diff --git a/ckpts/llama-3b/global_step100/bf16_zero_pp_rank_176_mp_rank_00_optim_states.pt b/ckpts/llama-3b/global_step100/bf16_zero_pp_rank_176_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..bf8fe1db6da6b77510d5a28aca118c3526d99eb7 --- /dev/null +++ b/ckpts/llama-3b/global_step100/bf16_zero_pp_rank_176_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ee49effce3195bead5ecb7d3d8ed1c536ee0d566452972cceecaf3c0f2de1fad +size 41830148 diff --git a/ckpts/llama-3b/global_step100/bf16_zero_pp_rank_29_mp_rank_03_optim_states.pt b/ckpts/llama-3b/global_step100/bf16_zero_pp_rank_29_mp_rank_03_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..d1baa55b2e3305b49d1527eb36c0aca7ad2adb62 --- /dev/null +++ b/ckpts/llama-3b/global_step100/bf16_zero_pp_rank_29_mp_rank_03_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:686c670e59a59a96324efd41d24e9d7e7d06fcd91313d55de9c825b0322b318f +size 41830330 diff --git a/ckpts/llama-3b/global_step100/bf16_zero_pp_rank_37_mp_rank_02_optim_states.pt b/ckpts/llama-3b/global_step100/bf16_zero_pp_rank_37_mp_rank_02_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..85f343a77e2757ef9ed26c0125297a27c9d58f54 --- /dev/null +++ b/ckpts/llama-3b/global_step100/bf16_zero_pp_rank_37_mp_rank_02_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:190c5990847f2f823d25e884840b26098f3569d85ee2fadab478aae74abf7adf +size 41830330 diff --git a/ckpts/llama-3b/global_step100/bf16_zero_pp_rank_41_mp_rank_01_optim_states.pt b/ckpts/llama-3b/global_step100/bf16_zero_pp_rank_41_mp_rank_01_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..098530b86f4fb589431605a1fb74e33c702f6ccd --- /dev/null +++ b/ckpts/llama-3b/global_step100/bf16_zero_pp_rank_41_mp_rank_01_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b2588d65718e0a45ffdfe2815f9cf509e3d990e8153172303473b4fdc5096da5 +size 41830138 diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/__init__.py b/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_datetime.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_datetime.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..497cb87e560baacf05e2bf6a8151d366ad1063f3 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_datetime.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_get.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_get.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5ab30cd92a4138ef48c33b0912b0381f569456ee Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_get.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_indexing.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_indexing.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..90a903dd47acea25b8ae43ac64e2bedd1eb6e8c2 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/__pycache__/test_indexing.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_datetime.py b/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_datetime.py new file mode 100644 index 0000000000000000000000000000000000000000..fc1c80eb4dec6e1b81114e8de181fc8f6b77d489 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_datetime.py @@ -0,0 +1,499 @@ +""" +Also test support for datetime64[ns] in Series / DataFrame +""" +from datetime import ( + datetime, + timedelta, +) +import re + +from dateutil.tz import ( + gettz, + tzutc, +) +import numpy as np +import pytest +import pytz + +from pandas._libs import index as libindex + +import pandas as pd +from pandas import ( + DataFrame, + Series, + Timestamp, + date_range, + period_range, +) +import pandas._testing as tm + + +def test_fancy_getitem(): + dti = date_range( + freq="WOM-1FRI", start=datetime(2005, 1, 1), end=datetime(2010, 1, 1) + ) + + s = Series(np.arange(len(dti)), index=dti) + + msg = "Series.__getitem__ treating keys as positions is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + assert s[48] == 48 + assert s["1/2/2009"] == 48 + assert s["2009-1-2"] == 48 + assert s[datetime(2009, 1, 2)] == 48 + assert s[Timestamp(datetime(2009, 1, 2))] == 48 + with pytest.raises(KeyError, match=r"^'2009-1-3'$"): + s["2009-1-3"] + tm.assert_series_equal( + s["3/6/2009":"2009-06-05"], s[datetime(2009, 3, 6) : datetime(2009, 6, 5)] + ) + + +def test_fancy_setitem(): + dti = date_range( + freq="WOM-1FRI", start=datetime(2005, 1, 1), end=datetime(2010, 1, 1) + ) + + s = Series(np.arange(len(dti)), index=dti) + + msg = "Series.__setitem__ treating keys as positions is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + s[48] = -1 + assert s.iloc[48] == -1 + s["1/2/2009"] = -2 + assert s.iloc[48] == -2 + s["1/2/2009":"2009-06-05"] = -3 + assert (s[48:54] == -3).all() + + +@pytest.mark.parametrize("tz_source", ["pytz", "dateutil"]) +def test_getitem_setitem_datetime_tz(tz_source): + if tz_source == "pytz": + tzget = pytz.timezone + else: + # handle special case for utc in dateutil + tzget = lambda x: tzutc() if x == "UTC" else gettz(x) + + N = 50 + # testing with timezone, GH #2785 + rng = date_range("1/1/1990", periods=N, freq="h", tz=tzget("US/Eastern")) + ts = Series(np.random.default_rng(2).standard_normal(N), index=rng) + + # also test Timestamp tz handling, GH #2789 + result = ts.copy() + result["1990-01-01 09:00:00+00:00"] = 0 + result["1990-01-01 09:00:00+00:00"] = ts.iloc[4] + tm.assert_series_equal(result, ts) + + result = ts.copy() + result["1990-01-01 03:00:00-06:00"] = 0 + result["1990-01-01 03:00:00-06:00"] = ts.iloc[4] + tm.assert_series_equal(result, ts) + + # repeat with datetimes + result = ts.copy() + result[datetime(1990, 1, 1, 9, tzinfo=tzget("UTC"))] = 0 + result[datetime(1990, 1, 1, 9, tzinfo=tzget("UTC"))] = ts.iloc[4] + tm.assert_series_equal(result, ts) + + result = ts.copy() + dt = Timestamp(1990, 1, 1, 3).tz_localize(tzget("US/Central")) + dt = dt.to_pydatetime() + result[dt] = 0 + result[dt] = ts.iloc[4] + tm.assert_series_equal(result, ts) + + +def test_getitem_setitem_datetimeindex(): + N = 50 + # testing with timezone, GH #2785 + rng = date_range("1/1/1990", periods=N, freq="h", tz="US/Eastern") + ts = Series(np.random.default_rng(2).standard_normal(N), index=rng) + + result = ts["1990-01-01 04:00:00"] + expected = ts.iloc[4] + assert result == expected + + result = ts.copy() + result["1990-01-01 04:00:00"] = 0 + result["1990-01-01 04:00:00"] = ts.iloc[4] + tm.assert_series_equal(result, ts) + + result = ts["1990-01-01 04:00:00":"1990-01-01 07:00:00"] + expected = ts[4:8] + tm.assert_series_equal(result, expected) + + result = ts.copy() + result["1990-01-01 04:00:00":"1990-01-01 07:00:00"] = 0 + result["1990-01-01 04:00:00":"1990-01-01 07:00:00"] = ts[4:8] + tm.assert_series_equal(result, ts) + + lb = "1990-01-01 04:00:00" + rb = "1990-01-01 07:00:00" + # GH#18435 strings get a pass from tzawareness compat + result = ts[(ts.index >= lb) & (ts.index <= rb)] + expected = ts[4:8] + tm.assert_series_equal(result, expected) + + lb = "1990-01-01 04:00:00-0500" + rb = "1990-01-01 07:00:00-0500" + result = ts[(ts.index >= lb) & (ts.index <= rb)] + expected = ts[4:8] + tm.assert_series_equal(result, expected) + + # But we do not give datetimes a pass on tzawareness compat + msg = "Cannot compare tz-naive and tz-aware datetime-like objects" + naive = datetime(1990, 1, 1, 4) + for key in [naive, Timestamp(naive), np.datetime64(naive, "ns")]: + with pytest.raises(KeyError, match=re.escape(repr(key))): + # GH#36148 as of 2.0 we require tzawareness-compat + ts[key] + + result = ts.copy() + # GH#36148 as of 2.0 we do not ignore tzawareness mismatch in indexing, + # so setting it as a new key casts to object rather than matching + # rng[4] + result[naive] = ts.iloc[4] + assert result.index.dtype == object + tm.assert_index_equal(result.index[:-1], rng.astype(object)) + assert result.index[-1] == naive + + msg = "Cannot compare tz-naive and tz-aware datetime-like objects" + with pytest.raises(TypeError, match=msg): + # GH#36148 require tzawareness compat as of 2.0 + ts[naive : datetime(1990, 1, 1, 7)] + + result = ts.copy() + with pytest.raises(TypeError, match=msg): + # GH#36148 require tzawareness compat as of 2.0 + result[naive : datetime(1990, 1, 1, 7)] = 0 + with pytest.raises(TypeError, match=msg): + # GH#36148 require tzawareness compat as of 2.0 + result[naive : datetime(1990, 1, 1, 7)] = 99 + # the __setitems__ here failed, so result should still match ts + tm.assert_series_equal(result, ts) + + lb = naive + rb = datetime(1990, 1, 1, 7) + msg = r"Invalid comparison between dtype=datetime64\[ns, US/Eastern\] and datetime" + with pytest.raises(TypeError, match=msg): + # tznaive vs tzaware comparison is invalid + # see GH#18376, GH#18162 + ts[(ts.index >= lb) & (ts.index <= rb)] + + lb = Timestamp(naive).tz_localize(rng.tzinfo) + rb = Timestamp(datetime(1990, 1, 1, 7)).tz_localize(rng.tzinfo) + result = ts[(ts.index >= lb) & (ts.index <= rb)] + expected = ts[4:8] + tm.assert_series_equal(result, expected) + + result = ts[ts.index[4]] + expected = ts.iloc[4] + assert result == expected + + result = ts[ts.index[4:8]] + expected = ts[4:8] + tm.assert_series_equal(result, expected) + + result = ts.copy() + result[ts.index[4:8]] = 0 + result.iloc[4:8] = ts.iloc[4:8] + tm.assert_series_equal(result, ts) + + # also test partial date slicing + result = ts["1990-01-02"] + expected = ts[24:48] + tm.assert_series_equal(result, expected) + + result = ts.copy() + result["1990-01-02"] = 0 + result["1990-01-02"] = ts[24:48] + tm.assert_series_equal(result, ts) + + +def test_getitem_setitem_periodindex(): + N = 50 + rng = period_range("1/1/1990", periods=N, freq="h") + ts = Series(np.random.default_rng(2).standard_normal(N), index=rng) + + result = ts["1990-01-01 04"] + expected = ts.iloc[4] + assert result == expected + + result = ts.copy() + result["1990-01-01 04"] = 0 + result["1990-01-01 04"] = ts.iloc[4] + tm.assert_series_equal(result, ts) + + result = ts["1990-01-01 04":"1990-01-01 07"] + expected = ts[4:8] + tm.assert_series_equal(result, expected) + + result = ts.copy() + result["1990-01-01 04":"1990-01-01 07"] = 0 + result["1990-01-01 04":"1990-01-01 07"] = ts[4:8] + tm.assert_series_equal(result, ts) + + lb = "1990-01-01 04" + rb = "1990-01-01 07" + result = ts[(ts.index >= lb) & (ts.index <= rb)] + expected = ts[4:8] + tm.assert_series_equal(result, expected) + + # GH 2782 + result = ts[ts.index[4]] + expected = ts.iloc[4] + assert result == expected + + result = ts[ts.index[4:8]] + expected = ts[4:8] + tm.assert_series_equal(result, expected) + + result = ts.copy() + result[ts.index[4:8]] = 0 + result.iloc[4:8] = ts.iloc[4:8] + tm.assert_series_equal(result, ts) + + +def test_datetime_indexing(): + index = date_range("1/1/2000", "1/7/2000") + index = index.repeat(3) + + s = Series(len(index), index=index) + stamp = Timestamp("1/8/2000") + + with pytest.raises(KeyError, match=re.escape(repr(stamp))): + s[stamp] + s[stamp] = 0 + assert s[stamp] == 0 + + # not monotonic + s = Series(len(index), index=index) + s = s[::-1] + + with pytest.raises(KeyError, match=re.escape(repr(stamp))): + s[stamp] + s[stamp] = 0 + assert s[stamp] == 0 + + +# test duplicates in time series + + +def test_indexing_with_duplicate_datetimeindex( + rand_series_with_duplicate_datetimeindex, +): + ts = rand_series_with_duplicate_datetimeindex + + uniques = ts.index.unique() + for date in uniques: + result = ts[date] + + mask = ts.index == date + total = (ts.index == date).sum() + expected = ts[mask] + if total > 1: + tm.assert_series_equal(result, expected) + else: + tm.assert_almost_equal(result, expected.iloc[0]) + + cp = ts.copy() + cp[date] = 0 + expected = Series(np.where(mask, 0, ts), index=ts.index) + tm.assert_series_equal(cp, expected) + + key = datetime(2000, 1, 6) + with pytest.raises(KeyError, match=re.escape(repr(key))): + ts[key] + + # new index + ts[datetime(2000, 1, 6)] = 0 + assert ts[datetime(2000, 1, 6)] == 0 + + +def test_loc_getitem_over_size_cutoff(monkeypatch): + # #1821 + + monkeypatch.setattr(libindex, "_SIZE_CUTOFF", 1000) + + # create large list of non periodic datetime + dates = [] + sec = timedelta(seconds=1) + half_sec = timedelta(microseconds=500000) + d = datetime(2011, 12, 5, 20, 30) + n = 1100 + for i in range(n): + dates.append(d) + dates.append(d + sec) + dates.append(d + sec + half_sec) + dates.append(d + sec + sec + half_sec) + d += 3 * sec + + # duplicate some values in the list + duplicate_positions = np.random.default_rng(2).integers(0, len(dates) - 1, 20) + for p in duplicate_positions: + dates[p + 1] = dates[p] + + df = DataFrame( + np.random.default_rng(2).standard_normal((len(dates), 4)), + index=dates, + columns=list("ABCD"), + ) + + pos = n * 3 + timestamp = df.index[pos] + assert timestamp in df.index + + # it works! + df.loc[timestamp] + assert len(df.loc[[timestamp]]) > 0 + + +def test_indexing_over_size_cutoff_period_index(monkeypatch): + # GH 27136 + + monkeypatch.setattr(libindex, "_SIZE_CUTOFF", 1000) + + n = 1100 + idx = period_range("1/1/2000", freq="min", periods=n) + assert idx._engine.over_size_threshold + + s = Series(np.random.default_rng(2).standard_normal(len(idx)), index=idx) + + pos = n - 1 + timestamp = idx[pos] + assert timestamp in s.index + + # it works! + s[timestamp] + assert len(s.loc[[timestamp]]) > 0 + + +def test_indexing_unordered(): + # GH 2437 + rng = date_range(start="2011-01-01", end="2011-01-15") + ts = Series(np.random.default_rng(2).random(len(rng)), index=rng) + ts2 = pd.concat([ts[0:4], ts[-4:], ts[4:-4]]) + + for t in ts.index: + expected = ts[t] + result = ts2[t] + assert expected == result + + # GH 3448 (ranges) + def compare(slobj): + result = ts2[slobj].copy() + result = result.sort_index() + expected = ts[slobj] + expected.index = expected.index._with_freq(None) + tm.assert_series_equal(result, expected) + + for key in [ + slice("2011-01-01", "2011-01-15"), + slice("2010-12-30", "2011-01-15"), + slice("2011-01-01", "2011-01-16"), + # partial ranges + slice("2011-01-01", "2011-01-6"), + slice("2011-01-06", "2011-01-8"), + slice("2011-01-06", "2011-01-12"), + ]: + with pytest.raises( + KeyError, match="Value based partial slicing on non-monotonic" + ): + compare(key) + + # single values + result = ts2["2011"].sort_index() + expected = ts["2011"] + expected.index = expected.index._with_freq(None) + tm.assert_series_equal(result, expected) + + +def test_indexing_unordered2(): + # diff freq + rng = date_range(datetime(2005, 1, 1), periods=20, freq="ME") + ts = Series(np.arange(len(rng)), index=rng) + ts = ts.take(np.random.default_rng(2).permutation(20)) + + result = ts["2005"] + for t in result.index: + assert t.year == 2005 + + +def test_indexing(): + idx = date_range("2001-1-1", periods=20, freq="ME") + ts = Series(np.random.default_rng(2).random(len(idx)), index=idx) + + # getting + + # GH 3070, make sure semantics work on Series/Frame + result = ts["2001"] + tm.assert_series_equal(result, ts.iloc[:12]) + + df = DataFrame({"A": ts.copy()}) + + # GH#36179 pre-2.0 df["2001"] operated as slicing on rows. in 2.0 it behaves + # like any other key, so raises + with pytest.raises(KeyError, match="2001"): + df["2001"] + + # setting + ts = Series(np.random.default_rng(2).random(len(idx)), index=idx) + expected = ts.copy() + expected.iloc[:12] = 1 + ts["2001"] = 1 + tm.assert_series_equal(ts, expected) + + expected = df.copy() + expected.iloc[:12, 0] = 1 + df.loc["2001", "A"] = 1 + tm.assert_frame_equal(df, expected) + + +def test_getitem_str_month_with_datetimeindex(): + # GH3546 (not including times on the last day) + idx = date_range(start="2013-05-31 00:00", end="2013-05-31 23:00", freq="h") + ts = Series(range(len(idx)), index=idx) + expected = ts["2013-05"] + tm.assert_series_equal(expected, ts) + + idx = date_range(start="2013-05-31 00:00", end="2013-05-31 23:59", freq="s") + ts = Series(range(len(idx)), index=idx) + expected = ts["2013-05"] + tm.assert_series_equal(expected, ts) + + +def test_getitem_str_year_with_datetimeindex(): + idx = [ + Timestamp("2013-05-31 00:00"), + Timestamp(datetime(2013, 5, 31, 23, 59, 59, 999999)), + ] + ts = Series(range(len(idx)), index=idx) + expected = ts["2013"] + tm.assert_series_equal(expected, ts) + + +def test_getitem_str_second_with_datetimeindex(): + # GH14826, indexing with a seconds resolution string / datetime object + df = DataFrame( + np.random.default_rng(2).random((5, 5)), + columns=["open", "high", "low", "close", "volume"], + index=date_range("2012-01-02 18:01:00", periods=5, tz="US/Central", freq="s"), + ) + + # this is a single date, so will raise + with pytest.raises(KeyError, match=r"^'2012-01-02 18:01:02'$"): + df["2012-01-02 18:01:02"] + + msg = r"Timestamp\('2012-01-02 18:01:02-0600', tz='US/Central'\)" + with pytest.raises(KeyError, match=msg): + df[df.index[2]] + + +def test_compare_datetime_with_all_none(): + # GH#54870 + ser = Series(["2020-01-01", "2020-01-02"], dtype="datetime64[ns]") + ser2 = Series([None, None]) + result = ser > ser2 + expected = Series([False, False]) + tm.assert_series_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_delitem.py b/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_delitem.py new file mode 100644 index 0000000000000000000000000000000000000000..3d1082c3d040b95063d10c7160154b62dc1c84f6 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_delitem.py @@ -0,0 +1,70 @@ +import pytest + +from pandas import ( + Index, + Series, + date_range, +) +import pandas._testing as tm + + +class TestSeriesDelItem: + def test_delitem(self): + # GH#5542 + # should delete the item inplace + s = Series(range(5)) + del s[0] + + expected = Series(range(1, 5), index=range(1, 5)) + tm.assert_series_equal(s, expected) + + del s[1] + expected = Series(range(2, 5), index=range(2, 5)) + tm.assert_series_equal(s, expected) + + # only 1 left, del, add, del + s = Series(1) + del s[0] + tm.assert_series_equal(s, Series(dtype="int64", index=Index([], dtype="int64"))) + s[0] = 1 + tm.assert_series_equal(s, Series(1)) + del s[0] + tm.assert_series_equal(s, Series(dtype="int64", index=Index([], dtype="int64"))) + + def test_delitem_object_index(self, using_infer_string): + # Index(dtype=object) + dtype = "string[pyarrow_numpy]" if using_infer_string else object + s = Series(1, index=Index(["a"], dtype=dtype)) + del s["a"] + tm.assert_series_equal(s, Series(dtype="int64", index=Index([], dtype=dtype))) + s["a"] = 1 + tm.assert_series_equal(s, Series(1, index=Index(["a"], dtype=dtype))) + del s["a"] + tm.assert_series_equal(s, Series(dtype="int64", index=Index([], dtype=dtype))) + + def test_delitem_missing_key(self): + # empty + s = Series(dtype=object) + + with pytest.raises(KeyError, match=r"^0$"): + del s[0] + + def test_delitem_extension_dtype(self): + # GH#40386 + # DatetimeTZDtype + dti = date_range("2016-01-01", periods=3, tz="US/Pacific") + ser = Series(dti) + + expected = ser[[0, 2]] + del ser[1] + assert ser.dtype == dti.dtype + tm.assert_series_equal(ser, expected) + + # PeriodDtype + pi = dti.tz_localize(None).to_period("D") + ser = Series(pi) + + expected = ser[:2] + del ser[2] + assert ser.dtype == pi.dtype + tm.assert_series_equal(ser, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_get.py b/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_get.py new file mode 100644 index 0000000000000000000000000000000000000000..1f3711ad919036a779c5357e3e6ae921bb795458 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_get.py @@ -0,0 +1,238 @@ +import numpy as np +import pytest + +import pandas as pd +from pandas import ( + DatetimeIndex, + Index, + Series, + date_range, +) +import pandas._testing as tm + + +def test_get(): + # GH 6383 + s = Series( + np.array( + [ + 43, + 48, + 60, + 48, + 50, + 51, + 50, + 45, + 57, + 48, + 56, + 45, + 51, + 39, + 55, + 43, + 54, + 52, + 51, + 54, + ] + ) + ) + + result = s.get(25, 0) + expected = 0 + assert result == expected + + s = Series( + np.array( + [ + 43, + 48, + 60, + 48, + 50, + 51, + 50, + 45, + 57, + 48, + 56, + 45, + 51, + 39, + 55, + 43, + 54, + 52, + 51, + 54, + ] + ), + index=Index( + [ + 25.0, + 36.0, + 49.0, + 64.0, + 81.0, + 100.0, + 121.0, + 144.0, + 169.0, + 196.0, + 1225.0, + 1296.0, + 1369.0, + 1444.0, + 1521.0, + 1600.0, + 1681.0, + 1764.0, + 1849.0, + 1936.0, + ], + dtype=np.float64, + ), + ) + + result = s.get(25, 0) + expected = 43 + assert result == expected + + # GH 7407 + # with a boolean accessor + df = pd.DataFrame({"i": [0] * 3, "b": [False] * 3}) + vc = df.i.value_counts() + result = vc.get(99, default="Missing") + assert result == "Missing" + + vc = df.b.value_counts() + result = vc.get(False, default="Missing") + assert result == 3 + + result = vc.get(True, default="Missing") + assert result == "Missing" + + +def test_get_nan(float_numpy_dtype): + # GH 8569 + s = Index(range(10), dtype=float_numpy_dtype).to_series() + assert s.get(np.nan) is None + assert s.get(np.nan, default="Missing") == "Missing" + + +def test_get_nan_multiple(float_numpy_dtype): + # GH 8569 + # ensure that fixing "test_get_nan" above hasn't broken get + # with multiple elements + s = Index(range(10), dtype=float_numpy_dtype).to_series() + + idx = [2, 30] + assert s.get(idx) is None + + idx = [2, np.nan] + assert s.get(idx) is None + + # GH 17295 - all missing keys + idx = [20, 30] + assert s.get(idx) is None + + idx = [np.nan, np.nan] + assert s.get(idx) is None + + +def test_get_with_default(): + # GH#7725 + d0 = ["a", "b", "c", "d"] + d1 = np.arange(4, dtype="int64") + + for data, index in ((d0, d1), (d1, d0)): + s = Series(data, index=index) + for i, d in zip(index, data): + assert s.get(i) == d + assert s.get(i, d) == d + assert s.get(i, "z") == d + + assert s.get("e", "z") == "z" + assert s.get("e", "e") == "e" + + msg = "Series.__getitem__ treating keys as positions is deprecated" + warn = None + if index is d0: + warn = FutureWarning + with tm.assert_produces_warning(warn, match=msg): + assert s.get(10, "z") == "z" + assert s.get(10, 10) == 10 + + +@pytest.mark.parametrize( + "arr", + [ + np.random.default_rng(2).standard_normal(10), + DatetimeIndex(date_range("2020-01-01", periods=10), name="a").tz_localize( + tz="US/Eastern" + ), + ], +) +def test_get_with_ea(arr): + # GH#21260 + ser = Series(arr, index=[2 * i for i in range(len(arr))]) + assert ser.get(4) == ser.iloc[2] + + result = ser.get([4, 6]) + expected = ser.iloc[[2, 3]] + tm.assert_series_equal(result, expected) + + result = ser.get(slice(2)) + expected = ser.iloc[[0, 1]] + tm.assert_series_equal(result, expected) + + assert ser.get(-1) is None + assert ser.get(ser.index.max() + 1) is None + + ser = Series(arr[:6], index=list("abcdef")) + assert ser.get("c") == ser.iloc[2] + + result = ser.get(slice("b", "d")) + expected = ser.iloc[[1, 2, 3]] + tm.assert_series_equal(result, expected) + + result = ser.get("Z") + assert result is None + + msg = "Series.__getitem__ treating keys as positions is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + assert ser.get(4) == ser.iloc[4] + with tm.assert_produces_warning(FutureWarning, match=msg): + assert ser.get(-1) == ser.iloc[-1] + with tm.assert_produces_warning(FutureWarning, match=msg): + assert ser.get(len(ser)) is None + + # GH#21257 + ser = Series(arr) + ser2 = ser[::2] + assert ser2.get(1) is None + + +def test_getitem_get(string_series, object_series): + msg = "Series.__getitem__ treating keys as positions is deprecated" + + for obj in [string_series, object_series]: + idx = obj.index[5] + + assert obj[idx] == obj.get(idx) + assert obj[idx] == obj.iloc[5] + + with tm.assert_produces_warning(FutureWarning, match=msg): + assert string_series.get(-1) == string_series.get(string_series.index[-1]) + assert string_series.iloc[5] == string_series.get(string_series.index[5]) + + +def test_get_none(): + # GH#5652 + s1 = Series(dtype=object) + s2 = Series(dtype=object, index=list("abc")) + for s in [s1, s2]: + result = s.get(None) + assert result is None diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_getitem.py b/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_getitem.py new file mode 100644 index 0000000000000000000000000000000000000000..596a225c288b890461d4ea5d03bef6f6eb1bc04b --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_getitem.py @@ -0,0 +1,735 @@ +""" +Series.__getitem__ test classes are organized by the type of key passed. +""" +from datetime import ( + date, + datetime, + time, +) + +import numpy as np +import pytest + +from pandas._libs.tslibs import ( + conversion, + timezones, +) + +from pandas.core.dtypes.common import is_scalar + +import pandas as pd +from pandas import ( + Categorical, + DataFrame, + DatetimeIndex, + Index, + Series, + Timestamp, + date_range, + period_range, + timedelta_range, +) +import pandas._testing as tm +from pandas.core.indexing import IndexingError + +from pandas.tseries.offsets import BDay + + +class TestSeriesGetitemScalars: + def test_getitem_object_index_float_string(self): + # GH#17286 + ser = Series([1] * 4, index=Index(["a", "b", "c", 1.0])) + assert ser["a"] == 1 + assert ser[1.0] == 1 + + def test_getitem_float_keys_tuple_values(self): + # see GH#13509 + + # unique Index + ser = Series([(1, 1), (2, 2), (3, 3)], index=[0.0, 0.1, 0.2], name="foo") + result = ser[0.0] + assert result == (1, 1) + + # non-unique Index + expected = Series([(1, 1), (2, 2)], index=[0.0, 0.0], name="foo") + ser = Series([(1, 1), (2, 2), (3, 3)], index=[0.0, 0.0, 0.2], name="foo") + + result = ser[0.0] + tm.assert_series_equal(result, expected) + + def test_getitem_unrecognized_scalar(self): + # GH#32684 a scalar key that is not recognized by lib.is_scalar + + # a series that might be produced via `frame.dtypes` + ser = Series([1, 2], index=[np.dtype("O"), np.dtype("i8")]) + + key = ser.index[1] + + result = ser[key] + assert result == 2 + + def test_getitem_negative_out_of_bounds(self): + ser = Series(["a"] * 10, index=["a"] * 10) + + msg = "index -11 is out of bounds for axis 0 with size 10|index out of bounds" + warn_msg = "Series.__getitem__ treating keys as positions is deprecated" + with pytest.raises(IndexError, match=msg): + with tm.assert_produces_warning(FutureWarning, match=warn_msg): + ser[-11] + + def test_getitem_out_of_bounds_indexerror(self, datetime_series): + # don't segfault, GH#495 + msg = r"index \d+ is out of bounds for axis 0 with size \d+" + warn_msg = "Series.__getitem__ treating keys as positions is deprecated" + with pytest.raises(IndexError, match=msg): + with tm.assert_produces_warning(FutureWarning, match=warn_msg): + datetime_series[len(datetime_series)] + + def test_getitem_out_of_bounds_empty_rangeindex_keyerror(self): + # GH#917 + # With a RangeIndex, an int key gives a KeyError + ser = Series([], dtype=object) + with pytest.raises(KeyError, match="-1"): + ser[-1] + + def test_getitem_keyerror_with_integer_index(self, any_int_numpy_dtype): + dtype = any_int_numpy_dtype + ser = Series( + np.random.default_rng(2).standard_normal(6), + index=Index([0, 0, 1, 1, 2, 2], dtype=dtype), + ) + + with pytest.raises(KeyError, match=r"^5$"): + ser[5] + + with pytest.raises(KeyError, match=r"^'c'$"): + ser["c"] + + # not monotonic + ser = Series( + np.random.default_rng(2).standard_normal(6), index=[2, 2, 0, 0, 1, 1] + ) + + with pytest.raises(KeyError, match=r"^5$"): + ser[5] + + with pytest.raises(KeyError, match=r"^'c'$"): + ser["c"] + + def test_getitem_int64(self, datetime_series): + idx = np.int64(5) + msg = "Series.__getitem__ treating keys as positions is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + res = datetime_series[idx] + assert res == datetime_series.iloc[5] + + def test_getitem_full_range(self): + # github.com/pandas-dev/pandas/commit/4f433773141d2eb384325714a2776bcc5b2e20f7 + ser = Series(range(5), index=list(range(5))) + result = ser[list(range(5))] + tm.assert_series_equal(result, ser) + + # ------------------------------------------------------------------ + # Series with DatetimeIndex + + @pytest.mark.parametrize("tzstr", ["Europe/Berlin", "dateutil/Europe/Berlin"]) + def test_getitem_pydatetime_tz(self, tzstr): + tz = timezones.maybe_get_tz(tzstr) + + index = date_range( + start="2012-12-24 16:00", end="2012-12-24 18:00", freq="h", tz=tzstr + ) + ts = Series(index=index, data=index.hour) + time_pandas = Timestamp("2012-12-24 17:00", tz=tzstr) + + dt = datetime(2012, 12, 24, 17, 0) + time_datetime = conversion.localize_pydatetime(dt, tz) + assert ts[time_pandas] == ts[time_datetime] + + @pytest.mark.parametrize("tz", ["US/Eastern", "dateutil/US/Eastern"]) + def test_string_index_alias_tz_aware(self, tz): + rng = date_range("1/1/2000", periods=10, tz=tz) + ser = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng) + + result = ser["1/3/2000"] + tm.assert_almost_equal(result, ser.iloc[2]) + + def test_getitem_time_object(self): + rng = date_range("1/1/2000", "1/5/2000", freq="5min") + ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng) + + mask = (rng.hour == 9) & (rng.minute == 30) + result = ts[time(9, 30)] + expected = ts[mask] + result.index = result.index._with_freq(None) + tm.assert_series_equal(result, expected) + + # ------------------------------------------------------------------ + # Series with CategoricalIndex + + def test_getitem_scalar_categorical_index(self): + cats = Categorical([Timestamp("12-31-1999"), Timestamp("12-31-2000")]) + + ser = Series([1, 2], index=cats) + + expected = ser.iloc[0] + result = ser[cats[0]] + assert result == expected + + def test_getitem_numeric_categorical_listlike_matches_scalar(self): + # GH#15470 + ser = Series(["a", "b", "c"], index=pd.CategoricalIndex([2, 1, 0])) + + # 0 is treated as a label + assert ser[0] == "c" + + # the listlike analogue should also be treated as labels + res = ser[[0]] + expected = ser.iloc[-1:] + tm.assert_series_equal(res, expected) + + res2 = ser[[0, 1, 2]] + tm.assert_series_equal(res2, ser.iloc[::-1]) + + def test_getitem_integer_categorical_not_positional(self): + # GH#14865 + ser = Series(["a", "b", "c"], index=Index([1, 2, 3], dtype="category")) + assert ser.get(3) == "c" + assert ser[3] == "c" + + def test_getitem_str_with_timedeltaindex(self): + rng = timedelta_range("1 day 10:11:12", freq="h", periods=500) + ser = Series(np.arange(len(rng)), index=rng) + + key = "6 days, 23:11:12" + indexer = rng.get_loc(key) + assert indexer == 133 + + result = ser[key] + assert result == ser.iloc[133] + + msg = r"^Timedelta\('50 days 00:00:00'\)$" + with pytest.raises(KeyError, match=msg): + rng.get_loc("50 days") + with pytest.raises(KeyError, match=msg): + ser["50 days"] + + def test_getitem_bool_index_positional(self): + # GH#48653 + ser = Series({True: 1, False: 0}) + msg = "Series.__getitem__ treating keys as positions is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + result = ser[0] + assert result == 1 + + +class TestSeriesGetitemSlices: + def test_getitem_partial_str_slice_with_datetimeindex(self): + # GH#34860 + arr = date_range("1/1/2008", "1/1/2009") + ser = arr.to_series() + result = ser["2008"] + + rng = date_range(start="2008-01-01", end="2008-12-31") + expected = Series(rng, index=rng) + + tm.assert_series_equal(result, expected) + + def test_getitem_slice_strings_with_datetimeindex(self): + idx = DatetimeIndex( + ["1/1/2000", "1/2/2000", "1/2/2000", "1/3/2000", "1/4/2000"] + ) + + ts = Series(np.random.default_rng(2).standard_normal(len(idx)), index=idx) + + result = ts["1/2/2000":] + expected = ts[1:] + tm.assert_series_equal(result, expected) + + result = ts["1/2/2000":"1/3/2000"] + expected = ts[1:4] + tm.assert_series_equal(result, expected) + + def test_getitem_partial_str_slice_with_timedeltaindex(self): + rng = timedelta_range("1 day 10:11:12", freq="h", periods=500) + ser = Series(np.arange(len(rng)), index=rng) + + result = ser["5 day":"6 day"] + expected = ser.iloc[86:134] + tm.assert_series_equal(result, expected) + + result = ser["5 day":] + expected = ser.iloc[86:] + tm.assert_series_equal(result, expected) + + result = ser[:"6 day"] + expected = ser.iloc[:134] + tm.assert_series_equal(result, expected) + + def test_getitem_partial_str_slice_high_reso_with_timedeltaindex(self): + # higher reso + rng = timedelta_range("1 day 10:11:12", freq="us", periods=2000) + ser = Series(np.arange(len(rng)), index=rng) + + result = ser["1 day 10:11:12":] + expected = ser.iloc[0:] + tm.assert_series_equal(result, expected) + + result = ser["1 day 10:11:12.001":] + expected = ser.iloc[1000:] + tm.assert_series_equal(result, expected) + + result = ser["1 days, 10:11:12.001001"] + assert result == ser.iloc[1001] + + def test_getitem_slice_2d(self, datetime_series): + # GH#30588 multi-dimensional indexing deprecated + with pytest.raises(ValueError, match="Multi-dimensional indexing"): + datetime_series[:, np.newaxis] + + def test_getitem_median_slice_bug(self): + index = date_range("20090415", "20090519", freq="2B") + ser = Series(np.random.default_rng(2).standard_normal(13), index=index) + + indexer = [slice(6, 7, None)] + msg = "Indexing with a single-item list" + with pytest.raises(ValueError, match=msg): + # GH#31299 + ser[indexer] + # but we're OK with a single-element tuple + result = ser[(indexer[0],)] + expected = ser[indexer[0]] + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "slc, positions", + [ + [slice(date(2018, 1, 1), None), [0, 1, 2]], + [slice(date(2019, 1, 2), None), [2]], + [slice(date(2020, 1, 1), None), []], + [slice(None, date(2020, 1, 1)), [0, 1, 2]], + [slice(None, date(2019, 1, 1)), [0]], + ], + ) + def test_getitem_slice_date(self, slc, positions): + # https://github.com/pandas-dev/pandas/issues/31501 + ser = Series( + [0, 1, 2], + DatetimeIndex(["2019-01-01", "2019-01-01T06:00:00", "2019-01-02"]), + ) + result = ser[slc] + expected = ser.take(positions) + tm.assert_series_equal(result, expected) + + def test_getitem_slice_float_raises(self, datetime_series): + msg = ( + "cannot do slice indexing on DatetimeIndex with these indexers " + r"\[{key}\] of type float" + ) + with pytest.raises(TypeError, match=msg.format(key=r"4\.0")): + datetime_series[4.0:10.0] + + with pytest.raises(TypeError, match=msg.format(key=r"4\.5")): + datetime_series[4.5:10.0] + + def test_getitem_slice_bug(self): + ser = Series(range(10), index=list(range(10))) + result = ser[-12:] + tm.assert_series_equal(result, ser) + + result = ser[-7:] + tm.assert_series_equal(result, ser[3:]) + + result = ser[:-12] + tm.assert_series_equal(result, ser[:0]) + + def test_getitem_slice_integers(self): + ser = Series( + np.random.default_rng(2).standard_normal(8), + index=[2, 4, 6, 8, 10, 12, 14, 16], + ) + + result = ser[:4] + expected = Series(ser.values[:4], index=[2, 4, 6, 8]) + tm.assert_series_equal(result, expected) + + +class TestSeriesGetitemListLike: + @pytest.mark.parametrize("box", [list, np.array, Index, Series]) + def test_getitem_no_matches(self, box): + # GH#33462 we expect the same behavior for list/ndarray/Index/Series + ser = Series(["A", "B"]) + + key = Series(["C"], dtype=object) + key = box(key) + + msg = ( + r"None of \[Index\(\['C'\], dtype='object|string'\)\] are in the \[index\]" + ) + with pytest.raises(KeyError, match=msg): + ser[key] + + def test_getitem_intlist_intindex_periodvalues(self): + ser = Series(period_range("2000-01-01", periods=10, freq="D")) + + result = ser[[2, 4]] + exp = Series( + [pd.Period("2000-01-03", freq="D"), pd.Period("2000-01-05", freq="D")], + index=[2, 4], + dtype="Period[D]", + ) + tm.assert_series_equal(result, exp) + assert result.dtype == "Period[D]" + + @pytest.mark.parametrize("box", [list, np.array, Index]) + def test_getitem_intlist_intervalindex_non_int(self, box): + # GH#33404 fall back to positional since ints are unambiguous + dti = date_range("2000-01-03", periods=3)._with_freq(None) + ii = pd.IntervalIndex.from_breaks(dti) + ser = Series(range(len(ii)), index=ii) + + expected = ser.iloc[:1] + key = box([0]) + msg = "Series.__getitem__ treating keys as positions is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + result = ser[key] + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("box", [list, np.array, Index]) + @pytest.mark.parametrize("dtype", [np.int64, np.float64, np.uint64]) + def test_getitem_intlist_multiindex_numeric_level(self, dtype, box): + # GH#33404 do _not_ fall back to positional since ints are ambiguous + idx = Index(range(4)).astype(dtype) + dti = date_range("2000-01-03", periods=3) + mi = pd.MultiIndex.from_product([idx, dti]) + ser = Series(range(len(mi))[::-1], index=mi) + + key = box([5]) + with pytest.raises(KeyError, match="5"): + ser[key] + + def test_getitem_uint_array_key(self, any_unsigned_int_numpy_dtype): + # GH #37218 + ser = Series([1, 2, 3]) + key = np.array([4], dtype=any_unsigned_int_numpy_dtype) + + with pytest.raises(KeyError, match="4"): + ser[key] + with pytest.raises(KeyError, match="4"): + ser.loc[key] + + +class TestGetitemBooleanMask: + def test_getitem_boolean(self, string_series): + ser = string_series + mask = ser > ser.median() + + # passing list is OK + result = ser[list(mask)] + expected = ser[mask] + tm.assert_series_equal(result, expected) + tm.assert_index_equal(result.index, ser.index[mask]) + + def test_getitem_boolean_empty(self): + ser = Series([], dtype=np.int64) + ser.index.name = "index_name" + ser = ser[ser.isna()] + assert ser.index.name == "index_name" + assert ser.dtype == np.int64 + + # GH#5877 + # indexing with empty series + ser = Series(["A", "B"], dtype=object) + expected = Series(dtype=object, index=Index([], dtype="int64")) + result = ser[Series([], dtype=object)] + tm.assert_series_equal(result, expected) + + # invalid because of the boolean indexer + # that's empty or not-aligned + msg = ( + r"Unalignable boolean Series provided as indexer \(index of " + r"the boolean Series and of the indexed object do not match" + ) + with pytest.raises(IndexingError, match=msg): + ser[Series([], dtype=bool)] + + with pytest.raises(IndexingError, match=msg): + ser[Series([True], dtype=bool)] + + def test_getitem_boolean_object(self, string_series): + # using column from DataFrame + + ser = string_series + mask = ser > ser.median() + omask = mask.astype(object) + + # getitem + result = ser[omask] + expected = ser[mask] + tm.assert_series_equal(result, expected) + + # setitem + s2 = ser.copy() + cop = ser.copy() + cop[omask] = 5 + s2[mask] = 5 + tm.assert_series_equal(cop, s2) + + # nans raise exception + omask[5:10] = np.nan + msg = "Cannot mask with non-boolean array containing NA / NaN values" + with pytest.raises(ValueError, match=msg): + ser[omask] + with pytest.raises(ValueError, match=msg): + ser[omask] = 5 + + def test_getitem_boolean_dt64_copies(self): + # GH#36210 + dti = date_range("2016-01-01", periods=4, tz="US/Pacific") + key = np.array([True, True, False, False]) + + ser = Series(dti._data) + + res = ser[key] + assert res._values._ndarray.base is None + + # compare with numeric case for reference + ser2 = Series(range(4)) + res2 = ser2[key] + assert res2._values.base is None + + def test_getitem_boolean_corner(self, datetime_series): + ts = datetime_series + mask_shifted = ts.shift(1, freq=BDay()) > ts.median() + + msg = ( + r"Unalignable boolean Series provided as indexer \(index of " + r"the boolean Series and of the indexed object do not match" + ) + with pytest.raises(IndexingError, match=msg): + ts[mask_shifted] + + with pytest.raises(IndexingError, match=msg): + ts.loc[mask_shifted] + + def test_getitem_boolean_different_order(self, string_series): + ordered = string_series.sort_values() + + sel = string_series[ordered > 0] + exp = string_series[string_series > 0] + tm.assert_series_equal(sel, exp) + + def test_getitem_boolean_contiguous_preserve_freq(self): + rng = date_range("1/1/2000", "3/1/2000", freq="B") + + mask = np.zeros(len(rng), dtype=bool) + mask[10:20] = True + + masked = rng[mask] + expected = rng[10:20] + assert expected.freq == rng.freq + tm.assert_index_equal(masked, expected) + + mask[22] = True + masked = rng[mask] + assert masked.freq is None + + +class TestGetitemCallable: + def test_getitem_callable(self): + # GH#12533 + ser = Series(4, index=list("ABCD")) + result = ser[lambda x: "A"] + assert result == ser.loc["A"] + + result = ser[lambda x: ["A", "B"]] + expected = ser.loc[["A", "B"]] + tm.assert_series_equal(result, expected) + + result = ser[lambda x: [True, False, True, True]] + expected = ser.iloc[[0, 2, 3]] + tm.assert_series_equal(result, expected) + + +def test_getitem_generator(string_series): + gen = (x > 0 for x in string_series) + result = string_series[gen] + result2 = string_series[iter(string_series > 0)] + expected = string_series[string_series > 0] + tm.assert_series_equal(result, expected) + tm.assert_series_equal(result2, expected) + + +@pytest.mark.parametrize( + "series", + [ + Series([0, 1]), + Series(date_range("2012-01-01", periods=2)), + Series(date_range("2012-01-01", periods=2, tz="CET")), + ], +) +def test_getitem_ndim_deprecated(series): + with pytest.raises(ValueError, match="Multi-dimensional indexing"): + series[:, None] + + +def test_getitem_multilevel_scalar_slice_not_implemented( + multiindex_year_month_day_dataframe_random_data, +): + # not implementing this for now + df = multiindex_year_month_day_dataframe_random_data + ser = df["A"] + + msg = r"\(2000, slice\(3, 4, None\)\)" + with pytest.raises(TypeError, match=msg): + ser[2000, 3:4] + + +def test_getitem_dataframe_raises(): + rng = list(range(10)) + ser = Series(10, index=rng) + df = DataFrame(rng, index=rng) + msg = ( + "Indexing a Series with DataFrame is not supported, " + "use the appropriate DataFrame column" + ) + with pytest.raises(TypeError, match=msg): + ser[df > 5] + + +def test_getitem_assignment_series_alignment(): + # https://github.com/pandas-dev/pandas/issues/37427 + # with getitem, when assigning with a Series, it is not first aligned + ser = Series(range(10)) + idx = np.array([2, 4, 9]) + ser[idx] = Series([10, 11, 12]) + expected = Series([0, 1, 10, 3, 11, 5, 6, 7, 8, 12]) + tm.assert_series_equal(ser, expected) + + +def test_getitem_duplicate_index_mistyped_key_raises_keyerror(): + # GH#29189 float_index.get_loc(None) should raise KeyError, not TypeError + ser = Series([2, 5, 6, 8], index=[2.0, 4.0, 4.0, 5.0]) + with pytest.raises(KeyError, match="None"): + ser[None] + + with pytest.raises(KeyError, match="None"): + ser.index.get_loc(None) + + with pytest.raises(KeyError, match="None"): + ser.index._engine.get_loc(None) + + +def test_getitem_1tuple_slice_without_multiindex(): + ser = Series(range(5)) + key = (slice(3),) + + result = ser[key] + expected = ser[key[0]] + tm.assert_series_equal(result, expected) + + +def test_getitem_preserve_name(datetime_series): + result = datetime_series[datetime_series > 0] + assert result.name == datetime_series.name + + msg = "Series.__getitem__ treating keys as positions is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + result = datetime_series[[0, 2, 4]] + assert result.name == datetime_series.name + + result = datetime_series[5:10] + assert result.name == datetime_series.name + + +def test_getitem_with_integer_labels(): + # integer indexes, be careful + ser = Series( + np.random.default_rng(2).standard_normal(10), index=list(range(0, 20, 2)) + ) + inds = [0, 2, 5, 7, 8] + arr_inds = np.array([0, 2, 5, 7, 8]) + with pytest.raises(KeyError, match="not in index"): + ser[inds] + + with pytest.raises(KeyError, match="not in index"): + ser[arr_inds] + + +def test_getitem_missing(datetime_series): + # missing + d = datetime_series.index[0] - BDay() + msg = r"Timestamp\('1999-12-31 00:00:00'\)" + with pytest.raises(KeyError, match=msg): + datetime_series[d] + + +def test_getitem_fancy(string_series, object_series): + msg = "Series.__getitem__ treating keys as positions is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + slice1 = string_series[[1, 2, 3]] + slice2 = object_series[[1, 2, 3]] + assert string_series.index[2] == slice1.index[1] + assert object_series.index[2] == slice2.index[1] + assert string_series.iloc[2] == slice1.iloc[1] + assert object_series.iloc[2] == slice2.iloc[1] + + +def test_getitem_box_float64(datetime_series): + msg = "Series.__getitem__ treating keys as positions is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + value = datetime_series[5] + assert isinstance(value, np.float64) + + +def test_getitem_unordered_dup(): + obj = Series(range(5), index=["c", "a", "a", "b", "b"]) + assert is_scalar(obj["c"]) + assert obj["c"] == 0 + + +def test_getitem_dups(): + ser = Series(range(5), index=["A", "A", "B", "C", "C"], dtype=np.int64) + expected = Series([3, 4], index=["C", "C"], dtype=np.int64) + result = ser["C"] + tm.assert_series_equal(result, expected) + + +def test_getitem_categorical_str(): + # GH#31765 + ser = Series(range(5), index=Categorical(["a", "b", "c", "a", "b"])) + result = ser["a"] + expected = ser.iloc[[0, 3]] + tm.assert_series_equal(result, expected) + + +def test_slice_can_reorder_not_uniquely_indexed(): + ser = Series(1, index=["a", "a", "b", "b", "c"]) + ser[::-1] # it works! + + +@pytest.mark.parametrize("index_vals", ["aabcd", "aadcb"]) +def test_duplicated_index_getitem_positional_indexer(index_vals): + # GH 11747 + s = Series(range(5), index=list(index_vals)) + + msg = "Series.__getitem__ treating keys as positions is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + result = s[3] + assert result == 3 + + +class TestGetitemDeprecatedIndexers: + @pytest.mark.parametrize("key", [{1}, {1: 1}]) + def test_getitem_dict_and_set_deprecated(self, key): + # GH#42825 enforced in 2.0 + ser = Series([1, 2, 3]) + with pytest.raises(TypeError, match="as an indexer is not supported"): + ser[key] + + @pytest.mark.parametrize("key", [{1}, {1: 1}]) + def test_setitem_dict_and_set_disallowed(self, key): + # GH#42825 enforced in 2.0 + ser = Series([1, 2, 3]) + with pytest.raises(TypeError, match="as an indexer is not supported"): + ser[key] = 1 diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_indexing.py b/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_indexing.py new file mode 100644 index 0000000000000000000000000000000000000000..f4992b758af74610286c45a386ccbf469a9a0b9d --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_indexing.py @@ -0,0 +1,518 @@ +""" test get/set & misc """ +from datetime import timedelta +import re + +import numpy as np +import pytest + +from pandas.errors import IndexingError + +from pandas import ( + NA, + DataFrame, + Index, + IndexSlice, + MultiIndex, + NaT, + Series, + Timedelta, + Timestamp, + concat, + date_range, + isna, + period_range, + timedelta_range, +) +import pandas._testing as tm + + +def test_basic_indexing(): + s = Series( + np.random.default_rng(2).standard_normal(5), index=["a", "b", "a", "a", "b"] + ) + + warn_msg = "Series.__[sg]etitem__ treating keys as positions is deprecated" + msg = "index 5 is out of bounds for axis 0 with size 5" + with pytest.raises(IndexError, match=msg): + with tm.assert_produces_warning(FutureWarning, match=warn_msg): + s[5] + with pytest.raises(IndexError, match=msg): + with tm.assert_produces_warning(FutureWarning, match=warn_msg): + s[5] = 0 + + with pytest.raises(KeyError, match=r"^'c'$"): + s["c"] + + s = s.sort_index() + + with pytest.raises(IndexError, match=msg): + with tm.assert_produces_warning(FutureWarning, match=warn_msg): + s[5] + msg = r"index 5 is out of bounds for axis (0|1) with size 5|^5$" + with pytest.raises(IndexError, match=msg): + with tm.assert_produces_warning(FutureWarning, match=warn_msg): + s[5] = 0 + + +def test_getitem_numeric_should_not_fallback_to_positional(any_numeric_dtype): + # GH51053 + dtype = any_numeric_dtype + idx = Index([1, 0, 1], dtype=dtype) + ser = Series(range(3), index=idx) + result = ser[1] + expected = Series([0, 2], index=Index([1, 1], dtype=dtype)) + tm.assert_series_equal(result, expected, check_exact=True) + + +def test_setitem_numeric_should_not_fallback_to_positional(any_numeric_dtype): + # GH51053 + dtype = any_numeric_dtype + idx = Index([1, 0, 1], dtype=dtype) + ser = Series(range(3), index=idx) + ser[1] = 10 + expected = Series([10, 1, 10], index=idx) + tm.assert_series_equal(ser, expected, check_exact=True) + + +def test_basic_getitem_with_labels(datetime_series): + indices = datetime_series.index[[5, 10, 15]] + + result = datetime_series[indices] + expected = datetime_series.reindex(indices) + tm.assert_series_equal(result, expected) + + result = datetime_series[indices[0] : indices[2]] + expected = datetime_series.loc[indices[0] : indices[2]] + tm.assert_series_equal(result, expected) + + +def test_basic_getitem_dt64tz_values(): + # GH12089 + # with tz for values + ser = Series( + date_range("2011-01-01", periods=3, tz="US/Eastern"), index=["a", "b", "c"] + ) + expected = Timestamp("2011-01-01", tz="US/Eastern") + result = ser.loc["a"] + assert result == expected + result = ser.iloc[0] + assert result == expected + result = ser["a"] + assert result == expected + + +def test_getitem_setitem_ellipsis(using_copy_on_write, warn_copy_on_write): + s = Series(np.random.default_rng(2).standard_normal(10)) + + result = s[...] + tm.assert_series_equal(result, s) + + with tm.assert_cow_warning(warn_copy_on_write): + s[...] = 5 + if not using_copy_on_write: + assert (result == 5).all() + + +@pytest.mark.parametrize( + "result_1, duplicate_item, expected_1", + [ + [ + Series({1: 12, 2: [1, 2, 2, 3]}), + Series({1: 313}), + Series({1: 12}, dtype=object), + ], + [ + Series({1: [1, 2, 3], 2: [1, 2, 2, 3]}), + Series({1: [1, 2, 3]}), + Series({1: [1, 2, 3]}), + ], + ], +) +def test_getitem_with_duplicates_indices(result_1, duplicate_item, expected_1): + # GH 17610 + result = result_1._append(duplicate_item) + expected = expected_1._append(duplicate_item) + tm.assert_series_equal(result[1], expected) + assert result[2] == result_1[2] + + +def test_getitem_setitem_integers(): + # caused bug without test + s = Series([1, 2, 3], ["a", "b", "c"]) + + assert s.iloc[0] == s["a"] + s.iloc[0] = 5 + tm.assert_almost_equal(s["a"], 5) + + +def test_series_box_timestamp(): + rng = date_range("20090415", "20090519", freq="B") + ser = Series(rng) + assert isinstance(ser[0], Timestamp) + assert isinstance(ser.at[1], Timestamp) + assert isinstance(ser.iat[2], Timestamp) + assert isinstance(ser.loc[3], Timestamp) + assert isinstance(ser.iloc[4], Timestamp) + + ser = Series(rng, index=rng) + msg = "Series.__getitem__ treating keys as positions is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + assert isinstance(ser[0], Timestamp) + assert isinstance(ser.at[rng[1]], Timestamp) + assert isinstance(ser.iat[2], Timestamp) + assert isinstance(ser.loc[rng[3]], Timestamp) + assert isinstance(ser.iloc[4], Timestamp) + + +def test_series_box_timedelta(): + rng = timedelta_range("1 day 1 s", periods=5, freq="h") + ser = Series(rng) + assert isinstance(ser[0], Timedelta) + assert isinstance(ser.at[1], Timedelta) + assert isinstance(ser.iat[2], Timedelta) + assert isinstance(ser.loc[3], Timedelta) + assert isinstance(ser.iloc[4], Timedelta) + + +def test_getitem_ambiguous_keyerror(indexer_sl): + ser = Series(range(10), index=list(range(0, 20, 2))) + with pytest.raises(KeyError, match=r"^1$"): + indexer_sl(ser)[1] + + +def test_getitem_dups_with_missing(indexer_sl): + # breaks reindex, so need to use .loc internally + # GH 4246 + ser = Series([1, 2, 3, 4], ["foo", "bar", "foo", "bah"]) + with pytest.raises(KeyError, match=re.escape("['bam'] not in index")): + indexer_sl(ser)[["foo", "bar", "bah", "bam"]] + + +def test_setitem_ambiguous_keyerror(indexer_sl): + s = Series(range(10), index=list(range(0, 20, 2))) + + # equivalent of an append + s2 = s.copy() + indexer_sl(s2)[1] = 5 + expected = concat([s, Series([5], index=[1])]) + tm.assert_series_equal(s2, expected) + + +def test_setitem(datetime_series): + datetime_series[datetime_series.index[5]] = np.nan + datetime_series.iloc[[1, 2, 17]] = np.nan + datetime_series.iloc[6] = np.nan + assert np.isnan(datetime_series.iloc[6]) + assert np.isnan(datetime_series.iloc[2]) + datetime_series[np.isnan(datetime_series)] = 5 + assert not np.isnan(datetime_series.iloc[2]) + + +def test_setslice(datetime_series): + sl = datetime_series[5:20] + assert len(sl) == len(sl.index) + assert sl.index.is_unique is True + + +def test_basic_getitem_setitem_corner(datetime_series): + # invalid tuples, e.g. td.ts[:, None] vs. td.ts[:, 2] + msg = "key of type tuple not found and not a MultiIndex" + with pytest.raises(KeyError, match=msg): + datetime_series[:, 2] + with pytest.raises(KeyError, match=msg): + datetime_series[:, 2] = 2 + + # weird lists. [slice(0, 5)] raises but not two slices + msg = "Indexing with a single-item list" + with pytest.raises(ValueError, match=msg): + # GH#31299 + datetime_series[[slice(None, 5)]] + + # but we're OK with a single-element tuple + result = datetime_series[(slice(None, 5),)] + expected = datetime_series[:5] + tm.assert_series_equal(result, expected) + + # OK + msg = r"unhashable type(: 'slice')?" + with pytest.raises(TypeError, match=msg): + datetime_series[[5, [None, None]]] + with pytest.raises(TypeError, match=msg): + datetime_series[[5, [None, None]]] = 2 + + +def test_slice(string_series, object_series, using_copy_on_write, warn_copy_on_write): + original = string_series.copy() + numSlice = string_series[10:20] + numSliceEnd = string_series[-10:] + objSlice = object_series[10:20] + + assert string_series.index[9] not in numSlice.index + assert object_series.index[9] not in objSlice.index + + assert len(numSlice) == len(numSlice.index) + assert string_series[numSlice.index[0]] == numSlice[numSlice.index[0]] + + assert numSlice.index[1] == string_series.index[11] + tm.assert_numpy_array_equal(np.array(numSliceEnd), np.array(string_series)[-10:]) + + # Test return view. + sl = string_series[10:20] + with tm.assert_cow_warning(warn_copy_on_write): + sl[:] = 0 + + if using_copy_on_write: + # Doesn't modify parent (CoW) + tm.assert_series_equal(string_series, original) + else: + assert (string_series[10:20] == 0).all() + + +def test_timedelta_assignment(): + # GH 8209 + s = Series([], dtype=object) + s.loc["B"] = timedelta(1) + tm.assert_series_equal(s, Series(Timedelta("1 days"), index=["B"])) + + s = s.reindex(s.index.insert(0, "A")) + tm.assert_series_equal(s, Series([np.nan, Timedelta("1 days")], index=["A", "B"])) + + s.loc["A"] = timedelta(1) + expected = Series(Timedelta("1 days"), index=["A", "B"]) + tm.assert_series_equal(s, expected) + + +def test_underlying_data_conversion(using_copy_on_write): + # GH 4080 + df = DataFrame({c: [1, 2, 3] for c in ["a", "b", "c"]}) + return_value = df.set_index(["a", "b", "c"], inplace=True) + assert return_value is None + s = Series([1], index=[(2, 2, 2)]) + df["val"] = 0 + df_original = df.copy() + df + + if using_copy_on_write: + with tm.raises_chained_assignment_error(): + df["val"].update(s) + expected = df_original + else: + with tm.assert_produces_warning(FutureWarning, match="inplace method"): + df["val"].update(s) + expected = DataFrame( + {"a": [1, 2, 3], "b": [1, 2, 3], "c": [1, 2, 3], "val": [0, 1, 0]} + ) + return_value = expected.set_index(["a", "b", "c"], inplace=True) + assert return_value is None + tm.assert_frame_equal(df, expected) + + +def test_preserve_refs(datetime_series): + seq = datetime_series.iloc[[5, 10, 15]] + seq.iloc[1] = np.nan + assert not np.isnan(datetime_series.iloc[10]) + + +def test_multilevel_preserve_name(lexsorted_two_level_string_multiindex, indexer_sl): + index = lexsorted_two_level_string_multiindex + ser = Series( + np.random.default_rng(2).standard_normal(len(index)), index=index, name="sth" + ) + + result = indexer_sl(ser)["foo"] + assert result.name == ser.name + + +# miscellaneous methods + + +@pytest.mark.parametrize( + "index", + [ + date_range("2014-01-01", periods=20, freq="MS"), + period_range("2014-01", periods=20, freq="M"), + timedelta_range("0", periods=20, freq="h"), + ], +) +def test_slice_with_negative_step(index): + keystr1 = str(index[9]) + keystr2 = str(index[13]) + + ser = Series(np.arange(20), index) + SLC = IndexSlice + + for key in [keystr1, index[9]]: + tm.assert_indexing_slices_equivalent(ser, SLC[key::-1], SLC[9::-1]) + tm.assert_indexing_slices_equivalent(ser, SLC[:key:-1], SLC[:8:-1]) + + for key2 in [keystr2, index[13]]: + tm.assert_indexing_slices_equivalent(ser, SLC[key2:key:-1], SLC[13:8:-1]) + tm.assert_indexing_slices_equivalent(ser, SLC[key:key2:-1], SLC[0:0:-1]) + + +def test_tuple_index(): + # GH 35534 - Selecting values when a Series has an Index of tuples + s = Series([1, 2], index=[("a",), ("b",)]) + assert s[("a",)] == 1 + assert s[("b",)] == 2 + s[("b",)] = 3 + assert s[("b",)] == 3 + + +def test_frozenset_index(): + # GH35747 - Selecting values when a Series has an Index of frozenset + idx0, idx1 = frozenset("a"), frozenset("b") + s = Series([1, 2], index=[idx0, idx1]) + assert s[idx0] == 1 + assert s[idx1] == 2 + s[idx1] = 3 + assert s[idx1] == 3 + + +def test_loc_setitem_all_false_indexer(): + # GH#45778 + ser = Series([1, 2], index=["a", "b"]) + expected = ser.copy() + rhs = Series([6, 7], index=["a", "b"]) + ser.loc[ser > 100] = rhs + tm.assert_series_equal(ser, expected) + + +def test_loc_boolean_indexer_non_matching_index(): + # GH#46551 + ser = Series([1]) + result = ser.loc[Series([NA, False], dtype="boolean")] + expected = Series([], dtype="int64") + tm.assert_series_equal(result, expected) + + +def test_loc_boolean_indexer_miss_matching_index(): + # GH#46551 + ser = Series([1]) + indexer = Series([NA, False], dtype="boolean", index=[1, 2]) + with pytest.raises(IndexingError, match="Unalignable"): + ser.loc[indexer] + + +def test_loc_setitem_nested_data_enlargement(): + # GH#48614 + df = DataFrame({"a": [1]}) + ser = Series({"label": df}) + ser.loc["new_label"] = df + expected = Series({"label": df, "new_label": df}) + tm.assert_series_equal(ser, expected) + + +def test_loc_ea_numeric_index_oob_slice_end(): + # GH#50161 + ser = Series(1, index=Index([0, 1, 2], dtype="Int64")) + result = ser.loc[2:3] + expected = Series(1, index=Index([2], dtype="Int64")) + tm.assert_series_equal(result, expected) + + +def test_getitem_bool_int_key(): + # GH#48653 + ser = Series({True: 1, False: 0}) + with pytest.raises(KeyError, match="0"): + ser.loc[0] + + +@pytest.mark.parametrize("val", [{}, {"b": "x"}]) +@pytest.mark.parametrize("indexer", [[], [False, False], slice(0, -1), np.array([])]) +def test_setitem_empty_indexer(indexer, val): + # GH#45981 + df = DataFrame({"a": [1, 2], **val}) + expected = df.copy() + df.loc[indexer] = 1.5 + tm.assert_frame_equal(df, expected) + + +class TestDeprecatedIndexers: + @pytest.mark.parametrize("key", [{1}, {1: 1}]) + def test_getitem_dict_and_set_deprecated(self, key): + # GH#42825 enforced in 2.0 + ser = Series([1, 2]) + with pytest.raises(TypeError, match="as an indexer is not supported"): + ser.loc[key] + + @pytest.mark.parametrize("key", [{1}, {1: 1}, ({1}, 2), ({1: 1}, 2)]) + def test_getitem_dict_and_set_deprecated_multiindex(self, key): + # GH#42825 enforced in 2.0 + ser = Series([1, 2], index=MultiIndex.from_tuples([(1, 2), (3, 4)])) + with pytest.raises(TypeError, match="as an indexer is not supported"): + ser.loc[key] + + @pytest.mark.parametrize("key", [{1}, {1: 1}]) + def test_setitem_dict_and_set_disallowed(self, key): + # GH#42825 enforced in 2.0 + ser = Series([1, 2]) + with pytest.raises(TypeError, match="as an indexer is not supported"): + ser.loc[key] = 1 + + @pytest.mark.parametrize("key", [{1}, {1: 1}, ({1}, 2), ({1: 1}, 2)]) + def test_setitem_dict_and_set_disallowed_multiindex(self, key): + # GH#42825 enforced in 2.0 + ser = Series([1, 2], index=MultiIndex.from_tuples([(1, 2), (3, 4)])) + with pytest.raises(TypeError, match="as an indexer is not supported"): + ser.loc[key] = 1 + + +class TestSetitemValidation: + # This is adapted from pandas/tests/arrays/masked/test_indexing.py + # but checks for warnings instead of errors. + def _check_setitem_invalid(self, ser, invalid, indexer, warn): + msg = "Setting an item of incompatible dtype is deprecated" + msg = re.escape(msg) + + orig_ser = ser.copy() + + with tm.assert_produces_warning(warn, match=msg): + ser[indexer] = invalid + ser = orig_ser.copy() + + with tm.assert_produces_warning(warn, match=msg): + ser.iloc[indexer] = invalid + ser = orig_ser.copy() + + with tm.assert_produces_warning(warn, match=msg): + ser.loc[indexer] = invalid + ser = orig_ser.copy() + + with tm.assert_produces_warning(warn, match=msg): + ser[:] = invalid + + _invalid_scalars = [ + 1 + 2j, + "True", + "1", + "1.0", + NaT, + np.datetime64("NaT"), + np.timedelta64("NaT"), + ] + _indexers = [0, [0], slice(0, 1), [True, False, False], slice(None, None, None)] + + @pytest.mark.parametrize( + "invalid", _invalid_scalars + [1, 1.0, np.int64(1), np.float64(1)] + ) + @pytest.mark.parametrize("indexer", _indexers) + def test_setitem_validation_scalar_bool(self, invalid, indexer): + ser = Series([True, False, False], dtype="bool") + self._check_setitem_invalid(ser, invalid, indexer, FutureWarning) + + @pytest.mark.parametrize("invalid", _invalid_scalars + [True, 1.5, np.float64(1.5)]) + @pytest.mark.parametrize("indexer", _indexers) + def test_setitem_validation_scalar_int(self, invalid, any_int_numpy_dtype, indexer): + ser = Series([1, 2, 3], dtype=any_int_numpy_dtype) + if isna(invalid) and invalid is not NaT and not np.isnat(invalid): + warn = None + else: + warn = FutureWarning + self._check_setitem_invalid(ser, invalid, indexer, warn) + + @pytest.mark.parametrize("invalid", _invalid_scalars + [True]) + @pytest.mark.parametrize("indexer", _indexers) + def test_setitem_validation_scalar_float(self, invalid, float_numpy_dtype, indexer): + ser = Series([1, 2, None], dtype=float_numpy_dtype) + self._check_setitem_invalid(ser, invalid, indexer, FutureWarning) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_mask.py b/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_mask.py new file mode 100644 index 0000000000000000000000000000000000000000..3c21cd0d5ca648dcf0f1ac412dd232221c031c6f --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_mask.py @@ -0,0 +1,69 @@ +import numpy as np +import pytest + +from pandas import Series +import pandas._testing as tm + + +def test_mask(): + # compare with tested results in test_where + s = Series(np.random.default_rng(2).standard_normal(5)) + cond = s > 0 + + rs = s.where(~cond, np.nan) + tm.assert_series_equal(rs, s.mask(cond)) + + rs = s.where(~cond) + rs2 = s.mask(cond) + tm.assert_series_equal(rs, rs2) + + rs = s.where(~cond, -s) + rs2 = s.mask(cond, -s) + tm.assert_series_equal(rs, rs2) + + cond = Series([True, False, False, True, False], index=s.index) + s2 = -(s.abs()) + rs = s2.where(~cond[:3]) + rs2 = s2.mask(cond[:3]) + tm.assert_series_equal(rs, rs2) + + rs = s2.where(~cond[:3], -s2) + rs2 = s2.mask(cond[:3], -s2) + tm.assert_series_equal(rs, rs2) + + msg = "Array conditional must be same shape as self" + with pytest.raises(ValueError, match=msg): + s.mask(1) + with pytest.raises(ValueError, match=msg): + s.mask(cond[:3].values, -s) + + +def test_mask_casts(): + # dtype changes + ser = Series([1, 2, 3, 4]) + result = ser.mask(ser > 2, np.nan) + expected = Series([1, 2, np.nan, np.nan]) + tm.assert_series_equal(result, expected) + + +def test_mask_casts2(): + # see gh-21891 + ser = Series([1, 2]) + res = ser.mask([True, False]) + + exp = Series([np.nan, 2]) + tm.assert_series_equal(res, exp) + + +def test_mask_inplace(): + s = Series(np.random.default_rng(2).standard_normal(5)) + cond = s > 0 + + rs = s.copy() + rs.mask(cond, inplace=True) + tm.assert_series_equal(rs.dropna(), s[~cond]) + tm.assert_series_equal(rs, s.mask(cond)) + + rs = s.copy() + rs.mask(cond, -s, inplace=True) + tm.assert_series_equal(rs, s.mask(cond, -s)) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_set_value.py b/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_set_value.py new file mode 100644 index 0000000000000000000000000000000000000000..cbe1a8bf296c8106c2cfa3ad519b0a7d44401493 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_set_value.py @@ -0,0 +1,45 @@ +from datetime import datetime + +import numpy as np + +from pandas import ( + DatetimeIndex, + Series, +) +import pandas._testing as tm + + +def test_series_set_value(): + # GH#1561 + + dates = [datetime(2001, 1, 1), datetime(2001, 1, 2)] + index = DatetimeIndex(dates) + + s = Series(dtype=object) + s._set_value(dates[0], 1.0) + s._set_value(dates[1], np.nan) + + expected = Series([1.0, np.nan], index=index) + + tm.assert_series_equal(s, expected) + + +def test_set_value_dt64(datetime_series): + idx = datetime_series.index[10] + res = datetime_series._set_value(idx, 0) + assert res is None + assert datetime_series[idx] == 0 + + +def test_set_value_str_index(string_series): + # equiv + ser = string_series.copy() + res = ser._set_value("foobar", 0) + assert res is None + assert ser.index[-1] == "foobar" + assert ser["foobar"] == 0 + + ser2 = string_series.copy() + ser2.loc["foobar"] = 0 + assert ser2.index[-1] == "foobar" + assert ser2["foobar"] == 0 diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_setitem.py b/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_setitem.py new file mode 100644 index 0000000000000000000000000000000000000000..23137f0975fb18425d137e84e7d04bf39950c8f1 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_setitem.py @@ -0,0 +1,1847 @@ +from datetime import ( + date, + datetime, +) +from decimal import Decimal + +import numpy as np +import pytest + +from pandas.compat.numpy import np_version_gte1p24 +from pandas.errors import IndexingError + +from pandas.core.dtypes.common import is_list_like + +from pandas import ( + NA, + Categorical, + DataFrame, + DatetimeIndex, + Index, + Interval, + IntervalIndex, + MultiIndex, + NaT, + Period, + Series, + Timedelta, + Timestamp, + array, + concat, + date_range, + interval_range, + period_range, + timedelta_range, +) +import pandas._testing as tm + +from pandas.tseries.offsets import BDay + + +class TestSetitemDT64Values: + def test_setitem_none_nan(self): + series = Series(date_range("1/1/2000", periods=10)) + series[3] = None + assert series[3] is NaT + + series[3:5] = None + assert series[4] is NaT + + series[5] = np.nan + assert series[5] is NaT + + series[5:7] = np.nan + assert series[6] is NaT + + def test_setitem_multiindex_empty_slice(self): + # https://github.com/pandas-dev/pandas/issues/35878 + idx = MultiIndex.from_tuples([("a", 1), ("b", 2)]) + result = Series([1, 2], index=idx) + expected = result.copy() + result.loc[[]] = 0 + tm.assert_series_equal(result, expected) + + def test_setitem_with_string_index(self): + # GH#23451 + # Set object dtype to avoid upcast when setting date.today() + ser = Series([1, 2, 3], index=["Date", "b", "other"], dtype=object) + ser["Date"] = date.today() + assert ser.Date == date.today() + assert ser["Date"] == date.today() + + def test_setitem_tuple_with_datetimetz_values(self): + # GH#20441 + arr = date_range("2017", periods=4, tz="US/Eastern") + index = [(0, 1), (0, 2), (0, 3), (0, 4)] + result = Series(arr, index=index) + expected = result.copy() + result[(0, 1)] = np.nan + expected.iloc[0] = np.nan + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("tz", ["US/Eastern", "UTC", "Asia/Tokyo"]) + def test_setitem_with_tz(self, tz, indexer_sli): + orig = Series(date_range("2016-01-01", freq="h", periods=3, tz=tz)) + assert orig.dtype == f"datetime64[ns, {tz}]" + + exp = Series( + [ + Timestamp("2016-01-01 00:00", tz=tz), + Timestamp("2011-01-01 00:00", tz=tz), + Timestamp("2016-01-01 02:00", tz=tz), + ], + dtype=orig.dtype, + ) + + # scalar + ser = orig.copy() + indexer_sli(ser)[1] = Timestamp("2011-01-01", tz=tz) + tm.assert_series_equal(ser, exp) + + # vector + vals = Series( + [Timestamp("2011-01-01", tz=tz), Timestamp("2012-01-01", tz=tz)], + index=[1, 2], + dtype=orig.dtype, + ) + assert vals.dtype == f"datetime64[ns, {tz}]" + + exp = Series( + [ + Timestamp("2016-01-01 00:00", tz=tz), + Timestamp("2011-01-01 00:00", tz=tz), + Timestamp("2012-01-01 00:00", tz=tz), + ], + dtype=orig.dtype, + ) + + ser = orig.copy() + indexer_sli(ser)[[1, 2]] = vals + tm.assert_series_equal(ser, exp) + + def test_setitem_with_tz_dst(self, indexer_sli): + # GH#14146 trouble setting values near DST boundary + tz = "US/Eastern" + orig = Series(date_range("2016-11-06", freq="h", periods=3, tz=tz)) + assert orig.dtype == f"datetime64[ns, {tz}]" + + exp = Series( + [ + Timestamp("2016-11-06 00:00-04:00", tz=tz), + Timestamp("2011-01-01 00:00-05:00", tz=tz), + Timestamp("2016-11-06 01:00-05:00", tz=tz), + ], + dtype=orig.dtype, + ) + + # scalar + ser = orig.copy() + indexer_sli(ser)[1] = Timestamp("2011-01-01", tz=tz) + tm.assert_series_equal(ser, exp) + + # vector + vals = Series( + [Timestamp("2011-01-01", tz=tz), Timestamp("2012-01-01", tz=tz)], + index=[1, 2], + dtype=orig.dtype, + ) + assert vals.dtype == f"datetime64[ns, {tz}]" + + exp = Series( + [ + Timestamp("2016-11-06 00:00", tz=tz), + Timestamp("2011-01-01 00:00", tz=tz), + Timestamp("2012-01-01 00:00", tz=tz), + ], + dtype=orig.dtype, + ) + + ser = orig.copy() + indexer_sli(ser)[[1, 2]] = vals + tm.assert_series_equal(ser, exp) + + def test_object_series_setitem_dt64array_exact_match(self): + # make sure the dt64 isn't cast by numpy to integers + # https://github.com/numpy/numpy/issues/12550 + + ser = Series({"X": np.nan}, dtype=object) + + indexer = [True] + + # "exact_match" -> size of array being set matches size of ser + value = np.array([4], dtype="M8[ns]") + + ser.iloc[indexer] = value + + expected = Series([value[0]], index=["X"], dtype=object) + assert all(isinstance(x, np.datetime64) for x in expected.values) + + tm.assert_series_equal(ser, expected) + + +class TestSetitemScalarIndexer: + def test_setitem_negative_out_of_bounds(self): + ser = Series(["a"] * 10, index=["a"] * 10) + + # string index falls back to positional + msg = "index -11|-1 is out of bounds for axis 0 with size 10" + warn_msg = "Series.__setitem__ treating keys as positions is deprecated" + with pytest.raises(IndexError, match=msg): + with tm.assert_produces_warning(FutureWarning, match=warn_msg): + ser[-11] = "foo" + + @pytest.mark.parametrize("indexer", [tm.loc, tm.at]) + @pytest.mark.parametrize("ser_index", [0, 1]) + def test_setitem_series_object_dtype(self, indexer, ser_index): + # GH#38303 + ser = Series([0, 0], dtype="object") + idxr = indexer(ser) + idxr[0] = Series([42], index=[ser_index]) + expected = Series([Series([42], index=[ser_index]), 0], dtype="object") + tm.assert_series_equal(ser, expected) + + @pytest.mark.parametrize("index, exp_value", [(0, 42), (1, np.nan)]) + def test_setitem_series(self, index, exp_value): + # GH#38303 + ser = Series([0, 0]) + ser.loc[0] = Series([42], index=[index]) + expected = Series([exp_value, 0]) + tm.assert_series_equal(ser, expected) + + +class TestSetitemSlices: + def test_setitem_slice_float_raises(self, datetime_series): + msg = ( + "cannot do slice indexing on DatetimeIndex with these indexers " + r"\[{key}\] of type float" + ) + with pytest.raises(TypeError, match=msg.format(key=r"4\.0")): + datetime_series[4.0:10.0] = 0 + + with pytest.raises(TypeError, match=msg.format(key=r"4\.5")): + datetime_series[4.5:10.0] = 0 + + def test_setitem_slice(self): + ser = Series(range(10), index=list(range(10))) + ser[-12:] = 0 + assert (ser == 0).all() + + ser[:-12] = 5 + assert (ser == 0).all() + + def test_setitem_slice_integers(self): + ser = Series( + np.random.default_rng(2).standard_normal(8), + index=[2, 4, 6, 8, 10, 12, 14, 16], + ) + + ser[:4] = 0 + assert (ser[:4] == 0).all() + assert not (ser[4:] == 0).any() + + def test_setitem_slicestep(self): + # caught this bug when writing tests + series = Series( + np.arange(20, dtype=np.float64), index=np.arange(20, dtype=np.int64) + ) + + series[::2] = 0 + assert (series[::2] == 0).all() + + def test_setitem_multiindex_slice(self, indexer_sli): + # GH 8856 + mi = MultiIndex.from_product(([0, 1], list("abcde"))) + result = Series(np.arange(10, dtype=np.int64), mi) + indexer_sli(result)[::4] = 100 + expected = Series([100, 1, 2, 3, 100, 5, 6, 7, 100, 9], mi) + tm.assert_series_equal(result, expected) + + +class TestSetitemBooleanMask: + def test_setitem_mask_cast(self): + # GH#2746 + # need to upcast + ser = Series([1, 2], index=[1, 2], dtype="int64") + ser[[True, False]] = Series([0], index=[1], dtype="int64") + expected = Series([0, 2], index=[1, 2], dtype="int64") + + tm.assert_series_equal(ser, expected) + + def test_setitem_mask_align_and_promote(self): + # GH#8387: test that changing types does not break alignment + ts = Series( + np.random.default_rng(2).standard_normal(100), index=np.arange(100, 0, -1) + ).round(5) + mask = ts > 0 + left = ts.copy() + right = ts[mask].copy().map(str) + with tm.assert_produces_warning( + FutureWarning, match="item of incompatible dtype" + ): + left[mask] = right + expected = ts.map(lambda t: str(t) if t > 0 else t) + tm.assert_series_equal(left, expected) + + def test_setitem_mask_promote_strs(self): + ser = Series([0, 1, 2, 0]) + mask = ser > 0 + ser2 = ser[mask].map(str) + with tm.assert_produces_warning( + FutureWarning, match="item of incompatible dtype" + ): + ser[mask] = ser2 + + expected = Series([0, "1", "2", 0]) + tm.assert_series_equal(ser, expected) + + def test_setitem_mask_promote(self): + ser = Series([0, "foo", "bar", 0]) + mask = Series([False, True, True, False]) + ser2 = ser[mask] + ser[mask] = ser2 + + expected = Series([0, "foo", "bar", 0]) + tm.assert_series_equal(ser, expected) + + def test_setitem_boolean(self, string_series): + mask = string_series > string_series.median() + + # similar indexed series + result = string_series.copy() + result[mask] = string_series * 2 + expected = string_series * 2 + tm.assert_series_equal(result[mask], expected[mask]) + + # needs alignment + result = string_series.copy() + result[mask] = (string_series * 2)[0:5] + expected = (string_series * 2)[0:5].reindex_like(string_series) + expected[-mask] = string_series[mask] + tm.assert_series_equal(result[mask], expected[mask]) + + def test_setitem_boolean_corner(self, datetime_series): + ts = datetime_series + mask_shifted = ts.shift(1, freq=BDay()) > ts.median() + + msg = ( + r"Unalignable boolean Series provided as indexer \(index of " + r"the boolean Series and of the indexed object do not match" + ) + with pytest.raises(IndexingError, match=msg): + ts[mask_shifted] = 1 + + with pytest.raises(IndexingError, match=msg): + ts.loc[mask_shifted] = 1 + + def test_setitem_boolean_different_order(self, string_series): + ordered = string_series.sort_values() + + copy = string_series.copy() + copy[ordered > 0] = 0 + + expected = string_series.copy() + expected[expected > 0] = 0 + + tm.assert_series_equal(copy, expected) + + @pytest.mark.parametrize("func", [list, np.array, Series]) + def test_setitem_boolean_python_list(self, func): + # GH19406 + ser = Series([None, "b", None]) + mask = func([True, False, True]) + ser[mask] = ["a", "c"] + expected = Series(["a", "b", "c"]) + tm.assert_series_equal(ser, expected) + + def test_setitem_boolean_nullable_int_types(self, any_numeric_ea_dtype): + # GH: 26468 + ser = Series([5, 6, 7, 8], dtype=any_numeric_ea_dtype) + ser[ser > 6] = Series(range(4), dtype=any_numeric_ea_dtype) + expected = Series([5, 6, 2, 3], dtype=any_numeric_ea_dtype) + tm.assert_series_equal(ser, expected) + + ser = Series([5, 6, 7, 8], dtype=any_numeric_ea_dtype) + ser.loc[ser > 6] = Series(range(4), dtype=any_numeric_ea_dtype) + tm.assert_series_equal(ser, expected) + + ser = Series([5, 6, 7, 8], dtype=any_numeric_ea_dtype) + loc_ser = Series(range(4), dtype=any_numeric_ea_dtype) + ser.loc[ser > 6] = loc_ser.loc[loc_ser > 1] + tm.assert_series_equal(ser, expected) + + def test_setitem_with_bool_mask_and_values_matching_n_trues_in_length(self): + # GH#30567 + ser = Series([None] * 10) + mask = [False] * 3 + [True] * 5 + [False] * 2 + ser[mask] = range(5) + result = ser + expected = Series([None] * 3 + list(range(5)) + [None] * 2, dtype=object) + tm.assert_series_equal(result, expected) + + def test_setitem_nan_with_bool(self): + # GH 13034 + result = Series([True, False, True]) + with tm.assert_produces_warning( + FutureWarning, match="item of incompatible dtype" + ): + result[0] = np.nan + expected = Series([np.nan, False, True], dtype=object) + tm.assert_series_equal(result, expected) + + def test_setitem_mask_smallint_upcast(self): + orig = Series([1, 2, 3], dtype="int8") + alt = np.array([999, 1000, 1001], dtype=np.int64) + + mask = np.array([True, False, True]) + + ser = orig.copy() + with tm.assert_produces_warning( + FutureWarning, match="item of incompatible dtype" + ): + ser[mask] = Series(alt) + expected = Series([999, 2, 1001]) + tm.assert_series_equal(ser, expected) + + ser2 = orig.copy() + with tm.assert_produces_warning( + FutureWarning, match="item of incompatible dtype" + ): + ser2.mask(mask, alt, inplace=True) + tm.assert_series_equal(ser2, expected) + + ser3 = orig.copy() + res = ser3.where(~mask, Series(alt)) + tm.assert_series_equal(res, expected) + + def test_setitem_mask_smallint_no_upcast(self): + # like test_setitem_mask_smallint_upcast, but while we can't hold 'alt', + # we *can* hold alt[mask] without casting + orig = Series([1, 2, 3], dtype="uint8") + alt = Series([245, 1000, 246], dtype=np.int64) + + mask = np.array([True, False, True]) + + ser = orig.copy() + ser[mask] = alt + expected = Series([245, 2, 246], dtype="uint8") + tm.assert_series_equal(ser, expected) + + ser2 = orig.copy() + ser2.mask(mask, alt, inplace=True) + tm.assert_series_equal(ser2, expected) + + # TODO: ser.where(~mask, alt) unnecessarily upcasts to int64 + ser3 = orig.copy() + res = ser3.where(~mask, alt) + tm.assert_series_equal(res, expected, check_dtype=False) + + +class TestSetitemViewCopySemantics: + def test_setitem_invalidates_datetime_index_freq(self, using_copy_on_write): + # GH#24096 altering a datetime64tz Series inplace invalidates the + # `freq` attribute on the underlying DatetimeIndex + + dti = date_range("20130101", periods=3, tz="US/Eastern") + ts = dti[1] + ser = Series(dti) + assert ser._values is not dti + if using_copy_on_write: + assert ser._values._ndarray.base is dti._data._ndarray.base + else: + assert ser._values._ndarray.base is not dti._data._ndarray.base + assert dti.freq == "D" + ser.iloc[1] = NaT + assert ser._values.freq is None + + # check that the DatetimeIndex was not altered in place + assert ser._values is not dti + assert ser._values._ndarray.base is not dti._data._ndarray.base + assert dti[1] == ts + assert dti.freq == "D" + + def test_dt64tz_setitem_does_not_mutate_dti(self, using_copy_on_write): + # GH#21907, GH#24096 + dti = date_range("2016-01-01", periods=10, tz="US/Pacific") + ts = dti[0] + ser = Series(dti) + assert ser._values is not dti + if using_copy_on_write: + assert ser._values._ndarray.base is dti._data._ndarray.base + assert ser._mgr.arrays[0]._ndarray.base is dti._data._ndarray.base + else: + assert ser._values._ndarray.base is not dti._data._ndarray.base + assert ser._mgr.arrays[0]._ndarray.base is not dti._data._ndarray.base + + assert ser._mgr.arrays[0] is not dti + + ser[::3] = NaT + assert ser[0] is NaT + assert dti[0] == ts + + +class TestSetitemCallable: + def test_setitem_callable_key(self): + # GH#12533 + ser = Series([1, 2, 3, 4], index=list("ABCD")) + ser[lambda x: "A"] = -1 + + expected = Series([-1, 2, 3, 4], index=list("ABCD")) + tm.assert_series_equal(ser, expected) + + def test_setitem_callable_other(self): + # GH#13299 + inc = lambda x: x + 1 + + # set object dtype to avoid upcast when setting inc + ser = Series([1, 2, -1, 4], dtype=object) + ser[ser < 0] = inc + + expected = Series([1, 2, inc, 4]) + tm.assert_series_equal(ser, expected) + + +class TestSetitemWithExpansion: + def test_setitem_empty_series(self): + # GH#10193 + key = Timestamp("2012-01-01") + series = Series(dtype=object) + series[key] = 47 + expected = Series(47, [key]) + tm.assert_series_equal(series, expected) + + def test_setitem_empty_series_datetimeindex_preserves_freq(self): + # GH#33573 our index should retain its freq + dti = DatetimeIndex([], freq="D", dtype="M8[ns]") + series = Series([], index=dti, dtype=object) + key = Timestamp("2012-01-01") + series[key] = 47 + expected = Series(47, DatetimeIndex([key], freq="D").as_unit("ns")) + tm.assert_series_equal(series, expected) + assert series.index.freq == expected.index.freq + + def test_setitem_empty_series_timestamp_preserves_dtype(self): + # GH 21881 + timestamp = Timestamp(1412526600000000000) + series = Series([timestamp], index=["timestamp"], dtype=object) + expected = series["timestamp"] + + series = Series([], dtype=object) + series["anything"] = 300.0 + series["timestamp"] = timestamp + result = series["timestamp"] + assert result == expected + + @pytest.mark.parametrize( + "td", + [ + Timedelta("9 days"), + Timedelta("9 days").to_timedelta64(), + Timedelta("9 days").to_pytimedelta(), + ], + ) + def test_append_timedelta_does_not_cast(self, td, using_infer_string, request): + # GH#22717 inserting a Timedelta should _not_ cast to int64 + if using_infer_string and not isinstance(td, Timedelta): + # TODO: GH#56010 + request.applymarker(pytest.mark.xfail(reason="inferred as string")) + + expected = Series(["x", td], index=[0, "td"], dtype=object) + + ser = Series(["x"]) + ser["td"] = td + tm.assert_series_equal(ser, expected) + assert isinstance(ser["td"], Timedelta) + + ser = Series(["x"]) + ser.loc["td"] = Timedelta("9 days") + tm.assert_series_equal(ser, expected) + assert isinstance(ser["td"], Timedelta) + + def test_setitem_with_expansion_type_promotion(self): + # GH#12599 + ser = Series(dtype=object) + ser["a"] = Timestamp("2016-01-01") + ser["b"] = 3.0 + ser["c"] = "foo" + expected = Series([Timestamp("2016-01-01"), 3.0, "foo"], index=["a", "b", "c"]) + tm.assert_series_equal(ser, expected) + + def test_setitem_not_contained(self, string_series): + # set item that's not contained + ser = string_series.copy() + assert "foobar" not in ser.index + ser["foobar"] = 1 + + app = Series([1], index=["foobar"], name="series") + expected = concat([string_series, app]) + tm.assert_series_equal(ser, expected) + + def test_setitem_keep_precision(self, any_numeric_ea_dtype): + # GH#32346 + ser = Series([1, 2], dtype=any_numeric_ea_dtype) + ser[2] = 10 + expected = Series([1, 2, 10], dtype=any_numeric_ea_dtype) + tm.assert_series_equal(ser, expected) + + @pytest.mark.parametrize( + "na, target_na, dtype, target_dtype, indexer, warn", + [ + (NA, NA, "Int64", "Int64", 1, None), + (NA, NA, "Int64", "Int64", 2, None), + (NA, np.nan, "int64", "float64", 1, None), + (NA, np.nan, "int64", "float64", 2, None), + (NaT, NaT, "int64", "object", 1, FutureWarning), + (NaT, NaT, "int64", "object", 2, None), + (np.nan, NA, "Int64", "Int64", 1, None), + (np.nan, NA, "Int64", "Int64", 2, None), + (np.nan, NA, "Float64", "Float64", 1, None), + (np.nan, NA, "Float64", "Float64", 2, None), + (np.nan, np.nan, "int64", "float64", 1, None), + (np.nan, np.nan, "int64", "float64", 2, None), + ], + ) + def test_setitem_enlarge_with_na( + self, na, target_na, dtype, target_dtype, indexer, warn + ): + # GH#32346 + ser = Series([1, 2], dtype=dtype) + with tm.assert_produces_warning(warn, match="incompatible dtype"): + ser[indexer] = na + expected_values = [1, target_na] if indexer == 1 else [1, 2, target_na] + expected = Series(expected_values, dtype=target_dtype) + tm.assert_series_equal(ser, expected) + + def test_setitem_enlargement_object_none(self, nulls_fixture, using_infer_string): + # GH#48665 + ser = Series(["a", "b"]) + ser[3] = nulls_fixture + dtype = ( + "string[pyarrow_numpy]" + if using_infer_string and not isinstance(nulls_fixture, Decimal) + else object + ) + expected = Series(["a", "b", nulls_fixture], index=[0, 1, 3], dtype=dtype) + tm.assert_series_equal(ser, expected) + if using_infer_string: + ser[3] is np.nan + else: + assert ser[3] is nulls_fixture + + +def test_setitem_scalar_into_readonly_backing_data(): + # GH#14359: test that you cannot mutate a read only buffer + + array = np.zeros(5) + array.flags.writeable = False # make the array immutable + series = Series(array, copy=False) + + for n in series.index: + msg = "assignment destination is read-only" + with pytest.raises(ValueError, match=msg): + series[n] = 1 + + assert array[n] == 0 + + +def test_setitem_slice_into_readonly_backing_data(): + # GH#14359: test that you cannot mutate a read only buffer + + array = np.zeros(5) + array.flags.writeable = False # make the array immutable + series = Series(array, copy=False) + + msg = "assignment destination is read-only" + with pytest.raises(ValueError, match=msg): + series[1:3] = 1 + + assert not array.any() + + +def test_setitem_categorical_assigning_ops(): + orig = Series(Categorical(["b", "b"], categories=["a", "b"])) + ser = orig.copy() + ser[:] = "a" + exp = Series(Categorical(["a", "a"], categories=["a", "b"])) + tm.assert_series_equal(ser, exp) + + ser = orig.copy() + ser[1] = "a" + exp = Series(Categorical(["b", "a"], categories=["a", "b"])) + tm.assert_series_equal(ser, exp) + + ser = orig.copy() + ser[ser.index > 0] = "a" + exp = Series(Categorical(["b", "a"], categories=["a", "b"])) + tm.assert_series_equal(ser, exp) + + ser = orig.copy() + ser[[False, True]] = "a" + exp = Series(Categorical(["b", "a"], categories=["a", "b"])) + tm.assert_series_equal(ser, exp) + + ser = orig.copy() + ser.index = ["x", "y"] + ser["y"] = "a" + exp = Series(Categorical(["b", "a"], categories=["a", "b"]), index=["x", "y"]) + tm.assert_series_equal(ser, exp) + + +def test_setitem_nan_into_categorical(): + # ensure that one can set something to np.nan + ser = Series(Categorical([1, 2, 3])) + exp = Series(Categorical([1, np.nan, 3], categories=[1, 2, 3])) + ser[1] = np.nan + tm.assert_series_equal(ser, exp) + + +class TestSetitemCasting: + @pytest.mark.parametrize("unique", [True, False]) + @pytest.mark.parametrize("val", [3, 3.0, "3"], ids=type) + def test_setitem_non_bool_into_bool(self, val, indexer_sli, unique): + # dont cast these 3-like values to bool + ser = Series([True, False]) + if not unique: + ser.index = [1, 1] + + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + indexer_sli(ser)[1] = val + assert type(ser.iloc[1]) == type(val) + + expected = Series([True, val], dtype=object, index=ser.index) + if not unique and indexer_sli is not tm.iloc: + expected = Series([val, val], dtype=object, index=[1, 1]) + tm.assert_series_equal(ser, expected) + + def test_setitem_boolean_array_into_npbool(self): + # GH#45462 + ser = Series([True, False, True]) + values = ser._values + arr = array([True, False, None]) + + ser[:2] = arr[:2] # no NAs -> can set inplace + assert ser._values is values + + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + ser[1:] = arr[1:] # has an NA -> cast to boolean dtype + expected = Series(arr) + tm.assert_series_equal(ser, expected) + + +class SetitemCastingEquivalents: + """ + Check each of several methods that _should_ be equivalent to `obj[key] = val` + + We assume that + - obj.index is the default Index(range(len(obj))) + - the setitem does not expand the obj + """ + + @pytest.fixture + def is_inplace(self, obj, expected): + """ + Whether we expect the setting to be in-place or not. + """ + return expected.dtype == obj.dtype + + def check_indexer(self, obj, key, expected, val, indexer, is_inplace): + orig = obj + obj = obj.copy() + arr = obj._values + + indexer(obj)[key] = val + tm.assert_series_equal(obj, expected) + + self._check_inplace(is_inplace, orig, arr, obj) + + def _check_inplace(self, is_inplace, orig, arr, obj): + if is_inplace is None: + # We are not (yet) checking whether setting is inplace or not + pass + elif is_inplace: + if arr.dtype.kind in ["m", "M"]: + # We may not have the same DTA/TDA, but will have the same + # underlying data + assert arr._ndarray is obj._values._ndarray + else: + assert obj._values is arr + else: + # otherwise original array should be unchanged + tm.assert_equal(arr, orig._values) + + def test_int_key(self, obj, key, expected, warn, val, indexer_sli, is_inplace): + if not isinstance(key, int): + pytest.skip("Not relevant for int key") + + with tm.assert_produces_warning(warn, match="incompatible dtype"): + self.check_indexer(obj, key, expected, val, indexer_sli, is_inplace) + + if indexer_sli is tm.loc: + with tm.assert_produces_warning(warn, match="incompatible dtype"): + self.check_indexer(obj, key, expected, val, tm.at, is_inplace) + elif indexer_sli is tm.iloc: + with tm.assert_produces_warning(warn, match="incompatible dtype"): + self.check_indexer(obj, key, expected, val, tm.iat, is_inplace) + + rng = range(key, key + 1) + with tm.assert_produces_warning(warn, match="incompatible dtype"): + self.check_indexer(obj, rng, expected, val, indexer_sli, is_inplace) + + if indexer_sli is not tm.loc: + # Note: no .loc because that handles slice edges differently + slc = slice(key, key + 1) + with tm.assert_produces_warning(warn, match="incompatible dtype"): + self.check_indexer(obj, slc, expected, val, indexer_sli, is_inplace) + + ilkey = [key] + with tm.assert_produces_warning(warn, match="incompatible dtype"): + self.check_indexer(obj, ilkey, expected, val, indexer_sli, is_inplace) + + indkey = np.array(ilkey) + with tm.assert_produces_warning(warn, match="incompatible dtype"): + self.check_indexer(obj, indkey, expected, val, indexer_sli, is_inplace) + + genkey = (x for x in [key]) + with tm.assert_produces_warning(warn, match="incompatible dtype"): + self.check_indexer(obj, genkey, expected, val, indexer_sli, is_inplace) + + def test_slice_key(self, obj, key, expected, warn, val, indexer_sli, is_inplace): + if not isinstance(key, slice): + pytest.skip("Not relevant for slice key") + + if indexer_sli is not tm.loc: + # Note: no .loc because that handles slice edges differently + with tm.assert_produces_warning(warn, match="incompatible dtype"): + self.check_indexer(obj, key, expected, val, indexer_sli, is_inplace) + + ilkey = list(range(len(obj)))[key] + with tm.assert_produces_warning(warn, match="incompatible dtype"): + self.check_indexer(obj, ilkey, expected, val, indexer_sli, is_inplace) + + indkey = np.array(ilkey) + with tm.assert_produces_warning(warn, match="incompatible dtype"): + self.check_indexer(obj, indkey, expected, val, indexer_sli, is_inplace) + + genkey = (x for x in indkey) + with tm.assert_produces_warning(warn, match="incompatible dtype"): + self.check_indexer(obj, genkey, expected, val, indexer_sli, is_inplace) + + def test_mask_key(self, obj, key, expected, warn, val, indexer_sli): + # setitem with boolean mask + mask = np.zeros(obj.shape, dtype=bool) + mask[key] = True + + obj = obj.copy() + + if is_list_like(val) and len(val) < mask.sum(): + msg = "boolean index did not match indexed array along dimension" + with pytest.raises(IndexError, match=msg): + indexer_sli(obj)[mask] = val + return + + with tm.assert_produces_warning(warn, match="incompatible dtype"): + indexer_sli(obj)[mask] = val + tm.assert_series_equal(obj, expected) + + def test_series_where(self, obj, key, expected, warn, val, is_inplace): + mask = np.zeros(obj.shape, dtype=bool) + mask[key] = True + + if is_list_like(val) and len(val) < len(obj): + # Series.where is not valid here + msg = "operands could not be broadcast together with shapes" + with pytest.raises(ValueError, match=msg): + obj.where(~mask, val) + return + + orig = obj + obj = obj.copy() + arr = obj._values + + res = obj.where(~mask, val) + + if val is NA and res.dtype == object: + expected = expected.fillna(NA) + elif val is None and res.dtype == object: + assert expected.dtype == object + expected = expected.copy() + expected[expected.isna()] = None + tm.assert_series_equal(res, expected) + + self._check_inplace(is_inplace, orig, arr, obj) + + def test_index_where(self, obj, key, expected, warn, val, using_infer_string): + mask = np.zeros(obj.shape, dtype=bool) + mask[key] = True + + if using_infer_string and obj.dtype == object: + with pytest.raises(TypeError, match="Scalar must"): + Index(obj).where(~mask, val) + else: + res = Index(obj).where(~mask, val) + expected_idx = Index(expected, dtype=expected.dtype) + tm.assert_index_equal(res, expected_idx) + + def test_index_putmask(self, obj, key, expected, warn, val, using_infer_string): + mask = np.zeros(obj.shape, dtype=bool) + mask[key] = True + + if using_infer_string and obj.dtype == object: + with pytest.raises(TypeError, match="Scalar must"): + Index(obj).putmask(mask, val) + else: + res = Index(obj).putmask(mask, val) + tm.assert_index_equal(res, Index(expected, dtype=expected.dtype)) + + +@pytest.mark.parametrize( + "obj,expected,key,warn", + [ + pytest.param( + # GH#45568 setting a valid NA value into IntervalDtype[int] should + # cast to IntervalDtype[float] + Series(interval_range(1, 5)), + Series( + [Interval(1, 2), np.nan, Interval(3, 4), Interval(4, 5)], + dtype="interval[float64]", + ), + 1, + FutureWarning, + id="interval_int_na_value", + ), + pytest.param( + # these induce dtype changes + Series([2, 3, 4, 5, 6, 7, 8, 9, 10]), + Series([np.nan, 3, np.nan, 5, np.nan, 7, np.nan, 9, np.nan]), + slice(None, None, 2), + None, + id="int_series_slice_key_step", + ), + pytest.param( + Series([True, True, False, False]), + Series([np.nan, True, np.nan, False], dtype=object), + slice(None, None, 2), + FutureWarning, + id="bool_series_slice_key_step", + ), + pytest.param( + # these induce dtype changes + Series(np.arange(10)), + Series([np.nan, np.nan, np.nan, np.nan, np.nan, 5, 6, 7, 8, 9]), + slice(None, 5), + None, + id="int_series_slice_key", + ), + pytest.param( + # changes dtype GH#4463 + Series([1, 2, 3]), + Series([np.nan, 2, 3]), + 0, + None, + id="int_series_int_key", + ), + pytest.param( + # changes dtype GH#4463 + Series([False]), + Series([np.nan], dtype=object), + # TODO: maybe go to float64 since we are changing the _whole_ Series? + 0, + FutureWarning, + id="bool_series_int_key_change_all", + ), + pytest.param( + # changes dtype GH#4463 + Series([False, True]), + Series([np.nan, True], dtype=object), + 0, + FutureWarning, + id="bool_series_int_key", + ), + ], +) +class TestSetitemCastingEquivalents(SetitemCastingEquivalents): + @pytest.fixture(params=[np.nan, np.float64("NaN"), None, NA]) + def val(self, request): + """ + NA values that should generally be valid_na for *all* dtypes. + + Include both python float NaN and np.float64; only np.float64 has a + `dtype` attribute. + """ + return request.param + + +class TestSetitemTimedelta64IntoNumeric(SetitemCastingEquivalents): + # timedelta64 should not be treated as integers when setting into + # numeric Series + + @pytest.fixture + def val(self): + td = np.timedelta64(4, "ns") + return td + # TODO: could also try np.full((1,), td) + + @pytest.fixture(params=[complex, int, float]) + def dtype(self, request): + return request.param + + @pytest.fixture + def obj(self, dtype): + arr = np.arange(5).astype(dtype) + ser = Series(arr) + return ser + + @pytest.fixture + def expected(self, dtype): + arr = np.arange(5).astype(dtype) + ser = Series(arr) + ser = ser.astype(object) + ser.iloc[0] = np.timedelta64(4, "ns") + return ser + + @pytest.fixture + def key(self): + return 0 + + @pytest.fixture + def warn(self): + return FutureWarning + + +class TestSetitemDT64IntoInt(SetitemCastingEquivalents): + # GH#39619 dont cast dt64 to int when doing this setitem + + @pytest.fixture(params=["M8[ns]", "m8[ns]"]) + def dtype(self, request): + return request.param + + @pytest.fixture + def scalar(self, dtype): + val = np.datetime64("2021-01-18 13:25:00", "ns") + if dtype == "m8[ns]": + val = val - val + return val + + @pytest.fixture + def expected(self, scalar): + expected = Series([scalar, scalar, 3], dtype=object) + assert isinstance(expected[0], type(scalar)) + return expected + + @pytest.fixture + def obj(self): + return Series([1, 2, 3]) + + @pytest.fixture + def key(self): + return slice(None, -1) + + @pytest.fixture(params=[None, list, np.array]) + def val(self, scalar, request): + box = request.param + if box is None: + return scalar + return box([scalar, scalar]) + + @pytest.fixture + def warn(self): + return FutureWarning + + +class TestSetitemNAPeriodDtype(SetitemCastingEquivalents): + # Setting compatible NA values into Series with PeriodDtype + + @pytest.fixture + def expected(self, key): + exp = Series(period_range("2000-01-01", periods=10, freq="D")) + exp._values.view("i8")[key] = NaT._value + assert exp[key] is NaT or all(x is NaT for x in exp[key]) + return exp + + @pytest.fixture + def obj(self): + return Series(period_range("2000-01-01", periods=10, freq="D")) + + @pytest.fixture(params=[3, slice(3, 5)]) + def key(self, request): + return request.param + + @pytest.fixture(params=[None, np.nan]) + def val(self, request): + return request.param + + @pytest.fixture + def warn(self): + return None + + +class TestSetitemNADatetimeLikeDtype(SetitemCastingEquivalents): + # some nat-like values should be cast to datetime64/timedelta64 when + # inserting into a datetime64/timedelta64 series. Others should coerce + # to object and retain their dtypes. + # GH#18586 for td64 and boolean mask case + + @pytest.fixture( + params=["m8[ns]", "M8[ns]", "datetime64[ns, UTC]", "datetime64[ns, US/Central]"] + ) + def dtype(self, request): + return request.param + + @pytest.fixture + def obj(self, dtype): + i8vals = date_range("2016-01-01", periods=3).asi8 + idx = Index(i8vals, dtype=dtype) + assert idx.dtype == dtype + return Series(idx) + + @pytest.fixture( + params=[ + None, + np.nan, + NaT, + np.timedelta64("NaT", "ns"), + np.datetime64("NaT", "ns"), + ] + ) + def val(self, request): + return request.param + + @pytest.fixture + def is_inplace(self, val, obj): + # td64 -> cast to object iff val is datetime64("NaT") + # dt64 -> cast to object iff val is timedelta64("NaT") + # dt64tz -> cast to object with anything _but_ NaT + return val is NaT or val is None or val is np.nan or obj.dtype == val.dtype + + @pytest.fixture + def expected(self, obj, val, is_inplace): + dtype = obj.dtype if is_inplace else object + expected = Series([val] + list(obj[1:]), dtype=dtype) + return expected + + @pytest.fixture + def key(self): + return 0 + + @pytest.fixture + def warn(self, is_inplace): + return None if is_inplace else FutureWarning + + +class TestSetitemMismatchedTZCastsToObject(SetitemCastingEquivalents): + # GH#24024 + @pytest.fixture + def obj(self): + return Series(date_range("2000", periods=2, tz="US/Central")) + + @pytest.fixture + def val(self): + return Timestamp("2000", tz="US/Eastern") + + @pytest.fixture + def key(self): + return 0 + + @pytest.fixture + def expected(self, obj, val): + # pre-2.0 this would cast to object, in 2.0 we cast the val to + # the target tz + expected = Series( + [ + val.tz_convert("US/Central"), + Timestamp("2000-01-02 00:00:00-06:00", tz="US/Central"), + ], + dtype=obj.dtype, + ) + return expected + + @pytest.fixture + def warn(self): + return None + + +@pytest.mark.parametrize( + "obj,expected,warn", + [ + # For numeric series, we should coerce to NaN. + (Series([1, 2, 3]), Series([np.nan, 2, 3]), None), + (Series([1.0, 2.0, 3.0]), Series([np.nan, 2.0, 3.0]), None), + # For datetime series, we should coerce to NaT. + ( + Series([datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]), + Series([NaT, datetime(2000, 1, 2), datetime(2000, 1, 3)]), + None, + ), + # For objects, we should preserve the None value. + (Series(["foo", "bar", "baz"]), Series([None, "bar", "baz"]), None), + ], +) +class TestSeriesNoneCoercion(SetitemCastingEquivalents): + @pytest.fixture + def key(self): + return 0 + + @pytest.fixture + def val(self): + return None + + +class TestSetitemFloatIntervalWithIntIntervalValues(SetitemCastingEquivalents): + # GH#44201 Cast to shared IntervalDtype rather than object + + def test_setitem_example(self): + # Just a case here to make obvious what this test class is aimed at + idx = IntervalIndex.from_breaks(range(4)) + obj = Series(idx) + val = Interval(0.5, 1.5) + + with tm.assert_produces_warning( + FutureWarning, match="Setting an item of incompatible dtype" + ): + obj[0] = val + assert obj.dtype == "Interval[float64, right]" + + @pytest.fixture + def obj(self): + idx = IntervalIndex.from_breaks(range(4)) + return Series(idx) + + @pytest.fixture + def val(self): + return Interval(0.5, 1.5) + + @pytest.fixture + def key(self): + return 0 + + @pytest.fixture + def expected(self, obj, val): + data = [val] + list(obj[1:]) + idx = IntervalIndex(data, dtype="Interval[float64]") + return Series(idx) + + @pytest.fixture + def warn(self): + return FutureWarning + + +class TestSetitemRangeIntoIntegerSeries(SetitemCastingEquivalents): + # GH#44261 Setting a range with sufficiently-small integers into + # small-itemsize integer dtypes should not need to upcast + + @pytest.fixture + def obj(self, any_int_numpy_dtype): + dtype = np.dtype(any_int_numpy_dtype) + ser = Series(range(5), dtype=dtype) + return ser + + @pytest.fixture + def val(self): + return range(2, 4) + + @pytest.fixture + def key(self): + return slice(0, 2) + + @pytest.fixture + def expected(self, any_int_numpy_dtype): + dtype = np.dtype(any_int_numpy_dtype) + exp = Series([2, 3, 2, 3, 4], dtype=dtype) + return exp + + @pytest.fixture + def warn(self): + return None + + +@pytest.mark.parametrize( + "val, warn", + [ + (np.array([2.0, 3.0]), None), + (np.array([2.5, 3.5]), FutureWarning), + ( + np.array([2**65, 2**65 + 1], dtype=np.float64), + FutureWarning, + ), # all ints, but can't cast + ], +) +class TestSetitemFloatNDarrayIntoIntegerSeries(SetitemCastingEquivalents): + @pytest.fixture + def obj(self): + return Series(range(5), dtype=np.int64) + + @pytest.fixture + def key(self): + return slice(0, 2) + + @pytest.fixture + def expected(self, val): + if val[0] == 2: + # NB: this condition is based on currently-hardcoded "val" cases + dtype = np.int64 + else: + dtype = np.float64 + res_values = np.array(range(5), dtype=dtype) + res_values[:2] = val + return Series(res_values) + + +@pytest.mark.parametrize("val", [512, np.int16(512)]) +class TestSetitemIntoIntegerSeriesNeedsUpcast(SetitemCastingEquivalents): + @pytest.fixture + def obj(self): + return Series([1, 2, 3], dtype=np.int8) + + @pytest.fixture + def key(self): + return 1 + + @pytest.fixture + def expected(self): + return Series([1, 512, 3], dtype=np.int16) + + @pytest.fixture + def warn(self): + return FutureWarning + + +@pytest.mark.parametrize("val", [2**33 + 1.0, 2**33 + 1.1, 2**62]) +class TestSmallIntegerSetitemUpcast(SetitemCastingEquivalents): + # https://github.com/pandas-dev/pandas/issues/39584#issuecomment-941212124 + @pytest.fixture + def obj(self): + return Series([1, 2, 3], dtype="i4") + + @pytest.fixture + def key(self): + return 0 + + @pytest.fixture + def expected(self, val): + if val % 1 != 0: + dtype = "f8" + else: + dtype = "i8" + return Series([val, 2, 3], dtype=dtype) + + @pytest.fixture + def warn(self): + return FutureWarning + + +class CoercionTest(SetitemCastingEquivalents): + # Tests ported from tests.indexing.test_coercion + + @pytest.fixture + def key(self): + return 1 + + @pytest.fixture + def expected(self, obj, key, val, exp_dtype): + vals = list(obj) + vals[key] = val + return Series(vals, dtype=exp_dtype) + + +@pytest.mark.parametrize( + "val,exp_dtype,warn", + [(np.int32(1), np.int8, None), (np.int16(2**9), np.int16, FutureWarning)], +) +class TestCoercionInt8(CoercionTest): + # previously test_setitem_series_int8 in tests.indexing.test_coercion + @pytest.fixture + def obj(self): + return Series([1, 2, 3, 4], dtype=np.int8) + + +@pytest.mark.parametrize("val", [1, 1.1, 1 + 1j, True]) +@pytest.mark.parametrize("exp_dtype", [object]) +class TestCoercionObject(CoercionTest): + # previously test_setitem_series_object in tests.indexing.test_coercion + @pytest.fixture + def obj(self): + return Series(["a", "b", "c", "d"], dtype=object) + + @pytest.fixture + def warn(self): + return None + + +@pytest.mark.parametrize( + "val,exp_dtype,warn", + [ + (1, np.complex128, None), + (1.1, np.complex128, None), + (1 + 1j, np.complex128, None), + (True, object, FutureWarning), + ], +) +class TestCoercionComplex(CoercionTest): + # previously test_setitem_series_complex128 in tests.indexing.test_coercion + @pytest.fixture + def obj(self): + return Series([1 + 1j, 2 + 2j, 3 + 3j, 4 + 4j]) + + +@pytest.mark.parametrize( + "val,exp_dtype,warn", + [ + (1, object, FutureWarning), + ("3", object, FutureWarning), + (3, object, FutureWarning), + (1.1, object, FutureWarning), + (1 + 1j, object, FutureWarning), + (True, bool, None), + ], +) +class TestCoercionBool(CoercionTest): + # previously test_setitem_series_bool in tests.indexing.test_coercion + @pytest.fixture + def obj(self): + return Series([True, False, True, False], dtype=bool) + + +@pytest.mark.parametrize( + "val,exp_dtype,warn", + [ + (1, np.int64, None), + (1.1, np.float64, FutureWarning), + (1 + 1j, np.complex128, FutureWarning), + (True, object, FutureWarning), + ], +) +class TestCoercionInt64(CoercionTest): + # previously test_setitem_series_int64 in tests.indexing.test_coercion + @pytest.fixture + def obj(self): + return Series([1, 2, 3, 4]) + + +@pytest.mark.parametrize( + "val,exp_dtype,warn", + [ + (1, np.float64, None), + (1.1, np.float64, None), + (1 + 1j, np.complex128, FutureWarning), + (True, object, FutureWarning), + ], +) +class TestCoercionFloat64(CoercionTest): + # previously test_setitem_series_float64 in tests.indexing.test_coercion + @pytest.fixture + def obj(self): + return Series([1.1, 2.2, 3.3, 4.4]) + + +@pytest.mark.parametrize( + "val,exp_dtype,warn", + [ + (1, np.float32, None), + pytest.param( + 1.1, + np.float32, + None, + marks=pytest.mark.xfail( + ( + not np_version_gte1p24 + or (np_version_gte1p24 and np._get_promotion_state() != "weak") + ), + reason="np.float32(1.1) ends up as 1.100000023841858, so " + "np_can_hold_element raises and we cast to float64", + ), + ), + (1 + 1j, np.complex128, FutureWarning), + (True, object, FutureWarning), + (np.uint8(2), np.float32, None), + (np.uint32(2), np.float32, None), + # float32 cannot hold np.iinfo(np.uint32).max exactly + # (closest it can hold is 4294967300.0 which off by 5.0), so + # we cast to float64 + (np.uint32(np.iinfo(np.uint32).max), np.float64, FutureWarning), + (np.uint64(2), np.float32, None), + (np.int64(2), np.float32, None), + ], +) +class TestCoercionFloat32(CoercionTest): + @pytest.fixture + def obj(self): + return Series([1.1, 2.2, 3.3, 4.4], dtype=np.float32) + + def test_slice_key(self, obj, key, expected, warn, val, indexer_sli, is_inplace): + super().test_slice_key(obj, key, expected, warn, val, indexer_sli, is_inplace) + + if isinstance(val, float): + # the xfail would xpass bc test_slice_key short-circuits + raise AssertionError("xfail not relevant for this test.") + + +@pytest.mark.parametrize( + "val,exp_dtype,warn", + [ + (Timestamp("2012-01-01"), "datetime64[ns]", None), + (1, object, FutureWarning), + ("x", object, FutureWarning), + ], +) +class TestCoercionDatetime64(CoercionTest): + # previously test_setitem_series_datetime64 in tests.indexing.test_coercion + + @pytest.fixture + def obj(self): + return Series(date_range("2011-01-01", freq="D", periods=4)) + + @pytest.fixture + def warn(self): + return None + + +@pytest.mark.parametrize( + "val,exp_dtype,warn", + [ + (Timestamp("2012-01-01", tz="US/Eastern"), "datetime64[ns, US/Eastern]", None), + # pre-2.0, a mis-matched tz would end up casting to object + (Timestamp("2012-01-01", tz="US/Pacific"), "datetime64[ns, US/Eastern]", None), + (Timestamp("2012-01-01"), object, FutureWarning), + (1, object, FutureWarning), + ], +) +class TestCoercionDatetime64TZ(CoercionTest): + # previously test_setitem_series_datetime64tz in tests.indexing.test_coercion + @pytest.fixture + def obj(self): + tz = "US/Eastern" + return Series(date_range("2011-01-01", freq="D", periods=4, tz=tz)) + + @pytest.fixture + def warn(self): + return None + + +@pytest.mark.parametrize( + "val,exp_dtype,warn", + [ + (Timedelta("12 day"), "timedelta64[ns]", None), + (1, object, FutureWarning), + ("x", object, FutureWarning), + ], +) +class TestCoercionTimedelta64(CoercionTest): + # previously test_setitem_series_timedelta64 in tests.indexing.test_coercion + @pytest.fixture + def obj(self): + return Series(timedelta_range("1 day", periods=4)) + + @pytest.fixture + def warn(self): + return None + + +@pytest.mark.parametrize( + "val", ["foo", Period("2016", freq="Y"), Interval(1, 2, closed="both")] +) +@pytest.mark.parametrize("exp_dtype", [object]) +class TestPeriodIntervalCoercion(CoercionTest): + # GH#45768 + @pytest.fixture( + params=[ + period_range("2016-01-01", periods=3, freq="D"), + interval_range(1, 5), + ] + ) + def obj(self, request): + return Series(request.param) + + @pytest.fixture + def warn(self): + return FutureWarning + + +def test_20643(): + # closed by GH#45121 + orig = Series([0, 1, 2], index=["a", "b", "c"]) + + expected = Series([0, 2.7, 2], index=["a", "b", "c"]) + + ser = orig.copy() + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + ser.at["b"] = 2.7 + tm.assert_series_equal(ser, expected) + + ser = orig.copy() + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + ser.loc["b"] = 2.7 + tm.assert_series_equal(ser, expected) + + ser = orig.copy() + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + ser["b"] = 2.7 + tm.assert_series_equal(ser, expected) + + ser = orig.copy() + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + ser.iat[1] = 2.7 + tm.assert_series_equal(ser, expected) + + ser = orig.copy() + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + ser.iloc[1] = 2.7 + tm.assert_series_equal(ser, expected) + + orig_df = orig.to_frame("A") + expected_df = expected.to_frame("A") + + df = orig_df.copy() + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + df.at["b", "A"] = 2.7 + tm.assert_frame_equal(df, expected_df) + + df = orig_df.copy() + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + df.loc["b", "A"] = 2.7 + tm.assert_frame_equal(df, expected_df) + + df = orig_df.copy() + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + df.iloc[1, 0] = 2.7 + tm.assert_frame_equal(df, expected_df) + + df = orig_df.copy() + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + df.iat[1, 0] = 2.7 + tm.assert_frame_equal(df, expected_df) + + +def test_20643_comment(): + # https://github.com/pandas-dev/pandas/issues/20643#issuecomment-431244590 + # fixed sometime prior to GH#45121 + orig = Series([0, 1, 2], index=["a", "b", "c"]) + expected = Series([np.nan, 1, 2], index=["a", "b", "c"]) + + ser = orig.copy() + ser.iat[0] = None + tm.assert_series_equal(ser, expected) + + ser = orig.copy() + ser.iloc[0] = None + tm.assert_series_equal(ser, expected) + + +def test_15413(): + # fixed by GH#45121 + ser = Series([1, 2, 3]) + + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + ser[ser == 2] += 0.5 + expected = Series([1, 2.5, 3]) + tm.assert_series_equal(ser, expected) + + ser = Series([1, 2, 3]) + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + ser[1] += 0.5 + tm.assert_series_equal(ser, expected) + + ser = Series([1, 2, 3]) + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + ser.loc[1] += 0.5 + tm.assert_series_equal(ser, expected) + + ser = Series([1, 2, 3]) + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + ser.iloc[1] += 0.5 + tm.assert_series_equal(ser, expected) + + ser = Series([1, 2, 3]) + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + ser.iat[1] += 0.5 + tm.assert_series_equal(ser, expected) + + ser = Series([1, 2, 3]) + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + ser.at[1] += 0.5 + tm.assert_series_equal(ser, expected) + + +def test_32878_int_itemsize(): + # Fixed by GH#45121 + arr = np.arange(5).astype("i4") + ser = Series(arr) + val = np.int64(np.iinfo(np.int64).max) + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + ser[0] = val + expected = Series([val, 1, 2, 3, 4], dtype=np.int64) + tm.assert_series_equal(ser, expected) + + +def test_32878_complex_itemsize(): + arr = np.arange(5).astype("c8") + ser = Series(arr) + val = np.finfo(np.float64).max + val = val.astype("c16") + + # GH#32878 used to coerce val to inf+0.000000e+00j + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + ser[0] = val + assert ser[0] == val + expected = Series([val, 1, 2, 3, 4], dtype="c16") + tm.assert_series_equal(ser, expected) + + +def test_37692(indexer_al): + # GH#37692 + ser = Series([1, 2, 3], index=["a", "b", "c"]) + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + indexer_al(ser)["b"] = "test" + expected = Series([1, "test", 3], index=["a", "b", "c"], dtype=object) + tm.assert_series_equal(ser, expected) + + +def test_setitem_bool_int_float_consistency(indexer_sli): + # GH#21513 + # bool-with-int and bool-with-float both upcast to object + # int-with-float and float-with-int are both non-casting so long + # as the setitem can be done losslessly + for dtype in [np.float64, np.int64]: + ser = Series(0, index=range(3), dtype=dtype) + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + indexer_sli(ser)[0] = True + assert ser.dtype == object + + ser = Series(0, index=range(3), dtype=bool) + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + ser[0] = dtype(1) + assert ser.dtype == object + + # 1.0 can be held losslessly, so no casting + ser = Series(0, index=range(3), dtype=np.int64) + indexer_sli(ser)[0] = np.float64(1.0) + assert ser.dtype == np.int64 + + # 1 can be held losslessly, so no casting + ser = Series(0, index=range(3), dtype=np.float64) + indexer_sli(ser)[0] = np.int64(1) + + +def test_setitem_positional_with_casting(): + # GH#45070 case where in __setitem__ we get a KeyError, then when + # we fallback we *also* get a ValueError if we try to set inplace. + ser = Series([1, 2, 3], index=["a", "b", "c"]) + + warn_msg = "Series.__setitem__ treating keys as positions is deprecated" + with tm.assert_produces_warning(FutureWarning, match=warn_msg): + ser[0] = "X" + expected = Series(["X", 2, 3], index=["a", "b", "c"], dtype=object) + tm.assert_series_equal(ser, expected) + + +def test_setitem_positional_float_into_int_coerces(): + # Case where we hit a KeyError and then trying to set in-place incorrectly + # casts a float to an int + ser = Series([1, 2, 3], index=["a", "b", "c"]) + + warn_msg = "Series.__setitem__ treating keys as positions is deprecated" + with tm.assert_produces_warning(FutureWarning, match=warn_msg): + ser[0] = 1.5 + expected = Series([1.5, 2, 3], index=["a", "b", "c"]) + tm.assert_series_equal(ser, expected) + + +def test_setitem_int_not_positional(): + # GH#42215 deprecated falling back to positional on __setitem__ with an + # int not contained in the index; enforced in 2.0 + ser = Series([1, 2, 3, 4], index=[1.1, 2.1, 3.0, 4.1]) + assert not ser.index._should_fallback_to_positional + # assert not ser.index.astype(object)._should_fallback_to_positional + + # 3.0 is in our index, so post-enforcement behavior is unchanged + ser[3] = 10 + expected = Series([1, 2, 10, 4], index=ser.index) + tm.assert_series_equal(ser, expected) + + # pre-enforcement `ser[5] = 5` raised IndexError + ser[5] = 5 + expected = Series([1, 2, 10, 4, 5], index=[1.1, 2.1, 3.0, 4.1, 5.0]) + tm.assert_series_equal(ser, expected) + + ii = IntervalIndex.from_breaks(range(10))[::2] + ser2 = Series(range(len(ii)), index=ii) + exp_index = ii.astype(object).append(Index([4])) + expected2 = Series([0, 1, 2, 3, 4, 9], index=exp_index) + # pre-enforcement `ser2[4] = 9` interpreted 4 as positional + ser2[4] = 9 + tm.assert_series_equal(ser2, expected2) + + mi = MultiIndex.from_product([ser.index, ["A", "B"]]) + ser3 = Series(range(len(mi)), index=mi) + expected3 = ser3.copy() + expected3.loc[4] = 99 + # pre-enforcement `ser3[4] = 99` interpreted 4 as positional + ser3[4] = 99 + tm.assert_series_equal(ser3, expected3) + + +def test_setitem_with_bool_indexer(): + # GH#42530 + + df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) + result = df.pop("b").copy() + result[[True, False, False]] = 9 + expected = Series(data=[9, 5, 6], name="b") + tm.assert_series_equal(result, expected) + + df.loc[[True, False, False], "a"] = 10 + expected = DataFrame({"a": [10, 2, 3]}) + tm.assert_frame_equal(df, expected) + + +@pytest.mark.parametrize("size", range(2, 6)) +@pytest.mark.parametrize( + "mask", [[True, False, False, False, False], [True, False], [False]] +) +@pytest.mark.parametrize( + "item", [2.0, np.nan, np.finfo(float).max, np.finfo(float).min] +) +# Test numpy arrays, lists and tuples as the input to be +# broadcast +@pytest.mark.parametrize( + "box", [lambda x: np.array([x]), lambda x: [x], lambda x: (x,)] +) +def test_setitem_bool_indexer_dont_broadcast_length1_values(size, mask, item, box): + # GH#44265 + # see also tests.series.indexing.test_where.test_broadcast + + selection = np.resize(mask, size) + + data = np.arange(size, dtype=float) + + ser = Series(data) + + if selection.sum() != 1: + msg = ( + "cannot set using a list-like indexer with a different " + "length than the value" + ) + with pytest.raises(ValueError, match=msg): + # GH#44265 + ser[selection] = box(item) + else: + # In this corner case setting is equivalent to setting with the unboxed + # item + ser[selection] = box(item) + + expected = Series(np.arange(size, dtype=float)) + expected[selection] = item + tm.assert_series_equal(ser, expected) + + +def test_setitem_empty_mask_dont_upcast_dt64(): + dti = date_range("2016-01-01", periods=3) + ser = Series(dti) + orig = ser.copy() + mask = np.zeros(3, dtype=bool) + + ser[mask] = "foo" + assert ser.dtype == dti.dtype # no-op -> dont upcast + tm.assert_series_equal(ser, orig) + + ser.mask(mask, "foo", inplace=True) + assert ser.dtype == dti.dtype # no-op -> dont upcast + tm.assert_series_equal(ser, orig) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_take.py b/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_take.py new file mode 100644 index 0000000000000000000000000000000000000000..43fbae89089665fb2bf589d35db1b3f3041dd018 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_take.py @@ -0,0 +1,50 @@ +import pytest + +import pandas as pd +from pandas import Series +import pandas._testing as tm + + +def test_take_validate_axis(): + # GH#51022 + ser = Series([-1, 5, 6, 2, 4]) + + msg = "No axis named foo for object type Series" + with pytest.raises(ValueError, match=msg): + ser.take([1, 2], axis="foo") + + +def test_take(): + ser = Series([-1, 5, 6, 2, 4]) + + actual = ser.take([1, 3, 4]) + expected = Series([5, 2, 4], index=[1, 3, 4]) + tm.assert_series_equal(actual, expected) + + actual = ser.take([-1, 3, 4]) + expected = Series([4, 2, 4], index=[4, 3, 4]) + tm.assert_series_equal(actual, expected) + + msg = "indices are out-of-bounds" + with pytest.raises(IndexError, match=msg): + ser.take([1, 10]) + with pytest.raises(IndexError, match=msg): + ser.take([2, 5]) + + +def test_take_categorical(): + # https://github.com/pandas-dev/pandas/issues/20664 + ser = Series(pd.Categorical(["a", "b", "c"])) + result = ser.take([-2, -2, 0]) + expected = Series( + pd.Categorical(["b", "b", "a"], categories=["a", "b", "c"]), index=[1, 1, 0] + ) + tm.assert_series_equal(result, expected) + + +def test_take_slice_raises(): + ser = Series([-1, 5, 6, 2, 4]) + + msg = "Series.take requires a sequence of integers, not slice" + with pytest.raises(TypeError, match=msg): + ser.take(slice(0, 3, 1)) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_where.py b/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_where.py new file mode 100644 index 0000000000000000000000000000000000000000..c978481ca99886bb12d3d8b2d54eeed46de73532 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_where.py @@ -0,0 +1,481 @@ +import numpy as np +import pytest + +from pandas._config import using_pyarrow_string_dtype + +from pandas.core.dtypes.common import is_integer + +import pandas as pd +from pandas import ( + Series, + Timestamp, + date_range, + isna, +) +import pandas._testing as tm + + +def test_where_unsafe_int(any_signed_int_numpy_dtype): + s = Series(np.arange(10), dtype=any_signed_int_numpy_dtype) + mask = s < 5 + + s[mask] = range(2, 7) + expected = Series( + list(range(2, 7)) + list(range(5, 10)), + dtype=any_signed_int_numpy_dtype, + ) + + tm.assert_series_equal(s, expected) + + +def test_where_unsafe_float(float_numpy_dtype): + s = Series(np.arange(10), dtype=float_numpy_dtype) + mask = s < 5 + + s[mask] = range(2, 7) + data = list(range(2, 7)) + list(range(5, 10)) + expected = Series(data, dtype=float_numpy_dtype) + + tm.assert_series_equal(s, expected) + + +@pytest.mark.parametrize( + "dtype,expected_dtype", + [ + (np.int8, np.float64), + (np.int16, np.float64), + (np.int32, np.float64), + (np.int64, np.float64), + (np.float32, np.float32), + (np.float64, np.float64), + ], +) +def test_where_unsafe_upcast(dtype, expected_dtype): + # see gh-9743 + s = Series(np.arange(10), dtype=dtype) + values = [2.5, 3.5, 4.5, 5.5, 6.5] + mask = s < 5 + expected = Series(values + list(range(5, 10)), dtype=expected_dtype) + warn = ( + None + if np.dtype(dtype).kind == np.dtype(expected_dtype).kind == "f" + else FutureWarning + ) + with tm.assert_produces_warning(warn, match="incompatible dtype"): + s[mask] = values + tm.assert_series_equal(s, expected) + + +def test_where_unsafe(): + # see gh-9731 + s = Series(np.arange(10), dtype="int64") + values = [2.5, 3.5, 4.5, 5.5] + + mask = s > 5 + expected = Series(list(range(6)) + values, dtype="float64") + + with tm.assert_produces_warning(FutureWarning, match="incompatible dtype"): + s[mask] = values + tm.assert_series_equal(s, expected) + + # see gh-3235 + s = Series(np.arange(10), dtype="int64") + mask = s < 5 + s[mask] = range(2, 7) + expected = Series(list(range(2, 7)) + list(range(5, 10)), dtype="int64") + tm.assert_series_equal(s, expected) + assert s.dtype == expected.dtype + + s = Series(np.arange(10), dtype="int64") + mask = s > 5 + s[mask] = [0] * 4 + expected = Series([0, 1, 2, 3, 4, 5] + [0] * 4, dtype="int64") + tm.assert_series_equal(s, expected) + + s = Series(np.arange(10)) + mask = s > 5 + + msg = "cannot set using a list-like indexer with a different length than the value" + with pytest.raises(ValueError, match=msg): + s[mask] = [5, 4, 3, 2, 1] + + with pytest.raises(ValueError, match=msg): + s[mask] = [0] * 5 + + # dtype changes + s = Series([1, 2, 3, 4]) + result = s.where(s > 2, np.nan) + expected = Series([np.nan, np.nan, 3, 4]) + tm.assert_series_equal(result, expected) + + # GH 4667 + # setting with None changes dtype + s = Series(range(10)).astype(float) + s[8] = None + result = s[8] + assert isna(result) + + s = Series(range(10)).astype(float) + s[s > 8] = None + result = s[isna(s)] + expected = Series(np.nan, index=[9]) + tm.assert_series_equal(result, expected) + + +def test_where(): + s = Series(np.random.default_rng(2).standard_normal(5)) + cond = s > 0 + + rs = s.where(cond).dropna() + rs2 = s[cond] + tm.assert_series_equal(rs, rs2) + + rs = s.where(cond, -s) + tm.assert_series_equal(rs, s.abs()) + + rs = s.where(cond) + assert s.shape == rs.shape + assert rs is not s + + # test alignment + cond = Series([True, False, False, True, False], index=s.index) + s2 = -(s.abs()) + + expected = s2[cond].reindex(s2.index[:3]).reindex(s2.index) + rs = s2.where(cond[:3]) + tm.assert_series_equal(rs, expected) + + expected = s2.abs() + expected.iloc[0] = s2[0] + rs = s2.where(cond[:3], -s2) + tm.assert_series_equal(rs, expected) + + +def test_where_error(): + s = Series(np.random.default_rng(2).standard_normal(5)) + cond = s > 0 + + msg = "Array conditional must be same shape as self" + with pytest.raises(ValueError, match=msg): + s.where(1) + with pytest.raises(ValueError, match=msg): + s.where(cond[:3].values, -s) + + # GH 2745 + s = Series([1, 2]) + s[[True, False]] = [0, 1] + expected = Series([0, 2]) + tm.assert_series_equal(s, expected) + + # failures + msg = "cannot set using a list-like indexer with a different length than the value" + with pytest.raises(ValueError, match=msg): + s[[True, False]] = [0, 2, 3] + + with pytest.raises(ValueError, match=msg): + s[[True, False]] = [] + + +@pytest.mark.parametrize("klass", [list, tuple, np.array, Series]) +def test_where_array_like(klass): + # see gh-15414 + s = Series([1, 2, 3]) + cond = [False, True, True] + expected = Series([np.nan, 2, 3]) + + result = s.where(klass(cond)) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize( + "cond", + [ + [1, 0, 1], + Series([2, 5, 7]), + ["True", "False", "True"], + [Timestamp("2017-01-01"), pd.NaT, Timestamp("2017-01-02")], + ], +) +def test_where_invalid_input(cond): + # see gh-15414: only boolean arrays accepted + s = Series([1, 2, 3]) + msg = "Boolean array expected for the condition" + + with pytest.raises(ValueError, match=msg): + s.where(cond) + + msg = "Array conditional must be same shape as self" + with pytest.raises(ValueError, match=msg): + s.where([True]) + + +def test_where_ndframe_align(): + msg = "Array conditional must be same shape as self" + s = Series([1, 2, 3]) + + cond = [True] + with pytest.raises(ValueError, match=msg): + s.where(cond) + + expected = Series([1, np.nan, np.nan]) + + out = s.where(Series(cond)) + tm.assert_series_equal(out, expected) + + cond = np.array([False, True, False, True]) + with pytest.raises(ValueError, match=msg): + s.where(cond) + + expected = Series([np.nan, 2, np.nan]) + + out = s.where(Series(cond)) + tm.assert_series_equal(out, expected) + + +@pytest.mark.xfail(using_pyarrow_string_dtype(), reason="can't set ints into string") +def test_where_setitem_invalid(): + # GH 2702 + # make sure correct exceptions are raised on invalid list assignment + + msg = ( + lambda x: f"cannot set using a {x} indexer with a " + "different length than the value" + ) + # slice + s = Series(list("abc")) + + with pytest.raises(ValueError, match=msg("slice")): + s[0:3] = list(range(27)) + + s[0:3] = list(range(3)) + expected = Series([0, 1, 2]) + tm.assert_series_equal(s.astype(np.int64), expected) + + # slice with step + s = Series(list("abcdef")) + + with pytest.raises(ValueError, match=msg("slice")): + s[0:4:2] = list(range(27)) + + s = Series(list("abcdef")) + s[0:4:2] = list(range(2)) + expected = Series([0, "b", 1, "d", "e", "f"]) + tm.assert_series_equal(s, expected) + + # neg slices + s = Series(list("abcdef")) + + with pytest.raises(ValueError, match=msg("slice")): + s[:-1] = list(range(27)) + + s[-3:-1] = list(range(2)) + expected = Series(["a", "b", "c", 0, 1, "f"]) + tm.assert_series_equal(s, expected) + + # list + s = Series(list("abc")) + + with pytest.raises(ValueError, match=msg("list-like")): + s[[0, 1, 2]] = list(range(27)) + + s = Series(list("abc")) + + with pytest.raises(ValueError, match=msg("list-like")): + s[[0, 1, 2]] = list(range(2)) + + # scalar + s = Series(list("abc")) + s[0] = list(range(10)) + expected = Series([list(range(10)), "b", "c"]) + tm.assert_series_equal(s, expected) + + +@pytest.mark.parametrize("size", range(2, 6)) +@pytest.mark.parametrize( + "mask", [[True, False, False, False, False], [True, False], [False]] +) +@pytest.mark.parametrize( + "item", [2.0, np.nan, np.finfo(float).max, np.finfo(float).min] +) +# Test numpy arrays, lists and tuples as the input to be +# broadcast +@pytest.mark.parametrize( + "box", [lambda x: np.array([x]), lambda x: [x], lambda x: (x,)] +) +def test_broadcast(size, mask, item, box): + # GH#8801, GH#4195 + selection = np.resize(mask, size) + + data = np.arange(size, dtype=float) + + # Construct the expected series by taking the source + # data or item based on the selection + expected = Series( + [item if use_item else data[i] for i, use_item in enumerate(selection)] + ) + + s = Series(data) + + s[selection] = item + tm.assert_series_equal(s, expected) + + s = Series(data) + result = s.where(~selection, box(item)) + tm.assert_series_equal(result, expected) + + s = Series(data) + result = s.mask(selection, box(item)) + tm.assert_series_equal(result, expected) + + +def test_where_inplace(): + s = Series(np.random.default_rng(2).standard_normal(5)) + cond = s > 0 + + rs = s.copy() + + rs.where(cond, inplace=True) + tm.assert_series_equal(rs.dropna(), s[cond]) + tm.assert_series_equal(rs, s.where(cond)) + + rs = s.copy() + rs.where(cond, -s, inplace=True) + tm.assert_series_equal(rs, s.where(cond, -s)) + + +def test_where_dups(): + # GH 4550 + # where crashes with dups in index + s1 = Series(list(range(3))) + s2 = Series(list(range(3))) + comb = pd.concat([s1, s2]) + result = comb.where(comb < 2) + expected = Series([0, 1, np.nan, 0, 1, np.nan], index=[0, 1, 2, 0, 1, 2]) + tm.assert_series_equal(result, expected) + + # GH 4548 + # inplace updating not working with dups + comb[comb < 1] = 5 + expected = Series([5, 1, 2, 5, 1, 2], index=[0, 1, 2, 0, 1, 2]) + tm.assert_series_equal(comb, expected) + + comb[comb < 2] += 10 + expected = Series([5, 11, 2, 5, 11, 2], index=[0, 1, 2, 0, 1, 2]) + tm.assert_series_equal(comb, expected) + + +def test_where_numeric_with_string(): + # GH 9280 + s = Series([1, 2, 3]) + w = s.where(s > 1, "X") + + assert not is_integer(w[0]) + assert is_integer(w[1]) + assert is_integer(w[2]) + assert isinstance(w[0], str) + assert w.dtype == "object" + + w = s.where(s > 1, ["X", "Y", "Z"]) + assert not is_integer(w[0]) + assert is_integer(w[1]) + assert is_integer(w[2]) + assert isinstance(w[0], str) + assert w.dtype == "object" + + w = s.where(s > 1, np.array(["X", "Y", "Z"])) + assert not is_integer(w[0]) + assert is_integer(w[1]) + assert is_integer(w[2]) + assert isinstance(w[0], str) + assert w.dtype == "object" + + +@pytest.mark.parametrize("dtype", ["timedelta64[ns]", "datetime64[ns]"]) +def test_where_datetimelike_coerce(dtype): + ser = Series([1, 2], dtype=dtype) + expected = Series([10, 10]) + mask = np.array([False, False]) + + msg = "Downcasting behavior in Series and DataFrame methods 'where'" + with tm.assert_produces_warning(FutureWarning, match=msg): + rs = ser.where(mask, [10, 10]) + tm.assert_series_equal(rs, expected) + + with tm.assert_produces_warning(FutureWarning, match=msg): + rs = ser.where(mask, 10) + tm.assert_series_equal(rs, expected) + + with tm.assert_produces_warning(FutureWarning, match=msg): + rs = ser.where(mask, 10.0) + tm.assert_series_equal(rs, expected) + + with tm.assert_produces_warning(FutureWarning, match=msg): + rs = ser.where(mask, [10.0, 10.0]) + tm.assert_series_equal(rs, expected) + + rs = ser.where(mask, [10.0, np.nan]) + expected = Series([10, np.nan], dtype="object") + tm.assert_series_equal(rs, expected) + + +def test_where_datetimetz(): + # GH 15701 + timestamps = ["2016-12-31 12:00:04+00:00", "2016-12-31 12:00:04.010000+00:00"] + ser = Series([Timestamp(t) for t in timestamps], dtype="datetime64[ns, UTC]") + rs = ser.where(Series([False, True])) + expected = Series([pd.NaT, ser[1]], dtype="datetime64[ns, UTC]") + tm.assert_series_equal(rs, expected) + + +def test_where_sparse(): + # GH#17198 make sure we dont get an AttributeError for sp_index + ser = Series(pd.arrays.SparseArray([1, 2])) + result = ser.where(ser >= 2, 0) + expected = Series(pd.arrays.SparseArray([0, 2])) + tm.assert_series_equal(result, expected) + + +def test_where_empty_series_and_empty_cond_having_non_bool_dtypes(): + # https://github.com/pandas-dev/pandas/issues/34592 + ser = Series([], dtype=float) + result = ser.where([]) + tm.assert_series_equal(result, ser) + + +def test_where_categorical(frame_or_series): + # https://github.com/pandas-dev/pandas/issues/18888 + exp = frame_or_series( + pd.Categorical(["A", "A", "B", "B", np.nan], categories=["A", "B", "C"]), + dtype="category", + ) + df = frame_or_series(["A", "A", "B", "B", "C"], dtype="category") + res = df.where(df != "C") + tm.assert_equal(exp, res) + + +def test_where_datetimelike_categorical(tz_naive_fixture): + # GH#37682 + tz = tz_naive_fixture + + dr = date_range("2001-01-01", periods=3, tz=tz)._with_freq(None) + lvals = pd.DatetimeIndex([dr[0], dr[1], pd.NaT]) + rvals = pd.Categorical([dr[0], pd.NaT, dr[2]]) + + mask = np.array([True, True, False]) + + # DatetimeIndex.where + res = lvals.where(mask, rvals) + tm.assert_index_equal(res, dr) + + # DatetimeArray.where + res = lvals._data._where(mask, rvals) + tm.assert_datetime_array_equal(res, dr._data) + + # Series.where + res = Series(lvals).where(mask, rvals) + tm.assert_series_equal(res, Series(dr)) + + # DataFrame.where + res = pd.DataFrame(lvals).where(mask[:, None], pd.DataFrame(rvals)) + + tm.assert_frame_equal(res, pd.DataFrame(dr)) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_xs.py b/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_xs.py new file mode 100644 index 0000000000000000000000000000000000000000..a67f3ec708f24a97dab544bb5cf859dc54659215 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/indexing/test_xs.py @@ -0,0 +1,82 @@ +import numpy as np +import pytest + +from pandas import ( + MultiIndex, + Series, + date_range, +) +import pandas._testing as tm + + +def test_xs_datetimelike_wrapping(): + # GH#31630 a case where we shouldn't wrap datetime64 in Timestamp + arr = date_range("2016-01-01", periods=3)._data._ndarray + + ser = Series(arr, dtype=object) + for i in range(len(ser)): + ser.iloc[i] = arr[i] + assert ser.dtype == object + assert isinstance(ser[0], np.datetime64) + + result = ser.xs(0) + assert isinstance(result, np.datetime64) + + +class TestXSWithMultiIndex: + def test_xs_level_series(self, multiindex_dataframe_random_data): + df = multiindex_dataframe_random_data + ser = df["A"] + expected = ser[:, "two"] + result = df.xs("two", level=1)["A"] + tm.assert_series_equal(result, expected) + + def test_series_getitem_multiindex_xs_by_label(self): + # GH#5684 + idx = MultiIndex.from_tuples( + [("a", "one"), ("a", "two"), ("b", "one"), ("b", "two")] + ) + ser = Series([1, 2, 3, 4], index=idx) + return_value = ser.index.set_names(["L1", "L2"], inplace=True) + assert return_value is None + expected = Series([1, 3], index=["a", "b"]) + return_value = expected.index.set_names(["L1"], inplace=True) + assert return_value is None + + result = ser.xs("one", level="L2") + tm.assert_series_equal(result, expected) + + def test_series_getitem_multiindex_xs(self): + # GH#6258 + dt = list(date_range("20130903", periods=3)) + idx = MultiIndex.from_product([list("AB"), dt]) + ser = Series([1, 3, 4, 1, 3, 4], index=idx) + expected = Series([1, 1], index=list("AB")) + + result = ser.xs("20130903", level=1) + tm.assert_series_equal(result, expected) + + def test_series_xs_droplevel_false(self): + # GH: 19056 + mi = MultiIndex.from_tuples( + [("a", "x"), ("a", "y"), ("b", "x")], names=["level1", "level2"] + ) + ser = Series([1, 1, 1], index=mi) + result = ser.xs("a", axis=0, drop_level=False) + expected = Series( + [1, 1], + index=MultiIndex.from_tuples( + [("a", "x"), ("a", "y")], names=["level1", "level2"] + ), + ) + tm.assert_series_equal(result, expected) + + def test_xs_key_as_list(self): + # GH#41760 + mi = MultiIndex.from_tuples([("a", "x")], names=["level1", "level2"]) + ser = Series([1], index=mi) + with pytest.raises(TypeError, match="list keys are not supported"): + ser.xs(["a", "x"], axis=0, drop_level=False) + + with pytest.raises(TypeError, match="list keys are not supported"): + ser.xs(["a"], axis=0, drop_level=False) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..28abf62c32a175d6af42a30635bb1a10717e6e7e Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_add_prefix_suffix.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_add_prefix_suffix.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..565a5a4bb65dd96af894da229081d686fc30841a Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_add_prefix_suffix.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_align.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_align.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b3be79ed3f6c3e08028097ac522fec4492202781 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_align.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_argsort.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_argsort.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a01900f03d71ccb38e9de0bba9512fc6d645b40b Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_argsort.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_asof.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_asof.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c00fbf06d957ec45eff2573175f693a989b126f9 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_asof.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_astype.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_astype.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..da30974e7eec1f58c56b0975cc68c86bd6eba87a Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_astype.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_autocorr.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_autocorr.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..47a6cca27e96b890a15b7a3146d38e3bc47bf827 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_autocorr.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_case_when.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_case_when.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..16a7fa8c96ee3cd18b5f76540d227bcf187c570d Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_case_when.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_clip.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_clip.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fc0bba2d4393b2cc62d7535cdec1c2347f3f96f7 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_clip.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_combine.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_combine.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..95fe61731f450ecaafec8446a8c5cdc35b2b8634 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_combine.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_compare.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_compare.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c93f99cb4c5284ab150244a90e5102b645a4aadf Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_compare.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_convert_dtypes.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_convert_dtypes.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..18923b9bd2927d5e31cfcc9a2bcdbbdf145d7df6 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_convert_dtypes.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_copy.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_copy.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..de73fce5ccafcfa7098db02d0f4497b6fe865820 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_copy.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_cov_corr.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_cov_corr.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..677fec65531daf7b8c101501cc36dce337d08225 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_cov_corr.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_describe.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_describe.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3c3ed70986bd8db831dab801dcf467f661d18adc Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_describe.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_dtypes.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_dtypes.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7cb95aa744047160882bd162b0d653ef12b6a66c Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_dtypes.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_duplicated.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_duplicated.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..eb1a93997df2c54991317f3290fefca72c6bf6ee Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_duplicated.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_explode.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_explode.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..764200990f886d7a8039ffdfc03db50cb3ba6965 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_explode.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_fillna.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_fillna.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e966410c23fa992a48568ac962f95117309b8916 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_fillna.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_infer_objects.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_infer_objects.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0d42fb5f35742ee2dee074c921dfeec7691afde8 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_infer_objects.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_info.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_info.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a07ba40a2f7e5f27857aedf4c572674870ca4357 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_info.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_interpolate.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_interpolate.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9962d01b152bcc2bb2d08e6c7b00f33ac1bde151 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_interpolate.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_is_monotonic.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_is_monotonic.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a3f1e3e6068e74cb6c1cf306148a7c60893d28f5 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_is_monotonic.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_is_unique.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_is_unique.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6e5678faa6b9f7b3b6f09613504e683c5d7178ff Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_is_unique.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_isin.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_isin.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..34e4f04a2c322e41554fb98a1ad9cf667c3942fe Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_isin.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_isna.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_isna.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f230ccac789a22d0dd09b4506777ce173e4ab2fd Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_isna.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_item.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_item.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..180d46d92d38fcd6f455290d56daf2a9e7ed2290 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_item.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_map.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_map.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2d636a8618ddd0e610e1ad4dc53db75d6e6c6da9 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_map.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_matmul.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_matmul.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a073d301695786df4d307e17df27779c9c366528 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_matmul.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_nlargest.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_nlargest.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f92992feb4c62741f5c90560126e6d49c2e4b1ad Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_nlargest.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_nunique.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_nunique.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e090a7bf600b269a097dcc2f0547f588aba3290f Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_nunique.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_pct_change.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_pct_change.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..954e39988800ee75af48f85a332b8bb9342149aa Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_pct_change.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_pop.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_pop.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e6998c2d1f47aa08d9ae33ccd868c995d77dc11e Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_pop.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_quantile.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_quantile.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..447db543cbe3d22fda0fd56720118d39950f98cd Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_quantile.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_rank.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_rank.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..135605ed9eca016cea7281bfab9341afa12dbeb3 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_rank.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_reindex.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_reindex.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..537583fdbe7dfcbfb3ef98cb5a6610e613d31bd5 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_reindex.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_reindex_like.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_reindex_like.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d26d8ed51b8012032e3e82069aa46d5b691556f0 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_reindex_like.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_rename.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_rename.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3054930748a7e281cf57b3624b3d2870e45f3014 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_rename.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_rename_axis.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_rename_axis.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9ebbf73b693844d135f5d38ffaa22789748d6085 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_rename_axis.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_repeat.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_repeat.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..07c90bc99b361ee1260adba4f0e0e6ce465f5dc8 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_repeat.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_replace.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_replace.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..842f9606b0a58d29a7e0419a940d9dbe0b27b82c Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_replace.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_reset_index.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_reset_index.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6b17ea4835e01e9fefc85487e231928445ac7e66 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_reset_index.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_searchsorted.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_searchsorted.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0613755b8cf3e2c11e0eefce838140ebf0ea732f Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_searchsorted.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_sort_index.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_sort_index.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3e4ed5f5f7835e7db9d9d10c0f7d8a6a035eedbc Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_sort_index.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_sort_values.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_sort_values.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ffee375090d85436ac373f049d6e32f4e1b052be Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_sort_values.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_to_csv.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_to_csv.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6446b59b3ef04917197dab2d065104ef2aaae81e Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_to_csv.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_to_dict.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_to_dict.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e78702f3a5b1eff58ae18d1bc69254a1c9ffae91 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_to_dict.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_to_frame.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_to_frame.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d0a5e943100cf000ded4416d21161604077547a9 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_to_frame.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_to_numpy.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_to_numpy.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0ba3e7887de12a882beccd2594ce1059e94789d1 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_to_numpy.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_tolist.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_tolist.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bf1f085a3b34bae1e138e523f75a39331fe30c72 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_tolist.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_truncate.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_truncate.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..695e57ab602dc437fce010ce6bad510031a2405e Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_truncate.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_tz_localize.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_tz_localize.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..34873458bc4dabe6b7602b68a09467f8336766e9 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_tz_localize.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_unstack.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_unstack.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b79d2ac74fa66fe6b049788886164b01c63513e3 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_unstack.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_update.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_update.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d897295b798039b89d9e6c837a070d870614be21 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_update.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_value_counts.cpython-310.pyc b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_value_counts.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9d44627a550db64e5dc8a1d93be8774239a0dc3e Binary files /dev/null and b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/__pycache__/test_value_counts.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_autocorr.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_autocorr.py new file mode 100644 index 0000000000000000000000000000000000000000..c1d768cf02f37baceb01b9ef39b91e419cef1e0f --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_autocorr.py @@ -0,0 +1,30 @@ +import numpy as np + + +class TestAutoCorr: + def test_autocorr(self, datetime_series): + # Just run the function + corr1 = datetime_series.autocorr() + + # Now run it with the lag parameter + corr2 = datetime_series.autocorr(lag=1) + + # corr() with lag needs Series of at least length 2 + if len(datetime_series) <= 2: + assert np.isnan(corr1) + assert np.isnan(corr2) + else: + assert corr1 == corr2 + + # Choose a random lag between 1 and length of Series - 2 + # and compare the result with the Series corr() function + n = 1 + np.random.default_rng(2).integers(max(1, len(datetime_series) - 2)) + corr1 = datetime_series.corr(datetime_series.shift(n)) + corr2 = datetime_series.autocorr(lag=n) + + # corr() with lag needs Series of at least length 2 + if len(datetime_series) <= 2: + assert np.isnan(corr1) + assert np.isnan(corr2) + else: + assert corr1 == corr2 diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_between.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_between.py new file mode 100644 index 0000000000000000000000000000000000000000..3913419038876938c9538ef435a7eb02c37f62a6 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_between.py @@ -0,0 +1,75 @@ +import numpy as np +import pytest + +from pandas import ( + Series, + bdate_range, + date_range, + period_range, +) +import pandas._testing as tm + + +class TestBetween: + def test_between(self): + series = Series(date_range("1/1/2000", periods=10)) + left, right = series[[2, 7]] + + result = series.between(left, right) + expected = (series >= left) & (series <= right) + tm.assert_series_equal(result, expected) + + def test_between_datetime_object_dtype(self): + ser = Series(bdate_range("1/1/2000", periods=20), dtype=object) + ser[::2] = np.nan + + result = ser[ser.between(ser[3], ser[17])] + expected = ser[3:18].dropna() + tm.assert_series_equal(result, expected) + + result = ser[ser.between(ser[3], ser[17], inclusive="neither")] + expected = ser[5:16].dropna() + tm.assert_series_equal(result, expected) + + def test_between_period_values(self): + ser = Series(period_range("2000-01-01", periods=10, freq="D")) + left, right = ser[[2, 7]] + result = ser.between(left, right) + expected = (ser >= left) & (ser <= right) + tm.assert_series_equal(result, expected) + + def test_between_inclusive_string(self): + # GH 40628 + series = Series(date_range("1/1/2000", periods=10)) + left, right = series[[2, 7]] + + result = series.between(left, right, inclusive="both") + expected = (series >= left) & (series <= right) + tm.assert_series_equal(result, expected) + + result = series.between(left, right, inclusive="left") + expected = (series >= left) & (series < right) + tm.assert_series_equal(result, expected) + + result = series.between(left, right, inclusive="right") + expected = (series > left) & (series <= right) + tm.assert_series_equal(result, expected) + + result = series.between(left, right, inclusive="neither") + expected = (series > left) & (series < right) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("inclusive", ["yes", True, False]) + def test_between_error_args(self, inclusive): + # GH 40628 + series = Series(date_range("1/1/2000", periods=10)) + left, right = series[[2, 7]] + + value_error_msg = ( + "Inclusive has to be either string of 'both'," + "'left', 'right', or 'neither'." + ) + + with pytest.raises(ValueError, match=value_error_msg): + series = Series(date_range("1/1/2000", periods=10)) + series.between(left, right, inclusive=inclusive) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_duplicated.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_duplicated.py new file mode 100644 index 0000000000000000000000000000000000000000..e177b5275d855fffbede91280d9ee7fb61ece2cd --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_duplicated.py @@ -0,0 +1,77 @@ +import numpy as np +import pytest + +from pandas import ( + NA, + Categorical, + Series, +) +import pandas._testing as tm + + +@pytest.mark.parametrize( + "keep, expected", + [ + ("first", Series([False, False, True, False, True], name="name")), + ("last", Series([True, True, False, False, False], name="name")), + (False, Series([True, True, True, False, True], name="name")), + ], +) +def test_duplicated_keep(keep, expected): + ser = Series(["a", "b", "b", "c", "a"], name="name") + + result = ser.duplicated(keep=keep) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize( + "keep, expected", + [ + ("first", Series([False, False, True, False, True])), + ("last", Series([True, True, False, False, False])), + (False, Series([True, True, True, False, True])), + ], +) +def test_duplicated_nan_none(keep, expected): + ser = Series([np.nan, 3, 3, None, np.nan], dtype=object) + + result = ser.duplicated(keep=keep) + tm.assert_series_equal(result, expected) + + +def test_duplicated_categorical_bool_na(nulls_fixture): + # GH#44351 + ser = Series( + Categorical( + [True, False, True, False, nulls_fixture], + categories=[True, False], + ordered=True, + ) + ) + result = ser.duplicated() + expected = Series([False, False, True, True, False]) + tm.assert_series_equal(result, expected) + + +@pytest.mark.parametrize( + "keep, vals", + [ + ("last", [True, True, False]), + ("first", [False, True, True]), + (False, [True, True, True]), + ], +) +def test_duplicated_mask(keep, vals): + # GH#48150 + ser = Series([1, 2, NA, NA, NA], dtype="Int64") + result = ser.duplicated(keep=keep) + expected = Series([False, False] + vals) + tm.assert_series_equal(result, expected) + + +def test_duplicated_mask_no_duplicated_na(keep): + # GH#48150 + ser = Series([1, 2, NA], dtype="Int64") + result = ser.duplicated(keep=keep) + expected = Series([False, False, False]) + tm.assert_series_equal(result, expected) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_head_tail.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_head_tail.py new file mode 100644 index 0000000000000000000000000000000000000000..d9f8d85eda350e0627790626d52b7703d23ead02 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_head_tail.py @@ -0,0 +1,8 @@ +import pandas._testing as tm + + +def test_head_tail(string_series): + tm.assert_series_equal(string_series.head(), string_series[:5]) + tm.assert_series_equal(string_series.head(0), string_series[0:0]) + tm.assert_series_equal(string_series.tail(), string_series[-5:]) + tm.assert_series_equal(string_series.tail(0), string_series[0:0]) diff --git a/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_nlargest.py b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_nlargest.py new file mode 100644 index 0000000000000000000000000000000000000000..e8de1cd89e3974f2dff0d775f35655b8caa02a08 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pandas/tests/series/methods/test_nlargest.py @@ -0,0 +1,248 @@ +""" +Note: for naming purposes, most tests are title with as e.g. "test_nlargest_foo" +but are implicitly also testing nsmallest_foo. +""" +from itertools import product + +import numpy as np +import pytest + +import pandas as pd +from pandas import Series +import pandas._testing as tm + +main_dtypes = [ + "datetime", + "datetimetz", + "timedelta", + "int8", + "int16", + "int32", + "int64", + "float32", + "float64", + "uint8", + "uint16", + "uint32", + "uint64", +] + + +@pytest.fixture +def s_main_dtypes(): + """ + A DataFrame with many dtypes + + * datetime + * datetimetz + * timedelta + * [u]int{8,16,32,64} + * float{32,64} + + The columns are the name of the dtype. + """ + df = pd.DataFrame( + { + "datetime": pd.to_datetime(["2003", "2002", "2001", "2002", "2005"]), + "datetimetz": pd.to_datetime( + ["2003", "2002", "2001", "2002", "2005"] + ).tz_localize("US/Eastern"), + "timedelta": pd.to_timedelta(["3d", "2d", "1d", "2d", "5d"]), + } + ) + + for dtype in [ + "int8", + "int16", + "int32", + "int64", + "float32", + "float64", + "uint8", + "uint16", + "uint32", + "uint64", + ]: + df[dtype] = Series([3, 2, 1, 2, 5], dtype=dtype) + + return df + + +@pytest.fixture(params=main_dtypes) +def s_main_dtypes_split(request, s_main_dtypes): + """Each series in s_main_dtypes.""" + return s_main_dtypes[request.param] + + +def assert_check_nselect_boundary(vals, dtype, method): + # helper function for 'test_boundary_{dtype}' tests + ser = Series(vals, dtype=dtype) + result = getattr(ser, method)(3) + expected_idxr = [0, 1, 2] if method == "nsmallest" else [3, 2, 1] + expected = ser.loc[expected_idxr] + tm.assert_series_equal(result, expected) + + +class TestSeriesNLargestNSmallest: + @pytest.mark.parametrize( + "r", + [ + Series([3.0, 2, 1, 2, "5"], dtype="object"), + Series([3.0, 2, 1, 2, 5], dtype="object"), + # not supported on some archs + # Series([3., 2, 1, 2, 5], dtype='complex256'), + Series([3.0, 2, 1, 2, 5], dtype="complex128"), + Series(list("abcde")), + Series(list("abcde"), dtype="category"), + ], + ) + def test_nlargest_error(self, r): + dt = r.dtype + msg = f"Cannot use method 'n(largest|smallest)' with dtype {dt}" + args = 2, len(r), 0, -1 + methods = r.nlargest, r.nsmallest + for method, arg in product(methods, args): + with pytest.raises(TypeError, match=msg): + method(arg) + + def test_nsmallest_nlargest(self, s_main_dtypes_split): + # float, int, datetime64 (use i8), timedelts64 (same), + # object that are numbers, object that are strings + ser = s_main_dtypes_split + + tm.assert_series_equal(ser.nsmallest(2), ser.iloc[[2, 1]]) + tm.assert_series_equal(ser.nsmallest(2, keep="last"), ser.iloc[[2, 3]]) + + empty = ser.iloc[0:0] + tm.assert_series_equal(ser.nsmallest(0), empty) + tm.assert_series_equal(ser.nsmallest(-1), empty) + tm.assert_series_equal(ser.nlargest(0), empty) + tm.assert_series_equal(ser.nlargest(-1), empty) + + tm.assert_series_equal(ser.nsmallest(len(ser)), ser.sort_values()) + tm.assert_series_equal(ser.nsmallest(len(ser) + 1), ser.sort_values()) + tm.assert_series_equal(ser.nlargest(len(ser)), ser.iloc[[4, 0, 1, 3, 2]]) + tm.assert_series_equal(ser.nlargest(len(ser) + 1), ser.iloc[[4, 0, 1, 3, 2]]) + + def test_nlargest_misc(self): + ser = Series([3.0, np.nan, 1, 2, 5]) + result = ser.nlargest() + expected = ser.iloc[[4, 0, 3, 2, 1]] + tm.assert_series_equal(result, expected) + result = ser.nsmallest() + expected = ser.iloc[[2, 3, 0, 4, 1]] + tm.assert_series_equal(result, expected) + + msg = 'keep must be either "first", "last"' + with pytest.raises(ValueError, match=msg): + ser.nsmallest(keep="invalid") + with pytest.raises(ValueError, match=msg): + ser.nlargest(keep="invalid") + + # GH#15297 + ser = Series([1] * 5, index=[1, 2, 3, 4, 5]) + expected_first = Series([1] * 3, index=[1, 2, 3]) + expected_last = Series([1] * 3, index=[5, 4, 3]) + + result = ser.nsmallest(3) + tm.assert_series_equal(result, expected_first) + + result = ser.nsmallest(3, keep="last") + tm.assert_series_equal(result, expected_last) + + result = ser.nlargest(3) + tm.assert_series_equal(result, expected_first) + + result = ser.nlargest(3, keep="last") + tm.assert_series_equal(result, expected_last) + + @pytest.mark.parametrize("n", range(1, 5)) + def test_nlargest_n(self, n): + # GH 13412 + ser = Series([1, 4, 3, 2], index=[0, 0, 1, 1]) + result = ser.nlargest(n) + expected = ser.sort_values(ascending=False).head(n) + tm.assert_series_equal(result, expected) + + result = ser.nsmallest(n) + expected = ser.sort_values().head(n) + tm.assert_series_equal(result, expected) + + def test_nlargest_boundary_integer(self, nselect_method, any_int_numpy_dtype): + # GH#21426 + dtype_info = np.iinfo(any_int_numpy_dtype) + min_val, max_val = dtype_info.min, dtype_info.max + vals = [min_val, min_val + 1, max_val - 1, max_val] + assert_check_nselect_boundary(vals, any_int_numpy_dtype, nselect_method) + + def test_nlargest_boundary_float(self, nselect_method, float_numpy_dtype): + # GH#21426 + dtype_info = np.finfo(float_numpy_dtype) + min_val, max_val = dtype_info.min, dtype_info.max + min_2nd, max_2nd = np.nextafter([min_val, max_val], 0, dtype=float_numpy_dtype) + vals = [min_val, min_2nd, max_2nd, max_val] + assert_check_nselect_boundary(vals, float_numpy_dtype, nselect_method) + + @pytest.mark.parametrize("dtype", ["datetime64[ns]", "timedelta64[ns]"]) + def test_nlargest_boundary_datetimelike(self, nselect_method, dtype): + # GH#21426 + # use int64 bounds and +1 to min_val since true minimum is NaT + # (include min_val/NaT at end to maintain same expected_idxr) + dtype_info = np.iinfo("int64") + min_val, max_val = dtype_info.min, dtype_info.max + vals = [min_val + 1, min_val + 2, max_val - 1, max_val, min_val] + assert_check_nselect_boundary(vals, dtype, nselect_method) + + def test_nlargest_duplicate_keep_all_ties(self): + # see GH#16818 + ser = Series([10, 9, 8, 7, 7, 7, 7, 6]) + result = ser.nlargest(4, keep="all") + expected = Series([10, 9, 8, 7, 7, 7, 7]) + tm.assert_series_equal(result, expected) + + result = ser.nsmallest(2, keep="all") + expected = Series([6, 7, 7, 7, 7], index=[7, 3, 4, 5, 6]) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "data,expected", [([True, False], [True]), ([True, False, True, True], [True])] + ) + def test_nlargest_boolean(self, data, expected): + # GH#26154 : ensure True > False + ser = Series(data) + result = ser.nlargest(1) + expected = Series(expected) + tm.assert_series_equal(result, expected) + + def test_nlargest_nullable(self, any_numeric_ea_dtype): + # GH#42816 + dtype = any_numeric_ea_dtype + if dtype.startswith("UInt"): + # Can't cast from negative float to uint on some platforms + arr = np.random.default_rng(2).integers(1, 10, 10) + else: + arr = np.random.default_rng(2).standard_normal(10) + arr = arr.astype(dtype.lower(), copy=False) + + ser = Series(arr.copy(), dtype=dtype) + ser[1] = pd.NA + result = ser.nlargest(5) + + expected = ( + Series(np.delete(arr, 1), index=ser.index.delete(1)) + .nlargest(5) + .astype(dtype) + ) + tm.assert_series_equal(result, expected) + + def test_nsmallest_nan_when_keep_is_all(self): + # GH#46589 + s = Series([1, 2, 3, 3, 3, None]) + result = s.nsmallest(3, keep="all") + expected = Series([1.0, 2.0, 3.0, 3.0, 3.0]) + tm.assert_series_equal(result, expected) + + s = Series([1, 2, None, None, None]) + result = s.nsmallest(3, keep="all") + expected = Series([1, 2, None, None, None]) + tm.assert_series_equal(result, expected)