applied-ai-018 commited on
Commit
790e968
·
verified ·
1 Parent(s): 2a56fdb

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step20/zero/25.input_layernorm.weight/exp_avg.pt +3 -0
  2. ckpts/universal/global_step20/zero/25.input_layernorm.weight/exp_avg_sq.pt +3 -0
  3. ckpts/universal/global_step20/zero/25.input_layernorm.weight/fp32.pt +3 -0
  4. ckpts/universal/global_step20/zero/4.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt +3 -0
  5. ckpts/universal/global_step20/zero/4.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt +3 -0
  6. ckpts/universal/global_step20/zero/4.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
  7. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_add_relu_ops.h +83 -0
  8. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_efficientzerotensor_meta_dispatch.h +26 -0
  9. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_fake_quantize_learnable_per_tensor_affine_backward_native.h +21 -0
  10. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_clamp_max_compositeexplicitautograd_dispatch.h +28 -0
  11. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_expm1_cpu_dispatch.h +24 -0
  12. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_functional_assert_scalar.h +30 -0
  13. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_fused_moving_avg_obs_fq_helper_compositeexplicitautograd_dispatch.h +25 -0
  14. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_grid_sampler_2d_cpu_fallback_backward.h +30 -0
  15. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_has_compatible_shallow_copy_type.h +30 -0
  16. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sobol_engine_ff_ops.h +28 -0
  17. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_test_optional_filled_intlist_compositeexplicitautograd_dispatch.h +24 -0
  18. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_test_optional_intlist_cpu_dispatch.h +23 -0
  19. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_test_parallel_materialize_ops.h +28 -0
  20. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_thnn_fused_lstm_cell_backward_impl.h +39 -0
  21. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bicubic2d_aa_backward_compositeexplicitautogradnonfunctional_dispatch.h +24 -0
  22. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bilinear2d_aa_backward.h +91 -0
  23. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bilinear2d_aa_backward_cpu_dispatch.h +28 -0
  24. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bilinear2d_aa_compositeexplicitautogradnonfunctional_dispatch.h +24 -0
  25. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bilinear2d_aa_native.h +27 -0
  26. venv/lib/python3.10/site-packages/torch/include/ATen/ops/adaptive_max_pool2d_meta_dispatch.h +25 -0
  27. venv/lib/python3.10/site-packages/torch/include/ATen/ops/atleast_1d_compositeimplicitautograd_dispatch.h +24 -0
  28. venv/lib/python3.10/site-packages/torch/include/ATen/ops/bernoulli_native.h +28 -0
  29. venv/lib/python3.10/site-packages/torch/include/ATen/ops/bucketize_ops.h +61 -0
  30. venv/lib/python3.10/site-packages/torch/include/ATen/ops/cholesky_cpu_dispatch.h +25 -0
  31. venv/lib/python3.10/site-packages/torch/include/ATen/ops/conv_tbc.h +39 -0
  32. venv/lib/python3.10/site-packages/torch/include/ATen/ops/cudnn_batch_norm_backward_cuda_dispatch.h +23 -0
  33. venv/lib/python3.10/site-packages/torch/include/ATen/ops/cumsum_cpu_dispatch.h +26 -0
  34. venv/lib/python3.10/site-packages/torch/include/ATen/ops/digamma_native.h +23 -0
  35. venv/lib/python3.10/site-packages/torch/include/ATen/ops/dot_compositeexplicitautograd_dispatch.h +24 -0
  36. venv/lib/python3.10/site-packages/torch/include/ATen/ops/embedding_dense_backward.h +91 -0
  37. venv/lib/python3.10/site-packages/torch/include/ATen/ops/empty_strided_native.h +25 -0
  38. venv/lib/python3.10/site-packages/torch/include/ATen/ops/eq_cuda_dispatch.h +30 -0
  39. venv/lib/python3.10/site-packages/torch/include/ATen/ops/exp2_cuda_dispatch.h +26 -0
  40. venv/lib/python3.10/site-packages/torch/include/ATen/ops/expand_compositeexplicitautograd_dispatch.h +24 -0
  41. venv/lib/python3.10/site-packages/torch/include/ATen/ops/fft_rfftfreq_compositeexplicitautograd_dispatch.h +26 -0
  42. venv/lib/python3.10/site-packages/torch/include/ATen/ops/geometric_compositeexplicitautograd_dispatch.h +25 -0
  43. venv/lib/python3.10/site-packages/torch/include/ATen/ops/isnan_compositeexplicitautograd_dispatch.h +24 -0
  44. venv/lib/python3.10/site-packages/torch/include/ATen/ops/leaky_relu_backward_compositeexplicitautogradnonfunctional_dispatch.h +23 -0
  45. venv/lib/python3.10/site-packages/torch/include/ATen/ops/lgamma_native.h +23 -0
  46. venv/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_matrix_exp_native.h +22 -0
  47. venv/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_pinv_compositeexplicitautograd_dispatch.h +24 -0
  48. venv/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_slogdet_compositeimplicitautograd_dispatch.h +25 -0
  49. venv/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_vecdot_ops.h +39 -0
  50. venv/lib/python3.10/site-packages/torch/include/ATen/ops/log10_native.h +23 -0
ckpts/universal/global_step20/zero/25.input_layernorm.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99ef00393e63f01ea842dc59e71f7c15613a4cf6c4dd98fbb27c3d19fc0279f0
3
+ size 9372
ckpts/universal/global_step20/zero/25.input_layernorm.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7499557ae998e49129cb4531df8248104b54f6ed3dc7fbda81b4b34b2a8d6de
3
+ size 9387
ckpts/universal/global_step20/zero/25.input_layernorm.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49ef95ea6db2870cc4e8e1b8bd5ed5c376ae2ecb5955094efd7a8dad4d050714
3
+ size 9293
ckpts/universal/global_step20/zero/4.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d630e802375080e5b98e30b8fd6d9711d3aaab94aec964bf9469cb96a369f6b
3
+ size 33555612
ckpts/universal/global_step20/zero/4.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd9c44c20b97f3ac2940771edd70677c7ff511596326107ee7044dc011c891ff
3
+ size 33555627
ckpts/universal/global_step20/zero/4.mlp.dense_h_to_4h_swiglu.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef0e0417d3051a810753c9cb4bebf635453a1461bb8467fa4eb84bb33573c320
3
+ size 33555533
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_add_relu_ops.h ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _add_relu_Tensor {
18
+ using schema = at::Tensor (const at::Tensor &, const at::Tensor &, const at::Scalar &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_add_relu")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Tensor")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_add_relu.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & self, const at::Tensor & other, const at::Scalar & alpha);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & other, const at::Scalar & alpha);
26
+ };
27
+
28
+ struct TORCH_API _add_relu__Tensor {
29
+ using schema = at::Tensor & (at::Tensor &, const at::Tensor &, const at::Scalar &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_add_relu_")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Tensor")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_add_relu_.Tensor(Tensor(a!) self, Tensor other, *, Scalar alpha=1) -> Tensor(a!)")
35
+ static at::Tensor & call(at::Tensor & self, const at::Tensor & other, const at::Scalar & alpha);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self, const at::Tensor & other, const at::Scalar & alpha);
37
+ };
38
+
39
+ struct TORCH_API _add_relu_out {
40
+ using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, const at::Scalar &, at::Tensor &);
41
+ using ptr_schema = schema*;
42
+ // See Note [static constexpr char* members for windows NVCC]
43
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_add_relu")
44
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
45
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_add_relu.out(Tensor self, Tensor other, *, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)")
46
+ static at::Tensor & call(const at::Tensor & self, const at::Tensor & other, const at::Scalar & alpha, at::Tensor & out);
47
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & other, const at::Scalar & alpha, at::Tensor & out);
48
+ };
49
+
50
+ struct TORCH_API _add_relu_Scalar {
51
+ using schema = at::Tensor (const at::Tensor &, const at::Scalar &, const at::Scalar &);
52
+ using ptr_schema = schema*;
53
+ // See Note [static constexpr char* members for windows NVCC]
54
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_add_relu")
55
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Scalar")
56
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_add_relu.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor")
57
+ static at::Tensor call(const at::Tensor & self, const at::Scalar & other, const at::Scalar & alpha);
58
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Scalar & other, const at::Scalar & alpha);
59
+ };
60
+
61
+ struct TORCH_API _add_relu__Scalar {
62
+ using schema = at::Tensor & (at::Tensor &, const at::Scalar &, const at::Scalar &);
63
+ using ptr_schema = schema*;
64
+ // See Note [static constexpr char* members for windows NVCC]
65
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_add_relu_")
66
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Scalar")
67
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_add_relu_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!)")
68
+ static at::Tensor & call(at::Tensor & self, const at::Scalar & other, const at::Scalar & alpha);
69
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self, const at::Scalar & other, const at::Scalar & alpha);
70
+ };
71
+
72
+ struct TORCH_API _add_relu_Scalar_out {
73
+ using schema = at::Tensor & (const at::Tensor &, const at::Scalar &, const at::Scalar &, at::Tensor &);
74
+ using ptr_schema = schema*;
75
+ // See Note [static constexpr char* members for windows NVCC]
76
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_add_relu")
77
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Scalar_out")
78
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_add_relu.Scalar_out(Tensor self, Scalar other, Scalar alpha=1, *, Tensor(a!) out) -> Tensor(a!)")
79
+ static at::Tensor & call(const at::Tensor & self, const at::Scalar & other, const at::Scalar & alpha, at::Tensor & out);
80
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Scalar & other, const at::Scalar & alpha, at::Tensor & out);
81
+ };
82
+
83
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_efficientzerotensor_meta_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace meta {
19
+
20
+ TORCH_API at::Tensor _efficientzerotensor(at::IntArrayRef size, at::TensorOptions options={});
21
+ TORCH_API at::Tensor _efficientzerotensor(at::IntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
22
+ TORCH_API at::Tensor _efficientzerotensor_symint(c10::SymIntArrayRef size, at::TensorOptions options={});
23
+ TORCH_API at::Tensor _efficientzerotensor_symint(c10::SymIntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
24
+
25
+ } // namespace meta
26
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_fake_quantize_learnable_per_tensor_affine_backward_native.h ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor> _fake_quantize_learnable_per_tensor_affine_backward(const at::Tensor & grad, const at::Tensor & self, const at::Tensor & scale, const at::Tensor & zero_point, int64_t quant_min, int64_t quant_max, double grad_factor=1.0);
20
+ } // namespace native
21
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_clamp_max_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API void _foreach_clamp_max_out(at::TensorList out, at::TensorList self, const at::Scalar & scalar);
21
+ TORCH_API void _foreach_clamp_max_outf(at::TensorList self, const at::Scalar & scalar, at::TensorList out);
22
+ TORCH_API void _foreach_clamp_max_out(at::TensorList out, at::TensorList self, at::TensorList other);
23
+ TORCH_API void _foreach_clamp_max_outf(at::TensorList self, at::TensorList other, at::TensorList out);
24
+ TORCH_API void _foreach_clamp_max_out(at::TensorList out, at::TensorList self, at::ArrayRef<at::Scalar> scalars);
25
+ TORCH_API void _foreach_clamp_max_outf(at::TensorList self, at::ArrayRef<at::Scalar> scalars, at::TensorList out);
26
+
27
+ } // namespace compositeexplicitautograd
28
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_expm1_cpu_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API ::std::vector<at::Tensor> _foreach_expm1(at::TensorList self);
21
+ TORCH_API void _foreach_expm1_(at::TensorList self);
22
+
23
+ } // namespace cpu
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_functional_assert_scalar.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_functional_assert_scalar_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_functional_assert_scalar(Scalar self, str assert_msg, Tensor dep_token) -> Tensor
26
+ inline at::Tensor _functional_assert_scalar(const at::Scalar & self, c10::string_view assert_msg, const at::Tensor & dep_token) {
27
+ return at::_ops::_functional_assert_scalar::call(self, assert_msg, dep_token);
28
+ }
29
+
30
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_fused_moving_avg_obs_fq_helper_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> _fused_moving_avg_obs_fq_helper_functional(const at::Tensor & self, const at::Tensor & observer_on, const at::Tensor & fake_quant_on, const at::Tensor & running_min, const at::Tensor & running_max, const at::Tensor & scale, const at::Tensor & zero_point, double averaging_const, int64_t quant_min, int64_t quant_max, int64_t ch_axis, bool per_row_fake_quant=false, bool symmetric_quant=false);
21
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> _fused_moving_avg_obs_fq_helper_out(at::Tensor & out0, at::Tensor & out1, const at::Tensor & self, const at::Tensor & observer_on, const at::Tensor & fake_quant_on, at::Tensor & running_min, at::Tensor & running_max, at::Tensor & scale, at::Tensor & zero_point, double averaging_const, int64_t quant_min, int64_t quant_max, int64_t ch_axis, bool per_row_fake_quant=false, bool symmetric_quant=false);
22
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> _fused_moving_avg_obs_fq_helper_outf(const at::Tensor & self, const at::Tensor & observer_on, const at::Tensor & fake_quant_on, at::Tensor & running_min, at::Tensor & running_max, at::Tensor & scale, at::Tensor & zero_point, double averaging_const, int64_t quant_min, int64_t quant_max, int64_t ch_axis, bool per_row_fake_quant, bool symmetric_quant, at::Tensor & out0, at::Tensor & out1);
23
+
24
+ } // namespace compositeexplicitautograd
25
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_grid_sampler_2d_cpu_fallback_backward.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_grid_sampler_2d_cpu_fallback_backward_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_grid_sampler_2d_cpu_fallback_backward(Tensor grad_output, Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> (Tensor, Tensor)
26
+ inline ::std::tuple<at::Tensor,at::Tensor> _grid_sampler_2d_cpu_fallback_backward(const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners) {
27
+ return at::_ops::_grid_sampler_2d_cpu_fallback_backward::call(grad_output, input, grid, interpolation_mode, padding_mode, align_corners);
28
+ }
29
+
30
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_has_compatible_shallow_copy_type.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_has_compatible_shallow_copy_type_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_has_compatible_shallow_copy_type(Tensor self, Tensor from) -> bool
26
+ inline bool _has_compatible_shallow_copy_type(const at::Tensor & self, const at::Tensor & from) {
27
+ return at::_ops::_has_compatible_shallow_copy_type::call(self, from);
28
+ }
29
+
30
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sobol_engine_ff_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _sobol_engine_ff_ {
18
+ using schema = at::Tensor & (at::Tensor &, int64_t, const at::Tensor &, int64_t, int64_t);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_sobol_engine_ff_")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_sobol_engine_ff_(Tensor(a!) self, int n, Tensor sobolstate, int dimension, int num_generated) -> Tensor(a!)")
24
+ static at::Tensor & call(at::Tensor & self, int64_t n, const at::Tensor & sobolstate, int64_t dimension, int64_t num_generated);
25
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self, int64_t n, const at::Tensor & sobolstate, int64_t dimension, int64_t num_generated);
26
+ };
27
+
28
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_test_optional_filled_intlist_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor & _test_optional_filled_intlist_out(at::Tensor & out, const at::Tensor & values, at::OptionalIntArrayRef addends);
21
+ TORCH_API at::Tensor & _test_optional_filled_intlist_outf(const at::Tensor & values, at::OptionalIntArrayRef addends, at::Tensor & out);
22
+
23
+ } // namespace compositeexplicitautograd
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_test_optional_intlist_cpu_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor _test_optional_intlist(const at::Tensor & values, at::OptionalIntArrayRef addends);
21
+
22
+ } // namespace cpu
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_test_parallel_materialize_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _test_parallel_materialize {
18
+ using schema = at::Tensor (const at::Tensor &, int64_t, bool);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_test_parallel_materialize")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_test_parallel_materialize(Tensor self, int num_parallel, bool skip_first=False) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & self, int64_t num_parallel, bool skip_first);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, int64_t num_parallel, bool skip_first);
26
+ };
27
+
28
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_thnn_fused_lstm_cell_backward_impl.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_thnn_fused_lstm_cell_backward_impl_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_thnn_fused_lstm_cell_backward_impl(Tensor? grad_hy, Tensor? grad_cy, Tensor cx, Tensor cy, Tensor workspace, bool has_bias) -> (Tensor, Tensor, Tensor)
26
+ inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor> _thnn_fused_lstm_cell_backward_impl(const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, const at::Tensor & cx, const at::Tensor & cy, const at::Tensor & workspace, bool has_bias) {
27
+ return at::_ops::_thnn_fused_lstm_cell_backward_impl::call(grad_hy, grad_cy, cx, cy, workspace, has_bias);
28
+ }
29
+
30
+ // aten::_thnn_fused_lstm_cell_backward_impl.out(Tensor? grad_hy, Tensor? grad_cy, Tensor cx, Tensor cy, Tensor workspace, bool has_bias, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))
31
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _thnn_fused_lstm_cell_backward_impl_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, const at::Tensor & cx, const at::Tensor & cy, const at::Tensor & workspace, bool has_bias) {
32
+ return at::_ops::_thnn_fused_lstm_cell_backward_impl_out::call(grad_hy, grad_cy, cx, cy, workspace, has_bias, out0, out1, out2);
33
+ }
34
+ // aten::_thnn_fused_lstm_cell_backward_impl.out(Tensor? grad_hy, Tensor? grad_cy, Tensor cx, Tensor cy, Tensor workspace, bool has_bias, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))
35
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> _thnn_fused_lstm_cell_backward_impl_outf(const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, const at::Tensor & cx, const at::Tensor & cy, const at::Tensor & workspace, bool has_bias, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2) {
36
+ return at::_ops::_thnn_fused_lstm_cell_backward_impl_out::call(grad_hy, grad_cy, cx, cy, workspace, has_bias, out0, out1, out2);
37
+ }
38
+
39
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bicubic2d_aa_backward_compositeexplicitautogradnonfunctional_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautogradnonfunctional {
19
+
20
+ TORCH_API at::Tensor _upsample_bicubic2d_aa_backward(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
21
+ TORCH_API at::Tensor _upsample_bicubic2d_aa_backward_symint(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
22
+
23
+ } // namespace compositeexplicitautogradnonfunctional
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bilinear2d_aa_backward.h ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_upsample_bilinear2d_aa_backward_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_upsample_bilinear2d_aa_backward.grad_input(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)
26
+ inline at::Tensor & _upsample_bilinear2d_aa_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
27
+ return at::_ops::_upsample_bilinear2d_aa_backward_grad_input::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales_h, scales_w, grad_input);
28
+ }
29
+ namespace symint {
30
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
31
+ at::Tensor & _upsample_bilinear2d_aa_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
32
+ return at::_ops::_upsample_bilinear2d_aa_backward_grad_input::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales_h, scales_w, grad_input);
33
+ }
34
+ }
35
+
36
+ // aten::_upsample_bilinear2d_aa_backward.grad_input(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)
37
+ inline at::Tensor & _upsample_bilinear2d_aa_backward_outf(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & grad_input) {
38
+ return at::_ops::_upsample_bilinear2d_aa_backward_grad_input::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales_h, scales_w, grad_input);
39
+ }
40
+ namespace symint {
41
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
42
+ at::Tensor & _upsample_bilinear2d_aa_backward_outf(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & grad_input) {
43
+ return at::_ops::_upsample_bilinear2d_aa_backward_grad_input::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales_h, scales_w, grad_input);
44
+ }
45
+ }
46
+
47
+ // aten::_upsample_bilinear2d_aa_backward.grad_input(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)
48
+ inline at::Tensor & _upsample_bilinear2d_aa_backward_symint_out(at::Tensor & grad_input, const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
49
+ return at::_ops::_upsample_bilinear2d_aa_backward_grad_input::call(grad_output, output_size, input_size, align_corners, scales_h, scales_w, grad_input);
50
+ }
51
+ namespace symint {
52
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
53
+ at::Tensor & _upsample_bilinear2d_aa_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
54
+ return at::_ops::_upsample_bilinear2d_aa_backward_grad_input::call(grad_output, output_size, input_size, align_corners, scales_h, scales_w, grad_input);
55
+ }
56
+ }
57
+
58
+ // aten::_upsample_bilinear2d_aa_backward.grad_input(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)
59
+ inline at::Tensor & _upsample_bilinear2d_aa_backward_symint_outf(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & grad_input) {
60
+ return at::_ops::_upsample_bilinear2d_aa_backward_grad_input::call(grad_output, output_size, input_size, align_corners, scales_h, scales_w, grad_input);
61
+ }
62
+ namespace symint {
63
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
64
+ at::Tensor & _upsample_bilinear2d_aa_backward_outf(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & grad_input) {
65
+ return at::_ops::_upsample_bilinear2d_aa_backward_grad_input::call(grad_output, output_size, input_size, align_corners, scales_h, scales_w, grad_input);
66
+ }
67
+ }
68
+
69
+ // aten::_upsample_bilinear2d_aa_backward(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor
70
+ inline at::Tensor _upsample_bilinear2d_aa_backward(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
71
+ return at::_ops::_upsample_bilinear2d_aa_backward::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales_h, scales_w);
72
+ }
73
+ namespace symint {
74
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
75
+ at::Tensor _upsample_bilinear2d_aa_backward(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
76
+ return at::_ops::_upsample_bilinear2d_aa_backward::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), align_corners, scales_h, scales_w);
77
+ }
78
+ }
79
+
80
+ // aten::_upsample_bilinear2d_aa_backward(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor
81
+ inline at::Tensor _upsample_bilinear2d_aa_backward_symint(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
82
+ return at::_ops::_upsample_bilinear2d_aa_backward::call(grad_output, output_size, input_size, align_corners, scales_h, scales_w);
83
+ }
84
+ namespace symint {
85
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
86
+ at::Tensor _upsample_bilinear2d_aa_backward(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt) {
87
+ return at::_ops::_upsample_bilinear2d_aa_backward::call(grad_output, output_size, input_size, align_corners, scales_h, scales_w);
88
+ }
89
+ }
90
+
91
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bilinear2d_aa_backward_cpu_dispatch.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor _upsample_bilinear2d_aa_backward(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
21
+ TORCH_API at::Tensor _upsample_bilinear2d_aa_backward_symint(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
22
+ TORCH_API at::Tensor & _upsample_bilinear2d_aa_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
23
+ TORCH_API at::Tensor & _upsample_bilinear2d_aa_backward_outf(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & grad_input);
24
+ TORCH_API at::Tensor & _upsample_bilinear2d_aa_backward_symint_out(at::Tensor & grad_input, const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
25
+ TORCH_API at::Tensor & _upsample_bilinear2d_aa_backward_symint_outf(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, at::Tensor & grad_input);
26
+
27
+ } // namespace cpu
28
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bilinear2d_aa_compositeexplicitautogradnonfunctional_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautogradnonfunctional {
19
+
20
+ TORCH_API at::Tensor _upsample_bilinear2d_aa(const at::Tensor & self, at::IntArrayRef output_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
21
+ TORCH_API at::Tensor _upsample_bilinear2d_aa_symint(const at::Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
22
+
23
+ } // namespace compositeexplicitautogradnonfunctional
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bilinear2d_aa_native.h ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+ #include <ATen/ops/_upsample_bilinear2d_aa_meta.h>
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor _upsample_bilinear2d_aa(const at::Tensor & input, at::OptionalIntArrayRef output_size, bool align_corners, c10::optional<at::ArrayRef<double>> scale_factors);
20
+ struct TORCH_API structured__upsample_bilinear2d_aa_out_cpu : public at::meta::structured__upsample_bilinear2d_aa {
21
+ void impl(const at::Tensor & self, at::ArrayRef<int64_t> output_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, const at::Tensor & out);
22
+ };
23
+ struct TORCH_API structured__upsample_bilinear2d_aa_out_cuda : public at::meta::structured__upsample_bilinear2d_aa {
24
+ void impl(const at::Tensor & self, at::ArrayRef<int64_t> output_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, const at::Tensor & out);
25
+ };
26
+ } // namespace native
27
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/adaptive_max_pool2d_meta_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace meta {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> adaptive_max_pool2d(const at::Tensor & self, at::IntArrayRef output_size);
21
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> adaptive_max_pool2d_out(at::Tensor & out, at::Tensor & indices, const at::Tensor & self, at::IntArrayRef output_size);
22
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> adaptive_max_pool2d_outf(const at::Tensor & self, at::IntArrayRef output_size, at::Tensor & out, at::Tensor & indices);
23
+
24
+ } // namespace meta
25
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/atleast_1d_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API at::Tensor atleast_1d(const at::Tensor & self);
21
+ TORCH_API ::std::vector<at::Tensor> atleast_1d(at::TensorList tensors);
22
+
23
+ } // namespace compositeimplicitautograd
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/bernoulli_native.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor bernoulli(const at::Tensor & self, c10::optional<at::Generator> generator=c10::nullopt);
20
+ TORCH_API at::Tensor & bernoulli_out(const at::Tensor & self, c10::optional<at::Generator> generator, at::Tensor & out);
21
+ TORCH_API at::Tensor bernoulli(const at::Tensor & self, const at::Tensor & p, c10::optional<at::Generator> generator=c10::nullopt);
22
+ TORCH_API at::Tensor & bernoulli_Tensor_out(const at::Tensor & self, const at::Tensor & p, c10::optional<at::Generator> generator, at::Tensor & out);
23
+ TORCH_API at::Tensor & bernoulli_(at::Tensor & self, const at::Tensor & p, c10::optional<at::Generator> generator=c10::nullopt);
24
+ TORCH_API at::Tensor & bernoulli_float_out(const at::Tensor & self, double p, c10::optional<at::Generator> generator, at::Tensor & out);
25
+ TORCH_API at::Tensor & bernoulli_(at::Tensor & self, double p=0.5, c10::optional<at::Generator> generator=c10::nullopt);
26
+ TORCH_API at::Tensor bernoulli(const at::Tensor & self, double p, c10::optional<at::Generator> generator=c10::nullopt);
27
+ } // namespace native
28
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/bucketize_ops.h ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API bucketize_Tensor {
18
+ using schema = at::Tensor (const at::Tensor &, const at::Tensor &, bool, bool);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::bucketize")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Tensor")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "bucketize.Tensor(Tensor self, Tensor boundaries, *, bool out_int32=False, bool right=False) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & self, const at::Tensor & boundaries, bool out_int32, bool right);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & boundaries, bool out_int32, bool right);
26
+ };
27
+
28
+ struct TORCH_API bucketize_Tensor_out {
29
+ using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, bool, bool, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::bucketize")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Tensor_out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "bucketize.Tensor_out(Tensor self, Tensor boundaries, *, bool out_int32=False, bool right=False, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(const at::Tensor & self, const at::Tensor & boundaries, bool out_int32, bool right, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & boundaries, bool out_int32, bool right, at::Tensor & out);
37
+ };
38
+
39
+ struct TORCH_API bucketize_Scalar {
40
+ using schema = at::Tensor (const at::Scalar &, const at::Tensor &, bool, bool);
41
+ using ptr_schema = schema*;
42
+ // See Note [static constexpr char* members for windows NVCC]
43
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::bucketize")
44
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Scalar")
45
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "bucketize.Scalar(Scalar self, Tensor boundaries, *, bool out_int32=False, bool right=False) -> Tensor")
46
+ static at::Tensor call(const at::Scalar & self, const at::Tensor & boundaries, bool out_int32, bool right);
47
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Scalar & self, const at::Tensor & boundaries, bool out_int32, bool right);
48
+ };
49
+
50
+ struct TORCH_API bucketize_Scalar_out {
51
+ using schema = at::Tensor & (const at::Scalar &, const at::Tensor &, bool, bool, at::Tensor &);
52
+ using ptr_schema = schema*;
53
+ // See Note [static constexpr char* members for windows NVCC]
54
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::bucketize")
55
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Scalar_out")
56
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "bucketize.Scalar_out(Scalar self, Tensor boundaries, *, bool out_int32=False, bool right=False, Tensor(a!) out) -> Tensor(a!)")
57
+ static at::Tensor & call(const at::Scalar & self, const at::Tensor & boundaries, bool out_int32, bool right, at::Tensor & out);
58
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Scalar & self, const at::Tensor & boundaries, bool out_int32, bool right, at::Tensor & out);
59
+ };
60
+
61
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/cholesky_cpu_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor cholesky(const at::Tensor & self, bool upper=false);
21
+ TORCH_API at::Tensor & cholesky_out(at::Tensor & out, const at::Tensor & self, bool upper=false);
22
+ TORCH_API at::Tensor & cholesky_outf(const at::Tensor & self, bool upper, at::Tensor & out);
23
+
24
+ } // namespace cpu
25
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/conv_tbc.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/conv_tbc_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::conv_tbc(Tensor self, Tensor weight, Tensor bias, int pad=0) -> Tensor
26
+ inline at::Tensor conv_tbc(const at::Tensor & self, const at::Tensor & weight, const at::Tensor & bias, int64_t pad=0) {
27
+ return at::_ops::conv_tbc::call(self, weight, bias, pad);
28
+ }
29
+
30
+ // aten::conv_tbc.out(Tensor self, Tensor weight, Tensor bias, int pad=0, *, Tensor(a!) out) -> Tensor(a!)
31
+ inline at::Tensor & conv_tbc_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & weight, const at::Tensor & bias, int64_t pad=0) {
32
+ return at::_ops::conv_tbc_out::call(self, weight, bias, pad, out);
33
+ }
34
+ // aten::conv_tbc.out(Tensor self, Tensor weight, Tensor bias, int pad=0, *, Tensor(a!) out) -> Tensor(a!)
35
+ inline at::Tensor & conv_tbc_outf(const at::Tensor & self, const at::Tensor & weight, const at::Tensor & bias, int64_t pad, at::Tensor & out) {
36
+ return at::_ops::conv_tbc_out::call(self, weight, bias, pad, out);
37
+ }
38
+
39
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/cudnn_batch_norm_backward_cuda_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor> cudnn_batch_norm_backward(const at::Tensor & input, const at::Tensor & grad_output, const at::Tensor & weight, const c10::optional<at::Tensor> & running_mean, const c10::optional<at::Tensor> & running_var, const c10::optional<at::Tensor> & save_mean, const c10::optional<at::Tensor> & save_var, double epsilon, const at::Tensor & reserveSpace);
21
+
22
+ } // namespace cuda
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/cumsum_cpu_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor cumsum(const at::Tensor & self, int64_t dim, c10::optional<at::ScalarType> dtype=c10::nullopt);
21
+ TORCH_API at::Tensor & cumsum_out(at::Tensor & out, const at::Tensor & self, int64_t dim, c10::optional<at::ScalarType> dtype=c10::nullopt);
22
+ TORCH_API at::Tensor & cumsum_outf(const at::Tensor & self, int64_t dim, c10::optional<at::ScalarType> dtype, at::Tensor & out);
23
+ TORCH_API at::Tensor & cumsum_(at::Tensor & self, int64_t dim, c10::optional<at::ScalarType> dtype=c10::nullopt);
24
+
25
+ } // namespace cpu
26
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/digamma_native.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+ #include <ATen/ops/digamma_meta.h>
16
+
17
+ namespace at {
18
+ namespace native {
19
+ struct TORCH_API structured_digamma_out : public at::meta::structured_digamma {
20
+ void impl(const at::Tensor & self, const at::Tensor & out);
21
+ };
22
+ } // namespace native
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/dot_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor & dot_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & tensor);
21
+ TORCH_API at::Tensor & dot_outf(const at::Tensor & self, const at::Tensor & tensor, at::Tensor & out);
22
+
23
+ } // namespace compositeexplicitautograd
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/embedding_dense_backward.h ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/embedding_dense_backward_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::embedding_dense_backward(Tensor grad_output, Tensor indices, SymInt num_weights, SymInt padding_idx, bool scale_grad_by_freq) -> Tensor
26
+ inline at::Tensor embedding_dense_backward(const at::Tensor & grad_output, const at::Tensor & indices, int64_t num_weights, int64_t padding_idx, bool scale_grad_by_freq) {
27
+ return at::_ops::embedding_dense_backward::call(grad_output, indices, num_weights, padding_idx, scale_grad_by_freq);
28
+ }
29
+ namespace symint {
30
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
31
+ at::Tensor embedding_dense_backward(const at::Tensor & grad_output, const at::Tensor & indices, int64_t num_weights, int64_t padding_idx, bool scale_grad_by_freq) {
32
+ return at::_ops::embedding_dense_backward::call(grad_output, indices, num_weights, padding_idx, scale_grad_by_freq);
33
+ }
34
+ }
35
+
36
+ // aten::embedding_dense_backward(Tensor grad_output, Tensor indices, SymInt num_weights, SymInt padding_idx, bool scale_grad_by_freq) -> Tensor
37
+ inline at::Tensor embedding_dense_backward_symint(const at::Tensor & grad_output, const at::Tensor & indices, c10::SymInt num_weights, c10::SymInt padding_idx, bool scale_grad_by_freq) {
38
+ return at::_ops::embedding_dense_backward::call(grad_output, indices, num_weights, padding_idx, scale_grad_by_freq);
39
+ }
40
+ namespace symint {
41
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
42
+ at::Tensor embedding_dense_backward(const at::Tensor & grad_output, const at::Tensor & indices, c10::SymInt num_weights, c10::SymInt padding_idx, bool scale_grad_by_freq) {
43
+ return at::_ops::embedding_dense_backward::call(grad_output, indices, num_weights, padding_idx, scale_grad_by_freq);
44
+ }
45
+ }
46
+
47
+ // aten::embedding_dense_backward.out(Tensor grad_output, Tensor indices, SymInt num_weights, SymInt padding_idx, bool scale_grad_by_freq, *, Tensor(a!) out) -> Tensor(a!)
48
+ inline at::Tensor & embedding_dense_backward_out(at::Tensor & out, const at::Tensor & grad_output, const at::Tensor & indices, int64_t num_weights, int64_t padding_idx, bool scale_grad_by_freq) {
49
+ return at::_ops::embedding_dense_backward_out::call(grad_output, indices, num_weights, padding_idx, scale_grad_by_freq, out);
50
+ }
51
+ namespace symint {
52
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
53
+ at::Tensor & embedding_dense_backward_out(at::Tensor & out, const at::Tensor & grad_output, const at::Tensor & indices, int64_t num_weights, int64_t padding_idx, bool scale_grad_by_freq) {
54
+ return at::_ops::embedding_dense_backward_out::call(grad_output, indices, num_weights, padding_idx, scale_grad_by_freq, out);
55
+ }
56
+ }
57
+
58
+ // aten::embedding_dense_backward.out(Tensor grad_output, Tensor indices, SymInt num_weights, SymInt padding_idx, bool scale_grad_by_freq, *, Tensor(a!) out) -> Tensor(a!)
59
+ inline at::Tensor & embedding_dense_backward_outf(const at::Tensor & grad_output, const at::Tensor & indices, int64_t num_weights, int64_t padding_idx, bool scale_grad_by_freq, at::Tensor & out) {
60
+ return at::_ops::embedding_dense_backward_out::call(grad_output, indices, num_weights, padding_idx, scale_grad_by_freq, out);
61
+ }
62
+ namespace symint {
63
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
64
+ at::Tensor & embedding_dense_backward_outf(const at::Tensor & grad_output, const at::Tensor & indices, int64_t num_weights, int64_t padding_idx, bool scale_grad_by_freq, at::Tensor & out) {
65
+ return at::_ops::embedding_dense_backward_out::call(grad_output, indices, num_weights, padding_idx, scale_grad_by_freq, out);
66
+ }
67
+ }
68
+
69
+ // aten::embedding_dense_backward.out(Tensor grad_output, Tensor indices, SymInt num_weights, SymInt padding_idx, bool scale_grad_by_freq, *, Tensor(a!) out) -> Tensor(a!)
70
+ inline at::Tensor & embedding_dense_backward_symint_out(at::Tensor & out, const at::Tensor & grad_output, const at::Tensor & indices, c10::SymInt num_weights, c10::SymInt padding_idx, bool scale_grad_by_freq) {
71
+ return at::_ops::embedding_dense_backward_out::call(grad_output, indices, num_weights, padding_idx, scale_grad_by_freq, out);
72
+ }
73
+ namespace symint {
74
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
75
+ at::Tensor & embedding_dense_backward_out(at::Tensor & out, const at::Tensor & grad_output, const at::Tensor & indices, c10::SymInt num_weights, c10::SymInt padding_idx, bool scale_grad_by_freq) {
76
+ return at::_ops::embedding_dense_backward_out::call(grad_output, indices, num_weights, padding_idx, scale_grad_by_freq, out);
77
+ }
78
+ }
79
+
80
+ // aten::embedding_dense_backward.out(Tensor grad_output, Tensor indices, SymInt num_weights, SymInt padding_idx, bool scale_grad_by_freq, *, Tensor(a!) out) -> Tensor(a!)
81
+ inline at::Tensor & embedding_dense_backward_symint_outf(const at::Tensor & grad_output, const at::Tensor & indices, c10::SymInt num_weights, c10::SymInt padding_idx, bool scale_grad_by_freq, at::Tensor & out) {
82
+ return at::_ops::embedding_dense_backward_out::call(grad_output, indices, num_weights, padding_idx, scale_grad_by_freq, out);
83
+ }
84
+ namespace symint {
85
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
86
+ at::Tensor & embedding_dense_backward_outf(const at::Tensor & grad_output, const at::Tensor & indices, c10::SymInt num_weights, c10::SymInt padding_idx, bool scale_grad_by_freq, at::Tensor & out) {
87
+ return at::_ops::embedding_dense_backward_out::call(grad_output, indices, num_weights, padding_idx, scale_grad_by_freq, out);
88
+ }
89
+ }
90
+
91
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/empty_strided_native.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor & empty_strided_out_symint(c10::SymIntArrayRef size, c10::SymIntArrayRef stride, at::Tensor & out);
20
+ TORCH_API at::Tensor empty_strided_cpu(at::IntArrayRef size, at::IntArrayRef stride, c10::optional<at::ScalarType> dtype={}, c10::optional<at::Layout> layout={}, c10::optional<at::Device> device={}, c10::optional<bool> pin_memory={});
21
+ TORCH_API at::Tensor empty_strided_cuda(at::IntArrayRef size, at::IntArrayRef stride, c10::optional<at::ScalarType> dtype={}, c10::optional<at::Layout> layout={}, c10::optional<at::Device> device={}, c10::optional<bool> pin_memory={});
22
+ TORCH_API at::Tensor empty_strided_meta_symint(c10::SymIntArrayRef size, c10::SymIntArrayRef stride, c10::optional<at::ScalarType> dtype={}, c10::optional<at::Layout> layout={}, c10::optional<at::Device> device={}, c10::optional<bool> pin_memory={});
23
+ TORCH_API at::Tensor empty_strided_unknown_quantized(at::IntArrayRef size, at::IntArrayRef stride, c10::optional<at::ScalarType> dtype={}, c10::optional<at::Layout> layout={}, c10::optional<at::Device> device={}, c10::optional<bool> pin_memory={});
24
+ } // namespace native
25
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/eq_cuda_dispatch.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API at::Tensor eq(const at::Tensor & self, const at::Scalar & other);
21
+ TORCH_API at::Tensor & eq_out(at::Tensor & out, const at::Tensor & self, const at::Scalar & other);
22
+ TORCH_API at::Tensor & eq_outf(const at::Tensor & self, const at::Scalar & other, at::Tensor & out);
23
+ TORCH_API at::Tensor & eq_(at::Tensor & self, const at::Scalar & other);
24
+ TORCH_API at::Tensor eq(const at::Tensor & self, const at::Tensor & other);
25
+ TORCH_API at::Tensor & eq_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & other);
26
+ TORCH_API at::Tensor & eq_outf(const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
27
+ TORCH_API at::Tensor & eq_(at::Tensor & self, const at::Tensor & other);
28
+
29
+ } // namespace cuda
30
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/exp2_cuda_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API at::Tensor exp2(const at::Tensor & self);
21
+ TORCH_API at::Tensor & exp2_out(at::Tensor & out, const at::Tensor & self);
22
+ TORCH_API at::Tensor & exp2_outf(const at::Tensor & self, at::Tensor & out);
23
+ TORCH_API at::Tensor & exp2_(at::Tensor & self);
24
+
25
+ } // namespace cuda
26
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/expand_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor expand(const at::Tensor & self, at::IntArrayRef size, bool implicit=false);
21
+ TORCH_API at::Tensor expand_symint(const at::Tensor & self, c10::SymIntArrayRef size, bool implicit=false);
22
+
23
+ } // namespace compositeexplicitautograd
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fft_rfftfreq_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor fft_rfftfreq(int64_t n, double d=1.0, at::TensorOptions options={});
21
+ TORCH_API at::Tensor fft_rfftfreq(int64_t n, double d, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory);
22
+ TORCH_API at::Tensor & fft_rfftfreq_out(at::Tensor & out, int64_t n, double d=1.0);
23
+ TORCH_API at::Tensor & fft_rfftfreq_outf(int64_t n, double d, at::Tensor & out);
24
+
25
+ } // namespace compositeexplicitautograd
26
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/geometric_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor geometric(const at::Tensor & self, double p, c10::optional<at::Generator> generator=c10::nullopt);
21
+ TORCH_API at::Tensor & geometric_out(at::Tensor & out, const at::Tensor & self, double p, c10::optional<at::Generator> generator=c10::nullopt);
22
+ TORCH_API at::Tensor & geometric_outf(const at::Tensor & self, double p, c10::optional<at::Generator> generator, at::Tensor & out);
23
+
24
+ } // namespace compositeexplicitautograd
25
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/isnan_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor & isnan_out(at::Tensor & out, const at::Tensor & self);
21
+ TORCH_API at::Tensor & isnan_outf(const at::Tensor & self, at::Tensor & out);
22
+
23
+ } // namespace compositeexplicitautograd
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/leaky_relu_backward_compositeexplicitautogradnonfunctional_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautogradnonfunctional {
19
+
20
+ TORCH_API at::Tensor leaky_relu_backward(const at::Tensor & grad_output, const at::Tensor & self, const at::Scalar & negative_slope, bool self_is_result);
21
+
22
+ } // namespace compositeexplicitautogradnonfunctional
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/lgamma_native.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+ #include <ATen/ops/lgamma_meta.h>
16
+
17
+ namespace at {
18
+ namespace native {
19
+ struct TORCH_API structured_lgamma_out : public at::meta::structured_lgamma {
20
+ void impl(const at::Tensor & self, const at::Tensor & out);
21
+ };
22
+ } // namespace native
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_matrix_exp_native.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor & linalg_matrix_exp_out(const at::Tensor & self, at::Tensor & out);
20
+ TORCH_API at::Tensor linalg_matrix_exp(const at::Tensor & self);
21
+ } // namespace native
22
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_pinv_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor & linalg_pinv_out(at::Tensor & out, const at::Tensor & self, const c10::optional<at::Tensor> & atol={}, const c10::optional<at::Tensor> & rtol={}, bool hermitian=false);
21
+ TORCH_API at::Tensor & linalg_pinv_outf(const at::Tensor & self, const c10::optional<at::Tensor> & atol, const c10::optional<at::Tensor> & rtol, bool hermitian, at::Tensor & out);
22
+
23
+ } // namespace compositeexplicitautograd
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_slogdet_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> linalg_slogdet(const at::Tensor & A);
21
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> linalg_slogdet_out(at::Tensor & sign, at::Tensor & logabsdet, const at::Tensor & A);
22
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> linalg_slogdet_outf(const at::Tensor & A, at::Tensor & sign, at::Tensor & logabsdet);
23
+
24
+ } // namespace compositeimplicitautograd
25
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_vecdot_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API linalg_vecdot {
18
+ using schema = at::Tensor (const at::Tensor &, const at::Tensor &, int64_t);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::linalg_vecdot")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "linalg_vecdot(Tensor x, Tensor y, *, int dim=-1) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & x, const at::Tensor & y, int64_t dim);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & x, const at::Tensor & y, int64_t dim);
26
+ };
27
+
28
+ struct TORCH_API linalg_vecdot_out {
29
+ using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, int64_t, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::linalg_vecdot")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "linalg_vecdot.out(Tensor x, Tensor y, *, int dim=-1, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(const at::Tensor & x, const at::Tensor & y, int64_t dim, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & x, const at::Tensor & y, int64_t dim, at::Tensor & out);
37
+ };
38
+
39
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/log10_native.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+ #include <ATen/ops/log10_meta.h>
16
+
17
+ namespace at {
18
+ namespace native {
19
+ struct TORCH_API structured_log10_out : public at::meta::structured_log10 {
20
+ void impl(const at::Tensor & self, const at::Tensor & out);
21
+ };
22
+ } // namespace native
23
+ } // namespace at