch size.
258
+
259
+ The exact output type can be a :class:`torch.Tensor`, a `Sequence` of :class:`torch.Tensor`, a
260
+ Collection of :class:`torch.Tensor`, or left unchanged, depending on the input type.
261
+ This is used as the default function for collation when
262
+ `batch_size` or `batch_sampler` is defined in :class:`~torch.utils.data.DataLoader`.
263
+
264
+ Here is the general input type (based on the type of the element within the batch) to output type mapping:
265
+
266
+ * :class:`torch.Tensor` -> :class:`torch.Tensor` (with an added outer dimension batch size)
267
+ * NumPy Arrays -> :class:`torch.Tensor`
268
+ * `float` -> :class:`torch.Tensor`
269
+ * `int` -> :class:`torch.Tensor`
270
+ * `str` -> `str` (unchanged)
271
+ * `bytes` -> `bytes` (unchanged)
272
+ * `Mapping[K, V_i]` -> `Mapping[K, default_collate([V_1, V_2, ...])]`
273
+ * `NamedTuple[V1_i, V2_i, ...]` -> `NamedTuple[default_collate([V1_1, V1_2, ...]),
274
+ default_collate([V2_1, V2_2, ...]), ...]`
275
+ * `Sequence[V1_i, V2_i, ...]` -> `Sequence[default_collate([V1_1, V1_2, ...]),
276
+ default_collate([V2_1, V2_2, ...]), ...]`
277
+
278
+ Args:
279
+ batch: a single batch to be collated
280
+
281
+ Examples:
282
+ >>> # xdoctest: +SKIP
283
+ >>> # Example with a batch of `int`s:
284
+ >>> default_collate([0, 1, 2, 3])
285
+ tensor([0, 1, 2, 3])
286
+ >>> # Example with a batch of `str`s:
287
+ >>> default_collate(['a', 'b', 'c'])
288
+ ['a', 'b', 'c']
289
+ >>> # Example with `Map` inside the batch:
290
+ >>> default_collate([{'A': 0, 'B': 1}, {'A': 100, 'B': 100}])
291
+ {'A': tensor([ 0, 100]), 'B': tensor([ 1, 100])}
292
+ >>> # Example with `NamedTuple` inside the batch:
293
+ >>> Point = namedtuple('Point', ['x', 'y'])
294
+ >>> default_collate([Point(0, 0), Point(1, 1)])
295
+ Point(x=tensor([0, 1]), y=tensor([0, 1]))
296
+ >>> # Example with `Tuple` inside the batch:
297
+ >>> default_collate([(0, 1), (2, 3)])
298
+ [tensor([0, 2]), tensor([1, 3])]
299
+ >>> # Example with `List` inside the batch:
300
+ >>> default_collate([[0, 1], [2, 3]])
301
+ [tensor([0, 2]), tensor([1, 3])]
302
+ >>> # Two options to extend `default_collate` to handle specific type
303
+ >>> # Option 1: Write custom collate function and invoke `default_collate`
304
+ >>> def custom_collate(batch):
305
+ ... elem = batch[0]
306
+ ... if isinstance(elem, CustomType): # Some custom condition
307
+ ... return ...
308
+ ... else: # Fall back to `default_collate`
309
+ ... return default_collate(batch)
310
+ >>> # Option 2: In-place modify `default_collate_fn_map`
311
+ >>> def collate_customtype_fn(batch, *, collate_fn_map=None):
312
+ ... return ...
313
+ >>> default_collate_fn_map.update(CustoType, collate_customtype_fn)
314
+ >>> default_collate(batch) # Handle `CustomType` automatically
315
+ """
316
+ return collate(batch, collate_fn_map=default_collate_fn_map)
venv/lib/python3.10/site-packages/torch/utils/data/_utils/fetch.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ r"""Contains definitions of the methods used by the _BaseDataLoaderIter to fetch data from an iterable-style or map-style dataset.
2
+
3
+ This logic is shared in both single- and multi-processing data loading.
4
+ """
5
+
6
+
7
+ class _BaseDatasetFetcher:
8
+ def __init__(self, dataset, auto_collation, collate_fn, drop_last):
9
+ self.dataset = dataset
10
+ self.auto_collation = auto_collation
11
+ self.collate_fn = collate_fn
12
+ self.drop_last = drop_last
13
+
14
+ def fetch(self, possibly_batched_index):
15
+ raise NotImplementedError()
16
+
17
+
18
+ class _IterableDatasetFetcher(_BaseDatasetFetcher):
19
+ def __init__(self, dataset, auto_collation, collate_fn, drop_last):
20
+ super().__init__(dataset, auto_collation, collate_fn, drop_last)
21
+ self.dataset_iter = iter(dataset)
22
+ self.ended = False
23
+
24
+ def fetch(self, possibly_batched_index):
25
+ if self.ended:
26
+ raise StopIteration
27
+
28
+ if self.auto_collation:
29
+ data = []
30
+ for _ in possibly_batched_index:
31
+ try:
32
+ data.append(next(self.dataset_iter))
33
+ except StopIteration:
34
+ self.ended = True
35
+ break
36
+ if len(data) == 0 or (
37
+ self.drop_last and len(data) < len(possibly_batched_index)
38
+ ):
39
+ raise StopIteration
40
+ else:
41
+ data = next(self.dataset_iter)
42
+ return self.collate_fn(data)
43
+
44
+
45
+ class _MapDatasetFetcher(_BaseDatasetFetcher):
46
+ def fetch(self, possibly_batched_index):
47
+ if self.auto_collation:
48
+ if hasattr(self.dataset, "__getitems__") and self.dataset.__getitems__:
49
+ data = self.dataset.__getitems__(possibly_batched_index)
50
+ else:
51
+ data = [self.dataset[idx] for idx in possibly_batched_index]
52
+ else:
53
+ data = self.dataset[possibly_batched_index]
54
+ return self.collate_fn(data)
venv/lib/python3.10/site-packages/torch/utils/data/_utils/pin_memory.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ r"""Contains definitions of the methods used by the _BaseDataLoaderIter to put fetched tensors into pinned memory.
2
+
3
+ These **needs** to be in global scope since Py2 doesn't support serializing
4
+ static methods.
5
+ """
6
+
7
+ import collections
8
+ import copy
9
+ import queue
10
+
11
+ import torch
12
+ from . import MP_STATUS_CHECK_INTERVAL
13
+ from torch._utils import ExceptionWrapper
14
+
15
+
16
+ def _pin_memory_loop(in_queue, out_queue, device_id, done_event, device):
17
+ # This setting is thread local, and prevents the copy in pin_memory from
18
+ # consuming all CPU cores.
19
+ torch.set_num_threads(1)
20
+
21
+ if device == "cuda":
22
+ torch.cuda.set_device(device_id)
23
+ elif device == "xpu":
24
+ torch.xpu.set_device(device_id) # type: ignore[attr-defined]
25
+ elif device == torch._C._get_privateuse1_backend_name():
26
+ custom_device_mod = getattr(torch, torch._C._get_privateuse1_backend_name())
27
+ custom_device_mod.set_device(device_id)
28
+
29
+ def do_one_step():
30
+ try:
31
+ r = in_queue.get(timeout=MP_STATUS_CHECK_INTERVAL)
32
+ except queue.Empty:
33
+ return
34
+ idx, data = r
35
+ if not done_event.is_set() and not isinstance(data, ExceptionWrapper):
36
+ try:
37
+ data = pin_memory(data, device)
38
+ except Exception:
39
+ data = ExceptionWrapper(
40
+ where=f"in pin memory thread for device {device_id}")
41
+ r = (idx, data)
42
+ while not done_event.is_set():
43
+ try:
44
+ out_queue.put(r, timeout=MP_STATUS_CHECK_INTERVAL)
45
+ break
46
+ except queue.Full:
47
+ continue
48
+
49
+ # See NOTE [ Data Loader Multiprocessing Shutdown Logic ] for details on the
50
+ # logic of this function.
51
+ while not done_event.is_set():
52
+ # Make sure that we don't preserve any object from one iteration
53
+ # to the next
54
+ do_one_step()
55
+
56
+ def pin_memory(data, device=None):
57
+ if isinstance(data, torch.Tensor):
58
+ return data.pin_memory(device)
59
+ elif isinstance(data, (str, bytes)):
60
+ return data
61
+ elif isinstance(data, collections.abc.Mapping):
62
+ try:
63
+ if isinstance(data, collections.abc.MutableMapping):
64
+ # The sequence type may have extra properties, so we can't just
65
+ # use `type(data)(...)` to create the new sequence.
66
+ # Create a clone and update it if the sequence type is mutable.
67
+ clone = copy.copy(data)
68
+ clone.update({k: pin_memory(sample, device) for k, sample in data.items()})
69
+ return clone
70
+ else:
71
+ return type(data)({k: pin_memory(sample, device) for k, sample in data.items()}) # type: ignore[call-arg]
72
+ except TypeError:
73
+ # The mapping type may not support `copy()` / `update(mapping)`
74
+ # or `__init__(iterable)`.
75
+ return {k: pin_memory(sample, device) for k, sample in data.items()}
76
+ elif isinstance(data, tuple) and hasattr(data, '_fields'): # namedtuple
77
+ return type(data)(*(pin_memory(sample, device) for sample in data))
78
+ elif isinstance(data, tuple):
79
+ return [pin_memory(sample, device) for sample in data] # Backwards compatibility.
80
+ elif isinstance(data, collections.abc.Sequence):
81
+ try:
82
+ if isinstance(data, collections.abc.MutableSequence):
83
+ # The sequence type may have extra properties, so we can't just
84
+ # use `type(data)(...)` to create the new sequence.
85
+ # Create a clone and update it if the sequence type is mutable.
86
+ clone = copy.copy(data) # type: ignore[arg-type]
87
+ for i, item in enumerate(data):
88
+ clone[i] = pin_memory(item, device)
89
+ return clone
90
+ return type(data)([pin_memory(sample, device) for sample in data]) # type: ignore[call-arg]
91
+ except TypeError:
92
+ # The sequence type may not support `copy()` / `__setitem__(index, item)`
93
+ # or `__init__(iterable)` (e.g., `range`).
94
+ return [pin_memory(sample, device) for sample in data]
95
+ elif hasattr(data, "pin_memory"):
96
+ return data.pin_memory()
97
+ else:
98
+ return data
venv/lib/python3.10/site-packages/torch/utils/data/_utils/signal_handling.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ r"""Signal handling for multiprocessing data loading.
2
+
3
+ NOTE [ Signal handling in multiprocessing data loading ]
4
+
5
+ In cases like DataLoader, if a worker process dies due to bus error/segfault
6
+ or just hang, the main process will hang waiting for data. This is difficult
7
+ to avoid on PyTorch side as it can be caused by limited shm, or other
8
+ libraries users call in the workers. In this file and `DataLoader.cpp`, we make
9
+ our best effort to provide some error message to users when such unfortunate
10
+ events happen.
11
+
12
+ When a _BaseDataLoaderIter starts worker processes, their pids are registered in a
13
+ defined in `DataLoader.cpp`: id(_BaseDataLoaderIter) => Collection[ Worker pids ]
14
+ via `_set_worker_pids`.
15
+
16
+ When an error happens in a worker process, the main process received a SIGCHLD,
17
+ and Python will eventually call the handler registered below
18
+ (in `_set_SIGCHLD_handler`). In the handler, the `_error_if_any_worker_fails`
19
+ call checks all registered worker pids and raise proper error message to
20
+ prevent main process from hanging waiting for data from worker.
21
+
22
+ Additionally, at the beginning of each worker's `_utils.worker._worker_loop`,
23
+ `_set_worker_signal_handlers` is called to register critical signal handlers
24
+ (e.g., for SIGSEGV, SIGBUS, SIGFPE, SIGTERM) in C, which just prints an error
25
+ message to stderr before triggering the default handler. So a message will also
26
+ be printed from the worker process when it is killed by such signals.
27
+
28
+ See NOTE [ Data Loader Multiprocessing Shutdown Logic ] for the reasoning of
29
+ this signal handling design and other mechanism we implement to make our
30
+ multiprocessing data loading robust to errors.
31
+ """
32
+
33
+ import signal
34
+ import threading
35
+ from . import IS_WINDOWS
36
+
37
+ # Some of the following imported functions are not used in this file, but are to
38
+ # be used `_utils.signal_handling.XXXXX`.
39
+ from torch._C import _set_worker_pids, _remove_worker_pids # noqa: F401
40
+ from torch._C import _error_if_any_worker_fails, _set_worker_signal_handlers # noqa: F401
41
+
42
+ _SIGCHLD_handler_set = False
43
+ r"""Whether SIGCHLD handler is set for DataLoader worker failures. Only one
44
+ handler needs to be set for all DataLoaders in a process."""
45
+
46
+
47
+ def _set_SIGCHLD_handler():
48
+ # Windows doesn't support SIGCHLD handler
49
+ if IS_WINDOWS:
50
+ return
51
+ # can't set signal in child threads
52
+ if not isinstance(threading.current_thread(), threading._MainThread): # type: ignore[attr-defined]
53
+ return
54
+ global _SIGCHLD_handler_set
55
+ if _SIGCHLD_handler_set:
56
+ return
57
+ previous_handler = signal.getsignal(signal.SIGCHLD)
58
+ if not callable(previous_handler):
59
+ # This doesn't catch default handler, but SIGCHLD default handler is a
60
+ # no-op.
61
+ previous_handler = None
62
+
63
+ def handler(signum, frame):
64
+ # This following call uses `waitid` with WNOHANG from C side. Therefore,
65
+ # Python can still get and update the process status successfully.
66
+ _error_if_any_worker_fails()
67
+ if previous_handler is not None:
68
+ assert callable(previous_handler)
69
+ previous_handler(signum, frame)
70
+
71
+ signal.signal(signal.SIGCHLD, handler)
72
+ _SIGCHLD_handler_set = True
venv/lib/python3.10/site-packages/torch/utils/data/_utils/worker.py ADDED
@@ -0,0 +1,329 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ r""""Contains definitions of the methods used by the _BaseDataLoaderIter workers.
2
+
3
+ These **needs** to be in global scope since Py2 doesn't support serializing
4
+ static methods.
5
+ """
6
+
7
+ import torch
8
+ import random
9
+ import os
10
+ import queue
11
+ from dataclasses import dataclass
12
+ from torch._utils import ExceptionWrapper
13
+ from typing import Optional, Union, TYPE_CHECKING
14
+ from . import signal_handling, MP_STATUS_CHECK_INTERVAL, IS_WINDOWS, HAS_NUMPY
15
+ if TYPE_CHECKING:
16
+ from torch.utils.data import Dataset
17
+
18
+ if IS_WINDOWS:
19
+ import ctypes
20
+ from ctypes.wintypes import DWORD, BOOL, HANDLE
21
+
22
+ # On Windows, the parent ID of the worker process remains unchanged when the manager process
23
+ # is gone, and the only way to check it through OS is to let the worker have a process handle
24
+ # of the manager and ask if the process status has changed.
25
+ class ManagerWatchdog:
26
+ def __init__(self):
27
+ self.manager_pid = os.getppid()
28
+
29
+ # mypy cannot detect this code is windows only
30
+ self.kernel32 = ctypes.WinDLL('kernel32', use_last_error=True) # type: ignore[attr-defined]
31
+ self.kernel32.OpenProcess.argtypes = (DWORD, BOOL, DWORD)
32
+ self.kernel32.OpenProcess.restype = HANDLE
33
+ self.kernel32.WaitForSingleObject.argtypes = (HANDLE, DWORD)
34
+ self.kernel32.WaitForSingleObject.restype = DWORD
35
+
36
+ # Value obtained from https://msdn.microsoft.com/en-us/library/ms684880.aspx
37
+ SYNCHRONIZE = 0x00100000
38
+ self.manager_handle = self.kernel32.OpenProcess(SYNCHRONIZE, 0, self.manager_pid)
39
+
40
+ if not self.manager_handle:
41
+ raise ctypes.WinError(ctypes.get_last_error()) # type: ignore[attr-defined]
42
+
43
+ self.manager_dead = False
44
+
45
+ def is_alive(self):
46
+ if not self.manager_dead:
47
+ # Value obtained from https://msdn.microsoft.com/en-us/library/windows/desktop/ms687032.aspx
48
+ self.manager_dead = self.kernel32.WaitForSingleObject(self.manager_handle, 0) == 0
49
+ return not self.manager_dead
50
+ else:
51
+ class ManagerWatchdog: # type: ignore[no-redef]
52
+ def __init__(self):
53
+ self.manager_pid = os.getppid()
54
+ self.manager_dead = False
55
+
56
+ def is_alive(self):
57
+ if not self.manager_dead:
58
+ self.manager_dead = os.getppid() != self.manager_pid
59
+ return not self.manager_dead
60
+
61
+ _worker_info: Optional["WorkerInfo"] = None
62
+
63
+
64
+ class WorkerInfo:
65
+ id: int
66
+ num_workers: int
67
+ seed: int
68
+ dataset: 'Dataset'
69
+ __initialized = False
70
+
71
+ def __init__(self, **kwargs):
72
+ for k, v in kwargs.items():
73
+ setattr(self, k, v)
74
+ self.__keys = tuple(kwargs.keys())
75
+ self.__initialized = True
76
+
77
+ def __setattr__(self, key, val):
78
+ if self.__initialized:
79
+ raise RuntimeError(f"Cannot assign attributes to {self.__class__.__name__} objects")
80
+ return super().__setattr__(key, val)
81
+
82
+ def __repr__(self):
83
+ items = []
84
+ for k in self.__keys:
85
+ items.append(f'{k}={getattr(self, k)}')
86
+ return f"{self.__class__.__name__}({', '.join(items)})"
87
+
88
+
89
+ def get_worker_info() -> Optional[WorkerInfo]:
90
+ r"""Returns the information about the current
91
+ :class:`~torch.utils.data.DataLoader` iterator worker process.
92
+
93
+ When called in a worker, this returns an object guaranteed to have the
94
+ following attributes:
95
+
96
+ * :attr:`id`: the current worker id.
97
+ * :attr:`num_workers`: the total number of workers.
98
+ * :attr:`seed`: the random seed set for the current worker. This value is
99
+ determined by main process RNG and the worker id. See
100
+ :class:`~torch.utils.data.DataLoader`'s documentation for more details.
101
+ * :attr:`dataset`: the copy of the dataset object in **this** process. Note
102
+ that this will be a different object in a different process than the one
103
+ in the main process.
104
+
105
+ When called in the main process, this returns ``None``.
106
+
107
+ .. note::
108
+ When used in a :attr:`worker_init_fn` passed over to
109
+ :class:`~torch.utils.data.DataLoader`, this method can be useful to
110
+ set up each worker process differently, for instance, using ``worker_id``
111
+ to configure the ``dataset`` object to only read a specific fraction of a
112
+ sharded dataset, or use ``seed`` to seed other libraries used in dataset
113
+ code.
114
+ """
115
+ return _worker_info
116
+
117
+
118
+ r"""Dummy class used to signal the end of an IterableDataset"""
119
+ @dataclass(frozen=True)
120
+ class _IterableDatasetStopIteration:
121
+ worker_id: int
122
+
123
+ r"""Dummy class used to resume the fetching when worker reuse is enabled"""
124
+ @dataclass(frozen=True)
125
+ class _ResumeIteration:
126
+ seed: Optional[int] = None
127
+
128
+ # The function `_generate_state` is adapted from `numpy.random.SeedSequence`
129
+ # from https://github.com/numpy/numpy/blob/main/numpy/random/bit_generator.pyx
130
+ # It's MIT licensed, here is the copyright:
131
+
132
+ # Copyright (c) 2015 Melissa E. O'Neill
133
+ # Copyright (c) 2019 NumPy Developers
134
+ #
135
+ # Permission is hereby granted, free of charge, to any person obtaining a copy
136
+ # of this software and associated documentation files (the "Software"), to deal
137
+ # in the Software without restriction, including without limitation the rights
138
+ # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
139
+ # copies of the Software, and to permit persons to whom the Software is
140
+ # furnished to do so, subject to the following conditions:
141
+ #
142
+ # The above copyright notice and this permission notice shall be included in
143
+ # all copies or substantial portions of the Software.
144
+ #
145
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
146
+ # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
147
+ # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
148
+ # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
149
+ # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
150
+ # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
151
+ # SOFTWARE.
152
+
153
+ # This function generates an array of int32 as the seed for
154
+ # `numpy.random`, in order to prevent state collision due to same
155
+ # seed and algorithm for `numpy.random` and `random` modules.
156
+ # TODO: Implement `SeedSequence` like object for `torch.random`
157
+ def _generate_state(base_seed, worker_id):
158
+ INIT_A = 0x43b0d7e5
159
+ MULT_A = 0x931e8875
160
+ INIT_B = 0x8b51f9dd
161
+ MULT_B = 0x58f38ded
162
+ MIX_MULT_L = 0xca01f9dd
163
+ MIX_MULT_R = 0x4973f715
164
+ XSHIFT = 4 * 8 // 2
165
+ MASK32 = 0xFFFFFFFF
166
+
167
+ entropy = [worker_id, base_seed & MASK32, base_seed >> 32, 0]
168
+ pool = [0] * 4
169
+
170
+ hash_const_A = INIT_A
171
+
172
+ def hash(value):
173
+ nonlocal hash_const_A
174
+ value = (value ^ hash_const_A) & MASK32
175
+ hash_const_A = (hash_const_A * MULT_A) & MASK32
176
+ value = (value * hash_const_A) & MASK32
177
+ value = (value ^ (value >> XSHIFT)) & MASK32
178
+ return value
179
+
180
+ def mix(x, y):
181
+ result_x = (MIX_MULT_L * x) & MASK32
182
+ result_y = (MIX_MULT_R * y) & MASK32
183
+ result = (result_x - result_y) & MASK32
184
+ result = (result ^ (result >> XSHIFT)) & MASK32
185
+ return result
186
+
187
+ # Add in the entropy to the pool.
188
+ for i in range(len(pool)):
189
+ pool[i] = hash(entropy[i])
190
+
191
+ # Mix all bits together so late bits can affect earlier bits.
192
+ for i_src in range(len(pool)):
193
+ for i_dst in range(len(pool)):
194
+ if i_src != i_dst:
195
+ pool[i_dst] = mix(pool[i_dst], hash(pool[i_src]))
196
+
197
+ hash_const_B = INIT_B
198
+ state = []
199
+ for i_dst in range(4):
200
+ data_val = pool[i_dst]
201
+ data_val = (data_val ^ hash_const_B) & MASK32
202
+ hash_const_B = (hash_const_B * MULT_B) & MASK32
203
+ data_val = (data_val * hash_const_B) & MASK32
204
+ data_val = (data_val ^ (data_val >> XSHIFT)) & MASK32
205
+ state.append(data_val)
206
+ return state
207
+
208
+ def _worker_loop(dataset_kind, dataset, index_queue, data_queue, done_event,
209
+ auto_collation, collate_fn, drop_last, base_seed, init_fn, worker_id,
210
+ num_workers, persistent_workers, shared_seed):
211
+ # See NOTE [ Data Loader Multiprocessing Shutdown Logic ] for details on the
212
+ # logic of this function.
213
+
214
+ try:
215
+ # Initialize C side signal handlers for SIGBUS and SIGSEGV. Python signal
216
+ # module's handlers are executed after Python returns from C low-level
217
+ # handlers, likely when the same fatal signal had already happened
218
+ # again.
219
+ # https://docs.python.org/3/library/signal.html#execution-of-python-signal-handlers
220
+ signal_handling._set_worker_signal_handlers()
221
+
222
+ torch.set_num_threads(1)
223
+ seed = base_seed + worker_id
224
+ random.seed(seed)
225
+ torch.manual_seed(seed)
226
+ if HAS_NUMPY:
227
+ np_seed = _generate_state(base_seed, worker_id)
228
+ import numpy as np
229
+ np.random.seed(np_seed)
230
+
231
+ from torch.utils.data import IterDataPipe
232
+ from torch.utils.data.graph_settings import apply_random_seed
233
+
234
+ shared_rng = torch.Generator()
235
+ if isinstance(dataset, IterDataPipe):
236
+ assert shared_seed is not None
237
+ shared_rng.manual_seed(shared_seed)
238
+ dataset = apply_random_seed(dataset, shared_rng)
239
+
240
+ global _worker_info
241
+ _worker_info = WorkerInfo(id=worker_id, num_workers=num_workers,
242
+ seed=seed, dataset=dataset)
243
+
244
+ from torch.utils.data import _DatasetKind
245
+
246
+ init_exception = None
247
+
248
+ try:
249
+ if init_fn is not None:
250
+ init_fn(worker_id)
251
+
252
+ fetcher = _DatasetKind.create_fetcher(dataset_kind, dataset, auto_collation, collate_fn, drop_last)
253
+ except Exception:
254
+ init_exception = ExceptionWrapper(
255
+ where=f"in DataLoader worker process {worker_id}")
256
+
257
+ # When using Iterable mode, some worker can exit earlier than others due
258
+ # to the IterableDataset behaving differently for different workers.
259
+ # When such things happen, an `_IterableDatasetStopIteration` object is
260
+ # sent over to the main process with the ID of this worker, so that the
261
+ # main process won't send more tasks to this worker, and will send
262
+ # `None` to this worker to properly exit it.
263
+ #
264
+ # Note that we cannot set `done_event` from a worker as it is shared
265
+ # among all processes. Instead, we set the `iteration_end` flag to
266
+ # signify that the iterator is exhausted. When either `done_event` or
267
+ # `iteration_end` is set, we skip all processing step and just wait for
268
+ # `None`.
269
+ iteration_end = False
270
+
271
+ watchdog = ManagerWatchdog()
272
+
273
+ while watchdog.is_alive():
274
+ try:
275
+ r = index_queue.get(timeout=MP_STATUS_CHECK_INTERVAL)
276
+ except queue.Empty:
277
+ continue
278
+ if isinstance(r, _ResumeIteration):
279
+ # Acknowledge the main process
280
+ data_queue.put((r, None))
281
+ iteration_end = False
282
+
283
+ if isinstance(dataset, IterDataPipe):
284
+ assert r.seed is not None
285
+ shared_rng.manual_seed(r.seed)
286
+ dataset = apply_random_seed(dataset, shared_rng)
287
+
288
+ # Recreate the fetcher for worker-reuse policy
289
+ fetcher = _DatasetKind.create_fetcher(
290
+ dataset_kind, dataset, auto_collation, collate_fn, drop_last)
291
+ continue
292
+ elif r is None:
293
+ # Received the final signal
294
+ assert done_event.is_set() or iteration_end
295
+ break
296
+ elif done_event.is_set() or iteration_end:
297
+ # `done_event` is set. But I haven't received the final signal
298
+ # (None) yet. I will keep continuing until get it, and skip the
299
+ # processing steps.
300
+ continue
301
+ idx, index = r
302
+ data: Union[_IterableDatasetStopIteration, ExceptionWrapper]
303
+ if init_exception is not None:
304
+ data = init_exception
305
+ init_exception = None
306
+ else:
307
+ try:
308
+ data = fetcher.fetch(index) # type: ignore[possibly-undefined]
309
+ except Exception as e:
310
+ if isinstance(e, StopIteration) and dataset_kind == _DatasetKind.Iterable:
311
+ data = _IterableDatasetStopIteration(worker_id)
312
+ # Set `iteration_end`
313
+ # (1) to save future `next(...)` calls, and
314
+ # (2) to avoid sending multiple `_IterableDatasetStopIteration`s.
315
+ iteration_end = True
316
+ else:
317
+ # It is important that we don't store exc_info in a variable.
318
+ # `ExceptionWrapper` does the correct thing.
319
+ # See NOTE [ Python Traceback Reference Cycle Problem ]
320
+ data = ExceptionWrapper(
321
+ where=f"in DataLoader worker process {worker_id}")
322
+ data_queue.put((idx, data))
323
+ del data, idx, index, r # save memory
324
+ except KeyboardInterrupt:
325
+ # Main process will raise KeyboardInterrupt anyways.
326
+ pass
327
+ if done_event.is_set():
328
+ data_queue.cancel_join_thread()
329
+ data_queue.close()
venv/lib/python3.10/site-packages/torch/utils/data/datapipes/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (281 Bytes). View file
 
venv/lib/python3.10/site-packages/torch/utils/data/datapipes/__pycache__/_decorator.cpython-310.pyc ADDED
Binary file (6.07 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/data/datapipes/__pycache__/_hook_iterator.cpython-310.pyc ADDED
Binary file (8.46 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/data/datapipes/__pycache__/_typing.cpython-310.pyc ADDED
Binary file (10.9 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/data/datapipes/__pycache__/datapipe.cpython-310.pyc ADDED
Binary file (16.1 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/data/datapipes/__pycache__/gen_pyi.cpython-310.pyc ADDED
Binary file (8.62 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/__init__.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.utils.data.datapipes.iter.utils import (
2
+ IterableWrapperIterDataPipe as IterableWrapper,
3
+ )
4
+ from torch.utils.data.datapipes.iter.callable import (
5
+ CollatorIterDataPipe as Collator,
6
+ MapperIterDataPipe as Mapper,
7
+ )
8
+ from torch.utils.data.datapipes.iter.combinatorics import (
9
+ SamplerIterDataPipe as Sampler,
10
+ ShufflerIterDataPipe as Shuffler,
11
+ )
12
+ from torch.utils.data.datapipes.iter.combining import (
13
+ ConcaterIterDataPipe as Concater,
14
+ DemultiplexerIterDataPipe as Demultiplexer,
15
+ ForkerIterDataPipe as Forker,
16
+ MultiplexerIterDataPipe as Multiplexer,
17
+ ZipperIterDataPipe as Zipper,
18
+ )
19
+ from torch.utils.data.datapipes.iter.filelister import (
20
+ FileListerIterDataPipe as FileLister,
21
+ )
22
+ from torch.utils.data.datapipes.iter.fileopener import (
23
+ FileOpenerIterDataPipe as FileOpener,
24
+ )
25
+ from torch.utils.data.datapipes.iter.grouping import (
26
+ BatcherIterDataPipe as Batcher,
27
+ GrouperIterDataPipe as Grouper,
28
+ UnBatcherIterDataPipe as UnBatcher,
29
+ )
30
+ from torch.utils.data.datapipes.iter.sharding import (
31
+ ShardingFilterIterDataPipe as ShardingFilter,
32
+ )
33
+ from torch.utils.data.datapipes.iter.routeddecoder import (
34
+ RoutedDecoderIterDataPipe as RoutedDecoder,
35
+ )
36
+ from torch.utils.data.datapipes.iter.selecting import (
37
+ FilterIterDataPipe as Filter,
38
+ )
39
+ from torch.utils.data.datapipes.iter.streamreader import (
40
+ StreamReaderIterDataPipe as StreamReader,
41
+ )
42
+
43
+ __all__ = ['Batcher',
44
+ 'Collator',
45
+ 'Concater',
46
+ 'Demultiplexer',
47
+ 'FileLister',
48
+ 'FileOpener',
49
+ 'Filter',
50
+ 'Forker',
51
+ 'Grouper',
52
+ 'IterableWrapper',
53
+ 'Mapper',
54
+ 'Multiplexer',
55
+ 'RoutedDecoder',
56
+ 'Sampler',
57
+ 'ShardingFilter',
58
+ 'Shuffler',
59
+ 'StreamReader',
60
+ 'UnBatcher',
61
+ 'Zipper']
62
+
63
+ # Please keep this list sorted
64
+ assert __all__ == sorted(__all__)
venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.78 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/__pycache__/callable.cpython-310.pyc ADDED
Binary file (7.83 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/__pycache__/combinatorics.cpython-310.pyc ADDED
Binary file (6.45 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/__pycache__/combining.cpython-310.pyc ADDED
Binary file (25.2 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/__pycache__/filelister.cpython-310.pyc ADDED
Binary file (2.89 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/__pycache__/fileopener.cpython-310.pyc ADDED
Binary file (2.85 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/__pycache__/grouping.cpython-310.pyc ADDED
Binary file (10.9 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/__pycache__/routeddecoder.cpython-310.pyc ADDED
Binary file (3.23 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/__pycache__/selecting.cpython-310.pyc ADDED
Binary file (3.42 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/__pycache__/sharding.cpython-310.pyc ADDED
Binary file (3.41 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/__pycache__/streamreader.cpython-310.pyc ADDED
Binary file (1.81 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/__pycache__/utils.cpython-310.pyc ADDED
Binary file (1.99 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/combinatorics.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ import torch
3
+
4
+ from torch.utils.data import Sampler, SequentialSampler
5
+ from torch.utils.data.datapipes._decorator import functional_datapipe
6
+ from torch.utils.data.datapipes.datapipe import IterDataPipe
7
+ from typing import Dict, Iterator, List, Optional, Sized, Tuple, Type, TypeVar
8
+
9
+ __all__ = [
10
+ "SamplerIterDataPipe",
11
+ "ShufflerIterDataPipe",
12
+ ]
13
+
14
+ T_co = TypeVar('T_co', covariant=True)
15
+
16
+
17
+ class SamplerIterDataPipe(IterDataPipe[T_co]):
18
+ r"""
19
+ Generate sample elements using the provided ``Sampler`` (defaults to :class:`SequentialSampler`).
20
+
21
+ Args:
22
+ datapipe: IterDataPipe to sample from
23
+ sampler: Sampler class to generate sample elements from input DataPipe.
24
+ Default is :class:`SequentialSampler` for IterDataPipe
25
+ """
26
+
27
+ datapipe: IterDataPipe
28
+ sampler: Sampler
29
+
30
+ def __init__(self,
31
+ datapipe: IterDataPipe,
32
+ sampler: Type[Sampler] = SequentialSampler,
33
+ sampler_args: Optional[Tuple] = None,
34
+ sampler_kwargs: Optional[Dict] = None
35
+ ) -> None:
36
+ assert isinstance(datapipe, Sized), \
37
+ "Sampler class requires input datapipe implemented `__len__`"
38
+ super().__init__()
39
+ self.datapipe = datapipe
40
+ self.sampler_args = () if sampler_args is None else sampler_args
41
+ self.sampler_kwargs = {} if sampler_kwargs is None else sampler_kwargs
42
+ # https://github.com/python/mypy/pull/9629 will solve
43
+ self.sampler = sampler(*self.sampler_args, data_source=self.datapipe, **self.sampler_kwargs) # type: ignore[misc]
44
+
45
+ def __iter__(self) -> Iterator[T_co]:
46
+ return iter(self.sampler)
47
+
48
+ def __len__(self) -> int:
49
+ # Dataset has been tested as `Sized`
50
+ if isinstance(self.sampler, Sized):
51
+ return len(self.sampler)
52
+ raise TypeError(f"{type(self).__name__} instance doesn't have valid length")
53
+
54
+
55
+ @functional_datapipe('shuffle')
56
+ class ShufflerIterDataPipe(IterDataPipe[T_co]):
57
+ r"""
58
+ Shuffle the input DataPipe with a buffer (functional name: ``shuffle``).
59
+
60
+ The buffer with ``buffer_size`` is filled with elements from the datapipe first. Then,
61
+ each item will be yielded from the buffer by reservoir sampling via iterator.
62
+
63
+ ``buffer_size`` is required to be larger than ``0``. For ``buffer_size == 1``, the
64
+ datapipe is not shuffled. In order to fully shuffle all elements from datapipe,
65
+ ``buffer_size`` is required to be greater than or equal to the size of datapipe.
66
+
67
+ When it is used with :class:`torch.utils.data.DataLoader`, the methods to
68
+ set up random seed are different based on :attr:`num_workers`.
69
+
70
+ For single-process mode (:attr:`num_workers == 0`), the random seed is set before
71
+ the :class:`~torch.utils.data.DataLoader` in the main process. For multi-process
72
+ mode (:attr:`num_worker > 0`), `worker_init_fn` is used to set up a random seed
73
+ for each worker process.
74
+
75
+ Args:
76
+ datapipe: The IterDataPipe being shuffled
77
+ buffer_size: The buffer size for shuffling (default to ``10000``)
78
+ unbatch_level: Specifies if it is necessary to unbatch source data before
79
+ applying the shuffle
80
+
81
+ Example:
82
+ >>> # xdoctest: +SKIP
83
+ >>> from torchdata.datapipes.iter import IterableWrapper
84
+ >>> dp = IterableWrapper(range(10))
85
+ >>> shuffle_dp = dp.shuffle()
86
+ >>> list(shuffle_dp)
87
+ [0, 4, 1, 6, 3, 2, 9, 5, 7, 8]
88
+ """
89
+
90
+ datapipe: IterDataPipe[T_co]
91
+ buffer_size: int
92
+ _buffer: List[T_co]
93
+ _enabled: bool
94
+ _seed: Optional[int]
95
+ _rng: random.Random
96
+
97
+ def __init__(self,
98
+ datapipe: IterDataPipe[T_co],
99
+ *,
100
+ buffer_size: int = 10000,
101
+ unbatch_level: int = 0
102
+ ) -> None:
103
+ super().__init__()
104
+ # TODO: Performance optimization
105
+ # buffer can be a fixed size and remove expensive `append()` and `len()` operations
106
+ self._buffer: List[T_co] = []
107
+ assert buffer_size > 0, "buffer_size should be larger than 0"
108
+ if unbatch_level == 0:
109
+ self.datapipe = datapipe
110
+ else:
111
+ self.datapipe = datapipe.unbatch(unbatch_level=unbatch_level)
112
+ self.buffer_size = buffer_size
113
+ self._enabled = True
114
+ self._seed = None
115
+ self._rng = random.Random()
116
+
117
+ def set_shuffle(self, shuffle=True):
118
+ self._enabled = shuffle
119
+ return self
120
+
121
+ def set_seed(self, seed: int):
122
+ self._seed = seed
123
+ return self
124
+
125
+ def __iter__(self) -> Iterator[T_co]:
126
+ if not self._enabled:
127
+ yield from self.datapipe
128
+ else:
129
+ for x in self.datapipe:
130
+ if len(self._buffer) == self.buffer_size:
131
+ idx = self._rng.randint(0, len(self._buffer) - 1)
132
+ val, self._buffer[idx] = self._buffer[idx], x
133
+ yield val
134
+ else:
135
+ self._buffer.append(x)
136
+ while self._buffer:
137
+ idx = self._rng.randint(0, len(self._buffer) - 1)
138
+ yield self._buffer.pop(idx)
139
+
140
+ def __len__(self) -> int:
141
+ if isinstance(self.datapipe, Sized):
142
+ return len(self.datapipe)
143
+ raise TypeError(f"{type(self).__name__} instance doesn't have valid length")
144
+
145
+ def reset(self) -> None:
146
+ self._buffer = []
147
+ if self._enabled:
148
+ if self._seed is None:
149
+ self._seed = int(torch.empty((), dtype=torch.int64).random_().item())
150
+ self._rng.seed(self._seed)
151
+ self._seed = None
152
+
153
+ def __getstate__(self):
154
+ state = (
155
+ self.datapipe,
156
+ self.buffer_size,
157
+ self._enabled,
158
+ self._seed,
159
+ self._buffer,
160
+ self._rng.getstate(),
161
+ self._valid_iterator_id,
162
+ self._number_of_samples_yielded,
163
+ )
164
+ if IterDataPipe.getstate_hook is not None:
165
+ return IterDataPipe.getstate_hook(state)
166
+ return state
167
+
168
+ def __setstate__(self, state):
169
+ (
170
+ self.datapipe,
171
+ self.buffer_size,
172
+ self._enabled,
173
+ self._seed,
174
+ self._buffer,
175
+ rng_state,
176
+ self._valid_iterator_id,
177
+ self._number_of_samples_yielded,
178
+ ) = state
179
+ self._rng = random.Random()
180
+ self._rng.setstate(rng_state)
181
+
182
+ def __del__(self):
183
+ self._buffer.clear()
venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/combining.py ADDED
@@ -0,0 +1,639 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import warnings
2
+
3
+ from abc import ABC, abstractmethod
4
+ from collections import deque
5
+ import copy as copymodule
6
+ from typing import Any, Callable, Iterator, List, Literal, Optional, Sized, Tuple, TypeVar, Deque
7
+
8
+ from torch.utils.data.datapipes._decorator import functional_datapipe
9
+ from torch.utils.data.datapipes._hook_iterator import _SnapshotState
10
+ from torch.utils.data.datapipes.datapipe import IterDataPipe
11
+ from torch.utils.data.datapipes.utils.common import StreamWrapper, _check_unpickable_fn
12
+
13
+ __all__ = [
14
+ "ConcaterIterDataPipe",
15
+ "DemultiplexerIterDataPipe",
16
+ "ForkerIterDataPipe",
17
+ "MultiplexerIterDataPipe",
18
+ "ZipperIterDataPipe",
19
+ ]
20
+
21
+ T_co = TypeVar('T_co', covariant=True)
22
+
23
+
24
+ @functional_datapipe('concat')
25
+ class ConcaterIterDataPipe(IterDataPipe):
26
+ r"""
27
+ Concatenates multiple Iterable DataPipes (functional name: ``concat``).
28
+
29
+ The resulting DataPipe will yield all the elements from the first input DataPipe, before yielding from the subsequent ones.
30
+
31
+ Args:
32
+ datapipes: Iterable DataPipes being concatenated
33
+
34
+ Example:
35
+ >>> # xdoctest: +REQUIRES(module:torchdata)
36
+ >>> import random
37
+ >>> from torchdata.datapipes.iter import IterableWrapper
38
+ >>> dp1 = IterableWrapper(range(3))
39
+ >>> dp2 = IterableWrapper(range(5))
40
+ >>> list(dp1.concat(dp2))
41
+ [0, 1, 2, 0, 1, 2, 3, 4]
42
+ """
43
+
44
+ datapipes: Tuple[IterDataPipe]
45
+
46
+ def __init__(self, *datapipes: IterDataPipe):
47
+ if len(datapipes) == 0:
48
+ raise ValueError("Expected at least one DataPipe, but got nothing")
49
+ if not all(isinstance(dp, IterDataPipe) for dp in datapipes):
50
+ raise TypeError("Expected all inputs to be `IterDataPipe`")
51
+ self.datapipes = datapipes # type: ignore[assignment]
52
+
53
+ def __iter__(self) -> Iterator:
54
+ for dp in self.datapipes:
55
+ yield from dp
56
+
57
+ def __len__(self) -> int:
58
+ if all(isinstance(dp, Sized) for dp in self.datapipes):
59
+ return sum(len(dp) for dp in self.datapipes)
60
+ else:
61
+ raise TypeError(f"{type(self).__name__} instance doesn't have valid length")
62
+
63
+
64
+ @functional_datapipe('fork')
65
+ class ForkerIterDataPipe(IterDataPipe):
66
+ r"""
67
+ Creates multiple instances of the same Iterable DataPipe (functional name: ``fork``).
68
+
69
+ Args:
70
+ datapipe: Iterable DataPipe being copied
71
+ num_instances: number of instances of the datapipe to create
72
+ buffer_size: this restricts how far ahead the leading child DataPipe
73
+ can read relative to the slowest child DataPipe.
74
+ Defaults to ``1000``. Use ``-1`` for the unlimited buffer.
75
+ copy: copy strategy to use for items yielded by each branch. Supported
76
+ options are ``None`` for no copying, ``"shallow"`` for shallow object
77
+ copies, and ``"deep"`` for deep object copies. Defaults to ``None``.
78
+
79
+ Note:
80
+ All branches of the forked pipeline return the identical object unless
81
+ the copy parameter is supplied. If the object is mutable or contains
82
+ mutable objects, changing them in one branch will affect all others.
83
+
84
+ Example:
85
+ >>> # xdoctest: +REQUIRES(module:torchdata)
86
+ >>> from torchdata.datapipes.iter import IterableWrapper
87
+ >>> source_dp = IterableWrapper(range(5))
88
+ >>> dp1, dp2 = source_dp.fork(num_instances=2)
89
+ >>> list(dp1)
90
+ [0, 1, 2, 3, 4]
91
+ >>> list(dp2)
92
+ [0, 1, 2, 3, 4]
93
+ """
94
+
95
+ def __new__(
96
+ cls,
97
+ datapipe: IterDataPipe,
98
+ num_instances: int,
99
+ buffer_size: int = 1000,
100
+ copy: Optional[Literal["shallow", "deep"]] = None
101
+ ):
102
+ if num_instances < 1:
103
+ raise ValueError(f"Expected `num_instances` larger than 0, but {num_instances} is found")
104
+ if num_instances == 1:
105
+ return datapipe
106
+ container = _ForkerIterDataPipe(datapipe, num_instances, buffer_size, copy) # type: ignore[abstract]
107
+ return [_ChildDataPipe(container, i) for i in range(num_instances)]
108
+
109
+
110
+ class _ContainerTemplate(ABC):
111
+ r"""Abstract class for container ``DataPipes``. The followings are three required methods."""
112
+
113
+ @abstractmethod
114
+ def get_next_element_by_instance(self, instance_id: int):
115
+ ...
116
+
117
+ @abstractmethod
118
+ def is_every_instance_exhausted(self) -> bool:
119
+ ...
120
+
121
+ @abstractmethod
122
+ def reset(self) -> None:
123
+ ...
124
+
125
+ @abstractmethod
126
+ def get_length_by_instance(self, instance_id: int):
127
+ r"""Raise TypeError if it's not supposed to be implemented to support `list(datapipe)`."""
128
+
129
+
130
+ def _no_op(x):
131
+ return x
132
+
133
+
134
+ class _ForkerIterDataPipe(IterDataPipe, _ContainerTemplate):
135
+ r"""
136
+ Container to hold instance-specific information on behalf of ForkerIterDataPipe.
137
+
138
+ It tracks the state of its child DataPipes, maintains the buffer, and yields the next value
139
+ as requested by the child DataPipes.
140
+ """
141
+
142
+ def __init__(
143
+ self,
144
+ datapipe: IterDataPipe,
145
+ num_instances: int,
146
+ buffer_size: int = 1000,
147
+ copy: Optional[Literal["shallow", "deep"]] = None
148
+ ):
149
+ self.main_datapipe = datapipe
150
+ self._datapipe_iterator: Optional[Iterator[Any]] = None
151
+ self.num_instances = num_instances
152
+ self.buffer: Deque = deque()
153
+ self.buffer_size = buffer_size
154
+ if self.buffer_size < 0:
155
+ warnings.warn(
156
+ "Unlimited buffer size is set for `fork`, "
157
+ "please be aware of OOM at random places",
158
+ UserWarning
159
+ )
160
+ if copy is None:
161
+ self.copy_fn = _no_op
162
+ elif copy == "shallow":
163
+ self.copy_fn = copymodule.copy
164
+ elif copy == "deep":
165
+ self.copy_fn = copymodule.deepcopy
166
+ else:
167
+ raise ValueError(f"Unknown copy method `{copy}` requested, choose one of None, `shallow` or `deep`.")
168
+
169
+ self.child_pointers: List[int] = [0] * num_instances # Indicate the indices of the next element to get
170
+ self.slowest_ptr = 0 # The index to read by the slowest child
171
+ self.leading_ptr = 0 # The index to read by the fastest child
172
+ self.end_ptr: Optional[int] = None # The index to stop child
173
+ self._child_stop: List[bool] = [True for _ in range(num_instances)]
174
+
175
+ def __len__(self):
176
+ return len(self.main_datapipe)
177
+
178
+ def get_next_element_by_instance(self, instance_id: int):
179
+ if self._datapipe_iterator is None and self._child_stop[instance_id]:
180
+ self._datapipe_iterator = iter(self.main_datapipe)
181
+ self._snapshot_state = _SnapshotState.Iterating
182
+ for i in range(self.num_instances):
183
+ self._child_stop[i] = False
184
+ try:
185
+ while not self._child_stop[instance_id]:
186
+ self.child_pointers[instance_id] += 1
187
+ if self.end_ptr is not None and self.child_pointers[instance_id] == self.end_ptr:
188
+ self._child_stop[instance_id] = True
189
+ break
190
+ # Use buffer
191
+ if self.buffer and self.child_pointers[instance_id] <= self.leading_ptr:
192
+ idx = self.child_pointers[instance_id] - self.slowest_ptr - 1
193
+ return_val = self.buffer[idx]
194
+ else: # Retrieve one element from main datapipe
195
+ self.leading_ptr = self.child_pointers[instance_id]
196
+ try:
197
+ return_val = next(self._datapipe_iterator) # type: ignore[arg-type]
198
+ self.buffer.append(return_val)
199
+ except StopIteration:
200
+ self._child_stop[instance_id] = True
201
+ self._datapipe_iterator = None
202
+ self.end_ptr = self.leading_ptr
203
+ continue
204
+ if self.child_pointers[instance_id] == self.slowest_ptr + 1:
205
+ new_min = min(self.child_pointers) # Can optimize by avoiding the call to min()
206
+ if self.slowest_ptr < new_min:
207
+ self.slowest_ptr = new_min
208
+ self.buffer.popleft()
209
+ if self.buffer_size >= 0 and self.leading_ptr > self.buffer_size + self.slowest_ptr:
210
+ raise BufferError("ForkerIterDataPipe buffer overflow," +
211
+ f"buffer size {self.buffer_size} is insufficient.")
212
+
213
+ yield self.copy_fn(return_val) # type: ignore[possibly-undefined]
214
+ finally:
215
+ self._child_stop[instance_id] = True
216
+ # Cleanup _datapipe_iterator for the case that fork exits earlier
217
+ if all(self._child_stop):
218
+ self._datapipe_iterator = None
219
+ self._cleanup()
220
+
221
+ def is_every_instance_exhausted(self) -> bool:
222
+ return self.end_ptr is not None and all(self._child_stop)
223
+
224
+ def get_length_by_instance(self, instance_id: int) -> int:
225
+ return len(self.main_datapipe)
226
+
227
+ def reset(self) -> None:
228
+ self._datapipe_iterator = None
229
+ self.buffer = deque()
230
+ self.child_pointers = [0] * self.num_instances
231
+ self.slowest_ptr = 0
232
+ self.leading_ptr = 0
233
+ self.end_ptr = None
234
+ self._child_stop = [True for _ in range(self.num_instances)]
235
+
236
+ def __getstate__(self):
237
+ state = (
238
+ self.main_datapipe,
239
+ self.num_instances,
240
+ self.buffer_size,
241
+ self.copy_fn,
242
+ self._valid_iterator_id,
243
+ self._number_of_samples_yielded,
244
+ )
245
+ if IterDataPipe.getstate_hook is not None:
246
+ return IterDataPipe.getstate_hook(state)
247
+ return state
248
+
249
+ def __setstate__(self, state):
250
+ (
251
+ self.main_datapipe,
252
+ self.num_instances,
253
+ self.buffer_size,
254
+ self.copy_fn,
255
+ self._valid_iterator_id,
256
+ self._number_of_samples_yielded,
257
+ ) = state
258
+ self._datapipe_iterator = None
259
+ self.buffer = deque()
260
+ self.child_pointers = [0] * self.num_instances
261
+ self.slowest_ptr = 0
262
+ self.leading_ptr = 0
263
+ self.end_ptr = None
264
+ self._child_stop = [True for _ in range(self.num_instances)]
265
+
266
+ def _cleanup(self):
267
+ while self.buffer:
268
+ d = self.buffer.popleft()
269
+ StreamWrapper.close_streams(d)
270
+
271
+ def __del__(self):
272
+ self._cleanup()
273
+
274
+
275
+ class _ChildDataPipe(IterDataPipe):
276
+ r"""
277
+ Iterable Datapipe that is a child of a main DataPipe.
278
+
279
+ The instance of this class will pass its instance_id to get the next value from its main DataPipe.
280
+
281
+ Note:
282
+ ChildDataPipe, like all other IterDataPipe, follows the single iterator per IterDataPipe constraint.
283
+ Since ChildDataPipes share a common buffer, when an iterator is created for one of the ChildDataPipes,
284
+ the previous iterators for all ChildDataPipes must be invalidated, with the exception when a ChildDataPipe
285
+ hasn't had an iterator created from it since the last invalidation. See the example below.
286
+
287
+ Example:
288
+ >>> # xdoctest: +REQUIRES(module:torchdata)
289
+ >>> # Singler Iterator per IteraDataPipe Invalidation
290
+ >>> from torchdata.datapipes.iter import IterableWrapper
291
+ >>> source_dp = IterableWrapper(range(10))
292
+ >>> cdp1, cdp2 = source_dp.fork(num_instances=2)
293
+ >>> it1, it2 = iter(cdp1), iter(cdp2)
294
+ >>> it3 = iter(cdp1)
295
+ >>> # The line above invalidates `it1` and `it2`, and resets `ForkerIterDataPipe`.
296
+ >>> it4 = iter(cdp2)
297
+ >>> # The line above doesn't invalidate `it3`, because an iterator for `cdp2` hasn't been created since
298
+ >>> # the last invalidation.
299
+
300
+ Args:
301
+ main_datapipe: Main DataPipe with a method 'get_next_element_by_instance(instance_id)'
302
+ instance_id: integer identifier of this instance
303
+ """
304
+
305
+ _is_child_datapipe: bool = True
306
+
307
+ def __init__(self, main_datapipe: IterDataPipe, instance_id: int):
308
+ assert isinstance(main_datapipe, _ContainerTemplate)
309
+
310
+ self.main_datapipe: IterDataPipe = main_datapipe
311
+ self.instance_id = instance_id
312
+
313
+ def __iter__(self):
314
+ # Note that the logic behind setting iterator ID and `reset` are handled within `hook_iterator`
315
+ # We want to separate the code for reset and yield, so that 'reset' executes before __next__ is called
316
+ return self.main_datapipe.get_next_element_by_instance(self.instance_id)
317
+
318
+ def __len__(self):
319
+ return self.main_datapipe.get_length_by_instance(self.instance_id)
320
+
321
+ # This method is called by `hook_iterator` in `_typing.py`.
322
+ def _set_main_datapipe_valid_iterator_id(self) -> int:
323
+ r"""
324
+ Update the valid iterator ID for both this DataPipe object and `main_datapipe`.
325
+
326
+ `main_datapipe.reset()` is called when the ID is incremented to a new generation.
327
+ """
328
+ # 1. First time any child iterator is created
329
+ if self.main_datapipe._valid_iterator_id is None:
330
+ self.main_datapipe._valid_iterator_id = 0 # type: ignore[attr-defined]
331
+ # 2. This instance was already in the same generation as `main_datapipe`,
332
+ # we need to increment the ID further by 1
333
+ elif self.main_datapipe._valid_iterator_id == self._valid_iterator_id: # type: ignore[has-type]
334
+ self.main_datapipe._valid_iterator_id += 1 # type: ignore[attr-defined]
335
+ # Whenever a new generation of iterator is created, the `main_datapipe` must reset
336
+ if not self.main_datapipe.is_every_instance_exhausted():
337
+ warnings.warn("Some child DataPipes are not exhausted when __iter__ is called. We are resetting "
338
+ "the buffer and each child DataPipe will read from the start again.", UserWarning)
339
+ self.main_datapipe.reset()
340
+ # 3. Otherwise, the iterator is behind the others, so it will just need to catch up by setting
341
+ # the instance's iterator to match that of `main_datapipe`
342
+ self._valid_iterator_id = self.main_datapipe._valid_iterator_id
343
+ return self._valid_iterator_id
344
+
345
+ # This method is called by `hook_iterator` in `_typing.py`.
346
+ def _check_valid_iterator_id(self, iterator_id) -> bool:
347
+ r"""Check the valid iterator ID against that of DataPipe object and that of `main_datapipe`."""
348
+ return iterator_id == self._valid_iterator_id and iterator_id == self.main_datapipe._valid_iterator_id
349
+
350
+
351
+ @functional_datapipe('demux')
352
+ class DemultiplexerIterDataPipe(IterDataPipe):
353
+ r"""
354
+ Splits the input DataPipe into multiple child DataPipes, using the given classification function (functional name: ``demux``).
355
+
356
+ A list of the child DataPipes is returned from this operation.
357
+
358
+ Args:
359
+ datapipe: Iterable DataPipe being filtered
360
+ num_instances: number of instances of the DataPipe to create
361
+ classifier_fn: a function that maps values to an integer within the range ``[0, num_instances - 1]`` or ``None``
362
+ drop_none: defaults to ``False``, if ``True``, the function will skip over elements classified as ``None``
363
+ buffer_size: this defines the maximum number of inputs that the buffer can hold across all child
364
+ DataPipes while waiting for their values to be yielded.
365
+ Defaults to ``1000``. Use ``-1`` for the unlimited buffer.
366
+
367
+ Examples:
368
+ >>> # xdoctest: +REQUIRES(module:torchdata)
369
+ >>> from torchdata.datapipes.iter import IterableWrapper
370
+ >>> def odd_or_even(n):
371
+ ... return n % 2
372
+ >>> source_dp = IterableWrapper(range(5))
373
+ >>> dp1, dp2 = source_dp.demux(num_instances=2, classifier_fn=odd_or_even)
374
+ >>> list(dp1)
375
+ [0, 2, 4]
376
+ >>> list(dp2)
377
+ [1, 3]
378
+ >>> # It can also filter out any element that gets `None` from the `classifier_fn`
379
+ >>> def odd_or_even_no_zero(n):
380
+ ... return n % 2 if n != 0 else None
381
+ >>> dp1, dp2 = source_dp.demux(num_instances=2, classifier_fn=odd_or_even_no_zero, drop_none=True)
382
+ >>> list(dp1)
383
+ [2, 4]
384
+ >>> list(dp2)
385
+ [1, 3]
386
+ """
387
+
388
+ def __new__(cls, datapipe: IterDataPipe, num_instances: int,
389
+ classifier_fn: Callable[[T_co], Optional[int]], drop_none: bool = False, buffer_size: int = 1000):
390
+ if num_instances < 1:
391
+ raise ValueError(f"Expected `num_instances` larger than 0, but {num_instances} is found")
392
+
393
+ _check_unpickable_fn(classifier_fn)
394
+
395
+ # When num_instances == 1, demux can be replaced by filter,
396
+ # but keep it as Demultiplexer for the sake of consistency
397
+ # like throwing Error when classification result is out of o range
398
+ container = _DemultiplexerIterDataPipe(datapipe, num_instances, classifier_fn, drop_none, buffer_size) # type: ignore[abstract]
399
+ return [_ChildDataPipe(container, i) for i in range(num_instances)]
400
+
401
+
402
+ class _DemultiplexerIterDataPipe(IterDataPipe, _ContainerTemplate):
403
+ r"""
404
+ Container to hold instance-specific information on behalf of DemultiplexerIterDataPipe.
405
+
406
+ It tracks the state of its child DataPipes, maintains the buffer, classifies and yields the next correct value
407
+ as requested by the child DataPipes.
408
+ """
409
+
410
+ def __init__(self, datapipe: IterDataPipe[T_co], num_instances: int,
411
+ classifier_fn: Callable[[T_co], Optional[int]], drop_none: bool, buffer_size: int):
412
+ self.main_datapipe = datapipe
413
+ self._datapipe_iterator: Optional[Iterator[Any]] = None
414
+ self.num_instances = num_instances
415
+ self.buffer_size = buffer_size
416
+ if self.buffer_size < 0:
417
+ warnings.warn(
418
+ "Unlimited buffer size is set for `demux`, "
419
+ "please be aware of OOM at random places",
420
+ UserWarning
421
+ )
422
+ self.current_buffer_usage = 0
423
+ self.child_buffers: List[Deque[T_co]] = [deque() for _ in range(num_instances)]
424
+ self.classifier_fn = classifier_fn
425
+ self.drop_none = drop_none
426
+ self.main_datapipe_exhausted = False
427
+ self._child_stop: List[bool] = [True for _ in range(num_instances)]
428
+
429
+ def _find_next(self, instance_id: int) -> T_co: # type: ignore[type-var]
430
+ while True:
431
+ if self.main_datapipe_exhausted or self._child_stop[instance_id]:
432
+ raise StopIteration
433
+ if self._datapipe_iterator is None:
434
+ raise ValueError(
435
+ "_datapipe_iterator has not been set, likely because this private method is called directly "
436
+ "without invoking get_next_element_by_instance() first.")
437
+ value = next(self._datapipe_iterator)
438
+ classification = self.classifier_fn(value)
439
+ if classification is None and self.drop_none:
440
+ StreamWrapper.close_streams(value)
441
+ continue
442
+ if classification is None or classification >= self.num_instances or classification < 0:
443
+ raise ValueError(f"Output of the classification fn should be between 0 and {self.num_instances - 1}. " +
444
+ f"{classification} is returned.")
445
+ if classification == instance_id:
446
+ return value
447
+ self.child_buffers[classification].append(value)
448
+ self.current_buffer_usage += 1
449
+ if self.buffer_size >= 0 and self.current_buffer_usage > self.buffer_size:
450
+ raise BufferError(
451
+ f"DemultiplexerIterDataPipe buffer overflow, buffer size {self.buffer_size} is insufficient.")
452
+
453
+ def get_next_element_by_instance(self, instance_id: int):
454
+ if self._datapipe_iterator is None and self._child_stop[instance_id]:
455
+ self._datapipe_iterator = iter(self.main_datapipe)
456
+ self._snapshot_state = _SnapshotState.Iterating # This is necessary for the DataPipe to reset properly.
457
+ self.main_datapipe_exhausted = False
458
+ for i in range(self.num_instances):
459
+ self._child_stop[i] = False
460
+
461
+ try:
462
+ while not self._child_stop[instance_id]:
463
+ if self.child_buffers[instance_id]:
464
+ self.current_buffer_usage -= 1
465
+ yield self.child_buffers[instance_id].popleft()
466
+ else:
467
+ try:
468
+ yield self._find_next(instance_id)
469
+ except StopIteration:
470
+ self._child_stop[instance_id] = True
471
+ self.main_datapipe_exhausted = True
472
+ self._datapipe_iterator = None
473
+ finally:
474
+ self._child_stop[instance_id] = True
475
+ # Cleanup _datapipe_iterator for the case that demux exits earlier
476
+ if all(self._child_stop):
477
+ self._datapipe_iterator = None
478
+ if self.child_buffers[instance_id]:
479
+ self._cleanup(instance_id)
480
+
481
+ def is_every_instance_exhausted(self) -> bool:
482
+ return self.main_datapipe_exhausted and all(self._child_stop)
483
+
484
+ def get_length_by_instance(self, instance_id: int) -> int:
485
+ raise TypeError
486
+
487
+ def reset(self) -> None:
488
+ self._datapipe_iterator = None
489
+ self.current_buffer_usage = 0
490
+ self.child_buffers = [deque() for _ in range(self.num_instances)]
491
+ self._child_stop = [True for _ in range(self.num_instances)]
492
+ self.main_datapipe_exhausted = False
493
+
494
+ def __getstate__(self):
495
+ state = (
496
+ self.main_datapipe,
497
+ self.num_instances,
498
+ self.buffer_size,
499
+ self.classifier_fn,
500
+ self.drop_none,
501
+ self._valid_iterator_id,
502
+ self._number_of_samples_yielded,
503
+ )
504
+ if IterDataPipe.getstate_hook is not None:
505
+ return IterDataPipe.getstate_hook(state)
506
+ return state
507
+
508
+ def __setstate__(self, state):
509
+ (
510
+ self.main_datapipe,
511
+ self.num_instances,
512
+ self.buffer_size,
513
+ self.classifier_fn,
514
+ self.drop_none,
515
+ self._valid_iterator_id,
516
+ self._number_of_samples_yielded,
517
+ ) = state
518
+ self._datapipe_iterator = None
519
+ self.current_buffer_usage = 0
520
+ self.child_buffers = [deque() for _ in range(self.num_instances)]
521
+ self._child_stop = [True for _ in range(self.num_instances)]
522
+ self.main_datapipe_exhausted = False
523
+
524
+ def _cleanup(self, instance_id: Optional[int] = None):
525
+ ids = range(self.num_instances) if instance_id is None else [instance_id, ]
526
+ for i in ids:
527
+ q = self.child_buffers[i]
528
+ while q:
529
+ d = q.popleft()
530
+ StreamWrapper.close_streams(d)
531
+
532
+
533
+ def __del__(self):
534
+ self._cleanup()
535
+
536
+
537
+ @functional_datapipe('mux')
538
+ class MultiplexerIterDataPipe(IterDataPipe):
539
+ r"""
540
+ Yields one element at a time from each of the input Iterable DataPipes (functional name: ``mux``).
541
+
542
+ As in, one element from the 1st input DataPipe, then one element from the 2nd DataPipe in the next iteration,
543
+ and so on. It ends when the shortest input DataPipe is exhausted.
544
+
545
+ Args:
546
+ datapipes: Iterable DataPipes that will take turn to yield their elements, until the shortest DataPipe is exhausted
547
+
548
+ Example:
549
+ >>> # xdoctest: +REQUIRES(module:torchdata)
550
+ >>> from torchdata.datapipes.iter import IterableWrapper
551
+ >>> dp1, dp2, dp3 = IterableWrapper(range(3)), IterableWrapper(range(10, 15)), IterableWrapper(range(20, 25))
552
+ >>> list(dp1.mux(dp2, dp3))
553
+ [0, 10, 20, 1, 11, 21, 2, 12, 22]
554
+ """
555
+
556
+ def __init__(self, *datapipes):
557
+ self.datapipes = datapipes
558
+ self.buffer: List = [] # Store values to be yielded only when every iterator provides one
559
+
560
+ def __iter__(self):
561
+ iterators = [iter(x) for x in self.datapipes]
562
+ while len(iterators):
563
+ for it in iterators:
564
+ try:
565
+ value = next(it)
566
+ self.buffer.append(value)
567
+ except StopIteration:
568
+ self.buffer.clear()
569
+ return
570
+ yield from self.buffer
571
+ self.buffer.clear()
572
+
573
+ def __len__(self):
574
+ if all(isinstance(dp, Sized) for dp in self.datapipes):
575
+ return min(len(dp) for dp in self.datapipes) * len(self.datapipes)
576
+ else:
577
+ raise TypeError(f"{type(self).__name__} instance doesn't have valid length")
578
+
579
+ def reset(self) -> None:
580
+ self.buffer = []
581
+
582
+ def __getstate__(self):
583
+ state = (
584
+ self.datapipes,
585
+ self._valid_iterator_id,
586
+ self._number_of_samples_yielded,
587
+ )
588
+ if IterDataPipe.getstate_hook is not None:
589
+ return IterDataPipe.getstate_hook(state)
590
+ return state
591
+
592
+ def __setstate__(self, state):
593
+ (
594
+ self.datapipes,
595
+ self._valid_iterator_id,
596
+ self._number_of_samples_yielded,
597
+ ) = state
598
+ self.buffer = []
599
+
600
+ def __del__(self):
601
+ self.buffer.clear()
602
+
603
+
604
+ @functional_datapipe('zip')
605
+ class ZipperIterDataPipe(IterDataPipe[Tuple[T_co]]):
606
+ r"""
607
+ Aggregates elements into a tuple from each of the input DataPipes (functional name: ``zip``).
608
+
609
+ The output is stopped as soon as the shortest input DataPipe is exhausted.
610
+
611
+ Args:
612
+ *datapipes: Iterable DataPipes being aggregated
613
+
614
+ Example:
615
+ >>> # xdoctest: +REQUIRES(module:torchdata)
616
+ >>> from torchdata.datapipes.iter import IterableWrapper
617
+ >>> dp1, dp2, dp3 = IterableWrapper(range(5)), IterableWrapper(range(10, 15)), IterableWrapper(range(20, 25))
618
+ >>> list(dp1.zip(dp2, dp3))
619
+ [(0, 10, 20), (1, 11, 21), (2, 12, 22), (3, 13, 23), (4, 14, 24)]
620
+ """
621
+
622
+ datapipes: Tuple[IterDataPipe]
623
+
624
+ def __init__(self, *datapipes: IterDataPipe):
625
+ if not all(isinstance(dp, IterDataPipe) for dp in datapipes):
626
+ raise TypeError("All inputs are required to be `IterDataPipe` "
627
+ "for `ZipIterDataPipe`.")
628
+ super().__init__()
629
+ self.datapipes = datapipes # type: ignore[assignment]
630
+
631
+ def __iter__(self) -> Iterator[Tuple[T_co]]:
632
+ iterators = [iter(datapipe) for datapipe in self.datapipes]
633
+ yield from zip(*iterators)
634
+
635
+ def __len__(self) -> int:
636
+ if all(isinstance(dp, Sized) for dp in self.datapipes):
637
+ return min(len(dp) for dp in self.datapipes)
638
+ else:
639
+ raise TypeError(f"{type(self).__name__} instance doesn't have valid length")
venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/filelister.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Iterator, List, Sequence, Union
2
+
3
+
4
+ from torch.utils.data.datapipes._decorator import functional_datapipe
5
+
6
+ from torch.utils.data.datapipes.datapipe import IterDataPipe
7
+ from torch.utils.data.datapipes.iter import IterableWrapper
8
+ from torch.utils.data.datapipes.utils.common import get_file_pathnames_from_root
9
+
10
+ __all__ = ["FileListerIterDataPipe", ]
11
+
12
+
13
+ @functional_datapipe("list_files")
14
+ class FileListerIterDataPipe(IterDataPipe[str]):
15
+ r"""
16
+ Given path(s) to the root directory, yields file pathname(s) (path + filename) of files within the root directory.
17
+
18
+ Multiple root directories can be provided (functional name: ``list_files``).
19
+
20
+ Args:
21
+ root: Root directory or a sequence of root directories
22
+ masks: Unix style filter string or string list for filtering file name(s)
23
+ recursive: Whether to return pathname from nested directories or not
24
+ abspath: Whether to return relative pathname or absolute pathname
25
+ non_deterministic: Whether to return pathname in sorted order or not.
26
+ If ``False``, the results yielded from each root directory will be sorted
27
+ length: Nominal length of the datapipe
28
+
29
+ Example:
30
+ >>> # xdoctest: +SKIP
31
+ >>> from torchdata.datapipes.iter import FileLister
32
+ >>> dp = FileLister(root=".", recursive=True)
33
+ >>> list(dp)
34
+ ['example.py', './data/data.tar']
35
+ """
36
+
37
+ def __init__(
38
+ self,
39
+ root: Union[str, Sequence[str], IterDataPipe] = '.',
40
+ masks: Union[str, List[str]] = '',
41
+ *,
42
+ recursive: bool = False,
43
+ abspath: bool = False,
44
+ non_deterministic: bool = False,
45
+ length: int = -1
46
+ ) -> None:
47
+ super().__init__()
48
+ if isinstance(root, str):
49
+ root = [root, ]
50
+ if not isinstance(root, IterDataPipe):
51
+ root = IterableWrapper(root)
52
+ self.datapipe: IterDataPipe = root
53
+ self.masks: Union[str, List[str]] = masks
54
+ self.recursive: bool = recursive
55
+ self.abspath: bool = abspath
56
+ self.non_deterministic: bool = non_deterministic
57
+ self.length: int = length
58
+
59
+ def __iter__(self) -> Iterator[str] :
60
+ for path in self.datapipe:
61
+ yield from get_file_pathnames_from_root(path, self.masks, self.recursive, self.abspath, self.non_deterministic)
62
+
63
+ def __len__(self):
64
+ if self.length == -1:
65
+ raise TypeError(f"{type(self).__name__} instance doesn't have valid length")
66
+ return self.length
venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/grouping.py ADDED
@@ -0,0 +1,300 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import warnings
2
+ from collections import defaultdict
3
+ from typing import Any, Callable, DefaultDict, Iterator, List, Optional, Sized, TypeVar
4
+
5
+ import torch.utils.data.datapipes.iter.sharding
6
+
7
+ from torch.utils.data.datapipes._decorator import functional_datapipe
8
+ from torch.utils.data.datapipes.datapipe import DataChunk, IterDataPipe
9
+ from torch.utils.data.datapipes.utils.common import _check_unpickable_fn
10
+
11
+ __all__ = [
12
+ "BatcherIterDataPipe",
13
+ "GrouperIterDataPipe",
14
+ "UnBatcherIterDataPipe",
15
+ ]
16
+
17
+ T_co = TypeVar("T_co", covariant=True)
18
+
19
+ def __getattr__(name: str):
20
+ if name in ["SHARDING_PRIORITIES", "ShardingFilterIterDataPipe"]:
21
+ warnings.warn(f"`{name}` from `torch.utils.data.datapipes.iter.grouping` is going to be removed in PyTorch 2.1"
22
+ f"Please use `{name}` from the `torch.utils.data.datapipes.iter.sharding`",
23
+ category=FutureWarning, stacklevel=2)
24
+
25
+ return getattr(torch.utils.data.datapipes.iter.sharding, name)
26
+
27
+ raise AttributeError(f"module {__name__} has no attribute {name}")
28
+
29
+ @functional_datapipe('batch')
30
+ class BatcherIterDataPipe(IterDataPipe[DataChunk]):
31
+ r"""
32
+ Creates mini-batches of data (functional name: ``batch``).
33
+
34
+ An outer dimension will be added as ``batch_size`` if ``drop_last`` is set to ``True``, or ``length % batch_size`` for the
35
+ last batch if ``drop_last`` is set to ``False``.
36
+
37
+ Args:
38
+ datapipe: Iterable DataPipe being batched
39
+ batch_size: The size of each batch
40
+ drop_last: Option to drop the last batch if it's not full
41
+ wrapper_class: wrapper to apply onto each batch (type ``List``) before yielding,
42
+ defaults to ``DataChunk``
43
+
44
+ Example:
45
+ >>> # xdoctest: +SKIP
46
+ >>> from torchdata.datapipes.iter import IterableWrapper
47
+ >>> dp = IterableWrapper(range(10))
48
+ >>> dp = dp.batch(batch_size=3, drop_last=True)
49
+ >>> list(dp)
50
+ [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
51
+ """
52
+
53
+ datapipe: IterDataPipe
54
+ batch_size: int
55
+ drop_last: bool
56
+
57
+ def __init__(self,
58
+ datapipe: IterDataPipe,
59
+ batch_size: int,
60
+ drop_last: bool = False,
61
+ wrapper_class=DataChunk,
62
+ ) -> None:
63
+ assert batch_size > 0, "Batch size is required to be larger than 0!"
64
+ super().__init__()
65
+ self.datapipe = datapipe
66
+ self.batch_size = batch_size
67
+ self.drop_last = drop_last
68
+ self.wrapper_class = wrapper_class
69
+
70
+ def __iter__(self) -> Iterator[DataChunk]:
71
+ batch: List = []
72
+ for x in self.datapipe:
73
+ batch.append(x)
74
+ if len(batch) == self.batch_size:
75
+ yield self.wrapper_class(batch)
76
+ batch = []
77
+ if len(batch) > 0:
78
+ if not self.drop_last:
79
+ yield self.wrapper_class(batch)
80
+
81
+ def __len__(self) -> int:
82
+ if isinstance(self.datapipe, Sized):
83
+ if self.drop_last:
84
+ return len(self.datapipe) // self.batch_size
85
+ else:
86
+ return (len(self.datapipe) + self.batch_size - 1) // self.batch_size
87
+ else:
88
+ raise TypeError(f"{type(self).__name__} instance doesn't have valid length")
89
+
90
+
91
+ @functional_datapipe('unbatch')
92
+ class UnBatcherIterDataPipe(IterDataPipe):
93
+ r"""
94
+ Undos batching of data (functional name: ``unbatch``).
95
+
96
+ In other words, it flattens the data up to the specified level within a batched DataPipe.
97
+
98
+ Args:
99
+ datapipe: Iterable DataPipe being un-batched
100
+ unbatch_level: Defaults to ``1`` (only flattening the top level). If set to ``2``,
101
+ it will flatten the top two levels, and ``-1`` will flatten the entire DataPipe.
102
+
103
+ Example:
104
+ >>> # xdoctest: +SKIP
105
+ >>> from torchdata.datapipes.iter import IterableWrapper
106
+ >>> source_dp = IterableWrapper([[[0, 1], [2]], [[3, 4], [5]], [[6]]])
107
+ >>> dp1 = source_dp.unbatch()
108
+ >>> list(dp1)
109
+ [[0, 1], [2], [3, 4], [5], [6]]
110
+ >>> dp2 = source_dp.unbatch(unbatch_level=2)
111
+ >>> list(dp2)
112
+ [0, 1, 2, 3, 4, 5, 6]
113
+ """
114
+
115
+ def __init__(self,
116
+ datapipe: IterDataPipe,
117
+ unbatch_level: int = 1):
118
+ self.datapipe = datapipe
119
+ self.unbatch_level = unbatch_level
120
+
121
+ def __iter__(self):
122
+ for element in self.datapipe:
123
+ yield from self._dive(element, unbatch_level=self.unbatch_level)
124
+
125
+ def _dive(self, element, unbatch_level):
126
+ if unbatch_level < -1:
127
+ raise ValueError("unbatch_level must be -1 or >= 0")
128
+ if unbatch_level == -1:
129
+ if isinstance(element, (list, DataChunk)):
130
+ for item in element:
131
+ yield from self._dive(item, unbatch_level=-1)
132
+ else:
133
+ yield element
134
+ elif unbatch_level == 0:
135
+ yield element
136
+ else:
137
+ if isinstance(element, (list, DataChunk)):
138
+ for item in element:
139
+ yield from self._dive(item, unbatch_level=unbatch_level - 1)
140
+ else:
141
+ raise IndexError(f"unbatch_level {self.unbatch_level} exceeds the depth of the DataPipe")
142
+
143
+
144
+ @functional_datapipe('groupby')
145
+ class GrouperIterDataPipe(IterDataPipe[DataChunk]):
146
+ r"""
147
+ Groups data from IterDataPipe by keys from ``group_key_fn``, yielding a ``DataChunk`` with batch size up to ``group_size``.
148
+
149
+ (functional name: ``groupby``).
150
+
151
+ The samples are read sequentially from the source ``datapipe``, and a batch of samples belonging to the same group
152
+ will be yielded as soon as the size of the batch reaches ``group_size``. When the buffer is full,
153
+ the DataPipe will yield the largest batch with the same key, provided that its size is larger
154
+ than ``guaranteed_group_size``. If its size is smaller, it will be dropped if ``drop_remaining=True``.
155
+
156
+ After iterating through the entirety of source ``datapipe``, everything not dropped due to the buffer capacity
157
+ will be yielded from the buffer, even if the group sizes are smaller than ``guaranteed_group_size``.
158
+
159
+ Args:
160
+ datapipe: Iterable datapipe to be grouped
161
+ group_key_fn: Function used to generate group key from the data of the source datapipe
162
+ keep_key: Option to yield the matching key along with the items in a tuple,
163
+ resulting in `(key, [items])` otherwise returning [items]
164
+ buffer_size: The size of buffer for ungrouped data
165
+ group_size: The max size of each group, a batch is yielded as soon as it reaches this size
166
+ guaranteed_group_size: The guaranteed minimum group size to be yielded in case the buffer is full
167
+ drop_remaining: Specifies if the group smaller than ``guaranteed_group_size`` will be dropped from buffer
168
+ when the buffer is full
169
+
170
+ Example:
171
+ >>> import os
172
+ >>> # xdoctest: +SKIP
173
+ >>> from torchdata.datapipes.iter import IterableWrapper
174
+ >>> def group_fn(file):
175
+ ... return os.path.basename(file).split(".")[0]
176
+ >>> source_dp = IterableWrapper(["a.png", "b.png", "a.json", "b.json", "a.jpg", "c.json"])
177
+ >>> dp0 = source_dp.groupby(group_key_fn=group_fn)
178
+ >>> list(dp0)
179
+ [['a.png', 'a.json', 'a.jpg'], ['b.png', 'b.json'], ['c.json']]
180
+ >>> # A group is yielded as soon as its size equals to `group_size`
181
+ >>> dp1 = source_dp.groupby(group_key_fn=group_fn, group_size=2)
182
+ >>> list(dp1)
183
+ [['a.png', 'a.json'], ['b.png', 'b.json'], ['a.jpg'], ['c.json']]
184
+ >>> # Scenario where `buffer` is full, and group 'a' needs to be yielded since its size > `guaranteed_group_size`
185
+ >>> dp2 = source_dp.groupby(group_key_fn=group_fn, buffer_size=3, group_size=3, guaranteed_group_size=2)
186
+ >>> list(dp2)
187
+ [['a.png', 'a.json'], ['b.png', 'b.json'], ['a.jpg'], ['c.json']]
188
+ """
189
+
190
+ def __init__(self,
191
+ datapipe: IterDataPipe[T_co],
192
+ group_key_fn: Callable[[T_co], Any],
193
+ *,
194
+ keep_key: bool = False,
195
+ buffer_size: int = 10000,
196
+ group_size: Optional[int] = None,
197
+ guaranteed_group_size: Optional[int] = None,
198
+ drop_remaining: bool = False):
199
+ _check_unpickable_fn(group_key_fn)
200
+ self.datapipe = datapipe
201
+ self.group_key_fn = group_key_fn
202
+
203
+ self.keep_key = keep_key
204
+ self.max_buffer_size = buffer_size
205
+ self.buffer_elements: DefaultDict[Any, List] = defaultdict(list)
206
+ self.curr_buffer_size = 0
207
+ self.group_size = group_size
208
+ self.guaranteed_group_size = None
209
+ if group_size is not None and buffer_size is not None:
210
+ assert 0 < group_size <= buffer_size
211
+ self.guaranteed_group_size = group_size
212
+ if guaranteed_group_size is not None:
213
+ assert group_size is not None and 0 < guaranteed_group_size <= group_size
214
+ self.guaranteed_group_size = guaranteed_group_size
215
+ self.drop_remaining = drop_remaining
216
+ self.wrapper_class = DataChunk
217
+
218
+ def _remove_biggest_key(self):
219
+ biggest_key = None
220
+ biggest_size = 0
221
+ result_to_yield = None
222
+ for findkey in self.buffer_elements.keys():
223
+ if len(self.buffer_elements[findkey]) > biggest_size:
224
+ biggest_size = len(self.buffer_elements[findkey])
225
+ biggest_key = findkey
226
+
227
+ if self.guaranteed_group_size is not None and biggest_size < self.guaranteed_group_size and not self.drop_remaining:
228
+ raise RuntimeError('Failed to group items', str(self.buffer_elements[biggest_key]))
229
+
230
+ if self.guaranteed_group_size is None or biggest_size >= self.guaranteed_group_size:
231
+ result_to_yield = self.buffer_elements[biggest_key]
232
+
233
+ self.curr_buffer_size -= biggest_size
234
+ del self.buffer_elements[biggest_key]
235
+
236
+ return result_to_yield
237
+
238
+ def __iter__(self):
239
+ for x in self.datapipe:
240
+ key = self.group_key_fn(x)
241
+
242
+ self.buffer_elements[key].append(x)
243
+ self.curr_buffer_size += 1
244
+
245
+ if self.group_size is not None and self.group_size == len(self.buffer_elements[key]):
246
+ result: DataChunk[Any] = self.wrapper_class(self.buffer_elements[key])
247
+ yield (key, result) if self.keep_key else result
248
+ self.curr_buffer_size -= len(self.buffer_elements[key])
249
+ del self.buffer_elements[key]
250
+
251
+ if self.curr_buffer_size == self.max_buffer_size:
252
+ result_to_yield = self._remove_biggest_key()
253
+ if result_to_yield is not None:
254
+ result = self.wrapper_class(result_to_yield)
255
+ yield (key, result) if self.keep_key else result
256
+
257
+ for key in tuple(self.buffer_elements.keys()):
258
+ result = self.wrapper_class(self.buffer_elements.pop(key))
259
+ self.curr_buffer_size -= len(result)
260
+ yield (key, result) if self.keep_key else result
261
+
262
+ def reset(self) -> None:
263
+ self.curr_buffer_size = 0
264
+ self.buffer_elements = defaultdict(list)
265
+
266
+ def __getstate__(self):
267
+ state = (
268
+ self.datapipe,
269
+ self.group_key_fn,
270
+ self.keep_key,
271
+ self.max_buffer_size,
272
+ self.group_size,
273
+ self.guaranteed_group_size,
274
+ self.drop_remaining,
275
+ self.wrapper_class,
276
+ self._valid_iterator_id,
277
+ self._number_of_samples_yielded,
278
+ )
279
+ if IterDataPipe.getstate_hook is not None:
280
+ return IterDataPipe.getstate_hook(state)
281
+ return state
282
+
283
+ def __setstate__(self, state):
284
+ (
285
+ self.datapipe,
286
+ self.group_key_fn,
287
+ self.keep_key,
288
+ self.max_buffer_size,
289
+ self.group_size,
290
+ self.guaranteed_group_size,
291
+ self.drop_remaining,
292
+ self.wrapper_class,
293
+ self._valid_iterator_id,
294
+ self._number_of_samples_yielded,
295
+ ) = state
296
+ self.curr_buffer_size = 0
297
+ self.buffer_elements = defaultdict(list)
298
+
299
+ def __del__(self):
300
+ self.buffer_elements.clear()
venv/lib/python3.10/site-packages/torch/utils/data/datapipes/iter/routeddecoder.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from io import BufferedIOBase
2
+ from typing import Any, Callable, Iterable, Iterator, Sized, Tuple
3
+
4
+ from torch.utils.data.datapipes._decorator import functional_datapipe
5
+ from torch.utils.data.datapipes.datapipe import IterDataPipe
6
+ from torch.utils.data.datapipes.utils.common import _deprecation_warning
7
+ from torch.utils.data.datapipes.utils.decoder import (
8
+ Decoder,
9
+ basichandlers as decoder_basichandlers,
10
+ imagehandler as decoder_imagehandler,
11
+ extension_extract_fn
12
+ )
13
+
14
+ __all__ = ["RoutedDecoderIterDataPipe", ]
15
+
16
+
17
+ @functional_datapipe('routed_decode')
18
+ class RoutedDecoderIterDataPipe(IterDataPipe[Tuple[str, Any]]):
19
+ r"""
20
+ Decodes binary streams from input DataPipe, yields pathname and decoded data in a tuple.
21
+
22
+ (functional name: ``routed_decode``)
23
+
24
+ Args:
25
+ datapipe: Iterable datapipe that provides pathname and binary stream in tuples
26
+ handlers: Optional user defined decoder handlers. If ``None``, basic and image decoder
27
+ handlers will be set as default. If multiple handles are provided, the priority
28
+ order follows the order of handlers (the first handler has the top priority)
29
+ key_fn: Function for decoder to extract key from pathname to dispatch handlers.
30
+ Default is set to extract file extension from pathname
31
+
32
+ Note:
33
+ When ``key_fn`` is specified returning anything other than extension, the default
34
+ handler will not work and users need to specify custom handler. Custom handler
35
+ could use regex to determine the eligibility to handle data.
36
+ """
37
+
38
+ def __init__(self,
39
+ datapipe: Iterable[Tuple[str, BufferedIOBase]],
40
+ *handlers: Callable,
41
+ key_fn: Callable = extension_extract_fn) -> None:
42
+ super().__init__()
43
+ self.datapipe: Iterable[Tuple[str, BufferedIOBase]] = datapipe
44
+ if not handlers:
45
+ handlers = (decoder_basichandlers, decoder_imagehandler('torch'))
46
+ self.decoder = Decoder(*handlers, key_fn=key_fn)
47
+ _deprecation_warning(
48
+ type(self).__name__,
49
+ deprecation_version="1.12",
50
+ removal_version="1.13",
51
+ old_functional_name="routed_decode",
52
+ )
53
+
54
+ def add_handler(self, *handler: Callable) -> None:
55
+ self.decoder.add_handler(*handler)
56
+
57
+ def __iter__(self) -> Iterator[Tuple[str, Any]]:
58
+ for data in self.datapipe:
59
+ pathname = data[0]
60
+ result = self.decoder(data)
61
+ yield (pathname, result[pathname])
62
+
63
+ def __len__(self) -> int:
64
+ if isinstance(self.datapipe, Sized):
65
+ return len(self.datapipe)
66
+ raise TypeError(f"{type(self).__name__} instance doesn't have valid length")