Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/llama-3b/global_step100/bf16_zero_pp_rank_13_mp_rank_02_optim_states.pt +3 -0
- ckpts/llama-3b/global_step100/bf16_zero_pp_rank_184_mp_rank_03_optim_states.pt +3 -0
- ckpts/llama-3b/global_step100/bf16_zero_pp_rank_217_mp_rank_01_optim_states.pt +3 -0
- ckpts/llama-3b/global_step100/bf16_zero_pp_rank_35_mp_rank_01_optim_states.pt +3 -0
- venv/lib/python3.10/site-packages/pandas/plotting/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/plotting/__pycache__/_core.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__init__.py +93 -0
- venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/boxplot.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/converter.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/core.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/groupby.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/hist.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/misc.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/style.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/timeseries.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/tools.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/boxplot.py +572 -0
- venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/converter.py +1135 -0
- venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/core.py +2119 -0
- venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/groupby.py +142 -0
- venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/hist.py +581 -0
- venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/misc.py +481 -0
- venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/style.py +278 -0
- venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/timeseries.py +370 -0
- venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/tools.py +492 -0
- venv/lib/python3.10/site-packages/pandas/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/__pycache__/test_aggregation.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/__pycache__/test_algos.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/__pycache__/test_common.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/__pycache__/test_downstream.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/__pycache__/test_errors.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/__pycache__/test_expressions.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/__pycache__/test_flags.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/__pycache__/test_multilevel.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/__pycache__/test_nanops.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/__pycache__/test_optional_dependency.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/__pycache__/test_register_accessor.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/__pycache__/test_sorting.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/__pycache__/test_take.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/base/__init__.py +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/base/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/base/__pycache__/common.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/base/__pycache__/test_constructors.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/base/__pycache__/test_conversion.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/base/__pycache__/test_fillna.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/base/__pycache__/test_misc.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/base/__pycache__/test_transpose.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/base/__pycache__/test_unique.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/tests/base/__pycache__/test_value_counts.cpython-310.pyc +0 -0
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_13_mp_rank_02_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c750018c2e17fc64bedda06f49a605de1205b9816105b4c1722fc13c1fedb304
|
3 |
+
size 41830330
|
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_184_mp_rank_03_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6351546e4ec255305c11fdda0e2dbc59c084b16e834684d4f39785287846e8b
|
3 |
+
size 41830340
|
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_217_mp_rank_01_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74d1c34395045bd259106a2b2aff837960ca1cabf3471137988d0c3a1ef9a5c9
|
3 |
+
size 41830148
|
ckpts/llama-3b/global_step100/bf16_zero_pp_rank_35_mp_rank_01_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:185700df1bd72fef4ff2c39c043aee39beb49b0a59569ecf30566b1c1a4d0465
|
3 |
+
size 41830138
|
venv/lib/python3.10/site-packages/pandas/plotting/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.8 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/plotting/__pycache__/_core.cpython-310.pyc
ADDED
Binary file (61.2 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__init__.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from typing import TYPE_CHECKING
|
4 |
+
|
5 |
+
from pandas.plotting._matplotlib.boxplot import (
|
6 |
+
BoxPlot,
|
7 |
+
boxplot,
|
8 |
+
boxplot_frame,
|
9 |
+
boxplot_frame_groupby,
|
10 |
+
)
|
11 |
+
from pandas.plotting._matplotlib.converter import (
|
12 |
+
deregister,
|
13 |
+
register,
|
14 |
+
)
|
15 |
+
from pandas.plotting._matplotlib.core import (
|
16 |
+
AreaPlot,
|
17 |
+
BarhPlot,
|
18 |
+
BarPlot,
|
19 |
+
HexBinPlot,
|
20 |
+
LinePlot,
|
21 |
+
PiePlot,
|
22 |
+
ScatterPlot,
|
23 |
+
)
|
24 |
+
from pandas.plotting._matplotlib.hist import (
|
25 |
+
HistPlot,
|
26 |
+
KdePlot,
|
27 |
+
hist_frame,
|
28 |
+
hist_series,
|
29 |
+
)
|
30 |
+
from pandas.plotting._matplotlib.misc import (
|
31 |
+
andrews_curves,
|
32 |
+
autocorrelation_plot,
|
33 |
+
bootstrap_plot,
|
34 |
+
lag_plot,
|
35 |
+
parallel_coordinates,
|
36 |
+
radviz,
|
37 |
+
scatter_matrix,
|
38 |
+
)
|
39 |
+
from pandas.plotting._matplotlib.tools import table
|
40 |
+
|
41 |
+
if TYPE_CHECKING:
|
42 |
+
from pandas.plotting._matplotlib.core import MPLPlot
|
43 |
+
|
44 |
+
PLOT_CLASSES: dict[str, type[MPLPlot]] = {
|
45 |
+
"line": LinePlot,
|
46 |
+
"bar": BarPlot,
|
47 |
+
"barh": BarhPlot,
|
48 |
+
"box": BoxPlot,
|
49 |
+
"hist": HistPlot,
|
50 |
+
"kde": KdePlot,
|
51 |
+
"area": AreaPlot,
|
52 |
+
"pie": PiePlot,
|
53 |
+
"scatter": ScatterPlot,
|
54 |
+
"hexbin": HexBinPlot,
|
55 |
+
}
|
56 |
+
|
57 |
+
|
58 |
+
def plot(data, kind, **kwargs):
|
59 |
+
# Importing pyplot at the top of the file (before the converters are
|
60 |
+
# registered) causes problems in matplotlib 2 (converters seem to not
|
61 |
+
# work)
|
62 |
+
import matplotlib.pyplot as plt
|
63 |
+
|
64 |
+
if kwargs.pop("reuse_plot", False):
|
65 |
+
ax = kwargs.get("ax")
|
66 |
+
if ax is None and len(plt.get_fignums()) > 0:
|
67 |
+
with plt.rc_context():
|
68 |
+
ax = plt.gca()
|
69 |
+
kwargs["ax"] = getattr(ax, "left_ax", ax)
|
70 |
+
plot_obj = PLOT_CLASSES[kind](data, **kwargs)
|
71 |
+
plot_obj.generate()
|
72 |
+
plot_obj.draw()
|
73 |
+
return plot_obj.result
|
74 |
+
|
75 |
+
|
76 |
+
__all__ = [
|
77 |
+
"plot",
|
78 |
+
"hist_series",
|
79 |
+
"hist_frame",
|
80 |
+
"boxplot",
|
81 |
+
"boxplot_frame",
|
82 |
+
"boxplot_frame_groupby",
|
83 |
+
"table",
|
84 |
+
"andrews_curves",
|
85 |
+
"autocorrelation_plot",
|
86 |
+
"bootstrap_plot",
|
87 |
+
"lag_plot",
|
88 |
+
"parallel_coordinates",
|
89 |
+
"radviz",
|
90 |
+
"scatter_matrix",
|
91 |
+
"register",
|
92 |
+
"deregister",
|
93 |
+
]
|
venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.88 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/boxplot.cpython-310.pyc
ADDED
Binary file (13.4 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/converter.cpython-310.pyc
ADDED
Binary file (29 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/core.cpython-310.pyc
ADDED
Binary file (50 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/groupby.cpython-310.pyc
ADDED
Binary file (4.35 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/hist.cpython-310.pyc
ADDED
Binary file (12.8 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/misc.cpython-310.pyc
ADDED
Binary file (11.5 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/style.cpython-310.pyc
ADDED
Binary file (8.82 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/timeseries.cpython-310.pyc
ADDED
Binary file (8.05 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/__pycache__/tools.cpython-310.pyc
ADDED
Binary file (11.8 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/boxplot.py
ADDED
@@ -0,0 +1,572 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from typing import (
|
4 |
+
TYPE_CHECKING,
|
5 |
+
Literal,
|
6 |
+
NamedTuple,
|
7 |
+
)
|
8 |
+
import warnings
|
9 |
+
|
10 |
+
from matplotlib.artist import setp
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
from pandas._libs import lib
|
14 |
+
from pandas.util._decorators import cache_readonly
|
15 |
+
from pandas.util._exceptions import find_stack_level
|
16 |
+
|
17 |
+
from pandas.core.dtypes.common import is_dict_like
|
18 |
+
from pandas.core.dtypes.generic import ABCSeries
|
19 |
+
from pandas.core.dtypes.missing import remove_na_arraylike
|
20 |
+
|
21 |
+
import pandas as pd
|
22 |
+
import pandas.core.common as com
|
23 |
+
|
24 |
+
from pandas.io.formats.printing import pprint_thing
|
25 |
+
from pandas.plotting._matplotlib.core import (
|
26 |
+
LinePlot,
|
27 |
+
MPLPlot,
|
28 |
+
)
|
29 |
+
from pandas.plotting._matplotlib.groupby import create_iter_data_given_by
|
30 |
+
from pandas.plotting._matplotlib.style import get_standard_colors
|
31 |
+
from pandas.plotting._matplotlib.tools import (
|
32 |
+
create_subplots,
|
33 |
+
flatten_axes,
|
34 |
+
maybe_adjust_figure,
|
35 |
+
)
|
36 |
+
|
37 |
+
if TYPE_CHECKING:
|
38 |
+
from collections.abc import Collection
|
39 |
+
|
40 |
+
from matplotlib.axes import Axes
|
41 |
+
from matplotlib.figure import Figure
|
42 |
+
from matplotlib.lines import Line2D
|
43 |
+
|
44 |
+
from pandas._typing import MatplotlibColor
|
45 |
+
|
46 |
+
|
47 |
+
def _set_ticklabels(ax: Axes, labels: list[str], is_vertical: bool, **kwargs) -> None:
|
48 |
+
"""Set the tick labels of a given axis.
|
49 |
+
|
50 |
+
Due to https://github.com/matplotlib/matplotlib/pull/17266, we need to handle the
|
51 |
+
case of repeated ticks (due to `FixedLocator`) and thus we duplicate the number of
|
52 |
+
labels.
|
53 |
+
"""
|
54 |
+
ticks = ax.get_xticks() if is_vertical else ax.get_yticks()
|
55 |
+
if len(ticks) != len(labels):
|
56 |
+
i, remainder = divmod(len(ticks), len(labels))
|
57 |
+
assert remainder == 0, remainder
|
58 |
+
labels *= i
|
59 |
+
if is_vertical:
|
60 |
+
ax.set_xticklabels(labels, **kwargs)
|
61 |
+
else:
|
62 |
+
ax.set_yticklabels(labels, **kwargs)
|
63 |
+
|
64 |
+
|
65 |
+
class BoxPlot(LinePlot):
|
66 |
+
@property
|
67 |
+
def _kind(self) -> Literal["box"]:
|
68 |
+
return "box"
|
69 |
+
|
70 |
+
_layout_type = "horizontal"
|
71 |
+
|
72 |
+
_valid_return_types = (None, "axes", "dict", "both")
|
73 |
+
|
74 |
+
class BP(NamedTuple):
|
75 |
+
# namedtuple to hold results
|
76 |
+
ax: Axes
|
77 |
+
lines: dict[str, list[Line2D]]
|
78 |
+
|
79 |
+
def __init__(self, data, return_type: str = "axes", **kwargs) -> None:
|
80 |
+
if return_type not in self._valid_return_types:
|
81 |
+
raise ValueError("return_type must be {None, 'axes', 'dict', 'both'}")
|
82 |
+
|
83 |
+
self.return_type = return_type
|
84 |
+
# Do not call LinePlot.__init__ which may fill nan
|
85 |
+
MPLPlot.__init__(self, data, **kwargs) # pylint: disable=non-parent-init-called
|
86 |
+
|
87 |
+
if self.subplots:
|
88 |
+
# Disable label ax sharing. Otherwise, all subplots shows last
|
89 |
+
# column label
|
90 |
+
if self.orientation == "vertical":
|
91 |
+
self.sharex = False
|
92 |
+
else:
|
93 |
+
self.sharey = False
|
94 |
+
|
95 |
+
# error: Signature of "_plot" incompatible with supertype "MPLPlot"
|
96 |
+
@classmethod
|
97 |
+
def _plot( # type: ignore[override]
|
98 |
+
cls, ax: Axes, y: np.ndarray, column_num=None, return_type: str = "axes", **kwds
|
99 |
+
):
|
100 |
+
ys: np.ndarray | list[np.ndarray]
|
101 |
+
if y.ndim == 2:
|
102 |
+
ys = [remove_na_arraylike(v) for v in y]
|
103 |
+
# Boxplot fails with empty arrays, so need to add a NaN
|
104 |
+
# if any cols are empty
|
105 |
+
# GH 8181
|
106 |
+
ys = [v if v.size > 0 else np.array([np.nan]) for v in ys]
|
107 |
+
else:
|
108 |
+
ys = remove_na_arraylike(y)
|
109 |
+
bp = ax.boxplot(ys, **kwds)
|
110 |
+
|
111 |
+
if return_type == "dict":
|
112 |
+
return bp, bp
|
113 |
+
elif return_type == "both":
|
114 |
+
return cls.BP(ax=ax, lines=bp), bp
|
115 |
+
else:
|
116 |
+
return ax, bp
|
117 |
+
|
118 |
+
def _validate_color_args(self, color, colormap):
|
119 |
+
if color is lib.no_default:
|
120 |
+
return None
|
121 |
+
|
122 |
+
if colormap is not None:
|
123 |
+
warnings.warn(
|
124 |
+
"'color' and 'colormap' cannot be used "
|
125 |
+
"simultaneously. Using 'color'",
|
126 |
+
stacklevel=find_stack_level(),
|
127 |
+
)
|
128 |
+
|
129 |
+
if isinstance(color, dict):
|
130 |
+
valid_keys = ["boxes", "whiskers", "medians", "caps"]
|
131 |
+
for key in color:
|
132 |
+
if key not in valid_keys:
|
133 |
+
raise ValueError(
|
134 |
+
f"color dict contains invalid key '{key}'. "
|
135 |
+
f"The key must be either {valid_keys}"
|
136 |
+
)
|
137 |
+
return color
|
138 |
+
|
139 |
+
@cache_readonly
|
140 |
+
def _color_attrs(self):
|
141 |
+
# get standard colors for default
|
142 |
+
# use 2 colors by default, for box/whisker and median
|
143 |
+
# flier colors isn't needed here
|
144 |
+
# because it can be specified by ``sym`` kw
|
145 |
+
return get_standard_colors(num_colors=3, colormap=self.colormap, color=None)
|
146 |
+
|
147 |
+
@cache_readonly
|
148 |
+
def _boxes_c(self):
|
149 |
+
return self._color_attrs[0]
|
150 |
+
|
151 |
+
@cache_readonly
|
152 |
+
def _whiskers_c(self):
|
153 |
+
return self._color_attrs[0]
|
154 |
+
|
155 |
+
@cache_readonly
|
156 |
+
def _medians_c(self):
|
157 |
+
return self._color_attrs[2]
|
158 |
+
|
159 |
+
@cache_readonly
|
160 |
+
def _caps_c(self):
|
161 |
+
return self._color_attrs[0]
|
162 |
+
|
163 |
+
def _get_colors(
|
164 |
+
self,
|
165 |
+
num_colors=None,
|
166 |
+
color_kwds: dict[str, MatplotlibColor]
|
167 |
+
| MatplotlibColor
|
168 |
+
| Collection[MatplotlibColor]
|
169 |
+
| None = "color",
|
170 |
+
) -> None:
|
171 |
+
pass
|
172 |
+
|
173 |
+
def maybe_color_bp(self, bp) -> None:
|
174 |
+
if isinstance(self.color, dict):
|
175 |
+
boxes = self.color.get("boxes", self._boxes_c)
|
176 |
+
whiskers = self.color.get("whiskers", self._whiskers_c)
|
177 |
+
medians = self.color.get("medians", self._medians_c)
|
178 |
+
caps = self.color.get("caps", self._caps_c)
|
179 |
+
else:
|
180 |
+
# Other types are forwarded to matplotlib
|
181 |
+
# If None, use default colors
|
182 |
+
boxes = self.color or self._boxes_c
|
183 |
+
whiskers = self.color or self._whiskers_c
|
184 |
+
medians = self.color or self._medians_c
|
185 |
+
caps = self.color or self._caps_c
|
186 |
+
|
187 |
+
color_tup = (boxes, whiskers, medians, caps)
|
188 |
+
maybe_color_bp(bp, color_tup=color_tup, **self.kwds)
|
189 |
+
|
190 |
+
def _make_plot(self, fig: Figure) -> None:
|
191 |
+
if self.subplots:
|
192 |
+
self._return_obj = pd.Series(dtype=object)
|
193 |
+
|
194 |
+
# Re-create iterated data if `by` is assigned by users
|
195 |
+
data = (
|
196 |
+
create_iter_data_given_by(self.data, self._kind)
|
197 |
+
if self.by is not None
|
198 |
+
else self.data
|
199 |
+
)
|
200 |
+
|
201 |
+
# error: Argument "data" to "_iter_data" of "MPLPlot" has
|
202 |
+
# incompatible type "object"; expected "DataFrame |
|
203 |
+
# dict[Hashable, Series | DataFrame]"
|
204 |
+
for i, (label, y) in enumerate(self._iter_data(data=data)): # type: ignore[arg-type]
|
205 |
+
ax = self._get_ax(i)
|
206 |
+
kwds = self.kwds.copy()
|
207 |
+
|
208 |
+
# When by is applied, show title for subplots to know which group it is
|
209 |
+
# just like df.boxplot, and need to apply T on y to provide right input
|
210 |
+
if self.by is not None:
|
211 |
+
y = y.T
|
212 |
+
ax.set_title(pprint_thing(label))
|
213 |
+
|
214 |
+
# When `by` is assigned, the ticklabels will become unique grouped
|
215 |
+
# values, instead of label which is used as subtitle in this case.
|
216 |
+
# error: "Index" has no attribute "levels"; maybe "nlevels"?
|
217 |
+
levels = self.data.columns.levels # type: ignore[attr-defined]
|
218 |
+
ticklabels = [pprint_thing(col) for col in levels[0]]
|
219 |
+
else:
|
220 |
+
ticklabels = [pprint_thing(label)]
|
221 |
+
|
222 |
+
ret, bp = self._plot(
|
223 |
+
ax, y, column_num=i, return_type=self.return_type, **kwds
|
224 |
+
)
|
225 |
+
self.maybe_color_bp(bp)
|
226 |
+
self._return_obj[label] = ret
|
227 |
+
_set_ticklabels(
|
228 |
+
ax=ax, labels=ticklabels, is_vertical=self.orientation == "vertical"
|
229 |
+
)
|
230 |
+
else:
|
231 |
+
y = self.data.values.T
|
232 |
+
ax = self._get_ax(0)
|
233 |
+
kwds = self.kwds.copy()
|
234 |
+
|
235 |
+
ret, bp = self._plot(
|
236 |
+
ax, y, column_num=0, return_type=self.return_type, **kwds
|
237 |
+
)
|
238 |
+
self.maybe_color_bp(bp)
|
239 |
+
self._return_obj = ret
|
240 |
+
|
241 |
+
labels = [pprint_thing(left) for left in self.data.columns]
|
242 |
+
if not self.use_index:
|
243 |
+
labels = [pprint_thing(key) for key in range(len(labels))]
|
244 |
+
_set_ticklabels(
|
245 |
+
ax=ax, labels=labels, is_vertical=self.orientation == "vertical"
|
246 |
+
)
|
247 |
+
|
248 |
+
def _make_legend(self) -> None:
|
249 |
+
pass
|
250 |
+
|
251 |
+
def _post_plot_logic(self, ax: Axes, data) -> None:
|
252 |
+
# GH 45465: make sure that the boxplot doesn't ignore xlabel/ylabel
|
253 |
+
if self.xlabel:
|
254 |
+
ax.set_xlabel(pprint_thing(self.xlabel))
|
255 |
+
if self.ylabel:
|
256 |
+
ax.set_ylabel(pprint_thing(self.ylabel))
|
257 |
+
|
258 |
+
@property
|
259 |
+
def orientation(self) -> Literal["horizontal", "vertical"]:
|
260 |
+
if self.kwds.get("vert", True):
|
261 |
+
return "vertical"
|
262 |
+
else:
|
263 |
+
return "horizontal"
|
264 |
+
|
265 |
+
@property
|
266 |
+
def result(self):
|
267 |
+
if self.return_type is None:
|
268 |
+
return super().result
|
269 |
+
else:
|
270 |
+
return self._return_obj
|
271 |
+
|
272 |
+
|
273 |
+
def maybe_color_bp(bp, color_tup, **kwds) -> None:
|
274 |
+
# GH#30346, when users specifying those arguments explicitly, our defaults
|
275 |
+
# for these four kwargs should be overridden; if not, use Pandas settings
|
276 |
+
if not kwds.get("boxprops"):
|
277 |
+
setp(bp["boxes"], color=color_tup[0], alpha=1)
|
278 |
+
if not kwds.get("whiskerprops"):
|
279 |
+
setp(bp["whiskers"], color=color_tup[1], alpha=1)
|
280 |
+
if not kwds.get("medianprops"):
|
281 |
+
setp(bp["medians"], color=color_tup[2], alpha=1)
|
282 |
+
if not kwds.get("capprops"):
|
283 |
+
setp(bp["caps"], color=color_tup[3], alpha=1)
|
284 |
+
|
285 |
+
|
286 |
+
def _grouped_plot_by_column(
|
287 |
+
plotf,
|
288 |
+
data,
|
289 |
+
columns=None,
|
290 |
+
by=None,
|
291 |
+
numeric_only: bool = True,
|
292 |
+
grid: bool = False,
|
293 |
+
figsize: tuple[float, float] | None = None,
|
294 |
+
ax=None,
|
295 |
+
layout=None,
|
296 |
+
return_type=None,
|
297 |
+
**kwargs,
|
298 |
+
):
|
299 |
+
grouped = data.groupby(by, observed=False)
|
300 |
+
if columns is None:
|
301 |
+
if not isinstance(by, (list, tuple)):
|
302 |
+
by = [by]
|
303 |
+
columns = data._get_numeric_data().columns.difference(by)
|
304 |
+
naxes = len(columns)
|
305 |
+
fig, axes = create_subplots(
|
306 |
+
naxes=naxes,
|
307 |
+
sharex=kwargs.pop("sharex", True),
|
308 |
+
sharey=kwargs.pop("sharey", True),
|
309 |
+
figsize=figsize,
|
310 |
+
ax=ax,
|
311 |
+
layout=layout,
|
312 |
+
)
|
313 |
+
|
314 |
+
_axes = flatten_axes(axes)
|
315 |
+
|
316 |
+
# GH 45465: move the "by" label based on "vert"
|
317 |
+
xlabel, ylabel = kwargs.pop("xlabel", None), kwargs.pop("ylabel", None)
|
318 |
+
if kwargs.get("vert", True):
|
319 |
+
xlabel = xlabel or by
|
320 |
+
else:
|
321 |
+
ylabel = ylabel or by
|
322 |
+
|
323 |
+
ax_values = []
|
324 |
+
|
325 |
+
for i, col in enumerate(columns):
|
326 |
+
ax = _axes[i]
|
327 |
+
gp_col = grouped[col]
|
328 |
+
keys, values = zip(*gp_col)
|
329 |
+
re_plotf = plotf(keys, values, ax, xlabel=xlabel, ylabel=ylabel, **kwargs)
|
330 |
+
ax.set_title(col)
|
331 |
+
ax_values.append(re_plotf)
|
332 |
+
ax.grid(grid)
|
333 |
+
|
334 |
+
result = pd.Series(ax_values, index=columns, copy=False)
|
335 |
+
|
336 |
+
# Return axes in multiplot case, maybe revisit later # 985
|
337 |
+
if return_type is None:
|
338 |
+
result = axes
|
339 |
+
|
340 |
+
byline = by[0] if len(by) == 1 else by
|
341 |
+
fig.suptitle(f"Boxplot grouped by {byline}")
|
342 |
+
maybe_adjust_figure(fig, bottom=0.15, top=0.9, left=0.1, right=0.9, wspace=0.2)
|
343 |
+
|
344 |
+
return result
|
345 |
+
|
346 |
+
|
347 |
+
def boxplot(
|
348 |
+
data,
|
349 |
+
column=None,
|
350 |
+
by=None,
|
351 |
+
ax=None,
|
352 |
+
fontsize: int | None = None,
|
353 |
+
rot: int = 0,
|
354 |
+
grid: bool = True,
|
355 |
+
figsize: tuple[float, float] | None = None,
|
356 |
+
layout=None,
|
357 |
+
return_type=None,
|
358 |
+
**kwds,
|
359 |
+
):
|
360 |
+
import matplotlib.pyplot as plt
|
361 |
+
|
362 |
+
# validate return_type:
|
363 |
+
if return_type not in BoxPlot._valid_return_types:
|
364 |
+
raise ValueError("return_type must be {'axes', 'dict', 'both'}")
|
365 |
+
|
366 |
+
if isinstance(data, ABCSeries):
|
367 |
+
data = data.to_frame("x")
|
368 |
+
column = "x"
|
369 |
+
|
370 |
+
def _get_colors():
|
371 |
+
# num_colors=3 is required as method maybe_color_bp takes the colors
|
372 |
+
# in positions 0 and 2.
|
373 |
+
# if colors not provided, use same defaults as DataFrame.plot.box
|
374 |
+
result = get_standard_colors(num_colors=3)
|
375 |
+
result = np.take(result, [0, 0, 2])
|
376 |
+
result = np.append(result, "k")
|
377 |
+
|
378 |
+
colors = kwds.pop("color", None)
|
379 |
+
if colors:
|
380 |
+
if is_dict_like(colors):
|
381 |
+
# replace colors in result array with user-specified colors
|
382 |
+
# taken from the colors dict parameter
|
383 |
+
# "boxes" value placed in position 0, "whiskers" in 1, etc.
|
384 |
+
valid_keys = ["boxes", "whiskers", "medians", "caps"]
|
385 |
+
key_to_index = dict(zip(valid_keys, range(4)))
|
386 |
+
for key, value in colors.items():
|
387 |
+
if key in valid_keys:
|
388 |
+
result[key_to_index[key]] = value
|
389 |
+
else:
|
390 |
+
raise ValueError(
|
391 |
+
f"color dict contains invalid key '{key}'. "
|
392 |
+
f"The key must be either {valid_keys}"
|
393 |
+
)
|
394 |
+
else:
|
395 |
+
result.fill(colors)
|
396 |
+
|
397 |
+
return result
|
398 |
+
|
399 |
+
def plot_group(keys, values, ax: Axes, **kwds):
|
400 |
+
# GH 45465: xlabel/ylabel need to be popped out before plotting happens
|
401 |
+
xlabel, ylabel = kwds.pop("xlabel", None), kwds.pop("ylabel", None)
|
402 |
+
if xlabel:
|
403 |
+
ax.set_xlabel(pprint_thing(xlabel))
|
404 |
+
if ylabel:
|
405 |
+
ax.set_ylabel(pprint_thing(ylabel))
|
406 |
+
|
407 |
+
keys = [pprint_thing(x) for x in keys]
|
408 |
+
values = [np.asarray(remove_na_arraylike(v), dtype=object) for v in values]
|
409 |
+
bp = ax.boxplot(values, **kwds)
|
410 |
+
if fontsize is not None:
|
411 |
+
ax.tick_params(axis="both", labelsize=fontsize)
|
412 |
+
|
413 |
+
# GH 45465: x/y are flipped when "vert" changes
|
414 |
+
_set_ticklabels(
|
415 |
+
ax=ax, labels=keys, is_vertical=kwds.get("vert", True), rotation=rot
|
416 |
+
)
|
417 |
+
maybe_color_bp(bp, color_tup=colors, **kwds)
|
418 |
+
|
419 |
+
# Return axes in multiplot case, maybe revisit later # 985
|
420 |
+
if return_type == "dict":
|
421 |
+
return bp
|
422 |
+
elif return_type == "both":
|
423 |
+
return BoxPlot.BP(ax=ax, lines=bp)
|
424 |
+
else:
|
425 |
+
return ax
|
426 |
+
|
427 |
+
colors = _get_colors()
|
428 |
+
if column is None:
|
429 |
+
columns = None
|
430 |
+
elif isinstance(column, (list, tuple)):
|
431 |
+
columns = column
|
432 |
+
else:
|
433 |
+
columns = [column]
|
434 |
+
|
435 |
+
if by is not None:
|
436 |
+
# Prefer array return type for 2-D plots to match the subplot layout
|
437 |
+
# https://github.com/pandas-dev/pandas/pull/12216#issuecomment-241175580
|
438 |
+
result = _grouped_plot_by_column(
|
439 |
+
plot_group,
|
440 |
+
data,
|
441 |
+
columns=columns,
|
442 |
+
by=by,
|
443 |
+
grid=grid,
|
444 |
+
figsize=figsize,
|
445 |
+
ax=ax,
|
446 |
+
layout=layout,
|
447 |
+
return_type=return_type,
|
448 |
+
**kwds,
|
449 |
+
)
|
450 |
+
else:
|
451 |
+
if return_type is None:
|
452 |
+
return_type = "axes"
|
453 |
+
if layout is not None:
|
454 |
+
raise ValueError("The 'layout' keyword is not supported when 'by' is None")
|
455 |
+
|
456 |
+
if ax is None:
|
457 |
+
rc = {"figure.figsize": figsize} if figsize is not None else {}
|
458 |
+
with plt.rc_context(rc):
|
459 |
+
ax = plt.gca()
|
460 |
+
data = data._get_numeric_data()
|
461 |
+
naxes = len(data.columns)
|
462 |
+
if naxes == 0:
|
463 |
+
raise ValueError(
|
464 |
+
"boxplot method requires numerical columns, nothing to plot."
|
465 |
+
)
|
466 |
+
if columns is None:
|
467 |
+
columns = data.columns
|
468 |
+
else:
|
469 |
+
data = data[columns]
|
470 |
+
|
471 |
+
result = plot_group(columns, data.values.T, ax, **kwds)
|
472 |
+
ax.grid(grid)
|
473 |
+
|
474 |
+
return result
|
475 |
+
|
476 |
+
|
477 |
+
def boxplot_frame(
|
478 |
+
self,
|
479 |
+
column=None,
|
480 |
+
by=None,
|
481 |
+
ax=None,
|
482 |
+
fontsize: int | None = None,
|
483 |
+
rot: int = 0,
|
484 |
+
grid: bool = True,
|
485 |
+
figsize: tuple[float, float] | None = None,
|
486 |
+
layout=None,
|
487 |
+
return_type=None,
|
488 |
+
**kwds,
|
489 |
+
):
|
490 |
+
import matplotlib.pyplot as plt
|
491 |
+
|
492 |
+
ax = boxplot(
|
493 |
+
self,
|
494 |
+
column=column,
|
495 |
+
by=by,
|
496 |
+
ax=ax,
|
497 |
+
fontsize=fontsize,
|
498 |
+
grid=grid,
|
499 |
+
rot=rot,
|
500 |
+
figsize=figsize,
|
501 |
+
layout=layout,
|
502 |
+
return_type=return_type,
|
503 |
+
**kwds,
|
504 |
+
)
|
505 |
+
plt.draw_if_interactive()
|
506 |
+
return ax
|
507 |
+
|
508 |
+
|
509 |
+
def boxplot_frame_groupby(
|
510 |
+
grouped,
|
511 |
+
subplots: bool = True,
|
512 |
+
column=None,
|
513 |
+
fontsize: int | None = None,
|
514 |
+
rot: int = 0,
|
515 |
+
grid: bool = True,
|
516 |
+
ax=None,
|
517 |
+
figsize: tuple[float, float] | None = None,
|
518 |
+
layout=None,
|
519 |
+
sharex: bool = False,
|
520 |
+
sharey: bool = True,
|
521 |
+
**kwds,
|
522 |
+
):
|
523 |
+
if subplots is True:
|
524 |
+
naxes = len(grouped)
|
525 |
+
fig, axes = create_subplots(
|
526 |
+
naxes=naxes,
|
527 |
+
squeeze=False,
|
528 |
+
ax=ax,
|
529 |
+
sharex=sharex,
|
530 |
+
sharey=sharey,
|
531 |
+
figsize=figsize,
|
532 |
+
layout=layout,
|
533 |
+
)
|
534 |
+
axes = flatten_axes(axes)
|
535 |
+
|
536 |
+
ret = pd.Series(dtype=object)
|
537 |
+
|
538 |
+
for (key, group), ax in zip(grouped, axes):
|
539 |
+
d = group.boxplot(
|
540 |
+
ax=ax, column=column, fontsize=fontsize, rot=rot, grid=grid, **kwds
|
541 |
+
)
|
542 |
+
ax.set_title(pprint_thing(key))
|
543 |
+
ret.loc[key] = d
|
544 |
+
maybe_adjust_figure(fig, bottom=0.15, top=0.9, left=0.1, right=0.9, wspace=0.2)
|
545 |
+
else:
|
546 |
+
keys, frames = zip(*grouped)
|
547 |
+
if grouped.axis == 0:
|
548 |
+
df = pd.concat(frames, keys=keys, axis=1)
|
549 |
+
elif len(frames) > 1:
|
550 |
+
df = frames[0].join(frames[1::])
|
551 |
+
else:
|
552 |
+
df = frames[0]
|
553 |
+
|
554 |
+
# GH 16748, DataFrameGroupby fails when subplots=False and `column` argument
|
555 |
+
# is assigned, and in this case, since `df` here becomes MI after groupby,
|
556 |
+
# so we need to couple the keys (grouped values) and column (original df
|
557 |
+
# column) together to search for subset to plot
|
558 |
+
if column is not None:
|
559 |
+
column = com.convert_to_list_like(column)
|
560 |
+
multi_key = pd.MultiIndex.from_product([keys, column])
|
561 |
+
column = list(multi_key.values)
|
562 |
+
ret = df.boxplot(
|
563 |
+
column=column,
|
564 |
+
fontsize=fontsize,
|
565 |
+
rot=rot,
|
566 |
+
grid=grid,
|
567 |
+
ax=ax,
|
568 |
+
figsize=figsize,
|
569 |
+
layout=layout,
|
570 |
+
**kwds,
|
571 |
+
)
|
572 |
+
return ret
|
venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/converter.py
ADDED
@@ -0,0 +1,1135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import contextlib
|
4 |
+
import datetime as pydt
|
5 |
+
from datetime import (
|
6 |
+
datetime,
|
7 |
+
timedelta,
|
8 |
+
tzinfo,
|
9 |
+
)
|
10 |
+
import functools
|
11 |
+
from typing import (
|
12 |
+
TYPE_CHECKING,
|
13 |
+
Any,
|
14 |
+
cast,
|
15 |
+
)
|
16 |
+
import warnings
|
17 |
+
|
18 |
+
import matplotlib.dates as mdates
|
19 |
+
from matplotlib.ticker import (
|
20 |
+
AutoLocator,
|
21 |
+
Formatter,
|
22 |
+
Locator,
|
23 |
+
)
|
24 |
+
from matplotlib.transforms import nonsingular
|
25 |
+
import matplotlib.units as munits
|
26 |
+
import numpy as np
|
27 |
+
|
28 |
+
from pandas._libs import lib
|
29 |
+
from pandas._libs.tslibs import (
|
30 |
+
Timestamp,
|
31 |
+
to_offset,
|
32 |
+
)
|
33 |
+
from pandas._libs.tslibs.dtypes import (
|
34 |
+
FreqGroup,
|
35 |
+
periods_per_day,
|
36 |
+
)
|
37 |
+
from pandas._typing import (
|
38 |
+
F,
|
39 |
+
npt,
|
40 |
+
)
|
41 |
+
|
42 |
+
from pandas.core.dtypes.common import (
|
43 |
+
is_float,
|
44 |
+
is_float_dtype,
|
45 |
+
is_integer,
|
46 |
+
is_integer_dtype,
|
47 |
+
is_nested_list_like,
|
48 |
+
)
|
49 |
+
|
50 |
+
from pandas import (
|
51 |
+
Index,
|
52 |
+
Series,
|
53 |
+
get_option,
|
54 |
+
)
|
55 |
+
import pandas.core.common as com
|
56 |
+
from pandas.core.indexes.datetimes import date_range
|
57 |
+
from pandas.core.indexes.period import (
|
58 |
+
Period,
|
59 |
+
PeriodIndex,
|
60 |
+
period_range,
|
61 |
+
)
|
62 |
+
import pandas.core.tools.datetimes as tools
|
63 |
+
|
64 |
+
if TYPE_CHECKING:
|
65 |
+
from collections.abc import Generator
|
66 |
+
|
67 |
+
from matplotlib.axis import Axis
|
68 |
+
|
69 |
+
from pandas._libs.tslibs.offsets import BaseOffset
|
70 |
+
|
71 |
+
|
72 |
+
_mpl_units = {} # Cache for units overwritten by us
|
73 |
+
|
74 |
+
|
75 |
+
def get_pairs():
|
76 |
+
pairs = [
|
77 |
+
(Timestamp, DatetimeConverter),
|
78 |
+
(Period, PeriodConverter),
|
79 |
+
(pydt.datetime, DatetimeConverter),
|
80 |
+
(pydt.date, DatetimeConverter),
|
81 |
+
(pydt.time, TimeConverter),
|
82 |
+
(np.datetime64, DatetimeConverter),
|
83 |
+
]
|
84 |
+
return pairs
|
85 |
+
|
86 |
+
|
87 |
+
def register_pandas_matplotlib_converters(func: F) -> F:
|
88 |
+
"""
|
89 |
+
Decorator applying pandas_converters.
|
90 |
+
"""
|
91 |
+
|
92 |
+
@functools.wraps(func)
|
93 |
+
def wrapper(*args, **kwargs):
|
94 |
+
with pandas_converters():
|
95 |
+
return func(*args, **kwargs)
|
96 |
+
|
97 |
+
return cast(F, wrapper)
|
98 |
+
|
99 |
+
|
100 |
+
@contextlib.contextmanager
|
101 |
+
def pandas_converters() -> Generator[None, None, None]:
|
102 |
+
"""
|
103 |
+
Context manager registering pandas' converters for a plot.
|
104 |
+
|
105 |
+
See Also
|
106 |
+
--------
|
107 |
+
register_pandas_matplotlib_converters : Decorator that applies this.
|
108 |
+
"""
|
109 |
+
value = get_option("plotting.matplotlib.register_converters")
|
110 |
+
|
111 |
+
if value:
|
112 |
+
# register for True or "auto"
|
113 |
+
register()
|
114 |
+
try:
|
115 |
+
yield
|
116 |
+
finally:
|
117 |
+
if value == "auto":
|
118 |
+
# only deregister for "auto"
|
119 |
+
deregister()
|
120 |
+
|
121 |
+
|
122 |
+
def register() -> None:
|
123 |
+
pairs = get_pairs()
|
124 |
+
for type_, cls in pairs:
|
125 |
+
# Cache previous converter if present
|
126 |
+
if type_ in munits.registry and not isinstance(munits.registry[type_], cls):
|
127 |
+
previous = munits.registry[type_]
|
128 |
+
_mpl_units[type_] = previous
|
129 |
+
# Replace with pandas converter
|
130 |
+
munits.registry[type_] = cls()
|
131 |
+
|
132 |
+
|
133 |
+
def deregister() -> None:
|
134 |
+
# Renamed in pandas.plotting.__init__
|
135 |
+
for type_, cls in get_pairs():
|
136 |
+
# We use type to catch our classes directly, no inheritance
|
137 |
+
if type(munits.registry.get(type_)) is cls:
|
138 |
+
munits.registry.pop(type_)
|
139 |
+
|
140 |
+
# restore the old keys
|
141 |
+
for unit, formatter in _mpl_units.items():
|
142 |
+
if type(formatter) not in {DatetimeConverter, PeriodConverter, TimeConverter}:
|
143 |
+
# make it idempotent by excluding ours.
|
144 |
+
munits.registry[unit] = formatter
|
145 |
+
|
146 |
+
|
147 |
+
def _to_ordinalf(tm: pydt.time) -> float:
|
148 |
+
tot_sec = tm.hour * 3600 + tm.minute * 60 + tm.second + tm.microsecond / 10**6
|
149 |
+
return tot_sec
|
150 |
+
|
151 |
+
|
152 |
+
def time2num(d):
|
153 |
+
if isinstance(d, str):
|
154 |
+
parsed = Timestamp(d)
|
155 |
+
return _to_ordinalf(parsed.time())
|
156 |
+
if isinstance(d, pydt.time):
|
157 |
+
return _to_ordinalf(d)
|
158 |
+
return d
|
159 |
+
|
160 |
+
|
161 |
+
class TimeConverter(munits.ConversionInterface):
|
162 |
+
@staticmethod
|
163 |
+
def convert(value, unit, axis):
|
164 |
+
valid_types = (str, pydt.time)
|
165 |
+
if isinstance(value, valid_types) or is_integer(value) or is_float(value):
|
166 |
+
return time2num(value)
|
167 |
+
if isinstance(value, Index):
|
168 |
+
return value.map(time2num)
|
169 |
+
if isinstance(value, (list, tuple, np.ndarray, Index)):
|
170 |
+
return [time2num(x) for x in value]
|
171 |
+
return value
|
172 |
+
|
173 |
+
@staticmethod
|
174 |
+
def axisinfo(unit, axis) -> munits.AxisInfo | None:
|
175 |
+
if unit != "time":
|
176 |
+
return None
|
177 |
+
|
178 |
+
majloc = AutoLocator()
|
179 |
+
majfmt = TimeFormatter(majloc)
|
180 |
+
return munits.AxisInfo(majloc=majloc, majfmt=majfmt, label="time")
|
181 |
+
|
182 |
+
@staticmethod
|
183 |
+
def default_units(x, axis) -> str:
|
184 |
+
return "time"
|
185 |
+
|
186 |
+
|
187 |
+
# time formatter
|
188 |
+
class TimeFormatter(Formatter):
|
189 |
+
def __init__(self, locs) -> None:
|
190 |
+
self.locs = locs
|
191 |
+
|
192 |
+
def __call__(self, x, pos: int | None = 0) -> str:
|
193 |
+
"""
|
194 |
+
Return the time of day as a formatted string.
|
195 |
+
|
196 |
+
Parameters
|
197 |
+
----------
|
198 |
+
x : float
|
199 |
+
The time of day specified as seconds since 00:00 (midnight),
|
200 |
+
with up to microsecond precision.
|
201 |
+
pos
|
202 |
+
Unused
|
203 |
+
|
204 |
+
Returns
|
205 |
+
-------
|
206 |
+
str
|
207 |
+
A string in HH:MM:SS.mmmuuu format. Microseconds,
|
208 |
+
milliseconds and seconds are only displayed if non-zero.
|
209 |
+
"""
|
210 |
+
fmt = "%H:%M:%S.%f"
|
211 |
+
s = int(x)
|
212 |
+
msus = round((x - s) * 10**6)
|
213 |
+
ms = msus // 1000
|
214 |
+
us = msus % 1000
|
215 |
+
m, s = divmod(s, 60)
|
216 |
+
h, m = divmod(m, 60)
|
217 |
+
_, h = divmod(h, 24)
|
218 |
+
if us != 0:
|
219 |
+
return pydt.time(h, m, s, msus).strftime(fmt)
|
220 |
+
elif ms != 0:
|
221 |
+
return pydt.time(h, m, s, msus).strftime(fmt)[:-3]
|
222 |
+
elif s != 0:
|
223 |
+
return pydt.time(h, m, s).strftime("%H:%M:%S")
|
224 |
+
|
225 |
+
return pydt.time(h, m).strftime("%H:%M")
|
226 |
+
|
227 |
+
|
228 |
+
# Period Conversion
|
229 |
+
|
230 |
+
|
231 |
+
class PeriodConverter(mdates.DateConverter):
|
232 |
+
@staticmethod
|
233 |
+
def convert(values, units, axis):
|
234 |
+
if is_nested_list_like(values):
|
235 |
+
values = [PeriodConverter._convert_1d(v, units, axis) for v in values]
|
236 |
+
else:
|
237 |
+
values = PeriodConverter._convert_1d(values, units, axis)
|
238 |
+
return values
|
239 |
+
|
240 |
+
@staticmethod
|
241 |
+
def _convert_1d(values, units, axis):
|
242 |
+
if not hasattr(axis, "freq"):
|
243 |
+
raise TypeError("Axis must have `freq` set to convert to Periods")
|
244 |
+
valid_types = (str, datetime, Period, pydt.date, pydt.time, np.datetime64)
|
245 |
+
with warnings.catch_warnings():
|
246 |
+
warnings.filterwarnings(
|
247 |
+
"ignore", "Period with BDay freq is deprecated", category=FutureWarning
|
248 |
+
)
|
249 |
+
warnings.filterwarnings(
|
250 |
+
"ignore", r"PeriodDtype\[B\] is deprecated", category=FutureWarning
|
251 |
+
)
|
252 |
+
if (
|
253 |
+
isinstance(values, valid_types)
|
254 |
+
or is_integer(values)
|
255 |
+
or is_float(values)
|
256 |
+
):
|
257 |
+
return get_datevalue(values, axis.freq)
|
258 |
+
elif isinstance(values, PeriodIndex):
|
259 |
+
return values.asfreq(axis.freq).asi8
|
260 |
+
elif isinstance(values, Index):
|
261 |
+
return values.map(lambda x: get_datevalue(x, axis.freq))
|
262 |
+
elif lib.infer_dtype(values, skipna=False) == "period":
|
263 |
+
# https://github.com/pandas-dev/pandas/issues/24304
|
264 |
+
# convert ndarray[period] -> PeriodIndex
|
265 |
+
return PeriodIndex(values, freq=axis.freq).asi8
|
266 |
+
elif isinstance(values, (list, tuple, np.ndarray, Index)):
|
267 |
+
return [get_datevalue(x, axis.freq) for x in values]
|
268 |
+
return values
|
269 |
+
|
270 |
+
|
271 |
+
def get_datevalue(date, freq):
|
272 |
+
if isinstance(date, Period):
|
273 |
+
return date.asfreq(freq).ordinal
|
274 |
+
elif isinstance(date, (str, datetime, pydt.date, pydt.time, np.datetime64)):
|
275 |
+
return Period(date, freq).ordinal
|
276 |
+
elif (
|
277 |
+
is_integer(date)
|
278 |
+
or is_float(date)
|
279 |
+
or (isinstance(date, (np.ndarray, Index)) and (date.size == 1))
|
280 |
+
):
|
281 |
+
return date
|
282 |
+
elif date is None:
|
283 |
+
return None
|
284 |
+
raise ValueError(f"Unrecognizable date '{date}'")
|
285 |
+
|
286 |
+
|
287 |
+
# Datetime Conversion
|
288 |
+
class DatetimeConverter(mdates.DateConverter):
|
289 |
+
@staticmethod
|
290 |
+
def convert(values, unit, axis):
|
291 |
+
# values might be a 1-d array, or a list-like of arrays.
|
292 |
+
if is_nested_list_like(values):
|
293 |
+
values = [DatetimeConverter._convert_1d(v, unit, axis) for v in values]
|
294 |
+
else:
|
295 |
+
values = DatetimeConverter._convert_1d(values, unit, axis)
|
296 |
+
return values
|
297 |
+
|
298 |
+
@staticmethod
|
299 |
+
def _convert_1d(values, unit, axis):
|
300 |
+
def try_parse(values):
|
301 |
+
try:
|
302 |
+
return mdates.date2num(tools.to_datetime(values))
|
303 |
+
except Exception:
|
304 |
+
return values
|
305 |
+
|
306 |
+
if isinstance(values, (datetime, pydt.date, np.datetime64, pydt.time)):
|
307 |
+
return mdates.date2num(values)
|
308 |
+
elif is_integer(values) or is_float(values):
|
309 |
+
return values
|
310 |
+
elif isinstance(values, str):
|
311 |
+
return try_parse(values)
|
312 |
+
elif isinstance(values, (list, tuple, np.ndarray, Index, Series)):
|
313 |
+
if isinstance(values, Series):
|
314 |
+
# https://github.com/matplotlib/matplotlib/issues/11391
|
315 |
+
# Series was skipped. Convert to DatetimeIndex to get asi8
|
316 |
+
values = Index(values)
|
317 |
+
if isinstance(values, Index):
|
318 |
+
values = values.values
|
319 |
+
if not isinstance(values, np.ndarray):
|
320 |
+
values = com.asarray_tuplesafe(values)
|
321 |
+
|
322 |
+
if is_integer_dtype(values) or is_float_dtype(values):
|
323 |
+
return values
|
324 |
+
|
325 |
+
try:
|
326 |
+
values = tools.to_datetime(values)
|
327 |
+
except Exception:
|
328 |
+
pass
|
329 |
+
|
330 |
+
values = mdates.date2num(values)
|
331 |
+
|
332 |
+
return values
|
333 |
+
|
334 |
+
@staticmethod
|
335 |
+
def axisinfo(unit: tzinfo | None, axis) -> munits.AxisInfo:
|
336 |
+
"""
|
337 |
+
Return the :class:`~matplotlib.units.AxisInfo` for *unit*.
|
338 |
+
|
339 |
+
*unit* is a tzinfo instance or None.
|
340 |
+
The *axis* argument is required but not used.
|
341 |
+
"""
|
342 |
+
tz = unit
|
343 |
+
|
344 |
+
majloc = PandasAutoDateLocator(tz=tz)
|
345 |
+
majfmt = PandasAutoDateFormatter(majloc, tz=tz)
|
346 |
+
datemin = pydt.date(2000, 1, 1)
|
347 |
+
datemax = pydt.date(2010, 1, 1)
|
348 |
+
|
349 |
+
return munits.AxisInfo(
|
350 |
+
majloc=majloc, majfmt=majfmt, label="", default_limits=(datemin, datemax)
|
351 |
+
)
|
352 |
+
|
353 |
+
|
354 |
+
class PandasAutoDateFormatter(mdates.AutoDateFormatter):
|
355 |
+
def __init__(self, locator, tz=None, defaultfmt: str = "%Y-%m-%d") -> None:
|
356 |
+
mdates.AutoDateFormatter.__init__(self, locator, tz, defaultfmt)
|
357 |
+
|
358 |
+
|
359 |
+
class PandasAutoDateLocator(mdates.AutoDateLocator):
|
360 |
+
def get_locator(self, dmin, dmax):
|
361 |
+
"""Pick the best locator based on a distance."""
|
362 |
+
tot_sec = (dmax - dmin).total_seconds()
|
363 |
+
|
364 |
+
if abs(tot_sec) < self.minticks:
|
365 |
+
self._freq = -1
|
366 |
+
locator = MilliSecondLocator(self.tz)
|
367 |
+
locator.set_axis(self.axis)
|
368 |
+
|
369 |
+
# error: Item "None" of "Axis | _DummyAxis | _AxisWrapper | None"
|
370 |
+
# has no attribute "get_data_interval"
|
371 |
+
locator.axis.set_view_interval( # type: ignore[union-attr]
|
372 |
+
*self.axis.get_view_interval() # type: ignore[union-attr]
|
373 |
+
)
|
374 |
+
locator.axis.set_data_interval( # type: ignore[union-attr]
|
375 |
+
*self.axis.get_data_interval() # type: ignore[union-attr]
|
376 |
+
)
|
377 |
+
return locator
|
378 |
+
|
379 |
+
return mdates.AutoDateLocator.get_locator(self, dmin, dmax)
|
380 |
+
|
381 |
+
def _get_unit(self):
|
382 |
+
return MilliSecondLocator.get_unit_generic(self._freq)
|
383 |
+
|
384 |
+
|
385 |
+
class MilliSecondLocator(mdates.DateLocator):
|
386 |
+
UNIT = 1.0 / (24 * 3600 * 1000)
|
387 |
+
|
388 |
+
def __init__(self, tz) -> None:
|
389 |
+
mdates.DateLocator.__init__(self, tz)
|
390 |
+
self._interval = 1.0
|
391 |
+
|
392 |
+
def _get_unit(self):
|
393 |
+
return self.get_unit_generic(-1)
|
394 |
+
|
395 |
+
@staticmethod
|
396 |
+
def get_unit_generic(freq):
|
397 |
+
unit = mdates.RRuleLocator.get_unit_generic(freq)
|
398 |
+
if unit < 0:
|
399 |
+
return MilliSecondLocator.UNIT
|
400 |
+
return unit
|
401 |
+
|
402 |
+
def __call__(self):
|
403 |
+
# if no data have been set, this will tank with a ValueError
|
404 |
+
try:
|
405 |
+
dmin, dmax = self.viewlim_to_dt()
|
406 |
+
except ValueError:
|
407 |
+
return []
|
408 |
+
|
409 |
+
# We need to cap at the endpoints of valid datetime
|
410 |
+
nmax, nmin = mdates.date2num((dmax, dmin))
|
411 |
+
|
412 |
+
num = (nmax - nmin) * 86400 * 1000
|
413 |
+
max_millis_ticks = 6
|
414 |
+
for interval in [1, 10, 50, 100, 200, 500]:
|
415 |
+
if num <= interval * (max_millis_ticks - 1):
|
416 |
+
self._interval = interval
|
417 |
+
break
|
418 |
+
# We went through the whole loop without breaking, default to 1
|
419 |
+
self._interval = 1000.0
|
420 |
+
|
421 |
+
estimate = (nmax - nmin) / (self._get_unit() * self._get_interval())
|
422 |
+
|
423 |
+
if estimate > self.MAXTICKS * 2:
|
424 |
+
raise RuntimeError(
|
425 |
+
"MillisecondLocator estimated to generate "
|
426 |
+
f"{estimate:d} ticks from {dmin} to {dmax}: exceeds Locator.MAXTICKS"
|
427 |
+
f"* 2 ({self.MAXTICKS * 2:d}) "
|
428 |
+
)
|
429 |
+
|
430 |
+
interval = self._get_interval()
|
431 |
+
freq = f"{interval}ms"
|
432 |
+
tz = self.tz.tzname(None)
|
433 |
+
st = dmin.replace(tzinfo=None)
|
434 |
+
ed = dmin.replace(tzinfo=None)
|
435 |
+
all_dates = date_range(start=st, end=ed, freq=freq, tz=tz).astype(object)
|
436 |
+
|
437 |
+
try:
|
438 |
+
if len(all_dates) > 0:
|
439 |
+
locs = self.raise_if_exceeds(mdates.date2num(all_dates))
|
440 |
+
return locs
|
441 |
+
except Exception: # pragma: no cover
|
442 |
+
pass
|
443 |
+
|
444 |
+
lims = mdates.date2num([dmin, dmax])
|
445 |
+
return lims
|
446 |
+
|
447 |
+
def _get_interval(self):
|
448 |
+
return self._interval
|
449 |
+
|
450 |
+
def autoscale(self):
|
451 |
+
"""
|
452 |
+
Set the view limits to include the data range.
|
453 |
+
"""
|
454 |
+
# We need to cap at the endpoints of valid datetime
|
455 |
+
dmin, dmax = self.datalim_to_dt()
|
456 |
+
|
457 |
+
vmin = mdates.date2num(dmin)
|
458 |
+
vmax = mdates.date2num(dmax)
|
459 |
+
|
460 |
+
return self.nonsingular(vmin, vmax)
|
461 |
+
|
462 |
+
|
463 |
+
def _from_ordinal(x, tz: tzinfo | None = None) -> datetime:
|
464 |
+
ix = int(x)
|
465 |
+
dt = datetime.fromordinal(ix)
|
466 |
+
remainder = float(x) - ix
|
467 |
+
hour, remainder = divmod(24 * remainder, 1)
|
468 |
+
minute, remainder = divmod(60 * remainder, 1)
|
469 |
+
second, remainder = divmod(60 * remainder, 1)
|
470 |
+
microsecond = int(1_000_000 * remainder)
|
471 |
+
if microsecond < 10:
|
472 |
+
microsecond = 0 # compensate for rounding errors
|
473 |
+
dt = datetime(
|
474 |
+
dt.year, dt.month, dt.day, int(hour), int(minute), int(second), microsecond
|
475 |
+
)
|
476 |
+
if tz is not None:
|
477 |
+
dt = dt.astimezone(tz)
|
478 |
+
|
479 |
+
if microsecond > 999990: # compensate for rounding errors
|
480 |
+
dt += timedelta(microseconds=1_000_000 - microsecond)
|
481 |
+
|
482 |
+
return dt
|
483 |
+
|
484 |
+
|
485 |
+
# Fixed frequency dynamic tick locators and formatters
|
486 |
+
|
487 |
+
# -------------------------------------------------------------------------
|
488 |
+
# --- Locators ---
|
489 |
+
# -------------------------------------------------------------------------
|
490 |
+
|
491 |
+
|
492 |
+
def _get_default_annual_spacing(nyears) -> tuple[int, int]:
|
493 |
+
"""
|
494 |
+
Returns a default spacing between consecutive ticks for annual data.
|
495 |
+
"""
|
496 |
+
if nyears < 11:
|
497 |
+
(min_spacing, maj_spacing) = (1, 1)
|
498 |
+
elif nyears < 20:
|
499 |
+
(min_spacing, maj_spacing) = (1, 2)
|
500 |
+
elif nyears < 50:
|
501 |
+
(min_spacing, maj_spacing) = (1, 5)
|
502 |
+
elif nyears < 100:
|
503 |
+
(min_spacing, maj_spacing) = (5, 10)
|
504 |
+
elif nyears < 200:
|
505 |
+
(min_spacing, maj_spacing) = (5, 25)
|
506 |
+
elif nyears < 600:
|
507 |
+
(min_spacing, maj_spacing) = (10, 50)
|
508 |
+
else:
|
509 |
+
factor = nyears // 1000 + 1
|
510 |
+
(min_spacing, maj_spacing) = (factor * 20, factor * 100)
|
511 |
+
return (min_spacing, maj_spacing)
|
512 |
+
|
513 |
+
|
514 |
+
def _period_break(dates: PeriodIndex, period: str) -> npt.NDArray[np.intp]:
|
515 |
+
"""
|
516 |
+
Returns the indices where the given period changes.
|
517 |
+
|
518 |
+
Parameters
|
519 |
+
----------
|
520 |
+
dates : PeriodIndex
|
521 |
+
Array of intervals to monitor.
|
522 |
+
period : str
|
523 |
+
Name of the period to monitor.
|
524 |
+
"""
|
525 |
+
mask = _period_break_mask(dates, period)
|
526 |
+
return np.nonzero(mask)[0]
|
527 |
+
|
528 |
+
|
529 |
+
def _period_break_mask(dates: PeriodIndex, period: str) -> npt.NDArray[np.bool_]:
|
530 |
+
current = getattr(dates, period)
|
531 |
+
previous = getattr(dates - 1 * dates.freq, period)
|
532 |
+
return current != previous
|
533 |
+
|
534 |
+
|
535 |
+
def has_level_label(label_flags: npt.NDArray[np.intp], vmin: float) -> bool:
|
536 |
+
"""
|
537 |
+
Returns true if the ``label_flags`` indicate there is at least one label
|
538 |
+
for this level.
|
539 |
+
|
540 |
+
if the minimum view limit is not an exact integer, then the first tick
|
541 |
+
label won't be shown, so we must adjust for that.
|
542 |
+
"""
|
543 |
+
if label_flags.size == 0 or (
|
544 |
+
label_flags.size == 1 and label_flags[0] == 0 and vmin % 1 > 0.0
|
545 |
+
):
|
546 |
+
return False
|
547 |
+
else:
|
548 |
+
return True
|
549 |
+
|
550 |
+
|
551 |
+
def _get_periods_per_ymd(freq: BaseOffset) -> tuple[int, int, int]:
|
552 |
+
# error: "BaseOffset" has no attribute "_period_dtype_code"
|
553 |
+
dtype_code = freq._period_dtype_code # type: ignore[attr-defined]
|
554 |
+
freq_group = FreqGroup.from_period_dtype_code(dtype_code)
|
555 |
+
|
556 |
+
ppd = -1 # placeholder for above-day freqs
|
557 |
+
|
558 |
+
if dtype_code >= FreqGroup.FR_HR.value:
|
559 |
+
# error: "BaseOffset" has no attribute "_creso"
|
560 |
+
ppd = periods_per_day(freq._creso) # type: ignore[attr-defined]
|
561 |
+
ppm = 28 * ppd
|
562 |
+
ppy = 365 * ppd
|
563 |
+
elif freq_group == FreqGroup.FR_BUS:
|
564 |
+
ppm = 19
|
565 |
+
ppy = 261
|
566 |
+
elif freq_group == FreqGroup.FR_DAY:
|
567 |
+
ppm = 28
|
568 |
+
ppy = 365
|
569 |
+
elif freq_group == FreqGroup.FR_WK:
|
570 |
+
ppm = 3
|
571 |
+
ppy = 52
|
572 |
+
elif freq_group == FreqGroup.FR_MTH:
|
573 |
+
ppm = 1
|
574 |
+
ppy = 12
|
575 |
+
elif freq_group == FreqGroup.FR_QTR:
|
576 |
+
ppm = -1 # placerholder
|
577 |
+
ppy = 4
|
578 |
+
elif freq_group == FreqGroup.FR_ANN:
|
579 |
+
ppm = -1 # placeholder
|
580 |
+
ppy = 1
|
581 |
+
else:
|
582 |
+
raise NotImplementedError(f"Unsupported frequency: {dtype_code}")
|
583 |
+
|
584 |
+
return ppd, ppm, ppy
|
585 |
+
|
586 |
+
|
587 |
+
def _daily_finder(vmin, vmax, freq: BaseOffset) -> np.ndarray:
|
588 |
+
# error: "BaseOffset" has no attribute "_period_dtype_code"
|
589 |
+
dtype_code = freq._period_dtype_code # type: ignore[attr-defined]
|
590 |
+
|
591 |
+
periodsperday, periodspermonth, periodsperyear = _get_periods_per_ymd(freq)
|
592 |
+
|
593 |
+
# save this for later usage
|
594 |
+
vmin_orig = vmin
|
595 |
+
(vmin, vmax) = (int(vmin), int(vmax))
|
596 |
+
span = vmax - vmin + 1
|
597 |
+
|
598 |
+
with warnings.catch_warnings():
|
599 |
+
warnings.filterwarnings(
|
600 |
+
"ignore", "Period with BDay freq is deprecated", category=FutureWarning
|
601 |
+
)
|
602 |
+
warnings.filterwarnings(
|
603 |
+
"ignore", r"PeriodDtype\[B\] is deprecated", category=FutureWarning
|
604 |
+
)
|
605 |
+
dates_ = period_range(
|
606 |
+
start=Period(ordinal=vmin, freq=freq),
|
607 |
+
end=Period(ordinal=vmax, freq=freq),
|
608 |
+
freq=freq,
|
609 |
+
)
|
610 |
+
|
611 |
+
# Initialize the output
|
612 |
+
info = np.zeros(
|
613 |
+
span, dtype=[("val", np.int64), ("maj", bool), ("min", bool), ("fmt", "|S20")]
|
614 |
+
)
|
615 |
+
info["val"][:] = dates_.asi8
|
616 |
+
info["fmt"][:] = ""
|
617 |
+
info["maj"][[0, -1]] = True
|
618 |
+
# .. and set some shortcuts
|
619 |
+
info_maj = info["maj"]
|
620 |
+
info_min = info["min"]
|
621 |
+
info_fmt = info["fmt"]
|
622 |
+
|
623 |
+
def first_label(label_flags):
|
624 |
+
if (label_flags[0] == 0) and (label_flags.size > 1) and ((vmin_orig % 1) > 0.0):
|
625 |
+
return label_flags[1]
|
626 |
+
else:
|
627 |
+
return label_flags[0]
|
628 |
+
|
629 |
+
# Case 1. Less than a month
|
630 |
+
if span <= periodspermonth:
|
631 |
+
day_start = _period_break(dates_, "day")
|
632 |
+
month_start = _period_break(dates_, "month")
|
633 |
+
year_start = _period_break(dates_, "year")
|
634 |
+
|
635 |
+
def _hour_finder(label_interval: int, force_year_start: bool) -> None:
|
636 |
+
target = dates_.hour
|
637 |
+
mask = _period_break_mask(dates_, "hour")
|
638 |
+
info_maj[day_start] = True
|
639 |
+
info_min[mask & (target % label_interval == 0)] = True
|
640 |
+
info_fmt[mask & (target % label_interval == 0)] = "%H:%M"
|
641 |
+
info_fmt[day_start] = "%H:%M\n%d-%b"
|
642 |
+
info_fmt[year_start] = "%H:%M\n%d-%b\n%Y"
|
643 |
+
if force_year_start and not has_level_label(year_start, vmin_orig):
|
644 |
+
info_fmt[first_label(day_start)] = "%H:%M\n%d-%b\n%Y"
|
645 |
+
|
646 |
+
def _minute_finder(label_interval: int) -> None:
|
647 |
+
target = dates_.minute
|
648 |
+
hour_start = _period_break(dates_, "hour")
|
649 |
+
mask = _period_break_mask(dates_, "minute")
|
650 |
+
info_maj[hour_start] = True
|
651 |
+
info_min[mask & (target % label_interval == 0)] = True
|
652 |
+
info_fmt[mask & (target % label_interval == 0)] = "%H:%M"
|
653 |
+
info_fmt[day_start] = "%H:%M\n%d-%b"
|
654 |
+
info_fmt[year_start] = "%H:%M\n%d-%b\n%Y"
|
655 |
+
|
656 |
+
def _second_finder(label_interval: int) -> None:
|
657 |
+
target = dates_.second
|
658 |
+
minute_start = _period_break(dates_, "minute")
|
659 |
+
mask = _period_break_mask(dates_, "second")
|
660 |
+
info_maj[minute_start] = True
|
661 |
+
info_min[mask & (target % label_interval == 0)] = True
|
662 |
+
info_fmt[mask & (target % label_interval == 0)] = "%H:%M:%S"
|
663 |
+
info_fmt[day_start] = "%H:%M:%S\n%d-%b"
|
664 |
+
info_fmt[year_start] = "%H:%M:%S\n%d-%b\n%Y"
|
665 |
+
|
666 |
+
if span < periodsperday / 12000:
|
667 |
+
_second_finder(1)
|
668 |
+
elif span < periodsperday / 6000:
|
669 |
+
_second_finder(2)
|
670 |
+
elif span < periodsperday / 2400:
|
671 |
+
_second_finder(5)
|
672 |
+
elif span < periodsperday / 1200:
|
673 |
+
_second_finder(10)
|
674 |
+
elif span < periodsperday / 800:
|
675 |
+
_second_finder(15)
|
676 |
+
elif span < periodsperday / 400:
|
677 |
+
_second_finder(30)
|
678 |
+
elif span < periodsperday / 150:
|
679 |
+
_minute_finder(1)
|
680 |
+
elif span < periodsperday / 70:
|
681 |
+
_minute_finder(2)
|
682 |
+
elif span < periodsperday / 24:
|
683 |
+
_minute_finder(5)
|
684 |
+
elif span < periodsperday / 12:
|
685 |
+
_minute_finder(15)
|
686 |
+
elif span < periodsperday / 6:
|
687 |
+
_minute_finder(30)
|
688 |
+
elif span < periodsperday / 2.5:
|
689 |
+
_hour_finder(1, False)
|
690 |
+
elif span < periodsperday / 1.5:
|
691 |
+
_hour_finder(2, False)
|
692 |
+
elif span < periodsperday * 1.25:
|
693 |
+
_hour_finder(3, False)
|
694 |
+
elif span < periodsperday * 2.5:
|
695 |
+
_hour_finder(6, True)
|
696 |
+
elif span < periodsperday * 4:
|
697 |
+
_hour_finder(12, True)
|
698 |
+
else:
|
699 |
+
info_maj[month_start] = True
|
700 |
+
info_min[day_start] = True
|
701 |
+
info_fmt[day_start] = "%d"
|
702 |
+
info_fmt[month_start] = "%d\n%b"
|
703 |
+
info_fmt[year_start] = "%d\n%b\n%Y"
|
704 |
+
if not has_level_label(year_start, vmin_orig):
|
705 |
+
if not has_level_label(month_start, vmin_orig):
|
706 |
+
info_fmt[first_label(day_start)] = "%d\n%b\n%Y"
|
707 |
+
else:
|
708 |
+
info_fmt[first_label(month_start)] = "%d\n%b\n%Y"
|
709 |
+
|
710 |
+
# Case 2. Less than three months
|
711 |
+
elif span <= periodsperyear // 4:
|
712 |
+
month_start = _period_break(dates_, "month")
|
713 |
+
info_maj[month_start] = True
|
714 |
+
if dtype_code < FreqGroup.FR_HR.value:
|
715 |
+
info["min"] = True
|
716 |
+
else:
|
717 |
+
day_start = _period_break(dates_, "day")
|
718 |
+
info["min"][day_start] = True
|
719 |
+
week_start = _period_break(dates_, "week")
|
720 |
+
year_start = _period_break(dates_, "year")
|
721 |
+
info_fmt[week_start] = "%d"
|
722 |
+
info_fmt[month_start] = "\n\n%b"
|
723 |
+
info_fmt[year_start] = "\n\n%b\n%Y"
|
724 |
+
if not has_level_label(year_start, vmin_orig):
|
725 |
+
if not has_level_label(month_start, vmin_orig):
|
726 |
+
info_fmt[first_label(week_start)] = "\n\n%b\n%Y"
|
727 |
+
else:
|
728 |
+
info_fmt[first_label(month_start)] = "\n\n%b\n%Y"
|
729 |
+
# Case 3. Less than 14 months ...............
|
730 |
+
elif span <= 1.15 * periodsperyear:
|
731 |
+
year_start = _period_break(dates_, "year")
|
732 |
+
month_start = _period_break(dates_, "month")
|
733 |
+
week_start = _period_break(dates_, "week")
|
734 |
+
info_maj[month_start] = True
|
735 |
+
info_min[week_start] = True
|
736 |
+
info_min[year_start] = False
|
737 |
+
info_min[month_start] = False
|
738 |
+
info_fmt[month_start] = "%b"
|
739 |
+
info_fmt[year_start] = "%b\n%Y"
|
740 |
+
if not has_level_label(year_start, vmin_orig):
|
741 |
+
info_fmt[first_label(month_start)] = "%b\n%Y"
|
742 |
+
# Case 4. Less than 2.5 years ...............
|
743 |
+
elif span <= 2.5 * periodsperyear:
|
744 |
+
year_start = _period_break(dates_, "year")
|
745 |
+
quarter_start = _period_break(dates_, "quarter")
|
746 |
+
month_start = _period_break(dates_, "month")
|
747 |
+
info_maj[quarter_start] = True
|
748 |
+
info_min[month_start] = True
|
749 |
+
info_fmt[quarter_start] = "%b"
|
750 |
+
info_fmt[year_start] = "%b\n%Y"
|
751 |
+
# Case 4. Less than 4 years .................
|
752 |
+
elif span <= 4 * periodsperyear:
|
753 |
+
year_start = _period_break(dates_, "year")
|
754 |
+
month_start = _period_break(dates_, "month")
|
755 |
+
info_maj[year_start] = True
|
756 |
+
info_min[month_start] = True
|
757 |
+
info_min[year_start] = False
|
758 |
+
|
759 |
+
month_break = dates_[month_start].month
|
760 |
+
jan_or_jul = month_start[(month_break == 1) | (month_break == 7)]
|
761 |
+
info_fmt[jan_or_jul] = "%b"
|
762 |
+
info_fmt[year_start] = "%b\n%Y"
|
763 |
+
# Case 5. Less than 11 years ................
|
764 |
+
elif span <= 11 * periodsperyear:
|
765 |
+
year_start = _period_break(dates_, "year")
|
766 |
+
quarter_start = _period_break(dates_, "quarter")
|
767 |
+
info_maj[year_start] = True
|
768 |
+
info_min[quarter_start] = True
|
769 |
+
info_min[year_start] = False
|
770 |
+
info_fmt[year_start] = "%Y"
|
771 |
+
# Case 6. More than 12 years ................
|
772 |
+
else:
|
773 |
+
year_start = _period_break(dates_, "year")
|
774 |
+
year_break = dates_[year_start].year
|
775 |
+
nyears = span / periodsperyear
|
776 |
+
(min_anndef, maj_anndef) = _get_default_annual_spacing(nyears)
|
777 |
+
major_idx = year_start[(year_break % maj_anndef == 0)]
|
778 |
+
info_maj[major_idx] = True
|
779 |
+
minor_idx = year_start[(year_break % min_anndef == 0)]
|
780 |
+
info_min[minor_idx] = True
|
781 |
+
info_fmt[major_idx] = "%Y"
|
782 |
+
|
783 |
+
return info
|
784 |
+
|
785 |
+
|
786 |
+
def _monthly_finder(vmin, vmax, freq: BaseOffset) -> np.ndarray:
|
787 |
+
_, _, periodsperyear = _get_periods_per_ymd(freq)
|
788 |
+
|
789 |
+
vmin_orig = vmin
|
790 |
+
(vmin, vmax) = (int(vmin), int(vmax))
|
791 |
+
span = vmax - vmin + 1
|
792 |
+
|
793 |
+
# Initialize the output
|
794 |
+
info = np.zeros(
|
795 |
+
span, dtype=[("val", int), ("maj", bool), ("min", bool), ("fmt", "|S8")]
|
796 |
+
)
|
797 |
+
info["val"] = np.arange(vmin, vmax + 1)
|
798 |
+
dates_ = info["val"]
|
799 |
+
info["fmt"] = ""
|
800 |
+
year_start = (dates_ % 12 == 0).nonzero()[0]
|
801 |
+
info_maj = info["maj"]
|
802 |
+
info_fmt = info["fmt"]
|
803 |
+
|
804 |
+
if span <= 1.15 * periodsperyear:
|
805 |
+
info_maj[year_start] = True
|
806 |
+
info["min"] = True
|
807 |
+
|
808 |
+
info_fmt[:] = "%b"
|
809 |
+
info_fmt[year_start] = "%b\n%Y"
|
810 |
+
|
811 |
+
if not has_level_label(year_start, vmin_orig):
|
812 |
+
if dates_.size > 1:
|
813 |
+
idx = 1
|
814 |
+
else:
|
815 |
+
idx = 0
|
816 |
+
info_fmt[idx] = "%b\n%Y"
|
817 |
+
|
818 |
+
elif span <= 2.5 * periodsperyear:
|
819 |
+
quarter_start = (dates_ % 3 == 0).nonzero()
|
820 |
+
info_maj[year_start] = True
|
821 |
+
# TODO: Check the following : is it really info['fmt'] ?
|
822 |
+
# 2023-09-15 this is reached in test_finder_monthly
|
823 |
+
info["fmt"][quarter_start] = True
|
824 |
+
info["min"] = True
|
825 |
+
|
826 |
+
info_fmt[quarter_start] = "%b"
|
827 |
+
info_fmt[year_start] = "%b\n%Y"
|
828 |
+
|
829 |
+
elif span <= 4 * periodsperyear:
|
830 |
+
info_maj[year_start] = True
|
831 |
+
info["min"] = True
|
832 |
+
|
833 |
+
jan_or_jul = (dates_ % 12 == 0) | (dates_ % 12 == 6)
|
834 |
+
info_fmt[jan_or_jul] = "%b"
|
835 |
+
info_fmt[year_start] = "%b\n%Y"
|
836 |
+
|
837 |
+
elif span <= 11 * periodsperyear:
|
838 |
+
quarter_start = (dates_ % 3 == 0).nonzero()
|
839 |
+
info_maj[year_start] = True
|
840 |
+
info["min"][quarter_start] = True
|
841 |
+
|
842 |
+
info_fmt[year_start] = "%Y"
|
843 |
+
|
844 |
+
else:
|
845 |
+
nyears = span / periodsperyear
|
846 |
+
(min_anndef, maj_anndef) = _get_default_annual_spacing(nyears)
|
847 |
+
years = dates_[year_start] // 12 + 1
|
848 |
+
major_idx = year_start[(years % maj_anndef == 0)]
|
849 |
+
info_maj[major_idx] = True
|
850 |
+
info["min"][year_start[(years % min_anndef == 0)]] = True
|
851 |
+
|
852 |
+
info_fmt[major_idx] = "%Y"
|
853 |
+
|
854 |
+
return info
|
855 |
+
|
856 |
+
|
857 |
+
def _quarterly_finder(vmin, vmax, freq: BaseOffset) -> np.ndarray:
|
858 |
+
_, _, periodsperyear = _get_periods_per_ymd(freq)
|
859 |
+
vmin_orig = vmin
|
860 |
+
(vmin, vmax) = (int(vmin), int(vmax))
|
861 |
+
span = vmax - vmin + 1
|
862 |
+
|
863 |
+
info = np.zeros(
|
864 |
+
span, dtype=[("val", int), ("maj", bool), ("min", bool), ("fmt", "|S8")]
|
865 |
+
)
|
866 |
+
info["val"] = np.arange(vmin, vmax + 1)
|
867 |
+
info["fmt"] = ""
|
868 |
+
dates_ = info["val"]
|
869 |
+
info_maj = info["maj"]
|
870 |
+
info_fmt = info["fmt"]
|
871 |
+
year_start = (dates_ % 4 == 0).nonzero()[0]
|
872 |
+
|
873 |
+
if span <= 3.5 * periodsperyear:
|
874 |
+
info_maj[year_start] = True
|
875 |
+
info["min"] = True
|
876 |
+
|
877 |
+
info_fmt[:] = "Q%q"
|
878 |
+
info_fmt[year_start] = "Q%q\n%F"
|
879 |
+
if not has_level_label(year_start, vmin_orig):
|
880 |
+
if dates_.size > 1:
|
881 |
+
idx = 1
|
882 |
+
else:
|
883 |
+
idx = 0
|
884 |
+
info_fmt[idx] = "Q%q\n%F"
|
885 |
+
|
886 |
+
elif span <= 11 * periodsperyear:
|
887 |
+
info_maj[year_start] = True
|
888 |
+
info["min"] = True
|
889 |
+
info_fmt[year_start] = "%F"
|
890 |
+
|
891 |
+
else:
|
892 |
+
# https://github.com/pandas-dev/pandas/pull/47602
|
893 |
+
years = dates_[year_start] // 4 + 1970
|
894 |
+
nyears = span / periodsperyear
|
895 |
+
(min_anndef, maj_anndef) = _get_default_annual_spacing(nyears)
|
896 |
+
major_idx = year_start[(years % maj_anndef == 0)]
|
897 |
+
info_maj[major_idx] = True
|
898 |
+
info["min"][year_start[(years % min_anndef == 0)]] = True
|
899 |
+
info_fmt[major_idx] = "%F"
|
900 |
+
|
901 |
+
return info
|
902 |
+
|
903 |
+
|
904 |
+
def _annual_finder(vmin, vmax, freq: BaseOffset) -> np.ndarray:
|
905 |
+
# Note: small difference here vs other finders in adding 1 to vmax
|
906 |
+
(vmin, vmax) = (int(vmin), int(vmax + 1))
|
907 |
+
span = vmax - vmin + 1
|
908 |
+
|
909 |
+
info = np.zeros(
|
910 |
+
span, dtype=[("val", int), ("maj", bool), ("min", bool), ("fmt", "|S8")]
|
911 |
+
)
|
912 |
+
info["val"] = np.arange(vmin, vmax + 1)
|
913 |
+
info["fmt"] = ""
|
914 |
+
dates_ = info["val"]
|
915 |
+
|
916 |
+
(min_anndef, maj_anndef) = _get_default_annual_spacing(span)
|
917 |
+
major_idx = dates_ % maj_anndef == 0
|
918 |
+
minor_idx = dates_ % min_anndef == 0
|
919 |
+
info["maj"][major_idx] = True
|
920 |
+
info["min"][minor_idx] = True
|
921 |
+
info["fmt"][major_idx] = "%Y"
|
922 |
+
|
923 |
+
return info
|
924 |
+
|
925 |
+
|
926 |
+
def get_finder(freq: BaseOffset):
|
927 |
+
# error: "BaseOffset" has no attribute "_period_dtype_code"
|
928 |
+
dtype_code = freq._period_dtype_code # type: ignore[attr-defined]
|
929 |
+
fgroup = FreqGroup.from_period_dtype_code(dtype_code)
|
930 |
+
|
931 |
+
if fgroup == FreqGroup.FR_ANN:
|
932 |
+
return _annual_finder
|
933 |
+
elif fgroup == FreqGroup.FR_QTR:
|
934 |
+
return _quarterly_finder
|
935 |
+
elif fgroup == FreqGroup.FR_MTH:
|
936 |
+
return _monthly_finder
|
937 |
+
elif (dtype_code >= FreqGroup.FR_BUS.value) or fgroup == FreqGroup.FR_WK:
|
938 |
+
return _daily_finder
|
939 |
+
else: # pragma: no cover
|
940 |
+
raise NotImplementedError(f"Unsupported frequency: {dtype_code}")
|
941 |
+
|
942 |
+
|
943 |
+
class TimeSeries_DateLocator(Locator):
|
944 |
+
"""
|
945 |
+
Locates the ticks along an axis controlled by a :class:`Series`.
|
946 |
+
|
947 |
+
Parameters
|
948 |
+
----------
|
949 |
+
freq : BaseOffset
|
950 |
+
Valid frequency specifier.
|
951 |
+
minor_locator : {False, True}, optional
|
952 |
+
Whether the locator is for minor ticks (True) or not.
|
953 |
+
dynamic_mode : {True, False}, optional
|
954 |
+
Whether the locator should work in dynamic mode.
|
955 |
+
base : {int}, optional
|
956 |
+
quarter : {int}, optional
|
957 |
+
month : {int}, optional
|
958 |
+
day : {int}, optional
|
959 |
+
"""
|
960 |
+
|
961 |
+
axis: Axis
|
962 |
+
|
963 |
+
def __init__(
|
964 |
+
self,
|
965 |
+
freq: BaseOffset,
|
966 |
+
minor_locator: bool = False,
|
967 |
+
dynamic_mode: bool = True,
|
968 |
+
base: int = 1,
|
969 |
+
quarter: int = 1,
|
970 |
+
month: int = 1,
|
971 |
+
day: int = 1,
|
972 |
+
plot_obj=None,
|
973 |
+
) -> None:
|
974 |
+
freq = to_offset(freq, is_period=True)
|
975 |
+
self.freq = freq
|
976 |
+
self.base = base
|
977 |
+
(self.quarter, self.month, self.day) = (quarter, month, day)
|
978 |
+
self.isminor = minor_locator
|
979 |
+
self.isdynamic = dynamic_mode
|
980 |
+
self.offset = 0
|
981 |
+
self.plot_obj = plot_obj
|
982 |
+
self.finder = get_finder(freq)
|
983 |
+
|
984 |
+
def _get_default_locs(self, vmin, vmax):
|
985 |
+
"""Returns the default locations of ticks."""
|
986 |
+
locator = self.finder(vmin, vmax, self.freq)
|
987 |
+
|
988 |
+
if self.isminor:
|
989 |
+
return np.compress(locator["min"], locator["val"])
|
990 |
+
return np.compress(locator["maj"], locator["val"])
|
991 |
+
|
992 |
+
def __call__(self):
|
993 |
+
"""Return the locations of the ticks."""
|
994 |
+
# axis calls Locator.set_axis inside set_m<xxxx>_formatter
|
995 |
+
|
996 |
+
vi = tuple(self.axis.get_view_interval())
|
997 |
+
vmin, vmax = vi
|
998 |
+
if vmax < vmin:
|
999 |
+
vmin, vmax = vmax, vmin
|
1000 |
+
if self.isdynamic:
|
1001 |
+
locs = self._get_default_locs(vmin, vmax)
|
1002 |
+
else: # pragma: no cover
|
1003 |
+
base = self.base
|
1004 |
+
(d, m) = divmod(vmin, base)
|
1005 |
+
vmin = (d + 1) * base
|
1006 |
+
# error: No overload variant of "range" matches argument types "float",
|
1007 |
+
# "float", "int"
|
1008 |
+
locs = list(range(vmin, vmax + 1, base)) # type: ignore[call-overload]
|
1009 |
+
return locs
|
1010 |
+
|
1011 |
+
def autoscale(self):
|
1012 |
+
"""
|
1013 |
+
Sets the view limits to the nearest multiples of base that contain the
|
1014 |
+
data.
|
1015 |
+
"""
|
1016 |
+
# requires matplotlib >= 0.98.0
|
1017 |
+
(vmin, vmax) = self.axis.get_data_interval()
|
1018 |
+
|
1019 |
+
locs = self._get_default_locs(vmin, vmax)
|
1020 |
+
(vmin, vmax) = locs[[0, -1]]
|
1021 |
+
if vmin == vmax:
|
1022 |
+
vmin -= 1
|
1023 |
+
vmax += 1
|
1024 |
+
return nonsingular(vmin, vmax)
|
1025 |
+
|
1026 |
+
|
1027 |
+
# -------------------------------------------------------------------------
|
1028 |
+
# --- Formatter ---
|
1029 |
+
# -------------------------------------------------------------------------
|
1030 |
+
|
1031 |
+
|
1032 |
+
class TimeSeries_DateFormatter(Formatter):
|
1033 |
+
"""
|
1034 |
+
Formats the ticks along an axis controlled by a :class:`PeriodIndex`.
|
1035 |
+
|
1036 |
+
Parameters
|
1037 |
+
----------
|
1038 |
+
freq : BaseOffset
|
1039 |
+
Valid frequency specifier.
|
1040 |
+
minor_locator : bool, default False
|
1041 |
+
Whether the current formatter should apply to minor ticks (True) or
|
1042 |
+
major ticks (False).
|
1043 |
+
dynamic_mode : bool, default True
|
1044 |
+
Whether the formatter works in dynamic mode or not.
|
1045 |
+
"""
|
1046 |
+
|
1047 |
+
axis: Axis
|
1048 |
+
|
1049 |
+
def __init__(
|
1050 |
+
self,
|
1051 |
+
freq: BaseOffset,
|
1052 |
+
minor_locator: bool = False,
|
1053 |
+
dynamic_mode: bool = True,
|
1054 |
+
plot_obj=None,
|
1055 |
+
) -> None:
|
1056 |
+
freq = to_offset(freq, is_period=True)
|
1057 |
+
self.format = None
|
1058 |
+
self.freq = freq
|
1059 |
+
self.locs: list[Any] = [] # unused, for matplotlib compat
|
1060 |
+
self.formatdict: dict[Any, Any] | None = None
|
1061 |
+
self.isminor = minor_locator
|
1062 |
+
self.isdynamic = dynamic_mode
|
1063 |
+
self.offset = 0
|
1064 |
+
self.plot_obj = plot_obj
|
1065 |
+
self.finder = get_finder(freq)
|
1066 |
+
|
1067 |
+
def _set_default_format(self, vmin, vmax):
|
1068 |
+
"""Returns the default ticks spacing."""
|
1069 |
+
info = self.finder(vmin, vmax, self.freq)
|
1070 |
+
|
1071 |
+
if self.isminor:
|
1072 |
+
format = np.compress(info["min"] & np.logical_not(info["maj"]), info)
|
1073 |
+
else:
|
1074 |
+
format = np.compress(info["maj"], info)
|
1075 |
+
self.formatdict = {x: f for (x, _, _, f) in format}
|
1076 |
+
return self.formatdict
|
1077 |
+
|
1078 |
+
def set_locs(self, locs) -> None:
|
1079 |
+
"""Sets the locations of the ticks"""
|
1080 |
+
# don't actually use the locs. This is just needed to work with
|
1081 |
+
# matplotlib. Force to use vmin, vmax
|
1082 |
+
|
1083 |
+
self.locs = locs
|
1084 |
+
|
1085 |
+
(vmin, vmax) = tuple(self.axis.get_view_interval())
|
1086 |
+
if vmax < vmin:
|
1087 |
+
(vmin, vmax) = (vmax, vmin)
|
1088 |
+
self._set_default_format(vmin, vmax)
|
1089 |
+
|
1090 |
+
def __call__(self, x, pos: int | None = 0) -> str:
|
1091 |
+
if self.formatdict is None:
|
1092 |
+
return ""
|
1093 |
+
else:
|
1094 |
+
fmt = self.formatdict.pop(x, "")
|
1095 |
+
if isinstance(fmt, np.bytes_):
|
1096 |
+
fmt = fmt.decode("utf-8")
|
1097 |
+
with warnings.catch_warnings():
|
1098 |
+
warnings.filterwarnings(
|
1099 |
+
"ignore",
|
1100 |
+
"Period with BDay freq is deprecated",
|
1101 |
+
category=FutureWarning,
|
1102 |
+
)
|
1103 |
+
period = Period(ordinal=int(x), freq=self.freq)
|
1104 |
+
assert isinstance(period, Period)
|
1105 |
+
return period.strftime(fmt)
|
1106 |
+
|
1107 |
+
|
1108 |
+
class TimeSeries_TimedeltaFormatter(Formatter):
|
1109 |
+
"""
|
1110 |
+
Formats the ticks along an axis controlled by a :class:`TimedeltaIndex`.
|
1111 |
+
"""
|
1112 |
+
|
1113 |
+
axis: Axis
|
1114 |
+
|
1115 |
+
@staticmethod
|
1116 |
+
def format_timedelta_ticks(x, pos, n_decimals: int) -> str:
|
1117 |
+
"""
|
1118 |
+
Convert seconds to 'D days HH:MM:SS.F'
|
1119 |
+
"""
|
1120 |
+
s, ns = divmod(x, 10**9) # TODO(non-nano): this looks like it assumes ns
|
1121 |
+
m, s = divmod(s, 60)
|
1122 |
+
h, m = divmod(m, 60)
|
1123 |
+
d, h = divmod(h, 24)
|
1124 |
+
decimals = int(ns * 10 ** (n_decimals - 9))
|
1125 |
+
s = f"{int(h):02d}:{int(m):02d}:{int(s):02d}"
|
1126 |
+
if n_decimals > 0:
|
1127 |
+
s += f".{decimals:0{n_decimals}d}"
|
1128 |
+
if d != 0:
|
1129 |
+
s = f"{int(d):d} days {s}"
|
1130 |
+
return s
|
1131 |
+
|
1132 |
+
def __call__(self, x, pos: int | None = 0) -> str:
|
1133 |
+
(vmin, vmax) = tuple(self.axis.get_view_interval())
|
1134 |
+
n_decimals = min(int(np.ceil(np.log10(100 * 10**9 / abs(vmax - vmin)))), 9)
|
1135 |
+
return self.format_timedelta_ticks(x, pos, n_decimals)
|
venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/core.py
ADDED
@@ -0,0 +1,2119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from abc import (
|
4 |
+
ABC,
|
5 |
+
abstractmethod,
|
6 |
+
)
|
7 |
+
from collections.abc import (
|
8 |
+
Hashable,
|
9 |
+
Iterable,
|
10 |
+
Iterator,
|
11 |
+
Sequence,
|
12 |
+
)
|
13 |
+
from typing import (
|
14 |
+
TYPE_CHECKING,
|
15 |
+
Any,
|
16 |
+
Literal,
|
17 |
+
cast,
|
18 |
+
final,
|
19 |
+
)
|
20 |
+
import warnings
|
21 |
+
|
22 |
+
import matplotlib as mpl
|
23 |
+
import numpy as np
|
24 |
+
|
25 |
+
from pandas._libs import lib
|
26 |
+
from pandas.errors import AbstractMethodError
|
27 |
+
from pandas.util._decorators import cache_readonly
|
28 |
+
from pandas.util._exceptions import find_stack_level
|
29 |
+
|
30 |
+
from pandas.core.dtypes.common import (
|
31 |
+
is_any_real_numeric_dtype,
|
32 |
+
is_bool,
|
33 |
+
is_float,
|
34 |
+
is_float_dtype,
|
35 |
+
is_hashable,
|
36 |
+
is_integer,
|
37 |
+
is_integer_dtype,
|
38 |
+
is_iterator,
|
39 |
+
is_list_like,
|
40 |
+
is_number,
|
41 |
+
is_numeric_dtype,
|
42 |
+
)
|
43 |
+
from pandas.core.dtypes.dtypes import (
|
44 |
+
CategoricalDtype,
|
45 |
+
ExtensionDtype,
|
46 |
+
)
|
47 |
+
from pandas.core.dtypes.generic import (
|
48 |
+
ABCDataFrame,
|
49 |
+
ABCDatetimeIndex,
|
50 |
+
ABCIndex,
|
51 |
+
ABCMultiIndex,
|
52 |
+
ABCPeriodIndex,
|
53 |
+
ABCSeries,
|
54 |
+
)
|
55 |
+
from pandas.core.dtypes.missing import isna
|
56 |
+
|
57 |
+
import pandas.core.common as com
|
58 |
+
from pandas.core.frame import DataFrame
|
59 |
+
from pandas.util.version import Version
|
60 |
+
|
61 |
+
from pandas.io.formats.printing import pprint_thing
|
62 |
+
from pandas.plotting._matplotlib import tools
|
63 |
+
from pandas.plotting._matplotlib.converter import register_pandas_matplotlib_converters
|
64 |
+
from pandas.plotting._matplotlib.groupby import reconstruct_data_with_by
|
65 |
+
from pandas.plotting._matplotlib.misc import unpack_single_str_list
|
66 |
+
from pandas.plotting._matplotlib.style import get_standard_colors
|
67 |
+
from pandas.plotting._matplotlib.timeseries import (
|
68 |
+
decorate_axes,
|
69 |
+
format_dateaxis,
|
70 |
+
maybe_convert_index,
|
71 |
+
maybe_resample,
|
72 |
+
use_dynamic_x,
|
73 |
+
)
|
74 |
+
from pandas.plotting._matplotlib.tools import (
|
75 |
+
create_subplots,
|
76 |
+
flatten_axes,
|
77 |
+
format_date_labels,
|
78 |
+
get_all_lines,
|
79 |
+
get_xlim,
|
80 |
+
handle_shared_axes,
|
81 |
+
)
|
82 |
+
|
83 |
+
if TYPE_CHECKING:
|
84 |
+
from matplotlib.artist import Artist
|
85 |
+
from matplotlib.axes import Axes
|
86 |
+
from matplotlib.axis import Axis
|
87 |
+
from matplotlib.figure import Figure
|
88 |
+
|
89 |
+
from pandas._typing import (
|
90 |
+
IndexLabel,
|
91 |
+
NDFrameT,
|
92 |
+
PlottingOrientation,
|
93 |
+
npt,
|
94 |
+
)
|
95 |
+
|
96 |
+
from pandas import Series
|
97 |
+
|
98 |
+
|
99 |
+
def _color_in_style(style: str) -> bool:
|
100 |
+
"""
|
101 |
+
Check if there is a color letter in the style string.
|
102 |
+
"""
|
103 |
+
from matplotlib.colors import BASE_COLORS
|
104 |
+
|
105 |
+
return not set(BASE_COLORS).isdisjoint(style)
|
106 |
+
|
107 |
+
|
108 |
+
class MPLPlot(ABC):
|
109 |
+
"""
|
110 |
+
Base class for assembling a pandas plot using matplotlib
|
111 |
+
|
112 |
+
Parameters
|
113 |
+
----------
|
114 |
+
data :
|
115 |
+
|
116 |
+
"""
|
117 |
+
|
118 |
+
@property
|
119 |
+
@abstractmethod
|
120 |
+
def _kind(self) -> str:
|
121 |
+
"""Specify kind str. Must be overridden in child class"""
|
122 |
+
raise NotImplementedError
|
123 |
+
|
124 |
+
_layout_type = "vertical"
|
125 |
+
_default_rot = 0
|
126 |
+
|
127 |
+
@property
|
128 |
+
def orientation(self) -> str | None:
|
129 |
+
return None
|
130 |
+
|
131 |
+
data: DataFrame
|
132 |
+
|
133 |
+
def __init__(
|
134 |
+
self,
|
135 |
+
data,
|
136 |
+
kind=None,
|
137 |
+
by: IndexLabel | None = None,
|
138 |
+
subplots: bool | Sequence[Sequence[str]] = False,
|
139 |
+
sharex: bool | None = None,
|
140 |
+
sharey: bool = False,
|
141 |
+
use_index: bool = True,
|
142 |
+
figsize: tuple[float, float] | None = None,
|
143 |
+
grid=None,
|
144 |
+
legend: bool | str = True,
|
145 |
+
rot=None,
|
146 |
+
ax=None,
|
147 |
+
fig=None,
|
148 |
+
title=None,
|
149 |
+
xlim=None,
|
150 |
+
ylim=None,
|
151 |
+
xticks=None,
|
152 |
+
yticks=None,
|
153 |
+
xlabel: Hashable | None = None,
|
154 |
+
ylabel: Hashable | None = None,
|
155 |
+
fontsize: int | None = None,
|
156 |
+
secondary_y: bool | tuple | list | np.ndarray = False,
|
157 |
+
colormap=None,
|
158 |
+
table: bool = False,
|
159 |
+
layout=None,
|
160 |
+
include_bool: bool = False,
|
161 |
+
column: IndexLabel | None = None,
|
162 |
+
*,
|
163 |
+
logx: bool | None | Literal["sym"] = False,
|
164 |
+
logy: bool | None | Literal["sym"] = False,
|
165 |
+
loglog: bool | None | Literal["sym"] = False,
|
166 |
+
mark_right: bool = True,
|
167 |
+
stacked: bool = False,
|
168 |
+
label: Hashable | None = None,
|
169 |
+
style=None,
|
170 |
+
**kwds,
|
171 |
+
) -> None:
|
172 |
+
import matplotlib.pyplot as plt
|
173 |
+
|
174 |
+
# if users assign an empty list or tuple, raise `ValueError`
|
175 |
+
# similar to current `df.box` and `df.hist` APIs.
|
176 |
+
if by in ([], ()):
|
177 |
+
raise ValueError("No group keys passed!")
|
178 |
+
self.by = com.maybe_make_list(by)
|
179 |
+
|
180 |
+
# Assign the rest of columns into self.columns if by is explicitly defined
|
181 |
+
# while column is not, only need `columns` in hist/box plot when it's DF
|
182 |
+
# TODO: Might deprecate `column` argument in future PR (#28373)
|
183 |
+
if isinstance(data, DataFrame):
|
184 |
+
if column:
|
185 |
+
self.columns = com.maybe_make_list(column)
|
186 |
+
elif self.by is None:
|
187 |
+
self.columns = [
|
188 |
+
col for col in data.columns if is_numeric_dtype(data[col])
|
189 |
+
]
|
190 |
+
else:
|
191 |
+
self.columns = [
|
192 |
+
col
|
193 |
+
for col in data.columns
|
194 |
+
if col not in self.by and is_numeric_dtype(data[col])
|
195 |
+
]
|
196 |
+
|
197 |
+
# For `hist` plot, need to get grouped original data before `self.data` is
|
198 |
+
# updated later
|
199 |
+
if self.by is not None and self._kind == "hist":
|
200 |
+
self._grouped = data.groupby(unpack_single_str_list(self.by))
|
201 |
+
|
202 |
+
self.kind = kind
|
203 |
+
|
204 |
+
self.subplots = type(self)._validate_subplots_kwarg(
|
205 |
+
subplots, data, kind=self._kind
|
206 |
+
)
|
207 |
+
|
208 |
+
self.sharex = type(self)._validate_sharex(sharex, ax, by)
|
209 |
+
self.sharey = sharey
|
210 |
+
self.figsize = figsize
|
211 |
+
self.layout = layout
|
212 |
+
|
213 |
+
self.xticks = xticks
|
214 |
+
self.yticks = yticks
|
215 |
+
self.xlim = xlim
|
216 |
+
self.ylim = ylim
|
217 |
+
self.title = title
|
218 |
+
self.use_index = use_index
|
219 |
+
self.xlabel = xlabel
|
220 |
+
self.ylabel = ylabel
|
221 |
+
|
222 |
+
self.fontsize = fontsize
|
223 |
+
|
224 |
+
if rot is not None:
|
225 |
+
self.rot = rot
|
226 |
+
# need to know for format_date_labels since it's rotated to 30 by
|
227 |
+
# default
|
228 |
+
self._rot_set = True
|
229 |
+
else:
|
230 |
+
self._rot_set = False
|
231 |
+
self.rot = self._default_rot
|
232 |
+
|
233 |
+
if grid is None:
|
234 |
+
grid = False if secondary_y else plt.rcParams["axes.grid"]
|
235 |
+
|
236 |
+
self.grid = grid
|
237 |
+
self.legend = legend
|
238 |
+
self.legend_handles: list[Artist] = []
|
239 |
+
self.legend_labels: list[Hashable] = []
|
240 |
+
|
241 |
+
self.logx = type(self)._validate_log_kwd("logx", logx)
|
242 |
+
self.logy = type(self)._validate_log_kwd("logy", logy)
|
243 |
+
self.loglog = type(self)._validate_log_kwd("loglog", loglog)
|
244 |
+
self.label = label
|
245 |
+
self.style = style
|
246 |
+
self.mark_right = mark_right
|
247 |
+
self.stacked = stacked
|
248 |
+
|
249 |
+
# ax may be an Axes object or (if self.subplots) an ndarray of
|
250 |
+
# Axes objects
|
251 |
+
self.ax = ax
|
252 |
+
# TODO: deprecate fig keyword as it is ignored, not passed in tests
|
253 |
+
# as of 2023-11-05
|
254 |
+
|
255 |
+
# parse errorbar input if given
|
256 |
+
xerr = kwds.pop("xerr", None)
|
257 |
+
yerr = kwds.pop("yerr", None)
|
258 |
+
nseries = self._get_nseries(data)
|
259 |
+
xerr, data = type(self)._parse_errorbars("xerr", xerr, data, nseries)
|
260 |
+
yerr, data = type(self)._parse_errorbars("yerr", yerr, data, nseries)
|
261 |
+
self.errors = {"xerr": xerr, "yerr": yerr}
|
262 |
+
self.data = data
|
263 |
+
|
264 |
+
if not isinstance(secondary_y, (bool, tuple, list, np.ndarray, ABCIndex)):
|
265 |
+
secondary_y = [secondary_y]
|
266 |
+
self.secondary_y = secondary_y
|
267 |
+
|
268 |
+
# ugly TypeError if user passes matplotlib's `cmap` name.
|
269 |
+
# Probably better to accept either.
|
270 |
+
if "cmap" in kwds and colormap:
|
271 |
+
raise TypeError("Only specify one of `cmap` and `colormap`.")
|
272 |
+
if "cmap" in kwds:
|
273 |
+
self.colormap = kwds.pop("cmap")
|
274 |
+
else:
|
275 |
+
self.colormap = colormap
|
276 |
+
|
277 |
+
self.table = table
|
278 |
+
self.include_bool = include_bool
|
279 |
+
|
280 |
+
self.kwds = kwds
|
281 |
+
|
282 |
+
color = kwds.pop("color", lib.no_default)
|
283 |
+
self.color = self._validate_color_args(color, self.colormap)
|
284 |
+
assert "color" not in self.kwds
|
285 |
+
|
286 |
+
self.data = self._ensure_frame(self.data)
|
287 |
+
|
288 |
+
@final
|
289 |
+
@staticmethod
|
290 |
+
def _validate_sharex(sharex: bool | None, ax, by) -> bool:
|
291 |
+
if sharex is None:
|
292 |
+
# if by is defined, subplots are used and sharex should be False
|
293 |
+
if ax is None and by is None: # pylint: disable=simplifiable-if-statement
|
294 |
+
sharex = True
|
295 |
+
else:
|
296 |
+
# if we get an axis, the users should do the visibility
|
297 |
+
# setting...
|
298 |
+
sharex = False
|
299 |
+
elif not is_bool(sharex):
|
300 |
+
raise TypeError("sharex must be a bool or None")
|
301 |
+
return bool(sharex)
|
302 |
+
|
303 |
+
@classmethod
|
304 |
+
def _validate_log_kwd(
|
305 |
+
cls,
|
306 |
+
kwd: str,
|
307 |
+
value: bool | None | Literal["sym"],
|
308 |
+
) -> bool | None | Literal["sym"]:
|
309 |
+
if (
|
310 |
+
value is None
|
311 |
+
or isinstance(value, bool)
|
312 |
+
or (isinstance(value, str) and value == "sym")
|
313 |
+
):
|
314 |
+
return value
|
315 |
+
raise ValueError(
|
316 |
+
f"keyword '{kwd}' should be bool, None, or 'sym', not '{value}'"
|
317 |
+
)
|
318 |
+
|
319 |
+
@final
|
320 |
+
@staticmethod
|
321 |
+
def _validate_subplots_kwarg(
|
322 |
+
subplots: bool | Sequence[Sequence[str]], data: Series | DataFrame, kind: str
|
323 |
+
) -> bool | list[tuple[int, ...]]:
|
324 |
+
"""
|
325 |
+
Validate the subplots parameter
|
326 |
+
|
327 |
+
- check type and content
|
328 |
+
- check for duplicate columns
|
329 |
+
- check for invalid column names
|
330 |
+
- convert column names into indices
|
331 |
+
- add missing columns in a group of their own
|
332 |
+
See comments in code below for more details.
|
333 |
+
|
334 |
+
Parameters
|
335 |
+
----------
|
336 |
+
subplots : subplots parameters as passed to PlotAccessor
|
337 |
+
|
338 |
+
Returns
|
339 |
+
-------
|
340 |
+
validated subplots : a bool or a list of tuples of column indices. Columns
|
341 |
+
in the same tuple will be grouped together in the resulting plot.
|
342 |
+
"""
|
343 |
+
|
344 |
+
if isinstance(subplots, bool):
|
345 |
+
return subplots
|
346 |
+
elif not isinstance(subplots, Iterable):
|
347 |
+
raise ValueError("subplots should be a bool or an iterable")
|
348 |
+
|
349 |
+
supported_kinds = (
|
350 |
+
"line",
|
351 |
+
"bar",
|
352 |
+
"barh",
|
353 |
+
"hist",
|
354 |
+
"kde",
|
355 |
+
"density",
|
356 |
+
"area",
|
357 |
+
"pie",
|
358 |
+
)
|
359 |
+
if kind not in supported_kinds:
|
360 |
+
raise ValueError(
|
361 |
+
"When subplots is an iterable, kind must be "
|
362 |
+
f"one of {', '.join(supported_kinds)}. Got {kind}."
|
363 |
+
)
|
364 |
+
|
365 |
+
if isinstance(data, ABCSeries):
|
366 |
+
raise NotImplementedError(
|
367 |
+
"An iterable subplots for a Series is not supported."
|
368 |
+
)
|
369 |
+
|
370 |
+
columns = data.columns
|
371 |
+
if isinstance(columns, ABCMultiIndex):
|
372 |
+
raise NotImplementedError(
|
373 |
+
"An iterable subplots for a DataFrame with a MultiIndex column "
|
374 |
+
"is not supported."
|
375 |
+
)
|
376 |
+
|
377 |
+
if columns.nunique() != len(columns):
|
378 |
+
raise NotImplementedError(
|
379 |
+
"An iterable subplots for a DataFrame with non-unique column "
|
380 |
+
"labels is not supported."
|
381 |
+
)
|
382 |
+
|
383 |
+
# subplots is a list of tuples where each tuple is a group of
|
384 |
+
# columns to be grouped together (one ax per group).
|
385 |
+
# we consolidate the subplots list such that:
|
386 |
+
# - the tuples contain indices instead of column names
|
387 |
+
# - the columns that aren't yet in the list are added in a group
|
388 |
+
# of their own.
|
389 |
+
# For example with columns from a to g, and
|
390 |
+
# subplots = [(a, c), (b, f, e)],
|
391 |
+
# we end up with [(ai, ci), (bi, fi, ei), (di,), (gi,)]
|
392 |
+
# This way, we can handle self.subplots in a homogeneous manner
|
393 |
+
# later.
|
394 |
+
# TODO: also accept indices instead of just names?
|
395 |
+
|
396 |
+
out = []
|
397 |
+
seen_columns: set[Hashable] = set()
|
398 |
+
for group in subplots:
|
399 |
+
if not is_list_like(group):
|
400 |
+
raise ValueError(
|
401 |
+
"When subplots is an iterable, each entry "
|
402 |
+
"should be a list/tuple of column names."
|
403 |
+
)
|
404 |
+
idx_locs = columns.get_indexer_for(group)
|
405 |
+
if (idx_locs == -1).any():
|
406 |
+
bad_labels = np.extract(idx_locs == -1, group)
|
407 |
+
raise ValueError(
|
408 |
+
f"Column label(s) {list(bad_labels)} not found in the DataFrame."
|
409 |
+
)
|
410 |
+
unique_columns = set(group)
|
411 |
+
duplicates = seen_columns.intersection(unique_columns)
|
412 |
+
if duplicates:
|
413 |
+
raise ValueError(
|
414 |
+
"Each column should be in only one subplot. "
|
415 |
+
f"Columns {duplicates} were found in multiple subplots."
|
416 |
+
)
|
417 |
+
seen_columns = seen_columns.union(unique_columns)
|
418 |
+
out.append(tuple(idx_locs))
|
419 |
+
|
420 |
+
unseen_columns = columns.difference(seen_columns)
|
421 |
+
for column in unseen_columns:
|
422 |
+
idx_loc = columns.get_loc(column)
|
423 |
+
out.append((idx_loc,))
|
424 |
+
return out
|
425 |
+
|
426 |
+
def _validate_color_args(self, color, colormap):
|
427 |
+
if color is lib.no_default:
|
428 |
+
# It was not provided by the user
|
429 |
+
if "colors" in self.kwds and colormap is not None:
|
430 |
+
warnings.warn(
|
431 |
+
"'color' and 'colormap' cannot be used simultaneously. "
|
432 |
+
"Using 'color'",
|
433 |
+
stacklevel=find_stack_level(),
|
434 |
+
)
|
435 |
+
return None
|
436 |
+
if self.nseries == 1 and color is not None and not is_list_like(color):
|
437 |
+
# support series.plot(color='green')
|
438 |
+
color = [color]
|
439 |
+
|
440 |
+
if isinstance(color, tuple) and self.nseries == 1 and len(color) in (3, 4):
|
441 |
+
# support RGB and RGBA tuples in series plot
|
442 |
+
color = [color]
|
443 |
+
|
444 |
+
if colormap is not None:
|
445 |
+
warnings.warn(
|
446 |
+
"'color' and 'colormap' cannot be used simultaneously. Using 'color'",
|
447 |
+
stacklevel=find_stack_level(),
|
448 |
+
)
|
449 |
+
|
450 |
+
if self.style is not None:
|
451 |
+
if is_list_like(self.style):
|
452 |
+
styles = self.style
|
453 |
+
else:
|
454 |
+
styles = [self.style]
|
455 |
+
# need only a single match
|
456 |
+
for s in styles:
|
457 |
+
if _color_in_style(s):
|
458 |
+
raise ValueError(
|
459 |
+
"Cannot pass 'style' string with a color symbol and "
|
460 |
+
"'color' keyword argument. Please use one or the "
|
461 |
+
"other or pass 'style' without a color symbol"
|
462 |
+
)
|
463 |
+
return color
|
464 |
+
|
465 |
+
@final
|
466 |
+
@staticmethod
|
467 |
+
def _iter_data(
|
468 |
+
data: DataFrame | dict[Hashable, Series | DataFrame]
|
469 |
+
) -> Iterator[tuple[Hashable, np.ndarray]]:
|
470 |
+
for col, values in data.items():
|
471 |
+
# This was originally written to use values.values before EAs
|
472 |
+
# were implemented; adding np.asarray(...) to keep consistent
|
473 |
+
# typing.
|
474 |
+
yield col, np.asarray(values.values)
|
475 |
+
|
476 |
+
def _get_nseries(self, data: Series | DataFrame) -> int:
|
477 |
+
# When `by` is explicitly assigned, grouped data size will be defined, and
|
478 |
+
# this will determine number of subplots to have, aka `self.nseries`
|
479 |
+
if data.ndim == 1:
|
480 |
+
return 1
|
481 |
+
elif self.by is not None and self._kind == "hist":
|
482 |
+
return len(self._grouped)
|
483 |
+
elif self.by is not None and self._kind == "box":
|
484 |
+
return len(self.columns)
|
485 |
+
else:
|
486 |
+
return data.shape[1]
|
487 |
+
|
488 |
+
@final
|
489 |
+
@property
|
490 |
+
def nseries(self) -> int:
|
491 |
+
return self._get_nseries(self.data)
|
492 |
+
|
493 |
+
@final
|
494 |
+
def draw(self) -> None:
|
495 |
+
self.plt.draw_if_interactive()
|
496 |
+
|
497 |
+
@final
|
498 |
+
def generate(self) -> None:
|
499 |
+
self._compute_plot_data()
|
500 |
+
fig = self.fig
|
501 |
+
self._make_plot(fig)
|
502 |
+
self._add_table()
|
503 |
+
self._make_legend()
|
504 |
+
self._adorn_subplots(fig)
|
505 |
+
|
506 |
+
for ax in self.axes:
|
507 |
+
self._post_plot_logic_common(ax)
|
508 |
+
self._post_plot_logic(ax, self.data)
|
509 |
+
|
510 |
+
@final
|
511 |
+
@staticmethod
|
512 |
+
def _has_plotted_object(ax: Axes) -> bool:
|
513 |
+
"""check whether ax has data"""
|
514 |
+
return len(ax.lines) != 0 or len(ax.artists) != 0 or len(ax.containers) != 0
|
515 |
+
|
516 |
+
@final
|
517 |
+
def _maybe_right_yaxis(self, ax: Axes, axes_num: int) -> Axes:
|
518 |
+
if not self.on_right(axes_num):
|
519 |
+
# secondary axes may be passed via ax kw
|
520 |
+
return self._get_ax_layer(ax)
|
521 |
+
|
522 |
+
if hasattr(ax, "right_ax"):
|
523 |
+
# if it has right_ax property, ``ax`` must be left axes
|
524 |
+
return ax.right_ax
|
525 |
+
elif hasattr(ax, "left_ax"):
|
526 |
+
# if it has left_ax property, ``ax`` must be right axes
|
527 |
+
return ax
|
528 |
+
else:
|
529 |
+
# otherwise, create twin axes
|
530 |
+
orig_ax, new_ax = ax, ax.twinx()
|
531 |
+
# TODO: use Matplotlib public API when available
|
532 |
+
new_ax._get_lines = orig_ax._get_lines # type: ignore[attr-defined]
|
533 |
+
# TODO #54485
|
534 |
+
new_ax._get_patches_for_fill = ( # type: ignore[attr-defined]
|
535 |
+
orig_ax._get_patches_for_fill # type: ignore[attr-defined]
|
536 |
+
)
|
537 |
+
# TODO #54485
|
538 |
+
orig_ax.right_ax, new_ax.left_ax = ( # type: ignore[attr-defined]
|
539 |
+
new_ax,
|
540 |
+
orig_ax,
|
541 |
+
)
|
542 |
+
|
543 |
+
if not self._has_plotted_object(orig_ax): # no data on left y
|
544 |
+
orig_ax.get_yaxis().set_visible(False)
|
545 |
+
|
546 |
+
if self.logy is True or self.loglog is True:
|
547 |
+
new_ax.set_yscale("log")
|
548 |
+
elif self.logy == "sym" or self.loglog == "sym":
|
549 |
+
new_ax.set_yscale("symlog")
|
550 |
+
return new_ax # type: ignore[return-value]
|
551 |
+
|
552 |
+
@final
|
553 |
+
@cache_readonly
|
554 |
+
def fig(self) -> Figure:
|
555 |
+
return self._axes_and_fig[1]
|
556 |
+
|
557 |
+
@final
|
558 |
+
@cache_readonly
|
559 |
+
# TODO: can we annotate this as both a Sequence[Axes] and ndarray[object]?
|
560 |
+
def axes(self) -> Sequence[Axes]:
|
561 |
+
return self._axes_and_fig[0]
|
562 |
+
|
563 |
+
@final
|
564 |
+
@cache_readonly
|
565 |
+
def _axes_and_fig(self) -> tuple[Sequence[Axes], Figure]:
|
566 |
+
if self.subplots:
|
567 |
+
naxes = (
|
568 |
+
self.nseries if isinstance(self.subplots, bool) else len(self.subplots)
|
569 |
+
)
|
570 |
+
fig, axes = create_subplots(
|
571 |
+
naxes=naxes,
|
572 |
+
sharex=self.sharex,
|
573 |
+
sharey=self.sharey,
|
574 |
+
figsize=self.figsize,
|
575 |
+
ax=self.ax,
|
576 |
+
layout=self.layout,
|
577 |
+
layout_type=self._layout_type,
|
578 |
+
)
|
579 |
+
elif self.ax is None:
|
580 |
+
fig = self.plt.figure(figsize=self.figsize)
|
581 |
+
axes = fig.add_subplot(111)
|
582 |
+
else:
|
583 |
+
fig = self.ax.get_figure()
|
584 |
+
if self.figsize is not None:
|
585 |
+
fig.set_size_inches(self.figsize)
|
586 |
+
axes = self.ax
|
587 |
+
|
588 |
+
axes = flatten_axes(axes)
|
589 |
+
|
590 |
+
if self.logx is True or self.loglog is True:
|
591 |
+
[a.set_xscale("log") for a in axes]
|
592 |
+
elif self.logx == "sym" or self.loglog == "sym":
|
593 |
+
[a.set_xscale("symlog") for a in axes]
|
594 |
+
|
595 |
+
if self.logy is True or self.loglog is True:
|
596 |
+
[a.set_yscale("log") for a in axes]
|
597 |
+
elif self.logy == "sym" or self.loglog == "sym":
|
598 |
+
[a.set_yscale("symlog") for a in axes]
|
599 |
+
|
600 |
+
axes_seq = cast(Sequence["Axes"], axes)
|
601 |
+
return axes_seq, fig
|
602 |
+
|
603 |
+
@property
|
604 |
+
def result(self):
|
605 |
+
"""
|
606 |
+
Return result axes
|
607 |
+
"""
|
608 |
+
if self.subplots:
|
609 |
+
if self.layout is not None and not is_list_like(self.ax):
|
610 |
+
# error: "Sequence[Any]" has no attribute "reshape"
|
611 |
+
return self.axes.reshape(*self.layout) # type: ignore[attr-defined]
|
612 |
+
else:
|
613 |
+
return self.axes
|
614 |
+
else:
|
615 |
+
sec_true = isinstance(self.secondary_y, bool) and self.secondary_y
|
616 |
+
# error: Argument 1 to "len" has incompatible type "Union[bool,
|
617 |
+
# Tuple[Any, ...], List[Any], ndarray[Any, Any]]"; expected "Sized"
|
618 |
+
all_sec = (
|
619 |
+
is_list_like(self.secondary_y)
|
620 |
+
and len(self.secondary_y) == self.nseries # type: ignore[arg-type]
|
621 |
+
)
|
622 |
+
if sec_true or all_sec:
|
623 |
+
# if all data is plotted on secondary, return right axes
|
624 |
+
return self._get_ax_layer(self.axes[0], primary=False)
|
625 |
+
else:
|
626 |
+
return self.axes[0]
|
627 |
+
|
628 |
+
@final
|
629 |
+
@staticmethod
|
630 |
+
def _convert_to_ndarray(data):
|
631 |
+
# GH31357: categorical columns are processed separately
|
632 |
+
if isinstance(data.dtype, CategoricalDtype):
|
633 |
+
return data
|
634 |
+
|
635 |
+
# GH32073: cast to float if values contain nulled integers
|
636 |
+
if (is_integer_dtype(data.dtype) or is_float_dtype(data.dtype)) and isinstance(
|
637 |
+
data.dtype, ExtensionDtype
|
638 |
+
):
|
639 |
+
return data.to_numpy(dtype="float", na_value=np.nan)
|
640 |
+
|
641 |
+
# GH25587: cast ExtensionArray of pandas (IntegerArray, etc.) to
|
642 |
+
# np.ndarray before plot.
|
643 |
+
if len(data) > 0:
|
644 |
+
return np.asarray(data)
|
645 |
+
|
646 |
+
return data
|
647 |
+
|
648 |
+
@final
|
649 |
+
def _ensure_frame(self, data) -> DataFrame:
|
650 |
+
if isinstance(data, ABCSeries):
|
651 |
+
label = self.label
|
652 |
+
if label is None and data.name is None:
|
653 |
+
label = ""
|
654 |
+
if label is None:
|
655 |
+
# We'll end up with columns of [0] instead of [None]
|
656 |
+
data = data.to_frame()
|
657 |
+
else:
|
658 |
+
data = data.to_frame(name=label)
|
659 |
+
elif self._kind in ("hist", "box"):
|
660 |
+
cols = self.columns if self.by is None else self.columns + self.by
|
661 |
+
data = data.loc[:, cols]
|
662 |
+
return data
|
663 |
+
|
664 |
+
@final
|
665 |
+
def _compute_plot_data(self) -> None:
|
666 |
+
data = self.data
|
667 |
+
|
668 |
+
# GH15079 reconstruct data if by is defined
|
669 |
+
if self.by is not None:
|
670 |
+
self.subplots = True
|
671 |
+
data = reconstruct_data_with_by(self.data, by=self.by, cols=self.columns)
|
672 |
+
|
673 |
+
# GH16953, infer_objects is needed as fallback, for ``Series``
|
674 |
+
# with ``dtype == object``
|
675 |
+
data = data.infer_objects(copy=False)
|
676 |
+
include_type = [np.number, "datetime", "datetimetz", "timedelta"]
|
677 |
+
|
678 |
+
# GH23719, allow plotting boolean
|
679 |
+
if self.include_bool is True:
|
680 |
+
include_type.append(np.bool_)
|
681 |
+
|
682 |
+
# GH22799, exclude datetime-like type for boxplot
|
683 |
+
exclude_type = None
|
684 |
+
if self._kind == "box":
|
685 |
+
# TODO: change after solving issue 27881
|
686 |
+
include_type = [np.number]
|
687 |
+
exclude_type = ["timedelta"]
|
688 |
+
|
689 |
+
# GH 18755, include object and category type for scatter plot
|
690 |
+
if self._kind == "scatter":
|
691 |
+
include_type.extend(["object", "category", "string"])
|
692 |
+
|
693 |
+
numeric_data = data.select_dtypes(include=include_type, exclude=exclude_type)
|
694 |
+
|
695 |
+
is_empty = numeric_data.shape[-1] == 0
|
696 |
+
# no non-numeric frames or series allowed
|
697 |
+
if is_empty:
|
698 |
+
raise TypeError("no numeric data to plot")
|
699 |
+
|
700 |
+
self.data = numeric_data.apply(type(self)._convert_to_ndarray)
|
701 |
+
|
702 |
+
def _make_plot(self, fig: Figure) -> None:
|
703 |
+
raise AbstractMethodError(self)
|
704 |
+
|
705 |
+
@final
|
706 |
+
def _add_table(self) -> None:
|
707 |
+
if self.table is False:
|
708 |
+
return
|
709 |
+
elif self.table is True:
|
710 |
+
data = self.data.transpose()
|
711 |
+
else:
|
712 |
+
data = self.table
|
713 |
+
ax = self._get_ax(0)
|
714 |
+
tools.table(ax, data)
|
715 |
+
|
716 |
+
@final
|
717 |
+
def _post_plot_logic_common(self, ax: Axes) -> None:
|
718 |
+
"""Common post process for each axes"""
|
719 |
+
if self.orientation == "vertical" or self.orientation is None:
|
720 |
+
type(self)._apply_axis_properties(
|
721 |
+
ax.xaxis, rot=self.rot, fontsize=self.fontsize
|
722 |
+
)
|
723 |
+
type(self)._apply_axis_properties(ax.yaxis, fontsize=self.fontsize)
|
724 |
+
|
725 |
+
if hasattr(ax, "right_ax"):
|
726 |
+
type(self)._apply_axis_properties(
|
727 |
+
ax.right_ax.yaxis, fontsize=self.fontsize
|
728 |
+
)
|
729 |
+
|
730 |
+
elif self.orientation == "horizontal":
|
731 |
+
type(self)._apply_axis_properties(
|
732 |
+
ax.yaxis, rot=self.rot, fontsize=self.fontsize
|
733 |
+
)
|
734 |
+
type(self)._apply_axis_properties(ax.xaxis, fontsize=self.fontsize)
|
735 |
+
|
736 |
+
if hasattr(ax, "right_ax"):
|
737 |
+
type(self)._apply_axis_properties(
|
738 |
+
ax.right_ax.yaxis, fontsize=self.fontsize
|
739 |
+
)
|
740 |
+
else: # pragma no cover
|
741 |
+
raise ValueError
|
742 |
+
|
743 |
+
@abstractmethod
|
744 |
+
def _post_plot_logic(self, ax: Axes, data) -> None:
|
745 |
+
"""Post process for each axes. Overridden in child classes"""
|
746 |
+
|
747 |
+
@final
|
748 |
+
def _adorn_subplots(self, fig: Figure) -> None:
|
749 |
+
"""Common post process unrelated to data"""
|
750 |
+
if len(self.axes) > 0:
|
751 |
+
all_axes = self._get_subplots(fig)
|
752 |
+
nrows, ncols = self._get_axes_layout(fig)
|
753 |
+
handle_shared_axes(
|
754 |
+
axarr=all_axes,
|
755 |
+
nplots=len(all_axes),
|
756 |
+
naxes=nrows * ncols,
|
757 |
+
nrows=nrows,
|
758 |
+
ncols=ncols,
|
759 |
+
sharex=self.sharex,
|
760 |
+
sharey=self.sharey,
|
761 |
+
)
|
762 |
+
|
763 |
+
for ax in self.axes:
|
764 |
+
ax = getattr(ax, "right_ax", ax)
|
765 |
+
if self.yticks is not None:
|
766 |
+
ax.set_yticks(self.yticks)
|
767 |
+
|
768 |
+
if self.xticks is not None:
|
769 |
+
ax.set_xticks(self.xticks)
|
770 |
+
|
771 |
+
if self.ylim is not None:
|
772 |
+
ax.set_ylim(self.ylim)
|
773 |
+
|
774 |
+
if self.xlim is not None:
|
775 |
+
ax.set_xlim(self.xlim)
|
776 |
+
|
777 |
+
# GH9093, currently Pandas does not show ylabel, so if users provide
|
778 |
+
# ylabel will set it as ylabel in the plot.
|
779 |
+
if self.ylabel is not None:
|
780 |
+
ax.set_ylabel(pprint_thing(self.ylabel))
|
781 |
+
|
782 |
+
ax.grid(self.grid)
|
783 |
+
|
784 |
+
if self.title:
|
785 |
+
if self.subplots:
|
786 |
+
if is_list_like(self.title):
|
787 |
+
if len(self.title) != self.nseries:
|
788 |
+
raise ValueError(
|
789 |
+
"The length of `title` must equal the number "
|
790 |
+
"of columns if using `title` of type `list` "
|
791 |
+
"and `subplots=True`.\n"
|
792 |
+
f"length of title = {len(self.title)}\n"
|
793 |
+
f"number of columns = {self.nseries}"
|
794 |
+
)
|
795 |
+
|
796 |
+
for ax, title in zip(self.axes, self.title):
|
797 |
+
ax.set_title(title)
|
798 |
+
else:
|
799 |
+
fig.suptitle(self.title)
|
800 |
+
else:
|
801 |
+
if is_list_like(self.title):
|
802 |
+
msg = (
|
803 |
+
"Using `title` of type `list` is not supported "
|
804 |
+
"unless `subplots=True` is passed"
|
805 |
+
)
|
806 |
+
raise ValueError(msg)
|
807 |
+
self.axes[0].set_title(self.title)
|
808 |
+
|
809 |
+
@final
|
810 |
+
@staticmethod
|
811 |
+
def _apply_axis_properties(
|
812 |
+
axis: Axis, rot=None, fontsize: int | None = None
|
813 |
+
) -> None:
|
814 |
+
"""
|
815 |
+
Tick creation within matplotlib is reasonably expensive and is
|
816 |
+
internally deferred until accessed as Ticks are created/destroyed
|
817 |
+
multiple times per draw. It's therefore beneficial for us to avoid
|
818 |
+
accessing unless we will act on the Tick.
|
819 |
+
"""
|
820 |
+
if rot is not None or fontsize is not None:
|
821 |
+
# rot=0 is a valid setting, hence the explicit None check
|
822 |
+
labels = axis.get_majorticklabels() + axis.get_minorticklabels()
|
823 |
+
for label in labels:
|
824 |
+
if rot is not None:
|
825 |
+
label.set_rotation(rot)
|
826 |
+
if fontsize is not None:
|
827 |
+
label.set_fontsize(fontsize)
|
828 |
+
|
829 |
+
@final
|
830 |
+
@property
|
831 |
+
def legend_title(self) -> str | None:
|
832 |
+
if not isinstance(self.data.columns, ABCMultiIndex):
|
833 |
+
name = self.data.columns.name
|
834 |
+
if name is not None:
|
835 |
+
name = pprint_thing(name)
|
836 |
+
return name
|
837 |
+
else:
|
838 |
+
stringified = map(pprint_thing, self.data.columns.names)
|
839 |
+
return ",".join(stringified)
|
840 |
+
|
841 |
+
@final
|
842 |
+
def _mark_right_label(self, label: str, index: int) -> str:
|
843 |
+
"""
|
844 |
+
Append ``(right)`` to the label of a line if it's plotted on the right axis.
|
845 |
+
|
846 |
+
Note that ``(right)`` is only appended when ``subplots=False``.
|
847 |
+
"""
|
848 |
+
if not self.subplots and self.mark_right and self.on_right(index):
|
849 |
+
label += " (right)"
|
850 |
+
return label
|
851 |
+
|
852 |
+
@final
|
853 |
+
def _append_legend_handles_labels(self, handle: Artist, label: str) -> None:
|
854 |
+
"""
|
855 |
+
Append current handle and label to ``legend_handles`` and ``legend_labels``.
|
856 |
+
|
857 |
+
These will be used to make the legend.
|
858 |
+
"""
|
859 |
+
self.legend_handles.append(handle)
|
860 |
+
self.legend_labels.append(label)
|
861 |
+
|
862 |
+
def _make_legend(self) -> None:
|
863 |
+
ax, leg = self._get_ax_legend(self.axes[0])
|
864 |
+
|
865 |
+
handles = []
|
866 |
+
labels = []
|
867 |
+
title = ""
|
868 |
+
|
869 |
+
if not self.subplots:
|
870 |
+
if leg is not None:
|
871 |
+
title = leg.get_title().get_text()
|
872 |
+
# Replace leg.legend_handles because it misses marker info
|
873 |
+
if Version(mpl.__version__) < Version("3.7"):
|
874 |
+
handles = leg.legendHandles
|
875 |
+
else:
|
876 |
+
handles = leg.legend_handles
|
877 |
+
labels = [x.get_text() for x in leg.get_texts()]
|
878 |
+
|
879 |
+
if self.legend:
|
880 |
+
if self.legend == "reverse":
|
881 |
+
handles += reversed(self.legend_handles)
|
882 |
+
labels += reversed(self.legend_labels)
|
883 |
+
else:
|
884 |
+
handles += self.legend_handles
|
885 |
+
labels += self.legend_labels
|
886 |
+
|
887 |
+
if self.legend_title is not None:
|
888 |
+
title = self.legend_title
|
889 |
+
|
890 |
+
if len(handles) > 0:
|
891 |
+
ax.legend(handles, labels, loc="best", title=title)
|
892 |
+
|
893 |
+
elif self.subplots and self.legend:
|
894 |
+
for ax in self.axes:
|
895 |
+
if ax.get_visible():
|
896 |
+
ax.legend(loc="best")
|
897 |
+
|
898 |
+
@final
|
899 |
+
@staticmethod
|
900 |
+
def _get_ax_legend(ax: Axes):
|
901 |
+
"""
|
902 |
+
Take in axes and return ax and legend under different scenarios
|
903 |
+
"""
|
904 |
+
leg = ax.get_legend()
|
905 |
+
|
906 |
+
other_ax = getattr(ax, "left_ax", None) or getattr(ax, "right_ax", None)
|
907 |
+
other_leg = None
|
908 |
+
if other_ax is not None:
|
909 |
+
other_leg = other_ax.get_legend()
|
910 |
+
if leg is None and other_leg is not None:
|
911 |
+
leg = other_leg
|
912 |
+
ax = other_ax
|
913 |
+
return ax, leg
|
914 |
+
|
915 |
+
@final
|
916 |
+
@cache_readonly
|
917 |
+
def plt(self):
|
918 |
+
import matplotlib.pyplot as plt
|
919 |
+
|
920 |
+
return plt
|
921 |
+
|
922 |
+
_need_to_set_index = False
|
923 |
+
|
924 |
+
@final
|
925 |
+
def _get_xticks(self):
|
926 |
+
index = self.data.index
|
927 |
+
is_datetype = index.inferred_type in ("datetime", "date", "datetime64", "time")
|
928 |
+
|
929 |
+
# TODO: be stricter about x?
|
930 |
+
x: list[int] | np.ndarray
|
931 |
+
if self.use_index:
|
932 |
+
if isinstance(index, ABCPeriodIndex):
|
933 |
+
# test_mixed_freq_irreg_period
|
934 |
+
x = index.to_timestamp()._mpl_repr()
|
935 |
+
# TODO: why do we need to do to_timestamp() here but not other
|
936 |
+
# places where we call mpl_repr?
|
937 |
+
elif is_any_real_numeric_dtype(index.dtype):
|
938 |
+
# Matplotlib supports numeric values or datetime objects as
|
939 |
+
# xaxis values. Taking LBYL approach here, by the time
|
940 |
+
# matplotlib raises exception when using non numeric/datetime
|
941 |
+
# values for xaxis, several actions are already taken by plt.
|
942 |
+
x = index._mpl_repr()
|
943 |
+
elif isinstance(index, ABCDatetimeIndex) or is_datetype:
|
944 |
+
x = index._mpl_repr()
|
945 |
+
else:
|
946 |
+
self._need_to_set_index = True
|
947 |
+
x = list(range(len(index)))
|
948 |
+
else:
|
949 |
+
x = list(range(len(index)))
|
950 |
+
|
951 |
+
return x
|
952 |
+
|
953 |
+
@classmethod
|
954 |
+
@register_pandas_matplotlib_converters
|
955 |
+
def _plot(
|
956 |
+
cls, ax: Axes, x, y: np.ndarray, style=None, is_errorbar: bool = False, **kwds
|
957 |
+
):
|
958 |
+
mask = isna(y)
|
959 |
+
if mask.any():
|
960 |
+
y = np.ma.array(y)
|
961 |
+
y = np.ma.masked_where(mask, y)
|
962 |
+
|
963 |
+
if isinstance(x, ABCIndex):
|
964 |
+
x = x._mpl_repr()
|
965 |
+
|
966 |
+
if is_errorbar:
|
967 |
+
if "xerr" in kwds:
|
968 |
+
kwds["xerr"] = np.array(kwds.get("xerr"))
|
969 |
+
if "yerr" in kwds:
|
970 |
+
kwds["yerr"] = np.array(kwds.get("yerr"))
|
971 |
+
return ax.errorbar(x, y, **kwds)
|
972 |
+
else:
|
973 |
+
# prevent style kwarg from going to errorbar, where it is unsupported
|
974 |
+
args = (x, y, style) if style is not None else (x, y)
|
975 |
+
return ax.plot(*args, **kwds)
|
976 |
+
|
977 |
+
def _get_custom_index_name(self):
|
978 |
+
"""Specify whether xlabel/ylabel should be used to override index name"""
|
979 |
+
return self.xlabel
|
980 |
+
|
981 |
+
@final
|
982 |
+
def _get_index_name(self) -> str | None:
|
983 |
+
if isinstance(self.data.index, ABCMultiIndex):
|
984 |
+
name = self.data.index.names
|
985 |
+
if com.any_not_none(*name):
|
986 |
+
name = ",".join([pprint_thing(x) for x in name])
|
987 |
+
else:
|
988 |
+
name = None
|
989 |
+
else:
|
990 |
+
name = self.data.index.name
|
991 |
+
if name is not None:
|
992 |
+
name = pprint_thing(name)
|
993 |
+
|
994 |
+
# GH 45145, override the default axis label if one is provided.
|
995 |
+
index_name = self._get_custom_index_name()
|
996 |
+
if index_name is not None:
|
997 |
+
name = pprint_thing(index_name)
|
998 |
+
|
999 |
+
return name
|
1000 |
+
|
1001 |
+
@final
|
1002 |
+
@classmethod
|
1003 |
+
def _get_ax_layer(cls, ax, primary: bool = True):
|
1004 |
+
"""get left (primary) or right (secondary) axes"""
|
1005 |
+
if primary:
|
1006 |
+
return getattr(ax, "left_ax", ax)
|
1007 |
+
else:
|
1008 |
+
return getattr(ax, "right_ax", ax)
|
1009 |
+
|
1010 |
+
@final
|
1011 |
+
def _col_idx_to_axis_idx(self, col_idx: int) -> int:
|
1012 |
+
"""Return the index of the axis where the column at col_idx should be plotted"""
|
1013 |
+
if isinstance(self.subplots, list):
|
1014 |
+
# Subplots is a list: some columns will be grouped together in the same ax
|
1015 |
+
return next(
|
1016 |
+
group_idx
|
1017 |
+
for (group_idx, group) in enumerate(self.subplots)
|
1018 |
+
if col_idx in group
|
1019 |
+
)
|
1020 |
+
else:
|
1021 |
+
# subplots is True: one ax per column
|
1022 |
+
return col_idx
|
1023 |
+
|
1024 |
+
@final
|
1025 |
+
def _get_ax(self, i: int):
|
1026 |
+
# get the twinx ax if appropriate
|
1027 |
+
if self.subplots:
|
1028 |
+
i = self._col_idx_to_axis_idx(i)
|
1029 |
+
ax = self.axes[i]
|
1030 |
+
ax = self._maybe_right_yaxis(ax, i)
|
1031 |
+
# error: Unsupported target for indexed assignment ("Sequence[Any]")
|
1032 |
+
self.axes[i] = ax # type: ignore[index]
|
1033 |
+
else:
|
1034 |
+
ax = self.axes[0]
|
1035 |
+
ax = self._maybe_right_yaxis(ax, i)
|
1036 |
+
|
1037 |
+
ax.get_yaxis().set_visible(True)
|
1038 |
+
return ax
|
1039 |
+
|
1040 |
+
@final
|
1041 |
+
def on_right(self, i: int):
|
1042 |
+
if isinstance(self.secondary_y, bool):
|
1043 |
+
return self.secondary_y
|
1044 |
+
|
1045 |
+
if isinstance(self.secondary_y, (tuple, list, np.ndarray, ABCIndex)):
|
1046 |
+
return self.data.columns[i] in self.secondary_y
|
1047 |
+
|
1048 |
+
@final
|
1049 |
+
def _apply_style_colors(
|
1050 |
+
self, colors, kwds: dict[str, Any], col_num: int, label: str
|
1051 |
+
):
|
1052 |
+
"""
|
1053 |
+
Manage style and color based on column number and its label.
|
1054 |
+
Returns tuple of appropriate style and kwds which "color" may be added.
|
1055 |
+
"""
|
1056 |
+
style = None
|
1057 |
+
if self.style is not None:
|
1058 |
+
if isinstance(self.style, list):
|
1059 |
+
try:
|
1060 |
+
style = self.style[col_num]
|
1061 |
+
except IndexError:
|
1062 |
+
pass
|
1063 |
+
elif isinstance(self.style, dict):
|
1064 |
+
style = self.style.get(label, style)
|
1065 |
+
else:
|
1066 |
+
style = self.style
|
1067 |
+
|
1068 |
+
has_color = "color" in kwds or self.colormap is not None
|
1069 |
+
nocolor_style = style is None or not _color_in_style(style)
|
1070 |
+
if (has_color or self.subplots) and nocolor_style:
|
1071 |
+
if isinstance(colors, dict):
|
1072 |
+
kwds["color"] = colors[label]
|
1073 |
+
else:
|
1074 |
+
kwds["color"] = colors[col_num % len(colors)]
|
1075 |
+
return style, kwds
|
1076 |
+
|
1077 |
+
def _get_colors(
|
1078 |
+
self,
|
1079 |
+
num_colors: int | None = None,
|
1080 |
+
color_kwds: str = "color",
|
1081 |
+
):
|
1082 |
+
if num_colors is None:
|
1083 |
+
num_colors = self.nseries
|
1084 |
+
if color_kwds == "color":
|
1085 |
+
color = self.color
|
1086 |
+
else:
|
1087 |
+
color = self.kwds.get(color_kwds)
|
1088 |
+
return get_standard_colors(
|
1089 |
+
num_colors=num_colors,
|
1090 |
+
colormap=self.colormap,
|
1091 |
+
color=color,
|
1092 |
+
)
|
1093 |
+
|
1094 |
+
# TODO: tighter typing for first return?
|
1095 |
+
@final
|
1096 |
+
@staticmethod
|
1097 |
+
def _parse_errorbars(
|
1098 |
+
label: str, err, data: NDFrameT, nseries: int
|
1099 |
+
) -> tuple[Any, NDFrameT]:
|
1100 |
+
"""
|
1101 |
+
Look for error keyword arguments and return the actual errorbar data
|
1102 |
+
or return the error DataFrame/dict
|
1103 |
+
|
1104 |
+
Error bars can be specified in several ways:
|
1105 |
+
Series: the user provides a pandas.Series object of the same
|
1106 |
+
length as the data
|
1107 |
+
ndarray: provides a np.ndarray of the same length as the data
|
1108 |
+
DataFrame/dict: error values are paired with keys matching the
|
1109 |
+
key in the plotted DataFrame
|
1110 |
+
str: the name of the column within the plotted DataFrame
|
1111 |
+
|
1112 |
+
Asymmetrical error bars are also supported, however raw error values
|
1113 |
+
must be provided in this case. For a ``N`` length :class:`Series`, a
|
1114 |
+
``2xN`` array should be provided indicating lower and upper (or left
|
1115 |
+
and right) errors. For a ``MxN`` :class:`DataFrame`, asymmetrical errors
|
1116 |
+
should be in a ``Mx2xN`` array.
|
1117 |
+
"""
|
1118 |
+
if err is None:
|
1119 |
+
return None, data
|
1120 |
+
|
1121 |
+
def match_labels(data, e):
|
1122 |
+
e = e.reindex(data.index)
|
1123 |
+
return e
|
1124 |
+
|
1125 |
+
# key-matched DataFrame
|
1126 |
+
if isinstance(err, ABCDataFrame):
|
1127 |
+
err = match_labels(data, err)
|
1128 |
+
# key-matched dict
|
1129 |
+
elif isinstance(err, dict):
|
1130 |
+
pass
|
1131 |
+
|
1132 |
+
# Series of error values
|
1133 |
+
elif isinstance(err, ABCSeries):
|
1134 |
+
# broadcast error series across data
|
1135 |
+
err = match_labels(data, err)
|
1136 |
+
err = np.atleast_2d(err)
|
1137 |
+
err = np.tile(err, (nseries, 1))
|
1138 |
+
|
1139 |
+
# errors are a column in the dataframe
|
1140 |
+
elif isinstance(err, str):
|
1141 |
+
evalues = data[err].values
|
1142 |
+
data = data[data.columns.drop(err)]
|
1143 |
+
err = np.atleast_2d(evalues)
|
1144 |
+
err = np.tile(err, (nseries, 1))
|
1145 |
+
|
1146 |
+
elif is_list_like(err):
|
1147 |
+
if is_iterator(err):
|
1148 |
+
err = np.atleast_2d(list(err))
|
1149 |
+
else:
|
1150 |
+
# raw error values
|
1151 |
+
err = np.atleast_2d(err)
|
1152 |
+
|
1153 |
+
err_shape = err.shape
|
1154 |
+
|
1155 |
+
# asymmetrical error bars
|
1156 |
+
if isinstance(data, ABCSeries) and err_shape[0] == 2:
|
1157 |
+
err = np.expand_dims(err, 0)
|
1158 |
+
err_shape = err.shape
|
1159 |
+
if err_shape[2] != len(data):
|
1160 |
+
raise ValueError(
|
1161 |
+
"Asymmetrical error bars should be provided "
|
1162 |
+
f"with the shape (2, {len(data)})"
|
1163 |
+
)
|
1164 |
+
elif isinstance(data, ABCDataFrame) and err.ndim == 3:
|
1165 |
+
if (
|
1166 |
+
(err_shape[0] != nseries)
|
1167 |
+
or (err_shape[1] != 2)
|
1168 |
+
or (err_shape[2] != len(data))
|
1169 |
+
):
|
1170 |
+
raise ValueError(
|
1171 |
+
"Asymmetrical error bars should be provided "
|
1172 |
+
f"with the shape ({nseries}, 2, {len(data)})"
|
1173 |
+
)
|
1174 |
+
|
1175 |
+
# broadcast errors to each data series
|
1176 |
+
if len(err) == 1:
|
1177 |
+
err = np.tile(err, (nseries, 1))
|
1178 |
+
|
1179 |
+
elif is_number(err):
|
1180 |
+
err = np.tile(
|
1181 |
+
[err],
|
1182 |
+
(nseries, len(data)),
|
1183 |
+
)
|
1184 |
+
|
1185 |
+
else:
|
1186 |
+
msg = f"No valid {label} detected"
|
1187 |
+
raise ValueError(msg)
|
1188 |
+
|
1189 |
+
return err, data
|
1190 |
+
|
1191 |
+
@final
|
1192 |
+
def _get_errorbars(
|
1193 |
+
self, label=None, index=None, xerr: bool = True, yerr: bool = True
|
1194 |
+
) -> dict[str, Any]:
|
1195 |
+
errors = {}
|
1196 |
+
|
1197 |
+
for kw, flag in zip(["xerr", "yerr"], [xerr, yerr]):
|
1198 |
+
if flag:
|
1199 |
+
err = self.errors[kw]
|
1200 |
+
# user provided label-matched dataframe of errors
|
1201 |
+
if isinstance(err, (ABCDataFrame, dict)):
|
1202 |
+
if label is not None and label in err.keys():
|
1203 |
+
err = err[label]
|
1204 |
+
else:
|
1205 |
+
err = None
|
1206 |
+
elif index is not None and err is not None:
|
1207 |
+
err = err[index]
|
1208 |
+
|
1209 |
+
if err is not None:
|
1210 |
+
errors[kw] = err
|
1211 |
+
return errors
|
1212 |
+
|
1213 |
+
@final
|
1214 |
+
def _get_subplots(self, fig: Figure):
|
1215 |
+
if Version(mpl.__version__) < Version("3.8"):
|
1216 |
+
from matplotlib.axes import Subplot as Klass
|
1217 |
+
else:
|
1218 |
+
from matplotlib.axes import Axes as Klass
|
1219 |
+
|
1220 |
+
return [
|
1221 |
+
ax
|
1222 |
+
for ax in fig.get_axes()
|
1223 |
+
if (isinstance(ax, Klass) and ax.get_subplotspec() is not None)
|
1224 |
+
]
|
1225 |
+
|
1226 |
+
@final
|
1227 |
+
def _get_axes_layout(self, fig: Figure) -> tuple[int, int]:
|
1228 |
+
axes = self._get_subplots(fig)
|
1229 |
+
x_set = set()
|
1230 |
+
y_set = set()
|
1231 |
+
for ax in axes:
|
1232 |
+
# check axes coordinates to estimate layout
|
1233 |
+
points = ax.get_position().get_points()
|
1234 |
+
x_set.add(points[0][0])
|
1235 |
+
y_set.add(points[0][1])
|
1236 |
+
return (len(y_set), len(x_set))
|
1237 |
+
|
1238 |
+
|
1239 |
+
class PlanePlot(MPLPlot, ABC):
|
1240 |
+
"""
|
1241 |
+
Abstract class for plotting on plane, currently scatter and hexbin.
|
1242 |
+
"""
|
1243 |
+
|
1244 |
+
_layout_type = "single"
|
1245 |
+
|
1246 |
+
def __init__(self, data, x, y, **kwargs) -> None:
|
1247 |
+
MPLPlot.__init__(self, data, **kwargs)
|
1248 |
+
if x is None or y is None:
|
1249 |
+
raise ValueError(self._kind + " requires an x and y column")
|
1250 |
+
if is_integer(x) and not self.data.columns._holds_integer():
|
1251 |
+
x = self.data.columns[x]
|
1252 |
+
if is_integer(y) and not self.data.columns._holds_integer():
|
1253 |
+
y = self.data.columns[y]
|
1254 |
+
|
1255 |
+
self.x = x
|
1256 |
+
self.y = y
|
1257 |
+
|
1258 |
+
@final
|
1259 |
+
def _get_nseries(self, data: Series | DataFrame) -> int:
|
1260 |
+
return 1
|
1261 |
+
|
1262 |
+
@final
|
1263 |
+
def _post_plot_logic(self, ax: Axes, data) -> None:
|
1264 |
+
x, y = self.x, self.y
|
1265 |
+
xlabel = self.xlabel if self.xlabel is not None else pprint_thing(x)
|
1266 |
+
ylabel = self.ylabel if self.ylabel is not None else pprint_thing(y)
|
1267 |
+
# error: Argument 1 to "set_xlabel" of "_AxesBase" has incompatible
|
1268 |
+
# type "Hashable"; expected "str"
|
1269 |
+
ax.set_xlabel(xlabel) # type: ignore[arg-type]
|
1270 |
+
ax.set_ylabel(ylabel) # type: ignore[arg-type]
|
1271 |
+
|
1272 |
+
@final
|
1273 |
+
def _plot_colorbar(self, ax: Axes, *, fig: Figure, **kwds):
|
1274 |
+
# Addresses issues #10611 and #10678:
|
1275 |
+
# When plotting scatterplots and hexbinplots in IPython
|
1276 |
+
# inline backend the colorbar axis height tends not to
|
1277 |
+
# exactly match the parent axis height.
|
1278 |
+
# The difference is due to small fractional differences
|
1279 |
+
# in floating points with similar representation.
|
1280 |
+
# To deal with this, this method forces the colorbar
|
1281 |
+
# height to take the height of the parent axes.
|
1282 |
+
# For a more detailed description of the issue
|
1283 |
+
# see the following link:
|
1284 |
+
# https://github.com/ipython/ipython/issues/11215
|
1285 |
+
|
1286 |
+
# GH33389, if ax is used multiple times, we should always
|
1287 |
+
# use the last one which contains the latest information
|
1288 |
+
# about the ax
|
1289 |
+
img = ax.collections[-1]
|
1290 |
+
return fig.colorbar(img, ax=ax, **kwds)
|
1291 |
+
|
1292 |
+
|
1293 |
+
class ScatterPlot(PlanePlot):
|
1294 |
+
@property
|
1295 |
+
def _kind(self) -> Literal["scatter"]:
|
1296 |
+
return "scatter"
|
1297 |
+
|
1298 |
+
def __init__(
|
1299 |
+
self,
|
1300 |
+
data,
|
1301 |
+
x,
|
1302 |
+
y,
|
1303 |
+
s=None,
|
1304 |
+
c=None,
|
1305 |
+
*,
|
1306 |
+
colorbar: bool | lib.NoDefault = lib.no_default,
|
1307 |
+
norm=None,
|
1308 |
+
**kwargs,
|
1309 |
+
) -> None:
|
1310 |
+
if s is None:
|
1311 |
+
# hide the matplotlib default for size, in case we want to change
|
1312 |
+
# the handling of this argument later
|
1313 |
+
s = 20
|
1314 |
+
elif is_hashable(s) and s in data.columns:
|
1315 |
+
s = data[s]
|
1316 |
+
self.s = s
|
1317 |
+
|
1318 |
+
self.colorbar = colorbar
|
1319 |
+
self.norm = norm
|
1320 |
+
|
1321 |
+
super().__init__(data, x, y, **kwargs)
|
1322 |
+
if is_integer(c) and not self.data.columns._holds_integer():
|
1323 |
+
c = self.data.columns[c]
|
1324 |
+
self.c = c
|
1325 |
+
|
1326 |
+
def _make_plot(self, fig: Figure) -> None:
|
1327 |
+
x, y, c, data = self.x, self.y, self.c, self.data
|
1328 |
+
ax = self.axes[0]
|
1329 |
+
|
1330 |
+
c_is_column = is_hashable(c) and c in self.data.columns
|
1331 |
+
|
1332 |
+
color_by_categorical = c_is_column and isinstance(
|
1333 |
+
self.data[c].dtype, CategoricalDtype
|
1334 |
+
)
|
1335 |
+
|
1336 |
+
color = self.color
|
1337 |
+
c_values = self._get_c_values(color, color_by_categorical, c_is_column)
|
1338 |
+
norm, cmap = self._get_norm_and_cmap(c_values, color_by_categorical)
|
1339 |
+
cb = self._get_colorbar(c_values, c_is_column)
|
1340 |
+
|
1341 |
+
if self.legend:
|
1342 |
+
label = self.label
|
1343 |
+
else:
|
1344 |
+
label = None
|
1345 |
+
scatter = ax.scatter(
|
1346 |
+
data[x].values,
|
1347 |
+
data[y].values,
|
1348 |
+
c=c_values,
|
1349 |
+
label=label,
|
1350 |
+
cmap=cmap,
|
1351 |
+
norm=norm,
|
1352 |
+
s=self.s,
|
1353 |
+
**self.kwds,
|
1354 |
+
)
|
1355 |
+
if cb:
|
1356 |
+
cbar_label = c if c_is_column else ""
|
1357 |
+
cbar = self._plot_colorbar(ax, fig=fig, label=cbar_label)
|
1358 |
+
if color_by_categorical:
|
1359 |
+
n_cats = len(self.data[c].cat.categories)
|
1360 |
+
cbar.set_ticks(np.linspace(0.5, n_cats - 0.5, n_cats))
|
1361 |
+
cbar.ax.set_yticklabels(self.data[c].cat.categories)
|
1362 |
+
|
1363 |
+
if label is not None:
|
1364 |
+
self._append_legend_handles_labels(
|
1365 |
+
# error: Argument 2 to "_append_legend_handles_labels" of
|
1366 |
+
# "MPLPlot" has incompatible type "Hashable"; expected "str"
|
1367 |
+
scatter,
|
1368 |
+
label, # type: ignore[arg-type]
|
1369 |
+
)
|
1370 |
+
|
1371 |
+
errors_x = self._get_errorbars(label=x, index=0, yerr=False)
|
1372 |
+
errors_y = self._get_errorbars(label=y, index=0, xerr=False)
|
1373 |
+
if len(errors_x) > 0 or len(errors_y) > 0:
|
1374 |
+
err_kwds = dict(errors_x, **errors_y)
|
1375 |
+
err_kwds["ecolor"] = scatter.get_facecolor()[0]
|
1376 |
+
ax.errorbar(data[x].values, data[y].values, linestyle="none", **err_kwds)
|
1377 |
+
|
1378 |
+
def _get_c_values(self, color, color_by_categorical: bool, c_is_column: bool):
|
1379 |
+
c = self.c
|
1380 |
+
if c is not None and color is not None:
|
1381 |
+
raise TypeError("Specify exactly one of `c` and `color`")
|
1382 |
+
if c is None and color is None:
|
1383 |
+
c_values = self.plt.rcParams["patch.facecolor"]
|
1384 |
+
elif color is not None:
|
1385 |
+
c_values = color
|
1386 |
+
elif color_by_categorical:
|
1387 |
+
c_values = self.data[c].cat.codes
|
1388 |
+
elif c_is_column:
|
1389 |
+
c_values = self.data[c].values
|
1390 |
+
else:
|
1391 |
+
c_values = c
|
1392 |
+
return c_values
|
1393 |
+
|
1394 |
+
def _get_norm_and_cmap(self, c_values, color_by_categorical: bool):
|
1395 |
+
c = self.c
|
1396 |
+
if self.colormap is not None:
|
1397 |
+
cmap = mpl.colormaps.get_cmap(self.colormap)
|
1398 |
+
# cmap is only used if c_values are integers, otherwise UserWarning.
|
1399 |
+
# GH-53908: additionally call isinstance() because is_integer_dtype
|
1400 |
+
# returns True for "b" (meaning "blue" and not int8 in this context)
|
1401 |
+
elif not isinstance(c_values, str) and is_integer_dtype(c_values):
|
1402 |
+
# pandas uses colormap, matplotlib uses cmap.
|
1403 |
+
cmap = mpl.colormaps["Greys"]
|
1404 |
+
else:
|
1405 |
+
cmap = None
|
1406 |
+
|
1407 |
+
if color_by_categorical and cmap is not None:
|
1408 |
+
from matplotlib import colors
|
1409 |
+
|
1410 |
+
n_cats = len(self.data[c].cat.categories)
|
1411 |
+
cmap = colors.ListedColormap([cmap(i) for i in range(cmap.N)])
|
1412 |
+
bounds = np.linspace(0, n_cats, n_cats + 1)
|
1413 |
+
norm = colors.BoundaryNorm(bounds, cmap.N)
|
1414 |
+
# TODO: warn that we are ignoring self.norm if user specified it?
|
1415 |
+
# Doesn't happen in any tests 2023-11-09
|
1416 |
+
else:
|
1417 |
+
norm = self.norm
|
1418 |
+
return norm, cmap
|
1419 |
+
|
1420 |
+
def _get_colorbar(self, c_values, c_is_column: bool) -> bool:
|
1421 |
+
# plot colorbar if
|
1422 |
+
# 1. colormap is assigned, and
|
1423 |
+
# 2.`c` is a column containing only numeric values
|
1424 |
+
plot_colorbar = self.colormap or c_is_column
|
1425 |
+
cb = self.colorbar
|
1426 |
+
if cb is lib.no_default:
|
1427 |
+
return is_numeric_dtype(c_values) and plot_colorbar
|
1428 |
+
return cb
|
1429 |
+
|
1430 |
+
|
1431 |
+
class HexBinPlot(PlanePlot):
|
1432 |
+
@property
|
1433 |
+
def _kind(self) -> Literal["hexbin"]:
|
1434 |
+
return "hexbin"
|
1435 |
+
|
1436 |
+
def __init__(self, data, x, y, C=None, *, colorbar: bool = True, **kwargs) -> None:
|
1437 |
+
super().__init__(data, x, y, **kwargs)
|
1438 |
+
if is_integer(C) and not self.data.columns._holds_integer():
|
1439 |
+
C = self.data.columns[C]
|
1440 |
+
self.C = C
|
1441 |
+
|
1442 |
+
self.colorbar = colorbar
|
1443 |
+
|
1444 |
+
# Scatter plot allows to plot objects data
|
1445 |
+
if len(self.data[self.x]._get_numeric_data()) == 0:
|
1446 |
+
raise ValueError(self._kind + " requires x column to be numeric")
|
1447 |
+
if len(self.data[self.y]._get_numeric_data()) == 0:
|
1448 |
+
raise ValueError(self._kind + " requires y column to be numeric")
|
1449 |
+
|
1450 |
+
def _make_plot(self, fig: Figure) -> None:
|
1451 |
+
x, y, data, C = self.x, self.y, self.data, self.C
|
1452 |
+
ax = self.axes[0]
|
1453 |
+
# pandas uses colormap, matplotlib uses cmap.
|
1454 |
+
cmap = self.colormap or "BuGn"
|
1455 |
+
cmap = mpl.colormaps.get_cmap(cmap)
|
1456 |
+
cb = self.colorbar
|
1457 |
+
|
1458 |
+
if C is None:
|
1459 |
+
c_values = None
|
1460 |
+
else:
|
1461 |
+
c_values = data[C].values
|
1462 |
+
|
1463 |
+
ax.hexbin(data[x].values, data[y].values, C=c_values, cmap=cmap, **self.kwds)
|
1464 |
+
if cb:
|
1465 |
+
self._plot_colorbar(ax, fig=fig)
|
1466 |
+
|
1467 |
+
def _make_legend(self) -> None:
|
1468 |
+
pass
|
1469 |
+
|
1470 |
+
|
1471 |
+
class LinePlot(MPLPlot):
|
1472 |
+
_default_rot = 0
|
1473 |
+
|
1474 |
+
@property
|
1475 |
+
def orientation(self) -> PlottingOrientation:
|
1476 |
+
return "vertical"
|
1477 |
+
|
1478 |
+
@property
|
1479 |
+
def _kind(self) -> Literal["line", "area", "hist", "kde", "box"]:
|
1480 |
+
return "line"
|
1481 |
+
|
1482 |
+
def __init__(self, data, **kwargs) -> None:
|
1483 |
+
from pandas.plotting import plot_params
|
1484 |
+
|
1485 |
+
MPLPlot.__init__(self, data, **kwargs)
|
1486 |
+
if self.stacked:
|
1487 |
+
self.data = self.data.fillna(value=0)
|
1488 |
+
self.x_compat = plot_params["x_compat"]
|
1489 |
+
if "x_compat" in self.kwds:
|
1490 |
+
self.x_compat = bool(self.kwds.pop("x_compat"))
|
1491 |
+
|
1492 |
+
@final
|
1493 |
+
def _is_ts_plot(self) -> bool:
|
1494 |
+
# this is slightly deceptive
|
1495 |
+
return not self.x_compat and self.use_index and self._use_dynamic_x()
|
1496 |
+
|
1497 |
+
@final
|
1498 |
+
def _use_dynamic_x(self) -> bool:
|
1499 |
+
return use_dynamic_x(self._get_ax(0), self.data)
|
1500 |
+
|
1501 |
+
def _make_plot(self, fig: Figure) -> None:
|
1502 |
+
if self._is_ts_plot():
|
1503 |
+
data = maybe_convert_index(self._get_ax(0), self.data)
|
1504 |
+
|
1505 |
+
x = data.index # dummy, not used
|
1506 |
+
plotf = self._ts_plot
|
1507 |
+
it = data.items()
|
1508 |
+
else:
|
1509 |
+
x = self._get_xticks()
|
1510 |
+
# error: Incompatible types in assignment (expression has type
|
1511 |
+
# "Callable[[Any, Any, Any, Any, Any, Any, KwArg(Any)], Any]", variable has
|
1512 |
+
# type "Callable[[Any, Any, Any, Any, KwArg(Any)], Any]")
|
1513 |
+
plotf = self._plot # type: ignore[assignment]
|
1514 |
+
# error: Incompatible types in assignment (expression has type
|
1515 |
+
# "Iterator[tuple[Hashable, ndarray[Any, Any]]]", variable has
|
1516 |
+
# type "Iterable[tuple[Hashable, Series]]")
|
1517 |
+
it = self._iter_data(data=self.data) # type: ignore[assignment]
|
1518 |
+
|
1519 |
+
stacking_id = self._get_stacking_id()
|
1520 |
+
is_errorbar = com.any_not_none(*self.errors.values())
|
1521 |
+
|
1522 |
+
colors = self._get_colors()
|
1523 |
+
for i, (label, y) in enumerate(it):
|
1524 |
+
ax = self._get_ax(i)
|
1525 |
+
kwds = self.kwds.copy()
|
1526 |
+
if self.color is not None:
|
1527 |
+
kwds["color"] = self.color
|
1528 |
+
style, kwds = self._apply_style_colors(
|
1529 |
+
colors,
|
1530 |
+
kwds,
|
1531 |
+
i,
|
1532 |
+
# error: Argument 4 to "_apply_style_colors" of "MPLPlot" has
|
1533 |
+
# incompatible type "Hashable"; expected "str"
|
1534 |
+
label, # type: ignore[arg-type]
|
1535 |
+
)
|
1536 |
+
|
1537 |
+
errors = self._get_errorbars(label=label, index=i)
|
1538 |
+
kwds = dict(kwds, **errors)
|
1539 |
+
|
1540 |
+
label = pprint_thing(label)
|
1541 |
+
label = self._mark_right_label(label, index=i)
|
1542 |
+
kwds["label"] = label
|
1543 |
+
|
1544 |
+
newlines = plotf(
|
1545 |
+
ax,
|
1546 |
+
x,
|
1547 |
+
y,
|
1548 |
+
style=style,
|
1549 |
+
column_num=i,
|
1550 |
+
stacking_id=stacking_id,
|
1551 |
+
is_errorbar=is_errorbar,
|
1552 |
+
**kwds,
|
1553 |
+
)
|
1554 |
+
self._append_legend_handles_labels(newlines[0], label)
|
1555 |
+
|
1556 |
+
if self._is_ts_plot():
|
1557 |
+
# reset of xlim should be used for ts data
|
1558 |
+
# TODO: GH28021, should find a way to change view limit on xaxis
|
1559 |
+
lines = get_all_lines(ax)
|
1560 |
+
left, right = get_xlim(lines)
|
1561 |
+
ax.set_xlim(left, right)
|
1562 |
+
|
1563 |
+
# error: Signature of "_plot" incompatible with supertype "MPLPlot"
|
1564 |
+
@classmethod
|
1565 |
+
def _plot( # type: ignore[override]
|
1566 |
+
cls,
|
1567 |
+
ax: Axes,
|
1568 |
+
x,
|
1569 |
+
y: np.ndarray,
|
1570 |
+
style=None,
|
1571 |
+
column_num=None,
|
1572 |
+
stacking_id=None,
|
1573 |
+
**kwds,
|
1574 |
+
):
|
1575 |
+
# column_num is used to get the target column from plotf in line and
|
1576 |
+
# area plots
|
1577 |
+
if column_num == 0:
|
1578 |
+
cls._initialize_stacker(ax, stacking_id, len(y))
|
1579 |
+
y_values = cls._get_stacked_values(ax, stacking_id, y, kwds["label"])
|
1580 |
+
lines = MPLPlot._plot(ax, x, y_values, style=style, **kwds)
|
1581 |
+
cls._update_stacker(ax, stacking_id, y)
|
1582 |
+
return lines
|
1583 |
+
|
1584 |
+
@final
|
1585 |
+
def _ts_plot(self, ax: Axes, x, data: Series, style=None, **kwds):
|
1586 |
+
# accept x to be consistent with normal plot func,
|
1587 |
+
# x is not passed to tsplot as it uses data.index as x coordinate
|
1588 |
+
# column_num must be in kwds for stacking purpose
|
1589 |
+
freq, data = maybe_resample(data, ax, kwds)
|
1590 |
+
|
1591 |
+
# Set ax with freq info
|
1592 |
+
decorate_axes(ax, freq)
|
1593 |
+
# digging deeper
|
1594 |
+
if hasattr(ax, "left_ax"):
|
1595 |
+
decorate_axes(ax.left_ax, freq)
|
1596 |
+
if hasattr(ax, "right_ax"):
|
1597 |
+
decorate_axes(ax.right_ax, freq)
|
1598 |
+
# TODO #54485
|
1599 |
+
ax._plot_data.append((data, self._kind, kwds)) # type: ignore[attr-defined]
|
1600 |
+
|
1601 |
+
lines = self._plot(ax, data.index, np.asarray(data.values), style=style, **kwds)
|
1602 |
+
# set date formatter, locators and rescale limits
|
1603 |
+
# TODO #54485
|
1604 |
+
format_dateaxis(ax, ax.freq, data.index) # type: ignore[arg-type, attr-defined]
|
1605 |
+
return lines
|
1606 |
+
|
1607 |
+
@final
|
1608 |
+
def _get_stacking_id(self) -> int | None:
|
1609 |
+
if self.stacked:
|
1610 |
+
return id(self.data)
|
1611 |
+
else:
|
1612 |
+
return None
|
1613 |
+
|
1614 |
+
@final
|
1615 |
+
@classmethod
|
1616 |
+
def _initialize_stacker(cls, ax: Axes, stacking_id, n: int) -> None:
|
1617 |
+
if stacking_id is None:
|
1618 |
+
return
|
1619 |
+
if not hasattr(ax, "_stacker_pos_prior"):
|
1620 |
+
# TODO #54485
|
1621 |
+
ax._stacker_pos_prior = {} # type: ignore[attr-defined]
|
1622 |
+
if not hasattr(ax, "_stacker_neg_prior"):
|
1623 |
+
# TODO #54485
|
1624 |
+
ax._stacker_neg_prior = {} # type: ignore[attr-defined]
|
1625 |
+
# TODO #54485
|
1626 |
+
ax._stacker_pos_prior[stacking_id] = np.zeros(n) # type: ignore[attr-defined]
|
1627 |
+
# TODO #54485
|
1628 |
+
ax._stacker_neg_prior[stacking_id] = np.zeros(n) # type: ignore[attr-defined]
|
1629 |
+
|
1630 |
+
@final
|
1631 |
+
@classmethod
|
1632 |
+
def _get_stacked_values(
|
1633 |
+
cls, ax: Axes, stacking_id: int | None, values: np.ndarray, label
|
1634 |
+
) -> np.ndarray:
|
1635 |
+
if stacking_id is None:
|
1636 |
+
return values
|
1637 |
+
if not hasattr(ax, "_stacker_pos_prior"):
|
1638 |
+
# stacker may not be initialized for subplots
|
1639 |
+
cls._initialize_stacker(ax, stacking_id, len(values))
|
1640 |
+
|
1641 |
+
if (values >= 0).all():
|
1642 |
+
# TODO #54485
|
1643 |
+
return (
|
1644 |
+
ax._stacker_pos_prior[stacking_id] # type: ignore[attr-defined]
|
1645 |
+
+ values
|
1646 |
+
)
|
1647 |
+
elif (values <= 0).all():
|
1648 |
+
# TODO #54485
|
1649 |
+
return (
|
1650 |
+
ax._stacker_neg_prior[stacking_id] # type: ignore[attr-defined]
|
1651 |
+
+ values
|
1652 |
+
)
|
1653 |
+
|
1654 |
+
raise ValueError(
|
1655 |
+
"When stacked is True, each column must be either "
|
1656 |
+
"all positive or all negative. "
|
1657 |
+
f"Column '{label}' contains both positive and negative values"
|
1658 |
+
)
|
1659 |
+
|
1660 |
+
@final
|
1661 |
+
@classmethod
|
1662 |
+
def _update_stacker(cls, ax: Axes, stacking_id: int | None, values) -> None:
|
1663 |
+
if stacking_id is None:
|
1664 |
+
return
|
1665 |
+
if (values >= 0).all():
|
1666 |
+
# TODO #54485
|
1667 |
+
ax._stacker_pos_prior[stacking_id] += values # type: ignore[attr-defined]
|
1668 |
+
elif (values <= 0).all():
|
1669 |
+
# TODO #54485
|
1670 |
+
ax._stacker_neg_prior[stacking_id] += values # type: ignore[attr-defined]
|
1671 |
+
|
1672 |
+
def _post_plot_logic(self, ax: Axes, data) -> None:
|
1673 |
+
from matplotlib.ticker import FixedLocator
|
1674 |
+
|
1675 |
+
def get_label(i):
|
1676 |
+
if is_float(i) and i.is_integer():
|
1677 |
+
i = int(i)
|
1678 |
+
try:
|
1679 |
+
return pprint_thing(data.index[i])
|
1680 |
+
except Exception:
|
1681 |
+
return ""
|
1682 |
+
|
1683 |
+
if self._need_to_set_index:
|
1684 |
+
xticks = ax.get_xticks()
|
1685 |
+
xticklabels = [get_label(x) for x in xticks]
|
1686 |
+
# error: Argument 1 to "FixedLocator" has incompatible type "ndarray[Any,
|
1687 |
+
# Any]"; expected "Sequence[float]"
|
1688 |
+
ax.xaxis.set_major_locator(FixedLocator(xticks)) # type: ignore[arg-type]
|
1689 |
+
ax.set_xticklabels(xticklabels)
|
1690 |
+
|
1691 |
+
# If the index is an irregular time series, then by default
|
1692 |
+
# we rotate the tick labels. The exception is if there are
|
1693 |
+
# subplots which don't share their x-axes, in which we case
|
1694 |
+
# we don't rotate the ticklabels as by default the subplots
|
1695 |
+
# would be too close together.
|
1696 |
+
condition = (
|
1697 |
+
not self._use_dynamic_x()
|
1698 |
+
and (data.index._is_all_dates and self.use_index)
|
1699 |
+
and (not self.subplots or (self.subplots and self.sharex))
|
1700 |
+
)
|
1701 |
+
|
1702 |
+
index_name = self._get_index_name()
|
1703 |
+
|
1704 |
+
if condition:
|
1705 |
+
# irregular TS rotated 30 deg. by default
|
1706 |
+
# probably a better place to check / set this.
|
1707 |
+
if not self._rot_set:
|
1708 |
+
self.rot = 30
|
1709 |
+
format_date_labels(ax, rot=self.rot)
|
1710 |
+
|
1711 |
+
if index_name is not None and self.use_index:
|
1712 |
+
ax.set_xlabel(index_name)
|
1713 |
+
|
1714 |
+
|
1715 |
+
class AreaPlot(LinePlot):
|
1716 |
+
@property
|
1717 |
+
def _kind(self) -> Literal["area"]:
|
1718 |
+
return "area"
|
1719 |
+
|
1720 |
+
def __init__(self, data, **kwargs) -> None:
|
1721 |
+
kwargs.setdefault("stacked", True)
|
1722 |
+
with warnings.catch_warnings():
|
1723 |
+
warnings.filterwarnings(
|
1724 |
+
"ignore",
|
1725 |
+
"Downcasting object dtype arrays",
|
1726 |
+
category=FutureWarning,
|
1727 |
+
)
|
1728 |
+
data = data.fillna(value=0)
|
1729 |
+
LinePlot.__init__(self, data, **kwargs)
|
1730 |
+
|
1731 |
+
if not self.stacked:
|
1732 |
+
# use smaller alpha to distinguish overlap
|
1733 |
+
self.kwds.setdefault("alpha", 0.5)
|
1734 |
+
|
1735 |
+
if self.logy or self.loglog:
|
1736 |
+
raise ValueError("Log-y scales are not supported in area plot")
|
1737 |
+
|
1738 |
+
# error: Signature of "_plot" incompatible with supertype "MPLPlot"
|
1739 |
+
@classmethod
|
1740 |
+
def _plot( # type: ignore[override]
|
1741 |
+
cls,
|
1742 |
+
ax: Axes,
|
1743 |
+
x,
|
1744 |
+
y: np.ndarray,
|
1745 |
+
style=None,
|
1746 |
+
column_num=None,
|
1747 |
+
stacking_id=None,
|
1748 |
+
is_errorbar: bool = False,
|
1749 |
+
**kwds,
|
1750 |
+
):
|
1751 |
+
if column_num == 0:
|
1752 |
+
cls._initialize_stacker(ax, stacking_id, len(y))
|
1753 |
+
y_values = cls._get_stacked_values(ax, stacking_id, y, kwds["label"])
|
1754 |
+
|
1755 |
+
# need to remove label, because subplots uses mpl legend as it is
|
1756 |
+
line_kwds = kwds.copy()
|
1757 |
+
line_kwds.pop("label")
|
1758 |
+
lines = MPLPlot._plot(ax, x, y_values, style=style, **line_kwds)
|
1759 |
+
|
1760 |
+
# get data from the line to get coordinates for fill_between
|
1761 |
+
xdata, y_values = lines[0].get_data(orig=False)
|
1762 |
+
|
1763 |
+
# unable to use ``_get_stacked_values`` here to get starting point
|
1764 |
+
if stacking_id is None:
|
1765 |
+
start = np.zeros(len(y))
|
1766 |
+
elif (y >= 0).all():
|
1767 |
+
# TODO #54485
|
1768 |
+
start = ax._stacker_pos_prior[stacking_id] # type: ignore[attr-defined]
|
1769 |
+
elif (y <= 0).all():
|
1770 |
+
# TODO #54485
|
1771 |
+
start = ax._stacker_neg_prior[stacking_id] # type: ignore[attr-defined]
|
1772 |
+
else:
|
1773 |
+
start = np.zeros(len(y))
|
1774 |
+
|
1775 |
+
if "color" not in kwds:
|
1776 |
+
kwds["color"] = lines[0].get_color()
|
1777 |
+
|
1778 |
+
rect = ax.fill_between(xdata, start, y_values, **kwds)
|
1779 |
+
cls._update_stacker(ax, stacking_id, y)
|
1780 |
+
|
1781 |
+
# LinePlot expects list of artists
|
1782 |
+
res = [rect]
|
1783 |
+
return res
|
1784 |
+
|
1785 |
+
def _post_plot_logic(self, ax: Axes, data) -> None:
|
1786 |
+
LinePlot._post_plot_logic(self, ax, data)
|
1787 |
+
|
1788 |
+
is_shared_y = len(list(ax.get_shared_y_axes())) > 0
|
1789 |
+
# do not override the default axis behaviour in case of shared y axes
|
1790 |
+
if self.ylim is None and not is_shared_y:
|
1791 |
+
if (data >= 0).all().all():
|
1792 |
+
ax.set_ylim(0, None)
|
1793 |
+
elif (data <= 0).all().all():
|
1794 |
+
ax.set_ylim(None, 0)
|
1795 |
+
|
1796 |
+
|
1797 |
+
class BarPlot(MPLPlot):
|
1798 |
+
@property
|
1799 |
+
def _kind(self) -> Literal["bar", "barh"]:
|
1800 |
+
return "bar"
|
1801 |
+
|
1802 |
+
_default_rot = 90
|
1803 |
+
|
1804 |
+
@property
|
1805 |
+
def orientation(self) -> PlottingOrientation:
|
1806 |
+
return "vertical"
|
1807 |
+
|
1808 |
+
def __init__(
|
1809 |
+
self,
|
1810 |
+
data,
|
1811 |
+
*,
|
1812 |
+
align="center",
|
1813 |
+
bottom=0,
|
1814 |
+
left=0,
|
1815 |
+
width=0.5,
|
1816 |
+
position=0.5,
|
1817 |
+
log=False,
|
1818 |
+
**kwargs,
|
1819 |
+
) -> None:
|
1820 |
+
# we have to treat a series differently than a
|
1821 |
+
# 1-column DataFrame w.r.t. color handling
|
1822 |
+
self._is_series = isinstance(data, ABCSeries)
|
1823 |
+
self.bar_width = width
|
1824 |
+
self._align = align
|
1825 |
+
self._position = position
|
1826 |
+
self.tick_pos = np.arange(len(data))
|
1827 |
+
|
1828 |
+
if is_list_like(bottom):
|
1829 |
+
bottom = np.array(bottom)
|
1830 |
+
if is_list_like(left):
|
1831 |
+
left = np.array(left)
|
1832 |
+
self.bottom = bottom
|
1833 |
+
self.left = left
|
1834 |
+
|
1835 |
+
self.log = log
|
1836 |
+
|
1837 |
+
MPLPlot.__init__(self, data, **kwargs)
|
1838 |
+
|
1839 |
+
@cache_readonly
|
1840 |
+
def ax_pos(self) -> np.ndarray:
|
1841 |
+
return self.tick_pos - self.tickoffset
|
1842 |
+
|
1843 |
+
@cache_readonly
|
1844 |
+
def tickoffset(self):
|
1845 |
+
if self.stacked or self.subplots:
|
1846 |
+
return self.bar_width * self._position
|
1847 |
+
elif self._align == "edge":
|
1848 |
+
w = self.bar_width / self.nseries
|
1849 |
+
return self.bar_width * (self._position - 0.5) + w * 0.5
|
1850 |
+
else:
|
1851 |
+
return self.bar_width * self._position
|
1852 |
+
|
1853 |
+
@cache_readonly
|
1854 |
+
def lim_offset(self):
|
1855 |
+
if self.stacked or self.subplots:
|
1856 |
+
if self._align == "edge":
|
1857 |
+
return self.bar_width / 2
|
1858 |
+
else:
|
1859 |
+
return 0
|
1860 |
+
elif self._align == "edge":
|
1861 |
+
w = self.bar_width / self.nseries
|
1862 |
+
return w * 0.5
|
1863 |
+
else:
|
1864 |
+
return 0
|
1865 |
+
|
1866 |
+
# error: Signature of "_plot" incompatible with supertype "MPLPlot"
|
1867 |
+
@classmethod
|
1868 |
+
def _plot( # type: ignore[override]
|
1869 |
+
cls,
|
1870 |
+
ax: Axes,
|
1871 |
+
x,
|
1872 |
+
y: np.ndarray,
|
1873 |
+
w,
|
1874 |
+
start: int | npt.NDArray[np.intp] = 0,
|
1875 |
+
log: bool = False,
|
1876 |
+
**kwds,
|
1877 |
+
):
|
1878 |
+
return ax.bar(x, y, w, bottom=start, log=log, **kwds)
|
1879 |
+
|
1880 |
+
@property
|
1881 |
+
def _start_base(self):
|
1882 |
+
return self.bottom
|
1883 |
+
|
1884 |
+
def _make_plot(self, fig: Figure) -> None:
|
1885 |
+
colors = self._get_colors()
|
1886 |
+
ncolors = len(colors)
|
1887 |
+
|
1888 |
+
pos_prior = neg_prior = np.zeros(len(self.data))
|
1889 |
+
K = self.nseries
|
1890 |
+
|
1891 |
+
data = self.data.fillna(0)
|
1892 |
+
for i, (label, y) in enumerate(self._iter_data(data=data)):
|
1893 |
+
ax = self._get_ax(i)
|
1894 |
+
kwds = self.kwds.copy()
|
1895 |
+
if self._is_series:
|
1896 |
+
kwds["color"] = colors
|
1897 |
+
elif isinstance(colors, dict):
|
1898 |
+
kwds["color"] = colors[label]
|
1899 |
+
else:
|
1900 |
+
kwds["color"] = colors[i % ncolors]
|
1901 |
+
|
1902 |
+
errors = self._get_errorbars(label=label, index=i)
|
1903 |
+
kwds = dict(kwds, **errors)
|
1904 |
+
|
1905 |
+
label = pprint_thing(label)
|
1906 |
+
label = self._mark_right_label(label, index=i)
|
1907 |
+
|
1908 |
+
if (("yerr" in kwds) or ("xerr" in kwds)) and (kwds.get("ecolor") is None):
|
1909 |
+
kwds["ecolor"] = mpl.rcParams["xtick.color"]
|
1910 |
+
|
1911 |
+
start = 0
|
1912 |
+
if self.log and (y >= 1).all():
|
1913 |
+
start = 1
|
1914 |
+
start = start + self._start_base
|
1915 |
+
|
1916 |
+
kwds["align"] = self._align
|
1917 |
+
if self.subplots:
|
1918 |
+
w = self.bar_width / 2
|
1919 |
+
rect = self._plot(
|
1920 |
+
ax,
|
1921 |
+
self.ax_pos + w,
|
1922 |
+
y,
|
1923 |
+
self.bar_width,
|
1924 |
+
start=start,
|
1925 |
+
label=label,
|
1926 |
+
log=self.log,
|
1927 |
+
**kwds,
|
1928 |
+
)
|
1929 |
+
ax.set_title(label)
|
1930 |
+
elif self.stacked:
|
1931 |
+
mask = y > 0
|
1932 |
+
start = np.where(mask, pos_prior, neg_prior) + self._start_base
|
1933 |
+
w = self.bar_width / 2
|
1934 |
+
rect = self._plot(
|
1935 |
+
ax,
|
1936 |
+
self.ax_pos + w,
|
1937 |
+
y,
|
1938 |
+
self.bar_width,
|
1939 |
+
start=start,
|
1940 |
+
label=label,
|
1941 |
+
log=self.log,
|
1942 |
+
**kwds,
|
1943 |
+
)
|
1944 |
+
pos_prior = pos_prior + np.where(mask, y, 0)
|
1945 |
+
neg_prior = neg_prior + np.where(mask, 0, y)
|
1946 |
+
else:
|
1947 |
+
w = self.bar_width / K
|
1948 |
+
rect = self._plot(
|
1949 |
+
ax,
|
1950 |
+
self.ax_pos + (i + 0.5) * w,
|
1951 |
+
y,
|
1952 |
+
w,
|
1953 |
+
start=start,
|
1954 |
+
label=label,
|
1955 |
+
log=self.log,
|
1956 |
+
**kwds,
|
1957 |
+
)
|
1958 |
+
self._append_legend_handles_labels(rect, label)
|
1959 |
+
|
1960 |
+
def _post_plot_logic(self, ax: Axes, data) -> None:
|
1961 |
+
if self.use_index:
|
1962 |
+
str_index = [pprint_thing(key) for key in data.index]
|
1963 |
+
else:
|
1964 |
+
str_index = [pprint_thing(key) for key in range(data.shape[0])]
|
1965 |
+
|
1966 |
+
s_edge = self.ax_pos[0] - 0.25 + self.lim_offset
|
1967 |
+
e_edge = self.ax_pos[-1] + 0.25 + self.bar_width + self.lim_offset
|
1968 |
+
|
1969 |
+
self._decorate_ticks(ax, self._get_index_name(), str_index, s_edge, e_edge)
|
1970 |
+
|
1971 |
+
def _decorate_ticks(
|
1972 |
+
self,
|
1973 |
+
ax: Axes,
|
1974 |
+
name: str | None,
|
1975 |
+
ticklabels: list[str],
|
1976 |
+
start_edge: float,
|
1977 |
+
end_edge: float,
|
1978 |
+
) -> None:
|
1979 |
+
ax.set_xlim((start_edge, end_edge))
|
1980 |
+
|
1981 |
+
if self.xticks is not None:
|
1982 |
+
ax.set_xticks(np.array(self.xticks))
|
1983 |
+
else:
|
1984 |
+
ax.set_xticks(self.tick_pos)
|
1985 |
+
ax.set_xticklabels(ticklabels)
|
1986 |
+
|
1987 |
+
if name is not None and self.use_index:
|
1988 |
+
ax.set_xlabel(name)
|
1989 |
+
|
1990 |
+
|
1991 |
+
class BarhPlot(BarPlot):
|
1992 |
+
@property
|
1993 |
+
def _kind(self) -> Literal["barh"]:
|
1994 |
+
return "barh"
|
1995 |
+
|
1996 |
+
_default_rot = 0
|
1997 |
+
|
1998 |
+
@property
|
1999 |
+
def orientation(self) -> Literal["horizontal"]:
|
2000 |
+
return "horizontal"
|
2001 |
+
|
2002 |
+
@property
|
2003 |
+
def _start_base(self):
|
2004 |
+
return self.left
|
2005 |
+
|
2006 |
+
# error: Signature of "_plot" incompatible with supertype "MPLPlot"
|
2007 |
+
@classmethod
|
2008 |
+
def _plot( # type: ignore[override]
|
2009 |
+
cls,
|
2010 |
+
ax: Axes,
|
2011 |
+
x,
|
2012 |
+
y: np.ndarray,
|
2013 |
+
w,
|
2014 |
+
start: int | npt.NDArray[np.intp] = 0,
|
2015 |
+
log: bool = False,
|
2016 |
+
**kwds,
|
2017 |
+
):
|
2018 |
+
return ax.barh(x, y, w, left=start, log=log, **kwds)
|
2019 |
+
|
2020 |
+
def _get_custom_index_name(self):
|
2021 |
+
return self.ylabel
|
2022 |
+
|
2023 |
+
def _decorate_ticks(
|
2024 |
+
self,
|
2025 |
+
ax: Axes,
|
2026 |
+
name: str | None,
|
2027 |
+
ticklabels: list[str],
|
2028 |
+
start_edge: float,
|
2029 |
+
end_edge: float,
|
2030 |
+
) -> None:
|
2031 |
+
# horizontal bars
|
2032 |
+
ax.set_ylim((start_edge, end_edge))
|
2033 |
+
ax.set_yticks(self.tick_pos)
|
2034 |
+
ax.set_yticklabels(ticklabels)
|
2035 |
+
if name is not None and self.use_index:
|
2036 |
+
ax.set_ylabel(name)
|
2037 |
+
# error: Argument 1 to "set_xlabel" of "_AxesBase" has incompatible type
|
2038 |
+
# "Hashable | None"; expected "str"
|
2039 |
+
ax.set_xlabel(self.xlabel) # type: ignore[arg-type]
|
2040 |
+
|
2041 |
+
|
2042 |
+
class PiePlot(MPLPlot):
|
2043 |
+
@property
|
2044 |
+
def _kind(self) -> Literal["pie"]:
|
2045 |
+
return "pie"
|
2046 |
+
|
2047 |
+
_layout_type = "horizontal"
|
2048 |
+
|
2049 |
+
def __init__(self, data, kind=None, **kwargs) -> None:
|
2050 |
+
data = data.fillna(value=0)
|
2051 |
+
if (data < 0).any().any():
|
2052 |
+
raise ValueError(f"{self._kind} plot doesn't allow negative values")
|
2053 |
+
MPLPlot.__init__(self, data, kind=kind, **kwargs)
|
2054 |
+
|
2055 |
+
@classmethod
|
2056 |
+
def _validate_log_kwd(
|
2057 |
+
cls,
|
2058 |
+
kwd: str,
|
2059 |
+
value: bool | None | Literal["sym"],
|
2060 |
+
) -> bool | None | Literal["sym"]:
|
2061 |
+
super()._validate_log_kwd(kwd=kwd, value=value)
|
2062 |
+
if value is not False:
|
2063 |
+
warnings.warn(
|
2064 |
+
f"PiePlot ignores the '{kwd}' keyword",
|
2065 |
+
UserWarning,
|
2066 |
+
stacklevel=find_stack_level(),
|
2067 |
+
)
|
2068 |
+
return False
|
2069 |
+
|
2070 |
+
def _validate_color_args(self, color, colormap) -> None:
|
2071 |
+
# TODO: warn if color is passed and ignored?
|
2072 |
+
return None
|
2073 |
+
|
2074 |
+
def _make_plot(self, fig: Figure) -> None:
|
2075 |
+
colors = self._get_colors(num_colors=len(self.data), color_kwds="colors")
|
2076 |
+
self.kwds.setdefault("colors", colors)
|
2077 |
+
|
2078 |
+
for i, (label, y) in enumerate(self._iter_data(data=self.data)):
|
2079 |
+
ax = self._get_ax(i)
|
2080 |
+
if label is not None:
|
2081 |
+
label = pprint_thing(label)
|
2082 |
+
ax.set_ylabel(label)
|
2083 |
+
|
2084 |
+
kwds = self.kwds.copy()
|
2085 |
+
|
2086 |
+
def blank_labeler(label, value):
|
2087 |
+
if value == 0:
|
2088 |
+
return ""
|
2089 |
+
else:
|
2090 |
+
return label
|
2091 |
+
|
2092 |
+
idx = [pprint_thing(v) for v in self.data.index]
|
2093 |
+
labels = kwds.pop("labels", idx)
|
2094 |
+
# labels is used for each wedge's labels
|
2095 |
+
# Blank out labels for values of 0 so they don't overlap
|
2096 |
+
# with nonzero wedges
|
2097 |
+
if labels is not None:
|
2098 |
+
blabels = [blank_labeler(left, value) for left, value in zip(labels, y)]
|
2099 |
+
else:
|
2100 |
+
blabels = None
|
2101 |
+
results = ax.pie(y, labels=blabels, **kwds)
|
2102 |
+
|
2103 |
+
if kwds.get("autopct", None) is not None:
|
2104 |
+
patches, texts, autotexts = results
|
2105 |
+
else:
|
2106 |
+
patches, texts = results
|
2107 |
+
autotexts = []
|
2108 |
+
|
2109 |
+
if self.fontsize is not None:
|
2110 |
+
for t in texts + autotexts:
|
2111 |
+
t.set_fontsize(self.fontsize)
|
2112 |
+
|
2113 |
+
# leglabels is used for legend labels
|
2114 |
+
leglabels = labels if labels is not None else idx
|
2115 |
+
for _patch, _leglabel in zip(patches, leglabels):
|
2116 |
+
self._append_legend_handles_labels(_patch, _leglabel)
|
2117 |
+
|
2118 |
+
def _post_plot_logic(self, ax: Axes, data) -> None:
|
2119 |
+
pass
|
venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/groupby.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from typing import TYPE_CHECKING
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
from pandas.core.dtypes.missing import remove_na_arraylike
|
8 |
+
|
9 |
+
from pandas import (
|
10 |
+
MultiIndex,
|
11 |
+
concat,
|
12 |
+
)
|
13 |
+
|
14 |
+
from pandas.plotting._matplotlib.misc import unpack_single_str_list
|
15 |
+
|
16 |
+
if TYPE_CHECKING:
|
17 |
+
from collections.abc import Hashable
|
18 |
+
|
19 |
+
from pandas._typing import IndexLabel
|
20 |
+
|
21 |
+
from pandas import (
|
22 |
+
DataFrame,
|
23 |
+
Series,
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
def create_iter_data_given_by(
|
28 |
+
data: DataFrame, kind: str = "hist"
|
29 |
+
) -> dict[Hashable, DataFrame | Series]:
|
30 |
+
"""
|
31 |
+
Create data for iteration given `by` is assigned or not, and it is only
|
32 |
+
used in both hist and boxplot.
|
33 |
+
|
34 |
+
If `by` is assigned, return a dictionary of DataFrames in which the key of
|
35 |
+
dictionary is the values in groups.
|
36 |
+
If `by` is not assigned, return input as is, and this preserves current
|
37 |
+
status of iter_data.
|
38 |
+
|
39 |
+
Parameters
|
40 |
+
----------
|
41 |
+
data : reformatted grouped data from `_compute_plot_data` method.
|
42 |
+
kind : str, plot kind. This function is only used for `hist` and `box` plots.
|
43 |
+
|
44 |
+
Returns
|
45 |
+
-------
|
46 |
+
iter_data : DataFrame or Dictionary of DataFrames
|
47 |
+
|
48 |
+
Examples
|
49 |
+
--------
|
50 |
+
If `by` is assigned:
|
51 |
+
|
52 |
+
>>> import numpy as np
|
53 |
+
>>> tuples = [('h1', 'a'), ('h1', 'b'), ('h2', 'a'), ('h2', 'b')]
|
54 |
+
>>> mi = pd.MultiIndex.from_tuples(tuples)
|
55 |
+
>>> value = [[1, 3, np.nan, np.nan],
|
56 |
+
... [3, 4, np.nan, np.nan], [np.nan, np.nan, 5, 6]]
|
57 |
+
>>> data = pd.DataFrame(value, columns=mi)
|
58 |
+
>>> create_iter_data_given_by(data)
|
59 |
+
{'h1': h1
|
60 |
+
a b
|
61 |
+
0 1.0 3.0
|
62 |
+
1 3.0 4.0
|
63 |
+
2 NaN NaN, 'h2': h2
|
64 |
+
a b
|
65 |
+
0 NaN NaN
|
66 |
+
1 NaN NaN
|
67 |
+
2 5.0 6.0}
|
68 |
+
"""
|
69 |
+
|
70 |
+
# For `hist` plot, before transformation, the values in level 0 are values
|
71 |
+
# in groups and subplot titles, and later used for column subselection and
|
72 |
+
# iteration; For `box` plot, values in level 1 are column names to show,
|
73 |
+
# and are used for iteration and as subplots titles.
|
74 |
+
if kind == "hist":
|
75 |
+
level = 0
|
76 |
+
else:
|
77 |
+
level = 1
|
78 |
+
|
79 |
+
# Select sub-columns based on the value of level of MI, and if `by` is
|
80 |
+
# assigned, data must be a MI DataFrame
|
81 |
+
assert isinstance(data.columns, MultiIndex)
|
82 |
+
return {
|
83 |
+
col: data.loc[:, data.columns.get_level_values(level) == col]
|
84 |
+
for col in data.columns.levels[level]
|
85 |
+
}
|
86 |
+
|
87 |
+
|
88 |
+
def reconstruct_data_with_by(
|
89 |
+
data: DataFrame, by: IndexLabel, cols: IndexLabel
|
90 |
+
) -> DataFrame:
|
91 |
+
"""
|
92 |
+
Internal function to group data, and reassign multiindex column names onto the
|
93 |
+
result in order to let grouped data be used in _compute_plot_data method.
|
94 |
+
|
95 |
+
Parameters
|
96 |
+
----------
|
97 |
+
data : Original DataFrame to plot
|
98 |
+
by : grouped `by` parameter selected by users
|
99 |
+
cols : columns of data set (excluding columns used in `by`)
|
100 |
+
|
101 |
+
Returns
|
102 |
+
-------
|
103 |
+
Output is the reconstructed DataFrame with MultiIndex columns. The first level
|
104 |
+
of MI is unique values of groups, and second level of MI is the columns
|
105 |
+
selected by users.
|
106 |
+
|
107 |
+
Examples
|
108 |
+
--------
|
109 |
+
>>> d = {'h': ['h1', 'h1', 'h2'], 'a': [1, 3, 5], 'b': [3, 4, 6]}
|
110 |
+
>>> df = pd.DataFrame(d)
|
111 |
+
>>> reconstruct_data_with_by(df, by='h', cols=['a', 'b'])
|
112 |
+
h1 h2
|
113 |
+
a b a b
|
114 |
+
0 1.0 3.0 NaN NaN
|
115 |
+
1 3.0 4.0 NaN NaN
|
116 |
+
2 NaN NaN 5.0 6.0
|
117 |
+
"""
|
118 |
+
by_modified = unpack_single_str_list(by)
|
119 |
+
grouped = data.groupby(by_modified)
|
120 |
+
|
121 |
+
data_list = []
|
122 |
+
for key, group in grouped:
|
123 |
+
# error: List item 1 has incompatible type "Union[Hashable,
|
124 |
+
# Sequence[Hashable]]"; expected "Iterable[Hashable]"
|
125 |
+
columns = MultiIndex.from_product([[key], cols]) # type: ignore[list-item]
|
126 |
+
sub_group = group[cols]
|
127 |
+
sub_group.columns = columns
|
128 |
+
data_list.append(sub_group)
|
129 |
+
|
130 |
+
data = concat(data_list, axis=1)
|
131 |
+
return data
|
132 |
+
|
133 |
+
|
134 |
+
def reformat_hist_y_given_by(y: np.ndarray, by: IndexLabel | None) -> np.ndarray:
|
135 |
+
"""Internal function to reformat y given `by` is applied or not for hist plot.
|
136 |
+
|
137 |
+
If by is None, input y is 1-d with NaN removed; and if by is not None, groupby
|
138 |
+
will take place and input y is multi-dimensional array.
|
139 |
+
"""
|
140 |
+
if by is not None and len(y.shape) > 1:
|
141 |
+
return np.array([remove_na_arraylike(col) for col in y.T]).T
|
142 |
+
return remove_na_arraylike(y)
|
venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/hist.py
ADDED
@@ -0,0 +1,581 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from typing import (
|
4 |
+
TYPE_CHECKING,
|
5 |
+
Any,
|
6 |
+
Literal,
|
7 |
+
final,
|
8 |
+
)
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
from pandas.core.dtypes.common import (
|
13 |
+
is_integer,
|
14 |
+
is_list_like,
|
15 |
+
)
|
16 |
+
from pandas.core.dtypes.generic import (
|
17 |
+
ABCDataFrame,
|
18 |
+
ABCIndex,
|
19 |
+
)
|
20 |
+
from pandas.core.dtypes.missing import (
|
21 |
+
isna,
|
22 |
+
remove_na_arraylike,
|
23 |
+
)
|
24 |
+
|
25 |
+
from pandas.io.formats.printing import pprint_thing
|
26 |
+
from pandas.plotting._matplotlib.core import (
|
27 |
+
LinePlot,
|
28 |
+
MPLPlot,
|
29 |
+
)
|
30 |
+
from pandas.plotting._matplotlib.groupby import (
|
31 |
+
create_iter_data_given_by,
|
32 |
+
reformat_hist_y_given_by,
|
33 |
+
)
|
34 |
+
from pandas.plotting._matplotlib.misc import unpack_single_str_list
|
35 |
+
from pandas.plotting._matplotlib.tools import (
|
36 |
+
create_subplots,
|
37 |
+
flatten_axes,
|
38 |
+
maybe_adjust_figure,
|
39 |
+
set_ticks_props,
|
40 |
+
)
|
41 |
+
|
42 |
+
if TYPE_CHECKING:
|
43 |
+
from matplotlib.axes import Axes
|
44 |
+
from matplotlib.figure import Figure
|
45 |
+
|
46 |
+
from pandas._typing import PlottingOrientation
|
47 |
+
|
48 |
+
from pandas import (
|
49 |
+
DataFrame,
|
50 |
+
Series,
|
51 |
+
)
|
52 |
+
|
53 |
+
|
54 |
+
class HistPlot(LinePlot):
|
55 |
+
@property
|
56 |
+
def _kind(self) -> Literal["hist", "kde"]:
|
57 |
+
return "hist"
|
58 |
+
|
59 |
+
def __init__(
|
60 |
+
self,
|
61 |
+
data,
|
62 |
+
bins: int | np.ndarray | list[np.ndarray] = 10,
|
63 |
+
bottom: int | np.ndarray = 0,
|
64 |
+
*,
|
65 |
+
range=None,
|
66 |
+
weights=None,
|
67 |
+
**kwargs,
|
68 |
+
) -> None:
|
69 |
+
if is_list_like(bottom):
|
70 |
+
bottom = np.array(bottom)
|
71 |
+
self.bottom = bottom
|
72 |
+
|
73 |
+
self._bin_range = range
|
74 |
+
self.weights = weights
|
75 |
+
|
76 |
+
self.xlabel = kwargs.get("xlabel")
|
77 |
+
self.ylabel = kwargs.get("ylabel")
|
78 |
+
# Do not call LinePlot.__init__ which may fill nan
|
79 |
+
MPLPlot.__init__(self, data, **kwargs) # pylint: disable=non-parent-init-called
|
80 |
+
|
81 |
+
self.bins = self._adjust_bins(bins)
|
82 |
+
|
83 |
+
def _adjust_bins(self, bins: int | np.ndarray | list[np.ndarray]):
|
84 |
+
if is_integer(bins):
|
85 |
+
if self.by is not None:
|
86 |
+
by_modified = unpack_single_str_list(self.by)
|
87 |
+
grouped = self.data.groupby(by_modified)[self.columns]
|
88 |
+
bins = [self._calculate_bins(group, bins) for key, group in grouped]
|
89 |
+
else:
|
90 |
+
bins = self._calculate_bins(self.data, bins)
|
91 |
+
return bins
|
92 |
+
|
93 |
+
def _calculate_bins(self, data: Series | DataFrame, bins) -> np.ndarray:
|
94 |
+
"""Calculate bins given data"""
|
95 |
+
nd_values = data.infer_objects(copy=False)._get_numeric_data()
|
96 |
+
values = np.ravel(nd_values)
|
97 |
+
values = values[~isna(values)]
|
98 |
+
|
99 |
+
hist, bins = np.histogram(values, bins=bins, range=self._bin_range)
|
100 |
+
return bins
|
101 |
+
|
102 |
+
# error: Signature of "_plot" incompatible with supertype "LinePlot"
|
103 |
+
@classmethod
|
104 |
+
def _plot( # type: ignore[override]
|
105 |
+
cls,
|
106 |
+
ax: Axes,
|
107 |
+
y: np.ndarray,
|
108 |
+
style=None,
|
109 |
+
bottom: int | np.ndarray = 0,
|
110 |
+
column_num: int = 0,
|
111 |
+
stacking_id=None,
|
112 |
+
*,
|
113 |
+
bins,
|
114 |
+
**kwds,
|
115 |
+
):
|
116 |
+
if column_num == 0:
|
117 |
+
cls._initialize_stacker(ax, stacking_id, len(bins) - 1)
|
118 |
+
|
119 |
+
base = np.zeros(len(bins) - 1)
|
120 |
+
bottom = bottom + cls._get_stacked_values(ax, stacking_id, base, kwds["label"])
|
121 |
+
# ignore style
|
122 |
+
n, bins, patches = ax.hist(y, bins=bins, bottom=bottom, **kwds)
|
123 |
+
cls._update_stacker(ax, stacking_id, n)
|
124 |
+
return patches
|
125 |
+
|
126 |
+
def _make_plot(self, fig: Figure) -> None:
|
127 |
+
colors = self._get_colors()
|
128 |
+
stacking_id = self._get_stacking_id()
|
129 |
+
|
130 |
+
# Re-create iterated data if `by` is assigned by users
|
131 |
+
data = (
|
132 |
+
create_iter_data_given_by(self.data, self._kind)
|
133 |
+
if self.by is not None
|
134 |
+
else self.data
|
135 |
+
)
|
136 |
+
|
137 |
+
# error: Argument "data" to "_iter_data" of "MPLPlot" has incompatible
|
138 |
+
# type "object"; expected "DataFrame | dict[Hashable, Series | DataFrame]"
|
139 |
+
for i, (label, y) in enumerate(self._iter_data(data=data)): # type: ignore[arg-type]
|
140 |
+
ax = self._get_ax(i)
|
141 |
+
|
142 |
+
kwds = self.kwds.copy()
|
143 |
+
if self.color is not None:
|
144 |
+
kwds["color"] = self.color
|
145 |
+
|
146 |
+
label = pprint_thing(label)
|
147 |
+
label = self._mark_right_label(label, index=i)
|
148 |
+
kwds["label"] = label
|
149 |
+
|
150 |
+
style, kwds = self._apply_style_colors(colors, kwds, i, label)
|
151 |
+
if style is not None:
|
152 |
+
kwds["style"] = style
|
153 |
+
|
154 |
+
self._make_plot_keywords(kwds, y)
|
155 |
+
|
156 |
+
# the bins is multi-dimension array now and each plot need only 1-d and
|
157 |
+
# when by is applied, label should be columns that are grouped
|
158 |
+
if self.by is not None:
|
159 |
+
kwds["bins"] = kwds["bins"][i]
|
160 |
+
kwds["label"] = self.columns
|
161 |
+
kwds.pop("color")
|
162 |
+
|
163 |
+
if self.weights is not None:
|
164 |
+
kwds["weights"] = type(self)._get_column_weights(self.weights, i, y)
|
165 |
+
|
166 |
+
y = reformat_hist_y_given_by(y, self.by)
|
167 |
+
|
168 |
+
artists = self._plot(ax, y, column_num=i, stacking_id=stacking_id, **kwds)
|
169 |
+
|
170 |
+
# when by is applied, show title for subplots to know which group it is
|
171 |
+
if self.by is not None:
|
172 |
+
ax.set_title(pprint_thing(label))
|
173 |
+
|
174 |
+
self._append_legend_handles_labels(artists[0], label)
|
175 |
+
|
176 |
+
def _make_plot_keywords(self, kwds: dict[str, Any], y: np.ndarray) -> None:
|
177 |
+
"""merge BoxPlot/KdePlot properties to passed kwds"""
|
178 |
+
# y is required for KdePlot
|
179 |
+
kwds["bottom"] = self.bottom
|
180 |
+
kwds["bins"] = self.bins
|
181 |
+
|
182 |
+
@final
|
183 |
+
@staticmethod
|
184 |
+
def _get_column_weights(weights, i: int, y):
|
185 |
+
# We allow weights to be a multi-dimensional array, e.g. a (10, 2) array,
|
186 |
+
# and each sub-array (10,) will be called in each iteration. If users only
|
187 |
+
# provide 1D array, we assume the same weights is used for all iterations
|
188 |
+
if weights is not None:
|
189 |
+
if np.ndim(weights) != 1 and np.shape(weights)[-1] != 1:
|
190 |
+
try:
|
191 |
+
weights = weights[:, i]
|
192 |
+
except IndexError as err:
|
193 |
+
raise ValueError(
|
194 |
+
"weights must have the same shape as data, "
|
195 |
+
"or be a single column"
|
196 |
+
) from err
|
197 |
+
weights = weights[~isna(y)]
|
198 |
+
return weights
|
199 |
+
|
200 |
+
def _post_plot_logic(self, ax: Axes, data) -> None:
|
201 |
+
if self.orientation == "horizontal":
|
202 |
+
# error: Argument 1 to "set_xlabel" of "_AxesBase" has incompatible
|
203 |
+
# type "Hashable"; expected "str"
|
204 |
+
ax.set_xlabel(
|
205 |
+
"Frequency"
|
206 |
+
if self.xlabel is None
|
207 |
+
else self.xlabel # type: ignore[arg-type]
|
208 |
+
)
|
209 |
+
ax.set_ylabel(self.ylabel) # type: ignore[arg-type]
|
210 |
+
else:
|
211 |
+
ax.set_xlabel(self.xlabel) # type: ignore[arg-type]
|
212 |
+
ax.set_ylabel(
|
213 |
+
"Frequency"
|
214 |
+
if self.ylabel is None
|
215 |
+
else self.ylabel # type: ignore[arg-type]
|
216 |
+
)
|
217 |
+
|
218 |
+
@property
|
219 |
+
def orientation(self) -> PlottingOrientation:
|
220 |
+
if self.kwds.get("orientation", None) == "horizontal":
|
221 |
+
return "horizontal"
|
222 |
+
else:
|
223 |
+
return "vertical"
|
224 |
+
|
225 |
+
|
226 |
+
class KdePlot(HistPlot):
|
227 |
+
@property
|
228 |
+
def _kind(self) -> Literal["kde"]:
|
229 |
+
return "kde"
|
230 |
+
|
231 |
+
@property
|
232 |
+
def orientation(self) -> Literal["vertical"]:
|
233 |
+
return "vertical"
|
234 |
+
|
235 |
+
def __init__(
|
236 |
+
self, data, bw_method=None, ind=None, *, weights=None, **kwargs
|
237 |
+
) -> None:
|
238 |
+
# Do not call LinePlot.__init__ which may fill nan
|
239 |
+
MPLPlot.__init__(self, data, **kwargs) # pylint: disable=non-parent-init-called
|
240 |
+
self.bw_method = bw_method
|
241 |
+
self.ind = ind
|
242 |
+
self.weights = weights
|
243 |
+
|
244 |
+
@staticmethod
|
245 |
+
def _get_ind(y: np.ndarray, ind):
|
246 |
+
if ind is None:
|
247 |
+
# np.nanmax() and np.nanmin() ignores the missing values
|
248 |
+
sample_range = np.nanmax(y) - np.nanmin(y)
|
249 |
+
ind = np.linspace(
|
250 |
+
np.nanmin(y) - 0.5 * sample_range,
|
251 |
+
np.nanmax(y) + 0.5 * sample_range,
|
252 |
+
1000,
|
253 |
+
)
|
254 |
+
elif is_integer(ind):
|
255 |
+
sample_range = np.nanmax(y) - np.nanmin(y)
|
256 |
+
ind = np.linspace(
|
257 |
+
np.nanmin(y) - 0.5 * sample_range,
|
258 |
+
np.nanmax(y) + 0.5 * sample_range,
|
259 |
+
ind,
|
260 |
+
)
|
261 |
+
return ind
|
262 |
+
|
263 |
+
@classmethod
|
264 |
+
# error: Signature of "_plot" incompatible with supertype "MPLPlot"
|
265 |
+
def _plot( # type: ignore[override]
|
266 |
+
cls,
|
267 |
+
ax: Axes,
|
268 |
+
y: np.ndarray,
|
269 |
+
style=None,
|
270 |
+
bw_method=None,
|
271 |
+
ind=None,
|
272 |
+
column_num=None,
|
273 |
+
stacking_id: int | None = None,
|
274 |
+
**kwds,
|
275 |
+
):
|
276 |
+
from scipy.stats import gaussian_kde
|
277 |
+
|
278 |
+
y = remove_na_arraylike(y)
|
279 |
+
gkde = gaussian_kde(y, bw_method=bw_method)
|
280 |
+
|
281 |
+
y = gkde.evaluate(ind)
|
282 |
+
lines = MPLPlot._plot(ax, ind, y, style=style, **kwds)
|
283 |
+
return lines
|
284 |
+
|
285 |
+
def _make_plot_keywords(self, kwds: dict[str, Any], y: np.ndarray) -> None:
|
286 |
+
kwds["bw_method"] = self.bw_method
|
287 |
+
kwds["ind"] = type(self)._get_ind(y, ind=self.ind)
|
288 |
+
|
289 |
+
def _post_plot_logic(self, ax: Axes, data) -> None:
|
290 |
+
ax.set_ylabel("Density")
|
291 |
+
|
292 |
+
|
293 |
+
def _grouped_plot(
|
294 |
+
plotf,
|
295 |
+
data: Series | DataFrame,
|
296 |
+
column=None,
|
297 |
+
by=None,
|
298 |
+
numeric_only: bool = True,
|
299 |
+
figsize: tuple[float, float] | None = None,
|
300 |
+
sharex: bool = True,
|
301 |
+
sharey: bool = True,
|
302 |
+
layout=None,
|
303 |
+
rot: float = 0,
|
304 |
+
ax=None,
|
305 |
+
**kwargs,
|
306 |
+
):
|
307 |
+
# error: Non-overlapping equality check (left operand type: "Optional[Tuple[float,
|
308 |
+
# float]]", right operand type: "Literal['default']")
|
309 |
+
if figsize == "default": # type: ignore[comparison-overlap]
|
310 |
+
# allowed to specify mpl default with 'default'
|
311 |
+
raise ValueError(
|
312 |
+
"figsize='default' is no longer supported. "
|
313 |
+
"Specify figure size by tuple instead"
|
314 |
+
)
|
315 |
+
|
316 |
+
grouped = data.groupby(by)
|
317 |
+
if column is not None:
|
318 |
+
grouped = grouped[column]
|
319 |
+
|
320 |
+
naxes = len(grouped)
|
321 |
+
fig, axes = create_subplots(
|
322 |
+
naxes=naxes, figsize=figsize, sharex=sharex, sharey=sharey, ax=ax, layout=layout
|
323 |
+
)
|
324 |
+
|
325 |
+
_axes = flatten_axes(axes)
|
326 |
+
|
327 |
+
for i, (key, group) in enumerate(grouped):
|
328 |
+
ax = _axes[i]
|
329 |
+
if numeric_only and isinstance(group, ABCDataFrame):
|
330 |
+
group = group._get_numeric_data()
|
331 |
+
plotf(group, ax, **kwargs)
|
332 |
+
ax.set_title(pprint_thing(key))
|
333 |
+
|
334 |
+
return fig, axes
|
335 |
+
|
336 |
+
|
337 |
+
def _grouped_hist(
|
338 |
+
data: Series | DataFrame,
|
339 |
+
column=None,
|
340 |
+
by=None,
|
341 |
+
ax=None,
|
342 |
+
bins: int = 50,
|
343 |
+
figsize: tuple[float, float] | None = None,
|
344 |
+
layout=None,
|
345 |
+
sharex: bool = False,
|
346 |
+
sharey: bool = False,
|
347 |
+
rot: float = 90,
|
348 |
+
grid: bool = True,
|
349 |
+
xlabelsize: int | None = None,
|
350 |
+
xrot=None,
|
351 |
+
ylabelsize: int | None = None,
|
352 |
+
yrot=None,
|
353 |
+
legend: bool = False,
|
354 |
+
**kwargs,
|
355 |
+
):
|
356 |
+
"""
|
357 |
+
Grouped histogram
|
358 |
+
|
359 |
+
Parameters
|
360 |
+
----------
|
361 |
+
data : Series/DataFrame
|
362 |
+
column : object, optional
|
363 |
+
by : object, optional
|
364 |
+
ax : axes, optional
|
365 |
+
bins : int, default 50
|
366 |
+
figsize : tuple, optional
|
367 |
+
layout : optional
|
368 |
+
sharex : bool, default False
|
369 |
+
sharey : bool, default False
|
370 |
+
rot : float, default 90
|
371 |
+
grid : bool, default True
|
372 |
+
legend: : bool, default False
|
373 |
+
kwargs : dict, keyword arguments passed to matplotlib.Axes.hist
|
374 |
+
|
375 |
+
Returns
|
376 |
+
-------
|
377 |
+
collection of Matplotlib Axes
|
378 |
+
"""
|
379 |
+
if legend:
|
380 |
+
assert "label" not in kwargs
|
381 |
+
if data.ndim == 1:
|
382 |
+
kwargs["label"] = data.name
|
383 |
+
elif column is None:
|
384 |
+
kwargs["label"] = data.columns
|
385 |
+
else:
|
386 |
+
kwargs["label"] = column
|
387 |
+
|
388 |
+
def plot_group(group, ax) -> None:
|
389 |
+
ax.hist(group.dropna().values, bins=bins, **kwargs)
|
390 |
+
if legend:
|
391 |
+
ax.legend()
|
392 |
+
|
393 |
+
if xrot is None:
|
394 |
+
xrot = rot
|
395 |
+
|
396 |
+
fig, axes = _grouped_plot(
|
397 |
+
plot_group,
|
398 |
+
data,
|
399 |
+
column=column,
|
400 |
+
by=by,
|
401 |
+
sharex=sharex,
|
402 |
+
sharey=sharey,
|
403 |
+
ax=ax,
|
404 |
+
figsize=figsize,
|
405 |
+
layout=layout,
|
406 |
+
rot=rot,
|
407 |
+
)
|
408 |
+
|
409 |
+
set_ticks_props(
|
410 |
+
axes, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot
|
411 |
+
)
|
412 |
+
|
413 |
+
maybe_adjust_figure(
|
414 |
+
fig, bottom=0.15, top=0.9, left=0.1, right=0.9, hspace=0.5, wspace=0.3
|
415 |
+
)
|
416 |
+
return axes
|
417 |
+
|
418 |
+
|
419 |
+
def hist_series(
|
420 |
+
self: Series,
|
421 |
+
by=None,
|
422 |
+
ax=None,
|
423 |
+
grid: bool = True,
|
424 |
+
xlabelsize: int | None = None,
|
425 |
+
xrot=None,
|
426 |
+
ylabelsize: int | None = None,
|
427 |
+
yrot=None,
|
428 |
+
figsize: tuple[float, float] | None = None,
|
429 |
+
bins: int = 10,
|
430 |
+
legend: bool = False,
|
431 |
+
**kwds,
|
432 |
+
):
|
433 |
+
import matplotlib.pyplot as plt
|
434 |
+
|
435 |
+
if legend and "label" in kwds:
|
436 |
+
raise ValueError("Cannot use both legend and label")
|
437 |
+
|
438 |
+
if by is None:
|
439 |
+
if kwds.get("layout", None) is not None:
|
440 |
+
raise ValueError("The 'layout' keyword is not supported when 'by' is None")
|
441 |
+
# hack until the plotting interface is a bit more unified
|
442 |
+
fig = kwds.pop(
|
443 |
+
"figure", plt.gcf() if plt.get_fignums() else plt.figure(figsize=figsize)
|
444 |
+
)
|
445 |
+
if figsize is not None and tuple(figsize) != tuple(fig.get_size_inches()):
|
446 |
+
fig.set_size_inches(*figsize, forward=True)
|
447 |
+
if ax is None:
|
448 |
+
ax = fig.gca()
|
449 |
+
elif ax.get_figure() != fig:
|
450 |
+
raise AssertionError("passed axis not bound to passed figure")
|
451 |
+
values = self.dropna().values
|
452 |
+
if legend:
|
453 |
+
kwds["label"] = self.name
|
454 |
+
ax.hist(values, bins=bins, **kwds)
|
455 |
+
if legend:
|
456 |
+
ax.legend()
|
457 |
+
ax.grid(grid)
|
458 |
+
axes = np.array([ax])
|
459 |
+
|
460 |
+
# error: Argument 1 to "set_ticks_props" has incompatible type "ndarray[Any,
|
461 |
+
# dtype[Any]]"; expected "Axes | Sequence[Axes]"
|
462 |
+
set_ticks_props(
|
463 |
+
axes, # type: ignore[arg-type]
|
464 |
+
xlabelsize=xlabelsize,
|
465 |
+
xrot=xrot,
|
466 |
+
ylabelsize=ylabelsize,
|
467 |
+
yrot=yrot,
|
468 |
+
)
|
469 |
+
|
470 |
+
else:
|
471 |
+
if "figure" in kwds:
|
472 |
+
raise ValueError(
|
473 |
+
"Cannot pass 'figure' when using the "
|
474 |
+
"'by' argument, since a new 'Figure' instance will be created"
|
475 |
+
)
|
476 |
+
axes = _grouped_hist(
|
477 |
+
self,
|
478 |
+
by=by,
|
479 |
+
ax=ax,
|
480 |
+
grid=grid,
|
481 |
+
figsize=figsize,
|
482 |
+
bins=bins,
|
483 |
+
xlabelsize=xlabelsize,
|
484 |
+
xrot=xrot,
|
485 |
+
ylabelsize=ylabelsize,
|
486 |
+
yrot=yrot,
|
487 |
+
legend=legend,
|
488 |
+
**kwds,
|
489 |
+
)
|
490 |
+
|
491 |
+
if hasattr(axes, "ndim"):
|
492 |
+
if axes.ndim == 1 and len(axes) == 1:
|
493 |
+
return axes[0]
|
494 |
+
return axes
|
495 |
+
|
496 |
+
|
497 |
+
def hist_frame(
|
498 |
+
data: DataFrame,
|
499 |
+
column=None,
|
500 |
+
by=None,
|
501 |
+
grid: bool = True,
|
502 |
+
xlabelsize: int | None = None,
|
503 |
+
xrot=None,
|
504 |
+
ylabelsize: int | None = None,
|
505 |
+
yrot=None,
|
506 |
+
ax=None,
|
507 |
+
sharex: bool = False,
|
508 |
+
sharey: bool = False,
|
509 |
+
figsize: tuple[float, float] | None = None,
|
510 |
+
layout=None,
|
511 |
+
bins: int = 10,
|
512 |
+
legend: bool = False,
|
513 |
+
**kwds,
|
514 |
+
):
|
515 |
+
if legend and "label" in kwds:
|
516 |
+
raise ValueError("Cannot use both legend and label")
|
517 |
+
if by is not None:
|
518 |
+
axes = _grouped_hist(
|
519 |
+
data,
|
520 |
+
column=column,
|
521 |
+
by=by,
|
522 |
+
ax=ax,
|
523 |
+
grid=grid,
|
524 |
+
figsize=figsize,
|
525 |
+
sharex=sharex,
|
526 |
+
sharey=sharey,
|
527 |
+
layout=layout,
|
528 |
+
bins=bins,
|
529 |
+
xlabelsize=xlabelsize,
|
530 |
+
xrot=xrot,
|
531 |
+
ylabelsize=ylabelsize,
|
532 |
+
yrot=yrot,
|
533 |
+
legend=legend,
|
534 |
+
**kwds,
|
535 |
+
)
|
536 |
+
return axes
|
537 |
+
|
538 |
+
if column is not None:
|
539 |
+
if not isinstance(column, (list, np.ndarray, ABCIndex)):
|
540 |
+
column = [column]
|
541 |
+
data = data[column]
|
542 |
+
# GH32590
|
543 |
+
data = data.select_dtypes(
|
544 |
+
include=(np.number, "datetime64", "datetimetz"), exclude="timedelta"
|
545 |
+
)
|
546 |
+
naxes = len(data.columns)
|
547 |
+
|
548 |
+
if naxes == 0:
|
549 |
+
raise ValueError(
|
550 |
+
"hist method requires numerical or datetime columns, nothing to plot."
|
551 |
+
)
|
552 |
+
|
553 |
+
fig, axes = create_subplots(
|
554 |
+
naxes=naxes,
|
555 |
+
ax=ax,
|
556 |
+
squeeze=False,
|
557 |
+
sharex=sharex,
|
558 |
+
sharey=sharey,
|
559 |
+
figsize=figsize,
|
560 |
+
layout=layout,
|
561 |
+
)
|
562 |
+
_axes = flatten_axes(axes)
|
563 |
+
|
564 |
+
can_set_label = "label" not in kwds
|
565 |
+
|
566 |
+
for i, col in enumerate(data.columns):
|
567 |
+
ax = _axes[i]
|
568 |
+
if legend and can_set_label:
|
569 |
+
kwds["label"] = col
|
570 |
+
ax.hist(data[col].dropna().values, bins=bins, **kwds)
|
571 |
+
ax.set_title(col)
|
572 |
+
ax.grid(grid)
|
573 |
+
if legend:
|
574 |
+
ax.legend()
|
575 |
+
|
576 |
+
set_ticks_props(
|
577 |
+
axes, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot
|
578 |
+
)
|
579 |
+
maybe_adjust_figure(fig, wspace=0.3, hspace=0.3)
|
580 |
+
|
581 |
+
return axes
|
venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/misc.py
ADDED
@@ -0,0 +1,481 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import random
|
4 |
+
from typing import TYPE_CHECKING
|
5 |
+
|
6 |
+
from matplotlib import patches
|
7 |
+
import matplotlib.lines as mlines
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
from pandas.core.dtypes.missing import notna
|
11 |
+
|
12 |
+
from pandas.io.formats.printing import pprint_thing
|
13 |
+
from pandas.plotting._matplotlib.style import get_standard_colors
|
14 |
+
from pandas.plotting._matplotlib.tools import (
|
15 |
+
create_subplots,
|
16 |
+
do_adjust_figure,
|
17 |
+
maybe_adjust_figure,
|
18 |
+
set_ticks_props,
|
19 |
+
)
|
20 |
+
|
21 |
+
if TYPE_CHECKING:
|
22 |
+
from collections.abc import Hashable
|
23 |
+
|
24 |
+
from matplotlib.axes import Axes
|
25 |
+
from matplotlib.figure import Figure
|
26 |
+
|
27 |
+
from pandas import (
|
28 |
+
DataFrame,
|
29 |
+
Index,
|
30 |
+
Series,
|
31 |
+
)
|
32 |
+
|
33 |
+
|
34 |
+
def scatter_matrix(
|
35 |
+
frame: DataFrame,
|
36 |
+
alpha: float = 0.5,
|
37 |
+
figsize: tuple[float, float] | None = None,
|
38 |
+
ax=None,
|
39 |
+
grid: bool = False,
|
40 |
+
diagonal: str = "hist",
|
41 |
+
marker: str = ".",
|
42 |
+
density_kwds=None,
|
43 |
+
hist_kwds=None,
|
44 |
+
range_padding: float = 0.05,
|
45 |
+
**kwds,
|
46 |
+
):
|
47 |
+
df = frame._get_numeric_data()
|
48 |
+
n = df.columns.size
|
49 |
+
naxes = n * n
|
50 |
+
fig, axes = create_subplots(naxes=naxes, figsize=figsize, ax=ax, squeeze=False)
|
51 |
+
|
52 |
+
# no gaps between subplots
|
53 |
+
maybe_adjust_figure(fig, wspace=0, hspace=0)
|
54 |
+
|
55 |
+
mask = notna(df)
|
56 |
+
|
57 |
+
marker = _get_marker_compat(marker)
|
58 |
+
|
59 |
+
hist_kwds = hist_kwds or {}
|
60 |
+
density_kwds = density_kwds or {}
|
61 |
+
|
62 |
+
# GH 14855
|
63 |
+
kwds.setdefault("edgecolors", "none")
|
64 |
+
|
65 |
+
boundaries_list = []
|
66 |
+
for a in df.columns:
|
67 |
+
values = df[a].values[mask[a].values]
|
68 |
+
rmin_, rmax_ = np.min(values), np.max(values)
|
69 |
+
rdelta_ext = (rmax_ - rmin_) * range_padding / 2
|
70 |
+
boundaries_list.append((rmin_ - rdelta_ext, rmax_ + rdelta_ext))
|
71 |
+
|
72 |
+
for i, a in enumerate(df.columns):
|
73 |
+
for j, b in enumerate(df.columns):
|
74 |
+
ax = axes[i, j]
|
75 |
+
|
76 |
+
if i == j:
|
77 |
+
values = df[a].values[mask[a].values]
|
78 |
+
|
79 |
+
# Deal with the diagonal by drawing a histogram there.
|
80 |
+
if diagonal == "hist":
|
81 |
+
ax.hist(values, **hist_kwds)
|
82 |
+
|
83 |
+
elif diagonal in ("kde", "density"):
|
84 |
+
from scipy.stats import gaussian_kde
|
85 |
+
|
86 |
+
y = values
|
87 |
+
gkde = gaussian_kde(y)
|
88 |
+
ind = np.linspace(y.min(), y.max(), 1000)
|
89 |
+
ax.plot(ind, gkde.evaluate(ind), **density_kwds)
|
90 |
+
|
91 |
+
ax.set_xlim(boundaries_list[i])
|
92 |
+
|
93 |
+
else:
|
94 |
+
common = (mask[a] & mask[b]).values
|
95 |
+
|
96 |
+
ax.scatter(
|
97 |
+
df[b][common], df[a][common], marker=marker, alpha=alpha, **kwds
|
98 |
+
)
|
99 |
+
|
100 |
+
ax.set_xlim(boundaries_list[j])
|
101 |
+
ax.set_ylim(boundaries_list[i])
|
102 |
+
|
103 |
+
ax.set_xlabel(b)
|
104 |
+
ax.set_ylabel(a)
|
105 |
+
|
106 |
+
if j != 0:
|
107 |
+
ax.yaxis.set_visible(False)
|
108 |
+
if i != n - 1:
|
109 |
+
ax.xaxis.set_visible(False)
|
110 |
+
|
111 |
+
if len(df.columns) > 1:
|
112 |
+
lim1 = boundaries_list[0]
|
113 |
+
locs = axes[0][1].yaxis.get_majorticklocs()
|
114 |
+
locs = locs[(lim1[0] <= locs) & (locs <= lim1[1])]
|
115 |
+
adj = (locs - lim1[0]) / (lim1[1] - lim1[0])
|
116 |
+
|
117 |
+
lim0 = axes[0][0].get_ylim()
|
118 |
+
adj = adj * (lim0[1] - lim0[0]) + lim0[0]
|
119 |
+
axes[0][0].yaxis.set_ticks(adj)
|
120 |
+
|
121 |
+
if np.all(locs == locs.astype(int)):
|
122 |
+
# if all ticks are int
|
123 |
+
locs = locs.astype(int)
|
124 |
+
axes[0][0].yaxis.set_ticklabels(locs)
|
125 |
+
|
126 |
+
set_ticks_props(axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0)
|
127 |
+
|
128 |
+
return axes
|
129 |
+
|
130 |
+
|
131 |
+
def _get_marker_compat(marker):
|
132 |
+
if marker not in mlines.lineMarkers:
|
133 |
+
return "o"
|
134 |
+
return marker
|
135 |
+
|
136 |
+
|
137 |
+
def radviz(
|
138 |
+
frame: DataFrame,
|
139 |
+
class_column,
|
140 |
+
ax: Axes | None = None,
|
141 |
+
color=None,
|
142 |
+
colormap=None,
|
143 |
+
**kwds,
|
144 |
+
) -> Axes:
|
145 |
+
import matplotlib.pyplot as plt
|
146 |
+
|
147 |
+
def normalize(series):
|
148 |
+
a = min(series)
|
149 |
+
b = max(series)
|
150 |
+
return (series - a) / (b - a)
|
151 |
+
|
152 |
+
n = len(frame)
|
153 |
+
classes = frame[class_column].drop_duplicates()
|
154 |
+
class_col = frame[class_column]
|
155 |
+
df = frame.drop(class_column, axis=1).apply(normalize)
|
156 |
+
|
157 |
+
if ax is None:
|
158 |
+
ax = plt.gca()
|
159 |
+
ax.set_xlim(-1, 1)
|
160 |
+
ax.set_ylim(-1, 1)
|
161 |
+
|
162 |
+
to_plot: dict[Hashable, list[list]] = {}
|
163 |
+
colors = get_standard_colors(
|
164 |
+
num_colors=len(classes), colormap=colormap, color_type="random", color=color
|
165 |
+
)
|
166 |
+
|
167 |
+
for kls in classes:
|
168 |
+
to_plot[kls] = [[], []]
|
169 |
+
|
170 |
+
m = len(frame.columns) - 1
|
171 |
+
s = np.array(
|
172 |
+
[(np.cos(t), np.sin(t)) for t in [2 * np.pi * (i / m) for i in range(m)]]
|
173 |
+
)
|
174 |
+
|
175 |
+
for i in range(n):
|
176 |
+
row = df.iloc[i].values
|
177 |
+
row_ = np.repeat(np.expand_dims(row, axis=1), 2, axis=1)
|
178 |
+
y = (s * row_).sum(axis=0) / row.sum()
|
179 |
+
kls = class_col.iat[i]
|
180 |
+
to_plot[kls][0].append(y[0])
|
181 |
+
to_plot[kls][1].append(y[1])
|
182 |
+
|
183 |
+
for i, kls in enumerate(classes):
|
184 |
+
ax.scatter(
|
185 |
+
to_plot[kls][0],
|
186 |
+
to_plot[kls][1],
|
187 |
+
color=colors[i],
|
188 |
+
label=pprint_thing(kls),
|
189 |
+
**kwds,
|
190 |
+
)
|
191 |
+
ax.legend()
|
192 |
+
|
193 |
+
ax.add_patch(patches.Circle((0.0, 0.0), radius=1.0, facecolor="none"))
|
194 |
+
|
195 |
+
for xy, name in zip(s, df.columns):
|
196 |
+
ax.add_patch(patches.Circle(xy, radius=0.025, facecolor="gray"))
|
197 |
+
|
198 |
+
if xy[0] < 0.0 and xy[1] < 0.0:
|
199 |
+
ax.text(
|
200 |
+
xy[0] - 0.025, xy[1] - 0.025, name, ha="right", va="top", size="small"
|
201 |
+
)
|
202 |
+
elif xy[0] < 0.0 <= xy[1]:
|
203 |
+
ax.text(
|
204 |
+
xy[0] - 0.025,
|
205 |
+
xy[1] + 0.025,
|
206 |
+
name,
|
207 |
+
ha="right",
|
208 |
+
va="bottom",
|
209 |
+
size="small",
|
210 |
+
)
|
211 |
+
elif xy[1] < 0.0 <= xy[0]:
|
212 |
+
ax.text(
|
213 |
+
xy[0] + 0.025, xy[1] - 0.025, name, ha="left", va="top", size="small"
|
214 |
+
)
|
215 |
+
elif xy[0] >= 0.0 and xy[1] >= 0.0:
|
216 |
+
ax.text(
|
217 |
+
xy[0] + 0.025, xy[1] + 0.025, name, ha="left", va="bottom", size="small"
|
218 |
+
)
|
219 |
+
|
220 |
+
ax.axis("equal")
|
221 |
+
return ax
|
222 |
+
|
223 |
+
|
224 |
+
def andrews_curves(
|
225 |
+
frame: DataFrame,
|
226 |
+
class_column,
|
227 |
+
ax: Axes | None = None,
|
228 |
+
samples: int = 200,
|
229 |
+
color=None,
|
230 |
+
colormap=None,
|
231 |
+
**kwds,
|
232 |
+
) -> Axes:
|
233 |
+
import matplotlib.pyplot as plt
|
234 |
+
|
235 |
+
def function(amplitudes):
|
236 |
+
def f(t):
|
237 |
+
x1 = amplitudes[0]
|
238 |
+
result = x1 / np.sqrt(2.0)
|
239 |
+
|
240 |
+
# Take the rest of the coefficients and resize them
|
241 |
+
# appropriately. Take a copy of amplitudes as otherwise numpy
|
242 |
+
# deletes the element from amplitudes itself.
|
243 |
+
coeffs = np.delete(np.copy(amplitudes), 0)
|
244 |
+
coeffs = np.resize(coeffs, (int((coeffs.size + 1) / 2), 2))
|
245 |
+
|
246 |
+
# Generate the harmonics and arguments for the sin and cos
|
247 |
+
# functions.
|
248 |
+
harmonics = np.arange(0, coeffs.shape[0]) + 1
|
249 |
+
trig_args = np.outer(harmonics, t)
|
250 |
+
|
251 |
+
result += np.sum(
|
252 |
+
coeffs[:, 0, np.newaxis] * np.sin(trig_args)
|
253 |
+
+ coeffs[:, 1, np.newaxis] * np.cos(trig_args),
|
254 |
+
axis=0,
|
255 |
+
)
|
256 |
+
return result
|
257 |
+
|
258 |
+
return f
|
259 |
+
|
260 |
+
n = len(frame)
|
261 |
+
class_col = frame[class_column]
|
262 |
+
classes = frame[class_column].drop_duplicates()
|
263 |
+
df = frame.drop(class_column, axis=1)
|
264 |
+
t = np.linspace(-np.pi, np.pi, samples)
|
265 |
+
used_legends: set[str] = set()
|
266 |
+
|
267 |
+
color_values = get_standard_colors(
|
268 |
+
num_colors=len(classes), colormap=colormap, color_type="random", color=color
|
269 |
+
)
|
270 |
+
colors = dict(zip(classes, color_values))
|
271 |
+
if ax is None:
|
272 |
+
ax = plt.gca()
|
273 |
+
ax.set_xlim(-np.pi, np.pi)
|
274 |
+
for i in range(n):
|
275 |
+
row = df.iloc[i].values
|
276 |
+
f = function(row)
|
277 |
+
y = f(t)
|
278 |
+
kls = class_col.iat[i]
|
279 |
+
label = pprint_thing(kls)
|
280 |
+
if label not in used_legends:
|
281 |
+
used_legends.add(label)
|
282 |
+
ax.plot(t, y, color=colors[kls], label=label, **kwds)
|
283 |
+
else:
|
284 |
+
ax.plot(t, y, color=colors[kls], **kwds)
|
285 |
+
|
286 |
+
ax.legend(loc="upper right")
|
287 |
+
ax.grid()
|
288 |
+
return ax
|
289 |
+
|
290 |
+
|
291 |
+
def bootstrap_plot(
|
292 |
+
series: Series,
|
293 |
+
fig: Figure | None = None,
|
294 |
+
size: int = 50,
|
295 |
+
samples: int = 500,
|
296 |
+
**kwds,
|
297 |
+
) -> Figure:
|
298 |
+
import matplotlib.pyplot as plt
|
299 |
+
|
300 |
+
# TODO: is the failure mentioned below still relevant?
|
301 |
+
# random.sample(ndarray, int) fails on python 3.3, sigh
|
302 |
+
data = list(series.values)
|
303 |
+
samplings = [random.sample(data, size) for _ in range(samples)]
|
304 |
+
|
305 |
+
means = np.array([np.mean(sampling) for sampling in samplings])
|
306 |
+
medians = np.array([np.median(sampling) for sampling in samplings])
|
307 |
+
midranges = np.array(
|
308 |
+
[(min(sampling) + max(sampling)) * 0.5 for sampling in samplings]
|
309 |
+
)
|
310 |
+
if fig is None:
|
311 |
+
fig = plt.figure()
|
312 |
+
x = list(range(samples))
|
313 |
+
axes = []
|
314 |
+
ax1 = fig.add_subplot(2, 3, 1)
|
315 |
+
ax1.set_xlabel("Sample")
|
316 |
+
axes.append(ax1)
|
317 |
+
ax1.plot(x, means, **kwds)
|
318 |
+
ax2 = fig.add_subplot(2, 3, 2)
|
319 |
+
ax2.set_xlabel("Sample")
|
320 |
+
axes.append(ax2)
|
321 |
+
ax2.plot(x, medians, **kwds)
|
322 |
+
ax3 = fig.add_subplot(2, 3, 3)
|
323 |
+
ax3.set_xlabel("Sample")
|
324 |
+
axes.append(ax3)
|
325 |
+
ax3.plot(x, midranges, **kwds)
|
326 |
+
ax4 = fig.add_subplot(2, 3, 4)
|
327 |
+
ax4.set_xlabel("Mean")
|
328 |
+
axes.append(ax4)
|
329 |
+
ax4.hist(means, **kwds)
|
330 |
+
ax5 = fig.add_subplot(2, 3, 5)
|
331 |
+
ax5.set_xlabel("Median")
|
332 |
+
axes.append(ax5)
|
333 |
+
ax5.hist(medians, **kwds)
|
334 |
+
ax6 = fig.add_subplot(2, 3, 6)
|
335 |
+
ax6.set_xlabel("Midrange")
|
336 |
+
axes.append(ax6)
|
337 |
+
ax6.hist(midranges, **kwds)
|
338 |
+
for axis in axes:
|
339 |
+
plt.setp(axis.get_xticklabels(), fontsize=8)
|
340 |
+
plt.setp(axis.get_yticklabels(), fontsize=8)
|
341 |
+
if do_adjust_figure(fig):
|
342 |
+
plt.tight_layout()
|
343 |
+
return fig
|
344 |
+
|
345 |
+
|
346 |
+
def parallel_coordinates(
|
347 |
+
frame: DataFrame,
|
348 |
+
class_column,
|
349 |
+
cols=None,
|
350 |
+
ax: Axes | None = None,
|
351 |
+
color=None,
|
352 |
+
use_columns: bool = False,
|
353 |
+
xticks=None,
|
354 |
+
colormap=None,
|
355 |
+
axvlines: bool = True,
|
356 |
+
axvlines_kwds=None,
|
357 |
+
sort_labels: bool = False,
|
358 |
+
**kwds,
|
359 |
+
) -> Axes:
|
360 |
+
import matplotlib.pyplot as plt
|
361 |
+
|
362 |
+
if axvlines_kwds is None:
|
363 |
+
axvlines_kwds = {"linewidth": 1, "color": "black"}
|
364 |
+
|
365 |
+
n = len(frame)
|
366 |
+
classes = frame[class_column].drop_duplicates()
|
367 |
+
class_col = frame[class_column]
|
368 |
+
|
369 |
+
if cols is None:
|
370 |
+
df = frame.drop(class_column, axis=1)
|
371 |
+
else:
|
372 |
+
df = frame[cols]
|
373 |
+
|
374 |
+
used_legends: set[str] = set()
|
375 |
+
|
376 |
+
ncols = len(df.columns)
|
377 |
+
|
378 |
+
# determine values to use for xticks
|
379 |
+
x: list[int] | Index
|
380 |
+
if use_columns is True:
|
381 |
+
if not np.all(np.isreal(list(df.columns))):
|
382 |
+
raise ValueError("Columns must be numeric to be used as xticks")
|
383 |
+
x = df.columns
|
384 |
+
elif xticks is not None:
|
385 |
+
if not np.all(np.isreal(xticks)):
|
386 |
+
raise ValueError("xticks specified must be numeric")
|
387 |
+
if len(xticks) != ncols:
|
388 |
+
raise ValueError("Length of xticks must match number of columns")
|
389 |
+
x = xticks
|
390 |
+
else:
|
391 |
+
x = list(range(ncols))
|
392 |
+
|
393 |
+
if ax is None:
|
394 |
+
ax = plt.gca()
|
395 |
+
|
396 |
+
color_values = get_standard_colors(
|
397 |
+
num_colors=len(classes), colormap=colormap, color_type="random", color=color
|
398 |
+
)
|
399 |
+
|
400 |
+
if sort_labels:
|
401 |
+
classes = sorted(classes)
|
402 |
+
color_values = sorted(color_values)
|
403 |
+
colors = dict(zip(classes, color_values))
|
404 |
+
|
405 |
+
for i in range(n):
|
406 |
+
y = df.iloc[i].values
|
407 |
+
kls = class_col.iat[i]
|
408 |
+
label = pprint_thing(kls)
|
409 |
+
if label not in used_legends:
|
410 |
+
used_legends.add(label)
|
411 |
+
ax.plot(x, y, color=colors[kls], label=label, **kwds)
|
412 |
+
else:
|
413 |
+
ax.plot(x, y, color=colors[kls], **kwds)
|
414 |
+
|
415 |
+
if axvlines:
|
416 |
+
for i in x:
|
417 |
+
ax.axvline(i, **axvlines_kwds)
|
418 |
+
|
419 |
+
ax.set_xticks(x)
|
420 |
+
ax.set_xticklabels(df.columns)
|
421 |
+
ax.set_xlim(x[0], x[-1])
|
422 |
+
ax.legend(loc="upper right")
|
423 |
+
ax.grid()
|
424 |
+
return ax
|
425 |
+
|
426 |
+
|
427 |
+
def lag_plot(series: Series, lag: int = 1, ax: Axes | None = None, **kwds) -> Axes:
|
428 |
+
# workaround because `c='b'` is hardcoded in matplotlib's scatter method
|
429 |
+
import matplotlib.pyplot as plt
|
430 |
+
|
431 |
+
kwds.setdefault("c", plt.rcParams["patch.facecolor"])
|
432 |
+
|
433 |
+
data = series.values
|
434 |
+
y1 = data[:-lag]
|
435 |
+
y2 = data[lag:]
|
436 |
+
if ax is None:
|
437 |
+
ax = plt.gca()
|
438 |
+
ax.set_xlabel("y(t)")
|
439 |
+
ax.set_ylabel(f"y(t + {lag})")
|
440 |
+
ax.scatter(y1, y2, **kwds)
|
441 |
+
return ax
|
442 |
+
|
443 |
+
|
444 |
+
def autocorrelation_plot(series: Series, ax: Axes | None = None, **kwds) -> Axes:
|
445 |
+
import matplotlib.pyplot as plt
|
446 |
+
|
447 |
+
n = len(series)
|
448 |
+
data = np.asarray(series)
|
449 |
+
if ax is None:
|
450 |
+
ax = plt.gca()
|
451 |
+
ax.set_xlim(1, n)
|
452 |
+
ax.set_ylim(-1.0, 1.0)
|
453 |
+
mean = np.mean(data)
|
454 |
+
c0 = np.sum((data - mean) ** 2) / n
|
455 |
+
|
456 |
+
def r(h):
|
457 |
+
return ((data[: n - h] - mean) * (data[h:] - mean)).sum() / n / c0
|
458 |
+
|
459 |
+
x = np.arange(n) + 1
|
460 |
+
y = [r(loc) for loc in x]
|
461 |
+
z95 = 1.959963984540054
|
462 |
+
z99 = 2.5758293035489004
|
463 |
+
ax.axhline(y=z99 / np.sqrt(n), linestyle="--", color="grey")
|
464 |
+
ax.axhline(y=z95 / np.sqrt(n), color="grey")
|
465 |
+
ax.axhline(y=0.0, color="black")
|
466 |
+
ax.axhline(y=-z95 / np.sqrt(n), color="grey")
|
467 |
+
ax.axhline(y=-z99 / np.sqrt(n), linestyle="--", color="grey")
|
468 |
+
ax.set_xlabel("Lag")
|
469 |
+
ax.set_ylabel("Autocorrelation")
|
470 |
+
ax.plot(x, y, **kwds)
|
471 |
+
if "label" in kwds:
|
472 |
+
ax.legend()
|
473 |
+
ax.grid()
|
474 |
+
return ax
|
475 |
+
|
476 |
+
|
477 |
+
def unpack_single_str_list(keys):
|
478 |
+
# GH 42795
|
479 |
+
if isinstance(keys, list) and len(keys) == 1:
|
480 |
+
keys = keys[0]
|
481 |
+
return keys
|
venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/style.py
ADDED
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from collections.abc import (
|
4 |
+
Collection,
|
5 |
+
Iterator,
|
6 |
+
)
|
7 |
+
import itertools
|
8 |
+
from typing import (
|
9 |
+
TYPE_CHECKING,
|
10 |
+
cast,
|
11 |
+
)
|
12 |
+
import warnings
|
13 |
+
|
14 |
+
import matplotlib as mpl
|
15 |
+
import matplotlib.colors
|
16 |
+
import numpy as np
|
17 |
+
|
18 |
+
from pandas._typing import MatplotlibColor as Color
|
19 |
+
from pandas.util._exceptions import find_stack_level
|
20 |
+
|
21 |
+
from pandas.core.dtypes.common import is_list_like
|
22 |
+
|
23 |
+
import pandas.core.common as com
|
24 |
+
|
25 |
+
if TYPE_CHECKING:
|
26 |
+
from matplotlib.colors import Colormap
|
27 |
+
|
28 |
+
|
29 |
+
def get_standard_colors(
|
30 |
+
num_colors: int,
|
31 |
+
colormap: Colormap | None = None,
|
32 |
+
color_type: str = "default",
|
33 |
+
color: dict[str, Color] | Color | Collection[Color] | None = None,
|
34 |
+
):
|
35 |
+
"""
|
36 |
+
Get standard colors based on `colormap`, `color_type` or `color` inputs.
|
37 |
+
|
38 |
+
Parameters
|
39 |
+
----------
|
40 |
+
num_colors : int
|
41 |
+
Minimum number of colors to be returned.
|
42 |
+
Ignored if `color` is a dictionary.
|
43 |
+
colormap : :py:class:`matplotlib.colors.Colormap`, optional
|
44 |
+
Matplotlib colormap.
|
45 |
+
When provided, the resulting colors will be derived from the colormap.
|
46 |
+
color_type : {"default", "random"}, optional
|
47 |
+
Type of colors to derive. Used if provided `color` and `colormap` are None.
|
48 |
+
Ignored if either `color` or `colormap` are not None.
|
49 |
+
color : dict or str or sequence, optional
|
50 |
+
Color(s) to be used for deriving sequence of colors.
|
51 |
+
Can be either be a dictionary, or a single color (single color string,
|
52 |
+
or sequence of floats representing a single color),
|
53 |
+
or a sequence of colors.
|
54 |
+
|
55 |
+
Returns
|
56 |
+
-------
|
57 |
+
dict or list
|
58 |
+
Standard colors. Can either be a mapping if `color` was a dictionary,
|
59 |
+
or a list of colors with a length of `num_colors` or more.
|
60 |
+
|
61 |
+
Warns
|
62 |
+
-----
|
63 |
+
UserWarning
|
64 |
+
If both `colormap` and `color` are provided.
|
65 |
+
Parameter `color` will override.
|
66 |
+
"""
|
67 |
+
if isinstance(color, dict):
|
68 |
+
return color
|
69 |
+
|
70 |
+
colors = _derive_colors(
|
71 |
+
color=color,
|
72 |
+
colormap=colormap,
|
73 |
+
color_type=color_type,
|
74 |
+
num_colors=num_colors,
|
75 |
+
)
|
76 |
+
|
77 |
+
return list(_cycle_colors(colors, num_colors=num_colors))
|
78 |
+
|
79 |
+
|
80 |
+
def _derive_colors(
|
81 |
+
*,
|
82 |
+
color: Color | Collection[Color] | None,
|
83 |
+
colormap: str | Colormap | None,
|
84 |
+
color_type: str,
|
85 |
+
num_colors: int,
|
86 |
+
) -> list[Color]:
|
87 |
+
"""
|
88 |
+
Derive colors from either `colormap`, `color_type` or `color` inputs.
|
89 |
+
|
90 |
+
Get a list of colors either from `colormap`, or from `color`,
|
91 |
+
or from `color_type` (if both `colormap` and `color` are None).
|
92 |
+
|
93 |
+
Parameters
|
94 |
+
----------
|
95 |
+
color : str or sequence, optional
|
96 |
+
Color(s) to be used for deriving sequence of colors.
|
97 |
+
Can be either be a single color (single color string, or sequence of floats
|
98 |
+
representing a single color), or a sequence of colors.
|
99 |
+
colormap : :py:class:`matplotlib.colors.Colormap`, optional
|
100 |
+
Matplotlib colormap.
|
101 |
+
When provided, the resulting colors will be derived from the colormap.
|
102 |
+
color_type : {"default", "random"}, optional
|
103 |
+
Type of colors to derive. Used if provided `color` and `colormap` are None.
|
104 |
+
Ignored if either `color` or `colormap`` are not None.
|
105 |
+
num_colors : int
|
106 |
+
Number of colors to be extracted.
|
107 |
+
|
108 |
+
Returns
|
109 |
+
-------
|
110 |
+
list
|
111 |
+
List of colors extracted.
|
112 |
+
|
113 |
+
Warns
|
114 |
+
-----
|
115 |
+
UserWarning
|
116 |
+
If both `colormap` and `color` are provided.
|
117 |
+
Parameter `color` will override.
|
118 |
+
"""
|
119 |
+
if color is None and colormap is not None:
|
120 |
+
return _get_colors_from_colormap(colormap, num_colors=num_colors)
|
121 |
+
elif color is not None:
|
122 |
+
if colormap is not None:
|
123 |
+
warnings.warn(
|
124 |
+
"'color' and 'colormap' cannot be used simultaneously. Using 'color'",
|
125 |
+
stacklevel=find_stack_level(),
|
126 |
+
)
|
127 |
+
return _get_colors_from_color(color)
|
128 |
+
else:
|
129 |
+
return _get_colors_from_color_type(color_type, num_colors=num_colors)
|
130 |
+
|
131 |
+
|
132 |
+
def _cycle_colors(colors: list[Color], num_colors: int) -> Iterator[Color]:
|
133 |
+
"""Cycle colors until achieving max of `num_colors` or length of `colors`.
|
134 |
+
|
135 |
+
Extra colors will be ignored by matplotlib if there are more colors
|
136 |
+
than needed and nothing needs to be done here.
|
137 |
+
"""
|
138 |
+
max_colors = max(num_colors, len(colors))
|
139 |
+
yield from itertools.islice(itertools.cycle(colors), max_colors)
|
140 |
+
|
141 |
+
|
142 |
+
def _get_colors_from_colormap(
|
143 |
+
colormap: str | Colormap,
|
144 |
+
num_colors: int,
|
145 |
+
) -> list[Color]:
|
146 |
+
"""Get colors from colormap."""
|
147 |
+
cmap = _get_cmap_instance(colormap)
|
148 |
+
return [cmap(num) for num in np.linspace(0, 1, num=num_colors)]
|
149 |
+
|
150 |
+
|
151 |
+
def _get_cmap_instance(colormap: str | Colormap) -> Colormap:
|
152 |
+
"""Get instance of matplotlib colormap."""
|
153 |
+
if isinstance(colormap, str):
|
154 |
+
cmap = colormap
|
155 |
+
colormap = mpl.colormaps[colormap]
|
156 |
+
if colormap is None:
|
157 |
+
raise ValueError(f"Colormap {cmap} is not recognized")
|
158 |
+
return colormap
|
159 |
+
|
160 |
+
|
161 |
+
def _get_colors_from_color(
|
162 |
+
color: Color | Collection[Color],
|
163 |
+
) -> list[Color]:
|
164 |
+
"""Get colors from user input color."""
|
165 |
+
if len(color) == 0:
|
166 |
+
raise ValueError(f"Invalid color argument: {color}")
|
167 |
+
|
168 |
+
if _is_single_color(color):
|
169 |
+
color = cast(Color, color)
|
170 |
+
return [color]
|
171 |
+
|
172 |
+
color = cast(Collection[Color], color)
|
173 |
+
return list(_gen_list_of_colors_from_iterable(color))
|
174 |
+
|
175 |
+
|
176 |
+
def _is_single_color(color: Color | Collection[Color]) -> bool:
|
177 |
+
"""Check if `color` is a single color, not a sequence of colors.
|
178 |
+
|
179 |
+
Single color is of these kinds:
|
180 |
+
- Named color "red", "C0", "firebrick"
|
181 |
+
- Alias "g"
|
182 |
+
- Sequence of floats, such as (0.1, 0.2, 0.3) or (0.1, 0.2, 0.3, 0.4).
|
183 |
+
|
184 |
+
See Also
|
185 |
+
--------
|
186 |
+
_is_single_string_color
|
187 |
+
"""
|
188 |
+
if isinstance(color, str) and _is_single_string_color(color):
|
189 |
+
# GH #36972
|
190 |
+
return True
|
191 |
+
|
192 |
+
if _is_floats_color(color):
|
193 |
+
return True
|
194 |
+
|
195 |
+
return False
|
196 |
+
|
197 |
+
|
198 |
+
def _gen_list_of_colors_from_iterable(color: Collection[Color]) -> Iterator[Color]:
|
199 |
+
"""
|
200 |
+
Yield colors from string of several letters or from collection of colors.
|
201 |
+
"""
|
202 |
+
for x in color:
|
203 |
+
if _is_single_color(x):
|
204 |
+
yield x
|
205 |
+
else:
|
206 |
+
raise ValueError(f"Invalid color {x}")
|
207 |
+
|
208 |
+
|
209 |
+
def _is_floats_color(color: Color | Collection[Color]) -> bool:
|
210 |
+
"""Check if color comprises a sequence of floats representing color."""
|
211 |
+
return bool(
|
212 |
+
is_list_like(color)
|
213 |
+
and (len(color) == 3 or len(color) == 4)
|
214 |
+
and all(isinstance(x, (int, float)) for x in color)
|
215 |
+
)
|
216 |
+
|
217 |
+
|
218 |
+
def _get_colors_from_color_type(color_type: str, num_colors: int) -> list[Color]:
|
219 |
+
"""Get colors from user input color type."""
|
220 |
+
if color_type == "default":
|
221 |
+
return _get_default_colors(num_colors)
|
222 |
+
elif color_type == "random":
|
223 |
+
return _get_random_colors(num_colors)
|
224 |
+
else:
|
225 |
+
raise ValueError("color_type must be either 'default' or 'random'")
|
226 |
+
|
227 |
+
|
228 |
+
def _get_default_colors(num_colors: int) -> list[Color]:
|
229 |
+
"""Get `num_colors` of default colors from matplotlib rc params."""
|
230 |
+
import matplotlib.pyplot as plt
|
231 |
+
|
232 |
+
colors = [c["color"] for c in plt.rcParams["axes.prop_cycle"]]
|
233 |
+
return colors[0:num_colors]
|
234 |
+
|
235 |
+
|
236 |
+
def _get_random_colors(num_colors: int) -> list[Color]:
|
237 |
+
"""Get `num_colors` of random colors."""
|
238 |
+
return [_random_color(num) for num in range(num_colors)]
|
239 |
+
|
240 |
+
|
241 |
+
def _random_color(column: int) -> list[float]:
|
242 |
+
"""Get a random color represented as a list of length 3"""
|
243 |
+
# GH17525 use common._random_state to avoid resetting the seed
|
244 |
+
rs = com.random_state(column)
|
245 |
+
return rs.rand(3).tolist()
|
246 |
+
|
247 |
+
|
248 |
+
def _is_single_string_color(color: Color) -> bool:
|
249 |
+
"""Check if `color` is a single string color.
|
250 |
+
|
251 |
+
Examples of single string colors:
|
252 |
+
- 'r'
|
253 |
+
- 'g'
|
254 |
+
- 'red'
|
255 |
+
- 'green'
|
256 |
+
- 'C3'
|
257 |
+
- 'firebrick'
|
258 |
+
|
259 |
+
Parameters
|
260 |
+
----------
|
261 |
+
color : Color
|
262 |
+
Color string or sequence of floats.
|
263 |
+
|
264 |
+
Returns
|
265 |
+
-------
|
266 |
+
bool
|
267 |
+
True if `color` looks like a valid color.
|
268 |
+
False otherwise.
|
269 |
+
"""
|
270 |
+
conv = matplotlib.colors.ColorConverter()
|
271 |
+
try:
|
272 |
+
# error: Argument 1 to "to_rgba" of "ColorConverter" has incompatible type
|
273 |
+
# "str | Sequence[float]"; expected "tuple[float, float, float] | ..."
|
274 |
+
conv.to_rgba(color) # type: ignore[arg-type]
|
275 |
+
except ValueError:
|
276 |
+
return False
|
277 |
+
else:
|
278 |
+
return True
|
venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/timeseries.py
ADDED
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# TODO: Use the fact that axis can have units to simplify the process
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import functools
|
6 |
+
from typing import (
|
7 |
+
TYPE_CHECKING,
|
8 |
+
Any,
|
9 |
+
cast,
|
10 |
+
)
|
11 |
+
import warnings
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
|
15 |
+
from pandas._libs.tslibs import (
|
16 |
+
BaseOffset,
|
17 |
+
Period,
|
18 |
+
to_offset,
|
19 |
+
)
|
20 |
+
from pandas._libs.tslibs.dtypes import (
|
21 |
+
OFFSET_TO_PERIOD_FREQSTR,
|
22 |
+
FreqGroup,
|
23 |
+
)
|
24 |
+
|
25 |
+
from pandas.core.dtypes.generic import (
|
26 |
+
ABCDatetimeIndex,
|
27 |
+
ABCPeriodIndex,
|
28 |
+
ABCTimedeltaIndex,
|
29 |
+
)
|
30 |
+
|
31 |
+
from pandas.io.formats.printing import pprint_thing
|
32 |
+
from pandas.plotting._matplotlib.converter import (
|
33 |
+
TimeSeries_DateFormatter,
|
34 |
+
TimeSeries_DateLocator,
|
35 |
+
TimeSeries_TimedeltaFormatter,
|
36 |
+
)
|
37 |
+
from pandas.tseries.frequencies import (
|
38 |
+
get_period_alias,
|
39 |
+
is_subperiod,
|
40 |
+
is_superperiod,
|
41 |
+
)
|
42 |
+
|
43 |
+
if TYPE_CHECKING:
|
44 |
+
from datetime import timedelta
|
45 |
+
|
46 |
+
from matplotlib.axes import Axes
|
47 |
+
|
48 |
+
from pandas._typing import NDFrameT
|
49 |
+
|
50 |
+
from pandas import (
|
51 |
+
DataFrame,
|
52 |
+
DatetimeIndex,
|
53 |
+
Index,
|
54 |
+
PeriodIndex,
|
55 |
+
Series,
|
56 |
+
)
|
57 |
+
|
58 |
+
# ---------------------------------------------------------------------
|
59 |
+
# Plotting functions and monkey patches
|
60 |
+
|
61 |
+
|
62 |
+
def maybe_resample(series: Series, ax: Axes, kwargs: dict[str, Any]):
|
63 |
+
# resample against axes freq if necessary
|
64 |
+
|
65 |
+
if "how" in kwargs:
|
66 |
+
raise ValueError(
|
67 |
+
"'how' is not a valid keyword for plotting functions. If plotting "
|
68 |
+
"multiple objects on shared axes, resample manually first."
|
69 |
+
)
|
70 |
+
|
71 |
+
freq, ax_freq = _get_freq(ax, series)
|
72 |
+
|
73 |
+
if freq is None: # pragma: no cover
|
74 |
+
raise ValueError("Cannot use dynamic axis without frequency info")
|
75 |
+
|
76 |
+
# Convert DatetimeIndex to PeriodIndex
|
77 |
+
if isinstance(series.index, ABCDatetimeIndex):
|
78 |
+
series = series.to_period(freq=freq)
|
79 |
+
|
80 |
+
if ax_freq is not None and freq != ax_freq:
|
81 |
+
if is_superperiod(freq, ax_freq): # upsample input
|
82 |
+
series = series.copy()
|
83 |
+
# error: "Index" has no attribute "asfreq"
|
84 |
+
series.index = series.index.asfreq( # type: ignore[attr-defined]
|
85 |
+
ax_freq, how="s"
|
86 |
+
)
|
87 |
+
freq = ax_freq
|
88 |
+
elif _is_sup(freq, ax_freq): # one is weekly
|
89 |
+
# Resampling with PeriodDtype is deprecated, so we convert to
|
90 |
+
# DatetimeIndex, resample, then convert back.
|
91 |
+
ser_ts = series.to_timestamp()
|
92 |
+
ser_d = ser_ts.resample("D").last().dropna()
|
93 |
+
ser_freq = ser_d.resample(ax_freq).last().dropna()
|
94 |
+
series = ser_freq.to_period(ax_freq)
|
95 |
+
freq = ax_freq
|
96 |
+
elif is_subperiod(freq, ax_freq) or _is_sub(freq, ax_freq):
|
97 |
+
_upsample_others(ax, freq, kwargs)
|
98 |
+
else: # pragma: no cover
|
99 |
+
raise ValueError("Incompatible frequency conversion")
|
100 |
+
return freq, series
|
101 |
+
|
102 |
+
|
103 |
+
def _is_sub(f1: str, f2: str) -> bool:
|
104 |
+
return (f1.startswith("W") and is_subperiod("D", f2)) or (
|
105 |
+
f2.startswith("W") and is_subperiod(f1, "D")
|
106 |
+
)
|
107 |
+
|
108 |
+
|
109 |
+
def _is_sup(f1: str, f2: str) -> bool:
|
110 |
+
return (f1.startswith("W") and is_superperiod("D", f2)) or (
|
111 |
+
f2.startswith("W") and is_superperiod(f1, "D")
|
112 |
+
)
|
113 |
+
|
114 |
+
|
115 |
+
def _upsample_others(ax: Axes, freq: BaseOffset, kwargs: dict[str, Any]) -> None:
|
116 |
+
legend = ax.get_legend()
|
117 |
+
lines, labels = _replot_ax(ax, freq)
|
118 |
+
_replot_ax(ax, freq)
|
119 |
+
|
120 |
+
other_ax = None
|
121 |
+
if hasattr(ax, "left_ax"):
|
122 |
+
other_ax = ax.left_ax
|
123 |
+
if hasattr(ax, "right_ax"):
|
124 |
+
other_ax = ax.right_ax
|
125 |
+
|
126 |
+
if other_ax is not None:
|
127 |
+
rlines, rlabels = _replot_ax(other_ax, freq)
|
128 |
+
lines.extend(rlines)
|
129 |
+
labels.extend(rlabels)
|
130 |
+
|
131 |
+
if legend is not None and kwargs.get("legend", True) and len(lines) > 0:
|
132 |
+
title: str | None = legend.get_title().get_text()
|
133 |
+
if title == "None":
|
134 |
+
title = None
|
135 |
+
ax.legend(lines, labels, loc="best", title=title)
|
136 |
+
|
137 |
+
|
138 |
+
def _replot_ax(ax: Axes, freq: BaseOffset):
|
139 |
+
data = getattr(ax, "_plot_data", None)
|
140 |
+
|
141 |
+
# clear current axes and data
|
142 |
+
# TODO #54485
|
143 |
+
ax._plot_data = [] # type: ignore[attr-defined]
|
144 |
+
ax.clear()
|
145 |
+
|
146 |
+
decorate_axes(ax, freq)
|
147 |
+
|
148 |
+
lines = []
|
149 |
+
labels = []
|
150 |
+
if data is not None:
|
151 |
+
for series, plotf, kwds in data:
|
152 |
+
series = series.copy()
|
153 |
+
idx = series.index.asfreq(freq, how="S")
|
154 |
+
series.index = idx
|
155 |
+
# TODO #54485
|
156 |
+
ax._plot_data.append((series, plotf, kwds)) # type: ignore[attr-defined]
|
157 |
+
|
158 |
+
# for tsplot
|
159 |
+
if isinstance(plotf, str):
|
160 |
+
from pandas.plotting._matplotlib import PLOT_CLASSES
|
161 |
+
|
162 |
+
plotf = PLOT_CLASSES[plotf]._plot
|
163 |
+
|
164 |
+
lines.append(plotf(ax, series.index._mpl_repr(), series.values, **kwds)[0])
|
165 |
+
labels.append(pprint_thing(series.name))
|
166 |
+
|
167 |
+
return lines, labels
|
168 |
+
|
169 |
+
|
170 |
+
def decorate_axes(ax: Axes, freq: BaseOffset) -> None:
|
171 |
+
"""Initialize axes for time-series plotting"""
|
172 |
+
if not hasattr(ax, "_plot_data"):
|
173 |
+
# TODO #54485
|
174 |
+
ax._plot_data = [] # type: ignore[attr-defined]
|
175 |
+
|
176 |
+
# TODO #54485
|
177 |
+
ax.freq = freq # type: ignore[attr-defined]
|
178 |
+
xaxis = ax.get_xaxis()
|
179 |
+
# TODO #54485
|
180 |
+
xaxis.freq = freq # type: ignore[attr-defined]
|
181 |
+
|
182 |
+
|
183 |
+
def _get_ax_freq(ax: Axes):
|
184 |
+
"""
|
185 |
+
Get the freq attribute of the ax object if set.
|
186 |
+
Also checks shared axes (eg when using secondary yaxis, sharex=True
|
187 |
+
or twinx)
|
188 |
+
"""
|
189 |
+
ax_freq = getattr(ax, "freq", None)
|
190 |
+
if ax_freq is None:
|
191 |
+
# check for left/right ax in case of secondary yaxis
|
192 |
+
if hasattr(ax, "left_ax"):
|
193 |
+
ax_freq = getattr(ax.left_ax, "freq", None)
|
194 |
+
elif hasattr(ax, "right_ax"):
|
195 |
+
ax_freq = getattr(ax.right_ax, "freq", None)
|
196 |
+
if ax_freq is None:
|
197 |
+
# check if a shared ax (sharex/twinx) has already freq set
|
198 |
+
shared_axes = ax.get_shared_x_axes().get_siblings(ax)
|
199 |
+
if len(shared_axes) > 1:
|
200 |
+
for shared_ax in shared_axes:
|
201 |
+
ax_freq = getattr(shared_ax, "freq", None)
|
202 |
+
if ax_freq is not None:
|
203 |
+
break
|
204 |
+
return ax_freq
|
205 |
+
|
206 |
+
|
207 |
+
def _get_period_alias(freq: timedelta | BaseOffset | str) -> str | None:
|
208 |
+
if isinstance(freq, BaseOffset):
|
209 |
+
freqstr = freq.name
|
210 |
+
else:
|
211 |
+
freqstr = to_offset(freq, is_period=True).rule_code
|
212 |
+
|
213 |
+
return get_period_alias(freqstr)
|
214 |
+
|
215 |
+
|
216 |
+
def _get_freq(ax: Axes, series: Series):
|
217 |
+
# get frequency from data
|
218 |
+
freq = getattr(series.index, "freq", None)
|
219 |
+
if freq is None:
|
220 |
+
freq = getattr(series.index, "inferred_freq", None)
|
221 |
+
freq = to_offset(freq, is_period=True)
|
222 |
+
|
223 |
+
ax_freq = _get_ax_freq(ax)
|
224 |
+
|
225 |
+
# use axes freq if no data freq
|
226 |
+
if freq is None:
|
227 |
+
freq = ax_freq
|
228 |
+
|
229 |
+
# get the period frequency
|
230 |
+
freq = _get_period_alias(freq)
|
231 |
+
return freq, ax_freq
|
232 |
+
|
233 |
+
|
234 |
+
def use_dynamic_x(ax: Axes, data: DataFrame | Series) -> bool:
|
235 |
+
freq = _get_index_freq(data.index)
|
236 |
+
ax_freq = _get_ax_freq(ax)
|
237 |
+
|
238 |
+
if freq is None: # convert irregular if axes has freq info
|
239 |
+
freq = ax_freq
|
240 |
+
# do not use tsplot if irregular was plotted first
|
241 |
+
elif (ax_freq is None) and (len(ax.get_lines()) > 0):
|
242 |
+
return False
|
243 |
+
|
244 |
+
if freq is None:
|
245 |
+
return False
|
246 |
+
|
247 |
+
freq_str = _get_period_alias(freq)
|
248 |
+
|
249 |
+
if freq_str is None:
|
250 |
+
return False
|
251 |
+
|
252 |
+
# FIXME: hack this for 0.10.1, creating more technical debt...sigh
|
253 |
+
if isinstance(data.index, ABCDatetimeIndex):
|
254 |
+
# error: "BaseOffset" has no attribute "_period_dtype_code"
|
255 |
+
freq_str = OFFSET_TO_PERIOD_FREQSTR.get(freq_str, freq_str)
|
256 |
+
base = to_offset(
|
257 |
+
freq_str, is_period=True
|
258 |
+
)._period_dtype_code # type: ignore[attr-defined]
|
259 |
+
x = data.index
|
260 |
+
if base <= FreqGroup.FR_DAY.value:
|
261 |
+
return x[:1].is_normalized
|
262 |
+
period = Period(x[0], freq_str)
|
263 |
+
assert isinstance(period, Period)
|
264 |
+
return period.to_timestamp().tz_localize(x.tz) == x[0]
|
265 |
+
return True
|
266 |
+
|
267 |
+
|
268 |
+
def _get_index_freq(index: Index) -> BaseOffset | None:
|
269 |
+
freq = getattr(index, "freq", None)
|
270 |
+
if freq is None:
|
271 |
+
freq = getattr(index, "inferred_freq", None)
|
272 |
+
if freq == "B":
|
273 |
+
# error: "Index" has no attribute "dayofweek"
|
274 |
+
weekdays = np.unique(index.dayofweek) # type: ignore[attr-defined]
|
275 |
+
if (5 in weekdays) or (6 in weekdays):
|
276 |
+
freq = None
|
277 |
+
|
278 |
+
freq = to_offset(freq)
|
279 |
+
return freq
|
280 |
+
|
281 |
+
|
282 |
+
def maybe_convert_index(ax: Axes, data: NDFrameT) -> NDFrameT:
|
283 |
+
# tsplot converts automatically, but don't want to convert index
|
284 |
+
# over and over for DataFrames
|
285 |
+
if isinstance(data.index, (ABCDatetimeIndex, ABCPeriodIndex)):
|
286 |
+
freq: str | BaseOffset | None = data.index.freq
|
287 |
+
|
288 |
+
if freq is None:
|
289 |
+
# We only get here for DatetimeIndex
|
290 |
+
data.index = cast("DatetimeIndex", data.index)
|
291 |
+
freq = data.index.inferred_freq
|
292 |
+
freq = to_offset(freq)
|
293 |
+
|
294 |
+
if freq is None:
|
295 |
+
freq = _get_ax_freq(ax)
|
296 |
+
|
297 |
+
if freq is None:
|
298 |
+
raise ValueError("Could not get frequency alias for plotting")
|
299 |
+
|
300 |
+
freq_str = _get_period_alias(freq)
|
301 |
+
|
302 |
+
with warnings.catch_warnings():
|
303 |
+
# suppress Period[B] deprecation warning
|
304 |
+
# TODO: need to find an alternative to this before the deprecation
|
305 |
+
# is enforced!
|
306 |
+
warnings.filterwarnings(
|
307 |
+
"ignore",
|
308 |
+
r"PeriodDtype\[B\] is deprecated",
|
309 |
+
category=FutureWarning,
|
310 |
+
)
|
311 |
+
|
312 |
+
if isinstance(data.index, ABCDatetimeIndex):
|
313 |
+
data = data.tz_localize(None).to_period(freq=freq_str)
|
314 |
+
elif isinstance(data.index, ABCPeriodIndex):
|
315 |
+
data.index = data.index.asfreq(freq=freq_str)
|
316 |
+
return data
|
317 |
+
|
318 |
+
|
319 |
+
# Patch methods for subplot.
|
320 |
+
|
321 |
+
|
322 |
+
def _format_coord(freq, t, y) -> str:
|
323 |
+
time_period = Period(ordinal=int(t), freq=freq)
|
324 |
+
return f"t = {time_period} y = {y:8f}"
|
325 |
+
|
326 |
+
|
327 |
+
def format_dateaxis(
|
328 |
+
subplot, freq: BaseOffset, index: DatetimeIndex | PeriodIndex
|
329 |
+
) -> None:
|
330 |
+
"""
|
331 |
+
Pretty-formats the date axis (x-axis).
|
332 |
+
|
333 |
+
Major and minor ticks are automatically set for the frequency of the
|
334 |
+
current underlying series. As the dynamic mode is activated by
|
335 |
+
default, changing the limits of the x axis will intelligently change
|
336 |
+
the positions of the ticks.
|
337 |
+
"""
|
338 |
+
from matplotlib import pylab
|
339 |
+
|
340 |
+
# handle index specific formatting
|
341 |
+
# Note: DatetimeIndex does not use this
|
342 |
+
# interface. DatetimeIndex uses matplotlib.date directly
|
343 |
+
if isinstance(index, ABCPeriodIndex):
|
344 |
+
majlocator = TimeSeries_DateLocator(
|
345 |
+
freq, dynamic_mode=True, minor_locator=False, plot_obj=subplot
|
346 |
+
)
|
347 |
+
minlocator = TimeSeries_DateLocator(
|
348 |
+
freq, dynamic_mode=True, minor_locator=True, plot_obj=subplot
|
349 |
+
)
|
350 |
+
subplot.xaxis.set_major_locator(majlocator)
|
351 |
+
subplot.xaxis.set_minor_locator(minlocator)
|
352 |
+
|
353 |
+
majformatter = TimeSeries_DateFormatter(
|
354 |
+
freq, dynamic_mode=True, minor_locator=False, plot_obj=subplot
|
355 |
+
)
|
356 |
+
minformatter = TimeSeries_DateFormatter(
|
357 |
+
freq, dynamic_mode=True, minor_locator=True, plot_obj=subplot
|
358 |
+
)
|
359 |
+
subplot.xaxis.set_major_formatter(majformatter)
|
360 |
+
subplot.xaxis.set_minor_formatter(minformatter)
|
361 |
+
|
362 |
+
# x and y coord info
|
363 |
+
subplot.format_coord = functools.partial(_format_coord, freq)
|
364 |
+
|
365 |
+
elif isinstance(index, ABCTimedeltaIndex):
|
366 |
+
subplot.xaxis.set_major_formatter(TimeSeries_TimedeltaFormatter())
|
367 |
+
else:
|
368 |
+
raise TypeError("index type not supported")
|
369 |
+
|
370 |
+
pylab.draw_if_interactive()
|
venv/lib/python3.10/site-packages/pandas/plotting/_matplotlib/tools.py
ADDED
@@ -0,0 +1,492 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# being a bit too dynamic
|
2 |
+
from __future__ import annotations
|
3 |
+
|
4 |
+
from math import ceil
|
5 |
+
from typing import TYPE_CHECKING
|
6 |
+
import warnings
|
7 |
+
|
8 |
+
from matplotlib import ticker
|
9 |
+
import matplotlib.table
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
from pandas.util._exceptions import find_stack_level
|
13 |
+
|
14 |
+
from pandas.core.dtypes.common import is_list_like
|
15 |
+
from pandas.core.dtypes.generic import (
|
16 |
+
ABCDataFrame,
|
17 |
+
ABCIndex,
|
18 |
+
ABCSeries,
|
19 |
+
)
|
20 |
+
|
21 |
+
if TYPE_CHECKING:
|
22 |
+
from collections.abc import (
|
23 |
+
Iterable,
|
24 |
+
Sequence,
|
25 |
+
)
|
26 |
+
|
27 |
+
from matplotlib.axes import Axes
|
28 |
+
from matplotlib.axis import Axis
|
29 |
+
from matplotlib.figure import Figure
|
30 |
+
from matplotlib.lines import Line2D
|
31 |
+
from matplotlib.table import Table
|
32 |
+
|
33 |
+
from pandas import (
|
34 |
+
DataFrame,
|
35 |
+
Series,
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
def do_adjust_figure(fig: Figure) -> bool:
|
40 |
+
"""Whether fig has constrained_layout enabled."""
|
41 |
+
if not hasattr(fig, "get_constrained_layout"):
|
42 |
+
return False
|
43 |
+
return not fig.get_constrained_layout()
|
44 |
+
|
45 |
+
|
46 |
+
def maybe_adjust_figure(fig: Figure, *args, **kwargs) -> None:
|
47 |
+
"""Call fig.subplots_adjust unless fig has constrained_layout enabled."""
|
48 |
+
if do_adjust_figure(fig):
|
49 |
+
fig.subplots_adjust(*args, **kwargs)
|
50 |
+
|
51 |
+
|
52 |
+
def format_date_labels(ax: Axes, rot) -> None:
|
53 |
+
# mini version of autofmt_xdate
|
54 |
+
for label in ax.get_xticklabels():
|
55 |
+
label.set_horizontalalignment("right")
|
56 |
+
label.set_rotation(rot)
|
57 |
+
fig = ax.get_figure()
|
58 |
+
if fig is not None:
|
59 |
+
# should always be a Figure but can technically be None
|
60 |
+
maybe_adjust_figure(fig, bottom=0.2)
|
61 |
+
|
62 |
+
|
63 |
+
def table(
|
64 |
+
ax, data: DataFrame | Series, rowLabels=None, colLabels=None, **kwargs
|
65 |
+
) -> Table:
|
66 |
+
if isinstance(data, ABCSeries):
|
67 |
+
data = data.to_frame()
|
68 |
+
elif isinstance(data, ABCDataFrame):
|
69 |
+
pass
|
70 |
+
else:
|
71 |
+
raise ValueError("Input data must be DataFrame or Series")
|
72 |
+
|
73 |
+
if rowLabels is None:
|
74 |
+
rowLabels = data.index
|
75 |
+
|
76 |
+
if colLabels is None:
|
77 |
+
colLabels = data.columns
|
78 |
+
|
79 |
+
cellText = data.values
|
80 |
+
|
81 |
+
# error: Argument "cellText" to "table" has incompatible type "ndarray[Any,
|
82 |
+
# Any]"; expected "Sequence[Sequence[str]] | None"
|
83 |
+
return matplotlib.table.table(
|
84 |
+
ax,
|
85 |
+
cellText=cellText, # type: ignore[arg-type]
|
86 |
+
rowLabels=rowLabels,
|
87 |
+
colLabels=colLabels,
|
88 |
+
**kwargs,
|
89 |
+
)
|
90 |
+
|
91 |
+
|
92 |
+
def _get_layout(
|
93 |
+
nplots: int,
|
94 |
+
layout: tuple[int, int] | None = None,
|
95 |
+
layout_type: str = "box",
|
96 |
+
) -> tuple[int, int]:
|
97 |
+
if layout is not None:
|
98 |
+
if not isinstance(layout, (tuple, list)) or len(layout) != 2:
|
99 |
+
raise ValueError("Layout must be a tuple of (rows, columns)")
|
100 |
+
|
101 |
+
nrows, ncols = layout
|
102 |
+
|
103 |
+
if nrows == -1 and ncols > 0:
|
104 |
+
layout = nrows, ncols = (ceil(nplots / ncols), ncols)
|
105 |
+
elif ncols == -1 and nrows > 0:
|
106 |
+
layout = nrows, ncols = (nrows, ceil(nplots / nrows))
|
107 |
+
elif ncols <= 0 and nrows <= 0:
|
108 |
+
msg = "At least one dimension of layout must be positive"
|
109 |
+
raise ValueError(msg)
|
110 |
+
|
111 |
+
if nrows * ncols < nplots:
|
112 |
+
raise ValueError(
|
113 |
+
f"Layout of {nrows}x{ncols} must be larger than required size {nplots}"
|
114 |
+
)
|
115 |
+
|
116 |
+
return layout
|
117 |
+
|
118 |
+
if layout_type == "single":
|
119 |
+
return (1, 1)
|
120 |
+
elif layout_type == "horizontal":
|
121 |
+
return (1, nplots)
|
122 |
+
elif layout_type == "vertical":
|
123 |
+
return (nplots, 1)
|
124 |
+
|
125 |
+
layouts = {1: (1, 1), 2: (1, 2), 3: (2, 2), 4: (2, 2)}
|
126 |
+
try:
|
127 |
+
return layouts[nplots]
|
128 |
+
except KeyError:
|
129 |
+
k = 1
|
130 |
+
while k**2 < nplots:
|
131 |
+
k += 1
|
132 |
+
|
133 |
+
if (k - 1) * k >= nplots:
|
134 |
+
return k, (k - 1)
|
135 |
+
else:
|
136 |
+
return k, k
|
137 |
+
|
138 |
+
|
139 |
+
# copied from matplotlib/pyplot.py and modified for pandas.plotting
|
140 |
+
|
141 |
+
|
142 |
+
def create_subplots(
|
143 |
+
naxes: int,
|
144 |
+
sharex: bool = False,
|
145 |
+
sharey: bool = False,
|
146 |
+
squeeze: bool = True,
|
147 |
+
subplot_kw=None,
|
148 |
+
ax=None,
|
149 |
+
layout=None,
|
150 |
+
layout_type: str = "box",
|
151 |
+
**fig_kw,
|
152 |
+
):
|
153 |
+
"""
|
154 |
+
Create a figure with a set of subplots already made.
|
155 |
+
|
156 |
+
This utility wrapper makes it convenient to create common layouts of
|
157 |
+
subplots, including the enclosing figure object, in a single call.
|
158 |
+
|
159 |
+
Parameters
|
160 |
+
----------
|
161 |
+
naxes : int
|
162 |
+
Number of required axes. Exceeded axes are set invisible. Default is
|
163 |
+
nrows * ncols.
|
164 |
+
|
165 |
+
sharex : bool
|
166 |
+
If True, the X axis will be shared amongst all subplots.
|
167 |
+
|
168 |
+
sharey : bool
|
169 |
+
If True, the Y axis will be shared amongst all subplots.
|
170 |
+
|
171 |
+
squeeze : bool
|
172 |
+
|
173 |
+
If True, extra dimensions are squeezed out from the returned axis object:
|
174 |
+
- if only one subplot is constructed (nrows=ncols=1), the resulting
|
175 |
+
single Axis object is returned as a scalar.
|
176 |
+
- for Nx1 or 1xN subplots, the returned object is a 1-d numpy object
|
177 |
+
array of Axis objects are returned as numpy 1-d arrays.
|
178 |
+
- for NxM subplots with N>1 and M>1 are returned as a 2d array.
|
179 |
+
|
180 |
+
If False, no squeezing is done: the returned axis object is always
|
181 |
+
a 2-d array containing Axis instances, even if it ends up being 1x1.
|
182 |
+
|
183 |
+
subplot_kw : dict
|
184 |
+
Dict with keywords passed to the add_subplot() call used to create each
|
185 |
+
subplots.
|
186 |
+
|
187 |
+
ax : Matplotlib axis object, optional
|
188 |
+
|
189 |
+
layout : tuple
|
190 |
+
Number of rows and columns of the subplot grid.
|
191 |
+
If not specified, calculated from naxes and layout_type
|
192 |
+
|
193 |
+
layout_type : {'box', 'horizontal', 'vertical'}, default 'box'
|
194 |
+
Specify how to layout the subplot grid.
|
195 |
+
|
196 |
+
fig_kw : Other keyword arguments to be passed to the figure() call.
|
197 |
+
Note that all keywords not recognized above will be
|
198 |
+
automatically included here.
|
199 |
+
|
200 |
+
Returns
|
201 |
+
-------
|
202 |
+
fig, ax : tuple
|
203 |
+
- fig is the Matplotlib Figure object
|
204 |
+
- ax can be either a single axis object or an array of axis objects if
|
205 |
+
more than one subplot was created. The dimensions of the resulting array
|
206 |
+
can be controlled with the squeeze keyword, see above.
|
207 |
+
|
208 |
+
Examples
|
209 |
+
--------
|
210 |
+
x = np.linspace(0, 2*np.pi, 400)
|
211 |
+
y = np.sin(x**2)
|
212 |
+
|
213 |
+
# Just a figure and one subplot
|
214 |
+
f, ax = plt.subplots()
|
215 |
+
ax.plot(x, y)
|
216 |
+
ax.set_title('Simple plot')
|
217 |
+
|
218 |
+
# Two subplots, unpack the output array immediately
|
219 |
+
f, (ax1, ax2) = plt.subplots(1, 2, sharey=True)
|
220 |
+
ax1.plot(x, y)
|
221 |
+
ax1.set_title('Sharing Y axis')
|
222 |
+
ax2.scatter(x, y)
|
223 |
+
|
224 |
+
# Four polar axes
|
225 |
+
plt.subplots(2, 2, subplot_kw=dict(polar=True))
|
226 |
+
"""
|
227 |
+
import matplotlib.pyplot as plt
|
228 |
+
|
229 |
+
if subplot_kw is None:
|
230 |
+
subplot_kw = {}
|
231 |
+
|
232 |
+
if ax is None:
|
233 |
+
fig = plt.figure(**fig_kw)
|
234 |
+
else:
|
235 |
+
if is_list_like(ax):
|
236 |
+
if squeeze:
|
237 |
+
ax = flatten_axes(ax)
|
238 |
+
if layout is not None:
|
239 |
+
warnings.warn(
|
240 |
+
"When passing multiple axes, layout keyword is ignored.",
|
241 |
+
UserWarning,
|
242 |
+
stacklevel=find_stack_level(),
|
243 |
+
)
|
244 |
+
if sharex or sharey:
|
245 |
+
warnings.warn(
|
246 |
+
"When passing multiple axes, sharex and sharey "
|
247 |
+
"are ignored. These settings must be specified when creating axes.",
|
248 |
+
UserWarning,
|
249 |
+
stacklevel=find_stack_level(),
|
250 |
+
)
|
251 |
+
if ax.size == naxes:
|
252 |
+
fig = ax.flat[0].get_figure()
|
253 |
+
return fig, ax
|
254 |
+
else:
|
255 |
+
raise ValueError(
|
256 |
+
f"The number of passed axes must be {naxes}, the "
|
257 |
+
"same as the output plot"
|
258 |
+
)
|
259 |
+
|
260 |
+
fig = ax.get_figure()
|
261 |
+
# if ax is passed and a number of subplots is 1, return ax as it is
|
262 |
+
if naxes == 1:
|
263 |
+
if squeeze:
|
264 |
+
return fig, ax
|
265 |
+
else:
|
266 |
+
return fig, flatten_axes(ax)
|
267 |
+
else:
|
268 |
+
warnings.warn(
|
269 |
+
"To output multiple subplots, the figure containing "
|
270 |
+
"the passed axes is being cleared.",
|
271 |
+
UserWarning,
|
272 |
+
stacklevel=find_stack_level(),
|
273 |
+
)
|
274 |
+
fig.clear()
|
275 |
+
|
276 |
+
nrows, ncols = _get_layout(naxes, layout=layout, layout_type=layout_type)
|
277 |
+
nplots = nrows * ncols
|
278 |
+
|
279 |
+
# Create empty object array to hold all axes. It's easiest to make it 1-d
|
280 |
+
# so we can just append subplots upon creation, and then
|
281 |
+
axarr = np.empty(nplots, dtype=object)
|
282 |
+
|
283 |
+
# Create first subplot separately, so we can share it if requested
|
284 |
+
ax0 = fig.add_subplot(nrows, ncols, 1, **subplot_kw)
|
285 |
+
|
286 |
+
if sharex:
|
287 |
+
subplot_kw["sharex"] = ax0
|
288 |
+
if sharey:
|
289 |
+
subplot_kw["sharey"] = ax0
|
290 |
+
axarr[0] = ax0
|
291 |
+
|
292 |
+
# Note off-by-one counting because add_subplot uses the MATLAB 1-based
|
293 |
+
# convention.
|
294 |
+
for i in range(1, nplots):
|
295 |
+
kwds = subplot_kw.copy()
|
296 |
+
# Set sharex and sharey to None for blank/dummy axes, these can
|
297 |
+
# interfere with proper axis limits on the visible axes if
|
298 |
+
# they share axes e.g. issue #7528
|
299 |
+
if i >= naxes:
|
300 |
+
kwds["sharex"] = None
|
301 |
+
kwds["sharey"] = None
|
302 |
+
ax = fig.add_subplot(nrows, ncols, i + 1, **kwds)
|
303 |
+
axarr[i] = ax
|
304 |
+
|
305 |
+
if naxes != nplots:
|
306 |
+
for ax in axarr[naxes:]:
|
307 |
+
ax.set_visible(False)
|
308 |
+
|
309 |
+
handle_shared_axes(axarr, nplots, naxes, nrows, ncols, sharex, sharey)
|
310 |
+
|
311 |
+
if squeeze:
|
312 |
+
# Reshape the array to have the final desired dimension (nrow,ncol),
|
313 |
+
# though discarding unneeded dimensions that equal 1. If we only have
|
314 |
+
# one subplot, just return it instead of a 1-element array.
|
315 |
+
if nplots == 1:
|
316 |
+
axes = axarr[0]
|
317 |
+
else:
|
318 |
+
axes = axarr.reshape(nrows, ncols).squeeze()
|
319 |
+
else:
|
320 |
+
# returned axis array will be always 2-d, even if nrows=ncols=1
|
321 |
+
axes = axarr.reshape(nrows, ncols)
|
322 |
+
|
323 |
+
return fig, axes
|
324 |
+
|
325 |
+
|
326 |
+
def _remove_labels_from_axis(axis: Axis) -> None:
|
327 |
+
for t in axis.get_majorticklabels():
|
328 |
+
t.set_visible(False)
|
329 |
+
|
330 |
+
# set_visible will not be effective if
|
331 |
+
# minor axis has NullLocator and NullFormatter (default)
|
332 |
+
if isinstance(axis.get_minor_locator(), ticker.NullLocator):
|
333 |
+
axis.set_minor_locator(ticker.AutoLocator())
|
334 |
+
if isinstance(axis.get_minor_formatter(), ticker.NullFormatter):
|
335 |
+
axis.set_minor_formatter(ticker.FormatStrFormatter(""))
|
336 |
+
for t in axis.get_minorticklabels():
|
337 |
+
t.set_visible(False)
|
338 |
+
|
339 |
+
axis.get_label().set_visible(False)
|
340 |
+
|
341 |
+
|
342 |
+
def _has_externally_shared_axis(ax1: Axes, compare_axis: str) -> bool:
|
343 |
+
"""
|
344 |
+
Return whether an axis is externally shared.
|
345 |
+
|
346 |
+
Parameters
|
347 |
+
----------
|
348 |
+
ax1 : matplotlib.axes.Axes
|
349 |
+
Axis to query.
|
350 |
+
compare_axis : str
|
351 |
+
`"x"` or `"y"` according to whether the X-axis or Y-axis is being
|
352 |
+
compared.
|
353 |
+
|
354 |
+
Returns
|
355 |
+
-------
|
356 |
+
bool
|
357 |
+
`True` if the axis is externally shared. Otherwise `False`.
|
358 |
+
|
359 |
+
Notes
|
360 |
+
-----
|
361 |
+
If two axes with different positions are sharing an axis, they can be
|
362 |
+
referred to as *externally* sharing the common axis.
|
363 |
+
|
364 |
+
If two axes sharing an axis also have the same position, they can be
|
365 |
+
referred to as *internally* sharing the common axis (a.k.a twinning).
|
366 |
+
|
367 |
+
_handle_shared_axes() is only interested in axes externally sharing an
|
368 |
+
axis, regardless of whether either of the axes is also internally sharing
|
369 |
+
with a third axis.
|
370 |
+
"""
|
371 |
+
if compare_axis == "x":
|
372 |
+
axes = ax1.get_shared_x_axes()
|
373 |
+
elif compare_axis == "y":
|
374 |
+
axes = ax1.get_shared_y_axes()
|
375 |
+
else:
|
376 |
+
raise ValueError(
|
377 |
+
"_has_externally_shared_axis() needs 'x' or 'y' as a second parameter"
|
378 |
+
)
|
379 |
+
|
380 |
+
axes_siblings = axes.get_siblings(ax1)
|
381 |
+
|
382 |
+
# Retain ax1 and any of its siblings which aren't in the same position as it
|
383 |
+
ax1_points = ax1.get_position().get_points()
|
384 |
+
|
385 |
+
for ax2 in axes_siblings:
|
386 |
+
if not np.array_equal(ax1_points, ax2.get_position().get_points()):
|
387 |
+
return True
|
388 |
+
|
389 |
+
return False
|
390 |
+
|
391 |
+
|
392 |
+
def handle_shared_axes(
|
393 |
+
axarr: Iterable[Axes],
|
394 |
+
nplots: int,
|
395 |
+
naxes: int,
|
396 |
+
nrows: int,
|
397 |
+
ncols: int,
|
398 |
+
sharex: bool,
|
399 |
+
sharey: bool,
|
400 |
+
) -> None:
|
401 |
+
if nplots > 1:
|
402 |
+
row_num = lambda x: x.get_subplotspec().rowspan.start
|
403 |
+
col_num = lambda x: x.get_subplotspec().colspan.start
|
404 |
+
|
405 |
+
is_first_col = lambda x: x.get_subplotspec().is_first_col()
|
406 |
+
|
407 |
+
if nrows > 1:
|
408 |
+
try:
|
409 |
+
# first find out the ax layout,
|
410 |
+
# so that we can correctly handle 'gaps"
|
411 |
+
layout = np.zeros((nrows + 1, ncols + 1), dtype=np.bool_)
|
412 |
+
for ax in axarr:
|
413 |
+
layout[row_num(ax), col_num(ax)] = ax.get_visible()
|
414 |
+
|
415 |
+
for ax in axarr:
|
416 |
+
# only the last row of subplots should get x labels -> all
|
417 |
+
# other off layout handles the case that the subplot is
|
418 |
+
# the last in the column, because below is no subplot/gap.
|
419 |
+
if not layout[row_num(ax) + 1, col_num(ax)]:
|
420 |
+
continue
|
421 |
+
if sharex or _has_externally_shared_axis(ax, "x"):
|
422 |
+
_remove_labels_from_axis(ax.xaxis)
|
423 |
+
|
424 |
+
except IndexError:
|
425 |
+
# if gridspec is used, ax.rowNum and ax.colNum may different
|
426 |
+
# from layout shape. in this case, use last_row logic
|
427 |
+
is_last_row = lambda x: x.get_subplotspec().is_last_row()
|
428 |
+
for ax in axarr:
|
429 |
+
if is_last_row(ax):
|
430 |
+
continue
|
431 |
+
if sharex or _has_externally_shared_axis(ax, "x"):
|
432 |
+
_remove_labels_from_axis(ax.xaxis)
|
433 |
+
|
434 |
+
if ncols > 1:
|
435 |
+
for ax in axarr:
|
436 |
+
# only the first column should get y labels -> set all other to
|
437 |
+
# off as we only have labels in the first column and we always
|
438 |
+
# have a subplot there, we can skip the layout test
|
439 |
+
if is_first_col(ax):
|
440 |
+
continue
|
441 |
+
if sharey or _has_externally_shared_axis(ax, "y"):
|
442 |
+
_remove_labels_from_axis(ax.yaxis)
|
443 |
+
|
444 |
+
|
445 |
+
def flatten_axes(axes: Axes | Sequence[Axes]) -> np.ndarray:
|
446 |
+
if not is_list_like(axes):
|
447 |
+
return np.array([axes])
|
448 |
+
elif isinstance(axes, (np.ndarray, ABCIndex)):
|
449 |
+
return np.asarray(axes).ravel()
|
450 |
+
return np.array(axes)
|
451 |
+
|
452 |
+
|
453 |
+
def set_ticks_props(
|
454 |
+
axes: Axes | Sequence[Axes],
|
455 |
+
xlabelsize: int | None = None,
|
456 |
+
xrot=None,
|
457 |
+
ylabelsize: int | None = None,
|
458 |
+
yrot=None,
|
459 |
+
):
|
460 |
+
import matplotlib.pyplot as plt
|
461 |
+
|
462 |
+
for ax in flatten_axes(axes):
|
463 |
+
if xlabelsize is not None:
|
464 |
+
plt.setp(ax.get_xticklabels(), fontsize=xlabelsize)
|
465 |
+
if xrot is not None:
|
466 |
+
plt.setp(ax.get_xticklabels(), rotation=xrot)
|
467 |
+
if ylabelsize is not None:
|
468 |
+
plt.setp(ax.get_yticklabels(), fontsize=ylabelsize)
|
469 |
+
if yrot is not None:
|
470 |
+
plt.setp(ax.get_yticklabels(), rotation=yrot)
|
471 |
+
return axes
|
472 |
+
|
473 |
+
|
474 |
+
def get_all_lines(ax: Axes) -> list[Line2D]:
|
475 |
+
lines = ax.get_lines()
|
476 |
+
|
477 |
+
if hasattr(ax, "right_ax"):
|
478 |
+
lines += ax.right_ax.get_lines()
|
479 |
+
|
480 |
+
if hasattr(ax, "left_ax"):
|
481 |
+
lines += ax.left_ax.get_lines()
|
482 |
+
|
483 |
+
return lines
|
484 |
+
|
485 |
+
|
486 |
+
def get_xlim(lines: Iterable[Line2D]) -> tuple[float, float]:
|
487 |
+
left, right = np.inf, -np.inf
|
488 |
+
for line in lines:
|
489 |
+
x = line.get_xdata(orig=False)
|
490 |
+
left = min(np.nanmin(x), left)
|
491 |
+
right = max(np.nanmax(x), right)
|
492 |
+
return left, right
|
venv/lib/python3.10/site-packages/pandas/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (180 Bytes). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/__pycache__/test_aggregation.cpython-310.pyc
ADDED
Binary file (3.09 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/__pycache__/test_algos.cpython-310.pyc
ADDED
Binary file (60.4 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/__pycache__/test_common.cpython-310.pyc
ADDED
Binary file (7.96 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/__pycache__/test_downstream.cpython-310.pyc
ADDED
Binary file (9.45 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/__pycache__/test_errors.cpython-310.pyc
ADDED
Binary file (3.03 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/__pycache__/test_expressions.cpython-310.pyc
ADDED
Binary file (11.8 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/__pycache__/test_flags.cpython-310.pyc
ADDED
Binary file (1.9 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/__pycache__/test_multilevel.cpython-310.pyc
ADDED
Binary file (10.6 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/__pycache__/test_nanops.cpython-310.pyc
ADDED
Binary file (32.8 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/__pycache__/test_optional_dependency.cpython-310.pyc
ADDED
Binary file (2.71 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/__pycache__/test_register_accessor.cpython-310.pyc
ADDED
Binary file (4.23 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/__pycache__/test_sorting.cpython-310.pyc
ADDED
Binary file (14.2 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/__pycache__/test_take.cpython-310.pyc
ADDED
Binary file (9.61 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/base/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/pandas/tests/base/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (185 Bytes). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/base/__pycache__/common.cpython-310.pyc
ADDED
Binary file (529 Bytes). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/base/__pycache__/test_constructors.cpython-310.pyc
ADDED
Binary file (5.6 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/base/__pycache__/test_conversion.cpython-310.pyc
ADDED
Binary file (14.3 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/base/__pycache__/test_fillna.cpython-310.pyc
ADDED
Binary file (1.56 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/base/__pycache__/test_misc.cpython-310.pyc
ADDED
Binary file (5.04 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/base/__pycache__/test_transpose.cpython-310.pyc
ADDED
Binary file (1.82 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/base/__pycache__/test_unique.cpython-310.pyc
ADDED
Binary file (3.68 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/tests/base/__pycache__/test_value_counts.cpython-310.pyc
ADDED
Binary file (8.11 kB). View file
|
|