diff --git a/.gitattributes b/.gitattributes index 69a5e53c9f777ed34674f88c6a7ba8447f53d44b..66ae3ebd0a285b6c4f31ce7e0474818b3366c318 100644 --- a/.gitattributes +++ b/.gitattributes @@ -90,3 +90,4 @@ venv/lib/python3.10/site-packages/nvidia/cufft/lib/libcufftw.so.11 filter=lfs di venv/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libnvperf_host.so filter=lfs diff=lfs merge=lfs -text venv/lib/python3.10/site-packages/nvidia/nvjitlink/lib/libnvJitLink.so.12 filter=lfs diff=lfs merge=lfs -text venv/lib/python3.10/site-packages/nvidia/cudnn/lib/libcudnn_ops_train.so.8 filter=lfs diff=lfs merge=lfs -text +venv/lib/python3.10/site-packages/nvidia/cublas/lib/libcublas.so.12 filter=lfs diff=lfs merge=lfs -text diff --git a/ckpts/universal/global_step20/zero/18.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt b/ckpts/universal/global_step20/zero/18.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt new file mode 100644 index 0000000000000000000000000000000000000000..f94e1724f7ea2f539fc51c1cfb0e76a4cdc06d1b --- /dev/null +++ b/ckpts/universal/global_step20/zero/18.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0583b3e1b5715c7324a5a96846f984529327ce654fe6e4ff751c55d08a1f4120 +size 33555612 diff --git a/ckpts/universal/global_step20/zero/18.mlp.dense_h_to_4h_swiglu.weight/fp32.pt b/ckpts/universal/global_step20/zero/18.mlp.dense_h_to_4h_swiglu.weight/fp32.pt new file mode 100644 index 0000000000000000000000000000000000000000..ea92c538b5c4eb6ff4523db81c2579327632f9dd --- /dev/null +++ b/ckpts/universal/global_step20/zero/18.mlp.dense_h_to_4h_swiglu.weight/fp32.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5a574574e1cf4f612f36c5a950de7dbd5a2fbe95d3ee30fdceb0e508c94e83eb +size 33555533 diff --git a/ckpts/universal/global_step20/zero/8.mlp.dense_h_to_4h_swiglu.weight/fp32.pt b/ckpts/universal/global_step20/zero/8.mlp.dense_h_to_4h_swiglu.weight/fp32.pt new file mode 100644 index 0000000000000000000000000000000000000000..6c1277ea877b9b4264e6510d717a2c0367048168 --- /dev/null +++ b/ckpts/universal/global_step20/zero/8.mlp.dense_h_to_4h_swiglu.weight/fp32.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:391ae28bf7845a2699f795228e5c7b365b28a4d85132194dcf94a12eb4f44725 +size 33555533 diff --git a/ckpts/universal/global_step20/zero/9.attention.query_key_value.weight/exp_avg_sq.pt b/ckpts/universal/global_step20/zero/9.attention.query_key_value.weight/exp_avg_sq.pt new file mode 100644 index 0000000000000000000000000000000000000000..ba286a5d2f6aa44b2c721ff64984aa42f3221499 --- /dev/null +++ b/ckpts/universal/global_step20/zero/9.attention.query_key_value.weight/exp_avg_sq.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:299c8182eea4098a354774bfd621db676c0baeae084f0059983af42bbf72f1f7 +size 50332843 diff --git a/lm-evaluation-harness/wandb/run-20240514_114444-iactyeb3/files/wandb-metadata.json b/lm-evaluation-harness/wandb/run-20240514_114444-iactyeb3/files/wandb-metadata.json new file mode 100644 index 0000000000000000000000000000000000000000..7bd260748b976aba8ace56409d87ea4921d1ac1c --- /dev/null +++ b/lm-evaluation-harness/wandb/run-20240514_114444-iactyeb3/files/wandb-metadata.json @@ -0,0 +1,810 @@ +{ + "os": "Linux-5.15.0-92-generic-x86_64-with-glibc2.35", + "python": "3.10.12", + "heartbeatAt": "2024-05-14T11:44:44.666189", + "startedAt": "2024-05-14T11:44:44.209643", + "docker": null, + "cuda": null, + "args": [ + "--model", + "hf", + "--model_args", + "pretrained=/data/cronscript/ckpts//hf_ckpt//global_step100", + "--tasks", + "indiccopa-hi", + "--batch_size", + "auto", + "--wandb_args", + "project=bharatgpt,group=global_step100" + ], + "state": "running", + "program": "-m lm_eval.__main__", + "codePathLocal": null, + "git": { + "remote": "https://github.com/EleutherAI/lm-evaluation-harness", + "commit": null + }, + "email": null, + "root": "/data/cronscript/lm-evaluation-harness", + "host": "vizzhy-150-3", + "username": "root", + "executable": "/usr/bin/python3", + "cpu_count": 76, + "cpu_count_logical": 152, + "cpu_freq": { + "current": 3384.3174802631584, + "min": 800.0, + "max": 3400.0 + }, + "cpu_freq_per_core": [ + { + "current": 3251.15, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3251.225, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3236.114, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3285.304, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3285.185, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3223.021, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3223.232, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3291.956, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3229.554, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3148.525, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3285.184, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3221.545, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + }, + { + "current": 3400.0, + "min": 800.0, + "max": 3400.0 + } + ], + "disk": { + "/": { + "total": 866.4415092468262, + "used": 77.77706527709961 + } + }, + "memory": { + "total": 1007.5000267028809 + } +} diff --git a/venv/lib/python3.10/site-packages/nvidia/cublas/lib/libcublas.so.12 b/venv/lib/python3.10/site-packages/nvidia/cublas/lib/libcublas.so.12 new file mode 100644 index 0000000000000000000000000000000000000000..8dac305a88c17a2eb38a34edf5e89109392aeeba --- /dev/null +++ b/venv/lib/python3.10/site-packages/nvidia/cublas/lib/libcublas.so.12 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:37d1141111d6b935aa84156ad61fd3575350cad8d69d0916e9db7d37eef9b816 +size 107473968 diff --git a/venv/lib/python3.10/site-packages/transformers/models/clap/modeling_clap.py b/venv/lib/python3.10/site-packages/transformers/models/clap/modeling_clap.py new file mode 100644 index 0000000000000000000000000000000000000000..7b20b30137d2cb7cd06eb86ea2a8c72a8da1c599 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/clap/modeling_clap.py @@ -0,0 +1,2297 @@ +# coding=utf-8 +# Copyright 2023 The LAION-AI Team and The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch CLAP model.""" +import collections +import math +from dataclasses import dataclass +from typing import Any, List, Optional, Tuple, Union + +import torch +import torch.nn.functional as F +from torch import nn + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BaseModelOutputWithPastAndCrossAttentions, + BaseModelOutputWithPooling, + BaseModelOutputWithPoolingAndCrossAttentions, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, meshgrid, prune_linear_layer +from ...utils import ( + ModelOutput, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_clap import ClapAudioConfig, ClapConfig, ClapTextConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "laion/clap-htsat-fused" + + +from ..deprecated._archive_maps import CLAP_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +# Adapted from: https://github.com/LAION-AI/CLAP/blob/6ad05a971ba0622f6acee8c41993e0d02bbed639/src/open_clip/utils.py#L191 +def interpolate(hidden_states, ratio): + """ + Interpolate data in time domain. This is used to compensate the resolution reduction in downsampling of a CNN. + + Args: + hidden_states (`torch.FloatTensor` of shape (batch_size, time_length, classes_num)): + Input hidden states + ratio (`int`): + The ratio of the length of the output to the length of the input. + """ + (batch_size, time_length, classes_num) = hidden_states.shape + upsampled = hidden_states[:, :, None, :].repeat(1, 1, ratio, 1) + upsampled = upsampled.reshape(batch_size, time_length * ratio, classes_num) + return upsampled + + +# Adapted from https://github.com/LAION-AI/CLAP/blob/6ad05a971ba0622f6acee8c41993e0d02bbed639/src/open_clip/htsat.py#L249 +def window_partition(hidden_states, window_size): + """ + Returns the resized hidden states. The output shape should be `(batch_size * num_windows, window_size, window_size, + num_channels)` + + Args: + hidden_states (`torch.FloatTensor` of shape `(batch_size, height, width, num_channels)`): + Input hidden states + window_size (`int`): + Window size + """ + batch_size, height, width, num_channels = hidden_states.shape + + hidden_states = hidden_states.view( + batch_size, height // window_size, window_size, width // window_size, window_size, num_channels + ) + windows = hidden_states.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels) + return windows + + +# Adapted from https://github.com/LAION-AI/CLAP/blob/6ad05a971ba0622f6acee8c41993e0d02bbed639/src/open_clip/htsat.py#L263 +def window_reverse(windows, window_size, height, width): + """ + Merges windows to produce higher resolution features. + Args: + windows (`torch.FloatTensor` of shape `(num_windows * batch_size, window_size, window_size, num_channels)`): + Input windows + window_size (`int`): + Window size + height (`int`): + Height of the resized audio + width (`int`): + Width of the resized audio + """ + num_channels = windows.shape[-1] + windows = windows.view(-1, height // window_size, width // window_size, window_size, window_size, num_channels) + windows = windows.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, height, width, num_channels) + return windows + + +# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids +def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): + """ + Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols + are ignored. This is modified from fairseq's `utils.make_positions`. + + Args: + x: torch.Tensor x: + + Returns: torch.Tensor + """ + # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. + mask = input_ids.ne(padding_idx).int() + incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask + return incremental_indices.long() + padding_idx + + +# contrastive loss function, adapted from +# https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html#CLIP-loss-function +def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: + labels = torch.arange(len(logits), device=logits.device) + return nn.functional.cross_entropy(logits, labels) + + +@dataclass +# Copied from transformers.models.clip.modeling_clip.CLIPTextModelOutput with CLIP->Clap +class ClapTextModelOutput(ModelOutput): + """ + Base class for text model's outputs that also contains a pooling of the last hidden states. + + Args: + text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): + The text embeddings obtained by applying the projection layer to the pooler_output. + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + text_embeds: Optional[torch.FloatTensor] = None + last_hidden_state: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class ClapAudioModelOutput(ModelOutput): + """ + ClapAudio model output to mimic the output of the original implementation. + + Args: + audio_embeds (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): + The Audio embeddings obtained by applying the projection layer to the pooler_output. + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. + """ + + audio_embeds: Optional[torch.FloatTensor] = None + last_hidden_state: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +# Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->Clap, vision->audio, Vision->Audio, image->audio +class ClapOutput(ModelOutput): + """ + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): + Contrastive loss for audio-text similarity. + logits_per_audio:(`torch.FloatTensor` of shape `(audio_batch_size, text_batch_size)`): + The scaled dot product scores between `audio_embeds` and `text_embeds`. This represents the audio-text + similarity scores. + logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, audio_batch_size)`): + The scaled dot product scores between `text_embeds` and `audio_embeds`. This represents the text-audio + similarity scores. + text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): + The text embeddings obtained by applying the projection layer to the pooled output of [`ClapTextModel`]. + audio_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): + The audio embeddings obtained by applying the projection layer to the pooled output of [`ClapAudioModel`]. + text_model_output(`BaseModelOutputWithPooling`): + The output of the [`ClapTextModel`]. + audio_model_output(`BaseModelOutputWithPooling`): + The output of the [`ClapAudioModel`]. + """ + + loss: Optional[torch.FloatTensor] = None + logits_per_audio: torch.FloatTensor = None + logits_per_text: torch.FloatTensor = None + text_embeds: torch.FloatTensor = None + audio_embeds: torch.FloatTensor = None + text_model_output: BaseModelOutputWithPooling = None + audio_model_output: BaseModelOutputWithPooling = None + + def to_tuple(self) -> Tuple[Any]: + return tuple( + self[k] if k not in ["text_model_output", "audio_model_output"] else getattr(self, k).to_tuple() + for k in self.keys() + ) + + +# Adapted from transformers.models.swin.modeling_swin.SwinDropPath +class ClapDropPath(nn.Module): + """ + Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is a slightly + refactored version of the `SwinDropPath` implementation. + """ + + def __init__(self, drop_prob=None): + super().__init__() + self.drop_prob = drop_prob + + def forward(self, hidden_states): + if self.drop_prob == 0.0 or not self.training: + return hidden_states + + keep_prob = 1 - self.drop_prob + # work with diff dim tensors, not just 2D ConvNets + shape = (hidden_states.shape[0],) + (1,) * (hidden_states.ndim - 1) + + random_tensor = keep_prob + torch.rand(shape, dtype=hidden_states.dtype, device=hidden_states.device) + random_tensor.floor_() # binarize + output = hidden_states.div(keep_prob) * random_tensor + return output + + +# Adapted from https://github.com/LAION-AI/CLAP/blob/6ad05a971ba0622f6acee8c41993e0d02bbed639/src/open_clip/feature_fusion.py#L133 +class ClapAudioAFFBlock(nn.Module): + r""" + ATTENTIONAL FEATURE FUSION Block from CLAP, since in CLAP we are always in 2D mode, it is not needed to implement + the 1D version. + """ + + def __init__(self, config: ClapAudioConfig): + super().__init__() + channels = config.patch_embeds_hidden_size + downsize_ratio = config.aff_block_r + inter_channels = int(channels // downsize_ratio) + + self.local_att = nn.Sequential( + nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm2d(inter_channels), + nn.ReLU(inplace=True), + nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm2d(channels), + ) + self.global_att = nn.Sequential( + nn.AdaptiveAvgPool2d(1), + nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm2d(inter_channels), + nn.ReLU(inplace=True), + nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), + nn.BatchNorm2d(channels), + ) + + self.sigmoid = nn.Sigmoid() + + def forward(self, hidden_states, residual): + attention_input = hidden_states + residual + + fused_layer_output = self.local_att(attention_input) + self.global_att(attention_input) + fused_layer_output = self.sigmoid(fused_layer_output) + + output = 2 * hidden_states * fused_layer_output + 2 * residual * (1 - fused_layer_output) + return output + + +class ClapAudioPatchEmbed(nn.Module): + """ + This module converts the hidden states reshaped as an image to patch embeddings ready to be passed to the + Transformer block. + """ + + def __init__(self, config: ClapAudioConfig): + super().__init__() + img_size = (config.spec_size, config.spec_size) if isinstance(config.spec_size, int) else config.spec_size + patch_size = ( + (config.patch_size, config.patch_size) if isinstance(config.patch_size, int) else config.patch_size + ) + patch_stride = ( + (config.patch_stride, config.patch_stride) if isinstance(config.patch_stride, int) else config.patch_stride + ) + + self.img_size = img_size + self.patch_stride = patch_stride + + self.grid_size = (img_size[0] // patch_stride[0], img_size[1] // patch_stride[1]) + self.num_patches = self.grid_size[0] * self.grid_size[1] + + self.flatten = config.flatten_patch_embeds + self.enable_fusion = config.enable_fusion + + padding = ((patch_size[0] - patch_stride[0]) // 2, (patch_size[1] - patch_stride[1]) // 2) + + scale_factor = 4 if (self.enable_fusion) and (config.fusion_type == "channel_map") else 1 + + self.proj = nn.Conv2d( + config.patch_embed_input_channels * scale_factor, + config.patch_embeds_hidden_size, + kernel_size=patch_size, + stride=patch_stride, + padding=padding, + ) + + self.norm = nn.LayerNorm(config.patch_embeds_hidden_size) if config.enable_patch_layer_norm else nn.Identity() + if self.enable_fusion: + self.fusion_model = ClapAudioAFFBlock(config) + self.mel_conv2d = nn.Conv2d( + config.patch_embed_input_channels, + config.patch_embeds_hidden_size, + kernel_size=(patch_size[0], patch_size[1] * 3), + stride=(patch_stride[0], patch_stride[1] * 3), + padding=padding, + ) + + def forward(self, hidden_states, is_longer_idx=None): + if self.enable_fusion: + # retrieve the last mel as we have transposed the input + global_hidden_states = hidden_states[:, 0:1, :, :] + + # global processing + batch_size, num_channels, height, width = global_hidden_states.shape + + if height != self.img_size[0] or width != self.img_size[1]: + raise ValueError( + f"Input audio size ({height}*{width}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." + ) + + global_hidden_states = self.proj(global_hidden_states) + output_width = global_hidden_states.size(-1) + if len(is_longer_idx) > 0: + # local processing + local_hidden_states = hidden_states[is_longer_idx, 1:, :, :].contiguous() + batch_size, num_channels, height, width = local_hidden_states.shape + local_hidden_states = local_hidden_states.view(batch_size * num_channels, 1, height, width) + + local_hidden_states = self.mel_conv2d(local_hidden_states) + + _, features, height, width = local_hidden_states.shape + local_hidden_states = local_hidden_states.view(batch_size, num_channels, features, height, width) + local_hidden_states = local_hidden_states.permute((0, 2, 3, 1, 4)).contiguous().flatten(3) + + local_width = local_hidden_states.size(-1) + local_hidden_states = torch.nn.functional.pad( + local_hidden_states, (0, output_width - local_width), "constant", 0 + ) + + global_hidden_states[is_longer_idx] = self.fusion_model( + global_hidden_states[is_longer_idx], local_hidden_states + ) + hidden_states = global_hidden_states + else: + _, _, height, width = hidden_states.shape + if height != self.img_size[0] or width != self.img_size[1]: + raise ValueError( + f"Input audio size ({height}*{width}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." + ) + hidden_states = self.proj(hidden_states) + + if self.flatten: + hidden_states = hidden_states.flatten(2).transpose(1, 2) + hidden_states = self.norm(hidden_states) + return hidden_states + + +# Copied from transformers.models.swin.modeling_swin.SwinSelfAttention with Swin->ClapAudio +class ClapAudioSelfAttention(nn.Module): + def __init__(self, config, dim, num_heads, window_size): + super().__init__() + if dim % num_heads != 0: + raise ValueError( + f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})" + ) + + self.num_attention_heads = num_heads + self.attention_head_size = int(dim / num_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + self.window_size = ( + window_size if isinstance(window_size, collections.abc.Iterable) else (window_size, window_size) + ) + + self.relative_position_bias_table = nn.Parameter( + torch.zeros((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), num_heads) + ) + + # get pair-wise relative position index for each token inside the window + coords_h = torch.arange(self.window_size[0]) + coords_w = torch.arange(self.window_size[1]) + coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij")) + coords_flatten = torch.flatten(coords, 1) + relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] + relative_coords = relative_coords.permute(1, 2, 0).contiguous() + relative_coords[:, :, 0] += self.window_size[0] - 1 + relative_coords[:, :, 1] += self.window_size[1] - 1 + relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 + relative_position_index = relative_coords.sum(-1) + self.register_buffer("relative_position_index", relative_position_index) + + self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) + self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) + self.value = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + + def transpose_for_scores(self, x): + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + batch_size, dim, num_channels = hidden_states.shape + mixed_query_layer = self.query(hidden_states) + + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + query_layer = self.transpose_for_scores(mixed_query_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + + relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)] + relative_position_bias = relative_position_bias.view( + self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1 + ) + + relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() + attention_scores = attention_scores + relative_position_bias.unsqueeze(0) + + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in ClapAudioModel forward() function) + mask_shape = attention_mask.shape[0] + attention_scores = attention_scores.view( + batch_size // mask_shape, mask_shape, self.num_attention_heads, dim, dim + ) + attention_scores = attention_scores + attention_mask.unsqueeze(1).unsqueeze(0) + attention_scores = attention_scores.view(-1, self.num_attention_heads, dim, dim) + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + return outputs + + +# Copied from transformers.models.swin.modeling_swin.SwinSelfOutput with Swin->ClapAudio +class ClapAudioSelfOutput(nn.Module): + def __init__(self, config, dim): + super().__init__() + self.dense = nn.Linear(dim, dim) + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + + return hidden_states + + +# Copied from transformers.models.swin.modeling_swin.SwinAttention with Swin->ClapAudio +class ClapAudioAttention(nn.Module): + def __init__(self, config, dim, num_heads, window_size): + super().__init__() + self.self = ClapAudioSelfAttention(config, dim, num_heads, window_size) + self.output = ClapAudioSelfOutput(config, dim) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len(heads) + self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + self_outputs = self.self(hidden_states, attention_mask, head_mask, output_attentions) + attention_output = self.output(self_outputs[0], hidden_states) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.swin.modeling_swin.SwinIntermediate with Swin->ClapAudio +class ClapAudioIntermediate(nn.Module): + def __init__(self, config, dim): + super().__init__() + self.dense = nn.Linear(dim, int(config.mlp_ratio * dim)) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +# Copied from transformers.models.swin.modeling_swin.SwinOutput with Swin->ClapAudio +class ClapAudioOutput(nn.Module): + def __init__(self, config, dim): + super().__init__() + self.dense = nn.Linear(int(config.mlp_ratio * dim), dim) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + return hidden_states + + +# Copied from transformers.models.swin.modeling_swin.SwinLayer with SwinDropPath->ClapDropPath, Swin->ClapAudio +class ClapAudioLayer(nn.Module): + def __init__(self, config, dim, input_resolution, num_heads, shift_size=0): + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.shift_size = shift_size + self.window_size = config.window_size + self.input_resolution = input_resolution + self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps) + self.attention = ClapAudioAttention(config, dim, num_heads, window_size=self.window_size) + self.drop_path = ClapDropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity() + self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps) + self.intermediate = ClapAudioIntermediate(config, dim) + self.output = ClapAudioOutput(config, dim) + + def set_shift_and_window_size(self, input_resolution): + if min(input_resolution) <= self.window_size: + # if window size is larger than input resolution, we don't partition windows + self.shift_size = 0 + self.window_size = min(input_resolution) + + def get_attn_mask(self, height, width, dtype): + if self.shift_size > 0: + # calculate attention mask for SW-MSA + img_mask = torch.zeros((1, height, width, 1), dtype=dtype) + height_slices = ( + slice(0, -self.window_size), + slice(-self.window_size, -self.shift_size), + slice(-self.shift_size, None), + ) + width_slices = ( + slice(0, -self.window_size), + slice(-self.window_size, -self.shift_size), + slice(-self.shift_size, None), + ) + count = 0 + for height_slice in height_slices: + for width_slice in width_slices: + img_mask[:, height_slice, width_slice, :] = count + count += 1 + + mask_windows = window_partition(img_mask, self.window_size) + mask_windows = mask_windows.view(-1, self.window_size * self.window_size) + attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) + attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) + else: + attn_mask = None + return attn_mask + + def maybe_pad(self, hidden_states, height, width): + pad_right = (self.window_size - width % self.window_size) % self.window_size + pad_bottom = (self.window_size - height % self.window_size) % self.window_size + pad_values = (0, 0, 0, pad_right, 0, pad_bottom) + hidden_states = nn.functional.pad(hidden_states, pad_values) + return hidden_states, pad_values + + def forward( + self, + hidden_states: torch.Tensor, + input_dimensions: Tuple[int, int], + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = False, + always_partition: Optional[bool] = False, + ) -> Tuple[torch.Tensor, torch.Tensor]: + if not always_partition: + self.set_shift_and_window_size(input_dimensions) + else: + pass + height, width = input_dimensions + batch_size, _, channels = hidden_states.size() + shortcut = hidden_states + + hidden_states = self.layernorm_before(hidden_states) + + hidden_states = hidden_states.view(batch_size, height, width, channels) + + # pad hidden_states to multiples of window size + hidden_states, pad_values = self.maybe_pad(hidden_states, height, width) + + _, height_pad, width_pad, _ = hidden_states.shape + # cyclic shift + if self.shift_size > 0: + shifted_hidden_states = torch.roll(hidden_states, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) + else: + shifted_hidden_states = hidden_states + + # partition windows + hidden_states_windows = window_partition(shifted_hidden_states, self.window_size) + hidden_states_windows = hidden_states_windows.view(-1, self.window_size * self.window_size, channels) + attn_mask = self.get_attn_mask(height_pad, width_pad, dtype=hidden_states.dtype) + if attn_mask is not None: + attn_mask = attn_mask.to(hidden_states_windows.device) + + attention_outputs = self.attention( + hidden_states_windows, attn_mask, head_mask, output_attentions=output_attentions + ) + + attention_output = attention_outputs[0] + + attention_windows = attention_output.view(-1, self.window_size, self.window_size, channels) + shifted_windows = window_reverse(attention_windows, self.window_size, height_pad, width_pad) + + # reverse cyclic shift + if self.shift_size > 0: + attention_windows = torch.roll(shifted_windows, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) + else: + attention_windows = shifted_windows + + was_padded = pad_values[3] > 0 or pad_values[5] > 0 + if was_padded: + attention_windows = attention_windows[:, :height, :width, :].contiguous() + + attention_windows = attention_windows.view(batch_size, height * width, channels) + + hidden_states = shortcut + self.drop_path(attention_windows) + + layer_output = self.layernorm_after(hidden_states) + layer_output = self.intermediate(layer_output) + layer_output = hidden_states + self.output(layer_output) + + layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,) + return layer_outputs + + +# Copied from transformers.models.swin.modeling_swin.SwinStage with Swin->ClapAudio +class ClapAudioStage(nn.Module): + def __init__(self, config, dim, input_resolution, depth, num_heads, drop_path, downsample): + super().__init__() + self.config = config + self.dim = dim + self.blocks = nn.ModuleList( + [ + ClapAudioLayer( + config=config, + dim=dim, + input_resolution=input_resolution, + num_heads=num_heads, + shift_size=0 if (i % 2 == 0) else config.window_size // 2, + ) + for i in range(depth) + ] + ) + + # patch merging layer + if downsample is not None: + self.downsample = downsample(input_resolution, dim=dim, norm_layer=nn.LayerNorm) + else: + self.downsample = None + + self.pointing = False + + def forward( + self, + hidden_states: torch.Tensor, + input_dimensions: Tuple[int, int], + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = False, + always_partition: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + height, width = input_dimensions + for i, layer_module in enumerate(self.blocks): + layer_head_mask = head_mask[i] if head_mask is not None else None + + layer_outputs = layer_module( + hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition + ) + + hidden_states = layer_outputs[0] + + hidden_states_before_downsampling = hidden_states + if self.downsample is not None: + height_downsampled, width_downsampled = (height + 1) // 2, (width + 1) // 2 + output_dimensions = (height, width, height_downsampled, width_downsampled) + hidden_states = self.downsample(hidden_states_before_downsampling, input_dimensions) + else: + output_dimensions = (height, width, height, width) + + stage_outputs = (hidden_states, hidden_states_before_downsampling, output_dimensions) + + if output_attentions: + stage_outputs += layer_outputs[1:] + return stage_outputs + + +# Copied from transformers.models.swin.modeling_swin.SwinPatchMerging with Swin->ClapAudio +class ClapAudioPatchMerging(nn.Module): + """ + Patch Merging Layer. + + Args: + input_resolution (`Tuple[int]`): + Resolution of input feature. + dim (`int`): + Number of input channels. + norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`): + Normalization layer class. + """ + + def __init__(self, input_resolution: Tuple[int], dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None: + super().__init__() + self.input_resolution = input_resolution + self.dim = dim + self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) + self.norm = norm_layer(4 * dim) + + def maybe_pad(self, input_feature, height, width): + should_pad = (height % 2 == 1) or (width % 2 == 1) + if should_pad: + pad_values = (0, 0, 0, width % 2, 0, height % 2) + input_feature = nn.functional.pad(input_feature, pad_values) + + return input_feature + + def forward(self, input_feature: torch.Tensor, input_dimensions: Tuple[int, int]) -> torch.Tensor: + height, width = input_dimensions + # `dim` is height * width + batch_size, dim, num_channels = input_feature.shape + + input_feature = input_feature.view(batch_size, height, width, num_channels) + # pad input to be disible by width and height, if needed + input_feature = self.maybe_pad(input_feature, height, width) + # [batch_size, height/2, width/2, num_channels] + input_feature_0 = input_feature[:, 0::2, 0::2, :] + # [batch_size, height/2, width/2, num_channels] + input_feature_1 = input_feature[:, 1::2, 0::2, :] + # [batch_size, height/2, width/2, num_channels] + input_feature_2 = input_feature[:, 0::2, 1::2, :] + # [batch_size, height/2, width/2, num_channels] + input_feature_3 = input_feature[:, 1::2, 1::2, :] + # batch_size height/2 width/2 4*num_channels + input_feature = torch.cat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1) + input_feature = input_feature.view(batch_size, -1, 4 * num_channels) # batch_size height/2*width/2 4*C + + input_feature = self.norm(input_feature) + input_feature = self.reduction(input_feature) + + return input_feature + + +class ClapAudioEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.num_layers = len(config.depths) + + self.config = config + self.patch_embed = ClapAudioPatchEmbed(config) + self.enable_fusion = config.enable_fusion + self.patch_stride = self.patch_embed.patch_stride + self.spec_size = config.spec_size + self.freq_ratio = config.spec_size // config.num_mel_bins + + self.num_features = int(config.patch_embeds_hidden_size * 2 ** (self.num_layers - 1)) + + drop_path_rate = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] + + grid_size = self.patch_embed.grid_size + self.input_resolutions = [(grid_size[0] // (2**i), grid_size[1] // (2**i)) for i in range(self.num_layers)] + + self.layers = nn.ModuleList( + [ + ClapAudioStage( + config=config, + dim=int(config.patch_embeds_hidden_size * 2**i_layer), + input_resolution=self.input_resolutions[i_layer], + depth=config.depths[i_layer], + num_heads=config.num_attention_heads[i_layer], + drop_path=drop_path_rate[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])], + downsample=ClapAudioPatchMerging if (i_layer < self.num_layers - 1) else None, + ) + for i_layer in range(self.num_layers) + ] + ) + + self.gradient_checkpointing = False + + self.batch_norm = nn.BatchNorm2d(config.num_mel_bins) + self.norm = nn.LayerNorm(self.num_features) + self.depths = config.depths + self.avgpool = nn.AdaptiveAvgPool1d(1) + + def reshape_mel2img(self, normalized_input_features): + """ + The input is 4 normalized log mel spectrograms. It is reshape to the common shape of images. Each channel + should represent 1 of the 4 crops of the spectrogram. For more details, refer to the [`ClapFeatureExtractor`]. + """ + _, _, time_length, freq_length = normalized_input_features.shape + + spec_width = int(self.spec_size * self.freq_ratio) + spec_heigth = self.spec_size // self.freq_ratio + + if time_length > spec_width or freq_length > spec_heigth: + raise ValueError("the wav size should be less than or equal to the swin input size") + + # to avoid bicubic zero error + if time_length < spec_width: + normalized_input_features = nn.functional.interpolate( + normalized_input_features, (spec_width, freq_length), mode="bicubic", align_corners=True + ) + if freq_length < spec_heigth: + normalized_input_features = nn.functional.interpolate( + normalized_input_features, (time_length, spec_heigth), mode="bicubic", align_corners=True + ) + + batch, channels, time, freq = normalized_input_features.shape + + # batch_size, channels, spec_width, spec_heigth --> batch_size, channels, spec_heigth * freq_ratio, spec_width // freq_ratio + normalized_input_features = normalized_input_features.reshape( + batch, channels * self.freq_ratio, time // self.freq_ratio, freq + ) + normalized_input_features = normalized_input_features.permute(0, 1, 3, 2).contiguous() + normalized_input_features = normalized_input_features.reshape( + batch, channels, freq * self.freq_ratio, time // self.freq_ratio + ) + + return normalized_input_features + + def forward( + self, + input_features, + is_longer: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = False, + output_hidden_states: Optional[bool] = False, + output_hidden_states_before_downsampling: Optional[bool] = False, + always_partition: Optional[bool] = False, + return_dict: Optional[bool] = True, + ) -> Union[Tuple, ClapAudioModelOutput]: + input_features = input_features.transpose(1, 3) + normalized_input_features = self.batch_norm(input_features) + normalized_input_features = normalized_input_features.transpose(1, 3) + + is_longer_list_idx = None + if self.enable_fusion: + is_longer_list = is_longer.to(input_features.device) + is_longer_list_idx = torch.where(is_longer_list == 1)[0] + + hidden_states = self.reshape_mel2img(normalized_input_features) + + frames_num = hidden_states.shape[2] + + hidden_states = self.patch_embed(hidden_states, is_longer_list_idx) + + all_hidden_states = () if output_hidden_states else None + all_reshaped_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + + input_dimensions = self.input_resolutions[0] + + if output_hidden_states: + batch_size, _, hidden_size = hidden_states.shape + # rearrange batch_size (height width) channels -> batch_size channel height width + reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size) + reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) + all_hidden_states += (hidden_states,) + all_reshaped_hidden_states += (reshaped_hidden_state,) + + for i, layer_module in enumerate(self.layers): + layer_head_mask = head_mask[i] if head_mask is not None else None + + input_dimensions = self.input_resolutions[i] + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, hidden_states, input_dimensions, layer_head_mask, output_attentions + ) + else: + layer_outputs = layer_module( + hidden_states, input_dimensions, layer_head_mask, output_attentions, always_partition + ) + + hidden_states = layer_outputs[0] + + hidden_states_before_downsampling = layer_outputs[1] + output_dimensions = layer_outputs[2] + + input_dimensions = (output_dimensions[-2], output_dimensions[-1]) + + if output_hidden_states and output_hidden_states_before_downsampling: + batch_size, _, hidden_size = hidden_states_before_downsampling.shape + # rearrange batch_size (height width) channels -> batch_size channel height width + # here we use the original (not downsampled) height and width + reshaped_hidden_state = hidden_states_before_downsampling.view( + batch_size, *(output_dimensions[0], output_dimensions[1]), hidden_size + ) + reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) + all_hidden_states += (hidden_states_before_downsampling,) + all_reshaped_hidden_states += (reshaped_hidden_state,) + elif output_hidden_states and not output_hidden_states_before_downsampling: + batch_size, _, hidden_size = hidden_states.shape + # rearrange batch_size (height width) channels -> batch_size channel height width + reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size) + reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) + all_hidden_states += (hidden_states,) + all_reshaped_hidden_states += (reshaped_hidden_state,) + + if output_attentions: + all_self_attentions += layer_outputs[3:] + + last_hidden_state = self.norm(hidden_states) + + batch_size, _, n_channels = last_hidden_state.shape + + freq_shape = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[0] + temporal_shape = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[1] + + last_hidden_state = ( + last_hidden_state.permute(0, 2, 1).contiguous().reshape(batch_size, n_channels, freq_shape, temporal_shape) + ) + + batch_size, n_channels, n_frequencies, n_temp = last_hidden_state.shape + # group 2D CNN + c_freq_bin = n_frequencies // self.freq_ratio + last_hidden_state = last_hidden_state.reshape( + batch_size, n_channels, n_frequencies // c_freq_bin, c_freq_bin, n_temp + ) + last_hidden_state = ( + last_hidden_state.permute(0, 1, 3, 2, 4).contiguous().reshape(batch_size, n_channels, c_freq_bin, -1) + ) + latent_output = self.avgpool(torch.flatten(last_hidden_state, 2)) + latent_output = torch.flatten(latent_output, 1) + + if not return_dict: + return tuple( + v + for v in [ + last_hidden_state, + latent_output, + all_reshaped_hidden_states, + all_self_attentions, + ] + if v is not None + ) + + return BaseModelOutputWithPooling( + last_hidden_state=last_hidden_state, + pooler_output=latent_output, + hidden_states=all_reshaped_hidden_states, + attentions=all_self_attentions, + ) + + +CLAP_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`ClapConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +CLAP_TEXT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + +CLAP_AUDIO_INPUTS_DOCSTRING = r""" + Args: + input_features (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Input audio features. This should be returnes by the [`ClapFeatureExtractor`] class that you can also + retrieve from [`AutoFeatureExtractor`]. See [`ClapFeatureExtractor.__call__`] for details. + is_longer (`torch.FloatTensor`, of shape `(batch_size, 1)`, *optional*): + Whether the audio clip is longer than `max_length`. If `True`, a feature fusion will be enabled to enhance + the features. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + +CLAP_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + input_features (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Input audio features. This should be returnes by the [`ClapFeatureExtractor`] class that you can also + retrieve from [`AutoFeatureExtractor`]. See [`ClapFeatureExtractor.__call__`] for details. + return_loss (`bool`, *optional*): + Whether or not to return the contrastive loss. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +class ClapProjectionLayer(nn.Module): + def __init__(self, config: Union[ClapAudioConfig, ClapTextConfig]): + super().__init__() + self.config = config + hidden_size = config.hidden_size + projection_dim = config.projection_dim + + self.linear1 = nn.Linear(hidden_size, projection_dim) + self.activation = ACT2FN[config.projection_hidden_act] + self.linear2 = nn.Linear(projection_dim, projection_dim) + + def forward(self, hidden_states): + hidden_states = self.linear1(hidden_states) + hidden_states = self.activation(hidden_states) + hidden_states = self.linear2(hidden_states) + return hidden_states + + +# Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->ClapText, persistent=False->persistent=True +class ClapTextEmbeddings(nn.Module): + """ + Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. + """ + + # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__ + def __init__(self, config): + super().__init__() + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) + self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) + + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + # position_ids (1, len position emb) is contiguous in memory and exported when serialized + self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") + self.register_buffer( + "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=True + ) + self.register_buffer( + "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=True + ) + + # End copy + self.padding_idx = config.pad_token_id + self.position_embeddings = nn.Embedding( + config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx + ) + + def forward( + self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 + ): + if position_ids is None: + if input_ids is not None: + # Create the position ids from the input token ids. Any padded tokens remain padded. + position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) + else: + position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) + + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + seq_length = input_shape[1] + + # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs + # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves + # issue #5664 + if token_type_ids is None: + if hasattr(self, "token_type_ids"): + buffered_token_type_ids = self.token_type_ids[:, :seq_length] + buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) + token_type_ids = buffered_token_type_ids_expanded + else: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + token_type_embeddings = self.token_type_embeddings(token_type_ids) + + embeddings = inputs_embeds + token_type_embeddings + if self.position_embedding_type == "absolute": + position_embeddings = self.position_embeddings(position_ids) + embeddings += position_embeddings + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + + def create_position_ids_from_inputs_embeds(self, inputs_embeds): + """ + We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. + + Args: + inputs_embeds: torch.Tensor + + Returns: torch.Tensor + """ + input_shape = inputs_embeds.size()[:-1] + sequence_length = input_shape[1] + + position_ids = torch.arange( + self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device + ) + return position_ids.unsqueeze(0).expand(input_shape) + + +# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->ClapText +class ClapTextSelfAttention(nn.Module): + def __init__(self, config, position_embedding_type=None): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads})" + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size) + self.key = nn.Linear(config.hidden_size, self.all_head_size) + self.value = nn.Linear(config.hidden_size, self.all_head_size) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + self.position_embedding_type = position_embedding_type or getattr( + config, "position_embedding_type", "absolute" + ) + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + self.max_position_embeddings = config.max_position_embeddings + self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) + + self.is_decoder = config.is_decoder + + def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + mixed_query_layer = self.query(hidden_states) + + # If this is instantiated as a cross-attention module, the keys + # and values come from an encoder; the attention mask needs to be + # such that the encoder's padding tokens are not attended to. + is_cross_attention = encoder_hidden_states is not None + + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_layer = past_key_value[0] + value_layer = past_key_value[1] + attention_mask = encoder_attention_mask + elif is_cross_attention: + key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) + value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) + attention_mask = encoder_attention_mask + elif past_key_value is not None: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + key_layer = torch.cat([past_key_value[0], key_layer], dim=2) + value_layer = torch.cat([past_key_value[1], value_layer], dim=2) + else: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + + query_layer = self.transpose_for_scores(mixed_query_layer) + + use_cache = past_key_value is not None + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_layer, value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + query_length, key_length = query_layer.shape[2], key_layer.shape[2] + if use_cache: + position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( + -1, 1 + ) + else: + position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) + position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) + distance = position_ids_l - position_ids_r + + positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) + positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility + + if self.position_embedding_type == "relative_key": + relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores + elif self.position_embedding_type == "relative_key_query": + relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in ClapTextModel forward() function) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + if self.is_decoder: + outputs = outputs + (past_key_value,) + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertSelfOutput +class ClapTextSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->ClapText +class ClapTextAttention(nn.Module): + def __init__(self, config, position_embedding_type=None): + super().__init__() + self.self = ClapTextSelfAttention(config, position_embedding_type=position_embedding_type) + self.output = ClapTextSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len(heads) + self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + self_outputs = self.self( + hidden_states, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + attention_output = self.output(self_outputs[0], hidden_states) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertIntermediate +class ClapTextIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertOutput +class ClapTextOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->ClapText +class ClapTextLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = ClapTextAttention(config) + self.is_decoder = config.is_decoder + self.add_cross_attention = config.add_cross_attention + if self.add_cross_attention: + if not self.is_decoder: + raise ValueError(f"{self} should be used as a decoder model if cross attention is added") + self.crossattention = ClapTextAttention(config, position_embedding_type="absolute") + self.intermediate = ClapTextIntermediate(config) + self.output = ClapTextOutput(config) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + self_attention_outputs = self.attention( + hidden_states, + attention_mask, + head_mask, + output_attentions=output_attentions, + past_key_value=self_attn_past_key_value, + ) + attention_output = self_attention_outputs[0] + + # if decoder, the last output is tuple of self-attn cache + if self.is_decoder: + outputs = self_attention_outputs[1:-1] + present_key_value = self_attention_outputs[-1] + else: + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + cross_attn_present_key_value = None + if self.is_decoder and encoder_hidden_states is not None: + if not hasattr(self, "crossattention"): + raise ValueError( + f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" + " by setting `config.add_cross_attention=True`" + ) + + # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + cross_attention_outputs = self.crossattention( + attention_output, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + cross_attn_past_key_value, + output_attentions, + ) + attention_output = cross_attention_outputs[0] + outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights + + # add cross-attn cache to positions 3,4 of present_key_value tuple + cross_attn_present_key_value = cross_attention_outputs[-1] + present_key_value = present_key_value + cross_attn_present_key_value + + layer_output = apply_chunking_to_forward( + self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output + ) + outputs = (layer_output,) + outputs + + # if decoder, return the attn key/values as the last output + if self.is_decoder: + outputs = outputs + (present_key_value,) + + return outputs + + def feed_forward_chunk(self, attention_output): + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output) + return layer_output + + +# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->ClapText +class ClapTextEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.layer = nn.ModuleList([ClapTextLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = False, + output_hidden_states: Optional[bool] = False, + return_dict: Optional[bool] = True, + ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + next_decoder_cache = () if use_cache else None + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + past_key_value = past_key_values[i] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + else: + layer_outputs = layer_module( + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + + hidden_states = layer_outputs[0] + if use_cache: + next_decoder_cache += (layer_outputs[-1],) + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + if self.config.add_cross_attention: + all_cross_attentions = all_cross_attentions + (layer_outputs[2],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v + for v in [ + hidden_states, + next_decoder_cache, + all_hidden_states, + all_self_attentions, + all_cross_attentions, + ] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_decoder_cache, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + cross_attentions=all_cross_attentions, + ) + + +# Copied from transformers.models.bert.modeling_bert.BertPooler +class ClapTextPooler(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = nn.Tanh() + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + pooled_output = self.activation(pooled_output) + return pooled_output + + +class ClapPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = ClapConfig + base_model_prefix = "clap" + supports_gradient_checkpointing = False + + def _init_weights(self, module): + """Initialize the weights""" + factor = self.config.initializer_factor + + if isinstance(module, ClapTextEmbeddings): + module.position_embeddings.weight.data.normal_(mean=0.0, std=factor * 0.02) + module.token_type_embeddings.weight.data.normal_(mean=0.0, std=factor * 0.02) + elif isinstance(module, ClapModel): + nn.init.normal_(module.logit_scale_a, std=factor * 0.02) + nn.init.normal_(module.logit_scale_t, std=factor * 0.02) + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=factor * 0.02) + + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + elif isinstance(module, (nn.Conv2d, nn.Linear)): + in_proj_std = (self.config.hidden_size**-0.5) * ((2 * self.config.num_hidden_layers) ** -0.5) * factor + nn.init.normal_(module.weight, std=in_proj_std) + if module.bias is not None: + module.bias.data.zero_() + + +class ClapAudioModel(ClapPreTrainedModel): + config_class = ClapAudioConfig + main_input_name = "input_features" + + def __init__(self, config: ClapAudioConfig): + super().__init__(config) + self.audio_encoder = ClapAudioEncoder(config) + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> nn.Module: + return self.audio_encoder.patch_embed.proj + + @add_start_docstrings_to_model_forward(CLAP_AUDIO_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=ClapAudioConfig) + def forward( + self, + input_features: Optional[torch.FloatTensor] = None, + is_longer: Optional[torch.BoolTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPooling]: + r""" + Returns: + + Examples: + + ```python + >>> from datasets import load_dataset + >>> from transformers import AutoProcessor, ClapAudioModel + + >>> dataset = load_dataset("hf-internal-testing/ashraq-esc50-1-dog-example") + >>> audio_sample = dataset["train"]["audio"][0]["array"] + + >>> model = ClapAudioModel.from_pretrained("laion/clap-htsat-fused") + >>> processor = AutoProcessor.from_pretrained("laion/clap-htsat-fused") + + >>> inputs = processor(audios=audio_sample, return_tensors="pt") + + >>> outputs = model(**inputs) + >>> last_hidden_state = outputs.last_hidden_state + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + + return self.audio_encoder( + input_features=input_features, + is_longer=is_longer, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + +class ClapTextModel(ClapPreTrainedModel): + """ + + The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of + cross-attention is added between the self-attention layers, following the architecture described in *Attention is + all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz + Kaiser and Illia Polosukhin. + + To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set + to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and + `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. + + .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762 + + """ + + config_class = ClapTextConfig + + # Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->ClapText + def __init__(self, config, add_pooling_layer=True): + super().__init__(config) + self.config = config + + self.embeddings = ClapTextEmbeddings(config) + self.encoder = ClapTextEncoder(config) + + self.pooler = ClapTextPooler(config) if add_pooling_layer else None + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + # Copied from transformers.models.bert.modeling_bert.BertModel.forward + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: + r""" + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if self.config.is_decoder: + use_cache = use_cache if use_cache is not None else self.config.use_cache + else: + use_cache = False + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + batch_size, seq_length = input_shape + device = input_ids.device if input_ids is not None else inputs_embeds.device + + # past_key_values_length + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + + if attention_mask is None: + attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) + + if token_type_ids is None: + if hasattr(self.embeddings, "token_type_ids"): + buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] + buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) + token_type_ids = buffered_token_type_ids_expanded + else: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) + + # If a 2D or 3D attention mask is provided for the cross-attention + # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] + if self.config.is_decoder and encoder_hidden_states is not None: + encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() + encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) + if encoder_attention_mask is None: + encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) + encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) + else: + encoder_extended_attention_mask = None + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + embedding_output = self.embeddings( + input_ids=input_ids, + position_ids=position_ids, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + past_key_values_length=past_key_values_length, + ) + encoder_outputs = self.encoder( + embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_extended_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + return (sequence_output, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPoolingAndCrossAttentions( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + past_key_values=encoder_outputs.past_key_values, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + cross_attentions=encoder_outputs.cross_attentions, + ) + + +@add_start_docstrings(CLAP_START_DOCSTRING) +class ClapModel(ClapPreTrainedModel): + config_class = ClapConfig + + def __init__(self, config: ClapConfig): + super().__init__(config) + + if not isinstance(config.text_config, ClapTextConfig): + raise ValueError( + "config.text_config is expected to be of type ClapTextConfig but is of type" + f" {type(config.text_config)}." + ) + + if not isinstance(config.audio_config, ClapAudioConfig): + raise ValueError( + "config.audio_config is expected to be of type ClapAudioConfig but is of type" + f" {type(config.audio_config)}." + ) + + text_config = config.text_config + audio_config = config.audio_config + + self.logit_scale_a = nn.Parameter(torch.tensor(math.log(config.logit_scale_init_value))) + self.logit_scale_t = nn.Parameter(torch.tensor(math.log(config.logit_scale_init_value))) + + self.projection_dim = config.projection_dim + + self.text_model = ClapTextModel(text_config) + self.text_projection = ClapProjectionLayer(text_config) + + self.audio_model = ClapAudioModel(audio_config) + self.audio_projection = ClapProjectionLayer(audio_config) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(CLAP_TEXT_INPUTS_DOCSTRING) + def get_text_features( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> torch.FloatTensor: + r""" + Returns: + text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by + applying the projection layer to the pooled output of [`ClapTextModel`]. + + Examples: + + ```python + >>> from transformers import AutoTokenizer, ClapModel + + >>> model = ClapModel.from_pretrained("laion/clap-htsat-unfused") + >>> tokenizer = AutoTokenizer.from_pretrained("laion/clap-htsat-unfused") + + >>> inputs = tokenizer(["the sound of a cat", "the sound of a dog"], padding=True, return_tensors="pt") + >>> text_features = model.get_text_features(**inputs) + ```""" + # Use CLAP model's config for some fields (if specified) instead of those of audio & text components. + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + text_outputs = self.text_model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = text_outputs[1] if return_dict is not None else text_outputs.pooler_output + text_features = self.text_projection(pooled_output) + text_features = F.normalize(text_features, dim=-1) + + return text_features + + @add_start_docstrings_to_model_forward(CLAP_AUDIO_INPUTS_DOCSTRING) + def get_audio_features( + self, + input_features: Optional[torch.Tensor] = None, + is_longer: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> torch.FloatTensor: + r""" + Returns: + audio_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The audio embeddings obtained by + applying the projection layer to the pooled output of [`ClapAudioModel`]. + + Examples: + + ```python + >>> from transformers import AutoFeatureExtractor, ClapModel + >>> import torch + + >>> model = ClapModel.from_pretrained("laion/clap-htsat-unfused") + >>> feature_extractor = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused") + >>> random_audio = torch.rand((16_000)) + >>> inputs = feature_extractor(random_audio, return_tensors="pt") + >>> audio_features = model.get_audio_features(**inputs) + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + audio_outputs = self.audio_model( + input_features=input_features, + is_longer=is_longer, + return_dict=return_dict, + ) + + pooled_output = audio_outputs[1] if not return_dict else audio_outputs.pooler_output + + audio_features = self.audio_projection(pooled_output) + audio_features = F.normalize(audio_features, dim=-1) + + return audio_features + + @add_start_docstrings_to_model_forward(CLAP_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=ClapOutput, config_class=ClapConfig) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + input_features: Optional[torch.FloatTensor] = None, + is_longer: Optional[torch.BoolTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + return_loss: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, ClapOutput]: + r""" + Returns: + + Examples: + + ```python + >>> from datasets import load_dataset + >>> from transformers import AutoProcessor, ClapModel + + >>> dataset = load_dataset("hf-internal-testing/ashraq-esc50-1-dog-example") + >>> audio_sample = dataset["train"]["audio"][0]["array"] + + >>> model = ClapModel.from_pretrained("laion/clap-htsat-unfused") + >>> processor = AutoProcessor.from_pretrained("laion/clap-htsat-unfused") + + >>> input_text = ["Sound of a dog", "Sound of vaccum cleaner"] + + >>> inputs = processor(text=input_text, audios=audio_sample, return_tensors="pt", padding=True) + + >>> outputs = model(**inputs) + >>> logits_per_audio = outputs.logits_per_audio # this is the audio-text similarity score + >>> probs = logits_per_audio.softmax(dim=-1) # we can take the softmax to get the label probabilities + ```""" + # Use CLAP model's config for some fields (if specified) instead of those of audio & text components. + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + audio_outputs = self.audio_model( + input_features=input_features, + is_longer=is_longer, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + text_outputs = self.text_model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + audio_embeds = audio_outputs[1] if not return_dict else audio_outputs.pooler_output + audio_embeds = self.audio_projection(audio_embeds) + + text_embeds = text_outputs[1] if not return_dict else text_outputs.pooler_output + text_embeds = self.text_projection(text_embeds) + + # normalized features + audio_embeds = audio_embeds / audio_embeds.norm(p=2, dim=-1, keepdim=True) + text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) + + # cosine similarity as logits + logit_scale_text = self.logit_scale_t.exp() + logit_scale_audio = self.logit_scale_a.exp() + logits_per_text = torch.matmul(text_embeds, audio_embeds.t()) * logit_scale_text + logits_per_audio = torch.matmul(audio_embeds, text_embeds.t()) * logit_scale_audio + + loss = None + if return_loss: + caption_loss = contrastive_loss(logits_per_text) + audio_loss = contrastive_loss(logits_per_audio.t()) + loss = (caption_loss + audio_loss) / 2.0 + + if not return_dict: + output = (logits_per_audio, logits_per_text, text_embeds, audio_embeds, text_outputs, audio_outputs) + return ((loss,) + output) if loss is not None else output + + return ClapOutput( + loss=loss, + logits_per_audio=logits_per_audio, + logits_per_text=logits_per_text, + text_embeds=text_embeds, + audio_embeds=audio_embeds, + text_model_output=text_outputs, + audio_model_output=audio_outputs, + ) + + +@add_start_docstrings( + """ + CLAP Text Model with a projection layer on top (a linear layer on top of the pooled output). + """, + CLAP_START_DOCSTRING, +) +class ClapTextModelWithProjection(ClapPreTrainedModel): + config_class = ClapTextConfig + + def __init__(self, config: ClapTextConfig): + super().__init__(config) + self.text_model = ClapTextModel(config) + self.text_projection = ClapProjectionLayer(config) + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> nn.Module: + return self.text_model.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.text_model.embeddings.word_embeddings = value + + @add_start_docstrings_to_model_forward(CLAP_TEXT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=ClapTextModelOutput, config_class=ClapTextConfig) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, ClapTextModelOutput]: + r""" + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, ClapTextModelWithProjection + + >>> model = ClapTextModelWithProjection.from_pretrained("laion/clap-htsat-unfused") + >>> tokenizer = AutoTokenizer.from_pretrained("laion/clap-htsat-unfused") + + >>> inputs = tokenizer(["a sound of a cat", "a sound of a dog"], padding=True, return_tensors="pt") + + >>> outputs = model(**inputs) + >>> text_embeds = outputs.text_embeds + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + text_outputs = self.text_model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = text_outputs[1] if not return_dict else text_outputs.pooler_output + + text_embeds = self.text_projection(pooled_output) + + if not return_dict: + outputs = (text_embeds, text_outputs[0]) + text_outputs[2:] + return tuple(output for output in outputs if output is not None) + + return ClapTextModelOutput( + text_embeds=text_embeds, + last_hidden_state=text_outputs.last_hidden_state, + hidden_states=text_outputs.hidden_states, + attentions=text_outputs.attentions, + ) + + +@add_start_docstrings( + """ + CLAP Audio Model with a projection layer on top (a linear layer on top of the pooled output). + """, + CLAP_START_DOCSTRING, +) +class ClapAudioModelWithProjection(ClapPreTrainedModel): + config_class = ClapAudioConfig + main_input_name = "input_features" + + def __init__(self, config: ClapAudioConfig): + super().__init__(config) + self.audio_model = ClapAudioModel(config) + self.audio_projection = ClapProjectionLayer(config) + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> nn.Module: + return self.audio_model.audio_encoder.patch_embed.proj + + @add_start_docstrings_to_model_forward(CLAP_AUDIO_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=ClapAudioModelOutput, config_class=ClapAudioConfig) + def forward( + self, + input_features: Optional[torch.FloatTensor] = None, + is_longer: Optional[torch.BoolTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, ClapAudioModelOutput]: + r""" + Returns: + + Examples: + + ```python + >>> from datasets import load_dataset + >>> from transformers import ClapAudioModelWithProjection, ClapProcessor + + >>> model = ClapAudioModelWithProjection.from_pretrained("laion/clap-htsat-fused") + >>> processor = ClapProcessor.from_pretrained("laion/clap-htsat-fused") + + >>> dataset = load_dataset("hf-internal-testing/ashraq-esc50-1-dog-example") + >>> audio_sample = dataset["train"]["audio"][0]["array"] + + >>> inputs = processor(audios=audio_sample, return_tensors="pt") + >>> outputs = model(**inputs) + >>> audio_embeds = outputs.audio_embeds + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + + audio_outputs = self.audio_model( + input_features=input_features, + is_longer=is_longer, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = audio_outputs[1] if not return_dict else audio_outputs.pooler_output + + audio_embeds = self.audio_projection(pooled_output) + + if not return_dict: + outputs = (audio_embeds, audio_outputs[0]) + audio_outputs[2:] + return tuple(output for output in outputs if output is not None) + + return ClapAudioModelOutput( + audio_embeds=audio_embeds, + last_hidden_state=audio_outputs.last_hidden_state, + attentions=audio_outputs.attentions, + hidden_states=audio_outputs.hidden_states, + ) diff --git a/venv/lib/python3.10/site-packages/transformers/models/clap/processing_clap.py b/venv/lib/python3.10/site-packages/transformers/models/clap/processing_clap.py new file mode 100644 index 0000000000000000000000000000000000000000..87799899945fa669d3980e8cc6c15192cf7a2ba5 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/clap/processing_clap.py @@ -0,0 +1,117 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Audio/Text processor class for CLAP +""" + +from ...processing_utils import ProcessorMixin +from ...tokenization_utils_base import BatchEncoding + + +class ClapProcessor(ProcessorMixin): + r""" + Constructs a CLAP processor which wraps a CLAP feature extractor and a RoBerta tokenizer into a single processor. + + [`ClapProcessor`] offers all the functionalities of [`ClapFeatureExtractor`] and [`RobertaTokenizerFast`]. See the + [`~ClapProcessor.__call__`] and [`~ClapProcessor.decode`] for more information. + + Args: + feature_extractor ([`ClapFeatureExtractor`]): + The audio processor is a required input. + tokenizer ([`RobertaTokenizerFast`]): + The tokenizer is a required input. + """ + + feature_extractor_class = "ClapFeatureExtractor" + tokenizer_class = ("RobertaTokenizer", "RobertaTokenizerFast") + + def __init__(self, feature_extractor, tokenizer): + super().__init__(feature_extractor, tokenizer) + + def __call__(self, text=None, audios=None, return_tensors=None, **kwargs): + """ + Main method to prepare for the model one or several sequences(s) and audio(s). This method forwards the `text` + and `kwargs` arguments to RobertaTokenizerFast's [`~RobertaTokenizerFast.__call__`] if `text` is not `None` to + encode the text. To prepare the audio(s), this method forwards the `audios` and `kwrags` arguments to + ClapFeatureExtractor's [`~ClapFeatureExtractor.__call__`] if `audios` is not `None`. Please refer to the + doctsring of the above two methods for more information. + + Args: + text (`str`, `List[str]`, `List[List[str]]`): + The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings + (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set + `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). + audios (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`): + The audio or batch of audios to be prepared. Each audio can be NumPy array or PyTorch tensor. In case + of a NumPy array/PyTorch tensor, each audio should be of shape (C, T), where C is a number of channels, + and T the sample length of the audio. + + return_tensors (`str` or [`~utils.TensorType`], *optional*): + If set, will return tensors of a particular framework. Acceptable values are: + + - `'tf'`: Return TensorFlow `tf.constant` objects. + - `'pt'`: Return PyTorch `torch.Tensor` objects. + - `'np'`: Return NumPy `np.ndarray` objects. + - `'jax'`: Return JAX `jnp.ndarray` objects. + + Returns: + [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: + + - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. + - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when + `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not + `None`). + - **audio_features** -- Audio features to be fed to a model. Returned when `audios` is not `None`. + """ + sampling_rate = kwargs.pop("sampling_rate", None) + + if text is None and audios is None: + raise ValueError("You have to specify either text or audios. Both cannot be none.") + + if text is not None: + encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs) + + if audios is not None: + audio_features = self.feature_extractor( + audios, sampling_rate=sampling_rate, return_tensors=return_tensors, **kwargs + ) + + if text is not None and audios is not None: + encoding["input_features"] = audio_features.input_features + return encoding + elif text is not None: + return encoding + else: + return BatchEncoding(data=dict(**audio_features), tensor_type=return_tensors) + + def batch_decode(self, *args, **kwargs): + """ + This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please + refer to the docstring of this method for more information. + """ + return self.tokenizer.batch_decode(*args, **kwargs) + + def decode(self, *args, **kwargs): + """ + This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer + to the docstring of this method for more information. + """ + return self.tokenizer.decode(*args, **kwargs) + + @property + def model_input_names(self): + tokenizer_input_names = self.tokenizer.model_input_names + feature_extractor_input_names = self.feature_extractor.model_input_names + return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names)) diff --git a/venv/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bf8afcf228964aaf0f64265dd25a420df948f83c Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/__pycache__/configuration_open_llama.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/__pycache__/configuration_open_llama.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..53eb7a2fafab9f72f56e8e72902d3970db9d60c7 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/__pycache__/configuration_open_llama.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/__pycache__/modeling_open_llama.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/__pycache__/modeling_open_llama.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1449655e73716fa5ddc8c745eeb11e0258f734b2 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/__pycache__/modeling_open_llama.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/configuration_open_llama.py b/venv/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/configuration_open_llama.py new file mode 100644 index 0000000000000000000000000000000000000000..0111e031251a2c7108419827f7b8c35eab0edcc3 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/configuration_open_llama.py @@ -0,0 +1,170 @@ +# coding=utf-8 +# Copyright 2023 EleutherAI and the HuggingFace Inc. team. All rights reserved. +# +# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX +# and OPT implementations in this library. It has been modified from its +# original forms to accommodate minor architectural differences compared +# to GPT-NeoX and OPT used by the Meta AI team that trained the model. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Open-Llama model configuration""" + +from ....configuration_utils import PretrainedConfig +from ....utils import logging + + +logger = logging.get_logger(__name__) + + +from .._archive_maps import OPEN_LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class OpenLlamaConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`OpenLlamaModel`]. It is used to instantiate an + Open-Llama model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the + [s-JoL/Open-Llama-V1](https://huggingface.co/s-JoL/Open-Llama-V1). + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 32000): + Vocabulary size of the Open-Llama model. Defines the number of different tokens that can be represented by + the `inputs_ids` passed when calling [`OpenLlamaModel`] + hidden_size (`int`, *optional*, defaults to 4096): + Dimension of the hidden representations. + intermediate_size (`int`, *optional*, defaults to 11008): + Dimension of the MLP representations. + num_hidden_layers (`int`, *optional*, defaults to 32): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 32): + Number of attention heads for each attention layer in the Transformer encoder. + hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): + The non-linear activation function (function or string) in the decoder. + max_position_embeddings (`int`, *optional*, defaults to 2048): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + rms_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the rms normalization layers. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + tie_word_embeddings(`bool`, *optional*, defaults to `False`): + Whether to tie weight embeddings + rope_theta (`float`, *optional*, defaults to 10000.0): + The base period of the RoPE embeddings. + rope_scaling (`Dict`, *optional*): + Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling + strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is + `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update + `max_position_embeddings` to the expected new maximum. See the following thread for more information on how + these scaling strategies behave: + https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an + experimental feature, subject to breaking API changes in future versions. + + Example: + + ```python + >>> from transformers import OpenLlamaModel, OpenLlamaConfig + + >>> # Initializing a Open-Llama open_llama-7b style configuration + >>> configuration = OpenLlamaConfig() + + >>> # Initializing a model from the open_llama-7b style configuration + >>> model = OpenLlamaModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "open-llama" + + def __init__( + self, + vocab_size=100000, + hidden_size=4096, + intermediate_size=11008, + num_hidden_layers=32, + num_attention_heads=32, + hidden_act="silu", + max_position_embeddings=2048, + initializer_range=0.02, + rms_norm_eps=1e-6, + use_cache=True, + pad_token_id=0, + bos_token_id=1, + eos_token_id=2, + tie_word_embeddings=False, + use_memory_efficient_attention=True, + hidden_dropout_prob=0.1, + attention_dropout_prob=0.1, + use_stable_embedding=True, + shared_input_output_embedding=True, + rope_theta=10000.0, + rope_scaling=None, + **kwargs, + ): + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.hidden_act = hidden_act + self.initializer_range = initializer_range + self.rms_norm_eps = rms_norm_eps + self.use_cache = use_cache + self.use_memory_efficient_attention = kwargs.pop( + "use_memorry_efficient_attention", use_memory_efficient_attention + ) + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_dropout_prob = attention_dropout_prob + self.use_stable_embedding = use_stable_embedding + self.shared_input_output_embedding = shared_input_output_embedding + self.rope_theta = rope_theta + self.rope_scaling = rope_scaling + self._rope_scaling_validation() + + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + tie_word_embeddings=tie_word_embeddings, + **kwargs, + ) + + # Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation + def _rope_scaling_validation(self): + """ + Validate the `rope_scaling` configuration. + """ + if self.rope_scaling is None: + return + + if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: + raise ValueError( + "`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}" + ) + rope_scaling_type = self.rope_scaling.get("type", None) + rope_scaling_factor = self.rope_scaling.get("factor", None) + if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: + raise ValueError( + f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" + ) + if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: + raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}") diff --git a/venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..dba5e14594e16c19fc1a269a92e968fec35afc26 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__init__.py @@ -0,0 +1,73 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available + + +_import_structure = { + "configuration_retribert": ["RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RetriBertConfig"], + "tokenization_retribert": ["RetriBertTokenizer"], +} + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_retribert_fast"] = ["RetriBertTokenizerFast"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_retribert"] = [ + "RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST", + "RetriBertModel", + "RetriBertPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_retribert import RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RetriBertConfig + from .tokenization_retribert import RetriBertTokenizer + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_retribert_fast import RetriBertTokenizerFast + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_retribert import ( + RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST, + RetriBertModel, + RetriBertPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..881ffefcbab182db76917e8d5144dbd64cdd5625 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/configuration_retribert.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/configuration_retribert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b7d6cf7ae32358b25b3bb754fcb0bbebc29de78d Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/configuration_retribert.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/modeling_retribert.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/modeling_retribert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..da0a29b3567052ea031dcc019f62fd0b824947bb Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/modeling_retribert.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/tokenization_retribert.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/tokenization_retribert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..80a8522ad34fc1fcafea4964d5a1abd1e86a5ca5 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/tokenization_retribert.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/tokenization_retribert_fast.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/tokenization_retribert_fast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2120fb66c9a32c3db3f17c2b2c59268917276b20 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/tokenization_retribert_fast.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/configuration_retribert.py b/venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/configuration_retribert.py new file mode 100644 index 0000000000000000000000000000000000000000..c188c7347a8fb85c14748095b762e0a2583cee00 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/configuration_retribert.py @@ -0,0 +1,107 @@ +# coding=utf-8 +# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" RetriBERT model configuration""" + +from ....configuration_utils import PretrainedConfig +from ....utils import logging + + +logger = logging.get_logger(__name__) + +from .._archive_maps import RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class RetriBertConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`RetriBertModel`]. It is used to instantiate a + RetriBertModel model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the RetriBERT + [yjernite/retribert-base-uncased](https://huggingface.co/yjernite/retribert-base-uncased) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 30522): + Vocabulary size of the RetriBERT model. Defines the number of different tokens that can be represented by + the `inputs_ids` passed when calling [`RetriBertModel`] + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + type_vocab_size (`int`, *optional*, defaults to 2): + The vocabulary size of the *token_type_ids* passed into [`BertModel`]. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + share_encoders (`bool`, *optional*, defaults to `True`): + Whether or not to use the same Bert-type encoder for the queries and document + projection_dim (`int`, *optional*, defaults to 128): + Final dimension of the query and document representation after projection + """ + + model_type = "retribert" + + def __init__( + self, + vocab_size=30522, + hidden_size=768, + num_hidden_layers=8, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=512, + type_vocab_size=2, + initializer_range=0.02, + layer_norm_eps=1e-12, + share_encoders=True, + projection_dim=128, + pad_token_id=0, + **kwargs, + ): + super().__init__(pad_token_id=pad_token_id, **kwargs) + + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.hidden_act = hidden_act + self.intermediate_size = intermediate_size + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.max_position_embeddings = max_position_embeddings + self.type_vocab_size = type_vocab_size + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.share_encoders = share_encoders + self.projection_dim = projection_dim diff --git a/venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/modeling_retribert.py b/venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/modeling_retribert.py new file mode 100644 index 0000000000000000000000000000000000000000..7dba8a276eeb56c379f782ea2bd5e1be7119cfe7 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/modeling_retribert.py @@ -0,0 +1,218 @@ +# coding=utf-8 +# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +RetriBERT model +""" + + +import math +from typing import Optional + +import torch +import torch.utils.checkpoint as checkpoint +from torch import nn + +from ....modeling_utils import PreTrainedModel +from ....utils import add_start_docstrings, logging +from ...bert.modeling_bert import BertModel +from .configuration_retribert import RetriBertConfig + + +logger = logging.get_logger(__name__) + + +from .._archive_maps import RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +# INTERFACE FOR ENCODER AND TASK SPECIFIC MODEL # +class RetriBertPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = RetriBertConfig + load_tf_weights = None + base_model_prefix = "retribert" + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +RETRIBERT_START_DOCSTRING = r""" + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`RetriBertConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +@add_start_docstrings( + """Bert Based model to embed queries or document for document retrieval.""", + RETRIBERT_START_DOCSTRING, +) +class RetriBertModel(RetriBertPreTrainedModel): + def __init__(self, config: RetriBertConfig) -> None: + super().__init__(config) + self.projection_dim = config.projection_dim + + self.bert_query = BertModel(config) + self.bert_doc = None if config.share_encoders else BertModel(config) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.project_query = nn.Linear(config.hidden_size, config.projection_dim, bias=False) + self.project_doc = nn.Linear(config.hidden_size, config.projection_dim, bias=False) + + self.ce_loss = nn.CrossEntropyLoss(reduction="mean") + + # Initialize weights and apply final processing + self.post_init() + + def embed_sentences_checkpointed( + self, + input_ids, + attention_mask, + sent_encoder, + checkpoint_batch_size=-1, + ): + # reproduces BERT forward pass with checkpointing + if checkpoint_batch_size < 0 or input_ids.shape[0] < checkpoint_batch_size: + return sent_encoder(input_ids, attention_mask=attention_mask)[1] + else: + # prepare implicit variables + device = input_ids.device + input_shape = input_ids.size() + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + head_mask = [None] * sent_encoder.config.num_hidden_layers + extended_attention_mask: torch.Tensor = sent_encoder.get_extended_attention_mask( + attention_mask, input_shape + ) + + # define function for checkpointing + def partial_encode(*inputs): + encoder_outputs = sent_encoder.encoder( + inputs[0], + attention_mask=inputs[1], + head_mask=head_mask, + ) + sequence_output = encoder_outputs[0] + pooled_output = sent_encoder.pooler(sequence_output) + return pooled_output + + # run embedding layer on everything at once + embedding_output = sent_encoder.embeddings( + input_ids=input_ids, position_ids=None, token_type_ids=token_type_ids, inputs_embeds=None + ) + # run encoding and pooling on one mini-batch at a time + pooled_output_list = [] + for b in range(math.ceil(input_ids.shape[0] / checkpoint_batch_size)): + b_embedding_output = embedding_output[b * checkpoint_batch_size : (b + 1) * checkpoint_batch_size] + b_attention_mask = extended_attention_mask[b * checkpoint_batch_size : (b + 1) * checkpoint_batch_size] + pooled_output = checkpoint.checkpoint(partial_encode, b_embedding_output, b_attention_mask) + pooled_output_list.append(pooled_output) + return torch.cat(pooled_output_list, dim=0) + + def embed_questions( + self, + input_ids, + attention_mask=None, + checkpoint_batch_size=-1, + ): + q_reps = self.embed_sentences_checkpointed( + input_ids, + attention_mask, + self.bert_query, + checkpoint_batch_size, + ) + return self.project_query(q_reps) + + def embed_answers( + self, + input_ids, + attention_mask=None, + checkpoint_batch_size=-1, + ): + a_reps = self.embed_sentences_checkpointed( + input_ids, + attention_mask, + self.bert_query if self.bert_doc is None else self.bert_doc, + checkpoint_batch_size, + ) + return self.project_doc(a_reps) + + def forward( + self, + input_ids_query: torch.LongTensor, + attention_mask_query: Optional[torch.FloatTensor], + input_ids_doc: torch.LongTensor, + attention_mask_doc: Optional[torch.FloatTensor], + checkpoint_batch_size: int = -1, + ) -> torch.FloatTensor: + r""" + Args: + input_ids_query (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary for the queries in a batch. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask_query (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + input_ids_doc (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary for the documents in a batch. + attention_mask_doc (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on documents padding token indices. + checkpoint_batch_size (`int`, *optional*, defaults to `-1`): + If greater than 0, uses gradient checkpointing to only compute sequence representation on + `checkpoint_batch_size` examples at a time on the GPU. All query representations are still compared to + all document representations in the batch. + + Return: + `torch.FloatTensor``: The bidirectional cross-entropy loss obtained while trying to match each query to its + corresponding document and each document to its corresponding query in the batch + """ + device = input_ids_query.device + q_reps = self.embed_questions(input_ids_query, attention_mask_query, checkpoint_batch_size) + a_reps = self.embed_answers(input_ids_doc, attention_mask_doc, checkpoint_batch_size) + compare_scores = torch.mm(q_reps, a_reps.t()) + loss_qa = self.ce_loss(compare_scores, torch.arange(compare_scores.shape[1]).to(device)) + loss_aq = self.ce_loss(compare_scores.t(), torch.arange(compare_scores.shape[0]).to(device)) + loss = (loss_qa + loss_aq) / 2 + return loss diff --git a/venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/tokenization_retribert.py b/venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/tokenization_retribert.py new file mode 100644 index 0000000000000000000000000000000000000000..c991f3972230bd9027f43137b2a51550d4655f4d --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/tokenization_retribert.py @@ -0,0 +1,517 @@ +# coding=utf-8 +# Copyright 2018 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes for RetriBERT.""" + +import collections +import os +import unicodedata +from typing import List, Optional, Tuple + +from ....tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace +from ....utils import logging + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} + + +# Copied from transformers.models.bert.tokenization_bert.load_vocab +def load_vocab(vocab_file): + """Loads a vocabulary file into a dictionary.""" + vocab = collections.OrderedDict() + with open(vocab_file, "r", encoding="utf-8") as reader: + tokens = reader.readlines() + for index, token in enumerate(tokens): + token = token.rstrip("\n") + vocab[token] = index + return vocab + + +# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize +def whitespace_tokenize(text): + """Runs basic whitespace cleaning and splitting on a piece of text.""" + text = text.strip() + if not text: + return [] + tokens = text.split() + return tokens + + +class RetriBertTokenizer(PreTrainedTokenizer): + r""" + Constructs a RetriBERT tokenizer. + + [`RetriBertTokenizer`] is identical to [`BertTokenizer`] and runs end-to-end tokenization: punctuation splitting + and wordpiece. + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer + to: this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + File containing the vocabulary. + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + do_basic_tokenize (`bool`, *optional*, defaults to `True`): + Whether or not to do basic tokenization before WordPiece. + never_split (`Iterable`, *optional*): + Collection of tokens which will never be split during tokenization. Only has an effect when + `do_basic_tokenize=True` + unk_token (`str`, *optional*, defaults to `"[UNK]"`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + sep_token (`str`, *optional*, defaults to `"[SEP]"`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + pad_token (`str`, *optional*, defaults to `"[PAD]"`): + The token used for padding, for example when batching sequences of different lengths. + cls_token (`str`, *optional*, defaults to `"[CLS]"`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + mask_token (`str`, *optional*, defaults to `"[MASK]"`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this + [issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original BERT). + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.__init__ + def __init__( + self, + vocab_file, + do_lower_case=True, + do_basic_tokenize=True, + never_split=None, + unk_token="[UNK]", + sep_token="[SEP]", + pad_token="[PAD]", + cls_token="[CLS]", + mask_token="[MASK]", + tokenize_chinese_chars=True, + strip_accents=None, + **kwargs, + ): + if not os.path.isfile(vocab_file): + raise ValueError( + f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" + " model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" + ) + self.vocab = load_vocab(vocab_file) + self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) + self.do_basic_tokenize = do_basic_tokenize + if do_basic_tokenize: + self.basic_tokenizer = BasicTokenizer( + do_lower_case=do_lower_case, + never_split=never_split, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + ) + + self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token)) + + super().__init__( + do_lower_case=do_lower_case, + do_basic_tokenize=do_basic_tokenize, + never_split=never_split, + unk_token=unk_token, + sep_token=sep_token, + pad_token=pad_token, + cls_token=cls_token, + mask_token=mask_token, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + **kwargs, + ) + + @property + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.do_lower_case + def do_lower_case(self): + return self.basic_tokenizer.do_lower_case + + @property + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.vocab_size + def vocab_size(self): + return len(self.vocab) + + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_vocab + def get_vocab(self): + return dict(self.vocab, **self.added_tokens_encoder) + + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer._tokenize + def _tokenize(self, text, split_special_tokens=False): + split_tokens = [] + if self.do_basic_tokenize: + for token in self.basic_tokenizer.tokenize( + text, never_split=self.all_special_tokens if not split_special_tokens else None + ): + # If the token is part of the never_split set + if token in self.basic_tokenizer.never_split: + split_tokens.append(token) + else: + split_tokens += self.wordpiece_tokenizer.tokenize(token) + else: + split_tokens = self.wordpiece_tokenizer.tokenize(text) + return split_tokens + + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_token_to_id + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.vocab.get(token, self.vocab.get(self.unk_token)) + + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_id_to_token + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + return self.ids_to_tokens.get(index, self.unk_token) + + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.convert_tokens_to_string + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + out_string = " ".join(tokens).replace(" ##", "").strip() + return out_string + + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.build_inputs_with_special_tokens + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A BERT sequence has the following format: + + - single sequence: `[CLS] X [SEP]` + - pair of sequences: `[CLS] A [SEP] B [SEP]` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + if token_ids_1 is None: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + cls = [self.cls_token_id] + sep = [self.sep_token_id] + return cls + token_ids_0 + sep + token_ids_1 + sep + + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_special_tokens_mask + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + if token_ids_1 is not None: + return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] + return [1] + ([0] * len(token_ids_0)) + [1] + + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.create_token_type_ids_from_sequences + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence + pair mask has the following format: + + ``` + 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 + | first sequence | second sequence | + ``` + + If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.save_vocabulary + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + index = 0 + if os.path.isdir(save_directory): + vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + else: + vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory + with open(vocab_file, "w", encoding="utf-8") as writer: + for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): + if index != token_index: + logger.warning( + f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." + " Please check that the vocabulary is not corrupted!" + ) + index = token_index + writer.write(token + "\n") + index += 1 + return (vocab_file,) + + +# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer +class BasicTokenizer(object): + """ + Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). + + Args: + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + never_split (`Iterable`, *optional*): + Collection of tokens which will never be split during tokenization. Only has an effect when + `do_basic_tokenize=True` + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. + + This should likely be deactivated for Japanese (see this + [issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original BERT). + do_split_on_punc (`bool`, *optional*, defaults to `True`): + In some instances we want to skip the basic punctuation splitting so that later tokenization can capture + the full context of the words, such as contractions. + """ + + def __init__( + self, + do_lower_case=True, + never_split=None, + tokenize_chinese_chars=True, + strip_accents=None, + do_split_on_punc=True, + ): + if never_split is None: + never_split = [] + self.do_lower_case = do_lower_case + self.never_split = set(never_split) + self.tokenize_chinese_chars = tokenize_chinese_chars + self.strip_accents = strip_accents + self.do_split_on_punc = do_split_on_punc + + def tokenize(self, text, never_split=None): + """ + Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. + + Args: + never_split (`List[str]`, *optional*) + Kept for backward compatibility purposes. Now implemented directly at the base class level (see + [`PreTrainedTokenizer.tokenize`]) List of token not to split. + """ + # union() returns a new set by concatenating the two sets. + never_split = self.never_split.union(set(never_split)) if never_split else self.never_split + text = self._clean_text(text) + + # This was added on November 1st, 2018 for the multilingual and Chinese + # models. This is also applied to the English models now, but it doesn't + # matter since the English models were not trained on any Chinese data + # and generally don't have any Chinese data in them (there are Chinese + # characters in the vocabulary because Wikipedia does have some Chinese + # words in the English Wikipedia.). + if self.tokenize_chinese_chars: + text = self._tokenize_chinese_chars(text) + # prevents treating the same character with different unicode codepoints as different characters + unicode_normalized_text = unicodedata.normalize("NFC", text) + orig_tokens = whitespace_tokenize(unicode_normalized_text) + split_tokens = [] + for token in orig_tokens: + if token not in never_split: + if self.do_lower_case: + token = token.lower() + if self.strip_accents is not False: + token = self._run_strip_accents(token) + elif self.strip_accents: + token = self._run_strip_accents(token) + split_tokens.extend(self._run_split_on_punc(token, never_split)) + + output_tokens = whitespace_tokenize(" ".join(split_tokens)) + return output_tokens + + def _run_strip_accents(self, text): + """Strips accents from a piece of text.""" + text = unicodedata.normalize("NFD", text) + output = [] + for char in text: + cat = unicodedata.category(char) + if cat == "Mn": + continue + output.append(char) + return "".join(output) + + def _run_split_on_punc(self, text, never_split=None): + """Splits punctuation on a piece of text.""" + if not self.do_split_on_punc or (never_split is not None and text in never_split): + return [text] + chars = list(text) + i = 0 + start_new_word = True + output = [] + while i < len(chars): + char = chars[i] + if _is_punctuation(char): + output.append([char]) + start_new_word = True + else: + if start_new_word: + output.append([]) + start_new_word = False + output[-1].append(char) + i += 1 + + return ["".join(x) for x in output] + + def _tokenize_chinese_chars(self, text): + """Adds whitespace around any CJK character.""" + output = [] + for char in text: + cp = ord(char) + if self._is_chinese_char(cp): + output.append(" ") + output.append(char) + output.append(" ") + else: + output.append(char) + return "".join(output) + + def _is_chinese_char(self, cp): + """Checks whether CP is the codepoint of a CJK character.""" + # This defines a "chinese character" as anything in the CJK Unicode block: + # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) + # + # Note that the CJK Unicode block is NOT all Japanese and Korean characters, + # despite its name. The modern Korean Hangul alphabet is a different block, + # as is Japanese Hiragana and Katakana. Those alphabets are used to write + # space-separated words, so they are not treated specially and handled + # like the all of the other languages. + if ( + (cp >= 0x4E00 and cp <= 0x9FFF) + or (cp >= 0x3400 and cp <= 0x4DBF) # + or (cp >= 0x20000 and cp <= 0x2A6DF) # + or (cp >= 0x2A700 and cp <= 0x2B73F) # + or (cp >= 0x2B740 and cp <= 0x2B81F) # + or (cp >= 0x2B820 and cp <= 0x2CEAF) # + or (cp >= 0xF900 and cp <= 0xFAFF) + or (cp >= 0x2F800 and cp <= 0x2FA1F) # + ): # + return True + + return False + + def _clean_text(self, text): + """Performs invalid character removal and whitespace cleanup on text.""" + output = [] + for char in text: + cp = ord(char) + if cp == 0 or cp == 0xFFFD or _is_control(char): + continue + if _is_whitespace(char): + output.append(" ") + else: + output.append(char) + return "".join(output) + + +# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer +class WordpieceTokenizer(object): + """Runs WordPiece tokenization.""" + + def __init__(self, vocab, unk_token, max_input_chars_per_word=100): + self.vocab = vocab + self.unk_token = unk_token + self.max_input_chars_per_word = max_input_chars_per_word + + def tokenize(self, text): + """ + Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform + tokenization using the given vocabulary. + + For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. + + Args: + text: A single token or whitespace separated tokens. This should have + already been passed through *BasicTokenizer*. + + Returns: + A list of wordpiece tokens. + """ + + output_tokens = [] + for token in whitespace_tokenize(text): + chars = list(token) + if len(chars) > self.max_input_chars_per_word: + output_tokens.append(self.unk_token) + continue + + is_bad = False + start = 0 + sub_tokens = [] + while start < len(chars): + end = len(chars) + cur_substr = None + while start < end: + substr = "".join(chars[start:end]) + if start > 0: + substr = "##" + substr + if substr in self.vocab: + cur_substr = substr + break + end -= 1 + if cur_substr is None: + is_bad = True + break + sub_tokens.append(cur_substr) + start = end + + if is_bad: + output_tokens.append(self.unk_token) + else: + output_tokens.extend(sub_tokens) + return output_tokens diff --git a/venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/tokenization_retribert_fast.py b/venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/tokenization_retribert_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..97fbfc07d30ca65cd4d31dc2e221d0ef22073175 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/deprecated/retribert/tokenization_retribert_fast.py @@ -0,0 +1,180 @@ +# coding=utf-8 +# Copyright 2018 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes for RetriBERT.""" + +import json +from typing import List, Optional, Tuple + +from tokenizers import normalizers + +from ....tokenization_utils_fast import PreTrainedTokenizerFast +from ....utils import logging +from .tokenization_retribert import RetriBertTokenizer + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} + + +class RetriBertTokenizerFast(PreTrainedTokenizerFast): + r""" + Construct a "fast" RetriBERT tokenizer (backed by HuggingFace's *tokenizers* library). + + [`RetriBertTokenizerFast`] is identical to [`BertTokenizerFast`] and runs end-to-end tokenization: punctuation + splitting and wordpiece. + + This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should + refer to this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + File containing the vocabulary. + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + unk_token (`str`, *optional*, defaults to `"[UNK]"`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + sep_token (`str`, *optional*, defaults to `"[SEP]"`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + pad_token (`str`, *optional*, defaults to `"[PAD]"`): + The token used for padding, for example when batching sequences of different lengths. + cls_token (`str`, *optional*, defaults to `"[CLS]"`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + mask_token (`str`, *optional*, defaults to `"[MASK]"`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + clean_text (`bool`, *optional*, defaults to `True`): + Whether or not to clean the text before tokenization by removing any control characters and replacing all + whitespaces by the classic one. + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this + issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original BERT). + wordpieces_prefix (`str`, *optional*, defaults to `"##"`): + The prefix for subwords. + """ + + vocab_files_names = VOCAB_FILES_NAMES + slow_tokenizer_class = RetriBertTokenizer + model_input_names = ["input_ids", "attention_mask"] + + # Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.__init__ + def __init__( + self, + vocab_file=None, + tokenizer_file=None, + do_lower_case=True, + unk_token="[UNK]", + sep_token="[SEP]", + pad_token="[PAD]", + cls_token="[CLS]", + mask_token="[MASK]", + tokenize_chinese_chars=True, + strip_accents=None, + **kwargs, + ): + super().__init__( + vocab_file, + tokenizer_file=tokenizer_file, + do_lower_case=do_lower_case, + unk_token=unk_token, + sep_token=sep_token, + pad_token=pad_token, + cls_token=cls_token, + mask_token=mask_token, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + **kwargs, + ) + + normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__()) + if ( + normalizer_state.get("lowercase", do_lower_case) != do_lower_case + or normalizer_state.get("strip_accents", strip_accents) != strip_accents + or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars + ): + normalizer_class = getattr(normalizers, normalizer_state.pop("type")) + normalizer_state["lowercase"] = do_lower_case + normalizer_state["strip_accents"] = strip_accents + normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars + self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state) + + self.do_lower_case = do_lower_case + + # Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.build_inputs_with_special_tokens + def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A BERT sequence has the following format: + + - single sequence: `[CLS] X [SEP]` + - pair of sequences: `[CLS] A [SEP] B [SEP]` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + + if token_ids_1 is not None: + output += token_ids_1 + [self.sep_token_id] + + return output + + # Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.create_token_type_ids_from_sequences + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence + pair mask has the following format: + + ``` + 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 + | first sequence | second sequence | + ``` + + If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + + # Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.save_vocabulary + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + files = self._tokenizer.model.save(save_directory, name=filename_prefix) + return tuple(files) diff --git a/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..f3674e19665ca74e1e6ee3ac92ca812e54580007 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__init__.py @@ -0,0 +1,97 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available + + +_import_structure = { + "configuration_transfo_xl": ["TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "TransfoXLConfig"], + "tokenization_transfo_xl": ["TransfoXLCorpus", "TransfoXLTokenizer"], +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_transfo_xl"] = [ + "TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", + "AdaptiveEmbedding", + "TransfoXLForSequenceClassification", + "TransfoXLLMHeadModel", + "TransfoXLModel", + "TransfoXLPreTrainedModel", + "load_tf_weights_in_transfo_xl", + ] + +try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tf_transfo_xl"] = [ + "TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", + "TFAdaptiveEmbedding", + "TFTransfoXLForSequenceClassification", + "TFTransfoXLLMHeadModel", + "TFTransfoXLMainLayer", + "TFTransfoXLModel", + "TFTransfoXLPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig + from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_transfo_xl import ( + TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, + AdaptiveEmbedding, + TransfoXLForSequenceClassification, + TransfoXLLMHeadModel, + TransfoXLModel, + TransfoXLPreTrainedModel, + load_tf_weights_in_transfo_xl, + ) + + try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tf_transfo_xl import ( + TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, + TFAdaptiveEmbedding, + TFTransfoXLForSequenceClassification, + TFTransfoXLLMHeadModel, + TFTransfoXLMainLayer, + TFTransfoXLModel, + TFTransfoXLPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b09ff2eb7aae923c3e11091fe54b8b6a7d38752c Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/configuration_transfo_xl.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/configuration_transfo_xl.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..524db4516a5c8f801719d6e7f6a95a088e12e626 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/configuration_transfo_xl.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/convert_transfo_xl_original_tf_checkpoint_to_pytorch.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/convert_transfo_xl_original_tf_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..09d5aee9e58f0b81a33e1ab52f455caeed75e903 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/convert_transfo_xl_original_tf_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/modeling_tf_transfo_xl.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/modeling_tf_transfo_xl.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..03d7b120feab1b5fc1df08690bcbef0857974129 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/modeling_tf_transfo_xl.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/modeling_tf_transfo_xl_utilities.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/modeling_tf_transfo_xl_utilities.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..54caebda4883fec0f285d5f3f2c82c2ce78e0066 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/modeling_tf_transfo_xl_utilities.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/modeling_transfo_xl.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/modeling_transfo_xl.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0b55d4e8c87c80635bd2ab92bd8a4a553b6e3617 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/modeling_transfo_xl.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/modeling_transfo_xl_utilities.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/modeling_transfo_xl_utilities.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7fc1c94f4b440cf288d7d238ce81902b3776c71d Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/modeling_transfo_xl_utilities.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/tokenization_transfo_xl.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/tokenization_transfo_xl.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..19ac11cefa082e2fa139bb32caf03efb05196adb Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/tokenization_transfo_xl.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/configuration_transfo_xl.py b/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/configuration_transfo_xl.py new file mode 100644 index 0000000000000000000000000000000000000000..50bf94ae7ea3983d40dcf3d03c2e4e1027c23c80 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/configuration_transfo_xl.py @@ -0,0 +1,189 @@ +# coding=utf-8 +# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Transformer XL configuration""" + +from ....configuration_utils import PretrainedConfig +from ....utils import logging + + +logger = logging.get_logger(__name__) + + +from .._archive_maps import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class TransfoXLConfig(PretrainedConfig): + """ + This is the configuration class to store the configuration of a [`TransfoXLModel`] or a [`TFTransfoXLModel`]. It is + used to instantiate a Transformer-XL model according to the specified arguments, defining the model architecture. + Instantiating a configuration with the defaults will yield a similar configuration to that of the TransfoXL + [transfo-xl/transfo-xl-wt103](https://huggingface.co/transfo-xl/transfo-xl-wt103) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + vocab_size (`int`, *optional*, defaults to 267735): + Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`TransfoXLModel`] or [`TFTransfoXLModel`]. + cutoffs (`List[int]`, *optional*, defaults to `[20000, 40000, 200000]`): + Cutoffs for the adaptive softmax. + d_model (`int`, *optional*, defaults to 1024): + Dimensionality of the model's hidden states. + d_embed (`int`, *optional*, defaults to 1024): + Dimensionality of the embeddings + n_head (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer encoder. + d_head (`int`, *optional*, defaults to 64): + Dimensionality of the model's heads. + d_inner (`int`, *optional*, defaults to 4096): + Inner dimension in FF + div_val (`int`, *optional*, defaults to 4): + Divident value for adapative input and softmax + pre_lnorm (`boolean`, *optional*, defaults to `False`): + Whether or not to apply LayerNorm to the input instead of the output in the blocks. + n_layer (`int`, *optional*, defaults to 18): + Number of hidden layers in the Transformer encoder. + mem_len (`int`, *optional*, defaults to 1600): + Length of the retained previous heads. + clamp_len (`int`, *optional*, defaults to 1000): + Use the same pos embeddings after clamp_len. + same_length (`boolean`, *optional*, defaults to `True`): + Whether or not to use the same attn length for all tokens + proj_share_all_but_first (`boolean`, *optional*, defaults to `True`): + True to share all but first projs, False not to share. + attn_type (`int`, *optional*, defaults to 0): + Attention type. 0 for Transformer-XL, 1 for Shaw et al, 2 for Vaswani et al, 3 for Al Rfou et al. + sample_softmax (`int`, *optional*, defaults to -1): + Number of samples in the sampled softmax. + adaptive (`boolean`, *optional*, defaults to `True`): + Whether or not to use adaptive softmax. + dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + dropatt (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + untie_r (`boolean`, *optional*, defaults to `True`): + Whether ot not to untie relative position biases. + init (`str`, *optional*, defaults to `"normal"`): + Parameter initializer to use. + init_range (`float`, *optional*, defaults to 0.01): + Parameters initialized by U(-init_range, init_range). + proj_init_std (`float`, *optional*, defaults to 0.01): + Parameters initialized by N(0, init_std) + init_std (`float`, *optional*, defaults to 0.02): + Parameters initialized by N(0, init_std) + layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): + The epsilon to use in the layer normalization layers + eos_token_id (`int`, *optional*, defaults to 0): + End of stream token id. + + Examples: + + ```python + >>> from transformers import TransfoXLConfig, TransfoXLModel + + >>> # Initializing a Transformer XL configuration + >>> configuration = TransfoXLConfig() + + >>> # Initializing a model (with random weights) from the configuration + >>> model = TransfoXLModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "transfo-xl" + keys_to_ignore_at_inference = ["mems"] + attribute_map = { + "n_token": "vocab_size", + "hidden_size": "d_model", + "num_attention_heads": "n_head", + "num_hidden_layers": "n_layer", + } + + def __init__( + self, + vocab_size=267735, + cutoffs=[20000, 40000, 200000], + d_model=1024, + d_embed=1024, + n_head=16, + d_head=64, + d_inner=4096, + div_val=4, + pre_lnorm=False, + n_layer=18, + mem_len=1600, + clamp_len=1000, + same_length=True, + proj_share_all_but_first=True, + attn_type=0, + sample_softmax=-1, + adaptive=True, + dropout=0.1, + dropatt=0.0, + untie_r=True, + init="normal", + init_range=0.01, + proj_init_std=0.01, + init_std=0.02, + layer_norm_epsilon=1e-5, + eos_token_id=0, + **kwargs, + ): + self.vocab_size = vocab_size + self.cutoffs = [] + self.cutoffs.extend(cutoffs) + if proj_share_all_but_first: + self.tie_projs = [False] + [True] * len(self.cutoffs) + else: + self.tie_projs = [False] + [False] * len(self.cutoffs) + self.d_model = d_model + self.d_embed = d_embed + self.d_head = d_head + self.d_inner = d_inner + self.div_val = div_val + self.pre_lnorm = pre_lnorm + self.n_layer = n_layer + self.n_head = n_head + self.mem_len = mem_len + self.same_length = same_length + self.attn_type = attn_type + self.clamp_len = clamp_len + self.sample_softmax = sample_softmax + self.adaptive = adaptive + self.dropout = dropout + self.dropatt = dropatt + self.untie_r = untie_r + self.init = init + self.init_range = init_range + self.proj_init_std = proj_init_std + self.init_std = init_std + self.layer_norm_epsilon = layer_norm_epsilon + super().__init__(eos_token_id=eos_token_id, **kwargs) + + @property + def max_position_embeddings(self): + # Message copied from Transformer-XL documentation + logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.") + return -1 + + @max_position_embeddings.setter + def max_position_embeddings(self, value): + # Message copied from Transformer-XL documentation + raise NotImplementedError( + f"The model {self.model_type} is one of the few models that has no sequence length limit." + ) diff --git a/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/convert_transfo_xl_original_tf_checkpoint_to_pytorch.py b/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/convert_transfo_xl_original_tf_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..d2693ac333b84b08769eb15a13a26dcf1a547267 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/convert_transfo_xl_original_tf_checkpoint_to_pytorch.py @@ -0,0 +1,121 @@ +# coding=utf-8 +# Copyright 2018 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert Transformer XL checkpoint and datasets.""" + + +import argparse +import os +import pickle +import sys + +import torch + +from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl +from transformers.models.deprecated.transfo_xl import tokenization_transfo_xl as data_utils +from transformers.models.deprecated.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES +from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging + + +logging.set_verbosity_info() + +# We do this to be able to load python 2 datasets pickles +# See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 +data_utils.Vocab = data_utils.TransfoXLTokenizer +data_utils.Corpus = data_utils.TransfoXLCorpus +sys.modules["data_utils"] = data_utils +sys.modules["vocabulary"] = data_utils + + +def convert_transfo_xl_checkpoint_to_pytorch( + tf_checkpoint_path, transfo_xl_config_file, pytorch_dump_folder_path, transfo_xl_dataset_file +): + if transfo_xl_dataset_file: + # Convert a pre-processed corpus (see original TensorFlow repo) + with open(transfo_xl_dataset_file, "rb") as fp: + corpus = pickle.load(fp, encoding="latin1") + # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) + pytorch_vocab_dump_path = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["pretrained_vocab_file"] + print(f"Save vocabulary to {pytorch_vocab_dump_path}") + corpus_vocab_dict = corpus.vocab.__dict__ + torch.save(corpus_vocab_dict, pytorch_vocab_dump_path) + + corpus_dict_no_vocab = corpus.__dict__ + corpus_dict_no_vocab.pop("vocab", None) + pytorch_dataset_dump_path = pytorch_dump_folder_path + "/" + CORPUS_NAME + print(f"Save dataset to {pytorch_dataset_dump_path}") + torch.save(corpus_dict_no_vocab, pytorch_dataset_dump_path) + + if tf_checkpoint_path: + # Convert a pre-trained TensorFlow model + config_path = os.path.abspath(transfo_xl_config_file) + tf_path = os.path.abspath(tf_checkpoint_path) + + print(f"Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.") + # Initialise PyTorch model + if transfo_xl_config_file == "": + config = TransfoXLConfig() + else: + config = TransfoXLConfig.from_json_file(transfo_xl_config_file) + print(f"Building PyTorch model from configuration: {config}") + model = TransfoXLLMHeadModel(config) + + model = load_tf_weights_in_transfo_xl(model, config, tf_path) + # Save pytorch-model + pytorch_weights_dump_path = os.path.join(pytorch_dump_folder_path, WEIGHTS_NAME) + pytorch_config_dump_path = os.path.join(pytorch_dump_folder_path, CONFIG_NAME) + print(f"Save PyTorch model to {os.path.abspath(pytorch_weights_dump_path)}") + torch.save(model.state_dict(), pytorch_weights_dump_path) + print(f"Save configuration file to {os.path.abspath(pytorch_config_dump_path)}") + with open(pytorch_config_dump_path, "w", encoding="utf-8") as f: + f.write(config.to_json_string()) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument( + "--pytorch_dump_folder_path", + default=None, + type=str, + required=True, + help="Path to the folder to store the PyTorch model or dataset/vocab.", + ) + parser.add_argument( + "--tf_checkpoint_path", + default="", + type=str, + help="An optional path to a TensorFlow checkpoint path to be converted.", + ) + parser.add_argument( + "--transfo_xl_config_file", + default="", + type=str, + help=( + "An optional config json file corresponding to the pre-trained BERT model. \n" + "This specifies the model architecture." + ), + ) + parser.add_argument( + "--transfo_xl_dataset_file", + default="", + type=str, + help="An optional dataset file to be converted in a vocabulary.", + ) + args = parser.parse_args() + convert_transfo_xl_checkpoint_to_pytorch( + args.tf_checkpoint_path, + args.transfo_xl_config_file, + args.pytorch_dump_folder_path, + args.transfo_xl_dataset_file, + ) diff --git a/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl.py b/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl.py new file mode 100644 index 0000000000000000000000000000000000000000..27200a5d63f18b1d6457f1e303022f43b0d75d50 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl.py @@ -0,0 +1,1122 @@ +# coding=utf-8 +# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" + TF 2.0 Transformer XL model. +""" + +from __future__ import annotations + +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ....modeling_tf_utils import ( + TFModelInputType, + TFPreTrainedModel, + TFSequenceClassificationLoss, + get_initializer, + keras, + keras_serializable, + unpack_inputs, +) +from ....tf_utils import shape_list, stable_softmax +from ....utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, +) +from .configuration_transfo_xl import TransfoXLConfig +from .modeling_tf_transfo_xl_utilities import TFAdaptiveSoftmaxMask + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "transfo-xl/transfo-xl-wt103" +_CONFIG_FOR_DOC = "TransfoXLConfig" + + +from .._archive_maps import TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +class TFPositionalEmbedding(keras.layers.Layer): + def __init__(self, demb, **kwargs): + super().__init__(**kwargs) + + self.inv_freq = 1 / (10000 ** (tf.range(0, demb, 2.0) / demb)) + + def call(self, pos_seq, bsz=None): + self.inv_freq = tf.cast(self.inv_freq, dtype=pos_seq.dtype) + sinusoid_inp = tf.einsum("i,j->ij", pos_seq, self.inv_freq) + pos_emb = tf.concat([tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)], -1) + + if bsz is not None: + return tf.tile(pos_emb[:, None, :], [1, bsz, 1]) + else: + return pos_emb[:, None, :] + + +class TFPositionwiseFF(keras.layers.Layer): + def __init__(self, d_model, d_inner, dropout, pre_lnorm=False, layer_norm_epsilon=1e-5, init_std=0.02, **kwargs): + super().__init__(**kwargs) + + self.d_model = d_model + self.d_inner = d_inner + self.dropout = dropout + + self.layer_1 = keras.layers.Dense( + d_inner, kernel_initializer=get_initializer(init_std), activation=tf.nn.relu, name="CoreNet_._0" + ) + self.drop_1 = keras.layers.Dropout(dropout) + self.layer_2 = keras.layers.Dense(d_model, kernel_initializer=get_initializer(init_std), name="CoreNet_._3") + self.drop_2 = keras.layers.Dropout(dropout) + + self.layer_norm = keras.layers.LayerNormalization(epsilon=layer_norm_epsilon, name="layer_norm") + + self.pre_lnorm = pre_lnorm + + def call(self, inp, training=False): + if self.pre_lnorm: + # layer normalization + positionwise feed-forward + core_out = self.layer_norm(inp) + core_out = self.layer_1(core_out) + core_out = self.drop_1(core_out, training=training) + core_out = self.layer_2(core_out) + core_out = self.drop_2(core_out, training=training) + + # residual connection + output = core_out + inp + else: + # positionwise feed-forward + core_out = self.layer_1(inp) + core_out = self.drop_1(core_out, training=training) + core_out = self.layer_2(core_out) + core_out = self.drop_2(core_out, training=training) + + # residual connection + layer normalization + output = self.layer_norm(inp + core_out) + + return output + + +class TFRelPartialLearnableMultiHeadAttn(keras.layers.Layer): + def __init__( + self, + n_head, + d_model, + d_head, + dropout, + dropatt=0.0, + pre_lnorm=False, + r_r_bias=None, + r_w_bias=None, + layer_norm_epsilon=1e-5, + init_std=0.02, + output_attentions=False, + **kwargs, + ): + super().__init__(**kwargs) + + self.n_head = n_head + self.d_model = d_model + self.d_head = d_head + self.dropout = dropout + self.output_attentions = output_attentions + + self.qkv_net = keras.layers.Dense( + 3 * n_head * d_head, kernel_initializer=get_initializer(init_std), use_bias=False, name="qkv_net" + ) + + self.drop = keras.layers.Dropout(dropout) + self.dropatt = keras.layers.Dropout(dropatt) + self.o_net = keras.layers.Dense( + d_model, kernel_initializer=get_initializer(init_std), use_bias=False, name="o_net" + ) + + self.layer_norm = keras.layers.LayerNormalization(epsilon=layer_norm_epsilon, name="layer_norm") + + self.scale = 1 / (d_head**0.5) + + self.pre_lnorm = pre_lnorm + + if r_r_bias is not None and r_w_bias is not None: # Biases are shared + self.r_r_bias = r_r_bias + self.r_w_bias = r_w_bias + else: + self.r_r_bias = None + self.r_w_bias = None + + self.r_net = keras.layers.Dense( + self.n_head * self.d_head, kernel_initializer=get_initializer(init_std), use_bias=False, name="r_net" + ) + + def build(self, input_shape): + if self.r_r_bias is None or self.r_w_bias is None: # Biases are not shared + self.r_r_bias = self.add_weight( + shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_r_bias" + ) + self.r_w_bias = self.add_weight( + shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_w_bias" + ) + super().build(input_shape) + + def _rel_shift(self, x): + x_size = shape_list(x) + + x = tf.pad(x, [[0, 0], [1, 0], [0, 0], [0, 0]]) + x = tf.reshape(x, [x_size[1] + 1, x_size[0], x_size[2], x_size[3]]) + x = tf.slice(x, [1, 0, 0, 0], [-1, -1, -1, -1]) + x = tf.reshape(x, x_size) + + return x + + def call(self, w, r, attn_mask, mems, head_mask, output_attentions, training=False): + qlen, rlen, bsz = shape_list(w)[0], shape_list(r)[0], shape_list(w)[1] + + if mems is not None: + mems = tf.cast(mems, dtype=w.dtype) + cat = tf.concat([mems, w], 0) + if self.pre_lnorm: + w_heads = self.qkv_net(self.layer_norm(cat)) + else: + w_heads = self.qkv_net(cat) + r_head_k = self.r_net(r) + + w_head_q, w_head_k, w_head_v = tf.split(w_heads, 3, axis=-1) + w_head_q = w_head_q[-qlen:] + else: + if self.pre_lnorm: + w_heads = self.qkv_net(self.layer_norm(w)) + else: + w_heads = self.qkv_net(w) + r_head_k = self.r_net(r) + + w_head_q, w_head_k, w_head_v = tf.split(w_heads, 3, axis=-1) + + klen = shape_list(w_head_k)[0] + + w_head_q = tf.reshape(w_head_q, (qlen, bsz, self.n_head, self.d_head)) # qlen x bsz x n_head x d_head + w_head_k = tf.reshape(w_head_k, (klen, bsz, self.n_head, self.d_head)) # qlen x bsz x n_head x d_head + w_head_v = tf.reshape(w_head_v, (klen, bsz, self.n_head, self.d_head)) # qlen x bsz x n_head x d_head + + r_head_k = tf.reshape(r_head_k, (rlen, self.n_head, self.d_head)) # qlen x n_head x d_head + + # compute attention score + rw_head_q = w_head_q + self.r_w_bias # qlen x bsz x n_head x d_head + AC = tf.einsum("ibnd,jbnd->ijbn", rw_head_q, w_head_k) # qlen x klen x bsz x n_head + + rr_head_q = w_head_q + self.r_r_bias + BD = tf.einsum("ibnd,jnd->ijbn", rr_head_q, r_head_k) # qlen x klen x bsz x n_head + BD = self._rel_shift(BD) + + # [qlen x klen x bsz x n_head] + attn_score = AC + BD + attn_score = attn_score * self.scale + + # compute attention probability + if attn_mask is not None: + attn_mask_t = attn_mask[:, :, None, None] + attn_mask_t = tf.cast(attn_mask_t, dtype=attn_score.dtype) + attn_score = attn_score * (1.0 - attn_mask_t) - 1e30 * attn_mask_t + + # [qlen x klen x bsz x n_head] + attn_prob = stable_softmax(attn_score, axis=1) + attn_prob = self.dropatt(attn_prob, training=training) + + # Mask heads if we want to + if head_mask is not None: + attn_prob = attn_prob * head_mask + + # compute attention vector + attn_vec = tf.einsum("ijbn,jbnd->ibnd", attn_prob, w_head_v) + + # [qlen x bsz x n_head x d_head] + attn_vec_sizes = shape_list(attn_vec) + attn_vec = tf.reshape(attn_vec, (attn_vec_sizes[0], attn_vec_sizes[1], self.n_head * self.d_head)) + + # linear projection + attn_out = self.o_net(attn_vec) + attn_out = self.drop(attn_out, training=training) + + if self.pre_lnorm: + # residual connection + outputs = [w + attn_out] + else: + # residual connection + layer normalization + outputs = [self.layer_norm(w + attn_out)] + + if output_attentions: + outputs.append(attn_prob) + + return outputs + + +class TFRelPartialLearnableDecoderLayer(keras.layers.Layer): + def __init__( + self, + n_head, + d_model, + d_head, + d_inner, + dropout, + dropatt=0.0, + pre_lnorm=False, + r_w_bias=None, + r_r_bias=None, + layer_norm_epsilon=1e-5, + init_std=0.02, + output_attentions=False, + **kwargs, + ): + super().__init__(**kwargs) + + self.dec_attn = TFRelPartialLearnableMultiHeadAttn( + n_head, + d_model, + d_head, + dropout, + dropatt=dropatt, + pre_lnorm=pre_lnorm, + r_w_bias=r_w_bias, + r_r_bias=r_r_bias, + init_std=init_std, + layer_norm_epsilon=layer_norm_epsilon, + output_attentions=output_attentions, + name="dec_attn", + ) + self.pos_ff = TFPositionwiseFF( + d_model, + d_inner, + dropout, + pre_lnorm=pre_lnorm, + init_std=init_std, + layer_norm_epsilon=layer_norm_epsilon, + name="pos_ff", + ) + + def call(self, dec_inp, r, dec_attn_mask, mems, head_mask, output_attentions, training=False): + attn_outputs = self.dec_attn(dec_inp, r, dec_attn_mask, mems, head_mask, output_attentions, training=training) + ff_output = self.pos_ff(attn_outputs[0], training=training) + + outputs = [ff_output] + attn_outputs[1:] + + return outputs + + +class TFTransfoEmbeddings(keras.layers.Layer): + def __init__(self, vocab_size, emb_size, init_std, **kwargs): + super().__init__(**kwargs) + + self.vocab_size = vocab_size + self.emb_size = emb_size + self.init_std = init_std + + def build(self, input_shape): + self.weight = self.add_weight( + shape=(self.vocab_size, self.emb_size), + initializer=get_initializer(self.init_std), + name="embeddings", + ) + + super().build(input_shape) + + def call(self, inputs): + return tf.gather(self.weight, inputs) + + +class TFAdaptiveEmbedding(keras.layers.Layer): + def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, init_std=0.02, sample_softmax=False, **kwargs): + super().__init__(**kwargs) + + self.n_token = n_token + self.d_embed = d_embed + self.init_std = init_std + + self.cutoffs = cutoffs + [n_token] + self.div_val = div_val + self.d_proj = d_proj + + self.emb_scale = d_proj**0.5 + + self.cutoff_ends = [0] + self.cutoffs + + self.emb_layers = [] + self.emb_projs = [] + + if div_val == 1: + raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint + else: + for i in range(len(self.cutoffs)): + l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] + d_emb_i = d_embed // (div_val**i) + self.emb_layers.append( + TFTransfoEmbeddings( + r_idx - l_idx, + d_emb_i, + init_std, + name=f"emb_layers_._{i}", + ) + ) + + def build(self, input_shape): + for i in range(len(self.cutoffs)): + d_emb_i = self.d_embed // (self.div_val**i) + self.emb_projs.append( + self.add_weight( + shape=(d_emb_i, self.d_proj), + initializer=get_initializer(self.init_std), + trainable=True, + name=f"emb_projs_._{i}", + ) + ) + + super().build(input_shape) + + def call(self, inp): + if self.div_val == 1: + raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint + else: + inp_flat = tf.reshape(inp, (-1,)) + emb_flat = tf.zeros([shape_list(inp_flat)[0], self.d_proj]) + for i in range(len(self.cutoffs)): + l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] + + mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx) + + inp_i = tf.boolean_mask(inp_flat, mask_i) - l_idx + emb_i = self.emb_layers[i](inp_i) + emb_i = tf.einsum("id,de->ie", emb_i, self.emb_projs[i]) + + mask_idx = tf.where(mask_i) + scatter = tf.scatter_nd(mask_idx, emb_i, shape_list(emb_flat)) + emb_flat = tf.cast(emb_flat, dtype=scatter.dtype) + emb_flat += scatter + + embed_shape = shape_list(inp) + [self.d_proj] + embed = tf.reshape(emb_flat, embed_shape) + + embed *= self.emb_scale + + return embed + + +@keras_serializable +class TFTransfoXLMainLayer(keras.layers.Layer): + config_class = TransfoXLConfig + + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.output_hidden_states = config.output_hidden_states + self.output_attentions = config.output_attentions + self.return_dict = config.use_return_dict + + self.n_token = config.vocab_size + + self.d_embed = config.d_embed + self.d_model = config.d_model + self.n_head = config.n_head + self.d_head = config.d_head + self.untie_r = config.untie_r + + self.word_emb = TFAdaptiveEmbedding( + config.vocab_size, + config.d_embed, + config.d_model, + config.cutoffs, + div_val=config.div_val, + init_std=config.init_std, + name="word_emb", + ) + + self.drop = keras.layers.Dropout(config.dropout) + + self.n_layer = config.n_layer + self.mem_len = config.mem_len + self.attn_type = config.attn_type + + self.layers = [] + if config.attn_type == 0: # the default attention + for i in range(config.n_layer): + self.layers.append( + TFRelPartialLearnableDecoderLayer( + config.n_head, + config.d_model, + config.d_head, + config.d_inner, + config.dropout, + dropatt=config.dropatt, + pre_lnorm=config.pre_lnorm, + r_w_bias=None if self.untie_r else self.r_w_bias, + r_r_bias=None if self.untie_r else self.r_r_bias, + layer_norm_epsilon=config.layer_norm_epsilon, + init_std=config.init_std, + output_attentions=self.output_attentions, + name=f"layers_._{i}", + ) + ) + else: # learnable embeddings and absolute embeddings + raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint + + self.same_length = config.same_length + self.clamp_len = config.clamp_len + + if self.attn_type == 0: # default attention + self.pos_emb = TFPositionalEmbedding(self.d_model, name="pos_emb") + else: # learnable embeddings and absolute embeddings + raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint + + def build(self, input_shape): + if not self.untie_r: + self.r_w_bias = self.add_weight( + shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_w_bias" + ) + self.r_r_bias = self.add_weight( + shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_r_bias" + ) + super().build(input_shape) + + def get_input_embeddings(self): + return self.word_emb + + def set_input_embeddings(self, value): + raise NotImplementedError + + def backward_compatible(self): + self.sample_softmax = -1 + + def reset_memory_length(self, mem_len): + self.mem_len = mem_len + + def _prune_heads(self, heads): + raise NotImplementedError + + def init_mems(self, bsz): + if self.mem_len > 0: + mems = [] + for i in range(self.n_layer): + empty = tf.zeros([self.mem_len, bsz, self.d_model]) + mems.append(empty) + + return mems + else: + return None + + def _update_mems(self, hids, mems, mlen, qlen): + # does not deal with None + if mems is None: + return None + + # mems is not None + assert len(hids) == len(mems), "len(hids) != len(mems)" + + # There are `mlen + qlen` steps that can be cached into mems + new_mems = [] + end_idx = mlen + tf.math.maximum(0, qlen) + beg_idx = tf.math.maximum(0, end_idx - tf.convert_to_tensor(self.mem_len)) + for i in range(len(hids)): + mems[i] = tf.cast(mems[i], dtype=hids[i].dtype) + cat = tf.concat([mems[i], hids[i]], axis=0) + tf.stop_gradient(cat) + new_mems.append(cat[beg_idx:end_idx]) + + return new_mems + + @unpack_inputs + def call( + self, + input_ids: TFModelInputType | None = None, + mems: List[tf.Tensor] | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: bool = False, + ): + # the original code for Transformer-XL used shapes [len, bsz] but we want a unified interface in the library + # so we transpose here from shape [bsz, len] to shape [len, bsz] + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_ids = tf.transpose(input_ids, perm=(1, 0)) + qlen, bsz = shape_list(input_ids) + elif inputs_embeds is not None: + inputs_embeds = tf.transpose(inputs_embeds, perm=(1, 0, 2)) + qlen, bsz = shape_list(inputs_embeds)[:2] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if mems is None: + mems = self.init_mems(bsz) + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer) + # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head] + if head_mask is not None: + raise NotImplementedError + else: + head_mask = [None] * self.n_layer + + if inputs_embeds is not None: + word_emb = inputs_embeds + else: + word_emb = self.word_emb(input_ids) + + mlen = shape_list(mems[0])[0] if mems is not None else 0 + klen = mlen + qlen + + # Compute decoder attention mask + all_ones = tf.ones([qlen, klen], dtype=tf.int32) + upper_mask = 1 - tf.linalg.band_part(tf.ones([qlen, klen], dtype=tf.int32), -1, mlen) + if self.same_length: + mask_len = klen - self.mem_len + mask_shift_len = qlen - tf.nn.relu(mask_len) # Lazy clamping of negatives to zero + + # Use an indicator variable instead of a conditional to keep the compiler happy + lower_mask = tf.linalg.band_part(all_ones, -1, 0) - ( + tf.linalg.band_part(all_ones, mask_shift_len - 1, 0) * tf.cast(mask_shift_len != 0, tf.int32) + ) + dec_attn_mask = upper_mask + lower_mask + else: + dec_attn_mask = upper_mask + + hids = [] + attentions = [] if output_attentions else None + if self.attn_type == 0: # default + pos_seq = tf.range(klen - 1, -1, -1.0) + if self.clamp_len > 0: + pos_seq = tf.minimum(pos_seq, self.clamp_len) + pos_emb = self.pos_emb(pos_seq) + + core_out = self.drop(word_emb, training=training) + pos_emb = self.drop(pos_emb, training=training) + + for i, layer in enumerate(self.layers): + hids.append(core_out) + mems_i = None if mems is None else mems[i] + layer_outputs = layer( + core_out, + pos_emb, + dec_attn_mask, + mems_i, + head_mask[i], + output_attentions, + training=training, + ) + core_out = layer_outputs[0] + if output_attentions: + attentions.append(layer_outputs[1]) + else: # learnable embeddings and absolute embeddings + raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint + + core_out = self.drop(core_out, training=training) + + new_mems = self._update_mems(hids, mems, mlen, qlen) + + # We transpose back here to shape [bsz, len, hidden_dim] + core_out = tf.transpose(core_out, perm=(1, 0, 2)) + + if output_hidden_states: + # Transpose to library standard shape [bsz, len, hidden_dim] and add last layer + hids = tuple(tf.transpose(t, perm=(1, 0, 2)) for t in hids) + hids = hids + (core_out,) + else: + hids = None + if output_attentions: + # Transpose to library standard shape [bsz, n_heads, query_seq_len, key_seq_len] + attentions = tuple(tf.transpose(t, perm=(2, 3, 0, 1)) for t in attentions) + + if not return_dict: + return tuple(v for v in [core_out, new_mems, hids, attentions] if v is not None) + + return TFTransfoXLModelOutput( + last_hidden_state=core_out, + mems=new_mems, + hidden_states=hids, + attentions=attentions, + ) + + +class TFTransfoXLPreTrainedModel(TFPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = TransfoXLConfig + base_model_prefix = "transformer" + + +@dataclass +class TFTransfoXLModelOutput(ModelOutput): + """ + Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). + + Args: + last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + mems (`List[tf.Tensor]` of length `config.n_layers`): + Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems` + input) to speed up sequential decoding. The token ids which have their past given to this model should not + be passed as input ids as they have already been computed. + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + last_hidden_state: tf.Tensor = None + mems: List[tf.Tensor] = None + hidden_states: Tuple[tf.Tensor] | None = None + attentions: Tuple[tf.Tensor] | None = None + + +@dataclass +class TFTransfoXLLMHeadModelOutput(ModelOutput): + """ + Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). + + Args: + losses (`tf.Tensor` of shape *(batch_size, sequence_length-1)*, *optional*, returned when `labels` is provided): + Language modeling losses (not reduced). + prediction_scores (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token after SoftMax). + mems (`List[tf.Tensor]` of length `config.n_layers`): + Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems` + input) to speed up sequential decoding. The token ids which have their past given to this model should not + be passed as input ids as they have already been computed. + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + prediction_scores: tf.Tensor = None + mems: List[tf.Tensor] = None + hidden_states: Tuple[tf.Tensor] | None = None + attentions: Tuple[tf.Tensor] | None = None + + +@dataclass +class TFTransfoXLSequenceClassifierOutputWithPast(ModelOutput): + """ + Base class for outputs of sentence classification models. + + Args: + loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Classification (or regression if config.num_labels==1) loss. + logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`): + Classification (or regression if config.num_labels==1) scores (before SoftMax). + mems (`List[tf.Tensor]` of length `config.n_layers`): + Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems` + input) to speed up sequential decoding. The token ids which have their past given to this model should not + be passed as input ids as they have already been computed. + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: tf.Tensor | None = None + logits: tf.Tensor = None + mems: List[tf.Tensor] = None + hidden_states: Tuple[tf.Tensor] | None = None + attentions: Tuple[tf.Tensor] | None = None + + +TRANSFO_XL_START_DOCSTRING = r""" + + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Parameters: + config ([`TransfoXLConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +TRANSFO_XL_INPUTS_DOCSTRING = r""" + Args: + input_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and + [`PreTrainedTokenizer.encode`] for details. + + [What are input IDs?](../glossary#input-ids) + mems (`List[tf.Tensor]` of length `config.n_layers`): + Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see + `mems` output below). Can be used to speed up sequential decoding. The token ids which have their mems + given to this model should not be passed as `input_ids` as they have already been computed. + head_mask (`tf.Tensor` or `Numpy array` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + inputs_embeds (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the + config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. This argument can be used only in eager mode, in graph mode the value in the config will be + used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in + eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). +""" + + +@add_start_docstrings( + "The bare Bert Model transformer outputting raw hidden-states without any specific head on top.", + TRANSFO_XL_START_DOCSTRING, +) +class TFTransfoXLModel(TFTransfoXLPreTrainedModel): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.transformer = TFTransfoXLMainLayer(config, name="transformer") + + @unpack_inputs + @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFTransfoXLModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + mems: List[tf.Tensor] | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: bool | None = None, + output_hidden_states: bool | None = None, + return_dict: bool | None = None, + training: bool = False, + ) -> TFTransfoXLModelOutput | Tuple[tf.Tensor]: + outputs = self.transformer( + input_ids=input_ids, + mems=mems, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + return outputs + + +@add_start_docstrings( + """ + The Transformer-XL Model with a language modeling head on top (adaptive softmax with weights tied to the adaptive + input embeddings) + """, + TRANSFO_XL_START_DOCSTRING, +) +class TFTransfoXLLMHeadModel(TFTransfoXLPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.transformer = TFTransfoXLMainLayer(config, name="transformer") + self.sample_softmax = config.sample_softmax + assert self.sample_softmax <= 0, ( + "Sampling from the softmax is not implemented yet. Please look at issue: #3310:" + " https://github.com/huggingface/transformers/issues/3310" + ) + + self.crit = TFAdaptiveSoftmaxMask( + config.vocab_size, config.d_embed, config.d_model, config.cutoffs, div_val=config.div_val, name="crit" + ) + + def _resize_token_embeddings(self, new_num_tokens): + raise NotImplementedError() + + def get_output_embeddings(self): + """Double-check if you are using adaptive softmax.""" + if len(self.crit.out_layers) > 0: + return self.crit.out_layers[-1] + return None + + def reset_memory_length(self, mem_len): + self.transformer.reset_memory_length(mem_len) + + def init_mems(self, bsz): + return self.transformer.init_mems(bsz) + + @unpack_inputs + @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFTransfoXLLMHeadModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + mems: List[tf.Tensor] | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: bool | None = None, + output_hidden_states: bool | None = None, + return_dict: bool | None = None, + labels: np.ndarray | tf.Tensor | None = None, + training: bool = False, + ) -> TFTransfoXLLMHeadModelOutput | Tuple[tf.Tensor]: + if input_ids is not None: + bsz, tgt_len = shape_list(input_ids)[:2] + else: + bsz, tgt_len = shape_list(inputs_embeds)[:2] + + transformer_outputs = self.transformer( + input_ids, + mems, + head_mask, + inputs_embeds, + output_attentions, + output_hidden_states, + return_dict, + training=training, + ) + + last_hidden = transformer_outputs[0] + pred_hid = last_hidden[:, -tgt_len:] + + softmax_output = self.crit(pred_hid, labels, training=training) + prediction_scores = softmax_output if labels is None else () + + if not return_dict: + return (prediction_scores,) + transformer_outputs[1:] + + return TFTransfoXLLMHeadModelOutput( + prediction_scores=prediction_scores, + mems=transformer_outputs.mems, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **model_kwargs): + inputs = {} + + # if past is defined in model kwargs then use it for faster decoding + if past_key_values: + input_ids = tf.expand_dims(input_ids[:, -1], axis=-1) + else: + input_ids = input_ids + + return inputs + + # Adapted from the torch tie_weights function + def tf_to_pt_weight_rename(self, tf_weight): + if self.config.tie_word_embeddings and "crit.out_layers" in tf_weight: + return tf_weight, tf_weight.replace("crit.out_layers", "transformer.word_emb.emb_layers") + elif self.config.tie_projs and "crit.out_projs" in tf_weight: + for i, tie_proj in enumerate(self.config.tie_projs): + if tie_proj and self.config.div_val == 1 and self.config.d_model != self.config.d_embed: + # self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[0] + return tf_weight, tf_weight.replace(f"crit.out_projs.{i}", "transformer.word_emb.emb_projs.0") + elif tie_proj and self.config.div_val != 1: + # self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[i] + return tf_weight, tf_weight.replace("crit.out_projs", "transformer.word_emb.emb_projs") + else: + return (tf_weight,) + + +@add_start_docstrings( + """ + The Transfo XL Model transformer with a sequence classification head on top (linear layer). + + [`TFTransfoXLForSequenceClassification`] uses the last token in order to do the classification, as other causal + models (e.g. GPT-1,GPT-2) do. + + Since it does classification on the last token, it requires to know the position of the last token. If a + `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If + no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the + padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in + each row of the batch). + """, + TRANSFO_XL_START_DOCSTRING, +) +class TFTransfoXLForSequenceClassification(TFTransfoXLPreTrainedModel, TFSequenceClassificationLoss): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.num_labels = config.num_labels + self.score = keras.layers.Dense( + config.num_labels, + kernel_initializer=get_initializer(config.init_range), + name="score", + use_bias=False, + ) + self.transformer = TFTransfoXLMainLayer(config, name="transformer") + + def get_output_embeddings(self): + # Remove after transformers v4.32. Fix this model's `test_model_common_attributes` test too. + logger.warning( + "Sequence classification models do not have output embeddings. `.get_output_embeddings` will be removed " + "in transformers v4.32." + ) + return self.transformer.word_emb + + @unpack_inputs + @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFTransfoXLSequenceClassifierOutputWithPast, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + mems: List[tf.Tensor] | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[Tuple, TFTransfoXLSequenceClassifierOutputWithPast]: + r""" + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the cross entropy classification loss. Indices should be in `[0, ..., + config.vocab_size - 1]`. + """ + transformer_outputs = self.transformer( + input_ids=input_ids, + mems=mems, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + hidden_states = transformer_outputs[0] + logits = self.score(hidden_states) + in_logits = None + if self.config.pad_token_id is None: + sequence_lengths = -1 + else: + if input_ids is not None: + sequence_lengths = ( + tf.argmax(tf.cast(tf.math.equal(input_ids, self.config.pad_token_id), input_ids.dtype), axis=-1) + - 1 + ) + sequence_lengths = tf.where(sequence_lengths >= 0, sequence_lengths, input_ids.shape[-1] - 1) + in_logits = tf.gather(logits, sequence_lengths, batch_dims=1, axis=1) + else: + sequence_lengths = -1 + logger.warning( + f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " + "unexpected if using padding tokens in conjunction with `inputs_embeds.`" + ) + loss = None + + if labels is not None: + if input_ids is not None: + batch_size, sequence_length = shape_list(input_ids)[:2] + else: + batch_size, sequence_length = shape_list(inputs_embeds)[:2] + assert ( + self.config.pad_token_id is not None or batch_size == 1 + ), "Cannot handle batch sizes > 1 if no padding token is defined." + + if not tf.is_tensor(sequence_lengths): + in_logits = logits[0:batch_size, sequence_lengths] + + loss = self.hf_compute_loss(tf.reshape(labels, [-1, 1]), tf.reshape(in_logits, [-1, self.num_labels])) + + pooled_logits = in_logits if in_logits is not None else logits + + if not return_dict: + output = (pooled_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return TFTransfoXLSequenceClassifierOutputWithPast( + loss=loss, + logits=pooled_logits, + mems=transformer_outputs.mems, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) diff --git a/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl_utilities.py b/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl_utilities.py new file mode 100644 index 0000000000000000000000000000000000000000..ed1488d5595cb8f36eb540992fb4ca46534a60fb --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl_utilities.py @@ -0,0 +1,179 @@ +# coding=utf-8 +# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" + A TF 2.0 Adaptive Softmax for Transformer XL model. +""" + + +import tensorflow as tf + +from ....modeling_tf_utils import keras +from ....tf_utils import shape_list + + +class TFAdaptiveSoftmaxMask(keras.layers.Layer): + def __init__(self, vocab_size, d_embed, d_proj, cutoffs, div_val=1, keep_order=False, **kwargs): + super().__init__(**kwargs) + + self.vocab_size = vocab_size + self.d_embed = d_embed + self.d_proj = d_proj + + self.cutoffs = cutoffs + [vocab_size] + self.cutoff_ends = [0] + self.cutoffs + self.div_val = div_val + + self.shortlist_size = self.cutoffs[0] + self.n_clusters = len(self.cutoffs) - 1 + self.head_size = self.shortlist_size + self.n_clusters + self.keep_order = keep_order + + self.out_layers = [] + self.out_projs = [] + + def build(self, input_shape): + if self.n_clusters > 0: + self.cluster_weight = self.add_weight( + shape=(self.n_clusters, self.d_embed), initializer="zeros", trainable=True, name="cluster_weight" + ) + self.cluster_bias = self.add_weight( + shape=(self.n_clusters,), initializer="zeros", trainable=True, name="cluster_bias" + ) + + if self.div_val == 1: + for i in range(len(self.cutoffs)): + if self.d_proj != self.d_embed: + weight = self.add_weight( + shape=(self.d_embed, self.d_proj), + initializer="zeros", + trainable=True, + name=f"out_projs_._{i}", + ) + self.out_projs.append(weight) + else: + self.out_projs.append(None) + weight = self.add_weight( + shape=(self.vocab_size, self.d_embed), + initializer="zeros", + trainable=True, + name=f"out_layers_._{i}_._weight", + ) + bias = self.add_weight( + shape=(self.vocab_size,), + initializer="zeros", + trainable=True, + name=f"out_layers_._{i}_._bias", + ) + self.out_layers.append((weight, bias)) + else: + for i in range(len(self.cutoffs)): + l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] + d_emb_i = self.d_embed // (self.div_val**i) + + weight = self.add_weight( + shape=(d_emb_i, self.d_proj), initializer="zeros", trainable=True, name=f"out_projs_._{i}" + ) + self.out_projs.append(weight) + weight = self.add_weight( + shape=(r_idx - l_idx, d_emb_i), + initializer="zeros", + trainable=True, + name=f"out_layers_._{i}_._weight", + ) + bias = self.add_weight( + shape=(r_idx - l_idx,), + initializer="zeros", + trainable=True, + name=f"out_layers_._{i}_._bias", + ) + self.out_layers.append((weight, bias)) + super().build(input_shape) + + @staticmethod + def _logit(x, W, b, proj=None): + y = x + if proj is not None: + y = tf.einsum("ibd,ed->ibe", y, proj) + return tf.einsum("ibd,nd->ibn", y, W) + b + + @staticmethod + def _gather_logprob(logprob, target): + lp_size = shape_list(logprob) + r = tf.range(lp_size[0], dtype=target.dtype) + idx = tf.stack([r, target], 1) + return tf.gather_nd(logprob, idx) + + def call(self, hidden, target, return_mean=True, training=False): + head_logprob = 0 + if self.n_clusters == 0: + output = self._logit(hidden, self.out_layers[0][0], self.out_layers[0][1], self.out_projs[0]) + if target is not None: + loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target, logits=output) + out = tf.nn.log_softmax(output, axis=-1) + else: + hidden_sizes = shape_list(hidden) + out = [] + loss = tf.zeros(hidden_sizes[:2]) + for i in range(len(self.cutoffs)): + l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] + if target is not None: + mask = (target >= l_idx) & (target < r_idx) + mask_idx = tf.where(mask) + cur_target = tf.boolean_mask(target, mask) - l_idx + + if self.div_val == 1: + cur_W = self.out_layers[0][0][l_idx:r_idx] + cur_b = self.out_layers[0][1][l_idx:r_idx] + else: + cur_W = self.out_layers[i][0] + cur_b = self.out_layers[i][1] + + if i == 0: + cur_W = tf.concat([cur_W, self.cluster_weight], 0) + cur_b = tf.concat([cur_b, self.cluster_bias], 0) + + head_logit = self._logit(hidden, cur_W, cur_b, self.out_projs[0]) + head_logprob = tf.nn.log_softmax(head_logit) + out.append(head_logprob[..., : self.cutoffs[0]]) + if target is not None: + cur_head_logprob = tf.boolean_mask(head_logprob, mask) + cur_logprob = self._gather_logprob(cur_head_logprob, cur_target) + else: + tail_logit = self._logit(hidden, cur_W, cur_b, self.out_projs[i]) + tail_logprob = tf.nn.log_softmax(tail_logit) + cluster_prob_idx = self.cutoffs[0] + i - 1 # No probability for the head cluster + logprob_i = head_logprob[..., cluster_prob_idx, None] + tail_logprob + out.append(logprob_i) + if target is not None: + cur_head_logprob = tf.boolean_mask(head_logprob, mask) + cur_tail_logprob = tf.boolean_mask(tail_logprob, mask) + cur_logprob = self._gather_logprob(cur_tail_logprob, cur_target) + cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] + if target is not None: + loss += tf.scatter_nd(mask_idx, -cur_logprob, shape_list(loss)) + out = tf.concat(out, axis=-1) + + if target is not None: + if return_mean: + loss = tf.reduce_mean(loss) + # Add the training-time loss value to the layer using `self.add_loss()`. + self.add_loss(loss) + + # Log the loss as a metric (we could log arbitrary metrics, + # including different metrics for training and inference. + self.add_metric(loss, name=self.name, aggregation="mean" if return_mean else "") + + return out diff --git a/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_transfo_xl.py b/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_transfo_xl.py new file mode 100644 index 0000000000000000000000000000000000000000..897a3899c74cbd84713d96e3dad90cce2411dd17 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_transfo_xl.py @@ -0,0 +1,1295 @@ +# coding=utf-8 +# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" + PyTorch Transformer XL model. Adapted from https://github.com/kimiyoung/transformer-xl. In particular + https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/mem_transformer.py +""" +import warnings +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union + +import torch +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ....modeling_utils import PreTrainedModel +from ....utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, +) +from .configuration_transfo_xl import TransfoXLConfig +from .modeling_transfo_xl_utilities import ProjectedAdaptiveLogSoftmax + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "transfo-xl/transfo-xl-wt103" +_CONFIG_FOR_DOC = "TransfoXLConfig" + + +from .._archive_maps import TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +def build_tf_to_pytorch_map(model, config): + """ + A map of modules from TF to PyTorch. This time I use a map to keep the PyTorch model as identical to the original + PyTorch model as possible. + """ + tf_to_pt_map = {} + + if hasattr(model, "transformer"): + # We are loading in a TransfoXLLMHeadModel => we will load also the Adaptive Softmax + tf_to_pt_map.update( + { + "transformer/adaptive_softmax/cutoff_0/cluster_W": model.crit.cluster_weight, + "transformer/adaptive_softmax/cutoff_0/cluster_b": model.crit.cluster_bias, + } + ) + for i, (out_l, proj_l, tie_proj) in enumerate( + zip(model.crit.out_layers, model.crit.out_projs, config.tie_projs) + ): + layer_str = f"transformer/adaptive_softmax/cutoff_{i}/" + if config.tie_word_embeddings: + tf_to_pt_map.update({layer_str + "b": out_l.bias}) + else: + raise NotImplementedError + # I don't think this is implemented in the TF code + tf_to_pt_map.update({layer_str + "lookup_table": out_l.weight, layer_str + "b": out_l.bias}) + if not tie_proj: + tf_to_pt_map.update({layer_str + "proj": proj_l}) + # Now load the rest of the transformer + model = model.transformer + + # Embeddings + for i, (embed_l, proj_l) in enumerate(zip(model.word_emb.emb_layers, model.word_emb.emb_projs)): + layer_str = f"transformer/adaptive_embed/cutoff_{i}/" + tf_to_pt_map.update({layer_str + "lookup_table": embed_l.weight, layer_str + "proj_W": proj_l}) + + # Transformer blocks + for i, b in enumerate(model.layers): + layer_str = f"transformer/layer_{i}/" + tf_to_pt_map.update( + { + layer_str + "rel_attn/LayerNorm/gamma": b.dec_attn.layer_norm.weight, + layer_str + "rel_attn/LayerNorm/beta": b.dec_attn.layer_norm.bias, + layer_str + "rel_attn/o/kernel": b.dec_attn.o_net.weight, + layer_str + "rel_attn/qkv/kernel": b.dec_attn.qkv_net.weight, + layer_str + "rel_attn/r/kernel": b.dec_attn.r_net.weight, + layer_str + "ff/LayerNorm/gamma": b.pos_ff.layer_norm.weight, + layer_str + "ff/LayerNorm/beta": b.pos_ff.layer_norm.bias, + layer_str + "ff/layer_1/kernel": b.pos_ff.CoreNet[0].weight, + layer_str + "ff/layer_1/bias": b.pos_ff.CoreNet[0].bias, + layer_str + "ff/layer_2/kernel": b.pos_ff.CoreNet[3].weight, + layer_str + "ff/layer_2/bias": b.pos_ff.CoreNet[3].bias, + } + ) + + # Relative positioning biases + if config.untie_r: + r_r_list = [] + r_w_list = [] + for b in model.layers: + r_r_list.append(b.dec_attn.r_r_bias) + r_w_list.append(b.dec_attn.r_w_bias) + else: + r_r_list = [model.r_r_bias] + r_w_list = [model.r_w_bias] + tf_to_pt_map.update({"transformer/r_r_bias": r_r_list, "transformer/r_w_bias": r_w_list}) + return tf_to_pt_map + + +def load_tf_weights_in_transfo_xl(model, config, tf_path): + """Load tf checkpoints in a pytorch model""" + try: + import numpy as np + import tensorflow as tf + except ImportError: + logger.error( + "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " + "https://www.tensorflow.org/install/ for installation instructions." + ) + raise + # Build TF to PyTorch weights loading map + tf_to_pt_map = build_tf_to_pytorch_map(model, config) + + # Load weights from TF model + init_vars = tf.train.list_variables(tf_path) + tf_weights = {} + for name, shape in init_vars: + logger.info(f"Loading TF weight {name} with shape {shape}") + array = tf.train.load_variable(tf_path, name) + tf_weights[name] = array + + for name, pointer in tf_to_pt_map.items(): + assert name in tf_weights + array = tf_weights[name] + # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v + # which are not required for using pretrained model + if "kernel" in name or "proj" in name: + array = np.transpose(array) + if ("r_r_bias" in name or "r_w_bias" in name) and len(pointer) > 1: + # Here we will split the TF weights + assert len(pointer) == array.shape[0] + for i, p_i in enumerate(pointer): + arr_i = array[i, ...] + try: + assert p_i.shape == arr_i.shape + except AssertionError as e: + e.args += (p_i.shape, arr_i.shape) + raise + logger.info(f"Initialize PyTorch weight {name} for layer {i}") + p_i.data = torch.from_numpy(arr_i) + else: + try: + assert ( + pointer.shape == array.shape + ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" + except AssertionError as e: + e.args += (pointer.shape, array.shape) + raise + logger.info(f"Initialize PyTorch weight {name}") + pointer.data = torch.from_numpy(array) + tf_weights.pop(name, None) + tf_weights.pop(name + "/Adam", None) + tf_weights.pop(name + "/Adam_1", None) + + logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}") + return model + + +class PositionalEmbedding(nn.Module): + def __init__(self, demb): + super().__init__() + + self.demb = demb + + inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb)) + self.register_buffer("inv_freq", inv_freq) + + def forward(self, pos_seq, bsz=None): + sinusoid_inp = torch.outer(pos_seq, self.inv_freq) + pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1) + + if bsz is not None: + return pos_emb[:, None, :].expand(-1, bsz, -1) + else: + return pos_emb[:, None, :] + + +class PositionwiseFF(nn.Module): + def __init__(self, d_model, d_inner, dropout, pre_lnorm=False, layer_norm_epsilon=1e-5): + super().__init__() + + self.d_model = d_model + self.d_inner = d_inner + self.dropout = dropout + + self.CoreNet = nn.Sequential( + nn.Linear(d_model, d_inner), + nn.ReLU(inplace=True), + nn.Dropout(dropout), + nn.Linear(d_inner, d_model), + nn.Dropout(dropout), + ) + + self.layer_norm = nn.LayerNorm(d_model, eps=layer_norm_epsilon) + + self.pre_lnorm = pre_lnorm + + def forward(self, inp): + if self.pre_lnorm: + # layer normalization + positionwise feed-forward + core_out = self.CoreNet(self.layer_norm(inp)) + + # residual connection + output = core_out + inp + else: + # positionwise feed-forward + core_out = self.CoreNet(inp) + + # residual connection + layer normalization + output = self.layer_norm(inp + core_out) + + return output + + +class RelPartialLearnableMultiHeadAttn(nn.Module): + def __init__( + self, + n_head, + d_model, + d_head, + dropout, + dropatt=0, + pre_lnorm=False, + r_r_bias=None, + r_w_bias=None, + layer_norm_epsilon=1e-5, + ): + super().__init__() + + self.n_head = n_head + self.d_model = d_model + self.d_head = d_head + self.dropout = dropout + + self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head, bias=False) + + self.drop = nn.Dropout(dropout) + self.dropatt = nn.Dropout(dropatt) + self.o_net = nn.Linear(n_head * d_head, d_model, bias=False) + + self.layer_norm = nn.LayerNorm(d_model, eps=layer_norm_epsilon) + + self.scale = 1 / (d_head**0.5) + + self.pre_lnorm = pre_lnorm + + if r_r_bias is None or r_w_bias is None: # Biases are not shared + self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head)) + self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head)) + else: + self.r_r_bias = r_r_bias + self.r_w_bias = r_w_bias + + self.r_net = nn.Linear(self.d_model, self.n_head * self.d_head, bias=False) + + def _rel_shift(self, x): + zero_pad_shape = (x.size(0), 1) + x.size()[2:] + zero_pad = torch.zeros(zero_pad_shape, device=x.device, dtype=x.dtype) + x_padded = torch.cat([zero_pad, x], dim=1) + + x_padded_shape = (x.size(1) + 1, x.size(0)) + x.size()[2:] + x_padded = x_padded.view(*x_padded_shape) + + x = x_padded[1:].view_as(x) + + return x + + def forward(self, w, r, attn_mask=None, mems=None, head_mask=None, output_attentions=False): + qlen, rlen, bsz = w.size(0), r.size(0), w.size(1) + + if mems is not None: + cat = torch.cat([mems, w], 0) + if self.pre_lnorm: + w_heads = self.qkv_net(self.layer_norm(cat)) + else: + w_heads = self.qkv_net(cat) + r_head_k = self.r_net(r) + + w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1) + w_head_q = w_head_q[-qlen:] + else: + if self.pre_lnorm: + w_heads = self.qkv_net(self.layer_norm(w)) + else: + w_heads = self.qkv_net(w) + r_head_k = self.r_net(r) + + w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1) + + klen = w_head_k.size(0) + + w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head) # qlen x bsz x n_head x d_head + w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head) # qlen x bsz x n_head x d_head + w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head) # qlen x bsz x n_head x d_head + + r_head_k = r_head_k.view(rlen, self.n_head, self.d_head) # qlen x n_head x d_head + + # compute attention score + rw_head_q = w_head_q + self.r_w_bias # qlen x bsz x n_head x d_head + AC = torch.einsum("ibnd,jbnd->ijbn", (rw_head_q, w_head_k)) # qlen x klen x bsz x n_head + + rr_head_q = w_head_q + self.r_r_bias + BD = torch.einsum("ibnd,jnd->ijbn", (rr_head_q, r_head_k)) # qlen x klen x bsz x n_head + BD = self._rel_shift(BD) + + # [qlen x klen x bsz x n_head] + attn_score = AC + BD + attn_score.mul_(self.scale) + + mask_value = torch.finfo(attn_score.dtype).min + + # compute attention probability + if attn_mask is not None and torch.sum(attn_mask).item(): + attn_mask = attn_mask == 1 # Switch to bool + if attn_mask.dim() == 2: + attn_score = ( + attn_score.float().masked_fill(attn_mask[None, :, :, None], mask_value).type_as(attn_score) + ) + elif attn_mask.dim() == 3: + attn_score = attn_score.float().masked_fill(attn_mask[:, :, :, None], mask_value).type_as(attn_score) + + # [qlen x klen x bsz x n_head] + attn_prob = nn.functional.softmax(attn_score, dim=1) + attn_prob = self.dropatt(attn_prob) + + # Mask heads if we want to + if head_mask is not None: + attn_prob = attn_prob * head_mask + + # compute attention vector + attn_vec = torch.einsum("ijbn,jbnd->ibnd", (attn_prob, w_head_v)) + + # [qlen x bsz x n_head x d_head] + attn_vec = attn_vec.contiguous().view(attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head) + + # linear projection + attn_out = self.o_net(attn_vec) + attn_out = self.drop(attn_out) + + if self.pre_lnorm: + # residual connection + outputs = [w + attn_out] + else: + # residual connection + layer normalization + outputs = [self.layer_norm(w + attn_out)] + + if output_attentions: + outputs.append(attn_prob) + + return outputs + + +class RelPartialLearnableDecoderLayer(nn.Module): + def __init__(self, n_head, d_model, d_head, d_inner, dropout, layer_norm_epsilon=1e-5, **kwargs): + super().__init__() + + self.dec_attn = RelPartialLearnableMultiHeadAttn( + n_head, d_model, d_head, dropout, layer_norm_epsilon=layer_norm_epsilon, **kwargs + ) + self.pos_ff = PositionwiseFF( + d_model, d_inner, dropout, pre_lnorm=kwargs.get("pre_lnorm"), layer_norm_epsilon=layer_norm_epsilon + ) + + def forward(self, dec_inp, r, dec_attn_mask=None, mems=None, head_mask=None, output_attentions=False): + attn_outputs = self.dec_attn( + dec_inp, + r, + attn_mask=dec_attn_mask, + mems=mems, + head_mask=head_mask, + output_attentions=output_attentions, + ) + ff_output = self.pos_ff(attn_outputs[0]) + + outputs = [ff_output] + attn_outputs[1:] + + return outputs + + +class AdaptiveEmbedding(nn.Module): + def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, sample_softmax=False): + super().__init__() + + self.n_token = n_token + self.d_embed = d_embed + + self.cutoffs = cutoffs + [n_token] + self.div_val = div_val + self.d_proj = d_proj + + self.emb_scale = d_proj**0.5 + + self.cutoff_ends = [0] + self.cutoffs + + self.emb_layers = nn.ModuleList() + self.emb_projs = nn.ParameterList() + if div_val == 1: + self.emb_layers.append(nn.Embedding(n_token, d_embed, sparse=sample_softmax > 0)) + if d_proj != d_embed: + self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_embed))) + else: + for i in range(len(self.cutoffs)): + l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] + d_emb_i = d_embed // (div_val**i) + self.emb_layers.append(nn.Embedding(r_idx - l_idx, d_emb_i)) + self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_emb_i))) + + def forward(self, inp): + if self.div_val == 1: + embed = self.emb_layers[0](inp) + if self.d_proj != self.d_embed: + embed = nn.functional.linear(embed, self.emb_projs[0]) + else: + param = next(self.parameters()) + inp_flat = inp.view(-1) + emb_flat = torch.zeros([inp_flat.size(0), self.d_proj], dtype=param.dtype, device=param.device) + for i in range(len(self.cutoffs)): + l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] + + mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx) + indices_i = mask_i.nonzero().squeeze() + + if indices_i.numel() == 0: + continue + + inp_i = inp_flat.index_select(0, indices_i) - l_idx + emb_i = self.emb_layers[i](inp_i) + emb_i = nn.functional.linear(emb_i, self.emb_projs[i]) + + emb_flat.index_copy_(0, indices_i, emb_i) + + embed_shape = inp.size() + (self.d_proj,) + embed = emb_flat.view(embed_shape) + + embed.mul_(self.emb_scale) + + return embed + + +class TransfoXLPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = TransfoXLConfig + load_tf_weights = load_tf_weights_in_transfo_xl + base_model_prefix = "transformer" + + def _init_weight(self, weight): + if self.config.init == "uniform": + nn.init.uniform_(weight, -self.config.init_range, self.config.init_range) + elif self.config.init == "normal": + nn.init.normal_(weight, 0.0, self.config.init_std) + + def _init_bias(self, bias): + nn.init.constant_(bias, 0.0) + + def _init_weights(self, m): + """Initialize the weights.""" + classname = m.__class__.__name__ + if classname.find("Linear") != -1: + if hasattr(m, "weight") and m.weight is not None: + self._init_weight(m.weight) + if hasattr(m, "bias") and m.bias is not None: + self._init_bias(m.bias) + elif classname.find("AdaptiveEmbedding") != -1: + if hasattr(m, "emb_projs"): + for i in range(len(m.emb_projs)): + if m.emb_projs[i] is not None: + nn.init.normal_(m.emb_projs[i], 0.0, self.config.proj_init_std) + elif classname.find("Embedding") != -1: + if hasattr(m, "weight"): + self._init_weight(m.weight) + elif classname.find("ProjectedAdaptiveLogSoftmax") != -1: + if hasattr(m, "cluster_weight") and m.cluster_weight is not None: + self._init_weight(m.cluster_weight) + if hasattr(m, "cluster_bias") and m.cluster_bias is not None: + self._init_bias(m.cluster_bias) + if hasattr(m, "out_projs"): + for i in range(len(m.out_projs)): + if m.out_projs[i] is not None: + nn.init.normal_(m.out_projs[i], 0.0, self.config.proj_init_std) + elif classname.find("LayerNorm") != -1: + if hasattr(m, "weight"): + nn.init.normal_(m.weight, 1.0, self.config.init_std) + if hasattr(m, "bias") and m.bias is not None: + self._init_bias(m.bias) + else: + if hasattr(m, "r_emb"): + self._init_weight(m.r_emb) + if hasattr(m, "r_w_bias"): + self._init_weight(m.r_w_bias) + if hasattr(m, "r_r_bias"): + self._init_weight(m.r_r_bias) + if hasattr(m, "r_bias"): + self._init_bias(m.r_bias) + + def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, layer: Optional[int] = -1): + """ + Resize input token embeddings matrix of the model if new_num_tokens != config.vocab_size. Take care of tying + weights embeddings afterwards if the model class has a *tie_weights()* method. + + Arguments: + new_num_tokens: (*optional*) int: + New number of tokens in the embedding matrix. Increasing the size will add newly initialized vectors at + the end. Reducing the size will remove vectors from the end. If not provided or None: does nothing and + just returns a pointer to the input tokens `torch.nn.Embeddings` Module of the model. + layer: (*optional*) int: + Layer of the *AdaptiveEmbedding* where the resizing should be done. Per default the last layer will be + resized. Be aware that when resizing other than the last layer, you have to ensure that the new + token(s) in the tokenizer are at the corresponding position. + + Return: `torch.nn.Embeddings` Pointer to the input tokens Embeddings Module of the model + """ + base_model = getattr(self, self.base_model_prefix, self) # get the base model if needed + + if new_num_tokens is None: + return self.get_input_embeddings() + + new_num_tokens_layer, layer = self._get_new_num_tokens_layer(new_num_tokens, layer) + assert new_num_tokens_layer > 0, "The size of the new embedding layer cannot be 0 or less" + model_embeds = base_model._resize_token_embeddings(new_num_tokens_layer, layer) + + # Update base model and current model config + self.config.vocab_size = new_num_tokens + base_model.vocab_size = new_num_tokens + base_model.n_token = new_num_tokens + + new_embedding_shapes = self._get_embedding_shapes() + self._resize_cutoffs(new_num_tokens, new_num_tokens_layer, new_embedding_shapes, layer) + + # Tie weights again if needed + self.tie_weights() + + return model_embeds + + def _get_new_num_tokens_layer(self, new_num_tokens, layer): + embeddings = self.get_input_embeddings() + if layer == -1: + layer = len(embeddings.emb_layers) - 1 + assert 0 <= layer <= len(embeddings.emb_layers) - 1 + + new_num_tokens_layer = ( + new_num_tokens + - sum([emb.weight.shape[0] for emb in embeddings.emb_layers[:layer]]) + - sum([emb.weight.shape[0] for emb in embeddings.emb_layers[layer + 1 :]]) + ) + return new_num_tokens_layer, layer + + def _get_embedding_shapes(self): + embeddings = self.get_input_embeddings() + return [emb.weight.shape[0] for emb in embeddings.emb_layers] + + def _resize_token_embeddings(self, new_num_tokens, layer=-1): + embeddings = self.get_input_embeddings() + if new_num_tokens is None: + return embeddings + new_embeddings_layer = self._get_resized_embeddings(embeddings.emb_layers[layer], new_num_tokens) + embeddings.emb_layers[layer] = new_embeddings_layer + + self.set_input_embeddings(embeddings) + + return self.get_input_embeddings() + + def _resize_cutoffs(self, new_num_tokens, new_emb_size, new_embedding_shapes, layer): + embeddings = self.get_input_embeddings() + + for i in range(layer, len(embeddings.cutoffs)): + embeddings.cutoffs[i] = sum(new_embedding_shapes[: i + 1]) + + embeddings.cutoff_ends = [0] + embeddings.cutoffs + embeddings.n_token = new_num_tokens + + self.config.cutoffs = embeddings.cutoffs[:-1] + + return embeddings.cutoffs + + +@dataclass +class TransfoXLModelOutput(ModelOutput): + """ + Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + mems (`List[torch.FloatTensor]` of length `config.n_layers`): + Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems` + input) to speed up sequential decoding. The token ids which have their past given to this model should not + be passed as input ids as they have already been computed. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + last_hidden_state: torch.FloatTensor + mems: List[torch.FloatTensor] = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +@dataclass +class TransfoXLSequenceClassifierOutputWithPast(ModelOutput): + """ + Base class for outputs of sentence classification models. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Classification (or regression if config.num_labels==1) loss. + logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): + Classification (or regression if config.num_labels==1) scores (before SoftMax). + mems (`List[torch.FloatTensor]` of length `config.n_layers`): + Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems` + input) to speed up sequential decoding. The token ids which have their past given to this model should not + be passed as input ids as they have already been computed. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + mems: List[torch.FloatTensor] = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +@dataclass +class TransfoXLLMHeadModelOutput(ModelOutput): + """ + Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). + + Args: + losses (`torch.FloatTensor` of shape *(batch_size, sequence_length-1)*, *optional*, returned when `labels` is provided): + Language modeling losses (not reduced). + prediction_scores (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token after SoftMax). + mems (`List[torch.FloatTensor]` of length `config.n_layers`): + Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems` + input) to speed up sequential decoding. The token ids which have their past given to this model should not + be passed as input ids as they have already been computed. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + loss (`torch.FloatTensor` of shape `()`, *optional*, returned when `labels` is provided) + Reduced language modeling loss. + """ + + losses: Optional[torch.FloatTensor] = None + prediction_scores: torch.FloatTensor = None + mems: List[torch.FloatTensor] = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + loss: Optional[torch.FloatTensor] = None + + @property + def logits(self): + # prediction scores are the output of the adaptive softmax, see + # the file `modeling_transfo_xl_utilities`. Since the adaptive + # softmax returns the log softmax value, `self.prediction_scores` + # are strictly speaking not exactly `logits`, but behave the same + # way logits do. + return self.prediction_scores + + +TRANSFO_XL_START_DOCSTRING = r""" + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`TransfoXLConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +TRANSFO_XL_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + mems (`List[torch.FloatTensor]` of length `config.n_layers`): + Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see + `mems` output below). Can be used to speed up sequential decoding. The token ids which have their mems + given to this model should not be passed as `input_ids` as they have already been computed. + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare Bert Model transformer outputting raw hidden-states without any specific head on top.", + TRANSFO_XL_START_DOCSTRING, +) +class TransfoXLModel(TransfoXLPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.n_token = config.vocab_size + + self.d_embed = config.d_embed + self.d_model = config.d_model + self.n_head = config.n_head + self.d_head = config.d_head + + self.word_emb = AdaptiveEmbedding( + config.vocab_size, config.d_embed, config.d_model, config.cutoffs, div_val=config.div_val + ) + + self.drop = nn.Dropout(config.dropout) + + self.n_layer = config.n_layer + self.mem_len = config.mem_len + self.attn_type = config.attn_type + + if not config.untie_r: + self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head)) + self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head)) + + self.layers = nn.ModuleList() + if config.attn_type == 0: # the default attention + for i in range(config.n_layer): + self.layers.append( + RelPartialLearnableDecoderLayer( + config.n_head, + config.d_model, + config.d_head, + config.d_inner, + config.dropout, + dropatt=config.dropatt, + pre_lnorm=config.pre_lnorm, + r_w_bias=None if config.untie_r else self.r_w_bias, + r_r_bias=None if config.untie_r else self.r_r_bias, + layer_norm_epsilon=config.layer_norm_epsilon, + ) + ) + else: # learnable embeddings and absolute embeddings are not used in our pretrained checkpoints + raise NotImplementedError # Removed them to avoid maintaining dead code + + self.same_length = config.same_length + self.clamp_len = config.clamp_len + + if self.attn_type == 0: # default attention + self.pos_emb = PositionalEmbedding(self.d_model) + else: # learnable embeddings and absolute embeddings + raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.word_emb + + def set_input_embeddings(self, new_embeddings): + self.word_emb = new_embeddings + + def backward_compatible(self): + self.sample_softmax = -1 + + def reset_memory_length(self, mem_len): + self.mem_len = mem_len + + def _prune_heads(self, heads): + logger.info("Head pruning is not implemented for Transformer-XL model") + pass + + def init_mems(self, bsz): + if self.mem_len > 0: + mems = [] + param = next(self.parameters()) + for i in range(self.n_layer): + empty = torch.zeros(self.mem_len, bsz, self.config.d_model, dtype=param.dtype, device=param.device) + mems.append(empty) + + return mems + else: + return None + + def _update_mems(self, hids, mems, mlen, qlen): + # does not deal with None + if mems is None: + return None + + # mems is not None + assert len(hids) == len(mems), "len(hids) != len(mems)" + + # There are `mlen + qlen` steps that can be cached into mems + with torch.no_grad(): + new_mems = [] + end_idx = mlen + max(0, qlen) + beg_idx = max(0, end_idx - self.mem_len) + for i in range(len(hids)): + cat = torch.cat([mems[i], hids[i]], dim=0) + new_mems.append(cat[beg_idx:end_idx].detach()) + + return new_mems + + @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TransfoXLModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + mems: Optional[List[torch.FloatTensor]] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, TransfoXLModelOutput]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # the original code for Transformer-XL used shapes [len, bsz] but we want a unified interface in the library + # so we transpose here from shape [bsz, len] to shape [len, bsz] + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_ids = input_ids.transpose(0, 1).contiguous() + qlen, bsz = input_ids.size() + elif inputs_embeds is not None: + inputs_embeds = inputs_embeds.transpose(0, 1).contiguous() + qlen, bsz = inputs_embeds.shape[0], inputs_embeds.shape[1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if mems is None: + mems = self.init_mems(bsz) + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer) + # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head] + if head_mask is not None: + if head_mask.dim() == 1: + head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0) + head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1) + elif head_mask.dim() == 2: + head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1) + head_mask = head_mask.to( + dtype=next(self.parameters()).dtype + ) # switch to float if need + fp16 compatibility + else: + head_mask = [None] * self.n_layer + + if inputs_embeds is not None: + word_emb = inputs_embeds + else: + word_emb = self.word_emb(input_ids) + + mlen = mems[0].size(0) if mems is not None else 0 + klen = mlen + qlen + if self.same_length: + all_ones = word_emb.new_ones((qlen, klen), dtype=torch.bool) + mask_len = klen - self.mem_len + if mask_len > 0: + mask_shift_len = qlen - mask_len + else: + mask_shift_len = qlen + dec_attn_mask = (torch.triu(all_ones, 1 + mlen) + torch.tril(all_ones, -mask_shift_len))[:, :, None] # -1 + else: + dec_attn_mask = torch.triu(word_emb.new_ones((qlen, klen), dtype=torch.bool), diagonal=1 + mlen)[ + :, :, None + ] + + hids = [] + attentions = [] if output_attentions else None + if self.attn_type == 0: # default + pos_seq = torch.arange(klen - 1, -1, -1.0, device=word_emb.device, dtype=torch.int64).type_as( + dtype=word_emb.dtype + ) + if self.clamp_len > 0: + pos_seq.clamp_(max=self.clamp_len) + pos_emb = self.pos_emb(pos_seq) + + core_out = self.drop(word_emb) + pos_emb = self.drop(pos_emb) + + for i, layer in enumerate(self.layers): + hids.append(core_out) + mems_i = None if mems is None else mems[i] + layer_outputs = layer( + core_out, + pos_emb, + dec_attn_mask=dec_attn_mask, + mems=mems_i, + head_mask=head_mask[i], + output_attentions=output_attentions, + ) + core_out = layer_outputs[0] + if output_attentions: + attentions.append(layer_outputs[1]) + else: # learnable embeddings and absolute embeddings + raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint + + core_out = self.drop(core_out) + + new_mems = self._update_mems(hids, mems, mlen, qlen) + + if output_hidden_states: + # Add last layer and transpose to library standard shape [bsz, len, hidden_dim] + hids.append(core_out) + hids = tuple(t.transpose(0, 1).contiguous() for t in hids) + else: + hids = None + if output_attentions: + # Transpose to library standard shape [bsz, n_heads, query_seq_len, key_seq_len] + attentions = tuple(t.permute(2, 3, 0, 1).contiguous() for t in attentions) + # We transpose back here to shape [bsz, len, hidden_dim] + core_out = core_out.transpose(0, 1).contiguous() + + if not return_dict: + return tuple(v for v in [core_out, new_mems, hids, attentions] if v is not None) + + return TransfoXLModelOutput( + last_hidden_state=core_out, + mems=new_mems, + hidden_states=hids, + attentions=attentions, + ) + + +@add_start_docstrings( + """ + The Transformer-XL Model with a language modeling head on top (adaptive softmax with weights tied to the adaptive + input embeddings) + """, + TRANSFO_XL_START_DOCSTRING, +) +class TransfoXLLMHeadModel(TransfoXLPreTrainedModel): + _tied_weights_keys = [r"crit\.out_projs\.\d+", r"crit\.out_layers\.\d+\.weight"] + + def __init__(self, config): + super().__init__(config) + self.transformer = TransfoXLModel(config) + self.sample_softmax = config.sample_softmax + self.trainer_compatible = getattr(config, "trainer_compatible", False) + + if not self.trainer_compatible: + warnings.warn( + "The output of TransfoXL will be updated in v5 to support a single loss as first argument. In order " + "to use that updated output, please specify `trainer_compatible=True` as your configuration" + " attribute.", + DeprecationWarning, + ) + + assert self.sample_softmax <= 0, ( + "Sampling from the softmax is not implemented yet. Please look at issue: #3310:" + " https://github.com/huggingface/transformers/issues/3310" + ) + + self.crit = ProjectedAdaptiveLogSoftmax( + config.vocab_size, config.d_embed, config.d_model, config.cutoffs, div_val=config.div_val + ) + + # Initialize weights and apply final processing + self.post_init() + + def tie_weights(self): + """ + Run this to be sure output and input (adaptive) softmax weights are tied + """ + + if self.config.tie_word_embeddings: + for i in range(len(self.crit.out_layers)): + self._tie_or_clone_weights(self.crit.out_layers[i], self.transformer.word_emb.emb_layers[i]) + if self.config.tie_projs: + for i, tie_proj in enumerate(self.config.tie_projs): + if tie_proj and self.config.div_val == 1 and self.config.d_model != self.config.d_embed: + if self.config.torchscript: + self.crit.out_projs[i] = nn.Parameter(self.transformer.word_emb.emb_projs[0].clone()) + else: + self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[0] + elif tie_proj and self.config.div_val != 1: + if self.config.torchscript: + self.crit.out_projs[i] = nn.Parameter(self.transformer.word_emb.emb_projs[i].clone()) + else: + self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[i] + + def reset_memory_length(self, mem_len): + self.transformer.reset_memory_length(mem_len) + + def init_mems(self, bsz): + return self.transformer.init_mems(bsz) + + @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TransfoXLLMHeadModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + mems: Optional[List[torch.FloatTensor]] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, TransfoXLLMHeadModelOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set + `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` + are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + if input_ids is not None: + bsz, tgt_len = input_ids.size(0), input_ids.size(1) + elif inputs_embeds is not None: + bsz, tgt_len = inputs_embeds.size(0), inputs_embeds.size(1) + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + transformer_outputs = self.transformer( + input_ids, + mems=mems, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + last_hidden = transformer_outputs[0] + pred_hid = last_hidden[:, -tgt_len:] + + if labels is not None: + # Prevents all labels being -100 and throwing an error + # when backwarding the loss + miss_valid_label = labels[0, 1:].sum() == (labels.size(1) - 1) * -100 + if miss_valid_label: + # Sets an token, just to prevent loss from being NaN + labels[0, 1] = self.config.eos_token_id + + softmax_output = self.crit(pred_hid, labels) + prediction_scores = softmax_output.view(bsz, tgt_len, -1) if labels is None else () + + if labels is not None: + losses = softmax_output.view(bsz, tgt_len - 1) + # Avoids from incorporating padding (-100) tokens into loss value + loss = losses[losses != 0].mean() + else: + losses, loss = None, None + + if not return_dict: + if self.trainer_compatible: + output = (prediction_scores, losses) if losses is not None else (prediction_scores,) + output += transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + else: + output = (prediction_scores, *transformer_outputs[1:]) + output = ((losses,) + output) if losses is not None else output + return (output + (loss,)) if loss is not None else output + + return TransfoXLLMHeadModelOutput( + loss=loss, + prediction_scores=prediction_scores, + losses=losses, + mems=transformer_outputs.mems, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + def get_output_embeddings(self): + """Double-check if you are using adaptive softmax.""" + if self.sample_softmax > 0: + return self.out_layer + else: + return self.crit.out_layers[-1] + + def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **model_kwargs): + inputs = {} + + # if past is defined in model kwargs then use it for faster decoding + if past_key_values: + inputs["mems"] = past_key_values + inputs["input_ids"] = input_ids[:, -1].unsqueeze(-1) + else: + inputs["input_ids"] = input_ids + + return inputs + + def _resize_cutoffs(self, new_num_tokens, new_emb_size, new_embedding_shapes, layer): + new_cutoffs = super()._resize_cutoffs(new_num_tokens, new_emb_size, new_embedding_shapes, layer) + + self.crit.cutoffs = new_cutoffs + self.crit.cutoff_ends = [0] + new_cutoffs + self.crit.n_token = new_num_tokens + + @staticmethod + def _reorder_cache(mems: List[torch.Tensor], beam_idx: torch.Tensor) -> List[torch.Tensor]: + """ + This function is used to re-order the `mems` cache if [`~PreTrainedModel.beam_search`] or + [`~PreTrainedModel.beam_sample`] is called. This is required to match `mems` with the correct beam_idx at every + generation step. + """ + return [layer_past.index_select(1, beam_idx.to(layer_past.device)) for layer_past in mems] + + +@add_start_docstrings( + """ + The Transformer-XL Model transformer with a sequence classification head on top (linear layer). + + [`TransfoXLForSequenceClassification`] uses the last token in order to do the classification, as other causal + models (e.g. GPT-1) do. + + Since it does classification on the last token, it requires to know the position of the last token. If a + `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If + no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the + padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in + each row of the batch). + """, + TRANSFO_XL_START_DOCSTRING, +) +class TransfoXLForSequenceClassification(TransfoXLPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.transformer = TransfoXLModel(config) + self.score = nn.Linear(config.d_embed, self.num_labels, bias=False) + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TransfoXLSequenceClassifierOutputWithPast, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + mems: Optional[List[torch.FloatTensor]] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, TransfoXLSequenceClassifierOutputWithPast]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.transformer( + input_ids, + mems=mems, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + logits = self.score(hidden_states) + + if input_ids is not None: + batch_size, sequence_length = input_ids.shape[:2] + else: + batch_size, sequence_length = inputs_embeds.shape[:2] + + assert ( + self.config.pad_token_id is not None or batch_size == 1 + ), "Cannot handle batch sizes > 1 if no padding token is defined." + if self.config.pad_token_id is None: + sequence_lengths = -1 + else: + if input_ids is not None: + # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility + sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 + sequence_lengths = sequence_lengths % input_ids.shape[-1] + sequence_lengths = sequence_lengths.to(logits.device) + else: + sequence_lengths = -1 + logger.warning( + f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " + "unexpected if using padding tokens in conjunction with `inputs_embeds.`" + ) + + pooled_logits = logits[range(batch_size), sequence_lengths] + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(pooled_logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(pooled_logits, labels) + if not return_dict: + output = (pooled_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return TransfoXLSequenceClassifierOutputWithPast( + loss=loss, + logits=pooled_logits, + mems=transformer_outputs.mems, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) diff --git a/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_transfo_xl_utilities.py b/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_transfo_xl_utilities.py new file mode 100644 index 0000000000000000000000000000000000000000..addf2a08372bc00a377ab7410d977c31fb1d48eb --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_transfo_xl_utilities.py @@ -0,0 +1,252 @@ +# coding=utf-8 +# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" + Utilities for PyTorch Transformer XL model. Directly adapted from https://github.com/kimiyoung/transformer-xl. +""" + + +import torch +from torch import nn + + +# CUDA_MAJOR = int(torch.version.cuda.split('.')[0]) +# CUDA_MINOR = int(torch.version.cuda.split('.')[1]) + + +class ProjectedAdaptiveLogSoftmax(nn.Module): + def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, keep_order=False): + super().__init__() + + self.n_token = n_token + self.d_embed = d_embed + self.d_proj = d_proj + + self.cutoffs = cutoffs + [n_token] + self.cutoff_ends = [0] + self.cutoffs + self.div_val = div_val + + self.shortlist_size = self.cutoffs[0] + self.n_clusters = len(self.cutoffs) - 1 + self.head_size = self.shortlist_size + self.n_clusters + + if self.n_clusters > 0: + self.cluster_weight = nn.Parameter(torch.zeros(self.n_clusters, self.d_embed)) + self.cluster_bias = nn.Parameter(torch.zeros(self.n_clusters)) + + self.out_layers = nn.ModuleList() + self.out_projs = nn.ParameterList() + + if div_val == 1: + for i in range(len(self.cutoffs)): + if d_proj != d_embed: + self.out_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_embed))) + else: + self.out_projs.append(None) + + self.out_layers.append(nn.Linear(d_embed, n_token)) + else: + for i in range(len(self.cutoffs)): + l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] + d_emb_i = d_embed // (div_val**i) + + self.out_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_emb_i))) + + self.out_layers.append(nn.Linear(d_emb_i, r_idx - l_idx)) + + self.keep_order = keep_order + + def _compute_logit(self, hidden, weight, bias, proj): + if proj is None: + logit = nn.functional.linear(hidden, weight, bias=bias) + else: + # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: + proj_hid = nn.functional.linear(hidden, proj.t().contiguous()) + logit = nn.functional.linear(proj_hid, weight, bias=bias) + # else: + # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) + # if bias is not None: + # logit = logit + bias + + return logit + + def forward(self, hidden, labels=None, keep_order=False): + """ + Params: + hidden :: [len*bsz x d_proj] + labels :: [len*bsz] + + Return: + if labels is None: out :: [len*bsz x n_tokens] log probabilities of tokens over the vocabulary else: out :: + [(len-1)*bsz] Negative log likelihood. We could replace this implementation by the native PyTorch one if + theirs had an option to set bias on all clusters in the native one. here: + https://github.com/pytorch/pytorch/blob/dbe6a7a9ff1a364a8706bf5df58a1ca96d2fd9da/torch/nn/modules/adaptive.py#L138 + """ + + if labels is not None: + # Shift so that tokens < n predict n + hidden = hidden[..., :-1, :].contiguous() + labels = labels[..., 1:].contiguous() + hidden = hidden.view(-1, hidden.size(-1)) + labels = labels.view(-1) + if hidden.size(0) != labels.size(0): + raise RuntimeError("Input and labels should have the same size in the batch dimension.") + else: + hidden = hidden.view(-1, hidden.size(-1)) + + if self.n_clusters == 0: + logit = self._compute_logit(hidden, self.out_layers[0].weight, self.out_layers[0].bias, self.out_projs[0]) + if labels is not None: + mask = labels != -100 + out = torch.zeros_like(labels, dtype=hidden.dtype, device=hidden.device) + out[mask] = ( + -nn.functional.log_softmax(logit, dim=-1)[mask].gather(1, labels[mask].unsqueeze(1)).squeeze(1) + ) + else: + out = nn.functional.log_softmax(logit, dim=-1) + else: + # construct weights and biases + weights, biases = [], [] + for i in range(len(self.cutoffs)): + if self.div_val == 1: + l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] + weight_i = self.out_layers[0].weight[l_idx:r_idx] + bias_i = self.out_layers[0].bias[l_idx:r_idx] + else: + weight_i = self.out_layers[i].weight + bias_i = self.out_layers[i].bias + + if i == 0: + weight_i = torch.cat([weight_i, self.cluster_weight], dim=0) + bias_i = torch.cat([bias_i, self.cluster_bias], dim=0) + + weights.append(weight_i) + biases.append(bias_i) + + head_weight, head_bias, head_proj = weights[0], biases[0], self.out_projs[0] + + head_logit = self._compute_logit(hidden, head_weight, head_bias, head_proj) + head_logprob = nn.functional.log_softmax(head_logit, dim=1) + + if labels is None: + out = hidden.new_empty((head_logit.size(0), self.n_token)) + else: + out = torch.zeros_like(labels, dtype=hidden.dtype, device=hidden.device) + + offset = 0 + cutoff_values = [0] + self.cutoffs + for i in range(len(cutoff_values) - 1): + l_idx, r_idx = cutoff_values[i], cutoff_values[i + 1] + + if labels is not None: + mask_i = (labels >= l_idx) & (labels < r_idx) + indices_i = mask_i.nonzero().squeeze() + + if indices_i.numel() == 0: + continue + + target_i = labels.index_select(0, indices_i) - l_idx + head_logprob_i = head_logprob.index_select(0, indices_i) + hidden_i = hidden.index_select(0, indices_i) + else: + hidden_i = hidden + + if i == 0: + if labels is not None: + logprob_i = head_logprob_i.gather(1, target_i[:, None]).squeeze(1) + else: + out[:, : self.cutoffs[0]] = head_logprob[:, : self.cutoffs[0]] + else: + weight_i, bias_i, proj_i = weights[i], biases[i], self.out_projs[i] + + tail_logit_i = self._compute_logit(hidden_i, weight_i, bias_i, proj_i) + tail_logprob_i = nn.functional.log_softmax(tail_logit_i, dim=1) + cluster_prob_idx = self.cutoffs[0] + i - 1 # No probability for the head cluster + if labels is not None: + logprob_i = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( + 1, target_i[:, None] + ).squeeze(1) + else: + logprob_i = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i + out[:, l_idx:r_idx] = logprob_i + + if labels is not None: + if (hasattr(self, "keep_order") and self.keep_order) or keep_order: + out.index_copy_(0, indices_i, -logprob_i) + else: + out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) + offset += logprob_i.size(0) + + return out + + def log_prob(self, hidden): + r""" + Computes log probabilities for all \\(n\_classes\\) From: + https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/adaptive.p + + Args: + hidden (Tensor): a minibatch of example + + Returns: + log-probabilities of for each class \\(c\\) in range \\(0 <= c <= n\_classes\\), where \\(n\_classes\\) is + a parameter passed to `AdaptiveLogSoftmaxWithLoss` constructor. Shape: + + - Input: \\((N, in\_features)\\) + - Output: \\((N, n\_classes)\\) + """ + if self.n_clusters == 0: + logit = self._compute_logit(hidden, self.out_layers[0].weight, self.out_layers[0].bias, self.out_projs[0]) + return nn.functional.log_softmax(logit, dim=-1) + else: + # construct weights and biases + weights, biases = [], [] + for i in range(len(self.cutoffs)): + if self.div_val == 1: + l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] + weight_i = self.out_layers[0].weight[l_idx:r_idx] + bias_i = self.out_layers[0].bias[l_idx:r_idx] + else: + weight_i = self.out_layers[i].weight + bias_i = self.out_layers[i].bias + + if i == 0: + weight_i = torch.cat([weight_i, self.cluster_weight], dim=0) + bias_i = torch.cat([bias_i, self.cluster_bias], dim=0) + + weights.append(weight_i) + biases.append(bias_i) + + head_weight, head_bias, head_proj = weights[0], biases[0], self.out_projs[0] + head_logit = self._compute_logit(hidden, head_weight, head_bias, head_proj) + + out = hidden.new_empty((head_logit.size(0), self.n_token)) + head_logprob = nn.functional.log_softmax(head_logit, dim=1) + + cutoff_values = [0] + self.cutoffs + for i in range(len(cutoff_values) - 1): + start_idx, stop_idx = cutoff_values[i], cutoff_values[i + 1] + + if i == 0: + out[:, : self.cutoffs[0]] = head_logprob[:, : self.cutoffs[0]] + else: + weight_i, bias_i, proj_i = weights[i], biases[i], self.out_projs[i] + + tail_logit_i = self._compute_logit(hidden, weight_i, bias_i, proj_i) + tail_logprob_i = nn.functional.log_softmax(tail_logit_i, dim=1) + + logprob_i = head_logprob[:, -i] + tail_logprob_i + out[:, start_idx, stop_idx] = logprob_i + + return out diff --git a/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/tokenization_transfo_xl.py b/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/tokenization_transfo_xl.py new file mode 100644 index 0000000000000000000000000000000000000000..7290a7a83b85660069bc2b88e4ba2734114f3f9b --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/tokenization_transfo_xl.py @@ -0,0 +1,819 @@ +# coding=utf-8 +# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" + Tokenization classes for Transformer XL model. Adapted from https://github.com/kimiyoung/transformer-xl. +""" + + +import glob +import os +import pickle +import re +from collections import Counter, OrderedDict +from typing import List, Optional, Tuple + +import numpy as np + +from ....tokenization_utils import PreTrainedTokenizer +from ....utils import ( + cached_file, + is_sacremoses_available, + is_torch_available, + logging, + requires_backends, + strtobool, + torch_only_method, +) + + +if is_sacremoses_available(): + import sacremoses as sm + + +if is_torch_available(): + import torch + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = { + "pretrained_vocab_file": "vocab.pkl", + "pretrained_vocab_file_torch": "vocab.bin", + "vocab_file": "vocab.txt", +} + + +PRETRAINED_CORPUS_ARCHIVE_MAP = { + "transfo-xl/transfo-xl-wt103": "https://huggingface.co/transfo-xl/transfo-xl-wt103/resolve/main/corpus.bin", +} +CORPUS_NAME = "corpus.bin" + +MATCH_NUMBERS = r"(?<=\d)[,.](?=\d)", r" @\g<0>@ " +DETOKENIZE_NUMBERS = [(r" @\,@ ", r","), (r" @\.@ ", r".")] + + +def tokenize_numbers(text_array: List[str]) -> List[str]: + """ + Splits large comma-separated numbers and floating point values. This is done by replacing commas with ' @,@ ' and + dots with ' @.@ '. + + Args: + text_array: An already tokenized text as list. + + Returns: + A list of strings with tokenized numbers. + + Example: + + ```python + >>> tokenize_numbers(["$", "5,000", "1.73", "m"]) + ['$', '5', '@,@', '000', '1', '@.@', '73', 'm'] + ```""" + tokenized = [] + for i in range(len(text_array)): + reg, sub = MATCH_NUMBERS + replaced = re.sub(reg, sub, text_array[i]).split() + tokenized.extend(replaced) + + return tokenized + + +def detokenize_numbers(text: str) -> str: + """ + Inverts the operation of *tokenize_numbers*. This is replacing ' @,@ ' and ' @.@' by ',' and '.'. + + Args: + text: A string where the number should be detokenized. + + Returns: + A detokenized string. + + Example: + + ```python + >>> detokenize_numbers("$ 5 @,@ 000 1 @.@ 73 m") + '$ 5,000 1.73 m' + ```""" + for reg, sub in DETOKENIZE_NUMBERS: + text = re.sub(reg, sub, text) + return text + + +class TransfoXLTokenizer(PreTrainedTokenizer): + """ + Construct a Transformer-XL tokenizer adapted from Vocab class in [the original + code](https://github.com/kimiyoung/transformer-xl). The Transformer-XL tokenizer is a word-level tokenizer (no + sub-word tokenization). + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + special (`List[str]`, *optional*): + A list of special tokens (to be treated by the original implementation of this tokenizer). + min_freq (`int`, *optional*, defaults to 0): + The minimum number of times a token has to be present in order to be kept in the vocabulary (otherwise it + will be mapped to `unk_token`). + max_size (`int`, *optional*): + The maximum size of the vocabulary. If left unset, it will default to the size of the vocabulary found + after excluding the tokens according to the `min_freq` rule. + lower_case (`bool`, *optional*, defaults to `False`): + Whether or not to lowercase the input when tokenizing. + delimiter (`str`, *optional*): + The delimiter used between tokens. + vocab_file (`str`, *optional*): + File containing the vocabulary (from the original implementation). + pretrained_vocab_file (`str`, *optional*): + File containing the vocabulary as saved with the `save_pretrained()` method. + never_split (`List[str]`, *optional*): + List of tokens that should never be split. If no list is specified, will simply use the existing special + tokens. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + additional_special_tokens (`List[str]`, *optional*, defaults to `['']`): + A list of additional special tokens (for the HuggingFace functionality). + language (`str`, *optional*, defaults to `"en"`): + The language of this tokenizer (used for mose preprocessing). + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids"] + + def __init__( + self, + special=None, + min_freq=0, + max_size=None, + lower_case=False, + delimiter=None, + vocab_file=None, + pretrained_vocab_file: str = None, + never_split=None, + unk_token="", + eos_token="", + additional_special_tokens=[""], + language="en", + **kwargs, + ): + logger.error( + "`TransfoXL` was deprecated due to security issues linked to `pickle.load` in `TransfoXLTokenizer`. " + "See more details on this model's documentation page: " + "`https://github.com/huggingface/transformers/blob/main/docs/source/en/model_doc/transfo-xl.md`." + ) + + requires_backends(self, "sacremoses") + if special is None: + special = [] + self.counter = Counter() + self.special = special + self.min_freq = min_freq + self.max_size = max_size + self.lower_case = lower_case + self.delimiter = delimiter + self.vocab_file = vocab_file + self.punctuation_symbols = '!"#$%&()*+,-./\\:;<=>?@[\\]^_`{|}~' + self.punction_without_space_before_pattern = re.compile(rf"[^\s][{self.punctuation_symbols}]") + self.punctuation_with_space_around_pattern = self._compile_space_around_punctuation_pattern() + self.language = language + self.moses_punct_normalizer = sm.MosesPunctNormalizer(language) + self.moses_tokenizer = sm.MosesTokenizer(language) + self.moses_detokenizer = sm.MosesDetokenizer(language) + self.idx2sym = [] + self.sym2idx = OrderedDict() + # This try... catch... is not beautiful but honestly this tokenizer was not made to be used + # in a library like ours, at all. + try: + vocab_dict = None + if pretrained_vocab_file is not None: + # Priority on pickle files (support PyTorch and TF) + if not strtobool(os.environ.get("TRUST_REMOTE_CODE", "False")): + raise ValueError( + "This part uses `pickle.load` which is insecure and will execute arbitrary code that is " + "potentially malicious. It's recommended to never unpickle data that could have come from an " + "untrusted source, or that could have been tampered with. If you already verified the pickle " + "data and decided to use it, you can set the environment variable " + "`TRUST_REMOTE_CODE` to `True` to allow it." + ) + with open(pretrained_vocab_file, "rb") as f: + vocab_dict = pickle.load(f) + + # Loading a torch-saved transfo-xl vocab dict with pickle results in an integer + # Entering this if statement means that we tried to load a torch-saved file with pickle, and we failed. + # We therefore load it with torch, if it's available. + if isinstance(vocab_dict, int): + if not is_torch_available(): + raise ImportError( + "Not trying to load dict with PyTorch as you need to install pytorch to load " + "from a PyTorch pretrained vocabulary, " + "or activate it with environment variables USE_TORCH=1 and USE_TF=0." + ) + vocab_dict = torch.load(pretrained_vocab_file) + + if vocab_dict is not None: + for key, value in vocab_dict.items(): + if key not in self.__dict__ or key in ["sym2idx", "idx2sym"]: + self.__dict__[key] = value + elif vocab_file is not None: + self.build_vocab() + + except Exception as e: + raise ValueError( + f"Unable to parse file {pretrained_vocab_file}. Unknown format. " + "If you tried to load a model saved through TransfoXLTokenizerFast, " + "please note they are not compatible." + ) from e + + if vocab_file is not None: + self.build_vocab() + + super().__init__( + special=special, + min_freq=min_freq, + max_size=max_size, + lower_case=lower_case, + delimiter=delimiter, + vocab_file=vocab_file, + pretrained_vocab_file=pretrained_vocab_file, + never_split=never_split, + unk_token=unk_token, + eos_token=eos_token, + additional_special_tokens=additional_special_tokens, + language=language, + **kwargs, + ) + + # these are not required to initialize the parent class as only used when tokenizing. + if never_split is None: + never_split = self.all_special_tokens + self.never_split = never_split + + @property + def do_lower_case(self): + return self.lower_case + + def _compile_space_around_punctuation_pattern(self): + look_ahead_for_special_token = f"(?=[{self.punctuation_symbols}])" + look_ahead_to_match_all_except_space = r"(?=[^\s])" + return re.compile(r"" + look_ahead_for_special_token + look_ahead_to_match_all_except_space) + + def count_file(self, path, verbose=False, add_eos=False): + if verbose: + logger.info(f"counting file {path} ...") + assert os.path.exists(path), f"Input file {path} not found" + + sents = [] + with open(path, "r", encoding="utf-8") as f: + for idx, line in enumerate(f): + if verbose and idx > 0 and idx % 500000 == 0: + logger.info(f" line {idx}") + symbols = self.tokenize(line, add_eos=add_eos) + self.counter.update(symbols) + sents.append(symbols) + + return sents + + def count_sents(self, sents, verbose=False): + """ + sents : a list of sentences, each a list of tokenized symbols + """ + if verbose: + logger.info(f"counting {len(sents)} sents ...") + for idx, symbols in enumerate(sents): + if verbose and idx > 0 and idx % 500000 == 0: + logger.info(f" line {idx}") + self.counter.update(symbols) + + def _build_from_file(self, vocab_file): + self.idx2sym = [] + self.sym2idx = OrderedDict() + + with open(vocab_file, "r", encoding="utf-8") as f: + for line in f: + symb = line.strip().split()[0] + self.add_symbol(symb) + if "" in self.sym2idx: + self.unk_idx = self.sym2idx[""] + elif "" in self.sym2idx: + self.unk_idx = self.sym2idx[""] + else: + raise ValueError("Token not in vocabulary and no token in vocabulary for replacement.") + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if os.path.isdir(save_directory): + vocab_file = os.path.join( + save_directory, + (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["pretrained_vocab_file"], + ) + else: + vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory + with open(vocab_file, "wb") as f: + pickle.dump(self.__dict__, f) + return (vocab_file,) + + def build_vocab(self): + if self.vocab_file: + logger.info(f"building vocab from {self.vocab_file}") + self._build_from_file(self.vocab_file) + logger.info(f"Final vocab size {len(self.sym2idx)}") + else: + logger.info(f"building vocab with min_freq={self.min_freq}, max_size={self.max_size}") + self.idx2sym = [] + self.sym2idx = OrderedDict() + + for sym in self.special: + self.add_special(sym) + + for sym, cnt in self.counter.most_common(self.max_size): + if cnt < self.min_freq: + break + self.add_symbol(sym) + + logger.info(f"Final vocab size {len(self.sym2idx)} from {len(self.counter)} unique tokens") + + @torch_only_method + def encode_file(self, path, ordered=False, verbose=False, add_eos=True, add_double_eos=False): + if verbose: + logger.info(f"encoding file {path} ...") + assert os.path.exists(path), f"Output file {path} not found" + encoded = [] + with open(path, "r", encoding="utf-8") as f: + for idx, line in enumerate(f): + if verbose and idx > 0 and idx % 500000 == 0: + logger.info(f" line {idx}") + symbols = self.tokenize(line, add_eos=add_eos, add_double_eos=add_double_eos) + encoded.append(self.convert_to_tensor(symbols)) + + if ordered: + encoded = torch.cat(encoded) + + return encoded + + @torch_only_method + def encode_sents(self, sents, ordered=False, verbose=False): + if verbose: + logger.info(f"encoding {len(sents)} sents ...") + encoded = [] + for idx, symbols in enumerate(sents): + if verbose and idx > 0 and idx % 500000 == 0: + logger.info(f" line {idx}") + encoded.append(self.convert_to_tensor(symbols)) + + if ordered: + encoded = torch.cat(encoded) + + return encoded + + def add_special(self, sym): + if sym not in self.sym2idx: + self.idx2sym.append(sym) + self.sym2idx[sym] = len(self.idx2sym) - 1 + setattr(self, f"{sym.strip('<>')}_idx", self.sym2idx[sym]) + + def add_symbol(self, sym): + if sym not in self.sym2idx: + self.idx2sym.append(sym) + self.sym2idx[sym] = len(self.idx2sym) - 1 + + def move_added_token(self, token: str, target_idx: int): + """ + Moves an added token to a specific position in the vocab. This method should be used when resizing an embedding + layer other than the last one in the `AdaptiveEmbedding` in order to move the token in the tokenizer from the + default position (at the very end) to the desired one. + + Args: + token: The token to move to a specific position in the vocab. + target_idx: The position where the token should be moved to. + """ + assert token in self.added_tokens_encoder, "Token which should be moved has to be an added token" + assert token not in self.idx2sym, "Token which should be moved is already in vocab" + + # Insert sym into vocab + self.idx2sym.insert(target_idx, token) + self.sym2idx[token] = target_idx + + # Shift following indices in sym2idx + for idx in range(target_idx + 1, len(self.idx2sym)): + current_sym = self.idx2sym[idx] + self.sym2idx[current_sym] = idx + + # Delete token from added_tokens + old_index = self._added_tokens_encoder.pop(token) + self._added_tokens_decoder.pop(old_index) + + def moses_punct_norm(self, text): + return self.moses_punct_normalizer.normalize(text) + + def moses_tokenize(self, text): + return self.moses_tokenizer.tokenize( + text, aggressive_dash_splits=True, return_str=False, escape=False, protected_patterns=self.never_split + ) + + def moses_pipeline(self, text: str) -> List[str]: + """ + Does basic tokenization using [`sacremoses.MosesPunctNormalizer`] and [`sacremoses.MosesTokenizer`] with + *aggressive_dash_splits=True* (see [`sacremoses.tokenize.MosesTokenizer.tokenize`]). Additionally, large + comma-separated numbers and floating point values are split. E.g. "23,000 people are 1.80m tall" -> "23 @,@ 000 + people are 1 @.@ 80m tall" + + Args: + text: Text to be tokenize + + Returns: + A list of tokenized string + + Example: + + ```python + >>> tokenizer = TransfoXLTokenizer.from_pretrained("transfo-xl/transfo-xl-wt103") + >>> tokenizer.moses_pipeline("23,000 people are 1.80 m tall") + ['23', '@,@', '000', 'people', 'are', '1', '@.@', '80', 'm', 'tall'] + ```""" + text = self.moses_punct_norm(text) + text = self.moses_tokenize(text) + text = tokenize_numbers(text) + return text + + def _convert_id_to_token(self, idx): + """Converts an id in a token (BPE) using the vocab.""" + assert 0 <= idx < len(self), f"Index {idx} out of vocabulary range" + return self.idx2sym[idx] + + def _convert_token_to_id(self, sym): + """Converts a token (str) in an id using the vocab.""" + if sym in self.sym2idx: + return self.sym2idx[sym] + else: + # logger.info(f'encounter unk {sym}') + # assert '' not in sym + if hasattr(self, "unk_idx"): + return self.sym2idx.get(sym, self.unk_idx) + # Backward compatibility with pre-trained models + elif "" in self.sym2idx: + return self.sym2idx[""] + elif "" in self.sym2idx: + return self.sym2idx[""] + else: + raise ValueError("Token not in vocabulary and no token in vocabulary for replacement.") + + def convert_tokens_to_string(self, tokens): + """ + Converts a sequence of tokens (string) in a single string. Additionally, the split numbers are converted back + into it's original form. + """ + out_string = self.moses_detokenizer.detokenize(tokens) + return detokenize_numbers(out_string).strip() + + @torch_only_method + def convert_to_tensor(self, symbols): + return torch.LongTensor(self.convert_tokens_to_ids(symbols)) + + @property + def vocab_size(self): + return len(self.idx2sym) + + def get_vocab(self): + vocab = self.sym2idx.copy() + vocab.update(self.added_tokens_encoder) + return vocab + + def _tokenize(self, line, add_eos=False, add_double_eos=False): + line = line.strip() + # convert to lower case + if self.lower_case: + line = line.lower() + + # empty delimiter '' will evaluate False + if self.delimiter == "": + symbols = line + else: + symbols = self.moses_pipeline(line) + + if add_double_eos: # lm1b + return [""] + symbols + [""] + elif add_eos: + return symbols + [""] + else: + return symbols + + +class LMOrderedIterator(object): + def __init__(self, data, bsz, bptt, device="cpu", ext_len=None): + """ + data -- LongTensor -- the LongTensor is strictly ordered + """ + self.bsz = bsz + self.bptt = bptt + self.ext_len = ext_len if ext_len is not None else 0 + + self.device = device + + # Work out how cleanly we can divide the dataset into bsz parts. + self.n_step = data.size(0) // bsz + + # Trim off any extra elements that wouldn't cleanly fit (remainders). + data = data.narrow(0, 0, self.n_step * bsz) + + # Evenly divide the data across the bsz batches. + self.data = data.view(bsz, -1).t().contiguous().to(device) + + # Number of mini-batches + self.n_batch = (self.n_step + self.bptt - 1) // self.bptt + + def get_batch(self, i, bptt=None): + if bptt is None: + bptt = self.bptt + seq_len = min(bptt, self.data.size(0) - 1 - i) + + end_idx = i + seq_len + beg_idx = max(0, i - self.ext_len) + + data = self.data[beg_idx:end_idx] + target = self.data[i + 1 : i + 1 + seq_len] + + data_out = data.transpose(0, 1).contiguous().to(self.device) + target_out = target.transpose(0, 1).contiguous().to(self.device) + + return data_out, target_out, seq_len + + def get_fixlen_iter(self, start=0): + for i in range(start, self.data.size(0) - 1, self.bptt): + yield self.get_batch(i) + + def get_varlen_iter(self, start=0, std=5, min_len=5, max_deviation=3): + max_len = self.bptt + max_deviation * std + i = start + while True: + bptt = self.bptt if np.random.random() < 0.95 else self.bptt / 2.0 + bptt = min(max_len, max(min_len, int(np.random.normal(bptt, std)))) + data, target, seq_len = self.get_batch(i, bptt) + i += seq_len + yield data, target, seq_len + if i >= self.data.size(0) - 2: + break + + def __iter__(self): + return self.get_fixlen_iter() + + +class LMShuffledIterator(object): + def __init__(self, data, bsz, bptt, device="cpu", ext_len=None, shuffle=False): + """ + data -- list[LongTensor] -- there is no order among the LongTensors + """ + self.data = data + + self.bsz = bsz + self.bptt = bptt + self.ext_len = ext_len if ext_len is not None else 0 + + self.device = device + self.shuffle = shuffle + + def get_sent_stream(self): + # index iterator + epoch_indices = np.random.permutation(len(self.data)) if self.shuffle else np.array(range(len(self.data))) + + # sentence iterator + for idx in epoch_indices: + yield self.data[idx] + + @torch_only_method + def stream_iterator(self, sent_stream): + # streams for each data in the batch + streams = [None] * self.bsz + + data = torch.LongTensor(self.bptt, self.bsz) + target = torch.LongTensor(self.bptt, self.bsz) + + n_retain = 0 + + while True: + # data : [n_retain+bptt x bsz] + # target : [bptt x bsz] + data[n_retain:].fill_(-1) + target.fill_(-1) + + valid_batch = True + + for i in range(self.bsz): + n_filled = 0 + try: + while n_filled < self.bptt: + if streams[i] is None or len(streams[i]) <= 1: + streams[i] = next(sent_stream) + # number of new tokens to fill in + n_new = min(len(streams[i]) - 1, self.bptt - n_filled) + # first n_retain tokens are retained from last batch + data[n_retain + n_filled : n_retain + n_filled + n_new, i] = streams[i][:n_new] + target[n_filled : n_filled + n_new, i] = streams[i][1 : n_new + 1] + streams[i] = streams[i][n_new:] + n_filled += n_new + except StopIteration: + valid_batch = False + break + + if not valid_batch: + return + + data_out = data.transpose(0, 1).contiguous().to(self.device) + target_out = target.transpose(0, 1).contiguous().to(self.device) + + yield data_out, target_out, self.bptt + + n_retain = min(data.size(0), self.ext_len) + if n_retain > 0: + data[:n_retain] = data[-n_retain:] + data.resize_(n_retain + self.bptt, data.size(1)) + + def __iter__(self): + # sent_stream is an iterator + sent_stream = self.get_sent_stream() + + for batch in self.stream_iterator(sent_stream): + yield batch + + +class LMMultiFileIterator(LMShuffledIterator): + def __init__(self, paths, vocab, bsz, bptt, device="cpu", ext_len=None, shuffle=False): + self.paths = paths + self.vocab = vocab + + self.bsz = bsz + self.bptt = bptt + self.ext_len = ext_len if ext_len is not None else 0 + + self.device = device + self.shuffle = shuffle + + def get_sent_stream(self, path): + sents = self.vocab.encode_file(path, add_double_eos=True) + if self.shuffle: + np.random.shuffle(sents) + sent_stream = iter(sents) + + return sent_stream + + def __iter__(self): + if self.shuffle: + np.random.shuffle(self.paths) + + for path in self.paths: + # sent_stream is an iterator + sent_stream = self.get_sent_stream(path) + for batch in self.stream_iterator(sent_stream): + yield batch + + +class TransfoXLCorpus(object): + @classmethod + @torch_only_method + def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs): + """ + Instantiate a pre-processed corpus. + """ + vocab = TransfoXLTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) + is_local = os.path.isdir(pretrained_model_name_or_path) + # redirect to the cache, if necessary + try: + resolved_corpus_file = cached_file(pretrained_model_name_or_path, CORPUS_NAME, cache_dir=cache_dir) + except EnvironmentError: + logger.error( + f"Corpus '{pretrained_model_name_or_path}' was not found in corpus list" + f" ({', '.join(PRETRAINED_CORPUS_ARCHIVE_MAP.keys())}. We assumed '{pretrained_model_name_or_path}'" + f" was a path or url but couldn't find files {CORPUS_NAME} at this path or url." + ) + return None + if is_local: + logger.info(f"loading corpus file {resolved_corpus_file}") + else: + logger.info(f"loading corpus file {CORPUS_NAME} from cache at {resolved_corpus_file}") + + # Instantiate tokenizer. + corpus = cls(*inputs, **kwargs) + corpus_dict = torch.load(resolved_corpus_file) + for key, value in corpus_dict.items(): + corpus.__dict__[key] = value + corpus.vocab = vocab + if corpus.train is not None: + corpus.train = torch.tensor(corpus.train, dtype=torch.long) + if corpus.valid is not None: + corpus.valid = torch.tensor(corpus.valid, dtype=torch.long) + if corpus.test is not None: + corpus.test = torch.tensor(corpus.test, dtype=torch.long) + return corpus + + def __init__(self, *args, **kwargs): + self.vocab = TransfoXLTokenizer(*args, **kwargs) + self.dataset = None + self.train = None + self.valid = None + self.test = None + + def build_corpus(self, path, dataset): + self.dataset = dataset + + if self.dataset in ["ptb", "wt2", "enwik8", "text8"]: + self.vocab.count_file(os.path.join(path, "train.txt")) + self.vocab.count_file(os.path.join(path, "valid.txt")) + self.vocab.count_file(os.path.join(path, "test.txt")) + elif self.dataset == "wt103": + self.vocab.count_file(os.path.join(path, "train.txt")) + elif self.dataset == "lm1b": + train_path_pattern = os.path.join( + path, + "1-billion-word-language-modeling-benchmark-r13output", + "training-monolingual.tokenized.shuffled", + "news.en-*", + ) + train_paths = glob.glob(train_path_pattern) + # the vocab will load from file when build_vocab() is called + + self.vocab.build_vocab() + + if self.dataset in ["ptb", "wt2", "wt103"]: + self.train = self.vocab.encode_file(os.path.join(path, "train.txt"), ordered=True) + self.valid = self.vocab.encode_file(os.path.join(path, "valid.txt"), ordered=True) + self.test = self.vocab.encode_file(os.path.join(path, "test.txt"), ordered=True) + elif self.dataset in ["enwik8", "text8"]: + self.train = self.vocab.encode_file(os.path.join(path, "train.txt"), ordered=True, add_eos=False) + self.valid = self.vocab.encode_file(os.path.join(path, "valid.txt"), ordered=True, add_eos=False) + self.test = self.vocab.encode_file(os.path.join(path, "test.txt"), ordered=True, add_eos=False) + elif self.dataset == "lm1b": + self.train = train_paths + self.valid = self.vocab.encode_file(os.path.join(path, "valid.txt"), ordered=False, add_double_eos=True) + self.test = self.vocab.encode_file(os.path.join(path, "test.txt"), ordered=False, add_double_eos=True) + + def get_iterator(self, split, *args, **kwargs): + if split == "train": + if self.dataset in ["ptb", "wt2", "wt103", "enwik8", "text8"]: + data_iter = LMOrderedIterator(self.train, *args, **kwargs) + elif self.dataset == "lm1b": + kwargs["shuffle"] = True + data_iter = LMMultiFileIterator(self.train, self.vocab, *args, **kwargs) + elif split in ["valid", "test"]: + data = self.valid if split == "valid" else self.test + if self.dataset in ["ptb", "wt2", "wt103", "enwik8", "text8"]: + data_iter = LMOrderedIterator(data, *args, **kwargs) + elif self.dataset == "lm1b": + data_iter = LMShuffledIterator(data, *args, **kwargs) + else: + data_iter = None + raise ValueError(f"Split not recognized: {split}") + + return data_iter + + +@torch_only_method +def get_lm_corpus(datadir, dataset): + fn = os.path.join(datadir, "cache.pt") + fn_pickle = os.path.join(datadir, "cache.pkl") + if os.path.exists(fn): + logger.info("Loading cached dataset...") + corpus = torch.load(fn_pickle) + elif os.path.exists(fn): + logger.info("Loading cached dataset from pickle...") + if not strtobool(os.environ.get("TRUST_REMOTE_CODE", "False")): + raise ValueError( + "This part uses `pickle.load` which is insecure and will execute arbitrary code that is potentially " + "malicious. It's recommended to never unpickle data that could have come from an untrusted source, or " + "that could have been tampered with. If you already verified the pickle data and decided to use it, " + "you can set the environment variable `TRUST_REMOTE_CODE` to `True` to allow it." + ) + with open(fn, "rb") as fp: + corpus = pickle.load(fp) + else: + logger.info(f"Producing dataset {dataset}...") + kwargs = {} + if dataset in ["wt103", "wt2"]: + kwargs["special"] = [""] + kwargs["lower_case"] = False + elif dataset == "ptb": + kwargs["special"] = [""] + kwargs["lower_case"] = True + elif dataset == "lm1b": + kwargs["special"] = [] + kwargs["lower_case"] = False + kwargs["vocab_file"] = os.path.join(datadir, "1b_word_vocab.txt") + elif dataset in ["enwik8", "text8"]: + pass + + corpus = TransfoXLCorpus(datadir, dataset, **kwargs) + torch.save(corpus, fn) + + return corpus diff --git a/venv/lib/python3.10/site-packages/transformers/models/nezha/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/nezha/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..f9078fc4a5667a9dae6cf9f8c02177a9583b5e74 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/nezha/__init__.py @@ -0,0 +1,69 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available + + +_import_structure = { + "configuration_nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"], +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_nezha"] = [ + "NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST", + "NezhaForNextSentencePrediction", + "NezhaForMaskedLM", + "NezhaForPreTraining", + "NezhaForMultipleChoice", + "NezhaForQuestionAnswering", + "NezhaForSequenceClassification", + "NezhaForTokenClassification", + "NezhaModel", + "NezhaPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_nezha import ( + NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, + NezhaForMaskedLM, + NezhaForMultipleChoice, + NezhaForNextSentencePrediction, + NezhaForPreTraining, + NezhaForQuestionAnswering, + NezhaForSequenceClassification, + NezhaForTokenClassification, + NezhaModel, + NezhaPreTrainedModel, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/venv/lib/python3.10/site-packages/transformers/models/nezha/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/nezha/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..29aa4000d6babac9994802d33b1fec7ab4ba15ac Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/nezha/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/nezha/__pycache__/configuration_nezha.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/nezha/__pycache__/configuration_nezha.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..74f2846c7c3198d19b8352d48042d8d62adb7353 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/nezha/__pycache__/configuration_nezha.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/nezha/__pycache__/modeling_nezha.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/nezha/__pycache__/modeling_nezha.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6e39cb5c9c0551e2950ca6874772bbd83b6e7424 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/nezha/__pycache__/modeling_nezha.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/nezha/configuration_nezha.py b/venv/lib/python3.10/site-packages/transformers/models/nezha/configuration_nezha.py new file mode 100644 index 0000000000000000000000000000000000000000..a19c27d62a4a924b4950a1ddb8f7b8500b6cfe39 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/nezha/configuration_nezha.py @@ -0,0 +1,103 @@ +from ... import PretrainedConfig +from ..deprecated._archive_maps import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class NezhaConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of an [`NezhaModel`]. It is used to instantiate an Nezha + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the Nezha + [sijunhe/nezha-cn-base](https://huggingface.co/sijunhe/nezha-cn-base) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, optional, defaults to 21128): + Vocabulary size of the NEZHA model. Defines the different tokens that can be represented by the + *inputs_ids* passed to the forward method of [`NezhaModel`]. + hidden_size (`int`, optional, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, optional, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, optional, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, optional, defaults to 3072): + The dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `function`, optional, defaults to "gelu"): + The non-linear activation function (function or string) in the encoder and pooler. + hidden_dropout_prob (`float`, optional, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, optional, defaults to 0.1): + The dropout ratio for the attention probabilities. + max_position_embeddings (`int`, optional, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + (e.g., 512 or 1024 or 2048). + type_vocab_size (`int`, optional, defaults to 2): + The vocabulary size of the *token_type_ids* passed into [`NezhaModel`]. + initializer_range (`float`, optional, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, optional, defaults to 1e-12): + The epsilon used by the layer normalization layers. + classifier_dropout (`float`, optional, defaults to 0.1): + The dropout ratio for attached classifiers. + is_decoder (`bool`, *optional*, defaults to `False`): + Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. + + Example: + + ```python + >>> from transformers import NezhaConfig, NezhaModel + + >>> # Initializing an Nezha configuration + >>> configuration = NezhaConfig() + + >>> # Initializing a model (with random weights) from the Nezha-base style configuration model + >>> model = NezhaModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "nezha" + + def __init__( + self, + vocab_size=21128, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=512, + max_relative_position=64, + type_vocab_size=2, + initializer_range=0.02, + layer_norm_eps=1e-12, + classifier_dropout=0.1, + pad_token_id=0, + bos_token_id=2, + eos_token_id=3, + use_cache=True, + **kwargs, + ): + super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) + + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.hidden_act = hidden_act + self.intermediate_size = intermediate_size + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.max_position_embeddings = max_position_embeddings + self.max_relative_position = max_relative_position + self.type_vocab_size = type_vocab_size + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.classifier_dropout = classifier_dropout + self.use_cache = use_cache diff --git a/venv/lib/python3.10/site-packages/transformers/models/nezha/modeling_nezha.py b/venv/lib/python3.10/site-packages/transformers/models/nezha/modeling_nezha.py new file mode 100644 index 0000000000000000000000000000000000000000..6d983bd2378903f5234daeb1b791057ff37b5b15 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/nezha/modeling_nezha.py @@ -0,0 +1,1693 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch Nezha model.""" + + +import math +import os +import warnings +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BaseModelOutputWithPastAndCrossAttentions, + BaseModelOutputWithPoolingAndCrossAttentions, + MaskedLMOutput, + MultipleChoiceModelOutput, + NextSentencePredictorOutput, + QuestionAnsweringModelOutput, + SequenceClassifierOutput, + TokenClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_nezha import NezhaConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "sijunhe/nezha-cn-base" +_CONFIG_FOR_DOC = "NezhaConfig" + + +from ..deprecated._archive_maps import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +def load_tf_weights_in_nezha(model, config, tf_checkpoint_path): + """Load tf checkpoints in a pytorch model.""" + try: + import re + + import numpy as np + import tensorflow as tf + except ImportError: + logger.error( + "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " + "https://www.tensorflow.org/install/ for installation instructions." + ) + raise + tf_path = os.path.abspath(tf_checkpoint_path) + logger.info(f"Converting TensorFlow checkpoint from {tf_path}") + # Load weights from TF model + init_vars = tf.train.list_variables(tf_path) + names = [] + arrays = [] + for name, shape in init_vars: + logger.info(f"Loading TF weight {name} with shape {shape}") + array = tf.train.load_variable(tf_path, name) + names.append(name) + arrays.append(array) + + for name, array in zip(names, arrays): + name = name.split("/") + # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v + # which are not required for using pretrained model + if any( + n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] + for n in name + ): + logger.info(f"Skipping {'/'.join(name)}") + continue + pointer = model + for m_name in name: + if re.fullmatch(r"[A-Za-z]+_\d+", m_name): + scope_names = re.split(r"_(\d+)", m_name) + else: + scope_names = [m_name] + if scope_names[0] == "kernel" or scope_names[0] == "gamma": + pointer = getattr(pointer, "weight") + elif scope_names[0] == "output_bias" or scope_names[0] == "beta": + pointer = getattr(pointer, "bias") + elif scope_names[0] == "output_weights": + pointer = getattr(pointer, "weight") + elif scope_names[0] == "squad": + pointer = getattr(pointer, "classifier") + else: + try: + pointer = getattr(pointer, scope_names[0]) + except AttributeError: + logger.info(f"Skipping {'/'.join(name)}") + continue + if len(scope_names) >= 2: + num = int(scope_names[1]) + pointer = pointer[num] + if m_name[-11:] == "_embeddings": + pointer = getattr(pointer, "weight") + elif m_name == "kernel": + array = np.transpose(array) + try: + if pointer.shape != array.shape: + raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") + except AssertionError as e: + e.args += (pointer.shape, array.shape) + raise + logger.info(f"Initialize PyTorch weight {name}") + pointer.data = torch.from_numpy(array) + return model + + +class NezhaRelativePositionsEncoding(nn.Module): + """Implement the Functional Relative Position Encoding""" + + def __init__(self, length, depth, max_relative_position=127): + super().__init__() + vocab_size = max_relative_position * 2 + 1 + range_vec = torch.arange(length) + range_mat = range_vec.repeat(length).view(length, length) + distance_mat = range_mat - torch.t(range_mat) + distance_mat_clipped = torch.clamp(distance_mat, -max_relative_position, max_relative_position) + final_mat = distance_mat_clipped + max_relative_position + + embeddings_table = torch.zeros(vocab_size, depth) + position = torch.arange(0, vocab_size, dtype=torch.int64).float().unsqueeze(1) + div_term = torch.exp(torch.arange(0, depth, 2).float() * (-math.log(10000.0) / depth)) + embeddings_table[:, 0::2] = torch.sin(position * div_term) + embeddings_table[:, 1::2] = torch.cos(position * div_term) + + flat_relative_positions_matrix = final_mat.view(-1) + one_hot_relative_positions_matrix = torch.nn.functional.one_hot( + flat_relative_positions_matrix, num_classes=vocab_size + ).float() + positions_encoding = torch.matmul(one_hot_relative_positions_matrix, embeddings_table) + my_shape = list(final_mat.size()) + my_shape.append(depth) + positions_encoding = positions_encoding.view(my_shape) + self.register_buffer("positions_encoding", positions_encoding, persistent=False) + + def forward(self, length): + return self.positions_encoding[:length, :length, :] + + +class NezhaEmbeddings(nn.Module): + """Construct the embeddings from word and token_type embeddings.""" + + def __init__(self, config): + super().__init__() + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) + + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.register_buffer( + "token_type_ids", torch.zeros((1, config.max_position_embeddings), dtype=torch.long), persistent=False + ) + + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + ) -> torch.Tensor: + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + seq_length = input_shape[1] + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + + # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs + # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves + # issue #5664 + if token_type_ids is None: + if hasattr(self, "token_type_ids"): + buffered_token_type_ids = self.token_type_ids[:, :seq_length] + buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) + token_type_ids = buffered_token_type_ids_expanded + else: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=inputs_embeds.device) + + token_type_embeddings = self.token_type_embeddings(token_type_ids) + + embeddings = inputs_embeds + token_type_embeddings + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + + +class NezhaSelfAttention(nn.Module): + def __init__(self, config): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0: + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads})" + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size) + self.key = nn.Linear(config.hidden_size, self.all_head_size) + self.value = nn.Linear(config.hidden_size, self.all_head_size) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + self.relative_positions_encoding = NezhaRelativePositionsEncoding( + length=config.max_position_embeddings, + depth=self.attention_head_size, + max_relative_position=config.max_relative_position, + ) + self.is_decoder = config.is_decoder + + def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + mixed_query_layer = self.query(hidden_states) + + # If this is instantiated as a cross-attention module, the keys + # and values come from an encoder; the attention mask needs to be + # such that the encoder's padding tokens are not attended to. + is_cross_attention = encoder_hidden_states is not None + + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_layer = past_key_value[0] + value_layer = past_key_value[1] + attention_mask = encoder_attention_mask + elif is_cross_attention: + key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) + value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) + attention_mask = encoder_attention_mask + elif past_key_value is not None: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + key_layer = torch.cat([past_key_value[0], key_layer], dim=2) + value_layer = torch.cat([past_key_value[1], value_layer], dim=2) + else: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + + query_layer = self.transpose_for_scores(mixed_query_layer) + + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_layer, value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + batch_size, num_attention_heads, from_seq_length, to_seq_length = attention_scores.size() + relations_keys = self.relative_positions_encoding(to_seq_length) + query_layer_t = query_layer.permute(2, 0, 1, 3) + + query_layer_r = query_layer_t.contiguous().view( + from_seq_length, batch_size * num_attention_heads, self.attention_head_size + ) + key_position_scores = torch.matmul(query_layer_r, relations_keys.permute(0, 2, 1)) + key_position_scores_r = key_position_scores.view( + from_seq_length, batch_size, num_attention_heads, from_seq_length + ) + key_position_scores_r_t = key_position_scores_r.permute(1, 2, 0, 3) + attention_scores = attention_scores + key_position_scores_r_t + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in NezhaModel forward() function) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + relations_values = self.relative_positions_encoding(to_seq_length) + attention_probs_t = attention_probs.permute(2, 0, 1, 3) + attentions_probs_r = attention_probs_t.contiguous().view( + from_seq_length, batch_size * num_attention_heads, to_seq_length + ) + value_position_scores = torch.matmul(attentions_probs_r, relations_values) + value_position_scores_r = value_position_scores.view( + from_seq_length, batch_size, num_attention_heads, self.attention_head_size + ) + value_position_scores_r_t = value_position_scores_r.permute(1, 2, 0, 3) + context_layer = context_layer + value_position_scores_r_t + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + if self.is_decoder: + outputs = outputs + (past_key_value,) + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->Nezha +class NezhaSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class NezhaAttention(nn.Module): + def __init__(self, config): + super().__init__() + self.self = NezhaSelfAttention(config) + self.output = NezhaSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len(heads) + self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + self_outputs = self.self( + hidden_states, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + attention_output = self.output(self_outputs[0], hidden_states) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Nezha +class NezhaIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->Nezha +class NezhaOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class NezhaLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = NezhaAttention(config) + self.is_decoder = config.is_decoder + self.add_cross_attention = config.add_cross_attention + if self.add_cross_attention: + if not self.is_decoder: + raise ValueError(f"{self} should be used as a decoder model if cross attention is added") + self.crossattention = NezhaAttention(config) + self.intermediate = NezhaIntermediate(config) + self.output = NezhaOutput(config) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + self_attention_outputs = self.attention( + hidden_states, + attention_mask, + head_mask, + output_attentions=output_attentions, + past_key_value=self_attn_past_key_value, + ) + attention_output = self_attention_outputs[0] + + # if decoder, the last output is tuple of self-attn cache + if self.is_decoder: + outputs = self_attention_outputs[1:-1] + present_key_value = self_attention_outputs[-1] + else: + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + cross_attn_present_key_value = None + if self.is_decoder and encoder_hidden_states is not None: + if not hasattr(self, "crossattention"): + raise ValueError( + f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" + " by setting `config.add_cross_attention=True`" + ) + + # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + cross_attention_outputs = self.crossattention( + attention_output, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + cross_attn_past_key_value, + output_attentions, + ) + attention_output = cross_attention_outputs[0] + outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights + + # add cross-attn cache to positions 3,4 of present_key_value tuple + cross_attn_present_key_value = cross_attention_outputs[-1] + present_key_value = present_key_value + cross_attn_present_key_value + + layer_output = apply_chunking_to_forward( + self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output + ) + outputs = (layer_output,) + outputs + + # if decoder, return the attn key/values as the last output + if self.is_decoder: + outputs = outputs + (present_key_value,) + + return outputs + + def feed_forward_chunk(self, attention_output): + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output) + return layer_output + + +# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Nezha +class NezhaEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.layer = nn.ModuleList([NezhaLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = False, + output_hidden_states: Optional[bool] = False, + return_dict: Optional[bool] = True, + ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + next_decoder_cache = () if use_cache else None + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + past_key_value = past_key_values[i] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + else: + layer_outputs = layer_module( + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + + hidden_states = layer_outputs[0] + if use_cache: + next_decoder_cache += (layer_outputs[-1],) + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + if self.config.add_cross_attention: + all_cross_attentions = all_cross_attentions + (layer_outputs[2],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v + for v in [ + hidden_states, + next_decoder_cache, + all_hidden_states, + all_self_attentions, + all_cross_attentions, + ] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_decoder_cache, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + cross_attentions=all_cross_attentions, + ) + + +# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->Nezha +class NezhaPooler(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = nn.Tanh() + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + pooled_output = self.activation(pooled_output) + return pooled_output + + +# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->Nezha +class NezhaPredictionHeadTransform(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + if isinstance(config.hidden_act, str): + self.transform_act_fn = ACT2FN[config.hidden_act] + else: + self.transform_act_fn = config.hidden_act + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.transform_act_fn(hidden_states) + hidden_states = self.LayerNorm(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Nezha +class NezhaLMPredictionHead(nn.Module): + def __init__(self, config): + super().__init__() + self.transform = NezhaPredictionHeadTransform(config) + + # The output weights are the same as the input embeddings, but there is + # an output-only bias for each token. + self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + self.bias = nn.Parameter(torch.zeros(config.vocab_size)) + + # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` + self.decoder.bias = self.bias + + def forward(self, hidden_states): + hidden_states = self.transform(hidden_states) + hidden_states = self.decoder(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Nezha +class NezhaOnlyMLMHead(nn.Module): + def __init__(self, config): + super().__init__() + self.predictions = NezhaLMPredictionHead(config) + + def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: + prediction_scores = self.predictions(sequence_output) + return prediction_scores + + +# Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert->Nezha +class NezhaOnlyNSPHead(nn.Module): + def __init__(self, config): + super().__init__() + self.seq_relationship = nn.Linear(config.hidden_size, 2) + + def forward(self, pooled_output): + seq_relationship_score = self.seq_relationship(pooled_output) + return seq_relationship_score + + +# Copied from transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert->Nezha +class NezhaPreTrainingHeads(nn.Module): + def __init__(self, config): + super().__init__() + self.predictions = NezhaLMPredictionHead(config) + self.seq_relationship = nn.Linear(config.hidden_size, 2) + + def forward(self, sequence_output, pooled_output): + prediction_scores = self.predictions(sequence_output) + seq_relationship_score = self.seq_relationship(pooled_output) + return prediction_scores, seq_relationship_score + + +class NezhaPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = NezhaConfig + load_tf_weights = load_tf_weights_in_nezha + base_model_prefix = "nezha" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +@dataclass +class NezhaForPreTrainingOutput(ModelOutput): + """ + Output type of [`NezhaForPreTraining`]. + + Args: + loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): + Total loss as the sum of the masked language modeling loss and the next sequence prediction + (classification) loss. + prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). + seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): + Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation + before SoftMax). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: Optional[torch.FloatTensor] = None + prediction_logits: torch.FloatTensor = None + seq_relationship_logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +NEZHA_START_DOCSTRING = r""" + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`NezhaConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +NEZHA_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare Nezha Model transformer outputting raw hidden-states without any specific head on top.", + NEZHA_START_DOCSTRING, +) +class NezhaModel(NezhaPreTrainedModel): + """ + + The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of + cross-attention is added between the self-attention layers, following the architecture described in [Attention is + all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, + Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. + + To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set + to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and + `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. + """ + + def __init__(self, config, add_pooling_layer=True): + super().__init__(config) + self.config = config + + self.embeddings = NezhaEmbeddings(config) + self.encoder = NezhaEncoder(config) + + self.pooler = NezhaPooler(config) if add_pooling_layer else None + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(NEZHA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPoolingAndCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: + r""" + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if self.config.is_decoder: + use_cache = use_cache if use_cache is not None else self.config.use_cache + else: + use_cache = False + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + batch_size, seq_length = input_shape + device = input_ids.device if input_ids is not None else inputs_embeds.device + + # past_key_values_length + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + + if attention_mask is None: + attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) + + if token_type_ids is None: + if hasattr(self.embeddings, "token_type_ids"): + buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] + buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) + token_type_ids = buffered_token_type_ids_expanded + else: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) + + # If a 2D or 3D attention mask is provided for the cross-attention + # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] + if self.config.is_decoder and encoder_hidden_states is not None: + encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() + encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) + if encoder_attention_mask is None: + encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) + encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) + else: + encoder_extended_attention_mask = None + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + embedding_output = self.embeddings( + input_ids=input_ids, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + ) + encoder_outputs = self.encoder( + embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_extended_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + return (sequence_output, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPoolingAndCrossAttentions( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + past_key_values=encoder_outputs.past_key_values, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + cross_attentions=encoder_outputs.cross_attentions, + ) + + +@add_start_docstrings( + """ + Nezha Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next + sentence prediction (classification)` head. + """, + NEZHA_START_DOCSTRING, +) +class NezhaForPreTraining(NezhaPreTrainedModel): + _tied_weights_keys = ["cls.predictions.decoder"] + + def __init__(self, config): + super().__init__(config) + + self.nezha = NezhaModel(config) + self.cls = NezhaPreTrainingHeads(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.cls.predictions.decoder + + def set_output_embeddings(self, new_embeddings): + self.cls.predictions.decoder = new_embeddings + + @add_start_docstrings_to_model_forward(NEZHA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=NezhaForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + next_sentence_label: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], NezhaForPreTrainingOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), + the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the next sequence prediction (classification) loss. Input should be a sequence + pair (see `input_ids` docstring) Indices should be in `[0, 1]`: + + - 0 indicates sequence B is a continuation of sequence A, + - 1 indicates sequence B is a random sequence. + kwargs (`Dict[str, any]`, optional, defaults to *{}*): + Used to hide legacy arguments that have been deprecated. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, NezhaForPreTraining + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base") + >>> model = NezhaForPreTraining.from_pretrained("sijunhe/nezha-cn-base") + + >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") + >>> outputs = model(**inputs) + + >>> prediction_logits = outputs.prediction_logits + >>> seq_relationship_logits = outputs.seq_relationship_logits + ``` + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.nezha( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output, pooled_output = outputs[:2] + prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) + + total_loss = None + if labels is not None and next_sentence_label is not None: + loss_fct = CrossEntropyLoss() + masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) + total_loss = masked_lm_loss + next_sentence_loss + + if not return_dict: + output = (prediction_scores, seq_relationship_score) + outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return NezhaForPreTrainingOutput( + loss=total_loss, + prediction_logits=prediction_scores, + seq_relationship_logits=seq_relationship_score, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings("""Nezha Model with a `language modeling` head on top.""", NEZHA_START_DOCSTRING) +class NezhaForMaskedLM(NezhaPreTrainedModel): + _tied_weights_keys = ["cls.predictions.decoder"] + + def __init__(self, config): + super().__init__(config) + + if config.is_decoder: + logger.warning( + "If you want to use `NezhaForMaskedLM` make sure `config.is_decoder=False` for " + "bi-directional self-attention." + ) + + self.nezha = NezhaModel(config, add_pooling_layer=False) + self.cls = NezhaOnlyMLMHead(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.cls.predictions.decoder + + def set_output_embeddings(self, new_embeddings): + self.cls.predictions.decoder = new_embeddings + + @add_start_docstrings_to_model_forward(NEZHA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MaskedLMOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + """ + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.nezha( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + prediction_scores = self.cls(sequence_output) + + masked_lm_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() # -100 index = padding token + masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + + return MaskedLMOutput( + loss=masked_lm_loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs): + input_shape = input_ids.shape + effective_batch_size = input_shape[0] + + # add a dummy token + if self.config.pad_token_id is None: + raise ValueError("The PAD token should be defined for generation") + + attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1) + dummy_token = torch.full( + (effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device + ) + input_ids = torch.cat([input_ids, dummy_token], dim=1) + + return {"input_ids": input_ids, "attention_mask": attention_mask} + + +@add_start_docstrings( + """Nezha Model with a `next sentence prediction (classification)` head on top.""", + NEZHA_START_DOCSTRING, +) +class NezhaForNextSentencePrediction(NezhaPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.nezha = NezhaModel(config) + self.cls = NezhaOnlyNSPHead(config) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(NEZHA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + **kwargs, + ) -> Union[Tuple[torch.Tensor], NextSentencePredictorOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair + (see `input_ids` docstring). Indices should be in `[0, 1]`: + + - 0 indicates sequence B is a continuation of sequence A, + - 1 indicates sequence B is a random sequence. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, NezhaForNextSentencePrediction + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base") + >>> model = NezhaForNextSentencePrediction.from_pretrained("sijunhe/nezha-cn-base") + + >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." + >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." + >>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt") + + >>> outputs = model(**encoding, labels=torch.LongTensor([1])) + >>> logits = outputs.logits + >>> assert logits[0, 0] < logits[0, 1] # next sentence was random + ``` + """ + + if "next_sentence_label" in kwargs: + warnings.warn( + "The `next_sentence_label` argument is deprecated and will be removed in a future version, use" + " `labels` instead.", + FutureWarning, + ) + labels = kwargs.pop("next_sentence_label") + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.nezha( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = outputs[1] + + seq_relationship_scores = self.cls(pooled_output) + + next_sentence_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1)) + + if not return_dict: + output = (seq_relationship_scores,) + outputs[2:] + return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output + + return NextSentencePredictorOutput( + loss=next_sentence_loss, + logits=seq_relationship_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + Nezha Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled + output) e.g. for GLUE tasks. + """, + NEZHA_START_DOCSTRING, +) +class NezhaForSequenceClassification(NezhaPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.config = config + + self.nezha = NezhaModel(config) + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(classifier_dropout) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(NEZHA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=SequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.nezha( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = outputs[1] + + pooled_output = self.dropout(pooled_output) + logits = self.classifier(pooled_output) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + Nezha Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a + softmax) e.g. for RocStories/SWAG tasks. + """, + NEZHA_START_DOCSTRING, +) +class NezhaForMultipleChoice(NezhaPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.nezha = NezhaModel(config) + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(classifier_dropout) + self.classifier = nn.Linear(config.hidden_size, 1) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(NEZHA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MultipleChoiceModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., + num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See + `input_ids` above) + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] + input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None + attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None + token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None + inputs_embeds = ( + inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) + if inputs_embeds is not None + else None + ) + + outputs = self.nezha( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = outputs[1] + print(pooled_output.shape) + pooled_output = self.dropout(pooled_output) + logits = self.classifier(pooled_output) + print(logits.shape) + print(num_choices) + reshaped_logits = logits.view(-1, num_choices) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(reshaped_logits, labels) + + if not return_dict: + output = (reshaped_logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return MultipleChoiceModelOutput( + loss=loss, + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + Nezha Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for + Named-Entity-Recognition (NER) tasks. + """, + NEZHA_START_DOCSTRING, +) +class NezhaForTokenClassification(NezhaPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.nezha = NezhaModel(config, add_pooling_layer=False) + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(classifier_dropout) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(NEZHA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.nezha( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + sequence_output = self.dropout(sequence_output) + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + Nezha Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear + layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + NEZHA_START_DOCSTRING, +) +class NezhaForQuestionAnswering(NezhaPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.nezha = NezhaModel(config, add_pooling_layer=False) + self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(NEZHA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=QuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + start_positions: Optional[torch.Tensor] = None, + end_positions: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.nezha( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return QuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) diff --git a/venv/lib/python3.10/site-packages/transformers/models/opt/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/opt/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..db1c9300824b3825c8fa752ef4599f542d148076 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/opt/__init__.py @@ -0,0 +1,101 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_flax_available, + is_tf_available, + is_tokenizers_available, + is_torch_available, +) + + +_import_structure = {"configuration_opt": ["OPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OPTConfig"]} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_opt"] = [ + "OPT_PRETRAINED_MODEL_ARCHIVE_LIST", + "OPTForCausalLM", + "OPTModel", + "OPTPreTrainedModel", + "OPTForSequenceClassification", + "OPTForQuestionAnswering", + ] + +try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tf_opt"] = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"] + +try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_flax_opt"] = [ + "FlaxOPTForCausalLM", + "FlaxOPTModel", + "FlaxOPTPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_opt import ( + OPT_PRETRAINED_MODEL_ARCHIVE_LIST, + OPTForCausalLM, + OPTForQuestionAnswering, + OPTForSequenceClassification, + OPTModel, + OPTPreTrainedModel, + ) + + try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel + + try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/venv/lib/python3.10/site-packages/transformers/models/opt/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/opt/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4f51dd5f0c186f29cfb9111fc6222317406474b1 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/opt/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/opt/__pycache__/configuration_opt.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/opt/__pycache__/configuration_opt.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..739716870f8d95e0b9098bb9db496e9641200b68 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/opt/__pycache__/configuration_opt.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/opt/__pycache__/convert_opt_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/opt/__pycache__/convert_opt_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..161d529a9a2ca6ba9679403a328350ef3eb84124 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/opt/__pycache__/convert_opt_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/opt/__pycache__/modeling_flax_opt.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/opt/__pycache__/modeling_flax_opt.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f0ae601066223a9d06919472cfa4d6fffb1ee9d9 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/opt/__pycache__/modeling_flax_opt.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/opt/__pycache__/modeling_opt.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/opt/__pycache__/modeling_opt.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c5f830556b5276b30f796c6b49e1600fc56da0b0 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/opt/__pycache__/modeling_opt.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/opt/__pycache__/modeling_tf_opt.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/opt/__pycache__/modeling_tf_opt.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a8b48a785b8594d298885d945c058d3a59fa4763 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/opt/__pycache__/modeling_tf_opt.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/opt/configuration_opt.py b/venv/lib/python3.10/site-packages/transformers/models/opt/configuration_opt.py new file mode 100644 index 0000000000000000000000000000000000000000..a9802d2ef337c85cd4f32530b14844d423823917 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/opt/configuration_opt.py @@ -0,0 +1,142 @@ +# coding=utf-8 +# Copyright 2022 The Metaseq Authors and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" OPT model configuration""" +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +class OPTConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`OPTModel`]. It is used to instantiate a OPT model + according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the OPT + [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 50272): + Vocabulary size of the OPT model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`OPTModel`] + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of decoder layers. + ffn_dim (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer decoder. + activation_function (`str` or `function`, *optional*, defaults to `"relu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + max_position_embeddings (`int`, *optional*, defaults to 2048): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + do_layer_norm_before (`bool`, *optional*, defaults to `True`): + Whether to perform layer normalization before the attention block. + word_embed_proj_dim (`int`, *optional*): + `word_embed_proj_dim` can be set to down-project word embeddings, *e.g.* `opt-350m`. Defaults to + `hidden_size`. + dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + layerdrop (`float`, *optional*, defaults to 0.0): + The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more + details. + init_std (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). + enable_bias (`bool`, *optional*, defaults to `True`): + Whether or not if the linear layers in the attention blocks should use the bias term. + layer_norm_elementwise_affine (`bool`, *optional*, defaults to `True`): + Whether or not if the layer norms should have learnable parameters. + + Example: + + ```python + >>> from transformers import OPTConfig, OPTModel + + >>> # Initializing a OPT facebook/opt-large style configuration + >>> configuration = OPTConfig() + + >>> # Initializing a model (with random weights) from the facebook/opt-large style configuration + >>> model = OPTModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "opt" + keys_to_ignore_at_inference = ["past_key_values"] + + def __init__( + self, + vocab_size=50272, + hidden_size=768, + num_hidden_layers=12, + ffn_dim=3072, + max_position_embeddings=2048, + do_layer_norm_before=True, + _remove_final_layer_norm=False, + word_embed_proj_dim=None, + dropout=0.1, + attention_dropout=0.0, + num_attention_heads=12, + activation_function="relu", + layerdrop=0.0, + init_std=0.02, + use_cache=True, + pad_token_id=1, + bos_token_id=2, + eos_token_id=2, + enable_bias=True, + layer_norm_elementwise_affine=True, + **kwargs, + ): + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + **kwargs, + ) + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.num_attention_heads = num_attention_heads + self.word_embed_proj_dim = word_embed_proj_dim if word_embed_proj_dim is not None else hidden_size + self.ffn_dim = ffn_dim + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.dropout = dropout + self.attention_dropout = attention_dropout + self.activation_function = activation_function + self.init_std = init_std + self.layerdrop = layerdrop + self.use_cache = use_cache + self.do_layer_norm_before = do_layer_norm_before + # We keep these variables at `True` for backward compatibility. + self.enable_bias = enable_bias + self.layer_norm_elementwise_affine = layer_norm_elementwise_affine + + # Note that the only purpose of `_remove_final_layer_norm` is to keep backward compatibility + # with checkpoints that have been fine-tuned before transformers v4.20.1 + # see https://github.com/facebookresearch/metaseq/pull/164 + self._remove_final_layer_norm = _remove_final_layer_norm diff --git a/venv/lib/python3.10/site-packages/transformers/models/opt/convert_opt_original_pytorch_checkpoint_to_pytorch.py b/venv/lib/python3.10/site-packages/transformers/models/opt/convert_opt_original_pytorch_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..3f302b2ec3f44c86c81b0452951e9b9e894a2713 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/opt/convert_opt_original_pytorch_checkpoint_to_pytorch.py @@ -0,0 +1,114 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert OPT checkpoint.""" + + +import argparse +from pathlib import Path + +import torch + +from transformers import OPTConfig, OPTModel +from transformers.utils import logging + + +logging.set_verbosity_info() +logger = logging.get_logger(__name__) + + +def load_checkpoint(checkpoint_path): + """Checkpoint path should end in model.pt""" + sd = torch.load(checkpoint_path, map_location="cpu") + if "model" in sd.keys(): + sd = torch.load(checkpoint_path, map_location="cpu")["model"] + + # pop unnecessary weights + keys_to_delete = [ + "decoder.version", + "decoder.output_projection.weight", + ] + for key in keys_to_delete: + if key in sd: + sd.pop(key) + + keys_to_rename = { + "decoder.project_in_dim.weight": "decoder.project_in.weight", + "decoder.project_out_dim.weight": "decoder.project_out.weight", + "decoder.layer_norm.weight": "decoder.final_layer_norm.weight", + "decoder.layer_norm.bias": "decoder.final_layer_norm.bias", + } + for old_key, new_key in keys_to_rename.items(): + if old_key in sd: + sd[new_key] = sd.pop(old_key) + + keys = list(sd.keys()) + for key in keys: + if ".qkv_proj." in key: + value = sd[key] + # We split QKV in separate Q,K,V + + q_name = key.replace(".qkv_proj.", ".q_proj.") + k_name = key.replace(".qkv_proj.", ".k_proj.") + v_name = key.replace(".qkv_proj.", ".v_proj.") + + depth = value.shape[0] + assert depth % 3 == 0 + # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: + # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 + k, v, q = torch.split(value, depth // 3, dim=0) + + sd[q_name] = q + sd[k_name] = k + sd[v_name] = v + del sd[key] + + return sd + + +@torch.no_grad() +def convert_opt_checkpoint(checkpoint_path, pytorch_dump_folder_path, config=None): + """ + Copy/paste/tweak model's weights to our BERT structure. + """ + state_dict = load_checkpoint(checkpoint_path) + + if config is not None: + config = OPTConfig.from_pretrained(config) + else: + config = OPTConfig() + + model = OPTModel(config).half().eval() + model.load_state_dict(state_dict) + + # Check results + Path(pytorch_dump_folder_path).mkdir(exist_ok=True) + model.save_pretrained(pytorch_dump_folder_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--fairseq_path", + type=str, + help=( + "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" + " https://huggingface.co/models?other=opt_metasq" + ), + ) + parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") + parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") + args = parser.parse_args() + convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config) diff --git a/venv/lib/python3.10/site-packages/transformers/models/opt/modeling_flax_opt.py b/venv/lib/python3.10/site-packages/transformers/models/opt/modeling_flax_opt.py new file mode 100644 index 0000000000000000000000000000000000000000..5d9839f1204860b72ced4e1573ea4b8d0a8fac8a --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/opt/modeling_flax_opt.py @@ -0,0 +1,799 @@ +# coding=utf-8 +# Copyright 2022 The Fairseq Authors and The Google Flax Team Authors And The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Flax OPT model.""" + +from functools import partial +from typing import Optional, Tuple + +import flax.linen as nn +import jax +import jax.numpy as jnp +from flax.core.frozen_dict import FrozenDict, freeze, unfreeze +from flax.linen import combine_masks, make_causal_mask +from flax.linen.attention import dot_product_attention_weights +from flax.traverse_util import flatten_dict, unflatten_dict +from jax import lax +from jax.random import PRNGKey + +from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxMaskedLMOutput +from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring +from ...utils import add_start_docstrings, logging +from .configuration_opt import OPTConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "facebook/opt-350m" +_CONFIG_FOR_DOC = "OPTConfig" + + +OPT_START_DOCSTRING = r""" + This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a Flax Linen + [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a + regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. + + Finally, this model supports inherent JAX features such as: + + - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) + - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) + - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) + - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) + + Parameters: + config ([`OPTConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. + dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): + The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and + `jax.numpy.bfloat16` (on TPUs). + + This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If + specified all the computation will be performed with the given `dtype`. + + **Note that this only specifies the dtype of the computation and does not influence the dtype of model + parameters.** + + If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and + [`~FlaxPreTrainedModel.to_bf16`]. +""" + +OPT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention with Bart->OPT +class FlaxOPTAttention(nn.Module): + config: OPTConfig + embed_dim: int + num_heads: int + dropout: float = 0.0 + causal: bool = False + bias: bool = True + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self) -> None: + self.head_dim = self.embed_dim // self.num_heads + if self.head_dim * self.num_heads != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {self.num_heads})." + ) + + dense = partial( + nn.Dense, + self.embed_dim, + use_bias=self.bias, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.init_std), + ) + + self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() + self.out_proj = dense() + + self.dropout_layer = nn.Dropout(rate=self.dropout) + + if self.causal: + self.causal_mask = make_causal_mask( + jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool" + ) + + def _split_heads(self, hidden_states): + return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim)) + + def _merge_heads(self, hidden_states): + return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) + + @nn.compact + def _concatenate_to_cache(self, key, value, query, attention_mask): + """ + This function takes projected key, value states from a single input token and concatenates the states to cached + states from previous steps. This function is slighly adapted from the official Flax repository: + https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 + """ + # detect if we're initializing by absence of existing cache data. + is_initialized = self.has_variable("cache", "cached_key") + cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) + cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) + cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) + + if is_initialized: + *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape + # update key, value caches with our new 1d spatial slices + cur_index = cache_index.value + indices = (0,) * len(batch_dims) + (cur_index, 0, 0) + key = lax.dynamic_update_slice(cached_key.value, key, indices) + value = lax.dynamic_update_slice(cached_value.value, value, indices) + cached_key.value = key + cached_value.value = value + num_updated_cache_vectors = query.shape[1] + cache_index.value = cache_index.value + num_updated_cache_vectors + # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. + pad_mask = jnp.broadcast_to( + jnp.arange(max_length) < cur_index + num_updated_cache_vectors, + tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), + ) + attention_mask = combine_masks(pad_mask, attention_mask) + return key, value, attention_mask + + def __call__( + self, + hidden_states: jnp.ndarray, + key_value_states: Optional[jnp.ndarray] = None, + attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + deterministic: bool = True, + ) -> Tuple[jnp.ndarray]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + batch_size = hidden_states.shape[0] + + # get query proj + query_states = self.q_proj(hidden_states) + # get key, value proj + if is_cross_attention: + # cross_attentions + key_states = self.k_proj(key_value_states) + value_states = self.v_proj(key_value_states) + else: + # self_attention + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = self._split_heads(query_states) + key_states = self._split_heads(key_states) + value_states = self._split_heads(value_states) + + # handle cache prepare causal attention mask + if self.causal: + query_length, key_length = query_states.shape[1], key_states.shape[1] + if self.has_variable("cache", "cached_key"): + mask_shift = self.variables["cache"]["cache_index"] + max_decoder_length = self.variables["cache"]["cached_key"].shape[1] + causal_mask = lax.dynamic_slice( + self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) + ) + else: + causal_mask = self.causal_mask[:, :, :query_length, :key_length] + causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) + + # combine masks if needed + if attention_mask is not None and self.causal: + attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) + attention_mask = combine_masks(attention_mask, causal_mask) + elif self.causal: + attention_mask = causal_mask + elif attention_mask is not None: + attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) + + # During fast autoregressive decoding, we feed one position at a time, + # and cache the keys and values step by step. + if self.causal and (self.has_variable("cache", "cached_key") or init_cache): + key_states, value_states, attention_mask = self._concatenate_to_cache( + key_states, value_states, query_states, attention_mask + ) + + # Convert the boolean attention mask to an attention bias. + if attention_mask is not None: + # attention mask in the form of attention bias + attention_bias = lax.select( + attention_mask > 0, + jnp.full(attention_mask.shape, 0.0).astype(self.dtype), + jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), + ) + else: + attention_bias = None + + dropout_rng = None + if not deterministic and self.dropout > 0.0: + dropout_rng = self.make_rng("dropout") + + attn_weights = dot_product_attention_weights( + query_states, + key_states, + bias=attention_bias, + dropout_rng=dropout_rng, + dropout_rate=self.dropout, + broadcast_dropout=True, + deterministic=deterministic, + dtype=self.dtype, + precision=None, + ) + + attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) + attn_output = self._merge_heads(attn_output) + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights + + +class FlaxOPTDecoderLayer(nn.Module): + config: OPTConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self) -> None: + self.embed_dim = self.config.hidden_size + self.self_attn = FlaxOPTAttention( + config=self.config, + embed_dim=self.embed_dim, + num_heads=self.config.num_attention_heads, + dropout=self.config.attention_dropout, + causal=True, + dtype=self.dtype, + ) + self.do_layer_norm_before = self.config.do_layer_norm_before + self.dropout_layer = nn.Dropout(rate=self.config.dropout) + self.activation_fn = ACT2FN[self.config.activation_function] + + self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + self.fc1 = nn.Dense( + self.config.ffn_dim, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.init_std), + ) + self.fc2 = nn.Dense( + self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) + ) + self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + + def __call__( + self, + hidden_states: jnp.ndarray, + attention_mask: jnp.ndarray, + init_cache: bool = False, + output_attentions: bool = True, + deterministic: bool = True, + ) -> Tuple[jnp.ndarray]: + residual = hidden_states + + # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention + if self.do_layer_norm_before: + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Self Attention + hidden_states, self_attn_weights = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + init_cache=init_cache, + deterministic=deterministic, + ) + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = residual + hidden_states + # 350m applies layer norm AFTER attention + if not self.do_layer_norm_before: + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Fully Connected + hidden_states_shape = hidden_states.shape + hidden_states = hidden_states.reshape(-1, hidden_states.shape[-1]) + residual = hidden_states + + # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention + if self.do_layer_norm_before: + hidden_states = self.final_layer_norm(hidden_states) + + hidden_states = self.fc1(hidden_states) + hidden_states = self.activation_fn(hidden_states) + + hidden_states = self.fc2(hidden_states) + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + + hidden_states = (residual + hidden_states).reshape(hidden_states_shape) + + # 350m applies layer norm AFTER attention + if not self.do_layer_norm_before: + hidden_states = self.final_layer_norm(hidden_states) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights,) + + return outputs + + +class FlaxOPTDecoderLayerCollection(nn.Module): + config: OPTConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.layers = [ + FlaxOPTDecoderLayer(self.config, name=str(i), dtype=self.dtype) + for i in range(self.config.num_hidden_layers) + ] + self.layerdrop = self.config.layerdrop + + def __call__( + self, + hidden_states, + attention_mask, + deterministic: bool = True, + init_cache: bool = False, + output_attentions: bool = False, + output_hidden_states: bool = False, + ): + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + + for decoder_layer in self.layers: + if output_hidden_states: + all_hidden_states += (hidden_states,) + + layer_outputs = decoder_layer( + hidden_states, + attention_mask=attention_mask, + init_cache=init_cache, + output_attentions=output_attentions, + deterministic=deterministic, + ) + + hidden_states = layer_outputs[0] + if output_attentions: + all_self_attns += (layer_outputs[1],) + + outputs = [hidden_states, all_hidden_states, all_self_attns] + return outputs + + +class FlaxOPTLearnedPositionalEmbedding(nn.Embed): + """ + This module learns positional embeddings up to a fixed maximum size. + """ + + def setup(self): + self.offset = 2 + self.embedding = self.param( + "embedding", self.embedding_init, (self.num_embeddings + self.offset, self.features), self.param_dtype + ) + + def __call__(self, positions): + """`input_ids_shape` is expected to be [bsz x seqlen].""" + + return super().__call__(positions + self.offset) + + +class FlaxOPTDecoder(nn.Module): + config: OPTConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + offset: int = 2 + + def setup(self): + self.dropout_layer = nn.Dropout(rate=self.config.dropout) + + embed_dim = self.config.hidden_size + self.padding_idx = self.config.pad_token_id + self.max_target_positions = self.config.max_position_embeddings + + self.embed_tokens = nn.Embed( + self.config.vocab_size, + self.config.word_embed_proj_dim, + embedding_init=jax.nn.initializers.normal(self.config.init_std), + dtype=self.dtype, + ) + + self.embed_positions = FlaxOPTLearnedPositionalEmbedding( + self.config.max_position_embeddings, + embed_dim, + embedding_init=jax.nn.initializers.normal(self.config.init_std), + dtype=self.dtype, + ) + + if self.config.word_embed_proj_dim != self.config.hidden_size: + self.project_in = nn.Dense(self.config.hidden_size, use_bias=False) + self.project_out = nn.Dense(self.config.word_embed_proj_dim, use_bias=False) + + else: + self.project_in = None + self.project_out = None + + # Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility + # with checkpoints that have been fine-tuned before transformers v4.20.1 + # see https://github.com/facebookresearch/metaseq/pull/164 + if self.config.do_layer_norm_before and not self.config._remove_final_layer_norm: + self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + else: + self.final_layer_norm = None + + self.layers = FlaxOPTDecoderLayerCollection(self.config, self.dtype) + + def __call__( + self, + input_ids, + attention_mask, + position_ids, + init_cache: bool = False, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + deterministic: bool = True, + ): + input_shape = input_ids.shape + input_ids = input_ids.reshape(-1, input_shape[-1]) + + inputs_embeds = self.embed_tokens(input_ids) + if self.project_in is not None: + inputs_embeds = self.project_in(inputs_embeds) + + positions = self.embed_positions(position_ids) + + hidden_states = inputs_embeds + positions + + hidden_state, all_hidden_states, attentions = self.layers( + hidden_states, + attention_mask, + deterministic=deterministic, + init_cache=init_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + ) + + if self.final_layer_norm is not None: + hidden_state = self.final_layer_norm(hidden_state) + + if self.project_out is not None: + hidden_state = self.project_out(hidden_state) + + if output_hidden_states: + all_hidden_states += (hidden_state,) + + outputs = [hidden_state, all_hidden_states, attentions] + + if not return_dict: + return tuple(v for v in outputs if v is not None) + + return FlaxBaseModelOutput( + last_hidden_state=hidden_state, + hidden_states=all_hidden_states, + attentions=attentions, + ) + + +class FlaxOPTPreTrainedModel(FlaxPreTrainedModel): + config_class = OPTConfig + base_model_prefix: str = "model" + module_class: nn.Module = None + + def __init__( + self, + config: OPTConfig, + input_shape: Tuple[int] = (1, 1), + seed: int = 0, + dtype: jnp.dtype = jnp.float32, + _do_init: bool = True, + **kwargs, + ): + module = self.module_class(config=config, dtype=dtype, **kwargs) + super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) + + def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: + # init input tensors + input_ids = jnp.zeros(input_shape, dtype="i4") + attention_mask = jnp.ones_like(input_ids) + + batch_size, sequence_length = input_ids.shape + position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) + + params_rng, dropout_rng = jax.random.split(rng) + rngs = {"params": params_rng, "dropout": dropout_rng} + + module_init_outputs = self.module.init( + rngs, + input_ids, + attention_mask, + position_ids, + return_dict=False, + ) + + random_params = module_init_outputs["params"] + if params is not None: + random_params = flatten_dict(unfreeze(random_params)) + params = flatten_dict(unfreeze(params)) + for missing_key in self._missing_keys: + params[missing_key] = random_params[missing_key] + self._missing_keys = set() + return freeze(unflatten_dict(params)) + else: + return random_params + + def init_cache(self, batch_size, max_length): + r""" + Args: + batch_size (`int`): + batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. + max_length (`int`): + maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized + cache. + """ + # init input variables to retrieve cache + input_ids = jnp.ones((batch_size, max_length), dtype="i4") + attention_mask = jnp.ones_like(input_ids, dtype="i4") + position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) + + init_variables = self.module.init( + jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True + ) + return unfreeze(init_variables["cache"]) + + def __call__( + self, + input_ids: jnp.ndarray, + attention_mask: Optional[jnp.ndarray] = None, + position_ids: Optional[jnp.ndarray] = None, + params: dict = None, + past_key_values: dict = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + dropout_rng: PRNGKey = None, + deterministic: bool = True, + ): + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + if attention_mask is None: + attention_mask = jnp.ones_like(input_ids) + + if position_ids is None: + position_ids = (attention_mask.cumsum(axis=1) * attention_mask) - 1 + + # Handle any PRNG if needed + rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} + + inputs = {"params": params or self.params} + + # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed + # down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be + # changed by FlaxOPTAttention module + if past_key_values: + inputs["cache"] = past_key_values + mutable = ["cache"] + else: + mutable = False + + outputs = self.module.apply( + inputs, + input_ids=jnp.array(input_ids, dtype="i4"), + attention_mask=jnp.array(attention_mask, dtype="i4"), + position_ids=jnp.array(position_ids, dtype="i4"), + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=deterministic, + rngs=rngs, + mutable=mutable, + ) + + # add updated cache to model output + if past_key_values is not None and return_dict: + outputs, past_key_values = outputs + outputs["past_key_values"] = unfreeze(past_key_values["cache"]) + return outputs + elif past_key_values is not None and not return_dict: + outputs, past_key_values = outputs + outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:] + + return outputs + + +class FlaxOPTModule(nn.Module): + config: OPTConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.decoder = FlaxOPTDecoder(self.config, dtype=self.dtype) + + def _get_decoder_module(self): + return self.decoder + + def __call__( + self, + input_ids, + attention_mask, + position_ids, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + deterministic: bool = True, + init_cache=False, + ): + decoder_outputs = self.decoder( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=deterministic, + init_cache=init_cache, + ) + + if not return_dict: + return decoder_outputs + + return FlaxBaseModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + hidden_states=decoder_outputs.hidden_states, + attentions=decoder_outputs.attentions, + ) + + +# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartModel with Bart->OPT +class FlaxOPTModel(FlaxOPTPreTrainedModel): + config: OPTConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + module_class = FlaxOPTModule + + +append_call_sample_docstring(FlaxOPTModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutput, _CONFIG_FOR_DOC) + + +@add_start_docstrings( + "The bare OPT Model transformer outputting raw hidden-states without any specific head on top.", + OPT_START_DOCSTRING, +) +class FlaxOPTForCausalLMModule(nn.Module): + config: OPTConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.model = FlaxOPTModule(config=self.config, dtype=self.dtype) + self.lm_head = nn.Dense( + self.config.vocab_size, + use_bias=False, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.init_std), + ) + + def __call__( + self, + input_ids, + attention_mask, + position_ids, + init_cache: bool = False, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + deterministic: bool = True, + ): + outputs = self.model( + input_ids, + attention_mask, + position_ids, + init_cache=init_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=deterministic, + ) + + hidden_states = outputs[0] + + if self.config.tie_word_embeddings: + shared_embedding = self.model.variables["params"]["decoder"]["embed_tokens"]["embedding"] + lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) + else: + lm_logits = self.lm_head(hidden_states) + + if not return_dict: + return (lm_logits,) + outputs[1:] + + return FlaxMaskedLMOutput( + logits=lm_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + OPT Model with a language modeling head on top (linear layer with weights tied to the input embeddings) e.g for + autoregressive tasks. + """, + OPT_START_DOCSTRING, +) +class FlaxOPTForCausalLM(FlaxOPTPreTrainedModel): + module_class = FlaxOPTForCausalLMModule + + def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None): + # initializing the cache + batch_size, seq_length = input_ids.shape + + past_key_values = self.init_cache(batch_size, max_length) + # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. + # But since the decoder uses a causal mask, those positions are masked anyway. + # Thus, we can create a single static attention_mask here, which is more efficient for compilation + extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") + + if attention_mask is not None: + position_ids = attention_mask.cumsum(axis=1) - 1 + extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0)) + else: + position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) + + return { + "past_key_values": past_key_values, + "attention_mask": extended_attention_mask, + "position_ids": position_ids, + } + + def update_inputs_for_generation(self, model_outputs, model_kwargs): + model_kwargs["past_key_values"] = model_outputs.past_key_values + model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1 + return model_kwargs + + +append_call_sample_docstring( + FlaxOPTForCausalLM, + _CHECKPOINT_FOR_DOC, + FlaxBaseModelOutput, + _CONFIG_FOR_DOC, +) diff --git a/venv/lib/python3.10/site-packages/transformers/models/opt/modeling_opt.py b/venv/lib/python3.10/site-packages/transformers/models/opt/modeling_opt.py new file mode 100644 index 0000000000000000000000000000000000000000..5e9e53a2ac3251cc4dabd0306293f362c9c92bab --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/opt/modeling_opt.py @@ -0,0 +1,1456 @@ +# coding=utf-8 +# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch OPT model.""" +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn.functional as F +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask +from ...modeling_outputs import ( + BaseModelOutputWithPast, + CausalLMOutputWithPast, + QuestionAnsweringModelOutput, + SequenceClassifierOutputWithPast, +) +from ...modeling_utils import PreTrainedModel +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_flash_attn_2_available, + is_flash_attn_greater_or_equal_2_10, + logging, + replace_return_docstrings, +) +from .configuration_opt import OPTConfig + + +if is_flash_attn_2_available(): + from flash_attn import flash_attn_func, flash_attn_varlen_func + from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "facebook/opt-350m" +_CONFIG_FOR_DOC = "OPTConfig" + +# Base model docstring +_EXPECTED_OUTPUT_SHAPE = [1, 8, 1024] + +# SequenceClassification docstring +_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "ArthurZ/opt-350m-dummy-sc" +_SEQ_CLASS_EXPECTED_LOSS = 1.71 +_SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_0'" + + +from ..deprecated._archive_maps import OPT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +# Copied from transformers.models.llama.modeling_llama._get_unpad_data +def _get_unpad_data(attention_mask): + seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) + indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() + max_seqlen_in_batch = seqlens_in_batch.max().item() + cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) + return ( + indices, + cu_seqlens, + max_seqlen_in_batch, + ) + + +class OPTLearnedPositionalEmbedding(nn.Embedding): + """ + This module learns positional embeddings up to a fixed maximum size. + """ + + def __init__(self, num_embeddings: int, embedding_dim: int): + # OPT is set up so that if padding_idx is specified then offset the embedding ids by 2 + # and adjust num_embeddings appropriately. Other models don't have this hack + self.offset = 2 + super().__init__(num_embeddings + self.offset, embedding_dim) + + def forward(self, attention_mask: torch.LongTensor, past_key_values_length: int = 0): + """`input_ids_shape` is expected to be [bsz x seqlen].""" + attention_mask = attention_mask.long() + + # create positions depending on attention_mask + positions = (torch.cumsum(attention_mask, dim=1).type_as(attention_mask) * attention_mask).long() - 1 + + # cut positions if `past_key_values_length` is > 0 + positions = positions[:, past_key_values_length:] + + return super().forward(positions + self.offset) + + +class OPTAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__( + self, + config: OPTConfig, + is_decoder: bool = False, + **kwargs, + ): + super().__init__() + self.config = config + self.embed_dim = config.hidden_size + self.num_heads = config.num_attention_heads + self.dropout = config.attention_dropout + self.enable_bias = config.enable_bias + + self.head_dim = self.embed_dim // self.num_heads + self.is_causal = True + + if (self.head_dim * self.num_heads) != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {self.num_heads})." + ) + self.scaling = self.head_dim**-0.5 + self.is_decoder = is_decoder + + self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias) + self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias) + self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias) + self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=self.enable_bias) + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states: torch.Tensor, + key_value_states: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + + bsz, tgt_len, _ = hidden_states.size() + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, bsz) + value_states = self._shape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) + key_states = key_states.view(*proj_shape) + value_states = value_states.view(*proj_shape) + + src_len = key_states.size(1) + attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) + + if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): + raise ValueError( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, tgt_len, src_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask + attn_weights = torch.max( + attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device) + ) + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + # upcast to fp32 if the weights are in fp16. Please see https://github.com/huggingface/transformers/pull/17437 + if attn_weights.dtype == torch.float16: + attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(torch.float16) + else: + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + if layer_head_mask is not None: + if layer_head_mask.size() != (self.num_heads,): + raise ValueError( + f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" + f" {layer_head_mask.size()}" + ) + attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + if output_attentions: + # this operation is a bit awkward, but it's required to + # make sure that attn_weights keeps its gradient. + # In order to do so, attn_weights have to be reshaped + # twice and have to be reused in the following + attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) + else: + attn_weights_reshaped = None + + attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + + attn_output = torch.bmm(attn_probs, value_states) + + if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) + attn_output = attn_output.transpose(1, 2) + + # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be + # partitioned aross GPUs when using tensor-parallelism. + attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) + + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights_reshaped, past_key_value + + +class OptFlashAttention2(OPTAttention): + """ + OPT flash attention module. This module inherits from `OPTAttention` as the weights of the module stays untouched. + The only required change would be on the forward pass where it needs to correctly call the public API of flash + attention and deal with padding tokens in case the input contains any of them. + """ + + # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. + # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. + # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). + self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() + + def forward( + self, + hidden_states: torch.Tensor, + key_value_states: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + + bsz, _, _ = hidden_states.size() + + # get query proj + query_states = self.q_proj(hidden_states) + # get key, value proj + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, bsz) + value_states = self._shape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + query_length = query_states.shape[1] + tgt_len = key_states.shape[-2] + + # Flash attention requires the input to have the shape + # batch_size x seq_length x head_dim x hidden_dim + query_states = query_states.view(bsz, query_length, self.num_heads, self.head_dim) + key_states = key_states.transpose(1, 2).view(bsz, tgt_len, self.num_heads, self.head_dim) + value_states = value_states.transpose(1, 2).view(bsz, tgt_len, self.num_heads, self.head_dim) + + attn_dropout = self.dropout if self.training else 0.0 + + # In PEFT, usually we cast the layer norms in float32 for training stability reasons + # therefore the input hidden states gets silently casted in float32. Hence, we need + # cast them back in float16 just to be sure everything works as expected. + input_dtype = query_states.dtype + if input_dtype == torch.float32: + if torch.is_autocast_enabled(): + target_dtype = torch.get_autocast_gpu_dtype() + # Handle the case where the model is quantized + elif hasattr(self.config, "_pre_quantization_dtype"): + target_dtype = self.config._pre_quantization_dtype + else: + target_dtype = self.q_proj.weight.dtype + + logger.warning_once( + f"The input hidden states seems to be silently casted in float32, this might be related to" + f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" + f" {target_dtype}." + ) + + query_states = query_states.to(target_dtype) + key_states = key_states.to(target_dtype) + value_states = value_states.to(target_dtype) + + attn_output = self._flash_attention_forward( + query_states, key_states, value_states, attention_mask, query_length, dropout=attn_dropout + ) + + attn_weights_reshaped = attn_output.reshape(bsz, query_length, self.num_heads * self.head_dim) + attn_output = self.out_proj(attn_weights_reshaped) + + if not output_attentions: + attn_weights_reshaped = None + + return attn_output, attn_weights_reshaped, past_key_value + + # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward + def _flash_attention_forward( + self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None + ): + """ + Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token + first unpad the input, then computes the attention scores and pad the final attention scores. + + Args: + query_states (`torch.Tensor`): + Input query states to be passed to Flash Attention API + key_states (`torch.Tensor`): + Input key states to be passed to Flash Attention API + value_states (`torch.Tensor`): + Input value states to be passed to Flash Attention API + attention_mask (`torch.Tensor`): + The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the + position of padding tokens and 1 for the position of non-padding tokens. + dropout (`float`): + Attention dropout + softmax_scale (`float`, *optional*): + The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) + """ + if not self._flash_attn_uses_top_left_mask: + causal = self.is_causal + else: + # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. + causal = self.is_causal and query_length != 1 + + # Contains at least one padding token in the sequence + if attention_mask is not None: + batch_size = query_states.shape[0] + query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( + query_states, key_states, value_states, attention_mask, query_length + ) + + cu_seqlens_q, cu_seqlens_k = cu_seq_lens + max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens + + attn_output_unpad = flash_attn_varlen_func( + query_states, + key_states, + value_states, + cu_seqlens_q=cu_seqlens_q, + cu_seqlens_k=cu_seqlens_k, + max_seqlen_q=max_seqlen_in_batch_q, + max_seqlen_k=max_seqlen_in_batch_k, + dropout_p=dropout, + softmax_scale=softmax_scale, + causal=causal, + ) + + attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) + else: + attn_output = flash_attn_func( + query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal + ) + + return attn_output + + # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input + def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): + indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) + batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape + + key_layer = index_first_axis( + key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k + ) + value_layer = index_first_axis( + value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k + ) + if query_length == kv_seq_len: + query_layer = index_first_axis( + query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k + ) + cu_seqlens_q = cu_seqlens_k + max_seqlen_in_batch_q = max_seqlen_in_batch_k + indices_q = indices_k + elif query_length == 1: + max_seqlen_in_batch_q = 1 + cu_seqlens_q = torch.arange( + batch_size + 1, dtype=torch.int32, device=query_layer.device + ) # There is a memcpy here, that is very bad. + indices_q = cu_seqlens_q[:-1] + query_layer = query_layer.squeeze(1) + else: + # The -q_len: slice assumes left padding. + attention_mask = attention_mask[:, -query_length:] + query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) + + return ( + query_layer, + key_layer, + value_layer, + indices_q, + (cu_seqlens_q, cu_seqlens_k), + (max_seqlen_in_batch_q, max_seqlen_in_batch_k), + ) + + +OPT_ATTENTION_CLASSES = { + "eager": OPTAttention, + "flash_attention_2": OptFlashAttention2, +} + + +class OPTDecoderLayer(nn.Module): + def __init__(self, config: OPTConfig): + super().__init__() + self.embed_dim = config.hidden_size + + self.self_attn = OPT_ATTENTION_CLASSES[config._attn_implementation](config=config, is_decoder=True) + + self.do_layer_norm_before = config.do_layer_norm_before + self.dropout = config.dropout + self.activation_fn = ACT2FN[config.activation_function] + + self.self_attn_layer_norm = nn.LayerNorm( + self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine + ) + self.fc1 = nn.Linear(self.embed_dim, config.ffn_dim, bias=config.enable_bias) + self.fc2 = nn.Linear(config.ffn_dim, self.embed_dim, bias=config.enable_bias) + self.final_layer_norm = nn.LayerNorm(self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = False, + ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`, *optional*): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + layer_head_mask (`torch.FloatTensor`, *optional*): mask for attention heads in a given layer of size + `(encoder_attention_heads,)`. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states + """ + + residual = hidden_states + + # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention + if self.do_layer_norm_before: + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Self Attention + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + past_key_value=past_key_value, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + output_attentions=output_attentions, + ) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + # 350m applies layer norm AFTER attention + if not self.do_layer_norm_before: + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Fully Connected + hidden_states_shape = hidden_states.shape + hidden_states = hidden_states.reshape(-1, hidden_states.size(-1)) + residual = hidden_states + + # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention + if self.do_layer_norm_before: + hidden_states = self.final_layer_norm(hidden_states) + + hidden_states = self.fc1(hidden_states) + hidden_states = self.activation_fn(hidden_states) + + hidden_states = self.fc2(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + + hidden_states = (residual + hidden_states).view(hidden_states_shape) + + # 350m applies layer norm AFTER attention + if not self.do_layer_norm_before: + hidden_states = self.final_layer_norm(hidden_states) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights,) + + if use_cache: + outputs += (present_key_value,) + + return outputs + + +OPT_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`OPTConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +@add_start_docstrings( + "The bare OPT Model outputting raw hidden-states without any specific head on top.", + OPT_START_DOCSTRING, +) +class OPTPreTrainedModel(PreTrainedModel): + config_class = OPTConfig + base_model_prefix = "model" + supports_gradient_checkpointing = True + _no_split_modules = ["OPTDecoderLayer"] + _supports_flash_attn_2 = True + + def _init_weights(self, module): + std = self.config.init_std + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + +OPT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + + If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] + and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more + information on the default strategy. + head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape + `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape + `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +class OPTDecoder(OPTPreTrainedModel): + """ + Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`OPTDecoderLayer`] + + Args: + config: OPTConfig + """ + + def __init__(self, config: OPTConfig): + super().__init__(config) + self.dropout = config.dropout + self.layerdrop = config.layerdrop + self.padding_idx = config.pad_token_id + self.max_target_positions = config.max_position_embeddings + self.vocab_size = config.vocab_size + + self.embed_tokens = nn.Embedding(config.vocab_size, config.word_embed_proj_dim, self.padding_idx) + self.embed_positions = OPTLearnedPositionalEmbedding(config.max_position_embeddings, config.hidden_size) + + if config.word_embed_proj_dim != config.hidden_size: + self.project_out = nn.Linear(config.hidden_size, config.word_embed_proj_dim, bias=False) + else: + self.project_out = None + + if config.word_embed_proj_dim != config.hidden_size: + self.project_in = nn.Linear(config.word_embed_proj_dim, config.hidden_size, bias=False) + else: + self.project_in = None + + # Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility + # with checkpoints that have been fine-tuned before transformers v4.20.1 + # see https://github.com/facebookresearch/metaseq/pull/164 + if config.do_layer_norm_before and not config._remove_final_layer_norm: + self.final_layer_norm = nn.LayerNorm( + config.hidden_size, elementwise_affine=config.layer_norm_elementwise_affine + ) + else: + self.final_layer_norm = None + + self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)]) + self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPast]: + r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the + cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those + that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of + all `decoder_input_ids` of shape `(batch_size, sequence_length)`. + + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # retrieve input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") + elif input_ids is not None: + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + + batch_size, seq_length = input_shape + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + # required mask seq length can be calculated via length of past + mask_seq_length = past_key_values_length + seq_length + + # embed positions + if self._use_flash_attention_2: + # 2d mask is passed through the layers + causal_attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None + attention_mask = ( + torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device) + if attention_mask is None + else attention_mask + ) + else: + # 4d mask is passed through the layers + if attention_mask is None: + attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device) + elif attention_mask.shape[1] != mask_seq_length: + raise ValueError( + f"The provided attention mask has length {attention_mask.shape[1]}, but its length should be " + f"{mask_seq_length} (sum of the lengths of current and past inputs)" + ) + causal_attention_mask = _prepare_4d_causal_attention_mask( + attention_mask, input_shape, inputs_embeds, past_key_values_length + ) + + pos_embeds = self.embed_positions(attention_mask, past_key_values_length) + + if self.project_in is not None: + inputs_embeds = self.project_in(inputs_embeds) + + hidden_states = inputs_embeds + pos_embeds + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + next_decoder_cache = () if use_cache else None + + # check if head_mask has a correct number of layers specified if desired + for attn_mask, mask_name in zip([head_mask], ["head_mask"]): + if attn_mask is not None: + if attn_mask.size()[0] != (len(self.layers)): + raise ValueError( + f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" + f" {head_mask.size()[0]}." + ) + + for idx, decoder_layer in enumerate(self.layers): + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + if output_hidden_states: + all_hidden_states += (hidden_states,) + + if self.training: + dropout_probability = torch.rand([]) + if dropout_probability < self.layerdrop: + continue + + past_key_value = past_key_values[idx] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + causal_attention_mask, + head_mask[idx] if head_mask is not None else None, + None, + output_attentions, + use_cache, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=causal_attention_mask, + layer_head_mask=(head_mask[idx] if head_mask is not None else None), + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + ) + + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + if self.final_layer_norm is not None: + hidden_states = self.final_layer_norm(hidden_states) + + if self.project_out is not None: + hidden_states = self.project_out(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + next_cache = next_decoder_cache if use_cache else None + if not return_dict: + return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) + return BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + ) + + +@add_start_docstrings( + "The bare OPT Model outputting raw hidden-states without any specific head on top.", + OPT_START_DOCSTRING, +) +class OPTModel(OPTPreTrainedModel): + def __init__(self, config: OPTConfig): + super().__init__(config) + self.decoder = OPTDecoder(config) + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.decoder.embed_tokens + + def set_input_embeddings(self, value): + self.decoder.embed_tokens = value + + def get_decoder(self): + return self.decoder + + @add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPast, + config_class=_CONFIG_FOR_DOC, + expected_output=_EXPECTED_OUTPUT_SHAPE, + ) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPast]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) + decoder_outputs = self.decoder( + input_ids=input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + if not return_dict: + return decoder_outputs + + return BaseModelOutputWithPast( + last_hidden_state=decoder_outputs.last_hidden_state, + past_key_values=decoder_outputs.past_key_values, + hidden_states=decoder_outputs.hidden_states, + attentions=decoder_outputs.attentions, + ) + + +class OPTForCausalLM(OPTPreTrainedModel): + _tied_weights_keys = ["lm_head.weight"] + + def __init__(self, config): + super().__init__(config) + self.model = OPTModel(config) + + # the lm_head weight is automatically tied to the embed tokens weight + self.lm_head = nn.Linear(config.word_embed_proj_dim, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.decoder.embed_tokens + + def set_input_embeddings(self, value): + self.model.decoder.embed_tokens = value + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def set_decoder(self, decoder): + self.model.decoder = decoder + + def get_decoder(self): + return self.model.decoder + + @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithPast]: + r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of + shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional + tensors are only required when the model is used as a decoder in a Sequence to Sequence model. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the + cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those + that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of + all `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, OPTForCausalLM + + >>> model = OPTForCausalLM.from_pretrained("facebook/opt-350m") + >>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m") + + >>> prompt = "Hey, are you conscious? Can you talk to me?" + >>> inputs = tokenizer(prompt, return_tensors="pt") + + >>> # Generate + >>> generate_ids = model.generate(inputs.input_ids, max_length=30) + >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + "Hey, are you conscious? Can you talk to me?\nI'm not conscious. I'm just a little bit of a weirdo." + ```""" + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model.decoder( + input_ids=input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + logits = self.lm_head(outputs[0]).contiguous() + + loss = None + if labels is not None: + # move labels to correct device to enable model parallelism + labels = labels.to(logits.device) + # Shift so that tokens < n predict n + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + return CausalLMOutputWithPast( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def prepare_inputs_for_generation( + self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs + ): + if past_key_values is not None: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = input_ids.shape[1] - 1 + + input_ids = input_ids[:, remove_prefix_length:] + + # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + if inputs_embeds is not None and past_key_values is None: + model_inputs = {"inputs_embeds": inputs_embeds} + else: + model_inputs = {"input_ids": input_ids} + + model_inputs.update( + { + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "attention_mask": attention_mask, + } + ) + return model_inputs + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past + + +@add_start_docstrings( + """ + The OPT Model transformer with a sequence classification head on top (linear layer). + + [`OPTForSequenceClassification`] uses the last token in order to do the classification, as other causal models + (e.g. GPT-2) do. + + Since it does classification on the last token, it requires to know the position of the last token. If a + `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If + no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the + padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in + each row of the batch). + """, + OPT_START_DOCSTRING, +) +class OPTForSequenceClassification(OPTPreTrainedModel): + def __init__(self, config: OPTConfig): + super().__init__(config) + self.num_labels = config.num_labels + self.model = OPTModel(config) + self.score = nn.Linear(config.word_embed_proj_dim, self.num_labels, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION, + output_type=SequenceClassifierOutputWithPast, + config_class=_CONFIG_FOR_DOC, + expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, + expected_loss=_SEQ_CLASS_EXPECTED_LOSS, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, SequenceClassifierOutputWithPast]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.model( + input_ids, + past_key_values=past_key_values, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + logits = self.score(hidden_states) + + if input_ids is not None: + batch_size, sequence_length = input_ids.shape[:2] + else: + batch_size, sequence_length = inputs_embeds.shape[:2] + + if self.config.pad_token_id is None: + sequence_lengths = -1 + else: + if input_ids is not None: + # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility + sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 + sequence_lengths = sequence_lengths % input_ids.shape[-1] + sequence_lengths = sequence_lengths.to(logits.device) + else: + sequence_lengths = -1 + logger.warning( + f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " + "unexpected if using padding tokens in conjunction with `inputs_embeds.`" + ) + + pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(pooled_logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(pooled_logits, labels) + if not return_dict: + output = (pooled_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutputWithPast( + loss=loss, + logits=pooled_logits, + past_key_values=transformer_outputs.past_key_values, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + def get_input_embeddings(self): + return self.model.decoder.embed_tokens + + def set_input_embeddings(self, value): + self.model.decoder.embed_tokens = value + + +@add_start_docstrings( + """ + The OPT Model transformer with a span classification head on top for extractive question-answering tasks like SQuAD + (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + OPT_START_DOCSTRING, +) +class OPTForQuestionAnswering(OPTPreTrainedModel): + def __init__(self, config: OPTConfig): + super().__init__(config) + self.model = OPTModel(config) + self.qa_outputs = nn.Linear(config.word_embed_proj_dim, 2) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + start_positions: Optional[torch.LongTensor] = None, + end_positions: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, QuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, OPTForQuestionAnswering + >>> import torch + + >>> torch.manual_seed(4) # doctest: +IGNORE_RESULT + >>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m") + + >>> # note: we are loading a OPTForQuestionAnswering from the hub here, + >>> # so the head will be randomly initialized, hence the predictions will be random + >>> model = OPTForQuestionAnswering.from_pretrained("facebook/opt-350m") + + >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" + + >>> inputs = tokenizer(question, text, return_tensors="pt") + >>> with torch.no_grad(): + ... outputs = model(**inputs) + + >>> answer_start_index = outputs.start_logits.argmax() + >>> answer_end_index = outputs.end_logits.argmax() + + >>> answer_offset = len(tokenizer(question)[0]) + + >>> predict_answer_tokens = inputs.input_ids[ + ... 0, answer_offset + answer_start_index : answer_offset + answer_end_index + 1 + ... ] + >>> predicted = tokenizer.decode(predict_answer_tokens) + >>> predicted + ' a nice puppet' + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.model( + input_ids, + past_key_values=past_key_values, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + + logits = self.qa_outputs(hidden_states) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + transformer_outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return QuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + def get_input_embeddings(self): + return self.model.decoder.embed_tokens + + def set_input_embeddings(self, value): + self.model.decoder.embed_tokens = value diff --git a/venv/lib/python3.10/site-packages/transformers/models/opt/modeling_tf_opt.py b/venv/lib/python3.10/site-packages/transformers/models/opt/modeling_tf_opt.py new file mode 100644 index 0000000000000000000000000000000000000000..8dbad97e08b651dbf44a071eb16965f1c0047f16 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/opt/modeling_tf_opt.py @@ -0,0 +1,1095 @@ +# coding=utf-8 +# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" TF 2.0 OPT model.""" + + +from __future__ import annotations + +from typing import Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ...activations_tf import get_tf_activation +from ...modeling_tf_outputs import TFBaseModelOutputWithPast, TFCausalLMOutputWithPast + +# Public API +from ...modeling_tf_utils import ( + TFCausalLanguageModelingLoss, + TFModelInputType, + TFPreTrainedModel, + TFSharedEmbeddings, + keras, + keras_serializable, + unpack_inputs, +) +from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_opt import OPTConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "facebook/opt-350m" +_CONFIG_FOR_DOC = "OPTConfig" + +# Base model docstring +_EXPECTED_OUTPUT_SHAPE = [1, 8, 1024] + +# Causal LM output +_CAUSAL_LM_EXPECTED_OUTPUT = ( + "Hey, are you conscious? Can you talk to me?\nI'm not conscious. I'm just a little bit of a weirdo." +) + +LARGE_NEGATIVE = -1e8 + + +def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0): + """ + Make causal mask used for bi-directional self-attention. + """ + bsz = input_ids_shape[0] + tgt_len = input_ids_shape[1] + # We need triu with k = 1 but TF expects known compile-time dims for that, so we hack around it + mask = tf.fill((tgt_len, tgt_len), tf.cast(LARGE_NEGATIVE, tf.float32)) + mask = tf.linalg.band_part(mask, 0, -1) - tf.linalg.band_part(mask, 0, 0) + + if past_key_values_length > 0: + mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1) + + return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1)) + + +# Copied from transformers.models.bart.modeling_tf_bart._expand_mask +def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None): + """ + Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. + """ + src_len = shape_list(mask)[1] + tgt_len = tgt_len if tgt_len is not None else src_len + one_cst = tf.constant(1.0) + mask = tf.cast(mask, dtype=one_cst.dtype) + expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) + + return (one_cst - expanded_mask) * LARGE_NEGATIVE + + +class TFOPTLearnedPositionalEmbedding(keras.layers.Embedding): + """ + This module learns positional embeddings up to a fixed maximum size. + """ + + def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs): + # OPT is set up so that if padding_idx is specified then offset the embedding ids by 2 + # and adjust num_embeddings appropriately. Other models don't have this hack + self.offset = 2 + super().__init__(num_embeddings + self.offset, embedding_dim, **kwargs) + + def call(self, attention_mask, past_key_values_length: int = 0): + """`input_ids_shape` is expected to be [bsz x seqlen].""" + attention_mask = tf.cast(attention_mask, tf.int64) + + # create positions depending on attention_mask + positions = tf.math.cumsum(attention_mask, axis=1) * attention_mask - 1 + + # cut positions if `past_key_values_length` is > 0 + positions = positions[:, past_key_values_length:] + + return super().call(positions + self.offset) + + +# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->OPT +class TFOPTAttention(keras.layers.Layer): + """Multi-headed attention from "Attention Is All You Need""" + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + is_decoder: bool = False, + bias: bool = True, + **kwargs, + ): + super().__init__(**kwargs) + self.embed_dim = embed_dim + + self.num_heads = num_heads + self.dropout = keras.layers.Dropout(dropout) + self.head_dim = embed_dim // num_heads + if (self.head_dim * num_heads) != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + self.is_decoder = is_decoder + + self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") + self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") + self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") + self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") + + def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): + return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) + + def call( + self, + hidden_states: tf.Tensor, + key_value_states: tf.Tensor | None = None, + past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, + attention_mask: tf.Tensor | None = None, + layer_head_mask: tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Tuple[tf.Tensor, tf.Tensor | None]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + bsz, tgt_len, embed_dim = shape_list(hidden_states) + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, bsz) + value_states = self._shape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + key_states = tf.concat([past_key_value[0], key_states], axis=2) + value_states = tf.concat([past_key_value[1], value_states], axis=2) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) + key_states = tf.reshape(key_states, proj_shape) + value_states = tf.reshape(value_states, proj_shape) + + src_len = shape_list(key_states)[1] + attn_weights = tf.matmul(query_states, key_states, transpose_b=True) + + tf.debugging.assert_equal( + shape_list(attn_weights), + [bsz * self.num_heads, tgt_len, src_len], + message=( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" + f" {shape_list(attn_weights)}" + ), + ) + + if attention_mask is not None: + tf.debugging.assert_equal( + shape_list(attention_mask), + [bsz, 1, tgt_len, src_len], + message=( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" + f" {shape_list(attention_mask)}" + ), + ) + + attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype) + attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask + attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) + + attn_weights = stable_softmax(attn_weights, axis=-1) + + if layer_head_mask is not None: + tf.debugging.assert_equal( + shape_list(layer_head_mask), + [self.num_heads], + message=( + f"Head mask for a single layer should be of size {(self.num_heads)}, but is" + f" {shape_list(layer_head_mask)}" + ), + ) + + attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( + attn_weights, (bsz, self.num_heads, tgt_len, src_len) + ) + attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) + + attn_probs = self.dropout(attn_weights, training=training) + attn_output = tf.matmul(attn_probs, value_states) + + tf.debugging.assert_equal( + shape_list(attn_output), + [bsz * self.num_heads, tgt_len, self.head_dim], + message=( + f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" + f" {shape_list(attn_output)}" + ), + ) + + attn_output = tf.transpose( + tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) + ) + attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) + + attn_output = self.out_proj(attn_output) + attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + + return attn_output, attn_weights, past_key_value + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "k_proj", None) is not None: + with tf.name_scope(self.k_proj.name): + self.k_proj.build([None, None, self.embed_dim]) + if getattr(self, "q_proj", None) is not None: + with tf.name_scope(self.q_proj.name): + self.q_proj.build([None, None, self.embed_dim]) + if getattr(self, "v_proj", None) is not None: + with tf.name_scope(self.v_proj.name): + self.v_proj.build([None, None, self.embed_dim]) + if getattr(self, "out_proj", None) is not None: + with tf.name_scope(self.out_proj.name): + self.out_proj.build([None, None, self.embed_dim]) + + +class TFOPTDecoderLayer(keras.layers.Layer): + def __init__(self, config: OPTConfig, **kwargs): + super().__init__(**kwargs) + self.do_layer_norm_before = config.do_layer_norm_before + self.embed_dim = config.hidden_size + self.self_attn = TFOPTAttention( + embed_dim=self.embed_dim, + num_heads=config.num_attention_heads, + dropout=config.attention_dropout, + name="self_attn", + is_decoder=True, + ) + self.dropout = keras.layers.Dropout(config.dropout) + self.activation_fn = get_tf_activation(config.activation_function) + + self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") + self.fc1 = keras.layers.Dense(config.ffn_dim, name="fc1") + self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") + self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") + self.config = config + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: np.ndarray | tf.Tensor | None = None, + layer_head_mask: tf.Tensor | None = None, + past_key_value: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, + training: Optional[bool] = False, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = False, + ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: + """ + Args: + hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`tf.Tensor`, *optional*): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + layer_head_mask (`tf.Tensor`, *optional*): mask for attention heads in a given layer of size + `(decoder_attention_heads,)` + past_key_value (`Tuple(tf.Tensor)`, *optional*): cached past key and value projection states + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). + """ + residual = hidden_states + + # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention + if self.do_layer_norm_before: + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Self Attention + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + + # add present self-attn cache to positions 1,2 of present_key_value tuple + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + past_key_value=self_attn_past_key_value, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + ) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + + # 350m applies layer norm AFTER attention + if not self.do_layer_norm_before: + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Fully Connected + residual = hidden_states + # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention + if self.do_layer_norm_before: + hidden_states = self.final_layer_norm(hidden_states) + + hidden_states = self.fc1(hidden_states) + hidden_states = self.activation_fn(hidden_states) + + hidden_states = self.fc2(hidden_states) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + + # 350m applies layer norm AFTER attention + if not self.do_layer_norm_before: + hidden_states = self.final_layer_norm(hidden_states) + + return (hidden_states, self_attn_weights, present_key_value) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "self_attn", None) is not None: + with tf.name_scope(self.self_attn.name): + self.self_attn.build(None) + if getattr(self, "self_attn_layer_norm", None) is not None: + with tf.name_scope(self.self_attn_layer_norm.name): + self.self_attn_layer_norm.build([None, None, self.embed_dim]) + if getattr(self, "fc1", None) is not None: + with tf.name_scope(self.fc1.name): + self.fc1.build([None, None, self.embed_dim]) + if getattr(self, "fc2", None) is not None: + with tf.name_scope(self.fc2.name): + self.fc2.build([None, None, self.config.ffn_dim]) + if getattr(self, "final_layer_norm", None) is not None: + with tf.name_scope(self.final_layer_norm.name): + self.final_layer_norm.build([None, None, self.embed_dim]) + + +OPT_START_DOCSTRING = r""" + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Args: + config ([`OPTConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +@add_start_docstrings( + "The bare OPT Model outputting raw hidden-states without any specific head on top.", + OPT_START_DOCSTRING, +) +class TFOPTPreTrainedModel(TFPreTrainedModel): + """ + TFOPT Pretrained Model that inheritates from transformers.TFPreTrainedModel + + Args: + config: OPTConfig + """ + + config_class = OPTConfig + base_model_prefix = "model" + + +OPT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`tf.Tensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`tf.Tensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) + contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*, defaults to `True`): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). Set to `False` during training, `True` during generation + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the + config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. This argument can be used only in eager mode, in graph mode the value in the config will be + used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in + eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). +""" + + +@keras_serializable +class TFOPTDecoder(keras.layers.Layer): + config_class = OPTConfig + + def __init__(self, config: OPTConfig, **kwargs): + super().__init__(**kwargs) + self.config = config + self.padding_idx = config.pad_token_id + self.layerdrop = config.layerdrop + num_embeddings = config.max_position_embeddings + self.embed_tokens = TFSharedEmbeddings( + config.vocab_size, config.word_embed_proj_dim, config.pad_token_id, name="embed_tokens" + ) + self.embed_positions = TFOPTLearnedPositionalEmbedding( + num_embeddings, + config.hidden_size, + name="embed_positions", + ) + + # Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility + # with checkpoints that have been fine-tuned before transformers v4.20.1 + # see https://github.com/facebookresearch/metaseq/pull/164 + if config.do_layer_norm_before and not config._remove_final_layer_norm: + self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") + else: + self.final_layer_norm = None + + if config.word_embed_proj_dim != config.hidden_size: + self.project_out = keras.layers.Dense(config.word_embed_proj_dim, name="project_out", use_bias=False) + self.project_in = keras.layers.Dense(config.hidden_size, name="project_in", use_bias=False) + + else: + self.project_in = None + self.project_out = None + + self.layers = [TFOPTDecoderLayer(config, name=f"layers.{i}") for i in range(config.num_hidden_layers)] + self.dropout = keras.layers.Dropout(config.dropout) + + def get_embed_tokens(self): + return self.embed_tokens + + def set_embed_tokens(self, embed_tokens): + self.embed_tokens = embed_tokens + + def set_input_embeddings(self, new_embeddings): + self.embed_tokens.vocab_size = new_embeddings.shape[0] + self.embed_tokens.weight = new_embeddings + + def get_input_embeddings(self): + return self.embed_tokens + + def _prepare_decoder_attention_mask(self, attention_mask, input_shape, past_key_values_length): + # create causal mask + # # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + _, seq_length = input_shape + tf.debugging.assert_equal( + seq_length + past_key_values_length, + shape_list(attention_mask)[1], + message="Attention mask shape should be (batch_size, seq_length + past_key_values_length)" + f" but is {shape_list(attention_mask)[1]} with input_ids shape {input_shape} and past length" + f" {past_key_values_length}.", + ) + + expanded_attn_mask = _expand_mask(attention_mask, tgt_len=input_shape[-1]) + if seq_length > 1: + combined_attention_mask = ( + _make_causal_mask(input_shape, past_key_values_length=past_key_values_length) + expanded_attn_mask + ) + else: + combined_attention_mask = expanded_attn_mask + + return combined_attention_mask + + @unpack_inputs + def call( + self, + input_ids: TFModelInputType | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + ) -> Union[TFBaseModelOutputWithPast, Tuple[tf.Tensor]]: + r""" + Args: + input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up + decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those + that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of + all `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`tf.Tensor` of + shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing + `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more + control over how to convert `input_ids` indices into associated vectors than the model's internal + embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") + elif input_ids is not None: + input_shape = shape_list(input_ids) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") + + past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0 + + if inputs_embeds is None: + check_embeddings_within_bounds(input_ids, self.embed_tokens.vocab_size) + inputs_embeds = self.embed_tokens(input_ids) + + if attention_mask is None: + attention_mask = tf.ones((input_shape[0], input_shape[1] + past_key_values_length), dtype=tf.bool) + else: + tf.debugging.assert_equal( + shape_list(attention_mask)[1], + past_key_values_length + input_shape[1], + message=( + f"The provided attention mask has length {tf.shape(attention_mask)[1]}, but its length should be " + f"{past_key_values_length + input_shape[1]} (sum of the lengths of current and past inputs)" + ), + ) + pos_embeds = self.embed_positions(attention_mask, past_key_values_length) + + attention_mask = self._prepare_decoder_attention_mask(attention_mask, input_shape, past_key_values_length) + + if self.project_in is not None: + inputs_embeds = self.project_in(inputs_embeds) + + hidden_states = inputs_embeds + pos_embeds + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + present_key_values = () if use_cache else None + + # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired + for attn_mask_name, attn_mask in [("head_mask", head_mask)]: + if attn_mask is not None: + tf.debugging.assert_equal( + shape_list(attn_mask)[0], + len(self.layers), + message=( + f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for" + f" {shape_list(attn_mask)[0]}." + ), + ) + + for idx, decoder_layer in enumerate(self.layers): + if output_hidden_states: + all_hidden_states += (hidden_states,) + + past_key_value = past_key_values[idx] if past_key_values is not None else None + + hidden_states, layer_self_attn, present_key_value = decoder_layer( + hidden_states, + attention_mask=attention_mask, + layer_head_mask=head_mask[idx] if head_mask is not None else None, + past_key_value=past_key_value, + ) + + if use_cache: + present_key_values += (present_key_value,) + + if output_attentions: + all_self_attns += (layer_self_attn,) + + if self.final_layer_norm is not None: + hidden_states = self.final_layer_norm(hidden_states) + + if self.project_out is not None: + hidden_states = self.project_out(hidden_states) + + if output_hidden_states: + all_hidden_states += (hidden_states,) + + if not return_dict: + return tuple( + v for v in [hidden_states, present_key_values, all_hidden_states, all_self_attns] if v is not None + ) + + else: + return TFBaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=present_key_values, + hidden_states=all_hidden_states, + attentions=all_self_attns, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embed_tokens", None) is not None: + with tf.name_scope(self.embed_tokens.name): + self.embed_tokens.build(None) + if getattr(self, "embed_positions", None) is not None: + with tf.name_scope(self.embed_positions.name): + self.embed_positions.build(None) + if getattr(self, "final_layer_norm", None) is not None: + with tf.name_scope(self.final_layer_norm.name): + self.final_layer_norm.build([None, None, self.config.hidden_size]) + if getattr(self, "project_out", None) is not None: + with tf.name_scope(self.project_out.name): + self.project_out.build([None, None, self.config.hidden_size]) + if getattr(self, "project_in", None) is not None: + with tf.name_scope(self.project_in.name): + self.project_in.build([None, None, self.config.word_embed_proj_dim]) + if getattr(self, "layers", None) is not None: + for layer in self.layers: + with tf.name_scope(layer.name): + layer.build(None) + + +@keras_serializable +class TFOPTMainLayer(keras.layers.Layer): + config_class = OPTConfig + + def __init__(self, config: OPTConfig, **kwargs): + super().__init__(**kwargs) + self.config = config + self.decoder = TFOPTDecoder(config, name="decoder") + + def get_input_embeddings(self): + return self.decoder.embed_tokens + + def set_input_embeddings(self, new_embeddings): + self.decoder.set_input_embeddings(new_embeddings) + + @unpack_inputs + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + **kwargs, + ) -> Union[TFBaseModelOutputWithPast, Tuple[tf.Tensor]]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.decoder( + input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + if not return_dict: + return outputs + + return TFBaseModelOutputWithPast( + last_hidden_state=outputs.last_hidden_state, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "decoder", None) is not None: + with tf.name_scope(self.decoder.name): + self.decoder.build(None) + + +@add_start_docstrings( + "The bare TF OPT Model outputting raw hidden-states without any specific head on top.", + OPT_START_DOCSTRING, +) +@keras_serializable +class TFOPTModel(TFOPTPreTrainedModel): + config_class = OPTConfig + + def __init__(self, config: OPTConfig, **kwargs): + super().__init__(config, **kwargs) + self.config = config + self.model = TFOPTMainLayer(config, name="model") + + def get_input_embeddings(self): + return self.model.decoder.embed_tokens + + def set_input_embeddings(self, new_embeddings): + self.model.set_input_embeddings(new_embeddings) + + @unpack_inputs + @add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFBaseModelOutputWithPast, + config_class=_CONFIG_FOR_DOC, + expected_output=_EXPECTED_OUTPUT_SHAPE, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + **kwargs, + ) -> Union[TFBaseModelOutputWithPast, Tuple[tf.Tensor]]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.model( + input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + if not return_dict: + return outputs + + return TFBaseModelOutputWithPast( + last_hidden_state=outputs.last_hidden_state, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def serving_output(self, output): + pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None + hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None + attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None + + return TFBaseModelOutputWithPast( + last_hidden_state=output.last_hidden_state, + past_key_values=pkv, + hidden_states=hs, + attentions=attns, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "model", None) is not None: + with tf.name_scope(self.model.name): + self.model.build(None) + + +@add_start_docstrings( + """ + The OPT Model transformer with a language modeling head on top. + """, + OPT_START_DOCSTRING, +) +@keras_serializable +class TFOPTForCausalLM(TFOPTPreTrainedModel, TFCausalLanguageModelingLoss): + config_class = OPTConfig + + def __init__(self, config: OPTConfig, **kwargs): + super().__init__(config, **kwargs) + self.config = config + self.model = TFOPTMainLayer(config, name="model") + + def get_output_embeddings(self): + return self.model.get_input_embeddings() + + def prepare_inputs_for_generation(self, inputs, past_key_values=None, use_cache=None, **kwargs): + attention_mask = kwargs.get("attention_mask", None) + + # only last token for inputs_ids if past is defined in kwargs + if past_key_values: + inputs = tf.expand_dims(inputs[:, -1], -1) + + return { + "input_ids": inputs, + "attention_mask": attention_mask, + "past_key_values": past_key_values, + "use_cache": use_cache, + } + + @unpack_inputs + @replace_return_docstrings(output_type=TFCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFCausalLMOutputWithPast, + config_class=_CONFIG_FOR_DOC, + expected_output=_CAUSAL_LM_EXPECTED_OUTPUT, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + labels: np.ndarray | tf.Tensor | None = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + **kwargs, + ) -> Union[TFCausalLMOutputWithPast, Tuple[tf.Tensor]]: + r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of + shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional + tensors are only required when the model is used as a decoder in a Sequence to Sequence model. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the + cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.model( + input_ids=input_ids, + past_key_values=past_key_values, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + logits = self.model.decoder.embed_tokens(outputs[0], mode="linear") + loss = None + if labels is not None: + # shift labels to the left and cut last logit token + shifted_logits = logits[:, :-1] + labels = labels[:, 1:] + loss = self.hf_compute_loss(labels, shifted_logits) + + if not return_dict: + output = (logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return TFCausalLMOutputWithPast( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def serving_output(self, output): + pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None + hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None + attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None + + return TFCausalLMOutputWithPast( + past_key_values=pkv, + hidden_states=hs, + attentions=attns, + loss=output.loss, + logits=output.logits, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "model", None) is not None: + with tf.name_scope(self.model.name): + self.model.build(None) diff --git a/venv/lib/python3.10/site-packages/transformers/models/qwen2_moe/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/qwen2_moe/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..f083b454d554a09ef2c0479ef7ae7053cc6e023c --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/qwen2_moe/__init__.py @@ -0,0 +1,62 @@ +# Copyright 2024 The Qwen Team and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_torch_available, +) + + +_import_structure = { + "configuration_qwen2_moe": ["QWEN2MOE_PRETRAINED_CONFIG_ARCHIVE_MAP", "Qwen2MoeConfig"], +} + + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_qwen2_moe"] = [ + "Qwen2MoeForCausalLM", + "Qwen2MoeModel", + "Qwen2MoePreTrainedModel", + "Qwen2MoeForSequenceClassification", + ] + + +if TYPE_CHECKING: + from .configuration_qwen2_moe import QWEN2MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, Qwen2MoeConfig + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_qwen2_moe import ( + Qwen2MoeForCausalLM, + Qwen2MoeForSequenceClassification, + Qwen2MoeModel, + Qwen2MoePreTrainedModel, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/venv/lib/python3.10/site-packages/transformers/models/qwen2_moe/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/qwen2_moe/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..31079d7fa1448dc1cb0081a72d864fb2a5061ba0 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/qwen2_moe/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/qwen2_moe/__pycache__/configuration_qwen2_moe.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/qwen2_moe/__pycache__/configuration_qwen2_moe.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2725d83bf3e2cf519a743bcb415990b3f3957c6f Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/qwen2_moe/__pycache__/configuration_qwen2_moe.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/qwen2_moe/__pycache__/modeling_qwen2_moe.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/qwen2_moe/__pycache__/modeling_qwen2_moe.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..267256dbbbe9ef6da36a22c820ed2d3aabde5074 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/qwen2_moe/__pycache__/modeling_qwen2_moe.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/qwen2_moe/configuration_qwen2_moe.py b/venv/lib/python3.10/site-packages/transformers/models/qwen2_moe/configuration_qwen2_moe.py new file mode 100644 index 0000000000000000000000000000000000000000..e3f516ed9c2de4d725b3f8f329768ef71916cb62 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/qwen2_moe/configuration_qwen2_moe.py @@ -0,0 +1,175 @@ +# coding=utf-8 +# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Qwen2MoE model configuration""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + +QWEN2MOE_PRETRAINED_CONFIG_ARCHIVE_MAP = { + "Qwen/Qwen1.5-MoE-A2.7B": "https://huggingface.co/Qwen/Qwen1.5-MoE-A2.7B/resolve/main/config.json", +} + + +class Qwen2MoeConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`Qwen2MoeModel`]. It is used to instantiate a + Qwen2MoE model according to the specified arguments, defining the model architecture. Instantiating a configuration + with the defaults will yield a similar configuration to that of + Qwen1.5-MoE-A2.7B" [Qwen/Qwen1.5-MoE-A2.7B"](https://huggingface.co/Qwen/Qwen1.5-MoE-A2.7B"). + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 151936): + Vocabulary size of the Qwen2MoE model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`Qwen2MoeModel`] + hidden_size (`int`, *optional*, defaults to 2048): + Dimension of the hidden representations. + intermediate_size (`int`, *optional*, defaults to 5632): + Dimension of the MLP representations. + num_hidden_layers (`int`, *optional*, defaults to 24): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer encoder. + num_key_value_heads (`int`, *optional*, defaults to 16): + This is the number of key_value heads that should be used to implement Grouped Query Attention. If + `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if + `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When + converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed + by meanpooling all the original heads within that group. For more details checkout [this + paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`. + hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): + The non-linear activation function (function or string) in the decoder. + max_position_embeddings (`int`, *optional*, defaults to 32768): + The maximum sequence length that this model might ever be used with. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + rms_norm_eps (`float`, *optional*, defaults to 1e-06): + The epsilon used by the rms normalization layers. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + tie_word_embeddings (`bool`, *optional*, defaults to `False`): + Whether the model's input and output word embeddings should be tied. + rope_theta (`float`, *optional*, defaults to 10000.0): + The base period of the RoPE embeddings. + use_sliding_window (`bool`, *optional*, defaults to `False`): + Whether to use sliding window attention. + sliding_window (`int`, *optional*, defaults to 4096): + Sliding window attention (SWA) window size. If not specified, will default to `4096`. + max_window_layers (`int`, *optional*, defaults to 28): + The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + decoder_sparse_step (`int`, *optional*, defaults to 1): + The frequency of the MoE layer. + moe_intermediate_size (`int`, *optional*, defaults to 1408): + Intermediate size of the routed expert. + shared_expert_intermediate_size (`int`, *optional*, defaults to 5632): + Intermediate size of the shared expert. + num_experts_per_tok (`int`, *optional*, defaults to 4): + Number of selected experts. + num_experts (`int`, *optional*, defaults to 60): + Number of routed experts. + norm_topk_prob (`bool`, *optional*, defaults to `False`): + Whether to normalize the topk probabilities. + output_router_logits (`bool`, *optional*, defaults to `False`): + Whether or not the router logits should be returned by the model. Enabeling this will also + allow the model to output the auxiliary loss, including load balancing loss and router z-loss. + router_aux_loss_coef (`float`, *optional*, defaults to 0.001): + The aux loss factor for the total loss. + + ```python + >>> from transformers import Qwen2MoeModel, Qwen2MoeConfig + + >>> # Initializing a Qwen2MoE style configuration + >>> configuration = Qwen2MoeConfig() + + >>> # Initializing a model from the Qwen1.5-MoE-A2.7B" style configuration + >>> model = Qwen2MoeModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "qwen2_moe" + keys_to_ignore_at_inference = ["past_key_values"] + + def __init__( + self, + vocab_size=151936, + hidden_size=2048, + intermediate_size=5632, + num_hidden_layers=24, + num_attention_heads=16, + num_key_value_heads=16, + hidden_act="silu", + max_position_embeddings=32768, + initializer_range=0.02, + rms_norm_eps=1e-6, + use_cache=True, + tie_word_embeddings=False, + rope_theta=10000.0, + use_sliding_window=False, + sliding_window=4096, + max_window_layers=28, + attention_dropout=0.0, + decoder_sparse_step=1, + moe_intermediate_size=1408, + shared_expert_intermediate_size=5632, + num_experts_per_tok=4, + num_experts=60, + norm_topk_prob=False, + output_router_logits=False, + router_aux_loss_coef=0.001, + **kwargs, + ): + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.use_sliding_window = use_sliding_window + self.sliding_window = sliding_window + self.max_window_layers = max_window_layers + + self.num_key_value_heads = num_key_value_heads + self.hidden_act = hidden_act + self.initializer_range = initializer_range + self.rms_norm_eps = rms_norm_eps + self.use_cache = use_cache + self.rope_theta = rope_theta + self.attention_dropout = attention_dropout + + # MoE arguments + self.decoder_sparse_step = decoder_sparse_step + self.moe_intermediate_size = moe_intermediate_size + self.shared_expert_intermediate_size = shared_expert_intermediate_size + self.num_experts_per_tok = num_experts_per_tok + self.num_experts = num_experts + self.norm_topk_prob = norm_topk_prob + self.output_router_logits = output_router_logits + self.router_aux_loss_coef = router_aux_loss_coef + + super().__init__( + tie_word_embeddings=tie_word_embeddings, + **kwargs, + ) diff --git a/venv/lib/python3.10/site-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py b/venv/lib/python3.10/site-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py new file mode 100644 index 0000000000000000000000000000000000000000..70072c91720a57f44613e404757003973e2b73db --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py @@ -0,0 +1,1595 @@ +# coding=utf-8 +# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved. +# +# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX +# and OPT implementations in this library. It has been modified from its +# original forms to accommodate minor architectural differences compared +# to GPT-NeoX and OPT used by the Meta AI team that trained the model. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch Qwen2MoE model.""" +import inspect +import math +import warnings +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn.functional as F +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...cache_utils import Cache, DynamicCache +from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa +from ...modeling_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast, SequenceClassifierOutputWithPast +from ...modeling_utils import PreTrainedModel +from ...utils import ( + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_flash_attn_2_available, + is_flash_attn_greater_or_equal_2_10, + logging, + replace_return_docstrings, +) +from .configuration_qwen2_moe import Qwen2MoeConfig + + +if is_flash_attn_2_available(): + from flash_attn import flash_attn_func, flash_attn_varlen_func + from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa + + _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "Qwen/Qwen1.5-MoE-A2.7B" +_CONFIG_FOR_DOC = "Qwen2MoeConfig" + +QWEN2MOE_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "Qwen/Qwen1.5-MoE-A2.7B", + # See all Qwen2 models at https://huggingface.co/models?filter=qwen2 +] + + +# Copied from transformers.models.mixtral.modeling_mixtral.load_balancing_loss_func +def load_balancing_loss_func( + gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None +) -> float: + r""" + Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. + + See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss + function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between + experts is too unbalanced. + + Args: + gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]): + Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of + shape [batch_size X sequence_length, num_experts]. + attention_mask (`torch.Tensor`, None): + The attention_mask used in forward function + shape [batch_size X sequence_length] if not None. + num_experts (`int`, *optional*): + Number of experts + + Returns: + The auxiliary loss. + """ + if gate_logits is None or not isinstance(gate_logits, tuple): + return 0 + + if isinstance(gate_logits, tuple): + compute_device = gate_logits[0].device + concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0) + + routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1) + + _, selected_experts = torch.topk(routing_weights, top_k, dim=-1) + + expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) + + if attention_mask is None: + # Compute the percentage of tokens routed to each experts + tokens_per_expert = torch.mean(expert_mask.float(), dim=0) + + # Compute the average probability of routing to these experts + router_prob_per_expert = torch.mean(routing_weights, dim=0) + else: + batch_size, sequence_length = attention_mask.shape + num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length) + + # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask + expert_attention_mask = ( + attention_mask[None, :, :, None, None] + .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts)) + .reshape(-1, top_k, num_experts) + .to(compute_device) + ) + + # Compute the percentage of tokens routed to each experts + tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum( + expert_attention_mask, dim=0 + ) + + # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert + router_per_expert_attention_mask = ( + attention_mask[None, :, :, None] + .expand((num_hidden_layers, batch_size, sequence_length, num_experts)) + .reshape(-1, num_experts) + .to(compute_device) + ) + + # Compute the average probability of routing to these experts + router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum( + router_per_expert_attention_mask, dim=0 + ) + + overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0)) + return overall_loss * num_experts + + +# Copied from transformers.models.llama.modeling_llama._get_unpad_data +def _get_unpad_data(attention_mask): + seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) + indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() + max_seqlen_in_batch = seqlens_in_batch.max().item() + cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) + return ( + indices, + cu_seqlens, + max_seqlen_in_batch, + ) + + +# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Qwen2Moe +class Qwen2MoeRMSNorm(nn.Module): + def __init__(self, hidden_size, eps=1e-6): + """ + Qwen2MoeRMSNorm is equivalent to T5LayerNorm + """ + super().__init__() + self.weight = nn.Parameter(torch.ones(hidden_size)) + self.variance_epsilon = eps + + def forward(self, hidden_states): + input_dtype = hidden_states.dtype + hidden_states = hidden_states.to(torch.float32) + variance = hidden_states.pow(2).mean(-1, keepdim=True) + hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) + return self.weight * hidden_states.to(input_dtype) + + +# Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->Qwen2Moe +class Qwen2MoeRotaryEmbedding(nn.Module): + def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): + super().__init__() + + self.dim = dim + self.max_position_embeddings = max_position_embeddings + self.base = base + inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) + self.register_buffer("inv_freq", inv_freq, persistent=False) + + # Build here to make `torch.jit.trace` work. + self._set_cos_sin_cache( + seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() + ) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) + + freqs = torch.outer(t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) + + def forward(self, x, seq_len=None): + # x: [bs, num_attention_heads, seq_len, head_size] + if seq_len > self.max_seq_len_cached: + self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) + + return ( + self.cos_cached[:seq_len].to(dtype=x.dtype), + self.sin_cached[:seq_len].to(dtype=x.dtype), + ) + + +# Copied from transformers.models.llama.modeling_llama.rotate_half +def rotate_half(x): + """Rotates half the hidden dims of the input.""" + x1 = x[..., : x.shape[-1] // 2] + x2 = x[..., x.shape[-1] // 2 :] + return torch.cat((-x2, x1), dim=-1) + + +# Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb +def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): + """Applies Rotary Position Embedding to the query and key tensors. + + Args: + q (`torch.Tensor`): The query tensor. + k (`torch.Tensor`): The key tensor. + cos (`torch.Tensor`): The cosine part of the rotary embedding. + sin (`torch.Tensor`): The sine part of the rotary embedding. + position_ids (`torch.Tensor`): + The position indices of the tokens corresponding to the query and key tensors. For example, this can be + used to pass offsetted position ids when working with a KV-cache. + unsqueeze_dim (`int`, *optional*, defaults to 1): + The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and + sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note + that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and + k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes + cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have + the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. + Returns: + `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. + """ + cos = cos[position_ids].unsqueeze(unsqueeze_dim) + sin = sin[position_ids].unsqueeze(unsqueeze_dim) + q_embed = (q * cos) + (rotate_half(q) * sin) + k_embed = (k * cos) + (rotate_half(k) * sin) + return q_embed, k_embed + + +# Modified from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Qwen2Moe +class Qwen2MoeMLP(nn.Module): + def __init__(self, config, intermediate_size=None): + super().__init__() + self.config = config + self.hidden_size = config.hidden_size + self.intermediate_size = intermediate_size + self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) + self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) + self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) + self.act_fn = ACT2FN[config.hidden_act] + + def forward(self, x): + return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) + + +# Copied from transformers.models.llama.modeling_llama.repeat_kv +def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: + """ + This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, + num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) + """ + batch, num_key_value_heads, slen, head_dim = hidden_states.shape + if n_rep == 1: + return hidden_states + hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) + return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) + + +# Copied from transformers.models.qwen2.modeling_qwen2.Qwen2Attention with Qwen2->Qwen2Moe +class Qwen2MoeAttention(nn.Module): + """ + Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer + and "Generating Long Sequences with Sparse Transformers". + """ + + def __init__(self, config: Qwen2MoeConfig, layer_idx: Optional[int] = None): + super().__init__() + self.config = config + self.layer_idx = layer_idx + if layer_idx is None: + logger.warning_once( + f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " + "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " + "when creating this class." + ) + + self.hidden_size = config.hidden_size + self.num_heads = config.num_attention_heads + self.head_dim = self.hidden_size // self.num_heads + self.num_key_value_heads = config.num_key_value_heads + self.num_key_value_groups = self.num_heads // self.num_key_value_heads + self.max_position_embeddings = config.max_position_embeddings + self.rope_theta = config.rope_theta + self.is_causal = True + self.attention_dropout = config.attention_dropout + + if (self.head_dim * self.num_heads) != self.hidden_size: + raise ValueError( + f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" + f" and `num_heads`: {self.num_heads})." + ) + self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) + self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) + self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) + self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) + + self.rotary_emb = Qwen2MoeRotaryEmbedding( + self.head_dim, + max_position_embeddings=self.max_position_embeddings, + base=self.rope_theta, + ) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + **kwargs, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" + ) + bsz, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + + kv_seq_len = key_states.shape[-2] + if past_key_value is not None: + if self.layer_idx is None: + raise ValueError( + f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " + "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " + "with a layer index." + ) + kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) + + if past_key_value is not None: + cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models + key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) + + # repeat k/v heads if n_kv_heads < n_heads + key_states = repeat_kv(key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + + attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) + + if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): + raise ValueError( + f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" + ) + + attn_weights = attn_weights + attention_mask + + # upcast attention to fp32 + attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) + attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) + attn_output = torch.matmul(attn_weights, value_states) + + if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.transpose(1, 2).contiguous() + attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) + + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + +# Copied from transformers.models.qwen2.modeling_qwen2.Qwen2FlashAttention2 with Qwen2->Qwen2Moe +class Qwen2MoeFlashAttention2(Qwen2MoeAttention): + """ + Qwen2Moe flash attention module, following Qwen2Moe attention module. This module inherits from `Qwen2MoeAttention` + as the weights of the module stays untouched. The only required change would be on the forward pass + where it needs to correctly call the public API of flash attention and deal with padding tokens + in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom + config.max_window_layers layers. + """ + + # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. + # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. + # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). + self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + **kwargs, + ): + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" + ) + + # overwrite attention_mask with padding_mask + attention_mask = kwargs.pop("padding_mask") + bsz, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + + kv_seq_len = key_states.shape[-2] + if past_key_value is not None: + if self.layer_idx is None: + raise ValueError( + f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " + "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " + "with a layer index." + ) + kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) + + # Because the input can be padded, the absolute sequence length depends on the max position id. + rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1 + cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len) + + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) + + use_sliding_windows = ( + _flash_supports_window_size + and getattr(self.config, "sliding_window", None) is not None + and kv_seq_len > self.config.sliding_window + and self.config.use_sliding_window + ) + + if not _flash_supports_window_size: + logger.warning_once( + "The current flash attention version does not support sliding window attention, for a more memory efficient implementation" + " make sure to upgrade flash-attn library." + ) + + if past_key_value is not None: + # Activate slicing cache only if the config has a value `sliding_windows` attribute + cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0 + if ( + getattr(self.config, "sliding_window", None) is not None + and kv_seq_len > self.config.sliding_window + and cache_has_contents + ): + slicing_tokens = 1 - self.config.sliding_window + + past_key = past_key_value[self.layer_idx][0] + past_value = past_key_value[self.layer_idx][1] + + past_key = past_key[:, :, slicing_tokens:, :].contiguous() + past_value = past_value[:, :, slicing_tokens:, :].contiguous() + + if past_key.shape[-2] != self.config.sliding_window - 1: + raise ValueError( + f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got" + f" {past_key.shape}" + ) + + if attention_mask is not None: + attention_mask = attention_mask[:, slicing_tokens:] + attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) + + cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models + key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) + + # repeat k/v heads if n_kv_heads < n_heads + key_states = repeat_kv(key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + dropout_rate = 0.0 if not self.training else self.attention_dropout + + # In PEFT, usually we cast the layer norms in float32 for training stability reasons + # therefore the input hidden states gets silently casted in float32. Hence, we need + # cast them back in float16 just to be sure everything works as expected. + input_dtype = query_states.dtype + if input_dtype == torch.float32: + if torch.is_autocast_enabled(): + target_dtype = torch.get_autocast_gpu_dtype() + # Handle the case where the model is quantized + elif hasattr(self.config, "_pre_quantization_dtype"): + target_dtype = self.config._pre_quantization_dtype + else: + target_dtype = self.q_proj.weight.dtype + + logger.warning_once( + f"The input hidden states seems to be silently casted in float32, this might be related to" + f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" + f" {target_dtype}." + ) + + query_states = query_states.to(target_dtype) + key_states = key_states.to(target_dtype) + value_states = value_states.to(target_dtype) + + # Reashape to the expected shape for Flash Attention + query_states = query_states.transpose(1, 2) + key_states = key_states.transpose(1, 2) + value_states = value_states.transpose(1, 2) + + attn_output = self._flash_attention_forward( + query_states, + key_states, + value_states, + attention_mask, + q_len, + dropout=dropout_rate, + use_sliding_windows=use_sliding_windows, + ) + + attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + def _flash_attention_forward( + self, + query_states, + key_states, + value_states, + attention_mask, + query_length, + dropout=0.0, + softmax_scale=None, + use_sliding_windows=False, + ): + """ + Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token + first unpad the input, then computes the attention scores and pad the final attention scores. + + Args: + query_states (`torch.Tensor`): + Input query states to be passed to Flash Attention API + key_states (`torch.Tensor`): + Input key states to be passed to Flash Attention API + value_states (`torch.Tensor`): + Input value states to be passed to Flash Attention API + attention_mask (`torch.Tensor`): + The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the + position of padding tokens and 1 for the position of non-padding tokens. + dropout (`float`): + Attention dropout + softmax_scale (`float`, *optional*): + The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) + use_sliding_windows (`bool`, *optional*): + Whether to activate sliding window attention. + """ + if not self._flash_attn_uses_top_left_mask: + causal = self.is_causal + else: + # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. + causal = self.is_causal and query_length != 1 + + # Decide whether to use SWA or not by layer index. + if use_sliding_windows and self.layer_idx >= self.config.max_window_layers: + use_sliding_windows = False + + # Contains at least one padding token in the sequence + if attention_mask is not None: + batch_size = query_states.shape[0] + query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( + query_states, key_states, value_states, attention_mask, query_length + ) + + cu_seqlens_q, cu_seqlens_k = cu_seq_lens + max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens + + if not use_sliding_windows: + attn_output_unpad = flash_attn_varlen_func( + query_states, + key_states, + value_states, + cu_seqlens_q=cu_seqlens_q, + cu_seqlens_k=cu_seqlens_k, + max_seqlen_q=max_seqlen_in_batch_q, + max_seqlen_k=max_seqlen_in_batch_k, + dropout_p=dropout, + softmax_scale=softmax_scale, + causal=causal, + ) + else: + attn_output_unpad = flash_attn_varlen_func( + query_states, + key_states, + value_states, + cu_seqlens_q=cu_seqlens_q, + cu_seqlens_k=cu_seqlens_k, + max_seqlen_q=max_seqlen_in_batch_q, + max_seqlen_k=max_seqlen_in_batch_k, + dropout_p=dropout, + softmax_scale=softmax_scale, + causal=causal, + window_size=(self.config.sliding_window, self.config.sliding_window), + ) + + attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) + else: + if not use_sliding_windows: + attn_output = flash_attn_func( + query_states, + key_states, + value_states, + dropout, + softmax_scale=softmax_scale, + causal=causal, + ) + else: + attn_output = flash_attn_func( + query_states, + key_states, + value_states, + dropout, + softmax_scale=softmax_scale, + causal=causal, + window_size=(self.config.sliding_window, self.config.sliding_window), + ) + + return attn_output + + # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input + def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): + batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape + + # On the first iteration we need to properly re-create the padding mask + # by slicing it on the proper place + if kv_seq_len != attention_mask.shape[-1]: + attention_mask_num_tokens = attention_mask.shape[-1] + attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :] + + indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) + + key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) + value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) + + if query_length == kv_seq_len: + query_layer = index_first_axis( + query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k + ) + cu_seqlens_q = cu_seqlens_k + max_seqlen_in_batch_q = max_seqlen_in_batch_k + indices_q = indices_k + elif query_length == 1: + max_seqlen_in_batch_q = 1 + cu_seqlens_q = torch.arange( + batch_size + 1, dtype=torch.int32, device=query_layer.device + ) # There is a memcpy here, that is very bad. + indices_q = cu_seqlens_q[:-1] + query_layer = query_layer.squeeze(1) + else: + # The -q_len: slice assumes left padding. + attention_mask = attention_mask[:, -query_length:] + query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) + + return ( + query_layer, + key_layer, + value_layer, + indices_q, + (cu_seqlens_q, cu_seqlens_k), + (max_seqlen_in_batch_q, max_seqlen_in_batch_k), + ) + + +# Copied from transformers.models.mistral.modeling_mistral.MistralSdpaAttention with Mistral->Qwen2Moe +class Qwen2MoeSdpaAttention(Qwen2MoeAttention): + """ + Qwen2Moe attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from + `Qwen2MoeAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to + SDPA API. + """ + + # Adapted from Qwen2MoeAttention.forward + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + if output_attentions: + # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. + logger.warning_once( + "Qwen2MoeModel is using Qwen2MoeSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " + 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' + ) + return super().forward( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + ) + + bsz, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + + kv_seq_len = key_states.shape[-2] + if past_key_value is not None: + kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) + + if past_key_value is not None: + cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models + key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) + + key_states = repeat_kv(key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" + ) + + # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, + # Reference: https://github.com/pytorch/pytorch/issues/112577. + if query_states.device.type == "cuda" and attention_mask is not None: + query_states = query_states.contiguous() + key_states = key_states.contiguous() + value_states = value_states.contiguous() + + attn_output = torch.nn.functional.scaled_dot_product_attention( + query_states, + key_states, + value_states, + attn_mask=attention_mask, + dropout_p=self.attention_dropout if self.training else 0.0, + # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. + is_causal=self.is_causal and attention_mask is None and q_len > 1, + ) + + attn_output = attn_output.transpose(1, 2).contiguous() + attn_output = attn_output.view(bsz, q_len, self.hidden_size) + + attn_output = self.o_proj(attn_output) + + return attn_output, None, past_key_value + + +QWEN2MOE_ATTENTION_CLASSES = { + "eager": Qwen2MoeAttention, + "flash_attention_2": Qwen2MoeFlashAttention2, + "sdpa": Qwen2MoeSdpaAttention, +} + + +class Qwen2MoeSparseMoeBlock(nn.Module): + def __init__(self, config): + super().__init__() + self.num_experts = config.num_experts + self.top_k = config.num_experts_per_tok + self.norm_topk_prob = config.norm_topk_prob + + # gating + self.gate = nn.Linear(config.hidden_size, config.num_experts, bias=False) + self.experts = nn.ModuleList( + [Qwen2MoeMLP(config, intermediate_size=config.moe_intermediate_size) for _ in range(self.num_experts)] + ) + + self.shared_expert = Qwen2MoeMLP(config, intermediate_size=config.shared_expert_intermediate_size) + self.shared_expert_gate = torch.nn.Linear(config.hidden_size, 1, bias=False) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + """ """ + batch_size, sequence_length, hidden_dim = hidden_states.shape + hidden_states = hidden_states.view(-1, hidden_dim) + # router_logits: (batch * sequence_length, n_experts) + router_logits = self.gate(hidden_states) + + routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) + routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) + if self.norm_topk_prob: + routing_weights /= routing_weights.sum(dim=-1, keepdim=True) + # we cast back to the input dtype + routing_weights = routing_weights.to(hidden_states.dtype) + + final_hidden_states = torch.zeros( + (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device + ) + + # One hot encode the selected experts to create an expert mask + # this will be used to easily index which expert is going to be sollicitated + expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0) + + # Loop over all available experts in the model and perform the computation on each expert + for expert_idx in range(self.num_experts): + expert_layer = self.experts[expert_idx] + idx, top_x = torch.where(expert_mask[expert_idx]) + + # Index the correct hidden states and compute the expert hidden state for + # the current expert. We need to make sure to multiply the output hidden + # states by `routing_weights` on the corresponding tokens (top-1 and top-2) + current_state = hidden_states[None, top_x].reshape(-1, hidden_dim) + current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None] + + # However `index_add_` only support torch tensors for indexing so we'll use + # the `top_x` tensor here. + final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) + + shared_expert_output = self.shared_expert(hidden_states) + shared_expert_output = F.sigmoid(self.shared_expert_gate(hidden_states)) * shared_expert_output + + final_hidden_states = final_hidden_states + shared_expert_output + + final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) + return final_hidden_states, router_logits + + +class Qwen2MoeDecoderLayer(nn.Module): + def __init__(self, config: Qwen2MoeConfig, layer_idx: int): + super().__init__() + self.hidden_size = config.hidden_size + + self.self_attn = QWEN2MOE_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) + + if config.num_experts > 0 and (layer_idx + 1) % config.decoder_sparse_step == 0: + self.mlp = Qwen2MoeSparseMoeBlock(config) + else: + self.mlp = Qwen2MoeMLP(config, intermediate_size=config.intermediate_size) + + self.input_layernorm = Qwen2MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.post_attention_layernorm = Qwen2MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: Optional[bool] = False, + output_router_logits: Optional[bool] = False, + use_cache: Optional[bool] = False, + **kwargs, + ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. " + "Please make sure use `attention_mask` instead.`" + ) + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`, *optional*): attention mask of size + `(batch, sequence_length)` where padding elements are indicated by 0. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_router_logits (`bool`, *optional*): + Whether or not to return the logits of all the routers. They are useful for computing the router loss, + and should not be returned during inference. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states + """ + + residual = hidden_states + + hidden_states = self.input_layernorm(hidden_states) + + # Self Attention + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + ) + hidden_states = residual + hidden_states + + # Fully Connected + residual = hidden_states + hidden_states = self.post_attention_layernorm(hidden_states) + + hidden_states = self.mlp(hidden_states) + if isinstance(hidden_states, tuple): + hidden_states, router_logits = hidden_states + else: + router_logits = None + + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights,) + + if use_cache: + outputs += (present_key_value,) + + if output_router_logits: + outputs += (router_logits,) + + return outputs + + +QWEN2MOE_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`Qwen2MoeConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +@add_start_docstrings( + "The bare Qwen2MoE Model outputting raw hidden-states without any specific head on top.", + QWEN2MOE_START_DOCSTRING, +) +class Qwen2MoePreTrainedModel(PreTrainedModel): + config_class = Qwen2MoeConfig + base_model_prefix = "model" + supports_gradient_checkpointing = True + _no_split_modules = ["Qwen2MoeDecoderLayer"] + _skip_keys_device_placement = "past_key_values" + _supports_flash_attn_2 = True + _supports_sdpa = True + _supports_cache_class = True + + def _init_weights(self, module): + std = self.config.initializer_range + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + +QWEN2MOE_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + + If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] + and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more + information on the default strategy. + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.n_positions - 1]`. + + [What are position IDs?](../glossary#position-ids) + past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): + Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` + returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. + + Two formats are allowed: + - a [`~cache_utils.Cache`] instance; + - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy + cache format. + + The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the + legacy cache format will be returned. + + If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't + have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` + of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + output_router_logits (`bool`, *optional*): + Whether or not to return the logits of all the routers. They are useful for computing the router loss, and + should not be returned during inference. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare Qwen2MoE Model outputting raw hidden-states without any specific head on top.", + QWEN2MOE_START_DOCSTRING, +) +class Qwen2MoeModel(Qwen2MoePreTrainedModel): + """ + Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2MoeDecoderLayer`] + + Args: + config: Qwen2MoeConfig + """ + + def __init__(self, config: Qwen2MoeConfig): + super().__init__(config) + self.padding_idx = config.pad_token_id + self.vocab_size = config.vocab_size + + self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) + self.layers = nn.ModuleList( + [Qwen2MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] + ) + self._attn_implementation = config._attn_implementation + self.norm = Qwen2MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + @add_start_docstrings_to_model_forward(QWEN2MOE_INPUTS_DOCSTRING) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + output_router_logits: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, MoeModelOutputWithPast]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_router_logits = ( + output_router_logits if output_router_logits is not None else self.config.output_router_logits + ) + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # retrieve input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") + elif input_ids is not None: + batch_size, seq_length = input_ids.shape + elif inputs_embeds is not None: + batch_size, seq_length, _ = inputs_embeds.shape + else: + raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + past_key_values_length = 0 + + if use_cache: + use_legacy_cache = not isinstance(past_key_values, Cache) + if use_legacy_cache: + past_key_values = DynamicCache.from_legacy_cache(past_key_values) + past_key_values_length = past_key_values.get_usable_length(seq_length) + + if position_ids is None: + device = input_ids.device if input_ids is not None else inputs_embeds.device + position_ids = torch.arange( + past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device + ) + position_ids = position_ids.unsqueeze(0).view(-1, seq_length) + else: + position_ids = position_ids.view(-1, seq_length).long() + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + + if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache: + is_padding_right = attention_mask[:, -1].sum().item() != batch_size + if is_padding_right: + raise ValueError( + "You are attempting to perform batched generation with padding_side='right'" + " this may lead to unexpected behaviour for Flash Attention version of Qwen2MoE. Make sure to " + " call `tokenizer.padding_side = 'left'` before tokenizing the input. " + ) + + if self._attn_implementation == "flash_attention_2": + # 2d mask is passed through the layers + attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None + elif self._attn_implementation == "sdpa" and not output_attentions: + # output_attentions=True can not be supported when using SDPA, and we fall back on + # the manual implementation that requires a 4D causal mask in all cases. + attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( + attention_mask, + (batch_size, seq_length), + inputs_embeds, + past_key_values_length, + sliding_window=self.config.sliding_window, + ) + else: + # 4d mask is passed through the layers + attention_mask = _prepare_4d_causal_attention_mask( + attention_mask, + (batch_size, seq_length), + inputs_embeds, + past_key_values_length, + sliding_window=self.config.sliding_window, + ) + + hidden_states = inputs_embeds + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + all_router_logits = () if output_router_logits else None + next_decoder_cache = None + + for decoder_layer in self.layers: + if output_hidden_states: + all_hidden_states += (hidden_states,) + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + attention_mask, + position_ids, + past_key_values, + output_attentions, + output_router_logits, + use_cache, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_values, + output_attentions=output_attentions, + output_router_logits=output_router_logits, + use_cache=use_cache, + ) + + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache = layer_outputs[2 if output_attentions else 1] + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + if output_router_logits and layer_outputs[-1] is not None: + all_router_logits += (layer_outputs[-1],) + + hidden_states = self.norm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + next_cache = None + if use_cache: + next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache + + if not return_dict: + return tuple( + v + for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits] + if v is not None + ) + return MoeModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + router_logits=all_router_logits, + ) + + +class Qwen2MoeForCausalLM(Qwen2MoePreTrainedModel): + _tied_weights_keys = ["lm_head.weight"] + + def __init__(self, config): + super().__init__(config) + self.model = Qwen2MoeModel(config) + self.vocab_size = config.vocab_size + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + self.router_aux_loss_coef = config.router_aux_loss_coef + self.num_experts = config.num_experts + self.num_experts_per_tok = config.num_experts_per_tok + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def set_decoder(self, decoder): + self.model = decoder + + def get_decoder(self): + return self.model + + @add_start_docstrings_to_model_forward(QWEN2MOE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + output_router_logits: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, MoeCausalLMOutputWithPast]: + r""" + Args: + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, Qwen2MoeForCausalLM + + >>> model = Qwen2MoeForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) + >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) + + >>> prompt = "Hey, are you conscious? Can you talk to me?" + >>> inputs = tokenizer(prompt, return_tensors="pt") + + >>> # Generate + >>> generate_ids = model.generate(inputs.input_ids, max_length=30) + >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." + ```""" + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_router_logits = ( + output_router_logits if output_router_logits is not None else self.config.output_router_logits + ) + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + output_router_logits=output_router_logits, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + logits = self.lm_head(hidden_states) + logits = logits.float() + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + shift_logits = shift_logits.view(-1, self.config.vocab_size) + shift_labels = shift_labels.view(-1) + # Enable model parallelism + shift_labels = shift_labels.to(shift_logits.device) + loss = loss_fct(shift_logits, shift_labels) + + aux_loss = None + if output_router_logits: + aux_loss = load_balancing_loss_func( + outputs.router_logits if return_dict else outputs[-1], + self.num_experts, + self.num_experts_per_tok, + attention_mask, + ) + if labels is not None: + loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device + + if not return_dict: + output = (logits,) + outputs[1:] + if output_router_logits: + output = (aux_loss,) + output + return (loss,) + output if loss is not None else output + + return MoeCausalLMOutputWithPast( + loss=loss, + aux_loss=aux_loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + router_logits=outputs.router_logits, + ) + + def prepare_inputs_for_generation( + self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs + ): + # Omit tokens covered by past_key_values + if past_key_values is not None: + if isinstance(past_key_values, Cache): + cache_length = past_key_values.get_seq_length() + past_length = past_key_values.seen_tokens + max_cache_length = past_key_values.get_max_length() + else: + cache_length = past_length = past_key_values[0][0].shape[2] + max_cache_length = None + + # Keep only the unprocessed tokens: + # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where + # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as + # input) + if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: + input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] + # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard + # input_ids based on the past_length. + elif past_length < input_ids.shape[1]: + input_ids = input_ids[:, past_length:] + # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. + + # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. + if ( + max_cache_length is not None + and attention_mask is not None + and cache_length + input_ids.shape[1] > max_cache_length + ): + attention_mask = attention_mask[:, -max_cache_length:] + + position_ids = kwargs.get("position_ids", None) + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -input_ids.shape[1] :] + + # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + if inputs_embeds is not None and past_key_values is None: + model_inputs = {"inputs_embeds": inputs_embeds} + else: + model_inputs = {"input_ids": input_ids} + + model_inputs.update( + { + "position_ids": position_ids, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "attention_mask": attention_mask, + } + ) + return model_inputs + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past + + +@add_start_docstrings( + """ + The Qwen2MoE Model transformer with a sequence classification head on top (linear layer). + + [`Qwen2MoeForSequenceClassification`] uses the last token in order to do the classification, as other causal models + (e.g. GPT-2) do. + + Since it does classification on the last token, it requires to know the position of the last token. If a + `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If + no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the + padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in + each row of the batch). + """, + QWEN2MOE_START_DOCSTRING, +) +# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Qwen2Moe, LLAMA->QWEN2MOE +class Qwen2MoeForSequenceClassification(Qwen2MoePreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.model = Qwen2MoeModel(config) + self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + @add_start_docstrings_to_model_forward(QWEN2MOE_INPUTS_DOCSTRING) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, SequenceClassifierOutputWithPast]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.model( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + logits = self.score(hidden_states) + + if input_ids is not None: + batch_size = input_ids.shape[0] + else: + batch_size = inputs_embeds.shape[0] + + if self.config.pad_token_id is None and batch_size != 1: + raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") + if self.config.pad_token_id is None: + sequence_lengths = -1 + else: + if input_ids is not None: + # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility + sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 + sequence_lengths = sequence_lengths % input_ids.shape[-1] + sequence_lengths = sequence_lengths.to(logits.device) + else: + sequence_lengths = -1 + + pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] + + loss = None + if labels is not None: + labels = labels.to(logits.device) + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(pooled_logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(pooled_logits, labels) + if not return_dict: + output = (pooled_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutputWithPast( + loss=loss, + logits=pooled_logits, + past_key_values=transformer_outputs.past_key_values, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) diff --git a/venv/lib/python3.10/site-packages/transformers/models/speecht5/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/speecht5/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..20606dda51ef8746448a7561baf60555c0192321 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/speecht5/__init__.py @@ -0,0 +1,96 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_sentencepiece_available, + is_torch_available, +) + + +_import_structure = { + "configuration_speecht5": [ + "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", + "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", + "SpeechT5Config", + "SpeechT5HifiGanConfig", + ], + "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], + "processing_speecht5": ["SpeechT5Processor"], +} + +try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_speecht5"] = ["SpeechT5Tokenizer"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_speecht5"] = [ + "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", + "SpeechT5ForSpeechToText", + "SpeechT5ForSpeechToSpeech", + "SpeechT5ForTextToSpeech", + "SpeechT5Model", + "SpeechT5PreTrainedModel", + "SpeechT5HifiGan", + ] + +if TYPE_CHECKING: + from .configuration_speecht5 import ( + SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, + SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, + SpeechT5Config, + SpeechT5HifiGanConfig, + ) + from .feature_extraction_speecht5 import SpeechT5FeatureExtractor + from .processing_speecht5 import SpeechT5Processor + + try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_speecht5 import SpeechT5Tokenizer + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_speecht5 import ( + SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, + SpeechT5ForSpeechToSpeech, + SpeechT5ForSpeechToText, + SpeechT5ForTextToSpeech, + SpeechT5HifiGan, + SpeechT5Model, + SpeechT5PreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/venv/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0a25c0c1e1b9ca52470043bea20a95f02434644e Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/configuration_speecht5.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/configuration_speecht5.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a5b209b0a7bd827c011a8795d18a1749b2a4da57 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/configuration_speecht5.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/convert_hifigan.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/convert_hifigan.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a6817b499c086a33a5df580a3ac2e380321b3070 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/convert_hifigan.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/convert_speecht5_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/convert_speecht5_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..49ce564808381e275a49e73098b2d60eb9a888ee Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/convert_speecht5_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/feature_extraction_speecht5.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/feature_extraction_speecht5.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a44cd9dd6c5e42d3b167eab05bfdd722b888a8f8 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/feature_extraction_speecht5.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/modeling_speecht5.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/modeling_speecht5.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f25bc43ffc8e6f3a4d6a22b1db39552d0516de7d Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/modeling_speecht5.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/number_normalizer.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/number_normalizer.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..74cffd9b82f7d3eac72eb3af895657d486fe8875 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/number_normalizer.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/processing_speecht5.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/processing_speecht5.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1c3de6586cc252284de850834fd7c2363e1c93f3 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/processing_speecht5.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/tokenization_speecht5.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/tokenization_speecht5.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2746d755b581d2cfcfa56391030a6022291448be Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/speecht5/__pycache__/tokenization_speecht5.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/speecht5/configuration_speecht5.py b/venv/lib/python3.10/site-packages/transformers/models/speecht5/configuration_speecht5.py new file mode 100644 index 0000000000000000000000000000000000000000..36cb4995a83f0519592a89174f0bd51ecb85deab --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/speecht5/configuration_speecht5.py @@ -0,0 +1,427 @@ +# coding=utf-8 +# Copyright 2023 The Fairseq Authors, Microsoft Research, and the HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" SpeechT5 model configuration""" + +import functools +import operator + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP = { + "microsoft/speecht5_hifigan": "https://huggingface.co/microsoft/speecht5_hifigan/resolve/main/config.json", +} + + +class SpeechT5Config(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`SpeechT5Model`]. It is used to instantiate a + SpeechT5 model according to the specified arguments, defining the model architecture. Instantiating a configuration + with the defaults will yield a similar configuration to that of the SpeechT5 + [microsoft/speecht5_asr](https://huggingface.co/microsoft/speecht5_asr) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + vocab_size (`int`, *optional*, defaults to 81): + Vocabulary size of the SpeechT5 model. Defines the number of different tokens that can be represented by + the `inputs_ids` passed to the forward method of [`SpeechT5Model`]. + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + encoder_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + encoder_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + encoder_ffn_dim (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + encoder_layerdrop (`float`, *optional*, defaults to 0.1): + The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) + for more details. + decoder_layers (`int`, *optional*, defaults to 6): + Number of hidden layers in the Transformer decoder. + decoder_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer decoder. + decoder_ffn_dim (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer decoder. + decoder_layerdrop (`float`, *optional*, defaults to 0.1): + The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) + for more details. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` are supported. + positional_dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for the text position encoding layers. + hidden_dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_dropout (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + activation_dropout (`float`, *optional*, defaults to 0.1): + The dropout ratio for activations inside the fully connected layer. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-5): + The epsilon used by the layer normalization layers. + scale_embedding (`bool`, *optional*, defaults to `False`): + Scale embeddings by diving by sqrt(d_model). + feat_extract_norm (`str`, *optional*, defaults to `"group"`): + The norm to be applied to 1D convolutional layers in the speech encoder pre-net. One of `"group"` for group + normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D + convolutional layers. + feat_proj_dropout (`float`, *optional*, defaults to 0.0): + The dropout probability for output of the speech encoder pre-net. + feat_extract_activation (`str, `optional`, defaults to `"gelu"`): + The non-linear activation function (function or string) in the 1D convolutional layers of the feature + extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. + conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`): + A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the + speech encoder pre-net. The length of *conv_dim* defines the number of 1D convolutional layers. + conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`): + A tuple of integers defining the stride of each 1D convolutional layer in the speech encoder pre-net. The + length of *conv_stride* defines the number of convolutional layers and has to match the length of + *conv_dim*. + conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`): + A tuple of integers defining the kernel size of each 1D convolutional layer in the speech encoder pre-net. + The length of *conv_kernel* defines the number of convolutional layers and has to match the length of + *conv_dim*. + conv_bias (`bool`, *optional*, defaults to `False`): + Whether the 1D convolutional layers have a bias. + num_conv_pos_embeddings (`int`, *optional*, defaults to 128): + Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional + embeddings layer. + num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16): + Number of groups of 1D convolutional positional embeddings layer. + apply_spec_augment (`bool`, *optional*, defaults to `True`): + Whether to apply *SpecAugment* data augmentation to the outputs of the speech encoder pre-net. For + reference see [SpecAugment: A Simple Data Augmentation Method for Automatic Speech + Recognition](https://arxiv.org/abs/1904.08779). + mask_time_prob (`float`, *optional*, defaults to 0.05): + Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking + procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If + reasoning from the propability of each feature vector to be chosen as the start of the vector span to be + masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the + actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. + mask_time_length (`int`, *optional*, defaults to 10): + Length of vector span along the time axis. + mask_time_min_masks (`int`, *optional*, defaults to 2),: + The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step, + irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length < + mask_time_min_masks'' + mask_feature_prob (`float`, *optional*, defaults to 0.0): + Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The + masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over + the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector + span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap + may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is + True`. + mask_feature_length (`int`, *optional*, defaults to 10): + Length of vector span along the feature axis. + mask_feature_min_masks (`int`, *optional*, defaults to 0),: + The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time + step, irrespectively of `mask_feature_prob`. Only relevant if + ''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks'' + num_mel_bins (`int`, *optional*, defaults to 80): + Number of mel features used per input features. Used by the speech decoder pre-net. Should correspond to + the value used in the [`SpeechT5Processor`] class. + speech_decoder_prenet_layers (`int`, *optional*, defaults to 2): + Number of layers in the speech decoder pre-net. + speech_decoder_prenet_units (`int`, *optional*, defaults to 256): + Dimensionality of the layers in the speech decoder pre-net. + speech_decoder_prenet_dropout (`float`, *optional*, defaults to 0.5): + The dropout probability for the speech decoder pre-net layers. + speaker_embedding_dim (`int`, *optional*, defaults to 512): + Dimensionality of the *XVector* embedding vectors. + speech_decoder_postnet_layers (`int`, *optional*, defaults to 5): + Number of layers in the speech decoder post-net. + speech_decoder_postnet_units (`int`, *optional*, defaults to 256): + Dimensionality of the layers in the speech decoder post-net. + speech_decoder_postnet_kernel (`int`, *optional*, defaults to 5): + Number of convolutional filter channels in the speech decoder post-net. + speech_decoder_postnet_dropout (`float`, *optional*, defaults to 0.5): + The dropout probability for the speech decoder post-net layers. + reduction_factor (`int`, *optional*, defaults to 2): + Spectrogram length reduction factor for the speech decoder inputs. + max_speech_positions (`int`, *optional*, defaults to 4000): + The maximum sequence length of speech features that this model might ever be used with. + max_text_positions (`int`, *optional*, defaults to 450): + The maximum sequence length of text features that this model might ever be used with. + encoder_max_relative_position (`int`, *optional*, defaults to 160): + Maximum distance for relative position embedding in the encoder. + use_guided_attention_loss (`bool`, *optional*, defaults to `True`): + Whether to apply guided attention loss while training the TTS model. + guided_attention_loss_num_heads (`int`, *optional*, defaults to 2): + Number of attention heads the guided attention loss will be applied to. Use -1 to apply this loss to all + attention heads. + guided_attention_loss_sigma (`float`, *optional*, defaults to 0.4): + Standard deviation for guided attention loss. + guided_attention_loss_scale (`float`, *optional*, defaults to 10.0): + Scaling coefficient for guided attention loss (also known as lambda). + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). + + Example: + + ```python + >>> from transformers import SpeechT5Model, SpeechT5Config + + >>> # Initializing a "microsoft/speecht5_asr" style configuration + >>> configuration = SpeechT5Config() + + >>> # Initializing a model (with random weights) from the "microsoft/speecht5_asr" style configuration + >>> model = SpeechT5Model(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "speecht5" + attribute_map = {"num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers"} + + def __init__( + self, + vocab_size=81, + hidden_size=768, + encoder_layers=12, + encoder_attention_heads=12, + encoder_ffn_dim=3072, + encoder_layerdrop=0.1, + decoder_layers=6, + decoder_ffn_dim=3072, + decoder_attention_heads=12, + decoder_layerdrop=0.1, + hidden_act="gelu", + positional_dropout=0.1, + hidden_dropout=0.1, + attention_dropout=0.1, + activation_dropout=0.1, + initializer_range=0.02, + layer_norm_eps=1e-5, + scale_embedding=False, + feat_extract_norm="group", + feat_proj_dropout=0.0, + feat_extract_activation="gelu", + conv_dim=(512, 512, 512, 512, 512, 512, 512), + conv_stride=(5, 2, 2, 2, 2, 2, 2), + conv_kernel=(10, 3, 3, 3, 3, 2, 2), + conv_bias=False, + num_conv_pos_embeddings=128, + num_conv_pos_embedding_groups=16, + apply_spec_augment=True, + mask_time_prob=0.05, + mask_time_length=10, + mask_time_min_masks=2, + mask_feature_prob=0.0, + mask_feature_length=10, + mask_feature_min_masks=0, + pad_token_id=1, + bos_token_id=0, + eos_token_id=2, + decoder_start_token_id=2, + num_mel_bins=80, + speech_decoder_prenet_layers=2, + speech_decoder_prenet_units=256, + speech_decoder_prenet_dropout=0.5, + speaker_embedding_dim=512, + speech_decoder_postnet_layers=5, + speech_decoder_postnet_units=256, + speech_decoder_postnet_kernel=5, + speech_decoder_postnet_dropout=0.5, + reduction_factor=2, + max_speech_positions=4000, + max_text_positions=450, + encoder_max_relative_position=160, + use_guided_attention_loss=True, + guided_attention_loss_num_heads=2, + guided_attention_loss_sigma=0.4, + guided_attention_loss_scale=10.0, + use_cache=True, + is_encoder_decoder=True, + **kwargs, + ): + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.encoder_layers = encoder_layers + self.encoder_ffn_dim = encoder_ffn_dim + self.encoder_attention_heads = encoder_attention_heads + self.encoder_layerdrop = encoder_layerdrop + self.decoder_layers = decoder_layers + self.decoder_ffn_dim = decoder_ffn_dim + self.decoder_attention_heads = decoder_attention_heads + self.decoder_layerdrop = decoder_layerdrop + self.hidden_act = hidden_act + self.positional_dropout = positional_dropout + self.hidden_dropout = hidden_dropout + self.attention_dropout = attention_dropout + self.activation_dropout = activation_dropout + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.scale_embedding = scale_embedding + + self.feat_extract_norm = feat_extract_norm + self.feat_proj_dropout = feat_proj_dropout + self.feat_extract_activation = feat_extract_activation + self.conv_dim = list(conv_dim) + self.conv_stride = list(conv_stride) + self.conv_kernel = list(conv_kernel) + self.conv_bias = conv_bias + self.num_conv_pos_embeddings = num_conv_pos_embeddings + self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups + self.num_feat_extract_layers = len(self.conv_dim) + + if ( + (len(self.conv_stride) != self.num_feat_extract_layers) + or (len(self.conv_kernel) != self.num_feat_extract_layers) + or (len(self.conv_dim) != self.num_feat_extract_layers) + ): + raise ValueError( + "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" + " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" + f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," + f" `len(config.conv_kernel) = {len(self.conv_kernel)}`." + ) + + # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 + self.apply_spec_augment = apply_spec_augment + self.mask_time_prob = mask_time_prob + self.mask_time_length = mask_time_length + self.mask_time_min_masks = mask_time_min_masks + self.mask_feature_prob = mask_feature_prob + self.mask_feature_length = mask_feature_length + self.mask_feature_min_masks = mask_feature_min_masks + + self.num_mel_bins = num_mel_bins + self.speech_decoder_prenet_layers = speech_decoder_prenet_layers + self.speech_decoder_prenet_units = speech_decoder_prenet_units + self.speech_decoder_prenet_dropout = speech_decoder_prenet_dropout + self.speaker_embedding_dim = speaker_embedding_dim + + self.speech_decoder_postnet_layers = speech_decoder_postnet_layers + self.speech_decoder_postnet_units = speech_decoder_postnet_units + self.speech_decoder_postnet_kernel = speech_decoder_postnet_kernel + self.speech_decoder_postnet_dropout = speech_decoder_postnet_dropout + self.reduction_factor = reduction_factor + + self.max_speech_positions = max_speech_positions + self.max_text_positions = max_text_positions + self.encoder_max_relative_position = encoder_max_relative_position + + self.use_guided_attention_loss = use_guided_attention_loss + self.guided_attention_loss_num_heads = guided_attention_loss_num_heads + self.guided_attention_loss_sigma = guided_attention_loss_sigma + self.guided_attention_loss_scale = guided_attention_loss_scale + + self.use_cache = use_cache + self.is_encoder_decoder = is_encoder_decoder + + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + is_encoder_decoder=is_encoder_decoder, + decoder_start_token_id=decoder_start_token_id, + **kwargs, + ) + + def inputs_to_logits_ratio(self): + return functools.reduce(operator.mul, self.conv_stride, 1) + + +class SpeechT5HifiGanConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`SpeechT5HifiGanModel`]. It is used to instantiate + a SpeechT5 HiFi-GAN vocoder model according to the specified arguments, defining the model architecture. + Instantiating a configuration with the defaults will yield a similar configuration to that of the SpeechT5 + [microsoft/speecht5_hifigan](https://huggingface.co/microsoft/speecht5_hifigan) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + model_in_dim (`int`, *optional*, defaults to 80): + The number of frequency bins in the input log-mel spectrogram. + sampling_rate (`int`, *optional*, defaults to 16000): + The sampling rate at which the output audio will be generated, expressed in hertz (Hz). + upsample_initial_channel (`int`, *optional*, defaults to 512): + The number of input channels into the upsampling network. + upsample_rates (`Tuple[int]` or `List[int]`, *optional*, defaults to `[4, 4, 4, 4]`): + A tuple of integers defining the stride of each 1D convolutional layer in the upsampling network. The + length of *upsample_rates* defines the number of convolutional layers and has to match the length of + *upsample_kernel_sizes*. + upsample_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[8, 8, 8, 8]`): + A tuple of integers defining the kernel size of each 1D convolutional layer in the upsampling network. The + length of *upsample_kernel_sizes* defines the number of convolutional layers and has to match the length of + *upsample_rates*. + resblock_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[3, 7, 11]`): + A tuple of integers defining the kernel sizes of the 1D convolutional layers in the multi-receptive field + fusion (MRF) module. + resblock_dilation_sizes (`Tuple[Tuple[int]]` or `List[List[int]]`, *optional*, defaults to `[[1, 3, 5], [1, 3, 5], [1, 3, 5]]`): + A nested tuple of integers defining the dilation rates of the dilated 1D convolutional layers in the + multi-receptive field fusion (MRF) module. + initializer_range (`float`, *optional*, defaults to 0.01): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + leaky_relu_slope (`float`, *optional*, defaults to 0.1): + The angle of the negative slope used by the leaky ReLU activation. + normalize_before (`bool`, *optional*, defaults to `True`): + Whether or not to normalize the spectrogram before vocoding using the vocoder's learned mean and variance. + + Example: + + ```python + >>> from transformers import SpeechT5HifiGan, SpeechT5HifiGanConfig + + >>> # Initializing a "microsoft/speecht5_hifigan" style configuration + >>> configuration = SpeechT5HifiGanConfig() + + >>> # Initializing a model (with random weights) from the "microsoft/speecht5_hifigan" style configuration + >>> model = SpeechT5HifiGan(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "hifigan" + + def __init__( + self, + model_in_dim=80, + sampling_rate=16000, + upsample_initial_channel=512, + upsample_rates=[4, 4, 4, 4], + upsample_kernel_sizes=[8, 8, 8, 8], + resblock_kernel_sizes=[3, 7, 11], + resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]], + initializer_range=0.01, + leaky_relu_slope=0.1, + normalize_before=True, + **kwargs, + ): + self.model_in_dim = model_in_dim + self.sampling_rate = sampling_rate + self.upsample_initial_channel = upsample_initial_channel + self.upsample_rates = upsample_rates + self.upsample_kernel_sizes = upsample_kernel_sizes + self.resblock_kernel_sizes = resblock_kernel_sizes + self.resblock_dilation_sizes = resblock_dilation_sizes + self.initializer_range = initializer_range + self.leaky_relu_slope = leaky_relu_slope + self.normalize_before = normalize_before + super().__init__(**kwargs) diff --git a/venv/lib/python3.10/site-packages/transformers/models/speecht5/convert_hifigan.py b/venv/lib/python3.10/site-packages/transformers/models/speecht5/convert_hifigan.py new file mode 100644 index 0000000000000000000000000000000000000000..4d78bb73af3022924a34b8fdeafc7bc18b9f163b --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/speecht5/convert_hifigan.py @@ -0,0 +1,108 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert SpeechT5 HiFi-GAN checkpoint.""" + +import argparse + +import numpy as np +import torch + +from transformers import SpeechT5HifiGan, SpeechT5HifiGanConfig, logging + + +logging.set_verbosity_info() +logger = logging.get_logger("transformers.models.speecht5") + + +def load_weights(checkpoint, hf_model, config): + hf_model.apply_weight_norm() + + hf_model.conv_pre.weight_g.data = checkpoint["input_conv.weight_g"] + hf_model.conv_pre.weight_v.data = checkpoint["input_conv.weight_v"] + hf_model.conv_pre.bias.data = checkpoint["input_conv.bias"] + + for i in range(len(config.upsample_rates)): + hf_model.upsampler[i].weight_g.data = checkpoint[f"upsamples.{i}.1.weight_g"] + hf_model.upsampler[i].weight_v.data = checkpoint[f"upsamples.{i}.1.weight_v"] + hf_model.upsampler[i].bias.data = checkpoint[f"upsamples.{i}.1.bias"] + + for i in range(len(config.upsample_rates) * len(config.resblock_kernel_sizes)): + for j in range(len(config.resblock_dilation_sizes)): + hf_model.resblocks[i].convs1[j].weight_g.data = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_g"] + hf_model.resblocks[i].convs1[j].weight_v.data = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_v"] + hf_model.resblocks[i].convs1[j].bias.data = checkpoint[f"blocks.{i}.convs1.{j}.1.bias"] + + hf_model.resblocks[i].convs2[j].weight_g.data = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_g"] + hf_model.resblocks[i].convs2[j].weight_v.data = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_v"] + hf_model.resblocks[i].convs2[j].bias.data = checkpoint[f"blocks.{i}.convs2.{j}.1.bias"] + + hf_model.conv_post.weight_g.data = checkpoint["output_conv.1.weight_g"] + hf_model.conv_post.weight_v.data = checkpoint["output_conv.1.weight_v"] + hf_model.conv_post.bias.data = checkpoint["output_conv.1.bias"] + + hf_model.remove_weight_norm() + + +@torch.no_grad() +def convert_hifigan_checkpoint( + checkpoint_path, + stats_path, + pytorch_dump_folder_path, + config_path=None, + repo_id=None, +): + if config_path is not None: + config = SpeechT5HifiGanConfig.from_pretrained(config_path) + else: + config = SpeechT5HifiGanConfig() + + model = SpeechT5HifiGan(config) + + orig_checkpoint = torch.load(checkpoint_path) + load_weights(orig_checkpoint["model"]["generator"], model, config) + + stats = np.load(stats_path) + mean = stats[0].reshape(-1) + scale = stats[1].reshape(-1) + model.mean = torch.from_numpy(mean).float() + model.scale = torch.from_numpy(scale).float() + + model.save_pretrained(pytorch_dump_folder_path) + + if repo_id: + print("Pushing to the hub...") + model.push_to_hub(repo_id) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") + parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") + parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") + parser.add_argument( + "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." + ) + parser.add_argument( + "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." + ) + + args = parser.parse_args() + convert_hifigan_checkpoint( + args.checkpoint_path, + args.stats_path, + args.pytorch_dump_folder_path, + args.config_path, + args.push_to_hub, + ) diff --git a/venv/lib/python3.10/site-packages/transformers/models/speecht5/convert_speecht5_original_pytorch_checkpoint_to_pytorch.py b/venv/lib/python3.10/site-packages/transformers/models/speecht5/convert_speecht5_original_pytorch_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..20dea800d9d18fcb7687f0e5b8c5ebfa802fd3fd --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/speecht5/convert_speecht5_original_pytorch_checkpoint_to_pytorch.py @@ -0,0 +1,401 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert SpeechT5 checkpoint.""" + +import argparse + +import torch + +from transformers import ( + SpeechT5Config, + SpeechT5FeatureExtractor, + SpeechT5ForSpeechToSpeech, + SpeechT5ForSpeechToText, + SpeechT5ForTextToSpeech, + SpeechT5Processor, + SpeechT5Tokenizer, + logging, +) +from transformers.tokenization_utils import AddedToken + + +logging.set_verbosity_info() +logger = logging.get_logger("transformers.models.speecht5") + +MAPPING_SPEECH_ENCODER_PRENET = { + "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", + "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", + "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", + "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", +} +MAPPING_TEXT_ENCODER_PRENET = { + "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", + "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", +} +MAPPING_SPEECH_DECODER_PRENET = { + "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", + "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", + "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", + "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", + "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", +} +MAPPING_SPEECH_DECODER_POSTNET = { + "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", + "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", + "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", + "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", + "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", + "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", + "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", + "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", + "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", + "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", + "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", + "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", +} +MAPPING_TEXT_DECODER_PRENET = { + "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", +} +MAPPING_TEXT_DECODER_POSTNET = { + "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", +} +MAPPING_ENCODER = { + "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", + "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", + "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", + "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", + "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", + "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", + "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", + "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", + "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", + "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", +} +MAPPING_DECODER = { + "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", + "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", + "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", + "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", + "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", + "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", + "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", + "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", + "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", + "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", + "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", + "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", + "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", +} +MAPPING_S2T = { + **MAPPING_SPEECH_ENCODER_PRENET, + **MAPPING_ENCODER, + **MAPPING_DECODER, + **MAPPING_TEXT_DECODER_PRENET, + **MAPPING_TEXT_DECODER_POSTNET, +} +MAPPING_T2S = { + **MAPPING_TEXT_ENCODER_PRENET, + **MAPPING_ENCODER, + **MAPPING_DECODER, + **MAPPING_SPEECH_DECODER_PRENET, + **MAPPING_SPEECH_DECODER_POSTNET, +} +MAPPING_S2S = { + **MAPPING_SPEECH_ENCODER_PRENET, + **MAPPING_ENCODER, + **MAPPING_DECODER, + **MAPPING_SPEECH_DECODER_PRENET, + **MAPPING_SPEECH_DECODER_POSTNET, +} +TOP_LEVEL_KEYS = [] +IGNORE_KEYS = [ + "encoder.version", + "encoder.layers.*.norm_k.weight", + "encoder.layers.*.norm_k.bias", + "decoder.version", + "decoder.layers.*.norm_k.weight", + "decoder.layers.*.norm_k.bias", + "decoder.pos_emb.pe_k", + "speech_encoder_prenet.embed_positions._float_tensor", + "text_decoder_prenet.embed_positions._float_tensor", +] +IGNORE_KEYS_S2T = IGNORE_KEYS + [ + "encoder.proj", + "text_encoder_prenet.*", + "speech_decoder_prenet.*", + "speech_decoder_postnet.*", +] +IGNORE_KEYS_T2S = IGNORE_KEYS + [ + "encoder.proj", + "speech_encoder_prenet.*", + "text_decoder_prenet.*", + "text_decoder_postnet.*", +] +IGNORE_KEYS_S2S = IGNORE_KEYS + [ + "encoder.proj", + "text_encoder_prenet.*", + "text_decoder_prenet.*", + "text_decoder_postnet.*", +] + + +def set_recursively(hf_pointer, key, value, full_name, weight_type): + for attribute in key.split("."): + hf_pointer = getattr(hf_pointer, attribute) + + if weight_type is not None: + hf_shape = getattr(hf_pointer, weight_type).shape + else: + hf_shape = hf_pointer.shape + + if hf_shape != value.shape: + raise ValueError( + f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" + f" {value.shape} for {full_name}" + ) + + if weight_type == "weight": + hf_pointer.weight.data = value + elif weight_type == "weight_g": + hf_pointer.weight_g.data = value + elif weight_type == "weight_v": + hf_pointer.weight_v.data = value + elif weight_type == "bias": + hf_pointer.bias.data = value + elif weight_type == "running_mean": + hf_pointer.running_mean.data = value + elif weight_type == "running_var": + hf_pointer.running_var.data = value + elif weight_type == "num_batches_tracked": + hf_pointer.num_batches_tracked.data = value + else: + hf_pointer.data = value + + logger.info(f"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.") + + +def should_ignore(name, ignore_keys): + for key in ignore_keys: + if key.endswith(".*"): + if name.startswith(key[:-1]): + return True + elif ".*." in key: + prefix, suffix = key.split(".*.") + if prefix in name and suffix in name: + return True + elif key in name: + return True + return False + + +def recursively_load_weights(fairseq_dict, hf_model, task): + unused_weights = [] + + if task == "s2t": + feature_encoder = hf_model.speecht5.encoder.prenet.feature_encoder + MAPPING = MAPPING_S2T + IGNORE_KEYS = IGNORE_KEYS_S2T + elif task == "t2s": + feature_encoder = None + MAPPING = MAPPING_T2S + IGNORE_KEYS = IGNORE_KEYS_T2S + elif task == "s2s": + feature_encoder = hf_model.speecht5.encoder.prenet.feature_encoder + MAPPING = MAPPING_S2S + IGNORE_KEYS = IGNORE_KEYS_S2S + else: + raise ValueError(f"Unsupported task: {task}") + + for name, value in fairseq_dict.items(): + if should_ignore(name, IGNORE_KEYS): + logger.info(f"{name} was ignored") + continue + + is_used = False + if "conv_layers" in name: + load_conv_layer( + name, + value, + feature_encoder, + unused_weights, + hf_model.config.feat_extract_norm == "group", + ) + is_used = True + else: + for key, mapped_key in MAPPING.items(): + # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key + + if "*" in key: + prefix, suffix = key.split(".*.") + if prefix in name and suffix in name: + key = suffix + + # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: + if key in name: + is_used = True + if "*" in mapped_key: + layer_index = name.split(key)[0].split(".")[-2] + mapped_key = mapped_key.replace("*", layer_index) + if "weight_g" in name: + weight_type = "weight_g" + elif "weight_v" in name: + weight_type = "weight_v" + elif "bias" in name: + weight_type = "bias" + elif "weight" in name: + weight_type = "weight" + elif "running_mean" in name: + weight_type = "running_mean" + elif "running_var" in name: + weight_type = "running_var" + elif "num_batches_tracked" in name: + weight_type = "num_batches_tracked" + else: + weight_type = None + set_recursively(hf_model, mapped_key, value, name, weight_type) + continue + if not is_used: + unused_weights.append(name) + + logger.warning(f"Unused weights: {unused_weights}") + + +def load_conv_layer(full_name, value, feature_extractor, unused_weights, use_group_norm): + name = full_name.split("conv_layers.")[-1] + items = name.split(".") + layer_id = int(items[0]) + type_id = int(items[1]) + + if type_id == 0: + if "bias" in name: + if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: + raise ValueError( + f"{full_name} has size {value.shape}, but" + f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." + ) + feature_extractor.conv_layers[layer_id].conv.bias.data = value + logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") + elif "weight" in name: + if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: + raise ValueError( + f"{full_name} has size {value.shape}, but" + f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." + ) + feature_extractor.conv_layers[layer_id].conv.weight.data = value + logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") + elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): + if "bias" in name: + if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: + raise ValueError( + f"{full_name} has size {value.shape}, but" + f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." + ) + feature_extractor.conv_layers[layer_id].layer_norm.bias.data = value + logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") + elif "weight" in name: + if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: + raise ValueError( + f"{full_name} has size {value.shape}, but" + f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." + ) + feature_extractor.conv_layers[layer_id].layer_norm.weight.data = value + logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") + else: + unused_weights.append(full_name) + + +@torch.no_grad() +def convert_speecht5_checkpoint( + task, + checkpoint_path, + pytorch_dump_folder_path, + config_path=None, + vocab_path=None, + repo_id=None, +): + """ + Copy/paste/tweak model's weights to transformers design. + """ + if config_path is not None: + config = SpeechT5Config.from_pretrained(config_path) + else: + config = SpeechT5Config() + + if task == "s2t": + config.max_length = config.max_text_positions + model = SpeechT5ForSpeechToText(config) + elif task == "t2s": + config.max_speech_positions = 1876 + config.max_text_positions = 600 + config.max_length = config.max_speech_positions + model = SpeechT5ForTextToSpeech(config) + elif task == "s2s": + config.max_speech_positions = 1876 + config.max_length = config.max_speech_positions + model = SpeechT5ForSpeechToSpeech(config) + else: + raise ValueError(f"Unknown task name: {task}") + + if vocab_path: + tokenizer = SpeechT5Tokenizer(vocab_path, model_max_length=config.max_text_positions) + + # Mask token behaves like a normal word, i.e. include the space before it + mask_token = AddedToken("", lstrip=True, rstrip=False) + tokenizer.mask_token = mask_token + tokenizer.add_special_tokens({"mask_token": mask_token}) + tokenizer.add_tokens([""]) + + feature_extractor = SpeechT5FeatureExtractor() + processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor) + processor.save_pretrained(pytorch_dump_folder_path) + + fairseq_checkpoint = torch.load(checkpoint_path) + recursively_load_weights(fairseq_checkpoint["model"], model, task) + + model.save_pretrained(pytorch_dump_folder_path) + + if repo_id: + print("Pushing to the hub...") + processor.push_to_hub(repo_id) + model.push_to_hub(repo_id) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument( + "--task", + default="s2t", + type=str, + help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", + ) + parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") + parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") + parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") + parser.add_argument( + "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." + ) + parser.add_argument( + "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." + ) + + args = parser.parse_args() + convert_speecht5_checkpoint( + args.task, + args.checkpoint_path, + args.pytorch_dump_folder_path, + args.config_path, + args.vocab_path, + args.push_to_hub, + ) diff --git a/venv/lib/python3.10/site-packages/transformers/models/speecht5/feature_extraction_speecht5.py b/venv/lib/python3.10/site-packages/transformers/models/speecht5/feature_extraction_speecht5.py new file mode 100644 index 0000000000000000000000000000000000000000..84d51e97df95e044886a7bb5605ed4b4989c9983 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/speecht5/feature_extraction_speecht5.py @@ -0,0 +1,393 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Feature extractor class for SpeechT5.""" + +import warnings +from typing import Any, Dict, List, Optional, Union + +import numpy as np + +from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function +from ...feature_extraction_sequence_utils import SequenceFeatureExtractor +from ...feature_extraction_utils import BatchFeature +from ...utils import PaddingStrategy, TensorType, logging + + +logger = logging.get_logger(__name__) + + +class SpeechT5FeatureExtractor(SequenceFeatureExtractor): + r""" + Constructs a SpeechT5 feature extractor. + + This class can pre-process a raw speech signal by (optionally) normalizing to zero-mean unit-variance, for use by + the SpeechT5 speech encoder prenet. + + This class can also extract log-mel filter bank features from raw speech, for use by the SpeechT5 speech decoder + prenet. + + This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains + most of the main methods. Users should refer to this superclass for more information regarding those methods. + + Args: + feature_size (`int`, *optional*, defaults to 1): + The feature dimension of the extracted features. + sampling_rate (`int`, *optional*, defaults to 16000): + The sampling rate at which the audio files should be digitalized expressed in hertz (Hz). + padding_value (`float`, *optional*, defaults to 0.0): + The value that is used to fill the padding values. + do_normalize (`bool`, *optional*, defaults to `False`): + Whether or not to zero-mean unit-variance normalize the input. Normalizing can help to significantly + improve the performance for some models. + num_mel_bins (`int`, *optional*, defaults to 80): + The number of mel-frequency bins in the extracted spectrogram features. + hop_length (`int`, *optional*, defaults to 16): + Number of ms between windows. Otherwise referred to as "shift" in many papers. + win_length (`int`, *optional*, defaults to 64): + Number of ms per window. + win_function (`str`, *optional*, defaults to `"hann_window"`): + Name for the window function used for windowing, must be accessible via `torch.{win_function}` + frame_signal_scale (`float`, *optional*, defaults to 1.0): + Constant multiplied in creating the frames before applying DFT. This argument is deprecated. + fmin (`float`, *optional*, defaults to 80): + Minimum mel frequency in Hz. + fmax (`float`, *optional*, defaults to 7600): + Maximum mel frequency in Hz. + mel_floor (`float`, *optional*, defaults to 1e-10): + Minimum value of mel frequency banks. + reduction_factor (`int`, *optional*, defaults to 2): + Spectrogram length reduction factor. This argument is deprecated. + return_attention_mask (`bool`, *optional*, defaults to `True`): + Whether or not [`~SpeechT5FeatureExtractor.__call__`] should return `attention_mask`. + """ + + model_input_names = ["input_values", "attention_mask"] + + def __init__( + self, + feature_size: int = 1, + sampling_rate: int = 16000, + padding_value: float = 0.0, + do_normalize: bool = False, + num_mel_bins: int = 80, + hop_length: int = 16, + win_length: int = 64, + win_function: str = "hann_window", + frame_signal_scale: float = 1.0, + fmin: float = 80, + fmax: float = 7600, + mel_floor: float = 1e-10, + reduction_factor: int = 2, + return_attention_mask: bool = True, + **kwargs, + ): + super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs) + self.do_normalize = do_normalize + self.return_attention_mask = return_attention_mask + + self.num_mel_bins = num_mel_bins + self.hop_length = hop_length + self.win_length = win_length + self.win_function = win_function + self.frame_signal_scale = frame_signal_scale + self.fmin = fmin + self.fmax = fmax + self.mel_floor = mel_floor + self.reduction_factor = reduction_factor + + self.sample_size = win_length * sampling_rate // 1000 + self.sample_stride = hop_length * sampling_rate // 1000 + self.n_fft = optimal_fft_length(self.sample_size) + self.n_freqs = (self.n_fft // 2) + 1 + + self.window = window_function(window_length=self.sample_size, name=self.win_function, periodic=True) + + self.mel_filters = mel_filter_bank( + num_frequency_bins=self.n_freqs, + num_mel_filters=self.num_mel_bins, + min_frequency=self.fmin, + max_frequency=self.fmax, + sampling_rate=self.sampling_rate, + norm="slaney", + mel_scale="slaney", + ) + + if frame_signal_scale != 1.0: + warnings.warn( + "The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers", + FutureWarning, + ) + if reduction_factor != 2.0: + warnings.warn( + "The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers", + FutureWarning, + ) + + @staticmethod + # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm + def zero_mean_unit_var_norm( + input_values: List[np.ndarray], attention_mask: List[np.ndarray], padding_value: float = 0.0 + ) -> List[np.ndarray]: + """ + Every array in the list is normalized to have zero mean and unit variance + """ + if attention_mask is not None: + attention_mask = np.array(attention_mask, np.int32) + normed_input_values = [] + + for vector, length in zip(input_values, attention_mask.sum(-1)): + normed_slice = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7) + if length < normed_slice.shape[0]: + normed_slice[length:] = padding_value + + normed_input_values.append(normed_slice) + else: + normed_input_values = [(x - x.mean()) / np.sqrt(x.var() + 1e-7) for x in input_values] + + return normed_input_values + + def _extract_mel_features( + self, + one_waveform: np.ndarray, + ) -> np.ndarray: + """ + Extracts log-mel filterbank features for one waveform array (unbatched). + """ + log_mel_spec = spectrogram( + one_waveform, + window=self.window, + frame_length=self.sample_size, + hop_length=self.sample_stride, + fft_length=self.n_fft, + mel_filters=self.mel_filters, + mel_floor=self.mel_floor, + log_mel="log10", + ) + return log_mel_spec.T + + def __call__( + self, + audio: Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None, + audio_target: Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None, + padding: Union[bool, str, PaddingStrategy] = False, + max_length: Optional[int] = None, + truncation: bool = False, + pad_to_multiple_of: Optional[int] = None, + return_attention_mask: Optional[bool] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + sampling_rate: Optional[int] = None, + **kwargs, + ) -> BatchFeature: + """ + Main method to featurize and prepare for the model one or several sequence(s). + + Pass in a value for `audio` to extract waveform features. Pass in a value for `audio_target` to extract log-mel + spectrogram features. + + Args: + audio (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`, *optional*): + The sequence or batch of sequences to be processed. Each sequence can be a numpy array, a list of float + values, a list of numpy arrays or a list of list of float values. This outputs waveform features. Must + be mono channel audio, not stereo, i.e. single float per timestep. + audio_target (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`, *optional*): + The sequence or batch of sequences to be processed as targets. Each sequence can be a numpy array, a + list of float values, a list of numpy arrays or a list of list of float values. This outputs log-mel + spectrogram features. + padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): + Select a strategy to pad the returned sequences (according to the model's padding side and padding + index) among: + + - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single + sequence if provided). + - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum + acceptable input length for the model if that argument is not provided. + - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different + lengths). + max_length (`int`, *optional*): + Maximum length of the returned list and optionally padding length (see above). + truncation (`bool`): + Activates truncation to cut input sequences longer than *max_length* to *max_length*. + pad_to_multiple_of (`int`, *optional*): + If set will pad the sequence to a multiple of the provided value. + + This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability + `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. + return_attention_mask (`bool`, *optional*): + Whether to return the attention mask. If left to the default, will return the attention mask according + to the specific feature_extractor's default. + + [What are attention masks?](../glossary#attention-mask) + + return_tensors (`str` or [`~utils.TensorType`], *optional*): + If set, will return tensors instead of list of python integers. Acceptable values are: + + - `'tf'`: Return TensorFlow `tf.constant` objects. + - `'pt'`: Return PyTorch `torch.Tensor` objects. + - `'np'`: Return Numpy `np.ndarray` objects. + sampling_rate (`int`, *optional*): + The sampling rate at which the `audio` or `audio_target` input was sampled. It is strongly recommended + to pass `sampling_rate` at the forward call to prevent silent errors. + """ + if audio is None and audio_target is None: + raise ValueError("You must provide either `audio` or `audio_target` values.") + + if sampling_rate is not None: + if sampling_rate != self.sampling_rate: + raise ValueError( + f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" + f" {self.sampling_rate}. Please make sure that the provided audio input was sampled with" + f" {self.sampling_rate} and not {sampling_rate}." + ) + else: + logger.warning( + "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " + "Failing to do so can result in silent errors that might be hard to debug." + ) + + if audio is not None: + inputs = self._process_audio( + audio, + False, + padding, + max_length, + truncation, + pad_to_multiple_of, + return_attention_mask, + return_tensors, + **kwargs, + ) + else: + inputs = None + + if audio_target is not None: + inputs_target = self._process_audio( + audio_target, + True, + padding, + max_length, + truncation, + pad_to_multiple_of, + return_attention_mask, + return_tensors, + **kwargs, + ) + + if inputs is None: + return inputs_target + else: + inputs["labels"] = inputs_target["input_values"] + decoder_attention_mask = inputs_target.get("attention_mask") + if decoder_attention_mask is not None: + inputs["decoder_attention_mask"] = decoder_attention_mask + + return inputs + + def _process_audio( + self, + speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], + is_target: bool = False, + padding: Union[bool, str, PaddingStrategy] = False, + max_length: Optional[int] = None, + truncation: bool = False, + pad_to_multiple_of: Optional[int] = None, + return_attention_mask: Optional[bool] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + **kwargs, + ) -> BatchFeature: + is_batched_numpy = isinstance(speech, np.ndarray) and len(speech.shape) > 1 + if is_batched_numpy and len(speech.shape) > 2: + raise ValueError(f"Only mono-channel audio is supported for input to {self}") + is_batched = is_batched_numpy or ( + isinstance(speech, (list, tuple)) and (isinstance(speech[0], (np.ndarray, tuple, list))) + ) + + if is_batched: + speech = [np.asarray(speech, dtype=np.float32) for speech in speech] + elif not is_batched and not isinstance(speech, np.ndarray): + speech = np.asarray(speech, dtype=np.float32) + elif isinstance(speech, np.ndarray) and speech.dtype is np.dtype(np.float64): + speech = speech.astype(np.float32) + + # always return batch + if not is_batched: + speech = [speech] + + # needed to make pad() work on spectrogram inputs + feature_size_hack = self.feature_size + + # convert into correct format for padding + if is_target: + features = [self._extract_mel_features(waveform) for waveform in speech] + encoded_inputs = BatchFeature({"input_values": features}) + self.feature_size = self.num_mel_bins + else: + encoded_inputs = BatchFeature({"input_values": speech}) + + padded_inputs = self.pad( + encoded_inputs, + padding=padding, + max_length=max_length, + truncation=truncation, + pad_to_multiple_of=pad_to_multiple_of, + return_attention_mask=return_attention_mask, + **kwargs, + ) + + self.feature_size = feature_size_hack + + # convert input values to correct format + input_values = padded_inputs["input_values"] + if not isinstance(input_values[0], np.ndarray): + padded_inputs["input_values"] = [np.asarray(array, dtype=np.float32) for array in input_values] + elif ( + not isinstance(input_values, np.ndarray) + and isinstance(input_values[0], np.ndarray) + and input_values[0].dtype is np.dtype(np.float64) + ): + padded_inputs["input_values"] = [array.astype(np.float32) for array in input_values] + elif isinstance(input_values, np.ndarray) and input_values.dtype is np.dtype(np.float64): + padded_inputs["input_values"] = input_values.astype(np.float32) + + # convert attention_mask to correct format + attention_mask = padded_inputs.get("attention_mask") + if attention_mask is not None: + padded_inputs["attention_mask"] = [np.asarray(array, dtype=np.int32) for array in attention_mask] + + # zero-mean and unit-variance normalization + if not is_target and self.do_normalize: + attention_mask = ( + attention_mask + if self._get_padding_strategies(padding, max_length=max_length) is not PaddingStrategy.DO_NOT_PAD + else None + ) + padded_inputs["input_values"] = self.zero_mean_unit_var_norm( + padded_inputs["input_values"], attention_mask=attention_mask, padding_value=self.padding_value + ) + + if return_tensors is not None: + padded_inputs = padded_inputs.convert_to_tensors(return_tensors) + + return padded_inputs + + def to_dict(self) -> Dict[str, Any]: + output = super().to_dict() + + # Don't serialize these as they are derived from the other properties. + names = ["window", "mel_filters", "sample_size", "sample_stride", "n_fft", "n_freqs"] + for name in names: + if name in output: + del output[name] + + return output diff --git a/venv/lib/python3.10/site-packages/transformers/models/speecht5/modeling_speecht5.py b/venv/lib/python3.10/site-packages/transformers/models/speecht5/modeling_speecht5.py new file mode 100644 index 0000000000000000000000000000000000000000..071b987dbb5a478e7eec59e6582678c4ec75c33c --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/speecht5/modeling_speecht5.py @@ -0,0 +1,3362 @@ +# coding=utf-8 +# Copyright 2023 The Fairseq Authors, Microsoft Research, and the HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch SpeechT5 model.""" + +import math +from typing import List, Optional, Tuple, Union + +import numpy as np +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, L1Loss + +from ...activations import ACT2FN +from ...integrations.deepspeed import is_deepspeed_zero3_enabled +from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask +from ...modeling_outputs import ( + BaseModelOutput, + BaseModelOutputWithPastAndCrossAttentions, + Seq2SeqLMOutput, + Seq2SeqModelOutput, + Seq2SeqSpectrogramOutput, +) +from ...modeling_utils import PreTrainedModel +from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings +from .configuration_speecht5 import SpeechT5Config, SpeechT5HifiGanConfig + + +logger = logging.get_logger(__name__) + + +_HIDDEN_STATES_START_POSITION = 1 + +# General docstring +_CONFIG_FOR_DOC = "SpeechT5Config" + + +from ..deprecated._archive_maps import SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +# Copied from transformers.models.bart.modeling_bart.shift_tokens_right +def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): + """ + Shift input ids one token to the right. + """ + shifted_input_ids = input_ids.new_zeros(input_ids.shape) + shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() + shifted_input_ids[:, 0] = decoder_start_token_id + + if pad_token_id is None: + raise ValueError("self.model.config.pad_token_id has to be defined.") + # replace possible -100 values in labels by `pad_token_id` + shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) + + return shifted_input_ids + + +def shift_spectrograms_right(input_values: torch.Tensor, reduction_factor: int = 1): + """ + Shift input spectrograms one timestep to the right. Also applies the reduction factor to the sequence length. + """ + # thin out frames for reduction factor + if reduction_factor > 1: + input_values = input_values[:, reduction_factor - 1 :: reduction_factor] + + shifted_input_values = input_values.new_zeros(input_values.shape) + shifted_input_values[:, 1:] = input_values[:, :-1].clone() + + # replace possible -100 values in labels by zeros + shifted_input_values.masked_fill_(shifted_input_values == -100.0, 0.0) + + return shifted_input_values + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices +def _compute_mask_indices( + shape: Tuple[int, int], + mask_prob: float, + mask_length: int, + attention_mask: Optional[torch.LongTensor] = None, + min_masks: int = 0, +) -> np.ndarray: + """ + Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for + ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on + CPU as part of the preprocessing during training. + + Args: + shape: The shape for which to compute masks. This should be of a tuple of size 2 where + the first element is the batch size and the second element is the length of the axis to span. + mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of + independently generated mask spans of length `mask_length` is computed by + `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the + actual percentage will be smaller. + mask_length: size of the mask + min_masks: minimum number of masked spans + attention_mask: A (right-padded) attention mask which independently shortens the feature axis of + each batch dimension. + """ + batch_size, sequence_length = shape + + if mask_length < 1: + raise ValueError("`mask_length` has to be bigger than 0.") + + if mask_length > sequence_length: + raise ValueError( + f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" + f" and `sequence_length`: {sequence_length}`" + ) + + # epsilon is used for probabilistic rounding + epsilon = np.random.rand(1).item() + + def compute_num_masked_span(input_length): + """Given input length, compute how many spans should be masked""" + num_masked_span = int(mask_prob * input_length / mask_length + epsilon) + num_masked_span = max(num_masked_span, min_masks) + + # make sure num masked span <= sequence_length + if num_masked_span * mask_length > sequence_length: + num_masked_span = sequence_length // mask_length + + # make sure num_masked span is also <= input_length - (mask_length - 1) + if input_length - (mask_length - 1) < num_masked_span: + num_masked_span = max(input_length - (mask_length - 1), 0) + + return num_masked_span + + # compute number of masked spans in batch + input_lengths = ( + attention_mask.sum(-1).detach().tolist() + if attention_mask is not None + else [sequence_length for _ in range(batch_size)] + ) + + # SpecAugment mask to fill + spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) + spec_aug_mask_idxs = [] + + max_num_masked_span = compute_num_masked_span(sequence_length) + + if max_num_masked_span == 0: + return spec_aug_mask + + for input_length in input_lengths: + # compute num of masked spans for this input + num_masked_span = compute_num_masked_span(input_length) + + # get random indices to mask + spec_aug_mask_idx = np.random.choice( + np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False + ) + + # pick first sampled index that will serve as a dummy index to pad vector + # to ensure same dimension for all batches due to probabilistic rounding + # Picking first sample just pads those vectors twice. + if len(spec_aug_mask_idx) == 0: + # this case can only happen if `input_length` is strictly smaller then + # `sequence_length` in which case the last token has to be a padding + # token which we can use as a dummy mask id + dummy_mask_idx = sequence_length - 1 + else: + dummy_mask_idx = spec_aug_mask_idx[0] + + spec_aug_mask_idx = np.concatenate( + [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] + ) + spec_aug_mask_idxs.append(spec_aug_mask_idx) + + spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) + + # expand masked indices to masked spans + spec_aug_mask_idxs = np.broadcast_to( + spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) + ) + spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) + + # add offset to the starting indexes so that indexes now create a span + offsets = np.arange(mask_length)[None, None, :] + offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( + batch_size, max_num_masked_span * mask_length + ) + spec_aug_mask_idxs = spec_aug_mask_idxs + offsets + + # ensure that we cannot have indices larger than sequence_length + if spec_aug_mask_idxs.max() > sequence_length - 1: + spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 + + # scatter indices to mask + np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) + + return spec_aug_mask + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->SpeechT5 +class SpeechT5NoLayerNormConvLayer(nn.Module): + def __init__(self, config, layer_id=0): + super().__init__() + self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 + self.out_conv_dim = config.conv_dim[layer_id] + + self.conv = nn.Conv1d( + self.in_conv_dim, + self.out_conv_dim, + kernel_size=config.conv_kernel[layer_id], + stride=config.conv_stride[layer_id], + bias=config.conv_bias, + ) + self.activation = ACT2FN[config.feat_extract_activation] + + def forward(self, hidden_states): + hidden_states = self.conv(hidden_states) + hidden_states = self.activation(hidden_states) + return hidden_states + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->SpeechT5 +class SpeechT5LayerNormConvLayer(nn.Module): + def __init__(self, config, layer_id=0): + super().__init__() + self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 + self.out_conv_dim = config.conv_dim[layer_id] + + self.conv = nn.Conv1d( + self.in_conv_dim, + self.out_conv_dim, + kernel_size=config.conv_kernel[layer_id], + stride=config.conv_stride[layer_id], + bias=config.conv_bias, + ) + self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True) + self.activation = ACT2FN[config.feat_extract_activation] + + def forward(self, hidden_states): + hidden_states = self.conv(hidden_states) + + hidden_states = hidden_states.transpose(-2, -1) + hidden_states = self.layer_norm(hidden_states) + hidden_states = hidden_states.transpose(-2, -1) + + hidden_states = self.activation(hidden_states) + return hidden_states + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->SpeechT5 +class SpeechT5GroupNormConvLayer(nn.Module): + def __init__(self, config, layer_id=0): + super().__init__() + self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 + self.out_conv_dim = config.conv_dim[layer_id] + + self.conv = nn.Conv1d( + self.in_conv_dim, + self.out_conv_dim, + kernel_size=config.conv_kernel[layer_id], + stride=config.conv_stride[layer_id], + bias=config.conv_bias, + ) + self.activation = ACT2FN[config.feat_extract_activation] + + self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True) + + def forward(self, hidden_states): + hidden_states = self.conv(hidden_states) + hidden_states = self.layer_norm(hidden_states) + hidden_states = self.activation(hidden_states) + return hidden_states + + +# Copied from transformers.models.speech_to_text.modeling_speech_to_text.Speech2TextSinusoidalPositionalEmbedding with Speech2Text->SpeechT5 +class SpeechT5SinusoidalPositionalEmbedding(nn.Module): + """This module produces sinusoidal positional embeddings of any length.""" + + def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None): + super().__init__() + self.offset = 2 + self.embedding_dim = embedding_dim + self.padding_idx = padding_idx + self.make_weights(num_positions + self.offset, embedding_dim, padding_idx) + + def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): + emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx) + if hasattr(self, "weights"): + # in forward put the weights on the correct dtype and device of the param + emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device) + + self.weights = nn.Parameter(emb_weights) + self.weights.requires_grad = False + self.weights.detach_() + + @staticmethod + def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): + """ + Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the + description in Section 3.5 of "Attention Is All You Need". + """ + half_dim = embedding_dim // 2 + emb = math.log(10000) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb) + emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0) + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) + if embedding_dim % 2 == 1: + # zero pad + emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) + if padding_idx is not None: + emb[padding_idx, :] = 0 + return emb.to(torch.get_default_dtype()) + + @torch.no_grad() + def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0): + bsz, seq_len = input_ids.size() + # Create the position ids from the input token ids. Any padded tokens remain padded. + position_ids = self.create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to( + input_ids.device + ) + + # expand embeddings if needed + max_pos = self.padding_idx + 1 + seq_len + if max_pos > self.weights.size(0): + self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx) + + return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, -1).detach() + + def create_position_ids_from_input_ids( + self, input_ids: torch.Tensor, padding_idx: int, past_key_values_length: Optional[int] = 0 + ): + """ + Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding + symbols are ignored. This is modified from fairseq's `utils.make_positions`. + + Args: + x: torch.Tensor x: + Returns: torch.Tensor + """ + # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. + mask = input_ids.ne(padding_idx).int() + incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask + return incremental_indices.long() + padding_idx + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PositionalConvEmbedding with Wav2Vec2->SpeechT5 +class SpeechT5PositionalConvEmbedding(nn.Module): + def __init__(self, config): + super().__init__() + self.conv = nn.Conv1d( + config.hidden_size, + config.hidden_size, + kernel_size=config.num_conv_pos_embeddings, + padding=config.num_conv_pos_embeddings // 2, + groups=config.num_conv_pos_embedding_groups, + ) + + weight_norm = nn.utils.weight_norm + if hasattr(nn.utils.parametrizations, "weight_norm"): + weight_norm = nn.utils.parametrizations.weight_norm + + if is_deepspeed_zero3_enabled(): + import deepspeed + + with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0): + self.conv = weight_norm(self.conv, name="weight", dim=2) + deepspeed.zero.register_external_parameter(self, self.conv.weight_v) + deepspeed.zero.register_external_parameter(self, self.conv.weight_g) + else: + self.conv = weight_norm(self.conv, name="weight", dim=2) + + self.padding = SpeechT5SamePadLayer(config.num_conv_pos_embeddings) + self.activation = ACT2FN[config.feat_extract_activation] + + def forward(self, hidden_states): + hidden_states = hidden_states.transpose(1, 2) + + hidden_states = self.conv(hidden_states) + hidden_states = self.padding(hidden_states) + hidden_states = self.activation(hidden_states) + + hidden_states = hidden_states.transpose(1, 2) + return hidden_states + + +class SpeechT5ScaledPositionalEncoding(nn.Module): + """ + Scaled positional encoding, see §3.2 in https://arxiv.org/abs/1809.08895 + """ + + def __init__(self, dropout, dim, max_len=5000): + pe = torch.zeros(max_len, dim) + position = torch.arange(0, max_len).unsqueeze(1) + div_term = torch.exp((torch.arange(0, dim, 2, dtype=torch.int64).float() * -(math.log(10000.0) / dim))) + pe[:, 0::2] = torch.sin(position.float() * div_term) + pe[:, 1::2] = torch.cos(position.float() * div_term) + pe = pe.unsqueeze(0) + super().__init__() + self.register_buffer("pe", pe, persistent=False) + self.dropout = nn.Dropout(p=dropout) + self.dim = dim + self.alpha = torch.nn.Parameter(torch.tensor(1.0)) + + def forward(self, emb): + emb = emb + self.alpha * self.pe[:, : emb.size(1)] + emb = self.dropout(emb) + return emb + + +class SpeechT5RelativePositionalEncoding(torch.nn.Module): + def __init__(self, dim, max_length=1000): + super().__init__() + self.dim = dim + self.max_length = max_length + self.pe_k = torch.nn.Embedding(2 * max_length, dim) + + def forward(self, hidden_states): + seq_len = hidden_states.shape[1] + pos_seq = torch.arange(0, seq_len).long().to(hidden_states.device) + pos_seq = pos_seq[:, None] - pos_seq[None, :] + + pos_seq[pos_seq < -self.max_length] = -self.max_length + pos_seq[pos_seq >= self.max_length] = self.max_length - 1 + pos_seq = pos_seq + self.max_length + + return self.pe_k(pos_seq) + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->SpeechT5 +class SpeechT5SamePadLayer(nn.Module): + def __init__(self, num_conv_pos_embeddings): + super().__init__() + self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 + + def forward(self, hidden_states): + if self.num_pad_remove > 0: + hidden_states = hidden_states[:, :, : -self.num_pad_remove] + return hidden_states + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->SpeechT5 +class SpeechT5FeatureEncoder(nn.Module): + """Construct the features from raw audio waveform""" + + def __init__(self, config): + super().__init__() + + if config.feat_extract_norm == "group": + conv_layers = [SpeechT5GroupNormConvLayer(config, layer_id=0)] + [ + SpeechT5NoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1) + ] + elif config.feat_extract_norm == "layer": + conv_layers = [ + SpeechT5LayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers) + ] + else: + raise ValueError( + f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']" + ) + self.conv_layers = nn.ModuleList(conv_layers) + self.gradient_checkpointing = False + self._requires_grad = True + + def _freeze_parameters(self): + for param in self.parameters(): + param.requires_grad = False + self._requires_grad = False + + def forward(self, input_values): + hidden_states = input_values[:, None] + + # make sure hidden_states require grad for gradient_checkpointing + if self._requires_grad and self.training: + hidden_states.requires_grad = True + + for conv_layer in self.conv_layers: + if self._requires_grad and self.gradient_checkpointing and self.training: + hidden_states = self._gradient_checkpointing_func( + conv_layer.__call__, + hidden_states, + ) + else: + hidden_states = conv_layer(hidden_states) + + return hidden_states + + +# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureProjection with Wav2Vec2->SpeechT5 +class SpeechT5FeatureProjection(nn.Module): + def __init__(self, config): + super().__init__() + self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps) + self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size) + self.dropout = nn.Dropout(config.feat_proj_dropout) + + def forward(self, hidden_states): + # non-projected hidden states are needed for quantization + norm_hidden_states = self.layer_norm(hidden_states) + hidden_states = self.projection(norm_hidden_states) + hidden_states = self.dropout(hidden_states) + return hidden_states, norm_hidden_states + + +class SpeechT5SpeechEncoderPrenet(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.feature_encoder = SpeechT5FeatureEncoder(config) + self.feature_projection = SpeechT5FeatureProjection(config) + + # model only needs masking vector if mask prob is > 0.0 + if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: + self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_()) + + self.pos_conv_embed = SpeechT5PositionalConvEmbedding(config) + self.pos_sinusoidal_embed = SpeechT5SinusoidalPositionalEmbedding( + config.max_speech_positions + config.pad_token_id + 1, + config.hidden_size, + config.pad_token_id, + ) + + def freeze_feature_encoder(self): + self.feature_encoder._freeze_parameters() + + def forward( + self, + input_values: torch.Tensor, + attention_mask: Optional[torch.LongTensor] = None, + mask_time_indices: Optional[torch.FloatTensor] = None, + ): + extract_features = self.feature_encoder(input_values) + extract_features = extract_features.transpose(1, 2) + + if attention_mask is not None: + # compute reduced attention_mask corresponding to feature vectors + attention_mask = self._get_feature_vector_attention_mask( + extract_features.shape[1], + attention_mask, + ) + + hidden_states, extract_features = self.feature_projection(extract_features) + hidden_states = self._mask_hidden_states( + hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask + ) + + positional_conv_embedding = self.pos_conv_embed(hidden_states) + hidden_states = hidden_states + positional_conv_embedding + + if attention_mask is not None: + padding_mask = attention_mask.ne(1).long() + else: + padding_mask = torch.zeros(hidden_states.shape[:2], dtype=torch.long, device=hidden_states.device) + + positional_sinusoidal_embeddings = self.pos_sinusoidal_embed(padding_mask) + hidden_states = hidden_states + positional_sinusoidal_embeddings + + return hidden_states, attention_mask + + # Copied from transformers.models.unispeech.modeling_unispeech.UniSpeechPreTrainedModel._get_feature_vector_attention_mask + def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor): + # Effectively attention_mask.sum(-1), but not inplace to be able to run + # on inference mode. + non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1] + output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths).to(torch.long) + batch_size = attention_mask.shape[0] + + attention_mask = torch.zeros( + (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device + ) + # these two operations makes sure that all values before the output lengths idxs are attended to + attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 + attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() + return attention_mask + + # Copied from transformers.models.unispeech.modeling_unispeech.UniSpeechPreTrainedModel._get_feat_extract_output_lengths + def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): + """ + Computes the output length of the convolutional layers + """ + + def _conv_out_length(input_length, kernel_size, stride): + # 1D convolutional layer output length formula taken + # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html + return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1 + + for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): + input_lengths = _conv_out_length(input_lengths, kernel_size, stride) + + return input_lengths + + # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states + def _mask_hidden_states( + self, + hidden_states: torch.FloatTensor, + mask_time_indices: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.LongTensor] = None, + ): + """ + Masks extracted features along time axis and/or along feature axis according to + [SpecAugment](https://arxiv.org/abs/1904.08779). + """ + + # `config.apply_spec_augment` can set masking to False + if not getattr(self.config, "apply_spec_augment", True): + return hidden_states + + # generate indices & apply SpecAugment along time axis + batch_size, sequence_length, hidden_size = hidden_states.size() + + if mask_time_indices is not None: + # apply SpecAugment along time axis with given mask_time_indices + hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) + elif self.config.mask_time_prob > 0 and self.training: + mask_time_indices = _compute_mask_indices( + (batch_size, sequence_length), + mask_prob=self.config.mask_time_prob, + mask_length=self.config.mask_time_length, + attention_mask=attention_mask, + min_masks=self.config.mask_time_min_masks, + ) + mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) + hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) + + if self.config.mask_feature_prob > 0 and self.training: + # generate indices & apply SpecAugment along feature axis + mask_feature_indices = _compute_mask_indices( + (batch_size, hidden_size), + mask_prob=self.config.mask_feature_prob, + mask_length=self.config.mask_feature_length, + min_masks=self.config.mask_feature_min_masks, + ) + mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) + mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) + hidden_states[mask_feature_indices] = 0 + + return hidden_states + + +class SpeechT5SpeechDecoderPrenet(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + + self.layers = nn.ModuleList( + [ + nn.Linear( + config.num_mel_bins if i == 0 else config.speech_decoder_prenet_units, + config.speech_decoder_prenet_units, + ) + for i in range(config.speech_decoder_prenet_layers) + ] + ) + + self.final_layer = nn.Linear(config.speech_decoder_prenet_units, config.hidden_size) + self.encode_positions = SpeechT5ScaledPositionalEncoding( + config.positional_dropout, + config.hidden_size, + config.max_speech_positions, + ) + self.speaker_embeds_layer = nn.Linear(config.speaker_embedding_dim + config.hidden_size, config.hidden_size) + + def _consistent_dropout(self, inputs_embeds, p): + mask = torch.bernoulli(inputs_embeds[0], p=p) + all_masks = mask.unsqueeze(0).repeat(inputs_embeds.size(0), 1, 1) + return torch.where(all_masks == 1, inputs_embeds, 0) * 1 / (1 - p) + + def forward( + self, + input_values: torch.Tensor, + speaker_embeddings: Optional[torch.Tensor] = None, + ): + # Dropout is always applied, even when evaluating. See §2.2 in https://arxiv.org/abs/1712.05884. + + inputs_embeds = input_values + for layer in self.layers: + inputs_embeds = nn.functional.relu(layer(inputs_embeds)) + inputs_embeds = self._consistent_dropout(inputs_embeds, self.config.speech_decoder_prenet_dropout) + + inputs_embeds = self.final_layer(inputs_embeds) + inputs_embeds = self.encode_positions(inputs_embeds) + + if speaker_embeddings is not None: + speaker_embeddings = nn.functional.normalize(speaker_embeddings) + speaker_embeddings = speaker_embeddings.unsqueeze(1).expand(-1, inputs_embeds.size(1), -1) + inputs_embeds = torch.cat([inputs_embeds, speaker_embeddings], dim=-1) + inputs_embeds = nn.functional.relu(self.speaker_embeds_layer(inputs_embeds)) + + return inputs_embeds + + +class SpeechT5BatchNormConvLayer(nn.Module): + def __init__(self, config, layer_id=0): + super().__init__() + + if layer_id == 0: + in_conv_dim = config.num_mel_bins + else: + in_conv_dim = config.speech_decoder_postnet_units + + if layer_id == config.speech_decoder_postnet_layers - 1: + out_conv_dim = config.num_mel_bins + else: + out_conv_dim = config.speech_decoder_postnet_units + + self.conv = nn.Conv1d( + in_conv_dim, + out_conv_dim, + kernel_size=config.speech_decoder_postnet_kernel, + stride=1, + padding=(config.speech_decoder_postnet_kernel - 1) // 2, + bias=False, + ) + self.batch_norm = nn.BatchNorm1d(out_conv_dim) + + if layer_id < config.speech_decoder_postnet_layers - 1: + self.activation = nn.Tanh() + else: + self.activation = None + + self.dropout = nn.Dropout(config.speech_decoder_postnet_dropout) + + def forward(self, hidden_states): + hidden_states = self.conv(hidden_states) + hidden_states = self.batch_norm(hidden_states) + if self.activation is not None: + hidden_states = self.activation(hidden_states) + hidden_states = self.dropout(hidden_states) + return hidden_states + + +class SpeechT5SpeechDecoderPostnet(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + + self.feat_out = nn.Linear(config.hidden_size, config.num_mel_bins * config.reduction_factor) + self.prob_out = nn.Linear(config.hidden_size, config.reduction_factor) + + self.layers = nn.ModuleList( + [SpeechT5BatchNormConvLayer(config, i) for i in range(config.speech_decoder_postnet_layers)] + ) + + def forward(self, hidden_states: torch.Tensor): + outputs_before_postnet = self.feat_out(hidden_states).view(hidden_states.size(0), -1, self.config.num_mel_bins) + outputs_after_postnet = self.postnet(outputs_before_postnet) + logits = self.prob_out(hidden_states).view(hidden_states.size(0), -1) + return outputs_before_postnet, outputs_after_postnet, logits + + def postnet(self, hidden_states: torch.Tensor): + layer_output = hidden_states.transpose(1, 2) + for layer in self.layers: + layer_output = layer(layer_output) + return hidden_states + layer_output.transpose(1, 2) + + +class SpeechT5TextEncoderPrenet(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) + self.encode_positions = SpeechT5ScaledPositionalEncoding( + config.positional_dropout, + config.hidden_size, + config.max_text_positions, + ) + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + def forward(self, input_ids: torch.Tensor): + inputs_embeds = self.embed_tokens(input_ids) + inputs_embeds = self.encode_positions(inputs_embeds) + return inputs_embeds + + +class SpeechT5TextDecoderPrenet(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.dropout = nn.Dropout(config.positional_dropout) + self.embed_scale = math.sqrt(config.hidden_size) if config.scale_embedding else 1.0 + + self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) + + self.embed_positions = SpeechT5SinusoidalPositionalEmbedding( + config.max_text_positions + config.pad_token_id + 1, + config.hidden_size, + config.pad_token_id, + ) + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + def forward( + self, + input_ids: torch.Tensor, + attention_mask: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + ): + if input_ids is not None: + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + else: + raise ValueError("You have to specify `decoder_input_ids`") + + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + positions = self.embed_positions(input_ids, past_key_values_length) + + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + inputs_embeds += positions + inputs_embeds = self.dropout(inputs_embeds) + + return inputs_embeds, attention_mask + + +class SpeechT5TextDecoderPostnet(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + def forward(self, hidden_states: torch.Tensor): + return self.lm_head(hidden_states) + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + +class SpeechT5Attention(nn.Module): + """ + Multi-headed attention from 'Attention Is All You Need' paper with relative position bias (see + https://aclanthology.org/N18-2074.pdf) + """ + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + is_decoder: bool = False, + bias: bool = True, + ): + super().__init__() + self.embed_dim = embed_dim + self.num_heads = num_heads + self.dropout = dropout + self.head_dim = embed_dim // num_heads + + if (self.head_dim * num_heads) != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + self.is_decoder = is_decoder + + self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states: torch.Tensor, + key_value_states: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + position_bias: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + + bsz, tgt_len, _ = hidden_states.size() + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, bsz) + value_states = self._shape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) + key_states = key_states.view(*proj_shape) + value_states = value_states.view(*proj_shape) + + src_len = key_states.size(1) + attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) + + if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): + raise ValueError( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" + f" {attn_weights.size()}" + ) + + # relative attention bias + if position_bias is not None: + reshape_q = query_states.contiguous().view(bsz * self.num_heads, -1, self.head_dim).transpose(0, 1) + rel_pos_bias = torch.matmul(reshape_q, position_bias.transpose(-2, -1)) + rel_pos_bias = rel_pos_bias.transpose(0, 1).view( + bsz * self.num_heads, position_bias.size(0), position_bias.size(1) + ) + attn_weights += rel_pos_bias + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, tgt_len, src_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + if layer_head_mask is not None: + if layer_head_mask.size() != (self.num_heads,): + raise ValueError( + f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" + f" {layer_head_mask.size()}" + ) + attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + if output_attentions: + # this operation is a bit awkward, but it's required to + # make sure that attn_weights keeps its gradient. + # In order to do so, attn_weights have to be reshaped + # twice and have to be reused in the following + attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) + else: + attn_weights_reshaped = None + + attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + + attn_output = torch.bmm(attn_probs, value_states) + + if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) + attn_output = attn_output.transpose(1, 2) + + # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be + # partitioned aross GPUs when using tensor-parallelism. + attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) + + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights_reshaped, past_key_value + + +class SpeechT5FeedForward(nn.Module): + def __init__(self, config, intermediate_size): + super().__init__() + self.intermediate_dropout = nn.Dropout(config.activation_dropout) + + self.intermediate_dense = nn.Linear(config.hidden_size, intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + self.output_dense = nn.Linear(intermediate_size, config.hidden_size) + self.output_dropout = nn.Dropout(config.hidden_dropout) + + def forward(self, hidden_states): + hidden_states = self.intermediate_dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + hidden_states = self.intermediate_dropout(hidden_states) + + hidden_states = self.output_dense(hidden_states) + hidden_states = self.output_dropout(hidden_states) + return hidden_states + + +class SpeechT5EncoderLayer(nn.Module): + def __init__(self, config: SpeechT5Config): + super().__init__() + self.attention = SpeechT5Attention( + embed_dim=config.hidden_size, + num_heads=config.encoder_attention_heads, + dropout=config.attention_dropout, + is_decoder=False, + ) + self.dropout = nn.Dropout(config.hidden_dropout) + self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.feed_forward = SpeechT5FeedForward(config, config.encoder_ffn_dim) + self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + position_bias: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ): + """ + Args: + hidden_states (`torch.FloatTensor`): + input to the layer of shape `(batch, seq_len, hidden_size)` + attention_mask (`torch.FloatTensor`): + attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very + large negative values. + layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size + `(config.encoder_attention_heads,)`. + position_bias (`torch.FloatTensor`): + relative position embeddings of size `(seq_len, seq_len, hidden_size // encoder_attention_heads)` + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + residual = hidden_states + hidden_states, attn_weights, _ = self.attention( + hidden_states=hidden_states, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + position_bias=position_bias, + output_attentions=output_attentions, + ) + + hidden_states = self.dropout(hidden_states) + hidden_states = residual + hidden_states + + hidden_states = self.layer_norm(hidden_states) + hidden_states = hidden_states + self.feed_forward(hidden_states) + hidden_states = self.final_layer_norm(hidden_states) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights,) + + return outputs + + +class SpeechT5DecoderLayer(nn.Module): + def __init__(self, config: SpeechT5Config): + super().__init__() + self.self_attn = SpeechT5Attention( + embed_dim=config.hidden_size, + num_heads=config.decoder_attention_heads, + dropout=config.attention_dropout, + is_decoder=True, + ) + self.dropout = nn.Dropout(config.hidden_dropout) + self.self_attn_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + self.encoder_attn = SpeechT5Attention( + config.hidden_size, + config.decoder_attention_heads, + dropout=config.attention_dropout, + is_decoder=True, + ) + self.encoder_attn_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + self.feed_forward = SpeechT5FeedForward(config, config.decoder_ffn_dim) + self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + cross_attn_layer_head_mask: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = True, + ): + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, hidden_size)` + attention_mask (`torch.FloatTensor`): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + encoder_hidden_states (`torch.FloatTensor`): + cross attention input to the layer of shape `(batch, seq_len, hidden_size)` + encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size + `(encoder_attention_heads,)`. + cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of + size `(decoder_attention_heads,)`. + past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + residual = hidden_states + + # Self Attention + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + # add present self-attn cache to positions 1,2 of present_key_value tuple + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + past_key_value=self_attn_past_key_value, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + output_attentions=output_attentions, + ) + hidden_states = self.dropout(hidden_states) + hidden_states = residual + hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Cross-Attention Block + cross_attn_present_key_value = None + cross_attn_weights = None + if encoder_hidden_states is not None: + residual = hidden_states + + # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( + hidden_states=hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + layer_head_mask=cross_attn_layer_head_mask, + past_key_value=cross_attn_past_key_value, + output_attentions=output_attentions, + ) + hidden_states = self.dropout(hidden_states) + hidden_states = residual + hidden_states + hidden_states = self.encoder_attn_layer_norm(hidden_states) + + # add cross-attn to positions 3,4 of present_key_value tuple + present_key_value = present_key_value + cross_attn_present_key_value + + # Fully Connected + hidden_states = hidden_states + self.feed_forward(hidden_states) + hidden_states = self.final_layer_norm(hidden_states) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights, cross_attn_weights) + + if use_cache: + outputs += (present_key_value,) + + return outputs + + +class SpeechT5PreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = SpeechT5Config + base_model_prefix = "speecht5" + main_input_name = "input_values" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, SpeechT5PositionalConvEmbedding): + nn.init.normal_( + module.conv.weight, + mean=0, + std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)), + ) + nn.init.constant_(module.conv.bias, 0) + elif isinstance(module, SpeechT5FeatureProjection): + k = math.sqrt(1 / module.projection.in_features) + nn.init.uniform_(module.projection.weight, a=-k, b=k) + nn.init.uniform_(module.projection.bias, a=-k, b=k) + elif isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + elif isinstance(module, nn.Conv1d): + nn.init.kaiming_normal_(module.weight) + if module.bias is not None: + k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) + nn.init.uniform_(module.bias, a=-k, b=k) + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + +class SpeechT5Encoder(SpeechT5PreTrainedModel): + """ + Transformer encoder consisting of *config.encoder_layers* layers. Each layer is a [`SpeechT5EncoderLayer`]. + """ + + def __init__(self, config: SpeechT5Config): + super().__init__(config) + self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout) + self.layerdrop = config.encoder_layerdrop + + self.layers = nn.ModuleList([SpeechT5EncoderLayer(config) for _ in range(config.encoder_layers)]) + + self.embed_positions = SpeechT5RelativePositionalEncoding( + config.hidden_size // config.encoder_attention_heads, config.encoder_max_relative_position + ) + + self.gradient_checkpointing = False + + # Initialize weights and apply final processing + self.post_init() + + def forward( + self, + hidden_states: torch.FloatTensor, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutput]: + """ + Args: + hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, feature_size)`): + Features extracted from the speech or text input by the encoder prenet. + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing convolution and attention on padding token indices. Mask values selected in + `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # expand attention_mask + if attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype) + + hidden_states = self.layer_norm(hidden_states) + hidden_states = self.dropout(hidden_states) + + position_bias = self.embed_positions(hidden_states) + + deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() + + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + + # check if head_mask has a correct number of layers specified if desired + if head_mask is not None: + if head_mask.size()[0] != len(self.layers): + raise ValueError( + f"The head_mask should be specified for {len(self.layers)} layers, but it is for" + f" {head_mask.size()[0]}." + ) + + for idx, encoder_layer in enumerate(self.layers): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + skip_the_layer = False + if self.training: + dropout_probability = torch.rand([]) + skip_the_layer = dropout_probability < self.layerdrop + + if not skip_the_layer or deepspeed_zero3_is_enabled: + # under deepspeed zero3 all gpus must run in sync + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + encoder_layer.__call__, + hidden_states, + attention_mask, + (head_mask[idx] if head_mask is not None else None), + position_bias, + output_attentions, + ) + else: + layer_outputs = encoder_layer( + hidden_states, + attention_mask=attention_mask, + position_bias=position_bias, + layer_head_mask=(head_mask[idx] if head_mask is not None else None), + output_attentions=output_attentions, + ) + hidden_states = layer_outputs[0] + + if skip_the_layer: + layer_outputs = (None, None) + + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) + + return BaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +class SpeechT5EncoderWithSpeechPrenet(SpeechT5PreTrainedModel): + """ + Wrapper around SpeechT5Encoder that applies SpeechT5SpeechEncoderPrenet to convert the audio waveform data to + hidden features. + """ + + def __init__(self, config: SpeechT5Config): + super().__init__(config) + self.prenet = SpeechT5SpeechEncoderPrenet(config) + self.wrapped_encoder = SpeechT5Encoder(config) + + # Initialize weights and apply final processing + self.post_init() + + def forward( + self, + input_values: torch.FloatTensor, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutput]: + hidden_states, attention_mask = self.prenet(input_values, attention_mask) + + outputs = self.wrapped_encoder( + hidden_states=hidden_states, + attention_mask=attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + return outputs + + +class SpeechT5EncoderWithTextPrenet(SpeechT5PreTrainedModel): + """ + Wrapper around SpeechT5Encoder that applies SpeechT5TextEncoderPrenet to convert the input_ids to hidden features. + """ + + def __init__(self, config: SpeechT5Config): + super().__init__(config) + self.prenet = SpeechT5TextEncoderPrenet(config) + self.wrapped_encoder = SpeechT5Encoder(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.prenet.get_input_embeddings() + + def set_input_embeddings(self, value): + self.prenet.set_input_embeddings(value) + + def forward( + self, + input_values: torch.FloatTensor, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutput]: + hidden_states = self.prenet(input_values) + + outputs = self.wrapped_encoder( + hidden_states=hidden_states, + attention_mask=attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + return outputs + + +class SpeechT5EncoderWithoutPrenet(SpeechT5PreTrainedModel): + """ + This wrapper class is a helper class to correctly load pretrained checkpoints when used in combination with + [`SpeechT5Model`]. + """ + + def __init__(self, config: SpeechT5Config): + super().__init__(config) + self.wrapped_encoder = SpeechT5Encoder(config) + + # Initialize weights and apply final processing + self.post_init() + + def forward( + self, + input_values: torch.FloatTensor, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutput]: + return self.wrapped_encoder( + hidden_states=input_values, + attention_mask=attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + +class SpeechT5Decoder(SpeechT5PreTrainedModel): + """ + Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`SpeechT5DecoderLayer`] + """ + + def __init__(self, config: SpeechT5Config): + super().__init__(config) + self.layerdrop = config.decoder_layerdrop + + self.layers = nn.ModuleList([SpeechT5DecoderLayer(config) for _ in range(config.decoder_layers)]) + + self.gradient_checkpointing = False + + # Initialize weights and apply final processing + self.post_init() + + def forward( + self, + hidden_states: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.LongTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: + r""" + Args: + hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, feature_size)`): + Features extracted from the speech or text input by the decoder prenet. + attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention + of the decoder. + encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): + Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values + selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing + cross-attention on hidden heads. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of + shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the + cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those + that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of + all `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + input_shape = hidden_states.size()[:-1] + + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + + attention_mask = _prepare_4d_causal_attention_mask( + attention_mask, input_shape, hidden_states, past_key_values_length + ) + + # expand encoder attention mask + if encoder_hidden_states is not None and encoder_attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + encoder_attention_mask = _prepare_4d_attention_mask( + encoder_attention_mask, hidden_states.dtype, tgt_len=input_shape[-1] + ) + + deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None + next_decoder_cache = () if use_cache else None + + # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired + for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): + if attn_mask is not None: + if attn_mask.size()[0] != (len(self.layers)): + raise ValueError( + f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" + f" {head_mask.size()[0]}." + ) + + for idx, decoder_layer in enumerate(self.layers): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + skip_the_layer = False + if self.training: + dropout_probability = torch.rand([]) + skip_the_layer = dropout_probability < self.layerdrop + if skip_the_layer and not deepspeed_zero3_is_enabled: + continue + + past_key_value = past_key_values[idx] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + attention_mask, + encoder_hidden_states, + encoder_attention_mask, + head_mask[idx] if head_mask is not None else None, + cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, + None, + output_attentions, + use_cache, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + layer_head_mask=(head_mask[idx] if head_mask is not None else None), + cross_attn_layer_head_mask=( + cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None + ), + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + ) + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) + + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if encoder_hidden_states is not None: + all_cross_attentions = all_cross_attentions + (layer_outputs[2],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + next_cache = next_decoder_cache if use_cache else None + if not return_dict: + return tuple( + v + for v in [hidden_states, next_cache, all_hidden_states, all_self_attentions, all_cross_attentions] + if v is not None + ) + + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + cross_attentions=all_cross_attentions, + ) + + +class SpeechT5DecoderWithSpeechPrenet(SpeechT5PreTrainedModel): + """ + Wrapper around SpeechT5Decoder that applies SpeechT5SpeechDecoderPrenet to convert log-mel filterbanks to hidden + features. + """ + + def __init__(self, config: SpeechT5Config): + super().__init__(config) + self.prenet = SpeechT5SpeechDecoderPrenet(config) + self.wrapped_decoder = SpeechT5Decoder(config) + + # Initialize weights and apply final processing + self.post_init() + + def forward( + self, + input_values: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.LongTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.LongTensor] = None, + speaker_embeddings: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: + decoder_hidden_states = self.prenet(input_values, speaker_embeddings) + + outputs = self.wrapped_decoder( + hidden_states=decoder_hidden_states, + attention_mask=attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + head_mask=head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + return outputs + + +class SpeechT5DecoderWithTextPrenet(SpeechT5PreTrainedModel): + """ + Wrapper around SpeechT5Decoder that applies SpeechT5TextDecoderPrenet to convert input tokens to hidden features. + """ + + def __init__(self, config: SpeechT5Config): + super().__init__(config) + self.prenet = SpeechT5TextDecoderPrenet(config) + self.wrapped_decoder = SpeechT5Decoder(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.prenet.get_input_embeddings() + + def set_input_embeddings(self, value): + self.prenet.set_input_embeddings(value) + + def forward( + self, + input_values: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.LongTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: + decoder_hidden_states, attention_mask = self.prenet(input_values, attention_mask, past_key_values) + + outputs = self.wrapped_decoder( + hidden_states=decoder_hidden_states, + attention_mask=attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + head_mask=head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + return outputs + + +class SpeechT5DecoderWithoutPrenet(SpeechT5PreTrainedModel): + """ + This wrapper class is a helper class to correctly load pretrained checkpoints when used in combination with + [`SpeechT5Model`]. + """ + + def __init__(self, config: SpeechT5Config): + super().__init__(config) + self.wrapped_decoder = SpeechT5Decoder(config) + + # Initialize weights and apply final processing + self.post_init() + + def forward( + self, + input_values: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.LongTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: + outputs = self.wrapped_decoder( + hidden_states=input_values, + attention_mask=attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + head_mask=head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + return outputs + + +class SpeechT5GuidedMultiheadAttentionLoss(nn.Module): + """ + Guided attention loss from the paper [Efficiently Trainable Text-to-Speech System Based on Deep Convolutional + Networks with Guided Attention](https://arxiv.org/abs/1710.08969), adapted for multi-head attention. + """ + + def __init__(self, config: SpeechT5Config): + super().__init__() + self.sigma = config.guided_attention_loss_sigma + self.scale = config.guided_attention_loss_scale + + def forward( + self, attentions: torch.FloatTensor, input_masks: torch.BoolTensor, output_masks: torch.BoolTensor + ) -> torch.Tensor: + """ + Compute the attention loss. + + Args: + attentions (`torch.FloatTensor` of shape `(batch_size, layers * heads, output_sequence_length, input_sequence_length)`): + Batch of multi-head attention weights + input_masks (`torch.BoolTensor` of shape `(batch_size, input_sequence_length)`): + Input attention mask as booleans. + output_masks (`torch.BoolTensor` of shape `(batch_size, output_sequence_length)`): + Target attention mask as booleans. + + Returns: + `torch.Tensor` with the loss value + """ + guided_attn_masks = self._make_guided_attention_masks(input_masks, output_masks, attentions.device) + masks = output_masks.unsqueeze(-1) & input_masks.unsqueeze(-2) + masks = masks.to(attentions.device).unsqueeze(1) + + losses = guided_attn_masks * attentions + loss = torch.mean(losses.masked_select(masks)) + return self.scale * loss + + def _make_guided_attention_masks(self, input_masks, output_masks, device): + input_lengths = input_masks.sum(-1) + output_lengths = output_masks.sum(-1) + + guided_attn_masks = torch.zeros((len(input_masks), output_masks.shape[1], input_masks.shape[1]), device=device) + + for idx, (ilen, olen) in enumerate(zip(input_lengths, output_lengths)): + guided_attn_masks[idx, :olen, :ilen] = self._make_guided_attention_mask(ilen, olen, self.sigma, device) + + return guided_attn_masks.unsqueeze(1) + + @staticmethod + def _make_guided_attention_mask(input_length, output_length, sigma, device): + grid_y, grid_x = torch.meshgrid( + torch.arange(input_length, device=device), + torch.arange(output_length, device=device), + indexing="xy", + ) + grid_x = grid_x.float() / output_length + grid_y = grid_y.float() / input_length + return 1.0 - torch.exp(-((grid_y - grid_x) ** 2) / (2 * (sigma**2))) + + +class SpeechT5SpectrogramLoss(nn.Module): + """ + Loss computation used by SpeechT5ForTextToSpeech. + """ + + def __init__(self, config: SpeechT5Config): + super().__init__() + self.use_guided_attention_loss = config.use_guided_attention_loss + self.guided_attention_loss_num_heads = config.guided_attention_loss_num_heads + self.reduction_factor = config.reduction_factor + + self.l1_criterion = L1Loss() + self.bce_criterion = BCEWithLogitsLoss(pos_weight=torch.tensor(5.0)) + + if self.use_guided_attention_loss: + self.attn_criterion = SpeechT5GuidedMultiheadAttentionLoss(config) + + def forward( + self, + attention_mask: torch.LongTensor, + outputs_before_postnet: torch.FloatTensor, + outputs_after_postnet: torch.FloatTensor, + logits: torch.FloatTensor, + labels: torch.FloatTensor, + cross_attentions: Optional[torch.FloatTensor] = None, + ) -> torch.Tensor: + padding_mask = labels != -100.0 + + # mask out the padded portions + labels = labels.masked_select(padding_mask) + outputs_before_postnet = outputs_before_postnet.masked_select(padding_mask) + outputs_after_postnet = outputs_after_postnet.masked_select(padding_mask) + + # spectrogram loss + l1_loss = self.l1_criterion(outputs_after_postnet, labels) + self.l1_criterion(outputs_before_postnet, labels) + + # construct stop labels from the padding mask + masks = padding_mask[:, :, 0] + stop_labels = torch.cat([~masks * 1.0, torch.ones(masks.size(0), 1).to(masks.device)], dim=1) + stop_labels = stop_labels[:, 1:].masked_select(masks) + logits = logits.masked_select(masks) + + # stop token loss + bce_loss = self.bce_criterion(logits, stop_labels) + + # combined loss + loss = l1_loss + bce_loss + + # guided attention loss + if self.use_guided_attention_loss: + attn = torch.cat([x[:, : self.guided_attention_loss_num_heads] for x in cross_attentions], dim=1) + input_masks = attention_mask == 1 + output_masks = padding_mask[:, :, 0] + if self.reduction_factor > 1: + output_masks = output_masks[:, self.reduction_factor - 1 :: self.reduction_factor] + attn_loss = self.attn_criterion(attn, input_masks, output_masks) + loss += attn_loss + + return loss + + +SPEECHT5_BASE_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`SpeechT5Config`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. + encoder ([`SpeechT5EncoderWithSpeechPrenet`] or [`SpeechT5EncoderWithTextPrenet`] or `None`): + The Transformer encoder module that applies the appropiate speech or text encoder prenet. If `None`, + [`SpeechT5EncoderWithoutPrenet`] will be used and the `input_values` are assumed to be hidden states. + decoder ([`SpeechT5DecoderWithSpeechPrenet`] or [`SpeechT5DecoderWithTextPrenet`] or `None`): + The Transformer decoder module that applies the appropiate speech or text decoder prenet. If `None`, + [`SpeechT5DecoderWithoutPrenet`] will be used and the `decoder_input_values` are assumed to be hidden + states. +""" + + +SPEECHT5_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`SpeechT5Config`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +SPEECHT5_INPUTS_DOCSTRING = r""" + Args: + attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, + 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + + + `attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask == + True`. For all models whose processor has `config.return_attention_mask == False`, `attention_mask` should + **not** be passed to avoid degraded performance when doing batched inference. For such models + `input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware that these + models also yield slightly different results depending on whether `input_values` is padded or not. + + + + decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_values`. Causal mask will + also be used by default. + + If you want to change padding behavior, you should read [`SpeechT5Decoder._prepare_decoder_attention_mask`] + and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more + information on the default strategy. + + head_mask (`torch.FloatTensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + decoder_head_mask (`torch.FloatTensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): + Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of + hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. + + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape + `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape + `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_values` (those + that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_values` of shape `(batch_size, sequence_length)`. decoder_inputs_embeds (`torch.FloatTensor` + of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing + `decoder_input_values` you can choose to directly pass an embedded representation. If `past_key_values` is + used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is + useful if you want more control over how to convert `decoder_input_values` indices into associated vectors + than the model's internal embedding lookup matrix. + + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare SpeechT5 Encoder-Decoder Model outputting raw hidden-states without any specific pre- or post-nets.", + SPEECHT5_BASE_START_DOCSTRING, +) +class SpeechT5Model(SpeechT5PreTrainedModel): + def __init__( + self, + config: SpeechT5Config, + encoder: Optional[nn.Module] = None, + decoder: Optional[nn.Module] = None, + ): + super().__init__(config) + self.config = config + self.encoder = SpeechT5EncoderWithoutPrenet(config) if encoder is None else encoder + self.decoder = SpeechT5DecoderWithoutPrenet(config) if decoder is None else decoder + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + if isinstance(self.encoder, SpeechT5EncoderWithTextPrenet): + return self.encoder.get_input_embeddings() + if isinstance(self.decoder, SpeechT5DecoderWithTextPrenet): + return self.decoder.get_input_embeddings() + return None + + def set_input_embeddings(self, value): + if isinstance(self.encoder, SpeechT5EncoderWithTextPrenet): + self.encoder.set_input_embeddings(value) + if isinstance(self.decoder, SpeechT5DecoderWithTextPrenet): + self.decoder.set_input_embeddings(value) + + def get_encoder(self): + return self.encoder + + def get_decoder(self): + return self.decoder + + def freeze_feature_encoder(self): + """ + Calling this function will disable the gradient computation for the feature encoder so that its parameter will + not be updated during training. + """ + if isinstance(self.encoder, SpeechT5EncoderWithSpeechPrenet): + self.encoder.prenet.freeze_feature_encoder() + + @add_start_docstrings_to_model_forward(SPEECHT5_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_values: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.LongTensor] = None, + decoder_input_values: Optional[torch.Tensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + decoder_head_mask: Optional[torch.FloatTensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + use_cache: Optional[bool] = None, + speaker_embeddings: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]: + r""" + input_values (`torch.Tensor` of shape `(batch_size, sequence_length)`): + Depending on which encoder is being used, the `input_values` are either: float values of the input raw + speech waveform, or indices of input sequence tokens in the vocabulary, or hidden states. + + decoder_input_values (`torch.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Depending on which decoder is being used, the `decoder_input_values` are either: float values of log-mel + filterbank features extracted from the raw speech waveform, or indices of decoder input sequence tokens in + the vocabulary, or hidden states. + + speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*): + Tensor containing the speaker embeddings. + + Returns: + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # Encode if needed (training, first prediction pass) + if encoder_outputs is None: + encoder_outputs = self.encoder( + input_values=input_values, + attention_mask=attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True + elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): + encoder_outputs = BaseModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + ) + + # downsample encoder attention mask (only for encoders with speech input) + if attention_mask is not None and isinstance(self.encoder, SpeechT5EncoderWithSpeechPrenet): + encoder_attention_mask = self.encoder.prenet._get_feature_vector_attention_mask( + encoder_outputs[0].shape[1], attention_mask + ) + else: + encoder_attention_mask = attention_mask + + if isinstance(self.decoder, SpeechT5DecoderWithSpeechPrenet): + decoder_args = {"speaker_embeddings": speaker_embeddings} + else: + decoder_args = {} + + decoder_outputs = self.decoder( + input_values=decoder_input_values, + attention_mask=decoder_attention_mask, + encoder_hidden_states=encoder_outputs[0], + encoder_attention_mask=encoder_attention_mask, + head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + **decoder_args, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return Seq2SeqModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + +@add_start_docstrings( + """SpeechT5 Model with a speech encoder and a text decoder.""", + SPEECHT5_START_DOCSTRING, +) +class SpeechT5ForSpeechToText(SpeechT5PreTrainedModel): + _tied_weights_keys = ["text_decoder_postnet.lm_head.weight"] + + def __init__(self, config: SpeechT5Config): + super().__init__(config) + + if config.vocab_size is None: + raise ValueError( + f"You are trying to instantiate {self.__class__} with a configuration that does not define the" + " vocabulary size of the language model head. Please instantiate the model as follows:" + " `SpeechT5ForSpeechToText.from_pretrained(..., vocab_size=vocab_size)`. or define `vocab_size` of" + " your model's configuration." + ) + + speech_encoder = SpeechT5EncoderWithSpeechPrenet(config) + text_decoder = SpeechT5DecoderWithTextPrenet(config) + self.speecht5 = SpeechT5Model(config, speech_encoder, text_decoder) + + self.text_decoder_postnet = SpeechT5TextDecoderPostnet(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_encoder(self): + return self.speecht5.get_encoder() + + def get_decoder(self): + return self.speecht5.get_decoder() + + def freeze_feature_encoder(self): + """ + Calling this function will disable the gradient computation for the feature encoder so that its parameter will + not be updated during training. + """ + self.get_encoder().prenet.freeze_feature_encoder() + + def get_output_embeddings(self): + return self.text_decoder_postnet.get_output_embeddings() + + def set_output_embeddings(self, new_embeddings): + self.text_decoder_postnet.set_output_embeddings(new_embeddings) + + @add_start_docstrings_to_model_forward(SPEECHT5_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_values: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.LongTensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + decoder_head_mask: Optional[torch.FloatTensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: Optional[torch.LongTensor] = None, + ) -> Union[Tuple, Seq2SeqLMOutput]: + r""" + input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): + Float values of input raw speech waveform. Values can be obtained by loading a *.flac* or *.wav* audio file + into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (*pip install + soundfile*). To prepare the array into `input_values`, the [`SpeechT5Processor`] should be used for padding + and conversion into a tensor of type `torch.FloatTensor`. See [`SpeechT5Processor.__call__`] for details. + + decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`SpeechT5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + SpeechT5 uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If + `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` + or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is + only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Label indices can be obtained using [`SpeechT5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + Returns: + + Example: + + ```python + >>> from transformers import SpeechT5Processor, SpeechT5ForSpeechToText + >>> from datasets import load_dataset + + >>> dataset = load_dataset( + ... "hf-internal-testing/librispeech_asr_demo", "clean", split="validation" + ... ) # doctest: +IGNORE_RESULT + >>> dataset = dataset.sort("id") + >>> sampling_rate = dataset.features["audio"].sampling_rate + + >>> processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_asr") + >>> model = SpeechT5ForSpeechToText.from_pretrained("microsoft/speecht5_asr") + + >>> # audio file is decoded on the fly + >>> inputs = processor(audio=dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt") + >>> predicted_ids = model.generate(**inputs, max_length=100) + + >>> # transcribe speech + >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) + >>> transcription[0] + 'mister quilter is the apostle of the middle classes and we are glad to welcome his gospel' + ``` + + ```python + >>> inputs["labels"] = processor(text_target=dataset[0]["text"], return_tensors="pt").input_ids + + >>> # compute loss + >>> loss = model(**inputs).loss + >>> round(loss.item(), 2) + 19.68 + ``` + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if labels is not None: + if decoder_input_ids is None: + decoder_input_ids = shift_tokens_right( + labels, self.config.pad_token_id, self.config.decoder_start_token_id + ) + + outputs = self.speecht5( + input_values=input_values, + attention_mask=attention_mask, + decoder_input_values=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + encoder_outputs=encoder_outputs, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=True, + ) + + logits = self.text_decoder_postnet(outputs[0]) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return Seq2SeqLMOutput( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + def prepare_inputs_for_generation( + self, + decoder_input_ids, + past_key_values=None, + attention_mask=None, + head_mask=None, + decoder_head_mask=None, + cross_attn_head_mask=None, + use_cache=None, + encoder_outputs=None, + **kwargs, + ): + # cut decoder_input_ids if past is used + if past_key_values is not None: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if decoder_input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = decoder_input_ids.shape[1] - 1 + + decoder_input_ids = decoder_input_ids[:, remove_prefix_length:] + + return { + "encoder_outputs": encoder_outputs, + "past_key_values": past_key_values, + "decoder_input_ids": decoder_input_ids, + "attention_mask": attention_mask, + "head_mask": head_mask, + "decoder_head_mask": decoder_head_mask, + "cross_attn_head_mask": cross_attn_head_mask, + "use_cache": use_cache, # change this to avoid caching (presumably for debugging) + } + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past + + +def _generate_speech( + model: SpeechT5PreTrainedModel, + input_values: torch.FloatTensor, + speaker_embeddings: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.LongTensor] = None, + threshold: float = 0.5, + minlenratio: float = 0.0, + maxlenratio: float = 20.0, + vocoder: Optional[nn.Module] = None, + output_cross_attentions: bool = False, + return_output_lengths: bool = False, +) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, torch.FloatTensor]]: + if speaker_embeddings is None: + raise ValueError( + """`speaker_embeddings` must be specified. For example, you can use a speaker embeddings by following + the code snippet provided in this link: + https://huggingface.co/datasets/Matthijs/cmu-arctic-xvectors + """ + ) + + if attention_mask is None: + encoder_attention_mask = 1 - (input_values == model.config.pad_token_id).int() + else: + encoder_attention_mask = attention_mask + + bsz = input_values.size(0) + + encoder_out = model.speecht5.encoder( + input_values=input_values, + attention_mask=encoder_attention_mask, + return_dict=True, + ) + + encoder_last_hidden_state = encoder_out.last_hidden_state + + # downsample encoder attention mask + if isinstance(model.speecht5.encoder, SpeechT5EncoderWithSpeechPrenet): + encoder_attention_mask = model.speecht5.encoder.prenet._get_feature_vector_attention_mask( + encoder_out[0].shape[1], encoder_attention_mask + ) + + maxlen = int(encoder_last_hidden_state.size(1) * maxlenratio / model.config.reduction_factor) + minlen = int(encoder_last_hidden_state.size(1) * minlenratio / model.config.reduction_factor) + + # Start the output sequence with a mel spectrum that is all zeros. + output_sequence = encoder_last_hidden_state.new_zeros(bsz, 1, model.config.num_mel_bins) + + spectrogram = [] + cross_attentions = [] + past_key_values = None + idx = 0 + result_spectrogram = {} + + while True: + idx += 1 + + # Run the decoder prenet on the entire output sequence. + decoder_hidden_states = model.speecht5.decoder.prenet(output_sequence, speaker_embeddings) + # Run the decoder layers on the last element of the prenet output. + decoder_out = model.speecht5.decoder.wrapped_decoder( + hidden_states=decoder_hidden_states[:, -1:], + attention_mask=None, + encoder_hidden_states=encoder_last_hidden_state, + encoder_attention_mask=encoder_attention_mask, + past_key_values=past_key_values, + use_cache=True, + output_attentions=output_cross_attentions, + return_dict=True, + ) + + if output_cross_attentions: + cross_attentions.append(torch.cat(decoder_out.cross_attentions, dim=0)) + + last_decoder_output = decoder_out.last_hidden_state.squeeze(1) + past_key_values = decoder_out.past_key_values + + # Predict the new mel spectrum for this step in the sequence. + spectrum = model.speech_decoder_postnet.feat_out(last_decoder_output) + spectrum = spectrum.view(bsz, model.config.reduction_factor, model.config.num_mel_bins) + spectrogram.append(spectrum) + + # Extend the output sequence with the new mel spectrum. + new_spectrogram = spectrum[:, -1, :].view(bsz, 1, model.config.num_mel_bins) + output_sequence = torch.cat((output_sequence, new_spectrogram), dim=1) + # Predict the probability that this is the stop token. + prob = torch.sigmoid(model.speech_decoder_postnet.prob_out(last_decoder_output)) + + if idx < minlen: + continue + else: + # If the generation loop is less than maximum length time, check the ones in the batch that have met + # the prob threshold. Otherwise, assume all have met thresholds and fill other spectrograms for the batch. + if idx < maxlen: + meet_thresholds = torch.sum(prob, dim=-1) >= threshold + meet_indexes = torch.where(meet_thresholds)[0].tolist() + else: + meet_indexes = range(len(prob)) + meet_indexes = [i for i in meet_indexes if i not in result_spectrogram] + if len(meet_indexes) > 0: + spectrograms = torch.stack(spectrogram) + spectrograms = spectrograms.transpose(0, 1).flatten(1, 2) + spectrograms = model.speech_decoder_postnet.postnet(spectrograms) + for meet_index in meet_indexes: + result_spectrogram[meet_index] = spectrograms[meet_index] + if len(result_spectrogram) >= bsz: + break + spectrograms = [result_spectrogram[i] for i in range(len(result_spectrogram))] + if not return_output_lengths: + spectrogram = spectrograms[0] if bsz == 1 else torch.nn.utils.rnn.pad_sequence(spectrograms, batch_first=True) + if vocoder is not None: + outputs = vocoder(spectrogram) + else: + outputs = spectrogram + if output_cross_attentions: + cross_attentions = torch.cat(cross_attentions, dim=2) + if bsz > 1: + cross_attentions = cross_attentions.view( + bsz, int(cross_attentions.size(0) / bsz), *cross_attentions.size()[-3:] + ) + outputs = (outputs, cross_attentions) + else: + # batched return values should also include the spectrogram/waveform lengths + spectrogram_lengths = [] + for i in range(bsz): + spectrogram_lengths.append(spectrograms[i].size(0)) + if vocoder is None: + spectrograms = torch.nn.utils.rnn.pad_sequence(spectrograms, batch_first=True) + outputs = (spectrograms, spectrogram_lengths) + else: + waveforms = [] + spectrograms = torch.nn.utils.rnn.pad_sequence(spectrograms, batch_first=True) + waveforms = vocoder(spectrograms) + waveform_lengths = [int(waveforms.size(1) / max(spectrogram_lengths)) * i for i in spectrogram_lengths] + outputs = (waveforms, waveform_lengths) + if output_cross_attentions: + cross_attentions = torch.cat(cross_attentions, dim=2) + cross_attentions = cross_attentions.view( + bsz, int(cross_attentions.size(0) / bsz), *cross_attentions.size()[-3:] + ) + outputs = (*outputs, cross_attentions) + return outputs + + +@add_start_docstrings( + """SpeechT5 Model with a text encoder and a speech decoder.""", + SPEECHT5_START_DOCSTRING, +) +class SpeechT5ForTextToSpeech(SpeechT5PreTrainedModel): + main_input_name = "input_ids" + + def __init__(self, config: SpeechT5Config): + super().__init__(config) + + if config.vocab_size is None: + raise ValueError( + f"You are trying to instantiate {self.__class__} with a configuration that does not define the" + " vocabulary size of the language model head. Please instantiate the model as follows:" + " `SpeechT5ForTextToSpeech.from_pretrained(..., vocab_size=vocab_size)`. or define `vocab_size` of" + " your model's configuration." + ) + + text_encoder = SpeechT5EncoderWithTextPrenet(config) + speech_decoder = SpeechT5DecoderWithSpeechPrenet(config) + self.speecht5 = SpeechT5Model(config, text_encoder, speech_decoder) + + self.speech_decoder_postnet = SpeechT5SpeechDecoderPostnet(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_encoder(self): + return self.speecht5.get_encoder() + + def get_decoder(self): + return self.speecht5.get_decoder() + + @add_start_docstrings_to_model_forward(SPEECHT5_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqSpectrogramOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.LongTensor] = None, + decoder_input_values: Optional[torch.FloatTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + decoder_head_mask: Optional[torch.FloatTensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + speaker_embeddings: Optional[torch.FloatTensor] = None, + labels: Optional[torch.FloatTensor] = None, + stop_labels: Optional[torch.Tensor] = None, + ) -> Union[Tuple, Seq2SeqSpectrogramOutput]: + r""" + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`SpeechT5Tokenizer`]. See [`~PreTrainedTokenizer.encode`] and + [`~PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + decoder_input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_mel_bins)`): + Float values of input mel spectrogram. + + SpeechT5 uses an all-zero spectrum as the starting token for `decoder_input_values` generation. If + `past_key_values` is used, optionally only the last `decoder_input_values` have to be input (see + `past_key_values`). + speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*): + Tensor containing the speaker embeddings. + labels (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_mel_bins)`, *optional*): + Float values of target mel spectrogram. Timesteps set to `-100.0` are ignored (masked) for the loss + computation. Spectrograms can be obtained using [`SpeechT5Processor`]. See [`SpeechT5Processor.__call__`] + for details. + + Returns: + + Example: + + ```python + >>> from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, set_seed + >>> import torch + + >>> processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") + >>> model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") + >>> vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") + + >>> inputs = processor(text="Hello, my dog is cute", return_tensors="pt") + >>> speaker_embeddings = torch.zeros((1, 512)) # or load xvectors from a file + + >>> set_seed(555) # make deterministic + + >>> # generate speech + >>> speech = model.generate(inputs["input_ids"], speaker_embeddings=speaker_embeddings, vocoder=vocoder) + >>> speech.shape + torch.Size([15872]) + ``` + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if labels is not None: + if decoder_input_values is None: + decoder_input_values = shift_spectrograms_right(labels, self.config.reduction_factor) + if self.config.use_guided_attention_loss: + output_attentions = True + + outputs = self.speecht5( + input_values=input_ids, + attention_mask=attention_mask, + decoder_input_values=decoder_input_values, + decoder_attention_mask=decoder_attention_mask, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + encoder_outputs=encoder_outputs, + past_key_values=past_key_values, + use_cache=use_cache, + speaker_embeddings=speaker_embeddings, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=True, + ) + + outputs_before_postnet, outputs_after_postnet, logits = self.speech_decoder_postnet(outputs[0]) + + loss = None + if labels is not None: + criterion = SpeechT5SpectrogramLoss(self.config) + loss = criterion( + attention_mask, + outputs_before_postnet, + outputs_after_postnet, + logits, + labels, + outputs.cross_attentions, + ) + + if not return_dict: + output = (outputs_after_postnet,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return Seq2SeqSpectrogramOutput( + loss=loss, + spectrogram=outputs_after_postnet, + past_key_values=outputs.past_key_values, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + @torch.no_grad() + def generate( + self, + input_ids: torch.LongTensor, + attention_mask: Optional[torch.LongTensor] = None, + speaker_embeddings: Optional[torch.FloatTensor] = None, + threshold: float = 0.5, + minlenratio: float = 0.0, + maxlenratio: float = 20.0, + vocoder: Optional[nn.Module] = None, + output_cross_attentions: bool = False, + return_output_lengths: bool = False, + **kwargs, + ) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, torch.FloatTensor]]: + r""" + Converts a sequence of input tokens into a sequence of mel spectrograms, which are subsequently turned into a + speech waveform using a vocoder. + + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`SpeechT5Tokenizer`]. See [`~PreTrainedTokenizer.encode`] and + [`~PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Attention mask from the tokenizer, required for batched inference to signal to the model where to + ignore padded tokens from the input_ids. + speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*): + Tensor containing the speaker embeddings. + threshold (`float`, *optional*, defaults to 0.5): + The generated sequence ends when the predicted stop token probability exceeds this value. + minlenratio (`float`, *optional*, defaults to 0.0): + Used to calculate the minimum required length for the output sequence. + maxlenratio (`float`, *optional*, defaults to 20.0): + Used to calculate the maximum allowed length for the output sequence. + vocoder (`nn.Module`, *optional*): + The vocoder that converts the mel spectrogram into a speech waveform. If `None`, the output is the mel + spectrogram. + output_cross_attentions (`bool`, *optional*, defaults to `False`): + Whether or not to return the attentions tensors of the decoder's cross-attention layers. + return_output_lengths (`bool`, *optional*, defaults to `False`): + Whether or not to return the concrete spectrogram/waveform lengths. + + Returns: + `tuple(torch.FloatTensor)` comprising various elements depending on the inputs: + - when `return_output_lengths` is False + - **spectrogram** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape + `(output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrogram. + - **waveform** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape + `(num_frames,)` -- The predicted speech waveform. + - **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`) + `torch.FloatTensor` of shape `(config.decoder_layers, config.decoder_attention_heads, + output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers. + - when `return_output_lengths` is True + - **spectrograms** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape + `(batch_size, output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrograms that + are padded to the maximum length. + - **spectrogram_lengths** (*optional*, returned when no `vocoder` is provided) `List[Int]` -- A list of + all the concrete lengths for each spectrogram. + - **waveforms** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape + `(batch_size, num_frames)` -- The predicted speech waveforms that are padded to the maximum length. + - **waveform_lengths** (*optional*, returned when a `vocoder` is provided) `List[Int]` -- A list of all + the concrete lengths for each waveform. + - **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`) + `torch.FloatTensor` of shape `(batch_size, config.decoder_layers, config.decoder_attention_heads, + output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers. + """ + if speaker_embeddings is not None: + batch_size = input_ids.size(0) + if speaker_embeddings.size(0) != batch_size: + if speaker_embeddings.size(0) == 1: + speaker_embeddings = speaker_embeddings.repeat(batch_size, 1) + else: + raise ValueError( + "The first dimension of speaker_embeddings must be either 1 or the same as batch_size." + ) + + return _generate_speech( + self, + input_ids, + speaker_embeddings, + attention_mask, + threshold, + minlenratio, + maxlenratio, + vocoder, + output_cross_attentions, + return_output_lengths, + ) + + @torch.no_grad() + def generate_speech( + self, + input_ids: torch.LongTensor, + speaker_embeddings: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.LongTensor] = None, + threshold: float = 0.5, + minlenratio: float = 0.0, + maxlenratio: float = 20.0, + vocoder: Optional[nn.Module] = None, + output_cross_attentions: bool = False, + return_output_lengths: bool = False, + ) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, torch.FloatTensor]]: + r""" + Converts a sequence of input tokens into a sequence of mel spectrograms, which are subsequently turned into a + speech waveform using a vocoder. + + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`SpeechT5Tokenizer`]. See [`~PreTrainedTokenizer.encode`] and + [`~PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*): + Tensor containing the speaker embeddings. + attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing convolution and attention on padding token indices. Mask values selected in + `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + threshold (`float`, *optional*, defaults to 0.5): + The generated sequence ends when the predicted stop token probability exceeds this value. + minlenratio (`float`, *optional*, defaults to 0.0): + Used to calculate the minimum required length for the output sequence. + maxlenratio (`float`, *optional*, defaults to 20.0): + Used to calculate the maximum allowed length for the output sequence. + vocoder (`nn.Module`, *optional*, defaults to `None`): + The vocoder that converts the mel spectrogram into a speech waveform. If `None`, the output is the mel + spectrogram. + output_cross_attentions (`bool`, *optional*, defaults to `False`): + Whether or not to return the attentions tensors of the decoder's cross-attention layers. + return_output_lengths (`bool`, *optional*, defaults to `False`): + Whether or not to return the concrete spectrogram/waveform lengths. + + Returns: + `tuple(torch.FloatTensor)` comprising various elements depending on the inputs: + - when `return_output_lengths` is False + - **spectrogram** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape + `(output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrogram. + - **waveform** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape + `(num_frames,)` -- The predicted speech waveform. + - **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`) + `torch.FloatTensor` of shape `(config.decoder_layers, config.decoder_attention_heads, + output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers. + - when `return_output_lengths` is True + - **spectrograms** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape + `(batch_size, output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrograms that + are padded to the maximum length. + - **spectrogram_lengths** (*optional*, returned when no `vocoder` is provided) `List[Int]` -- A list of + all the concrete lengths for each spectrogram. + - **waveforms** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape + `(batch_size, num_frames)` -- The predicted speech waveforms that are padded to the maximum length. + - **waveform_lengths** (*optional*, returned when a `vocoder` is provided) `List[Int]` -- A list of all + the concrete lengths for each waveform. + - **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`) + `torch.FloatTensor` of shape `(batch_size, config.decoder_layers, config.decoder_attention_heads, + output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers. + """ + if speaker_embeddings is not None: + batch_size = input_ids.size(0) + if speaker_embeddings.size(0) != batch_size: + if speaker_embeddings.size(0) == 1: + speaker_embeddings = speaker_embeddings.repeat(batch_size, 1) + else: + raise ValueError( + "The first dimension of speaker_embeddings must be either 1 or the same as batch size." + ) + + return _generate_speech( + self, + input_ids, + speaker_embeddings, + attention_mask, + threshold, + minlenratio, + maxlenratio, + vocoder, + output_cross_attentions, + return_output_lengths, + ) + + +@add_start_docstrings( + """SpeechT5 Model with a speech encoder and a speech decoder.""", + SPEECHT5_START_DOCSTRING, +) +class SpeechT5ForSpeechToSpeech(SpeechT5PreTrainedModel): + def __init__(self, config: SpeechT5Config): + super().__init__(config) + + speech_encoder = SpeechT5EncoderWithSpeechPrenet(config) + speech_decoder = SpeechT5DecoderWithSpeechPrenet(config) + self.speecht5 = SpeechT5Model(config, speech_encoder, speech_decoder) + + self.speech_decoder_postnet = SpeechT5SpeechDecoderPostnet(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_encoder(self): + return self.speecht5.get_encoder() + + def get_decoder(self): + return self.speecht5.get_decoder() + + def freeze_feature_encoder(self): + """ + Calling this function will disable the gradient computation for the feature encoder so that its parameter will + not be updated during training. + """ + self.get_encoder().prenet.freeze_feature_encoder() + + @add_start_docstrings_to_model_forward(SPEECHT5_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqSpectrogramOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_values: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.LongTensor] = None, + decoder_input_values: Optional[torch.FloatTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + decoder_head_mask: Optional[torch.FloatTensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + speaker_embeddings: Optional[torch.FloatTensor] = None, + labels: Optional[torch.FloatTensor] = None, + stop_labels: Optional[torch.Tensor] = None, + ) -> Union[Tuple, Seq2SeqSpectrogramOutput]: + r""" + input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): + Float values of input raw speech waveform. Values can be obtained by loading a *.flac* or *.wav* audio file + into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (*pip install + soundfile*). To prepare the array into `input_values`, the [`SpeechT5Processor`] should be used for padding + and conversion into a tensor of type `torch.FloatTensor`. See [`SpeechT5Processor.__call__`] for details. + decoder_input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_mel_bins)`): + Float values of input mel spectrogram. + + SpeechT5 uses an all-zero spectrum as the starting token for `decoder_input_values` generation. If + `past_key_values` is used, optionally only the last `decoder_input_values` have to be input (see + `past_key_values`). + speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*): + Tensor containing the speaker embeddings. + labels (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_mel_bins)`, *optional*): + Float values of target mel spectrogram. Spectrograms can be obtained using [`SpeechT5Processor`]. See + [`SpeechT5Processor.__call__`] for details. + + Returns: + + Example: + + ```python + >>> from transformers import SpeechT5Processor, SpeechT5ForSpeechToSpeech, SpeechT5HifiGan, set_seed + >>> from datasets import load_dataset + >>> import torch + + >>> dataset = load_dataset( + ... "hf-internal-testing/librispeech_asr_demo", "clean", split="validation" + ... ) # doctest: +IGNORE_RESULT + >>> dataset = dataset.sort("id") + >>> sampling_rate = dataset.features["audio"].sampling_rate + + >>> processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_vc") + >>> model = SpeechT5ForSpeechToSpeech.from_pretrained("microsoft/speecht5_vc") + >>> vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") + + >>> # audio file is decoded on the fly + >>> inputs = processor(audio=dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt") + + >>> speaker_embeddings = torch.zeros((1, 512)) # or load xvectors from a file + + >>> set_seed(555) # make deterministic + + >>> # generate speech + >>> speech = model.generate_speech(inputs["input_values"], speaker_embeddings, vocoder=vocoder) + >>> speech.shape + torch.Size([77824]) + ``` + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if labels is not None: + if decoder_input_values is None: + decoder_input_values = shift_spectrograms_right(labels, self.config.reduction_factor) + + outputs = self.speecht5( + input_values=input_values, + attention_mask=attention_mask, + decoder_input_values=decoder_input_values, + decoder_attention_mask=decoder_attention_mask, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + encoder_outputs=encoder_outputs, + past_key_values=past_key_values, + use_cache=use_cache, + speaker_embeddings=speaker_embeddings, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=True, + ) + + _, spectrogram, logits = self.speech_decoder_postnet(outputs[0]) + + loss = None + + if not return_dict: + output = (spectrogram,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return Seq2SeqSpectrogramOutput( + loss=loss, + spectrogram=spectrogram, + past_key_values=outputs.past_key_values, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + @torch.no_grad() + def generate_speech( + self, + input_values: torch.FloatTensor, + speaker_embeddings: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.LongTensor] = None, + threshold: float = 0.5, + minlenratio: float = 0.0, + maxlenratio: float = 20.0, + vocoder: Optional[nn.Module] = None, + output_cross_attentions: bool = False, + return_output_lengths: bool = False, + ) -> torch.FloatTensor: + r""" + Converts a raw speech waveform into a sequence of mel spectrograms, which are subsequently turned back into a + speech waveform using a vocoder. + + Args: + input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): + Float values of input raw speech waveform. + + Values can be obtained by loading a *.flac* or *.wav* audio file into an array of type `List[float]` or + a `numpy.ndarray`, *e.g.* via the soundfile library (*pip install soundfile*). To prepare the array + into `input_values`, the [`SpeechT5Processor`] should be used for padding and conversion into a tensor + of type `torch.FloatTensor`. See [`SpeechT5Processor.__call__`] for details. + speaker_embeddings (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_dim)`, *optional*): + Tensor containing the speaker embeddings. + attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing convolution and attention on padding token indices. Mask values selected in + `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + threshold (`float`, *optional*, defaults to 0.5): + The generated sequence ends when the predicted stop token probability exceeds this value. + minlenratio (`float`, *optional*, defaults to 0.0): + Used to calculate the minimum required length for the output sequence. + maxlenratio (`float`, *optional*, defaults to 20.0): + Used to calculate the maximum allowed length for the output sequence. + vocoder (`nn.Module`, *optional*, defaults to `None`): + The vocoder that converts the mel spectrogram into a speech waveform. If `None`, the output is the mel + spectrogram. + output_cross_attentions (`bool`, *optional*, defaults to `False`): + Whether or not to return the attentions tensors of the decoder's cross-attention layers. + return_output_lengths (`bool`, *optional*, defaults to `False`): + Whether or not to return the concrete spectrogram/waveform lengths. + + Returns: + `tuple(torch.FloatTensor)` comprising various elements depending on the inputs: + - when `return_output_lengths` is False + - **spectrogram** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape + `(output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrogram. + - **waveform** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape + `(num_frames,)` -- The predicted speech waveform. + - **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`) + `torch.FloatTensor` of shape `(config.decoder_layers, config.decoder_attention_heads, + output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers. + - when `return_output_lengths` is True + - **spectrograms** (*optional*, returned when no `vocoder` is provided) `torch.FloatTensor` of shape + `(batch_size, output_sequence_length, config.num_mel_bins)` -- The predicted log-mel spectrograms that + are padded to the maximum length. + - **spectrogram_lengths** (*optional*, returned when no `vocoder` is provided) `List[Int]` -- A list of + all the concrete lengths for each spectrogram. + - **waveforms** (*optional*, returned when a `vocoder` is provided) `torch.FloatTensor` of shape + `(batch_size, num_frames)` -- The predicted speech waveforms that are padded to the maximum length. + - **waveform_lengths** (*optional*, returned when a `vocoder` is provided) `List[Int]` -- A list of all + the concrete lengths for each waveform. + - **cross_attentions** (*optional*, returned when `output_cross_attentions` is `True`) + `torch.FloatTensor` of shape `(batch_size, config.decoder_layers, config.decoder_attention_heads, + output_sequence_length, input_sequence_length)` -- The outputs of the decoder's cross-attention layers. + """ + if speaker_embeddings is None: + speaker_embeddings = torch.zeros((1, 512), device=input_values.device) + + return _generate_speech( + self, + input_values, + speaker_embeddings, + attention_mask, + threshold, + minlenratio, + maxlenratio, + vocoder, + output_cross_attentions, + return_output_lengths, + ) + + +HIFIGAN_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`SpeechT5HifiGanConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +class HifiGanResidualBlock(nn.Module): + def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), leaky_relu_slope=0.1): + super().__init__() + self.leaky_relu_slope = leaky_relu_slope + + self.convs1 = nn.ModuleList( + [ + nn.Conv1d( + channels, + channels, + kernel_size, + stride=1, + dilation=dilation[i], + padding=self.get_padding(kernel_size, dilation[i]), + ) + for i in range(len(dilation)) + ] + ) + self.convs2 = nn.ModuleList( + [ + nn.Conv1d( + channels, + channels, + kernel_size, + stride=1, + dilation=1, + padding=self.get_padding(kernel_size, 1), + ) + for _ in range(len(dilation)) + ] + ) + + def get_padding(self, kernel_size, dilation=1): + return (kernel_size * dilation - dilation) // 2 + + def apply_weight_norm(self): + for layer in self.convs1: + nn.utils.weight_norm(layer) + for layer in self.convs2: + nn.utils.weight_norm(layer) + + def remove_weight_norm(self): + for layer in self.convs1: + nn.utils.remove_weight_norm(layer) + for layer in self.convs2: + nn.utils.remove_weight_norm(layer) + + def forward(self, hidden_states): + for conv1, conv2 in zip(self.convs1, self.convs2): + residual = hidden_states + hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope) + hidden_states = conv1(hidden_states) + hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope) + hidden_states = conv2(hidden_states) + hidden_states = hidden_states + residual + return hidden_states + + +@add_start_docstrings( + """HiFi-GAN vocoder.""", + HIFIGAN_START_DOCSTRING, +) +class SpeechT5HifiGan(PreTrainedModel): + config_class = SpeechT5HifiGanConfig + main_input_name = "spectrogram" + + def __init__(self, config: SpeechT5HifiGanConfig): + super().__init__(config) + self.num_kernels = len(config.resblock_kernel_sizes) + self.num_upsamples = len(config.upsample_rates) + self.conv_pre = nn.Conv1d( + config.model_in_dim, + config.upsample_initial_channel, + kernel_size=7, + stride=1, + padding=3, + ) + + self.upsampler = nn.ModuleList() + for i, (upsample_rate, kernel_size) in enumerate(zip(config.upsample_rates, config.upsample_kernel_sizes)): + self.upsampler.append( + nn.ConvTranspose1d( + config.upsample_initial_channel // (2**i), + config.upsample_initial_channel // (2 ** (i + 1)), + kernel_size=kernel_size, + stride=upsample_rate, + padding=(kernel_size - upsample_rate) // 2, + ) + ) + + self.resblocks = nn.ModuleList() + for i in range(len(self.upsampler)): + channels = config.upsample_initial_channel // (2 ** (i + 1)) + for kernel_size, dilation in zip(config.resblock_kernel_sizes, config.resblock_dilation_sizes): + self.resblocks.append(HifiGanResidualBlock(channels, kernel_size, dilation, config.leaky_relu_slope)) + + self.conv_post = nn.Conv1d(channels, 1, kernel_size=7, stride=1, padding=3) + + self.register_buffer("mean", torch.zeros(config.model_in_dim)) + self.register_buffer("scale", torch.ones(config.model_in_dim)) + + # Initialize weights and apply final processing + self.post_init() + + def _init_weights(self, module): + """Initialize the weights.""" + if isinstance(module, (nn.Linear, nn.Conv1d)): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + + def apply_weight_norm(self): + nn.utils.weight_norm(self.conv_pre) + for layer in self.upsampler: + nn.utils.weight_norm(layer) + for layer in self.resblocks: + layer.apply_weight_norm() + nn.utils.weight_norm(self.conv_post) + + def remove_weight_norm(self): + nn.utils.remove_weight_norm(self.conv_pre) + for layer in self.upsampler: + nn.utils.remove_weight_norm(layer) + for layer in self.resblocks: + layer.remove_weight_norm() + nn.utils.remove_weight_norm(self.conv_post) + + def forward(self, spectrogram: torch.FloatTensor) -> torch.FloatTensor: + r""" + Converts a log-mel spectrogram into a speech waveform. Passing a batch of log-mel spectrograms returns a batch + of speech waveforms. Passing a single, un-batched log-mel spectrogram returns a single, un-batched speech + waveform. + + Args: + spectrogram (`torch.FloatTensor`): + Tensor containing the log-mel spectrograms. Can be batched and of shape `(batch_size, sequence_length, + config.model_in_dim)`, or un-batched and of shape `(sequence_length, config.model_in_dim)`. + + Returns: + `torch.FloatTensor`: Tensor containing the speech waveform. If the input spectrogram is batched, will be of + shape `(batch_size, num_frames,)`. If un-batched, will be of shape `(num_frames,)`. + """ + if self.config.normalize_before: + spectrogram = (spectrogram - self.mean) / self.scale + + is_batched = spectrogram.dim() == 3 + if not is_batched: + spectrogram = spectrogram.unsqueeze(0) + + hidden_states = spectrogram.transpose(2, 1) + + hidden_states = self.conv_pre(hidden_states) + for i in range(self.num_upsamples): + hidden_states = nn.functional.leaky_relu(hidden_states, self.config.leaky_relu_slope) + hidden_states = self.upsampler[i](hidden_states) + + res_state = self.resblocks[i * self.num_kernels](hidden_states) + for j in range(1, self.num_kernels): + res_state += self.resblocks[i * self.num_kernels + j](hidden_states) + hidden_states = res_state / self.num_kernels + + hidden_states = nn.functional.leaky_relu(hidden_states) + hidden_states = self.conv_post(hidden_states) + hidden_states = torch.tanh(hidden_states) + + if not is_batched: + # remove batch dim and collapse tensor to 1-d audio waveform + waveform = hidden_states.squeeze(0).transpose(1, 0).view(-1) + else: + # remove seq-len dim since this collapses to 1 + waveform = hidden_states.squeeze(1) + + return waveform diff --git a/venv/lib/python3.10/site-packages/transformers/models/speecht5/number_normalizer.py b/venv/lib/python3.10/site-packages/transformers/models/speecht5/number_normalizer.py new file mode 100644 index 0000000000000000000000000000000000000000..eb3314c24f24c1f8b9bc760c4ece69e0a2819888 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/speecht5/number_normalizer.py @@ -0,0 +1,192 @@ +# coding=utf-8 +# Copyright 2023 The Fairseq Authors, Microsoft Research, and the HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Number Normalizer class for SpeechT5.""" + +import re + + +class EnglishNumberNormalizer: + def __init__(self): + self.ones = ["", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"] + self.teens = [ + "", + "eleven", + "twelve", + "thirteen", + "fourteen", + "fifteen", + "sixteen", + "seventeen", + "eighteen", + "nineteen", + ] + self.tens = ["", "ten", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"] + self.thousands = [ + "", + "thousand", + "million", + "billion", + "trillion", + "quadrillion", + "quintillion", + "sextillion", + "septillion", + "octillion", + "nonillion", + "decillion", + ] + + # Define a dictionary to map currency symbols to their names + # Top most traded currencies according to + # https://en.wikipedia.org/wiki/Template:Most_traded_currencies + self.currency_symbols = { + "$": " dollars", + "€": " euros", + "£": " pounds", + "¢": " cents", + "¥": " japanese yen", + "﷼": " saudi riyal", + "₹": " indian rupees", + "₽": " russian rubles", + "฿": " thai baht", + "₺": " turkish liras", + "₴": " ukrainian hryvnia", + "₣": " swiss francs", + "₡": " costa rican colon", + "₱": " philippine peso", + "₪": " israeli shekels", + "₮": " mongolian tögrög", + "₩": " south korean won", + "₦": " nigerian naira", + "₫": " vietnamese Đồng", + } + + def spell_number(self, num): + if num == 0: + return "zero" + + parts = [] + for i in range(0, len(self.thousands)): + if num % 1000 != 0: + part = "" + hundreds = num % 1000 // 100 + tens_units = num % 100 + + if hundreds > 0: + part += self.ones[hundreds] + " hundred" + if tens_units > 0: + part += " and " + + if tens_units > 10 and tens_units < 20: + part += self.teens[tens_units - 10] + else: + tens_digit = self.tens[tens_units // 10] + ones_digit = self.ones[tens_units % 10] + if tens_digit: + part += tens_digit + if ones_digit: + if tens_digit: + part += " " + part += ones_digit + + parts.append(part) + + num //= 1000 + + return " ".join(reversed(parts)) + + def convert(self, number): + """ + Converts an individual number passed in string form to spelt-out form + """ + if "." in number: + integer_part, decimal_part = number.split(".") + else: + integer_part, decimal_part = number, "00" + + # Extract currency symbol if present + currency_symbol = "" + for symbol, name in self.currency_symbols.items(): + if integer_part.startswith(symbol): + currency_symbol = name + integer_part = integer_part[len(symbol) :] + break + + if integer_part.startswith("-"): + if integer_part[1:].startswith(symbol): + currency_symbol = name + integer_part = "-" + integer_part[len(symbol) + 1 :] + break + + # Extract 'minus' prefix for negative numbers + minus_prefix = "" + if integer_part.startswith("-"): + minus_prefix = "minus " + integer_part = integer_part[1:] + elif integer_part.startswith("minus"): + minus_prefix = "minus " + integer_part = integer_part[len("minus") :] + + percent_suffix = "" + if "%" in integer_part or "%" in decimal_part: + percent_suffix = " percent" + integer_part = integer_part.replace("%", "") + decimal_part = decimal_part.replace("%", "") + + integer_part = integer_part.zfill(3 * ((len(integer_part) - 1) // 3 + 1)) + + parts = [] + for i in range(0, len(integer_part), 3): + chunk = int(integer_part[i : i + 3]) + if chunk > 0: + part = self.spell_number(chunk) + unit = self.thousands[len(integer_part[i:]) // 3 - 1] + if unit: + part += " " + unit + parts.append(part) + + spelled_integer = " ".join(parts) + + # Format the spelt-out number based on conditions, such as: + # If it has decimal parts, currency symbol, minus prefix, etc + if decimal_part == "00": + return ( + f"{minus_prefix}{spelled_integer}{percent_suffix}{currency_symbol}" + if minus_prefix or currency_symbol + else f"{spelled_integer}{percent_suffix}" + ) + else: + spelled_decimal = " ".join([self.spell_number(int(digit)) for digit in decimal_part]) + return ( + f"{minus_prefix}{spelled_integer} point {spelled_decimal}{percent_suffix}{currency_symbol}" + if minus_prefix or currency_symbol + else f"{minus_prefix}{spelled_integer} point {spelled_decimal}{percent_suffix}" + ) + + def __call__(self, text): + """ + Convert numbers / number-like quantities in a string to their spelt-out counterparts + """ + # Form part of the pattern for all currency symbols + pattern = r"(? 15000, etc) + text = re.sub(r"(\d+,\d+)", lambda match: match.group(1).replace(",", ""), text) + + # Use regex to find and replace numbers in the text + converted_text = re.sub(pattern, lambda match: self.convert(match.group(1)), text) + converted_text = re.sub(" +", " ", converted_text) + + return converted_text diff --git a/venv/lib/python3.10/site-packages/transformers/models/speecht5/processing_speecht5.py b/venv/lib/python3.10/site-packages/transformers/models/speecht5/processing_speecht5.py new file mode 100644 index 0000000000000000000000000000000000000000..468a0c1d89ab21c3ae4f4cba7947a8535cc42f14 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/speecht5/processing_speecht5.py @@ -0,0 +1,183 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Speech processor class for SpeechT5.""" + +from ...processing_utils import ProcessorMixin + + +class SpeechT5Processor(ProcessorMixin): + r""" + Constructs a SpeechT5 processor which wraps a feature extractor and a tokenizer into a single processor. + + [`SpeechT5Processor`] offers all the functionalities of [`SpeechT5FeatureExtractor`] and [`SpeechT5Tokenizer`]. See + the docstring of [`~SpeechT5Processor.__call__`] and [`~SpeechT5Processor.decode`] for more information. + + Args: + feature_extractor (`SpeechT5FeatureExtractor`): + An instance of [`SpeechT5FeatureExtractor`]. The feature extractor is a required input. + tokenizer (`SpeechT5Tokenizer`): + An instance of [`SpeechT5Tokenizer`]. The tokenizer is a required input. + """ + + feature_extractor_class = "SpeechT5FeatureExtractor" + tokenizer_class = "SpeechT5Tokenizer" + + def __init__(self, feature_extractor, tokenizer): + super().__init__(feature_extractor, tokenizer) + + def __call__(self, *args, **kwargs): + """ + Processes audio and text input, as well as audio and text targets. + + You can process audio by using the argument `audio`, or process audio targets by using the argument + `audio_target`. This forwards the arguments to SpeechT5FeatureExtractor's + [`~SpeechT5FeatureExtractor.__call__`]. + + You can process text by using the argument `text`, or process text labels by using the argument `text_target`. + This forwards the arguments to SpeechT5Tokenizer's [`~SpeechT5Tokenizer.__call__`]. + + Valid input combinations are: + + - `text` only + - `audio` only + - `text_target` only + - `audio_target` only + - `text` and `audio_target` + - `audio` and `audio_target` + - `text` and `text_target` + - `audio` and `text_target` + + Please refer to the docstring of the above two methods for more information. + """ + audio = kwargs.pop("audio", None) + text = kwargs.pop("text", None) + text_target = kwargs.pop("text_target", None) + audio_target = kwargs.pop("audio_target", None) + sampling_rate = kwargs.pop("sampling_rate", None) + + if audio is not None and text is not None: + raise ValueError( + "Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?" + ) + if audio_target is not None and text_target is not None: + raise ValueError( + "Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?" + ) + if audio is None and audio_target is None and text is None and text_target is None: + raise ValueError( + "You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process." + ) + + if audio is not None: + inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs) + elif text is not None: + inputs = self.tokenizer(text, **kwargs) + else: + inputs = None + + if audio_target is not None: + targets = self.feature_extractor(audio_target=audio_target, *args, sampling_rate=sampling_rate, **kwargs) + labels = targets["input_values"] + elif text_target is not None: + targets = self.tokenizer(text_target, **kwargs) + labels = targets["input_ids"] + else: + targets = None + + if inputs is None: + return targets + + if targets is not None: + inputs["labels"] = labels + + decoder_attention_mask = targets.get("attention_mask") + if decoder_attention_mask is not None: + inputs["decoder_attention_mask"] = decoder_attention_mask + + return inputs + + def pad(self, *args, **kwargs): + """ + Collates the audio and text inputs, as well as their targets, into a padded batch. + + Audio inputs are padded by SpeechT5FeatureExtractor's [`~SpeechT5FeatureExtractor.pad`]. Text inputs are padded + by SpeechT5Tokenizer's [`~SpeechT5Tokenizer.pad`]. + + Valid input combinations are: + + - `input_ids` only + - `input_values` only + - `labels` only, either log-mel spectrograms or text tokens + - `input_ids` and log-mel spectrogram `labels` + - `input_values` and text `labels` + + Please refer to the docstring of the above two methods for more information. + """ + input_values = kwargs.pop("input_values", None) + input_ids = kwargs.pop("input_ids", None) + labels = kwargs.pop("labels", None) + + if input_values is not None and input_ids is not None: + raise ValueError("Cannot process both `input_values` and `input_ids` inputs.") + if input_values is None and input_ids is None and labels is None: + raise ValueError( + "You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded." + ) + + if input_values is not None: + inputs = self.feature_extractor.pad(input_values, *args, **kwargs) + elif input_ids is not None: + inputs = self.tokenizer.pad(input_ids, **kwargs) + else: + inputs = None + + if labels is not None: + if "input_ids" in labels or (isinstance(labels, list) and "input_ids" in labels[0]): + targets = self.tokenizer.pad(labels, **kwargs) + labels = targets["input_ids"] + else: + feature_size_hack = self.feature_extractor.feature_size + self.feature_extractor.feature_size = self.feature_extractor.num_mel_bins + targets = self.feature_extractor.pad(labels, *args, **kwargs) + self.feature_extractor.feature_size = feature_size_hack + labels = targets["input_values"] + else: + targets = None + + if inputs is None: + return targets + + if targets is not None: + inputs["labels"] = labels + + decoder_attention_mask = targets.get("attention_mask") + if decoder_attention_mask is not None: + inputs["decoder_attention_mask"] = decoder_attention_mask + + return inputs + + def batch_decode(self, *args, **kwargs): + """ + This method forwards all its arguments to SpeechT5Tokenizer's [`~SpeechT5Tokenizer.batch_decode`]. Please refer + to the docstring of this method for more information. + """ + return self.tokenizer.batch_decode(*args, **kwargs) + + def decode(self, *args, **kwargs): + """ + This method forwards all its arguments to SpeechT5Tokenizer's [`~SpeechT5Tokenizer.decode`]. Please refer to + the docstring of this method for more information. + """ + return self.tokenizer.decode(*args, **kwargs) diff --git a/venv/lib/python3.10/site-packages/transformers/models/speecht5/tokenization_speecht5.py b/venv/lib/python3.10/site-packages/transformers/models/speecht5/tokenization_speecht5.py new file mode 100644 index 0000000000000000000000000000000000000000..41cb296f8f0d08184b1bb2576d066d62ebf74d63 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/speecht5/tokenization_speecht5.py @@ -0,0 +1,219 @@ +# coding=utf-8 +# Copyright 2023 The Facebook Inc. and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization class for SpeechT5.""" + + +import os +from shutil import copyfile +from typing import Any, Dict, List, Optional, Tuple + +import sentencepiece as spm + +from ...tokenization_utils import PreTrainedTokenizer +from ...utils import logging +from .number_normalizer import EnglishNumberNormalizer + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "spm_char.model"} + + +class SpeechT5Tokenizer(PreTrainedTokenizer): + """ + Construct a SpeechT5 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that + contains the vocabulary necessary to instantiate a tokenizer. + bos_token (`str`, *optional*, defaults to `""`): + The begin of sequence token. + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + normalize (`bool`, *optional*, defaults to `False`): + Whether to convert numeric quantities in the text to their spelt-out english counterparts. + sp_model_kwargs (`dict`, *optional*): + Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for + SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, + to set: + + - `enable_sampling`: Enable subword regularization. + - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. + + - `nbest_size = {0,1}`: No sampling is performed. + - `nbest_size > 1`: samples from the nbest_size results. + - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) + using forward-filtering-and-backward-sampling algorithm. + + - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for + BPE-dropout. + + Attributes: + sp_model (`SentencePieceProcessor`): + The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + + def __init__( + self, + vocab_file, + bos_token="", + eos_token="", + unk_token="", + pad_token="", + normalize=False, + sp_model_kwargs: Optional[Dict[str, Any]] = None, + **kwargs, + ) -> None: + self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs + self.vocab_file = vocab_file + self.normalize = normalize + self._normalizer = None + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.Load(vocab_file) + + super().__init__( + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + pad_token=pad_token, + normalize=normalize, + sp_model_kwargs=self.sp_model_kwargs, + **kwargs, + ) + + def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): + normalize = kwargs.pop("normalize", self.normalize) + if is_split_into_words: + text = " " + text + if normalize: + text = self.normalizer(text) + return (text, kwargs) + + @property + def vocab_size(self): + return self.sp_model.get_piece_size() + + @property + def normalizer(self): + if self._normalizer is None: + self._normalizer = EnglishNumberNormalizer() + return self._normalizer + + @normalizer.setter + def normalizer(self, value): + self._normalizer = value + + def get_vocab(self): + vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} + vocab.update(self.added_tokens_encoder) + return vocab + + def __getstate__(self): + state = self.__dict__.copy() + state["sp_model"] = None + return state + + def __setstate__(self, d): + self.__dict__ = d + + # for backward compatibility + if not hasattr(self, "sp_model_kwargs"): + self.sp_model_kwargs = {} + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.Load(self.vocab_file) + + def _tokenize(self, text: str) -> List[str]: + """Take as input a string and return a list of strings (tokens) for words/sub-words""" + return self.sp_model.encode(text, out_type=str) + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.sp_model.piece_to_id(token) + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + token = self.sp_model.IdToPiece(index) + return token + + # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.convert_tokens_to_string + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + current_sub_tokens = [] + out_string = "" + prev_is_special = False + for token in tokens: + # make sure that special tokens are not decoded using sentencepiece model + if token in self.all_special_tokens: + if not prev_is_special: + out_string += " " + out_string += self.sp_model.decode(current_sub_tokens) + token + prev_is_special = True + current_sub_tokens = [] + else: + current_sub_tokens.append(token) + prev_is_special = False + out_string += self.sp_model.decode(current_sub_tokens) + return out_string.strip() + + def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]: + """Build model inputs from a sequence by appending eos_token_id.""" + if token_ids_1 is None: + return token_ids_0 + [self.eos_token_id] + # We don't expect to process pairs, but leave the pair logic for API consistency + return token_ids_0 + token_ids_1 + [self.eos_token_id] + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + suffix_ones = [1] + if token_ids_1 is None: + return ([0] * len(token_ids_0)) + suffix_ones + return ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): + copyfile(self.vocab_file, out_vocab_file) + elif not os.path.isfile(self.vocab_file): + with open(out_vocab_file, "wb") as fi: + content_spiece_model = self.sp_model.serialized_model_proto() + fi.write(content_spiece_model) + + return (out_vocab_file,)