Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step40/zero/11.mlp.dense_h_to_4h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step40/zero/11.mlp.dense_h_to_4h.weight/fp32.pt +3 -0
- ckpts/universal/global_step40/zero/7.mlp.dense_4h_to_h.weight/exp_avg_sq.pt +3 -0
- venv/lib/python3.10/site-packages/nltk/cluster/__init__.py +92 -0
- venv/lib/python3.10/site-packages/nltk/cluster/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/cluster/__pycache__/api.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/cluster/__pycache__/em.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/cluster/__pycache__/gaac.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/cluster/__pycache__/kmeans.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/cluster/__pycache__/util.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/cluster/api.py +74 -0
- venv/lib/python3.10/site-packages/nltk/cluster/em.py +219 -0
- venv/lib/python3.10/site-packages/nltk/cluster/gaac.py +170 -0
- venv/lib/python3.10/site-packages/nltk/cluster/kmeans.py +231 -0
- venv/lib/python3.10/site-packages/nltk/parse/corenlp.py +800 -0
- venv/lib/python3.10/site-packages/nltk/parse/earleychart.py +552 -0
- venv/lib/python3.10/site-packages/nltk/parse/evaluate.py +129 -0
- venv/lib/python3.10/site-packages/nltk/parse/featurechart.py +674 -0
- venv/lib/python3.10/site-packages/nltk/parse/generate.py +85 -0
- venv/lib/python3.10/site-packages/nltk/parse/malt.py +393 -0
- venv/lib/python3.10/site-packages/nltk/parse/nonprojectivedependencyparser.py +772 -0
- venv/lib/python3.10/site-packages/nltk/parse/stanford.py +470 -0
- venv/lib/python3.10/site-packages/nltk/parse/transitionparser.py +794 -0
- venv/lib/python3.10/site-packages/nltk/parse/viterbi.py +453 -0
- venv/lib/python3.10/site-packages/nltk/sem/__init__.py +75 -0
- venv/lib/python3.10/site-packages/nltk/sem/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/sem/__pycache__/boxer.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/sem/__pycache__/chat80.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/sem/__pycache__/cooper_storage.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/sem/__pycache__/drt.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/sem/__pycache__/drt_glue_demo.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/sem/__pycache__/evaluate.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/sem/__pycache__/glue.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/sem/__pycache__/hole.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/sem/__pycache__/lfg.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/sem/__pycache__/linearlogic.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/sem/__pycache__/logic.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/sem/__pycache__/relextract.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/sem/__pycache__/skolemize.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/sem/__pycache__/util.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/sem/boxer.py +1605 -0
- venv/lib/python3.10/site-packages/nltk/sem/chat80.py +857 -0
- venv/lib/python3.10/site-packages/nltk/sem/cooper_storage.py +124 -0
- venv/lib/python3.10/site-packages/nltk/sem/drt.py +1460 -0
- venv/lib/python3.10/site-packages/nltk/sem/drt_glue_demo.py +553 -0
- venv/lib/python3.10/site-packages/nltk/sem/evaluate.py +829 -0
- venv/lib/python3.10/site-packages/nltk/sem/glue.py +835 -0
- venv/lib/python3.10/site-packages/nltk/sem/hole.py +395 -0
- venv/lib/python3.10/site-packages/nltk/sem/lfg.py +261 -0
- venv/lib/python3.10/site-packages/nltk/sem/linearlogic.py +482 -0
ckpts/universal/global_step40/zero/11.mlp.dense_h_to_4h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f38b925a7af0322ad68abc7db2ac055147a75f029045fe6c2876445f2535178
|
3 |
+
size 33555627
|
ckpts/universal/global_step40/zero/11.mlp.dense_h_to_4h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91e9274825045ac22d62b393697bacccac6f6165f7c016168f9b976333c96ad0
|
3 |
+
size 33555533
|
ckpts/universal/global_step40/zero/7.mlp.dense_4h_to_h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4daa274fcea6f52ae6438d775e833cebb40dd2139690bb2745dd8e698c71dadb
|
3 |
+
size 33555627
|
venv/lib/python3.10/site-packages/nltk/cluster/__init__.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Clusterers
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Trevor Cohn <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
"""
|
9 |
+
This module contains a number of basic clustering algorithms. Clustering
|
10 |
+
describes the task of discovering groups of similar items with a large
|
11 |
+
collection. It is also describe as unsupervised machine learning, as the data
|
12 |
+
from which it learns is unannotated with class information, as is the case for
|
13 |
+
supervised learning. Annotated data is difficult and expensive to obtain in
|
14 |
+
the quantities required for the majority of supervised learning algorithms.
|
15 |
+
This problem, the knowledge acquisition bottleneck, is common to most natural
|
16 |
+
language processing tasks, thus fueling the need for quality unsupervised
|
17 |
+
approaches.
|
18 |
+
|
19 |
+
This module contains a k-means clusterer, E-M clusterer and a group average
|
20 |
+
agglomerative clusterer (GAAC). All these clusterers involve finding good
|
21 |
+
cluster groupings for a set of vectors in multi-dimensional space.
|
22 |
+
|
23 |
+
The K-means clusterer starts with k arbitrary chosen means then allocates each
|
24 |
+
vector to the cluster with the closest mean. It then recalculates the means of
|
25 |
+
each cluster as the centroid of the vectors in the cluster. This process
|
26 |
+
repeats until the cluster memberships stabilise. This is a hill-climbing
|
27 |
+
algorithm which may converge to a local maximum. Hence the clustering is
|
28 |
+
often repeated with random initial means and the most commonly occurring
|
29 |
+
output means are chosen.
|
30 |
+
|
31 |
+
The GAAC clusterer starts with each of the *N* vectors as singleton clusters.
|
32 |
+
It then iteratively merges pairs of clusters which have the closest centroids.
|
33 |
+
This continues until there is only one cluster. The order of merges gives rise
|
34 |
+
to a dendrogram - a tree with the earlier merges lower than later merges. The
|
35 |
+
membership of a given number of clusters *c*, *1 <= c <= N*, can be found by
|
36 |
+
cutting the dendrogram at depth *c*.
|
37 |
+
|
38 |
+
The Gaussian EM clusterer models the vectors as being produced by a mixture
|
39 |
+
of k Gaussian sources. The parameters of these sources (prior probability,
|
40 |
+
mean and covariance matrix) are then found to maximise the likelihood of the
|
41 |
+
given data. This is done with the expectation maximisation algorithm. It
|
42 |
+
starts with k arbitrarily chosen means, priors and covariance matrices. It
|
43 |
+
then calculates the membership probabilities for each vector in each of the
|
44 |
+
clusters - this is the 'E' step. The cluster parameters are then updated in
|
45 |
+
the 'M' step using the maximum likelihood estimate from the cluster membership
|
46 |
+
probabilities. This process continues until the likelihood of the data does
|
47 |
+
not significantly increase.
|
48 |
+
|
49 |
+
They all extend the ClusterI interface which defines common operations
|
50 |
+
available with each clusterer. These operations include:
|
51 |
+
|
52 |
+
- cluster: clusters a sequence of vectors
|
53 |
+
- classify: assign a vector to a cluster
|
54 |
+
- classification_probdist: give the probability distribution over cluster memberships
|
55 |
+
|
56 |
+
The current existing classifiers also extend cluster.VectorSpace, an
|
57 |
+
abstract class which allows for singular value decomposition (SVD) and vector
|
58 |
+
normalisation. SVD is used to reduce the dimensionality of the vector space in
|
59 |
+
such a manner as to preserve as much of the variation as possible, by
|
60 |
+
reparameterising the axes in order of variability and discarding all bar the
|
61 |
+
first d dimensions. Normalisation ensures that vectors fall in the unit
|
62 |
+
hypersphere.
|
63 |
+
|
64 |
+
Usage example (see also demo())::
|
65 |
+
|
66 |
+
from nltk import cluster
|
67 |
+
from nltk.cluster import euclidean_distance
|
68 |
+
from numpy import array
|
69 |
+
|
70 |
+
vectors = [array(f) for f in [[3, 3], [1, 2], [4, 2], [4, 0]]]
|
71 |
+
|
72 |
+
# initialise the clusterer (will also assign the vectors to clusters)
|
73 |
+
clusterer = cluster.KMeansClusterer(2, euclidean_distance)
|
74 |
+
clusterer.cluster(vectors, True)
|
75 |
+
|
76 |
+
# classify a new vector
|
77 |
+
print(clusterer.classify(array([3, 3])))
|
78 |
+
|
79 |
+
Note that the vectors must use numpy array-like
|
80 |
+
objects. nltk_contrib.unimelb.tacohn.SparseArrays may be used for
|
81 |
+
efficiency when required.
|
82 |
+
"""
|
83 |
+
|
84 |
+
from nltk.cluster.em import EMClusterer
|
85 |
+
from nltk.cluster.gaac import GAAClusterer
|
86 |
+
from nltk.cluster.kmeans import KMeansClusterer
|
87 |
+
from nltk.cluster.util import (
|
88 |
+
Dendrogram,
|
89 |
+
VectorSpaceClusterer,
|
90 |
+
cosine_distance,
|
91 |
+
euclidean_distance,
|
92 |
+
)
|
venv/lib/python3.10/site-packages/nltk/cluster/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (4.31 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/cluster/__pycache__/api.cpython-310.pyc
ADDED
Binary file (2.43 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/cluster/__pycache__/em.cpython-310.pyc
ADDED
Binary file (6.85 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/cluster/__pycache__/gaac.cpython-310.pyc
ADDED
Binary file (4.99 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/cluster/__pycache__/kmeans.cpython-310.pyc
ADDED
Binary file (6.67 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/cluster/__pycache__/util.cpython-310.pyc
ADDED
Binary file (9.85 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/cluster/api.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Clusterer Interfaces
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Trevor Cohn <[email protected]>
|
5 |
+
# Porting: Steven Bird <[email protected]>
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
from abc import ABCMeta, abstractmethod
|
10 |
+
|
11 |
+
from nltk.probability import DictionaryProbDist
|
12 |
+
|
13 |
+
|
14 |
+
class ClusterI(metaclass=ABCMeta):
|
15 |
+
"""
|
16 |
+
Interface covering basic clustering functionality.
|
17 |
+
"""
|
18 |
+
|
19 |
+
@abstractmethod
|
20 |
+
def cluster(self, vectors, assign_clusters=False):
|
21 |
+
"""
|
22 |
+
Assigns the vectors to clusters, learning the clustering parameters
|
23 |
+
from the data. Returns a cluster identifier for each vector.
|
24 |
+
"""
|
25 |
+
|
26 |
+
@abstractmethod
|
27 |
+
def classify(self, token):
|
28 |
+
"""
|
29 |
+
Classifies the token into a cluster, setting the token's CLUSTER
|
30 |
+
parameter to that cluster identifier.
|
31 |
+
"""
|
32 |
+
|
33 |
+
def likelihood(self, vector, label):
|
34 |
+
"""
|
35 |
+
Returns the likelihood (a float) of the token having the
|
36 |
+
corresponding cluster.
|
37 |
+
"""
|
38 |
+
if self.classify(vector) == label:
|
39 |
+
return 1.0
|
40 |
+
else:
|
41 |
+
return 0.0
|
42 |
+
|
43 |
+
def classification_probdist(self, vector):
|
44 |
+
"""
|
45 |
+
Classifies the token into a cluster, returning
|
46 |
+
a probability distribution over the cluster identifiers.
|
47 |
+
"""
|
48 |
+
likelihoods = {}
|
49 |
+
sum = 0.0
|
50 |
+
for cluster in self.cluster_names():
|
51 |
+
likelihoods[cluster] = self.likelihood(vector, cluster)
|
52 |
+
sum += likelihoods[cluster]
|
53 |
+
for cluster in self.cluster_names():
|
54 |
+
likelihoods[cluster] /= sum
|
55 |
+
return DictionaryProbDist(likelihoods)
|
56 |
+
|
57 |
+
@abstractmethod
|
58 |
+
def num_clusters(self):
|
59 |
+
"""
|
60 |
+
Returns the number of clusters.
|
61 |
+
"""
|
62 |
+
|
63 |
+
def cluster_names(self):
|
64 |
+
"""
|
65 |
+
Returns the names of the clusters.
|
66 |
+
:rtype: list
|
67 |
+
"""
|
68 |
+
return list(range(self.num_clusters()))
|
69 |
+
|
70 |
+
def cluster_name(self, index):
|
71 |
+
"""
|
72 |
+
Returns the names of the cluster at index.
|
73 |
+
"""
|
74 |
+
return index
|
venv/lib/python3.10/site-packages/nltk/cluster/em.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Expectation Maximization Clusterer
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Trevor Cohn <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
try:
|
9 |
+
import numpy
|
10 |
+
except ImportError:
|
11 |
+
pass
|
12 |
+
|
13 |
+
from nltk.cluster.util import VectorSpaceClusterer
|
14 |
+
|
15 |
+
|
16 |
+
class EMClusterer(VectorSpaceClusterer):
|
17 |
+
"""
|
18 |
+
The Gaussian EM clusterer models the vectors as being produced by
|
19 |
+
a mixture of k Gaussian sources. The parameters of these sources
|
20 |
+
(prior probability, mean and covariance matrix) are then found to
|
21 |
+
maximise the likelihood of the given data. This is done with the
|
22 |
+
expectation maximisation algorithm. It starts with k arbitrarily
|
23 |
+
chosen means, priors and covariance matrices. It then calculates
|
24 |
+
the membership probabilities for each vector in each of the
|
25 |
+
clusters; this is the 'E' step. The cluster parameters are then
|
26 |
+
updated in the 'M' step using the maximum likelihood estimate from
|
27 |
+
the cluster membership probabilities. This process continues until
|
28 |
+
the likelihood of the data does not significantly increase.
|
29 |
+
"""
|
30 |
+
|
31 |
+
def __init__(
|
32 |
+
self,
|
33 |
+
initial_means,
|
34 |
+
priors=None,
|
35 |
+
covariance_matrices=None,
|
36 |
+
conv_threshold=1e-6,
|
37 |
+
bias=0.1,
|
38 |
+
normalise=False,
|
39 |
+
svd_dimensions=None,
|
40 |
+
):
|
41 |
+
"""
|
42 |
+
Creates an EM clusterer with the given starting parameters,
|
43 |
+
convergence threshold and vector mangling parameters.
|
44 |
+
|
45 |
+
:param initial_means: the means of the gaussian cluster centers
|
46 |
+
:type initial_means: [seq of] numpy array or seq of SparseArray
|
47 |
+
:param priors: the prior probability for each cluster
|
48 |
+
:type priors: numpy array or seq of float
|
49 |
+
:param covariance_matrices: the covariance matrix for each cluster
|
50 |
+
:type covariance_matrices: [seq of] numpy array
|
51 |
+
:param conv_threshold: maximum change in likelihood before deemed
|
52 |
+
convergent
|
53 |
+
:type conv_threshold: int or float
|
54 |
+
:param bias: variance bias used to ensure non-singular covariance
|
55 |
+
matrices
|
56 |
+
:type bias: float
|
57 |
+
:param normalise: should vectors be normalised to length 1
|
58 |
+
:type normalise: boolean
|
59 |
+
:param svd_dimensions: number of dimensions to use in reducing vector
|
60 |
+
dimensionsionality with SVD
|
61 |
+
:type svd_dimensions: int
|
62 |
+
"""
|
63 |
+
VectorSpaceClusterer.__init__(self, normalise, svd_dimensions)
|
64 |
+
self._means = numpy.array(initial_means, numpy.float64)
|
65 |
+
self._num_clusters = len(initial_means)
|
66 |
+
self._conv_threshold = conv_threshold
|
67 |
+
self._covariance_matrices = covariance_matrices
|
68 |
+
self._priors = priors
|
69 |
+
self._bias = bias
|
70 |
+
|
71 |
+
def num_clusters(self):
|
72 |
+
return self._num_clusters
|
73 |
+
|
74 |
+
def cluster_vectorspace(self, vectors, trace=False):
|
75 |
+
assert len(vectors) > 0
|
76 |
+
|
77 |
+
# set the parameters to initial values
|
78 |
+
dimensions = len(vectors[0])
|
79 |
+
means = self._means
|
80 |
+
priors = self._priors
|
81 |
+
if not priors:
|
82 |
+
priors = self._priors = (
|
83 |
+
numpy.ones(self._num_clusters, numpy.float64) / self._num_clusters
|
84 |
+
)
|
85 |
+
covariances = self._covariance_matrices
|
86 |
+
if not covariances:
|
87 |
+
covariances = self._covariance_matrices = [
|
88 |
+
numpy.identity(dimensions, numpy.float64)
|
89 |
+
for i in range(self._num_clusters)
|
90 |
+
]
|
91 |
+
|
92 |
+
# do the E and M steps until the likelihood plateaus
|
93 |
+
lastl = self._loglikelihood(vectors, priors, means, covariances)
|
94 |
+
converged = False
|
95 |
+
|
96 |
+
while not converged:
|
97 |
+
if trace:
|
98 |
+
print("iteration; loglikelihood", lastl)
|
99 |
+
# E-step, calculate hidden variables, h[i,j]
|
100 |
+
h = numpy.zeros((len(vectors), self._num_clusters), numpy.float64)
|
101 |
+
for i in range(len(vectors)):
|
102 |
+
for j in range(self._num_clusters):
|
103 |
+
h[i, j] = priors[j] * self._gaussian(
|
104 |
+
means[j], covariances[j], vectors[i]
|
105 |
+
)
|
106 |
+
h[i, :] /= sum(h[i, :])
|
107 |
+
|
108 |
+
# M-step, update parameters - cvm, p, mean
|
109 |
+
for j in range(self._num_clusters):
|
110 |
+
covariance_before = covariances[j]
|
111 |
+
new_covariance = numpy.zeros((dimensions, dimensions), numpy.float64)
|
112 |
+
new_mean = numpy.zeros(dimensions, numpy.float64)
|
113 |
+
sum_hj = 0.0
|
114 |
+
for i in range(len(vectors)):
|
115 |
+
delta = vectors[i] - means[j]
|
116 |
+
new_covariance += h[i, j] * numpy.multiply.outer(delta, delta)
|
117 |
+
sum_hj += h[i, j]
|
118 |
+
new_mean += h[i, j] * vectors[i]
|
119 |
+
covariances[j] = new_covariance / sum_hj
|
120 |
+
means[j] = new_mean / sum_hj
|
121 |
+
priors[j] = sum_hj / len(vectors)
|
122 |
+
|
123 |
+
# bias term to stop covariance matrix being singular
|
124 |
+
covariances[j] += self._bias * numpy.identity(dimensions, numpy.float64)
|
125 |
+
|
126 |
+
# calculate likelihood - FIXME: may be broken
|
127 |
+
l = self._loglikelihood(vectors, priors, means, covariances)
|
128 |
+
|
129 |
+
# check for convergence
|
130 |
+
if abs(lastl - l) < self._conv_threshold:
|
131 |
+
converged = True
|
132 |
+
lastl = l
|
133 |
+
|
134 |
+
def classify_vectorspace(self, vector):
|
135 |
+
best = None
|
136 |
+
for j in range(self._num_clusters):
|
137 |
+
p = self._priors[j] * self._gaussian(
|
138 |
+
self._means[j], self._covariance_matrices[j], vector
|
139 |
+
)
|
140 |
+
if not best or p > best[0]:
|
141 |
+
best = (p, j)
|
142 |
+
return best[1]
|
143 |
+
|
144 |
+
def likelihood_vectorspace(self, vector, cluster):
|
145 |
+
cid = self.cluster_names().index(cluster)
|
146 |
+
return self._priors[cluster] * self._gaussian(
|
147 |
+
self._means[cluster], self._covariance_matrices[cluster], vector
|
148 |
+
)
|
149 |
+
|
150 |
+
def _gaussian(self, mean, cvm, x):
|
151 |
+
m = len(mean)
|
152 |
+
assert cvm.shape == (m, m), "bad sized covariance matrix, %s" % str(cvm.shape)
|
153 |
+
try:
|
154 |
+
det = numpy.linalg.det(cvm)
|
155 |
+
inv = numpy.linalg.inv(cvm)
|
156 |
+
a = det**-0.5 * (2 * numpy.pi) ** (-m / 2.0)
|
157 |
+
dx = x - mean
|
158 |
+
print(dx, inv)
|
159 |
+
b = -0.5 * numpy.dot(numpy.dot(dx, inv), dx)
|
160 |
+
return a * numpy.exp(b)
|
161 |
+
except OverflowError:
|
162 |
+
# happens when the exponent is negative infinity - i.e. b = 0
|
163 |
+
# i.e. the inverse of cvm is huge (cvm is almost zero)
|
164 |
+
return 0
|
165 |
+
|
166 |
+
def _loglikelihood(self, vectors, priors, means, covariances):
|
167 |
+
llh = 0.0
|
168 |
+
for vector in vectors:
|
169 |
+
p = 0
|
170 |
+
for j in range(len(priors)):
|
171 |
+
p += priors[j] * self._gaussian(means[j], covariances[j], vector)
|
172 |
+
llh += numpy.log(p)
|
173 |
+
return llh
|
174 |
+
|
175 |
+
def __repr__(self):
|
176 |
+
return "<EMClusterer means=%s>" % list(self._means)
|
177 |
+
|
178 |
+
|
179 |
+
def demo():
|
180 |
+
"""
|
181 |
+
Non-interactive demonstration of the clusterers with simple 2-D data.
|
182 |
+
"""
|
183 |
+
|
184 |
+
from nltk import cluster
|
185 |
+
|
186 |
+
# example from figure 14.10, page 519, Manning and Schutze
|
187 |
+
|
188 |
+
vectors = [numpy.array(f) for f in [[0.5, 0.5], [1.5, 0.5], [1, 3]]]
|
189 |
+
means = [[4, 2], [4, 2.01]]
|
190 |
+
|
191 |
+
clusterer = cluster.EMClusterer(means, bias=0.1)
|
192 |
+
clusters = clusterer.cluster(vectors, True, trace=True)
|
193 |
+
|
194 |
+
print("Clustered:", vectors)
|
195 |
+
print("As: ", clusters)
|
196 |
+
print()
|
197 |
+
|
198 |
+
for c in range(2):
|
199 |
+
print("Cluster:", c)
|
200 |
+
print("Prior: ", clusterer._priors[c])
|
201 |
+
print("Mean: ", clusterer._means[c])
|
202 |
+
print("Covar: ", clusterer._covariance_matrices[c])
|
203 |
+
print()
|
204 |
+
|
205 |
+
# classify a new vector
|
206 |
+
vector = numpy.array([2, 2])
|
207 |
+
print("classify(%s):" % vector, end=" ")
|
208 |
+
print(clusterer.classify(vector))
|
209 |
+
|
210 |
+
# show the classification probabilities
|
211 |
+
vector = numpy.array([2, 2])
|
212 |
+
print("classification_probdist(%s):" % vector)
|
213 |
+
pdist = clusterer.classification_probdist(vector)
|
214 |
+
for sample in pdist.samples():
|
215 |
+
print(f"{sample} => {pdist.prob(sample) * 100:.0f}%")
|
216 |
+
|
217 |
+
|
218 |
+
if __name__ == "__main__":
|
219 |
+
demo()
|
venv/lib/python3.10/site-packages/nltk/cluster/gaac.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Group Average Agglomerative Clusterer
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Trevor Cohn <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
try:
|
9 |
+
import numpy
|
10 |
+
except ImportError:
|
11 |
+
pass
|
12 |
+
|
13 |
+
from nltk.cluster.util import Dendrogram, VectorSpaceClusterer, cosine_distance
|
14 |
+
|
15 |
+
|
16 |
+
class GAAClusterer(VectorSpaceClusterer):
|
17 |
+
"""
|
18 |
+
The Group Average Agglomerative starts with each of the N vectors as singleton
|
19 |
+
clusters. It then iteratively merges pairs of clusters which have the
|
20 |
+
closest centroids. This continues until there is only one cluster. The
|
21 |
+
order of merges gives rise to a dendrogram: a tree with the earlier merges
|
22 |
+
lower than later merges. The membership of a given number of clusters c, 1
|
23 |
+
<= c <= N, can be found by cutting the dendrogram at depth c.
|
24 |
+
|
25 |
+
This clusterer uses the cosine similarity metric only, which allows for
|
26 |
+
efficient speed-up in the clustering process.
|
27 |
+
"""
|
28 |
+
|
29 |
+
def __init__(self, num_clusters=1, normalise=True, svd_dimensions=None):
|
30 |
+
VectorSpaceClusterer.__init__(self, normalise, svd_dimensions)
|
31 |
+
self._num_clusters = num_clusters
|
32 |
+
self._dendrogram = None
|
33 |
+
self._groups_values = None
|
34 |
+
|
35 |
+
def cluster(self, vectors, assign_clusters=False, trace=False):
|
36 |
+
# stores the merge order
|
37 |
+
self._dendrogram = Dendrogram(
|
38 |
+
[numpy.array(vector, numpy.float64) for vector in vectors]
|
39 |
+
)
|
40 |
+
return VectorSpaceClusterer.cluster(self, vectors, assign_clusters, trace)
|
41 |
+
|
42 |
+
def cluster_vectorspace(self, vectors, trace=False):
|
43 |
+
# variables describing the initial situation
|
44 |
+
N = len(vectors)
|
45 |
+
cluster_len = [1] * N
|
46 |
+
cluster_count = N
|
47 |
+
index_map = numpy.arange(N)
|
48 |
+
|
49 |
+
# construct the similarity matrix
|
50 |
+
dims = (N, N)
|
51 |
+
dist = numpy.ones(dims, dtype=float) * numpy.inf
|
52 |
+
for i in range(N):
|
53 |
+
for j in range(i + 1, N):
|
54 |
+
dist[i, j] = cosine_distance(vectors[i], vectors[j])
|
55 |
+
|
56 |
+
while cluster_count > max(self._num_clusters, 1):
|
57 |
+
i, j = numpy.unravel_index(dist.argmin(), dims)
|
58 |
+
if trace:
|
59 |
+
print("merging %d and %d" % (i, j))
|
60 |
+
|
61 |
+
# update similarities for merging i and j
|
62 |
+
self._merge_similarities(dist, cluster_len, i, j)
|
63 |
+
|
64 |
+
# remove j
|
65 |
+
dist[:, j] = numpy.inf
|
66 |
+
dist[j, :] = numpy.inf
|
67 |
+
|
68 |
+
# merge the clusters
|
69 |
+
cluster_len[i] = cluster_len[i] + cluster_len[j]
|
70 |
+
self._dendrogram.merge(index_map[i], index_map[j])
|
71 |
+
cluster_count -= 1
|
72 |
+
|
73 |
+
# update the index map to reflect the indexes if we
|
74 |
+
# had removed j
|
75 |
+
index_map[j + 1 :] -= 1
|
76 |
+
index_map[j] = N
|
77 |
+
|
78 |
+
self.update_clusters(self._num_clusters)
|
79 |
+
|
80 |
+
def _merge_similarities(self, dist, cluster_len, i, j):
|
81 |
+
# the new cluster i merged from i and j adopts the average of
|
82 |
+
# i and j's similarity to each other cluster, weighted by the
|
83 |
+
# number of points in the clusters i and j
|
84 |
+
i_weight = cluster_len[i]
|
85 |
+
j_weight = cluster_len[j]
|
86 |
+
weight_sum = i_weight + j_weight
|
87 |
+
|
88 |
+
# update for x<i
|
89 |
+
dist[:i, i] = dist[:i, i] * i_weight + dist[:i, j] * j_weight
|
90 |
+
dist[:i, i] /= weight_sum
|
91 |
+
# update for i<x<j
|
92 |
+
dist[i, i + 1 : j] = (
|
93 |
+
dist[i, i + 1 : j] * i_weight + dist[i + 1 : j, j] * j_weight
|
94 |
+
)
|
95 |
+
# update for i<j<x
|
96 |
+
dist[i, j + 1 :] = dist[i, j + 1 :] * i_weight + dist[j, j + 1 :] * j_weight
|
97 |
+
dist[i, i + 1 :] /= weight_sum
|
98 |
+
|
99 |
+
def update_clusters(self, num_clusters):
|
100 |
+
clusters = self._dendrogram.groups(num_clusters)
|
101 |
+
self._centroids = []
|
102 |
+
for cluster in clusters:
|
103 |
+
assert len(cluster) > 0
|
104 |
+
if self._should_normalise:
|
105 |
+
centroid = self._normalise(cluster[0])
|
106 |
+
else:
|
107 |
+
centroid = numpy.array(cluster[0])
|
108 |
+
for vector in cluster[1:]:
|
109 |
+
if self._should_normalise:
|
110 |
+
centroid += self._normalise(vector)
|
111 |
+
else:
|
112 |
+
centroid += vector
|
113 |
+
centroid /= len(cluster)
|
114 |
+
self._centroids.append(centroid)
|
115 |
+
self._num_clusters = len(self._centroids)
|
116 |
+
|
117 |
+
def classify_vectorspace(self, vector):
|
118 |
+
best = None
|
119 |
+
for i in range(self._num_clusters):
|
120 |
+
centroid = self._centroids[i]
|
121 |
+
dist = cosine_distance(vector, centroid)
|
122 |
+
if not best or dist < best[0]:
|
123 |
+
best = (dist, i)
|
124 |
+
return best[1]
|
125 |
+
|
126 |
+
def dendrogram(self):
|
127 |
+
"""
|
128 |
+
:return: The dendrogram representing the current clustering
|
129 |
+
:rtype: Dendrogram
|
130 |
+
"""
|
131 |
+
return self._dendrogram
|
132 |
+
|
133 |
+
def num_clusters(self):
|
134 |
+
return self._num_clusters
|
135 |
+
|
136 |
+
def __repr__(self):
|
137 |
+
return "<GroupAverageAgglomerative Clusterer n=%d>" % self._num_clusters
|
138 |
+
|
139 |
+
|
140 |
+
def demo():
|
141 |
+
"""
|
142 |
+
Non-interactive demonstration of the clusterers with simple 2-D data.
|
143 |
+
"""
|
144 |
+
|
145 |
+
from nltk.cluster import GAAClusterer
|
146 |
+
|
147 |
+
# use a set of tokens with 2D indices
|
148 |
+
vectors = [numpy.array(f) for f in [[3, 3], [1, 2], [4, 2], [4, 0], [2, 3], [3, 1]]]
|
149 |
+
|
150 |
+
# test the GAAC clusterer with 4 clusters
|
151 |
+
clusterer = GAAClusterer(4)
|
152 |
+
clusters = clusterer.cluster(vectors, True)
|
153 |
+
|
154 |
+
print("Clusterer:", clusterer)
|
155 |
+
print("Clustered:", vectors)
|
156 |
+
print("As:", clusters)
|
157 |
+
print()
|
158 |
+
|
159 |
+
# show the dendrogram
|
160 |
+
clusterer.dendrogram().show()
|
161 |
+
|
162 |
+
# classify a new vector
|
163 |
+
vector = numpy.array([3, 3])
|
164 |
+
print("classify(%s):" % vector, end=" ")
|
165 |
+
print(clusterer.classify(vector))
|
166 |
+
print()
|
167 |
+
|
168 |
+
|
169 |
+
if __name__ == "__main__":
|
170 |
+
demo()
|
venv/lib/python3.10/site-packages/nltk/cluster/kmeans.py
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: K-Means Clusterer
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Trevor Cohn <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
import copy
|
9 |
+
import random
|
10 |
+
import sys
|
11 |
+
|
12 |
+
try:
|
13 |
+
import numpy
|
14 |
+
except ImportError:
|
15 |
+
pass
|
16 |
+
|
17 |
+
|
18 |
+
from nltk.cluster.util import VectorSpaceClusterer
|
19 |
+
|
20 |
+
|
21 |
+
class KMeansClusterer(VectorSpaceClusterer):
|
22 |
+
"""
|
23 |
+
The K-means clusterer starts with k arbitrary chosen means then allocates
|
24 |
+
each vector to the cluster with the closest mean. It then recalculates the
|
25 |
+
means of each cluster as the centroid of the vectors in the cluster. This
|
26 |
+
process repeats until the cluster memberships stabilise. This is a
|
27 |
+
hill-climbing algorithm which may converge to a local maximum. Hence the
|
28 |
+
clustering is often repeated with random initial means and the most
|
29 |
+
commonly occurring output means are chosen.
|
30 |
+
"""
|
31 |
+
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
num_means,
|
35 |
+
distance,
|
36 |
+
repeats=1,
|
37 |
+
conv_test=1e-6,
|
38 |
+
initial_means=None,
|
39 |
+
normalise=False,
|
40 |
+
svd_dimensions=None,
|
41 |
+
rng=None,
|
42 |
+
avoid_empty_clusters=False,
|
43 |
+
):
|
44 |
+
|
45 |
+
"""
|
46 |
+
:param num_means: the number of means to use (may use fewer)
|
47 |
+
:type num_means: int
|
48 |
+
:param distance: measure of distance between two vectors
|
49 |
+
:type distance: function taking two vectors and returning a float
|
50 |
+
:param repeats: number of randomised clustering trials to use
|
51 |
+
:type repeats: int
|
52 |
+
:param conv_test: maximum variation in mean differences before
|
53 |
+
deemed convergent
|
54 |
+
:type conv_test: number
|
55 |
+
:param initial_means: set of k initial means
|
56 |
+
:type initial_means: sequence of vectors
|
57 |
+
:param normalise: should vectors be normalised to length 1
|
58 |
+
:type normalise: boolean
|
59 |
+
:param svd_dimensions: number of dimensions to use in reducing vector
|
60 |
+
dimensionsionality with SVD
|
61 |
+
:type svd_dimensions: int
|
62 |
+
:param rng: random number generator (or None)
|
63 |
+
:type rng: Random
|
64 |
+
:param avoid_empty_clusters: include current centroid in computation
|
65 |
+
of next one; avoids undefined behavior
|
66 |
+
when clusters become empty
|
67 |
+
:type avoid_empty_clusters: boolean
|
68 |
+
"""
|
69 |
+
VectorSpaceClusterer.__init__(self, normalise, svd_dimensions)
|
70 |
+
self._num_means = num_means
|
71 |
+
self._distance = distance
|
72 |
+
self._max_difference = conv_test
|
73 |
+
assert not initial_means or len(initial_means) == num_means
|
74 |
+
self._means = initial_means
|
75 |
+
assert repeats >= 1
|
76 |
+
assert not (initial_means and repeats > 1)
|
77 |
+
self._repeats = repeats
|
78 |
+
self._rng = rng if rng else random.Random()
|
79 |
+
self._avoid_empty_clusters = avoid_empty_clusters
|
80 |
+
|
81 |
+
def cluster_vectorspace(self, vectors, trace=False):
|
82 |
+
if self._means and self._repeats > 1:
|
83 |
+
print("Warning: means will be discarded for subsequent trials")
|
84 |
+
|
85 |
+
meanss = []
|
86 |
+
for trial in range(self._repeats):
|
87 |
+
if trace:
|
88 |
+
print("k-means trial", trial)
|
89 |
+
if not self._means or trial > 1:
|
90 |
+
self._means = self._rng.sample(list(vectors), self._num_means)
|
91 |
+
self._cluster_vectorspace(vectors, trace)
|
92 |
+
meanss.append(self._means)
|
93 |
+
|
94 |
+
if len(meanss) > 1:
|
95 |
+
# sort the means first (so that different cluster numbering won't
|
96 |
+
# effect the distance comparison)
|
97 |
+
for means in meanss:
|
98 |
+
means.sort(key=sum)
|
99 |
+
|
100 |
+
# find the set of means that's minimally different from the others
|
101 |
+
min_difference = min_means = None
|
102 |
+
for i in range(len(meanss)):
|
103 |
+
d = 0
|
104 |
+
for j in range(len(meanss)):
|
105 |
+
if i != j:
|
106 |
+
d += self._sum_distances(meanss[i], meanss[j])
|
107 |
+
if min_difference is None or d < min_difference:
|
108 |
+
min_difference, min_means = d, meanss[i]
|
109 |
+
|
110 |
+
# use the best means
|
111 |
+
self._means = min_means
|
112 |
+
|
113 |
+
def _cluster_vectorspace(self, vectors, trace=False):
|
114 |
+
if self._num_means < len(vectors):
|
115 |
+
# perform k-means clustering
|
116 |
+
converged = False
|
117 |
+
while not converged:
|
118 |
+
# assign the tokens to clusters based on minimum distance to
|
119 |
+
# the cluster means
|
120 |
+
clusters = [[] for m in range(self._num_means)]
|
121 |
+
for vector in vectors:
|
122 |
+
index = self.classify_vectorspace(vector)
|
123 |
+
clusters[index].append(vector)
|
124 |
+
|
125 |
+
if trace:
|
126 |
+
print("iteration")
|
127 |
+
# for i in range(self._num_means):
|
128 |
+
# print ' mean', i, 'allocated', len(clusters[i]), 'vectors'
|
129 |
+
|
130 |
+
# recalculate cluster means by computing the centroid of each cluster
|
131 |
+
new_means = list(map(self._centroid, clusters, self._means))
|
132 |
+
|
133 |
+
# measure the degree of change from the previous step for convergence
|
134 |
+
difference = self._sum_distances(self._means, new_means)
|
135 |
+
if difference < self._max_difference:
|
136 |
+
converged = True
|
137 |
+
|
138 |
+
# remember the new means
|
139 |
+
self._means = new_means
|
140 |
+
|
141 |
+
def classify_vectorspace(self, vector):
|
142 |
+
# finds the closest cluster centroid
|
143 |
+
# returns that cluster's index
|
144 |
+
best_distance = best_index = None
|
145 |
+
for index in range(len(self._means)):
|
146 |
+
mean = self._means[index]
|
147 |
+
dist = self._distance(vector, mean)
|
148 |
+
if best_distance is None or dist < best_distance:
|
149 |
+
best_index, best_distance = index, dist
|
150 |
+
return best_index
|
151 |
+
|
152 |
+
def num_clusters(self):
|
153 |
+
if self._means:
|
154 |
+
return len(self._means)
|
155 |
+
else:
|
156 |
+
return self._num_means
|
157 |
+
|
158 |
+
def means(self):
|
159 |
+
"""
|
160 |
+
The means used for clustering.
|
161 |
+
"""
|
162 |
+
return self._means
|
163 |
+
|
164 |
+
def _sum_distances(self, vectors1, vectors2):
|
165 |
+
difference = 0.0
|
166 |
+
for u, v in zip(vectors1, vectors2):
|
167 |
+
difference += self._distance(u, v)
|
168 |
+
return difference
|
169 |
+
|
170 |
+
def _centroid(self, cluster, mean):
|
171 |
+
if self._avoid_empty_clusters:
|
172 |
+
centroid = copy.copy(mean)
|
173 |
+
for vector in cluster:
|
174 |
+
centroid += vector
|
175 |
+
return centroid / (1 + len(cluster))
|
176 |
+
else:
|
177 |
+
if not len(cluster):
|
178 |
+
sys.stderr.write("Error: no centroid defined for empty cluster.\n")
|
179 |
+
sys.stderr.write(
|
180 |
+
"Try setting argument 'avoid_empty_clusters' to True\n"
|
181 |
+
)
|
182 |
+
assert False
|
183 |
+
centroid = copy.copy(cluster[0])
|
184 |
+
for vector in cluster[1:]:
|
185 |
+
centroid += vector
|
186 |
+
return centroid / len(cluster)
|
187 |
+
|
188 |
+
def __repr__(self):
|
189 |
+
return "<KMeansClusterer means=%s repeats=%d>" % (self._means, self._repeats)
|
190 |
+
|
191 |
+
|
192 |
+
#################################################################################
|
193 |
+
|
194 |
+
|
195 |
+
def demo():
|
196 |
+
# example from figure 14.9, page 517, Manning and Schutze
|
197 |
+
|
198 |
+
from nltk.cluster import KMeansClusterer, euclidean_distance
|
199 |
+
|
200 |
+
vectors = [numpy.array(f) for f in [[2, 1], [1, 3], [4, 7], [6, 7]]]
|
201 |
+
means = [[4, 3], [5, 5]]
|
202 |
+
|
203 |
+
clusterer = KMeansClusterer(2, euclidean_distance, initial_means=means)
|
204 |
+
clusters = clusterer.cluster(vectors, True, trace=True)
|
205 |
+
|
206 |
+
print("Clustered:", vectors)
|
207 |
+
print("As:", clusters)
|
208 |
+
print("Means:", clusterer.means())
|
209 |
+
print()
|
210 |
+
|
211 |
+
vectors = [numpy.array(f) for f in [[3, 3], [1, 2], [4, 2], [4, 0], [2, 3], [3, 1]]]
|
212 |
+
|
213 |
+
# test k-means using the euclidean distance metric, 2 means and repeat
|
214 |
+
# clustering 10 times with random seeds
|
215 |
+
|
216 |
+
clusterer = KMeansClusterer(2, euclidean_distance, repeats=10)
|
217 |
+
clusters = clusterer.cluster(vectors, True)
|
218 |
+
print("Clustered:", vectors)
|
219 |
+
print("As:", clusters)
|
220 |
+
print("Means:", clusterer.means())
|
221 |
+
print()
|
222 |
+
|
223 |
+
# classify a new vector
|
224 |
+
vector = numpy.array([3, 3])
|
225 |
+
print("classify(%s):" % vector, end=" ")
|
226 |
+
print(clusterer.classify(vector))
|
227 |
+
print()
|
228 |
+
|
229 |
+
|
230 |
+
if __name__ == "__main__":
|
231 |
+
demo()
|
venv/lib/python3.10/site-packages/nltk/parse/corenlp.py
ADDED
@@ -0,0 +1,800 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Interface to the CoreNLP REST API.
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Dmitrijs Milajevs <[email protected]>
|
5 |
+
#
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
import json
|
10 |
+
import os # required for doctests
|
11 |
+
import re
|
12 |
+
import socket
|
13 |
+
import time
|
14 |
+
from typing import List, Tuple
|
15 |
+
|
16 |
+
from nltk.internals import _java_options, config_java, find_jar_iter, java
|
17 |
+
from nltk.parse.api import ParserI
|
18 |
+
from nltk.parse.dependencygraph import DependencyGraph
|
19 |
+
from nltk.tag.api import TaggerI
|
20 |
+
from nltk.tokenize.api import TokenizerI
|
21 |
+
from nltk.tree import Tree
|
22 |
+
|
23 |
+
_stanford_url = "https://stanfordnlp.github.io/CoreNLP/"
|
24 |
+
|
25 |
+
|
26 |
+
class CoreNLPServerError(EnvironmentError):
|
27 |
+
"""Exceptions associated with the Core NLP server."""
|
28 |
+
|
29 |
+
|
30 |
+
def try_port(port=0):
|
31 |
+
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
32 |
+
sock.bind(("", port))
|
33 |
+
|
34 |
+
p = sock.getsockname()[1]
|
35 |
+
sock.close()
|
36 |
+
|
37 |
+
return p
|
38 |
+
|
39 |
+
|
40 |
+
class CoreNLPServer:
|
41 |
+
|
42 |
+
_MODEL_JAR_PATTERN = r"stanford-corenlp-(\d+)\.(\d+)\.(\d+)-models\.jar"
|
43 |
+
_JAR = r"stanford-corenlp-(\d+)\.(\d+)\.(\d+)\.jar"
|
44 |
+
|
45 |
+
def __init__(
|
46 |
+
self,
|
47 |
+
path_to_jar=None,
|
48 |
+
path_to_models_jar=None,
|
49 |
+
verbose=False,
|
50 |
+
java_options=None,
|
51 |
+
corenlp_options=None,
|
52 |
+
port=None,
|
53 |
+
):
|
54 |
+
|
55 |
+
if corenlp_options is None:
|
56 |
+
corenlp_options = ["-preload", "tokenize,ssplit,pos,lemma,parse,depparse"]
|
57 |
+
|
58 |
+
jars = list(
|
59 |
+
find_jar_iter(
|
60 |
+
self._JAR,
|
61 |
+
path_to_jar,
|
62 |
+
env_vars=("CORENLP",),
|
63 |
+
searchpath=(),
|
64 |
+
url=_stanford_url,
|
65 |
+
verbose=verbose,
|
66 |
+
is_regex=True,
|
67 |
+
)
|
68 |
+
)
|
69 |
+
|
70 |
+
# find the most recent code and model jar
|
71 |
+
stanford_jar = max(jars, key=lambda model_name: re.match(self._JAR, model_name))
|
72 |
+
|
73 |
+
if port is None:
|
74 |
+
try:
|
75 |
+
port = try_port(9000)
|
76 |
+
except OSError:
|
77 |
+
port = try_port()
|
78 |
+
corenlp_options.extend(["-port", str(port)])
|
79 |
+
else:
|
80 |
+
try_port(port)
|
81 |
+
corenlp_options.extend(["-port", str(port)])
|
82 |
+
|
83 |
+
self.url = f"http://localhost:{port}"
|
84 |
+
|
85 |
+
model_jar = max(
|
86 |
+
find_jar_iter(
|
87 |
+
self._MODEL_JAR_PATTERN,
|
88 |
+
path_to_models_jar,
|
89 |
+
env_vars=("CORENLP_MODELS",),
|
90 |
+
searchpath=(),
|
91 |
+
url=_stanford_url,
|
92 |
+
verbose=verbose,
|
93 |
+
is_regex=True,
|
94 |
+
),
|
95 |
+
key=lambda model_name: re.match(self._MODEL_JAR_PATTERN, model_name),
|
96 |
+
)
|
97 |
+
|
98 |
+
self.verbose = verbose
|
99 |
+
|
100 |
+
self._classpath = stanford_jar, model_jar
|
101 |
+
|
102 |
+
self.corenlp_options = corenlp_options
|
103 |
+
self.java_options = java_options or ["-mx2g"]
|
104 |
+
|
105 |
+
def start(self, stdout="devnull", stderr="devnull"):
|
106 |
+
"""Starts the CoreNLP server
|
107 |
+
|
108 |
+
:param stdout, stderr: Specifies where CoreNLP output is redirected. Valid values are 'devnull', 'stdout', 'pipe'
|
109 |
+
"""
|
110 |
+
import requests
|
111 |
+
|
112 |
+
cmd = ["edu.stanford.nlp.pipeline.StanfordCoreNLPServer"]
|
113 |
+
|
114 |
+
if self.corenlp_options:
|
115 |
+
cmd.extend(self.corenlp_options)
|
116 |
+
|
117 |
+
# Configure java.
|
118 |
+
default_options = " ".join(_java_options)
|
119 |
+
config_java(options=self.java_options, verbose=self.verbose)
|
120 |
+
|
121 |
+
try:
|
122 |
+
self.popen = java(
|
123 |
+
cmd,
|
124 |
+
classpath=self._classpath,
|
125 |
+
blocking=False,
|
126 |
+
stdout=stdout,
|
127 |
+
stderr=stderr,
|
128 |
+
)
|
129 |
+
finally:
|
130 |
+
# Return java configurations to their default values.
|
131 |
+
config_java(options=default_options, verbose=self.verbose)
|
132 |
+
|
133 |
+
# Check that the server is istill running.
|
134 |
+
returncode = self.popen.poll()
|
135 |
+
if returncode is not None:
|
136 |
+
_, stderrdata = self.popen.communicate()
|
137 |
+
raise CoreNLPServerError(
|
138 |
+
returncode,
|
139 |
+
"Could not start the server. "
|
140 |
+
"The error was: {}".format(stderrdata.decode("ascii")),
|
141 |
+
)
|
142 |
+
|
143 |
+
for i in range(30):
|
144 |
+
try:
|
145 |
+
response = requests.get(requests.compat.urljoin(self.url, "live"))
|
146 |
+
except requests.exceptions.ConnectionError:
|
147 |
+
time.sleep(1)
|
148 |
+
else:
|
149 |
+
if response.ok:
|
150 |
+
break
|
151 |
+
else:
|
152 |
+
raise CoreNLPServerError("Could not connect to the server.")
|
153 |
+
|
154 |
+
for i in range(60):
|
155 |
+
try:
|
156 |
+
response = requests.get(requests.compat.urljoin(self.url, "ready"))
|
157 |
+
except requests.exceptions.ConnectionError:
|
158 |
+
time.sleep(1)
|
159 |
+
else:
|
160 |
+
if response.ok:
|
161 |
+
break
|
162 |
+
else:
|
163 |
+
raise CoreNLPServerError("The server is not ready.")
|
164 |
+
|
165 |
+
def stop(self):
|
166 |
+
self.popen.terminate()
|
167 |
+
self.popen.wait()
|
168 |
+
|
169 |
+
def __enter__(self):
|
170 |
+
self.start()
|
171 |
+
|
172 |
+
return self
|
173 |
+
|
174 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
175 |
+
self.stop()
|
176 |
+
return False
|
177 |
+
|
178 |
+
|
179 |
+
class GenericCoreNLPParser(ParserI, TokenizerI, TaggerI):
|
180 |
+
"""Interface to the CoreNLP Parser."""
|
181 |
+
|
182 |
+
def __init__(
|
183 |
+
self,
|
184 |
+
url="http://localhost:9000",
|
185 |
+
encoding="utf8",
|
186 |
+
tagtype=None,
|
187 |
+
strict_json=True,
|
188 |
+
):
|
189 |
+
import requests
|
190 |
+
|
191 |
+
self.url = url
|
192 |
+
self.encoding = encoding
|
193 |
+
|
194 |
+
if tagtype not in ["pos", "ner", None]:
|
195 |
+
raise ValueError("tagtype must be either 'pos', 'ner' or None")
|
196 |
+
|
197 |
+
self.tagtype = tagtype
|
198 |
+
self.strict_json = strict_json
|
199 |
+
|
200 |
+
self.session = requests.Session()
|
201 |
+
|
202 |
+
def parse_sents(self, sentences, *args, **kwargs):
|
203 |
+
"""Parse multiple sentences.
|
204 |
+
|
205 |
+
Takes multiple sentences as a list where each sentence is a list of
|
206 |
+
words. Each sentence will be automatically tagged with this
|
207 |
+
CoreNLPParser instance's tagger.
|
208 |
+
|
209 |
+
If a whitespace exists inside a token, then the token will be treated as
|
210 |
+
several tokens.
|
211 |
+
|
212 |
+
:param sentences: Input sentences to parse
|
213 |
+
:type sentences: list(list(str))
|
214 |
+
:rtype: iter(iter(Tree))
|
215 |
+
"""
|
216 |
+
# Converting list(list(str)) -> list(str)
|
217 |
+
sentences = (" ".join(words) for words in sentences)
|
218 |
+
return self.raw_parse_sents(sentences, *args, **kwargs)
|
219 |
+
|
220 |
+
def raw_parse(self, sentence, properties=None, *args, **kwargs):
|
221 |
+
"""Parse a sentence.
|
222 |
+
|
223 |
+
Takes a sentence as a string; before parsing, it will be automatically
|
224 |
+
tokenized and tagged by the CoreNLP Parser.
|
225 |
+
|
226 |
+
:param sentence: Input sentence to parse
|
227 |
+
:type sentence: str
|
228 |
+
:rtype: iter(Tree)
|
229 |
+
"""
|
230 |
+
default_properties = {"tokenize.whitespace": "false"}
|
231 |
+
default_properties.update(properties or {})
|
232 |
+
|
233 |
+
return next(
|
234 |
+
self.raw_parse_sents(
|
235 |
+
[sentence], properties=default_properties, *args, **kwargs
|
236 |
+
)
|
237 |
+
)
|
238 |
+
|
239 |
+
def api_call(self, data, properties=None, timeout=60):
|
240 |
+
default_properties = {
|
241 |
+
"outputFormat": "json",
|
242 |
+
"annotators": "tokenize,pos,lemma,ssplit,{parser_annotator}".format(
|
243 |
+
parser_annotator=self.parser_annotator
|
244 |
+
),
|
245 |
+
}
|
246 |
+
|
247 |
+
default_properties.update(properties or {})
|
248 |
+
|
249 |
+
response = self.session.post(
|
250 |
+
self.url,
|
251 |
+
params={"properties": json.dumps(default_properties)},
|
252 |
+
data=data.encode(self.encoding),
|
253 |
+
headers={"Content-Type": f"text/plain; charset={self.encoding}"},
|
254 |
+
timeout=timeout,
|
255 |
+
)
|
256 |
+
|
257 |
+
response.raise_for_status()
|
258 |
+
|
259 |
+
return response.json(strict=self.strict_json)
|
260 |
+
|
261 |
+
def raw_parse_sents(
|
262 |
+
self, sentences, verbose=False, properties=None, *args, **kwargs
|
263 |
+
):
|
264 |
+
"""Parse multiple sentences.
|
265 |
+
|
266 |
+
Takes multiple sentences as a list of strings. Each sentence will be
|
267 |
+
automatically tokenized and tagged.
|
268 |
+
|
269 |
+
:param sentences: Input sentences to parse.
|
270 |
+
:type sentences: list(str)
|
271 |
+
:rtype: iter(iter(Tree))
|
272 |
+
|
273 |
+
"""
|
274 |
+
default_properties = {
|
275 |
+
# Only splits on '\n', never inside the sentence.
|
276 |
+
"ssplit.eolonly": "true"
|
277 |
+
}
|
278 |
+
|
279 |
+
default_properties.update(properties or {})
|
280 |
+
|
281 |
+
"""
|
282 |
+
for sentence in sentences:
|
283 |
+
parsed_data = self.api_call(sentence, properties=default_properties)
|
284 |
+
|
285 |
+
assert len(parsed_data['sentences']) == 1
|
286 |
+
|
287 |
+
for parse in parsed_data['sentences']:
|
288 |
+
tree = self.make_tree(parse)
|
289 |
+
yield iter([tree])
|
290 |
+
"""
|
291 |
+
parsed_data = self.api_call("\n".join(sentences), properties=default_properties)
|
292 |
+
for parsed_sent in parsed_data["sentences"]:
|
293 |
+
tree = self.make_tree(parsed_sent)
|
294 |
+
yield iter([tree])
|
295 |
+
|
296 |
+
def parse_text(self, text, *args, **kwargs):
|
297 |
+
"""Parse a piece of text.
|
298 |
+
|
299 |
+
The text might contain several sentences which will be split by CoreNLP.
|
300 |
+
|
301 |
+
:param str text: text to be split.
|
302 |
+
:returns: an iterable of syntactic structures. # TODO: should it be an iterable of iterables?
|
303 |
+
|
304 |
+
"""
|
305 |
+
parsed_data = self.api_call(text, *args, **kwargs)
|
306 |
+
|
307 |
+
for parse in parsed_data["sentences"]:
|
308 |
+
yield self.make_tree(parse)
|
309 |
+
|
310 |
+
def tokenize(self, text, properties=None):
|
311 |
+
"""Tokenize a string of text.
|
312 |
+
|
313 |
+
Skip these tests if CoreNLP is likely not ready.
|
314 |
+
>>> from nltk.test.setup_fixt import check_jar
|
315 |
+
>>> check_jar(CoreNLPServer._JAR, env_vars=("CORENLP",), is_regex=True)
|
316 |
+
|
317 |
+
The CoreNLP server can be started using the following notation, although
|
318 |
+
we recommend the `with CoreNLPServer() as server:` context manager notation
|
319 |
+
to ensure that the server is always stopped.
|
320 |
+
>>> server = CoreNLPServer()
|
321 |
+
>>> server.start()
|
322 |
+
>>> parser = CoreNLPParser(url=server.url)
|
323 |
+
|
324 |
+
>>> text = 'Good muffins cost $3.88\\nin New York. Please buy me\\ntwo of them.\\nThanks.'
|
325 |
+
>>> list(parser.tokenize(text))
|
326 |
+
['Good', 'muffins', 'cost', '$', '3.88', 'in', 'New', 'York', '.', 'Please', 'buy', 'me', 'two', 'of', 'them', '.', 'Thanks', '.']
|
327 |
+
|
328 |
+
>>> s = "The colour of the wall is blue."
|
329 |
+
>>> list(
|
330 |
+
... parser.tokenize(
|
331 |
+
... 'The colour of the wall is blue.',
|
332 |
+
... properties={'tokenize.options': 'americanize=true'},
|
333 |
+
... )
|
334 |
+
... )
|
335 |
+
['The', 'colour', 'of', 'the', 'wall', 'is', 'blue', '.']
|
336 |
+
>>> server.stop()
|
337 |
+
|
338 |
+
"""
|
339 |
+
default_properties = {"annotators": "tokenize,ssplit"}
|
340 |
+
|
341 |
+
default_properties.update(properties or {})
|
342 |
+
|
343 |
+
result = self.api_call(text, properties=default_properties)
|
344 |
+
|
345 |
+
for sentence in result["sentences"]:
|
346 |
+
for token in sentence["tokens"]:
|
347 |
+
yield token["originalText"] or token["word"]
|
348 |
+
|
349 |
+
def tag_sents(self, sentences):
|
350 |
+
"""
|
351 |
+
Tag multiple sentences.
|
352 |
+
|
353 |
+
Takes multiple sentences as a list where each sentence is a list of
|
354 |
+
tokens.
|
355 |
+
|
356 |
+
:param sentences: Input sentences to tag
|
357 |
+
:type sentences: list(list(str))
|
358 |
+
:rtype: list(list(tuple(str, str))
|
359 |
+
"""
|
360 |
+
# Converting list(list(str)) -> list(str)
|
361 |
+
sentences = (" ".join(words) for words in sentences)
|
362 |
+
return [sentences[0] for sentences in self.raw_tag_sents(sentences)]
|
363 |
+
|
364 |
+
def tag(self, sentence: str) -> List[Tuple[str, str]]:
|
365 |
+
"""
|
366 |
+
Tag a list of tokens.
|
367 |
+
|
368 |
+
:rtype: list(tuple(str, str))
|
369 |
+
|
370 |
+
Skip these tests if CoreNLP is likely not ready.
|
371 |
+
>>> from nltk.test.setup_fixt import check_jar
|
372 |
+
>>> check_jar(CoreNLPServer._JAR, env_vars=("CORENLP",), is_regex=True)
|
373 |
+
|
374 |
+
The CoreNLP server can be started using the following notation, although
|
375 |
+
we recommend the `with CoreNLPServer() as server:` context manager notation
|
376 |
+
to ensure that the server is always stopped.
|
377 |
+
>>> server = CoreNLPServer()
|
378 |
+
>>> server.start()
|
379 |
+
>>> parser = CoreNLPParser(url=server.url, tagtype='ner')
|
380 |
+
>>> tokens = 'Rami Eid is studying at Stony Brook University in NY'.split()
|
381 |
+
>>> parser.tag(tokens) # doctest: +NORMALIZE_WHITESPACE
|
382 |
+
[('Rami', 'PERSON'), ('Eid', 'PERSON'), ('is', 'O'), ('studying', 'O'), ('at', 'O'), ('Stony', 'ORGANIZATION'),
|
383 |
+
('Brook', 'ORGANIZATION'), ('University', 'ORGANIZATION'), ('in', 'O'), ('NY', 'STATE_OR_PROVINCE')]
|
384 |
+
|
385 |
+
>>> parser = CoreNLPParser(url=server.url, tagtype='pos')
|
386 |
+
>>> tokens = "What is the airspeed of an unladen swallow ?".split()
|
387 |
+
>>> parser.tag(tokens) # doctest: +NORMALIZE_WHITESPACE
|
388 |
+
[('What', 'WP'), ('is', 'VBZ'), ('the', 'DT'),
|
389 |
+
('airspeed', 'NN'), ('of', 'IN'), ('an', 'DT'),
|
390 |
+
('unladen', 'JJ'), ('swallow', 'VB'), ('?', '.')]
|
391 |
+
>>> server.stop()
|
392 |
+
"""
|
393 |
+
return self.tag_sents([sentence])[0]
|
394 |
+
|
395 |
+
def raw_tag_sents(self, sentences):
|
396 |
+
"""
|
397 |
+
Tag multiple sentences.
|
398 |
+
|
399 |
+
Takes multiple sentences as a list where each sentence is a string.
|
400 |
+
|
401 |
+
:param sentences: Input sentences to tag
|
402 |
+
:type sentences: list(str)
|
403 |
+
:rtype: list(list(list(tuple(str, str)))
|
404 |
+
"""
|
405 |
+
default_properties = {
|
406 |
+
"ssplit.isOneSentence": "true",
|
407 |
+
"annotators": "tokenize,ssplit,",
|
408 |
+
}
|
409 |
+
|
410 |
+
# Supports only 'pos' or 'ner' tags.
|
411 |
+
assert self.tagtype in ["pos", "ner"]
|
412 |
+
default_properties["annotators"] += self.tagtype
|
413 |
+
for sentence in sentences:
|
414 |
+
tagged_data = self.api_call(sentence, properties=default_properties)
|
415 |
+
yield [
|
416 |
+
[
|
417 |
+
(token["word"], token[self.tagtype])
|
418 |
+
for token in tagged_sentence["tokens"]
|
419 |
+
]
|
420 |
+
for tagged_sentence in tagged_data["sentences"]
|
421 |
+
]
|
422 |
+
|
423 |
+
|
424 |
+
class CoreNLPParser(GenericCoreNLPParser):
|
425 |
+
"""
|
426 |
+
Skip these tests if CoreNLP is likely not ready.
|
427 |
+
>>> from nltk.test.setup_fixt import check_jar
|
428 |
+
>>> check_jar(CoreNLPServer._JAR, env_vars=("CORENLP",), is_regex=True)
|
429 |
+
|
430 |
+
The recommended usage of `CoreNLPParser` is using the context manager notation:
|
431 |
+
>>> with CoreNLPServer() as server:
|
432 |
+
... parser = CoreNLPParser(url=server.url)
|
433 |
+
... next(
|
434 |
+
... parser.raw_parse('The quick brown fox jumps over the lazy dog.')
|
435 |
+
... ).pretty_print() # doctest: +NORMALIZE_WHITESPACE
|
436 |
+
ROOT
|
437 |
+
|
|
438 |
+
S
|
439 |
+
_______________|__________________________
|
440 |
+
| VP |
|
441 |
+
| _________|___ |
|
442 |
+
| | PP |
|
443 |
+
| | ________|___ |
|
444 |
+
NP | | NP |
|
445 |
+
____|__________ | | _______|____ |
|
446 |
+
DT JJ JJ NN VBZ IN DT JJ NN .
|
447 |
+
| | | | | | | | | |
|
448 |
+
The quick brown fox jumps over the lazy dog .
|
449 |
+
|
450 |
+
Alternatively, the server can be started using the following notation.
|
451 |
+
Note that `CoreNLPServer` does not need to be used if the CoreNLP server is started
|
452 |
+
outside of Python.
|
453 |
+
>>> server = CoreNLPServer()
|
454 |
+
>>> server.start()
|
455 |
+
>>> parser = CoreNLPParser(url=server.url)
|
456 |
+
|
457 |
+
>>> (parse_fox, ), (parse_wolf, ) = parser.raw_parse_sents(
|
458 |
+
... [
|
459 |
+
... 'The quick brown fox jumps over the lazy dog.',
|
460 |
+
... 'The quick grey wolf jumps over the lazy fox.',
|
461 |
+
... ]
|
462 |
+
... )
|
463 |
+
|
464 |
+
>>> parse_fox.pretty_print() # doctest: +NORMALIZE_WHITESPACE
|
465 |
+
ROOT
|
466 |
+
|
|
467 |
+
S
|
468 |
+
_______________|__________________________
|
469 |
+
| VP |
|
470 |
+
| _________|___ |
|
471 |
+
| | PP |
|
472 |
+
| | ________|___ |
|
473 |
+
NP | | NP |
|
474 |
+
____|__________ | | _______|____ |
|
475 |
+
DT JJ JJ NN VBZ IN DT JJ NN .
|
476 |
+
| | | | | | | | | |
|
477 |
+
The quick brown fox jumps over the lazy dog .
|
478 |
+
|
479 |
+
>>> parse_wolf.pretty_print() # doctest: +NORMALIZE_WHITESPACE
|
480 |
+
ROOT
|
481 |
+
|
|
482 |
+
S
|
483 |
+
_______________|__________________________
|
484 |
+
| VP |
|
485 |
+
| _________|___ |
|
486 |
+
| | PP |
|
487 |
+
| | ________|___ |
|
488 |
+
NP | | NP |
|
489 |
+
____|_________ | | _______|____ |
|
490 |
+
DT JJ JJ NN VBZ IN DT JJ NN .
|
491 |
+
| | | | | | | | | |
|
492 |
+
The quick grey wolf jumps over the lazy fox .
|
493 |
+
|
494 |
+
>>> (parse_dog, ), (parse_friends, ) = parser.parse_sents(
|
495 |
+
... [
|
496 |
+
... "I 'm a dog".split(),
|
497 |
+
... "This is my friends ' cat ( the tabby )".split(),
|
498 |
+
... ]
|
499 |
+
... )
|
500 |
+
|
501 |
+
>>> parse_dog.pretty_print() # doctest: +NORMALIZE_WHITESPACE
|
502 |
+
ROOT
|
503 |
+
|
|
504 |
+
S
|
505 |
+
_______|____
|
506 |
+
| VP
|
507 |
+
| ________|___
|
508 |
+
NP | NP
|
509 |
+
| | ___|___
|
510 |
+
PRP VBP DT NN
|
511 |
+
| | | |
|
512 |
+
I 'm a dog
|
513 |
+
|
514 |
+
>>> parse_friends.pretty_print() # doctest: +NORMALIZE_WHITESPACE
|
515 |
+
ROOT
|
516 |
+
|
|
517 |
+
S
|
518 |
+
____|___________
|
519 |
+
| VP
|
520 |
+
| ___________|_____________
|
521 |
+
| | NP
|
522 |
+
| | _______|________________________
|
523 |
+
| | NP | | |
|
524 |
+
| | _____|_______ | | |
|
525 |
+
NP | NP | | NP |
|
526 |
+
| | ______|_________ | | ___|____ |
|
527 |
+
DT VBZ PRP$ NNS POS NN -LRB- DT NN -RRB-
|
528 |
+
| | | | | | | | | |
|
529 |
+
This is my friends ' cat -LRB- the tabby -RRB-
|
530 |
+
|
531 |
+
>>> parse_john, parse_mary, = parser.parse_text(
|
532 |
+
... 'John loves Mary. Mary walks.'
|
533 |
+
... )
|
534 |
+
|
535 |
+
>>> parse_john.pretty_print() # doctest: +NORMALIZE_WHITESPACE
|
536 |
+
ROOT
|
537 |
+
|
|
538 |
+
S
|
539 |
+
_____|_____________
|
540 |
+
| VP |
|
541 |
+
| ____|___ |
|
542 |
+
NP | NP |
|
543 |
+
| | | |
|
544 |
+
NNP VBZ NNP .
|
545 |
+
| | | |
|
546 |
+
John loves Mary .
|
547 |
+
|
548 |
+
>>> parse_mary.pretty_print() # doctest: +NORMALIZE_WHITESPACE
|
549 |
+
ROOT
|
550 |
+
|
|
551 |
+
S
|
552 |
+
_____|____
|
553 |
+
NP VP |
|
554 |
+
| | |
|
555 |
+
NNP VBZ .
|
556 |
+
| | |
|
557 |
+
Mary walks .
|
558 |
+
|
559 |
+
Special cases
|
560 |
+
|
561 |
+
>>> next(
|
562 |
+
... parser.raw_parse(
|
563 |
+
... 'NASIRIYA, Iraq—Iraqi doctors who treated former prisoner of war '
|
564 |
+
... 'Jessica Lynch have angrily dismissed claims made in her biography '
|
565 |
+
... 'that she was raped by her Iraqi captors.'
|
566 |
+
... )
|
567 |
+
... ).height()
|
568 |
+
14
|
569 |
+
|
570 |
+
>>> next(
|
571 |
+
... parser.raw_parse(
|
572 |
+
... "The broader Standard & Poor's 500 Index <.SPX> was 0.46 points lower, or "
|
573 |
+
... '0.05 percent, at 997.02.'
|
574 |
+
... )
|
575 |
+
... ).height()
|
576 |
+
11
|
577 |
+
|
578 |
+
>>> server.stop()
|
579 |
+
"""
|
580 |
+
|
581 |
+
_OUTPUT_FORMAT = "penn"
|
582 |
+
parser_annotator = "parse"
|
583 |
+
|
584 |
+
def make_tree(self, result):
|
585 |
+
return Tree.fromstring(result["parse"])
|
586 |
+
|
587 |
+
|
588 |
+
class CoreNLPDependencyParser(GenericCoreNLPParser):
|
589 |
+
"""Dependency parser.
|
590 |
+
|
591 |
+
Skip these tests if CoreNLP is likely not ready.
|
592 |
+
>>> from nltk.test.setup_fixt import check_jar
|
593 |
+
>>> check_jar(CoreNLPServer._JAR, env_vars=("CORENLP",), is_regex=True)
|
594 |
+
|
595 |
+
The recommended usage of `CoreNLPParser` is using the context manager notation:
|
596 |
+
>>> with CoreNLPServer() as server:
|
597 |
+
... dep_parser = CoreNLPDependencyParser(url=server.url)
|
598 |
+
... parse, = dep_parser.raw_parse(
|
599 |
+
... 'The quick brown fox jumps over the lazy dog.'
|
600 |
+
... )
|
601 |
+
... print(parse.to_conll(4)) # doctest: +NORMALIZE_WHITESPACE
|
602 |
+
The DT 4 det
|
603 |
+
quick JJ 4 amod
|
604 |
+
brown JJ 4 amod
|
605 |
+
fox NN 5 nsubj
|
606 |
+
jumps VBZ 0 ROOT
|
607 |
+
over IN 9 case
|
608 |
+
the DT 9 det
|
609 |
+
lazy JJ 9 amod
|
610 |
+
dog NN 5 obl
|
611 |
+
. . 5 punct
|
612 |
+
|
613 |
+
Alternatively, the server can be started using the following notation.
|
614 |
+
Note that `CoreNLPServer` does not need to be used if the CoreNLP server is started
|
615 |
+
outside of Python.
|
616 |
+
>>> server = CoreNLPServer()
|
617 |
+
>>> server.start()
|
618 |
+
>>> dep_parser = CoreNLPDependencyParser(url=server.url)
|
619 |
+
>>> parse, = dep_parser.raw_parse('The quick brown fox jumps over the lazy dog.')
|
620 |
+
>>> print(parse.tree()) # doctest: +NORMALIZE_WHITESPACE
|
621 |
+
(jumps (fox The quick brown) (dog over the lazy) .)
|
622 |
+
|
623 |
+
>>> for governor, dep, dependent in parse.triples():
|
624 |
+
... print(governor, dep, dependent) # doctest: +NORMALIZE_WHITESPACE
|
625 |
+
('jumps', 'VBZ') nsubj ('fox', 'NN')
|
626 |
+
('fox', 'NN') det ('The', 'DT')
|
627 |
+
('fox', 'NN') amod ('quick', 'JJ')
|
628 |
+
('fox', 'NN') amod ('brown', 'JJ')
|
629 |
+
('jumps', 'VBZ') obl ('dog', 'NN')
|
630 |
+
('dog', 'NN') case ('over', 'IN')
|
631 |
+
('dog', 'NN') det ('the', 'DT')
|
632 |
+
('dog', 'NN') amod ('lazy', 'JJ')
|
633 |
+
('jumps', 'VBZ') punct ('.', '.')
|
634 |
+
|
635 |
+
>>> (parse_fox, ), (parse_dog, ) = dep_parser.raw_parse_sents(
|
636 |
+
... [
|
637 |
+
... 'The quick brown fox jumps over the lazy dog.',
|
638 |
+
... 'The quick grey wolf jumps over the lazy fox.',
|
639 |
+
... ]
|
640 |
+
... )
|
641 |
+
>>> print(parse_fox.to_conll(4)) # doctest: +NORMALIZE_WHITESPACE
|
642 |
+
The DT 4 det
|
643 |
+
quick JJ 4 amod
|
644 |
+
brown JJ 4 amod
|
645 |
+
fox NN 5 nsubj
|
646 |
+
jumps VBZ 0 ROOT
|
647 |
+
over IN 9 case
|
648 |
+
the DT 9 det
|
649 |
+
lazy JJ 9 amod
|
650 |
+
dog NN 5 obl
|
651 |
+
. . 5 punct
|
652 |
+
|
653 |
+
>>> print(parse_dog.to_conll(4)) # doctest: +NORMALIZE_WHITESPACE
|
654 |
+
The DT 4 det
|
655 |
+
quick JJ 4 amod
|
656 |
+
grey JJ 4 amod
|
657 |
+
wolf NN 5 nsubj
|
658 |
+
jumps VBZ 0 ROOT
|
659 |
+
over IN 9 case
|
660 |
+
the DT 9 det
|
661 |
+
lazy JJ 9 amod
|
662 |
+
fox NN 5 obl
|
663 |
+
. . 5 punct
|
664 |
+
|
665 |
+
>>> (parse_dog, ), (parse_friends, ) = dep_parser.parse_sents(
|
666 |
+
... [
|
667 |
+
... "I 'm a dog".split(),
|
668 |
+
... "This is my friends ' cat ( the tabby )".split(),
|
669 |
+
... ]
|
670 |
+
... )
|
671 |
+
>>> print(parse_dog.to_conll(4)) # doctest: +NORMALIZE_WHITESPACE
|
672 |
+
I PRP 4 nsubj
|
673 |
+
'm VBP 4 cop
|
674 |
+
a DT 4 det
|
675 |
+
dog NN 0 ROOT
|
676 |
+
|
677 |
+
>>> print(parse_friends.to_conll(4)) # doctest: +NORMALIZE_WHITESPACE
|
678 |
+
This DT 6 nsubj
|
679 |
+
is VBZ 6 cop
|
680 |
+
my PRP$ 4 nmod:poss
|
681 |
+
friends NNS 6 nmod:poss
|
682 |
+
' POS 4 case
|
683 |
+
cat NN 0 ROOT
|
684 |
+
( -LRB- 9 punct
|
685 |
+
the DT 9 det
|
686 |
+
tabby NN 6 dep
|
687 |
+
) -RRB- 9 punct
|
688 |
+
|
689 |
+
>>> parse_john, parse_mary, = dep_parser.parse_text(
|
690 |
+
... 'John loves Mary. Mary walks.'
|
691 |
+
... )
|
692 |
+
|
693 |
+
>>> print(parse_john.to_conll(4)) # doctest: +NORMALIZE_WHITESPACE
|
694 |
+
John NNP 2 nsubj
|
695 |
+
loves VBZ 0 ROOT
|
696 |
+
Mary NNP 2 obj
|
697 |
+
. . 2 punct
|
698 |
+
|
699 |
+
>>> print(parse_mary.to_conll(4)) # doctest: +NORMALIZE_WHITESPACE
|
700 |
+
Mary NNP 2 nsubj
|
701 |
+
walks VBZ 0 ROOT
|
702 |
+
. . 2 punct
|
703 |
+
|
704 |
+
Special cases
|
705 |
+
|
706 |
+
Non-breaking space inside of a token.
|
707 |
+
|
708 |
+
>>> len(
|
709 |
+
... next(
|
710 |
+
... dep_parser.raw_parse(
|
711 |
+
... 'Anhalt said children typically treat a 20-ounce soda bottle as one '
|
712 |
+
... 'serving, while it actually contains 2 1/2 servings.'
|
713 |
+
... )
|
714 |
+
... ).nodes
|
715 |
+
... )
|
716 |
+
23
|
717 |
+
|
718 |
+
Phone numbers.
|
719 |
+
|
720 |
+
>>> len(
|
721 |
+
... next(
|
722 |
+
... dep_parser.raw_parse('This is not going to crash: 01 111 555.')
|
723 |
+
... ).nodes
|
724 |
+
... )
|
725 |
+
10
|
726 |
+
|
727 |
+
>>> print(
|
728 |
+
... next(
|
729 |
+
... dep_parser.raw_parse('The underscore _ should not simply disappear.')
|
730 |
+
... ).to_conll(4)
|
731 |
+
... ) # doctest: +NORMALIZE_WHITESPACE
|
732 |
+
The DT 2 det
|
733 |
+
underscore NN 7 nsubj
|
734 |
+
_ NFP 7 punct
|
735 |
+
should MD 7 aux
|
736 |
+
not RB 7 advmod
|
737 |
+
simply RB 7 advmod
|
738 |
+
disappear VB 0 ROOT
|
739 |
+
. . 7 punct
|
740 |
+
|
741 |
+
>>> print(
|
742 |
+
... next(
|
743 |
+
... dep_parser.raw_parse(
|
744 |
+
... 'for all of its insights into the dream world of teen life , and its electronic expression through '
|
745 |
+
... 'cyber culture , the film gives no quarter to anyone seeking to pull a cohesive story out of its 2 '
|
746 |
+
... '1/2-hour running time .'
|
747 |
+
... )
|
748 |
+
... ).to_conll(4)
|
749 |
+
... ) # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
|
750 |
+
for IN 2 case
|
751 |
+
all DT 24 obl
|
752 |
+
of IN 5 case
|
753 |
+
its PRP$ 5 nmod:poss
|
754 |
+
insights NNS 2 nmod
|
755 |
+
into IN 9 case
|
756 |
+
the DT 9 det
|
757 |
+
dream NN 9 compound
|
758 |
+
world NN 5 nmod
|
759 |
+
of IN 12 case
|
760 |
+
teen NN 12 compound
|
761 |
+
...
|
762 |
+
|
763 |
+
>>> server.stop()
|
764 |
+
"""
|
765 |
+
|
766 |
+
_OUTPUT_FORMAT = "conll2007"
|
767 |
+
parser_annotator = "depparse"
|
768 |
+
|
769 |
+
def make_tree(self, result):
|
770 |
+
|
771 |
+
return DependencyGraph(
|
772 |
+
(
|
773 |
+
" ".join(n_items[1:]) # NLTK expects an iterable of strings...
|
774 |
+
for n_items in sorted(transform(result))
|
775 |
+
),
|
776 |
+
cell_separator=" ", # To make sure that a non-breaking space is kept inside of a token.
|
777 |
+
)
|
778 |
+
|
779 |
+
|
780 |
+
def transform(sentence):
|
781 |
+
for dependency in sentence["basicDependencies"]:
|
782 |
+
|
783 |
+
dependent_index = dependency["dependent"]
|
784 |
+
token = sentence["tokens"][dependent_index - 1]
|
785 |
+
|
786 |
+
# Return values that we don't know as '_'. Also, consider tag and ctag
|
787 |
+
# to be equal.
|
788 |
+
yield (
|
789 |
+
dependent_index,
|
790 |
+
"_",
|
791 |
+
token["word"],
|
792 |
+
token["lemma"],
|
793 |
+
token["pos"],
|
794 |
+
token["pos"],
|
795 |
+
"_",
|
796 |
+
str(dependency["governor"]),
|
797 |
+
dependency["dep"],
|
798 |
+
"_",
|
799 |
+
"_",
|
800 |
+
)
|
venv/lib/python3.10/site-packages/nltk/parse/earleychart.py
ADDED
@@ -0,0 +1,552 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: An Incremental Earley Chart Parser
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Peter Ljunglöf <[email protected]>
|
5 |
+
# Rob Speer <[email protected]>
|
6 |
+
# Edward Loper <[email protected]>
|
7 |
+
# Steven Bird <[email protected]>
|
8 |
+
# Jean Mark Gawron <[email protected]>
|
9 |
+
# URL: <https://www.nltk.org/>
|
10 |
+
# For license information, see LICENSE.TXT
|
11 |
+
|
12 |
+
"""
|
13 |
+
Data classes and parser implementations for *incremental* chart
|
14 |
+
parsers, which use dynamic programming to efficiently parse a text.
|
15 |
+
A "chart parser" derives parse trees for a text by iteratively adding
|
16 |
+
\"edges\" to a \"chart\". Each "edge" represents a hypothesis about the tree
|
17 |
+
structure for a subsequence of the text. The "chart" is a
|
18 |
+
\"blackboard\" for composing and combining these hypotheses.
|
19 |
+
|
20 |
+
A parser is "incremental", if it guarantees that for all i, j where i < j,
|
21 |
+
all edges ending at i are built before any edges ending at j.
|
22 |
+
This is appealing for, say, speech recognizer hypothesis filtering.
|
23 |
+
|
24 |
+
The main parser class is ``EarleyChartParser``, which is a top-down
|
25 |
+
algorithm, originally formulated by Jay Earley (1970).
|
26 |
+
"""
|
27 |
+
|
28 |
+
from time import perf_counter
|
29 |
+
|
30 |
+
from nltk.parse.chart import (
|
31 |
+
BottomUpPredictCombineRule,
|
32 |
+
BottomUpPredictRule,
|
33 |
+
CachedTopDownPredictRule,
|
34 |
+
Chart,
|
35 |
+
ChartParser,
|
36 |
+
EdgeI,
|
37 |
+
EmptyPredictRule,
|
38 |
+
FilteredBottomUpPredictCombineRule,
|
39 |
+
FilteredSingleEdgeFundamentalRule,
|
40 |
+
LeafEdge,
|
41 |
+
LeafInitRule,
|
42 |
+
SingleEdgeFundamentalRule,
|
43 |
+
TopDownInitRule,
|
44 |
+
)
|
45 |
+
from nltk.parse.featurechart import (
|
46 |
+
FeatureBottomUpPredictCombineRule,
|
47 |
+
FeatureBottomUpPredictRule,
|
48 |
+
FeatureChart,
|
49 |
+
FeatureChartParser,
|
50 |
+
FeatureEmptyPredictRule,
|
51 |
+
FeatureSingleEdgeFundamentalRule,
|
52 |
+
FeatureTopDownInitRule,
|
53 |
+
FeatureTopDownPredictRule,
|
54 |
+
)
|
55 |
+
|
56 |
+
# ////////////////////////////////////////////////////////////
|
57 |
+
# Incremental Chart
|
58 |
+
# ////////////////////////////////////////////////////////////
|
59 |
+
|
60 |
+
|
61 |
+
class IncrementalChart(Chart):
|
62 |
+
def initialize(self):
|
63 |
+
# A sequence of edge lists contained in this chart.
|
64 |
+
self._edgelists = tuple([] for x in self._positions())
|
65 |
+
|
66 |
+
# The set of child pointer lists associated with each edge.
|
67 |
+
self._edge_to_cpls = {}
|
68 |
+
|
69 |
+
# Indexes mapping attribute values to lists of edges
|
70 |
+
# (used by select()).
|
71 |
+
self._indexes = {}
|
72 |
+
|
73 |
+
def edges(self):
|
74 |
+
return list(self.iteredges())
|
75 |
+
|
76 |
+
def iteredges(self):
|
77 |
+
return (edge for edgelist in self._edgelists for edge in edgelist)
|
78 |
+
|
79 |
+
def select(self, end, **restrictions):
|
80 |
+
edgelist = self._edgelists[end]
|
81 |
+
|
82 |
+
# If there are no restrictions, then return all edges.
|
83 |
+
if restrictions == {}:
|
84 |
+
return iter(edgelist)
|
85 |
+
|
86 |
+
# Find the index corresponding to the given restrictions.
|
87 |
+
restr_keys = sorted(restrictions.keys())
|
88 |
+
restr_keys = tuple(restr_keys)
|
89 |
+
|
90 |
+
# If it doesn't exist, then create it.
|
91 |
+
if restr_keys not in self._indexes:
|
92 |
+
self._add_index(restr_keys)
|
93 |
+
|
94 |
+
vals = tuple(restrictions[key] for key in restr_keys)
|
95 |
+
return iter(self._indexes[restr_keys][end].get(vals, []))
|
96 |
+
|
97 |
+
def _add_index(self, restr_keys):
|
98 |
+
# Make sure it's a valid index.
|
99 |
+
for key in restr_keys:
|
100 |
+
if not hasattr(EdgeI, key):
|
101 |
+
raise ValueError("Bad restriction: %s" % key)
|
102 |
+
|
103 |
+
# Create the index.
|
104 |
+
index = self._indexes[restr_keys] = tuple({} for x in self._positions())
|
105 |
+
|
106 |
+
# Add all existing edges to the index.
|
107 |
+
for end, edgelist in enumerate(self._edgelists):
|
108 |
+
this_index = index[end]
|
109 |
+
for edge in edgelist:
|
110 |
+
vals = tuple(getattr(edge, key)() for key in restr_keys)
|
111 |
+
this_index.setdefault(vals, []).append(edge)
|
112 |
+
|
113 |
+
def _register_with_indexes(self, edge):
|
114 |
+
end = edge.end()
|
115 |
+
for (restr_keys, index) in self._indexes.items():
|
116 |
+
vals = tuple(getattr(edge, key)() for key in restr_keys)
|
117 |
+
index[end].setdefault(vals, []).append(edge)
|
118 |
+
|
119 |
+
def _append_edge(self, edge):
|
120 |
+
self._edgelists[edge.end()].append(edge)
|
121 |
+
|
122 |
+
def _positions(self):
|
123 |
+
return range(self.num_leaves() + 1)
|
124 |
+
|
125 |
+
|
126 |
+
class FeatureIncrementalChart(IncrementalChart, FeatureChart):
|
127 |
+
def select(self, end, **restrictions):
|
128 |
+
edgelist = self._edgelists[end]
|
129 |
+
|
130 |
+
# If there are no restrictions, then return all edges.
|
131 |
+
if restrictions == {}:
|
132 |
+
return iter(edgelist)
|
133 |
+
|
134 |
+
# Find the index corresponding to the given restrictions.
|
135 |
+
restr_keys = sorted(restrictions.keys())
|
136 |
+
restr_keys = tuple(restr_keys)
|
137 |
+
|
138 |
+
# If it doesn't exist, then create it.
|
139 |
+
if restr_keys not in self._indexes:
|
140 |
+
self._add_index(restr_keys)
|
141 |
+
|
142 |
+
vals = tuple(
|
143 |
+
self._get_type_if_possible(restrictions[key]) for key in restr_keys
|
144 |
+
)
|
145 |
+
return iter(self._indexes[restr_keys][end].get(vals, []))
|
146 |
+
|
147 |
+
def _add_index(self, restr_keys):
|
148 |
+
# Make sure it's a valid index.
|
149 |
+
for key in restr_keys:
|
150 |
+
if not hasattr(EdgeI, key):
|
151 |
+
raise ValueError("Bad restriction: %s" % key)
|
152 |
+
|
153 |
+
# Create the index.
|
154 |
+
index = self._indexes[restr_keys] = tuple({} for x in self._positions())
|
155 |
+
|
156 |
+
# Add all existing edges to the index.
|
157 |
+
for end, edgelist in enumerate(self._edgelists):
|
158 |
+
this_index = index[end]
|
159 |
+
for edge in edgelist:
|
160 |
+
vals = tuple(
|
161 |
+
self._get_type_if_possible(getattr(edge, key)())
|
162 |
+
for key in restr_keys
|
163 |
+
)
|
164 |
+
this_index.setdefault(vals, []).append(edge)
|
165 |
+
|
166 |
+
def _register_with_indexes(self, edge):
|
167 |
+
end = edge.end()
|
168 |
+
for (restr_keys, index) in self._indexes.items():
|
169 |
+
vals = tuple(
|
170 |
+
self._get_type_if_possible(getattr(edge, key)()) for key in restr_keys
|
171 |
+
)
|
172 |
+
index[end].setdefault(vals, []).append(edge)
|
173 |
+
|
174 |
+
|
175 |
+
# ////////////////////////////////////////////////////////////
|
176 |
+
# Incremental CFG Rules
|
177 |
+
# ////////////////////////////////////////////////////////////
|
178 |
+
|
179 |
+
|
180 |
+
class CompleteFundamentalRule(SingleEdgeFundamentalRule):
|
181 |
+
def _apply_incomplete(self, chart, grammar, left_edge):
|
182 |
+
end = left_edge.end()
|
183 |
+
# When the chart is incremental, we only have to look for
|
184 |
+
# empty complete edges here.
|
185 |
+
for right_edge in chart.select(
|
186 |
+
start=end, end=end, is_complete=True, lhs=left_edge.nextsym()
|
187 |
+
):
|
188 |
+
new_edge = left_edge.move_dot_forward(right_edge.end())
|
189 |
+
if chart.insert_with_backpointer(new_edge, left_edge, right_edge):
|
190 |
+
yield new_edge
|
191 |
+
|
192 |
+
|
193 |
+
class CompleterRule(CompleteFundamentalRule):
|
194 |
+
_fundamental_rule = CompleteFundamentalRule()
|
195 |
+
|
196 |
+
def apply(self, chart, grammar, edge):
|
197 |
+
if not isinstance(edge, LeafEdge):
|
198 |
+
yield from self._fundamental_rule.apply(chart, grammar, edge)
|
199 |
+
|
200 |
+
|
201 |
+
class ScannerRule(CompleteFundamentalRule):
|
202 |
+
_fundamental_rule = CompleteFundamentalRule()
|
203 |
+
|
204 |
+
def apply(self, chart, grammar, edge):
|
205 |
+
if isinstance(edge, LeafEdge):
|
206 |
+
yield from self._fundamental_rule.apply(chart, grammar, edge)
|
207 |
+
|
208 |
+
|
209 |
+
class PredictorRule(CachedTopDownPredictRule):
|
210 |
+
pass
|
211 |
+
|
212 |
+
|
213 |
+
class FilteredCompleteFundamentalRule(FilteredSingleEdgeFundamentalRule):
|
214 |
+
def apply(self, chart, grammar, edge):
|
215 |
+
# Since the Filtered rule only works for grammars without empty productions,
|
216 |
+
# we only have to bother with complete edges here.
|
217 |
+
if edge.is_complete():
|
218 |
+
yield from self._apply_complete(chart, grammar, edge)
|
219 |
+
|
220 |
+
|
221 |
+
# ////////////////////////////////////////////////////////////
|
222 |
+
# Incremental FCFG Rules
|
223 |
+
# ////////////////////////////////////////////////////////////
|
224 |
+
|
225 |
+
|
226 |
+
class FeatureCompleteFundamentalRule(FeatureSingleEdgeFundamentalRule):
|
227 |
+
def _apply_incomplete(self, chart, grammar, left_edge):
|
228 |
+
fr = self._fundamental_rule
|
229 |
+
end = left_edge.end()
|
230 |
+
# When the chart is incremental, we only have to look for
|
231 |
+
# empty complete edges here.
|
232 |
+
for right_edge in chart.select(
|
233 |
+
start=end, end=end, is_complete=True, lhs=left_edge.nextsym()
|
234 |
+
):
|
235 |
+
yield from fr.apply(chart, grammar, left_edge, right_edge)
|
236 |
+
|
237 |
+
|
238 |
+
class FeatureCompleterRule(CompleterRule):
|
239 |
+
_fundamental_rule = FeatureCompleteFundamentalRule()
|
240 |
+
|
241 |
+
|
242 |
+
class FeatureScannerRule(ScannerRule):
|
243 |
+
_fundamental_rule = FeatureCompleteFundamentalRule()
|
244 |
+
|
245 |
+
|
246 |
+
class FeaturePredictorRule(FeatureTopDownPredictRule):
|
247 |
+
pass
|
248 |
+
|
249 |
+
|
250 |
+
# ////////////////////////////////////////////////////////////
|
251 |
+
# Incremental CFG Chart Parsers
|
252 |
+
# ////////////////////////////////////////////////////////////
|
253 |
+
|
254 |
+
EARLEY_STRATEGY = [
|
255 |
+
LeafInitRule(),
|
256 |
+
TopDownInitRule(),
|
257 |
+
CompleterRule(),
|
258 |
+
ScannerRule(),
|
259 |
+
PredictorRule(),
|
260 |
+
]
|
261 |
+
TD_INCREMENTAL_STRATEGY = [
|
262 |
+
LeafInitRule(),
|
263 |
+
TopDownInitRule(),
|
264 |
+
CachedTopDownPredictRule(),
|
265 |
+
CompleteFundamentalRule(),
|
266 |
+
]
|
267 |
+
BU_INCREMENTAL_STRATEGY = [
|
268 |
+
LeafInitRule(),
|
269 |
+
EmptyPredictRule(),
|
270 |
+
BottomUpPredictRule(),
|
271 |
+
CompleteFundamentalRule(),
|
272 |
+
]
|
273 |
+
BU_LC_INCREMENTAL_STRATEGY = [
|
274 |
+
LeafInitRule(),
|
275 |
+
EmptyPredictRule(),
|
276 |
+
BottomUpPredictCombineRule(),
|
277 |
+
CompleteFundamentalRule(),
|
278 |
+
]
|
279 |
+
|
280 |
+
LC_INCREMENTAL_STRATEGY = [
|
281 |
+
LeafInitRule(),
|
282 |
+
FilteredBottomUpPredictCombineRule(),
|
283 |
+
FilteredCompleteFundamentalRule(),
|
284 |
+
]
|
285 |
+
|
286 |
+
|
287 |
+
class IncrementalChartParser(ChartParser):
|
288 |
+
"""
|
289 |
+
An *incremental* chart parser implementing Jay Earley's
|
290 |
+
parsing algorithm:
|
291 |
+
|
292 |
+
| For each index end in [0, 1, ..., N]:
|
293 |
+
| For each edge such that edge.end = end:
|
294 |
+
| If edge is incomplete and edge.next is not a part of speech:
|
295 |
+
| Apply PredictorRule to edge
|
296 |
+
| If edge is incomplete and edge.next is a part of speech:
|
297 |
+
| Apply ScannerRule to edge
|
298 |
+
| If edge is complete:
|
299 |
+
| Apply CompleterRule to edge
|
300 |
+
| Return any complete parses in the chart
|
301 |
+
"""
|
302 |
+
|
303 |
+
def __init__(
|
304 |
+
self,
|
305 |
+
grammar,
|
306 |
+
strategy=BU_LC_INCREMENTAL_STRATEGY,
|
307 |
+
trace=0,
|
308 |
+
trace_chart_width=50,
|
309 |
+
chart_class=IncrementalChart,
|
310 |
+
):
|
311 |
+
"""
|
312 |
+
Create a new Earley chart parser, that uses ``grammar`` to
|
313 |
+
parse texts.
|
314 |
+
|
315 |
+
:type grammar: CFG
|
316 |
+
:param grammar: The grammar used to parse texts.
|
317 |
+
:type trace: int
|
318 |
+
:param trace: The level of tracing that should be used when
|
319 |
+
parsing a text. ``0`` will generate no tracing output;
|
320 |
+
and higher numbers will produce more verbose tracing
|
321 |
+
output.
|
322 |
+
:type trace_chart_width: int
|
323 |
+
:param trace_chart_width: The default total width reserved for
|
324 |
+
the chart in trace output. The remainder of each line will
|
325 |
+
be used to display edges.
|
326 |
+
:param chart_class: The class that should be used to create
|
327 |
+
the charts used by this parser.
|
328 |
+
"""
|
329 |
+
self._grammar = grammar
|
330 |
+
self._trace = trace
|
331 |
+
self._trace_chart_width = trace_chart_width
|
332 |
+
self._chart_class = chart_class
|
333 |
+
|
334 |
+
self._axioms = []
|
335 |
+
self._inference_rules = []
|
336 |
+
for rule in strategy:
|
337 |
+
if rule.NUM_EDGES == 0:
|
338 |
+
self._axioms.append(rule)
|
339 |
+
elif rule.NUM_EDGES == 1:
|
340 |
+
self._inference_rules.append(rule)
|
341 |
+
else:
|
342 |
+
raise ValueError(
|
343 |
+
"Incremental inference rules must have " "NUM_EDGES == 0 or 1"
|
344 |
+
)
|
345 |
+
|
346 |
+
def chart_parse(self, tokens, trace=None):
|
347 |
+
if trace is None:
|
348 |
+
trace = self._trace
|
349 |
+
trace_new_edges = self._trace_new_edges
|
350 |
+
|
351 |
+
tokens = list(tokens)
|
352 |
+
self._grammar.check_coverage(tokens)
|
353 |
+
chart = self._chart_class(tokens)
|
354 |
+
grammar = self._grammar
|
355 |
+
|
356 |
+
# Width, for printing trace edges.
|
357 |
+
trace_edge_width = self._trace_chart_width // (chart.num_leaves() + 1)
|
358 |
+
if trace:
|
359 |
+
print(chart.pretty_format_leaves(trace_edge_width))
|
360 |
+
|
361 |
+
for axiom in self._axioms:
|
362 |
+
new_edges = list(axiom.apply(chart, grammar))
|
363 |
+
trace_new_edges(chart, axiom, new_edges, trace, trace_edge_width)
|
364 |
+
|
365 |
+
inference_rules = self._inference_rules
|
366 |
+
for end in range(chart.num_leaves() + 1):
|
367 |
+
if trace > 1:
|
368 |
+
print("\n* Processing queue:", end, "\n")
|
369 |
+
agenda = list(chart.select(end=end))
|
370 |
+
while agenda:
|
371 |
+
edge = agenda.pop()
|
372 |
+
for rule in inference_rules:
|
373 |
+
new_edges = list(rule.apply(chart, grammar, edge))
|
374 |
+
trace_new_edges(chart, rule, new_edges, trace, trace_edge_width)
|
375 |
+
for new_edge in new_edges:
|
376 |
+
if new_edge.end() == end:
|
377 |
+
agenda.append(new_edge)
|
378 |
+
|
379 |
+
return chart
|
380 |
+
|
381 |
+
|
382 |
+
class EarleyChartParser(IncrementalChartParser):
|
383 |
+
def __init__(self, grammar, **parser_args):
|
384 |
+
IncrementalChartParser.__init__(self, grammar, EARLEY_STRATEGY, **parser_args)
|
385 |
+
|
386 |
+
|
387 |
+
class IncrementalTopDownChartParser(IncrementalChartParser):
|
388 |
+
def __init__(self, grammar, **parser_args):
|
389 |
+
IncrementalChartParser.__init__(
|
390 |
+
self, grammar, TD_INCREMENTAL_STRATEGY, **parser_args
|
391 |
+
)
|
392 |
+
|
393 |
+
|
394 |
+
class IncrementalBottomUpChartParser(IncrementalChartParser):
|
395 |
+
def __init__(self, grammar, **parser_args):
|
396 |
+
IncrementalChartParser.__init__(
|
397 |
+
self, grammar, BU_INCREMENTAL_STRATEGY, **parser_args
|
398 |
+
)
|
399 |
+
|
400 |
+
|
401 |
+
class IncrementalBottomUpLeftCornerChartParser(IncrementalChartParser):
|
402 |
+
def __init__(self, grammar, **parser_args):
|
403 |
+
IncrementalChartParser.__init__(
|
404 |
+
self, grammar, BU_LC_INCREMENTAL_STRATEGY, **parser_args
|
405 |
+
)
|
406 |
+
|
407 |
+
|
408 |
+
class IncrementalLeftCornerChartParser(IncrementalChartParser):
|
409 |
+
def __init__(self, grammar, **parser_args):
|
410 |
+
if not grammar.is_nonempty():
|
411 |
+
raise ValueError(
|
412 |
+
"IncrementalLeftCornerParser only works for grammars "
|
413 |
+
"without empty productions."
|
414 |
+
)
|
415 |
+
IncrementalChartParser.__init__(
|
416 |
+
self, grammar, LC_INCREMENTAL_STRATEGY, **parser_args
|
417 |
+
)
|
418 |
+
|
419 |
+
|
420 |
+
# ////////////////////////////////////////////////////////////
|
421 |
+
# Incremental FCFG Chart Parsers
|
422 |
+
# ////////////////////////////////////////////////////////////
|
423 |
+
|
424 |
+
EARLEY_FEATURE_STRATEGY = [
|
425 |
+
LeafInitRule(),
|
426 |
+
FeatureTopDownInitRule(),
|
427 |
+
FeatureCompleterRule(),
|
428 |
+
FeatureScannerRule(),
|
429 |
+
FeaturePredictorRule(),
|
430 |
+
]
|
431 |
+
TD_INCREMENTAL_FEATURE_STRATEGY = [
|
432 |
+
LeafInitRule(),
|
433 |
+
FeatureTopDownInitRule(),
|
434 |
+
FeatureTopDownPredictRule(),
|
435 |
+
FeatureCompleteFundamentalRule(),
|
436 |
+
]
|
437 |
+
BU_INCREMENTAL_FEATURE_STRATEGY = [
|
438 |
+
LeafInitRule(),
|
439 |
+
FeatureEmptyPredictRule(),
|
440 |
+
FeatureBottomUpPredictRule(),
|
441 |
+
FeatureCompleteFundamentalRule(),
|
442 |
+
]
|
443 |
+
BU_LC_INCREMENTAL_FEATURE_STRATEGY = [
|
444 |
+
LeafInitRule(),
|
445 |
+
FeatureEmptyPredictRule(),
|
446 |
+
FeatureBottomUpPredictCombineRule(),
|
447 |
+
FeatureCompleteFundamentalRule(),
|
448 |
+
]
|
449 |
+
|
450 |
+
|
451 |
+
class FeatureIncrementalChartParser(IncrementalChartParser, FeatureChartParser):
|
452 |
+
def __init__(
|
453 |
+
self,
|
454 |
+
grammar,
|
455 |
+
strategy=BU_LC_INCREMENTAL_FEATURE_STRATEGY,
|
456 |
+
trace_chart_width=20,
|
457 |
+
chart_class=FeatureIncrementalChart,
|
458 |
+
**parser_args
|
459 |
+
):
|
460 |
+
IncrementalChartParser.__init__(
|
461 |
+
self,
|
462 |
+
grammar,
|
463 |
+
strategy=strategy,
|
464 |
+
trace_chart_width=trace_chart_width,
|
465 |
+
chart_class=chart_class,
|
466 |
+
**parser_args
|
467 |
+
)
|
468 |
+
|
469 |
+
|
470 |
+
class FeatureEarleyChartParser(FeatureIncrementalChartParser):
|
471 |
+
def __init__(self, grammar, **parser_args):
|
472 |
+
FeatureIncrementalChartParser.__init__(
|
473 |
+
self, grammar, EARLEY_FEATURE_STRATEGY, **parser_args
|
474 |
+
)
|
475 |
+
|
476 |
+
|
477 |
+
class FeatureIncrementalTopDownChartParser(FeatureIncrementalChartParser):
|
478 |
+
def __init__(self, grammar, **parser_args):
|
479 |
+
FeatureIncrementalChartParser.__init__(
|
480 |
+
self, grammar, TD_INCREMENTAL_FEATURE_STRATEGY, **parser_args
|
481 |
+
)
|
482 |
+
|
483 |
+
|
484 |
+
class FeatureIncrementalBottomUpChartParser(FeatureIncrementalChartParser):
|
485 |
+
def __init__(self, grammar, **parser_args):
|
486 |
+
FeatureIncrementalChartParser.__init__(
|
487 |
+
self, grammar, BU_INCREMENTAL_FEATURE_STRATEGY, **parser_args
|
488 |
+
)
|
489 |
+
|
490 |
+
|
491 |
+
class FeatureIncrementalBottomUpLeftCornerChartParser(FeatureIncrementalChartParser):
|
492 |
+
def __init__(self, grammar, **parser_args):
|
493 |
+
FeatureIncrementalChartParser.__init__(
|
494 |
+
self, grammar, BU_LC_INCREMENTAL_FEATURE_STRATEGY, **parser_args
|
495 |
+
)
|
496 |
+
|
497 |
+
|
498 |
+
# ////////////////////////////////////////////////////////////
|
499 |
+
# Demonstration
|
500 |
+
# ////////////////////////////////////////////////////////////
|
501 |
+
|
502 |
+
|
503 |
+
def demo(
|
504 |
+
print_times=True,
|
505 |
+
print_grammar=False,
|
506 |
+
print_trees=True,
|
507 |
+
trace=2,
|
508 |
+
sent="I saw John with a dog with my cookie",
|
509 |
+
numparses=5,
|
510 |
+
):
|
511 |
+
"""
|
512 |
+
A demonstration of the Earley parsers.
|
513 |
+
"""
|
514 |
+
import sys
|
515 |
+
import time
|
516 |
+
|
517 |
+
from nltk.parse.chart import demo_grammar
|
518 |
+
|
519 |
+
# The grammar for ChartParser and SteppingChartParser:
|
520 |
+
grammar = demo_grammar()
|
521 |
+
if print_grammar:
|
522 |
+
print("* Grammar")
|
523 |
+
print(grammar)
|
524 |
+
|
525 |
+
# Tokenize the sample sentence.
|
526 |
+
print("* Sentence:")
|
527 |
+
print(sent)
|
528 |
+
tokens = sent.split()
|
529 |
+
print(tokens)
|
530 |
+
print()
|
531 |
+
|
532 |
+
# Do the parsing.
|
533 |
+
earley = EarleyChartParser(grammar, trace=trace)
|
534 |
+
t = perf_counter()
|
535 |
+
chart = earley.chart_parse(tokens)
|
536 |
+
parses = list(chart.parses(grammar.start()))
|
537 |
+
t = perf_counter() - t
|
538 |
+
|
539 |
+
# Print results.
|
540 |
+
if numparses:
|
541 |
+
assert len(parses) == numparses, "Not all parses found"
|
542 |
+
if print_trees:
|
543 |
+
for tree in parses:
|
544 |
+
print(tree)
|
545 |
+
else:
|
546 |
+
print("Nr trees:", len(parses))
|
547 |
+
if print_times:
|
548 |
+
print("Time:", t)
|
549 |
+
|
550 |
+
|
551 |
+
if __name__ == "__main__":
|
552 |
+
demo()
|
venv/lib/python3.10/site-packages/nltk/parse/evaluate.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: evaluation of dependency parser
|
2 |
+
#
|
3 |
+
# Author: Long Duong <[email protected]>
|
4 |
+
#
|
5 |
+
# Copyright (C) 2001-2023 NLTK Project
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
import unicodedata
|
10 |
+
|
11 |
+
|
12 |
+
class DependencyEvaluator:
|
13 |
+
"""
|
14 |
+
Class for measuring labelled and unlabelled attachment score for
|
15 |
+
dependency parsing. Note that the evaluation ignores punctuation.
|
16 |
+
|
17 |
+
>>> from nltk.parse import DependencyGraph, DependencyEvaluator
|
18 |
+
|
19 |
+
>>> gold_sent = DependencyGraph(\"""
|
20 |
+
... Pierre NNP 2 NMOD
|
21 |
+
... Vinken NNP 8 SUB
|
22 |
+
... , , 2 P
|
23 |
+
... 61 CD 5 NMOD
|
24 |
+
... years NNS 6 AMOD
|
25 |
+
... old JJ 2 NMOD
|
26 |
+
... , , 2 P
|
27 |
+
... will MD 0 ROOT
|
28 |
+
... join VB 8 VC
|
29 |
+
... the DT 11 NMOD
|
30 |
+
... board NN 9 OBJ
|
31 |
+
... as IN 9 VMOD
|
32 |
+
... a DT 15 NMOD
|
33 |
+
... nonexecutive JJ 15 NMOD
|
34 |
+
... director NN 12 PMOD
|
35 |
+
... Nov. NNP 9 VMOD
|
36 |
+
... 29 CD 16 NMOD
|
37 |
+
... . . 9 VMOD
|
38 |
+
... \""")
|
39 |
+
|
40 |
+
>>> parsed_sent = DependencyGraph(\"""
|
41 |
+
... Pierre NNP 8 NMOD
|
42 |
+
... Vinken NNP 1 SUB
|
43 |
+
... , , 3 P
|
44 |
+
... 61 CD 6 NMOD
|
45 |
+
... years NNS 6 AMOD
|
46 |
+
... old JJ 2 NMOD
|
47 |
+
... , , 3 AMOD
|
48 |
+
... will MD 0 ROOT
|
49 |
+
... join VB 8 VC
|
50 |
+
... the DT 11 AMOD
|
51 |
+
... board NN 9 OBJECT
|
52 |
+
... as IN 9 NMOD
|
53 |
+
... a DT 15 NMOD
|
54 |
+
... nonexecutive JJ 15 NMOD
|
55 |
+
... director NN 12 PMOD
|
56 |
+
... Nov. NNP 9 VMOD
|
57 |
+
... 29 CD 16 NMOD
|
58 |
+
... . . 9 VMOD
|
59 |
+
... \""")
|
60 |
+
|
61 |
+
>>> de = DependencyEvaluator([parsed_sent],[gold_sent])
|
62 |
+
>>> las, uas = de.eval()
|
63 |
+
>>> las
|
64 |
+
0.6
|
65 |
+
>>> uas
|
66 |
+
0.8
|
67 |
+
>>> abs(uas - 0.8) < 0.00001
|
68 |
+
True
|
69 |
+
"""
|
70 |
+
|
71 |
+
def __init__(self, parsed_sents, gold_sents):
|
72 |
+
"""
|
73 |
+
:param parsed_sents: the list of parsed_sents as the output of parser
|
74 |
+
:type parsed_sents: list(DependencyGraph)
|
75 |
+
"""
|
76 |
+
self._parsed_sents = parsed_sents
|
77 |
+
self._gold_sents = gold_sents
|
78 |
+
|
79 |
+
def _remove_punct(self, inStr):
|
80 |
+
"""
|
81 |
+
Function to remove punctuation from Unicode string.
|
82 |
+
:param input: the input string
|
83 |
+
:return: Unicode string after remove all punctuation
|
84 |
+
"""
|
85 |
+
punc_cat = {"Pc", "Pd", "Ps", "Pe", "Pi", "Pf", "Po"}
|
86 |
+
return "".join(x for x in inStr if unicodedata.category(x) not in punc_cat)
|
87 |
+
|
88 |
+
def eval(self):
|
89 |
+
"""
|
90 |
+
Return the Labeled Attachment Score (LAS) and Unlabeled Attachment Score (UAS)
|
91 |
+
|
92 |
+
:return : tuple(float,float)
|
93 |
+
"""
|
94 |
+
if len(self._parsed_sents) != len(self._gold_sents):
|
95 |
+
raise ValueError(
|
96 |
+
" Number of parsed sentence is different with number of gold sentence."
|
97 |
+
)
|
98 |
+
|
99 |
+
corr = 0
|
100 |
+
corrL = 0
|
101 |
+
total = 0
|
102 |
+
|
103 |
+
for i in range(len(self._parsed_sents)):
|
104 |
+
parsed_sent_nodes = self._parsed_sents[i].nodes
|
105 |
+
gold_sent_nodes = self._gold_sents[i].nodes
|
106 |
+
|
107 |
+
if len(parsed_sent_nodes) != len(gold_sent_nodes):
|
108 |
+
raise ValueError("Sentences must have equal length.")
|
109 |
+
|
110 |
+
for parsed_node_address, parsed_node in parsed_sent_nodes.items():
|
111 |
+
gold_node = gold_sent_nodes[parsed_node_address]
|
112 |
+
|
113 |
+
if parsed_node["word"] is None:
|
114 |
+
continue
|
115 |
+
if parsed_node["word"] != gold_node["word"]:
|
116 |
+
raise ValueError("Sentence sequence is not matched.")
|
117 |
+
|
118 |
+
# Ignore if word is punctuation by default
|
119 |
+
# if (parsed_sent[j]["word"] in string.punctuation):
|
120 |
+
if self._remove_punct(parsed_node["word"]) == "":
|
121 |
+
continue
|
122 |
+
|
123 |
+
total += 1
|
124 |
+
if parsed_node["head"] == gold_node["head"]:
|
125 |
+
corr += 1
|
126 |
+
if parsed_node["rel"] == gold_node["rel"]:
|
127 |
+
corrL += 1
|
128 |
+
|
129 |
+
return corrL / total, corr / total
|
venv/lib/python3.10/site-packages/nltk/parse/featurechart.py
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Chart Parser for Feature-Based Grammars
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Rob Speer <[email protected]>
|
5 |
+
# Peter Ljunglöf <[email protected]>
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
"""
|
10 |
+
Extension of chart parsing implementation to handle grammars with
|
11 |
+
feature structures as nodes.
|
12 |
+
"""
|
13 |
+
from time import perf_counter
|
14 |
+
|
15 |
+
from nltk.featstruct import TYPE, FeatStruct, find_variables, unify
|
16 |
+
from nltk.grammar import (
|
17 |
+
CFG,
|
18 |
+
FeatStructNonterminal,
|
19 |
+
Nonterminal,
|
20 |
+
Production,
|
21 |
+
is_nonterminal,
|
22 |
+
is_terminal,
|
23 |
+
)
|
24 |
+
from nltk.parse.chart import (
|
25 |
+
BottomUpPredictCombineRule,
|
26 |
+
BottomUpPredictRule,
|
27 |
+
CachedTopDownPredictRule,
|
28 |
+
Chart,
|
29 |
+
ChartParser,
|
30 |
+
EdgeI,
|
31 |
+
EmptyPredictRule,
|
32 |
+
FundamentalRule,
|
33 |
+
LeafInitRule,
|
34 |
+
SingleEdgeFundamentalRule,
|
35 |
+
TopDownInitRule,
|
36 |
+
TreeEdge,
|
37 |
+
)
|
38 |
+
from nltk.sem import logic
|
39 |
+
from nltk.tree import Tree
|
40 |
+
|
41 |
+
# ////////////////////////////////////////////////////////////
|
42 |
+
# Tree Edge
|
43 |
+
# ////////////////////////////////////////////////////////////
|
44 |
+
|
45 |
+
|
46 |
+
class FeatureTreeEdge(TreeEdge):
|
47 |
+
"""
|
48 |
+
A specialized tree edge that allows shared variable bindings
|
49 |
+
between nonterminals on the left-hand side and right-hand side.
|
50 |
+
|
51 |
+
Each ``FeatureTreeEdge`` contains a set of ``bindings``, i.e., a
|
52 |
+
dictionary mapping from variables to values. If the edge is not
|
53 |
+
complete, then these bindings are simply stored. However, if the
|
54 |
+
edge is complete, then the constructor applies these bindings to
|
55 |
+
every nonterminal in the edge whose symbol implements the
|
56 |
+
interface ``SubstituteBindingsI``.
|
57 |
+
"""
|
58 |
+
|
59 |
+
def __init__(self, span, lhs, rhs, dot=0, bindings=None):
|
60 |
+
"""
|
61 |
+
Construct a new edge. If the edge is incomplete (i.e., if
|
62 |
+
``dot<len(rhs)``), then store the bindings as-is. If the edge
|
63 |
+
is complete (i.e., if ``dot==len(rhs)``), then apply the
|
64 |
+
bindings to all nonterminals in ``lhs`` and ``rhs``, and then
|
65 |
+
clear the bindings. See ``TreeEdge`` for a description of
|
66 |
+
the other arguments.
|
67 |
+
"""
|
68 |
+
if bindings is None:
|
69 |
+
bindings = {}
|
70 |
+
|
71 |
+
# If the edge is complete, then substitute in the bindings,
|
72 |
+
# and then throw them away. (If we didn't throw them away, we
|
73 |
+
# might think that 2 complete edges are different just because
|
74 |
+
# they have different bindings, even though all bindings have
|
75 |
+
# already been applied.)
|
76 |
+
if dot == len(rhs) and bindings:
|
77 |
+
lhs = self._bind(lhs, bindings)
|
78 |
+
rhs = [self._bind(elt, bindings) for elt in rhs]
|
79 |
+
bindings = {}
|
80 |
+
|
81 |
+
# Initialize the edge.
|
82 |
+
TreeEdge.__init__(self, span, lhs, rhs, dot)
|
83 |
+
self._bindings = bindings
|
84 |
+
self._comparison_key = (self._comparison_key, tuple(sorted(bindings.items())))
|
85 |
+
|
86 |
+
@staticmethod
|
87 |
+
def from_production(production, index):
|
88 |
+
"""
|
89 |
+
:return: A new ``TreeEdge`` formed from the given production.
|
90 |
+
The new edge's left-hand side and right-hand side will
|
91 |
+
be taken from ``production``; its span will be
|
92 |
+
``(index,index)``; and its dot position will be ``0``.
|
93 |
+
:rtype: TreeEdge
|
94 |
+
"""
|
95 |
+
return FeatureTreeEdge(
|
96 |
+
span=(index, index), lhs=production.lhs(), rhs=production.rhs(), dot=0
|
97 |
+
)
|
98 |
+
|
99 |
+
def move_dot_forward(self, new_end, bindings=None):
|
100 |
+
"""
|
101 |
+
:return: A new ``FeatureTreeEdge`` formed from this edge.
|
102 |
+
The new edge's dot position is increased by ``1``,
|
103 |
+
and its end index will be replaced by ``new_end``.
|
104 |
+
:rtype: FeatureTreeEdge
|
105 |
+
:param new_end: The new end index.
|
106 |
+
:type new_end: int
|
107 |
+
:param bindings: Bindings for the new edge.
|
108 |
+
:type bindings: dict
|
109 |
+
"""
|
110 |
+
return FeatureTreeEdge(
|
111 |
+
span=(self._span[0], new_end),
|
112 |
+
lhs=self._lhs,
|
113 |
+
rhs=self._rhs,
|
114 |
+
dot=self._dot + 1,
|
115 |
+
bindings=bindings,
|
116 |
+
)
|
117 |
+
|
118 |
+
def _bind(self, nt, bindings):
|
119 |
+
if not isinstance(nt, FeatStructNonterminal):
|
120 |
+
return nt
|
121 |
+
return nt.substitute_bindings(bindings)
|
122 |
+
|
123 |
+
def next_with_bindings(self):
|
124 |
+
return self._bind(self.nextsym(), self._bindings)
|
125 |
+
|
126 |
+
def bindings(self):
|
127 |
+
"""
|
128 |
+
Return a copy of this edge's bindings dictionary.
|
129 |
+
"""
|
130 |
+
return self._bindings.copy()
|
131 |
+
|
132 |
+
def variables(self):
|
133 |
+
"""
|
134 |
+
:return: The set of variables used by this edge.
|
135 |
+
:rtype: set(Variable)
|
136 |
+
"""
|
137 |
+
return find_variables(
|
138 |
+
[self._lhs]
|
139 |
+
+ list(self._rhs)
|
140 |
+
+ list(self._bindings.keys())
|
141 |
+
+ list(self._bindings.values()),
|
142 |
+
fs_class=FeatStruct,
|
143 |
+
)
|
144 |
+
|
145 |
+
def __str__(self):
|
146 |
+
if self.is_complete():
|
147 |
+
return super().__str__()
|
148 |
+
else:
|
149 |
+
bindings = "{%s}" % ", ".join(
|
150 |
+
"%s: %r" % item for item in sorted(self._bindings.items())
|
151 |
+
)
|
152 |
+
return f"{super().__str__()} {bindings}"
|
153 |
+
|
154 |
+
|
155 |
+
# ////////////////////////////////////////////////////////////
|
156 |
+
# A specialized Chart for feature grammars
|
157 |
+
# ////////////////////////////////////////////////////////////
|
158 |
+
|
159 |
+
# TODO: subsumes check when adding new edges
|
160 |
+
|
161 |
+
|
162 |
+
class FeatureChart(Chart):
|
163 |
+
"""
|
164 |
+
A Chart for feature grammars.
|
165 |
+
:see: ``Chart`` for more information.
|
166 |
+
"""
|
167 |
+
|
168 |
+
def select(self, **restrictions):
|
169 |
+
"""
|
170 |
+
Returns an iterator over the edges in this chart.
|
171 |
+
See ``Chart.select`` for more information about the
|
172 |
+
``restrictions`` on the edges.
|
173 |
+
"""
|
174 |
+
# If there are no restrictions, then return all edges.
|
175 |
+
if restrictions == {}:
|
176 |
+
return iter(self._edges)
|
177 |
+
|
178 |
+
# Find the index corresponding to the given restrictions.
|
179 |
+
restr_keys = sorted(restrictions.keys())
|
180 |
+
restr_keys = tuple(restr_keys)
|
181 |
+
|
182 |
+
# If it doesn't exist, then create it.
|
183 |
+
if restr_keys not in self._indexes:
|
184 |
+
self._add_index(restr_keys)
|
185 |
+
|
186 |
+
vals = tuple(
|
187 |
+
self._get_type_if_possible(restrictions[key]) for key in restr_keys
|
188 |
+
)
|
189 |
+
return iter(self._indexes[restr_keys].get(vals, []))
|
190 |
+
|
191 |
+
def _add_index(self, restr_keys):
|
192 |
+
"""
|
193 |
+
A helper function for ``select``, which creates a new index for
|
194 |
+
a given set of attributes (aka restriction keys).
|
195 |
+
"""
|
196 |
+
# Make sure it's a valid index.
|
197 |
+
for key in restr_keys:
|
198 |
+
if not hasattr(EdgeI, key):
|
199 |
+
raise ValueError("Bad restriction: %s" % key)
|
200 |
+
|
201 |
+
# Create the index.
|
202 |
+
index = self._indexes[restr_keys] = {}
|
203 |
+
|
204 |
+
# Add all existing edges to the index.
|
205 |
+
for edge in self._edges:
|
206 |
+
vals = tuple(
|
207 |
+
self._get_type_if_possible(getattr(edge, key)()) for key in restr_keys
|
208 |
+
)
|
209 |
+
index.setdefault(vals, []).append(edge)
|
210 |
+
|
211 |
+
def _register_with_indexes(self, edge):
|
212 |
+
"""
|
213 |
+
A helper function for ``insert``, which registers the new
|
214 |
+
edge with all existing indexes.
|
215 |
+
"""
|
216 |
+
for (restr_keys, index) in self._indexes.items():
|
217 |
+
vals = tuple(
|
218 |
+
self._get_type_if_possible(getattr(edge, key)()) for key in restr_keys
|
219 |
+
)
|
220 |
+
index.setdefault(vals, []).append(edge)
|
221 |
+
|
222 |
+
def _get_type_if_possible(self, item):
|
223 |
+
"""
|
224 |
+
Helper function which returns the ``TYPE`` feature of the ``item``,
|
225 |
+
if it exists, otherwise it returns the ``item`` itself
|
226 |
+
"""
|
227 |
+
if isinstance(item, dict) and TYPE in item:
|
228 |
+
return item[TYPE]
|
229 |
+
else:
|
230 |
+
return item
|
231 |
+
|
232 |
+
def parses(self, start, tree_class=Tree):
|
233 |
+
for edge in self.select(start=0, end=self._num_leaves):
|
234 |
+
if (
|
235 |
+
(isinstance(edge, FeatureTreeEdge))
|
236 |
+
and (edge.lhs()[TYPE] == start[TYPE])
|
237 |
+
and (unify(edge.lhs(), start, rename_vars=True))
|
238 |
+
):
|
239 |
+
yield from self.trees(edge, complete=True, tree_class=tree_class)
|
240 |
+
|
241 |
+
|
242 |
+
# ////////////////////////////////////////////////////////////
|
243 |
+
# Fundamental Rule
|
244 |
+
# ////////////////////////////////////////////////////////////
|
245 |
+
|
246 |
+
|
247 |
+
class FeatureFundamentalRule(FundamentalRule):
|
248 |
+
r"""
|
249 |
+
A specialized version of the fundamental rule that operates on
|
250 |
+
nonterminals whose symbols are ``FeatStructNonterminal``s. Rather
|
251 |
+
than simply comparing the nonterminals for equality, they are
|
252 |
+
unified. Variable bindings from these unifications are collected
|
253 |
+
and stored in the chart using a ``FeatureTreeEdge``. When a
|
254 |
+
complete edge is generated, these bindings are applied to all
|
255 |
+
nonterminals in the edge.
|
256 |
+
|
257 |
+
The fundamental rule states that:
|
258 |
+
|
259 |
+
- ``[A -> alpha \* B1 beta][i:j]``
|
260 |
+
- ``[B2 -> gamma \*][j:k]``
|
261 |
+
|
262 |
+
licenses the edge:
|
263 |
+
|
264 |
+
- ``[A -> alpha B3 \* beta][i:j]``
|
265 |
+
|
266 |
+
assuming that B1 and B2 can be unified to generate B3.
|
267 |
+
"""
|
268 |
+
|
269 |
+
def apply(self, chart, grammar, left_edge, right_edge):
|
270 |
+
# Make sure the rule is applicable.
|
271 |
+
if not (
|
272 |
+
left_edge.end() == right_edge.start()
|
273 |
+
and left_edge.is_incomplete()
|
274 |
+
and right_edge.is_complete()
|
275 |
+
and isinstance(left_edge, FeatureTreeEdge)
|
276 |
+
):
|
277 |
+
return
|
278 |
+
found = right_edge.lhs()
|
279 |
+
nextsym = left_edge.nextsym()
|
280 |
+
if isinstance(right_edge, FeatureTreeEdge):
|
281 |
+
if not is_nonterminal(nextsym):
|
282 |
+
return
|
283 |
+
if left_edge.nextsym()[TYPE] != right_edge.lhs()[TYPE]:
|
284 |
+
return
|
285 |
+
# Create a copy of the bindings.
|
286 |
+
bindings = left_edge.bindings()
|
287 |
+
# We rename vars here, because we don't want variables
|
288 |
+
# from the two different productions to match.
|
289 |
+
found = found.rename_variables(used_vars=left_edge.variables())
|
290 |
+
# Unify B1 (left_edge.nextsym) with B2 (right_edge.lhs) to
|
291 |
+
# generate B3 (result).
|
292 |
+
result = unify(nextsym, found, bindings, rename_vars=False)
|
293 |
+
if result is None:
|
294 |
+
return
|
295 |
+
else:
|
296 |
+
if nextsym != found:
|
297 |
+
return
|
298 |
+
# Create a copy of the bindings.
|
299 |
+
bindings = left_edge.bindings()
|
300 |
+
|
301 |
+
# Construct the new edge.
|
302 |
+
new_edge = left_edge.move_dot_forward(right_edge.end(), bindings)
|
303 |
+
|
304 |
+
# Add it to the chart, with appropriate child pointers.
|
305 |
+
if chart.insert_with_backpointer(new_edge, left_edge, right_edge):
|
306 |
+
yield new_edge
|
307 |
+
|
308 |
+
|
309 |
+
class FeatureSingleEdgeFundamentalRule(SingleEdgeFundamentalRule):
|
310 |
+
"""
|
311 |
+
A specialized version of the completer / single edge fundamental rule
|
312 |
+
that operates on nonterminals whose symbols are ``FeatStructNonterminal``.
|
313 |
+
Rather than simply comparing the nonterminals for equality, they are
|
314 |
+
unified.
|
315 |
+
"""
|
316 |
+
|
317 |
+
_fundamental_rule = FeatureFundamentalRule()
|
318 |
+
|
319 |
+
def _apply_complete(self, chart, grammar, right_edge):
|
320 |
+
fr = self._fundamental_rule
|
321 |
+
for left_edge in chart.select(
|
322 |
+
end=right_edge.start(), is_complete=False, nextsym=right_edge.lhs()
|
323 |
+
):
|
324 |
+
yield from fr.apply(chart, grammar, left_edge, right_edge)
|
325 |
+
|
326 |
+
def _apply_incomplete(self, chart, grammar, left_edge):
|
327 |
+
fr = self._fundamental_rule
|
328 |
+
for right_edge in chart.select(
|
329 |
+
start=left_edge.end(), is_complete=True, lhs=left_edge.nextsym()
|
330 |
+
):
|
331 |
+
yield from fr.apply(chart, grammar, left_edge, right_edge)
|
332 |
+
|
333 |
+
|
334 |
+
# ////////////////////////////////////////////////////////////
|
335 |
+
# Top-Down Prediction
|
336 |
+
# ////////////////////////////////////////////////////////////
|
337 |
+
|
338 |
+
|
339 |
+
class FeatureTopDownInitRule(TopDownInitRule):
|
340 |
+
def apply(self, chart, grammar):
|
341 |
+
for prod in grammar.productions(lhs=grammar.start()):
|
342 |
+
new_edge = FeatureTreeEdge.from_production(prod, 0)
|
343 |
+
if chart.insert(new_edge, ()):
|
344 |
+
yield new_edge
|
345 |
+
|
346 |
+
|
347 |
+
class FeatureTopDownPredictRule(CachedTopDownPredictRule):
|
348 |
+
r"""
|
349 |
+
A specialized version of the (cached) top down predict rule that operates
|
350 |
+
on nonterminals whose symbols are ``FeatStructNonterminal``. Rather
|
351 |
+
than simply comparing the nonterminals for equality, they are
|
352 |
+
unified.
|
353 |
+
|
354 |
+
The top down expand rule states that:
|
355 |
+
|
356 |
+
- ``[A -> alpha \* B1 beta][i:j]``
|
357 |
+
|
358 |
+
licenses the edge:
|
359 |
+
|
360 |
+
- ``[B2 -> \* gamma][j:j]``
|
361 |
+
|
362 |
+
for each grammar production ``B2 -> gamma``, assuming that B1
|
363 |
+
and B2 can be unified.
|
364 |
+
"""
|
365 |
+
|
366 |
+
def apply(self, chart, grammar, edge):
|
367 |
+
if edge.is_complete():
|
368 |
+
return
|
369 |
+
nextsym, index = edge.nextsym(), edge.end()
|
370 |
+
if not is_nonterminal(nextsym):
|
371 |
+
return
|
372 |
+
|
373 |
+
# If we've already applied this rule to an edge with the same
|
374 |
+
# next & end, and the chart & grammar have not changed, then
|
375 |
+
# just return (no new edges to add).
|
376 |
+
nextsym_with_bindings = edge.next_with_bindings()
|
377 |
+
done = self._done.get((nextsym_with_bindings, index), (None, None))
|
378 |
+
if done[0] is chart and done[1] is grammar:
|
379 |
+
return
|
380 |
+
|
381 |
+
for prod in grammar.productions(lhs=nextsym):
|
382 |
+
# If the left corner in the predicted production is
|
383 |
+
# leaf, it must match with the input.
|
384 |
+
if prod.rhs():
|
385 |
+
first = prod.rhs()[0]
|
386 |
+
if is_terminal(first):
|
387 |
+
if index >= chart.num_leaves():
|
388 |
+
continue
|
389 |
+
if first != chart.leaf(index):
|
390 |
+
continue
|
391 |
+
|
392 |
+
# We rename vars here, because we don't want variables
|
393 |
+
# from the two different productions to match.
|
394 |
+
if unify(prod.lhs(), nextsym_with_bindings, rename_vars=True):
|
395 |
+
new_edge = FeatureTreeEdge.from_production(prod, edge.end())
|
396 |
+
if chart.insert(new_edge, ()):
|
397 |
+
yield new_edge
|
398 |
+
|
399 |
+
# Record the fact that we've applied this rule.
|
400 |
+
self._done[nextsym_with_bindings, index] = (chart, grammar)
|
401 |
+
|
402 |
+
|
403 |
+
# ////////////////////////////////////////////////////////////
|
404 |
+
# Bottom-Up Prediction
|
405 |
+
# ////////////////////////////////////////////////////////////
|
406 |
+
|
407 |
+
|
408 |
+
class FeatureBottomUpPredictRule(BottomUpPredictRule):
|
409 |
+
def apply(self, chart, grammar, edge):
|
410 |
+
if edge.is_incomplete():
|
411 |
+
return
|
412 |
+
for prod in grammar.productions(rhs=edge.lhs()):
|
413 |
+
if isinstance(edge, FeatureTreeEdge):
|
414 |
+
_next = prod.rhs()[0]
|
415 |
+
if not is_nonterminal(_next):
|
416 |
+
continue
|
417 |
+
|
418 |
+
new_edge = FeatureTreeEdge.from_production(prod, edge.start())
|
419 |
+
if chart.insert(new_edge, ()):
|
420 |
+
yield new_edge
|
421 |
+
|
422 |
+
|
423 |
+
class FeatureBottomUpPredictCombineRule(BottomUpPredictCombineRule):
|
424 |
+
def apply(self, chart, grammar, edge):
|
425 |
+
if edge.is_incomplete():
|
426 |
+
return
|
427 |
+
found = edge.lhs()
|
428 |
+
for prod in grammar.productions(rhs=found):
|
429 |
+
bindings = {}
|
430 |
+
if isinstance(edge, FeatureTreeEdge):
|
431 |
+
_next = prod.rhs()[0]
|
432 |
+
if not is_nonterminal(_next):
|
433 |
+
continue
|
434 |
+
|
435 |
+
# We rename vars here, because we don't want variables
|
436 |
+
# from the two different productions to match.
|
437 |
+
used_vars = find_variables(
|
438 |
+
(prod.lhs(),) + prod.rhs(), fs_class=FeatStruct
|
439 |
+
)
|
440 |
+
found = found.rename_variables(used_vars=used_vars)
|
441 |
+
|
442 |
+
result = unify(_next, found, bindings, rename_vars=False)
|
443 |
+
if result is None:
|
444 |
+
continue
|
445 |
+
|
446 |
+
new_edge = FeatureTreeEdge.from_production(
|
447 |
+
prod, edge.start()
|
448 |
+
).move_dot_forward(edge.end(), bindings)
|
449 |
+
if chart.insert(new_edge, (edge,)):
|
450 |
+
yield new_edge
|
451 |
+
|
452 |
+
|
453 |
+
class FeatureEmptyPredictRule(EmptyPredictRule):
|
454 |
+
def apply(self, chart, grammar):
|
455 |
+
for prod in grammar.productions(empty=True):
|
456 |
+
for index in range(chart.num_leaves() + 1):
|
457 |
+
new_edge = FeatureTreeEdge.from_production(prod, index)
|
458 |
+
if chart.insert(new_edge, ()):
|
459 |
+
yield new_edge
|
460 |
+
|
461 |
+
|
462 |
+
# ////////////////////////////////////////////////////////////
|
463 |
+
# Feature Chart Parser
|
464 |
+
# ////////////////////////////////////////////////////////////
|
465 |
+
|
466 |
+
TD_FEATURE_STRATEGY = [
|
467 |
+
LeafInitRule(),
|
468 |
+
FeatureTopDownInitRule(),
|
469 |
+
FeatureTopDownPredictRule(),
|
470 |
+
FeatureSingleEdgeFundamentalRule(),
|
471 |
+
]
|
472 |
+
BU_FEATURE_STRATEGY = [
|
473 |
+
LeafInitRule(),
|
474 |
+
FeatureEmptyPredictRule(),
|
475 |
+
FeatureBottomUpPredictRule(),
|
476 |
+
FeatureSingleEdgeFundamentalRule(),
|
477 |
+
]
|
478 |
+
BU_LC_FEATURE_STRATEGY = [
|
479 |
+
LeafInitRule(),
|
480 |
+
FeatureEmptyPredictRule(),
|
481 |
+
FeatureBottomUpPredictCombineRule(),
|
482 |
+
FeatureSingleEdgeFundamentalRule(),
|
483 |
+
]
|
484 |
+
|
485 |
+
|
486 |
+
class FeatureChartParser(ChartParser):
|
487 |
+
def __init__(
|
488 |
+
self,
|
489 |
+
grammar,
|
490 |
+
strategy=BU_LC_FEATURE_STRATEGY,
|
491 |
+
trace_chart_width=20,
|
492 |
+
chart_class=FeatureChart,
|
493 |
+
**parser_args,
|
494 |
+
):
|
495 |
+
ChartParser.__init__(
|
496 |
+
self,
|
497 |
+
grammar,
|
498 |
+
strategy=strategy,
|
499 |
+
trace_chart_width=trace_chart_width,
|
500 |
+
chart_class=chart_class,
|
501 |
+
**parser_args,
|
502 |
+
)
|
503 |
+
|
504 |
+
|
505 |
+
class FeatureTopDownChartParser(FeatureChartParser):
|
506 |
+
def __init__(self, grammar, **parser_args):
|
507 |
+
FeatureChartParser.__init__(self, grammar, TD_FEATURE_STRATEGY, **parser_args)
|
508 |
+
|
509 |
+
|
510 |
+
class FeatureBottomUpChartParser(FeatureChartParser):
|
511 |
+
def __init__(self, grammar, **parser_args):
|
512 |
+
FeatureChartParser.__init__(self, grammar, BU_FEATURE_STRATEGY, **parser_args)
|
513 |
+
|
514 |
+
|
515 |
+
class FeatureBottomUpLeftCornerChartParser(FeatureChartParser):
|
516 |
+
def __init__(self, grammar, **parser_args):
|
517 |
+
FeatureChartParser.__init__(
|
518 |
+
self, grammar, BU_LC_FEATURE_STRATEGY, **parser_args
|
519 |
+
)
|
520 |
+
|
521 |
+
|
522 |
+
# ////////////////////////////////////////////////////////////
|
523 |
+
# Instantiate Variable Chart
|
524 |
+
# ////////////////////////////////////////////////////////////
|
525 |
+
|
526 |
+
|
527 |
+
class InstantiateVarsChart(FeatureChart):
|
528 |
+
"""
|
529 |
+
A specialized chart that 'instantiates' variables whose names
|
530 |
+
start with '@', by replacing them with unique new variables.
|
531 |
+
In particular, whenever a complete edge is added to the chart, any
|
532 |
+
variables in the edge's ``lhs`` whose names start with '@' will be
|
533 |
+
replaced by unique new ``Variable``.
|
534 |
+
"""
|
535 |
+
|
536 |
+
def __init__(self, tokens):
|
537 |
+
FeatureChart.__init__(self, tokens)
|
538 |
+
|
539 |
+
def initialize(self):
|
540 |
+
self._instantiated = set()
|
541 |
+
FeatureChart.initialize(self)
|
542 |
+
|
543 |
+
def insert(self, edge, child_pointer_list):
|
544 |
+
if edge in self._instantiated:
|
545 |
+
return False
|
546 |
+
self.instantiate_edge(edge)
|
547 |
+
return FeatureChart.insert(self, edge, child_pointer_list)
|
548 |
+
|
549 |
+
def instantiate_edge(self, edge):
|
550 |
+
"""
|
551 |
+
If the edge is a ``FeatureTreeEdge``, and it is complete,
|
552 |
+
then instantiate all variables whose names start with '@',
|
553 |
+
by replacing them with unique new variables.
|
554 |
+
|
555 |
+
Note that instantiation is done in-place, since the
|
556 |
+
parsing algorithms might already hold a reference to
|
557 |
+
the edge for future use.
|
558 |
+
"""
|
559 |
+
# If the edge is a leaf, or is not complete, or is
|
560 |
+
# already in the chart, then just return it as-is.
|
561 |
+
if not isinstance(edge, FeatureTreeEdge):
|
562 |
+
return
|
563 |
+
if not edge.is_complete():
|
564 |
+
return
|
565 |
+
if edge in self._edge_to_cpls:
|
566 |
+
return
|
567 |
+
|
568 |
+
# Get a list of variables that need to be instantiated.
|
569 |
+
# If there are none, then return as-is.
|
570 |
+
inst_vars = self.inst_vars(edge)
|
571 |
+
if not inst_vars:
|
572 |
+
return
|
573 |
+
|
574 |
+
# Instantiate the edge!
|
575 |
+
self._instantiated.add(edge)
|
576 |
+
edge._lhs = edge.lhs().substitute_bindings(inst_vars)
|
577 |
+
|
578 |
+
def inst_vars(self, edge):
|
579 |
+
return {
|
580 |
+
var: logic.unique_variable()
|
581 |
+
for var in edge.lhs().variables()
|
582 |
+
if var.name.startswith("@")
|
583 |
+
}
|
584 |
+
|
585 |
+
|
586 |
+
# ////////////////////////////////////////////////////////////
|
587 |
+
# Demo
|
588 |
+
# ////////////////////////////////////////////////////////////
|
589 |
+
|
590 |
+
|
591 |
+
def demo_grammar():
|
592 |
+
from nltk.grammar import FeatureGrammar
|
593 |
+
|
594 |
+
return FeatureGrammar.fromstring(
|
595 |
+
"""
|
596 |
+
S -> NP VP
|
597 |
+
PP -> Prep NP
|
598 |
+
NP -> NP PP
|
599 |
+
VP -> VP PP
|
600 |
+
VP -> Verb NP
|
601 |
+
VP -> Verb
|
602 |
+
NP -> Det[pl=?x] Noun[pl=?x]
|
603 |
+
NP -> "John"
|
604 |
+
NP -> "I"
|
605 |
+
Det -> "the"
|
606 |
+
Det -> "my"
|
607 |
+
Det[-pl] -> "a"
|
608 |
+
Noun[-pl] -> "dog"
|
609 |
+
Noun[-pl] -> "cookie"
|
610 |
+
Verb -> "ate"
|
611 |
+
Verb -> "saw"
|
612 |
+
Prep -> "with"
|
613 |
+
Prep -> "under"
|
614 |
+
"""
|
615 |
+
)
|
616 |
+
|
617 |
+
|
618 |
+
def demo(
|
619 |
+
print_times=True,
|
620 |
+
print_grammar=True,
|
621 |
+
print_trees=True,
|
622 |
+
print_sentence=True,
|
623 |
+
trace=1,
|
624 |
+
parser=FeatureChartParser,
|
625 |
+
sent="I saw John with a dog with my cookie",
|
626 |
+
):
|
627 |
+
import sys
|
628 |
+
import time
|
629 |
+
|
630 |
+
print()
|
631 |
+
grammar = demo_grammar()
|
632 |
+
if print_grammar:
|
633 |
+
print(grammar)
|
634 |
+
print()
|
635 |
+
print("*", parser.__name__)
|
636 |
+
if print_sentence:
|
637 |
+
print("Sentence:", sent)
|
638 |
+
tokens = sent.split()
|
639 |
+
t = perf_counter()
|
640 |
+
cp = parser(grammar, trace=trace)
|
641 |
+
chart = cp.chart_parse(tokens)
|
642 |
+
trees = list(chart.parses(grammar.start()))
|
643 |
+
if print_times:
|
644 |
+
print("Time: %s" % (perf_counter() - t))
|
645 |
+
if print_trees:
|
646 |
+
for tree in trees:
|
647 |
+
print(tree)
|
648 |
+
else:
|
649 |
+
print("Nr trees:", len(trees))
|
650 |
+
|
651 |
+
|
652 |
+
def run_profile():
|
653 |
+
import profile
|
654 |
+
|
655 |
+
profile.run("for i in range(1): demo()", "/tmp/profile.out")
|
656 |
+
import pstats
|
657 |
+
|
658 |
+
p = pstats.Stats("/tmp/profile.out")
|
659 |
+
p.strip_dirs().sort_stats("time", "cum").print_stats(60)
|
660 |
+
p.strip_dirs().sort_stats("cum", "time").print_stats(60)
|
661 |
+
|
662 |
+
|
663 |
+
if __name__ == "__main__":
|
664 |
+
from nltk.data import load
|
665 |
+
|
666 |
+
demo()
|
667 |
+
print()
|
668 |
+
grammar = load("grammars/book_grammars/feat0.fcfg")
|
669 |
+
cp = FeatureChartParser(grammar, trace=2)
|
670 |
+
sent = "Kim likes children"
|
671 |
+
tokens = sent.split()
|
672 |
+
trees = cp.parse(tokens)
|
673 |
+
for tree in trees:
|
674 |
+
print(tree)
|
venv/lib/python3.10/site-packages/nltk/parse/generate.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Generating from a CFG
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Steven Bird <[email protected]>
|
5 |
+
# Peter Ljunglöf <[email protected]>
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
#
|
9 |
+
|
10 |
+
import itertools
|
11 |
+
import sys
|
12 |
+
|
13 |
+
from nltk.grammar import Nonterminal
|
14 |
+
|
15 |
+
|
16 |
+
def generate(grammar, start=None, depth=None, n=None):
|
17 |
+
"""
|
18 |
+
Generates an iterator of all sentences from a CFG.
|
19 |
+
|
20 |
+
:param grammar: The Grammar used to generate sentences.
|
21 |
+
:param start: The Nonterminal from which to start generate sentences.
|
22 |
+
:param depth: The maximal depth of the generated tree.
|
23 |
+
:param n: The maximum number of sentences to return.
|
24 |
+
:return: An iterator of lists of terminal tokens.
|
25 |
+
"""
|
26 |
+
if not start:
|
27 |
+
start = grammar.start()
|
28 |
+
if depth is None:
|
29 |
+
depth = sys.maxsize
|
30 |
+
|
31 |
+
iter = _generate_all(grammar, [start], depth)
|
32 |
+
|
33 |
+
if n:
|
34 |
+
iter = itertools.islice(iter, n)
|
35 |
+
|
36 |
+
return iter
|
37 |
+
|
38 |
+
|
39 |
+
def _generate_all(grammar, items, depth):
|
40 |
+
if items:
|
41 |
+
try:
|
42 |
+
for frag1 in _generate_one(grammar, items[0], depth):
|
43 |
+
for frag2 in _generate_all(grammar, items[1:], depth):
|
44 |
+
yield frag1 + frag2
|
45 |
+
except RecursionError as error:
|
46 |
+
# Helpful error message while still showing the recursion stack.
|
47 |
+
raise RuntimeError(
|
48 |
+
"The grammar has rule(s) that yield infinite recursion!"
|
49 |
+
) from error
|
50 |
+
else:
|
51 |
+
yield []
|
52 |
+
|
53 |
+
|
54 |
+
def _generate_one(grammar, item, depth):
|
55 |
+
if depth > 0:
|
56 |
+
if isinstance(item, Nonterminal):
|
57 |
+
for prod in grammar.productions(lhs=item):
|
58 |
+
yield from _generate_all(grammar, prod.rhs(), depth - 1)
|
59 |
+
else:
|
60 |
+
yield [item]
|
61 |
+
|
62 |
+
|
63 |
+
demo_grammar = """
|
64 |
+
S -> NP VP
|
65 |
+
NP -> Det N
|
66 |
+
PP -> P NP
|
67 |
+
VP -> 'slept' | 'saw' NP | 'walked' PP
|
68 |
+
Det -> 'the' | 'a'
|
69 |
+
N -> 'man' | 'park' | 'dog'
|
70 |
+
P -> 'in' | 'with'
|
71 |
+
"""
|
72 |
+
|
73 |
+
|
74 |
+
def demo(N=23):
|
75 |
+
from nltk.grammar import CFG
|
76 |
+
|
77 |
+
print("Generating the first %d sentences for demo grammar:" % (N,))
|
78 |
+
print(demo_grammar)
|
79 |
+
grammar = CFG.fromstring(demo_grammar)
|
80 |
+
for n, sent in enumerate(generate(grammar, n=N), 1):
|
81 |
+
print("%3d. %s" % (n, " ".join(sent)))
|
82 |
+
|
83 |
+
|
84 |
+
if __name__ == "__main__":
|
85 |
+
demo()
|
venv/lib/python3.10/site-packages/nltk/parse/malt.py
ADDED
@@ -0,0 +1,393 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Interface to MaltParser
|
2 |
+
#
|
3 |
+
# Author: Dan Garrette <[email protected]>
|
4 |
+
# Contributor: Liling Tan, Mustufain, osamamukhtar11
|
5 |
+
#
|
6 |
+
# Copyright (C) 2001-2023 NLTK Project
|
7 |
+
# URL: <https://www.nltk.org/>
|
8 |
+
# For license information, see LICENSE.TXT
|
9 |
+
|
10 |
+
import inspect
|
11 |
+
import os
|
12 |
+
import subprocess
|
13 |
+
import sys
|
14 |
+
import tempfile
|
15 |
+
|
16 |
+
from nltk.data import ZipFilePathPointer
|
17 |
+
from nltk.internals import find_dir, find_file, find_jars_within_path
|
18 |
+
from nltk.parse.api import ParserI
|
19 |
+
from nltk.parse.dependencygraph import DependencyGraph
|
20 |
+
from nltk.parse.util import taggedsents_to_conll
|
21 |
+
|
22 |
+
|
23 |
+
def malt_regex_tagger():
|
24 |
+
from nltk.tag import RegexpTagger
|
25 |
+
|
26 |
+
_tagger = RegexpTagger(
|
27 |
+
[
|
28 |
+
(r"\.$", "."),
|
29 |
+
(r"\,$", ","),
|
30 |
+
(r"\?$", "?"), # fullstop, comma, Qmark
|
31 |
+
(r"\($", "("),
|
32 |
+
(r"\)$", ")"), # round brackets
|
33 |
+
(r"\[$", "["),
|
34 |
+
(r"\]$", "]"), # square brackets
|
35 |
+
(r"^-?[0-9]+(\.[0-9]+)?$", "CD"), # cardinal numbers
|
36 |
+
(r"(The|the|A|a|An|an)$", "DT"), # articles
|
37 |
+
(r"(He|he|She|she|It|it|I|me|Me|You|you)$", "PRP"), # pronouns
|
38 |
+
(r"(His|his|Her|her|Its|its)$", "PRP$"), # possessive
|
39 |
+
(r"(my|Your|your|Yours|yours)$", "PRP$"), # possessive
|
40 |
+
(r"(on|On|in|In|at|At|since|Since)$", "IN"), # time prepopsitions
|
41 |
+
(r"(for|For|ago|Ago|before|Before)$", "IN"), # time prepopsitions
|
42 |
+
(r"(till|Till|until|Until)$", "IN"), # time prepopsitions
|
43 |
+
(r"(by|By|beside|Beside)$", "IN"), # space prepopsitions
|
44 |
+
(r"(under|Under|below|Below)$", "IN"), # space prepopsitions
|
45 |
+
(r"(over|Over|above|Above)$", "IN"), # space prepopsitions
|
46 |
+
(r"(across|Across|through|Through)$", "IN"), # space prepopsitions
|
47 |
+
(r"(into|Into|towards|Towards)$", "IN"), # space prepopsitions
|
48 |
+
(r"(onto|Onto|from|From)$", "IN"), # space prepopsitions
|
49 |
+
(r".*able$", "JJ"), # adjectives
|
50 |
+
(r".*ness$", "NN"), # nouns formed from adjectives
|
51 |
+
(r".*ly$", "RB"), # adverbs
|
52 |
+
(r".*s$", "NNS"), # plural nouns
|
53 |
+
(r".*ing$", "VBG"), # gerunds
|
54 |
+
(r".*ed$", "VBD"), # past tense verbs
|
55 |
+
(r".*", "NN"), # nouns (default)
|
56 |
+
]
|
57 |
+
)
|
58 |
+
return _tagger.tag
|
59 |
+
|
60 |
+
|
61 |
+
def find_maltparser(parser_dirname):
|
62 |
+
"""
|
63 |
+
A module to find MaltParser .jar file and its dependencies.
|
64 |
+
"""
|
65 |
+
if os.path.exists(parser_dirname): # If a full path is given.
|
66 |
+
_malt_dir = parser_dirname
|
67 |
+
else: # Try to find path to maltparser directory in environment variables.
|
68 |
+
_malt_dir = find_dir(parser_dirname, env_vars=("MALT_PARSER",))
|
69 |
+
# Checks that that the found directory contains all the necessary .jar
|
70 |
+
malt_dependencies = ["", "", ""]
|
71 |
+
_malt_jars = set(find_jars_within_path(_malt_dir))
|
72 |
+
_jars = {os.path.split(jar)[1] for jar in _malt_jars}
|
73 |
+
malt_dependencies = {"log4j.jar", "libsvm.jar", "liblinear-1.8.jar"}
|
74 |
+
|
75 |
+
assert malt_dependencies.issubset(_jars)
|
76 |
+
assert any(
|
77 |
+
filter(lambda i: i.startswith("maltparser-") and i.endswith(".jar"), _jars)
|
78 |
+
)
|
79 |
+
return list(_malt_jars)
|
80 |
+
|
81 |
+
|
82 |
+
def find_malt_model(model_filename):
|
83 |
+
"""
|
84 |
+
A module to find pre-trained MaltParser model.
|
85 |
+
"""
|
86 |
+
if model_filename is None:
|
87 |
+
return "malt_temp.mco"
|
88 |
+
elif os.path.exists(model_filename): # If a full path is given.
|
89 |
+
return model_filename
|
90 |
+
else: # Try to find path to malt model in environment variables.
|
91 |
+
return find_file(model_filename, env_vars=("MALT_MODEL",), verbose=False)
|
92 |
+
|
93 |
+
|
94 |
+
class MaltParser(ParserI):
|
95 |
+
"""
|
96 |
+
A class for dependency parsing with MaltParser. The input is the paths to:
|
97 |
+
- (optionally) a maltparser directory
|
98 |
+
- (optionally) the path to a pre-trained MaltParser .mco model file
|
99 |
+
- (optionally) the tagger to use for POS tagging before parsing
|
100 |
+
- (optionally) additional Java arguments
|
101 |
+
|
102 |
+
Example:
|
103 |
+
>>> from nltk.parse import malt
|
104 |
+
>>> # With MALT_PARSER and MALT_MODEL environment set.
|
105 |
+
>>> mp = malt.MaltParser(model_filename='engmalt.linear-1.7.mco') # doctest: +SKIP
|
106 |
+
>>> mp.parse_one('I shot an elephant in my pajamas .'.split()).tree() # doctest: +SKIP
|
107 |
+
(shot I (elephant an) (in (pajamas my)) .)
|
108 |
+
>>> # Without MALT_PARSER and MALT_MODEL environment.
|
109 |
+
>>> mp = malt.MaltParser('/home/user/maltparser-1.9.2/', '/home/user/engmalt.linear-1.7.mco') # doctest: +SKIP
|
110 |
+
>>> mp.parse_one('I shot an elephant in my pajamas .'.split()).tree() # doctest: +SKIP
|
111 |
+
(shot I (elephant an) (in (pajamas my)) .)
|
112 |
+
"""
|
113 |
+
|
114 |
+
def __init__(
|
115 |
+
self,
|
116 |
+
parser_dirname="",
|
117 |
+
model_filename=None,
|
118 |
+
tagger=None,
|
119 |
+
additional_java_args=None,
|
120 |
+
):
|
121 |
+
"""
|
122 |
+
An interface for parsing with the Malt Parser.
|
123 |
+
|
124 |
+
:param parser_dirname: The path to the maltparser directory that
|
125 |
+
contains the maltparser-1.x.jar
|
126 |
+
:type parser_dirname: str
|
127 |
+
:param model_filename: The name of the pre-trained model with .mco file
|
128 |
+
extension. If provided, training will not be required.
|
129 |
+
(see http://www.maltparser.org/mco/mco.html and
|
130 |
+
see http://www.patful.com/chalk/node/185)
|
131 |
+
:type model_filename: str
|
132 |
+
:param tagger: The tagger used to POS tag the raw string before
|
133 |
+
formatting to CONLL format. It should behave like `nltk.pos_tag`
|
134 |
+
:type tagger: function
|
135 |
+
:param additional_java_args: This is the additional Java arguments that
|
136 |
+
one can use when calling Maltparser, usually this is the heapsize
|
137 |
+
limits, e.g. `additional_java_args=['-Xmx1024m']`
|
138 |
+
(see https://goo.gl/mpDBvQ)
|
139 |
+
:type additional_java_args: list
|
140 |
+
"""
|
141 |
+
|
142 |
+
# Find all the necessary jar files for MaltParser.
|
143 |
+
self.malt_jars = find_maltparser(parser_dirname)
|
144 |
+
# Initialize additional java arguments.
|
145 |
+
self.additional_java_args = (
|
146 |
+
additional_java_args if additional_java_args is not None else []
|
147 |
+
)
|
148 |
+
# Initialize model.
|
149 |
+
self.model = find_malt_model(model_filename)
|
150 |
+
self._trained = self.model != "malt_temp.mco"
|
151 |
+
# Set the working_dir parameters i.e. `-w` from MaltParser's option.
|
152 |
+
self.working_dir = tempfile.gettempdir()
|
153 |
+
# Initialize POS tagger.
|
154 |
+
self.tagger = tagger if tagger is not None else malt_regex_tagger()
|
155 |
+
|
156 |
+
def parse_tagged_sents(self, sentences, verbose=False, top_relation_label="null"):
|
157 |
+
"""
|
158 |
+
Use MaltParser to parse multiple POS tagged sentences. Takes multiple
|
159 |
+
sentences where each sentence is a list of (word, tag) tuples.
|
160 |
+
The sentences must have already been tokenized and tagged.
|
161 |
+
|
162 |
+
:param sentences: Input sentences to parse
|
163 |
+
:type sentence: list(list(tuple(str, str)))
|
164 |
+
:return: iter(iter(``DependencyGraph``)) the dependency graph
|
165 |
+
representation of each sentence
|
166 |
+
"""
|
167 |
+
if not self._trained:
|
168 |
+
raise Exception("Parser has not been trained. Call train() first.")
|
169 |
+
|
170 |
+
with tempfile.NamedTemporaryFile(
|
171 |
+
prefix="malt_input.conll.", dir=self.working_dir, mode="w", delete=False
|
172 |
+
) as input_file:
|
173 |
+
with tempfile.NamedTemporaryFile(
|
174 |
+
prefix="malt_output.conll.",
|
175 |
+
dir=self.working_dir,
|
176 |
+
mode="w",
|
177 |
+
delete=False,
|
178 |
+
) as output_file:
|
179 |
+
# Convert list of sentences to CONLL format.
|
180 |
+
for line in taggedsents_to_conll(sentences):
|
181 |
+
input_file.write(str(line))
|
182 |
+
input_file.close()
|
183 |
+
|
184 |
+
# Generate command to run maltparser.
|
185 |
+
cmd = self.generate_malt_command(
|
186 |
+
input_file.name, output_file.name, mode="parse"
|
187 |
+
)
|
188 |
+
|
189 |
+
# This is a maltparser quirk, it needs to be run
|
190 |
+
# where the model file is. otherwise it goes into an awkward
|
191 |
+
# missing .jars or strange -w working_dir problem.
|
192 |
+
_current_path = os.getcwd() # Remembers the current path.
|
193 |
+
try: # Change to modelfile path
|
194 |
+
os.chdir(os.path.split(self.model)[0])
|
195 |
+
except:
|
196 |
+
pass
|
197 |
+
ret = self._execute(cmd, verbose) # Run command.
|
198 |
+
os.chdir(_current_path) # Change back to current path.
|
199 |
+
|
200 |
+
if ret != 0:
|
201 |
+
raise Exception(
|
202 |
+
"MaltParser parsing (%s) failed with exit "
|
203 |
+
"code %d" % (" ".join(cmd), ret)
|
204 |
+
)
|
205 |
+
|
206 |
+
# Must return iter(iter(Tree))
|
207 |
+
with open(output_file.name) as infile:
|
208 |
+
for tree_str in infile.read().split("\n\n"):
|
209 |
+
yield (
|
210 |
+
iter(
|
211 |
+
[
|
212 |
+
DependencyGraph(
|
213 |
+
tree_str, top_relation_label=top_relation_label
|
214 |
+
)
|
215 |
+
]
|
216 |
+
)
|
217 |
+
)
|
218 |
+
|
219 |
+
os.remove(input_file.name)
|
220 |
+
os.remove(output_file.name)
|
221 |
+
|
222 |
+
def parse_sents(self, sentences, verbose=False, top_relation_label="null"):
|
223 |
+
"""
|
224 |
+
Use MaltParser to parse multiple sentences.
|
225 |
+
Takes a list of sentences, where each sentence is a list of words.
|
226 |
+
Each sentence will be automatically tagged with this
|
227 |
+
MaltParser instance's tagger.
|
228 |
+
|
229 |
+
:param sentences: Input sentences to parse
|
230 |
+
:type sentence: list(list(str))
|
231 |
+
:return: iter(DependencyGraph)
|
232 |
+
"""
|
233 |
+
tagged_sentences = (self.tagger(sentence) for sentence in sentences)
|
234 |
+
return self.parse_tagged_sents(
|
235 |
+
tagged_sentences, verbose, top_relation_label=top_relation_label
|
236 |
+
)
|
237 |
+
|
238 |
+
def generate_malt_command(self, inputfilename, outputfilename=None, mode=None):
|
239 |
+
"""
|
240 |
+
This function generates the maltparser command use at the terminal.
|
241 |
+
|
242 |
+
:param inputfilename: path to the input file
|
243 |
+
:type inputfilename: str
|
244 |
+
:param outputfilename: path to the output file
|
245 |
+
:type outputfilename: str
|
246 |
+
"""
|
247 |
+
|
248 |
+
cmd = ["java"]
|
249 |
+
cmd += self.additional_java_args # Adds additional java arguments
|
250 |
+
# Joins classpaths with ";" if on Windows and on Linux/Mac use ":"
|
251 |
+
classpaths_separator = ";" if sys.platform.startswith("win") else ":"
|
252 |
+
cmd += [
|
253 |
+
"-cp",
|
254 |
+
classpaths_separator.join(self.malt_jars),
|
255 |
+
] # Adds classpaths for jars
|
256 |
+
cmd += ["org.maltparser.Malt"] # Adds the main function.
|
257 |
+
|
258 |
+
# Adds the model file.
|
259 |
+
if os.path.exists(self.model): # when parsing
|
260 |
+
cmd += ["-c", os.path.split(self.model)[-1]]
|
261 |
+
else: # when learning
|
262 |
+
cmd += ["-c", self.model]
|
263 |
+
|
264 |
+
cmd += ["-i", inputfilename]
|
265 |
+
if mode == "parse":
|
266 |
+
cmd += ["-o", outputfilename]
|
267 |
+
cmd += ["-m", mode] # mode use to generate parses.
|
268 |
+
return cmd
|
269 |
+
|
270 |
+
@staticmethod
|
271 |
+
def _execute(cmd, verbose=False):
|
272 |
+
output = None if verbose else subprocess.PIPE
|
273 |
+
p = subprocess.Popen(cmd, stdout=output, stderr=output)
|
274 |
+
return p.wait()
|
275 |
+
|
276 |
+
def train(self, depgraphs, verbose=False):
|
277 |
+
"""
|
278 |
+
Train MaltParser from a list of ``DependencyGraph`` objects
|
279 |
+
|
280 |
+
:param depgraphs: list of ``DependencyGraph`` objects for training input data
|
281 |
+
:type depgraphs: DependencyGraph
|
282 |
+
"""
|
283 |
+
|
284 |
+
# Write the conll_str to malt_train.conll file in /tmp/
|
285 |
+
with tempfile.NamedTemporaryFile(
|
286 |
+
prefix="malt_train.conll.", dir=self.working_dir, mode="w", delete=False
|
287 |
+
) as input_file:
|
288 |
+
input_str = "\n".join(dg.to_conll(10) for dg in depgraphs)
|
289 |
+
input_file.write(str(input_str))
|
290 |
+
# Trains the model with the malt_train.conll
|
291 |
+
self.train_from_file(input_file.name, verbose=verbose)
|
292 |
+
# Removes the malt_train.conll once training finishes.
|
293 |
+
os.remove(input_file.name)
|
294 |
+
|
295 |
+
def train_from_file(self, conll_file, verbose=False):
|
296 |
+
"""
|
297 |
+
Train MaltParser from a file
|
298 |
+
:param conll_file: str for the filename of the training input data
|
299 |
+
:type conll_file: str
|
300 |
+
"""
|
301 |
+
|
302 |
+
# If conll_file is a ZipFilePathPointer,
|
303 |
+
# then we need to do some extra massaging
|
304 |
+
if isinstance(conll_file, ZipFilePathPointer):
|
305 |
+
with tempfile.NamedTemporaryFile(
|
306 |
+
prefix="malt_train.conll.", dir=self.working_dir, mode="w", delete=False
|
307 |
+
) as input_file:
|
308 |
+
with conll_file.open() as conll_input_file:
|
309 |
+
conll_str = conll_input_file.read()
|
310 |
+
input_file.write(str(conll_str))
|
311 |
+
return self.train_from_file(input_file.name, verbose=verbose)
|
312 |
+
|
313 |
+
# Generate command to run maltparser.
|
314 |
+
cmd = self.generate_malt_command(conll_file, mode="learn")
|
315 |
+
ret = self._execute(cmd, verbose)
|
316 |
+
if ret != 0:
|
317 |
+
raise Exception(
|
318 |
+
"MaltParser training (%s) failed with exit "
|
319 |
+
"code %d" % (" ".join(cmd), ret)
|
320 |
+
)
|
321 |
+
self._trained = True
|
322 |
+
|
323 |
+
|
324 |
+
if __name__ == "__main__":
|
325 |
+
"""
|
326 |
+
A demonstration function to show how NLTK users can use the malt parser API.
|
327 |
+
|
328 |
+
>>> from nltk import pos_tag
|
329 |
+
>>> assert 'MALT_PARSER' in os.environ, str(
|
330 |
+
... "Please set MALT_PARSER in your global environment, e.g.:\n"
|
331 |
+
... "$ export MALT_PARSER='/home/user/maltparser-1.9.2/'")
|
332 |
+
>>>
|
333 |
+
>>> assert 'MALT_MODEL' in os.environ, str(
|
334 |
+
... "Please set MALT_MODEL in your global environment, e.g.:\n"
|
335 |
+
... "$ export MALT_MODEL='/home/user/engmalt.linear-1.7.mco'")
|
336 |
+
>>>
|
337 |
+
>>> _dg1_str = str("1 John _ NNP _ _ 2 SUBJ _ _\n"
|
338 |
+
... "2 sees _ VB _ _ 0 ROOT _ _\n"
|
339 |
+
... "3 a _ DT _ _ 4 SPEC _ _\n"
|
340 |
+
... "4 dog _ NN _ _ 2 OBJ _ _\n"
|
341 |
+
... "5 . _ . _ _ 2 PUNCT _ _\n")
|
342 |
+
>>>
|
343 |
+
>>>
|
344 |
+
>>> _dg2_str = str("1 John _ NNP _ _ 2 SUBJ _ _\n"
|
345 |
+
... "2 walks _ VB _ _ 0 ROOT _ _\n"
|
346 |
+
... "3 . _ . _ _ 2 PUNCT _ _\n")
|
347 |
+
>>> dg1 = DependencyGraph(_dg1_str)
|
348 |
+
>>> dg2 = DependencyGraph(_dg2_str)
|
349 |
+
>>> # Initialize a MaltParser object
|
350 |
+
>>> mp = MaltParser()
|
351 |
+
>>>
|
352 |
+
>>> # Trains a model.
|
353 |
+
>>> mp.train([dg1,dg2], verbose=False)
|
354 |
+
>>> sent1 = ['John','sees','Mary', '.']
|
355 |
+
>>> sent2 = ['John', 'walks', 'a', 'dog', '.']
|
356 |
+
>>>
|
357 |
+
>>> # Parse a single sentence.
|
358 |
+
>>> parsed_sent1 = mp.parse_one(sent1)
|
359 |
+
>>> parsed_sent2 = mp.parse_one(sent2)
|
360 |
+
>>> print(parsed_sent1.tree())
|
361 |
+
(sees John Mary .)
|
362 |
+
>>> print(parsed_sent2.tree())
|
363 |
+
(walks John (dog a) .)
|
364 |
+
>>>
|
365 |
+
>>> # Parsing multiple sentences.
|
366 |
+
>>> sentences = [sent1,sent2]
|
367 |
+
>>> parsed_sents = mp.parse_sents(sentences)
|
368 |
+
>>> print(next(next(parsed_sents)).tree())
|
369 |
+
(sees John Mary .)
|
370 |
+
>>> print(next(next(parsed_sents)).tree())
|
371 |
+
(walks John (dog a) .)
|
372 |
+
>>>
|
373 |
+
>>> # Initialize a MaltParser object with an English pre-trained model.
|
374 |
+
>>> parser_dirname = 'maltparser-1.9.2'
|
375 |
+
>>> model_name = 'engmalt.linear-1.7.mco'
|
376 |
+
>>> mp = MaltParser(parser_dirname=parser_dirname, model_filename=model_name, tagger=pos_tag)
|
377 |
+
>>> sent1 = 'I shot an elephant in my pajamas .'.split()
|
378 |
+
>>> sent2 = 'Time flies like banana .'.split()
|
379 |
+
>>> # Parse a single sentence.
|
380 |
+
>>> print(mp.parse_one(sent1).tree())
|
381 |
+
(shot I (elephant an) (in (pajamas my)) .)
|
382 |
+
# Parsing multiple sentences
|
383 |
+
>>> sentences = [sent1,sent2]
|
384 |
+
>>> parsed_sents = mp.parse_sents(sentences)
|
385 |
+
>>> print(next(next(parsed_sents)).tree())
|
386 |
+
(shot I (elephant an) (in (pajamas my)) .)
|
387 |
+
>>> print(next(next(parsed_sents)).tree())
|
388 |
+
(flies Time (like banana) .)
|
389 |
+
"""
|
390 |
+
|
391 |
+
import doctest
|
392 |
+
|
393 |
+
doctest.testmod()
|
venv/lib/python3.10/site-packages/nltk/parse/nonprojectivedependencyparser.py
ADDED
@@ -0,0 +1,772 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Dependency Grammars
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Jason Narad <[email protected]>
|
5 |
+
#
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
#
|
9 |
+
|
10 |
+
import logging
|
11 |
+
import math
|
12 |
+
|
13 |
+
from nltk.parse.dependencygraph import DependencyGraph
|
14 |
+
|
15 |
+
logger = logging.getLogger(__name__)
|
16 |
+
|
17 |
+
#################################################################
|
18 |
+
# DependencyScorerI - Interface for Graph-Edge Weight Calculation
|
19 |
+
#################################################################
|
20 |
+
|
21 |
+
|
22 |
+
class DependencyScorerI:
|
23 |
+
"""
|
24 |
+
A scorer for calculated the weights on the edges of a weighted
|
25 |
+
dependency graph. This is used by a
|
26 |
+
``ProbabilisticNonprojectiveParser`` to initialize the edge
|
27 |
+
weights of a ``DependencyGraph``. While typically this would be done
|
28 |
+
by training a binary classifier, any class that can return a
|
29 |
+
multidimensional list representation of the edge weights can
|
30 |
+
implement this interface. As such, it has no necessary
|
31 |
+
fields.
|
32 |
+
"""
|
33 |
+
|
34 |
+
def __init__(self):
|
35 |
+
if self.__class__ == DependencyScorerI:
|
36 |
+
raise TypeError("DependencyScorerI is an abstract interface")
|
37 |
+
|
38 |
+
def train(self, graphs):
|
39 |
+
"""
|
40 |
+
:type graphs: list(DependencyGraph)
|
41 |
+
:param graphs: A list of dependency graphs to train the scorer.
|
42 |
+
Typically the edges present in the graphs can be used as
|
43 |
+
positive training examples, and the edges not present as negative
|
44 |
+
examples.
|
45 |
+
"""
|
46 |
+
raise NotImplementedError()
|
47 |
+
|
48 |
+
def score(self, graph):
|
49 |
+
"""
|
50 |
+
:type graph: DependencyGraph
|
51 |
+
:param graph: A dependency graph whose set of edges need to be
|
52 |
+
scored.
|
53 |
+
:rtype: A three-dimensional list of numbers.
|
54 |
+
:return: The score is returned in a multidimensional(3) list, such
|
55 |
+
that the outer-dimension refers to the head, and the
|
56 |
+
inner-dimension refers to the dependencies. For instance,
|
57 |
+
scores[0][1] would reference the list of scores corresponding to
|
58 |
+
arcs from node 0 to node 1. The node's 'address' field can be used
|
59 |
+
to determine its number identification.
|
60 |
+
|
61 |
+
For further illustration, a score list corresponding to Fig.2 of
|
62 |
+
Keith Hall's 'K-best Spanning Tree Parsing' paper::
|
63 |
+
|
64 |
+
scores = [[[], [5], [1], [1]],
|
65 |
+
[[], [], [11], [4]],
|
66 |
+
[[], [10], [], [5]],
|
67 |
+
[[], [8], [8], []]]
|
68 |
+
|
69 |
+
When used in conjunction with a MaxEntClassifier, each score would
|
70 |
+
correspond to the confidence of a particular edge being classified
|
71 |
+
with the positive training examples.
|
72 |
+
"""
|
73 |
+
raise NotImplementedError()
|
74 |
+
|
75 |
+
|
76 |
+
#################################################################
|
77 |
+
# NaiveBayesDependencyScorer
|
78 |
+
#################################################################
|
79 |
+
|
80 |
+
|
81 |
+
class NaiveBayesDependencyScorer(DependencyScorerI):
|
82 |
+
"""
|
83 |
+
A dependency scorer built around a MaxEnt classifier. In this
|
84 |
+
particular class that classifier is a ``NaiveBayesClassifier``.
|
85 |
+
It uses head-word, head-tag, child-word, and child-tag features
|
86 |
+
for classification.
|
87 |
+
|
88 |
+
>>> from nltk.parse.dependencygraph import DependencyGraph, conll_data2
|
89 |
+
|
90 |
+
>>> graphs = [DependencyGraph(entry) for entry in conll_data2.split('\\n\\n') if entry]
|
91 |
+
>>> npp = ProbabilisticNonprojectiveParser()
|
92 |
+
>>> npp.train(graphs, NaiveBayesDependencyScorer())
|
93 |
+
>>> parses = npp.parse(['Cathy', 'zag', 'hen', 'zwaaien', '.'], ['N', 'V', 'Pron', 'Adj', 'N', 'Punc'])
|
94 |
+
>>> len(list(parses))
|
95 |
+
1
|
96 |
+
|
97 |
+
"""
|
98 |
+
|
99 |
+
def __init__(self):
|
100 |
+
pass # Do nothing without throwing error
|
101 |
+
|
102 |
+
def train(self, graphs):
|
103 |
+
"""
|
104 |
+
Trains a ``NaiveBayesClassifier`` using the edges present in
|
105 |
+
graphs list as positive examples, the edges not present as
|
106 |
+
negative examples. Uses a feature vector of head-word,
|
107 |
+
head-tag, child-word, and child-tag.
|
108 |
+
|
109 |
+
:type graphs: list(DependencyGraph)
|
110 |
+
:param graphs: A list of dependency graphs to train the scorer.
|
111 |
+
"""
|
112 |
+
|
113 |
+
from nltk.classify import NaiveBayesClassifier
|
114 |
+
|
115 |
+
# Create training labeled training examples
|
116 |
+
labeled_examples = []
|
117 |
+
for graph in graphs:
|
118 |
+
for head_node in graph.nodes.values():
|
119 |
+
for child_index, child_node in graph.nodes.items():
|
120 |
+
if child_index in head_node["deps"]:
|
121 |
+
label = "T"
|
122 |
+
else:
|
123 |
+
label = "F"
|
124 |
+
labeled_examples.append(
|
125 |
+
(
|
126 |
+
dict(
|
127 |
+
a=head_node["word"],
|
128 |
+
b=head_node["tag"],
|
129 |
+
c=child_node["word"],
|
130 |
+
d=child_node["tag"],
|
131 |
+
),
|
132 |
+
label,
|
133 |
+
)
|
134 |
+
)
|
135 |
+
|
136 |
+
self.classifier = NaiveBayesClassifier.train(labeled_examples)
|
137 |
+
|
138 |
+
def score(self, graph):
|
139 |
+
"""
|
140 |
+
Converts the graph into a feature-based representation of
|
141 |
+
each edge, and then assigns a score to each based on the
|
142 |
+
confidence of the classifier in assigning it to the
|
143 |
+
positive label. Scores are returned in a multidimensional list.
|
144 |
+
|
145 |
+
:type graph: DependencyGraph
|
146 |
+
:param graph: A dependency graph to score.
|
147 |
+
:rtype: 3 dimensional list
|
148 |
+
:return: Edge scores for the graph parameter.
|
149 |
+
"""
|
150 |
+
# Convert graph to feature representation
|
151 |
+
edges = []
|
152 |
+
for head_node in graph.nodes.values():
|
153 |
+
for child_node in graph.nodes.values():
|
154 |
+
edges.append(
|
155 |
+
dict(
|
156 |
+
a=head_node["word"],
|
157 |
+
b=head_node["tag"],
|
158 |
+
c=child_node["word"],
|
159 |
+
d=child_node["tag"],
|
160 |
+
)
|
161 |
+
)
|
162 |
+
|
163 |
+
# Score edges
|
164 |
+
edge_scores = []
|
165 |
+
row = []
|
166 |
+
count = 0
|
167 |
+
for pdist in self.classifier.prob_classify_many(edges):
|
168 |
+
logger.debug("%.4f %.4f", pdist.prob("T"), pdist.prob("F"))
|
169 |
+
# smoothing in case the probability = 0
|
170 |
+
row.append([math.log(pdist.prob("T") + 0.00000000001)])
|
171 |
+
count += 1
|
172 |
+
if count == len(graph.nodes):
|
173 |
+
edge_scores.append(row)
|
174 |
+
row = []
|
175 |
+
count = 0
|
176 |
+
return edge_scores
|
177 |
+
|
178 |
+
|
179 |
+
#################################################################
|
180 |
+
# A Scorer for Demo Purposes
|
181 |
+
#################################################################
|
182 |
+
# A short class necessary to show parsing example from paper
|
183 |
+
class DemoScorer(DependencyScorerI):
|
184 |
+
def train(self, graphs):
|
185 |
+
print("Training...")
|
186 |
+
|
187 |
+
def score(self, graph):
|
188 |
+
# scores for Keith Hall 'K-best Spanning Tree Parsing' paper
|
189 |
+
return [
|
190 |
+
[[], [5], [1], [1]],
|
191 |
+
[[], [], [11], [4]],
|
192 |
+
[[], [10], [], [5]],
|
193 |
+
[[], [8], [8], []],
|
194 |
+
]
|
195 |
+
|
196 |
+
|
197 |
+
#################################################################
|
198 |
+
# Non-Projective Probabilistic Parsing
|
199 |
+
#################################################################
|
200 |
+
|
201 |
+
|
202 |
+
class ProbabilisticNonprojectiveParser:
|
203 |
+
"""A probabilistic non-projective dependency parser.
|
204 |
+
|
205 |
+
Nonprojective dependencies allows for "crossing branches" in the parse tree
|
206 |
+
which is necessary for representing particular linguistic phenomena, or even
|
207 |
+
typical parses in some languages. This parser follows the MST parsing
|
208 |
+
algorithm, outlined in McDonald(2005), which likens the search for the best
|
209 |
+
non-projective parse to finding the maximum spanning tree in a weighted
|
210 |
+
directed graph.
|
211 |
+
|
212 |
+
>>> class Scorer(DependencyScorerI):
|
213 |
+
... def train(self, graphs):
|
214 |
+
... pass
|
215 |
+
...
|
216 |
+
... def score(self, graph):
|
217 |
+
... return [
|
218 |
+
... [[], [5], [1], [1]],
|
219 |
+
... [[], [], [11], [4]],
|
220 |
+
... [[], [10], [], [5]],
|
221 |
+
... [[], [8], [8], []],
|
222 |
+
... ]
|
223 |
+
|
224 |
+
|
225 |
+
>>> npp = ProbabilisticNonprojectiveParser()
|
226 |
+
>>> npp.train([], Scorer())
|
227 |
+
|
228 |
+
>>> parses = npp.parse(['v1', 'v2', 'v3'], [None, None, None])
|
229 |
+
>>> len(list(parses))
|
230 |
+
1
|
231 |
+
|
232 |
+
Rule based example
|
233 |
+
|
234 |
+
>>> from nltk.grammar import DependencyGrammar
|
235 |
+
|
236 |
+
>>> grammar = DependencyGrammar.fromstring('''
|
237 |
+
... 'taught' -> 'play' | 'man'
|
238 |
+
... 'man' -> 'the' | 'in'
|
239 |
+
... 'in' -> 'corner'
|
240 |
+
... 'corner' -> 'the'
|
241 |
+
... 'play' -> 'golf' | 'dachshund' | 'to'
|
242 |
+
... 'dachshund' -> 'his'
|
243 |
+
... ''')
|
244 |
+
|
245 |
+
>>> ndp = NonprojectiveDependencyParser(grammar)
|
246 |
+
>>> parses = ndp.parse(['the', 'man', 'in', 'the', 'corner', 'taught', 'his', 'dachshund', 'to', 'play', 'golf'])
|
247 |
+
>>> len(list(parses))
|
248 |
+
4
|
249 |
+
|
250 |
+
"""
|
251 |
+
|
252 |
+
def __init__(self):
|
253 |
+
"""
|
254 |
+
Creates a new non-projective parser.
|
255 |
+
"""
|
256 |
+
logging.debug("initializing prob. nonprojective...")
|
257 |
+
|
258 |
+
def train(self, graphs, dependency_scorer):
|
259 |
+
"""
|
260 |
+
Trains a ``DependencyScorerI`` from a set of ``DependencyGraph`` objects,
|
261 |
+
and establishes this as the parser's scorer. This is used to
|
262 |
+
initialize the scores on a ``DependencyGraph`` during the parsing
|
263 |
+
procedure.
|
264 |
+
|
265 |
+
:type graphs: list(DependencyGraph)
|
266 |
+
:param graphs: A list of dependency graphs to train the scorer.
|
267 |
+
:type dependency_scorer: DependencyScorerI
|
268 |
+
:param dependency_scorer: A scorer which implements the
|
269 |
+
``DependencyScorerI`` interface.
|
270 |
+
"""
|
271 |
+
self._scorer = dependency_scorer
|
272 |
+
self._scorer.train(graphs)
|
273 |
+
|
274 |
+
def initialize_edge_scores(self, graph):
|
275 |
+
"""
|
276 |
+
Assigns a score to every edge in the ``DependencyGraph`` graph.
|
277 |
+
These scores are generated via the parser's scorer which
|
278 |
+
was assigned during the training process.
|
279 |
+
|
280 |
+
:type graph: DependencyGraph
|
281 |
+
:param graph: A dependency graph to assign scores to.
|
282 |
+
"""
|
283 |
+
self.scores = self._scorer.score(graph)
|
284 |
+
|
285 |
+
def collapse_nodes(self, new_node, cycle_path, g_graph, b_graph, c_graph):
|
286 |
+
"""
|
287 |
+
Takes a list of nodes that have been identified to belong to a cycle,
|
288 |
+
and collapses them into on larger node. The arcs of all nodes in
|
289 |
+
the graph must be updated to account for this.
|
290 |
+
|
291 |
+
:type new_node: Node.
|
292 |
+
:param new_node: A Node (Dictionary) to collapse the cycle nodes into.
|
293 |
+
:type cycle_path: A list of integers.
|
294 |
+
:param cycle_path: A list of node addresses, each of which is in the cycle.
|
295 |
+
:type g_graph, b_graph, c_graph: DependencyGraph
|
296 |
+
:param g_graph, b_graph, c_graph: Graphs which need to be updated.
|
297 |
+
"""
|
298 |
+
logger.debug("Collapsing nodes...")
|
299 |
+
# Collapse all cycle nodes into v_n+1 in G_Graph
|
300 |
+
for cycle_node_index in cycle_path:
|
301 |
+
g_graph.remove_by_address(cycle_node_index)
|
302 |
+
g_graph.add_node(new_node)
|
303 |
+
g_graph.redirect_arcs(cycle_path, new_node["address"])
|
304 |
+
|
305 |
+
def update_edge_scores(self, new_node, cycle_path):
|
306 |
+
"""
|
307 |
+
Updates the edge scores to reflect a collapse operation into
|
308 |
+
new_node.
|
309 |
+
|
310 |
+
:type new_node: A Node.
|
311 |
+
:param new_node: The node which cycle nodes are collapsed into.
|
312 |
+
:type cycle_path: A list of integers.
|
313 |
+
:param cycle_path: A list of node addresses that belong to the cycle.
|
314 |
+
"""
|
315 |
+
logger.debug("cycle %s", cycle_path)
|
316 |
+
|
317 |
+
cycle_path = self.compute_original_indexes(cycle_path)
|
318 |
+
|
319 |
+
logger.debug("old cycle %s", cycle_path)
|
320 |
+
logger.debug("Prior to update: %s", self.scores)
|
321 |
+
|
322 |
+
for i, row in enumerate(self.scores):
|
323 |
+
for j, column in enumerate(self.scores[i]):
|
324 |
+
logger.debug(self.scores[i][j])
|
325 |
+
if j in cycle_path and i not in cycle_path and self.scores[i][j]:
|
326 |
+
subtract_val = self.compute_max_subtract_score(j, cycle_path)
|
327 |
+
|
328 |
+
logger.debug("%s - %s", self.scores[i][j], subtract_val)
|
329 |
+
|
330 |
+
new_vals = []
|
331 |
+
for cur_val in self.scores[i][j]:
|
332 |
+
new_vals.append(cur_val - subtract_val)
|
333 |
+
|
334 |
+
self.scores[i][j] = new_vals
|
335 |
+
|
336 |
+
for i, row in enumerate(self.scores):
|
337 |
+
for j, cell in enumerate(self.scores[i]):
|
338 |
+
if i in cycle_path and j in cycle_path:
|
339 |
+
self.scores[i][j] = []
|
340 |
+
|
341 |
+
logger.debug("After update: %s", self.scores)
|
342 |
+
|
343 |
+
def compute_original_indexes(self, new_indexes):
|
344 |
+
"""
|
345 |
+
As nodes are collapsed into others, they are replaced
|
346 |
+
by the new node in the graph, but it's still necessary
|
347 |
+
to keep track of what these original nodes were. This
|
348 |
+
takes a list of node addresses and replaces any collapsed
|
349 |
+
node addresses with their original addresses.
|
350 |
+
|
351 |
+
:type new_indexes: A list of integers.
|
352 |
+
:param new_indexes: A list of node addresses to check for
|
353 |
+
subsumed nodes.
|
354 |
+
"""
|
355 |
+
swapped = True
|
356 |
+
while swapped:
|
357 |
+
originals = []
|
358 |
+
swapped = False
|
359 |
+
for new_index in new_indexes:
|
360 |
+
if new_index in self.inner_nodes:
|
361 |
+
for old_val in self.inner_nodes[new_index]:
|
362 |
+
if old_val not in originals:
|
363 |
+
originals.append(old_val)
|
364 |
+
swapped = True
|
365 |
+
else:
|
366 |
+
originals.append(new_index)
|
367 |
+
new_indexes = originals
|
368 |
+
return new_indexes
|
369 |
+
|
370 |
+
def compute_max_subtract_score(self, column_index, cycle_indexes):
|
371 |
+
"""
|
372 |
+
When updating scores the score of the highest-weighted incoming
|
373 |
+
arc is subtracted upon collapse. This returns the correct
|
374 |
+
amount to subtract from that edge.
|
375 |
+
|
376 |
+
:type column_index: integer.
|
377 |
+
:param column_index: A index representing the column of incoming arcs
|
378 |
+
to a particular node being updated
|
379 |
+
:type cycle_indexes: A list of integers.
|
380 |
+
:param cycle_indexes: Only arcs from cycle nodes are considered. This
|
381 |
+
is a list of such nodes addresses.
|
382 |
+
"""
|
383 |
+
max_score = -100000
|
384 |
+
for row_index in cycle_indexes:
|
385 |
+
for subtract_val in self.scores[row_index][column_index]:
|
386 |
+
if subtract_val > max_score:
|
387 |
+
max_score = subtract_val
|
388 |
+
return max_score
|
389 |
+
|
390 |
+
def best_incoming_arc(self, node_index):
|
391 |
+
"""
|
392 |
+
Returns the source of the best incoming arc to the
|
393 |
+
node with address: node_index
|
394 |
+
|
395 |
+
:type node_index: integer.
|
396 |
+
:param node_index: The address of the 'destination' node,
|
397 |
+
the node that is arced to.
|
398 |
+
"""
|
399 |
+
originals = self.compute_original_indexes([node_index])
|
400 |
+
logger.debug("originals: %s", originals)
|
401 |
+
|
402 |
+
max_arc = None
|
403 |
+
max_score = None
|
404 |
+
for row_index in range(len(self.scores)):
|
405 |
+
for col_index in range(len(self.scores[row_index])):
|
406 |
+
if col_index in originals and (
|
407 |
+
max_score is None or self.scores[row_index][col_index] > max_score
|
408 |
+
):
|
409 |
+
max_score = self.scores[row_index][col_index]
|
410 |
+
max_arc = row_index
|
411 |
+
logger.debug("%s, %s", row_index, col_index)
|
412 |
+
|
413 |
+
logger.debug(max_score)
|
414 |
+
|
415 |
+
for key in self.inner_nodes:
|
416 |
+
replaced_nodes = self.inner_nodes[key]
|
417 |
+
if max_arc in replaced_nodes:
|
418 |
+
return key
|
419 |
+
|
420 |
+
return max_arc
|
421 |
+
|
422 |
+
def original_best_arc(self, node_index):
|
423 |
+
originals = self.compute_original_indexes([node_index])
|
424 |
+
max_arc = None
|
425 |
+
max_score = None
|
426 |
+
max_orig = None
|
427 |
+
for row_index in range(len(self.scores)):
|
428 |
+
for col_index in range(len(self.scores[row_index])):
|
429 |
+
if col_index in originals and (
|
430 |
+
max_score is None or self.scores[row_index][col_index] > max_score
|
431 |
+
):
|
432 |
+
max_score = self.scores[row_index][col_index]
|
433 |
+
max_arc = row_index
|
434 |
+
max_orig = col_index
|
435 |
+
return [max_arc, max_orig]
|
436 |
+
|
437 |
+
def parse(self, tokens, tags):
|
438 |
+
"""
|
439 |
+
Parses a list of tokens in accordance to the MST parsing algorithm
|
440 |
+
for non-projective dependency parses. Assumes that the tokens to
|
441 |
+
be parsed have already been tagged and those tags are provided. Various
|
442 |
+
scoring methods can be used by implementing the ``DependencyScorerI``
|
443 |
+
interface and passing it to the training algorithm.
|
444 |
+
|
445 |
+
:type tokens: list(str)
|
446 |
+
:param tokens: A list of words or punctuation to be parsed.
|
447 |
+
:type tags: list(str)
|
448 |
+
:param tags: A list of tags corresponding by index to the words in the tokens list.
|
449 |
+
:return: An iterator of non-projective parses.
|
450 |
+
:rtype: iter(DependencyGraph)
|
451 |
+
"""
|
452 |
+
self.inner_nodes = {}
|
453 |
+
|
454 |
+
# Initialize g_graph
|
455 |
+
g_graph = DependencyGraph()
|
456 |
+
for index, token in enumerate(tokens):
|
457 |
+
g_graph.nodes[index + 1].update(
|
458 |
+
{"word": token, "tag": tags[index], "rel": "NTOP", "address": index + 1}
|
459 |
+
)
|
460 |
+
|
461 |
+
# Fully connect non-root nodes in g_graph
|
462 |
+
g_graph.connect_graph()
|
463 |
+
original_graph = DependencyGraph()
|
464 |
+
for index, token in enumerate(tokens):
|
465 |
+
original_graph.nodes[index + 1].update(
|
466 |
+
{"word": token, "tag": tags[index], "rel": "NTOP", "address": index + 1}
|
467 |
+
)
|
468 |
+
|
469 |
+
b_graph = DependencyGraph()
|
470 |
+
c_graph = DependencyGraph()
|
471 |
+
|
472 |
+
for index, token in enumerate(tokens):
|
473 |
+
c_graph.nodes[index + 1].update(
|
474 |
+
{"word": token, "tag": tags[index], "rel": "NTOP", "address": index + 1}
|
475 |
+
)
|
476 |
+
|
477 |
+
# Assign initial scores to g_graph edges
|
478 |
+
self.initialize_edge_scores(g_graph)
|
479 |
+
logger.debug(self.scores)
|
480 |
+
# Initialize a list of unvisited vertices (by node address)
|
481 |
+
unvisited_vertices = [vertex["address"] for vertex in c_graph.nodes.values()]
|
482 |
+
# Iterate over unvisited vertices
|
483 |
+
nr_vertices = len(tokens)
|
484 |
+
betas = {}
|
485 |
+
while unvisited_vertices:
|
486 |
+
# Mark current node as visited
|
487 |
+
current_vertex = unvisited_vertices.pop(0)
|
488 |
+
logger.debug("current_vertex: %s", current_vertex)
|
489 |
+
# Get corresponding node n_i to vertex v_i
|
490 |
+
current_node = g_graph.get_by_address(current_vertex)
|
491 |
+
logger.debug("current_node: %s", current_node)
|
492 |
+
# Get best in-edge node b for current node
|
493 |
+
best_in_edge = self.best_incoming_arc(current_vertex)
|
494 |
+
betas[current_vertex] = self.original_best_arc(current_vertex)
|
495 |
+
logger.debug("best in arc: %s --> %s", best_in_edge, current_vertex)
|
496 |
+
# b_graph = Union(b_graph, b)
|
497 |
+
for new_vertex in [current_vertex, best_in_edge]:
|
498 |
+
b_graph.nodes[new_vertex].update(
|
499 |
+
{"word": "TEMP", "rel": "NTOP", "address": new_vertex}
|
500 |
+
)
|
501 |
+
b_graph.add_arc(best_in_edge, current_vertex)
|
502 |
+
# Beta(current node) = b - stored for parse recovery
|
503 |
+
# If b_graph contains a cycle, collapse it
|
504 |
+
cycle_path = b_graph.contains_cycle()
|
505 |
+
if cycle_path:
|
506 |
+
# Create a new node v_n+1 with address = len(nodes) + 1
|
507 |
+
new_node = {"word": "NONE", "rel": "NTOP", "address": nr_vertices + 1}
|
508 |
+
# c_graph = Union(c_graph, v_n+1)
|
509 |
+
c_graph.add_node(new_node)
|
510 |
+
# Collapse all nodes in cycle C into v_n+1
|
511 |
+
self.update_edge_scores(new_node, cycle_path)
|
512 |
+
self.collapse_nodes(new_node, cycle_path, g_graph, b_graph, c_graph)
|
513 |
+
for cycle_index in cycle_path:
|
514 |
+
c_graph.add_arc(new_node["address"], cycle_index)
|
515 |
+
# self.replaced_by[cycle_index] = new_node['address']
|
516 |
+
|
517 |
+
self.inner_nodes[new_node["address"]] = cycle_path
|
518 |
+
|
519 |
+
# Add v_n+1 to list of unvisited vertices
|
520 |
+
unvisited_vertices.insert(0, nr_vertices + 1)
|
521 |
+
|
522 |
+
# increment # of nodes counter
|
523 |
+
nr_vertices += 1
|
524 |
+
|
525 |
+
# Remove cycle nodes from b_graph; B = B - cycle c
|
526 |
+
for cycle_node_address in cycle_path:
|
527 |
+
b_graph.remove_by_address(cycle_node_address)
|
528 |
+
|
529 |
+
logger.debug("g_graph: %s", g_graph)
|
530 |
+
logger.debug("b_graph: %s", b_graph)
|
531 |
+
logger.debug("c_graph: %s", c_graph)
|
532 |
+
logger.debug("Betas: %s", betas)
|
533 |
+
logger.debug("replaced nodes %s", self.inner_nodes)
|
534 |
+
|
535 |
+
# Recover parse tree
|
536 |
+
logger.debug("Final scores: %s", self.scores)
|
537 |
+
|
538 |
+
logger.debug("Recovering parse...")
|
539 |
+
for i in range(len(tokens) + 1, nr_vertices + 1):
|
540 |
+
betas[betas[i][1]] = betas[i]
|
541 |
+
|
542 |
+
logger.debug("Betas: %s", betas)
|
543 |
+
for node in original_graph.nodes.values():
|
544 |
+
# TODO: It's dangerous to assume that deps it a dictionary
|
545 |
+
# because it's a default dictionary. Ideally, here we should not
|
546 |
+
# be concerned how dependencies are stored inside of a dependency
|
547 |
+
# graph.
|
548 |
+
node["deps"] = {}
|
549 |
+
for i in range(1, len(tokens) + 1):
|
550 |
+
original_graph.add_arc(betas[i][0], betas[i][1])
|
551 |
+
|
552 |
+
logger.debug("Done.")
|
553 |
+
yield original_graph
|
554 |
+
|
555 |
+
|
556 |
+
#################################################################
|
557 |
+
# Rule-based Non-Projective Parser
|
558 |
+
#################################################################
|
559 |
+
|
560 |
+
|
561 |
+
class NonprojectiveDependencyParser:
|
562 |
+
"""
|
563 |
+
A non-projective, rule-based, dependency parser. This parser
|
564 |
+
will return the set of all possible non-projective parses based on
|
565 |
+
the word-to-word relations defined in the parser's dependency
|
566 |
+
grammar, and will allow the branches of the parse tree to cross
|
567 |
+
in order to capture a variety of linguistic phenomena that a
|
568 |
+
projective parser will not.
|
569 |
+
"""
|
570 |
+
|
571 |
+
def __init__(self, dependency_grammar):
|
572 |
+
"""
|
573 |
+
Creates a new ``NonprojectiveDependencyParser``.
|
574 |
+
|
575 |
+
:param dependency_grammar: a grammar of word-to-word relations.
|
576 |
+
:type dependency_grammar: DependencyGrammar
|
577 |
+
"""
|
578 |
+
self._grammar = dependency_grammar
|
579 |
+
|
580 |
+
def parse(self, tokens):
|
581 |
+
"""
|
582 |
+
Parses the input tokens with respect to the parser's grammar. Parsing
|
583 |
+
is accomplished by representing the search-space of possible parses as
|
584 |
+
a fully-connected directed graph. Arcs that would lead to ungrammatical
|
585 |
+
parses are removed and a lattice is constructed of length n, where n is
|
586 |
+
the number of input tokens, to represent all possible grammatical
|
587 |
+
traversals. All possible paths through the lattice are then enumerated
|
588 |
+
to produce the set of non-projective parses.
|
589 |
+
|
590 |
+
param tokens: A list of tokens to parse.
|
591 |
+
type tokens: list(str)
|
592 |
+
return: An iterator of non-projective parses.
|
593 |
+
rtype: iter(DependencyGraph)
|
594 |
+
"""
|
595 |
+
# Create graph representation of tokens
|
596 |
+
self._graph = DependencyGraph()
|
597 |
+
|
598 |
+
for index, token in enumerate(tokens):
|
599 |
+
self._graph.nodes[index] = {
|
600 |
+
"word": token,
|
601 |
+
"deps": [],
|
602 |
+
"rel": "NTOP",
|
603 |
+
"address": index,
|
604 |
+
}
|
605 |
+
|
606 |
+
for head_node in self._graph.nodes.values():
|
607 |
+
deps = []
|
608 |
+
for dep_node in self._graph.nodes.values():
|
609 |
+
if (
|
610 |
+
self._grammar.contains(head_node["word"], dep_node["word"])
|
611 |
+
and head_node["word"] != dep_node["word"]
|
612 |
+
):
|
613 |
+
deps.append(dep_node["address"])
|
614 |
+
head_node["deps"] = deps
|
615 |
+
|
616 |
+
# Create lattice of possible heads
|
617 |
+
roots = []
|
618 |
+
possible_heads = []
|
619 |
+
for i, word in enumerate(tokens):
|
620 |
+
heads = []
|
621 |
+
for j, head in enumerate(tokens):
|
622 |
+
if (i != j) and self._grammar.contains(head, word):
|
623 |
+
heads.append(j)
|
624 |
+
if len(heads) == 0:
|
625 |
+
roots.append(i)
|
626 |
+
possible_heads.append(heads)
|
627 |
+
|
628 |
+
# Set roots to attempt
|
629 |
+
if len(roots) < 2:
|
630 |
+
if len(roots) == 0:
|
631 |
+
for i in range(len(tokens)):
|
632 |
+
roots.append(i)
|
633 |
+
|
634 |
+
# Traverse lattice
|
635 |
+
analyses = []
|
636 |
+
for _ in roots:
|
637 |
+
stack = []
|
638 |
+
analysis = [[] for i in range(len(possible_heads))]
|
639 |
+
i = 0
|
640 |
+
forward = True
|
641 |
+
while i >= 0:
|
642 |
+
if forward:
|
643 |
+
if len(possible_heads[i]) == 1:
|
644 |
+
analysis[i] = possible_heads[i][0]
|
645 |
+
elif len(possible_heads[i]) == 0:
|
646 |
+
analysis[i] = -1
|
647 |
+
else:
|
648 |
+
head = possible_heads[i].pop()
|
649 |
+
analysis[i] = head
|
650 |
+
stack.append([i, head])
|
651 |
+
if not forward:
|
652 |
+
index_on_stack = False
|
653 |
+
for stack_item in stack:
|
654 |
+
if stack_item[0] == i:
|
655 |
+
index_on_stack = True
|
656 |
+
orig_length = len(possible_heads[i])
|
657 |
+
|
658 |
+
if index_on_stack and orig_length == 0:
|
659 |
+
for j in range(len(stack) - 1, -1, -1):
|
660 |
+
stack_item = stack[j]
|
661 |
+
if stack_item[0] == i:
|
662 |
+
possible_heads[i].append(stack.pop(j)[1])
|
663 |
+
|
664 |
+
elif index_on_stack and orig_length > 0:
|
665 |
+
head = possible_heads[i].pop()
|
666 |
+
analysis[i] = head
|
667 |
+
stack.append([i, head])
|
668 |
+
forward = True
|
669 |
+
|
670 |
+
if i + 1 == len(possible_heads):
|
671 |
+
analyses.append(analysis[:])
|
672 |
+
forward = False
|
673 |
+
if forward:
|
674 |
+
i += 1
|
675 |
+
else:
|
676 |
+
i -= 1
|
677 |
+
|
678 |
+
# Filter parses
|
679 |
+
# ensure 1 root, every thing has 1 head
|
680 |
+
for analysis in analyses:
|
681 |
+
if analysis.count(-1) > 1:
|
682 |
+
# there are several root elements!
|
683 |
+
continue
|
684 |
+
|
685 |
+
graph = DependencyGraph()
|
686 |
+
graph.root = graph.nodes[analysis.index(-1) + 1]
|
687 |
+
|
688 |
+
for address, (token, head_index) in enumerate(
|
689 |
+
zip(tokens, analysis), start=1
|
690 |
+
):
|
691 |
+
head_address = head_index + 1
|
692 |
+
|
693 |
+
node = graph.nodes[address]
|
694 |
+
node.update({"word": token, "address": address})
|
695 |
+
|
696 |
+
if head_address == 0:
|
697 |
+
rel = "ROOT"
|
698 |
+
else:
|
699 |
+
rel = ""
|
700 |
+
graph.nodes[head_index + 1]["deps"][rel].append(address)
|
701 |
+
|
702 |
+
# TODO: check for cycles
|
703 |
+
yield graph
|
704 |
+
|
705 |
+
|
706 |
+
#################################################################
|
707 |
+
# Demos
|
708 |
+
#################################################################
|
709 |
+
|
710 |
+
|
711 |
+
def demo():
|
712 |
+
# hall_demo()
|
713 |
+
nonprojective_conll_parse_demo()
|
714 |
+
rule_based_demo()
|
715 |
+
|
716 |
+
|
717 |
+
def hall_demo():
|
718 |
+
npp = ProbabilisticNonprojectiveParser()
|
719 |
+
npp.train([], DemoScorer())
|
720 |
+
for parse_graph in npp.parse(["v1", "v2", "v3"], [None, None, None]):
|
721 |
+
print(parse_graph)
|
722 |
+
|
723 |
+
|
724 |
+
def nonprojective_conll_parse_demo():
|
725 |
+
from nltk.parse.dependencygraph import conll_data2
|
726 |
+
|
727 |
+
graphs = [DependencyGraph(entry) for entry in conll_data2.split("\n\n") if entry]
|
728 |
+
npp = ProbabilisticNonprojectiveParser()
|
729 |
+
npp.train(graphs, NaiveBayesDependencyScorer())
|
730 |
+
for parse_graph in npp.parse(
|
731 |
+
["Cathy", "zag", "hen", "zwaaien", "."], ["N", "V", "Pron", "Adj", "N", "Punc"]
|
732 |
+
):
|
733 |
+
print(parse_graph)
|
734 |
+
|
735 |
+
|
736 |
+
def rule_based_demo():
|
737 |
+
from nltk.grammar import DependencyGrammar
|
738 |
+
|
739 |
+
grammar = DependencyGrammar.fromstring(
|
740 |
+
"""
|
741 |
+
'taught' -> 'play' | 'man'
|
742 |
+
'man' -> 'the' | 'in'
|
743 |
+
'in' -> 'corner'
|
744 |
+
'corner' -> 'the'
|
745 |
+
'play' -> 'golf' | 'dachshund' | 'to'
|
746 |
+
'dachshund' -> 'his'
|
747 |
+
"""
|
748 |
+
)
|
749 |
+
print(grammar)
|
750 |
+
ndp = NonprojectiveDependencyParser(grammar)
|
751 |
+
graphs = ndp.parse(
|
752 |
+
[
|
753 |
+
"the",
|
754 |
+
"man",
|
755 |
+
"in",
|
756 |
+
"the",
|
757 |
+
"corner",
|
758 |
+
"taught",
|
759 |
+
"his",
|
760 |
+
"dachshund",
|
761 |
+
"to",
|
762 |
+
"play",
|
763 |
+
"golf",
|
764 |
+
]
|
765 |
+
)
|
766 |
+
print("Graphs:")
|
767 |
+
for graph in graphs:
|
768 |
+
print(graph)
|
769 |
+
|
770 |
+
|
771 |
+
if __name__ == "__main__":
|
772 |
+
demo()
|
venv/lib/python3.10/site-packages/nltk/parse/stanford.py
ADDED
@@ -0,0 +1,470 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Interface to the Stanford Parser
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Steven Xu <[email protected]>
|
5 |
+
#
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
import os
|
10 |
+
import tempfile
|
11 |
+
import warnings
|
12 |
+
from subprocess import PIPE
|
13 |
+
|
14 |
+
from nltk.internals import (
|
15 |
+
_java_options,
|
16 |
+
config_java,
|
17 |
+
find_jar_iter,
|
18 |
+
find_jars_within_path,
|
19 |
+
java,
|
20 |
+
)
|
21 |
+
from nltk.parse.api import ParserI
|
22 |
+
from nltk.parse.dependencygraph import DependencyGraph
|
23 |
+
from nltk.tree import Tree
|
24 |
+
|
25 |
+
_stanford_url = "https://nlp.stanford.edu/software/lex-parser.shtml"
|
26 |
+
|
27 |
+
|
28 |
+
class GenericStanfordParser(ParserI):
|
29 |
+
"""Interface to the Stanford Parser"""
|
30 |
+
|
31 |
+
_MODEL_JAR_PATTERN = r"stanford-parser-(\d+)(\.(\d+))+-models\.jar"
|
32 |
+
_JAR = r"stanford-parser\.jar"
|
33 |
+
_MAIN_CLASS = "edu.stanford.nlp.parser.lexparser.LexicalizedParser"
|
34 |
+
|
35 |
+
_USE_STDIN = False
|
36 |
+
_DOUBLE_SPACED_OUTPUT = False
|
37 |
+
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
path_to_jar=None,
|
41 |
+
path_to_models_jar=None,
|
42 |
+
model_path="edu/stanford/nlp/models/lexparser/englishPCFG.ser.gz",
|
43 |
+
encoding="utf8",
|
44 |
+
verbose=False,
|
45 |
+
java_options="-mx4g",
|
46 |
+
corenlp_options="",
|
47 |
+
):
|
48 |
+
|
49 |
+
# find the most recent code and model jar
|
50 |
+
stanford_jar = max(
|
51 |
+
find_jar_iter(
|
52 |
+
self._JAR,
|
53 |
+
path_to_jar,
|
54 |
+
env_vars=("STANFORD_PARSER", "STANFORD_CORENLP"),
|
55 |
+
searchpath=(),
|
56 |
+
url=_stanford_url,
|
57 |
+
verbose=verbose,
|
58 |
+
is_regex=True,
|
59 |
+
),
|
60 |
+
key=lambda model_path: os.path.dirname(model_path),
|
61 |
+
)
|
62 |
+
|
63 |
+
model_jar = max(
|
64 |
+
find_jar_iter(
|
65 |
+
self._MODEL_JAR_PATTERN,
|
66 |
+
path_to_models_jar,
|
67 |
+
env_vars=("STANFORD_MODELS", "STANFORD_CORENLP"),
|
68 |
+
searchpath=(),
|
69 |
+
url=_stanford_url,
|
70 |
+
verbose=verbose,
|
71 |
+
is_regex=True,
|
72 |
+
),
|
73 |
+
key=lambda model_path: os.path.dirname(model_path),
|
74 |
+
)
|
75 |
+
|
76 |
+
# self._classpath = (stanford_jar, model_jar)
|
77 |
+
|
78 |
+
# Adding logging jar files to classpath
|
79 |
+
stanford_dir = os.path.split(stanford_jar)[0]
|
80 |
+
self._classpath = tuple([model_jar] + find_jars_within_path(stanford_dir))
|
81 |
+
|
82 |
+
self.model_path = model_path
|
83 |
+
self._encoding = encoding
|
84 |
+
self.corenlp_options = corenlp_options
|
85 |
+
self.java_options = java_options
|
86 |
+
|
87 |
+
def _parse_trees_output(self, output_):
|
88 |
+
res = []
|
89 |
+
cur_lines = []
|
90 |
+
cur_trees = []
|
91 |
+
blank = False
|
92 |
+
for line in output_.splitlines(False):
|
93 |
+
if line == "":
|
94 |
+
if blank:
|
95 |
+
res.append(iter(cur_trees))
|
96 |
+
cur_trees = []
|
97 |
+
blank = False
|
98 |
+
elif self._DOUBLE_SPACED_OUTPUT:
|
99 |
+
cur_trees.append(self._make_tree("\n".join(cur_lines)))
|
100 |
+
cur_lines = []
|
101 |
+
blank = True
|
102 |
+
else:
|
103 |
+
res.append(iter([self._make_tree("\n".join(cur_lines))]))
|
104 |
+
cur_lines = []
|
105 |
+
else:
|
106 |
+
cur_lines.append(line)
|
107 |
+
blank = False
|
108 |
+
return iter(res)
|
109 |
+
|
110 |
+
def parse_sents(self, sentences, verbose=False):
|
111 |
+
"""
|
112 |
+
Use StanfordParser to parse multiple sentences. Takes multiple sentences as a
|
113 |
+
list where each sentence is a list of words.
|
114 |
+
Each sentence will be automatically tagged with this StanfordParser instance's
|
115 |
+
tagger.
|
116 |
+
If whitespaces exists inside a token, then the token will be treated as
|
117 |
+
separate tokens.
|
118 |
+
|
119 |
+
:param sentences: Input sentences to parse
|
120 |
+
:type sentences: list(list(str))
|
121 |
+
:rtype: iter(iter(Tree))
|
122 |
+
"""
|
123 |
+
cmd = [
|
124 |
+
self._MAIN_CLASS,
|
125 |
+
"-model",
|
126 |
+
self.model_path,
|
127 |
+
"-sentences",
|
128 |
+
"newline",
|
129 |
+
"-outputFormat",
|
130 |
+
self._OUTPUT_FORMAT,
|
131 |
+
"-tokenized",
|
132 |
+
"-escaper",
|
133 |
+
"edu.stanford.nlp.process.PTBEscapingProcessor",
|
134 |
+
]
|
135 |
+
return self._parse_trees_output(
|
136 |
+
self._execute(
|
137 |
+
cmd, "\n".join(" ".join(sentence) for sentence in sentences), verbose
|
138 |
+
)
|
139 |
+
)
|
140 |
+
|
141 |
+
def raw_parse(self, sentence, verbose=False):
|
142 |
+
"""
|
143 |
+
Use StanfordParser to parse a sentence. Takes a sentence as a string;
|
144 |
+
before parsing, it will be automatically tokenized and tagged by
|
145 |
+
the Stanford Parser.
|
146 |
+
|
147 |
+
:param sentence: Input sentence to parse
|
148 |
+
:type sentence: str
|
149 |
+
:rtype: iter(Tree)
|
150 |
+
"""
|
151 |
+
return next(self.raw_parse_sents([sentence], verbose))
|
152 |
+
|
153 |
+
def raw_parse_sents(self, sentences, verbose=False):
|
154 |
+
"""
|
155 |
+
Use StanfordParser to parse multiple sentences. Takes multiple sentences as a
|
156 |
+
list of strings.
|
157 |
+
Each sentence will be automatically tokenized and tagged by the Stanford Parser.
|
158 |
+
|
159 |
+
:param sentences: Input sentences to parse
|
160 |
+
:type sentences: list(str)
|
161 |
+
:rtype: iter(iter(Tree))
|
162 |
+
"""
|
163 |
+
cmd = [
|
164 |
+
self._MAIN_CLASS,
|
165 |
+
"-model",
|
166 |
+
self.model_path,
|
167 |
+
"-sentences",
|
168 |
+
"newline",
|
169 |
+
"-outputFormat",
|
170 |
+
self._OUTPUT_FORMAT,
|
171 |
+
]
|
172 |
+
return self._parse_trees_output(
|
173 |
+
self._execute(cmd, "\n".join(sentences), verbose)
|
174 |
+
)
|
175 |
+
|
176 |
+
def tagged_parse(self, sentence, verbose=False):
|
177 |
+
"""
|
178 |
+
Use StanfordParser to parse a sentence. Takes a sentence as a list of
|
179 |
+
(word, tag) tuples; the sentence must have already been tokenized and
|
180 |
+
tagged.
|
181 |
+
|
182 |
+
:param sentence: Input sentence to parse
|
183 |
+
:type sentence: list(tuple(str, str))
|
184 |
+
:rtype: iter(Tree)
|
185 |
+
"""
|
186 |
+
return next(self.tagged_parse_sents([sentence], verbose))
|
187 |
+
|
188 |
+
def tagged_parse_sents(self, sentences, verbose=False):
|
189 |
+
"""
|
190 |
+
Use StanfordParser to parse multiple sentences. Takes multiple sentences
|
191 |
+
where each sentence is a list of (word, tag) tuples.
|
192 |
+
The sentences must have already been tokenized and tagged.
|
193 |
+
|
194 |
+
:param sentences: Input sentences to parse
|
195 |
+
:type sentences: list(list(tuple(str, str)))
|
196 |
+
:rtype: iter(iter(Tree))
|
197 |
+
"""
|
198 |
+
tag_separator = "/"
|
199 |
+
cmd = [
|
200 |
+
self._MAIN_CLASS,
|
201 |
+
"-model",
|
202 |
+
self.model_path,
|
203 |
+
"-sentences",
|
204 |
+
"newline",
|
205 |
+
"-outputFormat",
|
206 |
+
self._OUTPUT_FORMAT,
|
207 |
+
"-tokenized",
|
208 |
+
"-tagSeparator",
|
209 |
+
tag_separator,
|
210 |
+
"-tokenizerFactory",
|
211 |
+
"edu.stanford.nlp.process.WhitespaceTokenizer",
|
212 |
+
"-tokenizerMethod",
|
213 |
+
"newCoreLabelTokenizerFactory",
|
214 |
+
]
|
215 |
+
# We don't need to escape slashes as "splitting is done on the last instance of the character in the token"
|
216 |
+
return self._parse_trees_output(
|
217 |
+
self._execute(
|
218 |
+
cmd,
|
219 |
+
"\n".join(
|
220 |
+
" ".join(tag_separator.join(tagged) for tagged in sentence)
|
221 |
+
for sentence in sentences
|
222 |
+
),
|
223 |
+
verbose,
|
224 |
+
)
|
225 |
+
)
|
226 |
+
|
227 |
+
def _execute(self, cmd, input_, verbose=False):
|
228 |
+
encoding = self._encoding
|
229 |
+
cmd.extend(["-encoding", encoding])
|
230 |
+
if self.corenlp_options:
|
231 |
+
cmd.extend(self.corenlp_options.split())
|
232 |
+
|
233 |
+
default_options = " ".join(_java_options)
|
234 |
+
|
235 |
+
# Configure java.
|
236 |
+
config_java(options=self.java_options, verbose=verbose)
|
237 |
+
|
238 |
+
# Windows is incompatible with NamedTemporaryFile() without passing in delete=False.
|
239 |
+
with tempfile.NamedTemporaryFile(mode="wb", delete=False) as input_file:
|
240 |
+
# Write the actual sentences to the temporary input file
|
241 |
+
if isinstance(input_, str) and encoding:
|
242 |
+
input_ = input_.encode(encoding)
|
243 |
+
input_file.write(input_)
|
244 |
+
input_file.flush()
|
245 |
+
|
246 |
+
# Run the tagger and get the output.
|
247 |
+
if self._USE_STDIN:
|
248 |
+
input_file.seek(0)
|
249 |
+
stdout, stderr = java(
|
250 |
+
cmd,
|
251 |
+
classpath=self._classpath,
|
252 |
+
stdin=input_file,
|
253 |
+
stdout=PIPE,
|
254 |
+
stderr=PIPE,
|
255 |
+
)
|
256 |
+
else:
|
257 |
+
cmd.append(input_file.name)
|
258 |
+
stdout, stderr = java(
|
259 |
+
cmd, classpath=self._classpath, stdout=PIPE, stderr=PIPE
|
260 |
+
)
|
261 |
+
|
262 |
+
stdout = stdout.replace(b"\xc2\xa0", b" ")
|
263 |
+
stdout = stdout.replace(b"\x00\xa0", b" ")
|
264 |
+
stdout = stdout.decode(encoding)
|
265 |
+
|
266 |
+
os.unlink(input_file.name)
|
267 |
+
|
268 |
+
# Return java configurations to their default values.
|
269 |
+
config_java(options=default_options, verbose=False)
|
270 |
+
|
271 |
+
return stdout
|
272 |
+
|
273 |
+
|
274 |
+
class StanfordParser(GenericStanfordParser):
|
275 |
+
"""
|
276 |
+
>>> parser=StanfordParser(
|
277 |
+
... model_path="edu/stanford/nlp/models/lexparser/englishPCFG.ser.gz"
|
278 |
+
... ) # doctest: +SKIP
|
279 |
+
|
280 |
+
>>> list(parser.raw_parse("the quick brown fox jumps over the lazy dog")) # doctest: +NORMALIZE_WHITESPACE +SKIP
|
281 |
+
[Tree('ROOT', [Tree('NP', [Tree('NP', [Tree('DT', ['the']), Tree('JJ', ['quick']), Tree('JJ', ['brown']),
|
282 |
+
Tree('NN', ['fox'])]), Tree('NP', [Tree('NP', [Tree('NNS', ['jumps'])]), Tree('PP', [Tree('IN', ['over']),
|
283 |
+
Tree('NP', [Tree('DT', ['the']), Tree('JJ', ['lazy']), Tree('NN', ['dog'])])])])])])]
|
284 |
+
|
285 |
+
>>> sum([list(dep_graphs) for dep_graphs in parser.raw_parse_sents((
|
286 |
+
... "the quick brown fox jumps over the lazy dog",
|
287 |
+
... "the quick grey wolf jumps over the lazy fox"
|
288 |
+
... ))], []) # doctest: +NORMALIZE_WHITESPACE +SKIP
|
289 |
+
[Tree('ROOT', [Tree('NP', [Tree('NP', [Tree('DT', ['the']), Tree('JJ', ['quick']), Tree('JJ', ['brown']),
|
290 |
+
Tree('NN', ['fox'])]), Tree('NP', [Tree('NP', [Tree('NNS', ['jumps'])]), Tree('PP', [Tree('IN', ['over']),
|
291 |
+
Tree('NP', [Tree('DT', ['the']), Tree('JJ', ['lazy']), Tree('NN', ['dog'])])])])])]), Tree('ROOT', [Tree('NP',
|
292 |
+
[Tree('NP', [Tree('DT', ['the']), Tree('JJ', ['quick']), Tree('JJ', ['grey']), Tree('NN', ['wolf'])]), Tree('NP',
|
293 |
+
[Tree('NP', [Tree('NNS', ['jumps'])]), Tree('PP', [Tree('IN', ['over']), Tree('NP', [Tree('DT', ['the']),
|
294 |
+
Tree('JJ', ['lazy']), Tree('NN', ['fox'])])])])])])]
|
295 |
+
|
296 |
+
>>> sum([list(dep_graphs) for dep_graphs in parser.parse_sents((
|
297 |
+
... "I 'm a dog".split(),
|
298 |
+
... "This is my friends ' cat ( the tabby )".split(),
|
299 |
+
... ))], []) # doctest: +NORMALIZE_WHITESPACE +SKIP
|
300 |
+
[Tree('ROOT', [Tree('S', [Tree('NP', [Tree('PRP', ['I'])]), Tree('VP', [Tree('VBP', ["'m"]),
|
301 |
+
Tree('NP', [Tree('DT', ['a']), Tree('NN', ['dog'])])])])]), Tree('ROOT', [Tree('S', [Tree('NP',
|
302 |
+
[Tree('DT', ['This'])]), Tree('VP', [Tree('VBZ', ['is']), Tree('NP', [Tree('NP', [Tree('NP', [Tree('PRP$', ['my']),
|
303 |
+
Tree('NNS', ['friends']), Tree('POS', ["'"])]), Tree('NN', ['cat'])]), Tree('PRN', [Tree('-LRB-', [Tree('', []),
|
304 |
+
Tree('NP', [Tree('DT', ['the']), Tree('NN', ['tabby'])]), Tree('-RRB-', [])])])])])])])]
|
305 |
+
|
306 |
+
>>> sum([list(dep_graphs) for dep_graphs in parser.tagged_parse_sents((
|
307 |
+
... (
|
308 |
+
... ("The", "DT"),
|
309 |
+
... ("quick", "JJ"),
|
310 |
+
... ("brown", "JJ"),
|
311 |
+
... ("fox", "NN"),
|
312 |
+
... ("jumped", "VBD"),
|
313 |
+
... ("over", "IN"),
|
314 |
+
... ("the", "DT"),
|
315 |
+
... ("lazy", "JJ"),
|
316 |
+
... ("dog", "NN"),
|
317 |
+
... (".", "."),
|
318 |
+
... ),
|
319 |
+
... ))],[]) # doctest: +NORMALIZE_WHITESPACE +SKIP
|
320 |
+
[Tree('ROOT', [Tree('S', [Tree('NP', [Tree('DT', ['The']), Tree('JJ', ['quick']), Tree('JJ', ['brown']),
|
321 |
+
Tree('NN', ['fox'])]), Tree('VP', [Tree('VBD', ['jumped']), Tree('PP', [Tree('IN', ['over']), Tree('NP',
|
322 |
+
[Tree('DT', ['the']), Tree('JJ', ['lazy']), Tree('NN', ['dog'])])])]), Tree('.', ['.'])])])]
|
323 |
+
"""
|
324 |
+
|
325 |
+
_OUTPUT_FORMAT = "penn"
|
326 |
+
|
327 |
+
def __init__(self, *args, **kwargs):
|
328 |
+
warnings.warn(
|
329 |
+
"The StanfordParser will be deprecated\n"
|
330 |
+
"Please use \033[91mnltk.parse.corenlp.CoreNLPParser\033[0m instead.",
|
331 |
+
DeprecationWarning,
|
332 |
+
stacklevel=2,
|
333 |
+
)
|
334 |
+
|
335 |
+
super().__init__(*args, **kwargs)
|
336 |
+
|
337 |
+
def _make_tree(self, result):
|
338 |
+
return Tree.fromstring(result)
|
339 |
+
|
340 |
+
|
341 |
+
class StanfordDependencyParser(GenericStanfordParser):
|
342 |
+
|
343 |
+
"""
|
344 |
+
>>> dep_parser=StanfordDependencyParser(
|
345 |
+
... model_path="edu/stanford/nlp/models/lexparser/englishPCFG.ser.gz"
|
346 |
+
... ) # doctest: +SKIP
|
347 |
+
|
348 |
+
>>> [parse.tree() for parse in dep_parser.raw_parse("The quick brown fox jumps over the lazy dog.")] # doctest: +NORMALIZE_WHITESPACE +SKIP
|
349 |
+
[Tree('jumps', [Tree('fox', ['The', 'quick', 'brown']), Tree('dog', ['over', 'the', 'lazy'])])]
|
350 |
+
|
351 |
+
>>> [list(parse.triples()) for parse in dep_parser.raw_parse("The quick brown fox jumps over the lazy dog.")] # doctest: +NORMALIZE_WHITESPACE +SKIP
|
352 |
+
[[((u'jumps', u'VBZ'), u'nsubj', (u'fox', u'NN')), ((u'fox', u'NN'), u'det', (u'The', u'DT')),
|
353 |
+
((u'fox', u'NN'), u'amod', (u'quick', u'JJ')), ((u'fox', u'NN'), u'amod', (u'brown', u'JJ')),
|
354 |
+
((u'jumps', u'VBZ'), u'nmod', (u'dog', u'NN')), ((u'dog', u'NN'), u'case', (u'over', u'IN')),
|
355 |
+
((u'dog', u'NN'), u'det', (u'the', u'DT')), ((u'dog', u'NN'), u'amod', (u'lazy', u'JJ'))]]
|
356 |
+
|
357 |
+
>>> sum([[parse.tree() for parse in dep_graphs] for dep_graphs in dep_parser.raw_parse_sents((
|
358 |
+
... "The quick brown fox jumps over the lazy dog.",
|
359 |
+
... "The quick grey wolf jumps over the lazy fox."
|
360 |
+
... ))], []) # doctest: +NORMALIZE_WHITESPACE +SKIP
|
361 |
+
[Tree('jumps', [Tree('fox', ['The', 'quick', 'brown']), Tree('dog', ['over', 'the', 'lazy'])]),
|
362 |
+
Tree('jumps', [Tree('wolf', ['The', 'quick', 'grey']), Tree('fox', ['over', 'the', 'lazy'])])]
|
363 |
+
|
364 |
+
>>> sum([[parse.tree() for parse in dep_graphs] for dep_graphs in dep_parser.parse_sents((
|
365 |
+
... "I 'm a dog".split(),
|
366 |
+
... "This is my friends ' cat ( the tabby )".split(),
|
367 |
+
... ))], []) # doctest: +NORMALIZE_WHITESPACE +SKIP
|
368 |
+
[Tree('dog', ['I', "'m", 'a']), Tree('cat', ['This', 'is', Tree('friends', ['my', "'"]), Tree('tabby', ['the'])])]
|
369 |
+
|
370 |
+
>>> sum([[list(parse.triples()) for parse in dep_graphs] for dep_graphs in dep_parser.tagged_parse_sents((
|
371 |
+
... (
|
372 |
+
... ("The", "DT"),
|
373 |
+
... ("quick", "JJ"),
|
374 |
+
... ("brown", "JJ"),
|
375 |
+
... ("fox", "NN"),
|
376 |
+
... ("jumped", "VBD"),
|
377 |
+
... ("over", "IN"),
|
378 |
+
... ("the", "DT"),
|
379 |
+
... ("lazy", "JJ"),
|
380 |
+
... ("dog", "NN"),
|
381 |
+
... (".", "."),
|
382 |
+
... ),
|
383 |
+
... ))],[]) # doctest: +NORMALIZE_WHITESPACE +SKIP
|
384 |
+
[[((u'jumped', u'VBD'), u'nsubj', (u'fox', u'NN')), ((u'fox', u'NN'), u'det', (u'The', u'DT')),
|
385 |
+
((u'fox', u'NN'), u'amod', (u'quick', u'JJ')), ((u'fox', u'NN'), u'amod', (u'brown', u'JJ')),
|
386 |
+
((u'jumped', u'VBD'), u'nmod', (u'dog', u'NN')), ((u'dog', u'NN'), u'case', (u'over', u'IN')),
|
387 |
+
((u'dog', u'NN'), u'det', (u'the', u'DT')), ((u'dog', u'NN'), u'amod', (u'lazy', u'JJ'))]]
|
388 |
+
|
389 |
+
"""
|
390 |
+
|
391 |
+
_OUTPUT_FORMAT = "conll2007"
|
392 |
+
|
393 |
+
def __init__(self, *args, **kwargs):
|
394 |
+
warnings.warn(
|
395 |
+
"The StanfordDependencyParser will be deprecated\n"
|
396 |
+
"Please use \033[91mnltk.parse.corenlp.CoreNLPDependencyParser\033[0m instead.",
|
397 |
+
DeprecationWarning,
|
398 |
+
stacklevel=2,
|
399 |
+
)
|
400 |
+
|
401 |
+
super().__init__(*args, **kwargs)
|
402 |
+
|
403 |
+
def _make_tree(self, result):
|
404 |
+
return DependencyGraph(result, top_relation_label="root")
|
405 |
+
|
406 |
+
|
407 |
+
class StanfordNeuralDependencyParser(GenericStanfordParser):
|
408 |
+
"""
|
409 |
+
>>> from nltk.parse.stanford import StanfordNeuralDependencyParser # doctest: +SKIP
|
410 |
+
>>> dep_parser=StanfordNeuralDependencyParser(java_options='-mx4g')# doctest: +SKIP
|
411 |
+
|
412 |
+
>>> [parse.tree() for parse in dep_parser.raw_parse("The quick brown fox jumps over the lazy dog.")] # doctest: +NORMALIZE_WHITESPACE +SKIP
|
413 |
+
[Tree('jumps', [Tree('fox', ['The', 'quick', 'brown']), Tree('dog', ['over', 'the', 'lazy']), '.'])]
|
414 |
+
|
415 |
+
>>> [list(parse.triples()) for parse in dep_parser.raw_parse("The quick brown fox jumps over the lazy dog.")] # doctest: +NORMALIZE_WHITESPACE +SKIP
|
416 |
+
[[((u'jumps', u'VBZ'), u'nsubj', (u'fox', u'NN')), ((u'fox', u'NN'), u'det',
|
417 |
+
(u'The', u'DT')), ((u'fox', u'NN'), u'amod', (u'quick', u'JJ')), ((u'fox', u'NN'),
|
418 |
+
u'amod', (u'brown', u'JJ')), ((u'jumps', u'VBZ'), u'nmod', (u'dog', u'NN')),
|
419 |
+
((u'dog', u'NN'), u'case', (u'over', u'IN')), ((u'dog', u'NN'), u'det',
|
420 |
+
(u'the', u'DT')), ((u'dog', u'NN'), u'amod', (u'lazy', u'JJ')), ((u'jumps', u'VBZ'),
|
421 |
+
u'punct', (u'.', u'.'))]]
|
422 |
+
|
423 |
+
>>> sum([[parse.tree() for parse in dep_graphs] for dep_graphs in dep_parser.raw_parse_sents((
|
424 |
+
... "The quick brown fox jumps over the lazy dog.",
|
425 |
+
... "The quick grey wolf jumps over the lazy fox."
|
426 |
+
... ))], []) # doctest: +NORMALIZE_WHITESPACE +SKIP
|
427 |
+
[Tree('jumps', [Tree('fox', ['The', 'quick', 'brown']), Tree('dog', ['over',
|
428 |
+
'the', 'lazy']), '.']), Tree('jumps', [Tree('wolf', ['The', 'quick', 'grey']),
|
429 |
+
Tree('fox', ['over', 'the', 'lazy']), '.'])]
|
430 |
+
|
431 |
+
>>> sum([[parse.tree() for parse in dep_graphs] for dep_graphs in dep_parser.parse_sents((
|
432 |
+
... "I 'm a dog".split(),
|
433 |
+
... "This is my friends ' cat ( the tabby )".split(),
|
434 |
+
... ))], []) # doctest: +NORMALIZE_WHITESPACE +SKIP
|
435 |
+
[Tree('dog', ['I', "'m", 'a']), Tree('cat', ['This', 'is', Tree('friends',
|
436 |
+
['my', "'"]), Tree('tabby', ['-LRB-', 'the', '-RRB-'])])]
|
437 |
+
"""
|
438 |
+
|
439 |
+
_OUTPUT_FORMAT = "conll"
|
440 |
+
_MAIN_CLASS = "edu.stanford.nlp.pipeline.StanfordCoreNLP"
|
441 |
+
_JAR = r"stanford-corenlp-(\d+)(\.(\d+))+\.jar"
|
442 |
+
_MODEL_JAR_PATTERN = r"stanford-corenlp-(\d+)(\.(\d+))+-models\.jar"
|
443 |
+
_USE_STDIN = True
|
444 |
+
_DOUBLE_SPACED_OUTPUT = True
|
445 |
+
|
446 |
+
def __init__(self, *args, **kwargs):
|
447 |
+
warnings.warn(
|
448 |
+
"The StanfordNeuralDependencyParser will be deprecated\n"
|
449 |
+
"Please use \033[91mnltk.parse.corenlp.CoreNLPDependencyParser\033[0m instead.",
|
450 |
+
DeprecationWarning,
|
451 |
+
stacklevel=2,
|
452 |
+
)
|
453 |
+
|
454 |
+
super().__init__(*args, **kwargs)
|
455 |
+
self.corenlp_options += "-annotators tokenize,ssplit,pos,depparse"
|
456 |
+
|
457 |
+
def tagged_parse_sents(self, sentences, verbose=False):
|
458 |
+
"""
|
459 |
+
Currently unimplemented because the neural dependency parser (and
|
460 |
+
the StanfordCoreNLP pipeline class) doesn't support passing in pre-
|
461 |
+
tagged tokens.
|
462 |
+
"""
|
463 |
+
raise NotImplementedError(
|
464 |
+
"tagged_parse[_sents] is not supported by "
|
465 |
+
"StanfordNeuralDependencyParser; use "
|
466 |
+
"parse[_sents] or raw_parse[_sents] instead."
|
467 |
+
)
|
468 |
+
|
469 |
+
def _make_tree(self, result):
|
470 |
+
return DependencyGraph(result, top_relation_label="ROOT")
|
venv/lib/python3.10/site-packages/nltk/parse/transitionparser.py
ADDED
@@ -0,0 +1,794 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Arc-Standard and Arc-eager Transition Based Parsers
|
2 |
+
#
|
3 |
+
# Author: Long Duong <[email protected]>
|
4 |
+
#
|
5 |
+
# Copyright (C) 2001-2023 NLTK Project
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
import pickle
|
10 |
+
import tempfile
|
11 |
+
from copy import deepcopy
|
12 |
+
from operator import itemgetter
|
13 |
+
from os import remove
|
14 |
+
|
15 |
+
try:
|
16 |
+
from numpy import array
|
17 |
+
from scipy import sparse
|
18 |
+
from sklearn import svm
|
19 |
+
from sklearn.datasets import load_svmlight_file
|
20 |
+
except ImportError:
|
21 |
+
pass
|
22 |
+
|
23 |
+
from nltk.parse import DependencyEvaluator, DependencyGraph, ParserI
|
24 |
+
|
25 |
+
|
26 |
+
class Configuration:
|
27 |
+
"""
|
28 |
+
Class for holding configuration which is the partial analysis of the input sentence.
|
29 |
+
The transition based parser aims at finding set of operators that transfer the initial
|
30 |
+
configuration to the terminal configuration.
|
31 |
+
|
32 |
+
The configuration includes:
|
33 |
+
- Stack: for storing partially proceeded words
|
34 |
+
- Buffer: for storing remaining input words
|
35 |
+
- Set of arcs: for storing partially built dependency tree
|
36 |
+
|
37 |
+
This class also provides a method to represent a configuration as list of features.
|
38 |
+
"""
|
39 |
+
|
40 |
+
def __init__(self, dep_graph):
|
41 |
+
"""
|
42 |
+
:param dep_graph: the representation of an input in the form of dependency graph.
|
43 |
+
:type dep_graph: DependencyGraph where the dependencies are not specified.
|
44 |
+
"""
|
45 |
+
# dep_graph.nodes contain list of token for a sentence
|
46 |
+
self.stack = [0] # The root element
|
47 |
+
self.buffer = list(range(1, len(dep_graph.nodes))) # The rest is in the buffer
|
48 |
+
self.arcs = [] # empty set of arc
|
49 |
+
self._tokens = dep_graph.nodes
|
50 |
+
self._max_address = len(self.buffer)
|
51 |
+
|
52 |
+
def __str__(self):
|
53 |
+
return (
|
54 |
+
"Stack : "
|
55 |
+
+ str(self.stack)
|
56 |
+
+ " Buffer : "
|
57 |
+
+ str(self.buffer)
|
58 |
+
+ " Arcs : "
|
59 |
+
+ str(self.arcs)
|
60 |
+
)
|
61 |
+
|
62 |
+
def _check_informative(self, feat, flag=False):
|
63 |
+
"""
|
64 |
+
Check whether a feature is informative
|
65 |
+
The flag control whether "_" is informative or not
|
66 |
+
"""
|
67 |
+
if feat is None:
|
68 |
+
return False
|
69 |
+
if feat == "":
|
70 |
+
return False
|
71 |
+
if flag is False:
|
72 |
+
if feat == "_":
|
73 |
+
return False
|
74 |
+
return True
|
75 |
+
|
76 |
+
def extract_features(self):
|
77 |
+
"""
|
78 |
+
Extract the set of features for the current configuration. Implement standard features as describe in
|
79 |
+
Table 3.2 (page 31) in Dependency Parsing book by Sandra Kubler, Ryan McDonal, Joakim Nivre.
|
80 |
+
Please note that these features are very basic.
|
81 |
+
:return: list(str)
|
82 |
+
"""
|
83 |
+
result = []
|
84 |
+
# Todo : can come up with more complicated features set for better
|
85 |
+
# performance.
|
86 |
+
if len(self.stack) > 0:
|
87 |
+
# Stack 0
|
88 |
+
stack_idx0 = self.stack[len(self.stack) - 1]
|
89 |
+
token = self._tokens[stack_idx0]
|
90 |
+
if self._check_informative(token["word"], True):
|
91 |
+
result.append("STK_0_FORM_" + token["word"])
|
92 |
+
if "lemma" in token and self._check_informative(token["lemma"]):
|
93 |
+
result.append("STK_0_LEMMA_" + token["lemma"])
|
94 |
+
if self._check_informative(token["tag"]):
|
95 |
+
result.append("STK_0_POS_" + token["tag"])
|
96 |
+
if "feats" in token and self._check_informative(token["feats"]):
|
97 |
+
feats = token["feats"].split("|")
|
98 |
+
for feat in feats:
|
99 |
+
result.append("STK_0_FEATS_" + feat)
|
100 |
+
# Stack 1
|
101 |
+
if len(self.stack) > 1:
|
102 |
+
stack_idx1 = self.stack[len(self.stack) - 2]
|
103 |
+
token = self._tokens[stack_idx1]
|
104 |
+
if self._check_informative(token["tag"]):
|
105 |
+
result.append("STK_1_POS_" + token["tag"])
|
106 |
+
|
107 |
+
# Left most, right most dependency of stack[0]
|
108 |
+
left_most = 1000000
|
109 |
+
right_most = -1
|
110 |
+
dep_left_most = ""
|
111 |
+
dep_right_most = ""
|
112 |
+
for (wi, r, wj) in self.arcs:
|
113 |
+
if wi == stack_idx0:
|
114 |
+
if (wj > wi) and (wj > right_most):
|
115 |
+
right_most = wj
|
116 |
+
dep_right_most = r
|
117 |
+
if (wj < wi) and (wj < left_most):
|
118 |
+
left_most = wj
|
119 |
+
dep_left_most = r
|
120 |
+
if self._check_informative(dep_left_most):
|
121 |
+
result.append("STK_0_LDEP_" + dep_left_most)
|
122 |
+
if self._check_informative(dep_right_most):
|
123 |
+
result.append("STK_0_RDEP_" + dep_right_most)
|
124 |
+
|
125 |
+
# Check Buffered 0
|
126 |
+
if len(self.buffer) > 0:
|
127 |
+
# Buffer 0
|
128 |
+
buffer_idx0 = self.buffer[0]
|
129 |
+
token = self._tokens[buffer_idx0]
|
130 |
+
if self._check_informative(token["word"], True):
|
131 |
+
result.append("BUF_0_FORM_" + token["word"])
|
132 |
+
if "lemma" in token and self._check_informative(token["lemma"]):
|
133 |
+
result.append("BUF_0_LEMMA_" + token["lemma"])
|
134 |
+
if self._check_informative(token["tag"]):
|
135 |
+
result.append("BUF_0_POS_" + token["tag"])
|
136 |
+
if "feats" in token and self._check_informative(token["feats"]):
|
137 |
+
feats = token["feats"].split("|")
|
138 |
+
for feat in feats:
|
139 |
+
result.append("BUF_0_FEATS_" + feat)
|
140 |
+
# Buffer 1
|
141 |
+
if len(self.buffer) > 1:
|
142 |
+
buffer_idx1 = self.buffer[1]
|
143 |
+
token = self._tokens[buffer_idx1]
|
144 |
+
if self._check_informative(token["word"], True):
|
145 |
+
result.append("BUF_1_FORM_" + token["word"])
|
146 |
+
if self._check_informative(token["tag"]):
|
147 |
+
result.append("BUF_1_POS_" + token["tag"])
|
148 |
+
if len(self.buffer) > 2:
|
149 |
+
buffer_idx2 = self.buffer[2]
|
150 |
+
token = self._tokens[buffer_idx2]
|
151 |
+
if self._check_informative(token["tag"]):
|
152 |
+
result.append("BUF_2_POS_" + token["tag"])
|
153 |
+
if len(self.buffer) > 3:
|
154 |
+
buffer_idx3 = self.buffer[3]
|
155 |
+
token = self._tokens[buffer_idx3]
|
156 |
+
if self._check_informative(token["tag"]):
|
157 |
+
result.append("BUF_3_POS_" + token["tag"])
|
158 |
+
# Left most, right most dependency of stack[0]
|
159 |
+
left_most = 1000000
|
160 |
+
right_most = -1
|
161 |
+
dep_left_most = ""
|
162 |
+
dep_right_most = ""
|
163 |
+
for (wi, r, wj) in self.arcs:
|
164 |
+
if wi == buffer_idx0:
|
165 |
+
if (wj > wi) and (wj > right_most):
|
166 |
+
right_most = wj
|
167 |
+
dep_right_most = r
|
168 |
+
if (wj < wi) and (wj < left_most):
|
169 |
+
left_most = wj
|
170 |
+
dep_left_most = r
|
171 |
+
if self._check_informative(dep_left_most):
|
172 |
+
result.append("BUF_0_LDEP_" + dep_left_most)
|
173 |
+
if self._check_informative(dep_right_most):
|
174 |
+
result.append("BUF_0_RDEP_" + dep_right_most)
|
175 |
+
|
176 |
+
return result
|
177 |
+
|
178 |
+
|
179 |
+
class Transition:
|
180 |
+
"""
|
181 |
+
This class defines a set of transition which is applied to a configuration to get another configuration
|
182 |
+
Note that for different parsing algorithm, the transition is different.
|
183 |
+
"""
|
184 |
+
|
185 |
+
# Define set of transitions
|
186 |
+
LEFT_ARC = "LEFTARC"
|
187 |
+
RIGHT_ARC = "RIGHTARC"
|
188 |
+
SHIFT = "SHIFT"
|
189 |
+
REDUCE = "REDUCE"
|
190 |
+
|
191 |
+
def __init__(self, alg_option):
|
192 |
+
"""
|
193 |
+
:param alg_option: the algorithm option of this parser. Currently support `arc-standard` and `arc-eager` algorithm
|
194 |
+
:type alg_option: str
|
195 |
+
"""
|
196 |
+
self._algo = alg_option
|
197 |
+
if alg_option not in [
|
198 |
+
TransitionParser.ARC_STANDARD,
|
199 |
+
TransitionParser.ARC_EAGER,
|
200 |
+
]:
|
201 |
+
raise ValueError(
|
202 |
+
" Currently we only support %s and %s "
|
203 |
+
% (TransitionParser.ARC_STANDARD, TransitionParser.ARC_EAGER)
|
204 |
+
)
|
205 |
+
|
206 |
+
def left_arc(self, conf, relation):
|
207 |
+
"""
|
208 |
+
Note that the algorithm for left-arc is quite similar except for precondition for both arc-standard and arc-eager
|
209 |
+
|
210 |
+
:param configuration: is the current configuration
|
211 |
+
:return: A new configuration or -1 if the pre-condition is not satisfied
|
212 |
+
"""
|
213 |
+
if (len(conf.buffer) <= 0) or (len(conf.stack) <= 0):
|
214 |
+
return -1
|
215 |
+
if conf.buffer[0] == 0:
|
216 |
+
# here is the Root element
|
217 |
+
return -1
|
218 |
+
|
219 |
+
idx_wi = conf.stack[len(conf.stack) - 1]
|
220 |
+
|
221 |
+
flag = True
|
222 |
+
if self._algo == TransitionParser.ARC_EAGER:
|
223 |
+
for (idx_parent, r, idx_child) in conf.arcs:
|
224 |
+
if idx_child == idx_wi:
|
225 |
+
flag = False
|
226 |
+
|
227 |
+
if flag:
|
228 |
+
conf.stack.pop()
|
229 |
+
idx_wj = conf.buffer[0]
|
230 |
+
conf.arcs.append((idx_wj, relation, idx_wi))
|
231 |
+
else:
|
232 |
+
return -1
|
233 |
+
|
234 |
+
def right_arc(self, conf, relation):
|
235 |
+
"""
|
236 |
+
Note that the algorithm for right-arc is DIFFERENT for arc-standard and arc-eager
|
237 |
+
|
238 |
+
:param configuration: is the current configuration
|
239 |
+
:return: A new configuration or -1 if the pre-condition is not satisfied
|
240 |
+
"""
|
241 |
+
if (len(conf.buffer) <= 0) or (len(conf.stack) <= 0):
|
242 |
+
return -1
|
243 |
+
if self._algo == TransitionParser.ARC_STANDARD:
|
244 |
+
idx_wi = conf.stack.pop()
|
245 |
+
idx_wj = conf.buffer[0]
|
246 |
+
conf.buffer[0] = idx_wi
|
247 |
+
conf.arcs.append((idx_wi, relation, idx_wj))
|
248 |
+
else: # arc-eager
|
249 |
+
idx_wi = conf.stack[len(conf.stack) - 1]
|
250 |
+
idx_wj = conf.buffer.pop(0)
|
251 |
+
conf.stack.append(idx_wj)
|
252 |
+
conf.arcs.append((idx_wi, relation, idx_wj))
|
253 |
+
|
254 |
+
def reduce(self, conf):
|
255 |
+
"""
|
256 |
+
Note that the algorithm for reduce is only available for arc-eager
|
257 |
+
|
258 |
+
:param configuration: is the current configuration
|
259 |
+
:return: A new configuration or -1 if the pre-condition is not satisfied
|
260 |
+
"""
|
261 |
+
|
262 |
+
if self._algo != TransitionParser.ARC_EAGER:
|
263 |
+
return -1
|
264 |
+
if len(conf.stack) <= 0:
|
265 |
+
return -1
|
266 |
+
|
267 |
+
idx_wi = conf.stack[len(conf.stack) - 1]
|
268 |
+
flag = False
|
269 |
+
for (idx_parent, r, idx_child) in conf.arcs:
|
270 |
+
if idx_child == idx_wi:
|
271 |
+
flag = True
|
272 |
+
if flag:
|
273 |
+
conf.stack.pop() # reduce it
|
274 |
+
else:
|
275 |
+
return -1
|
276 |
+
|
277 |
+
def shift(self, conf):
|
278 |
+
"""
|
279 |
+
Note that the algorithm for shift is the SAME for arc-standard and arc-eager
|
280 |
+
|
281 |
+
:param configuration: is the current configuration
|
282 |
+
:return: A new configuration or -1 if the pre-condition is not satisfied
|
283 |
+
"""
|
284 |
+
if len(conf.buffer) <= 0:
|
285 |
+
return -1
|
286 |
+
idx_wi = conf.buffer.pop(0)
|
287 |
+
conf.stack.append(idx_wi)
|
288 |
+
|
289 |
+
|
290 |
+
class TransitionParser(ParserI):
|
291 |
+
|
292 |
+
"""
|
293 |
+
Class for transition based parser. Implement 2 algorithms which are "arc-standard" and "arc-eager"
|
294 |
+
"""
|
295 |
+
|
296 |
+
ARC_STANDARD = "arc-standard"
|
297 |
+
ARC_EAGER = "arc-eager"
|
298 |
+
|
299 |
+
def __init__(self, algorithm):
|
300 |
+
"""
|
301 |
+
:param algorithm: the algorithm option of this parser. Currently support `arc-standard` and `arc-eager` algorithm
|
302 |
+
:type algorithm: str
|
303 |
+
"""
|
304 |
+
if not (algorithm in [self.ARC_STANDARD, self.ARC_EAGER]):
|
305 |
+
raise ValueError(
|
306 |
+
" Currently we only support %s and %s "
|
307 |
+
% (self.ARC_STANDARD, self.ARC_EAGER)
|
308 |
+
)
|
309 |
+
self._algorithm = algorithm
|
310 |
+
|
311 |
+
self._dictionary = {}
|
312 |
+
self._transition = {}
|
313 |
+
self._match_transition = {}
|
314 |
+
|
315 |
+
def _get_dep_relation(self, idx_parent, idx_child, depgraph):
|
316 |
+
p_node = depgraph.nodes[idx_parent]
|
317 |
+
c_node = depgraph.nodes[idx_child]
|
318 |
+
|
319 |
+
if c_node["word"] is None:
|
320 |
+
return None # Root word
|
321 |
+
|
322 |
+
if c_node["head"] == p_node["address"]:
|
323 |
+
return c_node["rel"]
|
324 |
+
else:
|
325 |
+
return None
|
326 |
+
|
327 |
+
def _convert_to_binary_features(self, features):
|
328 |
+
"""
|
329 |
+
:param features: list of feature string which is needed to convert to binary features
|
330 |
+
:type features: list(str)
|
331 |
+
:return : string of binary features in libsvm format which is 'featureID:value' pairs
|
332 |
+
"""
|
333 |
+
unsorted_result = []
|
334 |
+
for feature in features:
|
335 |
+
self._dictionary.setdefault(feature, len(self._dictionary))
|
336 |
+
unsorted_result.append(self._dictionary[feature])
|
337 |
+
|
338 |
+
# Default value of each feature is 1.0
|
339 |
+
return " ".join(
|
340 |
+
str(featureID) + ":1.0" for featureID in sorted(unsorted_result)
|
341 |
+
)
|
342 |
+
|
343 |
+
def _is_projective(self, depgraph):
|
344 |
+
arc_list = []
|
345 |
+
for key in depgraph.nodes:
|
346 |
+
node = depgraph.nodes[key]
|
347 |
+
|
348 |
+
if "head" in node:
|
349 |
+
childIdx = node["address"]
|
350 |
+
parentIdx = node["head"]
|
351 |
+
if parentIdx is not None:
|
352 |
+
arc_list.append((parentIdx, childIdx))
|
353 |
+
|
354 |
+
for (parentIdx, childIdx) in arc_list:
|
355 |
+
# Ensure that childIdx < parentIdx
|
356 |
+
if childIdx > parentIdx:
|
357 |
+
temp = childIdx
|
358 |
+
childIdx = parentIdx
|
359 |
+
parentIdx = temp
|
360 |
+
for k in range(childIdx + 1, parentIdx):
|
361 |
+
for m in range(len(depgraph.nodes)):
|
362 |
+
if (m < childIdx) or (m > parentIdx):
|
363 |
+
if (k, m) in arc_list:
|
364 |
+
return False
|
365 |
+
if (m, k) in arc_list:
|
366 |
+
return False
|
367 |
+
return True
|
368 |
+
|
369 |
+
def _write_to_file(self, key, binary_features, input_file):
|
370 |
+
"""
|
371 |
+
write the binary features to input file and update the transition dictionary
|
372 |
+
"""
|
373 |
+
self._transition.setdefault(key, len(self._transition) + 1)
|
374 |
+
self._match_transition[self._transition[key]] = key
|
375 |
+
|
376 |
+
input_str = str(self._transition[key]) + " " + binary_features + "\n"
|
377 |
+
input_file.write(input_str.encode("utf-8"))
|
378 |
+
|
379 |
+
def _create_training_examples_arc_std(self, depgraphs, input_file):
|
380 |
+
"""
|
381 |
+
Create the training example in the libsvm format and write it to the input_file.
|
382 |
+
Reference : Page 32, Chapter 3. Dependency Parsing by Sandra Kubler, Ryan McDonal and Joakim Nivre (2009)
|
383 |
+
"""
|
384 |
+
operation = Transition(self.ARC_STANDARD)
|
385 |
+
count_proj = 0
|
386 |
+
training_seq = []
|
387 |
+
|
388 |
+
for depgraph in depgraphs:
|
389 |
+
if not self._is_projective(depgraph):
|
390 |
+
continue
|
391 |
+
|
392 |
+
count_proj += 1
|
393 |
+
conf = Configuration(depgraph)
|
394 |
+
while len(conf.buffer) > 0:
|
395 |
+
b0 = conf.buffer[0]
|
396 |
+
features = conf.extract_features()
|
397 |
+
binary_features = self._convert_to_binary_features(features)
|
398 |
+
|
399 |
+
if len(conf.stack) > 0:
|
400 |
+
s0 = conf.stack[len(conf.stack) - 1]
|
401 |
+
# Left-arc operation
|
402 |
+
rel = self._get_dep_relation(b0, s0, depgraph)
|
403 |
+
if rel is not None:
|
404 |
+
key = Transition.LEFT_ARC + ":" + rel
|
405 |
+
self._write_to_file(key, binary_features, input_file)
|
406 |
+
operation.left_arc(conf, rel)
|
407 |
+
training_seq.append(key)
|
408 |
+
continue
|
409 |
+
|
410 |
+
# Right-arc operation
|
411 |
+
rel = self._get_dep_relation(s0, b0, depgraph)
|
412 |
+
if rel is not None:
|
413 |
+
precondition = True
|
414 |
+
# Get the max-index of buffer
|
415 |
+
maxID = conf._max_address
|
416 |
+
|
417 |
+
for w in range(maxID + 1):
|
418 |
+
if w != b0:
|
419 |
+
relw = self._get_dep_relation(b0, w, depgraph)
|
420 |
+
if relw is not None:
|
421 |
+
if (b0, relw, w) not in conf.arcs:
|
422 |
+
precondition = False
|
423 |
+
|
424 |
+
if precondition:
|
425 |
+
key = Transition.RIGHT_ARC + ":" + rel
|
426 |
+
self._write_to_file(key, binary_features, input_file)
|
427 |
+
operation.right_arc(conf, rel)
|
428 |
+
training_seq.append(key)
|
429 |
+
continue
|
430 |
+
|
431 |
+
# Shift operation as the default
|
432 |
+
key = Transition.SHIFT
|
433 |
+
self._write_to_file(key, binary_features, input_file)
|
434 |
+
operation.shift(conf)
|
435 |
+
training_seq.append(key)
|
436 |
+
|
437 |
+
print(" Number of training examples : " + str(len(depgraphs)))
|
438 |
+
print(" Number of valid (projective) examples : " + str(count_proj))
|
439 |
+
return training_seq
|
440 |
+
|
441 |
+
def _create_training_examples_arc_eager(self, depgraphs, input_file):
|
442 |
+
"""
|
443 |
+
Create the training example in the libsvm format and write it to the input_file.
|
444 |
+
Reference : 'A Dynamic Oracle for Arc-Eager Dependency Parsing' by Joav Goldberg and Joakim Nivre
|
445 |
+
"""
|
446 |
+
operation = Transition(self.ARC_EAGER)
|
447 |
+
countProj = 0
|
448 |
+
training_seq = []
|
449 |
+
|
450 |
+
for depgraph in depgraphs:
|
451 |
+
if not self._is_projective(depgraph):
|
452 |
+
continue
|
453 |
+
|
454 |
+
countProj += 1
|
455 |
+
conf = Configuration(depgraph)
|
456 |
+
while len(conf.buffer) > 0:
|
457 |
+
b0 = conf.buffer[0]
|
458 |
+
features = conf.extract_features()
|
459 |
+
binary_features = self._convert_to_binary_features(features)
|
460 |
+
|
461 |
+
if len(conf.stack) > 0:
|
462 |
+
s0 = conf.stack[len(conf.stack) - 1]
|
463 |
+
# Left-arc operation
|
464 |
+
rel = self._get_dep_relation(b0, s0, depgraph)
|
465 |
+
if rel is not None:
|
466 |
+
key = Transition.LEFT_ARC + ":" + rel
|
467 |
+
self._write_to_file(key, binary_features, input_file)
|
468 |
+
operation.left_arc(conf, rel)
|
469 |
+
training_seq.append(key)
|
470 |
+
continue
|
471 |
+
|
472 |
+
# Right-arc operation
|
473 |
+
rel = self._get_dep_relation(s0, b0, depgraph)
|
474 |
+
if rel is not None:
|
475 |
+
key = Transition.RIGHT_ARC + ":" + rel
|
476 |
+
self._write_to_file(key, binary_features, input_file)
|
477 |
+
operation.right_arc(conf, rel)
|
478 |
+
training_seq.append(key)
|
479 |
+
continue
|
480 |
+
|
481 |
+
# reduce operation
|
482 |
+
flag = False
|
483 |
+
for k in range(s0):
|
484 |
+
if self._get_dep_relation(k, b0, depgraph) is not None:
|
485 |
+
flag = True
|
486 |
+
if self._get_dep_relation(b0, k, depgraph) is not None:
|
487 |
+
flag = True
|
488 |
+
if flag:
|
489 |
+
key = Transition.REDUCE
|
490 |
+
self._write_to_file(key, binary_features, input_file)
|
491 |
+
operation.reduce(conf)
|
492 |
+
training_seq.append(key)
|
493 |
+
continue
|
494 |
+
|
495 |
+
# Shift operation as the default
|
496 |
+
key = Transition.SHIFT
|
497 |
+
self._write_to_file(key, binary_features, input_file)
|
498 |
+
operation.shift(conf)
|
499 |
+
training_seq.append(key)
|
500 |
+
|
501 |
+
print(" Number of training examples : " + str(len(depgraphs)))
|
502 |
+
print(" Number of valid (projective) examples : " + str(countProj))
|
503 |
+
return training_seq
|
504 |
+
|
505 |
+
def train(self, depgraphs, modelfile, verbose=True):
|
506 |
+
"""
|
507 |
+
:param depgraphs : list of DependencyGraph as the training data
|
508 |
+
:type depgraphs : DependencyGraph
|
509 |
+
:param modelfile : file name to save the trained model
|
510 |
+
:type modelfile : str
|
511 |
+
"""
|
512 |
+
|
513 |
+
try:
|
514 |
+
input_file = tempfile.NamedTemporaryFile(
|
515 |
+
prefix="transition_parse.train", dir=tempfile.gettempdir(), delete=False
|
516 |
+
)
|
517 |
+
|
518 |
+
if self._algorithm == self.ARC_STANDARD:
|
519 |
+
self._create_training_examples_arc_std(depgraphs, input_file)
|
520 |
+
else:
|
521 |
+
self._create_training_examples_arc_eager(depgraphs, input_file)
|
522 |
+
|
523 |
+
input_file.close()
|
524 |
+
# Using the temporary file to train the libsvm classifier
|
525 |
+
x_train, y_train = load_svmlight_file(input_file.name)
|
526 |
+
# The parameter is set according to the paper:
|
527 |
+
# Algorithms for Deterministic Incremental Dependency Parsing by Joakim Nivre
|
528 |
+
# Todo : because of probability = True => very slow due to
|
529 |
+
# cross-validation. Need to improve the speed here
|
530 |
+
model = svm.SVC(
|
531 |
+
kernel="poly",
|
532 |
+
degree=2,
|
533 |
+
coef0=0,
|
534 |
+
gamma=0.2,
|
535 |
+
C=0.5,
|
536 |
+
verbose=verbose,
|
537 |
+
probability=True,
|
538 |
+
)
|
539 |
+
|
540 |
+
model.fit(x_train, y_train)
|
541 |
+
# Save the model to file name (as pickle)
|
542 |
+
pickle.dump(model, open(modelfile, "wb"))
|
543 |
+
finally:
|
544 |
+
remove(input_file.name)
|
545 |
+
|
546 |
+
def parse(self, depgraphs, modelFile):
|
547 |
+
"""
|
548 |
+
:param depgraphs: the list of test sentence, each sentence is represented as a dependency graph where the 'head' information is dummy
|
549 |
+
:type depgraphs: list(DependencyGraph)
|
550 |
+
:param modelfile: the model file
|
551 |
+
:type modelfile: str
|
552 |
+
:return: list (DependencyGraph) with the 'head' and 'rel' information
|
553 |
+
"""
|
554 |
+
result = []
|
555 |
+
# First load the model
|
556 |
+
model = pickle.load(open(modelFile, "rb"))
|
557 |
+
operation = Transition(self._algorithm)
|
558 |
+
|
559 |
+
for depgraph in depgraphs:
|
560 |
+
conf = Configuration(depgraph)
|
561 |
+
while len(conf.buffer) > 0:
|
562 |
+
features = conf.extract_features()
|
563 |
+
col = []
|
564 |
+
row = []
|
565 |
+
data = []
|
566 |
+
for feature in features:
|
567 |
+
if feature in self._dictionary:
|
568 |
+
col.append(self._dictionary[feature])
|
569 |
+
row.append(0)
|
570 |
+
data.append(1.0)
|
571 |
+
np_col = array(sorted(col)) # NB : index must be sorted
|
572 |
+
np_row = array(row)
|
573 |
+
np_data = array(data)
|
574 |
+
|
575 |
+
x_test = sparse.csr_matrix(
|
576 |
+
(np_data, (np_row, np_col)), shape=(1, len(self._dictionary))
|
577 |
+
)
|
578 |
+
|
579 |
+
# It's best to use decision function as follow BUT it's not supported yet for sparse SVM
|
580 |
+
# Using decision function to build the votes array
|
581 |
+
# dec_func = model.decision_function(x_test)[0]
|
582 |
+
# votes = {}
|
583 |
+
# k = 0
|
584 |
+
# for i in range(len(model.classes_)):
|
585 |
+
# for j in range(i+1, len(model.classes_)):
|
586 |
+
# #if dec_func[k] > 0:
|
587 |
+
# votes.setdefault(i,0)
|
588 |
+
# votes[i] +=1
|
589 |
+
# else:
|
590 |
+
# votes.setdefault(j,0)
|
591 |
+
# votes[j] +=1
|
592 |
+
# k +=1
|
593 |
+
# Sort votes according to the values
|
594 |
+
# sorted_votes = sorted(votes.items(), key=itemgetter(1), reverse=True)
|
595 |
+
|
596 |
+
# We will use predict_proba instead of decision_function
|
597 |
+
prob_dict = {}
|
598 |
+
pred_prob = model.predict_proba(x_test)[0]
|
599 |
+
for i in range(len(pred_prob)):
|
600 |
+
prob_dict[i] = pred_prob[i]
|
601 |
+
sorted_Prob = sorted(prob_dict.items(), key=itemgetter(1), reverse=True)
|
602 |
+
|
603 |
+
# Note that SHIFT is always a valid operation
|
604 |
+
for (y_pred_idx, confidence) in sorted_Prob:
|
605 |
+
# y_pred = model.predict(x_test)[0]
|
606 |
+
# From the prediction match to the operation
|
607 |
+
y_pred = model.classes_[y_pred_idx]
|
608 |
+
|
609 |
+
if y_pred in self._match_transition:
|
610 |
+
strTransition = self._match_transition[y_pred]
|
611 |
+
baseTransition = strTransition.split(":")[0]
|
612 |
+
|
613 |
+
if baseTransition == Transition.LEFT_ARC:
|
614 |
+
if (
|
615 |
+
operation.left_arc(conf, strTransition.split(":")[1])
|
616 |
+
!= -1
|
617 |
+
):
|
618 |
+
break
|
619 |
+
elif baseTransition == Transition.RIGHT_ARC:
|
620 |
+
if (
|
621 |
+
operation.right_arc(conf, strTransition.split(":")[1])
|
622 |
+
!= -1
|
623 |
+
):
|
624 |
+
break
|
625 |
+
elif baseTransition == Transition.REDUCE:
|
626 |
+
if operation.reduce(conf) != -1:
|
627 |
+
break
|
628 |
+
elif baseTransition == Transition.SHIFT:
|
629 |
+
if operation.shift(conf) != -1:
|
630 |
+
break
|
631 |
+
else:
|
632 |
+
raise ValueError(
|
633 |
+
"The predicted transition is not recognized, expected errors"
|
634 |
+
)
|
635 |
+
|
636 |
+
# Finish with operations build the dependency graph from Conf.arcs
|
637 |
+
|
638 |
+
new_depgraph = deepcopy(depgraph)
|
639 |
+
for key in new_depgraph.nodes:
|
640 |
+
node = new_depgraph.nodes[key]
|
641 |
+
node["rel"] = ""
|
642 |
+
# With the default, all the token depend on the Root
|
643 |
+
node["head"] = 0
|
644 |
+
for (head, rel, child) in conf.arcs:
|
645 |
+
c_node = new_depgraph.nodes[child]
|
646 |
+
c_node["head"] = head
|
647 |
+
c_node["rel"] = rel
|
648 |
+
result.append(new_depgraph)
|
649 |
+
|
650 |
+
return result
|
651 |
+
|
652 |
+
|
653 |
+
def demo():
|
654 |
+
"""
|
655 |
+
>>> from nltk.parse import DependencyGraph, DependencyEvaluator
|
656 |
+
>>> from nltk.parse.transitionparser import TransitionParser, Configuration, Transition
|
657 |
+
>>> gold_sent = DependencyGraph(\"""
|
658 |
+
... Economic JJ 2 ATT
|
659 |
+
... news NN 3 SBJ
|
660 |
+
... has VBD 0 ROOT
|
661 |
+
... little JJ 5 ATT
|
662 |
+
... effect NN 3 OBJ
|
663 |
+
... on IN 5 ATT
|
664 |
+
... financial JJ 8 ATT
|
665 |
+
... markets NNS 6 PC
|
666 |
+
... . . 3 PU
|
667 |
+
... \""")
|
668 |
+
|
669 |
+
>>> conf = Configuration(gold_sent)
|
670 |
+
|
671 |
+
###################### Check the Initial Feature ########################
|
672 |
+
|
673 |
+
>>> print(', '.join(conf.extract_features()))
|
674 |
+
STK_0_POS_TOP, BUF_0_FORM_Economic, BUF_0_LEMMA_Economic, BUF_0_POS_JJ, BUF_1_FORM_news, BUF_1_POS_NN, BUF_2_POS_VBD, BUF_3_POS_JJ
|
675 |
+
|
676 |
+
###################### Check The Transition #######################
|
677 |
+
Check the Initialized Configuration
|
678 |
+
>>> print(conf)
|
679 |
+
Stack : [0] Buffer : [1, 2, 3, 4, 5, 6, 7, 8, 9] Arcs : []
|
680 |
+
|
681 |
+
A. Do some transition checks for ARC-STANDARD
|
682 |
+
|
683 |
+
>>> operation = Transition('arc-standard')
|
684 |
+
>>> operation.shift(conf)
|
685 |
+
>>> operation.left_arc(conf, "ATT")
|
686 |
+
>>> operation.shift(conf)
|
687 |
+
>>> operation.left_arc(conf,"SBJ")
|
688 |
+
>>> operation.shift(conf)
|
689 |
+
>>> operation.shift(conf)
|
690 |
+
>>> operation.left_arc(conf, "ATT")
|
691 |
+
>>> operation.shift(conf)
|
692 |
+
>>> operation.shift(conf)
|
693 |
+
>>> operation.shift(conf)
|
694 |
+
>>> operation.left_arc(conf, "ATT")
|
695 |
+
|
696 |
+
Middle Configuration and Features Check
|
697 |
+
>>> print(conf)
|
698 |
+
Stack : [0, 3, 5, 6] Buffer : [8, 9] Arcs : [(2, 'ATT', 1), (3, 'SBJ', 2), (5, 'ATT', 4), (8, 'ATT', 7)]
|
699 |
+
|
700 |
+
>>> print(', '.join(conf.extract_features()))
|
701 |
+
STK_0_FORM_on, STK_0_LEMMA_on, STK_0_POS_IN, STK_1_POS_NN, BUF_0_FORM_markets, BUF_0_LEMMA_markets, BUF_0_POS_NNS, BUF_1_FORM_., BUF_1_POS_., BUF_0_LDEP_ATT
|
702 |
+
|
703 |
+
>>> operation.right_arc(conf, "PC")
|
704 |
+
>>> operation.right_arc(conf, "ATT")
|
705 |
+
>>> operation.right_arc(conf, "OBJ")
|
706 |
+
>>> operation.shift(conf)
|
707 |
+
>>> operation.right_arc(conf, "PU")
|
708 |
+
>>> operation.right_arc(conf, "ROOT")
|
709 |
+
>>> operation.shift(conf)
|
710 |
+
|
711 |
+
Terminated Configuration Check
|
712 |
+
>>> print(conf)
|
713 |
+
Stack : [0] Buffer : [] Arcs : [(2, 'ATT', 1), (3, 'SBJ', 2), (5, 'ATT', 4), (8, 'ATT', 7), (6, 'PC', 8), (5, 'ATT', 6), (3, 'OBJ', 5), (3, 'PU', 9), (0, 'ROOT', 3)]
|
714 |
+
|
715 |
+
|
716 |
+
B. Do some transition checks for ARC-EAGER
|
717 |
+
|
718 |
+
>>> conf = Configuration(gold_sent)
|
719 |
+
>>> operation = Transition('arc-eager')
|
720 |
+
>>> operation.shift(conf)
|
721 |
+
>>> operation.left_arc(conf,'ATT')
|
722 |
+
>>> operation.shift(conf)
|
723 |
+
>>> operation.left_arc(conf,'SBJ')
|
724 |
+
>>> operation.right_arc(conf,'ROOT')
|
725 |
+
>>> operation.shift(conf)
|
726 |
+
>>> operation.left_arc(conf,'ATT')
|
727 |
+
>>> operation.right_arc(conf,'OBJ')
|
728 |
+
>>> operation.right_arc(conf,'ATT')
|
729 |
+
>>> operation.shift(conf)
|
730 |
+
>>> operation.left_arc(conf,'ATT')
|
731 |
+
>>> operation.right_arc(conf,'PC')
|
732 |
+
>>> operation.reduce(conf)
|
733 |
+
>>> operation.reduce(conf)
|
734 |
+
>>> operation.reduce(conf)
|
735 |
+
>>> operation.right_arc(conf,'PU')
|
736 |
+
>>> print(conf)
|
737 |
+
Stack : [0, 3, 9] Buffer : [] Arcs : [(2, 'ATT', 1), (3, 'SBJ', 2), (0, 'ROOT', 3), (5, 'ATT', 4), (3, 'OBJ', 5), (5, 'ATT', 6), (8, 'ATT', 7), (6, 'PC', 8), (3, 'PU', 9)]
|
738 |
+
|
739 |
+
###################### Check The Training Function #######################
|
740 |
+
|
741 |
+
A. Check the ARC-STANDARD training
|
742 |
+
>>> import tempfile
|
743 |
+
>>> import os
|
744 |
+
>>> input_file = tempfile.NamedTemporaryFile(prefix='transition_parse.train', dir=tempfile.gettempdir(), delete=False)
|
745 |
+
|
746 |
+
>>> parser_std = TransitionParser('arc-standard')
|
747 |
+
>>> print(', '.join(parser_std._create_training_examples_arc_std([gold_sent], input_file)))
|
748 |
+
Number of training examples : 1
|
749 |
+
Number of valid (projective) examples : 1
|
750 |
+
SHIFT, LEFTARC:ATT, SHIFT, LEFTARC:SBJ, SHIFT, SHIFT, LEFTARC:ATT, SHIFT, SHIFT, SHIFT, LEFTARC:ATT, RIGHTARC:PC, RIGHTARC:ATT, RIGHTARC:OBJ, SHIFT, RIGHTARC:PU, RIGHTARC:ROOT, SHIFT
|
751 |
+
|
752 |
+
>>> parser_std.train([gold_sent],'temp.arcstd.model', verbose=False)
|
753 |
+
Number of training examples : 1
|
754 |
+
Number of valid (projective) examples : 1
|
755 |
+
>>> input_file.close()
|
756 |
+
>>> remove(input_file.name)
|
757 |
+
|
758 |
+
B. Check the ARC-EAGER training
|
759 |
+
|
760 |
+
>>> input_file = tempfile.NamedTemporaryFile(prefix='transition_parse.train', dir=tempfile.gettempdir(),delete=False)
|
761 |
+
>>> parser_eager = TransitionParser('arc-eager')
|
762 |
+
>>> print(', '.join(parser_eager._create_training_examples_arc_eager([gold_sent], input_file)))
|
763 |
+
Number of training examples : 1
|
764 |
+
Number of valid (projective) examples : 1
|
765 |
+
SHIFT, LEFTARC:ATT, SHIFT, LEFTARC:SBJ, RIGHTARC:ROOT, SHIFT, LEFTARC:ATT, RIGHTARC:OBJ, RIGHTARC:ATT, SHIFT, LEFTARC:ATT, RIGHTARC:PC, REDUCE, REDUCE, REDUCE, RIGHTARC:PU
|
766 |
+
|
767 |
+
>>> parser_eager.train([gold_sent],'temp.arceager.model', verbose=False)
|
768 |
+
Number of training examples : 1
|
769 |
+
Number of valid (projective) examples : 1
|
770 |
+
|
771 |
+
>>> input_file.close()
|
772 |
+
>>> remove(input_file.name)
|
773 |
+
|
774 |
+
###################### Check The Parsing Function ########################
|
775 |
+
|
776 |
+
A. Check the ARC-STANDARD parser
|
777 |
+
|
778 |
+
>>> result = parser_std.parse([gold_sent], 'temp.arcstd.model')
|
779 |
+
>>> de = DependencyEvaluator(result, [gold_sent])
|
780 |
+
>>> de.eval() >= (0, 0)
|
781 |
+
True
|
782 |
+
|
783 |
+
B. Check the ARC-EAGER parser
|
784 |
+
>>> result = parser_eager.parse([gold_sent], 'temp.arceager.model')
|
785 |
+
>>> de = DependencyEvaluator(result, [gold_sent])
|
786 |
+
>>> de.eval() >= (0, 0)
|
787 |
+
True
|
788 |
+
|
789 |
+
Remove test temporary files
|
790 |
+
>>> remove('temp.arceager.model')
|
791 |
+
>>> remove('temp.arcstd.model')
|
792 |
+
|
793 |
+
Note that result is very poor because of only one training example.
|
794 |
+
"""
|
venv/lib/python3.10/site-packages/nltk/parse/viterbi.py
ADDED
@@ -0,0 +1,453 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Viterbi Probabilistic Parser
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Edward Loper <[email protected]>
|
5 |
+
# Steven Bird <[email protected]>
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
from functools import reduce
|
10 |
+
|
11 |
+
from nltk.parse.api import ParserI
|
12 |
+
from nltk.tree import ProbabilisticTree, Tree
|
13 |
+
|
14 |
+
##//////////////////////////////////////////////////////
|
15 |
+
## Viterbi PCFG Parser
|
16 |
+
##//////////////////////////////////////////////////////
|
17 |
+
|
18 |
+
|
19 |
+
class ViterbiParser(ParserI):
|
20 |
+
"""
|
21 |
+
A bottom-up ``PCFG`` parser that uses dynamic programming to find
|
22 |
+
the single most likely parse for a text. The ``ViterbiParser`` parser
|
23 |
+
parses texts by filling in a "most likely constituent table".
|
24 |
+
This table records the most probable tree representation for any
|
25 |
+
given span and node value. In particular, it has an entry for
|
26 |
+
every start index, end index, and node value, recording the most
|
27 |
+
likely subtree that spans from the start index to the end index,
|
28 |
+
and has the given node value.
|
29 |
+
|
30 |
+
The ``ViterbiParser`` parser fills in this table incrementally. It starts
|
31 |
+
by filling in all entries for constituents that span one element
|
32 |
+
of text (i.e., entries where the end index is one greater than the
|
33 |
+
start index). After it has filled in all table entries for
|
34 |
+
constituents that span one element of text, it fills in the
|
35 |
+
entries for constitutants that span two elements of text. It
|
36 |
+
continues filling in the entries for constituents spanning larger
|
37 |
+
and larger portions of the text, until the entire table has been
|
38 |
+
filled. Finally, it returns the table entry for a constituent
|
39 |
+
spanning the entire text, whose node value is the grammar's start
|
40 |
+
symbol.
|
41 |
+
|
42 |
+
In order to find the most likely constituent with a given span and
|
43 |
+
node value, the ``ViterbiParser`` parser considers all productions that
|
44 |
+
could produce that node value. For each production, it finds all
|
45 |
+
children that collectively cover the span and have the node values
|
46 |
+
specified by the production's right hand side. If the probability
|
47 |
+
of the tree formed by applying the production to the children is
|
48 |
+
greater than the probability of the current entry in the table,
|
49 |
+
then the table is updated with this new tree.
|
50 |
+
|
51 |
+
A pseudo-code description of the algorithm used by
|
52 |
+
``ViterbiParser`` is:
|
53 |
+
|
54 |
+
| Create an empty most likely constituent table, *MLC*.
|
55 |
+
| For width in 1...len(text):
|
56 |
+
| For start in 1...len(text)-width:
|
57 |
+
| For prod in grammar.productions:
|
58 |
+
| For each sequence of subtrees [t[1], t[2], ..., t[n]] in MLC,
|
59 |
+
| where t[i].label()==prod.rhs[i],
|
60 |
+
| and the sequence covers [start:start+width]:
|
61 |
+
| old_p = MLC[start, start+width, prod.lhs]
|
62 |
+
| new_p = P(t[1])P(t[1])...P(t[n])P(prod)
|
63 |
+
| if new_p > old_p:
|
64 |
+
| new_tree = Tree(prod.lhs, t[1], t[2], ..., t[n])
|
65 |
+
| MLC[start, start+width, prod.lhs] = new_tree
|
66 |
+
| Return MLC[0, len(text), start_symbol]
|
67 |
+
|
68 |
+
:type _grammar: PCFG
|
69 |
+
:ivar _grammar: The grammar used to parse sentences.
|
70 |
+
:type _trace: int
|
71 |
+
:ivar _trace: The level of tracing output that should be generated
|
72 |
+
when parsing a text.
|
73 |
+
"""
|
74 |
+
|
75 |
+
def __init__(self, grammar, trace=0):
|
76 |
+
"""
|
77 |
+
Create a new ``ViterbiParser`` parser, that uses ``grammar`` to
|
78 |
+
parse texts.
|
79 |
+
|
80 |
+
:type grammar: PCFG
|
81 |
+
:param grammar: The grammar used to parse texts.
|
82 |
+
:type trace: int
|
83 |
+
:param trace: The level of tracing that should be used when
|
84 |
+
parsing a text. ``0`` will generate no tracing output;
|
85 |
+
and higher numbers will produce more verbose tracing
|
86 |
+
output.
|
87 |
+
"""
|
88 |
+
self._grammar = grammar
|
89 |
+
self._trace = trace
|
90 |
+
|
91 |
+
def grammar(self):
|
92 |
+
return self._grammar
|
93 |
+
|
94 |
+
def trace(self, trace=2):
|
95 |
+
"""
|
96 |
+
Set the level of tracing output that should be generated when
|
97 |
+
parsing a text.
|
98 |
+
|
99 |
+
:type trace: int
|
100 |
+
:param trace: The trace level. A trace level of ``0`` will
|
101 |
+
generate no tracing output; and higher trace levels will
|
102 |
+
produce more verbose tracing output.
|
103 |
+
:rtype: None
|
104 |
+
"""
|
105 |
+
self._trace = trace
|
106 |
+
|
107 |
+
def parse(self, tokens):
|
108 |
+
# Inherit docs from ParserI
|
109 |
+
|
110 |
+
tokens = list(tokens)
|
111 |
+
self._grammar.check_coverage(tokens)
|
112 |
+
|
113 |
+
# The most likely constituent table. This table specifies the
|
114 |
+
# most likely constituent for a given span and type.
|
115 |
+
# Constituents can be either Trees or tokens. For Trees,
|
116 |
+
# the "type" is the Nonterminal for the tree's root node
|
117 |
+
# value. For Tokens, the "type" is the token's type.
|
118 |
+
# The table is stored as a dictionary, since it is sparse.
|
119 |
+
constituents = {}
|
120 |
+
|
121 |
+
# Initialize the constituents dictionary with the words from
|
122 |
+
# the text.
|
123 |
+
if self._trace:
|
124 |
+
print("Inserting tokens into the most likely" + " constituents table...")
|
125 |
+
for index in range(len(tokens)):
|
126 |
+
token = tokens[index]
|
127 |
+
constituents[index, index + 1, token] = token
|
128 |
+
if self._trace > 1:
|
129 |
+
self._trace_lexical_insertion(token, index, len(tokens))
|
130 |
+
|
131 |
+
# Consider each span of length 1, 2, ..., n; and add any trees
|
132 |
+
# that might cover that span to the constituents dictionary.
|
133 |
+
for length in range(1, len(tokens) + 1):
|
134 |
+
if self._trace:
|
135 |
+
print(
|
136 |
+
"Finding the most likely constituents"
|
137 |
+
+ " spanning %d text elements..." % length
|
138 |
+
)
|
139 |
+
for start in range(len(tokens) - length + 1):
|
140 |
+
span = (start, start + length)
|
141 |
+
self._add_constituents_spanning(span, constituents, tokens)
|
142 |
+
|
143 |
+
# Return the tree that spans the entire text & have the right cat
|
144 |
+
tree = constituents.get((0, len(tokens), self._grammar.start()))
|
145 |
+
if tree is not None:
|
146 |
+
yield tree
|
147 |
+
|
148 |
+
def _add_constituents_spanning(self, span, constituents, tokens):
|
149 |
+
"""
|
150 |
+
Find any constituents that might cover ``span``, and add them
|
151 |
+
to the most likely constituents table.
|
152 |
+
|
153 |
+
:rtype: None
|
154 |
+
:type span: tuple(int, int)
|
155 |
+
:param span: The section of the text for which we are
|
156 |
+
trying to find possible constituents. The span is
|
157 |
+
specified as a pair of integers, where the first integer
|
158 |
+
is the index of the first token that should be included in
|
159 |
+
the constituent; and the second integer is the index of
|
160 |
+
the first token that should not be included in the
|
161 |
+
constituent. I.e., the constituent should cover
|
162 |
+
``text[span[0]:span[1]]``, where ``text`` is the text
|
163 |
+
that we are parsing.
|
164 |
+
|
165 |
+
:type constituents: dict(tuple(int,int,Nonterminal) -> ProbabilisticToken or ProbabilisticTree)
|
166 |
+
:param constituents: The most likely constituents table. This
|
167 |
+
table records the most probable tree representation for
|
168 |
+
any given span and node value. In particular,
|
169 |
+
``constituents(s,e,nv)`` is the most likely
|
170 |
+
``ProbabilisticTree`` that covers ``text[s:e]``
|
171 |
+
and has a node value ``nv.symbol()``, where ``text``
|
172 |
+
is the text that we are parsing. When
|
173 |
+
``_add_constituents_spanning`` is called, ``constituents``
|
174 |
+
should contain all possible constituents that are shorter
|
175 |
+
than ``span``.
|
176 |
+
|
177 |
+
:type tokens: list of tokens
|
178 |
+
:param tokens: The text we are parsing. This is only used for
|
179 |
+
trace output.
|
180 |
+
"""
|
181 |
+
# Since some of the grammar productions may be unary, we need to
|
182 |
+
# repeatedly try all of the productions until none of them add any
|
183 |
+
# new constituents.
|
184 |
+
changed = True
|
185 |
+
while changed:
|
186 |
+
changed = False
|
187 |
+
|
188 |
+
# Find all ways instantiations of the grammar productions that
|
189 |
+
# cover the span.
|
190 |
+
instantiations = self._find_instantiations(span, constituents)
|
191 |
+
|
192 |
+
# For each production instantiation, add a new
|
193 |
+
# ProbabilisticTree whose probability is the product
|
194 |
+
# of the childrens' probabilities and the production's
|
195 |
+
# probability.
|
196 |
+
for (production, children) in instantiations:
|
197 |
+
subtrees = [c for c in children if isinstance(c, Tree)]
|
198 |
+
p = reduce(lambda pr, t: pr * t.prob(), subtrees, production.prob())
|
199 |
+
node = production.lhs().symbol()
|
200 |
+
tree = ProbabilisticTree(node, children, prob=p)
|
201 |
+
|
202 |
+
# If it's new a constituent, then add it to the
|
203 |
+
# constituents dictionary.
|
204 |
+
c = constituents.get((span[0], span[1], production.lhs()))
|
205 |
+
if self._trace > 1:
|
206 |
+
if c is None or c != tree:
|
207 |
+
if c is None or c.prob() < tree.prob():
|
208 |
+
print(" Insert:", end=" ")
|
209 |
+
else:
|
210 |
+
print(" Discard:", end=" ")
|
211 |
+
self._trace_production(production, p, span, len(tokens))
|
212 |
+
if c is None or c.prob() < tree.prob():
|
213 |
+
constituents[span[0], span[1], production.lhs()] = tree
|
214 |
+
changed = True
|
215 |
+
|
216 |
+
def _find_instantiations(self, span, constituents):
|
217 |
+
"""
|
218 |
+
:return: a list of the production instantiations that cover a
|
219 |
+
given span of the text. A "production instantiation" is
|
220 |
+
a tuple containing a production and a list of children,
|
221 |
+
where the production's right hand side matches the list of
|
222 |
+
children; and the children cover ``span``. :rtype: list
|
223 |
+
of ``pair`` of ``Production``, (list of
|
224 |
+
(``ProbabilisticTree`` or token.
|
225 |
+
|
226 |
+
:type span: tuple(int, int)
|
227 |
+
:param span: The section of the text for which we are
|
228 |
+
trying to find production instantiations. The span is
|
229 |
+
specified as a pair of integers, where the first integer
|
230 |
+
is the index of the first token that should be covered by
|
231 |
+
the production instantiation; and the second integer is
|
232 |
+
the index of the first token that should not be covered by
|
233 |
+
the production instantiation.
|
234 |
+
:type constituents: dict(tuple(int,int,Nonterminal) -> ProbabilisticToken or ProbabilisticTree)
|
235 |
+
:param constituents: The most likely constituents table. This
|
236 |
+
table records the most probable tree representation for
|
237 |
+
any given span and node value. See the module
|
238 |
+
documentation for more information.
|
239 |
+
"""
|
240 |
+
rv = []
|
241 |
+
for production in self._grammar.productions():
|
242 |
+
childlists = self._match_rhs(production.rhs(), span, constituents)
|
243 |
+
|
244 |
+
for childlist in childlists:
|
245 |
+
rv.append((production, childlist))
|
246 |
+
return rv
|
247 |
+
|
248 |
+
def _match_rhs(self, rhs, span, constituents):
|
249 |
+
"""
|
250 |
+
:return: a set of all the lists of children that cover ``span``
|
251 |
+
and that match ``rhs``.
|
252 |
+
:rtype: list(list(ProbabilisticTree or token)
|
253 |
+
|
254 |
+
:type rhs: list(Nonterminal or any)
|
255 |
+
:param rhs: The list specifying what kinds of children need to
|
256 |
+
cover ``span``. Each nonterminal in ``rhs`` specifies
|
257 |
+
that the corresponding child should be a tree whose node
|
258 |
+
value is that nonterminal's symbol. Each terminal in ``rhs``
|
259 |
+
specifies that the corresponding child should be a token
|
260 |
+
whose type is that terminal.
|
261 |
+
:type span: tuple(int, int)
|
262 |
+
:param span: The section of the text for which we are
|
263 |
+
trying to find child lists. The span is specified as a
|
264 |
+
pair of integers, where the first integer is the index of
|
265 |
+
the first token that should be covered by the child list;
|
266 |
+
and the second integer is the index of the first token
|
267 |
+
that should not be covered by the child list.
|
268 |
+
:type constituents: dict(tuple(int,int,Nonterminal) -> ProbabilisticToken or ProbabilisticTree)
|
269 |
+
:param constituents: The most likely constituents table. This
|
270 |
+
table records the most probable tree representation for
|
271 |
+
any given span and node value. See the module
|
272 |
+
documentation for more information.
|
273 |
+
"""
|
274 |
+
(start, end) = span
|
275 |
+
|
276 |
+
# Base case
|
277 |
+
if start >= end and rhs == ():
|
278 |
+
return [[]]
|
279 |
+
if start >= end or rhs == ():
|
280 |
+
return []
|
281 |
+
|
282 |
+
# Find everything that matches the 1st symbol of the RHS
|
283 |
+
childlists = []
|
284 |
+
for split in range(start, end + 1):
|
285 |
+
l = constituents.get((start, split, rhs[0]))
|
286 |
+
if l is not None:
|
287 |
+
rights = self._match_rhs(rhs[1:], (split, end), constituents)
|
288 |
+
childlists += [[l] + r for r in rights]
|
289 |
+
|
290 |
+
return childlists
|
291 |
+
|
292 |
+
def _trace_production(self, production, p, span, width):
|
293 |
+
"""
|
294 |
+
Print trace output indicating that a given production has been
|
295 |
+
applied at a given location.
|
296 |
+
|
297 |
+
:param production: The production that has been applied
|
298 |
+
:type production: Production
|
299 |
+
:param p: The probability of the tree produced by the production.
|
300 |
+
:type p: float
|
301 |
+
:param span: The span of the production
|
302 |
+
:type span: tuple
|
303 |
+
:rtype: None
|
304 |
+
"""
|
305 |
+
|
306 |
+
str = "|" + "." * span[0]
|
307 |
+
str += "=" * (span[1] - span[0])
|
308 |
+
str += "." * (width - span[1]) + "| "
|
309 |
+
str += "%s" % production
|
310 |
+
if self._trace > 2:
|
311 |
+
str = f"{str:<40} {p:12.10f} "
|
312 |
+
|
313 |
+
print(str)
|
314 |
+
|
315 |
+
def _trace_lexical_insertion(self, token, index, width):
|
316 |
+
str = " Insert: |" + "." * index + "=" + "." * (width - index - 1) + "| "
|
317 |
+
str += f"{token}"
|
318 |
+
print(str)
|
319 |
+
|
320 |
+
def __repr__(self):
|
321 |
+
return "<ViterbiParser for %r>" % self._grammar
|
322 |
+
|
323 |
+
|
324 |
+
##//////////////////////////////////////////////////////
|
325 |
+
## Test Code
|
326 |
+
##//////////////////////////////////////////////////////
|
327 |
+
|
328 |
+
|
329 |
+
def demo():
|
330 |
+
"""
|
331 |
+
A demonstration of the probabilistic parsers. The user is
|
332 |
+
prompted to select which demo to run, and how many parses should
|
333 |
+
be found; and then each parser is run on the same demo, and a
|
334 |
+
summary of the results are displayed.
|
335 |
+
"""
|
336 |
+
import sys
|
337 |
+
import time
|
338 |
+
|
339 |
+
from nltk import tokenize
|
340 |
+
from nltk.grammar import PCFG
|
341 |
+
from nltk.parse import ViterbiParser
|
342 |
+
|
343 |
+
toy_pcfg1 = PCFG.fromstring(
|
344 |
+
"""
|
345 |
+
S -> NP VP [1.0]
|
346 |
+
NP -> Det N [0.5] | NP PP [0.25] | 'John' [0.1] | 'I' [0.15]
|
347 |
+
Det -> 'the' [0.8] | 'my' [0.2]
|
348 |
+
N -> 'man' [0.5] | 'telescope' [0.5]
|
349 |
+
VP -> VP PP [0.1] | V NP [0.7] | V [0.2]
|
350 |
+
V -> 'ate' [0.35] | 'saw' [0.65]
|
351 |
+
PP -> P NP [1.0]
|
352 |
+
P -> 'with' [0.61] | 'under' [0.39]
|
353 |
+
"""
|
354 |
+
)
|
355 |
+
|
356 |
+
toy_pcfg2 = PCFG.fromstring(
|
357 |
+
"""
|
358 |
+
S -> NP VP [1.0]
|
359 |
+
VP -> V NP [.59]
|
360 |
+
VP -> V [.40]
|
361 |
+
VP -> VP PP [.01]
|
362 |
+
NP -> Det N [.41]
|
363 |
+
NP -> Name [.28]
|
364 |
+
NP -> NP PP [.31]
|
365 |
+
PP -> P NP [1.0]
|
366 |
+
V -> 'saw' [.21]
|
367 |
+
V -> 'ate' [.51]
|
368 |
+
V -> 'ran' [.28]
|
369 |
+
N -> 'boy' [.11]
|
370 |
+
N -> 'cookie' [.12]
|
371 |
+
N -> 'table' [.13]
|
372 |
+
N -> 'telescope' [.14]
|
373 |
+
N -> 'hill' [.5]
|
374 |
+
Name -> 'Jack' [.52]
|
375 |
+
Name -> 'Bob' [.48]
|
376 |
+
P -> 'with' [.61]
|
377 |
+
P -> 'under' [.39]
|
378 |
+
Det -> 'the' [.41]
|
379 |
+
Det -> 'a' [.31]
|
380 |
+
Det -> 'my' [.28]
|
381 |
+
"""
|
382 |
+
)
|
383 |
+
|
384 |
+
# Define two demos. Each demo has a sentence and a grammar.
|
385 |
+
demos = [
|
386 |
+
("I saw the man with my telescope", toy_pcfg1),
|
387 |
+
("the boy saw Jack with Bob under the table with a telescope", toy_pcfg2),
|
388 |
+
]
|
389 |
+
|
390 |
+
# Ask the user which demo they want to use.
|
391 |
+
print()
|
392 |
+
for i in range(len(demos)):
|
393 |
+
print(f"{i + 1:>3}: {demos[i][0]}")
|
394 |
+
print(" %r" % demos[i][1])
|
395 |
+
print()
|
396 |
+
print("Which demo (%d-%d)? " % (1, len(demos)), end=" ")
|
397 |
+
try:
|
398 |
+
snum = int(sys.stdin.readline().strip()) - 1
|
399 |
+
sent, grammar = demos[snum]
|
400 |
+
except:
|
401 |
+
print("Bad sentence number")
|
402 |
+
return
|
403 |
+
|
404 |
+
# Tokenize the sentence.
|
405 |
+
tokens = sent.split()
|
406 |
+
|
407 |
+
parser = ViterbiParser(grammar)
|
408 |
+
all_parses = {}
|
409 |
+
|
410 |
+
print(f"\nsent: {sent}\nparser: {parser}\ngrammar: {grammar}")
|
411 |
+
parser.trace(3)
|
412 |
+
t = time.time()
|
413 |
+
parses = parser.parse_all(tokens)
|
414 |
+
time = time.time() - t
|
415 |
+
average = (
|
416 |
+
reduce(lambda a, b: a + b.prob(), parses, 0) / len(parses) if parses else 0
|
417 |
+
)
|
418 |
+
num_parses = len(parses)
|
419 |
+
for p in parses:
|
420 |
+
all_parses[p.freeze()] = 1
|
421 |
+
|
422 |
+
# Print some summary statistics
|
423 |
+
print()
|
424 |
+
print("Time (secs) # Parses Average P(parse)")
|
425 |
+
print("-----------------------------------------")
|
426 |
+
print("%11.4f%11d%19.14f" % (time, num_parses, average))
|
427 |
+
parses = all_parses.keys()
|
428 |
+
if parses:
|
429 |
+
p = reduce(lambda a, b: a + b.prob(), parses, 0) / len(parses)
|
430 |
+
else:
|
431 |
+
p = 0
|
432 |
+
print("------------------------------------------")
|
433 |
+
print("%11s%11d%19.14f" % ("n/a", len(parses), p))
|
434 |
+
|
435 |
+
# Ask the user if we should draw the parses.
|
436 |
+
print()
|
437 |
+
print("Draw parses (y/n)? ", end=" ")
|
438 |
+
if sys.stdin.readline().strip().lower().startswith("y"):
|
439 |
+
from nltk.draw.tree import draw_trees
|
440 |
+
|
441 |
+
print(" please wait...")
|
442 |
+
draw_trees(*parses)
|
443 |
+
|
444 |
+
# Ask the user if we should print the parses.
|
445 |
+
print()
|
446 |
+
print("Print parses (y/n)? ", end=" ")
|
447 |
+
if sys.stdin.readline().strip().lower().startswith("y"):
|
448 |
+
for parse in parses:
|
449 |
+
print(parse)
|
450 |
+
|
451 |
+
|
452 |
+
if __name__ == "__main__":
|
453 |
+
demo()
|
venv/lib/python3.10/site-packages/nltk/sem/__init__.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Semantic Interpretation
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Ewan Klein <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
"""
|
9 |
+
NLTK Semantic Interpretation Package
|
10 |
+
|
11 |
+
This package contains classes for representing semantic structure in
|
12 |
+
formulas of first-order logic and for evaluating such formulas in
|
13 |
+
set-theoretic models.
|
14 |
+
|
15 |
+
>>> from nltk.sem import logic
|
16 |
+
>>> logic._counter._value = 0
|
17 |
+
|
18 |
+
The package has two main components:
|
19 |
+
|
20 |
+
- ``logic`` provides support for analyzing expressions of First
|
21 |
+
Order Logic (FOL).
|
22 |
+
- ``evaluate`` allows users to recursively determine truth in a
|
23 |
+
model for formulas of FOL.
|
24 |
+
|
25 |
+
A model consists of a domain of discourse and a valuation function,
|
26 |
+
which assigns values to non-logical constants. We assume that entities
|
27 |
+
in the domain are represented as strings such as ``'b1'``, ``'g1'``,
|
28 |
+
etc. A ``Valuation`` is initialized with a list of (symbol, value)
|
29 |
+
pairs, where values are entities, sets of entities or sets of tuples
|
30 |
+
of entities.
|
31 |
+
The domain of discourse can be inferred from the valuation, and model
|
32 |
+
is then created with domain and valuation as parameters.
|
33 |
+
|
34 |
+
>>> from nltk.sem import Valuation, Model
|
35 |
+
>>> v = [('adam', 'b1'), ('betty', 'g1'), ('fido', 'd1'),
|
36 |
+
... ('girl', set(['g1', 'g2'])), ('boy', set(['b1', 'b2'])),
|
37 |
+
... ('dog', set(['d1'])),
|
38 |
+
... ('love', set([('b1', 'g1'), ('b2', 'g2'), ('g1', 'b1'), ('g2', 'b1')]))]
|
39 |
+
>>> val = Valuation(v)
|
40 |
+
>>> dom = val.domain
|
41 |
+
>>> m = Model(dom, val)
|
42 |
+
"""
|
43 |
+
|
44 |
+
from nltk.sem.boxer import Boxer
|
45 |
+
from nltk.sem.drt import DRS, DrtExpression
|
46 |
+
from nltk.sem.evaluate import (
|
47 |
+
Assignment,
|
48 |
+
Model,
|
49 |
+
Undefined,
|
50 |
+
Valuation,
|
51 |
+
arity,
|
52 |
+
is_rel,
|
53 |
+
read_valuation,
|
54 |
+
set2rel,
|
55 |
+
)
|
56 |
+
from nltk.sem.lfg import FStructure
|
57 |
+
from nltk.sem.logic import (
|
58 |
+
ApplicationExpression,
|
59 |
+
Expression,
|
60 |
+
LogicalExpressionException,
|
61 |
+
Variable,
|
62 |
+
binding_ops,
|
63 |
+
boolean_ops,
|
64 |
+
equality_preds,
|
65 |
+
read_logic,
|
66 |
+
)
|
67 |
+
from nltk.sem.relextract import clause, extract_rels, rtuple
|
68 |
+
from nltk.sem.skolemize import skolemize
|
69 |
+
from nltk.sem.util import evaluate_sents, interpret_sents, parse_sents, root_semrep
|
70 |
+
|
71 |
+
# from nltk.sem.glue import Glue
|
72 |
+
# from nltk.sem.hole import HoleSemantics
|
73 |
+
# from nltk.sem.cooper_storage import CooperStore
|
74 |
+
|
75 |
+
# don't import chat80 as its names are too generic
|
venv/lib/python3.10/site-packages/nltk/sem/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.36 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/sem/__pycache__/boxer.cpython-310.pyc
ADDED
Binary file (45.3 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/sem/__pycache__/chat80.cpython-310.pyc
ADDED
Binary file (21.2 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/sem/__pycache__/cooper_storage.cpython-310.pyc
ADDED
Binary file (3.85 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/sem/__pycache__/drt.cpython-310.pyc
ADDED
Binary file (44.8 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/sem/__pycache__/drt_glue_demo.cpython-310.pyc
ADDED
Binary file (13.2 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/sem/__pycache__/evaluate.cpython-310.pyc
ADDED
Binary file (21.8 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/sem/__pycache__/glue.cpython-310.pyc
ADDED
Binary file (19.7 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/sem/__pycache__/hole.cpython-310.pyc
ADDED
Binary file (11.1 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/sem/__pycache__/lfg.cpython-310.pyc
ADDED
Binary file (5.98 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/sem/__pycache__/linearlogic.cpython-310.pyc
ADDED
Binary file (17 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/sem/__pycache__/logic.cpython-310.pyc
ADDED
Binary file (64 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/sem/__pycache__/relextract.cpython-310.pyc
ADDED
Binary file (13.3 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/sem/__pycache__/skolemize.cpython-310.pyc
ADDED
Binary file (2.34 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/sem/__pycache__/util.cpython-310.pyc
ADDED
Binary file (8.02 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/sem/boxer.py
ADDED
@@ -0,0 +1,1605 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Interface to Boxer
|
2 |
+
# <http://svn.ask.it.usyd.edu.au/trac/candc/wiki/boxer>
|
3 |
+
#
|
4 |
+
# Author: Dan Garrette <[email protected]>
|
5 |
+
#
|
6 |
+
# Copyright (C) 2001-2023 NLTK Project
|
7 |
+
# URL: <https://www.nltk.org/>
|
8 |
+
# For license information, see LICENSE.TXT
|
9 |
+
|
10 |
+
"""
|
11 |
+
An interface to Boxer.
|
12 |
+
|
13 |
+
This interface relies on the latest version of the development (subversion) version of
|
14 |
+
C&C and Boxer.
|
15 |
+
|
16 |
+
Usage
|
17 |
+
=====
|
18 |
+
|
19 |
+
Set the environment variable CANDC to the bin directory of your CandC installation.
|
20 |
+
The models directory should be in the CandC root directory.
|
21 |
+
For example::
|
22 |
+
|
23 |
+
/path/to/candc/
|
24 |
+
bin/
|
25 |
+
candc
|
26 |
+
boxer
|
27 |
+
models/
|
28 |
+
boxer/
|
29 |
+
"""
|
30 |
+
|
31 |
+
import operator
|
32 |
+
import os
|
33 |
+
import re
|
34 |
+
import subprocess
|
35 |
+
import tempfile
|
36 |
+
from functools import reduce
|
37 |
+
from optparse import OptionParser
|
38 |
+
|
39 |
+
from nltk.internals import find_binary
|
40 |
+
from nltk.sem.drt import (
|
41 |
+
DRS,
|
42 |
+
DrtApplicationExpression,
|
43 |
+
DrtEqualityExpression,
|
44 |
+
DrtNegatedExpression,
|
45 |
+
DrtOrExpression,
|
46 |
+
DrtParser,
|
47 |
+
DrtProposition,
|
48 |
+
DrtTokens,
|
49 |
+
DrtVariableExpression,
|
50 |
+
)
|
51 |
+
from nltk.sem.logic import (
|
52 |
+
ExpectedMoreTokensException,
|
53 |
+
LogicalExpressionException,
|
54 |
+
UnexpectedTokenException,
|
55 |
+
Variable,
|
56 |
+
)
|
57 |
+
|
58 |
+
|
59 |
+
class Boxer:
|
60 |
+
"""
|
61 |
+
This class is an interface to Johan Bos's program Boxer, a wide-coverage
|
62 |
+
semantic parser that produces Discourse Representation Structures (DRSs).
|
63 |
+
"""
|
64 |
+
|
65 |
+
def __init__(
|
66 |
+
self,
|
67 |
+
boxer_drs_interpreter=None,
|
68 |
+
elimeq=False,
|
69 |
+
bin_dir=None,
|
70 |
+
verbose=False,
|
71 |
+
resolve=True,
|
72 |
+
):
|
73 |
+
"""
|
74 |
+
:param boxer_drs_interpreter: A class that converts from the
|
75 |
+
``AbstractBoxerDrs`` object hierarchy to a different object. The
|
76 |
+
default is ``NltkDrtBoxerDrsInterpreter``, which converts to the NLTK
|
77 |
+
DRT hierarchy.
|
78 |
+
:param elimeq: When set to true, Boxer removes all equalities from the
|
79 |
+
DRSs and discourse referents standing in the equality relation are
|
80 |
+
unified, but only if this can be done in a meaning-preserving manner.
|
81 |
+
:param resolve: When set to true, Boxer will resolve all anaphoric DRSs and perform merge-reduction.
|
82 |
+
Resolution follows Van der Sandt's theory of binding and accommodation.
|
83 |
+
"""
|
84 |
+
if boxer_drs_interpreter is None:
|
85 |
+
boxer_drs_interpreter = NltkDrtBoxerDrsInterpreter()
|
86 |
+
self._boxer_drs_interpreter = boxer_drs_interpreter
|
87 |
+
|
88 |
+
self._resolve = resolve
|
89 |
+
self._elimeq = elimeq
|
90 |
+
|
91 |
+
self.set_bin_dir(bin_dir, verbose)
|
92 |
+
|
93 |
+
def set_bin_dir(self, bin_dir, verbose=False):
|
94 |
+
self._candc_bin = self._find_binary("candc", bin_dir, verbose)
|
95 |
+
self._candc_models_path = os.path.normpath(
|
96 |
+
os.path.join(self._candc_bin[:-5], "../models")
|
97 |
+
)
|
98 |
+
self._boxer_bin = self._find_binary("boxer", bin_dir, verbose)
|
99 |
+
|
100 |
+
def interpret(self, input, discourse_id=None, question=False, verbose=False):
|
101 |
+
"""
|
102 |
+
Use Boxer to give a first order representation.
|
103 |
+
|
104 |
+
:param input: str Input sentence to parse
|
105 |
+
:param occur_index: bool Should predicates be occurrence indexed?
|
106 |
+
:param discourse_id: str An identifier to be inserted to each occurrence-indexed predicate.
|
107 |
+
:return: ``drt.DrtExpression``
|
108 |
+
"""
|
109 |
+
discourse_ids = [discourse_id] if discourse_id is not None else None
|
110 |
+
(d,) = self.interpret_multi_sents([[input]], discourse_ids, question, verbose)
|
111 |
+
if not d:
|
112 |
+
raise Exception(f'Unable to interpret: "{input}"')
|
113 |
+
return d
|
114 |
+
|
115 |
+
def interpret_multi(self, input, discourse_id=None, question=False, verbose=False):
|
116 |
+
"""
|
117 |
+
Use Boxer to give a first order representation.
|
118 |
+
|
119 |
+
:param input: list of str Input sentences to parse as a single discourse
|
120 |
+
:param occur_index: bool Should predicates be occurrence indexed?
|
121 |
+
:param discourse_id: str An identifier to be inserted to each occurrence-indexed predicate.
|
122 |
+
:return: ``drt.DrtExpression``
|
123 |
+
"""
|
124 |
+
discourse_ids = [discourse_id] if discourse_id is not None else None
|
125 |
+
(d,) = self.interpret_multi_sents([input], discourse_ids, question, verbose)
|
126 |
+
if not d:
|
127 |
+
raise Exception(f'Unable to interpret: "{input}"')
|
128 |
+
return d
|
129 |
+
|
130 |
+
def interpret_sents(
|
131 |
+
self, inputs, discourse_ids=None, question=False, verbose=False
|
132 |
+
):
|
133 |
+
"""
|
134 |
+
Use Boxer to give a first order representation.
|
135 |
+
|
136 |
+
:param inputs: list of str Input sentences to parse as individual discourses
|
137 |
+
:param occur_index: bool Should predicates be occurrence indexed?
|
138 |
+
:param discourse_ids: list of str Identifiers to be inserted to each occurrence-indexed predicate.
|
139 |
+
:return: list of ``drt.DrtExpression``
|
140 |
+
"""
|
141 |
+
return self.interpret_multi_sents(
|
142 |
+
[[input] for input in inputs], discourse_ids, question, verbose
|
143 |
+
)
|
144 |
+
|
145 |
+
def interpret_multi_sents(
|
146 |
+
self, inputs, discourse_ids=None, question=False, verbose=False
|
147 |
+
):
|
148 |
+
"""
|
149 |
+
Use Boxer to give a first order representation.
|
150 |
+
|
151 |
+
:param inputs: list of list of str Input discourses to parse
|
152 |
+
:param occur_index: bool Should predicates be occurrence indexed?
|
153 |
+
:param discourse_ids: list of str Identifiers to be inserted to each occurrence-indexed predicate.
|
154 |
+
:return: ``drt.DrtExpression``
|
155 |
+
"""
|
156 |
+
if discourse_ids is not None:
|
157 |
+
assert len(inputs) == len(discourse_ids)
|
158 |
+
assert reduce(operator.and_, (id is not None for id in discourse_ids))
|
159 |
+
use_disc_id = True
|
160 |
+
else:
|
161 |
+
discourse_ids = list(map(str, range(len(inputs))))
|
162 |
+
use_disc_id = False
|
163 |
+
|
164 |
+
candc_out = self._call_candc(inputs, discourse_ids, question, verbose=verbose)
|
165 |
+
boxer_out = self._call_boxer(candc_out, verbose=verbose)
|
166 |
+
|
167 |
+
# if 'ERROR: input file contains no ccg/2 terms.' in boxer_out:
|
168 |
+
# raise UnparseableInputException('Could not parse with candc: "%s"' % input_str)
|
169 |
+
|
170 |
+
drs_dict = self._parse_to_drs_dict(boxer_out, use_disc_id)
|
171 |
+
return [drs_dict.get(id, None) for id in discourse_ids]
|
172 |
+
|
173 |
+
def _call_candc(self, inputs, discourse_ids, question, verbose=False):
|
174 |
+
"""
|
175 |
+
Call the ``candc`` binary with the given input.
|
176 |
+
|
177 |
+
:param inputs: list of list of str Input discourses to parse
|
178 |
+
:param discourse_ids: list of str Identifiers to be inserted to each occurrence-indexed predicate.
|
179 |
+
:param filename: str A filename for the output file
|
180 |
+
:return: stdout
|
181 |
+
"""
|
182 |
+
args = [
|
183 |
+
"--models",
|
184 |
+
os.path.join(self._candc_models_path, ["boxer", "questions"][question]),
|
185 |
+
"--candc-printer",
|
186 |
+
"boxer",
|
187 |
+
]
|
188 |
+
return self._call(
|
189 |
+
"\n".join(
|
190 |
+
sum(
|
191 |
+
([f"<META>'{id}'"] + d for d, id in zip(inputs, discourse_ids)),
|
192 |
+
[],
|
193 |
+
)
|
194 |
+
),
|
195 |
+
self._candc_bin,
|
196 |
+
args,
|
197 |
+
verbose,
|
198 |
+
)
|
199 |
+
|
200 |
+
def _call_boxer(self, candc_out, verbose=False):
|
201 |
+
"""
|
202 |
+
Call the ``boxer`` binary with the given input.
|
203 |
+
|
204 |
+
:param candc_out: str output from C&C parser
|
205 |
+
:return: stdout
|
206 |
+
"""
|
207 |
+
f = None
|
208 |
+
try:
|
209 |
+
fd, temp_filename = tempfile.mkstemp(
|
210 |
+
prefix="boxer-", suffix=".in", text=True
|
211 |
+
)
|
212 |
+
f = os.fdopen(fd, "w")
|
213 |
+
f.write(candc_out.decode("utf-8"))
|
214 |
+
finally:
|
215 |
+
if f:
|
216 |
+
f.close()
|
217 |
+
|
218 |
+
args = [
|
219 |
+
"--box",
|
220 |
+
"false",
|
221 |
+
"--semantics",
|
222 |
+
"drs",
|
223 |
+
#'--flat', 'false', # removed from boxer
|
224 |
+
"--resolve",
|
225 |
+
["false", "true"][self._resolve],
|
226 |
+
"--elimeq",
|
227 |
+
["false", "true"][self._elimeq],
|
228 |
+
"--format",
|
229 |
+
"prolog",
|
230 |
+
"--instantiate",
|
231 |
+
"true",
|
232 |
+
"--input",
|
233 |
+
temp_filename,
|
234 |
+
]
|
235 |
+
stdout = self._call(None, self._boxer_bin, args, verbose)
|
236 |
+
os.remove(temp_filename)
|
237 |
+
return stdout
|
238 |
+
|
239 |
+
def _find_binary(self, name, bin_dir, verbose=False):
|
240 |
+
return find_binary(
|
241 |
+
name,
|
242 |
+
path_to_bin=bin_dir,
|
243 |
+
env_vars=["CANDC"],
|
244 |
+
url="http://svn.ask.it.usyd.edu.au/trac/candc/",
|
245 |
+
binary_names=[name, name + ".exe"],
|
246 |
+
verbose=verbose,
|
247 |
+
)
|
248 |
+
|
249 |
+
def _call(self, input_str, binary, args=[], verbose=False):
|
250 |
+
"""
|
251 |
+
Call the binary with the given input.
|
252 |
+
|
253 |
+
:param input_str: A string whose contents are used as stdin.
|
254 |
+
:param binary: The location of the binary to call
|
255 |
+
:param args: A list of command-line arguments.
|
256 |
+
:return: stdout
|
257 |
+
"""
|
258 |
+
if verbose:
|
259 |
+
print("Calling:", binary)
|
260 |
+
print("Args:", args)
|
261 |
+
print("Input:", input_str)
|
262 |
+
print("Command:", binary + " " + " ".join(args))
|
263 |
+
|
264 |
+
# Call via a subprocess
|
265 |
+
if input_str is None:
|
266 |
+
cmd = [binary] + args
|
267 |
+
p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
268 |
+
else:
|
269 |
+
cmd = 'echo "{}" | {} {}'.format(input_str, binary, " ".join(args))
|
270 |
+
p = subprocess.Popen(
|
271 |
+
cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True
|
272 |
+
)
|
273 |
+
stdout, stderr = p.communicate()
|
274 |
+
|
275 |
+
if verbose:
|
276 |
+
print("Return code:", p.returncode)
|
277 |
+
if stdout:
|
278 |
+
print("stdout:\n", stdout, "\n")
|
279 |
+
if stderr:
|
280 |
+
print("stderr:\n", stderr, "\n")
|
281 |
+
if p.returncode != 0:
|
282 |
+
raise Exception(
|
283 |
+
"ERROR CALLING: {} {}\nReturncode: {}\n{}".format(
|
284 |
+
binary, " ".join(args), p.returncode, stderr
|
285 |
+
)
|
286 |
+
)
|
287 |
+
|
288 |
+
return stdout
|
289 |
+
|
290 |
+
def _parse_to_drs_dict(self, boxer_out, use_disc_id):
|
291 |
+
lines = boxer_out.decode("utf-8").split("\n")
|
292 |
+
drs_dict = {}
|
293 |
+
i = 0
|
294 |
+
while i < len(lines):
|
295 |
+
line = lines[i]
|
296 |
+
if line.startswith("id("):
|
297 |
+
comma_idx = line.index(",")
|
298 |
+
discourse_id = line[3:comma_idx]
|
299 |
+
if discourse_id[0] == "'" and discourse_id[-1] == "'":
|
300 |
+
discourse_id = discourse_id[1:-1]
|
301 |
+
drs_id = line[comma_idx + 1 : line.index(")")]
|
302 |
+
i += 1
|
303 |
+
line = lines[i]
|
304 |
+
assert line.startswith(f"sem({drs_id},")
|
305 |
+
if line[-4:] == "').'":
|
306 |
+
line = line[:-4] + ")."
|
307 |
+
assert line.endswith(")."), f"can't parse line: {line}"
|
308 |
+
|
309 |
+
search_start = len(f"sem({drs_id},[")
|
310 |
+
brace_count = 1
|
311 |
+
drs_start = -1
|
312 |
+
for j, c in enumerate(line[search_start:]):
|
313 |
+
if c == "[":
|
314 |
+
brace_count += 1
|
315 |
+
if c == "]":
|
316 |
+
brace_count -= 1
|
317 |
+
if brace_count == 0:
|
318 |
+
drs_start = search_start + j + 1
|
319 |
+
if line[drs_start : drs_start + 3] == "','":
|
320 |
+
drs_start = drs_start + 3
|
321 |
+
else:
|
322 |
+
drs_start = drs_start + 1
|
323 |
+
break
|
324 |
+
assert drs_start > -1
|
325 |
+
|
326 |
+
drs_input = line[drs_start:-2].strip()
|
327 |
+
parsed = self._parse_drs(drs_input, discourse_id, use_disc_id)
|
328 |
+
drs_dict[discourse_id] = self._boxer_drs_interpreter.interpret(parsed)
|
329 |
+
i += 1
|
330 |
+
return drs_dict
|
331 |
+
|
332 |
+
def _parse_drs(self, drs_string, discourse_id, use_disc_id):
|
333 |
+
return BoxerOutputDrsParser([None, discourse_id][use_disc_id]).parse(drs_string)
|
334 |
+
|
335 |
+
|
336 |
+
class BoxerOutputDrsParser(DrtParser):
|
337 |
+
def __init__(self, discourse_id=None):
|
338 |
+
"""
|
339 |
+
This class is used to parse the Prolog DRS output from Boxer into a
|
340 |
+
hierarchy of python objects.
|
341 |
+
"""
|
342 |
+
DrtParser.__init__(self)
|
343 |
+
self.discourse_id = discourse_id
|
344 |
+
self.sentence_id_offset = None
|
345 |
+
self.quote_chars = [("'", "'", "\\", False)]
|
346 |
+
|
347 |
+
def parse(self, data, signature=None):
|
348 |
+
return DrtParser.parse(self, data, signature)
|
349 |
+
|
350 |
+
def get_all_symbols(self):
|
351 |
+
return ["(", ")", ",", "[", "]", ":"]
|
352 |
+
|
353 |
+
def handle(self, tok, context):
|
354 |
+
return self.handle_drs(tok)
|
355 |
+
|
356 |
+
def attempt_adjuncts(self, expression, context):
|
357 |
+
return expression
|
358 |
+
|
359 |
+
def parse_condition(self, indices):
|
360 |
+
"""
|
361 |
+
Parse a DRS condition
|
362 |
+
|
363 |
+
:return: list of ``DrtExpression``
|
364 |
+
"""
|
365 |
+
tok = self.token()
|
366 |
+
accum = self.handle_condition(tok, indices)
|
367 |
+
if accum is None:
|
368 |
+
raise UnexpectedTokenException(tok)
|
369 |
+
return accum
|
370 |
+
|
371 |
+
def handle_drs(self, tok):
|
372 |
+
if tok == "drs":
|
373 |
+
return self.parse_drs()
|
374 |
+
elif tok in ["merge", "smerge"]:
|
375 |
+
return self._handle_binary_expression(self._make_merge_expression)(None, [])
|
376 |
+
elif tok in ["alfa"]:
|
377 |
+
return self._handle_alfa(self._make_merge_expression)(None, [])
|
378 |
+
|
379 |
+
def handle_condition(self, tok, indices):
|
380 |
+
"""
|
381 |
+
Handle a DRS condition
|
382 |
+
|
383 |
+
:param indices: list of int
|
384 |
+
:return: list of ``DrtExpression``
|
385 |
+
"""
|
386 |
+
if tok == "not":
|
387 |
+
return [self._handle_not()]
|
388 |
+
|
389 |
+
if tok == "or":
|
390 |
+
conds = [self._handle_binary_expression(self._make_or_expression)]
|
391 |
+
elif tok == "imp":
|
392 |
+
conds = [self._handle_binary_expression(self._make_imp_expression)]
|
393 |
+
elif tok == "eq":
|
394 |
+
conds = [self._handle_eq()]
|
395 |
+
elif tok == "prop":
|
396 |
+
conds = [self._handle_prop()]
|
397 |
+
|
398 |
+
elif tok == "pred":
|
399 |
+
conds = [self._handle_pred()]
|
400 |
+
elif tok == "named":
|
401 |
+
conds = [self._handle_named()]
|
402 |
+
elif tok == "rel":
|
403 |
+
conds = [self._handle_rel()]
|
404 |
+
elif tok == "timex":
|
405 |
+
conds = self._handle_timex()
|
406 |
+
elif tok == "card":
|
407 |
+
conds = [self._handle_card()]
|
408 |
+
|
409 |
+
elif tok == "whq":
|
410 |
+
conds = [self._handle_whq()]
|
411 |
+
elif tok == "duplex":
|
412 |
+
conds = [self._handle_duplex()]
|
413 |
+
|
414 |
+
else:
|
415 |
+
conds = []
|
416 |
+
|
417 |
+
return sum(
|
418 |
+
(
|
419 |
+
[cond(sent_index, word_indices) for cond in conds]
|
420 |
+
for sent_index, word_indices in self._sent_and_word_indices(indices)
|
421 |
+
),
|
422 |
+
[],
|
423 |
+
)
|
424 |
+
|
425 |
+
def _handle_not(self):
|
426 |
+
self.assertToken(self.token(), "(")
|
427 |
+
drs = self.process_next_expression(None)
|
428 |
+
self.assertToken(self.token(), ")")
|
429 |
+
return BoxerNot(drs)
|
430 |
+
|
431 |
+
def _handle_pred(self):
|
432 |
+
# pred(_G3943, dog, n, 0)
|
433 |
+
self.assertToken(self.token(), "(")
|
434 |
+
variable = self.parse_variable()
|
435 |
+
self.assertToken(self.token(), ",")
|
436 |
+
name = self.token()
|
437 |
+
self.assertToken(self.token(), ",")
|
438 |
+
pos = self.token()
|
439 |
+
self.assertToken(self.token(), ",")
|
440 |
+
sense = int(self.token())
|
441 |
+
self.assertToken(self.token(), ")")
|
442 |
+
|
443 |
+
def _handle_pred_f(sent_index, word_indices):
|
444 |
+
return BoxerPred(
|
445 |
+
self.discourse_id, sent_index, word_indices, variable, name, pos, sense
|
446 |
+
)
|
447 |
+
|
448 |
+
return _handle_pred_f
|
449 |
+
|
450 |
+
def _handle_duplex(self):
|
451 |
+
# duplex(whq, drs(...), var, drs(...))
|
452 |
+
self.assertToken(self.token(), "(")
|
453 |
+
# self.assertToken(self.token(), '[')
|
454 |
+
ans_types = []
|
455 |
+
# while self.token(0) != ']':
|
456 |
+
# cat = self.token()
|
457 |
+
# self.assertToken(self.token(), ':')
|
458 |
+
# if cat == 'des':
|
459 |
+
# ans_types.append(self.token())
|
460 |
+
# elif cat == 'num':
|
461 |
+
# ans_types.append('number')
|
462 |
+
# typ = self.token()
|
463 |
+
# if typ == 'cou':
|
464 |
+
# ans_types.append('count')
|
465 |
+
# else:
|
466 |
+
# ans_types.append(typ)
|
467 |
+
# else:
|
468 |
+
# ans_types.append(self.token())
|
469 |
+
# self.token() #swallow the ']'
|
470 |
+
|
471 |
+
self.assertToken(self.token(), "whq")
|
472 |
+
self.assertToken(self.token(), ",")
|
473 |
+
d1 = self.process_next_expression(None)
|
474 |
+
self.assertToken(self.token(), ",")
|
475 |
+
ref = self.parse_variable()
|
476 |
+
self.assertToken(self.token(), ",")
|
477 |
+
d2 = self.process_next_expression(None)
|
478 |
+
self.assertToken(self.token(), ")")
|
479 |
+
return lambda sent_index, word_indices: BoxerWhq(
|
480 |
+
self.discourse_id, sent_index, word_indices, ans_types, d1, ref, d2
|
481 |
+
)
|
482 |
+
|
483 |
+
def _handle_named(self):
|
484 |
+
# named(x0, john, per, 0)
|
485 |
+
self.assertToken(self.token(), "(")
|
486 |
+
variable = self.parse_variable()
|
487 |
+
self.assertToken(self.token(), ",")
|
488 |
+
name = self.token()
|
489 |
+
self.assertToken(self.token(), ",")
|
490 |
+
type = self.token()
|
491 |
+
self.assertToken(self.token(), ",")
|
492 |
+
sense = self.token() # as per boxer rev 2554
|
493 |
+
self.assertToken(self.token(), ")")
|
494 |
+
return lambda sent_index, word_indices: BoxerNamed(
|
495 |
+
self.discourse_id, sent_index, word_indices, variable, name, type, sense
|
496 |
+
)
|
497 |
+
|
498 |
+
def _handle_rel(self):
|
499 |
+
# rel(_G3993, _G3943, agent, 0)
|
500 |
+
self.assertToken(self.token(), "(")
|
501 |
+
var1 = self.parse_variable()
|
502 |
+
self.assertToken(self.token(), ",")
|
503 |
+
var2 = self.parse_variable()
|
504 |
+
self.assertToken(self.token(), ",")
|
505 |
+
rel = self.token()
|
506 |
+
self.assertToken(self.token(), ",")
|
507 |
+
sense = int(self.token())
|
508 |
+
self.assertToken(self.token(), ")")
|
509 |
+
return lambda sent_index, word_indices: BoxerRel(
|
510 |
+
self.discourse_id, sent_index, word_indices, var1, var2, rel, sense
|
511 |
+
)
|
512 |
+
|
513 |
+
def _handle_timex(self):
|
514 |
+
# timex(_G18322, date([]: (+), []:'XXXX', [1004]:'04', []:'XX'))
|
515 |
+
self.assertToken(self.token(), "(")
|
516 |
+
arg = self.parse_variable()
|
517 |
+
self.assertToken(self.token(), ",")
|
518 |
+
new_conds = self._handle_time_expression(arg)
|
519 |
+
self.assertToken(self.token(), ")")
|
520 |
+
return new_conds
|
521 |
+
|
522 |
+
def _handle_time_expression(self, arg):
|
523 |
+
# date([]: (+), []:'XXXX', [1004]:'04', []:'XX')
|
524 |
+
tok = self.token()
|
525 |
+
self.assertToken(self.token(), "(")
|
526 |
+
if tok == "date":
|
527 |
+
conds = self._handle_date(arg)
|
528 |
+
elif tok == "time":
|
529 |
+
conds = self._handle_time(arg)
|
530 |
+
else:
|
531 |
+
return None
|
532 |
+
self.assertToken(self.token(), ")")
|
533 |
+
return [
|
534 |
+
lambda sent_index, word_indices: BoxerPred(
|
535 |
+
self.discourse_id, sent_index, word_indices, arg, tok, "n", 0
|
536 |
+
)
|
537 |
+
] + [lambda sent_index, word_indices: cond for cond in conds]
|
538 |
+
|
539 |
+
def _handle_date(self, arg):
|
540 |
+
# []: (+), []:'XXXX', [1004]:'04', []:'XX'
|
541 |
+
conds = []
|
542 |
+
((sent_index, word_indices),) = self._sent_and_word_indices(
|
543 |
+
self._parse_index_list()
|
544 |
+
)
|
545 |
+
self.assertToken(self.token(), "(")
|
546 |
+
pol = self.token()
|
547 |
+
self.assertToken(self.token(), ")")
|
548 |
+
conds.append(
|
549 |
+
BoxerPred(
|
550 |
+
self.discourse_id,
|
551 |
+
sent_index,
|
552 |
+
word_indices,
|
553 |
+
arg,
|
554 |
+
f"date_pol_{pol}",
|
555 |
+
"a",
|
556 |
+
0,
|
557 |
+
)
|
558 |
+
)
|
559 |
+
self.assertToken(self.token(), ",")
|
560 |
+
|
561 |
+
((sent_index, word_indices),) = self._sent_and_word_indices(
|
562 |
+
self._parse_index_list()
|
563 |
+
)
|
564 |
+
year = self.token()
|
565 |
+
if year != "XXXX":
|
566 |
+
year = year.replace(":", "_")
|
567 |
+
conds.append(
|
568 |
+
BoxerPred(
|
569 |
+
self.discourse_id,
|
570 |
+
sent_index,
|
571 |
+
word_indices,
|
572 |
+
arg,
|
573 |
+
f"date_year_{year}",
|
574 |
+
"a",
|
575 |
+
0,
|
576 |
+
)
|
577 |
+
)
|
578 |
+
self.assertToken(self.token(), ",")
|
579 |
+
|
580 |
+
((sent_index, word_indices),) = self._sent_and_word_indices(
|
581 |
+
self._parse_index_list()
|
582 |
+
)
|
583 |
+
month = self.token()
|
584 |
+
if month != "XX":
|
585 |
+
conds.append(
|
586 |
+
BoxerPred(
|
587 |
+
self.discourse_id,
|
588 |
+
sent_index,
|
589 |
+
word_indices,
|
590 |
+
arg,
|
591 |
+
f"date_month_{month}",
|
592 |
+
"a",
|
593 |
+
0,
|
594 |
+
)
|
595 |
+
)
|
596 |
+
self.assertToken(self.token(), ",")
|
597 |
+
|
598 |
+
((sent_index, word_indices),) = self._sent_and_word_indices(
|
599 |
+
self._parse_index_list()
|
600 |
+
)
|
601 |
+
day = self.token()
|
602 |
+
if day != "XX":
|
603 |
+
conds.append(
|
604 |
+
BoxerPred(
|
605 |
+
self.discourse_id,
|
606 |
+
sent_index,
|
607 |
+
word_indices,
|
608 |
+
arg,
|
609 |
+
f"date_day_{day}",
|
610 |
+
"a",
|
611 |
+
0,
|
612 |
+
)
|
613 |
+
)
|
614 |
+
|
615 |
+
return conds
|
616 |
+
|
617 |
+
def _handle_time(self, arg):
|
618 |
+
# time([1018]:'18', []:'XX', []:'XX')
|
619 |
+
conds = []
|
620 |
+
self._parse_index_list()
|
621 |
+
hour = self.token()
|
622 |
+
if hour != "XX":
|
623 |
+
conds.append(self._make_atom("r_hour_2", arg, hour))
|
624 |
+
self.assertToken(self.token(), ",")
|
625 |
+
|
626 |
+
self._parse_index_list()
|
627 |
+
min = self.token()
|
628 |
+
if min != "XX":
|
629 |
+
conds.append(self._make_atom("r_min_2", arg, min))
|
630 |
+
self.assertToken(self.token(), ",")
|
631 |
+
|
632 |
+
self._parse_index_list()
|
633 |
+
sec = self.token()
|
634 |
+
if sec != "XX":
|
635 |
+
conds.append(self._make_atom("r_sec_2", arg, sec))
|
636 |
+
|
637 |
+
return conds
|
638 |
+
|
639 |
+
def _handle_card(self):
|
640 |
+
# card(_G18535, 28, ge)
|
641 |
+
self.assertToken(self.token(), "(")
|
642 |
+
variable = self.parse_variable()
|
643 |
+
self.assertToken(self.token(), ",")
|
644 |
+
value = self.token()
|
645 |
+
self.assertToken(self.token(), ",")
|
646 |
+
type = self.token()
|
647 |
+
self.assertToken(self.token(), ")")
|
648 |
+
return lambda sent_index, word_indices: BoxerCard(
|
649 |
+
self.discourse_id, sent_index, word_indices, variable, value, type
|
650 |
+
)
|
651 |
+
|
652 |
+
def _handle_prop(self):
|
653 |
+
# prop(_G15949, drs(...))
|
654 |
+
self.assertToken(self.token(), "(")
|
655 |
+
variable = self.parse_variable()
|
656 |
+
self.assertToken(self.token(), ",")
|
657 |
+
drs = self.process_next_expression(None)
|
658 |
+
self.assertToken(self.token(), ")")
|
659 |
+
return lambda sent_index, word_indices: BoxerProp(
|
660 |
+
self.discourse_id, sent_index, word_indices, variable, drs
|
661 |
+
)
|
662 |
+
|
663 |
+
def _parse_index_list(self):
|
664 |
+
# [1001,1002]:
|
665 |
+
indices = []
|
666 |
+
self.assertToken(self.token(), "[")
|
667 |
+
while self.token(0) != "]":
|
668 |
+
indices.append(self.parse_index())
|
669 |
+
if self.token(0) == ",":
|
670 |
+
self.token() # swallow ','
|
671 |
+
self.token() # swallow ']'
|
672 |
+
self.assertToken(self.token(), ":")
|
673 |
+
return indices
|
674 |
+
|
675 |
+
def parse_drs(self):
|
676 |
+
# drs([[1001]:_G3943],
|
677 |
+
# [[1002]:pred(_G3943, dog, n, 0)]
|
678 |
+
# )
|
679 |
+
self.assertToken(self.token(), "(")
|
680 |
+
self.assertToken(self.token(), "[")
|
681 |
+
refs = set()
|
682 |
+
while self.token(0) != "]":
|
683 |
+
indices = self._parse_index_list()
|
684 |
+
refs.add(self.parse_variable())
|
685 |
+
if self.token(0) == ",":
|
686 |
+
self.token() # swallow ','
|
687 |
+
self.token() # swallow ']'
|
688 |
+
self.assertToken(self.token(), ",")
|
689 |
+
self.assertToken(self.token(), "[")
|
690 |
+
conds = []
|
691 |
+
while self.token(0) != "]":
|
692 |
+
indices = self._parse_index_list()
|
693 |
+
conds.extend(self.parse_condition(indices))
|
694 |
+
if self.token(0) == ",":
|
695 |
+
self.token() # swallow ','
|
696 |
+
self.token() # swallow ']'
|
697 |
+
self.assertToken(self.token(), ")")
|
698 |
+
return BoxerDrs(list(refs), conds)
|
699 |
+
|
700 |
+
def _handle_binary_expression(self, make_callback):
|
701 |
+
self.assertToken(self.token(), "(")
|
702 |
+
drs1 = self.process_next_expression(None)
|
703 |
+
self.assertToken(self.token(), ",")
|
704 |
+
drs2 = self.process_next_expression(None)
|
705 |
+
self.assertToken(self.token(), ")")
|
706 |
+
return lambda sent_index, word_indices: make_callback(
|
707 |
+
sent_index, word_indices, drs1, drs2
|
708 |
+
)
|
709 |
+
|
710 |
+
def _handle_alfa(self, make_callback):
|
711 |
+
self.assertToken(self.token(), "(")
|
712 |
+
type = self.token()
|
713 |
+
self.assertToken(self.token(), ",")
|
714 |
+
drs1 = self.process_next_expression(None)
|
715 |
+
self.assertToken(self.token(), ",")
|
716 |
+
drs2 = self.process_next_expression(None)
|
717 |
+
self.assertToken(self.token(), ")")
|
718 |
+
return lambda sent_index, word_indices: make_callback(
|
719 |
+
sent_index, word_indices, drs1, drs2
|
720 |
+
)
|
721 |
+
|
722 |
+
def _handle_eq(self):
|
723 |
+
self.assertToken(self.token(), "(")
|
724 |
+
var1 = self.parse_variable()
|
725 |
+
self.assertToken(self.token(), ",")
|
726 |
+
var2 = self.parse_variable()
|
727 |
+
self.assertToken(self.token(), ")")
|
728 |
+
return lambda sent_index, word_indices: BoxerEq(
|
729 |
+
self.discourse_id, sent_index, word_indices, var1, var2
|
730 |
+
)
|
731 |
+
|
732 |
+
def _handle_whq(self):
|
733 |
+
self.assertToken(self.token(), "(")
|
734 |
+
self.assertToken(self.token(), "[")
|
735 |
+
ans_types = []
|
736 |
+
while self.token(0) != "]":
|
737 |
+
cat = self.token()
|
738 |
+
self.assertToken(self.token(), ":")
|
739 |
+
if cat == "des":
|
740 |
+
ans_types.append(self.token())
|
741 |
+
elif cat == "num":
|
742 |
+
ans_types.append("number")
|
743 |
+
typ = self.token()
|
744 |
+
if typ == "cou":
|
745 |
+
ans_types.append("count")
|
746 |
+
else:
|
747 |
+
ans_types.append(typ)
|
748 |
+
else:
|
749 |
+
ans_types.append(self.token())
|
750 |
+
self.token() # swallow the ']'
|
751 |
+
|
752 |
+
self.assertToken(self.token(), ",")
|
753 |
+
d1 = self.process_next_expression(None)
|
754 |
+
self.assertToken(self.token(), ",")
|
755 |
+
ref = self.parse_variable()
|
756 |
+
self.assertToken(self.token(), ",")
|
757 |
+
d2 = self.process_next_expression(None)
|
758 |
+
self.assertToken(self.token(), ")")
|
759 |
+
return lambda sent_index, word_indices: BoxerWhq(
|
760 |
+
self.discourse_id, sent_index, word_indices, ans_types, d1, ref, d2
|
761 |
+
)
|
762 |
+
|
763 |
+
def _make_merge_expression(self, sent_index, word_indices, drs1, drs2):
|
764 |
+
return BoxerDrs(drs1.refs + drs2.refs, drs1.conds + drs2.conds)
|
765 |
+
|
766 |
+
def _make_or_expression(self, sent_index, word_indices, drs1, drs2):
|
767 |
+
return BoxerOr(self.discourse_id, sent_index, word_indices, drs1, drs2)
|
768 |
+
|
769 |
+
def _make_imp_expression(self, sent_index, word_indices, drs1, drs2):
|
770 |
+
return BoxerDrs(drs1.refs, drs1.conds, drs2)
|
771 |
+
|
772 |
+
def parse_variable(self):
|
773 |
+
var = self.token()
|
774 |
+
assert re.match(r"^[exps]\d+$", var), var
|
775 |
+
return var
|
776 |
+
|
777 |
+
def parse_index(self):
|
778 |
+
return int(self.token())
|
779 |
+
|
780 |
+
def _sent_and_word_indices(self, indices):
|
781 |
+
"""
|
782 |
+
:return: list of (sent_index, word_indices) tuples
|
783 |
+
"""
|
784 |
+
sent_indices = {(i / 1000) - 1 for i in indices if i >= 0}
|
785 |
+
if sent_indices:
|
786 |
+
pairs = []
|
787 |
+
for sent_index in sent_indices:
|
788 |
+
word_indices = [
|
789 |
+
(i % 1000) - 1 for i in indices if sent_index == (i / 1000) - 1
|
790 |
+
]
|
791 |
+
pairs.append((sent_index, word_indices))
|
792 |
+
return pairs
|
793 |
+
else:
|
794 |
+
word_indices = [(i % 1000) - 1 for i in indices]
|
795 |
+
return [(None, word_indices)]
|
796 |
+
|
797 |
+
|
798 |
+
class BoxerDrsParser(DrtParser):
|
799 |
+
"""
|
800 |
+
Reparse the str form of subclasses of ``AbstractBoxerDrs``
|
801 |
+
"""
|
802 |
+
|
803 |
+
def __init__(self, discourse_id=None):
|
804 |
+
DrtParser.__init__(self)
|
805 |
+
self.discourse_id = discourse_id
|
806 |
+
|
807 |
+
def get_all_symbols(self):
|
808 |
+
return [
|
809 |
+
DrtTokens.OPEN,
|
810 |
+
DrtTokens.CLOSE,
|
811 |
+
DrtTokens.COMMA,
|
812 |
+
DrtTokens.OPEN_BRACKET,
|
813 |
+
DrtTokens.CLOSE_BRACKET,
|
814 |
+
]
|
815 |
+
|
816 |
+
def attempt_adjuncts(self, expression, context):
|
817 |
+
return expression
|
818 |
+
|
819 |
+
def handle(self, tok, context):
|
820 |
+
try:
|
821 |
+
# if tok == 'drs':
|
822 |
+
# self.assertNextToken(DrtTokens.OPEN)
|
823 |
+
# label = int(self.token())
|
824 |
+
# self.assertNextToken(DrtTokens.COMMA)
|
825 |
+
# refs = list(map(int, self.handle_refs()))
|
826 |
+
# self.assertNextToken(DrtTokens.COMMA)
|
827 |
+
# conds = self.handle_conds(None)
|
828 |
+
# self.assertNextToken(DrtTokens.CLOSE)
|
829 |
+
# return BoxerDrs(label, refs, conds)
|
830 |
+
if tok == "pred":
|
831 |
+
self.assertNextToken(DrtTokens.OPEN)
|
832 |
+
disc_id = (
|
833 |
+
self.discourse_id if self.discourse_id is not None else self.token()
|
834 |
+
)
|
835 |
+
self.assertNextToken(DrtTokens.COMMA)
|
836 |
+
sent_id = self.nullableIntToken()
|
837 |
+
self.assertNextToken(DrtTokens.COMMA)
|
838 |
+
word_ids = list(map(int, self.handle_refs()))
|
839 |
+
self.assertNextToken(DrtTokens.COMMA)
|
840 |
+
variable = int(self.token())
|
841 |
+
self.assertNextToken(DrtTokens.COMMA)
|
842 |
+
name = self.token()
|
843 |
+
self.assertNextToken(DrtTokens.COMMA)
|
844 |
+
pos = self.token()
|
845 |
+
self.assertNextToken(DrtTokens.COMMA)
|
846 |
+
sense = int(self.token())
|
847 |
+
self.assertNextToken(DrtTokens.CLOSE)
|
848 |
+
return BoxerPred(disc_id, sent_id, word_ids, variable, name, pos, sense)
|
849 |
+
elif tok == "named":
|
850 |
+
self.assertNextToken(DrtTokens.OPEN)
|
851 |
+
disc_id = (
|
852 |
+
self.discourse_id if self.discourse_id is not None else self.token()
|
853 |
+
)
|
854 |
+
self.assertNextToken(DrtTokens.COMMA)
|
855 |
+
sent_id = int(self.token())
|
856 |
+
self.assertNextToken(DrtTokens.COMMA)
|
857 |
+
word_ids = map(int, self.handle_refs())
|
858 |
+
self.assertNextToken(DrtTokens.COMMA)
|
859 |
+
variable = int(self.token())
|
860 |
+
self.assertNextToken(DrtTokens.COMMA)
|
861 |
+
name = self.token()
|
862 |
+
self.assertNextToken(DrtTokens.COMMA)
|
863 |
+
type = self.token()
|
864 |
+
self.assertNextToken(DrtTokens.COMMA)
|
865 |
+
sense = int(self.token())
|
866 |
+
self.assertNextToken(DrtTokens.CLOSE)
|
867 |
+
return BoxerNamed(
|
868 |
+
disc_id, sent_id, word_ids, variable, name, type, sense
|
869 |
+
)
|
870 |
+
elif tok == "rel":
|
871 |
+
self.assertNextToken(DrtTokens.OPEN)
|
872 |
+
disc_id = (
|
873 |
+
self.discourse_id if self.discourse_id is not None else self.token()
|
874 |
+
)
|
875 |
+
self.assertNextToken(DrtTokens.COMMA)
|
876 |
+
sent_id = self.nullableIntToken()
|
877 |
+
self.assertNextToken(DrtTokens.COMMA)
|
878 |
+
word_ids = list(map(int, self.handle_refs()))
|
879 |
+
self.assertNextToken(DrtTokens.COMMA)
|
880 |
+
var1 = int(self.token())
|
881 |
+
self.assertNextToken(DrtTokens.COMMA)
|
882 |
+
var2 = int(self.token())
|
883 |
+
self.assertNextToken(DrtTokens.COMMA)
|
884 |
+
rel = self.token()
|
885 |
+
self.assertNextToken(DrtTokens.COMMA)
|
886 |
+
sense = int(self.token())
|
887 |
+
self.assertNextToken(DrtTokens.CLOSE)
|
888 |
+
return BoxerRel(disc_id, sent_id, word_ids, var1, var2, rel, sense)
|
889 |
+
elif tok == "prop":
|
890 |
+
self.assertNextToken(DrtTokens.OPEN)
|
891 |
+
disc_id = (
|
892 |
+
self.discourse_id if self.discourse_id is not None else self.token()
|
893 |
+
)
|
894 |
+
self.assertNextToken(DrtTokens.COMMA)
|
895 |
+
sent_id = int(self.token())
|
896 |
+
self.assertNextToken(DrtTokens.COMMA)
|
897 |
+
word_ids = list(map(int, self.handle_refs()))
|
898 |
+
self.assertNextToken(DrtTokens.COMMA)
|
899 |
+
variable = int(self.token())
|
900 |
+
self.assertNextToken(DrtTokens.COMMA)
|
901 |
+
drs = self.process_next_expression(None)
|
902 |
+
self.assertNextToken(DrtTokens.CLOSE)
|
903 |
+
return BoxerProp(disc_id, sent_id, word_ids, variable, drs)
|
904 |
+
elif tok == "not":
|
905 |
+
self.assertNextToken(DrtTokens.OPEN)
|
906 |
+
drs = self.process_next_expression(None)
|
907 |
+
self.assertNextToken(DrtTokens.CLOSE)
|
908 |
+
return BoxerNot(drs)
|
909 |
+
elif tok == "imp":
|
910 |
+
self.assertNextToken(DrtTokens.OPEN)
|
911 |
+
drs1 = self.process_next_expression(None)
|
912 |
+
self.assertNextToken(DrtTokens.COMMA)
|
913 |
+
drs2 = self.process_next_expression(None)
|
914 |
+
self.assertNextToken(DrtTokens.CLOSE)
|
915 |
+
return BoxerDrs(drs1.refs, drs1.conds, drs2)
|
916 |
+
elif tok == "or":
|
917 |
+
self.assertNextToken(DrtTokens.OPEN)
|
918 |
+
disc_id = (
|
919 |
+
self.discourse_id if self.discourse_id is not None else self.token()
|
920 |
+
)
|
921 |
+
self.assertNextToken(DrtTokens.COMMA)
|
922 |
+
sent_id = self.nullableIntToken()
|
923 |
+
self.assertNextToken(DrtTokens.COMMA)
|
924 |
+
word_ids = map(int, self.handle_refs())
|
925 |
+
self.assertNextToken(DrtTokens.COMMA)
|
926 |
+
drs1 = self.process_next_expression(None)
|
927 |
+
self.assertNextToken(DrtTokens.COMMA)
|
928 |
+
drs2 = self.process_next_expression(None)
|
929 |
+
self.assertNextToken(DrtTokens.CLOSE)
|
930 |
+
return BoxerOr(disc_id, sent_id, word_ids, drs1, drs2)
|
931 |
+
elif tok == "eq":
|
932 |
+
self.assertNextToken(DrtTokens.OPEN)
|
933 |
+
disc_id = (
|
934 |
+
self.discourse_id if self.discourse_id is not None else self.token()
|
935 |
+
)
|
936 |
+
self.assertNextToken(DrtTokens.COMMA)
|
937 |
+
sent_id = self.nullableIntToken()
|
938 |
+
self.assertNextToken(DrtTokens.COMMA)
|
939 |
+
word_ids = list(map(int, self.handle_refs()))
|
940 |
+
self.assertNextToken(DrtTokens.COMMA)
|
941 |
+
var1 = int(self.token())
|
942 |
+
self.assertNextToken(DrtTokens.COMMA)
|
943 |
+
var2 = int(self.token())
|
944 |
+
self.assertNextToken(DrtTokens.CLOSE)
|
945 |
+
return BoxerEq(disc_id, sent_id, word_ids, var1, var2)
|
946 |
+
elif tok == "card":
|
947 |
+
self.assertNextToken(DrtTokens.OPEN)
|
948 |
+
disc_id = (
|
949 |
+
self.discourse_id if self.discourse_id is not None else self.token()
|
950 |
+
)
|
951 |
+
self.assertNextToken(DrtTokens.COMMA)
|
952 |
+
sent_id = self.nullableIntToken()
|
953 |
+
self.assertNextToken(DrtTokens.COMMA)
|
954 |
+
word_ids = map(int, self.handle_refs())
|
955 |
+
self.assertNextToken(DrtTokens.COMMA)
|
956 |
+
var = int(self.token())
|
957 |
+
self.assertNextToken(DrtTokens.COMMA)
|
958 |
+
value = self.token()
|
959 |
+
self.assertNextToken(DrtTokens.COMMA)
|
960 |
+
type = self.token()
|
961 |
+
self.assertNextToken(DrtTokens.CLOSE)
|
962 |
+
return BoxerCard(disc_id, sent_id, word_ids, var, value, type)
|
963 |
+
elif tok == "whq":
|
964 |
+
self.assertNextToken(DrtTokens.OPEN)
|
965 |
+
disc_id = (
|
966 |
+
self.discourse_id if self.discourse_id is not None else self.token()
|
967 |
+
)
|
968 |
+
self.assertNextToken(DrtTokens.COMMA)
|
969 |
+
sent_id = self.nullableIntToken()
|
970 |
+
self.assertNextToken(DrtTokens.COMMA)
|
971 |
+
word_ids = list(map(int, self.handle_refs()))
|
972 |
+
self.assertNextToken(DrtTokens.COMMA)
|
973 |
+
ans_types = self.handle_refs()
|
974 |
+
self.assertNextToken(DrtTokens.COMMA)
|
975 |
+
drs1 = self.process_next_expression(None)
|
976 |
+
self.assertNextToken(DrtTokens.COMMA)
|
977 |
+
var = int(self.token())
|
978 |
+
self.assertNextToken(DrtTokens.COMMA)
|
979 |
+
drs2 = self.process_next_expression(None)
|
980 |
+
self.assertNextToken(DrtTokens.CLOSE)
|
981 |
+
return BoxerWhq(disc_id, sent_id, word_ids, ans_types, drs1, var, drs2)
|
982 |
+
except Exception as e:
|
983 |
+
raise LogicalExpressionException(self._currentIndex, str(e)) from e
|
984 |
+
assert False, repr(tok)
|
985 |
+
|
986 |
+
def nullableIntToken(self):
|
987 |
+
t = self.token()
|
988 |
+
return int(t) if t != "None" else None
|
989 |
+
|
990 |
+
def get_next_token_variable(self, description):
|
991 |
+
try:
|
992 |
+
return self.token()
|
993 |
+
except ExpectedMoreTokensException as e:
|
994 |
+
raise ExpectedMoreTokensException(e.index, "Variable expected.") from e
|
995 |
+
|
996 |
+
|
997 |
+
class AbstractBoxerDrs:
|
998 |
+
def variables(self):
|
999 |
+
"""
|
1000 |
+
:return: (set<variables>, set<events>, set<propositions>)
|
1001 |
+
"""
|
1002 |
+
variables, events, propositions = self._variables()
|
1003 |
+
return (variables - (events | propositions), events, propositions - events)
|
1004 |
+
|
1005 |
+
def variable_types(self):
|
1006 |
+
vartypes = {}
|
1007 |
+
for t, vars in zip(("z", "e", "p"), self.variables()):
|
1008 |
+
for v in vars:
|
1009 |
+
vartypes[v] = t
|
1010 |
+
return vartypes
|
1011 |
+
|
1012 |
+
def _variables(self):
|
1013 |
+
"""
|
1014 |
+
:return: (set<variables>, set<events>, set<propositions>)
|
1015 |
+
"""
|
1016 |
+
return (set(), set(), set())
|
1017 |
+
|
1018 |
+
def atoms(self):
|
1019 |
+
return set()
|
1020 |
+
|
1021 |
+
def clean(self):
|
1022 |
+
return self
|
1023 |
+
|
1024 |
+
def _clean_name(self, name):
|
1025 |
+
return name.replace("-", "_").replace("'", "_")
|
1026 |
+
|
1027 |
+
def renumber_sentences(self, f):
|
1028 |
+
return self
|
1029 |
+
|
1030 |
+
def __hash__(self):
|
1031 |
+
return hash(f"{self}")
|
1032 |
+
|
1033 |
+
|
1034 |
+
class BoxerDrs(AbstractBoxerDrs):
|
1035 |
+
def __init__(self, refs, conds, consequent=None):
|
1036 |
+
AbstractBoxerDrs.__init__(self)
|
1037 |
+
self.refs = refs
|
1038 |
+
self.conds = conds
|
1039 |
+
self.consequent = consequent
|
1040 |
+
|
1041 |
+
def _variables(self):
|
1042 |
+
variables = (set(), set(), set())
|
1043 |
+
for cond in self.conds:
|
1044 |
+
for s, v in zip(variables, cond._variables()):
|
1045 |
+
s.update(v)
|
1046 |
+
if self.consequent is not None:
|
1047 |
+
for s, v in zip(variables, self.consequent._variables()):
|
1048 |
+
s.update(v)
|
1049 |
+
return variables
|
1050 |
+
|
1051 |
+
def atoms(self):
|
1052 |
+
atoms = reduce(operator.or_, (cond.atoms() for cond in self.conds), set())
|
1053 |
+
if self.consequent is not None:
|
1054 |
+
atoms.update(self.consequent.atoms())
|
1055 |
+
return atoms
|
1056 |
+
|
1057 |
+
def clean(self):
|
1058 |
+
consequent = self.consequent.clean() if self.consequent else None
|
1059 |
+
return BoxerDrs(self.refs, [c.clean() for c in self.conds], consequent)
|
1060 |
+
|
1061 |
+
def renumber_sentences(self, f):
|
1062 |
+
consequent = self.consequent.renumber_sentences(f) if self.consequent else None
|
1063 |
+
return BoxerDrs(
|
1064 |
+
self.refs, [c.renumber_sentences(f) for c in self.conds], consequent
|
1065 |
+
)
|
1066 |
+
|
1067 |
+
def __repr__(self):
|
1068 |
+
s = "drs([{}], [{}])".format(
|
1069 |
+
", ".join("%s" % r for r in self.refs),
|
1070 |
+
", ".join("%s" % c for c in self.conds),
|
1071 |
+
)
|
1072 |
+
if self.consequent is not None:
|
1073 |
+
s = f"imp({s}, {self.consequent})"
|
1074 |
+
return s
|
1075 |
+
|
1076 |
+
def __eq__(self, other):
|
1077 |
+
return (
|
1078 |
+
self.__class__ == other.__class__
|
1079 |
+
and self.refs == other.refs
|
1080 |
+
and len(self.conds) == len(other.conds)
|
1081 |
+
and reduce(
|
1082 |
+
operator.and_, (c1 == c2 for c1, c2 in zip(self.conds, other.conds))
|
1083 |
+
)
|
1084 |
+
and self.consequent == other.consequent
|
1085 |
+
)
|
1086 |
+
|
1087 |
+
def __ne__(self, other):
|
1088 |
+
return not self == other
|
1089 |
+
|
1090 |
+
__hash__ = AbstractBoxerDrs.__hash__
|
1091 |
+
|
1092 |
+
|
1093 |
+
class BoxerNot(AbstractBoxerDrs):
|
1094 |
+
def __init__(self, drs):
|
1095 |
+
AbstractBoxerDrs.__init__(self)
|
1096 |
+
self.drs = drs
|
1097 |
+
|
1098 |
+
def _variables(self):
|
1099 |
+
return self.drs._variables()
|
1100 |
+
|
1101 |
+
def atoms(self):
|
1102 |
+
return self.drs.atoms()
|
1103 |
+
|
1104 |
+
def clean(self):
|
1105 |
+
return BoxerNot(self.drs.clean())
|
1106 |
+
|
1107 |
+
def renumber_sentences(self, f):
|
1108 |
+
return BoxerNot(self.drs.renumber_sentences(f))
|
1109 |
+
|
1110 |
+
def __repr__(self):
|
1111 |
+
return "not(%s)" % (self.drs)
|
1112 |
+
|
1113 |
+
def __eq__(self, other):
|
1114 |
+
return self.__class__ == other.__class__ and self.drs == other.drs
|
1115 |
+
|
1116 |
+
def __ne__(self, other):
|
1117 |
+
return not self == other
|
1118 |
+
|
1119 |
+
__hash__ = AbstractBoxerDrs.__hash__
|
1120 |
+
|
1121 |
+
|
1122 |
+
class BoxerIndexed(AbstractBoxerDrs):
|
1123 |
+
def __init__(self, discourse_id, sent_index, word_indices):
|
1124 |
+
AbstractBoxerDrs.__init__(self)
|
1125 |
+
self.discourse_id = discourse_id
|
1126 |
+
self.sent_index = sent_index
|
1127 |
+
self.word_indices = word_indices
|
1128 |
+
|
1129 |
+
def atoms(self):
|
1130 |
+
return {self}
|
1131 |
+
|
1132 |
+
def __eq__(self, other):
|
1133 |
+
return (
|
1134 |
+
self.__class__ == other.__class__
|
1135 |
+
and self.discourse_id == other.discourse_id
|
1136 |
+
and self.sent_index == other.sent_index
|
1137 |
+
and self.word_indices == other.word_indices
|
1138 |
+
and reduce(operator.and_, (s == o for s, o in zip(self, other)))
|
1139 |
+
)
|
1140 |
+
|
1141 |
+
def __ne__(self, other):
|
1142 |
+
return not self == other
|
1143 |
+
|
1144 |
+
__hash__ = AbstractBoxerDrs.__hash__
|
1145 |
+
|
1146 |
+
def __repr__(self):
|
1147 |
+
s = "{}({}, {}, [{}]".format(
|
1148 |
+
self._pred(),
|
1149 |
+
self.discourse_id,
|
1150 |
+
self.sent_index,
|
1151 |
+
", ".join("%s" % wi for wi in self.word_indices),
|
1152 |
+
)
|
1153 |
+
for v in self:
|
1154 |
+
s += ", %s" % v
|
1155 |
+
return s + ")"
|
1156 |
+
|
1157 |
+
|
1158 |
+
class BoxerPred(BoxerIndexed):
|
1159 |
+
def __init__(self, discourse_id, sent_index, word_indices, var, name, pos, sense):
|
1160 |
+
BoxerIndexed.__init__(self, discourse_id, sent_index, word_indices)
|
1161 |
+
self.var = var
|
1162 |
+
self.name = name
|
1163 |
+
self.pos = pos
|
1164 |
+
self.sense = sense
|
1165 |
+
|
1166 |
+
def _variables(self):
|
1167 |
+
return ({self.var}, set(), set())
|
1168 |
+
|
1169 |
+
def change_var(self, var):
|
1170 |
+
return BoxerPred(
|
1171 |
+
self.discourse_id,
|
1172 |
+
self.sent_index,
|
1173 |
+
self.word_indices,
|
1174 |
+
var,
|
1175 |
+
self.name,
|
1176 |
+
self.pos,
|
1177 |
+
self.sense,
|
1178 |
+
)
|
1179 |
+
|
1180 |
+
def clean(self):
|
1181 |
+
return BoxerPred(
|
1182 |
+
self.discourse_id,
|
1183 |
+
self.sent_index,
|
1184 |
+
self.word_indices,
|
1185 |
+
self.var,
|
1186 |
+
self._clean_name(self.name),
|
1187 |
+
self.pos,
|
1188 |
+
self.sense,
|
1189 |
+
)
|
1190 |
+
|
1191 |
+
def renumber_sentences(self, f):
|
1192 |
+
new_sent_index = f(self.sent_index)
|
1193 |
+
return BoxerPred(
|
1194 |
+
self.discourse_id,
|
1195 |
+
new_sent_index,
|
1196 |
+
self.word_indices,
|
1197 |
+
self.var,
|
1198 |
+
self.name,
|
1199 |
+
self.pos,
|
1200 |
+
self.sense,
|
1201 |
+
)
|
1202 |
+
|
1203 |
+
def __iter__(self):
|
1204 |
+
return iter((self.var, self.name, self.pos, self.sense))
|
1205 |
+
|
1206 |
+
def _pred(self):
|
1207 |
+
return "pred"
|
1208 |
+
|
1209 |
+
|
1210 |
+
class BoxerNamed(BoxerIndexed):
|
1211 |
+
def __init__(self, discourse_id, sent_index, word_indices, var, name, type, sense):
|
1212 |
+
BoxerIndexed.__init__(self, discourse_id, sent_index, word_indices)
|
1213 |
+
self.var = var
|
1214 |
+
self.name = name
|
1215 |
+
self.type = type
|
1216 |
+
self.sense = sense
|
1217 |
+
|
1218 |
+
def _variables(self):
|
1219 |
+
return ({self.var}, set(), set())
|
1220 |
+
|
1221 |
+
def change_var(self, var):
|
1222 |
+
return BoxerNamed(
|
1223 |
+
self.discourse_id,
|
1224 |
+
self.sent_index,
|
1225 |
+
self.word_indices,
|
1226 |
+
var,
|
1227 |
+
self.name,
|
1228 |
+
self.type,
|
1229 |
+
self.sense,
|
1230 |
+
)
|
1231 |
+
|
1232 |
+
def clean(self):
|
1233 |
+
return BoxerNamed(
|
1234 |
+
self.discourse_id,
|
1235 |
+
self.sent_index,
|
1236 |
+
self.word_indices,
|
1237 |
+
self.var,
|
1238 |
+
self._clean_name(self.name),
|
1239 |
+
self.type,
|
1240 |
+
self.sense,
|
1241 |
+
)
|
1242 |
+
|
1243 |
+
def renumber_sentences(self, f):
|
1244 |
+
return BoxerNamed(
|
1245 |
+
self.discourse_id,
|
1246 |
+
f(self.sent_index),
|
1247 |
+
self.word_indices,
|
1248 |
+
self.var,
|
1249 |
+
self.name,
|
1250 |
+
self.type,
|
1251 |
+
self.sense,
|
1252 |
+
)
|
1253 |
+
|
1254 |
+
def __iter__(self):
|
1255 |
+
return iter((self.var, self.name, self.type, self.sense))
|
1256 |
+
|
1257 |
+
def _pred(self):
|
1258 |
+
return "named"
|
1259 |
+
|
1260 |
+
|
1261 |
+
class BoxerRel(BoxerIndexed):
|
1262 |
+
def __init__(self, discourse_id, sent_index, word_indices, var1, var2, rel, sense):
|
1263 |
+
BoxerIndexed.__init__(self, discourse_id, sent_index, word_indices)
|
1264 |
+
self.var1 = var1
|
1265 |
+
self.var2 = var2
|
1266 |
+
self.rel = rel
|
1267 |
+
self.sense = sense
|
1268 |
+
|
1269 |
+
def _variables(self):
|
1270 |
+
return ({self.var1, self.var2}, set(), set())
|
1271 |
+
|
1272 |
+
def clean(self):
|
1273 |
+
return BoxerRel(
|
1274 |
+
self.discourse_id,
|
1275 |
+
self.sent_index,
|
1276 |
+
self.word_indices,
|
1277 |
+
self.var1,
|
1278 |
+
self.var2,
|
1279 |
+
self._clean_name(self.rel),
|
1280 |
+
self.sense,
|
1281 |
+
)
|
1282 |
+
|
1283 |
+
def renumber_sentences(self, f):
|
1284 |
+
return BoxerRel(
|
1285 |
+
self.discourse_id,
|
1286 |
+
f(self.sent_index),
|
1287 |
+
self.word_indices,
|
1288 |
+
self.var1,
|
1289 |
+
self.var2,
|
1290 |
+
self.rel,
|
1291 |
+
self.sense,
|
1292 |
+
)
|
1293 |
+
|
1294 |
+
def __iter__(self):
|
1295 |
+
return iter((self.var1, self.var2, self.rel, self.sense))
|
1296 |
+
|
1297 |
+
def _pred(self):
|
1298 |
+
return "rel"
|
1299 |
+
|
1300 |
+
|
1301 |
+
class BoxerProp(BoxerIndexed):
|
1302 |
+
def __init__(self, discourse_id, sent_index, word_indices, var, drs):
|
1303 |
+
BoxerIndexed.__init__(self, discourse_id, sent_index, word_indices)
|
1304 |
+
self.var = var
|
1305 |
+
self.drs = drs
|
1306 |
+
|
1307 |
+
def _variables(self):
|
1308 |
+
return tuple(
|
1309 |
+
map(operator.or_, (set(), set(), {self.var}), self.drs._variables())
|
1310 |
+
)
|
1311 |
+
|
1312 |
+
def referenced_labels(self):
|
1313 |
+
return {self.drs}
|
1314 |
+
|
1315 |
+
def atoms(self):
|
1316 |
+
return self.drs.atoms()
|
1317 |
+
|
1318 |
+
def clean(self):
|
1319 |
+
return BoxerProp(
|
1320 |
+
self.discourse_id,
|
1321 |
+
self.sent_index,
|
1322 |
+
self.word_indices,
|
1323 |
+
self.var,
|
1324 |
+
self.drs.clean(),
|
1325 |
+
)
|
1326 |
+
|
1327 |
+
def renumber_sentences(self, f):
|
1328 |
+
return BoxerProp(
|
1329 |
+
self.discourse_id,
|
1330 |
+
f(self.sent_index),
|
1331 |
+
self.word_indices,
|
1332 |
+
self.var,
|
1333 |
+
self.drs.renumber_sentences(f),
|
1334 |
+
)
|
1335 |
+
|
1336 |
+
def __iter__(self):
|
1337 |
+
return iter((self.var, self.drs))
|
1338 |
+
|
1339 |
+
def _pred(self):
|
1340 |
+
return "prop"
|
1341 |
+
|
1342 |
+
|
1343 |
+
class BoxerEq(BoxerIndexed):
|
1344 |
+
def __init__(self, discourse_id, sent_index, word_indices, var1, var2):
|
1345 |
+
BoxerIndexed.__init__(self, discourse_id, sent_index, word_indices)
|
1346 |
+
self.var1 = var1
|
1347 |
+
self.var2 = var2
|
1348 |
+
|
1349 |
+
def _variables(self):
|
1350 |
+
return ({self.var1, self.var2}, set(), set())
|
1351 |
+
|
1352 |
+
def atoms(self):
|
1353 |
+
return set()
|
1354 |
+
|
1355 |
+
def renumber_sentences(self, f):
|
1356 |
+
return BoxerEq(
|
1357 |
+
self.discourse_id,
|
1358 |
+
f(self.sent_index),
|
1359 |
+
self.word_indices,
|
1360 |
+
self.var1,
|
1361 |
+
self.var2,
|
1362 |
+
)
|
1363 |
+
|
1364 |
+
def __iter__(self):
|
1365 |
+
return iter((self.var1, self.var2))
|
1366 |
+
|
1367 |
+
def _pred(self):
|
1368 |
+
return "eq"
|
1369 |
+
|
1370 |
+
|
1371 |
+
class BoxerCard(BoxerIndexed):
|
1372 |
+
def __init__(self, discourse_id, sent_index, word_indices, var, value, type):
|
1373 |
+
BoxerIndexed.__init__(self, discourse_id, sent_index, word_indices)
|
1374 |
+
self.var = var
|
1375 |
+
self.value = value
|
1376 |
+
self.type = type
|
1377 |
+
|
1378 |
+
def _variables(self):
|
1379 |
+
return ({self.var}, set(), set())
|
1380 |
+
|
1381 |
+
def renumber_sentences(self, f):
|
1382 |
+
return BoxerCard(
|
1383 |
+
self.discourse_id,
|
1384 |
+
f(self.sent_index),
|
1385 |
+
self.word_indices,
|
1386 |
+
self.var,
|
1387 |
+
self.value,
|
1388 |
+
self.type,
|
1389 |
+
)
|
1390 |
+
|
1391 |
+
def __iter__(self):
|
1392 |
+
return iter((self.var, self.value, self.type))
|
1393 |
+
|
1394 |
+
def _pred(self):
|
1395 |
+
return "card"
|
1396 |
+
|
1397 |
+
|
1398 |
+
class BoxerOr(BoxerIndexed):
|
1399 |
+
def __init__(self, discourse_id, sent_index, word_indices, drs1, drs2):
|
1400 |
+
BoxerIndexed.__init__(self, discourse_id, sent_index, word_indices)
|
1401 |
+
self.drs1 = drs1
|
1402 |
+
self.drs2 = drs2
|
1403 |
+
|
1404 |
+
def _variables(self):
|
1405 |
+
return tuple(map(operator.or_, self.drs1._variables(), self.drs2._variables()))
|
1406 |
+
|
1407 |
+
def atoms(self):
|
1408 |
+
return self.drs1.atoms() | self.drs2.atoms()
|
1409 |
+
|
1410 |
+
def clean(self):
|
1411 |
+
return BoxerOr(
|
1412 |
+
self.discourse_id,
|
1413 |
+
self.sent_index,
|
1414 |
+
self.word_indices,
|
1415 |
+
self.drs1.clean(),
|
1416 |
+
self.drs2.clean(),
|
1417 |
+
)
|
1418 |
+
|
1419 |
+
def renumber_sentences(self, f):
|
1420 |
+
return BoxerOr(
|
1421 |
+
self.discourse_id,
|
1422 |
+
f(self.sent_index),
|
1423 |
+
self.word_indices,
|
1424 |
+
self.drs1,
|
1425 |
+
self.drs2,
|
1426 |
+
)
|
1427 |
+
|
1428 |
+
def __iter__(self):
|
1429 |
+
return iter((self.drs1, self.drs2))
|
1430 |
+
|
1431 |
+
def _pred(self):
|
1432 |
+
return "or"
|
1433 |
+
|
1434 |
+
|
1435 |
+
class BoxerWhq(BoxerIndexed):
|
1436 |
+
def __init__(
|
1437 |
+
self, discourse_id, sent_index, word_indices, ans_types, drs1, variable, drs2
|
1438 |
+
):
|
1439 |
+
BoxerIndexed.__init__(self, discourse_id, sent_index, word_indices)
|
1440 |
+
self.ans_types = ans_types
|
1441 |
+
self.drs1 = drs1
|
1442 |
+
self.variable = variable
|
1443 |
+
self.drs2 = drs2
|
1444 |
+
|
1445 |
+
def _variables(self):
|
1446 |
+
return tuple(
|
1447 |
+
map(
|
1448 |
+
operator.or_,
|
1449 |
+
({self.variable}, set(), set()),
|
1450 |
+
self.drs1._variables(),
|
1451 |
+
self.drs2._variables(),
|
1452 |
+
)
|
1453 |
+
)
|
1454 |
+
|
1455 |
+
def atoms(self):
|
1456 |
+
return self.drs1.atoms() | self.drs2.atoms()
|
1457 |
+
|
1458 |
+
def clean(self):
|
1459 |
+
return BoxerWhq(
|
1460 |
+
self.discourse_id,
|
1461 |
+
self.sent_index,
|
1462 |
+
self.word_indices,
|
1463 |
+
self.ans_types,
|
1464 |
+
self.drs1.clean(),
|
1465 |
+
self.variable,
|
1466 |
+
self.drs2.clean(),
|
1467 |
+
)
|
1468 |
+
|
1469 |
+
def renumber_sentences(self, f):
|
1470 |
+
return BoxerWhq(
|
1471 |
+
self.discourse_id,
|
1472 |
+
f(self.sent_index),
|
1473 |
+
self.word_indices,
|
1474 |
+
self.ans_types,
|
1475 |
+
self.drs1,
|
1476 |
+
self.variable,
|
1477 |
+
self.drs2,
|
1478 |
+
)
|
1479 |
+
|
1480 |
+
def __iter__(self):
|
1481 |
+
return iter(
|
1482 |
+
("[" + ",".join(self.ans_types) + "]", self.drs1, self.variable, self.drs2)
|
1483 |
+
)
|
1484 |
+
|
1485 |
+
def _pred(self):
|
1486 |
+
return "whq"
|
1487 |
+
|
1488 |
+
|
1489 |
+
class PassthroughBoxerDrsInterpreter:
|
1490 |
+
def interpret(self, ex):
|
1491 |
+
return ex
|
1492 |
+
|
1493 |
+
|
1494 |
+
class NltkDrtBoxerDrsInterpreter:
|
1495 |
+
def __init__(self, occur_index=False):
|
1496 |
+
self._occur_index = occur_index
|
1497 |
+
|
1498 |
+
def interpret(self, ex):
|
1499 |
+
"""
|
1500 |
+
:param ex: ``AbstractBoxerDrs``
|
1501 |
+
:return: ``DrtExpression``
|
1502 |
+
"""
|
1503 |
+
if isinstance(ex, BoxerDrs):
|
1504 |
+
drs = DRS(
|
1505 |
+
[Variable(r) for r in ex.refs], list(map(self.interpret, ex.conds))
|
1506 |
+
)
|
1507 |
+
if ex.consequent is not None:
|
1508 |
+
drs.consequent = self.interpret(ex.consequent)
|
1509 |
+
return drs
|
1510 |
+
elif isinstance(ex, BoxerNot):
|
1511 |
+
return DrtNegatedExpression(self.interpret(ex.drs))
|
1512 |
+
elif isinstance(ex, BoxerPred):
|
1513 |
+
pred = self._add_occur_indexing(f"{ex.pos}_{ex.name}", ex)
|
1514 |
+
return self._make_atom(pred, ex.var)
|
1515 |
+
elif isinstance(ex, BoxerNamed):
|
1516 |
+
pred = self._add_occur_indexing(f"ne_{ex.type}_{ex.name}", ex)
|
1517 |
+
return self._make_atom(pred, ex.var)
|
1518 |
+
elif isinstance(ex, BoxerRel):
|
1519 |
+
pred = self._add_occur_indexing("%s" % (ex.rel), ex)
|
1520 |
+
return self._make_atom(pred, ex.var1, ex.var2)
|
1521 |
+
elif isinstance(ex, BoxerProp):
|
1522 |
+
return DrtProposition(Variable(ex.var), self.interpret(ex.drs))
|
1523 |
+
elif isinstance(ex, BoxerEq):
|
1524 |
+
return DrtEqualityExpression(
|
1525 |
+
DrtVariableExpression(Variable(ex.var1)),
|
1526 |
+
DrtVariableExpression(Variable(ex.var2)),
|
1527 |
+
)
|
1528 |
+
elif isinstance(ex, BoxerCard):
|
1529 |
+
pred = self._add_occur_indexing(f"card_{ex.type}_{ex.value}", ex)
|
1530 |
+
return self._make_atom(pred, ex.var)
|
1531 |
+
elif isinstance(ex, BoxerOr):
|
1532 |
+
return DrtOrExpression(self.interpret(ex.drs1), self.interpret(ex.drs2))
|
1533 |
+
elif isinstance(ex, BoxerWhq):
|
1534 |
+
drs1 = self.interpret(ex.drs1)
|
1535 |
+
drs2 = self.interpret(ex.drs2)
|
1536 |
+
return DRS(drs1.refs + drs2.refs, drs1.conds + drs2.conds)
|
1537 |
+
assert False, f"{ex.__class__.__name__}: {ex}"
|
1538 |
+
|
1539 |
+
def _make_atom(self, pred, *args):
|
1540 |
+
accum = DrtVariableExpression(Variable(pred))
|
1541 |
+
for arg in args:
|
1542 |
+
accum = DrtApplicationExpression(
|
1543 |
+
accum, DrtVariableExpression(Variable(arg))
|
1544 |
+
)
|
1545 |
+
return accum
|
1546 |
+
|
1547 |
+
def _add_occur_indexing(self, base, ex):
|
1548 |
+
if self._occur_index and ex.sent_index is not None:
|
1549 |
+
if ex.discourse_id:
|
1550 |
+
base += "_%s" % ex.discourse_id
|
1551 |
+
base += "_s%s" % ex.sent_index
|
1552 |
+
base += "_w%s" % sorted(ex.word_indices)[0]
|
1553 |
+
return base
|
1554 |
+
|
1555 |
+
|
1556 |
+
class UnparseableInputException(Exception):
|
1557 |
+
pass
|
1558 |
+
|
1559 |
+
|
1560 |
+
if __name__ == "__main__":
|
1561 |
+
opts = OptionParser("usage: %prog TEXT [options]")
|
1562 |
+
opts.add_option(
|
1563 |
+
"--verbose",
|
1564 |
+
"-v",
|
1565 |
+
help="display verbose logs",
|
1566 |
+
action="store_true",
|
1567 |
+
default=False,
|
1568 |
+
dest="verbose",
|
1569 |
+
)
|
1570 |
+
opts.add_option(
|
1571 |
+
"--fol", "-f", help="output FOL", action="store_true", default=False, dest="fol"
|
1572 |
+
)
|
1573 |
+
opts.add_option(
|
1574 |
+
"--question",
|
1575 |
+
"-q",
|
1576 |
+
help="input is a question",
|
1577 |
+
action="store_true",
|
1578 |
+
default=False,
|
1579 |
+
dest="question",
|
1580 |
+
)
|
1581 |
+
opts.add_option(
|
1582 |
+
"--occur",
|
1583 |
+
"-o",
|
1584 |
+
help="occurrence index",
|
1585 |
+
action="store_true",
|
1586 |
+
default=False,
|
1587 |
+
dest="occur_index",
|
1588 |
+
)
|
1589 |
+
(options, args) = opts.parse_args()
|
1590 |
+
|
1591 |
+
if len(args) != 1:
|
1592 |
+
opts.error("incorrect number of arguments")
|
1593 |
+
|
1594 |
+
interpreter = NltkDrtBoxerDrsInterpreter(occur_index=options.occur_index)
|
1595 |
+
drs = Boxer(interpreter).interpret_multi(
|
1596 |
+
args[0].split(r"\n"), question=options.question, verbose=options.verbose
|
1597 |
+
)
|
1598 |
+
if drs is None:
|
1599 |
+
print(None)
|
1600 |
+
else:
|
1601 |
+
drs = drs.simplify().eliminate_equality()
|
1602 |
+
if options.fol:
|
1603 |
+
print(drs.fol().normalize())
|
1604 |
+
else:
|
1605 |
+
drs.pretty_print()
|
venv/lib/python3.10/site-packages/nltk/sem/chat80.py
ADDED
@@ -0,0 +1,857 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Chat-80 KB Reader
|
2 |
+
# See https://www.w3.org/TR/swbp-skos-core-guide/
|
3 |
+
#
|
4 |
+
# Copyright (C) 2001-2023 NLTK Project
|
5 |
+
# Author: Ewan Klein <[email protected]>,
|
6 |
+
# URL: <https://www.nltk.org>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
r"""
|
10 |
+
Overview
|
11 |
+
========
|
12 |
+
|
13 |
+
Chat-80 was a natural language system which allowed the user to
|
14 |
+
interrogate a Prolog knowledge base in the domain of world
|
15 |
+
geography. It was developed in the early '80s by Warren and Pereira; see
|
16 |
+
``https://www.aclweb.org/anthology/J82-3002.pdf`` for a description and
|
17 |
+
``http://www.cis.upenn.edu/~pereira/oldies.html`` for the source
|
18 |
+
files.
|
19 |
+
|
20 |
+
This module contains functions to extract data from the Chat-80
|
21 |
+
relation files ('the world database'), and convert then into a format
|
22 |
+
that can be incorporated in the FOL models of
|
23 |
+
``nltk.sem.evaluate``. The code assumes that the Prolog
|
24 |
+
input files are available in the NLTK corpora directory.
|
25 |
+
|
26 |
+
The Chat-80 World Database consists of the following files::
|
27 |
+
|
28 |
+
world0.pl
|
29 |
+
rivers.pl
|
30 |
+
cities.pl
|
31 |
+
countries.pl
|
32 |
+
contain.pl
|
33 |
+
borders.pl
|
34 |
+
|
35 |
+
This module uses a slightly modified version of ``world0.pl``, in which
|
36 |
+
a set of Prolog rules have been omitted. The modified file is named
|
37 |
+
``world1.pl``. Currently, the file ``rivers.pl`` is not read in, since
|
38 |
+
it uses a list rather than a string in the second field.
|
39 |
+
|
40 |
+
Reading Chat-80 Files
|
41 |
+
=====================
|
42 |
+
|
43 |
+
Chat-80 relations are like tables in a relational database. The
|
44 |
+
relation acts as the name of the table; the first argument acts as the
|
45 |
+
'primary key'; and subsequent arguments are further fields in the
|
46 |
+
table. In general, the name of the table provides a label for a unary
|
47 |
+
predicate whose extension is all the primary keys. For example,
|
48 |
+
relations in ``cities.pl`` are of the following form::
|
49 |
+
|
50 |
+
'city(athens,greece,1368).'
|
51 |
+
|
52 |
+
Here, ``'athens'`` is the key, and will be mapped to a member of the
|
53 |
+
unary predicate *city*.
|
54 |
+
|
55 |
+
The fields in the table are mapped to binary predicates. The first
|
56 |
+
argument of the predicate is the primary key, while the second
|
57 |
+
argument is the data in the relevant field. Thus, in the above
|
58 |
+
example, the third field is mapped to the binary predicate
|
59 |
+
*population_of*, whose extension is a set of pairs such as
|
60 |
+
``'(athens, 1368)'``.
|
61 |
+
|
62 |
+
An exception to this general framework is required by the relations in
|
63 |
+
the files ``borders.pl`` and ``contains.pl``. These contain facts of the
|
64 |
+
following form::
|
65 |
+
|
66 |
+
'borders(albania,greece).'
|
67 |
+
|
68 |
+
'contains0(africa,central_africa).'
|
69 |
+
|
70 |
+
We do not want to form a unary concept out the element in
|
71 |
+
the first field of these records, and we want the label of the binary
|
72 |
+
relation just to be ``'border'``/``'contain'`` respectively.
|
73 |
+
|
74 |
+
In order to drive the extraction process, we use 'relation metadata bundles'
|
75 |
+
which are Python dictionaries such as the following::
|
76 |
+
|
77 |
+
city = {'label': 'city',
|
78 |
+
'closures': [],
|
79 |
+
'schema': ['city', 'country', 'population'],
|
80 |
+
'filename': 'cities.pl'}
|
81 |
+
|
82 |
+
According to this, the file ``city['filename']`` contains a list of
|
83 |
+
relational tuples (or more accurately, the corresponding strings in
|
84 |
+
Prolog form) whose predicate symbol is ``city['label']`` and whose
|
85 |
+
relational schema is ``city['schema']``. The notion of a ``closure`` is
|
86 |
+
discussed in the next section.
|
87 |
+
|
88 |
+
Concepts
|
89 |
+
========
|
90 |
+
In order to encapsulate the results of the extraction, a class of
|
91 |
+
``Concept`` objects is introduced. A ``Concept`` object has a number of
|
92 |
+
attributes, in particular a ``prefLabel`` and ``extension``, which make
|
93 |
+
it easier to inspect the output of the extraction. In addition, the
|
94 |
+
``extension`` can be further processed: in the case of the ``'border'``
|
95 |
+
relation, we check that the relation is symmetric, and in the case
|
96 |
+
of the ``'contain'`` relation, we carry out the transitive
|
97 |
+
closure. The closure properties associated with a concept is
|
98 |
+
indicated in the relation metadata, as indicated earlier.
|
99 |
+
|
100 |
+
The ``extension`` of a ``Concept`` object is then incorporated into a
|
101 |
+
``Valuation`` object.
|
102 |
+
|
103 |
+
Persistence
|
104 |
+
===========
|
105 |
+
The functions ``val_dump`` and ``val_load`` are provided to allow a
|
106 |
+
valuation to be stored in a persistent database and re-loaded, rather
|
107 |
+
than having to be re-computed each time.
|
108 |
+
|
109 |
+
Individuals and Lexical Items
|
110 |
+
=============================
|
111 |
+
As well as deriving relations from the Chat-80 data, we also create a
|
112 |
+
set of individual constants, one for each entity in the domain. The
|
113 |
+
individual constants are string-identical to the entities. For
|
114 |
+
example, given a data item such as ``'zloty'``, we add to the valuation
|
115 |
+
a pair ``('zloty', 'zloty')``. In order to parse English sentences that
|
116 |
+
refer to these entities, we also create a lexical item such as the
|
117 |
+
following for each individual constant::
|
118 |
+
|
119 |
+
PropN[num=sg, sem=<\P.(P zloty)>] -> 'Zloty'
|
120 |
+
|
121 |
+
The set of rules is written to the file ``chat_pnames.cfg`` in the
|
122 |
+
current directory.
|
123 |
+
|
124 |
+
"""
|
125 |
+
|
126 |
+
import os
|
127 |
+
import re
|
128 |
+
import shelve
|
129 |
+
import sys
|
130 |
+
|
131 |
+
import nltk.data
|
132 |
+
|
133 |
+
###########################################################################
|
134 |
+
# Chat-80 relation metadata bundles needed to build the valuation
|
135 |
+
###########################################################################
|
136 |
+
|
137 |
+
borders = {
|
138 |
+
"rel_name": "borders",
|
139 |
+
"closures": ["symmetric"],
|
140 |
+
"schema": ["region", "border"],
|
141 |
+
"filename": "borders.pl",
|
142 |
+
}
|
143 |
+
|
144 |
+
contains = {
|
145 |
+
"rel_name": "contains0",
|
146 |
+
"closures": ["transitive"],
|
147 |
+
"schema": ["region", "contain"],
|
148 |
+
"filename": "contain.pl",
|
149 |
+
}
|
150 |
+
|
151 |
+
city = {
|
152 |
+
"rel_name": "city",
|
153 |
+
"closures": [],
|
154 |
+
"schema": ["city", "country", "population"],
|
155 |
+
"filename": "cities.pl",
|
156 |
+
}
|
157 |
+
|
158 |
+
country = {
|
159 |
+
"rel_name": "country",
|
160 |
+
"closures": [],
|
161 |
+
"schema": [
|
162 |
+
"country",
|
163 |
+
"region",
|
164 |
+
"latitude",
|
165 |
+
"longitude",
|
166 |
+
"area",
|
167 |
+
"population",
|
168 |
+
"capital",
|
169 |
+
"currency",
|
170 |
+
],
|
171 |
+
"filename": "countries.pl",
|
172 |
+
}
|
173 |
+
|
174 |
+
circle_of_lat = {
|
175 |
+
"rel_name": "circle_of_latitude",
|
176 |
+
"closures": [],
|
177 |
+
"schema": ["circle_of_latitude", "degrees"],
|
178 |
+
"filename": "world1.pl",
|
179 |
+
}
|
180 |
+
|
181 |
+
circle_of_long = {
|
182 |
+
"rel_name": "circle_of_longitude",
|
183 |
+
"closures": [],
|
184 |
+
"schema": ["circle_of_longitude", "degrees"],
|
185 |
+
"filename": "world1.pl",
|
186 |
+
}
|
187 |
+
|
188 |
+
continent = {
|
189 |
+
"rel_name": "continent",
|
190 |
+
"closures": [],
|
191 |
+
"schema": ["continent"],
|
192 |
+
"filename": "world1.pl",
|
193 |
+
}
|
194 |
+
|
195 |
+
region = {
|
196 |
+
"rel_name": "in_continent",
|
197 |
+
"closures": [],
|
198 |
+
"schema": ["region", "continent"],
|
199 |
+
"filename": "world1.pl",
|
200 |
+
}
|
201 |
+
|
202 |
+
ocean = {
|
203 |
+
"rel_name": "ocean",
|
204 |
+
"closures": [],
|
205 |
+
"schema": ["ocean"],
|
206 |
+
"filename": "world1.pl",
|
207 |
+
}
|
208 |
+
|
209 |
+
sea = {"rel_name": "sea", "closures": [], "schema": ["sea"], "filename": "world1.pl"}
|
210 |
+
|
211 |
+
|
212 |
+
items = [
|
213 |
+
"borders",
|
214 |
+
"contains",
|
215 |
+
"city",
|
216 |
+
"country",
|
217 |
+
"circle_of_lat",
|
218 |
+
"circle_of_long",
|
219 |
+
"continent",
|
220 |
+
"region",
|
221 |
+
"ocean",
|
222 |
+
"sea",
|
223 |
+
]
|
224 |
+
items = tuple(sorted(items))
|
225 |
+
|
226 |
+
item_metadata = {
|
227 |
+
"borders": borders,
|
228 |
+
"contains": contains,
|
229 |
+
"city": city,
|
230 |
+
"country": country,
|
231 |
+
"circle_of_lat": circle_of_lat,
|
232 |
+
"circle_of_long": circle_of_long,
|
233 |
+
"continent": continent,
|
234 |
+
"region": region,
|
235 |
+
"ocean": ocean,
|
236 |
+
"sea": sea,
|
237 |
+
}
|
238 |
+
|
239 |
+
rels = item_metadata.values()
|
240 |
+
|
241 |
+
not_unary = ["borders.pl", "contain.pl"]
|
242 |
+
|
243 |
+
###########################################################################
|
244 |
+
|
245 |
+
|
246 |
+
class Concept:
|
247 |
+
"""
|
248 |
+
A Concept class, loosely based on SKOS
|
249 |
+
(https://www.w3.org/TR/swbp-skos-core-guide/).
|
250 |
+
"""
|
251 |
+
|
252 |
+
def __init__(self, prefLabel, arity, altLabels=[], closures=[], extension=set()):
|
253 |
+
"""
|
254 |
+
:param prefLabel: the preferred label for the concept
|
255 |
+
:type prefLabel: str
|
256 |
+
:param arity: the arity of the concept
|
257 |
+
:type arity: int
|
258 |
+
:param altLabels: other (related) labels
|
259 |
+
:type altLabels: list
|
260 |
+
:param closures: closure properties of the extension
|
261 |
+
(list items can be ``symmetric``, ``reflexive``, ``transitive``)
|
262 |
+
:type closures: list
|
263 |
+
:param extension: the extensional value of the concept
|
264 |
+
:type extension: set
|
265 |
+
"""
|
266 |
+
self.prefLabel = prefLabel
|
267 |
+
self.arity = arity
|
268 |
+
self.altLabels = altLabels
|
269 |
+
self.closures = closures
|
270 |
+
# keep _extension internally as a set
|
271 |
+
self._extension = extension
|
272 |
+
# public access is via a list (for slicing)
|
273 |
+
self.extension = sorted(list(extension))
|
274 |
+
|
275 |
+
def __str__(self):
|
276 |
+
# _extension = ''
|
277 |
+
# for element in sorted(self.extension):
|
278 |
+
# if isinstance(element, tuple):
|
279 |
+
# element = '(%s, %s)' % (element)
|
280 |
+
# _extension += element + ', '
|
281 |
+
# _extension = _extension[:-1]
|
282 |
+
|
283 |
+
return "Label = '{}'\nArity = {}\nExtension = {}".format(
|
284 |
+
self.prefLabel,
|
285 |
+
self.arity,
|
286 |
+
self.extension,
|
287 |
+
)
|
288 |
+
|
289 |
+
def __repr__(self):
|
290 |
+
return "Concept('%s')" % self.prefLabel
|
291 |
+
|
292 |
+
def augment(self, data):
|
293 |
+
"""
|
294 |
+
Add more data to the ``Concept``'s extension set.
|
295 |
+
|
296 |
+
:param data: a new semantic value
|
297 |
+
:type data: string or pair of strings
|
298 |
+
:rtype: set
|
299 |
+
|
300 |
+
"""
|
301 |
+
self._extension.add(data)
|
302 |
+
self.extension = sorted(list(self._extension))
|
303 |
+
return self._extension
|
304 |
+
|
305 |
+
def _make_graph(self, s):
|
306 |
+
"""
|
307 |
+
Convert a set of pairs into an adjacency linked list encoding of a graph.
|
308 |
+
"""
|
309 |
+
g = {}
|
310 |
+
for (x, y) in s:
|
311 |
+
if x in g:
|
312 |
+
g[x].append(y)
|
313 |
+
else:
|
314 |
+
g[x] = [y]
|
315 |
+
return g
|
316 |
+
|
317 |
+
def _transclose(self, g):
|
318 |
+
"""
|
319 |
+
Compute the transitive closure of a graph represented as a linked list.
|
320 |
+
"""
|
321 |
+
for x in g:
|
322 |
+
for adjacent in g[x]:
|
323 |
+
# check that adjacent is a key
|
324 |
+
if adjacent in g:
|
325 |
+
for y in g[adjacent]:
|
326 |
+
if y not in g[x]:
|
327 |
+
g[x].append(y)
|
328 |
+
return g
|
329 |
+
|
330 |
+
def _make_pairs(self, g):
|
331 |
+
"""
|
332 |
+
Convert an adjacency linked list back into a set of pairs.
|
333 |
+
"""
|
334 |
+
pairs = []
|
335 |
+
for node in g:
|
336 |
+
for adjacent in g[node]:
|
337 |
+
pairs.append((node, adjacent))
|
338 |
+
return set(pairs)
|
339 |
+
|
340 |
+
def close(self):
|
341 |
+
"""
|
342 |
+
Close a binary relation in the ``Concept``'s extension set.
|
343 |
+
|
344 |
+
:return: a new extension for the ``Concept`` in which the
|
345 |
+
relation is closed under a given property
|
346 |
+
"""
|
347 |
+
from nltk.sem import is_rel
|
348 |
+
|
349 |
+
assert is_rel(self._extension)
|
350 |
+
if "symmetric" in self.closures:
|
351 |
+
pairs = []
|
352 |
+
for (x, y) in self._extension:
|
353 |
+
pairs.append((y, x))
|
354 |
+
sym = set(pairs)
|
355 |
+
self._extension = self._extension.union(sym)
|
356 |
+
if "transitive" in self.closures:
|
357 |
+
all = self._make_graph(self._extension)
|
358 |
+
closed = self._transclose(all)
|
359 |
+
trans = self._make_pairs(closed)
|
360 |
+
self._extension = self._extension.union(trans)
|
361 |
+
self.extension = sorted(list(self._extension))
|
362 |
+
|
363 |
+
|
364 |
+
def clause2concepts(filename, rel_name, schema, closures=[]):
|
365 |
+
"""
|
366 |
+
Convert a file of Prolog clauses into a list of ``Concept`` objects.
|
367 |
+
|
368 |
+
:param filename: filename containing the relations
|
369 |
+
:type filename: str
|
370 |
+
:param rel_name: name of the relation
|
371 |
+
:type rel_name: str
|
372 |
+
:param schema: the schema used in a set of relational tuples
|
373 |
+
:type schema: list
|
374 |
+
:param closures: closure properties for the extension of the concept
|
375 |
+
:type closures: list
|
376 |
+
:return: a list of ``Concept`` objects
|
377 |
+
:rtype: list
|
378 |
+
"""
|
379 |
+
concepts = []
|
380 |
+
# position of the subject of a binary relation
|
381 |
+
subj = 0
|
382 |
+
# label of the 'primary key'
|
383 |
+
pkey = schema[0]
|
384 |
+
# fields other than the primary key
|
385 |
+
fields = schema[1:]
|
386 |
+
|
387 |
+
# convert a file into a list of lists
|
388 |
+
records = _str2records(filename, rel_name)
|
389 |
+
|
390 |
+
# add a unary concept corresponding to the set of entities
|
391 |
+
# in the primary key position
|
392 |
+
# relations in 'not_unary' are more like ordinary binary relations
|
393 |
+
if not filename in not_unary:
|
394 |
+
concepts.append(unary_concept(pkey, subj, records))
|
395 |
+
|
396 |
+
# add a binary concept for each non-key field
|
397 |
+
for field in fields:
|
398 |
+
obj = schema.index(field)
|
399 |
+
concepts.append(binary_concept(field, closures, subj, obj, records))
|
400 |
+
|
401 |
+
return concepts
|
402 |
+
|
403 |
+
|
404 |
+
def cities2table(filename, rel_name, dbname, verbose=False, setup=False):
|
405 |
+
"""
|
406 |
+
Convert a file of Prolog clauses into a database table.
|
407 |
+
|
408 |
+
This is not generic, since it doesn't allow arbitrary
|
409 |
+
schemas to be set as a parameter.
|
410 |
+
|
411 |
+
Intended usage::
|
412 |
+
|
413 |
+
cities2table('cities.pl', 'city', 'city.db', verbose=True, setup=True)
|
414 |
+
|
415 |
+
:param filename: filename containing the relations
|
416 |
+
:type filename: str
|
417 |
+
:param rel_name: name of the relation
|
418 |
+
:type rel_name: str
|
419 |
+
:param dbname: filename of persistent store
|
420 |
+
:type schema: str
|
421 |
+
"""
|
422 |
+
import sqlite3
|
423 |
+
|
424 |
+
records = _str2records(filename, rel_name)
|
425 |
+
connection = sqlite3.connect(dbname)
|
426 |
+
cur = connection.cursor()
|
427 |
+
if setup:
|
428 |
+
cur.execute(
|
429 |
+
"""CREATE TABLE city_table
|
430 |
+
(City text, Country text, Population int)"""
|
431 |
+
)
|
432 |
+
|
433 |
+
table_name = "city_table"
|
434 |
+
for t in records:
|
435 |
+
cur.execute("insert into %s values (?,?,?)" % table_name, t)
|
436 |
+
if verbose:
|
437 |
+
print("inserting values into %s: " % table_name, t)
|
438 |
+
connection.commit()
|
439 |
+
if verbose:
|
440 |
+
print("Committing update to %s" % dbname)
|
441 |
+
cur.close()
|
442 |
+
|
443 |
+
|
444 |
+
def sql_query(dbname, query):
|
445 |
+
"""
|
446 |
+
Execute an SQL query over a database.
|
447 |
+
:param dbname: filename of persistent store
|
448 |
+
:type schema: str
|
449 |
+
:param query: SQL query
|
450 |
+
:type rel_name: str
|
451 |
+
"""
|
452 |
+
import sqlite3
|
453 |
+
|
454 |
+
try:
|
455 |
+
path = nltk.data.find(dbname)
|
456 |
+
connection = sqlite3.connect(str(path))
|
457 |
+
cur = connection.cursor()
|
458 |
+
return cur.execute(query)
|
459 |
+
except (ValueError, sqlite3.OperationalError):
|
460 |
+
import warnings
|
461 |
+
|
462 |
+
warnings.warn(
|
463 |
+
"Make sure the database file %s is installed and uncompressed." % dbname
|
464 |
+
)
|
465 |
+
raise
|
466 |
+
|
467 |
+
|
468 |
+
def _str2records(filename, rel):
|
469 |
+
"""
|
470 |
+
Read a file into memory and convert each relation clause into a list.
|
471 |
+
"""
|
472 |
+
recs = []
|
473 |
+
contents = nltk.data.load("corpora/chat80/%s" % filename, format="text")
|
474 |
+
for line in contents.splitlines():
|
475 |
+
if line.startswith(rel):
|
476 |
+
line = re.sub(rel + r"\(", "", line)
|
477 |
+
line = re.sub(r"\)\.$", "", line)
|
478 |
+
record = line.split(",")
|
479 |
+
recs.append(record)
|
480 |
+
return recs
|
481 |
+
|
482 |
+
|
483 |
+
def unary_concept(label, subj, records):
|
484 |
+
"""
|
485 |
+
Make a unary concept out of the primary key in a record.
|
486 |
+
|
487 |
+
A record is a list of entities in some relation, such as
|
488 |
+
``['france', 'paris']``, where ``'france'`` is acting as the primary
|
489 |
+
key.
|
490 |
+
|
491 |
+
:param label: the preferred label for the concept
|
492 |
+
:type label: string
|
493 |
+
:param subj: position in the record of the subject of the predicate
|
494 |
+
:type subj: int
|
495 |
+
:param records: a list of records
|
496 |
+
:type records: list of lists
|
497 |
+
:return: ``Concept`` of arity 1
|
498 |
+
:rtype: Concept
|
499 |
+
"""
|
500 |
+
c = Concept(label, arity=1, extension=set())
|
501 |
+
for record in records:
|
502 |
+
c.augment(record[subj])
|
503 |
+
return c
|
504 |
+
|
505 |
+
|
506 |
+
def binary_concept(label, closures, subj, obj, records):
|
507 |
+
"""
|
508 |
+
Make a binary concept out of the primary key and another field in a record.
|
509 |
+
|
510 |
+
A record is a list of entities in some relation, such as
|
511 |
+
``['france', 'paris']``, where ``'france'`` is acting as the primary
|
512 |
+
key, and ``'paris'`` stands in the ``'capital_of'`` relation to
|
513 |
+
``'france'``.
|
514 |
+
|
515 |
+
More generally, given a record such as ``['a', 'b', 'c']``, where
|
516 |
+
label is bound to ``'B'``, and ``obj`` bound to 1, the derived
|
517 |
+
binary concept will have label ``'B_of'``, and its extension will
|
518 |
+
be a set of pairs such as ``('a', 'b')``.
|
519 |
+
|
520 |
+
|
521 |
+
:param label: the base part of the preferred label for the concept
|
522 |
+
:type label: str
|
523 |
+
:param closures: closure properties for the extension of the concept
|
524 |
+
:type closures: list
|
525 |
+
:param subj: position in the record of the subject of the predicate
|
526 |
+
:type subj: int
|
527 |
+
:param obj: position in the record of the object of the predicate
|
528 |
+
:type obj: int
|
529 |
+
:param records: a list of records
|
530 |
+
:type records: list of lists
|
531 |
+
:return: ``Concept`` of arity 2
|
532 |
+
:rtype: Concept
|
533 |
+
"""
|
534 |
+
if not label == "border" and not label == "contain":
|
535 |
+
label = label + "_of"
|
536 |
+
c = Concept(label, arity=2, closures=closures, extension=set())
|
537 |
+
for record in records:
|
538 |
+
c.augment((record[subj], record[obj]))
|
539 |
+
# close the concept's extension according to the properties in closures
|
540 |
+
c.close()
|
541 |
+
return c
|
542 |
+
|
543 |
+
|
544 |
+
def process_bundle(rels):
|
545 |
+
"""
|
546 |
+
Given a list of relation metadata bundles, make a corresponding
|
547 |
+
dictionary of concepts, indexed by the relation name.
|
548 |
+
|
549 |
+
:param rels: bundle of metadata needed for constructing a concept
|
550 |
+
:type rels: list(dict)
|
551 |
+
:return: a dictionary of concepts, indexed by the relation name.
|
552 |
+
:rtype: dict(str): Concept
|
553 |
+
"""
|
554 |
+
concepts = {}
|
555 |
+
for rel in rels:
|
556 |
+
rel_name = rel["rel_name"]
|
557 |
+
closures = rel["closures"]
|
558 |
+
schema = rel["schema"]
|
559 |
+
filename = rel["filename"]
|
560 |
+
|
561 |
+
concept_list = clause2concepts(filename, rel_name, schema, closures)
|
562 |
+
for c in concept_list:
|
563 |
+
label = c.prefLabel
|
564 |
+
if label in concepts:
|
565 |
+
for data in c.extension:
|
566 |
+
concepts[label].augment(data)
|
567 |
+
concepts[label].close()
|
568 |
+
else:
|
569 |
+
concepts[label] = c
|
570 |
+
return concepts
|
571 |
+
|
572 |
+
|
573 |
+
def make_valuation(concepts, read=False, lexicon=False):
|
574 |
+
"""
|
575 |
+
Convert a list of ``Concept`` objects into a list of (label, extension) pairs;
|
576 |
+
optionally create a ``Valuation`` object.
|
577 |
+
|
578 |
+
:param concepts: concepts
|
579 |
+
:type concepts: list(Concept)
|
580 |
+
:param read: if ``True``, ``(symbol, set)`` pairs are read into a ``Valuation``
|
581 |
+
:type read: bool
|
582 |
+
:rtype: list or Valuation
|
583 |
+
"""
|
584 |
+
vals = []
|
585 |
+
|
586 |
+
for c in concepts:
|
587 |
+
vals.append((c.prefLabel, c.extension))
|
588 |
+
if lexicon:
|
589 |
+
read = True
|
590 |
+
if read:
|
591 |
+
from nltk.sem import Valuation
|
592 |
+
|
593 |
+
val = Valuation({})
|
594 |
+
val.update(vals)
|
595 |
+
# add labels for individuals
|
596 |
+
val = label_indivs(val, lexicon=lexicon)
|
597 |
+
return val
|
598 |
+
else:
|
599 |
+
return vals
|
600 |
+
|
601 |
+
|
602 |
+
def val_dump(rels, db):
|
603 |
+
"""
|
604 |
+
Make a ``Valuation`` from a list of relation metadata bundles and dump to
|
605 |
+
persistent database.
|
606 |
+
|
607 |
+
:param rels: bundle of metadata needed for constructing a concept
|
608 |
+
:type rels: list of dict
|
609 |
+
:param db: name of file to which data is written.
|
610 |
+
The suffix '.db' will be automatically appended.
|
611 |
+
:type db: str
|
612 |
+
"""
|
613 |
+
concepts = process_bundle(rels).values()
|
614 |
+
valuation = make_valuation(concepts, read=True)
|
615 |
+
db_out = shelve.open(db, "n")
|
616 |
+
|
617 |
+
db_out.update(valuation)
|
618 |
+
|
619 |
+
db_out.close()
|
620 |
+
|
621 |
+
|
622 |
+
def val_load(db):
|
623 |
+
"""
|
624 |
+
Load a ``Valuation`` from a persistent database.
|
625 |
+
|
626 |
+
:param db: name of file from which data is read.
|
627 |
+
The suffix '.db' should be omitted from the name.
|
628 |
+
:type db: str
|
629 |
+
"""
|
630 |
+
dbname = db + ".db"
|
631 |
+
|
632 |
+
if not os.access(dbname, os.R_OK):
|
633 |
+
sys.exit("Cannot read file: %s" % dbname)
|
634 |
+
else:
|
635 |
+
db_in = shelve.open(db)
|
636 |
+
from nltk.sem import Valuation
|
637 |
+
|
638 |
+
val = Valuation(db_in)
|
639 |
+
# val.read(db_in.items())
|
640 |
+
return val
|
641 |
+
|
642 |
+
|
643 |
+
# def alpha(str):
|
644 |
+
# """
|
645 |
+
# Utility to filter out non-alphabetic constants.
|
646 |
+
|
647 |
+
#:param str: candidate constant
|
648 |
+
#:type str: string
|
649 |
+
#:rtype: bool
|
650 |
+
# """
|
651 |
+
# try:
|
652 |
+
# int(str)
|
653 |
+
# return False
|
654 |
+
# except ValueError:
|
655 |
+
## some unknown values in records are labeled '?'
|
656 |
+
# if not str == '?':
|
657 |
+
# return True
|
658 |
+
|
659 |
+
|
660 |
+
def label_indivs(valuation, lexicon=False):
|
661 |
+
"""
|
662 |
+
Assign individual constants to the individuals in the domain of a ``Valuation``.
|
663 |
+
|
664 |
+
Given a valuation with an entry of the form ``{'rel': {'a': True}}``,
|
665 |
+
add a new entry ``{'a': 'a'}``.
|
666 |
+
|
667 |
+
:type valuation: Valuation
|
668 |
+
:rtype: Valuation
|
669 |
+
"""
|
670 |
+
# collect all the individuals into a domain
|
671 |
+
domain = valuation.domain
|
672 |
+
# convert the domain into a sorted list of alphabetic terms
|
673 |
+
# use the same string as a label
|
674 |
+
pairs = [(e, e) for e in domain]
|
675 |
+
if lexicon:
|
676 |
+
lex = make_lex(domain)
|
677 |
+
with open("chat_pnames.cfg", "w") as outfile:
|
678 |
+
outfile.writelines(lex)
|
679 |
+
# read the pairs into the valuation
|
680 |
+
valuation.update(pairs)
|
681 |
+
return valuation
|
682 |
+
|
683 |
+
|
684 |
+
def make_lex(symbols):
|
685 |
+
"""
|
686 |
+
Create lexical CFG rules for each individual symbol.
|
687 |
+
|
688 |
+
Given a valuation with an entry of the form ``{'zloty': 'zloty'}``,
|
689 |
+
create a lexical rule for the proper name 'Zloty'.
|
690 |
+
|
691 |
+
:param symbols: a list of individual constants in the semantic representation
|
692 |
+
:type symbols: sequence -- set(str)
|
693 |
+
:rtype: list(str)
|
694 |
+
"""
|
695 |
+
lex = []
|
696 |
+
header = """
|
697 |
+
##################################################################
|
698 |
+
# Lexical rules automatically generated by running 'chat80.py -x'.
|
699 |
+
##################################################################
|
700 |
+
|
701 |
+
"""
|
702 |
+
lex.append(header)
|
703 |
+
template = r"PropN[num=sg, sem=<\P.(P %s)>] -> '%s'\n"
|
704 |
+
|
705 |
+
for s in symbols:
|
706 |
+
parts = s.split("_")
|
707 |
+
caps = [p.capitalize() for p in parts]
|
708 |
+
pname = "_".join(caps)
|
709 |
+
rule = template % (s, pname)
|
710 |
+
lex.append(rule)
|
711 |
+
return lex
|
712 |
+
|
713 |
+
|
714 |
+
###########################################################################
|
715 |
+
# Interface function to emulate other corpus readers
|
716 |
+
###########################################################################
|
717 |
+
|
718 |
+
|
719 |
+
def concepts(items=items):
|
720 |
+
"""
|
721 |
+
Build a list of concepts corresponding to the relation names in ``items``.
|
722 |
+
|
723 |
+
:param items: names of the Chat-80 relations to extract
|
724 |
+
:type items: list(str)
|
725 |
+
:return: the ``Concept`` objects which are extracted from the relations
|
726 |
+
:rtype: list(Concept)
|
727 |
+
"""
|
728 |
+
if isinstance(items, str):
|
729 |
+
items = (items,)
|
730 |
+
|
731 |
+
rels = [item_metadata[r] for r in items]
|
732 |
+
|
733 |
+
concept_map = process_bundle(rels)
|
734 |
+
return concept_map.values()
|
735 |
+
|
736 |
+
|
737 |
+
###########################################################################
|
738 |
+
|
739 |
+
|
740 |
+
def main():
|
741 |
+
import sys
|
742 |
+
from optparse import OptionParser
|
743 |
+
|
744 |
+
description = """
|
745 |
+
Extract data from the Chat-80 Prolog files and convert them into a
|
746 |
+
Valuation object for use in the NLTK semantics package.
|
747 |
+
"""
|
748 |
+
|
749 |
+
opts = OptionParser(description=description)
|
750 |
+
opts.set_defaults(verbose=True, lex=False, vocab=False)
|
751 |
+
opts.add_option(
|
752 |
+
"-s", "--store", dest="outdb", help="store a valuation in DB", metavar="DB"
|
753 |
+
)
|
754 |
+
opts.add_option(
|
755 |
+
"-l",
|
756 |
+
"--load",
|
757 |
+
dest="indb",
|
758 |
+
help="load a stored valuation from DB",
|
759 |
+
metavar="DB",
|
760 |
+
)
|
761 |
+
opts.add_option(
|
762 |
+
"-c",
|
763 |
+
"--concepts",
|
764 |
+
action="store_true",
|
765 |
+
help="print concepts instead of a valuation",
|
766 |
+
)
|
767 |
+
opts.add_option(
|
768 |
+
"-r",
|
769 |
+
"--relation",
|
770 |
+
dest="label",
|
771 |
+
help="print concept with label REL (check possible labels with '-v' option)",
|
772 |
+
metavar="REL",
|
773 |
+
)
|
774 |
+
opts.add_option(
|
775 |
+
"-q",
|
776 |
+
"--quiet",
|
777 |
+
action="store_false",
|
778 |
+
dest="verbose",
|
779 |
+
help="don't print out progress info",
|
780 |
+
)
|
781 |
+
opts.add_option(
|
782 |
+
"-x",
|
783 |
+
"--lex",
|
784 |
+
action="store_true",
|
785 |
+
dest="lex",
|
786 |
+
help="write a file of lexical entries for country names, then exit",
|
787 |
+
)
|
788 |
+
opts.add_option(
|
789 |
+
"-v",
|
790 |
+
"--vocab",
|
791 |
+
action="store_true",
|
792 |
+
dest="vocab",
|
793 |
+
help="print out the vocabulary of concept labels and their arity, then exit",
|
794 |
+
)
|
795 |
+
|
796 |
+
(options, args) = opts.parse_args()
|
797 |
+
if options.outdb and options.indb:
|
798 |
+
opts.error("Options --store and --load are mutually exclusive")
|
799 |
+
|
800 |
+
if options.outdb:
|
801 |
+
# write the valuation to a persistent database
|
802 |
+
if options.verbose:
|
803 |
+
outdb = options.outdb + ".db"
|
804 |
+
print("Dumping a valuation to %s" % outdb)
|
805 |
+
val_dump(rels, options.outdb)
|
806 |
+
sys.exit(0)
|
807 |
+
else:
|
808 |
+
# try to read in a valuation from a database
|
809 |
+
if options.indb is not None:
|
810 |
+
dbname = options.indb + ".db"
|
811 |
+
if not os.access(dbname, os.R_OK):
|
812 |
+
sys.exit("Cannot read file: %s" % dbname)
|
813 |
+
else:
|
814 |
+
valuation = val_load(options.indb)
|
815 |
+
# we need to create the valuation from scratch
|
816 |
+
else:
|
817 |
+
# build some concepts
|
818 |
+
concept_map = process_bundle(rels)
|
819 |
+
concepts = concept_map.values()
|
820 |
+
# just print out the vocabulary
|
821 |
+
if options.vocab:
|
822 |
+
items = sorted((c.arity, c.prefLabel) for c in concepts)
|
823 |
+
for (arity, label) in items:
|
824 |
+
print(label, arity)
|
825 |
+
sys.exit(0)
|
826 |
+
# show all the concepts
|
827 |
+
if options.concepts:
|
828 |
+
for c in concepts:
|
829 |
+
print(c)
|
830 |
+
print()
|
831 |
+
if options.label:
|
832 |
+
print(concept_map[options.label])
|
833 |
+
sys.exit(0)
|
834 |
+
else:
|
835 |
+
# turn the concepts into a Valuation
|
836 |
+
if options.lex:
|
837 |
+
if options.verbose:
|
838 |
+
print("Writing out lexical rules")
|
839 |
+
make_valuation(concepts, lexicon=True)
|
840 |
+
else:
|
841 |
+
valuation = make_valuation(concepts, read=True)
|
842 |
+
print(valuation)
|
843 |
+
|
844 |
+
|
845 |
+
def sql_demo():
|
846 |
+
"""
|
847 |
+
Print out every row from the 'city.db' database.
|
848 |
+
"""
|
849 |
+
print()
|
850 |
+
print("Using SQL to extract rows from 'city.db' RDB.")
|
851 |
+
for row in sql_query("corpora/city_database/city.db", "SELECT * FROM city_table"):
|
852 |
+
print(row)
|
853 |
+
|
854 |
+
|
855 |
+
if __name__ == "__main__":
|
856 |
+
main()
|
857 |
+
sql_demo()
|
venv/lib/python3.10/site-packages/nltk/sem/cooper_storage.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Cooper storage for Quantifier Ambiguity
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Ewan Klein <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
from nltk.parse import load_parser
|
9 |
+
from nltk.parse.featurechart import InstantiateVarsChart
|
10 |
+
from nltk.sem.logic import ApplicationExpression, LambdaExpression, Variable
|
11 |
+
|
12 |
+
|
13 |
+
class CooperStore:
|
14 |
+
"""
|
15 |
+
A container for handling quantifier ambiguity via Cooper storage.
|
16 |
+
"""
|
17 |
+
|
18 |
+
def __init__(self, featstruct):
|
19 |
+
"""
|
20 |
+
:param featstruct: The value of the ``sem`` node in a tree from
|
21 |
+
``parse_with_bindops()``
|
22 |
+
:type featstruct: FeatStruct (with features ``core`` and ``store``)
|
23 |
+
|
24 |
+
"""
|
25 |
+
self.featstruct = featstruct
|
26 |
+
self.readings = []
|
27 |
+
try:
|
28 |
+
self.core = featstruct["CORE"]
|
29 |
+
self.store = featstruct["STORE"]
|
30 |
+
except KeyError:
|
31 |
+
print("%s is not a Cooper storage structure" % featstruct)
|
32 |
+
|
33 |
+
def _permute(self, lst):
|
34 |
+
"""
|
35 |
+
:return: An iterator over the permutations of the input list
|
36 |
+
:type lst: list
|
37 |
+
:rtype: iter
|
38 |
+
"""
|
39 |
+
remove = lambda lst0, index: lst0[:index] + lst0[index + 1 :]
|
40 |
+
if lst:
|
41 |
+
for index, x in enumerate(lst):
|
42 |
+
for y in self._permute(remove(lst, index)):
|
43 |
+
yield (x,) + y
|
44 |
+
else:
|
45 |
+
yield ()
|
46 |
+
|
47 |
+
def s_retrieve(self, trace=False):
|
48 |
+
r"""
|
49 |
+
Carry out S-Retrieval of binding operators in store. If hack=True,
|
50 |
+
serialize the bindop and core as strings and reparse. Ugh.
|
51 |
+
|
52 |
+
Each permutation of the store (i.e. list of binding operators) is
|
53 |
+
taken to be a possible scoping of quantifiers. We iterate through the
|
54 |
+
binding operators in each permutation, and successively apply them to
|
55 |
+
the current term, starting with the core semantic representation,
|
56 |
+
working from the inside out.
|
57 |
+
|
58 |
+
Binding operators are of the form::
|
59 |
+
|
60 |
+
bo(\P.all x.(man(x) -> P(x)),z1)
|
61 |
+
"""
|
62 |
+
for perm, store_perm in enumerate(self._permute(self.store)):
|
63 |
+
if trace:
|
64 |
+
print("Permutation %s" % (perm + 1))
|
65 |
+
term = self.core
|
66 |
+
for bindop in store_perm:
|
67 |
+
# we just want the arguments that are wrapped by the 'bo' predicate
|
68 |
+
quant, varex = tuple(bindop.args)
|
69 |
+
# use var to make an abstraction over the current term and then
|
70 |
+
# apply the quantifier to it
|
71 |
+
term = ApplicationExpression(
|
72 |
+
quant, LambdaExpression(varex.variable, term)
|
73 |
+
)
|
74 |
+
if trace:
|
75 |
+
print(" ", term)
|
76 |
+
term = term.simplify()
|
77 |
+
self.readings.append(term)
|
78 |
+
|
79 |
+
|
80 |
+
def parse_with_bindops(sentence, grammar=None, trace=0):
|
81 |
+
"""
|
82 |
+
Use a grammar with Binding Operators to parse a sentence.
|
83 |
+
"""
|
84 |
+
if not grammar:
|
85 |
+
grammar = "grammars/book_grammars/storage.fcfg"
|
86 |
+
parser = load_parser(grammar, trace=trace, chart_class=InstantiateVarsChart)
|
87 |
+
# Parse the sentence.
|
88 |
+
tokens = sentence.split()
|
89 |
+
return list(parser.parse(tokens))
|
90 |
+
|
91 |
+
|
92 |
+
def demo():
|
93 |
+
from nltk.sem import cooper_storage as cs
|
94 |
+
|
95 |
+
sentence = "every girl chases a dog"
|
96 |
+
# sentence = "a man gives a bone to every dog"
|
97 |
+
print()
|
98 |
+
print("Analysis of sentence '%s'" % sentence)
|
99 |
+
print("=" * 50)
|
100 |
+
trees = cs.parse_with_bindops(sentence, trace=0)
|
101 |
+
for tree in trees:
|
102 |
+
semrep = cs.CooperStore(tree.label()["SEM"])
|
103 |
+
print()
|
104 |
+
print("Binding operators:")
|
105 |
+
print("-" * 15)
|
106 |
+
for s in semrep.store:
|
107 |
+
print(s)
|
108 |
+
print()
|
109 |
+
print("Core:")
|
110 |
+
print("-" * 15)
|
111 |
+
print(semrep.core)
|
112 |
+
print()
|
113 |
+
print("S-Retrieval:")
|
114 |
+
print("-" * 15)
|
115 |
+
semrep.s_retrieve(trace=True)
|
116 |
+
print("Readings:")
|
117 |
+
print("-" * 15)
|
118 |
+
|
119 |
+
for i, reading in enumerate(semrep.readings):
|
120 |
+
print(f"{i + 1}: {reading}")
|
121 |
+
|
122 |
+
|
123 |
+
if __name__ == "__main__":
|
124 |
+
demo()
|
venv/lib/python3.10/site-packages/nltk/sem/drt.py
ADDED
@@ -0,0 +1,1460 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Discourse Representation Theory (DRT)
|
2 |
+
#
|
3 |
+
# Author: Dan Garrette <[email protected]>
|
4 |
+
#
|
5 |
+
# Copyright (C) 2001-2023 NLTK Project
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
import operator
|
10 |
+
from functools import reduce
|
11 |
+
from itertools import chain
|
12 |
+
|
13 |
+
from nltk.sem.logic import (
|
14 |
+
APP,
|
15 |
+
AbstractVariableExpression,
|
16 |
+
AllExpression,
|
17 |
+
AndExpression,
|
18 |
+
ApplicationExpression,
|
19 |
+
BinaryExpression,
|
20 |
+
BooleanExpression,
|
21 |
+
ConstantExpression,
|
22 |
+
EqualityExpression,
|
23 |
+
EventVariableExpression,
|
24 |
+
ExistsExpression,
|
25 |
+
Expression,
|
26 |
+
FunctionVariableExpression,
|
27 |
+
ImpExpression,
|
28 |
+
IndividualVariableExpression,
|
29 |
+
LambdaExpression,
|
30 |
+
LogicParser,
|
31 |
+
NegatedExpression,
|
32 |
+
OrExpression,
|
33 |
+
Tokens,
|
34 |
+
Variable,
|
35 |
+
is_eventvar,
|
36 |
+
is_funcvar,
|
37 |
+
is_indvar,
|
38 |
+
unique_variable,
|
39 |
+
)
|
40 |
+
|
41 |
+
# Import Tkinter-based modules if they are available
|
42 |
+
try:
|
43 |
+
from tkinter import Canvas, Tk
|
44 |
+
from tkinter.font import Font
|
45 |
+
|
46 |
+
from nltk.util import in_idle
|
47 |
+
|
48 |
+
except ImportError:
|
49 |
+
# No need to print a warning here, nltk.draw has already printed one.
|
50 |
+
pass
|
51 |
+
|
52 |
+
|
53 |
+
class DrtTokens(Tokens):
|
54 |
+
DRS = "DRS"
|
55 |
+
DRS_CONC = "+"
|
56 |
+
PRONOUN = "PRO"
|
57 |
+
OPEN_BRACKET = "["
|
58 |
+
CLOSE_BRACKET = "]"
|
59 |
+
COLON = ":"
|
60 |
+
|
61 |
+
PUNCT = [DRS_CONC, OPEN_BRACKET, CLOSE_BRACKET, COLON]
|
62 |
+
|
63 |
+
SYMBOLS = Tokens.SYMBOLS + PUNCT
|
64 |
+
|
65 |
+
TOKENS = Tokens.TOKENS + [DRS] + PUNCT
|
66 |
+
|
67 |
+
|
68 |
+
class DrtParser(LogicParser):
|
69 |
+
"""A lambda calculus expression parser."""
|
70 |
+
|
71 |
+
def __init__(self):
|
72 |
+
LogicParser.__init__(self)
|
73 |
+
|
74 |
+
self.operator_precedence = dict(
|
75 |
+
[(x, 1) for x in DrtTokens.LAMBDA_LIST]
|
76 |
+
+ [(x, 2) for x in DrtTokens.NOT_LIST]
|
77 |
+
+ [(APP, 3)]
|
78 |
+
+ [(x, 4) for x in DrtTokens.EQ_LIST + Tokens.NEQ_LIST]
|
79 |
+
+ [(DrtTokens.COLON, 5)]
|
80 |
+
+ [(DrtTokens.DRS_CONC, 6)]
|
81 |
+
+ [(x, 7) for x in DrtTokens.OR_LIST]
|
82 |
+
+ [(x, 8) for x in DrtTokens.IMP_LIST]
|
83 |
+
+ [(None, 9)]
|
84 |
+
)
|
85 |
+
|
86 |
+
def get_all_symbols(self):
|
87 |
+
"""This method exists to be overridden"""
|
88 |
+
return DrtTokens.SYMBOLS
|
89 |
+
|
90 |
+
def isvariable(self, tok):
|
91 |
+
return tok not in DrtTokens.TOKENS
|
92 |
+
|
93 |
+
def handle(self, tok, context):
|
94 |
+
"""This method is intended to be overridden for logics that
|
95 |
+
use different operators or expressions"""
|
96 |
+
if tok in DrtTokens.NOT_LIST:
|
97 |
+
return self.handle_negation(tok, context)
|
98 |
+
|
99 |
+
elif tok in DrtTokens.LAMBDA_LIST:
|
100 |
+
return self.handle_lambda(tok, context)
|
101 |
+
|
102 |
+
elif tok == DrtTokens.OPEN:
|
103 |
+
if self.inRange(0) and self.token(0) == DrtTokens.OPEN_BRACKET:
|
104 |
+
return self.handle_DRS(tok, context)
|
105 |
+
else:
|
106 |
+
return self.handle_open(tok, context)
|
107 |
+
|
108 |
+
elif tok.upper() == DrtTokens.DRS:
|
109 |
+
self.assertNextToken(DrtTokens.OPEN)
|
110 |
+
return self.handle_DRS(tok, context)
|
111 |
+
|
112 |
+
elif self.isvariable(tok):
|
113 |
+
if self.inRange(0) and self.token(0) == DrtTokens.COLON:
|
114 |
+
return self.handle_prop(tok, context)
|
115 |
+
else:
|
116 |
+
return self.handle_variable(tok, context)
|
117 |
+
|
118 |
+
def make_NegatedExpression(self, expression):
|
119 |
+
return DrtNegatedExpression(expression)
|
120 |
+
|
121 |
+
def handle_DRS(self, tok, context):
|
122 |
+
# a DRS
|
123 |
+
refs = self.handle_refs()
|
124 |
+
if (
|
125 |
+
self.inRange(0) and self.token(0) == DrtTokens.COMMA
|
126 |
+
): # if there is a comma (it's optional)
|
127 |
+
self.token() # swallow the comma
|
128 |
+
conds = self.handle_conds(context)
|
129 |
+
self.assertNextToken(DrtTokens.CLOSE)
|
130 |
+
return DRS(refs, conds, None)
|
131 |
+
|
132 |
+
def handle_refs(self):
|
133 |
+
self.assertNextToken(DrtTokens.OPEN_BRACKET)
|
134 |
+
refs = []
|
135 |
+
while self.inRange(0) and self.token(0) != DrtTokens.CLOSE_BRACKET:
|
136 |
+
# Support expressions like: DRS([x y],C) == DRS([x,y],C)
|
137 |
+
if refs and self.token(0) == DrtTokens.COMMA:
|
138 |
+
self.token() # swallow the comma
|
139 |
+
refs.append(self.get_next_token_variable("quantified"))
|
140 |
+
self.assertNextToken(DrtTokens.CLOSE_BRACKET)
|
141 |
+
return refs
|
142 |
+
|
143 |
+
def handle_conds(self, context):
|
144 |
+
self.assertNextToken(DrtTokens.OPEN_BRACKET)
|
145 |
+
conds = []
|
146 |
+
while self.inRange(0) and self.token(0) != DrtTokens.CLOSE_BRACKET:
|
147 |
+
# Support expressions like: DRS([x y],C) == DRS([x, y],C)
|
148 |
+
if conds and self.token(0) == DrtTokens.COMMA:
|
149 |
+
self.token() # swallow the comma
|
150 |
+
conds.append(self.process_next_expression(context))
|
151 |
+
self.assertNextToken(DrtTokens.CLOSE_BRACKET)
|
152 |
+
return conds
|
153 |
+
|
154 |
+
def handle_prop(self, tok, context):
|
155 |
+
variable = self.make_VariableExpression(tok)
|
156 |
+
self.assertNextToken(":")
|
157 |
+
drs = self.process_next_expression(DrtTokens.COLON)
|
158 |
+
return DrtProposition(variable, drs)
|
159 |
+
|
160 |
+
def make_EqualityExpression(self, first, second):
|
161 |
+
"""This method serves as a hook for other logic parsers that
|
162 |
+
have different equality expression classes"""
|
163 |
+
return DrtEqualityExpression(first, second)
|
164 |
+
|
165 |
+
def get_BooleanExpression_factory(self, tok):
|
166 |
+
"""This method serves as a hook for other logic parsers that
|
167 |
+
have different boolean operators"""
|
168 |
+
if tok == DrtTokens.DRS_CONC:
|
169 |
+
return lambda first, second: DrtConcatenation(first, second, None)
|
170 |
+
elif tok in DrtTokens.OR_LIST:
|
171 |
+
return DrtOrExpression
|
172 |
+
elif tok in DrtTokens.IMP_LIST:
|
173 |
+
|
174 |
+
def make_imp_expression(first, second):
|
175 |
+
if isinstance(first, DRS):
|
176 |
+
return DRS(first.refs, first.conds, second)
|
177 |
+
if isinstance(first, DrtConcatenation):
|
178 |
+
return DrtConcatenation(first.first, first.second, second)
|
179 |
+
raise Exception("Antecedent of implication must be a DRS")
|
180 |
+
|
181 |
+
return make_imp_expression
|
182 |
+
else:
|
183 |
+
return None
|
184 |
+
|
185 |
+
def make_BooleanExpression(self, factory, first, second):
|
186 |
+
return factory(first, second)
|
187 |
+
|
188 |
+
def make_ApplicationExpression(self, function, argument):
|
189 |
+
return DrtApplicationExpression(function, argument)
|
190 |
+
|
191 |
+
def make_VariableExpression(self, name):
|
192 |
+
return DrtVariableExpression(Variable(name))
|
193 |
+
|
194 |
+
def make_LambdaExpression(self, variables, term):
|
195 |
+
return DrtLambdaExpression(variables, term)
|
196 |
+
|
197 |
+
|
198 |
+
class DrtExpression:
|
199 |
+
"""
|
200 |
+
This is the base abstract DRT Expression from which every DRT
|
201 |
+
Expression extends.
|
202 |
+
"""
|
203 |
+
|
204 |
+
_drt_parser = DrtParser()
|
205 |
+
|
206 |
+
@classmethod
|
207 |
+
def fromstring(cls, s):
|
208 |
+
return cls._drt_parser.parse(s)
|
209 |
+
|
210 |
+
def applyto(self, other):
|
211 |
+
return DrtApplicationExpression(self, other)
|
212 |
+
|
213 |
+
def __neg__(self):
|
214 |
+
return DrtNegatedExpression(self)
|
215 |
+
|
216 |
+
def __and__(self, other):
|
217 |
+
return NotImplemented
|
218 |
+
|
219 |
+
def __or__(self, other):
|
220 |
+
assert isinstance(other, DrtExpression)
|
221 |
+
return DrtOrExpression(self, other)
|
222 |
+
|
223 |
+
def __gt__(self, other):
|
224 |
+
assert isinstance(other, DrtExpression)
|
225 |
+
if isinstance(self, DRS):
|
226 |
+
return DRS(self.refs, self.conds, other)
|
227 |
+
if isinstance(self, DrtConcatenation):
|
228 |
+
return DrtConcatenation(self.first, self.second, other)
|
229 |
+
raise Exception("Antecedent of implication must be a DRS")
|
230 |
+
|
231 |
+
def equiv(self, other, prover=None):
|
232 |
+
"""
|
233 |
+
Check for logical equivalence.
|
234 |
+
Pass the expression (self <-> other) to the theorem prover.
|
235 |
+
If the prover says it is valid, then the self and other are equal.
|
236 |
+
|
237 |
+
:param other: an ``DrtExpression`` to check equality against
|
238 |
+
:param prover: a ``nltk.inference.api.Prover``
|
239 |
+
"""
|
240 |
+
assert isinstance(other, DrtExpression)
|
241 |
+
|
242 |
+
f1 = self.simplify().fol()
|
243 |
+
f2 = other.simplify().fol()
|
244 |
+
return f1.equiv(f2, prover)
|
245 |
+
|
246 |
+
@property
|
247 |
+
def type(self):
|
248 |
+
raise AttributeError(
|
249 |
+
"'%s' object has no attribute 'type'" % self.__class__.__name__
|
250 |
+
)
|
251 |
+
|
252 |
+
def typecheck(self, signature=None):
|
253 |
+
raise NotImplementedError()
|
254 |
+
|
255 |
+
def __add__(self, other):
|
256 |
+
return DrtConcatenation(self, other, None)
|
257 |
+
|
258 |
+
def get_refs(self, recursive=False):
|
259 |
+
"""
|
260 |
+
Return the set of discourse referents in this DRS.
|
261 |
+
:param recursive: bool Also find discourse referents in subterms?
|
262 |
+
:return: list of ``Variable`` objects
|
263 |
+
"""
|
264 |
+
raise NotImplementedError()
|
265 |
+
|
266 |
+
def is_pronoun_function(self):
|
267 |
+
"""Is self of the form "PRO(x)"?"""
|
268 |
+
return (
|
269 |
+
isinstance(self, DrtApplicationExpression)
|
270 |
+
and isinstance(self.function, DrtAbstractVariableExpression)
|
271 |
+
and self.function.variable.name == DrtTokens.PRONOUN
|
272 |
+
and isinstance(self.argument, DrtIndividualVariableExpression)
|
273 |
+
)
|
274 |
+
|
275 |
+
def make_EqualityExpression(self, first, second):
|
276 |
+
return DrtEqualityExpression(first, second)
|
277 |
+
|
278 |
+
def make_VariableExpression(self, variable):
|
279 |
+
return DrtVariableExpression(variable)
|
280 |
+
|
281 |
+
def resolve_anaphora(self):
|
282 |
+
return resolve_anaphora(self)
|
283 |
+
|
284 |
+
def eliminate_equality(self):
|
285 |
+
return self.visit_structured(lambda e: e.eliminate_equality(), self.__class__)
|
286 |
+
|
287 |
+
def pretty_format(self):
|
288 |
+
"""
|
289 |
+
Draw the DRS
|
290 |
+
:return: the pretty print string
|
291 |
+
"""
|
292 |
+
return "\n".join(self._pretty())
|
293 |
+
|
294 |
+
def pretty_print(self):
|
295 |
+
print(self.pretty_format())
|
296 |
+
|
297 |
+
def draw(self):
|
298 |
+
DrsDrawer(self).draw()
|
299 |
+
|
300 |
+
|
301 |
+
class DRS(DrtExpression, Expression):
|
302 |
+
"""A Discourse Representation Structure."""
|
303 |
+
|
304 |
+
def __init__(self, refs, conds, consequent=None):
|
305 |
+
"""
|
306 |
+
:param refs: list of ``DrtIndividualVariableExpression`` for the
|
307 |
+
discourse referents
|
308 |
+
:param conds: list of ``Expression`` for the conditions
|
309 |
+
"""
|
310 |
+
self.refs = refs
|
311 |
+
self.conds = conds
|
312 |
+
self.consequent = consequent
|
313 |
+
|
314 |
+
def replace(self, variable, expression, replace_bound=False, alpha_convert=True):
|
315 |
+
"""Replace all instances of variable v with expression E in self,
|
316 |
+
where v is free in self."""
|
317 |
+
if variable in self.refs:
|
318 |
+
# if a bound variable is the thing being replaced
|
319 |
+
if not replace_bound:
|
320 |
+
return self
|
321 |
+
else:
|
322 |
+
i = self.refs.index(variable)
|
323 |
+
if self.consequent:
|
324 |
+
consequent = self.consequent.replace(
|
325 |
+
variable, expression, True, alpha_convert
|
326 |
+
)
|
327 |
+
else:
|
328 |
+
consequent = None
|
329 |
+
return DRS(
|
330 |
+
self.refs[:i] + [expression.variable] + self.refs[i + 1 :],
|
331 |
+
[
|
332 |
+
cond.replace(variable, expression, True, alpha_convert)
|
333 |
+
for cond in self.conds
|
334 |
+
],
|
335 |
+
consequent,
|
336 |
+
)
|
337 |
+
else:
|
338 |
+
if alpha_convert:
|
339 |
+
# any bound variable that appears in the expression must
|
340 |
+
# be alpha converted to avoid a conflict
|
341 |
+
for ref in set(self.refs) & expression.free():
|
342 |
+
newvar = unique_variable(ref)
|
343 |
+
newvarex = DrtVariableExpression(newvar)
|
344 |
+
i = self.refs.index(ref)
|
345 |
+
if self.consequent:
|
346 |
+
consequent = self.consequent.replace(
|
347 |
+
ref, newvarex, True, alpha_convert
|
348 |
+
)
|
349 |
+
else:
|
350 |
+
consequent = None
|
351 |
+
self = DRS(
|
352 |
+
self.refs[:i] + [newvar] + self.refs[i + 1 :],
|
353 |
+
[
|
354 |
+
cond.replace(ref, newvarex, True, alpha_convert)
|
355 |
+
for cond in self.conds
|
356 |
+
],
|
357 |
+
consequent,
|
358 |
+
)
|
359 |
+
|
360 |
+
# replace in the conditions
|
361 |
+
if self.consequent:
|
362 |
+
consequent = self.consequent.replace(
|
363 |
+
variable, expression, replace_bound, alpha_convert
|
364 |
+
)
|
365 |
+
else:
|
366 |
+
consequent = None
|
367 |
+
return DRS(
|
368 |
+
self.refs,
|
369 |
+
[
|
370 |
+
cond.replace(variable, expression, replace_bound, alpha_convert)
|
371 |
+
for cond in self.conds
|
372 |
+
],
|
373 |
+
consequent,
|
374 |
+
)
|
375 |
+
|
376 |
+
def free(self):
|
377 |
+
""":see: Expression.free()"""
|
378 |
+
conds_free = reduce(operator.or_, [c.free() for c in self.conds], set())
|
379 |
+
if self.consequent:
|
380 |
+
conds_free.update(self.consequent.free())
|
381 |
+
return conds_free - set(self.refs)
|
382 |
+
|
383 |
+
def get_refs(self, recursive=False):
|
384 |
+
""":see: AbstractExpression.get_refs()"""
|
385 |
+
if recursive:
|
386 |
+
conds_refs = self.refs + list(
|
387 |
+
chain.from_iterable(c.get_refs(True) for c in self.conds)
|
388 |
+
)
|
389 |
+
if self.consequent:
|
390 |
+
conds_refs.extend(self.consequent.get_refs(True))
|
391 |
+
return conds_refs
|
392 |
+
else:
|
393 |
+
return self.refs
|
394 |
+
|
395 |
+
def visit(self, function, combinator):
|
396 |
+
""":see: Expression.visit()"""
|
397 |
+
parts = list(map(function, self.conds))
|
398 |
+
if self.consequent:
|
399 |
+
parts.append(function(self.consequent))
|
400 |
+
return combinator(parts)
|
401 |
+
|
402 |
+
def visit_structured(self, function, combinator):
|
403 |
+
""":see: Expression.visit_structured()"""
|
404 |
+
consequent = function(self.consequent) if self.consequent else None
|
405 |
+
return combinator(self.refs, list(map(function, self.conds)), consequent)
|
406 |
+
|
407 |
+
def eliminate_equality(self):
|
408 |
+
drs = self
|
409 |
+
i = 0
|
410 |
+
while i < len(drs.conds):
|
411 |
+
cond = drs.conds[i]
|
412 |
+
if (
|
413 |
+
isinstance(cond, EqualityExpression)
|
414 |
+
and isinstance(cond.first, AbstractVariableExpression)
|
415 |
+
and isinstance(cond.second, AbstractVariableExpression)
|
416 |
+
):
|
417 |
+
drs = DRS(
|
418 |
+
list(set(drs.refs) - {cond.second.variable}),
|
419 |
+
drs.conds[:i] + drs.conds[i + 1 :],
|
420 |
+
drs.consequent,
|
421 |
+
)
|
422 |
+
if cond.second.variable != cond.first.variable:
|
423 |
+
drs = drs.replace(cond.second.variable, cond.first, False, False)
|
424 |
+
i = 0
|
425 |
+
i -= 1
|
426 |
+
i += 1
|
427 |
+
|
428 |
+
conds = []
|
429 |
+
for cond in drs.conds:
|
430 |
+
new_cond = cond.eliminate_equality()
|
431 |
+
new_cond_simp = new_cond.simplify()
|
432 |
+
if (
|
433 |
+
not isinstance(new_cond_simp, DRS)
|
434 |
+
or new_cond_simp.refs
|
435 |
+
or new_cond_simp.conds
|
436 |
+
or new_cond_simp.consequent
|
437 |
+
):
|
438 |
+
conds.append(new_cond)
|
439 |
+
|
440 |
+
consequent = drs.consequent.eliminate_equality() if drs.consequent else None
|
441 |
+
return DRS(drs.refs, conds, consequent)
|
442 |
+
|
443 |
+
def fol(self):
|
444 |
+
if self.consequent:
|
445 |
+
accum = None
|
446 |
+
if self.conds:
|
447 |
+
accum = reduce(AndExpression, [c.fol() for c in self.conds])
|
448 |
+
|
449 |
+
if accum:
|
450 |
+
accum = ImpExpression(accum, self.consequent.fol())
|
451 |
+
else:
|
452 |
+
accum = self.consequent.fol()
|
453 |
+
|
454 |
+
for ref in self.refs[::-1]:
|
455 |
+
accum = AllExpression(ref, accum)
|
456 |
+
|
457 |
+
return accum
|
458 |
+
|
459 |
+
else:
|
460 |
+
if not self.conds:
|
461 |
+
raise Exception("Cannot convert DRS with no conditions to FOL.")
|
462 |
+
accum = reduce(AndExpression, [c.fol() for c in self.conds])
|
463 |
+
for ref in map(Variable, self._order_ref_strings(self.refs)[::-1]):
|
464 |
+
accum = ExistsExpression(ref, accum)
|
465 |
+
return accum
|
466 |
+
|
467 |
+
def _pretty(self):
|
468 |
+
refs_line = " ".join(self._order_ref_strings(self.refs))
|
469 |
+
|
470 |
+
cond_lines = [
|
471 |
+
cond
|
472 |
+
for cond_line in [
|
473 |
+
filter(lambda s: s.strip(), cond._pretty()) for cond in self.conds
|
474 |
+
]
|
475 |
+
for cond in cond_line
|
476 |
+
]
|
477 |
+
length = max([len(refs_line)] + list(map(len, cond_lines)))
|
478 |
+
drs = (
|
479 |
+
[
|
480 |
+
" _" + "_" * length + "_ ",
|
481 |
+
"| " + refs_line.ljust(length) + " |",
|
482 |
+
"|-" + "-" * length + "-|",
|
483 |
+
]
|
484 |
+
+ ["| " + line.ljust(length) + " |" for line in cond_lines]
|
485 |
+
+ ["|_" + "_" * length + "_|"]
|
486 |
+
)
|
487 |
+
if self.consequent:
|
488 |
+
return DrtBinaryExpression._assemble_pretty(
|
489 |
+
drs, DrtTokens.IMP, self.consequent._pretty()
|
490 |
+
)
|
491 |
+
return drs
|
492 |
+
|
493 |
+
def _order_ref_strings(self, refs):
|
494 |
+
strings = ["%s" % ref for ref in refs]
|
495 |
+
ind_vars = []
|
496 |
+
func_vars = []
|
497 |
+
event_vars = []
|
498 |
+
other_vars = []
|
499 |
+
for s in strings:
|
500 |
+
if is_indvar(s):
|
501 |
+
ind_vars.append(s)
|
502 |
+
elif is_funcvar(s):
|
503 |
+
func_vars.append(s)
|
504 |
+
elif is_eventvar(s):
|
505 |
+
event_vars.append(s)
|
506 |
+
else:
|
507 |
+
other_vars.append(s)
|
508 |
+
return (
|
509 |
+
sorted(other_vars)
|
510 |
+
+ sorted(event_vars, key=lambda v: int([v[2:], -1][len(v[2:]) == 0]))
|
511 |
+
+ sorted(func_vars, key=lambda v: (v[0], int([v[1:], -1][len(v[1:]) == 0])))
|
512 |
+
+ sorted(ind_vars, key=lambda v: (v[0], int([v[1:], -1][len(v[1:]) == 0])))
|
513 |
+
)
|
514 |
+
|
515 |
+
def __eq__(self, other):
|
516 |
+
r"""Defines equality modulo alphabetic variance.
|
517 |
+
If we are comparing \x.M and \y.N, then check equality of M and N[x/y]."""
|
518 |
+
if isinstance(other, DRS):
|
519 |
+
if len(self.refs) == len(other.refs):
|
520 |
+
converted_other = other
|
521 |
+
for (r1, r2) in zip(self.refs, converted_other.refs):
|
522 |
+
varex = self.make_VariableExpression(r1)
|
523 |
+
converted_other = converted_other.replace(r2, varex, True)
|
524 |
+
if self.consequent == converted_other.consequent and len(
|
525 |
+
self.conds
|
526 |
+
) == len(converted_other.conds):
|
527 |
+
for c1, c2 in zip(self.conds, converted_other.conds):
|
528 |
+
if not (c1 == c2):
|
529 |
+
return False
|
530 |
+
return True
|
531 |
+
return False
|
532 |
+
|
533 |
+
def __ne__(self, other):
|
534 |
+
return not self == other
|
535 |
+
|
536 |
+
__hash__ = Expression.__hash__
|
537 |
+
|
538 |
+
def __str__(self):
|
539 |
+
drs = "([{}],[{}])".format(
|
540 |
+
",".join(self._order_ref_strings(self.refs)),
|
541 |
+
", ".join("%s" % cond for cond in self.conds),
|
542 |
+
) # map(str, self.conds)))
|
543 |
+
if self.consequent:
|
544 |
+
return (
|
545 |
+
DrtTokens.OPEN
|
546 |
+
+ drs
|
547 |
+
+ " "
|
548 |
+
+ DrtTokens.IMP
|
549 |
+
+ " "
|
550 |
+
+ "%s" % self.consequent
|
551 |
+
+ DrtTokens.CLOSE
|
552 |
+
)
|
553 |
+
return drs
|
554 |
+
|
555 |
+
|
556 |
+
def DrtVariableExpression(variable):
|
557 |
+
"""
|
558 |
+
This is a factory method that instantiates and returns a subtype of
|
559 |
+
``DrtAbstractVariableExpression`` appropriate for the given variable.
|
560 |
+
"""
|
561 |
+
if is_indvar(variable.name):
|
562 |
+
return DrtIndividualVariableExpression(variable)
|
563 |
+
elif is_funcvar(variable.name):
|
564 |
+
return DrtFunctionVariableExpression(variable)
|
565 |
+
elif is_eventvar(variable.name):
|
566 |
+
return DrtEventVariableExpression(variable)
|
567 |
+
else:
|
568 |
+
return DrtConstantExpression(variable)
|
569 |
+
|
570 |
+
|
571 |
+
class DrtAbstractVariableExpression(DrtExpression, AbstractVariableExpression):
|
572 |
+
def fol(self):
|
573 |
+
return self
|
574 |
+
|
575 |
+
def get_refs(self, recursive=False):
|
576 |
+
""":see: AbstractExpression.get_refs()"""
|
577 |
+
return []
|
578 |
+
|
579 |
+
def _pretty(self):
|
580 |
+
s = "%s" % self
|
581 |
+
blank = " " * len(s)
|
582 |
+
return [blank, blank, s, blank]
|
583 |
+
|
584 |
+
def eliminate_equality(self):
|
585 |
+
return self
|
586 |
+
|
587 |
+
|
588 |
+
class DrtIndividualVariableExpression(
|
589 |
+
DrtAbstractVariableExpression, IndividualVariableExpression
|
590 |
+
):
|
591 |
+
pass
|
592 |
+
|
593 |
+
|
594 |
+
class DrtFunctionVariableExpression(
|
595 |
+
DrtAbstractVariableExpression, FunctionVariableExpression
|
596 |
+
):
|
597 |
+
pass
|
598 |
+
|
599 |
+
|
600 |
+
class DrtEventVariableExpression(
|
601 |
+
DrtIndividualVariableExpression, EventVariableExpression
|
602 |
+
):
|
603 |
+
pass
|
604 |
+
|
605 |
+
|
606 |
+
class DrtConstantExpression(DrtAbstractVariableExpression, ConstantExpression):
|
607 |
+
pass
|
608 |
+
|
609 |
+
|
610 |
+
class DrtProposition(DrtExpression, Expression):
|
611 |
+
def __init__(self, variable, drs):
|
612 |
+
self.variable = variable
|
613 |
+
self.drs = drs
|
614 |
+
|
615 |
+
def replace(self, variable, expression, replace_bound=False, alpha_convert=True):
|
616 |
+
if self.variable == variable:
|
617 |
+
assert isinstance(
|
618 |
+
expression, DrtAbstractVariableExpression
|
619 |
+
), "Can only replace a proposition label with a variable"
|
620 |
+
return DrtProposition(
|
621 |
+
expression.variable,
|
622 |
+
self.drs.replace(variable, expression, replace_bound, alpha_convert),
|
623 |
+
)
|
624 |
+
else:
|
625 |
+
return DrtProposition(
|
626 |
+
self.variable,
|
627 |
+
self.drs.replace(variable, expression, replace_bound, alpha_convert),
|
628 |
+
)
|
629 |
+
|
630 |
+
def eliminate_equality(self):
|
631 |
+
return DrtProposition(self.variable, self.drs.eliminate_equality())
|
632 |
+
|
633 |
+
def get_refs(self, recursive=False):
|
634 |
+
return self.drs.get_refs(True) if recursive else []
|
635 |
+
|
636 |
+
def __eq__(self, other):
|
637 |
+
return (
|
638 |
+
self.__class__ == other.__class__
|
639 |
+
and self.variable == other.variable
|
640 |
+
and self.drs == other.drs
|
641 |
+
)
|
642 |
+
|
643 |
+
def __ne__(self, other):
|
644 |
+
return not self == other
|
645 |
+
|
646 |
+
__hash__ = Expression.__hash__
|
647 |
+
|
648 |
+
def fol(self):
|
649 |
+
return self.drs.fol()
|
650 |
+
|
651 |
+
def _pretty(self):
|
652 |
+
drs_s = self.drs._pretty()
|
653 |
+
blank = " " * len("%s" % self.variable)
|
654 |
+
return (
|
655 |
+
[blank + " " + line for line in drs_s[:1]]
|
656 |
+
+ ["%s" % self.variable + ":" + line for line in drs_s[1:2]]
|
657 |
+
+ [blank + " " + line for line in drs_s[2:]]
|
658 |
+
)
|
659 |
+
|
660 |
+
def visit(self, function, combinator):
|
661 |
+
""":see: Expression.visit()"""
|
662 |
+
return combinator([function(self.drs)])
|
663 |
+
|
664 |
+
def visit_structured(self, function, combinator):
|
665 |
+
""":see: Expression.visit_structured()"""
|
666 |
+
return combinator(self.variable, function(self.drs))
|
667 |
+
|
668 |
+
def __str__(self):
|
669 |
+
return f"prop({self.variable}, {self.drs})"
|
670 |
+
|
671 |
+
|
672 |
+
class DrtNegatedExpression(DrtExpression, NegatedExpression):
|
673 |
+
def fol(self):
|
674 |
+
return NegatedExpression(self.term.fol())
|
675 |
+
|
676 |
+
def get_refs(self, recursive=False):
|
677 |
+
""":see: AbstractExpression.get_refs()"""
|
678 |
+
return self.term.get_refs(recursive)
|
679 |
+
|
680 |
+
def _pretty(self):
|
681 |
+
term_lines = self.term._pretty()
|
682 |
+
return (
|
683 |
+
[" " + line for line in term_lines[:2]]
|
684 |
+
+ ["__ " + line for line in term_lines[2:3]]
|
685 |
+
+ [" | " + line for line in term_lines[3:4]]
|
686 |
+
+ [" " + line for line in term_lines[4:]]
|
687 |
+
)
|
688 |
+
|
689 |
+
|
690 |
+
class DrtLambdaExpression(DrtExpression, LambdaExpression):
|
691 |
+
def alpha_convert(self, newvar):
|
692 |
+
"""Rename all occurrences of the variable introduced by this variable
|
693 |
+
binder in the expression to ``newvar``.
|
694 |
+
:param newvar: ``Variable``, for the new variable
|
695 |
+
"""
|
696 |
+
return self.__class__(
|
697 |
+
newvar,
|
698 |
+
self.term.replace(self.variable, DrtVariableExpression(newvar), True),
|
699 |
+
)
|
700 |
+
|
701 |
+
def fol(self):
|
702 |
+
return LambdaExpression(self.variable, self.term.fol())
|
703 |
+
|
704 |
+
def _pretty(self):
|
705 |
+
variables = [self.variable]
|
706 |
+
term = self.term
|
707 |
+
while term.__class__ == self.__class__:
|
708 |
+
variables.append(term.variable)
|
709 |
+
term = term.term
|
710 |
+
var_string = " ".join("%s" % v for v in variables) + DrtTokens.DOT
|
711 |
+
term_lines = term._pretty()
|
712 |
+
blank = " " * len(var_string)
|
713 |
+
return (
|
714 |
+
[" " + blank + line for line in term_lines[:1]]
|
715 |
+
+ [r" \ " + blank + line for line in term_lines[1:2]]
|
716 |
+
+ [r" /\ " + var_string + line for line in term_lines[2:3]]
|
717 |
+
+ [" " + blank + line for line in term_lines[3:]]
|
718 |
+
)
|
719 |
+
|
720 |
+
def get_refs(self, recursive=False):
|
721 |
+
""":see: AbstractExpression.get_refs()"""
|
722 |
+
return (
|
723 |
+
[self.variable] + self.term.get_refs(True) if recursive else [self.variable]
|
724 |
+
)
|
725 |
+
|
726 |
+
|
727 |
+
class DrtBinaryExpression(DrtExpression, BinaryExpression):
|
728 |
+
def get_refs(self, recursive=False):
|
729 |
+
""":see: AbstractExpression.get_refs()"""
|
730 |
+
return (
|
731 |
+
self.first.get_refs(True) + self.second.get_refs(True) if recursive else []
|
732 |
+
)
|
733 |
+
|
734 |
+
def _pretty(self):
|
735 |
+
return DrtBinaryExpression._assemble_pretty(
|
736 |
+
self._pretty_subex(self.first),
|
737 |
+
self.getOp(),
|
738 |
+
self._pretty_subex(self.second),
|
739 |
+
)
|
740 |
+
|
741 |
+
@staticmethod
|
742 |
+
def _assemble_pretty(first_lines, op, second_lines):
|
743 |
+
max_lines = max(len(first_lines), len(second_lines))
|
744 |
+
first_lines = _pad_vertically(first_lines, max_lines)
|
745 |
+
second_lines = _pad_vertically(second_lines, max_lines)
|
746 |
+
blank = " " * len(op)
|
747 |
+
first_second_lines = list(zip(first_lines, second_lines))
|
748 |
+
return (
|
749 |
+
[
|
750 |
+
" " + first_line + " " + blank + " " + second_line + " "
|
751 |
+
for first_line, second_line in first_second_lines[:2]
|
752 |
+
]
|
753 |
+
+ [
|
754 |
+
"(" + first_line + " " + op + " " + second_line + ")"
|
755 |
+
for first_line, second_line in first_second_lines[2:3]
|
756 |
+
]
|
757 |
+
+ [
|
758 |
+
" " + first_line + " " + blank + " " + second_line + " "
|
759 |
+
for first_line, second_line in first_second_lines[3:]
|
760 |
+
]
|
761 |
+
)
|
762 |
+
|
763 |
+
def _pretty_subex(self, subex):
|
764 |
+
return subex._pretty()
|
765 |
+
|
766 |
+
|
767 |
+
class DrtBooleanExpression(DrtBinaryExpression, BooleanExpression):
|
768 |
+
pass
|
769 |
+
|
770 |
+
|
771 |
+
class DrtOrExpression(DrtBooleanExpression, OrExpression):
|
772 |
+
def fol(self):
|
773 |
+
return OrExpression(self.first.fol(), self.second.fol())
|
774 |
+
|
775 |
+
def _pretty_subex(self, subex):
|
776 |
+
if isinstance(subex, DrtOrExpression):
|
777 |
+
return [line[1:-1] for line in subex._pretty()]
|
778 |
+
return DrtBooleanExpression._pretty_subex(self, subex)
|
779 |
+
|
780 |
+
|
781 |
+
class DrtEqualityExpression(DrtBinaryExpression, EqualityExpression):
|
782 |
+
def fol(self):
|
783 |
+
return EqualityExpression(self.first.fol(), self.second.fol())
|
784 |
+
|
785 |
+
|
786 |
+
class DrtConcatenation(DrtBooleanExpression):
|
787 |
+
"""DRS of the form '(DRS + DRS)'"""
|
788 |
+
|
789 |
+
def __init__(self, first, second, consequent=None):
|
790 |
+
DrtBooleanExpression.__init__(self, first, second)
|
791 |
+
self.consequent = consequent
|
792 |
+
|
793 |
+
def replace(self, variable, expression, replace_bound=False, alpha_convert=True):
|
794 |
+
"""Replace all instances of variable v with expression E in self,
|
795 |
+
where v is free in self."""
|
796 |
+
first = self.first
|
797 |
+
second = self.second
|
798 |
+
consequent = self.consequent
|
799 |
+
|
800 |
+
# If variable is bound
|
801 |
+
if variable in self.get_refs():
|
802 |
+
if replace_bound:
|
803 |
+
first = first.replace(
|
804 |
+
variable, expression, replace_bound, alpha_convert
|
805 |
+
)
|
806 |
+
second = second.replace(
|
807 |
+
variable, expression, replace_bound, alpha_convert
|
808 |
+
)
|
809 |
+
if consequent:
|
810 |
+
consequent = consequent.replace(
|
811 |
+
variable, expression, replace_bound, alpha_convert
|
812 |
+
)
|
813 |
+
else:
|
814 |
+
if alpha_convert:
|
815 |
+
# alpha convert every ref that is free in 'expression'
|
816 |
+
for ref in set(self.get_refs(True)) & expression.free():
|
817 |
+
v = DrtVariableExpression(unique_variable(ref))
|
818 |
+
first = first.replace(ref, v, True, alpha_convert)
|
819 |
+
second = second.replace(ref, v, True, alpha_convert)
|
820 |
+
if consequent:
|
821 |
+
consequent = consequent.replace(ref, v, True, alpha_convert)
|
822 |
+
|
823 |
+
first = first.replace(variable, expression, replace_bound, alpha_convert)
|
824 |
+
second = second.replace(variable, expression, replace_bound, alpha_convert)
|
825 |
+
if consequent:
|
826 |
+
consequent = consequent.replace(
|
827 |
+
variable, expression, replace_bound, alpha_convert
|
828 |
+
)
|
829 |
+
|
830 |
+
return self.__class__(first, second, consequent)
|
831 |
+
|
832 |
+
def eliminate_equality(self):
|
833 |
+
# TODO: at some point. for now, simplify.
|
834 |
+
drs = self.simplify()
|
835 |
+
assert not isinstance(drs, DrtConcatenation)
|
836 |
+
return drs.eliminate_equality()
|
837 |
+
|
838 |
+
def simplify(self):
|
839 |
+
first = self.first.simplify()
|
840 |
+
second = self.second.simplify()
|
841 |
+
consequent = self.consequent.simplify() if self.consequent else None
|
842 |
+
|
843 |
+
if isinstance(first, DRS) and isinstance(second, DRS):
|
844 |
+
# For any ref that is in both 'first' and 'second'
|
845 |
+
for ref in set(first.get_refs(True)) & set(second.get_refs(True)):
|
846 |
+
# alpha convert the ref in 'second' to prevent collision
|
847 |
+
newvar = DrtVariableExpression(unique_variable(ref))
|
848 |
+
second = second.replace(ref, newvar, True)
|
849 |
+
|
850 |
+
return DRS(first.refs + second.refs, first.conds + second.conds, consequent)
|
851 |
+
else:
|
852 |
+
return self.__class__(first, second, consequent)
|
853 |
+
|
854 |
+
def get_refs(self, recursive=False):
|
855 |
+
""":see: AbstractExpression.get_refs()"""
|
856 |
+
refs = self.first.get_refs(recursive) + self.second.get_refs(recursive)
|
857 |
+
if self.consequent and recursive:
|
858 |
+
refs.extend(self.consequent.get_refs(True))
|
859 |
+
return refs
|
860 |
+
|
861 |
+
def getOp(self):
|
862 |
+
return DrtTokens.DRS_CONC
|
863 |
+
|
864 |
+
def __eq__(self, other):
|
865 |
+
r"""Defines equality modulo alphabetic variance.
|
866 |
+
If we are comparing \x.M and \y.N, then check equality of M and N[x/y]."""
|
867 |
+
if isinstance(other, DrtConcatenation):
|
868 |
+
self_refs = self.get_refs()
|
869 |
+
other_refs = other.get_refs()
|
870 |
+
if len(self_refs) == len(other_refs):
|
871 |
+
converted_other = other
|
872 |
+
for (r1, r2) in zip(self_refs, other_refs):
|
873 |
+
varex = self.make_VariableExpression(r1)
|
874 |
+
converted_other = converted_other.replace(r2, varex, True)
|
875 |
+
return (
|
876 |
+
self.first == converted_other.first
|
877 |
+
and self.second == converted_other.second
|
878 |
+
and self.consequent == converted_other.consequent
|
879 |
+
)
|
880 |
+
return False
|
881 |
+
|
882 |
+
def __ne__(self, other):
|
883 |
+
return not self == other
|
884 |
+
|
885 |
+
__hash__ = DrtBooleanExpression.__hash__
|
886 |
+
|
887 |
+
def fol(self):
|
888 |
+
e = AndExpression(self.first.fol(), self.second.fol())
|
889 |
+
if self.consequent:
|
890 |
+
e = ImpExpression(e, self.consequent.fol())
|
891 |
+
return e
|
892 |
+
|
893 |
+
def _pretty(self):
|
894 |
+
drs = DrtBinaryExpression._assemble_pretty(
|
895 |
+
self._pretty_subex(self.first),
|
896 |
+
self.getOp(),
|
897 |
+
self._pretty_subex(self.second),
|
898 |
+
)
|
899 |
+
if self.consequent:
|
900 |
+
drs = DrtBinaryExpression._assemble_pretty(
|
901 |
+
drs, DrtTokens.IMP, self.consequent._pretty()
|
902 |
+
)
|
903 |
+
return drs
|
904 |
+
|
905 |
+
def _pretty_subex(self, subex):
|
906 |
+
if isinstance(subex, DrtConcatenation):
|
907 |
+
return [line[1:-1] for line in subex._pretty()]
|
908 |
+
return DrtBooleanExpression._pretty_subex(self, subex)
|
909 |
+
|
910 |
+
def visit(self, function, combinator):
|
911 |
+
""":see: Expression.visit()"""
|
912 |
+
if self.consequent:
|
913 |
+
return combinator(
|
914 |
+
[function(self.first), function(self.second), function(self.consequent)]
|
915 |
+
)
|
916 |
+
else:
|
917 |
+
return combinator([function(self.first), function(self.second)])
|
918 |
+
|
919 |
+
def __str__(self):
|
920 |
+
first = self._str_subex(self.first)
|
921 |
+
second = self._str_subex(self.second)
|
922 |
+
drs = Tokens.OPEN + first + " " + self.getOp() + " " + second + Tokens.CLOSE
|
923 |
+
if self.consequent:
|
924 |
+
return (
|
925 |
+
DrtTokens.OPEN
|
926 |
+
+ drs
|
927 |
+
+ " "
|
928 |
+
+ DrtTokens.IMP
|
929 |
+
+ " "
|
930 |
+
+ "%s" % self.consequent
|
931 |
+
+ DrtTokens.CLOSE
|
932 |
+
)
|
933 |
+
return drs
|
934 |
+
|
935 |
+
def _str_subex(self, subex):
|
936 |
+
s = "%s" % subex
|
937 |
+
if isinstance(subex, DrtConcatenation) and subex.consequent is None:
|
938 |
+
return s[1:-1]
|
939 |
+
return s
|
940 |
+
|
941 |
+
|
942 |
+
class DrtApplicationExpression(DrtExpression, ApplicationExpression):
|
943 |
+
def fol(self):
|
944 |
+
return ApplicationExpression(self.function.fol(), self.argument.fol())
|
945 |
+
|
946 |
+
def get_refs(self, recursive=False):
|
947 |
+
""":see: AbstractExpression.get_refs()"""
|
948 |
+
return (
|
949 |
+
self.function.get_refs(True) + self.argument.get_refs(True)
|
950 |
+
if recursive
|
951 |
+
else []
|
952 |
+
)
|
953 |
+
|
954 |
+
def _pretty(self):
|
955 |
+
function, args = self.uncurry()
|
956 |
+
function_lines = function._pretty()
|
957 |
+
args_lines = [arg._pretty() for arg in args]
|
958 |
+
max_lines = max(map(len, [function_lines] + args_lines))
|
959 |
+
function_lines = _pad_vertically(function_lines, max_lines)
|
960 |
+
args_lines = [_pad_vertically(arg_lines, max_lines) for arg_lines in args_lines]
|
961 |
+
func_args_lines = list(zip(function_lines, list(zip(*args_lines))))
|
962 |
+
return (
|
963 |
+
[
|
964 |
+
func_line + " " + " ".join(args_line) + " "
|
965 |
+
for func_line, args_line in func_args_lines[:2]
|
966 |
+
]
|
967 |
+
+ [
|
968 |
+
func_line + "(" + ",".join(args_line) + ")"
|
969 |
+
for func_line, args_line in func_args_lines[2:3]
|
970 |
+
]
|
971 |
+
+ [
|
972 |
+
func_line + " " + " ".join(args_line) + " "
|
973 |
+
for func_line, args_line in func_args_lines[3:]
|
974 |
+
]
|
975 |
+
)
|
976 |
+
|
977 |
+
|
978 |
+
def _pad_vertically(lines, max_lines):
|
979 |
+
pad_line = [" " * len(lines[0])]
|
980 |
+
return lines + pad_line * (max_lines - len(lines))
|
981 |
+
|
982 |
+
|
983 |
+
class PossibleAntecedents(list, DrtExpression, Expression):
|
984 |
+
def free(self):
|
985 |
+
"""Set of free variables."""
|
986 |
+
return set(self)
|
987 |
+
|
988 |
+
def replace(self, variable, expression, replace_bound=False, alpha_convert=True):
|
989 |
+
"""Replace all instances of variable v with expression E in self,
|
990 |
+
where v is free in self."""
|
991 |
+
result = PossibleAntecedents()
|
992 |
+
for item in self:
|
993 |
+
if item == variable:
|
994 |
+
self.append(expression)
|
995 |
+
else:
|
996 |
+
self.append(item)
|
997 |
+
return result
|
998 |
+
|
999 |
+
def _pretty(self):
|
1000 |
+
s = "%s" % self
|
1001 |
+
blank = " " * len(s)
|
1002 |
+
return [blank, blank, s]
|
1003 |
+
|
1004 |
+
def __str__(self):
|
1005 |
+
return "[" + ",".join("%s" % it for it in self) + "]"
|
1006 |
+
|
1007 |
+
|
1008 |
+
class AnaphoraResolutionException(Exception):
|
1009 |
+
pass
|
1010 |
+
|
1011 |
+
|
1012 |
+
def resolve_anaphora(expression, trail=[]):
|
1013 |
+
if isinstance(expression, ApplicationExpression):
|
1014 |
+
if expression.is_pronoun_function():
|
1015 |
+
possible_antecedents = PossibleAntecedents()
|
1016 |
+
for ancestor in trail:
|
1017 |
+
for ref in ancestor.get_refs():
|
1018 |
+
refex = expression.make_VariableExpression(ref)
|
1019 |
+
|
1020 |
+
# ==========================================================
|
1021 |
+
# Don't allow resolution to itself or other types
|
1022 |
+
# ==========================================================
|
1023 |
+
if refex.__class__ == expression.argument.__class__ and not (
|
1024 |
+
refex == expression.argument
|
1025 |
+
):
|
1026 |
+
possible_antecedents.append(refex)
|
1027 |
+
|
1028 |
+
if len(possible_antecedents) == 1:
|
1029 |
+
resolution = possible_antecedents[0]
|
1030 |
+
else:
|
1031 |
+
resolution = possible_antecedents
|
1032 |
+
return expression.make_EqualityExpression(expression.argument, resolution)
|
1033 |
+
else:
|
1034 |
+
r_function = resolve_anaphora(expression.function, trail + [expression])
|
1035 |
+
r_argument = resolve_anaphora(expression.argument, trail + [expression])
|
1036 |
+
return expression.__class__(r_function, r_argument)
|
1037 |
+
|
1038 |
+
elif isinstance(expression, DRS):
|
1039 |
+
r_conds = []
|
1040 |
+
for cond in expression.conds:
|
1041 |
+
r_cond = resolve_anaphora(cond, trail + [expression])
|
1042 |
+
|
1043 |
+
# if the condition is of the form '(x = [])' then raise exception
|
1044 |
+
if isinstance(r_cond, EqualityExpression):
|
1045 |
+
if isinstance(r_cond.first, PossibleAntecedents):
|
1046 |
+
# Reverse the order so that the variable is on the left
|
1047 |
+
temp = r_cond.first
|
1048 |
+
r_cond.first = r_cond.second
|
1049 |
+
r_cond.second = temp
|
1050 |
+
if isinstance(r_cond.second, PossibleAntecedents):
|
1051 |
+
if not r_cond.second:
|
1052 |
+
raise AnaphoraResolutionException(
|
1053 |
+
"Variable '%s' does not "
|
1054 |
+
"resolve to anything." % r_cond.first
|
1055 |
+
)
|
1056 |
+
|
1057 |
+
r_conds.append(r_cond)
|
1058 |
+
if expression.consequent:
|
1059 |
+
consequent = resolve_anaphora(expression.consequent, trail + [expression])
|
1060 |
+
else:
|
1061 |
+
consequent = None
|
1062 |
+
return expression.__class__(expression.refs, r_conds, consequent)
|
1063 |
+
|
1064 |
+
elif isinstance(expression, AbstractVariableExpression):
|
1065 |
+
return expression
|
1066 |
+
|
1067 |
+
elif isinstance(expression, NegatedExpression):
|
1068 |
+
return expression.__class__(
|
1069 |
+
resolve_anaphora(expression.term, trail + [expression])
|
1070 |
+
)
|
1071 |
+
|
1072 |
+
elif isinstance(expression, DrtConcatenation):
|
1073 |
+
if expression.consequent:
|
1074 |
+
consequent = resolve_anaphora(expression.consequent, trail + [expression])
|
1075 |
+
else:
|
1076 |
+
consequent = None
|
1077 |
+
return expression.__class__(
|
1078 |
+
resolve_anaphora(expression.first, trail + [expression]),
|
1079 |
+
resolve_anaphora(expression.second, trail + [expression]),
|
1080 |
+
consequent,
|
1081 |
+
)
|
1082 |
+
|
1083 |
+
elif isinstance(expression, BinaryExpression):
|
1084 |
+
return expression.__class__(
|
1085 |
+
resolve_anaphora(expression.first, trail + [expression]),
|
1086 |
+
resolve_anaphora(expression.second, trail + [expression]),
|
1087 |
+
)
|
1088 |
+
|
1089 |
+
elif isinstance(expression, LambdaExpression):
|
1090 |
+
return expression.__class__(
|
1091 |
+
expression.variable, resolve_anaphora(expression.term, trail + [expression])
|
1092 |
+
)
|
1093 |
+
|
1094 |
+
|
1095 |
+
class DrsDrawer:
|
1096 |
+
BUFFER = 3 # Space between elements
|
1097 |
+
TOPSPACE = 10 # Space above whole DRS
|
1098 |
+
OUTERSPACE = 6 # Space to the left, right, and bottom of the while DRS
|
1099 |
+
|
1100 |
+
def __init__(self, drs, size_canvas=True, canvas=None):
|
1101 |
+
"""
|
1102 |
+
:param drs: ``DrtExpression``, The DRS to be drawn
|
1103 |
+
:param size_canvas: bool, True if the canvas size should be the exact size of the DRS
|
1104 |
+
:param canvas: ``Canvas`` The canvas on which to draw the DRS. If none is given, create a new canvas.
|
1105 |
+
"""
|
1106 |
+
master = None
|
1107 |
+
if not canvas:
|
1108 |
+
master = Tk()
|
1109 |
+
master.title("DRT")
|
1110 |
+
|
1111 |
+
font = Font(family="helvetica", size=12)
|
1112 |
+
|
1113 |
+
if size_canvas:
|
1114 |
+
canvas = Canvas(master, width=0, height=0)
|
1115 |
+
canvas.font = font
|
1116 |
+
self.canvas = canvas
|
1117 |
+
(right, bottom) = self._visit(drs, self.OUTERSPACE, self.TOPSPACE)
|
1118 |
+
|
1119 |
+
width = max(right + self.OUTERSPACE, 100)
|
1120 |
+
height = bottom + self.OUTERSPACE
|
1121 |
+
canvas = Canvas(master, width=width, height=height) # , bg='white')
|
1122 |
+
else:
|
1123 |
+
canvas = Canvas(master, width=300, height=300)
|
1124 |
+
|
1125 |
+
canvas.pack()
|
1126 |
+
canvas.font = font
|
1127 |
+
|
1128 |
+
self.canvas = canvas
|
1129 |
+
self.drs = drs
|
1130 |
+
self.master = master
|
1131 |
+
|
1132 |
+
def _get_text_height(self):
|
1133 |
+
"""Get the height of a line of text"""
|
1134 |
+
return self.canvas.font.metrics("linespace")
|
1135 |
+
|
1136 |
+
def draw(self, x=OUTERSPACE, y=TOPSPACE):
|
1137 |
+
"""Draw the DRS"""
|
1138 |
+
self._handle(self.drs, self._draw_command, x, y)
|
1139 |
+
|
1140 |
+
if self.master and not in_idle():
|
1141 |
+
self.master.mainloop()
|
1142 |
+
else:
|
1143 |
+
return self._visit(self.drs, x, y)
|
1144 |
+
|
1145 |
+
def _visit(self, expression, x, y):
|
1146 |
+
"""
|
1147 |
+
Return the bottom-rightmost point without actually drawing the item
|
1148 |
+
|
1149 |
+
:param expression: the item to visit
|
1150 |
+
:param x: the top of the current drawing area
|
1151 |
+
:param y: the left side of the current drawing area
|
1152 |
+
:return: the bottom-rightmost point
|
1153 |
+
"""
|
1154 |
+
return self._handle(expression, self._visit_command, x, y)
|
1155 |
+
|
1156 |
+
def _draw_command(self, item, x, y):
|
1157 |
+
"""
|
1158 |
+
Draw the given item at the given location
|
1159 |
+
|
1160 |
+
:param item: the item to draw
|
1161 |
+
:param x: the top of the current drawing area
|
1162 |
+
:param y: the left side of the current drawing area
|
1163 |
+
:return: the bottom-rightmost point
|
1164 |
+
"""
|
1165 |
+
if isinstance(item, str):
|
1166 |
+
self.canvas.create_text(x, y, anchor="nw", font=self.canvas.font, text=item)
|
1167 |
+
elif isinstance(item, tuple):
|
1168 |
+
# item is the lower-right of a box
|
1169 |
+
(right, bottom) = item
|
1170 |
+
self.canvas.create_rectangle(x, y, right, bottom)
|
1171 |
+
horiz_line_y = (
|
1172 |
+
y + self._get_text_height() + (self.BUFFER * 2)
|
1173 |
+
) # the line separating refs from conds
|
1174 |
+
self.canvas.create_line(x, horiz_line_y, right, horiz_line_y)
|
1175 |
+
|
1176 |
+
return self._visit_command(item, x, y)
|
1177 |
+
|
1178 |
+
def _visit_command(self, item, x, y):
|
1179 |
+
"""
|
1180 |
+
Return the bottom-rightmost point without actually drawing the item
|
1181 |
+
|
1182 |
+
:param item: the item to visit
|
1183 |
+
:param x: the top of the current drawing area
|
1184 |
+
:param y: the left side of the current drawing area
|
1185 |
+
:return: the bottom-rightmost point
|
1186 |
+
"""
|
1187 |
+
if isinstance(item, str):
|
1188 |
+
return (x + self.canvas.font.measure(item), y + self._get_text_height())
|
1189 |
+
elif isinstance(item, tuple):
|
1190 |
+
return item
|
1191 |
+
|
1192 |
+
def _handle(self, expression, command, x=0, y=0):
|
1193 |
+
"""
|
1194 |
+
:param expression: the expression to handle
|
1195 |
+
:param command: the function to apply, either _draw_command or _visit_command
|
1196 |
+
:param x: the top of the current drawing area
|
1197 |
+
:param y: the left side of the current drawing area
|
1198 |
+
:return: the bottom-rightmost point
|
1199 |
+
"""
|
1200 |
+
if command == self._visit_command:
|
1201 |
+
# if we don't need to draw the item, then we can use the cached values
|
1202 |
+
try:
|
1203 |
+
# attempt to retrieve cached values
|
1204 |
+
right = expression._drawing_width + x
|
1205 |
+
bottom = expression._drawing_height + y
|
1206 |
+
return (right, bottom)
|
1207 |
+
except AttributeError:
|
1208 |
+
# the values have not been cached yet, so compute them
|
1209 |
+
pass
|
1210 |
+
|
1211 |
+
if isinstance(expression, DrtAbstractVariableExpression):
|
1212 |
+
factory = self._handle_VariableExpression
|
1213 |
+
elif isinstance(expression, DRS):
|
1214 |
+
factory = self._handle_DRS
|
1215 |
+
elif isinstance(expression, DrtNegatedExpression):
|
1216 |
+
factory = self._handle_NegatedExpression
|
1217 |
+
elif isinstance(expression, DrtLambdaExpression):
|
1218 |
+
factory = self._handle_LambdaExpression
|
1219 |
+
elif isinstance(expression, BinaryExpression):
|
1220 |
+
factory = self._handle_BinaryExpression
|
1221 |
+
elif isinstance(expression, DrtApplicationExpression):
|
1222 |
+
factory = self._handle_ApplicationExpression
|
1223 |
+
elif isinstance(expression, PossibleAntecedents):
|
1224 |
+
factory = self._handle_VariableExpression
|
1225 |
+
elif isinstance(expression, DrtProposition):
|
1226 |
+
factory = self._handle_DrtProposition
|
1227 |
+
else:
|
1228 |
+
raise Exception(expression.__class__.__name__)
|
1229 |
+
|
1230 |
+
(right, bottom) = factory(expression, command, x, y)
|
1231 |
+
|
1232 |
+
# cache the values
|
1233 |
+
expression._drawing_width = right - x
|
1234 |
+
expression._drawing_height = bottom - y
|
1235 |
+
|
1236 |
+
return (right, bottom)
|
1237 |
+
|
1238 |
+
def _handle_VariableExpression(self, expression, command, x, y):
|
1239 |
+
return command("%s" % expression, x, y)
|
1240 |
+
|
1241 |
+
def _handle_NegatedExpression(self, expression, command, x, y):
|
1242 |
+
# Find the width of the negation symbol
|
1243 |
+
right = self._visit_command(DrtTokens.NOT, x, y)[0]
|
1244 |
+
|
1245 |
+
# Handle term
|
1246 |
+
(right, bottom) = self._handle(expression.term, command, right, y)
|
1247 |
+
|
1248 |
+
# Handle variables now that we know the y-coordinate
|
1249 |
+
command(
|
1250 |
+
DrtTokens.NOT,
|
1251 |
+
x,
|
1252 |
+
self._get_centered_top(y, bottom - y, self._get_text_height()),
|
1253 |
+
)
|
1254 |
+
|
1255 |
+
return (right, bottom)
|
1256 |
+
|
1257 |
+
def _handle_DRS(self, expression, command, x, y):
|
1258 |
+
left = x + self.BUFFER # indent the left side
|
1259 |
+
bottom = y + self.BUFFER # indent the top
|
1260 |
+
|
1261 |
+
# Handle Discourse Referents
|
1262 |
+
if expression.refs:
|
1263 |
+
refs = " ".join("%s" % r for r in expression.refs)
|
1264 |
+
else:
|
1265 |
+
refs = " "
|
1266 |
+
(max_right, bottom) = command(refs, left, bottom)
|
1267 |
+
bottom += self.BUFFER * 2
|
1268 |
+
|
1269 |
+
# Handle Conditions
|
1270 |
+
if expression.conds:
|
1271 |
+
for cond in expression.conds:
|
1272 |
+
(right, bottom) = self._handle(cond, command, left, bottom)
|
1273 |
+
max_right = max(max_right, right)
|
1274 |
+
bottom += self.BUFFER
|
1275 |
+
else:
|
1276 |
+
bottom += self._get_text_height() + self.BUFFER
|
1277 |
+
|
1278 |
+
# Handle Box
|
1279 |
+
max_right += self.BUFFER
|
1280 |
+
return command((max_right, bottom), x, y)
|
1281 |
+
|
1282 |
+
def _handle_ApplicationExpression(self, expression, command, x, y):
|
1283 |
+
function, args = expression.uncurry()
|
1284 |
+
if not isinstance(function, DrtAbstractVariableExpression):
|
1285 |
+
# It's not a predicate expression ("P(x,y)"), so leave arguments curried
|
1286 |
+
function = expression.function
|
1287 |
+
args = [expression.argument]
|
1288 |
+
|
1289 |
+
# Get the max bottom of any element on the line
|
1290 |
+
function_bottom = self._visit(function, x, y)[1]
|
1291 |
+
max_bottom = max(
|
1292 |
+
[function_bottom] + [self._visit(arg, x, y)[1] for arg in args]
|
1293 |
+
)
|
1294 |
+
|
1295 |
+
line_height = max_bottom - y
|
1296 |
+
|
1297 |
+
# Handle 'function'
|
1298 |
+
function_drawing_top = self._get_centered_top(
|
1299 |
+
y, line_height, function._drawing_height
|
1300 |
+
)
|
1301 |
+
right = self._handle(function, command, x, function_drawing_top)[0]
|
1302 |
+
|
1303 |
+
# Handle open paren
|
1304 |
+
centred_string_top = self._get_centered_top(
|
1305 |
+
y, line_height, self._get_text_height()
|
1306 |
+
)
|
1307 |
+
right = command(DrtTokens.OPEN, right, centred_string_top)[0]
|
1308 |
+
|
1309 |
+
# Handle each arg
|
1310 |
+
for (i, arg) in enumerate(args):
|
1311 |
+
arg_drawing_top = self._get_centered_top(
|
1312 |
+
y, line_height, arg._drawing_height
|
1313 |
+
)
|
1314 |
+
right = self._handle(arg, command, right, arg_drawing_top)[0]
|
1315 |
+
|
1316 |
+
if i + 1 < len(args):
|
1317 |
+
# since it's not the last arg, add a comma
|
1318 |
+
right = command(DrtTokens.COMMA + " ", right, centred_string_top)[0]
|
1319 |
+
|
1320 |
+
# Handle close paren
|
1321 |
+
right = command(DrtTokens.CLOSE, right, centred_string_top)[0]
|
1322 |
+
|
1323 |
+
return (right, max_bottom)
|
1324 |
+
|
1325 |
+
def _handle_LambdaExpression(self, expression, command, x, y):
|
1326 |
+
# Find the width of the lambda symbol and abstracted variables
|
1327 |
+
variables = DrtTokens.LAMBDA + "%s" % expression.variable + DrtTokens.DOT
|
1328 |
+
right = self._visit_command(variables, x, y)[0]
|
1329 |
+
|
1330 |
+
# Handle term
|
1331 |
+
(right, bottom) = self._handle(expression.term, command, right, y)
|
1332 |
+
|
1333 |
+
# Handle variables now that we know the y-coordinate
|
1334 |
+
command(
|
1335 |
+
variables, x, self._get_centered_top(y, bottom - y, self._get_text_height())
|
1336 |
+
)
|
1337 |
+
|
1338 |
+
return (right, bottom)
|
1339 |
+
|
1340 |
+
def _handle_BinaryExpression(self, expression, command, x, y):
|
1341 |
+
# Get the full height of the line, based on the operands
|
1342 |
+
first_height = self._visit(expression.first, 0, 0)[1]
|
1343 |
+
second_height = self._visit(expression.second, 0, 0)[1]
|
1344 |
+
line_height = max(first_height, second_height)
|
1345 |
+
|
1346 |
+
# Handle open paren
|
1347 |
+
centred_string_top = self._get_centered_top(
|
1348 |
+
y, line_height, self._get_text_height()
|
1349 |
+
)
|
1350 |
+
right = command(DrtTokens.OPEN, x, centred_string_top)[0]
|
1351 |
+
|
1352 |
+
# Handle the first operand
|
1353 |
+
first_height = expression.first._drawing_height
|
1354 |
+
(right, first_bottom) = self._handle(
|
1355 |
+
expression.first,
|
1356 |
+
command,
|
1357 |
+
right,
|
1358 |
+
self._get_centered_top(y, line_height, first_height),
|
1359 |
+
)
|
1360 |
+
|
1361 |
+
# Handle the operator
|
1362 |
+
right = command(" %s " % expression.getOp(), right, centred_string_top)[0]
|
1363 |
+
|
1364 |
+
# Handle the second operand
|
1365 |
+
second_height = expression.second._drawing_height
|
1366 |
+
(right, second_bottom) = self._handle(
|
1367 |
+
expression.second,
|
1368 |
+
command,
|
1369 |
+
right,
|
1370 |
+
self._get_centered_top(y, line_height, second_height),
|
1371 |
+
)
|
1372 |
+
|
1373 |
+
# Handle close paren
|
1374 |
+
right = command(DrtTokens.CLOSE, right, centred_string_top)[0]
|
1375 |
+
|
1376 |
+
return (right, max(first_bottom, second_bottom))
|
1377 |
+
|
1378 |
+
def _handle_DrtProposition(self, expression, command, x, y):
|
1379 |
+
# Find the width of the negation symbol
|
1380 |
+
right = command(expression.variable, x, y)[0]
|
1381 |
+
|
1382 |
+
# Handle term
|
1383 |
+
(right, bottom) = self._handle(expression.term, command, right, y)
|
1384 |
+
|
1385 |
+
return (right, bottom)
|
1386 |
+
|
1387 |
+
def _get_centered_top(self, top, full_height, item_height):
|
1388 |
+
"""Get the y-coordinate of the point that a figure should start at if
|
1389 |
+
its height is 'item_height' and it needs to be centered in an area that
|
1390 |
+
starts at 'top' and is 'full_height' tall."""
|
1391 |
+
return top + (full_height - item_height) / 2
|
1392 |
+
|
1393 |
+
|
1394 |
+
def demo():
|
1395 |
+
print("=" * 20 + "TEST PARSE" + "=" * 20)
|
1396 |
+
dexpr = DrtExpression.fromstring
|
1397 |
+
print(dexpr(r"([x,y],[sees(x,y)])"))
|
1398 |
+
print(dexpr(r"([x],[man(x), walks(x)])"))
|
1399 |
+
print(dexpr(r"\x.\y.([],[sees(x,y)])"))
|
1400 |
+
print(dexpr(r"\x.([],[walks(x)])(john)"))
|
1401 |
+
print(dexpr(r"(([x],[walks(x)]) + ([y],[runs(y)]))"))
|
1402 |
+
print(dexpr(r"(([],[walks(x)]) -> ([],[runs(x)]))"))
|
1403 |
+
print(dexpr(r"([x],[PRO(x), sees(John,x)])"))
|
1404 |
+
print(dexpr(r"([x],[man(x), -([],[walks(x)])])"))
|
1405 |
+
print(dexpr(r"([],[(([x],[man(x)]) -> ([],[walks(x)]))])"))
|
1406 |
+
|
1407 |
+
print("=" * 20 + "Test fol()" + "=" * 20)
|
1408 |
+
print(dexpr(r"([x,y],[sees(x,y)])").fol())
|
1409 |
+
|
1410 |
+
print("=" * 20 + "Test alpha conversion and lambda expression equality" + "=" * 20)
|
1411 |
+
e1 = dexpr(r"\x.([],[P(x)])")
|
1412 |
+
print(e1)
|
1413 |
+
e2 = e1.alpha_convert(Variable("z"))
|
1414 |
+
print(e2)
|
1415 |
+
print(e1 == e2)
|
1416 |
+
|
1417 |
+
print("=" * 20 + "Test resolve_anaphora()" + "=" * 20)
|
1418 |
+
print(resolve_anaphora(dexpr(r"([x,y,z],[dog(x), cat(y), walks(z), PRO(z)])")))
|
1419 |
+
print(
|
1420 |
+
resolve_anaphora(dexpr(r"([],[(([x],[dog(x)]) -> ([y],[walks(y), PRO(y)]))])"))
|
1421 |
+
)
|
1422 |
+
print(resolve_anaphora(dexpr(r"(([x,y],[]) + ([],[PRO(x)]))")))
|
1423 |
+
|
1424 |
+
print("=" * 20 + "Test pretty_print()" + "=" * 20)
|
1425 |
+
dexpr(r"([],[])").pretty_print()
|
1426 |
+
dexpr(
|
1427 |
+
r"([],[([x],[big(x), dog(x)]) -> ([],[bark(x)]) -([x],[walk(x)])])"
|
1428 |
+
).pretty_print()
|
1429 |
+
dexpr(r"([x,y],[x=y]) + ([z],[dog(z), walk(z)])").pretty_print()
|
1430 |
+
dexpr(r"([],[([x],[]) | ([y],[]) | ([z],[dog(z), walk(z)])])").pretty_print()
|
1431 |
+
dexpr(r"\P.\Q.(([x],[]) + P(x) + Q(x))(\x.([],[dog(x)]))").pretty_print()
|
1432 |
+
|
1433 |
+
|
1434 |
+
def test_draw():
|
1435 |
+
try:
|
1436 |
+
from tkinter import Tk
|
1437 |
+
except ImportError as e:
|
1438 |
+
raise ValueError("tkinter is required, but it's not available.")
|
1439 |
+
|
1440 |
+
expressions = [
|
1441 |
+
r"x",
|
1442 |
+
r"([],[])",
|
1443 |
+
r"([x],[])",
|
1444 |
+
r"([x],[man(x)])",
|
1445 |
+
r"([x,y],[sees(x,y)])",
|
1446 |
+
r"([x],[man(x), walks(x)])",
|
1447 |
+
r"\x.([],[man(x), walks(x)])",
|
1448 |
+
r"\x y.([],[sees(x,y)])",
|
1449 |
+
r"([],[(([],[walks(x)]) + ([],[runs(x)]))])",
|
1450 |
+
r"([x],[man(x), -([],[walks(x)])])",
|
1451 |
+
r"([],[(([x],[man(x)]) -> ([],[walks(x)]))])",
|
1452 |
+
]
|
1453 |
+
|
1454 |
+
for e in expressions:
|
1455 |
+
d = DrtExpression.fromstring(e)
|
1456 |
+
d.draw()
|
1457 |
+
|
1458 |
+
|
1459 |
+
if __name__ == "__main__":
|
1460 |
+
demo()
|
venv/lib/python3.10/site-packages/nltk/sem/drt_glue_demo.py
ADDED
@@ -0,0 +1,553 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: GUI Demo for Glue Semantics with Discourse
|
2 |
+
# Representation Theory (DRT) as meaning language
|
3 |
+
#
|
4 |
+
# Author: Dan Garrette <[email protected]>
|
5 |
+
#
|
6 |
+
# Copyright (C) 2001-2023 NLTK Project
|
7 |
+
# URL: <https://www.nltk.org/>
|
8 |
+
# For license information, see LICENSE.TXT
|
9 |
+
|
10 |
+
try:
|
11 |
+
from tkinter import Button, Frame, IntVar, Label, Listbox, Menu, Scrollbar, Tk
|
12 |
+
from tkinter.font import Font
|
13 |
+
|
14 |
+
from nltk.draw.util import CanvasFrame, ShowText
|
15 |
+
|
16 |
+
except ImportError:
|
17 |
+
"""Ignore ImportError because tkinter might not be available."""
|
18 |
+
|
19 |
+
from nltk.parse import MaltParser
|
20 |
+
from nltk.sem.drt import DrsDrawer, DrtVariableExpression
|
21 |
+
from nltk.sem.glue import DrtGlue
|
22 |
+
from nltk.sem.logic import Variable
|
23 |
+
from nltk.tag import RegexpTagger
|
24 |
+
from nltk.util import in_idle
|
25 |
+
|
26 |
+
|
27 |
+
class DrtGlueDemo:
|
28 |
+
def __init__(self, examples):
|
29 |
+
# Set up the main window.
|
30 |
+
self._top = Tk()
|
31 |
+
self._top.title("DRT Glue Demo")
|
32 |
+
|
33 |
+
# Set up key bindings.
|
34 |
+
self._init_bindings()
|
35 |
+
|
36 |
+
# Initialize the fonts.self._error = None
|
37 |
+
self._init_fonts(self._top)
|
38 |
+
|
39 |
+
self._examples = examples
|
40 |
+
self._readingCache = [None for example in examples]
|
41 |
+
|
42 |
+
# The user can hide the grammar.
|
43 |
+
self._show_grammar = IntVar(self._top)
|
44 |
+
self._show_grammar.set(1)
|
45 |
+
|
46 |
+
# Set the data to None
|
47 |
+
self._curExample = -1
|
48 |
+
self._readings = []
|
49 |
+
self._drs = None
|
50 |
+
self._drsWidget = None
|
51 |
+
self._error = None
|
52 |
+
|
53 |
+
self._init_glue()
|
54 |
+
|
55 |
+
# Create the basic frames.
|
56 |
+
self._init_menubar(self._top)
|
57 |
+
self._init_buttons(self._top)
|
58 |
+
self._init_exampleListbox(self._top)
|
59 |
+
self._init_readingListbox(self._top)
|
60 |
+
self._init_canvas(self._top)
|
61 |
+
|
62 |
+
# Resize callback
|
63 |
+
self._canvas.bind("<Configure>", self._configure)
|
64 |
+
|
65 |
+
#########################################
|
66 |
+
## Initialization Helpers
|
67 |
+
#########################################
|
68 |
+
|
69 |
+
def _init_glue(self):
|
70 |
+
tagger = RegexpTagger(
|
71 |
+
[
|
72 |
+
("^(David|Mary|John)$", "NNP"),
|
73 |
+
(
|
74 |
+
"^(walks|sees|eats|chases|believes|gives|sleeps|chases|persuades|tries|seems|leaves)$",
|
75 |
+
"VB",
|
76 |
+
),
|
77 |
+
("^(go|order|vanish|find|approach)$", "VB"),
|
78 |
+
("^(a)$", "ex_quant"),
|
79 |
+
("^(every)$", "univ_quant"),
|
80 |
+
("^(sandwich|man|dog|pizza|unicorn|cat|senator)$", "NN"),
|
81 |
+
("^(big|gray|former)$", "JJ"),
|
82 |
+
("^(him|himself)$", "PRP"),
|
83 |
+
]
|
84 |
+
)
|
85 |
+
|
86 |
+
depparser = MaltParser(tagger=tagger)
|
87 |
+
self._glue = DrtGlue(depparser=depparser, remove_duplicates=False)
|
88 |
+
|
89 |
+
def _init_fonts(self, root):
|
90 |
+
# See: <http://www.astro.washington.edu/owen/ROTKFolklore.html>
|
91 |
+
self._sysfont = Font(font=Button()["font"])
|
92 |
+
root.option_add("*Font", self._sysfont)
|
93 |
+
|
94 |
+
# TWhat's our font size (default=same as sysfont)
|
95 |
+
self._size = IntVar(root)
|
96 |
+
self._size.set(self._sysfont.cget("size"))
|
97 |
+
|
98 |
+
self._boldfont = Font(family="helvetica", weight="bold", size=self._size.get())
|
99 |
+
self._font = Font(family="helvetica", size=self._size.get())
|
100 |
+
if self._size.get() < 0:
|
101 |
+
big = self._size.get() - 2
|
102 |
+
else:
|
103 |
+
big = self._size.get() + 2
|
104 |
+
self._bigfont = Font(family="helvetica", weight="bold", size=big)
|
105 |
+
|
106 |
+
def _init_exampleListbox(self, parent):
|
107 |
+
self._exampleFrame = listframe = Frame(parent)
|
108 |
+
self._exampleFrame.pack(fill="both", side="left", padx=2)
|
109 |
+
self._exampleList_label = Label(
|
110 |
+
self._exampleFrame, font=self._boldfont, text="Examples"
|
111 |
+
)
|
112 |
+
self._exampleList_label.pack()
|
113 |
+
self._exampleList = Listbox(
|
114 |
+
self._exampleFrame,
|
115 |
+
selectmode="single",
|
116 |
+
relief="groove",
|
117 |
+
background="white",
|
118 |
+
foreground="#909090",
|
119 |
+
font=self._font,
|
120 |
+
selectforeground="#004040",
|
121 |
+
selectbackground="#c0f0c0",
|
122 |
+
)
|
123 |
+
|
124 |
+
self._exampleList.pack(side="right", fill="both", expand=1)
|
125 |
+
|
126 |
+
for example in self._examples:
|
127 |
+
self._exampleList.insert("end", (" %s" % example))
|
128 |
+
self._exampleList.config(height=min(len(self._examples), 25), width=40)
|
129 |
+
|
130 |
+
# Add a scrollbar if there are more than 25 examples.
|
131 |
+
if len(self._examples) > 25:
|
132 |
+
listscroll = Scrollbar(self._exampleFrame, orient="vertical")
|
133 |
+
self._exampleList.config(yscrollcommand=listscroll.set)
|
134 |
+
listscroll.config(command=self._exampleList.yview)
|
135 |
+
listscroll.pack(side="left", fill="y")
|
136 |
+
|
137 |
+
# If they select a example, apply it.
|
138 |
+
self._exampleList.bind("<<ListboxSelect>>", self._exampleList_select)
|
139 |
+
|
140 |
+
def _init_readingListbox(self, parent):
|
141 |
+
self._readingFrame = listframe = Frame(parent)
|
142 |
+
self._readingFrame.pack(fill="both", side="left", padx=2)
|
143 |
+
self._readingList_label = Label(
|
144 |
+
self._readingFrame, font=self._boldfont, text="Readings"
|
145 |
+
)
|
146 |
+
self._readingList_label.pack()
|
147 |
+
self._readingList = Listbox(
|
148 |
+
self._readingFrame,
|
149 |
+
selectmode="single",
|
150 |
+
relief="groove",
|
151 |
+
background="white",
|
152 |
+
foreground="#909090",
|
153 |
+
font=self._font,
|
154 |
+
selectforeground="#004040",
|
155 |
+
selectbackground="#c0f0c0",
|
156 |
+
)
|
157 |
+
|
158 |
+
self._readingList.pack(side="right", fill="both", expand=1)
|
159 |
+
|
160 |
+
# Add a scrollbar if there are more than 25 examples.
|
161 |
+
listscroll = Scrollbar(self._readingFrame, orient="vertical")
|
162 |
+
self._readingList.config(yscrollcommand=listscroll.set)
|
163 |
+
listscroll.config(command=self._readingList.yview)
|
164 |
+
listscroll.pack(side="right", fill="y")
|
165 |
+
|
166 |
+
self._populate_readingListbox()
|
167 |
+
|
168 |
+
def _populate_readingListbox(self):
|
169 |
+
# Populate the listbox with integers
|
170 |
+
self._readingList.delete(0, "end")
|
171 |
+
for i in range(len(self._readings)):
|
172 |
+
self._readingList.insert("end", (" %s" % (i + 1)))
|
173 |
+
self._readingList.config(height=min(len(self._readings), 25), width=5)
|
174 |
+
|
175 |
+
# If they select a example, apply it.
|
176 |
+
self._readingList.bind("<<ListboxSelect>>", self._readingList_select)
|
177 |
+
|
178 |
+
def _init_bindings(self):
|
179 |
+
# Key bindings are a good thing.
|
180 |
+
self._top.bind("<Control-q>", self.destroy)
|
181 |
+
self._top.bind("<Control-x>", self.destroy)
|
182 |
+
self._top.bind("<Escape>", self.destroy)
|
183 |
+
self._top.bind("n", self.next)
|
184 |
+
self._top.bind("<space>", self.next)
|
185 |
+
self._top.bind("p", self.prev)
|
186 |
+
self._top.bind("<BackSpace>", self.prev)
|
187 |
+
|
188 |
+
def _init_buttons(self, parent):
|
189 |
+
# Set up the frames.
|
190 |
+
self._buttonframe = buttonframe = Frame(parent)
|
191 |
+
buttonframe.pack(fill="none", side="bottom", padx=3, pady=2)
|
192 |
+
Button(
|
193 |
+
buttonframe,
|
194 |
+
text="Prev",
|
195 |
+
background="#90c0d0",
|
196 |
+
foreground="black",
|
197 |
+
command=self.prev,
|
198 |
+
).pack(side="left")
|
199 |
+
Button(
|
200 |
+
buttonframe,
|
201 |
+
text="Next",
|
202 |
+
background="#90c0d0",
|
203 |
+
foreground="black",
|
204 |
+
command=self.next,
|
205 |
+
).pack(side="left")
|
206 |
+
|
207 |
+
def _configure(self, event):
|
208 |
+
self._autostep = 0
|
209 |
+
(x1, y1, x2, y2) = self._cframe.scrollregion()
|
210 |
+
y2 = event.height - 6
|
211 |
+
self._canvas["scrollregion"] = "%d %d %d %d" % (x1, y1, x2, y2)
|
212 |
+
self._redraw()
|
213 |
+
|
214 |
+
def _init_canvas(self, parent):
|
215 |
+
self._cframe = CanvasFrame(
|
216 |
+
parent,
|
217 |
+
background="white",
|
218 |
+
# width=525, height=250,
|
219 |
+
closeenough=10,
|
220 |
+
border=2,
|
221 |
+
relief="sunken",
|
222 |
+
)
|
223 |
+
self._cframe.pack(expand=1, fill="both", side="top", pady=2)
|
224 |
+
canvas = self._canvas = self._cframe.canvas()
|
225 |
+
|
226 |
+
# Initially, there's no tree or text
|
227 |
+
self._tree = None
|
228 |
+
self._textwidgets = []
|
229 |
+
self._textline = None
|
230 |
+
|
231 |
+
def _init_menubar(self, parent):
|
232 |
+
menubar = Menu(parent)
|
233 |
+
|
234 |
+
filemenu = Menu(menubar, tearoff=0)
|
235 |
+
filemenu.add_command(
|
236 |
+
label="Exit", underline=1, command=self.destroy, accelerator="q"
|
237 |
+
)
|
238 |
+
menubar.add_cascade(label="File", underline=0, menu=filemenu)
|
239 |
+
|
240 |
+
actionmenu = Menu(menubar, tearoff=0)
|
241 |
+
actionmenu.add_command(
|
242 |
+
label="Next", underline=0, command=self.next, accelerator="n, Space"
|
243 |
+
)
|
244 |
+
actionmenu.add_command(
|
245 |
+
label="Previous", underline=0, command=self.prev, accelerator="p, Backspace"
|
246 |
+
)
|
247 |
+
menubar.add_cascade(label="Action", underline=0, menu=actionmenu)
|
248 |
+
|
249 |
+
optionmenu = Menu(menubar, tearoff=0)
|
250 |
+
optionmenu.add_checkbutton(
|
251 |
+
label="Remove Duplicates",
|
252 |
+
underline=0,
|
253 |
+
variable=self._glue.remove_duplicates,
|
254 |
+
command=self._toggle_remove_duplicates,
|
255 |
+
accelerator="r",
|
256 |
+
)
|
257 |
+
menubar.add_cascade(label="Options", underline=0, menu=optionmenu)
|
258 |
+
|
259 |
+
viewmenu = Menu(menubar, tearoff=0)
|
260 |
+
viewmenu.add_radiobutton(
|
261 |
+
label="Tiny",
|
262 |
+
variable=self._size,
|
263 |
+
underline=0,
|
264 |
+
value=10,
|
265 |
+
command=self.resize,
|
266 |
+
)
|
267 |
+
viewmenu.add_radiobutton(
|
268 |
+
label="Small",
|
269 |
+
variable=self._size,
|
270 |
+
underline=0,
|
271 |
+
value=12,
|
272 |
+
command=self.resize,
|
273 |
+
)
|
274 |
+
viewmenu.add_radiobutton(
|
275 |
+
label="Medium",
|
276 |
+
variable=self._size,
|
277 |
+
underline=0,
|
278 |
+
value=14,
|
279 |
+
command=self.resize,
|
280 |
+
)
|
281 |
+
viewmenu.add_radiobutton(
|
282 |
+
label="Large",
|
283 |
+
variable=self._size,
|
284 |
+
underline=0,
|
285 |
+
value=18,
|
286 |
+
command=self.resize,
|
287 |
+
)
|
288 |
+
viewmenu.add_radiobutton(
|
289 |
+
label="Huge",
|
290 |
+
variable=self._size,
|
291 |
+
underline=0,
|
292 |
+
value=24,
|
293 |
+
command=self.resize,
|
294 |
+
)
|
295 |
+
menubar.add_cascade(label="View", underline=0, menu=viewmenu)
|
296 |
+
|
297 |
+
helpmenu = Menu(menubar, tearoff=0)
|
298 |
+
helpmenu.add_command(label="About", underline=0, command=self.about)
|
299 |
+
menubar.add_cascade(label="Help", underline=0, menu=helpmenu)
|
300 |
+
|
301 |
+
parent.config(menu=menubar)
|
302 |
+
|
303 |
+
#########################################
|
304 |
+
## Main draw procedure
|
305 |
+
#########################################
|
306 |
+
|
307 |
+
def _redraw(self):
|
308 |
+
canvas = self._canvas
|
309 |
+
|
310 |
+
# Delete the old DRS, widgets, etc.
|
311 |
+
if self._drsWidget is not None:
|
312 |
+
self._drsWidget.clear()
|
313 |
+
|
314 |
+
if self._drs:
|
315 |
+
self._drsWidget = DrsWidget(self._canvas, self._drs)
|
316 |
+
self._drsWidget.draw()
|
317 |
+
|
318 |
+
if self._error:
|
319 |
+
self._drsWidget = DrsWidget(self._canvas, self._error)
|
320 |
+
self._drsWidget.draw()
|
321 |
+
|
322 |
+
#########################################
|
323 |
+
## Button Callbacks
|
324 |
+
#########################################
|
325 |
+
|
326 |
+
def destroy(self, *e):
|
327 |
+
self._autostep = 0
|
328 |
+
if self._top is None:
|
329 |
+
return
|
330 |
+
self._top.destroy()
|
331 |
+
self._top = None
|
332 |
+
|
333 |
+
def prev(self, *e):
|
334 |
+
selection = self._readingList.curselection()
|
335 |
+
readingListSize = self._readingList.size()
|
336 |
+
|
337 |
+
# there are readings
|
338 |
+
if readingListSize > 0:
|
339 |
+
# if one reading is currently selected
|
340 |
+
if len(selection) == 1:
|
341 |
+
index = int(selection[0])
|
342 |
+
|
343 |
+
# if it's on (or before) the first item
|
344 |
+
if index <= 0:
|
345 |
+
self._select_previous_example()
|
346 |
+
else:
|
347 |
+
self._readingList_store_selection(index - 1)
|
348 |
+
|
349 |
+
else:
|
350 |
+
# select its first reading
|
351 |
+
self._readingList_store_selection(readingListSize - 1)
|
352 |
+
|
353 |
+
else:
|
354 |
+
self._select_previous_example()
|
355 |
+
|
356 |
+
def _select_previous_example(self):
|
357 |
+
# if the current example is not the first example
|
358 |
+
if self._curExample > 0:
|
359 |
+
self._exampleList_store_selection(self._curExample - 1)
|
360 |
+
else:
|
361 |
+
# go to the last example
|
362 |
+
self._exampleList_store_selection(len(self._examples) - 1)
|
363 |
+
|
364 |
+
def next(self, *e):
|
365 |
+
selection = self._readingList.curselection()
|
366 |
+
readingListSize = self._readingList.size()
|
367 |
+
|
368 |
+
# if there are readings
|
369 |
+
if readingListSize > 0:
|
370 |
+
# if one reading is currently selected
|
371 |
+
if len(selection) == 1:
|
372 |
+
index = int(selection[0])
|
373 |
+
|
374 |
+
# if it's on (or past) the last item
|
375 |
+
if index >= (readingListSize - 1):
|
376 |
+
self._select_next_example()
|
377 |
+
else:
|
378 |
+
self._readingList_store_selection(index + 1)
|
379 |
+
|
380 |
+
else:
|
381 |
+
# select its first reading
|
382 |
+
self._readingList_store_selection(0)
|
383 |
+
|
384 |
+
else:
|
385 |
+
self._select_next_example()
|
386 |
+
|
387 |
+
def _select_next_example(self):
|
388 |
+
# if the current example is not the last example
|
389 |
+
if self._curExample < len(self._examples) - 1:
|
390 |
+
self._exampleList_store_selection(self._curExample + 1)
|
391 |
+
else:
|
392 |
+
# go to the first example
|
393 |
+
self._exampleList_store_selection(0)
|
394 |
+
|
395 |
+
def about(self, *e):
|
396 |
+
ABOUT = (
|
397 |
+
"NLTK Discourse Representation Theory (DRT) Glue Semantics Demo\n"
|
398 |
+
+ "Written by Daniel H. Garrette"
|
399 |
+
)
|
400 |
+
TITLE = "About: NLTK DRT Glue Demo"
|
401 |
+
try:
|
402 |
+
from tkinter.messagebox import Message
|
403 |
+
|
404 |
+
Message(message=ABOUT, title=TITLE).show()
|
405 |
+
except:
|
406 |
+
ShowText(self._top, TITLE, ABOUT)
|
407 |
+
|
408 |
+
def postscript(self, *e):
|
409 |
+
self._autostep = 0
|
410 |
+
self._cframe.print_to_file()
|
411 |
+
|
412 |
+
def mainloop(self, *args, **kwargs):
|
413 |
+
"""
|
414 |
+
Enter the Tkinter mainloop. This function must be called if
|
415 |
+
this demo is created from a non-interactive program (e.g.
|
416 |
+
from a secript); otherwise, the demo will close as soon as
|
417 |
+
the script completes.
|
418 |
+
"""
|
419 |
+
if in_idle():
|
420 |
+
return
|
421 |
+
self._top.mainloop(*args, **kwargs)
|
422 |
+
|
423 |
+
def resize(self, size=None):
|
424 |
+
if size is not None:
|
425 |
+
self._size.set(size)
|
426 |
+
size = self._size.get()
|
427 |
+
self._font.configure(size=-(abs(size)))
|
428 |
+
self._boldfont.configure(size=-(abs(size)))
|
429 |
+
self._sysfont.configure(size=-(abs(size)))
|
430 |
+
self._bigfont.configure(size=-(abs(size + 2)))
|
431 |
+
self._redraw()
|
432 |
+
|
433 |
+
def _toggle_remove_duplicates(self):
|
434 |
+
self._glue.remove_duplicates = not self._glue.remove_duplicates
|
435 |
+
|
436 |
+
self._exampleList.selection_clear(0, "end")
|
437 |
+
self._readings = []
|
438 |
+
self._populate_readingListbox()
|
439 |
+
self._readingCache = [None for ex in self._examples]
|
440 |
+
self._curExample = -1
|
441 |
+
self._error = None
|
442 |
+
|
443 |
+
self._drs = None
|
444 |
+
self._redraw()
|
445 |
+
|
446 |
+
def _exampleList_select(self, event):
|
447 |
+
selection = self._exampleList.curselection()
|
448 |
+
if len(selection) != 1:
|
449 |
+
return
|
450 |
+
self._exampleList_store_selection(int(selection[0]))
|
451 |
+
|
452 |
+
def _exampleList_store_selection(self, index):
|
453 |
+
self._curExample = index
|
454 |
+
example = self._examples[index]
|
455 |
+
|
456 |
+
self._exampleList.selection_clear(0, "end")
|
457 |
+
if example:
|
458 |
+
cache = self._readingCache[index]
|
459 |
+
if cache:
|
460 |
+
if isinstance(cache, list):
|
461 |
+
self._readings = cache
|
462 |
+
self._error = None
|
463 |
+
else:
|
464 |
+
self._readings = []
|
465 |
+
self._error = cache
|
466 |
+
else:
|
467 |
+
try:
|
468 |
+
self._readings = self._glue.parse_to_meaning(example)
|
469 |
+
self._error = None
|
470 |
+
self._readingCache[index] = self._readings
|
471 |
+
except Exception as e:
|
472 |
+
self._readings = []
|
473 |
+
self._error = DrtVariableExpression(Variable("Error: " + str(e)))
|
474 |
+
self._readingCache[index] = self._error
|
475 |
+
|
476 |
+
# add a star to the end of the example
|
477 |
+
self._exampleList.delete(index)
|
478 |
+
self._exampleList.insert(index, (" %s *" % example))
|
479 |
+
self._exampleList.config(
|
480 |
+
height=min(len(self._examples), 25), width=40
|
481 |
+
)
|
482 |
+
|
483 |
+
self._populate_readingListbox()
|
484 |
+
|
485 |
+
self._exampleList.selection_set(index)
|
486 |
+
|
487 |
+
self._drs = None
|
488 |
+
self._redraw()
|
489 |
+
|
490 |
+
def _readingList_select(self, event):
|
491 |
+
selection = self._readingList.curselection()
|
492 |
+
if len(selection) != 1:
|
493 |
+
return
|
494 |
+
self._readingList_store_selection(int(selection[0]))
|
495 |
+
|
496 |
+
def _readingList_store_selection(self, index):
|
497 |
+
reading = self._readings[index]
|
498 |
+
|
499 |
+
self._readingList.selection_clear(0, "end")
|
500 |
+
if reading:
|
501 |
+
self._readingList.selection_set(index)
|
502 |
+
|
503 |
+
self._drs = reading.simplify().normalize().resolve_anaphora()
|
504 |
+
|
505 |
+
self._redraw()
|
506 |
+
|
507 |
+
|
508 |
+
class DrsWidget:
|
509 |
+
def __init__(self, canvas, drs, **attribs):
|
510 |
+
self._drs = drs
|
511 |
+
self._canvas = canvas
|
512 |
+
canvas.font = Font(
|
513 |
+
font=canvas.itemcget(canvas.create_text(0, 0, text=""), "font")
|
514 |
+
)
|
515 |
+
canvas._BUFFER = 3
|
516 |
+
self.bbox = (0, 0, 0, 0)
|
517 |
+
|
518 |
+
def draw(self):
|
519 |
+
(right, bottom) = DrsDrawer(self._drs, canvas=self._canvas).draw()
|
520 |
+
self.bbox = (0, 0, right + 1, bottom + 1)
|
521 |
+
|
522 |
+
def clear(self):
|
523 |
+
self._canvas.create_rectangle(self.bbox, fill="white", width="0")
|
524 |
+
|
525 |
+
|
526 |
+
def demo():
|
527 |
+
examples = [
|
528 |
+
"John walks",
|
529 |
+
"David sees Mary",
|
530 |
+
"David eats a sandwich",
|
531 |
+
"every man chases a dog",
|
532 |
+
# 'every man believes a dog yawns',
|
533 |
+
# 'John gives David a sandwich',
|
534 |
+
"John chases himself",
|
535 |
+
# 'John persuades David to order a pizza',
|
536 |
+
# 'John tries to go',
|
537 |
+
# 'John tries to find a unicorn',
|
538 |
+
# 'John seems to vanish',
|
539 |
+
# 'a unicorn seems to approach',
|
540 |
+
# 'every big cat leaves',
|
541 |
+
# 'every gray cat leaves',
|
542 |
+
# 'every big gray cat leaves',
|
543 |
+
# 'a former senator leaves',
|
544 |
+
# 'John likes a cat',
|
545 |
+
# 'John likes every cat',
|
546 |
+
# 'he walks',
|
547 |
+
# 'John walks and he leaves'
|
548 |
+
]
|
549 |
+
DrtGlueDemo(examples).mainloop()
|
550 |
+
|
551 |
+
|
552 |
+
if __name__ == "__main__":
|
553 |
+
demo()
|
venv/lib/python3.10/site-packages/nltk/sem/evaluate.py
ADDED
@@ -0,0 +1,829 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Models for first-order languages with lambda
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Ewan Klein <[email protected]>,
|
5 |
+
# URL: <https://www.nltk.org>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
# TODO:
|
9 |
+
# - fix tracing
|
10 |
+
# - fix iterator-based approach to existentials
|
11 |
+
|
12 |
+
"""
|
13 |
+
This module provides data structures for representing first-order
|
14 |
+
models.
|
15 |
+
"""
|
16 |
+
|
17 |
+
import inspect
|
18 |
+
import re
|
19 |
+
import sys
|
20 |
+
import textwrap
|
21 |
+
from pprint import pformat
|
22 |
+
|
23 |
+
from nltk.decorators import decorator # this used in code that is commented out
|
24 |
+
from nltk.sem.logic import (
|
25 |
+
AbstractVariableExpression,
|
26 |
+
AllExpression,
|
27 |
+
AndExpression,
|
28 |
+
ApplicationExpression,
|
29 |
+
EqualityExpression,
|
30 |
+
ExistsExpression,
|
31 |
+
Expression,
|
32 |
+
IffExpression,
|
33 |
+
ImpExpression,
|
34 |
+
IndividualVariableExpression,
|
35 |
+
IotaExpression,
|
36 |
+
LambdaExpression,
|
37 |
+
NegatedExpression,
|
38 |
+
OrExpression,
|
39 |
+
Variable,
|
40 |
+
is_indvar,
|
41 |
+
)
|
42 |
+
|
43 |
+
|
44 |
+
class Error(Exception):
|
45 |
+
pass
|
46 |
+
|
47 |
+
|
48 |
+
class Undefined(Error):
|
49 |
+
pass
|
50 |
+
|
51 |
+
|
52 |
+
def trace(f, *args, **kw):
|
53 |
+
argspec = inspect.getfullargspec(f)
|
54 |
+
d = dict(zip(argspec[0], args))
|
55 |
+
if d.pop("trace", None):
|
56 |
+
print()
|
57 |
+
for item in d.items():
|
58 |
+
print("%s => %s" % item)
|
59 |
+
return f(*args, **kw)
|
60 |
+
|
61 |
+
|
62 |
+
def is_rel(s):
|
63 |
+
"""
|
64 |
+
Check whether a set represents a relation (of any arity).
|
65 |
+
|
66 |
+
:param s: a set containing tuples of str elements
|
67 |
+
:type s: set
|
68 |
+
:rtype: bool
|
69 |
+
"""
|
70 |
+
# we have the empty relation, i.e. set()
|
71 |
+
if len(s) == 0:
|
72 |
+
return True
|
73 |
+
# all the elements are tuples of the same length
|
74 |
+
elif all(isinstance(el, tuple) for el in s) and len(max(s)) == len(min(s)):
|
75 |
+
return True
|
76 |
+
else:
|
77 |
+
raise ValueError("Set %r contains sequences of different lengths" % s)
|
78 |
+
|
79 |
+
|
80 |
+
def set2rel(s):
|
81 |
+
"""
|
82 |
+
Convert a set containing individuals (strings or numbers) into a set of
|
83 |
+
unary tuples. Any tuples of strings already in the set are passed through
|
84 |
+
unchanged.
|
85 |
+
|
86 |
+
For example:
|
87 |
+
- set(['a', 'b']) => set([('a',), ('b',)])
|
88 |
+
- set([3, 27]) => set([('3',), ('27',)])
|
89 |
+
|
90 |
+
:type s: set
|
91 |
+
:rtype: set of tuple of str
|
92 |
+
"""
|
93 |
+
new = set()
|
94 |
+
for elem in s:
|
95 |
+
if isinstance(elem, str):
|
96 |
+
new.add((elem,))
|
97 |
+
elif isinstance(elem, int):
|
98 |
+
new.add(str(elem))
|
99 |
+
else:
|
100 |
+
new.add(elem)
|
101 |
+
return new
|
102 |
+
|
103 |
+
|
104 |
+
def arity(rel):
|
105 |
+
"""
|
106 |
+
Check the arity of a relation.
|
107 |
+
:type rel: set of tuples
|
108 |
+
:rtype: int of tuple of str
|
109 |
+
"""
|
110 |
+
if len(rel) == 0:
|
111 |
+
return 0
|
112 |
+
return len(list(rel)[0])
|
113 |
+
|
114 |
+
|
115 |
+
class Valuation(dict):
|
116 |
+
"""
|
117 |
+
A dictionary which represents a model-theoretic Valuation of non-logical constants.
|
118 |
+
Keys are strings representing the constants to be interpreted, and values correspond
|
119 |
+
to individuals (represented as strings) and n-ary relations (represented as sets of tuples
|
120 |
+
of strings).
|
121 |
+
|
122 |
+
An instance of ``Valuation`` will raise a KeyError exception (i.e.,
|
123 |
+
just behave like a standard dictionary) if indexed with an expression that
|
124 |
+
is not in its list of symbols.
|
125 |
+
"""
|
126 |
+
|
127 |
+
def __init__(self, xs):
|
128 |
+
"""
|
129 |
+
:param xs: a list of (symbol, value) pairs.
|
130 |
+
"""
|
131 |
+
super().__init__()
|
132 |
+
for (sym, val) in xs:
|
133 |
+
if isinstance(val, str) or isinstance(val, bool):
|
134 |
+
self[sym] = val
|
135 |
+
elif isinstance(val, set):
|
136 |
+
self[sym] = set2rel(val)
|
137 |
+
else:
|
138 |
+
msg = textwrap.fill(
|
139 |
+
"Error in initializing Valuation. "
|
140 |
+
"Unrecognized value for symbol '%s':\n%s" % (sym, val),
|
141 |
+
width=66,
|
142 |
+
)
|
143 |
+
|
144 |
+
raise ValueError(msg)
|
145 |
+
|
146 |
+
def __getitem__(self, key):
|
147 |
+
if key in self:
|
148 |
+
return dict.__getitem__(self, key)
|
149 |
+
else:
|
150 |
+
raise Undefined("Unknown expression: '%s'" % key)
|
151 |
+
|
152 |
+
def __str__(self):
|
153 |
+
return pformat(self)
|
154 |
+
|
155 |
+
@property
|
156 |
+
def domain(self):
|
157 |
+
"""Set-theoretic domain of the value-space of a Valuation."""
|
158 |
+
dom = []
|
159 |
+
for val in self.values():
|
160 |
+
if isinstance(val, str):
|
161 |
+
dom.append(val)
|
162 |
+
elif not isinstance(val, bool):
|
163 |
+
dom.extend(
|
164 |
+
[elem for tuple_ in val for elem in tuple_ if elem is not None]
|
165 |
+
)
|
166 |
+
return set(dom)
|
167 |
+
|
168 |
+
@property
|
169 |
+
def symbols(self):
|
170 |
+
"""The non-logical constants which the Valuation recognizes."""
|
171 |
+
return sorted(self.keys())
|
172 |
+
|
173 |
+
@classmethod
|
174 |
+
def fromstring(cls, s):
|
175 |
+
return read_valuation(s)
|
176 |
+
|
177 |
+
|
178 |
+
##########################################
|
179 |
+
# REs used by the _read_valuation function
|
180 |
+
##########################################
|
181 |
+
_VAL_SPLIT_RE = re.compile(r"\s*=+>\s*")
|
182 |
+
_ELEMENT_SPLIT_RE = re.compile(r"\s*,\s*")
|
183 |
+
_TUPLES_RE = re.compile(
|
184 |
+
r"""\s*
|
185 |
+
(\([^)]+\)) # tuple-expression
|
186 |
+
\s*""",
|
187 |
+
re.VERBOSE,
|
188 |
+
)
|
189 |
+
|
190 |
+
|
191 |
+
def _read_valuation_line(s):
|
192 |
+
"""
|
193 |
+
Read a line in a valuation file.
|
194 |
+
|
195 |
+
Lines are expected to be of the form::
|
196 |
+
|
197 |
+
noosa => n
|
198 |
+
girl => {g1, g2}
|
199 |
+
chase => {(b1, g1), (b2, g1), (g1, d1), (g2, d2)}
|
200 |
+
|
201 |
+
:param s: input line
|
202 |
+
:type s: str
|
203 |
+
:return: a pair (symbol, value)
|
204 |
+
:rtype: tuple
|
205 |
+
"""
|
206 |
+
pieces = _VAL_SPLIT_RE.split(s)
|
207 |
+
symbol = pieces[0]
|
208 |
+
value = pieces[1]
|
209 |
+
# check whether the value is meant to be a set
|
210 |
+
if value.startswith("{"):
|
211 |
+
value = value[1:-1]
|
212 |
+
tuple_strings = _TUPLES_RE.findall(value)
|
213 |
+
# are the set elements tuples?
|
214 |
+
if tuple_strings:
|
215 |
+
set_elements = []
|
216 |
+
for ts in tuple_strings:
|
217 |
+
ts = ts[1:-1]
|
218 |
+
element = tuple(_ELEMENT_SPLIT_RE.split(ts))
|
219 |
+
set_elements.append(element)
|
220 |
+
else:
|
221 |
+
set_elements = _ELEMENT_SPLIT_RE.split(value)
|
222 |
+
value = set(set_elements)
|
223 |
+
return symbol, value
|
224 |
+
|
225 |
+
|
226 |
+
def read_valuation(s, encoding=None):
|
227 |
+
"""
|
228 |
+
Convert a valuation string into a valuation.
|
229 |
+
|
230 |
+
:param s: a valuation string
|
231 |
+
:type s: str
|
232 |
+
:param encoding: the encoding of the input string, if it is binary
|
233 |
+
:type encoding: str
|
234 |
+
:return: a ``nltk.sem`` valuation
|
235 |
+
:rtype: Valuation
|
236 |
+
"""
|
237 |
+
if encoding is not None:
|
238 |
+
s = s.decode(encoding)
|
239 |
+
statements = []
|
240 |
+
for linenum, line in enumerate(s.splitlines()):
|
241 |
+
line = line.strip()
|
242 |
+
if line.startswith("#") or line == "":
|
243 |
+
continue
|
244 |
+
try:
|
245 |
+
statements.append(_read_valuation_line(line))
|
246 |
+
except ValueError as e:
|
247 |
+
raise ValueError(f"Unable to parse line {linenum}: {line}") from e
|
248 |
+
return Valuation(statements)
|
249 |
+
|
250 |
+
|
251 |
+
class Assignment(dict):
|
252 |
+
r"""
|
253 |
+
A dictionary which represents an assignment of values to variables.
|
254 |
+
|
255 |
+
An assignment can only assign values from its domain.
|
256 |
+
|
257 |
+
If an unknown expression *a* is passed to a model *M*\ 's
|
258 |
+
interpretation function *i*, *i* will first check whether *M*\ 's
|
259 |
+
valuation assigns an interpretation to *a* as a constant, and if
|
260 |
+
this fails, *i* will delegate the interpretation of *a* to
|
261 |
+
*g*. *g* only assigns values to individual variables (i.e.,
|
262 |
+
members of the class ``IndividualVariableExpression`` in the ``logic``
|
263 |
+
module. If a variable is not assigned a value by *g*, it will raise
|
264 |
+
an ``Undefined`` exception.
|
265 |
+
|
266 |
+
A variable *Assignment* is a mapping from individual variables to
|
267 |
+
entities in the domain. Individual variables are usually indicated
|
268 |
+
with the letters ``'x'``, ``'y'``, ``'w'`` and ``'z'``, optionally
|
269 |
+
followed by an integer (e.g., ``'x0'``, ``'y332'``). Assignments are
|
270 |
+
created using the ``Assignment`` constructor, which also takes the
|
271 |
+
domain as a parameter.
|
272 |
+
|
273 |
+
>>> from nltk.sem.evaluate import Assignment
|
274 |
+
>>> dom = set(['u1', 'u2', 'u3', 'u4'])
|
275 |
+
>>> g3 = Assignment(dom, [('x', 'u1'), ('y', 'u2')])
|
276 |
+
>>> g3 == {'x': 'u1', 'y': 'u2'}
|
277 |
+
True
|
278 |
+
|
279 |
+
There is also a ``print`` format for assignments which uses a notation
|
280 |
+
closer to that in logic textbooks:
|
281 |
+
|
282 |
+
>>> print(g3)
|
283 |
+
g[u1/x][u2/y]
|
284 |
+
|
285 |
+
It is also possible to update an assignment using the ``add`` method:
|
286 |
+
|
287 |
+
>>> dom = set(['u1', 'u2', 'u3', 'u4'])
|
288 |
+
>>> g4 = Assignment(dom)
|
289 |
+
>>> g4.add('x', 'u1')
|
290 |
+
{'x': 'u1'}
|
291 |
+
|
292 |
+
With no arguments, ``purge()`` is equivalent to ``clear()`` on a dictionary:
|
293 |
+
|
294 |
+
>>> g4.purge()
|
295 |
+
>>> g4
|
296 |
+
{}
|
297 |
+
|
298 |
+
:param domain: the domain of discourse
|
299 |
+
:type domain: set
|
300 |
+
:param assign: a list of (varname, value) associations
|
301 |
+
:type assign: list
|
302 |
+
"""
|
303 |
+
|
304 |
+
def __init__(self, domain, assign=None):
|
305 |
+
super().__init__()
|
306 |
+
self.domain = domain
|
307 |
+
if assign:
|
308 |
+
for (var, val) in assign:
|
309 |
+
assert val in self.domain, "'{}' is not in the domain: {}".format(
|
310 |
+
val,
|
311 |
+
self.domain,
|
312 |
+
)
|
313 |
+
assert is_indvar(var), (
|
314 |
+
"Wrong format for an Individual Variable: '%s'" % var
|
315 |
+
)
|
316 |
+
self[var] = val
|
317 |
+
self.variant = None
|
318 |
+
self._addvariant()
|
319 |
+
|
320 |
+
def __getitem__(self, key):
|
321 |
+
if key in self:
|
322 |
+
return dict.__getitem__(self, key)
|
323 |
+
else:
|
324 |
+
raise Undefined("Not recognized as a variable: '%s'" % key)
|
325 |
+
|
326 |
+
def copy(self):
|
327 |
+
new = Assignment(self.domain)
|
328 |
+
new.update(self)
|
329 |
+
return new
|
330 |
+
|
331 |
+
def purge(self, var=None):
|
332 |
+
"""
|
333 |
+
Remove one or all keys (i.e. logic variables) from an
|
334 |
+
assignment, and update ``self.variant``.
|
335 |
+
|
336 |
+
:param var: a Variable acting as a key for the assignment.
|
337 |
+
"""
|
338 |
+
if var:
|
339 |
+
del self[var]
|
340 |
+
else:
|
341 |
+
self.clear()
|
342 |
+
self._addvariant()
|
343 |
+
return None
|
344 |
+
|
345 |
+
def __str__(self):
|
346 |
+
"""
|
347 |
+
Pretty printing for assignments. {'x', 'u'} appears as 'g[u/x]'
|
348 |
+
"""
|
349 |
+
gstring = "g"
|
350 |
+
# Deterministic output for unit testing.
|
351 |
+
variant = sorted(self.variant)
|
352 |
+
for (val, var) in variant:
|
353 |
+
gstring += f"[{val}/{var}]"
|
354 |
+
return gstring
|
355 |
+
|
356 |
+
def _addvariant(self):
|
357 |
+
"""
|
358 |
+
Create a more pretty-printable version of the assignment.
|
359 |
+
"""
|
360 |
+
list_ = []
|
361 |
+
for item in self.items():
|
362 |
+
pair = (item[1], item[0])
|
363 |
+
list_.append(pair)
|
364 |
+
self.variant = list_
|
365 |
+
return None
|
366 |
+
|
367 |
+
def add(self, var, val):
|
368 |
+
"""
|
369 |
+
Add a new variable-value pair to the assignment, and update
|
370 |
+
``self.variant``.
|
371 |
+
|
372 |
+
"""
|
373 |
+
assert val in self.domain, f"{val} is not in the domain {self.domain}"
|
374 |
+
assert is_indvar(var), "Wrong format for an Individual Variable: '%s'" % var
|
375 |
+
self[var] = val
|
376 |
+
self._addvariant()
|
377 |
+
return self
|
378 |
+
|
379 |
+
|
380 |
+
class Model:
|
381 |
+
"""
|
382 |
+
A first order model is a domain *D* of discourse and a valuation *V*.
|
383 |
+
|
384 |
+
A domain *D* is a set, and a valuation *V* is a map that associates
|
385 |
+
expressions with values in the model.
|
386 |
+
The domain of *V* should be a subset of *D*.
|
387 |
+
|
388 |
+
Construct a new ``Model``.
|
389 |
+
|
390 |
+
:type domain: set
|
391 |
+
:param domain: A set of entities representing the domain of discourse of the model.
|
392 |
+
:type valuation: Valuation
|
393 |
+
:param valuation: the valuation of the model.
|
394 |
+
:param prop: If this is set, then we are building a propositional\
|
395 |
+
model and don't require the domain of *V* to be subset of *D*.
|
396 |
+
"""
|
397 |
+
|
398 |
+
def __init__(self, domain, valuation):
|
399 |
+
assert isinstance(domain, set)
|
400 |
+
self.domain = domain
|
401 |
+
self.valuation = valuation
|
402 |
+
if not domain.issuperset(valuation.domain):
|
403 |
+
raise Error(
|
404 |
+
"The valuation domain, %s, must be a subset of the model's domain, %s"
|
405 |
+
% (valuation.domain, domain)
|
406 |
+
)
|
407 |
+
|
408 |
+
def __repr__(self):
|
409 |
+
return f"({self.domain!r}, {self.valuation!r})"
|
410 |
+
|
411 |
+
def __str__(self):
|
412 |
+
return f"Domain = {self.domain},\nValuation = \n{self.valuation}"
|
413 |
+
|
414 |
+
def evaluate(self, expr, g, trace=None):
|
415 |
+
"""
|
416 |
+
Read input expressions, and provide a handler for ``satisfy``
|
417 |
+
that blocks further propagation of the ``Undefined`` error.
|
418 |
+
:param expr: An ``Expression`` of ``logic``.
|
419 |
+
:type g: Assignment
|
420 |
+
:param g: an assignment to individual variables.
|
421 |
+
:rtype: bool or 'Undefined'
|
422 |
+
"""
|
423 |
+
try:
|
424 |
+
parsed = Expression.fromstring(expr)
|
425 |
+
value = self.satisfy(parsed, g, trace=trace)
|
426 |
+
if trace:
|
427 |
+
print()
|
428 |
+
print(f"'{expr}' evaluates to {value} under M, {g}")
|
429 |
+
return value
|
430 |
+
except Undefined:
|
431 |
+
if trace:
|
432 |
+
print()
|
433 |
+
print(f"'{expr}' is undefined under M, {g}")
|
434 |
+
return "Undefined"
|
435 |
+
|
436 |
+
def satisfy(self, parsed, g, trace=None):
|
437 |
+
"""
|
438 |
+
Recursive interpretation function for a formula of first-order logic.
|
439 |
+
|
440 |
+
Raises an ``Undefined`` error when ``parsed`` is an atomic string
|
441 |
+
but is not a symbol or an individual variable.
|
442 |
+
|
443 |
+
:return: Returns a truth value or ``Undefined`` if ``parsed`` is\
|
444 |
+
complex, and calls the interpretation function ``i`` if ``parsed``\
|
445 |
+
is atomic.
|
446 |
+
|
447 |
+
:param parsed: An expression of ``logic``.
|
448 |
+
:type g: Assignment
|
449 |
+
:param g: an assignment to individual variables.
|
450 |
+
"""
|
451 |
+
|
452 |
+
if isinstance(parsed, ApplicationExpression):
|
453 |
+
function, arguments = parsed.uncurry()
|
454 |
+
if isinstance(function, AbstractVariableExpression):
|
455 |
+
# It's a predicate expression ("P(x,y)"), so used uncurried arguments
|
456 |
+
funval = self.satisfy(function, g)
|
457 |
+
argvals = tuple(self.satisfy(arg, g) for arg in arguments)
|
458 |
+
return argvals in funval
|
459 |
+
else:
|
460 |
+
# It must be a lambda expression, so use curried form
|
461 |
+
funval = self.satisfy(parsed.function, g)
|
462 |
+
argval = self.satisfy(parsed.argument, g)
|
463 |
+
return funval[argval]
|
464 |
+
elif isinstance(parsed, NegatedExpression):
|
465 |
+
return not self.satisfy(parsed.term, g)
|
466 |
+
elif isinstance(parsed, AndExpression):
|
467 |
+
return self.satisfy(parsed.first, g) and self.satisfy(parsed.second, g)
|
468 |
+
elif isinstance(parsed, OrExpression):
|
469 |
+
return self.satisfy(parsed.first, g) or self.satisfy(parsed.second, g)
|
470 |
+
elif isinstance(parsed, ImpExpression):
|
471 |
+
return (not self.satisfy(parsed.first, g)) or self.satisfy(parsed.second, g)
|
472 |
+
elif isinstance(parsed, IffExpression):
|
473 |
+
return self.satisfy(parsed.first, g) == self.satisfy(parsed.second, g)
|
474 |
+
elif isinstance(parsed, EqualityExpression):
|
475 |
+
return self.satisfy(parsed.first, g) == self.satisfy(parsed.second, g)
|
476 |
+
elif isinstance(parsed, AllExpression):
|
477 |
+
new_g = g.copy()
|
478 |
+
for u in self.domain:
|
479 |
+
new_g.add(parsed.variable.name, u)
|
480 |
+
if not self.satisfy(parsed.term, new_g):
|
481 |
+
return False
|
482 |
+
return True
|
483 |
+
elif isinstance(parsed, ExistsExpression):
|
484 |
+
new_g = g.copy()
|
485 |
+
for u in self.domain:
|
486 |
+
new_g.add(parsed.variable.name, u)
|
487 |
+
if self.satisfy(parsed.term, new_g):
|
488 |
+
return True
|
489 |
+
return False
|
490 |
+
elif isinstance(parsed, IotaExpression):
|
491 |
+
new_g = g.copy()
|
492 |
+
for u in self.domain:
|
493 |
+
new_g.add(parsed.variable.name, u)
|
494 |
+
if self.satisfy(parsed.term, new_g):
|
495 |
+
return True
|
496 |
+
return False
|
497 |
+
elif isinstance(parsed, LambdaExpression):
|
498 |
+
cf = {}
|
499 |
+
var = parsed.variable.name
|
500 |
+
for u in self.domain:
|
501 |
+
val = self.satisfy(parsed.term, g.add(var, u))
|
502 |
+
# NB the dict would be a lot smaller if we do this:
|
503 |
+
# if val: cf[u] = val
|
504 |
+
# But then need to deal with cases where f(a) should yield
|
505 |
+
# a function rather than just False.
|
506 |
+
cf[u] = val
|
507 |
+
return cf
|
508 |
+
else:
|
509 |
+
return self.i(parsed, g, trace)
|
510 |
+
|
511 |
+
# @decorator(trace_eval)
|
512 |
+
def i(self, parsed, g, trace=False):
|
513 |
+
"""
|
514 |
+
An interpretation function.
|
515 |
+
|
516 |
+
Assuming that ``parsed`` is atomic:
|
517 |
+
|
518 |
+
- if ``parsed`` is a non-logical constant, calls the valuation *V*
|
519 |
+
- else if ``parsed`` is an individual variable, calls assignment *g*
|
520 |
+
- else returns ``Undefined``.
|
521 |
+
|
522 |
+
:param parsed: an ``Expression`` of ``logic``.
|
523 |
+
:type g: Assignment
|
524 |
+
:param g: an assignment to individual variables.
|
525 |
+
:return: a semantic value
|
526 |
+
"""
|
527 |
+
# If parsed is a propositional letter 'p', 'q', etc, it could be in valuation.symbols
|
528 |
+
# and also be an IndividualVariableExpression. We want to catch this first case.
|
529 |
+
# So there is a procedural consequence to the ordering of clauses here:
|
530 |
+
if parsed.variable.name in self.valuation.symbols:
|
531 |
+
return self.valuation[parsed.variable.name]
|
532 |
+
elif isinstance(parsed, IndividualVariableExpression):
|
533 |
+
return g[parsed.variable.name]
|
534 |
+
|
535 |
+
else:
|
536 |
+
raise Undefined("Can't find a value for %s" % parsed)
|
537 |
+
|
538 |
+
def satisfiers(self, parsed, varex, g, trace=None, nesting=0):
|
539 |
+
"""
|
540 |
+
Generate the entities from the model's domain that satisfy an open formula.
|
541 |
+
|
542 |
+
:param parsed: an open formula
|
543 |
+
:type parsed: Expression
|
544 |
+
:param varex: the relevant free individual variable in ``parsed``.
|
545 |
+
:type varex: VariableExpression or str
|
546 |
+
:param g: a variable assignment
|
547 |
+
:type g: Assignment
|
548 |
+
:return: a set of the entities that satisfy ``parsed``.
|
549 |
+
"""
|
550 |
+
|
551 |
+
spacer = " "
|
552 |
+
indent = spacer + (spacer * nesting)
|
553 |
+
candidates = []
|
554 |
+
|
555 |
+
if isinstance(varex, str):
|
556 |
+
var = Variable(varex)
|
557 |
+
else:
|
558 |
+
var = varex
|
559 |
+
|
560 |
+
if var in parsed.free():
|
561 |
+
if trace:
|
562 |
+
print()
|
563 |
+
print(
|
564 |
+
(spacer * nesting)
|
565 |
+
+ f"Open formula is '{parsed}' with assignment {g}"
|
566 |
+
)
|
567 |
+
for u in self.domain:
|
568 |
+
new_g = g.copy()
|
569 |
+
new_g.add(var.name, u)
|
570 |
+
if trace and trace > 1:
|
571 |
+
lowtrace = trace - 1
|
572 |
+
else:
|
573 |
+
lowtrace = 0
|
574 |
+
value = self.satisfy(parsed, new_g, lowtrace)
|
575 |
+
|
576 |
+
if trace:
|
577 |
+
print(indent + "(trying assignment %s)" % new_g)
|
578 |
+
|
579 |
+
# parsed == False under g[u/var]?
|
580 |
+
if value == False:
|
581 |
+
if trace:
|
582 |
+
print(indent + f"value of '{parsed}' under {new_g} is False")
|
583 |
+
|
584 |
+
# so g[u/var] is a satisfying assignment
|
585 |
+
else:
|
586 |
+
candidates.append(u)
|
587 |
+
if trace:
|
588 |
+
print(indent + f"value of '{parsed}' under {new_g} is {value}")
|
589 |
+
|
590 |
+
result = {c for c in candidates}
|
591 |
+
# var isn't free in parsed
|
592 |
+
else:
|
593 |
+
raise Undefined(f"{var.name} is not free in {parsed}")
|
594 |
+
|
595 |
+
return result
|
596 |
+
|
597 |
+
|
598 |
+
# //////////////////////////////////////////////////////////////////////
|
599 |
+
# Demo..
|
600 |
+
# //////////////////////////////////////////////////////////////////////
|
601 |
+
# number of spacer chars
|
602 |
+
mult = 30
|
603 |
+
|
604 |
+
# Demo 1: Propositional Logic
|
605 |
+
#################
|
606 |
+
def propdemo(trace=None):
|
607 |
+
"""Example of a propositional model."""
|
608 |
+
|
609 |
+
global val1, dom1, m1, g1
|
610 |
+
val1 = Valuation([("P", True), ("Q", True), ("R", False)])
|
611 |
+
dom1 = set()
|
612 |
+
m1 = Model(dom1, val1)
|
613 |
+
g1 = Assignment(dom1)
|
614 |
+
|
615 |
+
print()
|
616 |
+
print("*" * mult)
|
617 |
+
print("Propositional Formulas Demo")
|
618 |
+
print("*" * mult)
|
619 |
+
print("(Propositional constants treated as nullary predicates)")
|
620 |
+
print()
|
621 |
+
print("Model m1:\n", m1)
|
622 |
+
print("*" * mult)
|
623 |
+
sentences = [
|
624 |
+
"(P & Q)",
|
625 |
+
"(P & R)",
|
626 |
+
"- P",
|
627 |
+
"- R",
|
628 |
+
"- - P",
|
629 |
+
"- (P & R)",
|
630 |
+
"(P | R)",
|
631 |
+
"(R | P)",
|
632 |
+
"(R | R)",
|
633 |
+
"(- P | R)",
|
634 |
+
"(P | - P)",
|
635 |
+
"(P -> Q)",
|
636 |
+
"(P -> R)",
|
637 |
+
"(R -> P)",
|
638 |
+
"(P <-> P)",
|
639 |
+
"(R <-> R)",
|
640 |
+
"(P <-> R)",
|
641 |
+
]
|
642 |
+
|
643 |
+
for sent in sentences:
|
644 |
+
if trace:
|
645 |
+
print()
|
646 |
+
m1.evaluate(sent, g1, trace)
|
647 |
+
else:
|
648 |
+
print(f"The value of '{sent}' is: {m1.evaluate(sent, g1)}")
|
649 |
+
|
650 |
+
|
651 |
+
# Demo 2: FOL Model
|
652 |
+
#############
|
653 |
+
|
654 |
+
|
655 |
+
def folmodel(quiet=False, trace=None):
|
656 |
+
"""Example of a first-order model."""
|
657 |
+
|
658 |
+
global val2, v2, dom2, m2, g2
|
659 |
+
|
660 |
+
v2 = [
|
661 |
+
("adam", "b1"),
|
662 |
+
("betty", "g1"),
|
663 |
+
("fido", "d1"),
|
664 |
+
("girl", {"g1", "g2"}),
|
665 |
+
("boy", {"b1", "b2"}),
|
666 |
+
("dog", {"d1"}),
|
667 |
+
("love", {("b1", "g1"), ("b2", "g2"), ("g1", "b1"), ("g2", "b1")}),
|
668 |
+
]
|
669 |
+
val2 = Valuation(v2)
|
670 |
+
dom2 = val2.domain
|
671 |
+
m2 = Model(dom2, val2)
|
672 |
+
g2 = Assignment(dom2, [("x", "b1"), ("y", "g2")])
|
673 |
+
|
674 |
+
if not quiet:
|
675 |
+
print()
|
676 |
+
print("*" * mult)
|
677 |
+
print("Models Demo")
|
678 |
+
print("*" * mult)
|
679 |
+
print("Model m2:\n", "-" * 14, "\n", m2)
|
680 |
+
print("Variable assignment = ", g2)
|
681 |
+
|
682 |
+
exprs = ["adam", "boy", "love", "walks", "x", "y", "z"]
|
683 |
+
parsed_exprs = [Expression.fromstring(e) for e in exprs]
|
684 |
+
|
685 |
+
print()
|
686 |
+
for parsed in parsed_exprs:
|
687 |
+
try:
|
688 |
+
print(
|
689 |
+
"The interpretation of '%s' in m2 is %s"
|
690 |
+
% (parsed, m2.i(parsed, g2))
|
691 |
+
)
|
692 |
+
except Undefined:
|
693 |
+
print("The interpretation of '%s' in m2 is Undefined" % parsed)
|
694 |
+
|
695 |
+
applications = [
|
696 |
+
("boy", ("adam")),
|
697 |
+
("walks", ("adam",)),
|
698 |
+
("love", ("adam", "y")),
|
699 |
+
("love", ("y", "adam")),
|
700 |
+
]
|
701 |
+
|
702 |
+
for (fun, args) in applications:
|
703 |
+
try:
|
704 |
+
funval = m2.i(Expression.fromstring(fun), g2)
|
705 |
+
argsval = tuple(m2.i(Expression.fromstring(arg), g2) for arg in args)
|
706 |
+
print(f"{fun}({args}) evaluates to {argsval in funval}")
|
707 |
+
except Undefined:
|
708 |
+
print(f"{fun}({args}) evaluates to Undefined")
|
709 |
+
|
710 |
+
|
711 |
+
# Demo 3: FOL
|
712 |
+
#########
|
713 |
+
|
714 |
+
|
715 |
+
def foldemo(trace=None):
|
716 |
+
"""
|
717 |
+
Interpretation of closed expressions in a first-order model.
|
718 |
+
"""
|
719 |
+
folmodel(quiet=True)
|
720 |
+
|
721 |
+
print()
|
722 |
+
print("*" * mult)
|
723 |
+
print("FOL Formulas Demo")
|
724 |
+
print("*" * mult)
|
725 |
+
|
726 |
+
formulas = [
|
727 |
+
"love (adam, betty)",
|
728 |
+
"(adam = mia)",
|
729 |
+
"\\x. (boy(x) | girl(x))",
|
730 |
+
"\\x. boy(x)(adam)",
|
731 |
+
"\\x y. love(x, y)",
|
732 |
+
"\\x y. love(x, y)(adam)(betty)",
|
733 |
+
"\\x y. love(x, y)(adam, betty)",
|
734 |
+
"\\x y. (boy(x) & love(x, y))",
|
735 |
+
"\\x. exists y. (boy(x) & love(x, y))",
|
736 |
+
"exists z1. boy(z1)",
|
737 |
+
"exists x. (boy(x) & -(x = adam))",
|
738 |
+
"exists x. (boy(x) & all y. love(y, x))",
|
739 |
+
"all x. (boy(x) | girl(x))",
|
740 |
+
"all x. (girl(x) -> exists y. boy(y) & love(x, y))", # Every girl loves exists boy.
|
741 |
+
"exists x. (boy(x) & all y. (girl(y) -> love(y, x)))", # There is exists boy that every girl loves.
|
742 |
+
"exists x. (boy(x) & all y. (girl(y) -> love(x, y)))", # exists boy loves every girl.
|
743 |
+
"all x. (dog(x) -> - girl(x))",
|
744 |
+
"exists x. exists y. (love(x, y) & love(x, y))",
|
745 |
+
]
|
746 |
+
|
747 |
+
for fmla in formulas:
|
748 |
+
g2.purge()
|
749 |
+
if trace:
|
750 |
+
m2.evaluate(fmla, g2, trace)
|
751 |
+
else:
|
752 |
+
print(f"The value of '{fmla}' is: {m2.evaluate(fmla, g2)}")
|
753 |
+
|
754 |
+
|
755 |
+
# Demo 3: Satisfaction
|
756 |
+
#############
|
757 |
+
|
758 |
+
|
759 |
+
def satdemo(trace=None):
|
760 |
+
"""Satisfiers of an open formula in a first order model."""
|
761 |
+
|
762 |
+
print()
|
763 |
+
print("*" * mult)
|
764 |
+
print("Satisfiers Demo")
|
765 |
+
print("*" * mult)
|
766 |
+
|
767 |
+
folmodel(quiet=True)
|
768 |
+
|
769 |
+
formulas = [
|
770 |
+
"boy(x)",
|
771 |
+
"(x = x)",
|
772 |
+
"(boy(x) | girl(x))",
|
773 |
+
"(boy(x) & girl(x))",
|
774 |
+
"love(adam, x)",
|
775 |
+
"love(x, adam)",
|
776 |
+
"-(x = adam)",
|
777 |
+
"exists z22. love(x, z22)",
|
778 |
+
"exists y. love(y, x)",
|
779 |
+
"all y. (girl(y) -> love(x, y))",
|
780 |
+
"all y. (girl(y) -> love(y, x))",
|
781 |
+
"all y. (girl(y) -> (boy(x) & love(y, x)))",
|
782 |
+
"(boy(x) & all y. (girl(y) -> love(x, y)))",
|
783 |
+
"(boy(x) & all y. (girl(y) -> love(y, x)))",
|
784 |
+
"(boy(x) & exists y. (girl(y) & love(y, x)))",
|
785 |
+
"(girl(x) -> dog(x))",
|
786 |
+
"all y. (dog(y) -> (x = y))",
|
787 |
+
"exists y. love(y, x)",
|
788 |
+
"exists y. (love(adam, y) & love(y, x))",
|
789 |
+
]
|
790 |
+
|
791 |
+
if trace:
|
792 |
+
print(m2)
|
793 |
+
|
794 |
+
for fmla in formulas:
|
795 |
+
print(fmla)
|
796 |
+
Expression.fromstring(fmla)
|
797 |
+
|
798 |
+
parsed = [Expression.fromstring(fmla) for fmla in formulas]
|
799 |
+
|
800 |
+
for p in parsed:
|
801 |
+
g2.purge()
|
802 |
+
print(
|
803 |
+
"The satisfiers of '{}' are: {}".format(p, m2.satisfiers(p, "x", g2, trace))
|
804 |
+
)
|
805 |
+
|
806 |
+
|
807 |
+
def demo(num=0, trace=None):
|
808 |
+
"""
|
809 |
+
Run exists demos.
|
810 |
+
|
811 |
+
- num = 1: propositional logic demo
|
812 |
+
- num = 2: first order model demo (only if trace is set)
|
813 |
+
- num = 3: first order sentences demo
|
814 |
+
- num = 4: satisfaction of open formulas demo
|
815 |
+
- any other value: run all the demos
|
816 |
+
|
817 |
+
:param trace: trace = 1, or trace = 2 for more verbose tracing
|
818 |
+
"""
|
819 |
+
demos = {1: propdemo, 2: folmodel, 3: foldemo, 4: satdemo}
|
820 |
+
|
821 |
+
try:
|
822 |
+
demos[num](trace=trace)
|
823 |
+
except KeyError:
|
824 |
+
for num in demos:
|
825 |
+
demos[num](trace=trace)
|
826 |
+
|
827 |
+
|
828 |
+
if __name__ == "__main__":
|
829 |
+
demo(2, trace=0)
|
venv/lib/python3.10/site-packages/nltk/sem/glue.py
ADDED
@@ -0,0 +1,835 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Glue Semantics
|
2 |
+
#
|
3 |
+
# Author: Dan Garrette <[email protected]>
|
4 |
+
#
|
5 |
+
# Copyright (C) 2001-2023 NLTK Project
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
import os
|
10 |
+
from itertools import chain
|
11 |
+
|
12 |
+
import nltk
|
13 |
+
from nltk.internals import Counter
|
14 |
+
from nltk.sem import drt, linearlogic
|
15 |
+
from nltk.sem.logic import (
|
16 |
+
AbstractVariableExpression,
|
17 |
+
Expression,
|
18 |
+
LambdaExpression,
|
19 |
+
Variable,
|
20 |
+
VariableExpression,
|
21 |
+
)
|
22 |
+
from nltk.tag import BigramTagger, RegexpTagger, TrigramTagger, UnigramTagger
|
23 |
+
|
24 |
+
SPEC_SEMTYPES = {
|
25 |
+
"a": "ex_quant",
|
26 |
+
"an": "ex_quant",
|
27 |
+
"every": "univ_quant",
|
28 |
+
"the": "def_art",
|
29 |
+
"no": "no_quant",
|
30 |
+
"default": "ex_quant",
|
31 |
+
}
|
32 |
+
|
33 |
+
OPTIONAL_RELATIONSHIPS = ["nmod", "vmod", "punct"]
|
34 |
+
|
35 |
+
|
36 |
+
class GlueFormula:
|
37 |
+
def __init__(self, meaning, glue, indices=None):
|
38 |
+
if not indices:
|
39 |
+
indices = set()
|
40 |
+
|
41 |
+
if isinstance(meaning, str):
|
42 |
+
self.meaning = Expression.fromstring(meaning)
|
43 |
+
elif isinstance(meaning, Expression):
|
44 |
+
self.meaning = meaning
|
45 |
+
else:
|
46 |
+
raise RuntimeError(
|
47 |
+
"Meaning term neither string or expression: %s, %s"
|
48 |
+
% (meaning, meaning.__class__)
|
49 |
+
)
|
50 |
+
|
51 |
+
if isinstance(glue, str):
|
52 |
+
self.glue = linearlogic.LinearLogicParser().parse(glue)
|
53 |
+
elif isinstance(glue, linearlogic.Expression):
|
54 |
+
self.glue = glue
|
55 |
+
else:
|
56 |
+
raise RuntimeError(
|
57 |
+
"Glue term neither string or expression: %s, %s"
|
58 |
+
% (glue, glue.__class__)
|
59 |
+
)
|
60 |
+
|
61 |
+
self.indices = indices
|
62 |
+
|
63 |
+
def applyto(self, arg):
|
64 |
+
"""self = (\\x.(walk x), (subj -o f))
|
65 |
+
arg = (john , subj)
|
66 |
+
returns ((walk john), f)
|
67 |
+
"""
|
68 |
+
if self.indices & arg.indices: # if the sets are NOT disjoint
|
69 |
+
raise linearlogic.LinearLogicApplicationException(
|
70 |
+
f"'{self}' applied to '{arg}'. Indices are not disjoint."
|
71 |
+
)
|
72 |
+
else: # if the sets ARE disjoint
|
73 |
+
return_indices = self.indices | arg.indices
|
74 |
+
|
75 |
+
try:
|
76 |
+
return_glue = linearlogic.ApplicationExpression(
|
77 |
+
self.glue, arg.glue, arg.indices
|
78 |
+
)
|
79 |
+
except linearlogic.LinearLogicApplicationException as e:
|
80 |
+
raise linearlogic.LinearLogicApplicationException(
|
81 |
+
f"'{self.simplify()}' applied to '{arg.simplify()}'"
|
82 |
+
) from e
|
83 |
+
|
84 |
+
arg_meaning_abstracted = arg.meaning
|
85 |
+
if return_indices:
|
86 |
+
for dep in self.glue.simplify().antecedent.dependencies[
|
87 |
+
::-1
|
88 |
+
]: # if self.glue is (A -o B), dep is in A.dependencies
|
89 |
+
arg_meaning_abstracted = self.make_LambdaExpression(
|
90 |
+
Variable("v%s" % dep), arg_meaning_abstracted
|
91 |
+
)
|
92 |
+
return_meaning = self.meaning.applyto(arg_meaning_abstracted)
|
93 |
+
|
94 |
+
return self.__class__(return_meaning, return_glue, return_indices)
|
95 |
+
|
96 |
+
def make_VariableExpression(self, name):
|
97 |
+
return VariableExpression(name)
|
98 |
+
|
99 |
+
def make_LambdaExpression(self, variable, term):
|
100 |
+
return LambdaExpression(variable, term)
|
101 |
+
|
102 |
+
def lambda_abstract(self, other):
|
103 |
+
assert isinstance(other, GlueFormula)
|
104 |
+
assert isinstance(other.meaning, AbstractVariableExpression)
|
105 |
+
return self.__class__(
|
106 |
+
self.make_LambdaExpression(other.meaning.variable, self.meaning),
|
107 |
+
linearlogic.ImpExpression(other.glue, self.glue),
|
108 |
+
)
|
109 |
+
|
110 |
+
def compile(self, counter=None):
|
111 |
+
"""From Iddo Lev's PhD Dissertation p108-109"""
|
112 |
+
if not counter:
|
113 |
+
counter = Counter()
|
114 |
+
(compiled_glue, new_forms) = self.glue.simplify().compile_pos(
|
115 |
+
counter, self.__class__
|
116 |
+
)
|
117 |
+
return new_forms + [
|
118 |
+
self.__class__(self.meaning, compiled_glue, {counter.get()})
|
119 |
+
]
|
120 |
+
|
121 |
+
def simplify(self):
|
122 |
+
return self.__class__(
|
123 |
+
self.meaning.simplify(), self.glue.simplify(), self.indices
|
124 |
+
)
|
125 |
+
|
126 |
+
def __eq__(self, other):
|
127 |
+
return (
|
128 |
+
self.__class__ == other.__class__
|
129 |
+
and self.meaning == other.meaning
|
130 |
+
and self.glue == other.glue
|
131 |
+
)
|
132 |
+
|
133 |
+
def __ne__(self, other):
|
134 |
+
return not self == other
|
135 |
+
|
136 |
+
# sorting for use in doctests which must be deterministic
|
137 |
+
def __lt__(self, other):
|
138 |
+
return str(self) < str(other)
|
139 |
+
|
140 |
+
def __str__(self):
|
141 |
+
assert isinstance(self.indices, set)
|
142 |
+
accum = f"{self.meaning} : {self.glue}"
|
143 |
+
if self.indices:
|
144 |
+
accum += (
|
145 |
+
" : {" + ", ".join(str(index) for index in sorted(self.indices)) + "}"
|
146 |
+
)
|
147 |
+
return accum
|
148 |
+
|
149 |
+
def __repr__(self):
|
150 |
+
return "%s" % self
|
151 |
+
|
152 |
+
|
153 |
+
class GlueDict(dict):
|
154 |
+
def __init__(self, filename, encoding=None):
|
155 |
+
self.filename = filename
|
156 |
+
self.file_encoding = encoding
|
157 |
+
self.read_file()
|
158 |
+
|
159 |
+
def read_file(self, empty_first=True):
|
160 |
+
if empty_first:
|
161 |
+
self.clear()
|
162 |
+
|
163 |
+
try:
|
164 |
+
contents = nltk.data.load(
|
165 |
+
self.filename, format="text", encoding=self.file_encoding
|
166 |
+
)
|
167 |
+
# TODO: the above can't handle zip files, but this should anyway be fixed in nltk.data.load()
|
168 |
+
except LookupError as e:
|
169 |
+
try:
|
170 |
+
contents = nltk.data.load(
|
171 |
+
"file:" + self.filename, format="text", encoding=self.file_encoding
|
172 |
+
)
|
173 |
+
except LookupError:
|
174 |
+
raise e
|
175 |
+
lines = contents.splitlines()
|
176 |
+
|
177 |
+
for line in lines: # example: 'n : (\\x.(<word> x), (v-or))'
|
178 |
+
# lambdacalc -^ linear logic -^
|
179 |
+
line = line.strip() # remove trailing newline
|
180 |
+
if not len(line):
|
181 |
+
continue # skip empty lines
|
182 |
+
if line[0] == "#":
|
183 |
+
continue # skip commented out lines
|
184 |
+
|
185 |
+
parts = line.split(
|
186 |
+
" : ", 2
|
187 |
+
) # ['verb', '(\\x.(<word> x), ( subj -o f ))', '[subj]']
|
188 |
+
|
189 |
+
glue_formulas = []
|
190 |
+
paren_count = 0
|
191 |
+
tuple_start = 0
|
192 |
+
tuple_comma = 0
|
193 |
+
|
194 |
+
relationships = None
|
195 |
+
|
196 |
+
if len(parts) > 1:
|
197 |
+
for (i, c) in enumerate(parts[1]):
|
198 |
+
if c == "(":
|
199 |
+
if paren_count == 0: # if it's the first '(' of a tuple
|
200 |
+
tuple_start = i + 1 # then save the index
|
201 |
+
paren_count += 1
|
202 |
+
elif c == ")":
|
203 |
+
paren_count -= 1
|
204 |
+
if paren_count == 0: # if it's the last ')' of a tuple
|
205 |
+
meaning_term = parts[1][
|
206 |
+
tuple_start:tuple_comma
|
207 |
+
] # '\\x.(<word> x)'
|
208 |
+
glue_term = parts[1][tuple_comma + 1 : i] # '(v-r)'
|
209 |
+
glue_formulas.append(
|
210 |
+
[meaning_term, glue_term]
|
211 |
+
) # add the GlueFormula to the list
|
212 |
+
elif c == ",":
|
213 |
+
if (
|
214 |
+
paren_count == 1
|
215 |
+
): # if it's a comma separating the parts of the tuple
|
216 |
+
tuple_comma = i # then save the index
|
217 |
+
elif c == "#": # skip comments at the ends of lines
|
218 |
+
if (
|
219 |
+
paren_count != 0
|
220 |
+
): # if the line hasn't parsed correctly so far
|
221 |
+
raise RuntimeError(
|
222 |
+
"Formula syntax is incorrect for entry " + line
|
223 |
+
)
|
224 |
+
break # break to the next line
|
225 |
+
|
226 |
+
if len(parts) > 2: # if there is a relationship entry at the end
|
227 |
+
rel_start = parts[2].index("[") + 1
|
228 |
+
rel_end = parts[2].index("]")
|
229 |
+
if rel_start == rel_end:
|
230 |
+
relationships = frozenset()
|
231 |
+
else:
|
232 |
+
relationships = frozenset(
|
233 |
+
r.strip() for r in parts[2][rel_start:rel_end].split(",")
|
234 |
+
)
|
235 |
+
|
236 |
+
try:
|
237 |
+
start_inheritance = parts[0].index("(")
|
238 |
+
end_inheritance = parts[0].index(")")
|
239 |
+
sem = parts[0][:start_inheritance].strip()
|
240 |
+
supertype = parts[0][start_inheritance + 1 : end_inheritance]
|
241 |
+
except:
|
242 |
+
sem = parts[0].strip()
|
243 |
+
supertype = None
|
244 |
+
|
245 |
+
if sem not in self:
|
246 |
+
self[sem] = {}
|
247 |
+
|
248 |
+
if (
|
249 |
+
relationships is None
|
250 |
+
): # if not specified for a specific relationship set
|
251 |
+
# add all relationship entries for parents
|
252 |
+
if supertype:
|
253 |
+
for rels in self[supertype]:
|
254 |
+
if rels not in self[sem]:
|
255 |
+
self[sem][rels] = []
|
256 |
+
glue = self[supertype][rels]
|
257 |
+
self[sem][rels].extend(glue)
|
258 |
+
self[sem][rels].extend(
|
259 |
+
glue_formulas
|
260 |
+
) # add the glue formulas to every rel entry
|
261 |
+
else:
|
262 |
+
if None not in self[sem]:
|
263 |
+
self[sem][None] = []
|
264 |
+
self[sem][None].extend(
|
265 |
+
glue_formulas
|
266 |
+
) # add the glue formulas to every rel entry
|
267 |
+
else:
|
268 |
+
if relationships not in self[sem]:
|
269 |
+
self[sem][relationships] = []
|
270 |
+
if supertype:
|
271 |
+
self[sem][relationships].extend(self[supertype][relationships])
|
272 |
+
self[sem][relationships].extend(
|
273 |
+
glue_formulas
|
274 |
+
) # add the glue entry to the dictionary
|
275 |
+
|
276 |
+
def __str__(self):
|
277 |
+
accum = ""
|
278 |
+
for pos in self:
|
279 |
+
str_pos = "%s" % pos
|
280 |
+
for relset in self[pos]:
|
281 |
+
i = 1
|
282 |
+
for gf in self[pos][relset]:
|
283 |
+
if i == 1:
|
284 |
+
accum += str_pos + ": "
|
285 |
+
else:
|
286 |
+
accum += " " * (len(str_pos) + 2)
|
287 |
+
accum += "%s" % gf
|
288 |
+
if relset and i == len(self[pos][relset]):
|
289 |
+
accum += " : %s" % relset
|
290 |
+
accum += "\n"
|
291 |
+
i += 1
|
292 |
+
return accum
|
293 |
+
|
294 |
+
def to_glueformula_list(self, depgraph, node=None, counter=None, verbose=False):
|
295 |
+
if node is None:
|
296 |
+
# TODO: should it be depgraph.root? Is this code tested?
|
297 |
+
top = depgraph.nodes[0]
|
298 |
+
depList = list(chain.from_iterable(top["deps"].values()))
|
299 |
+
root = depgraph.nodes[depList[0]]
|
300 |
+
|
301 |
+
return self.to_glueformula_list(depgraph, root, Counter(), verbose)
|
302 |
+
|
303 |
+
glueformulas = self.lookup(node, depgraph, counter)
|
304 |
+
for dep_idx in chain.from_iterable(node["deps"].values()):
|
305 |
+
dep = depgraph.nodes[dep_idx]
|
306 |
+
glueformulas.extend(
|
307 |
+
self.to_glueformula_list(depgraph, dep, counter, verbose)
|
308 |
+
)
|
309 |
+
return glueformulas
|
310 |
+
|
311 |
+
def lookup(self, node, depgraph, counter):
|
312 |
+
semtype_names = self.get_semtypes(node)
|
313 |
+
|
314 |
+
semtype = None
|
315 |
+
for name in semtype_names:
|
316 |
+
if name in self:
|
317 |
+
semtype = self[name]
|
318 |
+
break
|
319 |
+
if semtype is None:
|
320 |
+
# raise KeyError, "There is no GlueDict entry for sem type '%s' (for '%s')" % (sem, word)
|
321 |
+
return []
|
322 |
+
|
323 |
+
self.add_missing_dependencies(node, depgraph)
|
324 |
+
|
325 |
+
lookup = self._lookup_semtype_option(semtype, node, depgraph)
|
326 |
+
|
327 |
+
if not len(lookup):
|
328 |
+
raise KeyError(
|
329 |
+
"There is no GlueDict entry for sem type of '%s' "
|
330 |
+
"with tag '%s', and rel '%s'" % (node["word"], node["tag"], node["rel"])
|
331 |
+
)
|
332 |
+
|
333 |
+
return self.get_glueformulas_from_semtype_entry(
|
334 |
+
lookup, node["word"], node, depgraph, counter
|
335 |
+
)
|
336 |
+
|
337 |
+
def add_missing_dependencies(self, node, depgraph):
|
338 |
+
rel = node["rel"].lower()
|
339 |
+
|
340 |
+
if rel == "main":
|
341 |
+
headnode = depgraph.nodes[node["head"]]
|
342 |
+
subj = self.lookup_unique("subj", headnode, depgraph)
|
343 |
+
relation = subj["rel"]
|
344 |
+
node["deps"].setdefault(relation, [])
|
345 |
+
node["deps"][relation].append(subj["address"])
|
346 |
+
# node['deps'].append(subj['address'])
|
347 |
+
|
348 |
+
def _lookup_semtype_option(self, semtype, node, depgraph):
|
349 |
+
relationships = frozenset(
|
350 |
+
depgraph.nodes[dep]["rel"].lower()
|
351 |
+
for dep in chain.from_iterable(node["deps"].values())
|
352 |
+
if depgraph.nodes[dep]["rel"].lower() not in OPTIONAL_RELATIONSHIPS
|
353 |
+
)
|
354 |
+
|
355 |
+
try:
|
356 |
+
lookup = semtype[relationships]
|
357 |
+
except KeyError:
|
358 |
+
# An exact match is not found, so find the best match where
|
359 |
+
# 'best' is defined as the glue entry whose relationship set has the
|
360 |
+
# most relations of any possible relationship set that is a subset
|
361 |
+
# of the actual depgraph
|
362 |
+
best_match = frozenset()
|
363 |
+
for relset_option in set(semtype) - {None}:
|
364 |
+
if (
|
365 |
+
len(relset_option) > len(best_match)
|
366 |
+
and relset_option < relationships
|
367 |
+
):
|
368 |
+
best_match = relset_option
|
369 |
+
if not best_match:
|
370 |
+
if None in semtype:
|
371 |
+
best_match = None
|
372 |
+
else:
|
373 |
+
return None
|
374 |
+
lookup = semtype[best_match]
|
375 |
+
|
376 |
+
return lookup
|
377 |
+
|
378 |
+
def get_semtypes(self, node):
|
379 |
+
"""
|
380 |
+
Based on the node, return a list of plausible semtypes in order of
|
381 |
+
plausibility.
|
382 |
+
"""
|
383 |
+
rel = node["rel"].lower()
|
384 |
+
word = node["word"].lower()
|
385 |
+
|
386 |
+
if rel == "spec":
|
387 |
+
if word in SPEC_SEMTYPES:
|
388 |
+
return [SPEC_SEMTYPES[word]]
|
389 |
+
else:
|
390 |
+
return [SPEC_SEMTYPES["default"]]
|
391 |
+
elif rel in ["nmod", "vmod"]:
|
392 |
+
return [node["tag"], rel]
|
393 |
+
else:
|
394 |
+
return [node["tag"]]
|
395 |
+
|
396 |
+
def get_glueformulas_from_semtype_entry(
|
397 |
+
self, lookup, word, node, depgraph, counter
|
398 |
+
):
|
399 |
+
glueformulas = []
|
400 |
+
|
401 |
+
glueFormulaFactory = self.get_GlueFormula_factory()
|
402 |
+
for meaning, glue in lookup:
|
403 |
+
gf = glueFormulaFactory(self.get_meaning_formula(meaning, word), glue)
|
404 |
+
if not len(glueformulas):
|
405 |
+
gf.word = word
|
406 |
+
else:
|
407 |
+
gf.word = f"{word}{len(glueformulas) + 1}"
|
408 |
+
|
409 |
+
gf.glue = self.initialize_labels(gf.glue, node, depgraph, counter.get())
|
410 |
+
|
411 |
+
glueformulas.append(gf)
|
412 |
+
return glueformulas
|
413 |
+
|
414 |
+
def get_meaning_formula(self, generic, word):
|
415 |
+
"""
|
416 |
+
:param generic: A meaning formula string containing the
|
417 |
+
parameter "<word>"
|
418 |
+
:param word: The actual word to be replace "<word>"
|
419 |
+
"""
|
420 |
+
word = word.replace(".", "")
|
421 |
+
return generic.replace("<word>", word)
|
422 |
+
|
423 |
+
def initialize_labels(self, expr, node, depgraph, unique_index):
|
424 |
+
if isinstance(expr, linearlogic.AtomicExpression):
|
425 |
+
name = self.find_label_name(expr.name.lower(), node, depgraph, unique_index)
|
426 |
+
if name[0].isupper():
|
427 |
+
return linearlogic.VariableExpression(name)
|
428 |
+
else:
|
429 |
+
return linearlogic.ConstantExpression(name)
|
430 |
+
else:
|
431 |
+
return linearlogic.ImpExpression(
|
432 |
+
self.initialize_labels(expr.antecedent, node, depgraph, unique_index),
|
433 |
+
self.initialize_labels(expr.consequent, node, depgraph, unique_index),
|
434 |
+
)
|
435 |
+
|
436 |
+
def find_label_name(self, name, node, depgraph, unique_index):
|
437 |
+
try:
|
438 |
+
dot = name.index(".")
|
439 |
+
|
440 |
+
before_dot = name[:dot]
|
441 |
+
after_dot = name[dot + 1 :]
|
442 |
+
if before_dot == "super":
|
443 |
+
return self.find_label_name(
|
444 |
+
after_dot, depgraph.nodes[node["head"]], depgraph, unique_index
|
445 |
+
)
|
446 |
+
else:
|
447 |
+
return self.find_label_name(
|
448 |
+
after_dot,
|
449 |
+
self.lookup_unique(before_dot, node, depgraph),
|
450 |
+
depgraph,
|
451 |
+
unique_index,
|
452 |
+
)
|
453 |
+
except ValueError:
|
454 |
+
lbl = self.get_label(node)
|
455 |
+
if name == "f":
|
456 |
+
return lbl
|
457 |
+
elif name == "v":
|
458 |
+
return "%sv" % lbl
|
459 |
+
elif name == "r":
|
460 |
+
return "%sr" % lbl
|
461 |
+
elif name == "super":
|
462 |
+
return self.get_label(depgraph.nodes[node["head"]])
|
463 |
+
elif name == "var":
|
464 |
+
return f"{lbl.upper()}{unique_index}"
|
465 |
+
elif name == "a":
|
466 |
+
return self.get_label(self.lookup_unique("conja", node, depgraph))
|
467 |
+
elif name == "b":
|
468 |
+
return self.get_label(self.lookup_unique("conjb", node, depgraph))
|
469 |
+
else:
|
470 |
+
return self.get_label(self.lookup_unique(name, node, depgraph))
|
471 |
+
|
472 |
+
def get_label(self, node):
|
473 |
+
"""
|
474 |
+
Pick an alphabetic character as identifier for an entity in the model.
|
475 |
+
|
476 |
+
:param value: where to index into the list of characters
|
477 |
+
:type value: int
|
478 |
+
"""
|
479 |
+
value = node["address"]
|
480 |
+
|
481 |
+
letter = [
|
482 |
+
"f",
|
483 |
+
"g",
|
484 |
+
"h",
|
485 |
+
"i",
|
486 |
+
"j",
|
487 |
+
"k",
|
488 |
+
"l",
|
489 |
+
"m",
|
490 |
+
"n",
|
491 |
+
"o",
|
492 |
+
"p",
|
493 |
+
"q",
|
494 |
+
"r",
|
495 |
+
"s",
|
496 |
+
"t",
|
497 |
+
"u",
|
498 |
+
"v",
|
499 |
+
"w",
|
500 |
+
"x",
|
501 |
+
"y",
|
502 |
+
"z",
|
503 |
+
"a",
|
504 |
+
"b",
|
505 |
+
"c",
|
506 |
+
"d",
|
507 |
+
"e",
|
508 |
+
][value - 1]
|
509 |
+
num = int(value) // 26
|
510 |
+
if num > 0:
|
511 |
+
return letter + str(num)
|
512 |
+
else:
|
513 |
+
return letter
|
514 |
+
|
515 |
+
def lookup_unique(self, rel, node, depgraph):
|
516 |
+
"""
|
517 |
+
Lookup 'key'. There should be exactly one item in the associated relation.
|
518 |
+
"""
|
519 |
+
deps = [
|
520 |
+
depgraph.nodes[dep]
|
521 |
+
for dep in chain.from_iterable(node["deps"].values())
|
522 |
+
if depgraph.nodes[dep]["rel"].lower() == rel.lower()
|
523 |
+
]
|
524 |
+
|
525 |
+
if len(deps) == 0:
|
526 |
+
raise KeyError(
|
527 |
+
"'{}' doesn't contain a feature '{}'".format(node["word"], rel)
|
528 |
+
)
|
529 |
+
elif len(deps) > 1:
|
530 |
+
raise KeyError(
|
531 |
+
"'{}' should only have one feature '{}'".format(node["word"], rel)
|
532 |
+
)
|
533 |
+
else:
|
534 |
+
return deps[0]
|
535 |
+
|
536 |
+
def get_GlueFormula_factory(self):
|
537 |
+
return GlueFormula
|
538 |
+
|
539 |
+
|
540 |
+
class Glue:
|
541 |
+
def __init__(
|
542 |
+
self, semtype_file=None, remove_duplicates=False, depparser=None, verbose=False
|
543 |
+
):
|
544 |
+
self.verbose = verbose
|
545 |
+
self.remove_duplicates = remove_duplicates
|
546 |
+
self.depparser = depparser
|
547 |
+
|
548 |
+
from nltk import Prover9
|
549 |
+
|
550 |
+
self.prover = Prover9()
|
551 |
+
|
552 |
+
if semtype_file:
|
553 |
+
self.semtype_file = semtype_file
|
554 |
+
else:
|
555 |
+
self.semtype_file = os.path.join(
|
556 |
+
"grammars", "sample_grammars", "glue.semtype"
|
557 |
+
)
|
558 |
+
|
559 |
+
def train_depparser(self, depgraphs=None):
|
560 |
+
if depgraphs:
|
561 |
+
self.depparser.train(depgraphs)
|
562 |
+
else:
|
563 |
+
self.depparser.train_from_file(
|
564 |
+
nltk.data.find(
|
565 |
+
os.path.join("grammars", "sample_grammars", "glue_train.conll")
|
566 |
+
)
|
567 |
+
)
|
568 |
+
|
569 |
+
def parse_to_meaning(self, sentence):
|
570 |
+
readings = []
|
571 |
+
for agenda in self.parse_to_compiled(sentence):
|
572 |
+
readings.extend(self.get_readings(agenda))
|
573 |
+
return readings
|
574 |
+
|
575 |
+
def get_readings(self, agenda):
|
576 |
+
readings = []
|
577 |
+
agenda_length = len(agenda)
|
578 |
+
atomics = dict()
|
579 |
+
nonatomics = dict()
|
580 |
+
while agenda: # is not empty
|
581 |
+
cur = agenda.pop()
|
582 |
+
glue_simp = cur.glue.simplify()
|
583 |
+
if isinstance(
|
584 |
+
glue_simp, linearlogic.ImpExpression
|
585 |
+
): # if cur.glue is non-atomic
|
586 |
+
for key in atomics:
|
587 |
+
try:
|
588 |
+
if isinstance(cur.glue, linearlogic.ApplicationExpression):
|
589 |
+
bindings = cur.glue.bindings
|
590 |
+
else:
|
591 |
+
bindings = linearlogic.BindingDict()
|
592 |
+
glue_simp.antecedent.unify(key, bindings)
|
593 |
+
for atomic in atomics[key]:
|
594 |
+
if not (
|
595 |
+
cur.indices & atomic.indices
|
596 |
+
): # if the sets of indices are disjoint
|
597 |
+
try:
|
598 |
+
agenda.append(cur.applyto(atomic))
|
599 |
+
except linearlogic.LinearLogicApplicationException:
|
600 |
+
pass
|
601 |
+
except linearlogic.UnificationException:
|
602 |
+
pass
|
603 |
+
try:
|
604 |
+
nonatomics[glue_simp.antecedent].append(cur)
|
605 |
+
except KeyError:
|
606 |
+
nonatomics[glue_simp.antecedent] = [cur]
|
607 |
+
|
608 |
+
else: # else cur.glue is atomic
|
609 |
+
for key in nonatomics:
|
610 |
+
for nonatomic in nonatomics[key]:
|
611 |
+
try:
|
612 |
+
if isinstance(
|
613 |
+
nonatomic.glue, linearlogic.ApplicationExpression
|
614 |
+
):
|
615 |
+
bindings = nonatomic.glue.bindings
|
616 |
+
else:
|
617 |
+
bindings = linearlogic.BindingDict()
|
618 |
+
glue_simp.unify(key, bindings)
|
619 |
+
if not (
|
620 |
+
cur.indices & nonatomic.indices
|
621 |
+
): # if the sets of indices are disjoint
|
622 |
+
try:
|
623 |
+
agenda.append(nonatomic.applyto(cur))
|
624 |
+
except linearlogic.LinearLogicApplicationException:
|
625 |
+
pass
|
626 |
+
except linearlogic.UnificationException:
|
627 |
+
pass
|
628 |
+
try:
|
629 |
+
atomics[glue_simp].append(cur)
|
630 |
+
except KeyError:
|
631 |
+
atomics[glue_simp] = [cur]
|
632 |
+
|
633 |
+
for entry in atomics:
|
634 |
+
for gf in atomics[entry]:
|
635 |
+
if len(gf.indices) == agenda_length:
|
636 |
+
self._add_to_reading_list(gf, readings)
|
637 |
+
for entry in nonatomics:
|
638 |
+
for gf in nonatomics[entry]:
|
639 |
+
if len(gf.indices) == agenda_length:
|
640 |
+
self._add_to_reading_list(gf, readings)
|
641 |
+
return readings
|
642 |
+
|
643 |
+
def _add_to_reading_list(self, glueformula, reading_list):
|
644 |
+
add_reading = True
|
645 |
+
if self.remove_duplicates:
|
646 |
+
for reading in reading_list:
|
647 |
+
try:
|
648 |
+
if reading.equiv(glueformula.meaning, self.prover):
|
649 |
+
add_reading = False
|
650 |
+
break
|
651 |
+
except Exception as e:
|
652 |
+
# if there is an exception, the syntax of the formula
|
653 |
+
# may not be understandable by the prover, so don't
|
654 |
+
# throw out the reading.
|
655 |
+
print("Error when checking logical equality of statements", e)
|
656 |
+
|
657 |
+
if add_reading:
|
658 |
+
reading_list.append(glueformula.meaning)
|
659 |
+
|
660 |
+
def parse_to_compiled(self, sentence):
|
661 |
+
gfls = [self.depgraph_to_glue(dg) for dg in self.dep_parse(sentence)]
|
662 |
+
return [self.gfl_to_compiled(gfl) for gfl in gfls]
|
663 |
+
|
664 |
+
def dep_parse(self, sentence):
|
665 |
+
"""
|
666 |
+
Return a dependency graph for the sentence.
|
667 |
+
|
668 |
+
:param sentence: the sentence to be parsed
|
669 |
+
:type sentence: list(str)
|
670 |
+
:rtype: DependencyGraph
|
671 |
+
"""
|
672 |
+
|
673 |
+
# Lazy-initialize the depparser
|
674 |
+
if self.depparser is None:
|
675 |
+
from nltk.parse import MaltParser
|
676 |
+
|
677 |
+
self.depparser = MaltParser(tagger=self.get_pos_tagger())
|
678 |
+
if not self.depparser._trained:
|
679 |
+
self.train_depparser()
|
680 |
+
return self.depparser.parse(sentence, verbose=self.verbose)
|
681 |
+
|
682 |
+
def depgraph_to_glue(self, depgraph):
|
683 |
+
return self.get_glue_dict().to_glueformula_list(depgraph)
|
684 |
+
|
685 |
+
def get_glue_dict(self):
|
686 |
+
return GlueDict(self.semtype_file)
|
687 |
+
|
688 |
+
def gfl_to_compiled(self, gfl):
|
689 |
+
index_counter = Counter()
|
690 |
+
return_list = []
|
691 |
+
for gf in gfl:
|
692 |
+
return_list.extend(gf.compile(index_counter))
|
693 |
+
|
694 |
+
if self.verbose:
|
695 |
+
print("Compiled Glue Premises:")
|
696 |
+
for cgf in return_list:
|
697 |
+
print(cgf)
|
698 |
+
|
699 |
+
return return_list
|
700 |
+
|
701 |
+
def get_pos_tagger(self):
|
702 |
+
from nltk.corpus import brown
|
703 |
+
|
704 |
+
regexp_tagger = RegexpTagger(
|
705 |
+
[
|
706 |
+
(r"^-?[0-9]+(\.[0-9]+)?$", "CD"), # cardinal numbers
|
707 |
+
(r"(The|the|A|a|An|an)$", "AT"), # articles
|
708 |
+
(r".*able$", "JJ"), # adjectives
|
709 |
+
(r".*ness$", "NN"), # nouns formed from adjectives
|
710 |
+
(r".*ly$", "RB"), # adverbs
|
711 |
+
(r".*s$", "NNS"), # plural nouns
|
712 |
+
(r".*ing$", "VBG"), # gerunds
|
713 |
+
(r".*ed$", "VBD"), # past tense verbs
|
714 |
+
(r".*", "NN"), # nouns (default)
|
715 |
+
]
|
716 |
+
)
|
717 |
+
brown_train = brown.tagged_sents(categories="news")
|
718 |
+
unigram_tagger = UnigramTagger(brown_train, backoff=regexp_tagger)
|
719 |
+
bigram_tagger = BigramTagger(brown_train, backoff=unigram_tagger)
|
720 |
+
trigram_tagger = TrigramTagger(brown_train, backoff=bigram_tagger)
|
721 |
+
|
722 |
+
# Override particular words
|
723 |
+
main_tagger = RegexpTagger(
|
724 |
+
[(r"(A|a|An|an)$", "ex_quant"), (r"(Every|every|All|all)$", "univ_quant")],
|
725 |
+
backoff=trigram_tagger,
|
726 |
+
)
|
727 |
+
|
728 |
+
return main_tagger
|
729 |
+
|
730 |
+
|
731 |
+
class DrtGlueFormula(GlueFormula):
|
732 |
+
def __init__(self, meaning, glue, indices=None):
|
733 |
+
if not indices:
|
734 |
+
indices = set()
|
735 |
+
|
736 |
+
if isinstance(meaning, str):
|
737 |
+
self.meaning = drt.DrtExpression.fromstring(meaning)
|
738 |
+
elif isinstance(meaning, drt.DrtExpression):
|
739 |
+
self.meaning = meaning
|
740 |
+
else:
|
741 |
+
raise RuntimeError(
|
742 |
+
"Meaning term neither string or expression: %s, %s"
|
743 |
+
% (meaning, meaning.__class__)
|
744 |
+
)
|
745 |
+
|
746 |
+
if isinstance(glue, str):
|
747 |
+
self.glue = linearlogic.LinearLogicParser().parse(glue)
|
748 |
+
elif isinstance(glue, linearlogic.Expression):
|
749 |
+
self.glue = glue
|
750 |
+
else:
|
751 |
+
raise RuntimeError(
|
752 |
+
"Glue term neither string or expression: %s, %s"
|
753 |
+
% (glue, glue.__class__)
|
754 |
+
)
|
755 |
+
|
756 |
+
self.indices = indices
|
757 |
+
|
758 |
+
def make_VariableExpression(self, name):
|
759 |
+
return drt.DrtVariableExpression(name)
|
760 |
+
|
761 |
+
def make_LambdaExpression(self, variable, term):
|
762 |
+
return drt.DrtLambdaExpression(variable, term)
|
763 |
+
|
764 |
+
|
765 |
+
class DrtGlueDict(GlueDict):
|
766 |
+
def get_GlueFormula_factory(self):
|
767 |
+
return DrtGlueFormula
|
768 |
+
|
769 |
+
|
770 |
+
class DrtGlue(Glue):
|
771 |
+
def __init__(
|
772 |
+
self, semtype_file=None, remove_duplicates=False, depparser=None, verbose=False
|
773 |
+
):
|
774 |
+
if not semtype_file:
|
775 |
+
semtype_file = os.path.join(
|
776 |
+
"grammars", "sample_grammars", "drt_glue.semtype"
|
777 |
+
)
|
778 |
+
Glue.__init__(self, semtype_file, remove_duplicates, depparser, verbose)
|
779 |
+
|
780 |
+
def get_glue_dict(self):
|
781 |
+
return DrtGlueDict(self.semtype_file)
|
782 |
+
|
783 |
+
|
784 |
+
def demo(show_example=-1):
|
785 |
+
from nltk.parse import MaltParser
|
786 |
+
|
787 |
+
examples = [
|
788 |
+
"David sees Mary",
|
789 |
+
"David eats a sandwich",
|
790 |
+
"every man chases a dog",
|
791 |
+
"every man believes a dog sleeps",
|
792 |
+
"John gives David a sandwich",
|
793 |
+
"John chases himself",
|
794 |
+
]
|
795 |
+
# 'John persuades David to order a pizza',
|
796 |
+
# 'John tries to go',
|
797 |
+
# 'John tries to find a unicorn',
|
798 |
+
# 'John seems to vanish',
|
799 |
+
# 'a unicorn seems to approach',
|
800 |
+
# 'every big cat leaves',
|
801 |
+
# 'every gray cat leaves',
|
802 |
+
# 'every big gray cat leaves',
|
803 |
+
# 'a former senator leaves',
|
804 |
+
|
805 |
+
print("============== DEMO ==============")
|
806 |
+
|
807 |
+
tagger = RegexpTagger(
|
808 |
+
[
|
809 |
+
("^(David|Mary|John)$", "NNP"),
|
810 |
+
(
|
811 |
+
"^(sees|eats|chases|believes|gives|sleeps|chases|persuades|tries|seems|leaves)$",
|
812 |
+
"VB",
|
813 |
+
),
|
814 |
+
("^(go|order|vanish|find|approach)$", "VB"),
|
815 |
+
("^(a)$", "ex_quant"),
|
816 |
+
("^(every)$", "univ_quant"),
|
817 |
+
("^(sandwich|man|dog|pizza|unicorn|cat|senator)$", "NN"),
|
818 |
+
("^(big|gray|former)$", "JJ"),
|
819 |
+
("^(him|himself)$", "PRP"),
|
820 |
+
]
|
821 |
+
)
|
822 |
+
|
823 |
+
depparser = MaltParser(tagger=tagger)
|
824 |
+
glue = Glue(depparser=depparser, verbose=False)
|
825 |
+
|
826 |
+
for (i, sentence) in enumerate(examples):
|
827 |
+
if i == show_example or show_example == -1:
|
828 |
+
print(f"[[[Example {i}]]] {sentence}")
|
829 |
+
for reading in glue.parse_to_meaning(sentence.split()):
|
830 |
+
print(reading.simplify())
|
831 |
+
print("")
|
832 |
+
|
833 |
+
|
834 |
+
if __name__ == "__main__":
|
835 |
+
demo()
|
venv/lib/python3.10/site-packages/nltk/sem/hole.py
ADDED
@@ -0,0 +1,395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Logic
|
2 |
+
#
|
3 |
+
# Author: Peter Wang
|
4 |
+
# Updated by: Dan Garrette <[email protected]>
|
5 |
+
#
|
6 |
+
# Copyright (C) 2001-2023 NLTK Project
|
7 |
+
# URL: <https://www.nltk.org/>
|
8 |
+
# For license information, see LICENSE.TXT
|
9 |
+
|
10 |
+
"""
|
11 |
+
An implementation of the Hole Semantics model, following Blackburn and Bos,
|
12 |
+
Representation and Inference for Natural Language (CSLI, 2005).
|
13 |
+
|
14 |
+
The semantic representations are built by the grammar hole.fcfg.
|
15 |
+
This module contains driver code to read in sentences and parse them
|
16 |
+
according to a hole semantics grammar.
|
17 |
+
|
18 |
+
After parsing, the semantic representation is in the form of an underspecified
|
19 |
+
representation that is not easy to read. We use a "plugging" algorithm to
|
20 |
+
convert that representation into first-order logic formulas.
|
21 |
+
"""
|
22 |
+
|
23 |
+
from functools import reduce
|
24 |
+
|
25 |
+
from nltk.parse import load_parser
|
26 |
+
from nltk.sem.logic import (
|
27 |
+
AllExpression,
|
28 |
+
AndExpression,
|
29 |
+
ApplicationExpression,
|
30 |
+
ExistsExpression,
|
31 |
+
IffExpression,
|
32 |
+
ImpExpression,
|
33 |
+
LambdaExpression,
|
34 |
+
NegatedExpression,
|
35 |
+
OrExpression,
|
36 |
+
)
|
37 |
+
from nltk.sem.skolemize import skolemize
|
38 |
+
|
39 |
+
# Note that in this code there may be multiple types of trees being referred to:
|
40 |
+
#
|
41 |
+
# 1. parse trees
|
42 |
+
# 2. the underspecified representation
|
43 |
+
# 3. first-order logic formula trees
|
44 |
+
# 4. the search space when plugging (search tree)
|
45 |
+
#
|
46 |
+
|
47 |
+
|
48 |
+
class Constants:
|
49 |
+
ALL = "ALL"
|
50 |
+
EXISTS = "EXISTS"
|
51 |
+
NOT = "NOT"
|
52 |
+
AND = "AND"
|
53 |
+
OR = "OR"
|
54 |
+
IMP = "IMP"
|
55 |
+
IFF = "IFF"
|
56 |
+
PRED = "PRED"
|
57 |
+
LEQ = "LEQ"
|
58 |
+
HOLE = "HOLE"
|
59 |
+
LABEL = "LABEL"
|
60 |
+
|
61 |
+
MAP = {
|
62 |
+
ALL: lambda v, e: AllExpression(v.variable, e),
|
63 |
+
EXISTS: lambda v, e: ExistsExpression(v.variable, e),
|
64 |
+
NOT: NegatedExpression,
|
65 |
+
AND: AndExpression,
|
66 |
+
OR: OrExpression,
|
67 |
+
IMP: ImpExpression,
|
68 |
+
IFF: IffExpression,
|
69 |
+
PRED: ApplicationExpression,
|
70 |
+
}
|
71 |
+
|
72 |
+
|
73 |
+
class HoleSemantics:
|
74 |
+
"""
|
75 |
+
This class holds the broken-down components of a hole semantics, i.e. it
|
76 |
+
extracts the holes, labels, logic formula fragments and constraints out of
|
77 |
+
a big conjunction of such as produced by the hole semantics grammar. It
|
78 |
+
then provides some operations on the semantics dealing with holes, labels
|
79 |
+
and finding legal ways to plug holes with labels.
|
80 |
+
"""
|
81 |
+
|
82 |
+
def __init__(self, usr):
|
83 |
+
"""
|
84 |
+
Constructor. `usr' is a ``sem.Expression`` representing an
|
85 |
+
Underspecified Representation Structure (USR). A USR has the following
|
86 |
+
special predicates:
|
87 |
+
ALL(l,v,n),
|
88 |
+
EXISTS(l,v,n),
|
89 |
+
AND(l,n,n),
|
90 |
+
OR(l,n,n),
|
91 |
+
IMP(l,n,n),
|
92 |
+
IFF(l,n,n),
|
93 |
+
PRED(l,v,n,v[,v]*) where the brackets and star indicate zero or more repetitions,
|
94 |
+
LEQ(n,n),
|
95 |
+
HOLE(n),
|
96 |
+
LABEL(n)
|
97 |
+
where l is the label of the node described by the predicate, n is either
|
98 |
+
a label or a hole, and v is a variable.
|
99 |
+
"""
|
100 |
+
self.holes = set()
|
101 |
+
self.labels = set()
|
102 |
+
self.fragments = {} # mapping of label -> formula fragment
|
103 |
+
self.constraints = set() # set of Constraints
|
104 |
+
self._break_down(usr)
|
105 |
+
self.top_most_labels = self._find_top_most_labels()
|
106 |
+
self.top_hole = self._find_top_hole()
|
107 |
+
|
108 |
+
def is_node(self, x):
|
109 |
+
"""
|
110 |
+
Return true if x is a node (label or hole) in this semantic
|
111 |
+
representation.
|
112 |
+
"""
|
113 |
+
return x in (self.labels | self.holes)
|
114 |
+
|
115 |
+
def _break_down(self, usr):
|
116 |
+
"""
|
117 |
+
Extract holes, labels, formula fragments and constraints from the hole
|
118 |
+
semantics underspecified representation (USR).
|
119 |
+
"""
|
120 |
+
if isinstance(usr, AndExpression):
|
121 |
+
self._break_down(usr.first)
|
122 |
+
self._break_down(usr.second)
|
123 |
+
elif isinstance(usr, ApplicationExpression):
|
124 |
+
func, args = usr.uncurry()
|
125 |
+
if func.variable.name == Constants.LEQ:
|
126 |
+
self.constraints.add(Constraint(args[0], args[1]))
|
127 |
+
elif func.variable.name == Constants.HOLE:
|
128 |
+
self.holes.add(args[0])
|
129 |
+
elif func.variable.name == Constants.LABEL:
|
130 |
+
self.labels.add(args[0])
|
131 |
+
else:
|
132 |
+
label = args[0]
|
133 |
+
assert label not in self.fragments
|
134 |
+
self.fragments[label] = (func, args[1:])
|
135 |
+
else:
|
136 |
+
raise ValueError(usr.label())
|
137 |
+
|
138 |
+
def _find_top_nodes(self, node_list):
|
139 |
+
top_nodes = node_list.copy()
|
140 |
+
for f in self.fragments.values():
|
141 |
+
# the label is the first argument of the predicate
|
142 |
+
args = f[1]
|
143 |
+
for arg in args:
|
144 |
+
if arg in node_list:
|
145 |
+
top_nodes.discard(arg)
|
146 |
+
return top_nodes
|
147 |
+
|
148 |
+
def _find_top_most_labels(self):
|
149 |
+
"""
|
150 |
+
Return the set of labels which are not referenced directly as part of
|
151 |
+
another formula fragment. These will be the top-most labels for the
|
152 |
+
subtree that they are part of.
|
153 |
+
"""
|
154 |
+
return self._find_top_nodes(self.labels)
|
155 |
+
|
156 |
+
def _find_top_hole(self):
|
157 |
+
"""
|
158 |
+
Return the hole that will be the top of the formula tree.
|
159 |
+
"""
|
160 |
+
top_holes = self._find_top_nodes(self.holes)
|
161 |
+
assert len(top_holes) == 1 # it must be unique
|
162 |
+
return top_holes.pop()
|
163 |
+
|
164 |
+
def pluggings(self):
|
165 |
+
"""
|
166 |
+
Calculate and return all the legal pluggings (mappings of labels to
|
167 |
+
holes) of this semantics given the constraints.
|
168 |
+
"""
|
169 |
+
record = []
|
170 |
+
self._plug_nodes([(self.top_hole, [])], self.top_most_labels, {}, record)
|
171 |
+
return record
|
172 |
+
|
173 |
+
def _plug_nodes(self, queue, potential_labels, plug_acc, record):
|
174 |
+
"""
|
175 |
+
Plug the nodes in `queue' with the labels in `potential_labels'.
|
176 |
+
|
177 |
+
Each element of `queue' is a tuple of the node to plug and the list of
|
178 |
+
ancestor holes from the root of the graph to that node.
|
179 |
+
|
180 |
+
`potential_labels' is a set of the labels which are still available for
|
181 |
+
plugging.
|
182 |
+
|
183 |
+
`plug_acc' is the incomplete mapping of holes to labels made on the
|
184 |
+
current branch of the search tree so far.
|
185 |
+
|
186 |
+
`record' is a list of all the complete pluggings that we have found in
|
187 |
+
total so far. It is the only parameter that is destructively updated.
|
188 |
+
"""
|
189 |
+
if queue != []:
|
190 |
+
(node, ancestors) = queue[0]
|
191 |
+
if node in self.holes:
|
192 |
+
# The node is a hole, try to plug it.
|
193 |
+
self._plug_hole(
|
194 |
+
node, ancestors, queue[1:], potential_labels, plug_acc, record
|
195 |
+
)
|
196 |
+
else:
|
197 |
+
assert node in self.labels
|
198 |
+
# The node is a label. Replace it in the queue by the holes and
|
199 |
+
# labels in the formula fragment named by that label.
|
200 |
+
args = self.fragments[node][1]
|
201 |
+
head = [(a, ancestors) for a in args if self.is_node(a)]
|
202 |
+
self._plug_nodes(head + queue[1:], potential_labels, plug_acc, record)
|
203 |
+
else:
|
204 |
+
raise Exception("queue empty")
|
205 |
+
|
206 |
+
def _plug_hole(self, hole, ancestors0, queue, potential_labels0, plug_acc0, record):
|
207 |
+
"""
|
208 |
+
Try all possible ways of plugging a single hole.
|
209 |
+
See _plug_nodes for the meanings of the parameters.
|
210 |
+
"""
|
211 |
+
# Add the current hole we're trying to plug into the list of ancestors.
|
212 |
+
assert hole not in ancestors0
|
213 |
+
ancestors = [hole] + ancestors0
|
214 |
+
|
215 |
+
# Try each potential label in this hole in turn.
|
216 |
+
for l in potential_labels0:
|
217 |
+
# Is the label valid in this hole?
|
218 |
+
if self._violates_constraints(l, ancestors):
|
219 |
+
continue
|
220 |
+
|
221 |
+
plug_acc = plug_acc0.copy()
|
222 |
+
plug_acc[hole] = l
|
223 |
+
potential_labels = potential_labels0.copy()
|
224 |
+
potential_labels.remove(l)
|
225 |
+
|
226 |
+
if len(potential_labels) == 0:
|
227 |
+
# No more potential labels. That must mean all the holes have
|
228 |
+
# been filled so we have found a legal plugging so remember it.
|
229 |
+
#
|
230 |
+
# Note that the queue might not be empty because there might
|
231 |
+
# be labels on there that point to formula fragments with
|
232 |
+
# no holes in them. _sanity_check_plugging will make sure
|
233 |
+
# all holes are filled.
|
234 |
+
self._sanity_check_plugging(plug_acc, self.top_hole, [])
|
235 |
+
record.append(plug_acc)
|
236 |
+
else:
|
237 |
+
# Recursively try to fill in the rest of the holes in the
|
238 |
+
# queue. The label we just plugged into the hole could have
|
239 |
+
# holes of its own so at the end of the queue. Putting it on
|
240 |
+
# the end of the queue gives us a breadth-first search, so that
|
241 |
+
# all the holes at level i of the formula tree are filled
|
242 |
+
# before filling level i+1.
|
243 |
+
# A depth-first search would work as well since the trees must
|
244 |
+
# be finite but the bookkeeping would be harder.
|
245 |
+
self._plug_nodes(
|
246 |
+
queue + [(l, ancestors)], potential_labels, plug_acc, record
|
247 |
+
)
|
248 |
+
|
249 |
+
def _violates_constraints(self, label, ancestors):
|
250 |
+
"""
|
251 |
+
Return True if the `label' cannot be placed underneath the holes given
|
252 |
+
by the set `ancestors' because it would violate the constraints imposed
|
253 |
+
on it.
|
254 |
+
"""
|
255 |
+
for c in self.constraints:
|
256 |
+
if c.lhs == label:
|
257 |
+
if c.rhs not in ancestors:
|
258 |
+
return True
|
259 |
+
return False
|
260 |
+
|
261 |
+
def _sanity_check_plugging(self, plugging, node, ancestors):
|
262 |
+
"""
|
263 |
+
Make sure that a given plugging is legal. We recursively go through
|
264 |
+
each node and make sure that no constraints are violated.
|
265 |
+
We also check that all holes have been filled.
|
266 |
+
"""
|
267 |
+
if node in self.holes:
|
268 |
+
ancestors = [node] + ancestors
|
269 |
+
label = plugging[node]
|
270 |
+
else:
|
271 |
+
label = node
|
272 |
+
assert label in self.labels
|
273 |
+
for c in self.constraints:
|
274 |
+
if c.lhs == label:
|
275 |
+
assert c.rhs in ancestors
|
276 |
+
args = self.fragments[label][1]
|
277 |
+
for arg in args:
|
278 |
+
if self.is_node(arg):
|
279 |
+
self._sanity_check_plugging(plugging, arg, [label] + ancestors)
|
280 |
+
|
281 |
+
def formula_tree(self, plugging):
|
282 |
+
"""
|
283 |
+
Return the first-order logic formula tree for this underspecified
|
284 |
+
representation using the plugging given.
|
285 |
+
"""
|
286 |
+
return self._formula_tree(plugging, self.top_hole)
|
287 |
+
|
288 |
+
def _formula_tree(self, plugging, node):
|
289 |
+
if node in plugging:
|
290 |
+
return self._formula_tree(plugging, plugging[node])
|
291 |
+
elif node in self.fragments:
|
292 |
+
pred, args = self.fragments[node]
|
293 |
+
children = [self._formula_tree(plugging, arg) for arg in args]
|
294 |
+
return reduce(Constants.MAP[pred.variable.name], children)
|
295 |
+
else:
|
296 |
+
return node
|
297 |
+
|
298 |
+
|
299 |
+
class Constraint:
|
300 |
+
"""
|
301 |
+
This class represents a constraint of the form (L =< N),
|
302 |
+
where L is a label and N is a node (a label or a hole).
|
303 |
+
"""
|
304 |
+
|
305 |
+
def __init__(self, lhs, rhs):
|
306 |
+
self.lhs = lhs
|
307 |
+
self.rhs = rhs
|
308 |
+
|
309 |
+
def __eq__(self, other):
|
310 |
+
if self.__class__ == other.__class__:
|
311 |
+
return self.lhs == other.lhs and self.rhs == other.rhs
|
312 |
+
else:
|
313 |
+
return False
|
314 |
+
|
315 |
+
def __ne__(self, other):
|
316 |
+
return not (self == other)
|
317 |
+
|
318 |
+
def __hash__(self):
|
319 |
+
return hash(repr(self))
|
320 |
+
|
321 |
+
def __repr__(self):
|
322 |
+
return f"({self.lhs} < {self.rhs})"
|
323 |
+
|
324 |
+
|
325 |
+
def hole_readings(sentence, grammar_filename=None, verbose=False):
|
326 |
+
if not grammar_filename:
|
327 |
+
grammar_filename = "grammars/sample_grammars/hole.fcfg"
|
328 |
+
|
329 |
+
if verbose:
|
330 |
+
print("Reading grammar file", grammar_filename)
|
331 |
+
|
332 |
+
parser = load_parser(grammar_filename)
|
333 |
+
|
334 |
+
# Parse the sentence.
|
335 |
+
tokens = sentence.split()
|
336 |
+
trees = list(parser.parse(tokens))
|
337 |
+
if verbose:
|
338 |
+
print("Got %d different parses" % len(trees))
|
339 |
+
|
340 |
+
all_readings = []
|
341 |
+
for tree in trees:
|
342 |
+
# Get the semantic feature from the top of the parse tree.
|
343 |
+
sem = tree.label()["SEM"].simplify()
|
344 |
+
|
345 |
+
# Print the raw semantic representation.
|
346 |
+
if verbose:
|
347 |
+
print("Raw: ", sem)
|
348 |
+
|
349 |
+
# Skolemize away all quantifiers. All variables become unique.
|
350 |
+
while isinstance(sem, LambdaExpression):
|
351 |
+
sem = sem.term
|
352 |
+
skolemized = skolemize(sem)
|
353 |
+
|
354 |
+
if verbose:
|
355 |
+
print("Skolemized:", skolemized)
|
356 |
+
|
357 |
+
# Break the hole semantics representation down into its components
|
358 |
+
# i.e. holes, labels, formula fragments and constraints.
|
359 |
+
hole_sem = HoleSemantics(skolemized)
|
360 |
+
|
361 |
+
# Maybe show the details of the semantic representation.
|
362 |
+
if verbose:
|
363 |
+
print("Holes: ", hole_sem.holes)
|
364 |
+
print("Labels: ", hole_sem.labels)
|
365 |
+
print("Constraints: ", hole_sem.constraints)
|
366 |
+
print("Top hole: ", hole_sem.top_hole)
|
367 |
+
print("Top labels: ", hole_sem.top_most_labels)
|
368 |
+
print("Fragments:")
|
369 |
+
for l, f in hole_sem.fragments.items():
|
370 |
+
print(f"\t{l}: {f}")
|
371 |
+
|
372 |
+
# Find all the possible ways to plug the formulas together.
|
373 |
+
pluggings = hole_sem.pluggings()
|
374 |
+
|
375 |
+
# Build FOL formula trees using the pluggings.
|
376 |
+
readings = list(map(hole_sem.formula_tree, pluggings))
|
377 |
+
|
378 |
+
# Print out the formulas in a textual format.
|
379 |
+
if verbose:
|
380 |
+
for i, r in enumerate(readings):
|
381 |
+
print()
|
382 |
+
print("%d. %s" % (i, r))
|
383 |
+
print()
|
384 |
+
|
385 |
+
all_readings.extend(readings)
|
386 |
+
|
387 |
+
return all_readings
|
388 |
+
|
389 |
+
|
390 |
+
if __name__ == "__main__":
|
391 |
+
for r in hole_readings("a dog barks"):
|
392 |
+
print(r)
|
393 |
+
print()
|
394 |
+
for r in hole_readings("every girl chases a dog"):
|
395 |
+
print(r)
|
venv/lib/python3.10/site-packages/nltk/sem/lfg.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Lexical Functional Grammar
|
2 |
+
#
|
3 |
+
# Author: Dan Garrette <[email protected]>
|
4 |
+
#
|
5 |
+
# Copyright (C) 2001-2023 NLTK Project
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
from itertools import chain
|
10 |
+
|
11 |
+
from nltk.internals import Counter
|
12 |
+
|
13 |
+
|
14 |
+
class FStructure(dict):
|
15 |
+
def safeappend(self, key, item):
|
16 |
+
"""
|
17 |
+
Append 'item' to the list at 'key'. If no list exists for 'key', then
|
18 |
+
construct one.
|
19 |
+
"""
|
20 |
+
if key not in self:
|
21 |
+
self[key] = []
|
22 |
+
self[key].append(item)
|
23 |
+
|
24 |
+
def __setitem__(self, key, value):
|
25 |
+
dict.__setitem__(self, key.lower(), value)
|
26 |
+
|
27 |
+
def __getitem__(self, key):
|
28 |
+
return dict.__getitem__(self, key.lower())
|
29 |
+
|
30 |
+
def __contains__(self, key):
|
31 |
+
return dict.__contains__(self, key.lower())
|
32 |
+
|
33 |
+
def to_glueformula_list(self, glue_dict):
|
34 |
+
depgraph = self.to_depgraph()
|
35 |
+
return glue_dict.to_glueformula_list(depgraph)
|
36 |
+
|
37 |
+
def to_depgraph(self, rel=None):
|
38 |
+
from nltk.parse.dependencygraph import DependencyGraph
|
39 |
+
|
40 |
+
depgraph = DependencyGraph()
|
41 |
+
nodes = depgraph.nodes
|
42 |
+
|
43 |
+
self._to_depgraph(nodes, 0, "ROOT")
|
44 |
+
|
45 |
+
# Add all the dependencies for all the nodes
|
46 |
+
for address, node in nodes.items():
|
47 |
+
for n2 in (n for n in nodes.values() if n["rel"] != "TOP"):
|
48 |
+
if n2["head"] == address:
|
49 |
+
relation = n2["rel"]
|
50 |
+
node["deps"].setdefault(relation, [])
|
51 |
+
node["deps"][relation].append(n2["address"])
|
52 |
+
|
53 |
+
depgraph.root = nodes[1]
|
54 |
+
|
55 |
+
return depgraph
|
56 |
+
|
57 |
+
def _to_depgraph(self, nodes, head, rel):
|
58 |
+
index = len(nodes)
|
59 |
+
|
60 |
+
nodes[index].update(
|
61 |
+
{
|
62 |
+
"address": index,
|
63 |
+
"word": self.pred[0],
|
64 |
+
"tag": self.pred[1],
|
65 |
+
"head": head,
|
66 |
+
"rel": rel,
|
67 |
+
}
|
68 |
+
)
|
69 |
+
|
70 |
+
for feature in sorted(self):
|
71 |
+
for item in sorted(self[feature]):
|
72 |
+
if isinstance(item, FStructure):
|
73 |
+
item._to_depgraph(nodes, index, feature)
|
74 |
+
elif isinstance(item, tuple):
|
75 |
+
new_index = len(nodes)
|
76 |
+
nodes[new_index].update(
|
77 |
+
{
|
78 |
+
"address": new_index,
|
79 |
+
"word": item[0],
|
80 |
+
"tag": item[1],
|
81 |
+
"head": index,
|
82 |
+
"rel": feature,
|
83 |
+
}
|
84 |
+
)
|
85 |
+
elif isinstance(item, list):
|
86 |
+
for n in item:
|
87 |
+
n._to_depgraph(nodes, index, feature)
|
88 |
+
else:
|
89 |
+
raise Exception(
|
90 |
+
"feature %s is not an FStruct, a list, or a tuple" % feature
|
91 |
+
)
|
92 |
+
|
93 |
+
@staticmethod
|
94 |
+
def read_depgraph(depgraph):
|
95 |
+
return FStructure._read_depgraph(depgraph.root, depgraph)
|
96 |
+
|
97 |
+
@staticmethod
|
98 |
+
def _read_depgraph(node, depgraph, label_counter=None, parent=None):
|
99 |
+
if not label_counter:
|
100 |
+
label_counter = Counter()
|
101 |
+
|
102 |
+
if node["rel"].lower() in ["spec", "punct"]:
|
103 |
+
# the value of a 'spec' entry is a word, not an FStructure
|
104 |
+
return (node["word"], node["tag"])
|
105 |
+
|
106 |
+
else:
|
107 |
+
fstruct = FStructure()
|
108 |
+
fstruct.pred = None
|
109 |
+
fstruct.label = FStructure._make_label(label_counter.get())
|
110 |
+
|
111 |
+
fstruct.parent = parent
|
112 |
+
|
113 |
+
word, tag = node["word"], node["tag"]
|
114 |
+
if tag[:2] == "VB":
|
115 |
+
if tag[2:3] == "D":
|
116 |
+
fstruct.safeappend("tense", ("PAST", "tense"))
|
117 |
+
fstruct.pred = (word, tag[:2])
|
118 |
+
|
119 |
+
if not fstruct.pred:
|
120 |
+
fstruct.pred = (word, tag)
|
121 |
+
|
122 |
+
children = [
|
123 |
+
depgraph.nodes[idx]
|
124 |
+
for idx in chain.from_iterable(node["deps"].values())
|
125 |
+
]
|
126 |
+
for child in children:
|
127 |
+
fstruct.safeappend(
|
128 |
+
child["rel"],
|
129 |
+
FStructure._read_depgraph(child, depgraph, label_counter, fstruct),
|
130 |
+
)
|
131 |
+
|
132 |
+
return fstruct
|
133 |
+
|
134 |
+
@staticmethod
|
135 |
+
def _make_label(value):
|
136 |
+
"""
|
137 |
+
Pick an alphabetic character as identifier for an entity in the model.
|
138 |
+
|
139 |
+
:param value: where to index into the list of characters
|
140 |
+
:type value: int
|
141 |
+
"""
|
142 |
+
letter = [
|
143 |
+
"f",
|
144 |
+
"g",
|
145 |
+
"h",
|
146 |
+
"i",
|
147 |
+
"j",
|
148 |
+
"k",
|
149 |
+
"l",
|
150 |
+
"m",
|
151 |
+
"n",
|
152 |
+
"o",
|
153 |
+
"p",
|
154 |
+
"q",
|
155 |
+
"r",
|
156 |
+
"s",
|
157 |
+
"t",
|
158 |
+
"u",
|
159 |
+
"v",
|
160 |
+
"w",
|
161 |
+
"x",
|
162 |
+
"y",
|
163 |
+
"z",
|
164 |
+
"a",
|
165 |
+
"b",
|
166 |
+
"c",
|
167 |
+
"d",
|
168 |
+
"e",
|
169 |
+
][value - 1]
|
170 |
+
num = int(value) // 26
|
171 |
+
if num > 0:
|
172 |
+
return letter + str(num)
|
173 |
+
else:
|
174 |
+
return letter
|
175 |
+
|
176 |
+
def __repr__(self):
|
177 |
+
return self.__str__().replace("\n", "")
|
178 |
+
|
179 |
+
def __str__(self):
|
180 |
+
return self.pretty_format()
|
181 |
+
|
182 |
+
def pretty_format(self, indent=3):
|
183 |
+
try:
|
184 |
+
accum = "%s:[" % self.label
|
185 |
+
except NameError:
|
186 |
+
accum = "["
|
187 |
+
try:
|
188 |
+
accum += "pred '%s'" % (self.pred[0])
|
189 |
+
except NameError:
|
190 |
+
pass
|
191 |
+
|
192 |
+
for feature in sorted(self):
|
193 |
+
for item in self[feature]:
|
194 |
+
if isinstance(item, FStructure):
|
195 |
+
next_indent = indent + len(feature) + 3 + len(self.label)
|
196 |
+
accum += "\n{}{} {}".format(
|
197 |
+
" " * (indent),
|
198 |
+
feature,
|
199 |
+
item.pretty_format(next_indent),
|
200 |
+
)
|
201 |
+
elif isinstance(item, tuple):
|
202 |
+
accum += "\n{}{} '{}'".format(" " * (indent), feature, item[0])
|
203 |
+
elif isinstance(item, list):
|
204 |
+
accum += "\n{}{} {{{}}}".format(
|
205 |
+
" " * (indent),
|
206 |
+
feature,
|
207 |
+
("\n%s" % (" " * (indent + len(feature) + 2))).join(item),
|
208 |
+
)
|
209 |
+
else: # ERROR
|
210 |
+
raise Exception(
|
211 |
+
"feature %s is not an FStruct, a list, or a tuple" % feature
|
212 |
+
)
|
213 |
+
return accum + "]"
|
214 |
+
|
215 |
+
|
216 |
+
def demo_read_depgraph():
|
217 |
+
from nltk.parse.dependencygraph import DependencyGraph
|
218 |
+
|
219 |
+
dg1 = DependencyGraph(
|
220 |
+
"""\
|
221 |
+
Esso NNP 2 SUB
|
222 |
+
said VBD 0 ROOT
|
223 |
+
the DT 5 NMOD
|
224 |
+
Whiting NNP 5 NMOD
|
225 |
+
field NN 6 SUB
|
226 |
+
started VBD 2 VMOD
|
227 |
+
production NN 6 OBJ
|
228 |
+
Tuesday NNP 6 VMOD
|
229 |
+
"""
|
230 |
+
)
|
231 |
+
dg2 = DependencyGraph(
|
232 |
+
"""\
|
233 |
+
John NNP 2 SUB
|
234 |
+
sees VBP 0 ROOT
|
235 |
+
Mary NNP 2 OBJ
|
236 |
+
"""
|
237 |
+
)
|
238 |
+
dg3 = DependencyGraph(
|
239 |
+
"""\
|
240 |
+
a DT 2 SPEC
|
241 |
+
man NN 3 SUBJ
|
242 |
+
walks VB 0 ROOT
|
243 |
+
"""
|
244 |
+
)
|
245 |
+
dg4 = DependencyGraph(
|
246 |
+
"""\
|
247 |
+
every DT 2 SPEC
|
248 |
+
girl NN 3 SUBJ
|
249 |
+
chases VB 0 ROOT
|
250 |
+
a DT 5 SPEC
|
251 |
+
dog NN 3 OBJ
|
252 |
+
"""
|
253 |
+
)
|
254 |
+
|
255 |
+
depgraphs = [dg1, dg2, dg3, dg4]
|
256 |
+
for dg in depgraphs:
|
257 |
+
print(FStructure.read_depgraph(dg))
|
258 |
+
|
259 |
+
|
260 |
+
if __name__ == "__main__":
|
261 |
+
demo_read_depgraph()
|
venv/lib/python3.10/site-packages/nltk/sem/linearlogic.py
ADDED
@@ -0,0 +1,482 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Linear Logic
|
2 |
+
#
|
3 |
+
# Author: Dan Garrette <[email protected]>
|
4 |
+
#
|
5 |
+
# Copyright (C) 2001-2023 NLTK Project
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
from nltk.internals import Counter
|
10 |
+
from nltk.sem.logic import APP, LogicParser
|
11 |
+
|
12 |
+
_counter = Counter()
|
13 |
+
|
14 |
+
|
15 |
+
class Tokens:
|
16 |
+
# Punctuation
|
17 |
+
OPEN = "("
|
18 |
+
CLOSE = ")"
|
19 |
+
|
20 |
+
# Operations
|
21 |
+
IMP = "-o"
|
22 |
+
|
23 |
+
PUNCT = [OPEN, CLOSE]
|
24 |
+
TOKENS = PUNCT + [IMP]
|
25 |
+
|
26 |
+
|
27 |
+
class LinearLogicParser(LogicParser):
|
28 |
+
"""A linear logic expression parser."""
|
29 |
+
|
30 |
+
def __init__(self):
|
31 |
+
LogicParser.__init__(self)
|
32 |
+
|
33 |
+
self.operator_precedence = {APP: 1, Tokens.IMP: 2, None: 3}
|
34 |
+
self.right_associated_operations += [Tokens.IMP]
|
35 |
+
|
36 |
+
def get_all_symbols(self):
|
37 |
+
return Tokens.TOKENS
|
38 |
+
|
39 |
+
def handle(self, tok, context):
|
40 |
+
if tok not in Tokens.TOKENS:
|
41 |
+
return self.handle_variable(tok, context)
|
42 |
+
elif tok == Tokens.OPEN:
|
43 |
+
return self.handle_open(tok, context)
|
44 |
+
|
45 |
+
def get_BooleanExpression_factory(self, tok):
|
46 |
+
if tok == Tokens.IMP:
|
47 |
+
return ImpExpression
|
48 |
+
else:
|
49 |
+
return None
|
50 |
+
|
51 |
+
def make_BooleanExpression(self, factory, first, second):
|
52 |
+
return factory(first, second)
|
53 |
+
|
54 |
+
def attempt_ApplicationExpression(self, expression, context):
|
55 |
+
"""Attempt to make an application expression. If the next tokens
|
56 |
+
are an argument in parens, then the argument expression is a
|
57 |
+
function being applied to the arguments. Otherwise, return the
|
58 |
+
argument expression."""
|
59 |
+
if self.has_priority(APP, context):
|
60 |
+
if self.inRange(0) and self.token(0) == Tokens.OPEN:
|
61 |
+
self.token() # swallow then open paren
|
62 |
+
argument = self.process_next_expression(APP)
|
63 |
+
self.assertNextToken(Tokens.CLOSE)
|
64 |
+
expression = ApplicationExpression(expression, argument, None)
|
65 |
+
return expression
|
66 |
+
|
67 |
+
def make_VariableExpression(self, name):
|
68 |
+
if name[0].isupper():
|
69 |
+
return VariableExpression(name)
|
70 |
+
else:
|
71 |
+
return ConstantExpression(name)
|
72 |
+
|
73 |
+
|
74 |
+
class Expression:
|
75 |
+
|
76 |
+
_linear_logic_parser = LinearLogicParser()
|
77 |
+
|
78 |
+
@classmethod
|
79 |
+
def fromstring(cls, s):
|
80 |
+
return cls._linear_logic_parser.parse(s)
|
81 |
+
|
82 |
+
def applyto(self, other, other_indices=None):
|
83 |
+
return ApplicationExpression(self, other, other_indices)
|
84 |
+
|
85 |
+
def __call__(self, other):
|
86 |
+
return self.applyto(other)
|
87 |
+
|
88 |
+
def __repr__(self):
|
89 |
+
return f"<{self.__class__.__name__} {self}>"
|
90 |
+
|
91 |
+
|
92 |
+
class AtomicExpression(Expression):
|
93 |
+
def __init__(self, name, dependencies=None):
|
94 |
+
"""
|
95 |
+
:param name: str for the constant name
|
96 |
+
:param dependencies: list of int for the indices on which this atom is dependent
|
97 |
+
"""
|
98 |
+
assert isinstance(name, str)
|
99 |
+
self.name = name
|
100 |
+
|
101 |
+
if not dependencies:
|
102 |
+
dependencies = []
|
103 |
+
self.dependencies = dependencies
|
104 |
+
|
105 |
+
def simplify(self, bindings=None):
|
106 |
+
"""
|
107 |
+
If 'self' is bound by 'bindings', return the atomic to which it is bound.
|
108 |
+
Otherwise, return self.
|
109 |
+
|
110 |
+
:param bindings: ``BindingDict`` A dictionary of bindings used to simplify
|
111 |
+
:return: ``AtomicExpression``
|
112 |
+
"""
|
113 |
+
if bindings and self in bindings:
|
114 |
+
return bindings[self]
|
115 |
+
else:
|
116 |
+
return self
|
117 |
+
|
118 |
+
def compile_pos(self, index_counter, glueFormulaFactory):
|
119 |
+
"""
|
120 |
+
From Iddo Lev's PhD Dissertation p108-109
|
121 |
+
|
122 |
+
:param index_counter: ``Counter`` for unique indices
|
123 |
+
:param glueFormulaFactory: ``GlueFormula`` for creating new glue formulas
|
124 |
+
:return: (``Expression``,set) for the compiled linear logic and any newly created glue formulas
|
125 |
+
"""
|
126 |
+
self.dependencies = []
|
127 |
+
return (self, [])
|
128 |
+
|
129 |
+
def compile_neg(self, index_counter, glueFormulaFactory):
|
130 |
+
"""
|
131 |
+
From Iddo Lev's PhD Dissertation p108-109
|
132 |
+
|
133 |
+
:param index_counter: ``Counter`` for unique indices
|
134 |
+
:param glueFormulaFactory: ``GlueFormula`` for creating new glue formulas
|
135 |
+
:return: (``Expression``,set) for the compiled linear logic and any newly created glue formulas
|
136 |
+
"""
|
137 |
+
self.dependencies = []
|
138 |
+
return (self, [])
|
139 |
+
|
140 |
+
def initialize_labels(self, fstruct):
|
141 |
+
self.name = fstruct.initialize_label(self.name.lower())
|
142 |
+
|
143 |
+
def __eq__(self, other):
|
144 |
+
return self.__class__ == other.__class__ and self.name == other.name
|
145 |
+
|
146 |
+
def __ne__(self, other):
|
147 |
+
return not self == other
|
148 |
+
|
149 |
+
def __str__(self):
|
150 |
+
accum = self.name
|
151 |
+
if self.dependencies:
|
152 |
+
accum += "%s" % self.dependencies
|
153 |
+
return accum
|
154 |
+
|
155 |
+
def __hash__(self):
|
156 |
+
return hash(self.name)
|
157 |
+
|
158 |
+
|
159 |
+
class ConstantExpression(AtomicExpression):
|
160 |
+
def unify(self, other, bindings):
|
161 |
+
"""
|
162 |
+
If 'other' is a constant, then it must be equal to 'self'. If 'other' is a variable,
|
163 |
+
then it must not be bound to anything other than 'self'.
|
164 |
+
|
165 |
+
:param other: ``Expression``
|
166 |
+
:param bindings: ``BindingDict`` A dictionary of all current bindings
|
167 |
+
:return: ``BindingDict`` A new combined dictionary of of 'bindings' and any new binding
|
168 |
+
:raise UnificationException: If 'self' and 'other' cannot be unified in the context of 'bindings'
|
169 |
+
"""
|
170 |
+
assert isinstance(other, Expression)
|
171 |
+
if isinstance(other, VariableExpression):
|
172 |
+
try:
|
173 |
+
return bindings + BindingDict([(other, self)])
|
174 |
+
except VariableBindingException:
|
175 |
+
pass
|
176 |
+
elif self == other:
|
177 |
+
return bindings
|
178 |
+
raise UnificationException(self, other, bindings)
|
179 |
+
|
180 |
+
|
181 |
+
class VariableExpression(AtomicExpression):
|
182 |
+
def unify(self, other, bindings):
|
183 |
+
"""
|
184 |
+
'self' must not be bound to anything other than 'other'.
|
185 |
+
|
186 |
+
:param other: ``Expression``
|
187 |
+
:param bindings: ``BindingDict`` A dictionary of all current bindings
|
188 |
+
:return: ``BindingDict`` A new combined dictionary of of 'bindings' and the new binding
|
189 |
+
:raise UnificationException: If 'self' and 'other' cannot be unified in the context of 'bindings'
|
190 |
+
"""
|
191 |
+
assert isinstance(other, Expression)
|
192 |
+
try:
|
193 |
+
if self == other:
|
194 |
+
return bindings
|
195 |
+
else:
|
196 |
+
return bindings + BindingDict([(self, other)])
|
197 |
+
except VariableBindingException as e:
|
198 |
+
raise UnificationException(self, other, bindings) from e
|
199 |
+
|
200 |
+
|
201 |
+
class ImpExpression(Expression):
|
202 |
+
def __init__(self, antecedent, consequent):
|
203 |
+
"""
|
204 |
+
:param antecedent: ``Expression`` for the antecedent
|
205 |
+
:param consequent: ``Expression`` for the consequent
|
206 |
+
"""
|
207 |
+
assert isinstance(antecedent, Expression)
|
208 |
+
assert isinstance(consequent, Expression)
|
209 |
+
self.antecedent = antecedent
|
210 |
+
self.consequent = consequent
|
211 |
+
|
212 |
+
def simplify(self, bindings=None):
|
213 |
+
return self.__class__(
|
214 |
+
self.antecedent.simplify(bindings), self.consequent.simplify(bindings)
|
215 |
+
)
|
216 |
+
|
217 |
+
def unify(self, other, bindings):
|
218 |
+
"""
|
219 |
+
Both the antecedent and consequent of 'self' and 'other' must unify.
|
220 |
+
|
221 |
+
:param other: ``ImpExpression``
|
222 |
+
:param bindings: ``BindingDict`` A dictionary of all current bindings
|
223 |
+
:return: ``BindingDict`` A new combined dictionary of of 'bindings' and any new bindings
|
224 |
+
:raise UnificationException: If 'self' and 'other' cannot be unified in the context of 'bindings'
|
225 |
+
"""
|
226 |
+
assert isinstance(other, ImpExpression)
|
227 |
+
try:
|
228 |
+
return (
|
229 |
+
bindings
|
230 |
+
+ self.antecedent.unify(other.antecedent, bindings)
|
231 |
+
+ self.consequent.unify(other.consequent, bindings)
|
232 |
+
)
|
233 |
+
except VariableBindingException as e:
|
234 |
+
raise UnificationException(self, other, bindings) from e
|
235 |
+
|
236 |
+
def compile_pos(self, index_counter, glueFormulaFactory):
|
237 |
+
"""
|
238 |
+
From Iddo Lev's PhD Dissertation p108-109
|
239 |
+
|
240 |
+
:param index_counter: ``Counter`` for unique indices
|
241 |
+
:param glueFormulaFactory: ``GlueFormula`` for creating new glue formulas
|
242 |
+
:return: (``Expression``,set) for the compiled linear logic and any newly created glue formulas
|
243 |
+
"""
|
244 |
+
(a, a_new) = self.antecedent.compile_neg(index_counter, glueFormulaFactory)
|
245 |
+
(c, c_new) = self.consequent.compile_pos(index_counter, glueFormulaFactory)
|
246 |
+
return (ImpExpression(a, c), a_new + c_new)
|
247 |
+
|
248 |
+
def compile_neg(self, index_counter, glueFormulaFactory):
|
249 |
+
"""
|
250 |
+
From Iddo Lev's PhD Dissertation p108-109
|
251 |
+
|
252 |
+
:param index_counter: ``Counter`` for unique indices
|
253 |
+
:param glueFormulaFactory: ``GlueFormula`` for creating new glue formulas
|
254 |
+
:return: (``Expression``,list of ``GlueFormula``) for the compiled linear logic and any newly created glue formulas
|
255 |
+
"""
|
256 |
+
(a, a_new) = self.antecedent.compile_pos(index_counter, glueFormulaFactory)
|
257 |
+
(c, c_new) = self.consequent.compile_neg(index_counter, glueFormulaFactory)
|
258 |
+
fresh_index = index_counter.get()
|
259 |
+
c.dependencies.append(fresh_index)
|
260 |
+
new_v = glueFormulaFactory("v%s" % fresh_index, a, {fresh_index})
|
261 |
+
return (c, a_new + c_new + [new_v])
|
262 |
+
|
263 |
+
def initialize_labels(self, fstruct):
|
264 |
+
self.antecedent.initialize_labels(fstruct)
|
265 |
+
self.consequent.initialize_labels(fstruct)
|
266 |
+
|
267 |
+
def __eq__(self, other):
|
268 |
+
return (
|
269 |
+
self.__class__ == other.__class__
|
270 |
+
and self.antecedent == other.antecedent
|
271 |
+
and self.consequent == other.consequent
|
272 |
+
)
|
273 |
+
|
274 |
+
def __ne__(self, other):
|
275 |
+
return not self == other
|
276 |
+
|
277 |
+
def __str__(self):
|
278 |
+
return "{}{} {} {}{}".format(
|
279 |
+
Tokens.OPEN,
|
280 |
+
self.antecedent,
|
281 |
+
Tokens.IMP,
|
282 |
+
self.consequent,
|
283 |
+
Tokens.CLOSE,
|
284 |
+
)
|
285 |
+
|
286 |
+
def __hash__(self):
|
287 |
+
return hash(f"{hash(self.antecedent)}{Tokens.IMP}{hash(self.consequent)}")
|
288 |
+
|
289 |
+
|
290 |
+
class ApplicationExpression(Expression):
|
291 |
+
def __init__(self, function, argument, argument_indices=None):
|
292 |
+
"""
|
293 |
+
:param function: ``Expression`` for the function
|
294 |
+
:param argument: ``Expression`` for the argument
|
295 |
+
:param argument_indices: set for the indices of the glue formula from which the argument came
|
296 |
+
:raise LinearLogicApplicationException: If 'function' cannot be applied to 'argument' given 'argument_indices'.
|
297 |
+
"""
|
298 |
+
function_simp = function.simplify()
|
299 |
+
argument_simp = argument.simplify()
|
300 |
+
|
301 |
+
assert isinstance(function_simp, ImpExpression)
|
302 |
+
assert isinstance(argument_simp, Expression)
|
303 |
+
|
304 |
+
bindings = BindingDict()
|
305 |
+
|
306 |
+
try:
|
307 |
+
if isinstance(function, ApplicationExpression):
|
308 |
+
bindings += function.bindings
|
309 |
+
if isinstance(argument, ApplicationExpression):
|
310 |
+
bindings += argument.bindings
|
311 |
+
bindings += function_simp.antecedent.unify(argument_simp, bindings)
|
312 |
+
except UnificationException as e:
|
313 |
+
raise LinearLogicApplicationException(
|
314 |
+
f"Cannot apply {function_simp} to {argument_simp}. {e}"
|
315 |
+
) from e
|
316 |
+
|
317 |
+
# If you are running it on complied premises, more conditions apply
|
318 |
+
if argument_indices:
|
319 |
+
# A.dependencies of (A -o (B -o C)) must be a proper subset of argument_indices
|
320 |
+
if not set(function_simp.antecedent.dependencies) < argument_indices:
|
321 |
+
raise LinearLogicApplicationException(
|
322 |
+
"Dependencies unfulfilled when attempting to apply Linear Logic formula %s to %s"
|
323 |
+
% (function_simp, argument_simp)
|
324 |
+
)
|
325 |
+
if set(function_simp.antecedent.dependencies) == argument_indices:
|
326 |
+
raise LinearLogicApplicationException(
|
327 |
+
"Dependencies not a proper subset of indices when attempting to apply Linear Logic formula %s to %s"
|
328 |
+
% (function_simp, argument_simp)
|
329 |
+
)
|
330 |
+
|
331 |
+
self.function = function
|
332 |
+
self.argument = argument
|
333 |
+
self.bindings = bindings
|
334 |
+
|
335 |
+
def simplify(self, bindings=None):
|
336 |
+
"""
|
337 |
+
Since function is an implication, return its consequent. There should be
|
338 |
+
no need to check that the application is valid since the checking is done
|
339 |
+
by the constructor.
|
340 |
+
|
341 |
+
:param bindings: ``BindingDict`` A dictionary of bindings used to simplify
|
342 |
+
:return: ``Expression``
|
343 |
+
"""
|
344 |
+
if not bindings:
|
345 |
+
bindings = self.bindings
|
346 |
+
|
347 |
+
return self.function.simplify(bindings).consequent
|
348 |
+
|
349 |
+
def __eq__(self, other):
|
350 |
+
return (
|
351 |
+
self.__class__ == other.__class__
|
352 |
+
and self.function == other.function
|
353 |
+
and self.argument == other.argument
|
354 |
+
)
|
355 |
+
|
356 |
+
def __ne__(self, other):
|
357 |
+
return not self == other
|
358 |
+
|
359 |
+
def __str__(self):
|
360 |
+
return "%s" % self.function + Tokens.OPEN + "%s" % self.argument + Tokens.CLOSE
|
361 |
+
|
362 |
+
def __hash__(self):
|
363 |
+
return hash(f"{hash(self.antecedent)}{Tokens.OPEN}{hash(self.consequent)}")
|
364 |
+
|
365 |
+
|
366 |
+
class BindingDict:
|
367 |
+
def __init__(self, bindings=None):
|
368 |
+
"""
|
369 |
+
:param bindings:
|
370 |
+
list [(``VariableExpression``, ``AtomicExpression``)] to initialize the dictionary
|
371 |
+
dict {``VariableExpression``: ``AtomicExpression``} to initialize the dictionary
|
372 |
+
"""
|
373 |
+
self.d = {}
|
374 |
+
|
375 |
+
if isinstance(bindings, dict):
|
376 |
+
bindings = bindings.items()
|
377 |
+
|
378 |
+
if bindings:
|
379 |
+
for (v, b) in bindings:
|
380 |
+
self[v] = b
|
381 |
+
|
382 |
+
def __setitem__(self, variable, binding):
|
383 |
+
"""
|
384 |
+
A binding is consistent with the dict if its variable is not already bound, OR if its
|
385 |
+
variable is already bound to its argument.
|
386 |
+
|
387 |
+
:param variable: ``VariableExpression`` The variable bind
|
388 |
+
:param binding: ``Expression`` The expression to which 'variable' should be bound
|
389 |
+
:raise VariableBindingException: If the variable cannot be bound in this dictionary
|
390 |
+
"""
|
391 |
+
assert isinstance(variable, VariableExpression)
|
392 |
+
assert isinstance(binding, Expression)
|
393 |
+
|
394 |
+
assert variable != binding
|
395 |
+
|
396 |
+
existing = self.d.get(variable, None)
|
397 |
+
|
398 |
+
if not existing or binding == existing:
|
399 |
+
self.d[variable] = binding
|
400 |
+
else:
|
401 |
+
raise VariableBindingException(
|
402 |
+
"Variable %s already bound to another value" % (variable)
|
403 |
+
)
|
404 |
+
|
405 |
+
def __getitem__(self, variable):
|
406 |
+
"""
|
407 |
+
Return the expression to which 'variable' is bound
|
408 |
+
"""
|
409 |
+
assert isinstance(variable, VariableExpression)
|
410 |
+
|
411 |
+
intermediate = self.d[variable]
|
412 |
+
while intermediate:
|
413 |
+
try:
|
414 |
+
intermediate = self.d[intermediate]
|
415 |
+
except KeyError:
|
416 |
+
return intermediate
|
417 |
+
|
418 |
+
def __contains__(self, item):
|
419 |
+
return item in self.d
|
420 |
+
|
421 |
+
def __add__(self, other):
|
422 |
+
"""
|
423 |
+
:param other: ``BindingDict`` The dict with which to combine self
|
424 |
+
:return: ``BindingDict`` A new dict containing all the elements of both parameters
|
425 |
+
:raise VariableBindingException: If the parameter dictionaries are not consistent with each other
|
426 |
+
"""
|
427 |
+
try:
|
428 |
+
combined = BindingDict()
|
429 |
+
for v in self.d:
|
430 |
+
combined[v] = self.d[v]
|
431 |
+
for v in other.d:
|
432 |
+
combined[v] = other.d[v]
|
433 |
+
return combined
|
434 |
+
except VariableBindingException as e:
|
435 |
+
raise VariableBindingException(
|
436 |
+
"Attempting to add two contradicting"
|
437 |
+
" VariableBindingsLists: %s, %s" % (self, other)
|
438 |
+
) from e
|
439 |
+
|
440 |
+
def __ne__(self, other):
|
441 |
+
return not self == other
|
442 |
+
|
443 |
+
def __eq__(self, other):
|
444 |
+
if not isinstance(other, BindingDict):
|
445 |
+
raise TypeError
|
446 |
+
return self.d == other.d
|
447 |
+
|
448 |
+
def __str__(self):
|
449 |
+
return "{" + ", ".join(f"{v}: {self.d[v]}" for v in sorted(self.d.keys())) + "}"
|
450 |
+
|
451 |
+
def __repr__(self):
|
452 |
+
return "BindingDict: %s" % self
|
453 |
+
|
454 |
+
|
455 |
+
class VariableBindingException(Exception):
|
456 |
+
pass
|
457 |
+
|
458 |
+
|
459 |
+
class UnificationException(Exception):
|
460 |
+
def __init__(self, a, b, bindings):
|
461 |
+
Exception.__init__(self, f"Cannot unify {a} with {b} given {bindings}")
|
462 |
+
|
463 |
+
|
464 |
+
class LinearLogicApplicationException(Exception):
|
465 |
+
pass
|
466 |
+
|
467 |
+
|
468 |
+
def demo():
|
469 |
+
lexpr = Expression.fromstring
|
470 |
+
|
471 |
+
print(lexpr(r"f"))
|
472 |
+
print(lexpr(r"(g -o f)"))
|
473 |
+
print(lexpr(r"((g -o G) -o G)"))
|
474 |
+
print(lexpr(r"g -o h -o f"))
|
475 |
+
print(lexpr(r"(g -o f)(g)").simplify())
|
476 |
+
print(lexpr(r"(H -o f)(g)").simplify())
|
477 |
+
print(lexpr(r"((g -o G) -o G)((g -o f))").simplify())
|
478 |
+
print(lexpr(r"(H -o H)((g -o f))").simplify())
|
479 |
+
|
480 |
+
|
481 |
+
if __name__ == "__main__":
|
482 |
+
demo()
|