applied-ai-018 commited on
Commit
5e18c37
·
verified ·
1 Parent(s): e94ff2e

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step80/zero/14.attention.query_key_value.weight/exp_avg.pt +3 -0
  2. ckpts/universal/global_step80/zero/19.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt +3 -0
  3. ckpts/universal/global_step80/zero/20.attention.query_key_value.weight/exp_avg.pt +3 -0
  4. ckpts/universal/global_step80/zero/22.attention.dense.weight/exp_avg.pt +3 -0
  5. venv/lib/python3.10/site-packages/sympy/ntheory/__init__.py +67 -0
  6. venv/lib/python3.10/site-packages/sympy/ntheory/__pycache__/bbp_pi.cpython-310.pyc +0 -0
  7. venv/lib/python3.10/site-packages/sympy/ntheory/__pycache__/digits.cpython-310.pyc +0 -0
  8. venv/lib/python3.10/site-packages/sympy/ntheory/__pycache__/ecm.cpython-310.pyc +0 -0
  9. venv/lib/python3.10/site-packages/sympy/ntheory/__pycache__/egyptian_fraction.cpython-310.pyc +0 -0
  10. venv/lib/python3.10/site-packages/sympy/ntheory/__pycache__/elliptic_curve.cpython-310.pyc +0 -0
  11. venv/lib/python3.10/site-packages/sympy/ntheory/__pycache__/multinomial.cpython-310.pyc +0 -0
  12. venv/lib/python3.10/site-packages/sympy/ntheory/__pycache__/partitions_.cpython-310.pyc +0 -0
  13. venv/lib/python3.10/site-packages/sympy/ntheory/__pycache__/qs.cpython-310.pyc +0 -0
  14. venv/lib/python3.10/site-packages/sympy/ntheory/__pycache__/residue_ntheory.cpython-310.pyc +0 -0
  15. venv/lib/python3.10/site-packages/sympy/ntheory/bbp_pi.py +159 -0
  16. venv/lib/python3.10/site-packages/sympy/ntheory/continued_fraction.py +351 -0
  17. venv/lib/python3.10/site-packages/sympy/ntheory/digits.py +143 -0
  18. venv/lib/python3.10/site-packages/sympy/ntheory/ecm.py +326 -0
  19. venv/lib/python3.10/site-packages/sympy/ntheory/egyptian_fraction.py +223 -0
  20. venv/lib/python3.10/site-packages/sympy/ntheory/elliptic_curve.py +398 -0
  21. venv/lib/python3.10/site-packages/sympy/ntheory/factor_.py +2654 -0
  22. venv/lib/python3.10/site-packages/sympy/ntheory/generate.py +1037 -0
  23. venv/lib/python3.10/site-packages/sympy/ntheory/modular.py +255 -0
  24. venv/lib/python3.10/site-packages/sympy/ntheory/multinomial.py +188 -0
  25. venv/lib/python3.10/site-packages/sympy/ntheory/partitions_.py +192 -0
  26. venv/lib/python3.10/site-packages/sympy/ntheory/primetest.py +696 -0
  27. venv/lib/python3.10/site-packages/sympy/ntheory/qs.py +515 -0
  28. venv/lib/python3.10/site-packages/sympy/ntheory/residue_ntheory.py +1573 -0
  29. venv/lib/python3.10/site-packages/sympy/ntheory/tests/__init__.py +0 -0
  30. venv/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  31. venv/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_bbp_pi.cpython-310.pyc +0 -0
  32. venv/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_continued_fraction.cpython-310.pyc +0 -0
  33. venv/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_digits.cpython-310.pyc +0 -0
  34. venv/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_egyptian_fraction.cpython-310.pyc +0 -0
  35. venv/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_factor_.cpython-310.pyc +0 -0
  36. venv/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_generate.cpython-310.pyc +0 -0
  37. venv/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_multinomial.cpython-310.pyc +0 -0
  38. venv/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_qs.cpython-310.pyc +0 -0
  39. venv/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_residue.cpython-310.pyc +0 -0
  40. venv/lib/python3.10/site-packages/sympy/ntheory/tests/test_bbp_pi.py +133 -0
  41. venv/lib/python3.10/site-packages/sympy/ntheory/tests/test_continued_fraction.py +73 -0
  42. venv/lib/python3.10/site-packages/sympy/ntheory/tests/test_digits.py +34 -0
  43. venv/lib/python3.10/site-packages/sympy/ntheory/tests/test_ecm.py +63 -0
  44. venv/lib/python3.10/site-packages/sympy/ntheory/tests/test_egyptian_fraction.py +49 -0
  45. venv/lib/python3.10/site-packages/sympy/ntheory/tests/test_elliptic_curve.py +20 -0
  46. venv/lib/python3.10/site-packages/sympy/ntheory/tests/test_factor_.py +685 -0
  47. venv/lib/python3.10/site-packages/sympy/ntheory/tests/test_generate.py +250 -0
  48. venv/lib/python3.10/site-packages/sympy/ntheory/tests/test_modular.py +34 -0
  49. venv/lib/python3.10/site-packages/sympy/ntheory/tests/test_multinomial.py +48 -0
  50. venv/lib/python3.10/site-packages/sympy/ntheory/tests/test_partitions.py +12 -0
ckpts/universal/global_step80/zero/14.attention.query_key_value.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:759ef16de4f66ff57d172baa9bd08877eb6575cb7cac5ca9f5885a7e50d02fbf
3
+ size 50332828
ckpts/universal/global_step80/zero/19.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc6084cd345f44eb1642ce3391b398053ca70d8b6d0839cbe4d7720d42849fc1
3
+ size 33555627
ckpts/universal/global_step80/zero/20.attention.query_key_value.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:908bf5a847cc190bf0103650e4cb7fdf9fbff917d301c06cb0024b1bd020c5ab
3
+ size 50332828
ckpts/universal/global_step80/zero/22.attention.dense.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a848cd339f4c487c26491388a3b049bb50e4697038c776a11f496f0e577a80b
3
+ size 16778396
venv/lib/python3.10/site-packages/sympy/ntheory/__init__.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Number theory module (primes, etc)
3
+ """
4
+
5
+ from .generate import nextprime, prevprime, prime, primepi, primerange, \
6
+ randprime, Sieve, sieve, primorial, cycle_length, composite, compositepi
7
+ from .primetest import isprime, is_gaussian_prime
8
+ from .factor_ import divisors, proper_divisors, factorint, multiplicity, \
9
+ multiplicity_in_factorial, perfect_power, pollard_pm1, pollard_rho, \
10
+ primefactors, totient, trailing, \
11
+ divisor_count, proper_divisor_count, divisor_sigma, factorrat, \
12
+ reduced_totient, primenu, primeomega, mersenne_prime_exponent, \
13
+ is_perfect, is_mersenne_prime, is_abundant, is_deficient, is_amicable, \
14
+ abundance, dra, drm
15
+
16
+ from .partitions_ import npartitions
17
+ from .residue_ntheory import is_primitive_root, is_quad_residue, \
18
+ legendre_symbol, jacobi_symbol, n_order, sqrt_mod, quadratic_residues, \
19
+ primitive_root, nthroot_mod, is_nthpow_residue, sqrt_mod_iter, mobius, \
20
+ discrete_log, quadratic_congruence, polynomial_congruence
21
+ from .multinomial import binomial_coefficients, binomial_coefficients_list, \
22
+ multinomial_coefficients
23
+ from .continued_fraction import continued_fraction_periodic, \
24
+ continued_fraction_iterator, continued_fraction_reduce, \
25
+ continued_fraction_convergents, continued_fraction
26
+ from .digits import count_digits, digits, is_palindromic
27
+ from .egyptian_fraction import egyptian_fraction
28
+ from .ecm import ecm
29
+ from .qs import qs
30
+ __all__ = [
31
+ 'nextprime', 'prevprime', 'prime', 'primepi', 'primerange', 'randprime',
32
+ 'Sieve', 'sieve', 'primorial', 'cycle_length', 'composite', 'compositepi',
33
+
34
+ 'isprime', 'is_gaussian_prime',
35
+
36
+
37
+ 'divisors', 'proper_divisors', 'factorint', 'multiplicity', 'perfect_power',
38
+ 'pollard_pm1', 'pollard_rho', 'primefactors', 'totient', 'trailing',
39
+ 'divisor_count', 'proper_divisor_count', 'divisor_sigma', 'factorrat',
40
+ 'reduced_totient', 'primenu', 'primeomega', 'mersenne_prime_exponent',
41
+ 'is_perfect', 'is_mersenne_prime', 'is_abundant', 'is_deficient', 'is_amicable',
42
+ 'abundance', 'dra', 'drm', 'multiplicity_in_factorial',
43
+
44
+ 'npartitions',
45
+
46
+ 'is_primitive_root', 'is_quad_residue', 'legendre_symbol',
47
+ 'jacobi_symbol', 'n_order', 'sqrt_mod', 'quadratic_residues',
48
+ 'primitive_root', 'nthroot_mod', 'is_nthpow_residue', 'sqrt_mod_iter',
49
+ 'mobius', 'discrete_log', 'quadratic_congruence', 'polynomial_congruence',
50
+
51
+ 'binomial_coefficients', 'binomial_coefficients_list',
52
+ 'multinomial_coefficients',
53
+
54
+ 'continued_fraction_periodic', 'continued_fraction_iterator',
55
+ 'continued_fraction_reduce', 'continued_fraction_convergents',
56
+ 'continued_fraction',
57
+
58
+ 'digits',
59
+ 'count_digits',
60
+ 'is_palindromic',
61
+
62
+ 'egyptian_fraction',
63
+
64
+ 'ecm',
65
+
66
+ 'qs',
67
+ ]
venv/lib/python3.10/site-packages/sympy/ntheory/__pycache__/bbp_pi.cpython-310.pyc ADDED
Binary file (5.13 kB). View file
 
venv/lib/python3.10/site-packages/sympy/ntheory/__pycache__/digits.cpython-310.pyc ADDED
Binary file (3.89 kB). View file
 
venv/lib/python3.10/site-packages/sympy/ntheory/__pycache__/ecm.cpython-310.pyc ADDED
Binary file (9.11 kB). View file
 
venv/lib/python3.10/site-packages/sympy/ntheory/__pycache__/egyptian_fraction.cpython-310.pyc ADDED
Binary file (6.54 kB). View file
 
venv/lib/python3.10/site-packages/sympy/ntheory/__pycache__/elliptic_curve.cpython-310.pyc ADDED
Binary file (11.9 kB). View file
 
venv/lib/python3.10/site-packages/sympy/ntheory/__pycache__/multinomial.cpython-310.pyc ADDED
Binary file (4.51 kB). View file
 
venv/lib/python3.10/site-packages/sympy/ntheory/__pycache__/partitions_.cpython-310.pyc ADDED
Binary file (4.81 kB). View file
 
venv/lib/python3.10/site-packages/sympy/ntheory/__pycache__/qs.cpython-310.pyc ADDED
Binary file (15.6 kB). View file
 
venv/lib/python3.10/site-packages/sympy/ntheory/__pycache__/residue_ntheory.cpython-310.pyc ADDED
Binary file (34.9 kB). View file
 
venv/lib/python3.10/site-packages/sympy/ntheory/bbp_pi.py ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ This implementation is a heavily modified fixed point implementation of
3
+ BBP_formula for calculating the nth position of pi. The original hosted
4
+ at: https://web.archive.org/web/20151116045029/http://en.literateprograms.org/Pi_with_the_BBP_formula_(Python)
5
+
6
+ # Permission is hereby granted, free of charge, to any person obtaining
7
+ # a copy of this software and associated documentation files (the
8
+ # "Software"), to deal in the Software without restriction, including
9
+ # without limitation the rights to use, copy, modify, merge, publish,
10
+ # distribute, sub-license, and/or sell copies of the Software, and to
11
+ # permit persons to whom the Software is furnished to do so, subject to
12
+ # the following conditions:
13
+ #
14
+ # The above copyright notice and this permission notice shall be
15
+ # included in all copies or substantial portions of the Software.
16
+ #
17
+ # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
18
+ # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19
+ # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20
+ # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
21
+ # CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22
+ # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23
+ # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24
+
25
+ Modifications:
26
+
27
+ 1.Once the nth digit and desired number of digits is selected, the
28
+ number of digits of working precision is calculated to ensure that
29
+ the hexadecimal digits returned are accurate. This is calculated as
30
+
31
+ int(math.log(start + prec)/math.log(16) + prec + 3)
32
+ --------------------------------------- --------
33
+ / /
34
+ number of hex digits additional digits
35
+
36
+ This was checked by the following code which completed without
37
+ errors (and dig are the digits included in the test_bbp.py file):
38
+
39
+ for i in range(0,1000):
40
+ for j in range(1,1000):
41
+ a, b = pi_hex_digits(i, j), dig[i:i+j]
42
+ if a != b:
43
+ print('%s\n%s'%(a,b))
44
+
45
+ Deceasing the additional digits by 1 generated errors, so '3' is
46
+ the smallest additional precision needed to calculate the above
47
+ loop without errors. The following trailing 10 digits were also
48
+ checked to be accurate (and the times were slightly faster with
49
+ some of the constant modifications that were made):
50
+
51
+ >> from time import time
52
+ >> t=time();pi_hex_digits(10**2-10 + 1, 10), time()-t
53
+ ('e90c6cc0ac', 0.0)
54
+ >> t=time();pi_hex_digits(10**4-10 + 1, 10), time()-t
55
+ ('26aab49ec6', 0.17100000381469727)
56
+ >> t=time();pi_hex_digits(10**5-10 + 1, 10), time()-t
57
+ ('a22673c1a5', 4.7109999656677246)
58
+ >> t=time();pi_hex_digits(10**6-10 + 1, 10), time()-t
59
+ ('9ffd342362', 59.985999822616577)
60
+ >> t=time();pi_hex_digits(10**7-10 + 1, 10), time()-t
61
+ ('c1a42e06a1', 689.51800012588501)
62
+
63
+ 2. The while loop to evaluate whether the series has converged quits
64
+ when the addition amount `dt` has dropped to zero.
65
+
66
+ 3. the formatting string to convert the decimal to hexadecimal is
67
+ calculated for the given precision.
68
+
69
+ 4. pi_hex_digits(n) changed to have coefficient to the formula in an
70
+ array (perhaps just a matter of preference).
71
+
72
+ '''
73
+
74
+ import math
75
+ from sympy.utilities.misc import as_int
76
+
77
+
78
+ def _series(j, n, prec=14):
79
+
80
+ # Left sum from the bbp algorithm
81
+ s = 0
82
+ D = _dn(n, prec)
83
+ D4 = 4 * D
84
+ k = 0
85
+ d = 8 * k + j
86
+ for k in range(n + 1):
87
+ s += (pow(16, n - k, d) << D4) // d
88
+ d += 8
89
+
90
+ # Right sum iterates to infinity for full precision, but we
91
+ # stop at the point where one iteration is beyond the precision
92
+ # specified.
93
+
94
+ t = 0
95
+ k = n + 1
96
+ e = 4*(D + n - k)
97
+ d = 8 * k + j
98
+ while True:
99
+ dt = (1 << e) // d
100
+ if not dt:
101
+ break
102
+ t += dt
103
+ # k += 1
104
+ e -= 4
105
+ d += 8
106
+ total = s + t
107
+
108
+ return total
109
+
110
+
111
+ def pi_hex_digits(n, prec=14):
112
+ """Returns a string containing ``prec`` (default 14) digits
113
+ starting at the nth digit of pi in hex. Counting of digits
114
+ starts at 0 and the decimal is not counted, so for n = 0 the
115
+ returned value starts with 3; n = 1 corresponds to the first
116
+ digit past the decimal point (which in hex is 2).
117
+
118
+ Examples
119
+ ========
120
+
121
+ >>> from sympy.ntheory.bbp_pi import pi_hex_digits
122
+ >>> pi_hex_digits(0)
123
+ '3243f6a8885a30'
124
+ >>> pi_hex_digits(0, 3)
125
+ '324'
126
+
127
+ References
128
+ ==========
129
+
130
+ .. [1] http://www.numberworld.org/digits/Pi/
131
+ """
132
+ n, prec = as_int(n), as_int(prec)
133
+ if n < 0:
134
+ raise ValueError('n cannot be negative')
135
+ if prec == 0:
136
+ return ''
137
+
138
+ # main of implementation arrays holding formulae coefficients
139
+ n -= 1
140
+ a = [4, 2, 1, 1]
141
+ j = [1, 4, 5, 6]
142
+
143
+ #formulae
144
+ D = _dn(n, prec)
145
+ x = + (a[0]*_series(j[0], n, prec)
146
+ - a[1]*_series(j[1], n, prec)
147
+ - a[2]*_series(j[2], n, prec)
148
+ - a[3]*_series(j[3], n, prec)) & (16**D - 1)
149
+
150
+ s = ("%0" + "%ix" % prec) % (x // 16**(D - prec))
151
+ return s
152
+
153
+
154
+ def _dn(n, prec):
155
+ # controller for n dependence on precision
156
+ # n = starting digit index
157
+ # prec = the number of total digits to compute
158
+ n += 1 # because we subtract 1 for _series
159
+ return int(math.log(n + prec)/math.log(16) + prec + 3)
venv/lib/python3.10/site-packages/sympy/ntheory/continued_fraction.py ADDED
@@ -0,0 +1,351 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ from sympy.core.exprtools import factor_terms
3
+ from sympy.core.numbers import Integer, Rational
4
+ from sympy.core.singleton import S
5
+ from sympy.core.symbol import Dummy
6
+ from sympy.core.sympify import _sympify
7
+ from sympy.utilities.misc import as_int
8
+
9
+
10
+ def continued_fraction(a) -> list:
11
+ """Return the continued fraction representation of a Rational or
12
+ quadratic irrational.
13
+
14
+ Examples
15
+ ========
16
+
17
+ >>> from sympy.ntheory.continued_fraction import continued_fraction
18
+ >>> from sympy import sqrt
19
+ >>> continued_fraction((1 + 2*sqrt(3))/5)
20
+ [0, 1, [8, 3, 34, 3]]
21
+
22
+ See Also
23
+ ========
24
+ continued_fraction_periodic, continued_fraction_reduce, continued_fraction_convergents
25
+ """
26
+ e = _sympify(a)
27
+ if all(i.is_Rational for i in e.atoms()):
28
+ if e.is_Integer:
29
+ return continued_fraction_periodic(e, 1, 0)
30
+ elif e.is_Rational:
31
+ return continued_fraction_periodic(e.p, e.q, 0)
32
+ elif e.is_Pow and e.exp is S.Half and e.base.is_Integer:
33
+ return continued_fraction_periodic(0, 1, e.base)
34
+ elif e.is_Mul and len(e.args) == 2 and (
35
+ e.args[0].is_Rational and
36
+ e.args[1].is_Pow and
37
+ e.args[1].base.is_Integer and
38
+ e.args[1].exp is S.Half):
39
+ a, b = e.args
40
+ return continued_fraction_periodic(0, a.q, b.base, a.p)
41
+ else:
42
+ # this should not have to work very hard- no
43
+ # simplification, cancel, etc... which should be
44
+ # done by the user. e.g. This is a fancy 1 but
45
+ # the user should simplify it first:
46
+ # sqrt(2)*(1 + sqrt(2))/(sqrt(2) + 2)
47
+ p, d = e.expand().as_numer_denom()
48
+ if d.is_Integer:
49
+ if p.is_Rational:
50
+ return continued_fraction_periodic(p, d)
51
+ # look for a + b*c
52
+ # with c = sqrt(s)
53
+ if p.is_Add and len(p.args) == 2:
54
+ a, bc = p.args
55
+ else:
56
+ a = S.Zero
57
+ bc = p
58
+ if a.is_Integer:
59
+ b = S.NaN
60
+ if bc.is_Mul and len(bc.args) == 2:
61
+ b, c = bc.args
62
+ elif bc.is_Pow:
63
+ b = Integer(1)
64
+ c = bc
65
+ if b.is_Integer and (
66
+ c.is_Pow and c.exp is S.Half and
67
+ c.base.is_Integer):
68
+ # (a + b*sqrt(c))/d
69
+ c = c.base
70
+ return continued_fraction_periodic(a, d, c, b)
71
+ raise ValueError(
72
+ 'expecting a rational or quadratic irrational, not %s' % e)
73
+
74
+
75
+ def continued_fraction_periodic(p, q, d=0, s=1) -> list:
76
+ r"""
77
+ Find the periodic continued fraction expansion of a quadratic irrational.
78
+
79
+ Compute the continued fraction expansion of a rational or a
80
+ quadratic irrational number, i.e. `\frac{p + s\sqrt{d}}{q}`, where
81
+ `p`, `q \ne 0` and `d \ge 0` are integers.
82
+
83
+ Returns the continued fraction representation (canonical form) as
84
+ a list of integers, optionally ending (for quadratic irrationals)
85
+ with list of integers representing the repeating digits.
86
+
87
+ Parameters
88
+ ==========
89
+
90
+ p : int
91
+ the rational part of the number's numerator
92
+ q : int
93
+ the denominator of the number
94
+ d : int, optional
95
+ the irrational part (discriminator) of the number's numerator
96
+ s : int, optional
97
+ the coefficient of the irrational part
98
+
99
+ Examples
100
+ ========
101
+
102
+ >>> from sympy.ntheory.continued_fraction import continued_fraction_periodic
103
+ >>> continued_fraction_periodic(3, 2, 7)
104
+ [2, [1, 4, 1, 1]]
105
+
106
+ Golden ratio has the simplest continued fraction expansion:
107
+
108
+ >>> continued_fraction_periodic(1, 2, 5)
109
+ [[1]]
110
+
111
+ If the discriminator is zero or a perfect square then the number will be a
112
+ rational number:
113
+
114
+ >>> continued_fraction_periodic(4, 3, 0)
115
+ [1, 3]
116
+ >>> continued_fraction_periodic(4, 3, 49)
117
+ [3, 1, 2]
118
+
119
+ See Also
120
+ ========
121
+
122
+ continued_fraction_iterator, continued_fraction_reduce
123
+
124
+ References
125
+ ==========
126
+
127
+ .. [1] https://en.wikipedia.org/wiki/Periodic_continued_fraction
128
+ .. [2] K. Rosen. Elementary Number theory and its applications.
129
+ Addison-Wesley, 3 Sub edition, pages 379-381, January 1992.
130
+
131
+ """
132
+ from sympy.functions import sqrt, floor
133
+
134
+ p, q, d, s = list(map(as_int, [p, q, d, s]))
135
+
136
+ if d < 0:
137
+ raise ValueError("expected non-negative for `d` but got %s" % d)
138
+
139
+ if q == 0:
140
+ raise ValueError("The denominator cannot be 0.")
141
+
142
+ if not s:
143
+ d = 0
144
+
145
+ # check for rational case
146
+ sd = sqrt(d)
147
+ if sd.is_Integer:
148
+ return list(continued_fraction_iterator(Rational(p + s*sd, q)))
149
+
150
+ # irrational case with sd != Integer
151
+ if q < 0:
152
+ p, q, s = -p, -q, -s
153
+
154
+ n = (p + s*sd)/q
155
+ if n < 0:
156
+ w = floor(-n)
157
+ f = -n - w
158
+ one_f = continued_fraction(1 - f) # 1-f < 1 so cf is [0 ... [...]]
159
+ one_f[0] -= w + 1
160
+ return one_f
161
+
162
+ d *= s**2
163
+ sd *= s
164
+
165
+ if (d - p**2)%q:
166
+ d *= q**2
167
+ sd *= q
168
+ p *= q
169
+ q *= q
170
+
171
+ terms: list[int] = []
172
+ pq = {}
173
+
174
+ while (p, q) not in pq:
175
+ pq[(p, q)] = len(terms)
176
+ terms.append((p + sd)//q)
177
+ p = terms[-1]*q - p
178
+ q = (d - p**2)//q
179
+
180
+ i = pq[(p, q)]
181
+ return terms[:i] + [terms[i:]] # type: ignore
182
+
183
+
184
+ def continued_fraction_reduce(cf):
185
+ """
186
+ Reduce a continued fraction to a rational or quadratic irrational.
187
+
188
+ Compute the rational or quadratic irrational number from its
189
+ terminating or periodic continued fraction expansion. The
190
+ continued fraction expansion (cf) should be supplied as a
191
+ terminating iterator supplying the terms of the expansion. For
192
+ terminating continued fractions, this is equivalent to
193
+ ``list(continued_fraction_convergents(cf))[-1]``, only a little more
194
+ efficient. If the expansion has a repeating part, a list of the
195
+ repeating terms should be returned as the last element from the
196
+ iterator. This is the format returned by
197
+ continued_fraction_periodic.
198
+
199
+ For quadratic irrationals, returns the largest solution found,
200
+ which is generally the one sought, if the fraction is in canonical
201
+ form (all terms positive except possibly the first).
202
+
203
+ Examples
204
+ ========
205
+
206
+ >>> from sympy.ntheory.continued_fraction import continued_fraction_reduce
207
+ >>> continued_fraction_reduce([1, 2, 3, 4, 5])
208
+ 225/157
209
+ >>> continued_fraction_reduce([-2, 1, 9, 7, 1, 2])
210
+ -256/233
211
+ >>> continued_fraction_reduce([2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8]).n(10)
212
+ 2.718281835
213
+ >>> continued_fraction_reduce([1, 4, 2, [3, 1]])
214
+ (sqrt(21) + 287)/238
215
+ >>> continued_fraction_reduce([[1]])
216
+ (1 + sqrt(5))/2
217
+ >>> from sympy.ntheory.continued_fraction import continued_fraction_periodic
218
+ >>> continued_fraction_reduce(continued_fraction_periodic(8, 5, 13))
219
+ (sqrt(13) + 8)/5
220
+
221
+ See Also
222
+ ========
223
+
224
+ continued_fraction_periodic
225
+
226
+ """
227
+ from sympy.solvers import solve
228
+
229
+ period = []
230
+ x = Dummy('x')
231
+
232
+ def untillist(cf):
233
+ for nxt in cf:
234
+ if isinstance(nxt, list):
235
+ period.extend(nxt)
236
+ yield x
237
+ break
238
+ yield nxt
239
+
240
+ a = S.Zero
241
+ for a in continued_fraction_convergents(untillist(cf)):
242
+ pass
243
+
244
+ if period:
245
+ y = Dummy('y')
246
+ solns = solve(continued_fraction_reduce(period + [y]) - y, y)
247
+ solns.sort()
248
+ pure = solns[-1]
249
+ rv = a.subs(x, pure).radsimp()
250
+ else:
251
+ rv = a
252
+ if rv.is_Add:
253
+ rv = factor_terms(rv)
254
+ if rv.is_Mul and rv.args[0] == -1:
255
+ rv = rv.func(*rv.args)
256
+ return rv
257
+
258
+
259
+ def continued_fraction_iterator(x):
260
+ """
261
+ Return continued fraction expansion of x as iterator.
262
+
263
+ Examples
264
+ ========
265
+
266
+ >>> from sympy import Rational, pi
267
+ >>> from sympy.ntheory.continued_fraction import continued_fraction_iterator
268
+
269
+ >>> list(continued_fraction_iterator(Rational(3, 8)))
270
+ [0, 2, 1, 2]
271
+ >>> list(continued_fraction_iterator(Rational(-3, 8)))
272
+ [-1, 1, 1, 1, 2]
273
+
274
+ >>> for i, v in enumerate(continued_fraction_iterator(pi)):
275
+ ... if i > 7:
276
+ ... break
277
+ ... print(v)
278
+ 3
279
+ 7
280
+ 15
281
+ 1
282
+ 292
283
+ 1
284
+ 1
285
+ 1
286
+
287
+ References
288
+ ==========
289
+
290
+ .. [1] https://en.wikipedia.org/wiki/Continued_fraction
291
+
292
+ """
293
+ from sympy.functions import floor
294
+ while True:
295
+ i = floor(x)
296
+ yield i
297
+ x -= i
298
+ if not x:
299
+ break
300
+ x = 1/x
301
+
302
+
303
+ def continued_fraction_convergents(cf):
304
+ """
305
+ Return an iterator over the convergents of a continued fraction (cf).
306
+
307
+ The parameter should be an iterable returning successive
308
+ partial quotients of the continued fraction, such as might be
309
+ returned by continued_fraction_iterator. In computing the
310
+ convergents, the continued fraction need not be strictly in
311
+ canonical form (all integers, all but the first positive).
312
+ Rational and negative elements may be present in the expansion.
313
+
314
+ Examples
315
+ ========
316
+
317
+ >>> from sympy.core import pi
318
+ >>> from sympy import S
319
+ >>> from sympy.ntheory.continued_fraction import \
320
+ continued_fraction_convergents, continued_fraction_iterator
321
+
322
+ >>> list(continued_fraction_convergents([0, 2, 1, 2]))
323
+ [0, 1/2, 1/3, 3/8]
324
+
325
+ >>> list(continued_fraction_convergents([1, S('1/2'), -7, S('1/4')]))
326
+ [1, 3, 19/5, 7]
327
+
328
+ >>> it = continued_fraction_convergents(continued_fraction_iterator(pi))
329
+ >>> for n in range(7):
330
+ ... print(next(it))
331
+ 3
332
+ 22/7
333
+ 333/106
334
+ 355/113
335
+ 103993/33102
336
+ 104348/33215
337
+ 208341/66317
338
+
339
+ See Also
340
+ ========
341
+
342
+ continued_fraction_iterator
343
+
344
+ """
345
+ p_2, q_2 = S.Zero, S.One
346
+ p_1, q_1 = S.One, S.Zero
347
+ for a in cf:
348
+ p, q = a*p_1 + p_2, a*q_1 + q_2
349
+ p_2, q_2 = p_1, q_1
350
+ p_1, q_1 = p, q
351
+ yield p/q
venv/lib/python3.10/site-packages/sympy/ntheory/digits.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import defaultdict
2
+
3
+ from sympy.utilities.iterables import multiset, is_palindromic as _palindromic
4
+ from sympy.utilities.misc import as_int
5
+
6
+
7
+ def digits(n, b=10, digits=None):
8
+ """
9
+ Return a list of the digits of ``n`` in base ``b``. The first
10
+ element in the list is ``b`` (or ``-b`` if ``n`` is negative).
11
+
12
+ Examples
13
+ ========
14
+
15
+ >>> from sympy.ntheory.digits import digits
16
+ >>> digits(35)
17
+ [10, 3, 5]
18
+
19
+ If the number is negative, the negative sign will be placed on the
20
+ base (which is the first element in the returned list):
21
+
22
+ >>> digits(-35)
23
+ [-10, 3, 5]
24
+
25
+ Bases other than 10 (and greater than 1) can be selected with ``b``:
26
+
27
+ >>> digits(27, b=2)
28
+ [2, 1, 1, 0, 1, 1]
29
+
30
+ Use the ``digits`` keyword if a certain number of digits is desired:
31
+
32
+ >>> digits(35, digits=4)
33
+ [10, 0, 0, 3, 5]
34
+
35
+ Parameters
36
+ ==========
37
+
38
+ n: integer
39
+ The number whose digits are returned.
40
+
41
+ b: integer
42
+ The base in which digits are computed.
43
+
44
+ digits: integer (or None for all digits)
45
+ The number of digits to be returned (padded with zeros, if
46
+ necessary).
47
+
48
+ """
49
+
50
+ b = as_int(b)
51
+ n = as_int(n)
52
+ if b < 2:
53
+ raise ValueError("b must be greater than 1")
54
+ else:
55
+ x, y = abs(n), []
56
+ while x >= b:
57
+ x, r = divmod(x, b)
58
+ y.append(r)
59
+ y.append(x)
60
+ y.append(-b if n < 0 else b)
61
+ y.reverse()
62
+ ndig = len(y) - 1
63
+ if digits is not None:
64
+ if ndig > digits:
65
+ raise ValueError(
66
+ "For %s, at least %s digits are needed." % (n, ndig))
67
+ elif ndig < digits:
68
+ y[1:1] = [0]*(digits - ndig)
69
+ return y
70
+
71
+
72
+ def count_digits(n, b=10):
73
+ """
74
+ Return a dictionary whose keys are the digits of ``n`` in the
75
+ given base, ``b``, with keys indicating the digits appearing in the
76
+ number and values indicating how many times that digit appeared.
77
+
78
+ Examples
79
+ ========
80
+
81
+ >>> from sympy.ntheory import count_digits
82
+
83
+ >>> count_digits(1111339)
84
+ {1: 4, 3: 2, 9: 1}
85
+
86
+ The digits returned are always represented in base-10
87
+ but the number itself can be entered in any format that is
88
+ understood by Python; the base of the number can also be
89
+ given if it is different than 10:
90
+
91
+ >>> n = 0xFA; n
92
+ 250
93
+ >>> count_digits(_)
94
+ {0: 1, 2: 1, 5: 1}
95
+ >>> count_digits(n, 16)
96
+ {10: 1, 15: 1}
97
+
98
+ The default dictionary will return a 0 for any digit that did
99
+ not appear in the number. For example, which digits appear 7
100
+ times in ``77!``:
101
+
102
+ >>> from sympy import factorial
103
+ >>> c77 = count_digits(factorial(77))
104
+ >>> [i for i in range(10) if c77[i] == 7]
105
+ [1, 3, 7, 9]
106
+ """
107
+ rv = defaultdict(int, multiset(digits(n, b)).items())
108
+ rv.pop(b) if b in rv else rv.pop(-b) # b or -b is there
109
+ return rv
110
+
111
+
112
+ def is_palindromic(n, b=10):
113
+ """return True if ``n`` is the same when read from left to right
114
+ or right to left in the given base, ``b``.
115
+
116
+ Examples
117
+ ========
118
+
119
+ >>> from sympy.ntheory import is_palindromic
120
+
121
+ >>> all(is_palindromic(i) for i in (-11, 1, 22, 121))
122
+ True
123
+
124
+ The second argument allows you to test numbers in other
125
+ bases. For example, 88 is palindromic in base-10 but not
126
+ in base-8:
127
+
128
+ >>> is_palindromic(88, 8)
129
+ False
130
+
131
+ On the other hand, a number can be palindromic in base-8 but
132
+ not in base-10:
133
+
134
+ >>> 0o121, is_palindromic(0o121)
135
+ (81, False)
136
+
137
+ Or it might be palindromic in both bases:
138
+
139
+ >>> oct(121), is_palindromic(121, 8) and is_palindromic(121)
140
+ ('0o171', True)
141
+
142
+ """
143
+ return _palindromic(digits(n, b), 1)
venv/lib/python3.10/site-packages/sympy/ntheory/ecm.py ADDED
@@ -0,0 +1,326 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.ntheory import sieve, isprime
2
+ from sympy.core.numbers import mod_inverse
3
+ from sympy.core.power import integer_log
4
+ from sympy.utilities.misc import as_int
5
+ import random
6
+
7
+ rgen = random.Random()
8
+
9
+ #----------------------------------------------------------------------------#
10
+ # #
11
+ # Lenstra's Elliptic Curve Factorization #
12
+ # #
13
+ #----------------------------------------------------------------------------#
14
+
15
+
16
+ class Point:
17
+ """Montgomery form of Points in an elliptic curve.
18
+ In this form, the addition and doubling of points
19
+ does not need any y-coordinate information thus
20
+ decreasing the number of operations.
21
+ Using Montgomery form we try to perform point addition
22
+ and doubling in least amount of multiplications.
23
+
24
+ The elliptic curve used here is of the form
25
+ (E : b*y**2*z = x**3 + a*x**2*z + x*z**2).
26
+ The a_24 parameter is equal to (a + 2)/4.
27
+
28
+ References
29
+ ==========
30
+
31
+ .. [1] https://www.hyperelliptic.org/tanja/SHARCS/talks06/Gaj.pdf
32
+ """
33
+
34
+ def __init__(self, x_cord, z_cord, a_24, mod):
35
+ """
36
+ Initial parameters for the Point class.
37
+
38
+ Parameters
39
+ ==========
40
+
41
+ x_cord : X coordinate of the Point
42
+ z_cord : Z coordinate of the Point
43
+ a_24 : Parameter of the elliptic curve in Montgomery form
44
+ mod : modulus
45
+ """
46
+ self.x_cord = x_cord
47
+ self.z_cord = z_cord
48
+ self.a_24 = a_24
49
+ self.mod = mod
50
+
51
+ def __eq__(self, other):
52
+ """Two points are equal if X/Z of both points are equal
53
+ """
54
+ if self.a_24 != other.a_24 or self.mod != other.mod:
55
+ return False
56
+ return self.x_cord * other.z_cord % self.mod ==\
57
+ other.x_cord * self.z_cord % self.mod
58
+
59
+ def add(self, Q, diff):
60
+ """
61
+ Add two points self and Q where diff = self - Q. Moreover the assumption
62
+ is self.x_cord*Q.x_cord*(self.x_cord - Q.x_cord) != 0. This algorithm
63
+ requires 6 multiplications. Here the difference between the points
64
+ is already known and using this algorithm speeds up the addition
65
+ by reducing the number of multiplication required. Also in the
66
+ mont_ladder algorithm is constructed in a way so that the difference
67
+ between intermediate points is always equal to the initial point.
68
+ So, we always know what the difference between the point is.
69
+
70
+
71
+ Parameters
72
+ ==========
73
+
74
+ Q : point on the curve in Montgomery form
75
+ diff : self - Q
76
+
77
+ Examples
78
+ ========
79
+
80
+ >>> from sympy.ntheory.ecm import Point
81
+ >>> p1 = Point(11, 16, 7, 29)
82
+ >>> p2 = Point(13, 10, 7, 29)
83
+ >>> p3 = p2.add(p1, p1)
84
+ >>> p3.x_cord
85
+ 23
86
+ >>> p3.z_cord
87
+ 17
88
+ """
89
+ u = (self.x_cord - self.z_cord)*(Q.x_cord + Q.z_cord)
90
+ v = (self.x_cord + self.z_cord)*(Q.x_cord - Q.z_cord)
91
+ add, subt = u + v, u - v
92
+ x_cord = diff.z_cord * add * add % self.mod
93
+ z_cord = diff.x_cord * subt * subt % self.mod
94
+ return Point(x_cord, z_cord, self.a_24, self.mod)
95
+
96
+ def double(self):
97
+ """
98
+ Doubles a point in an elliptic curve in Montgomery form.
99
+ This algorithm requires 5 multiplications.
100
+
101
+ Examples
102
+ ========
103
+
104
+ >>> from sympy.ntheory.ecm import Point
105
+ >>> p1 = Point(11, 16, 7, 29)
106
+ >>> p2 = p1.double()
107
+ >>> p2.x_cord
108
+ 13
109
+ >>> p2.z_cord
110
+ 10
111
+ """
112
+ u = pow(self.x_cord + self.z_cord, 2, self.mod)
113
+ v = pow(self.x_cord - self.z_cord, 2, self.mod)
114
+ diff = u - v
115
+ x_cord = u*v % self.mod
116
+ z_cord = diff*(v + self.a_24*diff) % self.mod
117
+ return Point(x_cord, z_cord, self.a_24, self.mod)
118
+
119
+ def mont_ladder(self, k):
120
+ """
121
+ Scalar multiplication of a point in Montgomery form
122
+ using Montgomery Ladder Algorithm.
123
+ A total of 11 multiplications are required in each step of this
124
+ algorithm.
125
+
126
+ Parameters
127
+ ==========
128
+
129
+ k : The positive integer multiplier
130
+
131
+ Examples
132
+ ========
133
+
134
+ >>> from sympy.ntheory.ecm import Point
135
+ >>> p1 = Point(11, 16, 7, 29)
136
+ >>> p3 = p1.mont_ladder(3)
137
+ >>> p3.x_cord
138
+ 23
139
+ >>> p3.z_cord
140
+ 17
141
+ """
142
+ Q = self
143
+ R = self.double()
144
+ for i in bin(k)[3:]:
145
+ if i == '1':
146
+ Q = R.add(Q, self)
147
+ R = R.double()
148
+ else:
149
+ R = Q.add(R, self)
150
+ Q = Q.double()
151
+ return Q
152
+
153
+
154
+ def _ecm_one_factor(n, B1=10000, B2=100000, max_curve=200):
155
+ """Returns one factor of n using
156
+ Lenstra's 2 Stage Elliptic curve Factorization
157
+ with Suyama's Parameterization. Here Montgomery
158
+ arithmetic is used for fast computation of addition
159
+ and doubling of points in elliptic curve.
160
+
161
+ This ECM method considers elliptic curves in Montgomery
162
+ form (E : b*y**2*z = x**3 + a*x**2*z + x*z**2) and involves
163
+ elliptic curve operations (mod N), where the elements in
164
+ Z are reduced (mod N). Since N is not a prime, E over FF(N)
165
+ is not really an elliptic curve but we can still do point additions
166
+ and doubling as if FF(N) was a field.
167
+
168
+ Stage 1 : The basic algorithm involves taking a random point (P) on an
169
+ elliptic curve in FF(N). The compute k*P using Montgomery ladder algorithm.
170
+ Let q be an unknown factor of N. Then the order of the curve E, |E(FF(q))|,
171
+ might be a smooth number that divides k. Then we have k = l * |E(FF(q))|
172
+ for some l. For any point belonging to the curve E, |E(FF(q))|*P = O,
173
+ hence k*P = l*|E(FF(q))|*P. Thus kP.z_cord = 0 (mod q), and the unknownn
174
+ factor of N (q) can be recovered by taking gcd(kP.z_cord, N).
175
+
176
+ Stage 2 : This is a continuation of Stage 1 if k*P != O. The idea utilize
177
+ the fact that even if kP != 0, the value of k might miss just one large
178
+ prime divisor of |E(FF(q))|. In this case we only need to compute the
179
+ scalar multiplication by p to get p*k*P = O. Here a second bound B2
180
+ restrict the size of possible values of p.
181
+
182
+ Parameters
183
+ ==========
184
+
185
+ n : Number to be Factored
186
+ B1 : Stage 1 Bound
187
+ B2 : Stage 2 Bound
188
+ max_curve : Maximum number of curves generated
189
+
190
+ References
191
+ ==========
192
+
193
+ .. [1] Carl Pomerance and Richard Crandall "Prime Numbers:
194
+ A Computational Perspective" (2nd Ed.), page 344
195
+ """
196
+ n = as_int(n)
197
+ if B1 % 2 != 0 or B2 % 2 != 0:
198
+ raise ValueError("The Bounds should be an even integer")
199
+ sieve.extend(B2)
200
+
201
+ if isprime(n):
202
+ return n
203
+
204
+ from sympy.functions.elementary.miscellaneous import sqrt
205
+ from sympy.polys.polytools import gcd
206
+ D = int(sqrt(B2))
207
+ beta = [0]*(D + 1)
208
+ S = [0]*(D + 1)
209
+ k = 1
210
+ for p in sieve.primerange(1, B1 + 1):
211
+ k *= pow(p, integer_log(B1, p)[0])
212
+ for _ in range(max_curve):
213
+ #Suyama's Parametrization
214
+ sigma = rgen.randint(6, n - 1)
215
+ u = (sigma*sigma - 5) % n
216
+ v = (4*sigma) % n
217
+ u_3 = pow(u, 3, n)
218
+
219
+ try:
220
+ # We use the elliptic curve y**2 = x**3 + a*x**2 + x
221
+ # where a = pow(v - u, 3, n)*(3*u + v)*mod_inverse(4*u_3*v, n) - 2
222
+ # However, we do not declare a because it is more convenient
223
+ # to use a24 = (a + 2)*mod_inverse(4, n) in the calculation.
224
+ a24 = pow(v - u, 3, n)*(3*u + v)*mod_inverse(16*u_3*v, n) % n
225
+ except ValueError:
226
+ #If the mod_inverse(16*u_3*v, n) doesn't exist (i.e., g != 1)
227
+ g = gcd(16*u_3*v, n)
228
+ #If g = n, try another curve
229
+ if g == n:
230
+ continue
231
+ return g
232
+
233
+ Q = Point(u_3, pow(v, 3, n), a24, n)
234
+ Q = Q.mont_ladder(k)
235
+ g = gcd(Q.z_cord, n)
236
+
237
+ #Stage 1 factor
238
+ if g != 1 and g != n:
239
+ return g
240
+ #Stage 1 failure. Q.z = 0, Try another curve
241
+ elif g == n:
242
+ continue
243
+
244
+ #Stage 2 - Improved Standard Continuation
245
+ S[1] = Q.double()
246
+ S[2] = S[1].double()
247
+ beta[1] = (S[1].x_cord*S[1].z_cord) % n
248
+ beta[2] = (S[2].x_cord*S[2].z_cord) % n
249
+
250
+ for d in range(3, D + 1):
251
+ S[d] = S[d - 1].add(S[1], S[d - 2])
252
+ beta[d] = (S[d].x_cord*S[d].z_cord) % n
253
+
254
+ g = 1
255
+ B = B1 - 1
256
+ T = Q.mont_ladder(B - 2*D)
257
+ R = Q.mont_ladder(B)
258
+
259
+ for r in range(B, B2, 2*D):
260
+ alpha = (R.x_cord*R.z_cord) % n
261
+ for q in sieve.primerange(r + 2, r + 2*D + 1):
262
+ delta = (q - r) // 2
263
+ # We want to calculate
264
+ # f = R.x_cord * S[delta].z_cord - S[delta].x_cord * R.z_cord
265
+ f = (R.x_cord - S[delta].x_cord)*\
266
+ (R.z_cord + S[delta].z_cord) - alpha + beta[delta]
267
+ g = (g*f) % n
268
+ #Swap
269
+ T, R = R, R.add(S[D], T)
270
+ g = gcd(n, g)
271
+
272
+ #Stage 2 Factor found
273
+ if g != 1 and g != n:
274
+ return g
275
+
276
+ #ECM failed, Increase the bounds
277
+ raise ValueError("Increase the bounds")
278
+
279
+
280
+ def ecm(n, B1=10000, B2=100000, max_curve=200, seed=1234):
281
+ """Performs factorization using Lenstra's Elliptic curve method.
282
+
283
+ This function repeatedly calls `ecm_one_factor` to compute the factors
284
+ of n. First all the small factors are taken out using trial division.
285
+ Then `ecm_one_factor` is used to compute one factor at a time.
286
+
287
+ Parameters
288
+ ==========
289
+
290
+ n : Number to be Factored
291
+ B1 : Stage 1 Bound
292
+ B2 : Stage 2 Bound
293
+ max_curve : Maximum number of curves generated
294
+ seed : Initialize pseudorandom generator
295
+
296
+ Examples
297
+ ========
298
+
299
+ >>> from sympy.ntheory import ecm
300
+ >>> ecm(25645121643901801)
301
+ {5394769, 4753701529}
302
+ >>> ecm(9804659461513846513)
303
+ {4641991, 2112166839943}
304
+ """
305
+ _factors = set()
306
+ for prime in sieve.primerange(1, 100000):
307
+ if n % prime == 0:
308
+ _factors.add(prime)
309
+ while(n % prime == 0):
310
+ n //= prime
311
+ rgen.seed(seed)
312
+ while(n > 1):
313
+ try:
314
+ factor = _ecm_one_factor(n, B1, B2, max_curve)
315
+ except ValueError:
316
+ raise ValueError("Increase the bounds")
317
+ _factors.add(factor)
318
+ n //= factor
319
+
320
+ factors = set()
321
+ for factor in _factors:
322
+ if isprime(factor):
323
+ factors.add(factor)
324
+ continue
325
+ factors |= ecm(factor)
326
+ return factors
venv/lib/python3.10/site-packages/sympy/ntheory/egyptian_fraction.py ADDED
@@ -0,0 +1,223 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.containers import Tuple
2
+ from sympy.core.numbers import (Integer, Rational)
3
+ from sympy.core.singleton import S
4
+ import sympy.polys
5
+
6
+ from math import gcd
7
+
8
+
9
+ def egyptian_fraction(r, algorithm="Greedy"):
10
+ """
11
+ Return the list of denominators of an Egyptian fraction
12
+ expansion [1]_ of the said rational `r`.
13
+
14
+ Parameters
15
+ ==========
16
+
17
+ r : Rational or (p, q)
18
+ a positive rational number, ``p/q``.
19
+ algorithm : { "Greedy", "Graham Jewett", "Takenouchi", "Golomb" }, optional
20
+ Denotes the algorithm to be used (the default is "Greedy").
21
+
22
+ Examples
23
+ ========
24
+
25
+ >>> from sympy import Rational
26
+ >>> from sympy.ntheory.egyptian_fraction import egyptian_fraction
27
+ >>> egyptian_fraction(Rational(3, 7))
28
+ [3, 11, 231]
29
+ >>> egyptian_fraction((3, 7), "Graham Jewett")
30
+ [7, 8, 9, 56, 57, 72, 3192]
31
+ >>> egyptian_fraction((3, 7), "Takenouchi")
32
+ [4, 7, 28]
33
+ >>> egyptian_fraction((3, 7), "Golomb")
34
+ [3, 15, 35]
35
+ >>> egyptian_fraction((11, 5), "Golomb")
36
+ [1, 2, 3, 4, 9, 234, 1118, 2580]
37
+
38
+ See Also
39
+ ========
40
+
41
+ sympy.core.numbers.Rational
42
+
43
+ Notes
44
+ =====
45
+
46
+ Currently the following algorithms are supported:
47
+
48
+ 1) Greedy Algorithm
49
+
50
+ Also called the Fibonacci-Sylvester algorithm [2]_.
51
+ At each step, extract the largest unit fraction less
52
+ than the target and replace the target with the remainder.
53
+
54
+ It has some distinct properties:
55
+
56
+ a) Given `p/q` in lowest terms, generates an expansion of maximum
57
+ length `p`. Even as the numerators get large, the number of
58
+ terms is seldom more than a handful.
59
+
60
+ b) Uses minimal memory.
61
+
62
+ c) The terms can blow up (standard examples of this are 5/121 and
63
+ 31/311). The denominator is at most squared at each step
64
+ (doubly-exponential growth) and typically exhibits
65
+ singly-exponential growth.
66
+
67
+ 2) Graham Jewett Algorithm
68
+
69
+ The algorithm suggested by the result of Graham and Jewett.
70
+ Note that this has a tendency to blow up: the length of the
71
+ resulting expansion is always ``2**(x/gcd(x, y)) - 1``. See [3]_.
72
+
73
+ 3) Takenouchi Algorithm
74
+
75
+ The algorithm suggested by Takenouchi (1921).
76
+ Differs from the Graham-Jewett algorithm only in the handling
77
+ of duplicates. See [3]_.
78
+
79
+ 4) Golomb's Algorithm
80
+
81
+ A method given by Golumb (1962), using modular arithmetic and
82
+ inverses. It yields the same results as a method using continued
83
+ fractions proposed by Bleicher (1972). See [4]_.
84
+
85
+ If the given rational is greater than or equal to 1, a greedy algorithm
86
+ of summing the harmonic sequence 1/1 + 1/2 + 1/3 + ... is used, taking
87
+ all the unit fractions of this sequence until adding one more would be
88
+ greater than the given number. This list of denominators is prefixed
89
+ to the result from the requested algorithm used on the remainder. For
90
+ example, if r is 8/3, using the Greedy algorithm, we get [1, 2, 3, 4,
91
+ 5, 6, 7, 14, 420], where the beginning of the sequence, [1, 2, 3, 4, 5,
92
+ 6, 7] is part of the harmonic sequence summing to 363/140, leaving a
93
+ remainder of 31/420, which yields [14, 420] by the Greedy algorithm.
94
+ The result of egyptian_fraction(Rational(8, 3), "Golomb") is [1, 2, 3,
95
+ 4, 5, 6, 7, 14, 574, 2788, 6460, 11590, 33062, 113820], and so on.
96
+
97
+ References
98
+ ==========
99
+
100
+ .. [1] https://en.wikipedia.org/wiki/Egyptian_fraction
101
+ .. [2] https://en.wikipedia.org/wiki/Greedy_algorithm_for_Egyptian_fractions
102
+ .. [3] https://www.ics.uci.edu/~eppstein/numth/egypt/conflict.html
103
+ .. [4] https://web.archive.org/web/20180413004012/https://ami.ektf.hu/uploads/papers/finalpdf/AMI_42_from129to134.pdf
104
+
105
+ """
106
+
107
+ if not isinstance(r, Rational):
108
+ if isinstance(r, (Tuple, tuple)) and len(r) == 2:
109
+ r = Rational(*r)
110
+ else:
111
+ raise ValueError("Value must be a Rational or tuple of ints")
112
+ if r <= 0:
113
+ raise ValueError("Value must be positive")
114
+
115
+ # common cases that all methods agree on
116
+ x, y = r.as_numer_denom()
117
+ if y == 1 and x == 2:
118
+ return [Integer(i) for i in [1, 2, 3, 6]]
119
+ if x == y + 1:
120
+ return [S.One, y]
121
+
122
+ prefix, rem = egypt_harmonic(r)
123
+ if rem == 0:
124
+ return prefix
125
+ # work in Python ints
126
+ x, y = rem.p, rem.q
127
+ # assert x < y and gcd(x, y) = 1
128
+
129
+ if algorithm == "Greedy":
130
+ postfix = egypt_greedy(x, y)
131
+ elif algorithm == "Graham Jewett":
132
+ postfix = egypt_graham_jewett(x, y)
133
+ elif algorithm == "Takenouchi":
134
+ postfix = egypt_takenouchi(x, y)
135
+ elif algorithm == "Golomb":
136
+ postfix = egypt_golomb(x, y)
137
+ else:
138
+ raise ValueError("Entered invalid algorithm")
139
+ return prefix + [Integer(i) for i in postfix]
140
+
141
+
142
+ def egypt_greedy(x, y):
143
+ # assumes gcd(x, y) == 1
144
+ if x == 1:
145
+ return [y]
146
+ else:
147
+ a = (-y) % x
148
+ b = y*(y//x + 1)
149
+ c = gcd(a, b)
150
+ if c > 1:
151
+ num, denom = a//c, b//c
152
+ else:
153
+ num, denom = a, b
154
+ return [y//x + 1] + egypt_greedy(num, denom)
155
+
156
+
157
+ def egypt_graham_jewett(x, y):
158
+ # assumes gcd(x, y) == 1
159
+ l = [y] * x
160
+
161
+ # l is now a list of integers whose reciprocals sum to x/y.
162
+ # we shall now proceed to manipulate the elements of l without
163
+ # changing the reciprocated sum until all elements are unique.
164
+
165
+ while len(l) != len(set(l)):
166
+ l.sort() # so the list has duplicates. find a smallest pair
167
+ for i in range(len(l) - 1):
168
+ if l[i] == l[i + 1]:
169
+ break
170
+ # we have now identified a pair of identical
171
+ # elements: l[i] and l[i + 1].
172
+ # now comes the application of the result of graham and jewett:
173
+ l[i + 1] = l[i] + 1
174
+ # and we just iterate that until the list has no duplicates.
175
+ l.append(l[i]*(l[i] + 1))
176
+ return sorted(l)
177
+
178
+
179
+ def egypt_takenouchi(x, y):
180
+ # assumes gcd(x, y) == 1
181
+ # special cases for 3/y
182
+ if x == 3:
183
+ if y % 2 == 0:
184
+ return [y//2, y]
185
+ i = (y - 1)//2
186
+ j = i + 1
187
+ k = j + i
188
+ return [j, k, j*k]
189
+ l = [y] * x
190
+ while len(l) != len(set(l)):
191
+ l.sort()
192
+ for i in range(len(l) - 1):
193
+ if l[i] == l[i + 1]:
194
+ break
195
+ k = l[i]
196
+ if k % 2 == 0:
197
+ l[i] = l[i] // 2
198
+ del l[i + 1]
199
+ else:
200
+ l[i], l[i + 1] = (k + 1)//2, k*(k + 1)//2
201
+ return sorted(l)
202
+
203
+
204
+ def egypt_golomb(x, y):
205
+ # assumes x < y and gcd(x, y) == 1
206
+ if x == 1:
207
+ return [y]
208
+ xp = sympy.polys.ZZ.invert(int(x), int(y))
209
+ rv = [xp*y]
210
+ rv.extend(egypt_golomb((x*xp - 1)//y, xp))
211
+ return sorted(rv)
212
+
213
+
214
+ def egypt_harmonic(r):
215
+ # assumes r is Rational
216
+ rv = []
217
+ d = S.One
218
+ acc = S.Zero
219
+ while acc + 1/d <= r:
220
+ acc += 1/d
221
+ rv.append(d)
222
+ d += 1
223
+ return (rv, r - acc)
venv/lib/python3.10/site-packages/sympy/ntheory/elliptic_curve.py ADDED
@@ -0,0 +1,398 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.numbers import oo
2
+ from sympy.core.relational import Eq
3
+ from sympy.core.symbol import symbols
4
+ from sympy.polys.domains import FiniteField, QQ, RationalField, FF
5
+ from sympy.solvers.solvers import solve
6
+ from sympy.utilities.iterables import is_sequence
7
+ from sympy.utilities.misc import as_int
8
+ from .factor_ import divisors
9
+ from .residue_ntheory import polynomial_congruence
10
+
11
+
12
+
13
+ class EllipticCurve:
14
+ """
15
+ Create the following Elliptic Curve over domain.
16
+
17
+ `y^{2} + a_{1} x y + a_{3} y = x^{3} + a_{2} x^{2} + a_{4} x + a_{6}`
18
+
19
+ The default domain is ``QQ``. If no coefficient ``a1``, ``a2``, ``a3``,
20
+ it create curve as following form.
21
+
22
+ `y^{2} = x^{3} + a_{4} x + a_{6}`
23
+
24
+ Examples
25
+ ========
26
+
27
+ References
28
+ ==========
29
+
30
+ .. [1] J. Silverman "A Friendly Introduction to Number Theory" Third Edition
31
+ .. [2] https://mathworld.wolfram.com/EllipticDiscriminant.html
32
+ .. [3] G. Hardy, E. Wright "An Introduction to the Theory of Numbers" Sixth Edition
33
+
34
+ """
35
+
36
+ def __init__(self, a4, a6, a1=0, a2=0, a3=0, modulus = 0):
37
+ if modulus == 0:
38
+ domain = QQ
39
+ else:
40
+ domain = FF(modulus)
41
+ a1, a2, a3, a4, a6 = map(domain.convert, (a1, a2, a3, a4, a6))
42
+ self._domain = domain
43
+ self.modulus = modulus
44
+ # Calculate discriminant
45
+ b2 = a1**2 + 4 * a2
46
+ b4 = 2 * a4 + a1 * a3
47
+ b6 = a3**2 + 4 * a6
48
+ b8 = a1**2 * a6 + 4 * a2 * a6 - a1 * a3 * a4 + a2 * a3**2 - a4**2
49
+ self._b2, self._b4, self._b6, self._b8 = b2, b4, b6, b8
50
+ self._discrim = -b2**2 * b8 - 8 * b4**3 - 27 * b6**2 + 9 * b2 * b4 * b6
51
+ self._a1 = a1
52
+ self._a2 = a2
53
+ self._a3 = a3
54
+ self._a4 = a4
55
+ self._a6 = a6
56
+ x, y, z = symbols('x y z')
57
+ self.x, self.y, self.z = x, y, z
58
+ self._eq = Eq(y**2*z + a1*x*y*z + a3*y*z**2, x**3 + a2*x**2*z + a4*x*z**2 + a6*z**3)
59
+ if isinstance(self._domain, FiniteField):
60
+ self._rank = 0
61
+ elif isinstance(self._domain, RationalField):
62
+ self._rank = None
63
+
64
+ def __call__(self, x, y, z=1):
65
+ return EllipticCurvePoint(x, y, z, self)
66
+
67
+ def __contains__(self, point):
68
+ if is_sequence(point):
69
+ if len(point) == 2:
70
+ z1 = 1
71
+ else:
72
+ z1 = point[2]
73
+ x1, y1 = point[:2]
74
+ elif isinstance(point, EllipticCurvePoint):
75
+ x1, y1, z1 = point.x, point.y, point.z
76
+ else:
77
+ raise ValueError('Invalid point.')
78
+ if self.characteristic == 0 and z1 == 0:
79
+ return True
80
+ return self._eq.subs({self.x: x1, self.y: y1, self.z: z1})
81
+
82
+ def __repr__(self):
83
+ return 'E({}): {}'.format(self._domain, self._eq)
84
+
85
+ def minimal(self):
86
+ """
87
+ Return minimal Weierstrass equation.
88
+
89
+ Examples
90
+ ========
91
+
92
+ >>> from sympy.ntheory.elliptic_curve import EllipticCurve
93
+
94
+ >>> e1 = EllipticCurve(-10, -20, 0, -1, 1)
95
+ >>> e1.minimal()
96
+ E(QQ): Eq(y**2*z, x**3 - 13392*x*z**2 - 1080432*z**3)
97
+
98
+ """
99
+ char = self.characteristic
100
+ if char == 2:
101
+ return self
102
+ if char == 3:
103
+ return EllipticCurve(self._b4/2, self._b6/4, a2=self._b2/4, modulus=self.modulus)
104
+ c4 = self._b2**2 - 24*self._b4
105
+ c6 = -self._b2**3 + 36*self._b2*self._b4 - 216*self._b6
106
+ return EllipticCurve(-27*c4, -54*c6, modulus=self.modulus)
107
+
108
+ def points(self):
109
+ """
110
+ Return points of curve over Finite Field.
111
+
112
+ Examples
113
+ ========
114
+
115
+ >>> from sympy.ntheory.elliptic_curve import EllipticCurve
116
+ >>> e2 = EllipticCurve(1, 1, 1, 1, 1, modulus=5)
117
+ >>> e2.points()
118
+ {(0, 2), (1, 4), (2, 0), (2, 2), (3, 0), (3, 1), (4, 0)}
119
+
120
+ """
121
+
122
+ char = self.characteristic
123
+ all_pt = set()
124
+ if char >= 1:
125
+ for i in range(char):
126
+ congruence_eq = ((self._eq.lhs - self._eq.rhs).subs({self.x: i, self.z: 1}))
127
+ sol = polynomial_congruence(congruence_eq, char)
128
+ for num in sol:
129
+ all_pt.add((i, num))
130
+ return all_pt
131
+ else:
132
+ raise ValueError("Infinitely many points")
133
+
134
+ def points_x(self, x):
135
+ "Returns points on with curve where xcoordinate = x"
136
+ pt = []
137
+ if self._domain == QQ:
138
+ for y in solve(self._eq.subs(self.x, x)):
139
+ pt.append((x, y))
140
+ congruence_eq = ((self._eq.lhs - self._eq.rhs).subs({self.x: x, self.z: 1}))
141
+ for y in polynomial_congruence(congruence_eq, self.characteristic):
142
+ pt.append((x, y))
143
+ return pt
144
+
145
+ def torsion_points(self):
146
+ """
147
+ Return torsion points of curve over Rational number.
148
+
149
+ Return point objects those are finite order.
150
+ According to Nagell-Lutz theorem, torsion point p(x, y)
151
+ x and y are integers, either y = 0 or y**2 is divisor
152
+ of discriminent. According to Mazur's theorem, there are
153
+ at most 15 points in torsion collection.
154
+
155
+ Examples
156
+ ========
157
+
158
+ >>> from sympy.ntheory.elliptic_curve import EllipticCurve
159
+ >>> e2 = EllipticCurve(-43, 166)
160
+ >>> sorted(e2.torsion_points())
161
+ [(-5, -16), (-5, 16), O, (3, -8), (3, 8), (11, -32), (11, 32)]
162
+
163
+ """
164
+ if self.characteristic > 0:
165
+ raise ValueError("No torsion point for Finite Field.")
166
+ l = [EllipticCurvePoint.point_at_infinity(self)]
167
+ for xx in solve(self._eq.subs({self.y: 0, self.z: 1})):
168
+ if xx.is_rational:
169
+ l.append(self(xx, 0))
170
+ for i in divisors(self.discriminant, generator=True):
171
+ j = int(i**.5)
172
+ if j**2 == i:
173
+ for xx in solve(self._eq.subs({self.y: j, self.z: 1})):
174
+ if not xx.is_rational:
175
+ continue
176
+ p = self(xx, j)
177
+ if p.order() != oo:
178
+ l.extend([p, -p])
179
+ return l
180
+
181
+ @property
182
+ def characteristic(self):
183
+ """
184
+ Return domain characteristic.
185
+
186
+ Examples
187
+ ========
188
+
189
+ >>> from sympy.ntheory.elliptic_curve import EllipticCurve
190
+ >>> e2 = EllipticCurve(-43, 166)
191
+ >>> e2.characteristic
192
+ 0
193
+
194
+ """
195
+ return self._domain.characteristic()
196
+
197
+ @property
198
+ def discriminant(self):
199
+ """
200
+ Return curve discriminant.
201
+
202
+ Examples
203
+ ========
204
+
205
+ >>> from sympy.ntheory.elliptic_curve import EllipticCurve
206
+ >>> e2 = EllipticCurve(0, 17)
207
+ >>> e2.discriminant
208
+ -124848
209
+
210
+ """
211
+ return int(self._discrim)
212
+
213
+ @property
214
+ def is_singular(self):
215
+ """
216
+ Return True if curve discriminant is equal to zero.
217
+ """
218
+ return self.discriminant == 0
219
+
220
+ @property
221
+ def j_invariant(self):
222
+ """
223
+ Return curve j-invariant.
224
+
225
+ Examples
226
+ ========
227
+
228
+ >>> from sympy.ntheory.elliptic_curve import EllipticCurve
229
+ >>> e1 = EllipticCurve(-2, 0, 0, 1, 1)
230
+ >>> e1.j_invariant
231
+ 1404928/389
232
+
233
+ """
234
+ c4 = self._b2**2 - 24*self._b4
235
+ return self._domain.to_sympy(c4**3 / self._discrim)
236
+
237
+ @property
238
+ def order(self):
239
+ """
240
+ Number of points in Finite field.
241
+
242
+ Examples
243
+ ========
244
+
245
+ >>> from sympy.ntheory.elliptic_curve import EllipticCurve
246
+ >>> e2 = EllipticCurve(1, 0, modulus=19)
247
+ >>> e2.order
248
+ 19
249
+
250
+ """
251
+ if self.characteristic == 0:
252
+ raise NotImplementedError("Still not implemented")
253
+ return len(self.points())
254
+
255
+ @property
256
+ def rank(self):
257
+ """
258
+ Number of independent points of infinite order.
259
+
260
+ For Finite field, it must be 0.
261
+ """
262
+ if self._rank is not None:
263
+ return self._rank
264
+ raise NotImplementedError("Still not implemented")
265
+
266
+
267
+ class EllipticCurvePoint:
268
+ """
269
+ Point of Elliptic Curve
270
+
271
+ Examples
272
+ ========
273
+
274
+ >>> from sympy.ntheory.elliptic_curve import EllipticCurve
275
+ >>> e1 = EllipticCurve(-17, 16)
276
+ >>> p1 = e1(0, -4, 1)
277
+ >>> p2 = e1(1, 0)
278
+ >>> p1 + p2
279
+ (15, -56)
280
+ >>> e3 = EllipticCurve(-1, 9)
281
+ >>> e3(1, -3) * 3
282
+ (664/169, 17811/2197)
283
+ >>> (e3(1, -3) * 3).order()
284
+ oo
285
+ >>> e2 = EllipticCurve(-2, 0, 0, 1, 1)
286
+ >>> p = e2(-1,1)
287
+ >>> q = e2(0, -1)
288
+ >>> p+q
289
+ (4, 8)
290
+ >>> p-q
291
+ (1, 0)
292
+ >>> 3*p-5*q
293
+ (328/361, -2800/6859)
294
+ """
295
+
296
+ @staticmethod
297
+ def point_at_infinity(curve):
298
+ return EllipticCurvePoint(0, 1, 0, curve)
299
+
300
+ def __init__(self, x, y, z, curve):
301
+ dom = curve._domain.convert
302
+ self.x = dom(x)
303
+ self.y = dom(y)
304
+ self.z = dom(z)
305
+ self._curve = curve
306
+ self._domain = self._curve._domain
307
+ if not self._curve.__contains__(self):
308
+ raise ValueError("The curve does not contain this point")
309
+
310
+ def __add__(self, p):
311
+ if self.z == 0:
312
+ return p
313
+ if p.z == 0:
314
+ return self
315
+ x1, y1 = self.x/self.z, self.y/self.z
316
+ x2, y2 = p.x/p.z, p.y/p.z
317
+ a1 = self._curve._a1
318
+ a2 = self._curve._a2
319
+ a3 = self._curve._a3
320
+ a4 = self._curve._a4
321
+ a6 = self._curve._a6
322
+ if x1 != x2:
323
+ slope = (y1 - y2) / (x1 - x2)
324
+ yint = (y1 * x2 - y2 * x1) / (x2 - x1)
325
+ else:
326
+ if (y1 + y2) == 0:
327
+ return self.point_at_infinity(self._curve)
328
+ slope = (3 * x1**2 + 2*a2*x1 + a4 - a1*y1) / (a1 * x1 + a3 + 2 * y1)
329
+ yint = (-x1**3 + a4*x1 + 2*a6 - a3*y1) / (a1*x1 + a3 + 2*y1)
330
+ x3 = slope**2 + a1*slope - a2 - x1 - x2
331
+ y3 = -(slope + a1) * x3 - yint - a3
332
+ return self._curve(x3, y3, 1)
333
+
334
+ def __lt__(self, other):
335
+ return (self.x, self.y, self.z) < (other.x, other.y, other.z)
336
+
337
+ def __mul__(self, n):
338
+ n = as_int(n)
339
+ r = self.point_at_infinity(self._curve)
340
+ if n == 0:
341
+ return r
342
+ if n < 0:
343
+ return -self * -n
344
+ p = self
345
+ while n:
346
+ if n & 1:
347
+ r = r + p
348
+ n >>= 1
349
+ p = p + p
350
+ return r
351
+
352
+ def __rmul__(self, n):
353
+ return self * n
354
+
355
+ def __neg__(self):
356
+ return EllipticCurvePoint(self.x, -self.y - self._curve._a1*self.x - self._curve._a3, self.z, self._curve)
357
+
358
+ def __repr__(self):
359
+ if self.z == 0:
360
+ return 'O'
361
+ dom = self._curve._domain
362
+ try:
363
+ return '({}, {})'.format(dom.to_sympy(self.x), dom.to_sympy(self.y))
364
+ except TypeError:
365
+ pass
366
+ return '({}, {})'.format(self.x, self.y)
367
+
368
+ def __sub__(self, other):
369
+ return self.__add__(-other)
370
+
371
+ def order(self):
372
+ """
373
+ Return point order n where nP = 0.
374
+
375
+ """
376
+ if self.z == 0:
377
+ return 1
378
+ if self.y == 0: # P = -P
379
+ return 2
380
+ p = self * 2
381
+ if p.y == -self.y: # 2P = -P
382
+ return 3
383
+ i = 2
384
+ if self._domain != QQ:
385
+ while int(p.x) == p.x and int(p.y) == p.y:
386
+ p = self + p
387
+ i += 1
388
+ if p.z == 0:
389
+ return i
390
+ return oo
391
+ while p.x.numerator == p.x and p.y.numerator == p.y:
392
+ p = self + p
393
+ i += 1
394
+ if i > 12:
395
+ return oo
396
+ if p.z == 0:
397
+ return i
398
+ return oo
venv/lib/python3.10/site-packages/sympy/ntheory/factor_.py ADDED
@@ -0,0 +1,2654 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Integer factorization
3
+ """
4
+
5
+ from collections import defaultdict
6
+ from functools import reduce
7
+ import random
8
+ import math
9
+
10
+ from sympy.core import sympify
11
+ from sympy.core.containers import Dict
12
+ from sympy.core.evalf import bitcount
13
+ from sympy.core.expr import Expr
14
+ from sympy.core.function import Function
15
+ from sympy.core.logic import fuzzy_and
16
+ from sympy.core.mul import Mul
17
+ from sympy.core.numbers import igcd, ilcm, Rational, Integer
18
+ from sympy.core.power import integer_nthroot, Pow, integer_log
19
+ from sympy.core.singleton import S
20
+ from sympy.external.gmpy import SYMPY_INTS
21
+ from .primetest import isprime
22
+ from .generate import sieve, primerange, nextprime
23
+ from .digits import digits
24
+ from sympy.utilities.iterables import flatten
25
+ from sympy.utilities.misc import as_int, filldedent
26
+ from .ecm import _ecm_one_factor
27
+
28
+ # Note: This list should be updated whenever new Mersenne primes are found.
29
+ # Refer: https://www.mersenne.org/
30
+ MERSENNE_PRIME_EXPONENTS = (2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203,
31
+ 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049,
32
+ 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583,
33
+ 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281, 77232917, 82589933)
34
+
35
+ # compute more when needed for i in Mersenne prime exponents
36
+ PERFECT = [6] # 2**(i-1)*(2**i-1)
37
+ MERSENNES = [3] # 2**i - 1
38
+
39
+
40
+ def _ismersenneprime(n):
41
+ global MERSENNES
42
+ j = len(MERSENNES)
43
+ while n > MERSENNES[-1] and j < len(MERSENNE_PRIME_EXPONENTS):
44
+ # conservatively grow the list
45
+ MERSENNES.append(2**MERSENNE_PRIME_EXPONENTS[j] - 1)
46
+ j += 1
47
+ return n in MERSENNES
48
+
49
+
50
+ def _isperfect(n):
51
+ global PERFECT
52
+ if n % 2 == 0:
53
+ j = len(PERFECT)
54
+ while n > PERFECT[-1] and j < len(MERSENNE_PRIME_EXPONENTS):
55
+ # conservatively grow the list
56
+ t = 2**(MERSENNE_PRIME_EXPONENTS[j] - 1)
57
+ PERFECT.append(t*(2*t - 1))
58
+ j += 1
59
+ return n in PERFECT
60
+
61
+
62
+ small_trailing = [0] * 256
63
+ for j in range(1,8):
64
+ small_trailing[1<<j::1<<(j+1)] = [j] * (1<<(7-j))
65
+
66
+
67
+ def smoothness(n):
68
+ """
69
+ Return the B-smooth and B-power smooth values of n.
70
+
71
+ The smoothness of n is the largest prime factor of n; the power-
72
+ smoothness is the largest divisor raised to its multiplicity.
73
+
74
+ Examples
75
+ ========
76
+
77
+ >>> from sympy.ntheory.factor_ import smoothness
78
+ >>> smoothness(2**7*3**2)
79
+ (3, 128)
80
+ >>> smoothness(2**4*13)
81
+ (13, 16)
82
+ >>> smoothness(2)
83
+ (2, 2)
84
+
85
+ See Also
86
+ ========
87
+
88
+ factorint, smoothness_p
89
+ """
90
+
91
+ if n == 1:
92
+ return (1, 1) # not prime, but otherwise this causes headaches
93
+ facs = factorint(n)
94
+ return max(facs), max(m**facs[m] for m in facs)
95
+
96
+
97
+ def smoothness_p(n, m=-1, power=0, visual=None):
98
+ """
99
+ Return a list of [m, (p, (M, sm(p + m), psm(p + m)))...]
100
+ where:
101
+
102
+ 1. p**M is the base-p divisor of n
103
+ 2. sm(p + m) is the smoothness of p + m (m = -1 by default)
104
+ 3. psm(p + m) is the power smoothness of p + m
105
+
106
+ The list is sorted according to smoothness (default) or by power smoothness
107
+ if power=1.
108
+
109
+ The smoothness of the numbers to the left (m = -1) or right (m = 1) of a
110
+ factor govern the results that are obtained from the p +/- 1 type factoring
111
+ methods.
112
+
113
+ >>> from sympy.ntheory.factor_ import smoothness_p, factorint
114
+ >>> smoothness_p(10431, m=1)
115
+ (1, [(3, (2, 2, 4)), (19, (1, 5, 5)), (61, (1, 31, 31))])
116
+ >>> smoothness_p(10431)
117
+ (-1, [(3, (2, 2, 2)), (19, (1, 3, 9)), (61, (1, 5, 5))])
118
+ >>> smoothness_p(10431, power=1)
119
+ (-1, [(3, (2, 2, 2)), (61, (1, 5, 5)), (19, (1, 3, 9))])
120
+
121
+ If visual=True then an annotated string will be returned:
122
+
123
+ >>> print(smoothness_p(21477639576571, visual=1))
124
+ p**i=4410317**1 has p-1 B=1787, B-pow=1787
125
+ p**i=4869863**1 has p-1 B=2434931, B-pow=2434931
126
+
127
+ This string can also be generated directly from a factorization dictionary
128
+ and vice versa:
129
+
130
+ >>> factorint(17*9)
131
+ {3: 2, 17: 1}
132
+ >>> smoothness_p(_)
133
+ 'p**i=3**2 has p-1 B=2, B-pow=2\\np**i=17**1 has p-1 B=2, B-pow=16'
134
+ >>> smoothness_p(_)
135
+ {3: 2, 17: 1}
136
+
137
+ The table of the output logic is:
138
+
139
+ ====== ====== ======= =======
140
+ | Visual
141
+ ------ ----------------------
142
+ Input True False other
143
+ ====== ====== ======= =======
144
+ dict str tuple str
145
+ str str tuple dict
146
+ tuple str tuple str
147
+ n str tuple tuple
148
+ mul str tuple tuple
149
+ ====== ====== ======= =======
150
+
151
+ See Also
152
+ ========
153
+
154
+ factorint, smoothness
155
+ """
156
+
157
+ # visual must be True, False or other (stored as None)
158
+ if visual in (1, 0):
159
+ visual = bool(visual)
160
+ elif visual not in (True, False):
161
+ visual = None
162
+
163
+ if isinstance(n, str):
164
+ if visual:
165
+ return n
166
+ d = {}
167
+ for li in n.splitlines():
168
+ k, v = [int(i) for i in
169
+ li.split('has')[0].split('=')[1].split('**')]
170
+ d[k] = v
171
+ if visual is not True and visual is not False:
172
+ return d
173
+ return smoothness_p(d, visual=False)
174
+ elif not isinstance(n, tuple):
175
+ facs = factorint(n, visual=False)
176
+
177
+ if power:
178
+ k = -1
179
+ else:
180
+ k = 1
181
+ if isinstance(n, tuple):
182
+ rv = n
183
+ else:
184
+ rv = (m, sorted([(f,
185
+ tuple([M] + list(smoothness(f + m))))
186
+ for f, M in list(facs.items())],
187
+ key=lambda x: (x[1][k], x[0])))
188
+
189
+ if visual is False or (visual is not True) and (type(n) in [int, Mul]):
190
+ return rv
191
+ lines = []
192
+ for dat in rv[1]:
193
+ dat = flatten(dat)
194
+ dat.insert(2, m)
195
+ lines.append('p**i=%i**%i has p%+i B=%i, B-pow=%i' % tuple(dat))
196
+ return '\n'.join(lines)
197
+
198
+
199
+ def trailing(n):
200
+ """Count the number of trailing zero digits in the binary
201
+ representation of n, i.e. determine the largest power of 2
202
+ that divides n.
203
+
204
+ Examples
205
+ ========
206
+
207
+ >>> from sympy import trailing
208
+ >>> trailing(128)
209
+ 7
210
+ >>> trailing(63)
211
+ 0
212
+ """
213
+ n = abs(int(n))
214
+ if not n:
215
+ return 0
216
+ low_byte = n & 0xff
217
+ if low_byte:
218
+ return small_trailing[low_byte]
219
+
220
+ # 2**m is quick for z up through 2**30
221
+ z = bitcount(n) - 1
222
+ if isinstance(z, SYMPY_INTS):
223
+ if n == 1 << z:
224
+ return z
225
+
226
+ if z < 300:
227
+ # fixed 8-byte reduction
228
+ t = 8
229
+ n >>= 8
230
+ while not n & 0xff:
231
+ n >>= 8
232
+ t += 8
233
+ return t + small_trailing[n & 0xff]
234
+
235
+ # binary reduction important when there might be a large
236
+ # number of trailing 0s
237
+ t = 0
238
+ p = 8
239
+ while not n & 1:
240
+ while not n & ((1 << p) - 1):
241
+ n >>= p
242
+ t += p
243
+ p *= 2
244
+ p //= 2
245
+ return t
246
+
247
+
248
+ def multiplicity(p, n):
249
+ """
250
+ Find the greatest integer m such that p**m divides n.
251
+
252
+ Examples
253
+ ========
254
+
255
+ >>> from sympy import multiplicity, Rational
256
+ >>> [multiplicity(5, n) for n in [8, 5, 25, 125, 250]]
257
+ [0, 1, 2, 3, 3]
258
+ >>> multiplicity(3, Rational(1, 9))
259
+ -2
260
+
261
+ Note: when checking for the multiplicity of a number in a
262
+ large factorial it is most efficient to send it as an unevaluated
263
+ factorial or to call ``multiplicity_in_factorial`` directly:
264
+
265
+ >>> from sympy.ntheory import multiplicity_in_factorial
266
+ >>> from sympy import factorial
267
+ >>> p = factorial(25)
268
+ >>> n = 2**100
269
+ >>> nfac = factorial(n, evaluate=False)
270
+ >>> multiplicity(p, nfac)
271
+ 52818775009509558395695966887
272
+ >>> _ == multiplicity_in_factorial(p, n)
273
+ True
274
+
275
+ """
276
+ try:
277
+ p, n = as_int(p), as_int(n)
278
+ except ValueError:
279
+ from sympy.functions.combinatorial.factorials import factorial
280
+ if all(isinstance(i, (SYMPY_INTS, Rational)) for i in (p, n)):
281
+ p = Rational(p)
282
+ n = Rational(n)
283
+ if p.q == 1:
284
+ if n.p == 1:
285
+ return -multiplicity(p.p, n.q)
286
+ return multiplicity(p.p, n.p) - multiplicity(p.p, n.q)
287
+ elif p.p == 1:
288
+ return multiplicity(p.q, n.q)
289
+ else:
290
+ like = min(
291
+ multiplicity(p.p, n.p),
292
+ multiplicity(p.q, n.q))
293
+ cross = min(
294
+ multiplicity(p.q, n.p),
295
+ multiplicity(p.p, n.q))
296
+ return like - cross
297
+ elif (isinstance(p, (SYMPY_INTS, Integer)) and
298
+ isinstance(n, factorial) and
299
+ isinstance(n.args[0], Integer) and
300
+ n.args[0] >= 0):
301
+ return multiplicity_in_factorial(p, n.args[0])
302
+ raise ValueError('expecting ints or fractions, got %s and %s' % (p, n))
303
+
304
+ if n == 0:
305
+ raise ValueError('no such integer exists: multiplicity of %s is not-defined' %(n))
306
+ if p == 2:
307
+ return trailing(n)
308
+ if p < 2:
309
+ raise ValueError('p must be an integer, 2 or larger, but got %s' % p)
310
+ if p == n:
311
+ return 1
312
+
313
+ m = 0
314
+ n, rem = divmod(n, p)
315
+ while not rem:
316
+ m += 1
317
+ if m > 5:
318
+ # The multiplicity could be very large. Better
319
+ # to increment in powers of two
320
+ e = 2
321
+ while 1:
322
+ ppow = p**e
323
+ if ppow < n:
324
+ nnew, rem = divmod(n, ppow)
325
+ if not rem:
326
+ m += e
327
+ e *= 2
328
+ n = nnew
329
+ continue
330
+ return m + multiplicity(p, n)
331
+ n, rem = divmod(n, p)
332
+ return m
333
+
334
+
335
+ def multiplicity_in_factorial(p, n):
336
+ """return the largest integer ``m`` such that ``p**m`` divides ``n!``
337
+ without calculating the factorial of ``n``.
338
+
339
+
340
+ Examples
341
+ ========
342
+
343
+ >>> from sympy.ntheory import multiplicity_in_factorial
344
+ >>> from sympy import factorial
345
+
346
+ >>> multiplicity_in_factorial(2, 3)
347
+ 1
348
+
349
+ An instructive use of this is to tell how many trailing zeros
350
+ a given factorial has. For example, there are 6 in 25!:
351
+
352
+ >>> factorial(25)
353
+ 15511210043330985984000000
354
+ >>> multiplicity_in_factorial(10, 25)
355
+ 6
356
+
357
+ For large factorials, it is much faster/feasible to use
358
+ this function rather than computing the actual factorial:
359
+
360
+ >>> multiplicity_in_factorial(factorial(25), 2**100)
361
+ 52818775009509558395695966887
362
+
363
+ """
364
+
365
+ p, n = as_int(p), as_int(n)
366
+
367
+ if p <= 0:
368
+ raise ValueError('expecting positive integer got %s' % p )
369
+
370
+ if n < 0:
371
+ raise ValueError('expecting non-negative integer got %s' % n )
372
+
373
+ factors = factorint(p)
374
+
375
+ # keep only the largest of a given multiplicity since those
376
+ # of a given multiplicity will be goverened by the behavior
377
+ # of the largest factor
378
+ test = defaultdict(int)
379
+ for k, v in factors.items():
380
+ test[v] = max(k, test[v])
381
+ keep = set(test.values())
382
+ # remove others from factors
383
+ for k in list(factors.keys()):
384
+ if k not in keep:
385
+ factors.pop(k)
386
+
387
+ mp = S.Infinity
388
+ for i in factors:
389
+ # multiplicity of i in n! is
390
+ mi = (n - (sum(digits(n, i)) - i))//(i - 1)
391
+ # multiplicity of p in n! depends on multiplicity
392
+ # of prime `i` in p, so we floor divide by factors[i]
393
+ # and keep it if smaller than the multiplicity of p
394
+ # seen so far
395
+ mp = min(mp, mi//factors[i])
396
+
397
+ return mp
398
+
399
+
400
+ def perfect_power(n, candidates=None, big=True, factor=True):
401
+ """
402
+ Return ``(b, e)`` such that ``n`` == ``b**e`` if ``n`` is a unique
403
+ perfect power with ``e > 1``, else ``False`` (e.g. 1 is not a
404
+ perfect power). A ValueError is raised if ``n`` is not Rational.
405
+
406
+ By default, the base is recursively decomposed and the exponents
407
+ collected so the largest possible ``e`` is sought. If ``big=False``
408
+ then the smallest possible ``e`` (thus prime) will be chosen.
409
+
410
+ If ``factor=True`` then simultaneous factorization of ``n`` is
411
+ attempted since finding a factor indicates the only possible root
412
+ for ``n``. This is True by default since only a few small factors will
413
+ be tested in the course of searching for the perfect power.
414
+
415
+ The use of ``candidates`` is primarily for internal use; if provided,
416
+ False will be returned if ``n`` cannot be written as a power with one
417
+ of the candidates as an exponent and factoring (beyond testing for
418
+ a factor of 2) will not be attempted.
419
+
420
+ Examples
421
+ ========
422
+
423
+ >>> from sympy import perfect_power, Rational
424
+ >>> perfect_power(16)
425
+ (2, 4)
426
+ >>> perfect_power(16, big=False)
427
+ (4, 2)
428
+
429
+ Negative numbers can only have odd perfect powers:
430
+
431
+ >>> perfect_power(-4)
432
+ False
433
+ >>> perfect_power(-8)
434
+ (-2, 3)
435
+
436
+ Rationals are also recognized:
437
+
438
+ >>> perfect_power(Rational(1, 2)**3)
439
+ (1/2, 3)
440
+ >>> perfect_power(Rational(-3, 2)**3)
441
+ (-3/2, 3)
442
+
443
+ Notes
444
+ =====
445
+
446
+ To know whether an integer is a perfect power of 2 use
447
+
448
+ >>> is2pow = lambda n: bool(n and not n & (n - 1))
449
+ >>> [(i, is2pow(i)) for i in range(5)]
450
+ [(0, False), (1, True), (2, True), (3, False), (4, True)]
451
+
452
+ It is not necessary to provide ``candidates``. When provided
453
+ it will be assumed that they are ints. The first one that is
454
+ larger than the computed maximum possible exponent will signal
455
+ failure for the routine.
456
+
457
+ >>> perfect_power(3**8, [9])
458
+ False
459
+ >>> perfect_power(3**8, [2, 4, 8])
460
+ (3, 8)
461
+ >>> perfect_power(3**8, [4, 8], big=False)
462
+ (9, 4)
463
+
464
+ See Also
465
+ ========
466
+ sympy.core.power.integer_nthroot
467
+ sympy.ntheory.primetest.is_square
468
+ """
469
+ if isinstance(n, Rational) and not n.is_Integer:
470
+ p, q = n.as_numer_denom()
471
+ if p is S.One:
472
+ pp = perfect_power(q)
473
+ if pp:
474
+ pp = (n.func(1, pp[0]), pp[1])
475
+ else:
476
+ pp = perfect_power(p)
477
+ if pp:
478
+ num, e = pp
479
+ pq = perfect_power(q, [e])
480
+ if pq:
481
+ den, _ = pq
482
+ pp = n.func(num, den), e
483
+ return pp
484
+
485
+ n = as_int(n)
486
+ if n < 0:
487
+ pp = perfect_power(-n)
488
+ if pp:
489
+ b, e = pp
490
+ if e % 2:
491
+ return -b, e
492
+ return False
493
+
494
+ if n <= 3:
495
+ # no unique exponent for 0, 1
496
+ # 2 and 3 have exponents of 1
497
+ return False
498
+ logn = math.log(n, 2)
499
+ max_possible = int(logn) + 2 # only check values less than this
500
+ not_square = n % 10 in [2, 3, 7, 8] # squares cannot end in 2, 3, 7, 8
501
+ min_possible = 2 + not_square
502
+ if not candidates:
503
+ candidates = primerange(min_possible, max_possible)
504
+ else:
505
+ candidates = sorted([i for i in candidates
506
+ if min_possible <= i < max_possible])
507
+ if n%2 == 0:
508
+ e = trailing(n)
509
+ candidates = [i for i in candidates if e%i == 0]
510
+ if big:
511
+ candidates = reversed(candidates)
512
+ for e in candidates:
513
+ r, ok = integer_nthroot(n, e)
514
+ if ok:
515
+ return (r, e)
516
+ return False
517
+
518
+ def _factors():
519
+ rv = 2 + n % 2
520
+ while True:
521
+ yield rv
522
+ rv = nextprime(rv)
523
+
524
+ for fac, e in zip(_factors(), candidates):
525
+ # see if there is a factor present
526
+ if factor and n % fac == 0:
527
+ # find what the potential power is
528
+ if fac == 2:
529
+ e = trailing(n)
530
+ else:
531
+ e = multiplicity(fac, n)
532
+ # if it's a trivial power we are done
533
+ if e == 1:
534
+ return False
535
+
536
+ # maybe the e-th root of n is exact
537
+ r, exact = integer_nthroot(n, e)
538
+ if not exact:
539
+ # Having a factor, we know that e is the maximal
540
+ # possible value for a root of n.
541
+ # If n = fac**e*m can be written as a perfect
542
+ # power then see if m can be written as r**E where
543
+ # gcd(e, E) != 1 so n = (fac**(e//E)*r)**E
544
+ m = n//fac**e
545
+ rE = perfect_power(m, candidates=divisors(e, generator=True))
546
+ if not rE:
547
+ return False
548
+ else:
549
+ r, E = rE
550
+ r, e = fac**(e//E)*r, E
551
+ if not big:
552
+ e0 = primefactors(e)
553
+ if e0[0] != e:
554
+ r, e = r**(e//e0[0]), e0[0]
555
+ return r, e
556
+
557
+ # Weed out downright impossible candidates
558
+ if logn/e < 40:
559
+ b = 2.0**(logn/e)
560
+ if abs(int(b + 0.5) - b) > 0.01:
561
+ continue
562
+
563
+ # now see if the plausible e makes a perfect power
564
+ r, exact = integer_nthroot(n, e)
565
+ if exact:
566
+ if big:
567
+ m = perfect_power(r, big=big, factor=factor)
568
+ if m:
569
+ r, e = m[0], e*m[1]
570
+ return int(r), e
571
+
572
+ return False
573
+
574
+
575
+ def pollard_rho(n, s=2, a=1, retries=5, seed=1234, max_steps=None, F=None):
576
+ r"""
577
+ Use Pollard's rho method to try to extract a nontrivial factor
578
+ of ``n``. The returned factor may be a composite number. If no
579
+ factor is found, ``None`` is returned.
580
+
581
+ The algorithm generates pseudo-random values of x with a generator
582
+ function, replacing x with F(x). If F is not supplied then the
583
+ function x**2 + ``a`` is used. The first value supplied to F(x) is ``s``.
584
+ Upon failure (if ``retries`` is > 0) a new ``a`` and ``s`` will be
585
+ supplied; the ``a`` will be ignored if F was supplied.
586
+
587
+ The sequence of numbers generated by such functions generally have a
588
+ a lead-up to some number and then loop around back to that number and
589
+ begin to repeat the sequence, e.g. 1, 2, 3, 4, 5, 3, 4, 5 -- this leader
590
+ and loop look a bit like the Greek letter rho, and thus the name, 'rho'.
591
+
592
+ For a given function, very different leader-loop values can be obtained
593
+ so it is a good idea to allow for retries:
594
+
595
+ >>> from sympy.ntheory.generate import cycle_length
596
+ >>> n = 16843009
597
+ >>> F = lambda x:(2048*pow(x, 2, n) + 32767) % n
598
+ >>> for s in range(5):
599
+ ... print('loop length = %4i; leader length = %3i' % next(cycle_length(F, s)))
600
+ ...
601
+ loop length = 2489; leader length = 42
602
+ loop length = 78; leader length = 120
603
+ loop length = 1482; leader length = 99
604
+ loop length = 1482; leader length = 285
605
+ loop length = 1482; leader length = 100
606
+
607
+ Here is an explicit example where there is a two element leadup to
608
+ a sequence of 3 numbers (11, 14, 4) that then repeat:
609
+
610
+ >>> x=2
611
+ >>> for i in range(9):
612
+ ... x=(x**2+12)%17
613
+ ... print(x)
614
+ ...
615
+ 16
616
+ 13
617
+ 11
618
+ 14
619
+ 4
620
+ 11
621
+ 14
622
+ 4
623
+ 11
624
+ >>> next(cycle_length(lambda x: (x**2+12)%17, 2))
625
+ (3, 2)
626
+ >>> list(cycle_length(lambda x: (x**2+12)%17, 2, values=True))
627
+ [16, 13, 11, 14, 4]
628
+
629
+ Instead of checking the differences of all generated values for a gcd
630
+ with n, only the kth and 2*kth numbers are checked, e.g. 1st and 2nd,
631
+ 2nd and 4th, 3rd and 6th until it has been detected that the loop has been
632
+ traversed. Loops may be many thousands of steps long before rho finds a
633
+ factor or reports failure. If ``max_steps`` is specified, the iteration
634
+ is cancelled with a failure after the specified number of steps.
635
+
636
+ Examples
637
+ ========
638
+
639
+ >>> from sympy import pollard_rho
640
+ >>> n=16843009
641
+ >>> F=lambda x:(2048*pow(x,2,n) + 32767) % n
642
+ >>> pollard_rho(n, F=F)
643
+ 257
644
+
645
+ Use the default setting with a bad value of ``a`` and no retries:
646
+
647
+ >>> pollard_rho(n, a=n-2, retries=0)
648
+
649
+ If retries is > 0 then perhaps the problem will correct itself when
650
+ new values are generated for a:
651
+
652
+ >>> pollard_rho(n, a=n-2, retries=1)
653
+ 257
654
+
655
+ References
656
+ ==========
657
+
658
+ .. [1] Richard Crandall & Carl Pomerance (2005), "Prime Numbers:
659
+ A Computational Perspective", Springer, 2nd edition, 229-231
660
+
661
+ """
662
+ n = int(n)
663
+ if n < 5:
664
+ raise ValueError('pollard_rho should receive n > 4')
665
+ prng = random.Random(seed + retries)
666
+ V = s
667
+ for i in range(retries + 1):
668
+ U = V
669
+ if not F:
670
+ F = lambda x: (pow(x, 2, n) + a) % n
671
+ j = 0
672
+ while 1:
673
+ if max_steps and (j > max_steps):
674
+ break
675
+ j += 1
676
+ U = F(U)
677
+ V = F(F(V)) # V is 2x further along than U
678
+ g = igcd(U - V, n)
679
+ if g == 1:
680
+ continue
681
+ if g == n:
682
+ break
683
+ return int(g)
684
+ V = prng.randint(0, n - 1)
685
+ a = prng.randint(1, n - 3) # for x**2 + a, a%n should not be 0 or -2
686
+ F = None
687
+ return None
688
+
689
+
690
+ def pollard_pm1(n, B=10, a=2, retries=0, seed=1234):
691
+ """
692
+ Use Pollard's p-1 method to try to extract a nontrivial factor
693
+ of ``n``. Either a divisor (perhaps composite) or ``None`` is returned.
694
+
695
+ The value of ``a`` is the base that is used in the test gcd(a**M - 1, n).
696
+ The default is 2. If ``retries`` > 0 then if no factor is found after the
697
+ first attempt, a new ``a`` will be generated randomly (using the ``seed``)
698
+ and the process repeated.
699
+
700
+ Note: the value of M is lcm(1..B) = reduce(ilcm, range(2, B + 1)).
701
+
702
+ A search is made for factors next to even numbers having a power smoothness
703
+ less than ``B``. Choosing a larger B increases the likelihood of finding a
704
+ larger factor but takes longer. Whether a factor of n is found or not
705
+ depends on ``a`` and the power smoothness of the even number just less than
706
+ the factor p (hence the name p - 1).
707
+
708
+ Although some discussion of what constitutes a good ``a`` some
709
+ descriptions are hard to interpret. At the modular.math site referenced
710
+ below it is stated that if gcd(a**M - 1, n) = N then a**M % q**r is 1
711
+ for every prime power divisor of N. But consider the following:
712
+
713
+ >>> from sympy.ntheory.factor_ import smoothness_p, pollard_pm1
714
+ >>> n=257*1009
715
+ >>> smoothness_p(n)
716
+ (-1, [(257, (1, 2, 256)), (1009, (1, 7, 16))])
717
+
718
+ So we should (and can) find a root with B=16:
719
+
720
+ >>> pollard_pm1(n, B=16, a=3)
721
+ 1009
722
+
723
+ If we attempt to increase B to 256 we find that it does not work:
724
+
725
+ >>> pollard_pm1(n, B=256)
726
+ >>>
727
+
728
+ But if the value of ``a`` is changed we find that only multiples of
729
+ 257 work, e.g.:
730
+
731
+ >>> pollard_pm1(n, B=256, a=257)
732
+ 1009
733
+
734
+ Checking different ``a`` values shows that all the ones that did not
735
+ work had a gcd value not equal to ``n`` but equal to one of the
736
+ factors:
737
+
738
+ >>> from sympy import ilcm, igcd, factorint, Pow
739
+ >>> M = 1
740
+ >>> for i in range(2, 256):
741
+ ... M = ilcm(M, i)
742
+ ...
743
+ >>> set([igcd(pow(a, M, n) - 1, n) for a in range(2, 256) if
744
+ ... igcd(pow(a, M, n) - 1, n) != n])
745
+ {1009}
746
+
747
+ But does aM % d for every divisor of n give 1?
748
+
749
+ >>> aM = pow(255, M, n)
750
+ >>> [(d, aM%Pow(*d.args)) for d in factorint(n, visual=True).args]
751
+ [(257**1, 1), (1009**1, 1)]
752
+
753
+ No, only one of them. So perhaps the principle is that a root will
754
+ be found for a given value of B provided that:
755
+
756
+ 1) the power smoothness of the p - 1 value next to the root
757
+ does not exceed B
758
+ 2) a**M % p != 1 for any of the divisors of n.
759
+
760
+ By trying more than one ``a`` it is possible that one of them
761
+ will yield a factor.
762
+
763
+ Examples
764
+ ========
765
+
766
+ With the default smoothness bound, this number cannot be cracked:
767
+
768
+ >>> from sympy.ntheory import pollard_pm1
769
+ >>> pollard_pm1(21477639576571)
770
+
771
+ Increasing the smoothness bound helps:
772
+
773
+ >>> pollard_pm1(21477639576571, B=2000)
774
+ 4410317
775
+
776
+ Looking at the smoothness of the factors of this number we find:
777
+
778
+ >>> from sympy.ntheory.factor_ import smoothness_p, factorint
779
+ >>> print(smoothness_p(21477639576571, visual=1))
780
+ p**i=4410317**1 has p-1 B=1787, B-pow=1787
781
+ p**i=4869863**1 has p-1 B=2434931, B-pow=2434931
782
+
783
+ The B and B-pow are the same for the p - 1 factorizations of the divisors
784
+ because those factorizations had a very large prime factor:
785
+
786
+ >>> factorint(4410317 - 1)
787
+ {2: 2, 617: 1, 1787: 1}
788
+ >>> factorint(4869863-1)
789
+ {2: 1, 2434931: 1}
790
+
791
+ Note that until B reaches the B-pow value of 1787, the number is not cracked;
792
+
793
+ >>> pollard_pm1(21477639576571, B=1786)
794
+ >>> pollard_pm1(21477639576571, B=1787)
795
+ 4410317
796
+
797
+ The B value has to do with the factors of the number next to the divisor,
798
+ not the divisors themselves. A worst case scenario is that the number next
799
+ to the factor p has a large prime divisisor or is a perfect power. If these
800
+ conditions apply then the power-smoothness will be about p/2 or p. The more
801
+ realistic is that there will be a large prime factor next to p requiring
802
+ a B value on the order of p/2. Although primes may have been searched for
803
+ up to this level, the p/2 is a factor of p - 1, something that we do not
804
+ know. The modular.math reference below states that 15% of numbers in the
805
+ range of 10**15 to 15**15 + 10**4 are 10**6 power smooth so a B of 10**6
806
+ will fail 85% of the time in that range. From 10**8 to 10**8 + 10**3 the
807
+ percentages are nearly reversed...but in that range the simple trial
808
+ division is quite fast.
809
+
810
+ References
811
+ ==========
812
+
813
+ .. [1] Richard Crandall & Carl Pomerance (2005), "Prime Numbers:
814
+ A Computational Perspective", Springer, 2nd edition, 236-238
815
+ .. [2] https://web.archive.org/web/20150716201437/http://modular.math.washington.edu/edu/2007/spring/ent/ent-html/node81.html
816
+ .. [3] https://www.cs.toronto.edu/~yuvalf/Factorization.pdf
817
+ """
818
+
819
+ n = int(n)
820
+ if n < 4 or B < 3:
821
+ raise ValueError('pollard_pm1 should receive n > 3 and B > 2')
822
+ prng = random.Random(seed + B)
823
+
824
+ # computing a**lcm(1,2,3,..B) % n for B > 2
825
+ # it looks weird, but it's right: primes run [2, B]
826
+ # and the answer's not right until the loop is done.
827
+ for i in range(retries + 1):
828
+ aM = a
829
+ for p in sieve.primerange(2, B + 1):
830
+ e = int(math.log(B, p))
831
+ aM = pow(aM, pow(p, e), n)
832
+ g = igcd(aM - 1, n)
833
+ if 1 < g < n:
834
+ return int(g)
835
+
836
+ # get a new a:
837
+ # since the exponent, lcm(1..B), is even, if we allow 'a' to be 'n-1'
838
+ # then (n - 1)**even % n will be 1 which will give a g of 0 and 1 will
839
+ # give a zero, too, so we set the range as [2, n-2]. Some references
840
+ # say 'a' should be coprime to n, but either will detect factors.
841
+ a = prng.randint(2, n - 2)
842
+
843
+
844
+ def _trial(factors, n, candidates, verbose=False):
845
+ """
846
+ Helper function for integer factorization. Trial factors ``n`
847
+ against all integers given in the sequence ``candidates``
848
+ and updates the dict ``factors`` in-place. Returns the reduced
849
+ value of ``n`` and a flag indicating whether any factors were found.
850
+ """
851
+ if verbose:
852
+ factors0 = list(factors.keys())
853
+ nfactors = len(factors)
854
+ for d in candidates:
855
+ if n % d == 0:
856
+ m = multiplicity(d, n)
857
+ n //= d**m
858
+ factors[d] = m
859
+ if verbose:
860
+ for k in sorted(set(factors).difference(set(factors0))):
861
+ print(factor_msg % (k, factors[k]))
862
+ return int(n), len(factors) != nfactors
863
+
864
+
865
+ def _check_termination(factors, n, limitp1, use_trial, use_rho, use_pm1,
866
+ verbose):
867
+ """
868
+ Helper function for integer factorization. Checks if ``n``
869
+ is a prime or a perfect power, and in those cases updates
870
+ the factorization and raises ``StopIteration``.
871
+ """
872
+
873
+ if verbose:
874
+ print('Check for termination')
875
+
876
+ # since we've already been factoring there is no need to do
877
+ # simultaneous factoring with the power check
878
+ p = perfect_power(n, factor=False)
879
+ if p is not False:
880
+ base, exp = p
881
+ if limitp1:
882
+ limit = limitp1 - 1
883
+ else:
884
+ limit = limitp1
885
+ facs = factorint(base, limit, use_trial, use_rho, use_pm1,
886
+ verbose=False)
887
+ for b, e in facs.items():
888
+ if verbose:
889
+ print(factor_msg % (b, e))
890
+ factors[b] = exp*e
891
+ raise StopIteration
892
+
893
+ if isprime(n):
894
+ factors[int(n)] = 1
895
+ raise StopIteration
896
+
897
+ if n == 1:
898
+ raise StopIteration
899
+
900
+ trial_int_msg = "Trial division with ints [%i ... %i] and fail_max=%i"
901
+ trial_msg = "Trial division with primes [%i ... %i]"
902
+ rho_msg = "Pollard's rho with retries %i, max_steps %i and seed %i"
903
+ pm1_msg = "Pollard's p-1 with smoothness bound %i and seed %i"
904
+ ecm_msg = "Elliptic Curve with B1 bound %i, B2 bound %i, num_curves %i"
905
+ factor_msg = '\t%i ** %i'
906
+ fermat_msg = 'Close factors satisying Fermat condition found.'
907
+ complete_msg = 'Factorization is complete.'
908
+
909
+
910
+ def _factorint_small(factors, n, limit, fail_max):
911
+ """
912
+ Return the value of n and either a 0 (indicating that factorization up
913
+ to the limit was complete) or else the next near-prime that would have
914
+ been tested.
915
+
916
+ Factoring stops if there are fail_max unsuccessful tests in a row.
917
+
918
+ If factors of n were found they will be in the factors dictionary as
919
+ {factor: multiplicity} and the returned value of n will have had those
920
+ factors removed. The factors dictionary is modified in-place.
921
+
922
+ """
923
+
924
+ def done(n, d):
925
+ """return n, d if the sqrt(n) was not reached yet, else
926
+ n, 0 indicating that factoring is done.
927
+ """
928
+ if d*d <= n:
929
+ return n, d
930
+ return n, 0
931
+
932
+ d = 2
933
+ m = trailing(n)
934
+ if m:
935
+ factors[d] = m
936
+ n >>= m
937
+ d = 3
938
+ if limit < d:
939
+ if n > 1:
940
+ factors[n] = 1
941
+ return done(n, d)
942
+ # reduce
943
+ m = 0
944
+ while n % d == 0:
945
+ n //= d
946
+ m += 1
947
+ if m == 20:
948
+ mm = multiplicity(d, n)
949
+ m += mm
950
+ n //= d**mm
951
+ break
952
+ if m:
953
+ factors[d] = m
954
+
955
+ # when d*d exceeds maxx or n we are done; if limit**2 is greater
956
+ # than n then maxx is set to zero so the value of n will flag the finish
957
+ if limit*limit > n:
958
+ maxx = 0
959
+ else:
960
+ maxx = limit*limit
961
+
962
+ dd = maxx or n
963
+ d = 5
964
+ fails = 0
965
+ while fails < fail_max:
966
+ if d*d > dd:
967
+ break
968
+ # d = 6*i - 1
969
+ # reduce
970
+ m = 0
971
+ while n % d == 0:
972
+ n //= d
973
+ m += 1
974
+ if m == 20:
975
+ mm = multiplicity(d, n)
976
+ m += mm
977
+ n //= d**mm
978
+ break
979
+ if m:
980
+ factors[d] = m
981
+ dd = maxx or n
982
+ fails = 0
983
+ else:
984
+ fails += 1
985
+ d += 2
986
+ if d*d > dd:
987
+ break
988
+ # d = 6*i - 1
989
+ # reduce
990
+ m = 0
991
+ while n % d == 0:
992
+ n //= d
993
+ m += 1
994
+ if m == 20:
995
+ mm = multiplicity(d, n)
996
+ m += mm
997
+ n //= d**mm
998
+ break
999
+ if m:
1000
+ factors[d] = m
1001
+ dd = maxx or n
1002
+ fails = 0
1003
+ else:
1004
+ fails += 1
1005
+ # d = 6*(i + 1) - 1
1006
+ d += 4
1007
+
1008
+ return done(n, d)
1009
+
1010
+
1011
+ def factorint(n, limit=None, use_trial=True, use_rho=True, use_pm1=True,
1012
+ use_ecm=True, verbose=False, visual=None, multiple=False):
1013
+ r"""
1014
+ Given a positive integer ``n``, ``factorint(n)`` returns a dict containing
1015
+ the prime factors of ``n`` as keys and their respective multiplicities
1016
+ as values. For example:
1017
+
1018
+ >>> from sympy.ntheory import factorint
1019
+ >>> factorint(2000) # 2000 = (2**4) * (5**3)
1020
+ {2: 4, 5: 3}
1021
+ >>> factorint(65537) # This number is prime
1022
+ {65537: 1}
1023
+
1024
+ For input less than 2, factorint behaves as follows:
1025
+
1026
+ - ``factorint(1)`` returns the empty factorization, ``{}``
1027
+ - ``factorint(0)`` returns ``{0:1}``
1028
+ - ``factorint(-n)`` adds ``-1:1`` to the factors and then factors ``n``
1029
+
1030
+ Partial Factorization:
1031
+
1032
+ If ``limit`` (> 3) is specified, the search is stopped after performing
1033
+ trial division up to (and including) the limit (or taking a
1034
+ corresponding number of rho/p-1 steps). This is useful if one has
1035
+ a large number and only is interested in finding small factors (if
1036
+ any). Note that setting a limit does not prevent larger factors
1037
+ from being found early; it simply means that the largest factor may
1038
+ be composite. Since checking for perfect power is relatively cheap, it is
1039
+ done regardless of the limit setting.
1040
+
1041
+ This number, for example, has two small factors and a huge
1042
+ semi-prime factor that cannot be reduced easily:
1043
+
1044
+ >>> from sympy.ntheory import isprime
1045
+ >>> a = 1407633717262338957430697921446883
1046
+ >>> f = factorint(a, limit=10000)
1047
+ >>> f == {991: 1, int(202916782076162456022877024859): 1, 7: 1}
1048
+ True
1049
+ >>> isprime(max(f))
1050
+ False
1051
+
1052
+ This number has a small factor and a residual perfect power whose
1053
+ base is greater than the limit:
1054
+
1055
+ >>> factorint(3*101**7, limit=5)
1056
+ {3: 1, 101: 7}
1057
+
1058
+ List of Factors:
1059
+
1060
+ If ``multiple`` is set to ``True`` then a list containing the
1061
+ prime factors including multiplicities is returned.
1062
+
1063
+ >>> factorint(24, multiple=True)
1064
+ [2, 2, 2, 3]
1065
+
1066
+ Visual Factorization:
1067
+
1068
+ If ``visual`` is set to ``True``, then it will return a visual
1069
+ factorization of the integer. For example:
1070
+
1071
+ >>> from sympy import pprint
1072
+ >>> pprint(factorint(4200, visual=True))
1073
+ 3 1 2 1
1074
+ 2 *3 *5 *7
1075
+
1076
+ Note that this is achieved by using the evaluate=False flag in Mul
1077
+ and Pow. If you do other manipulations with an expression where
1078
+ evaluate=False, it may evaluate. Therefore, you should use the
1079
+ visual option only for visualization, and use the normal dictionary
1080
+ returned by visual=False if you want to perform operations on the
1081
+ factors.
1082
+
1083
+ You can easily switch between the two forms by sending them back to
1084
+ factorint:
1085
+
1086
+ >>> from sympy import Mul
1087
+ >>> regular = factorint(1764); regular
1088
+ {2: 2, 3: 2, 7: 2}
1089
+ >>> pprint(factorint(regular))
1090
+ 2 2 2
1091
+ 2 *3 *7
1092
+
1093
+ >>> visual = factorint(1764, visual=True); pprint(visual)
1094
+ 2 2 2
1095
+ 2 *3 *7
1096
+ >>> print(factorint(visual))
1097
+ {2: 2, 3: 2, 7: 2}
1098
+
1099
+ If you want to send a number to be factored in a partially factored form
1100
+ you can do so with a dictionary or unevaluated expression:
1101
+
1102
+ >>> factorint(factorint({4: 2, 12: 3})) # twice to toggle to dict form
1103
+ {2: 10, 3: 3}
1104
+ >>> factorint(Mul(4, 12, evaluate=False))
1105
+ {2: 4, 3: 1}
1106
+
1107
+ The table of the output logic is:
1108
+
1109
+ ====== ====== ======= =======
1110
+ Visual
1111
+ ------ ----------------------
1112
+ Input True False other
1113
+ ====== ====== ======= =======
1114
+ dict mul dict mul
1115
+ n mul dict dict
1116
+ mul mul dict dict
1117
+ ====== ====== ======= =======
1118
+
1119
+ Notes
1120
+ =====
1121
+
1122
+ Algorithm:
1123
+
1124
+ The function switches between multiple algorithms. Trial division
1125
+ quickly finds small factors (of the order 1-5 digits), and finds
1126
+ all large factors if given enough time. The Pollard rho and p-1
1127
+ algorithms are used to find large factors ahead of time; they
1128
+ will often find factors of the order of 10 digits within a few
1129
+ seconds:
1130
+
1131
+ >>> factors = factorint(12345678910111213141516)
1132
+ >>> for base, exp in sorted(factors.items()):
1133
+ ... print('%s %s' % (base, exp))
1134
+ ...
1135
+ 2 2
1136
+ 2507191691 1
1137
+ 1231026625769 1
1138
+
1139
+ Any of these methods can optionally be disabled with the following
1140
+ boolean parameters:
1141
+
1142
+ - ``use_trial``: Toggle use of trial division
1143
+ - ``use_rho``: Toggle use of Pollard's rho method
1144
+ - ``use_pm1``: Toggle use of Pollard's p-1 method
1145
+
1146
+ ``factorint`` also periodically checks if the remaining part is
1147
+ a prime number or a perfect power, and in those cases stops.
1148
+
1149
+ For unevaluated factorial, it uses Legendre's formula(theorem).
1150
+
1151
+
1152
+ If ``verbose`` is set to ``True``, detailed progress is printed.
1153
+
1154
+ See Also
1155
+ ========
1156
+
1157
+ smoothness, smoothness_p, divisors
1158
+
1159
+ """
1160
+ if isinstance(n, Dict):
1161
+ n = dict(n)
1162
+ if multiple:
1163
+ fac = factorint(n, limit=limit, use_trial=use_trial,
1164
+ use_rho=use_rho, use_pm1=use_pm1,
1165
+ verbose=verbose, visual=False, multiple=False)
1166
+ factorlist = sum(([p] * fac[p] if fac[p] > 0 else [S.One/p]*(-fac[p])
1167
+ for p in sorted(fac)), [])
1168
+ return factorlist
1169
+
1170
+ factordict = {}
1171
+ if visual and not isinstance(n, (Mul, dict)):
1172
+ factordict = factorint(n, limit=limit, use_trial=use_trial,
1173
+ use_rho=use_rho, use_pm1=use_pm1,
1174
+ verbose=verbose, visual=False)
1175
+ elif isinstance(n, Mul):
1176
+ factordict = {int(k): int(v) for k, v in
1177
+ n.as_powers_dict().items()}
1178
+ elif isinstance(n, dict):
1179
+ factordict = n
1180
+ if factordict and isinstance(n, (Mul, dict)):
1181
+ # check it
1182
+ for key in list(factordict.keys()):
1183
+ if isprime(key):
1184
+ continue
1185
+ e = factordict.pop(key)
1186
+ d = factorint(key, limit=limit, use_trial=use_trial, use_rho=use_rho,
1187
+ use_pm1=use_pm1, verbose=verbose, visual=False)
1188
+ for k, v in d.items():
1189
+ if k in factordict:
1190
+ factordict[k] += v*e
1191
+ else:
1192
+ factordict[k] = v*e
1193
+ if visual or (type(n) is dict and
1194
+ visual is not True and
1195
+ visual is not False):
1196
+ if factordict == {}:
1197
+ return S.One
1198
+ if -1 in factordict:
1199
+ factordict.pop(-1)
1200
+ args = [S.NegativeOne]
1201
+ else:
1202
+ args = []
1203
+ args.extend([Pow(*i, evaluate=False)
1204
+ for i in sorted(factordict.items())])
1205
+ return Mul(*args, evaluate=False)
1206
+ elif isinstance(n, (dict, Mul)):
1207
+ return factordict
1208
+
1209
+ assert use_trial or use_rho or use_pm1 or use_ecm
1210
+
1211
+ from sympy.functions.combinatorial.factorials import factorial
1212
+ if isinstance(n, factorial):
1213
+ x = as_int(n.args[0])
1214
+ if x >= 20:
1215
+ factors = {}
1216
+ m = 2 # to initialize the if condition below
1217
+ for p in sieve.primerange(2, x + 1):
1218
+ if m > 1:
1219
+ m, q = 0, x // p
1220
+ while q != 0:
1221
+ m += q
1222
+ q //= p
1223
+ factors[p] = m
1224
+ if factors and verbose:
1225
+ for k in sorted(factors):
1226
+ print(factor_msg % (k, factors[k]))
1227
+ if verbose:
1228
+ print(complete_msg)
1229
+ return factors
1230
+ else:
1231
+ # if n < 20!, direct computation is faster
1232
+ # since it uses a lookup table
1233
+ n = n.func(x)
1234
+
1235
+ n = as_int(n)
1236
+ if limit:
1237
+ limit = int(limit)
1238
+ use_ecm = False
1239
+
1240
+ # special cases
1241
+ if n < 0:
1242
+ factors = factorint(
1243
+ -n, limit=limit, use_trial=use_trial, use_rho=use_rho,
1244
+ use_pm1=use_pm1, verbose=verbose, visual=False)
1245
+ factors[-1] = 1
1246
+ return factors
1247
+
1248
+ if limit and limit < 2:
1249
+ if n == 1:
1250
+ return {}
1251
+ return {n: 1}
1252
+ elif n < 10:
1253
+ # doing this we are assured of getting a limit > 2
1254
+ # when we have to compute it later
1255
+ return [{0: 1}, {}, {2: 1}, {3: 1}, {2: 2}, {5: 1},
1256
+ {2: 1, 3: 1}, {7: 1}, {2: 3}, {3: 2}][n]
1257
+
1258
+ factors = {}
1259
+
1260
+ # do simplistic factorization
1261
+ if verbose:
1262
+ sn = str(n)
1263
+ if len(sn) > 50:
1264
+ print('Factoring %s' % sn[:5] + \
1265
+ '..(%i other digits)..' % (len(sn) - 10) + sn[-5:])
1266
+ else:
1267
+ print('Factoring', n)
1268
+
1269
+ if use_trial:
1270
+ # this is the preliminary factorization for small factors
1271
+ small = 2**15
1272
+ fail_max = 600
1273
+ small = min(small, limit or small)
1274
+ if verbose:
1275
+ print(trial_int_msg % (2, small, fail_max))
1276
+ n, next_p = _factorint_small(factors, n, small, fail_max)
1277
+ else:
1278
+ next_p = 2
1279
+ if factors and verbose:
1280
+ for k in sorted(factors):
1281
+ print(factor_msg % (k, factors[k]))
1282
+ if next_p == 0:
1283
+ if n > 1:
1284
+ factors[int(n)] = 1
1285
+ if verbose:
1286
+ print(complete_msg)
1287
+ return factors
1288
+
1289
+ # continue with more advanced factorization methods
1290
+
1291
+ # first check if the simplistic run didn't finish
1292
+ # because of the limit and check for a perfect
1293
+ # power before exiting
1294
+ try:
1295
+ if limit and next_p > limit:
1296
+ if verbose:
1297
+ print('Exceeded limit:', limit)
1298
+
1299
+ _check_termination(factors, n, limit, use_trial, use_rho, use_pm1,
1300
+ verbose)
1301
+
1302
+ if n > 1:
1303
+ factors[int(n)] = 1
1304
+ return factors
1305
+ else:
1306
+ # Before quitting (or continuing on)...
1307
+
1308
+ # ...do a Fermat test since it's so easy and we need the
1309
+ # square root anyway. Finding 2 factors is easy if they are
1310
+ # "close enough." This is the big root equivalent of dividing by
1311
+ # 2, 3, 5.
1312
+ sqrt_n = integer_nthroot(n, 2)[0]
1313
+ a = sqrt_n + 1
1314
+ a2 = a**2
1315
+ b2 = a2 - n
1316
+ for i in range(3):
1317
+ b, fermat = integer_nthroot(b2, 2)
1318
+ if fermat:
1319
+ break
1320
+ b2 += 2*a + 1 # equiv to (a + 1)**2 - n
1321
+ a += 1
1322
+ if fermat:
1323
+ if verbose:
1324
+ print(fermat_msg)
1325
+ if limit:
1326
+ limit -= 1
1327
+ for r in [a - b, a + b]:
1328
+ facs = factorint(r, limit=limit, use_trial=use_trial,
1329
+ use_rho=use_rho, use_pm1=use_pm1,
1330
+ verbose=verbose)
1331
+ for k, v in facs.items():
1332
+ factors[k] = factors.get(k, 0) + v
1333
+ raise StopIteration
1334
+
1335
+ # ...see if factorization can be terminated
1336
+ _check_termination(factors, n, limit, use_trial, use_rho, use_pm1,
1337
+ verbose)
1338
+
1339
+ except StopIteration:
1340
+ if verbose:
1341
+ print(complete_msg)
1342
+ return factors
1343
+
1344
+ # these are the limits for trial division which will
1345
+ # be attempted in parallel with pollard methods
1346
+ low, high = next_p, 2*next_p
1347
+
1348
+ limit = limit or sqrt_n
1349
+ # add 1 to make sure limit is reached in primerange calls
1350
+ limit += 1
1351
+ iteration = 0
1352
+ while 1:
1353
+
1354
+ try:
1355
+ high_ = high
1356
+ if limit < high_:
1357
+ high_ = limit
1358
+
1359
+ # Trial division
1360
+ if use_trial:
1361
+ if verbose:
1362
+ print(trial_msg % (low, high_))
1363
+ ps = sieve.primerange(low, high_)
1364
+ n, found_trial = _trial(factors, n, ps, verbose)
1365
+ if found_trial:
1366
+ _check_termination(factors, n, limit, use_trial, use_rho,
1367
+ use_pm1, verbose)
1368
+ else:
1369
+ found_trial = False
1370
+
1371
+ if high > limit:
1372
+ if verbose:
1373
+ print('Exceeded limit:', limit)
1374
+ if n > 1:
1375
+ factors[int(n)] = 1
1376
+ raise StopIteration
1377
+
1378
+ # Only used advanced methods when no small factors were found
1379
+ if not found_trial:
1380
+ if (use_pm1 or use_rho):
1381
+ high_root = max(int(math.log(high_**0.7)), low, 3)
1382
+
1383
+ # Pollard p-1
1384
+ if use_pm1:
1385
+ if verbose:
1386
+ print(pm1_msg % (high_root, high_))
1387
+ c = pollard_pm1(n, B=high_root, seed=high_)
1388
+ if c:
1389
+ # factor it and let _trial do the update
1390
+ ps = factorint(c, limit=limit - 1,
1391
+ use_trial=use_trial,
1392
+ use_rho=use_rho,
1393
+ use_pm1=use_pm1,
1394
+ use_ecm=use_ecm,
1395
+ verbose=verbose)
1396
+ n, _ = _trial(factors, n, ps, verbose=False)
1397
+ _check_termination(factors, n, limit, use_trial,
1398
+ use_rho, use_pm1, verbose)
1399
+
1400
+ # Pollard rho
1401
+ if use_rho:
1402
+ max_steps = high_root
1403
+ if verbose:
1404
+ print(rho_msg % (1, max_steps, high_))
1405
+ c = pollard_rho(n, retries=1, max_steps=max_steps,
1406
+ seed=high_)
1407
+ if c:
1408
+ # factor it and let _trial do the update
1409
+ ps = factorint(c, limit=limit - 1,
1410
+ use_trial=use_trial,
1411
+ use_rho=use_rho,
1412
+ use_pm1=use_pm1,
1413
+ use_ecm=use_ecm,
1414
+ verbose=verbose)
1415
+ n, _ = _trial(factors, n, ps, verbose=False)
1416
+ _check_termination(factors, n, limit, use_trial,
1417
+ use_rho, use_pm1, verbose)
1418
+
1419
+ except StopIteration:
1420
+ if verbose:
1421
+ print(complete_msg)
1422
+ return factors
1423
+ #Use subexponential algorithms if use_ecm
1424
+ #Use pollard algorithms for finding small factors for 3 iterations
1425
+ #if after small factors the number of digits of n is >= 20 then use ecm
1426
+ iteration += 1
1427
+ if use_ecm and iteration >= 3 and len(str(n)) >= 25:
1428
+ break
1429
+ low, high = high, high*2
1430
+ B1 = 10000
1431
+ B2 = 100*B1
1432
+ num_curves = 50
1433
+ while(1):
1434
+ if verbose:
1435
+ print(ecm_msg % (B1, B2, num_curves))
1436
+ while(1):
1437
+ try:
1438
+ factor = _ecm_one_factor(n, B1, B2, num_curves)
1439
+ ps = factorint(factor, limit=limit - 1,
1440
+ use_trial=use_trial,
1441
+ use_rho=use_rho,
1442
+ use_pm1=use_pm1,
1443
+ use_ecm=use_ecm,
1444
+ verbose=verbose)
1445
+ n, _ = _trial(factors, n, ps, verbose=False)
1446
+ _check_termination(factors, n, limit, use_trial,
1447
+ use_rho, use_pm1, verbose)
1448
+ except ValueError:
1449
+ break
1450
+ except StopIteration:
1451
+ if verbose:
1452
+ print(complete_msg)
1453
+ return factors
1454
+ B1 *= 5
1455
+ B2 = 100*B1
1456
+ num_curves *= 4
1457
+
1458
+
1459
+ def factorrat(rat, limit=None, use_trial=True, use_rho=True, use_pm1=True,
1460
+ verbose=False, visual=None, multiple=False):
1461
+ r"""
1462
+ Given a Rational ``r``, ``factorrat(r)`` returns a dict containing
1463
+ the prime factors of ``r`` as keys and their respective multiplicities
1464
+ as values. For example:
1465
+
1466
+ >>> from sympy import factorrat, S
1467
+ >>> factorrat(S(8)/9) # 8/9 = (2**3) * (3**-2)
1468
+ {2: 3, 3: -2}
1469
+ >>> factorrat(S(-1)/987) # -1/789 = -1 * (3**-1) * (7**-1) * (47**-1)
1470
+ {-1: 1, 3: -1, 7: -1, 47: -1}
1471
+
1472
+ Please see the docstring for ``factorint`` for detailed explanations
1473
+ and examples of the following keywords:
1474
+
1475
+ - ``limit``: Integer limit up to which trial division is done
1476
+ - ``use_trial``: Toggle use of trial division
1477
+ - ``use_rho``: Toggle use of Pollard's rho method
1478
+ - ``use_pm1``: Toggle use of Pollard's p-1 method
1479
+ - ``verbose``: Toggle detailed printing of progress
1480
+ - ``multiple``: Toggle returning a list of factors or dict
1481
+ - ``visual``: Toggle product form of output
1482
+ """
1483
+ if multiple:
1484
+ fac = factorrat(rat, limit=limit, use_trial=use_trial,
1485
+ use_rho=use_rho, use_pm1=use_pm1,
1486
+ verbose=verbose, visual=False, multiple=False)
1487
+ factorlist = sum(([p] * fac[p] if fac[p] > 0 else [S.One/p]*(-fac[p])
1488
+ for p, _ in sorted(fac.items(),
1489
+ key=lambda elem: elem[0]
1490
+ if elem[1] > 0
1491
+ else 1/elem[0])), [])
1492
+ return factorlist
1493
+
1494
+ f = factorint(rat.p, limit=limit, use_trial=use_trial,
1495
+ use_rho=use_rho, use_pm1=use_pm1,
1496
+ verbose=verbose).copy()
1497
+ f = defaultdict(int, f)
1498
+ for p, e in factorint(rat.q, limit=limit,
1499
+ use_trial=use_trial,
1500
+ use_rho=use_rho,
1501
+ use_pm1=use_pm1,
1502
+ verbose=verbose).items():
1503
+ f[p] += -e
1504
+
1505
+ if len(f) > 1 and 1 in f:
1506
+ del f[1]
1507
+ if not visual:
1508
+ return dict(f)
1509
+ else:
1510
+ if -1 in f:
1511
+ f.pop(-1)
1512
+ args = [S.NegativeOne]
1513
+ else:
1514
+ args = []
1515
+ args.extend([Pow(*i, evaluate=False)
1516
+ for i in sorted(f.items())])
1517
+ return Mul(*args, evaluate=False)
1518
+
1519
+
1520
+
1521
+ def primefactors(n, limit=None, verbose=False):
1522
+ """Return a sorted list of n's prime factors, ignoring multiplicity
1523
+ and any composite factor that remains if the limit was set too low
1524
+ for complete factorization. Unlike factorint(), primefactors() does
1525
+ not return -1 or 0.
1526
+
1527
+ Examples
1528
+ ========
1529
+
1530
+ >>> from sympy.ntheory import primefactors, factorint, isprime
1531
+ >>> primefactors(6)
1532
+ [2, 3]
1533
+ >>> primefactors(-5)
1534
+ [5]
1535
+
1536
+ >>> sorted(factorint(123456).items())
1537
+ [(2, 6), (3, 1), (643, 1)]
1538
+ >>> primefactors(123456)
1539
+ [2, 3, 643]
1540
+
1541
+ >>> sorted(factorint(10000000001, limit=200).items())
1542
+ [(101, 1), (99009901, 1)]
1543
+ >>> isprime(99009901)
1544
+ False
1545
+ >>> primefactors(10000000001, limit=300)
1546
+ [101]
1547
+
1548
+ See Also
1549
+ ========
1550
+
1551
+ divisors
1552
+ """
1553
+ n = int(n)
1554
+ factors = sorted(factorint(n, limit=limit, verbose=verbose).keys())
1555
+ s = [f for f in factors[:-1:] if f not in [-1, 0, 1]]
1556
+ if factors and isprime(factors[-1]):
1557
+ s += [factors[-1]]
1558
+ return s
1559
+
1560
+
1561
+ def _divisors(n, proper=False):
1562
+ """Helper function for divisors which generates the divisors."""
1563
+
1564
+ factordict = factorint(n)
1565
+ ps = sorted(factordict.keys())
1566
+
1567
+ def rec_gen(n=0):
1568
+ if n == len(ps):
1569
+ yield 1
1570
+ else:
1571
+ pows = [1]
1572
+ for j in range(factordict[ps[n]]):
1573
+ pows.append(pows[-1] * ps[n])
1574
+ for q in rec_gen(n + 1):
1575
+ for p in pows:
1576
+ yield p * q
1577
+
1578
+ if proper:
1579
+ for p in rec_gen():
1580
+ if p != n:
1581
+ yield p
1582
+ else:
1583
+ yield from rec_gen()
1584
+
1585
+
1586
+ def divisors(n, generator=False, proper=False):
1587
+ r"""
1588
+ Return all divisors of n sorted from 1..n by default.
1589
+ If generator is ``True`` an unordered generator is returned.
1590
+
1591
+ The number of divisors of n can be quite large if there are many
1592
+ prime factors (counting repeated factors). If only the number of
1593
+ factors is desired use divisor_count(n).
1594
+
1595
+ Examples
1596
+ ========
1597
+
1598
+ >>> from sympy import divisors, divisor_count
1599
+ >>> divisors(24)
1600
+ [1, 2, 3, 4, 6, 8, 12, 24]
1601
+ >>> divisor_count(24)
1602
+ 8
1603
+
1604
+ >>> list(divisors(120, generator=True))
1605
+ [1, 2, 4, 8, 3, 6, 12, 24, 5, 10, 20, 40, 15, 30, 60, 120]
1606
+
1607
+ Notes
1608
+ =====
1609
+
1610
+ This is a slightly modified version of Tim Peters referenced at:
1611
+ https://stackoverflow.com/questions/1010381/python-factorization
1612
+
1613
+ See Also
1614
+ ========
1615
+
1616
+ primefactors, factorint, divisor_count
1617
+ """
1618
+
1619
+ n = as_int(abs(n))
1620
+ if isprime(n):
1621
+ if proper:
1622
+ return [1]
1623
+ return [1, n]
1624
+ if n == 1:
1625
+ if proper:
1626
+ return []
1627
+ return [1]
1628
+ if n == 0:
1629
+ return []
1630
+ rv = _divisors(n, proper)
1631
+ if not generator:
1632
+ return sorted(rv)
1633
+ return rv
1634
+
1635
+
1636
+ def divisor_count(n, modulus=1, proper=False):
1637
+ """
1638
+ Return the number of divisors of ``n``. If ``modulus`` is not 1 then only
1639
+ those that are divisible by ``modulus`` are counted. If ``proper`` is True
1640
+ then the divisor of ``n`` will not be counted.
1641
+
1642
+ Examples
1643
+ ========
1644
+
1645
+ >>> from sympy import divisor_count
1646
+ >>> divisor_count(6)
1647
+ 4
1648
+ >>> divisor_count(6, 2)
1649
+ 2
1650
+ >>> divisor_count(6, proper=True)
1651
+ 3
1652
+
1653
+ See Also
1654
+ ========
1655
+
1656
+ factorint, divisors, totient, proper_divisor_count
1657
+
1658
+ """
1659
+
1660
+ if not modulus:
1661
+ return 0
1662
+ elif modulus != 1:
1663
+ n, r = divmod(n, modulus)
1664
+ if r:
1665
+ return 0
1666
+ if n == 0:
1667
+ return 0
1668
+ n = Mul(*[v + 1 for k, v in factorint(n).items() if k > 1])
1669
+ if n and proper:
1670
+ n -= 1
1671
+ return n
1672
+
1673
+
1674
+ def proper_divisors(n, generator=False):
1675
+ """
1676
+ Return all divisors of n except n, sorted by default.
1677
+ If generator is ``True`` an unordered generator is returned.
1678
+
1679
+ Examples
1680
+ ========
1681
+
1682
+ >>> from sympy import proper_divisors, proper_divisor_count
1683
+ >>> proper_divisors(24)
1684
+ [1, 2, 3, 4, 6, 8, 12]
1685
+ >>> proper_divisor_count(24)
1686
+ 7
1687
+ >>> list(proper_divisors(120, generator=True))
1688
+ [1, 2, 4, 8, 3, 6, 12, 24, 5, 10, 20, 40, 15, 30, 60]
1689
+
1690
+ See Also
1691
+ ========
1692
+
1693
+ factorint, divisors, proper_divisor_count
1694
+
1695
+ """
1696
+ return divisors(n, generator=generator, proper=True)
1697
+
1698
+
1699
+ def proper_divisor_count(n, modulus=1):
1700
+ """
1701
+ Return the number of proper divisors of ``n``.
1702
+
1703
+ Examples
1704
+ ========
1705
+
1706
+ >>> from sympy import proper_divisor_count
1707
+ >>> proper_divisor_count(6)
1708
+ 3
1709
+ >>> proper_divisor_count(6, modulus=2)
1710
+ 1
1711
+
1712
+ See Also
1713
+ ========
1714
+
1715
+ divisors, proper_divisors, divisor_count
1716
+
1717
+ """
1718
+ return divisor_count(n, modulus=modulus, proper=True)
1719
+
1720
+
1721
+ def _udivisors(n):
1722
+ """Helper function for udivisors which generates the unitary divisors."""
1723
+
1724
+ factorpows = [p**e for p, e in factorint(n).items()]
1725
+ for i in range(2**len(factorpows)):
1726
+ d, j, k = 1, i, 0
1727
+ while j:
1728
+ if (j & 1):
1729
+ d *= factorpows[k]
1730
+ j >>= 1
1731
+ k += 1
1732
+ yield d
1733
+
1734
+
1735
+ def udivisors(n, generator=False):
1736
+ r"""
1737
+ Return all unitary divisors of n sorted from 1..n by default.
1738
+ If generator is ``True`` an unordered generator is returned.
1739
+
1740
+ The number of unitary divisors of n can be quite large if there are many
1741
+ prime factors. If only the number of unitary divisors is desired use
1742
+ udivisor_count(n).
1743
+
1744
+ Examples
1745
+ ========
1746
+
1747
+ >>> from sympy.ntheory.factor_ import udivisors, udivisor_count
1748
+ >>> udivisors(15)
1749
+ [1, 3, 5, 15]
1750
+ >>> udivisor_count(15)
1751
+ 4
1752
+
1753
+ >>> sorted(udivisors(120, generator=True))
1754
+ [1, 3, 5, 8, 15, 24, 40, 120]
1755
+
1756
+ See Also
1757
+ ========
1758
+
1759
+ primefactors, factorint, divisors, divisor_count, udivisor_count
1760
+
1761
+ References
1762
+ ==========
1763
+
1764
+ .. [1] https://en.wikipedia.org/wiki/Unitary_divisor
1765
+ .. [2] https://mathworld.wolfram.com/UnitaryDivisor.html
1766
+
1767
+ """
1768
+
1769
+ n = as_int(abs(n))
1770
+ if isprime(n):
1771
+ return [1, n]
1772
+ if n == 1:
1773
+ return [1]
1774
+ if n == 0:
1775
+ return []
1776
+ rv = _udivisors(n)
1777
+ if not generator:
1778
+ return sorted(rv)
1779
+ return rv
1780
+
1781
+
1782
+ def udivisor_count(n):
1783
+ """
1784
+ Return the number of unitary divisors of ``n``.
1785
+
1786
+ Parameters
1787
+ ==========
1788
+
1789
+ n : integer
1790
+
1791
+ Examples
1792
+ ========
1793
+
1794
+ >>> from sympy.ntheory.factor_ import udivisor_count
1795
+ >>> udivisor_count(120)
1796
+ 8
1797
+
1798
+ See Also
1799
+ ========
1800
+
1801
+ factorint, divisors, udivisors, divisor_count, totient
1802
+
1803
+ References
1804
+ ==========
1805
+
1806
+ .. [1] https://mathworld.wolfram.com/UnitaryDivisorFunction.html
1807
+
1808
+ """
1809
+
1810
+ if n == 0:
1811
+ return 0
1812
+ return 2**len([p for p in factorint(n) if p > 1])
1813
+
1814
+
1815
+ def _antidivisors(n):
1816
+ """Helper function for antidivisors which generates the antidivisors."""
1817
+
1818
+ for d in _divisors(n):
1819
+ y = 2*d
1820
+ if n > y and n % y:
1821
+ yield y
1822
+ for d in _divisors(2*n-1):
1823
+ if n > d >= 2 and n % d:
1824
+ yield d
1825
+ for d in _divisors(2*n+1):
1826
+ if n > d >= 2 and n % d:
1827
+ yield d
1828
+
1829
+
1830
+ def antidivisors(n, generator=False):
1831
+ r"""
1832
+ Return all antidivisors of n sorted from 1..n by default.
1833
+
1834
+ Antidivisors [1]_ of n are numbers that do not divide n by the largest
1835
+ possible margin. If generator is True an unordered generator is returned.
1836
+
1837
+ Examples
1838
+ ========
1839
+
1840
+ >>> from sympy.ntheory.factor_ import antidivisors
1841
+ >>> antidivisors(24)
1842
+ [7, 16]
1843
+
1844
+ >>> sorted(antidivisors(128, generator=True))
1845
+ [3, 5, 15, 17, 51, 85]
1846
+
1847
+ See Also
1848
+ ========
1849
+
1850
+ primefactors, factorint, divisors, divisor_count, antidivisor_count
1851
+
1852
+ References
1853
+ ==========
1854
+
1855
+ .. [1] definition is described in https://oeis.org/A066272/a066272a.html
1856
+
1857
+ """
1858
+
1859
+ n = as_int(abs(n))
1860
+ if n <= 2:
1861
+ return []
1862
+ rv = _antidivisors(n)
1863
+ if not generator:
1864
+ return sorted(rv)
1865
+ return rv
1866
+
1867
+
1868
+ def antidivisor_count(n):
1869
+ """
1870
+ Return the number of antidivisors [1]_ of ``n``.
1871
+
1872
+ Parameters
1873
+ ==========
1874
+
1875
+ n : integer
1876
+
1877
+ Examples
1878
+ ========
1879
+
1880
+ >>> from sympy.ntheory.factor_ import antidivisor_count
1881
+ >>> antidivisor_count(13)
1882
+ 4
1883
+ >>> antidivisor_count(27)
1884
+ 5
1885
+
1886
+ See Also
1887
+ ========
1888
+
1889
+ factorint, divisors, antidivisors, divisor_count, totient
1890
+
1891
+ References
1892
+ ==========
1893
+
1894
+ .. [1] formula from https://oeis.org/A066272
1895
+
1896
+ """
1897
+
1898
+ n = as_int(abs(n))
1899
+ if n <= 2:
1900
+ return 0
1901
+ return divisor_count(2*n - 1) + divisor_count(2*n + 1) + \
1902
+ divisor_count(n) - divisor_count(n, 2) - 5
1903
+
1904
+
1905
+ class totient(Function):
1906
+ r"""
1907
+ Calculate the Euler totient function phi(n)
1908
+
1909
+ ``totient(n)`` or `\phi(n)` is the number of positive integers `\leq` n
1910
+ that are relatively prime to n.
1911
+
1912
+ Parameters
1913
+ ==========
1914
+
1915
+ n : integer
1916
+
1917
+ Examples
1918
+ ========
1919
+
1920
+ >>> from sympy.ntheory import totient
1921
+ >>> totient(1)
1922
+ 1
1923
+ >>> totient(25)
1924
+ 20
1925
+ >>> totient(45) == totient(5)*totient(9)
1926
+ True
1927
+
1928
+ See Also
1929
+ ========
1930
+
1931
+ divisor_count
1932
+
1933
+ References
1934
+ ==========
1935
+
1936
+ .. [1] https://en.wikipedia.org/wiki/Euler%27s_totient_function
1937
+ .. [2] https://mathworld.wolfram.com/TotientFunction.html
1938
+
1939
+ """
1940
+ @classmethod
1941
+ def eval(cls, n):
1942
+ if n.is_Integer:
1943
+ if n < 1:
1944
+ raise ValueError("n must be a positive integer")
1945
+ factors = factorint(n)
1946
+ return cls._from_factors(factors)
1947
+ elif not isinstance(n, Expr) or (n.is_integer is False) or (n.is_positive is False):
1948
+ raise ValueError("n must be a positive integer")
1949
+
1950
+ def _eval_is_integer(self):
1951
+ return fuzzy_and([self.args[0].is_integer, self.args[0].is_positive])
1952
+
1953
+ @classmethod
1954
+ def _from_distinct_primes(self, *args):
1955
+ """Subroutine to compute totient from the list of assumed
1956
+ distinct primes
1957
+
1958
+ Examples
1959
+ ========
1960
+
1961
+ >>> from sympy.ntheory.factor_ import totient
1962
+ >>> totient._from_distinct_primes(5, 7)
1963
+ 24
1964
+ """
1965
+ return reduce(lambda i, j: i * (j-1), args, 1)
1966
+
1967
+ @classmethod
1968
+ def _from_factors(self, factors):
1969
+ """Subroutine to compute totient from already-computed factors
1970
+
1971
+ Examples
1972
+ ========
1973
+
1974
+ >>> from sympy.ntheory.factor_ import totient
1975
+ >>> totient._from_factors({5: 2})
1976
+ 20
1977
+ """
1978
+ t = 1
1979
+ for p, k in factors.items():
1980
+ t *= (p - 1) * p**(k - 1)
1981
+ return t
1982
+
1983
+
1984
+ class reduced_totient(Function):
1985
+ r"""
1986
+ Calculate the Carmichael reduced totient function lambda(n)
1987
+
1988
+ ``reduced_totient(n)`` or `\lambda(n)` is the smallest m > 0 such that
1989
+ `k^m \equiv 1 \mod n` for all k relatively prime to n.
1990
+
1991
+ Examples
1992
+ ========
1993
+
1994
+ >>> from sympy.ntheory import reduced_totient
1995
+ >>> reduced_totient(1)
1996
+ 1
1997
+ >>> reduced_totient(8)
1998
+ 2
1999
+ >>> reduced_totient(30)
2000
+ 4
2001
+
2002
+ See Also
2003
+ ========
2004
+
2005
+ totient
2006
+
2007
+ References
2008
+ ==========
2009
+
2010
+ .. [1] https://en.wikipedia.org/wiki/Carmichael_function
2011
+ .. [2] https://mathworld.wolfram.com/CarmichaelFunction.html
2012
+
2013
+ """
2014
+ @classmethod
2015
+ def eval(cls, n):
2016
+ if n.is_Integer:
2017
+ if n < 1:
2018
+ raise ValueError("n must be a positive integer")
2019
+ factors = factorint(n)
2020
+ return cls._from_factors(factors)
2021
+
2022
+ @classmethod
2023
+ def _from_factors(self, factors):
2024
+ """Subroutine to compute totient from already-computed factors
2025
+ """
2026
+ t = 1
2027
+ for p, k in factors.items():
2028
+ if p == 2 and k > 2:
2029
+ t = ilcm(t, 2**(k - 2))
2030
+ else:
2031
+ t = ilcm(t, (p - 1) * p**(k - 1))
2032
+ return t
2033
+
2034
+ @classmethod
2035
+ def _from_distinct_primes(self, *args):
2036
+ """Subroutine to compute totient from the list of assumed
2037
+ distinct primes
2038
+ """
2039
+ args = [p - 1 for p in args]
2040
+ return ilcm(*args)
2041
+
2042
+ def _eval_is_integer(self):
2043
+ return fuzzy_and([self.args[0].is_integer, self.args[0].is_positive])
2044
+
2045
+
2046
+ class divisor_sigma(Function):
2047
+ r"""
2048
+ Calculate the divisor function `\sigma_k(n)` for positive integer n
2049
+
2050
+ ``divisor_sigma(n, k)`` is equal to ``sum([x**k for x in divisors(n)])``
2051
+
2052
+ If n's prime factorization is:
2053
+
2054
+ .. math ::
2055
+ n = \prod_{i=1}^\omega p_i^{m_i},
2056
+
2057
+ then
2058
+
2059
+ .. math ::
2060
+ \sigma_k(n) = \prod_{i=1}^\omega (1+p_i^k+p_i^{2k}+\cdots
2061
+ + p_i^{m_ik}).
2062
+
2063
+ Parameters
2064
+ ==========
2065
+
2066
+ n : integer
2067
+
2068
+ k : integer, optional
2069
+ power of divisors in the sum
2070
+
2071
+ for k = 0, 1:
2072
+ ``divisor_sigma(n, 0)`` is equal to ``divisor_count(n)``
2073
+ ``divisor_sigma(n, 1)`` is equal to ``sum(divisors(n))``
2074
+
2075
+ Default for k is 1.
2076
+
2077
+ Examples
2078
+ ========
2079
+
2080
+ >>> from sympy.ntheory import divisor_sigma
2081
+ >>> divisor_sigma(18, 0)
2082
+ 6
2083
+ >>> divisor_sigma(39, 1)
2084
+ 56
2085
+ >>> divisor_sigma(12, 2)
2086
+ 210
2087
+ >>> divisor_sigma(37)
2088
+ 38
2089
+
2090
+ See Also
2091
+ ========
2092
+
2093
+ divisor_count, totient, divisors, factorint
2094
+
2095
+ References
2096
+ ==========
2097
+
2098
+ .. [1] https://en.wikipedia.org/wiki/Divisor_function
2099
+
2100
+ """
2101
+
2102
+ @classmethod
2103
+ def eval(cls, n, k=S.One):
2104
+ k = sympify(k)
2105
+
2106
+ if n.is_prime:
2107
+ return 1 + n**k
2108
+
2109
+ if n.is_Integer:
2110
+ if n <= 0:
2111
+ raise ValueError("n must be a positive integer")
2112
+ elif k.is_Integer:
2113
+ k = int(k)
2114
+ return Integer(math.prod(
2115
+ (p**(k*(e + 1)) - 1)//(p**k - 1) if k != 0
2116
+ else e + 1 for p, e in factorint(n).items()))
2117
+ else:
2118
+ return Mul(*[(p**(k*(e + 1)) - 1)/(p**k - 1) if k != 0
2119
+ else e + 1 for p, e in factorint(n).items()])
2120
+
2121
+ if n.is_integer: # symbolic case
2122
+ args = []
2123
+ for p, e in (_.as_base_exp() for _ in Mul.make_args(n)):
2124
+ if p.is_prime and e.is_positive:
2125
+ args.append((p**(k*(e + 1)) - 1)/(p**k - 1) if
2126
+ k != 0 else e + 1)
2127
+ else:
2128
+ return
2129
+ return Mul(*args)
2130
+
2131
+
2132
+ def core(n, t=2):
2133
+ r"""
2134
+ Calculate core(n, t) = `core_t(n)` of a positive integer n
2135
+
2136
+ ``core_2(n)`` is equal to the squarefree part of n
2137
+
2138
+ If n's prime factorization is:
2139
+
2140
+ .. math ::
2141
+ n = \prod_{i=1}^\omega p_i^{m_i},
2142
+
2143
+ then
2144
+
2145
+ .. math ::
2146
+ core_t(n) = \prod_{i=1}^\omega p_i^{m_i \mod t}.
2147
+
2148
+ Parameters
2149
+ ==========
2150
+
2151
+ n : integer
2152
+
2153
+ t : integer
2154
+ core(n, t) calculates the t-th power free part of n
2155
+
2156
+ ``core(n, 2)`` is the squarefree part of ``n``
2157
+ ``core(n, 3)`` is the cubefree part of ``n``
2158
+
2159
+ Default for t is 2.
2160
+
2161
+ Examples
2162
+ ========
2163
+
2164
+ >>> from sympy.ntheory.factor_ import core
2165
+ >>> core(24, 2)
2166
+ 6
2167
+ >>> core(9424, 3)
2168
+ 1178
2169
+ >>> core(379238)
2170
+ 379238
2171
+ >>> core(15**11, 10)
2172
+ 15
2173
+
2174
+ See Also
2175
+ ========
2176
+
2177
+ factorint, sympy.solvers.diophantine.diophantine.square_factor
2178
+
2179
+ References
2180
+ ==========
2181
+
2182
+ .. [1] https://en.wikipedia.org/wiki/Square-free_integer#Squarefree_core
2183
+
2184
+ """
2185
+
2186
+ n = as_int(n)
2187
+ t = as_int(t)
2188
+ if n <= 0:
2189
+ raise ValueError("n must be a positive integer")
2190
+ elif t <= 1:
2191
+ raise ValueError("t must be >= 2")
2192
+ else:
2193
+ y = 1
2194
+ for p, e in factorint(n).items():
2195
+ y *= p**(e % t)
2196
+ return y
2197
+
2198
+
2199
+ class udivisor_sigma(Function):
2200
+ r"""
2201
+ Calculate the unitary divisor function `\sigma_k^*(n)` for positive integer n
2202
+
2203
+ ``udivisor_sigma(n, k)`` is equal to ``sum([x**k for x in udivisors(n)])``
2204
+
2205
+ If n's prime factorization is:
2206
+
2207
+ .. math ::
2208
+ n = \prod_{i=1}^\omega p_i^{m_i},
2209
+
2210
+ then
2211
+
2212
+ .. math ::
2213
+ \sigma_k^*(n) = \prod_{i=1}^\omega (1+ p_i^{m_ik}).
2214
+
2215
+ Parameters
2216
+ ==========
2217
+
2218
+ k : power of divisors in the sum
2219
+
2220
+ for k = 0, 1:
2221
+ ``udivisor_sigma(n, 0)`` is equal to ``udivisor_count(n)``
2222
+ ``udivisor_sigma(n, 1)`` is equal to ``sum(udivisors(n))``
2223
+
2224
+ Default for k is 1.
2225
+
2226
+ Examples
2227
+ ========
2228
+
2229
+ >>> from sympy.ntheory.factor_ import udivisor_sigma
2230
+ >>> udivisor_sigma(18, 0)
2231
+ 4
2232
+ >>> udivisor_sigma(74, 1)
2233
+ 114
2234
+ >>> udivisor_sigma(36, 3)
2235
+ 47450
2236
+ >>> udivisor_sigma(111)
2237
+ 152
2238
+
2239
+ See Also
2240
+ ========
2241
+
2242
+ divisor_count, totient, divisors, udivisors, udivisor_count, divisor_sigma,
2243
+ factorint
2244
+
2245
+ References
2246
+ ==========
2247
+
2248
+ .. [1] https://mathworld.wolfram.com/UnitaryDivisorFunction.html
2249
+
2250
+ """
2251
+
2252
+ @classmethod
2253
+ def eval(cls, n, k=S.One):
2254
+ k = sympify(k)
2255
+ if n.is_prime:
2256
+ return 1 + n**k
2257
+ if n.is_Integer:
2258
+ if n <= 0:
2259
+ raise ValueError("n must be a positive integer")
2260
+ else:
2261
+ return Mul(*[1+p**(k*e) for p, e in factorint(n).items()])
2262
+
2263
+
2264
+ class primenu(Function):
2265
+ r"""
2266
+ Calculate the number of distinct prime factors for a positive integer n.
2267
+
2268
+ If n's prime factorization is:
2269
+
2270
+ .. math ::
2271
+ n = \prod_{i=1}^k p_i^{m_i},
2272
+
2273
+ then ``primenu(n)`` or `\nu(n)` is:
2274
+
2275
+ .. math ::
2276
+ \nu(n) = k.
2277
+
2278
+ Examples
2279
+ ========
2280
+
2281
+ >>> from sympy.ntheory.factor_ import primenu
2282
+ >>> primenu(1)
2283
+ 0
2284
+ >>> primenu(30)
2285
+ 3
2286
+
2287
+ See Also
2288
+ ========
2289
+
2290
+ factorint
2291
+
2292
+ References
2293
+ ==========
2294
+
2295
+ .. [1] https://mathworld.wolfram.com/PrimeFactor.html
2296
+
2297
+ """
2298
+
2299
+ @classmethod
2300
+ def eval(cls, n):
2301
+ if n.is_Integer:
2302
+ if n <= 0:
2303
+ raise ValueError("n must be a positive integer")
2304
+ else:
2305
+ return len(factorint(n).keys())
2306
+
2307
+
2308
+ class primeomega(Function):
2309
+ r"""
2310
+ Calculate the number of prime factors counting multiplicities for a
2311
+ positive integer n.
2312
+
2313
+ If n's prime factorization is:
2314
+
2315
+ .. math ::
2316
+ n = \prod_{i=1}^k p_i^{m_i},
2317
+
2318
+ then ``primeomega(n)`` or `\Omega(n)` is:
2319
+
2320
+ .. math ::
2321
+ \Omega(n) = \sum_{i=1}^k m_i.
2322
+
2323
+ Examples
2324
+ ========
2325
+
2326
+ >>> from sympy.ntheory.factor_ import primeomega
2327
+ >>> primeomega(1)
2328
+ 0
2329
+ >>> primeomega(20)
2330
+ 3
2331
+
2332
+ See Also
2333
+ ========
2334
+
2335
+ factorint
2336
+
2337
+ References
2338
+ ==========
2339
+
2340
+ .. [1] https://mathworld.wolfram.com/PrimeFactor.html
2341
+
2342
+ """
2343
+
2344
+ @classmethod
2345
+ def eval(cls, n):
2346
+ if n.is_Integer:
2347
+ if n <= 0:
2348
+ raise ValueError("n must be a positive integer")
2349
+ else:
2350
+ return sum(factorint(n).values())
2351
+
2352
+
2353
+ def mersenne_prime_exponent(nth):
2354
+ """Returns the exponent ``i`` for the nth Mersenne prime (which
2355
+ has the form `2^i - 1`).
2356
+
2357
+ Examples
2358
+ ========
2359
+
2360
+ >>> from sympy.ntheory.factor_ import mersenne_prime_exponent
2361
+ >>> mersenne_prime_exponent(1)
2362
+ 2
2363
+ >>> mersenne_prime_exponent(20)
2364
+ 4423
2365
+ """
2366
+ n = as_int(nth)
2367
+ if n < 1:
2368
+ raise ValueError("nth must be a positive integer; mersenne_prime_exponent(1) == 2")
2369
+ if n > 51:
2370
+ raise ValueError("There are only 51 perfect numbers; nth must be less than or equal to 51")
2371
+ return MERSENNE_PRIME_EXPONENTS[n - 1]
2372
+
2373
+
2374
+ def is_perfect(n):
2375
+ """Returns True if ``n`` is a perfect number, else False.
2376
+
2377
+ A perfect number is equal to the sum of its positive, proper divisors.
2378
+
2379
+ Examples
2380
+ ========
2381
+
2382
+ >>> from sympy.ntheory.factor_ import is_perfect, divisors, divisor_sigma
2383
+ >>> is_perfect(20)
2384
+ False
2385
+ >>> is_perfect(6)
2386
+ True
2387
+ >>> 6 == divisor_sigma(6) - 6 == sum(divisors(6)[:-1])
2388
+ True
2389
+
2390
+ References
2391
+ ==========
2392
+
2393
+ .. [1] https://mathworld.wolfram.com/PerfectNumber.html
2394
+ .. [2] https://en.wikipedia.org/wiki/Perfect_number
2395
+
2396
+ """
2397
+
2398
+ n = as_int(n)
2399
+ if _isperfect(n):
2400
+ return True
2401
+
2402
+ # all perfect numbers for Mersenne primes with exponents
2403
+ # less than or equal to 43112609 are known
2404
+ iknow = MERSENNE_PRIME_EXPONENTS.index(43112609)
2405
+ if iknow <= len(PERFECT) - 1 and n <= PERFECT[iknow]:
2406
+ # there may be gaps between this and larger known values
2407
+ # so only conclude in the range for which all values
2408
+ # are known
2409
+ return False
2410
+ if n%2 == 0:
2411
+ last2 = n % 100
2412
+ if last2 != 28 and last2 % 10 != 6:
2413
+ return False
2414
+ r, b = integer_nthroot(1 + 8*n, 2)
2415
+ if not b:
2416
+ return False
2417
+ m, x = divmod(1 + r, 4)
2418
+ if x:
2419
+ return False
2420
+ e, b = integer_log(m, 2)
2421
+ if not b:
2422
+ return False
2423
+ else:
2424
+ if n < 10**2000: # https://www.lirmm.fr/~ochem/opn/
2425
+ return False
2426
+ if n % 105 == 0: # not divis by 105
2427
+ return False
2428
+ if not any(n%m == r for m, r in [(12, 1), (468, 117), (324, 81)]):
2429
+ return False
2430
+ # there are many criteria that the factor structure of n
2431
+ # must meet; since we will have to factor it to test the
2432
+ # structure we will have the factors and can then check
2433
+ # to see whether it is a perfect number or not. So we
2434
+ # skip the structure checks and go straight to the final
2435
+ # test below.
2436
+ rv = divisor_sigma(n) - n
2437
+ if rv == n:
2438
+ if n%2 == 0:
2439
+ raise ValueError(filldedent('''
2440
+ This even number is perfect and is associated with a
2441
+ Mersenne Prime, 2^%s - 1. It should be
2442
+ added to SymPy.''' % (e + 1)))
2443
+ else:
2444
+ raise ValueError(filldedent('''In 1888, Sylvester stated: "
2445
+ ...a prolonged meditation on the subject has satisfied
2446
+ me that the existence of any one such [odd perfect number]
2447
+ -- its escape, so to say, from the complex web of conditions
2448
+ which hem it in on all sides -- would be little short of a
2449
+ miracle." I guess SymPy just found that miracle and it
2450
+ factors like this: %s''' % factorint(n)))
2451
+
2452
+
2453
+ def is_mersenne_prime(n):
2454
+ """Returns True if ``n`` is a Mersenne prime, else False.
2455
+
2456
+ A Mersenne prime is a prime number having the form `2^i - 1`.
2457
+
2458
+ Examples
2459
+ ========
2460
+
2461
+ >>> from sympy.ntheory.factor_ import is_mersenne_prime
2462
+ >>> is_mersenne_prime(6)
2463
+ False
2464
+ >>> is_mersenne_prime(127)
2465
+ True
2466
+
2467
+ References
2468
+ ==========
2469
+
2470
+ .. [1] https://mathworld.wolfram.com/MersennePrime.html
2471
+
2472
+ """
2473
+
2474
+ n = as_int(n)
2475
+ if _ismersenneprime(n):
2476
+ return True
2477
+ if not isprime(n):
2478
+ return False
2479
+ r, b = integer_log(n + 1, 2)
2480
+ if not b:
2481
+ return False
2482
+ raise ValueError(filldedent('''
2483
+ This Mersenne Prime, 2^%s - 1, should
2484
+ be added to SymPy's known values.''' % r))
2485
+
2486
+
2487
+ def abundance(n):
2488
+ """Returns the difference between the sum of the positive
2489
+ proper divisors of a number and the number.
2490
+
2491
+ Examples
2492
+ ========
2493
+
2494
+ >>> from sympy.ntheory import abundance, is_perfect, is_abundant
2495
+ >>> abundance(6)
2496
+ 0
2497
+ >>> is_perfect(6)
2498
+ True
2499
+ >>> abundance(10)
2500
+ -2
2501
+ >>> is_abundant(10)
2502
+ False
2503
+ """
2504
+ return divisor_sigma(n, 1) - 2 * n
2505
+
2506
+
2507
+ def is_abundant(n):
2508
+ """Returns True if ``n`` is an abundant number, else False.
2509
+
2510
+ A abundant number is smaller than the sum of its positive proper divisors.
2511
+
2512
+ Examples
2513
+ ========
2514
+
2515
+ >>> from sympy.ntheory.factor_ import is_abundant
2516
+ >>> is_abundant(20)
2517
+ True
2518
+ >>> is_abundant(15)
2519
+ False
2520
+
2521
+ References
2522
+ ==========
2523
+
2524
+ .. [1] https://mathworld.wolfram.com/AbundantNumber.html
2525
+
2526
+ """
2527
+ n = as_int(n)
2528
+ if is_perfect(n):
2529
+ return False
2530
+ return n % 6 == 0 or bool(abundance(n) > 0)
2531
+
2532
+
2533
+ def is_deficient(n):
2534
+ """Returns True if ``n`` is a deficient number, else False.
2535
+
2536
+ A deficient number is greater than the sum of its positive proper divisors.
2537
+
2538
+ Examples
2539
+ ========
2540
+
2541
+ >>> from sympy.ntheory.factor_ import is_deficient
2542
+ >>> is_deficient(20)
2543
+ False
2544
+ >>> is_deficient(15)
2545
+ True
2546
+
2547
+ References
2548
+ ==========
2549
+
2550
+ .. [1] https://mathworld.wolfram.com/DeficientNumber.html
2551
+
2552
+ """
2553
+ n = as_int(n)
2554
+ if is_perfect(n):
2555
+ return False
2556
+ return bool(abundance(n) < 0)
2557
+
2558
+
2559
+ def is_amicable(m, n):
2560
+ """Returns True if the numbers `m` and `n` are "amicable", else False.
2561
+
2562
+ Amicable numbers are two different numbers so related that the sum
2563
+ of the proper divisors of each is equal to that of the other.
2564
+
2565
+ Examples
2566
+ ========
2567
+
2568
+ >>> from sympy.ntheory.factor_ import is_amicable, divisor_sigma
2569
+ >>> is_amicable(220, 284)
2570
+ True
2571
+ >>> divisor_sigma(220) == divisor_sigma(284)
2572
+ True
2573
+
2574
+ References
2575
+ ==========
2576
+
2577
+ .. [1] https://en.wikipedia.org/wiki/Amicable_numbers
2578
+
2579
+ """
2580
+ if m == n:
2581
+ return False
2582
+ a, b = (divisor_sigma(i) for i in (m, n))
2583
+ return a == b == (m + n)
2584
+
2585
+
2586
+ def dra(n, b):
2587
+ """
2588
+ Returns the additive digital root of a natural number ``n`` in base ``b``
2589
+ which is a single digit value obtained by an iterative process of summing
2590
+ digits, on each iteration using the result from the previous iteration to
2591
+ compute a digit sum.
2592
+
2593
+ Examples
2594
+ ========
2595
+
2596
+ >>> from sympy.ntheory.factor_ import dra
2597
+ >>> dra(3110, 12)
2598
+ 8
2599
+
2600
+ References
2601
+ ==========
2602
+
2603
+ .. [1] https://en.wikipedia.org/wiki/Digital_root
2604
+
2605
+ """
2606
+
2607
+ num = abs(as_int(n))
2608
+ b = as_int(b)
2609
+ if b <= 1:
2610
+ raise ValueError("Base should be an integer greater than 1")
2611
+
2612
+ if num == 0:
2613
+ return 0
2614
+
2615
+ return (1 + (num - 1) % (b - 1))
2616
+
2617
+
2618
+ def drm(n, b):
2619
+ """
2620
+ Returns the multiplicative digital root of a natural number ``n`` in a given
2621
+ base ``b`` which is a single digit value obtained by an iterative process of
2622
+ multiplying digits, on each iteration using the result from the previous
2623
+ iteration to compute the digit multiplication.
2624
+
2625
+ Examples
2626
+ ========
2627
+
2628
+ >>> from sympy.ntheory.factor_ import drm
2629
+ >>> drm(9876, 10)
2630
+ 0
2631
+
2632
+ >>> drm(49, 10)
2633
+ 8
2634
+
2635
+ References
2636
+ ==========
2637
+
2638
+ .. [1] https://mathworld.wolfram.com/MultiplicativeDigitalRoot.html
2639
+
2640
+ """
2641
+
2642
+ n = abs(as_int(n))
2643
+ b = as_int(b)
2644
+ if b <= 1:
2645
+ raise ValueError("Base should be an integer greater than 1")
2646
+ while n > b:
2647
+ mul = 1
2648
+ while n > 1:
2649
+ n, r = divmod(n, b)
2650
+ if r == 0:
2651
+ return 0
2652
+ mul *= r
2653
+ n = mul
2654
+ return n
venv/lib/python3.10/site-packages/sympy/ntheory/generate.py ADDED
@@ -0,0 +1,1037 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Generating and counting primes.
3
+
4
+ """
5
+
6
+ import random
7
+ from bisect import bisect
8
+ from itertools import count
9
+ # Using arrays for sieving instead of lists greatly reduces
10
+ # memory consumption
11
+ from array import array as _array
12
+
13
+ from sympy.core.function import Function
14
+ from sympy.core.singleton import S
15
+ from .primetest import isprime
16
+ from sympy.utilities.misc import as_int
17
+
18
+
19
+ def _azeros(n):
20
+ return _array('l', [0]*n)
21
+
22
+
23
+ def _aset(*v):
24
+ return _array('l', v)
25
+
26
+
27
+ def _arange(a, b):
28
+ return _array('l', range(a, b))
29
+
30
+
31
+ def _as_int_ceiling(a):
32
+ """ Wrapping ceiling in as_int will raise an error if there was a problem
33
+ determining whether the expression was exactly an integer or not."""
34
+ from sympy.functions.elementary.integers import ceiling
35
+ return as_int(ceiling(a))
36
+
37
+
38
+ class Sieve:
39
+ """An infinite list of prime numbers, implemented as a dynamically
40
+ growing sieve of Eratosthenes. When a lookup is requested involving
41
+ an odd number that has not been sieved, the sieve is automatically
42
+ extended up to that number.
43
+
44
+ Examples
45
+ ========
46
+
47
+ >>> from sympy import sieve
48
+ >>> sieve._reset() # this line for doctest only
49
+ >>> 25 in sieve
50
+ False
51
+ >>> sieve._list
52
+ array('l', [2, 3, 5, 7, 11, 13, 17, 19, 23])
53
+ """
54
+
55
+ # data shared (and updated) by all Sieve instances
56
+ def __init__(self):
57
+ self._n = 6
58
+ self._list = _aset(2, 3, 5, 7, 11, 13) # primes
59
+ self._tlist = _aset(0, 1, 1, 2, 2, 4) # totient
60
+ self._mlist = _aset(0, 1, -1, -1, 0, -1) # mobius
61
+ assert all(len(i) == self._n for i in (self._list, self._tlist, self._mlist))
62
+
63
+ def __repr__(self):
64
+ return ("<%s sieve (%i): %i, %i, %i, ... %i, %i\n"
65
+ "%s sieve (%i): %i, %i, %i, ... %i, %i\n"
66
+ "%s sieve (%i): %i, %i, %i, ... %i, %i>") % (
67
+ 'prime', len(self._list),
68
+ self._list[0], self._list[1], self._list[2],
69
+ self._list[-2], self._list[-1],
70
+ 'totient', len(self._tlist),
71
+ self._tlist[0], self._tlist[1],
72
+ self._tlist[2], self._tlist[-2], self._tlist[-1],
73
+ 'mobius', len(self._mlist),
74
+ self._mlist[0], self._mlist[1],
75
+ self._mlist[2], self._mlist[-2], self._mlist[-1])
76
+
77
+ def _reset(self, prime=None, totient=None, mobius=None):
78
+ """Reset all caches (default). To reset one or more set the
79
+ desired keyword to True."""
80
+ if all(i is None for i in (prime, totient, mobius)):
81
+ prime = totient = mobius = True
82
+ if prime:
83
+ self._list = self._list[:self._n]
84
+ if totient:
85
+ self._tlist = self._tlist[:self._n]
86
+ if mobius:
87
+ self._mlist = self._mlist[:self._n]
88
+
89
+ def extend(self, n):
90
+ """Grow the sieve to cover all primes <= n (a real number).
91
+
92
+ Examples
93
+ ========
94
+
95
+ >>> from sympy import sieve
96
+ >>> sieve._reset() # this line for doctest only
97
+ >>> sieve.extend(30)
98
+ >>> sieve[10] == 29
99
+ True
100
+ """
101
+ n = int(n)
102
+ if n <= self._list[-1]:
103
+ return
104
+
105
+ # We need to sieve against all bases up to sqrt(n).
106
+ # This is a recursive call that will do nothing if there are enough
107
+ # known bases already.
108
+ maxbase = int(n**0.5) + 1
109
+ self.extend(maxbase)
110
+
111
+ # Create a new sieve starting from sqrt(n)
112
+ begin = self._list[-1] + 1
113
+ newsieve = _arange(begin, n + 1)
114
+
115
+ # Now eliminate all multiples of primes in [2, sqrt(n)]
116
+ for p in self.primerange(maxbase):
117
+ # Start counting at a multiple of p, offsetting
118
+ # the index to account for the new sieve's base index
119
+ startindex = (-begin) % p
120
+ for i in range(startindex, len(newsieve), p):
121
+ newsieve[i] = 0
122
+
123
+ # Merge the sieves
124
+ self._list += _array('l', [x for x in newsieve if x])
125
+
126
+ def extend_to_no(self, i):
127
+ """Extend to include the ith prime number.
128
+
129
+ Parameters
130
+ ==========
131
+
132
+ i : integer
133
+
134
+ Examples
135
+ ========
136
+
137
+ >>> from sympy import sieve
138
+ >>> sieve._reset() # this line for doctest only
139
+ >>> sieve.extend_to_no(9)
140
+ >>> sieve._list
141
+ array('l', [2, 3, 5, 7, 11, 13, 17, 19, 23])
142
+
143
+ Notes
144
+ =====
145
+
146
+ The list is extended by 50% if it is too short, so it is
147
+ likely that it will be longer than requested.
148
+ """
149
+ i = as_int(i)
150
+ while len(self._list) < i:
151
+ self.extend(int(self._list[-1] * 1.5))
152
+
153
+ def primerange(self, a, b=None):
154
+ """Generate all prime numbers in the range [2, a) or [a, b).
155
+
156
+ Examples
157
+ ========
158
+
159
+ >>> from sympy import sieve, prime
160
+
161
+ All primes less than 19:
162
+
163
+ >>> print([i for i in sieve.primerange(19)])
164
+ [2, 3, 5, 7, 11, 13, 17]
165
+
166
+ All primes greater than or equal to 7 and less than 19:
167
+
168
+ >>> print([i for i in sieve.primerange(7, 19)])
169
+ [7, 11, 13, 17]
170
+
171
+ All primes through the 10th prime
172
+
173
+ >>> list(sieve.primerange(prime(10) + 1))
174
+ [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
175
+
176
+ """
177
+
178
+ if b is None:
179
+ b = _as_int_ceiling(a)
180
+ a = 2
181
+ else:
182
+ a = max(2, _as_int_ceiling(a))
183
+ b = _as_int_ceiling(b)
184
+ if a >= b:
185
+ return
186
+ self.extend(b)
187
+ i = self.search(a)[1]
188
+ maxi = len(self._list) + 1
189
+ while i < maxi:
190
+ p = self._list[i - 1]
191
+ if p < b:
192
+ yield p
193
+ i += 1
194
+ else:
195
+ return
196
+
197
+ def totientrange(self, a, b):
198
+ """Generate all totient numbers for the range [a, b).
199
+
200
+ Examples
201
+ ========
202
+
203
+ >>> from sympy import sieve
204
+ >>> print([i for i in sieve.totientrange(7, 18)])
205
+ [6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16]
206
+ """
207
+ a = max(1, _as_int_ceiling(a))
208
+ b = _as_int_ceiling(b)
209
+ n = len(self._tlist)
210
+ if a >= b:
211
+ return
212
+ elif b <= n:
213
+ for i in range(a, b):
214
+ yield self._tlist[i]
215
+ else:
216
+ self._tlist += _arange(n, b)
217
+ for i in range(1, n):
218
+ ti = self._tlist[i]
219
+ startindex = (n + i - 1) // i * i
220
+ for j in range(startindex, b, i):
221
+ self._tlist[j] -= ti
222
+ if i >= a:
223
+ yield ti
224
+
225
+ for i in range(n, b):
226
+ ti = self._tlist[i]
227
+ for j in range(2 * i, b, i):
228
+ self._tlist[j] -= ti
229
+ if i >= a:
230
+ yield ti
231
+
232
+ def mobiusrange(self, a, b):
233
+ """Generate all mobius numbers for the range [a, b).
234
+
235
+ Parameters
236
+ ==========
237
+
238
+ a : integer
239
+ First number in range
240
+
241
+ b : integer
242
+ First number outside of range
243
+
244
+ Examples
245
+ ========
246
+
247
+ >>> from sympy import sieve
248
+ >>> print([i for i in sieve.mobiusrange(7, 18)])
249
+ [-1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1]
250
+ """
251
+ a = max(1, _as_int_ceiling(a))
252
+ b = _as_int_ceiling(b)
253
+ n = len(self._mlist)
254
+ if a >= b:
255
+ return
256
+ elif b <= n:
257
+ for i in range(a, b):
258
+ yield self._mlist[i]
259
+ else:
260
+ self._mlist += _azeros(b - n)
261
+ for i in range(1, n):
262
+ mi = self._mlist[i]
263
+ startindex = (n + i - 1) // i * i
264
+ for j in range(startindex, b, i):
265
+ self._mlist[j] -= mi
266
+ if i >= a:
267
+ yield mi
268
+
269
+ for i in range(n, b):
270
+ mi = self._mlist[i]
271
+ for j in range(2 * i, b, i):
272
+ self._mlist[j] -= mi
273
+ if i >= a:
274
+ yield mi
275
+
276
+ def search(self, n):
277
+ """Return the indices i, j of the primes that bound n.
278
+
279
+ If n is prime then i == j.
280
+
281
+ Although n can be an expression, if ceiling cannot convert
282
+ it to an integer then an n error will be raised.
283
+
284
+ Examples
285
+ ========
286
+
287
+ >>> from sympy import sieve
288
+ >>> sieve.search(25)
289
+ (9, 10)
290
+ >>> sieve.search(23)
291
+ (9, 9)
292
+ """
293
+ test = _as_int_ceiling(n)
294
+ n = as_int(n)
295
+ if n < 2:
296
+ raise ValueError("n should be >= 2 but got: %s" % n)
297
+ if n > self._list[-1]:
298
+ self.extend(n)
299
+ b = bisect(self._list, n)
300
+ if self._list[b - 1] == test:
301
+ return b, b
302
+ else:
303
+ return b, b + 1
304
+
305
+ def __contains__(self, n):
306
+ try:
307
+ n = as_int(n)
308
+ assert n >= 2
309
+ except (ValueError, AssertionError):
310
+ return False
311
+ if n % 2 == 0:
312
+ return n == 2
313
+ a, b = self.search(n)
314
+ return a == b
315
+
316
+ def __iter__(self):
317
+ for n in count(1):
318
+ yield self[n]
319
+
320
+ def __getitem__(self, n):
321
+ """Return the nth prime number"""
322
+ if isinstance(n, slice):
323
+ self.extend_to_no(n.stop)
324
+ # Python 2.7 slices have 0 instead of None for start, so
325
+ # we can't default to 1.
326
+ start = n.start if n.start is not None else 0
327
+ if start < 1:
328
+ # sieve[:5] would be empty (starting at -1), let's
329
+ # just be explicit and raise.
330
+ raise IndexError("Sieve indices start at 1.")
331
+ return self._list[start - 1:n.stop - 1:n.step]
332
+ else:
333
+ if n < 1:
334
+ # offset is one, so forbid explicit access to sieve[0]
335
+ # (would surprisingly return the last one).
336
+ raise IndexError("Sieve indices start at 1.")
337
+ n = as_int(n)
338
+ self.extend_to_no(n)
339
+ return self._list[n - 1]
340
+
341
+ # Generate a global object for repeated use in trial division etc
342
+ sieve = Sieve()
343
+
344
+
345
+ def prime(nth):
346
+ r""" Return the nth prime, with the primes indexed as prime(1) = 2,
347
+ prime(2) = 3, etc.... The nth prime is approximately $n\log(n)$.
348
+
349
+ Logarithmic integral of $x$ is a pretty nice approximation for number of
350
+ primes $\le x$, i.e.
351
+ li(x) ~ pi(x)
352
+ In fact, for the numbers we are concerned about( x<1e11 ),
353
+ li(x) - pi(x) < 50000
354
+
355
+ Also,
356
+ li(x) > pi(x) can be safely assumed for the numbers which
357
+ can be evaluated by this function.
358
+
359
+ Here, we find the least integer m such that li(m) > n using binary search.
360
+ Now pi(m-1) < li(m-1) <= n,
361
+
362
+ We find pi(m - 1) using primepi function.
363
+
364
+ Starting from m, we have to find n - pi(m-1) more primes.
365
+
366
+ For the inputs this implementation can handle, we will have to test
367
+ primality for at max about 10**5 numbers, to get our answer.
368
+
369
+ Examples
370
+ ========
371
+
372
+ >>> from sympy import prime
373
+ >>> prime(10)
374
+ 29
375
+ >>> prime(1)
376
+ 2
377
+ >>> prime(100000)
378
+ 1299709
379
+
380
+ See Also
381
+ ========
382
+
383
+ sympy.ntheory.primetest.isprime : Test if n is prime
384
+ primerange : Generate all primes in a given range
385
+ primepi : Return the number of primes less than or equal to n
386
+
387
+ References
388
+ ==========
389
+
390
+ .. [1] https://en.wikipedia.org/wiki/Prime_number_theorem#Table_of_.CF.80.28x.29.2C_x_.2F_log_x.2C_and_li.28x.29
391
+ .. [2] https://en.wikipedia.org/wiki/Prime_number_theorem#Approximations_for_the_nth_prime_number
392
+ .. [3] https://en.wikipedia.org/wiki/Skewes%27_number
393
+ """
394
+ n = as_int(nth)
395
+ if n < 1:
396
+ raise ValueError("nth must be a positive integer; prime(1) == 2")
397
+ if n <= len(sieve._list):
398
+ return sieve[n]
399
+
400
+ from sympy.functions.elementary.exponential import log
401
+ from sympy.functions.special.error_functions import li
402
+ a = 2 # Lower bound for binary search
403
+ b = int(n*(log(n) + log(log(n)))) # Upper bound for the search.
404
+
405
+ while a < b:
406
+ mid = (a + b) >> 1
407
+ if li(mid) > n:
408
+ b = mid
409
+ else:
410
+ a = mid + 1
411
+ n_primes = primepi(a - 1)
412
+ while n_primes < n:
413
+ if isprime(a):
414
+ n_primes += 1
415
+ a += 1
416
+ return a - 1
417
+
418
+
419
+ class primepi(Function):
420
+ r""" Represents the prime counting function pi(n) = the number
421
+ of prime numbers less than or equal to n.
422
+
423
+ Algorithm Description:
424
+
425
+ In sieve method, we remove all multiples of prime p
426
+ except p itself.
427
+
428
+ Let phi(i,j) be the number of integers 2 <= k <= i
429
+ which remain after sieving from primes less than
430
+ or equal to j.
431
+ Clearly, pi(n) = phi(n, sqrt(n))
432
+
433
+ If j is not a prime,
434
+ phi(i,j) = phi(i, j - 1)
435
+
436
+ if j is a prime,
437
+ We remove all numbers(except j) whose
438
+ smallest prime factor is j.
439
+
440
+ Let $x= j \times a$ be such a number, where $2 \le a \le i / j$
441
+ Now, after sieving from primes $\le j - 1$,
442
+ a must remain
443
+ (because x, and hence a has no prime factor $\le j - 1$)
444
+ Clearly, there are phi(i / j, j - 1) such a
445
+ which remain on sieving from primes $\le j - 1$
446
+
447
+ Now, if a is a prime less than equal to j - 1,
448
+ $x= j \times a$ has smallest prime factor = a, and
449
+ has already been removed(by sieving from a).
450
+ So, we do not need to remove it again.
451
+ (Note: there will be pi(j - 1) such x)
452
+
453
+ Thus, number of x, that will be removed are:
454
+ phi(i / j, j - 1) - phi(j - 1, j - 1)
455
+ (Note that pi(j - 1) = phi(j - 1, j - 1))
456
+
457
+ $\Rightarrow$ phi(i,j) = phi(i, j - 1) - phi(i / j, j - 1) + phi(j - 1, j - 1)
458
+
459
+ So,following recursion is used and implemented as dp:
460
+
461
+ phi(a, b) = phi(a, b - 1), if b is not a prime
462
+ phi(a, b) = phi(a, b-1)-phi(a / b, b-1) + phi(b-1, b-1), if b is prime
463
+
464
+ Clearly a is always of the form floor(n / k),
465
+ which can take at most $2\sqrt{n}$ values.
466
+ Two arrays arr1,arr2 are maintained
467
+ arr1[i] = phi(i, j),
468
+ arr2[i] = phi(n // i, j)
469
+
470
+ Finally the answer is arr2[1]
471
+
472
+ Examples
473
+ ========
474
+
475
+ >>> from sympy import primepi, prime, prevprime, isprime
476
+ >>> primepi(25)
477
+ 9
478
+
479
+ So there are 9 primes less than or equal to 25. Is 25 prime?
480
+
481
+ >>> isprime(25)
482
+ False
483
+
484
+ It is not. So the first prime less than 25 must be the
485
+ 9th prime:
486
+
487
+ >>> prevprime(25) == prime(9)
488
+ True
489
+
490
+ See Also
491
+ ========
492
+
493
+ sympy.ntheory.primetest.isprime : Test if n is prime
494
+ primerange : Generate all primes in a given range
495
+ prime : Return the nth prime
496
+ """
497
+ @classmethod
498
+ def eval(cls, n):
499
+ if n is S.Infinity:
500
+ return S.Infinity
501
+ if n is S.NegativeInfinity:
502
+ return S.Zero
503
+
504
+ try:
505
+ n = int(n)
506
+ except TypeError:
507
+ if n.is_real == False or n is S.NaN:
508
+ raise ValueError("n must be real")
509
+ return
510
+
511
+ if n < 2:
512
+ return S.Zero
513
+ if n <= sieve._list[-1]:
514
+ return S(sieve.search(n)[0])
515
+ lim = int(n ** 0.5)
516
+ lim -= 1
517
+ lim = max(lim, 0)
518
+ while lim * lim <= n:
519
+ lim += 1
520
+ lim -= 1
521
+ arr1 = [0] * (lim + 1)
522
+ arr2 = [0] * (lim + 1)
523
+ for i in range(1, lim + 1):
524
+ arr1[i] = i - 1
525
+ arr2[i] = n // i - 1
526
+ for i in range(2, lim + 1):
527
+ # Presently, arr1[k]=phi(k,i - 1),
528
+ # arr2[k] = phi(n // k,i - 1)
529
+ if arr1[i] == arr1[i - 1]:
530
+ continue
531
+ p = arr1[i - 1]
532
+ for j in range(1, min(n // (i * i), lim) + 1):
533
+ st = i * j
534
+ if st <= lim:
535
+ arr2[j] -= arr2[st] - p
536
+ else:
537
+ arr2[j] -= arr1[n // st] - p
538
+ lim2 = min(lim, i * i - 1)
539
+ for j in range(lim, lim2, -1):
540
+ arr1[j] -= arr1[j // i] - p
541
+ return S(arr2[1])
542
+
543
+
544
+ def nextprime(n, ith=1):
545
+ """ Return the ith prime greater than n.
546
+
547
+ i must be an integer.
548
+
549
+ Notes
550
+ =====
551
+
552
+ Potential primes are located at 6*j +/- 1. This
553
+ property is used during searching.
554
+
555
+ >>> from sympy import nextprime
556
+ >>> [(i, nextprime(i)) for i in range(10, 15)]
557
+ [(10, 11), (11, 13), (12, 13), (13, 17), (14, 17)]
558
+ >>> nextprime(2, ith=2) # the 2nd prime after 2
559
+ 5
560
+
561
+ See Also
562
+ ========
563
+
564
+ prevprime : Return the largest prime smaller than n
565
+ primerange : Generate all primes in a given range
566
+
567
+ """
568
+ n = int(n)
569
+ i = as_int(ith)
570
+ if i > 1:
571
+ pr = n
572
+ j = 1
573
+ while 1:
574
+ pr = nextprime(pr)
575
+ j += 1
576
+ if j > i:
577
+ break
578
+ return pr
579
+
580
+ if n < 2:
581
+ return 2
582
+ if n < 7:
583
+ return {2: 3, 3: 5, 4: 5, 5: 7, 6: 7}[n]
584
+ if n <= sieve._list[-2]:
585
+ l, u = sieve.search(n)
586
+ if l == u:
587
+ return sieve[u + 1]
588
+ else:
589
+ return sieve[u]
590
+ nn = 6*(n//6)
591
+ if nn == n:
592
+ n += 1
593
+ if isprime(n):
594
+ return n
595
+ n += 4
596
+ elif n - nn == 5:
597
+ n += 2
598
+ if isprime(n):
599
+ return n
600
+ n += 4
601
+ else:
602
+ n = nn + 5
603
+ while 1:
604
+ if isprime(n):
605
+ return n
606
+ n += 2
607
+ if isprime(n):
608
+ return n
609
+ n += 4
610
+
611
+
612
+ def prevprime(n):
613
+ """ Return the largest prime smaller than n.
614
+
615
+ Notes
616
+ =====
617
+
618
+ Potential primes are located at 6*j +/- 1. This
619
+ property is used during searching.
620
+
621
+ >>> from sympy import prevprime
622
+ >>> [(i, prevprime(i)) for i in range(10, 15)]
623
+ [(10, 7), (11, 7), (12, 11), (13, 11), (14, 13)]
624
+
625
+ See Also
626
+ ========
627
+
628
+ nextprime : Return the ith prime greater than n
629
+ primerange : Generates all primes in a given range
630
+ """
631
+ n = _as_int_ceiling(n)
632
+ if n < 3:
633
+ raise ValueError("no preceding primes")
634
+ if n < 8:
635
+ return {3: 2, 4: 3, 5: 3, 6: 5, 7: 5}[n]
636
+ if n <= sieve._list[-1]:
637
+ l, u = sieve.search(n)
638
+ if l == u:
639
+ return sieve[l-1]
640
+ else:
641
+ return sieve[l]
642
+ nn = 6*(n//6)
643
+ if n - nn <= 1:
644
+ n = nn - 1
645
+ if isprime(n):
646
+ return n
647
+ n -= 4
648
+ else:
649
+ n = nn + 1
650
+ while 1:
651
+ if isprime(n):
652
+ return n
653
+ n -= 2
654
+ if isprime(n):
655
+ return n
656
+ n -= 4
657
+
658
+
659
+ def primerange(a, b=None):
660
+ """ Generate a list of all prime numbers in the range [2, a),
661
+ or [a, b).
662
+
663
+ If the range exists in the default sieve, the values will
664
+ be returned from there; otherwise values will be returned
665
+ but will not modify the sieve.
666
+
667
+ Examples
668
+ ========
669
+
670
+ >>> from sympy import primerange, prime
671
+
672
+ All primes less than 19:
673
+
674
+ >>> list(primerange(19))
675
+ [2, 3, 5, 7, 11, 13, 17]
676
+
677
+ All primes greater than or equal to 7 and less than 19:
678
+
679
+ >>> list(primerange(7, 19))
680
+ [7, 11, 13, 17]
681
+
682
+ All primes through the 10th prime
683
+
684
+ >>> list(primerange(prime(10) + 1))
685
+ [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
686
+
687
+ The Sieve method, primerange, is generally faster but it will
688
+ occupy more memory as the sieve stores values. The default
689
+ instance of Sieve, named sieve, can be used:
690
+
691
+ >>> from sympy import sieve
692
+ >>> list(sieve.primerange(1, 30))
693
+ [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
694
+
695
+ Notes
696
+ =====
697
+
698
+ Some famous conjectures about the occurrence of primes in a given
699
+ range are [1]:
700
+
701
+ - Twin primes: though often not, the following will give 2 primes
702
+ an infinite number of times:
703
+ primerange(6*n - 1, 6*n + 2)
704
+ - Legendre's: the following always yields at least one prime
705
+ primerange(n**2, (n+1)**2+1)
706
+ - Bertrand's (proven): there is always a prime in the range
707
+ primerange(n, 2*n)
708
+ - Brocard's: there are at least four primes in the range
709
+ primerange(prime(n)**2, prime(n+1)**2)
710
+
711
+ The average gap between primes is log(n) [2]; the gap between
712
+ primes can be arbitrarily large since sequences of composite
713
+ numbers are arbitrarily large, e.g. the numbers in the sequence
714
+ n! + 2, n! + 3 ... n! + n are all composite.
715
+
716
+ See Also
717
+ ========
718
+
719
+ prime : Return the nth prime
720
+ nextprime : Return the ith prime greater than n
721
+ prevprime : Return the largest prime smaller than n
722
+ randprime : Returns a random prime in a given range
723
+ primorial : Returns the product of primes based on condition
724
+ Sieve.primerange : return range from already computed primes
725
+ or extend the sieve to contain the requested
726
+ range.
727
+
728
+ References
729
+ ==========
730
+
731
+ .. [1] https://en.wikipedia.org/wiki/Prime_number
732
+ .. [2] https://primes.utm.edu/notes/gaps.html
733
+ """
734
+ if b is None:
735
+ a, b = 2, a
736
+ if a >= b:
737
+ return
738
+ # if we already have the range, return it
739
+ if b <= sieve._list[-1]:
740
+ yield from sieve.primerange(a, b)
741
+ return
742
+ # otherwise compute, without storing, the desired range.
743
+
744
+ a = _as_int_ceiling(a) - 1
745
+ b = _as_int_ceiling(b)
746
+ while 1:
747
+ a = nextprime(a)
748
+ if a < b:
749
+ yield a
750
+ else:
751
+ return
752
+
753
+
754
+ def randprime(a, b):
755
+ """ Return a random prime number in the range [a, b).
756
+
757
+ Bertrand's postulate assures that
758
+ randprime(a, 2*a) will always succeed for a > 1.
759
+
760
+ Examples
761
+ ========
762
+
763
+ >>> from sympy import randprime, isprime
764
+ >>> randprime(1, 30) #doctest: +SKIP
765
+ 13
766
+ >>> isprime(randprime(1, 30))
767
+ True
768
+
769
+ See Also
770
+ ========
771
+
772
+ primerange : Generate all primes in a given range
773
+
774
+ References
775
+ ==========
776
+
777
+ .. [1] https://en.wikipedia.org/wiki/Bertrand's_postulate
778
+
779
+ """
780
+ if a >= b:
781
+ return
782
+ a, b = map(int, (a, b))
783
+ n = random.randint(a - 1, b)
784
+ p = nextprime(n)
785
+ if p >= b:
786
+ p = prevprime(b)
787
+ if p < a:
788
+ raise ValueError("no primes exist in the specified range")
789
+ return p
790
+
791
+
792
+ def primorial(n, nth=True):
793
+ """
794
+ Returns the product of the first n primes (default) or
795
+ the primes less than or equal to n (when ``nth=False``).
796
+
797
+ Examples
798
+ ========
799
+
800
+ >>> from sympy.ntheory.generate import primorial, primerange
801
+ >>> from sympy import factorint, Mul, primefactors, sqrt
802
+ >>> primorial(4) # the first 4 primes are 2, 3, 5, 7
803
+ 210
804
+ >>> primorial(4, nth=False) # primes <= 4 are 2 and 3
805
+ 6
806
+ >>> primorial(1)
807
+ 2
808
+ >>> primorial(1, nth=False)
809
+ 1
810
+ >>> primorial(sqrt(101), nth=False)
811
+ 210
812
+
813
+ One can argue that the primes are infinite since if you take
814
+ a set of primes and multiply them together (e.g. the primorial) and
815
+ then add or subtract 1, the result cannot be divided by any of the
816
+ original factors, hence either 1 or more new primes must divide this
817
+ product of primes.
818
+
819
+ In this case, the number itself is a new prime:
820
+
821
+ >>> factorint(primorial(4) + 1)
822
+ {211: 1}
823
+
824
+ In this case two new primes are the factors:
825
+
826
+ >>> factorint(primorial(4) - 1)
827
+ {11: 1, 19: 1}
828
+
829
+ Here, some primes smaller and larger than the primes multiplied together
830
+ are obtained:
831
+
832
+ >>> p = list(primerange(10, 20))
833
+ >>> sorted(set(primefactors(Mul(*p) + 1)).difference(set(p)))
834
+ [2, 5, 31, 149]
835
+
836
+ See Also
837
+ ========
838
+
839
+ primerange : Generate all primes in a given range
840
+
841
+ """
842
+ if nth:
843
+ n = as_int(n)
844
+ else:
845
+ n = int(n)
846
+ if n < 1:
847
+ raise ValueError("primorial argument must be >= 1")
848
+ p = 1
849
+ if nth:
850
+ for i in range(1, n + 1):
851
+ p *= prime(i)
852
+ else:
853
+ for i in primerange(2, n + 1):
854
+ p *= i
855
+ return p
856
+
857
+
858
+ def cycle_length(f, x0, nmax=None, values=False):
859
+ """For a given iterated sequence, return a generator that gives
860
+ the length of the iterated cycle (lambda) and the length of terms
861
+ before the cycle begins (mu); if ``values`` is True then the
862
+ terms of the sequence will be returned instead. The sequence is
863
+ started with value ``x0``.
864
+
865
+ Note: more than the first lambda + mu terms may be returned and this
866
+ is the cost of cycle detection with Brent's method; there are, however,
867
+ generally less terms calculated than would have been calculated if the
868
+ proper ending point were determined, e.g. by using Floyd's method.
869
+
870
+ >>> from sympy.ntheory.generate import cycle_length
871
+
872
+ This will yield successive values of i <-- func(i):
873
+
874
+ >>> def iter(func, i):
875
+ ... while 1:
876
+ ... ii = func(i)
877
+ ... yield ii
878
+ ... i = ii
879
+ ...
880
+
881
+ A function is defined:
882
+
883
+ >>> func = lambda i: (i**2 + 1) % 51
884
+
885
+ and given a seed of 4 and the mu and lambda terms calculated:
886
+
887
+ >>> next(cycle_length(func, 4))
888
+ (6, 2)
889
+
890
+ We can see what is meant by looking at the output:
891
+
892
+ >>> n = cycle_length(func, 4, values=True)
893
+ >>> list(ni for ni in n)
894
+ [17, 35, 2, 5, 26, 14, 44, 50, 2, 5, 26, 14]
895
+
896
+ There are 6 repeating values after the first 2.
897
+
898
+ If a sequence is suspected of being longer than you might wish, ``nmax``
899
+ can be used to exit early (and mu will be returned as None):
900
+
901
+ >>> next(cycle_length(func, 4, nmax = 4))
902
+ (4, None)
903
+ >>> [ni for ni in cycle_length(func, 4, nmax = 4, values=True)]
904
+ [17, 35, 2, 5]
905
+
906
+ Code modified from:
907
+ https://en.wikipedia.org/wiki/Cycle_detection.
908
+ """
909
+
910
+ nmax = int(nmax or 0)
911
+
912
+ # main phase: search successive powers of two
913
+ power = lam = 1
914
+ tortoise, hare = x0, f(x0) # f(x0) is the element/node next to x0.
915
+ i = 0
916
+ while tortoise != hare and (not nmax or i < nmax):
917
+ i += 1
918
+ if power == lam: # time to start a new power of two?
919
+ tortoise = hare
920
+ power *= 2
921
+ lam = 0
922
+ if values:
923
+ yield hare
924
+ hare = f(hare)
925
+ lam += 1
926
+ if nmax and i == nmax:
927
+ if values:
928
+ return
929
+ else:
930
+ yield nmax, None
931
+ return
932
+ if not values:
933
+ # Find the position of the first repetition of length lambda
934
+ mu = 0
935
+ tortoise = hare = x0
936
+ for i in range(lam):
937
+ hare = f(hare)
938
+ while tortoise != hare:
939
+ tortoise = f(tortoise)
940
+ hare = f(hare)
941
+ mu += 1
942
+ if mu:
943
+ mu -= 1
944
+ yield lam, mu
945
+
946
+
947
+ def composite(nth):
948
+ """ Return the nth composite number, with the composite numbers indexed as
949
+ composite(1) = 4, composite(2) = 6, etc....
950
+
951
+ Examples
952
+ ========
953
+
954
+ >>> from sympy import composite
955
+ >>> composite(36)
956
+ 52
957
+ >>> composite(1)
958
+ 4
959
+ >>> composite(17737)
960
+ 20000
961
+
962
+ See Also
963
+ ========
964
+
965
+ sympy.ntheory.primetest.isprime : Test if n is prime
966
+ primerange : Generate all primes in a given range
967
+ primepi : Return the number of primes less than or equal to n
968
+ prime : Return the nth prime
969
+ compositepi : Return the number of positive composite numbers less than or equal to n
970
+ """
971
+ n = as_int(nth)
972
+ if n < 1:
973
+ raise ValueError("nth must be a positive integer; composite(1) == 4")
974
+ composite_arr = [4, 6, 8, 9, 10, 12, 14, 15, 16, 18]
975
+ if n <= 10:
976
+ return composite_arr[n - 1]
977
+
978
+ a, b = 4, sieve._list[-1]
979
+ if n <= b - primepi(b) - 1:
980
+ while a < b - 1:
981
+ mid = (a + b) >> 1
982
+ if mid - primepi(mid) - 1 > n:
983
+ b = mid
984
+ else:
985
+ a = mid
986
+ if isprime(a):
987
+ a -= 1
988
+ return a
989
+
990
+ from sympy.functions.elementary.exponential import log
991
+ from sympy.functions.special.error_functions import li
992
+ a = 4 # Lower bound for binary search
993
+ b = int(n*(log(n) + log(log(n)))) # Upper bound for the search.
994
+
995
+ while a < b:
996
+ mid = (a + b) >> 1
997
+ if mid - li(mid) - 1 > n:
998
+ b = mid
999
+ else:
1000
+ a = mid + 1
1001
+
1002
+ n_composites = a - primepi(a) - 1
1003
+ while n_composites > n:
1004
+ if not isprime(a):
1005
+ n_composites -= 1
1006
+ a -= 1
1007
+ if isprime(a):
1008
+ a -= 1
1009
+ return a
1010
+
1011
+
1012
+ def compositepi(n):
1013
+ """ Return the number of positive composite numbers less than or equal to n.
1014
+ The first positive composite is 4, i.e. compositepi(4) = 1.
1015
+
1016
+ Examples
1017
+ ========
1018
+
1019
+ >>> from sympy import compositepi
1020
+ >>> compositepi(25)
1021
+ 15
1022
+ >>> compositepi(1000)
1023
+ 831
1024
+
1025
+ See Also
1026
+ ========
1027
+
1028
+ sympy.ntheory.primetest.isprime : Test if n is prime
1029
+ primerange : Generate all primes in a given range
1030
+ prime : Return the nth prime
1031
+ primepi : Return the number of primes less than or equal to n
1032
+ composite : Return the nth composite number
1033
+ """
1034
+ n = int(n)
1035
+ if n < 4:
1036
+ return 0
1037
+ return n - primepi(n) - 1
venv/lib/python3.10/site-packages/sympy/ntheory/modular.py ADDED
@@ -0,0 +1,255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import reduce
2
+ from math import prod
3
+
4
+ from sympy.core.numbers import igcdex, igcd
5
+ from sympy.ntheory.primetest import isprime
6
+ from sympy.polys.domains import ZZ
7
+ from sympy.polys.galoistools import gf_crt, gf_crt1, gf_crt2
8
+ from sympy.utilities.misc import as_int
9
+
10
+
11
+ def symmetric_residue(a, m):
12
+ """Return the residual mod m such that it is within half of the modulus.
13
+
14
+ >>> from sympy.ntheory.modular import symmetric_residue
15
+ >>> symmetric_residue(1, 6)
16
+ 1
17
+ >>> symmetric_residue(4, 6)
18
+ -2
19
+ """
20
+ if a <= m // 2:
21
+ return a
22
+ return a - m
23
+
24
+
25
+ def crt(m, v, symmetric=False, check=True):
26
+ r"""Chinese Remainder Theorem.
27
+
28
+ The moduli in m are assumed to be pairwise coprime. The output
29
+ is then an integer f, such that f = v_i mod m_i for each pair out
30
+ of v and m. If ``symmetric`` is False a positive integer will be
31
+ returned, else \|f\| will be less than or equal to the LCM of the
32
+ moduli, and thus f may be negative.
33
+
34
+ If the moduli are not co-prime the correct result will be returned
35
+ if/when the test of the result is found to be incorrect. This result
36
+ will be None if there is no solution.
37
+
38
+ The keyword ``check`` can be set to False if it is known that the moduli
39
+ are coprime.
40
+
41
+ Examples
42
+ ========
43
+
44
+ As an example consider a set of residues ``U = [49, 76, 65]``
45
+ and a set of moduli ``M = [99, 97, 95]``. Then we have::
46
+
47
+ >>> from sympy.ntheory.modular import crt
48
+
49
+ >>> crt([99, 97, 95], [49, 76, 65])
50
+ (639985, 912285)
51
+
52
+ This is the correct result because::
53
+
54
+ >>> [639985 % m for m in [99, 97, 95]]
55
+ [49, 76, 65]
56
+
57
+ If the moduli are not co-prime, you may receive an incorrect result
58
+ if you use ``check=False``:
59
+
60
+ >>> crt([12, 6, 17], [3, 4, 2], check=False)
61
+ (954, 1224)
62
+ >>> [954 % m for m in [12, 6, 17]]
63
+ [6, 0, 2]
64
+ >>> crt([12, 6, 17], [3, 4, 2]) is None
65
+ True
66
+ >>> crt([3, 6], [2, 5])
67
+ (5, 6)
68
+
69
+ Note: the order of gf_crt's arguments is reversed relative to crt,
70
+ and that solve_congruence takes residue, modulus pairs.
71
+
72
+ Programmer's note: rather than checking that all pairs of moduli share
73
+ no GCD (an O(n**2) test) and rather than factoring all moduli and seeing
74
+ that there is no factor in common, a check that the result gives the
75
+ indicated residuals is performed -- an O(n) operation.
76
+
77
+ See Also
78
+ ========
79
+
80
+ solve_congruence
81
+ sympy.polys.galoistools.gf_crt : low level crt routine used by this routine
82
+ """
83
+ if check:
84
+ m = list(map(as_int, m))
85
+ v = list(map(as_int, v))
86
+
87
+ result = gf_crt(v, m, ZZ)
88
+ mm = prod(m)
89
+
90
+ if check:
91
+ if not all(v % m == result % m for v, m in zip(v, m)):
92
+ result = solve_congruence(*list(zip(v, m)),
93
+ check=False, symmetric=symmetric)
94
+ if result is None:
95
+ return result
96
+ result, mm = result
97
+
98
+ if symmetric:
99
+ return symmetric_residue(result, mm), mm
100
+ return result, mm
101
+
102
+
103
+ def crt1(m):
104
+ """First part of Chinese Remainder Theorem, for multiple application.
105
+
106
+ Examples
107
+ ========
108
+
109
+ >>> from sympy.ntheory.modular import crt1
110
+ >>> crt1([18, 42, 6])
111
+ (4536, [252, 108, 756], [0, 2, 0])
112
+ """
113
+
114
+ return gf_crt1(m, ZZ)
115
+
116
+
117
+ def crt2(m, v, mm, e, s, symmetric=False):
118
+ """Second part of Chinese Remainder Theorem, for multiple application.
119
+
120
+ Examples
121
+ ========
122
+
123
+ >>> from sympy.ntheory.modular import crt1, crt2
124
+ >>> mm, e, s = crt1([18, 42, 6])
125
+ >>> crt2([18, 42, 6], [0, 0, 0], mm, e, s)
126
+ (0, 4536)
127
+ """
128
+
129
+ result = gf_crt2(v, m, mm, e, s, ZZ)
130
+
131
+ if symmetric:
132
+ return symmetric_residue(result, mm), mm
133
+ return result, mm
134
+
135
+
136
+ def solve_congruence(*remainder_modulus_pairs, **hint):
137
+ """Compute the integer ``n`` that has the residual ``ai`` when it is
138
+ divided by ``mi`` where the ``ai`` and ``mi`` are given as pairs to
139
+ this function: ((a1, m1), (a2, m2), ...). If there is no solution,
140
+ return None. Otherwise return ``n`` and its modulus.
141
+
142
+ The ``mi`` values need not be co-prime. If it is known that the moduli are
143
+ not co-prime then the hint ``check`` can be set to False (default=True) and
144
+ the check for a quicker solution via crt() (valid when the moduli are
145
+ co-prime) will be skipped.
146
+
147
+ If the hint ``symmetric`` is True (default is False), the value of ``n``
148
+ will be within 1/2 of the modulus, possibly negative.
149
+
150
+ Examples
151
+ ========
152
+
153
+ >>> from sympy.ntheory.modular import solve_congruence
154
+
155
+ What number is 2 mod 3, 3 mod 5 and 2 mod 7?
156
+
157
+ >>> solve_congruence((2, 3), (3, 5), (2, 7))
158
+ (23, 105)
159
+ >>> [23 % m for m in [3, 5, 7]]
160
+ [2, 3, 2]
161
+
162
+ If you prefer to work with all remainder in one list and
163
+ all moduli in another, send the arguments like this:
164
+
165
+ >>> solve_congruence(*zip((2, 3, 2), (3, 5, 7)))
166
+ (23, 105)
167
+
168
+ The moduli need not be co-prime; in this case there may or
169
+ may not be a solution:
170
+
171
+ >>> solve_congruence((2, 3), (4, 6)) is None
172
+ True
173
+
174
+ >>> solve_congruence((2, 3), (5, 6))
175
+ (5, 6)
176
+
177
+ The symmetric flag will make the result be within 1/2 of the modulus:
178
+
179
+ >>> solve_congruence((2, 3), (5, 6), symmetric=True)
180
+ (-1, 6)
181
+
182
+ See Also
183
+ ========
184
+
185
+ crt : high level routine implementing the Chinese Remainder Theorem
186
+
187
+ """
188
+ def combine(c1, c2):
189
+ """Return the tuple (a, m) which satisfies the requirement
190
+ that n = a + i*m satisfy n = a1 + j*m1 and n = a2 = k*m2.
191
+
192
+ References
193
+ ==========
194
+
195
+ .. [1] https://en.wikipedia.org/wiki/Method_of_successive_substitution
196
+ """
197
+ a1, m1 = c1
198
+ a2, m2 = c2
199
+ a, b, c = m1, a2 - a1, m2
200
+ g = reduce(igcd, [a, b, c])
201
+ a, b, c = [i//g for i in [a, b, c]]
202
+ if a != 1:
203
+ inv_a, _, g = igcdex(a, c)
204
+ if g != 1:
205
+ return None
206
+ b *= inv_a
207
+ a, m = a1 + m1*b, m1*c
208
+ return a, m
209
+
210
+ rm = remainder_modulus_pairs
211
+ symmetric = hint.get('symmetric', False)
212
+
213
+ if hint.get('check', True):
214
+ rm = [(as_int(r), as_int(m)) for r, m in rm]
215
+
216
+ # ignore redundant pairs but raise an error otherwise; also
217
+ # make sure that a unique set of bases is sent to gf_crt if
218
+ # they are all prime.
219
+ #
220
+ # The routine will work out less-trivial violations and
221
+ # return None, e.g. for the pairs (1,3) and (14,42) there
222
+ # is no answer because 14 mod 42 (having a gcd of 14) implies
223
+ # (14/2) mod (42/2), (14/7) mod (42/7) and (14/14) mod (42/14)
224
+ # which, being 0 mod 3, is inconsistent with 1 mod 3. But to
225
+ # preprocess the input beyond checking of another pair with 42
226
+ # or 3 as the modulus (for this example) is not necessary.
227
+ uniq = {}
228
+ for r, m in rm:
229
+ r %= m
230
+ if m in uniq:
231
+ if r != uniq[m]:
232
+ return None
233
+ continue
234
+ uniq[m] = r
235
+ rm = [(r, m) for m, r in uniq.items()]
236
+ del uniq
237
+
238
+ # if the moduli are co-prime, the crt will be significantly faster;
239
+ # checking all pairs for being co-prime gets to be slow but a prime
240
+ # test is a good trade-off
241
+ if all(isprime(m) for r, m in rm):
242
+ r, m = list(zip(*rm))
243
+ return crt(m, r, symmetric=symmetric, check=False)
244
+
245
+ rv = (0, 1)
246
+ for rmi in rm:
247
+ rv = combine(rv, rmi)
248
+ if rv is None:
249
+ break
250
+ n, m = rv
251
+ n = n % m
252
+ else:
253
+ if symmetric:
254
+ return symmetric_residue(n, m), m
255
+ return n, m
venv/lib/python3.10/site-packages/sympy/ntheory/multinomial.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.utilities.misc import as_int
2
+
3
+
4
+ def binomial_coefficients(n):
5
+ """Return a dictionary containing pairs :math:`{(k1,k2) : C_kn}` where
6
+ :math:`C_kn` are binomial coefficients and :math:`n=k1+k2`.
7
+
8
+ Examples
9
+ ========
10
+
11
+ >>> from sympy.ntheory import binomial_coefficients
12
+ >>> binomial_coefficients(9)
13
+ {(0, 9): 1, (1, 8): 9, (2, 7): 36, (3, 6): 84,
14
+ (4, 5): 126, (5, 4): 126, (6, 3): 84, (7, 2): 36, (8, 1): 9, (9, 0): 1}
15
+
16
+ See Also
17
+ ========
18
+
19
+ binomial_coefficients_list, multinomial_coefficients
20
+ """
21
+ n = as_int(n)
22
+ d = {(0, n): 1, (n, 0): 1}
23
+ a = 1
24
+ for k in range(1, n//2 + 1):
25
+ a = (a * (n - k + 1))//k
26
+ d[k, n - k] = d[n - k, k] = a
27
+ return d
28
+
29
+
30
+ def binomial_coefficients_list(n):
31
+ """ Return a list of binomial coefficients as rows of the Pascal's
32
+ triangle.
33
+
34
+ Examples
35
+ ========
36
+
37
+ >>> from sympy.ntheory import binomial_coefficients_list
38
+ >>> binomial_coefficients_list(9)
39
+ [1, 9, 36, 84, 126, 126, 84, 36, 9, 1]
40
+
41
+ See Also
42
+ ========
43
+
44
+ binomial_coefficients, multinomial_coefficients
45
+ """
46
+ n = as_int(n)
47
+ d = [1] * (n + 1)
48
+ a = 1
49
+ for k in range(1, n//2 + 1):
50
+ a = (a * (n - k + 1))//k
51
+ d[k] = d[n - k] = a
52
+ return d
53
+
54
+
55
+ def multinomial_coefficients(m, n):
56
+ r"""Return a dictionary containing pairs ``{(k1,k2,..,km) : C_kn}``
57
+ where ``C_kn`` are multinomial coefficients such that
58
+ ``n=k1+k2+..+km``.
59
+
60
+ Examples
61
+ ========
62
+
63
+ >>> from sympy.ntheory import multinomial_coefficients
64
+ >>> multinomial_coefficients(2, 5) # indirect doctest
65
+ {(0, 5): 1, (1, 4): 5, (2, 3): 10, (3, 2): 10, (4, 1): 5, (5, 0): 1}
66
+
67
+ Notes
68
+ =====
69
+
70
+ The algorithm is based on the following result:
71
+
72
+ .. math::
73
+ \binom{n}{k_1, \ldots, k_m} =
74
+ \frac{k_1 + 1}{n - k_1} \sum_{i=2}^m \binom{n}{k_1 + 1, \ldots, k_i - 1, \ldots}
75
+
76
+ Code contributed to Sage by Yann Laigle-Chapuy, copied with permission
77
+ of the author.
78
+
79
+ See Also
80
+ ========
81
+
82
+ binomial_coefficients_list, binomial_coefficients
83
+ """
84
+ m = as_int(m)
85
+ n = as_int(n)
86
+ if not m:
87
+ if n:
88
+ return {}
89
+ return {(): 1}
90
+ if m == 2:
91
+ return binomial_coefficients(n)
92
+ if m >= 2*n and n > 1:
93
+ return dict(multinomial_coefficients_iterator(m, n))
94
+ t = [n] + [0] * (m - 1)
95
+ r = {tuple(t): 1}
96
+ if n:
97
+ j = 0 # j will be the leftmost nonzero position
98
+ else:
99
+ j = m
100
+ # enumerate tuples in co-lex order
101
+ while j < m - 1:
102
+ # compute next tuple
103
+ tj = t[j]
104
+ if j:
105
+ t[j] = 0
106
+ t[0] = tj
107
+ if tj > 1:
108
+ t[j + 1] += 1
109
+ j = 0
110
+ start = 1
111
+ v = 0
112
+ else:
113
+ j += 1
114
+ start = j + 1
115
+ v = r[tuple(t)]
116
+ t[j] += 1
117
+ # compute the value
118
+ # NB: the initialization of v was done above
119
+ for k in range(start, m):
120
+ if t[k]:
121
+ t[k] -= 1
122
+ v += r[tuple(t)]
123
+ t[k] += 1
124
+ t[0] -= 1
125
+ r[tuple(t)] = (v * tj) // (n - t[0])
126
+ return r
127
+
128
+
129
+ def multinomial_coefficients_iterator(m, n, _tuple=tuple):
130
+ """multinomial coefficient iterator
131
+
132
+ This routine has been optimized for `m` large with respect to `n` by taking
133
+ advantage of the fact that when the monomial tuples `t` are stripped of
134
+ zeros, their coefficient is the same as that of the monomial tuples from
135
+ ``multinomial_coefficients(n, n)``. Therefore, the latter coefficients are
136
+ precomputed to save memory and time.
137
+
138
+ >>> from sympy.ntheory.multinomial import multinomial_coefficients
139
+ >>> m53, m33 = multinomial_coefficients(5,3), multinomial_coefficients(3,3)
140
+ >>> m53[(0,0,0,1,2)] == m53[(0,0,1,0,2)] == m53[(1,0,2,0,0)] == m33[(0,1,2)]
141
+ True
142
+
143
+ Examples
144
+ ========
145
+
146
+ >>> from sympy.ntheory.multinomial import multinomial_coefficients_iterator
147
+ >>> it = multinomial_coefficients_iterator(20,3)
148
+ >>> next(it)
149
+ ((3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), 1)
150
+ """
151
+ m = as_int(m)
152
+ n = as_int(n)
153
+ if m < 2*n or n == 1:
154
+ mc = multinomial_coefficients(m, n)
155
+ yield from mc.items()
156
+ else:
157
+ mc = multinomial_coefficients(n, n)
158
+ mc1 = {}
159
+ for k, v in mc.items():
160
+ mc1[_tuple(filter(None, k))] = v
161
+ mc = mc1
162
+
163
+ t = [n] + [0] * (m - 1)
164
+ t1 = _tuple(t)
165
+ b = _tuple(filter(None, t1))
166
+ yield (t1, mc[b])
167
+ if n:
168
+ j = 0 # j will be the leftmost nonzero position
169
+ else:
170
+ j = m
171
+ # enumerate tuples in co-lex order
172
+ while j < m - 1:
173
+ # compute next tuple
174
+ tj = t[j]
175
+ if j:
176
+ t[j] = 0
177
+ t[0] = tj
178
+ if tj > 1:
179
+ t[j + 1] += 1
180
+ j = 0
181
+ else:
182
+ j += 1
183
+ t[j] += 1
184
+
185
+ t[0] -= 1
186
+ t1 = _tuple(t)
187
+ b = _tuple(filter(None, t1))
188
+ yield (t1, mc[b])
venv/lib/python3.10/site-packages/sympy/ntheory/partitions_.py ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from mpmath.libmp import (fzero, from_int, from_rational,
2
+ fone, fhalf, bitcount, to_int, to_str, mpf_mul, mpf_div, mpf_sub,
3
+ mpf_add, mpf_sqrt, mpf_pi, mpf_cosh_sinh, mpf_cos, mpf_sin)
4
+ from sympy.core.numbers import igcd
5
+ from .residue_ntheory import (_sqrt_mod_prime_power,
6
+ legendre_symbol, jacobi_symbol, is_quad_residue)
7
+
8
+ import math
9
+
10
+ def _pre():
11
+ maxn = 10**5
12
+ global _factor
13
+ global _totient
14
+ _factor = [0]*maxn
15
+ _totient = [1]*maxn
16
+ lim = int(maxn**0.5) + 5
17
+ for i in range(2, lim):
18
+ if _factor[i] == 0:
19
+ for j in range(i*i, maxn, i):
20
+ if _factor[j] == 0:
21
+ _factor[j] = i
22
+ for i in range(2, maxn):
23
+ if _factor[i] == 0:
24
+ _factor[i] = i
25
+ _totient[i] = i-1
26
+ continue
27
+ x = _factor[i]
28
+ y = i//x
29
+ if y % x == 0:
30
+ _totient[i] = _totient[y]*x
31
+ else:
32
+ _totient[i] = _totient[y]*(x - 1)
33
+
34
+ def _a(n, k, prec):
35
+ """ Compute the inner sum in HRR formula [1]_
36
+
37
+ References
38
+ ==========
39
+
40
+ .. [1] https://msp.org/pjm/1956/6-1/pjm-v6-n1-p18-p.pdf
41
+
42
+ """
43
+ if k == 1:
44
+ return fone
45
+
46
+ k1 = k
47
+ e = 0
48
+ p = _factor[k]
49
+ while k1 % p == 0:
50
+ k1 //= p
51
+ e += 1
52
+ k2 = k//k1 # k2 = p^e
53
+ v = 1 - 24*n
54
+ pi = mpf_pi(prec)
55
+
56
+ if k1 == 1:
57
+ # k = p^e
58
+ if p == 2:
59
+ mod = 8*k
60
+ v = mod + v % mod
61
+ v = (v*pow(9, k - 1, mod)) % mod
62
+ m = _sqrt_mod_prime_power(v, 2, e + 3)[0]
63
+ arg = mpf_div(mpf_mul(
64
+ from_int(4*m), pi, prec), from_int(mod), prec)
65
+ return mpf_mul(mpf_mul(
66
+ from_int((-1)**e*jacobi_symbol(m - 1, m)),
67
+ mpf_sqrt(from_int(k), prec), prec),
68
+ mpf_sin(arg, prec), prec)
69
+ if p == 3:
70
+ mod = 3*k
71
+ v = mod + v % mod
72
+ if e > 1:
73
+ v = (v*pow(64, k//3 - 1, mod)) % mod
74
+ m = _sqrt_mod_prime_power(v, 3, e + 1)[0]
75
+ arg = mpf_div(mpf_mul(from_int(4*m), pi, prec),
76
+ from_int(mod), prec)
77
+ return mpf_mul(mpf_mul(
78
+ from_int(2*(-1)**(e + 1)*legendre_symbol(m, 3)),
79
+ mpf_sqrt(from_int(k//3), prec), prec),
80
+ mpf_sin(arg, prec), prec)
81
+ v = k + v % k
82
+ if v % p == 0:
83
+ if e == 1:
84
+ return mpf_mul(
85
+ from_int(jacobi_symbol(3, k)),
86
+ mpf_sqrt(from_int(k), prec), prec)
87
+ return fzero
88
+ if not is_quad_residue(v, p):
89
+ return fzero
90
+ _phi = p**(e - 1)*(p - 1)
91
+ v = (v*pow(576, _phi - 1, k))
92
+ m = _sqrt_mod_prime_power(v, p, e)[0]
93
+ arg = mpf_div(
94
+ mpf_mul(from_int(4*m), pi, prec),
95
+ from_int(k), prec)
96
+ return mpf_mul(mpf_mul(
97
+ from_int(2*jacobi_symbol(3, k)),
98
+ mpf_sqrt(from_int(k), prec), prec),
99
+ mpf_cos(arg, prec), prec)
100
+
101
+ if p != 2 or e >= 3:
102
+ d1, d2 = igcd(k1, 24), igcd(k2, 24)
103
+ e = 24//(d1*d2)
104
+ n1 = ((d2*e*n + (k2**2 - 1)//d1)*
105
+ pow(e*k2*k2*d2, _totient[k1] - 1, k1)) % k1
106
+ n2 = ((d1*e*n + (k1**2 - 1)//d2)*
107
+ pow(e*k1*k1*d1, _totient[k2] - 1, k2)) % k2
108
+ return mpf_mul(_a(n1, k1, prec), _a(n2, k2, prec), prec)
109
+ if e == 2:
110
+ n1 = ((8*n + 5)*pow(128, _totient[k1] - 1, k1)) % k1
111
+ n2 = (4 + ((n - 2 - (k1**2 - 1)//8)*(k1**2)) % 4) % 4
112
+ return mpf_mul(mpf_mul(
113
+ from_int(-1),
114
+ _a(n1, k1, prec), prec),
115
+ _a(n2, k2, prec))
116
+ n1 = ((8*n + 1)*pow(32, _totient[k1] - 1, k1)) % k1
117
+ n2 = (2 + (n - (k1**2 - 1)//8) % 2) % 2
118
+ return mpf_mul(_a(n1, k1, prec), _a(n2, k2, prec), prec)
119
+
120
+ def _d(n, j, prec, sq23pi, sqrt8):
121
+ """
122
+ Compute the sinh term in the outer sum of the HRR formula.
123
+ The constants sqrt(2/3*pi) and sqrt(8) must be precomputed.
124
+ """
125
+ j = from_int(j)
126
+ pi = mpf_pi(prec)
127
+ a = mpf_div(sq23pi, j, prec)
128
+ b = mpf_sub(from_int(n), from_rational(1, 24, prec), prec)
129
+ c = mpf_sqrt(b, prec)
130
+ ch, sh = mpf_cosh_sinh(mpf_mul(a, c), prec)
131
+ D = mpf_div(
132
+ mpf_sqrt(j, prec),
133
+ mpf_mul(mpf_mul(sqrt8, b), pi), prec)
134
+ E = mpf_sub(mpf_mul(a, ch), mpf_div(sh, c, prec), prec)
135
+ return mpf_mul(D, E)
136
+
137
+
138
+ def npartitions(n, verbose=False):
139
+ """
140
+ Calculate the partition function P(n), i.e. the number of ways that
141
+ n can be written as a sum of positive integers.
142
+
143
+ P(n) is computed using the Hardy-Ramanujan-Rademacher formula [1]_.
144
+
145
+
146
+ The correctness of this implementation has been tested through $10^{10}$.
147
+
148
+ Examples
149
+ ========
150
+
151
+ >>> from sympy.ntheory import npartitions
152
+ >>> npartitions(25)
153
+ 1958
154
+
155
+ References
156
+ ==========
157
+
158
+ .. [1] https://mathworld.wolfram.com/PartitionFunctionP.html
159
+
160
+ """
161
+ n = int(n)
162
+ if n < 0:
163
+ return 0
164
+ if n <= 5:
165
+ return [1, 1, 2, 3, 5, 7][n]
166
+ if '_factor' not in globals():
167
+ _pre()
168
+ # Estimate number of bits in p(n). This formula could be tidied
169
+ pbits = int((
170
+ math.pi*(2*n/3.)**0.5 -
171
+ math.log(4*n))/math.log(10) + 1) * \
172
+ math.log(10, 2)
173
+ prec = p = int(pbits*1.1 + 100)
174
+ s = fzero
175
+ M = max(6, int(0.24*n**0.5 + 4))
176
+ if M > 10**5:
177
+ raise ValueError("Input too big") # Corresponds to n > 1.7e11
178
+ sq23pi = mpf_mul(mpf_sqrt(from_rational(2, 3, p), p), mpf_pi(p), p)
179
+ sqrt8 = mpf_sqrt(from_int(8), p)
180
+ for q in range(1, M):
181
+ a = _a(n, q, p)
182
+ d = _d(n, q, p, sq23pi, sqrt8)
183
+ s = mpf_add(s, mpf_mul(a, d), prec)
184
+ if verbose:
185
+ print("step", q, "of", M, to_str(a, 10), to_str(d, 10))
186
+ # On average, the terms decrease rapidly in magnitude.
187
+ # Dynamically reducing the precision greatly improves
188
+ # performance.
189
+ p = bitcount(abs(to_int(d))) + 50
190
+ return int(to_int(mpf_add(s, fhalf, prec)))
191
+
192
+ __all__ = ['npartitions']
venv/lib/python3.10/site-packages/sympy/ntheory/primetest.py ADDED
@@ -0,0 +1,696 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Primality testing
3
+
4
+ """
5
+
6
+ from sympy.core.numbers import igcd
7
+ from sympy.core.power import integer_nthroot
8
+ from sympy.core.sympify import sympify
9
+ from sympy.external.gmpy import HAS_GMPY
10
+ from sympy.utilities.misc import as_int
11
+
12
+ from mpmath.libmp import bitcount as _bitlength
13
+
14
+
15
+ def _int_tuple(*i):
16
+ return tuple(int(_) for _ in i)
17
+
18
+
19
+ def is_euler_pseudoprime(n, b):
20
+ """Returns True if n is prime or an Euler pseudoprime to base b, else False.
21
+
22
+ Euler Pseudoprime : In arithmetic, an odd composite integer n is called an
23
+ euler pseudoprime to base a, if a and n are coprime and satisfy the modular
24
+ arithmetic congruence relation :
25
+
26
+ a ^ (n-1)/2 = + 1(mod n) or
27
+ a ^ (n-1)/2 = - 1(mod n)
28
+
29
+ (where mod refers to the modulo operation).
30
+
31
+ Examples
32
+ ========
33
+
34
+ >>> from sympy.ntheory.primetest import is_euler_pseudoprime
35
+ >>> is_euler_pseudoprime(2, 5)
36
+ True
37
+
38
+ References
39
+ ==========
40
+
41
+ .. [1] https://en.wikipedia.org/wiki/Euler_pseudoprime
42
+ """
43
+ from sympy.ntheory.factor_ import trailing
44
+
45
+ if not mr(n, [b]):
46
+ return False
47
+
48
+ n = as_int(n)
49
+ r = n - 1
50
+ c = pow(b, r >> trailing(r), n)
51
+
52
+ if c == 1:
53
+ return True
54
+
55
+ while True:
56
+ if c == n - 1:
57
+ return True
58
+ c = pow(c, 2, n)
59
+ if c == 1:
60
+ return False
61
+
62
+
63
+ def is_square(n, prep=True):
64
+ """Return True if n == a * a for some integer a, else False.
65
+ If n is suspected of *not* being a square then this is a
66
+ quick method of confirming that it is not.
67
+
68
+ Examples
69
+ ========
70
+
71
+ >>> from sympy.ntheory.primetest import is_square
72
+ >>> is_square(25)
73
+ True
74
+ >>> is_square(2)
75
+ False
76
+
77
+ References
78
+ ==========
79
+
80
+ .. [1] https://mersenneforum.org/showpost.php?p=110896
81
+
82
+ See Also
83
+ ========
84
+ sympy.core.power.integer_nthroot
85
+ """
86
+ if prep:
87
+ n = as_int(n)
88
+ if n < 0:
89
+ return False
90
+ if n in (0, 1):
91
+ return True
92
+ # def magic(n):
93
+ # s = {x**2 % n for x in range(n)}
94
+ # return sum(1 << bit for bit in s)
95
+ # >>> print(hex(magic(128)))
96
+ # 0x2020212020202130202021202030213
97
+ # >>> print(hex(magic(99)))
98
+ # 0x209060049048220348a410213
99
+ # >>> print(hex(magic(91)))
100
+ # 0x102e403012a0c9862c14213
101
+ # >>> print(hex(magic(85)))
102
+ # 0x121065188e001c46298213
103
+ if not 0x2020212020202130202021202030213 & (1 << (n & 127)):
104
+ return False # e.g. 2, 3
105
+ m = n % (99 * 91 * 85)
106
+ if not 0x209060049048220348a410213 & (1 << (m % 99)):
107
+ return False # e.g. 17, 68
108
+ if not 0x102e403012a0c9862c14213 & (1 << (m % 91)):
109
+ return False # e.g. 97, 388
110
+ if not 0x121065188e001c46298213 & (1 << (m % 85)):
111
+ return False # e.g. 793, 1408
112
+ # n is either:
113
+ # a) odd = 4*even + 1 (and square if even = k*(k + 1))
114
+ # b) even with
115
+ # odd multiplicity of 2 --> not square, e.g. 39040
116
+ # even multiplicity of 2, e.g. 4, 16, 36, ..., 16324
117
+ # removal of factors of 2 to give an odd, and rejection if
118
+ # any(i%2 for i in divmod(odd - 1, 4))
119
+ # will give an odd number in form 4*even + 1.
120
+ # Use of `trailing` to check the power of 2 is not done since it
121
+ # does not apply to a large percentage of arbitrary numbers
122
+ # and the integer_nthroot is able to quickly resolve these cases.
123
+ return integer_nthroot(n, 2)[1]
124
+
125
+
126
+ def _test(n, base, s, t):
127
+ """Miller-Rabin strong pseudoprime test for one base.
128
+ Return False if n is definitely composite, True if n is
129
+ probably prime, with a probability greater than 3/4.
130
+
131
+ """
132
+ # do the Fermat test
133
+ b = pow(base, t, n)
134
+ if b == 1 or b == n - 1:
135
+ return True
136
+ else:
137
+ for j in range(1, s):
138
+ b = pow(b, 2, n)
139
+ if b == n - 1:
140
+ return True
141
+ # see I. Niven et al. "An Introduction to Theory of Numbers", page 78
142
+ if b == 1:
143
+ return False
144
+ return False
145
+
146
+
147
+ def mr(n, bases):
148
+ """Perform a Miller-Rabin strong pseudoprime test on n using a
149
+ given list of bases/witnesses.
150
+
151
+ References
152
+ ==========
153
+
154
+ .. [1] Richard Crandall & Carl Pomerance (2005), "Prime Numbers:
155
+ A Computational Perspective", Springer, 2nd edition, 135-138
156
+
157
+ A list of thresholds and the bases they require are here:
158
+ https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Deterministic_variants
159
+
160
+ Examples
161
+ ========
162
+
163
+ >>> from sympy.ntheory.primetest import mr
164
+ >>> mr(1373651, [2, 3])
165
+ False
166
+ >>> mr(479001599, [31, 73])
167
+ True
168
+
169
+ """
170
+ from sympy.ntheory.factor_ import trailing
171
+ from sympy.polys.domains import ZZ
172
+
173
+ n = as_int(n)
174
+ if n < 2:
175
+ return False
176
+ # remove powers of 2 from n-1 (= t * 2**s)
177
+ s = trailing(n - 1)
178
+ t = n >> s
179
+ for base in bases:
180
+ # Bases >= n are wrapped, bases < 2 are invalid
181
+ if base >= n:
182
+ base %= n
183
+ if base >= 2:
184
+ base = ZZ(base)
185
+ if not _test(n, base, s, t):
186
+ return False
187
+ return True
188
+
189
+
190
+ def _lucas_sequence(n, P, Q, k):
191
+ """Return the modular Lucas sequence (U_k, V_k, Q_k).
192
+
193
+ Given a Lucas sequence defined by P, Q, returns the kth values for
194
+ U and V, along with Q^k, all modulo n. This is intended for use with
195
+ possibly very large values of n and k, where the combinatorial functions
196
+ would be completely unusable.
197
+
198
+ The modular Lucas sequences are used in numerous places in number theory,
199
+ especially in the Lucas compositeness tests and the various n + 1 proofs.
200
+
201
+ Examples
202
+ ========
203
+
204
+ >>> from sympy.ntheory.primetest import _lucas_sequence
205
+ >>> N = 10**2000 + 4561
206
+ >>> sol = U, V, Qk = _lucas_sequence(N, 3, 1, N//2); sol
207
+ (0, 2, 1)
208
+
209
+ """
210
+ D = P*P - 4*Q
211
+ if n < 2:
212
+ raise ValueError("n must be >= 2")
213
+ if k < 0:
214
+ raise ValueError("k must be >= 0")
215
+ if D == 0:
216
+ raise ValueError("D must not be zero")
217
+
218
+ if k == 0:
219
+ return _int_tuple(0, 2, Q)
220
+ U = 1
221
+ V = P
222
+ Qk = Q
223
+ b = _bitlength(k)
224
+ if Q == 1:
225
+ # Optimization for extra strong tests.
226
+ while b > 1:
227
+ U = (U*V) % n
228
+ V = (V*V - 2) % n
229
+ b -= 1
230
+ if (k >> (b - 1)) & 1:
231
+ U, V = U*P + V, V*P + U*D
232
+ if U & 1:
233
+ U += n
234
+ if V & 1:
235
+ V += n
236
+ U, V = U >> 1, V >> 1
237
+ elif P == 1 and Q == -1:
238
+ # Small optimization for 50% of Selfridge parameters.
239
+ while b > 1:
240
+ U = (U*V) % n
241
+ if Qk == 1:
242
+ V = (V*V - 2) % n
243
+ else:
244
+ V = (V*V + 2) % n
245
+ Qk = 1
246
+ b -= 1
247
+ if (k >> (b-1)) & 1:
248
+ U, V = U + V, V + U*D
249
+ if U & 1:
250
+ U += n
251
+ if V & 1:
252
+ V += n
253
+ U, V = U >> 1, V >> 1
254
+ Qk = -1
255
+ else:
256
+ # The general case with any P and Q.
257
+ while b > 1:
258
+ U = (U*V) % n
259
+ V = (V*V - 2*Qk) % n
260
+ Qk *= Qk
261
+ b -= 1
262
+ if (k >> (b - 1)) & 1:
263
+ U, V = U*P + V, V*P + U*D
264
+ if U & 1:
265
+ U += n
266
+ if V & 1:
267
+ V += n
268
+ U, V = U >> 1, V >> 1
269
+ Qk *= Q
270
+ Qk %= n
271
+ return _int_tuple(U % n, V % n, Qk)
272
+
273
+
274
+ def _lucas_selfridge_params(n):
275
+ """Calculates the Selfridge parameters (D, P, Q) for n. This is
276
+ method A from page 1401 of Baillie and Wagstaff.
277
+
278
+ References
279
+ ==========
280
+ .. [1] "Lucas Pseudoprimes", Baillie and Wagstaff, 1980.
281
+ http://mpqs.free.fr/LucasPseudoprimes.pdf
282
+ """
283
+ from sympy.ntheory.residue_ntheory import jacobi_symbol
284
+ D = 5
285
+ while True:
286
+ g = igcd(abs(D), n)
287
+ if g > 1 and g != n:
288
+ return (0, 0, 0)
289
+ if jacobi_symbol(D, n) == -1:
290
+ break
291
+ if D > 0:
292
+ D = -D - 2
293
+ else:
294
+ D = -D + 2
295
+ return _int_tuple(D, 1, (1 - D)/4)
296
+
297
+
298
+ def _lucas_extrastrong_params(n):
299
+ """Calculates the "extra strong" parameters (D, P, Q) for n.
300
+
301
+ References
302
+ ==========
303
+ .. [1] OEIS A217719: Extra Strong Lucas Pseudoprimes
304
+ https://oeis.org/A217719
305
+ .. [1] https://en.wikipedia.org/wiki/Lucas_pseudoprime
306
+ """
307
+ from sympy.ntheory.residue_ntheory import jacobi_symbol
308
+ P, Q, D = 3, 1, 5
309
+ while True:
310
+ g = igcd(D, n)
311
+ if g > 1 and g != n:
312
+ return (0, 0, 0)
313
+ if jacobi_symbol(D, n) == -1:
314
+ break
315
+ P += 1
316
+ D = P*P - 4
317
+ return _int_tuple(D, P, Q)
318
+
319
+
320
+ def is_lucas_prp(n):
321
+ """Standard Lucas compositeness test with Selfridge parameters. Returns
322
+ False if n is definitely composite, and True if n is a Lucas probable
323
+ prime.
324
+
325
+ This is typically used in combination with the Miller-Rabin test.
326
+
327
+ References
328
+ ==========
329
+ - "Lucas Pseudoprimes", Baillie and Wagstaff, 1980.
330
+ http://mpqs.free.fr/LucasPseudoprimes.pdf
331
+ - OEIS A217120: Lucas Pseudoprimes
332
+ https://oeis.org/A217120
333
+ - https://en.wikipedia.org/wiki/Lucas_pseudoprime
334
+
335
+ Examples
336
+ ========
337
+
338
+ >>> from sympy.ntheory.primetest import isprime, is_lucas_prp
339
+ >>> for i in range(10000):
340
+ ... if is_lucas_prp(i) and not isprime(i):
341
+ ... print(i)
342
+ 323
343
+ 377
344
+ 1159
345
+ 1829
346
+ 3827
347
+ 5459
348
+ 5777
349
+ 9071
350
+ 9179
351
+ """
352
+ n = as_int(n)
353
+ if n == 2:
354
+ return True
355
+ if n < 2 or (n % 2) == 0:
356
+ return False
357
+ if is_square(n, False):
358
+ return False
359
+
360
+ D, P, Q = _lucas_selfridge_params(n)
361
+ if D == 0:
362
+ return False
363
+ U, V, Qk = _lucas_sequence(n, P, Q, n+1)
364
+ return U == 0
365
+
366
+
367
+ def is_strong_lucas_prp(n):
368
+ """Strong Lucas compositeness test with Selfridge parameters. Returns
369
+ False if n is definitely composite, and True if n is a strong Lucas
370
+ probable prime.
371
+
372
+ This is often used in combination with the Miller-Rabin test, and
373
+ in particular, when combined with M-R base 2 creates the strong BPSW test.
374
+
375
+ References
376
+ ==========
377
+ - "Lucas Pseudoprimes", Baillie and Wagstaff, 1980.
378
+ http://mpqs.free.fr/LucasPseudoprimes.pdf
379
+ - OEIS A217255: Strong Lucas Pseudoprimes
380
+ https://oeis.org/A217255
381
+ - https://en.wikipedia.org/wiki/Lucas_pseudoprime
382
+ - https://en.wikipedia.org/wiki/Baillie-PSW_primality_test
383
+
384
+ Examples
385
+ ========
386
+
387
+ >>> from sympy.ntheory.primetest import isprime, is_strong_lucas_prp
388
+ >>> for i in range(20000):
389
+ ... if is_strong_lucas_prp(i) and not isprime(i):
390
+ ... print(i)
391
+ 5459
392
+ 5777
393
+ 10877
394
+ 16109
395
+ 18971
396
+ """
397
+ from sympy.ntheory.factor_ import trailing
398
+ n = as_int(n)
399
+ if n == 2:
400
+ return True
401
+ if n < 2 or (n % 2) == 0:
402
+ return False
403
+ if is_square(n, False):
404
+ return False
405
+
406
+ D, P, Q = _lucas_selfridge_params(n)
407
+ if D == 0:
408
+ return False
409
+
410
+ # remove powers of 2 from n+1 (= k * 2**s)
411
+ s = trailing(n + 1)
412
+ k = (n+1) >> s
413
+
414
+ U, V, Qk = _lucas_sequence(n, P, Q, k)
415
+
416
+ if U == 0 or V == 0:
417
+ return True
418
+ for r in range(1, s):
419
+ V = (V*V - 2*Qk) % n
420
+ if V == 0:
421
+ return True
422
+ Qk = pow(Qk, 2, n)
423
+ return False
424
+
425
+
426
+ def is_extra_strong_lucas_prp(n):
427
+ """Extra Strong Lucas compositeness test. Returns False if n is
428
+ definitely composite, and True if n is a "extra strong" Lucas probable
429
+ prime.
430
+
431
+ The parameters are selected using P = 3, Q = 1, then incrementing P until
432
+ (D|n) == -1. The test itself is as defined in Grantham 2000, from the
433
+ Mo and Jones preprint. The parameter selection and test are the same as
434
+ used in OEIS A217719, Perl's Math::Prime::Util, and the Lucas pseudoprime
435
+ page on Wikipedia.
436
+
437
+ With these parameters, there are no counterexamples below 2^64 nor any
438
+ known above that range. It is 20-50% faster than the strong test.
439
+
440
+ Because of the different parameters selected, there is no relationship
441
+ between the strong Lucas pseudoprimes and extra strong Lucas pseudoprimes.
442
+ In particular, one is not a subset of the other.
443
+
444
+ References
445
+ ==========
446
+ - "Frobenius Pseudoprimes", Jon Grantham, 2000.
447
+ https://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01197-2/
448
+ - OEIS A217719: Extra Strong Lucas Pseudoprimes
449
+ https://oeis.org/A217719
450
+ - https://en.wikipedia.org/wiki/Lucas_pseudoprime
451
+
452
+ Examples
453
+ ========
454
+
455
+ >>> from sympy.ntheory.primetest import isprime, is_extra_strong_lucas_prp
456
+ >>> for i in range(20000):
457
+ ... if is_extra_strong_lucas_prp(i) and not isprime(i):
458
+ ... print(i)
459
+ 989
460
+ 3239
461
+ 5777
462
+ 10877
463
+ """
464
+ # Implementation notes:
465
+ # 1) the parameters differ from Thomas R. Nicely's. His parameter
466
+ # selection leads to pseudoprimes that overlap M-R tests, and
467
+ # contradict Baillie and Wagstaff's suggestion of (D|n) = -1.
468
+ # 2) The MathWorld page as of June 2013 specifies Q=-1. The Lucas
469
+ # sequence must have Q=1. See Grantham theorem 2.3, any of the
470
+ # references on the MathWorld page, or run it and see Q=-1 is wrong.
471
+ from sympy.ntheory.factor_ import trailing
472
+ n = as_int(n)
473
+ if n == 2:
474
+ return True
475
+ if n < 2 or (n % 2) == 0:
476
+ return False
477
+ if is_square(n, False):
478
+ return False
479
+
480
+ D, P, Q = _lucas_extrastrong_params(n)
481
+ if D == 0:
482
+ return False
483
+
484
+ # remove powers of 2 from n+1 (= k * 2**s)
485
+ s = trailing(n + 1)
486
+ k = (n+1) >> s
487
+
488
+ U, V, Qk = _lucas_sequence(n, P, Q, k)
489
+
490
+ if U == 0 and (V == 2 or V == n - 2):
491
+ return True
492
+ for r in range(1, s):
493
+ if V == 0:
494
+ return True
495
+ V = (V*V - 2) % n
496
+ return False
497
+
498
+
499
+ def isprime(n):
500
+ """
501
+ Test if n is a prime number (True) or not (False). For n < 2^64 the
502
+ answer is definitive; larger n values have a small probability of actually
503
+ being pseudoprimes.
504
+
505
+ Negative numbers (e.g. -2) are not considered prime.
506
+
507
+ The first step is looking for trivial factors, which if found enables
508
+ a quick return. Next, if the sieve is large enough, use bisection search
509
+ on the sieve. For small numbers, a set of deterministic Miller-Rabin
510
+ tests are performed with bases that are known to have no counterexamples
511
+ in their range. Finally if the number is larger than 2^64, a strong
512
+ BPSW test is performed. While this is a probable prime test and we
513
+ believe counterexamples exist, there are no known counterexamples.
514
+
515
+ Examples
516
+ ========
517
+
518
+ >>> from sympy.ntheory import isprime
519
+ >>> isprime(13)
520
+ True
521
+ >>> isprime(13.0) # limited precision
522
+ False
523
+ >>> isprime(15)
524
+ False
525
+
526
+ Notes
527
+ =====
528
+
529
+ This routine is intended only for integer input, not numerical
530
+ expressions which may represent numbers. Floats are also
531
+ rejected as input because they represent numbers of limited
532
+ precision. While it is tempting to permit 7.0 to represent an
533
+ integer there are errors that may "pass silently" if this is
534
+ allowed:
535
+
536
+ >>> from sympy import Float, S
537
+ >>> int(1e3) == 1e3 == 10**3
538
+ True
539
+ >>> int(1e23) == 1e23
540
+ True
541
+ >>> int(1e23) == 10**23
542
+ False
543
+
544
+ >>> near_int = 1 + S(1)/10**19
545
+ >>> near_int == int(near_int)
546
+ False
547
+ >>> n = Float(near_int, 10) # truncated by precision
548
+ >>> n == int(n)
549
+ True
550
+ >>> n = Float(near_int, 20)
551
+ >>> n == int(n)
552
+ False
553
+
554
+ See Also
555
+ ========
556
+
557
+ sympy.ntheory.generate.primerange : Generates all primes in a given range
558
+ sympy.ntheory.generate.primepi : Return the number of primes less than or equal to n
559
+ sympy.ntheory.generate.prime : Return the nth prime
560
+
561
+ References
562
+ ==========
563
+ - https://en.wikipedia.org/wiki/Strong_pseudoprime
564
+ - "Lucas Pseudoprimes", Baillie and Wagstaff, 1980.
565
+ http://mpqs.free.fr/LucasPseudoprimes.pdf
566
+ - https://en.wikipedia.org/wiki/Baillie-PSW_primality_test
567
+ """
568
+ try:
569
+ n = as_int(n)
570
+ except ValueError:
571
+ return False
572
+
573
+ # Step 1, do quick composite testing via trial division. The individual
574
+ # modulo tests benchmark faster than one or two primorial igcds for me.
575
+ # The point here is just to speedily handle small numbers and many
576
+ # composites. Step 2 only requires that n <= 2 get handled here.
577
+ if n in [2, 3, 5]:
578
+ return True
579
+ if n < 2 or (n % 2) == 0 or (n % 3) == 0 or (n % 5) == 0:
580
+ return False
581
+ if n < 49:
582
+ return True
583
+ if (n % 7) == 0 or (n % 11) == 0 or (n % 13) == 0 or (n % 17) == 0 or \
584
+ (n % 19) == 0 or (n % 23) == 0 or (n % 29) == 0 or (n % 31) == 0 or \
585
+ (n % 37) == 0 or (n % 41) == 0 or (n % 43) == 0 or (n % 47) == 0:
586
+ return False
587
+ if n < 2809:
588
+ return True
589
+ if n < 31417:
590
+ return pow(2, n, n) == 2 and n not in [7957, 8321, 13747, 18721, 19951, 23377]
591
+
592
+ # bisection search on the sieve if the sieve is large enough
593
+ from sympy.ntheory.generate import sieve as s
594
+ if n <= s._list[-1]:
595
+ l, u = s.search(n)
596
+ return l == u
597
+
598
+ # If we have GMPY2, skip straight to step 3 and do a strong BPSW test.
599
+ # This should be a bit faster than our step 2, and for large values will
600
+ # be a lot faster than our step 3 (C+GMP vs. Python).
601
+ if HAS_GMPY == 2:
602
+ from gmpy2 import is_strong_prp, is_strong_selfridge_prp
603
+ return is_strong_prp(n, 2) and is_strong_selfridge_prp(n)
604
+
605
+
606
+ # Step 2: deterministic Miller-Rabin testing for numbers < 2^64. See:
607
+ # https://miller-rabin.appspot.com/
608
+ # for lists. We have made sure the M-R routine will successfully handle
609
+ # bases larger than n, so we can use the minimal set.
610
+ # In September 2015 deterministic numbers were extended to over 2^81.
611
+ # https://arxiv.org/pdf/1509.00864.pdf
612
+ # https://oeis.org/A014233
613
+ if n < 341531:
614
+ return mr(n, [9345883071009581737])
615
+ if n < 885594169:
616
+ return mr(n, [725270293939359937, 3569819667048198375])
617
+ if n < 350269456337:
618
+ return mr(n, [4230279247111683200, 14694767155120705706, 16641139526367750375])
619
+ if n < 55245642489451:
620
+ return mr(n, [2, 141889084524735, 1199124725622454117, 11096072698276303650])
621
+ if n < 7999252175582851:
622
+ return mr(n, [2, 4130806001517, 149795463772692060, 186635894390467037, 3967304179347715805])
623
+ if n < 585226005592931977:
624
+ return mr(n, [2, 123635709730000, 9233062284813009, 43835965440333360, 761179012939631437, 1263739024124850375])
625
+ if n < 18446744073709551616:
626
+ return mr(n, [2, 325, 9375, 28178, 450775, 9780504, 1795265022])
627
+ if n < 318665857834031151167461:
628
+ return mr(n, [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37])
629
+ if n < 3317044064679887385961981:
630
+ return mr(n, [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41])
631
+
632
+ # We could do this instead at any point:
633
+ #if n < 18446744073709551616:
634
+ # return mr(n, [2]) and is_extra_strong_lucas_prp(n)
635
+
636
+ # Here are tests that are safe for MR routines that don't understand
637
+ # large bases.
638
+ #if n < 9080191:
639
+ # return mr(n, [31, 73])
640
+ #if n < 19471033:
641
+ # return mr(n, [2, 299417])
642
+ #if n < 38010307:
643
+ # return mr(n, [2, 9332593])
644
+ #if n < 316349281:
645
+ # return mr(n, [11000544, 31481107])
646
+ #if n < 4759123141:
647
+ # return mr(n, [2, 7, 61])
648
+ #if n < 105936894253:
649
+ # return mr(n, [2, 1005905886, 1340600841])
650
+ #if n < 31858317218647:
651
+ # return mr(n, [2, 642735, 553174392, 3046413974])
652
+ #if n < 3071837692357849:
653
+ # return mr(n, [2, 75088, 642735, 203659041, 3613982119])
654
+ #if n < 18446744073709551616:
655
+ # return mr(n, [2, 325, 9375, 28178, 450775, 9780504, 1795265022])
656
+
657
+ # Step 3: BPSW.
658
+ #
659
+ # Time for isprime(10**2000 + 4561), no gmpy or gmpy2 installed
660
+ # 44.0s old isprime using 46 bases
661
+ # 5.3s strong BPSW + one random base
662
+ # 4.3s extra strong BPSW + one random base
663
+ # 4.1s strong BPSW
664
+ # 3.2s extra strong BPSW
665
+
666
+ # Classic BPSW from page 1401 of the paper. See alternate ideas below.
667
+ return mr(n, [2]) and is_strong_lucas_prp(n)
668
+
669
+ # Using extra strong test, which is somewhat faster
670
+ #return mr(n, [2]) and is_extra_strong_lucas_prp(n)
671
+
672
+ # Add a random M-R base
673
+ #import random
674
+ #return mr(n, [2, random.randint(3, n-1)]) and is_strong_lucas_prp(n)
675
+
676
+
677
+ def is_gaussian_prime(num):
678
+ r"""Test if num is a Gaussian prime number.
679
+
680
+ References
681
+ ==========
682
+
683
+ .. [1] https://oeis.org/wiki/Gaussian_primes
684
+ """
685
+
686
+ num = sympify(num)
687
+ a, b = num.as_real_imag()
688
+ a = as_int(a, strict=False)
689
+ b = as_int(b, strict=False)
690
+ if a == 0:
691
+ b = abs(b)
692
+ return isprime(b) and b % 4 == 3
693
+ elif b == 0:
694
+ a = abs(a)
695
+ return isprime(a) and a % 4 == 3
696
+ return isprime(a**2 + b**2)
venv/lib/python3.10/site-packages/sympy/ntheory/qs.py ADDED
@@ -0,0 +1,515 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.numbers import igcd, mod_inverse
2
+ from sympy.core.power import integer_nthroot
3
+ from sympy.ntheory.residue_ntheory import _sqrt_mod_prime_power
4
+ from sympy.ntheory import isprime
5
+ from math import log, sqrt
6
+ import random
7
+
8
+ rgen = random.Random()
9
+
10
+ class SievePolynomial:
11
+ def __init__(self, modified_coeff=(), a=None, b=None):
12
+ """This class denotes the seive polynomial.
13
+ If ``g(x) = (a*x + b)**2 - N``. `g(x)` can be expanded
14
+ to ``a*x**2 + 2*a*b*x + b**2 - N``, so the coefficient
15
+ is stored in the form `[a**2, 2*a*b, b**2 - N]`. This
16
+ ensures faster `eval` method because we dont have to
17
+ perform `a**2, 2*a*b, b**2` every time we call the
18
+ `eval` method. As multiplication is more expensive
19
+ than addition, by using modified_coefficient we get
20
+ a faster seiving process.
21
+
22
+ Parameters
23
+ ==========
24
+
25
+ modified_coeff : modified_coefficient of sieve polynomial
26
+ a : parameter of the sieve polynomial
27
+ b : parameter of the sieve polynomial
28
+ """
29
+ self.modified_coeff = modified_coeff
30
+ self.a = a
31
+ self.b = b
32
+
33
+ def eval(self, x):
34
+ """
35
+ Compute the value of the sieve polynomial at point x.
36
+
37
+ Parameters
38
+ ==========
39
+
40
+ x : Integer parameter for sieve polynomial
41
+ """
42
+ ans = 0
43
+ for coeff in self.modified_coeff:
44
+ ans *= x
45
+ ans += coeff
46
+ return ans
47
+
48
+
49
+ class FactorBaseElem:
50
+ """This class stores an element of the `factor_base`.
51
+ """
52
+ def __init__(self, prime, tmem_p, log_p):
53
+ """
54
+ Initialization of factor_base_elem.
55
+
56
+ Parameters
57
+ ==========
58
+
59
+ prime : prime number of the factor_base
60
+ tmem_p : Integer square root of x**2 = n mod prime
61
+ log_p : Compute Natural Logarithm of the prime
62
+ """
63
+ self.prime = prime
64
+ self.tmem_p = tmem_p
65
+ self.log_p = log_p
66
+ self.soln1 = None
67
+ self.soln2 = None
68
+ self.a_inv = None
69
+ self.b_ainv = None
70
+
71
+
72
+ def _generate_factor_base(prime_bound, n):
73
+ """Generate `factor_base` for Quadratic Sieve. The `factor_base`
74
+ consists of all the points whose ``legendre_symbol(n, p) == 1``
75
+ and ``p < num_primes``. Along with the prime `factor_base` also stores
76
+ natural logarithm of prime and the residue n modulo p.
77
+ It also returns the of primes numbers in the `factor_base` which are
78
+ close to 1000 and 5000.
79
+
80
+ Parameters
81
+ ==========
82
+
83
+ prime_bound : upper prime bound of the factor_base
84
+ n : integer to be factored
85
+ """
86
+ from sympy.ntheory.generate import sieve
87
+ factor_base = []
88
+ idx_1000, idx_5000 = None, None
89
+ for prime in sieve.primerange(1, prime_bound):
90
+ if pow(n, (prime - 1) // 2, prime) == 1:
91
+ if prime > 1000 and idx_1000 is None:
92
+ idx_1000 = len(factor_base) - 1
93
+ if prime > 5000 and idx_5000 is None:
94
+ idx_5000 = len(factor_base) - 1
95
+ residue = _sqrt_mod_prime_power(n, prime, 1)[0]
96
+ log_p = round(log(prime)*2**10)
97
+ factor_base.append(FactorBaseElem(prime, residue, log_p))
98
+ return idx_1000, idx_5000, factor_base
99
+
100
+
101
+ def _initialize_first_polynomial(N, M, factor_base, idx_1000, idx_5000, seed=None):
102
+ """This step is the initialization of the 1st sieve polynomial.
103
+ Here `a` is selected as a product of several primes of the factor_base
104
+ such that `a` is about to ``sqrt(2*N) / M``. Other initial values of
105
+ factor_base elem are also initialized which includes a_inv, b_ainv, soln1,
106
+ soln2 which are used when the sieve polynomial is changed. The b_ainv
107
+ is required for fast polynomial change as we do not have to calculate
108
+ `2*b*mod_inverse(a, prime)` every time.
109
+ We also ensure that the `factor_base` primes which make `a` are between
110
+ 1000 and 5000.
111
+
112
+ Parameters
113
+ ==========
114
+
115
+ N : Number to be factored
116
+ M : sieve interval
117
+ factor_base : factor_base primes
118
+ idx_1000 : index of prime number in the factor_base near 1000
119
+ idx_5000 : index of prime number in the factor_base near to 5000
120
+ seed : Generate pseudoprime numbers
121
+ """
122
+ if seed is not None:
123
+ rgen.seed(seed)
124
+ approx_val = sqrt(2*N) / M
125
+ # `a` is a parameter of the sieve polynomial and `q` is the prime factors of `a`
126
+ # randomly search for a combination of primes whose multiplication is close to approx_val
127
+ # This multiplication of primes will be `a` and the primes will be `q`
128
+ # `best_a` denotes that `a` is close to approx_val in the random search of combination
129
+ best_a, best_q, best_ratio = None, None, None
130
+ start = 0 if idx_1000 is None else idx_1000
131
+ end = len(factor_base) - 1 if idx_5000 is None else idx_5000
132
+ for _ in range(50):
133
+ a = 1
134
+ q = []
135
+ while(a < approx_val):
136
+ rand_p = 0
137
+ while(rand_p == 0 or rand_p in q):
138
+ rand_p = rgen.randint(start, end)
139
+ p = factor_base[rand_p].prime
140
+ a *= p
141
+ q.append(rand_p)
142
+ ratio = a / approx_val
143
+ if best_ratio is None or abs(ratio - 1) < abs(best_ratio - 1):
144
+ best_q = q
145
+ best_a = a
146
+ best_ratio = ratio
147
+
148
+ a = best_a
149
+ q = best_q
150
+
151
+ B = []
152
+ for idx, val in enumerate(q):
153
+ q_l = factor_base[val].prime
154
+ gamma = factor_base[val].tmem_p * mod_inverse(a // q_l, q_l) % q_l
155
+ if gamma > q_l / 2:
156
+ gamma = q_l - gamma
157
+ B.append(a//q_l*gamma)
158
+
159
+ b = sum(B)
160
+ g = SievePolynomial([a*a, 2*a*b, b*b - N], a, b)
161
+
162
+ for fb in factor_base:
163
+ if a % fb.prime == 0:
164
+ continue
165
+ fb.a_inv = mod_inverse(a, fb.prime)
166
+ fb.b_ainv = [2*b_elem*fb.a_inv % fb.prime for b_elem in B]
167
+ fb.soln1 = (fb.a_inv*(fb.tmem_p - b)) % fb.prime
168
+ fb.soln2 = (fb.a_inv*(-fb.tmem_p - b)) % fb.prime
169
+ return g, B
170
+
171
+
172
+ def _initialize_ith_poly(N, factor_base, i, g, B):
173
+ """Initialization stage of ith poly. After we finish sieving 1`st polynomial
174
+ here we quickly change to the next polynomial from which we will again
175
+ start sieving. Suppose we generated ith sieve polynomial and now we
176
+ want to generate (i + 1)th polynomial, where ``1 <= i <= 2**(j - 1) - 1``
177
+ where `j` is the number of prime factors of the coefficient `a`
178
+ then this function can be used to go to the next polynomial. If
179
+ ``i = 2**(j - 1) - 1`` then go to _initialize_first_polynomial stage.
180
+
181
+ Parameters
182
+ ==========
183
+
184
+ N : number to be factored
185
+ factor_base : factor_base primes
186
+ i : integer denoting ith polynomial
187
+ g : (i - 1)th polynomial
188
+ B : array that stores a//q_l*gamma
189
+ """
190
+ from sympy.functions.elementary.integers import ceiling
191
+ v = 1
192
+ j = i
193
+ while(j % 2 == 0):
194
+ v += 1
195
+ j //= 2
196
+ if ceiling(i / (2**v)) % 2 == 1:
197
+ neg_pow = -1
198
+ else:
199
+ neg_pow = 1
200
+ b = g.b + 2*neg_pow*B[v - 1]
201
+ a = g.a
202
+ g = SievePolynomial([a*a, 2*a*b, b*b - N], a, b)
203
+ for fb in factor_base:
204
+ if a % fb.prime == 0:
205
+ continue
206
+ fb.soln1 = (fb.soln1 - neg_pow*fb.b_ainv[v - 1]) % fb.prime
207
+ fb.soln2 = (fb.soln2 - neg_pow*fb.b_ainv[v - 1]) % fb.prime
208
+
209
+ return g
210
+
211
+
212
+ def _gen_sieve_array(M, factor_base):
213
+ """Sieve Stage of the Quadratic Sieve. For every prime in the factor_base
214
+ that does not divide the coefficient `a` we add log_p over the sieve_array
215
+ such that ``-M <= soln1 + i*p <= M`` and ``-M <= soln2 + i*p <= M`` where `i`
216
+ is an integer. When p = 2 then log_p is only added using
217
+ ``-M <= soln1 + i*p <= M``.
218
+
219
+ Parameters
220
+ ==========
221
+
222
+ M : sieve interval
223
+ factor_base : factor_base primes
224
+ """
225
+ sieve_array = [0]*(2*M + 1)
226
+ for factor in factor_base:
227
+ if factor.soln1 is None: #The prime does not divides a
228
+ continue
229
+ for idx in range((M + factor.soln1) % factor.prime, 2*M, factor.prime):
230
+ sieve_array[idx] += factor.log_p
231
+ if factor.prime == 2:
232
+ continue
233
+ #if prime is 2 then sieve only with soln_1_p
234
+ for idx in range((M + factor.soln2) % factor.prime, 2*M, factor.prime):
235
+ sieve_array[idx] += factor.log_p
236
+ return sieve_array
237
+
238
+
239
+ def _check_smoothness(num, factor_base):
240
+ """Here we check that if `num` is a smooth number or not. If `a` is a smooth
241
+ number then it returns a vector of prime exponents modulo 2. For example
242
+ if a = 2 * 5**2 * 7**3 and the factor base contains {2, 3, 5, 7} then
243
+ `a` is a smooth number and this function returns ([1, 0, 0, 1], True). If
244
+ `a` is a partial relation which means that `a` a has one prime factor
245
+ greater than the `factor_base` then it returns `(a, False)` which denotes `a`
246
+ is a partial relation.
247
+
248
+ Parameters
249
+ ==========
250
+
251
+ a : integer whose smootheness is to be checked
252
+ factor_base : factor_base primes
253
+ """
254
+ vec = []
255
+ if num < 0:
256
+ vec.append(1)
257
+ num *= -1
258
+ else:
259
+ vec.append(0)
260
+ #-1 is not included in factor_base add -1 in vector
261
+ for factor in factor_base:
262
+ if num % factor.prime != 0:
263
+ vec.append(0)
264
+ continue
265
+ factor_exp = 0
266
+ while num % factor.prime == 0:
267
+ factor_exp += 1
268
+ num //= factor.prime
269
+ vec.append(factor_exp % 2)
270
+ if num == 1:
271
+ return vec, True
272
+ if isprime(num):
273
+ return num, False
274
+ return None, None
275
+
276
+
277
+ def _trial_division_stage(N, M, factor_base, sieve_array, sieve_poly, partial_relations, ERROR_TERM):
278
+ """Trial division stage. Here we trial divide the values generetated
279
+ by sieve_poly in the sieve interval and if it is a smooth number then
280
+ it is stored in `smooth_relations`. Moreover, if we find two partial relations
281
+ with same large prime then they are combined to form a smooth relation.
282
+ First we iterate over sieve array and look for values which are greater
283
+ than accumulated_val, as these values have a high chance of being smooth
284
+ number. Then using these values we find smooth relations.
285
+ In general, let ``t**2 = u*p modN`` and ``r**2 = v*p modN`` be two partial relations
286
+ with the same large prime p. Then they can be combined ``(t*r/p)**2 = u*v modN``
287
+ to form a smooth relation.
288
+
289
+ Parameters
290
+ ==========
291
+
292
+ N : Number to be factored
293
+ M : sieve interval
294
+ factor_base : factor_base primes
295
+ sieve_array : stores log_p values
296
+ sieve_poly : polynomial from which we find smooth relations
297
+ partial_relations : stores partial relations with one large prime
298
+ ERROR_TERM : error term for accumulated_val
299
+ """
300
+ sqrt_n = sqrt(float(N))
301
+ accumulated_val = log(M * sqrt_n)*2**10 - ERROR_TERM
302
+ smooth_relations = []
303
+ proper_factor = set()
304
+ partial_relation_upper_bound = 128*factor_base[-1].prime
305
+ for idx, val in enumerate(sieve_array):
306
+ if val < accumulated_val:
307
+ continue
308
+ x = idx - M
309
+ v = sieve_poly.eval(x)
310
+ vec, is_smooth = _check_smoothness(v, factor_base)
311
+ if is_smooth is None:#Neither smooth nor partial
312
+ continue
313
+ u = sieve_poly.a*x + sieve_poly.b
314
+ # Update the partial relation
315
+ # If 2 partial relation with same large prime is found then generate smooth relation
316
+ if is_smooth is False:#partial relation found
317
+ large_prime = vec
318
+ #Consider the large_primes under 128*F
319
+ if large_prime > partial_relation_upper_bound:
320
+ continue
321
+ if large_prime not in partial_relations:
322
+ partial_relations[large_prime] = (u, v)
323
+ continue
324
+ else:
325
+ u_prev, v_prev = partial_relations[large_prime]
326
+ partial_relations.pop(large_prime)
327
+ try:
328
+ large_prime_inv = mod_inverse(large_prime, N)
329
+ except ValueError:#if large_prine divides N
330
+ proper_factor.add(large_prime)
331
+ continue
332
+ u = u*u_prev*large_prime_inv
333
+ v = v*v_prev // (large_prime*large_prime)
334
+ vec, is_smooth = _check_smoothness(v, factor_base)
335
+ #assert u*u % N == v % N
336
+ smooth_relations.append((u, v, vec))
337
+ return smooth_relations, proper_factor
338
+
339
+
340
+ #LINEAR ALGEBRA STAGE
341
+ def _build_matrix(smooth_relations):
342
+ """Build a 2D matrix from smooth relations.
343
+
344
+ Parameters
345
+ ==========
346
+
347
+ smooth_relations : Stores smooth relations
348
+ """
349
+ matrix = []
350
+ for s_relation in smooth_relations:
351
+ matrix.append(s_relation[2])
352
+ return matrix
353
+
354
+
355
+ def _gauss_mod_2(A):
356
+ """Fast gaussian reduction for modulo 2 matrix.
357
+
358
+ Parameters
359
+ ==========
360
+
361
+ A : Matrix
362
+
363
+ Examples
364
+ ========
365
+
366
+ >>> from sympy.ntheory.qs import _gauss_mod_2
367
+ >>> _gauss_mod_2([[0, 1, 1], [1, 0, 1], [0, 1, 0], [1, 1, 1]])
368
+ ([[[1, 0, 1], 3]],
369
+ [True, True, True, False],
370
+ [[0, 1, 0], [1, 0, 0], [0, 0, 1], [1, 0, 1]])
371
+
372
+ Reference
373
+ ==========
374
+
375
+ .. [1] A fast algorithm for gaussian elimination over GF(2) and
376
+ its implementation on the GAPP. Cetin K.Koc, Sarath N.Arachchige"""
377
+ import copy
378
+ matrix = copy.deepcopy(A)
379
+ row = len(matrix)
380
+ col = len(matrix[0])
381
+ mark = [False]*row
382
+ for c in range(col):
383
+ for r in range(row):
384
+ if matrix[r][c] == 1:
385
+ break
386
+ mark[r] = True
387
+ for c1 in range(col):
388
+ if c1 == c:
389
+ continue
390
+ if matrix[r][c1] == 1:
391
+ for r2 in range(row):
392
+ matrix[r2][c1] = (matrix[r2][c1] + matrix[r2][c]) % 2
393
+ dependent_row = []
394
+ for idx, val in enumerate(mark):
395
+ if val == False:
396
+ dependent_row.append([matrix[idx], idx])
397
+ return dependent_row, mark, matrix
398
+
399
+
400
+ def _find_factor(dependent_rows, mark, gauss_matrix, index, smooth_relations, N):
401
+ """Finds proper factor of N. Here, transform the dependent rows as a
402
+ combination of independent rows of the gauss_matrix to form the desired
403
+ relation of the form ``X**2 = Y**2 modN``. After obtaining the desired relation
404
+ we obtain a proper factor of N by `gcd(X - Y, N)`.
405
+
406
+ Parameters
407
+ ==========
408
+
409
+ dependent_rows : denoted dependent rows in the reduced matrix form
410
+ mark : boolean array to denoted dependent and independent rows
411
+ gauss_matrix : Reduced form of the smooth relations matrix
412
+ index : denoted the index of the dependent_rows
413
+ smooth_relations : Smooth relations vectors matrix
414
+ N : Number to be factored
415
+ """
416
+ idx_in_smooth = dependent_rows[index][1]
417
+ independent_u = [smooth_relations[idx_in_smooth][0]]
418
+ independent_v = [smooth_relations[idx_in_smooth][1]]
419
+ dept_row = dependent_rows[index][0]
420
+
421
+ for idx, val in enumerate(dept_row):
422
+ if val == 1:
423
+ for row in range(len(gauss_matrix)):
424
+ if gauss_matrix[row][idx] == 1 and mark[row] == True:
425
+ independent_u.append(smooth_relations[row][0])
426
+ independent_v.append(smooth_relations[row][1])
427
+ break
428
+
429
+ u = 1
430
+ v = 1
431
+ for i in independent_u:
432
+ u *= i
433
+ for i in independent_v:
434
+ v *= i
435
+ #assert u**2 % N == v % N
436
+ v = integer_nthroot(v, 2)[0]
437
+ return igcd(u - v, N)
438
+
439
+
440
+ def qs(N, prime_bound, M, ERROR_TERM=25, seed=1234):
441
+ """Performs factorization using Self-Initializing Quadratic Sieve.
442
+ In SIQS, let N be a number to be factored, and this N should not be a
443
+ perfect power. If we find two integers such that ``X**2 = Y**2 modN`` and
444
+ ``X != +-Y modN``, then `gcd(X + Y, N)` will reveal a proper factor of N.
445
+ In order to find these integers X and Y we try to find relations of form
446
+ t**2 = u modN where u is a product of small primes. If we have enough of
447
+ these relations then we can form ``(t1*t2...ti)**2 = u1*u2...ui modN`` such that
448
+ the right hand side is a square, thus we found a relation of ``X**2 = Y**2 modN``.
449
+
450
+ Here, several optimizations are done like using multiple polynomials for
451
+ sieving, fast changing between polynomials and using partial relations.
452
+ The use of partial relations can speeds up the factoring by 2 times.
453
+
454
+ Parameters
455
+ ==========
456
+
457
+ N : Number to be Factored
458
+ prime_bound : upper bound for primes in the factor base
459
+ M : Sieve Interval
460
+ ERROR_TERM : Error term for checking smoothness
461
+ threshold : Extra smooth relations for factorization
462
+ seed : generate pseudo prime numbers
463
+
464
+ Examples
465
+ ========
466
+
467
+ >>> from sympy.ntheory import qs
468
+ >>> qs(25645121643901801, 2000, 10000)
469
+ {5394769, 4753701529}
470
+ >>> qs(9804659461513846513, 2000, 10000)
471
+ {4641991, 2112166839943}
472
+
473
+ References
474
+ ==========
475
+
476
+ .. [1] https://pdfs.semanticscholar.org/5c52/8a975c1405bd35c65993abf5a4edb667c1db.pdf
477
+ .. [2] https://www.rieselprime.de/ziki/Self-initializing_quadratic_sieve
478
+ """
479
+ ERROR_TERM*=2**10
480
+ rgen.seed(seed)
481
+ idx_1000, idx_5000, factor_base = _generate_factor_base(prime_bound, N)
482
+ smooth_relations = []
483
+ ith_poly = 0
484
+ partial_relations = {}
485
+ proper_factor = set()
486
+ threshold = 5*len(factor_base) // 100
487
+ while True:
488
+ if ith_poly == 0:
489
+ ith_sieve_poly, B_array = _initialize_first_polynomial(N, M, factor_base, idx_1000, idx_5000)
490
+ else:
491
+ ith_sieve_poly = _initialize_ith_poly(N, factor_base, ith_poly, ith_sieve_poly, B_array)
492
+ ith_poly += 1
493
+ if ith_poly >= 2**(len(B_array) - 1): # time to start with a new sieve polynomial
494
+ ith_poly = 0
495
+ sieve_array = _gen_sieve_array(M, factor_base)
496
+ s_rel, p_f = _trial_division_stage(N, M, factor_base, sieve_array, ith_sieve_poly, partial_relations, ERROR_TERM)
497
+ smooth_relations += s_rel
498
+ proper_factor |= p_f
499
+ if len(smooth_relations) >= len(factor_base) + threshold:
500
+ break
501
+ matrix = _build_matrix(smooth_relations)
502
+ dependent_row, mark, gauss_matrix = _gauss_mod_2(matrix)
503
+ N_copy = N
504
+ for index in range(len(dependent_row)):
505
+ factor = _find_factor(dependent_row, mark, gauss_matrix, index, smooth_relations, N)
506
+ if factor > 1 and factor < N:
507
+ proper_factor.add(factor)
508
+ while(N_copy % factor == 0):
509
+ N_copy //= factor
510
+ if isprime(N_copy):
511
+ proper_factor.add(N_copy)
512
+ break
513
+ if(N_copy == 1):
514
+ break
515
+ return proper_factor
venv/lib/python3.10/site-packages/sympy/ntheory/residue_ntheory.py ADDED
@@ -0,0 +1,1573 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from sympy.core.function import Function
4
+ from sympy.core.numbers import igcd, igcdex, mod_inverse
5
+ from sympy.core.power import isqrt
6
+ from sympy.core.singleton import S
7
+ from sympy.polys import Poly
8
+ from sympy.polys.domains import ZZ
9
+ from sympy.polys.galoistools import gf_crt1, gf_crt2, linear_congruence
10
+ from .primetest import isprime
11
+ from .factor_ import factorint, trailing, totient, multiplicity, perfect_power
12
+ from sympy.utilities.misc import as_int
13
+ from sympy.core.random import _randint, randint
14
+
15
+ from itertools import cycle, product
16
+
17
+
18
+ def n_order(a, n):
19
+ """Returns the order of ``a`` modulo ``n``.
20
+
21
+ The order of ``a`` modulo ``n`` is the smallest integer
22
+ ``k`` such that ``a**k`` leaves a remainder of 1 with ``n``.
23
+
24
+ Parameters
25
+ ==========
26
+
27
+ a : integer
28
+ n : integer, n > 1. a and n should be relatively prime
29
+
30
+ Examples
31
+ ========
32
+
33
+ >>> from sympy.ntheory import n_order
34
+ >>> n_order(3, 7)
35
+ 6
36
+ >>> n_order(4, 7)
37
+ 3
38
+ """
39
+ from collections import defaultdict
40
+ a, n = as_int(a), as_int(n)
41
+ if n <= 1:
42
+ raise ValueError("n should be an integer greater than 1")
43
+ a = a % n
44
+ # Trivial
45
+ if a == 1:
46
+ return 1
47
+ if igcd(a, n) != 1:
48
+ raise ValueError("The two numbers should be relatively prime")
49
+ # We want to calculate
50
+ # order = totient(n), factors = factorint(order)
51
+ factors = defaultdict(int)
52
+ for px, kx in factorint(n).items():
53
+ if kx > 1:
54
+ factors[px] += kx - 1
55
+ for py, ky in factorint(px - 1).items():
56
+ factors[py] += ky
57
+ order = 1
58
+ for px, kx in factors.items():
59
+ order *= px**kx
60
+ # Now the `order` is the order of the group.
61
+ # The order of `a` divides the order of the group.
62
+ for p, e in factors.items():
63
+ for _ in range(e):
64
+ if pow(a, order // p, n) == 1:
65
+ order //= p
66
+ else:
67
+ break
68
+ return order
69
+
70
+
71
+ def _primitive_root_prime_iter(p):
72
+ """
73
+ Generates the primitive roots for a prime ``p``
74
+
75
+ Examples
76
+ ========
77
+
78
+ >>> from sympy.ntheory.residue_ntheory import _primitive_root_prime_iter
79
+ >>> list(_primitive_root_prime_iter(19))
80
+ [2, 3, 10, 13, 14, 15]
81
+
82
+ References
83
+ ==========
84
+
85
+ .. [1] W. Stein "Elementary Number Theory" (2011), page 44
86
+
87
+ """
88
+ # it is assumed that p is an int
89
+ v = [(p - 1) // i for i in factorint(p - 1).keys()]
90
+ a = 2
91
+ while a < p:
92
+ for pw in v:
93
+ # a TypeError below may indicate that p was not an int
94
+ if pow(a, pw, p) == 1:
95
+ break
96
+ else:
97
+ yield a
98
+ a += 1
99
+
100
+
101
+ def primitive_root(p):
102
+ """
103
+ Returns the smallest primitive root or None.
104
+
105
+ Parameters
106
+ ==========
107
+
108
+ p : positive integer
109
+
110
+ Examples
111
+ ========
112
+
113
+ >>> from sympy.ntheory.residue_ntheory import primitive_root
114
+ >>> primitive_root(19)
115
+ 2
116
+
117
+ References
118
+ ==========
119
+
120
+ .. [1] W. Stein "Elementary Number Theory" (2011), page 44
121
+ .. [2] P. Hackman "Elementary Number Theory" (2009), Chapter C
122
+
123
+ """
124
+ p = as_int(p)
125
+ if p < 1:
126
+ raise ValueError('p is required to be positive')
127
+ if p <= 2:
128
+ return 1
129
+ f = factorint(p)
130
+ if len(f) > 2:
131
+ return None
132
+ if len(f) == 2:
133
+ if 2 not in f or f[2] > 1:
134
+ return None
135
+
136
+ # case p = 2*p1**k, p1 prime
137
+ for p1, e1 in f.items():
138
+ if p1 != 2:
139
+ break
140
+ i = 1
141
+ while i < p:
142
+ i += 2
143
+ if i % p1 == 0:
144
+ continue
145
+ if is_primitive_root(i, p):
146
+ return i
147
+
148
+ else:
149
+ if 2 in f:
150
+ if p == 4:
151
+ return 3
152
+ return None
153
+ p1, n = list(f.items())[0]
154
+ if n > 1:
155
+ # see Ref [2], page 81
156
+ g = primitive_root(p1)
157
+ if is_primitive_root(g, p1**2):
158
+ return g
159
+ else:
160
+ for i in range(2, g + p1 + 1):
161
+ if igcd(i, p) == 1 and is_primitive_root(i, p):
162
+ return i
163
+
164
+ return next(_primitive_root_prime_iter(p))
165
+
166
+
167
+ def is_primitive_root(a, p):
168
+ """
169
+ Returns True if ``a`` is a primitive root of ``p``.
170
+
171
+ ``a`` is said to be the primitive root of ``p`` if gcd(a, p) == 1 and
172
+ totient(p) is the smallest positive number s.t.
173
+
174
+ a**totient(p) cong 1 mod(p)
175
+
176
+ Parameters
177
+ ==========
178
+
179
+ a : integer
180
+ p : integer, p > 1. a and p should be relatively prime
181
+
182
+ Examples
183
+ ========
184
+
185
+ >>> from sympy.ntheory import is_primitive_root, n_order, totient
186
+ >>> is_primitive_root(3, 10)
187
+ True
188
+ >>> is_primitive_root(9, 10)
189
+ False
190
+ >>> n_order(3, 10) == totient(10)
191
+ True
192
+ >>> n_order(9, 10) == totient(10)
193
+ False
194
+
195
+ """
196
+ a, p = as_int(a), as_int(p)
197
+ if p <= 1:
198
+ raise ValueError("p should be an integer greater than 1")
199
+ a = a % p
200
+ if igcd(a, p) != 1:
201
+ raise ValueError("The two numbers should be relatively prime")
202
+ # Primitive root of p exist only for
203
+ # p = 2, 4, q**e, 2*q**e (q is odd prime)
204
+ if p <= 4:
205
+ # The primitive root is only p-1.
206
+ return a == p - 1
207
+ t = trailing(p)
208
+ if t > 1:
209
+ return False
210
+ q = p >> t
211
+ if isprime(q):
212
+ group_order = q - 1
213
+ factors = set(factorint(q - 1).keys())
214
+ else:
215
+ m = perfect_power(q)
216
+ if not m:
217
+ return False
218
+ q, e = m
219
+ if not isprime(q):
220
+ return False
221
+ group_order = q**(e - 1)*(q - 1)
222
+ factors = set(factorint(q - 1).keys())
223
+ factors.add(q)
224
+ return all(pow(a, group_order // prime, p) != 1 for prime in factors)
225
+
226
+
227
+ def _sqrt_mod_tonelli_shanks(a, p):
228
+ """
229
+ Returns the square root in the case of ``p`` prime with ``p == 1 (mod 8)``
230
+
231
+ References
232
+ ==========
233
+
234
+ .. [1] R. Crandall and C. Pomerance "Prime Numbers", 2nt Ed., page 101
235
+
236
+ """
237
+ s = trailing(p - 1)
238
+ t = p >> s
239
+ # find a non-quadratic residue
240
+ while 1:
241
+ d = randint(2, p - 1)
242
+ r = legendre_symbol(d, p)
243
+ if r == -1:
244
+ break
245
+ #assert legendre_symbol(d, p) == -1
246
+ A = pow(a, t, p)
247
+ D = pow(d, t, p)
248
+ m = 0
249
+ for i in range(s):
250
+ adm = A*pow(D, m, p) % p
251
+ adm = pow(adm, 2**(s - 1 - i), p)
252
+ if adm % p == p - 1:
253
+ m += 2**i
254
+ #assert A*pow(D, m, p) % p == 1
255
+ x = pow(a, (t + 1)//2, p)*pow(D, m//2, p) % p
256
+ return x
257
+
258
+
259
+ def sqrt_mod(a, p, all_roots=False):
260
+ """
261
+ Find a root of ``x**2 = a mod p``.
262
+
263
+ Parameters
264
+ ==========
265
+
266
+ a : integer
267
+ p : positive integer
268
+ all_roots : if True the list of roots is returned or None
269
+
270
+ Notes
271
+ =====
272
+
273
+ If there is no root it is returned None; else the returned root
274
+ is less or equal to ``p // 2``; in general is not the smallest one.
275
+ It is returned ``p // 2`` only if it is the only root.
276
+
277
+ Use ``all_roots`` only when it is expected that all the roots fit
278
+ in memory; otherwise use ``sqrt_mod_iter``.
279
+
280
+ Examples
281
+ ========
282
+
283
+ >>> from sympy.ntheory import sqrt_mod
284
+ >>> sqrt_mod(11, 43)
285
+ 21
286
+ >>> sqrt_mod(17, 32, True)
287
+ [7, 9, 23, 25]
288
+ """
289
+ if all_roots:
290
+ return sorted(sqrt_mod_iter(a, p))
291
+ try:
292
+ p = abs(as_int(p))
293
+ it = sqrt_mod_iter(a, p)
294
+ r = next(it)
295
+ if r > p // 2:
296
+ return p - r
297
+ elif r < p // 2:
298
+ return r
299
+ else:
300
+ try:
301
+ r = next(it)
302
+ if r > p // 2:
303
+ return p - r
304
+ except StopIteration:
305
+ pass
306
+ return r
307
+ except StopIteration:
308
+ return None
309
+
310
+
311
+ def _product(*iters):
312
+ """
313
+ Cartesian product generator
314
+
315
+ Notes
316
+ =====
317
+
318
+ Unlike itertools.product, it works also with iterables which do not fit
319
+ in memory. See https://bugs.python.org/issue10109
320
+
321
+ Author: Fernando Sumudu
322
+ with small changes
323
+ """
324
+ inf_iters = tuple(cycle(enumerate(it)) for it in iters)
325
+ num_iters = len(inf_iters)
326
+ cur_val = [None]*num_iters
327
+
328
+ first_v = True
329
+ while True:
330
+ i, p = 0, num_iters
331
+ while p and not i:
332
+ p -= 1
333
+ i, cur_val[p] = next(inf_iters[p])
334
+
335
+ if not p and not i:
336
+ if first_v:
337
+ first_v = False
338
+ else:
339
+ break
340
+
341
+ yield cur_val
342
+
343
+
344
+ def sqrt_mod_iter(a, p, domain=int):
345
+ """
346
+ Iterate over solutions to ``x**2 = a mod p``.
347
+
348
+ Parameters
349
+ ==========
350
+
351
+ a : integer
352
+ p : positive integer
353
+ domain : integer domain, ``int``, ``ZZ`` or ``Integer``
354
+
355
+ Examples
356
+ ========
357
+
358
+ >>> from sympy.ntheory.residue_ntheory import sqrt_mod_iter
359
+ >>> list(sqrt_mod_iter(11, 43))
360
+ [21, 22]
361
+ """
362
+ a, p = as_int(a), abs(as_int(p))
363
+ if isprime(p):
364
+ a = a % p
365
+ if a == 0:
366
+ res = _sqrt_mod1(a, p, 1)
367
+ else:
368
+ res = _sqrt_mod_prime_power(a, p, 1)
369
+ if res:
370
+ if domain is ZZ:
371
+ yield from res
372
+ else:
373
+ for x in res:
374
+ yield domain(x)
375
+ else:
376
+ f = factorint(p)
377
+ v = []
378
+ pv = []
379
+ for px, ex in f.items():
380
+ if a % px == 0:
381
+ rx = _sqrt_mod1(a, px, ex)
382
+ if not rx:
383
+ return
384
+ else:
385
+ rx = _sqrt_mod_prime_power(a, px, ex)
386
+ if not rx:
387
+ return
388
+ v.append(rx)
389
+ pv.append(px**ex)
390
+ mm, e, s = gf_crt1(pv, ZZ)
391
+ if domain is ZZ:
392
+ for vx in _product(*v):
393
+ r = gf_crt2(vx, pv, mm, e, s, ZZ)
394
+ yield r
395
+ else:
396
+ for vx in _product(*v):
397
+ r = gf_crt2(vx, pv, mm, e, s, ZZ)
398
+ yield domain(r)
399
+
400
+
401
+ def _sqrt_mod_prime_power(a, p, k):
402
+ """
403
+ Find the solutions to ``x**2 = a mod p**k`` when ``a % p != 0``
404
+
405
+ Parameters
406
+ ==========
407
+
408
+ a : integer
409
+ p : prime number
410
+ k : positive integer
411
+
412
+ Examples
413
+ ========
414
+
415
+ >>> from sympy.ntheory.residue_ntheory import _sqrt_mod_prime_power
416
+ >>> _sqrt_mod_prime_power(11, 43, 1)
417
+ [21, 22]
418
+
419
+ References
420
+ ==========
421
+
422
+ .. [1] P. Hackman "Elementary Number Theory" (2009), page 160
423
+ .. [2] http://www.numbertheory.org/php/squareroot.html
424
+ .. [3] [Gathen99]_
425
+ """
426
+ pk = p**k
427
+ a = a % pk
428
+
429
+ if k == 1:
430
+ if p == 2:
431
+ return [ZZ(a)]
432
+ if not (a % p < 2 or pow(a, (p - 1) // 2, p) == 1):
433
+ return None
434
+
435
+ if p % 4 == 3:
436
+ res = pow(a, (p + 1) // 4, p)
437
+ elif p % 8 == 5:
438
+ sign = pow(a, (p - 1) // 4, p)
439
+ if sign == 1:
440
+ res = pow(a, (p + 3) // 8, p)
441
+ else:
442
+ b = pow(4*a, (p - 5) // 8, p)
443
+ x = (2*a*b) % p
444
+ if pow(x, 2, p) == a:
445
+ res = x
446
+ else:
447
+ res = _sqrt_mod_tonelli_shanks(a, p)
448
+
449
+ # ``_sqrt_mod_tonelli_shanks(a, p)`` is not deterministic;
450
+ # sort to get always the same result
451
+ return sorted([ZZ(res), ZZ(p - res)])
452
+
453
+ if k > 1:
454
+ # see Ref.[2]
455
+ if p == 2:
456
+ if a % 8 != 1:
457
+ return None
458
+ if k <= 3:
459
+ s = set()
460
+ for i in range(0, pk, 4):
461
+ s.add(1 + i)
462
+ s.add(-1 + i)
463
+ return list(s)
464
+ # according to Ref.[2] for k > 2 there are two solutions
465
+ # (mod 2**k-1), that is four solutions (mod 2**k), which can be
466
+ # obtained from the roots of x**2 = 0 (mod 8)
467
+ rv = [ZZ(1), ZZ(3), ZZ(5), ZZ(7)]
468
+ # hensel lift them to solutions of x**2 = 0 (mod 2**k)
469
+ # if r**2 - a = 0 mod 2**nx but not mod 2**(nx+1)
470
+ # then r + 2**(nx - 1) is a root mod 2**(nx+1)
471
+ n = 3
472
+ res = []
473
+ for r in rv:
474
+ nx = n
475
+ while nx < k:
476
+ r1 = (r**2 - a) >> nx
477
+ if r1 % 2:
478
+ r = r + (1 << (nx - 1))
479
+ #assert (r**2 - a)% (1 << (nx + 1)) == 0
480
+ nx += 1
481
+ if r not in res:
482
+ res.append(r)
483
+ x = r + (1 << (k - 1))
484
+ #assert (x**2 - a) % pk == 0
485
+ if x < (1 << nx) and x not in res:
486
+ if (x**2 - a) % pk == 0:
487
+ res.append(x)
488
+ return res
489
+ rv = _sqrt_mod_prime_power(a, p, 1)
490
+ if not rv:
491
+ return None
492
+ r = rv[0]
493
+ fr = r**2 - a
494
+ # hensel lifting with Newton iteration, see Ref.[3] chapter 9
495
+ # with f(x) = x**2 - a; one has f'(a) != 0 (mod p) for p != 2
496
+ n = 1
497
+ px = p
498
+ while 1:
499
+ n1 = n
500
+ n1 *= 2
501
+ if n1 > k:
502
+ break
503
+ n = n1
504
+ px = px**2
505
+ frinv = igcdex(2*r, px)[0]
506
+ r = (r - fr*frinv) % px
507
+ fr = r**2 - a
508
+ if n < k:
509
+ px = p**k
510
+ frinv = igcdex(2*r, px)[0]
511
+ r = (r - fr*frinv) % px
512
+ return [r, px - r]
513
+
514
+
515
+ def _sqrt_mod1(a, p, n):
516
+ """
517
+ Find solution to ``x**2 == a mod p**n`` when ``a % p == 0``
518
+
519
+ see http://www.numbertheory.org/php/squareroot.html
520
+ """
521
+ pn = p**n
522
+ a = a % pn
523
+ if a == 0:
524
+ # case gcd(a, p**k) = p**n
525
+ m = n // 2
526
+ if n % 2 == 1:
527
+ pm1 = p**(m + 1)
528
+ def _iter0a():
529
+ i = 0
530
+ while i < pn:
531
+ yield i
532
+ i += pm1
533
+ return _iter0a()
534
+ else:
535
+ pm = p**m
536
+ def _iter0b():
537
+ i = 0
538
+ while i < pn:
539
+ yield i
540
+ i += pm
541
+ return _iter0b()
542
+
543
+ # case gcd(a, p**k) = p**r, r < n
544
+ f = factorint(a)
545
+ r = f[p]
546
+ if r % 2 == 1:
547
+ return None
548
+ m = r // 2
549
+ a1 = a >> r
550
+ if p == 2:
551
+ if n - r == 1:
552
+ pnm1 = 1 << (n - m + 1)
553
+ pm1 = 1 << (m + 1)
554
+ def _iter1():
555
+ k = 1 << (m + 2)
556
+ i = 1 << m
557
+ while i < pnm1:
558
+ j = i
559
+ while j < pn:
560
+ yield j
561
+ j += k
562
+ i += pm1
563
+ return _iter1()
564
+ if n - r == 2:
565
+ res = _sqrt_mod_prime_power(a1, p, n - r)
566
+ if res is None:
567
+ return None
568
+ pnm = 1 << (n - m)
569
+ def _iter2():
570
+ s = set()
571
+ for r in res:
572
+ i = 0
573
+ while i < pn:
574
+ x = (r << m) + i
575
+ if x not in s:
576
+ s.add(x)
577
+ yield x
578
+ i += pnm
579
+ return _iter2()
580
+ if n - r > 2:
581
+ res = _sqrt_mod_prime_power(a1, p, n - r)
582
+ if res is None:
583
+ return None
584
+ pnm1 = 1 << (n - m - 1)
585
+ def _iter3():
586
+ s = set()
587
+ for r in res:
588
+ i = 0
589
+ while i < pn:
590
+ x = ((r << m) + i) % pn
591
+ if x not in s:
592
+ s.add(x)
593
+ yield x
594
+ i += pnm1
595
+ return _iter3()
596
+ else:
597
+ m = r // 2
598
+ a1 = a // p**r
599
+ res1 = _sqrt_mod_prime_power(a1, p, n - r)
600
+ if res1 is None:
601
+ return None
602
+ pm = p**m
603
+ pnr = p**(n-r)
604
+ pnm = p**(n-m)
605
+
606
+ def _iter4():
607
+ s = set()
608
+ pm = p**m
609
+ for rx in res1:
610
+ i = 0
611
+ while i < pnm:
612
+ x = ((rx + i) % pn)
613
+ if x not in s:
614
+ s.add(x)
615
+ yield x*pm
616
+ i += pnr
617
+ return _iter4()
618
+
619
+
620
+ def is_quad_residue(a, p):
621
+ """
622
+ Returns True if ``a`` (mod ``p``) is in the set of squares mod ``p``,
623
+ i.e a % p in set([i**2 % p for i in range(p)]).
624
+
625
+ Examples
626
+ ========
627
+
628
+ If ``p`` is an odd
629
+ prime, an iterative method is used to make the determination:
630
+
631
+ >>> from sympy.ntheory import is_quad_residue
632
+ >>> sorted(set([i**2 % 7 for i in range(7)]))
633
+ [0, 1, 2, 4]
634
+ >>> [j for j in range(7) if is_quad_residue(j, 7)]
635
+ [0, 1, 2, 4]
636
+
637
+ See Also
638
+ ========
639
+
640
+ legendre_symbol, jacobi_symbol
641
+ """
642
+ a, p = as_int(a), as_int(p)
643
+ if p < 1:
644
+ raise ValueError('p must be > 0')
645
+ if a >= p or a < 0:
646
+ a = a % p
647
+ if a < 2 or p < 3:
648
+ return True
649
+ if not isprime(p):
650
+ if p % 2 and jacobi_symbol(a, p) == -1:
651
+ return False
652
+ r = sqrt_mod(a, p)
653
+ if r is None:
654
+ return False
655
+ else:
656
+ return True
657
+
658
+ return pow(a, (p - 1) // 2, p) == 1
659
+
660
+
661
+ def is_nthpow_residue(a, n, m):
662
+ """
663
+ Returns True if ``x**n == a (mod m)`` has solutions.
664
+
665
+ References
666
+ ==========
667
+
668
+ .. [1] P. Hackman "Elementary Number Theory" (2009), page 76
669
+
670
+ """
671
+ a = a % m
672
+ a, n, m = as_int(a), as_int(n), as_int(m)
673
+ if m <= 0:
674
+ raise ValueError('m must be > 0')
675
+ if n < 0:
676
+ raise ValueError('n must be >= 0')
677
+ if n == 0:
678
+ if m == 1:
679
+ return False
680
+ return a == 1
681
+ if a == 0:
682
+ return True
683
+ if n == 1:
684
+ return True
685
+ if n == 2:
686
+ return is_quad_residue(a, m)
687
+ return _is_nthpow_residue_bign(a, n, m)
688
+
689
+
690
+ def _is_nthpow_residue_bign(a, n, m):
691
+ r"""Returns True if `x^n = a \pmod{n}` has solutions for `n > 2`."""
692
+ # assert n > 2
693
+ # assert a > 0 and m > 0
694
+ if primitive_root(m) is None or igcd(a, m) != 1:
695
+ # assert m >= 8
696
+ for prime, power in factorint(m).items():
697
+ if not _is_nthpow_residue_bign_prime_power(a, n, prime, power):
698
+ return False
699
+ return True
700
+ f = totient(m)
701
+ k = int(f // igcd(f, n))
702
+ return pow(a, k, int(m)) == 1
703
+
704
+
705
+ def _is_nthpow_residue_bign_prime_power(a, n, p, k):
706
+ r"""Returns True/False if a solution for `x^n = a \pmod{p^k}`
707
+ does/does not exist."""
708
+ # assert a > 0
709
+ # assert n > 2
710
+ # assert p is prime
711
+ # assert k > 0
712
+ if a % p:
713
+ if p != 2:
714
+ return _is_nthpow_residue_bign(a, n, pow(p, k))
715
+ if n & 1:
716
+ return True
717
+ c = trailing(n)
718
+ return a % pow(2, min(c + 2, k)) == 1
719
+ else:
720
+ a %= pow(p, k)
721
+ if not a:
722
+ return True
723
+ mu = multiplicity(p, a)
724
+ if mu % n:
725
+ return False
726
+ pm = pow(p, mu)
727
+ return _is_nthpow_residue_bign_prime_power(a//pm, n, p, k - mu)
728
+
729
+
730
+ def _nthroot_mod2(s, q, p):
731
+ f = factorint(q)
732
+ v = []
733
+ for b, e in f.items():
734
+ v.extend([b]*e)
735
+ for qx in v:
736
+ s = _nthroot_mod1(s, qx, p, False)
737
+ return s
738
+
739
+
740
+ def _nthroot_mod1(s, q, p, all_roots):
741
+ """
742
+ Root of ``x**q = s mod p``, ``p`` prime and ``q`` divides ``p - 1``
743
+
744
+ References
745
+ ==========
746
+
747
+ .. [1] A. M. Johnston "A Generalized qth Root Algorithm"
748
+
749
+ """
750
+ g = primitive_root(p)
751
+ if not isprime(q):
752
+ r = _nthroot_mod2(s, q, p)
753
+ else:
754
+ f = p - 1
755
+ assert (p - 1) % q == 0
756
+ # determine k
757
+ k = 0
758
+ while f % q == 0:
759
+ k += 1
760
+ f = f // q
761
+ # find z, x, r1
762
+ f1 = igcdex(-f, q)[0] % q
763
+ z = f*f1
764
+ x = (1 + z) // q
765
+ r1 = pow(s, x, p)
766
+ s1 = pow(s, f, p)
767
+ h = pow(g, f*q, p)
768
+ t = discrete_log(p, s1, h)
769
+ g2 = pow(g, z*t, p)
770
+ g3 = igcdex(g2, p)[0]
771
+ r = r1*g3 % p
772
+ #assert pow(r, q, p) == s
773
+ res = [r]
774
+ h = pow(g, (p - 1) // q, p)
775
+ #assert pow(h, q, p) == 1
776
+ hx = r
777
+ for i in range(q - 1):
778
+ hx = (hx*h) % p
779
+ res.append(hx)
780
+ if all_roots:
781
+ res.sort()
782
+ return res
783
+ return min(res)
784
+
785
+
786
+
787
+ def _help(m, prime_modulo_method, diff_method, expr_val):
788
+ """
789
+ Helper function for _nthroot_mod_composite and polynomial_congruence.
790
+
791
+ Parameters
792
+ ==========
793
+
794
+ m : positive integer
795
+ prime_modulo_method : function to calculate the root of the congruence
796
+ equation for the prime divisors of m
797
+ diff_method : function to calculate derivative of expression at any
798
+ given point
799
+ expr_val : function to calculate value of the expression at any
800
+ given point
801
+ """
802
+ from sympy.ntheory.modular import crt
803
+ f = factorint(m)
804
+ dd = {}
805
+ for p, e in f.items():
806
+ tot_roots = set()
807
+ if e == 1:
808
+ tot_roots.update(prime_modulo_method(p))
809
+ else:
810
+ for root in prime_modulo_method(p):
811
+ diff = diff_method(root, p)
812
+ if diff != 0:
813
+ ppow = p
814
+ m_inv = mod_inverse(diff, p)
815
+ for j in range(1, e):
816
+ ppow *= p
817
+ root = (root - expr_val(root, ppow) * m_inv) % ppow
818
+ tot_roots.add(root)
819
+ else:
820
+ new_base = p
821
+ roots_in_base = {root}
822
+ while new_base < pow(p, e):
823
+ new_base *= p
824
+ new_roots = set()
825
+ for k in roots_in_base:
826
+ if expr_val(k, new_base)!= 0:
827
+ continue
828
+ while k not in new_roots:
829
+ new_roots.add(k)
830
+ k = (k + (new_base // p)) % new_base
831
+ roots_in_base = new_roots
832
+ tot_roots = tot_roots | roots_in_base
833
+ if tot_roots == set():
834
+ return []
835
+ dd[pow(p, e)] = tot_roots
836
+ a = []
837
+ m = []
838
+ for x, y in dd.items():
839
+ m.append(x)
840
+ a.append(list(y))
841
+ return sorted({crt(m, list(i))[0] for i in product(*a)})
842
+
843
+
844
+ def _nthroot_mod_composite(a, n, m):
845
+ """
846
+ Find the solutions to ``x**n = a mod m`` when m is not prime.
847
+ """
848
+ return _help(m,
849
+ lambda p: nthroot_mod(a, n, p, True),
850
+ lambda root, p: (pow(root, n - 1, p) * (n % p)) % p,
851
+ lambda root, p: (pow(root, n, p) - a) % p)
852
+
853
+
854
+ def nthroot_mod(a, n, p, all_roots=False):
855
+ """
856
+ Find the solutions to ``x**n = a mod p``.
857
+
858
+ Parameters
859
+ ==========
860
+
861
+ a : integer
862
+ n : positive integer
863
+ p : positive integer
864
+ all_roots : if False returns the smallest root, else the list of roots
865
+
866
+ Examples
867
+ ========
868
+
869
+ >>> from sympy.ntheory.residue_ntheory import nthroot_mod
870
+ >>> nthroot_mod(11, 4, 19)
871
+ 8
872
+ >>> nthroot_mod(11, 4, 19, True)
873
+ [8, 11]
874
+ >>> nthroot_mod(68, 3, 109)
875
+ 23
876
+ """
877
+ a = a % p
878
+ a, n, p = as_int(a), as_int(n), as_int(p)
879
+
880
+ if n == 2:
881
+ return sqrt_mod(a, p, all_roots)
882
+ # see Hackman "Elementary Number Theory" (2009), page 76
883
+ if not isprime(p):
884
+ return _nthroot_mod_composite(a, n, p)
885
+ if a % p == 0:
886
+ return [0]
887
+ if not is_nthpow_residue(a, n, p):
888
+ return [] if all_roots else None
889
+ if (p - 1) % n == 0:
890
+ return _nthroot_mod1(a, n, p, all_roots)
891
+ # The roots of ``x**n - a = 0 (mod p)`` are roots of
892
+ # ``gcd(x**n - a, x**(p - 1) - 1) = 0 (mod p)``
893
+ pa = n
894
+ pb = p - 1
895
+ b = 1
896
+ if pa < pb:
897
+ a, pa, b, pb = b, pb, a, pa
898
+ while pb:
899
+ # x**pa - a = 0; x**pb - b = 0
900
+ # x**pa - a = x**(q*pb + r) - a = (x**pb)**q * x**r - a =
901
+ # b**q * x**r - a; x**r - c = 0; c = b**-q * a mod p
902
+ q, r = divmod(pa, pb)
903
+ c = pow(b, q, p)
904
+ c = igcdex(c, p)[0]
905
+ c = (c * a) % p
906
+ pa, pb = pb, r
907
+ a, b = b, c
908
+ if pa == 1:
909
+ if all_roots:
910
+ res = [a]
911
+ else:
912
+ res = a
913
+ elif pa == 2:
914
+ return sqrt_mod(a, p, all_roots)
915
+ else:
916
+ res = _nthroot_mod1(a, pa, p, all_roots)
917
+ return res
918
+
919
+
920
+ def quadratic_residues(p) -> list[int]:
921
+ """
922
+ Returns the list of quadratic residues.
923
+
924
+ Examples
925
+ ========
926
+
927
+ >>> from sympy.ntheory.residue_ntheory import quadratic_residues
928
+ >>> quadratic_residues(7)
929
+ [0, 1, 2, 4]
930
+ """
931
+ p = as_int(p)
932
+ r = {pow(i, 2, p) for i in range(p // 2 + 1)}
933
+ return sorted(r)
934
+
935
+
936
+ def legendre_symbol(a, p):
937
+ r"""
938
+ Returns the Legendre symbol `(a / p)`.
939
+
940
+ For an integer ``a`` and an odd prime ``p``, the Legendre symbol is
941
+ defined as
942
+
943
+ .. math ::
944
+ \genfrac(){}{}{a}{p} = \begin{cases}
945
+ 0 & \text{if } p \text{ divides } a\\
946
+ 1 & \text{if } a \text{ is a quadratic residue modulo } p\\
947
+ -1 & \text{if } a \text{ is a quadratic nonresidue modulo } p
948
+ \end{cases}
949
+
950
+ Parameters
951
+ ==========
952
+
953
+ a : integer
954
+ p : odd prime
955
+
956
+ Examples
957
+ ========
958
+
959
+ >>> from sympy.ntheory import legendre_symbol
960
+ >>> [legendre_symbol(i, 7) for i in range(7)]
961
+ [0, 1, 1, -1, 1, -1, -1]
962
+ >>> sorted(set([i**2 % 7 for i in range(7)]))
963
+ [0, 1, 2, 4]
964
+
965
+ See Also
966
+ ========
967
+
968
+ is_quad_residue, jacobi_symbol
969
+
970
+ """
971
+ a, p = as_int(a), as_int(p)
972
+ if not isprime(p) or p == 2:
973
+ raise ValueError("p should be an odd prime")
974
+ a = a % p
975
+ if not a:
976
+ return 0
977
+ if pow(a, (p - 1) // 2, p) == 1:
978
+ return 1
979
+ return -1
980
+
981
+
982
+ def jacobi_symbol(m, n):
983
+ r"""
984
+ Returns the Jacobi symbol `(m / n)`.
985
+
986
+ For any integer ``m`` and any positive odd integer ``n`` the Jacobi symbol
987
+ is defined as the product of the Legendre symbols corresponding to the
988
+ prime factors of ``n``:
989
+
990
+ .. math ::
991
+ \genfrac(){}{}{m}{n} =
992
+ \genfrac(){}{}{m}{p^{1}}^{\alpha_1}
993
+ \genfrac(){}{}{m}{p^{2}}^{\alpha_2}
994
+ ...
995
+ \genfrac(){}{}{m}{p^{k}}^{\alpha_k}
996
+ \text{ where } n =
997
+ p_1^{\alpha_1}
998
+ p_2^{\alpha_2}
999
+ ...
1000
+ p_k^{\alpha_k}
1001
+
1002
+ Like the Legendre symbol, if the Jacobi symbol `\genfrac(){}{}{m}{n} = -1`
1003
+ then ``m`` is a quadratic nonresidue modulo ``n``.
1004
+
1005
+ But, unlike the Legendre symbol, if the Jacobi symbol
1006
+ `\genfrac(){}{}{m}{n} = 1` then ``m`` may or may not be a quadratic residue
1007
+ modulo ``n``.
1008
+
1009
+ Parameters
1010
+ ==========
1011
+
1012
+ m : integer
1013
+ n : odd positive integer
1014
+
1015
+ Examples
1016
+ ========
1017
+
1018
+ >>> from sympy.ntheory import jacobi_symbol, legendre_symbol
1019
+ >>> from sympy import S
1020
+ >>> jacobi_symbol(45, 77)
1021
+ -1
1022
+ >>> jacobi_symbol(60, 121)
1023
+ 1
1024
+
1025
+ The relationship between the ``jacobi_symbol`` and ``legendre_symbol`` can
1026
+ be demonstrated as follows:
1027
+
1028
+ >>> L = legendre_symbol
1029
+ >>> S(45).factors()
1030
+ {3: 2, 5: 1}
1031
+ >>> jacobi_symbol(7, 45) == L(7, 3)**2 * L(7, 5)**1
1032
+ True
1033
+
1034
+ See Also
1035
+ ========
1036
+
1037
+ is_quad_residue, legendre_symbol
1038
+ """
1039
+ m, n = as_int(m), as_int(n)
1040
+ if n < 0 or not n % 2:
1041
+ raise ValueError("n should be an odd positive integer")
1042
+ if m < 0 or m > n:
1043
+ m %= n
1044
+ if not m:
1045
+ return int(n == 1)
1046
+ if n == 1 or m == 1:
1047
+ return 1
1048
+ if igcd(m, n) != 1:
1049
+ return 0
1050
+
1051
+ j = 1
1052
+ while m != 0:
1053
+ while m % 2 == 0 and m > 0:
1054
+ m >>= 1
1055
+ if n % 8 in [3, 5]:
1056
+ j = -j
1057
+ m, n = n, m
1058
+ if m % 4 == n % 4 == 3:
1059
+ j = -j
1060
+ m %= n
1061
+ return j
1062
+
1063
+
1064
+ class mobius(Function):
1065
+ """
1066
+ Mobius function maps natural number to {-1, 0, 1}
1067
+
1068
+ It is defined as follows:
1069
+ 1) `1` if `n = 1`.
1070
+ 2) `0` if `n` has a squared prime factor.
1071
+ 3) `(-1)^k` if `n` is a square-free positive integer with `k`
1072
+ number of prime factors.
1073
+
1074
+ It is an important multiplicative function in number theory
1075
+ and combinatorics. It has applications in mathematical series,
1076
+ algebraic number theory and also physics (Fermion operator has very
1077
+ concrete realization with Mobius Function model).
1078
+
1079
+ Parameters
1080
+ ==========
1081
+
1082
+ n : positive integer
1083
+
1084
+ Examples
1085
+ ========
1086
+
1087
+ >>> from sympy.ntheory import mobius
1088
+ >>> mobius(13*7)
1089
+ 1
1090
+ >>> mobius(1)
1091
+ 1
1092
+ >>> mobius(13*7*5)
1093
+ -1
1094
+ >>> mobius(13**2)
1095
+ 0
1096
+
1097
+ References
1098
+ ==========
1099
+
1100
+ .. [1] https://en.wikipedia.org/wiki/M%C3%B6bius_function
1101
+ .. [2] Thomas Koshy "Elementary Number Theory with Applications"
1102
+
1103
+ """
1104
+ @classmethod
1105
+ def eval(cls, n):
1106
+ if n.is_integer:
1107
+ if n.is_positive is not True:
1108
+ raise ValueError("n should be a positive integer")
1109
+ else:
1110
+ raise TypeError("n should be an integer")
1111
+ if n.is_prime:
1112
+ return S.NegativeOne
1113
+ elif n is S.One:
1114
+ return S.One
1115
+ elif n.is_Integer:
1116
+ a = factorint(n)
1117
+ if any(i > 1 for i in a.values()):
1118
+ return S.Zero
1119
+ return S.NegativeOne**len(a)
1120
+
1121
+
1122
+ def _discrete_log_trial_mul(n, a, b, order=None):
1123
+ """
1124
+ Trial multiplication algorithm for computing the discrete logarithm of
1125
+ ``a`` to the base ``b`` modulo ``n``.
1126
+
1127
+ The algorithm finds the discrete logarithm using exhaustive search. This
1128
+ naive method is used as fallback algorithm of ``discrete_log`` when the
1129
+ group order is very small.
1130
+
1131
+ Examples
1132
+ ========
1133
+
1134
+ >>> from sympy.ntheory.residue_ntheory import _discrete_log_trial_mul
1135
+ >>> _discrete_log_trial_mul(41, 15, 7)
1136
+ 3
1137
+
1138
+ See Also
1139
+ ========
1140
+
1141
+ discrete_log
1142
+
1143
+ References
1144
+ ==========
1145
+
1146
+ .. [1] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., &
1147
+ Vanstone, S. A. (1997).
1148
+ """
1149
+ a %= n
1150
+ b %= n
1151
+ if order is None:
1152
+ order = n
1153
+ x = 1
1154
+ for i in range(order):
1155
+ if x == a:
1156
+ return i
1157
+ x = x * b % n
1158
+ raise ValueError("Log does not exist")
1159
+
1160
+
1161
+ def _discrete_log_shanks_steps(n, a, b, order=None):
1162
+ """
1163
+ Baby-step giant-step algorithm for computing the discrete logarithm of
1164
+ ``a`` to the base ``b`` modulo ``n``.
1165
+
1166
+ The algorithm is a time-memory trade-off of the method of exhaustive
1167
+ search. It uses `O(sqrt(m))` memory, where `m` is the group order.
1168
+
1169
+ Examples
1170
+ ========
1171
+
1172
+ >>> from sympy.ntheory.residue_ntheory import _discrete_log_shanks_steps
1173
+ >>> _discrete_log_shanks_steps(41, 15, 7)
1174
+ 3
1175
+
1176
+ See Also
1177
+ ========
1178
+
1179
+ discrete_log
1180
+
1181
+ References
1182
+ ==========
1183
+
1184
+ .. [1] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., &
1185
+ Vanstone, S. A. (1997).
1186
+ """
1187
+ a %= n
1188
+ b %= n
1189
+ if order is None:
1190
+ order = n_order(b, n)
1191
+ m = isqrt(order) + 1
1192
+ T = {}
1193
+ x = 1
1194
+ for i in range(m):
1195
+ T[x] = i
1196
+ x = x * b % n
1197
+ z = mod_inverse(b, n)
1198
+ z = pow(z, m, n)
1199
+ x = a
1200
+ for i in range(m):
1201
+ if x in T:
1202
+ return i * m + T[x]
1203
+ x = x * z % n
1204
+ raise ValueError("Log does not exist")
1205
+
1206
+
1207
+ def _discrete_log_pollard_rho(n, a, b, order=None, retries=10, rseed=None):
1208
+ """
1209
+ Pollard's Rho algorithm for computing the discrete logarithm of ``a`` to
1210
+ the base ``b`` modulo ``n``.
1211
+
1212
+ It is a randomized algorithm with the same expected running time as
1213
+ ``_discrete_log_shanks_steps``, but requires a negligible amount of memory.
1214
+
1215
+ Examples
1216
+ ========
1217
+
1218
+ >>> from sympy.ntheory.residue_ntheory import _discrete_log_pollard_rho
1219
+ >>> _discrete_log_pollard_rho(227, 3**7, 3)
1220
+ 7
1221
+
1222
+ See Also
1223
+ ========
1224
+
1225
+ discrete_log
1226
+
1227
+ References
1228
+ ==========
1229
+
1230
+ .. [1] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., &
1231
+ Vanstone, S. A. (1997).
1232
+ """
1233
+ a %= n
1234
+ b %= n
1235
+
1236
+ if order is None:
1237
+ order = n_order(b, n)
1238
+ randint = _randint(rseed)
1239
+
1240
+ for i in range(retries):
1241
+ aa = randint(1, order - 1)
1242
+ ba = randint(1, order - 1)
1243
+ xa = pow(b, aa, n) * pow(a, ba, n) % n
1244
+
1245
+ c = xa % 3
1246
+ if c == 0:
1247
+ xb = a * xa % n
1248
+ ab = aa
1249
+ bb = (ba + 1) % order
1250
+ elif c == 1:
1251
+ xb = xa * xa % n
1252
+ ab = (aa + aa) % order
1253
+ bb = (ba + ba) % order
1254
+ else:
1255
+ xb = b * xa % n
1256
+ ab = (aa + 1) % order
1257
+ bb = ba
1258
+
1259
+ for j in range(order):
1260
+ c = xa % 3
1261
+ if c == 0:
1262
+ xa = a * xa % n
1263
+ ba = (ba + 1) % order
1264
+ elif c == 1:
1265
+ xa = xa * xa % n
1266
+ aa = (aa + aa) % order
1267
+ ba = (ba + ba) % order
1268
+ else:
1269
+ xa = b * xa % n
1270
+ aa = (aa + 1) % order
1271
+
1272
+ c = xb % 3
1273
+ if c == 0:
1274
+ xb = a * xb % n
1275
+ bb = (bb + 1) % order
1276
+ elif c == 1:
1277
+ xb = xb * xb % n
1278
+ ab = (ab + ab) % order
1279
+ bb = (bb + bb) % order
1280
+ else:
1281
+ xb = b * xb % n
1282
+ ab = (ab + 1) % order
1283
+
1284
+ c = xb % 3
1285
+ if c == 0:
1286
+ xb = a * xb % n
1287
+ bb = (bb + 1) % order
1288
+ elif c == 1:
1289
+ xb = xb * xb % n
1290
+ ab = (ab + ab) % order
1291
+ bb = (bb + bb) % order
1292
+ else:
1293
+ xb = b * xb % n
1294
+ ab = (ab + 1) % order
1295
+
1296
+ if xa == xb:
1297
+ r = (ba - bb) % order
1298
+ try:
1299
+ e = mod_inverse(r, order) * (ab - aa) % order
1300
+ if (pow(b, e, n) - a) % n == 0:
1301
+ return e
1302
+ except ValueError:
1303
+ pass
1304
+ break
1305
+ raise ValueError("Pollard's Rho failed to find logarithm")
1306
+
1307
+
1308
+ def _discrete_log_pohlig_hellman(n, a, b, order=None):
1309
+ """
1310
+ Pohlig-Hellman algorithm for computing the discrete logarithm of ``a`` to
1311
+ the base ``b`` modulo ``n``.
1312
+
1313
+ In order to compute the discrete logarithm, the algorithm takes advantage
1314
+ of the factorization of the group order. It is more efficient when the
1315
+ group order factors into many small primes.
1316
+
1317
+ Examples
1318
+ ========
1319
+
1320
+ >>> from sympy.ntheory.residue_ntheory import _discrete_log_pohlig_hellman
1321
+ >>> _discrete_log_pohlig_hellman(251, 210, 71)
1322
+ 197
1323
+
1324
+ See Also
1325
+ ========
1326
+
1327
+ discrete_log
1328
+
1329
+ References
1330
+ ==========
1331
+
1332
+ .. [1] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., &
1333
+ Vanstone, S. A. (1997).
1334
+ """
1335
+ from .modular import crt
1336
+ a %= n
1337
+ b %= n
1338
+
1339
+ if order is None:
1340
+ order = n_order(b, n)
1341
+
1342
+ f = factorint(order)
1343
+ l = [0] * len(f)
1344
+
1345
+ for i, (pi, ri) in enumerate(f.items()):
1346
+ for j in range(ri):
1347
+ gj = pow(b, l[i], n)
1348
+ aj = pow(a * mod_inverse(gj, n), order // pi**(j + 1), n)
1349
+ bj = pow(b, order // pi, n)
1350
+ cj = discrete_log(n, aj, bj, pi, True)
1351
+ l[i] += cj * pi**j
1352
+
1353
+ d, _ = crt([pi**ri for pi, ri in f.items()], l)
1354
+ return d
1355
+
1356
+
1357
+ def discrete_log(n, a, b, order=None, prime_order=None):
1358
+ """
1359
+ Compute the discrete logarithm of ``a`` to the base ``b`` modulo ``n``.
1360
+
1361
+ This is a recursive function to reduce the discrete logarithm problem in
1362
+ cyclic groups of composite order to the problem in cyclic groups of prime
1363
+ order.
1364
+
1365
+ It employs different algorithms depending on the problem (subgroup order
1366
+ size, prime order or not):
1367
+
1368
+ * Trial multiplication
1369
+ * Baby-step giant-step
1370
+ * Pollard's Rho
1371
+ * Pohlig-Hellman
1372
+
1373
+ Examples
1374
+ ========
1375
+
1376
+ >>> from sympy.ntheory import discrete_log
1377
+ >>> discrete_log(41, 15, 7)
1378
+ 3
1379
+
1380
+ References
1381
+ ==========
1382
+
1383
+ .. [1] https://mathworld.wolfram.com/DiscreteLogarithm.html
1384
+ .. [2] "Handbook of applied cryptography", Menezes, A. J., Van, O. P. C., &
1385
+ Vanstone, S. A. (1997).
1386
+
1387
+ """
1388
+ n, a, b = as_int(n), as_int(a), as_int(b)
1389
+ if order is None:
1390
+ order = n_order(b, n)
1391
+
1392
+ if prime_order is None:
1393
+ prime_order = isprime(order)
1394
+
1395
+ if order < 1000:
1396
+ return _discrete_log_trial_mul(n, a, b, order)
1397
+ elif prime_order:
1398
+ if order < 1000000000000:
1399
+ return _discrete_log_shanks_steps(n, a, b, order)
1400
+ return _discrete_log_pollard_rho(n, a, b, order)
1401
+
1402
+ return _discrete_log_pohlig_hellman(n, a, b, order)
1403
+
1404
+
1405
+
1406
+ def quadratic_congruence(a, b, c, p):
1407
+ """
1408
+ Find the solutions to ``a x**2 + b x + c = 0 mod p.
1409
+
1410
+ Parameters
1411
+ ==========
1412
+
1413
+ a : int
1414
+ b : int
1415
+ c : int
1416
+ p : int
1417
+ A positive integer.
1418
+ """
1419
+ a = as_int(a)
1420
+ b = as_int(b)
1421
+ c = as_int(c)
1422
+ p = as_int(p)
1423
+ a = a % p
1424
+ b = b % p
1425
+ c = c % p
1426
+
1427
+ if a == 0:
1428
+ return linear_congruence(b, -c, p)
1429
+ if p == 2:
1430
+ roots = []
1431
+ if c % 2 == 0:
1432
+ roots.append(0)
1433
+ if (a + b + c) % 2 == 0:
1434
+ roots.append(1)
1435
+ return roots
1436
+ if isprime(p):
1437
+ inv_a = mod_inverse(a, p)
1438
+ b *= inv_a
1439
+ c *= inv_a
1440
+ if b % 2 == 1:
1441
+ b = b + p
1442
+ d = ((b * b) // 4 - c) % p
1443
+ y = sqrt_mod(d, p, all_roots=True)
1444
+ res = set()
1445
+ for i in y:
1446
+ res.add((i - b // 2) % p)
1447
+ return sorted(res)
1448
+ y = sqrt_mod(b * b - 4 * a * c, 4 * a * p, all_roots=True)
1449
+ res = set()
1450
+ for i in y:
1451
+ root = linear_congruence(2 * a, i - b, 4 * a * p)
1452
+ for j in root:
1453
+ res.add(j % p)
1454
+ return sorted(res)
1455
+
1456
+
1457
+ def _polynomial_congruence_prime(coefficients, p):
1458
+ """A helper function used by polynomial_congruence.
1459
+ It returns the root of a polynomial modulo prime number
1460
+ by naive search from [0, p).
1461
+
1462
+ Parameters
1463
+ ==========
1464
+
1465
+ coefficients : list of integers
1466
+ p : prime number
1467
+ """
1468
+
1469
+ roots = []
1470
+ rank = len(coefficients)
1471
+ for i in range(0, p):
1472
+ f_val = 0
1473
+ for coeff in range(0,rank - 1):
1474
+ f_val = (f_val + pow(i, int(rank - coeff - 1), p) * coefficients[coeff]) % p
1475
+ f_val = f_val + coefficients[-1]
1476
+ if f_val % p == 0:
1477
+ roots.append(i)
1478
+ return roots
1479
+
1480
+
1481
+ def _diff_poly(root, coefficients, p):
1482
+ """A helper function used by polynomial_congruence.
1483
+ It returns the derivative of the polynomial evaluated at the
1484
+ root (mod p).
1485
+
1486
+ Parameters
1487
+ ==========
1488
+
1489
+ coefficients : list of integers
1490
+ p : prime number
1491
+ root : integer
1492
+ """
1493
+
1494
+ diff = 0
1495
+ rank = len(coefficients)
1496
+ for coeff in range(0, rank - 1):
1497
+ if not coefficients[coeff]:
1498
+ continue
1499
+ diff = (diff + pow(root, rank - coeff - 2, p)*(rank - coeff - 1)*
1500
+ coefficients[coeff]) % p
1501
+ return diff % p
1502
+
1503
+
1504
+ def _val_poly(root, coefficients, p):
1505
+ """A helper function used by polynomial_congruence.
1506
+ It returns value of the polynomial at root (mod p).
1507
+
1508
+ Parameters
1509
+ ==========
1510
+
1511
+ coefficients : list of integers
1512
+ p : prime number
1513
+ root : integer
1514
+ """
1515
+ rank = len(coefficients)
1516
+ f_val = 0
1517
+ for coeff in range(0, rank - 1):
1518
+ f_val = (f_val + pow(root, rank - coeff - 1, p)*
1519
+ coefficients[coeff]) % p
1520
+ f_val = f_val + coefficients[-1]
1521
+ return f_val % p
1522
+
1523
+
1524
+ def _valid_expr(expr):
1525
+ """
1526
+ return coefficients of expr if it is a univariate polynomial
1527
+ with integer coefficients else raise a ValueError.
1528
+ """
1529
+
1530
+ if not expr.is_polynomial():
1531
+ raise ValueError("The expression should be a polynomial")
1532
+ polynomial = Poly(expr)
1533
+ if not polynomial.is_univariate:
1534
+ raise ValueError("The expression should be univariate")
1535
+ if not polynomial.domain == ZZ:
1536
+ raise ValueError("The expression should should have integer coefficients")
1537
+ return polynomial.all_coeffs()
1538
+
1539
+
1540
+ def polynomial_congruence(expr, m):
1541
+ """
1542
+ Find the solutions to a polynomial congruence equation modulo m.
1543
+
1544
+ Parameters
1545
+ ==========
1546
+
1547
+ coefficients : Coefficients of the Polynomial
1548
+ m : positive integer
1549
+
1550
+ Examples
1551
+ ========
1552
+
1553
+ >>> from sympy.ntheory import polynomial_congruence
1554
+ >>> from sympy.abc import x
1555
+ >>> expr = x**6 - 2*x**5 -35
1556
+ >>> polynomial_congruence(expr, 6125)
1557
+ [3257]
1558
+ """
1559
+ coefficients = _valid_expr(expr)
1560
+ coefficients = [num % m for num in coefficients]
1561
+ rank = len(coefficients)
1562
+ if rank == 3:
1563
+ return quadratic_congruence(*coefficients, m)
1564
+ if rank == 2:
1565
+ return quadratic_congruence(0, *coefficients, m)
1566
+ if coefficients[0] == 1 and 1 + coefficients[-1] == sum(coefficients):
1567
+ return nthroot_mod(-coefficients[-1], rank - 1, m, True)
1568
+ if isprime(m):
1569
+ return _polynomial_congruence_prime(coefficients, m)
1570
+ return _help(m,
1571
+ lambda p: _polynomial_congruence_prime(coefficients, p),
1572
+ lambda root, p: _diff_poly(root, coefficients, p),
1573
+ lambda root, p: _val_poly(root, coefficients, p))
venv/lib/python3.10/site-packages/sympy/ntheory/tests/__init__.py ADDED
File without changes
venv/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (187 Bytes). View file
 
venv/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_bbp_pi.cpython-310.pyc ADDED
Binary file (9.52 kB). View file
 
venv/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_continued_fraction.cpython-310.pyc ADDED
Binary file (3.91 kB). View file
 
venv/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_digits.cpython-310.pyc ADDED
Binary file (2.29 kB). View file
 
venv/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_egyptian_fraction.cpython-310.pyc ADDED
Binary file (2.75 kB). View file
 
venv/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_factor_.cpython-310.pyc ADDED
Binary file (26.7 kB). View file
 
venv/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_generate.cpython-310.pyc ADDED
Binary file (10.3 kB). View file
 
venv/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_multinomial.cpython-310.pyc ADDED
Binary file (2.69 kB). View file
 
venv/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_qs.cpython-310.pyc ADDED
Binary file (4.85 kB). View file
 
venv/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_residue.cpython-310.pyc ADDED
Binary file (11.8 kB). View file
 
venv/lib/python3.10/site-packages/sympy/ntheory/tests/test_bbp_pi.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.random import randint
2
+
3
+ from sympy.ntheory.bbp_pi import pi_hex_digits
4
+ from sympy.testing.pytest import raises
5
+
6
+
7
+ # http://www.herongyang.com/Cryptography/Blowfish-First-8366-Hex-Digits-of-PI.html
8
+ # There are actually 8336 listed there; with the prepended 3 there are 8337
9
+ # below
10
+ dig=''.join('''
11
+ 3243f6a8885a308d313198a2e03707344a4093822299f31d0082efa98ec4e6c89452821e638d013
12
+ 77be5466cf34e90c6cc0ac29b7c97c50dd3f84d5b5b54709179216d5d98979fb1bd1310ba698dfb5
13
+ ac2ffd72dbd01adfb7b8e1afed6a267e96ba7c9045f12c7f9924a19947b3916cf70801f2e2858efc
14
+ 16636920d871574e69a458fea3f4933d7e0d95748f728eb658718bcd5882154aee7b54a41dc25a59
15
+ b59c30d5392af26013c5d1b023286085f0ca417918b8db38ef8e79dcb0603a180e6c9e0e8bb01e8a
16
+ 3ed71577c1bd314b2778af2fda55605c60e65525f3aa55ab945748986263e8144055ca396a2aab10
17
+ b6b4cc5c341141e8cea15486af7c72e993b3ee1411636fbc2a2ba9c55d741831f6ce5c3e169b8793
18
+ 1eafd6ba336c24cf5c7a325381289586773b8f48986b4bb9afc4bfe81b6628219361d809ccfb21a9
19
+ 91487cac605dec8032ef845d5de98575b1dc262302eb651b8823893e81d396acc50f6d6ff383f442
20
+ 392e0b4482a484200469c8f04a9e1f9b5e21c66842f6e96c9a670c9c61abd388f06a51a0d2d8542f
21
+ 68960fa728ab5133a36eef0b6c137a3be4ba3bf0507efb2a98a1f1651d39af017666ca593e82430e
22
+ 888cee8619456f9fb47d84a5c33b8b5ebee06f75d885c12073401a449f56c16aa64ed3aa62363f77
23
+ 061bfedf72429b023d37d0d724d00a1248db0fead349f1c09b075372c980991b7b25d479d8f6e8de
24
+ f7e3fe501ab6794c3b976ce0bd04c006bac1a94fb6409f60c45e5c9ec2196a246368fb6faf3e6c53
25
+ b51339b2eb3b52ec6f6dfc511f9b30952ccc814544af5ebd09bee3d004de334afd660f2807192e4b
26
+ b3c0cba85745c8740fd20b5f39b9d3fbdb5579c0bd1a60320ad6a100c6402c7279679f25fefb1fa3
27
+ cc8ea5e9f8db3222f83c7516dffd616b152f501ec8ad0552ab323db5fafd23876053317b483e00df
28
+ 829e5c57bbca6f8ca01a87562edf1769dbd542a8f6287effc3ac6732c68c4f5573695b27b0bbca58
29
+ c8e1ffa35db8f011a010fa3d98fd2183b84afcb56c2dd1d35b9a53e479b6f84565d28e49bc4bfb97
30
+ 90e1ddf2daa4cb7e3362fb1341cee4c6e8ef20cada36774c01d07e9efe2bf11fb495dbda4dae9091
31
+ 98eaad8e716b93d5a0d08ed1d0afc725e08e3c5b2f8e7594b78ff6e2fbf2122b648888b812900df0
32
+ 1c4fad5ea0688fc31cd1cff191b3a8c1ad2f2f2218be0e1777ea752dfe8b021fa1e5a0cc0fb56f74
33
+ e818acf3d6ce89e299b4a84fe0fd13e0b77cc43b81d2ada8d9165fa2668095770593cc7314211a14
34
+ 77e6ad206577b5fa86c75442f5fb9d35cfebcdaf0c7b3e89a0d6411bd3ae1e7e4900250e2d2071b3
35
+ 5e226800bb57b8e0af2464369bf009b91e5563911d59dfa6aa78c14389d95a537f207d5ba202e5b9
36
+ c5832603766295cfa911c819684e734a41b3472dca7b14a94a1b5100529a532915d60f573fbc9bc6
37
+ e42b60a47681e6740008ba6fb5571be91ff296ec6b2a0dd915b6636521e7b9f9b6ff34052ec58556
38
+ 6453b02d5da99f8fa108ba47996e85076a4b7a70e9b5b32944db75092ec4192623ad6ea6b049a7df
39
+ 7d9cee60b88fedb266ecaa8c71699a17ff5664526cc2b19ee1193602a575094c29a0591340e4183a
40
+ 3e3f54989a5b429d656b8fe4d699f73fd6a1d29c07efe830f54d2d38e6f0255dc14cdd20868470eb
41
+ 266382e9c6021ecc5e09686b3f3ebaefc93c9718146b6a70a1687f358452a0e286b79c5305aa5007
42
+ 373e07841c7fdeae5c8e7d44ec5716f2b8b03ada37f0500c0df01c1f040200b3ffae0cf51a3cb574
43
+ b225837a58dc0921bdd19113f97ca92ff69432477322f547013ae5e58137c2dadcc8b576349af3dd
44
+ a7a94461460fd0030eecc8c73ea4751e41e238cd993bea0e2f3280bba1183eb3314e548b384f6db9
45
+ 086f420d03f60a04bf2cb8129024977c795679b072bcaf89afde9a771fd9930810b38bae12dccf3f
46
+ 2e5512721f2e6b7124501adde69f84cd877a5847187408da17bc9f9abce94b7d8cec7aec3adb851d
47
+ fa63094366c464c3d2ef1c18473215d908dd433b3724c2ba1612a14d432a65c45150940002133ae4
48
+ dd71dff89e10314e5581ac77d65f11199b043556f1d7a3c76b3c11183b5924a509f28fe6ed97f1fb
49
+ fa9ebabf2c1e153c6e86e34570eae96fb1860e5e0a5a3e2ab3771fe71c4e3d06fa2965dcb999e71d
50
+ 0f803e89d65266c8252e4cc9789c10b36ac6150eba94e2ea78a5fc3c531e0a2df4f2f74ea7361d2b
51
+ 3d1939260f19c279605223a708f71312b6ebadfe6eeac31f66e3bc4595a67bc883b17f37d1018cff
52
+ 28c332ddefbe6c5aa56558218568ab9802eecea50fdb2f953b2aef7dad5b6e2f841521b628290761
53
+ 70ecdd4775619f151013cca830eb61bd960334fe1eaa0363cfb5735c904c70a239d59e9e0bcbaade
54
+ 14eecc86bc60622ca79cab5cabb2f3846e648b1eaf19bdf0caa02369b9655abb5040685a323c2ab4
55
+ b3319ee9d5c021b8f79b540b19875fa09995f7997e623d7da8f837889a97e32d7711ed935f166812
56
+ 810e358829c7e61fd696dedfa17858ba9957f584a51b2272639b83c3ff1ac24696cdb30aeb532e30
57
+ 548fd948e46dbc312858ebf2ef34c6ffeafe28ed61ee7c3c735d4a14d9e864b7e342105d14203e13
58
+ e045eee2b6a3aaabeadb6c4f15facb4fd0c742f442ef6abbb5654f3b1d41cd2105d81e799e86854d
59
+ c7e44b476a3d816250cf62a1f25b8d2646fc8883a0c1c7b6a37f1524c369cb749247848a0b5692b2
60
+ 85095bbf00ad19489d1462b17423820e0058428d2a0c55f5ea1dadf43e233f70613372f0928d937e
61
+ 41d65fecf16c223bdb7cde3759cbee74604085f2a7ce77326ea607808419f8509ee8efd85561d997
62
+ 35a969a7aac50c06c25a04abfc800bcadc9e447a2ec3453484fdd567050e1e9ec9db73dbd3105588
63
+ cd675fda79e3674340c5c43465713e38d83d28f89ef16dff20153e21e78fb03d4ae6e39f2bdb83ad
64
+ f7e93d5a68948140f7f64c261c94692934411520f77602d4f7bcf46b2ed4a20068d40824713320f4
65
+ 6a43b7d4b7500061af1e39f62e9724454614214f74bf8b88404d95fc1d96b591af70f4ddd366a02f
66
+ 45bfbc09ec03bd97857fac6dd031cb850496eb27b355fd3941da2547e6abca0a9a28507825530429
67
+ f40a2c86dae9b66dfb68dc1462d7486900680ec0a427a18dee4f3ffea2e887ad8cb58ce0067af4d6
68
+ b6aace1e7cd3375fecce78a399406b2a4220fe9e35d9f385b9ee39d7ab3b124e8b1dc9faf74b6d18
69
+ 5626a36631eae397b23a6efa74dd5b43326841e7f7ca7820fbfb0af54ed8feb397454056acba4895
70
+ 2755533a3a20838d87fe6ba9b7d096954b55a867bca1159a58cca9296399e1db33a62a4a563f3125
71
+ f95ef47e1c9029317cfdf8e80204272f7080bb155c05282ce395c11548e4c66d2248c1133fc70f86
72
+ dc07f9c9ee41041f0f404779a45d886e17325f51ebd59bc0d1f2bcc18f41113564257b7834602a9c
73
+ 60dff8e8a31f636c1b0e12b4c202e1329eaf664fd1cad181156b2395e0333e92e13b240b62eebeb9
74
+ 2285b2a20ee6ba0d99de720c8c2da2f728d012784595b794fd647d0862e7ccf5f05449a36f877d48
75
+ fac39dfd27f33e8d1e0a476341992eff743a6f6eabf4f8fd37a812dc60a1ebddf8991be14cdb6e6b
76
+ 0dc67b55106d672c372765d43bdcd0e804f1290dc7cc00ffa3b5390f92690fed0b667b9ffbcedb7d
77
+ 9ca091cf0bd9155ea3bb132f88515bad247b9479bf763bd6eb37392eb3cc1159798026e297f42e31
78
+ 2d6842ada7c66a2b3b12754ccc782ef11c6a124237b79251e706a1bbe64bfb63501a6b101811caed
79
+ fa3d25bdd8e2e1c3c9444216590a121386d90cec6ed5abea2a64af674eda86a85fbebfe98864e4c3
80
+ fe9dbc8057f0f7c08660787bf86003604dd1fd8346f6381fb07745ae04d736fccc83426b33f01eab
81
+ 71b08041873c005e5f77a057bebde8ae2455464299bf582e614e58f48ff2ddfda2f474ef388789bd
82
+ c25366f9c3c8b38e74b475f25546fcd9b97aeb26618b1ddf84846a0e79915f95e2466e598e20b457
83
+ 708cd55591c902de4cb90bace1bb8205d011a862487574a99eb77f19b6e0a9dc09662d09a1c43246
84
+ 33e85a1f0209f0be8c4a99a0251d6efe101ab93d1d0ba5a4dfa186f20f2868f169dcb7da83573906
85
+ fea1e2ce9b4fcd7f5250115e01a70683faa002b5c40de6d0279af88c27773f8641c3604c0661a806
86
+ b5f0177a28c0f586e0006058aa30dc7d6211e69ed72338ea6353c2dd94c2c21634bbcbee5690bcb6
87
+ deebfc7da1ce591d766f05e4094b7c018839720a3d7c927c2486e3725f724d9db91ac15bb4d39eb8
88
+ fced54557808fca5b5d83d7cd34dad0fc41e50ef5eb161e6f8a28514d96c51133c6fd5c7e756e14e
89
+ c4362abfceddc6c837d79a323492638212670efa8e406000e03a39ce37d3faf5cfabc277375ac52d
90
+ 1b5cb0679e4fa33742d382274099bc9bbed5118e9dbf0f7315d62d1c7ec700c47bb78c1b6b21a190
91
+ 45b26eb1be6a366eb45748ab2fbc946e79c6a376d26549c2c8530ff8ee468dde7dd5730a1d4cd04d
92
+ c62939bbdba9ba4650ac9526e8be5ee304a1fad5f06a2d519a63ef8ce29a86ee22c089c2b843242e
93
+ f6a51e03aa9cf2d0a483c061ba9be96a4d8fe51550ba645bd62826a2f9a73a3ae14ba99586ef5562
94
+ e9c72fefd3f752f7da3f046f6977fa0a5980e4a91587b086019b09e6ad3b3ee593e990fd5a9e34d7
95
+ 972cf0b7d9022b8b5196d5ac3a017da67dd1cf3ed67c7d2d281f9f25cfadf2b89b5ad6b4725a88f5
96
+ 4ce029ac71e019a5e647b0acfded93fa9be8d3c48d283b57ccf8d5662979132e28785f0191ed7560
97
+ 55f7960e44e3d35e8c15056dd488f46dba03a161250564f0bdc3eb9e153c9057a297271aeca93a07
98
+ 2a1b3f6d9b1e6321f5f59c66fb26dcf3197533d928b155fdf5035634828aba3cbb28517711c20ad9
99
+ f8abcc5167ccad925f4de817513830dc8e379d58629320f991ea7a90c2fb3e7bce5121ce64774fbe
100
+ 32a8b6e37ec3293d4648de53696413e680a2ae0810dd6db22469852dfd09072166b39a460a6445c0
101
+ dd586cdecf1c20c8ae5bbef7dd1b588d40ccd2017f6bb4e3bbdda26a7e3a59ff453e350a44bcb4cd
102
+ d572eacea8fa6484bb8d6612aebf3c6f47d29be463542f5d9eaec2771bf64e6370740e0d8de75b13
103
+ 57f8721671af537d5d4040cb084eb4e2cc34d2466a0115af84e1b0042895983a1d06b89fb4ce6ea0
104
+ 486f3f3b823520ab82011a1d4b277227f8611560b1e7933fdcbb3a792b344525bda08839e151ce79
105
+ 4b2f32c9b7a01fbac9e01cc87ebcc7d1f6cf0111c3a1e8aac71a908749d44fbd9ad0dadecbd50ada
106
+ 380339c32ac69136678df9317ce0b12b4ff79e59b743f5bb3af2d519ff27d9459cbf97222c15e6fc
107
+ 2a0f91fc719b941525fae59361ceb69cebc2a8645912baa8d1b6c1075ee3056a0c10d25065cb03a4
108
+ 42e0ec6e0e1698db3b4c98a0be3278e9649f1f9532e0d392dfd3a0342b8971f21e1b0a74414ba334
109
+ 8cc5be7120c37632d8df359f8d9b992f2ee60b6f470fe3f11de54cda541edad891ce6279cfcd3e7e
110
+ 6f1618b166fd2c1d05848fd2c5f6fb2299f523f357a632762393a8353156cccd02acf081625a75eb
111
+ b56e16369788d273ccde96629281b949d04c50901b71c65614e6c6c7bd327a140a45e1d006c3f27b
112
+ 9ac9aa53fd62a80f00bb25bfe235bdd2f671126905b2040222b6cbcf7ccd769c2b53113ec01640e3
113
+ d338abbd602547adf0ba38209cf746ce7677afa1c52075606085cbfe4e8ae88dd87aaaf9b04cf9aa
114
+ 7e1948c25c02fb8a8c01c36ae4d6ebe1f990d4f869a65cdea03f09252dc208e69fb74e6132ce77e2
115
+ 5b578fdfe33ac372e6'''.split())
116
+
117
+
118
+ def test_hex_pi_nth_digits():
119
+ assert pi_hex_digits(0) == '3243f6a8885a30'
120
+ assert pi_hex_digits(1) == '243f6a8885a308'
121
+ assert pi_hex_digits(10000) == '68ac8fcfb8016c'
122
+ assert pi_hex_digits(13) == '08d313198a2e03'
123
+ assert pi_hex_digits(0, 3) == '324'
124
+ assert pi_hex_digits(0, 0) == ''
125
+ raises(ValueError, lambda: pi_hex_digits(-1))
126
+ raises(ValueError, lambda: pi_hex_digits(3.14))
127
+
128
+ # this will pick a random segment to compute every time
129
+ # it is run. If it ever fails, there is an error in the
130
+ # computation.
131
+ n = randint(0, len(dig))
132
+ prec = randint(0, len(dig) - n)
133
+ assert pi_hex_digits(n, prec) == dig[n: n + prec]
venv/lib/python3.10/site-packages/sympy/ntheory/tests/test_continued_fraction.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core import GoldenRatio as phi
2
+ from sympy.core.numbers import (Rational, pi)
3
+ from sympy.core.singleton import S
4
+ from sympy.functions.elementary.miscellaneous import sqrt
5
+ from sympy.ntheory.continued_fraction import \
6
+ (continued_fraction_periodic as cf_p,
7
+ continued_fraction_iterator as cf_i,
8
+ continued_fraction_convergents as cf_c,
9
+ continued_fraction_reduce as cf_r,
10
+ continued_fraction as cf)
11
+ from sympy.testing.pytest import raises
12
+
13
+
14
+ def test_continued_fraction():
15
+ assert cf_p(1, 1, 10, 0) == cf_p(1, 1, 0, 1)
16
+ assert cf_p(1, -1, 10, 1) == cf_p(-1, 1, 10, -1)
17
+ t = sqrt(2)
18
+ assert cf((1 + t)*(1 - t)) == cf(-1)
19
+ for n in [0, 2, Rational(2, 3), sqrt(2), 3*sqrt(2), 1 + 2*sqrt(3)/5,
20
+ (2 - 3*sqrt(5))/7, 1 + sqrt(2), (-5 + sqrt(17))/4]:
21
+ assert (cf_r(cf(n)) - n).expand() == 0
22
+ assert (cf_r(cf(-n)) + n).expand() == 0
23
+ raises(ValueError, lambda: cf(sqrt(2 + sqrt(3))))
24
+ raises(ValueError, lambda: cf(sqrt(2) + sqrt(3)))
25
+ raises(ValueError, lambda: cf(pi))
26
+ raises(ValueError, lambda: cf(.1))
27
+
28
+ raises(ValueError, lambda: cf_p(1, 0, 0))
29
+ raises(ValueError, lambda: cf_p(1, 1, -1))
30
+ assert cf_p(4, 3, 0) == [1, 3]
31
+ assert cf_p(0, 3, 5) == [0, 1, [2, 1, 12, 1, 2, 2]]
32
+ assert cf_p(1, 1, 0) == [1]
33
+ assert cf_p(3, 4, 0) == [0, 1, 3]
34
+ assert cf_p(4, 5, 0) == [0, 1, 4]
35
+ assert cf_p(5, 6, 0) == [0, 1, 5]
36
+ assert cf_p(11, 13, 0) == [0, 1, 5, 2]
37
+ assert cf_p(16, 19, 0) == [0, 1, 5, 3]
38
+ assert cf_p(27, 32, 0) == [0, 1, 5, 2, 2]
39
+ assert cf_p(1, 2, 5) == [[1]]
40
+ assert cf_p(0, 1, 2) == [1, [2]]
41
+ assert cf_p(6, 7, 49) == [1, 1, 6]
42
+ assert cf_p(3796, 1387, 0) == [2, 1, 2, 1, 4]
43
+ assert cf_p(3245, 10000) == [0, 3, 12, 4, 13]
44
+ assert cf_p(1932, 2568) == [0, 1, 3, 26, 2]
45
+ assert cf_p(6589, 2569) == [2, 1, 1, 3, 2, 1, 3, 1, 23]
46
+
47
+ def take(iterator, n=7):
48
+ res = []
49
+ for i, t in enumerate(cf_i(iterator)):
50
+ if i >= n:
51
+ break
52
+ res.append(t)
53
+ return res
54
+
55
+ assert take(phi) == [1, 1, 1, 1, 1, 1, 1]
56
+ assert take(pi) == [3, 7, 15, 1, 292, 1, 1]
57
+
58
+ assert list(cf_i(Rational(17, 12))) == [1, 2, 2, 2]
59
+ assert list(cf_i(Rational(-17, 12))) == [-2, 1, 1, 2, 2]
60
+
61
+ assert list(cf_c([1, 6, 1, 8])) == [S.One, Rational(7, 6), Rational(8, 7), Rational(71, 62)]
62
+ assert list(cf_c([2])) == [S(2)]
63
+ assert list(cf_c([1, 1, 1, 1, 1, 1, 1])) == [S.One, S(2), Rational(3, 2), Rational(5, 3),
64
+ Rational(8, 5), Rational(13, 8), Rational(21, 13)]
65
+ assert list(cf_c([1, 6, Rational(-1, 2), 4])) == [S.One, Rational(7, 6), Rational(5, 4), Rational(3, 2)]
66
+
67
+ assert cf_r([1, 6, 1, 8]) == Rational(71, 62)
68
+ assert cf_r([3]) == S(3)
69
+ assert cf_r([-1, 5, 1, 4]) == Rational(-24, 29)
70
+ assert (cf_r([0, 1, 1, 7, [24, 8]]) - (sqrt(3) + 2)/7).expand() == 0
71
+ assert cf_r([1, 5, 9]) == Rational(55, 46)
72
+ assert (cf_r([[1]]) - (sqrt(5) + 1)/2).expand() == 0
73
+ assert cf_r([-3, 1, 1, [2]]) == -1 - sqrt(2)
venv/lib/python3.10/site-packages/sympy/ntheory/tests/test_digits.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.ntheory import count_digits, digits, is_palindromic
2
+
3
+ from sympy.testing.pytest import raises
4
+
5
+
6
+ def test_digits():
7
+ assert all([digits(n, 2)[1:] == [int(d) for d in format(n, 'b')]
8
+ for n in range(20)])
9
+ assert all([digits(n, 8)[1:] == [int(d) for d in format(n, 'o')]
10
+ for n in range(20)])
11
+ assert all([digits(n, 16)[1:] == [int(d, 16) for d in format(n, 'x')]
12
+ for n in range(20)])
13
+ assert digits(2345, 34) == [34, 2, 0, 33]
14
+ assert digits(384753, 71) == [71, 1, 5, 23, 4]
15
+ assert digits(93409, 10) == [10, 9, 3, 4, 0, 9]
16
+ assert digits(-92838, 11) == [-11, 6, 3, 8, 2, 9]
17
+ assert digits(35, 10) == [10, 3, 5]
18
+ assert digits(35, 10, 3) == [10, 0, 3, 5]
19
+ assert digits(-35, 10, 4) == [-10, 0, 0, 3, 5]
20
+ raises(ValueError, lambda: digits(2, 2, 1))
21
+
22
+
23
+ def test_count_digits():
24
+ assert count_digits(55, 2) == {1: 5, 0: 1}
25
+ assert count_digits(55, 10) == {5: 2}
26
+ n = count_digits(123)
27
+ assert n[4] == 0 and type(n[4]) is int
28
+
29
+
30
+ def test_is_palindromic():
31
+ assert is_palindromic(-11)
32
+ assert is_palindromic(11)
33
+ assert is_palindromic(0o121, 8)
34
+ assert not is_palindromic(123)
venv/lib/python3.10/site-packages/sympy/ntheory/tests/test_ecm.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.ntheory.ecm import ecm, Point
2
+ from sympy.testing.pytest import slow
3
+
4
+ @slow
5
+ def test_ecm():
6
+ assert ecm(3146531246531241245132451321) == {3, 100327907731, 10454157497791297}
7
+ assert ecm(46167045131415113) == {43, 2634823, 407485517}
8
+ assert ecm(631211032315670776841) == {9312934919, 67777885039}
9
+ assert ecm(398883434337287) == {99476569, 4009823}
10
+ assert ecm(64211816600515193) == {281719, 359641, 633767}
11
+ assert ecm(4269021180054189416198169786894227) == {184039, 241603, 333331, 477973, 618619, 974123}
12
+ assert ecm(4516511326451341281684513) == {3, 39869, 131743543, 95542348571}
13
+ assert ecm(4132846513818654136451) == {47, 160343, 2802377, 195692803}
14
+ assert ecm(168541512131094651323) == {79, 113, 11011069, 1714635721}
15
+ #This takes ~10secs while factorint is not able to factorize this even in ~10mins
16
+ assert ecm(7060005655815754299976961394452809, B1=100000, B2=1000000) == {6988699669998001, 1010203040506070809}
17
+
18
+
19
+ def test_Point():
20
+ from sympy.core.numbers import mod_inverse
21
+ #The curve is of the form y**2 = x**3 + a*x**2 + x
22
+ mod = 101
23
+ a = 10
24
+ a_24 = (a + 2)*mod_inverse(4, mod)
25
+ p1 = Point(10, 17, a_24, mod)
26
+ p2 = p1.double()
27
+ assert p2 == Point(68, 56, a_24, mod)
28
+ p4 = p2.double()
29
+ assert p4 == Point(22, 64, a_24, mod)
30
+ p8 = p4.double()
31
+ assert p8 == Point(71, 95, a_24, mod)
32
+ p16 = p8.double()
33
+ assert p16 == Point(5, 16, a_24, mod)
34
+ p32 = p16.double()
35
+ assert p32 == Point(33, 96, a_24, mod)
36
+
37
+ # p3 = p2 + p1
38
+ p3 = p2.add(p1, p1)
39
+ assert p3 == Point(1, 61, a_24, mod)
40
+ # p5 = p3 + p2 or p4 + p1
41
+ p5 = p3.add(p2, p1)
42
+ assert p5 == Point(49, 90, a_24, mod)
43
+ assert p5 == p4.add(p1, p3)
44
+ # p6 = 2*p3
45
+ p6 = p3.double()
46
+ assert p6 == Point(87, 43, a_24, mod)
47
+ assert p6 == p4.add(p2, p2)
48
+ # p7 = p5 + p2
49
+ p7 = p5.add(p2, p3)
50
+ assert p7 == Point(69, 23, a_24, mod)
51
+ assert p7 == p4.add(p3, p1)
52
+ assert p7 == p6.add(p1, p5)
53
+ # p9 = p5 + p4
54
+ p9 = p5.add(p4, p1)
55
+ assert p9 == Point(56, 99, a_24, mod)
56
+ assert p9 == p6.add(p3, p3)
57
+ assert p9 == p7.add(p2, p5)
58
+ assert p9 == p8.add(p1, p7)
59
+
60
+ assert p5 == p1.mont_ladder(5)
61
+ assert p9 == p1.mont_ladder(9)
62
+ assert p16 == p1.mont_ladder(16)
63
+ assert p9 == p3.mont_ladder(3)
venv/lib/python3.10/site-packages/sympy/ntheory/tests/test_egyptian_fraction.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.numbers import Rational
2
+ from sympy.ntheory.egyptian_fraction import egyptian_fraction
3
+ from sympy.core.add import Add
4
+ from sympy.testing.pytest import raises
5
+ from sympy.core.random import random_complex_number
6
+
7
+
8
+ def test_egyptian_fraction():
9
+ def test_equality(r, alg="Greedy"):
10
+ return r == Add(*[Rational(1, i) for i in egyptian_fraction(r, alg)])
11
+
12
+ r = random_complex_number(a=0, c=1, b=0, d=0, rational=True)
13
+ assert test_equality(r)
14
+
15
+ assert egyptian_fraction(Rational(4, 17)) == [5, 29, 1233, 3039345]
16
+ assert egyptian_fraction(Rational(7, 13), "Greedy") == [2, 26]
17
+ assert egyptian_fraction(Rational(23, 101), "Greedy") == \
18
+ [5, 37, 1438, 2985448, 40108045937720]
19
+ assert egyptian_fraction(Rational(18, 23), "Takenouchi") == \
20
+ [2, 6, 12, 35, 276, 2415]
21
+ assert egyptian_fraction(Rational(5, 6), "Graham Jewett") == \
22
+ [6, 7, 8, 9, 10, 42, 43, 44, 45, 56, 57, 58, 72, 73, 90, 1806, 1807,
23
+ 1808, 1892, 1893, 1980, 3192, 3193, 3306, 5256, 3263442, 3263443,
24
+ 3267056, 3581556, 10192056, 10650056950806]
25
+ assert egyptian_fraction(Rational(5, 6), "Golomb") == [2, 6, 12, 20, 30]
26
+ assert egyptian_fraction(Rational(5, 121), "Golomb") == [25, 1225, 3577, 7081, 11737]
27
+ raises(ValueError, lambda: egyptian_fraction(Rational(-4, 9)))
28
+ assert egyptian_fraction(Rational(8, 3), "Golomb") == [1, 2, 3, 4, 5, 6, 7,
29
+ 14, 574, 2788, 6460,
30
+ 11590, 33062, 113820]
31
+ assert egyptian_fraction(Rational(355, 113)) == [1, 2, 3, 4, 5, 6, 7, 8, 9,
32
+ 10, 11, 12, 27, 744, 893588,
33
+ 1251493536607,
34
+ 20361068938197002344405230]
35
+
36
+
37
+ def test_input():
38
+ r = (2,3), Rational(2, 3), (Rational(2), Rational(3))
39
+ for m in ["Greedy", "Graham Jewett", "Takenouchi", "Golomb"]:
40
+ for i in r:
41
+ d = egyptian_fraction(i, m)
42
+ assert all(i.is_Integer for i in d)
43
+ if m == "Graham Jewett":
44
+ assert d == [3, 4, 12]
45
+ else:
46
+ assert d == [2, 6]
47
+ # check prefix
48
+ d = egyptian_fraction(Rational(5, 3))
49
+ assert d == [1, 2, 6] and all(i.is_Integer for i in d)
venv/lib/python3.10/site-packages/sympy/ntheory/tests/test_elliptic_curve.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.ntheory.elliptic_curve import EllipticCurve
2
+
3
+
4
+ def test_elliptic_curve():
5
+ # Point addition and multiplication
6
+ e3 = EllipticCurve(-1, 9)
7
+ p = e3(0, 3)
8
+ q = e3(-1, 3)
9
+ r = p + q
10
+ assert r.x == 1 and r.y == -3
11
+ r = 2*p + q
12
+ assert r.x == 35 and r.y == 207
13
+ r = -p + q
14
+ assert r.x == 37 and r.y == 225
15
+ # Verify result in http://www.lmfdb.org/EllipticCurve/Q
16
+ # Discriminant
17
+ assert EllipticCurve(-1, 9).discriminant == -34928
18
+ assert EllipticCurve(-2731, -55146, 1, 0, 1).discriminant == 25088
19
+ # Torsion points
20
+ assert len(EllipticCurve(0, 1).torsion_points()) == 6
venv/lib/python3.10/site-packages/sympy/ntheory/tests/test_factor_.py ADDED
@@ -0,0 +1,685 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.concrete.summations import summation
2
+ from sympy.core.containers import Dict
3
+ from sympy.core.mul import Mul
4
+ from sympy.core.power import Pow
5
+ from sympy.core.singleton import S
6
+ from sympy.core.symbol import Symbol
7
+ from sympy.functions.combinatorial.factorials import factorial as fac
8
+ from sympy.core.evalf import bitcount
9
+ from sympy.core.numbers import Integer, Rational
10
+
11
+ from sympy.ntheory import (totient,
12
+ factorint, primefactors, divisors, nextprime,
13
+ primerange, pollard_rho, perfect_power, multiplicity, multiplicity_in_factorial,
14
+ trailing, divisor_count, primorial, pollard_pm1, divisor_sigma,
15
+ factorrat, reduced_totient)
16
+ from sympy.ntheory.factor_ import (smoothness, smoothness_p, proper_divisors,
17
+ antidivisors, antidivisor_count, core, udivisors, udivisor_sigma,
18
+ udivisor_count, proper_divisor_count, primenu, primeomega, small_trailing,
19
+ mersenne_prime_exponent, is_perfect, is_mersenne_prime, is_abundant,
20
+ is_deficient, is_amicable, dra, drm)
21
+
22
+ from sympy.testing.pytest import raises, slow
23
+
24
+ from sympy.utilities.iterables import capture
25
+
26
+
27
+ def fac_multiplicity(n, p):
28
+ """Return the power of the prime number p in the
29
+ factorization of n!"""
30
+ if p > n:
31
+ return 0
32
+ if p > n//2:
33
+ return 1
34
+ q, m = n, 0
35
+ while q >= p:
36
+ q //= p
37
+ m += q
38
+ return m
39
+
40
+
41
+ def multiproduct(seq=(), start=1):
42
+ """
43
+ Return the product of a sequence of factors with multiplicities,
44
+ times the value of the parameter ``start``. The input may be a
45
+ sequence of (factor, exponent) pairs or a dict of such pairs.
46
+
47
+ >>> multiproduct({3:7, 2:5}, 4) # = 3**7 * 2**5 * 4
48
+ 279936
49
+
50
+ """
51
+ if not seq:
52
+ return start
53
+ if isinstance(seq, dict):
54
+ seq = iter(seq.items())
55
+ units = start
56
+ multi = []
57
+ for base, exp in seq:
58
+ if not exp:
59
+ continue
60
+ elif exp == 1:
61
+ units *= base
62
+ else:
63
+ if exp % 2:
64
+ units *= base
65
+ multi.append((base, exp//2))
66
+ return units * multiproduct(multi)**2
67
+
68
+
69
+ def test_trailing_bitcount():
70
+ assert trailing(0) == 0
71
+ assert trailing(1) == 0
72
+ assert trailing(-1) == 0
73
+ assert trailing(2) == 1
74
+ assert trailing(7) == 0
75
+ assert trailing(-7) == 0
76
+ for i in range(100):
77
+ assert trailing(1 << i) == i
78
+ assert trailing((1 << i) * 31337) == i
79
+ assert trailing(1 << 1000001) == 1000001
80
+ assert trailing((1 << 273956)*7**37) == 273956
81
+ # issue 12709
82
+ big = small_trailing[-1]*2
83
+ assert trailing(-big) == trailing(big)
84
+ assert bitcount(-big) == bitcount(big)
85
+
86
+
87
+ def test_multiplicity():
88
+ for b in range(2, 20):
89
+ for i in range(100):
90
+ assert multiplicity(b, b**i) == i
91
+ assert multiplicity(b, (b**i) * 23) == i
92
+ assert multiplicity(b, (b**i) * 1000249) == i
93
+ # Should be fast
94
+ assert multiplicity(10, 10**10023) == 10023
95
+ # Should exit quickly
96
+ assert multiplicity(10**10, 10**10) == 1
97
+ # Should raise errors for bad input
98
+ raises(ValueError, lambda: multiplicity(1, 1))
99
+ raises(ValueError, lambda: multiplicity(1, 2))
100
+ raises(ValueError, lambda: multiplicity(1.3, 2))
101
+ raises(ValueError, lambda: multiplicity(2, 0))
102
+ raises(ValueError, lambda: multiplicity(1.3, 0))
103
+
104
+ # handles Rationals
105
+ assert multiplicity(10, Rational(30, 7)) == 1
106
+ assert multiplicity(Rational(2, 7), Rational(4, 7)) == 1
107
+ assert multiplicity(Rational(1, 7), Rational(3, 49)) == 2
108
+ assert multiplicity(Rational(2, 7), Rational(7, 2)) == -1
109
+ assert multiplicity(3, Rational(1, 9)) == -2
110
+
111
+
112
+ def test_multiplicity_in_factorial():
113
+ n = fac(1000)
114
+ for i in (2, 4, 6, 12, 30, 36, 48, 60, 72, 96):
115
+ assert multiplicity(i, n) == multiplicity_in_factorial(i, 1000)
116
+
117
+
118
+ def test_perfect_power():
119
+ raises(ValueError, lambda: perfect_power(0.1))
120
+ assert perfect_power(0) is False
121
+ assert perfect_power(1) is False
122
+ assert perfect_power(2) is False
123
+ assert perfect_power(3) is False
124
+ assert perfect_power(4) == (2, 2)
125
+ assert perfect_power(14) is False
126
+ assert perfect_power(25) == (5, 2)
127
+ assert perfect_power(22) is False
128
+ assert perfect_power(22, [2]) is False
129
+ assert perfect_power(137**(3*5*13)) == (137, 3*5*13)
130
+ assert perfect_power(137**(3*5*13) + 1) is False
131
+ assert perfect_power(137**(3*5*13) - 1) is False
132
+ assert perfect_power(103005006004**7) == (103005006004, 7)
133
+ assert perfect_power(103005006004**7 + 1) is False
134
+ assert perfect_power(103005006004**7 - 1) is False
135
+ assert perfect_power(103005006004**12) == (103005006004, 12)
136
+ assert perfect_power(103005006004**12 + 1) is False
137
+ assert perfect_power(103005006004**12 - 1) is False
138
+ assert perfect_power(2**10007) == (2, 10007)
139
+ assert perfect_power(2**10007 + 1) is False
140
+ assert perfect_power(2**10007 - 1) is False
141
+ assert perfect_power((9**99 + 1)**60) == (9**99 + 1, 60)
142
+ assert perfect_power((9**99 + 1)**60 + 1) is False
143
+ assert perfect_power((9**99 + 1)**60 - 1) is False
144
+ assert perfect_power((10**40000)**2, big=False) == (10**40000, 2)
145
+ assert perfect_power(10**100000) == (10, 100000)
146
+ assert perfect_power(10**100001) == (10, 100001)
147
+ assert perfect_power(13**4, [3, 5]) is False
148
+ assert perfect_power(3**4, [3, 10], factor=0) is False
149
+ assert perfect_power(3**3*5**3) == (15, 3)
150
+ assert perfect_power(2**3*5**5) is False
151
+ assert perfect_power(2*13**4) is False
152
+ assert perfect_power(2**5*3**3) is False
153
+ t = 2**24
154
+ for d in divisors(24):
155
+ m = perfect_power(t*3**d)
156
+ assert m and m[1] == d or d == 1
157
+ m = perfect_power(t*3**d, big=False)
158
+ assert m and m[1] == 2 or d == 1 or d == 3, (d, m)
159
+
160
+ # negatives and non-integer rationals
161
+ assert perfect_power(-4) is False
162
+ assert perfect_power(-8) == (-2, 3)
163
+ assert perfect_power(Rational(1, 2)**3) == (S.Half, 3)
164
+ assert perfect_power(Rational(-3, 2)**3) == (-3*S.Half, 3)
165
+
166
+
167
+ @slow
168
+ def test_factorint():
169
+ assert primefactors(123456) == [2, 3, 643]
170
+ assert factorint(0) == {0: 1}
171
+ assert factorint(1) == {}
172
+ assert factorint(-1) == {-1: 1}
173
+ assert factorint(-2) == {-1: 1, 2: 1}
174
+ assert factorint(-16) == {-1: 1, 2: 4}
175
+ assert factorint(2) == {2: 1}
176
+ assert factorint(126) == {2: 1, 3: 2, 7: 1}
177
+ assert factorint(123456) == {2: 6, 3: 1, 643: 1}
178
+ assert factorint(5951757) == {3: 1, 7: 1, 29: 2, 337: 1}
179
+ assert factorint(64015937) == {7993: 1, 8009: 1}
180
+ assert factorint(2**(2**6) + 1) == {274177: 1, 67280421310721: 1}
181
+ #issue 19683
182
+ assert factorint(10**38 - 1) == {3: 2, 11: 1, 909090909090909091: 1, 1111111111111111111: 1}
183
+ #issue 17676
184
+ assert factorint(28300421052393658575) == {3: 1, 5: 2, 11: 2, 43: 1, 2063: 2, 4127: 1, 4129: 1}
185
+ assert factorint(2063**2 * 4127**1 * 4129**1) == {2063: 2, 4127: 1, 4129: 1}
186
+ assert factorint(2347**2 * 7039**1 * 7043**1) == {2347: 2, 7039: 1, 7043: 1}
187
+
188
+ assert factorint(0, multiple=True) == [0]
189
+ assert factorint(1, multiple=True) == []
190
+ assert factorint(-1, multiple=True) == [-1]
191
+ assert factorint(-2, multiple=True) == [-1, 2]
192
+ assert factorint(-16, multiple=True) == [-1, 2, 2, 2, 2]
193
+ assert factorint(2, multiple=True) == [2]
194
+ assert factorint(24, multiple=True) == [2, 2, 2, 3]
195
+ assert factorint(126, multiple=True) == [2, 3, 3, 7]
196
+ assert factorint(123456, multiple=True) == [2, 2, 2, 2, 2, 2, 3, 643]
197
+ assert factorint(5951757, multiple=True) == [3, 7, 29, 29, 337]
198
+ assert factorint(64015937, multiple=True) == [7993, 8009]
199
+ assert factorint(2**(2**6) + 1, multiple=True) == [274177, 67280421310721]
200
+
201
+ assert factorint(fac(1, evaluate=False)) == {}
202
+ assert factorint(fac(7, evaluate=False)) == {2: 4, 3: 2, 5: 1, 7: 1}
203
+ assert factorint(fac(15, evaluate=False)) == \
204
+ {2: 11, 3: 6, 5: 3, 7: 2, 11: 1, 13: 1}
205
+ assert factorint(fac(20, evaluate=False)) == \
206
+ {2: 18, 3: 8, 5: 4, 7: 2, 11: 1, 13: 1, 17: 1, 19: 1}
207
+ assert factorint(fac(23, evaluate=False)) == \
208
+ {2: 19, 3: 9, 5: 4, 7: 3, 11: 2, 13: 1, 17: 1, 19: 1, 23: 1}
209
+
210
+ assert multiproduct(factorint(fac(200))) == fac(200)
211
+ assert multiproduct(factorint(fac(200, evaluate=False))) == fac(200)
212
+ for b, e in factorint(fac(150)).items():
213
+ assert e == fac_multiplicity(150, b)
214
+ for b, e in factorint(fac(150, evaluate=False)).items():
215
+ assert e == fac_multiplicity(150, b)
216
+ assert factorint(103005006059**7) == {103005006059: 7}
217
+ assert factorint(31337**191) == {31337: 191}
218
+ assert factorint(2**1000 * 3**500 * 257**127 * 383**60) == \
219
+ {2: 1000, 3: 500, 257: 127, 383: 60}
220
+ assert len(factorint(fac(10000))) == 1229
221
+ assert len(factorint(fac(10000, evaluate=False))) == 1229
222
+ assert factorint(12932983746293756928584532764589230) == \
223
+ {2: 1, 5: 1, 73: 1, 727719592270351: 1, 63564265087747: 1, 383: 1}
224
+ assert factorint(727719592270351) == {727719592270351: 1}
225
+ assert factorint(2**64 + 1, use_trial=False) == factorint(2**64 + 1)
226
+ for n in range(60000):
227
+ assert multiproduct(factorint(n)) == n
228
+ assert pollard_rho(2**64 + 1, seed=1) == 274177
229
+ assert pollard_rho(19, seed=1) is None
230
+ assert factorint(3, limit=2) == {3: 1}
231
+ assert factorint(12345) == {3: 1, 5: 1, 823: 1}
232
+ assert factorint(
233
+ 12345, limit=3) == {4115: 1, 3: 1} # the 5 is greater than the limit
234
+ assert factorint(1, limit=1) == {}
235
+ assert factorint(0, 3) == {0: 1}
236
+ assert factorint(12, limit=1) == {12: 1}
237
+ assert factorint(30, limit=2) == {2: 1, 15: 1}
238
+ assert factorint(16, limit=2) == {2: 4}
239
+ assert factorint(124, limit=3) == {2: 2, 31: 1}
240
+ assert factorint(4*31**2, limit=3) == {2: 2, 31: 2}
241
+ p1 = nextprime(2**32)
242
+ p2 = nextprime(2**16)
243
+ p3 = nextprime(p2)
244
+ assert factorint(p1*p2*p3) == {p1: 1, p2: 1, p3: 1}
245
+ assert factorint(13*17*19, limit=15) == {13: 1, 17*19: 1}
246
+ assert factorint(1951*15013*15053, limit=2000) == {225990689: 1, 1951: 1}
247
+ assert factorint(primorial(17) + 1, use_pm1=0) == \
248
+ {int(19026377261): 1, 3467: 1, 277: 1, 105229: 1}
249
+ # when prime b is closer than approx sqrt(8*p) to prime p then they are
250
+ # "close" and have a trivial factorization
251
+ a = nextprime(2**2**8) # 78 digits
252
+ b = nextprime(a + 2**2**4)
253
+ assert 'Fermat' in capture(lambda: factorint(a*b, verbose=1))
254
+
255
+ raises(ValueError, lambda: pollard_rho(4))
256
+ raises(ValueError, lambda: pollard_pm1(3))
257
+ raises(ValueError, lambda: pollard_pm1(10, B=2))
258
+ # verbose coverage
259
+ n = nextprime(2**16)*nextprime(2**17)*nextprime(1901)
260
+ assert 'with primes' in capture(lambda: factorint(n, verbose=1))
261
+ capture(lambda: factorint(nextprime(2**16)*1012, verbose=1))
262
+
263
+ n = nextprime(2**17)
264
+ capture(lambda: factorint(n**3, verbose=1)) # perfect power termination
265
+ capture(lambda: factorint(2*n, verbose=1)) # factoring complete msg
266
+
267
+ # exceed 1st
268
+ n = nextprime(2**17)
269
+ n *= nextprime(n)
270
+ assert '1000' in capture(lambda: factorint(n, limit=1000, verbose=1))
271
+ n *= nextprime(n)
272
+ assert len(factorint(n)) == 3
273
+ assert len(factorint(n, limit=p1)) == 3
274
+ n *= nextprime(2*n)
275
+ # exceed 2nd
276
+ assert '2001' in capture(lambda: factorint(n, limit=2000, verbose=1))
277
+ assert capture(
278
+ lambda: factorint(n, limit=4000, verbose=1)).count('Pollard') == 2
279
+ # non-prime pm1 result
280
+ n = nextprime(8069)
281
+ n *= nextprime(2*n)*nextprime(2*n, 2)
282
+ capture(lambda: factorint(n, verbose=1)) # non-prime pm1 result
283
+ # factor fermat composite
284
+ p1 = nextprime(2**17)
285
+ p2 = nextprime(2*p1)
286
+ assert factorint((p1*p2**2)**3) == {p1: 3, p2: 6}
287
+ # Test for non integer input
288
+ raises(ValueError, lambda: factorint(4.5))
289
+ # test dict/Dict input
290
+ sans = '2**10*3**3'
291
+ n = {4: 2, 12: 3}
292
+ assert str(factorint(n)) == sans
293
+ assert str(factorint(Dict(n))) == sans
294
+
295
+
296
+ def test_divisors_and_divisor_count():
297
+ assert divisors(-1) == [1]
298
+ assert divisors(0) == []
299
+ assert divisors(1) == [1]
300
+ assert divisors(2) == [1, 2]
301
+ assert divisors(3) == [1, 3]
302
+ assert divisors(17) == [1, 17]
303
+ assert divisors(10) == [1, 2, 5, 10]
304
+ assert divisors(100) == [1, 2, 4, 5, 10, 20, 25, 50, 100]
305
+ assert divisors(101) == [1, 101]
306
+
307
+ assert divisor_count(0) == 0
308
+ assert divisor_count(-1) == 1
309
+ assert divisor_count(1) == 1
310
+ assert divisor_count(6) == 4
311
+ assert divisor_count(12) == 6
312
+
313
+ assert divisor_count(180, 3) == divisor_count(180//3)
314
+ assert divisor_count(2*3*5, 7) == 0
315
+
316
+
317
+ def test_proper_divisors_and_proper_divisor_count():
318
+ assert proper_divisors(-1) == []
319
+ assert proper_divisors(0) == []
320
+ assert proper_divisors(1) == []
321
+ assert proper_divisors(2) == [1]
322
+ assert proper_divisors(3) == [1]
323
+ assert proper_divisors(17) == [1]
324
+ assert proper_divisors(10) == [1, 2, 5]
325
+ assert proper_divisors(100) == [1, 2, 4, 5, 10, 20, 25, 50]
326
+ assert proper_divisors(1000000007) == [1]
327
+
328
+ assert proper_divisor_count(0) == 0
329
+ assert proper_divisor_count(-1) == 0
330
+ assert proper_divisor_count(1) == 0
331
+ assert proper_divisor_count(36) == 8
332
+ assert proper_divisor_count(2*3*5) == 7
333
+
334
+
335
+ def test_udivisors_and_udivisor_count():
336
+ assert udivisors(-1) == [1]
337
+ assert udivisors(0) == []
338
+ assert udivisors(1) == [1]
339
+ assert udivisors(2) == [1, 2]
340
+ assert udivisors(3) == [1, 3]
341
+ assert udivisors(17) == [1, 17]
342
+ assert udivisors(10) == [1, 2, 5, 10]
343
+ assert udivisors(100) == [1, 4, 25, 100]
344
+ assert udivisors(101) == [1, 101]
345
+ assert udivisors(1000) == [1, 8, 125, 1000]
346
+
347
+ assert udivisor_count(0) == 0
348
+ assert udivisor_count(-1) == 1
349
+ assert udivisor_count(1) == 1
350
+ assert udivisor_count(6) == 4
351
+ assert udivisor_count(12) == 4
352
+
353
+ assert udivisor_count(180) == 8
354
+ assert udivisor_count(2*3*5*7) == 16
355
+
356
+
357
+ def test_issue_6981():
358
+ S = set(divisors(4)).union(set(divisors(Integer(2))))
359
+ assert S == {1,2,4}
360
+
361
+
362
+ def test_totient():
363
+ assert [totient(k) for k in range(1, 12)] == \
364
+ [1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10]
365
+ assert totient(5005) == 2880
366
+ assert totient(5006) == 2502
367
+ assert totient(5009) == 5008
368
+ assert totient(2**100) == 2**99
369
+
370
+ raises(ValueError, lambda: totient(30.1))
371
+ raises(ValueError, lambda: totient(20.001))
372
+
373
+ m = Symbol("m", integer=True)
374
+ assert totient(m)
375
+ assert totient(m).subs(m, 3**10) == 3**10 - 3**9
376
+ assert summation(totient(m), (m, 1, 11)) == 42
377
+
378
+ n = Symbol("n", integer=True, positive=True)
379
+ assert totient(n).is_integer
380
+
381
+ x=Symbol("x", integer=False)
382
+ raises(ValueError, lambda: totient(x))
383
+
384
+ y=Symbol("y", positive=False)
385
+ raises(ValueError, lambda: totient(y))
386
+
387
+ z=Symbol("z", positive=True, integer=True)
388
+ raises(ValueError, lambda: totient(2**(-z)))
389
+
390
+
391
+ def test_reduced_totient():
392
+ assert [reduced_totient(k) for k in range(1, 16)] == \
393
+ [1, 1, 2, 2, 4, 2, 6, 2, 6, 4, 10, 2, 12, 6, 4]
394
+ assert reduced_totient(5005) == 60
395
+ assert reduced_totient(5006) == 2502
396
+ assert reduced_totient(5009) == 5008
397
+ assert reduced_totient(2**100) == 2**98
398
+
399
+ m = Symbol("m", integer=True)
400
+ assert reduced_totient(m)
401
+ assert reduced_totient(m).subs(m, 2**3*3**10) == 3**10 - 3**9
402
+ assert summation(reduced_totient(m), (m, 1, 16)) == 68
403
+
404
+ n = Symbol("n", integer=True, positive=True)
405
+ assert reduced_totient(n).is_integer
406
+
407
+
408
+ def test_divisor_sigma():
409
+ assert [divisor_sigma(k) for k in range(1, 12)] == \
410
+ [1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12]
411
+ assert [divisor_sigma(k, 2) for k in range(1, 12)] == \
412
+ [1, 5, 10, 21, 26, 50, 50, 85, 91, 130, 122]
413
+ assert divisor_sigma(23450) == 50592
414
+ assert divisor_sigma(23450, 0) == 24
415
+ assert divisor_sigma(23450, 1) == 50592
416
+ assert divisor_sigma(23450, 2) == 730747500
417
+ assert divisor_sigma(23450, 3) == 14666785333344
418
+
419
+ a = Symbol("a", prime=True)
420
+ b = Symbol("b", prime=True)
421
+ j = Symbol("j", integer=True, positive=True)
422
+ k = Symbol("k", integer=True, positive=True)
423
+ assert divisor_sigma(a**j*b**k) == (a**(j + 1) - 1)*(b**(k + 1) - 1)/((a - 1)*(b - 1))
424
+ assert divisor_sigma(a**j*b**k, 2) == (a**(2*j + 2) - 1)*(b**(2*k + 2) - 1)/((a**2 - 1)*(b**2 - 1))
425
+ assert divisor_sigma(a**j*b**k, 0) == (j + 1)*(k + 1)
426
+
427
+ m = Symbol("m", integer=True)
428
+ k = Symbol("k", integer=True)
429
+ assert divisor_sigma(m)
430
+ assert divisor_sigma(m, k)
431
+ assert divisor_sigma(m).subs(m, 3**10) == 88573
432
+ assert divisor_sigma(m, k).subs([(m, 3**10), (k, 3)]) == 213810021790597
433
+ assert summation(divisor_sigma(m), (m, 1, 11)) == 99
434
+
435
+
436
+ def test_udivisor_sigma():
437
+ assert [udivisor_sigma(k) for k in range(1, 12)] == \
438
+ [1, 3, 4, 5, 6, 12, 8, 9, 10, 18, 12]
439
+ assert [udivisor_sigma(k, 3) for k in range(1, 12)] == \
440
+ [1, 9, 28, 65, 126, 252, 344, 513, 730, 1134, 1332]
441
+ assert udivisor_sigma(23450) == 42432
442
+ assert udivisor_sigma(23450, 0) == 16
443
+ assert udivisor_sigma(23450, 1) == 42432
444
+ assert udivisor_sigma(23450, 2) == 702685000
445
+ assert udivisor_sigma(23450, 4) == 321426961814978248
446
+
447
+ m = Symbol("m", integer=True)
448
+ k = Symbol("k", integer=True)
449
+ assert udivisor_sigma(m)
450
+ assert udivisor_sigma(m, k)
451
+ assert udivisor_sigma(m).subs(m, 4**9) == 262145
452
+ assert udivisor_sigma(m, k).subs([(m, 4**9), (k, 2)]) == 68719476737
453
+ assert summation(udivisor_sigma(m), (m, 2, 15)) == 169
454
+
455
+
456
+ def test_issue_4356():
457
+ assert factorint(1030903) == {53: 2, 367: 1}
458
+
459
+
460
+ def test_divisors():
461
+ assert divisors(28) == [1, 2, 4, 7, 14, 28]
462
+ assert list(divisors(3*5*7, 1)) == [1, 3, 5, 15, 7, 21, 35, 105]
463
+ assert divisors(0) == []
464
+
465
+
466
+ def test_divisor_count():
467
+ assert divisor_count(0) == 0
468
+ assert divisor_count(6) == 4
469
+
470
+
471
+ def test_proper_divisors():
472
+ assert proper_divisors(-1) == []
473
+ assert proper_divisors(28) == [1, 2, 4, 7, 14]
474
+ assert list(proper_divisors(3*5*7, True)) == [1, 3, 5, 15, 7, 21, 35]
475
+
476
+
477
+ def test_proper_divisor_count():
478
+ assert proper_divisor_count(6) == 3
479
+ assert proper_divisor_count(108) == 11
480
+
481
+
482
+ def test_antidivisors():
483
+ assert antidivisors(-1) == []
484
+ assert antidivisors(-3) == [2]
485
+ assert antidivisors(14) == [3, 4, 9]
486
+ assert antidivisors(237) == [2, 5, 6, 11, 19, 25, 43, 95, 158]
487
+ assert antidivisors(12345) == [2, 6, 7, 10, 30, 1646, 3527, 4938, 8230]
488
+ assert antidivisors(393216) == [262144]
489
+ assert sorted(x for x in antidivisors(3*5*7, 1)) == \
490
+ [2, 6, 10, 11, 14, 19, 30, 42, 70]
491
+ assert antidivisors(1) == []
492
+
493
+
494
+ def test_antidivisor_count():
495
+ assert antidivisor_count(0) == 0
496
+ assert antidivisor_count(-1) == 0
497
+ assert antidivisor_count(-4) == 1
498
+ assert antidivisor_count(20) == 3
499
+ assert antidivisor_count(25) == 5
500
+ assert antidivisor_count(38) == 7
501
+ assert antidivisor_count(180) == 6
502
+ assert antidivisor_count(2*3*5) == 3
503
+
504
+
505
+ def test_smoothness_and_smoothness_p():
506
+ assert smoothness(1) == (1, 1)
507
+ assert smoothness(2**4*3**2) == (3, 16)
508
+
509
+ assert smoothness_p(10431, m=1) == \
510
+ (1, [(3, (2, 2, 4)), (19, (1, 5, 5)), (61, (1, 31, 31))])
511
+ assert smoothness_p(10431) == \
512
+ (-1, [(3, (2, 2, 2)), (19, (1, 3, 9)), (61, (1, 5, 5))])
513
+ assert smoothness_p(10431, power=1) == \
514
+ (-1, [(3, (2, 2, 2)), (61, (1, 5, 5)), (19, (1, 3, 9))])
515
+ assert smoothness_p(21477639576571, visual=1) == \
516
+ 'p**i=4410317**1 has p-1 B=1787, B-pow=1787\n' + \
517
+ 'p**i=4869863**1 has p-1 B=2434931, B-pow=2434931'
518
+
519
+
520
+ def test_visual_factorint():
521
+ assert factorint(1, visual=1) == 1
522
+ forty2 = factorint(42, visual=True)
523
+ assert type(forty2) == Mul
524
+ assert str(forty2) == '2**1*3**1*7**1'
525
+ assert factorint(1, visual=True) is S.One
526
+ no = {"evaluate": False}
527
+ assert factorint(42**2, visual=True) == Mul(Pow(2, 2, **no),
528
+ Pow(3, 2, **no),
529
+ Pow(7, 2, **no), **no)
530
+ assert -1 in factorint(-42, visual=True).args
531
+
532
+
533
+ def test_factorrat():
534
+ assert str(factorrat(S(12)/1, visual=True)) == '2**2*3**1'
535
+ assert str(factorrat(Rational(1, 1), visual=True)) == '1'
536
+ assert str(factorrat(S(25)/14, visual=True)) == '5**2/(2*7)'
537
+ assert str(factorrat(Rational(25, 14), visual=True)) == '5**2/(2*7)'
538
+ assert str(factorrat(S(-25)/14/9, visual=True)) == '-1*5**2/(2*3**2*7)'
539
+
540
+ assert factorrat(S(12)/1, multiple=True) == [2, 2, 3]
541
+ assert factorrat(Rational(1, 1), multiple=True) == []
542
+ assert factorrat(S(25)/14, multiple=True) == [Rational(1, 7), S.Half, 5, 5]
543
+ assert factorrat(Rational(25, 14), multiple=True) == [Rational(1, 7), S.Half, 5, 5]
544
+ assert factorrat(Rational(12, 1), multiple=True) == [2, 2, 3]
545
+ assert factorrat(S(-25)/14/9, multiple=True) == \
546
+ [-1, Rational(1, 7), Rational(1, 3), Rational(1, 3), S.Half, 5, 5]
547
+
548
+
549
+ def test_visual_io():
550
+ sm = smoothness_p
551
+ fi = factorint
552
+ # with smoothness_p
553
+ n = 124
554
+ d = fi(n)
555
+ m = fi(d, visual=True)
556
+ t = sm(n)
557
+ s = sm(t)
558
+ for th in [d, s, t, n, m]:
559
+ assert sm(th, visual=True) == s
560
+ assert sm(th, visual=1) == s
561
+ for th in [d, s, t, n, m]:
562
+ assert sm(th, visual=False) == t
563
+ assert [sm(th, visual=None) for th in [d, s, t, n, m]] == [s, d, s, t, t]
564
+ assert [sm(th, visual=2) for th in [d, s, t, n, m]] == [s, d, s, t, t]
565
+
566
+ # with factorint
567
+ for th in [d, m, n]:
568
+ assert fi(th, visual=True) == m
569
+ assert fi(th, visual=1) == m
570
+ for th in [d, m, n]:
571
+ assert fi(th, visual=False) == d
572
+ assert [fi(th, visual=None) for th in [d, m, n]] == [m, d, d]
573
+ assert [fi(th, visual=0) for th in [d, m, n]] == [m, d, d]
574
+
575
+ # test reevaluation
576
+ no = {"evaluate": False}
577
+ assert sm({4: 2}, visual=False) == sm(16)
578
+ assert sm(Mul(*[Pow(k, v, **no) for k, v in {4: 2, 2: 6}.items()], **no),
579
+ visual=False) == sm(2**10)
580
+
581
+ assert fi({4: 2}, visual=False) == fi(16)
582
+ assert fi(Mul(*[Pow(k, v, **no) for k, v in {4: 2, 2: 6}.items()], **no),
583
+ visual=False) == fi(2**10)
584
+
585
+
586
+ def test_core():
587
+ assert core(35**13, 10) == 42875
588
+ assert core(210**2) == 1
589
+ assert core(7776, 3) == 36
590
+ assert core(10**27, 22) == 10**5
591
+ assert core(537824) == 14
592
+ assert core(1, 6) == 1
593
+
594
+
595
+ def test_primenu():
596
+ assert primenu(2) == 1
597
+ assert primenu(2 * 3) == 2
598
+ assert primenu(2 * 3 * 5) == 3
599
+ assert primenu(3 * 25) == primenu(3) + primenu(25)
600
+ assert [primenu(p) for p in primerange(1, 10)] == [1, 1, 1, 1]
601
+ assert primenu(fac(50)) == 15
602
+ assert primenu(2 ** 9941 - 1) == 1
603
+ n = Symbol('n', integer=True)
604
+ assert primenu(n)
605
+ assert primenu(n).subs(n, 2 ** 31 - 1) == 1
606
+ assert summation(primenu(n), (n, 2, 30)) == 43
607
+
608
+
609
+ def test_primeomega():
610
+ assert primeomega(2) == 1
611
+ assert primeomega(2 * 2) == 2
612
+ assert primeomega(2 * 2 * 3) == 3
613
+ assert primeomega(3 * 25) == primeomega(3) + primeomega(25)
614
+ assert [primeomega(p) for p in primerange(1, 10)] == [1, 1, 1, 1]
615
+ assert primeomega(fac(50)) == 108
616
+ assert primeomega(2 ** 9941 - 1) == 1
617
+ n = Symbol('n', integer=True)
618
+ assert primeomega(n)
619
+ assert primeomega(n).subs(n, 2 ** 31 - 1) == 1
620
+ assert summation(primeomega(n), (n, 2, 30)) == 59
621
+
622
+
623
+ def test_mersenne_prime_exponent():
624
+ assert mersenne_prime_exponent(1) == 2
625
+ assert mersenne_prime_exponent(4) == 7
626
+ assert mersenne_prime_exponent(10) == 89
627
+ assert mersenne_prime_exponent(25) == 21701
628
+ raises(ValueError, lambda: mersenne_prime_exponent(52))
629
+ raises(ValueError, lambda: mersenne_prime_exponent(0))
630
+
631
+
632
+ def test_is_perfect():
633
+ assert is_perfect(6) is True
634
+ assert is_perfect(15) is False
635
+ assert is_perfect(28) is True
636
+ assert is_perfect(400) is False
637
+ assert is_perfect(496) is True
638
+ assert is_perfect(8128) is True
639
+ assert is_perfect(10000) is False
640
+
641
+
642
+ def test_is_mersenne_prime():
643
+ assert is_mersenne_prime(10) is False
644
+ assert is_mersenne_prime(127) is True
645
+ assert is_mersenne_prime(511) is False
646
+ assert is_mersenne_prime(131071) is True
647
+ assert is_mersenne_prime(2147483647) is True
648
+
649
+
650
+ def test_is_abundant():
651
+ assert is_abundant(10) is False
652
+ assert is_abundant(12) is True
653
+ assert is_abundant(18) is True
654
+ assert is_abundant(21) is False
655
+ assert is_abundant(945) is True
656
+
657
+
658
+ def test_is_deficient():
659
+ assert is_deficient(10) is True
660
+ assert is_deficient(22) is True
661
+ assert is_deficient(56) is False
662
+ assert is_deficient(20) is False
663
+ assert is_deficient(36) is False
664
+
665
+
666
+ def test_is_amicable():
667
+ assert is_amicable(173, 129) is False
668
+ assert is_amicable(220, 284) is True
669
+ assert is_amicable(8756, 8756) is False
670
+
671
+ def test_dra():
672
+ assert dra(19, 12) == 8
673
+ assert dra(2718, 10) == 9
674
+ assert dra(0, 22) == 0
675
+ assert dra(23456789, 10) == 8
676
+ raises(ValueError, lambda: dra(24, -2))
677
+ raises(ValueError, lambda: dra(24.2, 5))
678
+
679
+ def test_drm():
680
+ assert drm(19, 12) == 7
681
+ assert drm(2718, 10) == 2
682
+ assert drm(0, 15) == 0
683
+ assert drm(234161, 10) == 6
684
+ raises(ValueError, lambda: drm(24, -2))
685
+ raises(ValueError, lambda: drm(11.6, 9))
venv/lib/python3.10/site-packages/sympy/ntheory/tests/test_generate.py ADDED
@@ -0,0 +1,250 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.numbers import (I, Rational, nan, zoo)
2
+ from sympy.core.singleton import S
3
+ from sympy.core.symbol import Symbol
4
+ from sympy.ntheory.generate import (sieve, Sieve)
5
+ from sympy.series.limits import limit
6
+
7
+ from sympy.ntheory import isprime, totient, mobius, randprime, nextprime, prevprime, \
8
+ primerange, primepi, prime, primorial, composite, compositepi, reduced_totient
9
+ from sympy.ntheory.generate import cycle_length
10
+ from sympy.ntheory.primetest import mr
11
+ from sympy.testing.pytest import raises
12
+
13
+ def test_prime():
14
+ assert prime(1) == 2
15
+ assert prime(2) == 3
16
+ assert prime(5) == 11
17
+ assert prime(11) == 31
18
+ assert prime(57) == 269
19
+ assert prime(296) == 1949
20
+ assert prime(559) == 4051
21
+ assert prime(3000) == 27449
22
+ assert prime(4096) == 38873
23
+ assert prime(9096) == 94321
24
+ assert prime(25023) == 287341
25
+ assert prime(10000000) == 179424673 # issue #20951
26
+ assert prime(99999999) == 2038074739
27
+ raises(ValueError, lambda: prime(0))
28
+ sieve.extend(3000)
29
+ assert prime(401) == 2749
30
+ raises(ValueError, lambda: prime(-1))
31
+
32
+
33
+ def test_primepi():
34
+ assert primepi(-1) == 0
35
+ assert primepi(1) == 0
36
+ assert primepi(2) == 1
37
+ assert primepi(Rational(7, 2)) == 2
38
+ assert primepi(3.5) == 2
39
+ assert primepi(5) == 3
40
+ assert primepi(11) == 5
41
+ assert primepi(57) == 16
42
+ assert primepi(296) == 62
43
+ assert primepi(559) == 102
44
+ assert primepi(3000) == 430
45
+ assert primepi(4096) == 564
46
+ assert primepi(9096) == 1128
47
+ assert primepi(25023) == 2763
48
+ assert primepi(10**8) == 5761455
49
+ assert primepi(253425253) == 13856396
50
+ assert primepi(8769575643) == 401464322
51
+ sieve.extend(3000)
52
+ assert primepi(2000) == 303
53
+
54
+ n = Symbol('n')
55
+ assert primepi(n).subs(n, 2) == 1
56
+
57
+ r = Symbol('r', real=True)
58
+ assert primepi(r).subs(r, 2) == 1
59
+
60
+ assert primepi(S.Infinity) is S.Infinity
61
+ assert primepi(S.NegativeInfinity) == 0
62
+
63
+ assert limit(primepi(n), n, 100) == 25
64
+
65
+ raises(ValueError, lambda: primepi(I))
66
+ raises(ValueError, lambda: primepi(1 + I))
67
+ raises(ValueError, lambda: primepi(zoo))
68
+ raises(ValueError, lambda: primepi(nan))
69
+
70
+
71
+ def test_composite():
72
+ from sympy.ntheory.generate import sieve
73
+ sieve._reset()
74
+ assert composite(1) == 4
75
+ assert composite(2) == 6
76
+ assert composite(5) == 10
77
+ assert composite(11) == 20
78
+ assert composite(41) == 58
79
+ assert composite(57) == 80
80
+ assert composite(296) == 370
81
+ assert composite(559) == 684
82
+ assert composite(3000) == 3488
83
+ assert composite(4096) == 4736
84
+ assert composite(9096) == 10368
85
+ assert composite(25023) == 28088
86
+ sieve.extend(3000)
87
+ assert composite(1957) == 2300
88
+ assert composite(2568) == 2998
89
+ raises(ValueError, lambda: composite(0))
90
+
91
+
92
+ def test_compositepi():
93
+ assert compositepi(1) == 0
94
+ assert compositepi(2) == 0
95
+ assert compositepi(5) == 1
96
+ assert compositepi(11) == 5
97
+ assert compositepi(57) == 40
98
+ assert compositepi(296) == 233
99
+ assert compositepi(559) == 456
100
+ assert compositepi(3000) == 2569
101
+ assert compositepi(4096) == 3531
102
+ assert compositepi(9096) == 7967
103
+ assert compositepi(25023) == 22259
104
+ assert compositepi(10**8) == 94238544
105
+ assert compositepi(253425253) == 239568856
106
+ assert compositepi(8769575643) == 8368111320
107
+ sieve.extend(3000)
108
+ assert compositepi(2321) == 1976
109
+
110
+
111
+ def test_generate():
112
+ from sympy.ntheory.generate import sieve
113
+ sieve._reset()
114
+ assert nextprime(-4) == 2
115
+ assert nextprime(2) == 3
116
+ assert nextprime(5) == 7
117
+ assert nextprime(12) == 13
118
+ assert prevprime(3) == 2
119
+ assert prevprime(7) == 5
120
+ assert prevprime(13) == 11
121
+ assert prevprime(19) == 17
122
+ assert prevprime(20) == 19
123
+
124
+ sieve.extend_to_no(9)
125
+ assert sieve._list[-1] == 23
126
+
127
+ assert sieve._list[-1] < 31
128
+ assert 31 in sieve
129
+
130
+ assert nextprime(90) == 97
131
+ assert nextprime(10**40) == (10**40 + 121)
132
+ assert prevprime(97) == 89
133
+ assert prevprime(10**40) == (10**40 - 17)
134
+
135
+ assert list(sieve.primerange(10, 1)) == []
136
+ assert list(sieve.primerange(5, 9)) == [5, 7]
137
+ sieve._reset(prime=True)
138
+ assert list(sieve.primerange(2, 13)) == [2, 3, 5, 7, 11]
139
+ assert list(sieve.primerange(13)) == [2, 3, 5, 7, 11]
140
+ assert list(sieve.primerange(8)) == [2, 3, 5, 7]
141
+ assert list(sieve.primerange(-2)) == []
142
+ assert list(sieve.primerange(29)) == [2, 3, 5, 7, 11, 13, 17, 19, 23]
143
+ assert list(sieve.primerange(34)) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]
144
+
145
+ assert list(sieve.totientrange(5, 15)) == [4, 2, 6, 4, 6, 4, 10, 4, 12, 6]
146
+ sieve._reset(totient=True)
147
+ assert list(sieve.totientrange(3, 13)) == [2, 2, 4, 2, 6, 4, 6, 4, 10, 4]
148
+ assert list(sieve.totientrange(900, 1000)) == [totient(x) for x in range(900, 1000)]
149
+ assert list(sieve.totientrange(0, 1)) == []
150
+ assert list(sieve.totientrange(1, 2)) == [1]
151
+
152
+ assert list(sieve.mobiusrange(5, 15)) == [-1, 1, -1, 0, 0, 1, -1, 0, -1, 1]
153
+ sieve._reset(mobius=True)
154
+ assert list(sieve.mobiusrange(3, 13)) == [-1, 0, -1, 1, -1, 0, 0, 1, -1, 0]
155
+ assert list(sieve.mobiusrange(1050, 1100)) == [mobius(x) for x in range(1050, 1100)]
156
+ assert list(sieve.mobiusrange(0, 1)) == []
157
+ assert list(sieve.mobiusrange(1, 2)) == [1]
158
+
159
+ assert list(primerange(10, 1)) == []
160
+ assert list(primerange(2, 7)) == [2, 3, 5]
161
+ assert list(primerange(2, 10)) == [2, 3, 5, 7]
162
+ assert list(primerange(1050, 1100)) == [1051, 1061,
163
+ 1063, 1069, 1087, 1091, 1093, 1097]
164
+ s = Sieve()
165
+ for i in range(30, 2350, 376):
166
+ for j in range(2, 5096, 1139):
167
+ A = list(s.primerange(i, i + j))
168
+ B = list(primerange(i, i + j))
169
+ assert A == B
170
+ s = Sieve()
171
+ assert s[10] == 29
172
+
173
+ assert nextprime(2, 2) == 5
174
+
175
+ raises(ValueError, lambda: totient(0))
176
+
177
+ raises(ValueError, lambda: reduced_totient(0))
178
+
179
+ raises(ValueError, lambda: primorial(0))
180
+
181
+ assert mr(1, [2]) is False
182
+
183
+ func = lambda i: (i**2 + 1) % 51
184
+ assert next(cycle_length(func, 4)) == (6, 2)
185
+ assert list(cycle_length(func, 4, values=True)) == \
186
+ [17, 35, 2, 5, 26, 14, 44, 50, 2, 5, 26, 14]
187
+ assert next(cycle_length(func, 4, nmax=5)) == (5, None)
188
+ assert list(cycle_length(func, 4, nmax=5, values=True)) == \
189
+ [17, 35, 2, 5, 26]
190
+ sieve.extend(3000)
191
+ assert nextprime(2968) == 2969
192
+ assert prevprime(2930) == 2927
193
+ raises(ValueError, lambda: prevprime(1))
194
+ raises(ValueError, lambda: prevprime(-4))
195
+
196
+
197
+ def test_randprime():
198
+ assert randprime(10, 1) is None
199
+ assert randprime(3, -3) is None
200
+ assert randprime(2, 3) == 2
201
+ assert randprime(1, 3) == 2
202
+ assert randprime(3, 5) == 3
203
+ raises(ValueError, lambda: randprime(-12, -2))
204
+ raises(ValueError, lambda: randprime(-10, 0))
205
+ raises(ValueError, lambda: randprime(20, 22))
206
+ raises(ValueError, lambda: randprime(0, 2))
207
+ raises(ValueError, lambda: randprime(1, 2))
208
+ for a in [100, 300, 500, 250000]:
209
+ for b in [100, 300, 500, 250000]:
210
+ p = randprime(a, a + b)
211
+ assert a <= p < (a + b) and isprime(p)
212
+
213
+
214
+ def test_primorial():
215
+ assert primorial(1) == 2
216
+ assert primorial(1, nth=0) == 1
217
+ assert primorial(2) == 6
218
+ assert primorial(2, nth=0) == 2
219
+ assert primorial(4, nth=0) == 6
220
+
221
+
222
+ def test_search():
223
+ assert 2 in sieve
224
+ assert 2.1 not in sieve
225
+ assert 1 not in sieve
226
+ assert 2**1000 not in sieve
227
+ raises(ValueError, lambda: sieve.search(1))
228
+
229
+
230
+ def test_sieve_slice():
231
+ assert sieve[5] == 11
232
+ assert list(sieve[5:10]) == [sieve[x] for x in range(5, 10)]
233
+ assert list(sieve[5:10:2]) == [sieve[x] for x in range(5, 10, 2)]
234
+ assert list(sieve[1:5]) == [2, 3, 5, 7]
235
+ raises(IndexError, lambda: sieve[:5])
236
+ raises(IndexError, lambda: sieve[0])
237
+ raises(IndexError, lambda: sieve[0:5])
238
+
239
+ def test_sieve_iter():
240
+ values = []
241
+ for value in sieve:
242
+ if value > 7:
243
+ break
244
+ values.append(value)
245
+ assert values == list(sieve[1:5])
246
+
247
+
248
+ def test_sieve_repr():
249
+ assert "sieve" in repr(sieve)
250
+ assert "prime" in repr(sieve)
venv/lib/python3.10/site-packages/sympy/ntheory/tests/test_modular.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.ntheory.modular import crt, crt1, crt2, solve_congruence
2
+ from sympy.testing.pytest import raises
3
+
4
+
5
+ def test_crt():
6
+ def mcrt(m, v, r, symmetric=False):
7
+ assert crt(m, v, symmetric)[0] == r
8
+ mm, e, s = crt1(m)
9
+ assert crt2(m, v, mm, e, s, symmetric) == (r, mm)
10
+
11
+ mcrt([2, 3, 5], [0, 0, 0], 0)
12
+ mcrt([2, 3, 5], [1, 1, 1], 1)
13
+
14
+ mcrt([2, 3, 5], [-1, -1, -1], -1, True)
15
+ mcrt([2, 3, 5], [-1, -1, -1], 2*3*5 - 1, False)
16
+
17
+ assert crt([656, 350], [811, 133], symmetric=True) == (-56917, 114800)
18
+
19
+
20
+ def test_modular():
21
+ assert solve_congruence(*list(zip([3, 4, 2], [12, 35, 17]))) == (1719, 7140)
22
+ assert solve_congruence(*list(zip([3, 4, 2], [12, 6, 17]))) is None
23
+ assert solve_congruence(*list(zip([3, 4, 2], [13, 7, 17]))) == (172, 1547)
24
+ assert solve_congruence(*list(zip([-10, -3, -15], [13, 7, 17]))) == (172, 1547)
25
+ assert solve_congruence(*list(zip([-10, -3, 1, -15], [13, 7, 7, 17]))) is None
26
+ assert solve_congruence(
27
+ *list(zip([-10, -5, 2, -15], [13, 7, 7, 17]))) == (835, 1547)
28
+ assert solve_congruence(
29
+ *list(zip([-10, -5, 2, -15], [13, 7, 14, 17]))) == (2382, 3094)
30
+ assert solve_congruence(
31
+ *list(zip([-10, 2, 2, -15], [13, 7, 14, 17]))) == (2382, 3094)
32
+ assert solve_congruence(*list(zip((1, 1, 2), (3, 2, 4)))) is None
33
+ raises(
34
+ ValueError, lambda: solve_congruence(*list(zip([3, 4, 2], [12.1, 35, 17]))))
venv/lib/python3.10/site-packages/sympy/ntheory/tests/test_multinomial.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.ntheory.multinomial import (binomial_coefficients, binomial_coefficients_list, multinomial_coefficients)
2
+ from sympy.ntheory.multinomial import multinomial_coefficients_iterator
3
+
4
+
5
+ def test_binomial_coefficients_list():
6
+ assert binomial_coefficients_list(0) == [1]
7
+ assert binomial_coefficients_list(1) == [1, 1]
8
+ assert binomial_coefficients_list(2) == [1, 2, 1]
9
+ assert binomial_coefficients_list(3) == [1, 3, 3, 1]
10
+ assert binomial_coefficients_list(4) == [1, 4, 6, 4, 1]
11
+ assert binomial_coefficients_list(5) == [1, 5, 10, 10, 5, 1]
12
+ assert binomial_coefficients_list(6) == [1, 6, 15, 20, 15, 6, 1]
13
+
14
+
15
+ def test_binomial_coefficients():
16
+ for n in range(15):
17
+ c = binomial_coefficients(n)
18
+ l = [c[k] for k in sorted(c)]
19
+ assert l == binomial_coefficients_list(n)
20
+
21
+
22
+ def test_multinomial_coefficients():
23
+ assert multinomial_coefficients(1, 1) == {(1,): 1}
24
+ assert multinomial_coefficients(1, 2) == {(2,): 1}
25
+ assert multinomial_coefficients(1, 3) == {(3,): 1}
26
+ assert multinomial_coefficients(2, 0) == {(0, 0): 1}
27
+ assert multinomial_coefficients(2, 1) == {(0, 1): 1, (1, 0): 1}
28
+ assert multinomial_coefficients(2, 2) == {(2, 0): 1, (0, 2): 1, (1, 1): 2}
29
+ assert multinomial_coefficients(2, 3) == {(3, 0): 1, (1, 2): 3, (0, 3): 1,
30
+ (2, 1): 3}
31
+ assert multinomial_coefficients(3, 1) == {(1, 0, 0): 1, (0, 1, 0): 1,
32
+ (0, 0, 1): 1}
33
+ assert multinomial_coefficients(3, 2) == {(0, 1, 1): 2, (0, 0, 2): 1,
34
+ (1, 1, 0): 2, (0, 2, 0): 1, (1, 0, 1): 2, (2, 0, 0): 1}
35
+ mc = multinomial_coefficients(3, 3)
36
+ assert mc == {(2, 1, 0): 3, (0, 3, 0): 1,
37
+ (1, 0, 2): 3, (0, 2, 1): 3, (0, 1, 2): 3, (3, 0, 0): 1,
38
+ (2, 0, 1): 3, (1, 2, 0): 3, (1, 1, 1): 6, (0, 0, 3): 1}
39
+ assert dict(multinomial_coefficients_iterator(2, 0)) == {(0, 0): 1}
40
+ assert dict(
41
+ multinomial_coefficients_iterator(2, 1)) == {(0, 1): 1, (1, 0): 1}
42
+ assert dict(multinomial_coefficients_iterator(2, 2)) == \
43
+ {(2, 0): 1, (0, 2): 1, (1, 1): 2}
44
+ assert dict(multinomial_coefficients_iterator(3, 3)) == mc
45
+ it = multinomial_coefficients_iterator(7, 2)
46
+ assert [next(it) for i in range(4)] == \
47
+ [((2, 0, 0, 0, 0, 0, 0), 1), ((1, 1, 0, 0, 0, 0, 0), 2),
48
+ ((0, 2, 0, 0, 0, 0, 0), 1), ((1, 0, 1, 0, 0, 0, 0), 2)]
venv/lib/python3.10/site-packages/sympy/ntheory/tests/test_partitions.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.ntheory import npartitions
2
+
3
+
4
+ def test_partitions():
5
+ assert [npartitions(k) for k in range(13)] == \
6
+ [1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77]
7
+ assert npartitions(100) == 190569292
8
+ assert npartitions(200) == 3972999029388
9
+ assert npartitions(1000) == 24061467864032622473692149727991
10
+ assert npartitions(2000) == 4720819175619413888601432406799959512200344166
11
+ assert npartitions(10000) % 10**10 == 6916435144
12
+ assert npartitions(100000) % 10**10 == 9421098519