Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step20/zero/11.attention.query_key_value.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step20/zero/13.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step20/zero/13.mlp.dense_4h_to_h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step20/zero/13.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
- ckpts/universal/global_step20/zero/17.mlp.dense_h_to_4h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step20/zero/17.mlp.dense_h_to_4h.weight/fp32.pt +3 -0
- ckpts/universal/global_step20/zero/23.post_attention_layernorm.weight/exp_avg.pt +3 -0
- venv/lib/python3.10/site-packages/torch/_lazy/__pycache__/closure.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_lazy/__pycache__/computation.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_lazy/__pycache__/config.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_lazy/__pycache__/debug.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_lazy/__pycache__/device_context.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_lazy/__pycache__/extract_compiled_graph.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_lazy/__pycache__/ir_cache.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_lazy/__pycache__/metrics.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_lazy/__pycache__/tensor_factory_functions.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/_lazy/__pycache__/ts_backend.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/compiler/__init__.py +193 -0
- venv/lib/python3.10/site-packages/torch/compiler/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/cuda/_memory_viz.py +626 -0
- venv/lib/python3.10/site-packages/torch/cuda/_sanitizer.py +622 -0
- venv/lib/python3.10/site-packages/torch/cuda/_utils.py +38 -0
- venv/lib/python3.10/site-packages/torch/cuda/comm.py +18 -0
- venv/lib/python3.10/site-packages/torch/cuda/error.py +0 -0
- venv/lib/python3.10/site-packages/torch/cuda/graphs.py +479 -0
- venv/lib/python3.10/site-packages/torch/cuda/nccl.py +137 -0
- venv/lib/python3.10/site-packages/torch/cuda/nvtx.py +91 -0
- venv/lib/python3.10/site-packages/torch/cuda/random.py +179 -0
- venv/lib/python3.10/site-packages/torch/cuda/sparse.py +1 -0
- venv/lib/python3.10/site-packages/torch/cuda/streams.py +241 -0
- venv/lib/python3.10/site-packages/torch/func/__init__.py +13 -0
- venv/lib/python3.10/site-packages/torch/func/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/CudaIPCTypes.h +143 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/DataLoader.h +6 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/DynamicTypes.h +36 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/Export.h +9 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/Layout.h +25 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/THConcat.h +19 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/THP.h +30 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/FunctionsManual.h +1101 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/InferenceMode.h +10 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/anomaly_mode.h +71 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/autograd.h +104 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/autograd_not_implemented_fallback.h +32 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/cpp_hook.h +29 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/edge.h +56 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/engine.h +288 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/forward_grad.h +210 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/function.h +763 -0
- venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/function_hook.h +64 -0
ckpts/universal/global_step20/zero/11.attention.query_key_value.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:861f15e14dc04a7e84926a0caf18337fbeffc2cc167d4fca9610d9619899c947
|
3 |
+
size 50332828
|
ckpts/universal/global_step20/zero/13.mlp.dense_4h_to_h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cbea918a3e344b6f7a0bca5e70e073611db7bfb91059b0dad28a81a952efe42d
|
3 |
+
size 33555612
|
ckpts/universal/global_step20/zero/13.mlp.dense_4h_to_h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba24375d7fb0adf8833aaf79ba2a69690d2c66b2dfc257ac9151c0e677850f04
|
3 |
+
size 33555627
|
ckpts/universal/global_step20/zero/13.mlp.dense_4h_to_h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74c4ebd27d77d87abca885dff7031a2273359dd3198082127d479a3f2b0365ca
|
3 |
+
size 33555533
|
ckpts/universal/global_step20/zero/17.mlp.dense_h_to_4h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e952efb7ae2c3eadd6e8d013ea7b6d6100c9393b15e218af3b81e4dd887df627
|
3 |
+
size 33555627
|
ckpts/universal/global_step20/zero/17.mlp.dense_h_to_4h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b24e005bcf8f9f0e9c553d14c2008883967df3630bed2f8a2c199c91873289c0
|
3 |
+
size 33555533
|
ckpts/universal/global_step20/zero/23.post_attention_layernorm.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10cd68d418628369abdc6c49febd60c7d206d80850697acda63430f930e3e1cf
|
3 |
+
size 9372
|
venv/lib/python3.10/site-packages/torch/_lazy/__pycache__/closure.cpython-310.pyc
ADDED
Binary file (5.3 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_lazy/__pycache__/computation.cpython-310.pyc
ADDED
Binary file (1.23 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_lazy/__pycache__/config.cpython-310.pyc
ADDED
Binary file (818 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/_lazy/__pycache__/debug.cpython-310.pyc
ADDED
Binary file (946 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/_lazy/__pycache__/device_context.cpython-310.pyc
ADDED
Binary file (1.03 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_lazy/__pycache__/extract_compiled_graph.cpython-310.pyc
ADDED
Binary file (7.22 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/_lazy/__pycache__/ir_cache.cpython-310.pyc
ADDED
Binary file (647 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/_lazy/__pycache__/metrics.cpython-310.pyc
ADDED
Binary file (986 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/_lazy/__pycache__/tensor_factory_functions.cpython-310.pyc
ADDED
Binary file (732 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/_lazy/__pycache__/ts_backend.cpython-310.pyc
ADDED
Binary file (409 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/compiler/__init__.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
__all__ = [
|
5 |
+
"compile",
|
6 |
+
"assume_constant_result",
|
7 |
+
"reset",
|
8 |
+
"allow_in_graph",
|
9 |
+
"list_backends",
|
10 |
+
"disable",
|
11 |
+
"cudagraph_mark_step_begin",
|
12 |
+
"wrap_numpy",
|
13 |
+
"is_compiling",
|
14 |
+
"is_dynamo_compiling",
|
15 |
+
]
|
16 |
+
|
17 |
+
def compile(*args, **kwargs):
|
18 |
+
"""
|
19 |
+
See :func:`torch.compile` for details on the arguments for this function.
|
20 |
+
"""
|
21 |
+
return torch.compile(*args, **kwargs)
|
22 |
+
|
23 |
+
def reset() -> None:
|
24 |
+
"""
|
25 |
+
This function clears all compilation caches and restores the system to its initial state.
|
26 |
+
It is recommended to call this function, especially after using operations like `torch.compile(...)`
|
27 |
+
to ensure a clean state before another unrelated compilation
|
28 |
+
"""
|
29 |
+
import torch._dynamo
|
30 |
+
|
31 |
+
torch._dynamo.reset()
|
32 |
+
|
33 |
+
def allow_in_graph(fn):
|
34 |
+
"""
|
35 |
+
Customize which functions compilation will include in the generated graph.
|
36 |
+
It bypasses all introspection of the symbolic python code in favor of
|
37 |
+
directly writing it to the graph.
|
38 |
+
If fn is a list or tuple of callables it recursively applies :func:`allow_in_graph()`
|
39 |
+
to each function and returns a new list or tuple containing the modified functions
|
40 |
+
|
41 |
+
Args:
|
42 |
+
fn: A callable representing the function to be included in the graph.
|
43 |
+
|
44 |
+
.. warning::
|
45 |
+
|
46 |
+
:func:`allow_in_graph` skips TorchDynamo completely on the decorated function
|
47 |
+
skipping all TorchDynamo safety checks (graph breaks, handling closures, etc).
|
48 |
+
Therefore, one has to be very careful with :func:`allow_in_graph` since subsystems
|
49 |
+
like AOT Autograd rely on torchdynamo
|
50 |
+
If not careful, this could lead to soundness and really hard-to-debug issues.
|
51 |
+
|
52 |
+
"""
|
53 |
+
import torch._dynamo
|
54 |
+
|
55 |
+
return torch._dynamo.allow_in_graph(fn)
|
56 |
+
|
57 |
+
|
58 |
+
def list_backends(exclude_tags=("debug", "experimental")) -> List[str]:
|
59 |
+
"""
|
60 |
+
Return valid strings that can be passed to `torch.compile(..., backend="name")`.
|
61 |
+
|
62 |
+
Args:
|
63 |
+
exclude_tags(optional): A tuple of strings representing tags to exclude.
|
64 |
+
"""
|
65 |
+
import torch._dynamo
|
66 |
+
|
67 |
+
return torch._dynamo.list_backends(exclude_tags)
|
68 |
+
|
69 |
+
def assume_constant_result(fn):
|
70 |
+
"""
|
71 |
+
This function is used to mark a function `fn` as having a constant result.
|
72 |
+
This allows the compiler to optimize away your function
|
73 |
+
Returns The same function `fn`
|
74 |
+
|
75 |
+
Args:
|
76 |
+
fn: The function to be marked as having a constant result.
|
77 |
+
|
78 |
+
.. warning::
|
79 |
+
`assume_constant_result` can if invalid cause safety and soundness issues, :func:`torch.compile`
|
80 |
+
will not attempt to validate whether the constant assumption is true or not
|
81 |
+
|
82 |
+
"""
|
83 |
+
import torch._dynamo
|
84 |
+
|
85 |
+
return torch._dynamo.assume_constant_result(fn)
|
86 |
+
|
87 |
+
def disable(fn=None, recursive=True):
|
88 |
+
"""
|
89 |
+
This function provides both a decorator and a context manager to disable compilation on a function
|
90 |
+
It also provides the option of recursively disabling called functions
|
91 |
+
|
92 |
+
Args:
|
93 |
+
fn (optional): The function to disable
|
94 |
+
recursive (optional): A boolean value indicating whether the disabling should be recursive.
|
95 |
+
"""
|
96 |
+
import torch._dynamo
|
97 |
+
|
98 |
+
return torch._dynamo.disable(fn, recursive)
|
99 |
+
|
100 |
+
def cudagraph_mark_step_begin():
|
101 |
+
"""
|
102 |
+
Indicates that a new iteration of inference or training is about to begin.
|
103 |
+
|
104 |
+
CUDA Graphs will free tensors of a prior iteration. A new iteration is started on each invocation of
|
105 |
+
torch.compile, so long as there is not a pending backward that has not been called.
|
106 |
+
|
107 |
+
If that heuristic is wrong, such as in the following example, manually mark it with this api.
|
108 |
+
|
109 |
+
.. code-block:: python
|
110 |
+
|
111 |
+
@torch.compile(mode="reduce-overhead")
|
112 |
+
def rand_foo():
|
113 |
+
return torch.rand([4], device="cuda")
|
114 |
+
|
115 |
+
for _ in range(5):
|
116 |
+
torch.compiler.cudagraph_mark_step_begin()
|
117 |
+
rand_foo() + rand_foo()
|
118 |
+
|
119 |
+
For more details, see `torch.compiler_cudagraph_trees <https://pytorch.org/docs/main/torch.compiler_cudagraph_trees.html>`__
|
120 |
+
"""
|
121 |
+
from torch._inductor import cudagraph_trees
|
122 |
+
|
123 |
+
cudagraph_trees.mark_step_begin()
|
124 |
+
|
125 |
+
def wrap_numpy(fn):
|
126 |
+
r"""Decorator that turns a function from ``np.ndarray``s to ``np.ndarray``s into a function
|
127 |
+
from ``torch.Tensor``s to ``torch.Tensor``s.
|
128 |
+
|
129 |
+
It is designed to be used with :func:`torch.compile` with ``fullgraph=True``. It allows to
|
130 |
+
compile a NumPy function as if it were a PyTorch function. This allows you to run NumPy code
|
131 |
+
on CUDA or compute its gradients.
|
132 |
+
|
133 |
+
.. note::
|
134 |
+
|
135 |
+
This decorator does not work without :func:`torch.compile`.
|
136 |
+
|
137 |
+
Example::
|
138 |
+
|
139 |
+
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
|
140 |
+
>>> # Compile a NumPy function as a Tensor -> Tensor function
|
141 |
+
>>> @torch.compile(fullgraph=True)
|
142 |
+
>>> @torch.compiler.wrap_numpy
|
143 |
+
>>> def fn(a: np.ndarray):
|
144 |
+
>>> return np.sum(a * a)
|
145 |
+
>>> # Execute the NumPy function using Tensors on CUDA and compute the gradients
|
146 |
+
>>> x = torch.arange(6, dtype=torch.float32, device="cuda", requires_grad=True)
|
147 |
+
>>> out = fn(x)
|
148 |
+
>>> out.backward()
|
149 |
+
>>> print(x.grad)
|
150 |
+
tensor([ 0., 2., 4., 6., 8., 10.], device='cuda:0')
|
151 |
+
"""
|
152 |
+
from torch._dynamo.external_utils import wrap_numpy as wrap
|
153 |
+
return wrap(fn)
|
154 |
+
|
155 |
+
_is_compiling_flag: bool = False
|
156 |
+
|
157 |
+
def is_compiling() -> bool:
|
158 |
+
"""
|
159 |
+
Indicates whether a graph is executed/traced as part of torch.compile() or torch.export().
|
160 |
+
|
161 |
+
Note that there are 2 other related flags that should deprecated eventually:
|
162 |
+
* torch._dynamo.external_utils.is_compiling()
|
163 |
+
* torch._utils.is_compiling()
|
164 |
+
|
165 |
+
Example::
|
166 |
+
|
167 |
+
>>> def forward(self, x):
|
168 |
+
>>> if not torch.compiler.is_compiling():
|
169 |
+
>>> ...logic that is not needed in a compiled/traced graph...
|
170 |
+
>>>
|
171 |
+
>>> ...rest of the function...
|
172 |
+
"""
|
173 |
+
if torch.jit.is_scripting():
|
174 |
+
return False
|
175 |
+
else:
|
176 |
+
return _is_compiling_flag
|
177 |
+
|
178 |
+
def is_dynamo_compiling() -> bool:
|
179 |
+
"""
|
180 |
+
Indicates whether a graph is traced via TorchDynamo.
|
181 |
+
|
182 |
+
It's stricter than is_compiling() flag, as it would only be set to True when
|
183 |
+
TorchDynamo is used.
|
184 |
+
|
185 |
+
Example::
|
186 |
+
|
187 |
+
>>> def forward(self, x):
|
188 |
+
>>> if not torch.compiler.is_dynamo_compiling():
|
189 |
+
>>> ...logic that is not needed in a TorchDynamo-traced graph...
|
190 |
+
>>>
|
191 |
+
>>> ...rest of the function...
|
192 |
+
"""
|
193 |
+
return False
|
venv/lib/python3.10/site-packages/torch/compiler/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (6.99 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/cuda/_memory_viz.py
ADDED
@@ -0,0 +1,626 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
import sys
|
3 |
+
import os
|
4 |
+
import io
|
5 |
+
import subprocess
|
6 |
+
import json
|
7 |
+
from functools import lru_cache
|
8 |
+
from typing import Any
|
9 |
+
from itertools import groupby
|
10 |
+
import base64
|
11 |
+
import warnings
|
12 |
+
|
13 |
+
cache = lru_cache(None)
|
14 |
+
|
15 |
+
__all__ = ["format_flamegraph", "segments", "memory", "compare"]
|
16 |
+
|
17 |
+
def _frame_fmt(f, full_filename=False):
|
18 |
+
i = f['line']
|
19 |
+
fname = f['filename']
|
20 |
+
if not full_filename:
|
21 |
+
fname = fname.split('/')[-1]
|
22 |
+
func = f['name']
|
23 |
+
return f'{fname}:{i}:{func}'
|
24 |
+
|
25 |
+
@cache
|
26 |
+
def _frame_filter(name, filename):
|
27 |
+
omit_functions = [
|
28 |
+
"unwind::unwind",
|
29 |
+
"CapturedTraceback::gather",
|
30 |
+
"gather_with_cpp",
|
31 |
+
"_start",
|
32 |
+
"__libc_start_main",
|
33 |
+
"PyEval_",
|
34 |
+
"PyObject_",
|
35 |
+
"PyFunction_",
|
36 |
+
]
|
37 |
+
omit_filenames = [
|
38 |
+
"core/boxing",
|
39 |
+
"/Register",
|
40 |
+
"/Redispatch",
|
41 |
+
"pythonrun.c",
|
42 |
+
"Modules/main.c",
|
43 |
+
"Objects/call.c",
|
44 |
+
"Objects/methodobject.c",
|
45 |
+
"pycore_ceval.h",
|
46 |
+
"ceval.c",
|
47 |
+
"cpython/abstract.h",
|
48 |
+
]
|
49 |
+
for of in omit_functions:
|
50 |
+
if of in name:
|
51 |
+
return False
|
52 |
+
for of in omit_filenames:
|
53 |
+
if of in filename:
|
54 |
+
return False
|
55 |
+
return True
|
56 |
+
|
57 |
+
def _frames_fmt(frames, full_filename=False, reverse=False):
|
58 |
+
if reverse:
|
59 |
+
frames = reversed(frames)
|
60 |
+
return [_frame_fmt(f, full_filename) for f in frames if _frame_filter(f['name'], f['filename'])]
|
61 |
+
|
62 |
+
def _block_extra_legacy(b):
|
63 |
+
if 'history' in b:
|
64 |
+
frames = b['history'][0].get('frames', [])
|
65 |
+
real_size = b['history'][0]['real_size']
|
66 |
+
else:
|
67 |
+
real_size = b.get('requested_size', b['size'])
|
68 |
+
frames = []
|
69 |
+
return frames, real_size
|
70 |
+
|
71 |
+
def _block_extra(b):
|
72 |
+
if 'frames' not in b:
|
73 |
+
# old snapshot format made it more complicated to get frames/allocated size
|
74 |
+
return _block_extra_legacy(b)
|
75 |
+
return b['frames'], b['requested_size']
|
76 |
+
|
77 |
+
def format_flamegraph(flamegraph_lines, flamegraph_script=None):
|
78 |
+
if flamegraph_script is None:
|
79 |
+
flamegraph_script = f'/tmp/{os.getuid()}_flamegraph.pl'
|
80 |
+
if not os.path.exists(flamegraph_script):
|
81 |
+
import urllib.request
|
82 |
+
print(f"Downloading flamegraph.pl to: {flamegraph_script}")
|
83 |
+
urllib.request.urlretrieve(
|
84 |
+
'https://raw.githubusercontent.com/brendangregg/FlameGraph/master/flamegraph.pl', flamegraph_script)
|
85 |
+
subprocess.check_call(['chmod', '+x', flamegraph_script])
|
86 |
+
args = [flamegraph_script, '--countname', 'bytes']
|
87 |
+
p = subprocess.Popen(args, stdin=subprocess.PIPE, stdout=subprocess.PIPE, encoding='utf-8')
|
88 |
+
assert p.stdin is not None
|
89 |
+
assert p.stdout is not None
|
90 |
+
p.stdin.write(flamegraph_lines)
|
91 |
+
p.stdin.close()
|
92 |
+
result = p.stdout.read()
|
93 |
+
p.stdout.close()
|
94 |
+
p.wait()
|
95 |
+
assert p.wait() == 0
|
96 |
+
return result
|
97 |
+
|
98 |
+
def _write_blocks(f, prefix, blocks):
|
99 |
+
def frames_fragment(frames):
|
100 |
+
if not frames:
|
101 |
+
return "<non-python>"
|
102 |
+
return ';'.join(_frames_fmt(frames, reverse=True))
|
103 |
+
for b in blocks:
|
104 |
+
if 'history' not in b:
|
105 |
+
frames, accounted_for_size = _block_extra(b)
|
106 |
+
f.write(f'{prefix};{b["state"]};{frames_fragment(frames)} {accounted_for_size}\n')
|
107 |
+
else:
|
108 |
+
accounted_for_size = 0
|
109 |
+
for h in b['history']:
|
110 |
+
sz = h['real_size']
|
111 |
+
accounted_for_size += sz
|
112 |
+
if 'frames' in h:
|
113 |
+
frames = h['frames']
|
114 |
+
f.write(f'{prefix};{b["state"]};{frames_fragment(frames)} {sz}\n')
|
115 |
+
else:
|
116 |
+
f.write(f'{prefix};{b["state"]};<no-context> {sz}\n')
|
117 |
+
gaps = b['size'] - accounted_for_size
|
118 |
+
if gaps:
|
119 |
+
f.write(f'{prefix};{b["state"]};<gaps> {gaps}\n')
|
120 |
+
|
121 |
+
def segments(snapshot, format_flamegraph=format_flamegraph):
|
122 |
+
f = io.StringIO()
|
123 |
+
for seg in snapshot['segments']:
|
124 |
+
prefix = f'stream_{seg["stream"]};seg_{seg["address"]}'
|
125 |
+
_write_blocks(f, prefix, seg['blocks'])
|
126 |
+
return format_flamegraph(f.getvalue())
|
127 |
+
|
128 |
+
def memory(snapshot, format_flamegraph=format_flamegraph):
|
129 |
+
f = io.StringIO()
|
130 |
+
for seg in snapshot['segments']:
|
131 |
+
prefix = f'stream_{seg["stream"]}'
|
132 |
+
_write_blocks(f, prefix, seg['blocks'])
|
133 |
+
return format_flamegraph(f.getvalue())
|
134 |
+
|
135 |
+
def compare(before, after, format_flamegraph=format_flamegraph):
|
136 |
+
def _seg_key(seg):
|
137 |
+
return (seg['address'], seg['total_size'])
|
138 |
+
|
139 |
+
def _seg_info(seg):
|
140 |
+
return f'stream_{seg["stream"]};seg_{seg["address"]}'
|
141 |
+
|
142 |
+
f = io.StringIO()
|
143 |
+
|
144 |
+
before_segs = {_seg_key(seg) for seg in before}
|
145 |
+
after_segs = {_seg_key(seg) for seg in after}
|
146 |
+
|
147 |
+
print(f'only_before = {[a for a,_ in (before_segs - after_segs)]}')
|
148 |
+
print(f'only_after = {[a for a,_ in (after_segs - before_segs)]}')
|
149 |
+
|
150 |
+
for seg in before:
|
151 |
+
if _seg_key(seg) not in after_segs:
|
152 |
+
_write_blocks(f, f'only_before;{_seg_info(seg)}', seg['blocks'])
|
153 |
+
|
154 |
+
for seg in after:
|
155 |
+
if _seg_key(seg) not in before_segs:
|
156 |
+
_write_blocks(f, f'only_after;{_seg_info(seg)}', seg['blocks'])
|
157 |
+
|
158 |
+
return format_flamegraph(f.getvalue())
|
159 |
+
|
160 |
+
def _format_size(num):
|
161 |
+
# https://stackoverflow.com/questions/1094841/get-human-readable-version-of-file-size
|
162 |
+
for unit in ["", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei", "Zi"]:
|
163 |
+
if abs(num) < 1024.0:
|
164 |
+
return f"{num:3.1f}{unit}B"
|
165 |
+
num /= 1024.0
|
166 |
+
return f"{num:.1f}YiB"
|
167 |
+
|
168 |
+
class Bytes:
|
169 |
+
def __init__(self, value):
|
170 |
+
self.value = value
|
171 |
+
|
172 |
+
def __add__(self, rhs):
|
173 |
+
return Bytes(self.value + rhs)
|
174 |
+
|
175 |
+
def __repr__(self):
|
176 |
+
return _format_size(self.value)
|
177 |
+
|
178 |
+
def calc_active(seg):
|
179 |
+
return sum(b['size'] for b in seg['blocks'] if b['state'] == 'active_allocated')
|
180 |
+
|
181 |
+
def _report_free(free_external, free_internal):
|
182 |
+
total = free_external + free_internal
|
183 |
+
suffix = ''
|
184 |
+
if total != 0:
|
185 |
+
pct = (free_internal / total) * 100
|
186 |
+
suffix = f' ({pct:.1f}% internal)'
|
187 |
+
return f'{Bytes(total)}{suffix}'
|
188 |
+
|
189 |
+
PAGE_SIZE = 1024 * 1024 * 20
|
190 |
+
legend = f"""\
|
191 |
+
|
192 |
+
Legend:
|
193 |
+
[a ] - a segment in the allocator
|
194 |
+
^-- a page {Bytes(PAGE_SIZE)} of memory in the segment
|
195 |
+
a-z: pages filled with a single block's content
|
196 |
+
' ': page is completely free
|
197 |
+
*: page if completely full with multiple blocks
|
198 |
+
0-9: page is partially full with tensors of multiple blocks (9 == 90% full)
|
199 |
+
(X% internal) - of the free memory, X% is free because we rounded the size of the allocation.
|
200 |
+
"""
|
201 |
+
|
202 |
+
def segsum(data):
|
203 |
+
r"""Visually reports how the allocator has filled its segments.
|
204 |
+
|
205 |
+
This printout can help debug fragmentation issues since free fragments
|
206 |
+
will appear as gaps in this printout. The amount of free space is reported
|
207 |
+
for each segment.
|
208 |
+
We distinguish between internal free memory which occurs because the
|
209 |
+
allocator rounds the allocation size, and external free memory, which are
|
210 |
+
the gaps between allocations in a segment.
|
211 |
+
Args:
|
212 |
+
data: snapshot dictionary created from _snapshot()
|
213 |
+
"""
|
214 |
+
segments = []
|
215 |
+
out = io.StringIO()
|
216 |
+
out.write(f"Summary of segments >= {Bytes(PAGE_SIZE)} in size\n")
|
217 |
+
total_reserved = 0
|
218 |
+
total_allocated = 0
|
219 |
+
free_external = 0
|
220 |
+
free_internal = 0
|
221 |
+
for seg in sorted(data['segments'], key=lambda x: (x['total_size'], calc_active(x))):
|
222 |
+
total_reserved += seg['total_size']
|
223 |
+
|
224 |
+
seg_free_external = 0
|
225 |
+
seg_free_internal = 0
|
226 |
+
seg_allocated = 0
|
227 |
+
all_ranges = []
|
228 |
+
boffset = 0
|
229 |
+
for b in seg['blocks']:
|
230 |
+
active = b['state'] == 'active_allocated'
|
231 |
+
if active:
|
232 |
+
_, allocated_size = _block_extra(b)
|
233 |
+
all_ranges.append((boffset, allocated_size, True))
|
234 |
+
seg_allocated += allocated_size
|
235 |
+
seg_free_internal += b['size'] - allocated_size
|
236 |
+
else:
|
237 |
+
seg_free_external += b['size']
|
238 |
+
|
239 |
+
boffset += b['size']
|
240 |
+
|
241 |
+
total_allocated += seg_allocated
|
242 |
+
free_external += seg_free_external
|
243 |
+
free_internal += seg_free_internal
|
244 |
+
|
245 |
+
nseg = (seg['total_size'] - 1) // PAGE_SIZE + 1
|
246 |
+
occupied = [' ' for _ in range(nseg)]
|
247 |
+
frac = [0.0 for _ in range(nseg)]
|
248 |
+
active_size = 0
|
249 |
+
for i, (start_, size, active) in enumerate(all_ranges):
|
250 |
+
active_size += size
|
251 |
+
finish_ = (start_ + size)
|
252 |
+
start = start_ // PAGE_SIZE
|
253 |
+
finish = (finish_ - 1) // PAGE_SIZE + 1
|
254 |
+
m = chr(ord('a' if active else 'A') + (i % 26))
|
255 |
+
for j in range(start, finish):
|
256 |
+
s = max(start_, j * PAGE_SIZE)
|
257 |
+
e = min(finish_, (j + 1) * PAGE_SIZE)
|
258 |
+
frac[j] += (e - s) / PAGE_SIZE
|
259 |
+
if occupied[j] != ' ':
|
260 |
+
occupied[j] = '0123456789*'[int(frac[j] * 10)]
|
261 |
+
else:
|
262 |
+
occupied[j] = m
|
263 |
+
stream = '' if seg['stream'] == 0 else f', stream_{seg["stream"]}'
|
264 |
+
body = ''.join(occupied)
|
265 |
+
assert seg_free_external + seg_free_internal + seg_allocated == seg['total_size']
|
266 |
+
stream = f' stream_{seg["stream"]}' if seg['stream'] != 0 else ''
|
267 |
+
if seg['total_size'] >= PAGE_SIZE:
|
268 |
+
out.write(f'[{body}] {Bytes(seg["total_size"])} allocated, '
|
269 |
+
f'{_report_free(seg_free_external, seg_free_internal)} free{stream}\n')
|
270 |
+
out.write(f'segments: {len(data["segments"])}\n')
|
271 |
+
out.write(f'total_reserved: {Bytes(total_reserved)}\n')
|
272 |
+
out.write(f'total_allocated: {Bytes(total_allocated)}\n')
|
273 |
+
internal_external = f' ({Bytes(free_internal)} internal + {Bytes(free_external)} external)' if free_internal else ''
|
274 |
+
out.write(f'total_free: {_report_free(free_external, free_internal)}\n')
|
275 |
+
out.write(legend)
|
276 |
+
assert free_internal + free_external + total_allocated == total_reserved
|
277 |
+
return out.getvalue()
|
278 |
+
|
279 |
+
def trace(data):
|
280 |
+
out = io.StringIO()
|
281 |
+
|
282 |
+
def format(entries):
|
283 |
+
segment_intervals : list = []
|
284 |
+
segment_addr_to_name = {}
|
285 |
+
allocation_addr_to_name = {}
|
286 |
+
|
287 |
+
free_names : list = []
|
288 |
+
next_name = 0
|
289 |
+
|
290 |
+
def _name():
|
291 |
+
nonlocal next_name
|
292 |
+
if free_names:
|
293 |
+
return free_names.pop()
|
294 |
+
r, m = next_name // 26, next_name % 26
|
295 |
+
next_name += 1
|
296 |
+
return f'{chr(ord("a") + m)}{"" if r == 0 else r}'
|
297 |
+
|
298 |
+
def find_segment(addr):
|
299 |
+
for name, saddr, size in segment_intervals:
|
300 |
+
if addr >= saddr and addr < saddr + size:
|
301 |
+
return name, saddr
|
302 |
+
for i, seg in enumerate(data['segments']):
|
303 |
+
saddr = seg['address']
|
304 |
+
size = seg['allocated_size']
|
305 |
+
if addr >= saddr and addr < saddr + size:
|
306 |
+
return f'seg_{i}', saddr
|
307 |
+
return None, None
|
308 |
+
count = 0
|
309 |
+
out.write(f'{len(entries)} entries\n')
|
310 |
+
|
311 |
+
|
312 |
+
total_reserved = 0
|
313 |
+
for seg in data['segments']:
|
314 |
+
total_reserved += seg['total_size']
|
315 |
+
|
316 |
+
for count, e in enumerate(entries):
|
317 |
+
if e['action'] == 'alloc':
|
318 |
+
addr, size = e['addr'], e['size']
|
319 |
+
n = _name()
|
320 |
+
seg_name, seg_addr = find_segment(addr)
|
321 |
+
if seg_name is None:
|
322 |
+
seg_name = "MEM"
|
323 |
+
offset = addr
|
324 |
+
else:
|
325 |
+
offset = addr - seg_addr
|
326 |
+
out.write(f'{n} = {seg_name}[{offset}:{Bytes(size)}]\n')
|
327 |
+
allocation_addr_to_name[addr] = (n, size, count)
|
328 |
+
count += size
|
329 |
+
elif e['action'] == 'free_requested':
|
330 |
+
addr, size = e['addr'], e['size']
|
331 |
+
name, _, _ = allocation_addr_to_name.get(addr, (addr, None, None))
|
332 |
+
out.write(f'del {name} # {Bytes(size)}\n')
|
333 |
+
elif e['action'] == 'free_completed':
|
334 |
+
addr, size = e['addr'], e['size']
|
335 |
+
count -= size
|
336 |
+
name, _, _ = allocation_addr_to_name.get(addr, (addr, None, None))
|
337 |
+
out.write(f'# free completed for {name} {Bytes(size)}\n')
|
338 |
+
if name in allocation_addr_to_name:
|
339 |
+
free_names.append(name)
|
340 |
+
del allocation_addr_to_name[name]
|
341 |
+
elif e['action'] == 'segment_alloc':
|
342 |
+
addr, size = e['addr'], e['size']
|
343 |
+
name = _name()
|
344 |
+
out.write(f'{name} = cudaMalloc({addr}, {Bytes(size)})\n')
|
345 |
+
segment_intervals.append((name, addr, size))
|
346 |
+
segment_addr_to_name[addr] = name
|
347 |
+
elif e['action'] == 'segment_free':
|
348 |
+
addr, size = e['addr'], e['size']
|
349 |
+
name = segment_addr_to_name.get(addr, addr)
|
350 |
+
out.write(f'cudaFree({name}) # {Bytes(size)}\n')
|
351 |
+
if name in segment_addr_to_name:
|
352 |
+
free_names.append(name)
|
353 |
+
del segment_addr_to_name[name]
|
354 |
+
elif e['action'] == 'oom':
|
355 |
+
size = e['size']
|
356 |
+
free = e['device_free']
|
357 |
+
out.write(f'raise OutOfMemoryError() # {Bytes(size)} requested, {Bytes(free)} free in CUDA\n')
|
358 |
+
else:
|
359 |
+
out.write(f'{e}\n')
|
360 |
+
out.write(f"TOTAL MEM: {Bytes(count)}")
|
361 |
+
for i, d in enumerate(data['device_traces']):
|
362 |
+
if d:
|
363 |
+
out.write(f'Device {i} ----------------\n')
|
364 |
+
format(d)
|
365 |
+
return out.getvalue()
|
366 |
+
|
367 |
+
|
368 |
+
_memory_viz_template = r"""
|
369 |
+
<!DOCTYPE html>
|
370 |
+
<html>
|
371 |
+
<head>
|
372 |
+
</head>
|
373 |
+
<body>
|
374 |
+
<script type="module">
|
375 |
+
import {add_local_files} from "https://cdn.jsdelivr.net/gh/pytorch/pytorch@main/torch/utils/viz/MemoryViz.js"
|
376 |
+
const local_files = $SNAPSHOT
|
377 |
+
add_local_files(local_files, $VIZ_KIND)
|
378 |
+
</script>
|
379 |
+
</body>
|
380 |
+
"""
|
381 |
+
|
382 |
+
def _format_viz(data, viz_kind, device):
|
383 |
+
if device is not None:
|
384 |
+
warnings.warn('device argument is deprecated, plots now contain all device')
|
385 |
+
buffer = pickle.dumps(data)
|
386 |
+
buffer += b'\x00' * (3 - len(buffer) % 3)
|
387 |
+
# Encode the buffer with base64
|
388 |
+
encoded_buffer = base64.b64encode(buffer).decode('utf-8')
|
389 |
+
|
390 |
+
json_format = json.dumps([{"name": 'snapshot.pickle', "base64": encoded_buffer}])
|
391 |
+
return _memory_viz_template.replace('$VIZ_KIND', repr(viz_kind)) \
|
392 |
+
.replace('$SNAPSHOT', json_format)
|
393 |
+
|
394 |
+
def trace_plot(data, device=None, plot_segments=False):
|
395 |
+
"""Generate a visualization over time of the memory usage recorded by the trace as an html file.
|
396 |
+
|
397 |
+
Args:
|
398 |
+
data: Memory snapshot as generated from torch.cuda.memory._snapshot()
|
399 |
+
device (torch.device, optional): Generate the trace for this device, needed if multiple devices have allocations.
|
400 |
+
plot_segments (bool, optional): Plots memory returned from cudaMalloc, rather than individual allocations.
|
401 |
+
Defaults to False.
|
402 |
+
|
403 |
+
Returns:
|
404 |
+
str: HTML of visualization
|
405 |
+
"""
|
406 |
+
return _format_viz(data, 'Active Memory Timeline' if not plot_segments else 'Active Cached Memory Timeline', device)
|
407 |
+
|
408 |
+
|
409 |
+
def _profile_to_snapshot(profile):
|
410 |
+
import torch
|
411 |
+
from torch.profiler._memory_profiler import Action, TensorKey
|
412 |
+
from torch._C._profiler import _EventType
|
413 |
+
memory_profile = profile._memory_profile()
|
414 |
+
|
415 |
+
allocation_stacks = {}
|
416 |
+
for event in memory_profile._op_tree.sorted_nodes:
|
417 |
+
if event.tag == _EventType.Allocation:
|
418 |
+
parent = event.parent
|
419 |
+
python_parents = []
|
420 |
+
while parent:
|
421 |
+
if parent.tag in (_EventType.PyCall, _EventType.PyCCall):
|
422 |
+
python_parents.append(parent)
|
423 |
+
parent = parent.parent
|
424 |
+
key = TensorKey.from_allocation(event.extra_fields)
|
425 |
+
|
426 |
+
# Corner case: If allocation doesn't have an ID (can't prove it was used as a Tensor)
|
427 |
+
# key will be None. I should add some way to identify these, I just haven't yet.
|
428 |
+
if key and event.extra_fields.alloc_size > 0:
|
429 |
+
allocation_stacks[key] = python_parents
|
430 |
+
|
431 |
+
|
432 |
+
device_count = torch.cuda.device_count()
|
433 |
+
snapshot = {
|
434 |
+
'device_traces': [[] for _ in range(device_count + 1)],
|
435 |
+
'segments': [{'device': device,
|
436 |
+
'address': None,
|
437 |
+
'total_size': 0,
|
438 |
+
'stream': 0,
|
439 |
+
'blocks': []} for device in range(device_count + 1)]
|
440 |
+
}
|
441 |
+
|
442 |
+
def to_device(device):
|
443 |
+
if device.type == 'cuda':
|
444 |
+
return device.index
|
445 |
+
else:
|
446 |
+
return device_count
|
447 |
+
|
448 |
+
def allocate(size, tensor_key, version, during_trace=True):
|
449 |
+
device = to_device(tensor_key.device)
|
450 |
+
addr = tensor_key.storage.ptr
|
451 |
+
|
452 |
+
seg = snapshot['segments'][device] # type: ignore[index]
|
453 |
+
if seg['address'] is None or seg['address'] > addr:
|
454 |
+
seg['address'] = addr
|
455 |
+
seg['total_size'] = max(seg['total_size'], addr + size) # record max addr for now, we will make it the size later
|
456 |
+
category = memory_profile._categories.get(tensor_key, version)
|
457 |
+
category = category.name.lower() if category is not None else "unknown"
|
458 |
+
stack = allocation_stacks.get(tensor_key, ())
|
459 |
+
stack = [{'filename': 'none', 'line': 0, 'name': p.name} for p in stack]
|
460 |
+
r = {'action': 'alloc', 'addr': addr, 'size': size, 'stream': 0, 'frames': stack, 'category': category}
|
461 |
+
if during_trace:
|
462 |
+
snapshot['device_traces'][device].append(r) # type: ignore[index]
|
463 |
+
return r
|
464 |
+
|
465 |
+
def free(alloc, device):
|
466 |
+
for e in ('free_requested', 'free_completed'):
|
467 |
+
snapshot['device_traces'][device].append({'action': e, # type: ignore[index]
|
468 |
+
'addr': alloc['addr'],
|
469 |
+
'size': alloc['size'],
|
470 |
+
'stream': 0,
|
471 |
+
'frames': alloc['frames']})
|
472 |
+
|
473 |
+
kv_to_elem = {}
|
474 |
+
|
475 |
+
|
476 |
+
|
477 |
+
# create the device trace
|
478 |
+
for time, action, (tensor_key, version), size in memory_profile.timeline:
|
479 |
+
if not isinstance(tensor_key, TensorKey):
|
480 |
+
continue
|
481 |
+
if action == Action.CREATE:
|
482 |
+
kv_to_elem[(tensor_key, version)] = allocate(size, tensor_key, version)
|
483 |
+
elif action == Action.DESTROY:
|
484 |
+
free(kv_to_elem.pop((tensor_key, version)), to_device(tensor_key.device))
|
485 |
+
elif action == Action.INCREMENT_VERSION:
|
486 |
+
free(kv_to_elem.pop((tensor_key, version)), to_device(tensor_key.device))
|
487 |
+
kv_to_elem[(tensor_key, version + 1)] = allocate(size, tensor_key, version + 1)
|
488 |
+
elif action == Action.PREEXISTING:
|
489 |
+
kv_to_elem[(tensor_key, version)] = allocate(size, tensor_key, version, during_trace=False)
|
490 |
+
|
491 |
+
|
492 |
+
# create the final snapshot state
|
493 |
+
blocks_at_end = [(to_device(tensor_key.device), event['addr'], event['size'], event['frames'])
|
494 |
+
for (tensor_key, version), event in kv_to_elem.items()]
|
495 |
+
for device, blocks in groupby(sorted(blocks_at_end), key=lambda x: x[0]):
|
496 |
+
seg = snapshot['segments'][device] # type: ignore[index]
|
497 |
+
last_addr = seg['address']
|
498 |
+
for _, addr, size, frames in blocks:
|
499 |
+
if last_addr < addr:
|
500 |
+
seg['blocks'].append({'size': addr - last_addr, 'state': 'inactive'})
|
501 |
+
seg['blocks'].append({'size': size, 'state': 'active_allocated', 'requested_size': size, 'frames': frames})
|
502 |
+
last_addr = addr + size
|
503 |
+
if last_addr < seg['total_size']:
|
504 |
+
seg['blocks'].append({'size': seg['total_size'] - last_addr, 'state': 'inactive'})
|
505 |
+
|
506 |
+
snapshot['segments'] = [seg for seg in snapshot['segments'] if seg['blocks']] # type: ignore[attr-defined]
|
507 |
+
for seg in snapshot['segments']: # type: ignore[attr-defined, name-defined, no-redef]
|
508 |
+
seg['total_size'] -= seg['address']
|
509 |
+
if not seg['blocks']:
|
510 |
+
seg['blocks'].append({'size': seg['total_size'], 'state': 'inactive'})
|
511 |
+
|
512 |
+
return snapshot
|
513 |
+
|
514 |
+
def profile_plot(profile, device=None):
|
515 |
+
"""Generate a visualization over time of the memory usage recorded by kineto memory profiling as an html file.
|
516 |
+
|
517 |
+
Args:
|
518 |
+
profile: profile as generated by `torch.profiler.profile(profile_memory=True)`
|
519 |
+
device (torch.device, optional): Generate the trace for this device, needed if multiple devices have allocations.
|
520 |
+
|
521 |
+
Returns:
|
522 |
+
str: HTML of visualization
|
523 |
+
"""
|
524 |
+
snapshot = _profile_to_snapshot(profile)
|
525 |
+
return _format_viz(snapshot, 'Active Memory Timeline', device)
|
526 |
+
|
527 |
+
|
528 |
+
def segment_plot(data: Any, device=None):
|
529 |
+
return _format_viz(data, 'Allocator State History', device)
|
530 |
+
|
531 |
+
if __name__ == "__main__":
|
532 |
+
import os.path
|
533 |
+
thedir = os.path.realpath(os.path.dirname(__file__))
|
534 |
+
if thedir in sys.path:
|
535 |
+
# otherwise we find cuda/random.py as random...
|
536 |
+
sys.path.remove(thedir)
|
537 |
+
import argparse
|
538 |
+
|
539 |
+
fn_name = 'torch.cuda.memory._snapshot()'
|
540 |
+
pickled = f'pickled memory statistics from {fn_name}'
|
541 |
+
parser = argparse.ArgumentParser(description=f'Visualize memory dumps produced by {fn_name}')
|
542 |
+
|
543 |
+
subparsers = parser.add_subparsers(dest='action')
|
544 |
+
|
545 |
+
def _output(p):
|
546 |
+
p.add_argument('-o', '--output', default='output.svg', help='flamegraph svg (default: output.svg)')
|
547 |
+
|
548 |
+
description = 'Prints overall allocation statistics and a visualization of how the allocators segments are currently filled.'
|
549 |
+
stats_a = subparsers.add_parser('stats', description=description)
|
550 |
+
stats_a.add_argument('input', help=pickled)
|
551 |
+
|
552 |
+
description = 'Prints buffer of the most recent allocation events embedded in the snapshot in a Pythonic style.'
|
553 |
+
trace_a = subparsers.add_parser('trace', description=description)
|
554 |
+
trace_a.add_argument('input', help=pickled)
|
555 |
+
|
556 |
+
description = 'Generate a flamegraph that visualizes what memory is stored in each allocator segment (aka block)'
|
557 |
+
segments_a = subparsers.add_parser('segments', description=description)
|
558 |
+
segments_a.add_argument('input', help=pickled)
|
559 |
+
_output(segments_a)
|
560 |
+
|
561 |
+
description = "Generate a flamegraph the program locations contributing to CUDA memory usage."
|
562 |
+
memory_a = subparsers.add_parser('memory', description=description)
|
563 |
+
memory_a.add_argument('input', help=pickled)
|
564 |
+
_output(memory_a)
|
565 |
+
|
566 |
+
description = 'Generate a flamegraph that shows segments (aka blocks) that have been added ' \
|
567 |
+
'or removed between two different memorys snapshots.'
|
568 |
+
compare_a = subparsers.add_parser('compare', description=description)
|
569 |
+
compare_a.add_argument('before', help=pickled)
|
570 |
+
compare_a.add_argument('after', help=pickled)
|
571 |
+
_output(compare_a)
|
572 |
+
|
573 |
+
plots = (
|
574 |
+
("trace_plot", "Generate a visualization over time of the memory usage recorded by the trace as an html file."),
|
575 |
+
("segment_plot", "Visualize how allocations are packed into allocator segments at each point in a trace as an html file.")
|
576 |
+
)
|
577 |
+
for cmd, description in plots:
|
578 |
+
trace_plot_a = subparsers.add_parser(cmd, description=description)
|
579 |
+
trace_plot_a.add_argument('input', help=pickled)
|
580 |
+
help = 'visualize trace from this device (default: chooses the only device with trace info or errors)'
|
581 |
+
trace_plot_a.add_argument('-d', '--device', type=int, default=None, help=help)
|
582 |
+
help = 'path to save the visualization(default: output.html)'
|
583 |
+
trace_plot_a.add_argument('-o', '--output', default='output.html', help=help)
|
584 |
+
if cmd == "trace_plot":
|
585 |
+
help = 'visualize change to segments rather than individual allocations'
|
586 |
+
trace_plot_a.add_argument('-s', '--segments', action='store_true', help=help)
|
587 |
+
|
588 |
+
|
589 |
+
args = parser.parse_args()
|
590 |
+
|
591 |
+
def _read(name):
|
592 |
+
if name == '-':
|
593 |
+
f = sys.stdin.buffer
|
594 |
+
else:
|
595 |
+
f = open(name, 'rb')
|
596 |
+
data = pickle.load(f)
|
597 |
+
if isinstance(data, list): # segments only...
|
598 |
+
data = {'segments': data, 'traces': []}
|
599 |
+
return data
|
600 |
+
|
601 |
+
def _write(name, data):
|
602 |
+
with open(name, 'w') as f:
|
603 |
+
f.write(data)
|
604 |
+
|
605 |
+
if args.action == 'segments':
|
606 |
+
data = _read(args.input)
|
607 |
+
_write(args.output, segments(data))
|
608 |
+
elif args.action == 'memory':
|
609 |
+
data = _read(args.input)
|
610 |
+
_write(args.output, memory(data))
|
611 |
+
elif args.action == 'stats':
|
612 |
+
data = _read(args.input)
|
613 |
+
print(segsum(data))
|
614 |
+
elif args.action == 'trace':
|
615 |
+
data = _read(args.input)
|
616 |
+
print(trace(data))
|
617 |
+
elif args.action == 'compare':
|
618 |
+
before = _read(args.before)
|
619 |
+
after = _read(args.after)
|
620 |
+
_write(args.output, compare(before, after))
|
621 |
+
elif args.action == 'trace_plot':
|
622 |
+
data = _read(args.input)
|
623 |
+
_write(args.output, trace_plot(data, device=args.device, plot_segments=args.segments))
|
624 |
+
elif args.action == 'segment_plot':
|
625 |
+
data = _read(args.input)
|
626 |
+
_write(args.output, segment_plot(data, device=args.device))
|
venv/lib/python3.10/site-packages/torch/cuda/_sanitizer.py
ADDED
@@ -0,0 +1,622 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""
|
2 |
+
This module introduces CUDA Sanitizer, a tool for detecting synchronization errors between kernels ran on different streams.
|
3 |
+
|
4 |
+
It stores information on accesses to tensors to determine if they are synchronized
|
5 |
+
or not. When enabled in a python program and a possible data race is detected, a
|
6 |
+
detailed warning will be printed and the program will exit.
|
7 |
+
|
8 |
+
It can be enabled either by importing this module and calling
|
9 |
+
:func:`enable_cuda_sanitizer()` or by exporting the ``TORCH_CUDA_SANITIZER``
|
10 |
+
environment variable.
|
11 |
+
"""
|
12 |
+
|
13 |
+
import enum
|
14 |
+
import functools
|
15 |
+
import inspect
|
16 |
+
import io
|
17 |
+
import logging
|
18 |
+
import sys
|
19 |
+
import textwrap
|
20 |
+
import traceback
|
21 |
+
from dataclasses import dataclass, field
|
22 |
+
from typing import Any, Dict, Iterator, List, Optional, Set, Tuple, TypeVar
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.utils._cuda_trace as cuda_trace
|
26 |
+
from torch.utils import _pytree as pytree
|
27 |
+
from torch.utils._python_dispatch import TorchDispatchMode
|
28 |
+
|
29 |
+
|
30 |
+
DEFAULT_STREAM_ID = 0
|
31 |
+
|
32 |
+
TK = TypeVar("TK")
|
33 |
+
TVa = TypeVar("TVa")
|
34 |
+
TVb = TypeVar("TVb")
|
35 |
+
|
36 |
+
DataPtr = int
|
37 |
+
StreamId = int
|
38 |
+
EventId = int
|
39 |
+
SeqNum = int
|
40 |
+
|
41 |
+
logger = logging.getLogger(__name__)
|
42 |
+
|
43 |
+
|
44 |
+
class AccessType(enum.Enum):
|
45 |
+
READ = enum.auto()
|
46 |
+
WRITE = enum.auto()
|
47 |
+
|
48 |
+
def __str__(self):
|
49 |
+
return "reading from" if self is AccessType.READ else "writing to"
|
50 |
+
|
51 |
+
|
52 |
+
@dataclass
|
53 |
+
class Access:
|
54 |
+
r"""Stores information about a single access to a tensor by a kernel.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
type: either AccessType.READ or AccessType.Write.
|
58 |
+
seq_num: the sequential number of the kernel performing the access.
|
59 |
+
stream: the stream id of the stream executing the kernel.
|
60 |
+
operator: the schema of the launched kernel, which lists the
|
61 |
+
arguments and return type.
|
62 |
+
aliases: the arguments in the schema this access corresponds to.
|
63 |
+
is_output: Whether the tensor was an output of the kernel.
|
64 |
+
stack_trace: the stack summary object captured during access.
|
65 |
+
"""
|
66 |
+
|
67 |
+
type: AccessType
|
68 |
+
seq_num: SeqNum
|
69 |
+
stream: StreamId
|
70 |
+
operator: str
|
71 |
+
aliases: List[str]
|
72 |
+
is_output: bool
|
73 |
+
stack_trace: traceback.StackSummary
|
74 |
+
|
75 |
+
|
76 |
+
class SynchronizationError(Exception):
|
77 |
+
"""Base class for errors detected by CUDA Sanitizer."""
|
78 |
+
|
79 |
+
pass
|
80 |
+
|
81 |
+
|
82 |
+
class UnsynchronizedAccessError(SynchronizationError):
|
83 |
+
"""Stores information about two unsynchronized accesses to one data pointer."""
|
84 |
+
|
85 |
+
def __init__(
|
86 |
+
self,
|
87 |
+
data_ptr: DataPtr,
|
88 |
+
allocation_stack_trace: Optional[traceback.StackSummary],
|
89 |
+
current_access: Access,
|
90 |
+
previous_access: Access,
|
91 |
+
):
|
92 |
+
self.data_ptr = data_ptr
|
93 |
+
self.allocation_stack_trace = allocation_stack_trace
|
94 |
+
self.current_access = current_access
|
95 |
+
self.previous_access = previous_access
|
96 |
+
|
97 |
+
def __str__(self):
|
98 |
+
def format_access(access: Access):
|
99 |
+
message.write(f"{access.operator}\n{access.type}")
|
100 |
+
if access.aliases:
|
101 |
+
message.write(" argument(s) " + ", ".join(access.aliases))
|
102 |
+
if access.is_output:
|
103 |
+
message.write(", and to")
|
104 |
+
if access.is_output:
|
105 |
+
message.write(" the output")
|
106 |
+
message.write(
|
107 |
+
f"\nWith stack trace:\n{''.join(access.stack_trace.format())}\n"
|
108 |
+
)
|
109 |
+
|
110 |
+
with io.StringIO() as message:
|
111 |
+
message.write(
|
112 |
+
textwrap.dedent(
|
113 |
+
f"""\
|
114 |
+
============================
|
115 |
+
CSAN detected a possible data race on tensor with data pointer {self.data_ptr}
|
116 |
+
Access by stream {self.current_access.stream} during kernel:
|
117 |
+
"""
|
118 |
+
)
|
119 |
+
)
|
120 |
+
format_access(self.current_access)
|
121 |
+
|
122 |
+
message.write(
|
123 |
+
f"Previous access by stream {self.previous_access.stream} during kernel:\n"
|
124 |
+
)
|
125 |
+
format_access(self.previous_access)
|
126 |
+
|
127 |
+
if self.allocation_stack_trace:
|
128 |
+
message.write(
|
129 |
+
"Tensor was allocated with stack trace:\n"
|
130 |
+
f"{''.join(self.allocation_stack_trace.format())}"
|
131 |
+
)
|
132 |
+
else:
|
133 |
+
message.write("Trace for tensor allocation not found.")
|
134 |
+
return message.getvalue()
|
135 |
+
|
136 |
+
|
137 |
+
class CUDASanitizerErrors(Exception):
|
138 |
+
"""Wrapper class for errors reported by CUDA Sanitizer."""
|
139 |
+
|
140 |
+
def __init__(self, errors: List[SynchronizationError]):
|
141 |
+
self.errors = errors
|
142 |
+
|
143 |
+
def __str__(self):
|
144 |
+
return f"detected {len(self.errors)} errors"
|
145 |
+
|
146 |
+
|
147 |
+
@dataclass
|
148 |
+
class TensorInfo:
|
149 |
+
r"""Stores information about a single tensor and recent accesses to it.
|
150 |
+
|
151 |
+
Args:
|
152 |
+
allocation_stack_trace: the stack summary object captured during tensor
|
153 |
+
allocation. Can be ``None`` if the allocation wasn't caught by CSAN.
|
154 |
+
reads: list of read accesses to the tensor that were performed since
|
155 |
+
the last write.
|
156 |
+
write: the last write access to the tensor.
|
157 |
+
"""
|
158 |
+
|
159 |
+
allocation_stack_trace: Optional[traceback.StackSummary]
|
160 |
+
reads: List[Access] = field(default_factory=list)
|
161 |
+
write: Optional[Access] = None
|
162 |
+
|
163 |
+
|
164 |
+
class _TensorsAccessed:
|
165 |
+
def __init__(self):
|
166 |
+
self.accesses: Dict[DataPtr, TensorInfo] = {}
|
167 |
+
|
168 |
+
def ensure_tensor_exists(self, data_ptr: DataPtr) -> None:
|
169 |
+
if data_ptr not in self.accesses:
|
170 |
+
logger.info(
|
171 |
+
"Found tensor with pointer: %s, but no matching tensor "
|
172 |
+
"allocation in the trace. Backfilling the trace now. "
|
173 |
+
"Perhaps the sanitizer was enabled after some torch operations?",
|
174 |
+
data_ptr,
|
175 |
+
)
|
176 |
+
self.create_tensor(data_ptr, None)
|
177 |
+
|
178 |
+
def ensure_tensor_does_not_exist(self, data_ptr: DataPtr) -> None:
|
179 |
+
if data_ptr in self.accesses:
|
180 |
+
logger.info(
|
181 |
+
"Found duplicate tensor allocation in the trace for tensor with "
|
182 |
+
"pointer: %s. Assuming the trace for tensor deallocation "
|
183 |
+
"wasn't caught and backfilling it now. "
|
184 |
+
"Perhaps the sanitizer was enabled after some torch operations?",
|
185 |
+
data_ptr,
|
186 |
+
)
|
187 |
+
self.delete_tensor(data_ptr)
|
188 |
+
|
189 |
+
def create_tensor(
|
190 |
+
self, data_ptr: DataPtr, stack_trace: Optional[traceback.StackSummary]
|
191 |
+
) -> None:
|
192 |
+
self.accesses[data_ptr] = TensorInfo(stack_trace)
|
193 |
+
|
194 |
+
def delete_tensor(self, data_ptr: DataPtr) -> None:
|
195 |
+
del self.accesses[data_ptr]
|
196 |
+
|
197 |
+
def were_there_reads_since_last_write(self, data_ptr: DataPtr) -> bool:
|
198 |
+
return True if self.accesses[data_ptr].reads else False
|
199 |
+
|
200 |
+
def get_allocation_stack_trace(
|
201 |
+
self, data_ptr: DataPtr
|
202 |
+
) -> Optional[traceback.StackSummary]:
|
203 |
+
return self.accesses[data_ptr].allocation_stack_trace
|
204 |
+
|
205 |
+
def get_write(self, data_ptr: DataPtr) -> Optional[Access]:
|
206 |
+
return self.accesses[data_ptr].write
|
207 |
+
|
208 |
+
def get_reads(self, data_ptr: DataPtr) -> List[Access]:
|
209 |
+
return self.accesses[data_ptr].reads
|
210 |
+
|
211 |
+
def add_read(self, data_ptr: DataPtr, access: Access) -> None:
|
212 |
+
self.accesses[data_ptr].reads.append(access)
|
213 |
+
|
214 |
+
def set_write(self, data_ptr: DataPtr, access: Access) -> None:
|
215 |
+
self.accesses[data_ptr].write = access
|
216 |
+
self.accesses[data_ptr].reads = []
|
217 |
+
|
218 |
+
|
219 |
+
class StreamSynchronizations:
|
220 |
+
def __init__(self):
|
221 |
+
self.current_sync_states: Dict[StreamId, Dict[StreamId, SeqNum]] = {}
|
222 |
+
self.recorded_sync_states: Dict[EventId, Dict[StreamId, SeqNum]] = {}
|
223 |
+
self.host_sync_state: Dict[StreamId, SeqNum] = {}
|
224 |
+
self.create_stream(DEFAULT_STREAM_ID)
|
225 |
+
|
226 |
+
def _ensure_stream_exists(self, stream: StreamId) -> None:
|
227 |
+
if stream not in self.current_sync_states:
|
228 |
+
logger.info(
|
229 |
+
"Found Stream with id: %s, but no matching stream "
|
230 |
+
"creation in the trace. Backfilling the trace now. "
|
231 |
+
"Perhaps the sanitizer was enabled after some torch operations?",
|
232 |
+
stream,
|
233 |
+
)
|
234 |
+
self.create_stream(stream)
|
235 |
+
|
236 |
+
def _ensure_event_exists(self, event: EventId) -> None:
|
237 |
+
if event not in self.recorded_sync_states:
|
238 |
+
logger.info(
|
239 |
+
"Found Event with id: %s, but no matching event "
|
240 |
+
"creation in the trace. Backfilling the trace now. "
|
241 |
+
"Perhaps the sanitizer was enabled after some torch operations?",
|
242 |
+
event,
|
243 |
+
)
|
244 |
+
self.create_event(event)
|
245 |
+
|
246 |
+
def _ensure_event_does_not_exist(self, event: EventId) -> None:
|
247 |
+
if event in self.recorded_sync_states:
|
248 |
+
logger.info(
|
249 |
+
"Found duplicate event creation in the trace for event with "
|
250 |
+
"id: %s. Assuming the trace for event deletion wasn't caught "
|
251 |
+
"and backfilling it now. "
|
252 |
+
"Perhaps the sanitizer was enabled after some torch operations?",
|
253 |
+
event,
|
254 |
+
)
|
255 |
+
self.delete_event(event)
|
256 |
+
|
257 |
+
def create_stream(self, stream: StreamId) -> None:
|
258 |
+
if stream in self.current_sync_states:
|
259 |
+
logger.info(
|
260 |
+
"Found duplicate Stream creation in the trace for Stream with "
|
261 |
+
"id: %s. PyTorch Streams are only created once, so this "
|
262 |
+
"trace entry is ignored.",
|
263 |
+
stream,
|
264 |
+
)
|
265 |
+
else:
|
266 |
+
self.host_sync_state[stream] = 0
|
267 |
+
self.current_sync_states[stream] = self.host_sync_state.copy()
|
268 |
+
|
269 |
+
def create_event(self, event: EventId) -> None:
|
270 |
+
self._ensure_event_does_not_exist(event)
|
271 |
+
self.recorded_sync_states[event] = {}
|
272 |
+
|
273 |
+
def delete_event(self, event: EventId) -> None:
|
274 |
+
self._ensure_event_exists(event)
|
275 |
+
del self.recorded_sync_states[event]
|
276 |
+
|
277 |
+
def update_seq_num(self, stream: StreamId, seq_num: SeqNum) -> None:
|
278 |
+
self._ensure_stream_exists(stream)
|
279 |
+
self.current_sync_states[stream][stream] = seq_num
|
280 |
+
|
281 |
+
def record_state(self, event: EventId, stream: StreamId) -> None:
|
282 |
+
self._ensure_event_exists(event)
|
283 |
+
self._ensure_stream_exists(stream)
|
284 |
+
self.recorded_sync_states[event] = self.current_sync_states[stream].copy()
|
285 |
+
|
286 |
+
def _state_wait_for_other(
|
287 |
+
self, state: Dict[StreamId, SeqNum], other: Dict[StreamId, SeqNum]
|
288 |
+
) -> None:
|
289 |
+
for stream, seq_num in other.items():
|
290 |
+
state[stream] = max(state.get(stream, -1), seq_num)
|
291 |
+
|
292 |
+
def stream_wait_for_event(self, stream: StreamId, event: EventId) -> None:
|
293 |
+
self._ensure_stream_exists(stream)
|
294 |
+
self._ensure_event_exists(event)
|
295 |
+
self._state_wait_for_other(
|
296 |
+
self.current_sync_states[stream], self.recorded_sync_states[event]
|
297 |
+
)
|
298 |
+
|
299 |
+
def all_streams_wait_for_event(self, event: EventId) -> None:
|
300 |
+
self._ensure_event_exists(event)
|
301 |
+
for stream in self.current_sync_states.keys():
|
302 |
+
self.stream_wait_for_event(stream, event)
|
303 |
+
|
304 |
+
self._state_wait_for_other(
|
305 |
+
self.host_sync_state, self.recorded_sync_states[event]
|
306 |
+
)
|
307 |
+
|
308 |
+
def all_streams_wait_for_stream(self, stream: StreamId) -> None:
|
309 |
+
self._ensure_stream_exists(stream)
|
310 |
+
for state in self.current_sync_states.values():
|
311 |
+
self._state_wait_for_other(state, self.current_sync_states[stream])
|
312 |
+
|
313 |
+
self._state_wait_for_other(
|
314 |
+
self.host_sync_state, self.current_sync_states[stream]
|
315 |
+
)
|
316 |
+
|
317 |
+
def sync_all_streams(self) -> None:
|
318 |
+
for stream, state in self.current_sync_states.items():
|
319 |
+
self.host_sync_state[stream] = state[stream]
|
320 |
+
|
321 |
+
for state in self.current_sync_states.values():
|
322 |
+
self._state_wait_for_other(state, self.host_sync_state)
|
323 |
+
|
324 |
+
def is_ordered_after(
|
325 |
+
self, current_stream: StreamId, seq_num: SeqNum, other_stream: StreamId
|
326 |
+
) -> bool:
|
327 |
+
self._ensure_stream_exists(current_stream)
|
328 |
+
self._ensure_stream_exists(other_stream)
|
329 |
+
return seq_num <= self.current_sync_states[current_stream].get(other_stream, -1)
|
330 |
+
|
331 |
+
|
332 |
+
class EventHandler:
|
333 |
+
"""Analyzes CSAN trace for synchronization errors.
|
334 |
+
|
335 |
+
Stores information on each stream's synchronizations with other streams as well
|
336 |
+
as tensor accesses to determine whether a given kernel launch might cause a
|
337 |
+
data race.
|
338 |
+
"""
|
339 |
+
|
340 |
+
def __init__(self):
|
341 |
+
self.tensors_accessed = _TensorsAccessed()
|
342 |
+
self.syncs = StreamSynchronizations()
|
343 |
+
self.seq_num: SeqNum = 0
|
344 |
+
|
345 |
+
def _handle_kernel_launch(
|
346 |
+
self,
|
347 |
+
stream: StreamId,
|
348 |
+
read_only: Set[DataPtr],
|
349 |
+
read_write: Set[DataPtr],
|
350 |
+
outputs: Set[DataPtr],
|
351 |
+
operator: str,
|
352 |
+
tensor_aliases: Dict[int, List[str]],
|
353 |
+
) -> List[SynchronizationError]:
|
354 |
+
def check_conflict(
|
355 |
+
data_ptr: DataPtr, current_access: Access, previous_access: Optional[Access]
|
356 |
+
) -> None:
|
357 |
+
if previous_access is None:
|
358 |
+
return
|
359 |
+
if not self.syncs.is_ordered_after(
|
360 |
+
current_access.stream, previous_access.seq_num, previous_access.stream
|
361 |
+
):
|
362 |
+
error_list.append(
|
363 |
+
UnsynchronizedAccessError(
|
364 |
+
data_ptr,
|
365 |
+
self.tensors_accessed.get_allocation_stack_trace(data_ptr),
|
366 |
+
current_access,
|
367 |
+
previous_access,
|
368 |
+
)
|
369 |
+
)
|
370 |
+
|
371 |
+
error_list: List[SynchronizationError] = []
|
372 |
+
self.seq_num += 1
|
373 |
+
self.syncs.update_seq_num(stream, self.seq_num)
|
374 |
+
stack_trace = traceback.StackSummary.extract(
|
375 |
+
traceback.walk_stack(inspect.currentframe()), lookup_lines=False
|
376 |
+
)
|
377 |
+
# The stack trace generated in this way is in the inverse order, so it must be
|
378 |
+
# reversed.
|
379 |
+
stack_trace.reverse()
|
380 |
+
|
381 |
+
for data_ptr in read_only:
|
382 |
+
self.tensors_accessed.ensure_tensor_exists(data_ptr)
|
383 |
+
current_access = Access(
|
384 |
+
AccessType.READ,
|
385 |
+
self.seq_num,
|
386 |
+
stream,
|
387 |
+
operator,
|
388 |
+
tensor_aliases[data_ptr],
|
389 |
+
data_ptr in outputs,
|
390 |
+
stack_trace,
|
391 |
+
)
|
392 |
+
check_conflict(
|
393 |
+
data_ptr, current_access, self.tensors_accessed.get_write(data_ptr)
|
394 |
+
)
|
395 |
+
self.tensors_accessed.add_read(data_ptr, current_access)
|
396 |
+
|
397 |
+
for data_ptr in read_write:
|
398 |
+
self.tensors_accessed.ensure_tensor_exists(data_ptr)
|
399 |
+
current_access = Access(
|
400 |
+
AccessType.WRITE,
|
401 |
+
self.seq_num,
|
402 |
+
stream,
|
403 |
+
operator,
|
404 |
+
tensor_aliases[data_ptr],
|
405 |
+
data_ptr in outputs,
|
406 |
+
stack_trace,
|
407 |
+
)
|
408 |
+
if self.tensors_accessed.were_there_reads_since_last_write(data_ptr):
|
409 |
+
for previous_access in self.tensors_accessed.get_reads(data_ptr):
|
410 |
+
check_conflict(data_ptr, current_access, previous_access)
|
411 |
+
else:
|
412 |
+
check_conflict(
|
413 |
+
data_ptr, current_access, self.tensors_accessed.get_write(data_ptr)
|
414 |
+
)
|
415 |
+
self.tensors_accessed.set_write(data_ptr, current_access)
|
416 |
+
|
417 |
+
return error_list
|
418 |
+
|
419 |
+
def _handle_event_creation(self, event: EventId) -> None:
|
420 |
+
self.syncs.create_event(event)
|
421 |
+
|
422 |
+
def _handle_event_deletion(self, event: EventId) -> None:
|
423 |
+
self.syncs.delete_event(event)
|
424 |
+
|
425 |
+
def _handle_event_record(self, event: EventId, stream: StreamId) -> None:
|
426 |
+
self.syncs.record_state(event, stream)
|
427 |
+
|
428 |
+
def _handle_event_wait(self, event: EventId, stream: StreamId) -> None:
|
429 |
+
self.syncs.stream_wait_for_event(stream, event)
|
430 |
+
|
431 |
+
def _handle_memory_allocation(self, data_ptr: DataPtr) -> None:
|
432 |
+
self.tensors_accessed.ensure_tensor_does_not_exist(data_ptr)
|
433 |
+
stack_trace = traceback.StackSummary.extract(
|
434 |
+
traceback.walk_stack(inspect.currentframe()), lookup_lines=False
|
435 |
+
)
|
436 |
+
# The stack trace generated in this way is in the inverse order, so it must be
|
437 |
+
# reversed.
|
438 |
+
stack_trace.reverse()
|
439 |
+
self.tensors_accessed.create_tensor(
|
440 |
+
data_ptr,
|
441 |
+
stack_trace,
|
442 |
+
)
|
443 |
+
|
444 |
+
def _handle_memory_deallocation(self, data_ptr: DataPtr) -> None:
|
445 |
+
self.tensors_accessed.ensure_tensor_exists(data_ptr)
|
446 |
+
self.tensors_accessed.delete_tensor(data_ptr)
|
447 |
+
|
448 |
+
def _handle_stream_creation(self, stream: StreamId) -> None:
|
449 |
+
self.syncs.create_stream(stream)
|
450 |
+
|
451 |
+
def _handle_device_synchronization(self) -> None:
|
452 |
+
self.syncs.sync_all_streams()
|
453 |
+
|
454 |
+
def _handle_stream_synchronization(self, stream: StreamId) -> None:
|
455 |
+
self.syncs.all_streams_wait_for_stream(stream)
|
456 |
+
|
457 |
+
def _handle_event_synchronization(self, event: EventId) -> None:
|
458 |
+
self.syncs.all_streams_wait_for_event(event)
|
459 |
+
|
460 |
+
|
461 |
+
def zip_by_key(a: Dict[TK, TVa], b: Dict[TK, TVb]) -> Iterator[Tuple[TK, TVa, TVb]]:
|
462 |
+
for arg, value in a.items():
|
463 |
+
if arg in b:
|
464 |
+
yield arg, value, b[arg]
|
465 |
+
|
466 |
+
|
467 |
+
def zip_arguments(
|
468 |
+
schema: torch.FunctionSchema, args: Tuple[Any, ...], kwargs: Dict[str, Any]
|
469 |
+
) -> Iterator[Tuple[torch.Argument, Any]]:
|
470 |
+
schema_args = schema.arguments[: len(args)]
|
471 |
+
schema_kwargs = {arg.name: arg for arg in schema.arguments[len(args) :]}
|
472 |
+
|
473 |
+
yield from zip(schema_args, args)
|
474 |
+
|
475 |
+
for _, argument, value in zip_by_key(schema_kwargs, kwargs):
|
476 |
+
yield (argument, value)
|
477 |
+
|
478 |
+
|
479 |
+
class ArgumentHandler:
|
480 |
+
def __init__(self):
|
481 |
+
self.dataptrs_read: Set[DataPtr] = set()
|
482 |
+
self.dataptrs_written: Set[DataPtr] = set()
|
483 |
+
self.tensor_aliases: Dict[DataPtr, List[str]] = dict()
|
484 |
+
self.outputs: Set[DataPtr] = set()
|
485 |
+
|
486 |
+
def _handle_argument(
|
487 |
+
self,
|
488 |
+
value: Any,
|
489 |
+
is_write: bool,
|
490 |
+
name: Optional[str] = None,
|
491 |
+
is_output: bool = False,
|
492 |
+
) -> None:
|
493 |
+
if isinstance(value, torch.Tensor) and value.is_cuda:
|
494 |
+
data_ptr = value.data_ptr()
|
495 |
+
if is_write:
|
496 |
+
self.dataptrs_written.add(data_ptr)
|
497 |
+
else:
|
498 |
+
self.dataptrs_read.add(data_ptr)
|
499 |
+
|
500 |
+
self.tensor_aliases.setdefault(data_ptr, [])
|
501 |
+
if name is not None:
|
502 |
+
self.tensor_aliases[data_ptr].append(name)
|
503 |
+
if is_output:
|
504 |
+
self.outputs.add(data_ptr)
|
505 |
+
|
506 |
+
def parse_inputs(
|
507 |
+
self,
|
508 |
+
schema: torch.FunctionSchema,
|
509 |
+
args: Tuple[Any, ...],
|
510 |
+
kwargs: Dict[str, Any],
|
511 |
+
) -> None:
|
512 |
+
for argument, value in zip_arguments(schema, args, kwargs):
|
513 |
+
is_write = argument.alias_info is not None and argument.alias_info.is_write
|
514 |
+
pytree.tree_map_(
|
515 |
+
functools.partial(
|
516 |
+
self._handle_argument, is_write=is_write, name=argument.name
|
517 |
+
),
|
518 |
+
value,
|
519 |
+
)
|
520 |
+
|
521 |
+
def parse_outputs(self, outputs: Any) -> None:
|
522 |
+
pytree.tree_map_(
|
523 |
+
functools.partial(self._handle_argument, is_write=True, is_output=True),
|
524 |
+
outputs,
|
525 |
+
)
|
526 |
+
|
527 |
+
|
528 |
+
class CUDASanitizerDispatchMode(TorchDispatchMode):
|
529 |
+
def __init__(self):
|
530 |
+
self.event_handler = EventHandler()
|
531 |
+
torch._C._activate_cuda_trace()
|
532 |
+
cuda_trace.register_callback_for_cuda_event_creation(
|
533 |
+
self.event_handler._handle_event_creation
|
534 |
+
)
|
535 |
+
cuda_trace.register_callback_for_cuda_event_deletion(
|
536 |
+
self.event_handler._handle_event_deletion
|
537 |
+
)
|
538 |
+
cuda_trace.register_callback_for_cuda_event_record(
|
539 |
+
self.event_handler._handle_event_record
|
540 |
+
)
|
541 |
+
cuda_trace.register_callback_for_cuda_event_wait(
|
542 |
+
self.event_handler._handle_event_wait
|
543 |
+
)
|
544 |
+
cuda_trace.register_callback_for_cuda_memory_allocation(
|
545 |
+
self.event_handler._handle_memory_allocation
|
546 |
+
)
|
547 |
+
cuda_trace.register_callback_for_cuda_memory_deallocation(
|
548 |
+
self.event_handler._handle_memory_deallocation
|
549 |
+
)
|
550 |
+
cuda_trace.register_callback_for_cuda_stream_creation(
|
551 |
+
self.event_handler._handle_stream_creation
|
552 |
+
)
|
553 |
+
cuda_trace.register_callback_for_cuda_device_synchronization(
|
554 |
+
self.event_handler._handle_device_synchronization
|
555 |
+
)
|
556 |
+
cuda_trace.register_callback_for_cuda_stream_synchronization(
|
557 |
+
self.event_handler._handle_stream_synchronization
|
558 |
+
)
|
559 |
+
cuda_trace.register_callback_for_cuda_event_synchronization(
|
560 |
+
self.event_handler._handle_event_synchronization
|
561 |
+
)
|
562 |
+
|
563 |
+
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
|
564 |
+
if kwargs is None:
|
565 |
+
kwargs = {}
|
566 |
+
|
567 |
+
argument_handler = ArgumentHandler()
|
568 |
+
argument_handler.parse_inputs(func._schema, args, kwargs)
|
569 |
+
|
570 |
+
outputs = func(*args, **kwargs)
|
571 |
+
|
572 |
+
argument_handler.parse_outputs(outputs)
|
573 |
+
errors = self.event_handler._handle_kernel_launch(
|
574 |
+
torch.cuda.current_stream().cuda_stream,
|
575 |
+
argument_handler.dataptrs_read - argument_handler.dataptrs_written,
|
576 |
+
argument_handler.dataptrs_written,
|
577 |
+
argument_handler.outputs,
|
578 |
+
func._schema,
|
579 |
+
argument_handler.tensor_aliases,
|
580 |
+
)
|
581 |
+
if errors:
|
582 |
+
for error in errors:
|
583 |
+
print(error, file=sys.stderr)
|
584 |
+
raise CUDASanitizerErrors(errors)
|
585 |
+
|
586 |
+
return outputs
|
587 |
+
|
588 |
+
|
589 |
+
class CUDASanitizer:
|
590 |
+
"""Manages the lifetime of a CUDASanitizer dispatch mode object.
|
591 |
+
|
592 |
+
The CUDASanitizer class wraps the entering/exiting functions of the dispatch mode
|
593 |
+
context manager in the enable function/destructor, respectively. This is to
|
594 |
+
explicitly set the lifetime of the dispatch mode object to that of the application.
|
595 |
+
This approach was deemed more elegant than using the atexit module.
|
596 |
+
"""
|
597 |
+
|
598 |
+
def __init__(self):
|
599 |
+
self.dispatch = CUDASanitizerDispatchMode()
|
600 |
+
self.enabled = False
|
601 |
+
|
602 |
+
def enable(self):
|
603 |
+
self.dispatch.__enter__()
|
604 |
+
self.enabled = True
|
605 |
+
|
606 |
+
def __del__(self):
|
607 |
+
if self.enabled:
|
608 |
+
self.dispatch.__exit__(None, None, None)
|
609 |
+
|
610 |
+
|
611 |
+
def enable_cuda_sanitizer():
|
612 |
+
"""Enable CUDA Sanitizer.
|
613 |
+
|
614 |
+
The sanitizer will begin to analyze low-level CUDA calls invoked by torch functions
|
615 |
+
for synchronization errors. All data races found will be printed to the standard
|
616 |
+
error output along with stack traces of suspected causes. For best results, the
|
617 |
+
sanitizer should be enabled at the very beginning of the program.
|
618 |
+
"""
|
619 |
+
cuda_sanitizer.enable()
|
620 |
+
|
621 |
+
|
622 |
+
cuda_sanitizer = CUDASanitizer()
|
venv/lib/python3.10/site-packages/torch/cuda/_utils.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# The _get_device_index has been moved to torch.utils._get_device_index
|
6 |
+
from torch._utils import _get_device_index as _torch_get_device_index
|
7 |
+
|
8 |
+
|
9 |
+
def _get_device_index(
|
10 |
+
device: Any, optional: bool = False, allow_cpu: bool = False
|
11 |
+
) -> int:
|
12 |
+
r"""Get the device index from :attr:`device`, which can be a torch.device object, a Python integer, or ``None``.
|
13 |
+
|
14 |
+
If :attr:`device` is a torch.device object, returns the device index if it
|
15 |
+
is a CUDA device. Note that for a CUDA device without a specified index,
|
16 |
+
i.e., ``torch.device('cuda')``, this will return the current default CUDA
|
17 |
+
device if :attr:`optional` is ``True``. If :attr:`allow_cpu` is ``True``,
|
18 |
+
CPU devices will be accepted and ``-1`` will be returned in this case.
|
19 |
+
|
20 |
+
If :attr:`device` is a Python integer, it is returned as is.
|
21 |
+
|
22 |
+
If :attr:`device` is ``None``, this will return the current default CUDA
|
23 |
+
device if :attr:`optional` is ``True``.
|
24 |
+
"""
|
25 |
+
if isinstance(device, int):
|
26 |
+
return device
|
27 |
+
if isinstance(device, str):
|
28 |
+
device = torch.device(device)
|
29 |
+
if isinstance(device, torch.device):
|
30 |
+
if allow_cpu:
|
31 |
+
if device.type not in ["cuda", "cpu"]:
|
32 |
+
raise ValueError(f"Expected a cuda or cpu device, but got: {device}")
|
33 |
+
elif device.type != "cuda":
|
34 |
+
raise ValueError(f"Expected a cuda device, but got: {device}")
|
35 |
+
if not torch.jit.is_scripting():
|
36 |
+
if isinstance(device, torch.cuda.device):
|
37 |
+
return device.idx
|
38 |
+
return _torch_get_device_index(device, optional, allow_cpu)
|
venv/lib/python3.10/site-packages/torch/cuda/comm.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# The functions here have been moved to torch.nn.parallel.comm
|
2 |
+
from torch.nn.parallel.comm import (
|
3 |
+
broadcast,
|
4 |
+
broadcast_coalesced,
|
5 |
+
gather,
|
6 |
+
reduce_add,
|
7 |
+
reduce_add_coalesced,
|
8 |
+
scatter,
|
9 |
+
)
|
10 |
+
|
11 |
+
__all__ = [
|
12 |
+
"broadcast",
|
13 |
+
"broadcast_coalesced",
|
14 |
+
"reduce_add",
|
15 |
+
"reduce_add_coalesced",
|
16 |
+
"scatter",
|
17 |
+
"gather",
|
18 |
+
]
|
venv/lib/python3.10/site-packages/torch/cuda/error.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/torch/cuda/graphs.py
ADDED
@@ -0,0 +1,479 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gc
|
2 |
+
from typing import Optional
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch.utils import _pytree
|
6 |
+
from .._utils import _dummy_type
|
7 |
+
|
8 |
+
if not hasattr(torch._C, "_CudaStreamBase"):
|
9 |
+
# Define dummy base classes
|
10 |
+
torch._C.__dict__["_CUDAGraph"] = _dummy_type("_CUDAGraph")
|
11 |
+
torch._C.__dict__["_graph_pool_handle"] = _dummy_type("_graph_pool_handle")
|
12 |
+
torch._C.__dict__["_cuda_isCurrentStreamCapturing"] = _dummy_type(
|
13 |
+
"_cuda_isCurrentStreamCapturing"
|
14 |
+
)
|
15 |
+
|
16 |
+
from torch._C import ( # noqa: F401
|
17 |
+
_cuda_isCurrentStreamCapturing,
|
18 |
+
_CUDAGraph,
|
19 |
+
_graph_pool_handle,
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
def is_current_stream_capturing():
|
24 |
+
r"""Return True if CUDA graph capture is underway on the current CUDA stream, False otherwise.
|
25 |
+
|
26 |
+
If a CUDA context does not exist on the current device, returns False without initializing the context.
|
27 |
+
"""
|
28 |
+
return _cuda_isCurrentStreamCapturing()
|
29 |
+
|
30 |
+
|
31 |
+
# Python shim helps Sphinx process docstrings more reliably.
|
32 |
+
def graph_pool_handle():
|
33 |
+
r"""Return an opaque token representing the id of a graph memory pool.
|
34 |
+
|
35 |
+
See :ref:`Graph memory management<graph-memory-management>`.
|
36 |
+
|
37 |
+
.. warning::
|
38 |
+
This API is in beta and may change in future releases.
|
39 |
+
"""
|
40 |
+
return _graph_pool_handle()
|
41 |
+
|
42 |
+
|
43 |
+
# Python shim helps Sphinx process docstrings more reliably.
|
44 |
+
class CUDAGraph(torch._C._CUDAGraph):
|
45 |
+
r"""Wrapper around a CUDA graph.
|
46 |
+
|
47 |
+
.. warning::
|
48 |
+
This API is in beta and may change in future releases.
|
49 |
+
"""
|
50 |
+
|
51 |
+
def __new__(cls):
|
52 |
+
return super().__new__(cls)
|
53 |
+
|
54 |
+
def capture_begin(self, pool=None, capture_error_mode="global"):
|
55 |
+
r"""Begin capturing CUDA work on the current stream.
|
56 |
+
|
57 |
+
Typically, you shouldn't call ``capture_begin`` yourself.
|
58 |
+
Use :class:`~torch.cuda.graph` or :func:`~torch.cuda.make_graphed_callables`,
|
59 |
+
which call ``capture_begin`` internally.
|
60 |
+
|
61 |
+
Arguments:
|
62 |
+
pool (optional): Token (returned by :func:`~torch.cuda.graph_pool_handle` or
|
63 |
+
:meth:`other_Graph_instance.pool()<torch.cuda.CUDAGraph.pool>`) that hints this graph may share memory
|
64 |
+
with the indicated pool. See :ref:`Graph memory management<graph-memory-management>`.
|
65 |
+
capture_error_mode (str, optional): specifies the cudaStreamCaptureMode for the graph capture stream.
|
66 |
+
Can be "global", "thread_local" or "relaxed". During cuda graph capture, some actions, such as cudaMalloc,
|
67 |
+
may be unsafe. "global" will error on actions in other threads, "thread_local" will only error for
|
68 |
+
actions in the current thread, and "relaxed" will not error on these actions. Do NOT change this setting
|
69 |
+
unless you're familiar with `cudaStreamCaptureMode <https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html#group__CUDART__STREAM_1g9d0535d93a214cbf126835257b16ba85>`_
|
70 |
+
""" # noqa: B950
|
71 |
+
super().capture_begin(pool=pool, capture_error_mode=capture_error_mode)
|
72 |
+
|
73 |
+
def capture_end(self):
|
74 |
+
r"""End CUDA graph capture on the current stream.
|
75 |
+
|
76 |
+
After ``capture_end``, ``replay`` may be called on this instance.
|
77 |
+
|
78 |
+
Typically, you shouldn't call ``capture_end`` yourself.
|
79 |
+
Use :class:`~torch.cuda.graph` or :func:`~torch.cuda.make_graphed_callables`,
|
80 |
+
which call ``capture_end`` internally.
|
81 |
+
"""
|
82 |
+
super().capture_end()
|
83 |
+
|
84 |
+
def replay(self):
|
85 |
+
r"""Replay the CUDA work captured by this graph."""
|
86 |
+
super().replay()
|
87 |
+
|
88 |
+
def reset(self):
|
89 |
+
r"""Delete the graph currently held by this instance."""
|
90 |
+
super().reset()
|
91 |
+
|
92 |
+
def pool(self):
|
93 |
+
r"""Return an opaque token representing the id of this graph's memory pool.
|
94 |
+
|
95 |
+
This id can optionally be passed to another graph's ``capture_begin``,
|
96 |
+
which hints the other graph may share the same memory pool.
|
97 |
+
"""
|
98 |
+
return super().pool()
|
99 |
+
|
100 |
+
def enable_debug_mode(self):
|
101 |
+
r"""Enable debugging mode for CUDAGraph.debug_dump."""
|
102 |
+
return super().enable_debug_mode()
|
103 |
+
|
104 |
+
def debug_dump(self, debug_path):
|
105 |
+
r"""
|
106 |
+
Arguments:
|
107 |
+
debug_path (required): Path to dump the graph to.
|
108 |
+
|
109 |
+
Calls a debugging function to dump the graph if the debugging is
|
110 |
+
enabled via CUDAGraph.enable_debug_mode()
|
111 |
+
"""
|
112 |
+
return super().debug_dump(debug_path)
|
113 |
+
|
114 |
+
|
115 |
+
class graph:
|
116 |
+
r"""Context-manager that captures CUDA work into a :class:`torch.cuda.CUDAGraph` object for later replay.
|
117 |
+
|
118 |
+
See :ref:`CUDA Graphs <cuda-graph-semantics>` for a general introduction,
|
119 |
+
detailed use, and constraints.
|
120 |
+
|
121 |
+
Arguments:
|
122 |
+
cuda_graph (torch.cuda.CUDAGraph): Graph object used for capture.
|
123 |
+
pool (optional): Opaque token (returned by a call to :func:`~torch.cuda.graph_pool_handle()` or
|
124 |
+
:meth:`other_Graph_instance.pool()<torch.cuda.CUDAGraph.pool>`) hinting this graph's capture
|
125 |
+
may share memory from the specified pool. See :ref:`Graph memory management<graph-memory-management>`.
|
126 |
+
stream (torch.cuda.Stream, optional): If supplied, will be set as the current stream in the context.
|
127 |
+
If not supplied, ``graph`` sets its own internal side stream as the current stream in the context.
|
128 |
+
capture_error_mode (str, optional): specifies the cudaStreamCaptureMode for the graph capture stream.
|
129 |
+
Can be "global", "thread_local" or "relaxed". During cuda graph capture, some actions, such as cudaMalloc,
|
130 |
+
may be unsafe. "global" will error on actions in other threads, "thread_local" will only error for
|
131 |
+
actions in the current thread, and "relaxed" will not error on actions. Do NOT change this setting
|
132 |
+
unless you're familiar with `cudaStreamCaptureMode <https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html#group__CUDART__STREAM_1g9d0535d93a214cbf126835257b16ba85>`_
|
133 |
+
|
134 |
+
.. note::
|
135 |
+
For effective memory sharing, if you pass a ``pool`` used by a previous capture and the previous capture
|
136 |
+
used an explicit ``stream`` argument, you should pass the same ``stream`` argument to this capture.
|
137 |
+
|
138 |
+
.. warning::
|
139 |
+
This API is in beta and may change in future releases.
|
140 |
+
|
141 |
+
.. _cudaStreamCaptureMode:
|
142 |
+
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html#group__CUDART__STREAM_1g9d0535d93a214cbf126835257b16ba85
|
143 |
+
""" # noqa: B950
|
144 |
+
|
145 |
+
default_capture_stream: Optional["torch.cuda.Stream"] = None
|
146 |
+
|
147 |
+
def __init__(
|
148 |
+
self,
|
149 |
+
cuda_graph,
|
150 |
+
pool=None,
|
151 |
+
stream=None,
|
152 |
+
capture_error_mode: str = "global",
|
153 |
+
):
|
154 |
+
# Lazy-init of default_capture_stream helps avoid circular-import errors.
|
155 |
+
# Not thread safe, but graphs already have the general (explicitly documented)
|
156 |
+
# restriction that only one capture may be underway at a time in the process.
|
157 |
+
if self.__class__.default_capture_stream is None:
|
158 |
+
self.__class__.default_capture_stream = torch.cuda.Stream()
|
159 |
+
|
160 |
+
self.pool = () if pool is None else (pool,)
|
161 |
+
self.capture_stream = (
|
162 |
+
stream if stream is not None else self.__class__.default_capture_stream
|
163 |
+
)
|
164 |
+
assert self.capture_stream is not None
|
165 |
+
self.stream_ctx = torch.cuda.stream(self.capture_stream)
|
166 |
+
self.cuda_graph = cuda_graph
|
167 |
+
self.capture_error_mode = capture_error_mode
|
168 |
+
|
169 |
+
def __enter__(self):
|
170 |
+
# Free as much memory as we can for the graph
|
171 |
+
torch.cuda.synchronize()
|
172 |
+
gc.collect()
|
173 |
+
torch.cuda.empty_cache()
|
174 |
+
|
175 |
+
# Stackoverflow seems comfortable with this pattern
|
176 |
+
# https://stackoverflow.com/questions/26635684/calling-enter-and-exit-manually#39172487
|
177 |
+
self.stream_ctx.__enter__()
|
178 |
+
|
179 |
+
self.cuda_graph.capture_begin(
|
180 |
+
*self.pool, capture_error_mode=self.capture_error_mode
|
181 |
+
)
|
182 |
+
|
183 |
+
def __exit__(self, exc_type, exc_value, traceback):
|
184 |
+
self.cuda_graph.capture_end()
|
185 |
+
self.stream_ctx.__exit__(exc_type, exc_value, traceback)
|
186 |
+
# returning None should propagate exceptions from either capture_end or stream_ctx.__exit__()
|
187 |
+
|
188 |
+
|
189 |
+
def make_graphed_callables(
|
190 |
+
callables, sample_args, num_warmup_iters=3, allow_unused_input=False, pool=None
|
191 |
+
):
|
192 |
+
r"""Accept callables (functions or :class:`nn.Module<torch.nn.Module>`\ s) and returns graphed versions.
|
193 |
+
|
194 |
+
Each graphed callable's forward pass runs its source callable's
|
195 |
+
forward CUDA work as a CUDA graph inside a single autograd node.
|
196 |
+
|
197 |
+
The graphed callable's forward pass also appends
|
198 |
+
a backward node to the autograd graph. During backward, this node runs the
|
199 |
+
callable's backward work as a CUDA graph.
|
200 |
+
|
201 |
+
Therefore, each graphed callable should be a drop-in replacement for its source callable
|
202 |
+
in an autograd-enabled training loop.
|
203 |
+
|
204 |
+
See :ref:`Partial-network capture<partial-network-capture>` for detailed use and constraints.
|
205 |
+
|
206 |
+
If you pass a tuple of several callables, their captures will use the same memory pool.
|
207 |
+
See :ref:`Graph memory management<graph-memory-management>` for when this is appropriate.
|
208 |
+
|
209 |
+
Arguments:
|
210 |
+
callables (torch.nn.Module or Python function, or tuple of these): Callable or callables to graph.
|
211 |
+
See :ref:`Graph memory management<graph-memory-management>` for when passing a tuple of callables
|
212 |
+
is appropriate. If you pass a tuple of callables, their order in the tuple must be the same order
|
213 |
+
they'll run in the live workload.
|
214 |
+
sample_args (tuple of Tensors, or tuple of tuples of Tensors): Samples args for each callable.
|
215 |
+
If a single callable was passed, ``sample_args`` must be a single tuple of argument Tensors.
|
216 |
+
If a tuple of callables was passed, ``sample_args`` must be tuple of tuples of argument Tensors.
|
217 |
+
num_warmup_iters (int): The number of warmup iterations. Currently, ``DataDistributedParallel`` needs
|
218 |
+
11 iterations for warm up. Default: ``3``.
|
219 |
+
allow_unused_input (bool): If False, specifying inputs that were not used when computing outputs
|
220 |
+
(and therefore their grad is always zero) is an error. Defaults to False.
|
221 |
+
pool (optional): Token (returned by :func:`~torch.cuda.graph_pool_handle` or
|
222 |
+
:meth:`other_Graph_instance.pool()<torch.cuda.CUDAGraph.pool>`) that hints this graph may share memory
|
223 |
+
with the indicated pool. See :ref:`Graph memory management<graph-memory-management>`.
|
224 |
+
.. note::
|
225 |
+
The ``requires_grad`` state of each Tensor in ``sample_args`` must match the state
|
226 |
+
that's expected for the corresponding real input in the training loop.
|
227 |
+
|
228 |
+
.. warning::
|
229 |
+
This API is in beta and may change in future releases.
|
230 |
+
|
231 |
+
.. warning::
|
232 |
+
``sample_args`` for each callable must contain only Tensors. Other types are not allowed.
|
233 |
+
|
234 |
+
.. warning::
|
235 |
+
Returned callables do not support higher order differentiation (e.g., double backward).
|
236 |
+
|
237 |
+
.. warning::
|
238 |
+
In any :class:`~torch.nn.Module` passed to :func:`~make_graphed_callables`, only parameters
|
239 |
+
may be trainable. Buffers must have ``requires_grad=False``.
|
240 |
+
|
241 |
+
.. warning::
|
242 |
+
After you pass a :class:`torch.nn.Module` through :func:`~make_graphed_callables`,
|
243 |
+
you may not add or remove any of that Module's parameters or buffers.
|
244 |
+
|
245 |
+
.. warning::
|
246 |
+
:class:`torch.nn.Module`\s passed to :func:`~torch.cuda.make_graphed_callables` must not have module hooks
|
247 |
+
registered on them at the time they are passed. However, registering hooks on modules *after* passing them
|
248 |
+
through :func:`~torch.cuda.make_graphed_callables` is allowed.
|
249 |
+
|
250 |
+
.. warning::
|
251 |
+
When running a graphed callable, you must pass its arguments in the same order and format
|
252 |
+
they appeared in that callable's ``sample_args``.
|
253 |
+
|
254 |
+
.. warning::
|
255 |
+
The automatic mixed precision is supported in :func:`~torch.cuda.make_graphed_callables` only with disabled
|
256 |
+
caching. The context manager `torch.cuda.amp.autocast()` must have `cache_enabled=False`.
|
257 |
+
"""
|
258 |
+
if torch.is_autocast_enabled() and torch.is_autocast_cache_enabled():
|
259 |
+
raise RuntimeError(
|
260 |
+
"make_graphed_callables does not support the autocast caching. Please set `cache_enabled=False`."
|
261 |
+
)
|
262 |
+
|
263 |
+
just_one_callable = False
|
264 |
+
|
265 |
+
if not isinstance(callables, tuple):
|
266 |
+
just_one_callable = True
|
267 |
+
callables = (callables,)
|
268 |
+
sample_args = (sample_args,)
|
269 |
+
|
270 |
+
flatten_sample_args = []
|
271 |
+
|
272 |
+
for c, args in zip(callables, sample_args):
|
273 |
+
if isinstance(c, torch.nn.Module):
|
274 |
+
assert (
|
275 |
+
len(c._backward_hooks) == 0
|
276 |
+
and len(c._forward_hooks) == 0
|
277 |
+
and len(c._forward_pre_hooks) == 0
|
278 |
+
), (
|
279 |
+
"Modules must not have hooks registered at the time they are passed. However, registering hooks "
|
280 |
+
+ "on modules after passing them through make_graphed_callables is allowed."
|
281 |
+
)
|
282 |
+
assert all(b.requires_grad is False for b in c.buffers()), (
|
283 |
+
"In any :class:`~torch.nn.Module` passed to "
|
284 |
+
+ ":func:`~make_graphed_callables`, only parameters may be trainable. All buffers must have "
|
285 |
+
+ "``requires_grad=False``."
|
286 |
+
)
|
287 |
+
flatten_arg = _pytree.arg_tree_leaves(*args)
|
288 |
+
flatten_sample_args.append(tuple(flatten_arg))
|
289 |
+
assert all(isinstance(arg, torch.Tensor) for arg in flatten_arg), (
|
290 |
+
"In the beta API, sample_args "
|
291 |
+
+ "for each callable must contain only Tensors. Other types are not allowed."
|
292 |
+
)
|
293 |
+
|
294 |
+
# If a callable is an nn.Module, its graph's full input surface is the args the user explicitly
|
295 |
+
# passes to forward (ie, its sample_args) AND the module's parameter attributes.
|
296 |
+
per_callable_len_user_args = [len(args) for args in flatten_sample_args]
|
297 |
+
per_callable_module_params = [
|
298 |
+
tuple(c.parameters()) if isinstance(c, torch.nn.Module) else ()
|
299 |
+
for c in callables
|
300 |
+
]
|
301 |
+
per_callable_static_input_surfaces = [
|
302 |
+
flatten_sample_args[i] + per_callable_module_params[i]
|
303 |
+
for i in range(len(callables))
|
304 |
+
]
|
305 |
+
|
306 |
+
fwd_graphs = [torch.cuda.CUDAGraph() for _ in range(len(callables))]
|
307 |
+
bwd_graphs = [torch.cuda.CUDAGraph() for _ in range(len(callables))]
|
308 |
+
|
309 |
+
mempool = graph_pool_handle() if pool is None else pool
|
310 |
+
|
311 |
+
# Warmup
|
312 |
+
# Hopefully prevents cudnn benchmarking and other lazy-initialization cuda work
|
313 |
+
# from ending up in any captures.
|
314 |
+
torch.cuda.synchronize()
|
315 |
+
with torch.cuda.stream(torch.cuda.Stream()):
|
316 |
+
for func, args, static_input_surface in zip(
|
317 |
+
callables, sample_args, per_callable_static_input_surfaces
|
318 |
+
):
|
319 |
+
for _ in range(num_warmup_iters):
|
320 |
+
outputs = _pytree.tree_leaves(func(*args))
|
321 |
+
grad_inputs = torch.autograd.grad(
|
322 |
+
outputs=tuple(o for o in outputs if o.requires_grad),
|
323 |
+
inputs=tuple(i for i in static_input_surface if i.requires_grad),
|
324 |
+
grad_outputs=tuple(
|
325 |
+
torch.empty_like(o) for o in outputs if o.requires_grad
|
326 |
+
),
|
327 |
+
only_inputs=True,
|
328 |
+
allow_unused=allow_unused_input,
|
329 |
+
)
|
330 |
+
del outputs, grad_inputs # type: ignore[possibly-undefined]
|
331 |
+
torch.cuda.synchronize()
|
332 |
+
|
333 |
+
# All captures here share a mempool. To avoid replays corrupting each other's memory,
|
334 |
+
# the safest approach is to capture all passes in the same order they'll run:
|
335 |
+
# fwd 1, fwd 2, ... fwd N, then bwd N, bwd N-1, ... bwd 1.
|
336 |
+
|
337 |
+
# Capture forward graphs
|
338 |
+
per_callable_static_outputs = []
|
339 |
+
per_callable_output_unflatten_spec = []
|
340 |
+
for func, args, fwd_graph in zip(callables, sample_args, fwd_graphs):
|
341 |
+
with torch.cuda.graph(fwd_graph, pool=mempool):
|
342 |
+
outputs = func(*args)
|
343 |
+
|
344 |
+
flatten_outputs, spec = _pytree.tree_flatten(outputs)
|
345 |
+
per_callable_static_outputs.append(tuple(flatten_outputs))
|
346 |
+
per_callable_output_unflatten_spec.append(spec)
|
347 |
+
|
348 |
+
# Capture backward graphs in reverse order
|
349 |
+
per_callable_static_grad_outputs = []
|
350 |
+
per_callable_static_grad_inputs = []
|
351 |
+
for static_input_surface, static_outputs, bwd_graph, module_params in zip(
|
352 |
+
reversed(per_callable_static_input_surfaces),
|
353 |
+
reversed(per_callable_static_outputs),
|
354 |
+
reversed(bwd_graphs),
|
355 |
+
reversed(per_callable_module_params),
|
356 |
+
):
|
357 |
+
# For now, assumes all static_outputs require grad
|
358 |
+
# assert all(o.requires_grad for o in static_outputs), "Outputs of graphed callables must require grad."
|
359 |
+
static_grad_outputs = tuple(
|
360 |
+
torch.empty_like(o) if o.requires_grad else None for o in static_outputs
|
361 |
+
)
|
362 |
+
|
363 |
+
with torch.cuda.graph(bwd_graph, pool=mempool):
|
364 |
+
grad_inputs = torch.autograd.grad(
|
365 |
+
outputs=tuple(o for o in static_outputs if o.requires_grad),
|
366 |
+
inputs=tuple(i for i in static_input_surface if i.requires_grad),
|
367 |
+
grad_outputs=tuple(o for o in static_grad_outputs if o is not None),
|
368 |
+
only_inputs=True,
|
369 |
+
allow_unused=allow_unused_input,
|
370 |
+
)
|
371 |
+
|
372 |
+
# Constructs a tuple suitable for returning from Graphed.backward:
|
373 |
+
# Pads out the actually-needed grads with Nones in gradient slots for inputs that don't require grad.
|
374 |
+
# I couldn't think of a slick one-liner for this pattern.
|
375 |
+
static_grad_inputs = []
|
376 |
+
grad_idx = 0
|
377 |
+
for arg in static_input_surface:
|
378 |
+
if arg.requires_grad:
|
379 |
+
static_grad_inputs.append(grad_inputs[grad_idx])
|
380 |
+
grad_idx += 1
|
381 |
+
else:
|
382 |
+
static_grad_inputs.append(None) # type: ignore[arg-type]
|
383 |
+
static_grad_inputs = tuple(static_grad_inputs) # type: ignore[assignment]
|
384 |
+
|
385 |
+
per_callable_static_grad_outputs.append(static_grad_outputs)
|
386 |
+
per_callable_static_grad_inputs.append(static_grad_inputs)
|
387 |
+
|
388 |
+
# Reverses the most recent two lists
|
389 |
+
per_callable_static_grad_outputs.reverse()
|
390 |
+
per_callable_static_grad_inputs.reverse()
|
391 |
+
# Now for every per_callable list, per_callable_*[i] holds the stuff for the ith callable.
|
392 |
+
|
393 |
+
def make_graphed_autograd_function(
|
394 |
+
fwd_graph,
|
395 |
+
bwd_graph,
|
396 |
+
module_params,
|
397 |
+
len_user_args,
|
398 |
+
output_unflatten_spec,
|
399 |
+
static_input_surface,
|
400 |
+
static_outputs,
|
401 |
+
static_grad_outputs,
|
402 |
+
static_grad_inputs,
|
403 |
+
):
|
404 |
+
class Graphed(torch.autograd.Function):
|
405 |
+
@staticmethod
|
406 |
+
def forward(ctx, *inputs):
|
407 |
+
# At this stage, only the user args may (potentially) be new tensors.
|
408 |
+
for i in range(len_user_args):
|
409 |
+
if static_input_surface[i].data_ptr() != inputs[i].data_ptr():
|
410 |
+
static_input_surface[i].copy_(inputs[i])
|
411 |
+
fwd_graph.replay()
|
412 |
+
assert isinstance(static_outputs, tuple)
|
413 |
+
return tuple(o.detach() for o in static_outputs)
|
414 |
+
|
415 |
+
@staticmethod
|
416 |
+
@torch.autograd.function.once_differentiable
|
417 |
+
def backward(ctx, *grads):
|
418 |
+
assert len(grads) == len(static_grad_outputs)
|
419 |
+
for g, grad in zip(static_grad_outputs, grads):
|
420 |
+
if g is not None:
|
421 |
+
# don't copy if autograd gods have been kind and the
|
422 |
+
# incoming grad is already in the right place
|
423 |
+
if g.data_ptr() != grad.data_ptr():
|
424 |
+
g.copy_(grad)
|
425 |
+
bwd_graph.replay()
|
426 |
+
|
427 |
+
# Input args that didn't require grad expect a None gradient.
|
428 |
+
assert isinstance(static_grad_inputs, tuple)
|
429 |
+
return tuple(
|
430 |
+
b.detach() if b is not None else b for b in static_grad_inputs
|
431 |
+
)
|
432 |
+
|
433 |
+
def functionalized(*user_args):
|
434 |
+
# Runs the autograd function with inputs == all inputs to the graph that might require grad
|
435 |
+
# (explicit user args + module parameters)
|
436 |
+
# Assumes module params didn't change since capture.
|
437 |
+
flatten_user_args = _pytree.arg_tree_leaves(*user_args)
|
438 |
+
out = Graphed.apply(*(tuple(flatten_user_args) + module_params))
|
439 |
+
return _pytree.tree_unflatten(out, output_unflatten_spec)
|
440 |
+
|
441 |
+
return functionalized
|
442 |
+
|
443 |
+
# Put together the final graphed callables
|
444 |
+
ret = []
|
445 |
+
for i, func in enumerate(callables):
|
446 |
+
graphed = make_graphed_autograd_function(
|
447 |
+
fwd_graphs[i],
|
448 |
+
bwd_graphs[i],
|
449 |
+
per_callable_module_params[i],
|
450 |
+
per_callable_len_user_args[i],
|
451 |
+
per_callable_output_unflatten_spec[i],
|
452 |
+
per_callable_static_input_surfaces[i],
|
453 |
+
per_callable_static_outputs[i],
|
454 |
+
per_callable_static_grad_outputs[i],
|
455 |
+
per_callable_static_grad_inputs[i],
|
456 |
+
)
|
457 |
+
|
458 |
+
if isinstance(func, torch.nn.Module):
|
459 |
+
|
460 |
+
def make_graphed_forward(func, graph_training_state, graphed, orig_fwd):
|
461 |
+
def new_fwd(*user_args):
|
462 |
+
# If the module's training-or-eval state matches what we graphed,
|
463 |
+
# run the graph, otherwise run the original forward method
|
464 |
+
if func.training == graph_training_state:
|
465 |
+
return graphed(*user_args)
|
466 |
+
else:
|
467 |
+
return orig_fwd(*user_args)
|
468 |
+
|
469 |
+
return new_fwd
|
470 |
+
|
471 |
+
func.forward = make_graphed_forward(func, func.training, graphed, func.forward) # type: ignore[assignment]
|
472 |
+
ret.append(func)
|
473 |
+
else:
|
474 |
+
ret.append(graphed)
|
475 |
+
|
476 |
+
if just_one_callable:
|
477 |
+
return ret[0]
|
478 |
+
|
479 |
+
return tuple(ret)
|
venv/lib/python3.10/site-packages/torch/cuda/nccl.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
import warnings
|
3 |
+
from typing import Optional, Sequence, Union
|
4 |
+
|
5 |
+
import torch.cuda
|
6 |
+
|
7 |
+
|
8 |
+
__all__ = ["all_reduce", "reduce", "broadcast", "all_gather", "reduce_scatter"]
|
9 |
+
|
10 |
+
SUM = 0 # ncclRedOp_t
|
11 |
+
|
12 |
+
|
13 |
+
def is_available(tensors):
|
14 |
+
if not hasattr(torch._C, "_nccl_all_reduce"):
|
15 |
+
warnings.warn("PyTorch is not compiled with NCCL support")
|
16 |
+
return False
|
17 |
+
|
18 |
+
devices = set()
|
19 |
+
for tensor in tensors:
|
20 |
+
if tensor.is_sparse:
|
21 |
+
return False
|
22 |
+
if not tensor.is_contiguous():
|
23 |
+
return False
|
24 |
+
if not tensor.is_cuda:
|
25 |
+
return False
|
26 |
+
device = tensor.get_device()
|
27 |
+
if device in devices:
|
28 |
+
return False
|
29 |
+
devices.add(device)
|
30 |
+
|
31 |
+
return True
|
32 |
+
|
33 |
+
|
34 |
+
def version():
|
35 |
+
ver = torch._C._nccl_version()
|
36 |
+
major = ver >> 32
|
37 |
+
minor = (ver >> 16) & 65535
|
38 |
+
patch = ver & 65535
|
39 |
+
suffix = torch._C._nccl_version_suffix().decode("utf-8")
|
40 |
+
if suffix == "":
|
41 |
+
return (major, minor, patch)
|
42 |
+
else:
|
43 |
+
return (major, minor, patch, suffix)
|
44 |
+
|
45 |
+
|
46 |
+
def unique_id():
|
47 |
+
return torch._C._nccl_unique_id()
|
48 |
+
|
49 |
+
|
50 |
+
def init_rank(num_ranks, uid, rank):
|
51 |
+
return torch._C._nccl_init_rank(num_ranks, uid, rank)
|
52 |
+
|
53 |
+
|
54 |
+
def _check_sequence_type(inputs: Union[torch.Tensor, Sequence[torch.Tensor]]) -> None:
|
55 |
+
if not isinstance(inputs, collections.abc.Container) or isinstance(
|
56 |
+
inputs, torch.Tensor
|
57 |
+
):
|
58 |
+
raise TypeError("Inputs should be a collection of tensors")
|
59 |
+
|
60 |
+
|
61 |
+
def all_reduce(inputs, outputs=None, op=SUM, streams=None, comms=None):
|
62 |
+
_check_sequence_type(inputs)
|
63 |
+
if outputs is None:
|
64 |
+
outputs = inputs
|
65 |
+
_check_sequence_type(outputs)
|
66 |
+
torch._C._nccl_all_reduce(inputs, outputs, op, streams, comms)
|
67 |
+
|
68 |
+
|
69 |
+
# `output` used to be `outputs`, taking in a list of tensors. So we have two
|
70 |
+
# arguments for BC reasons.
|
71 |
+
def reduce(
|
72 |
+
inputs: Sequence[torch.Tensor],
|
73 |
+
output: Optional[Union[torch.Tensor, Sequence[torch.Tensor]]] = None,
|
74 |
+
root: int = 0,
|
75 |
+
op: int = SUM,
|
76 |
+
streams: Optional[Sequence[torch.cuda.Stream]] = None,
|
77 |
+
comms=None,
|
78 |
+
*,
|
79 |
+
outputs: Optional[Sequence[torch.Tensor]] = None,
|
80 |
+
) -> None:
|
81 |
+
_check_sequence_type(inputs)
|
82 |
+
_output: torch.Tensor
|
83 |
+
if outputs is not None:
|
84 |
+
if output is not None:
|
85 |
+
raise ValueError(
|
86 |
+
"'output' and 'outputs' can not be both specified. 'outputs' is deprecated in "
|
87 |
+
"favor of 'output', taking in a single output tensor. The signature of reduce is: "
|
88 |
+
"reduce(inputs, output=None, root=0, op=SUM, streams=None, comms=None)."
|
89 |
+
)
|
90 |
+
else:
|
91 |
+
warnings.warn(
|
92 |
+
"nccl.reduce with an output tensor list is deprecated. "
|
93 |
+
"Please specify a single output tensor with argument 'output' instead instead."
|
94 |
+
)
|
95 |
+
_output = outputs[root]
|
96 |
+
elif not isinstance(output, torch.Tensor) and isinstance(
|
97 |
+
output, collections.abc.Sequence
|
98 |
+
):
|
99 |
+
# User called old API with positional arguments of list of output tensors.
|
100 |
+
warnings.warn(
|
101 |
+
"nccl.reduce with an output tensor list is deprecated. "
|
102 |
+
"Please specify a single output tensor."
|
103 |
+
)
|
104 |
+
_output = output[root]
|
105 |
+
else:
|
106 |
+
_output = inputs[root] if output is None else output
|
107 |
+
torch._C._nccl_reduce(inputs, _output, root, op, streams, comms)
|
108 |
+
|
109 |
+
|
110 |
+
def broadcast(
|
111 |
+
inputs: Sequence[torch.Tensor], root: int = 0, streams=None, comms=None
|
112 |
+
) -> None:
|
113 |
+
_check_sequence_type(inputs)
|
114 |
+
torch._C._nccl_broadcast(inputs, root, streams, comms)
|
115 |
+
|
116 |
+
|
117 |
+
def all_gather(
|
118 |
+
inputs: Sequence[torch.Tensor],
|
119 |
+
outputs: Sequence[torch.Tensor],
|
120 |
+
streams=None,
|
121 |
+
comms=None,
|
122 |
+
) -> None:
|
123 |
+
_check_sequence_type(inputs)
|
124 |
+
_check_sequence_type(outputs)
|
125 |
+
torch._C._nccl_all_gather(inputs, outputs, streams, comms)
|
126 |
+
|
127 |
+
|
128 |
+
def reduce_scatter(
|
129 |
+
inputs: Sequence[torch.Tensor],
|
130 |
+
outputs: Sequence[torch.Tensor],
|
131 |
+
op: int = SUM,
|
132 |
+
streams=None,
|
133 |
+
comms=None,
|
134 |
+
) -> None:
|
135 |
+
_check_sequence_type(inputs)
|
136 |
+
_check_sequence_type(outputs)
|
137 |
+
torch._C._nccl_reduce_scatter(inputs, outputs, op, streams, comms)
|
venv/lib/python3.10/site-packages/torch/cuda/nvtx.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""This package adds support for NVIDIA Tools Extension (NVTX) used in profiling."""
|
2 |
+
|
3 |
+
from contextlib import contextmanager
|
4 |
+
|
5 |
+
try:
|
6 |
+
from torch._C import _nvtx
|
7 |
+
except ImportError:
|
8 |
+
|
9 |
+
class _NVTXStub:
|
10 |
+
@staticmethod
|
11 |
+
def _fail(*args, **kwargs):
|
12 |
+
raise RuntimeError(
|
13 |
+
"NVTX functions not installed. Are you sure you have a CUDA build?"
|
14 |
+
)
|
15 |
+
|
16 |
+
rangePushA = _fail
|
17 |
+
rangePop = _fail
|
18 |
+
markA = _fail
|
19 |
+
|
20 |
+
_nvtx = _NVTXStub() # type: ignore[assignment]
|
21 |
+
|
22 |
+
__all__ = ["range_push", "range_pop", "range_start", "range_end", "mark", "range"]
|
23 |
+
|
24 |
+
|
25 |
+
def range_push(msg):
|
26 |
+
"""
|
27 |
+
Push a range onto a stack of nested range span. Returns zero-based depth of the range that is started.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
msg (str): ASCII message to associate with range
|
31 |
+
"""
|
32 |
+
return _nvtx.rangePushA(msg)
|
33 |
+
|
34 |
+
|
35 |
+
def range_pop():
|
36 |
+
"""Pop a range off of a stack of nested range spans. Returns the zero-based depth of the range that is ended."""
|
37 |
+
return _nvtx.rangePop()
|
38 |
+
|
39 |
+
|
40 |
+
def range_start(msg) -> int:
|
41 |
+
"""
|
42 |
+
Mark the start of a range with string message. It returns an unique handle
|
43 |
+
for this range to pass to the corresponding call to rangeEnd().
|
44 |
+
|
45 |
+
A key difference between this and range_push/range_pop is that the
|
46 |
+
range_start/range_end version supports range across threads (start on one
|
47 |
+
thread and end on another thread).
|
48 |
+
|
49 |
+
Returns: A range handle (uint64_t) that can be passed to range_end().
|
50 |
+
|
51 |
+
Args:
|
52 |
+
msg (str): ASCII message to associate with the range.
|
53 |
+
"""
|
54 |
+
return _nvtx.rangeStartA(msg)
|
55 |
+
|
56 |
+
|
57 |
+
def range_end(range_id) -> None:
|
58 |
+
"""
|
59 |
+
Mark the end of a range for a given range_id.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
range_id (int): an unique handle for the start range.
|
63 |
+
"""
|
64 |
+
_nvtx.rangeEnd(range_id)
|
65 |
+
|
66 |
+
|
67 |
+
def mark(msg):
|
68 |
+
"""
|
69 |
+
Describe an instantaneous event that occurred at some point.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
msg (str): ASCII message to associate with the event.
|
73 |
+
"""
|
74 |
+
return _nvtx.markA(msg)
|
75 |
+
|
76 |
+
|
77 |
+
@contextmanager
|
78 |
+
def range(msg, *args, **kwargs):
|
79 |
+
"""
|
80 |
+
Context manager / decorator that pushes an NVTX range at the beginning
|
81 |
+
of its scope, and pops it at the end. If extra arguments are given,
|
82 |
+
they are passed as arguments to msg.format().
|
83 |
+
|
84 |
+
Args:
|
85 |
+
msg (str): message to associate with the range
|
86 |
+
"""
|
87 |
+
range_push(msg.format(*args, **kwargs))
|
88 |
+
try:
|
89 |
+
yield
|
90 |
+
finally:
|
91 |
+
range_pop()
|
venv/lib/python3.10/site-packages/torch/cuda/random.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Iterable, List, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from .. import Tensor
|
5 |
+
from . import _lazy_call, _lazy_init, current_device, device_count
|
6 |
+
|
7 |
+
__all__ = [
|
8 |
+
"get_rng_state",
|
9 |
+
"get_rng_state_all",
|
10 |
+
"set_rng_state",
|
11 |
+
"set_rng_state_all",
|
12 |
+
"manual_seed",
|
13 |
+
"manual_seed_all",
|
14 |
+
"seed",
|
15 |
+
"seed_all",
|
16 |
+
"initial_seed",
|
17 |
+
]
|
18 |
+
|
19 |
+
|
20 |
+
def get_rng_state(device: Union[int, str, torch.device] = "cuda") -> Tensor:
|
21 |
+
r"""Return the random number generator state of the specified GPU as a ByteTensor.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
device (torch.device or int, optional): The device to return the RNG state of.
|
25 |
+
Default: ``'cuda'`` (i.e., ``torch.device('cuda')``, the current CUDA device).
|
26 |
+
|
27 |
+
.. warning::
|
28 |
+
This function eagerly initializes CUDA.
|
29 |
+
"""
|
30 |
+
_lazy_init()
|
31 |
+
if isinstance(device, str):
|
32 |
+
device = torch.device(device)
|
33 |
+
elif isinstance(device, int):
|
34 |
+
device = torch.device("cuda", device)
|
35 |
+
idx = device.index
|
36 |
+
if idx is None:
|
37 |
+
idx = current_device()
|
38 |
+
default_generator = torch.cuda.default_generators[idx]
|
39 |
+
return default_generator.get_state()
|
40 |
+
|
41 |
+
|
42 |
+
def get_rng_state_all() -> List[Tensor]:
|
43 |
+
r"""Return a list of ByteTensor representing the random number states of all devices."""
|
44 |
+
results = []
|
45 |
+
for i in range(device_count()):
|
46 |
+
results.append(get_rng_state(i))
|
47 |
+
return results
|
48 |
+
|
49 |
+
|
50 |
+
def set_rng_state(
|
51 |
+
new_state: Tensor, device: Union[int, str, torch.device] = "cuda"
|
52 |
+
) -> None:
|
53 |
+
r"""Set the random number generator state of the specified GPU.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
new_state (torch.ByteTensor): The desired state
|
57 |
+
device (torch.device or int, optional): The device to set the RNG state.
|
58 |
+
Default: ``'cuda'`` (i.e., ``torch.device('cuda')``, the current CUDA device).
|
59 |
+
"""
|
60 |
+
with torch._C._DisableFuncTorch():
|
61 |
+
new_state_copy = new_state.clone(memory_format=torch.contiguous_format)
|
62 |
+
if isinstance(device, str):
|
63 |
+
device = torch.device(device)
|
64 |
+
elif isinstance(device, int):
|
65 |
+
device = torch.device("cuda", device)
|
66 |
+
|
67 |
+
def cb():
|
68 |
+
idx = device.index
|
69 |
+
if idx is None:
|
70 |
+
idx = current_device()
|
71 |
+
default_generator = torch.cuda.default_generators[idx]
|
72 |
+
default_generator.set_state(new_state_copy)
|
73 |
+
|
74 |
+
_lazy_call(cb)
|
75 |
+
|
76 |
+
|
77 |
+
def set_rng_state_all(new_states: Iterable[Tensor]) -> None:
|
78 |
+
r"""Set the random number generator state of all devices.
|
79 |
+
|
80 |
+
Args:
|
81 |
+
new_states (Iterable of torch.ByteTensor): The desired state for each device.
|
82 |
+
"""
|
83 |
+
for i, state in enumerate(new_states):
|
84 |
+
set_rng_state(state, i)
|
85 |
+
|
86 |
+
|
87 |
+
def manual_seed(seed: int) -> None:
|
88 |
+
r"""Set the seed for generating random numbers for the current GPU.
|
89 |
+
|
90 |
+
It's safe to call this function if CUDA is not available; in that
|
91 |
+
case, it is silently ignored.
|
92 |
+
|
93 |
+
Args:
|
94 |
+
seed (int): The desired seed.
|
95 |
+
|
96 |
+
.. warning::
|
97 |
+
If you are working with a multi-GPU model, this function is insufficient
|
98 |
+
to get determinism. To seed all GPUs, use :func:`manual_seed_all`.
|
99 |
+
"""
|
100 |
+
seed = int(seed)
|
101 |
+
|
102 |
+
def cb():
|
103 |
+
idx = current_device()
|
104 |
+
default_generator = torch.cuda.default_generators[idx]
|
105 |
+
default_generator.manual_seed(seed)
|
106 |
+
|
107 |
+
_lazy_call(cb, seed=True)
|
108 |
+
|
109 |
+
|
110 |
+
def manual_seed_all(seed: int) -> None:
|
111 |
+
r"""Set the seed for generating random numbers on all GPUs.
|
112 |
+
|
113 |
+
It's safe to call this function if CUDA is not available; in that
|
114 |
+
case, it is silently ignored.
|
115 |
+
|
116 |
+
Args:
|
117 |
+
seed (int): The desired seed.
|
118 |
+
"""
|
119 |
+
seed = int(seed)
|
120 |
+
|
121 |
+
def cb():
|
122 |
+
for i in range(device_count()):
|
123 |
+
default_generator = torch.cuda.default_generators[i]
|
124 |
+
default_generator.manual_seed(seed)
|
125 |
+
|
126 |
+
_lazy_call(cb, seed_all=True)
|
127 |
+
|
128 |
+
|
129 |
+
def seed() -> None:
|
130 |
+
r"""Set the seed for generating random numbers to a random number for the current GPU.
|
131 |
+
|
132 |
+
It's safe to call this function if CUDA is not available; in that
|
133 |
+
case, it is silently ignored.
|
134 |
+
|
135 |
+
.. warning::
|
136 |
+
If you are working with a multi-GPU model, this function will only initialize
|
137 |
+
the seed on one GPU. To initialize all GPUs, use :func:`seed_all`.
|
138 |
+
"""
|
139 |
+
|
140 |
+
def cb():
|
141 |
+
idx = current_device()
|
142 |
+
default_generator = torch.cuda.default_generators[idx]
|
143 |
+
default_generator.seed()
|
144 |
+
|
145 |
+
_lazy_call(cb)
|
146 |
+
|
147 |
+
|
148 |
+
def seed_all() -> None:
|
149 |
+
r"""Set the seed for generating random numbers to a random number on all GPUs.
|
150 |
+
|
151 |
+
It's safe to call this function if CUDA is not available; in that
|
152 |
+
case, it is silently ignored.
|
153 |
+
"""
|
154 |
+
|
155 |
+
def cb():
|
156 |
+
random_seed = 0
|
157 |
+
seeded = False
|
158 |
+
for i in range(device_count()):
|
159 |
+
default_generator = torch.cuda.default_generators[i]
|
160 |
+
if not seeded:
|
161 |
+
default_generator.seed()
|
162 |
+
random_seed = default_generator.initial_seed()
|
163 |
+
seeded = True
|
164 |
+
else:
|
165 |
+
default_generator.manual_seed(random_seed)
|
166 |
+
|
167 |
+
_lazy_call(cb)
|
168 |
+
|
169 |
+
|
170 |
+
def initial_seed() -> int:
|
171 |
+
r"""Return the current random seed of the current GPU.
|
172 |
+
|
173 |
+
.. warning::
|
174 |
+
This function eagerly initializes CUDA.
|
175 |
+
"""
|
176 |
+
_lazy_init()
|
177 |
+
idx = current_device()
|
178 |
+
default_generator = torch.cuda.default_generators[idx]
|
179 |
+
return default_generator.initial_seed()
|
venv/lib/python3.10/site-packages/torch/cuda/sparse.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# The Tensor classes are added to this module by python_tensor.cpp
|
venv/lib/python3.10/site-packages/torch/cuda/streams.py
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ctypes
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch._streambase import _EventBase, _StreamBase
|
5 |
+
from .._utils import _dummy_type
|
6 |
+
|
7 |
+
|
8 |
+
if not hasattr(torch._C, "_CudaStreamBase"):
|
9 |
+
# Define dummy base classes
|
10 |
+
torch._C.__dict__["_CudaStreamBase"] = _dummy_type("_CudaStreamBase")
|
11 |
+
torch._C.__dict__["_CudaEventBase"] = _dummy_type("_CudaEventBase")
|
12 |
+
|
13 |
+
|
14 |
+
class Stream(torch._C._CudaStreamBase, _StreamBase):
|
15 |
+
r"""Wrapper around a CUDA stream.
|
16 |
+
|
17 |
+
A CUDA stream is a linear sequence of execution that belongs to a specific
|
18 |
+
device, independent from other streams. See :ref:`cuda-semantics` for
|
19 |
+
details.
|
20 |
+
|
21 |
+
Args:
|
22 |
+
device(torch.device or int, optional): a device on which to allocate
|
23 |
+
the stream. If :attr:`device` is ``None`` (default) or a negative
|
24 |
+
integer, this will use the current device.
|
25 |
+
priority(int, optional): priority of the stream, should be 0 or
|
26 |
+
negative, where negative numbers indicate higher priority. By default,
|
27 |
+
streams have priority 0.
|
28 |
+
|
29 |
+
"""
|
30 |
+
|
31 |
+
def __new__(cls, device=None, priority=0, **kwargs):
|
32 |
+
# setting device manager is expensive, so we avoid it unless necessary
|
33 |
+
if device is None or ("stream_id" in kwargs and "device_index" in kwargs):
|
34 |
+
return super().__new__(cls, priority=priority, **kwargs)
|
35 |
+
else:
|
36 |
+
with torch.cuda.device(device):
|
37 |
+
return super().__new__(cls, priority=priority, **kwargs)
|
38 |
+
|
39 |
+
def wait_event(self, event):
|
40 |
+
r"""Make all future work submitted to the stream wait for an event.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
event (torch.cuda.Event): an event to wait for.
|
44 |
+
|
45 |
+
.. note:: This is a wrapper around ``cudaStreamWaitEvent()``: see
|
46 |
+
`CUDA Stream documentation`_ for more info.
|
47 |
+
|
48 |
+
This function returns without waiting for :attr:`event`: only future
|
49 |
+
operations are affected.
|
50 |
+
|
51 |
+
.. _CUDA Stream documentation:
|
52 |
+
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html
|
53 |
+
"""
|
54 |
+
event.wait(self)
|
55 |
+
|
56 |
+
def wait_stream(self, stream):
|
57 |
+
r"""Synchronize with another stream.
|
58 |
+
|
59 |
+
All future work submitted to this stream will wait until all kernels
|
60 |
+
submitted to a given stream at the time of call complete.
|
61 |
+
|
62 |
+
Args:
|
63 |
+
stream (Stream): a stream to synchronize.
|
64 |
+
|
65 |
+
.. note:: This function returns without waiting for currently enqueued
|
66 |
+
kernels in :attr:`stream`: only future operations are affected.
|
67 |
+
"""
|
68 |
+
self.wait_event(stream.record_event())
|
69 |
+
|
70 |
+
def record_event(self, event=None):
|
71 |
+
r"""Record an event.
|
72 |
+
|
73 |
+
Args:
|
74 |
+
event (torch.cuda.Event, optional): event to record. If not given, a new one
|
75 |
+
will be allocated.
|
76 |
+
|
77 |
+
Returns:
|
78 |
+
Recorded event.
|
79 |
+
"""
|
80 |
+
if event is None:
|
81 |
+
event = Event()
|
82 |
+
event.record(self)
|
83 |
+
return event
|
84 |
+
|
85 |
+
def query(self):
|
86 |
+
r"""Check if all the work submitted has been completed.
|
87 |
+
|
88 |
+
Returns:
|
89 |
+
A boolean indicating if all kernels in this stream are completed.
|
90 |
+
"""
|
91 |
+
return super().query()
|
92 |
+
|
93 |
+
def synchronize(self):
|
94 |
+
r"""Wait for all the kernels in this stream to complete.
|
95 |
+
|
96 |
+
.. note:: This is a wrapper around ``cudaStreamSynchronize()``: see
|
97 |
+
`CUDA Stream documentation`_ for more info.
|
98 |
+
"""
|
99 |
+
super().synchronize()
|
100 |
+
|
101 |
+
@property
|
102 |
+
def _as_parameter_(self):
|
103 |
+
return ctypes.c_void_p(self.cuda_stream)
|
104 |
+
|
105 |
+
def __eq__(self, o):
|
106 |
+
if isinstance(o, Stream):
|
107 |
+
return super().__eq__(o)
|
108 |
+
return False
|
109 |
+
|
110 |
+
def __hash__(self):
|
111 |
+
return hash((self.cuda_stream, self.device))
|
112 |
+
|
113 |
+
def __repr__(self):
|
114 |
+
return f"<torch.cuda.Stream device={self.device} cuda_stream={self.cuda_stream:#x}>"
|
115 |
+
|
116 |
+
|
117 |
+
class ExternalStream(Stream):
|
118 |
+
r"""Wrapper around an externally allocated CUDA stream.
|
119 |
+
|
120 |
+
This class is used to wrap streams allocated in other libraries in order
|
121 |
+
to facilitate data exchange and multi-library interactions.
|
122 |
+
|
123 |
+
.. note:: This class doesn't manage the stream life-cycle, it is the user
|
124 |
+
responsibility to keep the referenced stream alive while this class is
|
125 |
+
being used.
|
126 |
+
|
127 |
+
Args:
|
128 |
+
stream_ptr(int): Integer representation of the `cudaStream_t` value.
|
129 |
+
allocated externally.
|
130 |
+
device(torch.device or int, optional): the device where the stream
|
131 |
+
was originally allocated. if device is specified incorrectly,
|
132 |
+
subsequent launches using this stream may fail.
|
133 |
+
"""
|
134 |
+
|
135 |
+
def __new__(cls, stream_ptr, device=None, **kwargs):
|
136 |
+
with torch.cuda.device(device):
|
137 |
+
return super().__new__(cls, stream_ptr=stream_ptr, **kwargs)
|
138 |
+
|
139 |
+
|
140 |
+
class Event(torch._C._CudaEventBase, _EventBase):
|
141 |
+
r"""Wrapper around a CUDA event.
|
142 |
+
|
143 |
+
CUDA events are synchronization markers that can be used to monitor the
|
144 |
+
device's progress, to accurately measure timing, and to synchronize CUDA
|
145 |
+
streams.
|
146 |
+
|
147 |
+
The underlying CUDA events are lazily initialized when the event is first
|
148 |
+
recorded or exported to another process. After creation, only streams on the
|
149 |
+
same device may record the event. However, streams on any device can wait on
|
150 |
+
the event.
|
151 |
+
|
152 |
+
Args:
|
153 |
+
enable_timing (bool, optional): indicates if the event should measure time
|
154 |
+
(default: ``False``)
|
155 |
+
blocking (bool, optional): if ``True``, :meth:`wait` will be blocking (default: ``False``)
|
156 |
+
interprocess (bool): if ``True``, the event can be shared between processes
|
157 |
+
(default: ``False``)
|
158 |
+
|
159 |
+
.. _CUDA Event Documentation:
|
160 |
+
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EVENT.html
|
161 |
+
"""
|
162 |
+
|
163 |
+
def __new__(cls, enable_timing=False, blocking=False, interprocess=False):
|
164 |
+
return super().__new__(
|
165 |
+
cls,
|
166 |
+
enable_timing=enable_timing,
|
167 |
+
blocking=blocking,
|
168 |
+
interprocess=interprocess,
|
169 |
+
)
|
170 |
+
|
171 |
+
@classmethod
|
172 |
+
def from_ipc_handle(cls, device, handle):
|
173 |
+
r"""Reconstruct an event from an IPC handle on the given device."""
|
174 |
+
return super().from_ipc_handle(device, handle)
|
175 |
+
|
176 |
+
def record(self, stream=None):
|
177 |
+
r"""Record the event in a given stream.
|
178 |
+
|
179 |
+
Uses ``torch.cuda.current_stream()`` if no stream is specified. The
|
180 |
+
stream's device must match the event's device.
|
181 |
+
"""
|
182 |
+
if stream is None:
|
183 |
+
stream = torch.cuda.current_stream()
|
184 |
+
super().record(stream)
|
185 |
+
|
186 |
+
def wait(self, stream=None):
|
187 |
+
r"""Make all future work submitted to the given stream wait for this event.
|
188 |
+
|
189 |
+
Use ``torch.cuda.current_stream()`` if no stream is specified.
|
190 |
+
|
191 |
+
.. note:: This is a wrapper around ``cudaStreamWaitEvent()``: see
|
192 |
+
`CUDA Event documentation`_ for more info.
|
193 |
+
"""
|
194 |
+
if stream is None:
|
195 |
+
stream = torch.cuda.current_stream()
|
196 |
+
super().wait(stream)
|
197 |
+
|
198 |
+
def query(self):
|
199 |
+
r"""Check if all work currently captured by event has completed.
|
200 |
+
|
201 |
+
Returns:
|
202 |
+
A boolean indicating if all work currently captured by event has
|
203 |
+
completed.
|
204 |
+
"""
|
205 |
+
return super().query()
|
206 |
+
|
207 |
+
def elapsed_time(self, end_event):
|
208 |
+
r"""Return the time elapsed.
|
209 |
+
|
210 |
+
Time reported in milliseconds after the event was recorded and
|
211 |
+
before the end_event was recorded.
|
212 |
+
"""
|
213 |
+
return super().elapsed_time(end_event)
|
214 |
+
|
215 |
+
def synchronize(self):
|
216 |
+
r"""Wait for the event to complete.
|
217 |
+
|
218 |
+
Waits until the completion of all work currently captured in this event.
|
219 |
+
This prevents the CPU thread from proceeding until the event completes.
|
220 |
+
|
221 |
+
.. note:: This is a wrapper around ``cudaEventSynchronize()``: see
|
222 |
+
`CUDA Event documentation`_ for more info.
|
223 |
+
"""
|
224 |
+
super().synchronize()
|
225 |
+
|
226 |
+
def ipc_handle(self):
|
227 |
+
r"""Return an IPC handle of this event.
|
228 |
+
|
229 |
+
If not recorded yet, the event will use the current device.
|
230 |
+
"""
|
231 |
+
return super().ipc_handle()
|
232 |
+
|
233 |
+
@property
|
234 |
+
def _as_parameter_(self):
|
235 |
+
return ctypes.c_void_p(self.cuda_event)
|
236 |
+
|
237 |
+
def __repr__(self):
|
238 |
+
if self.cuda_event:
|
239 |
+
return f"<torch.cuda.Event {self._as_parameter_.value:#x}>"
|
240 |
+
else:
|
241 |
+
return "<torch.cuda.Event uninitialized>"
|
venv/lib/python3.10/site-packages/torch/func/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch._functorch.eager_transforms import (
|
2 |
+
vjp,
|
3 |
+
jvp,
|
4 |
+
jacrev,
|
5 |
+
jacfwd,
|
6 |
+
hessian,
|
7 |
+
functionalize,
|
8 |
+
linearize
|
9 |
+
)
|
10 |
+
from torch._functorch.apis import grad, grad_and_value
|
11 |
+
from torch._functorch.functional_call import functional_call, stack_module_state
|
12 |
+
from torch._functorch.batch_norm_replacement import replace_all_batch_norm_modules_
|
13 |
+
from torch._functorch.apis import vmap
|
venv/lib/python3.10/site-packages/torch/func/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (647 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/CudaIPCTypes.h
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#ifdef USE_CUDA
|
3 |
+
#include <c10/core/Allocator.h>
|
4 |
+
#include <c10/cuda/CUDACachingAllocator.h>
|
5 |
+
#include <c10/cuda/CUDAException.h>
|
6 |
+
#include <c10/util/Logging.h>
|
7 |
+
#include <cuda_runtime_api.h>
|
8 |
+
#include <torch/csrc/Export.h>
|
9 |
+
#include <cstddef>
|
10 |
+
namespace torch {
|
11 |
+
|
12 |
+
TORCH_CUDA_CU_API bool CudaIPCCollect();
|
13 |
+
|
14 |
+
struct CudaIPCReceivedData final {
|
15 |
+
CudaIPCReceivedData() = default;
|
16 |
+
explicit CudaIPCReceivedData(std::shared_ptr<void> shared_ptr)
|
17 |
+
: shared_ptr_(std::move(shared_ptr)) {}
|
18 |
+
std::shared_ptr<void> shared_ptr_;
|
19 |
+
};
|
20 |
+
|
21 |
+
struct CudaIPCSentData final {
|
22 |
+
std::string handle_;
|
23 |
+
uint64_t offset_;
|
24 |
+
uint64_t* counter_ptr_; // Reference counter shared memory block
|
25 |
+
at::DataPtr original_ptr_; // Original mem allocation
|
26 |
+
cudaEvent_t event_; // Sync cuEventDestroy
|
27 |
+
bool event_sync_required_;
|
28 |
+
at::Device device_;
|
29 |
+
|
30 |
+
CudaIPCSentData(
|
31 |
+
std::string handle,
|
32 |
+
uint64_t offset,
|
33 |
+
uint64_t* counter_ptr,
|
34 |
+
at::Device device);
|
35 |
+
~CudaIPCSentData();
|
36 |
+
|
37 |
+
uint64_t counter_value();
|
38 |
+
std::string handle() {
|
39 |
+
return handle_;
|
40 |
+
}
|
41 |
+
uint64_t offset() {
|
42 |
+
return offset_;
|
43 |
+
}
|
44 |
+
void set_original_ptr(at::DataPtr data_ptr) {
|
45 |
+
original_ptr_ = std::move(data_ptr);
|
46 |
+
}
|
47 |
+
};
|
48 |
+
|
49 |
+
TORCH_CUDA_CU_API at::DataPtr GetNewRefCountedSentData(
|
50 |
+
void* data,
|
51 |
+
at::Device device);
|
52 |
+
|
53 |
+
namespace {
|
54 |
+
|
55 |
+
inline constexpr int64_t CUDA_IPC_REF_COUNTER_FILE_SIZE = 10000;
|
56 |
+
inline constexpr int64_t CUDA_IPC_WARN_AFTER_X_BLOCKS_IN_LIMBO = 1000;
|
57 |
+
// This was determined empirically that CUDA (v10.1 and below) have the limit
|
58 |
+
// on the number of recorded blocking interprocess events. It is around ~22,000.
|
59 |
+
// And to give us leeway, we picked 1000 as it gives us enough events to share
|
60 |
+
// tensors effectively.
|
61 |
+
inline constexpr int64_t CUDA_IPC_MAXIMUM_EVENTS_TO_USE = 1000;
|
62 |
+
|
63 |
+
// All to be deleted data blocks with non zero reference counter goes there
|
64 |
+
struct CudaIPCSentDataLimbo final {
|
65 |
+
~CudaIPCSentDataLimbo();
|
66 |
+
bool collect();
|
67 |
+
void add(std::unique_ptr<CudaIPCSentData> shared_block);
|
68 |
+
uint64_t size();
|
69 |
+
|
70 |
+
private:
|
71 |
+
// TODO: Can be changed to FIFO in order to avoid full traverse on every
|
72 |
+
// collect()
|
73 |
+
std::vector<std::unique_ptr<CudaIPCSentData>> shared_blocks_;
|
74 |
+
std::mutex limbo_mutex_;
|
75 |
+
};
|
76 |
+
|
77 |
+
struct CudaIPCRefCountersFile final {
|
78 |
+
CudaIPCRefCountersFile(
|
79 |
+
std::string handle,
|
80 |
+
uint64_t size,
|
81 |
+
at::DataPtr data_ptr)
|
82 |
+
: size_(size),
|
83 |
+
|
84 |
+
handle_(std::move(handle)),
|
85 |
+
refcounted_shared_mem_(std::move(data_ptr)) {}
|
86 |
+
|
87 |
+
uint64_t* counter_ptr() {
|
88 |
+
return static_cast<uint64_t*>(refcounted_shared_mem_.get()) + next_offset_;
|
89 |
+
}
|
90 |
+
|
91 |
+
void set_counter(uint64_t value) {
|
92 |
+
*counter_ptr() = value;
|
93 |
+
}
|
94 |
+
|
95 |
+
bool have_offsets() {
|
96 |
+
return next_offset_ < size_;
|
97 |
+
}
|
98 |
+
|
99 |
+
bool offsets_in_use() {
|
100 |
+
return used_slots_;
|
101 |
+
}
|
102 |
+
|
103 |
+
uint64_t get_offset() {
|
104 |
+
return next_offset_;
|
105 |
+
}
|
106 |
+
|
107 |
+
void rotate_offset() {
|
108 |
+
next_offset_++;
|
109 |
+
used_slots_++;
|
110 |
+
}
|
111 |
+
|
112 |
+
void return_offset(uint64_t offset /* unused */) {
|
113 |
+
used_slots_--;
|
114 |
+
}
|
115 |
+
|
116 |
+
std::string handle() {
|
117 |
+
return handle_;
|
118 |
+
}
|
119 |
+
|
120 |
+
private:
|
121 |
+
uint64_t next_offset_{0};
|
122 |
+
uint64_t size_;
|
123 |
+
uint64_t used_slots_{0};
|
124 |
+
std::string handle_;
|
125 |
+
at::DataPtr refcounted_shared_mem_;
|
126 |
+
};
|
127 |
+
|
128 |
+
} // namespace
|
129 |
+
} // namespace torch
|
130 |
+
|
131 |
+
namespace c10 {
|
132 |
+
namespace {
|
133 |
+
class CudaIPCCollectCallback : public FreeMemoryCallback {
|
134 |
+
public:
|
135 |
+
bool Execute() override {
|
136 |
+
return torch::CudaIPCCollect();
|
137 |
+
}
|
138 |
+
};
|
139 |
+
} // namespace
|
140 |
+
|
141 |
+
} // namespace c10
|
142 |
+
|
143 |
+
#endif
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/DataLoader.h
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/python_headers.h>
|
4 |
+
|
5 |
+
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,cppcoreguidelines-avoid-non-const-global-variables,modernize-avoid-c-arrays)
|
6 |
+
extern PyMethodDef DataLoaderMethods[];
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/DynamicTypes.h
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// Provides conversions between Python tensor objects and at::Tensor.
|
4 |
+
|
5 |
+
#include <torch/csrc/python_headers.h>
|
6 |
+
|
7 |
+
#include <ATen/Device.h>
|
8 |
+
#include <c10/core/Backend.h>
|
9 |
+
#include <c10/core/Layout.h>
|
10 |
+
#include <c10/core/ScalarType.h>
|
11 |
+
#include <c10/core/ScalarTypeToTypeMeta.h>
|
12 |
+
#include <torch/csrc/Export.h>
|
13 |
+
|
14 |
+
#include <memory>
|
15 |
+
#include <string>
|
16 |
+
|
17 |
+
struct THPDtype;
|
18 |
+
struct THPLayout;
|
19 |
+
|
20 |
+
namespace c10 {
|
21 |
+
struct Storage;
|
22 |
+
}
|
23 |
+
|
24 |
+
namespace torch {
|
25 |
+
void registerDtypeObject(THPDtype* dtype, at::ScalarType scalarType);
|
26 |
+
void registerLayoutObject(THPLayout* thp_layout, at::Layout layout);
|
27 |
+
|
28 |
+
TORCH_PYTHON_API PyObject* createPyObject(const at::Storage& storage);
|
29 |
+
at::Storage createStorage(PyObject* obj);
|
30 |
+
std::tuple<at::Storage, at::ScalarType, bool> createStorageGetType(
|
31 |
+
PyObject* obj);
|
32 |
+
bool isStorage(PyObject* obj);
|
33 |
+
|
34 |
+
TORCH_PYTHON_API THPDtype* getTHPDtype(at::ScalarType scalarType);
|
35 |
+
THPLayout* getTHPLayout(at::Layout layout);
|
36 |
+
} // namespace torch
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/Export.h
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/macros/Export.h>
|
4 |
+
|
5 |
+
#ifdef THP_BUILD_MAIN_LIB
|
6 |
+
#define TORCH_PYTHON_API C10_EXPORT
|
7 |
+
#else
|
8 |
+
#define TORCH_PYTHON_API C10_IMPORT
|
9 |
+
#endif
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/Layout.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/python_headers.h>
|
4 |
+
|
5 |
+
#include <ATen/Layout.h>
|
6 |
+
|
7 |
+
#include <string>
|
8 |
+
|
9 |
+
const int LAYOUT_NAME_LEN = 64;
|
10 |
+
|
11 |
+
struct THPLayout {
|
12 |
+
PyObject_HEAD at::Layout layout;
|
13 |
+
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
|
14 |
+
char name[LAYOUT_NAME_LEN + 1];
|
15 |
+
};
|
16 |
+
|
17 |
+
extern PyTypeObject THPLayoutType;
|
18 |
+
|
19 |
+
inline bool THPLayout_Check(PyObject* obj) {
|
20 |
+
return Py_TYPE(obj) == &THPLayoutType;
|
21 |
+
}
|
22 |
+
|
23 |
+
PyObject* THPLayout_New(at::Layout layout, const std::string& name);
|
24 |
+
|
25 |
+
void THPLayout_init(PyObject* module);
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/THConcat.h
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#define TH_CONCAT_STRING_2(x, y) TH_CONCAT_STRING_2_EXPAND(x, y)
|
4 |
+
#define TH_CONCAT_STRING_2_EXPAND(x, y) #x #y
|
5 |
+
|
6 |
+
#define TH_CONCAT_STRING_3(x, y, z) TH_CONCAT_STRING_3_EXPAND(x, y, z)
|
7 |
+
#define TH_CONCAT_STRING_3_EXPAND(x, y, z) #x #y #z
|
8 |
+
|
9 |
+
#define TH_CONCAT_STRING_4(x, y, z, w) TH_CONCAT_STRING_4_EXPAND(x, y, z, w)
|
10 |
+
#define TH_CONCAT_STRING_4_EXPAND(x, y, z, w) #x #y #z #w
|
11 |
+
|
12 |
+
#define TH_CONCAT_2(x, y) TH_CONCAT_2_EXPAND(x, y)
|
13 |
+
#define TH_CONCAT_2_EXPAND(x, y) x##y
|
14 |
+
|
15 |
+
#define TH_CONCAT_3(x, y, z) TH_CONCAT_3_EXPAND(x, y, z)
|
16 |
+
#define TH_CONCAT_3_EXPAND(x, y, z) x##y##z
|
17 |
+
|
18 |
+
#define TH_CONCAT_4_EXPAND(x, y, z, w) x##y##z##w
|
19 |
+
#define TH_CONCAT_4(x, y, z, w) TH_CONCAT_4_EXPAND(x, y, z, w)
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/THP.h
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#ifndef THP_H
|
2 |
+
#define THP_H
|
3 |
+
|
4 |
+
#include <torch/csrc/Export.h>
|
5 |
+
#include <torch/csrc/python_headers.h>
|
6 |
+
|
7 |
+
// Back-compatibility macros, Thanks to http://cx-oracle.sourceforge.net/
|
8 |
+
// define PyInt_* macros for Python 3.x. NB: We must include Python.h first,
|
9 |
+
// otherwise we'll incorrectly conclude PyInt_Check isn't defined!
|
10 |
+
#ifndef PyInt_Check
|
11 |
+
#define PyInt_Check PyLong_Check
|
12 |
+
#define PyInt_FromLong PyLong_FromLong
|
13 |
+
#define PyInt_AsLong PyLong_AsLong
|
14 |
+
#define PyInt_Type PyLong_Type
|
15 |
+
#endif
|
16 |
+
|
17 |
+
#include <torch/csrc/Exceptions.h>
|
18 |
+
#include <torch/csrc/Generator.h>
|
19 |
+
#include <torch/csrc/Module.h>
|
20 |
+
#include <torch/csrc/Size.h>
|
21 |
+
#include <torch/csrc/Storage.h>
|
22 |
+
#include <torch/csrc/Types.h>
|
23 |
+
#include <torch/csrc/utils.h> // This requires defined Storage and Tensor types
|
24 |
+
#include <torch/csrc/utils/byte_order.h>
|
25 |
+
|
26 |
+
#include <torch/csrc/serialization.h>
|
27 |
+
|
28 |
+
#include <torch/csrc/autograd/python_autograd.h>
|
29 |
+
|
30 |
+
#endif
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/FunctionsManual.h
ADDED
@@ -0,0 +1,1101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// NB: Must be at the top of file to avoid including the deprecated "math.h".
|
4 |
+
// https://stackoverflow.com/questions/6563810/m-pi-works-with-math-h-but-not-with-cmath-in-visual-studio
|
5 |
+
#ifdef _MSC_VER
|
6 |
+
#ifndef _USE_MATH_DEFINES
|
7 |
+
#define _USE_MATH_DEFINES
|
8 |
+
#endif
|
9 |
+
#include <cmath>
|
10 |
+
#endif
|
11 |
+
|
12 |
+
#include <ATen/ATen.h>
|
13 |
+
#include <torch/csrc/autograd/generated/Functions.h>
|
14 |
+
|
15 |
+
namespace torch::autograd::generated::details {
|
16 |
+
|
17 |
+
extern const char* kCudnnDoubleBackwardMsg;
|
18 |
+
|
19 |
+
// A simple way to imperatively compute index ranges for slots
|
20 |
+
// that have been flattened
|
21 |
+
struct TORCH_API IndexRangeGenerator {
|
22 |
+
IndexRange range(size_t range_size) {
|
23 |
+
i += range_size;
|
24 |
+
return {i - range_size, i};
|
25 |
+
}
|
26 |
+
size_t size() {
|
27 |
+
return i;
|
28 |
+
}
|
29 |
+
|
30 |
+
private:
|
31 |
+
size_t i = 0;
|
32 |
+
};
|
33 |
+
|
34 |
+
TORCH_API Tensor toNonOptFwGrad(const c10::optional<Tensor>& t);
|
35 |
+
TORCH_API Tensor toNonOptPrimal(const c10::optional<Tensor>& t);
|
36 |
+
TORCH_API Tensor toNonOptTensor(const c10::optional<Tensor>& t);
|
37 |
+
|
38 |
+
TORCH_API inline c10::optional<Tensor> wrap_opt_if(
|
39 |
+
const Tensor& t,
|
40 |
+
const bool cond) {
|
41 |
+
using OptTensor = c10::optional<Tensor>;
|
42 |
+
return cond ? OptTensor(t) : static_cast<OptTensor>(c10::nullopt);
|
43 |
+
}
|
44 |
+
|
45 |
+
TORCH_API Tensor
|
46 |
+
apply_loss_reduction(const Tensor& unreduced, int64_t reduction);
|
47 |
+
TORCH_API bool any_variable_defined(const variable_list& variables);
|
48 |
+
TORCH_API void copy_range(
|
49 |
+
variable_list& out,
|
50 |
+
IndexRange range,
|
51 |
+
const at::Tensor& t);
|
52 |
+
TORCH_API void copy_range(
|
53 |
+
variable_list& out,
|
54 |
+
IndexRange range,
|
55 |
+
at::ArrayRef<at::Tensor> t);
|
56 |
+
TORCH_API at::Tensor copysign_tensor_self_backward(
|
57 |
+
const Tensor& grad,
|
58 |
+
const Tensor& self,
|
59 |
+
const Tensor& result);
|
60 |
+
TORCH_API at::Tensor not_implemented(const char* name, const char* reason = "");
|
61 |
+
TORCH_API std::vector<Tensor> not_implemented_list(
|
62 |
+
const char* name,
|
63 |
+
const char* reason = "");
|
64 |
+
at::Tensor handle_r_to_c(ScalarType self_st, Tensor gradient_result);
|
65 |
+
at::Tensor maybe_multiply(const at::Tensor& t, const at::Scalar& s);
|
66 |
+
int64_t _safe_size(IntArrayRef sizes, IntArrayRef dim);
|
67 |
+
Tensor restore_reduced_dims(
|
68 |
+
const Tensor& output,
|
69 |
+
IntArrayRef dims,
|
70 |
+
bool keepdim);
|
71 |
+
Tensor scale_grad_by_count(
|
72 |
+
const Tensor& grad,
|
73 |
+
const Tensor& mask,
|
74 |
+
IntArrayRef dims);
|
75 |
+
at::Tensor norm_backward(
|
76 |
+
const at::Tensor& grad,
|
77 |
+
const at::Tensor& self,
|
78 |
+
const optional<at::Scalar>& p_,
|
79 |
+
const at::Tensor& norm);
|
80 |
+
at::Tensor norm_backward(
|
81 |
+
at::Tensor grad,
|
82 |
+
const at::Tensor& self,
|
83 |
+
const optional<at::Scalar>& p_,
|
84 |
+
at::Tensor norm,
|
85 |
+
at::IntArrayRef dim,
|
86 |
+
bool keepdim);
|
87 |
+
Tensor norm_jvp(
|
88 |
+
const Tensor& self_p,
|
89 |
+
const Tensor& self_t,
|
90 |
+
const optional<Scalar>& p_,
|
91 |
+
Tensor norm,
|
92 |
+
IntArrayRef dim,
|
93 |
+
bool keepdim);
|
94 |
+
Tensor norm_jvp(
|
95 |
+
const Tensor& grad,
|
96 |
+
const Tensor& self,
|
97 |
+
const optional<Scalar>& p_,
|
98 |
+
Tensor norm);
|
99 |
+
Tensor _nested_from_padded_backward(
|
100 |
+
const Tensor& grad,
|
101 |
+
const Tensor& input,
|
102 |
+
const bool do_transform_0213);
|
103 |
+
std::tuple<Tensor, Tensor, Tensor> linear_double_backward(
|
104 |
+
const variable_list& grads,
|
105 |
+
const Tensor& self,
|
106 |
+
const Tensor& grad_output,
|
107 |
+
const Tensor& weight);
|
108 |
+
Tensor linalg_vector_norm_jvp(
|
109 |
+
const Tensor& self_p,
|
110 |
+
const Tensor& self_t,
|
111 |
+
const Scalar& scalar_ord,
|
112 |
+
Tensor norm,
|
113 |
+
const at::OptionalIntArrayRef& opt_dim,
|
114 |
+
bool keepdim);
|
115 |
+
at::Tensor linalg_vector_norm_backward(
|
116 |
+
at::Tensor grad,
|
117 |
+
const at::Tensor& self,
|
118 |
+
const at::Scalar& ord,
|
119 |
+
at::Tensor norm,
|
120 |
+
const at::OptionalIntArrayRef& opt_dim,
|
121 |
+
bool keepdim);
|
122 |
+
at::Tensor pow_backward(
|
123 |
+
at::Tensor grad,
|
124 |
+
const at::Tensor& self,
|
125 |
+
const at::Scalar& exponent_);
|
126 |
+
at::Tensor pow_backward_self(
|
127 |
+
const at::Tensor& grad,
|
128 |
+
const at::Tensor& self,
|
129 |
+
const at::Tensor& exponent);
|
130 |
+
at::Tensor pow_backward_exponent(
|
131 |
+
const at::Tensor& grad,
|
132 |
+
const at::Tensor& self,
|
133 |
+
const at::Tensor& exponent,
|
134 |
+
const at::Tensor& result);
|
135 |
+
at::Tensor pow_backward_exponent(
|
136 |
+
const at::Tensor& grad,
|
137 |
+
const at::Scalar& base,
|
138 |
+
const at::Tensor& exponent,
|
139 |
+
const at::Tensor& result);
|
140 |
+
at::Tensor angle_backward(const at::Tensor& grad, const at::Tensor& self);
|
141 |
+
template <typename T>
|
142 |
+
at::Tensor mul_tensor_backward(const Tensor& grad, T other, ScalarType self_st);
|
143 |
+
template <typename T>
|
144 |
+
at::Tensor div_tensor_self_backward(
|
145 |
+
const Tensor& grad,
|
146 |
+
T other,
|
147 |
+
ScalarType self_st);
|
148 |
+
at::Tensor div_tensor_other_backward(
|
149 |
+
const Tensor& grad,
|
150 |
+
const Tensor& self,
|
151 |
+
const Tensor& other);
|
152 |
+
template <typename T>
|
153 |
+
at::Tensor div_tensor_self_backward(
|
154 |
+
const Tensor& grad,
|
155 |
+
T other,
|
156 |
+
ScalarType self_st,
|
157 |
+
const c10::optional<c10::string_view>& rounding_mode);
|
158 |
+
at::Tensor div_tensor_other_backward(
|
159 |
+
const Tensor& grad,
|
160 |
+
const Tensor& self,
|
161 |
+
const Tensor& other,
|
162 |
+
const c10::optional<c10::string_view>& rounding_mode);
|
163 |
+
at::Tensor mvlgamma_backward(
|
164 |
+
const at::Tensor& grad,
|
165 |
+
const at::Tensor& self,
|
166 |
+
int64_t p);
|
167 |
+
at::Tensor permute_backwards(const at::Tensor& grad, at::IntArrayRef fwd_dims);
|
168 |
+
at::Tensor rad2deg_backward(const at::Tensor& grad);
|
169 |
+
at::Tensor deg2rad_backward(const at::Tensor& grad);
|
170 |
+
at::Tensor unsqueeze_multiple(
|
171 |
+
const at::Tensor& t,
|
172 |
+
at::OptionalIntArrayRef opt_dim,
|
173 |
+
size_t n_dims);
|
174 |
+
at::Tensor sum_backward(
|
175 |
+
const at::Tensor& grad,
|
176 |
+
at::SymIntArrayRef sizes,
|
177 |
+
at::OptionalIntArrayRef opt_dims,
|
178 |
+
bool keepdim);
|
179 |
+
at::Tensor sum_backward(
|
180 |
+
const at::Tensor& grad,
|
181 |
+
c10::SymIntArrayRef sizes,
|
182 |
+
c10::IntArrayRef dims,
|
183 |
+
bool keepdim);
|
184 |
+
at::Tensor nansum_backward(
|
185 |
+
const at::Tensor& grad,
|
186 |
+
const at::Tensor& self,
|
187 |
+
at::OptionalIntArrayRef dims,
|
188 |
+
bool keepdim);
|
189 |
+
std::vector<int64_t> reverse_list(const at::IntArrayRef list);
|
190 |
+
std::vector<c10::SymInt> reverse_list_symint(const c10::SymIntArrayRef list);
|
191 |
+
at::Tensor reverse_dim(const at::Tensor& t, int64_t dim);
|
192 |
+
at::Tensor prod_safe_zeros_backward(
|
193 |
+
const at::Tensor& grad,
|
194 |
+
const at::Tensor& inp,
|
195 |
+
int64_t dim);
|
196 |
+
at::Tensor prod_backward(
|
197 |
+
const at::Tensor& grad,
|
198 |
+
const at::Tensor& input,
|
199 |
+
const at::Tensor& result);
|
200 |
+
at::Tensor prod_backward(
|
201 |
+
at::Tensor grad,
|
202 |
+
const at::Tensor& input,
|
203 |
+
at::Tensor result,
|
204 |
+
int64_t dim,
|
205 |
+
bool keepdim);
|
206 |
+
at::Tensor solve_jvp(
|
207 |
+
const Tensor& X,
|
208 |
+
const Tensor& A,
|
209 |
+
const Tensor& dA,
|
210 |
+
const Tensor& dB);
|
211 |
+
at::Tensor solve_backward_self(
|
212 |
+
const at::Tensor& grad,
|
213 |
+
const at::Tensor& self,
|
214 |
+
const at::Tensor& A);
|
215 |
+
at::Tensor solve_backward_A(
|
216 |
+
const at::Tensor& grad,
|
217 |
+
const at::Tensor& self,
|
218 |
+
const at::Tensor& A,
|
219 |
+
const at::Tensor& solution);
|
220 |
+
at::Tensor cumsum_backward(const at::Tensor& grad, int64_t dim);
|
221 |
+
at::Tensor logsumexp_backward(
|
222 |
+
at::Tensor grad,
|
223 |
+
const at::Tensor& self,
|
224 |
+
at::Tensor result,
|
225 |
+
at::IntArrayRef dim,
|
226 |
+
bool keepdim);
|
227 |
+
at::Tensor logsumexp_jvp(
|
228 |
+
const at::Tensor& self_p,
|
229 |
+
const at::Tensor& self_t,
|
230 |
+
IntArrayRef dim,
|
231 |
+
bool keepdim);
|
232 |
+
at::Tensor logcumsumexp_backward(
|
233 |
+
at::Tensor grad,
|
234 |
+
const at::Tensor& self,
|
235 |
+
at::Tensor result,
|
236 |
+
int64_t dim);
|
237 |
+
at::Tensor logcumsumexp_jvp(
|
238 |
+
const at::Tensor& self_p,
|
239 |
+
const at::Tensor& self_t,
|
240 |
+
int64_t dim);
|
241 |
+
at::Tensor unbind_backward(const variable_list& grads, int64_t dim);
|
242 |
+
at::Tensor unbind_backward_nested(
|
243 |
+
const variable_list& grads,
|
244 |
+
const Tensor& nt_sizes,
|
245 |
+
int64_t dim,
|
246 |
+
const at::TensorOptions& options);
|
247 |
+
at::Tensor unsqueeze_to(const at::Tensor& self, c10::SymIntArrayRef sym_sizes);
|
248 |
+
at::Tensor unsqueeze_to(
|
249 |
+
const at::Tensor& self,
|
250 |
+
int64_t dim,
|
251 |
+
c10::SymIntArrayRef sym_sizes);
|
252 |
+
at::Tensor unsqueeze_to(
|
253 |
+
const at::Tensor& self,
|
254 |
+
IntArrayRef dim,
|
255 |
+
c10::SymIntArrayRef sym_sizes);
|
256 |
+
std::vector<at::Tensor> cat_tensors_backward(
|
257 |
+
const at::Tensor& grad,
|
258 |
+
const std::vector<std::vector<c10::SymInt>>& sizes,
|
259 |
+
const std::vector<ScalarType>& dtypes,
|
260 |
+
int64_t dim);
|
261 |
+
std::vector<at::Tensor> stack_tensors_backward(
|
262 |
+
const at::Tensor& grad,
|
263 |
+
int64_t dim,
|
264 |
+
const std::vector<ScalarType>& dtypes);
|
265 |
+
std::vector<at::Tensor> block_diag_backward(
|
266 |
+
const at::Tensor& grad,
|
267 |
+
const std::vector<std::vector<int64_t>>& sizes,
|
268 |
+
const std::vector<ScalarType>& dtypes);
|
269 |
+
at::Tensor clamp_backward(
|
270 |
+
const at::Tensor& grad,
|
271 |
+
const at::Tensor& self,
|
272 |
+
const optional<at::Scalar>& min,
|
273 |
+
const optional<at::Scalar>& max);
|
274 |
+
at::Tensor clamp_backward(
|
275 |
+
const at::Tensor& grad,
|
276 |
+
const at::Tensor& self,
|
277 |
+
const at::Tensor& min,
|
278 |
+
const at::Tensor& max);
|
279 |
+
std::tuple<at::Tensor, at::Tensor> clamp_backward_min_max(
|
280 |
+
const at::Tensor& grad,
|
281 |
+
const at::Tensor& self,
|
282 |
+
const at::Tensor& min,
|
283 |
+
const at::Tensor& max,
|
284 |
+
const std::array<bool, 2>&);
|
285 |
+
at::Tensor clamp_jvp(
|
286 |
+
const Tensor& self_p,
|
287 |
+
const Tensor& self_t,
|
288 |
+
const Tensor& min_p,
|
289 |
+
const Tensor& min_t,
|
290 |
+
const Tensor& max_p,
|
291 |
+
const Tensor& max_t);
|
292 |
+
at::SymIntArrayRef strides_or_error(
|
293 |
+
const Tensor& input,
|
294 |
+
c10::string_view const& input_name);
|
295 |
+
at::Tensor mm_mat1_backward(
|
296 |
+
const Tensor& grad,
|
297 |
+
const Tensor& mat2,
|
298 |
+
at::SymIntArrayRef mat1_sizes,
|
299 |
+
at::SymIntArrayRef mat1_strides,
|
300 |
+
c10::Layout mat1_layout,
|
301 |
+
const Scalar& alpha);
|
302 |
+
at::Tensor mm_mat2_backward(
|
303 |
+
const at::Tensor& grad,
|
304 |
+
const at::Tensor& mat1,
|
305 |
+
at::SymIntArrayRef sizes,
|
306 |
+
at::SymIntArrayRef strides,
|
307 |
+
c10::Layout layout,
|
308 |
+
const at::Scalar& alpha);
|
309 |
+
at::Tensor mm_mat1_sparse_backward(
|
310 |
+
const at::Tensor& grad,
|
311 |
+
const at::Tensor& mat1,
|
312 |
+
const at::Tensor& mat2,
|
313 |
+
const at::Scalar& alpha);
|
314 |
+
std::tuple<Tensor, Tensor, Tensor> sparse_sampled_addmm_backward(
|
315 |
+
const Tensor& grad,
|
316 |
+
const Tensor& self,
|
317 |
+
const c10::optional<Tensor>& mat1,
|
318 |
+
const c10::optional<Tensor>& mat2,
|
319 |
+
const Scalar& alpha,
|
320 |
+
const Scalar& beta,
|
321 |
+
const std::array<bool, 3>& grad_input_mask);
|
322 |
+
at::Tensor sparse_mask_backward(
|
323 |
+
const at::Tensor& grad,
|
324 |
+
const at::Tensor& mask,
|
325 |
+
c10::Layout self_layout);
|
326 |
+
at::Tensor sparse_sparse_matmul_backward(
|
327 |
+
const at::Tensor& grad,
|
328 |
+
const at::Tensor& mat1,
|
329 |
+
const at::Tensor& mat2,
|
330 |
+
int64_t grad_order);
|
331 |
+
at::Tensor renorm_backward(
|
332 |
+
const at::Tensor& grad,
|
333 |
+
const at::Tensor& self,
|
334 |
+
const at::Scalar& p,
|
335 |
+
int64_t dim,
|
336 |
+
const at::Scalar& maxnorm);
|
337 |
+
at::Tensor renorm_jvp(
|
338 |
+
const at::Tensor& self_p,
|
339 |
+
const at::Tensor& self_t,
|
340 |
+
const at::Scalar& p,
|
341 |
+
int64_t dim,
|
342 |
+
const at::Scalar& maxnorm);
|
343 |
+
at::Tensor repeat_backward(
|
344 |
+
at::Tensor grad,
|
345 |
+
at::SymIntArrayRef repeats,
|
346 |
+
at::SymIntArrayRef input_shape);
|
347 |
+
at::Tensor _fused_dropout_backward(
|
348 |
+
const at::Tensor& grad,
|
349 |
+
const at::Tensor& mask,
|
350 |
+
double p1m);
|
351 |
+
at::Tensor infinitely_differentiable_native_dropout_backward(
|
352 |
+
const at::Tensor& grad,
|
353 |
+
const at::Tensor& mask,
|
354 |
+
double scale);
|
355 |
+
at::Tensor native_dropout_double_backward(
|
356 |
+
const at::Tensor& ggI,
|
357 |
+
const at::Tensor& grad,
|
358 |
+
const at::Tensor& mask,
|
359 |
+
double scale);
|
360 |
+
at::Tensor evenly_distribute_backward(
|
361 |
+
const at::Tensor& grad,
|
362 |
+
const at::Tensor& input,
|
363 |
+
const at::Tensor& value);
|
364 |
+
Tensor sgn_backward(const Tensor& x, const Tensor& gx, const Tensor& sgn);
|
365 |
+
Tensor masked_fill_backward(const Tensor& grad, const Tensor& mask);
|
366 |
+
at::Tensor var_backward(
|
367 |
+
at::Tensor grad,
|
368 |
+
const at::Tensor& self,
|
369 |
+
at::OptionalIntArrayRef dim,
|
370 |
+
const c10::optional<c10::Scalar>& correction,
|
371 |
+
bool keepdim);
|
372 |
+
at::Tensor var_jvp(
|
373 |
+
const at::Tensor& self_t,
|
374 |
+
const at::Tensor& self_p,
|
375 |
+
const at::Tensor& result,
|
376 |
+
at::OptionalIntArrayRef dim_opt,
|
377 |
+
const c10::optional<c10::Scalar>& correction,
|
378 |
+
bool keepdim);
|
379 |
+
at::Tensor std_backward(
|
380 |
+
const at::Tensor& result,
|
381 |
+
const at::Tensor& grad,
|
382 |
+
const at::Tensor& self,
|
383 |
+
at::OptionalIntArrayRef dim,
|
384 |
+
const c10::optional<c10::Scalar>& correction,
|
385 |
+
bool keepdim);
|
386 |
+
Tensor mean_backward(
|
387 |
+
const Tensor& grad,
|
388 |
+
c10::SymIntArrayRef shape,
|
389 |
+
at::OptionalIntArrayRef opt_dim,
|
390 |
+
c10::SymInt numel,
|
391 |
+
bool keepdim);
|
392 |
+
Tensor var_mean_backward(
|
393 |
+
const Tensor& gvar,
|
394 |
+
const Tensor& gmean,
|
395 |
+
const Tensor& self,
|
396 |
+
at::OptionalIntArrayRef dim_opt,
|
397 |
+
const c10::optional<c10::Scalar>& correction,
|
398 |
+
bool keepdim);
|
399 |
+
Tensor std_mean_backward(
|
400 |
+
const Tensor& gstd,
|
401 |
+
const Tensor& gmean,
|
402 |
+
const Tensor& self,
|
403 |
+
const Tensor& std,
|
404 |
+
at::OptionalIntArrayRef dim_opt,
|
405 |
+
const c10::optional<c10::Scalar>& correction,
|
406 |
+
bool keepdim);
|
407 |
+
at::Tensor cholesky_backward(
|
408 |
+
const at::Tensor& grad,
|
409 |
+
bool upper,
|
410 |
+
const at::Tensor& L);
|
411 |
+
at::Tensor cholesky_jvp(
|
412 |
+
const at::Tensor& input_tangent,
|
413 |
+
const at::Tensor& L,
|
414 |
+
bool upper);
|
415 |
+
at::Tensor cholesky_inverse_backward(
|
416 |
+
const at::Tensor& grad,
|
417 |
+
const at::Tensor& L,
|
418 |
+
bool upper,
|
419 |
+
const at::Tensor& inverse);
|
420 |
+
at::Tensor cholesky_inverse_jvp(
|
421 |
+
const at::Tensor& F,
|
422 |
+
const at::Tensor& dF,
|
423 |
+
const at::Tensor& X,
|
424 |
+
bool upper);
|
425 |
+
Tensor pinv_jvp(const Tensor& A, const Tensor& pinvA, const Tensor& dA);
|
426 |
+
Tensor pinv_backward(const Tensor& grad, const Tensor& pinvA, const Tensor& A);
|
427 |
+
at::Tensor split_with_sizes_backward(
|
428 |
+
const std::vector<torch::autograd::Variable>& grads,
|
429 |
+
c10::SymIntArrayRef split_sizes,
|
430 |
+
int64_t dim,
|
431 |
+
c10::SymIntArrayRef sizes,
|
432 |
+
const at::TensorOptions& options);
|
433 |
+
at::Tensor _nested_split_with_sizes_backward(
|
434 |
+
const std::vector<torch::autograd::Variable>& grads,
|
435 |
+
c10::SymIntArrayRef split_sizes,
|
436 |
+
int64_t dim,
|
437 |
+
const Tensor& nt_sizes,
|
438 |
+
const at::TensorOptions& options);
|
439 |
+
at::Tensor split_backward(
|
440 |
+
const std::vector<torch::autograd::Variable>& grads,
|
441 |
+
const c10::SymInt& split_size,
|
442 |
+
int64_t dim,
|
443 |
+
c10::SymIntArrayRef sizes,
|
444 |
+
const at::TensorOptions& options);
|
445 |
+
at::Tensor max_pool_double_backward(
|
446 |
+
const at::Tensor& grad,
|
447 |
+
const at::Tensor& indices,
|
448 |
+
int dim);
|
449 |
+
at::Tensor error_for_max_pool2d_double_backward();
|
450 |
+
at::Tensor glu_double_backward(
|
451 |
+
const at::Tensor& grad,
|
452 |
+
const at::Tensor& grad_output,
|
453 |
+
const at::Tensor& input,
|
454 |
+
int64_t dim);
|
455 |
+
at::Tensor glu_double_backward_grad_output(
|
456 |
+
const at::Tensor& grad,
|
457 |
+
const at::Tensor& input,
|
458 |
+
int64_t dim);
|
459 |
+
at::Tensor infinitely_differentiable_silu_backward(
|
460 |
+
const at::Tensor& grad_output,
|
461 |
+
const at::Tensor& input);
|
462 |
+
at::Tensor infinitely_differentiable_mish_backward(
|
463 |
+
const at::Tensor& grad_output,
|
464 |
+
const at::Tensor& input);
|
465 |
+
Tensor infinitely_differentiable_logit_backward(
|
466 |
+
const Tensor& grad,
|
467 |
+
const Tensor& self,
|
468 |
+
c10::optional<double> eps);
|
469 |
+
Tensor binary_cross_entropy_target_backward(
|
470 |
+
const Tensor& grad,
|
471 |
+
const Tensor& self,
|
472 |
+
const Tensor& target,
|
473 |
+
const c10::optional<Tensor>& weight,
|
474 |
+
int64_t reduction);
|
475 |
+
Tensor binary_cross_entropy_double_backward_target(
|
476 |
+
const Tensor& grad,
|
477 |
+
const Tensor& grad_output,
|
478 |
+
const Tensor& self,
|
479 |
+
const Tensor& target,
|
480 |
+
const c10::optional<Tensor>& weight,
|
481 |
+
int64_t reduction);
|
482 |
+
Tensor binary_cross_entropy_with_logits_backward(
|
483 |
+
const Tensor& grad,
|
484 |
+
const Tensor& input,
|
485 |
+
const Tensor& target,
|
486 |
+
const c10::optional<Tensor>& weight_opt,
|
487 |
+
const c10::optional<Tensor>& pos_weight_opt,
|
488 |
+
int64_t reduction);
|
489 |
+
at::Tensor binary_cross_entropy_with_logits_target_backward(
|
490 |
+
const at::Tensor& grad_output,
|
491 |
+
const at::Tensor& self,
|
492 |
+
const at::Tensor& target,
|
493 |
+
const c10::optional<at::Tensor>& weight,
|
494 |
+
const c10::optional<at::Tensor>& pos_weight,
|
495 |
+
int64_t reduction);
|
496 |
+
at::Tensor log_sigmoid_double_backward(
|
497 |
+
const at::Tensor& grad,
|
498 |
+
const at::Tensor& input);
|
499 |
+
at::Tensor softmax_double_backward(
|
500 |
+
const at::Tensor& grad,
|
501 |
+
const at::Tensor& grad_output,
|
502 |
+
int dim,
|
503 |
+
const at::Tensor& output);
|
504 |
+
at::Tensor binary_cross_entropy_double_backward(
|
505 |
+
const at::Tensor& grad_output,
|
506 |
+
const at::Tensor& grad,
|
507 |
+
const at::Tensor& input,
|
508 |
+
const at::Tensor& target,
|
509 |
+
const c10::optional<at::Tensor>& weight,
|
510 |
+
int64_t reduction);
|
511 |
+
at::Tensor binary_cross_entropy_double_backward_grad_output(
|
512 |
+
const at::Tensor& grad,
|
513 |
+
const at::Tensor& input,
|
514 |
+
const at::Tensor& target,
|
515 |
+
const c10::optional<at::Tensor>& weight,
|
516 |
+
int64_t reduction);
|
517 |
+
at::Tensor smooth_l1_loss_double_backward(
|
518 |
+
const at::Tensor& grad,
|
519 |
+
const at::Tensor& input,
|
520 |
+
const at::Tensor& target,
|
521 |
+
int64_t reduction,
|
522 |
+
double beta);
|
523 |
+
at::Tensor huber_loss_double_backward(
|
524 |
+
const at::Tensor& grad,
|
525 |
+
const at::Tensor& input,
|
526 |
+
const at::Tensor& target,
|
527 |
+
int64_t reduction,
|
528 |
+
double delta);
|
529 |
+
at::Tensor huber_loss_double_backward_grad_output(
|
530 |
+
const at::Tensor& grad,
|
531 |
+
const at::Tensor& grad_output,
|
532 |
+
const at::Tensor& input,
|
533 |
+
const at::Tensor& target,
|
534 |
+
int64_t reduction,
|
535 |
+
double delta);
|
536 |
+
at::Tensor mse_loss_double_backward(
|
537 |
+
const at::Tensor& grad,
|
538 |
+
const at::Tensor& input,
|
539 |
+
int64_t reduction);
|
540 |
+
at::Tensor soft_margin_loss_double_backward(
|
541 |
+
const at::Tensor& grad,
|
542 |
+
const at::Tensor& input,
|
543 |
+
const at::Tensor& target,
|
544 |
+
int64_t reduction);
|
545 |
+
at::Tensor soft_margin_loss_double_backward_grad_output(
|
546 |
+
const at::Tensor& grad,
|
547 |
+
const at::Tensor& grad_output,
|
548 |
+
const at::Tensor& input,
|
549 |
+
const at::Tensor& target,
|
550 |
+
int64_t reduction);
|
551 |
+
at::Tensor softplus_double_backward(
|
552 |
+
const at::Tensor& grad,
|
553 |
+
const at::Tensor& input,
|
554 |
+
const at::Scalar& beta,
|
555 |
+
const at::Scalar& threshold);
|
556 |
+
std::tuple<at::Tensor, at::Tensor> slogdet_jvp(
|
557 |
+
const at::Tensor& LU,
|
558 |
+
const at::Tensor& pivots,
|
559 |
+
const at::Tensor& dA,
|
560 |
+
const at::Tensor& sign,
|
561 |
+
const bool use_A_T);
|
562 |
+
at::Tensor slogdet_backward(
|
563 |
+
const at::Tensor& grad_sign,
|
564 |
+
const at::Tensor& grad_logabsdet,
|
565 |
+
const at::Tensor& A,
|
566 |
+
const at::Tensor& signdet,
|
567 |
+
const at::Tensor& LU,
|
568 |
+
const at::Tensor& pivots);
|
569 |
+
at::Tensor log1p_backward(const at::Tensor& grad, const at::Tensor& self);
|
570 |
+
at::Tensor sinc_backward(const at::Tensor& grad, const at::Tensor& self);
|
571 |
+
at::Tensor sparse_constructor_values_backward(
|
572 |
+
const at::Tensor& sparse_grad_out,
|
573 |
+
const at::Tensor& indices);
|
574 |
+
at::Tensor embedding_dense_double_backward_symint(
|
575 |
+
const at::Tensor& grad,
|
576 |
+
const at::Tensor& indices,
|
577 |
+
const c10::SymInt& padding_idx);
|
578 |
+
at::Tensor index_backward(
|
579 |
+
at::Tensor zeros_like_self,
|
580 |
+
const torch::List<c10::optional<Tensor>>& indices,
|
581 |
+
const at::Tensor& grad);
|
582 |
+
at::Tensor _cudnn_ctc_loss_backward(
|
583 |
+
const at::Tensor& grad_out,
|
584 |
+
const at::Tensor& loss,
|
585 |
+
const at::Tensor& raw_grad,
|
586 |
+
bool zero_infinity);
|
587 |
+
at::Tensor elu_double_backward(
|
588 |
+
const Tensor& grad,
|
589 |
+
const Tensor& grad_output,
|
590 |
+
const Scalar& alpha,
|
591 |
+
const Scalar& scale,
|
592 |
+
const Scalar& input_scale,
|
593 |
+
bool is_result,
|
594 |
+
const Tensor& self_or_result);
|
595 |
+
|
596 |
+
Tensor svd_backward(
|
597 |
+
const Tensor& gU,
|
598 |
+
const Tensor& gS,
|
599 |
+
const Tensor& gVh,
|
600 |
+
const Tensor& U,
|
601 |
+
const Tensor& S,
|
602 |
+
const Tensor& Vh);
|
603 |
+
|
604 |
+
std::tuple<Tensor, Tensor, Tensor> linalg_svd_jvp(
|
605 |
+
const Tensor& dA,
|
606 |
+
const Tensor& U,
|
607 |
+
const Tensor& S,
|
608 |
+
const Tensor& Vh,
|
609 |
+
const bool full_matrices);
|
610 |
+
Tensor slice_backward_wrapper(
|
611 |
+
const at::Tensor& grad,
|
612 |
+
const c10::SymIntArrayRef& input_sizes,
|
613 |
+
int64_t dim,
|
614 |
+
c10::optional<c10::SymInt> start,
|
615 |
+
c10::optional<c10::SymInt> end,
|
616 |
+
c10::SymInt step);
|
617 |
+
std::tuple<Tensor, Tensor> linalg_eig_jvp(
|
618 |
+
const Tensor& dA,
|
619 |
+
const Tensor& L,
|
620 |
+
const Tensor& V,
|
621 |
+
const bool is_hermitian);
|
622 |
+
Tensor linalg_eig_backward(
|
623 |
+
const Tensor& gL,
|
624 |
+
const Tensor& gV,
|
625 |
+
const Tensor& L,
|
626 |
+
const Tensor& V,
|
627 |
+
const bool is_hermitian,
|
628 |
+
const bool symeig_eigenvectors = true);
|
629 |
+
Tensor linalg_lstsq_jvp(
|
630 |
+
const Tensor& A,
|
631 |
+
const Tensor& B,
|
632 |
+
const Tensor& dA,
|
633 |
+
const Tensor& dB);
|
634 |
+
std::tuple<Tensor, Tensor> triangular_solve_backward(
|
635 |
+
const Tensor& grad_x,
|
636 |
+
const Tensor& grad_m,
|
637 |
+
const Tensor& b,
|
638 |
+
const Tensor& a,
|
639 |
+
const Tensor& x,
|
640 |
+
const bool upper,
|
641 |
+
const bool transpose,
|
642 |
+
const bool unitriangular,
|
643 |
+
std::array<bool, 2> output_mask);
|
644 |
+
Tensor triangular_solve_jvp(
|
645 |
+
const Tensor& X,
|
646 |
+
const Tensor& A,
|
647 |
+
const Tensor& dA,
|
648 |
+
const Tensor& dB,
|
649 |
+
const bool upper,
|
650 |
+
const bool transpose,
|
651 |
+
const bool unitriangular);
|
652 |
+
Tensor linalg_solve_triangular_forward_AD(
|
653 |
+
const Tensor& A_t,
|
654 |
+
const Tensor& B_t,
|
655 |
+
const Tensor& A,
|
656 |
+
const Tensor& X,
|
657 |
+
const bool upper,
|
658 |
+
const bool left,
|
659 |
+
const bool unitriangular);
|
660 |
+
std::tuple<Tensor, Tensor> linalg_solve_triangular_backward(
|
661 |
+
const Tensor& grad,
|
662 |
+
const Tensor& A,
|
663 |
+
const Tensor& X,
|
664 |
+
const bool upper,
|
665 |
+
const bool left,
|
666 |
+
const bool unitriangular,
|
667 |
+
std::array<bool, 2> output_mask);
|
668 |
+
std::tuple<Tensor, Tensor, Tensor> _trilinear_backward(
|
669 |
+
const Tensor& grad_out,
|
670 |
+
const c10::optional<Tensor>& i1,
|
671 |
+
const c10::optional<Tensor>& i2,
|
672 |
+
const c10::optional<Tensor>& i3,
|
673 |
+
IntArrayRef expand1,
|
674 |
+
IntArrayRef expand2,
|
675 |
+
IntArrayRef expand3,
|
676 |
+
IntArrayRef sumdim,
|
677 |
+
std::array<bool, 3> grad_mask);
|
678 |
+
std::tuple<Tensor, Tensor> linalg_qr_jvp(
|
679 |
+
const Tensor& dA,
|
680 |
+
const Tensor& Q,
|
681 |
+
const Tensor& R,
|
682 |
+
const c10::string_view mode);
|
683 |
+
Tensor linalg_qr_backward(
|
684 |
+
const Tensor& gQ,
|
685 |
+
const Tensor& gR,
|
686 |
+
const Tensor& Q,
|
687 |
+
const Tensor& R,
|
688 |
+
const c10::string_view mode);
|
689 |
+
Tensor linalg_matrix_exp_differential(
|
690 |
+
const Tensor& self,
|
691 |
+
const Tensor& grad,
|
692 |
+
bool adjoint);
|
693 |
+
std::tuple<Tensor, Tensor, Tensor> batchnorm_double_backward(
|
694 |
+
const Tensor& input,
|
695 |
+
const c10::optional<Tensor>& gamma,
|
696 |
+
const Tensor& ggI,
|
697 |
+
const Tensor& ggG,
|
698 |
+
const Tensor& ggB,
|
699 |
+
const Tensor& gO,
|
700 |
+
const c10::optional<Tensor>& running_mean,
|
701 |
+
const c10::optional<Tensor>& running_var,
|
702 |
+
bool training,
|
703 |
+
double eps,
|
704 |
+
const c10::optional<Tensor>& save_mean,
|
705 |
+
const c10::optional<Tensor>& save_invstd,
|
706 |
+
std::array<bool, 3> output_mask);
|
707 |
+
std::tuple<Tensor, Tensor> _euclidean_dist_backward(
|
708 |
+
const Tensor& grad,
|
709 |
+
const Tensor& x1,
|
710 |
+
const Tensor& x2,
|
711 |
+
const Tensor& res);
|
712 |
+
Tensor fft_backward(
|
713 |
+
const Tensor& self,
|
714 |
+
const Tensor& grad,
|
715 |
+
int64_t signal_ndim,
|
716 |
+
bool complex_input,
|
717 |
+
bool complex_output,
|
718 |
+
bool inverse,
|
719 |
+
IntArrayRef checked_signal_sizes,
|
720 |
+
int64_t normalization,
|
721 |
+
bool onesided,
|
722 |
+
IntArrayRef output_sizes);
|
723 |
+
Tensor fft_r2c_backward(
|
724 |
+
const Tensor& grad,
|
725 |
+
at::IntArrayRef dim,
|
726 |
+
int64_t normalization,
|
727 |
+
bool onesided,
|
728 |
+
const c10::SymInt& last_dim_size);
|
729 |
+
Tensor fft_c2r_backward(
|
730 |
+
const Tensor& grad,
|
731 |
+
IntArrayRef dim,
|
732 |
+
int64_t normalization);
|
733 |
+
Tensor constant_pad_nd_backward(const Tensor& grad, c10::SymIntArrayRef pad);
|
734 |
+
std::tuple<Tensor, Tensor> cholesky_solve_backward(
|
735 |
+
const Tensor& grad_x,
|
736 |
+
const Tensor& self,
|
737 |
+
const Tensor& input2,
|
738 |
+
const Tensor& result,
|
739 |
+
const bool upper,
|
740 |
+
std::array<bool, 2> output_mask);
|
741 |
+
Tensor cholesky_solve_jvp(
|
742 |
+
const Tensor& X,
|
743 |
+
const Tensor& U,
|
744 |
+
const Tensor& dU,
|
745 |
+
const Tensor& dB,
|
746 |
+
const bool upper);
|
747 |
+
std::tuple<Tensor, Tensor, Tensor>
|
748 |
+
infinitely_differentiable_native_group_norm_backward(
|
749 |
+
const Tensor& dY,
|
750 |
+
const Tensor& dmean,
|
751 |
+
const Tensor& drstd,
|
752 |
+
const Tensor& X,
|
753 |
+
const Tensor& mean,
|
754 |
+
const Tensor& rstd,
|
755 |
+
const c10::optional<Tensor>& gamma,
|
756 |
+
c10::SymInt N,
|
757 |
+
const c10::SymInt& C,
|
758 |
+
c10::SymInt HxW,
|
759 |
+
int64_t group,
|
760 |
+
double eps,
|
761 |
+
std::array<bool, 3> grad_input_mask);
|
762 |
+
Tensor gelu_double_backward(
|
763 |
+
const Tensor& ggI,
|
764 |
+
const Tensor& gO,
|
765 |
+
const Tensor& input,
|
766 |
+
c10::string_view approximate);
|
767 |
+
Tensor as_strided_backward(
|
768 |
+
Tensor grad,
|
769 |
+
const TensorGeometry& input_geometry,
|
770 |
+
c10::SymIntArrayRef sizes,
|
771 |
+
c10::SymIntArrayRef strides,
|
772 |
+
const optional<c10::SymInt>& storage_offset_);
|
773 |
+
Tensor as_strided_scatter_backward(
|
774 |
+
const Tensor& grad,
|
775 |
+
const TensorGeometry& input_geometry,
|
776 |
+
const TensorGeometry& src_geometry,
|
777 |
+
c10::SymIntArrayRef sizes,
|
778 |
+
c10::SymIntArrayRef strides,
|
779 |
+
optional<c10::SymInt> storage_offset);
|
780 |
+
std::tuple<Tensor, Tensor> atan2_backward(
|
781 |
+
const Tensor& grad,
|
782 |
+
const Tensor& self,
|
783 |
+
const Tensor& other,
|
784 |
+
std::array<bool, 2> output_mask);
|
785 |
+
Tensor amaxamin_jvp(
|
786 |
+
const Tensor& x,
|
787 |
+
const Tensor& dx,
|
788 |
+
const Tensor& result,
|
789 |
+
IntArrayRef dim,
|
790 |
+
bool keepdim);
|
791 |
+
std::tuple<Tensor, Tensor, Tensor> layer_norm_double_backward(
|
792 |
+
const Tensor& input,
|
793 |
+
const c10::optional<Tensor>& gamma,
|
794 |
+
const Tensor& ggI,
|
795 |
+
const Tensor& ggG,
|
796 |
+
const Tensor& ggB,
|
797 |
+
const Tensor& gO,
|
798 |
+
const Tensor& save_mean,
|
799 |
+
const Tensor& save_invstd,
|
800 |
+
c10::SymIntArrayRef normalized_shape,
|
801 |
+
std::array<bool, 3> output_mask);
|
802 |
+
|
803 |
+
std::tuple<Tensor, Tensor> householder_product_backward(
|
804 |
+
const Tensor& grad,
|
805 |
+
const Tensor& result,
|
806 |
+
const Tensor& input,
|
807 |
+
const Tensor& tau,
|
808 |
+
const bool flip_order = false);
|
809 |
+
Tensor householder_product_jvp(
|
810 |
+
const Tensor& dV,
|
811 |
+
const Tensor& dtau,
|
812 |
+
const Tensor& prod,
|
813 |
+
const Tensor& V,
|
814 |
+
const Tensor& tau);
|
815 |
+
std::tuple<Tensor, Tensor, Tensor> ormqr_backward(
|
816 |
+
const Tensor& grad,
|
817 |
+
const Tensor& result,
|
818 |
+
const Tensor& self,
|
819 |
+
const Tensor& tau,
|
820 |
+
const Tensor& other,
|
821 |
+
bool left,
|
822 |
+
bool transpose,
|
823 |
+
std::array<bool, 3> grad_output_mask);
|
824 |
+
std::tuple<Tensor, Tensor> polar_backward(
|
825 |
+
const Tensor& grad,
|
826 |
+
const Tensor& result);
|
827 |
+
Tensor i1_backward(
|
828 |
+
const Tensor& grad,
|
829 |
+
const Tensor& self,
|
830 |
+
const Tensor& result);
|
831 |
+
Tensor i1e_backward(
|
832 |
+
const Tensor& grad,
|
833 |
+
const Tensor& self,
|
834 |
+
const Tensor& result);
|
835 |
+
Tensor linalg_lu_solve_LU(
|
836 |
+
const Tensor& grad,
|
837 |
+
const Tensor& LU,
|
838 |
+
const Tensor& pivots,
|
839 |
+
const Tensor& X,
|
840 |
+
const bool left,
|
841 |
+
const bool adjoint);
|
842 |
+
Tensor linalg_lu_solve_jvp(
|
843 |
+
const Tensor& X,
|
844 |
+
const Tensor& LU,
|
845 |
+
const Tensor& pivots,
|
846 |
+
const Tensor& dLU,
|
847 |
+
const Tensor& dB,
|
848 |
+
const bool left,
|
849 |
+
const bool adjoint);
|
850 |
+
std::tuple<Tensor, Tensor> linalg_solve_backward(
|
851 |
+
const Tensor& gX,
|
852 |
+
const Tensor& X,
|
853 |
+
const Tensor& A,
|
854 |
+
const Tensor& LU,
|
855 |
+
const Tensor& pivots,
|
856 |
+
const bool left,
|
857 |
+
const bool B_requires_grad);
|
858 |
+
Tensor linalg_solve_jvp(
|
859 |
+
const Tensor& dA,
|
860 |
+
const Tensor& dB,
|
861 |
+
const Tensor& X,
|
862 |
+
const Tensor& LU,
|
863 |
+
const Tensor& pivots,
|
864 |
+
const bool left,
|
865 |
+
const bool use_A_T);
|
866 |
+
Tensor lu_unpack_backward(
|
867 |
+
const Tensor& L_grad,
|
868 |
+
const Tensor& U_grad,
|
869 |
+
const c10::SymInt& m,
|
870 |
+
const c10::SymInt& n);
|
871 |
+
|
872 |
+
Tensor linalg_det_backward(
|
873 |
+
const Tensor& grad,
|
874 |
+
const Tensor& det,
|
875 |
+
const Tensor& A,
|
876 |
+
const Tensor& LU,
|
877 |
+
const Tensor& pivots);
|
878 |
+
Tensor linalg_det_jvp(
|
879 |
+
const Tensor& dA,
|
880 |
+
const Tensor& det,
|
881 |
+
const Tensor& LU,
|
882 |
+
const Tensor& pivots,
|
883 |
+
const bool use_A_T);
|
884 |
+
std::tuple<Tensor, Tensor> linalg_lstsq_backward(
|
885 |
+
const Tensor& grad,
|
886 |
+
const Tensor& A,
|
887 |
+
const Tensor& B_,
|
888 |
+
const std::array<bool, 2>& grad_input_mask);
|
889 |
+
Tensor linalg_lu_backward(
|
890 |
+
const Tensor& L_grad,
|
891 |
+
const Tensor& U_grad,
|
892 |
+
const Tensor& P,
|
893 |
+
const Tensor& L,
|
894 |
+
const Tensor& U,
|
895 |
+
const bool pivot);
|
896 |
+
|
897 |
+
std::tuple<Tensor, Tensor> linalg_lu_jvp(
|
898 |
+
const Tensor& dA,
|
899 |
+
const Tensor& P,
|
900 |
+
const Tensor& L,
|
901 |
+
const Tensor& U,
|
902 |
+
const bool pivot);
|
903 |
+
|
904 |
+
Tensor lu_factor_ex_backward(
|
905 |
+
const Tensor& grad,
|
906 |
+
const Tensor& LU,
|
907 |
+
const Tensor& pivs,
|
908 |
+
const bool pivot);
|
909 |
+
Tensor lu_factor_ex_jvp(
|
910 |
+
const Tensor& dX,
|
911 |
+
const Tensor& LU,
|
912 |
+
const Tensor& pivs,
|
913 |
+
const bool pivot);
|
914 |
+
|
915 |
+
Tensor batch_norm_jvp(
|
916 |
+
const Tensor& input_p,
|
917 |
+
const Tensor& input_t,
|
918 |
+
const Tensor& weight_p,
|
919 |
+
const Tensor& weight_t,
|
920 |
+
const Tensor& bias_p,
|
921 |
+
const Tensor& bias_t,
|
922 |
+
const c10::optional<Tensor>& running_mean,
|
923 |
+
const c10::optional<Tensor>& running_var,
|
924 |
+
const Tensor& saved_mean,
|
925 |
+
const Tensor& saved_invstd,
|
926 |
+
bool train,
|
927 |
+
double eps);
|
928 |
+
|
929 |
+
Tensor layer_norm_jvp(
|
930 |
+
const Tensor& input_p,
|
931 |
+
const Tensor& input_t,
|
932 |
+
const Tensor& weight_p,
|
933 |
+
const Tensor& weight_t,
|
934 |
+
const Tensor& bias_p,
|
935 |
+
const Tensor& bias_t,
|
936 |
+
const Tensor& saved_mean,
|
937 |
+
const Tensor& saved_invstd,
|
938 |
+
c10::SymIntArrayRef normalized_shape);
|
939 |
+
|
940 |
+
Tensor group_norm_jvp(
|
941 |
+
const Tensor& input_p,
|
942 |
+
const Tensor& input_t,
|
943 |
+
const Tensor& weight_p,
|
944 |
+
const Tensor& weight_t,
|
945 |
+
const Tensor& bias_p,
|
946 |
+
const Tensor& bias_t,
|
947 |
+
const Tensor& saved_mean,
|
948 |
+
const Tensor& saved_invstd,
|
949 |
+
int64_t groups);
|
950 |
+
Tensor group_norm_mean_jvp(
|
951 |
+
const Tensor& input_t,
|
952 |
+
const Tensor& mean_p,
|
953 |
+
int64_t groups);
|
954 |
+
Tensor group_norm_invstd_jvp(
|
955 |
+
const Tensor& input_p,
|
956 |
+
const Tensor& input_t,
|
957 |
+
const Tensor& mean_p,
|
958 |
+
const Tensor& invstd_p,
|
959 |
+
int64_t groups);
|
960 |
+
|
961 |
+
Tensor convolution_jvp(
|
962 |
+
const Tensor& input_p,
|
963 |
+
const Tensor& input_t,
|
964 |
+
const Tensor& weight_p,
|
965 |
+
const Tensor& weight_t,
|
966 |
+
const Tensor& bias_p,
|
967 |
+
const Tensor& bias_t,
|
968 |
+
at::SymIntArrayRef stride,
|
969 |
+
at::SymIntArrayRef padding,
|
970 |
+
at::SymIntArrayRef dilation,
|
971 |
+
bool transposed,
|
972 |
+
at::SymIntArrayRef output_padding,
|
973 |
+
const c10::SymInt& groups);
|
974 |
+
|
975 |
+
Tensor _convolution_jvp(
|
976 |
+
const Tensor& input_p,
|
977 |
+
const Tensor& input_t,
|
978 |
+
const Tensor& weight_p,
|
979 |
+
const Tensor& weight_t,
|
980 |
+
const Tensor& bias_p,
|
981 |
+
const Tensor& bias_t,
|
982 |
+
at::SymIntArrayRef stride,
|
983 |
+
at::SymIntArrayRef padding,
|
984 |
+
at::SymIntArrayRef dilation,
|
985 |
+
bool transposed,
|
986 |
+
at::SymIntArrayRef output_padding,
|
987 |
+
const c10::SymInt& groups,
|
988 |
+
bool benchmark,
|
989 |
+
bool deterministic,
|
990 |
+
bool cudnn_enabled,
|
991 |
+
bool allow_tf32);
|
992 |
+
|
993 |
+
Tensor convolution_backward_jvp_grad_bias(
|
994 |
+
const Tensor& grad_out_t,
|
995 |
+
const Tensor& grad_bias);
|
996 |
+
|
997 |
+
Tensor cat_jvp(const at::ITensorListRef& tensors, int64_t dim);
|
998 |
+
Tensor block_diag_jvp(at::TensorList tensors);
|
999 |
+
Tensor stack_jvp(at::TensorList tensors, int64_t dim);
|
1000 |
+
Tensor cumprod_jvp(
|
1001 |
+
const Tensor& self_t,
|
1002 |
+
const Tensor& self_p,
|
1003 |
+
const Tensor& result,
|
1004 |
+
int dim);
|
1005 |
+
Tensor gather_with_keepdimed_indices(
|
1006 |
+
const Tensor& input,
|
1007 |
+
int64_t dim,
|
1008 |
+
const Tensor& indices,
|
1009 |
+
bool keepdim);
|
1010 |
+
Tensor evenly_read_jvp(
|
1011 |
+
const Tensor& fw_grad,
|
1012 |
+
const Tensor& input,
|
1013 |
+
const Tensor& value);
|
1014 |
+
Tensor warn_backwards(const Tensor& grad_output);
|
1015 |
+
|
1016 |
+
std::tuple<Tensor, Tensor> _cudnn_convolution_backward(
|
1017 |
+
const at::Tensor& self,
|
1018 |
+
const at::Tensor& grad_output,
|
1019 |
+
const at::Tensor& weight,
|
1020 |
+
at::SymIntArrayRef padding,
|
1021 |
+
at::SymIntArrayRef output_padding,
|
1022 |
+
at::SymIntArrayRef stride,
|
1023 |
+
at::SymIntArrayRef dilation,
|
1024 |
+
bool transposed,
|
1025 |
+
c10::SymInt groups,
|
1026 |
+
::std::array<bool, 2> output_mask);
|
1027 |
+
|
1028 |
+
Tensor scatter_reduce_jvp(
|
1029 |
+
const Tensor& self_p,
|
1030 |
+
const Tensor& self_t,
|
1031 |
+
int dim,
|
1032 |
+
const Tensor& index,
|
1033 |
+
const Tensor& src_p,
|
1034 |
+
const Tensor& src_t,
|
1035 |
+
c10::string_view reduce,
|
1036 |
+
bool include_self,
|
1037 |
+
const Tensor& result);
|
1038 |
+
|
1039 |
+
std::tuple<Tensor, Tensor> scatter_reduce_backward(
|
1040 |
+
const Tensor& grad,
|
1041 |
+
const Tensor& self,
|
1042 |
+
int dim,
|
1043 |
+
const Tensor& index,
|
1044 |
+
const Tensor& src,
|
1045 |
+
c10::string_view reduce,
|
1046 |
+
bool include_self,
|
1047 |
+
const Tensor& result);
|
1048 |
+
|
1049 |
+
Tensor _to_copy_backward(
|
1050 |
+
const Tensor& grad,
|
1051 |
+
const c10::TensorOptions& self_options);
|
1052 |
+
|
1053 |
+
std::tuple<Tensor, Tensor> index_reduce_backward(
|
1054 |
+
const Tensor& grad,
|
1055 |
+
const Tensor& self,
|
1056 |
+
int dim,
|
1057 |
+
const Tensor& index,
|
1058 |
+
const Tensor& source,
|
1059 |
+
c10::string_view reduce,
|
1060 |
+
bool include_self,
|
1061 |
+
const Tensor& result);
|
1062 |
+
|
1063 |
+
Tensor take_backward(
|
1064 |
+
const Tensor& grad,
|
1065 |
+
const Tensor& self,
|
1066 |
+
const Tensor& indices);
|
1067 |
+
|
1068 |
+
Tensor to_sparse_backward(
|
1069 |
+
const Tensor& grad,
|
1070 |
+
const c10::Layout self_layout,
|
1071 |
+
const c10::OptionalArrayRef<c10::SymInt>& self_blocksize);
|
1072 |
+
|
1073 |
+
std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor>
|
1074 |
+
mkldnn_rnn_layer_differentiable_backward(
|
1075 |
+
const Tensor& input,
|
1076 |
+
const Tensor& weight0,
|
1077 |
+
const Tensor& weight1,
|
1078 |
+
const Tensor& weight2,
|
1079 |
+
const Tensor& weight3,
|
1080 |
+
const Tensor& hx_,
|
1081 |
+
const Tensor& cx_tmp,
|
1082 |
+
const Tensor& output,
|
1083 |
+
const Tensor& hy_,
|
1084 |
+
const Tensor& cy_,
|
1085 |
+
const c10::optional<Tensor>& grad_output_r_opt,
|
1086 |
+
const c10::optional<Tensor>& grad_hy_r_opt,
|
1087 |
+
const c10::optional<Tensor>& grad_cy_r_opt,
|
1088 |
+
bool reverse,
|
1089 |
+
int64_t mode,
|
1090 |
+
int64_t hidden_size,
|
1091 |
+
int64_t num_layers,
|
1092 |
+
bool has_biases,
|
1093 |
+
bool train,
|
1094 |
+
bool bidirectional,
|
1095 |
+
at::IntArrayRef batch_sizes,
|
1096 |
+
bool batch_first,
|
1097 |
+
const at::Tensor& workspace);
|
1098 |
+
|
1099 |
+
Tensor values_backward(const Tensor& grad, const Tensor& self);
|
1100 |
+
|
1101 |
+
} // namespace torch::autograd::generated::details
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/InferenceMode.h
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/core/InferenceMode.h>
|
4 |
+
#include <torch/csrc/Export.h>
|
5 |
+
|
6 |
+
namespace torch::autograd {
|
7 |
+
|
8 |
+
using InferenceMode = c10::InferenceMode;
|
9 |
+
|
10 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/anomaly_mode.h
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/Export.h>
|
4 |
+
#include <memory>
|
5 |
+
#include <string>
|
6 |
+
|
7 |
+
namespace torch::autograd {
|
8 |
+
|
9 |
+
// forward declaration of Node from function.h
|
10 |
+
struct Node;
|
11 |
+
|
12 |
+
struct TORCH_API AnomalyMode {
|
13 |
+
static bool is_enabled() {
|
14 |
+
return _enabled;
|
15 |
+
}
|
16 |
+
static bool should_check_nan() {
|
17 |
+
return _check_nan;
|
18 |
+
}
|
19 |
+
static void set_enabled(bool enabled, bool check_nan = true) {
|
20 |
+
_enabled = enabled;
|
21 |
+
_check_nan = check_nan;
|
22 |
+
}
|
23 |
+
|
24 |
+
private:
|
25 |
+
static bool _enabled;
|
26 |
+
static bool _check_nan;
|
27 |
+
};
|
28 |
+
|
29 |
+
/// A RAII guard that enables Anomaly Detection Mode.
|
30 |
+
///
|
31 |
+
/// Anomaly detection mode is useful for debugging problems happening
|
32 |
+
/// in the backward, such as unexpectedly modified tensors or NaNs
|
33 |
+
/// occuring in the backward.
|
34 |
+
///
|
35 |
+
/// The enabling of anomaly mode is global - as soon as there is one
|
36 |
+
/// such guard, it is enabled for all computation and threads. It also
|
37 |
+
/// comes with a significant performance penalty.
|
38 |
+
///
|
39 |
+
/// Example:
|
40 |
+
/// @code
|
41 |
+
/// auto x = torch::tensor({1.}, torch::requires_grad());
|
42 |
+
/// {
|
43 |
+
/// torch::autograd::DetectAnomalyGuard detect_anomaly;
|
44 |
+
/// auto x = torch::tensor({5.0}, torch::requires_grad());
|
45 |
+
/// auto y = x * x;
|
46 |
+
/// auto z = y * y;
|
47 |
+
/// y += 1;
|
48 |
+
/// z.backward();
|
49 |
+
/// }
|
50 |
+
/// @endcode
|
51 |
+
class TORCH_API DetectAnomalyGuard {
|
52 |
+
public:
|
53 |
+
DetectAnomalyGuard(bool check_nan = true);
|
54 |
+
~DetectAnomalyGuard();
|
55 |
+
|
56 |
+
private:
|
57 |
+
bool prev_check_nan_;
|
58 |
+
};
|
59 |
+
|
60 |
+
struct TORCH_API AnomalyMetadata {
|
61 |
+
virtual ~AnomalyMetadata();
|
62 |
+
virtual void store_stack();
|
63 |
+
virtual void print_stack(const std::string& current_node_name);
|
64 |
+
virtual void assign_parent(const std::shared_ptr<Node>& parent_node);
|
65 |
+
|
66 |
+
private:
|
67 |
+
std::string traceback_;
|
68 |
+
std::shared_ptr<Node> parent_;
|
69 |
+
};
|
70 |
+
|
71 |
+
} // namespace torch::autograd
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/autograd.h
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/autograd/variable.h>
|
4 |
+
|
5 |
+
namespace torch::autograd {
|
6 |
+
|
7 |
+
/// Computes the sum of gradients of given tensors with respect to graph leaves.
|
8 |
+
///
|
9 |
+
/// The graph is differentiated using the chain rule. If any of ``tensors``
|
10 |
+
/// are non-scalar (i.e. their data has more than one element) and require
|
11 |
+
/// gradient, then the Jacobian-vector product would be computed, in this case
|
12 |
+
/// the function additionally requires specifying `grad_tensors`. It should be a
|
13 |
+
/// sequence of matching length, that contains the "vector" in the
|
14 |
+
/// Jacobian-vector product, usually the gradient of the differentiated function
|
15 |
+
/// w.r.t. corresponding tensors
|
16 |
+
/// (`torch::Tensor()` is an acceptable value for all tensors that don't need
|
17 |
+
/// gradient tensors).
|
18 |
+
///
|
19 |
+
/// This function accumulates gradients in the leaves - you might need to zero
|
20 |
+
/// them before calling it.
|
21 |
+
///
|
22 |
+
/// \param tensors Tensors of which the derivative will be computed.
|
23 |
+
/// \param grad_tensors The "vector" in the Jacobian-vector product, usually
|
24 |
+
/// gradients
|
25 |
+
/// w.r.t. each element of corresponding tensors. `torch::Tensor()` values
|
26 |
+
/// can be specified for scalar Tensors or ones that don't require grad. If
|
27 |
+
/// a `torch::Tensor()` value would be acceptable for all grad_tensors, then
|
28 |
+
/// this argument is optional.
|
29 |
+
/// \param retain_graph If `false`, the graph used to compute the grad will be
|
30 |
+
/// freed.
|
31 |
+
/// Note that in nearly all cases setting this option to `true` is not
|
32 |
+
/// needed and often can be worked around in a much more efficient way.
|
33 |
+
/// Defaults to the value of `create_graph`.
|
34 |
+
/// \param create_graph If `true`, graph of the derivative will be constructed,
|
35 |
+
/// allowing
|
36 |
+
/// to compute higher order derivative products. Defaults to `false`.
|
37 |
+
/// \param inputs Inputs w.r.t. which the gradient will be accumulated into
|
38 |
+
/// `at::Tensor::grad`. All other Tensors will be ignored. If not provided,
|
39 |
+
/// the gradient is accumulated into all the leaf Tensors that were used to
|
40 |
+
/// compute param `tensors`.
|
41 |
+
// When inputs are provided and a given input is not a leaf,
|
42 |
+
// the current implementation will call its grad_fn (even though it is not
|
43 |
+
// strictly needed to get this gradients). It is an implementation detail
|
44 |
+
// on which the user should not rely. See
|
45 |
+
// https://github.com/pytorch/pytorch/pull/60521#issuecomment-867061780 for
|
46 |
+
// more details.
|
47 |
+
TORCH_API void backward(
|
48 |
+
const variable_list& tensors,
|
49 |
+
const variable_list& grad_tensors = {},
|
50 |
+
c10::optional<bool> retain_graph = c10::nullopt,
|
51 |
+
bool create_graph = false,
|
52 |
+
const variable_list& inputs = {});
|
53 |
+
|
54 |
+
/// Computes and returns the sum of gradients of outputs with respect to the
|
55 |
+
/// inputs.
|
56 |
+
///
|
57 |
+
/// ``grad_outputs`` should be a sequence of length matching ``output``
|
58 |
+
/// containing the "vector" in Jacobian-vector product, usually the pre-computed
|
59 |
+
/// gradients w.r.t. each of the outputs. If an output doesn't require_grad,
|
60 |
+
/// then the gradient can be ``torch::Tensor()``).
|
61 |
+
///
|
62 |
+
/// \param outputs outputs of the differentiated function.
|
63 |
+
/// \param inputs Inputs w.r.t. which the gradient will be
|
64 |
+
/// returned (and not accumulated into ``at::Tensor::grad``).
|
65 |
+
/// \param grad_outputs The "vector" in the Jacobian-vector product.
|
66 |
+
/// Usually gradients w.r.t. each output. `torch::Tensor()` values can be
|
67 |
+
/// specified for scalar Tensors or ones that don't require grad. If a
|
68 |
+
/// `torch::Tensor()` value would be acceptable for all grad_tensors, then
|
69 |
+
/// this argument is optional. Default: `{}`.
|
70 |
+
/// \param retain_graph If ``false``, the graph used to compute the grad
|
71 |
+
/// will be freed. Note that in nearly all cases setting this option to
|
72 |
+
/// ``true`` is not needed and often can be worked around in a much more
|
73 |
+
/// efficient way. Defaults to the value of ``create_graph``.
|
74 |
+
/// \param create_graph If ``true``, graph of the derivative will
|
75 |
+
/// be constructed, allowing to compute higher order derivative products.
|
76 |
+
/// Default: ``false``.
|
77 |
+
/// \param allow_unused If ``false``, specifying inputs that were not
|
78 |
+
/// used when computing outputs (and therefore their grad is always zero)
|
79 |
+
/// is an error. Defaults to ``false``.
|
80 |
+
TORCH_API variable_list grad(
|
81 |
+
const variable_list& outputs,
|
82 |
+
const variable_list& inputs,
|
83 |
+
const variable_list& grad_outputs = {},
|
84 |
+
c10::optional<bool> retain_graph = c10::nullopt,
|
85 |
+
bool create_graph = false,
|
86 |
+
bool allow_unused = false);
|
87 |
+
|
88 |
+
namespace forward_ad {
|
89 |
+
|
90 |
+
/// Creates a new dual level and returns its index. This level index should then
|
91 |
+
/// be used to call into the other functions below. This API supports entering a
|
92 |
+
/// new level before the previous one is exited. We call them nested forward AD
|
93 |
+
/// levels. These can be used to compute higher order derivatives.
|
94 |
+
TORCH_API uint64_t enter_dual_level();
|
95 |
+
|
96 |
+
/// Exits the given level. This will clear up all the gradients from this level
|
97 |
+
/// and all dual Tensors that had gradients for this level will become regular
|
98 |
+
/// Tensors again. This function can only be used to exit the innermost nesting
|
99 |
+
/// level and so exiting must happen in reverse order compared to the entering
|
100 |
+
/// that was done with the function above.
|
101 |
+
TORCH_API void exit_dual_level(uint64_t level);
|
102 |
+
|
103 |
+
} // namespace forward_ad
|
104 |
+
} // namespace torch::autograd
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/autograd_not_implemented_fallback.h
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/library.h>
|
4 |
+
|
5 |
+
namespace torch::autograd {
|
6 |
+
|
7 |
+
// Default DispatchKey::Autograd fallback for built-in operators.
|
8 |
+
// Can be registered for custom operators.
|
9 |
+
TORCH_API torch::CppFunction autogradNotImplementedFallback();
|
10 |
+
|
11 |
+
// Default DispatchKey::AdInplaceOrView fallback for built-in operators
|
12 |
+
// Can be registered for custom operators.
|
13 |
+
TORCH_API torch::CppFunction autogradNotImplementedInplaceOrViewFallback();
|
14 |
+
|
15 |
+
// Default DispatchKey::Autograd fallback for all other operators (i.e. custom
|
16 |
+
// operators)
|
17 |
+
TORCH_API torch::CppFunction basicAutogradNotImplementedFallback();
|
18 |
+
|
19 |
+
enum class AutogradFallbackMode {
|
20 |
+
Nothing, // Fallback is a redispatch
|
21 |
+
Warn, // Fallback raises a warning if backward is called
|
22 |
+
Error, // Fallback raises an error if backward is called
|
23 |
+
};
|
24 |
+
|
25 |
+
// Change the behavior of "basicAutogradNotImplementedFallback"
|
26 |
+
// In Python this is:
|
27 |
+
// - torch._C._set_autograd_fallback_mode(str) -> None
|
28 |
+
// - torch._C._get_autograd_fallback_mode() -> str
|
29 |
+
TORCH_API void setAutogradFallbackMode(AutogradFallbackMode mode);
|
30 |
+
TORCH_API AutogradFallbackMode getAutogradFallbackMode();
|
31 |
+
|
32 |
+
} // namespace torch::autograd
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/cpp_hook.h
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <torch/csrc/autograd/function_hook.h>
|
3 |
+
#include <functional>
|
4 |
+
#include <memory>
|
5 |
+
|
6 |
+
namespace torch::autograd {
|
7 |
+
|
8 |
+
using hooks_list =
|
9 |
+
std::vector<std::function<at::TensorBase(const at::TensorBase&)>>;
|
10 |
+
|
11 |
+
struct CppFunctionTensorPreHook : public FunctionPreHook {
|
12 |
+
CppFunctionTensorPreHook(std::shared_ptr<hooks_list> hooks, size_t value_idx);
|
13 |
+
variable_list operator()(const variable_list& values) override;
|
14 |
+
|
15 |
+
std::shared_ptr<hooks_list> hooks_;
|
16 |
+
size_t value_idx_;
|
17 |
+
};
|
18 |
+
|
19 |
+
struct CppFunctionSingleTensorPreHook : public FunctionPreHook {
|
20 |
+
CppFunctionSingleTensorPreHook(
|
21 |
+
std::function<at::TensorBase(const at::TensorBase&)> hook,
|
22 |
+
size_t value_idx);
|
23 |
+
variable_list operator()(const variable_list& values) override;
|
24 |
+
|
25 |
+
std::function<at::TensorBase(const at::TensorBase&)> hook_;
|
26 |
+
size_t value_idx_;
|
27 |
+
};
|
28 |
+
|
29 |
+
} // namespace torch::autograd
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/edge.h
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <cstdint>
|
4 |
+
#include <functional>
|
5 |
+
#include <memory>
|
6 |
+
|
7 |
+
#include <c10/util/hash.h>
|
8 |
+
|
9 |
+
namespace torch::autograd {
|
10 |
+
|
11 |
+
struct Node;
|
12 |
+
|
13 |
+
/// Represents a particular input of a function.
|
14 |
+
struct Edge {
|
15 |
+
Edge() noexcept : function(nullptr), input_nr(0) {}
|
16 |
+
|
17 |
+
Edge(std::shared_ptr<Node> function_, uint32_t input_nr_) noexcept
|
18 |
+
: function(std::move(function_)), input_nr(input_nr_) {}
|
19 |
+
|
20 |
+
/// Convenience method to test if an edge is valid.
|
21 |
+
bool is_valid() const noexcept {
|
22 |
+
return function != nullptr;
|
23 |
+
}
|
24 |
+
|
25 |
+
// Required for use in associative containers.
|
26 |
+
bool operator==(const Edge& other) const noexcept {
|
27 |
+
return this->function == other.function && this->input_nr == other.input_nr;
|
28 |
+
}
|
29 |
+
|
30 |
+
bool operator!=(const Edge& other) const noexcept {
|
31 |
+
return !(*this == other);
|
32 |
+
}
|
33 |
+
|
34 |
+
/// The function this `Edge` points to.
|
35 |
+
std::shared_ptr<Node> function;
|
36 |
+
|
37 |
+
/// The identifier of a particular input to the function.
|
38 |
+
uint32_t input_nr;
|
39 |
+
};
|
40 |
+
} // namespace torch::autograd
|
41 |
+
|
42 |
+
// The idiomatic way of enabling use of a custom type as the key of hash
|
43 |
+
// containers in C++11. This method removes the requirement of having to pass
|
44 |
+
// a custom hasher to std::unordered_{map, set}.
|
45 |
+
// See http://en.cppreference.com/w/cpp/utility/hash for more information.
|
46 |
+
namespace std {
|
47 |
+
template <>
|
48 |
+
struct hash<torch::autograd::Edge> {
|
49 |
+
// These type aliases are required by the standard.
|
50 |
+
using argument_type = torch::autograd::Edge;
|
51 |
+
using return_type = size_t;
|
52 |
+
return_type operator()(const argument_type& edge) const noexcept {
|
53 |
+
return c10::get_hash(edge.function, edge.input_nr);
|
54 |
+
}
|
55 |
+
};
|
56 |
+
} // namespace std
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/engine.h
ADDED
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// Engine implements backpropagation from output variables and their gradients
|
4 |
+
// to "root" variables (variables created by the user with requires_grad=True).
|
5 |
+
|
6 |
+
#include <ATen/Tensor.h>
|
7 |
+
#include <ATen/ThreadLocalState.h>
|
8 |
+
#include <ATen/core/ivalue.h>
|
9 |
+
#include <torch/csrc/Export.h>
|
10 |
+
#include <torch/csrc/autograd/anomaly_mode.h>
|
11 |
+
#include <torch/csrc/autograd/function.h>
|
12 |
+
#include <torch/csrc/autograd/functions/basic_ops.h>
|
13 |
+
#include <torch/csrc/autograd/graph_task.h>
|
14 |
+
#include <torch/csrc/autograd/input_buffer.h>
|
15 |
+
#include <torch/csrc/autograd/saved_variable_hooks.h>
|
16 |
+
#include <torch/csrc/autograd/utils/warnings.h>
|
17 |
+
|
18 |
+
#include <c10/util/CallOnce.h>
|
19 |
+
|
20 |
+
#include <exception>
|
21 |
+
#include <functional>
|
22 |
+
#include <memory>
|
23 |
+
#include <queue>
|
24 |
+
#include <utility>
|
25 |
+
#include <vector>
|
26 |
+
|
27 |
+
namespace torch::autograd {
|
28 |
+
struct ReadyQueue;
|
29 |
+
}
|
30 |
+
|
31 |
+
namespace torch::autograd {
|
32 |
+
|
33 |
+
// Maximum reentrant backward depth before switching to a new thread
|
34 |
+
// This limit is based on the TSAN's deadlock detector, where it will
|
35 |
+
// fail if a program hold more than 65 locks in one thread at once.
|
36 |
+
// As we hold mutex in every of our custom C++ autograd Node, we would
|
37 |
+
// like to avoid TSAN complains on this when doing reentrant backwards
|
38 |
+
// For reference, see https://github.com/google/sanitizers/issues/950
|
39 |
+
static constexpr int MAX_DEPTH = 60;
|
40 |
+
|
41 |
+
void set_device(int device);
|
42 |
+
TORCH_API void validate_outputs(
|
43 |
+
const edge_list& edges,
|
44 |
+
variable_list& grads,
|
45 |
+
const std::function<std::string(const std::string&)>& format_error);
|
46 |
+
|
47 |
+
struct NodeTask {
|
48 |
+
std::weak_ptr<GraphTask> base_;
|
49 |
+
std::shared_ptr<Node> fn_;
|
50 |
+
// This buffer serves as an implicit "addition" node for all of the
|
51 |
+
// gradients flowing here. Once all the dependencies are finished, we
|
52 |
+
// use the contents of this buffer to run the function.
|
53 |
+
InputBuffer inputs_;
|
54 |
+
// When worker receives a task with isShutdownTask = true, it will immediately
|
55 |
+
// exit. The engine sends a shutdown task to every queue upon its destruction.
|
56 |
+
bool isShutdownTask_;
|
57 |
+
|
58 |
+
int getReentrantDepth() const;
|
59 |
+
|
60 |
+
NodeTask(
|
61 |
+
std::weak_ptr<GraphTask> base,
|
62 |
+
std::shared_ptr<Node> fn,
|
63 |
+
InputBuffer inputs,
|
64 |
+
bool isShutdownTask = false)
|
65 |
+
: base_(std::move(base)),
|
66 |
+
fn_(std::move(fn)),
|
67 |
+
inputs_(std::move(inputs)),
|
68 |
+
isShutdownTask_(isShutdownTask) {}
|
69 |
+
};
|
70 |
+
|
71 |
+
// Guard that sets and restores checkpoint_valid
|
72 |
+
class CheckpointValidGuard {
|
73 |
+
public:
|
74 |
+
explicit CheckpointValidGuard(
|
75 |
+
const std::shared_ptr<const GraphTask>& graph_task);
|
76 |
+
~CheckpointValidGuard();
|
77 |
+
|
78 |
+
private:
|
79 |
+
bool prev_checkpoint_valid_state;
|
80 |
+
};
|
81 |
+
|
82 |
+
struct ReadyQueue {
|
83 |
+
private:
|
84 |
+
// Returns true when t2 should be (weakly) BEFORE t1 in the queue.
|
85 |
+
// Shutdown tasks are first and then empty NodeTask are next.
|
86 |
+
struct CompareNodeTaskTime {
|
87 |
+
bool operator()(NodeTask const& t1, NodeTask const& t2) {
|
88 |
+
// NOLINTNEXTLINE(bugprone-branch-clone)
|
89 |
+
if (t2.isShutdownTask_) {
|
90 |
+
return true;
|
91 |
+
} else if (!t1.fn_ || t1.isShutdownTask_) {
|
92 |
+
return false;
|
93 |
+
} else if (!t2.fn_) {
|
94 |
+
return true;
|
95 |
+
} else if (t1.getReentrantDepth() == t2.getReentrantDepth()) {
|
96 |
+
return t1.fn_->sequence_nr() < t2.fn_->sequence_nr();
|
97 |
+
} else {
|
98 |
+
return t1.getReentrantDepth() < t2.getReentrantDepth();
|
99 |
+
}
|
100 |
+
}
|
101 |
+
};
|
102 |
+
|
103 |
+
// To notify threads waiting on the ReadyQueue of available tasks on the heap_
|
104 |
+
std::condition_variable not_empty_;
|
105 |
+
// To protect read and writes to heap_
|
106 |
+
mutable std::mutex mutex_;
|
107 |
+
|
108 |
+
std::priority_queue<NodeTask, std::vector<NodeTask>, CompareNodeTaskTime>
|
109 |
+
heap_;
|
110 |
+
|
111 |
+
public:
|
112 |
+
// incrementOutstandingTasks indicates whether or not we should increment
|
113 |
+
// 'outstanding_tasks_' for the associated GraphTask. This should mostly
|
114 |
+
// always be true and is only set false in certain cases (see docs for
|
115 |
+
// DistEngine.execute_graph_task_until_ready_queue_empty)
|
116 |
+
void push(NodeTask item, bool incrementOutstandingTasks = true);
|
117 |
+
void pushShutdownTask();
|
118 |
+
NodeTask pop();
|
119 |
+
bool empty() const;
|
120 |
+
size_t size() const;
|
121 |
+
};
|
122 |
+
|
123 |
+
// A single instance of this struct should be created through the whole process
|
124 |
+
// lifetime. The worker thread creation logic and Engine's destructor rely on
|
125 |
+
// this.
|
126 |
+
struct TORCH_API Engine {
|
127 |
+
/// Returns a reference to a static `Engine` instance.
|
128 |
+
static Engine& get_default_engine();
|
129 |
+
|
130 |
+
static Engine& get_base_engine();
|
131 |
+
|
132 |
+
// compiled_autograd needs to live in a different .so file so that it
|
133 |
+
// can have python symbols, so we add a layer of indirection
|
134 |
+
// see [Note: Compiled Autograd]
|
135 |
+
typedef variable_list (*compiled_autograd_fn)(
|
136 |
+
const std::shared_ptr<Node>& graph_root,
|
137 |
+
GraphTask& graph_task,
|
138 |
+
bool accumulate_grad,
|
139 |
+
const edge_list& outputs);
|
140 |
+
static void set_compiled_autograd(compiled_autograd_fn fn);
|
141 |
+
|
142 |
+
Engine(const Engine&) = delete;
|
143 |
+
Engine(Engine&&) = delete;
|
144 |
+
virtual ~Engine();
|
145 |
+
|
146 |
+
// Given a list of (Node, input number) pairs computes the value of the graph
|
147 |
+
// by following next_edge references.
|
148 |
+
virtual variable_list execute(
|
149 |
+
const edge_list& roots,
|
150 |
+
const variable_list& inputs,
|
151 |
+
bool keep_graph,
|
152 |
+
bool create_graph,
|
153 |
+
bool accumulate_grad,
|
154 |
+
const edge_list& outputs = {});
|
155 |
+
|
156 |
+
// Given a pre-populated GraphTask and GraphRoot, computes the backward pass
|
157 |
+
// for the graph.
|
158 |
+
//
|
159 |
+
// NB: This API should only be used by internal autograd specific
|
160 |
+
// machinery and shouldn't be exposed to users in anyway.
|
161 |
+
virtual c10::intrusive_ptr<at::ivalue::Future> execute_with_graph_task(
|
162 |
+
const std::shared_ptr<GraphTask>& graph_task,
|
163 |
+
std::shared_ptr<Node> graph_root,
|
164 |
+
InputBuffer&& input_buffer);
|
165 |
+
|
166 |
+
virtual std::unique_ptr<AnomalyMetadata> make_anomaly_metadata() {
|
167 |
+
return std::make_unique<AnomalyMetadata>();
|
168 |
+
}
|
169 |
+
|
170 |
+
virtual std::unique_ptr<SavedVariableHooks> get_default_saved_variable_hooks() {
|
171 |
+
return nullptr;
|
172 |
+
}
|
173 |
+
|
174 |
+
// We pass cpu_ready_queue to evaluate_function, so that it knows
|
175 |
+
// the correct ready queue to push to after a NodeTask is ready
|
176 |
+
void evaluate_function(
|
177 |
+
std::shared_ptr<GraphTask>& graph_task,
|
178 |
+
Node* func,
|
179 |
+
InputBuffer& inputs,
|
180 |
+
const std::shared_ptr<ReadyQueue>& cpu_ready_queue);
|
181 |
+
|
182 |
+
void initialize_device_threads_pool();
|
183 |
+
virtual void thread_on_exception(
|
184 |
+
std::shared_ptr<GraphTask> graph_task,
|
185 |
+
const std::shared_ptr<Node>& fn,
|
186 |
+
std::exception& e);
|
187 |
+
|
188 |
+
void queue_callback(std::function<void()> callback);
|
189 |
+
|
190 |
+
bool is_checkpoint_valid();
|
191 |
+
|
192 |
+
// Should be called after fork to notify that worker threads are gone
|
193 |
+
void release_workers();
|
194 |
+
|
195 |
+
// Must be called by subclass before destructing to avoid a data-race-on-vptr.
|
196 |
+
void stop();
|
197 |
+
|
198 |
+
// Initializes a device thread for the autograd engine.
|
199 |
+
virtual void thread_init(
|
200 |
+
int device,
|
201 |
+
const std::shared_ptr<ReadyQueue>& ready_queue,
|
202 |
+
bool should_increment = true);
|
203 |
+
|
204 |
+
protected:
|
205 |
+
Engine();
|
206 |
+
void compute_dependencies(Node* root, GraphTask& task, uint64_t min_topo_nr);
|
207 |
+
|
208 |
+
// initialize the thread local ready queue with the ready queue that is
|
209 |
+
// created elsewhere (i.e. thread_init, Engine::execute, etc), or create a new
|
210 |
+
// ready queue if ready_queue is not provided.
|
211 |
+
void init_local_ready_queue(
|
212 |
+
std::shared_ptr<ReadyQueue> ready_queue = nullptr);
|
213 |
+
|
214 |
+
std::shared_ptr<ReadyQueue> ready_queue(
|
215 |
+
std::shared_ptr<ReadyQueue> cpu_ready_queue,
|
216 |
+
at::Device device);
|
217 |
+
std::shared_ptr<ReadyQueue> ready_queue_by_index(
|
218 |
+
std::shared_ptr<ReadyQueue> cpu_ready_queue,
|
219 |
+
int device_index);
|
220 |
+
// start device threads (CUDA, XLA, etc.) in Engine,
|
221 |
+
// note that it does NOT start CPU thread.
|
222 |
+
void start_device_threads();
|
223 |
+
void increment_non_reentrant_thread_count();
|
224 |
+
void decrement_non_reentrant_thread_count();
|
225 |
+
virtual void thread_main(const std::shared_ptr<GraphTask>& task);
|
226 |
+
void reentrant_thread_init();
|
227 |
+
void add_thread_pool_task(const std::weak_ptr<GraphTask>& graph_task);
|
228 |
+
|
229 |
+
// Ensures device_ready_queues_ are initialized only once
|
230 |
+
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
231 |
+
c10::once_flag start_device_threads_flag_;
|
232 |
+
// Safe to read device_ready_queues_ without synchronization after
|
233 |
+
// initialization
|
234 |
+
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
235 |
+
std::vector<std::shared_ptr<ReadyQueue>> device_ready_queues_;
|
236 |
+
|
237 |
+
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
238 |
+
std::vector<std::function<void()>> final_callbacks_;
|
239 |
+
// To protect reads and writes to final_callbacks_
|
240 |
+
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
241 |
+
std::mutex post_callbacks_lock_;
|
242 |
+
|
243 |
+
// How many nested reentrant calls are allowed until a new thread is used
|
244 |
+
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
245 |
+
int max_recursion_depth_;
|
246 |
+
|
247 |
+
struct ThreadPoolShared {
|
248 |
+
// Data structures used by the threads for executing reentrant backwards
|
249 |
+
// tasks. See Note [Reentrant backwards]
|
250 |
+
// Number of available threads for processing new GraphTasks.
|
251 |
+
unsigned int num_workers_{0};
|
252 |
+
// The threads will wait on work_ to be notified of GraphTasks
|
253 |
+
std::condition_variable work_;
|
254 |
+
// To protect reads and writes to graphtask_queue_ and num_workers_
|
255 |
+
// and for synchronizing creating new threads when needed
|
256 |
+
std::mutex mutex_;
|
257 |
+
// Workers will process the GraphTasks added to this queue. A GraphTask is
|
258 |
+
// allocated inside Engine::execute and lives for the duration of execute
|
259 |
+
std::queue<std::weak_ptr<GraphTask>> graphtasks_queue_;
|
260 |
+
|
261 |
+
ThreadPoolShared() = default;
|
262 |
+
};
|
263 |
+
|
264 |
+
// Temporary workaround until shutting down threads is done
|
265 |
+
// We need shared ownership of all these objects because the threads are
|
266 |
+
// leaked when Engine shuts down, so there may be threads waiting on work_ for
|
267 |
+
// the graphtasks_queue_ to be nonempty.
|
268 |
+
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
269 |
+
std::shared_ptr<ThreadPoolShared> thread_pool_shared_;
|
270 |
+
|
271 |
+
private:
|
272 |
+
// Number of non-reentrant threads
|
273 |
+
std::atomic<uint32_t> non_reentrant_device_thread_count_;
|
274 |
+
// Destructor will wait for non-reentrant threads to finish
|
275 |
+
std::condition_variable non_reentrant_device_thread_condvar_;
|
276 |
+
std::mutex non_reentrant_device_thread_mutex_;
|
277 |
+
// stop() must be called before the destruction path goes down to the base
|
278 |
+
// class, in order to avoid a data-race-on-vptr. Use this boolean to guard
|
279 |
+
// whether stop() has already been called, so we can call this in every
|
280 |
+
// destructor of the class hierarchy.
|
281 |
+
bool stopped_{false};
|
282 |
+
};
|
283 |
+
|
284 |
+
// allow python_engine to override the default engine when it loads
|
285 |
+
using EngineStub = Engine& (*)();
|
286 |
+
TORCH_API void set_default_engine_stub(EngineStub stub);
|
287 |
+
|
288 |
+
} // namespace torch::autograd
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/forward_grad.h
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/Tensor.h>
|
4 |
+
#include <unordered_set>
|
5 |
+
|
6 |
+
namespace torch::autograd {
|
7 |
+
|
8 |
+
// [ Using ForwardGrad ]
|
9 |
+
// ForwardGrad needs to be a shared_ptr to satisfy constraints of its inner
|
10 |
+
// design. But this shared_ptr must be uniquely associated with the object that
|
11 |
+
// stores it (as of writing, either AutogradMeta or SavedVariable). This object
|
12 |
+
// is called the "owning object" in the discussions below. This owning object
|
13 |
+
// must call `ForwardGrad::clear()` when it is destroyed to ensure that the
|
14 |
+
// ForwardGrad is properly de-allocated.
|
15 |
+
|
16 |
+
struct ForwardGrad;
|
17 |
+
|
18 |
+
// This file contains two classes that are used to store forward AD gradients
|
19 |
+
// and ensure that they are scoped properly. Because forward AD runs
|
20 |
+
// concurrently with the evaluation of the function, we need a mechanism to
|
21 |
+
// separate different forward AD invocations and be able to compute the right
|
22 |
+
// gradients. We model such invocations as levels here. The particular scoping
|
23 |
+
// issue mentioned above has two main drivers:
|
24 |
+
// - Ensure that we can conveniently use forward AD within a high level API
|
25 |
+
// without
|
26 |
+
// leaking the forward AD states outside.
|
27 |
+
// - Ensure that we can keep the level that we expose to the user API simple
|
28 |
+
// (an integer
|
29 |
+
// that represents the nesting depth) while avoiding confusions when the
|
30 |
+
// level index is re-used.
|
31 |
+
|
32 |
+
// The important external APIs from this file are:
|
33 |
+
// - ForwardADLevel::get_next_idx() that can be used to enter a new level and
|
34 |
+
// get its index
|
35 |
+
// - ForwardADLevel::release_idx() that can be used to exit a given level.
|
36 |
+
// - ForwardGrad() can be used to store a given forward gradient that will
|
37 |
+
// handle the level
|
38 |
+
// tracking automatically.
|
39 |
+
|
40 |
+
// The basic implementation strategy is as follows:
|
41 |
+
// Every tensor has a ForwardGrad, maintaining a map from levels to tangents.
|
42 |
+
// ForwardGrad is responsible for registering itself to the appropriate
|
43 |
+
// ForwardADLevel when a new tangent is added to it via ForwardGrad::set_value
|
44 |
+
// and to un-register itself from this same level if that tangent is removed via
|
45 |
+
// ForwardGrad::reset. The ForwardADLevel is created when a new level is entered
|
46 |
+
// via ForwardADLevel::get_next_idx. A reference to the new ForwardADLevel is
|
47 |
+
// stored into a global (for the whole process) vector that ensure it can be
|
48 |
+
// accessed via ForwardADLevel::get_by_idx. This reference is deleted when the
|
49 |
+
// index is released by the user when calling ForwardADLevel::release_idx. When
|
50 |
+
// it is destructed, the ForwardADLevel is responsible for clearing all the
|
51 |
+
// tangents for its level stored in all the ForwardGrad that registered with it.
|
52 |
+
//
|
53 |
+
// This process-wide level design, compared to a thread local one, allows us to
|
54 |
+
// use very simple user facing handle for the level (an int) while enabling
|
55 |
+
// cross-thread forward AD. The only required synchronization for the user is
|
56 |
+
// when entering and exiting the levels. Some discussion on alternative design
|
57 |
+
// is in https://github.com/pytorch/pytorch/pull/49097#discussion_r543716453 and
|
58 |
+
// can be refined in the future.
|
59 |
+
|
60 |
+
// Correctness of concurrency:
|
61 |
+
// Each class uses its own lock when reading or modifying internal storages.
|
62 |
+
// This allows in particular to safely remove tangents from ForwardGrad when the
|
63 |
+
// ForwardADLevel is being exited. We ensure no deadlock by ensuring that a
|
64 |
+
// methods never calls into another class's method while the local class's lock
|
65 |
+
// is held except in one single case: calling from ForwardADLevel's destructor
|
66 |
+
// into ForwardGrad::reset with update_level=false.
|
67 |
+
|
68 |
+
// The lifetime of these objects is as follows:
|
69 |
+
// The ForwardADLevel can be in three states:
|
70 |
+
// - Initialized: where one of its reference is held by the global vector
|
71 |
+
// and there may be more
|
72 |
+
// references held by temporary variables in ForwardGrad's methods.
|
73 |
+
// - About to be destructed: where "release_idx" has been called and the
|
74 |
+
// only reason for the
|
75 |
+
// ForwardADLevel not to be destructed right away is that some methods in
|
76 |
+
// ForwardGrad have owning reference to it. This is done so that a
|
77 |
+
// ForwardADLevel can never be destructed when a ForwardGrad is
|
78 |
+
// registered with it and in the process of adding something to its
|
79 |
+
// internal state.
|
80 |
+
// - Being destructed: Here the ForwardADLevel is not referenced anymore
|
81 |
+
// and can be safely reset
|
82 |
+
// all of the ForwardGrad. Note that we can have more than one reset
|
83 |
+
// being called here (which is ok) but we are guaranteed that there is at
|
84 |
+
// least one.
|
85 |
+
// The ForwardGrad is simpler as there is no intermediary state and no special
|
86 |
+
// destructor for. The logic to unregister it from the different ForwardADLevel
|
87 |
+
// is done when the owning object (AutogradMeta or SavedVariable) is being
|
88 |
+
// destroyed.
|
89 |
+
|
90 |
+
// Other considered design:
|
91 |
+
// To avoid having the ForwardGrad::clear, we considered storing weak_ptr inside
|
92 |
+
// the ForwardADLevel. While this would work, it would mean that the set inside
|
93 |
+
// the ForwardADLevel would only grow unless we do an expensive linear scan to
|
94 |
+
// remove all the dangling weak pointers. Hence this approach was not used.
|
95 |
+
|
96 |
+
// Data structures in this file are optimized for this maximum number of levels.
|
97 |
+
// The number of levels corresponds to the degree of the gradient being
|
98 |
+
// computed using forward AD and we don't expect more than second order
|
99 |
+
// gradients to be common.
|
100 |
+
#define EXPECTED_MAX_LEVEL 2
|
101 |
+
|
102 |
+
struct TORCH_API ForwardADLevel {
|
103 |
+
ForwardADLevel(uint64_t idx) : idx_(idx) {}
|
104 |
+
~ForwardADLevel();
|
105 |
+
|
106 |
+
static uint64_t get_next_idx();
|
107 |
+
static void release_idx(uint64_t idx);
|
108 |
+
static std::shared_ptr<ForwardADLevel> get_by_idx(uint64_t idx);
|
109 |
+
static std::shared_ptr<ForwardADLevel> try_get_by_idx(uint64_t idx);
|
110 |
+
|
111 |
+
void erase(const std::shared_ptr<ForwardGrad>& grad) {
|
112 |
+
std::lock_guard<std::mutex> lock(mutex_);
|
113 |
+
grads_.erase(grad);
|
114 |
+
}
|
115 |
+
|
116 |
+
void insert(const std::shared_ptr<ForwardGrad>& grad) {
|
117 |
+
std::lock_guard<std::mutex> lock(mutex_);
|
118 |
+
grads_.insert(grad);
|
119 |
+
}
|
120 |
+
|
121 |
+
private:
|
122 |
+
std::unordered_set<std::shared_ptr<ForwardGrad>> grads_;
|
123 |
+
std::mutex mutex_;
|
124 |
+
uint64_t idx_;
|
125 |
+
};
|
126 |
+
|
127 |
+
struct TORCH_API ForwardGrad : std::enable_shared_from_this<ForwardGrad> {
|
128 |
+
ForwardGrad() = default;
|
129 |
+
|
130 |
+
// This function must only be called when AutogradMeta or SavedVariable is
|
131 |
+
// being destructed as it ensures that:
|
132 |
+
// - The only (potential) other references to this ForwardGrad are the
|
133 |
+
// different level it is registered to
|
134 |
+
// - No other thread will try to call `set_value` or `value` ever from now
|
135 |
+
// on
|
136 |
+
// - Any of the ForwardADLevel that this ForwardGrad is registered with
|
137 |
+
// might
|
138 |
+
// call `reset` at any point during this function
|
139 |
+
void clear() {
|
140 |
+
c10::SmallVector<uint64_t, EXPECTED_MAX_LEVEL> levels_idx;
|
141 |
+
|
142 |
+
{
|
143 |
+
std::lock_guard<std::mutex> lock(mutex_);
|
144 |
+
for (auto& c : content_) {
|
145 |
+
levels_idx.push_back(c.first);
|
146 |
+
}
|
147 |
+
}
|
148 |
+
|
149 |
+
for (auto l_idx : levels_idx) {
|
150 |
+
// Use "try" version here as another thread might have deleted this
|
151 |
+
// level before we got here
|
152 |
+
// This is an owning reference as we want to keep the level alive
|
153 |
+
// until we successfully unregister ourselves
|
154 |
+
auto level = ForwardADLevel::try_get_by_idx(l_idx);
|
155 |
+
if (level) {
|
156 |
+
level->erase(shared_from_this());
|
157 |
+
}
|
158 |
+
}
|
159 |
+
}
|
160 |
+
|
161 |
+
void set_value(const at::Tensor& value, uint64_t level) {
|
162 |
+
// Owning reference to ensure the forward_level is not destroyed
|
163 |
+
// while we are updating our internal state
|
164 |
+
auto forward_level = ForwardADLevel::get_by_idx(level);
|
165 |
+
forward_level->insert(shared_from_this());
|
166 |
+
|
167 |
+
std::lock_guard<std::mutex> lock(mutex_);
|
168 |
+
content_.insert({level, value});
|
169 |
+
}
|
170 |
+
|
171 |
+
// This function removes the tangent for a given level from this ForwardGrad
|
172 |
+
// Use the update_level flag to disable notifying the level about this reset
|
173 |
+
// This flag is most notably used by the ForwardADLevel destructor.
|
174 |
+
void reset(uint64_t level, bool update_level = true) {
|
175 |
+
if (update_level) {
|
176 |
+
ForwardADLevel::get_by_idx(level)->erase(shared_from_this());
|
177 |
+
}
|
178 |
+
|
179 |
+
std::unique_lock<std::mutex> lock(mutex_);
|
180 |
+
const auto& it = content_.find(level);
|
181 |
+
TORCH_INTERNAL_ASSERT(
|
182 |
+
it != content_.end(), "Resetting a non-existent level.");
|
183 |
+
// Keep the Tensor alive until we have released the lock
|
184 |
+
// This is needed as we can be in a case where this function is called by
|
185 |
+
// ForwardADLevel destructor
|
186 |
+
auto t = (*it).second;
|
187 |
+
content_.erase(level);
|
188 |
+
lock.unlock();
|
189 |
+
}
|
190 |
+
|
191 |
+
const at::Tensor& value(uint64_t level) const;
|
192 |
+
|
193 |
+
bool contains(uint64_t level) {
|
194 |
+
std::lock_guard<std::mutex> lock(mutex_);
|
195 |
+
return content_.count(level) > 0;
|
196 |
+
}
|
197 |
+
|
198 |
+
bool empty() const {
|
199 |
+
return content_.empty();
|
200 |
+
}
|
201 |
+
|
202 |
+
static const at::Tensor& undef_grad();
|
203 |
+
|
204 |
+
private:
|
205 |
+
// TODO(albanD): replace this with a SmallVector
|
206 |
+
std::unordered_map<uint64_t, at::Tensor> content_;
|
207 |
+
mutable std::mutex mutex_;
|
208 |
+
};
|
209 |
+
|
210 |
+
} // namespace torch::autograd
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/function.h
ADDED
@@ -0,0 +1,763 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/autograd/anomaly_mode.h>
|
4 |
+
#include <torch/csrc/autograd/edge.h>
|
5 |
+
#include <torch/csrc/autograd/grad_mode.h>
|
6 |
+
#include <torch/csrc/autograd/graph_task.h>
|
7 |
+
#include <torch/csrc/autograd/input_metadata.h>
|
8 |
+
#include <torch/csrc/autograd/saved_variable.h>
|
9 |
+
#include <torch/csrc/autograd/variable.h>
|
10 |
+
#include <torch/csrc/utils/python_stub.h>
|
11 |
+
#include <torch/csrc/utils/variadic.h>
|
12 |
+
|
13 |
+
#include <ATen/SequenceNumber.h>
|
14 |
+
#include <ATen/core/Tensor.h>
|
15 |
+
#include <ATen/record_function.h>
|
16 |
+
#include <c10/util/Exception.h>
|
17 |
+
#include <c10/util/irange.h>
|
18 |
+
|
19 |
+
#include <algorithm>
|
20 |
+
#include <cstdint>
|
21 |
+
#include <initializer_list>
|
22 |
+
#include <memory>
|
23 |
+
#include <string>
|
24 |
+
#include <utility>
|
25 |
+
#include <vector>
|
26 |
+
|
27 |
+
namespace torch::autograd {
|
28 |
+
|
29 |
+
struct Edge;
|
30 |
+
struct FunctionPostHook;
|
31 |
+
struct FunctionPreHook;
|
32 |
+
|
33 |
+
using tensor_list = std::vector<at::Tensor>;
|
34 |
+
using variable_list = std::vector<Variable>;
|
35 |
+
using edge_list = std::vector<Edge>;
|
36 |
+
using saved_variable_list = std::vector<SavedVariable>;
|
37 |
+
using IndexRange = std::pair<size_t, size_t>;
|
38 |
+
using torch::dynamo::autograd::CompiledNodeArgs;
|
39 |
+
using torch::dynamo::autograd::SwapSavedVariables;
|
40 |
+
|
41 |
+
// Custom deleter to prevent stack overflows.
|
42 |
+
TORCH_API void deleteNode(Node* function);
|
43 |
+
|
44 |
+
// Guard that sets and restores the evaluating node
|
45 |
+
class NodeGuard {
|
46 |
+
public:
|
47 |
+
explicit NodeGuard(std::shared_ptr<Node> node);
|
48 |
+
~NodeGuard();
|
49 |
+
|
50 |
+
private:
|
51 |
+
std::shared_ptr<Node> last_evaluating_node_;
|
52 |
+
};
|
53 |
+
|
54 |
+
// Return the Node currently being evaluated (if any)
|
55 |
+
// This is only set during the backward pass while a Node is being
|
56 |
+
// executed.
|
57 |
+
TORCH_API std::shared_ptr<Node> get_current_node();
|
58 |
+
|
59 |
+
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
60 |
+
// Node
|
61 |
+
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
62 |
+
// A `Node` is an abstract class that represents an operation taking zero
|
63 |
+
// or more input `Variable`s and producing zero or more output `Variable`s. All
|
64 |
+
// functions in PyTorch's autograd machinery derive from this class and
|
65 |
+
// override its `apply` method. Instances of such subclasses will then be
|
66 |
+
// invokable via the call operator.
|
67 |
+
//
|
68 |
+
// Nodes in the Autograd Graph
|
69 |
+
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
70 |
+
// When viewing the autograd system as a graph, `Node`s are the vertices or
|
71 |
+
// nodes, connected to each other via (directed) `Edge`s, which themselves are
|
72 |
+
// represented via (`Node`, input_nr) pairs. `Variable`s are the outputs to
|
73 |
+
// and inputs of `Node`s, and travel between these edges during execution
|
74 |
+
// of the graph. When two or more `Edge`s (from different sources) point at the
|
75 |
+
// same input to a `Node`, the values produced along all of these edges are
|
76 |
+
// implicitly summed prior to being forwarded to the target `Node`.
|
77 |
+
//
|
78 |
+
// Hierarchy
|
79 |
+
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
80 |
+
// Subclasses usually represent differentiable functions as well as their
|
81 |
+
// gradient operators. Note, however, that due to the very general definition
|
82 |
+
// of a `Node` taking *zero* or more inputs and producing *zero* or more
|
83 |
+
// outputs, uses of `Node`s are flexible and extend beyond purely
|
84 |
+
// mathematical operations. For example, the `AccumulateGrad` function is a
|
85 |
+
// *sink*: it takes one input, but produces no outputs, instead accumulating
|
86 |
+
// the input as a side effect. At the other extreme, the `GraphRoot` function
|
87 |
+
// receives no inputs from other functions, but produces multiple outputs.
|
88 |
+
//
|
89 |
+
// Interface
|
90 |
+
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
91 |
+
// The most important method on `Node` is the call operator, which takes in
|
92 |
+
// a list of variables and produces a list of variables. The precise size of
|
93 |
+
// these lists can be determined with `num_inputs()` and `num_outputs()`.
|
94 |
+
// `Node`s are stitched together via their `next_edge` interface, which let
|
95 |
+
// you manipulate the set of outgoing edges of a `Node`. You can add an
|
96 |
+
// edge with `add_next_edge()`, retrieve an edge with `next_edge(index)` and
|
97 |
+
// iterate over them via the `next_edges()` method. Other methods exist for
|
98 |
+
// integration with the JIT and other parts of PyTorch. Every `Node` has a
|
99 |
+
// *sequence number* that increases monotonically in the order of `Node`
|
100 |
+
// construction. It can be retrieved via the `sequence_nr()` method. Note that
|
101 |
+
// this sequence number is *thread local*. This means that when `Node`s
|
102 |
+
// `A`, `B` and `C` are created consecutively in the same thread, their
|
103 |
+
// sequence numbers will be ordered `A` < `B` < `C`. If, however, `A` and `B`
|
104 |
+
// are created in one thread and `C` is created in a new thread, there are *no
|
105 |
+
// guarantees* w.r.t. the ordering of `C` relative to `A` or `B`.
|
106 |
+
// See NOTE [ Sequence Number] for more details on the usages of sequence
|
107 |
+
// number.
|
108 |
+
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
109 |
+
struct TORCH_API Node : std::enable_shared_from_this<Node> {
|
110 |
+
public:
|
111 |
+
/// Construct a new `Node` with the given `next_edges`
|
112 |
+
explicit Node(uint64_t sequence_nr, edge_list&& next_edges = edge_list())
|
113 |
+
: sequence_nr_(sequence_nr), next_edges_(std::move(next_edges)) {
|
114 |
+
for (const Edge& edge : next_edges_) {
|
115 |
+
update_topological_nr(edge);
|
116 |
+
}
|
117 |
+
|
118 |
+
if (AnomalyMode::is_enabled()) {
|
119 |
+
metadata()->store_stack();
|
120 |
+
|
121 |
+
// If anomaly mode is enabled and graph is constructed, then assign the
|
122 |
+
// currently evaluating node as the parent of this node.
|
123 |
+
// A parent is a Node where this Node is created.
|
124 |
+
// We are tracking the parents to track multiple backward operations.
|
125 |
+
assign_parent();
|
126 |
+
}
|
127 |
+
|
128 |
+
// Store the thread_id of the forward operator.
|
129 |
+
// See NOTE [ Sequence Numbers ]
|
130 |
+
thread_id_ = at::RecordFunction::currentThreadId();
|
131 |
+
}
|
132 |
+
|
133 |
+
explicit Node(edge_list&& next_edges = edge_list())
|
134 |
+
: Node(
|
135 |
+
/*sequence_nr=*/at::sequence_number::get_and_increment(),
|
136 |
+
std::move(next_edges)) {}
|
137 |
+
|
138 |
+
/// Nodes are neither copyable nor moveable.
|
139 |
+
Node(const Node& other) = delete;
|
140 |
+
Node(Node&& other) = delete;
|
141 |
+
Node& operator=(const Node& other) = delete;
|
142 |
+
Node& operator=(Node&& other) = delete;
|
143 |
+
virtual ~Node() = default;
|
144 |
+
|
145 |
+
std::shared_ptr<Node> getptr() {
|
146 |
+
return shared_from_this();
|
147 |
+
}
|
148 |
+
/// Evaluates the function on the given inputs and returns the result of the
|
149 |
+
/// function call.
|
150 |
+
variable_list operator()(variable_list&& inputs) {
|
151 |
+
// In the first iteration of named tensors, autograd ignores names and
|
152 |
+
// operates on unnamed tensors. In the long term, autograd should
|
153 |
+
// probably operate with names.
|
154 |
+
at::NoNamesGuard no_names_guard;
|
155 |
+
|
156 |
+
#ifdef USE_ROCM
|
157 |
+
// Keep track of backward pass for rocblas.
|
158 |
+
at::ROCmBackwardPassGuard in_backward;
|
159 |
+
#endif
|
160 |
+
|
161 |
+
auto step_callbacks =
|
162 |
+
at::getStepCallbacksUnlessEmpty(at::RecordScope::BACKWARD_FUNCTION);
|
163 |
+
if (C10_UNLIKELY(step_callbacks.has_value())) {
|
164 |
+
at::RecordFunction guard(std::move(*step_callbacks));
|
165 |
+
// Using sequence number and thread id to correlate with
|
166 |
+
// the forward pass function
|
167 |
+
guard.setForwardThreadId(thread_id_);
|
168 |
+
if (guard.needsInputs()) {
|
169 |
+
std::vector<c10::IValue> inputs_vec(inputs.begin(), inputs.end());
|
170 |
+
guard.before(
|
171 |
+
name(),
|
172 |
+
c10::ArrayRef<const c10::IValue>(
|
173 |
+
inputs_vec.data(), inputs_vec.size()),
|
174 |
+
static_cast<int64_t>(sequence_nr()));
|
175 |
+
} else {
|
176 |
+
guard.before(name(), static_cast<int64_t>(sequence_nr()));
|
177 |
+
}
|
178 |
+
return apply(std::move(inputs));
|
179 |
+
} else {
|
180 |
+
return apply(std::move(inputs));
|
181 |
+
}
|
182 |
+
}
|
183 |
+
|
184 |
+
// Graph Connectivity API
|
185 |
+
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
186 |
+
|
187 |
+
// Inputs. NOTE: inputs of the grad_fn correspond to Tensor outputs of the
|
188 |
+
// forward function.
|
189 |
+
|
190 |
+
// Marker for expected undefined input
|
191 |
+
struct undefined_input {};
|
192 |
+
|
193 |
+
/// Adds the type and shape metadata for a new input. Returns the index of
|
194 |
+
/// of the new input.
|
195 |
+
uint32_t add_input_metadata(
|
196 |
+
const at::TensorOptions& options,
|
197 |
+
c10::SymIntArrayRef shape,
|
198 |
+
bool is_tensor_subclass,
|
199 |
+
bool is_nested) noexcept {
|
200 |
+
uint32_t input_nr = input_metadata_.size();
|
201 |
+
auto meta_shape = MetadataShape{std::in_place_type<SymIntSmallVec>, shape};
|
202 |
+
input_metadata_.emplace_back(
|
203 |
+
options, meta_shape, is_tensor_subclass, is_nested);
|
204 |
+
return input_nr;
|
205 |
+
}
|
206 |
+
|
207 |
+
uint32_t add_input_metadata(const at::Tensor& t) noexcept {
|
208 |
+
uint32_t input_nr = input_metadata_.size();
|
209 |
+
input_metadata_.emplace_back(t);
|
210 |
+
return input_nr;
|
211 |
+
}
|
212 |
+
|
213 |
+
/// Adds a placeholder for an input that will not be used.
|
214 |
+
uint32_t add_input_metadata(undefined_input u) noexcept {
|
215 |
+
uint32_t input_nr = input_metadata_.size();
|
216 |
+
input_metadata_.emplace_back();
|
217 |
+
return input_nr;
|
218 |
+
}
|
219 |
+
|
220 |
+
uint32_t num_inputs() const noexcept {
|
221 |
+
return input_metadata_.size();
|
222 |
+
}
|
223 |
+
|
224 |
+
const InputMetadata& input_metadata(size_t index) const {
|
225 |
+
return input_metadata_[index];
|
226 |
+
}
|
227 |
+
|
228 |
+
// Danger: not thread safe, caller must protect with lock
|
229 |
+
InputMetadata& mutable_input_metadata(size_t index) {
|
230 |
+
return input_metadata_[index];
|
231 |
+
}
|
232 |
+
|
233 |
+
/**
|
234 |
+
* Note: Function Streams
|
235 |
+
* A function's stream (for a given device type) is the stream of the first
|
236 |
+
* element of its input buffer on a device of that type.
|
237 |
+
*
|
238 |
+
* If all elements are on the same device they MUST share a stream. If
|
239 |
+
* elements are on different devices (across multiple GPUs, for example)
|
240 |
+
* they may have different streams.
|
241 |
+
*/
|
242 |
+
c10::optional<c10::Stream> stream() {
|
243 |
+
auto opt_device_type = at::getAccelerator();
|
244 |
+
if (!opt_device_type.has_value()) {
|
245 |
+
return c10::nullopt;
|
246 |
+
}
|
247 |
+
for (const auto& metadata : input_metadata_) {
|
248 |
+
if (metadata.device().type() == opt_device_type.value())
|
249 |
+
return metadata.stream();
|
250 |
+
}
|
251 |
+
|
252 |
+
return c10::nullopt;
|
253 |
+
}
|
254 |
+
|
255 |
+
void clear_input_metadata() {
|
256 |
+
input_metadata_.clear();
|
257 |
+
}
|
258 |
+
|
259 |
+
// Outputs ("Next Edges")
|
260 |
+
|
261 |
+
void update_topological_nr(const Edge& edge) {
|
262 |
+
TORCH_INTERNAL_ASSERT(
|
263 |
+
!has_parent_,
|
264 |
+
"Cannot update a node's topological_nr after it already has a parent."
|
265 |
+
" If we allow this, we can no longer guarantee that a parent's"
|
266 |
+
" topo_nr is always greater than those of all its children")
|
267 |
+
Node* node = edge.function.get();
|
268 |
+
if (node) {
|
269 |
+
auto topo_nr = node->topological_nr();
|
270 |
+
if (topological_nr_ <= topo_nr) {
|
271 |
+
topological_nr_ = topo_nr + 1;
|
272 |
+
}
|
273 |
+
}
|
274 |
+
}
|
275 |
+
|
276 |
+
void set_next_edge(size_t index, Edge edge) {
|
277 |
+
update_topological_nr(edge);
|
278 |
+
next_edges_[index] = std::move(edge);
|
279 |
+
}
|
280 |
+
|
281 |
+
void add_next_edge(Edge edge) {
|
282 |
+
update_topological_nr(edge);
|
283 |
+
next_edges_.emplace_back(std::move(edge));
|
284 |
+
}
|
285 |
+
|
286 |
+
void set_next_edges(edge_list&& next_edges) {
|
287 |
+
next_edges_ = std::move(next_edges);
|
288 |
+
for (const auto& next_edge : next_edges_) {
|
289 |
+
update_topological_nr(next_edge);
|
290 |
+
}
|
291 |
+
}
|
292 |
+
|
293 |
+
const Edge& next_edge(size_t index) const noexcept {
|
294 |
+
return next_edges_[index];
|
295 |
+
}
|
296 |
+
|
297 |
+
const edge_list& next_edges() const noexcept {
|
298 |
+
return next_edges_;
|
299 |
+
}
|
300 |
+
|
301 |
+
edge_list& next_edges() noexcept {
|
302 |
+
return next_edges_;
|
303 |
+
}
|
304 |
+
|
305 |
+
uint32_t num_outputs() const noexcept {
|
306 |
+
return next_edges_.size();
|
307 |
+
}
|
308 |
+
|
309 |
+
// Miscellaneous Methods
|
310 |
+
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
311 |
+
|
312 |
+
/// NOTE [ Sequence Number]
|
313 |
+
///
|
314 |
+
/// The sequence_nr has two main usages in autograd:
|
315 |
+
///
|
316 |
+
/// 1) Helps determine the node's execution priority in the engine.
|
317 |
+
/// All else being equal, nodes with higher priority numbers are executed
|
318 |
+
/// first. Thus, nodes corresponding to ops executed later are the first to
|
319 |
+
/// be executed in the backward pass. One caveat is that we prioritize
|
320 |
+
/// AccumulateGrad nodes by explicitly setting its sequence_nr to be
|
321 |
+
/// UINT64_MAX.
|
322 |
+
/// 2) The sequence number of this `Node` is paired with with thread_id it was
|
323 |
+
/// created in
|
324 |
+
/// as a unique identifier by the profiler to annotate recorded events.
|
325 |
+
/// The purpose of this is to help users (and possibly programs)
|
326 |
+
/// interpreting the profiler's output to correlate backward nodes with its
|
327 |
+
/// forward ops. We need both sequence_nr and thread_id to identify a node
|
328 |
+
/// because sequence_nr is thread_local, i.e., starts counting up from zero
|
329 |
+
/// in a new thread
|
330 |
+
uint64_t sequence_nr() const noexcept {
|
331 |
+
return sequence_nr_;
|
332 |
+
}
|
333 |
+
|
334 |
+
void set_sequence_nr(uint64_t sequence_nr) {
|
335 |
+
sequence_nr_ = sequence_nr;
|
336 |
+
}
|
337 |
+
|
338 |
+
// NOTE [ Topological Number ]
|
339 |
+
//
|
340 |
+
// topological_nr is used to prune branches in the DAG during autograd
|
341 |
+
// discovery as maintaining topological_nr helps us check in O(1) if there
|
342 |
+
// does NOT exist a directed path between two nodes.
|
343 |
+
//
|
344 |
+
// The topological order number of this `Node` representing the length of the
|
345 |
+
// longest possible path from this Node to any leaf node. If you are leaf
|
346 |
+
// node, aka AccumulateGrad, this will be zero. This value has the property
|
347 |
+
// that For every pair of nodes X, Y in G, existence of a directed path from X
|
348 |
+
// to Y implies topo_nr(X) > topo_nr(Y). The converse is not true, however, so
|
349 |
+
// we cannot prove existence of a path from X to Y, only non-existence.
|
350 |
+
//
|
351 |
+
// One assumption we make when using topo_nr is that once a node
|
352 |
+
// has been used, i.e., has a parent node, its own topo_nr does not change
|
353 |
+
// we have added some checks with the `has_parent_` field to enforce this.
|
354 |
+
//
|
355 |
+
// What NOT to do:
|
356 |
+
//
|
357 |
+
// 1) 2 -> 1 -> 0 In this diagram we label nodes with their
|
358 |
+
// topo_nr.
|
359 |
+
// 2 -> 1 -> 0 We have two simple graphs that can each
|
360 |
+
// arise from
|
361 |
+
// `t.exp().exp()`, for example.
|
362 |
+
// 2) 2 -> 1 -> 0
|
363 |
+
// /
|
364 |
+
// 2 -> 1 -> 0 We add 2 as a next edge to 1 even though 1
|
365 |
+
// already
|
366 |
+
// has a parent.
|
367 |
+
// 3) 2 -> 1 -> 0
|
368 |
+
// /
|
369 |
+
// 2 -> 3 -> 0 2 < 3, yet there exists a path from 2 to 3!
|
370 |
+
//
|
371 |
+
uint64_t topological_nr() const noexcept {
|
372 |
+
has_parent_ = true;
|
373 |
+
return topological_nr_;
|
374 |
+
}
|
375 |
+
|
376 |
+
// assigning a node as a parent to this node
|
377 |
+
void assign_parent();
|
378 |
+
|
379 |
+
/// Id of the thread that created Node
|
380 |
+
uint64_t thread_id() const noexcept {
|
381 |
+
return thread_id_;
|
382 |
+
}
|
383 |
+
|
384 |
+
/// Returns the name of the dynamic type of the function, for debugging.
|
385 |
+
virtual std::string name() const;
|
386 |
+
|
387 |
+
/// The difference between functions `should_compute_output` and
|
388 |
+
/// `task_should_compute_output`:
|
389 |
+
/// - `should_compute_output` should only be used during graph construction
|
390 |
+
/// and takes into account only requires_grad information
|
391 |
+
/// - `task_should_compute_output` should only be called during the backward
|
392 |
+
/// pass (unless called directly through grad_fn) and takes into account the
|
393 |
+
/// current graph task. Specifically, the autograd engine trims unnecessary
|
394 |
+
/// edges when `inputs` are specified, and during backward untrimmed nodes
|
395 |
+
/// left on the graph can/should check `task_should_compute_output` to see if
|
396 |
+
/// any outgoing edges have been trimmed by the engine. If that is the case,
|
397 |
+
/// gradient computation wrt those edges can be omitted.
|
398 |
+
///
|
399 |
+
/// Returns true if the particular output edge is active, and that particular
|
400 |
+
/// output of this function should be computed.
|
401 |
+
bool should_compute_output(size_t output_edge_index) const {
|
402 |
+
TORCH_CHECK(output_edge_index < num_outputs(), "Index out of range");
|
403 |
+
return next_edges_[output_edge_index].is_valid();
|
404 |
+
}
|
405 |
+
|
406 |
+
/// Returns true if any of the output edges in any of the ranges are active.
|
407 |
+
bool should_compute_output(std::initializer_list<IndexRange> idxs) const {
|
408 |
+
return std::any_of(idxs.begin(), idxs.end(), [this](IndexRange range) {
|
409 |
+
for (const auto i : c10::irange(range.first, range.second)) {
|
410 |
+
if (should_compute_output(i))
|
411 |
+
return true;
|
412 |
+
}
|
413 |
+
return false;
|
414 |
+
});
|
415 |
+
}
|
416 |
+
|
417 |
+
/// Same as the above `should_compute_output` function but will also
|
418 |
+
/// check whether this edge is needed within the current graph task.
|
419 |
+
bool task_should_compute_output(size_t output_edge_index) const {
|
420 |
+
TORCH_CHECK(output_edge_index < num_outputs(), "Index out of range");
|
421 |
+
const auto& next = next_edges_[output_edge_index];
|
422 |
+
if (next.is_valid()) {
|
423 |
+
const auto exec_info = get_current_graph_task_exec_info();
|
424 |
+
if (exec_info && !exec_info->empty()) {
|
425 |
+
auto it = exec_info->find(next.function.get());
|
426 |
+
if (it == exec_info->end() || !it->second.should_execute()) {
|
427 |
+
return false; // this edge is not needed for the current graph_task
|
428 |
+
}
|
429 |
+
}
|
430 |
+
return true;
|
431 |
+
}
|
432 |
+
return false;
|
433 |
+
}
|
434 |
+
|
435 |
+
/// Returns true if any of the output edges in any of the ranges are active
|
436 |
+
/// and should be computed in the current graph task.
|
437 |
+
bool task_should_compute_output(
|
438 |
+
std::initializer_list<IndexRange> idxs) const {
|
439 |
+
return std::any_of(idxs.begin(), idxs.end(), [this](IndexRange range) {
|
440 |
+
for (const auto i : c10::irange(range.first, range.second)) {
|
441 |
+
if (task_should_compute_output(i))
|
442 |
+
return true;
|
443 |
+
}
|
444 |
+
return false;
|
445 |
+
});
|
446 |
+
}
|
447 |
+
|
448 |
+
/// Returns the `PyObject` stored for this `Node` (for Python
|
449 |
+
/// interaction).
|
450 |
+
PyObject* pyobj() const noexcept {
|
451 |
+
return pyobj_;
|
452 |
+
}
|
453 |
+
|
454 |
+
/// Sets the `PyObject` stored for this `Node` (for Python interaction).
|
455 |
+
void set_pyobj(PyObject* pyobj) noexcept {
|
456 |
+
pyobj_ = pyobj;
|
457 |
+
}
|
458 |
+
|
459 |
+
/// Returns the anomaly metadata stored for this `Node`.
|
460 |
+
/// If none exist, creates a new empty one.
|
461 |
+
AnomalyMetadata* metadata() noexcept;
|
462 |
+
|
463 |
+
// Hook API
|
464 |
+
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
465 |
+
|
466 |
+
uintptr_t add_post_hook(std::unique_ptr<FunctionPostHook>&& post_hook) {
|
467 |
+
post_hooks_.emplace_back(std::move(post_hook));
|
468 |
+
// Use the raw pointer as the unique key to identify this hook. This key
|
469 |
+
// can then be used in del_post_hook(key) to remove this hook.
|
470 |
+
return reinterpret_cast<std::uintptr_t>(post_hooks_.back().get());
|
471 |
+
}
|
472 |
+
|
473 |
+
const std::vector<std::unique_ptr<FunctionPostHook>>& post_hooks()
|
474 |
+
const noexcept {
|
475 |
+
return post_hooks_;
|
476 |
+
}
|
477 |
+
|
478 |
+
// delete a post hook matching the key
|
479 |
+
bool del_post_hook(const uintptr_t& key) {
|
480 |
+
for (auto it = post_hooks_.begin(); it != post_hooks_.end(); ++it) {
|
481 |
+
if (key == reinterpret_cast<std::uintptr_t>(it->get())) {
|
482 |
+
post_hooks_.erase(it);
|
483 |
+
return true;
|
484 |
+
}
|
485 |
+
}
|
486 |
+
return false;
|
487 |
+
}
|
488 |
+
|
489 |
+
std::vector<std::unique_ptr<FunctionPostHook>>& post_hooks() noexcept {
|
490 |
+
return post_hooks_;
|
491 |
+
}
|
492 |
+
|
493 |
+
void add_pre_hook(std::unique_ptr<FunctionPreHook>&& pre_hook) {
|
494 |
+
pre_hooks_.emplace_back(std::move(pre_hook));
|
495 |
+
}
|
496 |
+
|
497 |
+
void add_tensor_pre_hook(std::unique_ptr<FunctionPreHook>&& pre_hook) {
|
498 |
+
tensor_pre_hooks_.emplace_back(std::move(pre_hook));
|
499 |
+
}
|
500 |
+
|
501 |
+
void add_retains_grad_hook(
|
502 |
+
std::unique_ptr<FunctionPreHook>&& pre_hook,
|
503 |
+
size_t output_idx) {
|
504 |
+
retains_grad_hooks_[output_idx] = std::move(pre_hook);
|
505 |
+
}
|
506 |
+
|
507 |
+
std::unique_ptr<FunctionPreHook> pop_retains_grad_hook(size_t output_idx) {
|
508 |
+
auto ret = std::move(retains_grad_hooks_[output_idx]);
|
509 |
+
retains_grad_hooks_.erase(output_idx);
|
510 |
+
return ret;
|
511 |
+
}
|
512 |
+
|
513 |
+
const std::vector<std::unique_ptr<FunctionPreHook>>& pre_hooks()
|
514 |
+
const noexcept {
|
515 |
+
return pre_hooks_;
|
516 |
+
}
|
517 |
+
|
518 |
+
std::vector<std::unique_ptr<FunctionPreHook>>& pre_hooks() noexcept {
|
519 |
+
return pre_hooks_;
|
520 |
+
}
|
521 |
+
|
522 |
+
virtual std::vector<std::unique_ptr<FunctionPreHook>>&
|
523 |
+
tensor_pre_hooks() noexcept {
|
524 |
+
return tensor_pre_hooks_;
|
525 |
+
}
|
526 |
+
|
527 |
+
virtual std::unique_ptr<PostAccumulateGradHook>&
|
528 |
+
tensor_post_acc_grad_hooks() noexcept {
|
529 |
+
static std::unique_ptr<PostAccumulateGradHook> empty = nullptr;
|
530 |
+
return empty;
|
531 |
+
}
|
532 |
+
|
533 |
+
std::unordered_map<size_t, std::unique_ptr<FunctionPreHook>>&
|
534 |
+
retains_grad_hooks() noexcept {
|
535 |
+
return retains_grad_hooks_;
|
536 |
+
}
|
537 |
+
|
538 |
+
// Customization Points for Subclasses
|
539 |
+
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
540 |
+
|
541 |
+
/// Releases saved variables if the operation won't be reused.
|
542 |
+
virtual void release_variables() {}
|
543 |
+
|
544 |
+
/// Called before an apply if `release_variables()` is going to be called.
|
545 |
+
/// Allows larger ops like `InterpreterAutogradFunction` to incrementally
|
546 |
+
/// release variables as they run.
|
547 |
+
virtual void will_release_variables() {}
|
548 |
+
|
549 |
+
/// Returns true if this function is traceable. An op is traceable if all
|
550 |
+
/// operations happening within `apply()` are performed on autograd
|
551 |
+
/// `Variables` (i.e. apply mostly instantiates and applies other functions).
|
552 |
+
virtual bool is_traceable() {
|
553 |
+
return false;
|
554 |
+
}
|
555 |
+
|
556 |
+
/// A `Node` is said to pass state transparently to backward, if the
|
557 |
+
/// state consists only of (Saved)Variables and only non-variable objects
|
558 |
+
/// that parameterize the operation in some way that defines the graph
|
559 |
+
/// structure AND the backward function is traceable. In particular,
|
560 |
+
/// parametrization MUST NOT depend on the data of any `Variable`.
|
561 |
+
/// TODO: it might be possible to handle cases where backward is
|
562 |
+
/// non-traceable but state passing could be considered transparent. This
|
563 |
+
/// will probably depend on saved_variable_list being mutable.
|
564 |
+
/// NOTE: this value matters only if is_traceable() returns false.
|
565 |
+
virtual bool passes_state_transparently() {
|
566 |
+
return false;
|
567 |
+
}
|
568 |
+
|
569 |
+
// see [Note: Compiled Autograd]
|
570 |
+
// Used by compiled autograd to
|
571 |
+
// 1) Extract tensors/symint args
|
572 |
+
// 2) Collect node information for specialization and caching
|
573 |
+
// Implementations in subclasses should call args.collect() with all node
|
574 |
+
// attrs. These functions are only called durring backward.
|
575 |
+
virtual void compiled_args(CompiledNodeArgs& args) {
|
576 |
+
throw std::runtime_error(
|
577 |
+
std::string("compiled_args not implemented: ") + name());
|
578 |
+
}
|
579 |
+
|
580 |
+
// Used by compiled autograd to call apply() with different saved tensors
|
581 |
+
// Implementations should call saved.before() on all attrs, then apply(), then
|
582 |
+
// saved.after() on all attrs in the same order.
|
583 |
+
virtual variable_list apply_with_saved(
|
584 |
+
const variable_list& inputs,
|
585 |
+
SwapSavedVariables& saved) {
|
586 |
+
throw std::runtime_error(
|
587 |
+
std::string("apply_with_saved not implemented: ") + name());
|
588 |
+
}
|
589 |
+
|
590 |
+
protected:
|
591 |
+
/// Performs the `Node`'s actual operation.
|
592 |
+
virtual variable_list apply(variable_list&& inputs) = 0;
|
593 |
+
|
594 |
+
/// Calls `apply()`, but instruments it with tracing machinery.
|
595 |
+
variable_list traced_apply(variable_list inputs);
|
596 |
+
|
597 |
+
// Sequence number used to correlate backward nodes with forward ops in the
|
598 |
+
// profiler and provide determinism in the engine.
|
599 |
+
// NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
|
600 |
+
uint64_t sequence_nr_;
|
601 |
+
|
602 |
+
// See NOTE [ Topological Number ]
|
603 |
+
uint64_t topological_nr_ = 0;
|
604 |
+
|
605 |
+
// Tracks whether this node has been added as the next_edge of another node
|
606 |
+
// via set_next_edge(s), which always calls topological_nr() of all its
|
607 |
+
// children See NOTE [ Topological Number ] for why we need this.
|
608 |
+
mutable bool has_parent_ = false;
|
609 |
+
|
610 |
+
// Id of the thread that created the instance
|
611 |
+
uint64_t thread_id_ = 0;
|
612 |
+
|
613 |
+
// Note [Thread Safety on Autograd Node]
|
614 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
615 |
+
// Autograd Engine let the owning thread which calls Engine::execute to drive
|
616 |
+
// the GraphTask execution, there might be cases that part of the GraphTask is
|
617 |
+
// shared across different `backward()` or `grad()` calls, i.e. fork new
|
618 |
+
// threads in the middle of the forward and call `backward()` separately from
|
619 |
+
// different threads. We need to protect the thread safety on NodeTask to
|
620 |
+
// prevent data racing on shared variables read/write.
|
621 |
+
//
|
622 |
+
// NB: This is only needed for Autograd Nodes that runs on CPU, technically
|
623 |
+
// "CUDA", "XLA" nodes don't need locking because device threads are always
|
624 |
+
// single threaded.
|
625 |
+
//
|
626 |
+
// Here we add a thread mutex to help protect the Node's thread safety, so
|
627 |
+
// that different threads cannot race the shared data when executing the same
|
628 |
+
// NodeTask from multiple CPU threads. It IS the user/developer responsibility
|
629 |
+
// to take advantage of this mutex to protect the thread safety of their
|
630 |
+
// autograd Node. The general strategy of thread safety on autograd Node:
|
631 |
+
//
|
632 |
+
// 1. User should lock the mutex during Node::release_variables() if the Node
|
633 |
+
// needs
|
634 |
+
// to release the variables on the fly, this serve the purpose that when we
|
635 |
+
// release saved_variables from one thread, no other threads can release
|
636 |
+
// the saved variables concurrently. call the Node::apply(),
|
637 |
+
// 2. User should lock the mutex during Node::apply(), this is to ensure Node
|
638 |
+
// that
|
639 |
+
// writing to the shared variable are not racing across threads (i.e.
|
640 |
+
// AccumulateGrad and custom C++ Autograd Node if writing to shared
|
641 |
+
// variables )
|
642 |
+
// 3. item 2 and item 3 should work together so that when we release saved
|
643 |
+
// variables
|
644 |
+
// from one thread, no other threads can call Node::apply(), this ensures
|
645 |
+
// the variable references from other threads aren't dangling.
|
646 |
+
// 4. if the Node don't release any variables and no shared data read/write in
|
647 |
+
// the Node
|
648 |
+
// i.e. purely functional, user don't need to lock the mutex
|
649 |
+
//
|
650 |
+
// This way we could protect the thread safety on Autograd Node, but we could
|
651 |
+
// still not protect the thread safety on Node pre/post C++ hooks (python
|
652 |
+
// hooks are automatically thread safe), we rely on the user to write thread
|
653 |
+
// safe C++ hooks if they want the hook to be correctly applied in
|
654 |
+
// multithreading environment.
|
655 |
+
std::mutex mutex_;
|
656 |
+
|
657 |
+
edge_list next_edges_;
|
658 |
+
PyObject* pyobj_ = nullptr; // weak reference
|
659 |
+
std::unique_ptr<AnomalyMetadata> anomaly_metadata_ = nullptr;
|
660 |
+
|
661 |
+
// NOTE [Hooks ordering]
|
662 |
+
// We have 3 separate fields for pre hooks registered to the autograd nodes
|
663 |
+
// because the conditions under which they execute are different, and we
|
664 |
+
// want more fine-grained control over the order in which different types
|
665 |
+
// of hooks are executed.
|
666 |
+
// - pre_hooks are only executed when the node itself is executed
|
667 |
+
// - tensor_pre_hook is executed as long as the engine traverses over it
|
668 |
+
// even if that node won't be executed.
|
669 |
+
// - retains_grad_hook are like tensor_pre_hooks except they are always
|
670 |
+
// ordered after all other tensor pre hooks
|
671 |
+
std::vector<std::unique_ptr<FunctionPreHook>> pre_hooks_;
|
672 |
+
std::vector<std::unique_ptr<FunctionPreHook>> tensor_pre_hooks_;
|
673 |
+
std::unordered_map<size_t, std::unique_ptr<FunctionPreHook>>
|
674 |
+
retains_grad_hooks_;
|
675 |
+
std::vector<std::unique_ptr<FunctionPostHook>> post_hooks_;
|
676 |
+
at::SmallVector<InputMetadata, 2> input_metadata_;
|
677 |
+
};
|
678 |
+
|
679 |
+
/// See Node::is_traceable() for definition.
|
680 |
+
struct TraceableFunction : public Node {
|
681 |
+
using Node::Node;
|
682 |
+
bool is_traceable() final {
|
683 |
+
return true;
|
684 |
+
}
|
685 |
+
};
|
686 |
+
|
687 |
+
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
688 |
+
// Associated Free Nodes
|
689 |
+
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
690 |
+
|
691 |
+
namespace detail {
|
692 |
+
// Implementation of `collect_next_edges` (see below).
|
693 |
+
struct MakeNextFunctionList : IterArgs<MakeNextFunctionList> {
|
694 |
+
edge_list next_edges;
|
695 |
+
using IterArgs<MakeNextFunctionList>::operator();
|
696 |
+
void operator()(const Variable& variable) {
|
697 |
+
if (variable.defined()) {
|
698 |
+
next_edges.emplace_back(impl::gradient_edge(variable));
|
699 |
+
} else {
|
700 |
+
next_edges.emplace_back();
|
701 |
+
}
|
702 |
+
}
|
703 |
+
void operator()(const Variable* variable) {
|
704 |
+
operator()(*variable);
|
705 |
+
}
|
706 |
+
void operator()(const c10::optional<Variable>& variable) {
|
707 |
+
if (variable.has_value()) {
|
708 |
+
operator()(*variable);
|
709 |
+
} else {
|
710 |
+
next_edges.emplace_back();
|
711 |
+
}
|
712 |
+
}
|
713 |
+
};
|
714 |
+
} // namespace detail
|
715 |
+
|
716 |
+
/// Create an `Edge` between the given `variable` and the `function`, which is
|
717 |
+
/// assumed to be the gradient function of this variable (i.e. the function
|
718 |
+
/// through which this variable is backpropagated during the backward pass).
|
719 |
+
/// This sets the `grad_fn` property of the `variable`. This function assumes
|
720 |
+
/// that the `Variable` is a new input to the gradient function and its
|
721 |
+
/// `input_nr` thus equal to `function->num_inputs()`. Additionally, it
|
722 |
+
/// increments the `Node`'s number of inputs by one. Approximately
|
723 |
+
/// equivalent to `variable.set_gradient_edge(function,
|
724 |
+
/// function->add_input_metadata(variable.dispatch_type(), variable.sizes()))`.
|
725 |
+
/// If you don't want the `Node`'s `num_inputs` to be incremented, use
|
726 |
+
/// `set_gradient_edge` directly.
|
727 |
+
inline void create_gradient_edge(
|
728 |
+
Variable& variable,
|
729 |
+
std::shared_ptr<Node> function) {
|
730 |
+
// Copy before move.
|
731 |
+
const auto input_nr = function->add_input_metadata(variable);
|
732 |
+
impl::set_gradient_edge(variable, {std::move(function), input_nr});
|
733 |
+
}
|
734 |
+
|
735 |
+
/// Return true if any of the variables in the list require a gradient.
|
736 |
+
inline bool any_variable_requires_grad(const variable_list& variables) {
|
737 |
+
return std::any_of(
|
738 |
+
variables.begin(), variables.end(), [](const Variable& variable) {
|
739 |
+
return variable.defined() && variable.requires_grad();
|
740 |
+
});
|
741 |
+
}
|
742 |
+
|
743 |
+
/// Return the next edges of all the given variables, or tuples of variables.
|
744 |
+
template <typename... Variables>
|
745 |
+
edge_list collect_next_edges(Variables&&... variables) {
|
746 |
+
detail::MakeNextFunctionList make;
|
747 |
+
make.apply(std::forward<Variables>(variables)...);
|
748 |
+
return std::move(make.next_edges);
|
749 |
+
}
|
750 |
+
|
751 |
+
struct TypeAndSize {
|
752 |
+
TypeAndSize() : options(at::TensorOptions()) {}
|
753 |
+
/* implicit */
|
754 |
+
TypeAndSize(const at::Tensor& t)
|
755 |
+
: sym_sizes(t.sym_sizes().vec()), options(t.options()) {}
|
756 |
+
|
757 |
+
at::Tensor zeros();
|
758 |
+
|
759 |
+
std::vector<c10::SymInt> sym_sizes;
|
760 |
+
at::TensorOptions options;
|
761 |
+
};
|
762 |
+
|
763 |
+
} // namespace torch::autograd
|
venv/lib/python3.10/site-packages/torch/include/torch/csrc/autograd/function_hook.h
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/Tensor.h>
|
4 |
+
#include <torch/csrc/Export.h>
|
5 |
+
#include <string>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
namespace torch::dynamo::autograd {
|
9 |
+
class CompiledNodeArgs;
|
10 |
+
class SwapSavedVariables;
|
11 |
+
} // namespace torch::dynamo::autograd
|
12 |
+
|
13 |
+
// A hook that's called on gradients
|
14 |
+
|
15 |
+
namespace torch::autograd {
|
16 |
+
|
17 |
+
using Variable = at::Tensor;
|
18 |
+
using variable_list = std::vector<Variable>;
|
19 |
+
|
20 |
+
struct TORCH_API FunctionPreHook {
|
21 |
+
virtual ~FunctionPreHook() = default;
|
22 |
+
virtual variable_list operator()(const variable_list& grads) = 0;
|
23 |
+
// only implemented for python hooks, registers hook with compiled autograd
|
24 |
+
virtual void compiled_args(torch::dynamo::autograd::CompiledNodeArgs& args) {
|
25 |
+
throw std::runtime_error(
|
26 |
+
std::string("compiled_args nyi, see [Note: Compiled Autograd] ") +
|
27 |
+
typeid(*this).name());
|
28 |
+
}
|
29 |
+
};
|
30 |
+
|
31 |
+
struct TORCH_API FunctionPostHook {
|
32 |
+
virtual ~FunctionPostHook() = default;
|
33 |
+
virtual variable_list operator()(
|
34 |
+
const variable_list& outputs /* grad_inputs */,
|
35 |
+
const variable_list& inputs /* grad_outputs */) = 0;
|
36 |
+
// only implemented for python hooks, registers hook with compiled autograd
|
37 |
+
virtual void compiled_args(torch::dynamo::autograd::CompiledNodeArgs& args) {
|
38 |
+
throw std::runtime_error(
|
39 |
+
std::string("compiled_args nyi, see [Note: Compiled Autograd] ") +
|
40 |
+
typeid(*this).name());
|
41 |
+
}
|
42 |
+
};
|
43 |
+
|
44 |
+
struct TORCH_API PostAccumulateGradHook {
|
45 |
+
virtual ~PostAccumulateGradHook() = default;
|
46 |
+
virtual void operator()(const Variable& tensor) = 0;
|
47 |
+
// only implemented for python hooks on nodes, registers hook with compiled
|
48 |
+
// autograd
|
49 |
+
virtual void compiled_args(torch::dynamo::autograd::CompiledNodeArgs& args) {
|
50 |
+
throw std::runtime_error(
|
51 |
+
std::string("not yet implemented for compiled autograd: ") +
|
52 |
+
typeid(*this).name());
|
53 |
+
}
|
54 |
+
|
55 |
+
virtual void apply_with_saved(
|
56 |
+
Variable&,
|
57 |
+
torch::dynamo::autograd::SwapSavedVariables&) {
|
58 |
+
throw std::runtime_error(
|
59 |
+
std::string("not yet implemented for compiled autograd: ") +
|
60 |
+
typeid(*this).name());
|
61 |
+
}
|
62 |
+
};
|
63 |
+
|
64 |
+
} // namespace torch::autograd
|