Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step120/zero/11.input_layernorm.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step120/zero/3.mlp.dense_h_to_4h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step120/zero/8.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/FlushDenormal.h +14 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/Utils.h +10 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/functional.h +4 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/functional_base.h +329 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/functional_bfloat16.h +549 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/intrinsics.h +43 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec.h +47 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/missing_vld1_neon.h +452 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/missing_vst1_neon.h +8 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256.h +307 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_bfloat16.h +1096 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_complex_double.h +431 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_complex_float.h +468 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_double.h +442 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_float.h +636 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_float_neon.h +892 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_int.h +1586 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_qint.h +1335 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_bfloat16_vsx.h +73 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_common_vsx.h +246 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_complex_double_vsx.h +560 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_complex_float_vsx.h +628 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_double_vsx.h +438 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_float_vsx.h +461 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_int16_vsx.h +368 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_int32_vsx.h +298 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_int64_vsx.h +251 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_qint32_vsx.h +245 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_qint8_vsx.h +447 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_quint8_vsx.h +466 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vsx_helpers.h +474 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/zarch/vec256_zarch.h +2818 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec512/vec512.h +275 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec512/vec512_bfloat16.h +1644 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec512/vec512_complex_double.h +512 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec512/vec512_complex_float.h +1018 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec512/vec512_double.h +467 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec512/vec512_float.h +793 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec512/vec512_int.h +1459 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec512/vec512_qint.h +1346 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec_base.h +1108 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec_half.h +50 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec_n.h +344 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vml.h +171 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/detail/IPUHooksInterface.h +35 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/miopen/Descriptors.h +146 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/miopen/Exceptions.h +41 -0
ckpts/universal/global_step120/zero/11.input_layernorm.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b7f7c8c82a4f6fdfc374070234ba1c8595b06b592f4fb24a84f773165ce50b0e
|
3 |
+
size 9372
|
ckpts/universal/global_step120/zero/3.mlp.dense_h_to_4h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7cda050583b2e2d51bdefe0f868fa73586daf65e1d0c2e947952922431c6d3f5
|
3 |
+
size 33555612
|
ckpts/universal/global_step120/zero/8.mlp.dense_4h_to_h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1787bc9de363877a7d5d96aad28294cb4719be3cccf3252a41597eb4c05e4846
|
3 |
+
size 33555533
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/FlushDenormal.h
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/// Flush-To-Zero and Denormals-Are-Zero mode
|
2 |
+
///
|
3 |
+
/// Flush-To-Zero (FTZ) and Denormals-Are-Zero (DAZ) are modes that bypass
|
4 |
+
/// IEEE 754 methods of dealing with denormal floating-point numbers on x86-64
|
5 |
+
/// and some x86 CPUs. They result in reduced precision for values near zero,
|
6 |
+
/// but increased performance.
|
7 |
+
///
|
8 |
+
/// See https://software.intel.com/en-us/articles/x87-and-sse-floating-point-assists-in-ia-32-flush-to-zero-ftz-and-denormals-are-zero-daz
|
9 |
+
|
10 |
+
namespace at::cpu {
|
11 |
+
|
12 |
+
bool set_flush_denormal(bool on);
|
13 |
+
|
14 |
+
} // namespace at::cpu
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/Utils.h
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/macros/Export.h>
|
4 |
+
|
5 |
+
namespace at::cpu {
|
6 |
+
|
7 |
+
// Detect if CPU support Vector Neural Network Instruction.
|
8 |
+
TORCH_API bool is_cpu_support_vnni();
|
9 |
+
|
10 |
+
} // namespace at::cpu
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/functional.h
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/cpu/vec/functional_base.h>
|
4 |
+
#include <ATen/cpu/vec/functional_bfloat16.h>
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/functional_base.h
ADDED
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <ATen/cpu/vec/vec.h>
|
7 |
+
#include <c10/util/irange.h>
|
8 |
+
|
9 |
+
namespace at::vec {
|
10 |
+
|
11 |
+
// slow path
|
12 |
+
template <typename scalar_t, typename Op>
|
13 |
+
inline scalar_t vec_reduce_all(
|
14 |
+
const Op& vec_fun,
|
15 |
+
vec::Vectorized<scalar_t> acc_vec,
|
16 |
+
int64_t size) {
|
17 |
+
using Vec = vec::Vectorized<scalar_t>;
|
18 |
+
scalar_t acc_arr[Vec::size()];
|
19 |
+
acc_vec.store(acc_arr);
|
20 |
+
for (const auto i : c10::irange(1, size)) {
|
21 |
+
std::array<scalar_t, Vec::size()> acc_arr_next = {0};
|
22 |
+
acc_arr_next[0] = acc_arr[i];
|
23 |
+
Vec acc_vec_next = Vec::loadu(acc_arr_next.data());
|
24 |
+
acc_vec = vec_fun(acc_vec, acc_vec_next);
|
25 |
+
}
|
26 |
+
acc_vec.store(acc_arr);
|
27 |
+
return acc_arr[0];
|
28 |
+
}
|
29 |
+
|
30 |
+
template <typename scalar_t, typename Op>
|
31 |
+
struct VecReduceAllSIMD {
|
32 |
+
static inline scalar_t apply(const Op& vec_fun, const Vectorized<scalar_t>& acc_vec) {
|
33 |
+
return vec_reduce_all(vec_fun, acc_vec, Vectorized<scalar_t>::size());
|
34 |
+
}
|
35 |
+
};
|
36 |
+
|
37 |
+
#if defined(__GNUC__) && (__GNUC__ > 5) && !defined(_MSC_VER) && !defined(C10_MOBILE)
|
38 |
+
#if defined(CPU_CAPABILITY_AVX2)
|
39 |
+
template <typename Op>
|
40 |
+
struct VecReduceAllSIMD<float, Op> {
|
41 |
+
static inline float apply(const Op& vec_fun, const Vectorized<float>& acc_vec) {
|
42 |
+
using Vec = Vectorized<float>;
|
43 |
+
Vec v = acc_vec;
|
44 |
+
// 128-bit shuffle
|
45 |
+
Vec v1 = _mm256_permute2f128_ps(v, v, 0x1);
|
46 |
+
v = vec_fun(v, v1);
|
47 |
+
// 64-bit shuffle
|
48 |
+
v1 = _mm256_shuffle_ps(v, v, 0x4E);
|
49 |
+
v = vec_fun(v, v1);
|
50 |
+
// 32-bit shuffle
|
51 |
+
v1 = _mm256_shuffle_ps(v, v, 0xB1);
|
52 |
+
v = vec_fun(v, v1);
|
53 |
+
return _mm256_cvtss_f32(v);
|
54 |
+
}
|
55 |
+
};
|
56 |
+
#endif // defined(CPU_CAPABILITY_AVX2)
|
57 |
+
#if defined(CPU_CAPABILITY_AVX512)
|
58 |
+
template <typename Op>
|
59 |
+
struct VecReduceAllSIMD<float, Op> {
|
60 |
+
static inline float apply(const Op& vec_fun, const Vectorized<float>& acc_vec) {
|
61 |
+
using Vec = Vectorized<float>;
|
62 |
+
Vec v = acc_vec;
|
63 |
+
// 256-bit shuffle
|
64 |
+
Vec v1 = _mm512_shuffle_f32x4(v, v, 0x4E);
|
65 |
+
v = vec_fun(v, v1);
|
66 |
+
// 128-bit shuffle
|
67 |
+
v1 = _mm512_shuffle_f32x4(v, v, 0xB1);
|
68 |
+
v = vec_fun(v, v1);
|
69 |
+
// 64-bit shuffle
|
70 |
+
v1 = _mm512_shuffle_ps(v, v, 0x4E);
|
71 |
+
v = vec_fun(v, v1);
|
72 |
+
// 32-bit shuffle
|
73 |
+
v1 = _mm512_shuffle_ps(v, v, 0xB1);
|
74 |
+
v = vec_fun(v, v1);
|
75 |
+
return _mm512_cvtss_f32(v);
|
76 |
+
}
|
77 |
+
};
|
78 |
+
#endif // defined(CPU_CAPABILITY_AVX512)
|
79 |
+
#endif // defined(__GNUC__) && (__GNUC__ > 5) && !defined(_MSC_VER) && !defined(C10_MOBILE)
|
80 |
+
|
81 |
+
template <typename scalar_t, typename Op>
|
82 |
+
inline scalar_t vec_reduce_all(const Op& vec_fun, const Vectorized<scalar_t>& acc_vec) {
|
83 |
+
return VecReduceAllSIMD<scalar_t, Op>::apply(vec_fun, acc_vec);
|
84 |
+
}
|
85 |
+
|
86 |
+
template <typename scalar_t, typename Op,
|
87 |
+
typename std::enable_if_t<!is_reduced_floating_point_v<scalar_t>, int> = 0>
|
88 |
+
inline scalar_t reduce_all(const Op& vec_fun, const scalar_t* data, int64_t size) {
|
89 |
+
using Vec = vec::Vectorized<scalar_t>;
|
90 |
+
if (size < Vec::size())
|
91 |
+
return vec_reduce_all(vec_fun, Vec::loadu(data, size), size);
|
92 |
+
int64_t d = Vec::size();
|
93 |
+
Vec acc_vec = Vec::loadu(data);
|
94 |
+
for (; d < size - (size % Vec::size()); d += Vec::size()) {
|
95 |
+
Vec data_vec = Vec::loadu(data + d);
|
96 |
+
acc_vec = vec_fun(acc_vec, data_vec);
|
97 |
+
}
|
98 |
+
if (size - d > 0) {
|
99 |
+
Vec data_vec = Vec::loadu(data + d, size - d);
|
100 |
+
acc_vec = Vec::set(acc_vec, vec_fun(acc_vec, data_vec), size - d);
|
101 |
+
}
|
102 |
+
return vec_reduce_all(vec_fun, acc_vec);
|
103 |
+
}
|
104 |
+
|
105 |
+
// similar to reduce_all, but reduces into two outputs
|
106 |
+
template <typename scalar_t, typename Op1, typename Op2,
|
107 |
+
typename std::enable_if_t<!is_reduced_floating_point_v<scalar_t>, int> = 0>
|
108 |
+
inline std::pair<scalar_t, scalar_t> reduce2_all(const Op1& vec_fun1, const Op2& vec_fun2,
|
109 |
+
const scalar_t* data, int64_t size) {
|
110 |
+
using Vec = vec::Vectorized<scalar_t>;
|
111 |
+
if (size < Vec::size()) {
|
112 |
+
auto loaded_data = Vec::loadu(data, size);
|
113 |
+
return std::pair<scalar_t, scalar_t>(
|
114 |
+
vec_reduce_all(vec_fun1, loaded_data, size),
|
115 |
+
vec_reduce_all(vec_fun2, loaded_data, size));
|
116 |
+
}
|
117 |
+
int64_t d = Vec::size();
|
118 |
+
Vec acc_vec1 = Vec::loadu(data);
|
119 |
+
Vec acc_vec2 = Vec::loadu(data);
|
120 |
+
for (; d < size - (size % Vec::size()); d += Vec::size()) {
|
121 |
+
Vec data_vec = Vec::loadu(data + d);
|
122 |
+
acc_vec1 = vec_fun1(acc_vec1, data_vec);
|
123 |
+
acc_vec2 = vec_fun2(acc_vec2, data_vec);
|
124 |
+
}
|
125 |
+
if (size - d > 0) {
|
126 |
+
Vec data_vec = Vec::loadu(data + d, size - d);
|
127 |
+
acc_vec1 = Vec::set(acc_vec1, vec_fun1(acc_vec1, data_vec), size - d);
|
128 |
+
acc_vec2 = Vec::set(acc_vec2, vec_fun2(acc_vec2, data_vec), size - d);
|
129 |
+
}
|
130 |
+
return std::pair<scalar_t, scalar_t>(
|
131 |
+
vec_reduce_all(vec_fun1, acc_vec1),
|
132 |
+
vec_reduce_all(vec_fun2, acc_vec2));
|
133 |
+
}
|
134 |
+
|
135 |
+
template <typename scalar_t, typename MapOp, typename ReduceOp,
|
136 |
+
typename std::enable_if_t<!is_reduced_floating_point_v<scalar_t>, int> = 0>
|
137 |
+
inline scalar_t map_reduce_all(
|
138 |
+
const MapOp& map_fun,
|
139 |
+
const ReduceOp& red_fun,
|
140 |
+
const scalar_t* data,
|
141 |
+
int64_t size) {
|
142 |
+
using Vec = vec::Vectorized<scalar_t>;
|
143 |
+
if (size < Vec::size())
|
144 |
+
return vec_reduce_all(red_fun, map_fun(Vec::loadu(data, size)), size);
|
145 |
+
int64_t d = Vec::size();
|
146 |
+
Vec acc_vec = map_fun(Vec::loadu(data));
|
147 |
+
for (; d < size - (size % Vec::size()); d += Vec::size()) {
|
148 |
+
Vec data_vec = Vec::loadu(data + d);
|
149 |
+
data_vec = map_fun(data_vec);
|
150 |
+
acc_vec = red_fun(acc_vec, data_vec);
|
151 |
+
}
|
152 |
+
if (size - d > 0) {
|
153 |
+
Vec data_vec = Vec::loadu(data + d, size - d);
|
154 |
+
data_vec = map_fun(data_vec);
|
155 |
+
acc_vec = Vec::set(acc_vec, red_fun(acc_vec, data_vec), size - d);
|
156 |
+
}
|
157 |
+
return vec_reduce_all(red_fun, acc_vec);
|
158 |
+
}
|
159 |
+
|
160 |
+
template <typename scalar_t, typename MapOp, typename ReduceOp,
|
161 |
+
typename std::enable_if_t<!is_reduced_floating_point_v<scalar_t>, int> = 0>
|
162 |
+
inline scalar_t map2_reduce_all(
|
163 |
+
const MapOp& map_fun,
|
164 |
+
const ReduceOp& red_fun,
|
165 |
+
const scalar_t* data,
|
166 |
+
const scalar_t* data2,
|
167 |
+
int64_t size) {
|
168 |
+
using Vec = vec::Vectorized<scalar_t>;
|
169 |
+
if (size < Vec::size()) {
|
170 |
+
Vec data_vec = Vec::loadu(data, size);
|
171 |
+
Vec data2_vec = Vec::loadu(data2, size);
|
172 |
+
data_vec = map_fun(data_vec, data2_vec);
|
173 |
+
return vec_reduce_all(red_fun, data_vec, size);
|
174 |
+
}
|
175 |
+
int64_t d = Vec::size();
|
176 |
+
Vec acc_vec = map_fun(Vec::loadu(data), Vec::loadu(data2));
|
177 |
+
for (; d < size - (size % Vec::size()); d += Vec::size()) {
|
178 |
+
Vec data_vec = Vec::loadu(data + d);
|
179 |
+
Vec data2_vec = Vec::loadu(data2 + d);
|
180 |
+
data_vec = map_fun(data_vec, data2_vec);
|
181 |
+
acc_vec = red_fun(acc_vec, data_vec);
|
182 |
+
}
|
183 |
+
if (size - d > 0) {
|
184 |
+
Vec data_vec = Vec::loadu(data + d, size - d);
|
185 |
+
Vec data2_vec = Vec::loadu(data2 + d, size - d);
|
186 |
+
data_vec = map_fun(data_vec, data2_vec);
|
187 |
+
acc_vec = Vec::set(acc_vec, red_fun(acc_vec, data_vec), size - d);
|
188 |
+
}
|
189 |
+
return vec_reduce_all(red_fun, acc_vec);
|
190 |
+
}
|
191 |
+
|
192 |
+
template <typename scalar_t, typename MapOp, typename ReduceOp,
|
193 |
+
typename std::enable_if_t<!is_reduced_floating_point_v<scalar_t>, int> = 0>
|
194 |
+
inline scalar_t map3_reduce_all(
|
195 |
+
const MapOp& map_fun,
|
196 |
+
const ReduceOp& red_fun,
|
197 |
+
const scalar_t* data,
|
198 |
+
const scalar_t* data2,
|
199 |
+
const scalar_t* data3,
|
200 |
+
int64_t size) {
|
201 |
+
using Vec = vec::Vectorized<scalar_t>;
|
202 |
+
if (size < Vec::size()) {
|
203 |
+
Vec data_vec = Vec::loadu(data, size);
|
204 |
+
Vec data2_vec = Vec::loadu(data2, size);
|
205 |
+
Vec data3_vec = Vec::loadu(data3, size);
|
206 |
+
data_vec = map_fun(data_vec, data2_vec, data3_vec);
|
207 |
+
return vec_reduce_all(red_fun, data_vec, size);
|
208 |
+
}
|
209 |
+
|
210 |
+
int64_t d = Vec::size();
|
211 |
+
Vec acc_vec = map_fun(Vec::loadu(data), Vec::loadu(data2), Vec::loadu(data3));
|
212 |
+
for (; d < size - (size % Vec::size()); d += Vec::size()) {
|
213 |
+
Vec data_vec = Vec::loadu(data + d);
|
214 |
+
Vec data2_vec = Vec::loadu(data2 + d);
|
215 |
+
Vec data3_vec = Vec::loadu(data3 + d);
|
216 |
+
data_vec = map_fun(data_vec, data2_vec, data3_vec);
|
217 |
+
acc_vec = red_fun(acc_vec, data_vec);
|
218 |
+
}
|
219 |
+
if (size - d > 0) {
|
220 |
+
Vec data_vec = Vec::loadu(data + d, size - d);
|
221 |
+
Vec data2_vec = Vec::loadu(data2 + d, size - d);
|
222 |
+
Vec data3_vec = Vec::loadu(data3 + d, size - d);
|
223 |
+
data_vec = map_fun(data_vec, data2_vec, data3_vec);
|
224 |
+
acc_vec = Vec::set(acc_vec, red_fun(acc_vec, data_vec), size - d);
|
225 |
+
}
|
226 |
+
return vec_reduce_all(red_fun, acc_vec);
|
227 |
+
}
|
228 |
+
|
229 |
+
template <typename scalar_t, typename Op,
|
230 |
+
typename std::enable_if_t<!is_reduced_floating_point_v<scalar_t>, int> = 0>
|
231 |
+
inline void map(
|
232 |
+
const Op& vec_fun,
|
233 |
+
scalar_t* output_data,
|
234 |
+
const scalar_t* input_data,
|
235 |
+
int64_t size) {
|
236 |
+
using Vec = vec::Vectorized<scalar_t>;
|
237 |
+
int64_t d = 0;
|
238 |
+
for (; d < size - (size % Vec::size()); d += Vec::size()) {
|
239 |
+
Vec output_vec = vec_fun(Vec::loadu(input_data + d));
|
240 |
+
output_vec.store(output_data + d);
|
241 |
+
}
|
242 |
+
if (size - d > 0) {
|
243 |
+
Vec output_vec = vec_fun(Vec::loadu(input_data + d, size - d));
|
244 |
+
output_vec.store(output_data + d, size - d);
|
245 |
+
}
|
246 |
+
}
|
247 |
+
|
248 |
+
template <typename scalar_t, typename Op,
|
249 |
+
typename std::enable_if_t<!is_reduced_floating_point_v<scalar_t>, int> = 0>
|
250 |
+
inline void map2(
|
251 |
+
const Op& vec_fun,
|
252 |
+
scalar_t* output_data,
|
253 |
+
const scalar_t* input_data,
|
254 |
+
const scalar_t* input_data2,
|
255 |
+
int64_t size) {
|
256 |
+
using Vec = vec::Vectorized<scalar_t>;
|
257 |
+
int64_t d = 0;
|
258 |
+
for (; d < size - (size % Vec::size()); d += Vec::size()) {
|
259 |
+
Vec data_vec = Vec::loadu(input_data + d);
|
260 |
+
Vec data_vec2 = Vec::loadu(input_data2 + d);
|
261 |
+
Vec output_vec = vec_fun(data_vec, data_vec2);
|
262 |
+
output_vec.store(output_data + d);
|
263 |
+
}
|
264 |
+
if (size - d > 0) {
|
265 |
+
Vec data_vec = Vec::loadu(input_data + d, size - d);
|
266 |
+
Vec data_vec2 = Vec::loadu(input_data2 + d, size - d);
|
267 |
+
Vec output_vec = vec_fun(data_vec, data_vec2);
|
268 |
+
output_vec.store(output_data + d, size - d);
|
269 |
+
}
|
270 |
+
}
|
271 |
+
|
272 |
+
template <typename scalar_t, typename Op,
|
273 |
+
typename std::enable_if_t<!is_reduced_floating_point_v<scalar_t>, int> = 0>
|
274 |
+
inline void map3(
|
275 |
+
const Op& vec_fun,
|
276 |
+
scalar_t* output_data,
|
277 |
+
const scalar_t* input_data1,
|
278 |
+
const scalar_t* input_data2,
|
279 |
+
const scalar_t* input_data3,
|
280 |
+
int64_t size) {
|
281 |
+
using Vec = vec::Vectorized<scalar_t>;
|
282 |
+
int64_t d = 0;
|
283 |
+
for (; d < size - (size % Vec::size()); d += Vec::size()) {
|
284 |
+
Vec data_vec1 = Vec::loadu(input_data1 + d);
|
285 |
+
Vec data_vec2 = Vec::loadu(input_data2 + d);
|
286 |
+
Vec data_vec3 = Vec::loadu(input_data3 + d);
|
287 |
+
Vec output_vec = vec_fun(data_vec1, data_vec2, data_vec3);
|
288 |
+
output_vec.store(output_data + d);
|
289 |
+
}
|
290 |
+
if (size - d > 0) {
|
291 |
+
Vec data_vec1 = Vec::loadu(input_data1 + d, size - d);
|
292 |
+
Vec data_vec2 = Vec::loadu(input_data2 + d, size - d);
|
293 |
+
Vec data_vec3 = Vec::loadu(input_data3 + d, size - d);
|
294 |
+
Vec output_vec = vec_fun(data_vec1, data_vec2, data_vec3);
|
295 |
+
output_vec.store(output_data + d, size - d);
|
296 |
+
}
|
297 |
+
}
|
298 |
+
|
299 |
+
template <typename scalar_t, typename Op,
|
300 |
+
typename std::enable_if_t<!is_reduced_floating_point_v<scalar_t>, int> = 0>
|
301 |
+
inline void map4(
|
302 |
+
const Op& vec_fun,
|
303 |
+
scalar_t* output_data,
|
304 |
+
const scalar_t* input_data1,
|
305 |
+
const scalar_t* input_data2,
|
306 |
+
const scalar_t* input_data3,
|
307 |
+
const scalar_t* input_data4,
|
308 |
+
int64_t size) {
|
309 |
+
using Vec = vec::Vectorized<scalar_t>;
|
310 |
+
int64_t d = 0;
|
311 |
+
for (; d < size - (size % Vec::size()); d += Vec::size()) {
|
312 |
+
Vec data_vec1 = Vec::loadu(input_data1 + d);
|
313 |
+
Vec data_vec2 = Vec::loadu(input_data2 + d);
|
314 |
+
Vec data_vec3 = Vec::loadu(input_data3 + d);
|
315 |
+
Vec data_vec4 = Vec::loadu(input_data4 + d);
|
316 |
+
Vec output_vec = vec_fun(data_vec1, data_vec2, data_vec3, data_vec4);
|
317 |
+
output_vec.store(output_data + d);
|
318 |
+
}
|
319 |
+
if (size - d > 0) {
|
320 |
+
Vec data_vec1 = Vec::loadu(input_data1 + d, size - d);
|
321 |
+
Vec data_vec2 = Vec::loadu(input_data2 + d, size - d);
|
322 |
+
Vec data_vec3 = Vec::loadu(input_data3 + d, size - d);
|
323 |
+
Vec data_vec4 = Vec::loadu(input_data4 + d, size - d);
|
324 |
+
Vec output_vec = vec_fun(data_vec1, data_vec2, data_vec3, data_vec4);
|
325 |
+
output_vec.store(output_data + d, size - d);
|
326 |
+
}
|
327 |
+
}
|
328 |
+
|
329 |
+
} // namespace at::vec
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/functional_bfloat16.h
ADDED
@@ -0,0 +1,549 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <ATen/cpu/vec/vec.h>
|
7 |
+
|
8 |
+
namespace at::vec {
|
9 |
+
|
10 |
+
// BFloat16 specification
|
11 |
+
template <typename scalar_t> struct VecScalarType { using type = scalar_t; };
|
12 |
+
template <> struct VecScalarType<BFloat16> { using type = float; };
|
13 |
+
template <> struct VecScalarType<Half> { using type = float; };
|
14 |
+
|
15 |
+
// This is different from at::acc_type since we only need to specialize BFloat16
|
16 |
+
template <typename scalar_t>
|
17 |
+
using vec_scalar_t = typename VecScalarType<scalar_t>::type;
|
18 |
+
|
19 |
+
// Vector conversion between float and bfloat16/half
|
20 |
+
template <typename scalar_t,
|
21 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
22 |
+
inline std::tuple<Vectorized<float>, Vectorized<float>> convert_to_float(const Vectorized<scalar_t>&);
|
23 |
+
|
24 |
+
template <>
|
25 |
+
inline std::tuple<Vectorized<float>, Vectorized<float>> convert_to_float<BFloat16> (const Vectorized<BFloat16>& a) {
|
26 |
+
return convert_bfloat16_float(a);
|
27 |
+
}
|
28 |
+
|
29 |
+
template <>
|
30 |
+
inline std::tuple<Vectorized<float>, Vectorized<float>> convert_to_float<Half> (const Vectorized<Half>& a) {
|
31 |
+
return convert_half_float(a);
|
32 |
+
}
|
33 |
+
|
34 |
+
template <typename scalar_t,
|
35 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
36 |
+
inline Vectorized<scalar_t> convert_from_float(const Vectorized<float>&, const Vectorized<float>&);
|
37 |
+
|
38 |
+
template <>
|
39 |
+
inline Vectorized<BFloat16> convert_from_float<BFloat16>(const Vectorized<float>& a, const Vectorized<float>& b) {
|
40 |
+
return convert_float_bfloat16(a, b);
|
41 |
+
}
|
42 |
+
|
43 |
+
template <>
|
44 |
+
inline Vectorized<Half> convert_from_float<Half>(const Vectorized<float>& a, const Vectorized<float>& b) {
|
45 |
+
return convert_float_half(a, b);
|
46 |
+
}
|
47 |
+
|
48 |
+
template <typename scalar_t,
|
49 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
50 |
+
inline void load_to_float(const scalar_t *data, Vectorized<float> &out1, Vectorized<float> &out2);
|
51 |
+
|
52 |
+
template <>
|
53 |
+
inline void load_to_float<BFloat16> (const BFloat16 *data, Vectorized<float> &out1, Vectorized<float> &out2) {
|
54 |
+
load_fp32_from_bf16(data, out1, out2);
|
55 |
+
}
|
56 |
+
|
57 |
+
template <>
|
58 |
+
inline void load_to_float<Half> (const Half *data, Vectorized<float> &out1, Vectorized<float> &out2) {
|
59 |
+
load_fp32_from_fp16(data, out1, out2);
|
60 |
+
}
|
61 |
+
|
62 |
+
template <typename scalar_t,
|
63 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
64 |
+
inline void load_to_float(const scalar_t *data, Vectorized<float> &out);
|
65 |
+
|
66 |
+
template <>
|
67 |
+
inline void load_to_float<BFloat16> (const BFloat16 *data, Vectorized<float> &out) {
|
68 |
+
load_fp32_from_bf16(data, out);
|
69 |
+
}
|
70 |
+
|
71 |
+
template <>
|
72 |
+
inline void load_to_float<Half> (const Half *data, Vectorized<float> &out) {
|
73 |
+
load_fp32_from_fp16(data, out);
|
74 |
+
}
|
75 |
+
|
76 |
+
// Note that we already have specialized member of Vectorized<scalar_t> for BFloat16
|
77 |
+
// so the following functions would run smoothly:
|
78 |
+
// using Vec = Vectorized<BFloat16>;
|
79 |
+
// Vec one = Vec(BFloat16(1));
|
80 |
+
// vec::map([](Vec x) { return one / (one + x.exp()); }, y_ptr, x_ptr, N);
|
81 |
+
//
|
82 |
+
// Then why we still need to specialize "functional"?
|
83 |
+
// If we do specialization at Vectorized<> level, the above example would need 3 pairs of
|
84 |
+
// conversion of bf16->fp32/fp32->bf16, each for ".exp()", "+" and "/".
|
85 |
+
// If we do specialization at vec::map<>() level, we have only 1 pair of conversion
|
86 |
+
// of bf16->fp32/fp32->bf16, for the input and output BFloat16 vector only.
|
87 |
+
//
|
88 |
+
// The following BFloat16 functionality will only do data type conversion for input
|
89 |
+
// and output vector (reduce functionality will only convert the final scalar back to bf16).
|
90 |
+
// Compared to Vectorized<> specialization,
|
91 |
+
// 1. better performance since we have less data type conversion;
|
92 |
+
// 2. less rounding error since immediate results are kept in fp32;
|
93 |
+
// 3. accumulation done on data type of fp32.
|
94 |
+
//
|
95 |
+
// If you plan to extend this file, please ensure adding unit tests at
|
96 |
+
// aten/src/ATen/test/vec_test_all_types.cpp
|
97 |
+
//
|
98 |
+
template <typename scalar_t, typename Op,
|
99 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
100 |
+
inline float reduce_all(const Op& vec_fun, const scalar_t* data, int64_t size) {
|
101 |
+
using bVec = vec::Vectorized<scalar_t>;
|
102 |
+
using fVec = vec::Vectorized<float>;
|
103 |
+
if (size < bVec::size()) {
|
104 |
+
bVec data_bvec = bVec::loadu(data, size);
|
105 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
106 |
+
if (size > fVec::size()) {
|
107 |
+
data_fvec0 = fVec::set(data_fvec0, vec_fun(data_fvec0, data_fvec1), size - fVec::size());
|
108 |
+
return vec_reduce_all<float>(vec_fun, data_fvec0, fVec::size());
|
109 |
+
} else {
|
110 |
+
return vec_reduce_all<float>(vec_fun, data_fvec0, size);
|
111 |
+
}
|
112 |
+
}
|
113 |
+
int64_t d = bVec::size();
|
114 |
+
bVec acc_bvec = bVec::loadu(data);
|
115 |
+
auto [acc_fvec0, acc_fvec1] = convert_to_float<scalar_t>(acc_bvec);
|
116 |
+
for (; d < size - (size % bVec::size()); d += bVec::size()) {
|
117 |
+
bVec data_bvec = bVec::loadu(data + d);
|
118 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
119 |
+
acc_fvec0 = vec_fun(acc_fvec0, data_fvec0);
|
120 |
+
acc_fvec1 = vec_fun(acc_fvec1, data_fvec1);
|
121 |
+
}
|
122 |
+
if (size - d > 0) {
|
123 |
+
bVec data_bvec = bVec::loadu(data + d, size - d);
|
124 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
125 |
+
if (size - d > fVec::size()) {
|
126 |
+
acc_fvec0 = vec_fun(acc_fvec0, data_fvec0);
|
127 |
+
acc_fvec1 = fVec::set(acc_fvec1, vec_fun(acc_fvec1, data_fvec1), size - d - fVec::size());
|
128 |
+
} else {
|
129 |
+
acc_fvec0 = fVec::set(acc_fvec0, vec_fun(acc_fvec0, data_fvec0), size - d);
|
130 |
+
}
|
131 |
+
}
|
132 |
+
acc_fvec0 = vec_fun(acc_fvec0, acc_fvec1);
|
133 |
+
return vec_reduce_all<float>(vec_fun, acc_fvec0);
|
134 |
+
}
|
135 |
+
|
136 |
+
template <typename scalar_t, typename Op1, typename Op2,
|
137 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
138 |
+
inline std::pair<float, float> reduce2_all(const Op1& vec_fun1, const Op2& vec_fun2,
|
139 |
+
const scalar_t* data, int64_t size) {
|
140 |
+
using bVec = vec::Vectorized<scalar_t>;
|
141 |
+
using fVec = vec::Vectorized<float>;
|
142 |
+
if (size < bVec::size()) {
|
143 |
+
bVec data_bvec = bVec::loadu(data, size);
|
144 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
145 |
+
if (size > fVec::size()) {
|
146 |
+
fVec acc1_fvec = fVec::set(data_fvec0, vec_fun1(data_fvec0, data_fvec1), size - fVec::size());
|
147 |
+
fVec acc2_fvec = fVec::set(data_fvec0, vec_fun2(data_fvec0, data_fvec1), size - fVec::size());
|
148 |
+
return std::pair<scalar_t, scalar_t>(
|
149 |
+
vec_reduce_all<float>(vec_fun1, acc1_fvec, fVec::size()),
|
150 |
+
vec_reduce_all<float>(vec_fun2, acc2_fvec, fVec::size()));
|
151 |
+
} else {
|
152 |
+
return std::pair<scalar_t, scalar_t>(
|
153 |
+
vec_reduce_all<float>(vec_fun1, data_fvec0, size),
|
154 |
+
vec_reduce_all<float>(vec_fun2, data_fvec0, size));
|
155 |
+
}
|
156 |
+
}
|
157 |
+
int64_t d = bVec::size();
|
158 |
+
bVec acc_bvec = bVec::loadu(data);
|
159 |
+
auto [acc1_fvec0, acc1_fvec1] = convert_to_float<scalar_t>(acc_bvec);
|
160 |
+
auto [acc2_fvec0, acc2_fvec1] = convert_to_float<scalar_t>(acc_bvec);
|
161 |
+
for (; d < size - (size % bVec::size()); d += bVec::size()) {
|
162 |
+
bVec data_bvec = bVec::loadu(data + d);
|
163 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
164 |
+
acc1_fvec0 = vec_fun1(acc1_fvec0, data_fvec0);
|
165 |
+
acc1_fvec1 = vec_fun1(acc1_fvec1, data_fvec1);
|
166 |
+
acc2_fvec0 = vec_fun2(acc2_fvec0, data_fvec0);
|
167 |
+
acc2_fvec1 = vec_fun2(acc2_fvec1, data_fvec1);
|
168 |
+
}
|
169 |
+
if (size - d > 0) {
|
170 |
+
bVec data_bvec = bVec::loadu(data + d, size - d);
|
171 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
172 |
+
if (size - d > fVec::size()) {
|
173 |
+
acc1_fvec0 = vec_fun1(acc1_fvec0, data_fvec0);
|
174 |
+
acc1_fvec1 = fVec::set(acc1_fvec1, vec_fun1(acc1_fvec1, data_fvec1), size - d - fVec::size());
|
175 |
+
acc2_fvec0 = vec_fun2(acc2_fvec0, data_fvec0);
|
176 |
+
acc2_fvec1 = fVec::set(acc2_fvec1, vec_fun2(acc2_fvec1, data_fvec1), size - d - fVec::size());
|
177 |
+
} else {
|
178 |
+
acc1_fvec0 = fVec::set(acc1_fvec0, vec_fun1(acc1_fvec0, data_fvec0), size - d);
|
179 |
+
acc2_fvec0 = fVec::set(acc2_fvec0, vec_fun2(acc2_fvec0, data_fvec0), size - d);
|
180 |
+
}
|
181 |
+
}
|
182 |
+
acc1_fvec0 = vec_fun1(acc1_fvec0, acc1_fvec1);
|
183 |
+
acc2_fvec0 = vec_fun2(acc2_fvec0, acc2_fvec1);
|
184 |
+
return std::pair<scalar_t, scalar_t>(
|
185 |
+
vec_reduce_all<float>(vec_fun1, acc1_fvec0),
|
186 |
+
vec_reduce_all<float>(vec_fun2, acc2_fvec0));
|
187 |
+
}
|
188 |
+
|
189 |
+
template <typename scalar_t, typename MapOp, typename ReduceOp,
|
190 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
191 |
+
inline float map_reduce_all(
|
192 |
+
const MapOp& map_fun,
|
193 |
+
const ReduceOp& red_fun,
|
194 |
+
const scalar_t* data,
|
195 |
+
int64_t size) {
|
196 |
+
using bVec = vec::Vectorized<scalar_t>;
|
197 |
+
using fVec = vec::Vectorized<float>;
|
198 |
+
if (size < bVec::size()) {
|
199 |
+
bVec data_bvec = bVec::loadu(data, size);
|
200 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
201 |
+
if (size > fVec::size()) {
|
202 |
+
data_fvec0 = map_fun(data_fvec0);
|
203 |
+
data_fvec1 = map_fun(data_fvec1);
|
204 |
+
data_fvec0 = fVec::set(data_fvec0, red_fun(data_fvec0, data_fvec1), size - fVec::size());
|
205 |
+
return vec_reduce_all<float>(red_fun, data_fvec0, fVec::size());
|
206 |
+
} else {
|
207 |
+
data_fvec0 = map_fun(data_fvec0);
|
208 |
+
return vec_reduce_all<float>(red_fun, data_fvec0, size);
|
209 |
+
}
|
210 |
+
}
|
211 |
+
int64_t d = bVec::size();
|
212 |
+
bVec acc_bvec = bVec::loadu(data);
|
213 |
+
auto [acc_fvec0, acc_fvec1] = convert_to_float<scalar_t>(acc_bvec);
|
214 |
+
acc_fvec0 = map_fun(acc_fvec0);
|
215 |
+
acc_fvec1 = map_fun(acc_fvec1);
|
216 |
+
for (; d < size - (size % bVec::size()); d += bVec::size()) {
|
217 |
+
bVec data_bvec = bVec::loadu(data + d);
|
218 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
219 |
+
data_fvec0 = map_fun(data_fvec0);
|
220 |
+
data_fvec1 = map_fun(data_fvec1);
|
221 |
+
acc_fvec0 = red_fun(acc_fvec0, data_fvec0);
|
222 |
+
acc_fvec1 = red_fun(acc_fvec1, data_fvec1);
|
223 |
+
}
|
224 |
+
if (size - d > 0) {
|
225 |
+
bVec data_bvec = bVec::loadu(data + d, size - d);
|
226 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
227 |
+
if (size - d > fVec::size()) {
|
228 |
+
data_fvec0 = map_fun(data_fvec0);
|
229 |
+
data_fvec1 = map_fun(data_fvec1);
|
230 |
+
acc_fvec0 = red_fun(acc_fvec0, data_fvec0);
|
231 |
+
acc_fvec1 = fVec::set(acc_fvec1, red_fun(acc_fvec1, data_fvec1), size - d - fVec::size());
|
232 |
+
} else {
|
233 |
+
data_fvec0 = map_fun(data_fvec0);
|
234 |
+
acc_fvec0 = fVec::set(acc_fvec0, red_fun(acc_fvec0, data_fvec0), size - d);
|
235 |
+
}
|
236 |
+
}
|
237 |
+
acc_fvec0 = red_fun(acc_fvec0, acc_fvec1);
|
238 |
+
return vec_reduce_all<float>(red_fun, acc_fvec0);
|
239 |
+
}
|
240 |
+
|
241 |
+
template <typename scalar_t, typename MapOp, typename ReduceOp,
|
242 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
243 |
+
inline float map2_reduce_all(
|
244 |
+
const MapOp& map_fun,
|
245 |
+
const ReduceOp& red_fun,
|
246 |
+
const scalar_t* data,
|
247 |
+
const scalar_t* data2,
|
248 |
+
int64_t size) {
|
249 |
+
using bVec = vec::Vectorized<scalar_t>;
|
250 |
+
using fVec = vec::Vectorized<float>;
|
251 |
+
if (size < bVec::size()) {
|
252 |
+
bVec data_bvec = bVec::loadu(data, size);
|
253 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
254 |
+
bVec data2_bvec = bVec::loadu(data2, size);
|
255 |
+
auto [data2_fvec0, data2_fvec1] = convert_to_float<scalar_t>(data2_bvec);
|
256 |
+
if (size > fVec::size()) {
|
257 |
+
data_fvec0 = map_fun(data_fvec0, data2_fvec0);
|
258 |
+
data_fvec1 = map_fun(data_fvec1, data2_fvec1);
|
259 |
+
data_fvec0 = fVec::set(data_fvec0, red_fun(data_fvec0, data_fvec1), size - fVec::size());
|
260 |
+
return vec_reduce_all<float>(red_fun, data_fvec0, fVec::size());
|
261 |
+
} else {
|
262 |
+
data_fvec0 = map_fun(data_fvec0, data2_fvec0);
|
263 |
+
return vec_reduce_all<float>(red_fun, data_fvec0, size);
|
264 |
+
}
|
265 |
+
}
|
266 |
+
int64_t d = bVec::size();
|
267 |
+
bVec acc_bvec = bVec::loadu(data);
|
268 |
+
auto [acc_fvec0, acc_fvec1] = convert_to_float<scalar_t>(acc_bvec);
|
269 |
+
bVec acc2_bvec = bVec::loadu(data2);
|
270 |
+
auto [acc2_fvec0, acc2_fvec1] = convert_to_float<scalar_t>(acc2_bvec);
|
271 |
+
acc_fvec0 = map_fun(acc_fvec0, acc2_fvec0);
|
272 |
+
acc_fvec1 = map_fun(acc_fvec1, acc2_fvec1);
|
273 |
+
for (; d < size - (size % bVec::size()); d += bVec::size()) {
|
274 |
+
bVec data_bvec = bVec::loadu(data + d);
|
275 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
276 |
+
bVec data2_bvec = bVec::loadu(data2 + d);
|
277 |
+
auto [data2_fvec0, data2_fvec1] = convert_to_float<scalar_t>(data2_bvec);
|
278 |
+
data_fvec0 = map_fun(data_fvec0, data2_fvec0);
|
279 |
+
data_fvec1 = map_fun(data_fvec1, data2_fvec1);
|
280 |
+
acc_fvec0 = red_fun(acc_fvec0, data_fvec0);
|
281 |
+
acc_fvec1 = red_fun(acc_fvec1, data_fvec1);
|
282 |
+
}
|
283 |
+
if (size - d > 0) {
|
284 |
+
bVec data_bvec = bVec::loadu(data + d, size - d);
|
285 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
286 |
+
bVec data2_bvec = bVec::loadu(data2 + d, size - d);
|
287 |
+
auto [data2_fvec0, data2_fvec1] = convert_to_float<scalar_t>(data2_bvec);
|
288 |
+
if (size - d > fVec::size()) {
|
289 |
+
data_fvec0 = map_fun(data_fvec0, data2_fvec0);
|
290 |
+
data_fvec1 = map_fun(data_fvec1, data2_fvec1);
|
291 |
+
acc_fvec0 = red_fun(acc_fvec0, data_fvec0);
|
292 |
+
acc_fvec1 = fVec::set(acc_fvec1, red_fun(acc_fvec1, data_fvec1), size - d - fVec::size());
|
293 |
+
} else {
|
294 |
+
data_fvec0 = map_fun(data_fvec0, data2_fvec0);
|
295 |
+
acc_fvec0 = fVec::set(acc_fvec0, red_fun(acc_fvec0, data_fvec0), size - d);
|
296 |
+
}
|
297 |
+
}
|
298 |
+
acc_fvec0 = red_fun(acc_fvec0, acc_fvec1);
|
299 |
+
return vec_reduce_all<float>(red_fun, acc_fvec0);
|
300 |
+
}
|
301 |
+
|
302 |
+
template <typename scalar_t, typename MapOp, typename ReduceOp,
|
303 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
304 |
+
inline float map3_reduce_all(
|
305 |
+
const MapOp& map_fun,
|
306 |
+
const ReduceOp& red_fun,
|
307 |
+
const scalar_t* data,
|
308 |
+
const scalar_t* data2,
|
309 |
+
const scalar_t* data3,
|
310 |
+
int64_t size) {
|
311 |
+
using bVec = vec::Vectorized<scalar_t>;
|
312 |
+
using fVec = vec::Vectorized<float>;
|
313 |
+
if (size < bVec::size()) {
|
314 |
+
bVec data_bvec = bVec::loadu(data, size);
|
315 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
316 |
+
bVec data2_bvec = bVec::loadu(data2, size);
|
317 |
+
auto [data2_fvec0, data2_fvec1] = convert_to_float<scalar_t>(data2_bvec);
|
318 |
+
bVec data3_bvec = bVec::loadu(data3, size);
|
319 |
+
auto [data3_fvec0, data3_fvec1] = convert_to_float<scalar_t>(data3_bvec);
|
320 |
+
if (size > fVec::size()) {
|
321 |
+
data_fvec0 = map_fun(data_fvec0, data2_fvec0, data3_fvec0);
|
322 |
+
data_fvec1 = map_fun(data_fvec1, data2_fvec1, data3_fvec1);
|
323 |
+
data_fvec0 = fVec::set(data_fvec0, red_fun(data_fvec0, data_fvec1), size - fVec::size());
|
324 |
+
return vec_reduce_all<float>(red_fun, data_fvec0, fVec::size());
|
325 |
+
} else {
|
326 |
+
data_fvec0 = map_fun(data_fvec0, data2_fvec0, data3_fvec0);
|
327 |
+
return vec_reduce_all<float>(red_fun, data_fvec0, size);
|
328 |
+
}
|
329 |
+
}
|
330 |
+
int64_t d = bVec::size();
|
331 |
+
bVec acc_bvec = bVec::loadu(data);
|
332 |
+
auto [acc_fvec0, acc_fvec1] = convert_to_float<scalar_t>(acc_bvec);
|
333 |
+
bVec acc2_bvec = bVec::loadu(data2);
|
334 |
+
auto [acc2_fvec0, acc2_fvec1] = convert_to_float<scalar_t>(acc2_bvec);
|
335 |
+
bVec acc3_bvec = bVec::loadu(data3);
|
336 |
+
auto [acc3_fvec0, acc3_fvec1] = convert_to_float<scalar_t>(acc3_bvec);
|
337 |
+
acc_fvec0 = map_fun(acc_fvec0, acc2_fvec0, acc3_fvec0);
|
338 |
+
acc_fvec1 = map_fun(acc_fvec1, acc2_fvec1, acc3_fvec1);
|
339 |
+
for (; d < size - (size % bVec::size()); d += bVec::size()) {
|
340 |
+
bVec data_bvec = bVec::loadu(data + d);
|
341 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
342 |
+
bVec data2_bvec = bVec::loadu(data2 + d);
|
343 |
+
auto [data2_fvec0, data2_fvec1] = convert_to_float<scalar_t>(data2_bvec);
|
344 |
+
bVec data3_bvec = bVec::loadu(data3 + d);
|
345 |
+
auto [data3_fvec0, data3_fvec1] = convert_to_float<scalar_t>(data3_bvec);
|
346 |
+
data_fvec0 = map_fun(data_fvec0, data2_fvec0, data3_fvec0);
|
347 |
+
data_fvec1 = map_fun(data_fvec1, data2_fvec1, data3_fvec1);
|
348 |
+
acc_fvec0 = red_fun(acc_fvec0, data_fvec0);
|
349 |
+
acc_fvec1 = red_fun(acc_fvec1, data_fvec1);
|
350 |
+
}
|
351 |
+
if (size - d > 0) {
|
352 |
+
bVec data_bvec = bVec::loadu(data + d, size - d);
|
353 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
354 |
+
bVec data2_bvec = bVec::loadu(data2 + d, size - d);
|
355 |
+
auto [data2_fvec0, data2_fvec1] = convert_to_float<scalar_t>(data2_bvec);
|
356 |
+
bVec data3_bvec = bVec::loadu(data3 + d, size - d);
|
357 |
+
auto [data3_fvec0, data3_fvec1] = convert_to_float<scalar_t>(data3_bvec);
|
358 |
+
if (size - d > fVec::size()) {
|
359 |
+
data_fvec0 = map_fun(data_fvec0, data2_fvec0, data3_fvec0);
|
360 |
+
data_fvec1 = map_fun(data_fvec1, data2_fvec1, data3_fvec1);
|
361 |
+
acc_fvec0 = red_fun(acc_fvec0, data_fvec0);
|
362 |
+
acc_fvec1 = fVec::set(acc_fvec1, red_fun(acc_fvec1, data_fvec1), size - d - fVec::size());
|
363 |
+
} else {
|
364 |
+
data_fvec0 = map_fun(data_fvec0, data2_fvec0, data3_fvec0);
|
365 |
+
acc_fvec0 = fVec::set(acc_fvec0, red_fun(acc_fvec0, data_fvec0), size - d);
|
366 |
+
}
|
367 |
+
}
|
368 |
+
acc_fvec0 = red_fun(acc_fvec0, acc_fvec1);
|
369 |
+
return vec_reduce_all<float>(red_fun, acc_fvec0);
|
370 |
+
}
|
371 |
+
|
372 |
+
template <typename scalar_t, typename Op,
|
373 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
374 |
+
inline void map(
|
375 |
+
const Op& vec_fun,
|
376 |
+
scalar_t* output_data,
|
377 |
+
const scalar_t* input_data,
|
378 |
+
int64_t size) {
|
379 |
+
using bVec = vec::Vectorized<scalar_t>;
|
380 |
+
using fVec = vec::Vectorized<float>;
|
381 |
+
int64_t d = 0;
|
382 |
+
for (; d < size - (size % bVec::size()); d += bVec::size()) {
|
383 |
+
bVec data_bvec = bVec::loadu(input_data + d);
|
384 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
385 |
+
fVec output_fvec0 = vec_fun(data_fvec0);
|
386 |
+
fVec output_fvec1 = vec_fun(data_fvec1);
|
387 |
+
bVec output_bvec = convert_from_float<scalar_t>(output_fvec0, output_fvec1);
|
388 |
+
output_bvec.store(output_data + d);
|
389 |
+
}
|
390 |
+
if (size - d > 0) {
|
391 |
+
bVec data_bvec = bVec::loadu(input_data + d, size - d);
|
392 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
393 |
+
fVec output_fvec0 = vec_fun(data_fvec0);
|
394 |
+
fVec output_fvec1 = vec_fun(data_fvec1);
|
395 |
+
bVec output_bvec = convert_from_float<scalar_t>(output_fvec0, output_fvec1);
|
396 |
+
output_bvec.store(output_data + d, size - d);
|
397 |
+
}
|
398 |
+
}
|
399 |
+
|
400 |
+
template <typename scalar_t, typename Op,
|
401 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
402 |
+
inline void map(
|
403 |
+
const Op& vec_fun,
|
404 |
+
scalar_t* output_data,
|
405 |
+
const float* input_data,
|
406 |
+
int64_t size) {
|
407 |
+
using bVec = vec::Vectorized<scalar_t>;
|
408 |
+
using fVec = vec::Vectorized<float>;
|
409 |
+
int64_t d = 0;
|
410 |
+
for (; d < size - (size % bVec::size()); d += bVec::size()) {
|
411 |
+
fVec data_fvec0 = fVec::loadu(input_data + d);
|
412 |
+
fVec data_fvec1 = fVec::loadu(input_data + d + fVec::size());
|
413 |
+
fVec output_fvec0 = vec_fun(data_fvec0);
|
414 |
+
fVec output_fvec1 = vec_fun(data_fvec1);
|
415 |
+
bVec output_bvec = convert_from_float<scalar_t>(output_fvec0, output_fvec1);
|
416 |
+
output_bvec.store(output_data + d);
|
417 |
+
}
|
418 |
+
if (size - d > 0) {
|
419 |
+
fVec data_fvec0, data_fvec1;
|
420 |
+
if (size - d > fVec::size()) {
|
421 |
+
data_fvec0 = fVec::loadu(input_data + d);
|
422 |
+
data_fvec1 = fVec::loadu(input_data + d + fVec::size(), size - d - fVec::size());
|
423 |
+
} else {
|
424 |
+
// choose to align with behaviour of bVec::loadu(ptr, size),
|
425 |
+
// which leaves data_fvec1 uninitialized
|
426 |
+
data_fvec0 = fVec::loadu(input_data + d, size - d);
|
427 |
+
}
|
428 |
+
fVec output_fvec0 = vec_fun(data_fvec0);
|
429 |
+
fVec output_fvec1 = vec_fun(data_fvec1);
|
430 |
+
bVec output_bvec = convert_from_float<scalar_t>(output_fvec0, output_fvec1);
|
431 |
+
output_bvec.store(output_data + d, size - d);
|
432 |
+
}
|
433 |
+
}
|
434 |
+
|
435 |
+
template <typename scalar_t, typename Op,
|
436 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
437 |
+
inline void map2(
|
438 |
+
const Op& vec_fun,
|
439 |
+
scalar_t* output_data,
|
440 |
+
const scalar_t* input_data,
|
441 |
+
const scalar_t* input_data2,
|
442 |
+
int64_t size) {
|
443 |
+
using bVec = vec::Vectorized<scalar_t>;
|
444 |
+
using fVec = vec::Vectorized<float>;
|
445 |
+
int64_t d = 0;
|
446 |
+
for (; d < size - (size % bVec::size()); d += bVec::size()) {
|
447 |
+
bVec data_bvec = bVec::loadu(input_data + d);
|
448 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
449 |
+
bVec data2_bvec = bVec::loadu(input_data2 + d);
|
450 |
+
auto [data2_fvec0, data2_fvec1] = convert_to_float<scalar_t>(data2_bvec);
|
451 |
+
fVec output_fvec0 = vec_fun(data_fvec0, data2_fvec0);
|
452 |
+
fVec output_fvec1 = vec_fun(data_fvec1, data2_fvec1);
|
453 |
+
bVec output_bvec = convert_from_float<scalar_t>(output_fvec0, output_fvec1);
|
454 |
+
output_bvec.store(output_data + d);
|
455 |
+
}
|
456 |
+
if (size - d > 0) {
|
457 |
+
bVec data_bvec = bVec::loadu(input_data + d, size - d);
|
458 |
+
auto [data_fvec0, data_fvec1] = convert_to_float<scalar_t>(data_bvec);
|
459 |
+
bVec data2_bvec = bVec::loadu(input_data2 + d, size - d);
|
460 |
+
auto [data2_fvec0, data2_fvec1] = convert_to_float<scalar_t>(data2_bvec);
|
461 |
+
fVec output_fvec0 = vec_fun(data_fvec0, data2_fvec0);
|
462 |
+
fVec output_fvec1 = vec_fun(data_fvec1, data2_fvec1);
|
463 |
+
bVec output_bvec = convert_from_float<scalar_t>(output_fvec0, output_fvec1);
|
464 |
+
output_bvec.store(output_data + d, size - d);
|
465 |
+
}
|
466 |
+
}
|
467 |
+
|
468 |
+
template <typename scalar_t, typename Op,
|
469 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
470 |
+
inline void map3(
|
471 |
+
const Op& vec_fun,
|
472 |
+
scalar_t* output_data,
|
473 |
+
const scalar_t* input_data1,
|
474 |
+
const scalar_t* input_data2,
|
475 |
+
const scalar_t* input_data3,
|
476 |
+
int64_t size) {
|
477 |
+
using bVec = vec::Vectorized<scalar_t>;
|
478 |
+
using fVec = vec::Vectorized<float>;
|
479 |
+
int64_t d = 0;
|
480 |
+
for (; d < size - (size % bVec::size()); d += bVec::size()) {
|
481 |
+
bVec data1_bvec = bVec::loadu(input_data1 + d);
|
482 |
+
auto [data1_fvec0, data1_fvec1] = convert_to_float<scalar_t>(data1_bvec);
|
483 |
+
bVec data2_bvec = bVec::loadu(input_data2 + d);
|
484 |
+
auto [data2_fvec0, data2_fvec1] = convert_to_float<scalar_t>(data2_bvec);
|
485 |
+
bVec data3_bvec = bVec::loadu(input_data3 + d);
|
486 |
+
auto [data3_fvec0, data3_fvec1] = convert_to_float<scalar_t>(data3_bvec);
|
487 |
+
fVec output_fvec0 = vec_fun(data1_fvec0, data2_fvec0, data3_fvec0);
|
488 |
+
fVec output_fvec1 = vec_fun(data1_fvec1, data2_fvec1, data3_fvec1);
|
489 |
+
bVec output_bvec = convert_from_float<scalar_t>(output_fvec0, output_fvec1);
|
490 |
+
output_bvec.store(output_data + d);
|
491 |
+
}
|
492 |
+
if (size - d > 0) {
|
493 |
+
bVec data1_bvec = bVec::loadu(input_data1 + d, size - d);
|
494 |
+
auto [data1_fvec0, data1_fvec1] = convert_to_float<scalar_t>(data1_bvec);
|
495 |
+
bVec data2_bvec = bVec::loadu(input_data2 + d, size - d);
|
496 |
+
auto [data2_fvec0, data2_fvec1] = convert_to_float<scalar_t>(data2_bvec);
|
497 |
+
bVec data3_bvec = bVec::loadu(input_data3 + d, size - d);
|
498 |
+
auto [data3_fvec0, data3_fvec1] = convert_to_float<scalar_t>(data3_bvec);
|
499 |
+
fVec output_fvec0 = vec_fun(data1_fvec0, data2_fvec0, data3_fvec0);
|
500 |
+
fVec output_fvec1 = vec_fun(data1_fvec1, data2_fvec1, data3_fvec1);
|
501 |
+
bVec output_bvec = convert_from_float<scalar_t>(output_fvec0, output_fvec1);
|
502 |
+
output_bvec.store(output_data + d, size - d);
|
503 |
+
}
|
504 |
+
}
|
505 |
+
|
506 |
+
template <typename scalar_t, typename Op,
|
507 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
508 |
+
inline void map4(
|
509 |
+
const Op& vec_fun,
|
510 |
+
scalar_t* output_data,
|
511 |
+
const scalar_t* input_data1,
|
512 |
+
const scalar_t* input_data2,
|
513 |
+
const scalar_t* input_data3,
|
514 |
+
const scalar_t* input_data4,
|
515 |
+
int64_t size) {
|
516 |
+
using bVec = vec::Vectorized<scalar_t>;
|
517 |
+
using fVec = vec::Vectorized<float>;
|
518 |
+
int64_t d = 0;
|
519 |
+
for (; d < size - (size % bVec::size()); d += bVec::size()) {
|
520 |
+
bVec data1_bvec = bVec::loadu(input_data1 + d);
|
521 |
+
auto [data1_fvec0, data1_fvec1] = convert_to_float<scalar_t>(data1_bvec);
|
522 |
+
bVec data2_bvec = bVec::loadu(input_data2 + d);
|
523 |
+
auto [data2_fvec0, data2_fvec1] = convert_to_float<scalar_t>(data2_bvec);
|
524 |
+
bVec data3_bvec = bVec::loadu(input_data3 + d);
|
525 |
+
auto [data3_fvec0, data3_fvec1] = convert_to_float<scalar_t>(data3_bvec);
|
526 |
+
bVec data4_bvec = bVec::loadu(input_data4 + d);
|
527 |
+
auto [data4_fvec0, data4_fvec1] = convert_to_float<scalar_t>(data4_bvec);
|
528 |
+
fVec output_fvec0 = vec_fun(data1_fvec0, data2_fvec0, data3_fvec0, data4_fvec0);
|
529 |
+
fVec output_fvec1 = vec_fun(data1_fvec1, data2_fvec1, data3_fvec1, data4_fvec1);
|
530 |
+
bVec output_bvec = convert_from_float<scalar_t>(output_fvec0, output_fvec1);
|
531 |
+
output_bvec.store(output_data + d);
|
532 |
+
}
|
533 |
+
if (size - d > 0) {
|
534 |
+
bVec data1_bvec = bVec::loadu(input_data1 + d, size - d);
|
535 |
+
auto [data1_fvec0, data1_fvec1] = convert_to_float<scalar_t>(data1_bvec);
|
536 |
+
bVec data2_bvec = bVec::loadu(input_data2 + d, size - d);
|
537 |
+
auto [data2_fvec0, data2_fvec1] = convert_to_float<scalar_t>(data2_bvec);
|
538 |
+
bVec data3_bvec = bVec::loadu(input_data3 + d, size - d);
|
539 |
+
auto [data3_fvec0, data3_fvec1] = convert_to_float<scalar_t>(data3_bvec);
|
540 |
+
bVec data4_bvec = bVec::loadu(input_data4 + d, size - d);
|
541 |
+
auto [data4_fvec0, data4_fvec1] = convert_to_float<scalar_t>(data4_bvec);
|
542 |
+
fVec output_fvec0 = vec_fun(data1_fvec0, data2_fvec0, data3_fvec0, data4_fvec0);
|
543 |
+
fVec output_fvec1 = vec_fun(data1_fvec1, data2_fvec1, data3_fvec1, data4_fvec1);
|
544 |
+
bVec output_bvec = convert_from_float<scalar_t>(output_fvec0, output_fvec1);
|
545 |
+
output_bvec.store(output_data + d, size - d);
|
546 |
+
}
|
547 |
+
}
|
548 |
+
|
549 |
+
} // namespace at::vec
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/intrinsics.h
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#if defined(__GNUC__) && (defined(__x86_64__) || defined(__i386__))
|
3 |
+
/* GCC or clang-compatible compiler, targeting x86/x86-64 */
|
4 |
+
#include <x86intrin.h>
|
5 |
+
#elif defined(__clang__) && (defined(__ARM_NEON__) || defined(__aarch64__))
|
6 |
+
/* Clang-compatible compiler, targeting arm neon */
|
7 |
+
#include <arm_neon.h>
|
8 |
+
#elif defined(_MSC_VER)
|
9 |
+
/* Microsoft C/C++-compatible compiler */
|
10 |
+
#include <intrin.h>
|
11 |
+
#if _MSC_VER <= 1900
|
12 |
+
#define _mm256_extract_epi64(X, Y) (_mm_extract_epi64(_mm256_extractf128_si256(X, Y >> 1), Y % 2))
|
13 |
+
#define _mm256_extract_epi32(X, Y) (_mm_extract_epi32(_mm256_extractf128_si256(X, Y >> 2), Y % 4))
|
14 |
+
#define _mm256_extract_epi16(X, Y) (_mm_extract_epi16(_mm256_extractf128_si256(X, Y >> 3), Y % 8))
|
15 |
+
#define _mm256_extract_epi8(X, Y) (_mm_extract_epi8(_mm256_extractf128_si256(X, Y >> 4), Y % 16))
|
16 |
+
#endif
|
17 |
+
#elif defined(__GNUC__) && (defined(__ARM_NEON__) || defined(__aarch64__))
|
18 |
+
/* GCC-compatible compiler, targeting ARM with NEON */
|
19 |
+
#include <arm_neon.h>
|
20 |
+
#if defined (MISSING_ARM_VLD1)
|
21 |
+
#include <ATen/cpu/vec/vec256/missing_vld1_neon.h>
|
22 |
+
#elif defined (MISSING_ARM_VST1)
|
23 |
+
#include <ATen/cpu/vec/vec256/missing_vst1_neon.h>
|
24 |
+
#endif
|
25 |
+
#elif defined(__GNUC__) && defined(__IWMMXT__)
|
26 |
+
/* GCC-compatible compiler, targeting ARM with WMMX */
|
27 |
+
#include <mmintrin.h>
|
28 |
+
#elif defined(__s390x__)
|
29 |
+
// targets Z/architecture
|
30 |
+
// we will include vecintrin later
|
31 |
+
#elif (defined(__GNUC__) || defined(__xlC__)) && \
|
32 |
+
(defined(__VEC__) || defined(__ALTIVEC__))
|
33 |
+
/* XLC or GCC-compatible compiler, targeting PowerPC with VMX/VSX */
|
34 |
+
#include <altivec.h>
|
35 |
+
/* We need to undef those tokens defined by <altivec.h> to avoid conflicts
|
36 |
+
with the C++ types. => Can still use __bool/__vector */
|
37 |
+
#undef bool
|
38 |
+
#undef vector
|
39 |
+
#undef pixel
|
40 |
+
#elif defined(__GNUC__) && defined(__SPE__)
|
41 |
+
/* GCC-compatible compiler, targeting PowerPC with SPE */
|
42 |
+
#include <spe.h>
|
43 |
+
#endif
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec.h
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#if defined(CPU_CAPABILITY_AVX512)
|
4 |
+
#include <ATen/cpu/vec/vec512/vec512.h>
|
5 |
+
#else
|
6 |
+
#include <ATen/cpu/vec/vec256/vec256.h>
|
7 |
+
#endif
|
8 |
+
|
9 |
+
namespace at::vec {
|
10 |
+
// See Note [CPU_CAPABILITY namespace]
|
11 |
+
inline namespace CPU_CAPABILITY {
|
12 |
+
|
13 |
+
inline Vectorized<bool> convert_to_bool(Vectorized<int8_t> x) {
|
14 |
+
__at_align__ bool buffer[x.size()];
|
15 |
+
x.ne(Vectorized<int8_t>(0)).store(buffer);
|
16 |
+
|
17 |
+
Vectorized<bool> ret;
|
18 |
+
static_assert(x.size() == ret.size(), "");
|
19 |
+
std::memcpy(ret, buffer, ret.size() * sizeof(bool));
|
20 |
+
return ret;
|
21 |
+
}
|
22 |
+
|
23 |
+
template <>
|
24 |
+
inline Vectorized<bool> Vectorized<bool>::loadu(const void* ptr) {
|
25 |
+
// See NOTE [Loading boolean values]
|
26 |
+
return convert_to_bool(Vectorized<int8_t>::loadu(ptr));
|
27 |
+
}
|
28 |
+
|
29 |
+
template <>
|
30 |
+
inline Vectorized<bool> Vectorized<bool>::loadu(const void* ptr, int64_t count) {
|
31 |
+
// See NOTE [Loading boolean values]
|
32 |
+
return convert_to_bool(Vectorized<int8_t>::loadu(ptr, count));
|
33 |
+
}
|
34 |
+
|
35 |
+
template <typename VT>
|
36 |
+
struct VecHoldType { using hold_type = typename VT::value_type; };
|
37 |
+
|
38 |
+
template <>
|
39 |
+
struct VecHoldType<Vectorized<BFloat16>> { using hold_type = BFloat16; };
|
40 |
+
|
41 |
+
template <>
|
42 |
+
struct VecHoldType<Vectorized<Half>> {using hold_type = Half; };
|
43 |
+
|
44 |
+
template <typename VT>
|
45 |
+
using vechold_type = typename VecHoldType<VT>::hold_type;
|
46 |
+
|
47 |
+
}} // namespace at::vec::CPU_CAPABILITY
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/missing_vld1_neon.h
ADDED
@@ -0,0 +1,452 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* Workaround for missing vld1_*_x2 and vst1_*_x2 intrinsics in gcc-7. */
|
2 |
+
|
3 |
+
__extension__ extern __inline uint8x8x2_t
|
4 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
5 |
+
vld1_u8_x2 (const uint8_t *__a)
|
6 |
+
{
|
7 |
+
uint8x8x2_t ret;
|
8 |
+
asm volatile("ld1 {%S0.8b - %T0.8b}, %1" : "=w" (ret) : "Q"(*__a));
|
9 |
+
return ret;
|
10 |
+
}
|
11 |
+
|
12 |
+
__extension__ extern __inline int8x8x2_t
|
13 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
14 |
+
vld1_s8_x2 (const int8_t *__a)
|
15 |
+
{
|
16 |
+
int8x8x2_t ret;
|
17 |
+
asm volatile("ld1 {%S0.8b - %T0.8b}, %1" : "=w" (ret) : "Q"(*__a));
|
18 |
+
return ret;
|
19 |
+
}
|
20 |
+
|
21 |
+
__extension__ extern __inline uint16x4x2_t
|
22 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
23 |
+
vld1_u16_x2 (const uint16_t *__a)
|
24 |
+
{
|
25 |
+
uint16x4x2_t ret;
|
26 |
+
asm volatile("ld1 {%S0.4h - %T0.4h}, %1" : "=w" (ret) : "Q"(*__a));
|
27 |
+
return ret;
|
28 |
+
}
|
29 |
+
|
30 |
+
__extension__ extern __inline int16x4x2_t
|
31 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
32 |
+
vld1_s16_x2 (const int16_t *__a)
|
33 |
+
{
|
34 |
+
int16x4x2_t ret;
|
35 |
+
asm volatile("ld1 {%S0.4h - %T0.4h}, %1" : "=w" (ret) : "Q"(*__a));
|
36 |
+
return ret;
|
37 |
+
}
|
38 |
+
|
39 |
+
__extension__ extern __inline uint32x2x2_t
|
40 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
41 |
+
vld1_u32_x2 (const uint32_t *__a)
|
42 |
+
{
|
43 |
+
uint32x2x2_t ret;
|
44 |
+
asm volatile("ld1 {%S0.2s - %T0.2s}, %1" : "=w" (ret) : "Q"(*__a));
|
45 |
+
return ret;
|
46 |
+
}
|
47 |
+
|
48 |
+
__extension__ extern __inline int32x2x2_t
|
49 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
50 |
+
vld1_s32_x2 (const int32_t *__a)
|
51 |
+
{
|
52 |
+
int32x2x2_t ret;
|
53 |
+
asm volatile("ld1 {%S0.2s - %T0.2s}, %1" : "=w" (ret) : "Q"(*__a));
|
54 |
+
return ret;
|
55 |
+
}
|
56 |
+
|
57 |
+
__extension__ extern __inline uint64x1x2_t
|
58 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
59 |
+
vld1_u64_x2 (const uint64_t *__a)
|
60 |
+
{
|
61 |
+
uint64x1x2_t ret;
|
62 |
+
asm volatile("ld1 {%S0.1d - %T0.1d}, %1" : "=w" (ret) : "Q"(*__a));
|
63 |
+
return ret;
|
64 |
+
}
|
65 |
+
|
66 |
+
__extension__ extern __inline int64x1x2_t
|
67 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
68 |
+
vld1_s64_x2 (const int64_t *__a)
|
69 |
+
{
|
70 |
+
int64x1x2_t ret;
|
71 |
+
__builtin_aarch64_simd_oi __o;
|
72 |
+
asm volatile("ld1 {%S0.1d - %T0.1d}, %1" : "=w" (ret) : "Q"(*__a));
|
73 |
+
return ret;
|
74 |
+
}
|
75 |
+
|
76 |
+
__extension__ extern __inline float16x4x2_t
|
77 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
78 |
+
vld1_f16_x2 (const float16_t *__a)
|
79 |
+
{
|
80 |
+
float16x4x2_t ret;
|
81 |
+
asm volatile("ld1 {%S0.4h - %T0.4h}, %1" : "=w" (ret) : "Q"(*__a));
|
82 |
+
return ret;
|
83 |
+
}
|
84 |
+
|
85 |
+
__extension__ extern __inline float32x2x2_t
|
86 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
87 |
+
vld1_f32_x2 (const float32_t *__a)
|
88 |
+
{
|
89 |
+
float32x2x2_t ret;
|
90 |
+
asm volatile("ld1 {%S0.2s - %T0.2s}, %1" : "=w" (ret) : "Q"(*__a));
|
91 |
+
return ret;
|
92 |
+
}
|
93 |
+
|
94 |
+
__extension__ extern __inline float64x1x2_t
|
95 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
96 |
+
vld1_f64_x2 (const float64_t *__a)
|
97 |
+
{
|
98 |
+
float64x1x2_t ret;
|
99 |
+
asm volatile("ld1 {%S0.1d - %T0.1d}, %1" : "=w" (ret) : "Q"(*__a));
|
100 |
+
return ret;
|
101 |
+
}
|
102 |
+
|
103 |
+
__extension__ extern __inline poly8x8x2_t
|
104 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
105 |
+
vld1_p8_x2 (const poly8_t *__a)
|
106 |
+
{
|
107 |
+
poly8x8x2_t ret;
|
108 |
+
asm volatile("ld1 {%S0.8b - %T0.8b}, %1" : "=w" (ret) : "Q"(*__a));
|
109 |
+
return ret;
|
110 |
+
}
|
111 |
+
|
112 |
+
__extension__ extern __inline poly16x4x2_t
|
113 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
114 |
+
vld1_p16_x2 (const poly16_t *__a)
|
115 |
+
{
|
116 |
+
poly16x4x2_t ret;
|
117 |
+
asm volatile("ld1 {%S0.4h - %T0.4h}, %1" : "=w" (ret) : "Q"(*__a));
|
118 |
+
return ret;
|
119 |
+
}
|
120 |
+
|
121 |
+
__extension__ extern __inline poly64x1x2_t
|
122 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
123 |
+
vld1_p64_x2 (const poly64_t *__a)
|
124 |
+
{
|
125 |
+
poly64x1x2_t ret;
|
126 |
+
asm volatile("ld1 {%S0.1d - %T0.1d}, %1" : "=w" (ret) : "Q"(*__a));
|
127 |
+
return ret;
|
128 |
+
}
|
129 |
+
|
130 |
+
__extension__ extern __inline uint8x16x2_t
|
131 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
132 |
+
vld1q_u8_x2 (const uint8_t *__a)
|
133 |
+
{
|
134 |
+
uint8x16x2_t ret;
|
135 |
+
asm volatile("ld1 {%S0.16b - %T0.16b}, %1" : "=w" (ret) : "Q"(*__a));
|
136 |
+
return ret;
|
137 |
+
}
|
138 |
+
|
139 |
+
__extension__ extern __inline int8x16x2_t
|
140 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
141 |
+
vld1q_s8_x2 (const int8_t *__a)
|
142 |
+
{
|
143 |
+
int8x16x2_t ret;
|
144 |
+
asm volatile("ld1 {%S0.16b - %T0.16b}, %1" : "=w" (ret) : "Q"(*__a));
|
145 |
+
return ret;
|
146 |
+
}
|
147 |
+
|
148 |
+
__extension__ extern __inline uint16x8x2_t
|
149 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
150 |
+
vld1q_u16_x2 (const uint16_t *__a)
|
151 |
+
{
|
152 |
+
uint16x8x2_t ret;
|
153 |
+
asm volatile("ld1 {%S0.8h - %T0.8h}, %1" : "=w" (ret) : "Q"(*__a));
|
154 |
+
return ret;
|
155 |
+
}
|
156 |
+
|
157 |
+
__extension__ extern __inline int16x8x2_t
|
158 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
159 |
+
vld1q_s16_x2 (const int16_t *__a)
|
160 |
+
{
|
161 |
+
int16x8x2_t ret;
|
162 |
+
asm volatile("ld1 {%S0.8h - %T0.8h}, %1" : "=w" (ret) : "Q"(*__a));
|
163 |
+
return ret;
|
164 |
+
}
|
165 |
+
|
166 |
+
__extension__ extern __inline uint32x4x2_t
|
167 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
168 |
+
vld1q_u32_x2 (const uint32_t *__a)
|
169 |
+
{
|
170 |
+
uint32x4x2_t ret;
|
171 |
+
asm volatile("ld1 {%S0.4s - %T0.4s}, %1" : "=w" (ret) : "Q"(*__a));
|
172 |
+
return ret;
|
173 |
+
}
|
174 |
+
|
175 |
+
__extension__ extern __inline int32x4x2_t
|
176 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
177 |
+
vld1q_s32_x2 (const int32_t *__a)
|
178 |
+
{
|
179 |
+
int32x4x2_t ret;
|
180 |
+
asm volatile("ld1 {%S0.4s - %T0.4s}, %1" : "=w" (ret) : "Q"(*__a));
|
181 |
+
return ret;
|
182 |
+
}
|
183 |
+
|
184 |
+
__extension__ extern __inline uint64x2x2_t
|
185 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
186 |
+
vld1q_u64_x2 (const uint64_t *__a)
|
187 |
+
{
|
188 |
+
uint64x2x2_t ret;
|
189 |
+
asm volatile("ld1 {%S0.2d - %T0.2d}, %1" : "=w" (ret) : "Q"(*__a));
|
190 |
+
return ret;
|
191 |
+
}
|
192 |
+
|
193 |
+
__extension__ extern __inline int64x2x2_t
|
194 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
195 |
+
vld1q_s64_x2 (const int64_t *__a)
|
196 |
+
{
|
197 |
+
int64x2x2_t ret;
|
198 |
+
asm volatile("ld1 {%S0.2d - %T0.2d}, %1" : "=w" (ret) : "Q"(*__a));
|
199 |
+
return ret;
|
200 |
+
}
|
201 |
+
|
202 |
+
__extension__ extern __inline float16x8x2_t
|
203 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
204 |
+
vld1q_f16_x2 (const float16_t *__a)
|
205 |
+
{
|
206 |
+
float16x8x2_t ret;
|
207 |
+
asm volatile("ld1 {%S0.8h - %T0.8h}, %1" : "=w" (ret) : "Q"(*__a));
|
208 |
+
return ret;
|
209 |
+
}
|
210 |
+
|
211 |
+
__extension__ extern __inline float32x4x2_t
|
212 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
213 |
+
vld1q_f32_x2 (const float32_t *__a)
|
214 |
+
{
|
215 |
+
float32x4x2_t ret;
|
216 |
+
asm volatile("ld1 {%S0.4s - %T0.4s}, %1" : "=w" (ret) : "Q"(*__a));
|
217 |
+
return ret;
|
218 |
+
}
|
219 |
+
|
220 |
+
__extension__ extern __inline float64x2x2_t
|
221 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
222 |
+
vld1q_f64_x2 (const float64_t *__a)
|
223 |
+
{
|
224 |
+
float64x2x2_t ret;
|
225 |
+
asm volatile("ld1 {%S0.2d - %T0.2d}, %1" : "=w" (ret) : "Q"(*__a));
|
226 |
+
return ret;
|
227 |
+
}
|
228 |
+
|
229 |
+
__extension__ extern __inline poly8x16x2_t
|
230 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
231 |
+
vld1q_p8_x2 (const poly8_t *__a)
|
232 |
+
{
|
233 |
+
poly8x16x2_t ret;
|
234 |
+
asm volatile("ld1 {%S0.16b - %T0.16b}, %1" : "=w" (ret) : "Q"(*__a));
|
235 |
+
return ret;
|
236 |
+
}
|
237 |
+
|
238 |
+
__extension__ extern __inline poly16x8x2_t
|
239 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
240 |
+
vld1q_p16_x2 (const poly16_t *__a)
|
241 |
+
{
|
242 |
+
poly16x8x2_t ret;
|
243 |
+
asm volatile("ld1 {%S0.8h - %T0.8h}, %1" : "=w" (ret) : "Q"(*__a));
|
244 |
+
return ret;
|
245 |
+
}
|
246 |
+
|
247 |
+
__extension__ extern __inline poly64x2x2_t
|
248 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
249 |
+
vld1q_p64_x2 (const poly64_t *__a)
|
250 |
+
{
|
251 |
+
poly64x2x2_t ret;
|
252 |
+
asm volatile("ld1 {%S0.2d - %T0.2d}, %1" : "=w" (ret) : "Q"(*__a));
|
253 |
+
return ret;
|
254 |
+
}
|
255 |
+
|
256 |
+
/* vst1x2 */
|
257 |
+
|
258 |
+
__extension__ extern __inline void
|
259 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
260 |
+
vst1_s64_x2 (int64_t * __a, int64x1x2_t val)
|
261 |
+
{
|
262 |
+
asm volatile("st1 {%S1.1d - %T1.1d}, %0" : "=Q" (*__a) : "w" (val));
|
263 |
+
}
|
264 |
+
|
265 |
+
__extension__ extern __inline void
|
266 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
267 |
+
vst1_u64_x2 (uint64_t * __a, uint64x1x2_t val)
|
268 |
+
{
|
269 |
+
asm volatile("st1 {%S1.1d - %T1.1d}, %0" : "=Q" (*__a) : "w" (val));
|
270 |
+
}
|
271 |
+
|
272 |
+
__extension__ extern __inline void
|
273 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
274 |
+
vst1_f64_x2 (float64_t * __a, float64x1x2_t val)
|
275 |
+
{
|
276 |
+
asm volatile("st1 {%S1.1d - %T1.1d}, %0" : "=Q" (*__a) : "w" (val));
|
277 |
+
}
|
278 |
+
|
279 |
+
__extension__ extern __inline void
|
280 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
281 |
+
vst1_s8_x2 (int8_t * __a, int8x8x2_t val)
|
282 |
+
{
|
283 |
+
asm volatile("st1 {%S1.8b - %T1.8b}, %0" : "=Q" (*__a) : "w" (val));
|
284 |
+
}
|
285 |
+
|
286 |
+
__extension__ extern __inline void
|
287 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
288 |
+
vst1_p8_x2 (poly8_t * __a, poly8x8x2_t val)
|
289 |
+
{
|
290 |
+
asm volatile("st1 {%S1.8b - %T1.8b}, %0" : "=Q" (*__a) : "w" (val));
|
291 |
+
}
|
292 |
+
|
293 |
+
__extension__ extern __inline void
|
294 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
295 |
+
vst1_s16_x2 (int16_t * __a, int16x4x2_t val)
|
296 |
+
{
|
297 |
+
asm volatile("st1 {%S1.4h - %T1.4h}, %0" : "=Q" (*__a) : "w" (val));
|
298 |
+
}
|
299 |
+
|
300 |
+
__extension__ extern __inline void
|
301 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
302 |
+
vst1_p16_x2 (poly16_t * __a, poly16x4x2_t val)
|
303 |
+
{
|
304 |
+
asm volatile("st1 {%S1.4h - %T1.4h}, %0" : "=Q" (*__a) : "w" (val));
|
305 |
+
}
|
306 |
+
|
307 |
+
__extension__ extern __inline void
|
308 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
309 |
+
vst1_s32_x2 (int32_t * __a, int32x2x2_t val)
|
310 |
+
{
|
311 |
+
asm volatile("st1 {%S1.2s - %T1.2s}, %0" : "=Q" (*__a) : "w" (val));
|
312 |
+
}
|
313 |
+
|
314 |
+
__extension__ extern __inline void
|
315 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
316 |
+
vst1_u8_x2 (uint8_t * __a, uint8x8x2_t val)
|
317 |
+
{
|
318 |
+
asm volatile("st1 {%S1.8b - %T1.8b}, %0" : "=Q" (*__a) : "w" (val));
|
319 |
+
}
|
320 |
+
|
321 |
+
__extension__ extern __inline void
|
322 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
323 |
+
vst1_u16_x2 (uint16_t * __a, uint16x4x2_t val)
|
324 |
+
{
|
325 |
+
asm volatile("st1 {%S1.4h - %T1.4h}, %0" : "=Q" (*__a) : "w" (val));
|
326 |
+
}
|
327 |
+
|
328 |
+
__extension__ extern __inline void
|
329 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
330 |
+
vst1_u32_x2 (uint32_t * __a, uint32x2x2_t val)
|
331 |
+
{
|
332 |
+
asm volatile("st1 {%S1.2s - %T1.2s}, %0" : "=Q" (*__a) : "w" (val));
|
333 |
+
}
|
334 |
+
|
335 |
+
__extension__ extern __inline void
|
336 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
337 |
+
vst1_f16_x2 (float16_t * __a, float16x4x2_t val)
|
338 |
+
{
|
339 |
+
asm volatile("st1 {%S1.4h - %T1.4h}, %0" : "=Q" (*__a) : "w" (val));
|
340 |
+
}
|
341 |
+
|
342 |
+
__extension__ extern __inline void
|
343 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
344 |
+
vst1_f32_x2 (float32_t * __a, float32x2x2_t val)
|
345 |
+
{
|
346 |
+
asm volatile("st1 {%S1.2s - %T1.2s}, %0" : "=Q" (*__a) : "w" (val));
|
347 |
+
}
|
348 |
+
|
349 |
+
__extension__ extern __inline void
|
350 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
351 |
+
vst1_p64_x2 (poly64_t * __a, poly64x1x2_t val)
|
352 |
+
{
|
353 |
+
asm volatile("st1 {%S1.1d - %T1.1d}, %0" : "=Q" (*__a) : "w" (val));
|
354 |
+
}
|
355 |
+
|
356 |
+
__extension__ extern __inline void
|
357 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
358 |
+
vst1q_s8_x2 (int8_t * __a, int8x16x2_t val)
|
359 |
+
{
|
360 |
+
asm volatile("st1 {%S1.16b - %T1.16b}, %0" : "=Q" (*__a) : "w" (val));
|
361 |
+
}
|
362 |
+
|
363 |
+
__extension__ extern __inline void
|
364 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
365 |
+
vst1q_p8_x2 (poly8_t * __a, poly8x16x2_t val)
|
366 |
+
{
|
367 |
+
asm volatile("st1 {%S1.16b - %T1.16b}, %0" : "=Q" (*__a) : "w" (val));
|
368 |
+
}
|
369 |
+
|
370 |
+
__extension__ extern __inline void
|
371 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
372 |
+
vst1q_s16_x2 (int16_t * __a, int16x8x2_t val)
|
373 |
+
{
|
374 |
+
asm volatile("st1 {%S1.8h - %T1.8h}, %0" : "=Q" (*__a) : "w" (val));
|
375 |
+
}
|
376 |
+
|
377 |
+
__extension__ extern __inline void
|
378 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
379 |
+
vst1q_p16_x2 (poly16_t * __a, poly16x8x2_t val)
|
380 |
+
{
|
381 |
+
asm volatile("st1 {%S1.8h - %T1.8h}, %0" : "=Q" (*__a) : "w" (val));
|
382 |
+
}
|
383 |
+
|
384 |
+
__extension__ extern __inline void
|
385 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
386 |
+
vst1q_s32_x2 (int32_t * __a, int32x4x2_t val)
|
387 |
+
{
|
388 |
+
asm volatile("st1 {%S1.4s - %T1.4s}, %0" : "=Q" (*__a) : "w" (val));
|
389 |
+
}
|
390 |
+
|
391 |
+
__extension__ extern __inline void
|
392 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
393 |
+
vst1q_s64_x2 (int64_t * __a, int64x2x2_t val)
|
394 |
+
{
|
395 |
+
asm volatile("st1 {%S1.2d - %T1.2d}, %0" : "=Q" (*__a) : "w" (val));
|
396 |
+
}
|
397 |
+
|
398 |
+
__extension__ extern __inline void
|
399 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
400 |
+
vst1q_u8_x2 (uint8_t * __a, uint8x16x2_t val)
|
401 |
+
{
|
402 |
+
asm volatile("st1 {%S1.16b - %T1.16b}, %0" : "=Q" (*__a) : "w" (val));
|
403 |
+
}
|
404 |
+
|
405 |
+
__extension__ extern __inline void
|
406 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
407 |
+
vst1q_u16_x2 (uint16_t * __a, uint16x8x2_t val)
|
408 |
+
{
|
409 |
+
asm volatile("st1 {%S1.8h - %T1.8h}, %0" : "=Q" (*__a) : "w" (val));
|
410 |
+
}
|
411 |
+
|
412 |
+
__extension__ extern __inline void
|
413 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
414 |
+
vst1q_u32_x2 (uint32_t * __a, uint32x4x2_t val)
|
415 |
+
{
|
416 |
+
asm volatile("st1 {%S1.4s - %T1.4s}, %0" : "=Q" (*__a) : "w" (val));
|
417 |
+
}
|
418 |
+
|
419 |
+
__extension__ extern __inline void
|
420 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
421 |
+
vst1q_u64_x2 (uint64_t * __a, uint64x2x2_t val)
|
422 |
+
{
|
423 |
+
asm volatile("st1 {%S1.2d - %T1.2d}, %0" : "=Q" (*__a) : "w" (val));
|
424 |
+
}
|
425 |
+
|
426 |
+
__extension__ extern __inline void
|
427 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
428 |
+
vst1q_f16_x2 (float16_t * __a, float16x8x2_t val)
|
429 |
+
{
|
430 |
+
asm volatile("st1 {%S1.8h - %T1.8h}, %0" : "=Q" (*__a) : "w" (val));
|
431 |
+
}
|
432 |
+
|
433 |
+
__extension__ extern __inline void
|
434 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
435 |
+
vst1q_f32_x2 (float32_t * __a, float32x4x2_t val)
|
436 |
+
{
|
437 |
+
asm volatile("st1 {%S1.4s - %T1.4s}, %0" : "=Q" (*__a) : "w" (val));
|
438 |
+
}
|
439 |
+
|
440 |
+
__extension__ extern __inline void
|
441 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
442 |
+
vst1q_f64_x2 (float64_t * __a, float64x2x2_t val)
|
443 |
+
{
|
444 |
+
asm volatile("st1 {%S1.2d - %T1.2d}, %0" : "=Q" (*__a) : "w" (val));
|
445 |
+
}
|
446 |
+
|
447 |
+
__extension__ extern __inline void
|
448 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
449 |
+
vst1q_p64_x2 (poly64_t * __a, poly64x2x2_t val)
|
450 |
+
{
|
451 |
+
asm volatile("st1 {%S1.2d - %T1.2d}, %0" : "=Q" (*__a) : "w" (val));
|
452 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/missing_vst1_neon.h
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* Workaround for missing vst1q_f32_x2 in gcc-8. */
|
2 |
+
|
3 |
+
__extension__ extern __inline void
|
4 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
5 |
+
vst1q_f32_x2 (float32_t * __a, float32x4x2_t val)
|
6 |
+
{
|
7 |
+
asm volatile("st1 {%S1.4s - %T1.4s}, %0" : "=Q" (*__a) : "w" (val));
|
8 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256.h
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
7 |
+
|
8 |
+
#include <ATen/cpu/vec/vec_base.h>
|
9 |
+
#if !(defined(__VSX__) || defined(CPU_CAPABILITY_VSX) || defined(CPU_CAPABILITY_ZVECTOR))
|
10 |
+
#include <ATen/cpu/vec/vec256/vec256_float.h>
|
11 |
+
#include <ATen/cpu/vec/vec256/vec256_float_neon.h>
|
12 |
+
#include <ATen/cpu/vec/vec256/vec256_bfloat16.h>
|
13 |
+
#include <ATen/cpu/vec/vec256/vec256_double.h>
|
14 |
+
#include <ATen/cpu/vec/vec256/vec256_int.h>
|
15 |
+
#include <ATen/cpu/vec/vec256/vec256_qint.h>
|
16 |
+
#include <ATen/cpu/vec/vec256/vec256_complex_float.h>
|
17 |
+
#include <ATen/cpu/vec/vec256/vec256_complex_double.h>
|
18 |
+
#elif defined(__VSX__) || defined(CPU_CAPABILITY_VSX)
|
19 |
+
#include <ATen/cpu/vec/vec256/vsx/vec256_common_vsx.h>
|
20 |
+
#else
|
21 |
+
#include <ATen/cpu/vec/vec256/zarch/vec256_zarch.h>
|
22 |
+
#include <ATen/cpu/vec/vec256/vec256_bfloat16.h>
|
23 |
+
#endif
|
24 |
+
|
25 |
+
#include <algorithm>
|
26 |
+
#include <cstddef>
|
27 |
+
#include <cstdint>
|
28 |
+
#include <cstring>
|
29 |
+
#include <ostream>
|
30 |
+
|
31 |
+
namespace at::vec {
|
32 |
+
|
33 |
+
// Note [CPU_CAPABILITY namespace]
|
34 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
35 |
+
// This header, and all of its subheaders, will be compiled with
|
36 |
+
// different architecture flags for each supported set of vector
|
37 |
+
// intrinsics. So we need to make sure they aren't inadvertently
|
38 |
+
// linked together. We do this by declaring objects in an `inline
|
39 |
+
// namespace` which changes the name mangling, but can still be
|
40 |
+
// accessed as `at::vec`.
|
41 |
+
inline namespace CPU_CAPABILITY {
|
42 |
+
|
43 |
+
inline std::ostream& operator<<(std::ostream& stream, const c10::qint32& val) {
|
44 |
+
stream << val.val_;
|
45 |
+
return stream;
|
46 |
+
}
|
47 |
+
inline std::ostream& operator<<(std::ostream& stream, const c10::qint8& val) {
|
48 |
+
stream << static_cast<int>(val.val_);
|
49 |
+
return stream;
|
50 |
+
}
|
51 |
+
inline std::ostream& operator<<(std::ostream& stream, const c10::quint8& val) {
|
52 |
+
stream << static_cast<unsigned int>(val.val_);
|
53 |
+
return stream;
|
54 |
+
}
|
55 |
+
|
56 |
+
template <typename T>
|
57 |
+
std::ostream& operator<<(std::ostream& stream, const Vectorized<T>& vec) {
|
58 |
+
T buf[Vectorized<T>::size()];
|
59 |
+
vec.store(buf);
|
60 |
+
stream << "vec[";
|
61 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
62 |
+
if (i != 0) {
|
63 |
+
stream << ", ";
|
64 |
+
}
|
65 |
+
stream << buf[i];
|
66 |
+
}
|
67 |
+
stream << "]";
|
68 |
+
return stream;
|
69 |
+
}
|
70 |
+
|
71 |
+
|
72 |
+
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
73 |
+
|
74 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CAST (AVX2) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
75 |
+
|
76 |
+
template<>
|
77 |
+
inline Vectorized<float> cast<float, double>(const Vectorized<double>& src) {
|
78 |
+
return _mm256_castpd_ps(src);
|
79 |
+
}
|
80 |
+
|
81 |
+
template<>
|
82 |
+
inline Vectorized<double> cast<double, float>(const Vectorized<float>& src) {
|
83 |
+
return _mm256_castps_pd(src);
|
84 |
+
}
|
85 |
+
|
86 |
+
template<>
|
87 |
+
inline Vectorized<float> cast<float, int32_t>(const Vectorized<int32_t>& src) {
|
88 |
+
return _mm256_castsi256_ps(src);
|
89 |
+
}
|
90 |
+
|
91 |
+
template<>
|
92 |
+
inline Vectorized<double> cast<double, int64_t>(const Vectorized<int64_t>& src) {
|
93 |
+
return _mm256_castsi256_pd(src);
|
94 |
+
}
|
95 |
+
|
96 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ GATHER ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
97 |
+
|
98 |
+
template<int64_t scale = 1>
|
99 |
+
std::enable_if_t<scale == 1 || scale == 2 || scale == 4 || scale == 8, Vectorized<double>>
|
100 |
+
inline gather(const double* base_addr, const Vectorized<int64_t>& vindex) {
|
101 |
+
return _mm256_i64gather_pd(base_addr, vindex, scale);
|
102 |
+
}
|
103 |
+
|
104 |
+
template<int64_t scale = 1>
|
105 |
+
std::enable_if_t<scale == 1 || scale == 2 || scale == 4 || scale == 8, Vectorized<float>>
|
106 |
+
inline gather(const float* base_addr, const Vectorized<int32_t>& vindex) {
|
107 |
+
return _mm256_i32gather_ps(base_addr, vindex, scale);
|
108 |
+
}
|
109 |
+
|
110 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MASK GATHER ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
111 |
+
|
112 |
+
template<int64_t scale = 1>
|
113 |
+
std::enable_if_t<scale == 1 || scale == 2 || scale == 4 || scale == 8, Vectorized<double>>
|
114 |
+
inline mask_gather(const Vectorized<double>& src, const double* base_addr,
|
115 |
+
const Vectorized<int64_t>& vindex, Vectorized<double>& mask) {
|
116 |
+
return _mm256_mask_i64gather_pd(src, base_addr, vindex, mask, scale);
|
117 |
+
}
|
118 |
+
|
119 |
+
template<int64_t scale = 1>
|
120 |
+
std::enable_if_t<scale == 1 || scale == 2 || scale == 4 || scale == 8, Vectorized<float>>
|
121 |
+
inline mask_gather(const Vectorized<float>& src, const float* base_addr,
|
122 |
+
const Vectorized<int32_t>& vindex, Vectorized<float>& mask) {
|
123 |
+
return _mm256_mask_i32gather_ps(src, base_addr, vindex, mask, scale);
|
124 |
+
}
|
125 |
+
|
126 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CONVERT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
127 |
+
|
128 |
+
// Only works for inputs in the range: [-2^51, 2^51]
|
129 |
+
// From: https://stackoverflow.com/a/41148578
|
130 |
+
template<>
|
131 |
+
Vectorized<int64_t>
|
132 |
+
inline convert_to_int_of_same_size<double>(const Vectorized<double> &src) {
|
133 |
+
auto x = _mm256_add_pd(src, _mm256_set1_pd(0x0018000000000000));
|
134 |
+
return _mm256_sub_epi64(
|
135 |
+
_mm256_castpd_si256(x),
|
136 |
+
_mm256_castpd_si256(_mm256_set1_pd(0x0018000000000000))
|
137 |
+
);
|
138 |
+
}
|
139 |
+
|
140 |
+
template<>
|
141 |
+
Vectorized<int32_t>
|
142 |
+
inline convert_to_int_of_same_size<float>(const Vectorized<float> &src) {
|
143 |
+
return _mm256_cvttps_epi32(src);
|
144 |
+
}
|
145 |
+
|
146 |
+
// Only works for inputs in the range: [-2^51, 2^51]
|
147 |
+
// From: https://stackoverflow.com/a/41148578
|
148 |
+
template<>
|
149 |
+
Vectorized<double>
|
150 |
+
inline convert_to_fp_of_same_size<double>(const Vectorized<int64_t> &src) {
|
151 |
+
auto x = _mm256_add_epi64(src, _mm256_castpd_si256(_mm256_set1_pd(0x0018000000000000)));
|
152 |
+
return _mm256_sub_pd(
|
153 |
+
_mm256_castsi256_pd(x),
|
154 |
+
_mm256_set1_pd(0x0018000000000000)
|
155 |
+
);
|
156 |
+
}
|
157 |
+
|
158 |
+
template<>
|
159 |
+
Vectorized<float>
|
160 |
+
inline convert_to_fp_of_same_size<float>(const Vectorized<int32_t> &src) {
|
161 |
+
return _mm256_cvtepi32_ps(src);
|
162 |
+
}
|
163 |
+
|
164 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ INTERLEAVE ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
165 |
+
|
166 |
+
template <>
|
167 |
+
std::pair<Vectorized<double>, Vectorized<double>>
|
168 |
+
inline interleave2<double>(const Vectorized<double>& a, const Vectorized<double>& b) {
|
169 |
+
// inputs:
|
170 |
+
// a = {a0, a1, a3, a3}
|
171 |
+
// b = {b0, b1, b2, b3}
|
172 |
+
|
173 |
+
// swap lanes:
|
174 |
+
// a_swapped = {a0, a1, b0, b1}
|
175 |
+
// b_swapped = {a2, a3, b2, b3}
|
176 |
+
auto a_swapped = _mm256_permute2f128_pd(a, b, 0b0100000); // 0, 2. 4 bits apart
|
177 |
+
auto b_swapped = _mm256_permute2f128_pd(a, b, 0b0110001); // 1, 3. 4 bits apart
|
178 |
+
|
179 |
+
// group cols crossing lanes:
|
180 |
+
// return {a0, b0, a1, b1}
|
181 |
+
// {a2, b2, a3, b3}
|
182 |
+
return std::make_pair(_mm256_permute4x64_pd(a_swapped, 0b11011000), // 0, 2, 1, 3
|
183 |
+
_mm256_permute4x64_pd(b_swapped, 0b11011000)); // 0, 2, 1, 3
|
184 |
+
}
|
185 |
+
|
186 |
+
template <>
|
187 |
+
std::pair<Vectorized<float>, Vectorized<float>>
|
188 |
+
inline interleave2<float>(const Vectorized<float>& a, const Vectorized<float>& b) {
|
189 |
+
// inputs:
|
190 |
+
// a = {a0, a1, a2, a3, a4, a5, a6, a7}
|
191 |
+
// b = {b0, b1, b2, b3, b4, b5, b6, b7}
|
192 |
+
|
193 |
+
// swap lanes:
|
194 |
+
// a_swapped = {a0, a1, a2, a3, b0, b1, b2, b3}
|
195 |
+
// b_swapped = {a4, a5, a6, a7, b4, b5, b6, b7}
|
196 |
+
// TODO: can we support caching this?
|
197 |
+
auto a_swapped = _mm256_permute2f128_ps(a, b, 0b0100000); // 0, 2. 4 bits apart
|
198 |
+
auto b_swapped = _mm256_permute2f128_ps(a, b, 0b0110001); // 1, 3. 4 bits apart
|
199 |
+
|
200 |
+
// group cols crossing lanes:
|
201 |
+
// return {a0, b0, a1, b1, a2, b2, a3, b3}
|
202 |
+
// {a4, b4, a5, b5, a6, b6, a7, b7}
|
203 |
+
const __m256i group_ctrl = _mm256_setr_epi32(0, 4, 1, 5, 2, 6, 3, 7);
|
204 |
+
return std::make_pair(_mm256_permutevar8x32_ps(a_swapped, group_ctrl),
|
205 |
+
_mm256_permutevar8x32_ps(b_swapped, group_ctrl));
|
206 |
+
}
|
207 |
+
|
208 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEINTERLEAVE ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
209 |
+
|
210 |
+
template <>
|
211 |
+
std::pair<Vectorized<double>, Vectorized<double>>
|
212 |
+
inline deinterleave2<double>(const Vectorized<double>& a, const Vectorized<double>& b) {
|
213 |
+
// inputs:
|
214 |
+
// a = {a0, b0, a1, b1}
|
215 |
+
// b = {a2, b2, a3, b3}
|
216 |
+
|
217 |
+
// group cols crossing lanes:
|
218 |
+
// a_grouped = {a0, a1, b0, b1}
|
219 |
+
// b_grouped = {a2, a3, b2, b3}
|
220 |
+
auto a_grouped = _mm256_permute4x64_pd(a, 0b11011000); // 0, 2, 1, 3
|
221 |
+
auto b_grouped = _mm256_permute4x64_pd(b, 0b11011000); // 0, 2, 1, 3
|
222 |
+
|
223 |
+
// swap lanes:
|
224 |
+
// return {a0, a1, a2, a3}
|
225 |
+
// {b0, b1, b2, b3}
|
226 |
+
return std::make_pair(_mm256_permute2f128_pd(a_grouped, b_grouped, 0b0100000), // 0, 2. 4 bits apart
|
227 |
+
_mm256_permute2f128_pd(a_grouped, b_grouped, 0b0110001)); // 1, 3. 4 bits apart
|
228 |
+
}
|
229 |
+
|
230 |
+
template <>
|
231 |
+
std::pair<Vectorized<float>, Vectorized<float>>
|
232 |
+
inline deinterleave2<float>(const Vectorized<float>& a, const Vectorized<float>& b) {
|
233 |
+
// inputs:
|
234 |
+
// a = {a0, b0, a1, b1, a2, b2, a3, b3}
|
235 |
+
// b = {a4, b4, a5, b5, a6, b6, a7, b7}
|
236 |
+
|
237 |
+
// group cols crossing lanes:
|
238 |
+
// a_grouped = {a0, a1, a2, a3, b0, b1, b2, b3}
|
239 |
+
// b_grouped = {a4, a5, a6, a7, b4, b5, b6, b7}
|
240 |
+
// TODO: can we support caching this?
|
241 |
+
const __m256i group_ctrl = _mm256_setr_epi32(0, 2, 4, 6, 1, 3, 5, 7);
|
242 |
+
auto a_grouped = _mm256_permutevar8x32_ps(a, group_ctrl);
|
243 |
+
auto b_grouped = _mm256_permutevar8x32_ps(b, group_ctrl);
|
244 |
+
|
245 |
+
// swap lanes:
|
246 |
+
// return {a0, a1, a2, a3, a4, a5, a6, a7}
|
247 |
+
// {b0, b1, b2, b3, b4, b5, b6, b7}
|
248 |
+
return std::make_pair(_mm256_permute2f128_ps(a_grouped, b_grouped, 0b0100000), // 0, 2. 4 bits apart
|
249 |
+
_mm256_permute2f128_ps(a_grouped, b_grouped, 0b0110001)); // 1, 3. 4 bits apart
|
250 |
+
}
|
251 |
+
|
252 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ FLIP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
253 |
+
|
254 |
+
template<>
|
255 |
+
inline Vectorized<float> flip(const Vectorized<float> & v) {
|
256 |
+
const __m256i mask_float = _mm256_set_epi32(0, 1, 2, 3, 4, 5, 6, 7);
|
257 |
+
return _mm256_permutevar8x32_ps(v, mask_float);
|
258 |
+
}
|
259 |
+
|
260 |
+
template<>
|
261 |
+
inline Vectorized<double> flip(const Vectorized<double> & v) {
|
262 |
+
return _mm256_permute4x64_pd(v, 27); // 27 == _MM_SHUFFLE(0, 1, 2, 3)
|
263 |
+
}
|
264 |
+
|
265 |
+
template<>
|
266 |
+
inline Vectorized<int64_t> flip(const Vectorized<int64_t> & v) {
|
267 |
+
return _mm256_permute4x64_epi64(v, 27); // 27 == _MM_SHUFFLE(0, 1, 2, 3)
|
268 |
+
}
|
269 |
+
|
270 |
+
template<>
|
271 |
+
inline Vectorized<int32_t> flip(const Vectorized<int32_t> & v) {
|
272 |
+
const __m256i mask_int32 = _mm256_set_epi32(0, 1, 2, 3, 4, 5, 6, 7);
|
273 |
+
return _mm256_permutevar8x32_epi32(v, mask_int32);
|
274 |
+
}
|
275 |
+
|
276 |
+
template<>
|
277 |
+
inline Vectorized<int16_t> flip(const Vectorized<int16_t> & v) {
|
278 |
+
const __m256i mask = _mm256_set_epi8(
|
279 |
+
1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14,
|
280 |
+
1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14
|
281 |
+
);
|
282 |
+
auto reversed = _mm256_shuffle_epi8(v, mask);
|
283 |
+
return _mm256_permute2x128_si256(reversed, reversed, 1);
|
284 |
+
}
|
285 |
+
|
286 |
+
inline __m256i flip8(const __m256i & v) {
|
287 |
+
const __m256i mask_int8 = _mm256_set_epi8(
|
288 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
289 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
|
290 |
+
);
|
291 |
+
auto reversed = _mm256_shuffle_epi8(v, mask_int8);
|
292 |
+
return _mm256_permute2x128_si256(reversed, reversed, 1);
|
293 |
+
}
|
294 |
+
|
295 |
+
template<>
|
296 |
+
inline Vectorized<int8_t> flip(const Vectorized<int8_t> & v) {
|
297 |
+
return flip8(v);
|
298 |
+
}
|
299 |
+
|
300 |
+
template<>
|
301 |
+
inline Vectorized<uint8_t> flip(const Vectorized<uint8_t> & v) {
|
302 |
+
return flip8(v);
|
303 |
+
}
|
304 |
+
|
305 |
+
#endif // (defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
306 |
+
|
307 |
+
}} // namepsace at::vec::CPU_CAPABILITY
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_bfloat16.h
ADDED
@@ -0,0 +1,1096 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
7 |
+
#include <ATen/cpu/vec/vec_base.h>
|
8 |
+
#include <c10/util/irange.h>
|
9 |
+
|
10 |
+
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
11 |
+
#include <sleef.h>
|
12 |
+
#endif
|
13 |
+
|
14 |
+
#pragma GCC diagnostic push
|
15 |
+
#pragma GCC diagnostic ignored "-Wignored-qualifiers"
|
16 |
+
|
17 |
+
namespace at::vec {
|
18 |
+
// See Note [CPU_CAPABILITY namespace]
|
19 |
+
inline namespace CPU_CAPABILITY {
|
20 |
+
|
21 |
+
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
22 |
+
|
23 |
+
// bfloat16 conversion
|
24 |
+
static inline void cvtbf16_fp32(const __m128i& a, __m256& o) {
|
25 |
+
o = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(a), 16));
|
26 |
+
}
|
27 |
+
|
28 |
+
static inline void cvtbf16_fp32(const __m256i& a, __m256& o1, __m256& o2) {
|
29 |
+
__m128i lo = _mm256_extractf128_si256(a, 0);
|
30 |
+
__m128i hi = _mm256_extractf128_si256(a, 1);
|
31 |
+
cvtbf16_fp32(lo, o1);
|
32 |
+
cvtbf16_fp32(hi, o2);
|
33 |
+
}
|
34 |
+
static inline __m256i cvtfp32_bf16(const __m256& a, const __m256& b) {
|
35 |
+
__m256i lo = _mm256_castps_si256(a);
|
36 |
+
__m256i hi = _mm256_castps_si256(b);
|
37 |
+
__m256i nan = _mm256_set1_epi32(0xffff);
|
38 |
+
__m256i mask_lo = _mm256_castps_si256(_mm256_cmp_ps(a, a, _CMP_ORD_Q));
|
39 |
+
__m256i mask_hi = _mm256_castps_si256(_mm256_cmp_ps(b, b, _CMP_ORD_Q));
|
40 |
+
__m256i ones = _mm256_set1_epi32(0x1);
|
41 |
+
__m256i vec_bias = _mm256_set1_epi32(0x7fff);
|
42 |
+
// uint32_t lsb = (input >> 16) & 1;
|
43 |
+
auto t_lo = _mm256_and_si256(_mm256_srli_epi32(lo, 16), ones);
|
44 |
+
auto t_hi = _mm256_and_si256(_mm256_srli_epi32(hi, 16), ones);
|
45 |
+
// uint32_t rounding_bias = 0x7fff + lsb;
|
46 |
+
t_lo = _mm256_add_epi32(t_lo, vec_bias);
|
47 |
+
t_hi = _mm256_add_epi32(t_hi, vec_bias);
|
48 |
+
// input += rounding_bias;
|
49 |
+
t_lo = _mm256_add_epi32(t_lo, lo);
|
50 |
+
t_hi = _mm256_add_epi32(t_hi, hi);
|
51 |
+
// input = input >> 16;
|
52 |
+
t_lo = _mm256_srli_epi32(t_lo, 16);
|
53 |
+
t_hi = _mm256_srli_epi32(t_hi, 16);
|
54 |
+
// Check NaN before converting back to bf16
|
55 |
+
t_lo = _mm256_blendv_epi8(nan, t_lo, mask_lo);
|
56 |
+
t_hi = _mm256_blendv_epi8(nan, t_hi, mask_hi);
|
57 |
+
|
58 |
+
t_lo = _mm256_packus_epi32(t_lo, t_hi); // t_hi[4-7] t_lo[4-7] t_hi[0-4] t_lo[0-4]
|
59 |
+
return _mm256_permute4x64_epi64(t_lo, 0xd8); // 11 01 10 00
|
60 |
+
}
|
61 |
+
|
62 |
+
static inline __m256i merge_compare_result(const __m256& a, const __m256& b) {
|
63 |
+
__m256i lo = _mm256_castps_si256(a);
|
64 |
+
__m256i hi = _mm256_castps_si256(b);
|
65 |
+
lo = _mm256_srli_epi32(lo, 16);
|
66 |
+
hi = _mm256_srli_epi32(hi, 16);
|
67 |
+
auto out = _mm256_packus_epi32(lo, hi);
|
68 |
+
return _mm256_permute4x64_epi64(out, 0xd8);
|
69 |
+
}
|
70 |
+
|
71 |
+
// float16 conversion
|
72 |
+
static inline void cvtfp16_fp32(const __m128i& a, __m256& o) {
|
73 |
+
o = _mm256_cvtph_ps(a);
|
74 |
+
}
|
75 |
+
|
76 |
+
static inline void cvtfp16_fp32(const __m256i& a, __m256& o1, __m256& o2) {
|
77 |
+
__m128i lo = _mm256_extractf128_si256(a, 0);
|
78 |
+
__m128i hi = _mm256_extractf128_si256(a, 1);
|
79 |
+
cvtfp16_fp32(lo, o1);
|
80 |
+
cvtfp16_fp32(hi, o2);
|
81 |
+
}
|
82 |
+
|
83 |
+
static inline __m256i cvtfp32_fp16(const __m256& a, const __m256& b) {
|
84 |
+
__m128i lo = _mm256_cvtps_ph(
|
85 |
+
a, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
|
86 |
+
__m128i hi = _mm256_cvtps_ph(
|
87 |
+
b, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
|
88 |
+
return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), hi, 1);
|
89 |
+
}
|
90 |
+
|
91 |
+
// dtype conversion between float16/bfloat16 and float32
|
92 |
+
template <typename T, typename std::enable_if_t<is_reduced_floating_point_v<T>, int> = 0>
|
93 |
+
inline void cvt_to_fp32(const __m128i& a, __m256& o);
|
94 |
+
template <> inline void cvt_to_fp32<BFloat16>(const __m128i& a, __m256& o) {
|
95 |
+
cvtbf16_fp32(a, o);
|
96 |
+
};
|
97 |
+
template <> inline void cvt_to_fp32<Half>(const __m128i& a, __m256& o) {
|
98 |
+
cvtfp16_fp32(a, o);
|
99 |
+
}
|
100 |
+
|
101 |
+
template <typename T, typename std::enable_if_t<is_reduced_floating_point_v<T>, int> = 0>
|
102 |
+
inline void cvt_to_fp32(const __m256i& a, __m256& o1, __m256& o2);
|
103 |
+
template <> inline void cvt_to_fp32<BFloat16>(const __m256i& a, __m256& o1, __m256& o2) {
|
104 |
+
cvtbf16_fp32(a, o1, o2);
|
105 |
+
}
|
106 |
+
template <> inline void cvt_to_fp32<Half>(const __m256i& a, __m256& o1, __m256& o2) {
|
107 |
+
cvtfp16_fp32(a, o1, o2);
|
108 |
+
}
|
109 |
+
|
110 |
+
template <typename T, bool is_compare_op = false,
|
111 |
+
typename std::enable_if_t<is_reduced_floating_point_v<T>, int> = 0>
|
112 |
+
inline __m256i cvt_from_fp32(const __m256& a, const __m256& b);
|
113 |
+
template <> inline __m256i cvt_from_fp32<BFloat16, false>(const __m256& a, const __m256& b) {
|
114 |
+
return cvtfp32_bf16(a, b);
|
115 |
+
}
|
116 |
+
template <> inline __m256i cvt_from_fp32<BFloat16, true>(const __m256& a, const __m256& b) {
|
117 |
+
return merge_compare_result(a, b);
|
118 |
+
}
|
119 |
+
template <> inline __m256i cvt_from_fp32<Half, false>(const __m256& a, const __m256& b) {
|
120 |
+
return cvtfp32_fp16(a, b);
|
121 |
+
}
|
122 |
+
template <> inline __m256i cvt_from_fp32<Half, true>(const __m256& a, const __m256& b) {
|
123 |
+
return cvtfp32_fp16(a, b);
|
124 |
+
}
|
125 |
+
|
126 |
+
template <typename T>
|
127 |
+
class Vectorized16 {
|
128 |
+
static_assert(
|
129 |
+
is_reduced_floating_point_v<T>,
|
130 |
+
"Support only float16 and bfloat16.");
|
131 |
+
protected:
|
132 |
+
__m256i values;
|
133 |
+
public:
|
134 |
+
using value_type = uint16_t;
|
135 |
+
using size_type = int;
|
136 |
+
static constexpr size_type size() {
|
137 |
+
return 16;
|
138 |
+
}
|
139 |
+
Vectorized16() {}
|
140 |
+
Vectorized16(__m256i v) : values(v) {}
|
141 |
+
Vectorized16(T val) {
|
142 |
+
value_type uw = val.x;
|
143 |
+
values = _mm256_set1_epi16(uw);
|
144 |
+
}
|
145 |
+
Vectorized16(T val1, T val2, T val3, T val4,
|
146 |
+
T val5, T val6, T val7, T val8,
|
147 |
+
T val9, T val10, T val11, T val12,
|
148 |
+
T val13, T val14, T val15, T val16) {
|
149 |
+
values = _mm256_setr_epi16(
|
150 |
+
val1.x, val2.x, val3.x, val4.x, val5.x, val6.x, val7.x, val8.x,
|
151 |
+
val9.x, val10.x, val11.x, val12.x, val13.x, val14.x, val15.x, val16.x);
|
152 |
+
}
|
153 |
+
operator __m256i() const {
|
154 |
+
return values;
|
155 |
+
}
|
156 |
+
T& operator[](int idx) = delete;
|
157 |
+
const T& operator[](int idx) const = delete;
|
158 |
+
int zero_mask() const {
|
159 |
+
// returns an integer mask where all zero elements are translated to 1-bit and others are translated to 0-bit
|
160 |
+
__m256i cmp = _mm256_cmpeq_epi16(values, _mm256_set1_epi16(0));
|
161 |
+
return _mm256_movemask_epi8(cmp);
|
162 |
+
}
|
163 |
+
static Vectorized<T> loadu(const void* ptr, int16_t count = size()) {
|
164 |
+
if (count == size())
|
165 |
+
return _mm256_loadu_si256(reinterpret_cast<const __m256i*>(ptr));
|
166 |
+
|
167 |
+
__at_align__ int16_t tmp_values[size()];
|
168 |
+
std::memcpy(tmp_values, ptr, count * sizeof(int16_t));
|
169 |
+
return _mm256_loadu_si256(reinterpret_cast<const __m256i*>(tmp_values));
|
170 |
+
}
|
171 |
+
void store(void* ptr, int count = size()) const {
|
172 |
+
if (count == size()) {
|
173 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(ptr), values);
|
174 |
+
} else if (count > 0) {
|
175 |
+
__at_align__ int16_t tmp_values[size()];
|
176 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(tmp_values), values);
|
177 |
+
std::memcpy(ptr, tmp_values, count * sizeof(int16_t));
|
178 |
+
}
|
179 |
+
}
|
180 |
+
template <int64_t mask>
|
181 |
+
static Vectorized<T> blend(const Vectorized<T>& a, const Vectorized<T>& b) {
|
182 |
+
__at_align__ int16_t tmp_values[size()];
|
183 |
+
a.store(tmp_values);
|
184 |
+
if (mask & 0x01)
|
185 |
+
tmp_values[0] = _mm256_extract_epi16(b.values, 0);
|
186 |
+
if (mask & 0x02)
|
187 |
+
tmp_values[1] = _mm256_extract_epi16(b.values, 1);
|
188 |
+
if (mask & 0x04)
|
189 |
+
tmp_values[2] = _mm256_extract_epi16(b.values, 2);
|
190 |
+
if (mask & 0x08)
|
191 |
+
tmp_values[3] = _mm256_extract_epi16(b.values, 3);
|
192 |
+
if (mask & 0x10)
|
193 |
+
tmp_values[4] = _mm256_extract_epi16(b.values, 4);
|
194 |
+
if (mask & 0x20)
|
195 |
+
tmp_values[5] = _mm256_extract_epi16(b.values, 5);
|
196 |
+
if (mask & 0x40)
|
197 |
+
tmp_values[6] = _mm256_extract_epi16(b.values, 6);
|
198 |
+
if (mask & 0x80)
|
199 |
+
tmp_values[7] = _mm256_extract_epi16(b.values, 7);
|
200 |
+
if (mask & 0x100)
|
201 |
+
tmp_values[8] = _mm256_extract_epi16(b.values, 8);
|
202 |
+
if (mask & 0x200)
|
203 |
+
tmp_values[9] = _mm256_extract_epi16(b.values, 9);
|
204 |
+
if (mask & 0x400)
|
205 |
+
tmp_values[10] = _mm256_extract_epi16(b.values, 10);
|
206 |
+
if (mask & 0x800)
|
207 |
+
tmp_values[11] = _mm256_extract_epi16(b.values, 11);
|
208 |
+
if (mask & 0x1000)
|
209 |
+
tmp_values[12] = _mm256_extract_epi16(b.values, 12);
|
210 |
+
if (mask & 0x2000)
|
211 |
+
tmp_values[13] = _mm256_extract_epi16(b.values, 13);
|
212 |
+
if (mask & 0x4000)
|
213 |
+
tmp_values[14] = _mm256_extract_epi16(b.values, 14);
|
214 |
+
if (mask & 0x8000)
|
215 |
+
tmp_values[15] = _mm256_extract_epi16(b.values, 15);
|
216 |
+
return loadu(tmp_values);
|
217 |
+
}
|
218 |
+
static Vectorized<T> blendv(const Vectorized<T>& a,
|
219 |
+
const Vectorized<T>& b, const Vectorized<T>& mask) {
|
220 |
+
return _mm256_blendv_epi8(a.values, b.values, mask.values);
|
221 |
+
}
|
222 |
+
template<typename step_t>
|
223 |
+
static Vectorized<T> arange(T base = 0.f, step_t step = static_cast<step_t>(1)) {
|
224 |
+
return Vectorized<T>(
|
225 |
+
base, base + step, base + 2 * step, base + 3 * step,
|
226 |
+
base + 4 * step, base + 5 * step, base + 6 * step, base + 7 * step,
|
227 |
+
base + 8 * step, base + 9 * step, base + 10 * step, base + 11 * step,
|
228 |
+
base + 12 * step, base + 13 * step, base + 14 * step, base + 15 * step);
|
229 |
+
}
|
230 |
+
static Vectorized<T> set(const Vectorized<T>& a,
|
231 |
+
const Vectorized<T>& b, int64_t count = size()) {
|
232 |
+
switch (count) {
|
233 |
+
case 0:
|
234 |
+
return a;
|
235 |
+
case 1:
|
236 |
+
return blend<1>(a, b);
|
237 |
+
case 2:
|
238 |
+
return blend<3>(a, b);
|
239 |
+
case 3:
|
240 |
+
return blend<7>(a, b);
|
241 |
+
case 4:
|
242 |
+
return blend<15>(a, b);
|
243 |
+
case 5:
|
244 |
+
return blend<31>(a, b);
|
245 |
+
case 6:
|
246 |
+
return blend<63>(a, b);
|
247 |
+
case 7:
|
248 |
+
return blend<127>(a, b);
|
249 |
+
case 8:
|
250 |
+
return blend<255>(a, b);
|
251 |
+
case 9:
|
252 |
+
return blend<511>(a, b);
|
253 |
+
case 10:
|
254 |
+
return blend<1023>(a, b);
|
255 |
+
case 11:
|
256 |
+
return blend<2047>(a, b);
|
257 |
+
case 12:
|
258 |
+
return blend<4095>(a, b);
|
259 |
+
case 13:
|
260 |
+
return blend<8191>(a, b);
|
261 |
+
case 14:
|
262 |
+
return blend<16383>(a, b);
|
263 |
+
case 15:
|
264 |
+
return blend<32767>(a, b);
|
265 |
+
}
|
266 |
+
return b;
|
267 |
+
}
|
268 |
+
Vectorized<T> map(const __m256 (*const vop)(__m256)) const {
|
269 |
+
__m256 lo, hi;
|
270 |
+
cvt_to_fp32<T>(values, lo, hi);
|
271 |
+
const auto o1 = vop(lo);
|
272 |
+
const auto o2 = vop(hi);
|
273 |
+
return cvt_from_fp32<T>(o1, o2);
|
274 |
+
}
|
275 |
+
Vectorized<T> isnan() const {
|
276 |
+
__m256 lo, hi;
|
277 |
+
cvt_to_fp32<T>(values, lo, hi);
|
278 |
+
lo = _mm256_cmp_ps(lo, _mm256_set1_ps(0.0f), _CMP_UNORD_Q);
|
279 |
+
hi = _mm256_cmp_ps(hi, _mm256_set1_ps(0.0f), _CMP_UNORD_Q);
|
280 |
+
return merge_compare_result(lo, hi);
|
281 |
+
}
|
282 |
+
Vectorized<T> abs() const {
|
283 |
+
return _mm256_andnot_si256(_mm256_set1_epi16(0x8000), values);
|
284 |
+
}
|
285 |
+
Vectorized<T> angle() const {
|
286 |
+
__m256 lo, hi;
|
287 |
+
cvt_to_fp32<T>(values, lo, hi);
|
288 |
+
auto angle_lambda = [](__m256 values_2) {
|
289 |
+
const auto zero_vec = _mm256_set1_ps(0.f);
|
290 |
+
const auto nan_vec = _mm256_set1_ps(NAN);
|
291 |
+
const auto not_nan_mask = _mm256_cmp_ps(values_2, values_2, _CMP_EQ_OQ);
|
292 |
+
const auto nan_mask = _mm256_cmp_ps(not_nan_mask, zero_vec, _CMP_EQ_OQ);
|
293 |
+
const auto pi = _mm256_set1_ps(c10::pi<float>);
|
294 |
+
|
295 |
+
const auto neg_mask = _mm256_cmp_ps(values_2, zero_vec, _CMP_LT_OQ);
|
296 |
+
auto angle = _mm256_blendv_ps(zero_vec, pi, neg_mask);
|
297 |
+
angle = _mm256_blendv_ps(angle, nan_vec, nan_mask);
|
298 |
+
return angle;
|
299 |
+
};
|
300 |
+
auto o1 = angle_lambda(lo);
|
301 |
+
auto o2 = angle_lambda(hi);
|
302 |
+
return cvt_from_fp32<T>(o1, o2);
|
303 |
+
}
|
304 |
+
Vectorized<T> real() const {
|
305 |
+
return *this;
|
306 |
+
}
|
307 |
+
Vectorized<T> imag() const {
|
308 |
+
return _mm256_set1_epi16(0);
|
309 |
+
}
|
310 |
+
Vectorized<T> conj() const {
|
311 |
+
return *this;
|
312 |
+
}
|
313 |
+
Vectorized<T> acos() const {
|
314 |
+
return map(Sleef_acosf8_u10);
|
315 |
+
}
|
316 |
+
Vectorized<T> acosh() const {
|
317 |
+
return map(Sleef_acoshf8_u10);
|
318 |
+
}
|
319 |
+
Vectorized<T> asin() const {
|
320 |
+
return map(Sleef_asinf8_u10);
|
321 |
+
}
|
322 |
+
Vectorized<T> atan() const {
|
323 |
+
return map(Sleef_atanf8_u10);
|
324 |
+
}
|
325 |
+
Vectorized<T> atanh() const {
|
326 |
+
return map(Sleef_atanhf8_u10);
|
327 |
+
}
|
328 |
+
Vectorized<T> atan2(const Vectorized<T> &b) const {
|
329 |
+
__m256 lo, hi;
|
330 |
+
__m256 b1, b2;
|
331 |
+
cvt_to_fp32<T>(values, lo, hi);
|
332 |
+
cvt_to_fp32<T>(b.values, b1, b2);
|
333 |
+
auto o1 = Sleef_atan2f8_u10(lo, b1);
|
334 |
+
auto o2 = Sleef_atan2f8_u10(hi, b2);
|
335 |
+
return cvt_from_fp32<T>(o1, o2);
|
336 |
+
}
|
337 |
+
Vectorized<T> copysign(const Vectorized<T> &sign) const {
|
338 |
+
// copy sign bit (0x8000) from sign and remaining bits from values
|
339 |
+
__m256i mask_value = _mm256_set1_epi32(~0x80008000);
|
340 |
+
__m256i mask_signbit = _mm256_set1_epi32(0x80008000);
|
341 |
+
return Vectorized<T>(
|
342 |
+
_mm256_or_si256(
|
343 |
+
_mm256_and_si256(values, mask_value),
|
344 |
+
_mm256_and_si256(sign, mask_signbit)));
|
345 |
+
}
|
346 |
+
Vectorized<T> erf() const {
|
347 |
+
return map(Sleef_erff8_u10);
|
348 |
+
}
|
349 |
+
Vectorized<T> erfc() const {
|
350 |
+
return map(Sleef_erfcf8_u15);
|
351 |
+
}
|
352 |
+
Vectorized<T> erfinv() const {
|
353 |
+
__m256 lo, hi;
|
354 |
+
cvt_to_fp32<T>(values, lo, hi);
|
355 |
+
__at_align__ float tmp1[size() / 2], tmp2[size() / 2];
|
356 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmp1), lo);
|
357 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmp2), hi);
|
358 |
+
for (int64_t i = 0; i < size() / 2; i++) {
|
359 |
+
tmp1[i] = calc_erfinv(tmp1[i]);
|
360 |
+
tmp2[i] = calc_erfinv(tmp2[i]);
|
361 |
+
}
|
362 |
+
auto o1 = _mm256_loadu_ps(tmp1);
|
363 |
+
auto o2 = _mm256_loadu_ps(tmp2);
|
364 |
+
return cvt_from_fp32<T>(o1, o2);
|
365 |
+
}
|
366 |
+
Vectorized<T> exp() const {
|
367 |
+
return map(Sleef_expf8_u10);
|
368 |
+
}
|
369 |
+
Vectorized<T> exp2() const {
|
370 |
+
return map(Sleef_exp2f8_u10);
|
371 |
+
}
|
372 |
+
Vectorized<T> expm1() const {
|
373 |
+
return map(Sleef_expm1f8_u10);
|
374 |
+
}
|
375 |
+
Vectorized<T> exp_u20() const {
|
376 |
+
return exp();
|
377 |
+
}
|
378 |
+
Vectorized<T> fmod(const Vectorized<T> & q) const {
|
379 |
+
__m256 x_lo, x_hi;
|
380 |
+
cvt_to_fp32<T>(values, x_lo, x_hi);
|
381 |
+
__m256 q_lo, q_hi;
|
382 |
+
cvt_to_fp32<T>(q.values, q_lo, q_hi);
|
383 |
+
auto o1 = Sleef_fmodf8(x_lo, q_lo);
|
384 |
+
auto o2 = Sleef_fmodf8(x_hi, q_hi);
|
385 |
+
return cvt_from_fp32<T>(o1, o2);
|
386 |
+
}
|
387 |
+
Vectorized<T> hypot(const Vectorized<T> &b) const {
|
388 |
+
__m256 lo, hi;
|
389 |
+
__m256 b1, b2;
|
390 |
+
cvt_to_fp32<T>(values, lo, hi);
|
391 |
+
cvt_to_fp32<T>(b.values, b1, b2);
|
392 |
+
auto o1 = Sleef_hypotf8_u05(lo, b1);
|
393 |
+
auto o2 = Sleef_hypotf8_u05(hi, b2);
|
394 |
+
return cvt_from_fp32<T>(o1, o2);
|
395 |
+
}
|
396 |
+
Vectorized<T> i0() const {
|
397 |
+
__m256 lo, hi;
|
398 |
+
cvt_to_fp32<T>(values, lo, hi);
|
399 |
+
__at_align__ float tmp1[size() / 2], tmp2[size() / 2];
|
400 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmp1), lo);
|
401 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmp2), hi);
|
402 |
+
for (int64_t i = 0; i < size() / 2; i++) {
|
403 |
+
tmp1[i] = calc_i0(tmp1[i]);
|
404 |
+
tmp2[i] = calc_i0(tmp2[i]);
|
405 |
+
}
|
406 |
+
auto o1 = _mm256_loadu_ps(tmp1);
|
407 |
+
auto o2 = _mm256_loadu_ps(tmp2);
|
408 |
+
return cvt_from_fp32<T>(o1, o2);
|
409 |
+
}
|
410 |
+
Vectorized<T> i0e() const {
|
411 |
+
__m256 lo, hi;
|
412 |
+
cvt_to_fp32<T>(values, lo, hi);
|
413 |
+
constexpr auto sz = size();
|
414 |
+
__at_align__ float tmp1[sz / 2], tmp2[sz / 2];
|
415 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmp1), lo);
|
416 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmp2), hi);
|
417 |
+
|
418 |
+
for (auto i = decltype(sz){0}; i < sz / 2; i++) {
|
419 |
+
tmp1[i] = calc_i0e(tmp1[i]);
|
420 |
+
tmp2[i] = calc_i0e(tmp2[i]);
|
421 |
+
}
|
422 |
+
const auto o1 = _mm256_loadu_ps(tmp1);
|
423 |
+
const auto o2 = _mm256_loadu_ps(tmp2);
|
424 |
+
return cvt_from_fp32<T>(o1, o2);
|
425 |
+
}
|
426 |
+
Vectorized<T> digamma() const {
|
427 |
+
__m256 lo, hi;
|
428 |
+
cvt_to_fp32<T>(values, lo, hi);
|
429 |
+
constexpr auto sz = size();
|
430 |
+
__at_align__ float tmp1[sz / 2], tmp2[sz / 2];
|
431 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmp1), lo);
|
432 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmp2), hi);
|
433 |
+
|
434 |
+
for (auto i = decltype(sz){0}; i < sz / 2; i++) {
|
435 |
+
tmp1[i] = calc_digamma(tmp1[i]);
|
436 |
+
tmp2[i] = calc_digamma(tmp2[i]);
|
437 |
+
}
|
438 |
+
const auto o1 = _mm256_loadu_ps(tmp1);
|
439 |
+
const auto o2 = _mm256_loadu_ps(tmp2);
|
440 |
+
return cvt_from_fp32<T>(o1, o2);
|
441 |
+
}
|
442 |
+
Vectorized<T> igamma(const Vectorized<T> &x) const {
|
443 |
+
__m256 lo, hi;
|
444 |
+
__m256 xlo, xhi;
|
445 |
+
cvt_to_fp32<T>(values, lo, hi);
|
446 |
+
cvt_to_fp32<T>(x.values, xlo, xhi);
|
447 |
+
__at_align__ float tmp1[size() / 2], tmp2[size() / 2];
|
448 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmp1), lo);
|
449 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmp2), hi);
|
450 |
+
__at_align__ float tmpx1[size() / 2], tmpx2[size() / 2];
|
451 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmpx1), xlo);
|
452 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmpx2), xhi);
|
453 |
+
for (int64_t i = 0; i < size() / 2; ++i) {
|
454 |
+
tmp1[i] = calc_igamma(tmp1[i], tmpx1[i]);
|
455 |
+
tmp2[i] = calc_igamma(tmp2[i], tmpx2[i]);
|
456 |
+
}
|
457 |
+
auto o1 = _mm256_loadu_ps(tmp1);
|
458 |
+
auto o2 = _mm256_loadu_ps(tmp2);
|
459 |
+
return cvt_from_fp32<T>(o1, o2);
|
460 |
+
}
|
461 |
+
|
462 |
+
Vectorized<T> igammac(const Vectorized<T> &x) const {
|
463 |
+
__m256 lo, hi;
|
464 |
+
__m256 xlo, xhi;
|
465 |
+
cvt_to_fp32<T>(values, lo, hi);
|
466 |
+
cvt_to_fp32<T>(x.values, xlo, xhi);
|
467 |
+
__at_align__ float tmp1[size() / 2], tmp2[size() / 2];
|
468 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmp1), lo);
|
469 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmp2), hi);
|
470 |
+
__at_align__ float tmpx1[size() / 2], tmpx2[size() / 2];
|
471 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmpx1), xlo);
|
472 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmpx2), xhi);
|
473 |
+
for (int64_t i = 0; i < size() / 2; ++i) {
|
474 |
+
tmp1[i] = calc_igammac(tmp1[i], tmpx1[i]);
|
475 |
+
tmp2[i] = calc_igammac(tmp2[i], tmpx2[i]);
|
476 |
+
}
|
477 |
+
auto o1 = _mm256_loadu_ps(tmp1);
|
478 |
+
auto o2 = _mm256_loadu_ps(tmp2);
|
479 |
+
return cvt_from_fp32<T>(o1, o2);
|
480 |
+
}
|
481 |
+
Vectorized<T> log() const {
|
482 |
+
return map(Sleef_logf8_u10);
|
483 |
+
}
|
484 |
+
Vectorized<T> log2() const {
|
485 |
+
return map(Sleef_log2f8_u10);
|
486 |
+
}
|
487 |
+
Vectorized<T> log10() const {
|
488 |
+
return map(Sleef_log10f8_u10);
|
489 |
+
}
|
490 |
+
Vectorized<T> log1p() const {
|
491 |
+
return map(Sleef_log1pf8_u10);
|
492 |
+
}
|
493 |
+
Vectorized<T> sin() const {
|
494 |
+
return map(Sleef_sinf8_u10);
|
495 |
+
}
|
496 |
+
Vectorized<T> sinh() const {
|
497 |
+
return map(Sleef_sinhf8_u10);
|
498 |
+
}
|
499 |
+
Vectorized<T> cos() const {
|
500 |
+
return map(Sleef_cosf8_u10);
|
501 |
+
}
|
502 |
+
Vectorized<T> cosh() const {
|
503 |
+
return map(Sleef_coshf8_u10);
|
504 |
+
}
|
505 |
+
Vectorized<T> ceil() const {
|
506 |
+
__m256 lo, hi;
|
507 |
+
cvt_to_fp32<T>(values, lo, hi);
|
508 |
+
auto o1 = _mm256_ceil_ps(lo);
|
509 |
+
auto o2 = _mm256_ceil_ps(hi);
|
510 |
+
return cvt_from_fp32<T>(o1, o2);
|
511 |
+
}
|
512 |
+
Vectorized<T> floor() const {
|
513 |
+
__m256 lo, hi;
|
514 |
+
cvt_to_fp32<T>(values, lo, hi);
|
515 |
+
auto o1 = _mm256_floor_ps(lo);
|
516 |
+
auto o2 = _mm256_floor_ps(hi);
|
517 |
+
return cvt_from_fp32<T>(o1, o2);
|
518 |
+
}
|
519 |
+
Vectorized<T> neg() const {
|
520 |
+
return _mm256_xor_si256(values, _mm256_set1_epi16(0x8000));
|
521 |
+
}
|
522 |
+
Vectorized<T> round() const {
|
523 |
+
__m256 lo, hi;
|
524 |
+
cvt_to_fp32<T>(values, lo, hi);
|
525 |
+
auto o1 = _mm256_round_ps(lo, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
|
526 |
+
auto o2 = _mm256_round_ps(hi, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
|
527 |
+
return cvt_from_fp32<T>(o1, o2);
|
528 |
+
}
|
529 |
+
Vectorized<T> tan() const {
|
530 |
+
return map(Sleef_tanf8_u10);
|
531 |
+
}
|
532 |
+
Vectorized<T> tanh() const {
|
533 |
+
return map(Sleef_tanhf8_u10);
|
534 |
+
}
|
535 |
+
Vectorized<T> trunc() const {
|
536 |
+
__m256 lo, hi;
|
537 |
+
cvt_to_fp32<T>(values, lo, hi);
|
538 |
+
auto o1 = _mm256_round_ps(lo, (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC));
|
539 |
+
auto o2 = _mm256_round_ps(hi, (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC));
|
540 |
+
return cvt_from_fp32<T>(o1, o2);
|
541 |
+
}
|
542 |
+
Vectorized<T> lgamma() const {
|
543 |
+
return map(Sleef_lgammaf8_u10);
|
544 |
+
}
|
545 |
+
Vectorized<T> sqrt() const {
|
546 |
+
__m256 lo, hi;
|
547 |
+
cvt_to_fp32<T>(values, lo, hi);
|
548 |
+
auto o1 = _mm256_sqrt_ps(lo);
|
549 |
+
auto o2 = _mm256_sqrt_ps(hi);
|
550 |
+
return cvt_from_fp32<T>(o1, o2);
|
551 |
+
}
|
552 |
+
Vectorized<T> reciprocal() const {
|
553 |
+
__m256 lo, hi;
|
554 |
+
cvt_to_fp32<T>(values, lo, hi);
|
555 |
+
auto ones = _mm256_set1_ps(1);
|
556 |
+
auto o1 = _mm256_div_ps(ones, lo);
|
557 |
+
auto o2 = _mm256_div_ps(ones, hi);
|
558 |
+
return cvt_from_fp32<T>(o1, o2);
|
559 |
+
}
|
560 |
+
Vectorized<T> rsqrt() const {
|
561 |
+
__m256 lo, hi;
|
562 |
+
cvt_to_fp32<T>(values, lo, hi);
|
563 |
+
auto ones = _mm256_set1_ps(1);
|
564 |
+
auto o1 = _mm256_div_ps(ones, _mm256_sqrt_ps(lo));
|
565 |
+
auto o2 = _mm256_div_ps(ones, _mm256_sqrt_ps(hi));
|
566 |
+
return cvt_from_fp32<T>(o1, o2);
|
567 |
+
}
|
568 |
+
Vectorized<T> pow(const Vectorized<T> &b) const {
|
569 |
+
__m256 lo, hi;
|
570 |
+
__m256 b1, b2;
|
571 |
+
cvt_to_fp32<T>(values, lo, hi);
|
572 |
+
cvt_to_fp32<T>(b.values, b1, b2);
|
573 |
+
auto o1 = Sleef_powf8_u10(lo, b1);
|
574 |
+
auto o2 = Sleef_powf8_u10(hi, b2);
|
575 |
+
return cvt_from_fp32<T>(o1, o2);
|
576 |
+
}
|
577 |
+
private:
|
578 |
+
template<typename Op>
|
579 |
+
Vectorized<T> inline binary_compare(const Vectorized<T>& b, Op op) const {
|
580 |
+
__m256 a_lo, a_hi;
|
581 |
+
__m256 b_lo, b_hi;
|
582 |
+
cvt_to_fp32<T>(values, a_lo, a_hi);
|
583 |
+
cvt_to_fp32<T>(b.values, b_lo, b_hi);
|
584 |
+
auto o1 = op(a_lo, b_lo);
|
585 |
+
auto o2 = op(a_hi, b_hi);
|
586 |
+
return cvt_from_fp32<T, /*is_compare_op*/true>(o1, o2);
|
587 |
+
}
|
588 |
+
|
589 |
+
public:
|
590 |
+
Vectorized<T> inline operator>(const Vectorized<T>& other) const {
|
591 |
+
return binary_compare(other, [](__m256 x, __m256 y) { return _mm256_cmp_ps(x, y, _CMP_GT_OQ); });
|
592 |
+
}
|
593 |
+
Vectorized<T> inline operator<(const Vectorized<T>& other) const {
|
594 |
+
return binary_compare(other, [](__m256 x, __m256 y) { return _mm256_cmp_ps(x, y, _CMP_LT_OQ); });
|
595 |
+
}
|
596 |
+
Vectorized<T> inline operator>=(const Vectorized<T>& other) const {
|
597 |
+
return binary_compare(other, [](__m256 x, __m256 y) { return _mm256_cmp_ps(x, y, _CMP_GE_OQ); });
|
598 |
+
}
|
599 |
+
Vectorized<T> inline operator<=(const Vectorized<T>& other) const {
|
600 |
+
return binary_compare(other, [](__m256 x, __m256 y) { return _mm256_cmp_ps(x, y, _CMP_LE_OQ); });
|
601 |
+
}
|
602 |
+
Vectorized<T> inline operator==(const Vectorized<T>& other) const {
|
603 |
+
return binary_compare(other, [](__m256 x, __m256 y) { return _mm256_cmp_ps(x, y, _CMP_EQ_OQ); });
|
604 |
+
}
|
605 |
+
Vectorized<T> inline operator!=(const Vectorized<T>& other) const {
|
606 |
+
return binary_compare(other, [](__m256 x, __m256 y) { return _mm256_cmp_ps(x, y, _CMP_NEQ_UQ); });
|
607 |
+
}
|
608 |
+
};
|
609 |
+
|
610 |
+
template<typename T, typename Op>
|
611 |
+
static inline Vectorized<T> binary_op_as_fp32(const Vectorized<T>& a, const Vectorized<T>& b, Op op) {
|
612 |
+
__m256 a_lo, a_hi;
|
613 |
+
__m256 b_lo, b_hi;
|
614 |
+
cvt_to_fp32<T>(__m256i(a), a_lo, a_hi);
|
615 |
+
cvt_to_fp32<T>(__m256i(b), b_lo, b_hi);
|
616 |
+
auto o1 = op(a_lo, b_lo);
|
617 |
+
auto o2 = op(a_hi, b_hi);
|
618 |
+
return cvt_from_fp32<T>(o1, o2);
|
619 |
+
}
|
620 |
+
|
621 |
+
template <>
|
622 |
+
class Vectorized<BFloat16>: public Vectorized16<BFloat16> {
|
623 |
+
public:
|
624 |
+
using Vectorized16::Vectorized16;
|
625 |
+
|
626 |
+
Vectorized<BFloat16> frac() const;
|
627 |
+
|
628 |
+
Vectorized<BFloat16> eq(const Vectorized<BFloat16>& other) const;
|
629 |
+
Vectorized<BFloat16> ne(const Vectorized<BFloat16>& other) const;
|
630 |
+
Vectorized<BFloat16> gt(const Vectorized<BFloat16>& other) const;
|
631 |
+
Vectorized<BFloat16> ge(const Vectorized<BFloat16>& other) const;
|
632 |
+
Vectorized<BFloat16> lt(const Vectorized<BFloat16>& other) const;
|
633 |
+
Vectorized<BFloat16> le(const Vectorized<BFloat16>& other) const;
|
634 |
+
};
|
635 |
+
|
636 |
+
Vectorized<BFloat16> inline operator+(const Vectorized<BFloat16>& a, const Vectorized<BFloat16>& b) {
|
637 |
+
return binary_op_as_fp32(a, b, [](const __m256& x, const __m256& y) { return _mm256_add_ps(x, y); });
|
638 |
+
}
|
639 |
+
Vectorized<BFloat16> inline operator-(const Vectorized<BFloat16>& a, const Vectorized<BFloat16>& b) {
|
640 |
+
return binary_op_as_fp32(a, b, [](const __m256& x, const __m256& y) { return _mm256_sub_ps(x, y); });
|
641 |
+
}
|
642 |
+
Vectorized<BFloat16> inline operator*(const Vectorized<BFloat16>& a, const Vectorized<BFloat16>& b) {
|
643 |
+
return binary_op_as_fp32(a, b, [](const __m256& x, const __m256& y) { return _mm256_mul_ps(x, y); });
|
644 |
+
}
|
645 |
+
Vectorized<BFloat16> inline operator/(const Vectorized<BFloat16>& a, const Vectorized<BFloat16>& b) {
|
646 |
+
return binary_op_as_fp32(a, b, [](const __m256& x, const __m256& y) { return _mm256_div_ps(x, y); });
|
647 |
+
}
|
648 |
+
Vectorized<BFloat16> inline operator&(const Vectorized<BFloat16>& a, const Vectorized<BFloat16>& b) {
|
649 |
+
return _mm256_and_si256(a, b);
|
650 |
+
}
|
651 |
+
Vectorized<BFloat16> inline operator|(const Vectorized<BFloat16>& a, const Vectorized<BFloat16>& b) {
|
652 |
+
return _mm256_or_si256(a, b);
|
653 |
+
}
|
654 |
+
Vectorized<BFloat16> inline operator^(const Vectorized<BFloat16>& a, const Vectorized<BFloat16>& b) {
|
655 |
+
return _mm256_xor_si256(a, b);
|
656 |
+
}
|
657 |
+
|
658 |
+
inline Vectorized<BFloat16> Vectorized<BFloat16>::eq(const Vectorized<BFloat16>& other) const {
|
659 |
+
return (*this == other) & Vectorized<BFloat16>(1.0f);
|
660 |
+
}
|
661 |
+
inline Vectorized<BFloat16> Vectorized<BFloat16>::ne(const Vectorized<BFloat16>& other) const {
|
662 |
+
return (*this != other) & Vectorized<BFloat16>(1.0f);
|
663 |
+
}
|
664 |
+
inline Vectorized<BFloat16> Vectorized<BFloat16>::gt(const Vectorized<BFloat16>& other) const {
|
665 |
+
return (*this > other) & Vectorized<BFloat16>(1.0f);
|
666 |
+
}
|
667 |
+
inline Vectorized<BFloat16> Vectorized<BFloat16>::ge(const Vectorized<BFloat16>& other) const {
|
668 |
+
return (*this >= other) & Vectorized<BFloat16>(1.0f);
|
669 |
+
}
|
670 |
+
inline Vectorized<BFloat16> Vectorized<BFloat16>::lt(const Vectorized<BFloat16>& other) const {
|
671 |
+
return (*this < other) & Vectorized<BFloat16>(1.0f);
|
672 |
+
}
|
673 |
+
inline Vectorized<BFloat16> Vectorized<BFloat16>::le(const Vectorized<BFloat16>& other) const {
|
674 |
+
return (*this <= other) & Vectorized<BFloat16>(1.0f);
|
675 |
+
}
|
676 |
+
|
677 |
+
// frac. Implement this here so we can use subtraction
|
678 |
+
inline Vectorized<BFloat16> Vectorized<BFloat16>::frac() const {
|
679 |
+
return *this - this->trunc();
|
680 |
+
}
|
681 |
+
|
682 |
+
// Implements the IEEE 754 201X `maximum` operation, which propagates NaN if
|
683 |
+
// either input is a NaN.
|
684 |
+
template <>
|
685 |
+
Vectorized<BFloat16> inline maximum(const Vectorized<BFloat16>& a, const Vectorized<BFloat16>& b) {
|
686 |
+
__m256 a_lo, a_hi;
|
687 |
+
__m256 b_lo, b_hi;
|
688 |
+
cvtbf16_fp32(__m256i(a), a_lo, a_hi);
|
689 |
+
cvtbf16_fp32(__m256i(b), b_lo, b_hi);
|
690 |
+
auto max_lo = _mm256_max_ps(a_lo, b_lo);
|
691 |
+
auto max_hi = _mm256_max_ps(a_hi, b_hi);
|
692 |
+
auto nan_lo = _mm256_cmp_ps(a_lo, b_lo, _CMP_UNORD_Q);
|
693 |
+
auto nan_hi = _mm256_cmp_ps(a_hi, b_hi, _CMP_UNORD_Q);
|
694 |
+
// Exploit the fact that all-ones is a NaN.
|
695 |
+
auto o1 = _mm256_or_ps(max_lo, nan_lo);
|
696 |
+
auto o2 = _mm256_or_ps(max_hi, nan_hi);
|
697 |
+
return cvtfp32_bf16(o1, o2);
|
698 |
+
}
|
699 |
+
|
700 |
+
// Implements the IEEE 754 201X `minimum` operation, which propagates NaN if
|
701 |
+
// either input is a NaN.
|
702 |
+
template <>
|
703 |
+
Vectorized<BFloat16> inline minimum(const Vectorized<BFloat16>& a, const Vectorized<BFloat16>& b) {
|
704 |
+
__m256 a_lo, a_hi;
|
705 |
+
__m256 b_lo, b_hi;
|
706 |
+
cvtbf16_fp32(__m256i(a), a_lo, a_hi);
|
707 |
+
cvtbf16_fp32(__m256i(b), b_lo, b_hi);
|
708 |
+
auto min_lo = _mm256_min_ps(a_lo, b_lo);
|
709 |
+
auto min_hi = _mm256_min_ps(a_hi, b_hi);
|
710 |
+
auto nan_lo = _mm256_cmp_ps(a_lo, b_lo, _CMP_UNORD_Q);
|
711 |
+
auto nan_hi = _mm256_cmp_ps(a_hi, b_hi, _CMP_UNORD_Q);
|
712 |
+
// Exploit the fact that all-ones is a NaN.
|
713 |
+
auto o1 = _mm256_or_ps(min_lo, nan_lo);
|
714 |
+
auto o2 = _mm256_or_ps(min_hi, nan_hi);
|
715 |
+
return cvtfp32_bf16(o1, o2);
|
716 |
+
}
|
717 |
+
|
718 |
+
template <>
|
719 |
+
Vectorized<BFloat16> inline clamp(const Vectorized<BFloat16>& a,
|
720 |
+
const Vectorized<BFloat16>& min, const Vectorized<BFloat16>& max) {
|
721 |
+
__m256 a_lo, a_hi;
|
722 |
+
__m256 min_lo, min_hi;
|
723 |
+
__m256 max_lo, max_hi;
|
724 |
+
cvtbf16_fp32(__m256i(a), a_lo, a_hi);
|
725 |
+
cvtbf16_fp32(__m256i(min), min_lo, min_hi);
|
726 |
+
cvtbf16_fp32(__m256i(max), max_lo, max_hi);
|
727 |
+
auto o1 = _mm256_min_ps(max_lo, _mm256_max_ps(min_lo, a_lo));
|
728 |
+
auto o2 = _mm256_min_ps(max_hi, _mm256_max_ps(min_hi, a_hi));
|
729 |
+
return cvtfp32_bf16(o1, o2);
|
730 |
+
}
|
731 |
+
|
732 |
+
template <>
|
733 |
+
Vectorized<BFloat16> inline clamp_max(const Vectorized<BFloat16>& a, const Vectorized<BFloat16>& max) {
|
734 |
+
__m256 a_lo, a_hi;
|
735 |
+
__m256 max_lo, max_hi;
|
736 |
+
cvtbf16_fp32(__m256i(a), a_lo, a_hi);
|
737 |
+
cvtbf16_fp32(__m256i(max), max_lo, max_hi);
|
738 |
+
auto o1 = _mm256_min_ps(max_lo, a_lo);
|
739 |
+
auto o2 = _mm256_min_ps(max_hi, a_hi);
|
740 |
+
return cvtfp32_bf16(o1, o2);
|
741 |
+
}
|
742 |
+
|
743 |
+
template <>
|
744 |
+
Vectorized<BFloat16> inline clamp_min(const Vectorized<BFloat16>& a, const Vectorized<BFloat16>& min) {
|
745 |
+
__m256 a_lo, a_hi;
|
746 |
+
__m256 min_lo, min_hi;
|
747 |
+
cvtbf16_fp32(__m256i(a), a_lo, a_hi);
|
748 |
+
cvtbf16_fp32(__m256i(min), min_lo, min_hi);
|
749 |
+
auto o1 = _mm256_max_ps(min_lo, a_lo);
|
750 |
+
auto o2 = _mm256_max_ps(min_hi, a_hi);
|
751 |
+
return cvtfp32_bf16(o1, o2);
|
752 |
+
}
|
753 |
+
|
754 |
+
template <>
|
755 |
+
inline void convert(const BFloat16* src, BFloat16* dst, int64_t n) {
|
756 |
+
int64_t i;
|
757 |
+
#pragma unroll
|
758 |
+
for (i = 0; i <= (n - Vectorized<BFloat16>::size()); i += Vectorized<BFloat16>::size()) {
|
759 |
+
auto vsrc = _mm256_loadu_si256(reinterpret_cast<__m256i*>((void*)(src + i)));
|
760 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>((void*)(dst + i)), vsrc);
|
761 |
+
}
|
762 |
+
#pragma unroll
|
763 |
+
for (; i < n; i++) {
|
764 |
+
dst[i] = src[i];
|
765 |
+
}
|
766 |
+
}
|
767 |
+
|
768 |
+
template <>
|
769 |
+
inline void convert(const float* src, BFloat16* dst, int64_t n) {
|
770 |
+
int64_t i;
|
771 |
+
for (i = 0; i + Vectorized<BFloat16>::size() <= n; i += Vectorized<BFloat16>::size()) {
|
772 |
+
__m256 a = _mm256_loadu_ps(&src[i]);
|
773 |
+
__m256 b = _mm256_loadu_ps(&src[i + 8]);
|
774 |
+
|
775 |
+
__m256i bf = cvtfp32_bf16(a, b);
|
776 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(&dst[i]), bf);
|
777 |
+
}
|
778 |
+
for (; i < n; i++) {
|
779 |
+
dst[i] = c10::convert<BFloat16>(src[i]);
|
780 |
+
}
|
781 |
+
}
|
782 |
+
|
783 |
+
template <>
|
784 |
+
inline void convert(const double* src, BFloat16* dst, int64_t n) {
|
785 |
+
auto load_float = [](const double *src) -> __m256 {
|
786 |
+
// Load one float vector from an array of doubles
|
787 |
+
__m128 a = _mm256_cvtpd_ps(_mm256_loadu_pd(src));
|
788 |
+
__m128 b = _mm256_cvtpd_ps(_mm256_loadu_pd(src + 4));
|
789 |
+
return _mm256_insertf128_ps(_mm256_castps128_ps256(a), b, 1);
|
790 |
+
};
|
791 |
+
|
792 |
+
int64_t i;
|
793 |
+
for (i = 0; i + Vectorized<BFloat16>::size() <= n; i += Vectorized<BFloat16>::size()) {
|
794 |
+
__m256 a = load_float(&src[i]);
|
795 |
+
__m256 b = load_float(&src[i + 8]);
|
796 |
+
|
797 |
+
__m256i bf = cvtfp32_bf16(a, b);
|
798 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(&dst[i]), bf);
|
799 |
+
}
|
800 |
+
for (; i < n; i++) {
|
801 |
+
dst[i] = c10::convert<BFloat16>(src[i]);
|
802 |
+
}
|
803 |
+
}
|
804 |
+
|
805 |
+
template <>
|
806 |
+
Vectorized<BFloat16> inline fmadd(const Vectorized<BFloat16>& a,
|
807 |
+
const Vectorized<BFloat16>& b, const Vectorized<BFloat16>& c) {
|
808 |
+
__m256 a_lo, a_hi;
|
809 |
+
__m256 b_lo, b_hi;
|
810 |
+
__m256 c_lo, c_hi;
|
811 |
+
cvtbf16_fp32(__m256i(a), a_lo, a_hi);
|
812 |
+
cvtbf16_fp32(__m256i(b), b_lo, b_hi);
|
813 |
+
cvtbf16_fp32(__m256i(c), c_lo, c_hi);
|
814 |
+
auto o1 = _mm256_fmadd_ps(a_lo, b_lo, c_lo);
|
815 |
+
auto o2 = _mm256_fmadd_ps(a_hi, b_hi, c_hi);
|
816 |
+
return cvtfp32_bf16(o1, o2);
|
817 |
+
}
|
818 |
+
|
819 |
+
template <>
|
820 |
+
class Vectorized<Half>: public Vectorized16<Half> {
|
821 |
+
public:
|
822 |
+
using Vectorized16::Vectorized16;
|
823 |
+
|
824 |
+
Vectorized<Half> frac() const;
|
825 |
+
|
826 |
+
Vectorized<Half> eq(const Vectorized<Half>& other) const;
|
827 |
+
Vectorized<Half> ne(const Vectorized<Half>& other) const;
|
828 |
+
Vectorized<Half> gt(const Vectorized<Half>& other) const;
|
829 |
+
Vectorized<Half> ge(const Vectorized<Half>& other) const;
|
830 |
+
Vectorized<Half> lt(const Vectorized<Half>& other) const;
|
831 |
+
Vectorized<Half> le(const Vectorized<Half>& other) const;
|
832 |
+
};
|
833 |
+
|
834 |
+
Vectorized<Half> inline operator+(const Vectorized<Half>& a, const Vectorized<Half>& b) {
|
835 |
+
return binary_op_as_fp32(a, b, [](const __m256& x, const __m256& y) { return _mm256_add_ps(x, y); });
|
836 |
+
}
|
837 |
+
Vectorized<Half> inline operator-(const Vectorized<Half>& a, const Vectorized<Half>& b) {
|
838 |
+
return binary_op_as_fp32(a, b, [](const __m256& x, const __m256& y) { return _mm256_sub_ps(x, y); });
|
839 |
+
}
|
840 |
+
Vectorized<Half> inline operator*(const Vectorized<Half>& a, const Vectorized<Half>& b) {
|
841 |
+
return binary_op_as_fp32(a, b, [](const __m256& x, const __m256& y) { return _mm256_mul_ps(x, y); });
|
842 |
+
}
|
843 |
+
Vectorized<Half> inline operator/(const Vectorized<Half>& a, const Vectorized<Half>& b) {
|
844 |
+
return binary_op_as_fp32(a, b, [](const __m256& x, const __m256& y) { return _mm256_div_ps(x, y); });
|
845 |
+
}
|
846 |
+
Vectorized<Half> inline operator&(const Vectorized<Half>& a, const Vectorized<Half>& b) {
|
847 |
+
return _mm256_and_si256(a, b);
|
848 |
+
}
|
849 |
+
Vectorized<Half> inline operator|(const Vectorized<Half>& a, const Vectorized<Half>& b) {
|
850 |
+
return _mm256_or_si256(a, b);
|
851 |
+
}
|
852 |
+
Vectorized<Half> inline operator^(const Vectorized<Half>& a, const Vectorized<Half>& b) {
|
853 |
+
return _mm256_xor_si256(a, b);
|
854 |
+
}
|
855 |
+
|
856 |
+
inline Vectorized<Half> Vectorized<Half>::eq(const Vectorized<Half>& other) const {
|
857 |
+
return (*this == other) & Vectorized<Half>(1.0f);
|
858 |
+
}
|
859 |
+
inline Vectorized<Half> Vectorized<Half>::ne(const Vectorized<Half>& other) const {
|
860 |
+
return (*this != other) & Vectorized<Half>(1.0f);
|
861 |
+
}
|
862 |
+
inline Vectorized<Half> Vectorized<Half>::gt(const Vectorized<Half>& other) const {
|
863 |
+
return (*this > other) & Vectorized<Half>(1.0f);
|
864 |
+
}
|
865 |
+
inline Vectorized<Half> Vectorized<Half>::ge(const Vectorized<Half>& other) const {
|
866 |
+
return (*this >= other) & Vectorized<Half>(1.0f);
|
867 |
+
}
|
868 |
+
inline Vectorized<Half> Vectorized<Half>::lt(const Vectorized<Half>& other) const {
|
869 |
+
return (*this < other) & Vectorized<Half>(1.0f);
|
870 |
+
}
|
871 |
+
inline Vectorized<Half> Vectorized<Half>::le(const Vectorized<Half>& other) const {
|
872 |
+
return (*this <= other) & Vectorized<Half>(1.0f);
|
873 |
+
}
|
874 |
+
|
875 |
+
// frac. Implement this here so we can use subtraction
|
876 |
+
inline Vectorized<Half> Vectorized<Half>::frac() const {
|
877 |
+
return *this - this->trunc();
|
878 |
+
}
|
879 |
+
|
880 |
+
// Implements the IEEE 754 201X `maximum` operation, which propagates NaN if
|
881 |
+
// either input is a NaN.
|
882 |
+
template <>
|
883 |
+
Vectorized<Half> inline maximum(const Vectorized<Half>& a, const Vectorized<Half>& b) {
|
884 |
+
__m256 a_lo, a_hi;
|
885 |
+
__m256 b_lo, b_hi;
|
886 |
+
cvtfp16_fp32(__m256i(a), a_lo, a_hi);
|
887 |
+
cvtfp16_fp32(__m256i(b), b_lo, b_hi);
|
888 |
+
auto max_lo = _mm256_max_ps(a_lo, b_lo);
|
889 |
+
auto max_hi = _mm256_max_ps(a_hi, b_hi);
|
890 |
+
auto nan_lo = _mm256_cmp_ps(a_lo, b_lo, _CMP_UNORD_Q);
|
891 |
+
auto nan_hi = _mm256_cmp_ps(a_hi, b_hi, _CMP_UNORD_Q);
|
892 |
+
// Exploit the fact that all-ones is a NaN.
|
893 |
+
auto o1 = _mm256_or_ps(max_lo, nan_lo);
|
894 |
+
auto o2 = _mm256_or_ps(max_hi, nan_hi);
|
895 |
+
return cvtfp32_fp16(o1, o2);
|
896 |
+
}
|
897 |
+
|
898 |
+
// Implements the IEEE 754 201X `minimum` operation, which propagates NaN if
|
899 |
+
// either input is a NaN.
|
900 |
+
template <>
|
901 |
+
Vectorized<Half> inline minimum(const Vectorized<Half>& a, const Vectorized<Half>& b) {
|
902 |
+
__m256 a_lo, a_hi;
|
903 |
+
__m256 b_lo, b_hi;
|
904 |
+
cvtfp16_fp32(__m256i(a), a_lo, a_hi);
|
905 |
+
cvtfp16_fp32(__m256i(b), b_lo, b_hi);
|
906 |
+
auto min_lo = _mm256_min_ps(a_lo, b_lo);
|
907 |
+
auto min_hi = _mm256_min_ps(a_hi, b_hi);
|
908 |
+
auto nan_lo = _mm256_cmp_ps(a_lo, b_lo, _CMP_UNORD_Q);
|
909 |
+
auto nan_hi = _mm256_cmp_ps(a_hi, b_hi, _CMP_UNORD_Q);
|
910 |
+
// Exploit the fact that all-ones is a NaN.
|
911 |
+
auto o1 = _mm256_or_ps(min_lo, nan_lo);
|
912 |
+
auto o2 = _mm256_or_ps(min_hi, nan_hi);
|
913 |
+
return cvtfp32_fp16(o1, o2);
|
914 |
+
}
|
915 |
+
|
916 |
+
template <>
|
917 |
+
Vectorized<Half> inline clamp(const Vectorized<Half>& a,
|
918 |
+
const Vectorized<Half>& min, const Vectorized<Half>& max) {
|
919 |
+
__m256 a_lo, a_hi;
|
920 |
+
__m256 min_lo, min_hi;
|
921 |
+
__m256 max_lo, max_hi;
|
922 |
+
cvtfp16_fp32(__m256i(a), a_lo, a_hi);
|
923 |
+
cvtfp16_fp32(__m256i(min), min_lo, min_hi);
|
924 |
+
cvtfp16_fp32(__m256i(max), max_lo, max_hi);
|
925 |
+
auto o1 = _mm256_min_ps(max_lo, _mm256_max_ps(min_lo, a_lo));
|
926 |
+
auto o2 = _mm256_min_ps(max_hi, _mm256_max_ps(min_hi, a_hi));
|
927 |
+
return cvtfp32_fp16(o1, o2);
|
928 |
+
}
|
929 |
+
|
930 |
+
template <>
|
931 |
+
Vectorized<Half> inline clamp_max(const Vectorized<Half>& a, const Vectorized<Half>& max) {
|
932 |
+
__m256 a_lo, a_hi;
|
933 |
+
__m256 max_lo, max_hi;
|
934 |
+
cvtfp16_fp32(__m256i(a), a_lo, a_hi);
|
935 |
+
cvtfp16_fp32(__m256i(max), max_lo, max_hi);
|
936 |
+
auto o1 = _mm256_min_ps(max_lo, a_lo);
|
937 |
+
auto o2 = _mm256_min_ps(max_hi, a_hi);
|
938 |
+
return cvtfp32_fp16(o1, o2);
|
939 |
+
}
|
940 |
+
|
941 |
+
template <>
|
942 |
+
Vectorized<Half> inline clamp_min(const Vectorized<Half>& a, const Vectorized<Half>& min) {
|
943 |
+
__m256 a_lo, a_hi;
|
944 |
+
__m256 min_lo, min_hi;
|
945 |
+
cvtfp16_fp32(__m256i(a), a_lo, a_hi);
|
946 |
+
cvtfp16_fp32(__m256i(min), min_lo, min_hi);
|
947 |
+
auto o1 = _mm256_max_ps(min_lo, a_lo);
|
948 |
+
auto o2 = _mm256_max_ps(min_hi, a_hi);
|
949 |
+
return cvtfp32_fp16(o1, o2);
|
950 |
+
}
|
951 |
+
|
952 |
+
template <>
|
953 |
+
inline void convert(const Half* src, Half* dst, int64_t n) {
|
954 |
+
int64_t i;
|
955 |
+
#pragma unroll
|
956 |
+
for (i = 0; i <= (n - Vectorized<Half>::size()); i += Vectorized<Half>::size()) {
|
957 |
+
auto vsrc = _mm256_loadu_si256(reinterpret_cast<__m256i*>((void*)(src + i)));
|
958 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>((void*)(dst + i)), vsrc);
|
959 |
+
}
|
960 |
+
#pragma unroll
|
961 |
+
for (; i < n; i++) {
|
962 |
+
dst[i] = src[i];
|
963 |
+
}
|
964 |
+
}
|
965 |
+
|
966 |
+
template <>
|
967 |
+
inline void convert(const float* src, Half* dst, int64_t n) {
|
968 |
+
int64_t i;
|
969 |
+
for (i = 0; i + Vectorized<Half>::size() <= n; i += Vectorized<Half>::size()) {
|
970 |
+
__m256 a = _mm256_loadu_ps(&src[i]);
|
971 |
+
__m256 b = _mm256_loadu_ps(&src[i + 8]);
|
972 |
+
|
973 |
+
__m256i c = cvtfp32_fp16(a, b);
|
974 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(&dst[i]), c);
|
975 |
+
}
|
976 |
+
for (; i < n; i++) {
|
977 |
+
dst[i] = c10::convert<Half>(src[i]);
|
978 |
+
}
|
979 |
+
}
|
980 |
+
|
981 |
+
template <>
|
982 |
+
inline void convert(const double* src, Half* dst, int64_t n) {
|
983 |
+
auto load_float = [](const double *src) -> __m256 {
|
984 |
+
// Load one float vector from an array of doubles
|
985 |
+
__m128 a = _mm256_cvtpd_ps(_mm256_loadu_pd(src));
|
986 |
+
__m128 b = _mm256_cvtpd_ps(_mm256_loadu_pd(src + 4));
|
987 |
+
return _mm256_insertf128_ps(_mm256_castps128_ps256(a), b, 1);
|
988 |
+
};
|
989 |
+
|
990 |
+
int64_t i;
|
991 |
+
for (i = 0; i + Vectorized<Half>::size() <= n; i += Vectorized<Half>::size()) {
|
992 |
+
__m256 a = load_float(&src[i]);
|
993 |
+
__m256 b = load_float(&src[i + 8]);
|
994 |
+
|
995 |
+
__m256i c = cvtfp32_fp16(a, b);
|
996 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(&dst[i]), c);
|
997 |
+
}
|
998 |
+
for (; i < n; i++) {
|
999 |
+
dst[i] = c10::convert<Half>(src[i]);
|
1000 |
+
}
|
1001 |
+
}
|
1002 |
+
|
1003 |
+
template <>
|
1004 |
+
Vectorized<Half> inline fmadd(const Vectorized<Half>& a,
|
1005 |
+
const Vectorized<Half>& b, const Vectorized<Half>& c) {
|
1006 |
+
__m256 a_lo, a_hi;
|
1007 |
+
__m256 b_lo, b_hi;
|
1008 |
+
__m256 c_lo, c_hi;
|
1009 |
+
cvtfp16_fp32(__m256i(a), a_lo, a_hi);
|
1010 |
+
cvtfp16_fp32(__m256i(b), b_lo, b_hi);
|
1011 |
+
cvtfp16_fp32(__m256i(c), c_lo, c_hi);
|
1012 |
+
auto o1 = _mm256_fmadd_ps(a_lo, b_lo, c_lo);
|
1013 |
+
auto o2 = _mm256_fmadd_ps(a_hi, b_hi, c_hi);
|
1014 |
+
return cvtfp32_fp16(o1, o2);
|
1015 |
+
}
|
1016 |
+
|
1017 |
+
#define CONVERT_VECTORIZED_INIT(type, name) \
|
1018 |
+
inline std::tuple<Vectorized<float>, Vectorized<float>> convert_##name##_float(const Vectorized<type>& a) { \
|
1019 |
+
__m256 o1, o2; \
|
1020 |
+
cvt_to_fp32<type>(__m256i(a), o1, o2); \
|
1021 |
+
return std::make_tuple(o1, o2); \
|
1022 |
+
} \
|
1023 |
+
inline Vectorized<type> convert_float_##name(const Vectorized<float>& a, const Vectorized<float>& b) { \
|
1024 |
+
return cvt_from_fp32<type>(__m256(a), __m256(b)); \
|
1025 |
+
}
|
1026 |
+
CONVERT_VECTORIZED_INIT(BFloat16, bfloat16);
|
1027 |
+
CONVERT_VECTORIZED_INIT(Half, half);
|
1028 |
+
|
1029 |
+
#else // defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
1030 |
+
|
1031 |
+
#define CONVERT_NON_VECTORIZED_INIT(type, name) \
|
1032 |
+
inline std::tuple<Vectorized<float>, Vectorized<float>> convert_##name##_float(const Vectorized<type>& a) { \
|
1033 |
+
constexpr int64_t K = Vectorized<type>::size(); \
|
1034 |
+
__at_align__ float arr[K]; \
|
1035 |
+
__at_align__ type arr2[K]; \
|
1036 |
+
a.store(arr2); \
|
1037 |
+
convert(arr2, arr, K); \
|
1038 |
+
return std::make_tuple( \
|
1039 |
+
Vectorized<float>::loadu(arr), \
|
1040 |
+
Vectorized<float>::loadu(arr + Vectorized<float>::size())); \
|
1041 |
+
} \
|
1042 |
+
inline Vectorized<type> convert_float_##name(const Vectorized<float>& a, const Vectorized<float>& b) { \
|
1043 |
+
constexpr int64_t K = Vectorized<type>::size(); \
|
1044 |
+
__at_align__ float arr[K]; \
|
1045 |
+
__at_align__ type arr2[K]; \
|
1046 |
+
a.store(arr); \
|
1047 |
+
b.store(arr + Vectorized<float>::size()); \
|
1048 |
+
convert(arr, arr2, K); \
|
1049 |
+
return Vectorized<type>::loadu(arr2); \
|
1050 |
+
}
|
1051 |
+
CONVERT_NON_VECTORIZED_INIT(BFloat16, bfloat16);
|
1052 |
+
CONVERT_NON_VECTORIZED_INIT(Half, half);
|
1053 |
+
|
1054 |
+
#endif // defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
1055 |
+
|
1056 |
+
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
1057 |
+
#define LOAD_FP32_VECTORIZED_INIT(type, name) \
|
1058 |
+
inline void load_fp32_from_##name(const type *data, Vectorized<float>& out) { \
|
1059 |
+
auto values = _mm_loadu_si128(reinterpret_cast<const __m128i*>(data)); \
|
1060 |
+
__m256 out_values; \
|
1061 |
+
cvt_to_fp32<type>(values, out_values); \
|
1062 |
+
out = out_values; \
|
1063 |
+
} \
|
1064 |
+
\
|
1065 |
+
inline void load_fp32_from_##name(const type *data, Vectorized<float>& out1, Vectorized<float>& out2) { \
|
1066 |
+
auto vec = Vectorized<type>::loadu(data); \
|
1067 |
+
__m256 out1_values, out2_values; \
|
1068 |
+
cvt_to_fp32<type>(vec, out1_values, out2_values); \
|
1069 |
+
out1 = out1_values; \
|
1070 |
+
out2 = out2_values; \
|
1071 |
+
}
|
1072 |
+
LOAD_FP32_VECTORIZED_INIT(BFloat16, bf16);
|
1073 |
+
LOAD_FP32_VECTORIZED_INIT(Half, fp16);
|
1074 |
+
|
1075 |
+
#else // defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
1076 |
+
#define LOAD_FP32_NON_VECTORIZED_INIT(type, name) \
|
1077 |
+
inline void load_fp32_from_##name(const type *data, Vectorized<float>& out) { \
|
1078 |
+
__at_align__ float values[Vectorized<float>::size()]; \
|
1079 |
+
for (const auto k : c10::irange(Vectorized<float>::size())) { \
|
1080 |
+
values[k] = data[k]; \
|
1081 |
+
} \
|
1082 |
+
out = Vectorized<float>::loadu(values); \
|
1083 |
+
} \
|
1084 |
+
\
|
1085 |
+
inline void load_fp32_from_##name(const type *data, Vectorized<float>& out1, Vectorized<float>& out2) { \
|
1086 |
+
load_fp32_from_##name(data, out1); \
|
1087 |
+
data += Vectorized<float>::size(); \
|
1088 |
+
load_fp32_from_##name(data, out2); \
|
1089 |
+
}
|
1090 |
+
LOAD_FP32_NON_VECTORIZED_INIT(BFloat16, bf16);
|
1091 |
+
LOAD_FP32_NON_VECTORIZED_INIT(Half, fp16);
|
1092 |
+
|
1093 |
+
#endif
|
1094 |
+
}} // namsepace at::vec::CPU_CAPABILITY
|
1095 |
+
|
1096 |
+
#pragma GCC diagnostic pop
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_complex_double.h
ADDED
@@ -0,0 +1,431 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <c10/util/complex.h>
|
7 |
+
#include <c10/util/irange.h>
|
8 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
9 |
+
#include <ATen/cpu/vec/vec_base.h>
|
10 |
+
|
11 |
+
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
12 |
+
#include <sleef.h>
|
13 |
+
#endif
|
14 |
+
|
15 |
+
namespace at::vec {
|
16 |
+
// See Note [CPU_CAPABILITY namespace]
|
17 |
+
inline namespace CPU_CAPABILITY {
|
18 |
+
|
19 |
+
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
20 |
+
|
21 |
+
template <> class Vectorized<c10::complex<double>> {
|
22 |
+
private:
|
23 |
+
__m256d values;
|
24 |
+
public:
|
25 |
+
using value_type = c10::complex<double>;
|
26 |
+
using size_type = int;
|
27 |
+
static constexpr size_type size() {
|
28 |
+
return 2;
|
29 |
+
}
|
30 |
+
Vectorized() {}
|
31 |
+
Vectorized(__m256d v) : values(v) {}
|
32 |
+
Vectorized(c10::complex<double> val) {
|
33 |
+
double real_value = val.real();
|
34 |
+
double imag_value = val.imag();
|
35 |
+
values = _mm256_setr_pd(real_value, imag_value,
|
36 |
+
real_value, imag_value);
|
37 |
+
}
|
38 |
+
Vectorized(c10::complex<double> val1, c10::complex<double> val2) {
|
39 |
+
values = _mm256_setr_pd(val1.real(), val1.imag(),
|
40 |
+
val2.real(), val2.imag());
|
41 |
+
}
|
42 |
+
operator __m256d() const {
|
43 |
+
return values;
|
44 |
+
}
|
45 |
+
template <int64_t mask>
|
46 |
+
static Vectorized<c10::complex<double>> blend(const Vectorized<c10::complex<double>>& a, const Vectorized<c10::complex<double>>& b) {
|
47 |
+
// convert c10::complex<V> index mask to V index mask: xy -> xxyy
|
48 |
+
static_assert (mask > -1 && mask < 4, "Unexpected mask value");
|
49 |
+
switch (mask) {
|
50 |
+
case 0:
|
51 |
+
return a;
|
52 |
+
case 1:
|
53 |
+
return _mm256_blend_pd(a.values, b.values, 0x03);
|
54 |
+
case 2:
|
55 |
+
return _mm256_blend_pd(a.values, b.values, 0x0c);
|
56 |
+
case 3: break;
|
57 |
+
}
|
58 |
+
return b;
|
59 |
+
}
|
60 |
+
static Vectorized<c10::complex<double>> blendv(const Vectorized<c10::complex<double>>& a, const Vectorized<c10::complex<double>>& b,
|
61 |
+
const Vectorized<c10::complex<double>>& mask) {
|
62 |
+
// convert c10::complex<V> index mask to V index mask: xy -> xxyy
|
63 |
+
auto mask_ = _mm256_unpacklo_pd(mask.values, mask.values);
|
64 |
+
return _mm256_blendv_pd(a.values, b.values, mask_);
|
65 |
+
|
66 |
+
}
|
67 |
+
template<typename step_t>
|
68 |
+
static Vectorized<c10::complex<double>> arange(c10::complex<double> base = 0., step_t step = static_cast<step_t>(1)) {
|
69 |
+
return Vectorized<c10::complex<double>>(base,
|
70 |
+
base + step);
|
71 |
+
}
|
72 |
+
static Vectorized<c10::complex<double>> set(const Vectorized<c10::complex<double>>& a, const Vectorized<c10::complex<double>>& b,
|
73 |
+
int64_t count = size()) {
|
74 |
+
switch (count) {
|
75 |
+
case 0:
|
76 |
+
return a;
|
77 |
+
case 1:
|
78 |
+
return blend<1>(a, b);
|
79 |
+
}
|
80 |
+
return b;
|
81 |
+
}
|
82 |
+
static Vectorized<c10::complex<double>> loadu(const void* ptr, int64_t count = size()) {
|
83 |
+
if (count == size())
|
84 |
+
return _mm256_loadu_pd(reinterpret_cast<const double*>(ptr));
|
85 |
+
|
86 |
+
__at_align__ double tmp_values[2*size()];
|
87 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
88 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
89 |
+
// instructions while a loop would be compiled to one instruction.
|
90 |
+
for (const auto i : c10::irange(2*size())) {
|
91 |
+
tmp_values[i] = 0.0;
|
92 |
+
}
|
93 |
+
std::memcpy(
|
94 |
+
tmp_values,
|
95 |
+
reinterpret_cast<const double*>(ptr),
|
96 |
+
count * sizeof(c10::complex<double>));
|
97 |
+
return _mm256_load_pd(tmp_values);
|
98 |
+
}
|
99 |
+
void store(void* ptr, int count = size()) const {
|
100 |
+
if (count == size()) {
|
101 |
+
_mm256_storeu_pd(reinterpret_cast<double*>(ptr), values);
|
102 |
+
} else if (count > 0) {
|
103 |
+
double tmp_values[2*size()];
|
104 |
+
_mm256_storeu_pd(reinterpret_cast<double*>(tmp_values), values);
|
105 |
+
std::memcpy(ptr, tmp_values, count * sizeof(c10::complex<double>));
|
106 |
+
}
|
107 |
+
}
|
108 |
+
const c10::complex<double>& operator[](int idx) const = delete;
|
109 |
+
c10::complex<double>& operator[](int idx) = delete;
|
110 |
+
Vectorized<c10::complex<double>> map(c10::complex<double> (*const f)(const c10::complex<double> &)) const {
|
111 |
+
__at_align__ c10::complex<double> tmp[size()];
|
112 |
+
store(tmp);
|
113 |
+
for (const auto i : c10::irange(size())) {
|
114 |
+
tmp[i] = f(tmp[i]);
|
115 |
+
}
|
116 |
+
return loadu(tmp);
|
117 |
+
}
|
118 |
+
__m256d abs_2_() const {
|
119 |
+
auto val_2 = _mm256_mul_pd(values, values); // a*a b*b
|
120 |
+
return _mm256_hadd_pd(val_2, val_2); // a*a+b*b a*a+b*b
|
121 |
+
}
|
122 |
+
__m256d abs_() const {
|
123 |
+
auto real = _mm256_movedup_pd(values); // real real
|
124 |
+
// movehdup_pd does not exist...
|
125 |
+
auto imag = _mm256_permute_pd(values, 0xf); // imag imag
|
126 |
+
return Sleef_hypotd4_u05(real, imag); // abs abs
|
127 |
+
}
|
128 |
+
Vectorized<c10::complex<double>> abs() const {
|
129 |
+
const __m256d real_mask = _mm256_castsi256_pd(_mm256_setr_epi64x(0xFFFFFFFFFFFFFFFF, 0x0000000000000000,
|
130 |
+
0xFFFFFFFFFFFFFFFF, 0x0000000000000000));
|
131 |
+
return _mm256_and_pd(abs_(), real_mask); // abs 0
|
132 |
+
}
|
133 |
+
__m256d angle_() const {
|
134 |
+
//angle = atan2(b/a)
|
135 |
+
auto b_a = _mm256_permute_pd(values, 0x05); // b a
|
136 |
+
return Sleef_atan2d4_u10(values, b_a); // 90-angle angle
|
137 |
+
}
|
138 |
+
Vectorized<c10::complex<double>> angle() const {
|
139 |
+
const __m256d real_mask = _mm256_castsi256_pd(_mm256_setr_epi64x(0xFFFFFFFFFFFFFFFF, 0x0000000000000000,
|
140 |
+
0xFFFFFFFFFFFFFFFF, 0x0000000000000000));
|
141 |
+
auto angle = _mm256_permute_pd(angle_(), 0x05); // angle 90-angle
|
142 |
+
return _mm256_and_pd(angle, real_mask); // angle 0
|
143 |
+
}
|
144 |
+
Vectorized<c10::complex<double>> sgn() const {
|
145 |
+
auto abs = abs_();
|
146 |
+
auto zero = _mm256_setzero_pd();
|
147 |
+
auto mask = _mm256_cmp_pd(abs, zero, _CMP_EQ_OQ);
|
148 |
+
auto div = values / abs;
|
149 |
+
return _mm256_blendv_pd(div, zero, mask);
|
150 |
+
}
|
151 |
+
__m256d real_() const {
|
152 |
+
const __m256d real_mask = _mm256_castsi256_pd(_mm256_setr_epi64x(0xFFFFFFFFFFFFFFFF, 0x0000000000000000,
|
153 |
+
0xFFFFFFFFFFFFFFFF, 0x0000000000000000));
|
154 |
+
return _mm256_and_pd(values, real_mask);
|
155 |
+
}
|
156 |
+
Vectorized<c10::complex<double>> real() const {
|
157 |
+
return real_();
|
158 |
+
}
|
159 |
+
__m256d imag_() const {
|
160 |
+
const __m256d imag_mask = _mm256_castsi256_pd(_mm256_setr_epi64x(0x0000000000000000, 0xFFFFFFFFFFFFFFFF,
|
161 |
+
0x0000000000000000, 0xFFFFFFFFFFFFFFFF));
|
162 |
+
return _mm256_and_pd(values, imag_mask);
|
163 |
+
}
|
164 |
+
Vectorized<c10::complex<double>> imag() const {
|
165 |
+
return _mm256_permute_pd(imag_(), 0x05); //b a
|
166 |
+
}
|
167 |
+
__m256d conj_() const {
|
168 |
+
const __m256d sign_mask = _mm256_setr_pd(0.0, -0.0, 0.0, -0.0);
|
169 |
+
return _mm256_xor_pd(values, sign_mask); // a -b
|
170 |
+
}
|
171 |
+
Vectorized<c10::complex<double>> conj() const {
|
172 |
+
return conj_();
|
173 |
+
}
|
174 |
+
Vectorized<c10::complex<double>> log() const {
|
175 |
+
// Most trigonomic ops use the log() op to improve complex number performance.
|
176 |
+
return map(std::log);
|
177 |
+
}
|
178 |
+
Vectorized<c10::complex<double>> log2() const {
|
179 |
+
const __m256d log2_ = _mm256_set1_pd(std::log(2));
|
180 |
+
return _mm256_div_pd(log(), log2_);
|
181 |
+
}
|
182 |
+
Vectorized<c10::complex<double>> log10() const {
|
183 |
+
const __m256d log10_ = _mm256_set1_pd(std::log(10));
|
184 |
+
return _mm256_div_pd(log(), log10_);
|
185 |
+
}
|
186 |
+
Vectorized<c10::complex<double>> log1p() const {
|
187 |
+
return map(std::log1p);
|
188 |
+
}
|
189 |
+
Vectorized<c10::complex<double>> asin() const {
|
190 |
+
// asin(x)
|
191 |
+
// = -i*ln(iz + sqrt(1 -z^2))
|
192 |
+
// = -i*ln((ai - b) + sqrt(1 - (a + bi)*(a + bi)))
|
193 |
+
// = -i*ln((-b + ai) + sqrt(1 - (a**2 - b**2) - 2*abi))
|
194 |
+
const __m256d one = _mm256_set1_pd(1);
|
195 |
+
|
196 |
+
auto conj = conj_();
|
197 |
+
auto b_a = _mm256_permute_pd(conj, 0x05); //-b a
|
198 |
+
auto ab = _mm256_mul_pd(conj, b_a); //-ab -ab
|
199 |
+
auto im = _mm256_add_pd(ab, ab); //-2ab -2ab
|
200 |
+
|
201 |
+
auto val_2 = _mm256_mul_pd(values, values); // a*a b*b
|
202 |
+
auto re = _mm256_hsub_pd(val_2, _mm256_permute_pd(val_2, 0x05)); // a*a-b*b b*b-a*a
|
203 |
+
re = _mm256_sub_pd(one, re);
|
204 |
+
|
205 |
+
auto root = Vectorized(_mm256_blend_pd(re, im, 0x0A)).sqrt(); //sqrt(re + i*im)
|
206 |
+
auto ln = Vectorized(_mm256_add_pd(b_a, root)).log(); //ln(iz + sqrt())
|
207 |
+
return Vectorized(_mm256_permute_pd(ln.values, 0x05)).conj(); //-i*ln()
|
208 |
+
}
|
209 |
+
Vectorized<c10::complex<double>> acos() const {
|
210 |
+
// acos(x) = pi/2 - asin(x)
|
211 |
+
constexpr auto pi_2d = c10::pi<double> / 2;
|
212 |
+
const __m256d pi_2 = _mm256_setr_pd(pi_2d, 0.0, pi_2d, 0.0);
|
213 |
+
return _mm256_sub_pd(pi_2, asin());
|
214 |
+
}
|
215 |
+
Vectorized<c10::complex<double>> atan() const;
|
216 |
+
Vectorized<c10::complex<double>> atanh() const {
|
217 |
+
return map(std::atanh);
|
218 |
+
}
|
219 |
+
Vectorized<c10::complex<double>> exp() const {
|
220 |
+
//exp(a + bi)
|
221 |
+
// = exp(a)*(cos(b) + sin(b)i)
|
222 |
+
auto exp = Sleef_expd4_u10(values); //exp(a) exp(b)
|
223 |
+
exp = _mm256_blend_pd(exp, _mm256_permute_pd(exp, 0x05), 0x0A); //exp(a) exp(a)
|
224 |
+
|
225 |
+
auto sin_cos = Sleef_sincosd4_u10(values); //[sin(a), cos(a)] [sin(b), cos(b)]
|
226 |
+
auto cos_sin = _mm256_blend_pd(_mm256_permute_pd(sin_cos.y, 0x05),
|
227 |
+
sin_cos.x, 0x0A); //cos(b) sin(b)
|
228 |
+
return _mm256_mul_pd(exp, cos_sin);
|
229 |
+
}
|
230 |
+
Vectorized<c10::complex<double>> exp2() const {
|
231 |
+
// Use identity 2**x = exp(log(2) * x)
|
232 |
+
const __m256d ln_2 = _mm256_set1_pd(c10::ln_2<double>);
|
233 |
+
Vectorized<c10::complex<double>> scaled_values = _mm256_mul_pd(values, ln_2);
|
234 |
+
return scaled_values.exp();
|
235 |
+
}
|
236 |
+
Vectorized<c10::complex<double>> expm1() const {
|
237 |
+
return map(std::expm1);
|
238 |
+
}
|
239 |
+
Vectorized<c10::complex<double>> sin() const {
|
240 |
+
return map(std::sin);
|
241 |
+
}
|
242 |
+
Vectorized<c10::complex<double>> sinh() const {
|
243 |
+
return map(std::sinh);
|
244 |
+
}
|
245 |
+
Vectorized<c10::complex<double>> cos() const {
|
246 |
+
return map(std::cos);
|
247 |
+
}
|
248 |
+
Vectorized<c10::complex<double>> cosh() const {
|
249 |
+
return map(std::cosh);
|
250 |
+
}
|
251 |
+
Vectorized<c10::complex<double>> ceil() const {
|
252 |
+
return _mm256_ceil_pd(values);
|
253 |
+
}
|
254 |
+
Vectorized<c10::complex<double>> floor() const {
|
255 |
+
return _mm256_floor_pd(values);
|
256 |
+
}
|
257 |
+
Vectorized<c10::complex<double>> neg() const {
|
258 |
+
auto zero = _mm256_setzero_pd();
|
259 |
+
return _mm256_sub_pd(zero, values);
|
260 |
+
}
|
261 |
+
Vectorized<c10::complex<double>> round() const {
|
262 |
+
return _mm256_round_pd(values, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
|
263 |
+
}
|
264 |
+
Vectorized<c10::complex<double>> tan() const {
|
265 |
+
return map(std::tan);
|
266 |
+
}
|
267 |
+
Vectorized<c10::complex<double>> tanh() const {
|
268 |
+
return map(std::tanh);
|
269 |
+
}
|
270 |
+
Vectorized<c10::complex<double>> trunc() const {
|
271 |
+
return _mm256_round_pd(values, (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC));
|
272 |
+
}
|
273 |
+
Vectorized<c10::complex<double>> sqrt() const {
|
274 |
+
return map(std::sqrt);
|
275 |
+
}
|
276 |
+
Vectorized<c10::complex<double>> reciprocal() const;
|
277 |
+
Vectorized<c10::complex<double>> rsqrt() const {
|
278 |
+
return sqrt().reciprocal();
|
279 |
+
}
|
280 |
+
Vectorized<c10::complex<double>> pow(const Vectorized<c10::complex<double>> &exp) const {
|
281 |
+
__at_align__ c10::complex<double> x_tmp[size()];
|
282 |
+
__at_align__ c10::complex<double> y_tmp[size()];
|
283 |
+
store(x_tmp);
|
284 |
+
exp.store(y_tmp);
|
285 |
+
for (const auto i : c10::irange(size())) {
|
286 |
+
x_tmp[i] = std::pow(x_tmp[i], y_tmp[i]);
|
287 |
+
}
|
288 |
+
return loadu(x_tmp);
|
289 |
+
}
|
290 |
+
// Comparison using the _CMP_**_OQ predicate.
|
291 |
+
// `O`: get false if an operand is NaN
|
292 |
+
// `Q`: do not raise if an operand is NaN
|
293 |
+
Vectorized<c10::complex<double>> operator==(const Vectorized<c10::complex<double>>& other) const {
|
294 |
+
return _mm256_cmp_pd(values, other.values, _CMP_EQ_OQ);
|
295 |
+
}
|
296 |
+
Vectorized<c10::complex<double>> operator!=(const Vectorized<c10::complex<double>>& other) const {
|
297 |
+
return _mm256_cmp_pd(values, other.values, _CMP_NEQ_UQ);
|
298 |
+
}
|
299 |
+
Vectorized<c10::complex<double>> operator<(const Vectorized<c10::complex<double>>&) const {
|
300 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
301 |
+
}
|
302 |
+
Vectorized<c10::complex<double>> operator<=(const Vectorized<c10::complex<double>>&) const {
|
303 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
304 |
+
}
|
305 |
+
Vectorized<c10::complex<double>> operator>(const Vectorized<c10::complex<double>>&) const {
|
306 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
307 |
+
}
|
308 |
+
Vectorized<c10::complex<double>> operator>=(const Vectorized<c10::complex<double>>&) const {
|
309 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
310 |
+
}
|
311 |
+
|
312 |
+
Vectorized<c10::complex<double>> eq(const Vectorized<c10::complex<double>>& other) const;
|
313 |
+
Vectorized<c10::complex<double>> ne(const Vectorized<c10::complex<double>>& other) const;
|
314 |
+
};
|
315 |
+
|
316 |
+
template <> Vectorized<c10::complex<double>> inline operator+(const Vectorized<c10::complex<double>> &a, const Vectorized<c10::complex<double>> &b) {
|
317 |
+
return _mm256_add_pd(a, b);
|
318 |
+
}
|
319 |
+
|
320 |
+
template <> Vectorized<c10::complex<double>> inline operator-(const Vectorized<c10::complex<double>> &a, const Vectorized<c10::complex<double>> &b) {
|
321 |
+
return _mm256_sub_pd(a, b);
|
322 |
+
}
|
323 |
+
|
324 |
+
template <> Vectorized<c10::complex<double>> inline operator*(const Vectorized<c10::complex<double>> &a, const Vectorized<c10::complex<double>> &b) {
|
325 |
+
//(a + bi) * (c + di) = (ac - bd) + (ad + bc)i
|
326 |
+
const __m256d sign_mask = _mm256_setr_pd(0.0, -0.0, 0.0, -0.0);
|
327 |
+
auto ac_bd = _mm256_mul_pd(a, b); //ac bd
|
328 |
+
|
329 |
+
auto d_c = _mm256_permute_pd(b, 0x05); //d c
|
330 |
+
d_c = _mm256_xor_pd(sign_mask, d_c); //d -c
|
331 |
+
auto ad_bc = _mm256_mul_pd(a, d_c); //ad -bc
|
332 |
+
|
333 |
+
auto ret = _mm256_hsub_pd(ac_bd, ad_bc); //ac - bd ad + bc
|
334 |
+
return ret;
|
335 |
+
}
|
336 |
+
|
337 |
+
template <> Vectorized<c10::complex<double>> inline operator/(const Vectorized<c10::complex<double>> &a, const Vectorized<c10::complex<double>> &b) {
|
338 |
+
//re + im*i = (a + bi) / (c + di)
|
339 |
+
auto mask = _mm256_set1_pd(-0.f);
|
340 |
+
auto fabs_cd = _mm256_andnot_pd(mask, b); // |c| |d|
|
341 |
+
auto fabs_dc = _mm256_permute_pd(fabs_cd, 0x05); // |d| |c|
|
342 |
+
auto scale = _mm256_div_pd(_mm256_set1_pd(1.0f), _mm256_max_pd(fabs_cd, fabs_dc)); // 1/sc 1/sc
|
343 |
+
auto a2 = _mm256_mul_pd(a, scale); // a/sc b/sc
|
344 |
+
auto b2 = _mm256_mul_pd(b, scale); // c/sc d/sc
|
345 |
+
auto acbd2 = _mm256_mul_pd(a2, b2);
|
346 |
+
|
347 |
+
const __m256d sign_mask = _mm256_setr_pd(-0.0, 0.0, -0.0, 0.0);
|
348 |
+
auto dc2 = _mm256_permute_pd(b2, 0x05); // d/sc c/sc
|
349 |
+
dc2 = _mm256_xor_pd(sign_mask, dc2); // -d/|c,d| c/sc
|
350 |
+
auto adbc2 = _mm256_mul_pd(a2, dc2); //-ad/sc^2 bc/sc^2
|
351 |
+
auto res2 = _mm256_hadd_pd(acbd2, adbc2); //(ac+bd)/sc^2 (bc-ad)/sc^2
|
352 |
+
|
353 |
+
// get the denominator
|
354 |
+
auto denom2 = Vectorized<c10::complex<double>>(b2).abs_2_(); // (c^2+d^2)/sc^2 (c^2+d^2)/sc^2
|
355 |
+
res2 = _mm256_div_pd(res2, denom2);
|
356 |
+
return res2;
|
357 |
+
}
|
358 |
+
|
359 |
+
// reciprocal. Implement this here so we can use multiplication.
|
360 |
+
inline Vectorized<c10::complex<double>> Vectorized<c10::complex<double>>::reciprocal() const{
|
361 |
+
//re + im*i = (a + bi) / (c + di)
|
362 |
+
//re = (ac + bd)/abs_2() = c/abs_2()
|
363 |
+
//im = (bc - ad)/abs_2() = d/abs_2()
|
364 |
+
const __m256d sign_mask = _mm256_setr_pd(0.0, -0.0, 0.0, -0.0);
|
365 |
+
auto c_d = _mm256_xor_pd(sign_mask, values); //c -d
|
366 |
+
return _mm256_div_pd(c_d, abs_2_());
|
367 |
+
}
|
368 |
+
|
369 |
+
inline Vectorized<c10::complex<double>> Vectorized<c10::complex<double>>::atan() const {
|
370 |
+
// atan(x) = i/2 * ln((i + z)/(i - z))
|
371 |
+
const __m256d i = _mm256_setr_pd(0.0, 1.0, 0.0, 1.0);
|
372 |
+
const Vectorized i_half = _mm256_setr_pd(0.0, 0.5, 0.0, 0.5);
|
373 |
+
|
374 |
+
auto sum = Vectorized(_mm256_add_pd(i, values)); // a 1+b
|
375 |
+
auto sub = Vectorized(_mm256_sub_pd(i, values)); // -a 1-b
|
376 |
+
auto ln = (sum/sub).log(); // ln((i + z)/(i - z))
|
377 |
+
return i_half*ln; // i/2*ln()
|
378 |
+
}
|
379 |
+
|
380 |
+
template <>
|
381 |
+
Vectorized<c10::complex<double>> inline maximum(const Vectorized<c10::complex<double>>& a, const Vectorized<c10::complex<double>>& b) {
|
382 |
+
auto abs_a = a.abs_2_();
|
383 |
+
auto abs_b = b.abs_2_();
|
384 |
+
auto mask = _mm256_cmp_pd(abs_a, abs_b, _CMP_LT_OQ);
|
385 |
+
auto max = _mm256_blendv_pd(a, b, mask);
|
386 |
+
// Exploit the fact that all-ones is a NaN.
|
387 |
+
auto isnan = _mm256_cmp_pd(abs_a, abs_b, _CMP_UNORD_Q);
|
388 |
+
return _mm256_or_pd(max, isnan);
|
389 |
+
}
|
390 |
+
|
391 |
+
template <>
|
392 |
+
Vectorized<c10::complex<double>> inline minimum(const Vectorized<c10::complex<double>>& a, const Vectorized<c10::complex<double>>& b) {
|
393 |
+
auto abs_a = a.abs_2_();
|
394 |
+
auto abs_b = b.abs_2_();
|
395 |
+
auto mask = _mm256_cmp_pd(abs_a, abs_b, _CMP_GT_OQ);
|
396 |
+
auto min = _mm256_blendv_pd(a, b, mask);
|
397 |
+
// Exploit the fact that all-ones is a NaN.
|
398 |
+
auto isnan = _mm256_cmp_pd(abs_a, abs_b, _CMP_UNORD_Q);
|
399 |
+
return _mm256_or_pd(min, isnan);
|
400 |
+
}
|
401 |
+
|
402 |
+
template <>
|
403 |
+
Vectorized<c10::complex<double>> inline operator&(const Vectorized<c10::complex<double>>& a, const Vectorized<c10::complex<double>>& b) {
|
404 |
+
return _mm256_and_pd(a, b);
|
405 |
+
}
|
406 |
+
|
407 |
+
template <>
|
408 |
+
Vectorized<c10::complex<double>> inline operator|(const Vectorized<c10::complex<double>>& a, const Vectorized<c10::complex<double>>& b) {
|
409 |
+
return _mm256_or_pd(a, b);
|
410 |
+
}
|
411 |
+
|
412 |
+
template <>
|
413 |
+
Vectorized<c10::complex<double>> inline operator^(const Vectorized<c10::complex<double>>& a, const Vectorized<c10::complex<double>>& b) {
|
414 |
+
return _mm256_xor_pd(a, b);
|
415 |
+
}
|
416 |
+
|
417 |
+
inline Vectorized<c10::complex<double>> Vectorized<c10::complex<double>>::eq(const Vectorized<c10::complex<double>>& other) const {
|
418 |
+
auto eq = (*this == other); // compares real and imag individually
|
419 |
+
// If both real numbers and imag numbers are equal, then the complex numbers are equal
|
420 |
+
return (eq.real() & eq.imag()) & Vectorized<c10::complex<double>>(_mm256_set1_pd(1.0));
|
421 |
+
}
|
422 |
+
|
423 |
+
inline Vectorized<c10::complex<double>> Vectorized<c10::complex<double>>::ne(const Vectorized<c10::complex<double>>& other) const {
|
424 |
+
auto ne = (*this != other); // compares real and imag individually
|
425 |
+
// If either real numbers or imag numbers are not equal, then the complex numbers are not equal
|
426 |
+
return (ne.real() | ne.imag()) & Vectorized<c10::complex<double>>(_mm256_set1_pd(1.0));
|
427 |
+
}
|
428 |
+
|
429 |
+
#endif
|
430 |
+
|
431 |
+
}} // namespace at::vec::CPU_CAPABILITY
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_complex_float.h
ADDED
@@ -0,0 +1,468 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <c10/util/complex.h>
|
7 |
+
#include <c10/util/irange.h>
|
8 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
9 |
+
#include <ATen/cpu/vec/vec_base.h>
|
10 |
+
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
11 |
+
#include <sleef.h>
|
12 |
+
#endif
|
13 |
+
|
14 |
+
namespace at::vec {
|
15 |
+
// See Note [CPU_CAPABILITY namespace]
|
16 |
+
inline namespace CPU_CAPABILITY {
|
17 |
+
|
18 |
+
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
19 |
+
|
20 |
+
template <> class Vectorized<c10::complex<float>> {
|
21 |
+
private:
|
22 |
+
__m256 values;
|
23 |
+
public:
|
24 |
+
using value_type = c10::complex<float>;
|
25 |
+
using size_type = int;
|
26 |
+
static constexpr size_type size() {
|
27 |
+
return 4;
|
28 |
+
}
|
29 |
+
Vectorized() {}
|
30 |
+
Vectorized(__m256 v) : values(v) {}
|
31 |
+
Vectorized(c10::complex<float> val) {
|
32 |
+
float real_value = val.real();
|
33 |
+
float imag_value = val.imag();
|
34 |
+
values = _mm256_setr_ps(real_value, imag_value,
|
35 |
+
real_value, imag_value,
|
36 |
+
real_value, imag_value,
|
37 |
+
real_value, imag_value
|
38 |
+
);
|
39 |
+
}
|
40 |
+
Vectorized(c10::complex<float> val1, c10::complex<float> val2, c10::complex<float> val3, c10::complex<float> val4) {
|
41 |
+
values = _mm256_setr_ps(val1.real(), val1.imag(),
|
42 |
+
val2.real(), val2.imag(),
|
43 |
+
val3.real(), val3.imag(),
|
44 |
+
val4.real(), val4.imag()
|
45 |
+
);
|
46 |
+
}
|
47 |
+
operator __m256() const {
|
48 |
+
return values;
|
49 |
+
}
|
50 |
+
template <int64_t mask>
|
51 |
+
static Vectorized<c10::complex<float>> blend(const Vectorized<c10::complex<float>>& a, const Vectorized<c10::complex<float>>& b) {
|
52 |
+
// convert c10::complex<V> index mask to V index mask: xy -> xxyy
|
53 |
+
static_assert(mask > -1 && mask < 16, "Unexpected mask range");
|
54 |
+
switch (mask) {
|
55 |
+
case 0:
|
56 |
+
return a;
|
57 |
+
case 1:
|
58 |
+
return _mm256_blend_ps(a.values, b.values, 0x03); //b0000 0001 = b0000 0011
|
59 |
+
case 2:
|
60 |
+
return _mm256_blend_ps(a.values, b.values, 0x0C); //b0000 0010 = b0000 1100
|
61 |
+
case 3:
|
62 |
+
return _mm256_blend_ps(a.values, b.values, 0x0F); //b0000 0011 = b0000 1111
|
63 |
+
case 4:
|
64 |
+
return _mm256_blend_ps(a.values, b.values, 0x30); //b0000 0100 = b0011 0000
|
65 |
+
case 5:
|
66 |
+
return _mm256_blend_ps(a.values, b.values, 0x33); //b0000 0101 = b0011 0011
|
67 |
+
case 6:
|
68 |
+
return _mm256_blend_ps(a.values, b.values, 0x3C); //b0000 0110 = b0011 1100
|
69 |
+
case 7:
|
70 |
+
return _mm256_blend_ps(a.values, b.values, 0x3F); //b0000 0111 = b0011 1111
|
71 |
+
case 8:
|
72 |
+
return _mm256_blend_ps(a.values, b.values, 0xC0); //b0000 1000 = b1100 0000
|
73 |
+
case 9:
|
74 |
+
return _mm256_blend_ps(a.values, b.values, 0xC3); //b0000 1001 = b1100 0011
|
75 |
+
case 10:
|
76 |
+
return _mm256_blend_ps(a.values, b.values, 0xCC); //b0000 1010 = b1100 1100
|
77 |
+
case 11:
|
78 |
+
return _mm256_blend_ps(a.values, b.values, 0xCF); //b0000 1011 = b1100 1111
|
79 |
+
case 12:
|
80 |
+
return _mm256_blend_ps(a.values, b.values, 0xF0); //b0000 1100 = b1111 0000
|
81 |
+
case 13:
|
82 |
+
return _mm256_blend_ps(a.values, b.values, 0xF3); //b0000 1101 = b1111 0011
|
83 |
+
case 14:
|
84 |
+
return _mm256_blend_ps(a.values, b.values, 0xFC); //b0000 1110 = b1111 1100
|
85 |
+
default: break;
|
86 |
+
}
|
87 |
+
return b;
|
88 |
+
}
|
89 |
+
static Vectorized<c10::complex<float>> blendv(const Vectorized<c10::complex<float>>& a, const Vectorized<c10::complex<float>>& b,
|
90 |
+
const Vectorized<c10::complex<float>>& mask) {
|
91 |
+
// convert c10::complex<V> index mask to V index mask: xy -> xxyy
|
92 |
+
auto mask_ = _mm256_unpacklo_ps(mask.values, mask.values);
|
93 |
+
return _mm256_blendv_ps(a.values, b.values, mask_);
|
94 |
+
|
95 |
+
}
|
96 |
+
template<typename step_t>
|
97 |
+
static Vectorized<c10::complex<float>> arange(c10::complex<float> base = 0., step_t step = static_cast<step_t>(1)) {
|
98 |
+
return Vectorized<c10::complex<float>>(base,
|
99 |
+
base + step,
|
100 |
+
base + c10::complex<float>(2)*step,
|
101 |
+
base + c10::complex<float>(3)*step);
|
102 |
+
}
|
103 |
+
static Vectorized<c10::complex<float>> set(const Vectorized<c10::complex<float>>& a, const Vectorized<c10::complex<float>>& b,
|
104 |
+
int64_t count = size()) {
|
105 |
+
switch (count) {
|
106 |
+
case 0:
|
107 |
+
return a;
|
108 |
+
case 1:
|
109 |
+
return blend<1>(a, b);
|
110 |
+
case 2:
|
111 |
+
return blend<3>(a, b);
|
112 |
+
case 3:
|
113 |
+
return blend<7>(a, b);
|
114 |
+
}
|
115 |
+
return b;
|
116 |
+
}
|
117 |
+
static Vectorized<c10::complex<float>> loadu(const void* ptr, int64_t count = size()) {
|
118 |
+
if (count == size())
|
119 |
+
return _mm256_loadu_ps(reinterpret_cast<const float*>(ptr));
|
120 |
+
|
121 |
+
__at_align__ float tmp_values[2*size()];
|
122 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
123 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
124 |
+
// instructions while a loop would be compiled to one instruction.
|
125 |
+
for (const auto i : c10::irange(2*size())) {
|
126 |
+
tmp_values[i] = 0.0;
|
127 |
+
}
|
128 |
+
std::memcpy(
|
129 |
+
tmp_values,
|
130 |
+
reinterpret_cast<const float*>(ptr),
|
131 |
+
count * sizeof(c10::complex<float>));
|
132 |
+
return _mm256_load_ps(tmp_values);
|
133 |
+
}
|
134 |
+
void store(void* ptr, int count = size()) const {
|
135 |
+
if (count == size()) {
|
136 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(ptr), values);
|
137 |
+
} else if (count > 0) {
|
138 |
+
float tmp_values[2*size()];
|
139 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmp_values), values);
|
140 |
+
std::memcpy(ptr, tmp_values, count * sizeof(c10::complex<float>));
|
141 |
+
}
|
142 |
+
}
|
143 |
+
const c10::complex<float>& operator[](int idx) const = delete;
|
144 |
+
c10::complex<float>& operator[](int idx) = delete;
|
145 |
+
Vectorized<c10::complex<float>> map(c10::complex<float> (*const f)(const c10::complex<float> &)) const {
|
146 |
+
__at_align__ c10::complex<float> tmp[size()];
|
147 |
+
store(tmp);
|
148 |
+
for (const auto i : c10::irange(size())) {
|
149 |
+
tmp[i] = f(tmp[i]);
|
150 |
+
}
|
151 |
+
return loadu(tmp);
|
152 |
+
}
|
153 |
+
__m256 abs_2_() const {
|
154 |
+
auto val_2 = _mm256_mul_ps(values, values); // a*a b*b
|
155 |
+
auto ret = _mm256_hadd_ps(val_2, val_2); // a*a+b*b a*a+b*b
|
156 |
+
return _mm256_permute_ps(ret, 0xD8);
|
157 |
+
}
|
158 |
+
__m256 abs_() const {
|
159 |
+
auto real = _mm256_moveldup_ps(values); // real real
|
160 |
+
auto imag = _mm256_movehdup_ps(values); // imag imag
|
161 |
+
return Sleef_hypotf8_u05(real, imag); // abs abs
|
162 |
+
}
|
163 |
+
Vectorized<c10::complex<float>> abs() const {
|
164 |
+
const __m256 real_mask = _mm256_castsi256_ps(_mm256_setr_epi32(0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, 0x00000000,
|
165 |
+
0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, 0x00000000));
|
166 |
+
return _mm256_and_ps(abs_(), real_mask); // abs 0
|
167 |
+
}
|
168 |
+
__m256 angle_() const {
|
169 |
+
//angle = atan2(b/a)
|
170 |
+
auto b_a = _mm256_permute_ps(values, 0xB1); // b a
|
171 |
+
return Sleef_atan2f8_u10(values, b_a); // 90-angle angle
|
172 |
+
}
|
173 |
+
Vectorized<c10::complex<float>> angle() const {
|
174 |
+
const __m256 real_mask = _mm256_castsi256_ps(_mm256_setr_epi32(0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, 0x00000000,
|
175 |
+
0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, 0x00000000));
|
176 |
+
auto angle = _mm256_permute_ps(angle_(), 0xB1); // angle 90-angle
|
177 |
+
return _mm256_and_ps(angle, real_mask); // angle 0
|
178 |
+
}
|
179 |
+
Vectorized<c10::complex<float>> sgn() const {
|
180 |
+
auto abs = abs_();
|
181 |
+
auto zero = _mm256_setzero_ps();
|
182 |
+
auto mask = _mm256_cmp_ps(abs, zero, _CMP_EQ_OQ);
|
183 |
+
auto div = values / abs;
|
184 |
+
return _mm256_blendv_ps(div, zero, mask);
|
185 |
+
}
|
186 |
+
__m256 real_() const {
|
187 |
+
const __m256 real_mask = _mm256_castsi256_ps(_mm256_setr_epi32(0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, 0x00000000,
|
188 |
+
0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, 0x00000000));
|
189 |
+
return _mm256_and_ps(values, real_mask);
|
190 |
+
}
|
191 |
+
Vectorized<c10::complex<float>> real() const {
|
192 |
+
return real_();
|
193 |
+
}
|
194 |
+
__m256 imag_() const {
|
195 |
+
const __m256 imag_mask = _mm256_castsi256_ps(_mm256_setr_epi32(0x00000000, 0xFFFFFFFF, 0x00000000, 0xFFFFFFFF,
|
196 |
+
0x00000000, 0xFFFFFFFF, 0x00000000, 0xFFFFFFFF));
|
197 |
+
return _mm256_and_ps(values, imag_mask);
|
198 |
+
}
|
199 |
+
Vectorized<c10::complex<float>> imag() const {
|
200 |
+
return _mm256_permute_ps(imag_(), 0xB1); //b a
|
201 |
+
}
|
202 |
+
__m256 conj_() const {
|
203 |
+
const __m256 sign_mask = _mm256_setr_ps(0.0, -0.0, 0.0, -0.0, 0.0, -0.0, 0.0, -0.0);
|
204 |
+
return _mm256_xor_ps(values, sign_mask); // a -b
|
205 |
+
}
|
206 |
+
Vectorized<c10::complex<float>> conj() const {
|
207 |
+
return conj_();
|
208 |
+
}
|
209 |
+
Vectorized<c10::complex<float>> log() const {
|
210 |
+
// Most trigonomic ops use the log() op to improve complex number performance.
|
211 |
+
return map(std::log);
|
212 |
+
}
|
213 |
+
Vectorized<c10::complex<float>> log2() const {
|
214 |
+
const __m256 log2_ = _mm256_set1_ps(std::log(2));
|
215 |
+
return _mm256_div_ps(log(), log2_);
|
216 |
+
}
|
217 |
+
Vectorized<c10::complex<float>> log10() const {
|
218 |
+
const __m256 log10_ = _mm256_set1_ps(std::log(10));
|
219 |
+
return _mm256_div_ps(log(), log10_);
|
220 |
+
}
|
221 |
+
Vectorized<c10::complex<float>> log1p() const {
|
222 |
+
return map(std::log1p);
|
223 |
+
}
|
224 |
+
Vectorized<c10::complex<float>> asin() const {
|
225 |
+
// asin(x)
|
226 |
+
// = -i*ln(iz + sqrt(1 -z^2))
|
227 |
+
// = -i*ln((ai - b) + sqrt(1 - (a + bi)*(a + bi)))
|
228 |
+
// = -i*ln((-b + ai) + sqrt(1 - (a**2 - b**2) - 2*abi))
|
229 |
+
const __m256 one = _mm256_set1_ps(1);
|
230 |
+
|
231 |
+
auto conj = conj_();
|
232 |
+
auto b_a = _mm256_permute_ps(conj, 0xB1); //-b a
|
233 |
+
auto ab = _mm256_mul_ps(conj, b_a); //-ab -ab
|
234 |
+
auto im = _mm256_add_ps(ab, ab); //-2ab -2ab
|
235 |
+
|
236 |
+
auto val_2 = _mm256_mul_ps(values, values); // a*a b*b
|
237 |
+
auto re = _mm256_hsub_ps(val_2, _mm256_permute_ps(val_2, 0xB1)); // a*a-b*b b*b-a*a
|
238 |
+
re = _mm256_permute_ps(re, 0xD8);
|
239 |
+
re = _mm256_sub_ps(one, re);
|
240 |
+
|
241 |
+
auto root = Vectorized(_mm256_blend_ps(re, im, 0xAA)).sqrt(); //sqrt(re + i*im)
|
242 |
+
auto ln = Vectorized(_mm256_add_ps(b_a, root)).log(); //ln(iz + sqrt())
|
243 |
+
return Vectorized(_mm256_permute_ps(ln.values, 0xB1)).conj(); //-i*ln()
|
244 |
+
}
|
245 |
+
Vectorized<c10::complex<float>> acos() const {
|
246 |
+
return map(std::acos);
|
247 |
+
}
|
248 |
+
Vectorized<c10::complex<float>> atan() const;
|
249 |
+
Vectorized<c10::complex<float>> atanh() const {
|
250 |
+
return map(std::atanh);
|
251 |
+
}
|
252 |
+
Vectorized<c10::complex<float>> exp() const {
|
253 |
+
//exp(a + bi)
|
254 |
+
// = exp(a)*(cos(b) + sin(b)i)
|
255 |
+
auto exp = Sleef_expf8_u10(values); //exp(a) exp(b)
|
256 |
+
exp = _mm256_blend_ps(exp, _mm256_permute_ps(exp, 0xB1), 0xAA); //exp(a) exp(a)
|
257 |
+
|
258 |
+
auto sin_cos = Sleef_sincosf8_u10(values); //[sin(a), cos(a)] [sin(b), cos(b)]
|
259 |
+
auto cos_sin = _mm256_blend_ps(_mm256_permute_ps(sin_cos.y, 0xB1),
|
260 |
+
sin_cos.x, 0xAA); //cos(b) sin(b)
|
261 |
+
return _mm256_mul_ps(exp, cos_sin);
|
262 |
+
}
|
263 |
+
Vectorized<c10::complex<float>> exp2() const {
|
264 |
+
// Use identity 2**x = exp(log(2) * x)
|
265 |
+
const __m256 ln_2 = _mm256_set1_ps(c10::ln_2<float>);
|
266 |
+
Vectorized<c10::complex<float>> scaled_values = _mm256_mul_ps(values, ln_2);
|
267 |
+
return scaled_values.exp();
|
268 |
+
}
|
269 |
+
Vectorized<c10::complex<float>> expm1() const {
|
270 |
+
return map(std::expm1);
|
271 |
+
}
|
272 |
+
Vectorized<c10::complex<float>> sin() const {
|
273 |
+
return map(std::sin);
|
274 |
+
}
|
275 |
+
Vectorized<c10::complex<float>> sinh() const {
|
276 |
+
return map(std::sinh);
|
277 |
+
}
|
278 |
+
Vectorized<c10::complex<float>> cos() const {
|
279 |
+
return map(std::cos);
|
280 |
+
}
|
281 |
+
Vectorized<c10::complex<float>> cosh() const {
|
282 |
+
return map(std::cosh);
|
283 |
+
}
|
284 |
+
Vectorized<c10::complex<float>> ceil() const {
|
285 |
+
return _mm256_ceil_ps(values);
|
286 |
+
}
|
287 |
+
Vectorized<c10::complex<float>> floor() const {
|
288 |
+
return _mm256_floor_ps(values);
|
289 |
+
}
|
290 |
+
Vectorized<c10::complex<float>> neg() const {
|
291 |
+
auto zero = _mm256_setzero_ps();
|
292 |
+
return _mm256_sub_ps(zero, values);
|
293 |
+
}
|
294 |
+
Vectorized<c10::complex<float>> round() const {
|
295 |
+
return _mm256_round_ps(values, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
|
296 |
+
}
|
297 |
+
Vectorized<c10::complex<float>> tan() const {
|
298 |
+
return map(std::tan);
|
299 |
+
}
|
300 |
+
Vectorized<c10::complex<float>> tanh() const {
|
301 |
+
return map(std::tanh);
|
302 |
+
}
|
303 |
+
Vectorized<c10::complex<float>> trunc() const {
|
304 |
+
return _mm256_round_ps(values, (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC));
|
305 |
+
}
|
306 |
+
Vectorized<c10::complex<float>> sqrt() const {
|
307 |
+
return map(std::sqrt);
|
308 |
+
}
|
309 |
+
Vectorized<c10::complex<float>> reciprocal() const;
|
310 |
+
Vectorized<c10::complex<float>> rsqrt() const {
|
311 |
+
return sqrt().reciprocal();
|
312 |
+
}
|
313 |
+
Vectorized<c10::complex<float>> pow(const Vectorized<c10::complex<float>> &exp) const {
|
314 |
+
__at_align__ c10::complex<float> x_tmp[size()];
|
315 |
+
__at_align__ c10::complex<float> y_tmp[size()];
|
316 |
+
store(x_tmp);
|
317 |
+
exp.store(y_tmp);
|
318 |
+
for (const auto i : c10::irange(size())) {
|
319 |
+
x_tmp[i] = std::pow(x_tmp[i], y_tmp[i]);
|
320 |
+
}
|
321 |
+
return loadu(x_tmp);
|
322 |
+
}
|
323 |
+
// Comparison using the _CMP_**_OQ predicate.
|
324 |
+
// `O`: get false if an operand is NaN
|
325 |
+
// `Q`: do not raise if an operand is NaN
|
326 |
+
Vectorized<c10::complex<float>> operator==(const Vectorized<c10::complex<float>>& other) const {
|
327 |
+
return _mm256_cmp_ps(values, other.values, _CMP_EQ_OQ);
|
328 |
+
}
|
329 |
+
Vectorized<c10::complex<float>> operator!=(const Vectorized<c10::complex<float>>& other) const {
|
330 |
+
return _mm256_cmp_ps(values, other.values, _CMP_NEQ_UQ);
|
331 |
+
}
|
332 |
+
Vectorized<c10::complex<float>> operator<(const Vectorized<c10::complex<float>>& /*other*/) const {
|
333 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
334 |
+
}
|
335 |
+
Vectorized<c10::complex<float>> operator<=(const Vectorized<c10::complex<float>>& /*other*/) const {
|
336 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
337 |
+
}
|
338 |
+
Vectorized<c10::complex<float>> operator>(const Vectorized<c10::complex<float>>& /*other*/) const {
|
339 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
340 |
+
}
|
341 |
+
Vectorized<c10::complex<float>> operator>=(const Vectorized<c10::complex<float>>& /*other*/) const {
|
342 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
343 |
+
}
|
344 |
+
|
345 |
+
Vectorized<c10::complex<float>> eq(const Vectorized<c10::complex<float>>& other) const;
|
346 |
+
Vectorized<c10::complex<float>> ne(const Vectorized<c10::complex<float>>& other) const;
|
347 |
+
};
|
348 |
+
|
349 |
+
template <> Vectorized<c10::complex<float>> inline operator+(const Vectorized<c10::complex<float>> &a, const Vectorized<c10::complex<float>> &b) {
|
350 |
+
return _mm256_add_ps(a, b);
|
351 |
+
}
|
352 |
+
|
353 |
+
template <> Vectorized<c10::complex<float>> inline operator-(const Vectorized<c10::complex<float>> &a, const Vectorized<c10::complex<float>> &b) {
|
354 |
+
return _mm256_sub_ps(a, b);
|
355 |
+
}
|
356 |
+
|
357 |
+
template <> Vectorized<c10::complex<float>> inline operator*(const Vectorized<c10::complex<float>> &a, const Vectorized<c10::complex<float>> &b) {
|
358 |
+
//(a + bi) * (c + di) = (ac - bd) + (ad + bc)i
|
359 |
+
const __m256 sign_mask = _mm256_setr_ps(0.0, -0.0, 0.0, -0.0, 0.0, -0.0, 0.0, -0.0);
|
360 |
+
auto ac_bd = _mm256_mul_ps(a, b); //ac bd
|
361 |
+
|
362 |
+
auto d_c = _mm256_permute_ps(b, 0xB1); //d c
|
363 |
+
d_c = _mm256_xor_ps(sign_mask, d_c); //d -c
|
364 |
+
auto ad_bc = _mm256_mul_ps(a, d_c); //ad -bc
|
365 |
+
|
366 |
+
auto ret = _mm256_hsub_ps(ac_bd, ad_bc); //ac - bd ad + bc
|
367 |
+
ret = _mm256_permute_ps(ret, 0xD8);
|
368 |
+
return ret;
|
369 |
+
}
|
370 |
+
|
371 |
+
template <> Vectorized<c10::complex<float>> inline operator/(const Vectorized<c10::complex<float>> &a, const Vectorized<c10::complex<float>> &b) {
|
372 |
+
//re + im*i = (a + bi) / (c + di)
|
373 |
+
auto mask = _mm256_set1_ps(-0.f);
|
374 |
+
auto fabs_cd = _mm256_andnot_ps(mask, b); // |c| |d|
|
375 |
+
auto fabs_dc = _mm256_permute_ps(fabs_cd, 0xB1); // |d| |c|
|
376 |
+
auto scale = _mm256_rcp_ps(_mm256_max_ps(fabs_cd, fabs_dc)); // 1/sc 1/sc
|
377 |
+
auto a2 = _mm256_mul_ps(a, scale); // a/sc b/sc
|
378 |
+
auto b2 = _mm256_mul_ps(b, scale); // c/sc d/sc
|
379 |
+
auto acbd2 = _mm256_mul_ps(a2, b2);
|
380 |
+
|
381 |
+
const __m256 sign_mask = _mm256_setr_ps(-0.0, 0.0, -0.0, 0.0, -0.0, 0.0, -0.0, 0.0);
|
382 |
+
auto dc2 = _mm256_permute_ps(b2, 0xB1); // d/sc c/sc
|
383 |
+
dc2 = _mm256_xor_ps(sign_mask, dc2); // -d/|c,d| c/sc
|
384 |
+
auto adbc2 = _mm256_mul_ps(a2, dc2); //-ad/sc^2 bc/sc^2
|
385 |
+
auto res2 = _mm256_hadd_ps(acbd2, adbc2); //(ac+bd)/sc^2 (bc-ad)/sc^2
|
386 |
+
res2 = _mm256_permute_ps(res2, 0xD8);
|
387 |
+
|
388 |
+
// get the denominator
|
389 |
+
auto denom2 = Vectorized<c10::complex<float>>(b2).abs_2_(); // (c^2+d^2)/sc^2 (c^2+d^2)/sc^2
|
390 |
+
res2 = _mm256_div_ps(res2, denom2);
|
391 |
+
return res2;
|
392 |
+
}
|
393 |
+
|
394 |
+
// reciprocal. Implement this here so we can use multiplication.
|
395 |
+
inline Vectorized<c10::complex<float>> Vectorized<c10::complex<float>>::reciprocal() const {
|
396 |
+
//re + im*i = (a + bi) / (c + di)
|
397 |
+
//re = (ac + bd)/abs_2() = c/abs_2()
|
398 |
+
//im = (bc - ad)/abs_2() = d/abs_2()
|
399 |
+
const __m256 sign_mask = _mm256_setr_ps(0.0, -0.0, 0.0, -0.0, 0.0, -0.0, 0.0, -0.0);
|
400 |
+
auto c_d = _mm256_xor_ps(sign_mask, values); //c -d
|
401 |
+
return _mm256_div_ps(c_d, abs_2_());
|
402 |
+
}
|
403 |
+
|
404 |
+
inline Vectorized<c10::complex<float>> Vectorized<c10::complex<float>>::atan() const {
|
405 |
+
// atan(x) = i/2 * ln((i + z)/(i - z))
|
406 |
+
const __m256 i = _mm256_setr_ps(0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0);
|
407 |
+
const Vectorized i_half = _mm256_setr_ps(0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5);
|
408 |
+
|
409 |
+
auto sum = Vectorized(_mm256_add_ps(i, values)); // a 1+b
|
410 |
+
auto sub = Vectorized(_mm256_sub_ps(i, values)); // -a 1-b
|
411 |
+
auto ln = (sum/sub).log(); // ln((i + z)/(i - z))
|
412 |
+
return i_half*ln; // i/2*ln()
|
413 |
+
}
|
414 |
+
|
415 |
+
template <>
|
416 |
+
Vectorized<c10::complex<float>> inline maximum(const Vectorized<c10::complex<float>>& a, const Vectorized<c10::complex<float>>& b) {
|
417 |
+
auto abs_a = a.abs_2_();
|
418 |
+
auto abs_b = b.abs_2_();
|
419 |
+
auto mask = _mm256_cmp_ps(abs_a, abs_b, _CMP_LT_OQ);
|
420 |
+
auto max = _mm256_blendv_ps(a, b, mask);
|
421 |
+
// Exploit the fact that all-ones is a NaN.
|
422 |
+
auto isnan = _mm256_cmp_ps(abs_a, abs_b, _CMP_UNORD_Q);
|
423 |
+
return _mm256_or_ps(max, isnan);
|
424 |
+
}
|
425 |
+
|
426 |
+
template <>
|
427 |
+
Vectorized<c10::complex<float>> inline minimum(const Vectorized<c10::complex<float>>& a, const Vectorized<c10::complex<float>>& b) {
|
428 |
+
auto abs_a = a.abs_2_();
|
429 |
+
auto abs_b = b.abs_2_();
|
430 |
+
auto mask = _mm256_cmp_ps(abs_a, abs_b, _CMP_GT_OQ);
|
431 |
+
auto min = _mm256_blendv_ps(a, b, mask);
|
432 |
+
// Exploit the fact that all-ones is a NaN.
|
433 |
+
auto isnan = _mm256_cmp_ps(abs_a, abs_b, _CMP_UNORD_Q);
|
434 |
+
return _mm256_or_ps(min, isnan);
|
435 |
+
}
|
436 |
+
|
437 |
+
template <>
|
438 |
+
Vectorized<c10::complex<float>> inline operator&(const Vectorized<c10::complex<float>>& a, const Vectorized<c10::complex<float>>& b) {
|
439 |
+
return _mm256_and_ps(a, b);
|
440 |
+
}
|
441 |
+
|
442 |
+
template <>
|
443 |
+
Vectorized<c10::complex<float>> inline operator|(const Vectorized<c10::complex<float>>& a, const Vectorized<c10::complex<float>>& b) {
|
444 |
+
return _mm256_or_ps(a, b);
|
445 |
+
}
|
446 |
+
|
447 |
+
template <>
|
448 |
+
Vectorized<c10::complex<float>> inline operator^(const Vectorized<c10::complex<float>>& a, const Vectorized<c10::complex<float>>& b) {
|
449 |
+
return _mm256_xor_ps(a, b);
|
450 |
+
}
|
451 |
+
|
452 |
+
inline Vectorized<c10::complex<float>> Vectorized<c10::complex<float>>::eq(
|
453 |
+
const Vectorized<c10::complex<float>>& other) const {
|
454 |
+
auto eq = (*this == other); // compares real and imag individually
|
455 |
+
// If both real numbers and imag numbers are equal, then the complex numbers are equal
|
456 |
+
return (eq.real() & eq.imag()) & Vectorized<c10::complex<float>>(_mm256_set1_ps(1.0f));
|
457 |
+
}
|
458 |
+
|
459 |
+
inline Vectorized<c10::complex<float>> Vectorized<c10::complex<float>>::ne(
|
460 |
+
const Vectorized<c10::complex<float>>& other) const {
|
461 |
+
auto ne = (*this != other); // compares real and imag individually
|
462 |
+
// If either real numbers or imag numbers are not equal, then the complex numbers are not equal
|
463 |
+
return (ne.real() | ne.imag()) & Vectorized<c10::complex<float>>(_mm256_set1_ps(1.0f));
|
464 |
+
}
|
465 |
+
|
466 |
+
#endif
|
467 |
+
|
468 |
+
}} // namespace at::vec::CPU_CAPABILITY
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_double.h
ADDED
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
7 |
+
#include <ATen/cpu/vec/vec_base.h>
|
8 |
+
#include <c10/util/irange.h>
|
9 |
+
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
10 |
+
#include <sleef.h>
|
11 |
+
#endif
|
12 |
+
|
13 |
+
namespace at::vec {
|
14 |
+
// See Note [CPU_CAPABILITY namespace]
|
15 |
+
inline namespace CPU_CAPABILITY {
|
16 |
+
|
17 |
+
|
18 |
+
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
19 |
+
|
20 |
+
template <> class Vectorized<double> {
|
21 |
+
private:
|
22 |
+
__m256d values;
|
23 |
+
public:
|
24 |
+
using value_type = double;
|
25 |
+
using size_type = int;
|
26 |
+
static constexpr size_type size() {
|
27 |
+
return 4;
|
28 |
+
}
|
29 |
+
Vectorized() {}
|
30 |
+
Vectorized(__m256d v) : values(v) {}
|
31 |
+
Vectorized(double val) {
|
32 |
+
values = _mm256_set1_pd(val);
|
33 |
+
}
|
34 |
+
Vectorized(double val1, double val2, double val3, double val4) {
|
35 |
+
values = _mm256_setr_pd(val1, val2, val3, val4);
|
36 |
+
}
|
37 |
+
operator __m256d() const {
|
38 |
+
return values;
|
39 |
+
}
|
40 |
+
template <int64_t mask>
|
41 |
+
static Vectorized<double> blend(const Vectorized<double>& a, const Vectorized<double>& b) {
|
42 |
+
return _mm256_blend_pd(a.values, b.values, mask);
|
43 |
+
}
|
44 |
+
static Vectorized<double> blendv(const Vectorized<double>& a, const Vectorized<double>& b,
|
45 |
+
const Vectorized<double>& mask) {
|
46 |
+
return _mm256_blendv_pd(a.values, b.values, mask.values);
|
47 |
+
}
|
48 |
+
template<typename step_t>
|
49 |
+
static Vectorized<double> arange(double base = 0., step_t step = static_cast<step_t>(1)) {
|
50 |
+
return Vectorized<double>(base, base + step, base + 2 * step, base + 3 * step);
|
51 |
+
}
|
52 |
+
static Vectorized<double> set(const Vectorized<double>& a, const Vectorized<double>& b,
|
53 |
+
int64_t count = size()) {
|
54 |
+
switch (count) {
|
55 |
+
case 0:
|
56 |
+
return a;
|
57 |
+
case 1:
|
58 |
+
return blend<1>(a, b);
|
59 |
+
case 2:
|
60 |
+
return blend<3>(a, b);
|
61 |
+
case 3:
|
62 |
+
return blend<7>(a, b);
|
63 |
+
}
|
64 |
+
return b;
|
65 |
+
}
|
66 |
+
static Vectorized<double> loadu(const void* ptr, int64_t count = size()) {
|
67 |
+
if (count == size())
|
68 |
+
return _mm256_loadu_pd(reinterpret_cast<const double*>(ptr));
|
69 |
+
|
70 |
+
|
71 |
+
__at_align__ double tmp_values[size()];
|
72 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
73 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
74 |
+
// instructions while a loop would be compiled to one instruction.
|
75 |
+
for (const auto i : c10::irange(size())) {
|
76 |
+
tmp_values[i] = 0.0;
|
77 |
+
}
|
78 |
+
std::memcpy(
|
79 |
+
tmp_values,
|
80 |
+
reinterpret_cast<const double*>(ptr),
|
81 |
+
count * sizeof(double));
|
82 |
+
return _mm256_load_pd(tmp_values);
|
83 |
+
}
|
84 |
+
void store(void* ptr, int count = size()) const {
|
85 |
+
if (count == size()) {
|
86 |
+
_mm256_storeu_pd(reinterpret_cast<double*>(ptr), values);
|
87 |
+
} else if (count > 0) {
|
88 |
+
double tmp_values[size()];
|
89 |
+
_mm256_storeu_pd(reinterpret_cast<double*>(tmp_values), values);
|
90 |
+
std::memcpy(ptr, tmp_values, count * sizeof(double));
|
91 |
+
}
|
92 |
+
}
|
93 |
+
const double& operator[](int idx) const = delete;
|
94 |
+
double& operator[](int idx) = delete;
|
95 |
+
int zero_mask() const {
|
96 |
+
// returns an integer mask where all zero elements are translated to 1-bit and others are translated to 0-bit
|
97 |
+
__m256d cmp = _mm256_cmp_pd(values, _mm256_set1_pd(0.0), _CMP_EQ_OQ);
|
98 |
+
return _mm256_movemask_pd(cmp);
|
99 |
+
}
|
100 |
+
Vectorized<double> isnan() const {
|
101 |
+
return _mm256_cmp_pd(values, _mm256_set1_pd(0.0), _CMP_UNORD_Q);
|
102 |
+
}
|
103 |
+
bool has_inf_nan() const {
|
104 |
+
__m256d self_sub = _mm256_sub_pd(values, values);
|
105 |
+
return (_mm256_movemask_epi8(_mm256_castpd_si256(self_sub)) & 0x77777777) != 0;
|
106 |
+
}
|
107 |
+
Vectorized<double> map(double (*const f)(double)) const {
|
108 |
+
__at_align__ double tmp[size()];
|
109 |
+
store(tmp);
|
110 |
+
for (const auto i : c10::irange(size())) {
|
111 |
+
tmp[i] = f(tmp[i]);
|
112 |
+
}
|
113 |
+
return loadu(tmp);
|
114 |
+
}
|
115 |
+
Vectorized<double> abs() const {
|
116 |
+
auto mask = _mm256_set1_pd(-0.f);
|
117 |
+
return _mm256_andnot_pd(mask, values);
|
118 |
+
}
|
119 |
+
Vectorized<double> angle() const {
|
120 |
+
const auto zero_vec = _mm256_set1_pd(0.f);
|
121 |
+
const auto nan_vec = _mm256_set1_pd(NAN);
|
122 |
+
const auto not_nan_mask = _mm256_cmp_pd(values, values, _CMP_EQ_OQ);
|
123 |
+
const auto nan_mask = _mm256_cmp_pd(not_nan_mask, zero_vec, _CMP_EQ_OQ);
|
124 |
+
const auto pi = _mm256_set1_pd(c10::pi<double>);
|
125 |
+
|
126 |
+
const auto neg_mask = _mm256_cmp_pd(values, zero_vec, _CMP_LT_OQ);
|
127 |
+
auto angle = _mm256_blendv_pd(zero_vec, pi, neg_mask);
|
128 |
+
angle = _mm256_blendv_pd(angle, nan_vec, nan_mask);
|
129 |
+
return angle;
|
130 |
+
}
|
131 |
+
Vectorized<double> real() const {
|
132 |
+
return *this;
|
133 |
+
}
|
134 |
+
Vectorized<double> imag() const {
|
135 |
+
return _mm256_set1_pd(0);
|
136 |
+
}
|
137 |
+
Vectorized<double> conj() const {
|
138 |
+
return *this;
|
139 |
+
}
|
140 |
+
Vectorized<double> acos() const {
|
141 |
+
return Vectorized<double>(Sleef_acosd4_u10(values));
|
142 |
+
}
|
143 |
+
Vectorized<double> acosh() const {
|
144 |
+
return Vectorized<double>(Sleef_acoshd4_u10(values));
|
145 |
+
}
|
146 |
+
Vectorized<double> asin() const {
|
147 |
+
return Vectorized<double>(Sleef_asind4_u10(values));
|
148 |
+
}
|
149 |
+
Vectorized<double> atan() const {
|
150 |
+
return Vectorized<double>(Sleef_atand4_u10(values));
|
151 |
+
}
|
152 |
+
Vectorized<double> atanh() const {
|
153 |
+
return Vectorized<double>(Sleef_atanhd4_u10(values));
|
154 |
+
}
|
155 |
+
Vectorized<double> atan2(const Vectorized<double> &b) const {
|
156 |
+
return Vectorized<double>(Sleef_atan2d4_u10(values, b));
|
157 |
+
}
|
158 |
+
Vectorized<double> copysign(const Vectorized<double> &sign) const {
|
159 |
+
return Vectorized<double>(Sleef_copysignd4(values, sign));
|
160 |
+
}
|
161 |
+
Vectorized<double> erf() const {
|
162 |
+
return Vectorized<double>(Sleef_erfd4_u10(values));
|
163 |
+
}
|
164 |
+
Vectorized<double> erfc() const {
|
165 |
+
return Vectorized<double>(Sleef_erfcd4_u15(values));
|
166 |
+
}
|
167 |
+
Vectorized<double> erfinv() const {
|
168 |
+
return map(calc_erfinv);
|
169 |
+
}
|
170 |
+
Vectorized<double> exp() const {
|
171 |
+
return Vectorized<double>(Sleef_expd4_u10(values));
|
172 |
+
}
|
173 |
+
Vectorized<double> exp2() const {
|
174 |
+
return Vectorized<double>(Sleef_exp2d4_u10(values));
|
175 |
+
}
|
176 |
+
Vectorized<double> expm1() const {
|
177 |
+
return Vectorized<double>(Sleef_expm1d4_u10(values));
|
178 |
+
}
|
179 |
+
Vectorized<double> exp_u20() const {
|
180 |
+
return exp();
|
181 |
+
}
|
182 |
+
Vectorized<double> fmod(const Vectorized<double>& q) const {
|
183 |
+
return Vectorized<double>(Sleef_fmodd4(values, q));
|
184 |
+
}
|
185 |
+
Vectorized<double> hypot(const Vectorized<double> &b) const {
|
186 |
+
return Vectorized<double>(Sleef_hypotd4_u05(values, b));
|
187 |
+
}
|
188 |
+
Vectorized<double> i0() const {
|
189 |
+
return map(calc_i0);
|
190 |
+
}
|
191 |
+
Vectorized<double> i0e() const {
|
192 |
+
return map(calc_i0e);
|
193 |
+
}
|
194 |
+
Vectorized<double> digamma() const {
|
195 |
+
return map(calc_digamma);
|
196 |
+
}
|
197 |
+
Vectorized<double> igamma(const Vectorized<double> &x) const {
|
198 |
+
__at_align__ double tmp[size()];
|
199 |
+
__at_align__ double tmp_x[size()];
|
200 |
+
store(tmp);
|
201 |
+
x.store(tmp_x);
|
202 |
+
for (const auto i : c10::irange(size())) {
|
203 |
+
tmp[i] = calc_igamma(tmp[i], tmp_x[i]);
|
204 |
+
}
|
205 |
+
return loadu(tmp);
|
206 |
+
}
|
207 |
+
Vectorized<double> igammac(const Vectorized<double> &x) const {
|
208 |
+
__at_align__ double tmp[size()];
|
209 |
+
__at_align__ double tmp_x[size()];
|
210 |
+
store(tmp);
|
211 |
+
x.store(tmp_x);
|
212 |
+
for (const auto i : c10::irange(size())) {
|
213 |
+
tmp[i] = calc_igammac(tmp[i], tmp_x[i]);
|
214 |
+
}
|
215 |
+
return loadu(tmp);
|
216 |
+
}
|
217 |
+
Vectorized<double> log() const {
|
218 |
+
return Vectorized<double>(Sleef_logd4_u10(values));
|
219 |
+
}
|
220 |
+
Vectorized<double> log2() const {
|
221 |
+
return Vectorized<double>(Sleef_log2d4_u10(values));
|
222 |
+
}
|
223 |
+
Vectorized<double> log10() const {
|
224 |
+
return Vectorized<double>(Sleef_log10d4_u10(values));
|
225 |
+
}
|
226 |
+
Vectorized<double> log1p() const {
|
227 |
+
return Vectorized<double>(Sleef_log1pd4_u10(values));
|
228 |
+
}
|
229 |
+
Vectorized<double> sin() const {
|
230 |
+
return Vectorized<double>(Sleef_sind4_u10(values));
|
231 |
+
}
|
232 |
+
Vectorized<double> sinh() const {
|
233 |
+
return Vectorized<double>(Sleef_sinhd4_u10(values));
|
234 |
+
}
|
235 |
+
Vectorized<double> cos() const {
|
236 |
+
return Vectorized<double>(Sleef_cosd4_u10(values));
|
237 |
+
}
|
238 |
+
Vectorized<double> cosh() const {
|
239 |
+
return Vectorized<double>(Sleef_coshd4_u10(values));
|
240 |
+
}
|
241 |
+
Vectorized<double> ceil() const {
|
242 |
+
return _mm256_ceil_pd(values);
|
243 |
+
}
|
244 |
+
Vectorized<double> floor() const {
|
245 |
+
return _mm256_floor_pd(values);
|
246 |
+
}
|
247 |
+
Vectorized<double> frac() const;
|
248 |
+
Vectorized<double> neg() const {
|
249 |
+
return _mm256_xor_pd(_mm256_set1_pd(-0.), values);
|
250 |
+
}
|
251 |
+
Vectorized<double> nextafter(const Vectorized<double> &b) const {
|
252 |
+
return Vectorized<double>(Sleef_nextafterd4(values, b));
|
253 |
+
}
|
254 |
+
Vectorized<double> round() const {
|
255 |
+
return _mm256_round_pd(values, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
|
256 |
+
}
|
257 |
+
Vectorized<double> tan() const {
|
258 |
+
return Vectorized<double>(Sleef_tand4_u10(values));
|
259 |
+
}
|
260 |
+
Vectorized<double> tanh() const {
|
261 |
+
return Vectorized<double>(Sleef_tanhd4_u10(values));
|
262 |
+
}
|
263 |
+
Vectorized<double> trunc() const {
|
264 |
+
return _mm256_round_pd(values, (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC));
|
265 |
+
}
|
266 |
+
Vectorized<double> lgamma() const {
|
267 |
+
return Vectorized<double>(Sleef_lgammad4_u10(values));
|
268 |
+
}
|
269 |
+
Vectorized<double> sqrt() const {
|
270 |
+
return _mm256_sqrt_pd(values);
|
271 |
+
}
|
272 |
+
Vectorized<double> reciprocal() const {
|
273 |
+
return _mm256_div_pd(_mm256_set1_pd(1), values);
|
274 |
+
}
|
275 |
+
Vectorized<double> rsqrt() const {
|
276 |
+
return _mm256_div_pd(_mm256_set1_pd(1), _mm256_sqrt_pd(values));
|
277 |
+
}
|
278 |
+
Vectorized<double> pow(const Vectorized<double> &b) const {
|
279 |
+
return Vectorized<double>(Sleef_powd4_u10(values, b));
|
280 |
+
}
|
281 |
+
// Comparison using the _CMP_**_OQ predicate.
|
282 |
+
// `O`: get false if an operand is NaN
|
283 |
+
// `Q`: do not raise if an operand is NaN
|
284 |
+
Vectorized<double> operator==(const Vectorized<double>& other) const {
|
285 |
+
return _mm256_cmp_pd(values, other.values, _CMP_EQ_OQ);
|
286 |
+
}
|
287 |
+
|
288 |
+
Vectorized<double> operator!=(const Vectorized<double>& other) const {
|
289 |
+
return _mm256_cmp_pd(values, other.values, _CMP_NEQ_UQ);
|
290 |
+
}
|
291 |
+
|
292 |
+
Vectorized<double> operator<(const Vectorized<double>& other) const {
|
293 |
+
return _mm256_cmp_pd(values, other.values, _CMP_LT_OQ);
|
294 |
+
}
|
295 |
+
|
296 |
+
Vectorized<double> operator<=(const Vectorized<double>& other) const {
|
297 |
+
return _mm256_cmp_pd(values, other.values, _CMP_LE_OQ);
|
298 |
+
}
|
299 |
+
|
300 |
+
Vectorized<double> operator>(const Vectorized<double>& other) const {
|
301 |
+
return _mm256_cmp_pd(values, other.values, _CMP_GT_OQ);
|
302 |
+
}
|
303 |
+
|
304 |
+
Vectorized<double> operator>=(const Vectorized<double>& other) const {
|
305 |
+
return _mm256_cmp_pd(values, other.values, _CMP_GE_OQ);
|
306 |
+
}
|
307 |
+
|
308 |
+
Vectorized<double> eq(const Vectorized<double>& other) const;
|
309 |
+
Vectorized<double> ne(const Vectorized<double>& other) const;
|
310 |
+
Vectorized<double> lt(const Vectorized<double>& other) const;
|
311 |
+
Vectorized<double> le(const Vectorized<double>& other) const;
|
312 |
+
Vectorized<double> gt(const Vectorized<double>& other) const;
|
313 |
+
Vectorized<double> ge(const Vectorized<double>& other) const;
|
314 |
+
};
|
315 |
+
|
316 |
+
template <>
|
317 |
+
Vectorized<double> inline operator+(const Vectorized<double>& a, const Vectorized<double>& b) {
|
318 |
+
return _mm256_add_pd(a, b);
|
319 |
+
}
|
320 |
+
|
321 |
+
template <>
|
322 |
+
Vectorized<double> inline operator-(const Vectorized<double>& a, const Vectorized<double>& b) {
|
323 |
+
return _mm256_sub_pd(a, b);
|
324 |
+
}
|
325 |
+
|
326 |
+
template <>
|
327 |
+
Vectorized<double> inline operator*(const Vectorized<double>& a, const Vectorized<double>& b) {
|
328 |
+
return _mm256_mul_pd(a, b);
|
329 |
+
}
|
330 |
+
|
331 |
+
template <>
|
332 |
+
Vectorized<double> inline operator/(const Vectorized<double>& a, const Vectorized<double>& b) {
|
333 |
+
return _mm256_div_pd(a, b);
|
334 |
+
}
|
335 |
+
|
336 |
+
// frac. Implement this here so we can use subtraction.
|
337 |
+
inline Vectorized<double> Vectorized<double>::frac() const {
|
338 |
+
return *this - this->trunc();
|
339 |
+
}
|
340 |
+
|
341 |
+
// Implements the IEEE 754 201X `maximum` operation, which propagates NaN if
|
342 |
+
// either input is a NaN.
|
343 |
+
template <>
|
344 |
+
Vectorized<double> inline maximum(const Vectorized<double>& a, const Vectorized<double>& b) {
|
345 |
+
Vectorized<double> max = _mm256_max_pd(a, b);
|
346 |
+
Vectorized<double> isnan = _mm256_cmp_pd(a, b, _CMP_UNORD_Q);
|
347 |
+
// Exploit the fact that all-ones is a NaN.
|
348 |
+
return _mm256_or_pd(max, isnan);
|
349 |
+
}
|
350 |
+
|
351 |
+
// Implements the IEEE 754 201X `minimum` operation, which propagates NaN if
|
352 |
+
// either input is a NaN.
|
353 |
+
template <>
|
354 |
+
Vectorized<double> inline minimum(const Vectorized<double>& a, const Vectorized<double>& b) {
|
355 |
+
Vectorized<double> min = _mm256_min_pd(a, b);
|
356 |
+
Vectorized<double> isnan = _mm256_cmp_pd(a, b, _CMP_UNORD_Q);
|
357 |
+
// Exploit the fact that all-ones is a NaN.
|
358 |
+
return _mm256_or_pd(min, isnan);
|
359 |
+
}
|
360 |
+
|
361 |
+
template <>
|
362 |
+
Vectorized<double> inline clamp(const Vectorized<double>& a, const Vectorized<double>& min, const Vectorized<double>& max) {
|
363 |
+
return _mm256_min_pd(max, _mm256_max_pd(min, a));
|
364 |
+
}
|
365 |
+
|
366 |
+
template <>
|
367 |
+
Vectorized<double> inline clamp_min(const Vectorized<double>& a, const Vectorized<double>& min) {
|
368 |
+
return _mm256_max_pd(min, a);
|
369 |
+
}
|
370 |
+
|
371 |
+
template <>
|
372 |
+
Vectorized<double> inline clamp_max(const Vectorized<double>& a, const Vectorized<double>& max) {
|
373 |
+
return _mm256_min_pd(max, a);
|
374 |
+
}
|
375 |
+
|
376 |
+
template <>
|
377 |
+
Vectorized<double> inline operator&(const Vectorized<double>& a, const Vectorized<double>& b) {
|
378 |
+
return _mm256_and_pd(a, b);
|
379 |
+
}
|
380 |
+
|
381 |
+
template <>
|
382 |
+
Vectorized<double> inline operator|(const Vectorized<double>& a, const Vectorized<double>& b) {
|
383 |
+
return _mm256_or_pd(a, b);
|
384 |
+
}
|
385 |
+
|
386 |
+
template <>
|
387 |
+
Vectorized<double> inline operator^(const Vectorized<double>& a, const Vectorized<double>& b) {
|
388 |
+
return _mm256_xor_pd(a, b);
|
389 |
+
}
|
390 |
+
|
391 |
+
inline Vectorized<double> Vectorized<double>::eq(const Vectorized<double>& other) const {
|
392 |
+
return (*this == other) & Vectorized<double>(1.0);
|
393 |
+
}
|
394 |
+
|
395 |
+
inline Vectorized<double> Vectorized<double>::ne(const Vectorized<double>& other) const {
|
396 |
+
return (*this != other) & Vectorized<double>(1.0);
|
397 |
+
}
|
398 |
+
|
399 |
+
inline Vectorized<double> Vectorized<double>::gt(const Vectorized<double>& other) const {
|
400 |
+
return (*this > other) & Vectorized<double>(1.0);
|
401 |
+
}
|
402 |
+
|
403 |
+
inline Vectorized<double> Vectorized<double>::ge(const Vectorized<double>& other) const {
|
404 |
+
return (*this >= other) & Vectorized<double>(1.0);
|
405 |
+
}
|
406 |
+
|
407 |
+
inline Vectorized<double> Vectorized<double>::lt(const Vectorized<double>& other) const {
|
408 |
+
return (*this < other) & Vectorized<double>(1.0);
|
409 |
+
}
|
410 |
+
|
411 |
+
inline Vectorized<double> Vectorized<double>::le(const Vectorized<double>& other) const {
|
412 |
+
return (*this <= other) & Vectorized<double>(1.0);
|
413 |
+
}
|
414 |
+
|
415 |
+
template <>
|
416 |
+
inline void convert(const double* src, double* dst, int64_t n) {
|
417 |
+
int64_t i;
|
418 |
+
#pragma unroll
|
419 |
+
for (i = 0; i <= (n - Vectorized<double>::size()); i += Vectorized<double>::size()) {
|
420 |
+
_mm256_storeu_pd(dst + i, _mm256_loadu_pd(src + i));
|
421 |
+
}
|
422 |
+
#pragma unroll
|
423 |
+
for (; i < n; i++) {
|
424 |
+
dst[i] = src[i];
|
425 |
+
}
|
426 |
+
}
|
427 |
+
|
428 |
+
#ifdef CPU_CAPABILITY_AVX2
|
429 |
+
template <>
|
430 |
+
Vectorized<double> inline fmadd(const Vectorized<double>& a, const Vectorized<double>& b, const Vectorized<double>& c) {
|
431 |
+
return _mm256_fmadd_pd(a, b, c);
|
432 |
+
}
|
433 |
+
|
434 |
+
template <>
|
435 |
+
Vectorized<double> inline fmsub(const Vectorized<double>& a, const Vectorized<double>& b, const Vectorized<double>& c) {
|
436 |
+
return _mm256_fmsub_pd(a, b, c);
|
437 |
+
}
|
438 |
+
#endif
|
439 |
+
|
440 |
+
#endif
|
441 |
+
|
442 |
+
}} // namespace at::vec::CPU_CAPABILITY
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_float.h
ADDED
@@ -0,0 +1,636 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
7 |
+
#include <ATen/cpu/vec/vec_base.h>
|
8 |
+
#include <c10/util/irange.h>
|
9 |
+
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
10 |
+
#include <sleef.h>
|
11 |
+
#endif
|
12 |
+
|
13 |
+
namespace at::vec {
|
14 |
+
// See Note [CPU_CAPABILITY namespace]
|
15 |
+
inline namespace CPU_CAPABILITY {
|
16 |
+
|
17 |
+
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
18 |
+
|
19 |
+
template <> class Vectorized<float> {
|
20 |
+
private:
|
21 |
+
__m256 values;
|
22 |
+
public:
|
23 |
+
using value_type = float;
|
24 |
+
using size_type = int;
|
25 |
+
static constexpr size_type size() {
|
26 |
+
return 8;
|
27 |
+
}
|
28 |
+
Vectorized() {}
|
29 |
+
Vectorized(__m256 v) : values(v) {}
|
30 |
+
Vectorized(float val) {
|
31 |
+
values = _mm256_set1_ps(val);
|
32 |
+
}
|
33 |
+
Vectorized(float val1, float val2, float val3, float val4,
|
34 |
+
float val5, float val6, float val7, float val8) {
|
35 |
+
values = _mm256_setr_ps(val1, val2, val3, val4, val5, val6, val7, val8);
|
36 |
+
}
|
37 |
+
operator __m256() const {
|
38 |
+
return values;
|
39 |
+
}
|
40 |
+
template <int64_t mask>
|
41 |
+
static Vectorized<float> blend(const Vectorized<float>& a, const Vectorized<float>& b) {
|
42 |
+
return _mm256_blend_ps(a.values, b.values, mask);
|
43 |
+
}
|
44 |
+
static Vectorized<float> blendv(const Vectorized<float>& a, const Vectorized<float>& b,
|
45 |
+
const Vectorized<float>& mask) {
|
46 |
+
return _mm256_blendv_ps(a.values, b.values, mask.values);
|
47 |
+
}
|
48 |
+
template<typename step_t>
|
49 |
+
static Vectorized<float> arange(float base = 0.f, step_t step = static_cast<step_t>(1)) {
|
50 |
+
return Vectorized<float>(
|
51 |
+
base, base + step, base + 2 * step, base + 3 * step,
|
52 |
+
base + 4 * step, base + 5 * step, base + 6 * step, base + 7 * step);
|
53 |
+
}
|
54 |
+
static Vectorized<float> set(const Vectorized<float>& a, const Vectorized<float>& b,
|
55 |
+
int64_t count = size()) {
|
56 |
+
switch (count) {
|
57 |
+
case 0:
|
58 |
+
return a;
|
59 |
+
case 1:
|
60 |
+
return blend<1>(a, b);
|
61 |
+
case 2:
|
62 |
+
return blend<3>(a, b);
|
63 |
+
case 3:
|
64 |
+
return blend<7>(a, b);
|
65 |
+
case 4:
|
66 |
+
return blend<15>(a, b);
|
67 |
+
case 5:
|
68 |
+
return blend<31>(a, b);
|
69 |
+
case 6:
|
70 |
+
return blend<63>(a, b);
|
71 |
+
case 7:
|
72 |
+
return blend<127>(a, b);
|
73 |
+
}
|
74 |
+
return b;
|
75 |
+
}
|
76 |
+
static Vectorized<float> loadu(const void* ptr, int64_t count = size()) {
|
77 |
+
if (count == size())
|
78 |
+
return _mm256_loadu_ps(reinterpret_cast<const float*>(ptr));
|
79 |
+
__at_align__ float tmp_values[size()];
|
80 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
81 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
82 |
+
// instructions while a loop would be compiled to one instruction.
|
83 |
+
for (const auto i : c10::irange(size())) {
|
84 |
+
tmp_values[i] = 0.0;
|
85 |
+
}
|
86 |
+
std::memcpy(
|
87 |
+
tmp_values, reinterpret_cast<const float*>(ptr), count * sizeof(float));
|
88 |
+
return _mm256_loadu_ps(tmp_values);
|
89 |
+
}
|
90 |
+
void store(void* ptr, int64_t count = size()) const {
|
91 |
+
if (count == size()) {
|
92 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(ptr), values);
|
93 |
+
} else if (count > 0) {
|
94 |
+
float tmp_values[size()];
|
95 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmp_values), values);
|
96 |
+
std::memcpy(ptr, tmp_values, count * sizeof(float));
|
97 |
+
}
|
98 |
+
}
|
99 |
+
const float& operator[](int idx) const = delete;
|
100 |
+
float& operator[](int idx) = delete;
|
101 |
+
int zero_mask() const {
|
102 |
+
// returns an integer mask where all zero elements are translated to 1-bit and others are translated to 0-bit
|
103 |
+
__m256 cmp = _mm256_cmp_ps(values, _mm256_set1_ps(0.0f), _CMP_EQ_OQ);
|
104 |
+
return _mm256_movemask_ps(cmp);
|
105 |
+
}
|
106 |
+
Vectorized<float> isnan() const {
|
107 |
+
return _mm256_cmp_ps(values, _mm256_set1_ps(0.0f), _CMP_UNORD_Q);
|
108 |
+
}
|
109 |
+
|
110 |
+
bool has_inf_nan() const {
|
111 |
+
__m256 self_sub = _mm256_sub_ps(values, values);
|
112 |
+
return (_mm256_movemask_epi8(_mm256_castps_si256(self_sub)) & 0x77777777) != 0;
|
113 |
+
}
|
114 |
+
|
115 |
+
Vectorized<float> map(float (*const f)(float)) const {
|
116 |
+
__at_align__ float tmp[size()];
|
117 |
+
store(tmp);
|
118 |
+
for (const auto i : c10::irange(size())) {
|
119 |
+
tmp[i] = f(tmp[i]);
|
120 |
+
}
|
121 |
+
return loadu(tmp);
|
122 |
+
}
|
123 |
+
Vectorized<float> abs() const {
|
124 |
+
auto mask = _mm256_set1_ps(-0.f);
|
125 |
+
return _mm256_andnot_ps(mask, values);
|
126 |
+
}
|
127 |
+
Vectorized<float> angle() const {
|
128 |
+
const auto zero_vec = _mm256_set1_ps(0.f);
|
129 |
+
const auto nan_vec = _mm256_set1_ps(NAN);
|
130 |
+
const auto not_nan_mask = _mm256_cmp_ps(values, values, _CMP_EQ_OQ);
|
131 |
+
const auto nan_mask = _mm256_cmp_ps(not_nan_mask, zero_vec, _CMP_EQ_OQ);
|
132 |
+
const auto pi = _mm256_set1_ps(c10::pi<float>);
|
133 |
+
|
134 |
+
const auto neg_mask = _mm256_cmp_ps(values, zero_vec, _CMP_LT_OQ);
|
135 |
+
auto angle = _mm256_blendv_ps(zero_vec, pi, neg_mask);
|
136 |
+
angle = _mm256_blendv_ps(angle, nan_vec, nan_mask);
|
137 |
+
return angle;
|
138 |
+
}
|
139 |
+
Vectorized<float> real() const {
|
140 |
+
return *this;
|
141 |
+
}
|
142 |
+
Vectorized<float> imag() const {
|
143 |
+
return _mm256_set1_ps(0);
|
144 |
+
}
|
145 |
+
Vectorized<float> conj() const {
|
146 |
+
return *this;
|
147 |
+
}
|
148 |
+
Vectorized<float> acos() const {
|
149 |
+
return Vectorized<float>(Sleef_acosf8_u10(values));
|
150 |
+
}
|
151 |
+
Vectorized<float> acosh() const {
|
152 |
+
return Vectorized<float>(Sleef_acoshf8_u10(values));
|
153 |
+
}
|
154 |
+
Vectorized<float> asin() const {
|
155 |
+
return Vectorized<float>(Sleef_asinf8_u10(values));
|
156 |
+
}
|
157 |
+
Vectorized<float> atan() const {
|
158 |
+
return Vectorized<float>(Sleef_atanf8_u10(values));
|
159 |
+
}
|
160 |
+
Vectorized<float> atanh() const {
|
161 |
+
return Vectorized<float>(Sleef_atanhf8_u10(values));
|
162 |
+
}
|
163 |
+
Vectorized<float> atan2(const Vectorized<float> &b) const {
|
164 |
+
return Vectorized<float>(Sleef_atan2f8_u10(values, b));
|
165 |
+
}
|
166 |
+
Vectorized<float> copysign(const Vectorized<float> &sign) const {
|
167 |
+
return Vectorized<float>(Sleef_copysignf8(values, sign));
|
168 |
+
}
|
169 |
+
Vectorized<float> erf() const {
|
170 |
+
// constants
|
171 |
+
const auto neg_zero_vec = _mm256_set1_ps(-0.f);
|
172 |
+
const auto one_vec = _mm256_set1_ps(1.0f);
|
173 |
+
const auto p = _mm256_set1_ps(0.3275911f);
|
174 |
+
const auto p1 = _mm256_set1_ps(0.254829592f);
|
175 |
+
const auto p2 = _mm256_set1_ps(-0.284496736f);
|
176 |
+
const auto p3 = _mm256_set1_ps(1.421413741f);
|
177 |
+
const auto p4 = _mm256_set1_ps(-1.453152027f);
|
178 |
+
const auto p5 = _mm256_set1_ps(1.061405429f);
|
179 |
+
// sign(x)
|
180 |
+
auto sign_mask = _mm256_and_ps(neg_zero_vec, values);
|
181 |
+
auto abs_vec = _mm256_xor_ps(sign_mask, values);
|
182 |
+
// t = 1 / (p * abs(x) + 1)
|
183 |
+
auto tmp0 = _mm256_fmadd_ps(p, abs_vec, one_vec);
|
184 |
+
auto t = _mm256_div_ps(one_vec, tmp0);
|
185 |
+
// r = p5 * t ^ 4 + p4 * t ^ 3 + p3 * t ^ 2 + p2 * t + p1
|
186 |
+
auto tmp1 = _mm256_fmadd_ps(p5, t, p4);
|
187 |
+
auto tmp2 = _mm256_fmadd_ps(tmp1, t, p3);
|
188 |
+
auto tmp3 = _mm256_fmadd_ps(tmp2, t, p2);
|
189 |
+
auto r = _mm256_fmadd_ps(tmp3, t, p1);
|
190 |
+
// - exp(- x * x)
|
191 |
+
auto pow_2 = _mm256_mul_ps(values, values);
|
192 |
+
auto neg_pow_2 = _mm256_xor_ps(neg_zero_vec, pow_2);
|
193 |
+
// auto tmp4 = exp(neg_pow_2);
|
194 |
+
auto tmp4 = Vectorized<float>(Sleef_expf8_u10(neg_pow_2));
|
195 |
+
auto tmp5 = _mm256_xor_ps(neg_zero_vec, tmp4);
|
196 |
+
// erf(x) = sign(x) * (1 - r * t * exp(- x * x))
|
197 |
+
auto tmp6 = _mm256_mul_ps(tmp5, t);
|
198 |
+
auto tmp7 = _mm256_fmadd_ps(tmp6, r, one_vec);
|
199 |
+
return _mm256_xor_ps(sign_mask, tmp7);
|
200 |
+
}
|
201 |
+
Vectorized<float> erfc() const {
|
202 |
+
return Vectorized<float>(Sleef_erfcf8_u15(values));
|
203 |
+
}
|
204 |
+
Vectorized<float> erfinv() const {
|
205 |
+
return map(calc_erfinv);
|
206 |
+
}
|
207 |
+
Vectorized<float> exp() const {
|
208 |
+
return Vectorized<float>(Sleef_expf8_u10(values));
|
209 |
+
}
|
210 |
+
Vectorized<float> exp2() const {
|
211 |
+
return Vectorized<float>(Sleef_exp2f8_u10(values));
|
212 |
+
}
|
213 |
+
Vectorized<float> expm1() const {
|
214 |
+
return Vectorized<float>(Sleef_expm1f8_u10(values));
|
215 |
+
}
|
216 |
+
Vectorized<float> exp_u20() const {
|
217 |
+
// A faster version of exp with ULP=20
|
218 |
+
static __m256 vec_factorial_1 =
|
219 |
+
_mm256_set1_ps(0.999999701f); // 1/factorial(1)
|
220 |
+
static __m256 vec_factorial_2 =
|
221 |
+
_mm256_set1_ps(0.499991506f); // 1/factorial(2)
|
222 |
+
static __m256 vec_factorial_3 =
|
223 |
+
_mm256_set1_ps(0.166676521f); // 1/factorial(3)
|
224 |
+
static __m256 vec_factorial_4 =
|
225 |
+
_mm256_set1_ps(0.0418978221f); // 1/factorial(4)
|
226 |
+
static __m256 vec_factorial_5 =
|
227 |
+
_mm256_set1_ps(0.00828929059f); // 1/factorial(5)
|
228 |
+
static __m256 vec_exp_log2ef =
|
229 |
+
(__m256)_mm256_set1_epi32(0x3fb8aa3b); // log2(e)
|
230 |
+
static __m256 vec_half = _mm256_set1_ps(0.5f);
|
231 |
+
static __m256 vec_one = _mm256_set1_ps(1.f);
|
232 |
+
static __m256 vec_zero = _mm256_set1_ps(0.f);
|
233 |
+
static __m256 vec_two = _mm256_set1_ps(2.f);
|
234 |
+
static __m256 vec_ln2f = (__m256)_mm256_set1_epi32(0x3f317218); // ln(2)
|
235 |
+
static __m256 vec_ln_flt_min = (__m256)_mm256_set1_epi32(0xc2aeac50);
|
236 |
+
static __m256 vec_ln_flt_max = (__m256)_mm256_set1_epi32(0x42b17218);
|
237 |
+
static __m256i vec_127 = _mm256_set1_epi32(0x0000007f);
|
238 |
+
static int n_mantissa_bits = 23;
|
239 |
+
|
240 |
+
// exp(x) =
|
241 |
+
// = exp(n * ln(2) + r) // divide x by ln(2) and get quot and rem
|
242 |
+
// = 2^n * exp(r) // simplify the exp(n*ln(2)) expression
|
243 |
+
|
244 |
+
auto less_ln_flt_min_mask =
|
245 |
+
_mm256_cmp_ps(values, vec_ln_flt_min, 1 /*_CMP_LT_OS*/);
|
246 |
+
auto vec_src = _mm256_min_ps(values, vec_ln_flt_max);
|
247 |
+
vec_src = _mm256_max_ps(vec_src, vec_ln_flt_min);
|
248 |
+
|
249 |
+
// fx = floorf(x * log2ef + 0.5)
|
250 |
+
auto vec_fx = _mm256_fmadd_ps(vec_src, vec_exp_log2ef, vec_half);
|
251 |
+
vec_fx = _mm256_floor_ps(vec_fx);
|
252 |
+
|
253 |
+
// x = x - fx * ln2
|
254 |
+
auto vec_exp_poly = _mm256_fnmadd_ps(vec_fx, vec_ln2f, vec_src);
|
255 |
+
|
256 |
+
// compute polynomial
|
257 |
+
auto vec_res =
|
258 |
+
_mm256_fmadd_ps(vec_exp_poly, vec_factorial_5, vec_factorial_4);
|
259 |
+
vec_res = _mm256_fmadd_ps(vec_exp_poly, vec_res, vec_factorial_3);
|
260 |
+
vec_res = _mm256_fmadd_ps(vec_exp_poly, vec_res, vec_factorial_2);
|
261 |
+
vec_res = _mm256_fmadd_ps(vec_exp_poly, vec_res, vec_factorial_1);
|
262 |
+
vec_res = _mm256_fmadd_ps(vec_exp_poly, vec_res, vec_one);
|
263 |
+
|
264 |
+
// compute 2^(n-1)
|
265 |
+
auto vec_exp_number = _mm256_sub_ps(vec_fx, vec_one);
|
266 |
+
auto vec_exp_number_i = _mm256_cvtps_epi32(vec_exp_number);
|
267 |
+
auto vec_two_pow_n_i = _mm256_add_epi32(vec_exp_number_i, vec_127);
|
268 |
+
vec_two_pow_n_i = _mm256_slli_epi32(vec_two_pow_n_i, n_mantissa_bits);
|
269 |
+
auto vec_two_pow_n = (__m256)vec_two_pow_n_i;
|
270 |
+
vec_two_pow_n =
|
271 |
+
_mm256_blendv_ps(vec_two_pow_n, vec_zero, less_ln_flt_min_mask);
|
272 |
+
|
273 |
+
// y = y * 2^n
|
274 |
+
vec_res = _mm256_mul_ps(vec_res, vec_two_pow_n);
|
275 |
+
vec_res = _mm256_mul_ps(vec_res, vec_two);
|
276 |
+
return vec_res;
|
277 |
+
}
|
278 |
+
Vectorized<float> fmod(const Vectorized<float>& q) const {
|
279 |
+
return Vectorized<float>(Sleef_fmodf8(values, q));
|
280 |
+
}
|
281 |
+
Vectorized<float> log() const {
|
282 |
+
return Vectorized<float>(Sleef_logf8_u10(values));
|
283 |
+
}
|
284 |
+
Vectorized<float> log2() const {
|
285 |
+
return Vectorized<float>(Sleef_log2f8_u10(values));
|
286 |
+
}
|
287 |
+
Vectorized<float> log10() const {
|
288 |
+
return Vectorized<float>(Sleef_log10f8_u10(values));
|
289 |
+
}
|
290 |
+
Vectorized<float> log1p() const {
|
291 |
+
return Vectorized<float>(Sleef_log1pf8_u10(values));
|
292 |
+
}
|
293 |
+
Vectorized<float> frac() const;
|
294 |
+
Vectorized<float> sin() const {
|
295 |
+
return Vectorized<float>(Sleef_sinf8_u35(values));
|
296 |
+
}
|
297 |
+
Vectorized<float> sinh() const {
|
298 |
+
return Vectorized<float>(Sleef_sinhf8_u10(values));
|
299 |
+
}
|
300 |
+
Vectorized<float> cos() const {
|
301 |
+
return Vectorized<float>(Sleef_cosf8_u35(values));
|
302 |
+
}
|
303 |
+
Vectorized<float> cosh() const {
|
304 |
+
return Vectorized<float>(Sleef_coshf8_u10(values));
|
305 |
+
}
|
306 |
+
Vectorized<float> ceil() const {
|
307 |
+
return _mm256_ceil_ps(values);
|
308 |
+
}
|
309 |
+
Vectorized<float> floor() const {
|
310 |
+
return _mm256_floor_ps(values);
|
311 |
+
}
|
312 |
+
Vectorized<float> hypot(const Vectorized<float> &b) const {
|
313 |
+
return Vectorized<float>(Sleef_hypotf8_u05(values, b));
|
314 |
+
}
|
315 |
+
Vectorized<float> i0() const {
|
316 |
+
return map(calc_i0);
|
317 |
+
}
|
318 |
+
Vectorized<float> i0e() const {
|
319 |
+
return map(calc_i0e);
|
320 |
+
}
|
321 |
+
Vectorized<float> digamma() const {
|
322 |
+
return map(calc_digamma);
|
323 |
+
}
|
324 |
+
Vectorized<float> igamma(const Vectorized<float> &x) const {
|
325 |
+
__at_align__ float tmp[size()];
|
326 |
+
__at_align__ float tmp_x[size()];
|
327 |
+
store(tmp);
|
328 |
+
x.store(tmp_x);
|
329 |
+
for (const auto i : c10::irange(size())) {
|
330 |
+
tmp[i] = calc_igamma(tmp[i], tmp_x[i]);
|
331 |
+
}
|
332 |
+
return loadu(tmp);
|
333 |
+
}
|
334 |
+
Vectorized<float> igammac(const Vectorized<float> &x) const {
|
335 |
+
__at_align__ float tmp[size()];
|
336 |
+
__at_align__ float tmp_x[size()];
|
337 |
+
store(tmp);
|
338 |
+
x.store(tmp_x);
|
339 |
+
for (const auto i : c10::irange(size())) {
|
340 |
+
tmp[i] = calc_igammac(tmp[i], tmp_x[i]);
|
341 |
+
}
|
342 |
+
return loadu(tmp);
|
343 |
+
}
|
344 |
+
Vectorized<float> neg() const {
|
345 |
+
return _mm256_xor_ps(_mm256_set1_ps(-0.f), values);
|
346 |
+
}
|
347 |
+
Vectorized<float> nextafter(const Vectorized<float> &b) const {
|
348 |
+
return Vectorized<float>(Sleef_nextafterf8(values, b));
|
349 |
+
}
|
350 |
+
Vectorized<float> round() const {
|
351 |
+
return _mm256_round_ps(values, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
|
352 |
+
}
|
353 |
+
Vectorized<float> tan() const {
|
354 |
+
return Vectorized<float>(Sleef_tanf8_u10(values));
|
355 |
+
}
|
356 |
+
Vectorized<float> tanh() const {
|
357 |
+
return Vectorized<float>(Sleef_tanhf8_u10(values));
|
358 |
+
}
|
359 |
+
Vectorized<float> trunc() const {
|
360 |
+
return _mm256_round_ps(values, (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC));
|
361 |
+
}
|
362 |
+
Vectorized<float> lgamma() const {
|
363 |
+
return Vectorized<float>(Sleef_lgammaf8_u10(values));
|
364 |
+
}
|
365 |
+
Vectorized<float> sqrt() const {
|
366 |
+
return _mm256_sqrt_ps(values);
|
367 |
+
}
|
368 |
+
Vectorized<float> reciprocal() const {
|
369 |
+
return _mm256_div_ps(_mm256_set1_ps(1), values);
|
370 |
+
}
|
371 |
+
Vectorized<float> rsqrt() const {
|
372 |
+
return _mm256_div_ps(_mm256_set1_ps(1), _mm256_sqrt_ps(values));
|
373 |
+
}
|
374 |
+
Vectorized<float> pow(const Vectorized<float> &b) const {
|
375 |
+
return Vectorized<float>(Sleef_powf8_u10(values, b));
|
376 |
+
}
|
377 |
+
// Comparison using the _CMP_**_OQ predicate.
|
378 |
+
// `O`: get false if an operand is NaN
|
379 |
+
// `Q`: do not raise if an operand is NaN
|
380 |
+
Vectorized<float> operator==(const Vectorized<float>& other) const {
|
381 |
+
return _mm256_cmp_ps(values, other.values, _CMP_EQ_OQ);
|
382 |
+
}
|
383 |
+
|
384 |
+
Vectorized<float> operator!=(const Vectorized<float>& other) const {
|
385 |
+
return _mm256_cmp_ps(values, other.values, _CMP_NEQ_UQ);
|
386 |
+
}
|
387 |
+
|
388 |
+
Vectorized<float> operator<(const Vectorized<float>& other) const {
|
389 |
+
return _mm256_cmp_ps(values, other.values, _CMP_LT_OQ);
|
390 |
+
}
|
391 |
+
|
392 |
+
Vectorized<float> operator<=(const Vectorized<float>& other) const {
|
393 |
+
return _mm256_cmp_ps(values, other.values, _CMP_LE_OQ);
|
394 |
+
}
|
395 |
+
|
396 |
+
Vectorized<float> operator>(const Vectorized<float>& other) const {
|
397 |
+
return _mm256_cmp_ps(values, other.values, _CMP_GT_OQ);
|
398 |
+
}
|
399 |
+
|
400 |
+
Vectorized<float> operator>=(const Vectorized<float>& other) const {
|
401 |
+
return _mm256_cmp_ps(values, other.values, _CMP_GE_OQ);
|
402 |
+
}
|
403 |
+
|
404 |
+
Vectorized<float> eq(const Vectorized<float>& other) const;
|
405 |
+
Vectorized<float> ne(const Vectorized<float>& other) const;
|
406 |
+
Vectorized<float> gt(const Vectorized<float>& other) const;
|
407 |
+
Vectorized<float> ge(const Vectorized<float>& other) const;
|
408 |
+
Vectorized<float> lt(const Vectorized<float>& other) const;
|
409 |
+
Vectorized<float> le(const Vectorized<float>& other) const;
|
410 |
+
};
|
411 |
+
|
412 |
+
template <>
|
413 |
+
Vectorized<float> inline operator+(const Vectorized<float>& a, const Vectorized<float>& b) {
|
414 |
+
return _mm256_add_ps(a, b);
|
415 |
+
}
|
416 |
+
|
417 |
+
template <>
|
418 |
+
Vectorized<float> inline operator-(const Vectorized<float>& a, const Vectorized<float>& b) {
|
419 |
+
return _mm256_sub_ps(a, b);
|
420 |
+
}
|
421 |
+
|
422 |
+
template <>
|
423 |
+
Vectorized<float> inline operator*(const Vectorized<float>& a, const Vectorized<float>& b) {
|
424 |
+
return _mm256_mul_ps(a, b);
|
425 |
+
}
|
426 |
+
|
427 |
+
template <>
|
428 |
+
Vectorized<float> inline operator/(const Vectorized<float>& a, const Vectorized<float>& b) {
|
429 |
+
return _mm256_div_ps(a, b);
|
430 |
+
}
|
431 |
+
|
432 |
+
// frac. Implement this here so we can use subtraction
|
433 |
+
inline Vectorized<float> Vectorized<float>::frac() const {
|
434 |
+
return *this - this->trunc();
|
435 |
+
}
|
436 |
+
|
437 |
+
// Implements the IEEE 754 201X `maximum` operation, which propagates NaN if
|
438 |
+
// either input is a NaN.
|
439 |
+
template <>
|
440 |
+
Vectorized<float> inline maximum(const Vectorized<float>& a, const Vectorized<float>& b) {
|
441 |
+
Vectorized<float> max = _mm256_max_ps(a, b);
|
442 |
+
Vectorized<float> isnan = _mm256_cmp_ps(a, b, _CMP_UNORD_Q);
|
443 |
+
// Exploit the fact that all-ones is a NaN.
|
444 |
+
return _mm256_or_ps(max, isnan);
|
445 |
+
}
|
446 |
+
|
447 |
+
// Implements the IEEE 754 201X `minimum` operation, which propagates NaN if
|
448 |
+
// either input is a NaN.
|
449 |
+
template <>
|
450 |
+
Vectorized<float> inline minimum(const Vectorized<float>& a, const Vectorized<float>& b) {
|
451 |
+
Vectorized<float> min = _mm256_min_ps(a, b);
|
452 |
+
Vectorized<float> isnan = _mm256_cmp_ps(a, b, _CMP_UNORD_Q);
|
453 |
+
// Exploit the fact that all-ones is a NaN.
|
454 |
+
return _mm256_or_ps(min, isnan);
|
455 |
+
}
|
456 |
+
|
457 |
+
template <>
|
458 |
+
Vectorized<float> inline clamp(const Vectorized<float>& a, const Vectorized<float>& min, const Vectorized<float>& max) {
|
459 |
+
return _mm256_min_ps(max, _mm256_max_ps(min, a));
|
460 |
+
}
|
461 |
+
|
462 |
+
template <>
|
463 |
+
Vectorized<float> inline clamp_max(const Vectorized<float>& a, const Vectorized<float>& max) {
|
464 |
+
return _mm256_min_ps(max, a);
|
465 |
+
}
|
466 |
+
|
467 |
+
template <>
|
468 |
+
Vectorized<float> inline clamp_min(const Vectorized<float>& a, const Vectorized<float>& min) {
|
469 |
+
return _mm256_max_ps(min, a);
|
470 |
+
}
|
471 |
+
|
472 |
+
template <>
|
473 |
+
Vectorized<float> inline operator&(const Vectorized<float>& a, const Vectorized<float>& b) {
|
474 |
+
return _mm256_and_ps(a, b);
|
475 |
+
}
|
476 |
+
|
477 |
+
template <>
|
478 |
+
Vectorized<float> inline operator|(const Vectorized<float>& a, const Vectorized<float>& b) {
|
479 |
+
return _mm256_or_ps(a, b);
|
480 |
+
}
|
481 |
+
|
482 |
+
template <>
|
483 |
+
Vectorized<float> inline operator^(const Vectorized<float>& a, const Vectorized<float>& b) {
|
484 |
+
return _mm256_xor_ps(a, b);
|
485 |
+
}
|
486 |
+
|
487 |
+
inline Vectorized<float> Vectorized<float>::eq(const Vectorized<float>& other) const {
|
488 |
+
return (*this == other) & Vectorized<float>(1.0f);
|
489 |
+
}
|
490 |
+
|
491 |
+
inline Vectorized<float> Vectorized<float>::ne(const Vectorized<float>& other) const {
|
492 |
+
return (*this != other) & Vectorized<float>(1.0f);
|
493 |
+
}
|
494 |
+
|
495 |
+
inline Vectorized<float> Vectorized<float>::gt(const Vectorized<float>& other) const {
|
496 |
+
return (*this > other) & Vectorized<float>(1.0f);
|
497 |
+
}
|
498 |
+
|
499 |
+
inline Vectorized<float> Vectorized<float>::ge(const Vectorized<float>& other) const {
|
500 |
+
return (*this >= other) & Vectorized<float>(1.0f);
|
501 |
+
}
|
502 |
+
|
503 |
+
inline Vectorized<float> Vectorized<float>::lt(const Vectorized<float>& other) const {
|
504 |
+
return (*this < other) & Vectorized<float>(1.0f);
|
505 |
+
}
|
506 |
+
|
507 |
+
inline Vectorized<float> Vectorized<float>::le(const Vectorized<float>& other) const {
|
508 |
+
return (*this <= other) & Vectorized<float>(1.0f);
|
509 |
+
}
|
510 |
+
|
511 |
+
template <>
|
512 |
+
inline void convert(const float* src, float* dst, int64_t n) {
|
513 |
+
int64_t i;
|
514 |
+
#pragma unroll
|
515 |
+
for (i = 0; i <= (n - Vectorized<float>::size()); i += Vectorized<float>::size()) {
|
516 |
+
_mm256_storeu_ps(dst + i, _mm256_loadu_ps(src + i));
|
517 |
+
}
|
518 |
+
#pragma unroll
|
519 |
+
for (; i < n; i++) {
|
520 |
+
dst[i] = src[i];
|
521 |
+
}
|
522 |
+
}
|
523 |
+
|
524 |
+
|
525 |
+
template <>
|
526 |
+
Vectorized<float> inline fmadd(const Vectorized<float>& a, const Vectorized<float>& b, const Vectorized<float>& c) {
|
527 |
+
return _mm256_fmadd_ps(a, b, c);
|
528 |
+
}
|
529 |
+
|
530 |
+
template <>
|
531 |
+
Vectorized<float> inline fmsub(const Vectorized<float>& a, const Vectorized<float>& b, const Vectorized<float>& c) {
|
532 |
+
return _mm256_fmsub_ps(a, b, c);
|
533 |
+
}
|
534 |
+
|
535 |
+
// Used by Inductor CPP codegen
|
536 |
+
template<>
|
537 |
+
inline void transpose_mxn<float, 8, 8>(
|
538 |
+
const float* src,
|
539 |
+
int64_t ld_src,
|
540 |
+
float* dst,
|
541 |
+
int64_t ld_dst) {
|
542 |
+
// load from src to registers
|
543 |
+
// a: a0 a1 a2 a3 a4 a5 a6 a7
|
544 |
+
// b: b0 b1 b2 b3 b4 b5 b6 b7
|
545 |
+
// c: c0 c1 c2 c3 c4 c5 c6 c7
|
546 |
+
// d: d0 d1 d2 d3 d4 d5 d6 d7
|
547 |
+
// e: e0 e1 e2 e3 e4 e5 e6 e7
|
548 |
+
// f: f0 f1 f2 f3 f4 f5 f6 f7
|
549 |
+
// g: g0 g1 g2 g3 g4 g5 g6 g7
|
550 |
+
// h: h0 h1 h2 h3 h4 h5 h6 h7
|
551 |
+
__m256 a = _mm256_loadu_ps(&src[0 * ld_src]);
|
552 |
+
__m256 b = _mm256_loadu_ps(&src[1 * ld_src]);
|
553 |
+
__m256 c = _mm256_loadu_ps(&src[2 * ld_src]);
|
554 |
+
__m256 d = _mm256_loadu_ps(&src[3 * ld_src]);
|
555 |
+
__m256 e = _mm256_loadu_ps(&src[4 * ld_src]);
|
556 |
+
__m256 f = _mm256_loadu_ps(&src[5 * ld_src]);
|
557 |
+
__m256 g = _mm256_loadu_ps(&src[6 * ld_src]);
|
558 |
+
__m256 h = _mm256_loadu_ps(&src[7 * ld_src]);
|
559 |
+
|
560 |
+
__m256 ta, tb, tc, td, te, tf, tg, th;
|
561 |
+
// unpacking and interleaving 32-bit elements
|
562 |
+
// a0 b0 a1 b1 a4 b4 a5 b5
|
563 |
+
// a2 b2 a3 b3 a6 b6 a7 b7
|
564 |
+
// c0 d0 c1 d1 ...
|
565 |
+
// c2 d2 c3 d3 ...
|
566 |
+
// e0 f0 e1 f1 ...
|
567 |
+
// e2 f2 e3 f3 ...
|
568 |
+
// g0 h0 g1 h1 ...
|
569 |
+
// g2 h2 g3 h3 ...
|
570 |
+
ta = _mm256_unpacklo_ps(a, b);
|
571 |
+
tb = _mm256_unpackhi_ps(a, b);
|
572 |
+
tc = _mm256_unpacklo_ps(c, d);
|
573 |
+
td = _mm256_unpackhi_ps(c, d);
|
574 |
+
te = _mm256_unpacklo_ps(e, f);
|
575 |
+
tf = _mm256_unpackhi_ps(e, f);
|
576 |
+
tg = _mm256_unpacklo_ps(g, h);
|
577 |
+
th = _mm256_unpackhi_ps(g, h);
|
578 |
+
|
579 |
+
// unpacking and interleaving 64-bit elements
|
580 |
+
// a0 b0 c0 d0 a4 b4 c4 d4
|
581 |
+
// a1 b1 c1 d1 ...
|
582 |
+
// a2 b2 c2 d2 ...
|
583 |
+
// a3 b3 c3 d3 ...
|
584 |
+
// e0 f0 g0 h0 e4 f4 g4 h4
|
585 |
+
// e1 f1 g1 h1 ...
|
586 |
+
// e2 f2 g2 h2 ...
|
587 |
+
// e3 f3 g3 h3 ...
|
588 |
+
a = _mm256_castpd_ps(
|
589 |
+
_mm256_unpacklo_pd(_mm256_castps_pd(ta), _mm256_castps_pd(tc)));
|
590 |
+
b = _mm256_castpd_ps(
|
591 |
+
_mm256_unpackhi_pd(_mm256_castps_pd(ta), _mm256_castps_pd(tc)));
|
592 |
+
c = _mm256_castpd_ps(
|
593 |
+
_mm256_unpacklo_pd(_mm256_castps_pd(tb), _mm256_castps_pd(td)));
|
594 |
+
d = _mm256_castpd_ps(
|
595 |
+
_mm256_unpackhi_pd(_mm256_castps_pd(tb), _mm256_castps_pd(td)));
|
596 |
+
e = _mm256_castpd_ps(
|
597 |
+
_mm256_unpacklo_pd(_mm256_castps_pd(te), _mm256_castps_pd(tg)));
|
598 |
+
f = _mm256_castpd_ps(
|
599 |
+
_mm256_unpackhi_pd(_mm256_castps_pd(te), _mm256_castps_pd(tg)));
|
600 |
+
g = _mm256_castpd_ps(
|
601 |
+
_mm256_unpacklo_pd(_mm256_castps_pd(tf), _mm256_castps_pd(th)));
|
602 |
+
h = _mm256_castpd_ps(
|
603 |
+
_mm256_unpackhi_pd(_mm256_castps_pd(tf), _mm256_castps_pd(th)));
|
604 |
+
|
605 |
+
// shuffle 128-bits (composed of 4 32-bit elements)
|
606 |
+
// a0 b0 c0 d0 e0 f0 g0 h0
|
607 |
+
// a1 b1 c1 d1 ...
|
608 |
+
// a2 b2 c2 d2 ...
|
609 |
+
// a3 b3 c3 d3 ...
|
610 |
+
// a4 b4 c4 d4 ...
|
611 |
+
// a5 b5 c5 d5 ...
|
612 |
+
// a6 b6 c6 d6 ...
|
613 |
+
// a7 b7 c7 d7 ...
|
614 |
+
ta = _mm256_permute2f128_ps(a, e, 0x20);
|
615 |
+
tb = _mm256_permute2f128_ps(b, f, 0x20);
|
616 |
+
tc = _mm256_permute2f128_ps(c, g, 0x20);
|
617 |
+
td = _mm256_permute2f128_ps(d, h, 0x20);
|
618 |
+
te = _mm256_permute2f128_ps(a, e, 0x31);
|
619 |
+
tf = _mm256_permute2f128_ps(b, f, 0x31);
|
620 |
+
tg = _mm256_permute2f128_ps(c, g, 0x31);
|
621 |
+
th = _mm256_permute2f128_ps(d, h, 0x31);
|
622 |
+
|
623 |
+
// store from registers to dst
|
624 |
+
_mm256_storeu_ps(&dst[0 * ld_dst], ta);
|
625 |
+
_mm256_storeu_ps(&dst[1 * ld_dst], tb);
|
626 |
+
_mm256_storeu_ps(&dst[2 * ld_dst], tc);
|
627 |
+
_mm256_storeu_ps(&dst[3 * ld_dst], td);
|
628 |
+
_mm256_storeu_ps(&dst[4 * ld_dst], te);
|
629 |
+
_mm256_storeu_ps(&dst[5 * ld_dst], tf);
|
630 |
+
_mm256_storeu_ps(&dst[6 * ld_dst], tg);
|
631 |
+
_mm256_storeu_ps(&dst[7 * ld_dst], th);
|
632 |
+
}
|
633 |
+
|
634 |
+
#endif
|
635 |
+
|
636 |
+
}} // namespace at::vec::CPU_CAPABILITY
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_float_neon.h
ADDED
@@ -0,0 +1,892 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
7 |
+
#include <ATen/cpu/vec/vec_base.h>
|
8 |
+
#include <c10/util/irange.h>
|
9 |
+
|
10 |
+
#if defined(__aarch64__) && defined(AT_BUILD_ARM_VEC256_WITH_SLEEF)
|
11 |
+
#include <sleef.h>
|
12 |
+
#endif
|
13 |
+
|
14 |
+
// Sleef offers vectorized versions of some transcedentals
|
15 |
+
// such as sin, cos, tan etc..
|
16 |
+
// However for now opting for STL, since we are not building
|
17 |
+
// with Sleef for mobile yet.
|
18 |
+
|
19 |
+
namespace at::vec {
|
20 |
+
// See Note [CPU_CAPABILITY namespace]
|
21 |
+
inline namespace CPU_CAPABILITY {
|
22 |
+
|
23 |
+
// Right now contains only aarch64 implementation.
|
24 |
+
// Due to follow two reasons aarch32 is not currently supported.
|
25 |
+
// 1. Due to difference in ISA been aarch32 and aarch64, intrinsics
|
26 |
+
// that work for aarch64 dont work for aarch32.
|
27 |
+
// 2. Android NDK r21 has problems with compiling aarch32.
|
28 |
+
// Clang seg faults.
|
29 |
+
// https://github.com/android/ndk/issues/1248
|
30 |
+
// https://bugs.llvm.org/show_bug.cgi?id=45824
|
31 |
+
// Most likely we will do aarch32 support with inline asm.
|
32 |
+
#if defined(__aarch64__)
|
33 |
+
|
34 |
+
#ifdef __BIG_ENDIAN__
|
35 |
+
#error "Big endian is not supported."
|
36 |
+
#endif
|
37 |
+
|
38 |
+
#if defined(AT_BUILD_ARM_VEC256_WITH_SLEEF)
|
39 |
+
#define USE_SLEEF(sleef_code, non_sleef_code) sleef_code
|
40 |
+
#else
|
41 |
+
#define USE_SLEEF(sleef_code, non_sleef_code) non_sleef_code
|
42 |
+
#endif
|
43 |
+
|
44 |
+
template<int index, bool mask_val>
|
45 |
+
struct BlendRegs {
|
46 |
+
static float32x4_t impl(
|
47 |
+
const float32x4_t& a, const float32x4_t& b, float32x4_t& res);
|
48 |
+
};
|
49 |
+
|
50 |
+
template<int index>
|
51 |
+
struct BlendRegs<index, true>{
|
52 |
+
static float32x4_t impl(
|
53 |
+
const float32x4_t& a, const float32x4_t& b, float32x4_t& res) {
|
54 |
+
return vsetq_lane_f32(vgetq_lane_f32(b, index), res, index);
|
55 |
+
}
|
56 |
+
};
|
57 |
+
|
58 |
+
template<int index>
|
59 |
+
struct BlendRegs<index, false>{
|
60 |
+
static float32x4_t impl(
|
61 |
+
const float32x4_t& a, const float32x4_t& b, float32x4_t& res) {
|
62 |
+
return vsetq_lane_f32(vgetq_lane_f32(a, index), res, index);
|
63 |
+
}
|
64 |
+
};
|
65 |
+
|
66 |
+
template <> class Vectorized<float> {
|
67 |
+
private:
|
68 |
+
float32x4x2_t values;
|
69 |
+
public:
|
70 |
+
using value_type = float;
|
71 |
+
using size_type = int;
|
72 |
+
static constexpr size_type size() {
|
73 |
+
return 8;
|
74 |
+
}
|
75 |
+
Vectorized() {}
|
76 |
+
Vectorized(float32x4x2_t v) : values(v) {}
|
77 |
+
Vectorized(float val) : values{vdupq_n_f32(val), vdupq_n_f32(val) } {}
|
78 |
+
Vectorized(float val0, float val1, float val2, float val3,
|
79 |
+
float val4, float val5, float val6, float val7) :
|
80 |
+
values{val0, val1, val2, val3, val4, val5, val6, val7} {}
|
81 |
+
Vectorized(float32x4_t val0, float32x4_t val1) : values{val0, val1} {}
|
82 |
+
operator float32x4x2_t() const {
|
83 |
+
return values;
|
84 |
+
}
|
85 |
+
template <int64_t mask>
|
86 |
+
static Vectorized<float> blend(const Vectorized<float>& a, const Vectorized<float>& b) {
|
87 |
+
Vectorized<float> vec;
|
88 |
+
// 0.
|
89 |
+
vec.values.val[0] =
|
90 |
+
BlendRegs<0, (mask & 0x01)!=0>::impl(
|
91 |
+
a.values.val[0], b.values.val[0], vec.values.val[0]);
|
92 |
+
vec.values.val[0] =
|
93 |
+
BlendRegs<1, (mask & 0x02)!=0>::impl(
|
94 |
+
a.values.val[0], b.values.val[0], vec.values.val[0]);
|
95 |
+
vec.values.val[0] =
|
96 |
+
BlendRegs<2, (mask & 0x04)!=0>::impl(
|
97 |
+
a.values.val[0], b.values.val[0], vec.values.val[0]);
|
98 |
+
vec.values.val[0] =
|
99 |
+
BlendRegs<3, (mask & 0x08)!=0>::impl(
|
100 |
+
a.values.val[0], b.values.val[0], vec.values.val[0]);
|
101 |
+
// 1.
|
102 |
+
vec.values.val[1] =
|
103 |
+
BlendRegs<0, (mask & 0x10)!=0>::impl(
|
104 |
+
a.values.val[1], b.values.val[1], vec.values.val[1]);
|
105 |
+
vec.values.val[1] =
|
106 |
+
BlendRegs<1, (mask & 0x20)!=0>::impl(
|
107 |
+
a.values.val[1], b.values.val[1], vec.values.val[1]);
|
108 |
+
vec.values.val[1] =
|
109 |
+
BlendRegs<2, (mask & 0x40)!=0>::impl(
|
110 |
+
a.values.val[1], b.values.val[1], vec.values.val[1]);
|
111 |
+
vec.values.val[1] =
|
112 |
+
BlendRegs<3, (mask & 0x80)!=0>::impl(
|
113 |
+
a.values.val[1], b.values.val[1], vec.values.val[1]);
|
114 |
+
return vec;
|
115 |
+
}
|
116 |
+
static Vectorized<float> blendv(const Vectorized<float>& a, const Vectorized<float>& b,
|
117 |
+
const Vectorized<float>& mask) {
|
118 |
+
// TODO
|
119 |
+
// NB: This requires that each value, i.e., each uint value,
|
120 |
+
// of the mask either all be zeros or all be 1s.
|
121 |
+
// We perhaps need some kind of an assert?
|
122 |
+
// But that will affect performance.
|
123 |
+
Vectorized<float> vec(mask.values);
|
124 |
+
vec.values.val[0] = vbslq_f32(
|
125 |
+
vreinterpretq_u32_f32(vec.values.val[0]),
|
126 |
+
b.values.val[0],
|
127 |
+
a.values.val[0]);
|
128 |
+
vec.values.val[1] = vbslq_f32(
|
129 |
+
vreinterpretq_u32_f32(vec.values.val[1]),
|
130 |
+
b.values.val[1],
|
131 |
+
a.values.val[1]);
|
132 |
+
return vec;
|
133 |
+
}
|
134 |
+
template<typename step_t>
|
135 |
+
static Vectorized<float> arange(float base = 0.f, step_t step = static_cast<step_t>(1)) {
|
136 |
+
const Vectorized<float> base_vec(base);
|
137 |
+
const Vectorized<float> step_vec(step);
|
138 |
+
const Vectorized<float> step_sizes(0, 1, 2, 3, 4, 5, 6, 7);
|
139 |
+
return fmadd(step_sizes, step_vec, base_vec);
|
140 |
+
}
|
141 |
+
static Vectorized<float> set(const Vectorized<float>& a, const Vectorized<float>& b,
|
142 |
+
int64_t count = size()) {
|
143 |
+
switch (count) {
|
144 |
+
case 0:
|
145 |
+
return a;
|
146 |
+
case 1:
|
147 |
+
{
|
148 |
+
Vectorized<float> vec;
|
149 |
+
static uint32x4_t mask_low = {0xFFFFFFFF, 0x0, 0x0, 0x0};
|
150 |
+
vec.values.val[0] = vreinterpretq_f32_u32(mask_low);
|
151 |
+
vec.values.val[1] = a.values.val[1];
|
152 |
+
vec.values.val[0] = vbslq_f32(
|
153 |
+
vreinterpretq_u32_f32(vec.values.val[0]),
|
154 |
+
b.values.val[0],
|
155 |
+
a.values.val[0]);
|
156 |
+
return vec;
|
157 |
+
}
|
158 |
+
case 2:
|
159 |
+
{
|
160 |
+
Vectorized<float> vec;
|
161 |
+
static uint32x4_t mask_low = {0xFFFFFFFF, 0xFFFFFFFF, 0x0, 0x0};
|
162 |
+
vec.values.val[0] = vreinterpretq_f32_u32(mask_low);
|
163 |
+
vec.values.val[1] = a.values.val[1];
|
164 |
+
vec.values.val[0] = vbslq_f32(
|
165 |
+
vreinterpretq_u32_f32(vec.values.val[0]),
|
166 |
+
b.values.val[0],
|
167 |
+
a.values.val[0]);
|
168 |
+
return vec;
|
169 |
+
}
|
170 |
+
case 3:
|
171 |
+
{
|
172 |
+
Vectorized<float> vec;
|
173 |
+
static uint32x4_t mask_low = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0};
|
174 |
+
vec.values.val[0] = vreinterpretq_f32_u32(mask_low);
|
175 |
+
vec.values.val[1] = a.values.val[1];
|
176 |
+
vec.values.val[0] = vbslq_f32(
|
177 |
+
vreinterpretq_u32_f32(vec.values.val[0]),
|
178 |
+
b.values.val[0],
|
179 |
+
a.values.val[0]);
|
180 |
+
return vec;
|
181 |
+
}
|
182 |
+
case 4:
|
183 |
+
return Vectorized<float>(b.values.val[0], a.values.val[1]);
|
184 |
+
case 5:
|
185 |
+
{
|
186 |
+
Vectorized<float> vec;
|
187 |
+
static uint32x4_t mask_high = {0xFFFFFFFF, 0x0, 0x0, 0x0};
|
188 |
+
vec.values.val[0] = b.values.val[0];
|
189 |
+
vec.values.val[1] = vreinterpretq_f32_u32(mask_high);
|
190 |
+
vec.values.val[1] = vbslq_f32(
|
191 |
+
vreinterpretq_u32_f32(vec.values.val[1]),
|
192 |
+
b.values.val[1],
|
193 |
+
a.values.val[1]);
|
194 |
+
return vec;
|
195 |
+
}
|
196 |
+
case 6:
|
197 |
+
{
|
198 |
+
Vectorized<float> vec;
|
199 |
+
static uint32x4_t mask_high = {0xFFFFFFFF, 0xFFFFFFFF, 0x0, 0x0};
|
200 |
+
vec.values.val[0] = b.values.val[0];
|
201 |
+
vec.values.val[1] = vreinterpretq_f32_u32(mask_high);
|
202 |
+
vec.values.val[1] = vbslq_f32(
|
203 |
+
vreinterpretq_u32_f32(vec.values.val[1]),
|
204 |
+
b.values.val[1],
|
205 |
+
a.values.val[1]);
|
206 |
+
return vec;
|
207 |
+
}
|
208 |
+
case 7:
|
209 |
+
{
|
210 |
+
Vectorized<float> vec;
|
211 |
+
static uint32x4_t mask_high = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0};
|
212 |
+
vec.values.val[0] = b.values.val[0];
|
213 |
+
vec.values.val[1] = vreinterpretq_f32_u32(mask_high);
|
214 |
+
vec.values.val[1] = vbslq_f32(
|
215 |
+
vreinterpretq_u32_f32(vec.values.val[1]),
|
216 |
+
b.values.val[1],
|
217 |
+
a.values.val[1]);
|
218 |
+
return vec;
|
219 |
+
}
|
220 |
+
}
|
221 |
+
return b;
|
222 |
+
}
|
223 |
+
static Vectorized<float> loadu(const void* ptr, int64_t count = size()) {
|
224 |
+
if (count == size()) {
|
225 |
+
return vld1q_f32_x2(reinterpret_cast<const float*>(ptr));
|
226 |
+
}
|
227 |
+
else if (count == (size() >> 1)) {
|
228 |
+
Vectorized<float> res;
|
229 |
+
res.values.val[0] = vld1q_f32(reinterpret_cast<const float*>(ptr));
|
230 |
+
res.values.val[1] = vdupq_n_f32(0.f);
|
231 |
+
return res;
|
232 |
+
}
|
233 |
+
else {
|
234 |
+
__at_align__ float tmp_values[size()];
|
235 |
+
for (const auto i : c10::irange(size())) {
|
236 |
+
tmp_values[i] = 0.0;
|
237 |
+
}
|
238 |
+
std::memcpy(
|
239 |
+
tmp_values,
|
240 |
+
reinterpret_cast<const float*>(ptr),
|
241 |
+
count * sizeof(float));
|
242 |
+
return vld1q_f32_x2(reinterpret_cast<const float*>(tmp_values));
|
243 |
+
}
|
244 |
+
}
|
245 |
+
void store(void* ptr, int64_t count = size()) const {
|
246 |
+
if (count == size()) {
|
247 |
+
vst1q_f32_x2(reinterpret_cast<float*>(ptr), values);
|
248 |
+
}
|
249 |
+
else if (count == (size() >> 1)) {
|
250 |
+
vst1q_f32(reinterpret_cast<float*>(ptr), values.val[0]);
|
251 |
+
}
|
252 |
+
else {
|
253 |
+
float tmp_values[size()];
|
254 |
+
vst1q_f32_x2(reinterpret_cast<float*>(tmp_values), values);
|
255 |
+
std::memcpy(ptr, tmp_values, count * sizeof(float));
|
256 |
+
}
|
257 |
+
}
|
258 |
+
inline const float32x4_t& get_low() const {
|
259 |
+
return values.val[0];
|
260 |
+
}
|
261 |
+
inline float32x4_t& get_low() {
|
262 |
+
return values.val[0];
|
263 |
+
}
|
264 |
+
inline const float32x4_t& get_high() const {
|
265 |
+
return values.val[1];
|
266 |
+
}
|
267 |
+
inline float32x4_t& get_high() {
|
268 |
+
return values.val[1];
|
269 |
+
}
|
270 |
+
// Very slow implementation of indexing.
|
271 |
+
// Only required because vec256_qint refers to this.
|
272 |
+
// Once we specialize that implementation for ARM
|
273 |
+
// this should be removed. TODO (kimishpatel)
|
274 |
+
float operator[](int idx) const {
|
275 |
+
__at_align__ float tmp[size()];
|
276 |
+
store(tmp);
|
277 |
+
return tmp[idx];
|
278 |
+
}
|
279 |
+
float operator[](int idx) {
|
280 |
+
__at_align__ float tmp[size()];
|
281 |
+
store(tmp);
|
282 |
+
return tmp[idx];
|
283 |
+
}
|
284 |
+
// For boolean version where we want to if any 1/all zero
|
285 |
+
// etc. can be done faster in a different way.
|
286 |
+
int zero_mask() const {
|
287 |
+
__at_align__ float tmp[size()];
|
288 |
+
store(tmp);
|
289 |
+
int mask = 0;
|
290 |
+
for (int i = 0; i < size(); ++ i) {
|
291 |
+
if (tmp[i] == 0.f) {
|
292 |
+
mask |= (1 << i);
|
293 |
+
}
|
294 |
+
}
|
295 |
+
return mask;
|
296 |
+
}
|
297 |
+
Vectorized<float> isnan() const {
|
298 |
+
__at_align__ float tmp[size()];
|
299 |
+
__at_align__ float res[size()];
|
300 |
+
store(tmp);
|
301 |
+
for (const auto i : c10::irange(size())) {
|
302 |
+
if (_isnan(tmp[i])) {
|
303 |
+
std::memset(static_cast<void*>(&res[i]), 0xFF, sizeof(float));
|
304 |
+
} else {
|
305 |
+
std::memset(static_cast<void*>(&res[i]), 0, sizeof(float));
|
306 |
+
}
|
307 |
+
}
|
308 |
+
return loadu(res);
|
309 |
+
};
|
310 |
+
bool has_inf_nan() const {
|
311 |
+
__at_align__ float tmp[size()];
|
312 |
+
store(tmp);
|
313 |
+
for (const auto i : c10::irange(size())) {
|
314 |
+
if(_isnan(tmp[i]) || _isinf(tmp[i])) {
|
315 |
+
return true;
|
316 |
+
}
|
317 |
+
}
|
318 |
+
return false;
|
319 |
+
}
|
320 |
+
Vectorized<float> map(float (*const f)(float)) const {
|
321 |
+
__at_align__ float tmp[size()];
|
322 |
+
store(tmp);
|
323 |
+
for (const auto i : c10::irange(size())) {
|
324 |
+
tmp[i] = f(tmp[i]);
|
325 |
+
}
|
326 |
+
return loadu(tmp);
|
327 |
+
}
|
328 |
+
Vectorized<float> abs() const {
|
329 |
+
return Vectorized<float>(vabsq_f32(values.val[0]), vabsq_f32(values.val[1]));
|
330 |
+
}
|
331 |
+
Vectorized<float> angle() const {
|
332 |
+
auto zero = Vectorized<float>(0);
|
333 |
+
auto pi = Vectorized<float>(c10::pi<float>);
|
334 |
+
auto tmp = blendv(zero, pi, *this < zero);
|
335 |
+
return blendv(tmp, *this, isnan());
|
336 |
+
}
|
337 |
+
Vectorized<float> real() const {
|
338 |
+
return *this;
|
339 |
+
}
|
340 |
+
Vectorized<float> imag() const {
|
341 |
+
return Vectorized<float>(0.f);
|
342 |
+
}
|
343 |
+
Vectorized<float> conj() const {
|
344 |
+
return *this;
|
345 |
+
}
|
346 |
+
Vectorized<float> acos() const {
|
347 |
+
return USE_SLEEF(
|
348 |
+
Vectorized<float>(Sleef_acosf4_u10(values.val[0]), Sleef_acosf4_u10(values.val[1])),
|
349 |
+
map(std::acos)
|
350 |
+
);
|
351 |
+
}
|
352 |
+
Vectorized<float> asin() const {
|
353 |
+
return USE_SLEEF(
|
354 |
+
Vectorized<float>(Sleef_asinf4_u10(values.val[0]), Sleef_asinf4_u10(values.val[1])),
|
355 |
+
map(std::asin)
|
356 |
+
);
|
357 |
+
}
|
358 |
+
Vectorized<float> atan() const {
|
359 |
+
return USE_SLEEF(
|
360 |
+
Vectorized<float>(Sleef_atanf4_u10(values.val[0]), Sleef_atanf4_u10(values.val[1])),
|
361 |
+
map(std::atan)
|
362 |
+
);
|
363 |
+
}
|
364 |
+
Vectorized<float> atanh() const {
|
365 |
+
return USE_SLEEF(
|
366 |
+
Vectorized<float>(Sleef_atanhf4_u10(values.val[0]), Sleef_atanhf4_u10(values.val[1])),
|
367 |
+
map(std::atanh)
|
368 |
+
);
|
369 |
+
}
|
370 |
+
Vectorized<float> atan2(const Vectorized<float> &exp) const {
|
371 |
+
USE_SLEEF(
|
372 |
+
{
|
373 |
+
return Vectorized<float>(Sleef_atan2f4_u10(values.val[0], exp.values.val[0]),
|
374 |
+
Sleef_atan2f4_u10(values.val[1], exp.values.val[1]));
|
375 |
+
},
|
376 |
+
{
|
377 |
+
__at_align__ float tmp[size()];
|
378 |
+
__at_align__ float tmp_exp[size()];
|
379 |
+
store(tmp);
|
380 |
+
exp.store(tmp_exp);
|
381 |
+
for (const auto i : c10::irange(size())) {
|
382 |
+
tmp[i] = std::atan2(tmp[i], tmp_exp[i]);
|
383 |
+
}
|
384 |
+
return loadu(tmp);
|
385 |
+
}
|
386 |
+
)
|
387 |
+
}
|
388 |
+
Vectorized<float> copysign(const Vectorized<float> &sign) const {
|
389 |
+
USE_SLEEF(
|
390 |
+
{
|
391 |
+
return Vectorized<float>(Sleef_copysignf4(values.val[0], sign.values.val[0]),
|
392 |
+
Sleef_copysignf4(values.val[1], sign.values.val[1]));
|
393 |
+
},
|
394 |
+
{
|
395 |
+
__at_align__ float tmp[size()];
|
396 |
+
__at_align__ float tmp_sign[size()];
|
397 |
+
store(tmp);
|
398 |
+
sign.store(tmp_sign);
|
399 |
+
for (size_type i = 0; i < size(); i++) {
|
400 |
+
tmp[i] = std::copysign(tmp[i], tmp_sign[i]);
|
401 |
+
}
|
402 |
+
return loadu(tmp);
|
403 |
+
}
|
404 |
+
)
|
405 |
+
}
|
406 |
+
Vectorized<float> erf() const;
|
407 |
+
Vectorized<float> erfc() const {
|
408 |
+
return USE_SLEEF(
|
409 |
+
Vectorized<float>(Sleef_erfcf4_u15(values.val[0]), Sleef_erfcf4_u15(values.val[1])),
|
410 |
+
map(std::erfc)
|
411 |
+
);
|
412 |
+
}
|
413 |
+
Vectorized<float> erfinv() const {
|
414 |
+
return map(calc_erfinv);
|
415 |
+
}
|
416 |
+
Vectorized<float> exp() const {
|
417 |
+
return USE_SLEEF(
|
418 |
+
Vectorized<float>(Sleef_expf4_u10(values.val[0]), Sleef_expf4_u10(values.val[1])),
|
419 |
+
map(std::exp)
|
420 |
+
);
|
421 |
+
}
|
422 |
+
Vectorized<float> exp2() const {
|
423 |
+
return USE_SLEEF(
|
424 |
+
Vectorized<float>(Sleef_exp2f4_u10(values.val[0]), Sleef_exp2f4_u10(values.val[1])),
|
425 |
+
map(std::exp2)
|
426 |
+
);
|
427 |
+
}
|
428 |
+
Vectorized<float> expm1() const {
|
429 |
+
return USE_SLEEF(
|
430 |
+
Vectorized<float>(Sleef_expm1f4_u10(values.val[0]), Sleef_expm1f4_u10(values.val[1])),
|
431 |
+
map(std::expm1)
|
432 |
+
);
|
433 |
+
}
|
434 |
+
Vectorized<float> exp_u20() const {
|
435 |
+
return exp();
|
436 |
+
}
|
437 |
+
Vectorized<float> fmod(const Vectorized<float>& q) const {
|
438 |
+
USE_SLEEF(
|
439 |
+
{
|
440 |
+
return Vectorized<float>(Sleef_fmodf4(values.val[0], q.values.val[0]),
|
441 |
+
Sleef_fmodf4(values.val[1], q.values.val[1]));
|
442 |
+
},
|
443 |
+
{
|
444 |
+
__at_align__ float tmp[size()];
|
445 |
+
__at_align__ float tmp_q[size()];
|
446 |
+
store(tmp);
|
447 |
+
q.store(tmp_q);
|
448 |
+
for (const auto i : c10::irange(size())) {
|
449 |
+
tmp[i] = std::fmod(tmp[i], tmp_q[i]);
|
450 |
+
}
|
451 |
+
return loadu(tmp);
|
452 |
+
}
|
453 |
+
)
|
454 |
+
}
|
455 |
+
Vectorized<float> hypot(const Vectorized<float> &b) const {
|
456 |
+
USE_SLEEF(
|
457 |
+
{
|
458 |
+
return Vectorized<float>(Sleef_hypotf4_u05(values.val[0], b.values.val[0]),
|
459 |
+
Sleef_hypotf4_u05(values.val[1], b.values.val[1]));
|
460 |
+
},
|
461 |
+
{
|
462 |
+
__at_align__ float tmp[size()];
|
463 |
+
__at_align__ float tmp_b[size()];
|
464 |
+
store(tmp);
|
465 |
+
b.store(tmp_b);
|
466 |
+
for (const auto i : c10::irange(size())) {
|
467 |
+
tmp[i] = std::hypot(tmp[i], tmp_b[i]);
|
468 |
+
}
|
469 |
+
return loadu(tmp);
|
470 |
+
}
|
471 |
+
)
|
472 |
+
}
|
473 |
+
Vectorized<float> i0() const {
|
474 |
+
return map(calc_i0);
|
475 |
+
}
|
476 |
+
Vectorized<float> i0e() const {
|
477 |
+
return map(calc_i0e);
|
478 |
+
}
|
479 |
+
Vectorized<float> digamma() const {
|
480 |
+
return map(calc_digamma);
|
481 |
+
}
|
482 |
+
Vectorized<float> igamma(const Vectorized<float> &x) const {
|
483 |
+
__at_align__ float tmp[size()];
|
484 |
+
__at_align__ float tmp_x[size()];
|
485 |
+
store(tmp);
|
486 |
+
x.store(tmp_x);
|
487 |
+
for (const auto i : c10::irange(size())) {
|
488 |
+
tmp[i] = calc_igamma(tmp[i], tmp_x[i]);
|
489 |
+
}
|
490 |
+
return loadu(tmp);
|
491 |
+
}
|
492 |
+
Vectorized<float> igammac(const Vectorized<float> &x) const {
|
493 |
+
__at_align__ float tmp[size()];
|
494 |
+
__at_align__ float tmp_x[size()];
|
495 |
+
store(tmp);
|
496 |
+
x.store(tmp_x);
|
497 |
+
for (const auto i : c10::irange(size())) {
|
498 |
+
tmp[i] = calc_igammac(tmp[i], tmp_x[i]);
|
499 |
+
}
|
500 |
+
return loadu(tmp);
|
501 |
+
}
|
502 |
+
Vectorized<float> log() const {
|
503 |
+
return USE_SLEEF(
|
504 |
+
Vectorized<float>(Sleef_logf4_u10(values.val[0]), Sleef_logf4_u10(values.val[1])),
|
505 |
+
map(std::log)
|
506 |
+
);
|
507 |
+
}
|
508 |
+
Vectorized<float> log10() const {
|
509 |
+
return USE_SLEEF(
|
510 |
+
Vectorized<float>(Sleef_log10f4_u10(values.val[0]), Sleef_log10f4_u10(values.val[1])),
|
511 |
+
map(std::log10)
|
512 |
+
);
|
513 |
+
}
|
514 |
+
Vectorized<float> log1p() const {
|
515 |
+
return USE_SLEEF(
|
516 |
+
Vectorized<float>(Sleef_log1pf4_u10(values.val[0]), Sleef_log1pf4_u10(values.val[1])),
|
517 |
+
map(std::log1p)
|
518 |
+
);
|
519 |
+
}
|
520 |
+
Vectorized<float> log2() const {
|
521 |
+
return USE_SLEEF(
|
522 |
+
Vectorized<float>(Sleef_log2f4_u10(values.val[0]), Sleef_log2f4_u10(values.val[1])),
|
523 |
+
map(std::log2)
|
524 |
+
);
|
525 |
+
}
|
526 |
+
Vectorized<float> nextafter(const Vectorized<float> &b) const {
|
527 |
+
USE_SLEEF(
|
528 |
+
{
|
529 |
+
return Vectorized<float>(Sleef_nextafterf4(values.val[0], b.values.val[0]),
|
530 |
+
Sleef_nextafterf4(values.val[1], b.values.val[1]));
|
531 |
+
},
|
532 |
+
{
|
533 |
+
__at_align__ float tmp[size()];
|
534 |
+
__at_align__ float tmp_b[size()];
|
535 |
+
store(tmp);
|
536 |
+
b.store(tmp_b);
|
537 |
+
for (const auto i : c10::irange(size())) {
|
538 |
+
tmp[i] = std::nextafter(tmp[i], tmp_b[i]);
|
539 |
+
}
|
540 |
+
return loadu(tmp);
|
541 |
+
}
|
542 |
+
)
|
543 |
+
}
|
544 |
+
Vectorized<float> frac() const;
|
545 |
+
Vectorized<float> sin() const {
|
546 |
+
return USE_SLEEF(
|
547 |
+
Vectorized<float>(Sleef_sinf4_u10(values.val[0]), Sleef_sinf4_u10(values.val[1])),
|
548 |
+
map(std::sin)
|
549 |
+
);
|
550 |
+
}
|
551 |
+
Vectorized<float> sinh() const {
|
552 |
+
return USE_SLEEF(
|
553 |
+
Vectorized<float>(Sleef_sinhf4_u10(values.val[0]), Sleef_sinhf4_u10(values.val[1])),
|
554 |
+
map(std::sinh)
|
555 |
+
);
|
556 |
+
}
|
557 |
+
Vectorized<float> cos() const {
|
558 |
+
return USE_SLEEF(
|
559 |
+
Vectorized<float>(Sleef_cosf4_u10(values.val[0]), Sleef_cosf4_u10(values.val[1])),
|
560 |
+
map(std::cos)
|
561 |
+
);
|
562 |
+
}
|
563 |
+
Vectorized<float> cosh() const {
|
564 |
+
return USE_SLEEF(
|
565 |
+
Vectorized<float>(Sleef_coshf4_u10(values.val[0]), Sleef_coshf4_u10(values.val[1])),
|
566 |
+
map(std::cosh)
|
567 |
+
);
|
568 |
+
}
|
569 |
+
Vectorized<float> ceil() const {
|
570 |
+
return map(at::native::ceil_impl);
|
571 |
+
}
|
572 |
+
Vectorized<float> floor() const {
|
573 |
+
return map(at::native::floor_impl);
|
574 |
+
}
|
575 |
+
Vectorized<float> neg() const {
|
576 |
+
return Vectorized<float>(
|
577 |
+
vnegq_f32(values.val[0]),
|
578 |
+
vnegq_f32(values.val[1]));
|
579 |
+
}
|
580 |
+
Vectorized<float> round() const {
|
581 |
+
// We do not use std::round because we would like to round midway numbers to the nearest even integer.
|
582 |
+
return map(at::native::round_impl);
|
583 |
+
}
|
584 |
+
Vectorized<float> tan() const {
|
585 |
+
return USE_SLEEF(
|
586 |
+
Vectorized<float>(Sleef_tanf4_u10(values.val[0]), Sleef_tanf4_u10(values.val[1])),
|
587 |
+
map(std::tan)
|
588 |
+
);
|
589 |
+
}
|
590 |
+
Vectorized<float> tanh() const {
|
591 |
+
return USE_SLEEF(
|
592 |
+
Vectorized<float>(Sleef_tanhf4_u10(values.val[0]), Sleef_tanhf4_u10(values.val[1])),
|
593 |
+
map(std::tanh)
|
594 |
+
);
|
595 |
+
}
|
596 |
+
Vectorized<float> trunc() const {
|
597 |
+
float32x4_t r0 = vrndq_f32(values.val[0]);
|
598 |
+
float32x4_t r1 = vrndq_f32(values.val[1]);
|
599 |
+
return Vectorized<float>(r0, r1);
|
600 |
+
}
|
601 |
+
Vectorized<float> lgamma() const {
|
602 |
+
return USE_SLEEF(
|
603 |
+
Vectorized<float>(Sleef_lgammaf4_u10(values.val[0]), Sleef_lgammaf4_u10(values.val[1])),
|
604 |
+
map(std::lgamma)
|
605 |
+
);
|
606 |
+
}
|
607 |
+
Vectorized<float> sqrt() const {
|
608 |
+
return Vectorized<float>(
|
609 |
+
vsqrtq_f32(values.val[0]),
|
610 |
+
vsqrtq_f32(values.val[1]));
|
611 |
+
}
|
612 |
+
Vectorized<float> reciprocal() const {
|
613 |
+
auto r0 = vdivq_f32(vdupq_n_f32(1.0f), values.val[0]);
|
614 |
+
auto r1 = vdivq_f32(vdupq_n_f32(1.0f), values.val[1]);
|
615 |
+
return Vectorized<float>(r0, r1);
|
616 |
+
}
|
617 |
+
Vectorized<float> rsqrt() const {
|
618 |
+
return this->sqrt().reciprocal();
|
619 |
+
}
|
620 |
+
Vectorized<float> pow(const Vectorized<float> &exp) const {
|
621 |
+
USE_SLEEF(
|
622 |
+
{
|
623 |
+
return Vectorized<float>(Sleef_powf4_u10(values.val[0], exp.values.val[0]),
|
624 |
+
Sleef_powf4_u10(values.val[1], exp.values.val[1]));
|
625 |
+
},
|
626 |
+
{
|
627 |
+
__at_align__ float tmp[size()];
|
628 |
+
__at_align__ float tmp_exp[size()];
|
629 |
+
store(tmp);
|
630 |
+
exp.store(tmp_exp);
|
631 |
+
for (const auto i : c10::irange(size())) {
|
632 |
+
tmp[i] = std::pow(tmp[i], tmp_exp[i]);
|
633 |
+
}
|
634 |
+
return loadu(tmp);
|
635 |
+
}
|
636 |
+
)
|
637 |
+
}
|
638 |
+
Vectorized<float> operator==(const Vectorized<float>& other) const {
|
639 |
+
float32x4_t r0 =
|
640 |
+
vreinterpretq_f32_u32(vceqq_f32(values.val[0], other.values.val[0]));
|
641 |
+
float32x4_t r1 =
|
642 |
+
vreinterpretq_f32_u32(vceqq_f32(values.val[1], other.values.val[1]));
|
643 |
+
return Vectorized<float>(r0, r1);
|
644 |
+
}
|
645 |
+
|
646 |
+
Vectorized<float> operator!=(const Vectorized<float>& other) const {
|
647 |
+
float32x4_t r0 = vreinterpretq_f32_u32(
|
648 |
+
vmvnq_u32(vceqq_f32(values.val[0], other.values.val[0])));
|
649 |
+
float32x4_t r1 = vreinterpretq_f32_u32(
|
650 |
+
vmvnq_u32(vceqq_f32(values.val[1], other.values.val[1])));
|
651 |
+
return Vectorized<float>(r0, r1);
|
652 |
+
}
|
653 |
+
|
654 |
+
Vectorized<float> operator<(const Vectorized<float>& other) const {
|
655 |
+
float32x4_t r0 =
|
656 |
+
vreinterpretq_f32_u32(vcltq_f32(values.val[0], other.values.val[0]));
|
657 |
+
float32x4_t r1 =
|
658 |
+
vreinterpretq_f32_u32(vcltq_f32(values.val[1], other.values.val[1]));
|
659 |
+
return Vectorized<float>(r0, r1);
|
660 |
+
}
|
661 |
+
|
662 |
+
Vectorized<float> operator<=(const Vectorized<float>& other) const {
|
663 |
+
float32x4_t r0 =
|
664 |
+
vreinterpretq_f32_u32(vcleq_f32(values.val[0], other.values.val[0]));
|
665 |
+
float32x4_t r1 =
|
666 |
+
vreinterpretq_f32_u32(vcleq_f32(values.val[1], other.values.val[1]));
|
667 |
+
return Vectorized<float>(r0, r1);
|
668 |
+
}
|
669 |
+
|
670 |
+
Vectorized<float> operator>(const Vectorized<float>& other) const {
|
671 |
+
float32x4_t r0 =
|
672 |
+
vreinterpretq_f32_u32(vcgtq_f32(values.val[0], other.values.val[0]));
|
673 |
+
float32x4_t r1 =
|
674 |
+
vreinterpretq_f32_u32(vcgtq_f32(values.val[1], other.values.val[1]));
|
675 |
+
return Vectorized<float>(r0, r1);
|
676 |
+
}
|
677 |
+
|
678 |
+
Vectorized<float> operator>=(const Vectorized<float>& other) const {
|
679 |
+
float32x4_t r0 =
|
680 |
+
vreinterpretq_f32_u32(vcgeq_f32(values.val[0], other.values.val[0]));
|
681 |
+
float32x4_t r1 =
|
682 |
+
vreinterpretq_f32_u32(vcgeq_f32(values.val[1], other.values.val[1]));
|
683 |
+
return Vectorized<float>(r0, r1);
|
684 |
+
}
|
685 |
+
|
686 |
+
Vectorized<float> eq(const Vectorized<float>& other) const;
|
687 |
+
Vectorized<float> ne(const Vectorized<float>& other) const;
|
688 |
+
Vectorized<float> gt(const Vectorized<float>& other) const;
|
689 |
+
Vectorized<float> ge(const Vectorized<float>& other) const;
|
690 |
+
Vectorized<float> lt(const Vectorized<float>& other) const;
|
691 |
+
Vectorized<float> le(const Vectorized<float>& other) const;
|
692 |
+
};
|
693 |
+
|
694 |
+
template <>
|
695 |
+
Vectorized<float> inline operator+(const Vectorized<float>& a, const Vectorized<float>& b) {
|
696 |
+
float32x4_t r0 = vaddq_f32(a.get_low(), b.get_low());
|
697 |
+
float32x4_t r1 = vaddq_f32(a.get_high(), b.get_high());
|
698 |
+
return Vectorized<float>(r0, r1);
|
699 |
+
}
|
700 |
+
|
701 |
+
template <>
|
702 |
+
Vectorized<float> inline operator-(const Vectorized<float>& a, const Vectorized<float>& b) {
|
703 |
+
float32x4_t r0 = vsubq_f32(a.get_low(), b.get_low());
|
704 |
+
float32x4_t r1 = vsubq_f32(a.get_high(), b.get_high());
|
705 |
+
return Vectorized<float>(r0, r1);
|
706 |
+
}
|
707 |
+
|
708 |
+
template <>
|
709 |
+
Vectorized<float> inline operator*(const Vectorized<float>& a, const Vectorized<float>& b) {
|
710 |
+
float32x4_t r0 = vmulq_f32(a.get_low(), b.get_low());
|
711 |
+
float32x4_t r1 = vmulq_f32(a.get_high(), b.get_high());
|
712 |
+
return Vectorized<float>(r0, r1);
|
713 |
+
}
|
714 |
+
|
715 |
+
template <>
|
716 |
+
Vectorized<float> inline operator/(const Vectorized<float>& a, const Vectorized<float>& b) {
|
717 |
+
float32x4_t r0 = vdivq_f32(a.get_low(), b.get_low());
|
718 |
+
float32x4_t r1 = vdivq_f32(a.get_high(), b.get_high());
|
719 |
+
return Vectorized<float>(r0, r1);
|
720 |
+
}
|
721 |
+
|
722 |
+
// frac. Implement this here so we can use subtraction
|
723 |
+
inline Vectorized<float> Vectorized<float>::frac() const {
|
724 |
+
return *this - this->trunc();
|
725 |
+
}
|
726 |
+
|
727 |
+
// Implements the IEEE 754 201X `maximum` operation, which propagates NaN if
|
728 |
+
// either input is a NaN.
|
729 |
+
template <>
|
730 |
+
Vectorized<float> inline maximum(const Vectorized<float>& a, const Vectorized<float>& b) {
|
731 |
+
float32x4_t r0 = vmaxq_f32(a.get_low(), b.get_low());
|
732 |
+
float32x4_t r1 = vmaxq_f32(a.get_high(), b.get_high());
|
733 |
+
return Vectorized<float>(r0, r1);
|
734 |
+
}
|
735 |
+
|
736 |
+
// Implements the IEEE 754 201X `minimum` operation, which propagates NaN if
|
737 |
+
// either input is a NaN.
|
738 |
+
template <>
|
739 |
+
Vectorized<float> inline minimum(const Vectorized<float>& a, const Vectorized<float>& b) {
|
740 |
+
float32x4_t r0 = vminq_f32(a.get_low(), b.get_low());
|
741 |
+
float32x4_t r1 = vminq_f32(a.get_high(), b.get_high());
|
742 |
+
return Vectorized<float>(r0, r1);
|
743 |
+
}
|
744 |
+
|
745 |
+
template <>
|
746 |
+
Vectorized<float> inline clamp(const Vectorized<float>& a, const Vectorized<float>& min, const Vectorized<float>& max) {
|
747 |
+
return minimum(max, maximum(min, a));
|
748 |
+
}
|
749 |
+
|
750 |
+
template <>
|
751 |
+
Vectorized<float> inline clamp_max(const Vectorized<float>& a, const Vectorized<float>& max) {
|
752 |
+
return minimum(max, a);
|
753 |
+
}
|
754 |
+
|
755 |
+
template <>
|
756 |
+
Vectorized<float> inline clamp_min(const Vectorized<float>& a, const Vectorized<float>& min) {
|
757 |
+
return maximum(min, a);
|
758 |
+
}
|
759 |
+
|
760 |
+
template <>
|
761 |
+
Vectorized<float> inline operator&(const Vectorized<float>& a, const Vectorized<float>& b) {
|
762 |
+
float32x4_t r0 = vreinterpretq_f32_u32(vandq_u32(
|
763 |
+
vreinterpretq_u32_f32(a.get_low()),
|
764 |
+
vreinterpretq_u32_f32(b.get_low())));
|
765 |
+
float32x4_t r1 = vreinterpretq_f32_u32(vandq_u32(
|
766 |
+
vreinterpretq_u32_f32(a.get_high()),
|
767 |
+
vreinterpretq_u32_f32(b.get_high())));
|
768 |
+
return Vectorized<float>(r0, r1);
|
769 |
+
}
|
770 |
+
|
771 |
+
template <>
|
772 |
+
Vectorized<float> inline operator|(const Vectorized<float>& a, const Vectorized<float>& b) {
|
773 |
+
float32x4_t r0 = vreinterpretq_f32_u32(vorrq_u32(
|
774 |
+
vreinterpretq_u32_f32(a.get_low()),
|
775 |
+
vreinterpretq_u32_f32(b.get_low())));
|
776 |
+
float32x4_t r1 = vreinterpretq_f32_u32(vorrq_u32(
|
777 |
+
vreinterpretq_u32_f32(a.get_high()),
|
778 |
+
vreinterpretq_u32_f32(b.get_high())));
|
779 |
+
return Vectorized<float>(r0, r1);
|
780 |
+
}
|
781 |
+
|
782 |
+
template <>
|
783 |
+
Vectorized<float> inline operator^(const Vectorized<float>& a, const Vectorized<float>& b) {
|
784 |
+
float32x4_t r0 = vreinterpretq_f32_u32(veorq_u32(
|
785 |
+
vreinterpretq_u32_f32(a.get_low()),
|
786 |
+
vreinterpretq_u32_f32(b.get_low())));
|
787 |
+
float32x4_t r1 = vreinterpretq_f32_u32(veorq_u32(
|
788 |
+
vreinterpretq_u32_f32(a.get_high()),
|
789 |
+
vreinterpretq_u32_f32(b.get_high())));
|
790 |
+
return Vectorized<float>(r0, r1);
|
791 |
+
}
|
792 |
+
|
793 |
+
inline Vectorized<float> Vectorized<float>::eq(const Vectorized<float>& other) const {
|
794 |
+
return (*this == other) & Vectorized<float>(1.0f);
|
795 |
+
}
|
796 |
+
|
797 |
+
inline Vectorized<float> Vectorized<float>::ne(const Vectorized<float>& other) const {
|
798 |
+
return (*this != other) & Vectorized<float>(1.0f);
|
799 |
+
}
|
800 |
+
|
801 |
+
inline Vectorized<float> Vectorized<float>::gt(const Vectorized<float>& other) const {
|
802 |
+
return (*this > other) & Vectorized<float>(1.0f);
|
803 |
+
}
|
804 |
+
|
805 |
+
inline Vectorized<float> Vectorized<float>::ge(const Vectorized<float>& other) const {
|
806 |
+
return (*this >= other) & Vectorized<float>(1.0f);
|
807 |
+
}
|
808 |
+
|
809 |
+
inline Vectorized<float> Vectorized<float>::lt(const Vectorized<float>& other) const {
|
810 |
+
return (*this < other) & Vectorized<float>(1.0f);
|
811 |
+
}
|
812 |
+
|
813 |
+
inline Vectorized<float> Vectorized<float>::le(const Vectorized<float>& other) const {
|
814 |
+
return (*this <= other) & Vectorized<float>(1.0f);
|
815 |
+
}
|
816 |
+
|
817 |
+
template <>
|
818 |
+
inline void convert(const float* src, int32_t* dst, int64_t n) {
|
819 |
+
int64_t i;
|
820 |
+
#pragma unroll
|
821 |
+
for (i = 0; i <= (n - Vectorized<float>::size()); i += Vectorized<float>::size()) {
|
822 |
+
vst1q_s32(dst + i, vcvtq_s32_f32(vld1q_f32(src + i)));
|
823 |
+
vst1q_s32(dst + i + 4, vcvtq_s32_f32(vld1q_f32(src + i + 4)));
|
824 |
+
}
|
825 |
+
#pragma unroll
|
826 |
+
for (; i < n; i++) {
|
827 |
+
dst[i] = static_cast<int32_t>(src[i]);
|
828 |
+
}
|
829 |
+
}
|
830 |
+
|
831 |
+
template <>
|
832 |
+
inline void convert(const int32_t* src, float* dst, int64_t n) {
|
833 |
+
int64_t i;
|
834 |
+
#pragma unroll
|
835 |
+
for (i = 0; i <= (n - Vectorized<float>::size()); i += Vectorized<float>::size()) {
|
836 |
+
vst1q_f32(dst + i, vcvtq_f32_s32(vld1q_s32(src + i)));
|
837 |
+
vst1q_f32(dst + i + 4, vcvtq_f32_s32(vld1q_s32(src + i + 4)));
|
838 |
+
}
|
839 |
+
#pragma unroll
|
840 |
+
for (; i < n; i++) {
|
841 |
+
dst[i] = static_cast<float>(src[i]);
|
842 |
+
}
|
843 |
+
}
|
844 |
+
|
845 |
+
template <>
|
846 |
+
Vectorized<float> inline fmadd(const Vectorized<float>& a, const Vectorized<float>& b, const Vectorized<float>& c) {
|
847 |
+
float32x4_t r0 = vfmaq_f32(c.get_low(), a.get_low(), b.get_low());
|
848 |
+
float32x4_t r1 = vfmaq_f32(c.get_high(), a.get_high(), b.get_high());
|
849 |
+
return Vectorized<float>(r0, r1);
|
850 |
+
}
|
851 |
+
|
852 |
+
template <>
|
853 |
+
Vectorized<float> inline fmsub(const Vectorized<float>& a, const Vectorized<float>& b, const Vectorized<float>& c) {
|
854 |
+
float32x4_t r0 = vfmsq_f32(c.get_low(), a.get_low(), b.get_low());
|
855 |
+
float32x4_t r1 = vfmsq_f32(c.get_high(), a.get_high(), b.get_high());
|
856 |
+
return Vectorized<float>(r0, r1);
|
857 |
+
}
|
858 |
+
|
859 |
+
inline Vectorized<float> Vectorized<float>::erf() const{
|
860 |
+
// constants
|
861 |
+
const Vectorized<float> neg_zero_vec(-0.f);
|
862 |
+
const Vectorized<float> one_vec(1.0f);
|
863 |
+
const Vectorized<float> p(0.3275911f);
|
864 |
+
const Vectorized<float> p1(0.254829592f);
|
865 |
+
const Vectorized<float> p2(-0.284496736f);
|
866 |
+
const Vectorized<float> p3(1.421413741f);
|
867 |
+
const Vectorized<float> p4(-1.453152027f);
|
868 |
+
const Vectorized<float> p5(1.061405429f);
|
869 |
+
// sign(x)
|
870 |
+
auto sign_mask = neg_zero_vec & *this;
|
871 |
+
auto abs_vec = this->abs();
|
872 |
+
// t = 1 / (p * abs(x) + 1)
|
873 |
+
auto tmp0 = fmadd(p, abs_vec, one_vec);
|
874 |
+
auto t = one_vec / tmp0;
|
875 |
+
// r = p5 * t ^ 4 + p4 * t ^ 3 + p3 * t ^ 2 + p2 * t + p1
|
876 |
+
auto tmp1 = fmadd(p5, t, p4);
|
877 |
+
auto tmp2 = fmadd(tmp1, t, p3);
|
878 |
+
auto tmp3 = fmadd(tmp2, t, p2);
|
879 |
+
auto r = fmadd(tmp3, t, p1);
|
880 |
+
// - exp(- x * x)
|
881 |
+
auto pow_2 = (*this) * (*this);
|
882 |
+
auto neg_pow_2 = pow_2 ^ neg_zero_vec;
|
883 |
+
auto tmp4 = neg_pow_2.map(std::exp); // This can be swapped for a faster implementation of exp.
|
884 |
+
auto tmp5 = tmp4 ^ neg_zero_vec;
|
885 |
+
// erf(x) = sign(x) * (1 - r * t * exp(- x * x))
|
886 |
+
auto tmp6 = t * tmp5;
|
887 |
+
auto tmp7 = fmadd(tmp6, r, one_vec);
|
888 |
+
return tmp7 ^ sign_mask;
|
889 |
+
}
|
890 |
+
#endif /* defined(aarch64) */
|
891 |
+
|
892 |
+
}} // namespace at::vec::CPU_CAPABILITY
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_int.h
ADDED
@@ -0,0 +1,1586 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
7 |
+
#include <ATen/cpu/vec/vec_base.h>
|
8 |
+
#include <c10/macros/Macros.h>
|
9 |
+
#include <c10/util/irange.h>
|
10 |
+
|
11 |
+
namespace at::vec {
|
12 |
+
inline namespace CPU_CAPABILITY {
|
13 |
+
|
14 |
+
#ifdef CPU_CAPABILITY_AVX2
|
15 |
+
|
16 |
+
struct Vectorizedi {
|
17 |
+
protected:
|
18 |
+
__m256i values;
|
19 |
+
|
20 |
+
static inline __m256i invert(const __m256i& v) {
|
21 |
+
const auto ones = _mm256_set1_epi64x(-1);
|
22 |
+
return _mm256_xor_si256(ones, v);
|
23 |
+
}
|
24 |
+
public:
|
25 |
+
Vectorizedi() {}
|
26 |
+
Vectorizedi(__m256i v) : values(v) {}
|
27 |
+
operator __m256i() const {
|
28 |
+
return values;
|
29 |
+
}
|
30 |
+
};
|
31 |
+
|
32 |
+
#else
|
33 |
+
|
34 |
+
struct Vectorizedi {}; // dummy definition to make Vectorizedi always defined
|
35 |
+
|
36 |
+
#endif // CPU_CAPABILITY_AVX2
|
37 |
+
|
38 |
+
#ifdef CPU_CAPABILITY_AVX2
|
39 |
+
|
40 |
+
template <>
|
41 |
+
class Vectorized<int64_t> : public Vectorizedi {
|
42 |
+
private:
|
43 |
+
static const Vectorized<int64_t> ones;
|
44 |
+
public:
|
45 |
+
using value_type = int64_t;
|
46 |
+
using size_type = int;
|
47 |
+
static constexpr size_type size() {
|
48 |
+
return 4;
|
49 |
+
}
|
50 |
+
using Vectorizedi::Vectorizedi;
|
51 |
+
Vectorized() {}
|
52 |
+
Vectorized(int64_t v) { values = _mm256_set1_epi64x(v); }
|
53 |
+
Vectorized(int64_t val1, int64_t val2, int64_t val3, int64_t val4) {
|
54 |
+
values = _mm256_setr_epi64x(val1, val2, val3, val4);
|
55 |
+
}
|
56 |
+
template <int64_t mask>
|
57 |
+
static Vectorized<int64_t> blend(Vectorized<int64_t> a, Vectorized<int64_t> b) {
|
58 |
+
__at_align__ int64_t tmp_values[size()];
|
59 |
+
a.store(tmp_values);
|
60 |
+
if (mask & 0x01)
|
61 |
+
tmp_values[0] = _mm256_extract_epi64(b.values, 0);
|
62 |
+
if (mask & 0x02)
|
63 |
+
tmp_values[1] = _mm256_extract_epi64(b.values, 1);
|
64 |
+
if (mask & 0x04)
|
65 |
+
tmp_values[2] = _mm256_extract_epi64(b.values, 2);
|
66 |
+
if (mask & 0x08)
|
67 |
+
tmp_values[3] = _mm256_extract_epi64(b.values, 3);
|
68 |
+
return loadu(tmp_values);
|
69 |
+
}
|
70 |
+
static Vectorized<int64_t> blendv(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b,
|
71 |
+
const Vectorized<int64_t>& mask) {
|
72 |
+
return _mm256_blendv_epi8(a.values, b.values, mask.values);
|
73 |
+
}
|
74 |
+
template <typename step_t>
|
75 |
+
static Vectorized<int64_t> arange(int64_t base = 0, step_t step = static_cast<step_t>(1)) {
|
76 |
+
return Vectorized<int64_t>(base, base + step, base + 2 * step, base + 3 * step);
|
77 |
+
}
|
78 |
+
static Vectorized<int64_t>
|
79 |
+
set(Vectorized<int64_t> a, Vectorized<int64_t> b, int64_t count = size()) {
|
80 |
+
switch (count) {
|
81 |
+
case 0:
|
82 |
+
return a;
|
83 |
+
case 1:
|
84 |
+
return blend<1>(a, b);
|
85 |
+
case 2:
|
86 |
+
return blend<3>(a, b);
|
87 |
+
case 3:
|
88 |
+
return blend<7>(a, b);
|
89 |
+
}
|
90 |
+
return b;
|
91 |
+
}
|
92 |
+
static Vectorized<int64_t> loadu(const void* ptr) {
|
93 |
+
return _mm256_loadu_si256(reinterpret_cast<const __m256i*>(ptr));
|
94 |
+
}
|
95 |
+
static Vectorized<int64_t> loadu(const void* ptr, int64_t count) {
|
96 |
+
__at_align__ int64_t tmp_values[size()];
|
97 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
98 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
99 |
+
// instructions while a loop would be compiled to one instruction.
|
100 |
+
for (const auto i : c10::irange(size())) {
|
101 |
+
tmp_values[i] = 0;
|
102 |
+
}
|
103 |
+
std::memcpy(tmp_values, ptr, count * sizeof(int64_t));
|
104 |
+
return loadu(tmp_values);
|
105 |
+
}
|
106 |
+
void store(void* ptr, int count = size()) const {
|
107 |
+
if (count == size()) {
|
108 |
+
// ptr need not to be aligned here. See
|
109 |
+
// https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions/intrinsics-for-load-and-store-operations-1/mm256-storeu-si256.html
|
110 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(ptr), values);
|
111 |
+
} else if (count > 0) {
|
112 |
+
__at_align__ int64_t tmp_values[size()];
|
113 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(tmp_values), values);
|
114 |
+
std::memcpy(ptr, tmp_values, count * sizeof(int64_t));
|
115 |
+
}
|
116 |
+
}
|
117 |
+
const int64_t& operator[](int idx) const = delete;
|
118 |
+
int64_t& operator[](int idx) = delete;
|
119 |
+
Vectorized<int64_t> abs() const {
|
120 |
+
auto zero = _mm256_set1_epi64x(0);
|
121 |
+
auto is_larger = _mm256_cmpgt_epi64(zero, values);
|
122 |
+
auto inverse = _mm256_xor_si256(values, is_larger);
|
123 |
+
return _mm256_sub_epi64(inverse, is_larger);
|
124 |
+
}
|
125 |
+
Vectorized<int64_t> real() const {
|
126 |
+
return *this;
|
127 |
+
}
|
128 |
+
Vectorized<int64_t> imag() const {
|
129 |
+
return _mm256_set1_epi64x(0);
|
130 |
+
}
|
131 |
+
Vectorized<int64_t> conj() const {
|
132 |
+
return *this;
|
133 |
+
}
|
134 |
+
Vectorized<int64_t> neg() const;
|
135 |
+
Vectorized<int64_t> operator==(const Vectorized<int64_t>& other) const {
|
136 |
+
return _mm256_cmpeq_epi64(values, other.values);
|
137 |
+
}
|
138 |
+
Vectorized<int64_t> operator!=(const Vectorized<int64_t>& other) const {
|
139 |
+
return invert(_mm256_cmpeq_epi64(values, other.values));
|
140 |
+
}
|
141 |
+
Vectorized<int64_t> operator<(const Vectorized<int64_t>& other) const {
|
142 |
+
return _mm256_cmpgt_epi64(other.values, values);
|
143 |
+
}
|
144 |
+
Vectorized<int64_t> operator<=(const Vectorized<int64_t>& other) const {
|
145 |
+
return invert(_mm256_cmpgt_epi64(values, other.values));
|
146 |
+
}
|
147 |
+
Vectorized<int64_t> operator>(const Vectorized<int64_t>& other) const {
|
148 |
+
return _mm256_cmpgt_epi64(values, other.values);
|
149 |
+
}
|
150 |
+
Vectorized<int64_t> operator>=(const Vectorized<int64_t>& other) const {
|
151 |
+
return invert(_mm256_cmpgt_epi64(other.values, values));
|
152 |
+
}
|
153 |
+
|
154 |
+
Vectorized<int64_t> eq(const Vectorized<int64_t>& other) const;
|
155 |
+
Vectorized<int64_t> ne(const Vectorized<int64_t>& other) const;
|
156 |
+
Vectorized<int64_t> gt(const Vectorized<int64_t>& other) const;
|
157 |
+
Vectorized<int64_t> ge(const Vectorized<int64_t>& other) const;
|
158 |
+
Vectorized<int64_t> lt(const Vectorized<int64_t>& other) const;
|
159 |
+
Vectorized<int64_t> le(const Vectorized<int64_t>& other) const;
|
160 |
+
};
|
161 |
+
|
162 |
+
template <>
|
163 |
+
class Vectorized<int32_t> : public Vectorizedi {
|
164 |
+
private:
|
165 |
+
static const Vectorized<int32_t> ones;
|
166 |
+
public:
|
167 |
+
using value_type = int32_t;
|
168 |
+
static constexpr int size() {
|
169 |
+
return 8;
|
170 |
+
}
|
171 |
+
using Vectorizedi::Vectorizedi;
|
172 |
+
Vectorized() {}
|
173 |
+
Vectorized(int32_t v) { values = _mm256_set1_epi32(v); }
|
174 |
+
Vectorized(int32_t val1, int32_t val2, int32_t val3, int32_t val4,
|
175 |
+
int32_t val5, int32_t val6, int32_t val7, int32_t val8) {
|
176 |
+
values = _mm256_setr_epi32(val1, val2, val3, val4, val5, val6, val7, val8);
|
177 |
+
}
|
178 |
+
template <int64_t mask>
|
179 |
+
static Vectorized<int32_t> blend(Vectorized<int32_t> a, Vectorized<int32_t> b) {
|
180 |
+
return _mm256_blend_epi32(a, b, mask);
|
181 |
+
}
|
182 |
+
static Vectorized<int32_t> blendv(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b,
|
183 |
+
const Vectorized<int32_t>& mask) {
|
184 |
+
return _mm256_blendv_epi8(a.values, b.values, mask.values);
|
185 |
+
}
|
186 |
+
template <typename step_t>
|
187 |
+
static Vectorized<int32_t> arange(int32_t base = 0, step_t step = static_cast<step_t>(1)) {
|
188 |
+
return Vectorized<int32_t>(
|
189 |
+
base, base + step, base + 2 * step, base + 3 * step,
|
190 |
+
base + 4 * step, base + 5 * step, base + 6 * step, base + 7 * step);
|
191 |
+
}
|
192 |
+
static Vectorized<int32_t>
|
193 |
+
set(Vectorized<int32_t> a, Vectorized<int32_t> b, int32_t count = size()) {
|
194 |
+
switch (count) {
|
195 |
+
case 0:
|
196 |
+
return a;
|
197 |
+
case 1:
|
198 |
+
return blend<1>(a, b);
|
199 |
+
case 2:
|
200 |
+
return blend<3>(a, b);
|
201 |
+
case 3:
|
202 |
+
return blend<7>(a, b);
|
203 |
+
case 4:
|
204 |
+
return blend<15>(a, b);
|
205 |
+
case 5:
|
206 |
+
return blend<31>(a, b);
|
207 |
+
case 6:
|
208 |
+
return blend<63>(a, b);
|
209 |
+
case 7:
|
210 |
+
return blend<127>(a, b);
|
211 |
+
}
|
212 |
+
return b;
|
213 |
+
}
|
214 |
+
static Vectorized<int32_t> loadu(const void* ptr) {
|
215 |
+
return _mm256_loadu_si256(reinterpret_cast<const __m256i*>(ptr));
|
216 |
+
}
|
217 |
+
static Vectorized<int32_t> loadu(const void* ptr, int32_t count) {
|
218 |
+
__at_align__ int32_t tmp_values[size()];
|
219 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
220 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
221 |
+
// instructions while a loop would be compiled to one instruction.
|
222 |
+
for (const auto i : c10::irange(size())) {
|
223 |
+
tmp_values[i] = 0;
|
224 |
+
}
|
225 |
+
std::memcpy(tmp_values, ptr, count * sizeof(int32_t));
|
226 |
+
return loadu(tmp_values);
|
227 |
+
}
|
228 |
+
void store(void* ptr, int count = size()) const {
|
229 |
+
if (count == size()) {
|
230 |
+
// ptr need not to be aligned here. See
|
231 |
+
// https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions/intrinsics-for-load-and-store-operations-1/mm256-storeu-si256.html
|
232 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(ptr), values);
|
233 |
+
} else if (count > 0) {
|
234 |
+
__at_align__ int32_t tmp_values[size()];
|
235 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(tmp_values), values);
|
236 |
+
std::memcpy(ptr, tmp_values, count * sizeof(int32_t));
|
237 |
+
}
|
238 |
+
}
|
239 |
+
const int32_t& operator[](int idx) const = delete;
|
240 |
+
int32_t& operator[](int idx) = delete;
|
241 |
+
Vectorized<int32_t> abs() const {
|
242 |
+
return _mm256_abs_epi32(values);
|
243 |
+
}
|
244 |
+
Vectorized<int32_t> real() const {
|
245 |
+
return *this;
|
246 |
+
}
|
247 |
+
Vectorized<int32_t> imag() const {
|
248 |
+
return _mm256_set1_epi32(0);
|
249 |
+
}
|
250 |
+
Vectorized<int32_t> conj() const {
|
251 |
+
return *this;
|
252 |
+
}
|
253 |
+
Vectorized<int32_t> neg() const;
|
254 |
+
Vectorized<int32_t> operator==(const Vectorized<int32_t>& other) const {
|
255 |
+
return _mm256_cmpeq_epi32(values, other.values);
|
256 |
+
}
|
257 |
+
Vectorized<int32_t> operator!=(const Vectorized<int32_t>& other) const {
|
258 |
+
return invert(_mm256_cmpeq_epi32(values, other.values));
|
259 |
+
}
|
260 |
+
Vectorized<int32_t> operator<(const Vectorized<int32_t>& other) const {
|
261 |
+
return _mm256_cmpgt_epi32(other.values, values);
|
262 |
+
}
|
263 |
+
Vectorized<int32_t> operator<=(const Vectorized<int32_t>& other) const {
|
264 |
+
return invert(_mm256_cmpgt_epi32(values, other.values));
|
265 |
+
}
|
266 |
+
Vectorized<int32_t> operator>(const Vectorized<int32_t>& other) const {
|
267 |
+
return _mm256_cmpgt_epi32(values, other.values);
|
268 |
+
}
|
269 |
+
Vectorized<int32_t> operator>=(const Vectorized<int32_t>& other) const {
|
270 |
+
return invert(_mm256_cmpgt_epi32(other.values, values));
|
271 |
+
}
|
272 |
+
Vectorized<int32_t> eq(const Vectorized<int32_t>& other) const;
|
273 |
+
Vectorized<int32_t> ne(const Vectorized<int32_t>& other) const;
|
274 |
+
Vectorized<int32_t> gt(const Vectorized<int32_t>& other) const;
|
275 |
+
Vectorized<int32_t> ge(const Vectorized<int32_t>& other) const;
|
276 |
+
Vectorized<int32_t> lt(const Vectorized<int32_t>& other) const;
|
277 |
+
Vectorized<int32_t> le(const Vectorized<int32_t>& other) const;
|
278 |
+
};
|
279 |
+
|
280 |
+
template <>
|
281 |
+
inline void convert(const int32_t *src, float *dst, int64_t n) {
|
282 |
+
int64_t i;
|
283 |
+
// int32_t and float have same size
|
284 |
+
#ifndef _MSC_VER
|
285 |
+
# pragma unroll
|
286 |
+
#endif
|
287 |
+
for (i = 0; i <= (n - Vectorized<int32_t>::size()); i += Vectorized<int32_t>::size()) {
|
288 |
+
auto input_vec = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src + i));
|
289 |
+
auto output_vec = _mm256_cvtepi32_ps(input_vec);
|
290 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(dst + i), output_vec);
|
291 |
+
}
|
292 |
+
#ifndef _MSC_VER
|
293 |
+
# pragma unroll
|
294 |
+
#endif
|
295 |
+
for (; i < n; i++) {
|
296 |
+
dst[i] = static_cast<float>(src[i]);
|
297 |
+
}
|
298 |
+
}
|
299 |
+
|
300 |
+
template <>
|
301 |
+
inline void convert(const int32_t *src, double *dst, int64_t n) {
|
302 |
+
int64_t i;
|
303 |
+
// int32_t has half the size of double
|
304 |
+
#ifndef _MSC_VER
|
305 |
+
# pragma unroll
|
306 |
+
#endif
|
307 |
+
for (i = 0; i <= (n - Vectorized<double>::size()); i += Vectorized<double>::size()) {
|
308 |
+
auto input_128_vec = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src + i));
|
309 |
+
auto output_vec = _mm256_cvtepi32_pd(input_128_vec);
|
310 |
+
_mm256_storeu_pd(reinterpret_cast<double*>(dst + i), output_vec);
|
311 |
+
}
|
312 |
+
#ifndef _MSC_VER
|
313 |
+
# pragma unroll
|
314 |
+
#endif
|
315 |
+
for (; i < n; i++) {
|
316 |
+
dst[i] = static_cast<double>(src[i]);
|
317 |
+
}
|
318 |
+
}
|
319 |
+
|
320 |
+
template <>
|
321 |
+
class Vectorized<int16_t> : public Vectorizedi {
|
322 |
+
private:
|
323 |
+
static const Vectorized<int16_t> ones;
|
324 |
+
public:
|
325 |
+
using value_type = int16_t;
|
326 |
+
static constexpr int size() {
|
327 |
+
return 16;
|
328 |
+
}
|
329 |
+
using Vectorizedi::Vectorizedi;
|
330 |
+
Vectorized() {}
|
331 |
+
Vectorized(int16_t v) { values = _mm256_set1_epi16(v); }
|
332 |
+
Vectorized(int16_t val1, int16_t val2, int16_t val3, int16_t val4,
|
333 |
+
int16_t val5, int16_t val6, int16_t val7, int16_t val8,
|
334 |
+
int16_t val9, int16_t val10, int16_t val11, int16_t val12,
|
335 |
+
int16_t val13, int16_t val14, int16_t val15, int16_t val16) {
|
336 |
+
values = _mm256_setr_epi16(val1, val2, val3, val4, val5, val6, val7, val8,
|
337 |
+
val9, val10, val11, val12, val13, val14, val15, val16);
|
338 |
+
}
|
339 |
+
template <int64_t mask>
|
340 |
+
static Vectorized<int16_t> blend(Vectorized<int16_t> a, Vectorized<int16_t> b) {
|
341 |
+
__at_align__ int16_t tmp_values[size()];
|
342 |
+
a.store(tmp_values);
|
343 |
+
if (mask & 0x01)
|
344 |
+
tmp_values[0] = _mm256_extract_epi16(b.values, 0);
|
345 |
+
if (mask & 0x02)
|
346 |
+
tmp_values[1] = _mm256_extract_epi16(b.values, 1);
|
347 |
+
if (mask & 0x04)
|
348 |
+
tmp_values[2] = _mm256_extract_epi16(b.values, 2);
|
349 |
+
if (mask & 0x08)
|
350 |
+
tmp_values[3] = _mm256_extract_epi16(b.values, 3);
|
351 |
+
if (mask & 0x10)
|
352 |
+
tmp_values[4] = _mm256_extract_epi16(b.values, 4);
|
353 |
+
if (mask & 0x20)
|
354 |
+
tmp_values[5] = _mm256_extract_epi16(b.values, 5);
|
355 |
+
if (mask & 0x40)
|
356 |
+
tmp_values[6] = _mm256_extract_epi16(b.values, 6);
|
357 |
+
if (mask & 0x80)
|
358 |
+
tmp_values[7] = _mm256_extract_epi16(b.values, 7);
|
359 |
+
if (mask & 0x100)
|
360 |
+
tmp_values[8] = _mm256_extract_epi16(b.values, 8);
|
361 |
+
if (mask & 0x200)
|
362 |
+
tmp_values[9] = _mm256_extract_epi16(b.values, 9);
|
363 |
+
if (mask & 0x400)
|
364 |
+
tmp_values[10] = _mm256_extract_epi16(b.values, 10);
|
365 |
+
if (mask & 0x800)
|
366 |
+
tmp_values[11] = _mm256_extract_epi16(b.values, 11);
|
367 |
+
if (mask & 0x1000)
|
368 |
+
tmp_values[12] = _mm256_extract_epi16(b.values, 12);
|
369 |
+
if (mask & 0x2000)
|
370 |
+
tmp_values[13] = _mm256_extract_epi16(b.values, 13);
|
371 |
+
if (mask & 0x4000)
|
372 |
+
tmp_values[14] = _mm256_extract_epi16(b.values, 14);
|
373 |
+
if (mask & 0x8000)
|
374 |
+
tmp_values[15] = _mm256_extract_epi16(b.values, 15);
|
375 |
+
return loadu(tmp_values);
|
376 |
+
}
|
377 |
+
static Vectorized<int16_t> blendv(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b,
|
378 |
+
const Vectorized<int16_t>& mask) {
|
379 |
+
return _mm256_blendv_epi8(a.values, b.values, mask.values);
|
380 |
+
}
|
381 |
+
template <typename step_t>
|
382 |
+
static Vectorized<int16_t> arange(int16_t base = 0, step_t step = static_cast<step_t>(1)) {
|
383 |
+
return Vectorized<int16_t>(
|
384 |
+
base, base + step, base + 2 * step, base + 3 * step,
|
385 |
+
base + 4 * step, base + 5 * step, base + 6 * step, base + 7 * step,
|
386 |
+
base + 8 * step, base + 9 * step, base + 10 * step, base + 11 * step,
|
387 |
+
base + 12 * step, base + 13 * step, base + 14 * step, base + 15 * step);
|
388 |
+
}
|
389 |
+
static Vectorized<int16_t>
|
390 |
+
set(Vectorized<int16_t> a, Vectorized<int16_t> b, int16_t count = size()) {
|
391 |
+
switch (count) {
|
392 |
+
case 0:
|
393 |
+
return a;
|
394 |
+
case 1:
|
395 |
+
return blend<1>(a, b);
|
396 |
+
case 2:
|
397 |
+
return blend<3>(a, b);
|
398 |
+
case 3:
|
399 |
+
return blend<7>(a, b);
|
400 |
+
case 4:
|
401 |
+
return blend<15>(a, b);
|
402 |
+
case 5:
|
403 |
+
return blend<31>(a, b);
|
404 |
+
case 6:
|
405 |
+
return blend<63>(a, b);
|
406 |
+
case 7:
|
407 |
+
return blend<127>(a, b);
|
408 |
+
case 8:
|
409 |
+
return blend<255>(a, b);
|
410 |
+
case 9:
|
411 |
+
return blend<511>(a, b);
|
412 |
+
case 10:
|
413 |
+
return blend<1023>(a, b);
|
414 |
+
case 11:
|
415 |
+
return blend<2047>(a, b);
|
416 |
+
case 12:
|
417 |
+
return blend<4095>(a, b);
|
418 |
+
case 13:
|
419 |
+
return blend<8191>(a, b);
|
420 |
+
case 14:
|
421 |
+
return blend<16383>(a, b);
|
422 |
+
case 15:
|
423 |
+
return blend<32767>(a, b);
|
424 |
+
}
|
425 |
+
return b;
|
426 |
+
}
|
427 |
+
static Vectorized<int16_t> loadu(const void* ptr) {
|
428 |
+
return _mm256_loadu_si256(reinterpret_cast<const __m256i*>(ptr));
|
429 |
+
}
|
430 |
+
static Vectorized<int16_t> loadu(const void* ptr, int16_t count) {
|
431 |
+
__at_align__ int16_t tmp_values[size()];
|
432 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
433 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
434 |
+
// instructions while a loop would be compiled to one instruction.
|
435 |
+
for (const auto i : c10::irange(size())) {
|
436 |
+
tmp_values[i] = 0;
|
437 |
+
}
|
438 |
+
std::memcpy(tmp_values, ptr, count * sizeof(int16_t));
|
439 |
+
return loadu(tmp_values);
|
440 |
+
}
|
441 |
+
void store(void* ptr, int count = size()) const {
|
442 |
+
if (count == size()) {
|
443 |
+
// ptr need not to be aligned here. See
|
444 |
+
// https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions/intrinsics-for-load-and-store-operations-1/mm256-storeu-si256.html
|
445 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(ptr), values);
|
446 |
+
} else if (count > 0) {
|
447 |
+
__at_align__ int16_t tmp_values[size()];
|
448 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(tmp_values), values);
|
449 |
+
std::memcpy(ptr, tmp_values, count * sizeof(int16_t));
|
450 |
+
}
|
451 |
+
}
|
452 |
+
const int16_t& operator[](int idx) const = delete;
|
453 |
+
int16_t& operator[](int idx) = delete;
|
454 |
+
Vectorized<int16_t> abs() const {
|
455 |
+
return _mm256_abs_epi16(values);
|
456 |
+
}
|
457 |
+
Vectorized<int16_t> real() const {
|
458 |
+
return *this;
|
459 |
+
}
|
460 |
+
Vectorized<int16_t> imag() const {
|
461 |
+
return _mm256_set1_epi16(0);
|
462 |
+
}
|
463 |
+
Vectorized<int16_t> conj() const {
|
464 |
+
return *this;
|
465 |
+
}
|
466 |
+
Vectorized<int16_t> neg() const;
|
467 |
+
Vectorized<int16_t> operator==(const Vectorized<int16_t>& other) const {
|
468 |
+
return _mm256_cmpeq_epi16(values, other.values);
|
469 |
+
}
|
470 |
+
Vectorized<int16_t> operator!=(const Vectorized<int16_t>& other) const {
|
471 |
+
return invert(_mm256_cmpeq_epi16(values, other.values));
|
472 |
+
}
|
473 |
+
Vectorized<int16_t> operator<(const Vectorized<int16_t>& other) const {
|
474 |
+
return _mm256_cmpgt_epi16(other.values, values);
|
475 |
+
}
|
476 |
+
Vectorized<int16_t> operator<=(const Vectorized<int16_t>& other) const {
|
477 |
+
return invert(_mm256_cmpgt_epi16(values, other.values));
|
478 |
+
}
|
479 |
+
Vectorized<int16_t> operator>(const Vectorized<int16_t>& other) const {
|
480 |
+
return _mm256_cmpgt_epi16(values, other.values);
|
481 |
+
}
|
482 |
+
Vectorized<int16_t> operator>=(const Vectorized<int16_t>& other) const {
|
483 |
+
return invert(_mm256_cmpgt_epi16(other.values, values));
|
484 |
+
}
|
485 |
+
|
486 |
+
Vectorized<int16_t> eq(const Vectorized<int16_t>& other) const;
|
487 |
+
Vectorized<int16_t> ne(const Vectorized<int16_t>& other) const;
|
488 |
+
Vectorized<int16_t> gt(const Vectorized<int16_t>& other) const;
|
489 |
+
Vectorized<int16_t> ge(const Vectorized<int16_t>& other) const;
|
490 |
+
Vectorized<int16_t> lt(const Vectorized<int16_t>& other) const;
|
491 |
+
Vectorized<int16_t> le(const Vectorized<int16_t>& other) const;
|
492 |
+
};
|
493 |
+
|
494 |
+
template <typename T>
|
495 |
+
class Vectorized8 : public Vectorizedi {
|
496 |
+
static_assert(
|
497 |
+
std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value,
|
498 |
+
"Only int8_t/uint8_t are supported");
|
499 |
+
protected:
|
500 |
+
static const Vectorized<T> ones;
|
501 |
+
public:
|
502 |
+
using value_type = T;
|
503 |
+
static constexpr int size() {
|
504 |
+
return 32;
|
505 |
+
}
|
506 |
+
using Vectorizedi::Vectorizedi;
|
507 |
+
Vectorized8() {}
|
508 |
+
Vectorized8(T v) { values = _mm256_set1_epi8(v); }
|
509 |
+
Vectorized8(T val1, T val2, T val3, T val4,
|
510 |
+
T val5, T val6, T val7, T val8,
|
511 |
+
T val9, T val10, T val11, T val12,
|
512 |
+
T val13, T val14, T val15, T val16,
|
513 |
+
T val17, T val18, T val19, T val20,
|
514 |
+
T val21, T val22, T val23, T val24,
|
515 |
+
T val25, T val26, T val27, T val28,
|
516 |
+
T val29, T val30, T val31, T val32) {
|
517 |
+
values = _mm256_setr_epi8(val1, val2, val3, val4, val5, val6, val7, val8,
|
518 |
+
val9, val10, val11, val12, val13, val14, val15, val16,
|
519 |
+
val17, val18, val19, val20, val21, val22, val23, val24,
|
520 |
+
val25, val26, val27, val28, val29, val30, val31, val32);
|
521 |
+
}
|
522 |
+
template <int64_t mask>
|
523 |
+
static Vectorized<T> blend(Vectorized<T> a, Vectorized<T> b) {
|
524 |
+
__at_align__ T tmp_values[size()];
|
525 |
+
a.store(tmp_values);
|
526 |
+
if (mask & 0x01)
|
527 |
+
tmp_values[0] = _mm256_extract_epi8(b.values, 0);
|
528 |
+
if (mask & 0x02)
|
529 |
+
tmp_values[1] = _mm256_extract_epi8(b.values, 1);
|
530 |
+
if (mask & 0x04)
|
531 |
+
tmp_values[2] = _mm256_extract_epi8(b.values, 2);
|
532 |
+
if (mask & 0x08)
|
533 |
+
tmp_values[3] = _mm256_extract_epi8(b.values, 3);
|
534 |
+
if (mask & 0x10)
|
535 |
+
tmp_values[4] = _mm256_extract_epi8(b.values, 4);
|
536 |
+
if (mask & 0x20)
|
537 |
+
tmp_values[5] = _mm256_extract_epi8(b.values, 5);
|
538 |
+
if (mask & 0x40)
|
539 |
+
tmp_values[6] = _mm256_extract_epi8(b.values, 6);
|
540 |
+
if (mask & 0x80)
|
541 |
+
tmp_values[7] = _mm256_extract_epi8(b.values, 7);
|
542 |
+
if (mask & 0x100)
|
543 |
+
tmp_values[8] = _mm256_extract_epi8(b.values, 8);
|
544 |
+
if (mask & 0x200)
|
545 |
+
tmp_values[9] = _mm256_extract_epi8(b.values, 9);
|
546 |
+
if (mask & 0x400)
|
547 |
+
tmp_values[10] = _mm256_extract_epi8(b.values, 10);
|
548 |
+
if (mask & 0x800)
|
549 |
+
tmp_values[11] = _mm256_extract_epi8(b.values, 11);
|
550 |
+
if (mask & 0x1000)
|
551 |
+
tmp_values[12] = _mm256_extract_epi8(b.values, 12);
|
552 |
+
if (mask & 0x2000)
|
553 |
+
tmp_values[13] = _mm256_extract_epi8(b.values, 13);
|
554 |
+
if (mask & 0x4000)
|
555 |
+
tmp_values[14] = _mm256_extract_epi8(b.values, 14);
|
556 |
+
if (mask & 0x8000)
|
557 |
+
tmp_values[15] = _mm256_extract_epi8(b.values, 15);
|
558 |
+
if (mask & 0x010000)
|
559 |
+
tmp_values[16] = _mm256_extract_epi8(b.values, 16);
|
560 |
+
if (mask & 0x020000)
|
561 |
+
tmp_values[17] = _mm256_extract_epi8(b.values, 17);
|
562 |
+
if (mask & 0x040000)
|
563 |
+
tmp_values[18] = _mm256_extract_epi8(b.values, 18);
|
564 |
+
if (mask & 0x080000)
|
565 |
+
tmp_values[19] = _mm256_extract_epi8(b.values, 19);
|
566 |
+
if (mask & 0x100000)
|
567 |
+
tmp_values[20] = _mm256_extract_epi8(b.values, 20);
|
568 |
+
if (mask & 0x200000)
|
569 |
+
tmp_values[21] = _mm256_extract_epi8(b.values, 21);
|
570 |
+
if (mask & 0x400000)
|
571 |
+
tmp_values[22] = _mm256_extract_epi8(b.values, 22);
|
572 |
+
if (mask & 0x800000)
|
573 |
+
tmp_values[23] = _mm256_extract_epi8(b.values, 23);
|
574 |
+
if (mask & 0x1000000)
|
575 |
+
tmp_values[24] = _mm256_extract_epi8(b.values, 24);
|
576 |
+
if (mask & 0x2000000)
|
577 |
+
tmp_values[25] = _mm256_extract_epi8(b.values, 25);
|
578 |
+
if (mask & 0x4000000)
|
579 |
+
tmp_values[26] = _mm256_extract_epi8(b.values, 26);
|
580 |
+
if (mask & 0x8000000)
|
581 |
+
tmp_values[27] = _mm256_extract_epi8(b.values, 27);
|
582 |
+
if (mask & 0x10000000)
|
583 |
+
tmp_values[28] = _mm256_extract_epi8(b.values, 28);
|
584 |
+
if (mask & 0x20000000)
|
585 |
+
tmp_values[29] = _mm256_extract_epi8(b.values, 29);
|
586 |
+
if (mask & 0x40000000)
|
587 |
+
tmp_values[30] = _mm256_extract_epi8(b.values, 30);
|
588 |
+
if (mask & 0x80000000)
|
589 |
+
tmp_values[31] = _mm256_extract_epi8(b.values, 31);
|
590 |
+
return loadu(tmp_values);
|
591 |
+
}
|
592 |
+
static Vectorized<T> blendv(const Vectorized<T>& a, const Vectorized<T>& b,
|
593 |
+
const Vectorized<T>& mask) {
|
594 |
+
return _mm256_blendv_epi8(a.values, b.values, mask.values);
|
595 |
+
}
|
596 |
+
template <typename step_t>
|
597 |
+
static Vectorized<T> arange(T base = 0, step_t step = static_cast<step_t>(1)) {
|
598 |
+
return Vectorized<T>(
|
599 |
+
base, base + step, base + 2 * step, base + 3 * step,
|
600 |
+
base + 4 * step, base + 5 * step, base + 6 * step, base + 7 * step,
|
601 |
+
base + 8 * step, base + 9 * step, base + 10 * step, base + 11 * step,
|
602 |
+
base + 12 * step, base + 13 * step, base + 14 * step, base + 15 * step,
|
603 |
+
base + 16 * step, base + 17 * step, base + 18 * step, base + 19 * step,
|
604 |
+
base + 20 * step, base + 21 * step, base + 22 * step, base + 23 * step,
|
605 |
+
base + 24 * step, base + 25 * step, base + 26 * step, base + 27 * step,
|
606 |
+
base + 28 * step, base + 29 * step, base + 30 * step, base + 31 * step);
|
607 |
+
}
|
608 |
+
static Vectorized<T>
|
609 |
+
set(Vectorized<T> a, Vectorized<T> b, T count = size()) {
|
610 |
+
switch (count) {
|
611 |
+
case 0:
|
612 |
+
return a;
|
613 |
+
case 1:
|
614 |
+
return blend<0x1>(a, b);
|
615 |
+
case 2:
|
616 |
+
return blend<0x3>(a, b);
|
617 |
+
case 3:
|
618 |
+
return blend<0x7>(a, b);
|
619 |
+
case 4:
|
620 |
+
return blend<0xF>(a, b);
|
621 |
+
case 5:
|
622 |
+
return blend<0x1F>(a, b);
|
623 |
+
case 6:
|
624 |
+
return blend<0x3F>(a, b);
|
625 |
+
case 7:
|
626 |
+
return blend<0x7F>(a, b);
|
627 |
+
case 8:
|
628 |
+
return blend<0xFF>(a, b);
|
629 |
+
case 9:
|
630 |
+
return blend<0x1FF>(a, b);
|
631 |
+
case 10:
|
632 |
+
return blend<0x3FF>(a, b);
|
633 |
+
case 11:
|
634 |
+
return blend<0x7FF>(a, b);
|
635 |
+
case 12:
|
636 |
+
return blend<0xFFF>(a, b);
|
637 |
+
case 13:
|
638 |
+
return blend<0x1FFF>(a, b);
|
639 |
+
case 14:
|
640 |
+
return blend<0x3FFF>(a, b);
|
641 |
+
case 15:
|
642 |
+
return blend<0x7FFF>(a, b);
|
643 |
+
case 16:
|
644 |
+
return blend<0xFFFF>(a, b);
|
645 |
+
case 17:
|
646 |
+
return blend<0x1FFFF>(a, b);
|
647 |
+
case 18:
|
648 |
+
return blend<0x3FFFF>(a, b);
|
649 |
+
case 19:
|
650 |
+
return blend<0x7FFFF>(a, b);
|
651 |
+
case 20:
|
652 |
+
return blend<0xFFFFF>(a, b);
|
653 |
+
case 21:
|
654 |
+
return blend<0x1FFFFF>(a, b);
|
655 |
+
case 22:
|
656 |
+
return blend<0x3FFFFF>(a, b);
|
657 |
+
case 23:
|
658 |
+
return blend<0x7FFFFF>(a, b);
|
659 |
+
case 24:
|
660 |
+
return blend<0xFFFFFF>(a, b);
|
661 |
+
case 25:
|
662 |
+
return blend<0x1FFFFFF>(a, b);
|
663 |
+
case 26:
|
664 |
+
return blend<0x3FFFFFF>(a, b);
|
665 |
+
case 27:
|
666 |
+
return blend<0x7FFFFFF>(a, b);
|
667 |
+
case 28:
|
668 |
+
return blend<0xFFFFFFF>(a, b);
|
669 |
+
case 29:
|
670 |
+
return blend<0x1FFFFFFF>(a, b);
|
671 |
+
case 30:
|
672 |
+
return blend<0x3FFFFFFF>(a, b);
|
673 |
+
case 31:
|
674 |
+
return blend<0x7FFFFFFF>(a, b);
|
675 |
+
}
|
676 |
+
return b;
|
677 |
+
}
|
678 |
+
static Vectorized<T> loadu(const void* ptr) {
|
679 |
+
return _mm256_loadu_si256(reinterpret_cast<const __m256i*>(ptr));
|
680 |
+
}
|
681 |
+
static Vectorized<T> loadu_one_fourth(const void* ptr) {
|
682 |
+
// Fast path if only load element number of 8.
|
683 |
+
// Note: We didn't merge it as fast path of loadu(const void* ptr, T count),
|
684 |
+
// Because loadu(const void* ptr, T count) requires zero initialization for upper 128 bits.
|
685 |
+
// However, by using _mm256_castsi128_si256, the upper 128 bits of the result are undefined.
|
686 |
+
// TODO<leslie> We can use _mm256_zextsi128_si256 in the furture,
|
687 |
+
// since gcc 9.3 doesn't support it now.
|
688 |
+
__m128i input_128 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(ptr));
|
689 |
+
return _mm256_castsi128_si256(input_128);
|
690 |
+
}
|
691 |
+
static Vectorized<T> loadu(const void* ptr, T count) {
|
692 |
+
__at_align__ T tmp_values[size()];
|
693 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
694 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
695 |
+
// instructions while a loop would be compiled to one instruction.
|
696 |
+
for (const auto i : c10::irange(size())) {
|
697 |
+
tmp_values[i] = 0;
|
698 |
+
}
|
699 |
+
std::memcpy(tmp_values, ptr, count * sizeof(T));
|
700 |
+
return loadu(tmp_values);
|
701 |
+
}
|
702 |
+
void store(void* ptr, int count = size()) const {
|
703 |
+
if (count == size()) {
|
704 |
+
// ptr need not to be aligned here. See
|
705 |
+
// https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions/intrinsics-for-load-and-store-operations-1/mm256-storeu-si256.html
|
706 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(ptr), values);
|
707 |
+
} else if (count > 0) {
|
708 |
+
if (count == 8) {
|
709 |
+
// Fast path if only store element number of 8
|
710 |
+
_mm_storel_epi64(reinterpret_cast<__m128i*>(ptr), _mm256_castsi256_si128(values));
|
711 |
+
} else {
|
712 |
+
__at_align__ T tmp_values[size()];
|
713 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(tmp_values), values);
|
714 |
+
std::memcpy(ptr, tmp_values, count * sizeof(T));
|
715 |
+
}
|
716 |
+
}
|
717 |
+
}
|
718 |
+
const T& operator[](int idx) const = delete;
|
719 |
+
T& operator[](int idx) = delete;
|
720 |
+
Vectorized<T> real() const {
|
721 |
+
return *this;
|
722 |
+
}
|
723 |
+
Vectorized<T> imag() const {
|
724 |
+
return _mm256_set1_epi8(0);
|
725 |
+
}
|
726 |
+
Vectorized<T> conj() const {
|
727 |
+
return *this;
|
728 |
+
}
|
729 |
+
};
|
730 |
+
|
731 |
+
template<>
|
732 |
+
class Vectorized<int8_t>: public Vectorized8<int8_t> {
|
733 |
+
public:
|
734 |
+
using Vectorized8::Vectorized8;
|
735 |
+
|
736 |
+
Vectorized<int8_t> neg() const;
|
737 |
+
|
738 |
+
Vectorized<int8_t> abs() const {
|
739 |
+
return _mm256_abs_epi8(values);
|
740 |
+
}
|
741 |
+
|
742 |
+
Vectorized<int8_t> operator==(const Vectorized<int8_t>& other) const {
|
743 |
+
return _mm256_cmpeq_epi8(values, other.values);
|
744 |
+
}
|
745 |
+
Vectorized<int8_t> operator!=(const Vectorized<int8_t>& other) const {
|
746 |
+
return invert(_mm256_cmpeq_epi8(values, other.values));
|
747 |
+
}
|
748 |
+
Vectorized<int8_t> operator<(const Vectorized<int8_t>& other) const {
|
749 |
+
return _mm256_cmpgt_epi8(other.values, values);
|
750 |
+
}
|
751 |
+
Vectorized<int8_t> operator<=(const Vectorized<int8_t>& other) const {
|
752 |
+
return invert(_mm256_cmpgt_epi8(values, other.values));
|
753 |
+
}
|
754 |
+
Vectorized<int8_t> operator>(const Vectorized<int8_t>& other) const {
|
755 |
+
return other < *this;
|
756 |
+
}
|
757 |
+
Vectorized<int8_t> operator>=(const Vectorized<int8_t>& other) const {
|
758 |
+
return other <= *this;
|
759 |
+
}
|
760 |
+
|
761 |
+
Vectorized<int8_t> eq(const Vectorized<int8_t>& other) const;
|
762 |
+
Vectorized<int8_t> ne(const Vectorized<int8_t>& other) const;
|
763 |
+
Vectorized<int8_t> gt(const Vectorized<int8_t>& other) const;
|
764 |
+
Vectorized<int8_t> ge(const Vectorized<int8_t>& other) const;
|
765 |
+
Vectorized<int8_t> lt(const Vectorized<int8_t>& other) const;
|
766 |
+
Vectorized<int8_t> le(const Vectorized<int8_t>& other) const;
|
767 |
+
};
|
768 |
+
|
769 |
+
template<>
|
770 |
+
class Vectorized<uint8_t>: public Vectorized8<uint8_t> {
|
771 |
+
public:
|
772 |
+
using Vectorized8::Vectorized8;
|
773 |
+
|
774 |
+
Vectorized<uint8_t> neg() const;
|
775 |
+
|
776 |
+
Vectorized<uint8_t> abs() const {
|
777 |
+
return *this;
|
778 |
+
}
|
779 |
+
|
780 |
+
Vectorized<uint8_t> operator==(const Vectorized<uint8_t>& other) const {
|
781 |
+
return _mm256_cmpeq_epi8(values, other.values);
|
782 |
+
}
|
783 |
+
Vectorized<uint8_t> operator!=(const Vectorized<uint8_t>& other) const {
|
784 |
+
return invert(_mm256_cmpeq_epi8(values, other.values));
|
785 |
+
}
|
786 |
+
Vectorized<uint8_t> operator<(const Vectorized<uint8_t>& other) const {
|
787 |
+
__m256i max = _mm256_max_epu8(values, other.values);
|
788 |
+
return invert(_mm256_cmpeq_epi8(max, values));
|
789 |
+
}
|
790 |
+
Vectorized<uint8_t> operator<=(const Vectorized<uint8_t>& other) const {
|
791 |
+
__m256i max = _mm256_max_epu8(values, other.values);
|
792 |
+
return _mm256_cmpeq_epi8(max, other.values);
|
793 |
+
}
|
794 |
+
Vectorized<uint8_t> operator>(const Vectorized<uint8_t>& other) const {
|
795 |
+
return other < *this;
|
796 |
+
}
|
797 |
+
Vectorized<uint8_t> operator>=(const Vectorized<uint8_t>& other) const {
|
798 |
+
return other <= *this;
|
799 |
+
}
|
800 |
+
|
801 |
+
Vectorized<uint8_t> eq(const Vectorized<uint8_t>& other) const;
|
802 |
+
Vectorized<uint8_t> ne(const Vectorized<uint8_t>& other) const;
|
803 |
+
Vectorized<uint8_t> gt(const Vectorized<uint8_t>& other) const;
|
804 |
+
Vectorized<uint8_t> ge(const Vectorized<uint8_t>& other) const;
|
805 |
+
Vectorized<uint8_t> lt(const Vectorized<uint8_t>& other) const;
|
806 |
+
Vectorized<uint8_t> le(const Vectorized<uint8_t>& other) const;
|
807 |
+
};
|
808 |
+
|
809 |
+
template <>
|
810 |
+
Vectorized<int64_t> inline operator+(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
811 |
+
return _mm256_add_epi64(a, b);
|
812 |
+
}
|
813 |
+
|
814 |
+
template <>
|
815 |
+
Vectorized<int32_t> inline operator+(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
816 |
+
return _mm256_add_epi32(a, b);
|
817 |
+
}
|
818 |
+
|
819 |
+
template <>
|
820 |
+
Vectorized<int16_t> inline operator+(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
821 |
+
return _mm256_add_epi16(a, b);
|
822 |
+
}
|
823 |
+
|
824 |
+
template <>
|
825 |
+
Vectorized<int8_t> inline operator+(const Vectorized<int8_t>& a, const Vectorized<int8_t>& b) {
|
826 |
+
return _mm256_add_epi8(a, b);
|
827 |
+
}
|
828 |
+
|
829 |
+
template <>
|
830 |
+
Vectorized<uint8_t> inline operator+(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& b) {
|
831 |
+
return _mm256_add_epi8(a, b);
|
832 |
+
}
|
833 |
+
|
834 |
+
template <>
|
835 |
+
Vectorized<int64_t> inline operator-(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
836 |
+
return _mm256_sub_epi64(a, b);
|
837 |
+
}
|
838 |
+
|
839 |
+
template <>
|
840 |
+
Vectorized<int32_t> inline operator-(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
841 |
+
return _mm256_sub_epi32(a, b);
|
842 |
+
}
|
843 |
+
|
844 |
+
template <>
|
845 |
+
Vectorized<int16_t> inline operator-(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
846 |
+
return _mm256_sub_epi16(a, b);
|
847 |
+
}
|
848 |
+
|
849 |
+
template <>
|
850 |
+
Vectorized<int8_t> inline operator-(const Vectorized<int8_t>& a, const Vectorized<int8_t>& b) {
|
851 |
+
return _mm256_sub_epi8(a, b);
|
852 |
+
}
|
853 |
+
|
854 |
+
template <>
|
855 |
+
Vectorized<uint8_t> inline operator-(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& b) {
|
856 |
+
return _mm256_sub_epi8(a, b);
|
857 |
+
}
|
858 |
+
|
859 |
+
// Negation. Defined here so we can utilize operator-
|
860 |
+
inline Vectorized<int64_t> Vectorized<int64_t>::neg() const {
|
861 |
+
return Vectorized<int64_t>(0) - *this;
|
862 |
+
}
|
863 |
+
|
864 |
+
inline Vectorized<int32_t> Vectorized<int32_t>::neg() const {
|
865 |
+
return Vectorized<int32_t>(0) - *this;
|
866 |
+
}
|
867 |
+
|
868 |
+
inline Vectorized<int16_t> Vectorized<int16_t>::neg() const {
|
869 |
+
return Vectorized<int16_t>(0) - *this;
|
870 |
+
}
|
871 |
+
|
872 |
+
inline Vectorized<int8_t> Vectorized<int8_t>::neg() const {
|
873 |
+
return Vectorized<int8_t>(0) - *this;
|
874 |
+
}
|
875 |
+
|
876 |
+
inline Vectorized<uint8_t> Vectorized<uint8_t>::neg() const {
|
877 |
+
return Vectorized<uint8_t>(0) - *this;
|
878 |
+
}
|
879 |
+
|
880 |
+
// Emulate operations with no native 64-bit support in avx,
|
881 |
+
// by extracting each element, performing the operation pointwise,
|
882 |
+
// then combining the results into a vector.
|
883 |
+
template <typename op_t>
|
884 |
+
Vectorized<int64_t> inline emulate(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b, const op_t& op) {
|
885 |
+
int64_t a0 = _mm256_extract_epi64(a, 0);
|
886 |
+
int64_t a1 = _mm256_extract_epi64(a, 1);
|
887 |
+
int64_t a2 = _mm256_extract_epi64(a, 2);
|
888 |
+
int64_t a3 = _mm256_extract_epi64(a, 3);
|
889 |
+
|
890 |
+
int64_t b0 = _mm256_extract_epi64(b, 0);
|
891 |
+
int64_t b1 = _mm256_extract_epi64(b, 1);
|
892 |
+
int64_t b2 = _mm256_extract_epi64(b, 2);
|
893 |
+
int64_t b3 = _mm256_extract_epi64(b, 3);
|
894 |
+
|
895 |
+
int64_t c0 = op(a0, b0);
|
896 |
+
int64_t c1 = op(a1, b1);
|
897 |
+
int64_t c2 = op(a2, b2);
|
898 |
+
int64_t c3 = op(a3, b3);
|
899 |
+
|
900 |
+
return _mm256_set_epi64x(c3, c2, c1, c0);
|
901 |
+
}
|
902 |
+
|
903 |
+
template <typename op_t>
|
904 |
+
Vectorized<int64_t> inline emulate(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b, const Vectorized<int64_t>& c, const op_t& op) {
|
905 |
+
int64_t a0 = _mm256_extract_epi64(a, 0);
|
906 |
+
int64_t a1 = _mm256_extract_epi64(a, 1);
|
907 |
+
int64_t a2 = _mm256_extract_epi64(a, 2);
|
908 |
+
int64_t a3 = _mm256_extract_epi64(a, 3);
|
909 |
+
|
910 |
+
int64_t b0 = _mm256_extract_epi64(b, 0);
|
911 |
+
int64_t b1 = _mm256_extract_epi64(b, 1);
|
912 |
+
int64_t b2 = _mm256_extract_epi64(b, 2);
|
913 |
+
int64_t b3 = _mm256_extract_epi64(b, 3);
|
914 |
+
|
915 |
+
int64_t c0 = _mm256_extract_epi64(c, 0);
|
916 |
+
int64_t c1 = _mm256_extract_epi64(c, 1);
|
917 |
+
int64_t c2 = _mm256_extract_epi64(c, 2);
|
918 |
+
int64_t c3 = _mm256_extract_epi64(c, 3);
|
919 |
+
|
920 |
+
int64_t d0 = op(a0, b0, c0);
|
921 |
+
int64_t d1 = op(a1, b1, c1);
|
922 |
+
int64_t d2 = op(a2, b2, c2);
|
923 |
+
int64_t d3 = op(a3, b3, c3);
|
924 |
+
|
925 |
+
return _mm256_set_epi64x(d3, d2, d1, d0);
|
926 |
+
}
|
927 |
+
|
928 |
+
// AVX2 has no intrinsic for int64_t multiply so it needs to be emulated
|
929 |
+
// This could be implemented more efficiently using epi32 instructions
|
930 |
+
// This is also technically avx compatible, but then we'll need AVX
|
931 |
+
// code for add as well.
|
932 |
+
// Note: intentionally ignores undefined behavior like (-lowest * -1).
|
933 |
+
template <>
|
934 |
+
Vectorized<int64_t> inline operator*(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
935 |
+
return emulate(a, b, [](int64_t a_point, int64_t b_point) __ubsan_ignore_undefined__ {return a_point * b_point;});
|
936 |
+
}
|
937 |
+
|
938 |
+
template <>
|
939 |
+
Vectorized<int32_t> inline operator*(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
940 |
+
return _mm256_mullo_epi32(a, b);
|
941 |
+
}
|
942 |
+
|
943 |
+
template <>
|
944 |
+
Vectorized<int16_t> inline operator*(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
945 |
+
return _mm256_mullo_epi16(a, b);
|
946 |
+
}
|
947 |
+
|
948 |
+
template <typename T, typename Op>
|
949 |
+
Vectorized<T> inline int_elementwise_binary_256(const Vectorized<T>& a, const Vectorized<T>& b, Op op) {
|
950 |
+
T values_a[Vectorized<T>::size()];
|
951 |
+
T values_b[Vectorized<T>::size()];
|
952 |
+
a.store(values_a);
|
953 |
+
b.store(values_b);
|
954 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
955 |
+
values_a[i] = op(values_a[i], values_b[i]);
|
956 |
+
}
|
957 |
+
return Vectorized<T>::loadu(values_a);
|
958 |
+
}
|
959 |
+
|
960 |
+
template <>
|
961 |
+
Vectorized<int8_t> inline operator*(const Vectorized<int8_t>& a, const Vectorized<int8_t>& b) {
|
962 |
+
// We don't have an instruction for multiplying int8_t
|
963 |
+
#ifndef CPU_CAPABILITY_AVX2
|
964 |
+
return int_elementwise_binary_256(a, b, std::multiplies<int8_t>());
|
965 |
+
#else
|
966 |
+
__m256i mask00FF = _mm256_set1_epi16(0x00FF);
|
967 |
+
__m256i a_lo = _mm256_srai_epi16(_mm256_slli_epi16(a, 8), 8);
|
968 |
+
__m256i b_lo = _mm256_srai_epi16(_mm256_slli_epi16(b, 8), 8);
|
969 |
+
__m256i a_hi = _mm256_srai_epi16(a, 8);
|
970 |
+
__m256i b_hi = _mm256_srai_epi16(b, 8);
|
971 |
+
__m256i res_lo = _mm256_and_si256(_mm256_mullo_epi16(a_lo, b_lo), mask00FF);
|
972 |
+
__m256i res_hi = _mm256_slli_epi16(_mm256_mullo_epi16(a_hi, b_hi), 8);
|
973 |
+
__m256i res = _mm256_or_si256(res_hi, res_lo);
|
974 |
+
return res;
|
975 |
+
#endif
|
976 |
+
}
|
977 |
+
|
978 |
+
template <>
|
979 |
+
Vectorized<uint8_t> inline operator*(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& b) {
|
980 |
+
// We don't have an instruction for multiplying uint8_t
|
981 |
+
#ifndef CPU_CAPABILITY_AVX2
|
982 |
+
return int_elementwise_binary_256(a, b, std::multiplies<uint8_t>());
|
983 |
+
#else
|
984 |
+
__m256i mask00FF = _mm256_set1_epi16(0x00FF);
|
985 |
+
__m256i a_lo = _mm256_and_si256 (a, mask00FF);
|
986 |
+
__m256i b_lo = _mm256_and_si256 (b, mask00FF);
|
987 |
+
__m256i a_hi = _mm256_srli_epi16(a, 8);
|
988 |
+
__m256i b_hi = _mm256_srli_epi16(b, 8);
|
989 |
+
__m256i res_lo = _mm256_and_si256(_mm256_mullo_epi16(a_lo, b_lo), mask00FF);
|
990 |
+
__m256i res_hi = _mm256_slli_epi16(_mm256_mullo_epi16(a_hi, b_hi), 8);
|
991 |
+
__m256i res = _mm256_or_si256(res_hi, res_lo);
|
992 |
+
return res;
|
993 |
+
#endif
|
994 |
+
}
|
995 |
+
|
996 |
+
template <>
|
997 |
+
Vectorized<int64_t> inline minimum(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
998 |
+
#ifndef CPU_CAPABILITY_AVX2
|
999 |
+
return emulate(a, b, [](int64_t a_point, int64_t b_point) {return std::min(a_point, b_point);});
|
1000 |
+
#else
|
1001 |
+
__m256i cmp = _mm256_cmpgt_epi64(a, b);
|
1002 |
+
return _mm256_blendv_epi8(a, b, cmp);
|
1003 |
+
#endif
|
1004 |
+
}
|
1005 |
+
|
1006 |
+
template <>
|
1007 |
+
Vectorized<int32_t> inline minimum(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
1008 |
+
return _mm256_min_epi32(a, b);
|
1009 |
+
}
|
1010 |
+
|
1011 |
+
template <>
|
1012 |
+
Vectorized<int16_t> inline minimum(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
1013 |
+
return _mm256_min_epi16(a, b);
|
1014 |
+
}
|
1015 |
+
|
1016 |
+
template <>
|
1017 |
+
Vectorized<int8_t> inline minimum(const Vectorized<int8_t>& a, const Vectorized<int8_t>& b) {
|
1018 |
+
return _mm256_min_epi8(a, b);
|
1019 |
+
}
|
1020 |
+
|
1021 |
+
template <>
|
1022 |
+
Vectorized<uint8_t> inline minimum(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& b) {
|
1023 |
+
return _mm256_min_epu8(a, b);
|
1024 |
+
}
|
1025 |
+
|
1026 |
+
template <>
|
1027 |
+
Vectorized<int64_t> inline maximum(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
1028 |
+
#ifndef CPU_CAPABILITY_AVX2
|
1029 |
+
return emulate(a, b, [](int64_t a_point, int64_t b_point) {return std::max(a_point, b_point);});
|
1030 |
+
#else
|
1031 |
+
__m256i cmp = _mm256_cmpgt_epi64(a, b);
|
1032 |
+
return _mm256_blendv_epi8(b, a, cmp);
|
1033 |
+
#endif
|
1034 |
+
}
|
1035 |
+
|
1036 |
+
template <>
|
1037 |
+
Vectorized<int32_t> inline maximum(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
1038 |
+
return _mm256_max_epi32(a, b);
|
1039 |
+
}
|
1040 |
+
|
1041 |
+
template <>
|
1042 |
+
Vectorized<int16_t> inline maximum(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
1043 |
+
return _mm256_max_epi16(a, b);
|
1044 |
+
}
|
1045 |
+
|
1046 |
+
template <>
|
1047 |
+
Vectorized<int8_t> inline maximum(const Vectorized<int8_t>& a, const Vectorized<int8_t>& b) {
|
1048 |
+
return _mm256_max_epi8(a, b);
|
1049 |
+
}
|
1050 |
+
|
1051 |
+
template <>
|
1052 |
+
Vectorized<uint8_t> inline maximum(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& b) {
|
1053 |
+
return _mm256_max_epu8(a, b);
|
1054 |
+
}
|
1055 |
+
|
1056 |
+
template <>
|
1057 |
+
Vectorized<int64_t> inline clamp(const Vectorized<int64_t>& a, const Vectorized<int64_t>& min_val, const Vectorized<int64_t>& max_val) {
|
1058 |
+
#ifndef CPU_CAPABILITY_AVX2
|
1059 |
+
return emulate(a, min_val, max_val, [](int64_t a_point, int64_t min_point, int64_t max_point) {return std::min(max_point, std::max(a_point, min_point));});
|
1060 |
+
#else
|
1061 |
+
return minimum(maximum(a, min_val), max_val);
|
1062 |
+
#endif
|
1063 |
+
}
|
1064 |
+
|
1065 |
+
template <>
|
1066 |
+
Vectorized<int32_t> inline clamp(const Vectorized<int32_t>& a, const Vectorized<int32_t>& min_val, const Vectorized<int32_t>& max_val) {
|
1067 |
+
return _mm256_min_epi32(max_val, _mm256_max_epi32(a, min_val));
|
1068 |
+
}
|
1069 |
+
|
1070 |
+
template <>
|
1071 |
+
Vectorized<int16_t> inline clamp(const Vectorized<int16_t>& a, const Vectorized<int16_t>& min_val, const Vectorized<int16_t>& max_val) {
|
1072 |
+
return _mm256_min_epi16(max_val, _mm256_max_epi16(a, min_val));
|
1073 |
+
}
|
1074 |
+
|
1075 |
+
template <>
|
1076 |
+
Vectorized<int8_t> inline clamp(const Vectorized<int8_t>& a, const Vectorized<int8_t>& min_val, const Vectorized<int8_t>& max_val) {
|
1077 |
+
return _mm256_min_epi8(max_val, _mm256_max_epi8(a, min_val));
|
1078 |
+
}
|
1079 |
+
|
1080 |
+
template <>
|
1081 |
+
Vectorized<uint8_t> inline clamp(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& min_val, const Vectorized<uint8_t>& max_val) {
|
1082 |
+
return _mm256_min_epu8(max_val, _mm256_max_epu8(a, min_val));
|
1083 |
+
}
|
1084 |
+
|
1085 |
+
template <>
|
1086 |
+
Vectorized<int64_t> inline clamp_max(const Vectorized<int64_t>& a, const Vectorized<int64_t>& max_val) {
|
1087 |
+
#ifndef CPU_CAPABILITY_AVX2
|
1088 |
+
return emulate(a, max_val, [](int64_t a_point, int64_t max_point) {return std::min(max_point, a_point);});
|
1089 |
+
#else
|
1090 |
+
return minimum(max_val, a);
|
1091 |
+
#endif
|
1092 |
+
}
|
1093 |
+
|
1094 |
+
template <>
|
1095 |
+
Vectorized<int32_t> inline clamp_max(const Vectorized<int32_t>& a, const Vectorized<int32_t>& max_val) {
|
1096 |
+
return _mm256_min_epi32(max_val, a);
|
1097 |
+
}
|
1098 |
+
|
1099 |
+
template <>
|
1100 |
+
Vectorized<int16_t> inline clamp_max(const Vectorized<int16_t>& a, const Vectorized<int16_t>& max_val) {
|
1101 |
+
return _mm256_min_epi16(max_val, a);
|
1102 |
+
}
|
1103 |
+
|
1104 |
+
template <>
|
1105 |
+
Vectorized<int8_t> inline clamp_max(const Vectorized<int8_t>& a, const Vectorized<int8_t>& max_val) {
|
1106 |
+
return _mm256_min_epi8(max_val, a);
|
1107 |
+
}
|
1108 |
+
|
1109 |
+
template <>
|
1110 |
+
Vectorized<uint8_t> inline clamp_max(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& max_val) {
|
1111 |
+
return _mm256_min_epu8(max_val, a);
|
1112 |
+
}
|
1113 |
+
|
1114 |
+
template <>
|
1115 |
+
Vectorized<int64_t> inline clamp_min(const Vectorized<int64_t>& a, const Vectorized<int64_t>& min_val) {
|
1116 |
+
#ifndef CPU_CAPABILITY_AVX2
|
1117 |
+
return emulate(a, min_val, [](int64_t a_point, int64_t min_point) {return std::max(min_point, a_point);});
|
1118 |
+
#else
|
1119 |
+
return maximum(min_val, a);
|
1120 |
+
#endif
|
1121 |
+
}
|
1122 |
+
|
1123 |
+
template <>
|
1124 |
+
Vectorized<int32_t> inline clamp_min(const Vectorized<int32_t>& a, const Vectorized<int32_t>& min_val) {
|
1125 |
+
return _mm256_max_epi32(min_val, a);
|
1126 |
+
}
|
1127 |
+
|
1128 |
+
template <>
|
1129 |
+
Vectorized<int16_t> inline clamp_min(const Vectorized<int16_t>& a, const Vectorized<int16_t>& min_val) {
|
1130 |
+
return _mm256_max_epi16(min_val, a);
|
1131 |
+
}
|
1132 |
+
|
1133 |
+
template <>
|
1134 |
+
Vectorized<int8_t> inline clamp_min(const Vectorized<int8_t>& a, const Vectorized<int8_t>& min_val) {
|
1135 |
+
return _mm256_max_epi8(min_val, a);
|
1136 |
+
}
|
1137 |
+
|
1138 |
+
template <>
|
1139 |
+
Vectorized<uint8_t> inline clamp_min(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& min_val) {
|
1140 |
+
return _mm256_max_epu8(min_val, a);
|
1141 |
+
}
|
1142 |
+
|
1143 |
+
template<typename T>
|
1144 |
+
Vectorized<int32_t> inline convert_to_int32(const T* ptr) {
|
1145 |
+
return Vectorized<int32_t>::loadu(ptr);
|
1146 |
+
}
|
1147 |
+
|
1148 |
+
template<>
|
1149 |
+
Vectorized<int32_t> inline convert_to_int32<int8_t>(const int8_t* ptr) {
|
1150 |
+
return _mm256_cvtepi8_epi32(_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ptr)));
|
1151 |
+
}
|
1152 |
+
|
1153 |
+
template<>
|
1154 |
+
Vectorized<int32_t> inline convert_to_int32<uint8_t>(const uint8_t* ptr) {
|
1155 |
+
return _mm256_cvtepu8_epi32(_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ptr)));
|
1156 |
+
}
|
1157 |
+
|
1158 |
+
template <>
|
1159 |
+
Vectorized<int64_t> inline operator/(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
1160 |
+
return int_elementwise_binary_256(a, b, std::divides<int64_t>());
|
1161 |
+
}
|
1162 |
+
template <>
|
1163 |
+
Vectorized<int32_t> inline operator/(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
1164 |
+
return int_elementwise_binary_256(a, b, std::divides<int32_t>());
|
1165 |
+
}
|
1166 |
+
template <>
|
1167 |
+
Vectorized<int16_t> inline operator/(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
1168 |
+
return int_elementwise_binary_256(a, b, std::divides<int16_t>());
|
1169 |
+
}
|
1170 |
+
template <>
|
1171 |
+
Vectorized<int8_t> inline operator/(const Vectorized<int8_t>& a, const Vectorized<int8_t>& b) {
|
1172 |
+
return int_elementwise_binary_256(a, b, std::divides<int8_t>());
|
1173 |
+
}
|
1174 |
+
template <>
|
1175 |
+
Vectorized<uint8_t> inline operator/(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& b) {
|
1176 |
+
return int_elementwise_binary_256(a, b, std::divides<uint8_t>());
|
1177 |
+
}
|
1178 |
+
|
1179 |
+
template<class T, typename std::enable_if_t<std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
1180 |
+
inline Vectorized<T> operator&(const Vectorized<T>& a, const Vectorized<T>& b) {
|
1181 |
+
return _mm256_and_si256(a, b);
|
1182 |
+
}
|
1183 |
+
template<class T, typename std::enable_if_t<std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
1184 |
+
inline Vectorized<T> operator|(const Vectorized<T>& a, const Vectorized<T>& b) {
|
1185 |
+
return _mm256_or_si256(a, b);
|
1186 |
+
}
|
1187 |
+
template<class T, typename std::enable_if_t<std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
1188 |
+
inline Vectorized<T> operator^(const Vectorized<T>& a, const Vectorized<T>& b) {
|
1189 |
+
return _mm256_xor_si256(a, b);
|
1190 |
+
}
|
1191 |
+
template<class T, typename std::enable_if_t<std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
1192 |
+
inline Vectorized<T> operator~(const Vectorized<T>& a) {
|
1193 |
+
return _mm256_xor_si256(a, _mm256_set1_epi32(-1));
|
1194 |
+
}
|
1195 |
+
|
1196 |
+
inline Vectorized<int64_t> Vectorized<int64_t>::eq(const Vectorized<int64_t>& other) const {
|
1197 |
+
return (*this == other) & Vectorized<int64_t>(1);
|
1198 |
+
}
|
1199 |
+
|
1200 |
+
inline Vectorized<int64_t> Vectorized<int64_t>::ne(const Vectorized<int64_t>& other) const {
|
1201 |
+
return (*this != other) & Vectorized<int64_t>(1);
|
1202 |
+
}
|
1203 |
+
|
1204 |
+
inline Vectorized<int64_t> Vectorized<int64_t>::gt(const Vectorized<int64_t>& other) const {
|
1205 |
+
return (*this > other) & Vectorized<int64_t>(1);
|
1206 |
+
}
|
1207 |
+
|
1208 |
+
inline Vectorized<int64_t> Vectorized<int64_t>::ge(const Vectorized<int64_t>& other) const {
|
1209 |
+
return (*this >= other) & Vectorized<int64_t>(1);
|
1210 |
+
}
|
1211 |
+
|
1212 |
+
inline Vectorized<int64_t> Vectorized<int64_t>::lt(const Vectorized<int64_t>& other) const {
|
1213 |
+
return (*this < other) & Vectorized<int64_t>(1);
|
1214 |
+
}
|
1215 |
+
|
1216 |
+
inline Vectorized<int64_t> Vectorized<int64_t>::le(const Vectorized<int64_t>& other) const {
|
1217 |
+
return (*this <= other) & Vectorized<int64_t>(1);
|
1218 |
+
}
|
1219 |
+
|
1220 |
+
inline Vectorized<int32_t> Vectorized<int32_t>::eq(const Vectorized<int32_t>& other) const {
|
1221 |
+
return (*this == other) & Vectorized<int32_t>(1);
|
1222 |
+
}
|
1223 |
+
|
1224 |
+
inline Vectorized<int32_t> Vectorized<int32_t>::ne(const Vectorized<int32_t>& other) const {
|
1225 |
+
return (*this != other) & Vectorized<int32_t>(1);
|
1226 |
+
}
|
1227 |
+
|
1228 |
+
inline Vectorized<int32_t> Vectorized<int32_t>::gt(const Vectorized<int32_t>& other) const {
|
1229 |
+
return (*this > other) & Vectorized<int32_t>(1);
|
1230 |
+
}
|
1231 |
+
|
1232 |
+
inline Vectorized<int32_t> Vectorized<int32_t>::ge(const Vectorized<int32_t>& other) const {
|
1233 |
+
return (*this >= other) & Vectorized<int32_t>(1);
|
1234 |
+
}
|
1235 |
+
|
1236 |
+
inline Vectorized<int32_t> Vectorized<int32_t>::lt(const Vectorized<int32_t>& other) const {
|
1237 |
+
return (*this < other) & Vectorized<int32_t>(1);
|
1238 |
+
}
|
1239 |
+
|
1240 |
+
inline Vectorized<int32_t> Vectorized<int32_t>::le(const Vectorized<int32_t>& other) const {
|
1241 |
+
return (*this <= other) & Vectorized<int32_t>(1);
|
1242 |
+
}
|
1243 |
+
|
1244 |
+
inline Vectorized<int16_t> Vectorized<int16_t>::eq(const Vectorized<int16_t>& other) const {
|
1245 |
+
return (*this == other) & Vectorized<int16_t>(1);
|
1246 |
+
}
|
1247 |
+
|
1248 |
+
inline Vectorized<int16_t> Vectorized<int16_t>::ne(const Vectorized<int16_t>& other) const {
|
1249 |
+
return (*this != other) & Vectorized<int16_t>(1);
|
1250 |
+
}
|
1251 |
+
|
1252 |
+
inline Vectorized<int16_t> Vectorized<int16_t>::gt(const Vectorized<int16_t>& other) const {
|
1253 |
+
return (*this > other) & Vectorized<int16_t>(1);
|
1254 |
+
}
|
1255 |
+
|
1256 |
+
inline Vectorized<int16_t> Vectorized<int16_t>::ge(const Vectorized<int16_t>& other) const {
|
1257 |
+
return (*this >= other) & Vectorized<int16_t>(1);
|
1258 |
+
}
|
1259 |
+
|
1260 |
+
inline Vectorized<int16_t> Vectorized<int16_t>::lt(const Vectorized<int16_t>& other) const {
|
1261 |
+
return (*this < other) & Vectorized<int16_t>(1);
|
1262 |
+
}
|
1263 |
+
|
1264 |
+
inline Vectorized<int16_t> Vectorized<int16_t>::le(const Vectorized<int16_t>& other) const {
|
1265 |
+
return (*this <= other) & Vectorized<int16_t>(1);
|
1266 |
+
}
|
1267 |
+
|
1268 |
+
inline Vectorized<int8_t> Vectorized<int8_t>::eq(const Vectorized<int8_t>& other) const {
|
1269 |
+
return (*this == other) & Vectorized<int8_t>(1);
|
1270 |
+
}
|
1271 |
+
|
1272 |
+
inline Vectorized<int8_t> Vectorized<int8_t>::ne(const Vectorized<int8_t>& other) const {
|
1273 |
+
return (*this != other) & Vectorized<int8_t>(1);
|
1274 |
+
}
|
1275 |
+
|
1276 |
+
inline Vectorized<int8_t> Vectorized<int8_t>::gt(const Vectorized<int8_t>& other) const {
|
1277 |
+
return (*this > other) & Vectorized<int8_t>(1);
|
1278 |
+
}
|
1279 |
+
|
1280 |
+
inline Vectorized<int8_t> Vectorized<int8_t>::ge(const Vectorized<int8_t>& other) const {
|
1281 |
+
return (*this >= other) & Vectorized<int8_t>(1);
|
1282 |
+
}
|
1283 |
+
|
1284 |
+
inline Vectorized<int8_t> Vectorized<int8_t>::lt(const Vectorized<int8_t>& other) const {
|
1285 |
+
return (*this < other) & Vectorized<int8_t>(1);
|
1286 |
+
}
|
1287 |
+
|
1288 |
+
inline Vectorized<int8_t> Vectorized<int8_t>::le(const Vectorized<int8_t>& other) const {
|
1289 |
+
return (*this <= other) & Vectorized<int8_t>(1);
|
1290 |
+
}
|
1291 |
+
|
1292 |
+
inline Vectorized<uint8_t> Vectorized<uint8_t>::eq(const Vectorized<uint8_t>& other) const {
|
1293 |
+
return (*this == other) & Vectorized<uint8_t>(1);
|
1294 |
+
}
|
1295 |
+
|
1296 |
+
inline Vectorized<uint8_t> Vectorized<uint8_t>::ne(const Vectorized<uint8_t>& other) const {
|
1297 |
+
return (*this != other) & Vectorized<uint8_t>(1);
|
1298 |
+
}
|
1299 |
+
|
1300 |
+
inline Vectorized<uint8_t> Vectorized<uint8_t>::gt(const Vectorized<uint8_t>& other) const {
|
1301 |
+
return (*this > other) & Vectorized<uint8_t>(1);
|
1302 |
+
}
|
1303 |
+
|
1304 |
+
inline Vectorized<uint8_t> Vectorized<uint8_t>::ge(const Vectorized<uint8_t>& other) const {
|
1305 |
+
return (*this >= other) & Vectorized<uint8_t>(1);
|
1306 |
+
}
|
1307 |
+
|
1308 |
+
inline Vectorized<uint8_t> Vectorized<uint8_t>::lt(const Vectorized<uint8_t>& other) const {
|
1309 |
+
return (*this < other) & Vectorized<uint8_t>(1);
|
1310 |
+
}
|
1311 |
+
|
1312 |
+
inline Vectorized<uint8_t> Vectorized<uint8_t>::le(const Vectorized<uint8_t>& other) const {
|
1313 |
+
return (*this <= other) & Vectorized<uint8_t>(1);
|
1314 |
+
}
|
1315 |
+
|
1316 |
+
template <bool left_shift>
|
1317 |
+
Vectorized<int16_t> inline shift_256_16(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
1318 |
+
// No vector instruction for shifting int16_t, so emulating it instead.
|
1319 |
+
|
1320 |
+
// Control masks for shuffle operation, treating 256 bits as an
|
1321 |
+
// array of 16-bit elements, and considering pairs of neighboring
|
1322 |
+
// elements. Specifially, a mask named "ctl_M_N" (M,N in [0,1], and
|
1323 |
+
// M!=N) is set so that shuffle will move element with index M from
|
1324 |
+
// input pair into element with index N in output pair, and element
|
1325 |
+
// with index M in output pair will be set to all 0s.
|
1326 |
+
__m256i ctl_0_1 = _mm256_set_epi8(29, 28, 0x80, 0x80, 25, 24, 0x80, 0x80,
|
1327 |
+
21, 20, 0x80, 0x80, 17, 16, 0x80, 0x80,
|
1328 |
+
13, 12, 0x80, 0x80, 9, 8, 0x80, 0x80,
|
1329 |
+
5, 4, 0x80, 0x80, 1, 0, 0x80, 0x80);
|
1330 |
+
__m256i ctl_1_0 = _mm256_set_epi8(0x80, 0x80, 31, 30, 0x80, 0x80, 27, 26,
|
1331 |
+
0x80, 0x80, 23, 22, 0x80, 0x80, 19, 18,
|
1332 |
+
0x80, 0x80, 15, 14, 0x80, 0x80, 11, 10,
|
1333 |
+
0x80, 0x80, 7, 6, 0x80, 0x80, 3, 2);
|
1334 |
+
|
1335 |
+
// Masks for bitwise and operation, treating 256 bits as an array of
|
1336 |
+
// 16-bit elements, and considering them in pairs of neighboring
|
1337 |
+
// elements. A mask named "keep_M" (M in [0,1]) is set so that
|
1338 |
+
// bitwise and will copy element with index M from input pair into
|
1339 |
+
// element with the same index in output pair, while the other
|
1340 |
+
// element in output pair will be set to all 0s.
|
1341 |
+
__m256i keep_0 = _mm256_set1_epi32(0xFFFF);
|
1342 |
+
__m256i keep_1 = _mm256_set1_epi32(0xFFFF0000);
|
1343 |
+
|
1344 |
+
// Take each 16-bit element with idx%2==0 from input array to be
|
1345 |
+
// shifted and extend it to 32 bits so that 0s are added to the
|
1346 |
+
// right. Then, perform shifting on this 32-bit number. Upper 16
|
1347 |
+
// bits will be proper result of shifting original 16-bit number, so
|
1348 |
+
// write them to result array, into the same position from which
|
1349 |
+
// corresponding input element is taken. Also, make sure that
|
1350 |
+
// result array elements with idx%2!=0 are set to all 0s.
|
1351 |
+
//
|
1352 |
+
// Note that number of bits to shift for is extended to 32 bits by
|
1353 |
+
// adding 0s to the left. That means this number is not properly
|
1354 |
+
// sign-extended for negative values. However, number of bits to
|
1355 |
+
// shift is treated as an unsigned integer by respective shift
|
1356 |
+
// intrinsics anyway so if negative then either with or without
|
1357 |
+
// proper sign extension, it will be interpreted as a number greater
|
1358 |
+
// than 32, and the shifting result will be the same.
|
1359 |
+
__m256i a0 = _mm256_shuffle_epi8(a, ctl_0_1);
|
1360 |
+
__m256i b0 = _mm256_and_si256(b, keep_0);
|
1361 |
+
__m256i c0;
|
1362 |
+
if (left_shift)
|
1363 |
+
c0 = _mm256_sllv_epi32(a0, b0);
|
1364 |
+
else
|
1365 |
+
c0 = _mm256_srav_epi32(a0, b0);
|
1366 |
+
c0 = _mm256_shuffle_epi8(c0, ctl_1_0);
|
1367 |
+
|
1368 |
+
// Peform shifting the same way for input array elements with
|
1369 |
+
// idx%2==1.
|
1370 |
+
__m256i a1 = _mm256_and_si256(a, keep_1);
|
1371 |
+
__m256i b1 = _mm256_shuffle_epi8(b, ctl_1_0);
|
1372 |
+
__m256i c1;
|
1373 |
+
if (left_shift)
|
1374 |
+
c1 = _mm256_sllv_epi32(a1, b1);
|
1375 |
+
else
|
1376 |
+
c1 = _mm256_srav_epi32(a1, b1);
|
1377 |
+
c1 = _mm256_and_si256(c1, keep_1);
|
1378 |
+
|
1379 |
+
// Merge partial results into the final result.
|
1380 |
+
__m256i c = _mm256_or_si256(c0, c1);
|
1381 |
+
|
1382 |
+
return c;
|
1383 |
+
}
|
1384 |
+
|
1385 |
+
template <bool left_shift, typename T, typename std::enable_if_t<std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value, int> = 0>
|
1386 |
+
Vectorized<T> inline shift_256_8(const Vectorized<T>& a, const Vectorized<T>& b) {
|
1387 |
+
// No vector instruction for shifting int8_t/uint8_t, so emulating
|
1388 |
+
// it instead.
|
1389 |
+
|
1390 |
+
// Control masks for shuffle operation, treating 256 bits as an
|
1391 |
+
// array of 8-bit elements, and considering quadruples of
|
1392 |
+
// neighboring elements. Specifially, a mask named "ctl_M_N" (M,N
|
1393 |
+
// in [0,1,2,3], and M!=N) is set so that shuffle will move element
|
1394 |
+
// with index M from input quadruple into element with index N in
|
1395 |
+
// output quadruple, and other elements in output quadruple will be
|
1396 |
+
// set to all 0s.
|
1397 |
+
__m256i ctl_0_3 = _mm256_set_epi8(28, 0x80, 0x80, 0x80, 24, 0x80, 0x80, 0x80,
|
1398 |
+
20, 0x80, 0x80, 0x80, 16, 0x80, 0x80, 0x80,
|
1399 |
+
12, 0x80, 0x80, 0x80, 8, 0x80, 0x80, 0x80,
|
1400 |
+
4, 0x80, 0x80, 0x80, 0, 0x80, 0x80, 0x80);
|
1401 |
+
__m256i ctl_1_0 = _mm256_set_epi8(0x80, 0x80, 0x80, 29, 0x80, 0x80, 0x80, 25,
|
1402 |
+
0x80, 0x80, 0x80, 21, 0x80, 0x80, 0x80, 17,
|
1403 |
+
0x80, 0x80, 0x80, 13, 0x80, 0x80, 0x80, 9,
|
1404 |
+
0x80, 0x80, 0x80, 5, 0x80, 0x80, 0x80, 1);
|
1405 |
+
__m256i ctl_1_3 = _mm256_set_epi8(29, 0x80, 0x80, 0x80, 25, 0x80, 0x80, 0x80,
|
1406 |
+
21, 0x80, 0x80, 0x80, 17, 0x80, 0x80, 0x80,
|
1407 |
+
13, 0x80, 0x80, 0x80, 9, 0x80, 0x80, 0x80,
|
1408 |
+
5, 0x80, 0x80, 0x80, 1, 0x80, 0x80, 0x80);
|
1409 |
+
__m256i ctl_2_0 = _mm256_set_epi8(0x80, 0x80, 0x80, 30, 0x80, 0x80, 0x80, 26,
|
1410 |
+
0x80, 0x80, 0x80, 22, 0x80, 0x80, 0x80, 18,
|
1411 |
+
0x80, 0x80, 0x80, 14, 0x80, 0x80, 0x80, 10,
|
1412 |
+
0x80, 0x80, 0x80, 6, 0x80, 0x80, 0x80, 2);
|
1413 |
+
__m256i ctl_2_3 = _mm256_set_epi8(30, 0x80, 0x80, 0x80, 26, 0x80, 0x80, 0x80,
|
1414 |
+
22, 0x80, 0x80, 0x80, 18, 0x80, 0x80, 0x80,
|
1415 |
+
14, 0x80, 0x80, 0x80, 10, 0x80, 0x80, 0x80,
|
1416 |
+
6, 0x80, 0x80, 0x80, 2, 0x80, 0x80, 0x80);
|
1417 |
+
__m256i ctl_3_0 = _mm256_set_epi8(0x80, 0x80, 0x80, 31, 0x80, 0x80, 0x80, 27,
|
1418 |
+
0x80, 0x80, 0x80, 23, 0x80, 0x80, 0x80, 19,
|
1419 |
+
0x80, 0x80, 0x80, 15, 0x80, 0x80, 0x80, 11,
|
1420 |
+
0x80, 0x80, 0x80, 7, 0x80, 0x80, 0x80, 3);
|
1421 |
+
__m256i ctl_3_1 = _mm256_set_epi8(0x80, 0x80, 31, 0x80, 0x80, 0x80, 27, 0x80,
|
1422 |
+
0x80, 0x80, 23, 0x80, 0x80, 0x80, 19, 0x80,
|
1423 |
+
0x80, 0x80, 15, 0x80, 0x80, 0x80, 11, 0x80,
|
1424 |
+
0x80, 0x80, 7, 0x80, 0x80, 0x80, 3, 0x80);
|
1425 |
+
__m256i ctl_3_2 = _mm256_set_epi8(0x80, 31, 0x80, 0x80, 0x80, 27, 0x80, 0x80,
|
1426 |
+
0x80, 23, 0x80, 0x80, 0x80, 19, 0x80, 0x80,
|
1427 |
+
0x80, 15, 0x80, 0x80, 0x80, 11, 0x80, 0x80,
|
1428 |
+
0x80, 7, 0x80, 0x80, 0x80, 3, 0x80, 0x80);
|
1429 |
+
|
1430 |
+
// Masks for bitwise and operation, treating 256 bits as an array of
|
1431 |
+
// 8-bit elements, and considering them in quadruples of neighboring
|
1432 |
+
// elements. A mask named "keep_M" (M in [0,1,2,3]) is set so that
|
1433 |
+
// bitwise and will copy element with index M from input quadruple
|
1434 |
+
// into element with the same index in output quadruple, while the
|
1435 |
+
// other elements in output quadruple will be set to all 0s.
|
1436 |
+
__m256i keep_0 = _mm256_set1_epi32(0xFF);
|
1437 |
+
__m256i keep_3 = _mm256_set1_epi32(0xFF000000);
|
1438 |
+
|
1439 |
+
// Take each 8-bit element with idx%4==0 from input array to be
|
1440 |
+
// shifted and extend it to 32 bits so that 0s are added to the
|
1441 |
+
// right. Then, perform shifting on this 32-bit number. Upper 8
|
1442 |
+
// bits will be proper result of shifting original 8-bit number, so
|
1443 |
+
// write them to result array, into the same position from which
|
1444 |
+
// corresponding input element is taken. Also, make sure that
|
1445 |
+
// result array elements with idx%4!=0 are set to all 0s.
|
1446 |
+
//
|
1447 |
+
// Note that number of bits to shift for is extended to 32 bits by
|
1448 |
+
// adding 0s to the left. That means this number is not properly
|
1449 |
+
// sign-extended for negative values. However, number of bits to
|
1450 |
+
// shift is treated as an unsigned integer by respective shift
|
1451 |
+
// intrinsics anyway so if negative then either with or without
|
1452 |
+
// proper sign extension, it will be interpreted as a number greater
|
1453 |
+
// than 32, and the shifting result will be the same.
|
1454 |
+
__m256i a0 = _mm256_shuffle_epi8(a, ctl_0_3);
|
1455 |
+
__m256i b0 = _mm256_and_si256(b, keep_0);
|
1456 |
+
__m256i c0;
|
1457 |
+
if (left_shift)
|
1458 |
+
c0 = _mm256_sllv_epi32(a0, b0);
|
1459 |
+
else
|
1460 |
+
if constexpr (std::is_same_v<T, int8_t>)
|
1461 |
+
c0 = _mm256_srav_epi32(a0, b0);
|
1462 |
+
else
|
1463 |
+
c0 = _mm256_srlv_epi32(a0, b0);
|
1464 |
+
c0 = _mm256_shuffle_epi8(c0, ctl_3_0);
|
1465 |
+
|
1466 |
+
// Peform shifting the same way for input array elements with
|
1467 |
+
// idx%4==1.
|
1468 |
+
__m256i a1 = _mm256_shuffle_epi8(a, ctl_1_3);
|
1469 |
+
__m256i b1 = _mm256_shuffle_epi8(b, ctl_1_0);
|
1470 |
+
__m256i c1;
|
1471 |
+
if (left_shift)
|
1472 |
+
c1 = _mm256_sllv_epi32(a1, b1);
|
1473 |
+
else
|
1474 |
+
if constexpr (std::is_same_v<T, int8_t>)
|
1475 |
+
c1 = _mm256_srav_epi32(a1, b1);
|
1476 |
+
else
|
1477 |
+
c1 = _mm256_srlv_epi32(a1, b1);
|
1478 |
+
c1 = _mm256_shuffle_epi8(c1, ctl_3_1);
|
1479 |
+
|
1480 |
+
// Peform shifting the same way for input array elements with
|
1481 |
+
// idx%4==2.
|
1482 |
+
__m256i a2 = _mm256_shuffle_epi8(a, ctl_2_3);
|
1483 |
+
__m256i b2 = _mm256_shuffle_epi8(b, ctl_2_0);
|
1484 |
+
__m256i c2;
|
1485 |
+
if (left_shift)
|
1486 |
+
c2 = _mm256_sllv_epi32(a2, b2);
|
1487 |
+
else
|
1488 |
+
if constexpr (std::is_same_v<T, int8_t>)
|
1489 |
+
c2 = _mm256_srav_epi32(a2, b2);
|
1490 |
+
else
|
1491 |
+
c2 = _mm256_srlv_epi32(a2, b2);
|
1492 |
+
c2 = _mm256_shuffle_epi8(c2, ctl_3_2);
|
1493 |
+
|
1494 |
+
// Peform shifting the same way for input array elements with
|
1495 |
+
// idx%4==3.
|
1496 |
+
__m256i a3 = _mm256_and_si256(a, keep_3);
|
1497 |
+
__m256i b3 = _mm256_shuffle_epi8(b, ctl_3_0);
|
1498 |
+
__m256i c3;
|
1499 |
+
if (left_shift)
|
1500 |
+
c3 = _mm256_sllv_epi32(a3, b3);
|
1501 |
+
else
|
1502 |
+
if constexpr (std::is_same_v<T, int8_t>)
|
1503 |
+
c3 = _mm256_srav_epi32(a3, b3);
|
1504 |
+
else
|
1505 |
+
c3 = _mm256_srlv_epi32(a3, b3);
|
1506 |
+
c3 = _mm256_and_si256(c3, keep_3);
|
1507 |
+
|
1508 |
+
// Merge partial results into the final result.
|
1509 |
+
__m256i c01 = _mm256_or_si256(c0, c1);
|
1510 |
+
__m256i c23 = _mm256_or_si256(c2, c3);
|
1511 |
+
__m256i c = _mm256_or_si256(c01, c23);
|
1512 |
+
|
1513 |
+
return c;
|
1514 |
+
}
|
1515 |
+
|
1516 |
+
template <>
|
1517 |
+
Vectorized<int64_t> inline operator<<(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
1518 |
+
return _mm256_sllv_epi64(a, b);
|
1519 |
+
}
|
1520 |
+
|
1521 |
+
template <>
|
1522 |
+
Vectorized<int32_t> inline operator<<(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
1523 |
+
return _mm256_sllv_epi32(a, b);
|
1524 |
+
}
|
1525 |
+
|
1526 |
+
template <>
|
1527 |
+
Vectorized<int16_t> inline operator<<(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
1528 |
+
return shift_256_16<true>(a, b);
|
1529 |
+
}
|
1530 |
+
|
1531 |
+
template <>
|
1532 |
+
Vectorized<int8_t> inline operator<<(const Vectorized<int8_t>& a, const Vectorized<int8_t>& b) {
|
1533 |
+
return shift_256_8<true>(a, b);
|
1534 |
+
}
|
1535 |
+
|
1536 |
+
template <>
|
1537 |
+
Vectorized<uint8_t> inline operator<<(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& b) {
|
1538 |
+
return shift_256_8<true>(a, b);
|
1539 |
+
}
|
1540 |
+
|
1541 |
+
template <>
|
1542 |
+
Vectorized<int64_t> inline operator>>(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
1543 |
+
// No vector instruction for right arithmetic shifting int64_t, so emulating it
|
1544 |
+
// instead.
|
1545 |
+
|
1546 |
+
// Clamp the shift values such that shift values < 0 and > 64 are changed to 64
|
1547 |
+
// which results in -1 for negative input and 0 for non-negative input.
|
1548 |
+
__m256i zero = _mm256_set1_epi64x(0);
|
1549 |
+
__m256i max_shift = _mm256_set1_epi64x(64);
|
1550 |
+
__m256i mask = _mm256_or_si256(_mm256_cmpgt_epi64(zero, b), _mm256_cmpgt_epi64(b, max_shift));
|
1551 |
+
__m256i shift = _mm256_blendv_epi8(b, max_shift, mask);
|
1552 |
+
// Shift the number logically to the right, thus filling the most
|
1553 |
+
// significant bits with 0s. Then, replace these bits with the sign
|
1554 |
+
// bit.
|
1555 |
+
__m256i sign_bits = _mm256_cmpgt_epi64(zero, a);
|
1556 |
+
__m256i sign_shift = _mm256_sub_epi64(max_shift, shift);
|
1557 |
+
__m256i sign_ext = _mm256_sllv_epi64(sign_bits, sign_shift);
|
1558 |
+
__m256i c = _mm256_srlv_epi64(a, shift);
|
1559 |
+
c = _mm256_or_si256(c, sign_ext);
|
1560 |
+
|
1561 |
+
return c;
|
1562 |
+
}
|
1563 |
+
|
1564 |
+
template <>
|
1565 |
+
Vectorized<int32_t> inline operator>>(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
1566 |
+
return _mm256_srav_epi32(a, b);
|
1567 |
+
}
|
1568 |
+
|
1569 |
+
template <>
|
1570 |
+
Vectorized<int16_t> inline operator>>(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
1571 |
+
return shift_256_16<false>(a, b);
|
1572 |
+
}
|
1573 |
+
|
1574 |
+
template <>
|
1575 |
+
Vectorized<int8_t> inline operator>>(const Vectorized<int8_t>& a, const Vectorized<int8_t>& b) {
|
1576 |
+
return shift_256_8<false>(a, b);
|
1577 |
+
}
|
1578 |
+
|
1579 |
+
template <>
|
1580 |
+
Vectorized<uint8_t> inline operator>>(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& b) {
|
1581 |
+
return shift_256_8<false>(a, b);
|
1582 |
+
}
|
1583 |
+
|
1584 |
+
#endif
|
1585 |
+
|
1586 |
+
}} // namespace at::vec::CPU_CAPABILITY
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_qint.h
ADDED
@@ -0,0 +1,1335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
7 |
+
#include <ATen/cpu/vec/vec_base.h>
|
8 |
+
#include <ATen/native/quantized/AffineQuantizerBase.h>
|
9 |
+
|
10 |
+
#include <c10/util/irange.h>
|
11 |
+
#include <c10/util/qint32.h>
|
12 |
+
#include <c10/util/qint8.h>
|
13 |
+
#include <c10/util/quint8.h>
|
14 |
+
|
15 |
+
#include <array>
|
16 |
+
#include <cmath>
|
17 |
+
|
18 |
+
// This file defines Vectorized<> for the quantized types.
|
19 |
+
//
|
20 |
+
//
|
21 |
+
// Currently, we simply use these classes as efficient converters between
|
22 |
+
// the quantized types and Vectorized<float>, usually in bandwidth-bound cases
|
23 |
+
// where doing the arithmetic in full-precision is acceptable (e.g.
|
24 |
+
// elementwise operators).
|
25 |
+
//
|
26 |
+
//
|
27 |
+
// Conversions are as follows:
|
28 |
+
// Vectorized<qint8> -> 4x Vectorized<float>
|
29 |
+
// Vectorized<quint8> -> 4x Vectorized<float>
|
30 |
+
// Vectorized<qint32> -> 1x Vectorized<float>
|
31 |
+
//
|
32 |
+
// The size of the returned float vector is specified by the special
|
33 |
+
// constexpr function float_num_vecs. The type of the value returned
|
34 |
+
// from dequantize (and expected as an argument to quantize) is
|
35 |
+
// specified by float_vec_return_type.
|
36 |
+
//
|
37 |
+
// When writing kernels with these vectors, it is expected that floating-
|
38 |
+
// point operations will be carried out in a loop over Vectorized<T>::float_num_vecs
|
39 |
+
// iterations.
|
40 |
+
|
41 |
+
namespace at::vec {
|
42 |
+
inline namespace CPU_CAPABILITY {
|
43 |
+
|
44 |
+
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
45 |
+
|
46 |
+
struct Vectorizedqi {
|
47 |
+
protected:
|
48 |
+
__m256i vals __attribute__((aligned(64)));
|
49 |
+
|
50 |
+
public:
|
51 |
+
Vectorizedqi() {}
|
52 |
+
Vectorizedqi(__m256i v) : vals(v) {}
|
53 |
+
operator __m256i() const {
|
54 |
+
return vals;
|
55 |
+
}
|
56 |
+
};
|
57 |
+
|
58 |
+
template <typename T>
|
59 |
+
__m256i pack_saturate_and_clamp(
|
60 |
+
__m256i first,
|
61 |
+
__m256i second,
|
62 |
+
T min_val,
|
63 |
+
T max_val);
|
64 |
+
|
65 |
+
template <>
|
66 |
+
inline __m256i pack_saturate_and_clamp<int32_t>(
|
67 |
+
__m256i /*first*/,
|
68 |
+
__m256i /*second*/,
|
69 |
+
int32_t /*min_val*/,
|
70 |
+
int32_t /*max_val*/) {
|
71 |
+
// This function is for linkage only, will not be used
|
72 |
+
AT_ERROR("pack_saturate_and_clamp<int32_t> is not supported");
|
73 |
+
}
|
74 |
+
|
75 |
+
template <>
|
76 |
+
inline __m256i pack_saturate_and_clamp<int8_t>(
|
77 |
+
__m256i first,
|
78 |
+
__m256i second,
|
79 |
+
int8_t min_val,
|
80 |
+
int8_t max_val) {
|
81 |
+
__m256i packed_and_sat = _mm256_packs_epi16(first, second);
|
82 |
+
return _mm256_max_epi8(
|
83 |
+
_mm256_set1_epi8(min_val),
|
84 |
+
_mm256_min_epi8(packed_and_sat, _mm256_set1_epi8(max_val)));
|
85 |
+
}
|
86 |
+
|
87 |
+
template <>
|
88 |
+
inline __m256i pack_saturate_and_clamp<uint8_t>(
|
89 |
+
__m256i first,
|
90 |
+
__m256i second,
|
91 |
+
uint8_t min_val,
|
92 |
+
uint8_t max_val) {
|
93 |
+
__m256i packed_and_sat = _mm256_packus_epi16(first, second);
|
94 |
+
return _mm256_max_epu8(
|
95 |
+
_mm256_set1_epi8(min_val),
|
96 |
+
_mm256_min_epu8(packed_and_sat, _mm256_set1_epi8(max_val)));
|
97 |
+
}
|
98 |
+
|
99 |
+
template <typename T>
|
100 |
+
typename std::enable_if<std::is_same<T, uint8_t>::value || std::is_same<T, int8_t>::value, at::vec::Vectorized<float>>::type
|
101 |
+
inline convert_int8_to_float(at::vec::Vectorized<T> src) {
|
102 |
+
// Note: this function only convert inputs number of elements equal to at::vec::Vectorized<float>.size()
|
103 |
+
// Only handle first 8*8 bits
|
104 |
+
__m128i input_128 = _mm256_castsi256_si128(src);
|
105 |
+
// Convert from 8*uint8/int8 to 8*int32
|
106 |
+
__m256i input_256_int32;
|
107 |
+
if constexpr (std::is_same_v<T, uint8_t>)
|
108 |
+
input_256_int32 = _mm256_cvtepu8_epi32(input_128);
|
109 |
+
else
|
110 |
+
input_256_int32 = _mm256_cvtepi8_epi32(input_128);
|
111 |
+
// Convert from 8*int32 to 8*float
|
112 |
+
return _mm256_cvtepi32_ps(input_256_int32);
|
113 |
+
}
|
114 |
+
|
115 |
+
template <typename T>
|
116 |
+
typename std::enable_if<std::is_same<T, uint8_t>::value || std::is_same<T, int8_t>::value, at::vec::Vectorized<T>>::type
|
117 |
+
inline convert_float_to_int8(at::vec::Vectorized<float> src) {
|
118 |
+
// Convert from float32 to int32 with truncation
|
119 |
+
__m256i x_values_int32 = _mm256_cvttps_epi32(src);
|
120 |
+
|
121 |
+
// Convert from int32 to int16 using signed saturation
|
122 |
+
__m256i xy_packed_v = _mm256_packs_epi32(x_values_int32, x_values_int32);
|
123 |
+
|
124 |
+
constexpr auto min_val = std::numeric_limits<T>::min();
|
125 |
+
constexpr auto max_val = std::numeric_limits<T>::max();
|
126 |
+
|
127 |
+
// Convert from int16 to uint8/int8 using unsigned saturation
|
128 |
+
__m256i xyzw_clamped_v = pack_saturate_and_clamp<T>(
|
129 |
+
xy_packed_v, xy_packed_v, min_val, max_val);
|
130 |
+
__m256i permute_mask_v =
|
131 |
+
_mm256_set_epi32(0x07, 0x03, 0x06, 0x02, 0x05, 0x01, 0x04, 0x00);
|
132 |
+
return _mm256_permutevar8x32_epi32(xyzw_clamped_v, permute_mask_v);
|
133 |
+
}
|
134 |
+
|
135 |
+
template <typename T>
|
136 |
+
inline void __attribute__((always_inline)) QuantizeAvx2(
|
137 |
+
const float* src,
|
138 |
+
T* dst,
|
139 |
+
int len,
|
140 |
+
float inverse_scale,
|
141 |
+
int64_t zero_point) {
|
142 |
+
constexpr int VLEN = 8;
|
143 |
+
constexpr auto min_val = std::numeric_limits<T>::min();
|
144 |
+
constexpr auto max_val = std::numeric_limits<T>::max();
|
145 |
+
const __m256i min_v = _mm256_set1_epi32(min_val);
|
146 |
+
const __m256i max_v = _mm256_set1_epi32(max_val);
|
147 |
+
// This is the largest int32 value < int32_max exactly representable in float
|
148 |
+
constexpr int32_t int32_float_max_val =
|
149 |
+
std::numeric_limits<int32_t>::max() - 127;
|
150 |
+
int i = 0;
|
151 |
+
__m256 inverse_scale_v = _mm256_set1_ps(inverse_scale);
|
152 |
+
// clang-format off
|
153 |
+
static const __m256i shuffle_mask_v = _mm256_set_epi8(
|
154 |
+
0xff, 0xff, 0xff, 0xff,
|
155 |
+
0xff, 0xff, 0xff, 0xff,
|
156 |
+
0xff, 0xff, 0xff, 0xff,
|
157 |
+
0x0c, 0x08, 0x04, 0x00,
|
158 |
+
0xff, 0xff, 0xff, 0xff,
|
159 |
+
0xff, 0xff, 0xff, 0xff,
|
160 |
+
0xff, 0xff, 0xff, 0xff,
|
161 |
+
0x0c, 0x08, 0x04, 0x00);
|
162 |
+
// clang-format on
|
163 |
+
__m256i permute_mask_v =
|
164 |
+
_mm256_set_epi32(0x07, 0x03, 0x06, 0x02, 0x05, 0x01, 0x04, 0x00);
|
165 |
+
__m256i permute_mask_l8_v =
|
166 |
+
_mm256_set_epi32(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00);
|
167 |
+
int len_aligned = len / (VLEN * 4) * (VLEN * 4);
|
168 |
+
for (; i < len_aligned; i += 4 * VLEN) {
|
169 |
+
// x
|
170 |
+
__m256 x_vals = _mm256_load_ps(src + i);
|
171 |
+
__m256 x_transformed_v = _mm256_mul_ps(x_vals, inverse_scale_v);
|
172 |
+
// If the floating point value is greater than int32_max,
|
173 |
+
// _mm256_cvtps_epi32 converts them to -ve. Clip at int32_float_max_val to
|
174 |
+
// Clip at int32_float_max_val to avoid this.
|
175 |
+
x_transformed_v =
|
176 |
+
_mm256_min_ps(x_transformed_v, _mm256_set1_ps(int32_float_max_val));
|
177 |
+
// y
|
178 |
+
__m256 y_vals = _mm256_load_ps(src + i + VLEN);
|
179 |
+
__m256 y_transformed_v = _mm256_mul_ps(y_vals, inverse_scale_v);
|
180 |
+
y_transformed_v =
|
181 |
+
_mm256_min_ps(y_transformed_v, _mm256_set1_ps(int32_float_max_val));
|
182 |
+
// z
|
183 |
+
__m256 z_vals = _mm256_load_ps(src + i + 2 * VLEN);
|
184 |
+
__m256 z_transformed_v = _mm256_mul_ps(z_vals, inverse_scale_v);
|
185 |
+
z_transformed_v =
|
186 |
+
_mm256_min_ps(z_transformed_v, _mm256_set1_ps(int32_float_max_val));
|
187 |
+
// w
|
188 |
+
__m256 w_vals = _mm256_load_ps(src + i + 3 * VLEN);
|
189 |
+
__m256 w_transformed_v = _mm256_mul_ps(w_vals, inverse_scale_v);
|
190 |
+
w_transformed_v =
|
191 |
+
_mm256_min_ps(w_transformed_v, _mm256_set1_ps(int32_float_max_val));
|
192 |
+
|
193 |
+
__m256i x_rounded_v = _mm256_cvtps_epi32(x_transformed_v);
|
194 |
+
__m256i y_rounded_v = _mm256_cvtps_epi32(y_transformed_v);
|
195 |
+
__m256i z_rounded_v = _mm256_cvtps_epi32(z_transformed_v);
|
196 |
+
__m256i w_rounded_v = _mm256_cvtps_epi32(w_transformed_v);
|
197 |
+
|
198 |
+
// add zero point
|
199 |
+
x_rounded_v = _mm256_add_epi32(x_rounded_v, _mm256_set1_epi32(zero_point));
|
200 |
+
y_rounded_v = _mm256_add_epi32(y_rounded_v, _mm256_set1_epi32(zero_point));
|
201 |
+
z_rounded_v = _mm256_add_epi32(z_rounded_v, _mm256_set1_epi32(zero_point));
|
202 |
+
w_rounded_v = _mm256_add_epi32(w_rounded_v, _mm256_set1_epi32(zero_point));
|
203 |
+
|
204 |
+
__m256i xy_packed_v = _mm256_packs_epi32(x_rounded_v, y_rounded_v);
|
205 |
+
__m256i zw_packed_v = _mm256_packs_epi32(z_rounded_v, w_rounded_v);
|
206 |
+
__m256i xyzw_clamped_v =
|
207 |
+
pack_saturate_and_clamp<T>(xy_packed_v, zw_packed_v, min_val, max_val);
|
208 |
+
|
209 |
+
xyzw_clamped_v =
|
210 |
+
_mm256_permutevar8x32_epi32(xyzw_clamped_v, permute_mask_v);
|
211 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(dst + i), xyzw_clamped_v);
|
212 |
+
}
|
213 |
+
|
214 |
+
// Additional 8-lane AVX2 version to take advantage when len is smaller
|
215 |
+
// based on fbgemm::QuantizeAvx2 (https://github.com/pytorch/FBGEMM)
|
216 |
+
for (; i < len / VLEN * VLEN; i += VLEN) {
|
217 |
+
__m256 x_vals = _mm256_load_ps(src + i);
|
218 |
+
__m256 x_transformed_v = _mm256_mul_ps(x_vals, inverse_scale_v);
|
219 |
+
x_transformed_v =
|
220 |
+
_mm256_min_ps(x_transformed_v, _mm256_set1_ps(int32_float_max_val));
|
221 |
+
__m256i x_rounded_v = _mm256_cvtps_epi32(x_transformed_v);
|
222 |
+
x_rounded_v = _mm256_add_epi32(x_rounded_v, _mm256_set1_epi32(zero_point));
|
223 |
+
__m256i x_clipped_v =
|
224 |
+
_mm256_max_epi32(min_v, _mm256_min_epi32(max_v, x_rounded_v));
|
225 |
+
|
226 |
+
x_clipped_v = _mm256_shuffle_epi8(x_clipped_v, shuffle_mask_v);
|
227 |
+
x_clipped_v = _mm256_permutevar8x32_epi32(x_clipped_v, permute_mask_l8_v);
|
228 |
+
_mm_storel_epi64(
|
229 |
+
reinterpret_cast<__m128i*>(dst + i),
|
230 |
+
_mm256_castsi256_si128(x_clipped_v));
|
231 |
+
}
|
232 |
+
|
233 |
+
for (; i < len; ++i) {
|
234 |
+
float transformed = src[i] * inverse_scale;
|
235 |
+
|
236 |
+
// Not exactly the same behavior as the vectorized code.
|
237 |
+
// The vectorized code above always rounds to even in halfway cases
|
238 |
+
// (https://software.intel.com/en-us/node/523819), but std::nearbyint
|
239 |
+
// does the same only when the current rounding mode is FE_TONEAREST.
|
240 |
+
// However, in practice, this should not be a problem because most cases
|
241 |
+
// use the default rounding mode FE_TONEAREST.
|
242 |
+
// Note that we cannot implement the same behavior as the vectorized code
|
243 |
+
// using std::round because it does rounding away from zero in halfway
|
244 |
+
// cases.
|
245 |
+
transformed = zero_point + std::nearbyint(transformed);
|
246 |
+
float clipped =
|
247 |
+
std::min(std::max(transformed, float(min_val)), float(max_val));
|
248 |
+
dst[i] = clipped;
|
249 |
+
}
|
250 |
+
}
|
251 |
+
|
252 |
+
template<>
|
253 |
+
struct Vectorized<c10::qint32> : public Vectorizedqi {
|
254 |
+
using size_type = int;
|
255 |
+
static constexpr size_type size() {
|
256 |
+
return 8;
|
257 |
+
}
|
258 |
+
|
259 |
+
static constexpr int float_num_vecs() {
|
260 |
+
return 1;
|
261 |
+
}
|
262 |
+
|
263 |
+
static constexpr int int_num_vecs() {
|
264 |
+
return 1;
|
265 |
+
}
|
266 |
+
|
267 |
+
using float_vec_return_type = std::array<Vectorized<float>, 1>;
|
268 |
+
using int_vec_return_type = std::array<Vectorized<c10::qint32>, 1>;
|
269 |
+
using value_type = c10::qint32::underlying;
|
270 |
+
|
271 |
+
public:
|
272 |
+
using Vectorizedqi::Vectorizedqi;
|
273 |
+
Vectorized() {}
|
274 |
+
|
275 |
+
Vectorized(__m256i vals_) { vals = vals_;}
|
276 |
+
|
277 |
+
// Broadcast constructor
|
278 |
+
Vectorized(const c10::qint32& val) {
|
279 |
+
value_type uw = val.val_;
|
280 |
+
vals = _mm256_set1_epi32(uw);
|
281 |
+
}
|
282 |
+
|
283 |
+
void store(void* ptr, int count = size()) const {
|
284 |
+
if (count != size()) {
|
285 |
+
memcpy(ptr, &vals, count * sizeof(value_type));
|
286 |
+
} else {
|
287 |
+
_mm256_storeu_si256((__m256i*)ptr, vals);
|
288 |
+
}
|
289 |
+
}
|
290 |
+
|
291 |
+
static Vectorized<c10::qint32> loadu(const void* ptr) {
|
292 |
+
return Vectorized<c10::qint32>(ptr);
|
293 |
+
}
|
294 |
+
|
295 |
+
static Vectorized<c10::qint32> loadu(const void* ptr, int64_t count) {
|
296 |
+
__at_align__ value_type tmp_values[size()];
|
297 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
298 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
299 |
+
// instructions while a loop would be compiled to one instruction.
|
300 |
+
for (const auto i : c10::irange(size())) {
|
301 |
+
tmp_values[i] = 0;
|
302 |
+
}
|
303 |
+
std::memcpy(
|
304 |
+
tmp_values, reinterpret_cast<const value_type*>(ptr), count * sizeof(value_type));
|
305 |
+
return _mm256_loadu_si256((const __m256i*)tmp_values);
|
306 |
+
}
|
307 |
+
|
308 |
+
float_vec_return_type dequantize(
|
309 |
+
Vectorized<float> scale,
|
310 |
+
Vectorized<float> /*zero_point*/,
|
311 |
+
Vectorized<float> scale_zp_premul) const {
|
312 |
+
__m256 float_vals = _mm256_cvtepi32_ps(vals);
|
313 |
+
return {vec::fmadd(scale, Vectorized<float>(float_vals), scale_zp_premul)};
|
314 |
+
}
|
315 |
+
|
316 |
+
float_vec_return_type dequantize(
|
317 |
+
Vectorized<float> scale,
|
318 |
+
Vectorized<float> zero_point) const {
|
319 |
+
__m256 float_vals = _mm256_cvtepi32_ps(vals);
|
320 |
+
return {(Vectorized<float>(float_vals) - zero_point) * scale};
|
321 |
+
}
|
322 |
+
|
323 |
+
static Vectorized<c10::qint32> quantize(
|
324 |
+
const float_vec_return_type& rhs,
|
325 |
+
float scale,
|
326 |
+
int32_t zero_point,
|
327 |
+
float /*inverse_scale*/) {
|
328 |
+
Vectorized<c10::qint32> retval;
|
329 |
+
auto rhs_data = (__m256)rhs[0];
|
330 |
+
at::native::quantize_vec<c10::qint32, /*precision=*/32>(
|
331 |
+
scale, zero_point, (float*)&rhs_data, (c10::qint32*)&retval.vals, 8);
|
332 |
+
return retval;
|
333 |
+
}
|
334 |
+
|
335 |
+
Vectorized<c10::qint32> maximum(Vectorized<c10::qint32> b) const {
|
336 |
+
return _mm256_max_epi32(vals, b.vals);
|
337 |
+
}
|
338 |
+
|
339 |
+
Vectorized<c10::qint32> minimum(Vectorized<c10::qint32> b) const {
|
340 |
+
return _mm256_min_epi32(vals, b.vals);
|
341 |
+
}
|
342 |
+
|
343 |
+
Vectorized<c10::qint32> relu(Vectorized<c10::qint32> zero_point) const {
|
344 |
+
return maximum(zero_point);
|
345 |
+
}
|
346 |
+
|
347 |
+
Vectorized<c10::qint32> relu6(
|
348 |
+
Vectorized<c10::qint32> zero_point,
|
349 |
+
Vectorized<c10::qint32> q_six) {
|
350 |
+
return _mm256_min_epi32(
|
351 |
+
_mm256_max_epi32(vals, zero_point.vals), q_six.vals);
|
352 |
+
}
|
353 |
+
|
354 |
+
int_vec_return_type widening_subtract(Vectorized<c10::qint32> b) const {
|
355 |
+
return {_mm256_sub_epi32(vals, b)};
|
356 |
+
}
|
357 |
+
|
358 |
+
static Vectorized<c10::qint32> requantize_from_int(
|
359 |
+
const int_vec_return_type& inp,
|
360 |
+
float multiplier,
|
361 |
+
int32_t zero_point) {
|
362 |
+
__m256 multiplier_v = _mm256_set1_ps(multiplier);
|
363 |
+
__m256i zero_point_v = _mm256_set1_epi32(zero_point);
|
364 |
+
|
365 |
+
__m256 scaled = _mm256_mul_ps(_mm256_cvtepi32_ps(inp[0]), multiplier_v);
|
366 |
+
__m256i rounded = _mm256_cvtps_epi32(scaled);
|
367 |
+
return _mm256_add_epi32(rounded, zero_point_v);
|
368 |
+
}
|
369 |
+
|
370 |
+
private:
|
371 |
+
// Load from memory constructor
|
372 |
+
Vectorized(const void* ptr) {
|
373 |
+
vals = _mm256_loadu_si256((const __m256i*)ptr);
|
374 |
+
}
|
375 |
+
};
|
376 |
+
|
377 |
+
template <>
|
378 |
+
Vectorized<c10::qint32> inline maximum(const Vectorized<c10::qint32>& a, const Vectorized<c10::qint32>& b) {
|
379 |
+
return a.maximum(b);
|
380 |
+
}
|
381 |
+
|
382 |
+
template <>
|
383 |
+
Vectorized<c10::qint32> inline operator*(
|
384 |
+
const Vectorized<c10::qint32>& a,
|
385 |
+
const Vectorized<c10::qint32>& b) {
|
386 |
+
return _mm256_mullo_epi32(a, b);
|
387 |
+
}
|
388 |
+
|
389 |
+
template <>
|
390 |
+
Vectorized<c10::qint32> inline operator+(
|
391 |
+
const Vectorized<c10::qint32>& a,
|
392 |
+
const Vectorized<c10::qint32>& b) {
|
393 |
+
return _mm256_add_epi32(a, b);
|
394 |
+
}
|
395 |
+
|
396 |
+
/*
|
397 |
+
* Convert values from int32 back to int8/uint8
|
398 |
+
*/
|
399 |
+
template <typename T>
|
400 |
+
__m256i RequantizeAvx2(
|
401 |
+
const std::array<Vectorized<c10::qint32>, 4>& inp,
|
402 |
+
__m256 multiplier,
|
403 |
+
__m256i zp) {
|
404 |
+
static_assert(
|
405 |
+
std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value,
|
406 |
+
"Only int8_t/uint8_t are supported");
|
407 |
+
constexpr auto min_val = std::numeric_limits<T>::min();
|
408 |
+
constexpr auto max_val = std::numeric_limits<T>::max();
|
409 |
+
__m256i permute_mask_v =
|
410 |
+
_mm256_set_epi32(0x07, 0x03, 0x06, 0x02, 0x05, 0x01, 0x04, 0x00);
|
411 |
+
__m256 x_scaled_v = _mm256_mul_ps(_mm256_cvtepi32_ps(inp[0]), multiplier);
|
412 |
+
__m256 y_scaled_v = _mm256_mul_ps(_mm256_cvtepi32_ps(inp[1]), multiplier);
|
413 |
+
__m256 z_scaled_v = _mm256_mul_ps(_mm256_cvtepi32_ps(inp[2]), multiplier);
|
414 |
+
__m256 w_scaled_v = _mm256_mul_ps(_mm256_cvtepi32_ps(inp[3]), multiplier);
|
415 |
+
|
416 |
+
__m256i x_rounded_v = _mm256_cvtps_epi32(x_scaled_v);
|
417 |
+
__m256i y_rounded_v = _mm256_cvtps_epi32(y_scaled_v);
|
418 |
+
__m256i z_rounded_v = _mm256_cvtps_epi32(z_scaled_v);
|
419 |
+
__m256i w_rounded_v = _mm256_cvtps_epi32(w_scaled_v);
|
420 |
+
|
421 |
+
/* Add zero point */
|
422 |
+
__m256i x_v = _mm256_add_epi32(x_rounded_v, zp);
|
423 |
+
__m256i y_v = _mm256_add_epi32(y_rounded_v, zp);
|
424 |
+
__m256i z_v = _mm256_add_epi32(z_rounded_v, zp);
|
425 |
+
__m256i w_v = _mm256_add_epi32(w_rounded_v, zp);
|
426 |
+
|
427 |
+
/* Pack to int16_t and saturate */
|
428 |
+
__m256i xy_packed_v = _mm256_packs_epi32(x_v, y_v);
|
429 |
+
__m256i zw_packed_v = _mm256_packs_epi32(z_v, w_v);
|
430 |
+
|
431 |
+
__m256i xyzw_clamped_v =
|
432 |
+
pack_saturate_and_clamp<T>(xy_packed_v, zw_packed_v, min_val, max_val);
|
433 |
+
|
434 |
+
/*
|
435 |
+
* xyzw_clamped_v has results in the following layout so we need to
|
436 |
+
* permute: x0-3 y0-3 z0-3 w0-3 x4-7 y4-7 z4-7 w4-7
|
437 |
+
*/
|
438 |
+
xyzw_clamped_v = _mm256_permutevar8x32_epi32(xyzw_clamped_v, permute_mask_v);
|
439 |
+
return xyzw_clamped_v;
|
440 |
+
}
|
441 |
+
|
442 |
+
template<>
|
443 |
+
struct Vectorized<c10::qint8> : public Vectorizedqi {
|
444 |
+
static constexpr int size() {
|
445 |
+
return 32;
|
446 |
+
}
|
447 |
+
|
448 |
+
static constexpr int float_num_vecs() {
|
449 |
+
return 4;
|
450 |
+
}
|
451 |
+
|
452 |
+
static constexpr int int_num_vecs() {
|
453 |
+
return 4;
|
454 |
+
}
|
455 |
+
|
456 |
+
using float_vec_return_type = std::array<Vectorized<float>, 4>;
|
457 |
+
using int_vec_return_type = std::array<Vectorized<c10::qint32>, 4>;
|
458 |
+
using value_type = typename c10::qint8::underlying;
|
459 |
+
|
460 |
+
public:
|
461 |
+
using Vectorizedqi::Vectorizedqi;
|
462 |
+
|
463 |
+
Vectorized() {}
|
464 |
+
Vectorized(__m256i vals_) { vals = vals_;}
|
465 |
+
|
466 |
+
// Broadcast constructor
|
467 |
+
Vectorized(const c10::qint8& val) {
|
468 |
+
value_type uw = val.val_;
|
469 |
+
vals = _mm256_set1_epi8(uw);
|
470 |
+
}
|
471 |
+
|
472 |
+
// This is needed because the compiler emits awful code for the default
|
473 |
+
// constructor for moving the enum
|
474 |
+
// NOLINTNEXTLINE(clang-diagnostic-deprecated-copy)
|
475 |
+
C10_CLANG_DIAGNOSTIC_PUSH()
|
476 |
+
#if C10_CLANG_HAS_WARNING("-Wdeprecated-copy")
|
477 |
+
C10_CLANG_DIAGNOSTIC_IGNORE("-Wdeprecated-copy")
|
478 |
+
#endif
|
479 |
+
Vectorized(const Vectorized<c10::qint8>& other) : Vectorizedqi(other.vals) { }
|
480 |
+
C10_CLANG_DIAGNOSTIC_POP()
|
481 |
+
|
482 |
+
void store(void* ptr, int count = size()) const {
|
483 |
+
if (count != size()) {
|
484 |
+
memcpy(ptr, &vals, count * sizeof(value_type));
|
485 |
+
} else {
|
486 |
+
_mm256_storeu_si256((__m256i*)ptr, vals);
|
487 |
+
}
|
488 |
+
}
|
489 |
+
|
490 |
+
static Vectorized<c10::qint8> loadu(const void* ptr) {
|
491 |
+
return Vectorized<c10::qint8>(ptr);
|
492 |
+
}
|
493 |
+
|
494 |
+
static Vectorized<c10::qint8> loadu(const void* ptr, int64_t count) {
|
495 |
+
__at_align__ value_type tmp_values[size()];
|
496 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
497 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
498 |
+
// instructions while a loop would be compiled to one instruction.
|
499 |
+
for (const auto i : c10::irange(size())) {
|
500 |
+
tmp_values[i] = 0;
|
501 |
+
}
|
502 |
+
std::memcpy(
|
503 |
+
tmp_values, reinterpret_cast<const value_type*>(ptr), count * sizeof(value_type));
|
504 |
+
return _mm256_loadu_si256((const __m256i*)tmp_values);
|
505 |
+
}
|
506 |
+
|
507 |
+
private:
|
508 |
+
__m256i cvtepi8_epi32(__m128i epi8_vals) const {
|
509 |
+
return _mm256_cvtepi8_epi32(epi8_vals);
|
510 |
+
}
|
511 |
+
|
512 |
+
public:
|
513 |
+
float_vec_return_type dequantize(
|
514 |
+
Vectorized<float> scale,
|
515 |
+
Vectorized<float> /*zero_point*/,
|
516 |
+
Vectorized<float> scale_neg_zp_premul) const {
|
517 |
+
__m128i int_val0 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 0));
|
518 |
+
__m128i int_val1 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 1));
|
519 |
+
__m128i int_val2 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 2));
|
520 |
+
__m128i int_val3 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 3));
|
521 |
+
|
522 |
+
__m256 float_val0 = _mm256_cvtepi32_ps(cvtepi8_epi32(int_val0));
|
523 |
+
__m256 float_val1 = _mm256_cvtepi32_ps(cvtepi8_epi32(int_val1));
|
524 |
+
__m256 float_val2 = _mm256_cvtepi32_ps(cvtepi8_epi32(int_val2));
|
525 |
+
__m256 float_val3 = _mm256_cvtepi32_ps(cvtepi8_epi32(int_val3));
|
526 |
+
|
527 |
+
auto val0 =
|
528 |
+
vec::fmadd(scale, Vectorized<float>(float_val0), scale_neg_zp_premul);
|
529 |
+
auto val1 =
|
530 |
+
vec::fmadd(scale, Vectorized<float>(float_val1), scale_neg_zp_premul);
|
531 |
+
auto val2 =
|
532 |
+
vec::fmadd(scale, Vectorized<float>(float_val2), scale_neg_zp_premul);
|
533 |
+
auto val3 =
|
534 |
+
vec::fmadd(scale, Vectorized<float>(float_val3), scale_neg_zp_premul);
|
535 |
+
return {val0, val1, val2, val3};
|
536 |
+
}
|
537 |
+
|
538 |
+
float_vec_return_type dequantize(
|
539 |
+
Vectorized<float> scale,
|
540 |
+
Vectorized<float> zero_point) const {
|
541 |
+
__m128i int_val0 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 0));
|
542 |
+
__m128i int_val1 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 1));
|
543 |
+
__m128i int_val2 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 2));
|
544 |
+
__m128i int_val3 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 3));
|
545 |
+
|
546 |
+
__m256 float_val0 = _mm256_cvtepi32_ps(cvtepi8_epi32(int_val0));
|
547 |
+
__m256 float_val1 = _mm256_cvtepi32_ps(cvtepi8_epi32(int_val1));
|
548 |
+
__m256 float_val2 = _mm256_cvtepi32_ps(cvtepi8_epi32(int_val2));
|
549 |
+
__m256 float_val3 = _mm256_cvtepi32_ps(cvtepi8_epi32(int_val3));
|
550 |
+
|
551 |
+
auto val0 = (Vectorized<float>(float_val0) - zero_point) * scale;
|
552 |
+
auto val1 = (Vectorized<float>(float_val1) - zero_point) * scale;
|
553 |
+
auto val2 = (Vectorized<float>(float_val2) - zero_point) * scale;
|
554 |
+
auto val3 = (Vectorized<float>(float_val3) - zero_point) * scale;
|
555 |
+
return {val0, val1, val2, val3};
|
556 |
+
}
|
557 |
+
|
558 |
+
static Vectorized<c10::qint8> quantize(
|
559 |
+
const float_vec_return_type& rhs,
|
560 |
+
float /*scale*/,
|
561 |
+
int32_t zero_point,
|
562 |
+
float inverse_scale) {
|
563 |
+
auto* rhs_data = (float*)rhs.data();
|
564 |
+
int8_t quantized_values[32];
|
565 |
+
QuantizeAvx2<value_type>(
|
566 |
+
rhs_data, quantized_values, 32, inverse_scale, zero_point);
|
567 |
+
return Vectorized<c10::qint8>::loadu(quantized_values);
|
568 |
+
}
|
569 |
+
|
570 |
+
Vectorized<c10::qint8> maximum(Vectorized<c10::qint8> b) const {
|
571 |
+
return _mm256_max_epi8(vals, b.vals);
|
572 |
+
}
|
573 |
+
|
574 |
+
Vectorized<c10::qint8> minimum(Vectorized<c10::qint8> b) const {
|
575 |
+
return _mm256_min_epi8(vals, b.vals);
|
576 |
+
}
|
577 |
+
|
578 |
+
Vectorized<c10::qint8> relu(Vectorized<c10::qint8> zero_point) const {
|
579 |
+
return maximum(zero_point);
|
580 |
+
}
|
581 |
+
|
582 |
+
Vectorized<c10::qint8> relu6(
|
583 |
+
Vectorized<c10::qint8> zero_point,
|
584 |
+
Vectorized<c10::qint8> q_six) {
|
585 |
+
return _mm256_min_epi8(
|
586 |
+
_mm256_max_epi8(vals, zero_point.vals), q_six.vals);
|
587 |
+
}
|
588 |
+
|
589 |
+
int_vec_return_type widening_subtract(Vectorized<c10::qint8> b) const {
|
590 |
+
__m128i int_val0 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 0));
|
591 |
+
__m128i int_val1 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 1));
|
592 |
+
__m128i int_val2 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 2));
|
593 |
+
__m128i int_val3 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 3));
|
594 |
+
|
595 |
+
__m256i int32_val0 = cvtepi8_epi32(int_val0);
|
596 |
+
__m256i int32_val1 = cvtepi8_epi32(int_val1);
|
597 |
+
__m256i int32_val2 = cvtepi8_epi32(int_val2);
|
598 |
+
__m256i int32_val3 = cvtepi8_epi32(int_val3);
|
599 |
+
|
600 |
+
__m128i int_b0 = _mm_set1_epi64x(_mm256_extract_epi64(b, 0));
|
601 |
+
__m128i int_b1 = _mm_set1_epi64x(_mm256_extract_epi64(b, 1));
|
602 |
+
__m128i int_b2 = _mm_set1_epi64x(_mm256_extract_epi64(b, 2));
|
603 |
+
__m128i int_b3 = _mm_set1_epi64x(_mm256_extract_epi64(b, 3));
|
604 |
+
|
605 |
+
__m256i int32_b0 = cvtepi8_epi32(int_b0);
|
606 |
+
__m256i int32_b1 = cvtepi8_epi32(int_b1);
|
607 |
+
__m256i int32_b2 = cvtepi8_epi32(int_b2);
|
608 |
+
__m256i int32_b3 = cvtepi8_epi32(int_b3);
|
609 |
+
|
610 |
+
__m256i res_0 = _mm256_sub_epi32(int32_val0, int32_b0);
|
611 |
+
__m256i res_1 = _mm256_sub_epi32(int32_val1, int32_b1);
|
612 |
+
__m256i res_2 = _mm256_sub_epi32(int32_val2, int32_b2);
|
613 |
+
__m256i res_3 = _mm256_sub_epi32(int32_val3, int32_b3);
|
614 |
+
|
615 |
+
return {Vectorized<c10::qint32>(res_0),
|
616 |
+
Vectorized<c10::qint32>(res_1),
|
617 |
+
Vectorized<c10::qint32>(res_2),
|
618 |
+
Vectorized<c10::qint32>(res_3)};
|
619 |
+
}
|
620 |
+
|
621 |
+
static Vectorized<c10::qint8> requantize_from_int(
|
622 |
+
const int_vec_return_type& inp,
|
623 |
+
float multiplier,
|
624 |
+
int32_t zero_point) {
|
625 |
+
__m256 multiplier_v = _mm256_set1_ps(multiplier);
|
626 |
+
__m256i zero_point_v = _mm256_set1_epi32(zero_point);
|
627 |
+
return RequantizeAvx2<value_type>(inp, multiplier_v, zero_point_v);
|
628 |
+
}
|
629 |
+
|
630 |
+
private:
|
631 |
+
// Load from memory constructor
|
632 |
+
Vectorized(const void* ptr) {
|
633 |
+
vals = _mm256_loadu_si256((const __m256i*)ptr);
|
634 |
+
}
|
635 |
+
};
|
636 |
+
|
637 |
+
template <>
|
638 |
+
Vectorized<c10::qint8> inline maximum(const Vectorized<c10::qint8>& a, const Vectorized<c10::qint8>& b) {
|
639 |
+
return a.maximum(b);
|
640 |
+
}
|
641 |
+
|
642 |
+
template<>
|
643 |
+
struct Vectorized<c10::quint8> : public Vectorizedqi {
|
644 |
+
static constexpr int size() {
|
645 |
+
return 32;
|
646 |
+
}
|
647 |
+
|
648 |
+
static constexpr int float_num_vecs() {
|
649 |
+
return 4;
|
650 |
+
}
|
651 |
+
|
652 |
+
static constexpr int int_num_vecs() {
|
653 |
+
return 4;
|
654 |
+
}
|
655 |
+
|
656 |
+
using float_vec_return_type = std::array<Vectorized<float>, 4>;
|
657 |
+
using int_vec_return_type = std::array<Vectorized<c10::qint32>, 4>;
|
658 |
+
using value_type = typename c10::quint8::underlying;
|
659 |
+
|
660 |
+
public:
|
661 |
+
using Vectorizedqi::Vectorizedqi;
|
662 |
+
Vectorized() {}
|
663 |
+
|
664 |
+
Vectorized(__m256i vals_) { vals = vals_;}
|
665 |
+
|
666 |
+
// Broadcast constructor
|
667 |
+
Vectorized(const c10::quint8& val) {
|
668 |
+
value_type uw = val.val_;
|
669 |
+
vals = _mm256_set1_epi8(uw);
|
670 |
+
}
|
671 |
+
|
672 |
+
// NOLINTNEXTLINE(clang-diagnostic-deprecated-copy)
|
673 |
+
C10_CLANG_DIAGNOSTIC_PUSH()
|
674 |
+
#if C10_CLANG_HAS_WARNING("-Wdeprecated-copy")
|
675 |
+
C10_CLANG_DIAGNOSTIC_IGNORE("-Wdeprecated-copy")
|
676 |
+
#endif
|
677 |
+
Vectorized(const Vectorized<c10::quint8>& other) : Vectorizedqi(other.vals) { }
|
678 |
+
C10_CLANG_DIAGNOSTIC_POP()
|
679 |
+
|
680 |
+
void store(void* ptr, int count = size()) const {
|
681 |
+
if (count != size()) {
|
682 |
+
memcpy(ptr, &vals, count * sizeof(value_type));
|
683 |
+
} else {
|
684 |
+
_mm256_storeu_si256((__m256i*)ptr, vals);
|
685 |
+
}
|
686 |
+
}
|
687 |
+
|
688 |
+
static Vectorized<c10::quint8> loadu(const void* ptr) {
|
689 |
+
return Vectorized<c10::quint8>(ptr);
|
690 |
+
}
|
691 |
+
|
692 |
+
static Vectorized<c10::quint8> loadu(const void* ptr, int64_t count) {
|
693 |
+
__at_align__ value_type tmp_values[size()];
|
694 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
695 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
696 |
+
// instructions while a loop would be compiled to one instruction.
|
697 |
+
for (const auto i : c10::irange(size())) {
|
698 |
+
tmp_values[i] = 0;
|
699 |
+
}
|
700 |
+
std::memcpy(
|
701 |
+
tmp_values, reinterpret_cast<const value_type*>(ptr), count * sizeof(value_type));
|
702 |
+
return _mm256_loadu_si256((const __m256i*)tmp_values);
|
703 |
+
}
|
704 |
+
|
705 |
+
private:
|
706 |
+
__m256i cvtepu8_epi32(__m128i epu8_vals) const {
|
707 |
+
return _mm256_cvtepu8_epi32(epu8_vals);
|
708 |
+
}
|
709 |
+
|
710 |
+
public:
|
711 |
+
float_vec_return_type dequantize(
|
712 |
+
Vectorized<float> scale,
|
713 |
+
Vectorized<float> /*zero_point*/,
|
714 |
+
Vectorized<float> scale_zp_premul) const {
|
715 |
+
__m128i int_val0 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 0));
|
716 |
+
__m128i int_val1 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 1));
|
717 |
+
__m128i int_val2 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 2));
|
718 |
+
__m128i int_val3 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 3));
|
719 |
+
|
720 |
+
__m256 float_val0 = _mm256_cvtepi32_ps(cvtepu8_epi32(int_val0));
|
721 |
+
__m256 float_val1 = _mm256_cvtepi32_ps(cvtepu8_epi32(int_val1));
|
722 |
+
__m256 float_val2 = _mm256_cvtepi32_ps(cvtepu8_epi32(int_val2));
|
723 |
+
__m256 float_val3 = _mm256_cvtepi32_ps(cvtepu8_epi32(int_val3));
|
724 |
+
|
725 |
+
auto val0 =
|
726 |
+
vec::fmadd(scale, Vectorized<float>(float_val0), scale_zp_premul);
|
727 |
+
auto val1 =
|
728 |
+
vec::fmadd(scale, Vectorized<float>(float_val1), scale_zp_premul);
|
729 |
+
auto val2 =
|
730 |
+
vec::fmadd(scale, Vectorized<float>(float_val2), scale_zp_premul);
|
731 |
+
auto val3 =
|
732 |
+
vec::fmadd(scale, Vectorized<float>(float_val3), scale_zp_premul);
|
733 |
+
return {val0, val1, val2, val3};
|
734 |
+
}
|
735 |
+
|
736 |
+
float_vec_return_type dequantize(
|
737 |
+
Vectorized<float> scale,
|
738 |
+
Vectorized<float> zero_point) const {
|
739 |
+
__m128i int_val0 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 0));
|
740 |
+
__m128i int_val1 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 1));
|
741 |
+
__m128i int_val2 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 2));
|
742 |
+
__m128i int_val3 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 3));
|
743 |
+
|
744 |
+
__m256 float_val0 = _mm256_cvtepi32_ps(cvtepu8_epi32(int_val0));
|
745 |
+
__m256 float_val1 = _mm256_cvtepi32_ps(cvtepu8_epi32(int_val1));
|
746 |
+
__m256 float_val2 = _mm256_cvtepi32_ps(cvtepu8_epi32(int_val2));
|
747 |
+
__m256 float_val3 = _mm256_cvtepi32_ps(cvtepu8_epi32(int_val3));
|
748 |
+
|
749 |
+
auto val0 = (Vectorized<float>(float_val0) - zero_point) * scale;
|
750 |
+
auto val1 = (Vectorized<float>(float_val1) - zero_point) * scale;
|
751 |
+
auto val2 = (Vectorized<float>(float_val2) - zero_point) * scale;
|
752 |
+
auto val3 = (Vectorized<float>(float_val3) - zero_point) * scale;
|
753 |
+
return {val0, val1, val2, val3};
|
754 |
+
}
|
755 |
+
|
756 |
+
static Vectorized<c10::quint8> quantize(
|
757 |
+
const float_vec_return_type& rhs,
|
758 |
+
float /*scale*/,
|
759 |
+
int32_t zero_point,
|
760 |
+
float inverse_scale) {
|
761 |
+
auto* rhs_data = (float*)rhs.data();
|
762 |
+
uint8_t quantized_values[32];
|
763 |
+
QuantizeAvx2<value_type>(
|
764 |
+
rhs_data, quantized_values, 32, inverse_scale, zero_point);
|
765 |
+
return Vectorized<c10::quint8>::loadu(quantized_values);
|
766 |
+
}
|
767 |
+
|
768 |
+
Vectorized<c10::quint8> maximum(Vectorized<c10::quint8> b) const {
|
769 |
+
return _mm256_max_epu8(vals, b.vals);
|
770 |
+
}
|
771 |
+
|
772 |
+
Vectorized<c10::quint8> minimum(Vectorized<c10::quint8> b) const {
|
773 |
+
return _mm256_min_epu8(vals, b.vals);
|
774 |
+
}
|
775 |
+
|
776 |
+
Vectorized<c10::quint8> relu(Vectorized<c10::quint8> zero_point) const {
|
777 |
+
return maximum(zero_point);
|
778 |
+
}
|
779 |
+
|
780 |
+
Vectorized<c10::quint8> relu6(
|
781 |
+
Vectorized<c10::quint8> zero_point,
|
782 |
+
Vectorized<c10::quint8> q_six) {
|
783 |
+
return _mm256_min_epu8(
|
784 |
+
_mm256_max_epu8(vals, zero_point.vals), q_six.vals);
|
785 |
+
}
|
786 |
+
|
787 |
+
int_vec_return_type widening_subtract(Vectorized<c10::quint8> b) const {
|
788 |
+
__m128i int_val0 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 0));
|
789 |
+
__m128i int_val1 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 1));
|
790 |
+
__m128i int_val2 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 2));
|
791 |
+
__m128i int_val3 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 3));
|
792 |
+
|
793 |
+
__m256i int32_val0 = cvtepu8_epi32(int_val0);
|
794 |
+
__m256i int32_val1 = cvtepu8_epi32(int_val1);
|
795 |
+
__m256i int32_val2 = cvtepu8_epi32(int_val2);
|
796 |
+
__m256i int32_val3 = cvtepu8_epi32(int_val3);
|
797 |
+
|
798 |
+
__m128i int_b0 = _mm_set1_epi64x(_mm256_extract_epi64(b, 0));
|
799 |
+
__m128i int_b1 = _mm_set1_epi64x(_mm256_extract_epi64(b, 1));
|
800 |
+
__m128i int_b2 = _mm_set1_epi64x(_mm256_extract_epi64(b, 2));
|
801 |
+
__m128i int_b3 = _mm_set1_epi64x(_mm256_extract_epi64(b, 3));
|
802 |
+
|
803 |
+
__m256i int32_b0 = cvtepu8_epi32(int_b0);
|
804 |
+
__m256i int32_b1 = cvtepu8_epi32(int_b1);
|
805 |
+
__m256i int32_b2 = cvtepu8_epi32(int_b2);
|
806 |
+
__m256i int32_b3 = cvtepu8_epi32(int_b3);
|
807 |
+
|
808 |
+
__m256i res_0 = _mm256_sub_epi32(int32_val0, int32_b0);
|
809 |
+
__m256i res_1 = _mm256_sub_epi32(int32_val1, int32_b1);
|
810 |
+
__m256i res_2 = _mm256_sub_epi32(int32_val2, int32_b2);
|
811 |
+
__m256i res_3 = _mm256_sub_epi32(int32_val3, int32_b3);
|
812 |
+
return {Vectorized<c10::qint32>(res_0),
|
813 |
+
Vectorized<c10::qint32>(res_1),
|
814 |
+
Vectorized<c10::qint32>(res_2),
|
815 |
+
Vectorized<c10::qint32>(res_3)};
|
816 |
+
}
|
817 |
+
|
818 |
+
static Vectorized<c10::quint8> requantize_from_int(
|
819 |
+
const int_vec_return_type& inp,
|
820 |
+
float multiplier,
|
821 |
+
int32_t zero_point) {
|
822 |
+
__m256 multiplier_v = _mm256_set1_ps(multiplier);
|
823 |
+
__m256i zero_point_v = _mm256_set1_epi32(zero_point);
|
824 |
+
return RequantizeAvx2<value_type>(inp, multiplier_v, zero_point_v);
|
825 |
+
}
|
826 |
+
|
827 |
+
private:
|
828 |
+
|
829 |
+
// Load from memory constructor
|
830 |
+
Vectorized(const void* ptr) {
|
831 |
+
vals = _mm256_loadu_si256((const __m256i*)ptr);
|
832 |
+
}
|
833 |
+
};
|
834 |
+
|
835 |
+
template <>
|
836 |
+
Vectorized<c10::quint8> inline maximum(const Vectorized<c10::quint8>& a, const Vectorized<c10::quint8>& b) {
|
837 |
+
return a.maximum(b);
|
838 |
+
}
|
839 |
+
|
840 |
+
#else
|
841 |
+
|
842 |
+
// NOTE: These are low-performance implementations that we fall back on
|
843 |
+
// if we are not building with AVX2. This may not be an issue, because
|
844 |
+
// currently for quantization we assume the user has at least AVX512
|
845 |
+
// installed, so these can simply act as a reference implementation.
|
846 |
+
//
|
847 |
+
// If in the future we relax this requirement (AVX2+), we should probably
|
848 |
+
// revisit these implementations
|
849 |
+
|
850 |
+
template <
|
851 |
+
typename T,
|
852 |
+
typename float_vec_return_type_,
|
853 |
+
typename int_vec_return_type_,
|
854 |
+
int size_>
|
855 |
+
struct VectorizedQuantizedConverter {
|
856 |
+
static constexpr int size() {
|
857 |
+
return size_;
|
858 |
+
}
|
859 |
+
|
860 |
+
static constexpr int float_num_vecs() {
|
861 |
+
return size() / 8;
|
862 |
+
}
|
863 |
+
|
864 |
+
static constexpr int int_num_vecs() {
|
865 |
+
return size() / 8;
|
866 |
+
}
|
867 |
+
|
868 |
+
using float_vec_return_type = float_vec_return_type_;
|
869 |
+
using int_vec_return_type = int_vec_return_type_;
|
870 |
+
|
871 |
+
using value_type = typename T::underlying;
|
872 |
+
std::array<value_type, size_> vals;
|
873 |
+
|
874 |
+
VectorizedQuantizedConverter(T val) {
|
875 |
+
for (const auto i : c10::irange(size())) {
|
876 |
+
vals[i] = val.val_;
|
877 |
+
}
|
878 |
+
}
|
879 |
+
|
880 |
+
VectorizedQuantizedConverter(const void* ptr) {
|
881 |
+
memcpy(vals.data(), ptr, sizeof(value_type) * size());
|
882 |
+
}
|
883 |
+
|
884 |
+
void store(void* ptr, int count = size()) const {
|
885 |
+
memcpy(ptr, vals.data(), count * sizeof(value_type));
|
886 |
+
}
|
887 |
+
|
888 |
+
float_vec_return_type dequantize(
|
889 |
+
Vectorized<float> scale,
|
890 |
+
Vectorized<float> zero_point,
|
891 |
+
Vectorized<float> /*scale_zp_premul*/) const {
|
892 |
+
float_vec_return_type rv;
|
893 |
+
for (const auto i : c10::irange(float_num_vecs())) {
|
894 |
+
float tmp_vals[8];
|
895 |
+
for (const auto j : c10::irange(8)) {
|
896 |
+
tmp_vals[j] = at::native::dequantize_val<T>(
|
897 |
+
scale[j], zero_point[j], T(vals[8 * i + j]));
|
898 |
+
}
|
899 |
+
rv[i] = Vectorized<float>(tmp_vals[0],
|
900 |
+
tmp_vals[1],
|
901 |
+
tmp_vals[2],
|
902 |
+
tmp_vals[3],
|
903 |
+
tmp_vals[4],
|
904 |
+
tmp_vals[5],
|
905 |
+
tmp_vals[6],
|
906 |
+
tmp_vals[7]);
|
907 |
+
}
|
908 |
+
return rv;
|
909 |
+
}
|
910 |
+
|
911 |
+
float_vec_return_type dequantize(
|
912 |
+
Vectorized<float> scale,
|
913 |
+
Vectorized<float> zero_point) const {
|
914 |
+
Vectorized<float> scale_zp_premul;
|
915 |
+
return dequantize(scale, zero_point, scale_zp_premul);
|
916 |
+
}
|
917 |
+
|
918 |
+
protected:
|
919 |
+
VectorizedQuantizedConverter() {}
|
920 |
+
};
|
921 |
+
|
922 |
+
template <>
|
923 |
+
struct Vectorized<c10::qint32> : public VectorizedQuantizedConverter<
|
924 |
+
c10::qint32,
|
925 |
+
std::array<Vectorized<float>, 1>,
|
926 |
+
std::array<Vectorized<c10::qint32>, 1>,
|
927 |
+
8> {
|
928 |
+
Vectorized()
|
929 |
+
: VectorizedQuantizedConverter<
|
930 |
+
c10::qint32,
|
931 |
+
std::array<Vectorized<float>, 1>,
|
932 |
+
std::array<Vectorized<c10::qint32>, 1>,
|
933 |
+
8>() {}
|
934 |
+
Vectorized(c10::qint32 val)
|
935 |
+
: VectorizedQuantizedConverter<
|
936 |
+
c10::qint32,
|
937 |
+
std::array<Vectorized<float>, 1>,
|
938 |
+
std::array<Vectorized<c10::qint32>, 1>,
|
939 |
+
8>(val) {}
|
940 |
+
Vectorized(const void* ptr)
|
941 |
+
: VectorizedQuantizedConverter<
|
942 |
+
c10::qint32,
|
943 |
+
std::array<Vectorized<float>, 1>,
|
944 |
+
std::array<Vectorized<c10::qint32>, 1>,
|
945 |
+
8>(ptr) {}
|
946 |
+
|
947 |
+
static Vectorized<c10::qint32> loadu(const void* ptr) {
|
948 |
+
return Vectorized<c10::qint32>(ptr);
|
949 |
+
}
|
950 |
+
|
951 |
+
static Vectorized<c10::qint32> loadu(const void* ptr, int64_t count) {
|
952 |
+
__at_align__ value_type tmp_values[size()];
|
953 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
954 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
955 |
+
// instructions while a loop would be compiled to one instruction.
|
956 |
+
for (const auto i : c10::irange(size())) {
|
957 |
+
tmp_values[i] = 0;
|
958 |
+
}
|
959 |
+
std::memcpy(
|
960 |
+
tmp_values, reinterpret_cast<const value_type*>(ptr), count * sizeof(value_type));
|
961 |
+
return Vectorized<c10::qint32>(tmp_values);
|
962 |
+
}
|
963 |
+
|
964 |
+
static Vectorized<c10::qint32> quantize(
|
965 |
+
const float_vec_return_type& rhs,
|
966 |
+
float scale,
|
967 |
+
int32_t zero_point,
|
968 |
+
float /*inverse_scale*/) {
|
969 |
+
std::array<value_type, size()> qvals;
|
970 |
+
std::array<float, float_num_vecs() * 8> float_vals;
|
971 |
+
|
972 |
+
for (const auto i : c10::irange(float_num_vecs())) {
|
973 |
+
rhs[i].store(&float_vals[i * 8], 8);
|
974 |
+
}
|
975 |
+
|
976 |
+
at::native::quantize_vec<c10::qint32, /*precision=*/32>(
|
977 |
+
scale,
|
978 |
+
zero_point,
|
979 |
+
float_vals.data(),
|
980 |
+
(c10::qint32*)qvals.data(),
|
981 |
+
8 * float_num_vecs());
|
982 |
+
|
983 |
+
return Vectorized<c10::qint32>::loadu(qvals.data());
|
984 |
+
}
|
985 |
+
|
986 |
+
Vectorized<c10::qint32> maximum(Vectorized<c10::qint32> b) const {
|
987 |
+
Vectorized<c10::qint32> retval;
|
988 |
+
for (const auto i : c10::irange(size())) {
|
989 |
+
retval.vals[i] = std::max<value_type>(vals[i], b.vals[i]);
|
990 |
+
}
|
991 |
+
return retval;
|
992 |
+
}
|
993 |
+
|
994 |
+
Vectorized<c10::qint32> minimum(Vectorized<c10::qint32> b) const {
|
995 |
+
Vectorized<c10::qint32> retval;
|
996 |
+
for (const auto i : c10::irange(size())) {
|
997 |
+
retval.vals[i] = std::min<value_type>(vals[i], b.vals[i]);
|
998 |
+
}
|
999 |
+
return retval;
|
1000 |
+
}
|
1001 |
+
|
1002 |
+
Vectorized<c10::qint32> relu(Vectorized<c10::qint32> zero_point) const {
|
1003 |
+
return maximum(zero_point);
|
1004 |
+
}
|
1005 |
+
|
1006 |
+
|
1007 |
+
Vectorized<c10::qint32> relu6(
|
1008 |
+
Vectorized<c10::qint32> zero_point,
|
1009 |
+
Vectorized<c10::qint32> q_six) {
|
1010 |
+
Vectorized<c10::qint32> retval;
|
1011 |
+
for (const auto i : c10::irange(size())) {
|
1012 |
+
retval.vals[i] = std::min<value_type>(
|
1013 |
+
std::max<value_type>(vals[i], zero_point.vals[i]), q_six.vals[i]);
|
1014 |
+
}
|
1015 |
+
return retval;
|
1016 |
+
}
|
1017 |
+
|
1018 |
+
int_vec_return_type widening_subtract(Vectorized<c10::qint32> b) const {
|
1019 |
+
int_vec_return_type retval;
|
1020 |
+
for (const auto i : c10::irange(size())) {
|
1021 |
+
retval[0].vals[i] = vals[i] - b.vals[i];
|
1022 |
+
}
|
1023 |
+
return retval;
|
1024 |
+
}
|
1025 |
+
|
1026 |
+
static Vectorized<c10::qint32> requantize_from_int(
|
1027 |
+
const int_vec_return_type& inp,
|
1028 |
+
float multiplier,
|
1029 |
+
int32_t zero_point) {
|
1030 |
+
Vectorized<c10::qint32> retval;
|
1031 |
+
for (const auto i : c10::irange(size())) {
|
1032 |
+
retval.vals[i] =
|
1033 |
+
std::nearbyint(static_cast<float>(inp[0].vals[i]) * multiplier) +
|
1034 |
+
zero_point;
|
1035 |
+
}
|
1036 |
+
return retval;
|
1037 |
+
}
|
1038 |
+
};
|
1039 |
+
|
1040 |
+
template <>
|
1041 |
+
Vectorized<c10::qint32> inline maximum(const Vectorized<c10::qint32>& a, const Vectorized<c10::qint32>& b) {
|
1042 |
+
return a.maximum(b);
|
1043 |
+
}
|
1044 |
+
|
1045 |
+
template <>
|
1046 |
+
Vectorized<c10::qint32> inline operator*(
|
1047 |
+
const Vectorized<c10::qint32>& a,
|
1048 |
+
const Vectorized<c10::qint32>& b) {
|
1049 |
+
Vectorized<c10::qint32> retval;
|
1050 |
+
for (const auto i : c10::irange(std::decay_t<decltype(a)>::size())) {
|
1051 |
+
retval.vals[i] = a.vals[i] * b.vals[i];
|
1052 |
+
}
|
1053 |
+
return retval;
|
1054 |
+
}
|
1055 |
+
|
1056 |
+
template <>
|
1057 |
+
Vectorized<c10::qint32> inline operator+(
|
1058 |
+
const Vectorized<c10::qint32>& a,
|
1059 |
+
const Vectorized<c10::qint32>& b) {
|
1060 |
+
Vectorized<c10::qint32> retval;
|
1061 |
+
for (const auto i : c10::irange(std::decay_t<decltype(a)>::size())) {
|
1062 |
+
retval.vals[i] = a.vals[i] + b.vals[i];
|
1063 |
+
}
|
1064 |
+
return retval;
|
1065 |
+
}
|
1066 |
+
|
1067 |
+
template <>
|
1068 |
+
struct Vectorized<c10::qint8> : public VectorizedQuantizedConverter<
|
1069 |
+
c10::qint8,
|
1070 |
+
std::array<Vectorized<float>, 4>,
|
1071 |
+
std::array<Vectorized<c10::qint32>, 4>,
|
1072 |
+
32> {
|
1073 |
+
Vectorized()
|
1074 |
+
: VectorizedQuantizedConverter<
|
1075 |
+
c10::qint8,
|
1076 |
+
std::array<Vectorized<float>, 4>,
|
1077 |
+
std::array<Vectorized<c10::qint32>, 4>,
|
1078 |
+
32>() {}
|
1079 |
+
Vectorized(c10::qint8 val)
|
1080 |
+
: VectorizedQuantizedConverter<
|
1081 |
+
c10::qint8,
|
1082 |
+
std::array<Vectorized<float>, 4>,
|
1083 |
+
std::array<Vectorized<c10::qint32>, 4>,
|
1084 |
+
32>(val) {}
|
1085 |
+
Vectorized(const void* ptr)
|
1086 |
+
: VectorizedQuantizedConverter<
|
1087 |
+
c10::qint8,
|
1088 |
+
std::array<Vectorized<float>, 4>,
|
1089 |
+
std::array<Vectorized<c10::qint32>, 4>,
|
1090 |
+
32>(ptr) {}
|
1091 |
+
|
1092 |
+
static Vectorized<c10::qint8> loadu(const void* ptr) {
|
1093 |
+
return Vectorized<c10::qint8>(ptr);
|
1094 |
+
}
|
1095 |
+
|
1096 |
+
static Vectorized<c10::qint8> loadu(const void* ptr, int64_t count) {
|
1097 |
+
__at_align__ value_type tmp_values[size()];
|
1098 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
1099 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
1100 |
+
// instructions while a loop would be compiled to one instruction.
|
1101 |
+
for (const auto i : c10::irange(size())) {
|
1102 |
+
tmp_values[i] = 0;
|
1103 |
+
}
|
1104 |
+
std::memcpy(
|
1105 |
+
tmp_values, reinterpret_cast<const value_type*>(ptr), count * sizeof(value_type));
|
1106 |
+
return Vectorized<c10::qint8>(tmp_values);
|
1107 |
+
}
|
1108 |
+
|
1109 |
+
static Vectorized<c10::qint8> quantize(
|
1110 |
+
const float_vec_return_type& rhs,
|
1111 |
+
float scale,
|
1112 |
+
int32_t zero_point,
|
1113 |
+
float /*inverse_scale*/) {
|
1114 |
+
std::array<value_type, size()> qvals;
|
1115 |
+
std::array<float, float_num_vecs() * 8> float_vals;
|
1116 |
+
|
1117 |
+
for (const auto i : c10::irange(float_num_vecs())) {
|
1118 |
+
rhs[i].store(&float_vals[i * 8], 8);
|
1119 |
+
}
|
1120 |
+
|
1121 |
+
at::native::quantize_vec<c10::qint8>(
|
1122 |
+
scale,
|
1123 |
+
zero_point,
|
1124 |
+
float_vals.data(),
|
1125 |
+
(c10::qint8*)qvals.data(),
|
1126 |
+
8 * float_num_vecs());
|
1127 |
+
|
1128 |
+
return Vectorized<c10::qint8>::loadu(qvals.data());
|
1129 |
+
}
|
1130 |
+
|
1131 |
+
Vectorized<c10::qint8> maximum(Vectorized<c10::qint8> b) const {
|
1132 |
+
Vectorized<c10::qint8> retval;
|
1133 |
+
for (const auto i : c10::irange(size())) {
|
1134 |
+
retval.vals[i] = std::max<value_type>(vals[i], b.vals[i]);
|
1135 |
+
}
|
1136 |
+
return retval;
|
1137 |
+
}
|
1138 |
+
|
1139 |
+
Vectorized<c10::qint8> minimum(Vectorized<c10::qint8> b) const {
|
1140 |
+
Vectorized<c10::qint8> retval;
|
1141 |
+
for (const auto i : c10::irange(size())) {
|
1142 |
+
retval.vals[i] = std::min<value_type>(vals[i], b.vals[i]);
|
1143 |
+
}
|
1144 |
+
return retval;
|
1145 |
+
}
|
1146 |
+
|
1147 |
+
Vectorized<c10::qint8> relu(Vectorized<c10::qint8> zero_point) const {
|
1148 |
+
return maximum(zero_point);
|
1149 |
+
}
|
1150 |
+
|
1151 |
+
Vectorized<c10::qint8> relu6(
|
1152 |
+
Vectorized<c10::qint8> zero_point,
|
1153 |
+
Vectorized<c10::qint8> q_six) {
|
1154 |
+
Vectorized<c10::qint8> retval;
|
1155 |
+
for (const auto i : c10::irange(size())) {
|
1156 |
+
retval.vals[i] = std::min<value_type>(
|
1157 |
+
std::max<value_type>(vals[i], zero_point.vals[i]), q_six.vals[i]);
|
1158 |
+
}
|
1159 |
+
return retval;
|
1160 |
+
}
|
1161 |
+
|
1162 |
+
int_vec_return_type widening_subtract(Vectorized<c10::qint8> b) const {
|
1163 |
+
int_vec_return_type retval;
|
1164 |
+
constexpr int elem_per_int_vec = size() / int_num_vecs();
|
1165 |
+
for (const auto i : c10::irange(int_num_vecs())) {
|
1166 |
+
for (const auto j : c10::irange(elem_per_int_vec)) {
|
1167 |
+
retval[i].vals[j] =
|
1168 |
+
static_cast<int32_t>(vals[i * elem_per_int_vec + j]) -
|
1169 |
+
static_cast<int32_t>(b.vals[i * elem_per_int_vec + j]);
|
1170 |
+
}
|
1171 |
+
}
|
1172 |
+
return retval;
|
1173 |
+
}
|
1174 |
+
static Vectorized<c10::qint8> requantize_from_int(
|
1175 |
+
const int_vec_return_type& inp,
|
1176 |
+
float multiplier,
|
1177 |
+
int32_t zero_point) {
|
1178 |
+
constexpr int elem_per_int_vec = size() / int_num_vecs();
|
1179 |
+
constexpr auto min_val = std::numeric_limits<value_type>::min();
|
1180 |
+
constexpr auto max_val = std::numeric_limits<value_type>::max();
|
1181 |
+
Vectorized<c10::qint8> retval;
|
1182 |
+
for (const auto i : c10::irange(int_num_vecs())) {
|
1183 |
+
for (const auto j : c10::irange(elem_per_int_vec)) {
|
1184 |
+
int32_t rounded =
|
1185 |
+
std::nearbyint(static_cast<float>(inp[i].vals[j]) * multiplier) +
|
1186 |
+
zero_point;
|
1187 |
+
retval.vals[i * elem_per_int_vec + j] =
|
1188 |
+
std::min<int32_t>(std::max<int32_t>(rounded, min_val), max_val);
|
1189 |
+
}
|
1190 |
+
}
|
1191 |
+
return retval;
|
1192 |
+
}
|
1193 |
+
};
|
1194 |
+
|
1195 |
+
template <>
|
1196 |
+
Vectorized<c10::qint8> inline maximum(const Vectorized<c10::qint8>& a, const Vectorized<c10::qint8>& b) {
|
1197 |
+
return a.maximum(b);
|
1198 |
+
}
|
1199 |
+
|
1200 |
+
template <>
|
1201 |
+
struct Vectorized<c10::quint8> : public VectorizedQuantizedConverter<
|
1202 |
+
c10::quint8,
|
1203 |
+
std::array<Vectorized<float>, 4>,
|
1204 |
+
std::array<Vectorized<c10::qint32>, 4>,
|
1205 |
+
32> {
|
1206 |
+
Vectorized()
|
1207 |
+
: VectorizedQuantizedConverter<
|
1208 |
+
c10::quint8,
|
1209 |
+
std::array<Vectorized<float>, 4>,
|
1210 |
+
std::array<Vectorized<c10::qint32>, 4>,
|
1211 |
+
32>() {}
|
1212 |
+
Vectorized(c10::quint8 val)
|
1213 |
+
: VectorizedQuantizedConverter<
|
1214 |
+
c10::quint8,
|
1215 |
+
std::array<Vectorized<float>, 4>,
|
1216 |
+
std::array<Vectorized<c10::qint32>, 4>,
|
1217 |
+
32>(val) {}
|
1218 |
+
Vectorized(const void* ptr)
|
1219 |
+
: VectorizedQuantizedConverter<
|
1220 |
+
c10::quint8,
|
1221 |
+
std::array<Vectorized<float>, 4>,
|
1222 |
+
std::array<Vectorized<c10::qint32>, 4>,
|
1223 |
+
32>(ptr) {}
|
1224 |
+
|
1225 |
+
static Vectorized<c10::quint8> loadu(const void* ptr) {
|
1226 |
+
return Vectorized<c10::quint8>(ptr);
|
1227 |
+
}
|
1228 |
+
|
1229 |
+
static Vectorized<c10::quint8> loadu(const void* ptr, int64_t count) {
|
1230 |
+
__at_align__ value_type tmp_values[size()];
|
1231 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
1232 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
1233 |
+
// instructions while a loop would be compiled to one instruction.
|
1234 |
+
for (const auto i : c10::irange(size())) {
|
1235 |
+
tmp_values[i] = 0;
|
1236 |
+
}
|
1237 |
+
std::memcpy(
|
1238 |
+
tmp_values, reinterpret_cast<const value_type*>(ptr), count * sizeof(value_type));
|
1239 |
+
return Vectorized<c10::quint8>(tmp_values);
|
1240 |
+
}
|
1241 |
+
|
1242 |
+
static Vectorized<c10::quint8> quantize(
|
1243 |
+
const float_vec_return_type& rhs,
|
1244 |
+
float scale,
|
1245 |
+
int32_t zero_point,
|
1246 |
+
float /*inverse_scale*/) {
|
1247 |
+
std::array<value_type, size()> qvals;
|
1248 |
+
std::array<float, float_num_vecs() * 8> float_vals;
|
1249 |
+
|
1250 |
+
for (const auto i : c10::irange(float_num_vecs())) {
|
1251 |
+
rhs[i].store(&float_vals[i * 8], 8);
|
1252 |
+
}
|
1253 |
+
|
1254 |
+
at::native::quantize_vec<c10::quint8>(
|
1255 |
+
scale,
|
1256 |
+
zero_point,
|
1257 |
+
float_vals.data(),
|
1258 |
+
(c10::quint8*)qvals.data(),
|
1259 |
+
8 * float_num_vecs());
|
1260 |
+
|
1261 |
+
return Vectorized<c10::quint8>::loadu(qvals.data());
|
1262 |
+
}
|
1263 |
+
|
1264 |
+
Vectorized<c10::quint8> maximum(Vectorized<c10::quint8> b) const {
|
1265 |
+
Vectorized<c10::quint8> retval;
|
1266 |
+
for (const auto i : c10::irange(size())) {
|
1267 |
+
retval.vals[i] = std::max<value_type>(vals[i], b.vals[i]);
|
1268 |
+
}
|
1269 |
+
return retval;
|
1270 |
+
}
|
1271 |
+
|
1272 |
+
Vectorized<c10::quint8> minimum(Vectorized<c10::quint8> b) const {
|
1273 |
+
Vectorized<c10::quint8> retval;
|
1274 |
+
for (const auto i : c10::irange(size())) {
|
1275 |
+
retval.vals[i] = std::min<value_type>(vals[i], b.vals[i]);
|
1276 |
+
}
|
1277 |
+
return retval;
|
1278 |
+
}
|
1279 |
+
|
1280 |
+
Vectorized<c10::quint8> relu(Vectorized<c10::quint8> zero_point) const {
|
1281 |
+
return maximum(zero_point);
|
1282 |
+
}
|
1283 |
+
|
1284 |
+
|
1285 |
+
Vectorized<c10::quint8> relu6(
|
1286 |
+
Vectorized<c10::quint8> zero_point,
|
1287 |
+
Vectorized<c10::quint8> q_six) {
|
1288 |
+
Vectorized<c10::quint8> retval;
|
1289 |
+
for (const auto i : c10::irange(size())) {
|
1290 |
+
retval.vals[i] = std::min<value_type>(
|
1291 |
+
std::max<value_type>(vals[i], zero_point.vals[i]), q_six.vals[i]);
|
1292 |
+
}
|
1293 |
+
return retval;
|
1294 |
+
}
|
1295 |
+
|
1296 |
+
int_vec_return_type widening_subtract(Vectorized<c10::quint8> b) const {
|
1297 |
+
int_vec_return_type retval;
|
1298 |
+
constexpr int elem_per_int_vec = size() / int_num_vecs();
|
1299 |
+
for (const auto i : c10::irange(int_num_vecs())) {
|
1300 |
+
for (const auto j : c10::irange(elem_per_int_vec)) {
|
1301 |
+
retval[i].vals[j] =
|
1302 |
+
static_cast<int32_t>(vals[i * elem_per_int_vec + j]) -
|
1303 |
+
static_cast<int32_t>(b.vals[i * elem_per_int_vec + j]);
|
1304 |
+
}
|
1305 |
+
}
|
1306 |
+
return retval;
|
1307 |
+
}
|
1308 |
+
static Vectorized<c10::quint8> requantize_from_int(
|
1309 |
+
const int_vec_return_type& inp,
|
1310 |
+
float multiplier,
|
1311 |
+
int32_t zero_point) {
|
1312 |
+
constexpr int elem_per_int_vec = size() / int_num_vecs();
|
1313 |
+
constexpr auto min_val = std::numeric_limits<value_type>::min();
|
1314 |
+
constexpr auto max_val = std::numeric_limits<value_type>::max();
|
1315 |
+
Vectorized<c10::quint8> retval;
|
1316 |
+
for (const auto i : c10::irange(int_num_vecs())) {
|
1317 |
+
for (const auto j : c10::irange(elem_per_int_vec)) {
|
1318 |
+
int32_t rounded =
|
1319 |
+
std::nearbyint(static_cast<float>(inp[i].vals[j]) * multiplier) +
|
1320 |
+
zero_point;
|
1321 |
+
retval.vals[i * elem_per_int_vec + j] =
|
1322 |
+
std::min<int32_t>(std::max<int32_t>(rounded, min_val), max_val);
|
1323 |
+
}
|
1324 |
+
}
|
1325 |
+
return retval;
|
1326 |
+
}
|
1327 |
+
};
|
1328 |
+
|
1329 |
+
template <>
|
1330 |
+
Vectorized<c10::quint8> inline maximum(const Vectorized<c10::quint8>& a, const Vectorized<c10::quint8>& b) {
|
1331 |
+
return a.maximum(b);
|
1332 |
+
}
|
1333 |
+
|
1334 |
+
#endif // if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
1335 |
+
}} // namespace at::vec::CPU_CAPABILITY
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_bfloat16_vsx.h
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
4 |
+
#include <ATen/cpu/vec/vec256/vsx/vsx_helpers.h>
|
5 |
+
#include <ATen/cpu/vec/vec_base.h>
|
6 |
+
#include <c10/util/irange.h>
|
7 |
+
|
8 |
+
namespace at {
|
9 |
+
namespace vec {
|
10 |
+
// See Note [CPU_CAPABILITY namespace]
|
11 |
+
inline namespace CPU_CAPABILITY {
|
12 |
+
|
13 |
+
inline std::tuple<Vectorized<float>, Vectorized<float>> convert_bfloat16_float(
|
14 |
+
const Vectorized<BFloat16>& a) {
|
15 |
+
constexpr int64_t K = Vectorized<BFloat16>::size();
|
16 |
+
__at_align__ float arr[K];
|
17 |
+
__at_align__ BFloat16 arr2[K];
|
18 |
+
a.store(arr2);
|
19 |
+
convert(arr2, arr, K);
|
20 |
+
return std::make_tuple(
|
21 |
+
Vectorized<float>::loadu(arr),
|
22 |
+
Vectorized<float>::loadu(arr + Vectorized<float>::size()));
|
23 |
+
}
|
24 |
+
|
25 |
+
inline Vectorized<BFloat16> convert_float_bfloat16(
|
26 |
+
const Vectorized<float>& a,
|
27 |
+
const Vectorized<float>& b) {
|
28 |
+
constexpr int64_t K = Vectorized<BFloat16>::size();
|
29 |
+
__at_align__ float arr[K];
|
30 |
+
__at_align__ BFloat16 arr2[K];
|
31 |
+
a.store(arr);
|
32 |
+
b.store(arr + Vectorized<float>::size());
|
33 |
+
convert(arr, arr2, K);
|
34 |
+
return Vectorized<BFloat16>::loadu(arr2);
|
35 |
+
}
|
36 |
+
|
37 |
+
inline void load_fp32_from_bf16(const c10::BFloat16* data, Vectorized<float>& out) {
|
38 |
+
__at_align__ float values[Vectorized<float>::size()];
|
39 |
+
for (const auto k : c10::irange(Vectorized<float>::size())) {
|
40 |
+
values[k] = data[k];
|
41 |
+
}
|
42 |
+
out = Vectorized<float>::loadu(values);
|
43 |
+
}
|
44 |
+
|
45 |
+
inline void load_fp32_from_bf16(
|
46 |
+
const c10::BFloat16* data,
|
47 |
+
Vectorized<float>& out1,
|
48 |
+
Vectorized<float>& out2) {
|
49 |
+
load_fp32_from_bf16(data, out1);
|
50 |
+
data += Vectorized<float>::size();
|
51 |
+
load_fp32_from_bf16(data, out2);
|
52 |
+
}
|
53 |
+
|
54 |
+
inline void load_fp32_from_fp16(const c10::Half* data, Vectorized<float>& out) {
|
55 |
+
__at_align__ float values[Vectorized<float>::size()];
|
56 |
+
for (const auto k : c10::irange(Vectorized<float>::size())) {
|
57 |
+
values[k] = data[k];
|
58 |
+
}
|
59 |
+
out = Vectorized<float>::loadu(values);
|
60 |
+
}
|
61 |
+
|
62 |
+
inline void load_fp32_from_fp16(
|
63 |
+
const c10::Half* data,
|
64 |
+
Vectorized<float>& out1,
|
65 |
+
Vectorized<float>& out2) {
|
66 |
+
load_fp32_from_fp16(data, out1);
|
67 |
+
data += Vectorized<float>::size();
|
68 |
+
load_fp32_from_fp16(data, out2);
|
69 |
+
}
|
70 |
+
|
71 |
+
} // namespace
|
72 |
+
} // namespace vec
|
73 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_common_vsx.h
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
4 |
+
#include <ATen/cpu/vec/vec_base.h>
|
5 |
+
#include <ATen/cpu/vec/vec256/vsx/vsx_helpers.h>
|
6 |
+
|
7 |
+
// Note: header order is important here
|
8 |
+
#include <ATen/cpu/vec/vec256/vsx/vec256_double_vsx.h>
|
9 |
+
#include <ATen/cpu/vec/vec256/vsx/vec256_float_vsx.h>
|
10 |
+
#include <ATen/cpu/vec/vec256/vsx/vec256_int16_vsx.h>
|
11 |
+
#include <ATen/cpu/vec/vec256/vsx/vec256_int32_vsx.h>
|
12 |
+
#include <ATen/cpu/vec/vec256/vsx/vec256_int64_vsx.h>
|
13 |
+
#include <ATen/cpu/vec/vec256/vsx/vec256_qint32_vsx.h>
|
14 |
+
#include <ATen/cpu/vec/vec256/vsx/vec256_qint8_vsx.h>
|
15 |
+
#include <ATen/cpu/vec/vec256/vsx/vec256_quint8_vsx.h>
|
16 |
+
|
17 |
+
#include <ATen/cpu/vec/vec256/vsx/vec256_complex_float_vsx.h>
|
18 |
+
#include <ATen/cpu/vec/vec256/vsx/vec256_complex_double_vsx.h>
|
19 |
+
|
20 |
+
#include <ATen/cpu/vec/vec256/vsx/vec256_bfloat16_vsx.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
namespace vec {
|
24 |
+
|
25 |
+
inline namespace CPU_CAPABILITY {
|
26 |
+
|
27 |
+
DEFINE_CLAMP_FUNCS(c10::quint8)
|
28 |
+
DEFINE_CLAMP_FUNCS(c10::qint8)
|
29 |
+
DEFINE_CLAMP_FUNCS(c10::qint32)
|
30 |
+
DEFINE_CLAMP_FUNCS(int16_t)
|
31 |
+
DEFINE_CLAMP_FUNCS(int32_t)
|
32 |
+
DEFINE_CLAMP_FUNCS(int64_t)
|
33 |
+
DEFINE_CLAMP_FUNCS(float)
|
34 |
+
DEFINE_CLAMP_FUNCS(double)
|
35 |
+
|
36 |
+
template <>
|
37 |
+
Vectorized<double> C10_ALWAYS_INLINE fmadd(
|
38 |
+
const Vectorized<double>& a,
|
39 |
+
const Vectorized<double>& b,
|
40 |
+
const Vectorized<double>& c) {
|
41 |
+
return Vectorized<double>{
|
42 |
+
vec_madd(a.vec0(), b.vec0(), c.vec0()),
|
43 |
+
vec_madd(a.vec1(), b.vec1(), c.vec1())};
|
44 |
+
}
|
45 |
+
|
46 |
+
template <>
|
47 |
+
Vectorized<int64_t> C10_ALWAYS_INLINE fmadd(
|
48 |
+
const Vectorized<int64_t>& a,
|
49 |
+
const Vectorized<int64_t>& b,
|
50 |
+
const Vectorized<int64_t>& c) {
|
51 |
+
return Vectorized<int64_t>{
|
52 |
+
a.vec0() * b.vec0() + c.vec0(), a.vec1() * b.vec1() + c.vec1()};
|
53 |
+
}
|
54 |
+
template <>
|
55 |
+
Vectorized<int32_t> C10_ALWAYS_INLINE fmadd(
|
56 |
+
const Vectorized<int32_t>& a,
|
57 |
+
const Vectorized<int32_t>& b,
|
58 |
+
const Vectorized<int32_t>& c) {
|
59 |
+
return Vectorized<int32_t>{
|
60 |
+
a.vec0() * b.vec0() + c.vec0(), a.vec1() * b.vec1() + c.vec1()};
|
61 |
+
}
|
62 |
+
template <>
|
63 |
+
Vectorized<int16_t> C10_ALWAYS_INLINE fmadd(
|
64 |
+
const Vectorized<int16_t>& a,
|
65 |
+
const Vectorized<int16_t>& b,
|
66 |
+
const Vectorized<int16_t>& c) {
|
67 |
+
return Vectorized<int16_t>{
|
68 |
+
a.vec0() * b.vec0() + c.vec0(), a.vec1() * b.vec1() + c.vec1()};
|
69 |
+
}
|
70 |
+
|
71 |
+
DEFINE_REINTERPRET_CAST_TO_ALL_FUNCS(float)
|
72 |
+
DEFINE_REINTERPRET_CAST_TO_ALL_FUNCS(double)
|
73 |
+
DEFINE_REINTERPRET_CAST_TO_ALL_FUNCS(int64_t)
|
74 |
+
DEFINE_REINTERPRET_CAST_TO_ALL_FUNCS(int32_t)
|
75 |
+
DEFINE_REINTERPRET_CAST_TO_ALL_FUNCS(int16_t)
|
76 |
+
|
77 |
+
template <>
|
78 |
+
Vectorized<int64_t> C10_ALWAYS_INLINE
|
79 |
+
convert_to_int_of_same_size<double>(const Vectorized<double>& src) {
|
80 |
+
return Vectorized<int64_t>{vec_signed(src.vec0()), vec_signed(src.vec1())};
|
81 |
+
}
|
82 |
+
|
83 |
+
template <>
|
84 |
+
Vectorized<int32_t> C10_ALWAYS_INLINE
|
85 |
+
convert_to_int_of_same_size<float>(
|
86 |
+
const Vectorized<float>& src) {
|
87 |
+
return Vectorized<int32_t>{vec_signed(src.vec0()), vec_signed(src.vec1())};
|
88 |
+
}
|
89 |
+
|
90 |
+
template <>
|
91 |
+
inline void convert(const int32_t* src, float* dst, int64_t n) {
|
92 |
+
// int32_t and float have same size
|
93 |
+
int64_t i;
|
94 |
+
for (i = 0; i <= (n - Vectorized<float>::size()); i += Vectorized<float>::size()) {
|
95 |
+
const int32_t* src_a = src + i;
|
96 |
+
float* dst_a = dst + i;
|
97 |
+
vint32 input_vec0 = vec_vsx_ld(offset0, reinterpret_cast<const vint32*>(src_a));
|
98 |
+
vint32 input_vec1 =
|
99 |
+
vec_vsx_ld(offset16, reinterpret_cast<const vint32*>(src_a));
|
100 |
+
vfloat32 c0 = vec_float(input_vec0);
|
101 |
+
vfloat32 c1 = vec_float(input_vec1);
|
102 |
+
vec_vsx_st(c0, offset0, dst_a);
|
103 |
+
vec_vsx_st(c1, offset16, dst_a);
|
104 |
+
}
|
105 |
+
|
106 |
+
for (; i < n; i++) {
|
107 |
+
dst[i] = static_cast<float>(src[i]);
|
108 |
+
}
|
109 |
+
}
|
110 |
+
|
111 |
+
template <>
|
112 |
+
inline void convert(const int64_t* src, double* dst, int64_t n) {
|
113 |
+
int64_t i;
|
114 |
+
for (i = 0; i <= (n - Vectorized<double>::size()); i += Vectorized<double>::size()) {
|
115 |
+
const int64_t* src_a = src + i;
|
116 |
+
double* dst_a = dst + i;
|
117 |
+
vint64 input_vec0 =
|
118 |
+
vec_vsx_ld(offset0, reinterpret_cast<const vint64*>(src_a));
|
119 |
+
vint64 input_vec1 =
|
120 |
+
vec_vsx_ld(offset16, reinterpret_cast<const vint64*>(src_a));
|
121 |
+
vfloat64 c0 = vec_double(input_vec0);
|
122 |
+
vfloat64 c1 = vec_double(input_vec1);
|
123 |
+
vec_vsx_st(c0, offset0, reinterpret_cast<double*>(dst_a));
|
124 |
+
vec_vsx_st(c1, offset16, reinterpret_cast<double*>(dst_a));
|
125 |
+
}
|
126 |
+
for (; i < n; i++) {
|
127 |
+
dst[i] = static_cast<double>(src[i]);
|
128 |
+
}
|
129 |
+
}
|
130 |
+
//Generic implementation to fix compiler error
|
131 |
+
//TO-DO : Add optimized version for ppc64
|
132 |
+
inline std::tuple<Vectorized<float>, Vectorized<float>> convert_half_float(
|
133 |
+
const Vectorized<Half>& a) {
|
134 |
+
constexpr int64_t K = Vectorized<Half>::size();
|
135 |
+
__at_align__ float arr[K];
|
136 |
+
__at_align__ Half arr2[K];
|
137 |
+
a.store(arr2);
|
138 |
+
convert(arr2, arr, K);
|
139 |
+
return std::make_tuple(
|
140 |
+
Vectorized<float>::loadu(arr),
|
141 |
+
Vectorized<float>::loadu(arr + Vectorized<float>::size()));
|
142 |
+
}
|
143 |
+
|
144 |
+
inline Vectorized<Half> convert_float_half(
|
145 |
+
const Vectorized<float>& a, const Vectorized<float>& b) {
|
146 |
+
constexpr int64_t K = Vectorized<Half>::size();
|
147 |
+
__at_align__ float arr[K];
|
148 |
+
__at_align__ Half arr2[K];
|
149 |
+
a.store(arr);
|
150 |
+
b.store(arr + Vectorized<float>::size());
|
151 |
+
convert(arr, arr2, K);
|
152 |
+
return Vectorized<Half>::loadu(arr2);
|
153 |
+
};
|
154 |
+
|
155 |
+
template <>
|
156 |
+
std::pair<Vectorized<double>, Vectorized<double>> inline interleave2<double>(
|
157 |
+
const Vectorized<double>& a,
|
158 |
+
const Vectorized<double>& b) {
|
159 |
+
// inputs:
|
160 |
+
// a = {a0, a1, a2, a3}
|
161 |
+
// b = {b0, b1, b2, b3}
|
162 |
+
|
163 |
+
vfloat64 ab00 = vec_xxpermdi(a.vec0(), b.vec0(), 0);
|
164 |
+
vfloat64 ab11 = vec_xxpermdi(a.vec0(), b.vec0(), 3);
|
165 |
+
vfloat64 ab2_00 = vec_xxpermdi(a.vec1(), b.vec1(), 0);
|
166 |
+
vfloat64 ab2_11 = vec_xxpermdi(a.vec1(), b.vec1(), 3);
|
167 |
+
// return {a0, b0, a1, b1}
|
168 |
+
// {a2, b2, a3, b3}
|
169 |
+
return std::make_pair(
|
170 |
+
Vectorized<double>{ab00, ab11}, Vectorized<double>{ab2_00, ab2_11});
|
171 |
+
}
|
172 |
+
|
173 |
+
template <>
|
174 |
+
std::pair<Vectorized<double>, Vectorized<double>> inline deinterleave2<double>(
|
175 |
+
const Vectorized<double>& a,
|
176 |
+
const Vectorized<double>& b) {
|
177 |
+
// inputs:
|
178 |
+
// a = {a0, b0, a1, b1}
|
179 |
+
// b = {a2, b2, a3, b3}
|
180 |
+
vfloat64 aa01 = vec_xxpermdi(a.vec0(), a.vec1(), 0);
|
181 |
+
vfloat64 aa23 = vec_xxpermdi(b.vec0(), b.vec1(), 0);
|
182 |
+
|
183 |
+
vfloat64 bb_01 = vec_xxpermdi(a.vec0(), a.vec1(), 3);
|
184 |
+
vfloat64 bb_23 = vec_xxpermdi(b.vec0(), b.vec1(), 3);
|
185 |
+
|
186 |
+
// swap lanes:
|
187 |
+
// return {a0, a1, a2, a3}
|
188 |
+
// {b0, b1, b2, b3}
|
189 |
+
return std::make_pair(
|
190 |
+
Vectorized<double>{aa01, aa23}, Vectorized<double>{bb_01, bb_23});
|
191 |
+
}
|
192 |
+
|
193 |
+
template <>
|
194 |
+
std::pair<Vectorized<float>, Vectorized<float>> inline interleave2<float>(
|
195 |
+
const Vectorized<float>& a,
|
196 |
+
const Vectorized<float>& b) {
|
197 |
+
// inputs:
|
198 |
+
// a = {a0, a1, a2, a3,, a4, a5, a6, a7}
|
199 |
+
// b = {b0, b1, b2, b3,, b4, b5, b6, b7}
|
200 |
+
|
201 |
+
vfloat32 ab0011 = vec_mergeh(a.vec0(), b.vec0());
|
202 |
+
vfloat32 ab2233 = vec_mergel(a.vec0(), b.vec0());
|
203 |
+
|
204 |
+
vfloat32 ab2_0011 = vec_mergeh(a.vec1(), b.vec1());
|
205 |
+
vfloat32 ab2_2233 = vec_mergel(a.vec1(), b.vec1());
|
206 |
+
// group cols crossing lanes:
|
207 |
+
// return {a0, b0, a1, b1,, a2, b2, a3, b3}
|
208 |
+
// {a4, b4, a5, b5,, a6, b6, a7, b7}
|
209 |
+
|
210 |
+
return std::make_pair(
|
211 |
+
Vectorized<float>{ab0011, ab2233}, Vectorized<float>{ab2_0011, ab2_2233});
|
212 |
+
}
|
213 |
+
|
214 |
+
template <>
|
215 |
+
std::pair<Vectorized<float>, Vectorized<float>> inline deinterleave2<float>(
|
216 |
+
const Vectorized<float>& a,
|
217 |
+
const Vectorized<float>& b) {
|
218 |
+
// inputs:
|
219 |
+
// a = {a0, b0, a1, b1,, a2, b2, a3, b3}
|
220 |
+
// b = {a4, b4, a5, b5,, a6, b6, a7, b7}
|
221 |
+
|
222 |
+
// {a0,a2,b0,b2} {a1,a3,b1,b3}
|
223 |
+
vfloat32 a0a2b0b2 = vec_mergeh(a.vec0(), a.vec1());
|
224 |
+
vfloat32 a1a3b1b3 = vec_mergel(a.vec0(), a.vec1());
|
225 |
+
|
226 |
+
vfloat32 aa0123 = vec_mergeh(a0a2b0b2, a1a3b1b3);
|
227 |
+
vfloat32 bb0123 = vec_mergel(a0a2b0b2, a1a3b1b3);
|
228 |
+
|
229 |
+
vfloat32 a0a2b0b2_2 = vec_mergeh(b.vec0(), b.vec1());
|
230 |
+
vfloat32 a1a3b1b3_2 = vec_mergel(b.vec0(), b.vec1());
|
231 |
+
|
232 |
+
vfloat32 aa0123_2 = vec_mergeh(a0a2b0b2_2, a1a3b1b3_2);
|
233 |
+
vfloat32 bb0123_2 = vec_mergel(a0a2b0b2_2, a1a3b1b3_2);
|
234 |
+
|
235 |
+
// it could be done with vec_perm ,too
|
236 |
+
// swap lanes:
|
237 |
+
// return {a0, a1, a2, a3,, a4, a5, a6, a7}
|
238 |
+
// {b0, b1, b2, b3,, b4, b5, b6, b7}
|
239 |
+
|
240 |
+
return std::make_pair(
|
241 |
+
Vectorized<float>{aa0123, aa0123_2}, Vectorized<float>{bb0123, bb0123_2});
|
242 |
+
}
|
243 |
+
|
244 |
+
} // namespace
|
245 |
+
} // namespace vec
|
246 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_complex_double_vsx.h
ADDED
@@ -0,0 +1,560 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
3 |
+
#include <ATen/cpu/vec/vec_base.h>
|
4 |
+
#include <ATen/cpu/vec/vec256/vsx/vsx_helpers.h>
|
5 |
+
#include <c10/util/complex.h>
|
6 |
+
#include <c10/util/irange.h>
|
7 |
+
|
8 |
+
namespace at {
|
9 |
+
namespace vec {
|
10 |
+
// See Note [CPU_CAPABILITY namespace]
|
11 |
+
inline namespace CPU_CAPABILITY {
|
12 |
+
using ComplexDbl = c10::complex<double>;
|
13 |
+
|
14 |
+
template <>
|
15 |
+
class Vectorized<ComplexDbl> {
|
16 |
+
union {
|
17 |
+
struct {
|
18 |
+
vfloat64 _vec0;
|
19 |
+
vfloat64 _vec1;
|
20 |
+
};
|
21 |
+
struct {
|
22 |
+
vbool64 _vecb0;
|
23 |
+
vbool64 _vecb1;
|
24 |
+
};
|
25 |
+
|
26 |
+
} __attribute__((__may_alias__));
|
27 |
+
|
28 |
+
public:
|
29 |
+
using value_type = ComplexDbl;
|
30 |
+
using vec_internal_type = vfloat64;
|
31 |
+
using vec_internal_mask_type = vbool64;
|
32 |
+
using size_type = int;
|
33 |
+
static constexpr size_type size() {
|
34 |
+
return 2;
|
35 |
+
}
|
36 |
+
Vectorized() {}
|
37 |
+
C10_ALWAYS_INLINE Vectorized(vfloat64 v) : _vec0{v}, _vec1{v} {}
|
38 |
+
C10_ALWAYS_INLINE Vectorized(vbool64 vmask) : _vecb0{vmask}, _vecb1{vmask} {}
|
39 |
+
C10_ALWAYS_INLINE Vectorized(vfloat64 v1, vfloat64 v2) : _vec0{v1}, _vec1{v2} {}
|
40 |
+
C10_ALWAYS_INLINE Vectorized(vbool64 v1, vbool64 v2) : _vecb0{v1}, _vecb1{v2} {}
|
41 |
+
|
42 |
+
Vectorized(ComplexDbl val) {
|
43 |
+
double real_value = val.real();
|
44 |
+
double imag_value = val.imag();
|
45 |
+
_vec0 = vfloat64{real_value, imag_value};
|
46 |
+
_vec1 = vfloat64{real_value, imag_value};
|
47 |
+
}
|
48 |
+
Vectorized(ComplexDbl val1, ComplexDbl val2) {
|
49 |
+
_vec0 = vfloat64{val1.real(), val1.imag()};
|
50 |
+
_vec1 = vfloat64{val2.real(), val2.imag()};
|
51 |
+
}
|
52 |
+
|
53 |
+
C10_ALWAYS_INLINE const vec_internal_type& vec0() const {
|
54 |
+
return _vec0;
|
55 |
+
}
|
56 |
+
C10_ALWAYS_INLINE const vec_internal_type& vec1() const {
|
57 |
+
return _vec1;
|
58 |
+
}
|
59 |
+
|
60 |
+
template <int64_t mask>
|
61 |
+
static std::enable_if_t<blendChoiceComplexDbl(mask) == 0, Vectorized<ComplexDbl>>
|
62 |
+
C10_ALWAYS_INLINE
|
63 |
+
blend(const Vectorized<ComplexDbl>& a, const Vectorized<ComplexDbl>& b) {
|
64 |
+
return a;
|
65 |
+
}
|
66 |
+
|
67 |
+
template <int64_t mask>
|
68 |
+
static std::enable_if_t<blendChoiceComplexDbl(mask) == 1, Vectorized<ComplexDbl>>
|
69 |
+
C10_ALWAYS_INLINE
|
70 |
+
blend(const Vectorized<ComplexDbl>& a, const Vectorized<ComplexDbl>& b) {
|
71 |
+
return b;
|
72 |
+
}
|
73 |
+
|
74 |
+
template <int64_t mask>
|
75 |
+
static std::enable_if_t<blendChoiceComplexDbl(mask) == 2, Vectorized<ComplexDbl>>
|
76 |
+
C10_ALWAYS_INLINE
|
77 |
+
blend(const Vectorized<ComplexDbl>& a, const Vectorized<ComplexDbl>& b) {
|
78 |
+
return {b._vec0, a._vec1};
|
79 |
+
}
|
80 |
+
|
81 |
+
template <int64_t mask>
|
82 |
+
static std::enable_if_t<blendChoiceComplexDbl(mask) == 3, Vectorized<ComplexDbl>>
|
83 |
+
C10_ALWAYS_INLINE
|
84 |
+
blend(const Vectorized<ComplexDbl>& a, const Vectorized<ComplexDbl>& b) {
|
85 |
+
return {a._vec0, b._vec1};
|
86 |
+
}
|
87 |
+
|
88 |
+
template <int64_t mask>
|
89 |
+
static Vectorized<ComplexDbl> C10_ALWAYS_INLINE
|
90 |
+
el_blend(const Vectorized<ComplexDbl>& a, const Vectorized<ComplexDbl>& b) {
|
91 |
+
const vbool64 mask_1st = VsxDblMask1(mask);
|
92 |
+
const vbool64 mask_2nd = VsxDblMask2(mask);
|
93 |
+
return {
|
94 |
+
(vfloat64)vec_sel(a._vec0, b._vec0, mask_1st),
|
95 |
+
(vfloat64)vec_sel(a._vec1, b._vec1, mask_2nd)};
|
96 |
+
}
|
97 |
+
|
98 |
+
static Vectorized<ComplexDbl> blendv(
|
99 |
+
const Vectorized<ComplexDbl>& a,
|
100 |
+
const Vectorized<ComplexDbl>& b,
|
101 |
+
const Vectorized<ComplexDbl>& mask) {
|
102 |
+
// convert std::complex<V> index mask to V index mask: xy -> xxyy
|
103 |
+
auto mask_complex =
|
104 |
+
Vectorized<ComplexDbl>(vec_splat(mask._vec0, 0), vec_splat(mask._vec1, 0));
|
105 |
+
return {
|
106 |
+
vec_sel(a._vec0, b._vec0, mask_complex._vecb0),
|
107 |
+
vec_sel(a._vec1, b._vec1, mask_complex._vecb1)};
|
108 |
+
}
|
109 |
+
|
110 |
+
static Vectorized<ComplexDbl> C10_ALWAYS_INLINE elwise_blendv(
|
111 |
+
const Vectorized<ComplexDbl>& a,
|
112 |
+
const Vectorized<ComplexDbl>& b,
|
113 |
+
const Vectorized<ComplexDbl>& mask) {
|
114 |
+
return {
|
115 |
+
vec_sel(a._vec0, b._vec0, mask._vecb0),
|
116 |
+
vec_sel(a._vec1, b._vec1, mask._vecb1)};
|
117 |
+
}
|
118 |
+
template <typename step_t>
|
119 |
+
static Vectorized<ComplexDbl> arange(
|
120 |
+
ComplexDbl base = 0.,
|
121 |
+
step_t step = static_cast<step_t>(1)) {
|
122 |
+
return Vectorized<ComplexDbl>(base, base + step);
|
123 |
+
}
|
124 |
+
static Vectorized<ComplexDbl> set(
|
125 |
+
const Vectorized<ComplexDbl>& a,
|
126 |
+
const Vectorized<ComplexDbl>& b,
|
127 |
+
int64_t count = size()) {
|
128 |
+
switch (count) {
|
129 |
+
case 0:
|
130 |
+
return a;
|
131 |
+
case 1:
|
132 |
+
return blend<1>(a, b);
|
133 |
+
}
|
134 |
+
return b;
|
135 |
+
}
|
136 |
+
|
137 |
+
static Vectorized<value_type> C10_ALWAYS_INLINE
|
138 |
+
loadu(const void* ptr, int count = size()) {
|
139 |
+
if (count == size()) {
|
140 |
+
return {
|
141 |
+
vec_vsx_ld(offset0, reinterpret_cast<const double*>(ptr)),
|
142 |
+
vec_vsx_ld(offset16, reinterpret_cast<const double*>(ptr))};
|
143 |
+
}
|
144 |
+
|
145 |
+
__at_align__ value_type tmp_values[size()] = {};
|
146 |
+
std::memcpy(tmp_values, ptr, std::min(count, size()) * sizeof(value_type));
|
147 |
+
|
148 |
+
return {
|
149 |
+
vec_vsx_ld(offset0, reinterpret_cast<const double*>(tmp_values)),
|
150 |
+
vec_vsx_ld(offset16, reinterpret_cast<const double*>(tmp_values))};
|
151 |
+
}
|
152 |
+
void C10_ALWAYS_INLINE store(void* ptr, int count = size()) const {
|
153 |
+
if (count == size()) {
|
154 |
+
vec_vsx_st(_vec0, offset0, reinterpret_cast<double*>(ptr));
|
155 |
+
vec_vsx_st(_vec1, offset16, reinterpret_cast<double*>(ptr));
|
156 |
+
} else if (count > 0) {
|
157 |
+
__at_align__ value_type tmp_values[size()];
|
158 |
+
vec_vsx_st(_vec0, offset0, reinterpret_cast<double*>(tmp_values));
|
159 |
+
vec_vsx_st(_vec1, offset16, reinterpret_cast<double*>(tmp_values));
|
160 |
+
std::memcpy(
|
161 |
+
ptr, tmp_values, std::min(count, size()) * sizeof(value_type));
|
162 |
+
}
|
163 |
+
}
|
164 |
+
|
165 |
+
const ComplexDbl& operator[](int idx) const = delete;
|
166 |
+
ComplexDbl& operator[](int idx) = delete;
|
167 |
+
|
168 |
+
Vectorized<ComplexDbl> map(ComplexDbl (*const f)(ComplexDbl)) const {
|
169 |
+
__at_align__ ComplexDbl tmp[size()];
|
170 |
+
store(tmp);
|
171 |
+
for (const auto i : c10::irange(size())) {
|
172 |
+
tmp[i] = f(tmp[i]);
|
173 |
+
}
|
174 |
+
return loadu(tmp);
|
175 |
+
}
|
176 |
+
|
177 |
+
Vectorized<ComplexDbl> map(ComplexDbl (*const f)(const ComplexDbl&)) const {
|
178 |
+
__at_align__ ComplexDbl tmp[size()];
|
179 |
+
store(tmp);
|
180 |
+
for (const auto i : c10::irange(size())) {
|
181 |
+
tmp[i] = f(tmp[i]);
|
182 |
+
}
|
183 |
+
return loadu(tmp);
|
184 |
+
}
|
185 |
+
|
186 |
+
Vectorized<ComplexDbl> el_swapped() const {
|
187 |
+
vfloat64 v0 = vec_xxpermdi(_vec0, _vec0, 2);
|
188 |
+
vfloat64 v1 = vec_xxpermdi(_vec1, _vec1, 2);
|
189 |
+
return {v0, v1};
|
190 |
+
}
|
191 |
+
|
192 |
+
Vectorized<ComplexDbl> el_madd(
|
193 |
+
const Vectorized<ComplexDbl>& multiplier,
|
194 |
+
const Vectorized<ComplexDbl>& val) const {
|
195 |
+
return {
|
196 |
+
vec_madd(_vec0, multiplier._vec0, val._vec0),
|
197 |
+
vec_madd(_vec1, multiplier._vec1, val._vec1)};
|
198 |
+
}
|
199 |
+
|
200 |
+
Vectorized<ComplexDbl> el_mergeo() const {
|
201 |
+
vfloat64 v0 = vec_splat(_vec0, 1);
|
202 |
+
vfloat64 v1 = vec_splat(_vec1, 1);
|
203 |
+
return {v0, v1};
|
204 |
+
}
|
205 |
+
|
206 |
+
Vectorized<ComplexDbl> el_mergee() const {
|
207 |
+
vfloat64 v0 = vec_splat(_vec0, 0);
|
208 |
+
vfloat64 v1 = vec_splat(_vec1, 0);
|
209 |
+
return {v0, v1};
|
210 |
+
}
|
211 |
+
|
212 |
+
static Vectorized<ComplexDbl> el_mergee(
|
213 |
+
Vectorized<ComplexDbl>& first,
|
214 |
+
Vectorized<ComplexDbl>& second) {
|
215 |
+
return {
|
216 |
+
vec_mergeh(first._vec0, second._vec0),
|
217 |
+
vec_mergeh(first._vec1, second._vec1)};
|
218 |
+
}
|
219 |
+
|
220 |
+
static Vectorized<ComplexDbl> el_mergeo(
|
221 |
+
Vectorized<ComplexDbl>& first,
|
222 |
+
Vectorized<ComplexDbl>& second) {
|
223 |
+
return {
|
224 |
+
vec_mergel(first._vec0, second._vec0),
|
225 |
+
vec_mergel(first._vec1, second._vec1)};
|
226 |
+
}
|
227 |
+
|
228 |
+
Vectorized<ComplexDbl> abs_2_() const {
|
229 |
+
auto a = (*this).elwise_mult(*this);
|
230 |
+
auto permuted = a.el_swapped();
|
231 |
+
a = a + permuted;
|
232 |
+
return a;
|
233 |
+
}
|
234 |
+
|
235 |
+
Vectorized<ComplexDbl> abs_() const {
|
236 |
+
auto vi = el_mergeo();
|
237 |
+
auto vr = el_mergee();
|
238 |
+
return {Sleef_hypotd2_u05vsx(vr._vec0, vi._vec0), Sleef_hypotd2_u05vsx(vr._vec1, vi._vec1)};
|
239 |
+
}
|
240 |
+
|
241 |
+
Vectorized<ComplexDbl> abs() const {
|
242 |
+
return abs_() & vd_real_mask;
|
243 |
+
}
|
244 |
+
|
245 |
+
Vectorized<ComplexDbl> angle_() const {
|
246 |
+
// angle = atan2(b/a)
|
247 |
+
// auto b_a = _mm256_permute_pd(values, 0x05); // b a
|
248 |
+
// return Sleef_atan2d4_u10(values, b_a); // 90-angle angle
|
249 |
+
Vectorized<ComplexDbl> ret;
|
250 |
+
ret._vec0[0] = std::atan2(_vec0[1], _vec0[0]);
|
251 |
+
ret._vec1[0] = std::atan2(_vec1[1], _vec1[0]);
|
252 |
+
return ret;
|
253 |
+
}
|
254 |
+
|
255 |
+
Vectorized<ComplexDbl> angle() const {
|
256 |
+
return angle_() & vd_real_mask;
|
257 |
+
}
|
258 |
+
|
259 |
+
Vectorized<ComplexDbl> real_() const {
|
260 |
+
return *this & vd_real_mask;
|
261 |
+
}
|
262 |
+
Vectorized<ComplexDbl> real() const {
|
263 |
+
return *this & vd_real_mask;
|
264 |
+
}
|
265 |
+
Vectorized<ComplexDbl> imag_() const {
|
266 |
+
return *this & vd_imag_mask;
|
267 |
+
}
|
268 |
+
Vectorized<ComplexDbl> imag() const {
|
269 |
+
return imag_().el_swapped();
|
270 |
+
}
|
271 |
+
|
272 |
+
Vectorized<ComplexDbl> conj_() const {
|
273 |
+
return *this ^ vd_isign_mask;
|
274 |
+
}
|
275 |
+
Vectorized<ComplexDbl> conj() const {
|
276 |
+
return *this ^ vd_isign_mask;
|
277 |
+
}
|
278 |
+
|
279 |
+
Vectorized<ComplexDbl> log() const {
|
280 |
+
// Most trigonomic ops use the log() op to improve complex number
|
281 |
+
// performance.
|
282 |
+
return map(std::log);
|
283 |
+
}
|
284 |
+
|
285 |
+
Vectorized<ComplexDbl> log2() const {
|
286 |
+
// log2eB_inv
|
287 |
+
auto ret = log();
|
288 |
+
return ret.elwise_mult(vd_log2e_inv);
|
289 |
+
}
|
290 |
+
Vectorized<ComplexDbl> log10() const {
|
291 |
+
auto ret = log();
|
292 |
+
return ret.elwise_mult(vd_log10e_inv);
|
293 |
+
}
|
294 |
+
|
295 |
+
Vectorized<ComplexDbl> log1p() const {
|
296 |
+
return map(std::log1p);
|
297 |
+
}
|
298 |
+
|
299 |
+
Vectorized<ComplexDbl> asin() const {
|
300 |
+
// asin(x)
|
301 |
+
// = -i*ln(iz + sqrt(1 -z^2))
|
302 |
+
// = -i*ln((ai - b) + sqrt(1 - (a + bi)*(a + bi)))
|
303 |
+
// = -i*ln((-b + ai) + sqrt(1 - (a**2 - b**2) - 2*abi))
|
304 |
+
auto conj = conj_();
|
305 |
+
auto b_a = conj.el_swapped();
|
306 |
+
auto ab = conj.elwise_mult(b_a);
|
307 |
+
auto im = ab + ab;
|
308 |
+
auto val_2 = (*this).elwise_mult(*this);
|
309 |
+
auto val_2_swapped = val_2.el_swapped();
|
310 |
+
auto re = horizontal_sub(val_2, val_2_swapped);
|
311 |
+
re = Vectorized<ComplexDbl>(vd_one) - re;
|
312 |
+
auto root = el_blend<0x0A>(re, im).sqrt();
|
313 |
+
auto ln = (b_a + root).log();
|
314 |
+
return ln.el_swapped().conj();
|
315 |
+
}
|
316 |
+
|
317 |
+
Vectorized<ComplexDbl> acos() const {
|
318 |
+
// acos(x) = pi/2 - asin(x)
|
319 |
+
return Vectorized(vd_pi_2) - asin();
|
320 |
+
}
|
321 |
+
|
322 |
+
Vectorized<ComplexDbl> atan() const {
|
323 |
+
// atan(x) = i/2 * ln((i + z)/(i - z))
|
324 |
+
auto ione = Vectorized(vd_imag_one);
|
325 |
+
auto sum = ione + *this;
|
326 |
+
auto sub = ione - *this;
|
327 |
+
auto ln = (sum / sub).log(); // ln((i + z)/(i - z))
|
328 |
+
return ln * vd_imag_half; // i/2*ln()
|
329 |
+
}
|
330 |
+
Vectorized<ComplexDbl> atanh() const {
|
331 |
+
return map(std::atanh);
|
332 |
+
}
|
333 |
+
|
334 |
+
Vectorized<ComplexDbl> sin() const {
|
335 |
+
return map(std::sin);
|
336 |
+
}
|
337 |
+
Vectorized<ComplexDbl> sinh() const {
|
338 |
+
return map(std::sinh);
|
339 |
+
}
|
340 |
+
Vectorized<ComplexDbl> cos() const {
|
341 |
+
return map(std::cos);
|
342 |
+
}
|
343 |
+
Vectorized<ComplexDbl> cosh() const {
|
344 |
+
return map(std::cosh);
|
345 |
+
}
|
346 |
+
|
347 |
+
Vectorized<ComplexDbl> tan() const {
|
348 |
+
return map(std::tan);
|
349 |
+
}
|
350 |
+
Vectorized<ComplexDbl> tanh() const {
|
351 |
+
return map(std::tanh);
|
352 |
+
}
|
353 |
+
Vectorized<ComplexDbl> ceil() const {
|
354 |
+
return {vec_ceil(_vec0), vec_ceil(_vec1)};
|
355 |
+
}
|
356 |
+
Vectorized<ComplexDbl> floor() const {
|
357 |
+
return {vec_floor(_vec0), vec_floor(_vec1)};
|
358 |
+
}
|
359 |
+
Vectorized<ComplexDbl> neg() const {
|
360 |
+
auto z = Vectorized<ComplexDbl>(vd_zero);
|
361 |
+
return z - *this;
|
362 |
+
}
|
363 |
+
Vectorized<ComplexDbl> round() const {
|
364 |
+
return {vec_rint(_vec0), vec_rint(_vec1)};
|
365 |
+
}
|
366 |
+
|
367 |
+
Vectorized<ComplexDbl> trunc() const {
|
368 |
+
return {vec_trunc(_vec0), vec_trunc(_vec1)};
|
369 |
+
}
|
370 |
+
|
371 |
+
Vectorized<ComplexDbl> elwise_sqrt() const {
|
372 |
+
return {vec_sqrt(_vec0), vec_sqrt(_vec1)};
|
373 |
+
}
|
374 |
+
|
375 |
+
Vectorized<ComplexDbl> sqrt() const {
|
376 |
+
return map(std::sqrt);
|
377 |
+
}
|
378 |
+
|
379 |
+
Vectorized<ComplexDbl> reciprocal() const {
|
380 |
+
// re + im*i = (a + bi) / (c + di)
|
381 |
+
// re = (ac + bd)/abs_2() = c/abs_2()
|
382 |
+
// im = (bc - ad)/abs_2() = d/abs_2()
|
383 |
+
auto c_d = *this ^ vd_isign_mask; // c -d
|
384 |
+
auto abs = abs_2_();
|
385 |
+
return c_d.elwise_div(abs);
|
386 |
+
}
|
387 |
+
|
388 |
+
Vectorized<ComplexDbl> rsqrt() const {
|
389 |
+
return sqrt().reciprocal();
|
390 |
+
}
|
391 |
+
|
392 |
+
static Vectorized<ComplexDbl> horizontal_add(
|
393 |
+
Vectorized<ComplexDbl>& first,
|
394 |
+
Vectorized<ComplexDbl>& second) {
|
395 |
+
// Operates on individual floats, see _mm_hadd_ps
|
396 |
+
// {f0+f1, s0+s1, f2+f3, s2+s3, ...}
|
397 |
+
// i.e. it sums the re and im of each value and interleaves first and second:
|
398 |
+
// {f_re0 + f_im0, s_re0 + s_im0, f_re1 + f_im1, s_re1 + s_im1, ...}
|
399 |
+
return el_mergee(first, second) + el_mergeo(first, second);
|
400 |
+
}
|
401 |
+
|
402 |
+
static Vectorized<ComplexDbl> horizontal_sub(
|
403 |
+
Vectorized<ComplexDbl>& first,
|
404 |
+
Vectorized<ComplexDbl>& second) {
|
405 |
+
// we will simulate it differently with 6 instructions total
|
406 |
+
// lets permute second so that we can add it getting horizontal sums
|
407 |
+
auto first_perm = first.el_swapped(); // 2perm
|
408 |
+
auto second_perm = second.el_swapped(); // 2perm
|
409 |
+
// summ
|
410 |
+
auto first_ret = first - first_perm; // 2sub
|
411 |
+
auto second_ret = second - second_perm; // 2 sub
|
412 |
+
// now lets choose evens
|
413 |
+
return el_mergee(first_ret, second_ret); // 2 mergee's
|
414 |
+
}
|
415 |
+
|
416 |
+
Vectorized<ComplexDbl> inline operator*(const Vectorized<ComplexDbl>& b) const {
|
417 |
+
//(a + bi) * (c + di) = (ac - bd) + (ad + bc)i
|
418 |
+
#if 1
|
419 |
+
// this is more vsx friendly than simulating horizontal from x86
|
420 |
+
auto vi = b.el_mergeo();
|
421 |
+
auto vr = b.el_mergee();
|
422 |
+
vi = vi ^ vd_rsign_mask;
|
423 |
+
auto ret = elwise_mult(vr);
|
424 |
+
auto vx_swapped = el_swapped();
|
425 |
+
ret = vx_swapped.el_madd(vi, ret);
|
426 |
+
#else
|
427 |
+
auto ac_bd = elwise_mult(b);
|
428 |
+
auto d_c = b.el_swapped();
|
429 |
+
d_c = d_c ^ vd_isign_mask;
|
430 |
+
auto ad_bc = elwise_mult(d_c);
|
431 |
+
auto ret = horizontal_sub(ac_bd, ad_bc);
|
432 |
+
#endif
|
433 |
+
return ret;
|
434 |
+
}
|
435 |
+
|
436 |
+
Vectorized<ComplexDbl> inline operator/(const Vectorized<ComplexDbl>& b) const {
|
437 |
+
// re + im*i = (a + bi) / (c + di)
|
438 |
+
// re = (ac + bd)/abs_2()
|
439 |
+
// im = (bc - ad)/abs_2()
|
440 |
+
auto fabs_cd = Vectorized{
|
441 |
+
vec_andc(b._vec0, vd_sign_mask),
|
442 |
+
vec_andc(b._vec1, vd_sign_mask)}; // |c| |d|
|
443 |
+
auto fabs_dc = fabs_cd.el_swapped(); // |d| |c|
|
444 |
+
auto scale = fabs_cd.elwise_max(fabs_dc); // sc = max(|c|, |d|)
|
445 |
+
auto a2 = elwise_div(scale); // a/sc b/sc
|
446 |
+
auto b2 = b.elwise_div(scale); // c/sc d/sc
|
447 |
+
auto acbd2 = a2.elwise_mult(b2); // ac/sc^2 bd/sc^2
|
448 |
+
auto dc2 = b2.el_swapped(); // d/sc c/sc
|
449 |
+
dc2 = dc2 ^ vd_rsign_mask; // -d/sc c/sc
|
450 |
+
auto adbc2 = a2.elwise_mult(dc2); // -ad/sc^2 bc/sc^2
|
451 |
+
auto ret = horizontal_add(acbd2, adbc2); // (ac+bd)/sc^2 (bc-ad)/sc^2
|
452 |
+
auto denom2 = b2.abs_2_(); // (c^2+d^2)/sc^2 (c^2+d^2)/sc^2
|
453 |
+
ret = ret.elwise_div(denom2);
|
454 |
+
return ret;
|
455 |
+
}
|
456 |
+
|
457 |
+
Vectorized<ComplexDbl> exp() const {
|
458 |
+
return map(std::exp);
|
459 |
+
}
|
460 |
+
Vectorized<ComplexDbl> exp2() const {
|
461 |
+
return map(exp2_impl);
|
462 |
+
}
|
463 |
+
Vectorized<ComplexDbl> expm1() const {
|
464 |
+
return map(std::expm1);
|
465 |
+
}
|
466 |
+
|
467 |
+
Vectorized<ComplexDbl> pow(const Vectorized<ComplexDbl>& exp) const {
|
468 |
+
__at_align__ ComplexDbl x_tmp[size()];
|
469 |
+
__at_align__ ComplexDbl y_tmp[size()];
|
470 |
+
store(x_tmp);
|
471 |
+
exp.store(y_tmp);
|
472 |
+
for (const auto i : c10::irange(size())) {
|
473 |
+
x_tmp[i] = std::pow(x_tmp[i], y_tmp[i]);
|
474 |
+
}
|
475 |
+
return loadu(x_tmp);
|
476 |
+
}
|
477 |
+
|
478 |
+
Vectorized<ComplexDbl> sgn() const {
|
479 |
+
return map(at::native::sgn_impl);
|
480 |
+
}
|
481 |
+
|
482 |
+
Vectorized<ComplexDbl> operator<(const Vectorized<ComplexDbl>& other) const {
|
483 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
484 |
+
}
|
485 |
+
Vectorized<ComplexDbl> operator<=(const Vectorized<ComplexDbl>& other) const {
|
486 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
487 |
+
}
|
488 |
+
Vectorized<ComplexDbl> operator>(const Vectorized<ComplexDbl>& other) const {
|
489 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
490 |
+
}
|
491 |
+
Vectorized<ComplexDbl> operator>=(const Vectorized<ComplexDbl>& other) const {
|
492 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
493 |
+
}
|
494 |
+
|
495 |
+
Vectorized<ComplexDbl> eq(const Vectorized<ComplexDbl>& other) const {
|
496 |
+
auto eq = (*this == other); // compares real and imag individually
|
497 |
+
// If both real numbers and imag numbers are equal, then the complex numbers are equal
|
498 |
+
return (eq.real() & eq.imag()) & vd_one;
|
499 |
+
}
|
500 |
+
Vectorized<ComplexDbl> ne(const Vectorized<ComplexDbl>& other) const {
|
501 |
+
auto ne = (*this != other); // compares real and imag individually
|
502 |
+
// If either real numbers or imag numbers are not equal, then the complex numbers are not equal
|
503 |
+
return (ne.real() | ne.imag()) & vd_one;
|
504 |
+
}
|
505 |
+
|
506 |
+
DEFINE_MEMBER_OP(operator==, ComplexDbl, vec_cmpeq)
|
507 |
+
DEFINE_MEMBER_OP(operator!=, ComplexDbl, vec_cmpne)
|
508 |
+
|
509 |
+
DEFINE_MEMBER_OP(operator+, ComplexDbl, vec_add)
|
510 |
+
DEFINE_MEMBER_OP(operator-, ComplexDbl, vec_sub)
|
511 |
+
DEFINE_MEMBER_OP(operator&, ComplexDbl, vec_and)
|
512 |
+
DEFINE_MEMBER_OP(operator|, ComplexDbl, vec_or)
|
513 |
+
DEFINE_MEMBER_OP(operator^, ComplexDbl, vec_xor)
|
514 |
+
// elementwise helpers
|
515 |
+
DEFINE_MEMBER_OP(elwise_mult, ComplexDbl, vec_mul)
|
516 |
+
DEFINE_MEMBER_OP(elwise_div, ComplexDbl, vec_div)
|
517 |
+
DEFINE_MEMBER_OP(elwise_gt, ComplexDbl, vec_cmpgt)
|
518 |
+
DEFINE_MEMBER_OP(elwise_ge, ComplexDbl, vec_cmpge)
|
519 |
+
DEFINE_MEMBER_OP(elwise_lt, ComplexDbl, vec_cmplt)
|
520 |
+
DEFINE_MEMBER_OP(elwise_le, ComplexDbl, vec_cmple)
|
521 |
+
DEFINE_MEMBER_OP(elwise_max, ComplexDbl, vec_max)
|
522 |
+
};
|
523 |
+
|
524 |
+
template <>
|
525 |
+
Vectorized<ComplexDbl> inline maximum(
|
526 |
+
const Vectorized<ComplexDbl>& a,
|
527 |
+
const Vectorized<ComplexDbl>& b) {
|
528 |
+
auto abs_a = a.abs_2_();
|
529 |
+
auto abs_b = b.abs_2_();
|
530 |
+
// auto mask = _mm256_cmp_ps(abs_a, abs_b, _CMP_LT_OQ);
|
531 |
+
// auto max = _mm256_blendv_ps(a, b, mask);
|
532 |
+
auto mask = abs_a.elwise_lt(abs_b);
|
533 |
+
auto max = Vectorized<ComplexDbl>::elwise_blendv(a, b, mask);
|
534 |
+
|
535 |
+
return max;
|
536 |
+
// Exploit the fact that all-ones is a NaN.
|
537 |
+
// auto isnan = _mm256_cmp_ps(abs_a, abs_b, _CMP_UNORD_Q);
|
538 |
+
// return _mm256_or_ps(max, isnan);
|
539 |
+
}
|
540 |
+
|
541 |
+
template <>
|
542 |
+
Vectorized<ComplexDbl> inline minimum(
|
543 |
+
const Vectorized<ComplexDbl>& a,
|
544 |
+
const Vectorized<ComplexDbl>& b) {
|
545 |
+
auto abs_a = a.abs_2_();
|
546 |
+
auto abs_b = b.abs_2_();
|
547 |
+
// auto mask = _mm256_cmp_ps(abs_a, abs_b, _CMP_GT_OQ);
|
548 |
+
// auto min = _mm256_blendv_ps(a, b, mask);
|
549 |
+
auto mask = abs_a.elwise_gt(abs_b);
|
550 |
+
auto min = Vectorized<ComplexDbl>::elwise_blendv(a, b, mask);
|
551 |
+
return min;
|
552 |
+
// Exploit the fact that all-ones is a NaN.
|
553 |
+
// auto isnan = _mm256_cmp_ps(abs_a, abs_b, _CMP_UNORD_Q);
|
554 |
+
// return _mm256_or_ps(min, isnan);
|
555 |
+
}
|
556 |
+
|
557 |
+
|
558 |
+
} // namespace
|
559 |
+
} // namespace vec
|
560 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_complex_float_vsx.h
ADDED
@@ -0,0 +1,628 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
#pragma once
|
3 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
4 |
+
#include <ATen/cpu/vec/vec_base.h>
|
5 |
+
#include <ATen/cpu/vec/vec256/vsx/vsx_helpers.h>
|
6 |
+
#include <c10/util/complex.h>
|
7 |
+
#include <c10/util/irange.h>
|
8 |
+
|
9 |
+
namespace at {
|
10 |
+
namespace vec {
|
11 |
+
// See Note [CPU_CAPABILITY namespace]
|
12 |
+
inline namespace CPU_CAPABILITY {
|
13 |
+
using ComplexFlt = c10::complex<float>;
|
14 |
+
|
15 |
+
template <>
|
16 |
+
class Vectorized<ComplexFlt> {
|
17 |
+
private:
|
18 |
+
union {
|
19 |
+
struct {
|
20 |
+
vfloat32 _vec0;
|
21 |
+
vfloat32 _vec1;
|
22 |
+
};
|
23 |
+
struct {
|
24 |
+
vbool32 _vecb0;
|
25 |
+
vbool32 _vecb1;
|
26 |
+
};
|
27 |
+
|
28 |
+
} __attribute__((__may_alias__));
|
29 |
+
|
30 |
+
public:
|
31 |
+
using value_type = ComplexFlt;
|
32 |
+
using vec_internal_type = vfloat32;
|
33 |
+
using vec_internal_mask_type = vbool32;
|
34 |
+
using size_type = int;
|
35 |
+
|
36 |
+
static constexpr size_type size() {
|
37 |
+
return 4;
|
38 |
+
}
|
39 |
+
Vectorized() {}
|
40 |
+
|
41 |
+
C10_ALWAYS_INLINE Vectorized(vfloat32 v) : _vec0{v}, _vec1{v} {}
|
42 |
+
C10_ALWAYS_INLINE Vectorized(vbool32 vmask) : _vecb0{vmask}, _vecb1{vmask} {}
|
43 |
+
C10_ALWAYS_INLINE Vectorized(vfloat32 v1, vfloat32 v2) : _vec0{v1}, _vec1{v2} {}
|
44 |
+
C10_ALWAYS_INLINE Vectorized(vbool32 v1, vbool32 v2) : _vecb0{v1}, _vecb1{v2} {}
|
45 |
+
|
46 |
+
Vectorized(ComplexFlt val) {
|
47 |
+
float real_value = val.real();
|
48 |
+
float imag_value = val.imag();
|
49 |
+
_vec0 = vfloat32{real_value, imag_value, real_value, imag_value};
|
50 |
+
_vec1 = vfloat32{real_value, imag_value, real_value, imag_value};
|
51 |
+
}
|
52 |
+
|
53 |
+
Vectorized(ComplexFlt val1, ComplexFlt val2, ComplexFlt val3, ComplexFlt val4) {
|
54 |
+
_vec0 = vfloat32{val1.real(), val1.imag(), val2.real(), val2.imag()};
|
55 |
+
_vec1 = vfloat32{val3.real(), val3.imag(), val4.real(), val4.imag()};
|
56 |
+
}
|
57 |
+
|
58 |
+
template <uint64_t mask>
|
59 |
+
static std::enable_if_t<blendChoiceComplex(mask) == 0, Vectorized<ComplexFlt>>
|
60 |
+
C10_ALWAYS_INLINE
|
61 |
+
blend(const Vectorized<ComplexFlt>& a, const Vectorized<ComplexFlt>& b) {
|
62 |
+
return a;
|
63 |
+
}
|
64 |
+
|
65 |
+
template <uint64_t mask>
|
66 |
+
static std::enable_if_t<blendChoiceComplex(mask) == 1, Vectorized<ComplexFlt>>
|
67 |
+
C10_ALWAYS_INLINE
|
68 |
+
blend(const Vectorized<ComplexFlt>& a, const Vectorized<ComplexFlt>& b) {
|
69 |
+
return b;
|
70 |
+
}
|
71 |
+
|
72 |
+
template <uint64_t mask>
|
73 |
+
static std::enable_if_t<blendChoiceComplex(mask) == 2, Vectorized<ComplexFlt>>
|
74 |
+
C10_ALWAYS_INLINE
|
75 |
+
blend(const Vectorized<ComplexFlt>& a, const Vectorized<ComplexFlt>& b) {
|
76 |
+
return {b._vec0, a._vec1};
|
77 |
+
}
|
78 |
+
|
79 |
+
template <uint64_t mask>
|
80 |
+
static std::enable_if_t<blendChoiceComplex(mask) == 3, Vectorized<ComplexFlt>>
|
81 |
+
C10_ALWAYS_INLINE
|
82 |
+
blend(const Vectorized<ComplexFlt>& a, const Vectorized<ComplexFlt>& b) {
|
83 |
+
return {a._vec0, b._vec1};
|
84 |
+
}
|
85 |
+
|
86 |
+
template <uint64_t mask>
|
87 |
+
static std::enable_if_t<blendChoiceComplex(mask) == 4, Vectorized<ComplexFlt>>
|
88 |
+
C10_ALWAYS_INLINE
|
89 |
+
blend(const Vectorized<ComplexFlt>& a, const Vectorized<ComplexFlt>& b) {
|
90 |
+
const vbool32 mask_1st = VsxComplexMask1(mask);
|
91 |
+
return {(vfloat32)vec_sel(a._vec0, b._vec0, mask_1st), a._vec1};
|
92 |
+
}
|
93 |
+
|
94 |
+
template <uint64_t mask>
|
95 |
+
static std::enable_if_t<blendChoiceComplex(mask) == 5, Vectorized<ComplexFlt>>
|
96 |
+
C10_ALWAYS_INLINE
|
97 |
+
blend(const Vectorized<ComplexFlt>& a, const Vectorized<ComplexFlt>& b) {
|
98 |
+
const vbool32 mask_1st = VsxComplexMask1(mask);
|
99 |
+
return {(vfloat32)vec_sel(a._vec0, b._vec0, mask_1st), b._vec1};
|
100 |
+
}
|
101 |
+
|
102 |
+
template <uint64_t mask>
|
103 |
+
static std::enable_if_t<blendChoiceComplex(mask) == 6, Vectorized<ComplexFlt>>
|
104 |
+
C10_ALWAYS_INLINE
|
105 |
+
blend(const Vectorized<ComplexFlt>& a, const Vectorized<ComplexFlt>& b) {
|
106 |
+
const vbool32 mask_2nd = VsxComplexMask2(mask);
|
107 |
+
// generated masks
|
108 |
+
return {a._vec0, (vfloat32)vec_sel(a._vec1, b._vec1, mask_2nd)};
|
109 |
+
}
|
110 |
+
|
111 |
+
template <uint64_t mask>
|
112 |
+
static std::enable_if_t<blendChoiceComplex(mask) == 7, Vectorized<ComplexFlt>>
|
113 |
+
C10_ALWAYS_INLINE
|
114 |
+
blend(const Vectorized<ComplexFlt>& a, const Vectorized<ComplexFlt>& b) {
|
115 |
+
const vbool32 mask_2nd = VsxComplexMask2(mask);
|
116 |
+
// generated masks
|
117 |
+
return {b._vec0, (vfloat32)vec_sel(a._vec1, b._vec1, mask_2nd)};
|
118 |
+
}
|
119 |
+
|
120 |
+
template <uint64_t mask>
|
121 |
+
static std::enable_if_t<blendChoiceComplex(mask) == 8, Vectorized<ComplexFlt>>
|
122 |
+
C10_ALWAYS_INLINE
|
123 |
+
blend(const Vectorized<ComplexFlt>& a, const Vectorized<ComplexFlt>& b) {
|
124 |
+
const vbool32 mask_1st = VsxComplexMask1(mask);
|
125 |
+
const vbool32 mask_2nd = VsxComplexMask2(mask);
|
126 |
+
return {
|
127 |
+
(vfloat32)vec_sel(a._vec0, b._vec0, mask_1st),
|
128 |
+
(vfloat32)vec_sel(a._vec1, b._vec1, mask_2nd)};
|
129 |
+
}
|
130 |
+
|
131 |
+
template <int64_t mask>
|
132 |
+
static Vectorized<ComplexFlt> C10_ALWAYS_INLINE
|
133 |
+
el_blend(const Vectorized<ComplexFlt>& a, const Vectorized<ComplexFlt>& b) {
|
134 |
+
const vbool32 mask_1st = VsxMask1(mask);
|
135 |
+
const vbool32 mask_2nd = VsxMask2(mask);
|
136 |
+
return {
|
137 |
+
(vfloat32)vec_sel(a._vec0, b._vec0, mask_1st),
|
138 |
+
(vfloat32)vec_sel(a._vec1, b._vec1, mask_2nd)};
|
139 |
+
}
|
140 |
+
|
141 |
+
static Vectorized<ComplexFlt> blendv(
|
142 |
+
const Vectorized<ComplexFlt>& a,
|
143 |
+
const Vectorized<ComplexFlt>& b,
|
144 |
+
const Vectorized<ComplexFlt>& mask) {
|
145 |
+
// convert std::complex<V> index mask to V index mask: xy -> xxyy
|
146 |
+
auto mask_complex = Vectorized<ComplexFlt>(
|
147 |
+
vec_mergeh(mask._vec0, mask._vec0), vec_mergeh(mask._vec1, mask._vec1));
|
148 |
+
return {
|
149 |
+
vec_sel(a._vec0, b._vec0, reinterpret_cast<vbool32>(mask_complex._vec0)),
|
150 |
+
vec_sel(a._vec1, b._vec1, reinterpret_cast<vbool32>(mask_complex._vec1)),
|
151 |
+
};
|
152 |
+
}
|
153 |
+
|
154 |
+
static Vectorized<ComplexFlt> elwise_blendv(
|
155 |
+
const Vectorized<ComplexFlt>& a,
|
156 |
+
const Vectorized<ComplexFlt>& b,
|
157 |
+
const Vectorized<ComplexFlt>& mask) {
|
158 |
+
return {
|
159 |
+
vec_sel(a._vec0, b._vec0, reinterpret_cast<vbool32>(mask._vec0)),
|
160 |
+
vec_sel(a._vec1, b._vec1, reinterpret_cast<vbool32>(mask._vec1)),
|
161 |
+
};
|
162 |
+
}
|
163 |
+
|
164 |
+
template <typename step_t>
|
165 |
+
static Vectorized<ComplexFlt> arange(
|
166 |
+
ComplexFlt base = 0.,
|
167 |
+
step_t step = static_cast<step_t>(1)) {
|
168 |
+
return Vectorized<ComplexFlt>(
|
169 |
+
base,
|
170 |
+
base + step,
|
171 |
+
base + ComplexFlt(2) * step,
|
172 |
+
base + ComplexFlt(3) * step);
|
173 |
+
}
|
174 |
+
static Vectorized<ComplexFlt> set(
|
175 |
+
const Vectorized<ComplexFlt>& a,
|
176 |
+
const Vectorized<ComplexFlt>& b,
|
177 |
+
int64_t count = size()) {
|
178 |
+
switch (count) {
|
179 |
+
case 0:
|
180 |
+
return a;
|
181 |
+
case 1:
|
182 |
+
return blend<1>(a, b);
|
183 |
+
case 2:
|
184 |
+
return blend<3>(a, b);
|
185 |
+
case 3:
|
186 |
+
return blend<7>(a, b);
|
187 |
+
}
|
188 |
+
return b;
|
189 |
+
}
|
190 |
+
|
191 |
+
static Vectorized<value_type> C10_ALWAYS_INLINE
|
192 |
+
loadu(const void* ptr, int count = size()) {
|
193 |
+
if (count == size()) {
|
194 |
+
return {
|
195 |
+
vec_vsx_ld(offset0, reinterpret_cast<const float*>(ptr)),
|
196 |
+
vec_vsx_ld(offset16, reinterpret_cast<const float*>(ptr))};
|
197 |
+
}
|
198 |
+
|
199 |
+
__at_align__ value_type tmp_values[size()] = {};
|
200 |
+
std::memcpy(tmp_values, ptr, std::min(count, size()) * sizeof(value_type));
|
201 |
+
|
202 |
+
return {
|
203 |
+
vec_vsx_ld(offset0, reinterpret_cast<const float*>(tmp_values)),
|
204 |
+
vec_vsx_ld(offset16, reinterpret_cast<const float*>(tmp_values))};
|
205 |
+
}
|
206 |
+
|
207 |
+
void C10_ALWAYS_INLINE store(void* ptr, int count = size()) const {
|
208 |
+
if (count == size()) {
|
209 |
+
vec_vsx_st(_vec0, offset0, reinterpret_cast<float*>(ptr));
|
210 |
+
vec_vsx_st(_vec1, offset16, reinterpret_cast<float*>(ptr));
|
211 |
+
} else if (count > 0) {
|
212 |
+
__at_align__ value_type tmp_values[size()];
|
213 |
+
vec_vsx_st(_vec0, offset0, reinterpret_cast<float*>(tmp_values));
|
214 |
+
vec_vsx_st(_vec1, offset16, reinterpret_cast<float*>(tmp_values));
|
215 |
+
std::memcpy(
|
216 |
+
ptr, tmp_values, std::min(count, size()) * sizeof(value_type));
|
217 |
+
}
|
218 |
+
}
|
219 |
+
|
220 |
+
const ComplexFlt& operator[](int idx) const = delete;
|
221 |
+
ComplexFlt& operator[](int idx) = delete;
|
222 |
+
|
223 |
+
Vectorized<ComplexFlt> map(ComplexFlt (*const f)(ComplexFlt)) const {
|
224 |
+
__at_align__ ComplexFlt tmp[size()];
|
225 |
+
store(tmp);
|
226 |
+
for (const auto i : c10::irange(size())) {
|
227 |
+
tmp[i] = f(tmp[i]);
|
228 |
+
}
|
229 |
+
return loadu(tmp);
|
230 |
+
}
|
231 |
+
|
232 |
+
Vectorized<ComplexFlt> map(ComplexFlt (*const f)(const ComplexFlt&)) const {
|
233 |
+
__at_align__ ComplexFlt tmp[size()];
|
234 |
+
store(tmp);
|
235 |
+
for (const auto i : c10::irange(size())) {
|
236 |
+
tmp[i] = f(tmp[i]);
|
237 |
+
}
|
238 |
+
return loadu(tmp);
|
239 |
+
}
|
240 |
+
|
241 |
+
static Vectorized<ComplexFlt> horizontal_add(
|
242 |
+
Vectorized<ComplexFlt>& first,
|
243 |
+
Vectorized<ComplexFlt>& second) {
|
244 |
+
// Operates on individual floats, see _mm_hadd_ps
|
245 |
+
// {f0+f1, s0+s1, f2+f3, s2+s3, ...}
|
246 |
+
// i.e. it sums the re and im of each value and interleaves first and second:
|
247 |
+
// {f_re0 + f_im0, s_re0 + s_im0, f_re1 + f_im1, s_re1 + s_im1, ...}
|
248 |
+
return el_mergee(first, second) + el_mergeo(first, second);
|
249 |
+
}
|
250 |
+
|
251 |
+
static Vectorized<ComplexFlt> horizontal_sub_permD8(
|
252 |
+
Vectorized<ComplexFlt>& first,
|
253 |
+
Vectorized<ComplexFlt>& second) {
|
254 |
+
// we will simulate it differently with 6 instructions total
|
255 |
+
// lets permute second so that we can add it getting horizontal sums
|
256 |
+
auto first_perm = first.el_swapped(); // 2perm
|
257 |
+
auto second_perm = second.el_swapped(); // 2perm
|
258 |
+
// sum
|
259 |
+
auto first_ret = first - first_perm; // 2sub
|
260 |
+
auto second_ret = second - second_perm; // 2 sub
|
261 |
+
// now lets choose evens
|
262 |
+
return el_mergee(first_ret, second_ret); // 2 mergee's
|
263 |
+
}
|
264 |
+
|
265 |
+
Vectorized<ComplexFlt> abs_2_() const {
|
266 |
+
auto a = (*this).elwise_mult(*this);
|
267 |
+
auto permuted = a.el_swapped();
|
268 |
+
a = a + permuted;
|
269 |
+
return a.el_mergee();
|
270 |
+
}
|
271 |
+
|
272 |
+
Vectorized<ComplexFlt> abs_() const {
|
273 |
+
auto vi = el_mergeo();
|
274 |
+
auto vr = el_mergee();
|
275 |
+
return {Sleef_hypotf4_u05vsx(vr._vec0, vi._vec0), Sleef_hypotf4_u05vsx(vr._vec1, vi._vec1)};
|
276 |
+
}
|
277 |
+
|
278 |
+
Vectorized<ComplexFlt> abs() const {
|
279 |
+
return abs_() & real_mask;
|
280 |
+
}
|
281 |
+
|
282 |
+
Vectorized<ComplexFlt> real_() const {
|
283 |
+
return *this & real_mask;
|
284 |
+
}
|
285 |
+
Vectorized<ComplexFlt> real() const {
|
286 |
+
return *this & real_mask;
|
287 |
+
}
|
288 |
+
Vectorized<ComplexFlt> imag_() const {
|
289 |
+
return *this & imag_mask;
|
290 |
+
}
|
291 |
+
Vectorized<ComplexFlt> imag() const {
|
292 |
+
// we can use swap_mask or sldwi
|
293 |
+
auto ret = imag_();
|
294 |
+
return {
|
295 |
+
vec_sldw(ret._vec0, ret._vec0, 3), vec_sldw(ret._vec1, ret._vec1, 3)};
|
296 |
+
}
|
297 |
+
|
298 |
+
Vectorized<ComplexFlt> conj_() const {
|
299 |
+
return *this ^ isign_mask;
|
300 |
+
}
|
301 |
+
Vectorized<ComplexFlt> conj() const {
|
302 |
+
return *this ^ isign_mask;
|
303 |
+
}
|
304 |
+
|
305 |
+
Vectorized<ComplexFlt> log() const {
|
306 |
+
// Most trigonomic ops use the log() op to improve complex number
|
307 |
+
// performance.
|
308 |
+
return map(std::log);
|
309 |
+
}
|
310 |
+
|
311 |
+
Vectorized<ComplexFlt> log2() const {
|
312 |
+
// log2eB_inv
|
313 |
+
auto ret = log();
|
314 |
+
return ret.elwise_mult(log2e_inv);
|
315 |
+
}
|
316 |
+
Vectorized<ComplexFlt> log10() const {
|
317 |
+
auto ret = log();
|
318 |
+
return ret.elwise_mult(log10e_inv);
|
319 |
+
}
|
320 |
+
|
321 |
+
Vectorized<ComplexFlt> log1p() const {
|
322 |
+
return map(std::log1p);
|
323 |
+
}
|
324 |
+
|
325 |
+
Vectorized<ComplexFlt> el_swapped() const {
|
326 |
+
vfloat32 v0 = vec_perm(_vec0, _vec0, swap_mask);
|
327 |
+
vfloat32 v1 = vec_perm(_vec1, _vec1, swap_mask);
|
328 |
+
return {v0, v1};
|
329 |
+
}
|
330 |
+
|
331 |
+
Vectorized<ComplexFlt> el_mergee() const {
|
332 |
+
// as mergee phased in , we can use vec_perm with mask
|
333 |
+
return {vec_mergee(_vecb0, _vecb0), vec_mergee(_vecb1, _vecb1)};
|
334 |
+
}
|
335 |
+
|
336 |
+
Vectorized<ComplexFlt> el_mergeo() const {
|
337 |
+
// as mergeo phased in , we can use vec_perm with mask
|
338 |
+
return {vec_mergeo(_vecb0, _vecb0), vec_mergeo(_vecb1, _vecb1)};
|
339 |
+
}
|
340 |
+
|
341 |
+
Vectorized<ComplexFlt> el_madd(
|
342 |
+
const Vectorized<ComplexFlt>& multiplier,
|
343 |
+
const Vectorized<ComplexFlt>& val) const {
|
344 |
+
return {
|
345 |
+
vec_madd(_vec0, multiplier._vec0, val._vec0),
|
346 |
+
vec_madd(_vec1, multiplier._vec1, val._vec1)};
|
347 |
+
}
|
348 |
+
|
349 |
+
static Vectorized<ComplexFlt> el_mergee(
|
350 |
+
Vectorized<ComplexFlt>& first,
|
351 |
+
Vectorized<ComplexFlt>& second) {
|
352 |
+
return {
|
353 |
+
vec_mergee(first._vecb0, second._vecb0),
|
354 |
+
vec_mergee(first._vecb1, second._vecb1)};
|
355 |
+
}
|
356 |
+
|
357 |
+
static Vectorized<ComplexFlt> el_mergeo(
|
358 |
+
Vectorized<ComplexFlt>& first,
|
359 |
+
Vectorized<ComplexFlt>& second) {
|
360 |
+
return {
|
361 |
+
vec_mergeo(first._vecb0, second._vecb0),
|
362 |
+
vec_mergeo(first._vecb1, second._vecb1)};
|
363 |
+
}
|
364 |
+
|
365 |
+
Vectorized<ComplexFlt> angle_() const {
|
366 |
+
// angle = atan2(b/a)
|
367 |
+
// auto b_a = _mm256_permute_ps(values, 0xB1); // b a
|
368 |
+
// return Sleef_atan2f8_u10(values, b_a); // 90-angle angle
|
369 |
+
Vectorized<ComplexFlt> ret;
|
370 |
+
for (int i = 0; i < 4; i += 2) {
|
371 |
+
ret._vec0[i] = std::atan2(_vec0[i + 1], _vec0[i]);
|
372 |
+
ret._vec1[i] = std::atan2(_vec1[i + 1], _vec1[i]);
|
373 |
+
}
|
374 |
+
return ret;
|
375 |
+
}
|
376 |
+
|
377 |
+
Vectorized<ComplexFlt> angle() const {
|
378 |
+
return angle_() & real_mask;
|
379 |
+
}
|
380 |
+
|
381 |
+
Vectorized<ComplexFlt> sin() const {
|
382 |
+
return map(std::sin);
|
383 |
+
}
|
384 |
+
Vectorized<ComplexFlt> sinh() const {
|
385 |
+
return map(std::sinh);
|
386 |
+
}
|
387 |
+
Vectorized<ComplexFlt> cos() const {
|
388 |
+
return map(std::cos);
|
389 |
+
}
|
390 |
+
Vectorized<ComplexFlt> cosh() const {
|
391 |
+
return map(std::cosh);
|
392 |
+
}
|
393 |
+
Vectorized<ComplexFlt> ceil() const {
|
394 |
+
return {vec_ceil(_vec0), vec_ceil(_vec1)};
|
395 |
+
}
|
396 |
+
Vectorized<ComplexFlt> floor() const {
|
397 |
+
return {vec_floor(_vec0), vec_floor(_vec1)};
|
398 |
+
}
|
399 |
+
Vectorized<ComplexFlt> neg() const {
|
400 |
+
auto z = Vectorized<ComplexFlt>(zero);
|
401 |
+
return z - *this;
|
402 |
+
}
|
403 |
+
Vectorized<ComplexFlt> round() const {
|
404 |
+
return {vec_round(_vec0), vec_round(_vec1)};
|
405 |
+
}
|
406 |
+
Vectorized<ComplexFlt> tan() const {
|
407 |
+
return map(std::tan);
|
408 |
+
}
|
409 |
+
Vectorized<ComplexFlt> tanh() const {
|
410 |
+
return map(std::tanh);
|
411 |
+
}
|
412 |
+
Vectorized<ComplexFlt> trunc() const {
|
413 |
+
return {vec_trunc(_vec0), vec_trunc(_vec1)};
|
414 |
+
}
|
415 |
+
|
416 |
+
Vectorized<ComplexFlt> elwise_sqrt() const {
|
417 |
+
return {vec_sqrt(_vec0), vec_sqrt(_vec1)};
|
418 |
+
}
|
419 |
+
|
420 |
+
Vectorized<ComplexFlt> sqrt() const {
|
421 |
+
return map(std::sqrt);
|
422 |
+
}
|
423 |
+
|
424 |
+
Vectorized<ComplexFlt> reciprocal() const {
|
425 |
+
// re + im*i = (a + bi) / (c + di)
|
426 |
+
// re = (ac + bd)/abs_2() = c/abs_2()
|
427 |
+
// im = (bc - ad)/abs_2() = d/abs_2()
|
428 |
+
auto c_d = *this ^ isign_mask; // c -d
|
429 |
+
auto abs = abs_2_();
|
430 |
+
return c_d.elwise_div(abs);
|
431 |
+
}
|
432 |
+
|
433 |
+
Vectorized<ComplexFlt> rsqrt() const {
|
434 |
+
return sqrt().reciprocal();
|
435 |
+
}
|
436 |
+
|
437 |
+
Vectorized<ComplexFlt> pow(const Vectorized<ComplexFlt>& exp) const {
|
438 |
+
__at_align__ ComplexFlt x_tmp[size()];
|
439 |
+
__at_align__ ComplexFlt y_tmp[size()];
|
440 |
+
store(x_tmp);
|
441 |
+
exp.store(y_tmp);
|
442 |
+
for (const auto i : c10::irange(size())) {
|
443 |
+
x_tmp[i] = std::pow(x_tmp[i], y_tmp[i]);
|
444 |
+
}
|
445 |
+
return loadu(x_tmp);
|
446 |
+
}
|
447 |
+
|
448 |
+
Vectorized<ComplexFlt> atan() const {
|
449 |
+
// atan(x) = i/2 * ln((i + z)/(i - z))
|
450 |
+
auto ione = Vectorized(imag_one);
|
451 |
+
auto sum = ione + *this;
|
452 |
+
auto sub = ione - *this;
|
453 |
+
auto ln = (sum / sub).log(); // ln((i + z)/(i - z))
|
454 |
+
return ln * imag_half; // i/2*ln()
|
455 |
+
}
|
456 |
+
Vectorized<ComplexFlt> atanh() const {
|
457 |
+
return map(std::atanh);
|
458 |
+
}
|
459 |
+
|
460 |
+
Vectorized<ComplexFlt> acos() const {
|
461 |
+
// acos(x) = pi/2 - asin(x)
|
462 |
+
return Vectorized(pi_2) - asin();
|
463 |
+
}
|
464 |
+
|
465 |
+
Vectorized<ComplexFlt> inline operator*(const Vectorized<ComplexFlt>& b) const {
|
466 |
+
//(a + bi) * (c + di) = (ac - bd) + (ad + bc)i
|
467 |
+
|
468 |
+
#if 1
|
469 |
+
// this is more vsx friendly than simulating horizontal from x86
|
470 |
+
|
471 |
+
auto vi = b.el_mergeo();
|
472 |
+
auto vr = b.el_mergee();
|
473 |
+
vi = vi ^ rsign_mask;
|
474 |
+
auto ret = elwise_mult(vr);
|
475 |
+
auto vx_swapped = el_swapped();
|
476 |
+
ret = vx_swapped.el_madd(vi, ret);
|
477 |
+
return ret;
|
478 |
+
|
479 |
+
#else
|
480 |
+
|
481 |
+
auto ac_bd = elwise_mult(b);
|
482 |
+
auto d_c = b.el_swapped();
|
483 |
+
d_c = d_c ^ isign_mask;
|
484 |
+
auto ad_bc = elwise_mult(d_c);
|
485 |
+
auto ret = horizontal_sub_permD8(ac_bd, ad_bc);
|
486 |
+
return ret;
|
487 |
+
#endif
|
488 |
+
}
|
489 |
+
|
490 |
+
Vectorized<ComplexFlt> inline operator/(const Vectorized<ComplexFlt>& b) const {
|
491 |
+
// re + im*i = (a + bi) / (c + di)
|
492 |
+
// re = (ac + bd)/abs_2()
|
493 |
+
// im = (bc - ad)/abs_2()
|
494 |
+
auto fabs_cd = Vectorized{
|
495 |
+
vec_andc(b._vec0, sign_mask),
|
496 |
+
vec_andc(b._vec1, sign_mask)}; // |c| |d|
|
497 |
+
auto fabs_dc = fabs_cd.el_swapped(); // |d| |c|
|
498 |
+
auto scale = fabs_cd.elwise_max(fabs_dc); // sc = max(|c|, |d|)
|
499 |
+
auto a2 = elwise_div(scale); // a/sc b/sc
|
500 |
+
auto b2 = b.elwise_div(scale); // c/sc d/sc
|
501 |
+
auto acbd2 = a2.elwise_mult(b2); // ac/sc^2 bd/sc^2
|
502 |
+
auto dc2 = b2.el_swapped(); // d/sc c/sc
|
503 |
+
dc2 = dc2 ^ rsign_mask; // -d/sc c/sc
|
504 |
+
auto adbc2 = a2.elwise_mult(dc2); // -ad/sc^2 bc/sc^2
|
505 |
+
auto ret = horizontal_add(acbd2, adbc2); // (ac+bd)/sc^2 (bc-ad)/sc^2
|
506 |
+
auto denom2 = b2.abs_2_(); // (c^2+d^2)/sc^2 (c^2+d^2)/sc^2
|
507 |
+
ret = ret.elwise_div(denom2);
|
508 |
+
return ret;
|
509 |
+
}
|
510 |
+
|
511 |
+
Vectorized<ComplexFlt> asin() const {
|
512 |
+
// asin(x)
|
513 |
+
// = -i*ln(iz + sqrt(1 -z^2))
|
514 |
+
// = -i*ln((ai - b) + sqrt(1 - (a + bi)*(a + bi)))
|
515 |
+
// = -i*ln((-b + ai) + sqrt(1 - (a**2 - b**2) - 2*abi))
|
516 |
+
|
517 |
+
#if 1
|
518 |
+
auto conj = conj_();
|
519 |
+
auto b_a = conj.el_swapped();
|
520 |
+
auto ab = conj.elwise_mult(b_a);
|
521 |
+
auto im = ab + ab;
|
522 |
+
auto val_2 = (*this).elwise_mult(*this);
|
523 |
+
auto val_2_swapped = val_2.el_swapped();
|
524 |
+
auto re = horizontal_sub_permD8(val_2, val_2_swapped);
|
525 |
+
re = Vectorized<ComplexFlt>(one) - re;
|
526 |
+
auto root = el_blend<0xAA>(re, im).sqrt();
|
527 |
+
auto ln = (b_a + root).log();
|
528 |
+
return ln.el_swapped().conj();
|
529 |
+
#else
|
530 |
+
return map(std::asin);
|
531 |
+
#endif
|
532 |
+
}
|
533 |
+
|
534 |
+
Vectorized<ComplexFlt> exp() const {
|
535 |
+
return map(std::exp);
|
536 |
+
}
|
537 |
+
Vectorized<ComplexFlt> exp2() const {
|
538 |
+
return map(exp2_impl);
|
539 |
+
}
|
540 |
+
Vectorized<ComplexFlt> expm1() const {
|
541 |
+
return map(std::expm1);
|
542 |
+
}
|
543 |
+
|
544 |
+
Vectorized<ComplexFlt> eq(const Vectorized<ComplexFlt>& other) const {
|
545 |
+
auto eq = (*this == other); // compares real and imag individually
|
546 |
+
// If both real numbers and imag numbers are equal, then the complex numbers are equal
|
547 |
+
return (eq.real() & eq.imag()) & one;
|
548 |
+
}
|
549 |
+
Vectorized<ComplexFlt> ne(const Vectorized<ComplexFlt>& other) const {
|
550 |
+
auto ne = (*this != other); // compares real and imag individually
|
551 |
+
// If either real numbers or imag numbers are not equal, then the complex numbers are not equal
|
552 |
+
return (ne.real() | ne.imag()) & one;
|
553 |
+
}
|
554 |
+
|
555 |
+
Vectorized<ComplexFlt> sgn() const {
|
556 |
+
return map(at::native::sgn_impl);
|
557 |
+
}
|
558 |
+
|
559 |
+
Vectorized<ComplexFlt> operator<(const Vectorized<ComplexFlt>& other) const {
|
560 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
561 |
+
}
|
562 |
+
|
563 |
+
Vectorized<ComplexFlt> operator<=(const Vectorized<ComplexFlt>& other) const {
|
564 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
565 |
+
}
|
566 |
+
|
567 |
+
Vectorized<ComplexFlt> operator>(const Vectorized<ComplexFlt>& other) const {
|
568 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
569 |
+
}
|
570 |
+
|
571 |
+
Vectorized<ComplexFlt> operator>=(const Vectorized<ComplexFlt>& other) const {
|
572 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
573 |
+
}
|
574 |
+
|
575 |
+
DEFINE_MEMBER_OP(operator==, ComplexFlt, vec_cmpeq)
|
576 |
+
DEFINE_MEMBER_OP(operator!=, ComplexFlt, vec_cmpne)
|
577 |
+
|
578 |
+
DEFINE_MEMBER_OP(operator+, ComplexFlt, vec_add)
|
579 |
+
DEFINE_MEMBER_OP(operator-, ComplexFlt, vec_sub)
|
580 |
+
DEFINE_MEMBER_OP(operator&, ComplexFlt, vec_and)
|
581 |
+
DEFINE_MEMBER_OP(operator|, ComplexFlt, vec_or)
|
582 |
+
DEFINE_MEMBER_OP(operator^, ComplexFlt, vec_xor)
|
583 |
+
// elementwise helpers
|
584 |
+
DEFINE_MEMBER_OP(elwise_mult, ComplexFlt, vec_mul)
|
585 |
+
DEFINE_MEMBER_OP(elwise_div, ComplexFlt, vec_div)
|
586 |
+
DEFINE_MEMBER_OP(elwise_gt, ComplexFlt, vec_cmpgt)
|
587 |
+
DEFINE_MEMBER_OP(elwise_ge, ComplexFlt, vec_cmpge)
|
588 |
+
DEFINE_MEMBER_OP(elwise_lt, ComplexFlt, vec_cmplt)
|
589 |
+
DEFINE_MEMBER_OP(elwise_le, ComplexFlt, vec_cmple)
|
590 |
+
DEFINE_MEMBER_OP(elwise_max, ComplexFlt, vec_max)
|
591 |
+
};
|
592 |
+
|
593 |
+
template <>
|
594 |
+
Vectorized<ComplexFlt> inline maximum(
|
595 |
+
const Vectorized<ComplexFlt>& a,
|
596 |
+
const Vectorized<ComplexFlt>& b) {
|
597 |
+
auto abs_a = a.abs_2_();
|
598 |
+
auto abs_b = b.abs_2_();
|
599 |
+
// auto mask = _mm256_cmp_ps(abs_a, abs_b, _CMP_LT_OQ);
|
600 |
+
// auto max = _mm256_blendv_ps(a, b, mask);
|
601 |
+
auto mask = abs_a.elwise_lt(abs_b);
|
602 |
+
auto max = Vectorized<ComplexFlt>::elwise_blendv(a, b, mask);
|
603 |
+
|
604 |
+
return max;
|
605 |
+
// Exploit the fact that all-ones is a NaN.
|
606 |
+
// auto isnan = _mm256_cmp_ps(abs_a, abs_b, _CMP_UNORD_Q);
|
607 |
+
// return _mm256_or_ps(max, isnan);
|
608 |
+
}
|
609 |
+
|
610 |
+
template <>
|
611 |
+
Vectorized<ComplexFlt> inline minimum(
|
612 |
+
const Vectorized<ComplexFlt>& a,
|
613 |
+
const Vectorized<ComplexFlt>& b) {
|
614 |
+
auto abs_a = a.abs_2_();
|
615 |
+
auto abs_b = b.abs_2_();
|
616 |
+
// auto mask = _mm256_cmp_ps(abs_a, abs_b, _CMP_GT_OQ);
|
617 |
+
// auto min = _mm256_blendv_ps(a, b, mask);
|
618 |
+
auto mask = abs_a.elwise_gt(abs_b);
|
619 |
+
auto min = Vectorized<ComplexFlt>::elwise_blendv(a, b, mask);
|
620 |
+
return min;
|
621 |
+
// Exploit the fact that all-ones is a NaN.
|
622 |
+
// auto isnan = _mm256_cmp_ps(abs_a, abs_b, _CMP_UNORD_Q);
|
623 |
+
// return _mm256_or_ps(min, isnan);
|
624 |
+
}
|
625 |
+
|
626 |
+
} // namespace
|
627 |
+
} // namespace vec
|
628 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_double_vsx.h
ADDED
@@ -0,0 +1,438 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
4 |
+
#include <ATen/cpu/vec/vec_base.h>
|
5 |
+
#include <ATen/cpu/vec/vec256/vsx/vsx_helpers.h>
|
6 |
+
#include <c10/util/irange.h>
|
7 |
+
|
8 |
+
#include <sleef.h>
|
9 |
+
|
10 |
+
namespace at {
|
11 |
+
namespace vec {
|
12 |
+
|
13 |
+
inline namespace CPU_CAPABILITY {
|
14 |
+
|
15 |
+
|
16 |
+
template <>
|
17 |
+
class Vectorized<double> {
|
18 |
+
private:
|
19 |
+
union {
|
20 |
+
struct {
|
21 |
+
vfloat64 _vec0;
|
22 |
+
vfloat64 _vec1;
|
23 |
+
};
|
24 |
+
struct {
|
25 |
+
vbool64 _vecb0;
|
26 |
+
vbool64 _vecb1;
|
27 |
+
};
|
28 |
+
|
29 |
+
} __attribute__((__may_alias__));
|
30 |
+
|
31 |
+
public:
|
32 |
+
using value_type = double;
|
33 |
+
using vec_internal_type = vfloat64;
|
34 |
+
using vec_internal_mask_type = vbool64;
|
35 |
+
using size_type = int;
|
36 |
+
static constexpr size_type size() {
|
37 |
+
return 4;
|
38 |
+
}
|
39 |
+
Vectorized() {}
|
40 |
+
C10_ALWAYS_INLINE Vectorized(vfloat64 v) : _vec0{v}, _vec1{v} {}
|
41 |
+
C10_ALWAYS_INLINE Vectorized(vbool64 vmask) : _vecb0{vmask}, _vecb1{vmask} {}
|
42 |
+
C10_ALWAYS_INLINE Vectorized(vfloat64 v1, vfloat64 v2) : _vec0{v1}, _vec1{v2} {}
|
43 |
+
C10_ALWAYS_INLINE Vectorized(vbool64 v1, vbool64 v2) : _vecb0{v1}, _vecb1{v2} {}
|
44 |
+
C10_ALWAYS_INLINE Vectorized(double scalar)
|
45 |
+
: _vec0{vec_splats(scalar)}, _vec1{vec_splats(scalar)} {}
|
46 |
+
C10_ALWAYS_INLINE Vectorized(
|
47 |
+
double scalar1,
|
48 |
+
double scalar2,
|
49 |
+
double scalar3,
|
50 |
+
double scalar4)
|
51 |
+
: _vec0{vfloat64{scalar1, scalar2}}, _vec1{vfloat64{scalar3, scalar4}} {}
|
52 |
+
C10_ALWAYS_INLINE const vec_internal_type& vec0() const {
|
53 |
+
return _vec0;
|
54 |
+
}
|
55 |
+
C10_ALWAYS_INLINE const vec_internal_type& vec1() const {
|
56 |
+
return _vec1;
|
57 |
+
}
|
58 |
+
|
59 |
+
int zero_mask() const {
|
60 |
+
auto cmp = (*this == vd_zero);
|
61 |
+
return (cmp._vecb0[0] & 1) | (cmp._vecb0[1] & 2) | (cmp._vecb1[0] & 4) |
|
62 |
+
(cmp._vecb1[1] & 8);
|
63 |
+
}
|
64 |
+
|
65 |
+
template <int64_t mask>
|
66 |
+
static std::enable_if_t<blendChoiceDbl(mask) == 0, Vectorized<double>> C10_ALWAYS_INLINE
|
67 |
+
blend(const Vectorized<double>& a, const Vectorized<double>& b) {
|
68 |
+
return a;
|
69 |
+
}
|
70 |
+
|
71 |
+
template <int64_t mask>
|
72 |
+
static std::enable_if_t<blendChoiceDbl(mask) == 1, Vectorized<double>> C10_ALWAYS_INLINE
|
73 |
+
blend(const Vectorized<double>& a, const Vectorized<double>& b) {
|
74 |
+
return b;
|
75 |
+
}
|
76 |
+
|
77 |
+
template <int64_t mask>
|
78 |
+
static std::enable_if_t<blendChoiceDbl(mask) == 2, Vectorized<double>> C10_ALWAYS_INLINE
|
79 |
+
blend(const Vectorized<double>& a, const Vectorized<double>& b) {
|
80 |
+
return { b._vec0, a._vec1 };
|
81 |
+
}
|
82 |
+
|
83 |
+
template <int64_t mask>
|
84 |
+
static std::enable_if_t<blendChoiceDbl(mask) == 3, Vectorized<double>> C10_ALWAYS_INLINE
|
85 |
+
blend(const Vectorized<double>& a, const Vectorized<double>& b) {
|
86 |
+
return { a._vec0, b._vec1 };
|
87 |
+
}
|
88 |
+
|
89 |
+
|
90 |
+
template <int64_t mask>
|
91 |
+
static std::enable_if_t<blendChoiceDbl(mask) == 4, Vectorized<double>> C10_ALWAYS_INLINE
|
92 |
+
blend(const Vectorized<double>& a, const Vectorized<double>& b) {
|
93 |
+
const vbool64 mask_1st = VsxDblMask1(mask);
|
94 |
+
return { (vfloat64)vec_sel(a._vec0, b._vec0, mask_1st), a._vec1 };
|
95 |
+
}
|
96 |
+
|
97 |
+
template <int64_t mask>
|
98 |
+
static std::enable_if_t<blendChoiceDbl(mask) == 5, Vectorized<double>> C10_ALWAYS_INLINE
|
99 |
+
blend(const Vectorized<double>& a, const Vectorized<double>& b) {
|
100 |
+
const vbool64 mask_1st = VsxDblMask1(mask);
|
101 |
+
return { (vfloat64)vec_sel(a._vec0, b._vec0, mask_1st), b._vec1 };
|
102 |
+
}
|
103 |
+
|
104 |
+
|
105 |
+
template <int64_t mask>
|
106 |
+
static std::enable_if_t<blendChoiceDbl(mask) == 6,
|
107 |
+
Vectorized<double>>
|
108 |
+
C10_ALWAYS_INLINE blend(const Vectorized<double>& a, const Vectorized<double>& b) {
|
109 |
+
const vbool64 mask_2nd = VsxDblMask2(mask);
|
110 |
+
// generated masks
|
111 |
+
return { a._vec0,
|
112 |
+
(vfloat64)vec_sel(a._vec1, b._vec1, mask_2nd) };
|
113 |
+
}
|
114 |
+
|
115 |
+
template <int64_t mask>
|
116 |
+
static std::enable_if_t<blendChoiceDbl(mask) == 7,
|
117 |
+
Vectorized<double>>
|
118 |
+
C10_ALWAYS_INLINE blend(const Vectorized<double>& a, const Vectorized<double>& b) {
|
119 |
+
const vbool64 mask_2nd = VsxDblMask2(mask);
|
120 |
+
// generated masks
|
121 |
+
return { b._vec0,
|
122 |
+
(vfloat64)vec_sel(a._vec1, b._vec1, mask_2nd) };
|
123 |
+
}
|
124 |
+
|
125 |
+
template <int64_t mask>
|
126 |
+
static std::enable_if_t<blendChoiceDbl(mask) == 8, Vectorized<double>>
|
127 |
+
C10_ALWAYS_INLINE blend(const Vectorized<double>& a, const Vectorized<double>& b) {
|
128 |
+
const vbool64 mask_1st = VsxDblMask1(mask);
|
129 |
+
const vbool64 mask_2nd = VsxDblMask2(mask);
|
130 |
+
return {
|
131 |
+
(vfloat64)vec_sel(a._vec0, b._vec0, mask_1st),
|
132 |
+
(vfloat64)vec_sel(a._vec1, b._vec1, mask_2nd) };
|
133 |
+
}
|
134 |
+
|
135 |
+
|
136 |
+
static Vectorized<double> C10_ALWAYS_INLINE blendv(
|
137 |
+
const Vectorized<double>& a,
|
138 |
+
const Vectorized<double>& b,
|
139 |
+
const Vectorized<double>& mask) {
|
140 |
+
// the mask used here returned by comparision of vec256
|
141 |
+
|
142 |
+
return {
|
143 |
+
vec_sel(a._vec0, b._vec0, mask._vecb0),
|
144 |
+
vec_sel(a._vec1, b._vec1, mask._vecb1)};
|
145 |
+
}
|
146 |
+
template <typename step_t>
|
147 |
+
static Vectorized<double> arange(double base = 0., step_t step = static_cast<step_t>(1)) {
|
148 |
+
return Vectorized<double>(base, base + step, base + 2 * step, base + 3 * step);
|
149 |
+
}
|
150 |
+
|
151 |
+
static Vectorized<double> C10_ALWAYS_INLINE
|
152 |
+
set(const Vectorized<double>& a, const Vectorized<double>& b, size_t count = size()) {
|
153 |
+
switch (count) {
|
154 |
+
case 0:
|
155 |
+
return a;
|
156 |
+
case 1:
|
157 |
+
return blend<1>(a, b);
|
158 |
+
case 2:
|
159 |
+
return blend<3>(a, b);
|
160 |
+
case 3:
|
161 |
+
return blend<7>(a, b);
|
162 |
+
}
|
163 |
+
|
164 |
+
return b;
|
165 |
+
}
|
166 |
+
static Vectorized<value_type> C10_ALWAYS_INLINE
|
167 |
+
loadu(const void* ptr, int count = size()) {
|
168 |
+
if (count == size()) {
|
169 |
+
return {
|
170 |
+
vec_vsx_ld(offset0, reinterpret_cast<const value_type*>(ptr)),
|
171 |
+
vec_vsx_ld(offset16, reinterpret_cast<const value_type*>(ptr))};
|
172 |
+
}
|
173 |
+
|
174 |
+
__at_align__ value_type tmp_values[size()] = {};
|
175 |
+
std::memcpy(tmp_values, ptr, std::min(count, size()) * sizeof(value_type));
|
176 |
+
|
177 |
+
return {vec_vsx_ld(offset0, tmp_values), vec_vsx_ld(offset16, tmp_values)};
|
178 |
+
}
|
179 |
+
void C10_ALWAYS_INLINE store(void* ptr, int count = size()) const {
|
180 |
+
if (count == size()) {
|
181 |
+
vec_vsx_st(_vec0, offset0, reinterpret_cast<value_type*>(ptr));
|
182 |
+
vec_vsx_st(_vec1, offset16, reinterpret_cast<value_type*>(ptr));
|
183 |
+
} else if (count > 0) {
|
184 |
+
__at_align__ value_type tmp_values[size()];
|
185 |
+
vec_vsx_st(_vec0, offset0, tmp_values);
|
186 |
+
vec_vsx_st(_vec1, offset16, tmp_values);
|
187 |
+
std::memcpy(
|
188 |
+
ptr, tmp_values, std::min(count, size()) * sizeof(value_type));
|
189 |
+
}
|
190 |
+
}
|
191 |
+
const double& operator[](int idx) const = delete;
|
192 |
+
double& operator[](int idx) = delete;
|
193 |
+
Vectorized<double> map(double (*const f)(double)) const {
|
194 |
+
Vectorized<double> ret;
|
195 |
+
for (const auto i : c10::irange(size()/2)) {
|
196 |
+
ret._vec0[i] = f(_vec0[i]);
|
197 |
+
}
|
198 |
+
for (const auto i : c10::irange(size()/2)) {
|
199 |
+
ret._vec1[i] = f(_vec1[i]);
|
200 |
+
}
|
201 |
+
return ret;
|
202 |
+
}
|
203 |
+
|
204 |
+
Vectorized<double> mapbi(double (*const f)(double, double), const Vectorized<double>& other)
|
205 |
+
const {
|
206 |
+
Vectorized<double> ret;
|
207 |
+
for (const auto i : c10::irange(size()/2)) {
|
208 |
+
ret._vec0[i] = f(_vec0[i], other._vec0[i]);
|
209 |
+
}
|
210 |
+
for (const auto i : c10::irange(size()/2)) {
|
211 |
+
ret._vec1[i] = f(_vec1[i], other._vec1[i]);
|
212 |
+
}
|
213 |
+
return ret;
|
214 |
+
}
|
215 |
+
Vectorized<double> C10_ALWAYS_INLINE abs() const {
|
216 |
+
return {vec_abs(_vec0), vec_abs(_vec1)};
|
217 |
+
}
|
218 |
+
|
219 |
+
Vectorized<double> C10_ALWAYS_INLINE acos() const {
|
220 |
+
return {Sleef_acosd2_u10(_vec0), Sleef_acosd2_u10(_vec1)};
|
221 |
+
}
|
222 |
+
Vectorized<double> C10_ALWAYS_INLINE asin() const {
|
223 |
+
return {Sleef_asind2_u10(_vec0), Sleef_asind2_u10(_vec1)};
|
224 |
+
}
|
225 |
+
Vectorized<double> atan() const {
|
226 |
+
return {Sleef_atand2_u10(_vec0), Sleef_atand2_u10(_vec1)};
|
227 |
+
}
|
228 |
+
Vectorized<double> atanh() const {
|
229 |
+
return {Sleef_atanhd2_u10(_vec0), Sleef_atanhd2_u10(_vec1)};
|
230 |
+
}
|
231 |
+
Vectorized<double> atan2(const Vectorized<double>& b) const {
|
232 |
+
return {Sleef_atan2d2_u10(_vec0, b._vec0), Sleef_atan2d2_u10(_vec1, b._vec1)};
|
233 |
+
}
|
234 |
+
Vectorized<double> copysign(const Vectorized<double> &sign) const {
|
235 |
+
return {Sleef_copysignd2(_vec0, sign._vec0), Sleef_copysignd2(_vec1, sign._vec1)};
|
236 |
+
}
|
237 |
+
Vectorized<double> erf() const {
|
238 |
+
return {Sleef_erfd2_u10(_vec0), Sleef_erfd2_u10(_vec1)};
|
239 |
+
}
|
240 |
+
Vectorized<double> erfc() const {
|
241 |
+
return {Sleef_erfcd2_u15(_vec0), Sleef_erfcd2_u15(_vec1)};
|
242 |
+
}
|
243 |
+
Vectorized<double> C10_ALWAYS_INLINE exp() const {
|
244 |
+
return {Sleef_expd2_u10(_vec0), Sleef_expd2_u10(_vec1)};
|
245 |
+
}
|
246 |
+
Vectorized<double> C10_ALWAYS_INLINE exp2() const {
|
247 |
+
return {Sleef_exp2d2_u10(_vec0), Sleef_exp2d2_u10(_vec1)};
|
248 |
+
}
|
249 |
+
Vectorized<double> expm1() const {
|
250 |
+
return {Sleef_expm1d2_u10(_vec0), Sleef_expm1d2_u10(_vec1)};
|
251 |
+
}
|
252 |
+
Vectorized<double> C10_ALWAYS_INLINE exp_u20() const {
|
253 |
+
return exp();
|
254 |
+
}
|
255 |
+
|
256 |
+
Vectorized<double> lgamma() const __ubsan_ignore_undefined__ {
|
257 |
+
return {Sleef_lgammad2_u10(_vec0), Sleef_lgammad2_u10(_vec1)};
|
258 |
+
}
|
259 |
+
|
260 |
+
Vectorized<double> erfinv() const {
|
261 |
+
return map(calc_erfinv);
|
262 |
+
}
|
263 |
+
|
264 |
+
Vectorized<double> angle() const {
|
265 |
+
auto tmp = blendv(
|
266 |
+
Vectorized<double>(0), Vectorized<double>(c10::pi<double>), *this < Vectorized<double>(0));
|
267 |
+
return blendv(tmp, *this, isnan());
|
268 |
+
}
|
269 |
+
Vectorized<double> real() const {
|
270 |
+
return *this;
|
271 |
+
}
|
272 |
+
Vectorized<double> imag() const {
|
273 |
+
return Vectorized<double>{0};
|
274 |
+
}
|
275 |
+
Vectorized<double> conj() const {
|
276 |
+
return *this;
|
277 |
+
}
|
278 |
+
|
279 |
+
Vectorized<double> C10_ALWAYS_INLINE log() const {
|
280 |
+
return {Sleef_logd2_u10(_vec0), Sleef_logd2_u10(_vec1)};
|
281 |
+
}
|
282 |
+
Vectorized<double> C10_ALWAYS_INLINE log10() const {
|
283 |
+
return {Sleef_log10d2_u10(_vec0), Sleef_log10d2_u10(_vec1)};
|
284 |
+
}
|
285 |
+
Vectorized<double> C10_ALWAYS_INLINE log1p() const {
|
286 |
+
return {Sleef_log1pd2_u10(_vec0), Sleef_log1pd2_u10(_vec1)};
|
287 |
+
}
|
288 |
+
Vectorized<double> C10_ALWAYS_INLINE log2() const {
|
289 |
+
return {Sleef_log2d2_u10(_vec0), Sleef_log2d2_u10(_vec1)};
|
290 |
+
}
|
291 |
+
Vectorized<double> C10_ALWAYS_INLINE ceil() const {
|
292 |
+
return {vec_ceil(_vec0), vec_ceil(_vec1)};
|
293 |
+
}
|
294 |
+
Vectorized<double> C10_ALWAYS_INLINE cos() const {
|
295 |
+
return {Sleef_cosd2_u10(_vec0), Sleef_cosd2_u10(_vec1)};
|
296 |
+
}
|
297 |
+
Vectorized<double> C10_ALWAYS_INLINE cosh() const {
|
298 |
+
return {Sleef_coshd2_u10(_vec0), Sleef_coshd2_u10(_vec1)};
|
299 |
+
}
|
300 |
+
Vectorized<double> C10_ALWAYS_INLINE floor() const {
|
301 |
+
return {vec_floor(_vec0), vec_floor(_vec1)};
|
302 |
+
}
|
303 |
+
Vectorized<double> C10_ALWAYS_INLINE neg() const {
|
304 |
+
return {vec_neg(_vec0), vec_neg(_vec1)};
|
305 |
+
}
|
306 |
+
Vectorized<double> C10_ALWAYS_INLINE round() const {
|
307 |
+
return {vec_rint(_vec0), vec_rint(_vec1)};
|
308 |
+
}
|
309 |
+
Vectorized<double> C10_ALWAYS_INLINE sin() const {
|
310 |
+
return {Sleef_sind2_u10(_vec0), Sleef_sind2_u10(_vec1)};
|
311 |
+
}
|
312 |
+
Vectorized<double> C10_ALWAYS_INLINE sinh() const {
|
313 |
+
return {Sleef_sinhd2_u10(_vec0), Sleef_sinhd2_u10(_vec1)};
|
314 |
+
}
|
315 |
+
Vectorized<double> C10_ALWAYS_INLINE tan() const {
|
316 |
+
return {Sleef_tand2_u10(_vec0), Sleef_tand2_u10(_vec1)};
|
317 |
+
}
|
318 |
+
Vectorized<double> C10_ALWAYS_INLINE tanh() const {
|
319 |
+
return {Sleef_tanhd2_u10(_vec0), Sleef_tanhd2_u10(_vec1)};
|
320 |
+
}
|
321 |
+
Vectorized<double> C10_ALWAYS_INLINE trunc() const {
|
322 |
+
return {vec_trunc(_vec0), vec_trunc(_vec1)};
|
323 |
+
}
|
324 |
+
|
325 |
+
Vectorized<double> C10_ALWAYS_INLINE frac() const {
|
326 |
+
return *this - trunc();
|
327 |
+
}
|
328 |
+
|
329 |
+
Vectorized<double> C10_ALWAYS_INLINE sqrt() const {
|
330 |
+
return {vec_sqrt(_vec0), vec_sqrt(_vec1)};
|
331 |
+
}
|
332 |
+
Vectorized<double> C10_ALWAYS_INLINE reciprocal() const {
|
333 |
+
return {
|
334 |
+
vec_div(vd_one, _vec0), // vec_re(_vec0) is estimated one.
|
335 |
+
vec_div(vd_one, _vec1)};
|
336 |
+
}
|
337 |
+
Vectorized<double> C10_ALWAYS_INLINE rsqrt() const {
|
338 |
+
return sqrt().reciprocal();
|
339 |
+
}
|
340 |
+
|
341 |
+
Vectorized<double> C10_ALWAYS_INLINE pow(const Vectorized<double>& b) const {
|
342 |
+
return {Sleef_powd2_u10(_vec0, b._vec0), Sleef_powd2_u10(_vec1, b._vec1)};
|
343 |
+
}
|
344 |
+
Vectorized<double> C10_ALWAYS_INLINE fmod(const Vectorized<double>& b) const {
|
345 |
+
return {Sleef_fmodd2(_vec0, b._vec0),Sleef_fmodd2(_vec1, b._vec1)};
|
346 |
+
}
|
347 |
+
|
348 |
+
Vectorized<double> hypot(const Vectorized<double>& b) const {
|
349 |
+
return {Sleef_hypotd2_u05(_vec0, b._vec0), Sleef_hypotd2_u05(_vec1, b._vec1)};
|
350 |
+
}
|
351 |
+
|
352 |
+
Vectorized<double> nextafter(const Vectorized<double>& b) const {
|
353 |
+
return {Sleef_nextafterd2(_vec0, b._vec0), Sleef_nextafterd2(_vec1, b._vec1)};
|
354 |
+
}
|
355 |
+
|
356 |
+
Vectorized<double> igamma(const Vectorized<double>& x) const {
|
357 |
+
return mapbi(calc_igamma, x);
|
358 |
+
}
|
359 |
+
|
360 |
+
Vectorized<double> igammac(const Vectorized<double>& x) const {
|
361 |
+
return mapbi(calc_igammac, x);
|
362 |
+
}
|
363 |
+
|
364 |
+
|
365 |
+
Vectorized<double> i0() const {
|
366 |
+
return map(calc_i0);
|
367 |
+
}
|
368 |
+
|
369 |
+
Vectorized<double> i0e() const {
|
370 |
+
return map(calc_i0e);
|
371 |
+
}
|
372 |
+
|
373 |
+
Vectorized<double> digamma() const {
|
374 |
+
return map(calc_digamma);
|
375 |
+
}
|
376 |
+
|
377 |
+
Vectorized<double> _nor() const {
|
378 |
+
return {vec_nor(_vec0, _vec0), vec_nor(_vec1, _vec1)};
|
379 |
+
}
|
380 |
+
|
381 |
+
Vectorized<double> isnan() const {
|
382 |
+
auto x = *this;
|
383 |
+
auto ret = (x == x);
|
384 |
+
return ret._nor();
|
385 |
+
}
|
386 |
+
bool has_inf_nan() const {
|
387 |
+
for (const auto i : c10::irange(size()/2)) {
|
388 |
+
if(_isnan(_vec0[i]) || _isinf(_vec0[i])) {
|
389 |
+
return true;
|
390 |
+
}
|
391 |
+
}
|
392 |
+
for (const auto i : c10::irange(size()/2)) {
|
393 |
+
if(_isnan(_vec1[i]) || _isinf(_vec1[i])) {
|
394 |
+
return true;
|
395 |
+
}
|
396 |
+
}
|
397 |
+
return false;
|
398 |
+
}
|
399 |
+
|
400 |
+
DEFINE_MEMBER_OP(operator==, double, vec_cmpeq)
|
401 |
+
DEFINE_MEMBER_OP(operator!=, double, vec_cmpne)
|
402 |
+
DEFINE_MEMBER_OP(operator<, double, vec_cmplt)
|
403 |
+
DEFINE_MEMBER_OP(operator<=, double, vec_cmple)
|
404 |
+
DEFINE_MEMBER_OP(operator>, double, vec_cmpgt)
|
405 |
+
DEFINE_MEMBER_OP(operator>=, double, vec_cmpge)
|
406 |
+
DEFINE_MEMBER_OP_AND_ONE(eq, double, vec_cmpeq)
|
407 |
+
DEFINE_MEMBER_OP_AND_ONE(ne, double, vec_cmpne)
|
408 |
+
DEFINE_MEMBER_OP_AND_ONE(lt, double, vec_cmplt)
|
409 |
+
DEFINE_MEMBER_OP_AND_ONE(le, double, vec_cmple)
|
410 |
+
DEFINE_MEMBER_OP_AND_ONE(gt, double, vec_cmpgt)
|
411 |
+
DEFINE_MEMBER_OP_AND_ONE(ge, double, vec_cmpge)
|
412 |
+
DEFINE_MEMBER_OP(operator+, double, vec_add)
|
413 |
+
DEFINE_MEMBER_OP(operator-, double, vec_sub)
|
414 |
+
DEFINE_MEMBER_OP(operator*, double, vec_mul)
|
415 |
+
DEFINE_MEMBER_OP(operator/, double, vec_div)
|
416 |
+
DEFINE_MEMBER_OP(maximum, double, vec_max_nan2)
|
417 |
+
DEFINE_MEMBER_OP(minimum, double, vec_min_nan2)
|
418 |
+
DEFINE_MEMBER_OP(operator&, double, vec_and)
|
419 |
+
DEFINE_MEMBER_OP(operator|, double, vec_or)
|
420 |
+
DEFINE_MEMBER_OP(operator^, double, vec_xor)
|
421 |
+
DEFINE_MEMBER_TERNARY_OP(madd, double, vec_madd)
|
422 |
+
};
|
423 |
+
template <>
|
424 |
+
Vectorized<double> inline maximum(
|
425 |
+
const Vectorized<double>& a,
|
426 |
+
const Vectorized<double>& b) {
|
427 |
+
return a.maximum(b);
|
428 |
+
}
|
429 |
+
|
430 |
+
template <>
|
431 |
+
Vectorized<double> inline minimum(
|
432 |
+
const Vectorized<double>& a,
|
433 |
+
const Vectorized<double>& b) {
|
434 |
+
return a.minimum(b);
|
435 |
+
}
|
436 |
+
} // namespace
|
437 |
+
} // namespace vec
|
438 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_float_vsx.h
ADDED
@@ -0,0 +1,461 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
4 |
+
#include <ATen/cpu/vec/vec_base.h>
|
5 |
+
#include <ATen/cpu/vec/vec256/vsx/vsx_helpers.h>
|
6 |
+
#include <sleef.h>
|
7 |
+
namespace at {
|
8 |
+
namespace vec {
|
9 |
+
// See Note [CPU_CAPABILITY namespace]
|
10 |
+
|
11 |
+
inline namespace CPU_CAPABILITY {
|
12 |
+
|
13 |
+
template <>
|
14 |
+
class Vectorized<float> {
|
15 |
+
private:
|
16 |
+
union {
|
17 |
+
struct {
|
18 |
+
vfloat32 _vec0;
|
19 |
+
vfloat32 _vec1;
|
20 |
+
};
|
21 |
+
struct {
|
22 |
+
vbool32 _vecb0;
|
23 |
+
vbool32 _vecb1;
|
24 |
+
};
|
25 |
+
|
26 |
+
} __attribute__((__may_alias__));
|
27 |
+
|
28 |
+
public:
|
29 |
+
using value_type = float;
|
30 |
+
using vec_internal_type = vfloat32;
|
31 |
+
using vec_internal_mask_type = vbool32;
|
32 |
+
using size_type = int;
|
33 |
+
|
34 |
+
static constexpr size_type size() {
|
35 |
+
return 8;
|
36 |
+
}
|
37 |
+
Vectorized() {}
|
38 |
+
|
39 |
+
C10_ALWAYS_INLINE Vectorized(vfloat32 v) : _vec0{v}, _vec1{v} {}
|
40 |
+
C10_ALWAYS_INLINE Vectorized(vbool32 vmask) : _vecb0{vmask}, _vecb1{vmask} {}
|
41 |
+
C10_ALWAYS_INLINE Vectorized(vfloat32 v1, vfloat32 v2) : _vec0{v1}, _vec1{v2} {}
|
42 |
+
C10_ALWAYS_INLINE Vectorized(vbool32 v1, vbool32 v2) : _vecb0{v1}, _vecb1{v2} {}
|
43 |
+
C10_ALWAYS_INLINE Vectorized(float scalar)
|
44 |
+
: _vec0{vec_splats(scalar)}, _vec1{vec_splats(scalar)} {}
|
45 |
+
C10_ALWAYS_INLINE Vectorized(
|
46 |
+
float scalar1,
|
47 |
+
float scalar2,
|
48 |
+
float scalar3,
|
49 |
+
float scalar4,
|
50 |
+
float scalar5,
|
51 |
+
float scalar6,
|
52 |
+
float scalar7,
|
53 |
+
float scalar8)
|
54 |
+
: _vec0{vfloat32{scalar1, scalar2, scalar3, scalar4}},
|
55 |
+
_vec1{vfloat32{scalar5, scalar6, scalar7, scalar8}} {}
|
56 |
+
C10_ALWAYS_INLINE const vec_internal_type& vec0() const {
|
57 |
+
return _vec0;
|
58 |
+
}
|
59 |
+
C10_ALWAYS_INLINE const vec_internal_type& vec1() const {
|
60 |
+
return _vec1;
|
61 |
+
}
|
62 |
+
|
63 |
+
template <int64_t mask>
|
64 |
+
static std::enable_if_t<blendChoice(mask) == 0, Vectorized<float>> C10_ALWAYS_INLINE
|
65 |
+
blend(const Vectorized<float>& a, const Vectorized<float>& b) {
|
66 |
+
return a;
|
67 |
+
}
|
68 |
+
|
69 |
+
template <int64_t mask>
|
70 |
+
static std::enable_if_t<blendChoice(mask) == 1, Vectorized<float>> C10_ALWAYS_INLINE
|
71 |
+
blend(const Vectorized<float>& a, const Vectorized<float>& b) {
|
72 |
+
return b;
|
73 |
+
}
|
74 |
+
|
75 |
+
template <int64_t mask>
|
76 |
+
static std::enable_if_t<blendChoice(mask) == 2, Vectorized<float>> C10_ALWAYS_INLINE
|
77 |
+
blend(const Vectorized<float>& a, const Vectorized<float>& b) {
|
78 |
+
return {b._vec0, a._vec1};
|
79 |
+
}
|
80 |
+
|
81 |
+
template <int64_t mask>
|
82 |
+
static std::enable_if_t<blendChoice(mask) == 3, Vectorized<float>> C10_ALWAYS_INLINE
|
83 |
+
blend(const Vectorized<float>& a, const Vectorized<float>& b) {
|
84 |
+
return {a._vec0, b._vec1};
|
85 |
+
}
|
86 |
+
|
87 |
+
template <int64_t mask>
|
88 |
+
static std::enable_if_t<blendChoice(mask) == 4, Vectorized<float>> C10_ALWAYS_INLINE
|
89 |
+
blend(const Vectorized<float>& a, const Vectorized<float>& b) {
|
90 |
+
const vbool32 mask_1st = VsxMask1(mask);
|
91 |
+
return {(vfloat32)vec_sel(a._vec0, b._vec0, mask_1st), a._vec1};
|
92 |
+
}
|
93 |
+
|
94 |
+
template <int64_t mask>
|
95 |
+
static std::enable_if_t<blendChoice(mask) == 5, Vectorized<float>> C10_ALWAYS_INLINE
|
96 |
+
blend(const Vectorized<float>& a, const Vectorized<float>& b) {
|
97 |
+
const vbool32 mask_1st = VsxMask1(mask);
|
98 |
+
return {(vfloat32)vec_sel(a._vec0, b._vec0, mask_1st), b._vec1};
|
99 |
+
}
|
100 |
+
|
101 |
+
template <int64_t mask>
|
102 |
+
static std::enable_if_t<blendChoice(mask) == 6, Vectorized<float>> C10_ALWAYS_INLINE
|
103 |
+
blend(const Vectorized<float>& a, const Vectorized<float>& b) {
|
104 |
+
const vbool32 mask_2nd = VsxMask2(mask);
|
105 |
+
// generated masks
|
106 |
+
return {a._vec0, (vfloat32)vec_sel(a._vec1, b._vec1, mask_2nd)};
|
107 |
+
}
|
108 |
+
|
109 |
+
template <int64_t mask>
|
110 |
+
static std::enable_if_t<blendChoice(mask) == 7, Vectorized<float>> C10_ALWAYS_INLINE
|
111 |
+
blend(const Vectorized<float>& a, const Vectorized<float>& b) {
|
112 |
+
const vbool32 mask_2nd = VsxMask2(mask);
|
113 |
+
// generated masks
|
114 |
+
return {b._vec0, (vfloat32)vec_sel(a._vec1, b._vec1, mask_2nd)};
|
115 |
+
}
|
116 |
+
|
117 |
+
template <int64_t mask>
|
118 |
+
static std::enable_if_t<blendChoice(mask) == 8, Vectorized<float>> C10_ALWAYS_INLINE
|
119 |
+
blend(const Vectorized<float>& a, const Vectorized<float>& b) {
|
120 |
+
const vbool32 mask_1st = VsxMask1(mask);
|
121 |
+
const vbool32 mask_2nd = VsxMask2(mask);
|
122 |
+
return {
|
123 |
+
(vfloat32)vec_sel(a._vec0, b._vec0, mask_1st),
|
124 |
+
(vfloat32)vec_sel(a._vec1, b._vec1, mask_2nd)};
|
125 |
+
}
|
126 |
+
|
127 |
+
static Vectorized<float> C10_ALWAYS_INLINE blendv(
|
128 |
+
const Vectorized<float>& a,
|
129 |
+
const Vectorized<float>& b,
|
130 |
+
const Vectorized<float>& mask) {
|
131 |
+
// the mask used here returned by comparision of vec256
|
132 |
+
// assuming this we can use the same mask directly with vec_sel
|
133 |
+
return {
|
134 |
+
vec_sel(a._vec0, b._vec0, mask._vecb0),
|
135 |
+
vec_sel(a._vec1, b._vec1, mask._vecb1)};
|
136 |
+
}
|
137 |
+
|
138 |
+
template <typename step_t>
|
139 |
+
static Vectorized<float> arange(float base = 0.f, step_t step = static_cast<step_t>(1)) {
|
140 |
+
return Vectorized<float>(
|
141 |
+
base,
|
142 |
+
base + step,
|
143 |
+
base + 2 * step,
|
144 |
+
base + 3 * step,
|
145 |
+
base + 4 * step,
|
146 |
+
base + 5 * step,
|
147 |
+
base + 6 * step,
|
148 |
+
base + 7 * step);
|
149 |
+
}
|
150 |
+
static Vectorized<float> set(
|
151 |
+
const Vectorized<float>& a,
|
152 |
+
const Vectorized<float>& b,
|
153 |
+
size_t count = size()) {
|
154 |
+
switch (count) {
|
155 |
+
case 0:
|
156 |
+
return a;
|
157 |
+
case 1:
|
158 |
+
return blend<1>(a, b);
|
159 |
+
case 2:
|
160 |
+
return blend<3>(a, b);
|
161 |
+
case 3:
|
162 |
+
return blend<7>(a, b);
|
163 |
+
case 4:
|
164 |
+
return blend<15>(a, b);
|
165 |
+
case 5:
|
166 |
+
return blend<31>(a, b);
|
167 |
+
case 6:
|
168 |
+
return blend<63>(a, b);
|
169 |
+
case 7:
|
170 |
+
return blend<127>(a, b);
|
171 |
+
}
|
172 |
+
|
173 |
+
return b;
|
174 |
+
}
|
175 |
+
static Vectorized<value_type> C10_ALWAYS_INLINE
|
176 |
+
loadu(const void* ptr, int count = size()) {
|
177 |
+
if (count == size()) {
|
178 |
+
return {
|
179 |
+
vec_vsx_ld(offset0, reinterpret_cast<const value_type*>(ptr)),
|
180 |
+
vec_vsx_ld(offset16, reinterpret_cast<const value_type*>(ptr))};
|
181 |
+
}
|
182 |
+
|
183 |
+
__at_align__ value_type tmp_values[size()] = {};
|
184 |
+
std::memcpy(tmp_values, ptr, std::min(count, size()) * sizeof(value_type));
|
185 |
+
|
186 |
+
return {vec_vsx_ld(offset0, tmp_values), vec_vsx_ld(offset16, tmp_values)};
|
187 |
+
}
|
188 |
+
void C10_ALWAYS_INLINE store(void* ptr, int count = size()) const {
|
189 |
+
if (count == size()) {
|
190 |
+
vec_vsx_st(_vec0, offset0, reinterpret_cast<value_type*>(ptr));
|
191 |
+
vec_vsx_st(_vec1, offset16, reinterpret_cast<value_type*>(ptr));
|
192 |
+
} else if (count > 0) {
|
193 |
+
__at_align__ value_type tmp_values[size()];
|
194 |
+
vec_vsx_st(_vec0, offset0, tmp_values);
|
195 |
+
vec_vsx_st(_vec1, offset16, tmp_values);
|
196 |
+
std::memcpy(
|
197 |
+
ptr, tmp_values, std::min(count, size()) * sizeof(value_type));
|
198 |
+
}
|
199 |
+
}
|
200 |
+
|
201 |
+
const float& operator[](int idx) const = delete;
|
202 |
+
float& operator[](int idx) = delete;
|
203 |
+
|
204 |
+
Vectorized<float> map(float (*const f)(float)) const {
|
205 |
+
Vectorized<float> ret;
|
206 |
+
for (int i = 0; i < size() / 2; i++) {
|
207 |
+
ret._vec0[i] = f(_vec0[i]);
|
208 |
+
}
|
209 |
+
for (int i = 0; i < size() / 2; i++) {
|
210 |
+
ret._vec1[i] = f(_vec1[i]);
|
211 |
+
}
|
212 |
+
return ret;
|
213 |
+
}
|
214 |
+
|
215 |
+
Vectorized<float> mapbi(float (*const f)(float, float), const Vectorized<float>& other)
|
216 |
+
const {
|
217 |
+
Vectorized<float> ret;
|
218 |
+
for (int i = 0; i < size() / 2; i++) {
|
219 |
+
ret._vec0[i] = f(_vec0[i], other._vec0[i]);
|
220 |
+
}
|
221 |
+
for (int i = 0; i < size() / 2; i++) {
|
222 |
+
ret._vec1[i] = f(_vec1[i], other._vec1[i]);
|
223 |
+
}
|
224 |
+
return ret;
|
225 |
+
}
|
226 |
+
|
227 |
+
Vectorized<float> _nor() const {
|
228 |
+
return {vec_nor(_vec0, _vec0), vec_nor(_vec1, _vec1)};
|
229 |
+
}
|
230 |
+
|
231 |
+
Vectorized<float> isnan() const {
|
232 |
+
auto x = *this;
|
233 |
+
auto ret = (x == x);
|
234 |
+
return ret._nor();
|
235 |
+
}
|
236 |
+
|
237 |
+
bool has_inf_nan() const {
|
238 |
+
for (const auto i : c10::irange(size()/2)) {
|
239 |
+
if(_isnan(_vec0[i]) || _isinf(_vec0[i])) {
|
240 |
+
return true;
|
241 |
+
}
|
242 |
+
}
|
243 |
+
for (const auto i : c10::irange(size()/2)) {
|
244 |
+
if(_isnan(_vec1[i]) || _isinf(_vec1[i])) {
|
245 |
+
return true;
|
246 |
+
}
|
247 |
+
}
|
248 |
+
return false;
|
249 |
+
}
|
250 |
+
|
251 |
+
int zero_mask() const {
|
252 |
+
// returns an integer mask where all zero elements are translated to 1-bit
|
253 |
+
// and others are translated to 0-bit
|
254 |
+
//__m256 cmp = _mm256_cmp_ps(values, _mm256_set1_ps(0.0f), _CMP_EQ_OQ);
|
255 |
+
auto cmp = (*this == zero);
|
256 |
+
// return _mm256_movemask_ps(cmp);
|
257 |
+
// possible simulation //mask= lvsl ( 0 ) vbpermq( vec, mask <<5)
|
258 |
+
vuint64 result0 = vec_vbpermq((vuint8)cmp._vecb0, mask_zero_bits);
|
259 |
+
vuint64 result1 = vec_vbpermq((vuint8)cmp._vecb1, mask_zero_bits);
|
260 |
+
return (result0[1] >> 12 | (result1[1] >> 8));
|
261 |
+
}
|
262 |
+
|
263 |
+
Vectorized<float> C10_ALWAYS_INLINE abs() const {
|
264 |
+
return {vec_abs(_vec0), vec_abs(_vec1)};
|
265 |
+
}
|
266 |
+
|
267 |
+
Vectorized<float> C10_ALWAYS_INLINE acos() const {
|
268 |
+
return {Sleef_acosf4_u10(_vec0), Sleef_acosf4_u10(_vec1)};
|
269 |
+
}
|
270 |
+
Vectorized<float> C10_ALWAYS_INLINE asin() const {
|
271 |
+
return {Sleef_asinf4_u10(_vec0), Sleef_asinf4_u10(_vec1)};
|
272 |
+
}
|
273 |
+
Vectorized<float> atan() const {
|
274 |
+
return {Sleef_atanf4_u10(_vec0), Sleef_atanf4_u10(_vec1)};
|
275 |
+
}
|
276 |
+
Vectorized<float> atanh() const {
|
277 |
+
return {Sleef_atanhf4_u10(_vec0), Sleef_atanhf4_u10(_vec1)};
|
278 |
+
}
|
279 |
+
Vectorized<float> atan2(const Vectorized<float>& b) const {
|
280 |
+
return {Sleef_atan2f4_u10(_vec0, b._vec0), Sleef_atan2f4_u10(_vec1, b._vec1)};
|
281 |
+
}
|
282 |
+
Vectorized<float> copysign(const Vectorized<float> &sign) const {
|
283 |
+
return {Sleef_copysignf4(_vec0, sign._vec0), Sleef_copysignf4(_vec1, sign._vec1)};
|
284 |
+
}
|
285 |
+
Vectorized<float> lgamma() const {
|
286 |
+
return {Sleef_lgammaf4_u10(_vec0), Sleef_lgammaf4_u10(_vec1)};
|
287 |
+
}
|
288 |
+
Vectorized<float> erf() const {
|
289 |
+
return {Sleef_erff4_u10(_vec0), Sleef_erff4_u10(_vec1)};
|
290 |
+
}
|
291 |
+
|
292 |
+
Vectorized<float> erfc() const {
|
293 |
+
return {Sleef_erfcf4_u15(_vec0), Sleef_erfcf4_u15(_vec1)};
|
294 |
+
}
|
295 |
+
|
296 |
+
Vectorized<float> erfinv() const {
|
297 |
+
return map(calc_erfinv);
|
298 |
+
}
|
299 |
+
|
300 |
+
Vectorized<float> angle() const {
|
301 |
+
auto tmp = blendv(
|
302 |
+
Vectorized<float>(0), Vectorized<float>(c10::pi<float>), *this < Vectorized<float>(0));
|
303 |
+
return blendv(tmp, *this, isnan());
|
304 |
+
}
|
305 |
+
Vectorized<float> real() const {
|
306 |
+
return *this;
|
307 |
+
}
|
308 |
+
Vectorized<float> imag() const {
|
309 |
+
return Vectorized<float>{0};
|
310 |
+
}
|
311 |
+
Vectorized<float> conj() const {
|
312 |
+
return *this;
|
313 |
+
}
|
314 |
+
|
315 |
+
Vectorized<float> C10_ALWAYS_INLINE exp() const {
|
316 |
+
return {Sleef_expf4_u10(_vec0), Sleef_expf4_u10(_vec1)};
|
317 |
+
}
|
318 |
+
Vectorized<float> C10_ALWAYS_INLINE exp2() const {
|
319 |
+
return {Sleef_exp2f4_u10(_vec0), Sleef_exp2f4_u10(_vec1)};
|
320 |
+
}
|
321 |
+
Vectorized<float> expm1() const {
|
322 |
+
return {Sleef_expm1f4_u10(_vec0), Sleef_expm1f4_u10(_vec1)};
|
323 |
+
}
|
324 |
+
Vectorized<float> C10_ALWAYS_INLINE exp_u20() const {
|
325 |
+
return exp();
|
326 |
+
}
|
327 |
+
|
328 |
+
Vectorized<float> C10_ALWAYS_INLINE log() const {
|
329 |
+
return {Sleef_logf4_u10(_vec0), Sleef_logf4_u10(_vec1)};
|
330 |
+
}
|
331 |
+
Vectorized<float> C10_ALWAYS_INLINE log10() const {
|
332 |
+
return {Sleef_log10f4_u10(_vec0), Sleef_log10f4_u10(_vec1)};
|
333 |
+
}
|
334 |
+
Vectorized<float> C10_ALWAYS_INLINE log1p() const {
|
335 |
+
return {Sleef_log1pf4_u10(_vec0), Sleef_log1pf4_u10(_vec1)};
|
336 |
+
}
|
337 |
+
Vectorized<float> C10_ALWAYS_INLINE log2() const {
|
338 |
+
return {Sleef_log2f4_u10(_vec0), Sleef_log2f4_u10(_vec1)};
|
339 |
+
}
|
340 |
+
Vectorized<float> C10_ALWAYS_INLINE ceil() const {
|
341 |
+
return {vec_ceil(_vec0), vec_ceil(_vec1)};
|
342 |
+
}
|
343 |
+
Vectorized<float> C10_ALWAYS_INLINE cos() const {
|
344 |
+
return {Sleef_cosf4_u10(_vec0), Sleef_cosf4_u10(_vec1)};
|
345 |
+
}
|
346 |
+
Vectorized<float> C10_ALWAYS_INLINE cosh() const {
|
347 |
+
return {Sleef_coshf4_u10(_vec0), Sleef_coshf4_u10(_vec1)};
|
348 |
+
}
|
349 |
+
Vectorized<float> C10_ALWAYS_INLINE floor() const {
|
350 |
+
return {vec_floor(_vec0), vec_floor(_vec1)};
|
351 |
+
}
|
352 |
+
Vectorized<float> C10_ALWAYS_INLINE neg() const {
|
353 |
+
return {vec_neg(_vec0), vec_neg(_vec1)};
|
354 |
+
}
|
355 |
+
|
356 |
+
Vectorized<float> C10_ALWAYS_INLINE round() const {
|
357 |
+
return {vec_round(_vec0), vec_round(_vec1)};
|
358 |
+
}
|
359 |
+
Vectorized<float> C10_ALWAYS_INLINE sin() const {
|
360 |
+
return {Sleef_sinf4_u10(_vec0), Sleef_sinf4_u10(_vec1)};
|
361 |
+
}
|
362 |
+
Vectorized<float> C10_ALWAYS_INLINE sinh() const {
|
363 |
+
return {Sleef_sinhf4_u10(_vec0), Sleef_sinhf4_u10(_vec1)};
|
364 |
+
}
|
365 |
+
Vectorized<float> C10_ALWAYS_INLINE tan() const {
|
366 |
+
return {Sleef_tanf4_u10(_vec0), Sleef_tanf4_u10(_vec1)};
|
367 |
+
}
|
368 |
+
Vectorized<float> C10_ALWAYS_INLINE tanh() const {
|
369 |
+
return {Sleef_tanhf4_u10(_vec0), Sleef_tanhf4_u10(_vec1)};
|
370 |
+
}
|
371 |
+
Vectorized<float> C10_ALWAYS_INLINE trunc() const {
|
372 |
+
return {vec_trunc(_vec0), vec_trunc(_vec1)};
|
373 |
+
}
|
374 |
+
|
375 |
+
Vectorized<float> C10_ALWAYS_INLINE frac() const {
|
376 |
+
return *this - trunc();
|
377 |
+
}
|
378 |
+
|
379 |
+
Vectorized<float> C10_ALWAYS_INLINE sqrt() const {
|
380 |
+
return {vec_sqrt(_vec0), vec_sqrt(_vec1)};
|
381 |
+
}
|
382 |
+
Vectorized<float> C10_ALWAYS_INLINE reciprocal() const {
|
383 |
+
return Vectorized<float>(one) / (*this);
|
384 |
+
}
|
385 |
+
Vectorized<float> C10_ALWAYS_INLINE rsqrt() const {
|
386 |
+
return sqrt().reciprocal();
|
387 |
+
}
|
388 |
+
|
389 |
+
Vectorized<float> C10_ALWAYS_INLINE pow(const Vectorized<float>& exp) const {
|
390 |
+
return {Sleef_powf4_u10(_vec0, exp._vec0), Sleef_powf4_u10(_vec1, exp._vec1)};
|
391 |
+
}
|
392 |
+
|
393 |
+
Vectorized<float> fmod(const Vectorized<float>& b) const {
|
394 |
+
return {Sleef_fmodf4(_vec0, b._vec0),Sleef_fmodf4(_vec1, b._vec1)};
|
395 |
+
}
|
396 |
+
|
397 |
+
Vectorized<float> hypot(const Vectorized<float>& b) const {
|
398 |
+
return {Sleef_hypotf4_u05(_vec0, b._vec0), Sleef_hypotf4_u05(_vec1, b._vec1)};
|
399 |
+
}
|
400 |
+
|
401 |
+
Vectorized<float> nextafter(const Vectorized<float>& b) const {
|
402 |
+
return {Sleef_nextafterf4(_vec0, b._vec0), Sleef_nextafterf4(_vec1, b._vec1)};
|
403 |
+
}
|
404 |
+
|
405 |
+
Vectorized<float> igamma(const Vectorized<float>& x) const {
|
406 |
+
return mapbi(calc_igamma, x);
|
407 |
+
}
|
408 |
+
|
409 |
+
Vectorized<float> igammac(const Vectorized<float>& x) const {
|
410 |
+
return mapbi(calc_igammac, x);
|
411 |
+
}
|
412 |
+
|
413 |
+
Vectorized<float> i0() const {
|
414 |
+
return map(calc_i0);
|
415 |
+
}
|
416 |
+
|
417 |
+
Vectorized<float> i0e() const {
|
418 |
+
return map(calc_i0e);
|
419 |
+
}
|
420 |
+
|
421 |
+
Vectorized<float> digamma() const {
|
422 |
+
return map(calc_digamma);
|
423 |
+
}
|
424 |
+
|
425 |
+
DEFINE_MEMBER_OP(operator==, float, vec_cmpeq)
|
426 |
+
DEFINE_MEMBER_OP(operator!=, float, vec_cmpne)
|
427 |
+
DEFINE_MEMBER_OP(operator<, float, vec_cmplt)
|
428 |
+
DEFINE_MEMBER_OP(operator<=, float, vec_cmple)
|
429 |
+
DEFINE_MEMBER_OP(operator>, float, vec_cmpgt)
|
430 |
+
DEFINE_MEMBER_OP(operator>=, float, vec_cmpge)
|
431 |
+
DEFINE_MEMBER_OP_AND_ONE(eq, float, vec_cmpeq)
|
432 |
+
DEFINE_MEMBER_OP_AND_ONE(ne, float, vec_cmpne)
|
433 |
+
DEFINE_MEMBER_OP_AND_ONE(lt, float, vec_cmplt)
|
434 |
+
DEFINE_MEMBER_OP_AND_ONE(le, float, vec_cmple)
|
435 |
+
DEFINE_MEMBER_OP_AND_ONE(gt, float, vec_cmpgt)
|
436 |
+
DEFINE_MEMBER_OP_AND_ONE(ge, float, vec_cmpge)
|
437 |
+
DEFINE_MEMBER_OP(operator+, float, vec_add)
|
438 |
+
DEFINE_MEMBER_OP(operator-, float, vec_sub)
|
439 |
+
DEFINE_MEMBER_OP(operator*, float, vec_mul)
|
440 |
+
DEFINE_MEMBER_OP(operator/, float, vec_div)
|
441 |
+
DEFINE_MEMBER_OP(maximum, float, vec_max_nan2)
|
442 |
+
DEFINE_MEMBER_OP(minimum, float, vec_min_nan2)
|
443 |
+
DEFINE_MEMBER_OP(operator&, float, vec_and)
|
444 |
+
DEFINE_MEMBER_OP(operator|, float, vec_or)
|
445 |
+
DEFINE_MEMBER_OP(operator^, float, vec_xor)
|
446 |
+
DEFINE_MEMBER_TERNARY_OP(madd, float, vec_madd)
|
447 |
+
};
|
448 |
+
|
449 |
+
template <>
|
450 |
+
Vectorized<float> inline maximum(const Vectorized<float>& a, const Vectorized<float>& b) {
|
451 |
+
return a.maximum(b);
|
452 |
+
}
|
453 |
+
|
454 |
+
template <>
|
455 |
+
Vectorized<float> inline minimum(const Vectorized<float>& a, const Vectorized<float>& b) {
|
456 |
+
return a.minimum(b);
|
457 |
+
}
|
458 |
+
|
459 |
+
} // namespace
|
460 |
+
} // namespace vec
|
461 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_int16_vsx.h
ADDED
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
4 |
+
#include <ATen/cpu/vec/vec_base.h>
|
5 |
+
#include <ATen/cpu/vec/vec256/vsx/vsx_helpers.h>
|
6 |
+
namespace at {
|
7 |
+
namespace vec {
|
8 |
+
// See Note [CPU_CAPABILITY namespace]
|
9 |
+
inline namespace CPU_CAPABILITY {
|
10 |
+
|
11 |
+
template <>
|
12 |
+
class Vectorized<int16_t> {
|
13 |
+
private:
|
14 |
+
union {
|
15 |
+
struct {
|
16 |
+
vint16 _vec0;
|
17 |
+
vint16 _vec1;
|
18 |
+
};
|
19 |
+
struct {
|
20 |
+
vbool16 _vecb0;
|
21 |
+
vbool16 _vecb1;
|
22 |
+
};
|
23 |
+
|
24 |
+
} __attribute__((__may_alias__));
|
25 |
+
|
26 |
+
public:
|
27 |
+
using value_type = int16_t;
|
28 |
+
using vec_internal_type = vint16;
|
29 |
+
using vec_internal_mask_type = vbool16;
|
30 |
+
using size_type = int;
|
31 |
+
static constexpr size_type size() {
|
32 |
+
return 16;
|
33 |
+
}
|
34 |
+
Vectorized() {}
|
35 |
+
C10_ALWAYS_INLINE Vectorized(vint16 v) : _vec0{v}, _vec1{v} {}
|
36 |
+
C10_ALWAYS_INLINE Vectorized(vbool16 vmask) : _vecb0{vmask}, _vecb1{vmask} {}
|
37 |
+
C10_ALWAYS_INLINE Vectorized(vint16 v1, vint16 v2) : _vec0{v1}, _vec1{v2} {}
|
38 |
+
C10_ALWAYS_INLINE Vectorized(vbool16 v1, vbool16 v2) : _vecb0{v1}, _vecb1{v2} {}
|
39 |
+
C10_ALWAYS_INLINE Vectorized(int16_t scalar)
|
40 |
+
: _vec0{vec_splats(scalar)}, _vec1{vec_splats(scalar)} {}
|
41 |
+
|
42 |
+
C10_ALWAYS_INLINE Vectorized(
|
43 |
+
int16_t scalar1,
|
44 |
+
int16_t scalar2,
|
45 |
+
int16_t scalar3,
|
46 |
+
int16_t scalar4,
|
47 |
+
int16_t scalar5,
|
48 |
+
int16_t scalar6,
|
49 |
+
int16_t scalar7,
|
50 |
+
int16_t scalar8,
|
51 |
+
int16_t scalar9,
|
52 |
+
int16_t scalar10,
|
53 |
+
int16_t scalar11,
|
54 |
+
int16_t scalar12,
|
55 |
+
int16_t scalar13,
|
56 |
+
int16_t scalar14,
|
57 |
+
int16_t scalar15,
|
58 |
+
int16_t scalar16)
|
59 |
+
: _vec0{vint16{
|
60 |
+
scalar1,
|
61 |
+
scalar2,
|
62 |
+
scalar3,
|
63 |
+
scalar4,
|
64 |
+
scalar5,
|
65 |
+
scalar6,
|
66 |
+
scalar7,
|
67 |
+
scalar8}},
|
68 |
+
_vec1{vint16{
|
69 |
+
scalar9,
|
70 |
+
scalar10,
|
71 |
+
scalar11,
|
72 |
+
scalar12,
|
73 |
+
scalar13,
|
74 |
+
scalar14,
|
75 |
+
scalar15,
|
76 |
+
scalar16}} {}
|
77 |
+
C10_ALWAYS_INLINE const vec_internal_type& vec0() const {
|
78 |
+
return _vec0;
|
79 |
+
}
|
80 |
+
C10_ALWAYS_INLINE const vec_internal_type& vec1() const {
|
81 |
+
return _vec1;
|
82 |
+
}
|
83 |
+
|
84 |
+
template <uint64_t mask>
|
85 |
+
static std::enable_if_t<mask == 0, Vectorized<int16_t>> C10_ALWAYS_INLINE
|
86 |
+
blend(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
87 |
+
return a;
|
88 |
+
}
|
89 |
+
|
90 |
+
template <uint64_t mask>
|
91 |
+
static std::enable_if_t<(mask & 65535) == 65535, Vectorized<int16_t>>
|
92 |
+
C10_ALWAYS_INLINE blend(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
93 |
+
return b;
|
94 |
+
}
|
95 |
+
|
96 |
+
template <uint64_t mask>
|
97 |
+
static std::enable_if_t<mask == 255, Vectorized<int16_t>> C10_ALWAYS_INLINE
|
98 |
+
blend(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
99 |
+
return {b._vec0, a._vec1};
|
100 |
+
}
|
101 |
+
|
102 |
+
template <uint64_t mask>
|
103 |
+
static std::enable_if_t<(mask > 0 && mask < 255), Vectorized<int16_t>>
|
104 |
+
C10_ALWAYS_INLINE blend(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
105 |
+
constexpr int16_t g0 = (mask & 1) * 0xffff;
|
106 |
+
constexpr int16_t g1 = ((mask & 2) >> 1) * 0xffff;
|
107 |
+
constexpr int16_t g2 = ((mask & 4) >> 2) * 0xffff;
|
108 |
+
constexpr int16_t g3 = ((mask & 8) >> 3) * 0xffff;
|
109 |
+
constexpr int16_t g4 = ((mask & 16) >> 4) * 0xffff;
|
110 |
+
constexpr int16_t g5 = ((mask & 32) >> 5) * 0xffff;
|
111 |
+
constexpr int16_t g6 = ((mask & 64) >> 6) * 0xffff;
|
112 |
+
constexpr int16_t g7 = ((mask & 128) >> 7) * 0xffff;
|
113 |
+
const vint16 mask_1st = vint16{g0, g1, g2, g3, g4, g5, g6, g7};
|
114 |
+
|
115 |
+
return {(vint16)vec_sel(a._vec0, b._vec0, (vbool16)mask_1st), a._vec1};
|
116 |
+
}
|
117 |
+
|
118 |
+
template <uint64_t mask>
|
119 |
+
static std::enable_if_t<
|
120 |
+
(mask > 255 && (mask & 65535) != 65535 && ((mask & 255) == 255)),
|
121 |
+
Vectorized<int16_t>>
|
122 |
+
C10_ALWAYS_INLINE blend(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
123 |
+
constexpr int16_t g0_2 = (mask & 1) * 0xffff;
|
124 |
+
constexpr int16_t g1_2 = ((mask & 2) >> 1) * 0xffff;
|
125 |
+
constexpr int16_t g2_2 = ((mask & 4) >> 2) * 0xffff;
|
126 |
+
constexpr int16_t g3_2 = ((mask & 8) >> 3) * 0xffff;
|
127 |
+
constexpr int16_t g4_2 = ((mask & 16) >> 4) * 0xffff;
|
128 |
+
constexpr int16_t g5_2 = ((mask & 32) >> 5) * 0xffff;
|
129 |
+
constexpr int16_t g6_2 = ((mask & 64) >> 6) * 0xffff;
|
130 |
+
constexpr int16_t g7_2 = ((mask & 128) >> 7) * 0xffff;
|
131 |
+
|
132 |
+
const vint16 mask_2nd =
|
133 |
+
vint16{g0_2, g1_2, g2_2, g3_2, g4_2, g5_2, g6_2, g7_2};
|
134 |
+
// generated masks
|
135 |
+
return {b._vec0, (vint16)vec_sel(a._vec1, b._vec1, (vbool16)mask_2nd)};
|
136 |
+
}
|
137 |
+
|
138 |
+
template <uint64_t mask>
|
139 |
+
static std::enable_if_t<
|
140 |
+
(mask > 255 && ((mask & 65535) != 65535) && ((mask & 255) == 0)),
|
141 |
+
Vectorized<int16_t>>
|
142 |
+
C10_ALWAYS_INLINE blend(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
143 |
+
constexpr int16_t mask2 = (mask & 65535) >> 16;
|
144 |
+
constexpr int16_t g0_2 = (mask & 1) * 0xffff;
|
145 |
+
constexpr int16_t g1_2 = ((mask & 2) >> 1) * 0xffff;
|
146 |
+
constexpr int16_t g2_2 = ((mask & 4) >> 2) * 0xffff;
|
147 |
+
constexpr int16_t g3_2 = ((mask & 8) >> 3) * 0xffff;
|
148 |
+
constexpr int16_t g4_2 = ((mask & 16) >> 4) * 0xffff;
|
149 |
+
constexpr int16_t g5_2 = ((mask & 32) >> 5) * 0xffff;
|
150 |
+
constexpr int16_t g6_2 = ((mask & 64) >> 6) * 0xffff;
|
151 |
+
constexpr int16_t g7_2 = ((mask & 128) >> 7) * 0xffff;
|
152 |
+
|
153 |
+
const vint16 mask_2nd =
|
154 |
+
vint16{g0_2, g1_2, g2_2, g3_2, g4_2, g5_2, g6_2, g7_2};
|
155 |
+
// generated masks
|
156 |
+
return {a, (vint16)vec_sel(a._vec1, b._vec1, (vbool16)mask_2nd)};
|
157 |
+
}
|
158 |
+
|
159 |
+
template <uint64_t mask>
|
160 |
+
static std::enable_if_t<
|
161 |
+
(mask > 255 && ((mask & 65535) != 65535) && ((mask & 255) != 0) &&
|
162 |
+
((mask & 255) != 255)),
|
163 |
+
Vectorized<int16_t>>
|
164 |
+
C10_ALWAYS_INLINE blend(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
165 |
+
constexpr int16_t g0 = (mask & 1) * 0xffff;
|
166 |
+
constexpr int16_t g1 = ((mask & 2) >> 1) * 0xffff;
|
167 |
+
constexpr int16_t g2 = ((mask & 4) >> 2) * 0xffff;
|
168 |
+
constexpr int16_t g3 = ((mask & 8) >> 3) * 0xffff;
|
169 |
+
constexpr int16_t g4 = ((mask & 16) >> 4) * 0xffff;
|
170 |
+
constexpr int16_t g5 = ((mask & 32) >> 5) * 0xffff;
|
171 |
+
constexpr int16_t g6 = ((mask & 64) >> 6) * 0xffff;
|
172 |
+
constexpr int16_t g7 = ((mask & 128) >> 7) * 0xffff;
|
173 |
+
constexpr int16_t mask2 = (mask & 65535) >> 16;
|
174 |
+
constexpr int16_t g0_2 = (mask & 1) * 0xffff;
|
175 |
+
constexpr int16_t g1_2 = ((mask & 2) >> 1) * 0xffff;
|
176 |
+
constexpr int16_t g2_2 = ((mask & 4) >> 2) * 0xffff;
|
177 |
+
constexpr int16_t g3_2 = ((mask & 8) >> 3) * 0xffff;
|
178 |
+
constexpr int16_t g4_2 = ((mask & 16) >> 4) * 0xffff;
|
179 |
+
constexpr int16_t g5_2 = ((mask & 32) >> 5) * 0xffff;
|
180 |
+
constexpr int16_t g6_2 = ((mask & 64) >> 6) * 0xffff;
|
181 |
+
constexpr int16_t g7_2 = ((mask & 128) >> 7) * 0xffff;
|
182 |
+
|
183 |
+
const vint16 mask_1st = vint16{g0, g1, g2, g3, g4, g5, g6, g7};
|
184 |
+
const vint16 mask_2nd =
|
185 |
+
vint16{g0_2, g1_2, g2_2, g3_2, g4_2, g5_2, g6_2, g7_2};
|
186 |
+
// generated masks
|
187 |
+
return {
|
188 |
+
(vint16)vec_sel(a._vec0, b._vec0, (vbool16)mask_1st),
|
189 |
+
(vint16)vec_sel(a._vec1, b._vec1, (vbool16)mask_2nd)};
|
190 |
+
}
|
191 |
+
|
192 |
+
static Vectorized<int16_t> C10_ALWAYS_INLINE blendv(
|
193 |
+
const Vectorized<int16_t>& a,
|
194 |
+
const Vectorized<int16_t>& b,
|
195 |
+
const Vectorized<int16_t>& mask) {
|
196 |
+
// the mask used here returned by comparision of vec256
|
197 |
+
// assuming this we can use the same mask directly with vec_sel
|
198 |
+
// warning intel style mask will not work properly
|
199 |
+
return {
|
200 |
+
vec_sel(a._vec0, b._vec0, mask._vecb0),
|
201 |
+
vec_sel(a._vec1, b._vec1, mask._vecb1)};
|
202 |
+
}
|
203 |
+
|
204 |
+
template <typename step_t>
|
205 |
+
static Vectorized<int16_t> arange(int16_t base = 0, step_t step = static_cast<step_t>(1)) {
|
206 |
+
return Vectorized<int16_t>(
|
207 |
+
base,
|
208 |
+
base + step,
|
209 |
+
base + 2 * step,
|
210 |
+
base + 3 * step,
|
211 |
+
base + 4 * step,
|
212 |
+
base + 5 * step,
|
213 |
+
base + 6 * step,
|
214 |
+
base + 7 * step,
|
215 |
+
base + 8 * step,
|
216 |
+
base + 9 * step,
|
217 |
+
base + 10 * step,
|
218 |
+
base + 11 * step,
|
219 |
+
base + 12 * step,
|
220 |
+
base + 13 * step,
|
221 |
+
base + 14 * step,
|
222 |
+
base + 15 * step);
|
223 |
+
}
|
224 |
+
static Vectorized<int16_t> set(
|
225 |
+
const Vectorized<int16_t>& a,
|
226 |
+
const Vectorized<int16_t>& b,
|
227 |
+
size_t count = size()) {
|
228 |
+
switch (count) {
|
229 |
+
case 0:
|
230 |
+
return a;
|
231 |
+
case 1:
|
232 |
+
return blend<1>(a, b);
|
233 |
+
case 2:
|
234 |
+
return blend<3>(a, b);
|
235 |
+
case 3:
|
236 |
+
return blend<7>(a, b);
|
237 |
+
case 4:
|
238 |
+
return blend<15>(a, b);
|
239 |
+
case 5:
|
240 |
+
return blend<31>(a, b);
|
241 |
+
case 6:
|
242 |
+
return blend<63>(a, b);
|
243 |
+
case 7:
|
244 |
+
return blend<127>(a, b);
|
245 |
+
case 8:
|
246 |
+
return blend<255>(a, b);
|
247 |
+
case 9:
|
248 |
+
return blend<511>(a, b);
|
249 |
+
case 10:
|
250 |
+
return blend<1023>(a, b);
|
251 |
+
case 11:
|
252 |
+
return blend<2047>(a, b);
|
253 |
+
case 12:
|
254 |
+
return blend<4095>(a, b);
|
255 |
+
case 13:
|
256 |
+
return blend<8191>(a, b);
|
257 |
+
case 14:
|
258 |
+
return blend<16383>(a, b);
|
259 |
+
case 15:
|
260 |
+
return blend<32767>(a, b);
|
261 |
+
}
|
262 |
+
return b;
|
263 |
+
}
|
264 |
+
static Vectorized<value_type> C10_ALWAYS_INLINE
|
265 |
+
loadu(const void* ptr, int count = size()) {
|
266 |
+
if (count == size()) {
|
267 |
+
return {
|
268 |
+
vec_vsx_ld(offset0, reinterpret_cast<const value_type*>(ptr)),
|
269 |
+
vec_vsx_ld(offset16, reinterpret_cast<const value_type*>(ptr))};
|
270 |
+
}
|
271 |
+
|
272 |
+
__at_align__ value_type tmp_values[size()] = {};
|
273 |
+
std::memcpy(tmp_values, ptr, std::min(count, size()) * sizeof(value_type));
|
274 |
+
|
275 |
+
return {vec_vsx_ld(offset0, tmp_values), vec_vsx_ld(offset16, tmp_values)};
|
276 |
+
}
|
277 |
+
void C10_ALWAYS_INLINE store(void* ptr, int count = size()) const {
|
278 |
+
if (count == size()) {
|
279 |
+
vec_vsx_st(_vec0, offset0, reinterpret_cast<value_type*>(ptr));
|
280 |
+
vec_vsx_st(_vec1, offset16, reinterpret_cast<value_type*>(ptr));
|
281 |
+
} else if (count > 0) {
|
282 |
+
__at_align__ value_type tmp_values[size()];
|
283 |
+
vec_vsx_st(_vec0, offset0, tmp_values);
|
284 |
+
vec_vsx_st(_vec1, offset16, tmp_values);
|
285 |
+
std::memcpy(ptr, tmp_values, std::min(count, size()) * sizeof(value_type));
|
286 |
+
}
|
287 |
+
}
|
288 |
+
const int16_t& operator[](int idx) const = delete;
|
289 |
+
int16_t& operator[](int idx) = delete;
|
290 |
+
|
291 |
+
Vectorized<int16_t> angle() const {
|
292 |
+
return blendv(
|
293 |
+
Vectorized<int16_t>(0), Vectorized<int16_t>(c10::pi<int16_t>), *this < Vectorized<int16_t>(0));
|
294 |
+
}
|
295 |
+
Vectorized<int16_t> real() const {
|
296 |
+
return *this;
|
297 |
+
}
|
298 |
+
Vectorized<int16_t> imag() const {
|
299 |
+
return Vectorized<int16_t>{0};
|
300 |
+
}
|
301 |
+
Vectorized<int16_t> conj() const {
|
302 |
+
return *this;
|
303 |
+
}
|
304 |
+
|
305 |
+
Vectorized<int16_t> C10_ALWAYS_INLINE abs() const {
|
306 |
+
return {vec_abs(_vec0), vec_abs(_vec1)};
|
307 |
+
}
|
308 |
+
|
309 |
+
Vectorized<int16_t> C10_ALWAYS_INLINE neg() const {
|
310 |
+
return {vec_neg(_vec0), vec_neg(_vec1)};
|
311 |
+
}
|
312 |
+
|
313 |
+
DEFINE_MEMBER_UNARY_OP(operator~, int16_t, vec_not)
|
314 |
+
DEFINE_MEMBER_OP(operator==, int16_t, vec_cmpeq)
|
315 |
+
DEFINE_MEMBER_OP(operator!=, int16_t, vec_cmpne)
|
316 |
+
DEFINE_MEMBER_OP(operator<, int16_t, vec_cmplt)
|
317 |
+
DEFINE_MEMBER_OP(operator<=, int16_t, vec_cmple)
|
318 |
+
DEFINE_MEMBER_OP(operator>, int16_t, vec_cmpgt)
|
319 |
+
DEFINE_MEMBER_OP(operator>=, int16_t, vec_cmpge)
|
320 |
+
DEFINE_MEMBER_OP_AND_ONE(eq, int16_t, vec_cmpeq)
|
321 |
+
DEFINE_MEMBER_OP_AND_ONE(ne, int16_t, vec_cmpne)
|
322 |
+
DEFINE_MEMBER_OP_AND_ONE(lt, int16_t, vec_cmplt)
|
323 |
+
DEFINE_MEMBER_OP_AND_ONE(le, int16_t, vec_cmple)
|
324 |
+
DEFINE_MEMBER_OP_AND_ONE(gt, int16_t, vec_cmpgt)
|
325 |
+
DEFINE_MEMBER_OP_AND_ONE(ge, int16_t, vec_cmpge)
|
326 |
+
DEFINE_MEMBER_OP(operator+, int16_t, vec_add)
|
327 |
+
DEFINE_MEMBER_OP(operator-, int16_t, vec_sub)
|
328 |
+
DEFINE_MEMBER_OP(operator*, int16_t, vec_mul)
|
329 |
+
DEFINE_MEMBER_EMULATE_BINARY_OP(operator/, int16_t, /)
|
330 |
+
DEFINE_MEMBER_OP(maximum, int16_t, vec_max)
|
331 |
+
DEFINE_MEMBER_OP(minimum, int16_t, vec_min)
|
332 |
+
DEFINE_MEMBER_OP(operator&, int16_t, vec_and)
|
333 |
+
DEFINE_MEMBER_OP(operator|, int16_t, vec_or)
|
334 |
+
DEFINE_MEMBER_OP(operator^, int16_t, vec_xor)
|
335 |
+
};
|
336 |
+
|
337 |
+
template <>
|
338 |
+
Vectorized<int16_t> inline operator<<(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
339 |
+
vuint16 shift_vec0 = reinterpret_cast<vuint16>(b.vec0());
|
340 |
+
vuint16 shift_vec1 = reinterpret_cast<vuint16>(b.vec1());
|
341 |
+
return Vectorized<int16_t>{vec_sl(a.vec0(), shift_vec0), vec_sl(a.vec1(), shift_vec1)};
|
342 |
+
}
|
343 |
+
|
344 |
+
template <>
|
345 |
+
Vectorized<int16_t> inline operator>>(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
346 |
+
vuint16 shift_vec0 = reinterpret_cast<vuint16>(b.vec0());
|
347 |
+
vuint16 shift_vec1 = reinterpret_cast<vuint16>(b.vec1()) ;
|
348 |
+
return Vectorized<int16_t>{vec_sr(a.vec0(), shift_vec0), vec_sr(a.vec1(), shift_vec1)};
|
349 |
+
}
|
350 |
+
|
351 |
+
template <>
|
352 |
+
Vectorized<int16_t> inline maximum(
|
353 |
+
const Vectorized<int16_t>& a,
|
354 |
+
const Vectorized<int16_t>& b) {
|
355 |
+
return a.maximum(b);
|
356 |
+
}
|
357 |
+
|
358 |
+
template <>
|
359 |
+
Vectorized<int16_t> inline minimum(
|
360 |
+
const Vectorized<int16_t>& a,
|
361 |
+
const Vectorized<int16_t>& b) {
|
362 |
+
return a.minimum(b);
|
363 |
+
}
|
364 |
+
|
365 |
+
|
366 |
+
} // namespace
|
367 |
+
} // namespace vec
|
368 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_int32_vsx.h
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
4 |
+
#include <ATen/cpu/vec/vec_base.h>
|
5 |
+
#include <ATen/cpu/vec/vec256/vsx/vsx_helpers.h>
|
6 |
+
namespace at {
|
7 |
+
namespace vec {
|
8 |
+
// See Note [CPU_CAPABILITY namespace]
|
9 |
+
inline namespace CPU_CAPABILITY {
|
10 |
+
|
11 |
+
template <>
|
12 |
+
class Vectorized<int32_t> {
|
13 |
+
private:
|
14 |
+
union {
|
15 |
+
struct {
|
16 |
+
vint32 _vec0;
|
17 |
+
vint32 _vec1;
|
18 |
+
};
|
19 |
+
struct {
|
20 |
+
vbool32 _vecb0;
|
21 |
+
vbool32 _vecb1;
|
22 |
+
};
|
23 |
+
|
24 |
+
} __attribute__((__may_alias__));
|
25 |
+
|
26 |
+
public:
|
27 |
+
using value_type = int32_t;
|
28 |
+
using vec_internal_type = vint32;
|
29 |
+
using vec_internal_mask_type = vbool32;
|
30 |
+
using size_type = int;
|
31 |
+
static constexpr size_type size() {
|
32 |
+
return 8;
|
33 |
+
}
|
34 |
+
Vectorized() {}
|
35 |
+
C10_ALWAYS_INLINE Vectorized(vint32 v) : _vec0{v}, _vec1{v} {}
|
36 |
+
C10_ALWAYS_INLINE Vectorized(vbool32 vmask) : _vecb0{vmask}, _vecb1{vmask} {}
|
37 |
+
C10_ALWAYS_INLINE Vectorized(vint32 v1, vint32 v2) : _vec0{v1}, _vec1{v2} {}
|
38 |
+
C10_ALWAYS_INLINE Vectorized(vbool32 v1, vbool32 v2) : _vecb0{v1}, _vecb1{v2} {}
|
39 |
+
C10_ALWAYS_INLINE Vectorized(int32_t scalar)
|
40 |
+
: _vec0{vec_splats(scalar)}, _vec1{vec_splats(scalar)} {}
|
41 |
+
C10_ALWAYS_INLINE Vectorized(
|
42 |
+
int32_t scalar1,
|
43 |
+
int32_t scalar2,
|
44 |
+
int32_t scalar3,
|
45 |
+
int32_t scalar4,
|
46 |
+
int32_t scalar5,
|
47 |
+
int32_t scalar6,
|
48 |
+
int32_t scalar7,
|
49 |
+
int32_t scalar8)
|
50 |
+
: _vec0{vint32{scalar1, scalar2, scalar3, scalar4}},
|
51 |
+
_vec1{vint32{scalar5, scalar6, scalar7, scalar8}} {}
|
52 |
+
C10_ALWAYS_INLINE const vec_internal_type& vec0() const {
|
53 |
+
return _vec0;
|
54 |
+
}
|
55 |
+
C10_ALWAYS_INLINE const vec_internal_type& vec1() const {
|
56 |
+
return _vec1;
|
57 |
+
}
|
58 |
+
|
59 |
+
template <uint64_t mask>
|
60 |
+
static std::enable_if_t<mask == 0, Vectorized<int32_t>> C10_ALWAYS_INLINE
|
61 |
+
blend(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
62 |
+
return a;
|
63 |
+
}
|
64 |
+
|
65 |
+
template <uint64_t mask>
|
66 |
+
static std::enable_if_t<(mask & 255) == 255, Vectorized<int32_t>> C10_ALWAYS_INLINE
|
67 |
+
blend(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
68 |
+
return b;
|
69 |
+
}
|
70 |
+
|
71 |
+
template <uint64_t mask>
|
72 |
+
static std::enable_if_t<mask == 15, Vectorized<int32_t>> C10_ALWAYS_INLINE
|
73 |
+
blend(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
74 |
+
return {b._vec0, a._vec1};
|
75 |
+
}
|
76 |
+
|
77 |
+
template <uint64_t mask>
|
78 |
+
static std::enable_if_t<(mask > 0 && mask < 15), Vectorized<int32_t>>
|
79 |
+
C10_ALWAYS_INLINE blend(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
80 |
+
constexpr uint32_t g0 = (mask & 1) * 0xffffffff;
|
81 |
+
constexpr uint32_t g1 = ((mask & 2) >> 1) * 0xffffffff;
|
82 |
+
constexpr uint32_t g2 = ((mask & 4) >> 2) * 0xffffffff;
|
83 |
+
constexpr uint32_t g3 = ((mask & 8) >> 3) * 0xffffffff;
|
84 |
+
const vbool32 mask_1st = (vbool32){g0, g1, g2, g3};
|
85 |
+
|
86 |
+
return {(vint32)vec_sel(a._vec0, b._vec0, (vbool32)mask_1st), a._vec1};
|
87 |
+
}
|
88 |
+
|
89 |
+
template <uint64_t mask>
|
90 |
+
static std::enable_if_t<
|
91 |
+
(mask > 15 && (mask & 255) != 255 && ((mask & 15) == 15)),
|
92 |
+
Vectorized<int32_t>>
|
93 |
+
C10_ALWAYS_INLINE blend(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
94 |
+
constexpr uint32_t mask2 = (mask & 255) >> 4;
|
95 |
+
constexpr uint32_t g0_2 = (mask2 & 1) * 0xffffffff;
|
96 |
+
constexpr uint32_t g1_2 = ((mask2 & 2) >> 1) * 0xffffffff;
|
97 |
+
constexpr uint32_t g2_2 = ((mask2 & 4) >> 2) * 0xffffffff;
|
98 |
+
constexpr uint32_t g3_2 = ((mask2 & 8) >> 3) * 0xffffffff;
|
99 |
+
|
100 |
+
const vbool32 mask_2nd = (vbool32){g0_2, g1_2, g2_2, g3_2};
|
101 |
+
// generated masks
|
102 |
+
return {b._vec0, (vint32)vec_sel(a._vec1, b._vec1, (vbool32)mask_2nd)};
|
103 |
+
}
|
104 |
+
|
105 |
+
template <uint64_t mask>
|
106 |
+
static std::enable_if_t<
|
107 |
+
(mask > 15 && ((mask & 255) != 255) && ((mask & 15) == 0)),
|
108 |
+
Vectorized<int32_t>>
|
109 |
+
C10_ALWAYS_INLINE blend(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
110 |
+
constexpr uint32_t mask2 = (mask & 255) >> 4;
|
111 |
+
constexpr uint32_t g0_2 = (mask2 & 1) * 0xffffffff;
|
112 |
+
constexpr uint32_t g1_2 = ((mask2 & 2) >> 1) * 0xffffffff;
|
113 |
+
constexpr uint32_t g2_2 = ((mask2 & 4) >> 2) * 0xffffffff;
|
114 |
+
constexpr uint32_t g3_2 = ((mask2 & 8) >> 3) * 0xffffffff;
|
115 |
+
|
116 |
+
const vbool32 mask_2nd = (vbool32){g0_2, g1_2, g2_2, g3_2};
|
117 |
+
// generated masks
|
118 |
+
return {a, (vint32)vec_sel(a._vec1, b._vec1, (vbool32)mask_2nd)};
|
119 |
+
}
|
120 |
+
|
121 |
+
template <uint64_t mask>
|
122 |
+
static std::enable_if_t<
|
123 |
+
(mask > 15 && ((mask & 255) != 255) && ((mask & 15) != 0) &&
|
124 |
+
((mask & 15) != 15)),
|
125 |
+
Vectorized<int32_t>>
|
126 |
+
C10_ALWAYS_INLINE blend(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
127 |
+
constexpr uint32_t g0 = (mask & 1) * 0xffffffff;
|
128 |
+
constexpr uint32_t g1 = ((mask & 2) >> 1) * 0xffffffff;
|
129 |
+
constexpr uint32_t g2 = ((mask & 4) >> 2) * 0xffffffff;
|
130 |
+
constexpr uint32_t g3 = ((mask & 8) >> 3) * 0xffffffff;
|
131 |
+
constexpr uint32_t mask2 = (mask & 255) >> 4;
|
132 |
+
constexpr uint32_t g0_2 = (mask2 & 1) * 0xffffffff;
|
133 |
+
constexpr uint32_t g1_2 = ((mask2 & 2) >> 1) * 0xffffffff;
|
134 |
+
constexpr uint32_t g2_2 = ((mask2 & 4) >> 2) * 0xffffffff;
|
135 |
+
constexpr uint32_t g3_2 = ((mask2 & 8) >> 3) * 0xffffffff;
|
136 |
+
|
137 |
+
const vbool32 mask_1st = (vbool32){g0, g1, g2, g3};
|
138 |
+
const vbool32 mask_2nd = (vbool32){g0_2, g1_2, g2_2, g3_2};
|
139 |
+
// generated masks
|
140 |
+
return {
|
141 |
+
(vint32)vec_sel(a._vec0, b._vec0, (vbool32)mask_1st),
|
142 |
+
(vint32)vec_sel(a._vec1, b._vec1, (vbool32)mask_2nd)};
|
143 |
+
}
|
144 |
+
|
145 |
+
static Vectorized<int32_t> C10_ALWAYS_INLINE blendv(
|
146 |
+
const Vectorized<int32_t>& a,
|
147 |
+
const Vectorized<int32_t>& b,
|
148 |
+
const Vectorized<int32_t>& mask) {
|
149 |
+
// the mask used here returned by comparision of vec256
|
150 |
+
// assuming this we can use the same mask directly with vec_sel
|
151 |
+
// warning intel style mask will not work properly
|
152 |
+
return {
|
153 |
+
vec_sel(a._vec0, b._vec0, mask._vecb0),
|
154 |
+
vec_sel(a._vec1, b._vec1, mask._vecb1)};
|
155 |
+
}
|
156 |
+
|
157 |
+
template <typename step_t>
|
158 |
+
static Vectorized<int32_t> arange(int32_t base = 0.f, step_t step = static_cast<step_t>(1)) {
|
159 |
+
return Vectorized<int32_t>(
|
160 |
+
base,
|
161 |
+
base + step,
|
162 |
+
base + 2 * step,
|
163 |
+
base + 3 * step,
|
164 |
+
base + 4 * step,
|
165 |
+
base + 5 * step,
|
166 |
+
base + 6 * step,
|
167 |
+
base + 7 * step);
|
168 |
+
}
|
169 |
+
static Vectorized<int32_t> set(
|
170 |
+
const Vectorized<int32_t>& a,
|
171 |
+
const Vectorized<int32_t>& b,
|
172 |
+
size_t count = size()) {
|
173 |
+
switch (count) {
|
174 |
+
case 0:
|
175 |
+
return a;
|
176 |
+
case 1:
|
177 |
+
return blend<1>(a, b);
|
178 |
+
case 2:
|
179 |
+
return blend<3>(a, b);
|
180 |
+
case 3:
|
181 |
+
return blend<7>(a, b);
|
182 |
+
case 4:
|
183 |
+
return blend<15>(a, b);
|
184 |
+
case 5:
|
185 |
+
return blend<31>(a, b);
|
186 |
+
case 6:
|
187 |
+
return blend<63>(a, b);
|
188 |
+
case 7:
|
189 |
+
return blend<127>(a, b);
|
190 |
+
}
|
191 |
+
|
192 |
+
return b;
|
193 |
+
}
|
194 |
+
static Vectorized<value_type> C10_ALWAYS_INLINE
|
195 |
+
loadu(const void* ptr, int count = size()) {
|
196 |
+
if (count == size()) {
|
197 |
+
return {
|
198 |
+
vec_vsx_ld(offset0, reinterpret_cast<const value_type*>(ptr)),
|
199 |
+
vec_vsx_ld(offset16, reinterpret_cast<const value_type*>(ptr))};
|
200 |
+
}
|
201 |
+
|
202 |
+
__at_align__ value_type tmp_values[size()] = {};
|
203 |
+
std::memcpy(tmp_values, ptr, std::min(count, size()) * sizeof(value_type));
|
204 |
+
|
205 |
+
return {vec_vsx_ld(offset0, tmp_values), vec_vsx_ld(offset16, tmp_values)};
|
206 |
+
}
|
207 |
+
void C10_ALWAYS_INLINE store(void* ptr, int count = size()) const {
|
208 |
+
if (count == size()) {
|
209 |
+
vec_vsx_st(_vec0, offset0, reinterpret_cast<value_type*>(ptr));
|
210 |
+
vec_vsx_st(_vec1, offset16, reinterpret_cast<value_type*>(ptr));
|
211 |
+
} else if (count > 0) {
|
212 |
+
__at_align__ value_type tmp_values[size()];
|
213 |
+
vec_vsx_st(_vec0, offset0, tmp_values);
|
214 |
+
vec_vsx_st(_vec1, offset16, tmp_values);
|
215 |
+
std::memcpy(
|
216 |
+
ptr, tmp_values, std::min(count, size()) * sizeof(value_type));
|
217 |
+
}
|
218 |
+
}
|
219 |
+
const int32_t& operator[](int idx) const = delete;
|
220 |
+
int32_t& operator[](int idx) = delete;
|
221 |
+
|
222 |
+
Vectorized<int32_t> angle() const {
|
223 |
+
return blendv(
|
224 |
+
Vectorized<int32_t>(0), Vectorized<int32_t>(c10::pi<int32_t>), *this < Vectorized<int32_t>(0));
|
225 |
+
}
|
226 |
+
Vectorized<int32_t> real() const {
|
227 |
+
return *this;
|
228 |
+
}
|
229 |
+
Vectorized<int32_t> imag() const {
|
230 |
+
return Vectorized<int32_t>{0};
|
231 |
+
}
|
232 |
+
Vectorized<int32_t> conj() const {
|
233 |
+
return *this;
|
234 |
+
}
|
235 |
+
|
236 |
+
Vectorized<int32_t> C10_ALWAYS_INLINE abs() const {
|
237 |
+
return {vec_abs(_vec0), vec_abs(_vec1)};
|
238 |
+
}
|
239 |
+
|
240 |
+
Vectorized<int32_t> C10_ALWAYS_INLINE neg() const {
|
241 |
+
return {vec_neg(_vec0), vec_neg(_vec1)};
|
242 |
+
}
|
243 |
+
|
244 |
+
DEFINE_MEMBER_UNARY_OP(operator~, int32_t, vec_not)
|
245 |
+
DEFINE_MEMBER_OP(operator==, int32_t, vec_cmpeq)
|
246 |
+
DEFINE_MEMBER_OP(operator!=, int32_t, vec_cmpne)
|
247 |
+
DEFINE_MEMBER_OP(operator<, int32_t, vec_cmplt)
|
248 |
+
DEFINE_MEMBER_OP(operator<=, int32_t, vec_cmple)
|
249 |
+
DEFINE_MEMBER_OP(operator>, int32_t, vec_cmpgt)
|
250 |
+
DEFINE_MEMBER_OP(operator>=, int32_t, vec_cmpge)
|
251 |
+
DEFINE_MEMBER_OP_AND_ONE(eq, int32_t, vec_cmpeq)
|
252 |
+
DEFINE_MEMBER_OP_AND_ONE(ne, int32_t, vec_cmpne)
|
253 |
+
DEFINE_MEMBER_OP_AND_ONE(lt, int32_t, vec_cmplt)
|
254 |
+
DEFINE_MEMBER_OP_AND_ONE(le, int32_t, vec_cmple)
|
255 |
+
DEFINE_MEMBER_OP_AND_ONE(gt, int32_t, vec_cmpgt)
|
256 |
+
DEFINE_MEMBER_OP_AND_ONE(ge, int32_t, vec_cmpge)
|
257 |
+
DEFINE_MEMBER_OP(operator+, int32_t, vec_add)
|
258 |
+
DEFINE_MEMBER_OP(operator-, int32_t, vec_sub)
|
259 |
+
DEFINE_MEMBER_OP(operator*, int32_t, vec_mul)
|
260 |
+
DEFINE_MEMBER_EMULATE_BINARY_OP(operator/, int32_t, /)
|
261 |
+
DEFINE_MEMBER_OP(maximum, int32_t, vec_max)
|
262 |
+
DEFINE_MEMBER_OP(minimum, int32_t, vec_min)
|
263 |
+
DEFINE_MEMBER_OP(operator&, int32_t, vec_and)
|
264 |
+
DEFINE_MEMBER_OP(operator|, int32_t, vec_or)
|
265 |
+
DEFINE_MEMBER_OP(operator^, int32_t, vec_xor)
|
266 |
+
};
|
267 |
+
|
268 |
+
template <>
|
269 |
+
Vectorized<int32_t> inline operator<<(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
270 |
+
vuint32 shift_vec0 = reinterpret_cast<vuint32>(b.vec0());
|
271 |
+
vuint32 shift_vec1 = reinterpret_cast<vuint32>(b.vec1()) ;
|
272 |
+
return Vectorized<int32_t>{vec_sl(a.vec0(), shift_vec0), vec_sl(a.vec1(), shift_vec1)};
|
273 |
+
}
|
274 |
+
|
275 |
+
template <>
|
276 |
+
Vectorized<int32_t> inline operator>>(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
277 |
+
vuint32 shift_vec0 = reinterpret_cast<vuint32>(b.vec0());
|
278 |
+
vuint32 shift_vec1 = reinterpret_cast<vuint32>(b.vec1()) ;
|
279 |
+
return Vectorized<int32_t>{vec_sr(a.vec0(), shift_vec0), vec_sr(a.vec1(), shift_vec1)};
|
280 |
+
}
|
281 |
+
|
282 |
+
template <>
|
283 |
+
Vectorized<int32_t> inline maximum(
|
284 |
+
const Vectorized<int32_t>& a,
|
285 |
+
const Vectorized<int32_t>& b) {
|
286 |
+
return a.maximum(b);
|
287 |
+
}
|
288 |
+
|
289 |
+
template <>
|
290 |
+
Vectorized<int32_t> inline minimum(
|
291 |
+
const Vectorized<int32_t>& a,
|
292 |
+
const Vectorized<int32_t>& b) {
|
293 |
+
return a.minimum(b);
|
294 |
+
}
|
295 |
+
|
296 |
+
} // namespace
|
297 |
+
} // namespace vec
|
298 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_int64_vsx.h
ADDED
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
4 |
+
#include <ATen/cpu/vec/vec_base.h>
|
5 |
+
#include <ATen/cpu/vec/vec256/vsx/vsx_helpers.h>
|
6 |
+
namespace at {
|
7 |
+
namespace vec {
|
8 |
+
// See Note [CPU_CAPABILITY namespace]
|
9 |
+
inline namespace CPU_CAPABILITY {
|
10 |
+
|
11 |
+
template <>
|
12 |
+
class Vectorized<int64_t> {
|
13 |
+
private:
|
14 |
+
union {
|
15 |
+
struct {
|
16 |
+
vint64 _vec0;
|
17 |
+
vint64 _vec1;
|
18 |
+
};
|
19 |
+
struct {
|
20 |
+
vbool64 _vecb0;
|
21 |
+
vbool64 _vecb1;
|
22 |
+
};
|
23 |
+
|
24 |
+
} __attribute__((__may_alias__));
|
25 |
+
|
26 |
+
public:
|
27 |
+
using value_type = int64_t;
|
28 |
+
using vec_internal_type = vint64;
|
29 |
+
using vec_internal_mask_type = vbool64;
|
30 |
+
using size_type = int;
|
31 |
+
using ElementType = signed long long;
|
32 |
+
static constexpr size_type size() {
|
33 |
+
return 4;
|
34 |
+
}
|
35 |
+
Vectorized() {}
|
36 |
+
C10_ALWAYS_INLINE Vectorized(vint64 v) : _vec0{v}, _vec1{v} {}
|
37 |
+
C10_ALWAYS_INLINE Vectorized(vbool64 vmask) : _vecb0{vmask}, _vecb1{vmask} {}
|
38 |
+
C10_ALWAYS_INLINE Vectorized(vint64 v1, vint64 v2) : _vec0{v1}, _vec1{v2} {}
|
39 |
+
C10_ALWAYS_INLINE Vectorized(vbool64 v1, vbool64 v2) : _vecb0{v1}, _vecb1{v2} {}
|
40 |
+
C10_ALWAYS_INLINE Vectorized(int64_t scalar)
|
41 |
+
: _vec0{vec_splats(scalar)}, _vec1{vec_splats(scalar)} {}
|
42 |
+
C10_ALWAYS_INLINE Vectorized(
|
43 |
+
int64_t scalar1,
|
44 |
+
int64_t scalar2,
|
45 |
+
int64_t scalar3,
|
46 |
+
int64_t scalar4)
|
47 |
+
: _vec0{vint64{scalar1, scalar2}}, _vec1{vint64{scalar3, scalar4}} {}
|
48 |
+
|
49 |
+
C10_ALWAYS_INLINE const vec_internal_type& vec0() const {
|
50 |
+
return _vec0;
|
51 |
+
}
|
52 |
+
C10_ALWAYS_INLINE const vec_internal_type& vec1() const {
|
53 |
+
return _vec1;
|
54 |
+
}
|
55 |
+
|
56 |
+
template <uint64_t mask>
|
57 |
+
static std::enable_if_t<mask == 0, Vectorized<int64_t>> C10_ALWAYS_INLINE
|
58 |
+
blend(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
59 |
+
return a;
|
60 |
+
}
|
61 |
+
|
62 |
+
template <uint64_t mask>
|
63 |
+
static std::enable_if_t<mask == 3, Vectorized<int64_t>> C10_ALWAYS_INLINE
|
64 |
+
blend(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
65 |
+
return {b._vec0, a._vec1};
|
66 |
+
}
|
67 |
+
|
68 |
+
template <uint64_t mask>
|
69 |
+
static std::enable_if_t<(mask & 15) == 15, Vectorized<int64_t>> C10_ALWAYS_INLINE
|
70 |
+
blend(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
71 |
+
return b;
|
72 |
+
}
|
73 |
+
|
74 |
+
template <uint64_t mask>
|
75 |
+
static std::enable_if_t<(mask > 0 && mask < 3), Vectorized<int64_t>> C10_ALWAYS_INLINE
|
76 |
+
blend(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
77 |
+
constexpr uint64_t g0 = (mask & 1) * 0xffffffffffffffff;
|
78 |
+
constexpr uint64_t g1 = ((mask & 2) >> 1) * 0xffffffffffffffff;
|
79 |
+
const vbool64 mask_1st = (vbool64){g0, g1};
|
80 |
+
return {(vint64)vec_sel(a._vec0, b._vec0, (vbool64)mask_1st), a._vec1};
|
81 |
+
}
|
82 |
+
|
83 |
+
template <uint64_t mask>
|
84 |
+
static std::enable_if_t<(mask > 3) && (mask & 3) == 0, Vectorized<int64_t>>
|
85 |
+
C10_ALWAYS_INLINE blend(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
86 |
+
constexpr uint64_t g0_2 = ((mask & 4) >> 2) * 0xffffffffffffffff;
|
87 |
+
constexpr uint64_t g1_2 = ((mask & 8) >> 3) * 0xffffffffffffffff;
|
88 |
+
|
89 |
+
const vbool64 mask_2nd = (vbool64){g0_2, g1_2};
|
90 |
+
return {a._vec0, (vint64)vec_sel(a._vec1, b._vec1, (vbool64)mask_2nd)};
|
91 |
+
}
|
92 |
+
|
93 |
+
template <uint64_t mask>
|
94 |
+
static std::enable_if_t<
|
95 |
+
(mask > 3) && (mask & 3) != 0 && (mask & 15) != 15,
|
96 |
+
Vectorized<int64_t>>
|
97 |
+
C10_ALWAYS_INLINE blend(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
98 |
+
constexpr uint64_t g0 = (mask & 1) * 0xffffffffffffffff;
|
99 |
+
constexpr uint64_t g1 = ((mask & 2) >> 1) * 0xffffffffffffffff;
|
100 |
+
constexpr uint64_t g0_2 = ((mask & 4) >> 2) * 0xffffffffffffffff;
|
101 |
+
constexpr uint64_t g1_2 = ((mask & 8) >> 3) * 0xffffffffffffffff;
|
102 |
+
|
103 |
+
const vbool64 mask_1st = (vbool64){g0, g1};
|
104 |
+
const vbool64 mask_2nd = (vbool64){g0_2, g1_2};
|
105 |
+
return {
|
106 |
+
(vint64)vec_sel(a._vec0, b._vec0, (vbool64)mask_1st),
|
107 |
+
(vint64)vec_sel(a._vec1, b._vec1, (vbool64)mask_2nd)};
|
108 |
+
}
|
109 |
+
|
110 |
+
static Vectorized<int64_t> C10_ALWAYS_INLINE blendv(
|
111 |
+
const Vectorized<int64_t>& a,
|
112 |
+
const Vectorized<int64_t>& b,
|
113 |
+
const Vectorized<int64_t>& mask) {
|
114 |
+
// the mask used here returned by comparision of vec256
|
115 |
+
|
116 |
+
return {
|
117 |
+
vec_sel(a._vec0, b._vec0, mask._vecb0),
|
118 |
+
vec_sel(a._vec1, b._vec1, mask._vecb1)};
|
119 |
+
}
|
120 |
+
template <typename step_t>
|
121 |
+
static Vectorized<int64_t> arange(int64_t base = 0., step_t step = static_cast<step_t>(1)) {
|
122 |
+
return Vectorized<int64_t>(base, base + step, base + 2 * step, base + 3 * step);
|
123 |
+
}
|
124 |
+
|
125 |
+
static Vectorized<int64_t> C10_ALWAYS_INLINE
|
126 |
+
set(const Vectorized<int64_t>& a,
|
127 |
+
const Vectorized<int64_t>& b,
|
128 |
+
size_t count = size()) {
|
129 |
+
switch (count) {
|
130 |
+
case 0:
|
131 |
+
return a;
|
132 |
+
case 1:
|
133 |
+
return blend<1>(a, b);
|
134 |
+
case 2:
|
135 |
+
return blend<3>(a, b);
|
136 |
+
case 3:
|
137 |
+
return blend<7>(a, b);
|
138 |
+
}
|
139 |
+
|
140 |
+
return b;
|
141 |
+
}
|
142 |
+
static Vectorized<value_type> C10_ALWAYS_INLINE
|
143 |
+
loadu(const void* ptr, int count = size()) {
|
144 |
+
if (count == size()) {
|
145 |
+
static_assert(sizeof(double) == sizeof(value_type));
|
146 |
+
const double* dptr = reinterpret_cast<const double*>(ptr);
|
147 |
+
return {// treat it as double load
|
148 |
+
(vint64)vec_vsx_ld(offset0, dptr),
|
149 |
+
(vint64)vec_vsx_ld(offset16, dptr)};
|
150 |
+
}
|
151 |
+
|
152 |
+
__at_align__ double tmp_values[size()] = {};
|
153 |
+
std::memcpy(tmp_values, ptr, std::min(count, size()) * sizeof(value_type));
|
154 |
+
|
155 |
+
return {
|
156 |
+
(vint64)vec_vsx_ld(offset0, tmp_values),
|
157 |
+
(vint64)vec_vsx_ld(offset16, tmp_values)};
|
158 |
+
}
|
159 |
+
void C10_ALWAYS_INLINE store(void* ptr, int count = size()) const {
|
160 |
+
if (count == size()) {
|
161 |
+
double* dptr = reinterpret_cast<double*>(ptr);
|
162 |
+
vec_vsx_st((vfloat64)_vec0, offset0, dptr);
|
163 |
+
vec_vsx_st((vfloat64)_vec1, offset16, dptr);
|
164 |
+
} else if (count > 0) {
|
165 |
+
__at_align__ double tmp_values[size()];
|
166 |
+
vec_vsx_st((vfloat64)_vec0, offset0, tmp_values);
|
167 |
+
vec_vsx_st((vfloat64)_vec1, offset16, tmp_values);
|
168 |
+
std::memcpy(
|
169 |
+
ptr, tmp_values, std::min(count, size()) * sizeof(value_type));
|
170 |
+
}
|
171 |
+
}
|
172 |
+
const int64_t& operator[](int idx) const = delete;
|
173 |
+
int64_t& operator[](int idx) = delete;
|
174 |
+
|
175 |
+
Vectorized<int64_t> angle() const {
|
176 |
+
return blendv(
|
177 |
+
Vectorized<int64_t>(0), Vectorized<int64_t>(c10::pi<int64_t>), *this < Vectorized<int64_t>(0));
|
178 |
+
}
|
179 |
+
Vectorized<int64_t> real() const {
|
180 |
+
return *this;
|
181 |
+
}
|
182 |
+
Vectorized<int64_t> imag() const {
|
183 |
+
return Vectorized<int64_t>{0};
|
184 |
+
}
|
185 |
+
Vectorized<int64_t> conj() const {
|
186 |
+
return *this;
|
187 |
+
}
|
188 |
+
|
189 |
+
Vectorized<int64_t> C10_ALWAYS_INLINE abs() const {
|
190 |
+
return {vec_abs(_vec0), vec_abs(_vec1)};
|
191 |
+
}
|
192 |
+
|
193 |
+
Vectorized<int64_t> C10_ALWAYS_INLINE neg() const {
|
194 |
+
return {vec_neg(_vec0), vec_neg(_vec1)};
|
195 |
+
}
|
196 |
+
|
197 |
+
DEFINE_MEMBER_UNARY_OP(operator~, int64_t, vec_not)
|
198 |
+
DEFINE_MEMBER_OP(operator==, int64_t, vec_cmpeq)
|
199 |
+
DEFINE_MEMBER_OP(operator!=, int64_t, vec_cmpne)
|
200 |
+
DEFINE_MEMBER_OP(operator<, int64_t, vec_cmplt)
|
201 |
+
DEFINE_MEMBER_OP(operator<=, int64_t, vec_cmple)
|
202 |
+
DEFINE_MEMBER_OP(operator>, int64_t, vec_cmpgt)
|
203 |
+
DEFINE_MEMBER_OP(operator>=, int64_t, vec_cmpge)
|
204 |
+
DEFINE_MEMBER_OP_AND_ONE(eq, int64_t, vec_cmpeq)
|
205 |
+
DEFINE_MEMBER_OP_AND_ONE(ne, int64_t, vec_cmpne)
|
206 |
+
DEFINE_MEMBER_OP_AND_ONE(lt, int64_t, vec_cmplt)
|
207 |
+
DEFINE_MEMBER_OP_AND_ONE(le, int64_t, vec_cmple)
|
208 |
+
DEFINE_MEMBER_OP_AND_ONE(gt, int64_t, vec_cmpgt)
|
209 |
+
DEFINE_MEMBER_OP_AND_ONE(ge, int64_t, vec_cmpge)
|
210 |
+
DEFINE_MEMBER_OP(operator+, int64_t, vec_add)
|
211 |
+
DEFINE_MEMBER_OP(operator-, int64_t, vec_sub)
|
212 |
+
DEFINE_MEMBER_OP(operator*, int64_t, vec_mul)
|
213 |
+
DEFINE_MEMBER_OP(operator/, int64_t, vec_div)
|
214 |
+
DEFINE_MEMBER_OP(maximum, int64_t, vec_max)
|
215 |
+
DEFINE_MEMBER_OP(minimum, int64_t, vec_min)
|
216 |
+
DEFINE_MEMBER_OP(operator&, int64_t, vec_and)
|
217 |
+
DEFINE_MEMBER_OP(operator|, int64_t, vec_or)
|
218 |
+
DEFINE_MEMBER_OP(operator^, int64_t, vec_xor)
|
219 |
+
};
|
220 |
+
|
221 |
+
template <>
|
222 |
+
Vectorized<int64_t> inline operator<<(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
223 |
+
vuint64 shift_vec0 = reinterpret_cast<vuint64>(b.vec0());
|
224 |
+
vuint64 shift_vec1 = reinterpret_cast<vuint64>(b.vec1()) ;
|
225 |
+
return Vectorized<int64_t>{vec_sl(a.vec0(), shift_vec0), vec_sl(a.vec1(), shift_vec1)};
|
226 |
+
}
|
227 |
+
|
228 |
+
template <>
|
229 |
+
Vectorized<int64_t> inline operator>>(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
230 |
+
vuint64 shift_vec0 = reinterpret_cast<vuint64>(b.vec0());
|
231 |
+
vuint64 shift_vec1 = reinterpret_cast<vuint64>(b.vec1()) ;
|
232 |
+
return Vectorized<int64_t>{vec_sr(a.vec0(), shift_vec0), vec_sr(a.vec1(), shift_vec1)};
|
233 |
+
}
|
234 |
+
|
235 |
+
template <>
|
236 |
+
Vectorized<int64_t> inline maximum(
|
237 |
+
const Vectorized<int64_t>& a,
|
238 |
+
const Vectorized<int64_t>& b) {
|
239 |
+
return a.maximum(b);
|
240 |
+
}
|
241 |
+
|
242 |
+
template <>
|
243 |
+
Vectorized<int64_t> inline minimum(
|
244 |
+
const Vectorized<int64_t>& a,
|
245 |
+
const Vectorized<int64_t>& b) {
|
246 |
+
return a.minimum(b);
|
247 |
+
}
|
248 |
+
|
249 |
+
} // namespace
|
250 |
+
} // namespace vec
|
251 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_qint32_vsx.h
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
4 |
+
#include <ATen/cpu/vec/vec_base.h>
|
5 |
+
#include <ATen/cpu/vec/vec256/vsx/vsx_helpers.h>
|
6 |
+
#include <c10/util/qint32.h>
|
7 |
+
#include <array>
|
8 |
+
|
9 |
+
// This file defines Vectorized<> for the quantized types.
|
10 |
+
//
|
11 |
+
//
|
12 |
+
// Currently, we simply use these classes as efficient converters between
|
13 |
+
// the quantized types and Vectorized<float>, usually in bandwidth-bound cases
|
14 |
+
// where doing the arithmetic in full-precision is acceptable (e.g.
|
15 |
+
// elementwise operators).
|
16 |
+
//
|
17 |
+
//
|
18 |
+
// Conversions are as follows:
|
19 |
+
// Vectorized<qint32> -> 1x Vectorized<float>
|
20 |
+
//
|
21 |
+
// The size of the returned float vector is specified by the special
|
22 |
+
// constexpr function float_num_vecs. The type of the value returned
|
23 |
+
// from dequantize (and expected as an argument to quantize) is
|
24 |
+
// specified by float_vec_return_type.
|
25 |
+
//
|
26 |
+
// When writing kernels with these vectors, it is expected that floating-
|
27 |
+
// point operations will be carried out in a loop over Vectorized<T>::float_num_vecs
|
28 |
+
// iterations.
|
29 |
+
|
30 |
+
namespace at {
|
31 |
+
namespace vec {
|
32 |
+
inline namespace CPU_CAPABILITY {
|
33 |
+
|
34 |
+
template <>
|
35 |
+
struct Vectorized<c10::qint32> {
|
36 |
+
private:
|
37 |
+
union {
|
38 |
+
struct {
|
39 |
+
vint32 _vec0;
|
40 |
+
vint32 _vec1;
|
41 |
+
};
|
42 |
+
struct {
|
43 |
+
vbool32 _vecb0;
|
44 |
+
vbool32 _vecb1;
|
45 |
+
};
|
46 |
+
|
47 |
+
} __attribute__((__may_alias__));
|
48 |
+
|
49 |
+
public:
|
50 |
+
Vectorized() {}
|
51 |
+
|
52 |
+
using size_type = int;
|
53 |
+
static constexpr size_type size() {
|
54 |
+
return 8;
|
55 |
+
}
|
56 |
+
|
57 |
+
static constexpr size_t float_num_vecs() {
|
58 |
+
return 1;
|
59 |
+
}
|
60 |
+
static constexpr int int_num_vecs() {
|
61 |
+
return 1;
|
62 |
+
}
|
63 |
+
using float_vec_return_type = std::array<Vectorized<float>, 1>;
|
64 |
+
using int_vec_return_type = std::array<Vectorized<c10::qint32>, 1>;
|
65 |
+
using value_type = c10::qint32::underlying;
|
66 |
+
using vec_internal_type = vint32;
|
67 |
+
using vec_internal_mask_type = vbool32;
|
68 |
+
C10_ALWAYS_INLINE Vectorized(vint32 v) : _vec0{v}, _vec1{v} {}
|
69 |
+
C10_ALWAYS_INLINE Vectorized(vbool32 vmask) : _vecb0{vmask}, _vecb1{vmask} {}
|
70 |
+
C10_ALWAYS_INLINE Vectorized(vint32 v1, vint32 v2) : _vec0{v1}, _vec1{v2} {}
|
71 |
+
C10_ALWAYS_INLINE Vectorized(vbool32 v1, vbool32 v2) : _vecb0{v1}, _vecb1{v2} {}
|
72 |
+
|
73 |
+
Vectorized(const c10::qint32& val)
|
74 |
+
: _vec0(vec_splats(val.val_)), _vec1(vec_splats(val.val_)) {}
|
75 |
+
|
76 |
+
static Vectorized<c10::qint32> C10_ALWAYS_INLINE
|
77 |
+
loadu(const void* ptr, int count = size()) {
|
78 |
+
if (count == size()) {
|
79 |
+
return {
|
80 |
+
vec_vsx_ld(offset0, reinterpret_cast<const value_type*>(ptr)),
|
81 |
+
vec_vsx_ld(offset16, reinterpret_cast<const value_type*>(ptr))};
|
82 |
+
}
|
83 |
+
|
84 |
+
__at_align__ value_type tmp_values[size()] = {};
|
85 |
+
std::memcpy(tmp_values, ptr, std::min(count, size()) * sizeof(value_type));
|
86 |
+
|
87 |
+
return {vec_vsx_ld(offset0, tmp_values), vec_vsx_ld(offset16, tmp_values)};
|
88 |
+
}
|
89 |
+
void C10_ALWAYS_INLINE store(void* ptr, int count = size()) const {
|
90 |
+
if (count == size()) {
|
91 |
+
vec_vsx_st(_vec0, offset0, reinterpret_cast<value_type*>(ptr));
|
92 |
+
vec_vsx_st(_vec1, offset16, reinterpret_cast<value_type*>(ptr));
|
93 |
+
} else if (count > 0) {
|
94 |
+
__at_align__ value_type tmp_values[size()];
|
95 |
+
vec_vsx_st(_vec0, offset0, tmp_values);
|
96 |
+
vec_vsx_st(_vec1, offset16, tmp_values);
|
97 |
+
std::memcpy(
|
98 |
+
ptr, tmp_values, std::min(count, size()) * sizeof(value_type));
|
99 |
+
}
|
100 |
+
}
|
101 |
+
|
102 |
+
C10_ALWAYS_INLINE const vec_internal_type& vec0() const {
|
103 |
+
return _vec0;
|
104 |
+
}
|
105 |
+
C10_ALWAYS_INLINE const vec_internal_type& vec1() const {
|
106 |
+
return _vec1;
|
107 |
+
}
|
108 |
+
|
109 |
+
float_vec_return_type dequantize(
|
110 |
+
Vectorized<float> scale,
|
111 |
+
Vectorized<float> zero_point,
|
112 |
+
Vectorized<float> scale_zp_premul) const {
|
113 |
+
vfloat32 float_vals0 = vec_float(_vec0);
|
114 |
+
vfloat32 float_vals1 = vec_float(_vec1);
|
115 |
+
vfloat32 scale_vec0 = scale.vec0();
|
116 |
+
vfloat32 scale_vec1 = scale.vec1();
|
117 |
+
vfloat32 scale_zp_premul0 = scale_zp_premul.vec0();
|
118 |
+
vfloat32 scale_zp_premul1 = scale_zp_premul.vec1();
|
119 |
+
return {Vectorized<float>{
|
120 |
+
vec_madd(scale_vec0, float_vals0, scale_zp_premul0),
|
121 |
+
vec_madd(scale_vec1, float_vals1, scale_zp_premul1)}};
|
122 |
+
}
|
123 |
+
|
124 |
+
float_vec_return_type dequantize(
|
125 |
+
Vectorized<float> scale,
|
126 |
+
Vectorized<float> zero_point) const {
|
127 |
+
vfloat32 float_vals0 = vec_float(_vec0);
|
128 |
+
vfloat32 float_vals1 = vec_float(_vec1);
|
129 |
+
vfloat32 scale_vec0 = scale.vec0();
|
130 |
+
vfloat32 scale_vec1 = scale.vec1();
|
131 |
+
vfloat32 zero_point0 = zero_point.vec0();
|
132 |
+
vfloat32 zero_point1 = zero_point.vec1();
|
133 |
+
return {Vectorized<float>{
|
134 |
+
(float_vals0 - zero_point0) * scale_vec0,
|
135 |
+
(float_vals1 - zero_point1) * scale_vec1}};
|
136 |
+
}
|
137 |
+
|
138 |
+
static Vectorized<c10::qint32> quantize(
|
139 |
+
const float_vec_return_type& rhs,
|
140 |
+
float scale,
|
141 |
+
int32_t zero_point,
|
142 |
+
float inverse_scale) {
|
143 |
+
Vectorized<c10::qint32> retval;
|
144 |
+
|
145 |
+
const vint32 vmin = vec_splats(std::numeric_limits<value_type>::min());
|
146 |
+
const vint32 vmax = vec_splats(std::numeric_limits<value_type>::max());
|
147 |
+
vfloat32 inverse_scale_v = vec_splats(inverse_scale);
|
148 |
+
vfloat32 vec_zero_point = vec_splats((float)(zero_point));
|
149 |
+
Vectorized<float> vf0 = rhs[0];
|
150 |
+
|
151 |
+
vfloat32 vecf0 = vf0.vec0();
|
152 |
+
vfloat32 vecf1 = vf0.vec1();
|
153 |
+
vecf0 = vec_mul(vecf0, inverse_scale_v);
|
154 |
+
vecf1 = vec_mul(vecf1, inverse_scale_v);
|
155 |
+
vecf0 = vec_add(vec_rint(vecf0), vec_zero_point);
|
156 |
+
vecf1 = vec_add(vec_rint(vecf1), vec_zero_point);
|
157 |
+
vint32 veci0 = vec_signed(vecf0);
|
158 |
+
vint32 veci1 = vec_signed(vecf1);
|
159 |
+
|
160 |
+
veci0 = vec_max(veci0, vmin);
|
161 |
+
veci1 = vec_max(veci1, vmin);
|
162 |
+
veci0 = vec_min(veci0, vmax);
|
163 |
+
veci1 = vec_min(veci1, vmax);
|
164 |
+
|
165 |
+
return {veci0, veci1};
|
166 |
+
}
|
167 |
+
|
168 |
+
Vectorized<c10::qint32> relu(Vectorized<c10::qint32> zero_point) const {
|
169 |
+
return {vec_max(_vec0, zero_point._vec0), vec_max(_vec1, zero_point._vec1)};
|
170 |
+
}
|
171 |
+
|
172 |
+
Vectorized<c10::qint32> relu6(
|
173 |
+
Vectorized<c10::qint32> zero_point,
|
174 |
+
Vectorized<c10::qint32> q_six) const {
|
175 |
+
vint32 max0 = vec_max(_vec0, zero_point._vec0);
|
176 |
+
vint32 max1 = vec_max(_vec1, zero_point._vec1);
|
177 |
+
return {vec_min(max0, q_six._vec0), vec_min(max1, q_six._vec1)};
|
178 |
+
}
|
179 |
+
|
180 |
+
int_vec_return_type widening_subtract(Vectorized<c10::qint32> b) const {
|
181 |
+
return {*this - b};
|
182 |
+
}
|
183 |
+
|
184 |
+
static Vectorized<c10::qint32> requantize_from_int(
|
185 |
+
const int_vec_return_type& inp,
|
186 |
+
float multiplier,
|
187 |
+
int32_t zero_point) {
|
188 |
+
const vint32 vmin = vec_splats(std::numeric_limits<value_type>::min());
|
189 |
+
const vint32 vmax = vec_splats(std::numeric_limits<value_type>::max());
|
190 |
+
vfloat32 vec_mult = vec_splats(multiplier);
|
191 |
+
vint32 vec_zero_point = vec_splats(zero_point);
|
192 |
+
Vectorized<c10::qint32> vi = inp[0];
|
193 |
+
vfloat32 vecf0 = vec_float(vi.vec0());
|
194 |
+
vfloat32 vecf1 = vec_float(vi.vec1());
|
195 |
+
|
196 |
+
vecf0 = vec_mul(vecf0, vec_mult);
|
197 |
+
vecf1 = vec_mul(vecf1, vec_mult);
|
198 |
+
|
199 |
+
vecf0 = vec_rint(vecf0);
|
200 |
+
vecf1 = vec_rint(vecf1);
|
201 |
+
|
202 |
+
vint32 veci0 = vec_add(vec_signed(vecf0),vec_zero_point);
|
203 |
+
vint32 veci1 = vec_add(vec_signed(vecf1),vec_zero_point);
|
204 |
+
|
205 |
+
veci0 = vec_max(veci0, vmin);
|
206 |
+
veci1 = vec_max(veci1, vmin);
|
207 |
+
veci0 = vec_min(veci0, vmax);
|
208 |
+
veci1 = vec_min(veci1, vmax);
|
209 |
+
|
210 |
+
return {veci0, veci1};
|
211 |
+
}
|
212 |
+
|
213 |
+
DEFINE_MEMBER_OP(operator==, c10::qint32, vec_cmpeq)
|
214 |
+
DEFINE_MEMBER_OP(operator!=, c10::qint32, vec_cmpne)
|
215 |
+
DEFINE_MEMBER_OP(operator<, c10::qint32, vec_cmplt)
|
216 |
+
DEFINE_MEMBER_OP(operator<=, c10::qint32, vec_cmple)
|
217 |
+
DEFINE_MEMBER_OP(operator>, c10::qint32, vec_cmpgt)
|
218 |
+
DEFINE_MEMBER_OP(operator>=, c10::qint32, vec_cmpge)
|
219 |
+
DEFINE_MEMBER_OP(operator+, c10::qint32, vec_add)
|
220 |
+
DEFINE_MEMBER_OP(operator-, c10::qint32, vec_sub)
|
221 |
+
DEFINE_MEMBER_OP(operator*, c10::qint32, vec_mul)
|
222 |
+
DEFINE_MEMBER_EMULATE_BINARY_OP(operator/, c10::qint32, /)
|
223 |
+
DEFINE_MEMBER_OP(maximum, c10::qint32, vec_max)
|
224 |
+
DEFINE_MEMBER_OP(minimum, c10::qint32, vec_min)
|
225 |
+
DEFINE_MEMBER_OP(operator&, c10::qint32, vec_and)
|
226 |
+
DEFINE_MEMBER_OP(operator|, c10::qint32, vec_or)
|
227 |
+
DEFINE_MEMBER_OP(operator^, c10::qint32, vec_xor)
|
228 |
+
};
|
229 |
+
|
230 |
+
template <>
|
231 |
+
Vectorized<c10::qint32> inline maximum(
|
232 |
+
const Vectorized<c10::qint32>& a,
|
233 |
+
const Vectorized<c10::qint32>& b) {
|
234 |
+
return a.maximum(b);
|
235 |
+
}
|
236 |
+
|
237 |
+
template <>
|
238 |
+
Vectorized<c10::qint32> inline minimum(
|
239 |
+
const Vectorized<c10::qint32>& a,
|
240 |
+
const Vectorized<c10::qint32>& b) {
|
241 |
+
return a.minimum(b);
|
242 |
+
}
|
243 |
+
} // namespace
|
244 |
+
} // namespace vec
|
245 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_qint8_vsx.h
ADDED
@@ -0,0 +1,447 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
4 |
+
#include <ATen/cpu/vec/vec_base.h>
|
5 |
+
#include <ATen/cpu/vec/vec256/vsx/vsx_helpers.h>
|
6 |
+
#include <c10/util/qint8.h>
|
7 |
+
#include <array>
|
8 |
+
|
9 |
+
// This file defines Vectorized<> for the quantized types.
|
10 |
+
//
|
11 |
+
//
|
12 |
+
// Currently, we simply use these classes as efficient converters between
|
13 |
+
// the quantized types and Vectorized<float>, usually in bandwidth-bound cases
|
14 |
+
// where doing the arithmetic in full-precision is acceptable (e.g.
|
15 |
+
// elementwise operators).
|
16 |
+
//
|
17 |
+
//
|
18 |
+
// Conversions are as follows:
|
19 |
+
// Vectorized<qint8> -> 4x Vectorized<float>
|
20 |
+
//
|
21 |
+
// The size of the returned float vector is specified by the special
|
22 |
+
// constexpr function float_num_vecs. The type of the value returned
|
23 |
+
// from dequantize (and expected as an argument to quantize) is
|
24 |
+
// specified by float_vec_return_type.
|
25 |
+
//
|
26 |
+
// When writing kernels with these vectors, it is expected that floating-
|
27 |
+
// point operations will be carried out in a loop over Vectorized<T>::float_num_vecs
|
28 |
+
// iterations.
|
29 |
+
|
30 |
+
namespace at {
|
31 |
+
namespace vec {
|
32 |
+
inline namespace CPU_CAPABILITY {
|
33 |
+
|
34 |
+
template <>
|
35 |
+
struct Vectorized<c10::qint8> {
|
36 |
+
private:
|
37 |
+
union {
|
38 |
+
struct {
|
39 |
+
vint8 _vec0;
|
40 |
+
vint8 _vec1;
|
41 |
+
};
|
42 |
+
struct {
|
43 |
+
vbool8 _vecb0;
|
44 |
+
vbool8 _vecb1;
|
45 |
+
};
|
46 |
+
|
47 |
+
} __attribute__((__may_alias__));
|
48 |
+
|
49 |
+
public:
|
50 |
+
Vectorized() {}
|
51 |
+
using size_type = int;
|
52 |
+
static constexpr size_type size() {
|
53 |
+
return 32;
|
54 |
+
}
|
55 |
+
|
56 |
+
static constexpr size_t float_num_vecs() {
|
57 |
+
return 4;
|
58 |
+
}
|
59 |
+
static constexpr int int_num_vecs() {
|
60 |
+
return 4;
|
61 |
+
}
|
62 |
+
using float_vec_return_type = std::array<Vectorized<float>, 4>;
|
63 |
+
using int_vec_return_type = std::array<Vectorized<c10::qint32>, 4>;
|
64 |
+
using value_type = typename c10::qint8::underlying;
|
65 |
+
using vec_internal_type = vint8;
|
66 |
+
using vec_internal_mask_type = vbool8;
|
67 |
+
// Broadcast constructor
|
68 |
+
C10_ALWAYS_INLINE Vectorized(const c10::qint8& val)
|
69 |
+
: _vec0{vec_splats(val.val_)}, _vec1{vec_splats(val.val_)} {}
|
70 |
+
|
71 |
+
C10_ALWAYS_INLINE Vectorized(const Vectorized<c10::qint8>& other)
|
72 |
+
: _vec0{other._vec0}, _vec1(other._vec1) {}
|
73 |
+
|
74 |
+
C10_ALWAYS_INLINE Vectorized(vint8 v) : _vec0{v}, _vec1{v} {}
|
75 |
+
C10_ALWAYS_INLINE Vectorized(vbool8 vmask) : _vecb0{vmask}, _vecb1{vmask} {}
|
76 |
+
C10_ALWAYS_INLINE Vectorized(vint8 v1, vint8 v2) : _vec0{v1}, _vec1{v2} {}
|
77 |
+
C10_ALWAYS_INLINE Vectorized(vbool8 v1, vbool8 v2) : _vecb0{v1}, _vecb1{v2} {}
|
78 |
+
|
79 |
+
C10_ALWAYS_INLINE const vec_internal_type& vec0() const {
|
80 |
+
return _vec0;
|
81 |
+
}
|
82 |
+
C10_ALWAYS_INLINE const vec_internal_type& vec1() const {
|
83 |
+
return _vec1;
|
84 |
+
}
|
85 |
+
|
86 |
+
static C10_ALWAYS_INLINE Vectorized<c10::qint8> loadu(
|
87 |
+
const void* ptr,
|
88 |
+
int count = size()) {
|
89 |
+
if (count == size()) {
|
90 |
+
return {
|
91 |
+
vec_vsx_ld(offset0, reinterpret_cast<const vint8*>(ptr)),
|
92 |
+
vec_vsx_ld(offset16, reinterpret_cast<const vint8*>(ptr))};
|
93 |
+
}
|
94 |
+
__at_align__ value_type tmp_values[size()];
|
95 |
+
std::memcpy(tmp_values, ptr, std::min(count, size()) * sizeof(value_type));
|
96 |
+
return {vec_vsx_ld(offset0, tmp_values), vec_vsx_ld(offset16, tmp_values)};
|
97 |
+
}
|
98 |
+
void C10_ALWAYS_INLINE store(void* ptr, int count = size()) const {
|
99 |
+
if (count == size()) {
|
100 |
+
vec_vsx_st(_vec0, offset0, reinterpret_cast<value_type*>(ptr));
|
101 |
+
vec_vsx_st(_vec1, offset16, reinterpret_cast<value_type*>(ptr));
|
102 |
+
} else if (count > 0) {
|
103 |
+
__at_align__ value_type tmp_values[size()];
|
104 |
+
vec_vsx_st(_vec0, offset0, tmp_values);
|
105 |
+
vec_vsx_st(_vec1, offset16, tmp_values);
|
106 |
+
std::memcpy(
|
107 |
+
ptr, tmp_values, std::min(count, size()) * sizeof(value_type));
|
108 |
+
}
|
109 |
+
}
|
110 |
+
|
111 |
+
public:
|
112 |
+
float_vec_return_type C10_ALWAYS_INLINE dequantize(
|
113 |
+
Vectorized<float> scale,
|
114 |
+
Vectorized<float> zero_point,
|
115 |
+
Vectorized<float> scale_zp_premul) const {
|
116 |
+
vint16 vecshi0 = vec_unpackh(_vec0);
|
117 |
+
vint16 vecshi1 = vec_unpackl(_vec0);
|
118 |
+
|
119 |
+
vint16 vecshi2 = vec_unpackh(_vec1);
|
120 |
+
vint16 vecshi3 = vec_unpackl(_vec1);
|
121 |
+
|
122 |
+
vint32 veci0 = vec_unpackh(vecshi0);
|
123 |
+
vint32 veci1 = vec_unpackl(vecshi0);
|
124 |
+
|
125 |
+
vint32 veci2 = vec_unpackh(vecshi1);
|
126 |
+
vint32 veci3 = vec_unpackl(vecshi1);
|
127 |
+
|
128 |
+
vint32 veci4 = vec_unpackh(vecshi2);
|
129 |
+
vint32 veci5 = vec_unpackl(vecshi2);
|
130 |
+
|
131 |
+
vint32 veci6 = vec_unpackh(vecshi3);
|
132 |
+
vint32 veci7 = vec_unpackl(vecshi3);
|
133 |
+
|
134 |
+
vfloat32 vecf0_0 = vec_float(veci0);
|
135 |
+
vfloat32 vecf1_0 = vec_float(veci1);
|
136 |
+
|
137 |
+
vfloat32 vecf0_1 = vec_float(veci2);
|
138 |
+
vfloat32 vecf1_1 = vec_float(veci3);
|
139 |
+
|
140 |
+
vfloat32 vecf0_2 = vec_float(veci4);
|
141 |
+
vfloat32 vecf1_2 = vec_float(veci5);
|
142 |
+
|
143 |
+
vfloat32 vecf0_3 = vec_float(veci6);
|
144 |
+
vfloat32 vecf1_3 = vec_float(veci7);
|
145 |
+
vfloat32 scale_vec0 = scale.vec0();
|
146 |
+
vfloat32 scale_vec1 = scale.vec1();
|
147 |
+
vfloat32 scale_zp_premul0 = scale_zp_premul.vec0();
|
148 |
+
vfloat32 scale_zp_premul1 = scale_zp_premul.vec1();
|
149 |
+
return {
|
150 |
+
Vectorized<float>{
|
151 |
+
vec_madd(scale_vec0, vecf0_0, scale_zp_premul0),
|
152 |
+
vec_madd(scale_vec1, vecf1_0, scale_zp_premul1)},
|
153 |
+
Vectorized<float>{
|
154 |
+
vec_madd(scale_vec0, vecf0_1, scale_zp_premul0),
|
155 |
+
vec_madd(scale_vec1, vecf1_1, scale_zp_premul1)},
|
156 |
+
Vectorized<float>{
|
157 |
+
vec_madd(scale_vec0, vecf0_2, scale_zp_premul0),
|
158 |
+
vec_madd(scale_vec1, vecf1_2, scale_zp_premul1)},
|
159 |
+
Vectorized<float>{
|
160 |
+
vec_madd(scale_vec0, vecf0_3, scale_zp_premul0),
|
161 |
+
vec_madd(scale_vec1, vecf1_3, scale_zp_premul1)}};
|
162 |
+
}
|
163 |
+
|
164 |
+
float_vec_return_type C10_ALWAYS_INLINE dequantize(
|
165 |
+
Vectorized<float> scale,
|
166 |
+
Vectorized<float> zero_point) const {
|
167 |
+
vint16 vecshi0 = vec_unpackh(_vec0);
|
168 |
+
vint16 vecshi1 = vec_unpackl(_vec0);
|
169 |
+
|
170 |
+
vint16 vecshi2 = vec_unpackh(_vec1);
|
171 |
+
vint16 vecshi3 = vec_unpackl(_vec1);
|
172 |
+
|
173 |
+
vint32 veci0 = vec_unpackh(vecshi0);
|
174 |
+
vint32 veci1 = vec_unpackl(vecshi0);
|
175 |
+
|
176 |
+
vint32 veci2 = vec_unpackh(vecshi1);
|
177 |
+
vint32 veci3 = vec_unpackl(vecshi1);
|
178 |
+
|
179 |
+
vint32 veci4 = vec_unpackh(vecshi2);
|
180 |
+
vint32 veci5 = vec_unpackl(vecshi2);
|
181 |
+
|
182 |
+
vint32 veci6 = vec_unpackh(vecshi3);
|
183 |
+
vint32 veci7 = vec_unpackl(vecshi3);
|
184 |
+
|
185 |
+
vfloat32 vecf0_0 = vec_float(veci0);
|
186 |
+
vfloat32 vecf1_0 = vec_float(veci1);
|
187 |
+
|
188 |
+
vfloat32 vecf0_1 = vec_float(veci2);
|
189 |
+
vfloat32 vecf1_1 = vec_float(veci3);
|
190 |
+
|
191 |
+
vfloat32 vecf0_2 = vec_float(veci4);
|
192 |
+
vfloat32 vecf1_2 = vec_float(veci5);
|
193 |
+
|
194 |
+
vfloat32 vecf0_3 = vec_float(veci6);
|
195 |
+
vfloat32 vecf1_3 = vec_float(veci7);
|
196 |
+
vfloat32 scale_vec0 = scale.vec0();
|
197 |
+
vfloat32 scale_vec1 = scale.vec1();
|
198 |
+
vfloat32 zero_point0 = zero_point.vec0();
|
199 |
+
vfloat32 zero_point1 = zero_point.vec1();
|
200 |
+
return {
|
201 |
+
Vectorized<float>{
|
202 |
+
(vecf0_0 - zero_point0) * scale_vec0,
|
203 |
+
(vecf1_0 - zero_point1) * scale_vec1},
|
204 |
+
Vectorized<float>{
|
205 |
+
(vecf0_1 - zero_point0) * scale_vec0,
|
206 |
+
(vecf1_1 - zero_point1) * scale_vec1},
|
207 |
+
Vectorized<float>{
|
208 |
+
(vecf0_2 - zero_point0) * scale_vec0,
|
209 |
+
(vecf1_2 - zero_point1) * scale_vec1},
|
210 |
+
Vectorized<float>{
|
211 |
+
(vecf0_3 - zero_point0) * scale_vec0,
|
212 |
+
(vecf1_3 - zero_point1) * scale_vec1}};
|
213 |
+
}
|
214 |
+
|
215 |
+
static Vectorized<c10::qint8> quantize(
|
216 |
+
const float_vec_return_type& rhs,
|
217 |
+
float scale,
|
218 |
+
int32_t zero_point,
|
219 |
+
float inverse_scale) {
|
220 |
+
// constexpr int32_t min_val = std::numeric_limits<value_type>::min();
|
221 |
+
// constexpr int32_t max_val = std::numeric_limits<value_type>::max();
|
222 |
+
|
223 |
+
vfloat32 inverse_scale_v = vec_splats(inverse_scale);
|
224 |
+
vfloat32 vec_zero_point = vec_splats((float)zero_point);
|
225 |
+
// vint32 vmin = vec_splats(min_val);
|
226 |
+
// vint32 vmax = vec_splats(max_val);
|
227 |
+
|
228 |
+
Vectorized<float> vf0 = rhs[0];
|
229 |
+
Vectorized<float> vf1 = rhs[1];
|
230 |
+
Vectorized<float> vf2 = rhs[2];
|
231 |
+
Vectorized<float> vf3 = rhs[3];
|
232 |
+
vfloat32 vecf0 = vf0.vec0();
|
233 |
+
vfloat32 vecf1 = vf0.vec1();
|
234 |
+
vfloat32 vecf2 = vf1.vec0();
|
235 |
+
vfloat32 vecf3 = vf1.vec1();
|
236 |
+
|
237 |
+
vfloat32 vecf4 = vf2.vec0();
|
238 |
+
vfloat32 vecf5 = vf2.vec1();
|
239 |
+
vfloat32 vecf6 = vf3.vec0();
|
240 |
+
vfloat32 vecf7 = vf3.vec1();
|
241 |
+
|
242 |
+
vecf0 = vec_mul(vecf0, inverse_scale_v);
|
243 |
+
vecf1 = vec_mul(vecf1, inverse_scale_v);
|
244 |
+
vecf2 = vec_mul(vecf2, inverse_scale_v);
|
245 |
+
vecf3 = vec_mul(vecf3, inverse_scale_v);
|
246 |
+
|
247 |
+
vecf4 = vec_mul(vecf4, inverse_scale_v);
|
248 |
+
vecf5 = vec_mul(vecf5, inverse_scale_v);
|
249 |
+
vecf6 = vec_mul(vecf6, inverse_scale_v);
|
250 |
+
vecf7 = vec_mul(vecf7, inverse_scale_v);
|
251 |
+
|
252 |
+
vecf0 = vec_add(vec_rint(vecf0), vec_zero_point);
|
253 |
+
vecf1 = vec_add(vec_rint(vecf1), vec_zero_point);
|
254 |
+
vecf2 = vec_add(vec_rint(vecf2), vec_zero_point);
|
255 |
+
vecf3 = vec_add(vec_rint(vecf3), vec_zero_point);
|
256 |
+
|
257 |
+
vecf4 = vec_add(vec_rint(vecf4), vec_zero_point);
|
258 |
+
vecf5 = vec_add(vec_rint(vecf5), vec_zero_point);
|
259 |
+
vecf6 = vec_add(vec_rint(vecf6), vec_zero_point);
|
260 |
+
vecf7 = vec_add(vec_rint(vecf7), vec_zero_point);
|
261 |
+
|
262 |
+
vint32 veci0 = vec_signed(vecf0);
|
263 |
+
vint32 veci1 = vec_signed(vecf1);
|
264 |
+
vint32 veci2 = vec_signed(vecf2);
|
265 |
+
vint32 veci3 = vec_signed(vecf3);
|
266 |
+
|
267 |
+
vint32 veci4 = vec_signed(vecf4);
|
268 |
+
vint32 veci5 = vec_signed(vecf5);
|
269 |
+
vint32 veci6 = vec_signed(vecf6);
|
270 |
+
vint32 veci7 = vec_signed(vecf7);
|
271 |
+
|
272 |
+
// veci0 = vec_min(vmax, vec_max( vmin, vecf0)) ;
|
273 |
+
// veci1 = vec_min(vmax, vec_max( vmin, vecf1)) ;
|
274 |
+
// veci2 = vec_min(vmax, vec_max( vmin, vecf2)) ;
|
275 |
+
// veci3 = vec_min(vmax, vec_max( vmin, vecf3)) ;
|
276 |
+
|
277 |
+
// veci4 = vec_min(vmax, vec_max( vmin, vecf4)) ;
|
278 |
+
// veci5 = vec_min(vmax, vec_max( vmin, vecf5)) ;
|
279 |
+
// veci6 = vec_min(vmax, vec_max( vmin, vecf6)) ;
|
280 |
+
// veci7 = vec_min(vmax, vec_max( vmin, vecf7)) ;
|
281 |
+
// vec_packs CLAMP already
|
282 |
+
vint16 vecshi0 = vec_packs(veci0, veci1);
|
283 |
+
vint16 vecshi1 = vec_packs(veci2, veci3);
|
284 |
+
vint16 vecshi2 = vec_packs(veci4, veci5);
|
285 |
+
vint16 vecshi3 = vec_packs(veci6, veci7);
|
286 |
+
|
287 |
+
vint8 vec0 = vec_packs(vecshi0, vecshi1);
|
288 |
+
vint8 vec1 = vec_packs(vecshi2, vecshi3);
|
289 |
+
|
290 |
+
return {vec0, vec1};
|
291 |
+
}
|
292 |
+
|
293 |
+
Vectorized<c10::qint8> C10_ALWAYS_INLINE relu(Vectorized<c10::qint8> zero_point) const {
|
294 |
+
return {vec_max(_vec0, zero_point._vec0), vec_max(_vec1, zero_point._vec1)};
|
295 |
+
}
|
296 |
+
|
297 |
+
Vectorized<c10::qint8> C10_ALWAYS_INLINE
|
298 |
+
relu6(Vectorized<c10::qint8> zero_point, Vectorized<c10::qint8> q_six) const {
|
299 |
+
vint8 max0 = vec_max(_vec0, zero_point._vec0);
|
300 |
+
vint8 max1 = vec_max(_vec1, zero_point._vec1);
|
301 |
+
return {vec_min(max0, q_six._vec0), vec_min(max1, q_six._vec1)};
|
302 |
+
}
|
303 |
+
|
304 |
+
int_vec_return_type widening_subtract(Vectorized<c10::qint8> b) const {
|
305 |
+
vint16 vecshi0 = vec_unpackh(_vec0);
|
306 |
+
vint16 vecBshi0 = vec_unpackh(b._vec0);
|
307 |
+
vint16 vecshi1 = vec_unpackl(_vec0);
|
308 |
+
vint16 vecBshi1 = vec_unpackl(b._vec0);
|
309 |
+
|
310 |
+
vint16 vecshi2 = vec_unpackh(_vec1);
|
311 |
+
vint16 vecBshi2 = vec_unpackh(b._vec1);
|
312 |
+
vint16 vecshi3 = vec_unpackl(_vec1);
|
313 |
+
vint16 vecBshi3 = vec_unpackl(b._vec1);
|
314 |
+
|
315 |
+
vint32 veci0 = vec_unpackh(vecshi0);
|
316 |
+
vint32 vecBi0 = vec_unpackh(vecBshi0);
|
317 |
+
vint32 veci1 = vec_unpackl(vecshi0);
|
318 |
+
vint32 vecBi1 = vec_unpackl(vecBshi0);
|
319 |
+
|
320 |
+
vint32 veci2 = vec_unpackh(vecshi1);
|
321 |
+
vint32 vecBi2 = vec_unpackh(vecBshi1);
|
322 |
+
vint32 veci3 = vec_unpackl(vecshi1);
|
323 |
+
vint32 vecBi3 = vec_unpackl(vecBshi1);
|
324 |
+
|
325 |
+
vint32 veci4 = vec_unpackh(vecshi2);
|
326 |
+
vint32 vecBi4 = vec_unpackh(vecBshi2);
|
327 |
+
vint32 veci5 = vec_unpackl(vecshi2);
|
328 |
+
vint32 vecBi5 = vec_unpackl(vecBshi2);
|
329 |
+
|
330 |
+
vint32 veci6 = vec_unpackh(vecshi3);
|
331 |
+
vint32 vecBi6 = vec_unpackh(vecBshi3);
|
332 |
+
vint32 veci7 = vec_unpackl(vecshi3);
|
333 |
+
vint32 vecBi7 = vec_unpackl(vecBshi3);
|
334 |
+
|
335 |
+
return {
|
336 |
+
Vectorized<c10::qint32>(veci0 - vecBi0, veci1 - vecBi1),
|
337 |
+
Vectorized<c10::qint32>(veci2 - vecBi2, veci3 - vecBi3),
|
338 |
+
Vectorized<c10::qint32>(veci4 - vecBi4, veci5 - vecBi5),
|
339 |
+
Vectorized<c10::qint32>(veci6 - vecBi6, veci7 - vecBi7)};
|
340 |
+
}
|
341 |
+
|
342 |
+
static Vectorized<c10::qint8> requantize_from_int(
|
343 |
+
const int_vec_return_type& inp,
|
344 |
+
float multiplier,
|
345 |
+
int32_t zero_point) {
|
346 |
+
vfloat32 vec_multiplier = vec_splats(multiplier);
|
347 |
+
vint32 vec_zero_point = vec_splats(zero_point);
|
348 |
+
|
349 |
+
Vectorized<c10::qint32> vi0 = inp[0];
|
350 |
+
Vectorized<c10::qint32> vi1 = inp[1];
|
351 |
+
Vectorized<c10::qint32> vi2 = inp[2];
|
352 |
+
Vectorized<c10::qint32> vi3 = inp[3];
|
353 |
+
|
354 |
+
vfloat32 vecf0 = vec_float(vi0.vec0());
|
355 |
+
vfloat32 vecf1 = vec_float(vi0.vec1());
|
356 |
+
vfloat32 vecf2 = vec_float(vi1.vec0());
|
357 |
+
vfloat32 vecf3 = vec_float(vi1.vec1());
|
358 |
+
|
359 |
+
vfloat32 vecf4 = vec_float(vi2.vec0());
|
360 |
+
vfloat32 vecf5 = vec_float(vi2.vec1());
|
361 |
+
vfloat32 vecf6 = vec_float(vi3.vec0());
|
362 |
+
vfloat32 vecf7 = vec_float(vi3.vec1());
|
363 |
+
|
364 |
+
vecf0 = vec_mul(vecf0, vec_multiplier);
|
365 |
+
vecf1 = vec_mul(vecf1, vec_multiplier);
|
366 |
+
vecf2 = vec_mul(vecf2, vec_multiplier);
|
367 |
+
vecf3 = vec_mul(vecf3, vec_multiplier);
|
368 |
+
|
369 |
+
vecf4 = vec_mul(vecf4, vec_multiplier);
|
370 |
+
vecf5 = vec_mul(vecf5, vec_multiplier);
|
371 |
+
vecf6 = vec_mul(vecf6, vec_multiplier);
|
372 |
+
vecf7 = vec_mul(vecf7, vec_multiplier);
|
373 |
+
|
374 |
+
vecf0 = vec_rint(vecf0);
|
375 |
+
vecf1 = vec_rint(vecf1);
|
376 |
+
vecf2 = vec_rint(vecf2);
|
377 |
+
vecf3 = vec_rint(vecf3);
|
378 |
+
|
379 |
+
vecf4 = vec_rint(vecf4);
|
380 |
+
vecf5 = vec_rint(vecf5);
|
381 |
+
vecf6 = vec_rint(vecf6);
|
382 |
+
vecf7 = vec_rint(vecf7);
|
383 |
+
|
384 |
+
vint32 veci0 = vec_signed(vecf0);
|
385 |
+
vint32 veci1 = vec_signed(vecf1);
|
386 |
+
vint32 veci2 = vec_signed(vecf2);
|
387 |
+
vint32 veci3 = vec_signed(vecf3);
|
388 |
+
|
389 |
+
vint32 veci4 = vec_signed(vecf4);
|
390 |
+
vint32 veci5 = vec_signed(vecf5);
|
391 |
+
vint32 veci6 = vec_signed(vecf6);
|
392 |
+
vint32 veci7 = vec_signed(vecf7);
|
393 |
+
|
394 |
+
veci0 = vec_add(veci0, vec_zero_point);
|
395 |
+
veci1 = vec_add(veci1, vec_zero_point);
|
396 |
+
veci2 = vec_add(veci2, vec_zero_point);
|
397 |
+
veci3 = vec_add(veci3, vec_zero_point);
|
398 |
+
|
399 |
+
veci4 = vec_add(veci4, vec_zero_point);
|
400 |
+
veci5 = vec_add(veci5, vec_zero_point);
|
401 |
+
veci6 = vec_add(veci6, vec_zero_point);
|
402 |
+
veci7 = vec_add(veci7, vec_zero_point);
|
403 |
+
|
404 |
+
vint16 vecshi0 = vec_packs(veci0, veci1);
|
405 |
+
vint16 vecshi1 = vec_packs(veci2, veci3);
|
406 |
+
vint16 vecshi2 = vec_packs(veci4, veci5);
|
407 |
+
vint16 vecshi3 = vec_packs(veci6, veci7);
|
408 |
+
|
409 |
+
vint8 vec0 = vec_packs(vecshi0, vecshi1);
|
410 |
+
vint8 vec1 = vec_packs(vecshi2, vecshi3);
|
411 |
+
|
412 |
+
return {vec0, vec1};
|
413 |
+
}
|
414 |
+
|
415 |
+
DEFINE_MEMBER_OP(operator==, c10::qint8, vec_cmpeq)
|
416 |
+
DEFINE_MEMBER_OP(operator!=, c10::qint8, vec_cmpne)
|
417 |
+
DEFINE_MEMBER_OP(operator<, c10::qint8, vec_cmplt)
|
418 |
+
DEFINE_MEMBER_OP(operator<=, c10::qint8, vec_cmple)
|
419 |
+
DEFINE_MEMBER_OP(operator>, c10::qint8, vec_cmpgt)
|
420 |
+
DEFINE_MEMBER_OP(operator>=, c10::qint8, vec_cmpge)
|
421 |
+
DEFINE_MEMBER_OP(operator+, c10::qint8, vec_add)
|
422 |
+
DEFINE_MEMBER_OP(operator-, c10::qint8, vec_sub)
|
423 |
+
DEFINE_MEMBER_OP(operator*, c10::qint8, vec_mul)
|
424 |
+
DEFINE_MEMBER_EMULATE_BINARY_OP(operator/, c10::qint8, /)
|
425 |
+
DEFINE_MEMBER_OP(maximum, c10::qint8, vec_max)
|
426 |
+
DEFINE_MEMBER_OP(minimum, c10::qint8, vec_min)
|
427 |
+
DEFINE_MEMBER_OP(operator&, c10::qint8, vec_and)
|
428 |
+
DEFINE_MEMBER_OP(operator|, c10::qint8, vec_or)
|
429 |
+
DEFINE_MEMBER_OP(operator^, c10::qint8, vec_xor)
|
430 |
+
};
|
431 |
+
|
432 |
+
template <>
|
433 |
+
Vectorized<c10::qint8> inline maximum(
|
434 |
+
const Vectorized<c10::qint8>& a,
|
435 |
+
const Vectorized<c10::qint8>& b) {
|
436 |
+
return a.maximum(b);
|
437 |
+
}
|
438 |
+
|
439 |
+
template <>
|
440 |
+
Vectorized<c10::qint8> inline minimum(
|
441 |
+
const Vectorized<c10::qint8>& a,
|
442 |
+
const Vectorized<c10::qint8>& b) {
|
443 |
+
return a.minimum(b);
|
444 |
+
}
|
445 |
+
} // namespace
|
446 |
+
} // namespace vec
|
447 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_quint8_vsx.h
ADDED
@@ -0,0 +1,466 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
4 |
+
#include <ATen/cpu/vec/vec_base.h>
|
5 |
+
#include <ATen/cpu/vec/vec256/vsx/vsx_helpers.h>
|
6 |
+
|
7 |
+
#include <c10/util/irange.h>
|
8 |
+
#include <c10/util/quint8.h>
|
9 |
+
#include <array>
|
10 |
+
|
11 |
+
// This file defines Vectorized<> for the quantized types.
|
12 |
+
//
|
13 |
+
//
|
14 |
+
// Currently, we simply use these classes as efficient converters between
|
15 |
+
// the quantized types and Vectorized<float>, usually in bandwidth-bound cases
|
16 |
+
// where doing the arithmetic in full-precision is acceptable (e.g.
|
17 |
+
// elementwise operators).
|
18 |
+
//
|
19 |
+
//
|
20 |
+
// Conversions are as follows:
|
21 |
+
// Vectorized<quint8> -> 4x Vectorized<float>
|
22 |
+
//
|
23 |
+
// The size of the returned float vector is specified by the special
|
24 |
+
// constexpr function float_num_vecs. The type of the value returned
|
25 |
+
// from dequantize (and expected as an argument to quantize) is
|
26 |
+
// specified by float_vec_return_type.
|
27 |
+
//
|
28 |
+
// When writing kernels with these vectors, it is expected that floating-
|
29 |
+
// point operations will be carried out in a loop over Vectorized<T>::float_num_vecs
|
30 |
+
// iterations.
|
31 |
+
|
32 |
+
namespace at {
|
33 |
+
namespace vec {
|
34 |
+
inline namespace CPU_CAPABILITY {
|
35 |
+
|
36 |
+
const vint16 mask_unsigned = vec_splats((short int)0xFF);
|
37 |
+
template <>
|
38 |
+
struct Vectorized<c10::quint8> {
|
39 |
+
private:
|
40 |
+
union {
|
41 |
+
struct {
|
42 |
+
vuint8 _vec0;
|
43 |
+
vuint8 _vec1;
|
44 |
+
};
|
45 |
+
struct {
|
46 |
+
vbool8 _vecb0;
|
47 |
+
vbool8 _vecb1;
|
48 |
+
};
|
49 |
+
|
50 |
+
} __attribute__((__may_alias__));
|
51 |
+
|
52 |
+
public:
|
53 |
+
Vectorized() {}
|
54 |
+
using size_type = int;
|
55 |
+
static constexpr size_type size() {
|
56 |
+
return 32;
|
57 |
+
}
|
58 |
+
|
59 |
+
static constexpr size_t float_num_vecs() {
|
60 |
+
return 4;
|
61 |
+
}
|
62 |
+
static constexpr int int_num_vecs() {
|
63 |
+
return 4;
|
64 |
+
}
|
65 |
+
using float_vec_return_type = std::array<Vectorized<float>, 4>;
|
66 |
+
using int_vec_return_type = std::array<Vectorized<c10::qint32>, 4>;
|
67 |
+
using value_type = typename c10::quint8::underlying;
|
68 |
+
using vec_internal_type = vuint8;
|
69 |
+
using vec_internal_mask_type = vbool8;
|
70 |
+
// Broadcast constructor
|
71 |
+
C10_ALWAYS_INLINE Vectorized(const c10::quint8& val)
|
72 |
+
: _vec0(vec_splats(val.val_)), _vec1(vec_splats(val.val_)) {}
|
73 |
+
|
74 |
+
C10_ALWAYS_INLINE Vectorized(const Vectorized<c10::quint8>& other)
|
75 |
+
: _vec0{other._vec0}, _vec1(other._vec1) {}
|
76 |
+
|
77 |
+
C10_ALWAYS_INLINE Vectorized(vuint8 v) : _vec0{v}, _vec1{v} {}
|
78 |
+
C10_ALWAYS_INLINE Vectorized(vbool8 vmask) : _vecb0{vmask}, _vecb1{vmask} {}
|
79 |
+
C10_ALWAYS_INLINE Vectorized(vuint8 v1, vuint8 v2) : _vec0{v1}, _vec1{v2} {}
|
80 |
+
C10_ALWAYS_INLINE Vectorized(vbool8 v1, vbool8 v2) : _vecb0{v1}, _vecb1{v2} {}
|
81 |
+
|
82 |
+
C10_ALWAYS_INLINE const vec_internal_type& vec0() const {
|
83 |
+
return _vec0;
|
84 |
+
}
|
85 |
+
C10_ALWAYS_INLINE const vec_internal_type& vec1() const {
|
86 |
+
return _vec1;
|
87 |
+
}
|
88 |
+
|
89 |
+
static C10_ALWAYS_INLINE Vectorized<c10::quint8> loadu(
|
90 |
+
const void* ptr,
|
91 |
+
int count = size()) {
|
92 |
+
if (count == size()) {
|
93 |
+
return {
|
94 |
+
vec_vsx_ld(offset0, reinterpret_cast<const value_type*>(ptr)),
|
95 |
+
vec_vsx_ld(offset16, reinterpret_cast<const value_type*>(ptr))};
|
96 |
+
}
|
97 |
+
__at_align__ value_type tmp_values[size()];
|
98 |
+
std::memcpy(tmp_values, ptr, std::min(count, size()) * sizeof(value_type));
|
99 |
+
return {vec_vsx_ld(offset0, tmp_values), vec_vsx_ld(offset16, tmp_values)};
|
100 |
+
}
|
101 |
+
void C10_ALWAYS_INLINE store(void* ptr, int count = size()) const {
|
102 |
+
if (count == size()) {
|
103 |
+
vec_vsx_st(_vec0, offset0, reinterpret_cast<value_type*>(ptr));
|
104 |
+
vec_vsx_st(_vec1, offset16, reinterpret_cast<value_type*>(ptr));
|
105 |
+
} else if (count > 0) {
|
106 |
+
__at_align__ value_type tmp_values[size()];
|
107 |
+
vec_vsx_st(_vec0, offset0, tmp_values);
|
108 |
+
vec_vsx_st(_vec1, offset16, tmp_values);
|
109 |
+
std::memcpy(
|
110 |
+
ptr, tmp_values, std::min(count, size()) * sizeof(value_type));
|
111 |
+
}
|
112 |
+
}
|
113 |
+
|
114 |
+
public:
|
115 |
+
float_vec_return_type C10_ALWAYS_INLINE dequantize(
|
116 |
+
Vectorized<float> scale,
|
117 |
+
Vectorized<float> zero_point,
|
118 |
+
Vectorized<float> scale_zp_premul) const {
|
119 |
+
// unpacking unsigned as signed
|
120 |
+
vint16 vecshi0 = vec_unpackh((vint8)_vec0);
|
121 |
+
vint16 vecshi1 = vec_unpackl((vint8)_vec0);
|
122 |
+
|
123 |
+
vint16 vecshi2 = vec_unpackh((vint8)_vec1);
|
124 |
+
vint16 vecshi3 = vec_unpackl((vint8)_vec1);
|
125 |
+
|
126 |
+
// signed -> unsigned
|
127 |
+
vecshi0 = vec_and(vecshi0, mask_unsigned);
|
128 |
+
vecshi1 = vec_and(vecshi1, mask_unsigned);
|
129 |
+
|
130 |
+
vecshi2 = vec_and(vecshi2, mask_unsigned);
|
131 |
+
vecshi3 = vec_and(vecshi3, mask_unsigned);
|
132 |
+
|
133 |
+
vint32 veci0 = vec_unpackh(vecshi0);
|
134 |
+
vint32 veci1 = vec_unpackl(vecshi0);
|
135 |
+
|
136 |
+
vint32 veci2 = vec_unpackh(vecshi1);
|
137 |
+
vint32 veci3 = vec_unpackl(vecshi1);
|
138 |
+
|
139 |
+
vint32 veci4 = vec_unpackh(vecshi2);
|
140 |
+
vint32 veci5 = vec_unpackl(vecshi2);
|
141 |
+
|
142 |
+
vint32 veci6 = vec_unpackh(vecshi3);
|
143 |
+
vint32 veci7 = vec_unpackl(vecshi3);
|
144 |
+
|
145 |
+
vfloat32 vecf0_0 = vec_float(veci0);
|
146 |
+
vfloat32 vecf1_0 = vec_float(veci1);
|
147 |
+
|
148 |
+
vfloat32 vecf0_1 = vec_float(veci2);
|
149 |
+
vfloat32 vecf1_1 = vec_float(veci3);
|
150 |
+
|
151 |
+
vfloat32 vecf0_2 = vec_float(veci4);
|
152 |
+
vfloat32 vecf1_2 = vec_float(veci5);
|
153 |
+
|
154 |
+
vfloat32 vecf0_3 = vec_float(veci6);
|
155 |
+
vfloat32 vecf1_3 = vec_float(veci7);
|
156 |
+
vfloat32 scale_vec0 = scale.vec0();
|
157 |
+
vfloat32 scale_vec1 = scale.vec1();
|
158 |
+
vfloat32 scale_zp_premul0 = scale_zp_premul.vec0();
|
159 |
+
vfloat32 scale_zp_premul1 = scale_zp_premul.vec1();
|
160 |
+
return {
|
161 |
+
Vectorized<float>{
|
162 |
+
vec_madd(scale_vec0, vecf0_0, scale_zp_premul0),
|
163 |
+
vec_madd(scale_vec1, vecf1_0, scale_zp_premul1)},
|
164 |
+
Vectorized<float>{
|
165 |
+
vec_madd(scale_vec0, vecf0_1, scale_zp_premul0),
|
166 |
+
vec_madd(scale_vec1, vecf1_1, scale_zp_premul1)},
|
167 |
+
Vectorized<float>{
|
168 |
+
vec_madd(scale_vec0, vecf0_2, scale_zp_premul0),
|
169 |
+
vec_madd(scale_vec1, vecf1_2, scale_zp_premul1)},
|
170 |
+
Vectorized<float>{
|
171 |
+
vec_madd(scale_vec0, vecf0_3, scale_zp_premul0),
|
172 |
+
vec_madd(scale_vec1, vecf1_3, scale_zp_premul1)}};
|
173 |
+
}
|
174 |
+
|
175 |
+
float_vec_return_type C10_ALWAYS_INLINE dequantize(
|
176 |
+
Vectorized<float> scale,
|
177 |
+
Vectorized<float> zero_point) const {
|
178 |
+
// unpacking unsigned as signed
|
179 |
+
vint16 vecshi0 = vec_unpackh((vint8)_vec0);
|
180 |
+
vint16 vecshi1 = vec_unpackl((vint8)_vec0);
|
181 |
+
|
182 |
+
vint16 vecshi2 = vec_unpackh((vint8)_vec1);
|
183 |
+
vint16 vecshi3 = vec_unpackl((vint8)_vec1);
|
184 |
+
|
185 |
+
// signed -> unsigned
|
186 |
+
vecshi0 = vec_and(vecshi0, mask_unsigned);
|
187 |
+
vecshi1 = vec_and(vecshi1, mask_unsigned);
|
188 |
+
|
189 |
+
vecshi2 = vec_and(vecshi2, mask_unsigned);
|
190 |
+
vecshi3 = vec_and(vecshi3, mask_unsigned);
|
191 |
+
|
192 |
+
vint32 veci0 = vec_unpackh(vecshi0);
|
193 |
+
vint32 veci1 = vec_unpackl(vecshi0);
|
194 |
+
|
195 |
+
vint32 veci2 = vec_unpackh(vecshi1);
|
196 |
+
vint32 veci3 = vec_unpackl(vecshi1);
|
197 |
+
|
198 |
+
vint32 veci4 = vec_unpackh(vecshi2);
|
199 |
+
vint32 veci5 = vec_unpackl(vecshi2);
|
200 |
+
|
201 |
+
vint32 veci6 = vec_unpackh(vecshi3);
|
202 |
+
vint32 veci7 = vec_unpackl(vecshi3);
|
203 |
+
|
204 |
+
vfloat32 vecf0_0 = vec_float(veci0);
|
205 |
+
vfloat32 vecf1_0 = vec_float(veci1);
|
206 |
+
|
207 |
+
vfloat32 vecf0_1 = vec_float(veci2);
|
208 |
+
vfloat32 vecf1_1 = vec_float(veci3);
|
209 |
+
|
210 |
+
vfloat32 vecf0_2 = vec_float(veci4);
|
211 |
+
vfloat32 vecf1_2 = vec_float(veci5);
|
212 |
+
|
213 |
+
vfloat32 vecf0_3 = vec_float(veci6);
|
214 |
+
vfloat32 vecf1_3 = vec_float(veci7);
|
215 |
+
vfloat32 scale_vec0 = scale.vec0();
|
216 |
+
vfloat32 scale_vec1 = scale.vec1();
|
217 |
+
vfloat32 zero_point0 = zero_point.vec0();
|
218 |
+
vfloat32 zero_point1 = zero_point.vec1();
|
219 |
+
return {
|
220 |
+
Vectorized<float>{
|
221 |
+
(vecf0_0 - zero_point0) * scale_vec0,
|
222 |
+
(vecf1_0 - zero_point1) * scale_vec1},
|
223 |
+
Vectorized<float>{
|
224 |
+
(vecf0_1 - zero_point0) * scale_vec0,
|
225 |
+
(vecf1_1 - zero_point1) * scale_vec1},
|
226 |
+
Vectorized<float>{
|
227 |
+
(vecf0_2 - zero_point0) * scale_vec0,
|
228 |
+
(vecf1_2 - zero_point1) * scale_vec1},
|
229 |
+
Vectorized<float>{
|
230 |
+
(vecf0_3 - zero_point0) * scale_vec0,
|
231 |
+
(vecf1_3 - zero_point1) * scale_vec1}};
|
232 |
+
}
|
233 |
+
|
234 |
+
static Vectorized<c10::quint8> quantize(
|
235 |
+
const float_vec_return_type& rhs,
|
236 |
+
float scale,
|
237 |
+
int32_t zero_point,
|
238 |
+
float inverse_scale) {
|
239 |
+
// constexpr int32_t min_val = std::numeric_limits<value_type>::min();
|
240 |
+
// constexpr int32_t max_val = std::numeric_limits<value_type>::max();
|
241 |
+
|
242 |
+
vfloat32 vec_inverse = vec_splats(inverse_scale);
|
243 |
+
vfloat32 vec_zero_point = vec_splats((float)zero_point);
|
244 |
+
// vuint32 vmin = vec_splats(min_val);
|
245 |
+
// vuint32 vmax = vec_splats(max_val);
|
246 |
+
Vectorized<float> vf0 = rhs[0];
|
247 |
+
Vectorized<float> vf1 = rhs[1];
|
248 |
+
Vectorized<float> vf2 = rhs[2];
|
249 |
+
Vectorized<float> vf3 = rhs[3];
|
250 |
+
vfloat32 vecf0 = vf0.vec0();
|
251 |
+
vfloat32 vecf1 = vf0.vec1();
|
252 |
+
vfloat32 vecf2 = vf1.vec0();
|
253 |
+
vfloat32 vecf3 = vf1.vec1();
|
254 |
+
|
255 |
+
vfloat32 vecf4 = vf2.vec0();
|
256 |
+
vfloat32 vecf5 = vf2.vec1();
|
257 |
+
vfloat32 vecf6 = vf3.vec0();
|
258 |
+
vfloat32 vecf7 = vf3.vec1();
|
259 |
+
|
260 |
+
vecf0 = vec_mul(vecf0, vec_inverse);
|
261 |
+
vecf1 = vec_mul(vecf1, vec_inverse);
|
262 |
+
vecf2 = vec_mul(vecf2, vec_inverse);
|
263 |
+
vecf3 = vec_mul(vecf3, vec_inverse);
|
264 |
+
|
265 |
+
vecf4 = vec_mul(vecf4, vec_inverse);
|
266 |
+
vecf5 = vec_mul(vecf5, vec_inverse);
|
267 |
+
vecf6 = vec_mul(vecf6, vec_inverse);
|
268 |
+
vecf7 = vec_mul(vecf7, vec_inverse);
|
269 |
+
|
270 |
+
vecf0 = vec_add(vec_rint(vecf0), vec_zero_point);
|
271 |
+
vecf1 = vec_add(vec_rint(vecf1), vec_zero_point);
|
272 |
+
vecf2 = vec_add(vec_rint(vecf2), vec_zero_point);
|
273 |
+
vecf3 = vec_add(vec_rint(vecf3), vec_zero_point);
|
274 |
+
|
275 |
+
vecf4 = vec_add(vec_rint(vecf4), vec_zero_point);
|
276 |
+
vecf5 = vec_add(vec_rint(vecf5), vec_zero_point);
|
277 |
+
vecf6 = vec_add(vec_rint(vecf6), vec_zero_point);
|
278 |
+
vecf7 = vec_add(vec_rint(vecf7), vec_zero_point);
|
279 |
+
|
280 |
+
vint32 veci0 = vec_signed(vecf0);
|
281 |
+
vint32 veci1 = vec_signed(vecf1);
|
282 |
+
vint32 veci2 = vec_signed(vecf2);
|
283 |
+
vint32 veci3 = vec_signed(vecf3);
|
284 |
+
|
285 |
+
vint32 veci4 = vec_signed(vecf4);
|
286 |
+
vint32 veci5 = vec_signed(vecf5);
|
287 |
+
vint32 veci6 = vec_signed(vecf6);
|
288 |
+
vint32 veci7 = vec_signed(vecf7);
|
289 |
+
|
290 |
+
vint16 vecshi0 = vec_packs(veci0, veci1);
|
291 |
+
vint16 vecshi1 = vec_packs(veci2, veci3);
|
292 |
+
vint16 vecshi2 = vec_packs(veci4, veci5);
|
293 |
+
vint16 vecshi3 = vec_packs(veci6, veci7);
|
294 |
+
|
295 |
+
vuint8 vec0 = vec_packsu(vecshi0, vecshi1);
|
296 |
+
vuint8 vec1 = vec_packsu(vecshi2, vecshi3);
|
297 |
+
|
298 |
+
return {vec0, vec1};
|
299 |
+
}
|
300 |
+
|
301 |
+
Vectorized<c10::quint8> C10_ALWAYS_INLINE relu(Vectorized<c10::quint8> zero_point) const {
|
302 |
+
return {vec_max(_vec0, zero_point._vec0), vec_max(_vec1, zero_point._vec1)};
|
303 |
+
}
|
304 |
+
|
305 |
+
Vectorized<c10::quint8> C10_ALWAYS_INLINE
|
306 |
+
relu6(Vectorized<c10::quint8> zero_point, Vectorized<c10::quint8> q_six) const {
|
307 |
+
vuint8 max0 = vec_max(_vec0, zero_point._vec0);
|
308 |
+
vuint8 max1 = vec_max(_vec1, zero_point._vec1);
|
309 |
+
return {vec_min(max0, q_six._vec0), vec_min(max1, q_six._vec1)};
|
310 |
+
}
|
311 |
+
|
312 |
+
int_vec_return_type widening_subtract(Vectorized<c10::quint8> b) const {
|
313 |
+
vint16 vecshi0 = vec_unpackh((vint8)_vec0);
|
314 |
+
vint16 vecBshi0 = vec_unpackh((vint8)b._vec0);
|
315 |
+
vint16 vecshi1 = vec_unpackl((vint8)_vec0);
|
316 |
+
vint16 vecBshi1 = vec_unpackl((vint8)b._vec0);
|
317 |
+
|
318 |
+
vint16 vecshi2 = vec_unpackh((vint8)_vec1);
|
319 |
+
vint16 vecBshi2 = vec_unpackh((vint8)b._vec1);
|
320 |
+
vint16 vecshi3 = vec_unpackl((vint8)_vec1);
|
321 |
+
vint16 vecBshi3 = vec_unpackl((vint8)b._vec1);
|
322 |
+
|
323 |
+
vecshi0 = vec_and(vecshi0, mask_unsigned);
|
324 |
+
vecBshi0 = vec_and(vecBshi0, mask_unsigned);
|
325 |
+
vecshi1 = vec_and(vecshi1, mask_unsigned);
|
326 |
+
vecBshi1 = vec_and(vecBshi1, mask_unsigned);
|
327 |
+
|
328 |
+
vecshi2 = vec_and(vecshi2, mask_unsigned);
|
329 |
+
vecBshi2 = vec_and(vecBshi2, mask_unsigned);
|
330 |
+
vecshi3 = vec_and(vecshi3, mask_unsigned);
|
331 |
+
vecBshi3 = vec_and(vecBshi3, mask_unsigned);
|
332 |
+
|
333 |
+
vint32 veci0 = vec_unpackh(vecshi0);
|
334 |
+
vint32 vecBi0 = vec_unpackh(vecBshi0);
|
335 |
+
vint32 veci1 = vec_unpackl(vecshi0);
|
336 |
+
vint32 vecBi1 = vec_unpackl(vecBshi0);
|
337 |
+
|
338 |
+
vint32 veci2 = vec_unpackh(vecshi1);
|
339 |
+
vint32 vecBi2 = vec_unpackh(vecBshi1);
|
340 |
+
vint32 veci3 = vec_unpackl(vecshi1);
|
341 |
+
vint32 vecBi3 = vec_unpackl(vecBshi1);
|
342 |
+
|
343 |
+
vint32 veci4 = vec_unpackh(vecshi2);
|
344 |
+
vint32 vecBi4 = vec_unpackh(vecBshi2);
|
345 |
+
vint32 veci5 = vec_unpackl(vecshi2);
|
346 |
+
vint32 vecBi5 = vec_unpackl(vecBshi2);
|
347 |
+
|
348 |
+
vint32 veci6 = vec_unpackh(vecshi3);
|
349 |
+
vint32 vecBi6 = vec_unpackh(vecBshi3);
|
350 |
+
vint32 veci7 = vec_unpackl(vecshi3);
|
351 |
+
vint32 vecBi7 = vec_unpackl(vecBshi3);
|
352 |
+
|
353 |
+
return {
|
354 |
+
Vectorized<c10::qint32>(veci0 - vecBi0, veci1 - vecBi1),
|
355 |
+
Vectorized<c10::qint32>(veci2 - vecBi2, veci3 - vecBi3),
|
356 |
+
Vectorized<c10::qint32>(veci4 - vecBi4, veci5 - vecBi5),
|
357 |
+
Vectorized<c10::qint32>(veci6 - vecBi6, veci7 - vecBi7)};
|
358 |
+
}
|
359 |
+
|
360 |
+
static Vectorized<c10::quint8> requantize_from_int(
|
361 |
+
const int_vec_return_type& inp,
|
362 |
+
float multiplier,
|
363 |
+
int32_t zero_point) {
|
364 |
+
vfloat32 vec_multiplier = vec_splats(multiplier);
|
365 |
+
vint32 vec_zero_point = vec_splats(zero_point);
|
366 |
+
|
367 |
+
Vectorized<c10::qint32> vi0 = inp[0];
|
368 |
+
Vectorized<c10::qint32> vi1 = inp[1];
|
369 |
+
Vectorized<c10::qint32> vi2 = inp[2];
|
370 |
+
Vectorized<c10::qint32> vi3 = inp[3];
|
371 |
+
|
372 |
+
vfloat32 vecf0 = vec_float(vi0.vec0());
|
373 |
+
vfloat32 vecf1 = vec_float(vi0.vec1());
|
374 |
+
vfloat32 vecf2 = vec_float(vi1.vec0());
|
375 |
+
vfloat32 vecf3 = vec_float(vi1.vec1());
|
376 |
+
|
377 |
+
vfloat32 vecf4 = vec_float(vi2.vec0());
|
378 |
+
vfloat32 vecf5 = vec_float(vi2.vec1());
|
379 |
+
vfloat32 vecf6 = vec_float(vi3.vec0());
|
380 |
+
vfloat32 vecf7 = vec_float(vi3.vec1());
|
381 |
+
|
382 |
+
vecf0 = vec_mul(vecf0, vec_multiplier);
|
383 |
+
vecf1 = vec_mul(vecf1, vec_multiplier);
|
384 |
+
vecf2 = vec_mul(vecf2, vec_multiplier);
|
385 |
+
vecf3 = vec_mul(vecf3, vec_multiplier);
|
386 |
+
|
387 |
+
vecf4 = vec_mul(vecf4, vec_multiplier);
|
388 |
+
vecf5 = vec_mul(vecf5, vec_multiplier);
|
389 |
+
vecf6 = vec_mul(vecf6, vec_multiplier);
|
390 |
+
vecf7 = vec_mul(vecf7, vec_multiplier);
|
391 |
+
|
392 |
+
vecf0 = vec_rint(vecf0);
|
393 |
+
vecf1 = vec_rint(vecf1);
|
394 |
+
vecf2 = vec_rint(vecf2);
|
395 |
+
vecf3 = vec_rint(vecf3);
|
396 |
+
|
397 |
+
vecf4 = vec_rint(vecf4);
|
398 |
+
vecf5 = vec_rint(vecf5);
|
399 |
+
vecf6 = vec_rint(vecf6);
|
400 |
+
vecf7 = vec_rint(vecf7);
|
401 |
+
|
402 |
+
vint32 veci0 = vec_signed(vecf0);
|
403 |
+
vint32 veci1 = vec_signed(vecf1);
|
404 |
+
vint32 veci2 = vec_signed(vecf2);
|
405 |
+
vint32 veci3 = vec_signed(vecf3);
|
406 |
+
|
407 |
+
vint32 veci4 = vec_signed(vecf4);
|
408 |
+
vint32 veci5 = vec_signed(vecf5);
|
409 |
+
vint32 veci6 = vec_signed(vecf6);
|
410 |
+
vint32 veci7 = vec_signed(vecf7);
|
411 |
+
|
412 |
+
veci0 = vec_add(veci0, vec_zero_point);
|
413 |
+
veci1 = vec_add(veci1, vec_zero_point);
|
414 |
+
veci2 = vec_add(veci2, vec_zero_point);
|
415 |
+
veci3 = vec_add(veci3, vec_zero_point);
|
416 |
+
|
417 |
+
veci4 = vec_add(veci4, vec_zero_point);
|
418 |
+
veci5 = vec_add(veci5, vec_zero_point);
|
419 |
+
veci6 = vec_add(veci6, vec_zero_point);
|
420 |
+
veci7 = vec_add(veci7, vec_zero_point);
|
421 |
+
|
422 |
+
vint16 vecshi0 = vec_packs(veci0, veci1);
|
423 |
+
vint16 vecshi1 = vec_packs(veci2, veci3);
|
424 |
+
vint16 vecshi2 = vec_packs(veci4, veci5);
|
425 |
+
vint16 vecshi3 = vec_packs(veci6, veci7);
|
426 |
+
|
427 |
+
vuint8 vec0 = vec_packsu(vecshi0, vecshi1);
|
428 |
+
vuint8 vec1 = vec_packsu(vecshi2, vecshi3);
|
429 |
+
|
430 |
+
return {vec0, vec1};
|
431 |
+
}
|
432 |
+
|
433 |
+
DEFINE_MEMBER_OP(operator==, c10::quint8, vec_cmpeq)
|
434 |
+
DEFINE_MEMBER_OP(operator!=, c10::quint8, vec_cmpne)
|
435 |
+
DEFINE_MEMBER_OP(operator<, c10::quint8, vec_cmplt)
|
436 |
+
DEFINE_MEMBER_OP(operator<=, c10::quint8, vec_cmple)
|
437 |
+
DEFINE_MEMBER_OP(operator>, c10::quint8, vec_cmpgt)
|
438 |
+
DEFINE_MEMBER_OP(operator>=, c10::quint8, vec_cmpge)
|
439 |
+
DEFINE_MEMBER_OP(operator+, c10::quint8, vec_add)
|
440 |
+
DEFINE_MEMBER_OP(operator-, c10::quint8, vec_sub)
|
441 |
+
DEFINE_MEMBER_OP(operator*, c10::quint8, vec_mul)
|
442 |
+
DEFINE_MEMBER_EMULATE_BINARY_OP(operator/, c10::quint8, /)
|
443 |
+
DEFINE_MEMBER_OP(maximum, c10::quint8, vec_max)
|
444 |
+
DEFINE_MEMBER_OP(minimum, c10::quint8, vec_min)
|
445 |
+
DEFINE_MEMBER_OP(operator&, c10::quint8, vec_and)
|
446 |
+
DEFINE_MEMBER_OP(operator|, c10::quint8, vec_or)
|
447 |
+
DEFINE_MEMBER_OP(operator^, c10::quint8, vec_xor)
|
448 |
+
};
|
449 |
+
|
450 |
+
template <>
|
451 |
+
Vectorized<c10::quint8> inline maximum(
|
452 |
+
const Vectorized<c10::quint8>& a,
|
453 |
+
const Vectorized<c10::quint8>& b) {
|
454 |
+
return a.maximum(b);
|
455 |
+
}
|
456 |
+
|
457 |
+
template <>
|
458 |
+
Vectorized<c10::quint8> inline minimum(
|
459 |
+
const Vectorized<c10::quint8>& a,
|
460 |
+
const Vectorized<c10::quint8>& b) {
|
461 |
+
return a.minimum(b);
|
462 |
+
}
|
463 |
+
|
464 |
+
} // namespace
|
465 |
+
} // namespace vec
|
466 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vsx_helpers.h
ADDED
@@ -0,0 +1,474 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <cstdint>
|
3 |
+
#include <c10/macros/Macros.h>
|
4 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
5 |
+
|
6 |
+
#if defined(__clang__)
|
7 |
+
typedef __vector __bool char vbool8;
|
8 |
+
typedef __vector __bool short vbool16;
|
9 |
+
typedef __vector __bool int vbool32;
|
10 |
+
typedef __vector __bool long long vbool64;
|
11 |
+
using vint8 = __attribute__((vector_size(16))) signed char;
|
12 |
+
using vint16 = __attribute__((vector_size(16))) signed short;
|
13 |
+
using vint32 = __attribute__((vector_size(16))) signed int;
|
14 |
+
using vint64 = __attribute__((vector_size(16))) signed long long;
|
15 |
+
using vuint8 = __attribute__((vector_size(16))) unsigned char;
|
16 |
+
using vuint16 = __attribute__((vector_size(16))) unsigned short;
|
17 |
+
using vuint32 = __attribute__((vector_size(16))) unsigned int;
|
18 |
+
using vuint64 = __attribute__((vector_size(16))) unsigned long long;
|
19 |
+
using vfloat32 = __attribute__((vector_size(16))) float;
|
20 |
+
using vfloat64 = __attribute__((vector_size(16))) double;
|
21 |
+
#else
|
22 |
+
using vbool8 = __attribute__((altivec(vector__))) __attribute__((altivec(bool__))) char;
|
23 |
+
using vbool16 = __attribute__((altivec(vector__))) __attribute__((altivec(bool__))) short;
|
24 |
+
using vbool32 = __attribute__((altivec(vector__))) __attribute__((altivec(bool__))) int;
|
25 |
+
using vbool64 = __attribute__((altivec(vector__))) __attribute__((altivec(bool__))) long long;
|
26 |
+
using vint8 = __attribute__((altivec(vector__))) signed char;
|
27 |
+
using vint16 = __attribute__((altivec(vector__))) signed short;
|
28 |
+
using vint32 = __attribute__((altivec(vector__))) signed int;
|
29 |
+
using vint64 = __attribute__((altivec(vector__))) signed long long;
|
30 |
+
using vuint8 = __attribute__((altivec(vector__))) unsigned char;
|
31 |
+
using vuint16 = __attribute__((altivec(vector__))) unsigned short;
|
32 |
+
using vuint32 = __attribute__((altivec(vector__))) unsigned int;
|
33 |
+
using vuint64 = __attribute__((altivec(vector__))) unsigned long long;
|
34 |
+
using vfloat32 = __attribute__((altivec(vector__))) float;
|
35 |
+
using vfloat64 = __attribute__((altivec(vector__))) double;
|
36 |
+
#endif
|
37 |
+
|
38 |
+
#if !defined(vec_float)
|
39 |
+
C10_ALWAYS_INLINE vfloat32 vec_float(const vint32& vec_in) {
|
40 |
+
vfloat32 vec_out;
|
41 |
+
__asm__("xvcvsxwsp %x0,%x1" : "=wf"(vec_out) : "wa"(vec_in));
|
42 |
+
return vec_out;
|
43 |
+
}
|
44 |
+
#endif
|
45 |
+
|
46 |
+
#if !defined(vec_signed)
|
47 |
+
C10_ALWAYS_INLINE vint32 vec_signed(const vfloat32& vec_in) {
|
48 |
+
vint32 vec_out;
|
49 |
+
__asm__("xvcvspsxws %x0,%x1" : "=wa"(vec_out) : "wf"(vec_in));
|
50 |
+
return vec_out;
|
51 |
+
}
|
52 |
+
|
53 |
+
C10_ALWAYS_INLINE vint64 vec_signed(const vfloat64& vec_in) {
|
54 |
+
vint64 vec_out;
|
55 |
+
__asm__("xvcvdpsxds %x0,%x1" : "=wa"(vec_out) : "wd"(vec_in));
|
56 |
+
return vec_out;
|
57 |
+
}
|
58 |
+
#endif
|
59 |
+
|
60 |
+
#if !defined(vec_neg)
|
61 |
+
C10_ALWAYS_INLINE vfloat32 vec_neg(const vfloat32& vec_in) {
|
62 |
+
vfloat32 vec_out;
|
63 |
+
__asm__("xvnegsp %x0,%x1" : "=wf"(vec_out) : "wf"(vec_in));
|
64 |
+
return vec_out;
|
65 |
+
}
|
66 |
+
|
67 |
+
C10_ALWAYS_INLINE vfloat64 vec_neg(const vfloat64& vec_in) {
|
68 |
+
vfloat64 vec_out;
|
69 |
+
__asm__("xvnegdp %x0,%x1" : "=wd"(vec_out) : "wd"(vec_in));
|
70 |
+
return vec_out;
|
71 |
+
}
|
72 |
+
|
73 |
+
C10_ALWAYS_INLINE vint16 vec_neg(const vint16& vec_in) {
|
74 |
+
vint16 vint0 = {0, 0, 0, 0 ,0, 0, 0, 0};
|
75 |
+
return vec_vsubuhm(vint0, vec_in);
|
76 |
+
}
|
77 |
+
|
78 |
+
C10_ALWAYS_INLINE vint32 vec_neg(const vint32& vec_in) {
|
79 |
+
vint32 vint0 = {0, 0, 0, 0};
|
80 |
+
return vec_vsubuwm(vint0, vec_in);
|
81 |
+
}
|
82 |
+
|
83 |
+
C10_ALWAYS_INLINE vint64 vec_neg(const vint64& vec_in) {
|
84 |
+
return -vec_in;
|
85 |
+
}
|
86 |
+
#endif
|
87 |
+
|
88 |
+
#if !defined(vec_sldw)
|
89 |
+
template <unsigned int C>
|
90 |
+
C10_ALWAYS_INLINE vfloat32
|
91 |
+
vec_sldw_aux(const vfloat32& vec_in0, const vfloat32& vec_in1) {
|
92 |
+
vfloat32 vec_out;
|
93 |
+
__asm("xxsldwi %x0, %x1, %x2, %3 "
|
94 |
+
: "=wa"(vec_out)
|
95 |
+
: "wa"(vec_in0), "wa"(vec_in1), "I"(C));
|
96 |
+
return vec_out;
|
97 |
+
}
|
98 |
+
|
99 |
+
#define vec_sldw(a, b, c) vec_sldw_aux<c>(a, b)
|
100 |
+
#endif
|
101 |
+
|
102 |
+
#define vec_not(a) vec_nor(a, a)
|
103 |
+
#if defined(__clang__) && !defined(vec_splats)
|
104 |
+
C10_ALWAYS_INLINE vint64 vec_splats(const int64_t& a) {
|
105 |
+
return vec_splats(a);
|
106 |
+
}
|
107 |
+
#endif
|
108 |
+
// Vectorized min/max which return a if any operand is nan
|
109 |
+
template <class T>
|
110 |
+
C10_ALWAYS_INLINE T vec_min_nan(const T& a, const T& b) {
|
111 |
+
return vec_min(a, b);
|
112 |
+
}
|
113 |
+
template <class T>
|
114 |
+
C10_ALWAYS_INLINE T vec_max_nan(const T& a, const T& b) {
|
115 |
+
return vec_max(a, b);
|
116 |
+
}
|
117 |
+
|
118 |
+
// Specializations for float/double taken from Eigen
|
119 |
+
template<>
|
120 |
+
C10_ALWAYS_INLINE vfloat32 vec_min_nan<vfloat32>(const vfloat32& a, const vfloat32& b)
|
121 |
+
{
|
122 |
+
// NOTE: about 10% slower than vec_min, but consistent with std::min and SSE regarding NaN
|
123 |
+
vfloat32 ret;
|
124 |
+
__asm__ ("xvcmpgesp %x0,%x1,%x2\n\txxsel %x0,%x1,%x2,%x0" : "=&wa" (ret) : "wa" (a), "wa" (b));
|
125 |
+
return ret;
|
126 |
+
}
|
127 |
+
// Specializations for float/double taken from Eigen
|
128 |
+
template<>
|
129 |
+
C10_ALWAYS_INLINE vfloat32 vec_max_nan<vfloat32>(const vfloat32& a, const vfloat32& b)
|
130 |
+
{
|
131 |
+
// NOTE: about 10% slower than vec_max, but consistent with std::min and SSE regarding NaN
|
132 |
+
vfloat32 ret;
|
133 |
+
__asm__ ("xvcmpgtsp %x0,%x2,%x1\n\txxsel %x0,%x1,%x2,%x0" : "=&wa" (ret) : "wa" (a), "wa" (b));
|
134 |
+
return ret;
|
135 |
+
}
|
136 |
+
|
137 |
+
template<>
|
138 |
+
C10_ALWAYS_INLINE vfloat64 vec_min_nan<vfloat64>(const vfloat64& a, const vfloat64& b)
|
139 |
+
{
|
140 |
+
// NOTE: about 10% slower than vec_min, but consistent with std::min and SSE regarding NaN
|
141 |
+
vfloat64 ret;
|
142 |
+
__asm__ ("xvcmpgedp %x0,%x1,%x2\n\txxsel %x0,%x1,%x2,%x0" : "=&wa" (ret) : "wa" (a), "wa" (b));
|
143 |
+
return ret;
|
144 |
+
}
|
145 |
+
template<>
|
146 |
+
C10_ALWAYS_INLINE vfloat64 vec_max_nan<vfloat64>(const vfloat64& a, const vfloat64& b)
|
147 |
+
{
|
148 |
+
// NOTE: about 10% slower than vec_max, but consistent with std::max and SSE regarding NaN
|
149 |
+
vfloat64 ret;
|
150 |
+
__asm__ ("xvcmpgtdp %x0,%x2,%x1\n\txxsel %x0,%x1,%x2,%x0" : "=&wa" (ret) : "wa" (a), "wa" (b));
|
151 |
+
return ret;
|
152 |
+
}
|
153 |
+
|
154 |
+
// Vectorizes min/max function which returns nan if any side is nan
|
155 |
+
#define C10_VSX_VEC_NAN_PROPAG(name, type, btype, func) \
|
156 |
+
C10_ALWAYS_INLINE type name(const type& a, const type& b) { \
|
157 |
+
type tmp = func(a, b); \
|
158 |
+
btype nan_a = vec_cmpne(a, a); \
|
159 |
+
btype nan_b = vec_cmpne(b, b); \
|
160 |
+
tmp = vec_sel(tmp, a, nan_a); \
|
161 |
+
return vec_sel(tmp, b, nan_b); \
|
162 |
+
}
|
163 |
+
|
164 |
+
C10_VSX_VEC_NAN_PROPAG(vec_min_nan2, vfloat32, vbool32, vec_min)
|
165 |
+
C10_VSX_VEC_NAN_PROPAG(vec_max_nan2, vfloat32, vbool32, vec_max)
|
166 |
+
C10_VSX_VEC_NAN_PROPAG(vec_min_nan2, vfloat64, vbool64, vec_min)
|
167 |
+
C10_VSX_VEC_NAN_PROPAG(vec_max_nan2, vfloat64, vbool64, vec_max)
|
168 |
+
|
169 |
+
#undef C10_VSX_VEC_NAN_PROPAG
|
170 |
+
|
171 |
+
#define DEFINE_MEMBER_UNARY_OP(op, op_type, func) \
|
172 |
+
Vectorized<op_type> C10_ALWAYS_INLINE op() const { \
|
173 |
+
return Vectorized<op_type>{func(_vec0), func(_vec1)}; \
|
174 |
+
}
|
175 |
+
|
176 |
+
#define DEFINE_MEMBER_OP(op, op_type, func) \
|
177 |
+
Vectorized<op_type> C10_ALWAYS_INLINE op(const Vectorized<op_type>& other) const { \
|
178 |
+
return Vectorized<op_type>{ \
|
179 |
+
func(_vec0, other._vec0), func(_vec1, other._vec1)}; \
|
180 |
+
}
|
181 |
+
|
182 |
+
#define DEFINE_MEMBER_BITWISE_OP(op, op_type, func) \
|
183 |
+
Vectorized<op_type> C10_ALWAYS_INLINE op(const Vectorized<op_type>& other) const { \
|
184 |
+
return Vectorized<op_type>{ \
|
185 |
+
func(_vecb0, other._vecb0), func(_vecb1, other._vecb1)}; \
|
186 |
+
}
|
187 |
+
|
188 |
+
#define DEFINE_MEMBER_TERNARY_OP(op, op_type, func) \
|
189 |
+
Vectorized<op_type> C10_ALWAYS_INLINE op( \
|
190 |
+
const Vectorized<op_type>& b, const Vectorized<op_type>& c) const { \
|
191 |
+
return Vectorized<op_type>{ \
|
192 |
+
func(_vec0, b._vec0, c._vec0), func(_vec1, b._vec1, c._vec1)}; \
|
193 |
+
}
|
194 |
+
|
195 |
+
#define DEFINE_MEMBER_EMULATE_BINARY_OP(op, op_type, binary_op) \
|
196 |
+
Vectorized<op_type> C10_ALWAYS_INLINE op(const Vectorized<op_type>& b) const { \
|
197 |
+
Vectorized<op_type>::vec_internal_type ret_0; \
|
198 |
+
Vectorized<op_type>::vec_internal_type ret_1; \
|
199 |
+
for (int i = 0; i < Vectorized<op_type>::size() / 2; i++) { \
|
200 |
+
ret_0[i] = _vec0[i] binary_op b._vec0[i]; \
|
201 |
+
ret_1[i] = _vec1[i] binary_op b._vec1[i]; \
|
202 |
+
} \
|
203 |
+
return Vectorized<op_type>{ret_0, ret_1}; \
|
204 |
+
}
|
205 |
+
|
206 |
+
|
207 |
+
#define DEFINE_MEMBER_OP_AND_ONE(op, op_type, func) \
|
208 |
+
Vectorized<op_type> C10_ALWAYS_INLINE op(const Vectorized<op_type>& other) const { \
|
209 |
+
using vvtype = Vectorized<op_type>::vec_internal_type; \
|
210 |
+
const vvtype v_one = vec_splats(static_cast<op_type>(1.0)); \
|
211 |
+
vvtype ret0 = (vvtype)func(_vec0, other._vec0); \
|
212 |
+
vvtype ret1 = (vvtype)func(_vec1, other._vec1); \
|
213 |
+
return Vectorized<op_type>{vec_and(ret0, v_one), vec_and(ret1, v_one)}; \
|
214 |
+
}
|
215 |
+
|
216 |
+
#define DEFINE_CLAMP_FUNCS(operand_type) \
|
217 |
+
template <> \
|
218 |
+
Vectorized<operand_type> C10_ALWAYS_INLINE clamp( \
|
219 |
+
const Vectorized<operand_type>& a, \
|
220 |
+
const Vectorized<operand_type>& min, \
|
221 |
+
const Vectorized<operand_type>& max) { \
|
222 |
+
return Vectorized<operand_type>{ \
|
223 |
+
vec_min_nan(vec_max_nan(a.vec0(), min.vec0()), max.vec0()), \
|
224 |
+
vec_min_nan(vec_max_nan(a.vec1(), min.vec1()), max.vec1())}; \
|
225 |
+
} \
|
226 |
+
template <> \
|
227 |
+
Vectorized<operand_type> C10_ALWAYS_INLINE clamp_min( \
|
228 |
+
const Vectorized<operand_type>& a, const Vectorized<operand_type>& min) { \
|
229 |
+
return Vectorized<operand_type>{ \
|
230 |
+
vec_max_nan(a.vec0(), min.vec0()), \
|
231 |
+
vec_max_nan(a.vec1(), min.vec1())}; \
|
232 |
+
} \
|
233 |
+
template <> \
|
234 |
+
Vectorized<operand_type> C10_ALWAYS_INLINE clamp_max( \
|
235 |
+
const Vectorized<operand_type>& a, const Vectorized<operand_type>& max) { \
|
236 |
+
return Vectorized<operand_type>{ \
|
237 |
+
vec_min_nan(a.vec0(), max.vec0()), \
|
238 |
+
vec_min_nan(a.vec1(), max.vec1())}; \
|
239 |
+
}
|
240 |
+
|
241 |
+
#define DEFINE_REINTERPRET_CAST_FUNCS( \
|
242 |
+
first_type, cast_type, cast_inner_vector_type) \
|
243 |
+
template <> \
|
244 |
+
C10_ALWAYS_INLINE Vectorized<cast_type> cast<cast_type, first_type>( \
|
245 |
+
const Vectorized<first_type>& src) { \
|
246 |
+
return Vectorized<cast_type>{(cast_inner_vector_type)src.vec0(), \
|
247 |
+
(cast_inner_vector_type)src.vec1()}; \
|
248 |
+
}
|
249 |
+
|
250 |
+
#define DEFINE_REINTERPRET_CAST_TO_ALL_FUNCS(first_type) \
|
251 |
+
DEFINE_REINTERPRET_CAST_FUNCS(first_type, double, vfloat64) \
|
252 |
+
DEFINE_REINTERPRET_CAST_FUNCS(first_type, float, vfloat32) \
|
253 |
+
DEFINE_REINTERPRET_CAST_FUNCS(first_type, int64_t, vint64) \
|
254 |
+
DEFINE_REINTERPRET_CAST_FUNCS(first_type, int32_t, vint32) \
|
255 |
+
DEFINE_REINTERPRET_CAST_FUNCS(first_type, int16_t, vint16)
|
256 |
+
|
257 |
+
// it can be used to emulate blend faster
|
258 |
+
constexpr int blendChoice(uint32_t mask, uint32_t half1 = 0xF, uint32_t half2 = 0xF0) {
|
259 |
+
uint32_t none = 0;
|
260 |
+
uint32_t both = half1 | half2;
|
261 |
+
// clamp it between 0 and both
|
262 |
+
mask = mask & both;
|
263 |
+
// return (a._vec0, a._vec1)
|
264 |
+
if (mask == none) return 0;
|
265 |
+
// return (b._vec0,b._vec1)
|
266 |
+
else if (mask == both)
|
267 |
+
return 1;
|
268 |
+
// return (b._vec0,a._vec1)
|
269 |
+
else if (mask == half1)
|
270 |
+
return 2;
|
271 |
+
// return (a._vec0,b._vec1)
|
272 |
+
else if (mask == half2)
|
273 |
+
return 3;
|
274 |
+
// return (*_vec0,a._vec1)
|
275 |
+
else if (mask > 0 && mask < half1)
|
276 |
+
return 4;
|
277 |
+
// return (*_vec0,b._vec1)
|
278 |
+
else if ((mask & half2) == half2)
|
279 |
+
return 5;
|
280 |
+
// return (a._vec0,*_vec1)
|
281 |
+
else if ((mask & half1) == 0 && mask > half1)
|
282 |
+
return 6;
|
283 |
+
// return (b._vec0,*_vec1)
|
284 |
+
else if ((mask & half1) == half1 && mask > half1)
|
285 |
+
return 7;
|
286 |
+
// return (*_vec0,*_vec1)
|
287 |
+
return 8;
|
288 |
+
}
|
289 |
+
|
290 |
+
// it can be used to emulate blend faster
|
291 |
+
constexpr int blendChoiceDbl(uint32_t mask) {
|
292 |
+
// clamp it 0 and 0xF
|
293 |
+
return blendChoice(mask, 0x3, 0xC);
|
294 |
+
}
|
295 |
+
|
296 |
+
constexpr vbool32 VsxMask1(uint32_t mask) {
|
297 |
+
uint32_t g0 = (mask & 1) * 0xffffffff;
|
298 |
+
uint32_t g1 = ((mask & 2) >> 1) * 0xffffffff;
|
299 |
+
uint32_t g2 = ((mask & 4) >> 2) * 0xffffffff;
|
300 |
+
uint32_t g3 = ((mask & 8) >> 3) * 0xffffffff;
|
301 |
+
return (vbool32){g0, g1, g2, g3};
|
302 |
+
}
|
303 |
+
|
304 |
+
constexpr vbool32 VsxMask2(uint32_t mask) {
|
305 |
+
uint32_t mask2 = (mask & 0xFF) >> 4;
|
306 |
+
return VsxMask1(mask2);
|
307 |
+
}
|
308 |
+
|
309 |
+
constexpr vbool64 VsxDblMask1(uint32_t mask) {
|
310 |
+
uint64_t g0 = (mask & 1) * 0xffffffffffffffff;
|
311 |
+
uint64_t g1 = ((mask & 2) >> 1) * 0xffffffffffffffff;
|
312 |
+
return (vbool64){g0, g1};
|
313 |
+
}
|
314 |
+
|
315 |
+
constexpr vbool64 VsxDblMask2(uint32_t mask) {
|
316 |
+
uint32_t mask2 = (mask & 0xF) >> 2;
|
317 |
+
return VsxDblMask1(mask2);
|
318 |
+
}
|
319 |
+
|
320 |
+
constexpr int maskForComplex(uint32_t mask) {
|
321 |
+
mask = mask & 0xF;
|
322 |
+
int complex_mask = 0;
|
323 |
+
if (mask & 1) complex_mask |= 3;
|
324 |
+
if (mask & 2) complex_mask |= (3 << 2);
|
325 |
+
if (mask & 4) complex_mask |= (3 << 4);
|
326 |
+
if (mask & 8) complex_mask |= (3 << 6);
|
327 |
+
return complex_mask;
|
328 |
+
}
|
329 |
+
|
330 |
+
constexpr int maskForComplexDbl(uint32_t mask) {
|
331 |
+
mask = mask & 0x3;
|
332 |
+
int complex_mask = 0;
|
333 |
+
if (mask & 1) complex_mask |= 3;
|
334 |
+
if (mask & 2) complex_mask |= (3 << 2);
|
335 |
+
return complex_mask;
|
336 |
+
}
|
337 |
+
|
338 |
+
constexpr int blendChoiceComplex(uint32_t mask) {
|
339 |
+
return blendChoice(maskForComplex(mask));
|
340 |
+
}
|
341 |
+
|
342 |
+
constexpr int blendChoiceComplexDbl(uint32_t mask) {
|
343 |
+
return blendChoiceDbl(maskForComplexDbl(mask));
|
344 |
+
}
|
345 |
+
|
346 |
+
constexpr vbool32 VsxComplexMask1(uint32_t mask) {
|
347 |
+
return VsxMask1(maskForComplex(mask));
|
348 |
+
}
|
349 |
+
|
350 |
+
constexpr vbool32 VsxComplexMask2(uint32_t mask) {
|
351 |
+
uint32_t mask2 = (mask & 0xF) >> 2;
|
352 |
+
return VsxMask1(maskForComplex(mask2));
|
353 |
+
}
|
354 |
+
|
355 |
+
constexpr vbool64 VsxComplexDblMask1(uint32_t mask) { return VsxDblMask1(mask); }
|
356 |
+
|
357 |
+
constexpr vbool64 VsxComplexDblMask2(uint32_t mask) {
|
358 |
+
uint32_t mask2 = (mask & 0xF) >> 2;
|
359 |
+
return VsxDblMask1(mask2);
|
360 |
+
}
|
361 |
+
|
362 |
+
// constants
|
363 |
+
namespace at {
|
364 |
+
namespace vec {
|
365 |
+
// See Note [CPU_CAPABILITY namespace]
|
366 |
+
inline namespace CPU_CAPABILITY {
|
367 |
+
//
|
368 |
+
constexpr int offset0 = 0;
|
369 |
+
constexpr int offset16 = 16;
|
370 |
+
|
371 |
+
// #Constants
|
372 |
+
const vuint8 mask_zero_bits = vuint8{128, 128, 128, 128, 128, 128, 128, 128,
|
373 |
+
128, 128, 128, 128, 96, 64, 32, 0};
|
374 |
+
|
375 |
+
const vuint8 swap_mask =
|
376 |
+
vuint8{4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11};
|
377 |
+
|
378 |
+
const vint32 v0x7f = vec_splats(0x7f);
|
379 |
+
const vint32 vi_0 = vec_splats((int)(0));
|
380 |
+
const vint32 vi_1 = vec_splats((int)1);
|
381 |
+
const vint32 vi_2 = vec_splats((int)2);
|
382 |
+
const vint32 vi_4 = vec_splats((int)4);
|
383 |
+
const vint32 vi_inv1 = vec_splats((int)~1);
|
384 |
+
const vuint32 vu_29 = vec_splats(29u);
|
385 |
+
const vuint32 vu_23 = vec_splats(23u);
|
386 |
+
|
387 |
+
const vbool32 inv_mant_mask = (vbool32)vec_splats((unsigned int)~0xff800000);
|
388 |
+
const vbool32 sign_mask = (vbool32)vec_splats((int)0x80000000);
|
389 |
+
const vbool32 real_mask = vbool32{0xFFFFFFFF, 0x0, 0xFFFFFFFF, 0x0};
|
390 |
+
const vbool32 imag_mask = vbool32{0x0, 0xFFFFFFFF, 0x0, 0xFFFFFFFF};
|
391 |
+
const vbool32 isign_mask = vbool32{0x0, 0x80000000, 0x0, 0x80000000};
|
392 |
+
const vbool32 rsign_mask = vbool32{0x80000000, 0x0, 0x80000000, 0x0};
|
393 |
+
|
394 |
+
const vbool64 vd_sign_mask = vbool64{0x8000000000000000, 0x8000000000000000};
|
395 |
+
const vbool64 vd_imag_mask = vbool64{0x0, 0xFFFFFFFFFFFFFFFF};
|
396 |
+
const vbool64 vd_real_mask = vbool64{0xFFFFFFFFFFFFFFFF, 0x0};
|
397 |
+
const vbool64 vd_isign_mask = vbool64{0x0, 0x8000000000000000};
|
398 |
+
const vbool64 vd_rsign_mask = vbool64{0x8000000000000000, 0x0};
|
399 |
+
|
400 |
+
const vfloat32 zero = vec_splats(0.f);
|
401 |
+
const vfloat32 half = vec_splats(0.5f);
|
402 |
+
const vfloat32 one = vec_splats(1.f);
|
403 |
+
const vfloat32 two = vec_splats(2.0f);
|
404 |
+
const vfloat32 _4div_pi = vec_splats(1.27323954473516f);
|
405 |
+
const vfloat32 v_inf = (vfloat32)vec_splats(0x7f800000u);
|
406 |
+
const vfloat32 v_minus_inf = vfloat32{ 0xff800000u, 0xff800000u, 0xff800000u, 0xff800000u };
|
407 |
+
const vfloat32 v_nan = (vfloat32)vec_splats(0x7fffffff);
|
408 |
+
const vfloat32 log10e_inv = vec_splats(0.43429448190325176f);
|
409 |
+
const vfloat32 log2e_inv = vec_splats(1.4426950408889634f);
|
410 |
+
const vfloat32 log2eB_inv = vec_splats(1.442695036924675f);
|
411 |
+
const vfloat32 cephes_SQRTHF = vec_splats(0.707106781186547524f);
|
412 |
+
const vfloat32 coscof_p0 = vec_splats(2.443315711809948E-005f);
|
413 |
+
const vfloat32 coscof_p1 = vec_splats(-1.388731625493765E-003f);
|
414 |
+
const vfloat32 coscof_p2 = vec_splats(4.166664568298827E-002f);
|
415 |
+
const vfloat32 exp_hi = vec_splats(104.f);
|
416 |
+
const vfloat32 exp_lo = vec_splats(-104.f);
|
417 |
+
const vfloat32 exp_p0 = vec_splats(0.000198527617612853646278381f);
|
418 |
+
const vfloat32 exp_p1 = vec_splats((0.00139304355252534151077271f));
|
419 |
+
const vfloat32 exp_p2 = vec_splats(0.00833336077630519866943359f);
|
420 |
+
const vfloat32 exp_p3 = vec_splats(0.0416664853692054748535156f);
|
421 |
+
const vfloat32 exp_p4 = vec_splats(0.166666671633720397949219f);
|
422 |
+
const vfloat32 exp_p5 = vec_splats(0.5f);
|
423 |
+
const vfloat32 log_p0 = vec_splats(7.0376836292E-2f);
|
424 |
+
const vfloat32 log_p1 = vec_splats(-1.1514610310E-1f);
|
425 |
+
const vfloat32 log_p2 = vec_splats(1.1676998740E-1f);
|
426 |
+
const vfloat32 log_p3 = vec_splats(-1.2420140846E-1f);
|
427 |
+
const vfloat32 log_p4 = vec_splats(+1.4249322787E-1f);
|
428 |
+
const vfloat32 log_p5 = vec_splats(-1.6668057665E-1f);
|
429 |
+
const vfloat32 log_p6 = vec_splats(+2.0000714765E-1f);
|
430 |
+
const vfloat32 log_p7 = vec_splats(-2.4999993993E-1f);
|
431 |
+
const vfloat32 log_p8 = vec_splats(+3.3333331174E-1f);
|
432 |
+
const vfloat32 log_q1 = vec_splats(-2.12194440e-4f);
|
433 |
+
const vfloat32 log_q2 = vec_splats(0.693359375f);
|
434 |
+
const vfloat32 max_logf = vec_splats(88.02969187150841f);
|
435 |
+
const vfloat32 max_numf = vec_splats(1.7014117331926442990585209174225846272e38f);
|
436 |
+
const vfloat32 min_inf = (vfloat32)vec_splats(0xff800000u);
|
437 |
+
const vfloat32 min_norm_pos = (vfloat32)vec_splats(0x0800000u);
|
438 |
+
const vfloat32 minus_cephes_dp1 = vec_splats(-0.78515625f);
|
439 |
+
const vfloat32 minus_cephes_dp2 = vec_splats(-2.4187564849853515625e-4f);
|
440 |
+
const vfloat32 minus_cephes_dp3 = vec_splats(-3.77489497744594108e-8f);
|
441 |
+
const vfloat32 negln2f_hi = vec_splats(-0.693145751953125f);
|
442 |
+
const vfloat32 negln2f_lo = vec_splats(-1.428606765330187045e-06f);
|
443 |
+
const vfloat32 p0 = vec_splats(2.03721912945E-4f);
|
444 |
+
const vfloat32 p1 = vec_splats(8.33028376239E-3f);
|
445 |
+
const vfloat32 p2 = vec_splats(1.66667160211E-1f);
|
446 |
+
const vfloat32 sincof_p0 = vec_splats(-1.9515295891E-4f);
|
447 |
+
const vfloat32 sincof_p1 = vec_splats(8.3321608736E-3f);
|
448 |
+
const vfloat32 sincof_p2 = vec_splats(-1.6666654611E-1f);
|
449 |
+
const vfloat32 tanh_0p625 = vec_splats(0.625f);
|
450 |
+
const vfloat32 tanh_half_max = vec_splats(44.014845935754205f);
|
451 |
+
const vfloat32 tanh_p0 = vec_splats(-5.70498872745E-3f);
|
452 |
+
const vfloat32 tanh_p1 = vec_splats(2.06390887954E-2f);
|
453 |
+
const vfloat32 tanh_p2 = vec_splats(-5.37397155531E-2f);
|
454 |
+
const vfloat32 tanh_p3 = vec_splats(1.33314422036E-1f);
|
455 |
+
const vfloat32 tanh_p4 = vec_splats(-3.33332819422E-1f);
|
456 |
+
const vfloat32 vcheck = vec_splats((float)(1LL << 24));
|
457 |
+
const vfloat32 imag_one = vfloat32{0.f, 1.f, 0.f, 1.f};
|
458 |
+
const vfloat32 imag_half = vfloat32{0.f, 0.5f, 0.f, 0.5f};
|
459 |
+
const vfloat32 sqrt2_2 = vfloat32{0.70710676908493042f, 0.70710676908493042,
|
460 |
+
0.70710676908493042, 0.70710676908493042};
|
461 |
+
const vfloat32 pi_2 = vfloat32{M_PI / 2, 0.0, M_PI / 2, 0.0};
|
462 |
+
const vfloat32 vf_89 = vfloat32{89.f, 89.f, 89.f, 89.f};
|
463 |
+
const vfloat64 vd_one = vec_splats(1.0);
|
464 |
+
const vfloat64 vd_zero = vec_splats(0.0);
|
465 |
+
const vfloat64 vd_log10e_inv = vec_splats(0.43429448190325176);
|
466 |
+
const vfloat64 vd_log2e_inv = vec_splats(1.4426950408889634);
|
467 |
+
const vfloat64 vd_imag_one = vfloat64{0.0, 1.0};
|
468 |
+
const vfloat64 vd_imag_half = vfloat64{0.0, 0.5};
|
469 |
+
const vfloat64 vd_sqrt2_2 = vfloat64{0.70710678118654757, 0.70710678118654757};
|
470 |
+
const vfloat64 vd_pi_2 = vfloat64{M_PI / 2.0, 0.0};
|
471 |
+
|
472 |
+
} // namespace
|
473 |
+
} // namespace vec
|
474 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/zarch/vec256_zarch.h
ADDED
@@ -0,0 +1,2818 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <cmath>
|
2 |
+
#include <cstring>
|
3 |
+
#include <limits>
|
4 |
+
#include <type_traits>
|
5 |
+
#include <utility>
|
6 |
+
#if defined(__clang__)
|
7 |
+
#include <sleef.h>
|
8 |
+
#elif defined(__GNUC__) || defined(__GNUG__)
|
9 |
+
#include <sleef.h>
|
10 |
+
#include <vecintrin.h>
|
11 |
+
#endif
|
12 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
13 |
+
#include <ATen/cpu/vec/vec_base.h>
|
14 |
+
#include <c10/util/complex.h>
|
15 |
+
|
16 |
+
#define SLEEF_MEMORY_WORKAROUND
|
17 |
+
|
18 |
+
namespace at {
|
19 |
+
namespace vec {
|
20 |
+
|
21 |
+
// See Note [CPU_CAPABILITY namespace]
|
22 |
+
inline namespace CPU_CAPABILITY {
|
23 |
+
|
24 |
+
template <typename T>
|
25 |
+
constexpr bool is_zarch_implemented() {
|
26 |
+
return (
|
27 |
+
std::is_same<T, float>::value || std::is_same<T, double>::value ||
|
28 |
+
std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value ||
|
29 |
+
std::is_same<T, uint16_t>::value || std::is_same<T, int16_t>::value ||
|
30 |
+
std::is_same<T, int32_t>::value || std::is_same<T, int64_t>::value);
|
31 |
+
}
|
32 |
+
|
33 |
+
template <typename T>
|
34 |
+
constexpr bool is_zarch_implemented_quant() {
|
35 |
+
return (
|
36 |
+
std::is_same<T, c10::qint32>::value ||
|
37 |
+
std::is_same<T, c10::qint8>::value ||
|
38 |
+
std::is_same<T, c10::quint8>::value);
|
39 |
+
}
|
40 |
+
|
41 |
+
template <typename T>
|
42 |
+
constexpr bool is_zarch_implemented_complex() {
|
43 |
+
return std::is_same<T, c10::complex<float>>::value ||
|
44 |
+
std::is_same<T, c10::complex<double>>::value;
|
45 |
+
}
|
46 |
+
|
47 |
+
constexpr int offset0 = 0;
|
48 |
+
constexpr int offset16 = 16;
|
49 |
+
|
50 |
+
template <int N>
|
51 |
+
struct VecBinaryType {
|
52 |
+
using type __attribute__((vector_size(16))) = uintmax_t;
|
53 |
+
};
|
54 |
+
|
55 |
+
template <>
|
56 |
+
struct VecBinaryType<8> {
|
57 |
+
using type = __attribute__((vector_size(16))) unsigned long long;
|
58 |
+
};
|
59 |
+
|
60 |
+
template <>
|
61 |
+
struct VecBinaryType<4> {
|
62 |
+
using type = __attribute__((vector_size(16))) unsigned int;
|
63 |
+
};
|
64 |
+
|
65 |
+
template <>
|
66 |
+
struct VecBinaryType<2> {
|
67 |
+
using type = __attribute__((vector_size(16))) unsigned short;
|
68 |
+
};
|
69 |
+
|
70 |
+
template <>
|
71 |
+
struct VecBinaryType<1> {
|
72 |
+
using type = __attribute__((vector_size(16))) unsigned char;
|
73 |
+
};
|
74 |
+
|
75 |
+
template <typename T>
|
76 |
+
struct VecInnerType {
|
77 |
+
using Type __attribute__((vector_size(16))) = T;
|
78 |
+
using BinaryType = typename VecBinaryType<sizeof(T)>::type;
|
79 |
+
using ElementType = T;
|
80 |
+
static constexpr int size = 16 / sizeof(T);
|
81 |
+
};
|
82 |
+
|
83 |
+
// define for int64_t properly for load
|
84 |
+
template <>
|
85 |
+
struct VecInnerType<int64_t> {
|
86 |
+
using Type = __attribute__((vector_size(16))) signed long long;
|
87 |
+
using ElementType = signed long long;
|
88 |
+
using BinaryType = typename VecBinaryType<sizeof(signed long long)>::type;
|
89 |
+
static constexpr int size = 16 / sizeof(signed long long);
|
90 |
+
};
|
91 |
+
|
92 |
+
template <typename T>
|
93 |
+
using ZSimdVect = typename VecInnerType<T>::Type;
|
94 |
+
template <typename T>
|
95 |
+
using ZSimdVectBinary = typename VecInnerType<T>::BinaryType;
|
96 |
+
template <typename T>
|
97 |
+
using ZSimdVectElement = typename VecInnerType<T>::ElementType;
|
98 |
+
|
99 |
+
constexpr int blendChoiceInner(
|
100 |
+
const uint64_t mask,
|
101 |
+
const uint64_t half1 = 0xF,
|
102 |
+
const uint64_t half2 = 0xF0) {
|
103 |
+
uint64_t none = 0;
|
104 |
+
uint64_t both = half1 | half2;
|
105 |
+
// clamp it between 0 and both
|
106 |
+
auto res_mask = mask & both;
|
107 |
+
// return (a._vec0, a._vec1)
|
108 |
+
if (res_mask == none)
|
109 |
+
return 0;
|
110 |
+
// return (b._vec0,b._vec1)
|
111 |
+
else if (res_mask == both)
|
112 |
+
return 1;
|
113 |
+
// return (b._vec0, a._vec1)
|
114 |
+
else if (res_mask == half1)
|
115 |
+
return 2;
|
116 |
+
// return (a._vec0,b._vec1)
|
117 |
+
else if (res_mask == half2)
|
118 |
+
return 3;
|
119 |
+
// return (*_vec0,a._vec1)
|
120 |
+
else if (res_mask > 0 && res_mask < half1)
|
121 |
+
return 4;
|
122 |
+
// return (*_vec0,b._vec1)
|
123 |
+
else if ((res_mask & half2) == half2)
|
124 |
+
return 5;
|
125 |
+
// return (a._vec0,*_vec1)
|
126 |
+
else if ((res_mask & half1) == 0 && res_mask > half1)
|
127 |
+
return 6;
|
128 |
+
// return (b._vec0,*_vec1)
|
129 |
+
else if ((res_mask & half1) == half1 && res_mask > half1)
|
130 |
+
return 7;
|
131 |
+
// return (*_vec0,*_vec1)
|
132 |
+
return 8;
|
133 |
+
}
|
134 |
+
|
135 |
+
// it can be used to emulate blend faster
|
136 |
+
template <int Z>
|
137 |
+
constexpr int blendChoice(const uint64_t mask) {
|
138 |
+
static_assert(Z < 1 || Z > 8, "not implemented");
|
139 |
+
return blendChoiceInner(mask);
|
140 |
+
}
|
141 |
+
|
142 |
+
template <>
|
143 |
+
constexpr int blendChoice<1>(const uint64_t mask) {
|
144 |
+
return blendChoiceInner(mask, 0x0000FFFF, 0xFFFF0000);
|
145 |
+
}
|
146 |
+
|
147 |
+
template <>
|
148 |
+
constexpr int blendChoice<2>(const uint64_t mask) {
|
149 |
+
return blendChoiceInner(mask, 0x00FF, 0xFF00);
|
150 |
+
}
|
151 |
+
|
152 |
+
template <>
|
153 |
+
constexpr int blendChoice<4>(const uint64_t mask) {
|
154 |
+
return blendChoiceInner(mask, 0xF, 0xF0);
|
155 |
+
}
|
156 |
+
|
157 |
+
template <>
|
158 |
+
constexpr int blendChoice<8>(const uint64_t mask) {
|
159 |
+
// clamp it 0 and 0xF
|
160 |
+
return blendChoiceInner(mask, 0x3, 0xC);
|
161 |
+
}
|
162 |
+
|
163 |
+
template <int N>
|
164 |
+
constexpr auto GetMask1(const uint64_t mask) {
|
165 |
+
return typename VecBinaryType<N>::type{};
|
166 |
+
}
|
167 |
+
|
168 |
+
template <int N>
|
169 |
+
constexpr auto GetMask2(const uint64_t mask) {
|
170 |
+
return typename VecBinaryType<N>::type{};
|
171 |
+
}
|
172 |
+
|
173 |
+
template <>
|
174 |
+
constexpr auto GetMask1<1>(const uint64_t mask) {
|
175 |
+
constexpr uint8_t t = (int)0xFF;
|
176 |
+
uint8_t g0 = (mask & 1) * t;
|
177 |
+
uint8_t g1 = ((mask & 2) >> 1) * t;
|
178 |
+
uint8_t g2 = ((mask & 4) >> 2) * t;
|
179 |
+
uint8_t g3 = ((mask & 8) >> 3) * t;
|
180 |
+
uint8_t g4 = ((mask & 16) >> 4) * t;
|
181 |
+
uint8_t g5 = ((mask & 32) >> 5) * t;
|
182 |
+
uint8_t g6 = ((mask & 64) >> 6) * t;
|
183 |
+
uint8_t g7 = ((mask & 128) >> 7) * t;
|
184 |
+
uint8_t g8 = ((mask & 256) >> 8) * t;
|
185 |
+
uint8_t g9 = ((mask & 512) >> 9) * t;
|
186 |
+
uint8_t g10 = ((mask & 1024) >> 10) * t;
|
187 |
+
uint8_t g11 = ((mask & 2048) >> 11) * t;
|
188 |
+
uint8_t g12 = ((mask & 4096) >> 12) * t;
|
189 |
+
uint8_t g13 = ((mask & 8192) >> 13) * t;
|
190 |
+
uint8_t g14 = ((mask & 16384) >> 14) * t;
|
191 |
+
uint8_t g15 = ((mask & 32768) >> 15) * t;
|
192 |
+
return (typename VecBinaryType<1>::type){
|
193 |
+
g0, g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12, g13, g14, g15};
|
194 |
+
}
|
195 |
+
|
196 |
+
template <>
|
197 |
+
constexpr auto GetMask2<1>(const uint64_t mask) {
|
198 |
+
uint64_t mask2 = (mask & 0xFFFFFFFF) >> 16;
|
199 |
+
return GetMask1<1>(mask2);
|
200 |
+
}
|
201 |
+
|
202 |
+
template <>
|
203 |
+
constexpr auto GetMask1<2>(const uint64_t mask) {
|
204 |
+
constexpr uint16_t t = (int)0xFFFF;
|
205 |
+
uint16_t g0 = (mask & 1) * t;
|
206 |
+
uint16_t g1 = ((mask & 2) >> 1) * t;
|
207 |
+
uint16_t g2 = ((mask & 4) >> 2) * t;
|
208 |
+
uint16_t g3 = ((mask & 8) >> 3) * t;
|
209 |
+
uint16_t g4 = ((mask & 16) >> 4) * t;
|
210 |
+
uint16_t g5 = ((mask & 32) >> 5) * t;
|
211 |
+
uint16_t g6 = ((mask & 64) >> 6) * t;
|
212 |
+
uint16_t g7 = ((mask & 128) >> 7) * t;
|
213 |
+
return (typename VecBinaryType<2>::type){g0, g1, g2, g3, g4, g5, g6, g7};
|
214 |
+
}
|
215 |
+
|
216 |
+
template <>
|
217 |
+
constexpr auto GetMask2<2>(const uint64_t mask) {
|
218 |
+
uint64_t mask2 = (mask & 0xFFFF) >> 8;
|
219 |
+
return GetMask1<2>(mask2);
|
220 |
+
}
|
221 |
+
|
222 |
+
template <>
|
223 |
+
constexpr auto GetMask1<4>(const uint64_t mask) {
|
224 |
+
uint32_t g0 = (mask & 1) * 0xffffffff;
|
225 |
+
uint32_t g1 = ((mask & 2) >> 1) * 0xffffffff;
|
226 |
+
uint32_t g2 = ((mask & 4) >> 2) * 0xffffffff;
|
227 |
+
uint32_t g3 = ((mask & 8) >> 3) * 0xffffffff;
|
228 |
+
return (typename VecBinaryType<4>::type){g0, g1, g2, g3};
|
229 |
+
}
|
230 |
+
|
231 |
+
template <>
|
232 |
+
constexpr auto GetMask2<4>(const uint64_t mask) {
|
233 |
+
uint64_t mask2 = (mask & 0xFF) >> 4;
|
234 |
+
return GetMask1<4>(mask2);
|
235 |
+
}
|
236 |
+
|
237 |
+
template <>
|
238 |
+
constexpr auto GetMask1<8>(const uint64_t mask) {
|
239 |
+
uint64_t g0 = (mask & 1) * 0xffffffffffffffff;
|
240 |
+
uint64_t g1 = ((mask & 2) >> 1) * 0xffffffffffffffff;
|
241 |
+
return (typename VecBinaryType<8>::type){g0, g1};
|
242 |
+
}
|
243 |
+
|
244 |
+
template <>
|
245 |
+
constexpr auto GetMask2<8>(const uint64_t mask) {
|
246 |
+
uint64_t mask2 = (mask & 0xF) >> 2;
|
247 |
+
return GetMask1<8>(mask2);
|
248 |
+
}
|
249 |
+
|
250 |
+
template <int Z>
|
251 |
+
constexpr int maskForComplex(uint32_t mask) {
|
252 |
+
return 0;
|
253 |
+
}
|
254 |
+
|
255 |
+
template <>
|
256 |
+
constexpr int maskForComplex<8>(uint32_t mask) {
|
257 |
+
mask = mask & 0xF;
|
258 |
+
int complex_mask = 0;
|
259 |
+
if (mask & 1)
|
260 |
+
complex_mask |= 3;
|
261 |
+
if (mask & 2)
|
262 |
+
complex_mask |= (3 << 2);
|
263 |
+
if (mask & 4)
|
264 |
+
complex_mask |= (3 << 4);
|
265 |
+
if (mask & 8)
|
266 |
+
complex_mask |= (3 << 6);
|
267 |
+
return complex_mask;
|
268 |
+
}
|
269 |
+
|
270 |
+
template <>
|
271 |
+
constexpr int maskForComplex<16>(uint32_t mask) {
|
272 |
+
mask = mask & 0x3;
|
273 |
+
int complex_mask = 0;
|
274 |
+
if (mask & 1)
|
275 |
+
complex_mask |= 3;
|
276 |
+
if (mask & 2)
|
277 |
+
complex_mask |= (3 << 2);
|
278 |
+
return complex_mask;
|
279 |
+
}
|
280 |
+
|
281 |
+
template <typename T = c10::complex<float>>
|
282 |
+
constexpr int blend_choice() {
|
283 |
+
return 0xAA;
|
284 |
+
}
|
285 |
+
|
286 |
+
template <>
|
287 |
+
constexpr int blend_choice<c10::complex<double>>() {
|
288 |
+
return 0x0A;
|
289 |
+
}
|
290 |
+
|
291 |
+
constexpr int64_t allbitset(int16_t x) {
|
292 |
+
int64_t onex = 1;
|
293 |
+
return (onex << x) - onex;
|
294 |
+
}
|
295 |
+
|
296 |
+
namespace { /* unnamed namespace */
|
297 |
+
|
298 |
+
ZSimdVect<float> vec_mergee(ZSimdVect<float> x, ZSimdVect<float> y) {
|
299 |
+
constexpr ZSimdVectBinary<uint8_t> mergee_mask{
|
300 |
+
0, 1, 2, 3, 16, 17, 18, 19, 8, 9, 10, 11, 24, 25, 26, 27};
|
301 |
+
return vec_perm(x, y, mergee_mask);
|
302 |
+
}
|
303 |
+
|
304 |
+
ZSimdVect<double> vec_mergee(ZSimdVect<double> x, ZSimdVect<double> y) {
|
305 |
+
return vec_mergeh(x, y);
|
306 |
+
}
|
307 |
+
|
308 |
+
ZSimdVect<float> vec_mergeo(ZSimdVect<float> x, ZSimdVect<float> y) {
|
309 |
+
constexpr ZSimdVectBinary<uint8_t> mergeo_mask{
|
310 |
+
4, 5, 6, 7, 20, 21, 22, 23, 12, 13, 14, 15, 28, 29, 30, 31};
|
311 |
+
return vec_perm(x, y, mergeo_mask);
|
312 |
+
}
|
313 |
+
|
314 |
+
ZSimdVect<double> vec_mergeo(ZSimdVect<double> x, ZSimdVect<double> y) {
|
315 |
+
return vec_mergel(x, y);
|
316 |
+
}
|
317 |
+
|
318 |
+
} /* unnamed namespace */
|
319 |
+
|
320 |
+
//
|
321 |
+
template <typename T>
|
322 |
+
constexpr auto GetBpermZeroMask() {
|
323 |
+
return ZSimdVectBinary<uint8_t>{
|
324 |
+
128,
|
325 |
+
128,
|
326 |
+
128,
|
327 |
+
128,
|
328 |
+
128,
|
329 |
+
128,
|
330 |
+
128,
|
331 |
+
128,
|
332 |
+
128,
|
333 |
+
128,
|
334 |
+
128,
|
335 |
+
128,
|
336 |
+
96,
|
337 |
+
64,
|
338 |
+
32,
|
339 |
+
0};
|
340 |
+
}
|
341 |
+
|
342 |
+
template <>
|
343 |
+
constexpr auto GetBpermZeroMask<double>() {
|
344 |
+
return ZSimdVectBinary<uint8_t>{
|
345 |
+
128,
|
346 |
+
128,
|
347 |
+
128,
|
348 |
+
128,
|
349 |
+
128,
|
350 |
+
128,
|
351 |
+
128,
|
352 |
+
128,
|
353 |
+
128,
|
354 |
+
128,
|
355 |
+
128,
|
356 |
+
128,
|
357 |
+
128,
|
358 |
+
128,
|
359 |
+
64,
|
360 |
+
0};
|
361 |
+
}
|
362 |
+
|
363 |
+
constexpr auto GetSwapMaskFloat() {
|
364 |
+
return ZSimdVectBinary<uint8_t>{
|
365 |
+
4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11};
|
366 |
+
}
|
367 |
+
|
368 |
+
template <typename T>
|
369 |
+
struct Vectorized<T, std::enable_if_t<is_zarch_implemented<T>()>> {
|
370 |
+
public:
|
371 |
+
using value_type = T;
|
372 |
+
using vtype = ZSimdVect<T>;
|
373 |
+
using vmaskType = ZSimdVectBinary<T>;
|
374 |
+
using size_type = int;
|
375 |
+
// because of gcc inconsistency for int64_t we are obliged to use this, not
|
376 |
+
// value_type
|
377 |
+
using ElementType = ZSimdVectElement<T>;
|
378 |
+
using vinner_data = std::pair<vtype, vtype>;
|
379 |
+
|
380 |
+
private:
|
381 |
+
vtype _vec0;
|
382 |
+
vtype _vec1;
|
383 |
+
|
384 |
+
public:
|
385 |
+
static constexpr size_type size() {
|
386 |
+
return VECTOR_WIDTH / sizeof(ElementType);
|
387 |
+
}
|
388 |
+
Vectorized() {}
|
389 |
+
|
390 |
+
C10_ALWAYS_INLINE Vectorized(vtype v) : _vec0{v}, _vec1{v} {}
|
391 |
+
C10_ALWAYS_INLINE Vectorized(const vinner_data &v) : _vec0{v.first}, _vec1{v.second} {}
|
392 |
+
C10_ALWAYS_INLINE Vectorized(vtype v1, vtype v2) : _vec0{v1}, _vec1{v2} {}
|
393 |
+
C10_ALWAYS_INLINE Vectorized(T s)
|
394 |
+
: _vec0{vec_splats((ElementType)s)}, _vec1{vec_splats((ElementType)s)} {}
|
395 |
+
|
396 |
+
static Vectorized<value_type> C10_ALWAYS_INLINE
|
397 |
+
loadu(const void* ptr, int count = size()) {
|
398 |
+
if (count == size()) {
|
399 |
+
return {
|
400 |
+
vec_xl(offset0, reinterpret_cast<const ElementType*>(ptr)),
|
401 |
+
vec_xl(offset16, reinterpret_cast<const ElementType*>(ptr))};
|
402 |
+
}
|
403 |
+
|
404 |
+
__at_align__ ElementType tmp_values[size()] = {};
|
405 |
+
std::memcpy(tmp_values, ptr, std::min(count, size()) * sizeof(ElementType));
|
406 |
+
|
407 |
+
return {
|
408 |
+
vec_xl(offset0, reinterpret_cast<const ElementType*>(tmp_values)),
|
409 |
+
vec_xl(offset16, reinterpret_cast<const ElementType*>(tmp_values))};
|
410 |
+
}
|
411 |
+
|
412 |
+
static Vectorized<value_type> C10_ALWAYS_INLINE
|
413 |
+
loadu_one_fourth(const void* ptr) {
|
414 |
+
// load only first 8 bytes
|
415 |
+
// only intended to be used with uint8_t
|
416 |
+
return loadu(ptr, 8 / sizeof(ElementType));
|
417 |
+
}
|
418 |
+
|
419 |
+
void C10_ALWAYS_INLINE store(void* ptr, int count = size()) const {
|
420 |
+
if (count == size()) {
|
421 |
+
vec_xst(_vec0, offset0, reinterpret_cast<ElementType*>(ptr));
|
422 |
+
vec_xst(_vec1, offset16, reinterpret_cast<ElementType*>(ptr));
|
423 |
+
} else if (count > 0) {
|
424 |
+
__at_align__ ElementType tmp_values[size()];
|
425 |
+
vec_xst(_vec0, offset0, reinterpret_cast<ElementType*>(tmp_values));
|
426 |
+
vec_xst(_vec1, offset16, reinterpret_cast<ElementType*>(tmp_values));
|
427 |
+
std::memcpy(
|
428 |
+
ptr, tmp_values, std::min(count, size()) * sizeof(ElementType));
|
429 |
+
}
|
430 |
+
}
|
431 |
+
|
432 |
+
C10_ALWAYS_INLINE const vtype& vec0() const {
|
433 |
+
return _vec0;
|
434 |
+
}
|
435 |
+
|
436 |
+
C10_ALWAYS_INLINE const vtype& vec1() const {
|
437 |
+
return _vec1;
|
438 |
+
}
|
439 |
+
|
440 |
+
C10_ALWAYS_INLINE vinner_data data() const {
|
441 |
+
return std::make_pair<>(_vec0, _vec1);
|
442 |
+
}
|
443 |
+
|
444 |
+
C10_ALWAYS_INLINE operator vinner_data() const {
|
445 |
+
return data();
|
446 |
+
}
|
447 |
+
|
448 |
+
C10_ALWAYS_INLINE const vmaskType vecb0() const {
|
449 |
+
return (vmaskType)_vec0;
|
450 |
+
}
|
451 |
+
C10_ALWAYS_INLINE const vmaskType vecb1() const {
|
452 |
+
return (vmaskType)_vec1;
|
453 |
+
}
|
454 |
+
|
455 |
+
static Vectorized<T> C10_ALWAYS_INLINE blendv(
|
456 |
+
const Vectorized<T>& a,
|
457 |
+
const Vectorized<T>& b,
|
458 |
+
const Vectorized<T>& mask) {
|
459 |
+
return {
|
460 |
+
vec_sel(a._vec0, b._vec0, mask.vecb0()),
|
461 |
+
vec_sel(a._vec1, b._vec1, mask.vecb1())};
|
462 |
+
}
|
463 |
+
|
464 |
+
template <typename U = T, std::enable_if_t<(sizeof(U) == 8), int> = 0>
|
465 |
+
C10_ALWAYS_INLINE Vectorized(T s1, T s2, T s3, T s4)
|
466 |
+
: _vec0{s1, s2}, _vec1{s3, s4} {}
|
467 |
+
|
468 |
+
template <typename U = T, std::enable_if_t<(sizeof(U) == 4), int> = 0>
|
469 |
+
C10_ALWAYS_INLINE Vectorized(T s1, T s2, T s3, T s4, T s5, T s6, T s7, T s8)
|
470 |
+
: _vec0{s1, s2, s3, s4}, _vec1{s5, s6, s7, s8} {}
|
471 |
+
|
472 |
+
template <typename U = T, std::enable_if_t<(sizeof(U) == 2), int> = 0>
|
473 |
+
C10_ALWAYS_INLINE Vectorized(
|
474 |
+
T s1,
|
475 |
+
T s2,
|
476 |
+
T s3,
|
477 |
+
T s4,
|
478 |
+
T s5,
|
479 |
+
T s6,
|
480 |
+
T s7,
|
481 |
+
T s8,
|
482 |
+
T s9,
|
483 |
+
T s10,
|
484 |
+
T s11,
|
485 |
+
T s12,
|
486 |
+
T s13,
|
487 |
+
T s14,
|
488 |
+
T s15,
|
489 |
+
T s16)
|
490 |
+
: _vec0{s1, s2, s3, s4, s5, s6, s7, s8},
|
491 |
+
_vec1{s9, s10, s11, s12, s13, s14, s15, s16} {}
|
492 |
+
|
493 |
+
template <typename U = T, std::enable_if_t<(sizeof(U) == 1), int> = 0>
|
494 |
+
C10_ALWAYS_INLINE Vectorized(
|
495 |
+
T s1,
|
496 |
+
T s2,
|
497 |
+
T s3,
|
498 |
+
T s4,
|
499 |
+
T s5,
|
500 |
+
T s6,
|
501 |
+
T s7,
|
502 |
+
T s8,
|
503 |
+
T s9,
|
504 |
+
T s10,
|
505 |
+
T s11,
|
506 |
+
T s12,
|
507 |
+
T s13,
|
508 |
+
T s14,
|
509 |
+
T s15,
|
510 |
+
T s16,
|
511 |
+
T s17,
|
512 |
+
T s18,
|
513 |
+
T s19,
|
514 |
+
T s20,
|
515 |
+
T s21,
|
516 |
+
T s22,
|
517 |
+
T s23,
|
518 |
+
T s24,
|
519 |
+
T s25,
|
520 |
+
T s26,
|
521 |
+
T s27,
|
522 |
+
T s28,
|
523 |
+
T s29,
|
524 |
+
T s30,
|
525 |
+
T s31,
|
526 |
+
T s32)
|
527 |
+
: _vec0{s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15, s16},
|
528 |
+
_vec1{
|
529 |
+
s17,
|
530 |
+
s18,
|
531 |
+
s19,
|
532 |
+
s20,
|
533 |
+
s21,
|
534 |
+
s22,
|
535 |
+
s23,
|
536 |
+
s24,
|
537 |
+
s25,
|
538 |
+
s26,
|
539 |
+
s27,
|
540 |
+
s28,
|
541 |
+
s29,
|
542 |
+
s30,
|
543 |
+
s31,
|
544 |
+
s32} {}
|
545 |
+
|
546 |
+
template <typename step_t, typename U = T>
|
547 |
+
static std::enable_if_t<sizeof(U) == 8, Vectorized<T>> arange(
|
548 |
+
T base = 0,
|
549 |
+
step_t step = static_cast<step_t>(1)) {
|
550 |
+
return Vectorized<T>(base, base + step, base + 2 * step, base + 3 * step);
|
551 |
+
}
|
552 |
+
|
553 |
+
template <typename step_t, typename U = T>
|
554 |
+
static std::enable_if_t<sizeof(U) == 4, Vectorized<T>> arange(
|
555 |
+
T base = 0,
|
556 |
+
step_t step = static_cast<step_t>(1)) {
|
557 |
+
return Vectorized<T>(
|
558 |
+
base,
|
559 |
+
base + step,
|
560 |
+
base + 2 * step,
|
561 |
+
base + 3 * step,
|
562 |
+
base + 4 * step,
|
563 |
+
base + 5 * step,
|
564 |
+
base + 6 * step,
|
565 |
+
base + 7 * step);
|
566 |
+
}
|
567 |
+
|
568 |
+
template <typename step_t, typename U = T>
|
569 |
+
static std::enable_if_t<sizeof(U) == 2, Vectorized<T>> arange(
|
570 |
+
T base = 0,
|
571 |
+
step_t step = static_cast<step_t>(1)) {
|
572 |
+
return Vectorized<T>(
|
573 |
+
base,
|
574 |
+
base + step,
|
575 |
+
base + 2 * step,
|
576 |
+
base + 3 * step,
|
577 |
+
base + 4 * step,
|
578 |
+
base + 5 * step,
|
579 |
+
base + 6 * step,
|
580 |
+
base + 7 * step,
|
581 |
+
base + 8 * step,
|
582 |
+
base + 9 * step,
|
583 |
+
base + 10 * step,
|
584 |
+
base + 11 * step,
|
585 |
+
base + 12 * step,
|
586 |
+
base + 13 * step,
|
587 |
+
base + 14 * step,
|
588 |
+
base + 15 * step);
|
589 |
+
}
|
590 |
+
|
591 |
+
template <typename step_t, typename U = T>
|
592 |
+
static std::enable_if_t<sizeof(U) == 1, Vectorized<T>> arange(
|
593 |
+
T base = 0,
|
594 |
+
step_t step = static_cast<step_t>(1)) {
|
595 |
+
return Vectorized<T>(
|
596 |
+
base,
|
597 |
+
base + step,
|
598 |
+
base + 2 * step,
|
599 |
+
base + 3 * step,
|
600 |
+
base + 4 * step,
|
601 |
+
base + 5 * step,
|
602 |
+
base + 6 * step,
|
603 |
+
base + 7 * step,
|
604 |
+
base + 8 * step,
|
605 |
+
base + 9 * step,
|
606 |
+
base + 10 * step,
|
607 |
+
base + 11 * step,
|
608 |
+
base + 12 * step,
|
609 |
+
base + 13 * step,
|
610 |
+
base + 14 * step,
|
611 |
+
base + 15 * step,
|
612 |
+
base + 16 * step,
|
613 |
+
base + 17 * step,
|
614 |
+
base + 18 * step,
|
615 |
+
base + 19 * step,
|
616 |
+
base + 20 * step,
|
617 |
+
base + 21 * step,
|
618 |
+
base + 22 * step,
|
619 |
+
base + 23 * step,
|
620 |
+
base + 24 * step,
|
621 |
+
base + 25 * step,
|
622 |
+
base + 26 * step,
|
623 |
+
base + 27 * step,
|
624 |
+
base + 28 * step,
|
625 |
+
base + 29 * step,
|
626 |
+
base + 30 * step,
|
627 |
+
base + 31 * step);
|
628 |
+
}
|
629 |
+
|
630 |
+
// blend section
|
631 |
+
template <int64_t mask>
|
632 |
+
static std::enable_if_t<blendChoice<sizeof(T)>(mask) == 0, Vectorized<T>>
|
633 |
+
C10_ALWAYS_INLINE blend(const Vectorized<T>& a, const Vectorized<T>& b) {
|
634 |
+
return a;
|
635 |
+
}
|
636 |
+
|
637 |
+
template <int64_t mask>
|
638 |
+
static std::enable_if_t<blendChoice<sizeof(T)>(mask) == 1, Vectorized<T>>
|
639 |
+
C10_ALWAYS_INLINE blend(const Vectorized<T>& a, const Vectorized<T>& b) {
|
640 |
+
return b;
|
641 |
+
}
|
642 |
+
|
643 |
+
template <int64_t mask>
|
644 |
+
static std::enable_if_t<blendChoice<sizeof(T)>(mask) == 2, Vectorized<T>>
|
645 |
+
C10_ALWAYS_INLINE blend(const Vectorized<T>& a, const Vectorized<T>& b) {
|
646 |
+
return {b._vec0, a._vec1};
|
647 |
+
}
|
648 |
+
|
649 |
+
template <int64_t mask>
|
650 |
+
static std::enable_if_t<blendChoice<sizeof(T)>(mask) == 3, Vectorized<T>>
|
651 |
+
C10_ALWAYS_INLINE blend(const Vectorized<T>& a, const Vectorized<T>& b) {
|
652 |
+
return {a._vec0, b._vec1};
|
653 |
+
}
|
654 |
+
|
655 |
+
template <int64_t mask>
|
656 |
+
static std::enable_if_t<blendChoice<sizeof(T)>(mask) == 4, Vectorized<T>>
|
657 |
+
C10_ALWAYS_INLINE blend(const Vectorized<T>& a, const Vectorized<T>& b) {
|
658 |
+
const vmaskType mask_1st = GetMask1<sizeof(T)>(mask);
|
659 |
+
return {(vtype)vec_sel(a._vec0, b._vec0, mask_1st), a._vec1};
|
660 |
+
}
|
661 |
+
|
662 |
+
template <int64_t mask>
|
663 |
+
static std::enable_if_t<blendChoice<sizeof(T)>(mask) == 5, Vectorized<T>>
|
664 |
+
C10_ALWAYS_INLINE blend(const Vectorized<T>& a, const Vectorized<T>& b) {
|
665 |
+
const vmaskType mask_1st = GetMask1<sizeof(T)>(mask);
|
666 |
+
return {(vtype)vec_sel(a._vec0, b._vec0, mask_1st), b._vec1};
|
667 |
+
}
|
668 |
+
|
669 |
+
template <int64_t mask>
|
670 |
+
static std::enable_if_t<blendChoice<sizeof(T)>(mask) == 6, Vectorized<T>>
|
671 |
+
C10_ALWAYS_INLINE blend(const Vectorized<T>& a, const Vectorized<T>& b) {
|
672 |
+
const vmaskType mask_2nd = GetMask2<sizeof(T)>(mask);
|
673 |
+
// generated masks
|
674 |
+
return {a._vec0, (vtype)vec_sel(a._vec1, b._vec1, mask_2nd)};
|
675 |
+
}
|
676 |
+
|
677 |
+
template <int64_t mask>
|
678 |
+
static std::enable_if_t<blendChoice<sizeof(T)>(mask) == 7, Vectorized<T>>
|
679 |
+
C10_ALWAYS_INLINE blend(const Vectorized<T>& a, const Vectorized<T>& b) {
|
680 |
+
const vmaskType mask_2nd = GetMask2<sizeof(T)>(mask);
|
681 |
+
// generated masks
|
682 |
+
return {b._vec0, (vtype)vec_sel(a._vec1, b._vec1, mask_2nd)};
|
683 |
+
}
|
684 |
+
|
685 |
+
template <int64_t mask>
|
686 |
+
static std::enable_if_t<blendChoice<sizeof(T)>(mask) == 8, Vectorized<T>>
|
687 |
+
C10_ALWAYS_INLINE blend(const Vectorized<T>& a, const Vectorized<T>& b) {
|
688 |
+
const vmaskType mask_1st = GetMask1<sizeof(T)>(mask);
|
689 |
+
const vmaskType mask_2nd = GetMask2<sizeof(T)>(mask);
|
690 |
+
return {
|
691 |
+
(vtype)vec_sel(a._vec0, b._vec0, mask_1st),
|
692 |
+
(vtype)vec_sel(a._vec1, b._vec1, mask_2nd)};
|
693 |
+
}
|
694 |
+
|
695 |
+
template <int16_t Z, int16_t C>
|
696 |
+
static inline std::enable_if_t<(Z >= C), Vectorized<T>> set_inner(
|
697 |
+
const Vectorized<T>& a,
|
698 |
+
const Vectorized<T>& b,
|
699 |
+
size_t count) {
|
700 |
+
return b;
|
701 |
+
}
|
702 |
+
|
703 |
+
template <int16_t Z, int16_t C>
|
704 |
+
static inline std::enable_if_t<(Z < C), Vectorized<T>> set_inner(
|
705 |
+
const Vectorized<T>& a,
|
706 |
+
const Vectorized<T>& b,
|
707 |
+
size_t count) {
|
708 |
+
if (count == Z)
|
709 |
+
return blend<allbitset(Z)>(a, b);
|
710 |
+
else
|
711 |
+
return set_inner<Z + 1, C>(a, b, count);
|
712 |
+
}
|
713 |
+
|
714 |
+
static Vectorized<T> set(
|
715 |
+
const Vectorized<T>& a,
|
716 |
+
const Vectorized<T>& b,
|
717 |
+
size_t count = size()) {
|
718 |
+
if (count == 0)
|
719 |
+
return a;
|
720 |
+
return set_inner<1, size()>(a, b, count);
|
721 |
+
}
|
722 |
+
|
723 |
+
const ElementType& operator[](int idx) const = delete;
|
724 |
+
ElementType& operator[](int idx) = delete;
|
725 |
+
|
726 |
+
Vectorized<T> C10_ALWAYS_INLINE operator+(const Vectorized<T>& other) const {
|
727 |
+
return Vectorized<T>{_vec0 + other._vec0, _vec1 + other._vec1};
|
728 |
+
}
|
729 |
+
|
730 |
+
Vectorized<T> C10_ALWAYS_INLINE operator-(const Vectorized<T>& other) const {
|
731 |
+
return Vectorized<T>{_vec0 - other._vec0, _vec1 - other._vec1};
|
732 |
+
}
|
733 |
+
|
734 |
+
Vectorized<T> C10_ALWAYS_INLINE operator*(const Vectorized<T>& other) const {
|
735 |
+
return Vectorized<T>{_vec0 * other._vec0, _vec1 * other._vec1};
|
736 |
+
}
|
737 |
+
|
738 |
+
Vectorized<T> C10_ALWAYS_INLINE operator/(const Vectorized<T>& other) const {
|
739 |
+
return Vectorized<T>{_vec0 / other._vec0, _vec1 / other._vec1};
|
740 |
+
}
|
741 |
+
|
742 |
+
Vectorized<T> C10_ALWAYS_INLINE operator&(const Vectorized<T>& other) const {
|
743 |
+
return Vectorized<T>{
|
744 |
+
(vtype)(vecb0() & other.vecb0()), (vtype)(vecb1() & other.vecb1())};
|
745 |
+
}
|
746 |
+
|
747 |
+
Vectorized<T> C10_ALWAYS_INLINE operator|(const Vectorized<T>& other) const {
|
748 |
+
return Vectorized<T>{
|
749 |
+
(vtype)(vecb0() | other.vecb0()), (vtype)(vecb1() | other.vecb1())};
|
750 |
+
}
|
751 |
+
|
752 |
+
Vectorized<T> C10_ALWAYS_INLINE operator^(const Vectorized<T>& other) const {
|
753 |
+
return Vectorized<T>{
|
754 |
+
(vtype)(vecb0() ^ other.vecb0()), (vtype)(vecb1() ^ other.vecb1())};
|
755 |
+
}
|
756 |
+
|
757 |
+
Vectorized<T> C10_ALWAYS_INLINE operator<<(const Vectorized<T> &other) const {
|
758 |
+
constexpr ElementType max_shift = sizeof(ElementType) * CHAR_BIT;
|
759 |
+
|
760 |
+
ElementType a_array[Vectorized<T>::size()];
|
761 |
+
ElementType b_array[Vectorized<T>::size()];
|
762 |
+
ElementType c_array[Vectorized<T>::size()];
|
763 |
+
|
764 |
+
store(a_array);
|
765 |
+
other.store(b_array);
|
766 |
+
|
767 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
768 |
+
T shift = b_array[i];
|
769 |
+
if ((static_cast<std::make_signed_t<T>>(shift) < 0) || (shift >= max_shift)) {
|
770 |
+
c_array[i] = 0;
|
771 |
+
} else {
|
772 |
+
c_array[i] = static_cast<std::make_unsigned_t<T>>(a_array[i]) << shift;
|
773 |
+
}
|
774 |
+
}
|
775 |
+
|
776 |
+
return loadu(c_array);
|
777 |
+
}
|
778 |
+
|
779 |
+
Vectorized<T> C10_ALWAYS_INLINE operator>>(const Vectorized<T> &other) const {
|
780 |
+
// right shift value to retain sign bit for signed and no bits for unsigned
|
781 |
+
constexpr ElementType max_shift = sizeof(T) * CHAR_BIT - std::is_signed_v<T>;
|
782 |
+
|
783 |
+
ElementType a_array[Vectorized<T>::size()];
|
784 |
+
ElementType b_array[Vectorized<T>::size()];
|
785 |
+
ElementType c_array[Vectorized<T>::size()];
|
786 |
+
|
787 |
+
store(a_array);
|
788 |
+
other.store(b_array);
|
789 |
+
|
790 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
791 |
+
T shift = b_array[i];
|
792 |
+
if ((static_cast<std::make_signed_t<T>>(shift) < 0) || (shift >= max_shift)) {
|
793 |
+
c_array[i] = a_array[i] >> max_shift;
|
794 |
+
} else {
|
795 |
+
c_array[i] = a_array[i] >> shift;
|
796 |
+
}
|
797 |
+
}
|
798 |
+
|
799 |
+
return loadu(c_array);
|
800 |
+
}
|
801 |
+
|
802 |
+
Vectorized<T> _not() const {
|
803 |
+
return {(vtype)vec_nor(vecb0(), vecb0()), (vtype)vec_nor(vecb1(), vecb1())};
|
804 |
+
}
|
805 |
+
|
806 |
+
Vectorized<T> C10_ALWAYS_INLINE operator==(const Vectorized<T>& other) const {
|
807 |
+
return Vectorized<T>{
|
808 |
+
vec_cmpeq(_vec0, other._vec0), vec_cmpeq(_vec1, other._vec1)};
|
809 |
+
}
|
810 |
+
|
811 |
+
Vectorized<T> C10_ALWAYS_INLINE operator!=(const Vectorized<T>& other) const {
|
812 |
+
return Vectorized<T>{
|
813 |
+
vec_cmpeq(_vec0, other._vec0), vec_cmpeq(_vec1, other._vec1)}
|
814 |
+
._not();
|
815 |
+
}
|
816 |
+
Vectorized<T> C10_ALWAYS_INLINE operator>(const Vectorized<T>& other) const {
|
817 |
+
return Vectorized<T>{
|
818 |
+
vec_cmpgt(_vec0, other._vec0), vec_cmpgt(_vec1, other._vec1)};
|
819 |
+
}
|
820 |
+
Vectorized<T> C10_ALWAYS_INLINE operator>=(const Vectorized<T>& other) const {
|
821 |
+
return Vectorized<T>{
|
822 |
+
vec_cmpge(_vec0, other._vec0), vec_cmpge(_vec1, other._vec1)};
|
823 |
+
}
|
824 |
+
|
825 |
+
Vectorized<T> C10_ALWAYS_INLINE operator<(const Vectorized<T>& other) const {
|
826 |
+
return Vectorized<T>{
|
827 |
+
vec_cmplt(_vec0, other._vec0), vec_cmplt(_vec1, other._vec1)};
|
828 |
+
}
|
829 |
+
|
830 |
+
Vectorized<T> C10_ALWAYS_INLINE operator<=(const Vectorized<T>& other) const {
|
831 |
+
return Vectorized<T>{
|
832 |
+
vec_cmple(_vec0, other._vec0), vec_cmple(_vec1, other._vec1)};
|
833 |
+
}
|
834 |
+
|
835 |
+
Vectorized<T> C10_ALWAYS_INLINE eq(const Vectorized<T>& other) const {
|
836 |
+
return (*this == other) & Vectorized<T>((T)1.0);
|
837 |
+
}
|
838 |
+
Vectorized<T> C10_ALWAYS_INLINE ne(const Vectorized<T>& other) const {
|
839 |
+
return (*this != other) & Vectorized<T>((T)1.0);
|
840 |
+
}
|
841 |
+
Vectorized<T> C10_ALWAYS_INLINE gt(const Vectorized<T>& other) const {
|
842 |
+
return (*this > other) & Vectorized<T>((T)1.0);
|
843 |
+
}
|
844 |
+
Vectorized<T> C10_ALWAYS_INLINE ge(const Vectorized<T>& other) const {
|
845 |
+
return (*this >= other) & Vectorized<T>((T)1.0);
|
846 |
+
}
|
847 |
+
Vectorized<T> C10_ALWAYS_INLINE lt(const Vectorized<T>& other) const {
|
848 |
+
return (*this < other) & Vectorized<T>((T)1.0);
|
849 |
+
}
|
850 |
+
Vectorized<T> C10_ALWAYS_INLINE le(const Vectorized<T>& other) const {
|
851 |
+
return (*this <= other) & Vectorized<T>((T)1.0);
|
852 |
+
}
|
853 |
+
|
854 |
+
template <
|
855 |
+
typename U = T,
|
856 |
+
std::enable_if_t<!std::is_unsigned<U>::value, int> = 0>
|
857 |
+
Vectorized<U> C10_ALWAYS_INLINE abs() const {
|
858 |
+
return {vec_abs(_vec0), vec_abs(_vec1)};
|
859 |
+
}
|
860 |
+
|
861 |
+
template <
|
862 |
+
typename U = T,
|
863 |
+
std::enable_if_t<std::is_unsigned<U>::value, int> = 0>
|
864 |
+
Vectorized<U> C10_ALWAYS_INLINE abs() const {
|
865 |
+
return {_vec0, _vec1};
|
866 |
+
}
|
867 |
+
|
868 |
+
Vectorized<T> C10_ALWAYS_INLINE neg() const {
|
869 |
+
return {-_vec0, -_vec1};
|
870 |
+
}
|
871 |
+
|
872 |
+
Vectorized<T> isnan() const {
|
873 |
+
auto x = *this;
|
874 |
+
auto ret = (x == x);
|
875 |
+
return ret._not();
|
876 |
+
}
|
877 |
+
|
878 |
+
bool has_inf_nan() const {
|
879 |
+
for (const auto i : c10::irange(size()/2)) {
|
880 |
+
if(_isnan(_vec0[i]) || _isinf(_vec0[i])) {
|
881 |
+
return true;
|
882 |
+
}
|
883 |
+
}
|
884 |
+
for (const auto i : c10::irange(size()/2)) {
|
885 |
+
if(_isnan(_vec1[i]) || _isinf(_vec1[i])) {
|
886 |
+
return true;
|
887 |
+
}
|
888 |
+
}
|
889 |
+
return false;
|
890 |
+
}
|
891 |
+
|
892 |
+
template <
|
893 |
+
typename U = T,
|
894 |
+
std::enable_if_t<std::is_floating_point<U>::value, int> = 0>
|
895 |
+
Vectorized<U> angle() const {
|
896 |
+
auto tmp = blendv(
|
897 |
+
Vectorized<U>(0), Vectorized<U>(c10::pi<U>), *this < Vectorized<U>(0));
|
898 |
+
return blendv(tmp, *this, isnan());
|
899 |
+
}
|
900 |
+
|
901 |
+
template <
|
902 |
+
typename U = T,
|
903 |
+
std::enable_if_t<!std::is_floating_point<U>::value, int> = 0>
|
904 |
+
Vectorized<U> angle() const {
|
905 |
+
return blendv(
|
906 |
+
Vectorized<U>(0), Vectorized<U>(c10::pi<U>), *this < Vectorized<U>(0));
|
907 |
+
}
|
908 |
+
|
909 |
+
Vectorized<T> real() const {
|
910 |
+
return *this;
|
911 |
+
}
|
912 |
+
Vectorized<T> imag() const {
|
913 |
+
return Vectorized<T>{0};
|
914 |
+
}
|
915 |
+
Vectorized<T> conj() const {
|
916 |
+
return *this;
|
917 |
+
}
|
918 |
+
|
919 |
+
template <
|
920 |
+
typename U = T,
|
921 |
+
std::enable_if_t<std::is_floating_point<U>::value, int> = 0>
|
922 |
+
int zero_mask() const {
|
923 |
+
auto cmp = (*this == Vectorized<U>(0));
|
924 |
+
constexpr auto mask_zero_bits = GetBpermZeroMask<U>();
|
925 |
+
ZSimdVectBinary<uint64_t> result0 =
|
926 |
+
vec_bperm_u128((ZSimdVectBinary<uint8_t>)cmp.vecb0(), mask_zero_bits);
|
927 |
+
ZSimdVectBinary<uint64_t> result1 =
|
928 |
+
vec_bperm_u128((ZSimdVectBinary<uint8_t>)cmp.vecb1(), mask_zero_bits);
|
929 |
+
return (result0[0] | (result1[0] << (size() / 2)));
|
930 |
+
}
|
931 |
+
|
932 |
+
Vectorized<T> C10_ALWAYS_INLINE floor() const {
|
933 |
+
return {vec_floor(_vec0), vec_floor(_vec1)};
|
934 |
+
}
|
935 |
+
|
936 |
+
Vectorized<T> C10_ALWAYS_INLINE ceil() const {
|
937 |
+
return {vec_ceil(_vec0), vec_ceil(_vec1)};
|
938 |
+
}
|
939 |
+
|
940 |
+
Vectorized<T> C10_ALWAYS_INLINE round() const {
|
941 |
+
return {vec_round(_vec0), vec_round(_vec1)};
|
942 |
+
}
|
943 |
+
|
944 |
+
Vectorized<T> C10_ALWAYS_INLINE rint() const {
|
945 |
+
return {vec_rint(_vec0), vec_rint(_vec1)};
|
946 |
+
}
|
947 |
+
|
948 |
+
Vectorized<T> C10_ALWAYS_INLINE trunc() const {
|
949 |
+
return {vec_trunc(_vec0), vec_trunc(_vec1)};
|
950 |
+
}
|
951 |
+
|
952 |
+
Vectorized<T> C10_ALWAYS_INLINE frac() const {
|
953 |
+
return *this - trunc();
|
954 |
+
}
|
955 |
+
|
956 |
+
Vectorized<T> C10_ALWAYS_INLINE sqrt() const {
|
957 |
+
return {vec_sqrt(_vec0), vec_sqrt(_vec1)};
|
958 |
+
}
|
959 |
+
Vectorized<T> C10_ALWAYS_INLINE reciprocal() const {
|
960 |
+
return Vectorized<T>((T)1) / (*this);
|
961 |
+
}
|
962 |
+
Vectorized<T> C10_ALWAYS_INLINE rsqrt() const {
|
963 |
+
return sqrt().reciprocal();
|
964 |
+
}
|
965 |
+
|
966 |
+
template <
|
967 |
+
typename U = T,
|
968 |
+
std::enable_if_t<std::is_same<U, float>::value, int> = 0>
|
969 |
+
inline Vectorized<T> mapOrdinary(float (*const f)(float)) const {
|
970 |
+
float a00 = f(_vec0[0]);
|
971 |
+
float a01 = f(_vec0[1]);
|
972 |
+
float a02 = f(_vec0[2]);
|
973 |
+
float a03 = f(_vec0[3]);
|
974 |
+
float a10 = f(_vec1[0]);
|
975 |
+
float a11 = f(_vec1[1]);
|
976 |
+
float a12 = f(_vec1[2]);
|
977 |
+
float a13 = f(_vec1[3]);
|
978 |
+
return Vectorized<T>{a00, a01, a02, a03, a10, a11, a12, a13};
|
979 |
+
}
|
980 |
+
|
981 |
+
template <
|
982 |
+
typename U = T,
|
983 |
+
std::enable_if_t<std::is_same<U, double>::value, int> = 0>
|
984 |
+
inline Vectorized<T> mapOrdinary(double (*const f)(double)) const {
|
985 |
+
return Vectorized<T>(f(_vec0[0]), f(_vec0[1]), f(_vec1[0]), f(_vec1[1]));
|
986 |
+
}
|
987 |
+
|
988 |
+
template <
|
989 |
+
typename U = T,
|
990 |
+
std::enable_if_t<std::is_same<U, float>::value, int> = 0>
|
991 |
+
inline Vectorized<T> mapOrdinary(
|
992 |
+
float (*const f)(float, float),
|
993 |
+
const Vectorized<T>& b) const {
|
994 |
+
float a00 = f(_vec0[0], b._vec0[0]);
|
995 |
+
float a01 = f(_vec0[1], b._vec0[1]);
|
996 |
+
float a02 = f(_vec0[2], b._vec0[2]);
|
997 |
+
float a03 = f(_vec0[3], b._vec0[3]);
|
998 |
+
float a10 = f(_vec1[0], b._vec1[0]);
|
999 |
+
float a11 = f(_vec1[1], b._vec1[1]);
|
1000 |
+
float a12 = f(_vec1[2], b._vec1[2]);
|
1001 |
+
float a13 = f(_vec1[3], b._vec1[3]);
|
1002 |
+
return Vectorized<T>{a00, a01, a02, a03, a10, a11, a12, a13};
|
1003 |
+
}
|
1004 |
+
|
1005 |
+
template <
|
1006 |
+
typename U = T,
|
1007 |
+
std::enable_if_t<std::is_same<U, double>::value, int> = 0>
|
1008 |
+
inline Vectorized<T> mapOrdinary(
|
1009 |
+
double (*const f)(double, double),
|
1010 |
+
const Vectorized<T>& b) const {
|
1011 |
+
return Vectorized<T>(
|
1012 |
+
f(_vec0[0], b._vec0[0]),
|
1013 |
+
f(_vec0[1], b._vec0[1]),
|
1014 |
+
f(_vec1[0], b._vec1[0]),
|
1015 |
+
f(_vec1[1], b._vec1[1]));
|
1016 |
+
}
|
1017 |
+
|
1018 |
+
template <
|
1019 |
+
typename FloatOp,
|
1020 |
+
typename DoubleOp,
|
1021 |
+
typename U = T,
|
1022 |
+
std::enable_if_t<std::is_same<U, float>::value, int> = 0>
|
1023 |
+
inline Vectorized<T> mapSleef(FloatOp f, DoubleOp d) const {
|
1024 |
+
vtype a0 = f(_vec0);
|
1025 |
+
vtype a1 = f(_vec1);
|
1026 |
+
return Vectorized<T>{a0, a1};
|
1027 |
+
}
|
1028 |
+
|
1029 |
+
template <
|
1030 |
+
typename FloatOp,
|
1031 |
+
typename DoubleOp,
|
1032 |
+
typename U = T,
|
1033 |
+
std::enable_if_t<std::is_same<U, double>::value, int> = 0>
|
1034 |
+
inline Vectorized<T> mapSleef(FloatOp f, DoubleOp d) const {
|
1035 |
+
return Vectorized<T>(d(_vec0), d(_vec1));
|
1036 |
+
}
|
1037 |
+
|
1038 |
+
template <
|
1039 |
+
typename FloatOp,
|
1040 |
+
typename DoubleOp,
|
1041 |
+
typename U = T,
|
1042 |
+
std::enable_if_t<std::is_same<U, float>::value, int> = 0>
|
1043 |
+
inline Vectorized<T> mapSleef(FloatOp f, DoubleOp d, const Vectorized<T>& b)
|
1044 |
+
const {
|
1045 |
+
vtype a0 = f(_vec0, b._vec0);
|
1046 |
+
vtype a1 = f(_vec1, b._vec1);
|
1047 |
+
return Vectorized<T>{a0, a1};
|
1048 |
+
}
|
1049 |
+
|
1050 |
+
template <
|
1051 |
+
typename FloatOp,
|
1052 |
+
typename DoubleOp,
|
1053 |
+
typename U = T,
|
1054 |
+
std::enable_if_t<std::is_same<U, double>::value, int> = 0>
|
1055 |
+
inline Vectorized<T> mapSleef(FloatOp f, DoubleOp d, const Vectorized<T>& b)
|
1056 |
+
const {
|
1057 |
+
return Vectorized<T>(d(_vec0, b._vec0), d(_vec1, b._vec1));
|
1058 |
+
}
|
1059 |
+
|
1060 |
+
Vectorized<T> acos() const {
|
1061 |
+
return mapSleef(Sleef_acosf4_u10, Sleef_acosd2_u10);
|
1062 |
+
}
|
1063 |
+
Vectorized<T> asin() const {
|
1064 |
+
return mapSleef(Sleef_asinf4_u10, Sleef_asind2_u10);
|
1065 |
+
}
|
1066 |
+
Vectorized<T> atan() const {
|
1067 |
+
return mapSleef(Sleef_atanf4_u10, Sleef_atand2_u10);
|
1068 |
+
}
|
1069 |
+
Vectorized<T> atanh() const {
|
1070 |
+
return mapSleef(Sleef_atanhf4_u10, Sleef_atanhd2_u10);
|
1071 |
+
}
|
1072 |
+
|
1073 |
+
Vectorized<T> erf() const {
|
1074 |
+
return mapSleef(Sleef_erff4_u10, Sleef_erfd2_u10);
|
1075 |
+
}
|
1076 |
+
Vectorized<T> erfc() const {
|
1077 |
+
return mapSleef(Sleef_erfcf4_u15, Sleef_erfcd2_u15);
|
1078 |
+
}
|
1079 |
+
|
1080 |
+
Vectorized<T> exp() const {
|
1081 |
+
return mapSleef(Sleef_expf4_u10, Sleef_expd2_u10);
|
1082 |
+
}
|
1083 |
+
Vectorized<T> exp2() const {
|
1084 |
+
return mapSleef(Sleef_exp2f4_u10, Sleef_exp2d2_u10);
|
1085 |
+
}
|
1086 |
+
Vectorized<T> expm1() const {
|
1087 |
+
return mapSleef(Sleef_expm1f4_u10, Sleef_expm1d2_u10);
|
1088 |
+
}
|
1089 |
+
Vectorized<T> exp_u20() const {
|
1090 |
+
return exp();
|
1091 |
+
}
|
1092 |
+
|
1093 |
+
Vectorized<T> log() const {
|
1094 |
+
return mapSleef(Sleef_logf4_u10, Sleef_logd2_u10);
|
1095 |
+
}
|
1096 |
+
Vectorized<T> log2() const {
|
1097 |
+
return mapSleef(Sleef_log2f4_u10, Sleef_log2d2_u10);
|
1098 |
+
}
|
1099 |
+
Vectorized<T> log10() const {
|
1100 |
+
return mapSleef(Sleef_log10f4_u10, Sleef_log10d2_u10);
|
1101 |
+
}
|
1102 |
+
Vectorized<T> log1p() const {
|
1103 |
+
return mapSleef(Sleef_log1pf4_u10, Sleef_log1pd2_u10);
|
1104 |
+
}
|
1105 |
+
|
1106 |
+
Vectorized<T> sin() const {
|
1107 |
+
#ifndef SLEEF_MEMORY_WORKAROUND
|
1108 |
+
return mapSleef(Sleef_sinf4_u10, Sleef_sind2_u10);
|
1109 |
+
#else
|
1110 |
+
return mapOrdinary(std::sin);
|
1111 |
+
#endif
|
1112 |
+
}
|
1113 |
+
Vectorized<T> sinh() const {
|
1114 |
+
return mapSleef(Sleef_sinhf4_u10, Sleef_sinhd2_u10);
|
1115 |
+
}
|
1116 |
+
Vectorized<T> cos() const {
|
1117 |
+
#ifndef SLEEF_MEMORY_WORKAROUND
|
1118 |
+
return mapSleef(Sleef_cosf4_u10, Sleef_cosd2_u10);
|
1119 |
+
#else
|
1120 |
+
return mapOrdinary(std::cos);
|
1121 |
+
#endif
|
1122 |
+
}
|
1123 |
+
Vectorized<T> cosh() const {
|
1124 |
+
return mapSleef(Sleef_coshf4_u10, Sleef_coshd2_u10);
|
1125 |
+
}
|
1126 |
+
|
1127 |
+
Vectorized<T> tan() const {
|
1128 |
+
#ifndef SLEEF_MEMORY_WORKAROUND
|
1129 |
+
return mapSleef(Sleef_tanf4_u10, Sleef_tand2_u10);
|
1130 |
+
#else
|
1131 |
+
return mapOrdinary(std::tan);
|
1132 |
+
#endif
|
1133 |
+
}
|
1134 |
+
Vectorized<T> tanh() const {
|
1135 |
+
return mapSleef(Sleef_tanhf4_u10, Sleef_tanhd2_u10);
|
1136 |
+
}
|
1137 |
+
|
1138 |
+
Vectorized<T> lgamma() const {
|
1139 |
+
return mapSleef(Sleef_lgammaf4_u10, Sleef_lgammad2_u10);
|
1140 |
+
}
|
1141 |
+
|
1142 |
+
Vectorized<T> atan2(const Vectorized<T>& b) const {
|
1143 |
+
return mapSleef(Sleef_atan2f4_u10, Sleef_atan2d2_u10, b);
|
1144 |
+
}
|
1145 |
+
Vectorized<T> copysign(const Vectorized<T>& sign) const {
|
1146 |
+
return mapSleef(Sleef_copysignf4, Sleef_copysignd2, sign);
|
1147 |
+
}
|
1148 |
+
Vectorized<T> fmod(const Vectorized<T>& q) const {
|
1149 |
+
return mapSleef(Sleef_fmodf4, Sleef_fmodd2, q);
|
1150 |
+
}
|
1151 |
+
|
1152 |
+
Vectorized<T> hypot(const Vectorized<T>& b) const {
|
1153 |
+
return mapSleef(Sleef_hypotf4_u05, Sleef_hypotd2_u05, b);
|
1154 |
+
}
|
1155 |
+
|
1156 |
+
Vectorized<T> pow(const Vectorized<T>& b) const {
|
1157 |
+
return mapSleef(Sleef_powf4_u10, Sleef_powd2_u10, b);
|
1158 |
+
}
|
1159 |
+
|
1160 |
+
Vectorized<T> nextafter(const Vectorized<T>& b) const {
|
1161 |
+
return mapSleef(Sleef_nextafterf4, Sleef_nextafterd2, b);
|
1162 |
+
}
|
1163 |
+
|
1164 |
+
Vectorized<T> erfinv() const {
|
1165 |
+
return mapOrdinary(calc_erfinv);
|
1166 |
+
}
|
1167 |
+
|
1168 |
+
Vectorized<T> digamma() const {
|
1169 |
+
return mapOrdinary(calc_digamma);
|
1170 |
+
}
|
1171 |
+
|
1172 |
+
Vectorized<T> igamma(const Vectorized<T>& x) const {
|
1173 |
+
return mapOrdinary(calc_igamma, x);
|
1174 |
+
}
|
1175 |
+
|
1176 |
+
Vectorized<T> igammac(const Vectorized<T>& x) const {
|
1177 |
+
return mapOrdinary(calc_igammac, x);
|
1178 |
+
}
|
1179 |
+
|
1180 |
+
Vectorized<T> i0() const {
|
1181 |
+
return mapOrdinary(calc_i0);
|
1182 |
+
}
|
1183 |
+
|
1184 |
+
Vectorized<T> i0e() const {
|
1185 |
+
return mapOrdinary(calc_i0e);
|
1186 |
+
}
|
1187 |
+
|
1188 |
+
template <
|
1189 |
+
typename U = T,
|
1190 |
+
std::enable_if_t<!std::is_floating_point<U>::value, int> = 0>
|
1191 |
+
Vectorized<T> minimum(const Vectorized<T>& other) const {
|
1192 |
+
return {vec_min(_vec0, other._vec0), vec_min(_vec1, other._vec1)};
|
1193 |
+
}
|
1194 |
+
|
1195 |
+
/* Propagates NaN if either input is a NaN. */
|
1196 |
+
template <
|
1197 |
+
typename U = T,
|
1198 |
+
std::enable_if_t<std::is_floating_point<U>::value, int> = 0>
|
1199 |
+
Vectorized<T> minimum(const Vectorized<T>& other) const {
|
1200 |
+
Vectorized<T> tmp = {vec_min(_vec0, other._vec0), vec_min(_vec1, other._vec1)};
|
1201 |
+
tmp = blendv(tmp, *this, isnan());
|
1202 |
+
return blendv(tmp, other, other.isnan());
|
1203 |
+
}
|
1204 |
+
|
1205 |
+
template <
|
1206 |
+
typename U = T,
|
1207 |
+
std::enable_if_t<!std::is_floating_point<U>::value, int> = 0>
|
1208 |
+
Vectorized<T> maximum(const Vectorized<T>& other) const {
|
1209 |
+
return {vec_max(_vec0, other._vec0), vec_max(_vec1, other._vec1)};
|
1210 |
+
}
|
1211 |
+
|
1212 |
+
/* Propagates NaN if either input is a NaN. */
|
1213 |
+
template <
|
1214 |
+
typename U = T,
|
1215 |
+
std::enable_if_t<std::is_floating_point<U>::value, int> = 0>
|
1216 |
+
Vectorized<T> maximum(const Vectorized<T>& other) const {
|
1217 |
+
Vectorized<T> tmp = {vec_max(_vec0, other._vec0), vec_max(_vec1, other._vec1)};
|
1218 |
+
tmp = blendv(tmp, *this, isnan());
|
1219 |
+
return blendv(tmp, other, other.isnan());
|
1220 |
+
}
|
1221 |
+
|
1222 |
+
template <
|
1223 |
+
typename U = T,
|
1224 |
+
std::enable_if_t<!std::is_floating_point<U>::value, int> = 0>
|
1225 |
+
Vectorized<T> clamp_min(const Vectorized<T>& min) const {
|
1226 |
+
return {vec_max(_vec0, min._vec0), vec_max(_vec1, min._vec1)};
|
1227 |
+
}
|
1228 |
+
|
1229 |
+
/* Keeps NaN if actual value is NaN */
|
1230 |
+
template <
|
1231 |
+
typename U = T,
|
1232 |
+
std::enable_if_t<std::is_floating_point<U>::value, int> = 0>
|
1233 |
+
Vectorized<T> clamp_min(const Vectorized<T>& min) const {
|
1234 |
+
Vectorized<T> tmp = {vec_max(_vec0, min._vec0), vec_max(_vec1, min._vec1)};
|
1235 |
+
return blendv(tmp, *this, isnan());
|
1236 |
+
}
|
1237 |
+
|
1238 |
+
template <
|
1239 |
+
typename U = T,
|
1240 |
+
std::enable_if_t<!std::is_floating_point<U>::value, int> = 0>
|
1241 |
+
Vectorized<T> clamp_max(const Vectorized<T>& max) const {
|
1242 |
+
return {vec_min(_vec0, max._vec0), vec_min(_vec1, max._vec1)};
|
1243 |
+
}
|
1244 |
+
|
1245 |
+
/* Keeps NaN if actual value is NaN */
|
1246 |
+
template <
|
1247 |
+
typename U = T,
|
1248 |
+
std::enable_if_t<std::is_floating_point<U>::value, int> = 0>
|
1249 |
+
Vectorized<T> clamp_max(const Vectorized<T>& max) const {
|
1250 |
+
Vectorized<T> tmp = {vec_min(_vec0, max._vec0), vec_min(_vec1, max._vec1)};
|
1251 |
+
return blendv(tmp, *this, isnan());
|
1252 |
+
}
|
1253 |
+
|
1254 |
+
template <
|
1255 |
+
typename U = T,
|
1256 |
+
std::enable_if_t<std::is_same<U, float>::value, int> = 0>
|
1257 |
+
Vectorized<T> swapped() const {
|
1258 |
+
auto swap_mask = GetSwapMaskFloat();
|
1259 |
+
vtype v0 = vec_perm(_vec0, _vec0, swap_mask);
|
1260 |
+
vtype v1 = vec_perm(_vec1, _vec1, swap_mask);
|
1261 |
+
return {v0, v1};
|
1262 |
+
}
|
1263 |
+
|
1264 |
+
template <
|
1265 |
+
typename U = T,
|
1266 |
+
std::enable_if_t<std::is_same<U, double>::value, int> = 0>
|
1267 |
+
Vectorized<T> swapped() const {
|
1268 |
+
vtype v0 = vec_permi(_vec0, _vec0, 2);
|
1269 |
+
vtype v1 = vec_permi(_vec1, _vec1, 2);
|
1270 |
+
return {v0, v1};
|
1271 |
+
}
|
1272 |
+
|
1273 |
+
template <
|
1274 |
+
typename U = T,
|
1275 |
+
std::enable_if_t<std::is_floating_point<U>::value, int> = 0>
|
1276 |
+
static Vectorized<T> mergee(Vectorized<T>& first, Vectorized<T>& second) {
|
1277 |
+
return {
|
1278 |
+
vec_mergee(first._vec0, second._vec0),
|
1279 |
+
vec_mergee(first._vec1, second._vec1)};
|
1280 |
+
}
|
1281 |
+
|
1282 |
+
template <
|
1283 |
+
typename U = T,
|
1284 |
+
std::enable_if_t<std::is_floating_point<U>::value, int> = 0>
|
1285 |
+
static Vectorized<T> mergeo(Vectorized<T>& first, Vectorized<T>& second) {
|
1286 |
+
return {
|
1287 |
+
vec_mergeo(first._vec0, second._vec0),
|
1288 |
+
vec_mergeo(first._vec1, second._vec1)};
|
1289 |
+
}
|
1290 |
+
|
1291 |
+
static Vectorized<T> horizontal_add_perm(
|
1292 |
+
Vectorized<T>& first,
|
1293 |
+
Vectorized<T>& second) {
|
1294 |
+
// we will simulate it differently with 6 instructions total
|
1295 |
+
// lets permute second so that we can add it getting horizontal sums
|
1296 |
+
auto first_perm = first.swapped(); // 2perm
|
1297 |
+
auto second_perm = second.swapped(); // 2perm
|
1298 |
+
// summ
|
1299 |
+
auto first_ret = first + first_perm; // 2add
|
1300 |
+
auto second_ret = second + second_perm; // 2 add
|
1301 |
+
// now lets choose evens
|
1302 |
+
return mergee(first_ret, second_ret); // 2 mergee's
|
1303 |
+
}
|
1304 |
+
|
1305 |
+
static Vectorized<T> horizontal_sub_perm(
|
1306 |
+
Vectorized<T>& first,
|
1307 |
+
Vectorized<T>& second) {
|
1308 |
+
// we will simulate it differently with 6 instructions total
|
1309 |
+
// lets permute second so that we can add it getting horizontal sums
|
1310 |
+
auto first_perm = first.swapped(); // 2perm
|
1311 |
+
auto second_perm = second.swapped(); // 2perm
|
1312 |
+
// summ
|
1313 |
+
auto first_ret = first - first_perm; // 2sub
|
1314 |
+
auto second_ret = second - second_perm; // 2 sub
|
1315 |
+
// now lets choose evens
|
1316 |
+
return mergee(first_ret, second_ret); // 2 mergee's
|
1317 |
+
}
|
1318 |
+
|
1319 |
+
template <
|
1320 |
+
typename U = T,
|
1321 |
+
std::enable_if_t<std::is_floating_point<U>::value, int> = 0>
|
1322 |
+
Vectorized<T> mergee() const {
|
1323 |
+
return {vec_mergee(_vec0, _vec0), vec_mergee(_vec1, _vec1)};
|
1324 |
+
}
|
1325 |
+
|
1326 |
+
template <
|
1327 |
+
typename U = T,
|
1328 |
+
std::enable_if_t<std::is_floating_point<U>::value, int> = 0>
|
1329 |
+
Vectorized<T> mergeo() const {
|
1330 |
+
return {vec_mergeo(_vec0, _vec0), vec_mergeo(_vec1, _vec1)};
|
1331 |
+
}
|
1332 |
+
|
1333 |
+
template <
|
1334 |
+
typename U = T,
|
1335 |
+
std::enable_if_t<std::is_same<U, uint8_t>::value, int> = 0>
|
1336 |
+
Vectorized<int32_t> to_vec_float_helper() const {
|
1337 |
+
int32_t values[8] = {
|
1338 |
+
_vec0[0],
|
1339 |
+
_vec0[1],
|
1340 |
+
_vec0[2],
|
1341 |
+
_vec0[3],
|
1342 |
+
_vec0[4],
|
1343 |
+
_vec0[5],
|
1344 |
+
_vec0[6],
|
1345 |
+
_vec0[7],
|
1346 |
+
};
|
1347 |
+
|
1348 |
+
return Vectorized<int32_t>{
|
1349 |
+
values[0], values[1], values[2], values[3],
|
1350 |
+
values[4], values[5], values[6], values[7]
|
1351 |
+
};
|
1352 |
+
}
|
1353 |
+
|
1354 |
+
template <
|
1355 |
+
typename U = T,
|
1356 |
+
std::enable_if_t<std::is_same<U, int32_t>::value, int> = 0>
|
1357 |
+
Vectorized<uint8_t> to_vec_uint8_helper() const {
|
1358 |
+
// helper function for float to uint8_t conversion
|
1359 |
+
uint8_t values[8] = {
|
1360 |
+
static_cast<uint8_t>(_vec0[0]),
|
1361 |
+
static_cast<uint8_t>(_vec0[1]),
|
1362 |
+
static_cast<uint8_t>(_vec0[2]),
|
1363 |
+
static_cast<uint8_t>(_vec0[3]),
|
1364 |
+
static_cast<uint8_t>(_vec1[0]),
|
1365 |
+
static_cast<uint8_t>(_vec1[1]),
|
1366 |
+
static_cast<uint8_t>(_vec1[2]),
|
1367 |
+
static_cast<uint8_t>(_vec1[3]),
|
1368 |
+
};
|
1369 |
+
|
1370 |
+
return Vectorized<uint8_t>{
|
1371 |
+
values[0], values[1], values[2], values[3],
|
1372 |
+
values[4], values[5], values[6], values[7],
|
1373 |
+
0, 0, 0, 0,
|
1374 |
+
0, 0, 0, 0,
|
1375 |
+
0, 0, 0, 0,
|
1376 |
+
0, 0, 0, 0,
|
1377 |
+
0, 0, 0, 0,
|
1378 |
+
0, 0, 0, 0,
|
1379 |
+
};
|
1380 |
+
}
|
1381 |
+
};
|
1382 |
+
|
1383 |
+
template <>
|
1384 |
+
inline Vectorized<int64_t> operator~(const Vectorized<int64_t>& a) {
|
1385 |
+
return a._not();
|
1386 |
+
}
|
1387 |
+
|
1388 |
+
template <>
|
1389 |
+
inline Vectorized<int32_t> operator~(const Vectorized<int32_t>& a) {
|
1390 |
+
return a._not();
|
1391 |
+
}
|
1392 |
+
|
1393 |
+
template <>
|
1394 |
+
inline Vectorized<int16_t> operator~(const Vectorized<int16_t>& a) {
|
1395 |
+
return a._not();
|
1396 |
+
}
|
1397 |
+
|
1398 |
+
template <>
|
1399 |
+
inline Vectorized<int8_t> operator~(const Vectorized<int8_t>& a) {
|
1400 |
+
return a._not();
|
1401 |
+
}
|
1402 |
+
|
1403 |
+
template <>
|
1404 |
+
inline Vectorized<uint8_t> operator~(const Vectorized<uint8_t>& a) {
|
1405 |
+
return a._not();
|
1406 |
+
}
|
1407 |
+
|
1408 |
+
#define DEFINE_MAXMIN_FUNCS(operand_type) \
|
1409 |
+
template <> \
|
1410 |
+
Vectorized<operand_type> inline maximum( \
|
1411 |
+
const Vectorized<operand_type>& a, const Vectorized<operand_type>& b) { \
|
1412 |
+
return a.maximum(b); \
|
1413 |
+
} \
|
1414 |
+
template <> \
|
1415 |
+
Vectorized<operand_type> inline minimum( \
|
1416 |
+
const Vectorized<operand_type>& a, const Vectorized<operand_type>& b) { \
|
1417 |
+
return a.minimum(b); \
|
1418 |
+
}
|
1419 |
+
|
1420 |
+
#define DEFINE_CLAMP_MAXMIN_FUNCS(typex) \
|
1421 |
+
DEFINE_MAXMIN_FUNCS(typex) \
|
1422 |
+
template <> \
|
1423 |
+
Vectorized<typex> C10_ALWAYS_INLINE clamp_min( \
|
1424 |
+
const Vectorized<typex>& a, const Vectorized<typex>& min) { \
|
1425 |
+
return a.clamp_min(min); \
|
1426 |
+
} \
|
1427 |
+
template <> \
|
1428 |
+
Vectorized<typex> C10_ALWAYS_INLINE clamp_max( \
|
1429 |
+
const Vectorized<typex>& a, const Vectorized<typex>& max) { \
|
1430 |
+
return a.clamp_max(max); \
|
1431 |
+
} \
|
1432 |
+
template <> \
|
1433 |
+
Vectorized<typex> C10_ALWAYS_INLINE clamp( \
|
1434 |
+
const Vectorized<typex>& a, \
|
1435 |
+
const Vectorized<typex>& min, \
|
1436 |
+
const Vectorized<typex>& max) { \
|
1437 |
+
return clamp_max(clamp_min(a, min), max); \
|
1438 |
+
}
|
1439 |
+
|
1440 |
+
DEFINE_CLAMP_MAXMIN_FUNCS(int8_t)
|
1441 |
+
DEFINE_CLAMP_MAXMIN_FUNCS(uint8_t)
|
1442 |
+
DEFINE_CLAMP_MAXMIN_FUNCS(int16_t)
|
1443 |
+
DEFINE_CLAMP_MAXMIN_FUNCS(int32_t)
|
1444 |
+
DEFINE_CLAMP_MAXMIN_FUNCS(int64_t)
|
1445 |
+
DEFINE_CLAMP_MAXMIN_FUNCS(float)
|
1446 |
+
DEFINE_CLAMP_MAXMIN_FUNCS(double)
|
1447 |
+
|
1448 |
+
namespace { /* unnamed namespace */
|
1449 |
+
|
1450 |
+
#if !defined(vec_float) || __ARCH__ < 13
|
1451 |
+
#warning \
|
1452 |
+
"float->int and int->float conversion is simulated. compile for z15 for improved performance"
|
1453 |
+
inline ZSimdVect<float> vec_int_flt(const ZSimdVect<int> x) {
|
1454 |
+
return ZSimdVect<float>{float(x[0]), float(x[1]), float(x[2]), float(x[3])};
|
1455 |
+
}
|
1456 |
+
inline ZSimdVect<int> vec_flt_int(const ZSimdVect<float> x) {
|
1457 |
+
return ZSimdVect<int>{int(x[0]), int(x[1]), int(x[2]), int(x[3])};
|
1458 |
+
}
|
1459 |
+
#else
|
1460 |
+
#define vec_int_flt vec_float
|
1461 |
+
#define vec_flt_int vec_signed
|
1462 |
+
#endif
|
1463 |
+
|
1464 |
+
Vectorized<float> convert_to_float(const Vectorized<int32_t>& x) {
|
1465 |
+
return {vec_int_flt(x.vec0()), vec_int_flt(x.vec1())};
|
1466 |
+
}
|
1467 |
+
|
1468 |
+
Vectorized<int32_t> convert_to_int(const Vectorized<float>& x) {
|
1469 |
+
return {vec_flt_int(x.vec0()), vec_flt_int(x.vec1())};
|
1470 |
+
}
|
1471 |
+
|
1472 |
+
Vectorized<double> convert_to_float(const Vectorized<int64_t>& x) {
|
1473 |
+
return {vec_double(x.vec0()), vec_double(x.vec1())};
|
1474 |
+
}
|
1475 |
+
|
1476 |
+
Vectorized<int64_t> convert_to_int(const Vectorized<double>& x) {
|
1477 |
+
return {vec_signed(x.vec0()), vec_signed(x.vec1())};
|
1478 |
+
}
|
1479 |
+
|
1480 |
+
} /* unnamed namespace */
|
1481 |
+
|
1482 |
+
template <typename T, typename V>
|
1483 |
+
Vectorized<V> cast_zvector(const Vectorized<T>& x) {
|
1484 |
+
using cast_type = typename Vectorized<V>::vtype;
|
1485 |
+
return Vectorized<V>{(cast_type)x.vec0(), (cast_type)x.vec1()};
|
1486 |
+
}
|
1487 |
+
|
1488 |
+
template <>
|
1489 |
+
Vectorized<float> C10_ALWAYS_INLINE fmadd(
|
1490 |
+
const Vectorized<float>& a,
|
1491 |
+
const Vectorized<float>& b,
|
1492 |
+
const Vectorized<float>& c) {
|
1493 |
+
return Vectorized<float>{
|
1494 |
+
__builtin_s390_vfmasb(a.vec0(), b.vec0(), c.vec0()),
|
1495 |
+
__builtin_s390_vfmasb(a.vec1(), b.vec1(), c.vec1())};
|
1496 |
+
}
|
1497 |
+
template <>
|
1498 |
+
Vectorized<double> C10_ALWAYS_INLINE fmadd(
|
1499 |
+
const Vectorized<double>& a,
|
1500 |
+
const Vectorized<double>& b,
|
1501 |
+
const Vectorized<double>& c) {
|
1502 |
+
return Vectorized<double>{
|
1503 |
+
__builtin_s390_vfmadb(a.vec0(), b.vec0(), c.vec0()),
|
1504 |
+
__builtin_s390_vfmadb(a.vec1(), b.vec1(), c.vec1())};
|
1505 |
+
}
|
1506 |
+
template <>
|
1507 |
+
Vectorized<int16_t> C10_ALWAYS_INLINE fmadd(
|
1508 |
+
const Vectorized<int16_t>& a,
|
1509 |
+
const Vectorized<int16_t>& b,
|
1510 |
+
const Vectorized<int16_t>& c) {
|
1511 |
+
return Vectorized<int16_t>{
|
1512 |
+
a.vec0() * b.vec0() + c.vec0(), a.vec1() * b.vec1() + c.vec1()};
|
1513 |
+
}
|
1514 |
+
template <>
|
1515 |
+
Vectorized<int32_t> C10_ALWAYS_INLINE fmadd(
|
1516 |
+
const Vectorized<int32_t>& a,
|
1517 |
+
const Vectorized<int32_t>& b,
|
1518 |
+
const Vectorized<int32_t>& c) {
|
1519 |
+
return Vectorized<int32_t>{
|
1520 |
+
a.vec0() * b.vec0() + c.vec0(), a.vec1() * b.vec1() + c.vec1()};
|
1521 |
+
}
|
1522 |
+
template <>
|
1523 |
+
Vectorized<int64_t> C10_ALWAYS_INLINE fmadd(
|
1524 |
+
const Vectorized<int64_t>& a,
|
1525 |
+
const Vectorized<int64_t>& b,
|
1526 |
+
const Vectorized<int64_t>& c) {
|
1527 |
+
return Vectorized<int64_t>{
|
1528 |
+
a.vec0() * b.vec0() + c.vec0(), a.vec1() * b.vec1() + c.vec1()};
|
1529 |
+
}
|
1530 |
+
|
1531 |
+
template <>
|
1532 |
+
Vectorized<int64_t> C10_ALWAYS_INLINE
|
1533 |
+
convert_to_int_of_same_size<double>(const Vectorized<double>& src) {
|
1534 |
+
return convert_to_int(src);
|
1535 |
+
}
|
1536 |
+
|
1537 |
+
template <>
|
1538 |
+
Vectorized<int32_t> C10_ALWAYS_INLINE
|
1539 |
+
convert_to_int_of_same_size<float>(const Vectorized<float>& src) {
|
1540 |
+
return convert_to_int(src);
|
1541 |
+
}
|
1542 |
+
|
1543 |
+
template <>
|
1544 |
+
inline void convert(const int32_t* src, float* dst, int64_t n) {
|
1545 |
+
// int32_t and float have same size
|
1546 |
+
int64_t i;
|
1547 |
+
for (i = 0; i <= (n - Vectorized<float>::size());
|
1548 |
+
i += Vectorized<float>::size()) {
|
1549 |
+
const int32_t* src_a = src + i;
|
1550 |
+
float* dst_a = dst + i;
|
1551 |
+
auto input_vec = Vectorized<int32_t>::loadu(src_a);
|
1552 |
+
auto output_vec = convert_to_float(input_vec);
|
1553 |
+
output_vec.store(dst_a);
|
1554 |
+
}
|
1555 |
+
|
1556 |
+
for (; i < n; i++) {
|
1557 |
+
dst[i] = static_cast<float>(src[i]);
|
1558 |
+
}
|
1559 |
+
}
|
1560 |
+
|
1561 |
+
template <>
|
1562 |
+
inline void convert(const int64_t* src, double* dst, int64_t n) {
|
1563 |
+
int64_t i;
|
1564 |
+
for (i = 0; i <= (n - Vectorized<double>::size());
|
1565 |
+
i += Vectorized<double>::size()) {
|
1566 |
+
const int64_t* src_a = src + i;
|
1567 |
+
double* dst_a = dst + i;
|
1568 |
+
auto input_vec = Vectorized<int64_t>::loadu(src_a);
|
1569 |
+
auto output_vec = convert_to_float(input_vec);
|
1570 |
+
output_vec.store(dst_a);
|
1571 |
+
}
|
1572 |
+
for (; i < n; i++) {
|
1573 |
+
dst[i] = static_cast<double>(src[i]);
|
1574 |
+
}
|
1575 |
+
}
|
1576 |
+
|
1577 |
+
#define DEFINE_REINTERPRET_CAST_FUNCS(Fst, Cst) \
|
1578 |
+
template <> \
|
1579 |
+
C10_ALWAYS_INLINE Vectorized<Cst> cast<Cst, Fst>( \
|
1580 |
+
const Vectorized<Fst>& src) { \
|
1581 |
+
return cast_zvector<Fst, Cst>(src); \
|
1582 |
+
}
|
1583 |
+
|
1584 |
+
#define DEFINE_REINTERPRET_CAST_TO_ALL_FUNCS(Fst) \
|
1585 |
+
DEFINE_REINTERPRET_CAST_FUNCS(Fst, double) \
|
1586 |
+
DEFINE_REINTERPRET_CAST_FUNCS(Fst, float) \
|
1587 |
+
DEFINE_REINTERPRET_CAST_FUNCS(Fst, int64_t) \
|
1588 |
+
DEFINE_REINTERPRET_CAST_FUNCS(Fst, int32_t) \
|
1589 |
+
DEFINE_REINTERPRET_CAST_FUNCS(Fst, int16_t)
|
1590 |
+
|
1591 |
+
DEFINE_REINTERPRET_CAST_TO_ALL_FUNCS(float)
|
1592 |
+
DEFINE_REINTERPRET_CAST_TO_ALL_FUNCS(double)
|
1593 |
+
DEFINE_REINTERPRET_CAST_TO_ALL_FUNCS(int64_t)
|
1594 |
+
DEFINE_REINTERPRET_CAST_TO_ALL_FUNCS(int32_t)
|
1595 |
+
DEFINE_REINTERPRET_CAST_TO_ALL_FUNCS(int16_t)
|
1596 |
+
|
1597 |
+
#undef DEFINE_REINTERPRET_CAST_FUNCS
|
1598 |
+
|
1599 |
+
template <typename T>
|
1600 |
+
struct unpack_type {
|
1601 |
+
using type = T;
|
1602 |
+
};
|
1603 |
+
template <>
|
1604 |
+
struct unpack_type<int8_t> {
|
1605 |
+
using type = int16_t;
|
1606 |
+
};
|
1607 |
+
template <>
|
1608 |
+
struct unpack_type<uint8_t> {
|
1609 |
+
using type = int16_t;
|
1610 |
+
};
|
1611 |
+
template <>
|
1612 |
+
struct unpack_type<int16_t> {
|
1613 |
+
using type = int32_t;
|
1614 |
+
};
|
1615 |
+
|
1616 |
+
template <typename T>
|
1617 |
+
struct pack_type {
|
1618 |
+
using type = T;
|
1619 |
+
};
|
1620 |
+
template <>
|
1621 |
+
struct pack_type<int16_t> {
|
1622 |
+
using type = int8_t;
|
1623 |
+
};
|
1624 |
+
template <>
|
1625 |
+
struct pack_type<int32_t> {
|
1626 |
+
using type = int16_t;
|
1627 |
+
};
|
1628 |
+
|
1629 |
+
namespace { /* unnamed namespace */
|
1630 |
+
|
1631 |
+
template <typename T, typename V = typename unpack_type<T>::type>
|
1632 |
+
std::pair<Vectorized<V>, Vectorized<V>> unpack(const Vectorized<T>& x) {
|
1633 |
+
auto vec0 = vec_unpackh(x.vec0());
|
1634 |
+
auto vec1 = vec_unpackl(x.vec0());
|
1635 |
+
auto vec2 = vec_unpackh(x.vec1());
|
1636 |
+
auto vec3 = vec_unpackl(x.vec1());
|
1637 |
+
return {Vectorized<V>{vec0, vec1}, Vectorized<V>{vec2, vec3}};
|
1638 |
+
}
|
1639 |
+
|
1640 |
+
template <>
|
1641 |
+
std::pair<Vectorized<int16_t>, Vectorized<int16_t>> unpack<uint8_t, int16_t>(
|
1642 |
+
const Vectorized<uint8_t>& x) {
|
1643 |
+
using typeX = typename Vectorized<uint16_t>::vtype;
|
1644 |
+
typeX vec0 = vec_unpackh(x.vec0());
|
1645 |
+
typeX vec1 = vec_unpackl(x.vec0());
|
1646 |
+
typeX vec2 = vec_unpackh(x.vec1());
|
1647 |
+
typeX vec3 = vec_unpackl(x.vec1());
|
1648 |
+
// auto mask = Vectorized<uint16_t>(0xFF);
|
1649 |
+
// vec0 = vec0 & mask;
|
1650 |
+
// vec1 = vec1 & mask;
|
1651 |
+
// vec2 = vec2 & mask;
|
1652 |
+
// vec3 = vec3 & mask;
|
1653 |
+
return {
|
1654 |
+
cast_zvector<uint16_t, int16_t>(Vectorized<uint16_t>{vec0, vec1}),
|
1655 |
+
cast_zvector<uint16_t, int16_t>(Vectorized<uint16_t>{vec2, vec3})};
|
1656 |
+
}
|
1657 |
+
|
1658 |
+
template <typename T, typename V = typename pack_type<T>::type>
|
1659 |
+
Vectorized<V> pack(const Vectorized<T>& first, const Vectorized<T>& second) {
|
1660 |
+
auto vec0 = vec_packs(first.vec0(), first.vec1());
|
1661 |
+
auto vec1 = vec_packs(second.vec0(), second.vec1());
|
1662 |
+
return Vectorized<V>{vec0, vec1};
|
1663 |
+
}
|
1664 |
+
|
1665 |
+
template <>
|
1666 |
+
Vectorized<uint8_t> pack(
|
1667 |
+
const Vectorized<int16_t>& first,
|
1668 |
+
const Vectorized<int16_t>& second) {
|
1669 |
+
auto vec0 = vec_packsu(first.vec0(), first.vec1());
|
1670 |
+
auto vec1 = vec_packsu(second.vec0(), second.vec1());
|
1671 |
+
return Vectorized<uint8_t>{vec0, vec1};
|
1672 |
+
}
|
1673 |
+
|
1674 |
+
} /* unnamed namespace */
|
1675 |
+
|
1676 |
+
//////////////////////////////////QUANT///////////////////////////////////////////
|
1677 |
+
template <typename T>
|
1678 |
+
struct Vectorized<T, std::enable_if_t<is_zarch_implemented_quant<T>()>> {
|
1679 |
+
public:
|
1680 |
+
using value_type = typename T::underlying;
|
1681 |
+
using vtype = ZSimdVect<value_type>;
|
1682 |
+
using vmaskType = ZSimdVectBinary<value_type>;
|
1683 |
+
using vinner_type = Vectorized<value_type>;
|
1684 |
+
using size_type = int;
|
1685 |
+
|
1686 |
+
static constexpr size_type size() {
|
1687 |
+
return VECTOR_WIDTH / sizeof(value_type);
|
1688 |
+
}
|
1689 |
+
|
1690 |
+
static constexpr size_t float_num_vecs() {
|
1691 |
+
return size() / Vectorized<float>::size();
|
1692 |
+
}
|
1693 |
+
static constexpr int int_num_vecs() {
|
1694 |
+
return float_num_vecs();
|
1695 |
+
}
|
1696 |
+
using float_vec_return_type = std::array<Vectorized<float>, float_num_vecs()>;
|
1697 |
+
using int_vec_return_type =
|
1698 |
+
std::array<Vectorized<c10::qint32>, int_num_vecs()>;
|
1699 |
+
|
1700 |
+
private:
|
1701 |
+
vinner_type _vec;
|
1702 |
+
|
1703 |
+
public:
|
1704 |
+
Vectorized() {}
|
1705 |
+
|
1706 |
+
explicit C10_ALWAYS_INLINE Vectorized(vinner_type v) : _vec{v} {}
|
1707 |
+
Vectorized(const T& val) : _vec(val.val_) {}
|
1708 |
+
|
1709 |
+
C10_ALWAYS_INLINE const vinner_type& vec() const {
|
1710 |
+
return _vec;
|
1711 |
+
}
|
1712 |
+
|
1713 |
+
static Vectorized<T> C10_ALWAYS_INLINE
|
1714 |
+
loadu(const void* ptr, int count = size()) {
|
1715 |
+
return Vectorized<T>{vinner_type::loadu(ptr, count)};
|
1716 |
+
}
|
1717 |
+
|
1718 |
+
void C10_ALWAYS_INLINE store(void* ptr, int count = size()) const {
|
1719 |
+
_vec.store(ptr, count);
|
1720 |
+
}
|
1721 |
+
|
1722 |
+
Vectorized<T> relu(Vectorized<T> zero_point) const {
|
1723 |
+
return Vectorized<T>{_vec.maximum(zero_point._vec)};
|
1724 |
+
}
|
1725 |
+
|
1726 |
+
Vectorized<T> relu6(Vectorized<T> zero_point, Vectorized<T> q_six) const {
|
1727 |
+
auto ret_max = _vec.maximum(zero_point._vec);
|
1728 |
+
auto ret_min = ret_max.minimum(q_six._vec);
|
1729 |
+
return Vectorized<T>{ret_min};
|
1730 |
+
}
|
1731 |
+
|
1732 |
+
template <
|
1733 |
+
typename U = T,
|
1734 |
+
std::enable_if_t<Vectorized<U>::float_num_vecs() == 1, int> = 0>
|
1735 |
+
int_vec_return_type widening_subtract(Vectorized<T> b) const {
|
1736 |
+
return {*this - b};
|
1737 |
+
}
|
1738 |
+
|
1739 |
+
template <
|
1740 |
+
typename U = T,
|
1741 |
+
std::enable_if_t<Vectorized<U>::float_num_vecs() == 1, int> = 0>
|
1742 |
+
float_vec_return_type dequantize(
|
1743 |
+
Vectorized<float> scale,
|
1744 |
+
Vectorized<float> zero_point,
|
1745 |
+
Vectorized<float> scale_zp_premul) const {
|
1746 |
+
auto float_val = convert_to_float(_vec);
|
1747 |
+
return {fmadd(scale, float_val, scale_zp_premul)};
|
1748 |
+
}
|
1749 |
+
|
1750 |
+
template <
|
1751 |
+
typename U = T,
|
1752 |
+
std::enable_if_t<Vectorized<U>::float_num_vecs() == 1, int> = 0>
|
1753 |
+
float_vec_return_type dequantize(
|
1754 |
+
Vectorized<float> scale,
|
1755 |
+
Vectorized<float> zero_point) const {
|
1756 |
+
auto float_val = convert_to_float(_vec);
|
1757 |
+
return {(float_val - zero_point) * scale};
|
1758 |
+
}
|
1759 |
+
|
1760 |
+
template <
|
1761 |
+
typename U = T,
|
1762 |
+
std::enable_if_t<Vectorized<U>::float_num_vecs() == 1, int> = 0>
|
1763 |
+
static Vectorized<T> quantize(
|
1764 |
+
const float_vec_return_type& rhs,
|
1765 |
+
float scale,
|
1766 |
+
int32_t zero_point,
|
1767 |
+
float inverse_scale) {
|
1768 |
+
Vectorized<float> vecf = rhs[0];
|
1769 |
+
vecf = vecf * Vectorized<float>(inverse_scale);
|
1770 |
+
vecf = vecf.rint() + Vectorized<float>((float)(zero_point));
|
1771 |
+
auto veci = convert_to_int(vecf);
|
1772 |
+
|
1773 |
+
return Vectorized<T>{veci};
|
1774 |
+
}
|
1775 |
+
|
1776 |
+
template <
|
1777 |
+
typename U = T,
|
1778 |
+
std::enable_if_t<Vectorized<U>::int_num_vecs() == 1, int> = 0>
|
1779 |
+
static Vectorized<T> requantize_from_int(
|
1780 |
+
const int_vec_return_type& inp,
|
1781 |
+
float multiplier,
|
1782 |
+
int32_t zero_point) {
|
1783 |
+
Vectorized<T> vi = inp[0];
|
1784 |
+
auto vecf = convert_to_float(vi.vec());
|
1785 |
+
vecf = vecf * Vectorized<float>(multiplier);
|
1786 |
+
vecf = vecf.rint();
|
1787 |
+
auto veci = convert_to_int(vecf) + Vectorized<int>(zero_point);
|
1788 |
+
|
1789 |
+
return Vectorized<T>{veci};
|
1790 |
+
}
|
1791 |
+
|
1792 |
+
template <
|
1793 |
+
typename U = T,
|
1794 |
+
std::enable_if_t<Vectorized<U>::int_num_vecs() == 4, int> = 0>
|
1795 |
+
int_vec_return_type widening_subtract(Vectorized<U> b) const {
|
1796 |
+
auto ret16 = unpack(_vec);
|
1797 |
+
auto ret16B = unpack(b.vec());
|
1798 |
+
auto ret32_0 = unpack(ret16.first);
|
1799 |
+
auto ret32_1 = unpack(ret16.second);
|
1800 |
+
auto ret32B_0 = unpack(ret16B.first);
|
1801 |
+
auto ret32B_1 = unpack(ret16B.second);
|
1802 |
+
|
1803 |
+
return {
|
1804 |
+
Vectorized<c10::qint32>(ret32_0.first - ret32B_0.first),
|
1805 |
+
Vectorized<c10::qint32>(ret32_0.second - ret32B_0.second),
|
1806 |
+
Vectorized<c10::qint32>(ret32_1.first - ret32B_1.first),
|
1807 |
+
Vectorized<c10::qint32>(ret32_1.second - ret32B_1.second)};
|
1808 |
+
}
|
1809 |
+
|
1810 |
+
template <
|
1811 |
+
typename U = T,
|
1812 |
+
std::enable_if_t<Vectorized<U>::float_num_vecs() == 4, int> = 0>
|
1813 |
+
float_vec_return_type C10_ALWAYS_INLINE dequantize(
|
1814 |
+
Vectorized<float> scale,
|
1815 |
+
Vectorized<float> zero_point,
|
1816 |
+
Vectorized<float> scale_zp_premul) const {
|
1817 |
+
// unpacking unsigned as signed
|
1818 |
+
auto ret16 = unpack(_vec);
|
1819 |
+
auto ret32_0 = unpack(ret16.first);
|
1820 |
+
auto ret32_1 = unpack(ret16.second);
|
1821 |
+
|
1822 |
+
auto vecf_0 = convert_to_float(ret32_0.first);
|
1823 |
+
auto vecf_1 = convert_to_float(ret32_0.second);
|
1824 |
+
|
1825 |
+
auto vecf_2 = convert_to_float(ret32_1.first);
|
1826 |
+
auto vecf_3 = convert_to_float(ret32_1.second);
|
1827 |
+
return {
|
1828 |
+
fmadd(scale, vecf_0, scale_zp_premul),
|
1829 |
+
fmadd(scale, vecf_1, scale_zp_premul),
|
1830 |
+
fmadd(scale, vecf_2, scale_zp_premul),
|
1831 |
+
fmadd(scale, vecf_3, scale_zp_premul)};
|
1832 |
+
}
|
1833 |
+
|
1834 |
+
template <
|
1835 |
+
typename U = T,
|
1836 |
+
std::enable_if_t<Vectorized<U>::float_num_vecs() == 4, int> = 0>
|
1837 |
+
float_vec_return_type dequantize(
|
1838 |
+
Vectorized<float> scale,
|
1839 |
+
Vectorized<float> zero_point) const {
|
1840 |
+
// unpacking unsigned as signed
|
1841 |
+
auto ret16 = unpack(_vec);
|
1842 |
+
auto ret32_0 = unpack(ret16.first);
|
1843 |
+
auto ret32_1 = unpack(ret16.second);
|
1844 |
+
|
1845 |
+
auto vecf_0 = convert_to_float(ret32_0.first);
|
1846 |
+
auto vecf_1 = convert_to_float(ret32_0.second);
|
1847 |
+
|
1848 |
+
auto vecf_2 = convert_to_float(ret32_1.first);
|
1849 |
+
auto vecf_3 = convert_to_float(ret32_1.second);
|
1850 |
+
|
1851 |
+
return {
|
1852 |
+
(vecf_0 - zero_point) * scale,
|
1853 |
+
(vecf_1 - zero_point) * scale,
|
1854 |
+
(vecf_2 - zero_point) * scale,
|
1855 |
+
(vecf_3 - zero_point) * scale };
|
1856 |
+
}
|
1857 |
+
|
1858 |
+
template <
|
1859 |
+
typename U = T,
|
1860 |
+
std::enable_if_t<Vectorized<U>::float_num_vecs() == 4, int> = 0>
|
1861 |
+
static Vectorized<T> quantize(
|
1862 |
+
const float_vec_return_type& rhs,
|
1863 |
+
float scale,
|
1864 |
+
int32_t zero_point,
|
1865 |
+
float inverse_scale) {
|
1866 |
+
auto vec_inverse = Vectorized<float>(inverse_scale);
|
1867 |
+
auto vec_zero_point = Vectorized<float>((float)zero_point);
|
1868 |
+
|
1869 |
+
auto vecf0 = rhs[0];
|
1870 |
+
auto vecf2 = rhs[1];
|
1871 |
+
auto vecf4 = rhs[2];
|
1872 |
+
auto vecf6 = rhs[3];
|
1873 |
+
|
1874 |
+
vecf0 = vecf0 * vec_inverse;
|
1875 |
+
vecf2 = vecf2 * vec_inverse;
|
1876 |
+
vecf4 = vecf4 * vec_inverse;
|
1877 |
+
vecf6 = vecf6 * vec_inverse;
|
1878 |
+
|
1879 |
+
vecf0 = vecf0.rint() + vec_zero_point;
|
1880 |
+
vecf2 = vecf2.rint() + vec_zero_point;
|
1881 |
+
vecf4 = vecf4.rint() + vec_zero_point;
|
1882 |
+
vecf6 = vecf6.rint() + vec_zero_point;
|
1883 |
+
|
1884 |
+
auto veci0 = convert_to_int(vecf0);
|
1885 |
+
auto veci2 = convert_to_int(vecf2);
|
1886 |
+
auto veci4 = convert_to_int(vecf4);
|
1887 |
+
auto veci6 = convert_to_int(vecf6);
|
1888 |
+
|
1889 |
+
auto vecshi0 = pack(veci0, veci2);
|
1890 |
+
auto vecshi2 = pack(veci4, veci6);
|
1891 |
+
auto ret = pack<int16_t, typename U::underlying>(vecshi0, vecshi2);
|
1892 |
+
|
1893 |
+
return Vectorized<T>{ret};
|
1894 |
+
}
|
1895 |
+
|
1896 |
+
template <
|
1897 |
+
typename U = T,
|
1898 |
+
std::enable_if_t<Vectorized<U>::int_num_vecs() == 4, int> = 0>
|
1899 |
+
static Vectorized<U> requantize_from_int(
|
1900 |
+
const int_vec_return_type& inp,
|
1901 |
+
float multiplier,
|
1902 |
+
int32_t zero_point) {
|
1903 |
+
Vectorized<float> vec_multiplier = Vectorized<float>(multiplier);
|
1904 |
+
Vectorized<int32_t> vec_zero_point = Vectorized<int32_t>(zero_point);
|
1905 |
+
|
1906 |
+
Vectorized<c10::qint32> vi0 = inp[0];
|
1907 |
+
Vectorized<c10::qint32> vi1 = inp[1];
|
1908 |
+
Vectorized<c10::qint32> vi2 = inp[2];
|
1909 |
+
Vectorized<c10::qint32> vi3 = inp[3];
|
1910 |
+
|
1911 |
+
auto vecf0 = convert_to_float(vi0.vec());
|
1912 |
+
auto vecf2 = convert_to_float(vi1.vec());
|
1913 |
+
|
1914 |
+
auto vecf4 = convert_to_float(vi2.vec());
|
1915 |
+
auto vecf6 = convert_to_float(vi3.vec());
|
1916 |
+
|
1917 |
+
vecf0 = vecf0 * vec_multiplier;
|
1918 |
+
vecf2 = vecf2 * vec_multiplier;
|
1919 |
+
|
1920 |
+
vecf4 = vecf4 * vec_multiplier;
|
1921 |
+
vecf6 = vecf6 * vec_multiplier;
|
1922 |
+
|
1923 |
+
vecf0 = vecf0.rint();
|
1924 |
+
vecf2 = vecf2.rint();
|
1925 |
+
vecf4 = vecf4.rint();
|
1926 |
+
vecf6 = vecf6.rint();
|
1927 |
+
|
1928 |
+
auto veci0 = convert_to_int(vecf0);
|
1929 |
+
auto veci2 = convert_to_int(vecf2);
|
1930 |
+
auto veci4 = convert_to_int(vecf4);
|
1931 |
+
auto veci6 = convert_to_int(vecf6);
|
1932 |
+
|
1933 |
+
veci0 = veci0 + vec_zero_point;
|
1934 |
+
veci2 = veci2 + vec_zero_point;
|
1935 |
+
|
1936 |
+
veci4 = veci4 + vec_zero_point;
|
1937 |
+
veci6 = veci6 + vec_zero_point;
|
1938 |
+
|
1939 |
+
auto vecshi0 = pack<int32_t, int16_t>(veci0, veci2);
|
1940 |
+
auto vecshi2 = pack<int32_t, int16_t>(veci4, veci6);
|
1941 |
+
|
1942 |
+
auto ret = pack<int16_t, typename U::underlying>(vecshi0, vecshi2);
|
1943 |
+
|
1944 |
+
return Vectorized<U>{ret};
|
1945 |
+
}
|
1946 |
+
|
1947 |
+
Vectorized<T> C10_ALWAYS_INLINE operator+(const Vectorized<T>& other) const {
|
1948 |
+
return Vectorized<T>{_vec + other._vec};
|
1949 |
+
}
|
1950 |
+
|
1951 |
+
Vectorized<T> C10_ALWAYS_INLINE operator-(const Vectorized<T>& other) const {
|
1952 |
+
return Vectorized<T>{_vec - other._vec};
|
1953 |
+
}
|
1954 |
+
|
1955 |
+
Vectorized<T> C10_ALWAYS_INLINE operator*(const Vectorized<T>& other) const {
|
1956 |
+
return Vectorized<T>{_vec * other._vec};
|
1957 |
+
}
|
1958 |
+
|
1959 |
+
Vectorized<T> C10_ALWAYS_INLINE operator/(const Vectorized<T>& other) const {
|
1960 |
+
return Vectorized<T>{_vec / other._vec};
|
1961 |
+
}
|
1962 |
+
|
1963 |
+
Vectorized<T> C10_ALWAYS_INLINE operator&(const Vectorized<T>& other) const {
|
1964 |
+
return Vectorized<T>{_vec & other._vec};
|
1965 |
+
}
|
1966 |
+
|
1967 |
+
Vectorized<T> C10_ALWAYS_INLINE operator|(const Vectorized<T>& other) const {
|
1968 |
+
return Vectorized<T>{_vec | other._vec};
|
1969 |
+
}
|
1970 |
+
|
1971 |
+
Vectorized<T> C10_ALWAYS_INLINE operator^(const Vectorized<T>& other) const {
|
1972 |
+
return Vectorized<T>{_vec ^ other._vec};
|
1973 |
+
}
|
1974 |
+
Vectorized<T> C10_ALWAYS_INLINE operator==(const Vectorized<T>& other) const {
|
1975 |
+
return Vectorized<T>{_vec == other._vec};
|
1976 |
+
}
|
1977 |
+
|
1978 |
+
Vectorized<T> C10_ALWAYS_INLINE operator!=(const Vectorized<T>& other) const {
|
1979 |
+
return Vectorized<T>{_vec != other._vec};
|
1980 |
+
}
|
1981 |
+
Vectorized<T> C10_ALWAYS_INLINE operator>(const Vectorized<T>& other) const {
|
1982 |
+
return Vectorized<T>{_vec > other._vec};
|
1983 |
+
}
|
1984 |
+
Vectorized<T> C10_ALWAYS_INLINE operator>=(const Vectorized<T>& other) const {
|
1985 |
+
return Vectorized<T>{_vec >= other._vec};
|
1986 |
+
}
|
1987 |
+
|
1988 |
+
Vectorized<T> C10_ALWAYS_INLINE operator<(const Vectorized<T>& other) const {
|
1989 |
+
return Vectorized<T>{_vec < other._vec};
|
1990 |
+
}
|
1991 |
+
|
1992 |
+
Vectorized<T> C10_ALWAYS_INLINE operator<=(const Vectorized<T>& other) const {
|
1993 |
+
return Vectorized<T>{_vec <= other._vec};
|
1994 |
+
}
|
1995 |
+
|
1996 |
+
Vectorized<T> C10_ALWAYS_INLINE eq(const Vectorized<T>& other) const {
|
1997 |
+
return Vectorized<T>{_vec.eq(other._vec)};
|
1998 |
+
}
|
1999 |
+
Vectorized<T> C10_ALWAYS_INLINE ne(const Vectorized<T>& other) const {
|
2000 |
+
return Vectorized<T>{_vec.ne(other._vec)};
|
2001 |
+
}
|
2002 |
+
Vectorized<T> C10_ALWAYS_INLINE gt(const Vectorized<T>& other) const {
|
2003 |
+
return Vectorized<T>{_vec.gt(other._vec)};
|
2004 |
+
}
|
2005 |
+
Vectorized<T> C10_ALWAYS_INLINE ge(const Vectorized<T>& other) const {
|
2006 |
+
return Vectorized<T>{_vec.ge(other._vec)};
|
2007 |
+
}
|
2008 |
+
Vectorized<T> C10_ALWAYS_INLINE lt(const Vectorized<T>& other) const {
|
2009 |
+
return Vectorized<T>{_vec.lt(other._vec)};
|
2010 |
+
}
|
2011 |
+
Vectorized<T> C10_ALWAYS_INLINE le(const Vectorized<T>& other) const {
|
2012 |
+
return Vectorized<T>{_vec.le(other._vec)};
|
2013 |
+
}
|
2014 |
+
|
2015 |
+
Vectorized<T> clamp_min(const Vectorized<T>& min) const {
|
2016 |
+
return Vectorized<T>{_vec.clamp_min(min._vec)};
|
2017 |
+
}
|
2018 |
+
|
2019 |
+
Vectorized<T> clamp_max(const Vectorized<T>& max) const {
|
2020 |
+
return Vectorized<T>{_vec.clamp_max(max._vec)};
|
2021 |
+
}
|
2022 |
+
|
2023 |
+
Vectorized<T> minimum(const Vectorized<T>& other) const {
|
2024 |
+
return Vectorized<T>{_vec.minimum(other._vec)};
|
2025 |
+
}
|
2026 |
+
|
2027 |
+
Vectorized<T> maximum(const Vectorized<T>& other) const {
|
2028 |
+
return Vectorized<T>{_vec.maximum(other._vec)};
|
2029 |
+
}
|
2030 |
+
};
|
2031 |
+
|
2032 |
+
DEFINE_CLAMP_MAXMIN_FUNCS(c10::quint8)
|
2033 |
+
DEFINE_CLAMP_MAXMIN_FUNCS(c10::qint8)
|
2034 |
+
DEFINE_CLAMP_MAXMIN_FUNCS(c10::qint32)
|
2035 |
+
|
2036 |
+
template <typename U = float>
|
2037 |
+
constexpr auto real_mask() {
|
2038 |
+
return (ZSimdVect<U>)ZSimdVectBinary<float>{0xFFFFFFFF, 0, 0xFFFFFFFF, 0};
|
2039 |
+
}
|
2040 |
+
|
2041 |
+
template <>
|
2042 |
+
constexpr auto real_mask<double>() {
|
2043 |
+
return (ZSimdVect<double>)ZSimdVectBinary<double>{0xFFFFFFFFFFFFFFFF, 0};
|
2044 |
+
}
|
2045 |
+
|
2046 |
+
template <typename U = float>
|
2047 |
+
constexpr auto image_mask() {
|
2048 |
+
return (ZSimdVect<U>)ZSimdVectBinary<U>{0, 0xFFFFFFFF, 0, 0xFFFFFFFF};
|
2049 |
+
}
|
2050 |
+
|
2051 |
+
template <>
|
2052 |
+
constexpr auto image_mask<double>() {
|
2053 |
+
return (ZSimdVect<double>)ZSimdVectBinary<double>{0, 0xFFFFFFFFFFFFFFFF};
|
2054 |
+
}
|
2055 |
+
|
2056 |
+
template <typename U = float>
|
2057 |
+
constexpr auto rsign_mask() {
|
2058 |
+
return ZSimdVect<U>{-0.f, 0.f, -0.f, 0.f};
|
2059 |
+
}
|
2060 |
+
|
2061 |
+
template <>
|
2062 |
+
constexpr auto rsign_mask<double>() {
|
2063 |
+
return ZSimdVect<double>{-0.0, 0.f};
|
2064 |
+
}
|
2065 |
+
|
2066 |
+
template <typename U = float>
|
2067 |
+
constexpr auto isign_mask() {
|
2068 |
+
return ZSimdVect<U>{0.0, -0.f, 0.0, -0.f};
|
2069 |
+
}
|
2070 |
+
|
2071 |
+
template <>
|
2072 |
+
constexpr auto isign_mask<double>() {
|
2073 |
+
return ZSimdVect<double>{0.0, -0.0};
|
2074 |
+
}
|
2075 |
+
|
2076 |
+
template <typename U = float>
|
2077 |
+
constexpr auto image_one() {
|
2078 |
+
return ZSimdVect<U>{0, 1.f, 0, 1.f};
|
2079 |
+
}
|
2080 |
+
|
2081 |
+
template <>
|
2082 |
+
constexpr auto image_one<double>() {
|
2083 |
+
return ZSimdVect<double>{0.0, 1.0};
|
2084 |
+
}
|
2085 |
+
|
2086 |
+
template <typename U = float>
|
2087 |
+
constexpr auto pi_half() {
|
2088 |
+
return ZSimdVect<U>{(float)(M_PI / 2.0), 0.f, (float)(M_PI / 2.0), 0.f};
|
2089 |
+
}
|
2090 |
+
|
2091 |
+
template <>
|
2092 |
+
constexpr auto pi_half<double>() {
|
2093 |
+
return ZSimdVect<double>{M_PI / 2.0, 0.0};
|
2094 |
+
}
|
2095 |
+
|
2096 |
+
template <typename U = float>
|
2097 |
+
constexpr auto image_half() {
|
2098 |
+
return ZSimdVect<U>{0, 0.5f, 0, 0.5f};
|
2099 |
+
}
|
2100 |
+
|
2101 |
+
template <>
|
2102 |
+
constexpr auto image_half<double>() {
|
2103 |
+
return ZSimdVect<double>{0.0, 0.5};
|
2104 |
+
}
|
2105 |
+
|
2106 |
+
template <typename U>
|
2107 |
+
constexpr U log2e_inv() {
|
2108 |
+
return static_cast<U>(1.4426950408889634);
|
2109 |
+
}
|
2110 |
+
|
2111 |
+
template <typename U>
|
2112 |
+
constexpr U log10e_inv() {
|
2113 |
+
return static_cast<U>(0.43429448190325176);
|
2114 |
+
}
|
2115 |
+
|
2116 |
+
template <typename T>
|
2117 |
+
struct Vectorized<T, std::enable_if_t<is_zarch_implemented_complex<T>()>> {
|
2118 |
+
public:
|
2119 |
+
using underline_type = decltype(std::declval<T>().imag());
|
2120 |
+
using value_type = T;
|
2121 |
+
using vtype = ZSimdVect<underline_type>;
|
2122 |
+
using vmaskType = ZSimdVectBinary<underline_type>;
|
2123 |
+
using vinner_type = Vectorized<underline_type>;
|
2124 |
+
using size_type = int;
|
2125 |
+
using vinner_data = typename Vectorized<underline_type>::vinner_data;
|
2126 |
+
|
2127 |
+
static constexpr size_type size() {
|
2128 |
+
return VECTOR_WIDTH / sizeof(value_type);
|
2129 |
+
}
|
2130 |
+
|
2131 |
+
private:
|
2132 |
+
vinner_type _vec;
|
2133 |
+
|
2134 |
+
public:
|
2135 |
+
Vectorized() {}
|
2136 |
+
|
2137 |
+
C10_ALWAYS_INLINE Vectorized(const vinner_data &v) : _vec{v.first, v.second} {}
|
2138 |
+
|
2139 |
+
template <typename U = T, std::enable_if_t<(sizeof(U) == 16), int> = 0>
|
2140 |
+
C10_ALWAYS_INLINE Vectorized(T s1, T s2)
|
2141 |
+
: _vec{s1.real(), s1.imag(), s2.real(), s2.imag()} {}
|
2142 |
+
|
2143 |
+
template <typename U = T, std::enable_if_t<(sizeof(U) == 8), int> = 0>
|
2144 |
+
C10_ALWAYS_INLINE Vectorized(T s1, T s2, T s3, T s4)
|
2145 |
+
: _vec{
|
2146 |
+
s1.real(),
|
2147 |
+
s1.imag(),
|
2148 |
+
s2.real(),
|
2149 |
+
s2.imag(),
|
2150 |
+
s3.real(),
|
2151 |
+
s3.imag(),
|
2152 |
+
s4.real(),
|
2153 |
+
s4.imag()} {}
|
2154 |
+
|
2155 |
+
template <typename U = T, std::enable_if_t<(sizeof(U) == 16), int> = 0>
|
2156 |
+
C10_ALWAYS_INLINE Vectorized(T s) : Vectorized<T>(s, s) {}
|
2157 |
+
|
2158 |
+
template <typename U = T, std::enable_if_t<(sizeof(U) == 8), int> = 0>
|
2159 |
+
C10_ALWAYS_INLINE Vectorized(T s) : Vectorized<T>(s, s, s, s) {}
|
2160 |
+
|
2161 |
+
C10_ALWAYS_INLINE operator vinner_type() const {
|
2162 |
+
return _vec;
|
2163 |
+
}
|
2164 |
+
|
2165 |
+
C10_ALWAYS_INLINE const vinner_type& vec() const {
|
2166 |
+
return _vec;
|
2167 |
+
}
|
2168 |
+
|
2169 |
+
C10_ALWAYS_INLINE operator vinner_data() const {
|
2170 |
+
return _vec.data();
|
2171 |
+
}
|
2172 |
+
|
2173 |
+
C10_ALWAYS_INLINE vinner_data data() const {
|
2174 |
+
return _vec.data();
|
2175 |
+
}
|
2176 |
+
|
2177 |
+
static Vectorized<T> C10_ALWAYS_INLINE
|
2178 |
+
loadu(const void* ptr, int count = size()) {
|
2179 |
+
return Vectorized<T>{vinner_type::loadu(ptr, 2 * count)};
|
2180 |
+
}
|
2181 |
+
|
2182 |
+
void C10_ALWAYS_INLINE store(void* ptr, int count = size()) const {
|
2183 |
+
return _vec.store(ptr, 2 * count);
|
2184 |
+
}
|
2185 |
+
|
2186 |
+
static Vectorized<T> blendv(
|
2187 |
+
const Vectorized<T>& a,
|
2188 |
+
const Vectorized<T>& b,
|
2189 |
+
const Vectorized<T>& mask) {
|
2190 |
+
// convert std::complex<V> index mask to V index mask: xy -> xxyy
|
2191 |
+
vinner_type vmask = mask.vec();
|
2192 |
+
auto mask_complex = vinner_type(
|
2193 |
+
vec_mergeh(vmask.vec0(), vmask.vec0()),
|
2194 |
+
vec_mergeh(vmask.vec1(), vmask.vec1()));
|
2195 |
+
return Vectorized<T>{vinner_type::blendv(a.vec(), b.vec(), mask_complex)};
|
2196 |
+
}
|
2197 |
+
|
2198 |
+
template <int64_t mask>
|
2199 |
+
static auto C10_ALWAYS_INLINE
|
2200 |
+
blend(const Vectorized<T>& a, const Vectorized<T>& b) {
|
2201 |
+
constexpr int mask_complex = maskForComplex<sizeof(T)>(mask);
|
2202 |
+
return Vectorized<T>{
|
2203 |
+
vinner_type::template blend<mask_complex>(a.vec(), b.vec())};
|
2204 |
+
}
|
2205 |
+
|
2206 |
+
template <typename step_t, typename U = T>
|
2207 |
+
static std::enable_if_t<sizeof(U) == 16, Vectorized<T>> arange(
|
2208 |
+
T base = 0,
|
2209 |
+
step_t step = static_cast<step_t>(1)) {
|
2210 |
+
return Vectorized<T>(base, base + step);
|
2211 |
+
}
|
2212 |
+
|
2213 |
+
template <typename step_t, typename U = T>
|
2214 |
+
static std::enable_if_t<sizeof(U) == 8, Vectorized<T>> arange(
|
2215 |
+
T base = 0,
|
2216 |
+
step_t step = static_cast<step_t>(1)) {
|
2217 |
+
return Vectorized<T>(
|
2218 |
+
base,
|
2219 |
+
base + step,
|
2220 |
+
base + value_type(2) * step,
|
2221 |
+
base + value_type(3) * step);
|
2222 |
+
}
|
2223 |
+
|
2224 |
+
template <int16_t Z, int16_t C>
|
2225 |
+
static inline std::enable_if_t<(Z >= C), Vectorized<T>> set_inner(
|
2226 |
+
const Vectorized<T>& a,
|
2227 |
+
const Vectorized<T>& b,
|
2228 |
+
size_t count) {
|
2229 |
+
return b;
|
2230 |
+
}
|
2231 |
+
|
2232 |
+
template <int16_t Z, int16_t C>
|
2233 |
+
static inline std::enable_if_t<(Z < C), Vectorized<T>> set_inner(
|
2234 |
+
const Vectorized<T>& a,
|
2235 |
+
const Vectorized<T>& b,
|
2236 |
+
size_t count) {
|
2237 |
+
if (count == Z)
|
2238 |
+
return blend<allbitset(Z)>(a, b);
|
2239 |
+
else
|
2240 |
+
return set_inner<Z + 1, C>(a, b, count);
|
2241 |
+
}
|
2242 |
+
|
2243 |
+
static Vectorized<T> set(
|
2244 |
+
const Vectorized<T>& a,
|
2245 |
+
const Vectorized<T>& b,
|
2246 |
+
size_t count = size()) {
|
2247 |
+
if (count == 0)
|
2248 |
+
return a;
|
2249 |
+
return set_inner<1, size()>(a, b, count);
|
2250 |
+
}
|
2251 |
+
|
2252 |
+
const T& operator[](int idx) const = delete;
|
2253 |
+
T& operator[](int idx) = delete;
|
2254 |
+
|
2255 |
+
template <
|
2256 |
+
typename U = T,
|
2257 |
+
std::enable_if_t<std::is_same<U, c10::complex<float>>::value, int> = 0>
|
2258 |
+
Vectorized<T> mapOrdinary(T (*const f)(const T&)) const {
|
2259 |
+
auto v0 = _vec.vec0();
|
2260 |
+
auto v1 = _vec.vec1();
|
2261 |
+
return Vectorized<T>{
|
2262 |
+
f(T(v0[0], v0[1])),
|
2263 |
+
f(T(v0[2], v0[3])),
|
2264 |
+
f(T(v1[0], v1[1])),
|
2265 |
+
f(T(v1[2], v1[3]))};
|
2266 |
+
}
|
2267 |
+
|
2268 |
+
template <
|
2269 |
+
typename U = T,
|
2270 |
+
std::enable_if_t<std::is_same<U, c10::complex<double>>::value, int> = 0>
|
2271 |
+
Vectorized<U> mapOrdinary(T (*const f)(const T&)) const {
|
2272 |
+
auto v0 = _vec.vec0();
|
2273 |
+
auto v1 = _vec.vec1();
|
2274 |
+
return Vectorized<T>{f(T(v0[0], v0[1])), f(T(v1[0], v1[1]))};
|
2275 |
+
}
|
2276 |
+
|
2277 |
+
template <
|
2278 |
+
typename U = T,
|
2279 |
+
std::enable_if_t<std::is_same<U, c10::complex<float>>::value, int> = 0>
|
2280 |
+
Vectorized<T> mapOrdinary(T (*const f)(T)) const {
|
2281 |
+
auto v0 = _vec.vec0();
|
2282 |
+
auto v1 = _vec.vec1();
|
2283 |
+
return Vectorized<T>{
|
2284 |
+
f(T(v0[0], v0[1])),
|
2285 |
+
f(T(v0[2], v0[3])),
|
2286 |
+
f(T(v1[0], v1[1])),
|
2287 |
+
f(T(v1[2], v1[3]))};
|
2288 |
+
}
|
2289 |
+
|
2290 |
+
template <
|
2291 |
+
typename U = T,
|
2292 |
+
std::enable_if_t<std::is_same<U, c10::complex<double>>::value, int> = 0>
|
2293 |
+
Vectorized<T> mapOrdinary(T (*const f)(T)) const {
|
2294 |
+
auto v0 = _vec.vec0();
|
2295 |
+
auto v1 = _vec.vec1();
|
2296 |
+
return Vectorized<T>{f(T(v0[0], v0[1])), f(T(v1[0], v1[1]))};
|
2297 |
+
}
|
2298 |
+
|
2299 |
+
template <
|
2300 |
+
typename U = T,
|
2301 |
+
std::enable_if_t<std::is_same<U, c10::complex<float>>::value, int> = 0>
|
2302 |
+
inline Vectorized<T> mapOrdinary(
|
2303 |
+
T (*const f)(const T&, const T&),
|
2304 |
+
const Vectorized<T>& b) const {
|
2305 |
+
auto v0 = _vec.vec0();
|
2306 |
+
auto v1 = _vec.vec1();
|
2307 |
+
auto bvec = b.vec();
|
2308 |
+
auto b0 = bvec.vec0();
|
2309 |
+
auto b1 = bvec.vec1();
|
2310 |
+
T a00 = f(T(v0[0], v0[1]), T(b0[0], b0[1]));
|
2311 |
+
T a01 = f(T(v0[2], v0[3]), T(b0[2], b0[3]));
|
2312 |
+
T a02 = f(T(v1[0], v1[1]), T(b1[0], b1[1]));
|
2313 |
+
T a03 = f(T(v1[2], v1[3]), T(b1[2], b1[3]));
|
2314 |
+
return Vectorized<T>{a00, a01, a02, a03};
|
2315 |
+
}
|
2316 |
+
|
2317 |
+
template <
|
2318 |
+
typename U = T,
|
2319 |
+
std::enable_if_t<std::is_same<U, c10::complex<double>>::value, int> = 0>
|
2320 |
+
inline Vectorized<T> mapOrdinary(
|
2321 |
+
T (*const f)(const T&, const T&),
|
2322 |
+
const Vectorized<T>& b) const {
|
2323 |
+
auto v0 = _vec.vec0();
|
2324 |
+
auto v1 = _vec.vec1();
|
2325 |
+
auto bvec = b.vec();
|
2326 |
+
auto b0 = bvec.vec0();
|
2327 |
+
auto b1 = bvec.vec1();
|
2328 |
+
U a00 = f(U(v0[0], v0[1]), U(b0[0], b0[1]));
|
2329 |
+
U a01 = f(U(v1[0], v1[1]), U(b1[0], b1[1]));
|
2330 |
+
return Vectorized<T>{a00, a01};
|
2331 |
+
}
|
2332 |
+
|
2333 |
+
Vectorized<T> C10_ALWAYS_INLINE operator+(const Vectorized<T>& other) const {
|
2334 |
+
return Vectorized<T>{_vec + other._vec};
|
2335 |
+
}
|
2336 |
+
|
2337 |
+
Vectorized<T> C10_ALWAYS_INLINE operator-(const Vectorized<T>& other) const {
|
2338 |
+
return Vectorized<T>{_vec - other._vec};
|
2339 |
+
}
|
2340 |
+
|
2341 |
+
Vectorized<T> inline operator*(const Vectorized<T>& b) const {
|
2342 |
+
//(a + bi) * (c + di) = (ac - bd) + (ad + bc)i
|
2343 |
+
vinner_type bv = b.vec();
|
2344 |
+
#if !defined(ZVECTOR_SIMULATE_X86_MULT)
|
2345 |
+
// this is more z arch friendly than simulating horizontal from x86
|
2346 |
+
vinner_type vi = bv.mergeo();
|
2347 |
+
vinner_type vr = bv.mergee();
|
2348 |
+
vi = vi ^ rsign_mask<underline_type>();
|
2349 |
+
vinner_type ret = _vec * vr;
|
2350 |
+
vinner_type vx_swapped = _vec.swapped();
|
2351 |
+
ret = fmadd(vx_swapped, vi, ret);
|
2352 |
+
#else
|
2353 |
+
vinner_type ac_bd = _vec * b;
|
2354 |
+
vinner_type d_c = bv.swapped();
|
2355 |
+
d_c = d_c ^ isign_mask<underline_type>();
|
2356 |
+
vinner_type ad_bc = _vec * d_c;
|
2357 |
+
vinner_type ret = vinner_type::horizontal_sub_perm(ac_bd, ad_bc);
|
2358 |
+
#endif
|
2359 |
+
return Vectorized<T>{ret};
|
2360 |
+
}
|
2361 |
+
|
2362 |
+
template <
|
2363 |
+
typename U = T,
|
2364 |
+
std::enable_if_t<std::is_same<U, c10::complex<float>>::value, int> = 0>
|
2365 |
+
static typename Vectorized<T>::vinner_type real_neg(const typename Vectorized<T>::vinner_type &a)
|
2366 |
+
{
|
2367 |
+
const auto swap_mask = ZSimdVectBinary<uint8_t>{
|
2368 |
+
0, 1, 2, 3, 20, 21, 22, 23, 8, 9, 10, 11, 28, 29, 30, 31};
|
2369 |
+
|
2370 |
+
auto a_neg = a.neg();
|
2371 |
+
vtype v0 = vec_perm(a_neg.vec0(), a.vec0(), swap_mask);
|
2372 |
+
vtype v1 = vec_perm(a_neg.vec1(), a.vec1(), swap_mask);
|
2373 |
+
return {v0, v1};
|
2374 |
+
}
|
2375 |
+
|
2376 |
+
template <
|
2377 |
+
typename U = T,
|
2378 |
+
std::enable_if_t<std::is_same<U, c10::complex<double>>::value, int> = 0>
|
2379 |
+
static typename Vectorized<T>::vinner_type real_neg(const typename Vectorized<T>::vinner_type &a)
|
2380 |
+
{
|
2381 |
+
auto a_neg = a.neg();
|
2382 |
+
auto v0 = vec_permi(a_neg.vec0(), a.vec0(), 1);
|
2383 |
+
auto v1 = vec_permi(a_neg.vec1(), a.vec1(), 1);
|
2384 |
+
return { v0, v1 };
|
2385 |
+
}
|
2386 |
+
|
2387 |
+
Vectorized<T> inline operator/(const Vectorized<T>& b) const {
|
2388 |
+
// Unfortunately, this breaks some tests
|
2389 |
+
// Implement it like it's done for avx2
|
2390 |
+
auto fabs_cd = b.vec().abs(); // |c| |d|
|
2391 |
+
auto fabs_dc = fabs_cd.swapped(); // |d| |c|
|
2392 |
+
auto scale = vinner_type {1.0} / maximum(fabs_cd, fabs_dc); // 1/sc 1/sc
|
2393 |
+
auto a2 = vec() * scale; // a/sc b/sc
|
2394 |
+
auto b2 = b.vec() * scale; // c/sc d/sc
|
2395 |
+
auto acbd2 = a2 * b2; // ac/sc^2 bd/sc^2
|
2396 |
+
|
2397 |
+
auto dc2 = b2.swapped(); // d/sc c/sc
|
2398 |
+
dc2 = Vectorized<T>::real_neg(dc2); // -d/|c,d| c/sc
|
2399 |
+
auto adbc2 = a2 * dc2; // -ad/sc^2 bc/sc^2
|
2400 |
+
auto sum1 = acbd2 + acbd2.swapped(); // (ac+bd)/sc^2 (ac+bd)/sc^2
|
2401 |
+
auto sum2 = adbc2 + adbc2.swapped(); // (bc-ad)/sc^2 (bc-ad)/sc^2
|
2402 |
+
auto res2 = vinner_type::mergee(sum1, sum2); // (ac+bd)/sc^2 (bc-ad)/sc^2
|
2403 |
+
|
2404 |
+
// get the denominator
|
2405 |
+
auto denom2 = Vectorized<T>{b2}.abs_2_(); // (c^2+d^2)/sc^2 (c^2+d^2)/sc^2
|
2406 |
+
res2 = res2 / denom2;
|
2407 |
+
return Vectorized<T>{ res2 };
|
2408 |
+
}
|
2409 |
+
|
2410 |
+
Vectorized<T> angle2_() const {
|
2411 |
+
auto b_a = _vec.swapped(); // b a
|
2412 |
+
return Vectorized<T>{_vec.atan2(b_a).swapped()};
|
2413 |
+
}
|
2414 |
+
|
2415 |
+
Vectorized<T> angle() const {
|
2416 |
+
return angle2_().real();
|
2417 |
+
}
|
2418 |
+
|
2419 |
+
Vectorized<T> atan() const {
|
2420 |
+
// atan(x) = i/2 * ln((i + z)/(i - z))
|
2421 |
+
auto ione = Vectorized<T>{vinner_type(image_one<underline_type>())};
|
2422 |
+
auto sum = ione + *this;
|
2423 |
+
auto sub = ione - *this;
|
2424 |
+
auto ln = (sum / sub).log(); // ln((i + z)/(i - z))
|
2425 |
+
return ln *
|
2426 |
+
Vectorized<T>{vinner_type(image_half<underline_type>())}; // i/2*ln()
|
2427 |
+
}
|
2428 |
+
|
2429 |
+
Vectorized<T> atanh() const {
|
2430 |
+
return mapOrdinary(std::atanh);
|
2431 |
+
}
|
2432 |
+
|
2433 |
+
Vectorized<T> asin() const {
|
2434 |
+
// asin(x)
|
2435 |
+
// = -i*ln(iz + sqrt(1 -z^2))
|
2436 |
+
// = -i*ln((ai - b) + sqrt(1 - (a + bi)*(a + bi)))
|
2437 |
+
// = -i*ln((-b + ai) + sqrt(1 - (a**2 - b**2) - 2*abi))
|
2438 |
+
#if 1
|
2439 |
+
vinner_type cnj = conj().vec();
|
2440 |
+
vinner_type b_a = cnj.swapped();
|
2441 |
+
vinner_type ab = cnj * b_a;
|
2442 |
+
vinner_type im = ab + ab;
|
2443 |
+
vinner_type val_2 = _vec * _vec;
|
2444 |
+
vinner_type val_2_swapped = val_2.swapped();
|
2445 |
+
vinner_type re = vinner_type::horizontal_sub_perm(val_2, val_2_swapped);
|
2446 |
+
re = vinner_type(static_cast<underline_type>(1)) - re;
|
2447 |
+
constexpr int blend_mask =
|
2448 |
+
blend_choice<T>(); // 0x0A for complex<double> , 0xAA for complex<float>
|
2449 |
+
vinner_type blendx = vinner_type::template blend<blend_mask>(re, im);
|
2450 |
+
auto root = Vectorized<T>(blendx).sqrt();
|
2451 |
+
auto ln = Vectorized<T>(Vectorized<T>(b_a) + root).log();
|
2452 |
+
return Vectorized<T>(ln.vec().swapped()).conj();
|
2453 |
+
#else
|
2454 |
+
return mapOrdinary(std::asin);
|
2455 |
+
#endif
|
2456 |
+
}
|
2457 |
+
|
2458 |
+
Vectorized<T> acos() const {
|
2459 |
+
// acos(x) = pi/2 - asin(x)
|
2460 |
+
return Vectorized<T>(vinner_type(pi_half<underline_type>())) - asin();
|
2461 |
+
}
|
2462 |
+
|
2463 |
+
Vectorized<T> sin() const {
|
2464 |
+
return mapOrdinary(std::sin);
|
2465 |
+
}
|
2466 |
+
Vectorized<T> sinh() const {
|
2467 |
+
return mapOrdinary(std::sinh);
|
2468 |
+
}
|
2469 |
+
Vectorized<T> cos() const {
|
2470 |
+
return mapOrdinary(std::cos);
|
2471 |
+
}
|
2472 |
+
Vectorized<T> cosh() const {
|
2473 |
+
return mapOrdinary(std::cosh);
|
2474 |
+
}
|
2475 |
+
Vectorized<T> ceil() const {
|
2476 |
+
return Vectorized<T>{_vec.ceil()};
|
2477 |
+
}
|
2478 |
+
Vectorized<T> floor() const {
|
2479 |
+
return Vectorized<T>{_vec.floor()};
|
2480 |
+
}
|
2481 |
+
Vectorized<T> neg() const {
|
2482 |
+
return Vectorized<T>(_vec.neg());
|
2483 |
+
}
|
2484 |
+
Vectorized<T> round() const {
|
2485 |
+
return Vectorized<T>{_vec.round()};
|
2486 |
+
}
|
2487 |
+
Vectorized<T> tan() const {
|
2488 |
+
return mapOrdinary(std::tan);
|
2489 |
+
}
|
2490 |
+
Vectorized<T> tanh() const {
|
2491 |
+
return mapOrdinary(std::tanh);
|
2492 |
+
}
|
2493 |
+
Vectorized<T> trunc() const {
|
2494 |
+
return Vectorized<T>{_vec.trunc()};
|
2495 |
+
}
|
2496 |
+
|
2497 |
+
Vectorized<T> C10_ALWAYS_INLINE operator&(const Vectorized<T>& other) const {
|
2498 |
+
return Vectorized<T>{_vec & other._vec};
|
2499 |
+
}
|
2500 |
+
|
2501 |
+
Vectorized<T> C10_ALWAYS_INLINE operator|(const Vectorized<T>& other) const {
|
2502 |
+
return Vectorized<T>{_vec | other._vec};
|
2503 |
+
}
|
2504 |
+
|
2505 |
+
Vectorized<T> C10_ALWAYS_INLINE operator^(const Vectorized<T>& other) const {
|
2506 |
+
return Vectorized<T>{_vec ^ other._vec};
|
2507 |
+
}
|
2508 |
+
Vectorized<T> C10_ALWAYS_INLINE operator==(const Vectorized<T>& other) const {
|
2509 |
+
return Vectorized<T>{_vec == other._vec};
|
2510 |
+
}
|
2511 |
+
|
2512 |
+
Vectorized<T> C10_ALWAYS_INLINE operator!=(const Vectorized<T>& other) const {
|
2513 |
+
return Vectorized<T>{_vec != other._vec};
|
2514 |
+
}
|
2515 |
+
|
2516 |
+
Vectorized<T> C10_ALWAYS_INLINE eq(const Vectorized<T>& other) const {
|
2517 |
+
auto eq = _vec.eq(other._vec); // compares real and imag individually
|
2518 |
+
// If both real numbers and imag numbers are equal, then the complex numbers are equal
|
2519 |
+
auto real = eq & vinner_type(real_mask<underline_type>());
|
2520 |
+
auto imag = (eq & vinner_type(image_mask<underline_type>())).swapped();
|
2521 |
+
return Vectorized<T>{real & imag};
|
2522 |
+
}
|
2523 |
+
Vectorized<T> C10_ALWAYS_INLINE ne(const Vectorized<T>& other) const {
|
2524 |
+
auto ne = _vec.ne(other._vec); // compares real and imag individually
|
2525 |
+
// If either real numbers or imag numbers are not equal, then the complex numbers are not equal
|
2526 |
+
auto real = ne & vinner_type(real_mask<underline_type>());
|
2527 |
+
auto imag = (ne & vinner_type(image_mask<underline_type>())).swapped();
|
2528 |
+
return Vectorized<T>{real | imag};
|
2529 |
+
}
|
2530 |
+
|
2531 |
+
Vectorized<T> real() const {
|
2532 |
+
return Vectorized<T>(_vec & vinner_type(real_mask<underline_type>()));
|
2533 |
+
}
|
2534 |
+
Vectorized<T> imag_() const {
|
2535 |
+
return Vectorized<T>(_vec & vinner_type(image_mask<underline_type>()));
|
2536 |
+
}
|
2537 |
+
Vectorized<T> imag() const {
|
2538 |
+
return Vectorized<T>{
|
2539 |
+
(_vec & vinner_type(image_mask<underline_type>())).swapped()};
|
2540 |
+
}
|
2541 |
+
|
2542 |
+
Vectorized<T> conj() const {
|
2543 |
+
return Vectorized<T>(_vec ^ vinner_type(isign_mask<underline_type>()));
|
2544 |
+
}
|
2545 |
+
|
2546 |
+
vinner_data abs_2_() const {
|
2547 |
+
auto a = _vec * _vec;
|
2548 |
+
a = a + a.swapped();
|
2549 |
+
return a.mergee().data();
|
2550 |
+
}
|
2551 |
+
|
2552 |
+
static T abs_helper(const T &value)
|
2553 |
+
{
|
2554 |
+
return T(std::abs(value));
|
2555 |
+
}
|
2556 |
+
|
2557 |
+
Vectorized<T> abs() const {
|
2558 |
+
return mapOrdinary(abs_helper);
|
2559 |
+
}
|
2560 |
+
|
2561 |
+
Vectorized<T> exp() const {
|
2562 |
+
return mapOrdinary(std::exp);
|
2563 |
+
}
|
2564 |
+
|
2565 |
+
Vectorized<T> exp2() const {
|
2566 |
+
return mapOrdinary(exp2_impl);
|
2567 |
+
}
|
2568 |
+
|
2569 |
+
Vectorized<T> expm1() const {
|
2570 |
+
return mapOrdinary(std::expm1);
|
2571 |
+
}
|
2572 |
+
|
2573 |
+
Vectorized<T> log() const {
|
2574 |
+
return mapOrdinary(std::log);
|
2575 |
+
}
|
2576 |
+
|
2577 |
+
Vectorized<T> log2() const {
|
2578 |
+
// log2eB_inv
|
2579 |
+
auto ret = log();
|
2580 |
+
return Vectorized<T>{ret._vec * vinner_type(log2e_inv<underline_type>())};
|
2581 |
+
}
|
2582 |
+
|
2583 |
+
Vectorized<T> log10() const {
|
2584 |
+
auto ret = log();
|
2585 |
+
return Vectorized<T>{ret._vec * vinner_type(log10e_inv<underline_type>())};
|
2586 |
+
}
|
2587 |
+
|
2588 |
+
Vectorized<T> log1p() const {
|
2589 |
+
return mapOrdinary(std::log1p);
|
2590 |
+
}
|
2591 |
+
|
2592 |
+
Vectorized<T> sgn() const {
|
2593 |
+
return mapOrdinary(at::native::sgn_impl);
|
2594 |
+
}
|
2595 |
+
|
2596 |
+
Vectorized<T> pow(const Vectorized<T>& exp) const {
|
2597 |
+
return mapOrdinary(std::pow, exp);
|
2598 |
+
}
|
2599 |
+
|
2600 |
+
Vectorized<T> sqrt() const {
|
2601 |
+
return mapOrdinary(std::sqrt);
|
2602 |
+
}
|
2603 |
+
|
2604 |
+
Vectorized<T> reciprocal() const {
|
2605 |
+
// re + im*i = (a + bi) / (c + di)
|
2606 |
+
// re = (ac + bd)/abs_2() = c/abs_2()
|
2607 |
+
// im = (bc - ad)/abs_2() = d/abs_2()
|
2608 |
+
vinner_type c_d = _vec ^ vinner_type(isign_mask<underline_type>());
|
2609 |
+
vinner_type abs = abs_2_();
|
2610 |
+
return Vectorized<T>{c_d / abs};
|
2611 |
+
}
|
2612 |
+
|
2613 |
+
Vectorized<T> rsqrt() const {
|
2614 |
+
return sqrt().reciprocal();
|
2615 |
+
}
|
2616 |
+
|
2617 |
+
Vectorized<T> operator<(const Vectorized<T>& other) const {
|
2618 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
2619 |
+
}
|
2620 |
+
|
2621 |
+
Vectorized<T> operator<=(const Vectorized<T>& other) const {
|
2622 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
2623 |
+
}
|
2624 |
+
|
2625 |
+
Vectorized<T> operator>(const Vectorized<T>& other) const {
|
2626 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
2627 |
+
}
|
2628 |
+
|
2629 |
+
Vectorized<T> operator>=(const Vectorized<T>& other) const {
|
2630 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
2631 |
+
}
|
2632 |
+
|
2633 |
+
Vectorized<T> lt(const Vectorized<T>& other) const {
|
2634 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
2635 |
+
}
|
2636 |
+
|
2637 |
+
Vectorized<T> le(const Vectorized<T>& other) const {
|
2638 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
2639 |
+
}
|
2640 |
+
|
2641 |
+
Vectorized<T> gt(const Vectorized<T>& other) const {
|
2642 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
2643 |
+
}
|
2644 |
+
|
2645 |
+
Vectorized<T> ge(const Vectorized<T>& other) const {
|
2646 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
2647 |
+
}
|
2648 |
+
};
|
2649 |
+
|
2650 |
+
template <typename T, std::enable_if_t<(sizeof(T) == 8), int> = 0>
|
2651 |
+
std::pair<Vectorized<T>, Vectorized<T>> inline inner_interleave2(
|
2652 |
+
const Vectorized<T>& a,
|
2653 |
+
const Vectorized<T>& b) {
|
2654 |
+
// inputs:
|
2655 |
+
// a = {a0, a1, a2, a3}
|
2656 |
+
// b = {b0, b1, b2, b3}
|
2657 |
+
using vtype = typename Vectorized<T>::vtype;
|
2658 |
+
vtype ab00 = vec_permi(a.vec0(), b.vec0(), 0);
|
2659 |
+
vtype ab11 = vec_permi(a.vec0(), b.vec0(), 3);
|
2660 |
+
vtype ab2_00 = vec_permi(a.vec1(), b.vec1(), 0);
|
2661 |
+
vtype ab2_11 = vec_permi(a.vec1(), b.vec1(), 3);
|
2662 |
+
// return {a0, b0, a1, b1}
|
2663 |
+
// {a2, b2, a3, b3}
|
2664 |
+
return std::make_pair(
|
2665 |
+
Vectorized<T>{ab00, ab11}, Vectorized<T>{ab2_00, ab2_11});
|
2666 |
+
}
|
2667 |
+
|
2668 |
+
template <typename T, std::enable_if_t<(sizeof(T) == 8), int> = 0>
|
2669 |
+
std::pair<Vectorized<T>, Vectorized<T>> inline inner_deinterleave2(
|
2670 |
+
const Vectorized<T>& a,
|
2671 |
+
const Vectorized<T>& b) {
|
2672 |
+
// inputs:
|
2673 |
+
// a = {a0, b0, a1, b1}
|
2674 |
+
// b = {a2, b2, a3, b3}
|
2675 |
+
using vtype = typename Vectorized<T>::vtype;
|
2676 |
+
vtype aa01 = vec_permi(a.vec0(), a.vec1(), 0);
|
2677 |
+
vtype aa23 = vec_permi(b.vec0(), b.vec1(), 0);
|
2678 |
+
|
2679 |
+
vtype bb_01 = vec_permi(a.vec0(), a.vec1(), 3);
|
2680 |
+
vtype bb_23 = vec_permi(b.vec0(), b.vec1(), 3);
|
2681 |
+
|
2682 |
+
// swap lanes:
|
2683 |
+
// return {a0, a1, a2, a3}
|
2684 |
+
// {b0, b1, b2, b3}
|
2685 |
+
return std::make_pair(Vectorized<T>{aa01, aa23}, Vectorized<T>{bb_01, bb_23});
|
2686 |
+
}
|
2687 |
+
|
2688 |
+
template <typename T, std::enable_if_t<(sizeof(T) == 4), int> = 0>
|
2689 |
+
std::pair<Vectorized<T>, Vectorized<T>> inline inner_interleave2(
|
2690 |
+
const Vectorized<T>& a,
|
2691 |
+
const Vectorized<T>& b) {
|
2692 |
+
// inputs:
|
2693 |
+
// a = {a0, a1, a2, a3,, a4, a5, a6, a7}
|
2694 |
+
// b = {b0, b1, b2, b3,, b4, b5, b6, b7}
|
2695 |
+
using vtype = typename Vectorized<T>::vtype;
|
2696 |
+
vtype ab0011 = vec_mergeh(a.vec0(), b.vec0());
|
2697 |
+
vtype ab2233 = vec_mergel(a.vec0(), b.vec0());
|
2698 |
+
|
2699 |
+
vtype ab2_0011 = vec_mergeh(a.vec1(), b.vec1());
|
2700 |
+
vtype ab2_2233 = vec_mergel(a.vec1(), b.vec1());
|
2701 |
+
// group cols crossing lanes:
|
2702 |
+
// return {a0, b0, a1, b1,, a2, b2, a3, b3}
|
2703 |
+
// {a4, b4, a5, b5,, a6, b6, a7, b7}
|
2704 |
+
|
2705 |
+
return std::make_pair(
|
2706 |
+
Vectorized<T>{ab0011, ab2233}, Vectorized<T>{ab2_0011, ab2_2233});
|
2707 |
+
}
|
2708 |
+
|
2709 |
+
template <typename T, std::enable_if_t<(sizeof(T) == 4), int> = 0>
|
2710 |
+
std::pair<Vectorized<T>, Vectorized<T>> inline inner_deinterleave2(
|
2711 |
+
const Vectorized<T>& a,
|
2712 |
+
const Vectorized<T>& b) {
|
2713 |
+
// inputs:
|
2714 |
+
// a = {a0, b0, a1, b1,, a2, b2, a3, b3}
|
2715 |
+
// b = {a4, b4, a5, b5,, a6, b6, a7, b7}
|
2716 |
+
using vtype = typename Vectorized<T>::vtype;
|
2717 |
+
// {a0,a2,b0,b2} {a1,a3,b1,b3}
|
2718 |
+
vtype a0a2b0b2 = vec_mergeh(a.vec0(), a.vec1());
|
2719 |
+
vtype a1a3b1b3 = vec_mergel(a.vec0(), a.vec1());
|
2720 |
+
|
2721 |
+
vtype aa0123 = vec_mergeh(a0a2b0b2, a1a3b1b3);
|
2722 |
+
vtype bb0123 = vec_mergel(a0a2b0b2, a1a3b1b3);
|
2723 |
+
|
2724 |
+
vtype a0a2b0b2_2 = vec_mergeh(b.vec0(), b.vec1());
|
2725 |
+
vtype a1a3b1b3_2 = vec_mergel(b.vec0(), b.vec1());
|
2726 |
+
|
2727 |
+
vtype aa0123_2 = vec_mergeh(a0a2b0b2_2, a1a3b1b3_2);
|
2728 |
+
vtype bb0123_2 = vec_mergel(a0a2b0b2_2, a1a3b1b3_2);
|
2729 |
+
|
2730 |
+
// it could be done with vec_perm ,too
|
2731 |
+
// swap lanes:
|
2732 |
+
// return {a0, a1, a2, a3,, a4, a5, a6, a7}
|
2733 |
+
// {b0, b1, b2, b3,, b4, b5, b6, b7}
|
2734 |
+
|
2735 |
+
return std::make_pair(
|
2736 |
+
Vectorized<T>{aa0123, aa0123_2}, Vectorized<T>{bb0123, bb0123_2});
|
2737 |
+
}
|
2738 |
+
|
2739 |
+
template <>
|
2740 |
+
std::pair<Vectorized<float>, Vectorized<float>> inline interleave2<float>(
|
2741 |
+
const Vectorized<float>& a,
|
2742 |
+
const Vectorized<float>& b) {
|
2743 |
+
return inner_interleave2<float>(a, b);
|
2744 |
+
}
|
2745 |
+
|
2746 |
+
template <>
|
2747 |
+
std::pair<Vectorized<int32_t>, Vectorized<int32_t>> inline interleave2<int32_t>(
|
2748 |
+
const Vectorized<int32_t>& a,
|
2749 |
+
const Vectorized<int32_t>& b) {
|
2750 |
+
return inner_interleave2<int32_t>(a, b);
|
2751 |
+
}
|
2752 |
+
|
2753 |
+
template <>
|
2754 |
+
std::pair<Vectorized<double>, Vectorized<double>> inline interleave2<double>(
|
2755 |
+
const Vectorized<double>& a,
|
2756 |
+
const Vectorized<double>& b) {
|
2757 |
+
return inner_interleave2<double>(a, b);
|
2758 |
+
}
|
2759 |
+
|
2760 |
+
template <>
|
2761 |
+
std::pair<Vectorized<int64_t>, Vectorized<int64_t>> inline interleave2<int64_t>(
|
2762 |
+
const Vectorized<int64_t>& a,
|
2763 |
+
const Vectorized<int64_t>& b) {
|
2764 |
+
return inner_interleave2<int64_t>(a, b);
|
2765 |
+
}
|
2766 |
+
|
2767 |
+
template <>
|
2768 |
+
std::pair<Vectorized<float>, Vectorized<float>> inline deinterleave2<float>(
|
2769 |
+
const Vectorized<float>& a,
|
2770 |
+
const Vectorized<float>& b) {
|
2771 |
+
return inner_deinterleave2<float>(a, b);
|
2772 |
+
}
|
2773 |
+
|
2774 |
+
template <>
|
2775 |
+
std::pair<Vectorized<int32_t>, Vectorized<int32_t>> inline deinterleave2<
|
2776 |
+
int32_t>(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
2777 |
+
return inner_deinterleave2<int32_t>(a, b);
|
2778 |
+
}
|
2779 |
+
|
2780 |
+
template <>
|
2781 |
+
std::pair<Vectorized<double>, Vectorized<double>> inline deinterleave2<double>(
|
2782 |
+
const Vectorized<double>& a,
|
2783 |
+
const Vectorized<double>& b) {
|
2784 |
+
return inner_deinterleave2<double>(a, b);
|
2785 |
+
}
|
2786 |
+
|
2787 |
+
template <>
|
2788 |
+
std::pair<Vectorized<int64_t>, Vectorized<int64_t>> inline deinterleave2<
|
2789 |
+
int64_t>(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
2790 |
+
return inner_deinterleave2<int64_t>(a, b);
|
2791 |
+
}
|
2792 |
+
|
2793 |
+
template <typename T>
|
2794 |
+
typename std::enable_if<std::is_same<T, uint8_t>::value, at::vec::Vectorized<float>>::type
|
2795 |
+
inline convert_int8_to_float(const Vectorized<T> &src) {
|
2796 |
+
// Note: this function only convert inputs number of elements equal to at::vec::Vectorized<float>.size()
|
2797 |
+
// Only handle first 64 bits
|
2798 |
+
auto vec_int = src.to_vec_float_helper();
|
2799 |
+
|
2800 |
+
return convert_to_float(vec_int);
|
2801 |
+
}
|
2802 |
+
|
2803 |
+
template <typename T>
|
2804 |
+
typename std::enable_if<std::is_same<T, uint8_t>::value, at::vec::Vectorized<T>>::type
|
2805 |
+
inline convert_float_to_int8(const Vectorized<float> &src) {
|
2806 |
+
constexpr auto min_val = std::numeric_limits<T>::min();
|
2807 |
+
constexpr auto max_val = std::numeric_limits<T>::max();
|
2808 |
+
|
2809 |
+
auto vec_int = clamp(convert_to_int(src), Vectorized<int32_t>(min_val), Vectorized<int32_t>(max_val));
|
2810 |
+
|
2811 |
+
return vec_int.to_vec_uint8_helper();
|
2812 |
+
}
|
2813 |
+
|
2814 |
+
#undef DEFINE_CLAMP_MAXMIN_FUNCS
|
2815 |
+
#undef DEFINE_MAXMIN_FUNCS
|
2816 |
+
} // namespace
|
2817 |
+
} // namespace vec
|
2818 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec512/vec512.h
ADDED
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
7 |
+
|
8 |
+
#include <ATen/cpu/vec/vec_base.h>
|
9 |
+
#include <ATen/cpu/vec/vec512/vec512_float.h>
|
10 |
+
#include <ATen/cpu/vec/vec512/vec512_bfloat16.h>
|
11 |
+
#include <ATen/cpu/vec/vec512/vec512_double.h>
|
12 |
+
#include <ATen/cpu/vec/vec512/vec512_int.h>
|
13 |
+
#include <ATen/cpu/vec/vec512/vec512_qint.h>
|
14 |
+
#include <ATen/cpu/vec/vec512/vec512_complex_float.h>
|
15 |
+
#include <ATen/cpu/vec/vec512/vec512_complex_double.h>
|
16 |
+
|
17 |
+
#include <algorithm>
|
18 |
+
#include <cstddef>
|
19 |
+
#include <cstdint>
|
20 |
+
#include <cstring>
|
21 |
+
#include <ostream>
|
22 |
+
|
23 |
+
namespace at {
|
24 |
+
namespace vec {
|
25 |
+
|
26 |
+
// See Note [CPU_CAPABILITY namespace]
|
27 |
+
inline namespace CPU_CAPABILITY {
|
28 |
+
|
29 |
+
inline std::ostream& operator<<(std::ostream& stream, const c10::qint32& val) {
|
30 |
+
stream << val.val_;
|
31 |
+
return stream;
|
32 |
+
}
|
33 |
+
inline std::ostream& operator<<(std::ostream& stream, const c10::qint8& val) {
|
34 |
+
stream << static_cast<int>(val.val_);
|
35 |
+
return stream;
|
36 |
+
}
|
37 |
+
inline std::ostream& operator<<(std::ostream& stream, const c10::quint8& val) {
|
38 |
+
stream << static_cast<unsigned int>(val.val_);
|
39 |
+
return stream;
|
40 |
+
}
|
41 |
+
|
42 |
+
template <typename T>
|
43 |
+
std::ostream& operator<<(std::ostream& stream, const Vectorized<T>& vec) {
|
44 |
+
T buf[Vectorized<T>::size()];
|
45 |
+
vec.store(buf);
|
46 |
+
stream << "vec[";
|
47 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
48 |
+
if (i != 0) {
|
49 |
+
stream << ", ";
|
50 |
+
}
|
51 |
+
stream << buf[i];
|
52 |
+
}
|
53 |
+
stream << "]";
|
54 |
+
return stream;
|
55 |
+
}
|
56 |
+
|
57 |
+
|
58 |
+
#if defined(CPU_CAPABILITY_AVX512) && !defined(_MSC_VER)
|
59 |
+
|
60 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CAST (AVX512) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
61 |
+
|
62 |
+
template<>
|
63 |
+
inline Vectorized<float> cast<float, double>(const Vectorized<double>& src) {
|
64 |
+
return _mm512_castpd_ps(src);
|
65 |
+
}
|
66 |
+
|
67 |
+
template<>
|
68 |
+
inline Vectorized<double> cast<double, float>(const Vectorized<float>& src) {
|
69 |
+
return _mm512_castps_pd(src);
|
70 |
+
}
|
71 |
+
|
72 |
+
template<>
|
73 |
+
inline Vectorized<float> cast<float, int32_t>(const Vectorized<int32_t>& src) {
|
74 |
+
return _mm512_castsi512_ps(src);
|
75 |
+
}
|
76 |
+
|
77 |
+
template<>
|
78 |
+
inline Vectorized<double> cast<double, int64_t>(const Vectorized<int64_t>& src) {
|
79 |
+
return _mm512_castsi512_pd(src);
|
80 |
+
}
|
81 |
+
|
82 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ GATHER ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
83 |
+
|
84 |
+
template<int64_t scale = 1>
|
85 |
+
std::enable_if_t<scale == 1 || scale == 2 || scale == 4 || scale == 8, Vectorized<double>>
|
86 |
+
inline gather(const double* base_addr, const Vectorized<int64_t>& vindex) {
|
87 |
+
return _mm512_i64gather_pd(vindex, base_addr, scale);
|
88 |
+
}
|
89 |
+
|
90 |
+
template<int64_t scale = 1>
|
91 |
+
std::enable_if_t<scale == 1 || scale == 2 || scale == 4 || scale == 8, Vectorized<float>>
|
92 |
+
inline gather(const float* base_addr, const Vectorized<int32_t>& vindex) {
|
93 |
+
return _mm512_i32gather_ps(vindex, base_addr, scale);
|
94 |
+
}
|
95 |
+
|
96 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MASK GATHER ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
97 |
+
|
98 |
+
template<int64_t scale = 1>
|
99 |
+
std::enable_if_t<scale == 1 || scale == 2 || scale == 4 || scale == 8, Vectorized<double>>
|
100 |
+
inline mask_gather(const Vectorized<double>& src, const double* base_addr,
|
101 |
+
const Vectorized<int64_t>& vindex, Vectorized<double>& mask) {
|
102 |
+
auto all_ones = _mm512_castsi512_pd(_mm512_set1_epi64(0xFFFFFFFFFFFFFFFF));
|
103 |
+
auto mask_ = _mm512_cmp_pd_mask(all_ones, mask.values, _CMP_EQ_OQ);
|
104 |
+
return _mm512_mask_i64gather_pd(src, mask_, vindex, base_addr, scale);
|
105 |
+
}
|
106 |
+
|
107 |
+
template<int64_t scale = 1>
|
108 |
+
std::enable_if_t<scale == 1 || scale == 2 || scale == 4 || scale == 8, Vectorized<float>>
|
109 |
+
inline mask_gather(const Vectorized<float>& src, const float* base_addr,
|
110 |
+
const Vectorized<int32_t>& vindex, Vectorized<float>& mask) {
|
111 |
+
auto all_ones = _mm512_castsi512_ps(_mm512_set1_epi32(0xFFFFFFFF));
|
112 |
+
auto mask_ = _mm512_cmp_ps_mask(all_ones, mask.values, _CMP_EQ_OQ);
|
113 |
+
return _mm512_mask_i32gather_ps(src, mask_, vindex, base_addr, scale);
|
114 |
+
}
|
115 |
+
|
116 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CONVERT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
117 |
+
|
118 |
+
template<>
|
119 |
+
Vectorized<int64_t>
|
120 |
+
inline convert_to_int_of_same_size<double>(const Vectorized<double> &src) {
|
121 |
+
return _mm512_cvtpd_epi64(src);
|
122 |
+
}
|
123 |
+
|
124 |
+
template<>
|
125 |
+
Vectorized<int32_t>
|
126 |
+
inline convert_to_int_of_same_size<float>(const Vectorized<float> &src) {
|
127 |
+
return _mm512_cvttps_epi32(src);
|
128 |
+
}
|
129 |
+
|
130 |
+
template<>
|
131 |
+
Vectorized<double>
|
132 |
+
inline convert_to_fp_of_same_size<double>(const Vectorized<int64_t> &src) {
|
133 |
+
return _mm512_cvtepi64_pd(src);
|
134 |
+
}
|
135 |
+
|
136 |
+
template<>
|
137 |
+
Vectorized<float>
|
138 |
+
inline convert_to_fp_of_same_size<float>(const Vectorized<int32_t> &src) {
|
139 |
+
return _mm512_cvtepi32_ps(src);
|
140 |
+
}
|
141 |
+
|
142 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ INTERLEAVE ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
143 |
+
|
144 |
+
template <>
|
145 |
+
std::pair<Vectorized<double>, Vectorized<double>>
|
146 |
+
inline interleave2<double>(const Vectorized<double>& a, const Vectorized<double>& b) {
|
147 |
+
// inputs:
|
148 |
+
// a = {a0, a1, a3, a3, a4, a5, a6, a7}
|
149 |
+
// b = {b0, b1, b2, b3, b4, b5, b6, b7}
|
150 |
+
// group cols crossing lanes:
|
151 |
+
// return {a0, b0, a1, b1, a2, b2, a3, b3}
|
152 |
+
// {a4, b4, a5, b5, a6, b6, a7, b7}
|
153 |
+
__m512i idx1 = _mm512_set_epi64(11, 3, 10, 2, 9, 1, 8, 0);
|
154 |
+
__m512i idx2 = _mm512_set_epi64(15, 7, 14, 6, 13, 5, 12, 4);
|
155 |
+
return std::make_pair(_mm512_mask_permutex2var_pd(a, 0xff, idx1, b),
|
156 |
+
_mm512_mask_permutex2var_pd(a, 0xff, idx2, b));
|
157 |
+
}
|
158 |
+
|
159 |
+
template <>
|
160 |
+
std::pair<Vectorized<float>, Vectorized<float>>
|
161 |
+
inline interleave2<float>(const Vectorized<float>& a, const Vectorized<float>& b) {
|
162 |
+
// inputs:
|
163 |
+
// a = {a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15}
|
164 |
+
// b = {b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15}
|
165 |
+
//
|
166 |
+
// return:
|
167 |
+
// {a0, b0, a1, b1, a2, b2, a3, b3, a4, b4, a5, b5, a6, b6, a7, b7}
|
168 |
+
// {a8, b8, a9, b9, a10, b10, a11, b11, a12, b12, a13, b13, a14, b14, a15, b15}
|
169 |
+
__m512i idx1 = _mm512_set_epi32(23, 7, 22, 6, 21, 5, 20, 4,
|
170 |
+
19, 3, 18, 2, 17, 1, 16, 0);
|
171 |
+
__m512i idx2 = _mm512_set_epi32(31, 15, 30, 14, 29, 13, 28, 12,
|
172 |
+
27, 11, 26, 10, 25, 9, 24, 8);
|
173 |
+
return std::make_pair(_mm512_mask_permutex2var_ps(a, 0xffff, idx1, b),
|
174 |
+
_mm512_mask_permutex2var_ps(a, 0xffff, idx2, b));
|
175 |
+
}
|
176 |
+
|
177 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEINTERLEAVE ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
178 |
+
|
179 |
+
template <>
|
180 |
+
std::pair<Vectorized<double>, Vectorized<double>>
|
181 |
+
inline deinterleave2<double>(const Vectorized<double>& a, const Vectorized<double>& b) {
|
182 |
+
// inputs:
|
183 |
+
// a = {a0, b0, a1, b1, a2, b2, a3, b3}
|
184 |
+
// b = {a4, b4, a5, b5, a6, b6, a7, b7}
|
185 |
+
// output:
|
186 |
+
// return {a0, a1, a2, a3, a4, a5, a6, a7}
|
187 |
+
// {b0, b1, b2, b3, b4, b5, b6, b7}
|
188 |
+
// The members of indices have been written in binary format for better understandability
|
189 |
+
__m512i idx1 = _mm512_set_epi64(14, 12, 10, 8, 6, 4, 2, 0);
|
190 |
+
__m512i idx2 = _mm512_set_epi64(15, 13, 11, 9, 7, 5, 3, 1);
|
191 |
+
|
192 |
+
return std::make_pair(_mm512_mask_permutex2var_pd(a, 0xff, idx1, b),
|
193 |
+
_mm512_mask_permutex2var_pd(a, 0xff, idx2, b));
|
194 |
+
}
|
195 |
+
|
196 |
+
template <>
|
197 |
+
std::pair<Vectorized<float>, Vectorized<float>>
|
198 |
+
inline deinterleave2<float>(const Vectorized<float>& a, const Vectorized<float>& b) {
|
199 |
+
// inputs:
|
200 |
+
// a = {a0, b0, a1, b1, a2, b2, a3, b3, a4, b4, a5, b5, a6, b6, a7, b7}
|
201 |
+
// b = {a8, b8, a9, b9, a10, b10, a11, b11, a12, b12, a13, b13, a14, b14, a15, b15}
|
202 |
+
// output:
|
203 |
+
// return {a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15}
|
204 |
+
// {b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15}
|
205 |
+
__m512i idx1 = _mm512_set_epi32(30, 28, 26, 24, 22, 20, 18, 16,
|
206 |
+
14, 12, 10, 8, 6, 4, 2, 0);
|
207 |
+
__m512i idx2 = _mm512_set_epi32(31, 29, 27, 25, 23, 21, 19, 17,
|
208 |
+
15, 13, 11, 9, 7, 5, 3, 1);
|
209 |
+
|
210 |
+
return std::make_pair(_mm512_mask_permutex2var_ps(a, 0xffff, idx1, b),
|
211 |
+
_mm512_mask_permutex2var_ps(a, 0xffff, idx2, b));
|
212 |
+
}
|
213 |
+
|
214 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ FLIP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
215 |
+
|
216 |
+
template<>
|
217 |
+
inline Vectorized<float> flip(const Vectorized<float> & v) {
|
218 |
+
const __m512i mask = _mm512_set_epi32(0, 1, 2, 3, 4, 5, 6, 7,
|
219 |
+
8, 9, 10, 11, 12, 13, 14, 15);
|
220 |
+
return _mm512_permutexvar_ps(mask, v);
|
221 |
+
}
|
222 |
+
|
223 |
+
template<>
|
224 |
+
inline Vectorized<double> flip(const Vectorized<double> & v) {
|
225 |
+
const __m512i mask = _mm512_set_epi64(0, 1, 2, 3, 4, 5, 6, 7);
|
226 |
+
return _mm512_permutexvar_pd(mask, v);
|
227 |
+
}
|
228 |
+
|
229 |
+
template<>
|
230 |
+
inline Vectorized<int64_t> flip(const Vectorized<int64_t> & v) {
|
231 |
+
const __m512i mask = _mm512_set_epi64(0, 1, 2, 3, 4, 5, 6, 7);
|
232 |
+
return _mm512_permutexvar_epi64(mask, v);
|
233 |
+
}
|
234 |
+
|
235 |
+
template<>
|
236 |
+
inline Vectorized<int32_t> flip(const Vectorized<int32_t> & v) {
|
237 |
+
const __m512i mask = _mm512_set_epi32(0, 1, 2, 3, 4, 5, 6, 7,
|
238 |
+
8, 9, 10, 11, 12, 13, 14, 15);
|
239 |
+
return _mm512_permutexvar_epi32(mask, v);
|
240 |
+
}
|
241 |
+
|
242 |
+
template<>
|
243 |
+
inline Vectorized<int16_t> flip(const Vectorized<int16_t> & v) {
|
244 |
+
const __m512i mask = _mm512_set_epi16(
|
245 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
246 |
+
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
|
247 |
+
);
|
248 |
+
return _mm512_permutexvar_epi16(mask, v);
|
249 |
+
}
|
250 |
+
|
251 |
+
inline __m512i flip8(const __m512i & v) {
|
252 |
+
const __m512i mask1 = _mm512_set_epi8(
|
253 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
254 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
255 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
256 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
|
257 |
+
);
|
258 |
+
const __m512i mask2 = _mm512_set_epi64(1, 0, 3, 2, 5, 4, 7, 6);
|
259 |
+
auto reversed_vec = _mm512_shuffle_epi8(v, mask1);
|
260 |
+
return _mm512_permutexvar_epi64(mask2, reversed_vec);
|
261 |
+
}
|
262 |
+
|
263 |
+
template<>
|
264 |
+
inline Vectorized<int8_t> flip(const Vectorized<int8_t> & v) {
|
265 |
+
return flip8(v);
|
266 |
+
}
|
267 |
+
|
268 |
+
template<>
|
269 |
+
inline Vectorized<uint8_t> flip(const Vectorized<uint8_t> & v) {
|
270 |
+
return flip8(v);
|
271 |
+
}
|
272 |
+
|
273 |
+
#endif // defined(CPU_CAPABILITY_AVX512) && !defined(_MSC_VER)
|
274 |
+
|
275 |
+
}}}
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec512/vec512_bfloat16.h
ADDED
@@ -0,0 +1,1644 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
7 |
+
#include <ATen/cpu/vec/vec_base.h>
|
8 |
+
#include <c10/util/irange.h>
|
9 |
+
|
10 |
+
#if defined(CPU_CAPABILITY_AVX512) && !defined(_MSC_VER)
|
11 |
+
#include <sleef.h>
|
12 |
+
#endif
|
13 |
+
|
14 |
+
namespace at {
|
15 |
+
namespace vec {
|
16 |
+
// See Note [CPU_CAPABILITY namespace]
|
17 |
+
inline namespace CPU_CAPABILITY {
|
18 |
+
|
19 |
+
#if defined(CPU_CAPABILITY_AVX512) && !defined(_MSC_VER)
|
20 |
+
|
21 |
+
// bfloat16 conversion
|
22 |
+
static inline void cvtbf16_fp32(const __m256i& a, __m512& o) {
|
23 |
+
o = _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(a), 16));
|
24 |
+
}
|
25 |
+
|
26 |
+
static inline void cvtbf16_fp32(const __m512i& a, __m512& o1, __m512& o2) {
|
27 |
+
__m256i lo = _mm512_extracti32x8_epi32(a, 0);
|
28 |
+
__m256i hi = _mm512_extracti32x8_epi32(a, 1);
|
29 |
+
cvtbf16_fp32(lo, o1);
|
30 |
+
cvtbf16_fp32(hi, o2);
|
31 |
+
}
|
32 |
+
|
33 |
+
static inline __m256i cvtfp32_bf16(const __m512& src) {
|
34 |
+
__m512i value = _mm512_castps_si512(src);
|
35 |
+
__m512i nan = _mm512_set1_epi32(0xffff);
|
36 |
+
auto mask_value = _mm512_cmp_ps_mask(src, src, _CMP_ORD_Q);
|
37 |
+
__m512i ones = _mm512_set1_epi32(0x1);
|
38 |
+
__m512i vec_bias = _mm512_set1_epi32(0x7fff);
|
39 |
+
// uint32_t lsb = (input >> 16) & 1;
|
40 |
+
auto t_value = _mm512_and_si512(_mm512_srli_epi32(value, 16), ones);
|
41 |
+
// uint32_t rounding_bias = 0x7fff + lsb;
|
42 |
+
t_value = _mm512_add_epi32(t_value, vec_bias);
|
43 |
+
// input += rounding_bias;
|
44 |
+
t_value = _mm512_add_epi32(t_value, value);
|
45 |
+
// input = input >> 16;
|
46 |
+
t_value = _mm512_srli_epi32(t_value, 16);
|
47 |
+
// Check NaN before converting back to bf16
|
48 |
+
t_value = _mm512_mask_blend_epi32(mask_value, nan, t_value);
|
49 |
+
return _mm512_cvtusepi32_epi16(t_value);
|
50 |
+
}
|
51 |
+
|
52 |
+
static inline __m512i cvtfp32_bf16(const __m512& a, const __m512& b) {
|
53 |
+
__m512i lo = _mm512_castps_si512(a);
|
54 |
+
__m512i hi = _mm512_castps_si512(b);
|
55 |
+
__m512i nan = _mm512_set1_epi32(0xffff);
|
56 |
+
auto mask_lo = _mm512_cmp_ps_mask(a, a, _CMP_ORD_Q);
|
57 |
+
auto mask_hi = _mm512_cmp_ps_mask(b, b, _CMP_ORD_Q);
|
58 |
+
__m512i ones = _mm512_set1_epi32(0x1);
|
59 |
+
__m512i vec_bias = _mm512_set1_epi32(0x7fff);
|
60 |
+
// uint32_t lsb = (input >> 16) & 1;
|
61 |
+
auto t_lo = _mm512_and_si512(_mm512_srli_epi32(lo, 16), ones);
|
62 |
+
auto t_hi = _mm512_and_si512(_mm512_srli_epi32(hi, 16), ones);
|
63 |
+
// uint32_t rounding_bias = 0x7fff + lsb;
|
64 |
+
t_lo = _mm512_add_epi32(t_lo, vec_bias);
|
65 |
+
t_hi = _mm512_add_epi32(t_hi, vec_bias);
|
66 |
+
// input += rounding_bias;
|
67 |
+
t_lo = _mm512_add_epi32(t_lo, lo);
|
68 |
+
t_hi = _mm512_add_epi32(t_hi, hi);
|
69 |
+
// input = input >> 16;
|
70 |
+
t_lo = _mm512_srli_epi32(t_lo, 16);
|
71 |
+
t_hi = _mm512_srli_epi32(t_hi, 16);
|
72 |
+
// Check NaN before converting back to bf16
|
73 |
+
t_lo = _mm512_mask_blend_epi32(mask_lo, nan, t_lo);
|
74 |
+
t_hi = _mm512_mask_blend_epi32(mask_hi, nan, t_hi);
|
75 |
+
|
76 |
+
t_lo = _mm512_packus_epi32(t_lo, t_hi); // t_hi[4-7] t_lo[4-7] t_hi[0-4] t_lo[0-4]
|
77 |
+
__m512i idx = _mm512_set_epi64(7, 5, 3, 1, 6, 4, 2, 0);
|
78 |
+
return _mm512_permutexvar_epi64(idx, t_lo);
|
79 |
+
}
|
80 |
+
|
81 |
+
static inline __m512i merge_compare_result(const __m512& a, const __m512& b) {
|
82 |
+
__m512i lo = _mm512_castps_si512(a);
|
83 |
+
__m512i hi = _mm512_castps_si512(b);
|
84 |
+
lo = _mm512_srli_epi32(lo, 16);
|
85 |
+
hi = _mm512_srli_epi32(hi, 16);
|
86 |
+
auto out = _mm512_packus_epi32(lo, hi);
|
87 |
+
__m512i idx = _mm512_set_epi64(7, 5, 3, 1, 6, 4, 2, 0);
|
88 |
+
return _mm512_permutexvar_epi64(idx, out);
|
89 |
+
}
|
90 |
+
|
91 |
+
// float16 conversion
|
92 |
+
static inline void cvtfp16_fp32(const __m256i& a, __m512& o) {
|
93 |
+
o = _mm512_cvtph_ps(a);
|
94 |
+
}
|
95 |
+
|
96 |
+
static inline void cvtfp16_fp32(const __m512i& a, __m512& o1, __m512& o2) {
|
97 |
+
__m256i lo = _mm512_extracti32x8_epi32(a, 0);
|
98 |
+
__m256i hi = _mm512_extracti32x8_epi32(a, 1);
|
99 |
+
cvtfp16_fp32(lo, o1);
|
100 |
+
cvtfp16_fp32(hi, o2);
|
101 |
+
}
|
102 |
+
|
103 |
+
static inline __m512i cvtfp32_fp16(const __m512& a, const __m512& b) {
|
104 |
+
__m256i lo = _mm512_cvtps_ph(
|
105 |
+
a, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
|
106 |
+
__m256i hi = _mm512_cvtps_ph(
|
107 |
+
b, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
|
108 |
+
__m512 t_lo = _mm512_castsi512_ps(_mm512_castsi256_si512(lo));
|
109 |
+
__m256 t_hi = _mm256_castsi256_ps(hi);
|
110 |
+
return _mm512_castps_si512(_mm512_insertf32x8(t_lo, t_hi, 1));
|
111 |
+
}
|
112 |
+
|
113 |
+
// dtype conversion between float16/bfloat16 and float32
|
114 |
+
template <typename T, typename std::enable_if_t<is_reduced_floating_point_v<T>, int> = 0>
|
115 |
+
inline void cvt_to_fp32(const __m256i& a, __m512& o);
|
116 |
+
template <> inline void cvt_to_fp32<BFloat16>(const __m256i& a, __m512& o) {
|
117 |
+
cvtbf16_fp32(a, o);
|
118 |
+
}
|
119 |
+
template <> inline void cvt_to_fp32<Half>(const __m256i& a, __m512& o) {
|
120 |
+
cvtfp16_fp32(a, o);
|
121 |
+
}
|
122 |
+
|
123 |
+
template <typename T, typename std::enable_if_t<is_reduced_floating_point_v<T>, int> = 0>
|
124 |
+
inline void cvt_to_fp32(const __m512i& a, __m512& o1, __m512& o2);
|
125 |
+
template <> inline void cvt_to_fp32<BFloat16>(const __m512i& a, __m512& o1, __m512& o2) {
|
126 |
+
cvtbf16_fp32(a, o1, o2);
|
127 |
+
}
|
128 |
+
template <> inline void cvt_to_fp32<Half>(const __m512i& a, __m512& o1, __m512& o2) {
|
129 |
+
cvtfp16_fp32(a, o1, o2);
|
130 |
+
}
|
131 |
+
|
132 |
+
template <typename T, bool is_compare_op = false,
|
133 |
+
typename std::enable_if_t<is_reduced_floating_point_v<T>, int> = 0>
|
134 |
+
inline __m512i cvt_from_fp32(const __m512& a, const __m512& b);
|
135 |
+
template <> inline __m512i cvt_from_fp32<BFloat16, false>(const __m512& a, const __m512& b) {
|
136 |
+
return cvtfp32_bf16(a, b);
|
137 |
+
}
|
138 |
+
template <> inline __m512i cvt_from_fp32<BFloat16, true>(const __m512& a, const __m512& b) {
|
139 |
+
return merge_compare_result(a, b);
|
140 |
+
}
|
141 |
+
template <> inline __m512i cvt_from_fp32<Half, false>(const __m512& a, const __m512& b) {
|
142 |
+
return cvtfp32_fp16(a, b);
|
143 |
+
}
|
144 |
+
template <> inline __m512i cvt_from_fp32<Half, true>(const __m512& a, const __m512& b) {
|
145 |
+
return cvtfp32_fp16(a, b);
|
146 |
+
}
|
147 |
+
|
148 |
+
template <typename T>
|
149 |
+
class Vectorized16 {
|
150 |
+
static_assert(
|
151 |
+
is_reduced_floating_point_v<T>,
|
152 |
+
"Support only float16 and bfloat16.");
|
153 |
+
private:
|
154 |
+
__m512i values;
|
155 |
+
public:
|
156 |
+
using value_type = uint16_t;
|
157 |
+
using size_type = int;
|
158 |
+
static constexpr size_type size() {
|
159 |
+
return 32;
|
160 |
+
}
|
161 |
+
Vectorized16() {}
|
162 |
+
Vectorized16(__m512i v) : values(v) {}
|
163 |
+
Vectorized16(T val) {
|
164 |
+
value_type uw = val.x;
|
165 |
+
values = _mm512_set1_epi16(uw);
|
166 |
+
}
|
167 |
+
Vectorized16(T val1, T val2, T val3, T val4,
|
168 |
+
T val5, T val6, T val7, T val8,
|
169 |
+
T val9, T val10, T val11, T val12,
|
170 |
+
T val13, T val14, T val15, T val16,
|
171 |
+
T val17, T val18, T val19, T val20,
|
172 |
+
T val21, T val22, T val23, T val24,
|
173 |
+
T val25, T val26, T val27, T val28,
|
174 |
+
T val29, T val30, T val31, T val32) {
|
175 |
+
values = _mm512_set_epi16(
|
176 |
+
val32.x, val31.x, val30.x, val29.x, val28.x, val27.x, val26.x, val25.x,
|
177 |
+
val24.x, val23.x, val22.x, val21.x, val20.x, val19.x, val18.x, val17.x,
|
178 |
+
val16.x, val15.x, val14.x, val13.x, val12.x, val11.x, val10.x, val9.x,
|
179 |
+
val8.x, val7.x, val6.x, val5.x, val4.x, val3.x, val2.x, val1.x);
|
180 |
+
}
|
181 |
+
operator __m512i() const {
|
182 |
+
return values;
|
183 |
+
}
|
184 |
+
T& operator[](int idx) = delete;
|
185 |
+
const T& operator[](int idx) const = delete;
|
186 |
+
int zero_mask() const {
|
187 |
+
// returns an integer mask where all zero elements are translated to 1-bit and others are translated to 0-bit
|
188 |
+
return _mm512_cmpeq_epi16_mask(values, _mm512_set1_epi16(0));
|
189 |
+
}
|
190 |
+
static Vectorized<T> loadu(const void* ptr, int16_t count = size()) {
|
191 |
+
if (count == size())
|
192 |
+
return _mm512_loadu_si512(reinterpret_cast<const __m512i*>(ptr));
|
193 |
+
|
194 |
+
__mmask32 mask = (1ULL << count) - 1;
|
195 |
+
return _mm512_maskz_loadu_epi16(mask, ptr);
|
196 |
+
}
|
197 |
+
void store(void* ptr, int count = size()) const {
|
198 |
+
if (count == size()) {
|
199 |
+
_mm512_storeu_si512(reinterpret_cast<__m512i*>(ptr), values);
|
200 |
+
} else if (count > 0) {
|
201 |
+
__mmask32 mask = (1ULL << count) - 1;
|
202 |
+
_mm512_mask_storeu_epi16(ptr, mask, values);
|
203 |
+
}
|
204 |
+
}
|
205 |
+
template <int64_t mask>
|
206 |
+
static Vectorized<T> blend(const Vectorized<T>& a, const Vectorized<T>& b) {
|
207 |
+
__at_align__ int16_t tmp_values[size()];
|
208 |
+
a.store(tmp_values);
|
209 |
+
if (mask & 0x01)
|
210 |
+
tmp_values[0] = b.values[31];
|
211 |
+
if (mask & 0x02)
|
212 |
+
tmp_values[1] = b.values[30];
|
213 |
+
if (mask & 0x04)
|
214 |
+
tmp_values[2] = b.values[29];
|
215 |
+
if (mask & 0x08)
|
216 |
+
tmp_values[3] = b.values[28];
|
217 |
+
if (mask & 0x10)
|
218 |
+
tmp_values[4] = b.values[27];
|
219 |
+
if (mask & 0x20)
|
220 |
+
tmp_values[5] = b.values[26];
|
221 |
+
if (mask & 0x40)
|
222 |
+
tmp_values[6] = b.values[25];
|
223 |
+
if (mask & 0x80)
|
224 |
+
tmp_values[7] = b.values[24];
|
225 |
+
if (mask & 0x100)
|
226 |
+
tmp_values[8] = b.values[23];
|
227 |
+
if (mask & 0x200)
|
228 |
+
tmp_values[9] = b.values[22];
|
229 |
+
if (mask & 0x400)
|
230 |
+
tmp_values[10] = b.values[21];
|
231 |
+
if (mask & 0x800)
|
232 |
+
tmp_values[11] = b.values[20];
|
233 |
+
if (mask & 0x1000)
|
234 |
+
tmp_values[12] = b.values[19];
|
235 |
+
if (mask & 0x2000)
|
236 |
+
tmp_values[13] = b.values[18];
|
237 |
+
if (mask & 0x4000)
|
238 |
+
tmp_values[14] = b.values[17];
|
239 |
+
if (mask & 0x8000)
|
240 |
+
tmp_values[15] = b.values[16];
|
241 |
+
if (mask & 0x10000)
|
242 |
+
tmp_values[16] = b.values[15];
|
243 |
+
if (mask & 0x20000)
|
244 |
+
tmp_values[17] = b.values[14];
|
245 |
+
if (mask & 0x40000)
|
246 |
+
tmp_values[18] = b.values[13];
|
247 |
+
if (mask & 0x80000)
|
248 |
+
tmp_values[19] = b.values[12];
|
249 |
+
if (mask & 0x100000)
|
250 |
+
tmp_values[20] = b.values[11];
|
251 |
+
if (mask & 0x200000)
|
252 |
+
tmp_values[21] = b.values[10];
|
253 |
+
if (mask & 0x400000)
|
254 |
+
tmp_values[22] = b.values[9];
|
255 |
+
if (mask & 0x800000)
|
256 |
+
tmp_values[23] = b.values[8];
|
257 |
+
if (mask & 0x1000000)
|
258 |
+
tmp_values[24] = b.values[7];
|
259 |
+
if (mask & 0x2000000)
|
260 |
+
tmp_values[25] = b.values[6];
|
261 |
+
if (mask & 0x4000000)
|
262 |
+
tmp_values[26] = b.values[5];
|
263 |
+
if (mask & 0x8000000)
|
264 |
+
tmp_values[27] = b.values[4];
|
265 |
+
if (mask & 0x10000000)
|
266 |
+
tmp_values[28] = b.values[3];
|
267 |
+
if (mask & 0x20000000)
|
268 |
+
tmp_values[29] = b.values[2];
|
269 |
+
if (mask & 0x40000000)
|
270 |
+
tmp_values[30] = b.values[1];
|
271 |
+
if (mask & 0x80000000)
|
272 |
+
tmp_values[31] = b.values[0];
|
273 |
+
return loadu(tmp_values);
|
274 |
+
}
|
275 |
+
static Vectorized<T> blendv(const Vectorized<T>& a,
|
276 |
+
const Vectorized<T>& b, const Vectorized<T>& mask) {
|
277 |
+
auto all_ones = _mm512_set1_epi16(0xFFFF);
|
278 |
+
auto mask_ = _mm512_cmp_epi16_mask(mask, all_ones, _MM_CMPINT_EQ);
|
279 |
+
return _mm512_mask_blend_epi16(mask_, a.values, b.values);
|
280 |
+
}
|
281 |
+
template<typename step_t>
|
282 |
+
static Vectorized<T> arange(T base = 0.f, step_t step = static_cast<step_t>(1)) {
|
283 |
+
return Vectorized<T>(
|
284 |
+
base, base + step, base + 2 * step, base + 3 * step,
|
285 |
+
base + 4 * step, base + 5 * step, base + 6 * step, base + 7 * step,
|
286 |
+
base + 8 * step, base + 9 * step, base + 10 * step, base + 11 * step,
|
287 |
+
base + 12 * step, base + 13 * step, base + 14 * step, base + 15 * step,
|
288 |
+
base + 16 * step, base + 17 * step, base + 18 * step, base + 19 * step,
|
289 |
+
base + 20 * step, base + 21 * step, base + 22 * step, base + 23 * step,
|
290 |
+
base + 24 * step, base + 25 * step, base + 26 * step, base + 27 * step,
|
291 |
+
base + 28 * step, base + 29 * step, base + 30 * step, base + 31 * step);
|
292 |
+
}
|
293 |
+
static Vectorized<T> set(const Vectorized<T>& a,
|
294 |
+
const Vectorized<T>& b, int64_t count = size()) {
|
295 |
+
switch (count) {
|
296 |
+
case 0:
|
297 |
+
return a;
|
298 |
+
case 1:
|
299 |
+
return blend<1>(a, b);
|
300 |
+
case 2:
|
301 |
+
return blend<3>(a, b);
|
302 |
+
case 3:
|
303 |
+
return blend<7>(a, b);
|
304 |
+
case 4:
|
305 |
+
return blend<15>(a, b);
|
306 |
+
case 5:
|
307 |
+
return blend<31>(a, b);
|
308 |
+
case 6:
|
309 |
+
return blend<63>(a, b);
|
310 |
+
case 7:
|
311 |
+
return blend<127>(a, b);
|
312 |
+
case 8:
|
313 |
+
return blend<255>(a, b);
|
314 |
+
case 9:
|
315 |
+
return blend<511>(a, b);
|
316 |
+
case 10:
|
317 |
+
return blend<1023>(a, b);
|
318 |
+
case 11:
|
319 |
+
return blend<2047>(a, b);
|
320 |
+
case 12:
|
321 |
+
return blend<4095>(a, b);
|
322 |
+
case 13:
|
323 |
+
return blend<8191>(a, b);
|
324 |
+
case 14:
|
325 |
+
return blend<16383>(a, b);
|
326 |
+
case 15:
|
327 |
+
return blend<32767>(a, b);
|
328 |
+
case 16:
|
329 |
+
return blend<65535>(a, b);
|
330 |
+
case 17:
|
331 |
+
return blend<131071>(a, b);
|
332 |
+
case 18:
|
333 |
+
return blend<262143>(a, b);
|
334 |
+
case 19:
|
335 |
+
return blend<524287>(a, b);
|
336 |
+
case 20:
|
337 |
+
return blend<1048575>(a, b);
|
338 |
+
case 21:
|
339 |
+
return blend<2097151>(a, b);
|
340 |
+
case 22:
|
341 |
+
return blend<4194303>(a, b);
|
342 |
+
case 23:
|
343 |
+
return blend<8388607>(a, b);
|
344 |
+
case 24:
|
345 |
+
return blend<16777215>(a, b);
|
346 |
+
case 25:
|
347 |
+
return blend<33554431>(a, b);
|
348 |
+
case 26:
|
349 |
+
return blend<67108863>(a, b);
|
350 |
+
case 27:
|
351 |
+
return blend<134217727>(a, b);
|
352 |
+
case 28:
|
353 |
+
return blend<268435455>(a, b);
|
354 |
+
case 29:
|
355 |
+
return blend<536870911>(a, b);
|
356 |
+
case 30:
|
357 |
+
return blend<1073741823>(a, b);
|
358 |
+
case 31:
|
359 |
+
return blend<2147483647>(a, b);
|
360 |
+
}
|
361 |
+
return b;
|
362 |
+
}
|
363 |
+
#pragma clang diagnostic push
|
364 |
+
#pragma clang diagnostic ignored "-Wignored-qualifiers"
|
365 |
+
Vectorized<T> map(const __m512 (*const vop)(__m512)) const {
|
366 |
+
__m512 lo, hi;
|
367 |
+
cvt_to_fp32<T>(values, lo, hi);
|
368 |
+
const auto o1 = vop(lo);
|
369 |
+
const auto o2 = vop(hi);
|
370 |
+
return cvt_from_fp32<T>(o1, o2);
|
371 |
+
}
|
372 |
+
Vectorized<T> isnan() const {
|
373 |
+
__m512 lo, hi;
|
374 |
+
cvt_to_fp32<T>(values, lo, hi);
|
375 |
+
__mmask16 lo_mask, hi_mask;
|
376 |
+
__m512 zero = _mm512_set1_ps(0.0);
|
377 |
+
__m512i zeroi = _mm512_castps_si512(zero);
|
378 |
+
lo_mask = _mm512_cmp_ps_mask(lo, zero, _CMP_UNORD_Q);
|
379 |
+
lo = _mm512_castsi512_ps(_mm512_mask_set1_epi32(zeroi, lo_mask, 0xFFFF'FFFF));
|
380 |
+
hi_mask = _mm512_cmp_ps_mask(hi, zero, _CMP_UNORD_Q);
|
381 |
+
hi = _mm512_castsi512_ps(_mm512_mask_set1_epi32(zeroi, hi_mask, 0xFFFF'FFFF));
|
382 |
+
return merge_compare_result(lo, hi);
|
383 |
+
}
|
384 |
+
#pragma clang diagnostic pop
|
385 |
+
Vectorized<T> abs() const {
|
386 |
+
return _mm512_andnot_si512(_mm512_set1_epi16(0x8000), values);
|
387 |
+
}
|
388 |
+
Vectorized<T> angle() const {
|
389 |
+
__m512 lo, hi;
|
390 |
+
cvt_to_fp32<T>(values, lo, hi);
|
391 |
+
auto angle_lambda = [](__m512 values) {
|
392 |
+
const auto zero_vec = _mm512_set1_ps(0.f);
|
393 |
+
const auto nan_vec = _mm512_set1_ps(NAN);
|
394 |
+
const auto not_nan_mask = _mm512_cmp_ps_mask(values, values, _CMP_EQ_OQ);
|
395 |
+
const auto non_nan_mask_vec = _mm512_mask_set1_epi32(_mm512_castps_si512(zero_vec),
|
396 |
+
not_nan_mask, 0xFFFFFFFF);
|
397 |
+
const auto nan_mask = _mm512_cmp_ps_mask(_mm512_castsi512_ps(non_nan_mask_vec),
|
398 |
+
zero_vec, _CMP_EQ_OQ);
|
399 |
+
const auto pi = _mm512_set1_ps(c10::pi<float>);
|
400 |
+
|
401 |
+
const auto neg_mask = _mm512_cmp_ps_mask(values, zero_vec, _CMP_LT_OQ);
|
402 |
+
auto angle = _mm512_mask_blend_ps(neg_mask, zero_vec, pi);
|
403 |
+
angle = _mm512_mask_blend_ps(nan_mask, angle, nan_vec);
|
404 |
+
return angle;
|
405 |
+
};
|
406 |
+
auto o1 = angle_lambda(lo);
|
407 |
+
auto o2 = angle_lambda(hi);
|
408 |
+
return cvt_from_fp32<T>(o1, o2);
|
409 |
+
}
|
410 |
+
Vectorized<T> real() const {
|
411 |
+
return *this;
|
412 |
+
}
|
413 |
+
Vectorized<T> imag() const {
|
414 |
+
return _mm512_set1_epi16(0);
|
415 |
+
}
|
416 |
+
Vectorized<T> conj() const {
|
417 |
+
return *this;
|
418 |
+
}
|
419 |
+
Vectorized<T> acos() const {
|
420 |
+
return map(Sleef_acosf16_u10);
|
421 |
+
}
|
422 |
+
Vectorized<T> acosh() const {
|
423 |
+
return map(Sleef_acoshf16_u10);
|
424 |
+
}
|
425 |
+
Vectorized<T> asin() const {
|
426 |
+
return map(Sleef_asinf16_u10);
|
427 |
+
}
|
428 |
+
Vectorized<T> atan() const {
|
429 |
+
return map(Sleef_atanf16_u10);
|
430 |
+
}
|
431 |
+
Vectorized<T> atanh() const {
|
432 |
+
return map(Sleef_atanhf16_u10);
|
433 |
+
}
|
434 |
+
Vectorized<T> atan2(const Vectorized<T> &b) const {
|
435 |
+
__m512 lo, hi;
|
436 |
+
__m512 b1, b2;
|
437 |
+
cvt_to_fp32<T>(values, lo, hi);
|
438 |
+
cvt_to_fp32<T>(b.values, b1, b2);
|
439 |
+
auto o1 = Sleef_atan2f16_u10(lo, b1);
|
440 |
+
auto o2 = Sleef_atan2f16_u10(hi, b2);
|
441 |
+
return cvt_from_fp32<T>(o1, o2);
|
442 |
+
}
|
443 |
+
Vectorized<T> copysign(const Vectorized<T> &sign) const {
|
444 |
+
// copy sign bit (0x8000) from sign and remaining bits from values
|
445 |
+
__m512i mask_value = _mm512_set1_epi32(~0x80008000);
|
446 |
+
__m512i mask_signbit = _mm512_set1_epi32(0x80008000);
|
447 |
+
return Vectorized<T>(
|
448 |
+
_mm512_or_si512(
|
449 |
+
_mm512_and_si512(values, mask_value),
|
450 |
+
_mm512_and_si512(sign, mask_signbit)));
|
451 |
+
}
|
452 |
+
Vectorized<T> erf() const {
|
453 |
+
return map(Sleef_erff16_u10);
|
454 |
+
}
|
455 |
+
Vectorized<T> erfc() const {
|
456 |
+
return map(Sleef_erfcf16_u15);
|
457 |
+
}
|
458 |
+
Vectorized<T> erfinv() const {
|
459 |
+
__m512 lo, hi;
|
460 |
+
cvt_to_fp32<T>(values, lo, hi);
|
461 |
+
__at_align__ float tmp1[size() / 2], tmp2[size() / 2];
|
462 |
+
_mm512_storeu_ps(reinterpret_cast<float*>(tmp1), lo);
|
463 |
+
_mm512_storeu_ps(reinterpret_cast<float*>(tmp2), hi);
|
464 |
+
for (int64_t i = 0; i < size() / 2; i++) {
|
465 |
+
tmp1[i] = calc_erfinv(tmp1[i]);
|
466 |
+
tmp2[i] = calc_erfinv(tmp2[i]);
|
467 |
+
}
|
468 |
+
auto o1 = _mm512_loadu_ps(tmp1);
|
469 |
+
auto o2 = _mm512_loadu_ps(tmp2);
|
470 |
+
return cvt_from_fp32<T>(o1, o2);
|
471 |
+
}
|
472 |
+
Vectorized<T> exp() const {
|
473 |
+
return map(Sleef_expf16_u10);
|
474 |
+
}
|
475 |
+
Vectorized<T> exp2() const {
|
476 |
+
return map(Sleef_exp2f16_u10);
|
477 |
+
}
|
478 |
+
Vectorized<T> expm1() const {
|
479 |
+
return map(Sleef_expm1f16_u10);
|
480 |
+
}
|
481 |
+
Vectorized<T> exp_u20() const {
|
482 |
+
return exp();
|
483 |
+
}
|
484 |
+
Vectorized<T> fmod(const Vectorized<T> & q) const {
|
485 |
+
__m512 x_lo, x_hi;
|
486 |
+
cvt_to_fp32<T>(values, x_lo, x_hi);
|
487 |
+
__m512 q_lo, q_hi;
|
488 |
+
cvtbf16_fp32(q.values, q_lo, q_hi);
|
489 |
+
auto o1 = Sleef_fmodf16(x_lo, q_lo);
|
490 |
+
auto o2 = Sleef_fmodf16(x_hi, q_hi);
|
491 |
+
return cvt_from_fp32<T>(o1, o2);
|
492 |
+
}
|
493 |
+
Vectorized<T> hypot(const Vectorized<T> &b) const {
|
494 |
+
__m512 lo, hi;
|
495 |
+
__m512 b1, b2;
|
496 |
+
cvt_to_fp32<T>(values, lo, hi);
|
497 |
+
cvt_to_fp32<T>(b.values, b1, b2);
|
498 |
+
auto o1 = Sleef_hypotf16_u05(lo, b1);
|
499 |
+
auto o2 = Sleef_hypotf16_u05(hi, b2);
|
500 |
+
return cvt_from_fp32<T>(o1, o2);
|
501 |
+
}
|
502 |
+
Vectorized<T> i0() const {
|
503 |
+
__m512 lo, hi;
|
504 |
+
cvt_to_fp32<T>(values, lo, hi);
|
505 |
+
__at_align__ float tmp1[size() / 2], tmp2[size() / 2];
|
506 |
+
_mm512_storeu_ps(reinterpret_cast<float*>(tmp1), lo);
|
507 |
+
_mm512_storeu_ps(reinterpret_cast<float*>(tmp2), hi);
|
508 |
+
for (int64_t i = 0; i < size() / 2; i++) {
|
509 |
+
tmp1[i] = calc_i0(tmp1[i]);
|
510 |
+
tmp2[i] = calc_i0(tmp2[i]);
|
511 |
+
}
|
512 |
+
auto o1 = _mm512_loadu_ps(tmp1);
|
513 |
+
auto o2 = _mm512_loadu_ps(tmp2);
|
514 |
+
return cvt_from_fp32<T>(o1, o2);
|
515 |
+
}
|
516 |
+
Vectorized<T> i0e() const {
|
517 |
+
__m512 lo, hi;
|
518 |
+
cvt_to_fp32<T>(values, lo, hi);
|
519 |
+
constexpr auto sz = size();
|
520 |
+
__at_align__ float tmp1[sz / 2], tmp2[sz / 2];
|
521 |
+
_mm512_storeu_ps(reinterpret_cast<float*>(tmp1), lo);
|
522 |
+
_mm512_storeu_ps(reinterpret_cast<float*>(tmp2), hi);
|
523 |
+
|
524 |
+
for (auto i = decltype(sz){0}; i < sz / 2; i++) {
|
525 |
+
tmp1[i] = calc_i0e(tmp1[i]);
|
526 |
+
tmp2[i] = calc_i0e(tmp2[i]);
|
527 |
+
}
|
528 |
+
const auto o1 = _mm512_loadu_ps(tmp1);
|
529 |
+
const auto o2 = _mm512_loadu_ps(tmp2);
|
530 |
+
return cvt_from_fp32<T>(o1, o2);
|
531 |
+
}
|
532 |
+
Vectorized<T> digamma() const {
|
533 |
+
__m512 lo, hi;
|
534 |
+
cvt_to_fp32<T>(values, lo, hi);
|
535 |
+
constexpr auto sz = size();
|
536 |
+
__at_align__ float tmp1[sz / 2], tmp2[sz / 2];
|
537 |
+
_mm512_storeu_ps(reinterpret_cast<float*>(tmp1), lo);
|
538 |
+
_mm512_storeu_ps(reinterpret_cast<float*>(tmp2), hi);
|
539 |
+
|
540 |
+
for (auto i = decltype(sz){0}; i < sz / 2; i++) {
|
541 |
+
tmp1[i] = calc_digamma(tmp1[i]);
|
542 |
+
tmp2[i] = calc_digamma(tmp2[i]);
|
543 |
+
}
|
544 |
+
const auto o1 = _mm512_loadu_ps(tmp1);
|
545 |
+
const auto o2 = _mm512_loadu_ps(tmp2);
|
546 |
+
return cvt_from_fp32<T>(o1, o2);
|
547 |
+
}
|
548 |
+
Vectorized<T> igamma(const Vectorized<T> &x) const {
|
549 |
+
__m512 lo, hi;
|
550 |
+
__m512 xlo, xhi;
|
551 |
+
cvt_to_fp32<T>(values, lo, hi);
|
552 |
+
cvt_to_fp32<T>(x.values, xlo, xhi);
|
553 |
+
__at_align__ float tmp1[size() / 2], tmp2[size() / 2];
|
554 |
+
_mm512_storeu_ps(reinterpret_cast<float*>(tmp1), lo);
|
555 |
+
_mm512_storeu_ps(reinterpret_cast<float*>(tmp2), hi);
|
556 |
+
__at_align__ float tmpx1[size() / 2], tmpx2[size() / 2];
|
557 |
+
_mm512_storeu_ps(reinterpret_cast<float*>(tmpx1), xlo);
|
558 |
+
_mm512_storeu_ps(reinterpret_cast<float*>(tmpx2), xhi);
|
559 |
+
for (int64_t i = 0; i < size() / 2; ++i) {
|
560 |
+
tmp1[i] = calc_igamma(tmp1[i], tmpx1[i]);
|
561 |
+
tmp2[i] = calc_igamma(tmp2[i], tmpx2[i]);
|
562 |
+
}
|
563 |
+
auto o1 = _mm512_loadu_ps(tmp1);
|
564 |
+
auto o2 = _mm512_loadu_ps(tmp2);
|
565 |
+
return cvt_from_fp32<T>(o1, o2);
|
566 |
+
}
|
567 |
+
|
568 |
+
Vectorized<T> igammac(const Vectorized<T> &x) const {
|
569 |
+
__m512 lo, hi;
|
570 |
+
__m512 xlo, xhi;
|
571 |
+
cvt_to_fp32<T>(values, lo, hi);
|
572 |
+
cvt_to_fp32<T>(x.values, xlo, xhi);
|
573 |
+
__at_align__ float tmp1[size() / 2], tmp2[size() / 2];
|
574 |
+
_mm512_storeu_ps(reinterpret_cast<float*>(tmp1), lo);
|
575 |
+
_mm512_storeu_ps(reinterpret_cast<float*>(tmp2), hi);
|
576 |
+
__at_align__ float tmpx1[size() / 2], tmpx2[size() / 2];
|
577 |
+
_mm512_storeu_ps(reinterpret_cast<float*>(tmpx1), xlo);
|
578 |
+
_mm512_storeu_ps(reinterpret_cast<float*>(tmpx2), xhi);
|
579 |
+
for (int64_t i = 0; i < size() / 2; ++i) {
|
580 |
+
tmp1[i] = calc_igammac(tmp1[i], tmpx1[i]);
|
581 |
+
tmp2[i] = calc_igammac(tmp2[i], tmpx2[i]);
|
582 |
+
}
|
583 |
+
auto o1 = _mm512_loadu_ps(tmp1);
|
584 |
+
auto o2 = _mm512_loadu_ps(tmp2);
|
585 |
+
return cvt_from_fp32<T>(o1, o2);
|
586 |
+
}
|
587 |
+
Vectorized<T> log() const {
|
588 |
+
return map(Sleef_logf16_u10);
|
589 |
+
}
|
590 |
+
Vectorized<T> log2() const {
|
591 |
+
return map(Sleef_log2f16_u10);
|
592 |
+
}
|
593 |
+
Vectorized<T> log10() const {
|
594 |
+
return map(Sleef_log10f16_u10);
|
595 |
+
}
|
596 |
+
Vectorized<T> log1p() const {
|
597 |
+
return map(Sleef_log1pf16_u10);
|
598 |
+
}
|
599 |
+
Vectorized<T> sin() const {
|
600 |
+
return map(Sleef_sinf16_u10);
|
601 |
+
}
|
602 |
+
Vectorized<T> sinh() const {
|
603 |
+
return map(Sleef_sinhf16_u10);
|
604 |
+
}
|
605 |
+
Vectorized<T> cos() const {
|
606 |
+
return map(Sleef_cosf16_u10);
|
607 |
+
}
|
608 |
+
Vectorized<T> cosh() const {
|
609 |
+
return map(Sleef_coshf16_u10);
|
610 |
+
}
|
611 |
+
Vectorized<T> ceil() const {
|
612 |
+
__m512 lo, hi;
|
613 |
+
cvt_to_fp32<T>(values, lo, hi);
|
614 |
+
auto o1 = _mm512_ceil_ps(lo);
|
615 |
+
auto o2 = _mm512_ceil_ps(hi);
|
616 |
+
return cvt_from_fp32<T>(o1, o2);
|
617 |
+
}
|
618 |
+
Vectorized<T> floor() const {
|
619 |
+
__m512 lo, hi;
|
620 |
+
cvt_to_fp32<T>(values, lo, hi);
|
621 |
+
auto o1 = _mm512_floor_ps(lo);
|
622 |
+
auto o2 = _mm512_floor_ps(hi);
|
623 |
+
return cvt_from_fp32<T>(o1, o2);
|
624 |
+
}
|
625 |
+
Vectorized<T> neg() const {
|
626 |
+
return _mm512_xor_si512(values, _mm512_set1_epi16(0x8000));
|
627 |
+
}
|
628 |
+
Vectorized<T> round() const {
|
629 |
+
__m512 lo, hi;
|
630 |
+
cvt_to_fp32<T>(values, lo, hi);
|
631 |
+
auto o1 = _mm512_roundscale_ps(lo, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
|
632 |
+
auto o2 = _mm512_roundscale_ps(hi, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
|
633 |
+
return cvt_from_fp32<T>(o1, o2);
|
634 |
+
}
|
635 |
+
Vectorized<T> tan() const {
|
636 |
+
return map(Sleef_tanf16_u10);
|
637 |
+
}
|
638 |
+
Vectorized<T> tanh() const {
|
639 |
+
return map(Sleef_tanhf16_u10);
|
640 |
+
}
|
641 |
+
Vectorized<T> trunc() const {
|
642 |
+
__m512 lo, hi;
|
643 |
+
cvt_to_fp32<T>(values, lo, hi);
|
644 |
+
auto o1 = _mm512_roundscale_ps(lo, (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC));
|
645 |
+
auto o2 = _mm512_roundscale_ps(hi, (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC));
|
646 |
+
return cvt_from_fp32<T>(o1, o2);
|
647 |
+
}
|
648 |
+
Vectorized<T> lgamma() const {
|
649 |
+
return map(Sleef_lgammaf16_u10);
|
650 |
+
}
|
651 |
+
Vectorized<T> sqrt() const {
|
652 |
+
__m512 lo, hi;
|
653 |
+
cvt_to_fp32<T>(values, lo, hi);
|
654 |
+
auto o1 = _mm512_sqrt_ps(lo);
|
655 |
+
auto o2 = _mm512_sqrt_ps(hi);
|
656 |
+
return cvt_from_fp32<T>(o1, o2);
|
657 |
+
}
|
658 |
+
Vectorized<T> reciprocal() const {
|
659 |
+
__m512 lo, hi;
|
660 |
+
cvt_to_fp32<T>(values, lo, hi);
|
661 |
+
auto ones = _mm512_set1_ps(1);
|
662 |
+
auto o1 = _mm512_div_ps(ones, lo);
|
663 |
+
auto o2 = _mm512_div_ps(ones, hi);
|
664 |
+
return cvt_from_fp32<T>(o1, o2);
|
665 |
+
}
|
666 |
+
Vectorized<T> rsqrt() const {
|
667 |
+
__m512 lo, hi;
|
668 |
+
cvt_to_fp32<T>(values, lo, hi);
|
669 |
+
auto ones = _mm512_set1_ps(1);
|
670 |
+
auto o1 = _mm512_div_ps(ones, _mm512_sqrt_ps(lo));
|
671 |
+
auto o2 = _mm512_div_ps(ones, _mm512_sqrt_ps(hi));
|
672 |
+
return cvt_from_fp32<T>(o1, o2);
|
673 |
+
}
|
674 |
+
Vectorized<T> pow(const Vectorized<T> &b) const {
|
675 |
+
__m512 lo, hi;
|
676 |
+
__m512 b1, b2;
|
677 |
+
cvt_to_fp32<T>(values, lo, hi);
|
678 |
+
cvt_to_fp32<T>(b.values, b1, b2);
|
679 |
+
auto o1 = Sleef_powf16_u10(lo, b1);
|
680 |
+
auto o2 = Sleef_powf16_u10(hi, b2);
|
681 |
+
return cvt_from_fp32<T>(o1, o2);
|
682 |
+
}
|
683 |
+
private:
|
684 |
+
template<typename Op>
|
685 |
+
Vectorized<T> inline binary_compare(const Vectorized<T>& b, Op op) const {
|
686 |
+
__m512 a_lo, a_hi;
|
687 |
+
__m512 b_lo, b_hi;
|
688 |
+
cvt_to_fp32<T>(values, a_lo, a_hi);
|
689 |
+
cvt_to_fp32<T>(b.values, b_lo, b_hi);
|
690 |
+
auto o1 = op(a_lo, b_lo);
|
691 |
+
auto o2 = op(a_hi, b_hi);
|
692 |
+
return cvt_from_fp32<T, /*is_compare_op*/true>(o1, o2);
|
693 |
+
}
|
694 |
+
|
695 |
+
public:
|
696 |
+
Vectorized<T> inline operator>(const Vectorized<T>& other) const {
|
697 |
+
return binary_compare(other, [](__m512 x, __m512 y) {
|
698 |
+
auto zero_vec = _mm512_set1_epi32(0);
|
699 |
+
auto cmp = _mm512_cmp_ps_mask(x, y, _CMP_GT_OQ);
|
700 |
+
return _mm512_castsi512_ps(_mm512_mask_set1_epi32(zero_vec, cmp, 0xFFFFFFFF));
|
701 |
+
});
|
702 |
+
}
|
703 |
+
Vectorized<T> inline operator<(const Vectorized<T>& other) const {
|
704 |
+
return binary_compare(other, [](__m512 x, __m512 y) {
|
705 |
+
auto zero_vec = _mm512_set1_epi32(0);
|
706 |
+
auto cmp = _mm512_cmp_ps_mask(x, y, _CMP_LT_OQ);
|
707 |
+
return _mm512_castsi512_ps(_mm512_mask_set1_epi32(zero_vec, cmp, 0xFFFFFFFF));
|
708 |
+
});
|
709 |
+
}
|
710 |
+
Vectorized<T> inline operator>=(const Vectorized<T>& other) const {
|
711 |
+
return binary_compare(other, [](__m512 x, __m512 y) {
|
712 |
+
auto zero_vec = _mm512_set1_epi32(0);
|
713 |
+
auto cmp = _mm512_cmp_ps_mask(x, y, _CMP_GE_OQ);
|
714 |
+
return _mm512_castsi512_ps(_mm512_mask_set1_epi32(zero_vec, cmp, 0xFFFFFFFF));
|
715 |
+
});
|
716 |
+
}
|
717 |
+
Vectorized<T> inline operator<=(const Vectorized<T>& other) const {
|
718 |
+
return binary_compare(other, [](__m512 x, __m512 y) {
|
719 |
+
auto zero_vec = _mm512_set1_epi32(0);
|
720 |
+
auto cmp = _mm512_cmp_ps_mask(x, y, _CMP_LE_OQ);
|
721 |
+
return _mm512_castsi512_ps(_mm512_mask_set1_epi32(zero_vec, cmp, 0xFFFFFFFF));
|
722 |
+
});
|
723 |
+
}
|
724 |
+
Vectorized<T> inline operator==(const Vectorized<T>& other) const {
|
725 |
+
return binary_compare(other, [](__m512 x, __m512 y) {
|
726 |
+
auto zero_vec = _mm512_set1_epi32(0);
|
727 |
+
auto cmp = _mm512_cmp_ps_mask(x, y, _CMP_EQ_OQ);
|
728 |
+
return _mm512_castsi512_ps(_mm512_mask_set1_epi32(zero_vec, cmp, 0xFFFFFFFF));
|
729 |
+
});
|
730 |
+
}
|
731 |
+
Vectorized<T> inline operator!=(const Vectorized<T>& other) const {
|
732 |
+
return binary_compare(other, [](__m512 x, __m512 y) {
|
733 |
+
auto zero_vec = _mm512_set1_epi32(0);
|
734 |
+
auto cmp = _mm512_cmp_ps_mask(x, y, _CMP_NEQ_UQ);
|
735 |
+
return _mm512_castsi512_ps(_mm512_mask_set1_epi32(zero_vec, cmp, 0xFFFFFFFF));
|
736 |
+
});
|
737 |
+
}
|
738 |
+
};
|
739 |
+
|
740 |
+
template<typename T, typename Op>
|
741 |
+
static inline Vectorized<T> binary_op_as_fp32(const Vectorized<T>& a, const Vectorized<T>& b, Op op) {
|
742 |
+
__m512 a_lo, a_hi;
|
743 |
+
__m512 b_lo, b_hi;
|
744 |
+
cvt_to_fp32<T>(__m512i(a), a_lo, a_hi);
|
745 |
+
cvt_to_fp32<T>(__m512i(b), b_lo, b_hi);
|
746 |
+
auto o1 = op(a_lo, b_lo);
|
747 |
+
auto o2 = op(a_hi, b_hi);
|
748 |
+
return cvt_from_fp32<T>(o1, o2);
|
749 |
+
}
|
750 |
+
|
751 |
+
template <>
|
752 |
+
class Vectorized<BFloat16>: public Vectorized16<BFloat16> {
|
753 |
+
public:
|
754 |
+
using Vectorized16::Vectorized16;
|
755 |
+
|
756 |
+
Vectorized<BFloat16> frac() const;
|
757 |
+
|
758 |
+
Vectorized<BFloat16> eq(const Vectorized<BFloat16>& other) const;
|
759 |
+
Vectorized<BFloat16> ne(const Vectorized<BFloat16>& other) const;
|
760 |
+
Vectorized<BFloat16> gt(const Vectorized<BFloat16>& other) const;
|
761 |
+
Vectorized<BFloat16> ge(const Vectorized<BFloat16>& other) const;
|
762 |
+
Vectorized<BFloat16> lt(const Vectorized<BFloat16>& other) const;
|
763 |
+
Vectorized<BFloat16> le(const Vectorized<BFloat16>& other) const;
|
764 |
+
};
|
765 |
+
|
766 |
+
Vectorized<BFloat16> inline operator+(const Vectorized<BFloat16>& a, const Vectorized<BFloat16>& b) {
|
767 |
+
return binary_op_as_fp32(a, b, [](const __m512& x, const __m512& y) { return _mm512_add_ps(x, y); });
|
768 |
+
}
|
769 |
+
Vectorized<BFloat16> inline operator-(const Vectorized<BFloat16>& a, const Vectorized<BFloat16>& b) {
|
770 |
+
return binary_op_as_fp32(a, b, [](const __m512& x, const __m512& y) { return _mm512_sub_ps(x, y); });
|
771 |
+
}
|
772 |
+
Vectorized<BFloat16> inline operator*(const Vectorized<BFloat16>& a, const Vectorized<BFloat16>& b) {
|
773 |
+
return binary_op_as_fp32(a, b, [](const __m512& x, const __m512& y) { return _mm512_mul_ps(x, y); });
|
774 |
+
}
|
775 |
+
Vectorized<BFloat16> inline operator/(const Vectorized<BFloat16>& a, const Vectorized<BFloat16>& b) {
|
776 |
+
return binary_op_as_fp32(a, b, [](const __m512& x, const __m512& y) { return _mm512_div_ps(x, y); });
|
777 |
+
}
|
778 |
+
Vectorized<BFloat16> inline operator&(const Vectorized<BFloat16>& a, const Vectorized<BFloat16>& b) {
|
779 |
+
return _mm512_and_si512(a, b);
|
780 |
+
}
|
781 |
+
Vectorized<BFloat16> inline operator|(const Vectorized<BFloat16>& a, const Vectorized<BFloat16>& b) {
|
782 |
+
return _mm512_or_si512(a, b);
|
783 |
+
}
|
784 |
+
Vectorized<BFloat16> inline operator^(const Vectorized<BFloat16>& a, const Vectorized<BFloat16>& b) {
|
785 |
+
return _mm512_xor_si512(a, b);
|
786 |
+
}
|
787 |
+
|
788 |
+
inline Vectorized<BFloat16> Vectorized<BFloat16>::eq(const Vectorized<BFloat16>& other) const {
|
789 |
+
return (*this == other) & Vectorized<BFloat16>(1.0f);
|
790 |
+
}
|
791 |
+
|
792 |
+
inline Vectorized<BFloat16> Vectorized<BFloat16>::ne(const Vectorized<BFloat16>& other) const {
|
793 |
+
return (*this != other) & Vectorized<BFloat16>(1.0f);
|
794 |
+
}
|
795 |
+
|
796 |
+
inline Vectorized<BFloat16> Vectorized<BFloat16>::gt(const Vectorized<BFloat16>& other) const {
|
797 |
+
return (*this > other) & Vectorized<BFloat16>(1.0f);
|
798 |
+
}
|
799 |
+
|
800 |
+
inline Vectorized<BFloat16> Vectorized<BFloat16>::ge(const Vectorized<BFloat16>& other) const {
|
801 |
+
return (*this >= other) & Vectorized<BFloat16>(1.0f);
|
802 |
+
}
|
803 |
+
|
804 |
+
inline Vectorized<BFloat16> Vectorized<BFloat16>::lt(const Vectorized<BFloat16>& other) const {
|
805 |
+
return (*this < other) & Vectorized<BFloat16>(1.0f);
|
806 |
+
}
|
807 |
+
|
808 |
+
inline Vectorized<BFloat16> Vectorized<BFloat16>::le(const Vectorized<BFloat16>& other) const {
|
809 |
+
return (*this <= other) & Vectorized<BFloat16>(1.0f);
|
810 |
+
}
|
811 |
+
|
812 |
+
// frac. Implement this here so we can use subtraction
|
813 |
+
inline Vectorized<BFloat16> Vectorized<BFloat16>::frac() const {
|
814 |
+
return *this - this->trunc();
|
815 |
+
}
|
816 |
+
|
817 |
+
// Implements the IEEE 754 201X `maximum` operation, which propagates NaN if
|
818 |
+
// either input is a NaN.
|
819 |
+
template <>
|
820 |
+
Vectorized<BFloat16> inline maximum(const Vectorized<BFloat16>& a, const Vectorized<BFloat16>& b) {
|
821 |
+
__m512 a_lo, a_hi;
|
822 |
+
__m512 b_lo, b_hi;
|
823 |
+
cvtbf16_fp32(__m512i(a), a_lo, a_hi);
|
824 |
+
cvtbf16_fp32(__m512i(b), b_lo, b_hi);
|
825 |
+
auto max_lo = _mm512_max_ps(a_lo, b_lo);
|
826 |
+
auto max_hi = _mm512_max_ps(a_hi, b_hi);
|
827 |
+
auto nan_lo_mask = _mm512_cmp_ps_mask(a_lo, b_lo, _CMP_UNORD_Q);
|
828 |
+
auto nan_hi_mask = _mm512_cmp_ps_mask(a_hi, b_hi, _CMP_UNORD_Q);
|
829 |
+
auto nan_lo = _mm512_castsi512_ps(_mm512_set1_epi32(nan_lo_mask));
|
830 |
+
auto nan_hi = _mm512_castsi512_ps(_mm512_set1_epi32(nan_hi_mask));
|
831 |
+
// Exploit the fact that all-ones is a NaN.
|
832 |
+
auto o1 = _mm512_or_ps(max_lo, nan_lo);
|
833 |
+
auto o2 = _mm512_or_ps(max_hi, nan_hi);
|
834 |
+
return cvtfp32_bf16(o1, o2);
|
835 |
+
}
|
836 |
+
|
837 |
+
// Implements the IEEE 754 201X `minimum` operation, which propagates NaN if
|
838 |
+
// either input is a NaN.
|
839 |
+
template <>
|
840 |
+
Vectorized<BFloat16> inline minimum(const Vectorized<BFloat16>& a, const Vectorized<BFloat16>& b) {
|
841 |
+
__m512 a_lo, a_hi;
|
842 |
+
__m512 b_lo, b_hi;
|
843 |
+
__m512i zero_vec = _mm512_set1_epi32(0);
|
844 |
+
cvtbf16_fp32(__m512i(a), a_lo, a_hi);
|
845 |
+
cvtbf16_fp32(__m512i(b), b_lo, b_hi);
|
846 |
+
auto min_lo = _mm512_min_ps(a_lo, b_lo);
|
847 |
+
auto min_hi = _mm512_min_ps(a_hi, b_hi);
|
848 |
+
auto nan_lo_mask = _mm512_cmp_ps_mask(a_lo, b_lo, _CMP_UNORD_Q);
|
849 |
+
auto nan_hi_mask = _mm512_cmp_ps_mask(a_hi, b_hi, _CMP_UNORD_Q);
|
850 |
+
auto nan_lo = _mm512_castsi512_ps(_mm512_mask_set1_epi32(zero_vec, nan_lo_mask,
|
851 |
+
0xFFFFFFFF));
|
852 |
+
auto nan_hi = _mm512_castsi512_ps(_mm512_mask_set1_epi32(zero_vec, nan_hi_mask,
|
853 |
+
0xFFFFFFFF));
|
854 |
+
// Exploit the fact that all-ones is a NaN.
|
855 |
+
auto o1 = _mm512_or_ps(min_lo, nan_lo);
|
856 |
+
auto o2 = _mm512_or_ps(min_hi, nan_hi);
|
857 |
+
return cvtfp32_bf16(o1, o2);
|
858 |
+
}
|
859 |
+
|
860 |
+
template <>
|
861 |
+
Vectorized<BFloat16> inline clamp(const Vectorized<BFloat16>& a,
|
862 |
+
const Vectorized<BFloat16>& min, const Vectorized<BFloat16>& max) {
|
863 |
+
__m512 a_lo, a_hi;
|
864 |
+
__m512 min_lo, min_hi;
|
865 |
+
__m512 max_lo, max_hi;
|
866 |
+
cvtbf16_fp32(__m512i(a), a_lo, a_hi);
|
867 |
+
cvtbf16_fp32(__m512i(min), min_lo, min_hi);
|
868 |
+
cvtbf16_fp32(__m512i(max), max_lo, max_hi);
|
869 |
+
auto o1 = _mm512_min_ps(max_lo, _mm512_max_ps(min_lo, a_lo));
|
870 |
+
auto o2 = _mm512_min_ps(max_hi, _mm512_max_ps(min_hi, a_hi));
|
871 |
+
return cvtfp32_bf16(o1, o2);
|
872 |
+
}
|
873 |
+
|
874 |
+
template <>
|
875 |
+
Vectorized<BFloat16> inline clamp_max(const Vectorized<BFloat16>& a, const Vectorized<BFloat16>& max) {
|
876 |
+
__m512 a_lo, a_hi;
|
877 |
+
__m512 max_lo, max_hi;
|
878 |
+
cvtbf16_fp32(__m512i(a), a_lo, a_hi);
|
879 |
+
cvtbf16_fp32(__m512i(max), max_lo, max_hi);
|
880 |
+
auto o1 = _mm512_min_ps(max_lo, a_lo);
|
881 |
+
auto o2 = _mm512_min_ps(max_hi, a_hi);
|
882 |
+
return cvtfp32_bf16(o1, o2);
|
883 |
+
}
|
884 |
+
|
885 |
+
template <>
|
886 |
+
Vectorized<BFloat16> inline clamp_min(const Vectorized<BFloat16>& a, const Vectorized<BFloat16>& min) {
|
887 |
+
__m512 a_lo, a_hi;
|
888 |
+
__m512 min_lo, min_hi;
|
889 |
+
cvtbf16_fp32(__m512i(a), a_lo, a_hi);
|
890 |
+
cvtbf16_fp32(__m512i(min), min_lo, min_hi);
|
891 |
+
auto o1 = _mm512_max_ps(min_lo, a_lo);
|
892 |
+
auto o2 = _mm512_max_ps(min_hi, a_hi);
|
893 |
+
return cvtfp32_bf16(o1, o2);
|
894 |
+
}
|
895 |
+
|
896 |
+
template <>
|
897 |
+
inline void convert(const BFloat16* src, BFloat16* dst, int64_t n) {
|
898 |
+
int64_t i;
|
899 |
+
#pragma unroll
|
900 |
+
for (i = 0; i <= (n - Vectorized<BFloat16>::size()); i += Vectorized<BFloat16>::size()) {
|
901 |
+
auto vsrc = _mm512_loadu_si512(reinterpret_cast<__m512i*>((void*)(src + i)));
|
902 |
+
_mm512_storeu_si512(reinterpret_cast<__m512i*>((void*)(dst + i)), vsrc);
|
903 |
+
}
|
904 |
+
#pragma unroll
|
905 |
+
for (; i < n; i++) {
|
906 |
+
dst[i] = src[i];
|
907 |
+
}
|
908 |
+
}
|
909 |
+
|
910 |
+
template <>
|
911 |
+
inline void convert(const float* src, BFloat16* dst, int64_t n) {
|
912 |
+
int64_t i;
|
913 |
+
for (i = 0; i + Vectorized<BFloat16>::size() <= n; i += Vectorized<BFloat16>::size()) {
|
914 |
+
__m512 a = _mm512_loadu_ps(&src[i]);
|
915 |
+
__m512 b = _mm512_loadu_ps(&src[i + 16]);
|
916 |
+
|
917 |
+
__m512i bf = cvtfp32_bf16(a, b);
|
918 |
+
_mm512_storeu_si512(reinterpret_cast<__m512i*>(&dst[i]), bf);
|
919 |
+
}
|
920 |
+
for (; i < n; i++) {
|
921 |
+
dst[i] = c10::convert<BFloat16>(src[i]);
|
922 |
+
}
|
923 |
+
}
|
924 |
+
|
925 |
+
template <>
|
926 |
+
inline void convert(const double* src, BFloat16* dst, int64_t n) {
|
927 |
+
auto load_float = [](const double *src) -> __m512 {
|
928 |
+
// Load one float vector from an array of doubles
|
929 |
+
__m256 a = _mm512_cvtpd_ps(_mm512_loadu_pd(src));
|
930 |
+
__m256 b = _mm512_cvtpd_ps(_mm512_loadu_pd(src + 8));
|
931 |
+
return _mm512_insertf32x8(_mm512_castps256_ps512(a), b, 1);
|
932 |
+
};
|
933 |
+
|
934 |
+
int64_t i;
|
935 |
+
for (i = 0; i + Vectorized<BFloat16>::size() <= n; i += Vectorized<BFloat16>::size()) {
|
936 |
+
__m512 a = load_float(&src[i]);
|
937 |
+
__m512 b = load_float(&src[i + 16]);
|
938 |
+
|
939 |
+
__m512i bf = cvtfp32_bf16(a, b);
|
940 |
+
_mm512_storeu_si512(reinterpret_cast<__m512i*>(&dst[i]), bf);
|
941 |
+
}
|
942 |
+
for (; i < n; i++) {
|
943 |
+
dst[i] = c10::convert<BFloat16>(src[i]);
|
944 |
+
}
|
945 |
+
}
|
946 |
+
|
947 |
+
template <>
|
948 |
+
Vectorized<BFloat16> inline fmadd(const Vectorized<BFloat16>& a,
|
949 |
+
const Vectorized<BFloat16>& b, const Vectorized<BFloat16>& c) {
|
950 |
+
__m512 a_lo, a_hi;
|
951 |
+
__m512 b_lo, b_hi;
|
952 |
+
__m512 c_lo, c_hi;
|
953 |
+
cvtbf16_fp32(__m512i(a), a_lo, a_hi);
|
954 |
+
cvtbf16_fp32(__m512i(b), b_lo, b_hi);
|
955 |
+
cvtbf16_fp32(__m512i(c), c_lo, c_hi);
|
956 |
+
auto o1 = _mm512_fmadd_ps(a_lo, b_lo, c_lo);
|
957 |
+
auto o2 = _mm512_fmadd_ps(a_hi, b_hi, c_hi);
|
958 |
+
return cvtfp32_bf16(o1, o2);
|
959 |
+
}
|
960 |
+
|
961 |
+
static inline void _transpose_mxn_half_16_16(__m256i t[], __m512i u[]) {
|
962 |
+
__m512i r[8];
|
963 |
+
// a0a1 a2a3 a4a5 a6a7 a8a9 a10a11 a12a13 a14a15 e0e1 e2e3 e4e5 e6e7 e8e9 e10e11 e12e13 e14e15
|
964 |
+
// b0-b15 f0-f15
|
965 |
+
// c0-c15 g0-g15
|
966 |
+
// d0-d15 h0-h15
|
967 |
+
// i0-i15 m0-m15
|
968 |
+
// j0-j15 n0-n15
|
969 |
+
// k0-k15 o0-o15
|
970 |
+
// l0-l15 p0-p15
|
971 |
+
#pragma unroll(4)
|
972 |
+
for (int i = 0; i < 4; i++) {
|
973 |
+
r[i] = _mm512_inserti64x4(_mm512_castsi256_si512(t[i]), t[i + 4], 0x01);
|
974 |
+
r[i + 4] = _mm512_inserti64x4(_mm512_castsi256_si512(t[i + 8]), t[i + 12], 0x01);
|
975 |
+
}
|
976 |
+
|
977 |
+
// u0: a0a1 b0b1 a2a3 b2b3 a8a9 b8b9 a10a11 b10b11 e0e1 f0f1 e2e3 f2f3 e8e9 f8f9 e10e11 f10f11
|
978 |
+
// u1: a4a5 b4b5 a6a7 b6b7 a12a13 b12b13 a14a15 b14b15 e4e5 f4f5 e6e7 f6f7 e12e13 f12f13 e14e15 f14f15
|
979 |
+
// u2: c0c1 d0d1 c2c3 d2d3 c8c9 d8d9 c10c11 d10d11 g0g1 h0h1 g2g3 h2h3 g8g9 h8h9 g10g11 h10h11
|
980 |
+
// u3: c4c5 d4b5 c6c7 d6b7 c12c13 d12d13 c14c15 d14d15 g4g5 h4h5 g6g7 h6h7 g12g13 h12h13 g14g15 h14h15
|
981 |
+
// i j m n
|
982 |
+
// k l o p
|
983 |
+
#pragma unroll(4)
|
984 |
+
for (int i = 0; i < 8; i += 2) {
|
985 |
+
u[i] = _mm512_unpacklo_epi32(r[i], r[i + 1]);
|
986 |
+
u[i + 1] = _mm512_unpackhi_epi32(r[i], r[i + 1]);
|
987 |
+
}
|
988 |
+
|
989 |
+
// r0: a0a1 b0b1 c0c1 d0d1 a8a9 b8b9 c8c9 d8d9 e0e1 f0f1 g0g1 h0h1 e8e9 f8f9 g8g9 h8h9
|
990 |
+
// r1: a2a3 b2b3 c2c3 d2d3 a10a11 b10b11 c10c11 d10d11 e2e3 f2f3 g2g3 h2h3 e10e11 f10f11 g10g11 h10h11
|
991 |
+
// r2: a4a5 b4b5 c4c5 d4b5 a12a13 b12b13 c12c13 d12d13
|
992 |
+
// r3: a6a7 b6b7 c6c7 d6b7 a14a15 b14b15 c14c15 d14d15
|
993 |
+
// r4: i j k l m n o p
|
994 |
+
r[0] = _mm512_unpacklo_epi64(u[0], u[2]);
|
995 |
+
r[1] = _mm512_unpackhi_epi64(u[0], u[2]);
|
996 |
+
r[2] = _mm512_unpacklo_epi64(u[1], u[3]);
|
997 |
+
r[3] = _mm512_unpackhi_epi64(u[1], u[3]);
|
998 |
+
r[4] = _mm512_unpacklo_epi64(u[4], u[6]);
|
999 |
+
r[5] = _mm512_unpackhi_epi64(u[4], u[6]);
|
1000 |
+
r[6] = _mm512_unpacklo_epi64(u[5], u[7]);
|
1001 |
+
r[7] = _mm512_unpackhi_epi64(u[5], u[7]);
|
1002 |
+
|
1003 |
+
__m512i const1 = _mm512_set_epi32(
|
1004 |
+
0x00370035,
|
1005 |
+
0x00330031,
|
1006 |
+
0x00270025,
|
1007 |
+
0x00230021,
|
1008 |
+
0x00170015,
|
1009 |
+
0x00130011,
|
1010 |
+
0x00070005,
|
1011 |
+
0x00030001,
|
1012 |
+
0x00360034,
|
1013 |
+
0x00320030,
|
1014 |
+
0x00260024,
|
1015 |
+
0x00220020,
|
1016 |
+
0x00160014,
|
1017 |
+
0x00120010,
|
1018 |
+
0x00060004,
|
1019 |
+
0x00020000);
|
1020 |
+
__m512i const2 = _mm512_set_epi32(
|
1021 |
+
0x003f003d,
|
1022 |
+
0x003b0039,
|
1023 |
+
0x002f002d,
|
1024 |
+
0x002b0029,
|
1025 |
+
0x001f001d,
|
1026 |
+
0x001b0019,
|
1027 |
+
0x000f000d,
|
1028 |
+
0x000b0009,
|
1029 |
+
0x003e003c,
|
1030 |
+
0x003a0038,
|
1031 |
+
0x002e002c,
|
1032 |
+
0x002a0028,
|
1033 |
+
0x001e001c,
|
1034 |
+
0x001a0018,
|
1035 |
+
0x000e000c,
|
1036 |
+
0x000a0008);
|
1037 |
+
// merge values from two regs
|
1038 |
+
// 0-- 1--
|
1039 |
+
// 8-- 9--
|
1040 |
+
// 2-- 3--
|
1041 |
+
// 10-- 11--
|
1042 |
+
// 4-- 5--
|
1043 |
+
// 12-- 13--
|
1044 |
+
// 6-- 7--
|
1045 |
+
// 14-- 15--
|
1046 |
+
#pragma unroll(4)
|
1047 |
+
for (int i = 0; i < 4; i++) {
|
1048 |
+
u[i] = _mm512_permutex2var_epi16(r[i], const1, r[i + 4]);
|
1049 |
+
u[i + 4] = _mm512_permutex2var_epi16(r[i], const2, r[i + 4]);
|
1050 |
+
}
|
1051 |
+
}
|
1052 |
+
|
1053 |
+
// TODO(Leslie): Add the AVX2 Version of transpose_mxn for BFloat16 and Float16
|
1054 |
+
// Code referred to FBGEMM:
|
1055 |
+
// https://github.com/pytorch/FBGEMM/blob/39a423e4ad1a04b77fea81c7d09c3e6f8984fae9/src/UtilsAvx512.cc#L1483-L1607
|
1056 |
+
template<>
|
1057 |
+
inline void transpose_mxn<BFloat16, 16, 16>(
|
1058 |
+
const BFloat16* src,
|
1059 |
+
int64_t ld_src,
|
1060 |
+
BFloat16* dst,
|
1061 |
+
int64_t ld_dst) {
|
1062 |
+
__m256i t[16];
|
1063 |
+
// load from src to registers
|
1064 |
+
// a: a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15
|
1065 |
+
// b: b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15
|
1066 |
+
// c: c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15
|
1067 |
+
// d: d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15
|
1068 |
+
// e: e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15
|
1069 |
+
// f: f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15
|
1070 |
+
// g: g0 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15
|
1071 |
+
// h: h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15
|
1072 |
+
// i: i0 i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15
|
1073 |
+
// j: j0 j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 j14 j15
|
1074 |
+
// k: k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15
|
1075 |
+
// l: l0 l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14 l15
|
1076 |
+
// m: m0 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15
|
1077 |
+
// n: n0 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15
|
1078 |
+
// o: o0 o1 o2 o3 o4 o5 o6 o7 o8 o9 o10 o11 o12 o13 o14 o15
|
1079 |
+
// p: p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15
|
1080 |
+
#pragma unroll(16)
|
1081 |
+
for (int i = 0; i < 16; i++) {
|
1082 |
+
t[i] = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src + i * ld_src));
|
1083 |
+
}
|
1084 |
+
|
1085 |
+
__m512i u[8];
|
1086 |
+
_transpose_mxn_half_16_16(t, u);
|
1087 |
+
|
1088 |
+
#pragma unroll(8)
|
1089 |
+
for (int i = 0; i < 8; i++) {
|
1090 |
+
_mm256_storeu_si256(
|
1091 |
+
reinterpret_cast<__m256i*>(dst + (i * 2) * ld_dst),
|
1092 |
+
_mm512_extracti32x8_epi32(u[i], 0x0));
|
1093 |
+
_mm256_storeu_si256(
|
1094 |
+
reinterpret_cast<__m256i*>(dst + (i * 2 + 1) * ld_dst),
|
1095 |
+
_mm512_extracti32x8_epi32(u[i], 0x01));
|
1096 |
+
}
|
1097 |
+
}
|
1098 |
+
|
1099 |
+
// Code referred to FBGEMM:
|
1100 |
+
// https://github.com/pytorch/FBGEMM/blob/39a423e4ad1a04b77fea81c7d09c3e6f8984fae9/src/UtilsAvx512.cc#L1483-L1607
|
1101 |
+
template<>
|
1102 |
+
inline void transpose_mxn<Half, 16, 16>(
|
1103 |
+
const Half* src,
|
1104 |
+
int64_t ld_src,
|
1105 |
+
Half* dst,
|
1106 |
+
int64_t ld_dst) {
|
1107 |
+
__m256i t[16];
|
1108 |
+
// load from src to registers
|
1109 |
+
// Same matrix indices as above transpose_mxn<BFloat16, 16, 16>
|
1110 |
+
#pragma unroll(16)
|
1111 |
+
for (int i = 0; i < 16; i++) {
|
1112 |
+
t[i] = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src + i * ld_src));
|
1113 |
+
}
|
1114 |
+
|
1115 |
+
__m512i u[8];
|
1116 |
+
_transpose_mxn_half_16_16(t, u);
|
1117 |
+
|
1118 |
+
#pragma unroll(8)
|
1119 |
+
for (int i = 0; i < 8; i++) {
|
1120 |
+
_mm256_storeu_si256(
|
1121 |
+
reinterpret_cast<__m256i*>(dst + (i * 2) * ld_dst),
|
1122 |
+
_mm512_extracti32x8_epi32(u[i], 0x0));
|
1123 |
+
_mm256_storeu_si256(
|
1124 |
+
reinterpret_cast<__m256i*>(dst + (i * 2 + 1) * ld_dst),
|
1125 |
+
_mm512_extracti32x8_epi32(u[i], 0x01));
|
1126 |
+
}
|
1127 |
+
}
|
1128 |
+
|
1129 |
+
static inline void _transpose_mxn_half_32_32(__m512i r[], __m512i d[]) {
|
1130 |
+
// t[0]: 0 32 1 33 2 34 3 35 8 40 9 41 10 42 11 43 16 ... 59
|
1131 |
+
// t[1]: 4 36 5 37 6 38 7 39 12 44 13 45 14 46 15 47 20 ... 63
|
1132 |
+
// t[2]: 64 96 65 97 66 98 67 99 72 104 73 105 74 106 75 ... 123
|
1133 |
+
// t[3]: 68 100 69 101 70 102 71 103 76 108 77 109 78 110 79 111 84 ... 127
|
1134 |
+
// t[4]: 128 160 129 161 130 162 131 163 136 168 137 169 138 170 139 171 144 ... 187
|
1135 |
+
// t[5]: 132 164 133 165 134 166 135 167 140 172 141 173 142 174 143 175 148 ... 191
|
1136 |
+
// t[6]: 192 224 193 225 194 226 195 227 200 232 201 233 202 234 203 235 208 ... 251
|
1137 |
+
// t[7]: 196 228 197 229 198 230 199 231 204 236 205 237 206 238 207 239 212 ... 255
|
1138 |
+
// t[8]: 256 288 257 289 258 290 259 291 264 296 265 297 266 298 267 299 272 ... 315
|
1139 |
+
// t[9]: 260 292 261 293 262 294 263 295 268 300 269 301 270 302 271 303 276 ... 319
|
1140 |
+
// t[10]: 320 352 321 353 322 354 323 355 328 360 329 361 330 362 331 363 336 ... 379
|
1141 |
+
// t[11]: 324 356 325 357 326 358 327 359 332 364 333 365 334 366 335 367 340 ... 383
|
1142 |
+
// t[12]: 384 416 385 417 386 418 387 419 392 424 393 425 394 426 395 427 400 ... 443
|
1143 |
+
// t[13]: 388 420 389 421 390 422 391 423 396 428 397 429 398 430 399 431 404 ... 447
|
1144 |
+
// t[14]: 448 480 449 481 450 482 451 483 456 488 457 489 458 490 459 491 464 ... 507
|
1145 |
+
// t[15]: 452 484 453 485 454 486 455 487 460 492 461 493 462 494 463 495 468 ... 511
|
1146 |
+
// t[16]: 512 544 513 545 514 546 515 547 520 552 521 553 522 554 523 555 528 ... 571
|
1147 |
+
// ...
|
1148 |
+
// t[31]: 964 996 965 997 966 998 967 999 972 1004 973 1005 974 1006 975 1007 980 ... 1023
|
1149 |
+
#pragma unroll(16)
|
1150 |
+
for (int i = 0; i < 16; ++i) {
|
1151 |
+
d[i * 2] = _mm512_unpacklo_epi16(r[i * 2], r[i * 2 + 1]);
|
1152 |
+
d[i * 2 + 1] = _mm512_unpackhi_epi16(r[i * 2], r[i * 2 + 1]);
|
1153 |
+
}
|
1154 |
+
|
1155 |
+
// t[0]: 0 32 64 96 1 33 65 97 8 40 72 104 9 41 73 105 16 ... 121
|
1156 |
+
// t[1]: 2 34 66 98 3 35 67 99 10 42 74 106 11 43 75 107 18 ... 123
|
1157 |
+
// t[2]: 4 36 68 100 5 37 69 101 12 44 76 108 13 45 77 109 20 ... 125
|
1158 |
+
// t[3]: 6 38 70 102 7 39 71 103 14 46 78 110 15 47 79 111 22 ... 127
|
1159 |
+
// t[4]: 128 160 192 224 129 161 193 225 136 168 200 232 137 169 201 233 144 ... 249
|
1160 |
+
// t[5]: 130 162 194 226 131 163 195 227 138 170 202 234 139 171 203 235 146 ... 251
|
1161 |
+
// t[6]: 132 164 196 228 133 165 197 229 140 172 204 236 141 173 205 237 148 ... 253
|
1162 |
+
// t[7]: 134 166 198 230 135 167 199 231 142 174 206 238 143 175 207 239 150 ... 255
|
1163 |
+
// t[8]: 256 288 320 352 257 289 321 353 264 296 328 360 265 297 329 361 272 ... 377
|
1164 |
+
// t[9]: 258 290 322 354 259 291 323 355 266 298 330 362 267 299 331 363 274 ... 379
|
1165 |
+
// t[10]: 260 292 324 356 261 293 325 357 268 300 332 364 269 301 333 365 276 ... 381
|
1166 |
+
// t[11]: 262 294 326 358 263 295 327 359 270 302 334 366 271 303 335 367 278 ... 383
|
1167 |
+
// t[12]: 384 416 448 480 385 417 449 481 392 424 456 488 393 425 457 489 400 ... 505
|
1168 |
+
// t[13]: 386 418 450 482 387 419 451 483 394 426 458 490 395 427 459 491 402 ... 507
|
1169 |
+
// t[14]: 388 420 452 484 389 421 453 485 396 428 460 492 397 429 461 493 404 ... 509
|
1170 |
+
// t[15]: 390 422 454 486 391 423 455 487 398 430 462 494 399 431 463 495 406 ... 511
|
1171 |
+
// t[16]: 512 544 576 608 513 545 577 609 520 552 584 616 521 553 585 617 528 ... 633
|
1172 |
+
// ...
|
1173 |
+
// t[31]: 902 934 966 998 903 935 967 999 910 942 974 1006 911 943 975 1007 918 ... 1023
|
1174 |
+
#pragma unroll(8)
|
1175 |
+
for (int i = 0; i < 8; ++i) {
|
1176 |
+
r[i * 4] = _mm512_unpacklo_epi32(d[i * 4], d[i * 4 + 2]);
|
1177 |
+
r[i * 4 + 1] = _mm512_unpackhi_epi32(d[i * 4], d[i * 4 + 2]);
|
1178 |
+
r[i * 4 + 2] = _mm512_unpacklo_epi32(d[i * 4 + 1], d[i * 4 + 3]);
|
1179 |
+
r[i * 4 + 3] = _mm512_unpackhi_epi32(d[i * 4 + 1], d[i * 4 + 3]);
|
1180 |
+
}
|
1181 |
+
|
1182 |
+
// t[0]: 0 32 64 96 128 160 192 224 8 40 72 104 136 168 200 232 16 ... 248
|
1183 |
+
// t[1]: 1 33 65 97 129 161 193 225 9 41 73 105 137 169 201 233 17 ... 249
|
1184 |
+
// t[2]: 2 34 66 98 130 162 194 226 10 42 74 106 138 170 202 234 18 ... 250
|
1185 |
+
// t[3]: 3 35 67 99 131 163 195 227 11 43 75 107 139 171 203 235 19 ... 251
|
1186 |
+
// t[4]: 4 36 68 100 132 164 196 228 12 44 76 108 140 172 204 236 20 ... 252
|
1187 |
+
// t[5]: 5 37 69 101 133 165 197 229 13 45 77 109 141 173 205 237 21 ... 253
|
1188 |
+
// t[6]: 6 38 70 102 134 166 198 230 14 46 78 110 142 174 206 238 22 ... 254
|
1189 |
+
// t[7]: 7 39 71 103 135 167 199 231 15 47 79 111 143 175 207 239 23 ... 255
|
1190 |
+
// t[8]: 256 288 320 352 384 416 448 480 264 296 328 360 392 424 456 488 272 ... 504
|
1191 |
+
// t[9]: 257 289 321 353 385 417 449 481 265 297 329 361 393 425 457 489 273 ... 505
|
1192 |
+
// t[10]: 258 290 322 354 386 418 450 482 266 298 330 362 394 426 458 490 274 ... 506
|
1193 |
+
// t[11]: 259 291 323 355 387 419 451 483 267 299 331 363 395 427 459 491 275 ... 507
|
1194 |
+
// t[12]: 260 292 324 356 388 420 452 484 268 300 332 364 396 428 460 492 276 ... 508
|
1195 |
+
// t[13]: 261 293 325 357 389 421 453 485 269 301 333 365 397 429 461 493 277 ... 509
|
1196 |
+
// t[14]: 262 294 326 358 390 422 454 486 270 302 334 366 398 430 462 494 278 ... 510
|
1197 |
+
// t[15]: 263 295 327 359 391 423 455 487 271 303 335 367 399 431 463 495 279 ... 511
|
1198 |
+
// t[16]: 512 544 576 608 640 672 704 736 520 552 584 616 648 680 712 744 528 ... 760
|
1199 |
+
// ...
|
1200 |
+
// t[31]: 775 807 839 871 903 935 967 999 783 815 847 879 911 943 975 1007 791 ... 1023
|
1201 |
+
#pragma unroll(4)
|
1202 |
+
for (int i = 0; i < 4; ++i) {
|
1203 |
+
d[i * 8] = _mm512_unpacklo_epi64(r[i * 8], r[i * 8 + 4]);
|
1204 |
+
d[i * 8 + 1] = _mm512_unpackhi_epi64(r[i * 8], r[i * 8 + 4]);
|
1205 |
+
d[i * 8 + 2] = _mm512_unpacklo_epi64(r[i * 8 + 1], r[i * 8 + 5]);
|
1206 |
+
d[i * 8 + 3] = _mm512_unpackhi_epi64(r[i * 8 + 1], r[i * 8 + 5]);
|
1207 |
+
d[i * 8 + 4] = _mm512_unpacklo_epi64(r[i * 8 + 2], r[i * 8 + 6]);
|
1208 |
+
d[i * 8 + 5] = _mm512_unpackhi_epi64(r[i * 8 + 2], r[i * 8 + 6]);
|
1209 |
+
d[i * 8 + 6] = _mm512_unpacklo_epi64(r[i * 8 + 3], r[i * 8 + 7]);
|
1210 |
+
d[i * 8 + 7] = _mm512_unpackhi_epi64(r[i * 8 + 3], r[i * 8 + 7]);
|
1211 |
+
}
|
1212 |
+
|
1213 |
+
// t[0]: 0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 16 ... 496
|
1214 |
+
// t[1]: 1 33 65 97 129 161 193 225 257 289 321 353 385 417 449 481 17 ... 497
|
1215 |
+
// t[2]: 2 34 66 98 130 162 194 226 258 290 322 354 386 418 450 482 18 ... 498
|
1216 |
+
// t[3]: 3 35 67 99 131 163 195 227 259 291 323 355 387 419 451 483 19 ... 499
|
1217 |
+
// t[4]: 4 36 68 100 132 164 196 228 260 292 324 356 388 420 452 484 20 ... 500
|
1218 |
+
// t[5]: 5 37 69 101 133 165 197 229 261 293 325 357 389 421 453 485 21 ... 501
|
1219 |
+
// t[6]: 6 38 70 102 134 166 198 230 262 294 326 358 390 422 454 486 22 ... 502
|
1220 |
+
// t[7]: 7 39 71 103 135 167 199 231 263 295 327 359 391 423 455 487 23 ... 503
|
1221 |
+
// t[8]: 8 40 72 104 136 168 200 232 264 296 328 360 392 424 456 488 24 ... 504
|
1222 |
+
// t[9]: 9 41 73 105 137 169 201 233 265 297 329 361 393 425 457 489 25 ... 505
|
1223 |
+
// t[10]: 10 42 74 106 138 170 202 234 266 298 330 362 394 426 458 490 26 ... 506
|
1224 |
+
// t[11]: 11 43 75 107 139 171 203 235 267 299 331 363 395 427 459 491 27 ... 507
|
1225 |
+
// t[12]: 12 44 76 108 140 172 204 236 268 300 332 364 396 428 460 492 28 ... 508
|
1226 |
+
// t[13]: 13 45 77 109 141 173 205 237 269 301 333 365 397 429 461 493 29 ... 509
|
1227 |
+
// t[14]: 14 46 78 110 142 174 206 238 270 302 334 366 398 430 462 494 30 ... 510
|
1228 |
+
// t[15]: 15 47 79 111 143 175 207 239 271 303 335 367 399 431 463 495 31 ... 511
|
1229 |
+
// t[16]: 512 544 576 608 640 672 704 736 768 800 832 864 896 928 960 992 528 ... 1008
|
1230 |
+
// ...
|
1231 |
+
// t[31]: 527 559 591 623 655 687 719 751 783 815 847 879 911 943 975 1007 543 ... 1023
|
1232 |
+
__m512i const1 = _mm512_set_epi64(
|
1233 |
+
0x000000000000000d,
|
1234 |
+
0x000000000000000c,
|
1235 |
+
0x0000000000000005,
|
1236 |
+
0x0000000000000004,
|
1237 |
+
0x0000000000000009,
|
1238 |
+
0x0000000000000008,
|
1239 |
+
0x0000000000000001,
|
1240 |
+
0x0000000000000000);
|
1241 |
+
__m512i const2 = _mm512_set_epi64(
|
1242 |
+
0x000000000000000f,
|
1243 |
+
0x000000000000000e,
|
1244 |
+
0x0000000000000007,
|
1245 |
+
0x0000000000000006,
|
1246 |
+
0x000000000000000b,
|
1247 |
+
0x000000000000000a,
|
1248 |
+
0x0000000000000003,
|
1249 |
+
0x0000000000000002);
|
1250 |
+
#pragma unroll(8)
|
1251 |
+
for (int i = 0; i < 8; ++i) {
|
1252 |
+
r[i] = _mm512_permutex2var_epi64(d[i], /*idx*/const1, d[i + 8]);
|
1253 |
+
r[i + 8] = _mm512_permutex2var_epi64(d[i], /*idx*/const2, d[i + 8]);
|
1254 |
+
r[i + 16] = _mm512_permutex2var_epi64(d[i + 16], /*idx*/const1, d[i + 24]);
|
1255 |
+
r[i + 24] = _mm512_permutex2var_epi64(d[i + 16], /*idx*/const2, d[i + 24]);
|
1256 |
+
}
|
1257 |
+
|
1258 |
+
// t[0]: 0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512 544 ... 992
|
1259 |
+
// t[1]: 1 33 65 97 129 161 193 225 257 289 321 353 385 417 449 481 513 545 ... 993
|
1260 |
+
// t[2]: 2 34 66 98 130 162 194 226 258 290 322 354 386 418 450 482 514 546 ... 994
|
1261 |
+
// t[3]: 3 35 67 99 131 163 195 227 259 291 323 355 387 419 451 483 515 547 ... 995
|
1262 |
+
// t[4]: 4 36 68 100 132 164 196 228 260 292 324 356 388 420 452 484 516 548 ... 996
|
1263 |
+
// t[5]: 5 37 69 101 133 165 197 229 261 293 325 357 389 421 453 485 517 549 ... 997
|
1264 |
+
// t[6]: 6 38 70 102 134 166 198 230 262 294 326 358 390 422 454 486 518 550 ... 998
|
1265 |
+
// t[7]: 7 39 71 103 135 167 199 231 263 295 327 359 391 423 455 487 519 551 ... 999
|
1266 |
+
// t[8]: 8 40 72 104 136 168 200 232 264 296 328 360 392 424 456 488 520 552 ... 1000
|
1267 |
+
// t[9]: 9 41 73 105 137 169 201 233 265 297 329 361 393 425 457 489 521 553 ... 1001
|
1268 |
+
// t[10]: 10 42 74 106 138 170 202 234 266 298 330 362 394 426 458 490 522 554 ... 1002
|
1269 |
+
// t[11]: 11 43 75 107 139 171 203 235 267 299 331 363 395 427 459 491 523 555 ... 1003
|
1270 |
+
// t[12]: 12 44 76 108 140 172 204 236 268 300 332 364 396 428 460 492 524 556 ... 1004
|
1271 |
+
// t[13]: 13 45 77 109 141 173 205 237 269 301 333 365 397 429 461 493 525 557 ... 1005
|
1272 |
+
// t[14]: 14 46 78 110 142 174 206 238 270 302 334 366 398 430 462 494 526 558 ... 1006
|
1273 |
+
// t[15]: 15 47 79 111 143 175 207 239 271 303 335 367 399 431 463 495 527 559 ... 1007
|
1274 |
+
// t[16]: 16 48 80 112 144 176 208 240 272 304 336 368 400 432 464 496 528 560 ... 1008
|
1275 |
+
// ...
|
1276 |
+
// t[31]: 31 63 95 127 159 191 223 255 287 319 351 383 415 447 479 511 543 575 ... 1023
|
1277 |
+
__m512i const3 = _mm512_set_epi64(
|
1278 |
+
0x000000000000000b,
|
1279 |
+
0x000000000000000a,
|
1280 |
+
0x0000000000000009,
|
1281 |
+
0x0000000000000008,
|
1282 |
+
0x0000000000000003,
|
1283 |
+
0x0000000000000002,
|
1284 |
+
0x0000000000000001,
|
1285 |
+
0x0000000000000000);
|
1286 |
+
__m512i const4 = _mm512_set_epi64(
|
1287 |
+
0x000000000000000f,
|
1288 |
+
0x000000000000000e,
|
1289 |
+
0x000000000000000d,
|
1290 |
+
0x000000000000000c,
|
1291 |
+
0x0000000000000007,
|
1292 |
+
0x0000000000000006,
|
1293 |
+
0x0000000000000005,
|
1294 |
+
0x0000000000000004);
|
1295 |
+
#pragma unroll(16)
|
1296 |
+
for (int i = 0; i < 16; ++i) {
|
1297 |
+
d[i] = _mm512_permutex2var_epi64(r[i], /*idx*/const3, r[i + 16]);
|
1298 |
+
d[i + 16] = _mm512_permutex2var_epi64(r[i], /*idx*/const4, r[i + 16]);
|
1299 |
+
}
|
1300 |
+
}
|
1301 |
+
|
1302 |
+
// Code referred to FBGEMM:
|
1303 |
+
// https://github.com/pytorch/FBGEMM/blob/39a423e4ad1a04b77fea81c7d09c3e6f8984fae9/src/UtilsAvx512.cc#LL19C6-L19C6
|
1304 |
+
template<>
|
1305 |
+
inline void transpose_mxn<BFloat16, 32, 32>(
|
1306 |
+
const BFloat16* src,
|
1307 |
+
int64_t ld_src,
|
1308 |
+
BFloat16* dst,
|
1309 |
+
int64_t ld_dst) {
|
1310 |
+
// Load from memory
|
1311 |
+
__m512i r[32];
|
1312 |
+
#pragma unroll(32)
|
1313 |
+
for (int i = 0; i < 32; ++i) {
|
1314 |
+
r[i] = _mm512_loadu_si512(reinterpret_cast<const __m512i*>(src + i* ld_src));
|
1315 |
+
}
|
1316 |
+
|
1317 |
+
__m512i d[32];
|
1318 |
+
_transpose_mxn_half_32_32(r, d);
|
1319 |
+
|
1320 |
+
// Store to dst
|
1321 |
+
#pragma unroll(32)
|
1322 |
+
for (int i = 0; i < 32; ++i) {
|
1323 |
+
_mm512_storeu_si512(dst + i* ld_dst, d[i]);
|
1324 |
+
}
|
1325 |
+
}
|
1326 |
+
|
1327 |
+
template<>
|
1328 |
+
inline void transpose_mxn<Half, 32, 32>(
|
1329 |
+
const Half* src,
|
1330 |
+
int64_t ld_src,
|
1331 |
+
Half* dst,
|
1332 |
+
int64_t ld_dst) {
|
1333 |
+
// Load from memory
|
1334 |
+
__m512i r[32];
|
1335 |
+
#pragma unroll(32)
|
1336 |
+
for (int i = 0; i < 32; ++i) {
|
1337 |
+
r[i] = _mm512_loadu_si512(reinterpret_cast<const __m512i*>(src + i* ld_src));
|
1338 |
+
}
|
1339 |
+
|
1340 |
+
__m512i d[32];
|
1341 |
+
_transpose_mxn_half_32_32(r, d);
|
1342 |
+
|
1343 |
+
// Store to dst
|
1344 |
+
#pragma unroll(32)
|
1345 |
+
for (int i = 0; i < 32; ++i) {
|
1346 |
+
_mm512_storeu_si512(dst + i* ld_dst, d[i]);
|
1347 |
+
}
|
1348 |
+
}
|
1349 |
+
|
1350 |
+
template <>
|
1351 |
+
class Vectorized<Half>: public Vectorized16<Half> {
|
1352 |
+
public:
|
1353 |
+
using Vectorized16::Vectorized16;
|
1354 |
+
|
1355 |
+
Vectorized<Half> frac() const;
|
1356 |
+
|
1357 |
+
Vectorized<Half> eq(const Vectorized<Half>& other) const;
|
1358 |
+
Vectorized<Half> ne(const Vectorized<Half>& other) const;
|
1359 |
+
Vectorized<Half> gt(const Vectorized<Half>& other) const;
|
1360 |
+
Vectorized<Half> ge(const Vectorized<Half>& other) const;
|
1361 |
+
Vectorized<Half> lt(const Vectorized<Half>& other) const;
|
1362 |
+
Vectorized<Half> le(const Vectorized<Half>& other) const;
|
1363 |
+
};
|
1364 |
+
|
1365 |
+
Vectorized<Half> inline operator+(const Vectorized<Half>& a, const Vectorized<Half>& b) {
|
1366 |
+
return binary_op_as_fp32(a, b, [](const __m512& x, const __m512& y) { return _mm512_add_ps(x, y); });
|
1367 |
+
}
|
1368 |
+
Vectorized<Half> inline operator-(const Vectorized<Half>& a, const Vectorized<Half>& b) {
|
1369 |
+
return binary_op_as_fp32(a, b, [](const __m512& x, const __m512& y) { return _mm512_sub_ps(x, y); });
|
1370 |
+
}
|
1371 |
+
Vectorized<Half> inline operator*(const Vectorized<Half>& a, const Vectorized<Half>& b) {
|
1372 |
+
return binary_op_as_fp32(a, b, [](const __m512& x, const __m512& y) { return _mm512_mul_ps(x, y); });
|
1373 |
+
}
|
1374 |
+
Vectorized<Half> inline operator/(const Vectorized<Half>& a, const Vectorized<Half>& b) {
|
1375 |
+
return binary_op_as_fp32(a, b, [](const __m512& x, const __m512& y) { return _mm512_div_ps(x, y); });
|
1376 |
+
}
|
1377 |
+
|
1378 |
+
Vectorized<Half> inline operator&(const Vectorized<Half>& a, const Vectorized<Half>& b) {
|
1379 |
+
return _mm512_and_si512(a, b);
|
1380 |
+
}
|
1381 |
+
Vectorized<Half> inline operator|(const Vectorized<Half>& a, const Vectorized<Half>& b) {
|
1382 |
+
return _mm512_or_si512(a, b);
|
1383 |
+
}
|
1384 |
+
Vectorized<Half> inline operator^(const Vectorized<Half>& a, const Vectorized<Half>& b) {
|
1385 |
+
return _mm512_xor_si512(a, b);
|
1386 |
+
}
|
1387 |
+
|
1388 |
+
inline Vectorized<Half> Vectorized<Half>::eq(const Vectorized<Half>& other) const {
|
1389 |
+
return (*this == other) & Vectorized<Half>(1.0f);
|
1390 |
+
}
|
1391 |
+
|
1392 |
+
inline Vectorized<Half> Vectorized<Half>::ne(const Vectorized<Half>& other) const {
|
1393 |
+
return (*this != other) & Vectorized<Half>(1.0f);
|
1394 |
+
}
|
1395 |
+
|
1396 |
+
inline Vectorized<Half> Vectorized<Half>::gt(const Vectorized<Half>& other) const {
|
1397 |
+
return (*this > other) & Vectorized<Half>(1.0f);
|
1398 |
+
}
|
1399 |
+
|
1400 |
+
inline Vectorized<Half> Vectorized<Half>::ge(const Vectorized<Half>& other) const {
|
1401 |
+
return (*this >= other) & Vectorized<Half>(1.0f);
|
1402 |
+
}
|
1403 |
+
|
1404 |
+
inline Vectorized<Half> Vectorized<Half>::lt(const Vectorized<Half>& other) const {
|
1405 |
+
return (*this < other) & Vectorized<Half>(1.0f);
|
1406 |
+
}
|
1407 |
+
|
1408 |
+
inline Vectorized<Half> Vectorized<Half>::le(const Vectorized<Half>& other) const {
|
1409 |
+
return (*this <= other) & Vectorized<Half>(1.0f);
|
1410 |
+
}
|
1411 |
+
|
1412 |
+
// frac. Implement this here so we can use subtraction
|
1413 |
+
inline Vectorized<Half> Vectorized<Half>::frac() const {
|
1414 |
+
return *this - this->trunc();
|
1415 |
+
}
|
1416 |
+
|
1417 |
+
// Implements the IEEE 754 201X `maximum` operation, which propagates NaN if
|
1418 |
+
// either input is a NaN.
|
1419 |
+
template <>
|
1420 |
+
Vectorized<Half> inline maximum(const Vectorized<Half>& a, const Vectorized<Half>& b) {
|
1421 |
+
__m512 a_lo, a_hi;
|
1422 |
+
__m512 b_lo, b_hi;
|
1423 |
+
cvtfp16_fp32(__m512i(a), a_lo, a_hi);
|
1424 |
+
cvtfp16_fp32(__m512i(b), b_lo, b_hi);
|
1425 |
+
auto max_lo = _mm512_max_ps(a_lo, b_lo);
|
1426 |
+
auto max_hi = _mm512_max_ps(a_hi, b_hi);
|
1427 |
+
auto nan_lo_mask = _mm512_cmp_ps_mask(a_lo, b_lo, _CMP_UNORD_Q);
|
1428 |
+
auto nan_hi_mask = _mm512_cmp_ps_mask(a_hi, b_hi, _CMP_UNORD_Q);
|
1429 |
+
auto nan_lo = _mm512_castsi512_ps(_mm512_set1_epi32(nan_lo_mask));
|
1430 |
+
auto nan_hi = _mm512_castsi512_ps(_mm512_set1_epi32(nan_hi_mask));
|
1431 |
+
// Exploit the fact that all-ones is a NaN.
|
1432 |
+
auto o1 = _mm512_or_ps(max_lo, nan_lo);
|
1433 |
+
auto o2 = _mm512_or_ps(max_hi, nan_hi);
|
1434 |
+
return cvtfp32_fp16(o1, o2);
|
1435 |
+
}
|
1436 |
+
|
1437 |
+
// Implements the IEEE 754 201X `minimum` operation, which propagates NaN if
|
1438 |
+
// either input is a NaN.
|
1439 |
+
template <>
|
1440 |
+
Vectorized<Half> inline minimum(const Vectorized<Half>& a, const Vectorized<Half>& b) {
|
1441 |
+
__m512 a_lo, a_hi;
|
1442 |
+
__m512 b_lo, b_hi;
|
1443 |
+
__m512i zero_vec = _mm512_set1_epi32(0);
|
1444 |
+
cvtfp16_fp32(__m512i(a), a_lo, a_hi);
|
1445 |
+
cvtfp16_fp32(__m512i(b), b_lo, b_hi);
|
1446 |
+
auto min_lo = _mm512_min_ps(a_lo, b_lo);
|
1447 |
+
auto min_hi = _mm512_min_ps(a_hi, b_hi);
|
1448 |
+
auto nan_lo_mask = _mm512_cmp_ps_mask(a_lo, b_lo, _CMP_UNORD_Q);
|
1449 |
+
auto nan_hi_mask = _mm512_cmp_ps_mask(a_hi, b_hi, _CMP_UNORD_Q);
|
1450 |
+
auto nan_lo = _mm512_castsi512_ps(_mm512_mask_set1_epi32(zero_vec, nan_lo_mask,
|
1451 |
+
0xFFFFFFFF));
|
1452 |
+
auto nan_hi = _mm512_castsi512_ps(_mm512_mask_set1_epi32(zero_vec, nan_hi_mask,
|
1453 |
+
0xFFFFFFFF));
|
1454 |
+
// Exploit the fact that all-ones is a NaN.
|
1455 |
+
auto o1 = _mm512_or_ps(min_lo, nan_lo);
|
1456 |
+
auto o2 = _mm512_or_ps(min_hi, nan_hi);
|
1457 |
+
return cvtfp32_fp16(o1, o2);
|
1458 |
+
}
|
1459 |
+
|
1460 |
+
template <>
|
1461 |
+
Vectorized<Half> inline clamp(const Vectorized<Half>& a,
|
1462 |
+
const Vectorized<Half>& min, const Vectorized<Half>& max) {
|
1463 |
+
__m512 a_lo, a_hi;
|
1464 |
+
__m512 min_lo, min_hi;
|
1465 |
+
__m512 max_lo, max_hi;
|
1466 |
+
cvtfp16_fp32(__m512i(a), a_lo, a_hi);
|
1467 |
+
cvtfp16_fp32(__m512i(min), min_lo, min_hi);
|
1468 |
+
cvtfp16_fp32(__m512i(max), max_lo, max_hi);
|
1469 |
+
auto o1 = _mm512_min_ps(max_lo, _mm512_max_ps(min_lo, a_lo));
|
1470 |
+
auto o2 = _mm512_min_ps(max_hi, _mm512_max_ps(min_hi, a_hi));
|
1471 |
+
return cvtfp32_fp16(o1, o2);
|
1472 |
+
}
|
1473 |
+
|
1474 |
+
template <>
|
1475 |
+
Vectorized<Half> inline clamp_max(const Vectorized<Half>& a, const Vectorized<Half>& max) {
|
1476 |
+
__m512 a_lo, a_hi;
|
1477 |
+
__m512 max_lo, max_hi;
|
1478 |
+
cvtfp16_fp32(__m512i(a), a_lo, a_hi);
|
1479 |
+
cvtfp16_fp32(__m512i(max), max_lo, max_hi);
|
1480 |
+
auto o1 = _mm512_min_ps(max_lo, a_lo);
|
1481 |
+
auto o2 = _mm512_min_ps(max_hi, a_hi);
|
1482 |
+
return cvtfp32_fp16(o1, o2);
|
1483 |
+
}
|
1484 |
+
|
1485 |
+
template <>
|
1486 |
+
Vectorized<Half> inline clamp_min(const Vectorized<Half>& a, const Vectorized<Half>& min) {
|
1487 |
+
__m512 a_lo, a_hi;
|
1488 |
+
__m512 min_lo, min_hi;
|
1489 |
+
cvtfp16_fp32(__m512i(a), a_lo, a_hi);
|
1490 |
+
cvtfp16_fp32(__m512i(min), min_lo, min_hi);
|
1491 |
+
auto o1 = _mm512_max_ps(min_lo, a_lo);
|
1492 |
+
auto o2 = _mm512_max_ps(min_hi, a_hi);
|
1493 |
+
return cvtfp32_fp16(o1, o2);
|
1494 |
+
}
|
1495 |
+
|
1496 |
+
template <>
|
1497 |
+
inline void convert(const Half* src, Half* dst, int64_t n) {
|
1498 |
+
int64_t i;
|
1499 |
+
#pragma unroll
|
1500 |
+
for (i = 0; i <= (n - Vectorized<Half>::size()); i += Vectorized<Half>::size()) {
|
1501 |
+
auto vsrc = _mm512_loadu_si512(reinterpret_cast<__m512i*>((void*)(src + i)));
|
1502 |
+
_mm512_storeu_si512(reinterpret_cast<__m512i*>((void*)(dst + i)), vsrc);
|
1503 |
+
}
|
1504 |
+
#pragma unroll
|
1505 |
+
for (; i < n; i++) {
|
1506 |
+
dst[i] = src[i];
|
1507 |
+
}
|
1508 |
+
}
|
1509 |
+
|
1510 |
+
template <>
|
1511 |
+
inline void convert(const float* src, Half* dst, int64_t n) {
|
1512 |
+
int64_t i;
|
1513 |
+
for (i = 0; i + Vectorized<Half>::size() <= n; i += Vectorized<Half>::size()) {
|
1514 |
+
__m512 a = _mm512_loadu_ps(&src[i]);
|
1515 |
+
__m512 b = _mm512_loadu_ps(&src[i + 16]);
|
1516 |
+
|
1517 |
+
__m512i bf = cvtfp32_fp16(a, b);
|
1518 |
+
_mm512_storeu_si512(reinterpret_cast<__m512i*>(&dst[i]), bf);
|
1519 |
+
}
|
1520 |
+
for (; i < n; i++) {
|
1521 |
+
dst[i] = c10::convert<Half>(src[i]);
|
1522 |
+
}
|
1523 |
+
}
|
1524 |
+
|
1525 |
+
template <>
|
1526 |
+
inline void convert(const double* src, Half* dst, int64_t n) {
|
1527 |
+
auto load_float = [](const double *src) -> __m512 {
|
1528 |
+
// Load one float vector from an array of doubles
|
1529 |
+
__m256 a = _mm512_cvtpd_ps(_mm512_loadu_pd(src));
|
1530 |
+
__m256 b = _mm512_cvtpd_ps(_mm512_loadu_pd(src + 8));
|
1531 |
+
return _mm512_insertf32x8(_mm512_castps256_ps512(a), b, 1);
|
1532 |
+
};
|
1533 |
+
|
1534 |
+
int64_t i;
|
1535 |
+
for (i = 0; i + Vectorized<Half>::size() <= n; i += Vectorized<Half>::size()) {
|
1536 |
+
__m512 a = load_float(&src[i]);
|
1537 |
+
__m512 b = load_float(&src[i + 16]);
|
1538 |
+
|
1539 |
+
__m512i bf = cvtfp32_fp16(a, b);
|
1540 |
+
_mm512_storeu_si512(reinterpret_cast<__m512i*>(&dst[i]), bf);
|
1541 |
+
}
|
1542 |
+
for (; i < n; i++) {
|
1543 |
+
dst[i] = c10::convert<Half>(src[i]);
|
1544 |
+
}
|
1545 |
+
}
|
1546 |
+
|
1547 |
+
template <>
|
1548 |
+
Vectorized<Half> inline fmadd(const Vectorized<Half>& a,
|
1549 |
+
const Vectorized<Half>& b, const Vectorized<Half>& c) {
|
1550 |
+
__m512 a_lo, a_hi;
|
1551 |
+
__m512 b_lo, b_hi;
|
1552 |
+
__m512 c_lo, c_hi;
|
1553 |
+
cvtfp16_fp32(__m512i(a), a_lo, a_hi);
|
1554 |
+
cvtfp16_fp32(__m512i(b), b_lo, b_hi);
|
1555 |
+
cvtfp16_fp32(__m512i(c), c_lo, c_hi);
|
1556 |
+
auto o1 = _mm512_fmadd_ps(a_lo, b_lo, c_lo);
|
1557 |
+
auto o2 = _mm512_fmadd_ps(a_hi, b_hi, c_hi);
|
1558 |
+
return cvtfp32_fp16(o1, o2);
|
1559 |
+
}
|
1560 |
+
|
1561 |
+
#define CONVERT_VECTORIZED_INIT(type, name) \
|
1562 |
+
inline std::tuple<Vectorized<float>, Vectorized<float>> convert_##name##_float(const Vectorized<type>& a) { \
|
1563 |
+
__m512 o1, o2; \
|
1564 |
+
cvt_to_fp32<type>(__m512i(a), o1, o2); \
|
1565 |
+
return std::make_tuple(o1, o2); \
|
1566 |
+
} \
|
1567 |
+
\
|
1568 |
+
inline Vectorized<type> convert_float_##name(const Vectorized<float>& a, const Vectorized<float>& b) { \
|
1569 |
+
return cvt_from_fp32<type>(__m512(a), __m512(b)); \
|
1570 |
+
}
|
1571 |
+
CONVERT_VECTORIZED_INIT(BFloat16, bfloat16);
|
1572 |
+
CONVERT_VECTORIZED_INIT(Half, half);
|
1573 |
+
|
1574 |
+
#else //defined(CPU_CAPABILITY_AVX512) && !defined(_MSC_VER)
|
1575 |
+
|
1576 |
+
#define CONVERT_NON_VECTORIZED_INIT(type, name) \
|
1577 |
+
inline std::tuple<Vectorized<float>, Vectorized<float>> convert_##name##_float(const Vectorized<type>& a) { \
|
1578 |
+
constexpr int64_t K = Vectorized<type>::size(); \
|
1579 |
+
__at_align__ float arr[K]; \
|
1580 |
+
__at_align__ type arr2[K]; \
|
1581 |
+
a.store(arr2); \
|
1582 |
+
for (const auto k : c10::irange(K)) { \
|
1583 |
+
arr[k] = c10::convert<float>(arr2[k]); \
|
1584 |
+
} \
|
1585 |
+
return std::make_tuple( \
|
1586 |
+
Vectorized<float>::loadu(arr), \
|
1587 |
+
Vectorized<float>::loadu(arr + Vectorized<float>::size())); \
|
1588 |
+
} \
|
1589 |
+
\
|
1590 |
+
inline Vectorized<type> convert_float_##name(const Vectorized<float>& a, const Vectorized<float>& b) { \
|
1591 |
+
constexpr int64_t K = Vectorized<type>::size(); \
|
1592 |
+
__at_align__ float arr[K]; \
|
1593 |
+
__at_align__ type arr2[K]; \
|
1594 |
+
a.store(arr); \
|
1595 |
+
b.store(arr + Vectorized<float>::size()); \
|
1596 |
+
for (const auto k : c10::irange(K)) { \
|
1597 |
+
arr2[k] = c10::convert<type>(arr[k]); \
|
1598 |
+
} \
|
1599 |
+
return Vectorized<type>::loadu(arr2); \
|
1600 |
+
}
|
1601 |
+
CONVERT_NON_VECTORIZED_INIT(BFloat16, bfloat16);
|
1602 |
+
CONVERT_NON_VECTORIZED_INIT(Half, half);
|
1603 |
+
|
1604 |
+
#endif // defined(CPU_CAPABILITY_AVX512) && !defined(_MSC_VER)
|
1605 |
+
|
1606 |
+
#if defined(CPU_CAPABILITY_AVX512) && !defined(_MSC_VER)
|
1607 |
+
#define LOAD_FP32_VECTORIZED_INIT(type, name) \
|
1608 |
+
inline void load_fp32_from_##name(const type *data, Vectorized<float>& out) { \
|
1609 |
+
auto values = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(data)); \
|
1610 |
+
__m512 out_values; \
|
1611 |
+
cvt_to_fp32<type>(values, out_values); \
|
1612 |
+
out = out_values; \
|
1613 |
+
} \
|
1614 |
+
\
|
1615 |
+
inline void load_fp32_from_##name(const type *data, Vectorized<float>& out1, Vectorized<float>& out2) { \
|
1616 |
+
auto vec = Vectorized<type>::loadu(data); \
|
1617 |
+
__m512 out1_values, out2_values; \
|
1618 |
+
cvt_to_fp32<type>(vec, out1_values, out2_values); \
|
1619 |
+
out1 = out1_values; \
|
1620 |
+
out2 = out2_values; \
|
1621 |
+
}
|
1622 |
+
LOAD_FP32_VECTORIZED_INIT(BFloat16, bf16);
|
1623 |
+
LOAD_FP32_VECTORIZED_INIT(Half, fp16);
|
1624 |
+
|
1625 |
+
#else // defined(CPU_CAPABILITY_AVX512) && !defined(_MSC_VER)
|
1626 |
+
#define LOAD_FP32_NON_VECTORIZED_INIT(type, name) \
|
1627 |
+
inline void load_fp32_from_##name(const type *data, Vectorized<float>& out) { \
|
1628 |
+
__at_align__ float values[Vectorized<float>::size()]; \
|
1629 |
+
for (const auto k : c10::irange(Vectorized<float>::size())) { \
|
1630 |
+
values[k] = data[k]; \
|
1631 |
+
} \
|
1632 |
+
out = Vectorized<float>::loadu(values); \
|
1633 |
+
} \
|
1634 |
+
\
|
1635 |
+
inline void load_fp32_from_##name(const type *data, Vectorized<float>& out1, Vectorized<float>& out2) { \
|
1636 |
+
load_fp32_from_##name(data, out1); \
|
1637 |
+
data += Vectorized<float>::size(); \
|
1638 |
+
load_fp32_from_##name(data, out2); \
|
1639 |
+
}
|
1640 |
+
LOAD_FP32_NON_VECTORIZED_INIT(BFloat16, bf16);
|
1641 |
+
LOAD_FP32_NON_VECTORIZED_INIT(Half, fp16);
|
1642 |
+
|
1643 |
+
#endif
|
1644 |
+
}}}
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec512/vec512_complex_double.h
ADDED
@@ -0,0 +1,512 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <c10/util/complex.h>
|
7 |
+
#include <c10/util/irange.h>
|
8 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
9 |
+
#include <ATen/cpu/vec/vec_base.h>
|
10 |
+
#if defined(CPU_CAPABILITY_AVX512) && !defined(_MSC_VER)
|
11 |
+
#include <sleef.h>
|
12 |
+
#endif
|
13 |
+
|
14 |
+
namespace at {
|
15 |
+
namespace vec {
|
16 |
+
// See Note [CPU_CAPABILITY namespace]
|
17 |
+
inline namespace CPU_CAPABILITY {
|
18 |
+
|
19 |
+
#if defined(CPU_CAPABILITY_AVX512) && !defined(_MSC_VER)
|
20 |
+
|
21 |
+
template <> class Vectorized<c10::complex<double>> {
|
22 |
+
private:
|
23 |
+
__m512d values;
|
24 |
+
static constexpr __m512i zero_vector {0, 0, 0, 0, 0, 0, 0, 0};
|
25 |
+
public:
|
26 |
+
using value_type = c10::complex<double>;
|
27 |
+
using size_type = int;
|
28 |
+
static constexpr size_type size() {
|
29 |
+
return 4;
|
30 |
+
}
|
31 |
+
Vectorized() {}
|
32 |
+
Vectorized(__m512d v) : values(v) {}
|
33 |
+
Vectorized(c10::complex<double> val) {
|
34 |
+
double real_value = val.real();
|
35 |
+
double imag_value = val.imag();
|
36 |
+
values = _mm512_setr_pd(real_value, imag_value, real_value, imag_value,
|
37 |
+
real_value, imag_value, real_value, imag_value);
|
38 |
+
}
|
39 |
+
Vectorized(c10::complex<double> val1, c10::complex<double> val2,
|
40 |
+
c10::complex<double> val3, c10::complex<double> val4) {
|
41 |
+
values = _mm512_setr_pd(val1.real(), val1.imag(),
|
42 |
+
val2.real(), val2.imag(),
|
43 |
+
val3.real(), val3.imag(),
|
44 |
+
val4.real(), val4.imag());
|
45 |
+
}
|
46 |
+
operator __m512d() const {
|
47 |
+
return values;
|
48 |
+
}
|
49 |
+
template <int64_t mask>
|
50 |
+
static Vectorized<c10::complex<double>> blend(const Vectorized<c10::complex<double>>& a,
|
51 |
+
const Vectorized<c10::complex<double>>& b) {
|
52 |
+
// convert c10::complex<V> index mask to V index mask: xy -> xxyy
|
53 |
+
// NOLINTNEXTLINE(clang-diagnostic-warning)
|
54 |
+
switch (mask) {
|
55 |
+
case 0:
|
56 |
+
return a;
|
57 |
+
case 1:
|
58 |
+
return _mm512_mask_blend_pd(0x03, a.values, b.values); //b0000 0001 = b0000 0011
|
59 |
+
case 2:
|
60 |
+
return _mm512_mask_blend_pd(0x0C, a.values, b.values); //b0000 0010 = b0000 1100
|
61 |
+
case 3:
|
62 |
+
return _mm512_mask_blend_pd(0x0F, a.values, b.values); //b0000 0011 = b0000 1111
|
63 |
+
case 4:
|
64 |
+
return _mm512_mask_blend_pd(0x30, a.values, b.values); //b0000 0100 = b0011 0000
|
65 |
+
case 5:
|
66 |
+
return _mm512_mask_blend_pd(0x33, a.values, b.values); //b0000 0101 = b0011 0011
|
67 |
+
case 6:
|
68 |
+
return _mm512_mask_blend_pd(0x3C, a.values, b.values); //b0000 0110 = b0011 1100
|
69 |
+
case 7:
|
70 |
+
return _mm512_mask_blend_pd(0x3F, a.values, b.values); //b0000 0111 = b0011 1111
|
71 |
+
case 8:
|
72 |
+
return _mm512_mask_blend_pd(0xC0, a.values, b.values); //b0000 1000 = b1100 0000
|
73 |
+
case 9:
|
74 |
+
return _mm512_mask_blend_pd(0xC3, a.values, b.values); //b0000 1001 = b1100 0011
|
75 |
+
case 10:
|
76 |
+
return _mm512_mask_blend_pd(0xCC, a.values, b.values); //b0000 1010 = b1100 1100
|
77 |
+
case 11:
|
78 |
+
return _mm512_mask_blend_pd(0xCF, a.values, b.values); //b0000 1011 = b1100 1111
|
79 |
+
case 12:
|
80 |
+
return _mm512_mask_blend_pd(0xF0, a.values, b.values); //b0000 1100 = b1111 0000
|
81 |
+
case 13:
|
82 |
+
return _mm512_mask_blend_pd(0xF3, a.values, b.values); //b0000 1101 = b1111 0011
|
83 |
+
case 14:
|
84 |
+
return _mm512_mask_blend_pd(0xFC, a.values, b.values); //b0000 1110 = b1111 1100
|
85 |
+
case 15:
|
86 |
+
return _mm512_mask_blend_pd(0xFF, a.values, b.values); //b0000 1111 = b1111 1111
|
87 |
+
}
|
88 |
+
return b;
|
89 |
+
}
|
90 |
+
static Vectorized<c10::complex<double>> blendv(const Vectorized<c10::complex<double>>& a,
|
91 |
+
const Vectorized<c10::complex<double>>& b,
|
92 |
+
const Vectorized<c10::complex<double>>& mask) {
|
93 |
+
// convert c10::complex<V> index mask to V index mask: xy -> xxyy
|
94 |
+
auto mask_ = _mm512_unpacklo_pd(mask.values, mask.values);
|
95 |
+
auto all_ones = _mm512_set1_epi64(0xFFFFFFFFFFFFFFFF);
|
96 |
+
auto mmask = _mm512_cmp_epi64_mask(_mm512_castpd_si512(mask_), all_ones, _MM_CMPINT_EQ);
|
97 |
+
return _mm512_mask_blend_pd(mmask, a.values, b.values);
|
98 |
+
}
|
99 |
+
template<typename step_t>
|
100 |
+
static Vectorized<c10::complex<double>> arange(c10::complex<double> base = 0.,
|
101 |
+
step_t step = static_cast<step_t>(1)) {
|
102 |
+
return Vectorized<c10::complex<double>>(base,
|
103 |
+
base + c10::complex<double>(1)*step,
|
104 |
+
base + c10::complex<double>(2)*step,
|
105 |
+
base + c10::complex<double>(3)*step);
|
106 |
+
}
|
107 |
+
static Vectorized<c10::complex<double>> set(const Vectorized<c10::complex<double>>& a,
|
108 |
+
const Vectorized<c10::complex<double>>& b,
|
109 |
+
int64_t count = size()) {
|
110 |
+
switch (count) {
|
111 |
+
case 0:
|
112 |
+
return a;
|
113 |
+
case 1:
|
114 |
+
return blend<1>(a, b);
|
115 |
+
case 2:
|
116 |
+
return blend<3>(a, b);
|
117 |
+
case 3:
|
118 |
+
return blend<7>(a, b);
|
119 |
+
}
|
120 |
+
return b;
|
121 |
+
}
|
122 |
+
static Vectorized<c10::complex<double>> loadu(const void* ptr, int64_t count = size()) {
|
123 |
+
if (count == size())
|
124 |
+
return _mm512_loadu_pd(reinterpret_cast<const double*>(ptr));
|
125 |
+
|
126 |
+
__at_align__ double tmp_values[2*size()];
|
127 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
128 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
129 |
+
// instructions while a loop would be compiled to one instruction.
|
130 |
+
for (const auto i : c10::irange(2*size())) {
|
131 |
+
tmp_values[i] = 0.0;
|
132 |
+
}
|
133 |
+
std::memcpy(
|
134 |
+
tmp_values,
|
135 |
+
reinterpret_cast<const double*>(ptr),
|
136 |
+
count * sizeof(c10::complex<double>));
|
137 |
+
return _mm512_load_pd(tmp_values);
|
138 |
+
}
|
139 |
+
void store(void* ptr, int count = size()) const {
|
140 |
+
if (count == size()) {
|
141 |
+
_mm512_storeu_pd(reinterpret_cast<double*>(ptr), values);
|
142 |
+
} else if (count > 0) {
|
143 |
+
double tmp_values[2*size()];
|
144 |
+
_mm512_storeu_pd(reinterpret_cast<double*>(tmp_values), values);
|
145 |
+
std::memcpy(ptr, tmp_values, count * sizeof(c10::complex<double>));
|
146 |
+
}
|
147 |
+
}
|
148 |
+
const c10::complex<double>& operator[](int idx) const = delete;
|
149 |
+
c10::complex<double>& operator[](int idx) = delete;
|
150 |
+
Vectorized<c10::complex<double>> map(c10::complex<double> (*const f)(const c10::complex<double> &)) const {
|
151 |
+
__at_align__ c10::complex<double> tmp[size()];
|
152 |
+
store(tmp);
|
153 |
+
for (const auto i : c10::irange(size())) {
|
154 |
+
tmp[i] = f(tmp[i]);
|
155 |
+
}
|
156 |
+
return loadu(tmp);
|
157 |
+
}
|
158 |
+
// AVX512 doesn't have horizontal add & horizontal sub instructions.
|
159 |
+
// TODO: hadd_pd() & hsub_pd() may have scope for improvement.
|
160 |
+
static inline __m512d hadd_pd(__m512d a, __m512d b) {
|
161 |
+
__m512i idx1 = _mm512_set_epi64(14, 6, 12, 4, 10, 2, 8, 0);
|
162 |
+
__m512i idx2 = _mm512_set_epi64(15, 7, 13, 5, 11, 3, 9, 1);
|
163 |
+
return _mm512_add_pd(_mm512_mask_permutex2var_pd(a, 0xff, idx1, b),
|
164 |
+
_mm512_mask_permutex2var_pd(a, 0xff, idx2, b));
|
165 |
+
}
|
166 |
+
static inline __m512d hsub_pd(__m512d a, __m512d b) {
|
167 |
+
__m512i idx1 = _mm512_set_epi64(14, 6, 12, 4, 10, 2, 8, 0);
|
168 |
+
__m512i idx2 = _mm512_set_epi64(15, 7, 13, 5, 11, 3, 9, 1);
|
169 |
+
return _mm512_sub_pd(_mm512_mask_permutex2var_pd(a, 0xff, idx1, b),
|
170 |
+
_mm512_mask_permutex2var_pd(a, 0xff, idx2, b));
|
171 |
+
}
|
172 |
+
__m512d abs_2_() const {
|
173 |
+
auto val_2 = _mm512_mul_pd(values, values); // a*a b*b
|
174 |
+
return hadd_pd(val_2, val_2); // a*a+b*b a*a+b*b
|
175 |
+
}
|
176 |
+
__m512d abs_() const {
|
177 |
+
auto real = _mm512_movedup_pd(values); // real real
|
178 |
+
// movehdup_pd does not exist...
|
179 |
+
auto imag = _mm512_permute_pd(values, 0xff); // imag imag
|
180 |
+
return Sleef_hypotd8_u05(real, imag); // abs abs
|
181 |
+
}
|
182 |
+
Vectorized<c10::complex<double>> abs() const {
|
183 |
+
const __m512d real_mask = _mm512_castsi512_pd(_mm512_setr_epi64(0xFFFFFFFFFFFFFFFF, 0x0000000000000000,
|
184 |
+
0xFFFFFFFFFFFFFFFF, 0x0000000000000000,
|
185 |
+
0xFFFFFFFFFFFFFFFF, 0x0000000000000000,
|
186 |
+
0xFFFFFFFFFFFFFFFF, 0x0000000000000000));
|
187 |
+
return _mm512_and_pd(abs_(), real_mask); // abs 0
|
188 |
+
}
|
189 |
+
__m512d angle_() const {
|
190 |
+
//angle = atan2(b/a)
|
191 |
+
auto b_a = _mm512_permute_pd(values, 0x55); // b a
|
192 |
+
return Sleef_atan2d8_u10(values, b_a); // 90-angle angle
|
193 |
+
}
|
194 |
+
Vectorized<c10::complex<double>> angle() const {
|
195 |
+
const __m512d real_mask = _mm512_castsi512_pd(_mm512_setr_epi64(0xFFFFFFFFFFFFFFFF, 0x0000000000000000,
|
196 |
+
0xFFFFFFFFFFFFFFFF, 0x0000000000000000,
|
197 |
+
0xFFFFFFFFFFFFFFFF, 0x0000000000000000,
|
198 |
+
0xFFFFFFFFFFFFFFFF, 0x0000000000000000));
|
199 |
+
auto angle = _mm512_permute_pd(angle_(), 0x55); // angle 90-angle
|
200 |
+
return _mm512_and_pd(angle, real_mask); // angle 0
|
201 |
+
}
|
202 |
+
Vectorized<c10::complex<double>> sgn() const {
|
203 |
+
auto abs = abs_();
|
204 |
+
auto zero = _mm512_setzero_pd();
|
205 |
+
auto mask = _mm512_cmp_pd_mask(abs, zero, _CMP_EQ_OQ);
|
206 |
+
auto div = values / abs;
|
207 |
+
return _mm512_mask_blend_pd(mask, div, zero);
|
208 |
+
}
|
209 |
+
__m512d real_() const {
|
210 |
+
const __m512d real_mask = _mm512_castsi512_pd(_mm512_setr_epi64(0xFFFFFFFFFFFFFFFF, 0x0000000000000000,
|
211 |
+
0xFFFFFFFFFFFFFFFF, 0x0000000000000000,
|
212 |
+
0xFFFFFFFFFFFFFFFF, 0x0000000000000000,
|
213 |
+
0xFFFFFFFFFFFFFFFF, 0x0000000000000000));
|
214 |
+
return _mm512_and_pd(values, real_mask);
|
215 |
+
}
|
216 |
+
Vectorized<c10::complex<double>> real() const {
|
217 |
+
return real_();
|
218 |
+
}
|
219 |
+
__m512d imag_() const {
|
220 |
+
const __m512d imag_mask = _mm512_castsi512_pd(_mm512_setr_epi64(0x0000000000000000, 0xFFFFFFFFFFFFFFFF,
|
221 |
+
0x0000000000000000, 0xFFFFFFFFFFFFFFFF,
|
222 |
+
0x0000000000000000, 0xFFFFFFFFFFFFFFFF,
|
223 |
+
0x0000000000000000, 0xFFFFFFFFFFFFFFFF));
|
224 |
+
return _mm512_and_pd(values, imag_mask);
|
225 |
+
}
|
226 |
+
Vectorized<c10::complex<double>> imag() const {
|
227 |
+
return _mm512_permute_pd(imag_(), 0x55); //b a
|
228 |
+
}
|
229 |
+
__m512d conj_() const {
|
230 |
+
const __m512d sign_mask = _mm512_setr_pd(0.0, -0.0, 0.0, -0.0, 0.0, -0.0, 0.0, -0.0);
|
231 |
+
return _mm512_xor_pd(values, sign_mask); // a -b
|
232 |
+
}
|
233 |
+
Vectorized<c10::complex<double>> conj() const {
|
234 |
+
return conj_();
|
235 |
+
}
|
236 |
+
Vectorized<c10::complex<double>> log() const {
|
237 |
+
// Most trigonomic ops use the log() op to improve complex number performance.
|
238 |
+
return map(std::log);
|
239 |
+
}
|
240 |
+
Vectorized<c10::complex<double>> log2() const {
|
241 |
+
const __m512d log2_ = _mm512_set1_pd(std::log(2));
|
242 |
+
return _mm512_div_pd(log(), log2_);
|
243 |
+
}
|
244 |
+
Vectorized<c10::complex<double>> log10() const {
|
245 |
+
const __m512d log10_ = _mm512_set1_pd(std::log(10));
|
246 |
+
return _mm512_div_pd(log(), log10_);
|
247 |
+
}
|
248 |
+
Vectorized<c10::complex<double>> log1p() const {
|
249 |
+
return map(std::log1p);
|
250 |
+
}
|
251 |
+
Vectorized<c10::complex<double>> asin() const {
|
252 |
+
// asin(x)
|
253 |
+
// = -i*ln(iz + sqrt(1 -z^2))
|
254 |
+
// = -i*ln((ai - b) + sqrt(1 - (a + bi)*(a + bi)))
|
255 |
+
// = -i*ln((-b + ai) + sqrt(1 - (a**2 - b**2) - 2*abi))
|
256 |
+
const __m512d one = _mm512_set1_pd(1);
|
257 |
+
|
258 |
+
auto conj = conj_();
|
259 |
+
auto b_a = _mm512_permute_pd(conj, 0x55); //-b a
|
260 |
+
auto ab = _mm512_mul_pd(conj, b_a); //-ab -ab
|
261 |
+
auto im = _mm512_add_pd(ab, ab); //-2ab -2ab
|
262 |
+
|
263 |
+
auto val_2 = _mm512_mul_pd(values, values); // a*a b*b
|
264 |
+
auto re = hsub_pd(val_2, _mm512_permute_pd(val_2, 0x55)); // a*a-b*b b*b-a*a
|
265 |
+
re = _mm512_sub_pd(one, re);
|
266 |
+
|
267 |
+
auto root = Vectorized(_mm512_mask_blend_pd(0xAA, re, im)).sqrt(); //sqrt(re + i*im)
|
268 |
+
auto ln = Vectorized(_mm512_add_pd(b_a, root)).log(); //ln(iz + sqrt())
|
269 |
+
return Vectorized(_mm512_permute_pd(ln.values, 0x55)).conj(); //-i*ln()
|
270 |
+
}
|
271 |
+
Vectorized<c10::complex<double>> acos() const {
|
272 |
+
// acos(x) = pi/2 - asin(x)
|
273 |
+
constexpr auto pi_2d = c10::pi<double> / 2;
|
274 |
+
const __m512d pi_2 = _mm512_setr_pd(pi_2d, 0.0, pi_2d, 0.0, pi_2d, 0.0, pi_2d, 0.0);
|
275 |
+
return _mm512_sub_pd(pi_2, asin());
|
276 |
+
}
|
277 |
+
Vectorized<c10::complex<double>> atan() const;
|
278 |
+
Vectorized<c10::complex<double>> atanh() const {
|
279 |
+
return map(std::atanh);
|
280 |
+
}
|
281 |
+
Vectorized<c10::complex<double>> exp() const {
|
282 |
+
//exp(a + bi)
|
283 |
+
// = exp(a)*(cos(b) + sin(b)i)
|
284 |
+
auto exp = Sleef_expd8_u10(values); //exp(a) exp(b)
|
285 |
+
exp = _mm512_mask_blend_pd(0xAA, exp, _mm512_permute_pd(exp, 0x55)); //exp(a) exp(a)
|
286 |
+
|
287 |
+
auto sin_cos = Sleef_sincosd8_u10(values); //[sin(a), cos(a)] [sin(b), cos(b)]
|
288 |
+
auto cos_sin = _mm512_mask_blend_pd(0xAA, _mm512_permute_pd(sin_cos.y, 0x55),
|
289 |
+
sin_cos.x); //cos(b) sin(b)
|
290 |
+
return _mm512_mul_pd(exp, cos_sin);
|
291 |
+
}
|
292 |
+
Vectorized<c10::complex<double>> exp2() const {
|
293 |
+
// Use identity 2**x = exp(log(2) * x)
|
294 |
+
const __m512d ln_2 = _mm512_set1_pd(c10::ln_2<double>);
|
295 |
+
Vectorized<c10::complex<double>> scaled_values = _mm512_mul_pd(values, ln_2);
|
296 |
+
return scaled_values.exp();
|
297 |
+
}
|
298 |
+
Vectorized<c10::complex<double>> expm1() const {
|
299 |
+
return map(std::expm1);
|
300 |
+
}
|
301 |
+
Vectorized<c10::complex<double>> sin() const {
|
302 |
+
return map(std::sin);
|
303 |
+
}
|
304 |
+
Vectorized<c10::complex<double>> sinh() const {
|
305 |
+
return map(std::sinh);
|
306 |
+
}
|
307 |
+
Vectorized<c10::complex<double>> cos() const {
|
308 |
+
return map(std::cos);
|
309 |
+
}
|
310 |
+
Vectorized<c10::complex<double>> cosh() const {
|
311 |
+
return map(std::cosh);
|
312 |
+
}
|
313 |
+
Vectorized<c10::complex<double>> ceil() const {
|
314 |
+
return _mm512_ceil_pd(values);
|
315 |
+
}
|
316 |
+
Vectorized<c10::complex<double>> floor() const {
|
317 |
+
return _mm512_floor_pd(values);
|
318 |
+
}
|
319 |
+
Vectorized<c10::complex<double>> neg() const {
|
320 |
+
auto zero = _mm512_setzero_pd();
|
321 |
+
return _mm512_sub_pd(zero, values);
|
322 |
+
}
|
323 |
+
Vectorized<c10::complex<double>> round() const {
|
324 |
+
return _mm512_roundscale_pd(values, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
|
325 |
+
}
|
326 |
+
Vectorized<c10::complex<double>> tan() const {
|
327 |
+
return map(std::tan);
|
328 |
+
}
|
329 |
+
Vectorized<c10::complex<double>> tanh() const {
|
330 |
+
return map(std::tanh);
|
331 |
+
}
|
332 |
+
Vectorized<c10::complex<double>> trunc() const {
|
333 |
+
return _mm512_roundscale_pd(values, (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC));
|
334 |
+
}
|
335 |
+
Vectorized<c10::complex<double>> sqrt() const {
|
336 |
+
return map(std::sqrt);
|
337 |
+
}
|
338 |
+
Vectorized<c10::complex<double>> reciprocal() const;
|
339 |
+
Vectorized<c10::complex<double>> rsqrt() const {
|
340 |
+
return sqrt().reciprocal();
|
341 |
+
}
|
342 |
+
Vectorized<c10::complex<double>> pow(const Vectorized<c10::complex<double>> &exp) const {
|
343 |
+
__at_align__ c10::complex<double> x_tmp[size()];
|
344 |
+
__at_align__ c10::complex<double> y_tmp[size()];
|
345 |
+
store(x_tmp);
|
346 |
+
exp.store(y_tmp);
|
347 |
+
for (const auto i : c10::irange(size())) {
|
348 |
+
x_tmp[i] = std::pow(x_tmp[i], y_tmp[i]);
|
349 |
+
}
|
350 |
+
return loadu(x_tmp);
|
351 |
+
}
|
352 |
+
// Comparison using the _CMP_**_OQ predicate.
|
353 |
+
// `O`: get false if an operand is NaN
|
354 |
+
// `Q`: do not raise if an operand is NaN
|
355 |
+
Vectorized<c10::complex<double>> operator==(const Vectorized<c10::complex<double>>& other) const {
|
356 |
+
auto mask = _mm512_cmp_pd_mask(values, other.values, _CMP_EQ_OQ);
|
357 |
+
return _mm512_castsi512_pd(_mm512_mask_set1_epi64(zero_vector, mask,
|
358 |
+
0xFFFFFFFFFFFFFFFF));
|
359 |
+
}
|
360 |
+
Vectorized<c10::complex<double>> operator!=(const Vectorized<c10::complex<double>>& other) const {
|
361 |
+
auto mask = _mm512_cmp_pd_mask(values, other.values, _CMP_NEQ_UQ);
|
362 |
+
return _mm512_castsi512_pd(_mm512_mask_set1_epi64(zero_vector, mask,
|
363 |
+
0xFFFFFFFFFFFFFFFF));
|
364 |
+
}
|
365 |
+
Vectorized<c10::complex<double>> operator<(const Vectorized<c10::complex<double>>& other) const {
|
366 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
367 |
+
}
|
368 |
+
Vectorized<c10::complex<double>> operator<=(const Vectorized<c10::complex<double>>& other) const {
|
369 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
370 |
+
}
|
371 |
+
Vectorized<c10::complex<double>> operator>(const Vectorized<c10::complex<double>>& other) const {
|
372 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
373 |
+
}
|
374 |
+
Vectorized<c10::complex<double>> operator>=(const Vectorized<c10::complex<double>>& other) const {
|
375 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
376 |
+
}
|
377 |
+
|
378 |
+
Vectorized<c10::complex<double>> eq(const Vectorized<c10::complex<double>>& other) const;
|
379 |
+
Vectorized<c10::complex<double>> ne(const Vectorized<c10::complex<double>>& other) const;
|
380 |
+
};
|
381 |
+
|
382 |
+
template <> Vectorized<c10::complex<double>> inline operator+(const Vectorized<c10::complex<double>> &a,
|
383 |
+
const Vectorized<c10::complex<double>> &b) {
|
384 |
+
return _mm512_add_pd(a, b);
|
385 |
+
}
|
386 |
+
|
387 |
+
template <> Vectorized<c10::complex<double>> inline operator-(const Vectorized<c10::complex<double>> &a,
|
388 |
+
const Vectorized<c10::complex<double>> &b) {
|
389 |
+
return _mm512_sub_pd(a, b);
|
390 |
+
}
|
391 |
+
|
392 |
+
template <> Vectorized<c10::complex<double>> inline operator*(const Vectorized<c10::complex<double>> &a,
|
393 |
+
const Vectorized<c10::complex<double>> &b) {
|
394 |
+
//(a + bi) * (c + di) = (ac - bd) + (ad + bc)i
|
395 |
+
const __m512d sign_mask = _mm512_setr_pd(0.0, -0.0, 0.0, -0.0, 0.0, -0.0, 0.0, -0.0);
|
396 |
+
auto ac_bd = _mm512_mul_pd(a, b); //ac bd
|
397 |
+
|
398 |
+
auto d_c = _mm512_permute_pd(b, 0x55); //d c
|
399 |
+
d_c = _mm512_xor_pd(sign_mask, d_c); //d -c
|
400 |
+
auto ad_bc = _mm512_mul_pd(a, d_c); //ad -bc
|
401 |
+
|
402 |
+
auto ret = Vectorized<c10::complex<double>>::hsub_pd(ac_bd, ad_bc); //ac - bd ad + bc
|
403 |
+
return ret;
|
404 |
+
}
|
405 |
+
|
406 |
+
template <> Vectorized<c10::complex<double>> inline operator/(const Vectorized<c10::complex<double>> &a,
|
407 |
+
const Vectorized<c10::complex<double>> &b) {
|
408 |
+
//re + im*i = (a + bi) / (c + di)
|
409 |
+
auto mask = _mm512_set1_pd(-0.f);
|
410 |
+
auto fabs_cd = _mm512_andnot_pd(mask, b); // |c| |d|
|
411 |
+
auto fabs_dc = _mm512_permute_pd(fabs_cd, 0x55); // |d| |c|
|
412 |
+
auto scale = _mm512_rcp14_pd(_mm512_max_pd(fabs_cd, fabs_dc)); // 1/sc 1/sc
|
413 |
+
auto a2 = _mm512_mul_pd(a, scale); // a/sc b/sc
|
414 |
+
auto b2 = _mm512_mul_pd(b, scale); // c/sc d/sc
|
415 |
+
auto acbd2 = _mm512_mul_pd(a2, b2);
|
416 |
+
|
417 |
+
const __m512d sign_mask = _mm512_setr_pd(-0.0, 0.0, -0.0, 0.0, -0.0, 0.0, -0.0, 0.0);
|
418 |
+
auto dc2 = _mm512_permute_pd(b2, 0x55); // d/sc c/sc
|
419 |
+
dc2 = _mm512_xor_pd(sign_mask, dc2); // -d/|c,d| c/sc
|
420 |
+
auto adbc2 = _mm512_mul_pd(a2, dc2); //-ad/sc^2 bc/sc^2
|
421 |
+
auto res2 = Vectorized<c10::complex<double>>::hadd_pd(acbd2, adbc2); //(ac+bd)/sc^2 (bc-ad)/sc^2
|
422 |
+
|
423 |
+
// get the denominator
|
424 |
+
auto denom2 = Vectorized<c10::complex<double>>(b2).abs_2_(); // (c^2+d^2)/sc^2 (c^2+d^2)/sc^2
|
425 |
+
res2 = _mm512_div_pd(res2, denom2);
|
426 |
+
return res2;
|
427 |
+
}
|
428 |
+
|
429 |
+
// reciprocal. Implement this here so we can use multiplication.
|
430 |
+
inline Vectorized<c10::complex<double>> Vectorized<c10::complex<double>>::reciprocal() const{
|
431 |
+
//re + im*i = (a + bi) / (c + di)
|
432 |
+
//re = (ac + bd)/abs_2() = c/abs_2()
|
433 |
+
//im = (bc - ad)/abs_2() = d/abs_2()
|
434 |
+
const __m512d sign_mask = _mm512_setr_pd(0.0, -0.0, 0.0, -0.0, 0.0, -0.0, 0.0, -0.0);
|
435 |
+
auto c_d = _mm512_xor_pd(sign_mask, values); //c -d
|
436 |
+
return _mm512_div_pd(c_d, abs_2_());
|
437 |
+
}
|
438 |
+
|
439 |
+
inline Vectorized<c10::complex<double>> Vectorized<c10::complex<double>>::atan() const {
|
440 |
+
// atan(x) = i/2 * ln((i + z)/(i - z))
|
441 |
+
const __m512d i = _mm512_setr_pd(0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0);
|
442 |
+
const Vectorized i_half = _mm512_setr_pd(0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5);
|
443 |
+
|
444 |
+
auto sum = Vectorized(_mm512_add_pd(i, values)); // a 1+b
|
445 |
+
auto sub = Vectorized(_mm512_sub_pd(i, values)); // -a 1-b
|
446 |
+
auto ln = (sum/sub).log(); // ln((i + z)/(i - z))
|
447 |
+
return i_half*ln; // i/2*ln()
|
448 |
+
}
|
449 |
+
|
450 |
+
template <>
|
451 |
+
Vectorized<c10::complex<double>> inline maximum(const Vectorized<c10::complex<double>>& a,
|
452 |
+
const Vectorized<c10::complex<double>>& b) {
|
453 |
+
auto zero_vec = _mm512_set1_epi64(0);
|
454 |
+
auto abs_a = a.abs_2_();
|
455 |
+
auto abs_b = b.abs_2_();
|
456 |
+
auto mask = _mm512_cmp_pd_mask(abs_a, abs_b, _CMP_LT_OQ);
|
457 |
+
auto max = _mm512_mask_blend_pd(mask, a, b);
|
458 |
+
// Exploit the fact that all-ones is a NaN.
|
459 |
+
auto isnan_mask = _mm512_cmp_pd_mask(abs_a, abs_b, _CMP_UNORD_Q);
|
460 |
+
auto isnan = _mm512_mask_set1_epi64(zero_vec, isnan_mask,
|
461 |
+
0xFFFFFFFFFFFFFFFF);
|
462 |
+
return _mm512_or_pd(max, _mm512_castsi512_pd(isnan));
|
463 |
+
}
|
464 |
+
|
465 |
+
template <>
|
466 |
+
Vectorized<c10::complex<double>> inline minimum(const Vectorized<c10::complex<double>>& a,
|
467 |
+
const Vectorized<c10::complex<double>>& b) {
|
468 |
+
auto zero_vec = _mm512_set1_epi64(0);
|
469 |
+
auto abs_a = a.abs_2_();
|
470 |
+
auto abs_b = b.abs_2_();
|
471 |
+
auto mask = _mm512_cmp_pd_mask(abs_a, abs_b, _CMP_GT_OQ);
|
472 |
+
auto min = _mm512_mask_blend_pd(mask, a, b);
|
473 |
+
// Exploit the fact that all-ones is a NaN.
|
474 |
+
auto isnan_mask = _mm512_cmp_pd_mask(abs_a, abs_b, _CMP_UNORD_Q);
|
475 |
+
auto isnan = _mm512_mask_set1_epi64(zero_vec, isnan_mask,
|
476 |
+
0xFFFFFFFFFFFFFFFF);
|
477 |
+
return _mm512_or_pd(min, _mm512_castsi512_pd(isnan));
|
478 |
+
}
|
479 |
+
|
480 |
+
template <>
|
481 |
+
Vectorized<c10::complex<double>> inline operator&(const Vectorized<c10::complex<double>>& a,
|
482 |
+
const Vectorized<c10::complex<double>>& b) {
|
483 |
+
return _mm512_and_pd(a, b);
|
484 |
+
}
|
485 |
+
|
486 |
+
template <>
|
487 |
+
Vectorized<c10::complex<double>> inline operator|(const Vectorized<c10::complex<double>>& a,
|
488 |
+
const Vectorized<c10::complex<double>>& b) {
|
489 |
+
return _mm512_or_pd(a, b);
|
490 |
+
}
|
491 |
+
|
492 |
+
template <>
|
493 |
+
Vectorized<c10::complex<double>> inline operator^(const Vectorized<c10::complex<double>>& a,
|
494 |
+
const Vectorized<c10::complex<double>>& b) {
|
495 |
+
return _mm512_xor_pd(a, b);
|
496 |
+
}
|
497 |
+
|
498 |
+
inline Vectorized<c10::complex<double>> Vectorized<c10::complex<double>>::eq(const Vectorized<c10::complex<double>>& other) const {
|
499 |
+
auto eq = (*this == other); // compares real and imag individually
|
500 |
+
// If both real numbers and imag numbers are equal, then the complex numbers are equal
|
501 |
+
return (eq.real() & eq.imag()) & Vectorized<c10::complex<double>>(_mm512_set1_pd(1.0));
|
502 |
+
}
|
503 |
+
|
504 |
+
inline Vectorized<c10::complex<double>> Vectorized<c10::complex<double>>::ne(const Vectorized<c10::complex<double>>& other) const {
|
505 |
+
auto ne = (*this != other); // compares real and imag individually
|
506 |
+
// If either real numbers or imag numbers are not equal, then the complex numbers are not equal
|
507 |
+
return (ne.real() | ne.imag()) & Vectorized<c10::complex<double>>(_mm512_set1_pd(1.0));
|
508 |
+
}
|
509 |
+
|
510 |
+
#endif
|
511 |
+
|
512 |
+
}}}
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec512/vec512_complex_float.h
ADDED
@@ -0,0 +1,1018 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <c10/util/complex.h>
|
7 |
+
#include <c10/util/irange.h>
|
8 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
9 |
+
#include <ATen/cpu/vec/vec_base.h>
|
10 |
+
#if defined(CPU_CAPABILITY_AVX512) && !defined(_MSC_VER)
|
11 |
+
#include <sleef.h>
|
12 |
+
#endif
|
13 |
+
|
14 |
+
namespace at {
|
15 |
+
namespace vec {
|
16 |
+
// See Note [CPU_CAPABILITY namespace]
|
17 |
+
inline namespace CPU_CAPABILITY {
|
18 |
+
|
19 |
+
#if defined(CPU_CAPABILITY_AVX512) && !defined(_MSC_VER)
|
20 |
+
|
21 |
+
template <> class Vectorized<c10::complex<float>> {
|
22 |
+
private:
|
23 |
+
__m512 values;
|
24 |
+
static constexpr __m512i zero_vector {0, 0, 0, 0, 0, 0, 0, 0};
|
25 |
+
public:
|
26 |
+
using value_type = c10::complex<float>;
|
27 |
+
using size_type = int;
|
28 |
+
static constexpr size_type size() {
|
29 |
+
return 8;
|
30 |
+
}
|
31 |
+
Vectorized() {}
|
32 |
+
Vectorized(__m512 v) : values(v) {}
|
33 |
+
Vectorized(c10::complex<float> val) {
|
34 |
+
float real_value = val.real();
|
35 |
+
float imag_value = val.imag();
|
36 |
+
values = _mm512_setr_ps(real_value, imag_value,
|
37 |
+
real_value, imag_value,
|
38 |
+
real_value, imag_value,
|
39 |
+
real_value, imag_value,
|
40 |
+
real_value, imag_value,
|
41 |
+
real_value, imag_value,
|
42 |
+
real_value, imag_value,
|
43 |
+
real_value, imag_value);
|
44 |
+
}
|
45 |
+
Vectorized(c10::complex<float> val1, c10::complex<float> val2,
|
46 |
+
c10::complex<float> val3, c10::complex<float> val4,
|
47 |
+
c10::complex<float> val5, c10::complex<float> val6,
|
48 |
+
c10::complex<float> val7, c10::complex<float> val8) {
|
49 |
+
values = _mm512_setr_ps(val1.real(), val1.imag(),
|
50 |
+
val2.real(), val2.imag(),
|
51 |
+
val3.real(), val3.imag(),
|
52 |
+
val4.real(), val4.imag(),
|
53 |
+
val5.real(), val5.imag(),
|
54 |
+
val6.real(), val6.imag(),
|
55 |
+
val7.real(), val7.imag(),
|
56 |
+
val8.real(), val8.imag());
|
57 |
+
}
|
58 |
+
operator __m512() const {
|
59 |
+
return values;
|
60 |
+
}
|
61 |
+
template <int64_t mask>
|
62 |
+
static Vectorized<c10::complex<float>> blend(const Vectorized<c10::complex<float>>& a,
|
63 |
+
const Vectorized<c10::complex<float>>& b) {
|
64 |
+
// convert c10::complex<V> index mask to V index mask: xy -> xxyy
|
65 |
+
static_assert(mask > -1 && mask < 256, "Unexpected mask value");
|
66 |
+
// The compiler would hopefully convert this switch condition
|
67 |
+
// into a jump table
|
68 |
+
switch (mask) {
|
69 |
+
case 0:
|
70 |
+
return a;
|
71 |
+
case 1:
|
72 |
+
return _mm512_mask_blend_ps(0x03, a.values, b.values);
|
73 |
+
case 2:
|
74 |
+
return _mm512_mask_blend_ps(0x0C, a.values, b.values);
|
75 |
+
case 3:
|
76 |
+
return _mm512_mask_blend_ps(0x0F, a.values, b.values);
|
77 |
+
case 4:
|
78 |
+
return _mm512_mask_blend_ps(0x30, a.values, b.values);
|
79 |
+
case 5:
|
80 |
+
return _mm512_mask_blend_ps(0x33, a.values, b.values);
|
81 |
+
case 6:
|
82 |
+
return _mm512_mask_blend_ps(0x3C, a.values, b.values);
|
83 |
+
case 7:
|
84 |
+
return _mm512_mask_blend_ps(0x3F, a.values, b.values);
|
85 |
+
case 8:
|
86 |
+
return _mm512_mask_blend_ps(0xC0, a.values, b.values);
|
87 |
+
case 9:
|
88 |
+
return _mm512_mask_blend_ps(0xC3, a.values, b.values);
|
89 |
+
case 10:
|
90 |
+
return _mm512_mask_blend_ps(0xCC, a.values, b.values);
|
91 |
+
case 11:
|
92 |
+
return _mm512_mask_blend_ps(0xCF, a.values, b.values);
|
93 |
+
case 12:
|
94 |
+
return _mm512_mask_blend_ps(0xF0, a.values, b.values);
|
95 |
+
case 13:
|
96 |
+
return _mm512_mask_blend_ps(0xF3, a.values, b.values);
|
97 |
+
case 14:
|
98 |
+
return _mm512_mask_blend_ps(0xFC, a.values, b.values);
|
99 |
+
case 15:
|
100 |
+
return _mm512_mask_blend_ps(0xFF, a.values, b.values);
|
101 |
+
case 16:
|
102 |
+
return _mm512_mask_blend_ps(0x300, a.values, b.values);
|
103 |
+
case 17:
|
104 |
+
return _mm512_mask_blend_ps(0x303, a.values, b.values);
|
105 |
+
case 18:
|
106 |
+
return _mm512_mask_blend_ps(0x30C, a.values, b.values);
|
107 |
+
case 19:
|
108 |
+
return _mm512_mask_blend_ps(0x30F, a.values, b.values);
|
109 |
+
case 20:
|
110 |
+
return _mm512_mask_blend_ps(0x330, a.values, b.values);
|
111 |
+
case 21:
|
112 |
+
return _mm512_mask_blend_ps(0x333, a.values, b.values);
|
113 |
+
case 22:
|
114 |
+
return _mm512_mask_blend_ps(0x33C, a.values, b.values);
|
115 |
+
case 23:
|
116 |
+
return _mm512_mask_blend_ps(0x33F, a.values, b.values);
|
117 |
+
case 24:
|
118 |
+
return _mm512_mask_blend_ps(0x3C0, a.values, b.values);
|
119 |
+
case 25:
|
120 |
+
return _mm512_mask_blend_ps(0x3C3, a.values, b.values);
|
121 |
+
case 26:
|
122 |
+
return _mm512_mask_blend_ps(0x3CC, a.values, b.values);
|
123 |
+
case 27:
|
124 |
+
return _mm512_mask_blend_ps(0x3CF, a.values, b.values);
|
125 |
+
case 28:
|
126 |
+
return _mm512_mask_blend_ps(0x3F0, a.values, b.values);
|
127 |
+
case 29:
|
128 |
+
return _mm512_mask_blend_ps(0x3F3, a.values, b.values);
|
129 |
+
case 30:
|
130 |
+
return _mm512_mask_blend_ps(0x3FC, a.values, b.values);
|
131 |
+
case 31:
|
132 |
+
return _mm512_mask_blend_ps(0x3FF, a.values, b.values);
|
133 |
+
case 32:
|
134 |
+
return _mm512_mask_blend_ps(0xC00, a.values, b.values);
|
135 |
+
case 33:
|
136 |
+
return _mm512_mask_blend_ps(0xC03, a.values, b.values);
|
137 |
+
case 34:
|
138 |
+
return _mm512_mask_blend_ps(0xC0C, a.values, b.values);
|
139 |
+
case 35:
|
140 |
+
return _mm512_mask_blend_ps(0xC0F, a.values, b.values);
|
141 |
+
case 36:
|
142 |
+
return _mm512_mask_blend_ps(0xC30, a.values, b.values);
|
143 |
+
case 37:
|
144 |
+
return _mm512_mask_blend_ps(0xC33, a.values, b.values);
|
145 |
+
case 38:
|
146 |
+
return _mm512_mask_blend_ps(0xC3C, a.values, b.values);
|
147 |
+
case 39:
|
148 |
+
return _mm512_mask_blend_ps(0xC3F, a.values, b.values);
|
149 |
+
case 40:
|
150 |
+
return _mm512_mask_blend_ps(0xCC0, a.values, b.values);
|
151 |
+
case 41:
|
152 |
+
return _mm512_mask_blend_ps(0xCC3, a.values, b.values);
|
153 |
+
case 42:
|
154 |
+
return _mm512_mask_blend_ps(0xCCC, a.values, b.values);
|
155 |
+
case 43:
|
156 |
+
return _mm512_mask_blend_ps(0xCCF, a.values, b.values);
|
157 |
+
case 44:
|
158 |
+
return _mm512_mask_blend_ps(0xCF0, a.values, b.values);
|
159 |
+
case 45:
|
160 |
+
return _mm512_mask_blend_ps(0xCF3, a.values, b.values);
|
161 |
+
case 46:
|
162 |
+
return _mm512_mask_blend_ps(0xCFC, a.values, b.values);
|
163 |
+
case 47:
|
164 |
+
return _mm512_mask_blend_ps(0xCFF, a.values, b.values);
|
165 |
+
case 48:
|
166 |
+
return _mm512_mask_blend_ps(0xF00, a.values, b.values);
|
167 |
+
case 49:
|
168 |
+
return _mm512_mask_blend_ps(0xF03, a.values, b.values);
|
169 |
+
case 50:
|
170 |
+
return _mm512_mask_blend_ps(0xF0C, a.values, b.values);
|
171 |
+
case 51:
|
172 |
+
return _mm512_mask_blend_ps(0xF0F, a.values, b.values);
|
173 |
+
case 52:
|
174 |
+
return _mm512_mask_blend_ps(0xF30, a.values, b.values);
|
175 |
+
case 53:
|
176 |
+
return _mm512_mask_blend_ps(0xF33, a.values, b.values);
|
177 |
+
case 54:
|
178 |
+
return _mm512_mask_blend_ps(0xF3C, a.values, b.values);
|
179 |
+
case 55:
|
180 |
+
return _mm512_mask_blend_ps(0xF3F, a.values, b.values);
|
181 |
+
case 56:
|
182 |
+
return _mm512_mask_blend_ps(0xFC0, a.values, b.values);
|
183 |
+
case 57:
|
184 |
+
return _mm512_mask_blend_ps(0xFC3, a.values, b.values);
|
185 |
+
case 58:
|
186 |
+
return _mm512_mask_blend_ps(0xFCC, a.values, b.values);
|
187 |
+
case 59:
|
188 |
+
return _mm512_mask_blend_ps(0xFCF, a.values, b.values);
|
189 |
+
case 60:
|
190 |
+
return _mm512_mask_blend_ps(0xFF0, a.values, b.values);
|
191 |
+
case 61:
|
192 |
+
return _mm512_mask_blend_ps(0xFF3, a.values, b.values);
|
193 |
+
case 62:
|
194 |
+
return _mm512_mask_blend_ps(0xFFC, a.values, b.values);
|
195 |
+
case 63:
|
196 |
+
return _mm512_mask_blend_ps(0xFFF, a.values, b.values);
|
197 |
+
case 64:
|
198 |
+
return _mm512_mask_blend_ps(0x3000, a.values, b.values);
|
199 |
+
case 65:
|
200 |
+
return _mm512_mask_blend_ps(0x3003, a.values, b.values);
|
201 |
+
case 66:
|
202 |
+
return _mm512_mask_blend_ps(0x300C, a.values, b.values);
|
203 |
+
case 67:
|
204 |
+
return _mm512_mask_blend_ps(0x300F, a.values, b.values);
|
205 |
+
case 68:
|
206 |
+
return _mm512_mask_blend_ps(0x3030, a.values, b.values);
|
207 |
+
case 69:
|
208 |
+
return _mm512_mask_blend_ps(0x3033, a.values, b.values);
|
209 |
+
case 70:
|
210 |
+
return _mm512_mask_blend_ps(0x303C, a.values, b.values);
|
211 |
+
case 71:
|
212 |
+
return _mm512_mask_blend_ps(0x303F, a.values, b.values);
|
213 |
+
case 72:
|
214 |
+
return _mm512_mask_blend_ps(0x30C0, a.values, b.values);
|
215 |
+
case 73:
|
216 |
+
return _mm512_mask_blend_ps(0X30C3, a.values, b.values);
|
217 |
+
case 74:
|
218 |
+
return _mm512_mask_blend_ps(0x30CC, a.values, b.values);
|
219 |
+
case 75:
|
220 |
+
return _mm512_mask_blend_ps(0x30CF, a.values, b.values);
|
221 |
+
case 76:
|
222 |
+
return _mm512_mask_blend_ps(0x30F0, a.values, b.values);
|
223 |
+
case 77:
|
224 |
+
return _mm512_mask_blend_ps(0x30F3, a.values, b.values);
|
225 |
+
case 78:
|
226 |
+
return _mm512_mask_blend_ps(0x30FC, a.values, b.values);
|
227 |
+
case 79:
|
228 |
+
return _mm512_mask_blend_ps(0x30FF, a.values, b.values);
|
229 |
+
case 80:
|
230 |
+
return _mm512_mask_blend_ps(0x3300, a.values, b.values);
|
231 |
+
case 81:
|
232 |
+
return _mm512_mask_blend_ps(0X3303, a.values, b.values);
|
233 |
+
case 82:
|
234 |
+
return _mm512_mask_blend_ps(0x330C, a.values, b.values);
|
235 |
+
case 83:
|
236 |
+
return _mm512_mask_blend_ps(0x330F, a.values, b.values);
|
237 |
+
case 84:
|
238 |
+
return _mm512_mask_blend_ps(0x3330, a.values, b.values);
|
239 |
+
case 85:
|
240 |
+
return _mm512_mask_blend_ps(0x3333, a.values, b.values);
|
241 |
+
case 86:
|
242 |
+
return _mm512_mask_blend_ps(0x333C, a.values, b.values);
|
243 |
+
case 87:
|
244 |
+
return _mm512_mask_blend_ps(0X333F, a.values, b.values);
|
245 |
+
case 88:
|
246 |
+
return _mm512_mask_blend_ps(0x33C0, a.values, b.values);
|
247 |
+
case 89:
|
248 |
+
return _mm512_mask_blend_ps(0x33C3, a.values, b.values);
|
249 |
+
case 90:
|
250 |
+
return _mm512_mask_blend_ps(0x33CC, a.values, b.values);
|
251 |
+
case 91:
|
252 |
+
return _mm512_mask_blend_ps(0x33CF, a.values, b.values);
|
253 |
+
case 92:
|
254 |
+
return _mm512_mask_blend_ps(0x33F0, a.values, b.values);
|
255 |
+
case 93:
|
256 |
+
return _mm512_mask_blend_ps(0x33F3, a.values, b.values);
|
257 |
+
case 94:
|
258 |
+
return _mm512_mask_blend_ps(0x33FC, a.values, b.values);
|
259 |
+
case 95:
|
260 |
+
return _mm512_mask_blend_ps(0x33FF, a.values, b.values);
|
261 |
+
case 96:
|
262 |
+
return _mm512_mask_blend_ps(0X3C00, a.values, b.values);
|
263 |
+
case 97:
|
264 |
+
return _mm512_mask_blend_ps(0x3C03, a.values, b.values);
|
265 |
+
case 98:
|
266 |
+
return _mm512_mask_blend_ps(0x3C0C, a.values, b.values);
|
267 |
+
case 99:
|
268 |
+
return _mm512_mask_blend_ps(0x3C0F, a.values, b.values);
|
269 |
+
case 100:
|
270 |
+
return _mm512_mask_blend_ps(0x3C30, a.values, b.values);
|
271 |
+
case 101:
|
272 |
+
return _mm512_mask_blend_ps(0x3C33, a.values, b.values);
|
273 |
+
case 102:
|
274 |
+
return _mm512_mask_blend_ps(0x3C3C, a.values, b.values);
|
275 |
+
case 103:
|
276 |
+
return _mm512_mask_blend_ps(0x3C3F, a.values, b.values);
|
277 |
+
case 104:
|
278 |
+
return _mm512_mask_blend_ps(0x3CC0, a.values, b.values);
|
279 |
+
case 105:
|
280 |
+
return _mm512_mask_blend_ps(0x3CC3, a.values, b.values);
|
281 |
+
case 106:
|
282 |
+
return _mm512_mask_blend_ps(0x3CCC, a.values, b.values);
|
283 |
+
case 107:
|
284 |
+
return _mm512_mask_blend_ps(0x3CCF, a.values, b.values);
|
285 |
+
case 108:
|
286 |
+
return _mm512_mask_blend_ps(0x3CF0, a.values, b.values);
|
287 |
+
case 109:
|
288 |
+
return _mm512_mask_blend_ps(0x3CF3, a.values, b.values);
|
289 |
+
case 110:
|
290 |
+
return _mm512_mask_blend_ps(0x3CFC, a.values, b.values);
|
291 |
+
case 111:
|
292 |
+
return _mm512_mask_blend_ps(0x3CFF, a.values, b.values);
|
293 |
+
case 112:
|
294 |
+
return _mm512_mask_blend_ps(0x3F00, a.values, b.values);
|
295 |
+
case 113:
|
296 |
+
return _mm512_mask_blend_ps(0x3F03, a.values, b.values);
|
297 |
+
case 114:
|
298 |
+
return _mm512_mask_blend_ps(0x3F0C, a.values, b.values);
|
299 |
+
case 115:
|
300 |
+
return _mm512_mask_blend_ps(0x3F0F, a.values, b.values);
|
301 |
+
case 116:
|
302 |
+
return _mm512_mask_blend_ps(0x3F30, a.values, b.values);
|
303 |
+
case 117:
|
304 |
+
return _mm512_mask_blend_ps(0x3F33, a.values, b.values);
|
305 |
+
case 118:
|
306 |
+
return _mm512_mask_blend_ps(0x3F3C, a.values, b.values);
|
307 |
+
case 119:
|
308 |
+
return _mm512_mask_blend_ps(0x3F3F, a.values, b.values);
|
309 |
+
case 120:
|
310 |
+
return _mm512_mask_blend_ps(0x3FC0, a.values, b.values);
|
311 |
+
case 121:
|
312 |
+
return _mm512_mask_blend_ps(0x3FC3, a.values, b.values);
|
313 |
+
case 122:
|
314 |
+
return _mm512_mask_blend_ps(0x3FCC, a.values, b.values);
|
315 |
+
case 123:
|
316 |
+
return _mm512_mask_blend_ps(0x3FCF, a.values, b.values);
|
317 |
+
case 124:
|
318 |
+
return _mm512_mask_blend_ps(0x3FF0, a.values, b.values);
|
319 |
+
case 125:
|
320 |
+
return _mm512_mask_blend_ps(0x3FF3, a.values, b.values);
|
321 |
+
case 126:
|
322 |
+
return _mm512_mask_blend_ps(0x3FFC, a.values, b.values);
|
323 |
+
case 127:
|
324 |
+
return _mm512_mask_blend_ps(0x3FFF, a.values, b.values);
|
325 |
+
case 128:
|
326 |
+
return _mm512_mask_blend_ps(0xC000, a.values, b.values);
|
327 |
+
case 129:
|
328 |
+
return _mm512_mask_blend_ps(0xC003, a.values, b.values);
|
329 |
+
case 130:
|
330 |
+
return _mm512_mask_blend_ps(0xC00C, a.values, b.values);
|
331 |
+
case 131:
|
332 |
+
return _mm512_mask_blend_ps(0xC00F, a.values, b.values);
|
333 |
+
case 132:
|
334 |
+
return _mm512_mask_blend_ps(0xC030, a.values, b.values);
|
335 |
+
case 133:
|
336 |
+
return _mm512_mask_blend_ps(0xC033, a.values, b.values);
|
337 |
+
case 134:
|
338 |
+
return _mm512_mask_blend_ps(0xC03C, a.values, b.values);
|
339 |
+
case 135:
|
340 |
+
return _mm512_mask_blend_ps(0xC03F, a.values, b.values);
|
341 |
+
case 136:
|
342 |
+
return _mm512_mask_blend_ps(0xC0C0, a.values, b.values);
|
343 |
+
case 137:
|
344 |
+
return _mm512_mask_blend_ps(0xC0C3, a.values, b.values);
|
345 |
+
case 138:
|
346 |
+
return _mm512_mask_blend_ps(0xC0CC, a.values, b.values);
|
347 |
+
case 139:
|
348 |
+
return _mm512_mask_blend_ps(0xC0CF, a.values, b.values);
|
349 |
+
case 140:
|
350 |
+
return _mm512_mask_blend_ps(0xC0F0, a.values, b.values);
|
351 |
+
case 141:
|
352 |
+
return _mm512_mask_blend_ps(0xC0F3, a.values, b.values);
|
353 |
+
case 142:
|
354 |
+
return _mm512_mask_blend_ps(0xC0FC, a.values, b.values);
|
355 |
+
case 143:
|
356 |
+
return _mm512_mask_blend_ps(0xC0FF, a.values, b.values);
|
357 |
+
case 144:
|
358 |
+
return _mm512_mask_blend_ps(0xC300, a.values, b.values);
|
359 |
+
case 145:
|
360 |
+
return _mm512_mask_blend_ps(0xC303, a.values, b.values);
|
361 |
+
case 146:
|
362 |
+
return _mm512_mask_blend_ps(0xC30C, a.values, b.values);
|
363 |
+
case 147:
|
364 |
+
return _mm512_mask_blend_ps(0xC30F, a.values, b.values);
|
365 |
+
case 148:
|
366 |
+
return _mm512_mask_blend_ps(0xC330, a.values, b.values);
|
367 |
+
case 149:
|
368 |
+
return _mm512_mask_blend_ps(0xC333, a.values, b.values);
|
369 |
+
case 150:
|
370 |
+
return _mm512_mask_blend_ps(0xC33C, a.values, b.values);
|
371 |
+
case 151:
|
372 |
+
return _mm512_mask_blend_ps(0xC33F, a.values, b.values);
|
373 |
+
case 152:
|
374 |
+
return _mm512_mask_blend_ps(0xC3C0, a.values, b.values);
|
375 |
+
case 153:
|
376 |
+
return _mm512_mask_blend_ps(0xC3C3, a.values, b.values);
|
377 |
+
case 154:
|
378 |
+
return _mm512_mask_blend_ps(0xC3CC, a.values, b.values);
|
379 |
+
case 155:
|
380 |
+
return _mm512_mask_blend_ps(0xC3CF, a.values, b.values);
|
381 |
+
case 156:
|
382 |
+
return _mm512_mask_blend_ps(0xC3F0, a.values, b.values);
|
383 |
+
case 157:
|
384 |
+
return _mm512_mask_blend_ps(0xC3F3, a.values, b.values);
|
385 |
+
case 158:
|
386 |
+
return _mm512_mask_blend_ps(0xC3FC, a.values, b.values);
|
387 |
+
case 159:
|
388 |
+
return _mm512_mask_blend_ps(0xC3FF, a.values, b.values);
|
389 |
+
case 160:
|
390 |
+
return _mm512_mask_blend_ps(0xCC00, a.values, b.values);
|
391 |
+
case 161:
|
392 |
+
return _mm512_mask_blend_ps(0xCC03, a.values, b.values);
|
393 |
+
case 162:
|
394 |
+
return _mm512_mask_blend_ps(0xCC0C, a.values, b.values);
|
395 |
+
case 163:
|
396 |
+
return _mm512_mask_blend_ps(0xCC0F, a.values, b.values);
|
397 |
+
case 164:
|
398 |
+
return _mm512_mask_blend_ps(0xCC30, a.values, b.values);
|
399 |
+
case 165:
|
400 |
+
return _mm512_mask_blend_ps(0xCC33, a.values, b.values);
|
401 |
+
case 166:
|
402 |
+
return _mm512_mask_blend_ps(0xCC3C, a.values, b.values);
|
403 |
+
case 167:
|
404 |
+
return _mm512_mask_blend_ps(0xCC3F, a.values, b.values);
|
405 |
+
case 168:
|
406 |
+
return _mm512_mask_blend_ps(0xCCC0, a.values, b.values);
|
407 |
+
case 169:
|
408 |
+
return _mm512_mask_blend_ps(0xCCC3, a.values, b.values);
|
409 |
+
case 170:
|
410 |
+
return _mm512_mask_blend_ps(0xCCCC, a.values, b.values);
|
411 |
+
case 171:
|
412 |
+
return _mm512_mask_blend_ps(0xCCCF, a.values, b.values);
|
413 |
+
case 172:
|
414 |
+
return _mm512_mask_blend_ps(0xCCF0, a.values, b.values);
|
415 |
+
case 173:
|
416 |
+
return _mm512_mask_blend_ps(0xCCF3, a.values, b.values);
|
417 |
+
case 174:
|
418 |
+
return _mm512_mask_blend_ps(0xCCFC, a.values, b.values);
|
419 |
+
case 175:
|
420 |
+
return _mm512_mask_blend_ps(0xCCFF, a.values, b.values);
|
421 |
+
case 176:
|
422 |
+
return _mm512_mask_blend_ps(0xCF00, a.values, b.values);
|
423 |
+
case 177:
|
424 |
+
return _mm512_mask_blend_ps(0xCF03, a.values, b.values);
|
425 |
+
case 178:
|
426 |
+
return _mm512_mask_blend_ps(0xCF0C, a.values, b.values);
|
427 |
+
case 179:
|
428 |
+
return _mm512_mask_blend_ps(0xCF0F, a.values, b.values);
|
429 |
+
case 180:
|
430 |
+
return _mm512_mask_blend_ps(0xCF30, a.values, b.values);
|
431 |
+
case 181:
|
432 |
+
return _mm512_mask_blend_ps(0xCF33, a.values, b.values);
|
433 |
+
case 182:
|
434 |
+
return _mm512_mask_blend_ps(0xCF3C, a.values, b.values);
|
435 |
+
case 183:
|
436 |
+
return _mm512_mask_blend_ps(0xCF3F, a.values, b.values);
|
437 |
+
case 184:
|
438 |
+
return _mm512_mask_blend_ps(0xCFC0, a.values, b.values);
|
439 |
+
case 185:
|
440 |
+
return _mm512_mask_blend_ps(0xCFC3, a.values, b.values);
|
441 |
+
case 186:
|
442 |
+
return _mm512_mask_blend_ps(0xCFCC, a.values, b.values);
|
443 |
+
case 187:
|
444 |
+
return _mm512_mask_blend_ps(0xCFCF, a.values, b.values);
|
445 |
+
case 188:
|
446 |
+
return _mm512_mask_blend_ps(0xCFF0, a.values, b.values);
|
447 |
+
case 189:
|
448 |
+
return _mm512_mask_blend_ps(0xCFF3, a.values, b.values);
|
449 |
+
case 190:
|
450 |
+
return _mm512_mask_blend_ps(0xCFFC, a.values, b.values);
|
451 |
+
case 191:
|
452 |
+
return _mm512_mask_blend_ps(0xCFFF, a.values, b.values);
|
453 |
+
case 192:
|
454 |
+
return _mm512_mask_blend_ps(0xF000, a.values, b.values);
|
455 |
+
case 193:
|
456 |
+
return _mm512_mask_blend_ps(0xF003, a.values, b.values);
|
457 |
+
case 194:
|
458 |
+
return _mm512_mask_blend_ps(0xF00C, a.values, b.values);
|
459 |
+
case 195:
|
460 |
+
return _mm512_mask_blend_ps(0xF00F, a.values, b.values);
|
461 |
+
case 196:
|
462 |
+
return _mm512_mask_blend_ps(0xF030, a.values, b.values);
|
463 |
+
case 197:
|
464 |
+
return _mm512_mask_blend_ps(0xF033, a.values, b.values);
|
465 |
+
case 198:
|
466 |
+
return _mm512_mask_blend_ps(0xF03C, a.values, b.values);
|
467 |
+
case 199:
|
468 |
+
return _mm512_mask_blend_ps(0xF03F, a.values, b.values);
|
469 |
+
case 200:
|
470 |
+
return _mm512_mask_blend_ps(0XF0C0, a.values, b.values);
|
471 |
+
case 201:
|
472 |
+
return _mm512_mask_blend_ps(0xF0C3, a.values, b.values);
|
473 |
+
case 202:
|
474 |
+
return _mm512_mask_blend_ps(0xF0CC, a.values, b.values);
|
475 |
+
case 203:
|
476 |
+
return _mm512_mask_blend_ps(0xF0CF, a.values, b.values);
|
477 |
+
case 204:
|
478 |
+
return _mm512_mask_blend_ps(0xF0F0, a.values, b.values);
|
479 |
+
case 205:
|
480 |
+
return _mm512_mask_blend_ps(0xF0F3, a.values, b.values);
|
481 |
+
case 206:
|
482 |
+
return _mm512_mask_blend_ps(0xF0FC, a.values, b.values);
|
483 |
+
case 207:
|
484 |
+
return _mm512_mask_blend_ps(0xF0FF, a.values, b.values);
|
485 |
+
case 208:
|
486 |
+
return _mm512_mask_blend_ps(0XF300, a.values, b.values);
|
487 |
+
case 209:
|
488 |
+
return _mm512_mask_blend_ps(0xF303, a.values, b.values);
|
489 |
+
case 210:
|
490 |
+
return _mm512_mask_blend_ps(0xF30C, a.values, b.values);
|
491 |
+
case 211:
|
492 |
+
return _mm512_mask_blend_ps(0xF30F, a.values, b.values);
|
493 |
+
case 212:
|
494 |
+
return _mm512_mask_blend_ps(0xF330, a.values, b.values);
|
495 |
+
case 213:
|
496 |
+
return _mm512_mask_blend_ps(0xF333, a.values, b.values);
|
497 |
+
case 214:
|
498 |
+
return _mm512_mask_blend_ps(0XF33C, a.values, b.values);
|
499 |
+
case 215:
|
500 |
+
return _mm512_mask_blend_ps(0xF33F, a.values, b.values);
|
501 |
+
case 216:
|
502 |
+
return _mm512_mask_blend_ps(0xF3C0, a.values, b.values);
|
503 |
+
case 217:
|
504 |
+
return _mm512_mask_blend_ps(0xF3C3, a.values, b.values);
|
505 |
+
case 218:
|
506 |
+
return _mm512_mask_blend_ps(0xF3CC, a.values, b.values);
|
507 |
+
case 219:
|
508 |
+
return _mm512_mask_blend_ps(0xF3CF, a.values, b.values);
|
509 |
+
case 220:
|
510 |
+
return _mm512_mask_blend_ps(0xF3F0, a.values, b.values);
|
511 |
+
case 221:
|
512 |
+
return _mm512_mask_blend_ps(0xF3F3, a.values, b.values);
|
513 |
+
case 222:
|
514 |
+
return _mm512_mask_blend_ps(0xF3FC, a.values, b.values);
|
515 |
+
case 223:
|
516 |
+
return _mm512_mask_blend_ps(0XF3FF, a.values, b.values);
|
517 |
+
case 224:
|
518 |
+
return _mm512_mask_blend_ps(0xFC00, a.values, b.values);
|
519 |
+
case 225:
|
520 |
+
return _mm512_mask_blend_ps(0xFC03, a.values, b.values);
|
521 |
+
case 226:
|
522 |
+
return _mm512_mask_blend_ps(0xFC0C, a.values, b.values);
|
523 |
+
case 227:
|
524 |
+
return _mm512_mask_blend_ps(0xFC0F, a.values, b.values);
|
525 |
+
case 228:
|
526 |
+
return _mm512_mask_blend_ps(0xFC30, a.values, b.values);
|
527 |
+
case 229:
|
528 |
+
return _mm512_mask_blend_ps(0xFC33, a.values, b.values);
|
529 |
+
case 230:
|
530 |
+
return _mm512_mask_blend_ps(0xFC3C, a.values, b.values);
|
531 |
+
case 231:
|
532 |
+
return _mm512_mask_blend_ps(0xFC3F, a.values, b.values);
|
533 |
+
case 232:
|
534 |
+
return _mm512_mask_blend_ps(0xFCC0, a.values, b.values);
|
535 |
+
case 233:
|
536 |
+
return _mm512_mask_blend_ps(0xFCC3, a.values, b.values);
|
537 |
+
case 234:
|
538 |
+
return _mm512_mask_blend_ps(0xFCCC, a.values, b.values);
|
539 |
+
case 235:
|
540 |
+
return _mm512_mask_blend_ps(0xFCCF, a.values, b.values);
|
541 |
+
case 236:
|
542 |
+
return _mm512_mask_blend_ps(0xFCF0, a.values, b.values);
|
543 |
+
case 237:
|
544 |
+
return _mm512_mask_blend_ps(0xFCF3, a.values, b.values);
|
545 |
+
case 238:
|
546 |
+
return _mm512_mask_blend_ps(0xFCFC, a.values, b.values);
|
547 |
+
case 239:
|
548 |
+
return _mm512_mask_blend_ps(0xFCFF, a.values, b.values);
|
549 |
+
case 240:
|
550 |
+
return _mm512_mask_blend_ps(0xFF00, a.values, b.values);
|
551 |
+
case 241:
|
552 |
+
return _mm512_mask_blend_ps(0xFF03, a.values, b.values);
|
553 |
+
case 242:
|
554 |
+
return _mm512_mask_blend_ps(0xFF0C, a.values, b.values);
|
555 |
+
case 243:
|
556 |
+
return _mm512_mask_blend_ps(0xFF0F, a.values, b.values);
|
557 |
+
case 244:
|
558 |
+
return _mm512_mask_blend_ps(0xFF30, a.values, b.values);
|
559 |
+
case 245:
|
560 |
+
return _mm512_mask_blend_ps(0xFF33, a.values, b.values);
|
561 |
+
case 246:
|
562 |
+
return _mm512_mask_blend_ps(0xFF3C, a.values, b.values);
|
563 |
+
case 247:
|
564 |
+
return _mm512_mask_blend_ps(0xFF3F, a.values, b.values);
|
565 |
+
case 248:
|
566 |
+
return _mm512_mask_blend_ps(0xFFC0, a.values, b.values);
|
567 |
+
case 249:
|
568 |
+
return _mm512_mask_blend_ps(0xFFC3, a.values, b.values);
|
569 |
+
case 250:
|
570 |
+
return _mm512_mask_blend_ps(0xFFCC, a.values, b.values);
|
571 |
+
case 251:
|
572 |
+
return _mm512_mask_blend_ps(0xFFCF, a.values, b.values);
|
573 |
+
case 252:
|
574 |
+
return _mm512_mask_blend_ps(0xFFF0, a.values, b.values);
|
575 |
+
case 253:
|
576 |
+
return _mm512_mask_blend_ps(0xFFF3, a.values, b.values);
|
577 |
+
case 254:
|
578 |
+
return _mm512_mask_blend_ps(0xFFFC, a.values, b.values);
|
579 |
+
default: break;
|
580 |
+
}
|
581 |
+
return b;
|
582 |
+
}
|
583 |
+
static Vectorized<c10::complex<float>> blendv(const Vectorized<c10::complex<float>>& a,
|
584 |
+
const Vectorized<c10::complex<float>>& b,
|
585 |
+
const Vectorized<c10::complex<float>>& mask) {
|
586 |
+
// convert c10::complex<V> index mask to V index mask: xy -> xxyy
|
587 |
+
auto mask_ = _mm512_unpacklo_ps(mask.values, mask.values);
|
588 |
+
auto all_ones = _mm512_set1_epi32(0xFFFFFFFF);
|
589 |
+
auto mmask = _mm512_cmp_epi32_mask(_mm512_castps_si512(mask_), all_ones, _MM_CMPINT_EQ);
|
590 |
+
return _mm512_mask_blend_ps(mmask, a.values, b.values);
|
591 |
+
}
|
592 |
+
template<typename step_t>
|
593 |
+
static Vectorized<c10::complex<float>> arange(c10::complex<float> base = 0.,
|
594 |
+
step_t step = static_cast<step_t>(1)) {
|
595 |
+
return Vectorized<c10::complex<float>>(base,
|
596 |
+
base + step,
|
597 |
+
base + c10::complex<float>(2)*step,
|
598 |
+
base + c10::complex<float>(3)*step,
|
599 |
+
base + c10::complex<float>(4)*step,
|
600 |
+
base + c10::complex<float>(5)*step,
|
601 |
+
base + c10::complex<float>(6)*step,
|
602 |
+
base + c10::complex<float>(7)*step);
|
603 |
+
}
|
604 |
+
static Vectorized<c10::complex<float>> set(const Vectorized<c10::complex<float>>& a,
|
605 |
+
const Vectorized<c10::complex<float>>& b,
|
606 |
+
int64_t count = size()) {
|
607 |
+
switch (count) {
|
608 |
+
case 0:
|
609 |
+
return a;
|
610 |
+
case 1:
|
611 |
+
return blend<1>(a, b);
|
612 |
+
case 2:
|
613 |
+
return blend<3>(a, b);
|
614 |
+
case 3:
|
615 |
+
return blend<7>(a, b);
|
616 |
+
case 4:
|
617 |
+
return blend<15>(a, b);
|
618 |
+
case 5:
|
619 |
+
return blend<31>(a, b);
|
620 |
+
case 6:
|
621 |
+
return blend<63>(a, b);
|
622 |
+
case 7:
|
623 |
+
return blend<127>(a, b);
|
624 |
+
}
|
625 |
+
return b;
|
626 |
+
}
|
627 |
+
static Vectorized<c10::complex<float>> loadu(const void* ptr, int64_t count = size()) {
|
628 |
+
if (count == size())
|
629 |
+
return _mm512_loadu_ps(reinterpret_cast<const float*>(ptr));
|
630 |
+
|
631 |
+
__at_align__ float tmp_values[2*size()];
|
632 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
633 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
634 |
+
// instructions while a loop would be compiled to one instruction.
|
635 |
+
for (const auto i : c10::irange(2*size())) {
|
636 |
+
tmp_values[i] = 0.0;
|
637 |
+
}
|
638 |
+
std::memcpy(
|
639 |
+
tmp_values,
|
640 |
+
reinterpret_cast<const float*>(ptr),
|
641 |
+
count * sizeof(c10::complex<float>));
|
642 |
+
return _mm512_load_ps(tmp_values);
|
643 |
+
}
|
644 |
+
void store(void* ptr, int count = size()) const {
|
645 |
+
if (count == size()) {
|
646 |
+
_mm512_storeu_ps(reinterpret_cast<float*>(ptr), values);
|
647 |
+
} else if (count > 0) {
|
648 |
+
float tmp_values[2*size()];
|
649 |
+
_mm512_storeu_ps(reinterpret_cast<float*>(tmp_values), values);
|
650 |
+
std::memcpy(ptr, tmp_values, count * sizeof(c10::complex<float>));
|
651 |
+
}
|
652 |
+
}
|
653 |
+
// AVX512 doesn't have horizontal add & horizontal sub instructions.
|
654 |
+
// TODO: hadd_pd() & hsub_pd() may have scope for improvement.
|
655 |
+
static inline __m512 hadd_ps(__m512 a, __m512 b) {
|
656 |
+
__m512i idx1 = _mm512_set_epi32(30, 14, 28, 12, 26, 10, 24, 8, 22, 6, 20, 4, 18, 2, 16, 0);
|
657 |
+
__m512i idx2 = _mm512_set_epi32(31, 15, 29, 13, 27, 11, 25, 9, 23, 7, 21, 5, 19, 3, 17, 1);
|
658 |
+
return _mm512_add_ps(_mm512_mask_permutex2var_ps(a, 0xffff, idx1, b),
|
659 |
+
_mm512_mask_permutex2var_ps(a, 0xffff, idx2, b));
|
660 |
+
}
|
661 |
+
static inline __m512 hsub_ps(__m512 a, __m512 b) {
|
662 |
+
__m512i idx1 = _mm512_set_epi32(30, 14, 28, 12, 26, 10, 24, 8, 22, 6, 20, 4, 18, 2, 16, 0);
|
663 |
+
__m512i idx2 = _mm512_set_epi32(31, 15, 29, 13, 27, 11, 25, 9, 23, 7, 21, 5, 19, 3, 17, 1);
|
664 |
+
return _mm512_sub_ps(_mm512_mask_permutex2var_ps(a, 0xffff, idx1, b),
|
665 |
+
_mm512_mask_permutex2var_ps(a, 0xffff, idx2, b));
|
666 |
+
}
|
667 |
+
const c10::complex<float>& operator[](int idx) const = delete;
|
668 |
+
c10::complex<float>& operator[](int idx) = delete;
|
669 |
+
Vectorized<c10::complex<float>> map(c10::complex<float> (*const f)(const c10::complex<float> &)) const {
|
670 |
+
__at_align__ c10::complex<float> tmp[size()];
|
671 |
+
store(tmp);
|
672 |
+
for (const auto i : c10::irange(size())) {
|
673 |
+
tmp[i] = f(tmp[i]);
|
674 |
+
}
|
675 |
+
return loadu(tmp);
|
676 |
+
}
|
677 |
+
__m512 abs_2_() const {
|
678 |
+
auto val_2 = _mm512_mul_ps(values, values); // a*a b*b
|
679 |
+
auto ret = hadd_ps(val_2, val_2); // a*a+b*b a*a+b*b
|
680 |
+
return ret;
|
681 |
+
}
|
682 |
+
__m512 abs_() const {
|
683 |
+
auto real = _mm512_moveldup_ps(values); // real real
|
684 |
+
auto imag = _mm512_movehdup_ps(values); // imag imag
|
685 |
+
return Sleef_hypotf16_u05(real, imag); // abs abs
|
686 |
+
}
|
687 |
+
Vectorized<c10::complex<float>> abs() const {
|
688 |
+
const __m512 real_mask = _mm512_castsi512_ps(_mm512_setr_epi32(0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, 0x00000000,
|
689 |
+
0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, 0x00000000,
|
690 |
+
0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, 0x00000000,
|
691 |
+
0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, 0x00000000));
|
692 |
+
return _mm512_and_ps(abs_(), real_mask); // abs 0
|
693 |
+
}
|
694 |
+
__m512 angle_() const {
|
695 |
+
//angle = atan2(b/a)
|
696 |
+
auto b_a = _mm512_permute_ps(values, 0xB1); // b a
|
697 |
+
return Sleef_atan2f16_u10(values, b_a); // 90-angle angle
|
698 |
+
}
|
699 |
+
Vectorized<c10::complex<float>> angle() const {
|
700 |
+
const __m512 real_mask = _mm512_castsi512_ps(_mm512_setr_epi32(0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, 0x00000000,
|
701 |
+
0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, 0x00000000,
|
702 |
+
0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, 0x00000000,
|
703 |
+
0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, 0x00000000));
|
704 |
+
auto angle = _mm512_permute_ps(angle_(), 0xB1); // angle 90-angle
|
705 |
+
return _mm512_and_ps(angle, real_mask); // angle 0
|
706 |
+
}
|
707 |
+
Vectorized<c10::complex<float>> sgn() const {
|
708 |
+
auto abs = abs_();
|
709 |
+
auto zero = _mm512_setzero_ps();
|
710 |
+
auto mask = _mm512_cmp_ps_mask(abs, zero, _CMP_EQ_OQ);
|
711 |
+
auto div = values / abs;
|
712 |
+
return _mm512_mask_blend_ps(mask, div, zero);
|
713 |
+
}
|
714 |
+
__m512 real_() const {
|
715 |
+
const __m512 real_mask = _mm512_castsi512_ps(_mm512_setr_epi32(0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, 0x00000000,
|
716 |
+
0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, 0x00000000,
|
717 |
+
0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, 0x00000000,
|
718 |
+
0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, 0x00000000));
|
719 |
+
return _mm512_and_ps(values, real_mask);
|
720 |
+
}
|
721 |
+
Vectorized<c10::complex<float>> real() const {
|
722 |
+
return real_();
|
723 |
+
}
|
724 |
+
__m512 imag_() const {
|
725 |
+
const __m512 imag_mask = _mm512_castsi512_ps(_mm512_setr_epi32(0x00000000, 0xFFFFFFFF, 0x00000000, 0xFFFFFFFF,
|
726 |
+
0x00000000, 0xFFFFFFFF, 0x00000000, 0xFFFFFFFF,
|
727 |
+
0x00000000, 0xFFFFFFFF, 0x00000000, 0xFFFFFFFF,
|
728 |
+
0x00000000, 0xFFFFFFFF, 0x00000000, 0xFFFFFFFF));
|
729 |
+
return _mm512_and_ps(values, imag_mask);
|
730 |
+
}
|
731 |
+
Vectorized<c10::complex<float>> imag() const {
|
732 |
+
return _mm512_permute_ps(imag_(), 0xB1); //b a
|
733 |
+
}
|
734 |
+
__m512 conj_() const {
|
735 |
+
const __m512 sign_mask = _mm512_setr_ps(0.0, -0.0, 0.0, -0.0, 0.0, -0.0, 0.0, -0.0,
|
736 |
+
0.0, -0.0, 0.0, -0.0, 0.0, -0.0, 0.0, -0.0);
|
737 |
+
return _mm512_xor_ps(values, sign_mask); // a -b
|
738 |
+
}
|
739 |
+
Vectorized<c10::complex<float>> conj() const {
|
740 |
+
return conj_();
|
741 |
+
}
|
742 |
+
Vectorized<c10::complex<float>> log() const {
|
743 |
+
// Most trigonomic ops use the log() op to improve complex number performance.
|
744 |
+
return map(std::log);
|
745 |
+
}
|
746 |
+
Vectorized<c10::complex<float>> log2() const {
|
747 |
+
const __m512 log2_ = _mm512_set1_ps(std::log(2));
|
748 |
+
return _mm512_div_ps(log(), log2_);
|
749 |
+
}
|
750 |
+
Vectorized<c10::complex<float>> log10() const {
|
751 |
+
const __m512 log10_ = _mm512_set1_ps(std::log(10));
|
752 |
+
return _mm512_div_ps(log(), log10_);
|
753 |
+
}
|
754 |
+
Vectorized<c10::complex<float>> log1p() const {
|
755 |
+
return map(std::log1p);
|
756 |
+
}
|
757 |
+
Vectorized<c10::complex<float>> asin() const {
|
758 |
+
// asin(x)
|
759 |
+
// = -i*ln(iz + sqrt(1 -z^2))
|
760 |
+
// = -i*ln((ai - b) + sqrt(1 - (a + bi)*(a + bi)))
|
761 |
+
// = -i*ln((-b + ai) + sqrt(1 - (a**2 - b**2) - 2*abi))
|
762 |
+
const __m512 one = _mm512_set1_ps(1);
|
763 |
+
|
764 |
+
auto conj = conj_();
|
765 |
+
auto b_a = _mm512_permute_ps(conj, 0xB1); //-b a
|
766 |
+
auto ab = _mm512_mul_ps(conj, b_a); //-ab -ab
|
767 |
+
auto im = _mm512_add_ps(ab, ab); //-2ab -2ab
|
768 |
+
|
769 |
+
auto val_2 = _mm512_mul_ps(values, values); // a*a b*b
|
770 |
+
auto re = hsub_ps(val_2, _mm512_permute_ps(val_2, 0xB1)); // a*a-b*b b*b-a*a
|
771 |
+
re = _mm512_sub_ps(one, re);
|
772 |
+
|
773 |
+
auto root = Vectorized(_mm512_mask_blend_ps(0xAAAA, re, im)).sqrt(); //sqrt(re + i*im)
|
774 |
+
auto ln = Vectorized(_mm512_add_ps(b_a, root)).log(); //ln(iz + sqrt())
|
775 |
+
return Vectorized(_mm512_permute_ps(ln.values, 0xB1)).conj(); //-i*ln()
|
776 |
+
}
|
777 |
+
Vectorized<c10::complex<float>> acos() const {
|
778 |
+
return map(std::acos);
|
779 |
+
}
|
780 |
+
Vectorized<c10::complex<float>> atan() const;
|
781 |
+
Vectorized<c10::complex<float>> atanh() const {
|
782 |
+
return map(std::atanh);
|
783 |
+
}
|
784 |
+
Vectorized<c10::complex<float>> exp() const {
|
785 |
+
//exp(a + bi)
|
786 |
+
// = exp(a)*(cos(b) + sin(b)i)
|
787 |
+
auto exp = Sleef_expf16_u10(values); //exp(a) exp(b)
|
788 |
+
exp = _mm512_mask_blend_ps(0xAAAA, exp, _mm512_permute_ps(exp, 0xB1)); //exp(a) exp(a)
|
789 |
+
|
790 |
+
auto sin_cos = Sleef_sincosf16_u10(values); //[sin(a), cos(a)] [sin(b), cos(b)]
|
791 |
+
auto cos_sin = _mm512_mask_blend_ps(0xAAAA, _mm512_permute_ps(sin_cos.y, 0xB1),
|
792 |
+
sin_cos.x); //cos(b) sin(b)
|
793 |
+
return _mm512_mul_ps(exp, cos_sin);
|
794 |
+
}
|
795 |
+
Vectorized<c10::complex<float>> exp2() const {
|
796 |
+
// Use identity 2**x = exp(log(2) * x)
|
797 |
+
const __m512 ln_2 = _mm512_set1_ps(c10::ln_2<float>);
|
798 |
+
Vectorized<c10::complex<float>> scaled_values = _mm512_mul_ps(values, ln_2);
|
799 |
+
return scaled_values.exp();
|
800 |
+
}
|
801 |
+
Vectorized<c10::complex<float>> expm1() const {
|
802 |
+
return map(std::expm1);
|
803 |
+
}
|
804 |
+
Vectorized<c10::complex<float>> sin() const {
|
805 |
+
return map(std::sin);
|
806 |
+
}
|
807 |
+
Vectorized<c10::complex<float>> sinh() const {
|
808 |
+
return map(std::sinh);
|
809 |
+
}
|
810 |
+
Vectorized<c10::complex<float>> cos() const {
|
811 |
+
return map(std::cos);
|
812 |
+
}
|
813 |
+
Vectorized<c10::complex<float>> cosh() const {
|
814 |
+
return map(std::cosh);
|
815 |
+
}
|
816 |
+
Vectorized<c10::complex<float>> ceil() const {
|
817 |
+
return _mm512_ceil_ps(values);
|
818 |
+
}
|
819 |
+
Vectorized<c10::complex<float>> floor() const {
|
820 |
+
return _mm512_floor_ps(values);
|
821 |
+
}
|
822 |
+
Vectorized<c10::complex<float>> neg() const {
|
823 |
+
auto zero = _mm512_setzero_ps();
|
824 |
+
return _mm512_sub_ps(zero, values);
|
825 |
+
}
|
826 |
+
Vectorized<c10::complex<float>> round() const {
|
827 |
+
return _mm512_roundscale_ps(values, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
|
828 |
+
}
|
829 |
+
Vectorized<c10::complex<float>> tan() const {
|
830 |
+
return map(std::tan);
|
831 |
+
}
|
832 |
+
Vectorized<c10::complex<float>> tanh() const {
|
833 |
+
return map(std::tanh);
|
834 |
+
}
|
835 |
+
Vectorized<c10::complex<float>> trunc() const {
|
836 |
+
return _mm512_roundscale_ps(values, (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC));
|
837 |
+
}
|
838 |
+
Vectorized<c10::complex<float>> sqrt() const {
|
839 |
+
return map(std::sqrt);
|
840 |
+
}
|
841 |
+
Vectorized<c10::complex<float>> reciprocal() const;
|
842 |
+
Vectorized<c10::complex<float>> rsqrt() const {
|
843 |
+
return sqrt().reciprocal();
|
844 |
+
}
|
845 |
+
Vectorized<c10::complex<float>> pow(const Vectorized<c10::complex<float>> &exp) const {
|
846 |
+
__at_align__ c10::complex<float> x_tmp[size()];
|
847 |
+
__at_align__ c10::complex<float> y_tmp[size()];
|
848 |
+
store(x_tmp);
|
849 |
+
exp.store(y_tmp);
|
850 |
+
for (const auto i : c10::irange(size())) {
|
851 |
+
x_tmp[i] = std::pow(x_tmp[i], y_tmp[i]);
|
852 |
+
}
|
853 |
+
return loadu(x_tmp);
|
854 |
+
}
|
855 |
+
// Comparison using the _CMP_**_OQ predicate.
|
856 |
+
// `O`: get false if an operand is NaN
|
857 |
+
// `Q`: do not raise if an operand is NaN
|
858 |
+
Vectorized<c10::complex<float>> operator==(const Vectorized<c10::complex<float>>& other) const {
|
859 |
+
auto mask = _mm512_cmp_ps_mask(values, other.values, _CMP_EQ_OQ);
|
860 |
+
return _mm512_castsi512_ps(_mm512_mask_set1_epi32(zero_vector, mask, 0xFFFFFFFF));
|
861 |
+
}
|
862 |
+
Vectorized<c10::complex<float>> operator!=(const Vectorized<c10::complex<float>>& other) const {
|
863 |
+
auto mask = _mm512_cmp_ps_mask(values, other.values, _CMP_NEQ_UQ);
|
864 |
+
return _mm512_castsi512_ps(_mm512_mask_set1_epi32(zero_vector, mask, 0xFFFFFFFF));
|
865 |
+
}
|
866 |
+
Vectorized<c10::complex<float>> operator<(const Vectorized<c10::complex<float>>& other) const {
|
867 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
868 |
+
}
|
869 |
+
Vectorized<c10::complex<float>> operator<=(const Vectorized<c10::complex<float>>& other) const {
|
870 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
871 |
+
}
|
872 |
+
Vectorized<c10::complex<float>> operator>(const Vectorized<c10::complex<float>>& other) const {
|
873 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
874 |
+
}
|
875 |
+
Vectorized<c10::complex<float>> operator>=(const Vectorized<c10::complex<float>>& other) const {
|
876 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
877 |
+
}
|
878 |
+
|
879 |
+
Vectorized<c10::complex<float>> eq(const Vectorized<c10::complex<float>>& other) const;
|
880 |
+
Vectorized<c10::complex<float>> ne(const Vectorized<c10::complex<float>>& other) const;
|
881 |
+
};
|
882 |
+
|
883 |
+
template <> Vectorized<c10::complex<float>> inline operator+(const Vectorized<c10::complex<float>> &a,
|
884 |
+
const Vectorized<c10::complex<float>> &b) {
|
885 |
+
return _mm512_add_ps(a, b);
|
886 |
+
}
|
887 |
+
|
888 |
+
template <> Vectorized<c10::complex<float>> inline operator-(const Vectorized<c10::complex<float>> &a,
|
889 |
+
const Vectorized<c10::complex<float>> &b) {
|
890 |
+
return _mm512_sub_ps(a, b);
|
891 |
+
}
|
892 |
+
|
893 |
+
template <> Vectorized<c10::complex<float>> inline operator*(const Vectorized<c10::complex<float>> &a,
|
894 |
+
const Vectorized<c10::complex<float>> &b) {
|
895 |
+
//(a + bi) * (c + di) = (ac - bd) + (ad + bc)i
|
896 |
+
const __m512 sign_mask = _mm512_setr_ps(0.0, -0.0, 0.0, -0.0, 0.0, -0.0, 0.0, -0.0,
|
897 |
+
0.0, -0.0, 0.0, -0.0, 0.0, -0.0, 0.0, -0.0);
|
898 |
+
auto ac_bd = _mm512_mul_ps(a, b); //ac bd
|
899 |
+
|
900 |
+
auto d_c = _mm512_permute_ps(b, 0xB1); //d c
|
901 |
+
d_c = _mm512_xor_ps(sign_mask, d_c); //d -c
|
902 |
+
auto ad_bc = _mm512_mul_ps(a, d_c); //ad -bc
|
903 |
+
|
904 |
+
auto ret = Vectorized<c10::complex<float>>::hsub_ps(ac_bd, ad_bc); //ac - bd ad + bc
|
905 |
+
return ret;
|
906 |
+
}
|
907 |
+
|
908 |
+
template <> Vectorized<c10::complex<float>> inline operator/(const Vectorized<c10::complex<float>> &a,
|
909 |
+
const Vectorized<c10::complex<float>> &b) {
|
910 |
+
//re + im*i = (a + bi) / (c + di)
|
911 |
+
auto mask = _mm512_set1_ps(-0.f);
|
912 |
+
auto fabs_cd = _mm512_andnot_ps(mask, b); // |c| |d|
|
913 |
+
auto fabs_dc = _mm512_permute_ps(fabs_cd, 0xB1); // |d| |c|
|
914 |
+
auto scale = _mm512_rcp14_ps(_mm512_max_ps(fabs_cd, fabs_dc)); // 1/sc 1/sc
|
915 |
+
auto a2 = _mm512_mul_ps(a, scale); // a/sc b/sc
|
916 |
+
auto b2 = _mm512_mul_ps(b, scale); // c/sc d/sc
|
917 |
+
auto acbd2 = _mm512_mul_ps(a2, b2);
|
918 |
+
|
919 |
+
const __m512 sign_mask = _mm512_setr_ps(-0.0, 0.0, -0.0, 0.0, -0.0, 0.0, -0.0, 0.0,
|
920 |
+
-0.0, 0.0, -0.0, 0.0, -0.0, 0.0, -0.0, 0.0);
|
921 |
+
auto dc2 = _mm512_permute_ps(b2, 0xB1); // d/sc c/sc
|
922 |
+
dc2 = _mm512_xor_ps(sign_mask, dc2); // -d/|c,d| c/sc
|
923 |
+
auto adbc2 = _mm512_mul_ps(a2, dc2); //-ad/sc^2 bc/sc^2
|
924 |
+
auto res2 = Vectorized<c10::complex<float>>::hadd_ps(acbd2, adbc2); //(ac+bd)/sc^2 (bc-ad)/sc^2
|
925 |
+
|
926 |
+
// get the denominator
|
927 |
+
auto denom2 = Vectorized<c10::complex<float>>(b2).abs_2_(); // (c^2+d^2)/sc^2 (c^2+d^2)/sc^2
|
928 |
+
res2 = _mm512_div_ps(res2, denom2);
|
929 |
+
return res2;
|
930 |
+
}
|
931 |
+
|
932 |
+
// reciprocal. Implement this here so we can use multiplication.
|
933 |
+
inline Vectorized<c10::complex<float>> Vectorized<c10::complex<float>>::reciprocal() const {
|
934 |
+
//re + im*i = (a + bi) / (c + di)
|
935 |
+
//re = (ac + bd)/abs_2() = c/abs_2()
|
936 |
+
//im = (bc - ad)/abs_2() = d/abs_2()
|
937 |
+
const __m512 sign_mask = _mm512_setr_ps(0.0, -0.0, 0.0, -0.0, 0.0, -0.0, 0.0, -0.0,
|
938 |
+
0.0, -0.0, 0.0, -0.0, 0.0, -0.0, 0.0, -0.0);
|
939 |
+
auto c_d = _mm512_xor_ps(sign_mask, values); //c -d
|
940 |
+
return _mm512_div_ps(c_d, abs_2_());
|
941 |
+
}
|
942 |
+
|
943 |
+
inline Vectorized<c10::complex<float>> Vectorized<c10::complex<float>>::atan() const {
|
944 |
+
// atan(x) = i/2 * ln((i + z)/(i - z))
|
945 |
+
const __m512 i = _mm512_setr_ps(0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0,
|
946 |
+
0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0);
|
947 |
+
const Vectorized i_half = _mm512_setr_ps(0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5,
|
948 |
+
0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5);
|
949 |
+
|
950 |
+
auto sum = Vectorized(_mm512_add_ps(i, values)); // a 1+b
|
951 |
+
auto sub = Vectorized(_mm512_sub_ps(i, values)); // -a 1-b
|
952 |
+
auto ln = (sum/sub).log(); // ln((i + z)/(i - z))
|
953 |
+
return i_half*ln; // i/2*ln()
|
954 |
+
}
|
955 |
+
|
956 |
+
template <>
|
957 |
+
Vectorized<c10::complex<float>> inline maximum(const Vectorized<c10::complex<float>>& a,
|
958 |
+
const Vectorized<c10::complex<float>>& b) {
|
959 |
+
auto zero_vector = _mm512_set1_epi32(0);
|
960 |
+
auto abs_a = a.abs_2_();
|
961 |
+
auto abs_b = b.abs_2_();
|
962 |
+
auto mask = _mm512_cmp_ps_mask(abs_a, abs_b, _CMP_LT_OQ);
|
963 |
+
auto max = _mm512_mask_blend_ps(mask, a, b);
|
964 |
+
// Exploit the fact that all-ones is a NaN.
|
965 |
+
auto isnan_mask = _mm512_cmp_ps_mask(abs_a, abs_b, _CMP_UNORD_Q);
|
966 |
+
auto isnan = _mm512_mask_set1_epi32(zero_vector, isnan_mask, 0xFFFFFFFF);
|
967 |
+
return _mm512_or_ps(max, _mm512_castsi512_ps(isnan));
|
968 |
+
}
|
969 |
+
|
970 |
+
template <>
|
971 |
+
Vectorized<c10::complex<float>> inline minimum(const Vectorized<c10::complex<float>>& a,
|
972 |
+
const Vectorized<c10::complex<float>>& b) {
|
973 |
+
auto zero_vector = _mm512_set1_epi32(0);
|
974 |
+
auto abs_a = a.abs_2_();
|
975 |
+
auto abs_b = b.abs_2_();
|
976 |
+
auto mask = _mm512_cmp_ps_mask(abs_a, abs_b, _CMP_GT_OQ);
|
977 |
+
auto min = _mm512_mask_blend_ps(mask, a, b);
|
978 |
+
// Exploit the fact that all-ones is a NaN.
|
979 |
+
auto isnan_mask = _mm512_cmp_ps_mask(abs_a, abs_b, _CMP_UNORD_Q);
|
980 |
+
auto isnan = _mm512_mask_set1_epi32(zero_vector, isnan_mask, 0xFFFFFFFF);
|
981 |
+
return _mm512_or_ps(min, _mm512_castsi512_ps(isnan));
|
982 |
+
}
|
983 |
+
|
984 |
+
template <>
|
985 |
+
Vectorized<c10::complex<float>> inline operator&(const Vectorized<c10::complex<float>>& a,
|
986 |
+
const Vectorized<c10::complex<float>>& b) {
|
987 |
+
return _mm512_and_ps(a, b);
|
988 |
+
}
|
989 |
+
|
990 |
+
template <>
|
991 |
+
Vectorized<c10::complex<float>> inline operator|(const Vectorized<c10::complex<float>>& a,
|
992 |
+
const Vectorized<c10::complex<float>>& b) {
|
993 |
+
return _mm512_or_ps(a, b);
|
994 |
+
}
|
995 |
+
|
996 |
+
template <>
|
997 |
+
Vectorized<c10::complex<float>> inline operator^(const Vectorized<c10::complex<float>>& a,
|
998 |
+
const Vectorized<c10::complex<float>>& b) {
|
999 |
+
return _mm512_xor_ps(a, b);
|
1000 |
+
}
|
1001 |
+
|
1002 |
+
inline Vectorized<c10::complex<float>> Vectorized<c10::complex<float>>::eq(
|
1003 |
+
const Vectorized<c10::complex<float>>& other) const {
|
1004 |
+
auto eq = (*this == other); // compares real and imag individually
|
1005 |
+
// If both real numbers and imag numbers are equal, then the complex numbers are equal
|
1006 |
+
return (eq.real() & eq.imag()) & Vectorized<c10::complex<float>>(_mm512_set1_ps(1.0f));
|
1007 |
+
}
|
1008 |
+
|
1009 |
+
inline Vectorized<c10::complex<float>> Vectorized<c10::complex<float>>::ne(
|
1010 |
+
const Vectorized<c10::complex<float>>& other) const {
|
1011 |
+
auto ne = (*this != other); // compares real and imag individually
|
1012 |
+
// If either real numbers or imag numbers are not equal, then the complex numbers are not equal
|
1013 |
+
return (ne.real() | ne.imag()) & Vectorized<c10::complex<float>>(_mm512_set1_ps(1.0f));
|
1014 |
+
}
|
1015 |
+
|
1016 |
+
#endif
|
1017 |
+
|
1018 |
+
}}}
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec512/vec512_double.h
ADDED
@@ -0,0 +1,467 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
7 |
+
#include <ATen/cpu/vec/vec_base.h>
|
8 |
+
#include <c10/util/irange.h>
|
9 |
+
#if (defined(CPU_CAPABILITY_AVX512)) && !defined(_MSC_VER)
|
10 |
+
#include <sleef.h>
|
11 |
+
#endif
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace vec {
|
15 |
+
// See Note [CPU_CAPABILITY namespace]
|
16 |
+
inline namespace CPU_CAPABILITY {
|
17 |
+
|
18 |
+
#if defined(CPU_CAPABILITY_AVX512) && !defined(_MSC_VER)
|
19 |
+
|
20 |
+
template <> class Vectorized<double> {
|
21 |
+
private:
|
22 |
+
static constexpr __m512i zero_vector {0, 0, 0, 0, 0, 0, 0, 0};
|
23 |
+
public:
|
24 |
+
// values needs to be public for compilation with clang
|
25 |
+
// as vec512.h uses it
|
26 |
+
__m512d values;
|
27 |
+
using value_type = double;
|
28 |
+
using size_type = int;
|
29 |
+
static constexpr size_type size() {
|
30 |
+
return 8;
|
31 |
+
}
|
32 |
+
Vectorized() {}
|
33 |
+
Vectorized(__m512d v) : values(v) {}
|
34 |
+
Vectorized(double val) {
|
35 |
+
values = _mm512_set1_pd(val);
|
36 |
+
}
|
37 |
+
Vectorized(double val1, double val2, double val3, double val4,
|
38 |
+
double val5, double val6, double val7, double val8) {
|
39 |
+
values = _mm512_setr_pd(val1, val2, val3, val4, val5, val6, val7, val8);
|
40 |
+
}
|
41 |
+
operator __m512d() const {
|
42 |
+
return values;
|
43 |
+
}
|
44 |
+
template <int64_t mask>
|
45 |
+
static Vectorized<double> blend(const Vectorized<double>& a, const Vectorized<double>& b) {
|
46 |
+
return _mm512_mask_blend_pd(mask, a.values, b.values);
|
47 |
+
}
|
48 |
+
static Vectorized<double> blendv(const Vectorized<double>& a, const Vectorized<double>& b,
|
49 |
+
const Vectorized<double>& mask) {
|
50 |
+
auto all_ones = _mm512_set1_epi64(0xFFFFFFFFFFFFFFFF);
|
51 |
+
auto mmask = _mm512_cmp_epi64_mask(_mm512_castpd_si512(mask.values), all_ones, _MM_CMPINT_EQ);
|
52 |
+
return _mm512_mask_blend_pd(mmask, a.values, b.values);
|
53 |
+
}
|
54 |
+
template<typename step_t>
|
55 |
+
static Vectorized<double> arange(double base = 0., step_t step = static_cast<step_t>(1)) {
|
56 |
+
return Vectorized<double>(base, base + step, base + 2 * step, base + 3 * step,
|
57 |
+
base + 4 * step, base + 5 * step, base + 6 * step,
|
58 |
+
base + 7 * step);
|
59 |
+
}
|
60 |
+
static Vectorized<double> set(const Vectorized<double>& a, const Vectorized<double>& b,
|
61 |
+
int64_t count = size()) {
|
62 |
+
switch (count) {
|
63 |
+
case 0:
|
64 |
+
return a;
|
65 |
+
case 1:
|
66 |
+
return blend<1>(a, b);
|
67 |
+
case 2:
|
68 |
+
return blend<3>(a, b);
|
69 |
+
case 3:
|
70 |
+
return blend<7>(a, b);
|
71 |
+
case 4:
|
72 |
+
return blend<15>(a, b);
|
73 |
+
case 5:
|
74 |
+
return blend<31>(a, b);
|
75 |
+
case 6:
|
76 |
+
return blend<63>(a, b);
|
77 |
+
case 7:
|
78 |
+
return blend<127>(a, b);
|
79 |
+
}
|
80 |
+
return b;
|
81 |
+
}
|
82 |
+
static Vectorized<double> loadu(const void* ptr, int64_t count = size()) {
|
83 |
+
if (count == size())
|
84 |
+
return _mm512_loadu_pd(reinterpret_cast<const double*>(ptr));
|
85 |
+
|
86 |
+
__mmask8 mask = (1ULL << count) - 1;
|
87 |
+
return _mm512_maskz_loadu_pd(mask, ptr);
|
88 |
+
}
|
89 |
+
void store(void* ptr, int count = size()) const {
|
90 |
+
if (count == size()) {
|
91 |
+
_mm512_storeu_pd(reinterpret_cast<double*>(ptr), values);
|
92 |
+
} else if (count > 0) {
|
93 |
+
__mmask8 mask = (1ULL << count) - 1;
|
94 |
+
_mm512_mask_storeu_pd(reinterpret_cast<double*>(ptr), mask, values);
|
95 |
+
}
|
96 |
+
}
|
97 |
+
const double& operator[](int idx) const = delete;
|
98 |
+
double& operator[](int idx) = delete;
|
99 |
+
int zero_mask() const {
|
100 |
+
// returns an integer mask where all zero elements are translated to 1-bit and others are translated to 0-bit
|
101 |
+
__mmask8 cmp = _mm512_cmp_pd_mask(values, _mm512_set1_pd(0.0), _CMP_EQ_OQ);
|
102 |
+
return static_cast<int32_t>(cmp);
|
103 |
+
}
|
104 |
+
Vectorized<double> isnan() const {
|
105 |
+
auto cmp_mask = _mm512_cmp_pd_mask(values, _mm512_set1_pd(0.0), _CMP_UNORD_Q);
|
106 |
+
return _mm512_castsi512_pd(_mm512_mask_set1_epi64(zero_vector, cmp_mask,
|
107 |
+
0xFFFFFFFFFFFFFFFF));
|
108 |
+
}
|
109 |
+
bool has_inf_nan() const {
|
110 |
+
__m512d self_sub = _mm512_sub_pd(values, values);
|
111 |
+
return (_mm512_movepi8_mask(_mm512_castpd_si512(self_sub)) & 0x7777777777777777) != 0;
|
112 |
+
}
|
113 |
+
Vectorized<double> map(double (*const f)(double)) const {
|
114 |
+
__at_align__ double tmp[size()];
|
115 |
+
store(tmp);
|
116 |
+
for (const auto i : c10::irange(size())) {
|
117 |
+
tmp[i] = f(tmp[i]);
|
118 |
+
}
|
119 |
+
return loadu(tmp);
|
120 |
+
}
|
121 |
+
Vectorized<double> abs() const {
|
122 |
+
auto mask = _mm512_set1_pd(-0.f);
|
123 |
+
return _mm512_andnot_pd(mask, values);
|
124 |
+
}
|
125 |
+
Vectorized<double> angle() const {
|
126 |
+
const auto zero_vec = _mm512_castsi512_pd(zero_vector);
|
127 |
+
const auto nan_vec = _mm512_set1_pd(NAN);
|
128 |
+
const auto not_nan_mask = _mm512_cmp_pd_mask(values, values, _CMP_EQ_OQ);
|
129 |
+
const auto not_nan = _mm512_mask_set1_epi64(zero_vector, not_nan_mask,
|
130 |
+
0xFFFFFFFFFFFFFFFF);
|
131 |
+
const auto nan_mask = _mm512_cmp_pd_mask(_mm512_castsi512_pd(not_nan),
|
132 |
+
zero_vec, _CMP_EQ_OQ);
|
133 |
+
const auto pi = _mm512_set1_pd(c10::pi<double>);
|
134 |
+
|
135 |
+
const auto neg_mask = _mm512_cmp_pd_mask(values, zero_vec, _CMP_LT_OQ);
|
136 |
+
auto angle = _mm512_mask_blend_pd(neg_mask, zero_vec, pi);
|
137 |
+
angle = _mm512_mask_blend_pd(nan_mask, angle, nan_vec);
|
138 |
+
return angle;
|
139 |
+
}
|
140 |
+
Vectorized<double> real() const {
|
141 |
+
return *this;
|
142 |
+
}
|
143 |
+
Vectorized<double> imag() const {
|
144 |
+
return _mm512_set1_pd(0);
|
145 |
+
}
|
146 |
+
Vectorized<double> conj() const {
|
147 |
+
return *this;
|
148 |
+
}
|
149 |
+
Vectorized<double> acos() const {
|
150 |
+
return Vectorized<double>(Sleef_acosd8_u10(values));
|
151 |
+
}
|
152 |
+
Vectorized<double> acosh() const {
|
153 |
+
return Vectorized<double>(Sleef_acoshd8_u10(values));
|
154 |
+
}
|
155 |
+
Vectorized<double> asin() const {
|
156 |
+
return Vectorized<double>(Sleef_asind8_u10(values));
|
157 |
+
}
|
158 |
+
Vectorized<double> atan() const {
|
159 |
+
return Vectorized<double>(Sleef_atand8_u10(values));
|
160 |
+
}
|
161 |
+
Vectorized<double> atanh() const {
|
162 |
+
return Vectorized<double>(Sleef_atanhd8_u10(values));
|
163 |
+
}
|
164 |
+
Vectorized<double> atan2(const Vectorized<double> &b) const {
|
165 |
+
return Vectorized<double>(Sleef_atan2d8_u10(values, b));
|
166 |
+
}
|
167 |
+
Vectorized<double> copysign(const Vectorized<double> &sign) const {
|
168 |
+
return Vectorized<double>(Sleef_copysignd8(values, sign));
|
169 |
+
}
|
170 |
+
Vectorized<double> erf() const {
|
171 |
+
return Vectorized<double>(Sleef_erfd8_u10(values));
|
172 |
+
}
|
173 |
+
Vectorized<double> erfc() const {
|
174 |
+
return Vectorized<double>(Sleef_erfcd8_u15(values));
|
175 |
+
}
|
176 |
+
Vectorized<double> erfinv() const {
|
177 |
+
return map(calc_erfinv);
|
178 |
+
}
|
179 |
+
Vectorized<double> exp() const {
|
180 |
+
return Vectorized<double>(Sleef_expd8_u10(values));
|
181 |
+
}
|
182 |
+
Vectorized<double> exp2() const {
|
183 |
+
return Vectorized<double>(Sleef_exp2d8_u10(values));
|
184 |
+
}
|
185 |
+
Vectorized<double> expm1() const {
|
186 |
+
return Vectorized<double>(Sleef_expm1d8_u10(values));
|
187 |
+
}
|
188 |
+
Vectorized<double> exp_u20() const {
|
189 |
+
return exp();
|
190 |
+
}
|
191 |
+
Vectorized<double> fmod(const Vectorized<double>& q) const {
|
192 |
+
return Vectorized<double>(Sleef_fmodd8(values, q));
|
193 |
+
}
|
194 |
+
Vectorized<double> hypot(const Vectorized<double> &b) const {
|
195 |
+
return Vectorized<double>(Sleef_hypotd8_u05(values, b));
|
196 |
+
}
|
197 |
+
Vectorized<double> i0() const {
|
198 |
+
return map(calc_i0);
|
199 |
+
}
|
200 |
+
Vectorized<double> i0e() const {
|
201 |
+
return map(calc_i0e);
|
202 |
+
}
|
203 |
+
Vectorized<double> digamma() const {
|
204 |
+
return map(calc_digamma);
|
205 |
+
}
|
206 |
+
Vectorized<double> igamma(const Vectorized<double> &x) const {
|
207 |
+
__at_align__ double tmp[size()];
|
208 |
+
__at_align__ double tmp_x[size()];
|
209 |
+
store(tmp);
|
210 |
+
x.store(tmp_x);
|
211 |
+
for (const auto i : c10::irange(size())) {
|
212 |
+
tmp[i] = calc_igamma(tmp[i], tmp_x[i]);
|
213 |
+
}
|
214 |
+
return loadu(tmp);
|
215 |
+
}
|
216 |
+
Vectorized<double> igammac(const Vectorized<double> &x) const {
|
217 |
+
__at_align__ double tmp[size()];
|
218 |
+
__at_align__ double tmp_x[size()];
|
219 |
+
store(tmp);
|
220 |
+
x.store(tmp_x);
|
221 |
+
for (const auto i : c10::irange(size())) {
|
222 |
+
tmp[i] = calc_igammac(tmp[i], tmp_x[i]);
|
223 |
+
}
|
224 |
+
return loadu(tmp);
|
225 |
+
}
|
226 |
+
Vectorized<double> log() const {
|
227 |
+
return Vectorized<double>(Sleef_logd8_u10(values));
|
228 |
+
}
|
229 |
+
Vectorized<double> log2() const {
|
230 |
+
return Vectorized<double>(Sleef_log2d8_u10(values));
|
231 |
+
}
|
232 |
+
Vectorized<double> log10() const {
|
233 |
+
return Vectorized<double>(Sleef_log10d8_u10(values));
|
234 |
+
}
|
235 |
+
Vectorized<double> log1p() const {
|
236 |
+
return Vectorized<double>(Sleef_log1pd8_u10(values));
|
237 |
+
}
|
238 |
+
Vectorized<double> sin() const {
|
239 |
+
return Vectorized<double>(Sleef_sind8_u10(values));
|
240 |
+
}
|
241 |
+
Vectorized<double> sinh() const {
|
242 |
+
return Vectorized<double>(Sleef_sinhd8_u10(values));
|
243 |
+
}
|
244 |
+
Vectorized<double> cos() const {
|
245 |
+
return Vectorized<double>(Sleef_cosd8_u10(values));
|
246 |
+
}
|
247 |
+
Vectorized<double> cosh() const {
|
248 |
+
return Vectorized<double>(Sleef_coshd8_u10(values));
|
249 |
+
}
|
250 |
+
Vectorized<double> ceil() const {
|
251 |
+
return _mm512_ceil_pd(values);
|
252 |
+
}
|
253 |
+
Vectorized<double> floor() const {
|
254 |
+
return _mm512_floor_pd(values);
|
255 |
+
}
|
256 |
+
Vectorized<double> frac() const;
|
257 |
+
Vectorized<double> neg() const {
|
258 |
+
return _mm512_xor_pd(_mm512_set1_pd(-0.), values);
|
259 |
+
}
|
260 |
+
Vectorized<double> nextafter(const Vectorized<double> &b) const {
|
261 |
+
return Vectorized<double>(Sleef_nextafterd8(values, b));
|
262 |
+
}
|
263 |
+
Vectorized<double> round() const {
|
264 |
+
return _mm512_roundscale_pd(values, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
|
265 |
+
}
|
266 |
+
Vectorized<double> tan() const {
|
267 |
+
return Vectorized<double>(Sleef_tand8_u10(values));
|
268 |
+
}
|
269 |
+
Vectorized<double> tanh() const {
|
270 |
+
return Vectorized<double>(Sleef_tanhd8_u10(values));
|
271 |
+
}
|
272 |
+
Vectorized<double> trunc() const {
|
273 |
+
return _mm512_roundscale_pd(values, (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC));
|
274 |
+
}
|
275 |
+
Vectorized<double> lgamma() const {
|
276 |
+
return Vectorized<double>(Sleef_lgammad8_u10(values));
|
277 |
+
}
|
278 |
+
Vectorized<double> sqrt() const {
|
279 |
+
return _mm512_sqrt_pd(values);
|
280 |
+
}
|
281 |
+
Vectorized<double> reciprocal() const {
|
282 |
+
return _mm512_div_pd(_mm512_set1_pd(1), values);
|
283 |
+
}
|
284 |
+
Vectorized<double> rsqrt() const {
|
285 |
+
return _mm512_div_pd(_mm512_set1_pd(1), _mm512_sqrt_pd(values));
|
286 |
+
}
|
287 |
+
Vectorized<double> pow(const Vectorized<double> &b) const {
|
288 |
+
return Vectorized<double>(Sleef_powd8_u10(values, b));
|
289 |
+
}
|
290 |
+
// Comparison using the _CMP_**_OQ predicate.
|
291 |
+
// `O`: get false if an operand is NaN
|
292 |
+
// `Q`: do not raise if an operand is NaN
|
293 |
+
Vectorized<double> operator==(const Vectorized<double>& other) const {
|
294 |
+
auto cmp_mask = _mm512_cmp_pd_mask(values, other.values, _CMP_EQ_OQ);
|
295 |
+
return _mm512_castsi512_pd(_mm512_mask_set1_epi64(zero_vector, cmp_mask,
|
296 |
+
0xFFFFFFFFFFFFFFFF));
|
297 |
+
}
|
298 |
+
|
299 |
+
Vectorized<double> operator!=(const Vectorized<double>& other) const {
|
300 |
+
auto cmp_mask = _mm512_cmp_pd_mask(values, other.values, _CMP_NEQ_UQ);
|
301 |
+
return _mm512_castsi512_pd(_mm512_mask_set1_epi64(zero_vector, cmp_mask,
|
302 |
+
0xFFFFFFFFFFFFFFFF));
|
303 |
+
}
|
304 |
+
|
305 |
+
Vectorized<double> operator<(const Vectorized<double>& other) const {
|
306 |
+
auto cmp_mask = _mm512_cmp_pd_mask(values, other.values, _CMP_LT_OQ);
|
307 |
+
return _mm512_castsi512_pd(_mm512_mask_set1_epi64(zero_vector, cmp_mask,
|
308 |
+
0xFFFFFFFFFFFFFFFF));
|
309 |
+
}
|
310 |
+
|
311 |
+
Vectorized<double> operator<=(const Vectorized<double>& other) const {
|
312 |
+
auto cmp_mask = _mm512_cmp_pd_mask(values, other.values, _CMP_LE_OQ);
|
313 |
+
return _mm512_castsi512_pd(_mm512_mask_set1_epi64(zero_vector, cmp_mask,
|
314 |
+
0xFFFFFFFFFFFFFFFF));
|
315 |
+
}
|
316 |
+
|
317 |
+
Vectorized<double> operator>(const Vectorized<double>& other) const {
|
318 |
+
auto cmp_mask = _mm512_cmp_pd_mask(values, other.values, _CMP_GT_OQ);
|
319 |
+
return _mm512_castsi512_pd(_mm512_mask_set1_epi64(zero_vector, cmp_mask,
|
320 |
+
0xFFFFFFFFFFFFFFFF));
|
321 |
+
}
|
322 |
+
|
323 |
+
Vectorized<double> operator>=(const Vectorized<double>& other) const {
|
324 |
+
auto cmp_mask = _mm512_cmp_pd_mask(values, other.values, _CMP_GE_OQ);
|
325 |
+
return _mm512_castsi512_pd(_mm512_mask_set1_epi64(zero_vector, cmp_mask,
|
326 |
+
0xFFFFFFFFFFFFFFFF));
|
327 |
+
}
|
328 |
+
|
329 |
+
Vectorized<double> eq(const Vectorized<double>& other) const;
|
330 |
+
Vectorized<double> ne(const Vectorized<double>& other) const;
|
331 |
+
Vectorized<double> lt(const Vectorized<double>& other) const;
|
332 |
+
Vectorized<double> le(const Vectorized<double>& other) const;
|
333 |
+
Vectorized<double> gt(const Vectorized<double>& other) const;
|
334 |
+
Vectorized<double> ge(const Vectorized<double>& other) const;
|
335 |
+
};
|
336 |
+
|
337 |
+
template <>
|
338 |
+
Vectorized<double> inline operator+(const Vectorized<double>& a, const Vectorized<double>& b) {
|
339 |
+
return _mm512_add_pd(a, b);
|
340 |
+
}
|
341 |
+
|
342 |
+
template <>
|
343 |
+
Vectorized<double> inline operator-(const Vectorized<double>& a, const Vectorized<double>& b) {
|
344 |
+
return _mm512_sub_pd(a, b);
|
345 |
+
}
|
346 |
+
|
347 |
+
template <>
|
348 |
+
Vectorized<double> inline operator*(const Vectorized<double>& a, const Vectorized<double>& b) {
|
349 |
+
return _mm512_mul_pd(a, b);
|
350 |
+
}
|
351 |
+
|
352 |
+
template <>
|
353 |
+
Vectorized<double> inline operator/(const Vectorized<double>& a, const Vectorized<double>& b) {
|
354 |
+
return _mm512_div_pd(a, b);
|
355 |
+
}
|
356 |
+
|
357 |
+
// frac. Implement this here so we can use subtraction.
|
358 |
+
inline Vectorized<double> Vectorized<double>::frac() const {
|
359 |
+
return *this - this->trunc();
|
360 |
+
}
|
361 |
+
|
362 |
+
// Implements the IEEE 754 201X `maximum` operation, which propagates NaN if
|
363 |
+
// either input is a NaN.
|
364 |
+
template <>
|
365 |
+
Vectorized<double> inline maximum(const Vectorized<double>& a, const Vectorized<double>& b) {
|
366 |
+
auto zero_vec = _mm512_set1_epi64(0);
|
367 |
+
Vectorized<double> max = _mm512_max_pd(a, b);
|
368 |
+
auto isnan_mask = _mm512_cmp_pd_mask(a, b, _CMP_UNORD_Q);
|
369 |
+
auto isnan = _mm512_castsi512_pd(_mm512_mask_set1_epi64(zero_vec, isnan_mask,
|
370 |
+
0xFFFFFFFFFFFFFFFF));
|
371 |
+
// Exploit the fact that all-ones is a NaN.
|
372 |
+
return _mm512_or_pd(max, isnan);
|
373 |
+
}
|
374 |
+
|
375 |
+
// Implements the IEEE 754 201X `minimum` operation, which propagates NaN if
|
376 |
+
// either input is a NaN.
|
377 |
+
template <>
|
378 |
+
Vectorized<double> inline minimum(const Vectorized<double>& a, const Vectorized<double>& b) {
|
379 |
+
auto zero_vec = _mm512_set1_epi64(0);
|
380 |
+
Vectorized<double> min = _mm512_min_pd(a, b);
|
381 |
+
auto isnan_mask = _mm512_cmp_pd_mask(a, b, _CMP_UNORD_Q);
|
382 |
+
auto isnan = _mm512_castsi512_pd(_mm512_mask_set1_epi64(zero_vec, isnan_mask,
|
383 |
+
0xFFFFFFFFFFFFFFFF));
|
384 |
+
// Exploit the fact that all-ones is a NaN.
|
385 |
+
return _mm512_or_pd(min, isnan);
|
386 |
+
}
|
387 |
+
|
388 |
+
template <>
|
389 |
+
Vectorized<double> inline clamp(const Vectorized<double>& a, const Vectorized<double>& min, const Vectorized<double>& max) {
|
390 |
+
return _mm512_min_pd(max, _mm512_max_pd(min, a));
|
391 |
+
}
|
392 |
+
|
393 |
+
template <>
|
394 |
+
Vectorized<double> inline clamp_min(const Vectorized<double>& a, const Vectorized<double>& min) {
|
395 |
+
return _mm512_max_pd(min, a);
|
396 |
+
}
|
397 |
+
|
398 |
+
template <>
|
399 |
+
Vectorized<double> inline clamp_max(const Vectorized<double>& a, const Vectorized<double>& max) {
|
400 |
+
return _mm512_min_pd(max, a);
|
401 |
+
}
|
402 |
+
|
403 |
+
template <>
|
404 |
+
Vectorized<double> inline operator&(const Vectorized<double>& a, const Vectorized<double>& b) {
|
405 |
+
return _mm512_and_pd(a, b);
|
406 |
+
}
|
407 |
+
|
408 |
+
template <>
|
409 |
+
Vectorized<double> inline operator|(const Vectorized<double>& a, const Vectorized<double>& b) {
|
410 |
+
return _mm512_or_pd(a, b);
|
411 |
+
}
|
412 |
+
|
413 |
+
template <>
|
414 |
+
Vectorized<double> inline operator^(const Vectorized<double>& a, const Vectorized<double>& b) {
|
415 |
+
return _mm512_xor_pd(a, b);
|
416 |
+
}
|
417 |
+
|
418 |
+
inline Vectorized<double> Vectorized<double>::eq(const Vectorized<double>& other) const {
|
419 |
+
return (*this == other) & Vectorized<double>(1.0);
|
420 |
+
}
|
421 |
+
|
422 |
+
inline Vectorized<double> Vectorized<double>::ne(const Vectorized<double>& other) const {
|
423 |
+
return (*this != other) & Vectorized<double>(1.0);
|
424 |
+
}
|
425 |
+
|
426 |
+
inline Vectorized<double> Vectorized<double>::gt(const Vectorized<double>& other) const {
|
427 |
+
return (*this > other) & Vectorized<double>(1.0);
|
428 |
+
}
|
429 |
+
|
430 |
+
inline Vectorized<double> Vectorized<double>::ge(const Vectorized<double>& other) const {
|
431 |
+
return (*this >= other) & Vectorized<double>(1.0);
|
432 |
+
}
|
433 |
+
|
434 |
+
inline Vectorized<double> Vectorized<double>::lt(const Vectorized<double>& other) const {
|
435 |
+
return (*this < other) & Vectorized<double>(1.0);
|
436 |
+
}
|
437 |
+
|
438 |
+
inline Vectorized<double> Vectorized<double>::le(const Vectorized<double>& other) const {
|
439 |
+
return (*this <= other) & Vectorized<double>(1.0);
|
440 |
+
}
|
441 |
+
|
442 |
+
template <>
|
443 |
+
inline void convert(const double* src, double* dst, int64_t n) {
|
444 |
+
int64_t i;
|
445 |
+
#pragma unroll
|
446 |
+
for (i = 0; i <= (n - Vectorized<double>::size()); i += Vectorized<double>::size()) {
|
447 |
+
_mm512_storeu_pd(dst + i, _mm512_loadu_pd(src + i));
|
448 |
+
}
|
449 |
+
#pragma unroll
|
450 |
+
for (; i < n; i++) {
|
451 |
+
dst[i] = src[i];
|
452 |
+
}
|
453 |
+
}
|
454 |
+
|
455 |
+
template <>
|
456 |
+
Vectorized<double> inline fmadd(const Vectorized<double>& a, const Vectorized<double>& b, const Vectorized<double>& c) {
|
457 |
+
return _mm512_fmadd_pd(a, b, c);
|
458 |
+
}
|
459 |
+
|
460 |
+
template <>
|
461 |
+
Vectorized<double> inline fmsub(const Vectorized<double>& a, const Vectorized<double>& b, const Vectorized<double>& c) {
|
462 |
+
return _mm512_fmsub_pd(a, b, c);
|
463 |
+
}
|
464 |
+
|
465 |
+
#endif
|
466 |
+
|
467 |
+
}}}
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec512/vec512_float.h
ADDED
@@ -0,0 +1,793 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
7 |
+
#include <ATen/cpu/vec/vec_base.h>
|
8 |
+
#include <c10/util/irange.h>
|
9 |
+
#if defined(CPU_CAPABILITY_AVX512) && !defined(_MSC_VER)
|
10 |
+
#include <sleef.h>
|
11 |
+
#endif
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace vec {
|
15 |
+
// See Note [CPU_CAPABILITY namespace]
|
16 |
+
inline namespace CPU_CAPABILITY {
|
17 |
+
|
18 |
+
#if defined(CPU_CAPABILITY_AVX512) && !defined(_MSC_VER)
|
19 |
+
|
20 |
+
template <> class Vectorized<float> {
|
21 |
+
private:
|
22 |
+
static constexpr __m512i zero_vec {0, 0, 0, 0, 0, 0, 0, 0};
|
23 |
+
public:
|
24 |
+
__m512 values;
|
25 |
+
using value_type = float;
|
26 |
+
using size_type = int;
|
27 |
+
static constexpr size_type size() {
|
28 |
+
return 16;
|
29 |
+
}
|
30 |
+
Vectorized() {}
|
31 |
+
Vectorized(__m512 v) : values(v) {}
|
32 |
+
Vectorized(float val) {
|
33 |
+
values = _mm512_set1_ps(val);
|
34 |
+
}
|
35 |
+
Vectorized(float val1, float val2, float val3, float val4,
|
36 |
+
float val5, float val6, float val7, float val8,
|
37 |
+
float val9, float val10, float val11, float val12,
|
38 |
+
float val13, float val14, float val15, float val16) {
|
39 |
+
values = _mm512_setr_ps(val1, val2, val3, val4, val5, val6, val7, val8,
|
40 |
+
val9, val10, val11, val12, val13, val14, val15, val16);
|
41 |
+
}
|
42 |
+
operator __m512() const {
|
43 |
+
return values;
|
44 |
+
}
|
45 |
+
template <int64_t mask>
|
46 |
+
static Vectorized<float> blend(const Vectorized<float>& a, const Vectorized<float>& b) {
|
47 |
+
return _mm512_mask_blend_ps(mask, a.values, b.values);
|
48 |
+
}
|
49 |
+
static Vectorized<float> blendv(const Vectorized<float>& a, const Vectorized<float>& b,
|
50 |
+
const Vectorized<float>& mask) {
|
51 |
+
auto all_ones = _mm512_set1_epi32(0xFFFFFFFF);
|
52 |
+
auto mmask = _mm512_cmp_epi32_mask(_mm512_castps_si512(mask.values), all_ones, _MM_CMPINT_EQ);
|
53 |
+
return _mm512_mask_blend_ps(mmask, a.values, b.values);
|
54 |
+
}
|
55 |
+
template<typename step_t>
|
56 |
+
static Vectorized<float> arange(float base = 0.f, step_t step = static_cast<step_t>(1)) {
|
57 |
+
return Vectorized<float>(
|
58 |
+
base, base + step, base + 2 * step, base + 3 * step,
|
59 |
+
base + 4 * step, base + 5 * step, base + 6 * step, base + 7 * step,
|
60 |
+
base + 8 * step, base + 9 * step, base + 10 * step, base + 11 * step,
|
61 |
+
base + 12 * step, base + 13 * step, base + 14 * step, base + 15 * step);
|
62 |
+
}
|
63 |
+
static Vectorized<float> set(const Vectorized<float>& a, const Vectorized<float>& b,
|
64 |
+
int64_t count = size()) {
|
65 |
+
switch (count) {
|
66 |
+
case 0:
|
67 |
+
return a;
|
68 |
+
case 1:
|
69 |
+
return blend<1>(a, b);
|
70 |
+
case 2:
|
71 |
+
return blend<3>(a, b);
|
72 |
+
case 3:
|
73 |
+
return blend<7>(a, b);
|
74 |
+
case 4:
|
75 |
+
return blend<15>(a, b);
|
76 |
+
case 5:
|
77 |
+
return blend<31>(a, b);
|
78 |
+
case 6:
|
79 |
+
return blend<63>(a, b);
|
80 |
+
case 7:
|
81 |
+
return blend<127>(a, b);
|
82 |
+
case 8:
|
83 |
+
return blend<255>(a, b);
|
84 |
+
case 9:
|
85 |
+
return blend<511>(a, b);
|
86 |
+
case 10:
|
87 |
+
return blend<1023>(a, b);
|
88 |
+
case 11:
|
89 |
+
return blend<2047>(a, b);
|
90 |
+
case 12:
|
91 |
+
return blend<4095>(a, b);
|
92 |
+
case 13:
|
93 |
+
return blend<8191>(a, b);
|
94 |
+
case 14:
|
95 |
+
return blend<16383>(a, b);
|
96 |
+
case 15:
|
97 |
+
return blend<32767>(a, b);
|
98 |
+
}
|
99 |
+
return b;
|
100 |
+
}
|
101 |
+
static Vectorized<float> loadu(const void* ptr, int64_t count = size()) {
|
102 |
+
if (count == size())
|
103 |
+
return _mm512_loadu_ps(reinterpret_cast<const float*>(ptr));
|
104 |
+
|
105 |
+
__mmask16 mask = (1ULL << count) - 1;
|
106 |
+
return _mm512_maskz_loadu_ps(mask, ptr);
|
107 |
+
}
|
108 |
+
void store(void* ptr, int64_t count = size()) const {
|
109 |
+
if (count == size()) {
|
110 |
+
_mm512_storeu_ps(reinterpret_cast<float*>(ptr), values);
|
111 |
+
} else if (count > 0) {
|
112 |
+
__mmask16 mask = (1ULL << count) - 1;
|
113 |
+
_mm512_mask_storeu_ps(reinterpret_cast<float*>(ptr), mask, values);
|
114 |
+
}
|
115 |
+
}
|
116 |
+
const float& operator[](int idx) const = delete;
|
117 |
+
float& operator[](int idx) = delete;
|
118 |
+
int zero_mask() const {
|
119 |
+
// returns an integer mask where all zero elements are translated to 1-bit and others are translated to 0-bit
|
120 |
+
__mmask16 cmp = _mm512_cmp_ps_mask(values, _mm512_set1_ps(0.0), _CMP_EQ_OQ);
|
121 |
+
return static_cast<int32_t>(cmp);
|
122 |
+
}
|
123 |
+
Vectorized<float> isnan() const {
|
124 |
+
auto mask = _mm512_cmp_ps_mask(values, _mm512_set1_ps(0.0), _CMP_UNORD_Q);
|
125 |
+
return _mm512_castsi512_ps(_mm512_mask_set1_epi32(zero_vec, mask,
|
126 |
+
0xFFFFFFFF));
|
127 |
+
}
|
128 |
+
bool has_inf_nan() const {
|
129 |
+
__m512 self_sub = _mm512_sub_ps(values, values);
|
130 |
+
return (_mm512_movepi8_mask(_mm512_castps_si512(self_sub)) & 0x7777777777777777) != 0;
|
131 |
+
}
|
132 |
+
Vectorized<float> map(float (*const f)(float)) const {
|
133 |
+
__at_align__ float tmp[size()];
|
134 |
+
store(tmp);
|
135 |
+
for (const auto i : c10::irange(size())) {
|
136 |
+
tmp[i] = f(tmp[i]);
|
137 |
+
}
|
138 |
+
return loadu(tmp);
|
139 |
+
}
|
140 |
+
Vectorized<float> abs() const {
|
141 |
+
auto mask = _mm512_set1_ps(-0.f);
|
142 |
+
return _mm512_andnot_ps(mask, values);
|
143 |
+
}
|
144 |
+
Vectorized<float> angle() const {
|
145 |
+
__m512 zero_vec = _mm512_set1_ps(0.f);
|
146 |
+
const auto nan_vec = _mm512_set1_ps(NAN);
|
147 |
+
const auto not_nan_mask = _mm512_cmp_ps_mask(values, values, _CMP_EQ_OQ);
|
148 |
+
const auto not_nan_vec = _mm512_mask_set1_epi32(_mm512_castps_si512(zero_vec),
|
149 |
+
not_nan_mask, 0xFFFFFFFF);
|
150 |
+
const auto nan_mask = _mm512_cmp_ps_mask(_mm512_castsi512_ps(not_nan_vec),
|
151 |
+
zero_vec, _CMP_EQ_OQ);
|
152 |
+
const auto pi = _mm512_set1_ps(c10::pi<double>);
|
153 |
+
|
154 |
+
const auto neg_mask = _mm512_cmp_ps_mask(values, zero_vec, _CMP_LT_OQ);
|
155 |
+
auto angle = _mm512_mask_blend_ps(neg_mask, zero_vec, pi);
|
156 |
+
angle = _mm512_mask_blend_ps(nan_mask, angle, nan_vec);
|
157 |
+
return angle;
|
158 |
+
}
|
159 |
+
Vectorized<float> real() const {
|
160 |
+
return *this;
|
161 |
+
}
|
162 |
+
Vectorized<float> imag() const {
|
163 |
+
return _mm512_set1_ps(0);
|
164 |
+
}
|
165 |
+
Vectorized<float> conj() const {
|
166 |
+
return *this;
|
167 |
+
}
|
168 |
+
Vectorized<float> acos() const {
|
169 |
+
return Vectorized<float>(Sleef_acosf16_u10(values));
|
170 |
+
}
|
171 |
+
Vectorized<float> acosh() const {
|
172 |
+
return Vectorized<float>(Sleef_acoshf16_u10(values));
|
173 |
+
}
|
174 |
+
Vectorized<float> asin() const {
|
175 |
+
return Vectorized<float>(Sleef_asinf16_u10(values));
|
176 |
+
}
|
177 |
+
Vectorized<float> atan() const {
|
178 |
+
return Vectorized<float>(Sleef_atanf16_u10(values));
|
179 |
+
}
|
180 |
+
Vectorized<float> atanh() const {
|
181 |
+
return Vectorized<float>(Sleef_atanhf16_u10(values));
|
182 |
+
}
|
183 |
+
Vectorized<float> atan2(const Vectorized<float> &b) const {
|
184 |
+
return Vectorized<float>(Sleef_atan2f16_u10(values, b));
|
185 |
+
}
|
186 |
+
Vectorized<float> copysign(const Vectorized<float> &sign) const {
|
187 |
+
return Vectorized<float>(Sleef_copysignf16(values, sign));
|
188 |
+
}
|
189 |
+
Vectorized<float> erf() const {
|
190 |
+
// constants
|
191 |
+
const auto neg_zero_vec = _mm512_set1_ps(-0.f);
|
192 |
+
const auto one_vec = _mm512_set1_ps(1.0f);
|
193 |
+
const auto p = _mm512_set1_ps(0.3275911f);
|
194 |
+
const auto p1 = _mm512_set1_ps(0.254829592f);
|
195 |
+
const auto p2 = _mm512_set1_ps(-0.284496736f);
|
196 |
+
const auto p3 = _mm512_set1_ps(1.421413741f);
|
197 |
+
const auto p4 = _mm512_set1_ps(-1.453152027f);
|
198 |
+
const auto p5 = _mm512_set1_ps(1.061405429f);
|
199 |
+
// sign(x)
|
200 |
+
auto sign_mask = _mm512_and_ps(neg_zero_vec, values);
|
201 |
+
auto abs_vec = _mm512_abs_ps(values);
|
202 |
+
// t = 1 / (p * abs(x) + 1)
|
203 |
+
auto tmp0 = _mm512_fmadd_ps(p, abs_vec, one_vec);
|
204 |
+
auto t = _mm512_div_ps(one_vec, tmp0);
|
205 |
+
// r = p5 * t ^ 4 + p4 * t ^ 3 + p3 * t ^ 2 + p2 * t + p1
|
206 |
+
auto tmp1 = _mm512_fmadd_ps(p5, t, p4);
|
207 |
+
auto tmp2 = _mm512_fmadd_ps(tmp1, t, p3);
|
208 |
+
auto tmp3 = _mm512_fmadd_ps(tmp2, t, p2);
|
209 |
+
auto r = _mm512_fmadd_ps(tmp3, t, p1);
|
210 |
+
// - exp(- x * x)
|
211 |
+
auto pow_2 = _mm512_mul_ps(values, values);
|
212 |
+
auto neg_pow_2 = _mm512_xor_ps(neg_zero_vec, pow_2);
|
213 |
+
// auto tmp4 = exp(neg_pow_2);
|
214 |
+
auto tmp4 = Vectorized<float>(Sleef_expf16_u10(neg_pow_2));
|
215 |
+
auto tmp5 = _mm512_xor_ps(neg_zero_vec, tmp4);
|
216 |
+
// erf(x) = sign(x) * (1 - r * t * exp(- x * x))
|
217 |
+
auto tmp6 = _mm512_mul_ps(tmp5, t);
|
218 |
+
auto tmp7 = _mm512_fmadd_ps(tmp6, r, one_vec);
|
219 |
+
return _mm512_xor_ps(sign_mask, tmp7);
|
220 |
+
}
|
221 |
+
Vectorized<float> erfc() const {
|
222 |
+
return Vectorized<float>(Sleef_erfcf16_u15(values));
|
223 |
+
}
|
224 |
+
Vectorized<float> erfinv() const {
|
225 |
+
return map(calc_erfinv);
|
226 |
+
}
|
227 |
+
Vectorized<float> exp() const {
|
228 |
+
return Vectorized<float>(Sleef_expf16_u10(values));
|
229 |
+
}
|
230 |
+
Vectorized<float> exp2() const {
|
231 |
+
return Vectorized<float>(Sleef_exp2f16_u10(values));
|
232 |
+
}
|
233 |
+
Vectorized<float> expm1() const {
|
234 |
+
return Vectorized<float>(Sleef_expm1f16_u10(values));
|
235 |
+
}
|
236 |
+
Vectorized<float> exp_u20() const {
|
237 |
+
// A faster version of exp with ULP=20
|
238 |
+
static __m512 vec_factorial_1 =
|
239 |
+
_mm512_set1_ps(0.999999701f); // 1/factorial(1)
|
240 |
+
static __m512 vec_factorial_2 =
|
241 |
+
_mm512_set1_ps(0.499991506f); // 1/factorial(2)
|
242 |
+
static __m512 vec_factorial_3 =
|
243 |
+
_mm512_set1_ps(0.166676521f); // 1/factorial(3)
|
244 |
+
static __m512 vec_factorial_4 =
|
245 |
+
_mm512_set1_ps(0.0418978221f); // 1/factorial(4)
|
246 |
+
static __m512 vec_factorial_5 =
|
247 |
+
_mm512_set1_ps(0.00828929059f); // 1/factorial(5)
|
248 |
+
static __m512 vec_exp_log2ef =
|
249 |
+
(__m512)_mm512_set1_epi32(0x3fb8aa3b); // log2(e)
|
250 |
+
static __m512 vec_half = _mm512_set1_ps(0.5f);
|
251 |
+
static __m512 vec_one = _mm512_set1_ps(1.f);
|
252 |
+
static __m512 vec_zero = _mm512_set1_ps(0.f);
|
253 |
+
static __m512 vec_two = _mm512_set1_ps(2.f);
|
254 |
+
static __m512 vec_ln2f = (__m512)_mm512_set1_epi32(0x3f317218); // ln(2)
|
255 |
+
static __m512 vec_ln_flt_min = (__m512)_mm512_set1_epi32(0xc2aeac50);
|
256 |
+
static __m512 vec_ln_flt_max = (__m512)_mm512_set1_epi32(0x42b17218);
|
257 |
+
static __m512i vec_127 = _mm512_set1_epi32(0x0000007f);
|
258 |
+
static int n_mantissa_bits = 23;
|
259 |
+
|
260 |
+
// exp(x) =
|
261 |
+
// = exp(n * ln(2) + r) // divide x by ln(2) and get quot and rem
|
262 |
+
// = 2^n * exp(r) // simplify the exp(n*ln(2)) expression
|
263 |
+
|
264 |
+
auto less_ln_flt_min_mask =
|
265 |
+
_mm512_cmp_ps_mask(values, vec_ln_flt_min, 1 /*_CMP_LT_OS*/);
|
266 |
+
auto vec_src = _mm512_min_ps(values, vec_ln_flt_max);
|
267 |
+
vec_src = _mm512_max_ps(vec_src, vec_ln_flt_min);
|
268 |
+
|
269 |
+
// fx = floorf(x * log2ef + 0.5)
|
270 |
+
auto vec_fx = _mm512_fmadd_ps(vec_src, vec_exp_log2ef, vec_half);
|
271 |
+
auto vec_fx_i = _mm512_cvt_roundps_epi32(
|
272 |
+
vec_fx, _MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC);
|
273 |
+
vec_fx = _mm512_cvtepi32_ps(vec_fx_i);
|
274 |
+
|
275 |
+
// x = x - fx * ln2
|
276 |
+
auto vec_exp_poly = _mm512_fnmadd_ps(vec_fx, vec_ln2f, vec_src);
|
277 |
+
|
278 |
+
// compute polynomial
|
279 |
+
auto vec_res =
|
280 |
+
_mm512_fmadd_ps(vec_exp_poly, vec_factorial_5, vec_factorial_4);
|
281 |
+
vec_res = _mm512_fmadd_ps(vec_exp_poly, vec_res, vec_factorial_3);
|
282 |
+
vec_res = _mm512_fmadd_ps(vec_exp_poly, vec_res, vec_factorial_2);
|
283 |
+
vec_res = _mm512_fmadd_ps(vec_exp_poly, vec_res, vec_factorial_1);
|
284 |
+
vec_res = _mm512_fmadd_ps(vec_exp_poly, vec_res, vec_one);
|
285 |
+
|
286 |
+
// compute 2^(n-1)
|
287 |
+
auto vec_exp_number = _mm512_sub_ps(vec_fx, vec_one);
|
288 |
+
auto vec_exp_number_i = _mm512_cvtps_epi32(vec_exp_number);
|
289 |
+
auto vec_two_pow_n_i = _mm512_add_epi32(vec_exp_number_i, vec_127);
|
290 |
+
vec_two_pow_n_i = _mm512_slli_epi32(vec_two_pow_n_i, n_mantissa_bits);
|
291 |
+
auto vec_two_pow_n = (__m512)vec_two_pow_n_i;
|
292 |
+
vec_two_pow_n =
|
293 |
+
_mm512_mask_blend_ps(less_ln_flt_min_mask, vec_two_pow_n, vec_zero);
|
294 |
+
|
295 |
+
// y = y * 2^n
|
296 |
+
vec_res = _mm512_mul_ps(vec_res, vec_two_pow_n);
|
297 |
+
vec_res = _mm512_mul_ps(vec_res, vec_two);
|
298 |
+
return vec_res;
|
299 |
+
}
|
300 |
+
Vectorized<float> fmod(const Vectorized<float>& q) const {
|
301 |
+
return Vectorized<float>(Sleef_fmodf16(values, q));
|
302 |
+
}
|
303 |
+
Vectorized<float> log() const {
|
304 |
+
return Vectorized<float>(Sleef_logf16_u10(values));
|
305 |
+
}
|
306 |
+
Vectorized<float> log2() const {
|
307 |
+
return Vectorized<float>(Sleef_log2f16_u10(values));
|
308 |
+
}
|
309 |
+
Vectorized<float> log10() const {
|
310 |
+
return Vectorized<float>(Sleef_log10f16_u10(values));
|
311 |
+
}
|
312 |
+
Vectorized<float> log1p() const {
|
313 |
+
return Vectorized<float>(Sleef_log1pf16_u10(values));
|
314 |
+
}
|
315 |
+
Vectorized<float> frac() const;
|
316 |
+
Vectorized<float> sin() const {
|
317 |
+
return Vectorized<float>(Sleef_sinf16_u35(values));
|
318 |
+
}
|
319 |
+
Vectorized<float> sinh() const {
|
320 |
+
return Vectorized<float>(Sleef_sinhf16_u10(values));
|
321 |
+
}
|
322 |
+
Vectorized<float> cos() const {
|
323 |
+
return Vectorized<float>(Sleef_cosf16_u35(values));
|
324 |
+
}
|
325 |
+
Vectorized<float> cosh() const {
|
326 |
+
return Vectorized<float>(Sleef_coshf16_u10(values));
|
327 |
+
}
|
328 |
+
Vectorized<float> ceil() const {
|
329 |
+
return _mm512_ceil_ps(values);
|
330 |
+
}
|
331 |
+
Vectorized<float> floor() const {
|
332 |
+
return _mm512_floor_ps(values);
|
333 |
+
}
|
334 |
+
Vectorized<float> hypot(const Vectorized<float> &b) const {
|
335 |
+
return Vectorized<float>(Sleef_hypotf16_u05(values, b));
|
336 |
+
}
|
337 |
+
Vectorized<float> i0() const {
|
338 |
+
return map(calc_i0);
|
339 |
+
}
|
340 |
+
Vectorized<float> i0e() const {
|
341 |
+
return map(calc_i0e);
|
342 |
+
}
|
343 |
+
Vectorized<float> digamma() const {
|
344 |
+
return map(calc_digamma);
|
345 |
+
}
|
346 |
+
Vectorized<float> igamma(const Vectorized<float> &x) const {
|
347 |
+
__at_align__ float tmp[size()];
|
348 |
+
__at_align__ float tmp_x[size()];
|
349 |
+
store(tmp);
|
350 |
+
x.store(tmp_x);
|
351 |
+
for (const auto i : c10::irange(size())) {
|
352 |
+
tmp[i] = calc_igamma(tmp[i], tmp_x[i]);
|
353 |
+
}
|
354 |
+
return loadu(tmp);
|
355 |
+
}
|
356 |
+
Vectorized<float> igammac(const Vectorized<float> &x) const {
|
357 |
+
__at_align__ float tmp[size()];
|
358 |
+
__at_align__ float tmp_x[size()];
|
359 |
+
store(tmp);
|
360 |
+
x.store(tmp_x);
|
361 |
+
for (const auto i : c10::irange(size())) {
|
362 |
+
tmp[i] = calc_igammac(tmp[i], tmp_x[i]);
|
363 |
+
}
|
364 |
+
return loadu(tmp);
|
365 |
+
}
|
366 |
+
Vectorized<float> neg() const {
|
367 |
+
return _mm512_xor_ps(_mm512_set1_ps(-0.f), values);
|
368 |
+
}
|
369 |
+
Vectorized<float> nextafter(const Vectorized<float> &b) const {
|
370 |
+
return Vectorized<float>(Sleef_nextafterf16(values, b));
|
371 |
+
}
|
372 |
+
Vectorized<float> round() const {
|
373 |
+
return _mm512_roundscale_ps(values, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
|
374 |
+
}
|
375 |
+
Vectorized<float> tan() const {
|
376 |
+
return Vectorized<float>(Sleef_tanf16_u10(values));
|
377 |
+
}
|
378 |
+
Vectorized<float> tanh() const {
|
379 |
+
return Vectorized<float>(Sleef_tanhf16_u10(values));
|
380 |
+
}
|
381 |
+
Vectorized<float> trunc() const {
|
382 |
+
return _mm512_roundscale_ps(values, (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC));
|
383 |
+
}
|
384 |
+
Vectorized<float> lgamma() const {
|
385 |
+
return Vectorized<float>(Sleef_lgammaf16_u10(values));
|
386 |
+
}
|
387 |
+
Vectorized<float> sqrt() const {
|
388 |
+
return _mm512_sqrt_ps(values);
|
389 |
+
}
|
390 |
+
Vectorized<float> reciprocal() const {
|
391 |
+
return _mm512_div_ps(_mm512_set1_ps(1), values);
|
392 |
+
}
|
393 |
+
Vectorized<float> rsqrt() const {
|
394 |
+
return _mm512_div_ps(_mm512_set1_ps(1), _mm512_sqrt_ps(values));
|
395 |
+
}
|
396 |
+
Vectorized<float> pow(const Vectorized<float> &b) const {
|
397 |
+
return Vectorized<float>(Sleef_powf16_u10(values, b));
|
398 |
+
}
|
399 |
+
// Comparison using the _CMP_**_OQ predicate.
|
400 |
+
// `O`: get false if an operand is NaN
|
401 |
+
// `Q`: do not raise if an operand is NaN
|
402 |
+
Vectorized<float> operator==(const Vectorized<float>& other) const {
|
403 |
+
auto mask = _mm512_cmp_ps_mask(values, other.values, _CMP_EQ_OQ);
|
404 |
+
return _mm512_castsi512_ps(_mm512_mask_set1_epi32(zero_vec, mask,
|
405 |
+
0xFFFFFFFF));
|
406 |
+
}
|
407 |
+
|
408 |
+
Vectorized<float> operator!=(const Vectorized<float>& other) const {
|
409 |
+
auto mask = _mm512_cmp_ps_mask(values, other.values, _CMP_NEQ_UQ);
|
410 |
+
return _mm512_castsi512_ps(_mm512_mask_set1_epi32(zero_vec, mask,
|
411 |
+
0xFFFFFFFF));
|
412 |
+
}
|
413 |
+
|
414 |
+
Vectorized<float> operator<(const Vectorized<float>& other) const {
|
415 |
+
auto mask = _mm512_cmp_ps_mask(values, other.values, _CMP_LT_OQ);
|
416 |
+
return _mm512_castsi512_ps(_mm512_mask_set1_epi32(zero_vec, mask,
|
417 |
+
0xFFFFFFFF));
|
418 |
+
}
|
419 |
+
|
420 |
+
Vectorized<float> operator<=(const Vectorized<float>& other) const {
|
421 |
+
auto mask = _mm512_cmp_ps_mask(values, other.values, _CMP_LE_OQ);
|
422 |
+
return _mm512_castsi512_ps(_mm512_mask_set1_epi32(zero_vec, mask,
|
423 |
+
0xFFFFFFFF));
|
424 |
+
}
|
425 |
+
|
426 |
+
Vectorized<float> operator>(const Vectorized<float>& other) const {
|
427 |
+
auto mask = _mm512_cmp_ps_mask(values, other.values, _CMP_GT_OQ);
|
428 |
+
return _mm512_castsi512_ps(_mm512_mask_set1_epi32(zero_vec, mask,
|
429 |
+
0xFFFFFFFF));
|
430 |
+
}
|
431 |
+
|
432 |
+
Vectorized<float> operator>=(const Vectorized<float>& other) const {
|
433 |
+
auto mask = _mm512_cmp_ps_mask(values, other.values, _CMP_GE_OQ);
|
434 |
+
return _mm512_castsi512_ps(_mm512_mask_set1_epi32(zero_vec, mask,
|
435 |
+
0xFFFFFFFF));
|
436 |
+
}
|
437 |
+
|
438 |
+
Vectorized<float> eq(const Vectorized<float>& other) const;
|
439 |
+
Vectorized<float> ne(const Vectorized<float>& other) const;
|
440 |
+
Vectorized<float> gt(const Vectorized<float>& other) const;
|
441 |
+
Vectorized<float> ge(const Vectorized<float>& other) const;
|
442 |
+
Vectorized<float> lt(const Vectorized<float>& other) const;
|
443 |
+
Vectorized<float> le(const Vectorized<float>& other) const;
|
444 |
+
};
|
445 |
+
|
446 |
+
template <>
|
447 |
+
Vectorized<float> inline operator+(const Vectorized<float>& a, const Vectorized<float>& b) {
|
448 |
+
return _mm512_add_ps(a, b);
|
449 |
+
}
|
450 |
+
|
451 |
+
template <>
|
452 |
+
Vectorized<float> inline operator-(const Vectorized<float>& a, const Vectorized<float>& b) {
|
453 |
+
return _mm512_sub_ps(a, b);
|
454 |
+
}
|
455 |
+
|
456 |
+
template <>
|
457 |
+
Vectorized<float> inline operator*(const Vectorized<float>& a, const Vectorized<float>& b) {
|
458 |
+
return _mm512_mul_ps(a, b);
|
459 |
+
}
|
460 |
+
|
461 |
+
template <>
|
462 |
+
Vectorized<float> inline operator/(const Vectorized<float>& a, const Vectorized<float>& b) {
|
463 |
+
return _mm512_div_ps(a, b);
|
464 |
+
}
|
465 |
+
|
466 |
+
// frac. Implement this here so we can use subtraction
|
467 |
+
inline Vectorized<float> Vectorized<float>::frac() const {
|
468 |
+
return *this - this->trunc();
|
469 |
+
}
|
470 |
+
|
471 |
+
// Implements the IEEE 754 201X `maximum` operation, which propagates NaN if
|
472 |
+
// either input is a NaN.
|
473 |
+
template <>
|
474 |
+
Vectorized<float> inline maximum(const Vectorized<float>& a, const Vectorized<float>& b) {
|
475 |
+
auto zero_vec = _mm512_set1_epi32(0);
|
476 |
+
auto max = _mm512_max_ps(a, b);
|
477 |
+
auto isnan_mask = _mm512_cmp_ps_mask(a, b, _CMP_UNORD_Q);
|
478 |
+
auto isnan = _mm512_castsi512_ps(_mm512_mask_set1_epi32(zero_vec, isnan_mask,
|
479 |
+
0xFFFFFFFF));
|
480 |
+
// Exploit the fact that all-ones is a NaN.
|
481 |
+
return _mm512_or_ps(max, isnan);
|
482 |
+
}
|
483 |
+
|
484 |
+
// Implements the IEEE 754 201X `minimum` operation, which propagates NaN if
|
485 |
+
// either input is a NaN.
|
486 |
+
template <>
|
487 |
+
Vectorized<float> inline minimum(const Vectorized<float>& a, const Vectorized<float>& b) {
|
488 |
+
auto zero_vec = _mm512_set1_epi32(0);
|
489 |
+
auto min = _mm512_min_ps(a, b);
|
490 |
+
auto isnan_mask = _mm512_cmp_ps_mask(a, b, _CMP_UNORD_Q);
|
491 |
+
auto isnan = _mm512_castsi512_ps(_mm512_mask_set1_epi32(zero_vec, isnan_mask,
|
492 |
+
0xFFFFFFFF));
|
493 |
+
// Exploit the fact that all-ones is a NaN.
|
494 |
+
return _mm512_or_ps(min, isnan);
|
495 |
+
}
|
496 |
+
|
497 |
+
template <>
|
498 |
+
Vectorized<float> inline clamp(const Vectorized<float>& a, const Vectorized<float>& min, const Vectorized<float>& max) {
|
499 |
+
return _mm512_min_ps(max, _mm512_max_ps(min, a));
|
500 |
+
}
|
501 |
+
|
502 |
+
template <>
|
503 |
+
Vectorized<float> inline clamp_max(const Vectorized<float>& a, const Vectorized<float>& max) {
|
504 |
+
return _mm512_min_ps(max, a);
|
505 |
+
}
|
506 |
+
|
507 |
+
template <>
|
508 |
+
Vectorized<float> inline clamp_min(const Vectorized<float>& a, const Vectorized<float>& min) {
|
509 |
+
return _mm512_max_ps(min, a);
|
510 |
+
}
|
511 |
+
|
512 |
+
template <>
|
513 |
+
Vectorized<float> inline operator&(const Vectorized<float>& a, const Vectorized<float>& b) {
|
514 |
+
return _mm512_and_ps(a, b);
|
515 |
+
}
|
516 |
+
|
517 |
+
template <>
|
518 |
+
Vectorized<float> inline operator|(const Vectorized<float>& a, const Vectorized<float>& b) {
|
519 |
+
return _mm512_or_ps(a, b);
|
520 |
+
}
|
521 |
+
|
522 |
+
template <>
|
523 |
+
Vectorized<float> inline operator^(const Vectorized<float>& a, const Vectorized<float>& b) {
|
524 |
+
return _mm512_xor_ps(a, b);
|
525 |
+
}
|
526 |
+
|
527 |
+
inline Vectorized<float> Vectorized<float>::eq(const Vectorized<float>& other) const {
|
528 |
+
return (*this == other) & Vectorized<float>(1.0f);
|
529 |
+
}
|
530 |
+
|
531 |
+
inline Vectorized<float> Vectorized<float>::ne(const Vectorized<float>& other) const {
|
532 |
+
return (*this != other) & Vectorized<float>(1.0f);
|
533 |
+
}
|
534 |
+
|
535 |
+
inline Vectorized<float> Vectorized<float>::gt(const Vectorized<float>& other) const {
|
536 |
+
return (*this > other) & Vectorized<float>(1.0f);
|
537 |
+
}
|
538 |
+
|
539 |
+
inline Vectorized<float> Vectorized<float>::ge(const Vectorized<float>& other) const {
|
540 |
+
return (*this >= other) & Vectorized<float>(1.0f);
|
541 |
+
}
|
542 |
+
|
543 |
+
inline Vectorized<float> Vectorized<float>::lt(const Vectorized<float>& other) const {
|
544 |
+
return (*this < other) & Vectorized<float>(1.0f);
|
545 |
+
}
|
546 |
+
|
547 |
+
inline Vectorized<float> Vectorized<float>::le(const Vectorized<float>& other) const {
|
548 |
+
return (*this <= other) & Vectorized<float>(1.0f);
|
549 |
+
}
|
550 |
+
|
551 |
+
template <>
|
552 |
+
inline void convert(const float* src, float* dst, int64_t n) {
|
553 |
+
int64_t i;
|
554 |
+
#pragma unroll
|
555 |
+
for (i = 0; i <= (n - Vectorized<float>::size()); i += Vectorized<float>::size()) {
|
556 |
+
_mm512_storeu_ps(dst + i, _mm512_loadu_ps(src + i));
|
557 |
+
}
|
558 |
+
#pragma unroll
|
559 |
+
for (; i < n; i++) {
|
560 |
+
dst[i] = src[i];
|
561 |
+
}
|
562 |
+
}
|
563 |
+
|
564 |
+
template <>
|
565 |
+
Vectorized<float> inline fmadd(const Vectorized<float>& a, const Vectorized<float>& b, const Vectorized<float>& c) {
|
566 |
+
return _mm512_fmadd_ps(a, b, c);
|
567 |
+
}
|
568 |
+
|
569 |
+
template <>
|
570 |
+
Vectorized<float> inline fmsub(const Vectorized<float>& a, const Vectorized<float>& b, const Vectorized<float>& c) {
|
571 |
+
return _mm512_fmsub_ps(a, b, c);
|
572 |
+
}
|
573 |
+
|
574 |
+
// TODO(jgong5): rewrite with ATEN vectorized (need to add unpack and shuffle)
|
575 |
+
// Used by Inductor CPP codegen
|
576 |
+
// Code referred to FBGEMM:
|
577 |
+
// https://github.com/pytorch/FBGEMM/blob/39a423e4ad1a04b77fea81c7d09c3e6f8984fae9/src/UtilsAvx512.cc#LL19C6-L19C6
|
578 |
+
// 16 * 6 = 96 instructions
|
579 |
+
template<>
|
580 |
+
inline void transpose_mxn<float, 16, 16>(
|
581 |
+
const float* src,
|
582 |
+
int64_t ld_src,
|
583 |
+
float* dst,
|
584 |
+
int64_t ld_dst) {
|
585 |
+
// load from src to registers
|
586 |
+
// a: a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15
|
587 |
+
// b: b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15
|
588 |
+
// c: c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15
|
589 |
+
// d: d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15
|
590 |
+
// e: e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15
|
591 |
+
// f: f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15
|
592 |
+
// g: g0 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15
|
593 |
+
// h: h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15
|
594 |
+
// i: i0 i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15
|
595 |
+
// j: j0 j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 j14 j15
|
596 |
+
// k: k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15
|
597 |
+
// l: l0 l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14 l15
|
598 |
+
// m: m0 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15
|
599 |
+
// n: n0 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15
|
600 |
+
// o: o0 o1 o2 o3 o4 o5 o6 o7 o8 o9 o10 o11 o12 o13 o14 o15
|
601 |
+
// p: p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15
|
602 |
+
__m512 a = _mm512_loadu_ps(&src[0 * ld_src]);
|
603 |
+
__m512 b = _mm512_loadu_ps(&src[1 * ld_src]);
|
604 |
+
__m512 c = _mm512_loadu_ps(&src[2 * ld_src]);
|
605 |
+
__m512 d = _mm512_loadu_ps(&src[3 * ld_src]);
|
606 |
+
__m512 e = _mm512_loadu_ps(&src[4 * ld_src]);
|
607 |
+
__m512 f = _mm512_loadu_ps(&src[5 * ld_src]);
|
608 |
+
__m512 g = _mm512_loadu_ps(&src[6 * ld_src]);
|
609 |
+
__m512 h = _mm512_loadu_ps(&src[7 * ld_src]);
|
610 |
+
__m512 i = _mm512_loadu_ps(&src[8 * ld_src]);
|
611 |
+
__m512 j = _mm512_loadu_ps(&src[9 * ld_src]);
|
612 |
+
__m512 k = _mm512_loadu_ps(&src[10 * ld_src]);
|
613 |
+
__m512 l = _mm512_loadu_ps(&src[11 * ld_src]);
|
614 |
+
__m512 m = _mm512_loadu_ps(&src[12 * ld_src]);
|
615 |
+
__m512 n = _mm512_loadu_ps(&src[13 * ld_src]);
|
616 |
+
__m512 o = _mm512_loadu_ps(&src[14 * ld_src]);
|
617 |
+
__m512 p = _mm512_loadu_ps(&src[15 * ld_src]);
|
618 |
+
|
619 |
+
__m512 ta, tb, tc, td, te, tf, tg, th, ti, tj, tk, tl, tm, tn, to, tq;
|
620 |
+
// unpacking and interleaving 32-bit elements
|
621 |
+
// a0 b0 a1 b1 a4 b4 a5 b5 a8 b8 a9 b9 a12 b12 a13 b13
|
622 |
+
// a2 b2 a3 b3 a6 b6 a7 b7 a10 b10 a11 b11 a14 b14 a15 b15
|
623 |
+
// c0 d0 c1 d1 ...
|
624 |
+
// c2 d2 c3 d3 ...
|
625 |
+
// e0 f0 e1 f1 ...
|
626 |
+
// e2 f2 e3 f3 ...
|
627 |
+
// g0 h0 g1 h1 ...
|
628 |
+
// g2 h2 g3 h3 ...
|
629 |
+
// i0 ...
|
630 |
+
// i2 ...
|
631 |
+
// k0 ...
|
632 |
+
// k2 ...
|
633 |
+
// m0 ...
|
634 |
+
// m2 ...
|
635 |
+
// o0 ...
|
636 |
+
// o1 ...
|
637 |
+
ta = _mm512_unpacklo_ps(a, b);
|
638 |
+
tb = _mm512_unpackhi_ps(a, b);
|
639 |
+
tc = _mm512_unpacklo_ps(c, d);
|
640 |
+
td = _mm512_unpackhi_ps(c, d);
|
641 |
+
te = _mm512_unpacklo_ps(e, f);
|
642 |
+
tf = _mm512_unpackhi_ps(e, f);
|
643 |
+
tg = _mm512_unpacklo_ps(g, h);
|
644 |
+
th = _mm512_unpackhi_ps(g, h);
|
645 |
+
ti = _mm512_unpacklo_ps(i, j);
|
646 |
+
tj = _mm512_unpackhi_ps(i, j);
|
647 |
+
tk = _mm512_unpacklo_ps(k, l);
|
648 |
+
tl = _mm512_unpackhi_ps(k, l);
|
649 |
+
tm = _mm512_unpacklo_ps(m, n);
|
650 |
+
tn = _mm512_unpackhi_ps(m, n);
|
651 |
+
to = _mm512_unpacklo_ps(o, p);
|
652 |
+
tq = _mm512_unpackhi_ps(o, p);
|
653 |
+
|
654 |
+
// unpacking and interleaving 64-bit elements
|
655 |
+
// a0 b0 c0 d0 a4 b4 c4 d4 a8 b8 c8 d8 a12 b12 c12 d12
|
656 |
+
// a1 b1 c1 d1 ...
|
657 |
+
// a2 b2 c2 d2 ...
|
658 |
+
// a3 b3 c3 d3 ...
|
659 |
+
// e0 f0 g0 h0 e4 f4 g4 h4 e8 f8 g8 h8 e12 f12 g12 h12
|
660 |
+
// e1 f1 g1 h1 ...
|
661 |
+
// e2 f2 g2 h2 ...
|
662 |
+
// e3 f3 g3 h3 ...
|
663 |
+
// i0 j0 k0 l0 ...
|
664 |
+
// i1 j1 k1 l1 ...
|
665 |
+
// i2 j2 k2 l2 ...
|
666 |
+
// i3 j3 k3 l3 ...
|
667 |
+
// m0 n0 o0 p0 ...
|
668 |
+
// m1 n1 o1 p1 ...
|
669 |
+
// m2 n2 o2 p2 ...
|
670 |
+
// m3 n3 o3 p3 ...
|
671 |
+
a = _mm512_castpd_ps(
|
672 |
+
_mm512_unpacklo_pd(_mm512_castps_pd(ta), _mm512_castps_pd(tc)));
|
673 |
+
b = _mm512_castpd_ps(
|
674 |
+
_mm512_unpackhi_pd(_mm512_castps_pd(ta), _mm512_castps_pd(tc)));
|
675 |
+
c = _mm512_castpd_ps(
|
676 |
+
_mm512_unpacklo_pd(_mm512_castps_pd(tb), _mm512_castps_pd(td)));
|
677 |
+
d = _mm512_castpd_ps(
|
678 |
+
_mm512_unpackhi_pd(_mm512_castps_pd(tb), _mm512_castps_pd(td)));
|
679 |
+
e = _mm512_castpd_ps(
|
680 |
+
_mm512_unpacklo_pd(_mm512_castps_pd(te), _mm512_castps_pd(tg)));
|
681 |
+
f = _mm512_castpd_ps(
|
682 |
+
_mm512_unpackhi_pd(_mm512_castps_pd(te), _mm512_castps_pd(tg)));
|
683 |
+
g = _mm512_castpd_ps(
|
684 |
+
_mm512_unpacklo_pd(_mm512_castps_pd(tf), _mm512_castps_pd(th)));
|
685 |
+
h = _mm512_castpd_ps(
|
686 |
+
_mm512_unpackhi_pd(_mm512_castps_pd(tf), _mm512_castps_pd(th)));
|
687 |
+
i = _mm512_castpd_ps(
|
688 |
+
_mm512_unpacklo_pd(_mm512_castps_pd(ti), _mm512_castps_pd(tk)));
|
689 |
+
j = _mm512_castpd_ps(
|
690 |
+
_mm512_unpackhi_pd(_mm512_castps_pd(ti), _mm512_castps_pd(tk)));
|
691 |
+
k = _mm512_castpd_ps(
|
692 |
+
_mm512_unpacklo_pd(_mm512_castps_pd(tj), _mm512_castps_pd(tl)));
|
693 |
+
l = _mm512_castpd_ps(
|
694 |
+
_mm512_unpackhi_pd(_mm512_castps_pd(tj), _mm512_castps_pd(tl)));
|
695 |
+
m = _mm512_castpd_ps(
|
696 |
+
_mm512_unpacklo_pd(_mm512_castps_pd(tm), _mm512_castps_pd(to)));
|
697 |
+
n = _mm512_castpd_ps(
|
698 |
+
_mm512_unpackhi_pd(_mm512_castps_pd(tm), _mm512_castps_pd(to)));
|
699 |
+
o = _mm512_castpd_ps(
|
700 |
+
_mm512_unpacklo_pd(_mm512_castps_pd(tn), _mm512_castps_pd(tq)));
|
701 |
+
p = _mm512_castpd_ps(
|
702 |
+
_mm512_unpackhi_pd(_mm512_castps_pd(tn), _mm512_castps_pd(tq)));
|
703 |
+
|
704 |
+
// shuffle 128-bits (composed of 4 32-bit elements)
|
705 |
+
// a0 b0 c0 d0 a8 b8 c8 d8 e0 f0 g0 h0 e8 f8 g8 h8
|
706 |
+
// a1 b1 c1 d1 ...
|
707 |
+
// a2 b2 c2 d2 ...
|
708 |
+
// a3 b3 c3 d3 ...
|
709 |
+
// a4 b4 c4 d4 ...
|
710 |
+
// a5 b5 c5 d5 ...
|
711 |
+
// a6 b6 c6 d6 ...
|
712 |
+
// a7 b7 c7 d7 ...
|
713 |
+
// i0 j0 k0 l0 i8 j8 k8 l8 m0 n0 o0 p0 m8 n8 o8 p8
|
714 |
+
// i1 j1 k1 l1 ...
|
715 |
+
// i2 j2 k2 l2 ...
|
716 |
+
// i3 j3 k3 l3 ...
|
717 |
+
// i4 j4 k4 l4 ...
|
718 |
+
// i5 j5 k5 l5 ...
|
719 |
+
// i6 j6 k6 l6 ...
|
720 |
+
// i7 j7 k7 l7 ...
|
721 |
+
ta = _mm512_shuffle_f32x4(a, e, 0x88);
|
722 |
+
tb = _mm512_shuffle_f32x4(b, f, 0x88);
|
723 |
+
tc = _mm512_shuffle_f32x4(c, g, 0x88);
|
724 |
+
td = _mm512_shuffle_f32x4(d, h, 0x88);
|
725 |
+
te = _mm512_shuffle_f32x4(a, e, 0xdd);
|
726 |
+
tf = _mm512_shuffle_f32x4(b, f, 0xdd);
|
727 |
+
tg = _mm512_shuffle_f32x4(c, g, 0xdd);
|
728 |
+
th = _mm512_shuffle_f32x4(d, h, 0xdd);
|
729 |
+
ti = _mm512_shuffle_f32x4(i, m, 0x88);
|
730 |
+
tj = _mm512_shuffle_f32x4(j, n, 0x88);
|
731 |
+
tk = _mm512_shuffle_f32x4(k, o, 0x88);
|
732 |
+
tl = _mm512_shuffle_f32x4(l, p, 0x88);
|
733 |
+
tm = _mm512_shuffle_f32x4(i, m, 0xdd);
|
734 |
+
tn = _mm512_shuffle_f32x4(j, n, 0xdd);
|
735 |
+
to = _mm512_shuffle_f32x4(k, o, 0xdd);
|
736 |
+
tq = _mm512_shuffle_f32x4(l, p, 0xdd);
|
737 |
+
|
738 |
+
// shuffle 128-bits (composed of 4 32-bit elements)
|
739 |
+
// a0 b0 c0 d0 ... o0
|
740 |
+
// a1 b1 c1 d1 ... o1
|
741 |
+
// a2 b2 c2 d2 ... o2
|
742 |
+
// a3 b3 c3 d3 ... o3
|
743 |
+
// a4 ...
|
744 |
+
// a5 ...
|
745 |
+
// a6 ...
|
746 |
+
// a7 ...
|
747 |
+
// a8 ...
|
748 |
+
// a9 ...
|
749 |
+
// a10 ...
|
750 |
+
// a11 ...
|
751 |
+
// a12 ...
|
752 |
+
// a13 ...
|
753 |
+
// a14 ...
|
754 |
+
// a15 b15 c15 d15 ... o15
|
755 |
+
a = _mm512_shuffle_f32x4(ta, ti, 0x88);
|
756 |
+
b = _mm512_shuffle_f32x4(tb, tj, 0x88);
|
757 |
+
c = _mm512_shuffle_f32x4(tc, tk, 0x88);
|
758 |
+
d = _mm512_shuffle_f32x4(td, tl, 0x88);
|
759 |
+
e = _mm512_shuffle_f32x4(te, tm, 0x88);
|
760 |
+
f = _mm512_shuffle_f32x4(tf, tn, 0x88);
|
761 |
+
g = _mm512_shuffle_f32x4(tg, to, 0x88);
|
762 |
+
h = _mm512_shuffle_f32x4(th, tq, 0x88);
|
763 |
+
i = _mm512_shuffle_f32x4(ta, ti, 0xdd);
|
764 |
+
j = _mm512_shuffle_f32x4(tb, tj, 0xdd);
|
765 |
+
k = _mm512_shuffle_f32x4(tc, tk, 0xdd);
|
766 |
+
l = _mm512_shuffle_f32x4(td, tl, 0xdd);
|
767 |
+
m = _mm512_shuffle_f32x4(te, tm, 0xdd);
|
768 |
+
n = _mm512_shuffle_f32x4(tf, tn, 0xdd);
|
769 |
+
o = _mm512_shuffle_f32x4(tg, to, 0xdd);
|
770 |
+
p = _mm512_shuffle_f32x4(th, tq, 0xdd);
|
771 |
+
|
772 |
+
// store from registers to dst
|
773 |
+
_mm512_storeu_ps(&dst[0 * ld_dst], a);
|
774 |
+
_mm512_storeu_ps(&dst[1 * ld_dst], b);
|
775 |
+
_mm512_storeu_ps(&dst[2 * ld_dst], c);
|
776 |
+
_mm512_storeu_ps(&dst[3 * ld_dst], d);
|
777 |
+
_mm512_storeu_ps(&dst[4 * ld_dst], e);
|
778 |
+
_mm512_storeu_ps(&dst[5 * ld_dst], f);
|
779 |
+
_mm512_storeu_ps(&dst[6 * ld_dst], g);
|
780 |
+
_mm512_storeu_ps(&dst[7 * ld_dst], h);
|
781 |
+
_mm512_storeu_ps(&dst[8 * ld_dst], i);
|
782 |
+
_mm512_storeu_ps(&dst[9 * ld_dst], j);
|
783 |
+
_mm512_storeu_ps(&dst[10 * ld_dst], k);
|
784 |
+
_mm512_storeu_ps(&dst[11 * ld_dst], l);
|
785 |
+
_mm512_storeu_ps(&dst[12 * ld_dst], m);
|
786 |
+
_mm512_storeu_ps(&dst[13 * ld_dst], n);
|
787 |
+
_mm512_storeu_ps(&dst[14 * ld_dst], o);
|
788 |
+
_mm512_storeu_ps(&dst[15 * ld_dst], p);
|
789 |
+
}
|
790 |
+
|
791 |
+
#endif
|
792 |
+
|
793 |
+
}}}
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec512/vec512_int.h
ADDED
@@ -0,0 +1,1459 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
7 |
+
#include <ATen/cpu/vec/vec_base.h>
|
8 |
+
#include <c10/macros/Macros.h>
|
9 |
+
#include <c10/util/irange.h>
|
10 |
+
|
11 |
+
namespace at {
|
12 |
+
namespace vec {
|
13 |
+
inline namespace CPU_CAPABILITY {
|
14 |
+
|
15 |
+
#ifdef CPU_CAPABILITY_AVX512
|
16 |
+
|
17 |
+
struct Vectorizedi {
|
18 |
+
protected:
|
19 |
+
__m512i values;
|
20 |
+
static constexpr __m512i zero_vector {0, 0, 0, 0, 0, 0, 0, 0};
|
21 |
+
static inline __m512i invert(const __m512i& v) {
|
22 |
+
const auto ones = _mm512_set1_epi64(-1);
|
23 |
+
return _mm512_xor_si512(ones, v);
|
24 |
+
}
|
25 |
+
public:
|
26 |
+
Vectorizedi() {}
|
27 |
+
Vectorizedi(__m512i v) : values(v) {}
|
28 |
+
operator __m512i() const {
|
29 |
+
return values;
|
30 |
+
}
|
31 |
+
};
|
32 |
+
|
33 |
+
#else
|
34 |
+
|
35 |
+
struct Vectorizedi {}; // dummy definition to make Vectorizedi always defined
|
36 |
+
|
37 |
+
#endif // CPU_CAPABILITY_AVX512
|
38 |
+
|
39 |
+
#ifdef CPU_CAPABILITY_AVX512
|
40 |
+
|
41 |
+
template <>
|
42 |
+
class Vectorized<int64_t> : public Vectorizedi {
|
43 |
+
private:
|
44 |
+
static const Vectorized<int64_t> ones;
|
45 |
+
public:
|
46 |
+
using value_type = int64_t;
|
47 |
+
using size_type = int;
|
48 |
+
static constexpr size_type size() {
|
49 |
+
return 8;
|
50 |
+
}
|
51 |
+
using Vectorizedi::Vectorizedi;
|
52 |
+
Vectorized() {}
|
53 |
+
Vectorized(int64_t v) { values = _mm512_set1_epi64(v); }
|
54 |
+
Vectorized(int64_t val1, int64_t val2, int64_t val3, int64_t val4,
|
55 |
+
int64_t val5, int64_t val6, int64_t val7, int64_t val8) {
|
56 |
+
values = _mm512_setr_epi64(val1, val2, val3, val4,
|
57 |
+
val5, val6, val7, val8);
|
58 |
+
}
|
59 |
+
template <int64_t mask>
|
60 |
+
static Vectorized<int64_t> blend(Vectorized<int64_t> a, Vectorized<int64_t> b) {
|
61 |
+
return _mm512_mask_blend_epi64(mask, a.values, b.values);
|
62 |
+
}
|
63 |
+
static Vectorized<int64_t> blendv(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b,
|
64 |
+
const Vectorized<int64_t>& mask) {
|
65 |
+
auto msb_one = _mm512_set1_epi64(0xFFFFFFFFFFFFFFFF);
|
66 |
+
auto mask_ = _mm512_cmp_epi64_mask(mask, msb_one, _MM_CMPINT_EQ);
|
67 |
+
return _mm512_mask_blend_epi64(mask_, a.values, b.values);
|
68 |
+
}
|
69 |
+
template <typename step_t>
|
70 |
+
static Vectorized<int64_t> arange(int64_t base = 0, step_t step = static_cast<step_t>(1)) {
|
71 |
+
return Vectorized<int64_t>(base, base + step, base + 2 * step, base + 3 * step,
|
72 |
+
base + 4 * step, base + 5 * step, base + 6 * step, base + 7 * step);
|
73 |
+
}
|
74 |
+
static Vectorized<int64_t>
|
75 |
+
set(Vectorized<int64_t> a, Vectorized<int64_t> b, int64_t count = size()) {
|
76 |
+
switch (count) {
|
77 |
+
case 0:
|
78 |
+
return a;
|
79 |
+
case 1:
|
80 |
+
return blend<1>(a, b);
|
81 |
+
case 2:
|
82 |
+
return blend<3>(a, b);
|
83 |
+
case 3:
|
84 |
+
return blend<7>(a, b);
|
85 |
+
case 4:
|
86 |
+
return blend<15>(a, b);
|
87 |
+
case 5:
|
88 |
+
return blend<31>(a, b);
|
89 |
+
case 6:
|
90 |
+
return blend<63>(a, b);
|
91 |
+
case 7:
|
92 |
+
return blend<127>(a, b);
|
93 |
+
}
|
94 |
+
return b;
|
95 |
+
}
|
96 |
+
static Vectorized<int64_t> loadu(const void* ptr) {
|
97 |
+
return _mm512_loadu_si512(reinterpret_cast<const __m512i*>(ptr));
|
98 |
+
}
|
99 |
+
static Vectorized<int64_t> loadu(const void* ptr, int64_t count) {
|
100 |
+
if (count == size()) {
|
101 |
+
return _mm512_loadu_si512(reinterpret_cast<const __m512i*>(ptr));
|
102 |
+
} else {
|
103 |
+
__mmask8 mask = (1ULL << count) - 1;
|
104 |
+
return _mm512_maskz_loadu_epi64(mask, ptr);
|
105 |
+
}
|
106 |
+
}
|
107 |
+
void store(void* ptr, int count = size()) const {
|
108 |
+
if (count == size()) {
|
109 |
+
// ptr need not to be aligned here. See
|
110 |
+
// https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions/intrinsics-for-load-and-store-operations-1/mm512-storeu-si512.html
|
111 |
+
_mm512_storeu_si512(reinterpret_cast<__m512i*>(ptr), values);
|
112 |
+
} else if (count > 0) {
|
113 |
+
__mmask8 mask = (1ULL << count) - 1;
|
114 |
+
_mm512_mask_storeu_epi64(ptr, mask, values);
|
115 |
+
}
|
116 |
+
}
|
117 |
+
const int64_t& operator[](int idx) const = delete;
|
118 |
+
int64_t& operator[](int idx) = delete;
|
119 |
+
Vectorized<int64_t> abs() const {
|
120 |
+
auto is_larger_mask = _mm512_cmpgt_epi64_mask(zero_vector, values);
|
121 |
+
auto is_larger = _mm512_mask_set1_epi64(zero_vector, is_larger_mask, 0xFFFFFFFFFFFFFFFF);
|
122 |
+
auto inverse = _mm512_xor_si512(values, is_larger);
|
123 |
+
return _mm512_sub_epi64(inverse, is_larger);
|
124 |
+
}
|
125 |
+
Vectorized<int64_t> real() const {
|
126 |
+
return *this;
|
127 |
+
}
|
128 |
+
Vectorized<int64_t> imag() const {
|
129 |
+
return _mm512_set1_epi64(0);
|
130 |
+
}
|
131 |
+
Vectorized<int64_t> conj() const {
|
132 |
+
return *this;
|
133 |
+
}
|
134 |
+
Vectorized<int64_t> neg() const;
|
135 |
+
Vectorized<int64_t> operator==(const Vectorized<int64_t>& other) const {
|
136 |
+
auto mask = _mm512_cmpeq_epi64_mask(values, other.values);
|
137 |
+
return _mm512_mask_set1_epi64(zero_vector, mask, 0xFFFFFFFFFFFFFFFF);
|
138 |
+
}
|
139 |
+
Vectorized<int64_t> operator!=(const Vectorized<int64_t>& other) const {
|
140 |
+
auto mask = _mm512_cmpneq_epi64_mask(values, other.values);
|
141 |
+
return _mm512_mask_set1_epi64(zero_vector, mask, 0xFFFFFFFFFFFFFFFF);
|
142 |
+
}
|
143 |
+
Vectorized<int64_t> operator<(const Vectorized<int64_t>& other) const {
|
144 |
+
auto mask = _mm512_cmplt_epi64_mask(values, other.values);
|
145 |
+
return _mm512_mask_set1_epi64(zero_vector, mask, 0xFFFFFFFFFFFFFFFF);
|
146 |
+
}
|
147 |
+
Vectorized<int64_t> operator<=(const Vectorized<int64_t>& other) const {
|
148 |
+
auto mask = _mm512_cmple_epi64_mask(values, other.values);
|
149 |
+
return _mm512_mask_set1_epi64(zero_vector, mask, 0xFFFFFFFFFFFFFFFF);
|
150 |
+
}
|
151 |
+
Vectorized<int64_t> operator>(const Vectorized<int64_t>& other) const {
|
152 |
+
auto mask = _mm512_cmpgt_epi64_mask(values, other.values);
|
153 |
+
return _mm512_mask_set1_epi64(zero_vector, mask, 0xFFFFFFFFFFFFFFFF);
|
154 |
+
}
|
155 |
+
Vectorized<int64_t> operator>=(const Vectorized<int64_t>& other) const {
|
156 |
+
auto mask = _mm512_cmpge_epi64_mask(values, other.values);
|
157 |
+
return _mm512_mask_set1_epi64(zero_vector, mask, 0xFFFFFFFFFFFFFFFF);
|
158 |
+
}
|
159 |
+
|
160 |
+
Vectorized<int64_t> eq(const Vectorized<int64_t>& other) const;
|
161 |
+
Vectorized<int64_t> ne(const Vectorized<int64_t>& other) const;
|
162 |
+
Vectorized<int64_t> gt(const Vectorized<int64_t>& other) const;
|
163 |
+
Vectorized<int64_t> ge(const Vectorized<int64_t>& other) const;
|
164 |
+
Vectorized<int64_t> lt(const Vectorized<int64_t>& other) const;
|
165 |
+
Vectorized<int64_t> le(const Vectorized<int64_t>& other) const;
|
166 |
+
};
|
167 |
+
|
168 |
+
template <>
|
169 |
+
class Vectorized<int32_t> : public Vectorizedi {
|
170 |
+
private:
|
171 |
+
static constexpr __m512i zero_vector {0, 0, 0, 0, 0, 0, 0, 0};
|
172 |
+
static const Vectorized<int32_t> ones;
|
173 |
+
public:
|
174 |
+
using value_type = int32_t;
|
175 |
+
static constexpr int size() {
|
176 |
+
return 16;
|
177 |
+
}
|
178 |
+
using Vectorizedi::Vectorizedi;
|
179 |
+
Vectorized() {}
|
180 |
+
Vectorized(int32_t v) { values = _mm512_set1_epi32(v); }
|
181 |
+
Vectorized(int32_t val1, int32_t val2, int32_t val3, int32_t val4,
|
182 |
+
int32_t val5, int32_t val6, int32_t val7, int32_t val8,
|
183 |
+
int32_t val9, int32_t val10, int32_t val11, int32_t val12,
|
184 |
+
int32_t val13, int32_t val14, int32_t val15, int32_t val16) {
|
185 |
+
values = _mm512_setr_epi32(val1, val2, val3, val4, val5, val6, val7, val8,
|
186 |
+
val9, val10, val11, val12, val13, val14, val15, val16);
|
187 |
+
}
|
188 |
+
template <int64_t mask>
|
189 |
+
static Vectorized<int32_t> blend(Vectorized<int32_t> a, Vectorized<int32_t> b) {
|
190 |
+
return _mm512_mask_blend_epi32(mask, a.values, b.values);
|
191 |
+
}
|
192 |
+
static Vectorized<int32_t> blendv(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b,
|
193 |
+
const Vectorized<int32_t>& mask) {
|
194 |
+
auto msb_one = _mm512_set1_epi32(0xFFFFFFFF);
|
195 |
+
auto mask_ = _mm512_cmp_epi32_mask(mask, msb_one, _MM_CMPINT_EQ);
|
196 |
+
return _mm512_mask_blend_epi32(mask_, a.values, b.values);
|
197 |
+
}
|
198 |
+
template <typename step_t>
|
199 |
+
static Vectorized<int32_t> arange(int32_t base = 0, step_t step = static_cast<step_t>(1)) {
|
200 |
+
return Vectorized<int32_t>(
|
201 |
+
base, base + step, base + 2 * step, base + 3 * step,
|
202 |
+
base + 4 * step, base + 5 * step, base + 6 * step, base + 7 * step,
|
203 |
+
base + 8 * step, base + 9 * step, base + 10 * step, base + 11 * step,
|
204 |
+
base + 12 * step, base + 13 * step, base + 14 * step, base + 15 * step);
|
205 |
+
}
|
206 |
+
static Vectorized<int32_t>
|
207 |
+
set(Vectorized<int32_t> a, Vectorized<int32_t> b, int32_t count = size()) {
|
208 |
+
switch (count) {
|
209 |
+
case 0:
|
210 |
+
return a;
|
211 |
+
case 1:
|
212 |
+
return blend<1>(a, b);
|
213 |
+
case 2:
|
214 |
+
return blend<3>(a, b);
|
215 |
+
case 3:
|
216 |
+
return blend<7>(a, b);
|
217 |
+
case 4:
|
218 |
+
return blend<15>(a, b);
|
219 |
+
case 5:
|
220 |
+
return blend<31>(a, b);
|
221 |
+
case 6:
|
222 |
+
return blend<63>(a, b);
|
223 |
+
case 7:
|
224 |
+
return blend<127>(a, b);
|
225 |
+
case 8:
|
226 |
+
return blend<255>(a, b);
|
227 |
+
case 9:
|
228 |
+
return blend<511>(a, b);
|
229 |
+
case 10:
|
230 |
+
return blend<1023>(a, b);
|
231 |
+
case 11:
|
232 |
+
return blend<2047>(a, b);
|
233 |
+
case 12:
|
234 |
+
return blend<4095>(a, b);
|
235 |
+
case 13:
|
236 |
+
return blend<8191>(a, b);
|
237 |
+
case 14:
|
238 |
+
return blend<16383>(a, b);
|
239 |
+
case 15:
|
240 |
+
return blend<32767>(a, b);
|
241 |
+
}
|
242 |
+
return b;
|
243 |
+
}
|
244 |
+
static Vectorized<int32_t> loadu(const void* ptr) {
|
245 |
+
return _mm512_loadu_si512(reinterpret_cast<const __m512i*>(ptr));
|
246 |
+
}
|
247 |
+
static Vectorized<int32_t> loadu(const void* ptr, int32_t count) {
|
248 |
+
if (count == size()) {
|
249 |
+
return _mm512_loadu_si512(reinterpret_cast<const __m512i*>(ptr));
|
250 |
+
} else {
|
251 |
+
__mmask16 mask = (1ULL << count) - 1;
|
252 |
+
return _mm512_maskz_loadu_epi32(mask, ptr);
|
253 |
+
}
|
254 |
+
}
|
255 |
+
void store(void* ptr, int count = size()) const {
|
256 |
+
if (count == size()) {
|
257 |
+
// ptr need not to be aligned here. See
|
258 |
+
// https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions/intrinsics-for-load-and-store-operations-1/mm512-storeu-si512.html
|
259 |
+
_mm512_storeu_si512(reinterpret_cast<__m512i*>(ptr), values);
|
260 |
+
} else if (count > 0) {
|
261 |
+
__mmask16 mask = (1ULL << count) - 1;
|
262 |
+
_mm512_mask_storeu_epi32(ptr, mask, values);
|
263 |
+
}
|
264 |
+
}
|
265 |
+
const int32_t& operator[](int idx) const = delete;
|
266 |
+
int32_t& operator[](int idx) = delete;
|
267 |
+
Vectorized<int32_t> abs() const {
|
268 |
+
return _mm512_abs_epi32(values);
|
269 |
+
}
|
270 |
+
Vectorized<int32_t> real() const {
|
271 |
+
return *this;
|
272 |
+
}
|
273 |
+
Vectorized<int32_t> imag() const {
|
274 |
+
return _mm512_set1_epi32(0);
|
275 |
+
}
|
276 |
+
Vectorized<int32_t> conj() const {
|
277 |
+
return *this;
|
278 |
+
}
|
279 |
+
Vectorized<int32_t> neg() const;
|
280 |
+
Vectorized<int32_t> operator==(const Vectorized<int32_t>& other) const {
|
281 |
+
auto mask = _mm512_cmpeq_epi32_mask(values, other.values);
|
282 |
+
return _mm512_mask_set1_epi32(zero_vector, mask, 0xFFFFFFFF);
|
283 |
+
}
|
284 |
+
Vectorized<int32_t> operator!=(const Vectorized<int32_t>& other) const {
|
285 |
+
auto mask = _mm512_cmpneq_epi32_mask(values, other.values);
|
286 |
+
return _mm512_mask_set1_epi32(zero_vector, mask, 0xFFFFFFFF);
|
287 |
+
}
|
288 |
+
Vectorized<int32_t> operator<(const Vectorized<int32_t>& other) const {
|
289 |
+
auto mask = _mm512_cmplt_epi32_mask(values, other.values);
|
290 |
+
return _mm512_mask_set1_epi32(zero_vector, mask, 0xFFFFFFFF);
|
291 |
+
}
|
292 |
+
Vectorized<int32_t> operator<=(const Vectorized<int32_t>& other) const {
|
293 |
+
auto mask = _mm512_cmple_epi32_mask(values, other.values);
|
294 |
+
return _mm512_mask_set1_epi32(zero_vector, mask, 0xFFFFFFFF);
|
295 |
+
}
|
296 |
+
Vectorized<int32_t> operator>(const Vectorized<int32_t>& other) const {
|
297 |
+
auto mask = _mm512_cmpgt_epi32_mask(values, other.values);
|
298 |
+
return _mm512_mask_set1_epi32(zero_vector, mask, 0xFFFFFFFF);
|
299 |
+
}
|
300 |
+
Vectorized<int32_t> operator>=(const Vectorized<int32_t>& other) const {
|
301 |
+
auto mask = _mm512_cmpge_epi32_mask(values, other.values);
|
302 |
+
return _mm512_mask_set1_epi32(zero_vector, mask, 0xFFFFFFFF);
|
303 |
+
}
|
304 |
+
Vectorized<int32_t> eq(const Vectorized<int32_t>& other) const;
|
305 |
+
Vectorized<int32_t> ne(const Vectorized<int32_t>& other) const;
|
306 |
+
Vectorized<int32_t> gt(const Vectorized<int32_t>& other) const;
|
307 |
+
Vectorized<int32_t> ge(const Vectorized<int32_t>& other) const;
|
308 |
+
Vectorized<int32_t> lt(const Vectorized<int32_t>& other) const;
|
309 |
+
Vectorized<int32_t> le(const Vectorized<int32_t>& other) const;
|
310 |
+
};
|
311 |
+
|
312 |
+
template <>
|
313 |
+
inline void convert(const int32_t *src, float *dst, int64_t n) {
|
314 |
+
int64_t i;
|
315 |
+
// int32_t and float have same size
|
316 |
+
#ifndef _MSC_VER
|
317 |
+
# pragma unroll
|
318 |
+
#endif
|
319 |
+
for (i = 0; i <= (n - Vectorized<int32_t>::size()); i += Vectorized<int32_t>::size()) {
|
320 |
+
auto input_vec = _mm512_loadu_si512(reinterpret_cast<const __m512i*>(src + i));
|
321 |
+
auto output_vec = _mm512_cvtepi32_ps(input_vec);
|
322 |
+
_mm512_storeu_ps(reinterpret_cast<float*>(dst + i), output_vec);
|
323 |
+
}
|
324 |
+
#ifndef _MSC_VER
|
325 |
+
# pragma unroll
|
326 |
+
#endif
|
327 |
+
for (; i < n; i++) {
|
328 |
+
dst[i] = static_cast<float>(src[i]);
|
329 |
+
}
|
330 |
+
}
|
331 |
+
|
332 |
+
template <>
|
333 |
+
inline void convert(const int32_t *src, double *dst, int64_t n) {
|
334 |
+
int64_t i;
|
335 |
+
// int32_t has half the size of double
|
336 |
+
#ifndef _MSC_VER
|
337 |
+
# pragma unroll
|
338 |
+
#endif
|
339 |
+
for (i = 0; i <= (n - Vectorized<double>::size()); i += Vectorized<double>::size()) {
|
340 |
+
auto input_256_vec = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src + i));
|
341 |
+
auto output_vec = _mm512_cvtepi32_pd(input_256_vec);
|
342 |
+
_mm512_storeu_pd(reinterpret_cast<double*>(dst + i), output_vec);
|
343 |
+
}
|
344 |
+
#ifndef _MSC_VER
|
345 |
+
# pragma unroll
|
346 |
+
#endif
|
347 |
+
for (; i < n; i++) {
|
348 |
+
dst[i] = static_cast<double>(src[i]);
|
349 |
+
}
|
350 |
+
}
|
351 |
+
|
352 |
+
template <>
|
353 |
+
class Vectorized<int16_t> : public Vectorizedi {
|
354 |
+
private:
|
355 |
+
static const Vectorized<int16_t> ones;
|
356 |
+
static constexpr __m512i zero_vector {0, 0, 0, 0, 0, 0, 0, 0};
|
357 |
+
public:
|
358 |
+
using value_type = int16_t;
|
359 |
+
static constexpr int size() {
|
360 |
+
return 32;
|
361 |
+
}
|
362 |
+
using Vectorizedi::Vectorizedi;
|
363 |
+
Vectorized() {}
|
364 |
+
Vectorized(int16_t v) { values = _mm512_set1_epi16(v); }
|
365 |
+
Vectorized(int16_t val1, int16_t val2, int16_t val3, int16_t val4,
|
366 |
+
int16_t val5, int16_t val6, int16_t val7, int16_t val8,
|
367 |
+
int16_t val9, int16_t val10, int16_t val11, int16_t val12,
|
368 |
+
int16_t val13, int16_t val14, int16_t val15, int16_t val16,
|
369 |
+
int16_t val17, int16_t val18, int16_t val19, int16_t val20,
|
370 |
+
int16_t val21, int16_t val22, int16_t val23, int16_t val24,
|
371 |
+
int16_t val25, int16_t val26, int16_t val27, int16_t val28,
|
372 |
+
int16_t val29, int16_t val30, int16_t val31, int16_t val32) {
|
373 |
+
values = _mm512_set_epi16(val32, val31, val30, val29, val28, val27, val26, val25,
|
374 |
+
val24, val23, val22, val21, val20, val19, val18, val17,
|
375 |
+
val16, val15, val14, val13, val12, val11, val10, val9,
|
376 |
+
val8, val7, val6, val5, val4, val3, val2, val1);
|
377 |
+
}
|
378 |
+
template <int64_t mask>
|
379 |
+
static Vectorized<int16_t> blend(Vectorized<int16_t> a, Vectorized<int16_t> b) {
|
380 |
+
return _mm512_mask_blend_epi16(mask, a.values, b.values);
|
381 |
+
}
|
382 |
+
static Vectorized<int16_t> blendv(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b,
|
383 |
+
const Vectorized<int16_t>& mask) {
|
384 |
+
auto msb_one = _mm512_set1_epi16(0xFFFF);
|
385 |
+
auto mask_ = _mm512_cmp_epi16_mask(mask, msb_one, _MM_CMPINT_EQ);
|
386 |
+
return _mm512_mask_blend_epi16(mask_, a.values, b.values);
|
387 |
+
}
|
388 |
+
template <typename step_t>
|
389 |
+
static Vectorized<int16_t> arange(int16_t base = 0, step_t step = static_cast<step_t>(1)) {
|
390 |
+
return Vectorized<int16_t>(
|
391 |
+
base, base + step, base + 2 * step, base + 3 * step,
|
392 |
+
base + 4 * step, base + 5 * step, base + 6 * step, base + 7 * step,
|
393 |
+
base + 8 * step, base + 9 * step, base + 10 * step, base + 11 * step,
|
394 |
+
base + 12 * step, base + 13 * step, base + 14 * step, base + 15 * step,
|
395 |
+
base + 16 * step, base + 17 * step, base + 18 * step, base + 19 * step,
|
396 |
+
base + 20 * step, base + 21 * step, base + 22 * step, base + 23 * step,
|
397 |
+
base + 24 * step, base + 25 * step, base + 26 * step, base + 27 * step,
|
398 |
+
base + 28 * step, base + 29 * step, base + 30 * step, base + 31 * step
|
399 |
+
);
|
400 |
+
}
|
401 |
+
static Vectorized<int16_t>
|
402 |
+
set(Vectorized<int16_t> a, Vectorized<int16_t> b, int16_t count = size()) {
|
403 |
+
switch (count) {
|
404 |
+
case 0:
|
405 |
+
return a;
|
406 |
+
case 1:
|
407 |
+
return blend<0x1>(a, b);
|
408 |
+
case 2:
|
409 |
+
return blend<0x3>(a, b);
|
410 |
+
case 3:
|
411 |
+
return blend<0x7>(a, b);
|
412 |
+
case 4:
|
413 |
+
return blend<0xF>(a, b);
|
414 |
+
case 5:
|
415 |
+
return blend<0x1F>(a, b);
|
416 |
+
case 6:
|
417 |
+
return blend<0x3F>(a, b);
|
418 |
+
case 7:
|
419 |
+
return blend<0x7F>(a, b);
|
420 |
+
case 8:
|
421 |
+
return blend<0xFF>(a, b);
|
422 |
+
case 9:
|
423 |
+
return blend<0x1FF>(a, b);
|
424 |
+
case 10:
|
425 |
+
return blend<0x3FF>(a, b);
|
426 |
+
case 11:
|
427 |
+
return blend<0x7FF>(a, b);
|
428 |
+
case 12:
|
429 |
+
return blend<0xFFF>(a, b);
|
430 |
+
case 13:
|
431 |
+
return blend<0x1FFF>(a, b);
|
432 |
+
case 14:
|
433 |
+
return blend<0x3FFF>(a, b);
|
434 |
+
case 15:
|
435 |
+
return blend<0x7FFF>(a, b);
|
436 |
+
case 16:
|
437 |
+
return blend<0xFFFF>(a, b);
|
438 |
+
case 17:
|
439 |
+
return blend<0x1FFFF>(a, b);
|
440 |
+
case 18:
|
441 |
+
return blend<0x3FFFF>(a, b);
|
442 |
+
case 19:
|
443 |
+
return blend<0x7FFFF>(a, b);
|
444 |
+
case 20:
|
445 |
+
return blend<0xFFFFF>(a, b);
|
446 |
+
case 21:
|
447 |
+
return blend<0x1FFFFF>(a, b);
|
448 |
+
case 22:
|
449 |
+
return blend<0x3FFFFF>(a, b);
|
450 |
+
case 23:
|
451 |
+
return blend<0x7FFFFF>(a, b);
|
452 |
+
case 24:
|
453 |
+
return blend<0xFFFFFF>(a, b);
|
454 |
+
case 25:
|
455 |
+
return blend<0x1FFFFFF>(a, b);
|
456 |
+
case 26:
|
457 |
+
return blend<0x3FFFFFF>(a, b);
|
458 |
+
case 27:
|
459 |
+
return blend<0x7FFFFFF>(a, b);
|
460 |
+
case 28:
|
461 |
+
return blend<0xFFFFFFF>(a, b);
|
462 |
+
case 29:
|
463 |
+
return blend<0x1FFFFFFF>(a, b);
|
464 |
+
case 30:
|
465 |
+
return blend<0x3FFFFFFF>(a, b);
|
466 |
+
case 31:
|
467 |
+
return blend<0x7FFFFFFF>(a, b);
|
468 |
+
}
|
469 |
+
return b;
|
470 |
+
}
|
471 |
+
static Vectorized<int16_t> loadu(const void* ptr) {
|
472 |
+
return _mm512_loadu_si512(reinterpret_cast<const __m512i*>(ptr));
|
473 |
+
}
|
474 |
+
static Vectorized<int16_t> loadu(const void* ptr, int16_t count) {
|
475 |
+
if (count == size()) {
|
476 |
+
return _mm512_loadu_si512(reinterpret_cast<const __m512i*>(ptr));
|
477 |
+
} else {
|
478 |
+
__mmask32 mask = (1ULL << count) - 1;
|
479 |
+
return _mm512_maskz_loadu_epi16(mask, ptr);
|
480 |
+
}
|
481 |
+
}
|
482 |
+
void store(void* ptr, int count = size()) const {
|
483 |
+
if (count == size()) {
|
484 |
+
// ptr need not to be aligned here. See
|
485 |
+
// https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions/intrinsics-for-load-and-store-operations-1/mm512-storeu-si512.html
|
486 |
+
_mm512_storeu_si512(reinterpret_cast<__m512i*>(ptr), values);
|
487 |
+
} else if (count > 0) {
|
488 |
+
__mmask32 mask = (1ULL << count) - 1;
|
489 |
+
_mm512_mask_storeu_epi16(ptr, mask, values);
|
490 |
+
}
|
491 |
+
}
|
492 |
+
const int16_t& operator[](int idx) const = delete;
|
493 |
+
int16_t& operator[](int idx) = delete;
|
494 |
+
Vectorized<int16_t> abs() const {
|
495 |
+
return _mm512_abs_epi16(values);
|
496 |
+
}
|
497 |
+
Vectorized<int16_t> real() const {
|
498 |
+
return *this;
|
499 |
+
}
|
500 |
+
Vectorized<int16_t> imag() const {
|
501 |
+
return _mm512_set1_epi16(0);
|
502 |
+
}
|
503 |
+
Vectorized<int16_t> conj() const {
|
504 |
+
return *this;
|
505 |
+
}
|
506 |
+
Vectorized<int16_t> neg() const;
|
507 |
+
Vectorized<int16_t> operator==(const Vectorized<int16_t>& other) const {
|
508 |
+
auto mask = _mm512_cmpeq_epi16_mask(values, other.values);
|
509 |
+
return _mm512_mask_set1_epi16(zero_vector, mask, 0xFFFF);
|
510 |
+
}
|
511 |
+
Vectorized<int16_t> operator!=(const Vectorized<int16_t>& other) const {
|
512 |
+
auto mask = _mm512_cmpneq_epi16_mask(values, other.values);
|
513 |
+
return _mm512_mask_set1_epi16(zero_vector, mask, 0xFFFF);
|
514 |
+
}
|
515 |
+
Vectorized<int16_t> operator<(const Vectorized<int16_t>& other) const {
|
516 |
+
auto mask = _mm512_cmplt_epi16_mask(values, other.values);
|
517 |
+
return _mm512_mask_set1_epi16(zero_vector, mask, 0xFFFF);
|
518 |
+
}
|
519 |
+
Vectorized<int16_t> operator<=(const Vectorized<int16_t>& other) const {
|
520 |
+
auto mask = _mm512_cmple_epi16_mask(values, other.values);
|
521 |
+
return _mm512_mask_set1_epi16(zero_vector, mask, 0xFFFF);
|
522 |
+
}
|
523 |
+
Vectorized<int16_t> operator>(const Vectorized<int16_t>& other) const {
|
524 |
+
auto mask = _mm512_cmpgt_epi16_mask(values, other.values);
|
525 |
+
return _mm512_mask_set1_epi16(zero_vector, mask, 0xFFFF);
|
526 |
+
}
|
527 |
+
Vectorized<int16_t> operator>=(const Vectorized<int16_t>& other) const {
|
528 |
+
auto mask = _mm512_cmpge_epi16_mask(values, other.values);
|
529 |
+
return _mm512_mask_set1_epi16(zero_vector, mask, 0xFFFF);
|
530 |
+
}
|
531 |
+
|
532 |
+
Vectorized<int16_t> eq(const Vectorized<int16_t>& other) const;
|
533 |
+
Vectorized<int16_t> ne(const Vectorized<int16_t>& other) const;
|
534 |
+
Vectorized<int16_t> gt(const Vectorized<int16_t>& other) const;
|
535 |
+
Vectorized<int16_t> ge(const Vectorized<int16_t>& other) const;
|
536 |
+
Vectorized<int16_t> lt(const Vectorized<int16_t>& other) const;
|
537 |
+
Vectorized<int16_t> le(const Vectorized<int16_t>& other) const;
|
538 |
+
};
|
539 |
+
|
540 |
+
template <typename T>
|
541 |
+
class Vectorized8 : public Vectorizedi {
|
542 |
+
static_assert(
|
543 |
+
std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value,
|
544 |
+
"Only int8_t/uint8_t are supported");
|
545 |
+
protected:
|
546 |
+
static constexpr __m512i zero_vector {0, 0, 0, 0, 0, 0, 0, 0};
|
547 |
+
static const Vectorized<T> ones;
|
548 |
+
public:
|
549 |
+
using value_type = T;
|
550 |
+
static constexpr int size() {
|
551 |
+
return 64;
|
552 |
+
}
|
553 |
+
using Vectorizedi::Vectorizedi;
|
554 |
+
Vectorized8() {}
|
555 |
+
Vectorized8(T v) { values = _mm512_set1_epi8(v); }
|
556 |
+
Vectorized8(T val1, T val2, T val3, T val4,
|
557 |
+
T val5, T val6, T val7, T val8,
|
558 |
+
T val9, T val10, T val11, T val12,
|
559 |
+
T val13, T val14, T val15, T val16,
|
560 |
+
T val17, T val18, T val19, T val20,
|
561 |
+
T val21, T val22, T val23, T val24,
|
562 |
+
T val25, T val26, T val27, T val28,
|
563 |
+
T val29, T val30, T val31, T val32,
|
564 |
+
T val33, T val34, T val35, T val36,
|
565 |
+
T val37, T val38, T val39, T val40,
|
566 |
+
T val41, T val42, T val43, T val44,
|
567 |
+
T val45, T val46, T val47, T val48,
|
568 |
+
T val49, T val50, T val51, T val52,
|
569 |
+
T val53, T val54, T val55, T val56,
|
570 |
+
T val57, T val58, T val59, T val60,
|
571 |
+
T val61, T val62, T val63, T val64){
|
572 |
+
values = _mm512_set_epi8(val64, val63, val62, val61, val60, val59, val58, val57,
|
573 |
+
val56, val55, val54, val53,val52, val51, val50, val49,
|
574 |
+
val48, val47, val46, val45, val44, val43, val42, val41,
|
575 |
+
val40, val39, val38, val37, val36, val35, val34, val33,
|
576 |
+
val32, val31, val30, val29, val28, val27, val26, val25,
|
577 |
+
val24, val23, val22, val21, val20, val19, val18, val17,
|
578 |
+
val16, val15, val14, val13, val12, val11, val10, val9,
|
579 |
+
val8, val7, val6, val5, val4, val3, val2, val1);
|
580 |
+
}
|
581 |
+
template <int64_t mask>
|
582 |
+
static Vectorized<T> blend(Vectorized<T> a, Vectorized<T> b) {
|
583 |
+
return _mm512_mask_blend_epi8(mask, a.values, b.values);
|
584 |
+
}
|
585 |
+
template <typename step_t>
|
586 |
+
static Vectorized<T> arange(T base = 0, step_t step = static_cast<step_t>(1)) {
|
587 |
+
return Vectorized<T>(
|
588 |
+
base, base + step, base + 2 * step, base + 3 * step,
|
589 |
+
base + 4 * step, base + 5 * step, base + 6 * step, base + 7 * step,
|
590 |
+
base + 8 * step, base + 9 * step, base + 10 * step, base + 11 * step,
|
591 |
+
base + 12 * step, base + 13 * step, base + 14 * step, base + 15 * step,
|
592 |
+
base + 16 * step, base + 17 * step, base + 18 * step, base + 19 * step,
|
593 |
+
base + 20 * step, base + 21 * step, base + 22 * step, base + 23 * step,
|
594 |
+
base + 24 * step, base + 25 * step, base + 26 * step, base + 27 * step,
|
595 |
+
base + 28 * step, base + 29 * step, base + 30 * step, base + 31 * step,
|
596 |
+
base + 32 * step, base + 33 * step, base + 34 * step, base + 35 * step,
|
597 |
+
base + 36 * step, base + 37 * step, base + 38 * step, base + 39 * step,
|
598 |
+
base + 40 * step, base + 41 * step, base + 42 * step, base + 43 * step,
|
599 |
+
base + 44 * step, base + 45 * step, base + 46 * step, base + 47 * step,
|
600 |
+
base + 48 * step, base + 49 * step, base + 50 * step, base + 51 * step,
|
601 |
+
base + 52 * step, base + 53 * step, base + 54 * step, base + 55 * step,
|
602 |
+
base + 56 * step, base + 57 * step, base + 58 * step, base + 59 * step,
|
603 |
+
base + 60 * step, base + 61 * step, base + 62 * step, base + 63 * step);
|
604 |
+
}
|
605 |
+
static Vectorized<T>
|
606 |
+
set(Vectorized<T> a, Vectorized<T> b, T count = size()) {
|
607 |
+
switch (count) {
|
608 |
+
case 0:
|
609 |
+
return a;
|
610 |
+
case 1:
|
611 |
+
return blend<0x1>(a, b);
|
612 |
+
case 2:
|
613 |
+
return blend<0x3>(a, b);
|
614 |
+
case 3:
|
615 |
+
return blend<0x7>(a, b);
|
616 |
+
case 4:
|
617 |
+
return blend<0xF>(a, b);
|
618 |
+
case 5:
|
619 |
+
return blend<0x1F>(a, b);
|
620 |
+
case 6:
|
621 |
+
return blend<0x3F>(a, b);
|
622 |
+
case 7:
|
623 |
+
return blend<0x7F>(a, b);
|
624 |
+
case 8:
|
625 |
+
return blend<0xFF>(a, b);
|
626 |
+
case 9:
|
627 |
+
return blend<0x1FF>(a, b);
|
628 |
+
case 10:
|
629 |
+
return blend<0x3FF>(a, b);
|
630 |
+
case 11:
|
631 |
+
return blend<0x7FF>(a, b);
|
632 |
+
case 12:
|
633 |
+
return blend<0xFFF>(a, b);
|
634 |
+
case 13:
|
635 |
+
return blend<0x1FFF>(a, b);
|
636 |
+
case 14:
|
637 |
+
return blend<0x3FFF>(a, b);
|
638 |
+
case 15:
|
639 |
+
return blend<0x7FFF>(a, b);
|
640 |
+
case 16:
|
641 |
+
return blend<0xFFFF>(a, b);
|
642 |
+
case 17:
|
643 |
+
return blend<0x1FFFF>(a, b);
|
644 |
+
case 18:
|
645 |
+
return blend<0x3FFFF>(a, b);
|
646 |
+
case 19:
|
647 |
+
return blend<0x7FFFF>(a, b);
|
648 |
+
case 20:
|
649 |
+
return blend<0xFFFFF>(a, b);
|
650 |
+
case 21:
|
651 |
+
return blend<0x1FFFFF>(a, b);
|
652 |
+
case 22:
|
653 |
+
return blend<0x3FFFFF>(a, b);
|
654 |
+
case 23:
|
655 |
+
return blend<0x7FFFFF>(a, b);
|
656 |
+
case 24:
|
657 |
+
return blend<0xFFFFFF>(a, b);
|
658 |
+
case 25:
|
659 |
+
return blend<0x1FFFFFF>(a, b);
|
660 |
+
case 26:
|
661 |
+
return blend<0x3FFFFFF>(a, b);
|
662 |
+
case 27:
|
663 |
+
return blend<0x7FFFFFF>(a, b);
|
664 |
+
case 28:
|
665 |
+
return blend<0xFFFFFFF>(a, b);
|
666 |
+
case 29:
|
667 |
+
return blend<0x1FFFFFFF>(a, b);
|
668 |
+
case 30:
|
669 |
+
return blend<0x3FFFFFFF>(a, b);
|
670 |
+
case 31:
|
671 |
+
return blend<0x7FFFFFFF>(a, b);
|
672 |
+
case 32:
|
673 |
+
return blend<0xFFFFFFFF>(a, b);
|
674 |
+
case 33:
|
675 |
+
return blend<0x1FFFFFFFF>(a, b);
|
676 |
+
case 34:
|
677 |
+
return blend<0x3FFFFFFFF>(a, b);
|
678 |
+
case 35:
|
679 |
+
return blend<0x7FFFFFFFF>(a, b);
|
680 |
+
case 36:
|
681 |
+
return blend<0xFFFFFFFFF>(a, b);
|
682 |
+
case 37:
|
683 |
+
return blend<0x1FFFFFFFFF>(a, b);
|
684 |
+
case 38:
|
685 |
+
return blend<0x3FFFFFFFFF>(a, b);
|
686 |
+
case 39:
|
687 |
+
return blend<0x7FFFFFFFFF>(a, b);
|
688 |
+
case 40:
|
689 |
+
return blend<0xFFFFFFFFFF>(a, b);
|
690 |
+
case 41:
|
691 |
+
return blend<0x1FFFFFFFFFF>(a, b);
|
692 |
+
case 42:
|
693 |
+
return blend<0x3FFFFFFFFFF>(a, b);
|
694 |
+
case 43:
|
695 |
+
return blend<0x7FFFFFFFFFF>(a, b);
|
696 |
+
case 44:
|
697 |
+
return blend<0xFFFFFFFFFFF>(a, b);
|
698 |
+
case 45:
|
699 |
+
return blend<0x1FFFFFFFFFFF>(a, b);
|
700 |
+
case 46:
|
701 |
+
return blend<0x3FFFFFFFFFFF>(a, b);
|
702 |
+
case 47:
|
703 |
+
return blend<0x7FFFFFFFFFFF>(a, b);
|
704 |
+
case 48:
|
705 |
+
return blend<0xFFFFFFFFFFFF>(a, b);
|
706 |
+
case 49:
|
707 |
+
return blend<0x1FFFFFFFFFFFF>(a, b);
|
708 |
+
case 50:
|
709 |
+
return blend<0x3FFFFFFFFFFFF>(a, b);
|
710 |
+
case 51:
|
711 |
+
return blend<0x7FFFFFFFFFFFF>(a, b);
|
712 |
+
case 52:
|
713 |
+
return blend<0xFFFFFFFFFFFFF>(a, b);
|
714 |
+
case 53:
|
715 |
+
return blend<0x1FFFFFFFFFFFFF>(a, b);
|
716 |
+
case 54:
|
717 |
+
return blend<0x3FFFFFFFFFFFFF>(a, b);
|
718 |
+
case 55:
|
719 |
+
return blend<0x7FFFFFFFFFFFFF>(a, b);
|
720 |
+
case 56:
|
721 |
+
return blend<0xFFFFFFFFFFFFFF>(a, b);
|
722 |
+
case 57:
|
723 |
+
return blend<0x1FFFFFFFFFFFFFF>(a, b);
|
724 |
+
case 58:
|
725 |
+
return blend<0x3FFFFFFFFFFFFFF>(a, b);
|
726 |
+
case 59:
|
727 |
+
return blend<0x7FFFFFFFFFFFFFF>(a, b);
|
728 |
+
case 60:
|
729 |
+
return blend<0xFFFFFFFFFFFFFFF>(a, b);
|
730 |
+
case 61:
|
731 |
+
return blend<0x1FFFFFFFFFFFFFFF>(a, b);
|
732 |
+
case 62:
|
733 |
+
return blend<0x3FFFFFFFFFFFFFFF>(a, b);
|
734 |
+
case 63:
|
735 |
+
return blend<0x7FFFFFFFFFFFFFFF>(a, b);
|
736 |
+
}
|
737 |
+
return b;
|
738 |
+
}
|
739 |
+
static Vectorized<T> loadu(const void* ptr) {
|
740 |
+
return _mm512_loadu_si512(reinterpret_cast<const __m512i*>(ptr));
|
741 |
+
}
|
742 |
+
static Vectorized<T> loadu_one_fourth(const void* ptr) {
|
743 |
+
// Fast path if only load element number of 16.
|
744 |
+
// Note: We didn't merge it as fast path of loadu(const void* ptr, T count),
|
745 |
+
// Because loadu(const void* ptr, T count) requires zero initialization for upper 384 bits.
|
746 |
+
// However, by using _mm512_castsi128_si512, the upper 384 bits of the result are undefined.
|
747 |
+
// TODO<leslie> We can use _mm512_zextsi128_si512 in the furture,
|
748 |
+
// since gcc 9.3 doesn't support it now.
|
749 |
+
__m128i input_128 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(ptr));
|
750 |
+
return _mm512_castsi128_si512(input_128);
|
751 |
+
}
|
752 |
+
static Vectorized<T> loadu(const void* ptr, T count) {
|
753 |
+
if (count == size()) {
|
754 |
+
return _mm512_loadu_si512(reinterpret_cast<const __m512i*>(ptr));
|
755 |
+
} else if (count == 16) {
|
756 |
+
// Fast path if only load element number of 16
|
757 |
+
return loadu_one_fourth(ptr);
|
758 |
+
} else {
|
759 |
+
__mmask64 mask = (1ULL << count) - 1;
|
760 |
+
return _mm512_maskz_loadu_epi8(mask, ptr);
|
761 |
+
}
|
762 |
+
}
|
763 |
+
void store(void* ptr, int count = size()) const {
|
764 |
+
if (count == size()) {
|
765 |
+
// ptr need not to be aligned here. See
|
766 |
+
// https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions/intrinsics-for-load-and-store-operations-1/mm512-storeu-si512.html
|
767 |
+
_mm512_storeu_si512(reinterpret_cast<__m512i*>(ptr), values);
|
768 |
+
} else if (count > 0) {
|
769 |
+
if (count == 16) {
|
770 |
+
// Fast path if only store element number of 16
|
771 |
+
_mm_storeu_si128(
|
772 |
+
reinterpret_cast<__m128i*>(ptr),
|
773 |
+
_mm512_castsi512_si128(values));
|
774 |
+
} else {
|
775 |
+
__mmask64 mask = (1ULL << count) - 1;
|
776 |
+
_mm512_mask_storeu_epi8(ptr, mask, values);
|
777 |
+
}
|
778 |
+
}
|
779 |
+
}
|
780 |
+
const T& operator[](int idx) const = delete;
|
781 |
+
T& operator[](int idx) = delete;
|
782 |
+
Vectorized<T> real() const {
|
783 |
+
return *this;
|
784 |
+
}
|
785 |
+
Vectorized<T> imag() const {
|
786 |
+
return _mm512_set1_epi8(0);
|
787 |
+
}
|
788 |
+
Vectorized<T> conj() const {
|
789 |
+
return *this;
|
790 |
+
}
|
791 |
+
};
|
792 |
+
|
793 |
+
template<>
|
794 |
+
class Vectorized<int8_t>: public Vectorized8<int8_t> {
|
795 |
+
public:
|
796 |
+
using Vectorized8::Vectorized8;
|
797 |
+
|
798 |
+
static Vectorized<int8_t> blendv(const Vectorized<int8_t>& a, const Vectorized<int8_t>& b,
|
799 |
+
const Vectorized<int8_t>& mask) {
|
800 |
+
auto msb_one = _mm512_set1_epi8(0xFF);
|
801 |
+
auto mask_ = _mm512_cmp_epi8_mask(mask, msb_one, _MM_CMPINT_EQ);
|
802 |
+
return _mm512_mask_blend_epi8(mask_, a.values, b.values);
|
803 |
+
}
|
804 |
+
|
805 |
+
Vectorized<int8_t> neg() const;
|
806 |
+
|
807 |
+
Vectorized<int8_t> abs() const {
|
808 |
+
return _mm512_abs_epi8(values);
|
809 |
+
}
|
810 |
+
|
811 |
+
Vectorized<int8_t> operator==(const Vectorized<int8_t>& other) const {
|
812 |
+
auto mask = _mm512_cmpeq_epi8_mask(values, other.values);
|
813 |
+
return _mm512_mask_set1_epi8(zero_vector, mask, 0xFF);
|
814 |
+
}
|
815 |
+
Vectorized<int8_t> operator!=(const Vectorized<int8_t>& other) const {
|
816 |
+
auto mask = _mm512_cmpneq_epi8_mask(values, other.values);
|
817 |
+
return _mm512_mask_set1_epi8(zero_vector, mask, 0xFF);
|
818 |
+
}
|
819 |
+
Vectorized<int8_t> operator<(const Vectorized<int8_t>& other) const {
|
820 |
+
auto mask = _mm512_cmplt_epi8_mask(values, other.values);
|
821 |
+
return _mm512_mask_set1_epi8(zero_vector, mask, 0xFF);
|
822 |
+
}
|
823 |
+
Vectorized<int8_t> operator<=(const Vectorized<int8_t>& other) const {
|
824 |
+
auto mask = _mm512_cmple_epi8_mask(values, other.values);
|
825 |
+
return _mm512_mask_set1_epi8(zero_vector, mask, 0xFF);
|
826 |
+
}
|
827 |
+
Vectorized<int8_t> operator>(const Vectorized<int8_t>& other) const {
|
828 |
+
return other < *this;
|
829 |
+
}
|
830 |
+
Vectorized<int8_t> operator>=(const Vectorized<int8_t>& other) const {
|
831 |
+
return other <= *this;
|
832 |
+
}
|
833 |
+
|
834 |
+
Vectorized<int8_t> eq(const Vectorized<int8_t>& other) const;
|
835 |
+
Vectorized<int8_t> ne(const Vectorized<int8_t>& other) const;
|
836 |
+
Vectorized<int8_t> gt(const Vectorized<int8_t>& other) const;
|
837 |
+
Vectorized<int8_t> ge(const Vectorized<int8_t>& other) const;
|
838 |
+
Vectorized<int8_t> lt(const Vectorized<int8_t>& other) const;
|
839 |
+
Vectorized<int8_t> le(const Vectorized<int8_t>& other) const;
|
840 |
+
};
|
841 |
+
|
842 |
+
template<>
|
843 |
+
class Vectorized<uint8_t>: public Vectorized8<uint8_t> {
|
844 |
+
public:
|
845 |
+
using Vectorized8::Vectorized8;
|
846 |
+
|
847 |
+
static Vectorized<uint8_t> blendv(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& b,
|
848 |
+
const Vectorized<uint8_t>& mask) {
|
849 |
+
auto msb_one = _mm512_set1_epi8(0xFF);
|
850 |
+
auto mask_ = _mm512_cmp_epu8_mask(mask, msb_one, _MM_CMPINT_EQ);
|
851 |
+
return _mm512_mask_blend_epi8(mask_, a.values, b.values);
|
852 |
+
}
|
853 |
+
|
854 |
+
Vectorized<uint8_t> neg() const;
|
855 |
+
|
856 |
+
Vectorized<uint8_t> abs() const {
|
857 |
+
return *this;
|
858 |
+
}
|
859 |
+
|
860 |
+
Vectorized<uint8_t> operator==(const Vectorized<uint8_t>& other) const {
|
861 |
+
auto mask = _mm512_cmpeq_epu8_mask(values, other.values);
|
862 |
+
return _mm512_mask_set1_epi8(zero_vector, mask, 0xFF);
|
863 |
+
}
|
864 |
+
Vectorized<uint8_t> operator!=(const Vectorized<uint8_t>& other) const {
|
865 |
+
auto mask = _mm512_cmpneq_epu8_mask(values, other.values);
|
866 |
+
return _mm512_mask_set1_epi8(zero_vector, mask, 0xFF);
|
867 |
+
}
|
868 |
+
Vectorized<uint8_t> operator<(const Vectorized<uint8_t>& other) const {
|
869 |
+
auto mask = _mm512_cmplt_epu8_mask(values, other.values);
|
870 |
+
return _mm512_mask_set1_epi8(zero_vector, mask, 0xFF);
|
871 |
+
}
|
872 |
+
Vectorized<uint8_t> operator<=(const Vectorized<uint8_t>& other) const {
|
873 |
+
auto mask = _mm512_cmple_epu8_mask(values, other.values);
|
874 |
+
return _mm512_mask_set1_epi8(zero_vector, mask, 0xFF);
|
875 |
+
}
|
876 |
+
Vectorized<uint8_t> operator>(const Vectorized<uint8_t>& other) const {
|
877 |
+
return other < *this;
|
878 |
+
}
|
879 |
+
Vectorized<uint8_t> operator>=(const Vectorized<uint8_t>& other) const {
|
880 |
+
return other <= *this;
|
881 |
+
}
|
882 |
+
|
883 |
+
Vectorized<uint8_t> eq(const Vectorized<uint8_t>& other) const;
|
884 |
+
Vectorized<uint8_t> ne(const Vectorized<uint8_t>& other) const;
|
885 |
+
Vectorized<uint8_t> gt(const Vectorized<uint8_t>& other) const;
|
886 |
+
Vectorized<uint8_t> ge(const Vectorized<uint8_t>& other) const;
|
887 |
+
Vectorized<uint8_t> lt(const Vectorized<uint8_t>& other) const;
|
888 |
+
Vectorized<uint8_t> le(const Vectorized<uint8_t>& other) const;
|
889 |
+
};
|
890 |
+
|
891 |
+
template <>
|
892 |
+
Vectorized<int64_t> inline operator+(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
893 |
+
return _mm512_add_epi64(a, b);
|
894 |
+
}
|
895 |
+
|
896 |
+
template <>
|
897 |
+
Vectorized<int32_t> inline operator+(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
898 |
+
return _mm512_add_epi32(a, b);
|
899 |
+
}
|
900 |
+
|
901 |
+
template <>
|
902 |
+
Vectorized<int16_t> inline operator+(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
903 |
+
return _mm512_add_epi16(a, b);
|
904 |
+
}
|
905 |
+
|
906 |
+
template <>
|
907 |
+
Vectorized<int8_t> inline operator+(const Vectorized<int8_t>& a, const Vectorized<int8_t>& b) {
|
908 |
+
return _mm512_add_epi8(a, b);
|
909 |
+
}
|
910 |
+
|
911 |
+
template <>
|
912 |
+
Vectorized<uint8_t> inline operator+(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& b) {
|
913 |
+
return _mm512_add_epi8(a, b);
|
914 |
+
}
|
915 |
+
|
916 |
+
template <>
|
917 |
+
Vectorized<int64_t> inline operator-(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
918 |
+
return _mm512_sub_epi64(a, b);
|
919 |
+
}
|
920 |
+
|
921 |
+
template <>
|
922 |
+
Vectorized<int32_t> inline operator-(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
923 |
+
return _mm512_sub_epi32(a, b);
|
924 |
+
}
|
925 |
+
|
926 |
+
template <>
|
927 |
+
Vectorized<int16_t> inline operator-(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
928 |
+
return _mm512_sub_epi16(a, b);
|
929 |
+
}
|
930 |
+
|
931 |
+
template <>
|
932 |
+
Vectorized<int8_t> inline operator-(const Vectorized<int8_t>& a, const Vectorized<int8_t>& b) {
|
933 |
+
return _mm512_sub_epi8(a, b);
|
934 |
+
}
|
935 |
+
|
936 |
+
template <>
|
937 |
+
Vectorized<uint8_t> inline operator-(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& b) {
|
938 |
+
return _mm512_sub_epi8(a, b);
|
939 |
+
}
|
940 |
+
|
941 |
+
// Negation. Defined here so we can utilize operator-
|
942 |
+
inline Vectorized<int64_t> Vectorized<int64_t>::neg() const {
|
943 |
+
return Vectorized<int64_t>(0) - *this;
|
944 |
+
}
|
945 |
+
|
946 |
+
inline Vectorized<int32_t> Vectorized<int32_t>::neg() const {
|
947 |
+
return Vectorized<int32_t>(0) - *this;
|
948 |
+
}
|
949 |
+
|
950 |
+
inline Vectorized<int16_t> Vectorized<int16_t>::neg() const {
|
951 |
+
return Vectorized<int16_t>(0) - *this;
|
952 |
+
}
|
953 |
+
|
954 |
+
inline Vectorized<int8_t> Vectorized<int8_t>::neg() const {
|
955 |
+
return Vectorized<int8_t>(0) - *this;
|
956 |
+
}
|
957 |
+
|
958 |
+
inline Vectorized<uint8_t> Vectorized<uint8_t>::neg() const {
|
959 |
+
return Vectorized<uint8_t>(0) - *this;
|
960 |
+
}
|
961 |
+
|
962 |
+
template <>
|
963 |
+
Vectorized<int64_t> inline operator*(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
964 |
+
return _mm512_mullo_epi64(a, b);
|
965 |
+
}
|
966 |
+
|
967 |
+
template <>
|
968 |
+
Vectorized<int32_t> inline operator*(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
969 |
+
return _mm512_mullo_epi32(a, b);
|
970 |
+
}
|
971 |
+
|
972 |
+
template <>
|
973 |
+
Vectorized<int16_t> inline operator*(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
974 |
+
return _mm512_mullo_epi16(a, b);
|
975 |
+
}
|
976 |
+
|
977 |
+
template <typename T, typename Op>
|
978 |
+
Vectorized<T> inline int_elementwise_binary_512(const Vectorized<T>& a, const Vectorized<T>& b, Op op) {
|
979 |
+
T values_a[Vectorized<T>::size()];
|
980 |
+
T values_b[Vectorized<T>::size()];
|
981 |
+
a.store(values_a);
|
982 |
+
b.store(values_b);
|
983 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
984 |
+
values_a[i] = op(values_a[i], values_b[i]);
|
985 |
+
}
|
986 |
+
return Vectorized<T>::loadu(values_a);
|
987 |
+
}
|
988 |
+
|
989 |
+
template <>
|
990 |
+
Vectorized<int8_t> inline operator*(const Vectorized<int8_t>& a, const Vectorized<int8_t>& b) {
|
991 |
+
// We don't have an instruction for multiplying int8_t
|
992 |
+
#ifndef CPU_CAPABILITY_AVX512
|
993 |
+
return int_elementwise_binary_512(a, b, std::multiplies<int8_t>());
|
994 |
+
#else
|
995 |
+
__m512i mask00FF = _mm512_set1_epi16(0x00FF);
|
996 |
+
__m512i a_lo = _mm512_srai_epi16(_mm512_slli_epi16(a, 8), 8);
|
997 |
+
__m512i b_lo = _mm512_srai_epi16(_mm512_slli_epi16(b, 8), 8);
|
998 |
+
__m512i a_hi = _mm512_srai_epi16(a, 8);
|
999 |
+
__m512i b_hi = _mm512_srai_epi16(b, 8);
|
1000 |
+
__m512i res_lo = _mm512_and_si512(_mm512_mullo_epi16(a_lo, b_lo), mask00FF);
|
1001 |
+
__m512i res_hi = _mm512_slli_epi16(_mm512_mullo_epi16(a_hi, b_hi), 8);
|
1002 |
+
__m512i res = _mm512_or_si512(res_hi, res_lo);
|
1003 |
+
return res;
|
1004 |
+
#endif
|
1005 |
+
}
|
1006 |
+
|
1007 |
+
template <>
|
1008 |
+
Vectorized<uint8_t> inline operator*(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& b) {
|
1009 |
+
// We don't have an instruction for multiplying uint8_t
|
1010 |
+
#ifndef CPU_CAPABILITY_AVX512
|
1011 |
+
return int_elementwise_binary_512(a, b, std::multiplies<uint8_t>());
|
1012 |
+
#else
|
1013 |
+
__m512i mask00FF = _mm512_set1_epi16(0x00FF);
|
1014 |
+
__m512i a_lo = _mm512_and_si512 (a, mask00FF);
|
1015 |
+
__m512i b_lo = _mm512_and_si512 (b, mask00FF);
|
1016 |
+
__m512i a_hi = _mm512_srli_epi16(a, 8);
|
1017 |
+
__m512i b_hi = _mm512_srli_epi16(b, 8);
|
1018 |
+
__m512i res_lo = _mm512_and_si512(_mm512_mullo_epi16(a_lo, b_lo), mask00FF);
|
1019 |
+
__m512i res_hi = _mm512_slli_epi16(_mm512_mullo_epi16(a_hi, b_hi), 8);
|
1020 |
+
__m512i res = _mm512_or_si512(res_hi, res_lo);
|
1021 |
+
return res;
|
1022 |
+
#endif
|
1023 |
+
}
|
1024 |
+
|
1025 |
+
template <>
|
1026 |
+
Vectorized<int64_t> inline minimum(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
1027 |
+
return _mm512_min_epi64(a, b);
|
1028 |
+
}
|
1029 |
+
|
1030 |
+
template <>
|
1031 |
+
Vectorized<int32_t> inline minimum(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
1032 |
+
return _mm512_min_epi32(a, b);
|
1033 |
+
}
|
1034 |
+
|
1035 |
+
template <>
|
1036 |
+
Vectorized<int16_t> inline minimum(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
1037 |
+
return _mm512_min_epi16(a, b);
|
1038 |
+
}
|
1039 |
+
|
1040 |
+
template <>
|
1041 |
+
Vectorized<int8_t> inline minimum(const Vectorized<int8_t>& a, const Vectorized<int8_t>& b) {
|
1042 |
+
return _mm512_min_epi8(a, b);
|
1043 |
+
}
|
1044 |
+
|
1045 |
+
template <>
|
1046 |
+
Vectorized<uint8_t> inline minimum(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& b) {
|
1047 |
+
return _mm512_min_epu8(a, b);
|
1048 |
+
}
|
1049 |
+
|
1050 |
+
template <>
|
1051 |
+
Vectorized<int64_t> inline maximum(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
1052 |
+
return _mm512_max_epi64(a, b);
|
1053 |
+
}
|
1054 |
+
|
1055 |
+
template <>
|
1056 |
+
Vectorized<int32_t> inline maximum(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
1057 |
+
return _mm512_max_epi32(a, b);
|
1058 |
+
}
|
1059 |
+
|
1060 |
+
template <>
|
1061 |
+
Vectorized<int16_t> inline maximum(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
1062 |
+
return _mm512_max_epi16(a, b);
|
1063 |
+
}
|
1064 |
+
|
1065 |
+
template <>
|
1066 |
+
Vectorized<int8_t> inline maximum(const Vectorized<int8_t>& a, const Vectorized<int8_t>& b) {
|
1067 |
+
return _mm512_max_epi8(a, b);
|
1068 |
+
}
|
1069 |
+
|
1070 |
+
template <>
|
1071 |
+
Vectorized<uint8_t> inline maximum(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& b) {
|
1072 |
+
return _mm512_max_epi8(a, b);
|
1073 |
+
}
|
1074 |
+
|
1075 |
+
template <>
|
1076 |
+
Vectorized<int64_t> inline clamp(const Vectorized<int64_t>& a, const Vectorized<int64_t>& min_val, const Vectorized<int64_t>& max_val) {
|
1077 |
+
return _mm512_min_epi64(max_val, _mm512_max_epi64(a, min_val));
|
1078 |
+
}
|
1079 |
+
|
1080 |
+
template <>
|
1081 |
+
Vectorized<int32_t> inline clamp(const Vectorized<int32_t>& a, const Vectorized<int32_t>& min_val, const Vectorized<int32_t>& max_val) {
|
1082 |
+
return _mm512_min_epi32(max_val, _mm512_max_epi32(a, min_val));
|
1083 |
+
}
|
1084 |
+
|
1085 |
+
template <>
|
1086 |
+
Vectorized<int16_t> inline clamp(const Vectorized<int16_t>& a, const Vectorized<int16_t>& min_val, const Vectorized<int16_t>& max_val) {
|
1087 |
+
return _mm512_min_epi16(max_val, _mm512_max_epi16(a, min_val));
|
1088 |
+
}
|
1089 |
+
|
1090 |
+
template <>
|
1091 |
+
Vectorized<int8_t> inline clamp(const Vectorized<int8_t>& a, const Vectorized<int8_t>& min_val, const Vectorized<int8_t>& max_val) {
|
1092 |
+
return _mm512_min_epi8(max_val, _mm512_max_epi8(a, min_val));
|
1093 |
+
}
|
1094 |
+
|
1095 |
+
template <>
|
1096 |
+
Vectorized<uint8_t> inline clamp(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& min_val, const Vectorized<uint8_t>& max_val) {
|
1097 |
+
return _mm512_min_epu8(max_val, _mm512_max_epu8(a, min_val));
|
1098 |
+
}
|
1099 |
+
|
1100 |
+
template <>
|
1101 |
+
Vectorized<int64_t> inline clamp_max(const Vectorized<int64_t>& a, const Vectorized<int64_t>& max_val) {
|
1102 |
+
return _mm512_min_epi64(max_val, a);
|
1103 |
+
}
|
1104 |
+
|
1105 |
+
template <>
|
1106 |
+
Vectorized<int32_t> inline clamp_max(const Vectorized<int32_t>& a, const Vectorized<int32_t>& max_val) {
|
1107 |
+
return _mm512_min_epi32(max_val, a);
|
1108 |
+
}
|
1109 |
+
|
1110 |
+
template <>
|
1111 |
+
Vectorized<int16_t> inline clamp_max(const Vectorized<int16_t>& a, const Vectorized<int16_t>& max_val) {
|
1112 |
+
return _mm512_min_epi16(max_val, a);
|
1113 |
+
}
|
1114 |
+
|
1115 |
+
template <>
|
1116 |
+
Vectorized<int8_t> inline clamp_max(const Vectorized<int8_t>& a, const Vectorized<int8_t>& max_val) {
|
1117 |
+
return _mm512_min_epi8(max_val, a);
|
1118 |
+
}
|
1119 |
+
|
1120 |
+
template <>
|
1121 |
+
Vectorized<uint8_t> inline clamp_max(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& max_val) {
|
1122 |
+
return _mm512_min_epu8(max_val, a);
|
1123 |
+
}
|
1124 |
+
|
1125 |
+
template <>
|
1126 |
+
Vectorized<int64_t> inline clamp_min(const Vectorized<int64_t>& a, const Vectorized<int64_t>& min_val) {
|
1127 |
+
return _mm512_max_epi64(min_val, a);
|
1128 |
+
}
|
1129 |
+
|
1130 |
+
template <>
|
1131 |
+
Vectorized<int32_t> inline clamp_min(const Vectorized<int32_t>& a, const Vectorized<int32_t>& min_val) {
|
1132 |
+
return _mm512_max_epi32(min_val, a);
|
1133 |
+
}
|
1134 |
+
|
1135 |
+
template <>
|
1136 |
+
Vectorized<int16_t> inline clamp_min(const Vectorized<int16_t>& a, const Vectorized<int16_t>& min_val) {
|
1137 |
+
return _mm512_max_epi16(min_val, a);
|
1138 |
+
}
|
1139 |
+
|
1140 |
+
template <>
|
1141 |
+
Vectorized<int8_t> inline clamp_min(const Vectorized<int8_t>& a, const Vectorized<int8_t>& min_val) {
|
1142 |
+
return _mm512_max_epi8(min_val, a);
|
1143 |
+
}
|
1144 |
+
|
1145 |
+
template <>
|
1146 |
+
Vectorized<uint8_t> inline clamp_min(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& min_val) {
|
1147 |
+
return _mm512_max_epu8(min_val, a);
|
1148 |
+
}
|
1149 |
+
|
1150 |
+
template<typename T>
|
1151 |
+
Vectorized<int32_t> inline convert_to_int32(const T* ptr) {
|
1152 |
+
return Vectorized<int32_t>::loadu(ptr);
|
1153 |
+
}
|
1154 |
+
|
1155 |
+
template<>
|
1156 |
+
Vectorized<int32_t> inline convert_to_int32<int8_t>(const int8_t* ptr) {
|
1157 |
+
return _mm512_cvtepi8_epi32(_mm_loadu_si128(reinterpret_cast<const __m128i*>(ptr)));
|
1158 |
+
}
|
1159 |
+
|
1160 |
+
template<>
|
1161 |
+
Vectorized<int32_t> inline convert_to_int32<uint8_t>(const uint8_t* ptr) {
|
1162 |
+
return _mm512_cvtepu8_epi32(_mm_loadu_si128(reinterpret_cast<const __m128i*>(ptr)));
|
1163 |
+
}
|
1164 |
+
|
1165 |
+
template <>
|
1166 |
+
Vectorized<int64_t> inline operator/(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
1167 |
+
return int_elementwise_binary_512(a, b, std::divides<int64_t>());
|
1168 |
+
}
|
1169 |
+
template <>
|
1170 |
+
Vectorized<int32_t> inline operator/(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
1171 |
+
return int_elementwise_binary_512(a, b, std::divides<int32_t>());
|
1172 |
+
}
|
1173 |
+
template <>
|
1174 |
+
Vectorized<int16_t> inline operator/(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
1175 |
+
return int_elementwise_binary_512(a, b, std::divides<int16_t>());
|
1176 |
+
}
|
1177 |
+
template <>
|
1178 |
+
Vectorized<int8_t> inline operator/(const Vectorized<int8_t>& a, const Vectorized<int8_t>& b) {
|
1179 |
+
return int_elementwise_binary_512(a, b, std::divides<int8_t>());
|
1180 |
+
}
|
1181 |
+
template <>
|
1182 |
+
Vectorized<uint8_t> inline operator/(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& b) {
|
1183 |
+
return int_elementwise_binary_512(a, b, std::divides<uint8_t>());
|
1184 |
+
}
|
1185 |
+
|
1186 |
+
template<class T, typename std::enable_if_t<std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
1187 |
+
inline Vectorized<T> operator&(const Vectorized<T>& a, const Vectorized<T>& b) {
|
1188 |
+
return _mm512_and_si512(a, b);
|
1189 |
+
}
|
1190 |
+
template<class T, typename std::enable_if_t<std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
1191 |
+
inline Vectorized<T> operator|(const Vectorized<T>& a, const Vectorized<T>& b) {
|
1192 |
+
return _mm512_or_si512(a, b);
|
1193 |
+
}
|
1194 |
+
template<class T, typename std::enable_if_t<std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
1195 |
+
inline Vectorized<T> operator^(const Vectorized<T>& a, const Vectorized<T>& b) {
|
1196 |
+
return _mm512_xor_si512(a, b);
|
1197 |
+
}
|
1198 |
+
template<class T, typename std::enable_if_t<std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
1199 |
+
inline Vectorized<T> operator~(const Vectorized<T>& a) {
|
1200 |
+
return _mm512_xor_si512(a, _mm512_set1_epi32(-1));
|
1201 |
+
}
|
1202 |
+
|
1203 |
+
inline Vectorized<int64_t> Vectorized<int64_t>::eq(const Vectorized<int64_t>& other) const {
|
1204 |
+
return (*this == other) & Vectorized<int64_t>(1);
|
1205 |
+
}
|
1206 |
+
|
1207 |
+
inline Vectorized<int64_t> Vectorized<int64_t>::ne(const Vectorized<int64_t>& other) const {
|
1208 |
+
return (*this != other) & Vectorized<int64_t>(1);
|
1209 |
+
}
|
1210 |
+
|
1211 |
+
inline Vectorized<int64_t> Vectorized<int64_t>::gt(const Vectorized<int64_t>& other) const {
|
1212 |
+
return (*this > other) & Vectorized<int64_t>(1);
|
1213 |
+
}
|
1214 |
+
|
1215 |
+
inline Vectorized<int64_t> Vectorized<int64_t>::ge(const Vectorized<int64_t>& other) const {
|
1216 |
+
return (*this >= other) & Vectorized<int64_t>(1);
|
1217 |
+
}
|
1218 |
+
|
1219 |
+
inline Vectorized<int64_t> Vectorized<int64_t>::lt(const Vectorized<int64_t>& other) const {
|
1220 |
+
return (*this < other) & Vectorized<int64_t>(1);
|
1221 |
+
}
|
1222 |
+
|
1223 |
+
inline Vectorized<int64_t> Vectorized<int64_t>::le(const Vectorized<int64_t>& other) const {
|
1224 |
+
return (*this <= other) & Vectorized<int64_t>(1);
|
1225 |
+
}
|
1226 |
+
|
1227 |
+
inline Vectorized<int32_t> Vectorized<int32_t>::eq(const Vectorized<int32_t>& other) const {
|
1228 |
+
return (*this == other) & Vectorized<int32_t>(1);
|
1229 |
+
}
|
1230 |
+
|
1231 |
+
inline Vectorized<int32_t> Vectorized<int32_t>::ne(const Vectorized<int32_t>& other) const {
|
1232 |
+
return (*this != other) & Vectorized<int32_t>(1);
|
1233 |
+
}
|
1234 |
+
|
1235 |
+
inline Vectorized<int32_t> Vectorized<int32_t>::gt(const Vectorized<int32_t>& other) const {
|
1236 |
+
return (*this > other) & Vectorized<int32_t>(1);
|
1237 |
+
}
|
1238 |
+
|
1239 |
+
inline Vectorized<int32_t> Vectorized<int32_t>::ge(const Vectorized<int32_t>& other) const {
|
1240 |
+
return (*this >= other) & Vectorized<int32_t>(1);
|
1241 |
+
}
|
1242 |
+
|
1243 |
+
inline Vectorized<int32_t> Vectorized<int32_t>::lt(const Vectorized<int32_t>& other) const {
|
1244 |
+
return (*this < other) & Vectorized<int32_t>(1);
|
1245 |
+
}
|
1246 |
+
|
1247 |
+
inline Vectorized<int32_t> Vectorized<int32_t>::le(const Vectorized<int32_t>& other) const {
|
1248 |
+
return (*this <= other) & Vectorized<int32_t>(1);
|
1249 |
+
}
|
1250 |
+
|
1251 |
+
inline Vectorized<int16_t> Vectorized<int16_t>::eq(const Vectorized<int16_t>& other) const {
|
1252 |
+
return (*this == other) & Vectorized<int16_t>(1);
|
1253 |
+
}
|
1254 |
+
|
1255 |
+
inline Vectorized<int16_t> Vectorized<int16_t>::ne(const Vectorized<int16_t>& other) const {
|
1256 |
+
return (*this != other) & Vectorized<int16_t>(1);
|
1257 |
+
}
|
1258 |
+
|
1259 |
+
inline Vectorized<int16_t> Vectorized<int16_t>::gt(const Vectorized<int16_t>& other) const {
|
1260 |
+
return (*this > other) & Vectorized<int16_t>(1);
|
1261 |
+
}
|
1262 |
+
|
1263 |
+
inline Vectorized<int16_t> Vectorized<int16_t>::ge(const Vectorized<int16_t>& other) const {
|
1264 |
+
return (*this >= other) & Vectorized<int16_t>(1);
|
1265 |
+
}
|
1266 |
+
|
1267 |
+
inline Vectorized<int16_t> Vectorized<int16_t>::lt(const Vectorized<int16_t>& other) const {
|
1268 |
+
return (*this < other) & Vectorized<int16_t>(1);
|
1269 |
+
}
|
1270 |
+
|
1271 |
+
inline Vectorized<int16_t> Vectorized<int16_t>::le(const Vectorized<int16_t>& other) const {
|
1272 |
+
return (*this <= other) & Vectorized<int16_t>(1);
|
1273 |
+
}
|
1274 |
+
|
1275 |
+
inline Vectorized<int8_t> Vectorized<int8_t>::eq(const Vectorized<int8_t>& other) const {
|
1276 |
+
return (*this == other) & Vectorized<int8_t>(1);
|
1277 |
+
}
|
1278 |
+
|
1279 |
+
inline Vectorized<int8_t> Vectorized<int8_t>::ne(const Vectorized<int8_t>& other) const {
|
1280 |
+
return (*this != other) & Vectorized<int8_t>(1);
|
1281 |
+
}
|
1282 |
+
|
1283 |
+
inline Vectorized<int8_t> Vectorized<int8_t>::gt(const Vectorized<int8_t>& other) const {
|
1284 |
+
return (*this > other) & Vectorized<int8_t>(1);
|
1285 |
+
}
|
1286 |
+
|
1287 |
+
inline Vectorized<int8_t> Vectorized<int8_t>::ge(const Vectorized<int8_t>& other) const {
|
1288 |
+
return (*this >= other) & Vectorized<int8_t>(1);
|
1289 |
+
}
|
1290 |
+
|
1291 |
+
inline Vectorized<int8_t> Vectorized<int8_t>::lt(const Vectorized<int8_t>& other) const {
|
1292 |
+
return (*this < other) & Vectorized<int8_t>(1);
|
1293 |
+
}
|
1294 |
+
|
1295 |
+
inline Vectorized<int8_t> Vectorized<int8_t>::le(const Vectorized<int8_t>& other) const {
|
1296 |
+
return (*this <= other) & Vectorized<int8_t>(1);
|
1297 |
+
}
|
1298 |
+
|
1299 |
+
inline Vectorized<uint8_t> Vectorized<uint8_t>::eq(const Vectorized<uint8_t>& other) const {
|
1300 |
+
return (*this == other) & Vectorized<uint8_t>(1);
|
1301 |
+
}
|
1302 |
+
|
1303 |
+
inline Vectorized<uint8_t> Vectorized<uint8_t>::ne(const Vectorized<uint8_t>& other) const {
|
1304 |
+
return (*this != other) & Vectorized<uint8_t>(1);
|
1305 |
+
}
|
1306 |
+
|
1307 |
+
inline Vectorized<uint8_t> Vectorized<uint8_t>::gt(const Vectorized<uint8_t>& other) const {
|
1308 |
+
return (*this > other) & Vectorized<uint8_t>(1);
|
1309 |
+
}
|
1310 |
+
|
1311 |
+
inline Vectorized<uint8_t> Vectorized<uint8_t>::ge(const Vectorized<uint8_t>& other) const {
|
1312 |
+
return (*this >= other) & Vectorized<uint8_t>(1);
|
1313 |
+
}
|
1314 |
+
|
1315 |
+
inline Vectorized<uint8_t> Vectorized<uint8_t>::lt(const Vectorized<uint8_t>& other) const {
|
1316 |
+
return (*this < other) & Vectorized<uint8_t>(1);
|
1317 |
+
}
|
1318 |
+
|
1319 |
+
inline Vectorized<uint8_t> Vectorized<uint8_t>::le(const Vectorized<uint8_t>& other) const {
|
1320 |
+
return (*this <= other) & Vectorized<uint8_t>(1);
|
1321 |
+
}
|
1322 |
+
|
1323 |
+
template <bool left_shift, typename T, typename std::enable_if_t<std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value, int> = 0>
|
1324 |
+
Vectorized<T> inline shift_512_8(const Vectorized<T>& a, const Vectorized<T>& b) {
|
1325 |
+
// No vector instruction for shifting int8_t/uint8_t, so emulating
|
1326 |
+
// it instead.
|
1327 |
+
|
1328 |
+
// Control masks for shuffle operation, treating 512 bits as an
|
1329 |
+
// array of 8-bit elements, and considering pairs of neighboring
|
1330 |
+
// elements. Specifially, a mask named "ctl_M_N" (M,N in [0,1], and
|
1331 |
+
// M!=N) is set so that shuffle will move element with index M from
|
1332 |
+
// input pair into element with index N in output pair, and element
|
1333 |
+
// with index M in output pair will be set to all 0s.
|
1334 |
+
__m512i ctl_0_1 = _mm512_set_epi8(62, 0x80, 60, 0x80, 58, 0x80, 56, 0x80,
|
1335 |
+
54, 0x80, 52, 0x80, 50, 0x80, 48, 0x80,
|
1336 |
+
46, 0x80, 44, 0x80, 42, 0x80, 40, 0x80,
|
1337 |
+
38, 0x80, 36, 0x80, 34, 0x80, 32, 0x80,
|
1338 |
+
30, 0x80, 28, 0x80, 26, 0x80, 24, 0x80,
|
1339 |
+
22, 0x80, 20, 0x80, 18, 0x80, 16, 0x80,
|
1340 |
+
14, 0x80, 12, 0x80, 10, 0x80, 8, 0x80,
|
1341 |
+
6, 0x80, 4, 0x80, 2, 0x80, 0, 0x80);
|
1342 |
+
__m512i ctl_1_0 = _mm512_set_epi8(0x80, 63, 0x80, 61, 0x80, 59, 0x80, 57,
|
1343 |
+
0x80, 55, 0x80, 53, 0x80, 51, 0x80, 49,
|
1344 |
+
0x80, 47, 0x80, 45, 0x80, 43, 0x80, 41,
|
1345 |
+
0x80, 39, 0x80, 37, 0x80, 35, 0x80, 33,
|
1346 |
+
0x80, 31, 0x80, 29, 0x80, 27, 0x80, 25,
|
1347 |
+
0x80, 23, 0x80, 21, 0x80, 19, 0x80, 17,
|
1348 |
+
0x80, 15, 0x80, 13, 0x80, 11, 0x80, 9,
|
1349 |
+
0x80, 7, 0x80, 5, 0x80, 3, 0x80, 1);
|
1350 |
+
|
1351 |
+
// Masks for bitwise and operation, treating 512 bits as an array of
|
1352 |
+
// 8-bit elements, and considering them in pairs of neighboring
|
1353 |
+
// elements. A mask named "keep_M" (M in [0,1]) is set so that
|
1354 |
+
// bitwise and will copy element with index M from input pair into
|
1355 |
+
// element with the same index in output pair, while the other
|
1356 |
+
// element in output pair will be set to all 0s.
|
1357 |
+
__m512i keep_0 = _mm512_set1_epi16(0xFF);
|
1358 |
+
__m512i keep_1 = _mm512_set1_epi16(0xFF00);
|
1359 |
+
|
1360 |
+
// Take each 8-bit element with idx%2==0 from input array to be
|
1361 |
+
// shifted and extend it to 16 bits so that 0s are added to the
|
1362 |
+
// right. Then, perform shifting on this 16-bit number. Upper 8
|
1363 |
+
// bits will be proper result of shifting original 8-bit number, so
|
1364 |
+
// write them to result array, into the same position from which
|
1365 |
+
// corresponding input element is taken. Also, make sure that
|
1366 |
+
// result array elements with idx%2!=0 are set to all 0s.
|
1367 |
+
//
|
1368 |
+
// Note that number of bits to shift for is extended to 16 bits by
|
1369 |
+
// adding 0s to the left. That means this number is not properly
|
1370 |
+
// sign-extended for negative values. However, number of bits to
|
1371 |
+
// shift is treated as an unsigned integer by respective shift
|
1372 |
+
// intrinsics anyway so if negative then either with or without
|
1373 |
+
// proper sign extension, it will be interpreted as a number greater
|
1374 |
+
// than 32, and the shifting result will be the same.
|
1375 |
+
__m512i a0 = _mm512_shuffle_epi8(a, ctl_0_1);
|
1376 |
+
__m512i b0 = _mm512_and_si512(b, keep_0);
|
1377 |
+
__m512i c0;
|
1378 |
+
if (left_shift)
|
1379 |
+
c0 = _mm512_sllv_epi16(a0, b0);
|
1380 |
+
else
|
1381 |
+
if constexpr (std::is_same_v<T, int8_t>)
|
1382 |
+
c0 = _mm512_srav_epi16(a0, b0);
|
1383 |
+
else
|
1384 |
+
c0 = _mm512_srlv_epi16(a0, b0);
|
1385 |
+
c0 = _mm512_shuffle_epi8(c0, ctl_1_0);
|
1386 |
+
|
1387 |
+
// Peform shifting the same way for input array elements with
|
1388 |
+
// idx%2==1.
|
1389 |
+
__m512i a1 = _mm512_and_si512(a, keep_1);
|
1390 |
+
__m512i b1 = _mm512_shuffle_epi8(b, ctl_1_0);
|
1391 |
+
__m512i c1;
|
1392 |
+
if (left_shift)
|
1393 |
+
c1 = _mm512_sllv_epi16(a1, b1);
|
1394 |
+
else
|
1395 |
+
if constexpr (std::is_same_v<T, int8_t>)
|
1396 |
+
c1 = _mm512_srav_epi16(a1, b1);
|
1397 |
+
else
|
1398 |
+
c1 = _mm512_srlv_epi16(a1, b1);
|
1399 |
+
c1 = _mm512_and_si512(c1, keep_1);
|
1400 |
+
|
1401 |
+
// Merge partial results into the final result.
|
1402 |
+
__m512i c = _mm512_or_si512(c0, c1);
|
1403 |
+
|
1404 |
+
return c;
|
1405 |
+
}
|
1406 |
+
|
1407 |
+
template <>
|
1408 |
+
Vectorized<int64_t> inline operator<<(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
1409 |
+
return _mm512_sllv_epi64(a, b);
|
1410 |
+
}
|
1411 |
+
|
1412 |
+
template <>
|
1413 |
+
Vectorized<int32_t> inline operator<<(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
1414 |
+
return _mm512_sllv_epi32(a, b);
|
1415 |
+
}
|
1416 |
+
|
1417 |
+
template <>
|
1418 |
+
Vectorized<int16_t> inline operator<<(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
1419 |
+
return _mm512_sllv_epi16(a, b);
|
1420 |
+
}
|
1421 |
+
|
1422 |
+
template <>
|
1423 |
+
Vectorized<int8_t> inline operator<<(const Vectorized<int8_t>& a, const Vectorized<int8_t>& b) {
|
1424 |
+
return shift_512_8<true>(a, b);
|
1425 |
+
}
|
1426 |
+
|
1427 |
+
template <>
|
1428 |
+
Vectorized<uint8_t> inline operator<<(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& b) {
|
1429 |
+
return shift_512_8<true>(a, b);
|
1430 |
+
}
|
1431 |
+
|
1432 |
+
template <>
|
1433 |
+
Vectorized<int64_t> inline operator>>(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
1434 |
+
return _mm512_srav_epi64(a, b);
|
1435 |
+
}
|
1436 |
+
|
1437 |
+
template <>
|
1438 |
+
Vectorized<int32_t> inline operator>>(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
1439 |
+
return _mm512_srav_epi32(a, b);
|
1440 |
+
}
|
1441 |
+
|
1442 |
+
template <>
|
1443 |
+
Vectorized<int16_t> inline operator>>(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
1444 |
+
return _mm512_srav_epi16(a, b);
|
1445 |
+
}
|
1446 |
+
|
1447 |
+
template <>
|
1448 |
+
Vectorized<int8_t> inline operator>>(const Vectorized<int8_t>& a, const Vectorized<int8_t>& b) {
|
1449 |
+
return shift_512_8<false>(a, b);
|
1450 |
+
}
|
1451 |
+
|
1452 |
+
template <>
|
1453 |
+
Vectorized<uint8_t> inline operator>>(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& b) {
|
1454 |
+
return shift_512_8<false>(a, b);
|
1455 |
+
}
|
1456 |
+
|
1457 |
+
#endif
|
1458 |
+
|
1459 |
+
}}}
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec512/vec512_qint.h
ADDED
@@ -0,0 +1,1346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
7 |
+
#include <ATen/cpu/vec/vec_base.h>
|
8 |
+
#include <ATen/native/quantized/AffineQuantizerBase.h>
|
9 |
+
|
10 |
+
#include <c10/util/irange.h>
|
11 |
+
#include <c10/util/qint32.h>
|
12 |
+
#include <c10/util/qint8.h>
|
13 |
+
#include <c10/util/quint8.h>
|
14 |
+
|
15 |
+
#include <array>
|
16 |
+
#include <cmath>
|
17 |
+
|
18 |
+
// This file defines Vectorized<> for the quantized types.
|
19 |
+
//
|
20 |
+
//
|
21 |
+
// Currently, we simply use these classes as efficient converters between
|
22 |
+
// the quantized types and Vectorized<float>, usually in bandwidth-bound cases
|
23 |
+
// where doing the arithmetic in full-precision is acceptable (e.g.
|
24 |
+
// elementwise operators).
|
25 |
+
//
|
26 |
+
//
|
27 |
+
// Conversions are as follows:
|
28 |
+
// Vectorized<qint8> -> 4x Vectorized<float>
|
29 |
+
// Vectorized<quint8> -> 4x Vectorized<float>
|
30 |
+
// Vectorized<qint32> -> 1x Vectorized<float>
|
31 |
+
//
|
32 |
+
// The size of the returned float vector is specified by the special
|
33 |
+
// constexpr function float_num_vecs. The type of the value returned
|
34 |
+
// from dequantize (and expected as an argument to quantize) is
|
35 |
+
// specified by float_vec_return_type.
|
36 |
+
//
|
37 |
+
// When writing kernels with these vectors, it is expected that floating-
|
38 |
+
// point operations will be carried out in a loop over Vectorized<T>::float_num_vecs
|
39 |
+
// iterations.
|
40 |
+
|
41 |
+
namespace at {
|
42 |
+
namespace vec {
|
43 |
+
inline namespace CPU_CAPABILITY {
|
44 |
+
|
45 |
+
#if defined(CPU_CAPABILITY_AVX512) && !defined(_MSC_VER)
|
46 |
+
|
47 |
+
struct Vectorizedqi {
|
48 |
+
protected:
|
49 |
+
__m512i vals __attribute__((aligned(64)));
|
50 |
+
|
51 |
+
public:
|
52 |
+
Vectorizedqi() {}
|
53 |
+
Vectorizedqi(__m512i v) : vals(v) {}
|
54 |
+
operator __m512i() const {
|
55 |
+
return vals;
|
56 |
+
}
|
57 |
+
};
|
58 |
+
|
59 |
+
|
60 |
+
template <typename T>
|
61 |
+
__m512i pack_saturate_and_clamp(
|
62 |
+
__m512i first,
|
63 |
+
__m512i second,
|
64 |
+
T min_val,
|
65 |
+
T max_val);
|
66 |
+
|
67 |
+
template <>
|
68 |
+
inline __m512i pack_saturate_and_clamp<int32_t>(
|
69 |
+
__m512i first,
|
70 |
+
__m512i second,
|
71 |
+
int32_t min_val,
|
72 |
+
int32_t max_val) {
|
73 |
+
// This function is for linkage only, will not be used
|
74 |
+
AT_ERROR("pack_saturate_and_clamp<int32_t> is not supported");
|
75 |
+
}
|
76 |
+
|
77 |
+
template <>
|
78 |
+
inline __m512i pack_saturate_and_clamp<int8_t>(
|
79 |
+
__m512i first,
|
80 |
+
__m512i second,
|
81 |
+
int8_t min_val,
|
82 |
+
int8_t max_val) {
|
83 |
+
__m512i packed_and_sat = _mm512_packs_epi16(first, second);
|
84 |
+
return _mm512_max_epi8(
|
85 |
+
_mm512_set1_epi8(min_val),
|
86 |
+
_mm512_min_epi8(packed_and_sat, _mm512_set1_epi8(max_val)));
|
87 |
+
}
|
88 |
+
|
89 |
+
template <>
|
90 |
+
inline __m512i pack_saturate_and_clamp<uint8_t>(
|
91 |
+
__m512i first,
|
92 |
+
__m512i second,
|
93 |
+
uint8_t min_val,
|
94 |
+
uint8_t max_val) {
|
95 |
+
__m512i packed_and_sat = _mm512_packus_epi16(first, second);
|
96 |
+
return _mm512_max_epu8(
|
97 |
+
_mm512_set1_epi8(min_val),
|
98 |
+
_mm512_min_epu8(packed_and_sat, _mm512_set1_epi8(max_val)));
|
99 |
+
}
|
100 |
+
|
101 |
+
template <typename T>
|
102 |
+
typename std::enable_if<std::is_same<T, uint8_t>::value || std::is_same<T, int8_t>::value, at::vec::Vectorized<float>>::type
|
103 |
+
inline convert_int8_to_float(at::vec::Vectorized<T> src) {
|
104 |
+
// Note: this function only convert inputs number of elements equal to at::vec::Vectorized<float>.size()
|
105 |
+
// Only handle first 16*8 bits
|
106 |
+
__m128i input_128 = _mm512_castsi512_si128(src);
|
107 |
+
// Convert from 16*uint8/int8 to 16*int32
|
108 |
+
__m512i input_512_extended;
|
109 |
+
if constexpr (std::is_same_v<T, uint8_t>)
|
110 |
+
input_512_extended = _mm512_cvtepu8_epi32(input_128);
|
111 |
+
else
|
112 |
+
input_512_extended = _mm512_cvtepi8_epi32(input_128);
|
113 |
+
// Convert from 16*int32 to 16*float32
|
114 |
+
return _mm512_cvtepi32_ps(input_512_extended);
|
115 |
+
}
|
116 |
+
|
117 |
+
template <typename T>
|
118 |
+
typename std::enable_if<std::is_same<T, uint8_t>::value || std::is_same<T, int8_t>::value, at::vec::Vectorized<T>>::type
|
119 |
+
inline convert_float_to_int8(at::vec::Vectorized<float> src) {
|
120 |
+
// Convert from float32 to int32 with truncation
|
121 |
+
__m512i x_values_int32 = _mm512_cvttps_epi32(src);
|
122 |
+
|
123 |
+
// Convert from int32 to int16 using signed saturation
|
124 |
+
__m512i xy_packed_v = _mm512_packs_epi32(x_values_int32, x_values_int32);
|
125 |
+
|
126 |
+
constexpr auto min_val = std::numeric_limits<T>::min();
|
127 |
+
constexpr auto max_val = std::numeric_limits<T>::max();
|
128 |
+
|
129 |
+
// Convert from int16 to uint8/int8 using unsigned saturation
|
130 |
+
__m512i xyzw_clamped_v = pack_saturate_and_clamp<T>(
|
131 |
+
xy_packed_v, xy_packed_v, min_val, max_val);
|
132 |
+
__m512i permute_mask_v =
|
133 |
+
_mm512_set_epi32(0x0f, 0x0b, 0x07, 0x03, 0x0e, 0x0a, 0x06, 0x02,
|
134 |
+
0x0d, 0x09, 0x05, 0x01, 0x0c, 0x08, 0x04, 0x00);
|
135 |
+
return _mm512_permutexvar_epi32(permute_mask_v, xyzw_clamped_v);
|
136 |
+
}
|
137 |
+
|
138 |
+
template <typename T>
|
139 |
+
inline void __attribute__((always_inline)) QuantizeAvx512(
|
140 |
+
const float* src,
|
141 |
+
T* dst,
|
142 |
+
int len,
|
143 |
+
float inverse_scale,
|
144 |
+
int64_t zero_point) {
|
145 |
+
constexpr int VLEN = 16;
|
146 |
+
constexpr auto min_val = std::numeric_limits<T>::min();
|
147 |
+
constexpr auto max_val = std::numeric_limits<T>::max();
|
148 |
+
const __m512i min_v = _mm512_set1_epi32(min_val);
|
149 |
+
const __m512i max_v = _mm512_set1_epi32(max_val);
|
150 |
+
// This is the largest int32 value < int32_max exactly representable in float
|
151 |
+
constexpr int32_t int32_float_max_val =
|
152 |
+
std::numeric_limits<int32_t>::max() - 127;
|
153 |
+
int i = 0;
|
154 |
+
__m512 inverse_scale_v = _mm512_set1_ps(inverse_scale);
|
155 |
+
// clang-format off
|
156 |
+
static const __m512i shuffle_mask_v = _mm512_set_epi8(
|
157 |
+
0xff, 0xff, 0xff, 0xff,
|
158 |
+
0xff, 0xff, 0xff, 0xff,
|
159 |
+
0xff, 0xff, 0xff, 0xff,
|
160 |
+
0x0c, 0x08, 0x04, 0x00,
|
161 |
+
0xff, 0xff, 0xff, 0xff,
|
162 |
+
0xff, 0xff, 0xff, 0xff,
|
163 |
+
0xff, 0xff, 0xff, 0xff,
|
164 |
+
0x0c, 0x08, 0x04, 0x00,
|
165 |
+
0xff, 0xff, 0xff, 0xff,
|
166 |
+
0xff, 0xff, 0xff, 0xff,
|
167 |
+
0xff, 0xff, 0xff, 0xff,
|
168 |
+
0x0c, 0x08, 0x04, 0x00,
|
169 |
+
0xff, 0xff, 0xff, 0xff,
|
170 |
+
0xff, 0xff, 0xff, 0xff,
|
171 |
+
0xff, 0xff, 0xff, 0xff,
|
172 |
+
0x0c, 0x08, 0x04, 0x00);
|
173 |
+
// clang-format on
|
174 |
+
__m512i permute_mask_v =
|
175 |
+
_mm512_set_epi32(0x0f, 0x0b, 0x07, 0x03, 0x0e, 0x0a, 0x06, 0x02,
|
176 |
+
0x0d, 0x09, 0x05, 0x01, 0x0c, 0x08, 0x04, 0x00);
|
177 |
+
__m512i permute_mask_l8_v =
|
178 |
+
_mm512_set_epi32(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
179 |
+
0x00, 0x00, 0x00, 0x00, 0x0c, 0x08, 0x04, 0x00);
|
180 |
+
int len_aligned = len / (VLEN * 4) * (VLEN * 4);
|
181 |
+
for (; i < len_aligned; i += 4 * VLEN) {
|
182 |
+
// x
|
183 |
+
__m512 x_vals = _mm512_load_ps(src + i);
|
184 |
+
__m512 x_transformed_v = _mm512_mul_ps(x_vals, inverse_scale_v);
|
185 |
+
// If the floating point value is greater than int32_max,
|
186 |
+
// _mm512_cvtps_epi32 converts them to -ve. Clip at int32_float_max_val to
|
187 |
+
// Clip at int32_float_max_val to avoid this.
|
188 |
+
x_transformed_v =
|
189 |
+
_mm512_min_ps(x_transformed_v, _mm512_set1_ps(int32_float_max_val));
|
190 |
+
// y
|
191 |
+
__m512 y_vals = _mm512_load_ps(src + i + VLEN);
|
192 |
+
__m512 y_transformed_v = _mm512_mul_ps(y_vals, inverse_scale_v);
|
193 |
+
y_transformed_v =
|
194 |
+
_mm512_min_ps(y_transformed_v, _mm512_set1_ps(int32_float_max_val));
|
195 |
+
// z
|
196 |
+
__m512 z_vals = _mm512_load_ps(src + i + 2 * VLEN);
|
197 |
+
__m512 z_transformed_v = _mm512_mul_ps(z_vals, inverse_scale_v);
|
198 |
+
z_transformed_v =
|
199 |
+
_mm512_min_ps(z_transformed_v, _mm512_set1_ps(int32_float_max_val));
|
200 |
+
// w
|
201 |
+
__m512 w_vals = _mm512_load_ps(src + i + 3 * VLEN);
|
202 |
+
__m512 w_transformed_v = _mm512_mul_ps(w_vals, inverse_scale_v);
|
203 |
+
w_transformed_v =
|
204 |
+
_mm512_min_ps(w_transformed_v, _mm512_set1_ps(int32_float_max_val));
|
205 |
+
|
206 |
+
__m512i x_rounded_v = _mm512_cvtps_epi32(x_transformed_v);
|
207 |
+
__m512i y_rounded_v = _mm512_cvtps_epi32(y_transformed_v);
|
208 |
+
__m512i z_rounded_v = _mm512_cvtps_epi32(z_transformed_v);
|
209 |
+
__m512i w_rounded_v = _mm512_cvtps_epi32(w_transformed_v);
|
210 |
+
|
211 |
+
// add zero point
|
212 |
+
x_rounded_v = _mm512_add_epi32(x_rounded_v, _mm512_set1_epi32(zero_point));
|
213 |
+
y_rounded_v = _mm512_add_epi32(y_rounded_v, _mm512_set1_epi32(zero_point));
|
214 |
+
z_rounded_v = _mm512_add_epi32(z_rounded_v, _mm512_set1_epi32(zero_point));
|
215 |
+
w_rounded_v = _mm512_add_epi32(w_rounded_v, _mm512_set1_epi32(zero_point));
|
216 |
+
|
217 |
+
__m512i xy_packed_v = _mm512_packs_epi32(x_rounded_v, y_rounded_v);
|
218 |
+
__m512i zw_packed_v = _mm512_packs_epi32(z_rounded_v, w_rounded_v);
|
219 |
+
__m512i xyzw_clamped_v =
|
220 |
+
pack_saturate_and_clamp<T>(xy_packed_v, zw_packed_v, min_val, max_val);
|
221 |
+
|
222 |
+
xyzw_clamped_v =
|
223 |
+
_mm512_permutexvar_epi32(permute_mask_v, xyzw_clamped_v);
|
224 |
+
_mm512_storeu_si512(reinterpret_cast<__m512i*>(dst + i), xyzw_clamped_v);
|
225 |
+
}
|
226 |
+
|
227 |
+
// Additional 8-lane AVX512 version to take advantage when len is smaller
|
228 |
+
// based on fbgemm::QuantizeAvx2 (https://github.com/pytorch/FBGEMM)
|
229 |
+
for (; i < len / VLEN * VLEN; i += VLEN) {
|
230 |
+
__m512 x_vals = _mm512_load_ps(src + i);
|
231 |
+
__m512 x_transformed_v = _mm512_mul_ps(x_vals, inverse_scale_v);
|
232 |
+
x_transformed_v =
|
233 |
+
_mm512_min_ps(x_transformed_v, _mm512_set1_ps(int32_float_max_val));
|
234 |
+
__m512i x_rounded_v = _mm512_cvtps_epi32(x_transformed_v);
|
235 |
+
x_rounded_v = _mm512_add_epi32(x_rounded_v, _mm512_set1_epi32(zero_point));
|
236 |
+
__m512i x_clipped_v =
|
237 |
+
_mm512_max_epi32(min_v, _mm512_min_epi32(max_v, x_rounded_v));
|
238 |
+
|
239 |
+
x_clipped_v = _mm512_shuffle_epi8(x_clipped_v, shuffle_mask_v);
|
240 |
+
x_clipped_v = _mm512_permutexvar_epi32(permute_mask_l8_v, x_clipped_v);
|
241 |
+
_mm_storeu_si128(
|
242 |
+
reinterpret_cast<__m128i*>(dst + i),
|
243 |
+
_mm512_castsi512_si128(x_clipped_v));
|
244 |
+
}
|
245 |
+
|
246 |
+
for (; i < len; ++i) {
|
247 |
+
float transformed = src[i] * inverse_scale;
|
248 |
+
|
249 |
+
// Not exactly the same behavior as the vectorized code.
|
250 |
+
// The vectorized code above always rounds to even in halfway cases
|
251 |
+
// (https://software.intel.com/en-us/node/523819), but std::nearbyint
|
252 |
+
// does the same only when the current rounding mode is FE_TONEAREST.
|
253 |
+
// However, in practice, this should not be a problem because most cases
|
254 |
+
// use the default rounding mode FE_TONEAREST.
|
255 |
+
// Note that we cannot implement the same behavior as the vectorized code
|
256 |
+
// using std::round because it does rounding away from zero in halfway
|
257 |
+
// cases.
|
258 |
+
transformed = zero_point + std::nearbyint(transformed);
|
259 |
+
float clipped =
|
260 |
+
std::min(std::max(transformed, float(min_val)), float(max_val));
|
261 |
+
dst[i] = clipped;
|
262 |
+
}
|
263 |
+
}
|
264 |
+
|
265 |
+
template<>
|
266 |
+
struct Vectorized<c10::qint32> : public Vectorizedqi {
|
267 |
+
using size_type = int;
|
268 |
+
static constexpr size_type size() {
|
269 |
+
return 16;
|
270 |
+
}
|
271 |
+
|
272 |
+
static constexpr int float_num_vecs() {
|
273 |
+
return 1;
|
274 |
+
}
|
275 |
+
|
276 |
+
static constexpr int int_num_vecs() {
|
277 |
+
return 1;
|
278 |
+
}
|
279 |
+
|
280 |
+
using float_vec_return_type = std::array<Vectorized<float>, 1>;
|
281 |
+
using int_vec_return_type = std::array<Vectorized<c10::qint32>, 1>;
|
282 |
+
using value_type = c10::qint32::underlying;
|
283 |
+
|
284 |
+
public:
|
285 |
+
using Vectorizedqi::Vectorizedqi;
|
286 |
+
Vectorized() {}
|
287 |
+
|
288 |
+
Vectorized(__m512i vals_) { vals = vals_;}
|
289 |
+
|
290 |
+
// Broadcast constructor
|
291 |
+
Vectorized(const c10::qint32& val) {
|
292 |
+
value_type uw = val.val_;
|
293 |
+
vals = _mm512_set1_epi32(uw);
|
294 |
+
}
|
295 |
+
|
296 |
+
void store(void* ptr, int count = size()) const {
|
297 |
+
if (count != size()) {
|
298 |
+
memcpy(ptr, &vals, count * sizeof(value_type));
|
299 |
+
} else {
|
300 |
+
_mm512_storeu_si512((__m512i*)ptr, vals);
|
301 |
+
}
|
302 |
+
}
|
303 |
+
|
304 |
+
static Vectorized<c10::qint32> loadu(const void* ptr) {
|
305 |
+
return Vectorized<c10::qint32>(ptr);
|
306 |
+
}
|
307 |
+
|
308 |
+
static Vectorized<c10::qint32> loadu(const void* ptr, int64_t count) {
|
309 |
+
__at_align__ value_type tmp_values[size()];
|
310 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
311 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
312 |
+
// instructions while a loop would be compiled to one instruction.
|
313 |
+
for (const auto i : c10::irange(size())) {
|
314 |
+
tmp_values[i] = 0;
|
315 |
+
}
|
316 |
+
std::memcpy(tmp_values, reinterpret_cast<const value_type*>(ptr), count * sizeof(value_type));
|
317 |
+
return loadu(tmp_values);
|
318 |
+
}
|
319 |
+
|
320 |
+
float_vec_return_type dequantize(
|
321 |
+
Vectorized<float> scale,
|
322 |
+
Vectorized<float> zero_point,
|
323 |
+
Vectorized<float> scale_zp_premul) const {
|
324 |
+
__m512 float_vals = _mm512_cvtepi32_ps(vals);
|
325 |
+
return {vec::fmadd(scale, Vectorized<float>(float_vals), scale_zp_premul)};
|
326 |
+
}
|
327 |
+
|
328 |
+
float_vec_return_type dequantize(
|
329 |
+
Vectorized<float> scale,
|
330 |
+
Vectorized<float> zero_point) const {
|
331 |
+
__m512 float_vals = _mm512_cvtepi32_ps(vals);
|
332 |
+
return {(Vectorized<float>(float_vals) - zero_point) * scale};
|
333 |
+
}
|
334 |
+
|
335 |
+
static Vectorized<c10::qint32> quantize(
|
336 |
+
const float_vec_return_type& rhs,
|
337 |
+
float scale,
|
338 |
+
int32_t zero_point,
|
339 |
+
float inverse_scale) {
|
340 |
+
Vectorized<c10::qint32> retval;
|
341 |
+
auto rhs_data = (__m512)rhs[0];
|
342 |
+
at::native::quantize_vec<c10::qint32, /*precision=*/32>(
|
343 |
+
scale, zero_point, (float*)&rhs_data, (c10::qint32*)&retval.vals, 16);
|
344 |
+
return retval;
|
345 |
+
}
|
346 |
+
|
347 |
+
Vectorized<c10::qint32> maximum(Vectorized<c10::qint32> b) const {
|
348 |
+
return _mm512_max_epi32(vals, b.vals);
|
349 |
+
}
|
350 |
+
|
351 |
+
Vectorized<c10::qint32> minimum(Vectorized<c10::qint32> b) const {
|
352 |
+
return _mm512_min_epi32(vals, b.vals);
|
353 |
+
}
|
354 |
+
|
355 |
+
Vectorized<c10::qint32> relu(Vectorized<c10::qint32> zero_point) const {
|
356 |
+
return maximum(zero_point);
|
357 |
+
}
|
358 |
+
|
359 |
+
Vectorized<c10::qint32> relu6(
|
360 |
+
Vectorized<c10::qint32> zero_point,
|
361 |
+
Vectorized<c10::qint32> q_six) {
|
362 |
+
return _mm512_min_epi32(
|
363 |
+
_mm512_max_epi32(vals, zero_point.vals), q_six.vals);
|
364 |
+
}
|
365 |
+
|
366 |
+
int_vec_return_type widening_subtract(Vectorized<c10::qint32> b) const {
|
367 |
+
return {_mm512_sub_epi32(vals, b)};
|
368 |
+
}
|
369 |
+
|
370 |
+
static Vectorized<c10::qint32> requantize_from_int(
|
371 |
+
const int_vec_return_type& inp,
|
372 |
+
float multiplier,
|
373 |
+
int32_t zero_point) {
|
374 |
+
__m512 multiplier_v = _mm512_set1_ps(multiplier);
|
375 |
+
__m512i zero_point_v = _mm512_set1_epi32(zero_point);
|
376 |
+
|
377 |
+
__m512 scaled = _mm512_mul_ps(_mm512_cvtepi32_ps(inp[0]), multiplier_v);
|
378 |
+
__m512i rounded = _mm512_cvtps_epi32(scaled);
|
379 |
+
return _mm512_add_epi32(rounded, zero_point_v);
|
380 |
+
}
|
381 |
+
|
382 |
+
private:
|
383 |
+
// Load from memory constructor
|
384 |
+
Vectorized(const void* ptr) {
|
385 |
+
vals = _mm512_loadu_si512((const __m512i*)ptr);
|
386 |
+
}
|
387 |
+
};
|
388 |
+
|
389 |
+
template <>
|
390 |
+
Vectorized<c10::qint32> inline maximum(const Vectorized<c10::qint32>& a, const Vectorized<c10::qint32>& b) {
|
391 |
+
return a.maximum(b);
|
392 |
+
}
|
393 |
+
|
394 |
+
template <>
|
395 |
+
Vectorized<c10::qint32> inline operator*(
|
396 |
+
const Vectorized<c10::qint32>& a,
|
397 |
+
const Vectorized<c10::qint32>& b) {
|
398 |
+
return _mm512_mullo_epi32(a, b);
|
399 |
+
}
|
400 |
+
|
401 |
+
template <>
|
402 |
+
Vectorized<c10::qint32> inline operator+(
|
403 |
+
const Vectorized<c10::qint32>& a,
|
404 |
+
const Vectorized<c10::qint32>& b) {
|
405 |
+
return _mm512_add_epi32(a, b);
|
406 |
+
}
|
407 |
+
|
408 |
+
/*
|
409 |
+
* Convert values from int32 back to int8/uint8
|
410 |
+
*/
|
411 |
+
template <typename T>
|
412 |
+
__m512i RequantizeAvx512(
|
413 |
+
const std::array<Vectorized<c10::qint32>, 4>& inp,
|
414 |
+
__m512 multiplier,
|
415 |
+
__m512i zp) {
|
416 |
+
static_assert(
|
417 |
+
std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value,
|
418 |
+
"Only int8_t/uint8_t are supported");
|
419 |
+
constexpr auto min_val = std::numeric_limits<T>::min();
|
420 |
+
constexpr auto max_val = std::numeric_limits<T>::max();
|
421 |
+
__m512i permute_mask_v =
|
422 |
+
_mm512_set_epi32(0x0f, 0x0b, 0x07, 0x03, 0x0e, 0x0a, 0x06, 0x02,
|
423 |
+
0x0d, 0x09, 0x05, 0x01, 0x0c, 0x08, 0x04, 0x00);
|
424 |
+
__m512 x_scaled_v = _mm512_mul_ps(_mm512_cvtepi32_ps(inp[0]), multiplier);
|
425 |
+
__m512 y_scaled_v = _mm512_mul_ps(_mm512_cvtepi32_ps(inp[1]), multiplier);
|
426 |
+
__m512 z_scaled_v = _mm512_mul_ps(_mm512_cvtepi32_ps(inp[2]), multiplier);
|
427 |
+
__m512 w_scaled_v = _mm512_mul_ps(_mm512_cvtepi32_ps(inp[3]), multiplier);
|
428 |
+
|
429 |
+
__m512i x_rounded_v = _mm512_cvtps_epi32(x_scaled_v);
|
430 |
+
__m512i y_rounded_v = _mm512_cvtps_epi32(y_scaled_v);
|
431 |
+
__m512i z_rounded_v = _mm512_cvtps_epi32(z_scaled_v);
|
432 |
+
__m512i w_rounded_v = _mm512_cvtps_epi32(w_scaled_v);
|
433 |
+
|
434 |
+
/* Add zero point */
|
435 |
+
__m512i x_v = _mm512_add_epi32(x_rounded_v, zp);
|
436 |
+
__m512i y_v = _mm512_add_epi32(y_rounded_v, zp);
|
437 |
+
__m512i z_v = _mm512_add_epi32(z_rounded_v, zp);
|
438 |
+
__m512i w_v = _mm512_add_epi32(w_rounded_v, zp);
|
439 |
+
|
440 |
+
/* Pack to int16_t and saturate */
|
441 |
+
__m512i xy_packed_v = _mm512_packs_epi32(x_v, y_v);
|
442 |
+
__m512i zw_packed_v = _mm512_packs_epi32(z_v, w_v);
|
443 |
+
|
444 |
+
__m512i xyzw_clamped_v =
|
445 |
+
pack_saturate_and_clamp<T>(xy_packed_v, zw_packed_v, min_val, max_val);
|
446 |
+
|
447 |
+
/*
|
448 |
+
* xyzw_clamped_v has results in the following layout so we need to
|
449 |
+
* permute: x0-3 y0-3 z0-3 w0-3 x4-7 y4-7 z4-7 w4-7 x8-11 y8-11 z8-11 w8-11 x12-15 y12-15 z12-15 w12-15
|
450 |
+
*/
|
451 |
+
xyzw_clamped_v = _mm512_permutexvar_epi32(permute_mask_v, xyzw_clamped_v);
|
452 |
+
return xyzw_clamped_v;
|
453 |
+
}
|
454 |
+
|
455 |
+
template<>
|
456 |
+
struct Vectorized<c10::qint8> : public Vectorizedqi {
|
457 |
+
static constexpr int size() {
|
458 |
+
return 64;
|
459 |
+
}
|
460 |
+
|
461 |
+
static constexpr int float_num_vecs() {
|
462 |
+
return 4;
|
463 |
+
}
|
464 |
+
|
465 |
+
static constexpr int int_num_vecs() {
|
466 |
+
return 4;
|
467 |
+
}
|
468 |
+
|
469 |
+
using float_vec_return_type = std::array<Vectorized<float>, 4>;
|
470 |
+
using int_vec_return_type = std::array<Vectorized<c10::qint32>, 4>;
|
471 |
+
using value_type = typename c10::qint8::underlying;
|
472 |
+
|
473 |
+
public:
|
474 |
+
using Vectorizedqi::Vectorizedqi;
|
475 |
+
|
476 |
+
Vectorized() {}
|
477 |
+
Vectorized(__m512i vals_) { vals = vals_;}
|
478 |
+
|
479 |
+
// Broadcast constructor
|
480 |
+
Vectorized(const c10::qint8& val) {
|
481 |
+
value_type uw = val.val_;
|
482 |
+
vals = _mm512_set1_epi8(uw);
|
483 |
+
}
|
484 |
+
|
485 |
+
// This is needed because the compiler emits awful code for the default
|
486 |
+
// constructor for moving the enum
|
487 |
+
Vectorized(const Vectorized<c10::qint8>& other) : Vectorizedqi(other.vals) { }
|
488 |
+
|
489 |
+
// This is added to avoid error: definition of implicit copy assignment operator
|
490 |
+
// for 'Vectorized<c10::qint8>' is deprecated because it has a user-declared
|
491 |
+
// copy constructor [-Werror,-Wdeprecated-copy]
|
492 |
+
Vectorized& operator=(const Vectorized<c10::qint8>&) = default;
|
493 |
+
|
494 |
+
void store(void* ptr, int count = size()) const {
|
495 |
+
if (count != size()) {
|
496 |
+
memcpy(ptr, &vals, count * sizeof(value_type));
|
497 |
+
} else {
|
498 |
+
_mm512_storeu_si512((__m512i*)ptr, vals);
|
499 |
+
}
|
500 |
+
}
|
501 |
+
|
502 |
+
static Vectorized<c10::qint8> loadu(const void* ptr) {
|
503 |
+
return Vectorized<c10::qint8>(ptr);
|
504 |
+
}
|
505 |
+
|
506 |
+
static Vectorized<c10::qint8> loadu(const void* ptr, int64_t count) {
|
507 |
+
__at_align__ value_type tmp_values[size()];
|
508 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
509 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
510 |
+
// instructions while a loop would be compiled to one instruction.
|
511 |
+
for (const auto i : c10::irange(size())) {
|
512 |
+
tmp_values[i] = 0;
|
513 |
+
}
|
514 |
+
std::memcpy(tmp_values, reinterpret_cast<const value_type*>(ptr), count * sizeof(value_type));
|
515 |
+
return loadu(tmp_values);
|
516 |
+
}
|
517 |
+
|
518 |
+
private:
|
519 |
+
__m512i cvtepi8_epi32(__m128i epi8_vals) const {
|
520 |
+
return _mm512_cvtepi8_epi32(epi8_vals);
|
521 |
+
}
|
522 |
+
|
523 |
+
public:
|
524 |
+
float_vec_return_type dequantize(
|
525 |
+
Vectorized<float> scale,
|
526 |
+
Vectorized<float> zero_point,
|
527 |
+
Vectorized<float> scale_neg_zp_premul) const {
|
528 |
+
__m128i int_val0 = _mm_set_epi64x(vals[1], vals[0]);
|
529 |
+
__m128i int_val1 = _mm_set_epi64x(vals[3], vals[2]);
|
530 |
+
__m128i int_val2 = _mm_set_epi64x(vals[5], vals[4]);
|
531 |
+
__m128i int_val3 = _mm_set_epi64x(vals[7], vals[6]);
|
532 |
+
|
533 |
+
__m512 float_val0 = _mm512_cvtepi32_ps(cvtepi8_epi32(int_val0));
|
534 |
+
__m512 float_val1 = _mm512_cvtepi32_ps(cvtepi8_epi32(int_val1));
|
535 |
+
__m512 float_val2 = _mm512_cvtepi32_ps(cvtepi8_epi32(int_val2));
|
536 |
+
__m512 float_val3 = _mm512_cvtepi32_ps(cvtepi8_epi32(int_val3));
|
537 |
+
|
538 |
+
auto val0 =
|
539 |
+
vec::fmadd(scale, Vectorized<float>(float_val0), scale_neg_zp_premul);
|
540 |
+
auto val1 =
|
541 |
+
vec::fmadd(scale, Vectorized<float>(float_val1), scale_neg_zp_premul);
|
542 |
+
auto val2 =
|
543 |
+
vec::fmadd(scale, Vectorized<float>(float_val2), scale_neg_zp_premul);
|
544 |
+
auto val3 =
|
545 |
+
vec::fmadd(scale, Vectorized<float>(float_val3), scale_neg_zp_premul);
|
546 |
+
return {val0, val1, val2, val3};
|
547 |
+
}
|
548 |
+
|
549 |
+
float_vec_return_type dequantize(
|
550 |
+
Vectorized<float> scale,
|
551 |
+
Vectorized<float> zero_point) const {
|
552 |
+
__m128i int_val0 = _mm_set_epi64x(vals[1], vals[0]);
|
553 |
+
__m128i int_val1 = _mm_set_epi64x(vals[3], vals[2]);
|
554 |
+
__m128i int_val2 = _mm_set_epi64x(vals[5], vals[4]);
|
555 |
+
__m128i int_val3 = _mm_set_epi64x(vals[7], vals[6]);
|
556 |
+
|
557 |
+
__m512 float_val0 = _mm512_cvtepi32_ps(cvtepi8_epi32(int_val0));
|
558 |
+
__m512 float_val1 = _mm512_cvtepi32_ps(cvtepi8_epi32(int_val1));
|
559 |
+
__m512 float_val2 = _mm512_cvtepi32_ps(cvtepi8_epi32(int_val2));
|
560 |
+
__m512 float_val3 = _mm512_cvtepi32_ps(cvtepi8_epi32(int_val3));
|
561 |
+
|
562 |
+
auto val0 = (Vectorized<float>(float_val0) - zero_point) * scale;
|
563 |
+
auto val1 = (Vectorized<float>(float_val1) - zero_point) * scale;
|
564 |
+
auto val2 = (Vectorized<float>(float_val2) - zero_point) * scale;
|
565 |
+
auto val3 = (Vectorized<float>(float_val3) - zero_point) * scale;
|
566 |
+
return {val0, val1, val2, val3};
|
567 |
+
}
|
568 |
+
|
569 |
+
static Vectorized<c10::qint8> quantize(
|
570 |
+
const float_vec_return_type& rhs,
|
571 |
+
float scale,
|
572 |
+
int32_t zero_point,
|
573 |
+
float inverse_scale) {
|
574 |
+
auto* rhs_data = (float*)rhs.data();
|
575 |
+
int8_t quantized_values[64];
|
576 |
+
QuantizeAvx512<value_type>(
|
577 |
+
rhs_data, quantized_values, 64, inverse_scale, zero_point);
|
578 |
+
return Vectorized<c10::qint8>::loadu(quantized_values);
|
579 |
+
}
|
580 |
+
|
581 |
+
Vectorized<c10::qint8> maximum(Vectorized<c10::qint8> b) const {
|
582 |
+
return _mm512_max_epi8(vals, b.vals);
|
583 |
+
}
|
584 |
+
|
585 |
+
Vectorized<c10::qint8> minimum(Vectorized<c10::qint8> b) const {
|
586 |
+
return _mm512_min_epi8(vals, b.vals);
|
587 |
+
}
|
588 |
+
|
589 |
+
Vectorized<c10::qint8> relu(Vectorized<c10::qint8> zero_point) const {
|
590 |
+
return maximum(zero_point);
|
591 |
+
}
|
592 |
+
|
593 |
+
Vectorized<c10::qint8> relu6(
|
594 |
+
Vectorized<c10::qint8> zero_point,
|
595 |
+
Vectorized<c10::qint8> q_six) {
|
596 |
+
return _mm512_min_epi8(
|
597 |
+
_mm512_max_epi8(vals, zero_point.vals), q_six.vals);
|
598 |
+
}
|
599 |
+
|
600 |
+
int_vec_return_type widening_subtract(Vectorized<c10::qint8> b) const {
|
601 |
+
__m128i int_val0 = _mm_set_epi64x(vals[1], vals[0]);
|
602 |
+
__m128i int_val1 = _mm_set_epi64x(vals[3], vals[2]);
|
603 |
+
__m128i int_val2 = _mm_set_epi64x(vals[5], vals[4]);
|
604 |
+
__m128i int_val3 = _mm_set_epi64x(vals[7], vals[6]);
|
605 |
+
|
606 |
+
__m512i int32_val0 = cvtepi8_epi32(int_val0);
|
607 |
+
__m512i int32_val1 = cvtepi8_epi32(int_val1);
|
608 |
+
__m512i int32_val2 = cvtepi8_epi32(int_val2);
|
609 |
+
__m512i int32_val3 = cvtepi8_epi32(int_val3);
|
610 |
+
|
611 |
+
__m128i int_b0 = _mm_set_epi64x(b.vals[1], b.vals[0]);
|
612 |
+
__m128i int_b1 = _mm_set_epi64x(b.vals[3], b.vals[2]);
|
613 |
+
__m128i int_b2 = _mm_set_epi64x(b.vals[5], b.vals[4]);
|
614 |
+
__m128i int_b3 = _mm_set_epi64x(b.vals[7], b.vals[6]);
|
615 |
+
|
616 |
+
__m512i int32_b0 = cvtepi8_epi32(int_b0);
|
617 |
+
__m512i int32_b1 = cvtepi8_epi32(int_b1);
|
618 |
+
__m512i int32_b2 = cvtepi8_epi32(int_b2);
|
619 |
+
__m512i int32_b3 = cvtepi8_epi32(int_b3);
|
620 |
+
|
621 |
+
__m512i res_0 = _mm512_sub_epi32(int32_val0, int32_b0);
|
622 |
+
__m512i res_1 = _mm512_sub_epi32(int32_val1, int32_b1);
|
623 |
+
__m512i res_2 = _mm512_sub_epi32(int32_val2, int32_b2);
|
624 |
+
__m512i res_3 = _mm512_sub_epi32(int32_val3, int32_b3);
|
625 |
+
|
626 |
+
return {Vectorized<c10::qint32>(res_0),
|
627 |
+
Vectorized<c10::qint32>(res_1),
|
628 |
+
Vectorized<c10::qint32>(res_2),
|
629 |
+
Vectorized<c10::qint32>(res_3)};
|
630 |
+
}
|
631 |
+
|
632 |
+
static Vectorized<c10::qint8> requantize_from_int(
|
633 |
+
const int_vec_return_type& inp,
|
634 |
+
float multiplier,
|
635 |
+
int32_t zero_point) {
|
636 |
+
__m512 multiplier_v = _mm512_set1_ps(multiplier);
|
637 |
+
__m512i zero_point_v = _mm512_set1_epi32(zero_point);
|
638 |
+
return RequantizeAvx512<value_type>(inp, multiplier_v, zero_point_v);
|
639 |
+
}
|
640 |
+
|
641 |
+
private:
|
642 |
+
// Load from memory constructor
|
643 |
+
Vectorized(const void* ptr) {
|
644 |
+
vals = _mm512_loadu_si512((const __m512i*)ptr);
|
645 |
+
}
|
646 |
+
};
|
647 |
+
|
648 |
+
template <>
|
649 |
+
Vectorized<c10::qint8> inline maximum(const Vectorized<c10::qint8>& a, const Vectorized<c10::qint8>& b) {
|
650 |
+
return a.maximum(b);
|
651 |
+
}
|
652 |
+
|
653 |
+
template<>
|
654 |
+
struct Vectorized<c10::quint8> : public Vectorizedqi {
|
655 |
+
static constexpr int size() {
|
656 |
+
return 64;
|
657 |
+
}
|
658 |
+
|
659 |
+
static constexpr int float_num_vecs() {
|
660 |
+
return 4;
|
661 |
+
}
|
662 |
+
|
663 |
+
static constexpr int int_num_vecs() {
|
664 |
+
return 4;
|
665 |
+
}
|
666 |
+
|
667 |
+
using float_vec_return_type = std::array<Vectorized<float>, 4>;
|
668 |
+
using int_vec_return_type = std::array<Vectorized<c10::qint32>, 4>;
|
669 |
+
using value_type = typename c10::quint8::underlying;
|
670 |
+
|
671 |
+
public:
|
672 |
+
using Vectorizedqi::Vectorizedqi;
|
673 |
+
Vectorized() {}
|
674 |
+
|
675 |
+
Vectorized(__m512i vals_) { vals = vals_;}
|
676 |
+
|
677 |
+
// Broadcast constructor
|
678 |
+
Vectorized(const c10::quint8& val) {
|
679 |
+
value_type uw = val.val_;
|
680 |
+
vals = _mm512_set1_epi8(uw);
|
681 |
+
}
|
682 |
+
|
683 |
+
Vectorized(const Vectorized<c10::quint8>& other) : Vectorizedqi(other.vals) { }
|
684 |
+
|
685 |
+
// This is added to avoid error: definition of implicit copy assignment operator
|
686 |
+
// for 'Vectorized<c10::quint8>' is deprecated because it has a user-declared
|
687 |
+
// copy constructor [-Werror,-Wdeprecated-copy]
|
688 |
+
Vectorized& operator=(const Vectorized<c10::quint8>&) = default;
|
689 |
+
|
690 |
+
void store(void* ptr, int count = size()) const {
|
691 |
+
if (count != size()) {
|
692 |
+
memcpy(ptr, &vals, count * sizeof(value_type));
|
693 |
+
} else {
|
694 |
+
_mm512_storeu_si512((__m512i*)ptr, vals);
|
695 |
+
}
|
696 |
+
}
|
697 |
+
|
698 |
+
static Vectorized<c10::quint8> loadu(const void* ptr) {
|
699 |
+
return Vectorized<c10::quint8>(ptr);
|
700 |
+
}
|
701 |
+
|
702 |
+
static Vectorized<c10::quint8> loadu(const void* ptr, int64_t count) {
|
703 |
+
__at_align__ value_type tmp_values[size()];
|
704 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
705 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
706 |
+
// instructions while a loop would be compiled to one instruction.
|
707 |
+
for (const auto i : c10::irange(size())) {
|
708 |
+
tmp_values[i] = 0;
|
709 |
+
}
|
710 |
+
std::memcpy(tmp_values, reinterpret_cast<const value_type*>(ptr), count * sizeof(value_type));
|
711 |
+
return loadu(tmp_values);
|
712 |
+
}
|
713 |
+
|
714 |
+
private:
|
715 |
+
__m512i cvtepu8_epi32(__m128i epu8_vals) const {
|
716 |
+
return _mm512_cvtepu8_epi32(epu8_vals);
|
717 |
+
}
|
718 |
+
|
719 |
+
public:
|
720 |
+
float_vec_return_type dequantize(
|
721 |
+
Vectorized<float> scale,
|
722 |
+
Vectorized<float> zero_point,
|
723 |
+
Vectorized<float> scale_zp_premul) const {
|
724 |
+
__m128i int_val0 = _mm_set_epi64x(vals[1], vals[0]);
|
725 |
+
__m128i int_val1 = _mm_set_epi64x(vals[3], vals[2]);
|
726 |
+
__m128i int_val2 = _mm_set_epi64x(vals[5], vals[4]);
|
727 |
+
__m128i int_val3 = _mm_set_epi64x(vals[7], vals[6]);
|
728 |
+
|
729 |
+
__m512 float_val0 = _mm512_cvtepi32_ps(cvtepu8_epi32(int_val0));
|
730 |
+
__m512 float_val1 = _mm512_cvtepi32_ps(cvtepu8_epi32(int_val1));
|
731 |
+
__m512 float_val2 = _mm512_cvtepi32_ps(cvtepu8_epi32(int_val2));
|
732 |
+
__m512 float_val3 = _mm512_cvtepi32_ps(cvtepu8_epi32(int_val3));
|
733 |
+
|
734 |
+
auto val0 =
|
735 |
+
vec::fmadd(scale, Vectorized<float>(float_val0), scale_zp_premul);
|
736 |
+
auto val1 =
|
737 |
+
vec::fmadd(scale, Vectorized<float>(float_val1), scale_zp_premul);
|
738 |
+
auto val2 =
|
739 |
+
vec::fmadd(scale, Vectorized<float>(float_val2), scale_zp_premul);
|
740 |
+
auto val3 =
|
741 |
+
vec::fmadd(scale, Vectorized<float>(float_val3), scale_zp_premul);
|
742 |
+
|
743 |
+
return {val0, val1, val2, val3};
|
744 |
+
}
|
745 |
+
|
746 |
+
float_vec_return_type dequantize(
|
747 |
+
Vectorized<float> scale,
|
748 |
+
Vectorized<float> zero_point) const {
|
749 |
+
__m128i int_val0 = _mm_set_epi64x(vals[1], vals[0]);
|
750 |
+
__m128i int_val1 = _mm_set_epi64x(vals[3], vals[2]);
|
751 |
+
__m128i int_val2 = _mm_set_epi64x(vals[5], vals[4]);
|
752 |
+
__m128i int_val3 = _mm_set_epi64x(vals[7], vals[6]);
|
753 |
+
|
754 |
+
__m512 float_val0 = _mm512_cvtepi32_ps(cvtepu8_epi32(int_val0));
|
755 |
+
__m512 float_val1 = _mm512_cvtepi32_ps(cvtepu8_epi32(int_val1));
|
756 |
+
__m512 float_val2 = _mm512_cvtepi32_ps(cvtepu8_epi32(int_val2));
|
757 |
+
__m512 float_val3 = _mm512_cvtepi32_ps(cvtepu8_epi32(int_val3));
|
758 |
+
|
759 |
+
auto val0 = (Vectorized<float>(float_val0) - zero_point) * scale;
|
760 |
+
auto val1 = (Vectorized<float>(float_val1) - zero_point) * scale;
|
761 |
+
auto val2 = (Vectorized<float>(float_val2) - zero_point) * scale;
|
762 |
+
auto val3 = (Vectorized<float>(float_val3) - zero_point) * scale;
|
763 |
+
|
764 |
+
return {val0, val1, val2, val3};
|
765 |
+
}
|
766 |
+
|
767 |
+
static Vectorized<c10::quint8> quantize(
|
768 |
+
const float_vec_return_type& rhs,
|
769 |
+
float scale,
|
770 |
+
int32_t zero_point,
|
771 |
+
float inverse_scale) {
|
772 |
+
auto* rhs_data = (float*)rhs.data();
|
773 |
+
uint8_t quantized_values[64];
|
774 |
+
QuantizeAvx512<value_type>(
|
775 |
+
rhs_data, quantized_values, 64, inverse_scale, zero_point);
|
776 |
+
return Vectorized<c10::quint8>::loadu(quantized_values);
|
777 |
+
}
|
778 |
+
|
779 |
+
Vectorized<c10::quint8> maximum(Vectorized<c10::quint8> b) const {
|
780 |
+
return _mm512_max_epu8(vals, b.vals);
|
781 |
+
}
|
782 |
+
|
783 |
+
Vectorized<c10::quint8> minimum(Vectorized<c10::quint8> b) const {
|
784 |
+
return _mm512_min_epu8(vals, b.vals);
|
785 |
+
}
|
786 |
+
|
787 |
+
Vectorized<c10::quint8> relu(Vectorized<c10::quint8> zero_point) const {
|
788 |
+
return maximum(zero_point);
|
789 |
+
}
|
790 |
+
|
791 |
+
Vectorized<c10::quint8> relu6(
|
792 |
+
Vectorized<c10::quint8> zero_point,
|
793 |
+
Vectorized<c10::quint8> q_six) {
|
794 |
+
return _mm512_min_epu8(
|
795 |
+
_mm512_max_epu8(vals, zero_point.vals), q_six.vals);
|
796 |
+
}
|
797 |
+
|
798 |
+
int_vec_return_type widening_subtract(Vectorized<c10::quint8> b) const {
|
799 |
+
__m128i int_val0 = _mm_set_epi64x(vals[1], vals[0]);
|
800 |
+
__m128i int_val1 = _mm_set_epi64x(vals[3], vals[2]);
|
801 |
+
__m128i int_val2 = _mm_set_epi64x(vals[5], vals[4]);
|
802 |
+
__m128i int_val3 = _mm_set_epi64x(vals[7], vals[6]);
|
803 |
+
|
804 |
+
__m512i int32_val0 = cvtepu8_epi32(int_val0);
|
805 |
+
__m512i int32_val1 = cvtepu8_epi32(int_val1);
|
806 |
+
__m512i int32_val2 = cvtepu8_epi32(int_val2);
|
807 |
+
__m512i int32_val3 = cvtepu8_epi32(int_val3);
|
808 |
+
|
809 |
+
__m128i int_b0 = _mm_set_epi64x(b.vals[1], b.vals[0]);
|
810 |
+
__m128i int_b1 = _mm_set_epi64x(b.vals[3], b.vals[2]);
|
811 |
+
__m128i int_b2 = _mm_set_epi64x(b.vals[5], b.vals[4]);
|
812 |
+
__m128i int_b3 = _mm_set_epi64x(b.vals[7], b.vals[6]);
|
813 |
+
|
814 |
+
__m512i int32_b0 = cvtepu8_epi32(int_b0);
|
815 |
+
__m512i int32_b1 = cvtepu8_epi32(int_b1);
|
816 |
+
__m512i int32_b2 = cvtepu8_epi32(int_b2);
|
817 |
+
__m512i int32_b3 = cvtepu8_epi32(int_b3);
|
818 |
+
|
819 |
+
__m512i res_0 = _mm512_sub_epi32(int32_val0, int32_b0);
|
820 |
+
__m512i res_1 = _mm512_sub_epi32(int32_val1, int32_b1);
|
821 |
+
__m512i res_2 = _mm512_sub_epi32(int32_val2, int32_b2);
|
822 |
+
__m512i res_3 = _mm512_sub_epi32(int32_val3, int32_b3);
|
823 |
+
return {Vectorized<c10::qint32>(res_0),
|
824 |
+
Vectorized<c10::qint32>(res_1),
|
825 |
+
Vectorized<c10::qint32>(res_2),
|
826 |
+
Vectorized<c10::qint32>(res_3)};
|
827 |
+
}
|
828 |
+
|
829 |
+
static Vectorized<c10::quint8> requantize_from_int(
|
830 |
+
const int_vec_return_type& inp,
|
831 |
+
float multiplier,
|
832 |
+
int32_t zero_point) {
|
833 |
+
__m512 multiplier_v = _mm512_set1_ps(multiplier);
|
834 |
+
__m512i zero_point_v = _mm512_set1_epi32(zero_point);
|
835 |
+
return RequantizeAvx512<value_type>(inp, multiplier_v, zero_point_v);
|
836 |
+
}
|
837 |
+
|
838 |
+
private:
|
839 |
+
|
840 |
+
// Load from memory constructor
|
841 |
+
Vectorized(const void* ptr) {
|
842 |
+
vals = _mm512_loadu_si512((const __m512i*)ptr);
|
843 |
+
}
|
844 |
+
};
|
845 |
+
|
846 |
+
template <>
|
847 |
+
Vectorized<c10::quint8> inline maximum(const Vectorized<c10::quint8>& a, const Vectorized<c10::quint8>& b) {
|
848 |
+
return a.maximum(b);
|
849 |
+
}
|
850 |
+
|
851 |
+
#else
|
852 |
+
|
853 |
+
// NOTE: These are low-performance implementations that we fall back on.
|
854 |
+
|
855 |
+
template <
|
856 |
+
typename T,
|
857 |
+
typename float_vec_return_type_,
|
858 |
+
typename int_vec_return_type_,
|
859 |
+
int size_>
|
860 |
+
struct VectorizedQuantizedConverter {
|
861 |
+
static constexpr int size() {
|
862 |
+
return size_;
|
863 |
+
}
|
864 |
+
|
865 |
+
static constexpr int float_num_vecs() {
|
866 |
+
return size() / 8;
|
867 |
+
}
|
868 |
+
|
869 |
+
static constexpr int int_num_vecs() {
|
870 |
+
return size() / 8;
|
871 |
+
}
|
872 |
+
|
873 |
+
using float_vec_return_type = float_vec_return_type_;
|
874 |
+
using int_vec_return_type = int_vec_return_type_;
|
875 |
+
|
876 |
+
using value_type = typename T::underlying;
|
877 |
+
std::array<value_type, size_> vals;
|
878 |
+
|
879 |
+
VectorizedQuantizedConverter(T val) {
|
880 |
+
for (const auto i : c10::irange(size())) {
|
881 |
+
vals[i] = val.val_;
|
882 |
+
}
|
883 |
+
}
|
884 |
+
|
885 |
+
VectorizedQuantizedConverter(const void* ptr) {
|
886 |
+
memcpy(vals.data(), ptr, sizeof(value_type) * size());
|
887 |
+
}
|
888 |
+
|
889 |
+
void store(void* ptr, int count = size()) const {
|
890 |
+
memcpy(ptr, vals.data(), count * sizeof(value_type));
|
891 |
+
}
|
892 |
+
|
893 |
+
float_vec_return_type dequantize(
|
894 |
+
Vectorized<float> scale,
|
895 |
+
Vectorized<float> zero_point,
|
896 |
+
Vectorized<float> scale_zp_premul) const {
|
897 |
+
float_vec_return_type rv;
|
898 |
+
for (const auto i : c10::irange(float_num_vecs())) {
|
899 |
+
float tmp_vals[16];
|
900 |
+
for (const auto j : c10::irange(16)) {
|
901 |
+
tmp_vals[j] = at::native::dequantize_val<T>(
|
902 |
+
scale[j], zero_point[j], T(vals[16 * i + j]));
|
903 |
+
}
|
904 |
+
rv[i] = Vectorized<float>(tmp_vals[0],
|
905 |
+
tmp_vals[1],
|
906 |
+
tmp_vals[2],
|
907 |
+
tmp_vals[3],
|
908 |
+
tmp_vals[4],
|
909 |
+
tmp_vals[5],
|
910 |
+
tmp_vals[6],
|
911 |
+
tmp_vals[7],
|
912 |
+
tmp_vals[8],
|
913 |
+
tmp_vals[9],
|
914 |
+
tmp_vals[10],
|
915 |
+
tmp_vals[11],
|
916 |
+
tmp_vals[12],
|
917 |
+
tmp_vals[13],
|
918 |
+
tmp_vals[14],
|
919 |
+
tmp_vals[15]);
|
920 |
+
}
|
921 |
+
return rv;
|
922 |
+
}
|
923 |
+
|
924 |
+
float_vec_return_type dequantize(
|
925 |
+
Vectorized<float> scale,
|
926 |
+
Vectorized<float> zero_point) const {
|
927 |
+
Vectorized<float> scale_zp_premul;
|
928 |
+
return dequantize(scale, zero_point, scale_zp_premul);
|
929 |
+
}
|
930 |
+
|
931 |
+
protected:
|
932 |
+
VectorizedQuantizedConverter() {}
|
933 |
+
};
|
934 |
+
|
935 |
+
template <>
|
936 |
+
struct Vectorized<c10::qint32> : public VectorizedQuantizedConverter<
|
937 |
+
c10::qint32,
|
938 |
+
std::array<Vectorized<float>, 1>,
|
939 |
+
std::array<Vectorized<c10::qint32>, 1>,
|
940 |
+
16> {
|
941 |
+
Vectorized()
|
942 |
+
: VectorizedQuantizedConverter<
|
943 |
+
c10::qint32,
|
944 |
+
std::array<Vectorized<float>, 1>,
|
945 |
+
std::array<Vectorized<c10::qint32>, 1>,
|
946 |
+
16>() {}
|
947 |
+
Vectorized(c10::qint32 val)
|
948 |
+
: VectorizedQuantizedConverter<
|
949 |
+
c10::qint32,
|
950 |
+
std::array<Vectorized<float>, 1>,
|
951 |
+
std::array<Vectorized<c10::qint32>, 1>,
|
952 |
+
16>(val) {}
|
953 |
+
Vectorized(const void* ptr)
|
954 |
+
: VectorizedQuantizedConverter<
|
955 |
+
c10::qint32,
|
956 |
+
std::array<Vectorized<float>, 1>,
|
957 |
+
std::array<Vectorized<c10::qint32>, 1>,
|
958 |
+
16>(ptr) {}
|
959 |
+
|
960 |
+
static Vectorized<c10::qint32> loadu(const void* ptr) {
|
961 |
+
return Vectorized<c10::qint32>(ptr);
|
962 |
+
}
|
963 |
+
|
964 |
+
static Vectorized<c10::qint32> loadu(const void* ptr, int64_t count) {
|
965 |
+
__at_align__ value_type tmp_values[size()];
|
966 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
967 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
968 |
+
// instructions while a loop would be compiled to one instruction.
|
969 |
+
for (const auto i : c10::irange(size())) {
|
970 |
+
tmp_values[i] = 0;
|
971 |
+
}
|
972 |
+
std::memcpy(tmp_values, reinterpret_cast<const value_type*>(ptr), count * sizeof(value_type));
|
973 |
+
return loadu(tmp_values);
|
974 |
+
}
|
975 |
+
|
976 |
+
static Vectorized<c10::qint32> quantize(
|
977 |
+
const float_vec_return_type& rhs,
|
978 |
+
float scale,
|
979 |
+
int32_t zero_point,
|
980 |
+
float inverse_scale) {
|
981 |
+
std::array<value_type, size()> qvals;
|
982 |
+
std::array<float, float_num_vecs() * 16> float_vals;
|
983 |
+
|
984 |
+
for (const auto i : c10::irange(float_num_vecs())) {
|
985 |
+
rhs[i].store(&float_vals[i * 16], 16);
|
986 |
+
}
|
987 |
+
|
988 |
+
at::native::quantize_vec<c10::qint32, /*precision=*/32>(
|
989 |
+
scale,
|
990 |
+
zero_point,
|
991 |
+
float_vals.data(),
|
992 |
+
(c10::qint32*)qvals.data(),
|
993 |
+
16 * float_num_vecs());
|
994 |
+
|
995 |
+
return Vectorized<c10::qint32>::loadu(qvals.data());
|
996 |
+
}
|
997 |
+
|
998 |
+
Vectorized<c10::qint32> maximum(Vectorized<c10::qint32> b) const {
|
999 |
+
Vectorized<c10::qint32> retval;
|
1000 |
+
for (const auto i : c10::irange(size())) {
|
1001 |
+
retval.vals[i] = std::max<value_type>(vals[i], b.vals[i]);
|
1002 |
+
}
|
1003 |
+
return retval;
|
1004 |
+
}
|
1005 |
+
|
1006 |
+
Vectorized<c10::qint32> minimum(Vectorized<c10::qint32> b) const {
|
1007 |
+
Vectorized<c10::qint32> retval;
|
1008 |
+
for (const auto i : c10::irange(size())) {
|
1009 |
+
retval.vals[i] = std::min<value_type>(vals[i], b.vals[i]);
|
1010 |
+
}
|
1011 |
+
return retval;
|
1012 |
+
}
|
1013 |
+
|
1014 |
+
Vectorized<c10::qint32> relu(Vectorized<c10::qint32> zero_point) const {
|
1015 |
+
return maximum(zero_point);
|
1016 |
+
}
|
1017 |
+
|
1018 |
+
|
1019 |
+
Vectorized<c10::qint32> relu6(
|
1020 |
+
Vectorized<c10::qint32> zero_point,
|
1021 |
+
Vectorized<c10::qint32> q_six) {
|
1022 |
+
Vectorized<c10::qint32> retval;
|
1023 |
+
for (const auto i : c10::irange(size())) {
|
1024 |
+
retval.vals[i] = std::min<value_type>(
|
1025 |
+
std::max<value_type>(vals[i], zero_point.vals[i]), q_six.vals[i]);
|
1026 |
+
}
|
1027 |
+
return retval;
|
1028 |
+
}
|
1029 |
+
|
1030 |
+
int_vec_return_type widening_subtract(Vectorized<c10::qint32> b) const {
|
1031 |
+
int_vec_return_type retval;
|
1032 |
+
for (const auto i : c10::irange(size())) {
|
1033 |
+
retval[0].vals[i] = vals[i] - b.vals[i];
|
1034 |
+
}
|
1035 |
+
return retval;
|
1036 |
+
}
|
1037 |
+
|
1038 |
+
static Vectorized<c10::qint32> requantize_from_int(
|
1039 |
+
const int_vec_return_type& inp,
|
1040 |
+
float multiplier,
|
1041 |
+
int32_t zero_point) {
|
1042 |
+
Vectorized<c10::qint32> retval;
|
1043 |
+
for (const auto i : c10::irange(size())) {
|
1044 |
+
retval.vals[i] =
|
1045 |
+
std::nearbyint(static_cast<float>(inp[0].vals[i]) * multiplier) +
|
1046 |
+
zero_point;
|
1047 |
+
}
|
1048 |
+
return retval;
|
1049 |
+
}
|
1050 |
+
};
|
1051 |
+
|
1052 |
+
template <>
|
1053 |
+
Vectorized<c10::qint32> inline maximum(const Vectorized<c10::qint32>& a, const Vectorized<c10::qint32>& b) {
|
1054 |
+
return a.maximum(b);
|
1055 |
+
}
|
1056 |
+
|
1057 |
+
template <>
|
1058 |
+
Vectorized<c10::qint32> inline operator*(
|
1059 |
+
const Vectorized<c10::qint32>& a,
|
1060 |
+
const Vectorized<c10::qint32>& b) {
|
1061 |
+
Vectorized<c10::qint32> retval;
|
1062 |
+
for (const auto i : c10::irange(std::decay_t<decltype(a)>::size())) {
|
1063 |
+
retval.vals[i] = a.vals[i] * b.vals[i];
|
1064 |
+
}
|
1065 |
+
return retval;
|
1066 |
+
}
|
1067 |
+
|
1068 |
+
template <>
|
1069 |
+
Vectorized<c10::qint32> inline operator+(
|
1070 |
+
const Vectorized<c10::qint32>& a,
|
1071 |
+
const Vectorized<c10::qint32>& b) {
|
1072 |
+
Vectorized<c10::qint32> retval;
|
1073 |
+
for (const auto i : c10::irange(std::decay_t<decltype(a)>::size())) {
|
1074 |
+
retval.vals[i] = a.vals[i] + b.vals[i];
|
1075 |
+
}
|
1076 |
+
return retval;
|
1077 |
+
}
|
1078 |
+
|
1079 |
+
template <>
|
1080 |
+
struct Vectorized<c10::qint8> : public VectorizedQuantizedConverter<
|
1081 |
+
c10::qint8,
|
1082 |
+
std::array<Vectorized<float>, 4>,
|
1083 |
+
std::array<Vectorized<c10::qint32>, 4>,
|
1084 |
+
64> {
|
1085 |
+
Vectorized()
|
1086 |
+
: VectorizedQuantizedConverter<
|
1087 |
+
c10::qint8,
|
1088 |
+
std::array<Vectorized<float>, 4>,
|
1089 |
+
std::array<Vectorized<c10::qint32>, 4>,
|
1090 |
+
64>() {}
|
1091 |
+
Vectorized(c10::qint8 val)
|
1092 |
+
: VectorizedQuantizedConverter<
|
1093 |
+
c10::qint8,
|
1094 |
+
std::array<Vectorized<float>, 4>,
|
1095 |
+
std::array<Vectorized<c10::qint32>, 4>,
|
1096 |
+
64>(val) {}
|
1097 |
+
Vectorized(const void* ptr)
|
1098 |
+
: VectorizedQuantizedConverter<
|
1099 |
+
c10::qint8,
|
1100 |
+
std::array<Vectorized<float>, 4>,
|
1101 |
+
std::array<Vectorized<c10::qint32>, 4>,
|
1102 |
+
64>(ptr) {}
|
1103 |
+
|
1104 |
+
static Vectorized<c10::qint8> loadu(const void* ptr) {
|
1105 |
+
return Vectorized<c10::qint8>(ptr);
|
1106 |
+
}
|
1107 |
+
|
1108 |
+
static Vectorized<c10::qint8> loadu(const void* ptr, int64_t count) {
|
1109 |
+
__at_align__ value_type tmp_values[size()];
|
1110 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
1111 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
1112 |
+
// instructions while a loop would be compiled to one instruction.
|
1113 |
+
for (const auto i : c10::irange(size())) {
|
1114 |
+
tmp_values[i] = 0;
|
1115 |
+
}
|
1116 |
+
std::memcpy(tmp_values, reinterpret_cast<const value_type*>(ptr), count * sizeof(value_type));
|
1117 |
+
return loadu(tmp_values);
|
1118 |
+
}
|
1119 |
+
|
1120 |
+
static Vectorized<c10::qint8> quantize(
|
1121 |
+
const float_vec_return_type& rhs,
|
1122 |
+
float scale,
|
1123 |
+
int32_t zero_point,
|
1124 |
+
float inverse_scale) {
|
1125 |
+
std::array<value_type, size()> qvals;
|
1126 |
+
std::array<float, float_num_vecs() * 16> float_vals;
|
1127 |
+
|
1128 |
+
for (const auto i : c10::irange(float_num_vecs())) {
|
1129 |
+
rhs[i].store(&float_vals[i * 16], 16);
|
1130 |
+
}
|
1131 |
+
|
1132 |
+
at::native::quantize_vec<c10::qint8>(
|
1133 |
+
scale,
|
1134 |
+
zero_point,
|
1135 |
+
float_vals.data(),
|
1136 |
+
(c10::qint8*)qvals.data(),
|
1137 |
+
16 * float_num_vecs());
|
1138 |
+
|
1139 |
+
return Vectorized<c10::qint8>::loadu(qvals.data());
|
1140 |
+
}
|
1141 |
+
|
1142 |
+
Vectorized<c10::qint8> maximum(Vectorized<c10::qint8> b) const {
|
1143 |
+
Vectorized<c10::qint8> retval;
|
1144 |
+
for (const auto i : c10::irange(size())) {
|
1145 |
+
retval.vals[i] = std::max<value_type>(vals[i], b.vals[i]);
|
1146 |
+
}
|
1147 |
+
return retval;
|
1148 |
+
}
|
1149 |
+
|
1150 |
+
Vectorized<c10::qint8> minimum(Vectorized<c10::qint8> b) const {
|
1151 |
+
Vectorized<c10::qint8> retval;
|
1152 |
+
for (const auto i : c10::irange(size())) {
|
1153 |
+
retval.vals[i] = std::min<value_type>(vals[i], b.vals[i]);
|
1154 |
+
}
|
1155 |
+
return retval;
|
1156 |
+
}
|
1157 |
+
|
1158 |
+
Vectorized<c10::qint8> relu(Vectorized<c10::qint8> zero_point) const {
|
1159 |
+
return maximum(zero_point);
|
1160 |
+
}
|
1161 |
+
|
1162 |
+
Vectorized<c10::qint8> relu6(
|
1163 |
+
Vectorized<c10::qint8> zero_point,
|
1164 |
+
Vectorized<c10::qint8> q_six) {
|
1165 |
+
Vectorized<c10::qint8> retval;
|
1166 |
+
for (const auto i : c10::irange(size())) {
|
1167 |
+
retval.vals[i] = std::min<value_type>(
|
1168 |
+
std::max<value_type>(vals[i], zero_point.vals[i]), q_six.vals[i]);
|
1169 |
+
}
|
1170 |
+
return retval;
|
1171 |
+
}
|
1172 |
+
|
1173 |
+
int_vec_return_type widening_subtract(Vectorized<c10::qint8> b) const {
|
1174 |
+
int_vec_return_type retval;
|
1175 |
+
constexpr int elem_per_int_vec = size() / int_num_vecs();
|
1176 |
+
for (const auto i : c10::irange(int_num_vecs())) {
|
1177 |
+
for (const auto j : c10::irange(elem_per_int_vec)) {
|
1178 |
+
retval[i].vals[j] =
|
1179 |
+
static_cast<int32_t>(vals[i * elem_per_int_vec + j]) -
|
1180 |
+
static_cast<int32_t>(b.vals[i * elem_per_int_vec + j]);
|
1181 |
+
}
|
1182 |
+
}
|
1183 |
+
return retval;
|
1184 |
+
}
|
1185 |
+
static Vectorized<c10::qint8> requantize_from_int(
|
1186 |
+
const int_vec_return_type& inp,
|
1187 |
+
float multiplier,
|
1188 |
+
int32_t zero_point) {
|
1189 |
+
constexpr int elem_per_int_vec = size() / int_num_vecs();
|
1190 |
+
constexpr auto min_val = std::numeric_limits<value_type>::min();
|
1191 |
+
constexpr auto max_val = std::numeric_limits<value_type>::max();
|
1192 |
+
Vectorized<c10::qint8> retval;
|
1193 |
+
for (const auto i : c10::irange(int_num_vecs())) {
|
1194 |
+
for (const auto j : c10::irange(elem_per_int_vec)) {
|
1195 |
+
int32_t rounded =
|
1196 |
+
std::nearbyint(static_cast<float>(inp[i].vals[j]) * multiplier) +
|
1197 |
+
zero_point;
|
1198 |
+
retval.vals[i * elem_per_int_vec + j] =
|
1199 |
+
std::min<int32_t>(std::max<int32_t>(rounded, min_val), max_val);
|
1200 |
+
}
|
1201 |
+
}
|
1202 |
+
return retval;
|
1203 |
+
}
|
1204 |
+
};
|
1205 |
+
|
1206 |
+
template <>
|
1207 |
+
Vectorized<c10::qint8> inline maximum(const Vectorized<c10::qint8>& a, const Vectorized<c10::qint8>& b) {
|
1208 |
+
return a.maximum(b);
|
1209 |
+
}
|
1210 |
+
|
1211 |
+
template <>
|
1212 |
+
struct Vectorized<c10::quint8> : public VectorizedQuantizedConverter<
|
1213 |
+
c10::quint8,
|
1214 |
+
std::array<Vectorized<float>, 4>,
|
1215 |
+
std::array<Vectorized<c10::qint32>, 4>,
|
1216 |
+
64> {
|
1217 |
+
Vectorized()
|
1218 |
+
: VectorizedQuantizedConverter<
|
1219 |
+
c10::quint8,
|
1220 |
+
std::array<Vectorized<float>, 4>,
|
1221 |
+
std::array<Vectorized<c10::qint32>, 4>,
|
1222 |
+
64>() {}
|
1223 |
+
Vectorized(c10::quint8 val)
|
1224 |
+
: VectorizedQuantizedConverter<
|
1225 |
+
c10::quint8,
|
1226 |
+
std::array<Vectorized<float>, 4>,
|
1227 |
+
std::array<Vectorized<c10::qint32>, 4>,
|
1228 |
+
64>(val) {}
|
1229 |
+
Vectorized(const void* ptr)
|
1230 |
+
: VectorizedQuantizedConverter<
|
1231 |
+
c10::quint8,
|
1232 |
+
std::array<Vectorized<float>, 4>,
|
1233 |
+
std::array<Vectorized<c10::qint32>, 4>,
|
1234 |
+
64>(ptr) {}
|
1235 |
+
|
1236 |
+
static Vectorized<c10::quint8> loadu(const void* ptr) {
|
1237 |
+
return Vectorized<c10::quint8>(ptr);
|
1238 |
+
}
|
1239 |
+
|
1240 |
+
static Vectorized<c10::quint8> loadu(const void* ptr, int64_t count) {
|
1241 |
+
__at_align__ value_type tmp_values[size()];
|
1242 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
1243 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
1244 |
+
// instructions while a loop would be compiled to one instruction.
|
1245 |
+
for (const auto i : c10::irange(size())) {
|
1246 |
+
tmp_values[i] = 0;
|
1247 |
+
}
|
1248 |
+
std::memcpy(tmp_values, reinterpret_cast<const value_type*>(ptr), count * sizeof(value_type));
|
1249 |
+
return loadu(tmp_values);
|
1250 |
+
}
|
1251 |
+
|
1252 |
+
static Vectorized<c10::quint8> quantize(
|
1253 |
+
const float_vec_return_type& rhs,
|
1254 |
+
float scale,
|
1255 |
+
int32_t zero_point,
|
1256 |
+
float inverse_scale) {
|
1257 |
+
std::array<value_type, size()> qvals;
|
1258 |
+
std::array<float, float_num_vecs() * 16> float_vals;
|
1259 |
+
|
1260 |
+
for (const auto i : c10::irange(float_num_vecs())) {
|
1261 |
+
rhs[i].store(&float_vals[i * 16], 16);
|
1262 |
+
}
|
1263 |
+
|
1264 |
+
at::native::quantize_vec<c10::quint8>(
|
1265 |
+
scale,
|
1266 |
+
zero_point,
|
1267 |
+
float_vals.data(),
|
1268 |
+
(c10::quint8*)qvals.data(),
|
1269 |
+
16 * float_num_vecs());
|
1270 |
+
|
1271 |
+
return Vectorized<c10::quint8>::loadu(qvals.data());
|
1272 |
+
}
|
1273 |
+
|
1274 |
+
Vectorized<c10::quint8> maximum(Vectorized<c10::quint8> b) const {
|
1275 |
+
Vectorized<c10::quint8> retval;
|
1276 |
+
for (const auto i : c10::irange(size())) {
|
1277 |
+
retval.vals[i] = std::max<value_type>(vals[i], b.vals[i]);
|
1278 |
+
}
|
1279 |
+
return retval;
|
1280 |
+
}
|
1281 |
+
|
1282 |
+
Vectorized<c10::quint8> minimum(Vectorized<c10::quint8> b) const {
|
1283 |
+
Vectorized<c10::quint8> retval;
|
1284 |
+
for (const auto i : c10::irange(size())) {
|
1285 |
+
retval.vals[i] = std::min<value_type>(vals[i], b.vals[i]);
|
1286 |
+
}
|
1287 |
+
return retval;
|
1288 |
+
}
|
1289 |
+
|
1290 |
+
Vectorized<c10::quint8> relu(Vectorized<c10::quint8> zero_point) const {
|
1291 |
+
return maximum(zero_point);
|
1292 |
+
}
|
1293 |
+
|
1294 |
+
|
1295 |
+
Vectorized<c10::quint8> relu6(
|
1296 |
+
Vectorized<c10::quint8> zero_point,
|
1297 |
+
Vectorized<c10::quint8> q_six) {
|
1298 |
+
Vectorized<c10::quint8> retval;
|
1299 |
+
for (const auto i : c10::irange(size())) {
|
1300 |
+
retval.vals[i] = std::min<value_type>(
|
1301 |
+
std::max<value_type>(vals[i], zero_point.vals[i]), q_six.vals[i]);
|
1302 |
+
}
|
1303 |
+
return retval;
|
1304 |
+
}
|
1305 |
+
|
1306 |
+
int_vec_return_type widening_subtract(Vectorized<c10::quint8> b) const {
|
1307 |
+
int_vec_return_type retval;
|
1308 |
+
constexpr int elem_per_int_vec = size() / int_num_vecs();
|
1309 |
+
for (const auto i : c10::irange(int_num_vecs())) {
|
1310 |
+
for (const auto j : c10::irange(elem_per_int_vec)) {
|
1311 |
+
retval[i].vals[j] =
|
1312 |
+
static_cast<int32_t>(vals[i * elem_per_int_vec + j]) -
|
1313 |
+
static_cast<int32_t>(b.vals[i * elem_per_int_vec + j]);
|
1314 |
+
}
|
1315 |
+
}
|
1316 |
+
return retval;
|
1317 |
+
}
|
1318 |
+
static Vectorized<c10::quint8> requantize_from_int(
|
1319 |
+
const int_vec_return_type& inp,
|
1320 |
+
float multiplier,
|
1321 |
+
int32_t zero_point) {
|
1322 |
+
constexpr int elem_per_int_vec = size() / int_num_vecs();
|
1323 |
+
constexpr auto min_val = std::numeric_limits<value_type>::min();
|
1324 |
+
constexpr auto max_val = std::numeric_limits<value_type>::max();
|
1325 |
+
Vectorized<c10::quint8> retval;
|
1326 |
+
for (const auto i : c10::irange(int_num_vecs())) {
|
1327 |
+
for (const auto j : c10::irange(elem_per_int_vec)) {
|
1328 |
+
int32_t rounded =
|
1329 |
+
std::nearbyint(static_cast<float>(inp[i].vals[j]) * multiplier) +
|
1330 |
+
zero_point;
|
1331 |
+
retval.vals[i * elem_per_int_vec + j] =
|
1332 |
+
std::min<int32_t>(std::max<int32_t>(rounded, min_val), max_val);
|
1333 |
+
}
|
1334 |
+
}
|
1335 |
+
return retval;
|
1336 |
+
}
|
1337 |
+
};
|
1338 |
+
|
1339 |
+
template <>
|
1340 |
+
Vectorized<c10::quint8> inline maximum(const Vectorized<c10::quint8>& a, const Vectorized<c10::quint8>& b) {
|
1341 |
+
return a.maximum(b);
|
1342 |
+
}
|
1343 |
+
|
1344 |
+
#endif // defined(CPU_CAPABILITY_AVX512) && !defined(MSVC)
|
1345 |
+
|
1346 |
+
}}}
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec_base.h
ADDED
@@ -0,0 +1,1108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
//
|
6 |
+
// Note [Do not compile initializers with AVX]
|
7 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
8 |
+
// If you define a static initializer in this file, the initialization will use
|
9 |
+
// AVX instructions because these object files are compiled with AVX enabled.
|
10 |
+
// We need to avoid non-trivial global data in these architecture specific files
|
11 |
+
// because there's no way to guard the global initializers with CPU capability
|
12 |
+
// detection.
|
13 |
+
//
|
14 |
+
// See https://github.com/pytorch/pytorch/issues/37577 for an instance
|
15 |
+
// of this bug in the past.
|
16 |
+
|
17 |
+
#include <array>
|
18 |
+
#include <algorithm>
|
19 |
+
#include <cassert>
|
20 |
+
#include <cstring>
|
21 |
+
#include <functional>
|
22 |
+
#include <cmath>
|
23 |
+
#include <type_traits>
|
24 |
+
#include <climits>
|
25 |
+
|
26 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
27 |
+
#include <ATen/native/Math.h>
|
28 |
+
#include <ATen/NumericUtils.h>
|
29 |
+
#include <c10/util/Half.h>
|
30 |
+
#include <c10/util/BFloat16.h>
|
31 |
+
#include <c10/util/BFloat16-math.h>
|
32 |
+
#include <c10/util/copysign.h>
|
33 |
+
#include <ATen/native/cpu/zmath.h>
|
34 |
+
#include <c10/util/TypeCast.h>
|
35 |
+
#include <c10/macros/Macros.h>
|
36 |
+
#include <c10/util/irange.h>
|
37 |
+
#include <c10/util/Load.h>
|
38 |
+
|
39 |
+
// These macros helped us unify vec_base.h
|
40 |
+
#ifdef CPU_CAPABILITY_AVX512
|
41 |
+
#if defined(__GNUC__)
|
42 |
+
#define __at_align__ __attribute__((aligned(64)))
|
43 |
+
#elif defined(_WIN32)
|
44 |
+
#define __at_align__ __declspec(align(64))
|
45 |
+
#else
|
46 |
+
#define __at_align__
|
47 |
+
#endif
|
48 |
+
#define VECTOR_WIDTH 64
|
49 |
+
#define int_vector __m512i
|
50 |
+
#else // CPU_CAPABILITY_AVX512
|
51 |
+
#if defined(__GNUC__)
|
52 |
+
#define __at_align__ __attribute__((aligned(32)))
|
53 |
+
#elif defined(_WIN32)
|
54 |
+
#define __at_align__ __declspec(align(32))
|
55 |
+
#else
|
56 |
+
#define __at_align__
|
57 |
+
#endif
|
58 |
+
#define VECTOR_WIDTH 32
|
59 |
+
#define int_vector __m256i
|
60 |
+
#endif // CPU_CAPABILITY_AVX512
|
61 |
+
|
62 |
+
namespace at::vec {
|
63 |
+
// See Note [CPU_CAPABILITY namespace]
|
64 |
+
inline namespace CPU_CAPABILITY {
|
65 |
+
// at::Half and at::BFloat16 should be treated as floating point
|
66 |
+
template <typename T>
|
67 |
+
struct is_floating_point:
|
68 |
+
std::integral_constant<bool,
|
69 |
+
std::is_floating_point<T>::value ||
|
70 |
+
std::is_same<T, at::Half>::value ||
|
71 |
+
std::is_same<T, at::BFloat16>::value> {
|
72 |
+
};
|
73 |
+
|
74 |
+
template<typename T>
|
75 |
+
constexpr bool is_floating_point_v = is_floating_point<T>::value;
|
76 |
+
|
77 |
+
template <typename T>
|
78 |
+
struct is_reduced_floating_point:
|
79 |
+
std::integral_constant<bool,
|
80 |
+
std::is_same<T, at::Half>::value ||
|
81 |
+
std::is_same<T, at::BFloat16>::value> {
|
82 |
+
};
|
83 |
+
|
84 |
+
template <typename T>
|
85 |
+
constexpr bool is_reduced_floating_point_v = is_reduced_floating_point<T>::value;
|
86 |
+
|
87 |
+
template<size_t n> struct int_of_size;
|
88 |
+
|
89 |
+
#define DEFINE_INT_OF_SIZE(int_t) \
|
90 |
+
template<> struct int_of_size<sizeof(int_t)> { using type = int_t; }
|
91 |
+
|
92 |
+
DEFINE_INT_OF_SIZE(int64_t);
|
93 |
+
DEFINE_INT_OF_SIZE(int32_t);
|
94 |
+
DEFINE_INT_OF_SIZE(int16_t);
|
95 |
+
DEFINE_INT_OF_SIZE(int8_t);
|
96 |
+
|
97 |
+
#undef DEFINE_INT_OF_SIZE
|
98 |
+
|
99 |
+
template <typename T>
|
100 |
+
using int_same_size_t = typename int_of_size<sizeof(T)>::type;
|
101 |
+
|
102 |
+
// NOTE: If you specialize on a type, you must define all operations!
|
103 |
+
|
104 |
+
// emulates Vectorized types
|
105 |
+
#if defined(__s390x__)
|
106 |
+
template <class T, class TEMP=void>
|
107 |
+
#else
|
108 |
+
template <class T>
|
109 |
+
#endif
|
110 |
+
struct Vectorized {
|
111 |
+
private:
|
112 |
+
__at_align__ T values[VECTOR_WIDTH / sizeof(T)];
|
113 |
+
public:
|
114 |
+
using value_type = T;
|
115 |
+
using size_type = int;
|
116 |
+
// Note [constexpr static function to avoid odr-usage compiler bug]
|
117 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
118 |
+
// Why, you might ask, is size defined to be a static constexpr function,
|
119 |
+
// rather than a more ordinary 'static constexpr int size;' variable?
|
120 |
+
// The problem lies within ODR rules for static constexpr members versus
|
121 |
+
// static constexpr functions. First, recall that this class (along with all
|
122 |
+
// of its derivations) live in an anonymous namespace: they are intended to be
|
123 |
+
// *completely* inlined at their use-sites, because we need to compile it
|
124 |
+
// multiple times for different instruction sets.
|
125 |
+
//
|
126 |
+
// Because of this constraint, we CANNOT provide a single definition for
|
127 |
+
// any static members in this class; since we want to compile the class
|
128 |
+
// multiple times, there wouldn't actually be any good place to put the
|
129 |
+
// definition. Now here is the problem: if we ODR-use a static constexpr
|
130 |
+
// member, we are *obligated* to provide a definition. Without the
|
131 |
+
// definition, you get a compile error like:
|
132 |
+
//
|
133 |
+
// relocation R_X86_64_PC32 against undefined symbol
|
134 |
+
// `_ZN2at6vec25612_GLOBAL__N_16VectorizedIdE4sizeE' can not be used when making
|
135 |
+
// a shared object; recompile with -fPIC
|
136 |
+
//
|
137 |
+
// If this were C++17, we could replace a static constexpr variable with
|
138 |
+
// an inline variable which doesn't require one definition. But we are not
|
139 |
+
// C++17. So the next best thing is to replace the member with a static
|
140 |
+
// constexpr (and therefore inline) function, which does not require ODR
|
141 |
+
// either.
|
142 |
+
//
|
143 |
+
// Also, technically according to the C++ standard, we don't have to define
|
144 |
+
// a constexpr variable if we never odr-use it. But it seems that some
|
145 |
+
// versions GCC/Clang have buggy determinations on whether or not an
|
146 |
+
// identifier is odr-used or not, and in any case it's hard to tell if
|
147 |
+
// a variable is odr-used or not. So best to just cut the problem at the root.
|
148 |
+
static constexpr size_type size() {
|
149 |
+
return VECTOR_WIDTH / sizeof(T);
|
150 |
+
}
|
151 |
+
Vectorized() : values{static_cast<T>(0)} {}
|
152 |
+
Vectorized(T val) {
|
153 |
+
for (int i = 0; i != size(); i++) {
|
154 |
+
values[i] = val;
|
155 |
+
}
|
156 |
+
}
|
157 |
+
template<typename... Args,
|
158 |
+
typename = std::enable_if_t<(sizeof...(Args) == size())>>
|
159 |
+
Vectorized(Args... vals) : values{vals...}{
|
160 |
+
}
|
161 |
+
// This also implies const T& operator[](int idx) const
|
162 |
+
inline operator const T*() const {
|
163 |
+
return values;
|
164 |
+
}
|
165 |
+
// This also implies T& operator[](int idx)
|
166 |
+
inline operator T*() {
|
167 |
+
return values;
|
168 |
+
}
|
169 |
+
// Return the values as char* for type punning
|
170 |
+
auto as_bytes() const -> const char* {
|
171 |
+
return reinterpret_cast<const char*>(values);
|
172 |
+
}
|
173 |
+
template <int64_t mask_>
|
174 |
+
static Vectorized<T> blend(const Vectorized<T>& a, const Vectorized<T>& b) {
|
175 |
+
int64_t mask = mask_;
|
176 |
+
Vectorized vector;
|
177 |
+
for (const auto i : c10::irange(size())) {
|
178 |
+
if (mask & 0x01) {
|
179 |
+
vector[i] = b[i];
|
180 |
+
} else {
|
181 |
+
vector[i] = a[i];
|
182 |
+
}
|
183 |
+
mask = mask >> 1;
|
184 |
+
}
|
185 |
+
return vector;
|
186 |
+
}
|
187 |
+
static Vectorized<T> blendv(const Vectorized<T>& a, const Vectorized<T>& b,
|
188 |
+
const Vectorized<T>& mask) {
|
189 |
+
Vectorized vector;
|
190 |
+
int_same_size_t<T> buffer[size()];
|
191 |
+
mask.store(buffer);
|
192 |
+
for (const auto i : c10::irange(size())) {
|
193 |
+
if (buffer[i] & 0x01)
|
194 |
+
{
|
195 |
+
vector[i] = b[i];
|
196 |
+
} else {
|
197 |
+
vector[i] = a[i];
|
198 |
+
}
|
199 |
+
}
|
200 |
+
return vector;
|
201 |
+
}
|
202 |
+
template<typename step_t> // step sometimes requires a higher precision type (e.g., T=int, step_t=double)
|
203 |
+
static Vectorized<T> arange(T base = static_cast<T>(0), step_t step = static_cast<step_t>(1)) {
|
204 |
+
Vectorized vector;
|
205 |
+
for (const auto i : c10::irange(size())) {
|
206 |
+
vector.values[i] = base + i * step;
|
207 |
+
}
|
208 |
+
return vector;
|
209 |
+
}
|
210 |
+
static Vectorized<T> set(const Vectorized<T>& a, const Vectorized<T>& b, int64_t count = size()) {
|
211 |
+
Vectorized vector;
|
212 |
+
for (const auto i : c10::irange(size())) {
|
213 |
+
if (i < count) {
|
214 |
+
vector[i] = b[i];
|
215 |
+
} else {
|
216 |
+
vector[i] = a[i];
|
217 |
+
}
|
218 |
+
}
|
219 |
+
return vector;
|
220 |
+
}
|
221 |
+
static Vectorized<T> loadu(const void* ptr) {
|
222 |
+
Vectorized vector;
|
223 |
+
std::memcpy(vector.values, ptr, VECTOR_WIDTH);
|
224 |
+
return vector;
|
225 |
+
}
|
226 |
+
static Vectorized<T> loadu(const void* ptr, int64_t count) {
|
227 |
+
Vectorized vector;
|
228 |
+
std::memcpy(vector.values, ptr, count * sizeof(T));
|
229 |
+
return vector;
|
230 |
+
}
|
231 |
+
void store(void* ptr, int count = size()) const {
|
232 |
+
std::memcpy(ptr, values, count * sizeof(T));
|
233 |
+
}
|
234 |
+
int zero_mask() const {
|
235 |
+
// returns an integer mask where all zero elements are translated to 1-bit and others are translated to 0-bit
|
236 |
+
int mask = 0;
|
237 |
+
for (int i = 0; i < size(); ++ i) {
|
238 |
+
if (values[i] == static_cast<T>(0)) {
|
239 |
+
mask |= (1 << i);
|
240 |
+
}
|
241 |
+
}
|
242 |
+
return mask;
|
243 |
+
}
|
244 |
+
Vectorized<T> isnan() const {
|
245 |
+
Vectorized<T> vector;
|
246 |
+
for (int64_t i = 0; i != size(); i++) {
|
247 |
+
if (_isnan(values[i])) {
|
248 |
+
std::memset(static_cast<void*>(vector.values + i), 0xFF, sizeof(T));
|
249 |
+
} else {
|
250 |
+
std::memset(static_cast<void*>(vector.values + i), 0, sizeof(T));
|
251 |
+
}
|
252 |
+
}
|
253 |
+
return vector;
|
254 |
+
}
|
255 |
+
bool has_inf_nan() const {
|
256 |
+
for (int64_t i = 0; i != size(); i++) {
|
257 |
+
if(_isnan(values[i]) || _isinf(values[i])) {
|
258 |
+
return true;
|
259 |
+
}
|
260 |
+
}
|
261 |
+
return false;
|
262 |
+
}
|
263 |
+
Vectorized<T> map(T (*const f)(T)) const {
|
264 |
+
Vectorized<T> ret;
|
265 |
+
for (int64_t i = 0; i != size(); i++) {
|
266 |
+
ret[i] = f(values[i]);
|
267 |
+
}
|
268 |
+
return ret;
|
269 |
+
}
|
270 |
+
Vectorized<T> map(T (*const f)(const T &)) const {
|
271 |
+
Vectorized<T> ret;
|
272 |
+
for (int64_t i = 0; i != size(); i++) {
|
273 |
+
ret[i] = f(values[i]);
|
274 |
+
}
|
275 |
+
return ret;
|
276 |
+
}
|
277 |
+
template <typename other_t_abs = T,
|
278 |
+
typename std::enable_if<!is_floating_point_v<other_t_abs> && !c10::is_complex<other_t_abs>::value, int>::type = 0>
|
279 |
+
Vectorized<T> abs() const {
|
280 |
+
// other_t_abs is for SFINAE and clarity. Make sure it is not changed.
|
281 |
+
static_assert(std::is_same<other_t_abs, T>::value, "other_t_abs must be T");
|
282 |
+
return map([](T x) -> T { return x < static_cast<T>(0) ? -x : x; });
|
283 |
+
}
|
284 |
+
template <typename float_t_abs = T,
|
285 |
+
typename std::enable_if<is_floating_point_v<float_t_abs>, int>::type = 0>
|
286 |
+
Vectorized<T> abs() const {
|
287 |
+
// float_t_abs is for SFINAE and clarity. Make sure it is not changed.
|
288 |
+
static_assert(std::is_same<float_t_abs, T>::value, "float_t_abs must be T");
|
289 |
+
// Specifically deal with floating-point because the generic code above won't handle -0.0 (which should result in
|
290 |
+
// 0.0) properly.
|
291 |
+
return map([](T x) -> T { return std::abs(x); });
|
292 |
+
}
|
293 |
+
template <typename complex_t_abs = T,
|
294 |
+
typename std::enable_if<c10::is_complex<complex_t_abs>::value, int>::type = 0>
|
295 |
+
Vectorized<T> abs() const {
|
296 |
+
// complex_t_abs is for SFINAE and clarity. Make sure it is not changed.
|
297 |
+
static_assert(std::is_same<complex_t_abs, T>::value, "complex_t_abs must be T");
|
298 |
+
// Specifically map() does not perform the type conversion needed by abs.
|
299 |
+
return map([](T x) { return static_cast<T>(std::abs(x)); });
|
300 |
+
}
|
301 |
+
|
302 |
+
template <typename other_t_sgn = T,
|
303 |
+
typename std::enable_if<c10::is_complex<other_t_sgn>::value, int>::type = 0>
|
304 |
+
Vectorized<T> sgn() const {
|
305 |
+
return map(at::native::sgn_impl);
|
306 |
+
}
|
307 |
+
|
308 |
+
template <typename other_t_angle = T,
|
309 |
+
typename std::enable_if<!c10::is_complex<other_t_angle>::value, int>::type = 0>
|
310 |
+
Vectorized<T> angle() const {
|
311 |
+
// other_t_angle is for SFINAE and clarity. Make sure it is not changed.
|
312 |
+
static_assert(std::is_same<other_t_angle, T>::value, "other_t_angle must be T");
|
313 |
+
return map(at::native::angle_impl<T>); // compiler is unable to resolve the overload without <T>
|
314 |
+
}
|
315 |
+
template <typename complex_t_angle = T,
|
316 |
+
typename std::enable_if<c10::is_complex<complex_t_angle>::value, int>::type = 0>
|
317 |
+
Vectorized<T> angle() const {
|
318 |
+
// complex_t_angle is for SFINAE and clarity. Make sure it is not changed.
|
319 |
+
static_assert(std::is_same<complex_t_angle, T>::value, "complex_t_angle must be T");
|
320 |
+
return map([](T x) { return static_cast<T>(std::arg(x)); });
|
321 |
+
}
|
322 |
+
template <typename other_t_real = T,
|
323 |
+
typename std::enable_if<!c10::is_complex<other_t_real>::value, int>::type = 0>
|
324 |
+
Vectorized<T> real() const {
|
325 |
+
// other_t_real is for SFINAE and clarity. Make sure it is not changed.
|
326 |
+
static_assert(std::is_same<other_t_real, T>::value, "other_t_real must be T");
|
327 |
+
return *this;
|
328 |
+
}
|
329 |
+
template <typename complex_t_real = T,
|
330 |
+
typename std::enable_if<c10::is_complex<complex_t_real>::value, int>::type = 0>
|
331 |
+
Vectorized<T> real() const {
|
332 |
+
// complex_t_real is for SFINAE and clarity. Make sure it is not changed.
|
333 |
+
static_assert(std::is_same<complex_t_real, T>::value, "complex_t_real must be T");
|
334 |
+
return map([](T x) { return static_cast<T>(x.real()); });
|
335 |
+
}
|
336 |
+
template <typename other_t_imag = T,
|
337 |
+
typename std::enable_if<!c10::is_complex<other_t_imag>::value, int>::type = 0>
|
338 |
+
Vectorized<T> imag() const {
|
339 |
+
// other_t_imag is for SFINAE and clarity. Make sure it is not changed.
|
340 |
+
static_assert(std::is_same<other_t_imag, T>::value, "other_t_imag must be T");
|
341 |
+
return Vectorized(0);
|
342 |
+
}
|
343 |
+
template <typename complex_t_imag = T,
|
344 |
+
typename std::enable_if<c10::is_complex<complex_t_imag>::value, int>::type = 0>
|
345 |
+
Vectorized<T> imag() const {
|
346 |
+
// complex_t_imag is for SFINAE and clarity. Make sure it is not changed.
|
347 |
+
static_assert(std::is_same<complex_t_imag, T>::value, "complex_t_imag must be T");
|
348 |
+
return map([](T x) { return static_cast<T>(x.imag()); });
|
349 |
+
}
|
350 |
+
template <typename other_t_conj = T,
|
351 |
+
typename std::enable_if<!c10::is_complex<other_t_conj>::value, int>::type = 0>
|
352 |
+
Vectorized<T> conj() const {
|
353 |
+
// other_t_conj is for SFINAE and clarity. Make sure it is not changed.
|
354 |
+
static_assert(std::is_same<other_t_conj, T>::value, "other_t_conj must be T");
|
355 |
+
return *this;
|
356 |
+
}
|
357 |
+
template <typename complex_t_conj = T,
|
358 |
+
typename std::enable_if<c10::is_complex<complex_t_conj>::value, int>::type = 0>
|
359 |
+
Vectorized<T> conj() const {
|
360 |
+
// complex_t_conj is for SFINAE and clarity. Make sure it is not changed.
|
361 |
+
static_assert(std::is_same<complex_t_conj, T>::value, "complex_t_conj must be T");
|
362 |
+
return map([](T x) { return static_cast<T>(std::conj(x)); });
|
363 |
+
}
|
364 |
+
Vectorized<T> acos() const {
|
365 |
+
return map(std::acos);
|
366 |
+
}
|
367 |
+
Vectorized<T> acosh() const {
|
368 |
+
return map(std::acosh);
|
369 |
+
}
|
370 |
+
Vectorized<T> asin() const {
|
371 |
+
return map(std::asin);
|
372 |
+
}
|
373 |
+
Vectorized<T> atan() const {
|
374 |
+
return map(std::atan);
|
375 |
+
}
|
376 |
+
Vectorized<T> atanh() const {
|
377 |
+
return map(std::atanh);
|
378 |
+
}
|
379 |
+
Vectorized<T> atan2(const Vectorized<T> &exp) const {
|
380 |
+
Vectorized<T> ret;
|
381 |
+
for (const auto i : c10::irange(size())) {
|
382 |
+
ret[i] = std::atan2(values[i], exp[i]);
|
383 |
+
}
|
384 |
+
return ret;
|
385 |
+
}
|
386 |
+
template <
|
387 |
+
typename U = T,
|
388 |
+
typename std::enable_if_t<is_floating_point_v<U>, int> = 0>
|
389 |
+
Vectorized<T> copysign(const Vectorized<T> &sign) const {
|
390 |
+
Vectorized<T> ret;
|
391 |
+
for (size_type i = 0; i < size(); i++) {
|
392 |
+
ret[i] = c10::copysign(values[i], sign[i]);
|
393 |
+
}
|
394 |
+
return ret;
|
395 |
+
}
|
396 |
+
Vectorized<T> erf() const {
|
397 |
+
return map(std::erf);
|
398 |
+
}
|
399 |
+
Vectorized<T> erfc() const {
|
400 |
+
return map(std::erfc);
|
401 |
+
}
|
402 |
+
Vectorized<T> erfinv() const {
|
403 |
+
return map(calc_erfinv);
|
404 |
+
}
|
405 |
+
Vectorized<T> exp() const {
|
406 |
+
return map(std::exp);
|
407 |
+
}
|
408 |
+
Vectorized<T> exp2() const {
|
409 |
+
return map(exp2_impl);
|
410 |
+
}
|
411 |
+
Vectorized<T> expm1() const {
|
412 |
+
return map(std::expm1);
|
413 |
+
}
|
414 |
+
Vectorized<T> exp_u20() const {
|
415 |
+
return map(std::exp);
|
416 |
+
}
|
417 |
+
Vectorized<T> frac() const {
|
418 |
+
return *this - this->trunc();
|
419 |
+
}
|
420 |
+
template <
|
421 |
+
typename U = T,
|
422 |
+
typename std::enable_if_t<is_floating_point_v<U>, int> = 0>
|
423 |
+
Vectorized<T> fmod(const Vectorized<T>& q) const {
|
424 |
+
// U is for SFINAE purposes only. Make sure it is not changed.
|
425 |
+
static_assert(std::is_same<U, T>::value, "U must be T");
|
426 |
+
Vectorized<T> ret;
|
427 |
+
for (const auto i : c10::irange(size())) {
|
428 |
+
ret[i] = std::fmod(values[i], q[i]);
|
429 |
+
}
|
430 |
+
return ret;
|
431 |
+
}
|
432 |
+
Vectorized<T> log() const {
|
433 |
+
return map(std::log);
|
434 |
+
}
|
435 |
+
Vectorized<T> log10() const {
|
436 |
+
return map(std::log10);
|
437 |
+
}
|
438 |
+
Vectorized<T> log1p() const {
|
439 |
+
return map(std::log1p);
|
440 |
+
}
|
441 |
+
template <typename other_t_log2 = T,
|
442 |
+
typename std::enable_if<!c10::is_complex<other_t_log2>::value, int>::type = 0>
|
443 |
+
Vectorized<T> log2() const {
|
444 |
+
// other_t_log2 is for SFINAE and clarity. Make sure it is not changed.
|
445 |
+
static_assert(std::is_same<other_t_log2, T>::value, "other_t_log2 must be T");
|
446 |
+
return map(std::log2);
|
447 |
+
}
|
448 |
+
template <typename complex_t_log2 = T,
|
449 |
+
typename std::enable_if<c10::is_complex<complex_t_log2>::value, int>::type = 0>
|
450 |
+
Vectorized<T> log2() const {
|
451 |
+
// complex_t_log2 is for SFINAE and clarity. Make sure it is not changed.
|
452 |
+
static_assert(std::is_same<complex_t_log2, T>::value, "complex_t_log2 must be T");
|
453 |
+
const T log_2 = T(std::log(2.0));
|
454 |
+
return Vectorized(map(std::log))/Vectorized(log_2);
|
455 |
+
}
|
456 |
+
Vectorized<T> ceil() const {
|
457 |
+
return map(at::native::ceil_impl);
|
458 |
+
}
|
459 |
+
Vectorized<T> cos() const {
|
460 |
+
return map(std::cos);
|
461 |
+
}
|
462 |
+
Vectorized<T> cosh() const {
|
463 |
+
return map(std::cosh);
|
464 |
+
}
|
465 |
+
Vectorized<T> floor() const {
|
466 |
+
return map(at::native::floor_impl);
|
467 |
+
}
|
468 |
+
Vectorized<T> hypot(const Vectorized<T> &b) const {
|
469 |
+
Vectorized<T> ret;
|
470 |
+
for (const auto i : c10::irange(size())) {
|
471 |
+
ret[i] = std::hypot(values[i], b[i]);
|
472 |
+
}
|
473 |
+
return ret;
|
474 |
+
}
|
475 |
+
Vectorized<T> i0() const {
|
476 |
+
return map(calc_i0);
|
477 |
+
}
|
478 |
+
Vectorized<T> i0e() const {
|
479 |
+
return map(calc_i0e);
|
480 |
+
}
|
481 |
+
Vectorized<T> digamma() const {
|
482 |
+
return map(calc_digamma);
|
483 |
+
}
|
484 |
+
Vectorized<T> igamma(const Vectorized<T> &x) const {
|
485 |
+
Vectorized<T> ret;
|
486 |
+
for (const auto i : c10::irange(size())) {
|
487 |
+
ret[i] = calc_igamma(values[i], x[i]);
|
488 |
+
}
|
489 |
+
return ret;
|
490 |
+
}
|
491 |
+
Vectorized<T> igammac(const Vectorized<T> &x) const {
|
492 |
+
Vectorized<T> ret;
|
493 |
+
for (const auto i : c10::irange(size())) {
|
494 |
+
ret[i] = calc_igammac(values[i], x[i]);
|
495 |
+
}
|
496 |
+
return ret;
|
497 |
+
}
|
498 |
+
Vectorized<T> neg() const {
|
499 |
+
// NB: the trailing return type is needed because we need to coerce the
|
500 |
+
// return value back to T in the case of unary operator- incuring a
|
501 |
+
// promotion
|
502 |
+
return map([](T x) -> T { return -x; });
|
503 |
+
}
|
504 |
+
Vectorized<T> nextafter(const Vectorized<T> &b) const {
|
505 |
+
Vectorized<T> ret;
|
506 |
+
for (const auto i : c10::irange(size())) {
|
507 |
+
ret[i] = std::nextafter(values[i], b[i]);
|
508 |
+
}
|
509 |
+
return ret;
|
510 |
+
}
|
511 |
+
Vectorized<T> round() const {
|
512 |
+
// We do not use std::round because we would like to round midway numbers to the nearest even integer.
|
513 |
+
return map(at::native::round_impl);
|
514 |
+
}
|
515 |
+
Vectorized<T> sin() const {
|
516 |
+
return map(std::sin);
|
517 |
+
}
|
518 |
+
Vectorized<T> sinh() const {
|
519 |
+
return map(std::sinh);
|
520 |
+
}
|
521 |
+
Vectorized<T> tan() const {
|
522 |
+
return map(std::tan);
|
523 |
+
}
|
524 |
+
Vectorized<T> tanh() const {
|
525 |
+
return map(std::tanh);
|
526 |
+
}
|
527 |
+
Vectorized<T> trunc() const {
|
528 |
+
return map(at::native::trunc_impl);
|
529 |
+
}
|
530 |
+
Vectorized<T> lgamma() const {
|
531 |
+
return map(std::lgamma);
|
532 |
+
}
|
533 |
+
Vectorized<T> sqrt() const {
|
534 |
+
return map(std::sqrt);
|
535 |
+
}
|
536 |
+
Vectorized<T> reciprocal() const {
|
537 |
+
return map([](T x) { return (T)(1) / x; });
|
538 |
+
}
|
539 |
+
Vectorized<T> rsqrt() const {
|
540 |
+
return map([](T x) { return (T)1 / std::sqrt(x); });
|
541 |
+
}
|
542 |
+
Vectorized<T> pow(const Vectorized<T> &exp) const {
|
543 |
+
Vectorized<T> ret;
|
544 |
+
for (const auto i : c10::irange(size())) {
|
545 |
+
ret[i] = std::pow(values[i], exp[i]);
|
546 |
+
}
|
547 |
+
return ret;
|
548 |
+
}
|
549 |
+
private:
|
550 |
+
template <typename Op>
|
551 |
+
inline Vectorized<T> binary_pred(const Vectorized<T>& other, Op op) const {
|
552 |
+
// All bits are set to 1 if the pred is true, otherwise 0.
|
553 |
+
Vectorized<T> vector;
|
554 |
+
for (int64_t i = 0; i != size(); i++) {
|
555 |
+
if (op(values[i], other.values[i])) {
|
556 |
+
std::memset(static_cast<void*>(vector.values + i), 0xFF, sizeof(T));
|
557 |
+
} else {
|
558 |
+
std::memset(static_cast<void*>(vector.values + i), 0, sizeof(T));
|
559 |
+
}
|
560 |
+
}
|
561 |
+
return vector;
|
562 |
+
}
|
563 |
+
|
564 |
+
public:
|
565 |
+
Vectorized<T> operator==(const Vectorized<T>& other) const { return binary_pred(other, std::equal_to<T>()); }
|
566 |
+
Vectorized<T> operator!=(const Vectorized<T>& other) const { return binary_pred(other, std::not_equal_to<T>()); }
|
567 |
+
Vectorized<T> operator>=(const Vectorized<T>& other) const { return binary_pred(other, std::greater_equal<T>()); }
|
568 |
+
Vectorized<T> operator<=(const Vectorized<T>& other) const { return binary_pred(other, std::less_equal<T>()); }
|
569 |
+
Vectorized<T> operator>(const Vectorized<T>& other) const { return binary_pred(other, std::greater<T>()); }
|
570 |
+
Vectorized<T> operator<(const Vectorized<T>& other) const { return binary_pred(other, std::less<T>()); }
|
571 |
+
|
572 |
+
private:
|
573 |
+
template <typename Op>
|
574 |
+
inline Vectorized<T> binary_pred_bool(const Vectorized<T>& other, Op op) const {
|
575 |
+
// 1 if the pred is true, otherwise 0.
|
576 |
+
Vectorized<T> vector;
|
577 |
+
for (int i = 0; i != size(); ++ i) {
|
578 |
+
vector[i] = static_cast<T>(op(values[i], other.values[i]));
|
579 |
+
}
|
580 |
+
return vector;
|
581 |
+
}
|
582 |
+
|
583 |
+
public:
|
584 |
+
Vectorized<T> eq(const Vectorized<T>& other) const { return binary_pred_bool(other, std::equal_to<T>()); }
|
585 |
+
Vectorized<T> ne(const Vectorized<T>& other) const { return binary_pred_bool(other, std::not_equal_to<T>()); }
|
586 |
+
Vectorized<T> gt(const Vectorized<T>& other) const { return binary_pred_bool(other, std::greater<T>()); }
|
587 |
+
Vectorized<T> ge(const Vectorized<T>& other) const { return binary_pred_bool(other, std::greater_equal<T>()); }
|
588 |
+
Vectorized<T> lt(const Vectorized<T>& other) const { return binary_pred_bool(other, std::less<T>()); }
|
589 |
+
Vectorized<T> le(const Vectorized<T>& other) const { return binary_pred_bool(other, std::less_equal<T>()); }
|
590 |
+
};
|
591 |
+
|
592 |
+
template <class T> Vectorized<T> inline operator+(const Vectorized<T> &a, const Vectorized<T> &b) {
|
593 |
+
Vectorized<T> c;
|
594 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
595 |
+
c[i] = a[i] + b[i];
|
596 |
+
}
|
597 |
+
return c;
|
598 |
+
}
|
599 |
+
|
600 |
+
template <class T> Vectorized<T> inline operator-(const Vectorized<T> &a, const Vectorized<T> &b) {
|
601 |
+
Vectorized<T> c;
|
602 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
603 |
+
c[i] = a[i] - b[i];
|
604 |
+
}
|
605 |
+
return c;
|
606 |
+
}
|
607 |
+
|
608 |
+
template <class T> Vectorized<T> inline operator*(const Vectorized<T> &a, const Vectorized<T> &b) {
|
609 |
+
Vectorized<T> c;
|
610 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
611 |
+
c[i] = a[i] * b[i];
|
612 |
+
}
|
613 |
+
return c;
|
614 |
+
}
|
615 |
+
|
616 |
+
template <class T> Vectorized<T> inline operator/(const Vectorized<T> &a, const Vectorized<T> &b) __ubsan_ignore_float_divide_by_zero__ {
|
617 |
+
Vectorized<T> c;
|
618 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
619 |
+
c[i] = a[i] / b[i];
|
620 |
+
}
|
621 |
+
return c;
|
622 |
+
}
|
623 |
+
|
624 |
+
template <class T,
|
625 |
+
typename std::enable_if<!is_floating_point_v<T>, int>::type = 0>
|
626 |
+
Vectorized<T> inline operator%(const Vectorized<T> &a, const Vectorized<T> &b) __ubsan_ignore_float_divide_by_zero__ {
|
627 |
+
return a - a / b * b;
|
628 |
+
}
|
629 |
+
|
630 |
+
template <class T> Vectorized<T> inline operator||(
|
631 |
+
const Vectorized<T> &a, const Vectorized<T> &b) {
|
632 |
+
Vectorized<T> c;
|
633 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
634 |
+
c[i] = a[i] || b[i];
|
635 |
+
}
|
636 |
+
return c;
|
637 |
+
}
|
638 |
+
|
639 |
+
// Implements the IEEE 754 201X `maximum` operation, which propagates NaN if
|
640 |
+
// either input is a NaN.
|
641 |
+
template <class T,
|
642 |
+
typename std::enable_if<!c10::is_complex<T>::value, int>::type = 0>
|
643 |
+
Vectorized<T> inline maximum(const Vectorized<T> &a, const Vectorized<T> &b) {
|
644 |
+
Vectorized<T> c;
|
645 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
646 |
+
c[i] = (a[i] > b[i]) ? a[i] : b[i];
|
647 |
+
if (_isnan(a[i])) {
|
648 |
+
// If either input is NaN, propagate a NaN.
|
649 |
+
// NOTE: The case where b[i] was NaN is handled correctly by the naive
|
650 |
+
// ternary operator above.
|
651 |
+
c[i] = a[i];
|
652 |
+
}
|
653 |
+
}
|
654 |
+
return c;
|
655 |
+
}
|
656 |
+
|
657 |
+
template <class T,
|
658 |
+
typename std::enable_if<c10::is_complex<T>::value, int>::type = 0>
|
659 |
+
Vectorized<T> inline maximum(const Vectorized<T> &a, const Vectorized<T> &b) {
|
660 |
+
Vectorized<T> c;
|
661 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
662 |
+
c[i] = (std::abs(a[i]) > std::abs(b[i])) ? a[i] : b[i];
|
663 |
+
if (_isnan(a[i])) {
|
664 |
+
// If either input is NaN, propagate a NaN.
|
665 |
+
// NOTE: The case where b[i] was NaN is handled correctly by the naive
|
666 |
+
// ternary operator above.
|
667 |
+
c[i] = a[i];
|
668 |
+
}
|
669 |
+
}
|
670 |
+
return c;
|
671 |
+
}
|
672 |
+
|
673 |
+
// Implements the IEEE 754 201X `minimum` operation, which propagates NaN if
|
674 |
+
// either input is a NaN.
|
675 |
+
template <class T,
|
676 |
+
typename std::enable_if<!c10::is_complex<T>::value, int>::type = 0>
|
677 |
+
Vectorized<T> inline minimum(const Vectorized<T> &a, const Vectorized<T> &b) {
|
678 |
+
Vectorized<T> c;
|
679 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
680 |
+
c[i] = (a[i] < b[i]) ? a[i] : b[i];
|
681 |
+
if (_isnan(a[i])) {
|
682 |
+
// If either input is NaN, propagate a NaN.
|
683 |
+
// NOTE: The case where b[i] was NaN is handled correctly by the naive
|
684 |
+
// ternary operator above.
|
685 |
+
c[i] = a[i];
|
686 |
+
}
|
687 |
+
}
|
688 |
+
return c;
|
689 |
+
}
|
690 |
+
|
691 |
+
template <class T,
|
692 |
+
typename std::enable_if<c10::is_complex<T>::value, int>::type = 0>
|
693 |
+
Vectorized<T> inline minimum(const Vectorized<T> &a, const Vectorized<T> &b) {
|
694 |
+
Vectorized<T> c;
|
695 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
696 |
+
c[i] = (std::abs(a[i]) < std::abs(b[i])) ? a[i] : b[i];
|
697 |
+
if (_isnan(a[i])) {
|
698 |
+
// If either input is NaN, propagate a NaN.
|
699 |
+
// NOTE: The case where b[i] was NaN is handled correctly by the naive
|
700 |
+
// ternary operator above.
|
701 |
+
c[i] = a[i];
|
702 |
+
}
|
703 |
+
}
|
704 |
+
return c;
|
705 |
+
}
|
706 |
+
|
707 |
+
template <class T,
|
708 |
+
typename std::enable_if<!c10::is_complex<T>::value, int>::type = 0>
|
709 |
+
Vectorized<T> inline clamp(const Vectorized<T> &a, const Vectorized<T> &min_vec, const Vectorized<T> &max_vec) {
|
710 |
+
Vectorized<T> c;
|
711 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
712 |
+
c[i] = std::min(std::max(a[i], min_vec[i]), max_vec[i]);
|
713 |
+
}
|
714 |
+
return c;
|
715 |
+
}
|
716 |
+
|
717 |
+
template <class T,
|
718 |
+
typename std::enable_if<!c10::is_complex<T>::value, int>::type = 0>
|
719 |
+
Vectorized<T> inline clamp_max(const Vectorized<T> &a, const Vectorized<T> &max_vec) {
|
720 |
+
Vectorized<T> c;
|
721 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
722 |
+
c[i] = a[i] > max_vec[i] ? max_vec[i] : a[i];
|
723 |
+
}
|
724 |
+
return c;
|
725 |
+
}
|
726 |
+
|
727 |
+
template <class T,
|
728 |
+
typename std::enable_if<!c10::is_complex<T>::value, int>::type = 0>
|
729 |
+
Vectorized<T> inline clamp_min(const Vectorized<T> &a, const Vectorized<T> &min_vec) {
|
730 |
+
Vectorized<T> c;
|
731 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
732 |
+
c[i] = a[i] < min_vec[i] ? min_vec[i] : a[i];
|
733 |
+
}
|
734 |
+
return c;
|
735 |
+
}
|
736 |
+
|
737 |
+
struct Vectorizedi;
|
738 |
+
|
739 |
+
#if defined(CPU_CAPABILITY_AVX2) || defined(CPU_CAPABILITY_AVX512)
|
740 |
+
template <class T, typename Op>
|
741 |
+
static inline Vectorized<T> bitwise_binary_op(const Vectorized<T> &a, const Vectorized<T> &b, Op op) {
|
742 |
+
int_vector buffer;
|
743 |
+
#if defined(CPU_CAPABILITY_AVX2)
|
744 |
+
int_vector a_buffer = _mm256_load_si256(reinterpret_cast<const int_vector*>((const T*)a));
|
745 |
+
int_vector b_buffer = _mm256_load_si256(reinterpret_cast<const int_vector*>((const T*)b));
|
746 |
+
#elif defined(CPU_CAPABILITY_AVX512)
|
747 |
+
int_vector a_buffer = _mm512_load_si512(reinterpret_cast<const int_vector*>((const T*)a));
|
748 |
+
int_vector b_buffer = _mm512_load_si512(reinterpret_cast<const int_vector*>((const T*)b));
|
749 |
+
#endif
|
750 |
+
buffer = op(a_buffer, b_buffer);
|
751 |
+
__at_align__ T results[Vectorized<T>::size()];
|
752 |
+
|
753 |
+
#if defined(CPU_CAPABILITY_AVX2)
|
754 |
+
_mm256_store_si256(reinterpret_cast<int_vector*>(results), buffer);
|
755 |
+
#elif defined(CPU_CAPABILITY_AVX512)
|
756 |
+
_mm512_store_si512(reinterpret_cast<int_vector*>(results), buffer);
|
757 |
+
#endif
|
758 |
+
return Vectorized<T>::loadu(results);
|
759 |
+
}
|
760 |
+
|
761 |
+
template<class T, typename std::enable_if_t<!std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
762 |
+
inline Vectorized<T> operator&(const Vectorized<T>& a, const Vectorized<T>& b) {
|
763 |
+
// We enclose _mm512_and_si512 or _mm256_and_si256 with lambda because it is always_inline
|
764 |
+
#if defined(CPU_CAPABILITY_AVX2)
|
765 |
+
return bitwise_binary_op(a, b, [](int_vector a, int_vector b) { return _mm256_and_si256(a, b); });
|
766 |
+
#elif defined(CPU_CAPABILITY_AVX512)
|
767 |
+
return bitwise_binary_op(a, b, [](int_vector a, int_vector b) { return _mm512_and_si512(a, b); });
|
768 |
+
#endif
|
769 |
+
}
|
770 |
+
template<class T, typename std::enable_if_t<!std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
771 |
+
inline Vectorized<T> operator|(const Vectorized<T>& a, const Vectorized<T>& b) {
|
772 |
+
// We enclose _mm512_or_si512 or _mm256_or_si256 with lambda because it is always_inline
|
773 |
+
#if defined(CPU_CAPABILITY_AVX2)
|
774 |
+
return bitwise_binary_op(a, b, [](int_vector a, int_vector b) { return _mm256_or_si256(a, b); });
|
775 |
+
#elif defined(CPU_CAPABILITY_AVX512)
|
776 |
+
return bitwise_binary_op(a, b, [](int_vector a, int_vector b) { return _mm512_or_si512(a, b); });
|
777 |
+
#endif
|
778 |
+
}
|
779 |
+
template<class T, typename std::enable_if_t<!std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
780 |
+
inline Vectorized<T> operator^(const Vectorized<T>& a, const Vectorized<T>& b) {
|
781 |
+
// We enclose _mm512_xor_si512 or _mm256_xor_si256 with lambda because it is always_inline
|
782 |
+
#if defined(CPU_CAPABILITY_AVX2)
|
783 |
+
return bitwise_binary_op(a, b, [](int_vector a, int_vector b) { return _mm256_xor_si256(a, b); });
|
784 |
+
#elif defined(CPU_CAPABILITY_AVX512)
|
785 |
+
return bitwise_binary_op(a, b, [](int_vector a, int_vector b) { return _mm512_xor_si512(a, b); });
|
786 |
+
#endif
|
787 |
+
}
|
788 |
+
|
789 |
+
#else
|
790 |
+
|
791 |
+
template <typename T>
|
792 |
+
auto load(char const* data) -> T {
|
793 |
+
T ret;
|
794 |
+
std::memcpy(&ret, data, sizeof(ret));
|
795 |
+
return ret;
|
796 |
+
}
|
797 |
+
|
798 |
+
template<class T, typename Op>
|
799 |
+
static inline Vectorized<T> bitwise_binary_op(const Vectorized<T> &a, const Vectorized<T> &b, Op op) {
|
800 |
+
static constexpr uint32_t element_no = VECTOR_WIDTH / sizeof(intmax_t);
|
801 |
+
__at_align__ intmax_t buffer[element_no];
|
802 |
+
static_assert(VECTOR_WIDTH % sizeof(intmax_t) == 0, "VECTOR_WIDTH not a multiple of sizeof(intmax_t)");
|
803 |
+
static_assert(sizeof(buffer) == sizeof(Vectorized<T>), "sizeof(buffer) must match sizeof(Vectorized<T>)");
|
804 |
+
// We should be using memcpy in order to respect the strict aliasing rule
|
805 |
+
// see: https://github.com/pytorch/pytorch/issues/66119
|
806 |
+
// Using char* is defined in the C11 standard 6.5 Expression paragraph 7
|
807 |
+
// (http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf)
|
808 |
+
const auto* a_data = a.as_bytes();
|
809 |
+
const auto* b_data = b.as_bytes();
|
810 |
+
// load each intmax_t chunk and process; increase pointers by sizeof(intmax_t)
|
811 |
+
for (auto& out : buffer) {
|
812 |
+
out = op(load<intmax_t>(a_data), load<intmax_t>(b_data));
|
813 |
+
a_data += sizeof(intmax_t);
|
814 |
+
b_data += sizeof(intmax_t);
|
815 |
+
}
|
816 |
+
assert(a_data == a.as_bytes() + sizeof(a));
|
817 |
+
assert(b_data == b.as_bytes() + sizeof(b));
|
818 |
+
return Vectorized<T>::loadu(buffer);
|
819 |
+
}
|
820 |
+
|
821 |
+
template<class T, typename std::enable_if_t<!std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
822 |
+
inline Vectorized<T> operator&(const Vectorized<T>& a, const Vectorized<T>& b) {
|
823 |
+
return bitwise_binary_op(a, b, std::bit_and<intmax_t>());
|
824 |
+
}
|
825 |
+
template<class T, typename std::enable_if_t<!std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
826 |
+
inline Vectorized<T> operator|(const Vectorized<T>& a, const Vectorized<T>& b) {
|
827 |
+
return bitwise_binary_op(a, b, std::bit_or<intmax_t>());
|
828 |
+
}
|
829 |
+
template<class T, typename std::enable_if_t<!std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
830 |
+
inline Vectorized<T> operator^(const Vectorized<T>& a, const Vectorized<T>& b) {
|
831 |
+
return bitwise_binary_op(a, b, std::bit_xor<intmax_t>());
|
832 |
+
}
|
833 |
+
|
834 |
+
#endif // defined(CPU_CAPABILITY_AVX2) || defined(CPU_CAPABILITY_AVX512)
|
835 |
+
|
836 |
+
template<class T, typename std::enable_if_t<!std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
837 |
+
inline Vectorized<T> operator~(const Vectorized<T>& a) {
|
838 |
+
Vectorized<T> ones; // All bits are 1
|
839 |
+
memset((T*) ones, 0xFF, VECTOR_WIDTH);
|
840 |
+
return a ^ ones;
|
841 |
+
}
|
842 |
+
|
843 |
+
template <class T> Vectorized<T> inline operator<<(const Vectorized<T> &a, const Vectorized<T> &b) {
|
844 |
+
constexpr T max_shift = sizeof(T) * CHAR_BIT;
|
845 |
+
Vectorized<T> c;
|
846 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
847 |
+
T shift = b[i];
|
848 |
+
if ((static_cast<std::make_signed_t<T>>(shift) < 0) || (shift >= max_shift)) {
|
849 |
+
c[i] = 0;
|
850 |
+
} else {
|
851 |
+
c[i] = static_cast<std::make_unsigned_t<T>>(a[i]) << shift;
|
852 |
+
}
|
853 |
+
}
|
854 |
+
return c;
|
855 |
+
}
|
856 |
+
|
857 |
+
template <class T> Vectorized<T> inline operator>>(const Vectorized<T> &a, const Vectorized<T> &b) {
|
858 |
+
// right shift value to retain sign bit for signed and no bits for unsigned
|
859 |
+
constexpr T max_shift = sizeof(T) * CHAR_BIT - std::is_signed_v<T>;
|
860 |
+
Vectorized<T> c;
|
861 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
862 |
+
T shift = b[i];
|
863 |
+
if ((static_cast<std::make_signed_t<T>>(shift) < 0) || (shift >= max_shift)) {
|
864 |
+
c[i] = a[i] >> max_shift;
|
865 |
+
} else {
|
866 |
+
c[i] = a[i] >> shift;
|
867 |
+
}
|
868 |
+
}
|
869 |
+
return c;
|
870 |
+
}
|
871 |
+
|
872 |
+
template <typename T>
|
873 |
+
inline Vectorized<T>& operator += (Vectorized<T>& a, const Vectorized<T>& b) {
|
874 |
+
a = a + b;
|
875 |
+
return a;
|
876 |
+
}
|
877 |
+
template <typename T>
|
878 |
+
inline Vectorized<T>& operator -= (Vectorized<T>& a, const Vectorized<T>& b) {
|
879 |
+
a = a - b;
|
880 |
+
return a;
|
881 |
+
}
|
882 |
+
template <typename T>
|
883 |
+
inline Vectorized<T>& operator /= (Vectorized<T>& a, const Vectorized<T>& b) {
|
884 |
+
a = a / b;
|
885 |
+
return a;
|
886 |
+
}
|
887 |
+
template <typename T>
|
888 |
+
inline Vectorized<T>& operator %= (Vectorized<T>& a, const Vectorized<T>& b) {
|
889 |
+
a = a % b;
|
890 |
+
return a;
|
891 |
+
}
|
892 |
+
template <typename T>
|
893 |
+
inline Vectorized<T>& operator *= (Vectorized<T>& a, const Vectorized<T>& b) {
|
894 |
+
a = a * b;
|
895 |
+
return a;
|
896 |
+
}
|
897 |
+
|
898 |
+
template <typename T>
|
899 |
+
inline Vectorized<T>& operator <<= (Vectorized<T>& a, const Vectorized<T>& b) {
|
900 |
+
a = a << b;
|
901 |
+
return a;
|
902 |
+
}
|
903 |
+
|
904 |
+
template <typename T>
|
905 |
+
inline Vectorized<T>& operator >>= (Vectorized<T>& a, const Vectorized<T>& b) {
|
906 |
+
a = a >> b;
|
907 |
+
return a;
|
908 |
+
}
|
909 |
+
|
910 |
+
template <typename T>
|
911 |
+
inline Vectorized<T> fmadd(const Vectorized<T>& a, const Vectorized<T>& b, const Vectorized<T>& c) {
|
912 |
+
return a * b + c;
|
913 |
+
}
|
914 |
+
|
915 |
+
template <typename T>
|
916 |
+
inline Vectorized<T> fmsub(const Vectorized<T>& a, const Vectorized<T>& b, const Vectorized<T>& c) {
|
917 |
+
return a * b - c;
|
918 |
+
}
|
919 |
+
|
920 |
+
template <int64_t scale = 1, typename T = void>
|
921 |
+
std::enable_if_t<scale == 1 || scale == 2 || scale == 4 || scale == 8, Vectorized<T>>
|
922 |
+
inline gather(T const* base_addr, const Vectorized<int_same_size_t<T>>& vindex) {
|
923 |
+
static constexpr int size = Vectorized<T>::size();
|
924 |
+
int_same_size_t<T> index_arr[size];
|
925 |
+
vindex.store(static_cast<void*>(index_arr));
|
926 |
+
T buffer[size];
|
927 |
+
for (const auto i : c10::irange(size)) {
|
928 |
+
buffer[i] = base_addr[index_arr[i] * scale / sizeof(T)];
|
929 |
+
}
|
930 |
+
return Vectorized<T>::loadu(static_cast<void*>(buffer));
|
931 |
+
}
|
932 |
+
|
933 |
+
template <int64_t scale = 1, typename T = void>
|
934 |
+
std::enable_if_t<scale == 1 || scale == 2 || scale == 4 || scale == 8, Vectorized<T>>
|
935 |
+
inline mask_gather(const Vectorized<T>& src, T const* base_addr,
|
936 |
+
const Vectorized<int_same_size_t<T>>& vindex, Vectorized<T>& mask) {
|
937 |
+
static constexpr int size = Vectorized<T>::size();
|
938 |
+
T src_arr[size];
|
939 |
+
int_same_size_t<T> mask_arr[size]; // use int type so we can logical and
|
940 |
+
int_same_size_t<T> index_arr[size];
|
941 |
+
src.store(static_cast<void*>(src_arr));
|
942 |
+
mask.store(static_cast<void*>(mask_arr));
|
943 |
+
vindex.store(static_cast<void*>(index_arr));
|
944 |
+
T buffer[size];
|
945 |
+
for (const auto i : c10::irange(size)) {
|
946 |
+
if (mask_arr[i] & 0x01) { // check highest bit
|
947 |
+
buffer[i] = base_addr[index_arr[i] * scale / sizeof(T)];
|
948 |
+
} else {
|
949 |
+
buffer[i] = src_arr[i];
|
950 |
+
}
|
951 |
+
}
|
952 |
+
mask = Vectorized<T>(); // "zero out" mask
|
953 |
+
return Vectorized<T>::loadu(static_cast<void*>(buffer));
|
954 |
+
}
|
955 |
+
|
956 |
+
// Cast a given vector to another type without changing the bits representation.
|
957 |
+
// So a Vectorized<double> of 512 bits containing all ones can be cast to a
|
958 |
+
// Vectorized<int64_t> of 512 bits containing all ones (i.e., eight negative 1s).
|
959 |
+
// A Vec<double> of 256 bits containing all ones can be cast to a
|
960 |
+
// Vec<int64_t> of 256 bits containing all ones (i.e., four negative 1s).
|
961 |
+
// There is a struct here because we don't have static_if and I can't
|
962 |
+
// partially specialize a templated function.
|
963 |
+
template<typename dst_t, typename src_t>
|
964 |
+
struct CastImpl {
|
965 |
+
static inline Vectorized<dst_t> apply(const Vectorized<src_t>& src) {
|
966 |
+
src_t src_arr[Vectorized<src_t>::size()];
|
967 |
+
src.store(static_cast<void*>(src_arr));
|
968 |
+
return Vectorized<dst_t>::loadu(static_cast<const void*>(src_arr));
|
969 |
+
}
|
970 |
+
};
|
971 |
+
|
972 |
+
template<typename scalar_t>
|
973 |
+
struct CastImpl<scalar_t, scalar_t> {
|
974 |
+
static inline Vectorized<scalar_t> apply(const Vectorized<scalar_t>& src) {
|
975 |
+
return src;
|
976 |
+
}
|
977 |
+
};
|
978 |
+
|
979 |
+
template<typename dst_t, typename src_t>
|
980 |
+
inline Vectorized<dst_t> cast(const Vectorized<src_t>& src) {
|
981 |
+
return CastImpl<dst_t, src_t>::apply(src);
|
982 |
+
}
|
983 |
+
|
984 |
+
template <typename T, typename IntType = int_same_size_t<T>>
|
985 |
+
inline Vectorized<IntType> convert_to_int_of_same_size(const Vectorized<T>& src) {
|
986 |
+
static_assert(sizeof(T) == sizeof(IntType));
|
987 |
+
static constexpr int size = Vectorized<T>::size();
|
988 |
+
|
989 |
+
std::array<T, size> src_arr;
|
990 |
+
src.store(static_cast<void*>(src_arr.data()));
|
991 |
+
std::array<IntType, size> buffer;
|
992 |
+
std::transform(src_arr.cbegin(), src_arr.cend(), buffer.begin(),
|
993 |
+
[](const T& x) { return static_cast<IntType>(x); });
|
994 |
+
return Vectorized<IntType>::loadu(static_cast<const void*>(buffer.data()));
|
995 |
+
}
|
996 |
+
|
997 |
+
template <typename T, typename IntType = int_same_size_t<T>>
|
998 |
+
inline Vectorized<T> convert_to_fp_of_same_size(const Vectorized<IntType>& src) {
|
999 |
+
static_assert(sizeof(T) == sizeof(IntType));
|
1000 |
+
static constexpr int size = Vectorized<T>::size();
|
1001 |
+
|
1002 |
+
std::array<IntType, size> src_arr;
|
1003 |
+
src.store(static_cast<void*>(src_arr.data()));
|
1004 |
+
std::array<T, size> buffer;
|
1005 |
+
std::transform(src_arr.cbegin(), src_arr.cend(), buffer.begin(),
|
1006 |
+
[](const IntType& x) { return static_cast<T>(x); });
|
1007 |
+
return Vectorized<T>::loadu(static_cast<const void*>(buffer.data()));
|
1008 |
+
}
|
1009 |
+
|
1010 |
+
// Example inputs for AVX512:
|
1011 |
+
// a Vectorized<float> = {a0, b0, a1, b1, a2, b2, a3, b3, a4, b4, a5, b5, a6, b6, a7, b7}
|
1012 |
+
// b Vectorized<float> = {a8, b8, a9, b9, a10, b10, a11, b11, a12, b12, a13, b13, a14, b14, a15, b15}
|
1013 |
+
// returns:
|
1014 |
+
// Vectorized<float> = {a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15}
|
1015 |
+
// Vectorized<float> = {b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15}
|
1016 |
+
// Example inputs for AVX2: a Vectorized<float> = {a0, b0, a1, b1, a2, b2, a3, b3}
|
1017 |
+
// b Vectorized<float> = {a4, b4, a5, b5, a6, b6, a7, b7}
|
1018 |
+
// returns: Vectorized<float> = {a0, a1, a2, a3, a4, a5, a6, a7}
|
1019 |
+
// Vectorized<float> = {b0, b1, b2, b3, b4, b5, b6, b7}
|
1020 |
+
template <typename T>
|
1021 |
+
inline std::enable_if_t<Vectorized<T>::size() % 2 == 0, std::pair<Vectorized<T>, Vectorized<T>>>
|
1022 |
+
deinterleave2(const Vectorized<T>& a, const Vectorized<T>& b) {
|
1023 |
+
static constexpr int size = Vectorized<T>::size();
|
1024 |
+
static constexpr int half_size = size / 2;
|
1025 |
+
T a_arr[size];
|
1026 |
+
T b_arr[size];
|
1027 |
+
T buffer1[size];
|
1028 |
+
T buffer2[size];
|
1029 |
+
a.store(static_cast<void*>(a_arr));
|
1030 |
+
b.store(static_cast<void*>(b_arr));
|
1031 |
+
for (const auto i : c10::irange(half_size)) {
|
1032 |
+
buffer1[i] = a_arr[i * 2];
|
1033 |
+
buffer1[half_size + i] = b_arr[i * 2];
|
1034 |
+
buffer2[i] = a_arr[i * 2 + 1];
|
1035 |
+
buffer2[half_size + i] = b_arr[i * 2 + 1];
|
1036 |
+
}
|
1037 |
+
return std::make_pair(Vectorized<T>::loadu(static_cast<void*>(buffer1)),
|
1038 |
+
Vectorized<T>::loadu(static_cast<void*>(buffer2)));
|
1039 |
+
}
|
1040 |
+
|
1041 |
+
// inverse operation of deinterleave2
|
1042 |
+
// Example inputs for AVX512:
|
1043 |
+
// a Vectorized<float> = {a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15}
|
1044 |
+
// b Vectorized<float> = {b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15}
|
1045 |
+
// returns, for AVX512:
|
1046 |
+
// Vectorized<float> = {a0, b0, a1, b1, a2, b2, a3, b3, a4, b4, a5, b5, a6, b6, a7, b7}
|
1047 |
+
// Vectorized<float> = {a8, b8, a9, b9, a10, b10, a11, b11, a12, b12, a13, b13, a14, b14, a15, b15}
|
1048 |
+
// Example inputs for AVX2 : a Vectorized<float> = {a0, a1, a2, a3, a4, a5, a6, a7}
|
1049 |
+
// b Vectorized<float> = {b0, b1, b2, b3, b4, b5, b6, b7}
|
1050 |
+
// returns: Vectorized<float> = {a0, b0, a1, b1, a2, b2, a3, b3}
|
1051 |
+
// Vectorized<float> = {a4, b4, a5, b5, a6, b6, a7, b7}
|
1052 |
+
template <typename T>
|
1053 |
+
inline std::enable_if_t<Vectorized<T>::size() % 2 == 0, std::pair<Vectorized<T>, Vectorized<T>>>
|
1054 |
+
interleave2(const Vectorized<T>& a, const Vectorized<T>& b) {
|
1055 |
+
static constexpr int size = Vectorized<T>::size();
|
1056 |
+
static constexpr int half_size = size / 2;
|
1057 |
+
T a_arr[size];
|
1058 |
+
T b_arr[size];
|
1059 |
+
T buffer1[size];
|
1060 |
+
T buffer2[size];
|
1061 |
+
a.store(static_cast<void*>(a_arr));
|
1062 |
+
b.store(static_cast<void*>(b_arr));
|
1063 |
+
for (const auto i : c10::irange(half_size)) {
|
1064 |
+
buffer1[i * 2] = a_arr[i];
|
1065 |
+
buffer1[i * 2 + 1] = b_arr[i];
|
1066 |
+
buffer2[i * 2] = a_arr[half_size + i];
|
1067 |
+
buffer2[i * 2 + 1] = b_arr[half_size + i];
|
1068 |
+
}
|
1069 |
+
return std::make_pair(Vectorized<T>::loadu(static_cast<void*>(buffer1)),
|
1070 |
+
Vectorized<T>::loadu(static_cast<void*>(buffer2)));
|
1071 |
+
}
|
1072 |
+
|
1073 |
+
template <typename src_T, typename dst_T>
|
1074 |
+
inline void convert(const src_T *src, dst_T *dst, int64_t n) {
|
1075 |
+
#ifndef _MSC_VER
|
1076 |
+
# pragma unroll
|
1077 |
+
#endif
|
1078 |
+
for (C10_UNUSED const auto i : c10::irange(n)) {
|
1079 |
+
*dst = c10::convert<dst_T>(c10::load(src));
|
1080 |
+
src++;
|
1081 |
+
dst++;
|
1082 |
+
}
|
1083 |
+
}
|
1084 |
+
|
1085 |
+
template <typename T>
|
1086 |
+
inline Vectorized<T> flip(const Vectorized<T> & data) {
|
1087 |
+
static constexpr int size = Vectorized<T>::size();
|
1088 |
+
T output[size];
|
1089 |
+
T buffer[size];
|
1090 |
+
data.store(static_cast<void*>(buffer));
|
1091 |
+
for (const auto i : c10::irange(size)) {
|
1092 |
+
output[i] = buffer[size - i - 1];
|
1093 |
+
}
|
1094 |
+
return Vectorized<T>::loadu(static_cast<void*>(output));
|
1095 |
+
}
|
1096 |
+
|
1097 |
+
// Transpose the `src` buffer of type `T` and size (M,N) into the `dst` buffer. `ld_src` is the leading
|
1098 |
+
// dimension of `src` and `ld_dst` is the leading dimension of `dst`.
|
1099 |
+
template <typename T, int M, int N>
|
1100 |
+
inline void transpose_mxn(const T* src, int64_t ld_src, T* dst, int64_t ld_dst) {
|
1101 |
+
for (int i = 0; i < M; i++) {
|
1102 |
+
for (int j = 0; j < N; j++) {
|
1103 |
+
dst[j*ld_dst + i] = src[i*ld_src + j];
|
1104 |
+
}
|
1105 |
+
}
|
1106 |
+
}
|
1107 |
+
|
1108 |
+
}} // namespace at::vec::CPU_CAPABILITY
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec_half.h
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
4 |
+
|
5 |
+
namespace at::vec {
|
6 |
+
// See Note [CPU_CAPABILITY namespace]
|
7 |
+
inline namespace CPU_CAPABILITY {
|
8 |
+
|
9 |
+
#if (defined(CPU_CAPABILITY_AVX2) || defined(CPU_CAPABILITY_AVX512)) && \
|
10 |
+
!defined(__APPLE__)
|
11 |
+
static inline uint16_t float2half_scalar(float val) {
|
12 |
+
#if defined(CPU_CAPABILITY_AVX2)
|
13 |
+
#if defined(_MSC_VER)
|
14 |
+
__m256 v = _mm256_set1_ps(val);
|
15 |
+
__m128i o =
|
16 |
+
_mm256_cvtps_ph(v, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
|
17 |
+
return static_cast<std::uint16_t>(_mm_cvtsi128_si32(o));
|
18 |
+
#else
|
19 |
+
return _cvtss_sh(val, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
|
20 |
+
#endif
|
21 |
+
#elif defined(CPU_CAPABILITY_AVX512)
|
22 |
+
__m512 v = _mm512_set1_ps(val);
|
23 |
+
__m256i o =
|
24 |
+
_mm512_cvtps_ph(v, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
|
25 |
+
return static_cast<std::uint16_t>(
|
26 |
+
_mm_cvtsi128_si32(_mm256_castsi256_si128(o)));
|
27 |
+
#endif
|
28 |
+
}
|
29 |
+
|
30 |
+
static inline float half2float_scalar(uint16_t val) {
|
31 |
+
#if defined(CPU_CAPABILITY_AVX2)
|
32 |
+
#if defined(_MSC_VER)
|
33 |
+
__m128i v = _mm_cvtsi32_si128(val);
|
34 |
+
__m256 o = _mm256_cvtph_ps(v);
|
35 |
+
return _mm256_cvtss_f32(o);
|
36 |
+
#else
|
37 |
+
return _cvtsh_ss(val);
|
38 |
+
#endif
|
39 |
+
#elif defined(CPU_CAPABILITY_AVX512)
|
40 |
+
__m256i v =
|
41 |
+
_mm256_setr_epi16(val, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
|
42 |
+
__m512 o = _mm512_cvtph_ps(v);
|
43 |
+
return _mm512_cvtss_f32(o);
|
44 |
+
#endif
|
45 |
+
}
|
46 |
+
|
47 |
+
#endif
|
48 |
+
|
49 |
+
} // namespace CPU_CAPABILITY
|
50 |
+
} // namespace at::vec
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec_n.h
ADDED
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <ATen/cpu/vec/vec_base.h>
|
2 |
+
#include <array>
|
3 |
+
|
4 |
+
namespace at::vec {
|
5 |
+
inline namespace CPU_CAPABILITY {
|
6 |
+
|
7 |
+
/**
|
8 |
+
* @brief A class template representing a vectorized type with
|
9 |
+
* `N * Vectorized<T>::size()` elements, aiming to support vectors of
|
10 |
+
* arbitrary size. A specific use case of it is to represent vectors
|
11 |
+
* converted from data types with different sizes but with the same
|
12 |
+
* number of vector elements, e.g., `VectorizedN<float, 2>` can be
|
13 |
+
* a vector converted from two `Vectorized<bfloat16>`, `VectorizedN<int64_t, 2>`
|
14 |
+
* can be a vector converted from two `Vectorized<int32_t>` etc.
|
15 |
+
*
|
16 |
+
* It supports most of the operations of `Vectorized<T>`
|
17 |
+
* and the implementation delegates to `Vectorized<T>` with loops over `N`.
|
18 |
+
*
|
19 |
+
* @tparam T The underlying type of the vectorized elements.
|
20 |
+
* @tparam N The number of underlying `Vectorized<T>`.
|
21 |
+
*/
|
22 |
+
template <typename T, int N>
|
23 |
+
class VectorizedN {
|
24 |
+
public:
|
25 |
+
using value_type = T;
|
26 |
+
using size_type = int;
|
27 |
+
|
28 |
+
static constexpr size_type size_T = sizeof(T);
|
29 |
+
static constexpr size_type size() {
|
30 |
+
return Vectorized<T>::size() * N;
|
31 |
+
}
|
32 |
+
|
33 |
+
private:
|
34 |
+
std::array<Vectorized<T>, N> values;
|
35 |
+
|
36 |
+
public:
|
37 |
+
// methods not implemented yet:
|
38 |
+
// variadic constructor, operator T*, as_bytes, zero_mask
|
39 |
+
|
40 |
+
#define VECTORIZEDN_DEFINE_UNARY_OP(op) \
|
41 |
+
VectorizedN<T, N> op() const { \
|
42 |
+
return unary_op([](const Vectorized<T>& a) { return a.op(); }); \
|
43 |
+
}
|
44 |
+
|
45 |
+
#define VECTORIZEDN_DEFINE_BINARY_OP(op) \
|
46 |
+
VectorizedN<T, N> op(const VectorizedN<T, N>& other) const { \
|
47 |
+
return binary_op( \
|
48 |
+
other, [](const Vectorized<T>& a, const Vectorized<T>& b) { \
|
49 |
+
return a.op(b); \
|
50 |
+
}); \
|
51 |
+
}
|
52 |
+
|
53 |
+
template <typename Op>
|
54 |
+
inline VectorizedN<T, N> unary_op(Op op) const {
|
55 |
+
VectorizedN<T, N> result;
|
56 |
+
#ifndef _MSC_VER
|
57 |
+
#pragma unroll
|
58 |
+
#endif
|
59 |
+
for (int i = 0; i < N; ++i) {
|
60 |
+
result.values[i] = op(values[i]);
|
61 |
+
}
|
62 |
+
return result;
|
63 |
+
}
|
64 |
+
|
65 |
+
template <typename Op>
|
66 |
+
inline VectorizedN<T, N> binary_op(const VectorizedN<T, N>& other, Op op)
|
67 |
+
const {
|
68 |
+
VectorizedN<T, N> result;
|
69 |
+
#ifndef _MSC_VER
|
70 |
+
#pragma unroll
|
71 |
+
#endif
|
72 |
+
for (int i = 0; i < N; ++i) {
|
73 |
+
result.values[i] = op(values[i], other.values[i]);
|
74 |
+
}
|
75 |
+
return result;
|
76 |
+
}
|
77 |
+
|
78 |
+
VectorizedN() = default;
|
79 |
+
|
80 |
+
explicit VectorizedN(T val) {
|
81 |
+
for (int i = 0; i < N; ++i) {
|
82 |
+
values[i] = Vectorized<T>(val);
|
83 |
+
}
|
84 |
+
}
|
85 |
+
|
86 |
+
const Vectorized<T>& operator[](int i) const {
|
87 |
+
return values[i];
|
88 |
+
}
|
89 |
+
|
90 |
+
Vectorized<T>& operator[](int i) {
|
91 |
+
return values[i];
|
92 |
+
}
|
93 |
+
|
94 |
+
template <int64_t mask>
|
95 |
+
static VectorizedN<T, N> blend(
|
96 |
+
const VectorizedN<T, N>& a,
|
97 |
+
const VectorizedN<T, N>& b) {
|
98 |
+
VectorizedN<T, N> result;
|
99 |
+
for (int i = 0; i < N; ++i) {
|
100 |
+
result.values[i] = Vectorized<T>::blend<mask>(a.values[i], b.values[i]);
|
101 |
+
}
|
102 |
+
return result;
|
103 |
+
}
|
104 |
+
|
105 |
+
static VectorizedN<T, N> blendv(
|
106 |
+
const VectorizedN<T, N>& a,
|
107 |
+
const VectorizedN<T, N>& b,
|
108 |
+
const VectorizedN<T, N>& mask) {
|
109 |
+
VectorizedN<T, N> result;
|
110 |
+
for (int i = 0; i < N; ++i) {
|
111 |
+
result.values[i] =
|
112 |
+
Vectorized<T>::blendv(a.values[i], b.values[i], mask.values[i]);
|
113 |
+
}
|
114 |
+
return result;
|
115 |
+
}
|
116 |
+
|
117 |
+
template <typename step_t>
|
118 |
+
static VectorizedN<T, N> arange(
|
119 |
+
T base = static_cast<T>(0),
|
120 |
+
step_t step = static_cast<step_t>(1)) {
|
121 |
+
VectorizedN<T, N> result;
|
122 |
+
for (int i = 0; i < N; ++i) {
|
123 |
+
result.values[i] = Vectorized<T>::arange(base, step);
|
124 |
+
base += step * Vectorized<T>::size();
|
125 |
+
}
|
126 |
+
return result;
|
127 |
+
}
|
128 |
+
|
129 |
+
static VectorizedN<T, N> set(
|
130 |
+
const VectorizedN<T, N>& a,
|
131 |
+
const VectorizedN<T, N>& b,
|
132 |
+
int64_t count = size()) {
|
133 |
+
VectorizedN<T, N> result;
|
134 |
+
for (int i = 0; i < N; ++i) {
|
135 |
+
result.values[i] =
|
136 |
+
Vectorized<T>::set(a.values[i], b.values[i], std::min(count, Vectorized<T>::size()));
|
137 |
+
count -= Vectorized<T>::size();
|
138 |
+
if (count <= 0) {
|
139 |
+
break;
|
140 |
+
}
|
141 |
+
}
|
142 |
+
return result;
|
143 |
+
}
|
144 |
+
|
145 |
+
static VectorizedN<T, N> loadu(const void* ptr) {
|
146 |
+
VectorizedN<T, N> result;
|
147 |
+
for (int i = 0; i < N; ++i) {
|
148 |
+
result.values[i] = Vectorized<T>::loadu(ptr);
|
149 |
+
ptr = static_cast<const T*>(ptr) + Vectorized<T>::size();
|
150 |
+
}
|
151 |
+
return result;
|
152 |
+
}
|
153 |
+
|
154 |
+
static VectorizedN<T, N> loadu(const void* ptr, int64_t count) {
|
155 |
+
VectorizedN<T, N> result;
|
156 |
+
for (int i = 0; i < N; ++i) {
|
157 |
+
result.values[i] =
|
158 |
+
Vectorized<T>::loadu(ptr, std::min(count, Vectorized<T>::size()));
|
159 |
+
ptr = static_cast<const T*>(ptr) + Vectorized<T>::size();
|
160 |
+
count -= Vectorized<T>::size();
|
161 |
+
if (count <= 0) {
|
162 |
+
break;
|
163 |
+
}
|
164 |
+
}
|
165 |
+
return result;
|
166 |
+
}
|
167 |
+
|
168 |
+
void store(void* ptr) const {
|
169 |
+
for (int i = 0; i < N; ++i) {
|
170 |
+
values[i].store(ptr);
|
171 |
+
ptr = static_cast<T*>(ptr) + Vectorized<T>::size();
|
172 |
+
}
|
173 |
+
}
|
174 |
+
|
175 |
+
void store(void* ptr, int count) const {
|
176 |
+
for (int i = 0; i < N; ++i) {
|
177 |
+
values[i].store(ptr, std::min(count, Vectorized<T>::size()));
|
178 |
+
ptr = static_cast<T*>(ptr) + Vectorized<T>::size();
|
179 |
+
count -= Vectorized<T>::size();
|
180 |
+
if (count <= 0) {
|
181 |
+
break;
|
182 |
+
}
|
183 |
+
}
|
184 |
+
}
|
185 |
+
|
186 |
+
bool has_inf_nan() const {
|
187 |
+
for (int i = 0; i < N; ++i) {
|
188 |
+
if (values[i].has_inf_nan()) {
|
189 |
+
return true;
|
190 |
+
}
|
191 |
+
}
|
192 |
+
return false;
|
193 |
+
}
|
194 |
+
|
195 |
+
VectorizedN<T, N> map(T (*const f)(T)) const {
|
196 |
+
VectorizedN<T, N> result;
|
197 |
+
for (int i = 0; i < N; ++i) {
|
198 |
+
result.values[i] = values[i].map(f);
|
199 |
+
}
|
200 |
+
return result;
|
201 |
+
}
|
202 |
+
|
203 |
+
VectorizedN<T, N> map(T (*const f)(const T&)) const {
|
204 |
+
VectorizedN<T, N> result;
|
205 |
+
for (int i = 0; i < N; ++i) {
|
206 |
+
result.values[i] = values[i].map(f);
|
207 |
+
}
|
208 |
+
return result;
|
209 |
+
}
|
210 |
+
|
211 |
+
VECTORIZEDN_DEFINE_UNARY_OP(abs)
|
212 |
+
VECTORIZEDN_DEFINE_UNARY_OP(sgn)
|
213 |
+
VECTORIZEDN_DEFINE_UNARY_OP(angle)
|
214 |
+
VECTORIZEDN_DEFINE_UNARY_OP(real)
|
215 |
+
VECTORIZEDN_DEFINE_UNARY_OP(imag)
|
216 |
+
VECTORIZEDN_DEFINE_UNARY_OP(conj)
|
217 |
+
VECTORIZEDN_DEFINE_UNARY_OP(acos)
|
218 |
+
VECTORIZEDN_DEFINE_UNARY_OP(acosh)
|
219 |
+
VECTORIZEDN_DEFINE_UNARY_OP(asin)
|
220 |
+
VECTORIZEDN_DEFINE_UNARY_OP(atan)
|
221 |
+
VECTORIZEDN_DEFINE_UNARY_OP(atanh)
|
222 |
+
VECTORIZEDN_DEFINE_BINARY_OP(atan2)
|
223 |
+
VECTORIZEDN_DEFINE_BINARY_OP(copysign)
|
224 |
+
VECTORIZEDN_DEFINE_UNARY_OP(erf)
|
225 |
+
VECTORIZEDN_DEFINE_UNARY_OP(erfc)
|
226 |
+
VECTORIZEDN_DEFINE_UNARY_OP(erfinv)
|
227 |
+
VECTORIZEDN_DEFINE_UNARY_OP(exp)
|
228 |
+
VECTORIZEDN_DEFINE_UNARY_OP(exp2)
|
229 |
+
VECTORIZEDN_DEFINE_UNARY_OP(expm1)
|
230 |
+
VECTORIZEDN_DEFINE_UNARY_OP(exp_u20)
|
231 |
+
VECTORIZEDN_DEFINE_UNARY_OP(frac)
|
232 |
+
VECTORIZEDN_DEFINE_BINARY_OP(fmod)
|
233 |
+
VECTORIZEDN_DEFINE_UNARY_OP(log)
|
234 |
+
VECTORIZEDN_DEFINE_UNARY_OP(log10)
|
235 |
+
VECTORIZEDN_DEFINE_UNARY_OP(log1p)
|
236 |
+
VECTORIZEDN_DEFINE_UNARY_OP(log2)
|
237 |
+
VECTORIZEDN_DEFINE_UNARY_OP(ceil)
|
238 |
+
VECTORIZEDN_DEFINE_UNARY_OP(cos)
|
239 |
+
VECTORIZEDN_DEFINE_UNARY_OP(cosh)
|
240 |
+
VECTORIZEDN_DEFINE_UNARY_OP(floor)
|
241 |
+
VECTORIZEDN_DEFINE_BINARY_OP(hypot)
|
242 |
+
VECTORIZEDN_DEFINE_UNARY_OP(i0)
|
243 |
+
VECTORIZEDN_DEFINE_UNARY_OP(i0e)
|
244 |
+
VECTORIZEDN_DEFINE_UNARY_OP(digamma)
|
245 |
+
VECTORIZEDN_DEFINE_BINARY_OP(igamma)
|
246 |
+
VECTORIZEDN_DEFINE_BINARY_OP(igammac)
|
247 |
+
VECTORIZEDN_DEFINE_UNARY_OP(neg)
|
248 |
+
VECTORIZEDN_DEFINE_BINARY_OP(nextafter)
|
249 |
+
VECTORIZEDN_DEFINE_UNARY_OP(round)
|
250 |
+
VECTORIZEDN_DEFINE_UNARY_OP(sin)
|
251 |
+
VECTORIZEDN_DEFINE_UNARY_OP(sinh)
|
252 |
+
VECTORIZEDN_DEFINE_UNARY_OP(tan)
|
253 |
+
VECTORIZEDN_DEFINE_UNARY_OP(tanh)
|
254 |
+
VECTORIZEDN_DEFINE_UNARY_OP(trunc)
|
255 |
+
VECTORIZEDN_DEFINE_UNARY_OP(lgamma)
|
256 |
+
VECTORIZEDN_DEFINE_UNARY_OP(sqrt)
|
257 |
+
VECTORIZEDN_DEFINE_UNARY_OP(reciprocal)
|
258 |
+
VECTORIZEDN_DEFINE_UNARY_OP(rsqrt)
|
259 |
+
VECTORIZEDN_DEFINE_BINARY_OP(pow)
|
260 |
+
VECTORIZEDN_DEFINE_BINARY_OP(operator==)
|
261 |
+
VECTORIZEDN_DEFINE_BINARY_OP(operator!=)
|
262 |
+
VECTORIZEDN_DEFINE_BINARY_OP(operator>=)
|
263 |
+
VECTORIZEDN_DEFINE_BINARY_OP(operator<=)
|
264 |
+
VECTORIZEDN_DEFINE_BINARY_OP(operator>)
|
265 |
+
VECTORIZEDN_DEFINE_BINARY_OP(operator<)
|
266 |
+
VECTORIZEDN_DEFINE_BINARY_OP(eq)
|
267 |
+
VECTORIZEDN_DEFINE_BINARY_OP(ne)
|
268 |
+
VECTORIZEDN_DEFINE_BINARY_OP(gt)
|
269 |
+
VECTORIZEDN_DEFINE_BINARY_OP(ge)
|
270 |
+
VECTORIZEDN_DEFINE_BINARY_OP(lt)
|
271 |
+
VECTORIZEDN_DEFINE_BINARY_OP(le)
|
272 |
+
|
273 |
+
#undef VECTORIZEDN_DEFINE_UNARY_OP
|
274 |
+
#undef VECTORIZEDN_DEFINE_BINARY_OP
|
275 |
+
};
|
276 |
+
|
277 |
+
#define VECTORIZEDN_DEFINE_UNARY_OP_GLOBAL(op) \
|
278 |
+
template <typename T, int N> \
|
279 |
+
inline VectorizedN<T, N> op(const VectorizedN<T, N>& a) { \
|
280 |
+
return a.unary_op([](const Vectorized<T>& a) { return op(a); }); \
|
281 |
+
}
|
282 |
+
|
283 |
+
#define VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(op) \
|
284 |
+
template <typename T, int N> \
|
285 |
+
inline VectorizedN<T, N> op( \
|
286 |
+
const VectorizedN<T, N>& a, const VectorizedN<T, N>& b) { \
|
287 |
+
return a.binary_op(b, [](const Vectorized<T>& a, const Vectorized<T>& b) { \
|
288 |
+
return op(a, b); \
|
289 |
+
}); \
|
290 |
+
}
|
291 |
+
|
292 |
+
#define VECTORIZEDN_DEFINE_BINARY_OP_INPLACE_GLOBAL(op) \
|
293 |
+
template <typename T, int N> \
|
294 |
+
inline VectorizedN<T, N>& op( \
|
295 |
+
VectorizedN<T, N>& a, const VectorizedN<T, N>& b) { \
|
296 |
+
a = a.binary_op(b, [](const Vectorized<T>& a, const Vectorized<T>& b) { \
|
297 |
+
return op(a, b); \
|
298 |
+
}); \
|
299 |
+
return a; \
|
300 |
+
}
|
301 |
+
|
302 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(operator+)
|
303 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(operator-)
|
304 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(operator*)
|
305 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(operator/)
|
306 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(operator%)
|
307 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(operator||)
|
308 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(operator<<)
|
309 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(operator>>)
|
310 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(maximum)
|
311 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(minimum)
|
312 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(fmadd)
|
313 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(fmsub)
|
314 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(clamp)
|
315 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(clamp_max)
|
316 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(clamp_min)
|
317 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(operator&)
|
318 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(operator|)
|
319 |
+
VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL(operator^)
|
320 |
+
VECTORIZEDN_DEFINE_UNARY_OP_GLOBAL(operator~)
|
321 |
+
|
322 |
+
VECTORIZEDN_DEFINE_BINARY_OP_INPLACE_GLOBAL(operator+=)
|
323 |
+
VECTORIZEDN_DEFINE_BINARY_OP_INPLACE_GLOBAL(operator-=)
|
324 |
+
VECTORIZEDN_DEFINE_BINARY_OP_INPLACE_GLOBAL(operator*=)
|
325 |
+
VECTORIZEDN_DEFINE_BINARY_OP_INPLACE_GLOBAL(operator/=)
|
326 |
+
VECTORIZEDN_DEFINE_BINARY_OP_INPLACE_GLOBAL(operator%=)
|
327 |
+
VECTORIZEDN_DEFINE_BINARY_OP_INPLACE_GLOBAL(operator<<=)
|
328 |
+
VECTORIZEDN_DEFINE_BINARY_OP_INPLACE_GLOBAL(operator>>=)
|
329 |
+
|
330 |
+
#undef VECTORIZEDN_DEFINE_UNARY_OP_GLOBAL
|
331 |
+
#undef VECTORIZEDN_DEFINE_BINARY_OP_GLOBAL
|
332 |
+
#undef VECTORIZEDN_DEFINE_BINARY_OP_INPLACE_GLOBAL
|
333 |
+
|
334 |
+
template <typename T, int N, typename OpVec>
|
335 |
+
inline T vec_reduce_all(const OpVec& vec_fun, VectorizedN<T, N> acc_vec) {
|
336 |
+
Vectorized<T> vec_result = acc_vec[0];
|
337 |
+
for (int i = 1; i < N; i++) {
|
338 |
+
vec_result = vec_fun(vec_result, acc_vec[i]);
|
339 |
+
}
|
340 |
+
return vec_reduce_all(vec_fun, vec_result);
|
341 |
+
}
|
342 |
+
|
343 |
+
} // namespace CPU_CAPABILITY
|
344 |
+
} // namespace at::vec
|
venv/lib/python3.10/site-packages/torch/include/ATen/cpu/vml.h
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/Config.h>
|
4 |
+
#include <ATen/Parallel.h>
|
5 |
+
#include <ATen/OpMathType.h>
|
6 |
+
#include <ATen/cpu/vec/functional.h>
|
7 |
+
#include <ATen/cpu/vec/vec.h>
|
8 |
+
#include <c10/util/complex.h>
|
9 |
+
|
10 |
+
// This header implements various unary operations using a MKL VML style
|
11 |
+
// interface.
|
12 |
+
|
13 |
+
// It implements various functions with a simple interface
|
14 |
+
// For example it enables the user to call vsin(float* out, const float* in,
|
15 |
+
// size) This functions takes a pointer to a continuous output array of floats and
|
16 |
+
// a constant input array. It will then apply sin to each value in the input
|
17 |
+
// array and write the result into the output array. out and in may point to the
|
18 |
+
// same memory, i.e. this fully supports in-place operations. These functions
|
19 |
+
// also implement their own parallelization, so take precautions when calling
|
20 |
+
// these from threaded functions.
|
21 |
+
|
22 |
+
// When MKL is available it will call into MKL's VML library similar to NumPy
|
23 |
+
// If MKL is not available it will use SLEEF.
|
24 |
+
|
25 |
+
// This file might be compiled under AVX or AVX2 when called from e.g.
|
26 |
+
// UnaryOpsKernel.cpp
|
27 |
+
|
28 |
+
#include <algorithm>
|
29 |
+
#include <cstddef>
|
30 |
+
#include <cstdint>
|
31 |
+
#include <cstring>
|
32 |
+
#include <type_traits>
|
33 |
+
|
34 |
+
#if AT_MKL_ENABLED() && !defined(__APPLE__)
|
35 |
+
#include <mkl.h>
|
36 |
+
#endif
|
37 |
+
|
38 |
+
namespace at {
|
39 |
+
namespace vml {
|
40 |
+
inline namespace CPU_CAPABILITY {
|
41 |
+
|
42 |
+
using namespace vec;
|
43 |
+
|
44 |
+
template <typename scalar_t>
|
45 |
+
inline void vrsqrt(scalar_t* out, scalar_t* in, int64_t size) {
|
46 |
+
parallel_for(0, size, 2048, [out, in](int64_t begin, int64_t end) {
|
47 |
+
map(
|
48 |
+
[](const Vectorized<scalar_t>& x) {
|
49 |
+
return Vectorized<scalar_t>((scalar_t)(1)) / x.sqrt();
|
50 |
+
},
|
51 |
+
out + begin,
|
52 |
+
in + begin,
|
53 |
+
end - begin);
|
54 |
+
});
|
55 |
+
}
|
56 |
+
|
57 |
+
// NB: We ignore numerical errors by convention and leave them to the user
|
58 |
+
|
59 |
+
#define IMPLEMENT_VML(op) \
|
60 |
+
template <typename scalar_t> \
|
61 |
+
inline void v##op(scalar_t* out, const scalar_t* in, int64_t size) { \
|
62 |
+
using vec_t = Vectorized<vec_scalar_t<scalar_t>>; \
|
63 |
+
vec::map([](vec_t x) { return x.op(); }, out, in, size); \
|
64 |
+
} \
|
65 |
+
|
66 |
+
IMPLEMENT_VML(abs)
|
67 |
+
IMPLEMENT_VML(acos)
|
68 |
+
IMPLEMENT_VML(asin)
|
69 |
+
IMPLEMENT_VML(atan)
|
70 |
+
IMPLEMENT_VML(atanh)
|
71 |
+
IMPLEMENT_VML(ceil)
|
72 |
+
IMPLEMENT_VML(cos)
|
73 |
+
// IMPLEMENT_VML(cosh)
|
74 |
+
IMPLEMENT_VML(erf)
|
75 |
+
IMPLEMENT_VML(erfc)
|
76 |
+
IMPLEMENT_VML(erfinv)
|
77 |
+
IMPLEMENT_VML(exp)
|
78 |
+
IMPLEMENT_VML(expm1)
|
79 |
+
IMPLEMENT_VML(floor)
|
80 |
+
IMPLEMENT_VML(i0)
|
81 |
+
IMPLEMENT_VML(i0e)
|
82 |
+
IMPLEMENT_VML(digamma)
|
83 |
+
IMPLEMENT_VML(reciprocal)
|
84 |
+
IMPLEMENT_VML(log)
|
85 |
+
IMPLEMENT_VML(log10)
|
86 |
+
IMPLEMENT_VML(log1p)
|
87 |
+
IMPLEMENT_VML(log2)
|
88 |
+
IMPLEMENT_VML(neg)
|
89 |
+
IMPLEMENT_VML(sin)
|
90 |
+
// IMPLEMENT_VML(sinh)
|
91 |
+
IMPLEMENT_VML(sqrt)
|
92 |
+
IMPLEMENT_VML(round)
|
93 |
+
IMPLEMENT_VML(rsqrt)
|
94 |
+
IMPLEMENT_VML(tan)
|
95 |
+
IMPLEMENT_VML(tanh)
|
96 |
+
IMPLEMENT_VML(trunc)
|
97 |
+
IMPLEMENT_VML(lgamma)
|
98 |
+
|
99 |
+
|
100 |
+
#if AT_MKL_ENABLED() && !defined(__APPLE__)
|
101 |
+
|
102 |
+
// NB: LP64 MKL is the most commonly used and thus we assume it here. That means
|
103 |
+
// we need to expect MKL_INT to be of type int, which implies int32_t or int64_t in most
|
104 |
+
// cases.
|
105 |
+
static_assert(
|
106 |
+
std::is_same_v<MKL_INT, int32_t> || std::is_same_v<MKL_INT, int64_t>,
|
107 |
+
"MKL_INT is assumed to be int32_t or int64_t");
|
108 |
+
#define IMPLEMENT_VML_MKL_STUB(op, mklop, type, mkltype) \
|
109 |
+
template <> \
|
110 |
+
inline void v##op(type * out, const type * in, int64_t size) { \
|
111 |
+
int64_t max_mkl_ind = std::numeric_limits<MKL_INT>::max(); \
|
112 |
+
if (size <= static_cast<int64_t>(max_mkl_ind)) { \
|
113 |
+
vm##mkltype##mklop( \
|
114 |
+
size, in, out, VML_HA | VML_FTZDAZ_OFF | VML_ERRMODE_IGNORE); \
|
115 |
+
} else { \
|
116 |
+
MKL_INT ind = 0; \
|
117 |
+
int64_t chunks = size / max_mkl_ind; \
|
118 |
+
int64_t rest = size % max_mkl_ind; \
|
119 |
+
for (; ind < chunks; ind++) { \
|
120 |
+
vm##mkltype##mklop( \
|
121 |
+
max_mkl_ind, \
|
122 |
+
in + ind * max_mkl_ind, \
|
123 |
+
out + ind * max_mkl_ind, \
|
124 |
+
VML_HA | VML_FTZDAZ_OFF | VML_ERRMODE_IGNORE); \
|
125 |
+
} \
|
126 |
+
vm##mkltype##mklop( \
|
127 |
+
rest, \
|
128 |
+
in + ind * max_mkl_ind, \
|
129 |
+
out + ind * max_mkl_ind, \
|
130 |
+
VML_HA | VML_FTZDAZ_OFF | VML_ERRMODE_IGNORE); \
|
131 |
+
} \
|
132 |
+
}
|
133 |
+
|
134 |
+
#define IMPLEMENT_VML_MKL(op, mklop) \
|
135 |
+
IMPLEMENT_VML_MKL_STUB(op, mklop, float, s) \
|
136 |
+
IMPLEMENT_VML_MKL_STUB(op, mklop, double, d)
|
137 |
+
|
138 |
+
// NB: abs, cosh and sinh were temporarily disabled due to issues with Apple
|
139 |
+
// NB: expm1 is disabled because on some configs it produces expm1(nan)=-1
|
140 |
+
IMPLEMENT_VML_MKL(acos, Acos)
|
141 |
+
IMPLEMENT_VML_MKL(asin, Asin)
|
142 |
+
IMPLEMENT_VML_MKL(atan, Atan)
|
143 |
+
IMPLEMENT_VML_MKL(cos, Cos)
|
144 |
+
// IMPLEMENT_VML_MKL(cosh, Cosh)
|
145 |
+
IMPLEMENT_VML_MKL(erf, Erf)
|
146 |
+
IMPLEMENT_VML_MKL(erfc, Erfc)
|
147 |
+
IMPLEMENT_VML_MKL(erfinv, ErfInv)
|
148 |
+
IMPLEMENT_VML_MKL(exp, Exp)
|
149 |
+
// IMPLEMENT_VML_MKL(expm1, Expm1)
|
150 |
+
IMPLEMENT_VML_MKL(log, Ln)
|
151 |
+
IMPLEMENT_VML_MKL(log10, Log10)
|
152 |
+
IMPLEMENT_VML_MKL(sin, Sin)
|
153 |
+
// IMPLEMENT_VML_MKL(sinh, Sinh)
|
154 |
+
IMPLEMENT_VML_MKL(sqrt, Sqrt)
|
155 |
+
IMPLEMENT_VML_MKL(tan, Tan)
|
156 |
+
IMPLEMENT_VML_MKL(tanh, Tanh)
|
157 |
+
IMPLEMENT_VML_MKL(trunc, Trunc)
|
158 |
+
|
159 |
+
// Not vectorized in MKL version tested
|
160 |
+
// IMPLEMENT_VML_MKL(abs, Abs)
|
161 |
+
// IMPLEMENT_VML_MKL(log1p, Log1p)
|
162 |
+
|
163 |
+
#if INTEL_MKL_VERSION >= 20180406
|
164 |
+
IMPLEMENT_VML_MKL(log2, Log2)
|
165 |
+
#endif
|
166 |
+
|
167 |
+
#endif
|
168 |
+
|
169 |
+
} // namespace
|
170 |
+
} // namespace vml
|
171 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/detail/IPUHooksInterface.h
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/Generator.h>
|
4 |
+
#include <c10/core/Allocator.h>
|
5 |
+
#include <c10/util/Exception.h>
|
6 |
+
#include <c10/util/Registry.h>
|
7 |
+
|
8 |
+
namespace at {
|
9 |
+
|
10 |
+
struct TORCH_API IPUHooksInterface {
|
11 |
+
virtual ~IPUHooksInterface() = default;
|
12 |
+
|
13 |
+
virtual const Generator& getDefaultIPUGenerator(
|
14 |
+
DeviceIndex device_index = -1) const {
|
15 |
+
AT_ERROR(
|
16 |
+
"Cannot get the default IPU generator: the IPU backend is not "
|
17 |
+
"available.");
|
18 |
+
}
|
19 |
+
|
20 |
+
virtual Generator newIPUGenerator(DeviceIndex device_index = -1) const {
|
21 |
+
AT_ERROR(
|
22 |
+
"Cannot create a new IPU generator: the IPU backend is not available.");
|
23 |
+
}
|
24 |
+
};
|
25 |
+
|
26 |
+
struct TORCH_API IPUHooksArgs {};
|
27 |
+
|
28 |
+
TORCH_DECLARE_REGISTRY(IPUHooksRegistry, IPUHooksInterface, IPUHooksArgs);
|
29 |
+
#define REGISTER_IPU_HOOKS(clsname) \
|
30 |
+
C10_REGISTER_CLASS(IPUHooksRegistry, clsname, clsname)
|
31 |
+
|
32 |
+
namespace detail {
|
33 |
+
TORCH_API const IPUHooksInterface& getIPUHooks();
|
34 |
+
} // namespace detail
|
35 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/miopen/Descriptors.h
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/miopen/Exceptions.h>
|
4 |
+
|
5 |
+
#include <ATen/miopen/miopen-wrapper.h>
|
6 |
+
#include <ATen/core/Tensor.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
|
9 |
+
namespace at { namespace native {
|
10 |
+
|
11 |
+
inline int dataSize(miopenDataType_t dataType)
|
12 |
+
{
|
13 |
+
switch (dataType) {
|
14 |
+
case miopenHalf: return 2;
|
15 |
+
case miopenFloat: return 4;
|
16 |
+
case miopenBFloat16: return 2;
|
17 |
+
default: return 8;
|
18 |
+
}
|
19 |
+
}
|
20 |
+
|
21 |
+
template <typename T, miopenStatus_t (*dtor)(T*)>
|
22 |
+
struct DescriptorDeleter {
|
23 |
+
void operator()(T* x) {
|
24 |
+
if (x != nullptr) {
|
25 |
+
MIOPEN_CHECK(dtor(x));
|
26 |
+
}
|
27 |
+
}
|
28 |
+
};
|
29 |
+
|
30 |
+
// A generic class for wrapping MIOpen descriptor types. All you need
|
31 |
+
// is to give the underlying type the Descriptor_t points to (usually,
|
32 |
+
// if it's miopenTensorDescriptor_t it points to miopenTensorStruct),
|
33 |
+
// the constructor and the destructor. Subclasses are responsible
|
34 |
+
// for defining a set() function to actually set the descriptor.
|
35 |
+
//
|
36 |
+
// Descriptors default construct to a nullptr, and have a descriptor
|
37 |
+
// initialized the first time you call set() or any other initializing
|
38 |
+
// function.
|
39 |
+
template <typename T, miopenStatus_t (*ctor)(T**), miopenStatus_t (*dtor)(T*)>
|
40 |
+
class Descriptor
|
41 |
+
{
|
42 |
+
public:
|
43 |
+
// Use desc() to access the underlying descriptor pointer in
|
44 |
+
// a read-only fashion. Most client code should use this.
|
45 |
+
// If the descriptor was never initialized, this will return
|
46 |
+
// nullptr.
|
47 |
+
T* desc() const { return desc_.get(); }
|
48 |
+
T* desc() { return desc_.get(); }
|
49 |
+
|
50 |
+
// Use mut_desc() to access the underlying descriptor pointer
|
51 |
+
// if you intend to modify what it points to (e.g., using
|
52 |
+
// miopenSetFooDescriptor). This will ensure that the descriptor
|
53 |
+
// is initialized. Code in this file will use this function.
|
54 |
+
T* mut_desc() { init(); return desc_.get(); }
|
55 |
+
protected:
|
56 |
+
void init() {
|
57 |
+
if (desc_ == nullptr) {
|
58 |
+
T* raw_desc;
|
59 |
+
MIOPEN_CHECK(ctor(&raw_desc));
|
60 |
+
desc_.reset(raw_desc);
|
61 |
+
}
|
62 |
+
}
|
63 |
+
private:
|
64 |
+
std::unique_ptr<T, DescriptorDeleter<T, dtor>> desc_;
|
65 |
+
};
|
66 |
+
|
67 |
+
class TensorDescriptor
|
68 |
+
: public Descriptor<miopenTensorDescriptor,
|
69 |
+
&miopenCreateTensorDescriptor,
|
70 |
+
&miopenDestroyTensorDescriptor>
|
71 |
+
{
|
72 |
+
public:
|
73 |
+
TensorDescriptor() {}
|
74 |
+
explicit TensorDescriptor(const at::Tensor &t, size_t pad = 0) {
|
75 |
+
set(t, pad);
|
76 |
+
}
|
77 |
+
|
78 |
+
void set(const at::Tensor &t, size_t pad = 0);
|
79 |
+
void set(miopenDataType_t dataType, IntArrayRef sizes, IntArrayRef strides, size_t pad = 0);
|
80 |
+
|
81 |
+
void print();
|
82 |
+
|
83 |
+
private:
|
84 |
+
void set(miopenDataType_t dataType, int dim, int* size, int* stride) {
|
85 |
+
MIOPEN_CHECK(miopenSetTensorDescriptor(mut_desc(), dataType, dim, size, stride));
|
86 |
+
}
|
87 |
+
};
|
88 |
+
|
89 |
+
std::ostream& operator<<(std::ostream & out, const TensorDescriptor& d);
|
90 |
+
|
91 |
+
class FilterDescriptor
|
92 |
+
: public Descriptor<miopenTensorDescriptor,
|
93 |
+
&miopenCreateTensorDescriptor,
|
94 |
+
&miopenDestroyTensorDescriptor>
|
95 |
+
{
|
96 |
+
public:
|
97 |
+
void set(const at::Tensor &t, int64_t pad = 0) {
|
98 |
+
set(t, at::MemoryFormat::Contiguous, pad);
|
99 |
+
}
|
100 |
+
|
101 |
+
void set(const at::Tensor &t, const at::MemoryFormat memory_format, int64_t pad = 0);
|
102 |
+
|
103 |
+
private:
|
104 |
+
void set(miopenDataType_t dataType, int dim, int* size, int* stride) {
|
105 |
+
MIOPEN_CHECK(miopenSetTensorDescriptor(mut_desc(), dataType, dim, size, stride));
|
106 |
+
}
|
107 |
+
};
|
108 |
+
|
109 |
+
struct ConvolutionDescriptor
|
110 |
+
: public Descriptor<miopenConvolutionDescriptor,
|
111 |
+
&miopenCreateConvolutionDescriptor,
|
112 |
+
&miopenDestroyConvolutionDescriptor>
|
113 |
+
{
|
114 |
+
void set(miopenDataType_t dataType, miopenConvolutionMode_t c_mode, int dim, int* pad, int* stride, int * upscale /* aka dilation */, int groups, bool deterministic) {
|
115 |
+
MIOPEN_CHECK(miopenInitConvolutionNdDescriptor(mut_desc(), dim, pad, stride, upscale, c_mode));
|
116 |
+
MIOPEN_CHECK(miopenSetConvolutionGroupCount(mut_desc(), groups));
|
117 |
+
MIOPEN_CHECK(miopenSetConvolutionAttribute(mut_desc(), MIOPEN_CONVOLUTION_ATTRIB_DETERMINISTIC, deterministic ? 1 : 0));
|
118 |
+
}
|
119 |
+
};
|
120 |
+
|
121 |
+
|
122 |
+
struct RNNDescriptor
|
123 |
+
: public Descriptor<miopenRNNDescriptor,
|
124 |
+
&miopenCreateRNNDescriptor,
|
125 |
+
&miopenDestroyRNNDescriptor>
|
126 |
+
{
|
127 |
+
void set(int64_t hidden_size, int64_t num_layers, miopenRNNInputMode_t input_mode, miopenRNNDirectionMode_t direction, miopenRNNMode_t rnn_mode,
|
128 |
+
miopenRNNBiasMode_t bias_mode, miopenRNNAlgo_t algorithm, miopenDataType_t datatype) {
|
129 |
+
MIOPEN_CHECK(miopenSetRNNDescriptor(mut_desc(), hidden_size, num_layers, input_mode, direction, rnn_mode, bias_mode, algorithm, datatype));
|
130 |
+
}
|
131 |
+
};
|
132 |
+
|
133 |
+
union Constant
|
134 |
+
{
|
135 |
+
float f;
|
136 |
+
double d;
|
137 |
+
Constant(miopenDataType_t dataType, double value) {
|
138 |
+
if (dataType == miopenHalf || dataType == miopenFloat || dataType == miopenBFloat16) {
|
139 |
+
f = static_cast<float>(value);
|
140 |
+
} else {
|
141 |
+
d = value;
|
142 |
+
}
|
143 |
+
}
|
144 |
+
};
|
145 |
+
|
146 |
+
}} // namespace
|
venv/lib/python3.10/site-packages/torch/include/ATen/miopen/Exceptions.h
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/miopen/miopen-wrapper.h>
|
4 |
+
#include <string>
|
5 |
+
#include <stdexcept>
|
6 |
+
#include <sstream>
|
7 |
+
|
8 |
+
namespace at { namespace native {
|
9 |
+
|
10 |
+
class miopen_exception : public std::runtime_error {
|
11 |
+
public:
|
12 |
+
miopenStatus_t status;
|
13 |
+
miopen_exception(miopenStatus_t status, const char* msg)
|
14 |
+
: std::runtime_error(msg)
|
15 |
+
, status(status) {}
|
16 |
+
miopen_exception(miopenStatus_t status, const std::string& msg)
|
17 |
+
: std::runtime_error(msg)
|
18 |
+
, status(status) {}
|
19 |
+
};
|
20 |
+
|
21 |
+
inline void MIOPEN_CHECK(miopenStatus_t status)
|
22 |
+
{
|
23 |
+
if (status != miopenStatusSuccess) {
|
24 |
+
if (status == miopenStatusNotImplemented) {
|
25 |
+
throw miopen_exception(status, std::string(miopenGetErrorString(status)) +
|
26 |
+
". This error may appear if you passed in a non-contiguous input.");
|
27 |
+
}
|
28 |
+
throw miopen_exception(status, miopenGetErrorString(status));
|
29 |
+
}
|
30 |
+
}
|
31 |
+
|
32 |
+
inline void HIP_CHECK(hipError_t error)
|
33 |
+
{
|
34 |
+
if (error != hipSuccess) {
|
35 |
+
std::string msg("HIP error: ");
|
36 |
+
msg += hipGetErrorString(error);
|
37 |
+
throw std::runtime_error(msg);
|
38 |
+
}
|
39 |
+
}
|
40 |
+
|
41 |
+
}} // namespace at::native
|