Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +3 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/__init__.py +11 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/bias_activations/__init__.py +6 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/bias_activations/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/bias_activations/__pycache__/bias_activation.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/bias_activations/bias_activation.cpp +68 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/bias_activations/bias_activation.h +22 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/bias_activations/bias_activation.py +62 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/bias_activations/bias_activation_cuda.cu +140 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/blas_kernels/__init__.py +6 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/blas_kernels/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/blas_kernels/__pycache__/blas_linear.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/blas_kernels/blas.h +138 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/blas_kernels/blas_linear.py +55 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/blas_kernels/blas_utils.h +275 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/core_ops.cpp +42 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_layer_norm/__init__.py +8 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_layer_norm/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_layer_norm/__pycache__/cuda_fp_ln_base.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_layer_norm/__pycache__/cuda_ln.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_layer_norm/__pycache__/cuda_post_ln.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_layer_norm/__pycache__/cuda_pre_ln.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_layer_norm/cuda_fp_ln_base.py +37 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_layer_norm/cuda_ln.py +30 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_layer_norm/cuda_post_ln.py +34 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_layer_norm/cuda_pre_ln.py +39 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_layer_norm/layer_norm.cpp +102 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_layer_norm/layer_norm.h +67 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_layer_norm/layer_norm_cuda.cu +490 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/__init__.py +6 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/__pycache__/cuda_linear.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/cuda_linear.py +207 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/include/kernel_reduction.cuh +43 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/include/ptx_cp.async.cuh +71 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/linear_kernels.cpp +224 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/linear_kernels.h +28 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/linear_kernels_cuda.cu +318 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/linear_kernels_cuda.h +51 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_rms_norm/__init__.py +7 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_rms_norm/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_rms_norm/__pycache__/rms_norm.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_rms_norm/__pycache__/rms_norm_base.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_rms_norm/__pycache__/rms_pre_norm.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_rms_norm/rms_norm.cpp +123 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_rms_norm/rms_norm.h +33 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_rms_norm/rms_norm.py +28 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_rms_norm/rms_norm_base.py +37 -0
- venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_rms_norm/rms_norm_cuda.cu +262 -0
.gitattributes
CHANGED
@@ -59,3 +59,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
59 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
60 |
venv/bin/python3.10 filter=lfs diff=lfs merge=lfs -text
|
61 |
venv/bin/python3 filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
59 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
60 |
venv/bin/python3.10 filter=lfs diff=lfs merge=lfs -text
|
61 |
venv/bin/python3 filter=lfs diff=lfs merge=lfs -text
|
62 |
+
venv/lib/python3.10/site-packages/scipy/linalg/_flapack.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
63 |
+
venv/lib/python3.10/site-packages/numexpr/interpreter.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
64 |
+
venv/lib/python3.10/site-packages/sklearn/_loss/_loss.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from .bias_activations import *
|
7 |
+
from .blas_kernels import *
|
8 |
+
from .cuda_layer_norm import *
|
9 |
+
from .cuda_rms_norm import *
|
10 |
+
from .gated_activations import *
|
11 |
+
from .cuda_linear import *
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (368 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/bias_activations/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from .bias_activation import *
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/bias_activations/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (256 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/bias_activations/__pycache__/bias_activation.cpython-310.pyc
ADDED
Binary file (2.55 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/bias_activations/bias_activation.cpp
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include "bias_activation.h"
|
7 |
+
#include <c10/cuda/CUDAStream.h>
|
8 |
+
#include "ds_kernel_utils.h"
|
9 |
+
|
10 |
+
#ifdef BF16_AVAILABLE
|
11 |
+
#define DTYPE_SWITCH(DTYPE, ...) \
|
12 |
+
[&] { \
|
13 |
+
if (DTYPE == torch::kFloat16) { \
|
14 |
+
using scalar_t = __half; \
|
15 |
+
return __VA_ARGS__(); \
|
16 |
+
} else if (DTYPE == torch::kBFloat16) { \
|
17 |
+
using scalar_t = __nv_bfloat16; \
|
18 |
+
return __VA_ARGS__(); \
|
19 |
+
} else { \
|
20 |
+
TORCH_CHECK(false, "Unsupported dtype for BiasActivation"); \
|
21 |
+
} \
|
22 |
+
}()
|
23 |
+
#else
|
24 |
+
#define DTYPE_SWITCH(DTYPE, ...) \
|
25 |
+
[&] { \
|
26 |
+
if (DTYPE == torch::kFloat16) { \
|
27 |
+
using scalar_t = __half; \
|
28 |
+
return __VA_ARGS__(); \
|
29 |
+
} else { \
|
30 |
+
TORCH_CHECK(false, "Unsupported dtype for BiasActivation"); \
|
31 |
+
} \
|
32 |
+
}()
|
33 |
+
#endif
|
34 |
+
|
35 |
+
/*
|
36 |
+
In-place bias and activation fusion kernel.
|
37 |
+
*/
|
38 |
+
void bias_activation(torch::Tensor& activation,
|
39 |
+
c10::optional<torch::Tensor>& bias,
|
40 |
+
const int32_t act_type)
|
41 |
+
{
|
42 |
+
const ActivationType atype = static_cast<ActivationType>(act_type);
|
43 |
+
const int32_t rows = activation.size(0);
|
44 |
+
const int32_t cols = activation.size(1);
|
45 |
+
|
46 |
+
TORCH_CHECK(atype == ActivationType::GELU || atype == ActivationType::RELU ||
|
47 |
+
atype == ActivationType::SILU || atype == ActivationType::IDENTITY,
|
48 |
+
"Unsupported activation type for BiasActivation");
|
49 |
+
TORCH_CHECK(activation.dim() == 2, "BiasActivation only supports 2D activation tensors");
|
50 |
+
|
51 |
+
DTYPE_SWITCH(activation.scalar_type(), [&] {
|
52 |
+
scalar_t* activation_ptr = reinterpret_cast<scalar_t*>(activation.data_ptr());
|
53 |
+
|
54 |
+
const scalar_t* bias_ptr;
|
55 |
+
if (bias.has_value()) {
|
56 |
+
TORCH_CHECK(activation.scalar_type() == bias.value().scalar_type(),
|
57 |
+
"BiasActivation activation and bias must have same dtype");
|
58 |
+
bias_ptr = reinterpret_cast<const scalar_t*>(bias.value().data_ptr());
|
59 |
+
} else {
|
60 |
+
bias_ptr = nullptr;
|
61 |
+
}
|
62 |
+
|
63 |
+
if (atype == ActivationType::IDENTITY && bias_ptr == nullptr) { return; }
|
64 |
+
|
65 |
+
launch_bias_activation<scalar_t>(
|
66 |
+
activation_ptr, bias_ptr, rows, cols, atype, c10::cuda::getCurrentCUDAStream());
|
67 |
+
});
|
68 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/bias_activations/bias_activation.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include <c10/cuda/CUDAStream.h>
|
9 |
+
#include <torch/extension.h>
|
10 |
+
#include "activation_type.h"
|
11 |
+
|
12 |
+
template <typename T>
|
13 |
+
void launch_bias_activation(T* activation,
|
14 |
+
const T* bias,
|
15 |
+
const int32_t n_rows,
|
16 |
+
const int32_t n_cols,
|
17 |
+
const ActivationType activation_type,
|
18 |
+
cudaStream_t stream);
|
19 |
+
|
20 |
+
void bias_activation(torch::Tensor& activation,
|
21 |
+
c10::optional<torch::Tensor>& bias,
|
22 |
+
const int32_t activation_type);
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/bias_activations/bias_activation.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from typing import Optional
|
7 |
+
|
8 |
+
import torch
|
9 |
+
|
10 |
+
from ....inference_utils import ActivationType, DtypeEnum
|
11 |
+
from deepspeed.ops.op_builder import InferenceCoreBuilder
|
12 |
+
from ... import DSKernelBase
|
13 |
+
|
14 |
+
|
15 |
+
class CUDABiasActivation(DSKernelBase):
|
16 |
+
"""
|
17 |
+
CUDA implementation of bias activation kernel. This kernel should be deprecated once
|
18 |
+
we are fusing the bias activation into the linear kernel in all scenarios.
|
19 |
+
"""
|
20 |
+
|
21 |
+
supported_dtypes = [DtypeEnum.fp16, DtypeEnum.bf16]
|
22 |
+
supported_act_fns = [ActivationType.IDENTITY, ActivationType.GELU, ActivationType.RELU, ActivationType.SILU]
|
23 |
+
|
24 |
+
def __init__(self, channels: int, dtype: DtypeEnum, act_fn: ActivationType) -> None:
|
25 |
+
"""
|
26 |
+
Compile and validate for the fused bias-activation kernel.
|
27 |
+
|
28 |
+
Parameters:
|
29 |
+
channels (int): Number of channels to expect in the activation.
|
30 |
+
dtype (torch.dtype): Data type for the input/output. Supported values
|
31 |
+
are DtypeEnum.fp16 and DtypeEnum.bf16.
|
32 |
+
act_fn (ActivationType): Activation function to use. Only IDENTITY, GELU, RELU, and SILU are supported.
|
33 |
+
"""
|
34 |
+
|
35 |
+
if channels % 8 != 0:
|
36 |
+
raise ValueError("channels must be divisible by 8")
|
37 |
+
|
38 |
+
if DtypeEnum(dtype) not in CUDABiasActivation.supported_dtypes:
|
39 |
+
raise ValueError("Unsupported data type: {}, supported_dtypes are {}".format(
|
40 |
+
dtype, CUDABiasActivation.supported_dtypes))
|
41 |
+
|
42 |
+
act_fn = ActivationType(act_fn)
|
43 |
+
if act_fn not in CUDABiasActivation.supported_act_fns:
|
44 |
+
raise ValueError("Unsupported activation function: {}, supported_act_fns are {}".format(
|
45 |
+
act_fn, CUDABiasActivation.supported_act_fns))
|
46 |
+
|
47 |
+
inf_module = InferenceCoreBuilder().load()
|
48 |
+
self.kernel = inf_module.bias_activation
|
49 |
+
self.act_fn = act_fn
|
50 |
+
|
51 |
+
def __call__(self, activation: torch.Tensor, bias: Optional[torch.Tensor] = None) -> torch.Tensor:
|
52 |
+
"""
|
53 |
+
Add an optional bias and perform the non-linear activation function.
|
54 |
+
|
55 |
+
Parameters:
|
56 |
+
activation (torch.Tensor): Input tensor of shape [tokens, channels]
|
57 |
+
bias (torch.Tensor): Optional bias tensor of shape [channels]
|
58 |
+
|
59 |
+
Returns:
|
60 |
+
activation that has been updated in-place
|
61 |
+
"""
|
62 |
+
self.kernel(activation, bias, self.act_fn.value)
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/bias_activations/bias_activation_cuda.cu
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include <cassert>
|
7 |
+
#include "activation_type.h"
|
8 |
+
#include "conversion_utils.h"
|
9 |
+
#include "ds_kernel_utils.h"
|
10 |
+
#include "memory_access_utils.h"
|
11 |
+
|
12 |
+
// Default activation function will error out
|
13 |
+
template <ActivationType ActType>
|
14 |
+
DS_D_INLINE float act_fn(float val);
|
15 |
+
|
16 |
+
template <>
|
17 |
+
DS_D_INLINE float act_fn<ActivationType::IDENTITY>(float val)
|
18 |
+
{
|
19 |
+
return val;
|
20 |
+
}
|
21 |
+
|
22 |
+
template <>
|
23 |
+
DS_D_INLINE float act_fn<ActivationType::RELU>(float val)
|
24 |
+
{
|
25 |
+
return val > 0.0f ? val : 0.0f;
|
26 |
+
}
|
27 |
+
|
28 |
+
template <>
|
29 |
+
DS_D_INLINE float act_fn<ActivationType::GELU>(float val)
|
30 |
+
{
|
31 |
+
constexpr float sqrt_param = 0.79788456080286535587989211986876f;
|
32 |
+
constexpr float mul_param = 0.044715f;
|
33 |
+
return val * 0.5f * (1.0f + tanhf(sqrt_param * (val + mul_param * val * val * val)));
|
34 |
+
}
|
35 |
+
|
36 |
+
template <>
|
37 |
+
DS_D_INLINE float act_fn<ActivationType::SILU>(float val)
|
38 |
+
{
|
39 |
+
return val / (1.0f + expf(-val));
|
40 |
+
}
|
41 |
+
|
42 |
+
namespace bias_act {
|
43 |
+
|
44 |
+
constexpr int access_size = 16;
|
45 |
+
constexpr int threads = 512;
|
46 |
+
constexpr int unroll = 4;
|
47 |
+
|
48 |
+
} // namespace bias_act
|
49 |
+
|
50 |
+
template <typename T, ActivationType ActType>
|
51 |
+
__global__ void bias_activation_kernel(T* activation,
|
52 |
+
const T* bias,
|
53 |
+
const int32_t rows,
|
54 |
+
const int32_t cols)
|
55 |
+
{
|
56 |
+
constexpr int vector_T = bias_act::access_size / sizeof(T);
|
57 |
+
|
58 |
+
const int32_t thread_offset = threadIdx.x * vector_T;
|
59 |
+
const int32_t block_offset = blockIdx.x * vector_T * bias_act::unroll * bias_act::threads;
|
60 |
+
const int32_t base_offset = block_offset + thread_offset;
|
61 |
+
|
62 |
+
const int32_t thread_stride = bias_act::threads * vector_T;
|
63 |
+
|
64 |
+
#pragma unroll
|
65 |
+
for (int i = 0; i < bias_act::unroll; i++) {
|
66 |
+
const int32_t iter_offset = base_offset + i * thread_stride;
|
67 |
+
|
68 |
+
const int32_t row = iter_offset / cols;
|
69 |
+
|
70 |
+
T buffer[vector_T];
|
71 |
+
T bias_buffer[vector_T];
|
72 |
+
|
73 |
+
if (row < rows) {
|
74 |
+
const int32_t col = iter_offset % cols;
|
75 |
+
|
76 |
+
mem_access::load_global<bias_act::access_size>(buffer, activation + iter_offset);
|
77 |
+
mem_access::load_global<bias_act::access_size>(
|
78 |
+
bias_buffer, bias + col, bias != nullptr);
|
79 |
+
|
80 |
+
#pragma unroll
|
81 |
+
for (int j = 0; j < vector_T; j++) {
|
82 |
+
float val =
|
83 |
+
conversion::to<float>(buffer[j]) + conversion::to<float>(bias_buffer[j]);
|
84 |
+
buffer[j] = conversion::to<T>(act_fn<ActType>(val));
|
85 |
+
}
|
86 |
+
|
87 |
+
mem_access::store_global<bias_act::access_size>(activation + iter_offset, buffer);
|
88 |
+
}
|
89 |
+
}
|
90 |
+
}
|
91 |
+
|
92 |
+
#define ACT_TYPE_SWITCH(ACT_TYPE, ...) \
|
93 |
+
if (ACT_TYPE == ActivationType::IDENTITY) { \
|
94 |
+
constexpr ActivationType act_fn_t = ActivationType::IDENTITY; \
|
95 |
+
return __VA_ARGS__(); \
|
96 |
+
} else if (ACT_TYPE == ActivationType::RELU) { \
|
97 |
+
constexpr ActivationType act_fn_t = ActivationType::RELU; \
|
98 |
+
return __VA_ARGS__(); \
|
99 |
+
} else if (ACT_TYPE == ActivationType::GELU) { \
|
100 |
+
constexpr ActivationType act_fn_t = ActivationType::GELU; \
|
101 |
+
return __VA_ARGS__(); \
|
102 |
+
} else if (ACT_TYPE == ActivationType::SILU) { \
|
103 |
+
constexpr ActivationType act_fn_t = ActivationType::SILU; \
|
104 |
+
return __VA_ARGS__(); \
|
105 |
+
} else { \
|
106 |
+
assert(false); \
|
107 |
+
}
|
108 |
+
|
109 |
+
template <typename T>
|
110 |
+
void launch_bias_activation(T* activation,
|
111 |
+
const T* bias,
|
112 |
+
const int32_t n_rows,
|
113 |
+
const int32_t n_cols,
|
114 |
+
const ActivationType activation_type,
|
115 |
+
cudaStream_t stream)
|
116 |
+
{
|
117 |
+
constexpr int32_t elems_per_block =
|
118 |
+
bias_act::threads * bias_act::unroll * bias_act::access_size / sizeof(T);
|
119 |
+
const int32_t total_elems = n_rows * n_cols;
|
120 |
+
|
121 |
+
const int32_t blocks = (total_elems + elems_per_block - 1) / elems_per_block;
|
122 |
+
|
123 |
+
const dim3 grid(blocks);
|
124 |
+
const dim3 block(bias_act::threads);
|
125 |
+
|
126 |
+
ACT_TYPE_SWITCH(activation_type, [&] {
|
127 |
+
bias_activation_kernel<T, act_fn_t>
|
128 |
+
<<<grid, block, 0, stream>>>(activation, bias, n_rows, n_cols);
|
129 |
+
});
|
130 |
+
}
|
131 |
+
|
132 |
+
#define INSTANTIATE_FOR_T(T) \
|
133 |
+
template void launch_bias_activation<T>( \
|
134 |
+
T*, const T*, const int32_t, const int32_t, const ActivationType, cudaStream_t);
|
135 |
+
|
136 |
+
INSTANTIATE_FOR_T(__half);
|
137 |
+
|
138 |
+
#ifdef BF16_AVAILABLE
|
139 |
+
INSTANTIATE_FOR_T(__nv_bfloat16);
|
140 |
+
#endif
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/blas_kernels/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from .blas_linear import *
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/blas_kernels/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (248 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/blas_kernels/__pycache__/blas_linear.cpython-310.pyc
ADDED
Binary file (2.26 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/blas_kernels/blas.h
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include <c10/cuda/CUDAStream.h>
|
9 |
+
#include <torch/extension.h>
|
10 |
+
#include <cstdio>
|
11 |
+
#include "blas_utils.h"
|
12 |
+
|
13 |
+
#define DISPATCH_BLAS_MATMUL(T_TYPE, C_TYPE) \
|
14 |
+
if (output.options().dtype() == torch::T_TYPE) { \
|
15 |
+
blas_gemm_ex(output.data_ptr(), \
|
16 |
+
(const void*)weights.data_ptr(), \
|
17 |
+
(const void*)hidden_states.data_ptr(), \
|
18 |
+
m, \
|
19 |
+
n, \
|
20 |
+
k, \
|
21 |
+
lda, \
|
22 |
+
ldb, \
|
23 |
+
ldc, \
|
24 |
+
trans_a, \
|
25 |
+
trans_b, \
|
26 |
+
&alpha, \
|
27 |
+
&beta, \
|
28 |
+
C_TYPE); \
|
29 |
+
}
|
30 |
+
|
31 |
+
void blas_linear(at::Tensor& output, at::Tensor& hidden_states, at::Tensor& weights)
|
32 |
+
{
|
33 |
+
/*
|
34 |
+
Expected shape: output([total_tokens_across_dims], out_neurons)
|
35 |
+
hidden_states([total_tokens_across_dims], in_neurons)
|
36 |
+
weights(out_neurons, in_neurons)
|
37 |
+
|
38 |
+
We are going to assume contiguous for the above shapes.
|
39 |
+
|
40 |
+
The shapes are going to get messed with a little internally to handle column-major
|
41 |
+
GEMMs.
|
42 |
+
*/
|
43 |
+
|
44 |
+
// Number of tokens is N (since the GEMM output is column-major but our Tensor
|
45 |
+
// is row-major, we need to transpose the shapes)
|
46 |
+
const int n = output.numel() / output.size(-1);
|
47 |
+
const int k = weights.size(1);
|
48 |
+
const int m = weights.size(0);
|
49 |
+
|
50 |
+
// A strides
|
51 |
+
const bool trans_a = weights.stride(1) == 1;
|
52 |
+
const int lda = (trans_a) ? weights.stride(0) : weights.stride(1);
|
53 |
+
|
54 |
+
// B strides
|
55 |
+
const bool trans_b = hidden_states.stride(-1) != 1;
|
56 |
+
const int ldb = (trans_b) ? hidden_states.stride(-1) : hidden_states.stride(-2);
|
57 |
+
|
58 |
+
// C strides
|
59 |
+
const int ldc = output.stride(-2);
|
60 |
+
|
61 |
+
const float alpha = 1.0f;
|
62 |
+
const float beta = 0.0f;
|
63 |
+
|
64 |
+
TORCH_CHECK(output.scalar_type() == hidden_states.scalar_type(),
|
65 |
+
"Output and hidden states must have the same scalar type");
|
66 |
+
TORCH_CHECK(output.scalar_type() == weights.scalar_type(),
|
67 |
+
"Output and weights must have the same scalar type");
|
68 |
+
|
69 |
+
// Dispatch the datatypes
|
70 |
+
DISPATCH_BLAS_MATMUL(kFloat, BlasType::FP32);
|
71 |
+
DISPATCH_BLAS_MATMUL(kHalf, BlasType::FP16);
|
72 |
+
#ifdef BF16_AVAILABLE
|
73 |
+
DISPATCH_BLAS_MATMUL(kBFloat16, BlasType::BF16);
|
74 |
+
#endif
|
75 |
+
}
|
76 |
+
|
77 |
+
#define DISPATCH_4D_BLAS(T_TYPE, C_TYPE) \
|
78 |
+
if (C.options().dtype() == torch::T_TYPE) { \
|
79 |
+
blas_strided_batched_gemm(C.data_ptr(), \
|
80 |
+
(const void*)A.data_ptr(), \
|
81 |
+
(const void*)B.data_ptr(), \
|
82 |
+
m, \
|
83 |
+
n, \
|
84 |
+
k, \
|
85 |
+
lda, \
|
86 |
+
ldb, \
|
87 |
+
ldc, \
|
88 |
+
trans_a, \
|
89 |
+
trans_b, \
|
90 |
+
&alpha, \
|
91 |
+
&beta, \
|
92 |
+
stride_a, \
|
93 |
+
stride_b, \
|
94 |
+
stride_c, \
|
95 |
+
batch, \
|
96 |
+
C_TYPE); \
|
97 |
+
}
|
98 |
+
|
99 |
+
void blas_4d_matmul(at::Tensor& C, at::Tensor& B, at::Tensor& A)
|
100 |
+
{
|
101 |
+
/*
|
102 |
+
C shape: (batch_size, N, M)
|
103 |
+
A shape: (batch_size, N, K)
|
104 |
+
B shape: (batch_size, K, M)
|
105 |
+
*/
|
106 |
+
|
107 |
+
const int n = C.size(-2);
|
108 |
+
const int k = C.size(-1);
|
109 |
+
const int m = B.size(-1);
|
110 |
+
|
111 |
+
// A strides
|
112 |
+
const bool trans_a = A.stride(-1) == 1;
|
113 |
+
const int lda = (trans_a) ? A.stride(-2) : A.stride(-1);
|
114 |
+
const int stride_a = A.stride(-3);
|
115 |
+
|
116 |
+
// B strides
|
117 |
+
const bool trans_b = B.stride(-1) != 1;
|
118 |
+
const int ldb = (trans_b) ? B.stride(-1) : B.stride(-2);
|
119 |
+
const int stride_b = B.stride(-3);
|
120 |
+
|
121 |
+
// C strides
|
122 |
+
const int ldc = C.stride(-2);
|
123 |
+
const int stride_c = C.stride(-3);
|
124 |
+
|
125 |
+
const float alpha = 1.0f;
|
126 |
+
const float beta = 0.0f;
|
127 |
+
|
128 |
+
const int batch = C.numel() / (n * m);
|
129 |
+
|
130 |
+
// Dispatch the datatypes
|
131 |
+
DISPATCH_4D_BLAS(kFloat, BlasType::FP32);
|
132 |
+
DISPATCH_4D_BLAS(kHalf, BlasType::FP16);
|
133 |
+
#ifdef BF16_AVAILABLE
|
134 |
+
DISPATCH_4D_BLAS(kBFloat16, BlasType::BF16);
|
135 |
+
#endif
|
136 |
+
}
|
137 |
+
|
138 |
+
void create_handle() { BlasContext::getInstance().get_handle(); }
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/blas_kernels/blas_linear.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from ....inference_utils import DtypeEnum
|
9 |
+
from deepspeed.ops.op_builder import InferenceCoreBuilder
|
10 |
+
from ... import DSKernelBase
|
11 |
+
|
12 |
+
|
13 |
+
class BlasLibLinear(DSKernelBase):
|
14 |
+
"""
|
15 |
+
Wrapper around the BLAS matmul kernel for FP16/BF16/FP32 for CUDA/RoCM.
|
16 |
+
|
17 |
+
Performs z = x @ y
|
18 |
+
"""
|
19 |
+
|
20 |
+
supported_dtypes = [DtypeEnum.fp16, DtypeEnum.bf16, DtypeEnum.fp32]
|
21 |
+
|
22 |
+
def __init__(self, fp_dtype: DtypeEnum):
|
23 |
+
"""
|
24 |
+
Parameters:
|
25 |
+
fp_dtype (torch.dtype): Data type for the input/output. Supported values
|
26 |
+
are torch.float16, torch.bfloat16, and torch.float32.
|
27 |
+
"""
|
28 |
+
fp_dtype = DtypeEnum(fp_dtype)
|
29 |
+
if fp_dtype not in BlasLibLinear.supported_dtypes:
|
30 |
+
raise ValueError("Unsupported data type: {}, supported_dtypes are {}".format(
|
31 |
+
fp_dtype, BlasLibLinear.supported_dtypes))
|
32 |
+
|
33 |
+
self.inf_module = InferenceCoreBuilder().load()
|
34 |
+
self.inf_module.create_handle()
|
35 |
+
self.kernel = self.inf_module.blas_linear
|
36 |
+
|
37 |
+
def __call__(self, output: torch.Tensor, hidden_states: torch.Tensor, weights: torch.Tensor) -> torch.Tensor:
|
38 |
+
"""
|
39 |
+
Matmul kernel as implemented by platform BLAS library. The input must be 2D or larger. If
|
40 |
+
n-dimensional, the leading dimensions are folded into each other:
|
41 |
+
2D: m = x.size(0)
|
42 |
+
3D: m = x.size(0) * x.size(1)
|
43 |
+
4D: m = x.size(0) * x.size(1) * x.size(2) (etc...)
|
44 |
+
All inputs should be contiguous.
|
45 |
+
|
46 |
+
Parameters:
|
47 |
+
output (torch.Tensor): Output tensor. Shape is of [*, out_features]
|
48 |
+
hidden_states (torch.Tensor): Input tensor. Shape is of [*, in_features]
|
49 |
+
weights (torch.Tensor): Input tensor. Shape is of [out_features, in_features]
|
50 |
+
|
51 |
+
Returns:
|
52 |
+
z (torch.Tensor): Output tensor. Shape is of [m, n]
|
53 |
+
"""
|
54 |
+
self.kernel(output, hidden_states, weights)
|
55 |
+
return output
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/blas_kernels/blas_utils.h
ADDED
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include <assert.h>
|
9 |
+
#include <cublas_v2.h>
|
10 |
+
#include <cuda.h>
|
11 |
+
#ifdef BF16_AVAILABLE
|
12 |
+
#include <cuda_bf16.h>
|
13 |
+
#endif
|
14 |
+
#include <cuda_fp16.h>
|
15 |
+
#include <cuda_runtime.h>
|
16 |
+
#ifndef __HIP_PLATFORM_AMD__
|
17 |
+
#include <mma.h>
|
18 |
+
#endif
|
19 |
+
#include <stdio.h>
|
20 |
+
#include <iostream>
|
21 |
+
#include <stdexcept>
|
22 |
+
|
23 |
+
class BlasContext {
|
24 |
+
/*
|
25 |
+
Slim wrapper for managing the lifetime of the platform's BLAS handle. This should
|
26 |
+
be hipified for ROCm.
|
27 |
+
*/
|
28 |
+
public:
|
29 |
+
BlasContext()
|
30 |
+
{
|
31 |
+
if (cublasCreate(&_handle) != CUBLAS_STATUS_SUCCESS) {
|
32 |
+
auto message = std::string("Fail to create cublas handle.");
|
33 |
+
std::cerr << message << std::endl;
|
34 |
+
throw std::runtime_error(message);
|
35 |
+
}
|
36 |
+
#ifndef __HIP_PLATFORM_AMD__
|
37 |
+
cublasSetMathMode(_handle, CUBLAS_TENSOR_OP_MATH);
|
38 |
+
#endif
|
39 |
+
}
|
40 |
+
|
41 |
+
virtual ~BlasContext() { cublasDestroy(_handle); }
|
42 |
+
|
43 |
+
static BlasContext& getInstance()
|
44 |
+
{
|
45 |
+
// Should always access the singleton through this function.
|
46 |
+
static BlasContext _instance;
|
47 |
+
return _instance;
|
48 |
+
}
|
49 |
+
|
50 |
+
cublasHandle_t get_handle() const { return _handle; }
|
51 |
+
|
52 |
+
private:
|
53 |
+
cublasHandle_t _handle;
|
54 |
+
};
|
55 |
+
|
56 |
+
enum class BlasType { FP32, FP16, BF16 };
|
57 |
+
|
58 |
+
#ifdef __HIP_PLATFORM_AMD__
|
59 |
+
rocblas_operation get_trans_op(bool do_trans)
|
60 |
+
{
|
61 |
+
return (do_trans) ? rocblas_operation_transpose : rocblas_operation_none;
|
62 |
+
}
|
63 |
+
|
64 |
+
rocblas_datatype get_datatype(BlasType type)
|
65 |
+
{
|
66 |
+
switch (type) {
|
67 |
+
case BlasType::FP32: return rocblas_datatype_f32_r;
|
68 |
+
case BlasType::FP16: return rocblas_datatype_f16_r;
|
69 |
+
case BlasType::BF16: return rocblas_datatype_bf16_r;
|
70 |
+
default: throw std::runtime_error("Unsupported BlasType");
|
71 |
+
}
|
72 |
+
}
|
73 |
+
#else
|
74 |
+
cublasOperation_t get_trans_op(bool do_trans) { return (do_trans) ? CUBLAS_OP_T : CUBLAS_OP_N; }
|
75 |
+
|
76 |
+
cublasDataType_t get_datatype(BlasType type)
|
77 |
+
{
|
78 |
+
switch (type) {
|
79 |
+
case BlasType::FP32: return CUDA_R_32F;
|
80 |
+
case BlasType::FP16: return CUDA_R_16F;
|
81 |
+
case BlasType::BF16: return CUDA_R_16BF;
|
82 |
+
default: throw std::runtime_error("Unsupported BlasType");
|
83 |
+
}
|
84 |
+
}
|
85 |
+
#endif
|
86 |
+
|
87 |
+
int blas_gemm_ex(void* C,
|
88 |
+
const void* A,
|
89 |
+
const void* B,
|
90 |
+
int m,
|
91 |
+
int n,
|
92 |
+
int k,
|
93 |
+
int lda,
|
94 |
+
int ldb,
|
95 |
+
int ldc,
|
96 |
+
bool transa,
|
97 |
+
bool transb,
|
98 |
+
const float* alpha,
|
99 |
+
const float* beta,
|
100 |
+
BlasType type)
|
101 |
+
{
|
102 |
+
#ifdef __HIP_PLATFORM_AMD__
|
103 |
+
rocblas_operation_t transa_op = get_trans_op(transa);
|
104 |
+
rocblas_operation_t transb_op = get_trans_op(transb);
|
105 |
+
|
106 |
+
rocblas_datatype_t abc_type = get_datatype(type);
|
107 |
+
|
108 |
+
rocblas_status status = rocblas_gemm_ex(BlasContext::getInstance().get_handle(),
|
109 |
+
transa_op,
|
110 |
+
transb_op,
|
111 |
+
m,
|
112 |
+
n,
|
113 |
+
k,
|
114 |
+
(const void*)alpha,
|
115 |
+
A,
|
116 |
+
abc_type,
|
117 |
+
lda,
|
118 |
+
B,
|
119 |
+
abc_type,
|
120 |
+
ldb,
|
121 |
+
(const void*)beta,
|
122 |
+
C,
|
123 |
+
abc_type,
|
124 |
+
ldc,
|
125 |
+
C,
|
126 |
+
abc_type,
|
127 |
+
ldc,
|
128 |
+
rocblas_datatype_f32_r,
|
129 |
+
rocblas_gemm_algo_standard,
|
130 |
+
0,
|
131 |
+
0);
|
132 |
+
#else
|
133 |
+
cublasOperation_t transa_op = get_trans_op(transa);
|
134 |
+
cublasOperation_t transb_op = get_trans_op(transb);
|
135 |
+
|
136 |
+
cublasDataType_t abc_type = get_datatype(type);
|
137 |
+
cublasStatus_t status = cublasGemmEx(BlasContext::getInstance().get_handle(),
|
138 |
+
transa_op,
|
139 |
+
transb_op,
|
140 |
+
m,
|
141 |
+
n,
|
142 |
+
k,
|
143 |
+
(const void*)alpha,
|
144 |
+
A,
|
145 |
+
abc_type,
|
146 |
+
lda,
|
147 |
+
B,
|
148 |
+
abc_type,
|
149 |
+
ldb,
|
150 |
+
(const void*)beta,
|
151 |
+
C,
|
152 |
+
abc_type,
|
153 |
+
ldc,
|
154 |
+
CUDA_R_32F,
|
155 |
+
CUBLAS_GEMM_DEFAULT_TENSOR_OP);
|
156 |
+
#endif
|
157 |
+
|
158 |
+
#ifdef __HIP_PLATFORM_AMD__
|
159 |
+
if (status != rocblas_status_success) {
|
160 |
+
#else
|
161 |
+
if (status != CUBLAS_STATUS_SUCCESS) {
|
162 |
+
#endif
|
163 |
+
fprintf(stderr,
|
164 |
+
"!!!! kernel execution error. (m: %d, n: %d, k: %d, error: %d) \n",
|
165 |
+
m,
|
166 |
+
n,
|
167 |
+
k,
|
168 |
+
(int)status);
|
169 |
+
return EXIT_FAILURE;
|
170 |
+
}
|
171 |
+
return 0;
|
172 |
+
}
|
173 |
+
|
174 |
+
int blas_strided_batched_gemm(void* C,
|
175 |
+
const void* A,
|
176 |
+
const void* B,
|
177 |
+
int m,
|
178 |
+
int n,
|
179 |
+
int k,
|
180 |
+
int lda,
|
181 |
+
int ldb,
|
182 |
+
int ldc,
|
183 |
+
bool transa,
|
184 |
+
bool transb,
|
185 |
+
const float* alpha,
|
186 |
+
const float* beta,
|
187 |
+
int stride_A,
|
188 |
+
int stride_B,
|
189 |
+
int stride_C,
|
190 |
+
int batch,
|
191 |
+
BlasType type)
|
192 |
+
{
|
193 |
+
#ifdef __HIP_PLATFORM_AMD__
|
194 |
+
rocblas_operation_t transa_op = get_trans_op(transa);
|
195 |
+
rocblas_operation_t transb_op = get_trans_op(transb);
|
196 |
+
|
197 |
+
rocblas_datatype_t abc_type = get_datatype(type);
|
198 |
+
|
199 |
+
rocblas_status status =
|
200 |
+
rocblas_gemm_strided_batched_ex(BlasContext::getInstance()::get_handle(),
|
201 |
+
transa_op,
|
202 |
+
transb_op,
|
203 |
+
m,
|
204 |
+
n,
|
205 |
+
k,
|
206 |
+
(const void*)alpha,
|
207 |
+
A,
|
208 |
+
abc_type,
|
209 |
+
lda,
|
210 |
+
stride_A,
|
211 |
+
B,
|
212 |
+
abc_type,
|
213 |
+
ldb,
|
214 |
+
stride_B,
|
215 |
+
(const void*)beta,
|
216 |
+
C,
|
217 |
+
abc_type,
|
218 |
+
ldc,
|
219 |
+
stride_C,
|
220 |
+
C,
|
221 |
+
abc_type,
|
222 |
+
ldc,
|
223 |
+
stride_C,
|
224 |
+
batch,
|
225 |
+
rocblas_datatype_f32_r,
|
226 |
+
rocblas_gemm_algo_standard,
|
227 |
+
0,
|
228 |
+
0);
|
229 |
+
#else
|
230 |
+
cublasOperation_t transa_op = get_trans_op(transa);
|
231 |
+
cublasOperation_t transb_op = get_trans_op(transb);
|
232 |
+
|
233 |
+
cublasDataType_t abc_type = get_datatype(type);
|
234 |
+
|
235 |
+
cublasStatus_t status = cublasGemmStridedBatchedEx(BlasContext::getInstance().get_handle(),
|
236 |
+
transa_op,
|
237 |
+
transb_op,
|
238 |
+
m,
|
239 |
+
n,
|
240 |
+
k,
|
241 |
+
(const void*)alpha,
|
242 |
+
A,
|
243 |
+
abc_type,
|
244 |
+
lda,
|
245 |
+
stride_A,
|
246 |
+
B,
|
247 |
+
abc_type,
|
248 |
+
ldb,
|
249 |
+
stride_B,
|
250 |
+
(const void*)beta,
|
251 |
+
C,
|
252 |
+
abc_type,
|
253 |
+
ldc,
|
254 |
+
stride_C,
|
255 |
+
batch,
|
256 |
+
CUDA_R_32F,
|
257 |
+
CUBLAS_GEMM_DEFAULT_TENSOR_OP);
|
258 |
+
#endif
|
259 |
+
|
260 |
+
#ifdef __HIP_PLATFORM_AMD__
|
261 |
+
if (status != rocblas_status_success) {
|
262 |
+
#else
|
263 |
+
if (status != CUBLAS_STATUS_SUCCESS) {
|
264 |
+
#endif
|
265 |
+
fprintf(stderr,
|
266 |
+
"!!!! kernel execution error. (batch: %d, m: %d, n: %d, k: %d, error: %d) \n",
|
267 |
+
batch,
|
268 |
+
m,
|
269 |
+
n,
|
270 |
+
k,
|
271 |
+
(int)status);
|
272 |
+
return EXIT_FAILURE;
|
273 |
+
}
|
274 |
+
return 0;
|
275 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/core_ops.cpp
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include <c10/cuda/CUDAStream.h>
|
7 |
+
#include <torch/extension.h>
|
8 |
+
|
9 |
+
#include "bias_activation.h"
|
10 |
+
#include "blas.h"
|
11 |
+
#include "gated_activation_kernels.h"
|
12 |
+
#include "layer_norm.h"
|
13 |
+
#include "linear_kernels.h"
|
14 |
+
#include "rms_norm.h"
|
15 |
+
|
16 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
|
17 |
+
{
|
18 |
+
// bias_activation.h
|
19 |
+
m.def("bias_activation", &bias_activation, "DeepSpeed bias activation in CUDA");
|
20 |
+
|
21 |
+
// layer_norm.h
|
22 |
+
m.def("layer_norm", &ds_layer_norm, "DeepSpeed layer norm in CUDA");
|
23 |
+
m.def("pre_layer_norm", &ds_pre_layer_norm, "DeepSpeed pre layer norm in CUDA");
|
24 |
+
m.def("post_layer_norm", &ds_post_layer_norm, "DeepSpeed pre layer norm in CUDA");
|
25 |
+
|
26 |
+
// blas.h
|
27 |
+
m.def("blas_linear", &blas_linear, "Linear implemented by vendor BLAS");
|
28 |
+
m.def("blas_4d_matmul", &blas_4d_matmul, "4D matmul implemented by vendor BLAS");
|
29 |
+
m.def("create_handle", &create_handle, "Create a handle for vendor BLAS");
|
30 |
+
|
31 |
+
// gated_activation_kernels.h
|
32 |
+
m.def("gated_activation", &ds_gated_activation, "DeepSpeed gated activation in CUDA");
|
33 |
+
|
34 |
+
// rms_norm.h
|
35 |
+
m.def("rms_norm", &rms_norm, "DeepSpeed rms norm in CUDA");
|
36 |
+
m.def("rms_pre_norm", &rms_pre_norm, "DeepSpeed rms pre norm in CUDA");
|
37 |
+
|
38 |
+
// linear_kernels.h
|
39 |
+
m.def("cuda_wf6af16_linear", &cuda_wf6af16_linear, "DeepSpeed Wf6Af16 linear in CUDA");
|
40 |
+
m.def(
|
41 |
+
"preprocess_weight", &preprocess_weight, "preprocess the FP16 weight to be 2bit and 4 bit");
|
42 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_layer_norm/__init__.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from .cuda_ln import *
|
7 |
+
from .cuda_post_ln import *
|
8 |
+
from .cuda_pre_ln import *
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_layer_norm/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (294 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_layer_norm/__pycache__/cuda_fp_ln_base.cpython-310.pyc
ADDED
Binary file (1.56 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_layer_norm/__pycache__/cuda_ln.cpython-310.pyc
ADDED
Binary file (1.15 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_layer_norm/__pycache__/cuda_post_ln.cpython-310.pyc
ADDED
Binary file (1.29 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_layer_norm/__pycache__/cuda_pre_ln.cpython-310.pyc
ADDED
Binary file (1.53 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_layer_norm/cuda_fp_ln_base.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from ... import DSKernelBase
|
9 |
+
from ....inference_utils import elem_size
|
10 |
+
from deepspeed.ops.op_builder import InferenceCoreBuilder
|
11 |
+
|
12 |
+
|
13 |
+
class CUDAFPLNBase(DSKernelBase):
|
14 |
+
"""
|
15 |
+
Base class for CUDA LN kernels. They all same the same validation logic,
|
16 |
+
so we can share it here.
|
17 |
+
"""
|
18 |
+
|
19 |
+
supported_dtypes = [torch.float16, torch.bfloat16, torch.float32]
|
20 |
+
|
21 |
+
def __init__(self, channels: int, fp_dtype: torch.dtype, epsilon: float = 1e-5):
|
22 |
+
"""
|
23 |
+
Parameters:
|
24 |
+
channels (int): Number of channels in the input tensor. Must be divisible to align
|
25 |
+
to 16 bytes.
|
26 |
+
fp_dtype (torch.dtype): Data type for the input/output/gamma. Supported values
|
27 |
+
are torch.float16, torch.bfloat16, and torch.float32.
|
28 |
+
"""
|
29 |
+
if fp_dtype not in CUDAFPLNBase.supported_dtypes:
|
30 |
+
raise ValueError("Unsupported data type: {}, supported_dtypes are {}".format(
|
31 |
+
fp_dtype, CUDAFPLNBase.supported_dtypes))
|
32 |
+
|
33 |
+
if elem_size(fp_dtype) * channels % 16 != 0:
|
34 |
+
raise ValueError("channels must be divisible by 16 bytes")
|
35 |
+
|
36 |
+
self.inf_module = InferenceCoreBuilder().load()
|
37 |
+
self.epsilon = epsilon
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_layer_norm/cuda_ln.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from .cuda_fp_ln_base import CUDAFPLNBase
|
9 |
+
|
10 |
+
|
11 |
+
class CUDAFPLN(CUDAFPLNBase):
|
12 |
+
"""
|
13 |
+
Floating point layer norm kernel for CUDA/RoCM.
|
14 |
+
|
15 |
+
Performs: z = ln(x)
|
16 |
+
"""
|
17 |
+
|
18 |
+
def __call__(self, output_z: torch.Tensor, input_x: torch.Tensor, gamma: torch.Tensor,
|
19 |
+
beta: torch.Tensor) -> torch.Tensor:
|
20 |
+
"""
|
21 |
+
output_z may alias input_x directly. All Tensors should have the same shape.
|
22 |
+
|
23 |
+
Parameters:
|
24 |
+
output_z (torch.Tensor): Output tensor.
|
25 |
+
input_x (torch.Tensor): Input tensor.
|
26 |
+
gamma (torch.Tensor): Gamma tensor.
|
27 |
+
beta (torch.Tensor): Beta tensor.
|
28 |
+
"""
|
29 |
+
self.inf_module.layer_norm(output_z, input_x, gamma, beta, self.epsilon)
|
30 |
+
return output_z
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_layer_norm/cuda_post_ln.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from .cuda_fp_ln_base import CUDAFPLNBase
|
9 |
+
|
10 |
+
|
11 |
+
class CUDAFPPostLN(CUDAFPLNBase):
|
12 |
+
"""
|
13 |
+
Floating point post-LayerNorm kernel for CUDA/RoCM.
|
14 |
+
|
15 |
+
Performs: z = ln(x + y)
|
16 |
+
"""
|
17 |
+
|
18 |
+
def __call__(self, output_z: torch.Tensor, input_x: torch.Tensor, input_y: torch.Tensor, gamma: torch.Tensor,
|
19 |
+
beta: torch.Tensor) -> torch.Tensor:
|
20 |
+
"""
|
21 |
+
Either input_x or input_y can alias output_z.
|
22 |
+
|
23 |
+
Parameters:
|
24 |
+
output_z (torch.Tensor): Output tensor.
|
25 |
+
input_x (torch.Tensor): Input tensor.
|
26 |
+
input_y (torch.Tensor): Input tensor.
|
27 |
+
gamma (torch.Tensor): Gamma tensor.
|
28 |
+
beta (torch.Tensor): Beta tensor.
|
29 |
+
|
30 |
+
Returns:
|
31 |
+
output (torch.Tensor): Output tensor.
|
32 |
+
"""
|
33 |
+
self.inf_module.post_layer_norm(output_z, input_x, input_y, gamma, beta, self.epsilon)
|
34 |
+
return output_z
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_layer_norm/cuda_pre_ln.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from typing import Tuple
|
7 |
+
|
8 |
+
import torch
|
9 |
+
|
10 |
+
from .cuda_fp_ln_base import CUDAFPLNBase
|
11 |
+
|
12 |
+
|
13 |
+
class CUDAFPPreLN(CUDAFPLNBase):
|
14 |
+
"""
|
15 |
+
Floating point pre-LayerNorm kernel for CUDA/RoCM.
|
16 |
+
|
17 |
+
Performs: z_res = x_res + y_hid
|
18 |
+
z_hid = ln(z_hid)
|
19 |
+
"""
|
20 |
+
|
21 |
+
def __call__(self, z_res: torch.Tensor, z_hid: torch.Tensor, x_res: torch.Tensor, y_hid: torch.Tensor,
|
22 |
+
gamma: torch.Tensor, beta: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
23 |
+
"""
|
24 |
+
z_res can alias x_res. All non-parameter input/output tensors
|
25 |
+
must have the same shape. z_hid can alias y_hid.
|
26 |
+
|
27 |
+
Parameters:
|
28 |
+
z_res (torch.Tensor): Output residual.
|
29 |
+
z_hid (torch.Tensor): Output hidden states.
|
30 |
+
x_res (torch.Tensor): Input residual.
|
31 |
+
y_hid (torch.Tensor): Input hidden states.
|
32 |
+
gamma (torch.Tensor): Gamma tensor.
|
33 |
+
beta (torch.Tensor): Beta tensor.
|
34 |
+
|
35 |
+
Returns:
|
36 |
+
output (torch.Tensor): Output tensor.
|
37 |
+
"""
|
38 |
+
self.inf_module.pre_layer_norm(z_res, z_hid, x_res, y_hid, gamma, beta, self.epsilon)
|
39 |
+
return z_res, z_hid
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_layer_norm/layer_norm.cpp
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include "layer_norm.h"
|
7 |
+
|
8 |
+
#define DISPATCH_LAYER_NORM(T_TYPE, C_TYPE) \
|
9 |
+
if (input.options().dtype() == torch::T_TYPE) { \
|
10 |
+
launch_fused_ln((C_TYPE*)output.data_ptr(), \
|
11 |
+
(const C_TYPE*)input.data_ptr(), \
|
12 |
+
(const C_TYPE*)gamma.data_ptr(), \
|
13 |
+
(const C_TYPE*)beta.data_ptr(), \
|
14 |
+
epsilon, \
|
15 |
+
rows, \
|
16 |
+
elems_per_row, \
|
17 |
+
at::cuda::getCurrentCUDAStream()); \
|
18 |
+
}
|
19 |
+
|
20 |
+
void ds_layer_norm(at::Tensor& output,
|
21 |
+
at::Tensor& input,
|
22 |
+
at::Tensor& gamma,
|
23 |
+
at::Tensor& beta,
|
24 |
+
float epsilon)
|
25 |
+
{
|
26 |
+
bool ragged_input = input.dim() == 2;
|
27 |
+
|
28 |
+
const int rows = ragged_input ? input.size(0) : input.size(0) * input.size(1);
|
29 |
+
const int elems_per_row = ragged_input ? input.size(1) : input.size(2);
|
30 |
+
|
31 |
+
DISPATCH_LAYER_NORM(kFloat, float);
|
32 |
+
DISPATCH_LAYER_NORM(kHalf, __half);
|
33 |
+
#ifdef BF16_AVAILABLE
|
34 |
+
DISPATCH_LAYER_NORM(kBFloat16, __nv_bfloat16);
|
35 |
+
#endif
|
36 |
+
}
|
37 |
+
|
38 |
+
#define DISPATCH_LAYER_NORM_RESIDUAL(T_TYPE, C_TYPE) \
|
39 |
+
if (input.options().dtype() == torch::T_TYPE) { \
|
40 |
+
launch_fused_post_ln((C_TYPE*)output.data_ptr(), \
|
41 |
+
(const C_TYPE*)input.data_ptr(), \
|
42 |
+
(const C_TYPE*)residual.data_ptr(), \
|
43 |
+
(const C_TYPE*)gamma.data_ptr(), \
|
44 |
+
(const C_TYPE*)beta.data_ptr(), \
|
45 |
+
epsilon, \
|
46 |
+
rows, \
|
47 |
+
elems_per_row, \
|
48 |
+
at::cuda::getCurrentCUDAStream()); \
|
49 |
+
}
|
50 |
+
|
51 |
+
void ds_post_layer_norm(at::Tensor& output,
|
52 |
+
at::Tensor& input,
|
53 |
+
at::Tensor& residual,
|
54 |
+
at::Tensor& gamma,
|
55 |
+
at::Tensor& beta,
|
56 |
+
float epsilon)
|
57 |
+
{
|
58 |
+
bool ragged_input = input.dim() == 2;
|
59 |
+
|
60 |
+
const int rows = ragged_input ? input.size(0) : input.size(0) * input.size(1);
|
61 |
+
const int elems_per_row = ragged_input ? input.size(1) : input.size(2);
|
62 |
+
|
63 |
+
DISPATCH_LAYER_NORM_RESIDUAL(kFloat, float);
|
64 |
+
DISPATCH_LAYER_NORM_RESIDUAL(kHalf, __half);
|
65 |
+
#ifdef BF16_AVAILABLE
|
66 |
+
DISPATCH_LAYER_NORM_RESIDUAL(kBFloat16, __nv_bfloat16);
|
67 |
+
#endif
|
68 |
+
}
|
69 |
+
|
70 |
+
#define DISPATCH_PRE_LAYER_NORM_RESIDUAL(T_TYPE, C_TYPE) \
|
71 |
+
if (input.options().dtype() == torch::T_TYPE) { \
|
72 |
+
launch_fused_pre_ln((C_TYPE*)norm_output.data_ptr(), \
|
73 |
+
(C_TYPE*)res_output.data_ptr(), \
|
74 |
+
(const C_TYPE*)input.data_ptr(), \
|
75 |
+
(const C_TYPE*)residual.data_ptr(), \
|
76 |
+
(const C_TYPE*)gamma.data_ptr(), \
|
77 |
+
(const C_TYPE*)beta.data_ptr(), \
|
78 |
+
epsilon, \
|
79 |
+
rows, \
|
80 |
+
elems_per_row, \
|
81 |
+
at::cuda::getCurrentCUDAStream()); \
|
82 |
+
}
|
83 |
+
|
84 |
+
void ds_pre_layer_norm(at::Tensor& res_output,
|
85 |
+
at::Tensor& norm_output,
|
86 |
+
at::Tensor& input,
|
87 |
+
at::Tensor& residual,
|
88 |
+
at::Tensor& gamma,
|
89 |
+
at::Tensor& beta,
|
90 |
+
float epsilon)
|
91 |
+
{
|
92 |
+
bool ragged_input = input.dim() == 2;
|
93 |
+
|
94 |
+
const int rows = ragged_input ? input.size(0) : input.size(0) * input.size(1);
|
95 |
+
const int elems_per_row = ragged_input ? input.size(1) : input.size(2);
|
96 |
+
|
97 |
+
DISPATCH_PRE_LAYER_NORM_RESIDUAL(kFloat, float);
|
98 |
+
DISPATCH_PRE_LAYER_NORM_RESIDUAL(kHalf, __half);
|
99 |
+
#ifdef BF16_AVAILABLE
|
100 |
+
DISPATCH_PRE_LAYER_NORM_RESIDUAL(kBFloat16, __nv_bfloat16);
|
101 |
+
#endif
|
102 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_layer_norm/layer_norm.h
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include <c10/cuda/CUDAStream.h>
|
9 |
+
#include <torch/extension.h>
|
10 |
+
#include "ds_kernel_utils.h"
|
11 |
+
|
12 |
+
/*
|
13 |
+
Kernel launch methods for layer norm variants.
|
14 |
+
*/
|
15 |
+
|
16 |
+
template <typename T>
|
17 |
+
void launch_fused_ln(T* output,
|
18 |
+
const T* vals,
|
19 |
+
const T* gamma,
|
20 |
+
const T* beta,
|
21 |
+
float epsilon,
|
22 |
+
int rows,
|
23 |
+
int elems_per_row,
|
24 |
+
cudaStream_t stream);
|
25 |
+
|
26 |
+
template <typename T>
|
27 |
+
void launch_fused_post_ln(T* output,
|
28 |
+
const T* vals,
|
29 |
+
const T* residual,
|
30 |
+
const T* gamma,
|
31 |
+
const T* beta,
|
32 |
+
float epsilon,
|
33 |
+
int rows,
|
34 |
+
int elems_per_row,
|
35 |
+
cudaStream_t stream);
|
36 |
+
template <typename T>
|
37 |
+
void launch_fused_pre_ln(T* norm_output,
|
38 |
+
T* res_output,
|
39 |
+
const T* vals,
|
40 |
+
const T* residual,
|
41 |
+
const T* gamma,
|
42 |
+
const T* beta,
|
43 |
+
float epsilon,
|
44 |
+
int rows,
|
45 |
+
int elems_per_row,
|
46 |
+
cudaStream_t stream);
|
47 |
+
|
48 |
+
void ds_layer_norm(at::Tensor& output,
|
49 |
+
at::Tensor& input,
|
50 |
+
at::Tensor& gamma,
|
51 |
+
at::Tensor& beta,
|
52 |
+
float epsilon);
|
53 |
+
|
54 |
+
void ds_post_layer_norm(at::Tensor& output,
|
55 |
+
at::Tensor& input,
|
56 |
+
at::Tensor& residual,
|
57 |
+
at::Tensor& gamma,
|
58 |
+
at::Tensor& beta,
|
59 |
+
float epsilon);
|
60 |
+
|
61 |
+
void ds_pre_layer_norm(at::Tensor& res_output,
|
62 |
+
at::Tensor& norm_output,
|
63 |
+
at::Tensor& input,
|
64 |
+
at::Tensor& residual,
|
65 |
+
at::Tensor& gamma,
|
66 |
+
at::Tensor& beta,
|
67 |
+
float epsilon);
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_layer_norm/layer_norm_cuda.cu
ADDED
@@ -0,0 +1,490 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include "conversion_utils.h"
|
7 |
+
#include "ds_kernel_utils.h"
|
8 |
+
#include "memory_access_utils.h"
|
9 |
+
#include "reduction_utils.h"
|
10 |
+
|
11 |
+
namespace cg = cooperative_groups;
|
12 |
+
using rop = reduce::ROpType;
|
13 |
+
|
14 |
+
namespace ln {
|
15 |
+
constexpr int granularity = 16;
|
16 |
+
} // namespace ln
|
17 |
+
|
18 |
+
/*
|
19 |
+
Regular layer norm implementation. Assumes elems_per_row % 8
|
20 |
+
is equal to 0.
|
21 |
+
|
22 |
+
Args:
|
23 |
+
output: buffer for output data
|
24 |
+
vals: buffer for input data
|
25 |
+
gamma: gain for normalization
|
26 |
+
beta: bias for normalization
|
27 |
+
epsilon: numeric stability
|
28 |
+
elems_per_row: number of elements each block will normalize
|
29 |
+
*/
|
30 |
+
template <typename T, int unRoll, int threadsPerGroup, int maxThreads>
|
31 |
+
__global__ void fused_ln(T* output,
|
32 |
+
const T* vals,
|
33 |
+
const T* gamma,
|
34 |
+
const T* beta,
|
35 |
+
float epsilon,
|
36 |
+
int elems_per_row)
|
37 |
+
{
|
38 |
+
constexpr int T_per_load = ln::granularity / sizeof(T);
|
39 |
+
|
40 |
+
cg::thread_block tb = cg::this_thread_block();
|
41 |
+
cg::thread_block_tile<hw_warp_size> warp = cg::tiled_partition<hw_warp_size>(tb);
|
42 |
+
|
43 |
+
// X-dimension of the block
|
44 |
+
const int block_offset = (tb.group_index().x * (maxThreads / threadsPerGroup) * elems_per_row) +
|
45 |
+
(tb.thread_index().y * elems_per_row);
|
46 |
+
const int thread_offset = tb.thread_index().x * T_per_load;
|
47 |
+
const int base_offset = block_offset + thread_offset;
|
48 |
+
const int stride = blockDim.x * T_per_load;
|
49 |
+
|
50 |
+
float sum = reduce::init<rop::Add, float>();
|
51 |
+
|
52 |
+
const T* input_base = vals + base_offset;
|
53 |
+
|
54 |
+
T local_buffer[unRoll * T_per_load];
|
55 |
+
|
56 |
+
#pragma unRoll
|
57 |
+
for (int i = 0; i < unRoll; i++) {
|
58 |
+
T* iteration_buffer = local_buffer + i * T_per_load;
|
59 |
+
|
60 |
+
mem_access::load_global<ln::granularity>(
|
61 |
+
iteration_buffer, input_base + i * stride, thread_offset + i * stride < elems_per_row);
|
62 |
+
|
63 |
+
#pragma unRoll
|
64 |
+
for (int j = 0; j < T_per_load; j++) {
|
65 |
+
float vals_up_cast = conversion::to<float>(iteration_buffer[j]);
|
66 |
+
sum = reduce::element<rop::Add>(sum, vals_up_cast);
|
67 |
+
}
|
68 |
+
}
|
69 |
+
|
70 |
+
reduce::partitioned_block<rop::Add, threadsPerGroup>(tb, warp, sum);
|
71 |
+
const float mean = sum / elems_per_row;
|
72 |
+
|
73 |
+
float mean_diff = reduce::init<rop::Add, float>();
|
74 |
+
|
75 |
+
#pragma unRoll
|
76 |
+
for (int i = 0; i < unRoll; i++) {
|
77 |
+
#pragma unRoll
|
78 |
+
for (int j = 0; j < T_per_load; j++) {
|
79 |
+
// Using a 0 value here skews the variance, have to if-guard
|
80 |
+
if (thread_offset + i * stride < elems_per_row) {
|
81 |
+
float diff = (conversion::to<float>(local_buffer[i * T_per_load + j]) - mean);
|
82 |
+
mean_diff = reduce::element<rop::Add>(mean_diff, diff * diff);
|
83 |
+
}
|
84 |
+
}
|
85 |
+
}
|
86 |
+
|
87 |
+
reduce::partitioned_block<rop::Add, threadsPerGroup>(tb, warp, mean_diff);
|
88 |
+
const float variance = mean_diff / elems_per_row;
|
89 |
+
const float denom = __frsqrt_rn(variance + epsilon);
|
90 |
+
|
91 |
+
T* block_output = output + block_offset;
|
92 |
+
|
93 |
+
#pragma unRoll
|
94 |
+
for (int i = 0; i < unRoll; i++) {
|
95 |
+
T* iteration_buffer = local_buffer + i * T_per_load;
|
96 |
+
const int iter_idx = i * stride + thread_offset;
|
97 |
+
const bool do_loads = iter_idx < elems_per_row;
|
98 |
+
|
99 |
+
T gamma_local[T_per_load], beta_local[T_per_load];
|
100 |
+
|
101 |
+
mem_access::load_global<ln::granularity>(gamma_local, gamma + iter_idx, do_loads);
|
102 |
+
mem_access::load_global<ln::granularity>(beta_local, beta + iter_idx, do_loads);
|
103 |
+
|
104 |
+
#pragma unRoll
|
105 |
+
for (int j = 0; j < T_per_load; j++) {
|
106 |
+
float val = conversion::to<float>(iteration_buffer[j]);
|
107 |
+
val = (val - mean) * denom;
|
108 |
+
val =
|
109 |
+
val * conversion::to<float>(gamma_local[j]) + conversion::to<float>(beta_local[j]);
|
110 |
+
iteration_buffer[j] = conversion::to<T>(val);
|
111 |
+
}
|
112 |
+
|
113 |
+
if (do_loads) {
|
114 |
+
mem_access::store_global<ln::granularity>(block_output + iter_idx, iteration_buffer);
|
115 |
+
}
|
116 |
+
}
|
117 |
+
}
|
118 |
+
|
119 |
+
#define LAUNCH_FUSED_LN(unRollFactor, threadsPerGroup, maxThreads) \
|
120 |
+
fused_ln<T, unRollFactor, threadsPerGroup, maxThreads> \
|
121 |
+
<<<grid, block, 0, stream>>>(output, vals, gamma, beta, epsilon, elems_per_row);
|
122 |
+
|
123 |
+
template <typename T>
|
124 |
+
void launch_fused_ln(T* output,
|
125 |
+
const T* vals,
|
126 |
+
const T* gamma,
|
127 |
+
const T* beta,
|
128 |
+
float epsilon,
|
129 |
+
int rows,
|
130 |
+
int elems_per_row,
|
131 |
+
cudaStream_t stream)
|
132 |
+
{
|
133 |
+
// 8 for __half, 4 for float
|
134 |
+
constexpr int T_per_load = ln::granularity / sizeof(T);
|
135 |
+
|
136 |
+
constexpr int maxThreads = 256;
|
137 |
+
|
138 |
+
// For Flaoat, unRoll 4, for __half, unRoll 2
|
139 |
+
constexpr int internal_unRoll = sizeof(T) == 4 ? 4 : 2;
|
140 |
+
|
141 |
+
const bool is_subblock_schedule = (elems_per_row <= 128) ? true : false;
|
142 |
+
const int h_per_step = is_subblock_schedule ? T_per_load : T_per_load * internal_unRoll;
|
143 |
+
|
144 |
+
// Scheduling concern: may be slightly faster for some inputs to assign multiple stages of
|
145 |
+
// warp-sized blocks rather than stepping up to 64/96 threads
|
146 |
+
const int one_step_threads = next_pow2((elems_per_row + h_per_step - 1) / h_per_step);
|
147 |
+
const int threadsPerGroup = (one_step_threads < maxThreads) ? one_step_threads : maxThreads;
|
148 |
+
|
149 |
+
const int groups_per_block_max =
|
150 |
+
is_subblock_schedule ? (maxThreads + threadsPerGroup - 1) / threadsPerGroup : 1;
|
151 |
+
const int groups_per_block = (rows < groups_per_block_max) ? rows : groups_per_block_max;
|
152 |
+
const int groups_launch = (groups_per_block + rows - 1) / groups_per_block;
|
153 |
+
|
154 |
+
dim3 block(threadsPerGroup, groups_per_block);
|
155 |
+
dim3 grid(groups_launch);
|
156 |
+
|
157 |
+
const int elems_per_step = threadsPerGroup * h_per_step;
|
158 |
+
const int external_unRoll = (elems_per_row + elems_per_step - 1) / elems_per_step;
|
159 |
+
|
160 |
+
if (is_subblock_schedule) {
|
161 |
+
// <=128
|
162 |
+
if (threadsPerGroup == 1) {
|
163 |
+
LAUNCH_FUSED_LN(1, 1, maxThreads);
|
164 |
+
} else if (threadsPerGroup == 2) {
|
165 |
+
LAUNCH_FUSED_LN(1, 2, maxThreads);
|
166 |
+
} else if (threadsPerGroup == 4) {
|
167 |
+
LAUNCH_FUSED_LN(1, 4, maxThreads);
|
168 |
+
} else if (threadsPerGroup == 8) {
|
169 |
+
LAUNCH_FUSED_LN(1, 8, maxThreads);
|
170 |
+
} else if (threadsPerGroup == 16) {
|
171 |
+
LAUNCH_FUSED_LN(1, 16, maxThreads);
|
172 |
+
}
|
173 |
+
} else if (external_unRoll == 1) {
|
174 |
+
// 129 - 4096 elems
|
175 |
+
// (this can launch with 1-7 warps as well)
|
176 |
+
LAUNCH_FUSED_LN(1 * internal_unRoll, maxThreads, maxThreads);
|
177 |
+
} else if (external_unRoll == 2) {
|
178 |
+
// 4097 - 8192 elems
|
179 |
+
LAUNCH_FUSED_LN(2 * internal_unRoll, maxThreads, maxThreads);
|
180 |
+
} else if (external_unRoll == 3) {
|
181 |
+
// 8193 - 12288 elems
|
182 |
+
LAUNCH_FUSED_LN(3 * internal_unRoll, maxThreads, maxThreads);
|
183 |
+
} else if (external_unRoll == 4) {
|
184 |
+
// 12289 - 16384 elems
|
185 |
+
LAUNCH_FUSED_LN(4 * internal_unRoll, maxThreads, maxThreads);
|
186 |
+
}
|
187 |
+
}
|
188 |
+
|
189 |
+
#define INSTANTIATE_FUSED_LN(T) \
|
190 |
+
template void launch_fused_ln(T*, const T*, const T*, const T*, float, int, int, cudaStream_t);
|
191 |
+
|
192 |
+
INSTANTIATE_FUSED_LN(__half);
|
193 |
+
#ifdef BF16_AVAILABLE
|
194 |
+
INSTANTIATE_FUSED_LN(__nv_bfloat16);
|
195 |
+
#endif
|
196 |
+
INSTANTIATE_FUSED_LN(float);
|
197 |
+
|
198 |
+
/*
|
199 |
+
Fused resiual + bias + layer norm implementation. Assumes elems_per_row % 8
|
200 |
+
is equal to 0.
|
201 |
+
|
202 |
+
TODO(cmikeh2): Goal is to deprecate this implementation. The bias + residual
|
203 |
+
need to be fused into compute-bound producer operations.
|
204 |
+
|
205 |
+
Args:
|
206 |
+
output: buffer for output data
|
207 |
+
res_output: output of residual addition
|
208 |
+
vals: buffer for input data
|
209 |
+
residual: residual data
|
210 |
+
bias: bias of of input data
|
211 |
+
gamma: gain for normalization
|
212 |
+
beta: bias for normalization
|
213 |
+
epsilon: numeric stability
|
214 |
+
elems_per_row: number of elements each block will normalize
|
215 |
+
Template arg:
|
216 |
+
StoreResidual: controls whether the residual calculation is stored
|
217 |
+
or not. When set to false, the input `res_output` is unused.
|
218 |
+
*/
|
219 |
+
template <typename T, int unRoll, int threadsPerGroup, int maxThreads, bool preLnResidual>
|
220 |
+
__global__ void fused_residual_ln(T* output,
|
221 |
+
T* res_output,
|
222 |
+
const T* vals,
|
223 |
+
const T* residual,
|
224 |
+
const T* gamma,
|
225 |
+
const T* beta,
|
226 |
+
float epsilon,
|
227 |
+
int elems_per_row)
|
228 |
+
{
|
229 |
+
constexpr int T_per_load = ln::granularity / sizeof(T);
|
230 |
+
|
231 |
+
cg::thread_block tb = cg::this_thread_block();
|
232 |
+
cg::thread_block_tile<hw_warp_size> warp = cg::tiled_partition<hw_warp_size>(tb);
|
233 |
+
|
234 |
+
// X-dimension of the block
|
235 |
+
const int block_offset = (tb.group_index().x * (maxThreads / threadsPerGroup) * elems_per_row) +
|
236 |
+
(tb.thread_index().y * elems_per_row);
|
237 |
+
const int thread_offset = tb.thread_index().x * T_per_load;
|
238 |
+
const int base_offset = block_offset + thread_offset;
|
239 |
+
const int stride = tb.size() * T_per_load;
|
240 |
+
|
241 |
+
float sum = reduce::init<rop::Add, float>();
|
242 |
+
|
243 |
+
const T* input_base = vals + base_offset;
|
244 |
+
const T* residual_base = residual + base_offset;
|
245 |
+
|
246 |
+
T local_buffer[unRoll * T_per_load];
|
247 |
+
|
248 |
+
// Unlike a vanilla layernorm, since we're fusing the two adds as well
|
249 |
+
// an inner unRoll seems to be less valuable. If anything, a double unRoll
|
250 |
+
// makes the most sense if we find we are having performance issues.
|
251 |
+
#pragma unRoll
|
252 |
+
for (int i = 0; i < unRoll; i++) {
|
253 |
+
T* iteration_buffer = local_buffer + i * T_per_load;
|
254 |
+
T residual_buffer[T_per_load];
|
255 |
+
T bias_buffer[T_per_load];
|
256 |
+
|
257 |
+
mem_access::load_global<ln::granularity>(
|
258 |
+
iteration_buffer, input_base + i * stride, thread_offset + i * stride < elems_per_row);
|
259 |
+
mem_access::load_global<ln::granularity>(residual_buffer,
|
260 |
+
residual_base + i * stride,
|
261 |
+
thread_offset + i * stride < elems_per_row);
|
262 |
+
|
263 |
+
#pragma unRoll
|
264 |
+
for (int j = 0; j < T_per_load; j++) {
|
265 |
+
float vals_up_cast = conversion::to<float>(iteration_buffer[j]);
|
266 |
+
float res_up_cast = conversion::to<float>(residual_buffer[j]);
|
267 |
+
vals_up_cast += res_up_cast;
|
268 |
+
sum = reduce::element<rop::Add>(sum, vals_up_cast);
|
269 |
+
iteration_buffer[j] = conversion::to<T>(vals_up_cast);
|
270 |
+
}
|
271 |
+
|
272 |
+
if (preLnResidual && (thread_offset + i * stride < elems_per_row)) {
|
273 |
+
mem_access::store_global<ln::granularity>(res_output + base_offset + i * stride,
|
274 |
+
iteration_buffer);
|
275 |
+
}
|
276 |
+
}
|
277 |
+
|
278 |
+
reduce::partitioned_block<rop::Add, threadsPerGroup>(tb, warp, sum);
|
279 |
+
const float mean = sum / elems_per_row;
|
280 |
+
|
281 |
+
float mean_diff = reduce::init<rop::Add, float>();
|
282 |
+
#pragma unRoll
|
283 |
+
for (int i = 0; i < unRoll; i++) {
|
284 |
+
#pragma unRoll
|
285 |
+
for (int j = 0; j < T_per_load; j++) {
|
286 |
+
// Using a 0 value here skews the variance, have to if-guard
|
287 |
+
if (thread_offset + i * stride < elems_per_row) {
|
288 |
+
float diff = (conversion::to<float>(local_buffer[i * T_per_load + j]) - mean);
|
289 |
+
mean_diff = reduce::element<rop::Add>(mean_diff, diff * diff);
|
290 |
+
}
|
291 |
+
}
|
292 |
+
}
|
293 |
+
|
294 |
+
reduce::partitioned_block<rop::Add, threadsPerGroup>(tb, warp, mean_diff);
|
295 |
+
const float variance = mean_diff / elems_per_row;
|
296 |
+
const float denom = __frsqrt_rn(variance + epsilon);
|
297 |
+
|
298 |
+
T* block_output = output + block_offset;
|
299 |
+
|
300 |
+
#pragma unRoll
|
301 |
+
for (int i = 0; i < unRoll; i++) {
|
302 |
+
T* iteration_buffer = local_buffer + i * T_per_load;
|
303 |
+
const int iter_idx = i * stride + thread_offset;
|
304 |
+
const bool do_loads = iter_idx < elems_per_row;
|
305 |
+
|
306 |
+
T gamma_local[T_per_load], beta_local[T_per_load];
|
307 |
+
|
308 |
+
mem_access::load_global<ln::granularity>(gamma_local, gamma + iter_idx, do_loads);
|
309 |
+
mem_access::load_global<ln::granularity>(beta_local, beta + iter_idx, do_loads);
|
310 |
+
|
311 |
+
#pragma unRoll
|
312 |
+
for (int j = 0; j < T_per_load; j++) {
|
313 |
+
float val = conversion::to<float>(iteration_buffer[j]);
|
314 |
+
val = (val - mean) * denom;
|
315 |
+
val =
|
316 |
+
val * conversion::to<float>(gamma_local[j]) + conversion::to<float>(beta_local[j]);
|
317 |
+
iteration_buffer[j] = conversion::to<T>(val);
|
318 |
+
}
|
319 |
+
|
320 |
+
if (do_loads) {
|
321 |
+
mem_access::store_global<ln::granularity>(block_output + iter_idx, iteration_buffer);
|
322 |
+
}
|
323 |
+
}
|
324 |
+
}
|
325 |
+
|
326 |
+
// TODO(cmikeh2): There's a bunch of redundancy here that needs to be removed/simplified.
|
327 |
+
#define LAUNCH_FUSED_RES_LN(unRollFactor, threadsPerGroup, maxThreads) \
|
328 |
+
fused_residual_ln<T, unRollFactor, threadsPerGroup, maxThreads, false> \
|
329 |
+
<<<grid, block, 0, stream>>>( \
|
330 |
+
output, nullptr, vals, residual, gamma, beta, epsilon, elems_per_row);
|
331 |
+
|
332 |
+
template <typename T>
|
333 |
+
void launch_fused_post_ln(T* output,
|
334 |
+
const T* vals,
|
335 |
+
const T* residual,
|
336 |
+
const T* gamma,
|
337 |
+
const T* beta,
|
338 |
+
float epsilon,
|
339 |
+
int rows,
|
340 |
+
int elems_per_row,
|
341 |
+
cudaStream_t stream)
|
342 |
+
{
|
343 |
+
// 8 for __half, 4 for float
|
344 |
+
constexpr int T_per_load = ln::granularity / sizeof(T);
|
345 |
+
|
346 |
+
constexpr int maxThreads = 256;
|
347 |
+
|
348 |
+
// For Flaoat, unRoll 4, for __half, unRoll 2
|
349 |
+
constexpr int internal_unRoll = sizeof(T) == 4 ? 4 : 2;
|
350 |
+
|
351 |
+
const bool is_subblock_schedule = (elems_per_row <= 128) ? true : false;
|
352 |
+
const int h_per_step = is_subblock_schedule ? T_per_load : T_per_load * internal_unRoll;
|
353 |
+
|
354 |
+
// Scheduling concern: may be slightly faster for some inputs to assign multiple stages of
|
355 |
+
// warp-sized blocks rather than stepping up to 64/96 threads
|
356 |
+
const int one_step_threads = next_pow2((elems_per_row + h_per_step - 1) / h_per_step);
|
357 |
+
const int threadsPerGroup = (one_step_threads < maxThreads) ? one_step_threads : maxThreads;
|
358 |
+
|
359 |
+
const int groups_per_block_max =
|
360 |
+
is_subblock_schedule ? (maxThreads + threadsPerGroup - 1) / threadsPerGroup : 1;
|
361 |
+
const int groups_per_block = (rows < groups_per_block_max) ? rows : groups_per_block_max;
|
362 |
+
const int groups_launch = (groups_per_block + rows - 1) / groups_per_block;
|
363 |
+
|
364 |
+
dim3 block(threadsPerGroup, groups_per_block);
|
365 |
+
dim3 grid(groups_launch);
|
366 |
+
|
367 |
+
const int elems_per_step = threadsPerGroup * h_per_step;
|
368 |
+
const int external_unRoll = (elems_per_row + elems_per_step - 1) / elems_per_step;
|
369 |
+
|
370 |
+
if (is_subblock_schedule) {
|
371 |
+
// <=128
|
372 |
+
if (threadsPerGroup == 1) {
|
373 |
+
LAUNCH_FUSED_RES_LN(1, 1, maxThreads);
|
374 |
+
} else if (threadsPerGroup == 2) {
|
375 |
+
LAUNCH_FUSED_RES_LN(1, 2, maxThreads);
|
376 |
+
} else if (threadsPerGroup == 4) {
|
377 |
+
LAUNCH_FUSED_RES_LN(1, 4, maxThreads);
|
378 |
+
} else if (threadsPerGroup == 8) {
|
379 |
+
LAUNCH_FUSED_RES_LN(1, 8, maxThreads);
|
380 |
+
} else if (threadsPerGroup == 16) {
|
381 |
+
LAUNCH_FUSED_RES_LN(1, 16, maxThreads);
|
382 |
+
}
|
383 |
+
} else if (external_unRoll == 1) {
|
384 |
+
// 129 - 4096 elems
|
385 |
+
// (this can launch with 1-7 warps as well)
|
386 |
+
LAUNCH_FUSED_RES_LN(1 * internal_unRoll, maxThreads, maxThreads);
|
387 |
+
} else if (external_unRoll == 2) {
|
388 |
+
// 4097 - 8192 elems
|
389 |
+
LAUNCH_FUSED_RES_LN(2 * internal_unRoll, maxThreads, maxThreads);
|
390 |
+
} else if (external_unRoll == 3) {
|
391 |
+
// 8193 - 12288 elems
|
392 |
+
LAUNCH_FUSED_RES_LN(3 * internal_unRoll, maxThreads, maxThreads);
|
393 |
+
} else if (external_unRoll == 4) {
|
394 |
+
// 12289 - 16384 elems
|
395 |
+
LAUNCH_FUSED_RES_LN(4 * internal_unRoll, maxThreads, maxThreads);
|
396 |
+
}
|
397 |
+
}
|
398 |
+
|
399 |
+
#define LAUNCH_FUSED_RES_LN_STORE_PRE_LN_RES(unRollFactor, threadsPerGroup, maxThreads) \
|
400 |
+
fused_residual_ln<T, unRollFactor, threadsPerGroup, maxThreads, true> \
|
401 |
+
<<<grid, block, 0, stream>>>( \
|
402 |
+
norm_output, res_output, vals, residual, gamma, beta, epsilon, elems_per_row);
|
403 |
+
|
404 |
+
template <typename T>
|
405 |
+
void launch_fused_pre_ln(T* norm_output,
|
406 |
+
T* res_output,
|
407 |
+
const T* vals,
|
408 |
+
const T* residual,
|
409 |
+
const T* gamma,
|
410 |
+
const T* beta,
|
411 |
+
float epsilon,
|
412 |
+
int rows,
|
413 |
+
int elems_per_row,
|
414 |
+
cudaStream_t stream)
|
415 |
+
{
|
416 |
+
// 8 for __half, 4 for float
|
417 |
+
constexpr int T_per_load = ln::granularity / sizeof(T);
|
418 |
+
|
419 |
+
constexpr int maxThreads = 256;
|
420 |
+
|
421 |
+
// For Flaoat, unRoll 4, for __half, unRoll 2
|
422 |
+
constexpr int internal_unRoll = sizeof(T) == 4 ? 4 : 2;
|
423 |
+
|
424 |
+
const bool is_subblock_schedule = (elems_per_row <= 128) ? true : false;
|
425 |
+
const int h_per_step = is_subblock_schedule ? T_per_load : T_per_load * internal_unRoll;
|
426 |
+
|
427 |
+
// Scheduling concern: may be slightly faster for some inputs to assign multiple stages of
|
428 |
+
// warp-sized blocks rather than stepping up to 64/96 threads
|
429 |
+
const int one_step_threads = next_pow2((elems_per_row + h_per_step - 1) / h_per_step);
|
430 |
+
const int threadsPerGroup = (one_step_threads < maxThreads) ? one_step_threads : maxThreads;
|
431 |
+
|
432 |
+
const int groups_per_block_max =
|
433 |
+
is_subblock_schedule ? (maxThreads + threadsPerGroup - 1) / threadsPerGroup : 1;
|
434 |
+
const int groups_per_block = (rows < groups_per_block_max) ? rows : groups_per_block_max;
|
435 |
+
const int groups_launch = (groups_per_block + rows - 1) / groups_per_block;
|
436 |
+
|
437 |
+
dim3 block(threadsPerGroup, groups_per_block);
|
438 |
+
dim3 grid(groups_launch);
|
439 |
+
|
440 |
+
const int elems_per_step = threadsPerGroup * h_per_step;
|
441 |
+
const int external_unRoll = (elems_per_row + elems_per_step - 1) / elems_per_step;
|
442 |
+
|
443 |
+
if (is_subblock_schedule) {
|
444 |
+
// <=128
|
445 |
+
if (threadsPerGroup == 1) {
|
446 |
+
LAUNCH_FUSED_RES_LN_STORE_PRE_LN_RES(1, 1, maxThreads);
|
447 |
+
} else if (threadsPerGroup == 2) {
|
448 |
+
LAUNCH_FUSED_RES_LN_STORE_PRE_LN_RES(1, 2, maxThreads);
|
449 |
+
} else if (threadsPerGroup == 4) {
|
450 |
+
LAUNCH_FUSED_RES_LN_STORE_PRE_LN_RES(1, 4, maxThreads);
|
451 |
+
} else if (threadsPerGroup == 8) {
|
452 |
+
LAUNCH_FUSED_RES_LN_STORE_PRE_LN_RES(1, 8, maxThreads);
|
453 |
+
} else if (threadsPerGroup == 16) {
|
454 |
+
LAUNCH_FUSED_RES_LN_STORE_PRE_LN_RES(1, 16, maxThreads);
|
455 |
+
}
|
456 |
+
} else if (external_unRoll == 1) {
|
457 |
+
// 129 - 4096 elems
|
458 |
+
// (this can launch with 1-7 warps as well)
|
459 |
+
LAUNCH_FUSED_RES_LN_STORE_PRE_LN_RES(1 * internal_unRoll, maxThreads, maxThreads);
|
460 |
+
} else if (external_unRoll == 2) {
|
461 |
+
// 4097 - 8192 elems
|
462 |
+
LAUNCH_FUSED_RES_LN_STORE_PRE_LN_RES(2 * internal_unRoll, maxThreads, maxThreads);
|
463 |
+
} else if (external_unRoll == 3) {
|
464 |
+
// 8193 - 12288 elems
|
465 |
+
LAUNCH_FUSED_RES_LN_STORE_PRE_LN_RES(3 * internal_unRoll, maxThreads, maxThreads);
|
466 |
+
} else if (external_unRoll == 4) {
|
467 |
+
// 12289 - 16384 elems
|
468 |
+
LAUNCH_FUSED_RES_LN_STORE_PRE_LN_RES(4 * internal_unRoll, maxThreads, maxThreads);
|
469 |
+
}
|
470 |
+
}
|
471 |
+
|
472 |
+
#define INSTANTIATE_RES_LN(T) \
|
473 |
+
template void launch_fused_post_ln<T>( \
|
474 |
+
T*, const T*, const T*, const T*, const T*, float, int, int, cudaStream_t);
|
475 |
+
|
476 |
+
#define INSTANTIATE_PRE_LN_RES(T) \
|
477 |
+
template void launch_fused_pre_ln<T>( \
|
478 |
+
T*, T*, const T*, const T*, const T*, const T*, float, int, int, cudaStream_t);
|
479 |
+
|
480 |
+
INSTANTIATE_RES_LN(__half);
|
481 |
+
INSTANTIATE_RES_LN(float);
|
482 |
+
#ifdef BF16_AVAILABLE
|
483 |
+
INSTANTIATE_RES_LN(__nv_bfloat16);
|
484 |
+
#endif
|
485 |
+
|
486 |
+
INSTANTIATE_PRE_LN_RES(__half);
|
487 |
+
INSTANTIATE_PRE_LN_RES(float);
|
488 |
+
#ifdef BF16_AVAILABLE
|
489 |
+
INSTANTIATE_PRE_LN_RES(__nv_bfloat16);
|
490 |
+
#endif
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from .cuda_linear import *
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (247 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/__pycache__/cuda_linear.cpython-310.pyc
ADDED
Binary file (3.76 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/cuda_linear.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from ....inference_utils import DtypeEnum
|
9 |
+
from ....logging import inference_logger
|
10 |
+
from deepspeed.ops.op_builder import InferenceCoreBuilder
|
11 |
+
from ... import DSKernelBase
|
12 |
+
|
13 |
+
|
14 |
+
class CUDAWf6Af16Linear(DSKernelBase):
|
15 |
+
"""
|
16 |
+
Wrapper around the CUDA kernel of Wf6Af16 quantized linear.
|
17 |
+
|
18 |
+
Performs z = x @ y
|
19 |
+
"""
|
20 |
+
supported_dtypes = [DtypeEnum.fp16]
|
21 |
+
|
22 |
+
def __init__(self):
|
23 |
+
self.inf_module = InferenceCoreBuilder().load()
|
24 |
+
self.inf_module.create_handle()
|
25 |
+
self.kernel = self.inf_module.cuda_wf6af16_linear
|
26 |
+
# The split_k_map is profiled on A100-80G GPU for some common shapes.
|
27 |
+
# It is an array of dictionaries, where the array index is the tokens chunk id.
|
28 |
+
# The dictionary is the mapping from the output channel to the split-K size.
|
29 |
+
self.split_k_map = [
|
30 |
+
{ # tokens: [1, 64]
|
31 |
+
3072: 18,
|
32 |
+
4096: 13,
|
33 |
+
5120: 10,
|
34 |
+
6144: 9,
|
35 |
+
8192: 6,
|
36 |
+
10240: 5,
|
37 |
+
14336: 7,
|
38 |
+
28672: 7,
|
39 |
+
57344: 7
|
40 |
+
},
|
41 |
+
{ # tokens: [65:128]
|
42 |
+
3072: 9,
|
43 |
+
4096: 6,
|
44 |
+
5120: 5,
|
45 |
+
6144: 9,
|
46 |
+
8192: 3,
|
47 |
+
10240: 5,
|
48 |
+
14336: 7,
|
49 |
+
28672: 7,
|
50 |
+
57344: 6
|
51 |
+
},
|
52 |
+
{ # tokens: [129:192]
|
53 |
+
3072: 6,
|
54 |
+
4096: 4,
|
55 |
+
5120: 7,
|
56 |
+
6144: 3,
|
57 |
+
8192: 2,
|
58 |
+
10240: 5,
|
59 |
+
14336: 5,
|
60 |
+
28672: 5,
|
61 |
+
57344: 4
|
62 |
+
},
|
63 |
+
{ # tokens: [193:256]
|
64 |
+
3072: 9,
|
65 |
+
4096: 3,
|
66 |
+
5120: 5,
|
67 |
+
6144: 2,
|
68 |
+
8192: 5,
|
69 |
+
10240: 4,
|
70 |
+
14336: 8,
|
71 |
+
28672: 6,
|
72 |
+
57344: 4
|
73 |
+
},
|
74 |
+
{ # tokens: [257:320]
|
75 |
+
3072: 7,
|
76 |
+
4096: 5,
|
77 |
+
5120: 2,
|
78 |
+
6144: 5,
|
79 |
+
8192: 4,
|
80 |
+
10240: 1,
|
81 |
+
14336: 3,
|
82 |
+
28672: 3,
|
83 |
+
57344: 4
|
84 |
+
},
|
85 |
+
{ # tokens: [321:384]
|
86 |
+
3072: 3,
|
87 |
+
4096: 2,
|
88 |
+
5120: 5,
|
89 |
+
6144: 3,
|
90 |
+
8192: 1,
|
91 |
+
10240: 8,
|
92 |
+
14336: 3,
|
93 |
+
28672: 4,
|
94 |
+
57344: 3
|
95 |
+
},
|
96 |
+
{ # tokens: [385:448]
|
97 |
+
3072: 5,
|
98 |
+
4096: 7,
|
99 |
+
5120: 3,
|
100 |
+
6144: 5,
|
101 |
+
8192: 7,
|
102 |
+
10240: 3,
|
103 |
+
14336: 1,
|
104 |
+
28672: 1,
|
105 |
+
57344: 3
|
106 |
+
},
|
107 |
+
{ # tokens: [449:512]
|
108 |
+
3072: 2,
|
109 |
+
4096: 5,
|
110 |
+
5120: 4,
|
111 |
+
6144: 1,
|
112 |
+
8192: 5,
|
113 |
+
10240: 2,
|
114 |
+
14336: 6,
|
115 |
+
28672: 4,
|
116 |
+
57344: 1
|
117 |
+
},
|
118 |
+
{ # tokens: [513:576]
|
119 |
+
3072: 2,
|
120 |
+
4096: 3,
|
121 |
+
5120: 1,
|
122 |
+
6144: 1,
|
123 |
+
8192: 3,
|
124 |
+
10240: 3,
|
125 |
+
14336: 3,
|
126 |
+
28672: 1,
|
127 |
+
57344: 1
|
128 |
+
},
|
129 |
+
{ # tokens: [577:640]
|
130 |
+
3072: 5,
|
131 |
+
4096: 4,
|
132 |
+
5120: 1,
|
133 |
+
6144: 4,
|
134 |
+
8192: 2,
|
135 |
+
10240: 1,
|
136 |
+
14336: 1,
|
137 |
+
28672: 1,
|
138 |
+
57344: 1
|
139 |
+
},
|
140 |
+
{ # tokens: [641:704]
|
141 |
+
3072: 3,
|
142 |
+
4096: 1,
|
143 |
+
5120: 2,
|
144 |
+
6144: 2,
|
145 |
+
8192: 1,
|
146 |
+
10240: 2,
|
147 |
+
14336: 1,
|
148 |
+
28672: 1,
|
149 |
+
57344: 1
|
150 |
+
},
|
151 |
+
{ # tokens: [705:768]
|
152 |
+
3072: 3,
|
153 |
+
4096: 1,
|
154 |
+
5120: 3,
|
155 |
+
6144: 2,
|
156 |
+
8192: 1,
|
157 |
+
10240: 1,
|
158 |
+
14336: 1,
|
159 |
+
28672: 1,
|
160 |
+
57344: 1
|
161 |
+
}
|
162 |
+
]
|
163 |
+
|
164 |
+
def __call__(self, output: torch.Tensor, hidden_states: torch.Tensor, weights_2bit: torch.Tensor,
|
165 |
+
weights_4bit: torch.Tensor, scale: torch.Tensor, out_channels, tokens, in_channels) -> torch.Tensor:
|
166 |
+
"""
|
167 |
+
Matmul kernel of FP6 weight-only quantized linear. All inputs should be contiguous.
|
168 |
+
It does not support batched-matmul.
|
169 |
+
|
170 |
+
Parameters:
|
171 |
+
output (torch.Tensor): Output tensor. Shape is of [token_number, out_features]
|
172 |
+
hidden_states (torch.Tensor): Input tensor. Shape is of [token_number, in_features]
|
173 |
+
weights_2bit (torch.Tensor): Input tensor of the 2-bit slice. Shape is of [out_features*2/8, in_features]
|
174 |
+
weights_4bit (torch.Tensor): Input tensor of the 4-bit slice. Shape is of [out_features*4/8, in_features]
|
175 |
+
scale (torch.Tensor): Input tensor. Shape is of [out_features], since the scale is per output channel
|
176 |
+
out_channels (int): The number of output channels
|
177 |
+
tokens (int): The number of tokens
|
178 |
+
in_channels (int): The number of input channels
|
179 |
+
"""
|
180 |
+
|
181 |
+
if out_channels % 256 != 0 or in_channels % 64 != 0:
|
182 |
+
raise ValueError("The out and in channel should be multiple of 256 and 64 respectively.")
|
183 |
+
|
184 |
+
# TODO: add a more general heuristic to determine the split-K.
|
185 |
+
split_k = -1 # not initialized
|
186 |
+
if tokens <= 768:
|
187 |
+
# Try to find the split-K from the pre-profiled map.
|
188 |
+
tokens_chunk_id = (tokens - 1) // 64
|
189 |
+
split_k = self.split_k_map[tokens_chunk_id].get(out_channels, -1)
|
190 |
+
if split_k == -1:
|
191 |
+
split_k = 1
|
192 |
+
inference_logger().warning(
|
193 |
+
f"The split-K setting may be suboptimal for shape {tokens}x{in_channels}x{out_channels}...")
|
194 |
+
|
195 |
+
workspace = self.get_workspace(out_channels, tokens, in_channels, split_k, torch.float, hidden_states.device)
|
196 |
+
self.kernel(output, hidden_states, weights_2bit, weights_4bit, scale, workspace, out_channels, tokens,
|
197 |
+
in_channels, split_k)
|
198 |
+
|
199 |
+
def get_workspace(self, out_channels: int, tokens: int, in_channels: int, split_k: int, dtype,
|
200 |
+
device) -> torch.Tensor:
|
201 |
+
"""
|
202 |
+
Allocate workspace for the kernel. The workspace is used to store the intermediate results of the matmul before
|
203 |
+
split-K. The split-K size is determined by the size of the matmul.
|
204 |
+
"""
|
205 |
+
workspace = torch.empty((split_k, out_channels, tokens), dtype=dtype, device=device)
|
206 |
+
|
207 |
+
return workspace
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/include/kernel_reduction.cuh
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
// This is a copy of FP6-LLM kernel code: https://arxiv.org/abs/2401.14112
|
7 |
+
|
8 |
+
#ifndef DEEPSPEED_CUDA_LINEAR_KERNEL_REDUCTION_CUH
|
9 |
+
#define DEEPSPEED_CUDA_LINEAR_KERNEL_REDUCTION_CUH
|
10 |
+
|
11 |
+
#include <cuda.h>
|
12 |
+
#include <cuda_fp16.h>
|
13 |
+
#include <cuda_runtime.h>
|
14 |
+
|
15 |
+
#define REDUCTION_ELEMENT_PER_THREADBLOCK 256
|
16 |
+
#define HALF_PER_128BIT 8
|
17 |
+
|
18 |
+
__global__ void SplitK_Reduction(half* C,
|
19 |
+
float* Reduction_Workspace,
|
20 |
+
size_t M_Global,
|
21 |
+
size_t N_Global,
|
22 |
+
int Split_K)
|
23 |
+
{
|
24 |
+
half* WARP_GPTR_C = C + REDUCTION_ELEMENT_PER_THREADBLOCK * blockIdx.x;
|
25 |
+
float* WARP_GPTR_R = Reduction_Workspace + REDUCTION_ELEMENT_PER_THREADBLOCK * blockIdx.x;
|
26 |
+
half* THREAD_GPTR_C = WARP_GPTR_C + threadIdx.x * HALF_PER_128BIT;
|
27 |
+
float* THREAD_GPTR_R = WARP_GPTR_R + threadIdx.x * HALF_PER_128BIT;
|
28 |
+
// Initializing Thread-Local Results
|
29 |
+
float Results[HALF_PER_128BIT];
|
30 |
+
#pragma unroll
|
31 |
+
for (int i = 0; i < HALF_PER_128BIT; i++) Results[i] = 0.0f;
|
32 |
+
// Reduction
|
33 |
+
for (int i = 0; i < Split_K; i++) {
|
34 |
+
#pragma unroll
|
35 |
+
for (int j = 0; j < HALF_PER_128BIT; j++) Results[j] += THREAD_GPTR_R[j];
|
36 |
+
THREAD_GPTR_R += M_Global * N_Global;
|
37 |
+
}
|
38 |
+
// Writing to global memory
|
39 |
+
#pragma unroll
|
40 |
+
for (int i = 0; i < HALF_PER_128BIT; i++) THREAD_GPTR_C[i] = __float2half_rn(Results[i]);
|
41 |
+
}
|
42 |
+
|
43 |
+
#endif
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/include/ptx_cp.async.cuh
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
// This is a copy of FP6-LLM kernel code: https://arxiv.org/abs/2401.14112
|
7 |
+
|
8 |
+
#ifndef DEEPSPEED_CUDA_LINEAR_PTX_CP_ASYNC_CUH
|
9 |
+
#define DEEPSPEED_CUDA_LINEAR_PTX_CP_ASYNC_CUH
|
10 |
+
|
11 |
+
#include <cuda.h>
|
12 |
+
#include <cuda_fp16.h>
|
13 |
+
#include <cuda_runtime.h>
|
14 |
+
|
15 |
+
template <int SizeInBytes>
|
16 |
+
__device__ __forceinline__ void cp_async(half* smem_ptr,
|
17 |
+
const half* global_ptr,
|
18 |
+
bool pred_guard = true)
|
19 |
+
{
|
20 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
|
21 |
+
static_assert(SizeInBytes == 16, "Size is not supported");
|
22 |
+
unsigned smem_int_ptr = __cvta_generic_to_shared(smem_ptr);
|
23 |
+
asm volatile(
|
24 |
+
"{ \n"
|
25 |
+
" .reg .pred p;\n"
|
26 |
+
" setp.ne.b32 p, %0, 0;\n"
|
27 |
+
" @p cp.async.cg.shared.global [%1], [%2], %3;\n"
|
28 |
+
"}\n" ::"r"((int)pred_guard),
|
29 |
+
"r"(smem_int_ptr),
|
30 |
+
"l"(global_ptr),
|
31 |
+
"n"(SizeInBytes));
|
32 |
+
#else
|
33 |
+
#warning "The async copy functions are only supported on Ampere and newer architectures"
|
34 |
+
#endif
|
35 |
+
}
|
36 |
+
|
37 |
+
/// Establishes an ordering w.r.t previously issued cp.async instructions. Does not block.
|
38 |
+
__device__ __forceinline__ void cp_async_group_commit()
|
39 |
+
{
|
40 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
|
41 |
+
asm volatile("cp.async.commit_group;\n" ::);
|
42 |
+
#else
|
43 |
+
#warning "The async copy functions are only supported on Ampere and newer architectures"
|
44 |
+
#endif
|
45 |
+
}
|
46 |
+
|
47 |
+
/// Blocks until all but <N> previous cp.async.commit_group operations have committed.
|
48 |
+
template <int N>
|
49 |
+
__device__ __forceinline__ void cp_async_wait_group()
|
50 |
+
{
|
51 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
|
52 |
+
asm volatile("cp.async.wait_group %0;\n" ::"n"(N));
|
53 |
+
#else
|
54 |
+
#warning "The async copy functions are only supported on Ampere and newer architectures"
|
55 |
+
#endif
|
56 |
+
}
|
57 |
+
|
58 |
+
/// Blocks until all previous cp.async.commit_group operations have committed.
|
59 |
+
// cp.async.wait_all is equivalent to :
|
60 |
+
// cp.async.commit_group;
|
61 |
+
// cp.async.wait_group 0;
|
62 |
+
__device__ __forceinline__ void cp_async_wait_all()
|
63 |
+
{
|
64 |
+
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
|
65 |
+
asm volatile("cp.async.wait_all;\n" ::);
|
66 |
+
#else
|
67 |
+
#warning "The async copy functions are only supported on Ampere and newer architectures"
|
68 |
+
#endif
|
69 |
+
}
|
70 |
+
|
71 |
+
#endif
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/linear_kernels.cpp
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include <ATen/cuda/CUDAContext.h>
|
7 |
+
|
8 |
+
#include "linear_kernels.h"
|
9 |
+
|
10 |
+
namespace {
|
11 |
+
|
12 |
+
// For bit-level debugging.
|
13 |
+
template <typename T>
|
14 |
+
void print_bits(T num)
|
15 |
+
{
|
16 |
+
char bits[sizeof(T) * 8 + 1] = {'\0'};
|
17 |
+
for (int bit = 0; bit < (sizeof(T) * 8); bit++) {
|
18 |
+
bits[sizeof(T) * 8 - 1 - bit] = '0' + (num & 0x01);
|
19 |
+
num = num >> 1;
|
20 |
+
}
|
21 |
+
printf("%s\n", bits);
|
22 |
+
}
|
23 |
+
|
24 |
+
void print_bits(half num)
|
25 |
+
{
|
26 |
+
char bits[sizeof(half) * 8 + 1] = {'\0'};
|
27 |
+
auto int_num = *reinterpret_cast<uint16_t*>(&num);
|
28 |
+
for (int bit = 0; bit < (sizeof(half) * 8); bit++) {
|
29 |
+
bits[sizeof(half) * 8 - 1 - bit] = '0' + (int_num & 0x01);
|
30 |
+
int_num = int_num >> 1;
|
31 |
+
}
|
32 |
+
printf("%s\n", bits);
|
33 |
+
}
|
34 |
+
|
35 |
+
/*
|
36 |
+
* Function to pack 4 fake quantized FP16 value into continuously stored 4 FP6 values.
|
37 |
+
*/
|
38 |
+
void cast_fp16_fp6(uint16_t* FP16x4, uint8_t* FP6x4)
|
39 |
+
{
|
40 |
+
// Constants for FP6
|
41 |
+
constexpr int exponent_nbits_fp6 = 3;
|
42 |
+
constexpr int mantissa_nbits_fp6 = 2;
|
43 |
+
constexpr int exp_bias_fp6 = (1 << (exponent_nbits_fp6 - 1)) - 1;
|
44 |
+
// Constants for FP16
|
45 |
+
constexpr int exponent_nbits_fp16 = 5;
|
46 |
+
constexpr int mantissa_nbits_fp16 = 10;
|
47 |
+
constexpr int exp_bias_fp16 = (1 << (exponent_nbits_fp16 - 1)) - 1;
|
48 |
+
|
49 |
+
int fp6_temp[4];
|
50 |
+
|
51 |
+
float absmin_nonzero_fp6 = 0.0625;
|
52 |
+
// Note that we regard the exponent of '111' as a regular value rather than NaN or inf. This is
|
53 |
+
// the same with that in qtorch.
|
54 |
+
float absmax_fp6 = 28;
|
55 |
+
|
56 |
+
for (int i = 0; i < 4; ++i) {
|
57 |
+
uint16_t source = FP16x4[i];
|
58 |
+
float fp6_value_abs = std::abs(__half2float(*((half*)(&source))));
|
59 |
+
if ((fp6_value_abs != 0 && fp6_value_abs < absmin_nonzero_fp6) ||
|
60 |
+
fp6_value_abs > absmax_fp6) {
|
61 |
+
// TODO(zhen): a better way may be rounding it to the nearest FP6 value.
|
62 |
+
throw std::invalid_argument("Input value out of range for FP6.");
|
63 |
+
}
|
64 |
+
|
65 |
+
// It is not safe to do shift operation on uint16_t. So we promote it to int.
|
66 |
+
int source_promote = int(source);
|
67 |
+
|
68 |
+
int sign_bit = (source_promote >> 15);
|
69 |
+
// Extracting exponent represented in FP16. The sign mask 0x7FFF is '0111 1111 1111 1111'
|
70 |
+
int exp_bit = (source_promote & 0x7FFF) >> mantissa_nbits_fp16;
|
71 |
+
// Extracting mantissa represented in FP16
|
72 |
+
int mant_bit = source_promote & ((1 << mantissa_nbits_fp16) - 1);
|
73 |
+
|
74 |
+
int new_exp_bit;
|
75 |
+
int new_mant_bit;
|
76 |
+
|
77 |
+
if (exp_bit == 0) {
|
78 |
+
// Subnormal FP16 number. Too small for FP6.
|
79 |
+
new_exp_bit = 0;
|
80 |
+
new_mant_bit = 0;
|
81 |
+
} else {
|
82 |
+
new_mant_bit = mant_bit >> (mantissa_nbits_fp16 - mantissa_nbits_fp6);
|
83 |
+
new_exp_bit = exp_bit - exp_bias_fp16 + exp_bias_fp6;
|
84 |
+
|
85 |
+
// Deal with subnormal FP6 values.
|
86 |
+
int target_exp_val = exp_bit - exp_bias_fp16;
|
87 |
+
int min_fp6_exp_val = -exp_bias_fp6 + 1;
|
88 |
+
bool subnormal_fp6 = target_exp_val < min_fp6_exp_val;
|
89 |
+
if (subnormal_fp6) {
|
90 |
+
// TODO(zhen): add the rounding logic.
|
91 |
+
new_exp_bit = 0;
|
92 |
+
// The implicit 1 in the mantissa of FP16 is not present in subnormal FP6. Thus we
|
93 |
+
// need to add it
|
94 |
+
new_mant_bit = (new_mant_bit | (1 << mantissa_nbits_fp6)) >>
|
95 |
+
(min_fp6_exp_val - target_exp_val);
|
96 |
+
}
|
97 |
+
}
|
98 |
+
|
99 |
+
fp6_temp[i] = (sign_bit << (exponent_nbits_fp6 + mantissa_nbits_fp6)) |
|
100 |
+
(new_exp_bit << mantissa_nbits_fp6) | new_mant_bit;
|
101 |
+
}
|
102 |
+
// Pack the values
|
103 |
+
FP6x4[0] = fp6_temp[0] << 2 | (fp6_temp[1] >> 4);
|
104 |
+
FP6x4[1] = (fp6_temp[1] & 0x0F) << 4 | (fp6_temp[2] >> 2);
|
105 |
+
FP6x4[2] = (fp6_temp[2] & 0x03) << 6 | fp6_temp[3];
|
106 |
+
}
|
107 |
+
|
108 |
+
/*
|
109 |
+
* Function to prepack FP16 weights into continuous FP6 values.
|
110 |
+
*
|
111 |
+
* Parameters:
|
112 |
+
* weight_16bit: input weight in FP16, size M*K
|
113 |
+
* weight_6bit: output weight in packed FP6, continuously stored, size M*K*6/8
|
114 |
+
* M, K: the shape of the weight
|
115 |
+
*/
|
116 |
+
void weight_prepacking_fp16_to_fp6(uint16_t* weight_16bit,
|
117 |
+
uint8_t* weight_6bit_packed,
|
118 |
+
size_t M,
|
119 |
+
size_t K)
|
120 |
+
{
|
121 |
+
// Every four 16-bit elements are packed into three 6-bit values (4*6bit == 3*8bit).
|
122 |
+
if (K * 6 % 8 != 0) { throw std::invalid_argument("(K * 6 % 8) should be 0"); }
|
123 |
+
size_t K_fp6_packed = K * 6 / 8;
|
124 |
+
// #pragma omp parallel for
|
125 |
+
for (auto m = 0; m < M; m++) {
|
126 |
+
uint8_t* ptr_6bit = weight_6bit_packed + m * K_fp6_packed;
|
127 |
+
uint16_t* ptr_16bit = weight_16bit + m * K;
|
128 |
+
for (auto k = 0; k < K; k += 4) {
|
129 |
+
cast_fp16_fp6(ptr_16bit, ptr_6bit);
|
130 |
+
ptr_16bit += 4;
|
131 |
+
ptr_6bit += 3;
|
132 |
+
}
|
133 |
+
}
|
134 |
+
}
|
135 |
+
|
136 |
+
} // namespace
|
137 |
+
|
138 |
+
/*
|
139 |
+
* Function to execute the FP6 linear kernel.
|
140 |
+
*
|
141 |
+
* Parameters:
|
142 |
+
* output: output tensor, size M*N
|
143 |
+
* hidden_states: input activation tensor, size N*K
|
144 |
+
* weights_2bit: packed 2bit weights, size M*K*2/8
|
145 |
+
* weights_4bit: packed 4bit weights, size M*K*4/8
|
146 |
+
* scales: scale tensor, size M
|
147 |
+
* workspace: workspace tensor, size M*N*split_k
|
148 |
+
* M: the output channel number of the weight
|
149 |
+
* N: the token number of the activation
|
150 |
+
* K: the input channel number of the weight
|
151 |
+
* split_k: the split size of the GEMM calculation
|
152 |
+
*/
|
153 |
+
void cuda_wf6af16_linear(torch::Tensor& output,
|
154 |
+
torch::Tensor& hidden_states,
|
155 |
+
torch::Tensor& weights_2bit,
|
156 |
+
torch::Tensor& weights_4bit,
|
157 |
+
torch::Tensor& scales,
|
158 |
+
torch::Tensor& workspace,
|
159 |
+
int M,
|
160 |
+
int N,
|
161 |
+
int K,
|
162 |
+
int split_k)
|
163 |
+
{
|
164 |
+
TORCH_CHECK(weights_2bit.device().type() == torch::kCUDA, "weight_2bit must be on CUDA");
|
165 |
+
TORCH_CHECK(weights_4bit.device().type() == torch::kCUDA, "weight_4bit must be on CUDA");
|
166 |
+
TORCH_CHECK(hidden_states.device().type() == torch::kCUDA, "X must be on CUDA");
|
167 |
+
TORCH_CHECK(scales.device().type() == torch::kCUDA, "scales must be on CUDA");
|
168 |
+
|
169 |
+
auto status = fp6_linear_kernel(at::cuda::getCurrentCUDAStream(),
|
170 |
+
(uint4*)(weights_2bit.data_ptr<uint8_t>()),
|
171 |
+
(uint4*)(weights_4bit.data_ptr<uint8_t>()),
|
172 |
+
(half*)(scales.data_ptr<at::Half>()),
|
173 |
+
(half*)(hidden_states.data_ptr<at::Half>()),
|
174 |
+
(half*)(output.data_ptr<at::Half>()),
|
175 |
+
M,
|
176 |
+
N,
|
177 |
+
K,
|
178 |
+
workspace.data_ptr<float>(),
|
179 |
+
split_k);
|
180 |
+
if (status != cudaSuccess) {
|
181 |
+
AT_ERROR("fp6_linear_kernel failed with error: ", cudaGetErrorString(status));
|
182 |
+
}
|
183 |
+
}
|
184 |
+
|
185 |
+
/*
|
186 |
+
* Function to prepack the fake 6-bit-quantized FP16 weights into 2bit and 4bit.
|
187 |
+
*
|
188 |
+
* Parameters:
|
189 |
+
* weight: input weight in FP16 (containing the quantized FP6-ranged value), size M*K
|
190 |
+
* Returns:
|
191 |
+
* weight_2bit: output weight in 2bit, size M*K*2/8
|
192 |
+
* weight_4bit: output weight in 4bit, size M*K*4/8
|
193 |
+
*/
|
194 |
+
std::vector<torch::Tensor> preprocess_weight(torch::Tensor& weight)
|
195 |
+
{
|
196 |
+
TORCH_CHECK(weight.dim() == 2, "weight must be 2-dimensional");
|
197 |
+
TORCH_CHECK(weight.scalar_type() == torch::kFloat16, "weight must be FP16");
|
198 |
+
TORCH_CHECK(weight.is_contiguous(), "weight must be contiguous");
|
199 |
+
TORCH_CHECK(weight.device().type() == torch::kCPU, "weight must be on CPU");
|
200 |
+
auto M = weight.size(0);
|
201 |
+
auto K = weight.size(1);
|
202 |
+
TORCH_CHECK(K % 4 == 0, "K must be multiple of 4");
|
203 |
+
|
204 |
+
// Pack weight from FP16 to FP6.
|
205 |
+
uint16_t* weight_16bit_ptr = reinterpret_cast<uint16_t*>(weight.data_ptr<at::Half>());
|
206 |
+
std::vector<uint8_t> weight_6bit_packed(M * K * 6 / 8);
|
207 |
+
uint8_t* weight_6bit_ptr = weight_6bit_packed.data();
|
208 |
+
weight_prepacking_fp16_to_fp6(weight_16bit_ptr, weight_6bit_ptr, M, K);
|
209 |
+
|
210 |
+
// Split weight into 2bit and 4bit.
|
211 |
+
weight_matrix_prepacking(reinterpret_cast<int*>(weight_6bit_ptr), M, K);
|
212 |
+
uint8_t* weight_2bit_ptr = weight_6bit_ptr;
|
213 |
+
|
214 |
+
// Make sure that the new split tensor does not share the underlying memory with the original
|
215 |
+
// one. Otherwise it will incur some problems when the original tensor is deleted. It also
|
216 |
+
// makes the memory flattern risky.
|
217 |
+
auto weight_2bit =
|
218 |
+
torch::from_blob(weight_2bit_ptr, {M * K * 2 / 8}, torch::kUInt8).clone().detach();
|
219 |
+
uint8_t* weight_4bit_ptr = weight_2bit_ptr + M * K * 2 / 8;
|
220 |
+
auto weight_4bit =
|
221 |
+
torch::from_blob(weight_4bit_ptr, {M * K * 4 / 8}, torch::kUInt8).clone().detach();
|
222 |
+
|
223 |
+
return {weight_2bit, weight_4bit};
|
224 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/linear_kernels.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#ifndef DEEPSPEED_CUDA_LINEAR_KERNELS_H
|
7 |
+
#define DEEPSPEED_CUDA_LINEAR_KERNELS_H
|
8 |
+
|
9 |
+
#include <c10/cuda/CUDAStream.h>
|
10 |
+
#include <torch/extension.h>
|
11 |
+
#include "ds_kernel_utils.h"
|
12 |
+
|
13 |
+
#include "linear_kernels_cuda.h"
|
14 |
+
|
15 |
+
void cuda_wf6af16_linear(torch::Tensor& output,
|
16 |
+
torch::Tensor& hidden_states,
|
17 |
+
torch::Tensor& weights_2bit,
|
18 |
+
torch::Tensor& weights_4bit,
|
19 |
+
torch::Tensor& scale,
|
20 |
+
torch::Tensor& workspace,
|
21 |
+
int M,
|
22 |
+
int N,
|
23 |
+
int K,
|
24 |
+
int split_k);
|
25 |
+
|
26 |
+
std::vector<torch::Tensor> preprocess_weight(torch::Tensor& Weight);
|
27 |
+
|
28 |
+
#endif
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/linear_kernels_cuda.cu
ADDED
@@ -0,0 +1,318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
// This is a copy of FP6-LLM kernel code: https://arxiv.org/abs/2401.14112
|
7 |
+
|
8 |
+
// clang-format off
|
9 |
+
// Put the torch headers at the front to avoid conflict with other headers on
|
10 |
+
// `at::nullopt` and `at::optional`.
|
11 |
+
#include <torch/extension.h>
|
12 |
+
#include <ATen/ATen.h>
|
13 |
+
// clang-format on
|
14 |
+
|
15 |
+
#include "include/kernel_matmul.cuh"
|
16 |
+
#include "include/kernel_reduction.cuh"
|
17 |
+
#include "include/weight_prepacking.h"
|
18 |
+
|
19 |
+
#include <assert.h>
|
20 |
+
#include <stdio.h>
|
21 |
+
|
22 |
+
#include "linear_kernels_cuda.h"
|
23 |
+
|
24 |
+
template <typename TilingConfig, typename OutputDataType>
|
25 |
+
static void Kernel_Ex(cudaStream_t stream,
|
26 |
+
const uint4* Weight1,
|
27 |
+
const uint4* Weight2,
|
28 |
+
const half* Scales,
|
29 |
+
const half* B,
|
30 |
+
OutputDataType* C,
|
31 |
+
const size_t M_Global,
|
32 |
+
const size_t N_Global,
|
33 |
+
const size_t K_Global,
|
34 |
+
int Split_K)
|
35 |
+
{
|
36 |
+
#ifdef DEBUG_MODE
|
37 |
+
printf("\n");
|
38 |
+
printf("Launcher.cu->Kernel_Ex():\n");
|
39 |
+
printf("M: %d, N: %d, K: %d, SplitK: %d\n", M_Global, N_Global, K_Global, Split_K);
|
40 |
+
printf("TILE_M: %d, TILE_K: %d, TILE_N: %d\n",
|
41 |
+
TilingConfig::TILE_M,
|
42 |
+
TilingConfig::TILE_K,
|
43 |
+
TilingConfig::TILE_N);
|
44 |
+
#endif
|
45 |
+
static size_t SHMEM_SZ =
|
46 |
+
max(TilingConfig::SMEM_SIZE_B_TILE + SMEM_SIZE_A1_TILE + SMEM_SIZE_A2_TILE,
|
47 |
+
TilingConfig::SMEM_SIZE_C_TILE);
|
48 |
+
cudaFuncSetAttribute(QUANT_GEMM_Kernel<TilingConfig, OutputDataType>,
|
49 |
+
cudaFuncAttributeMaxDynamicSharedMemorySize,
|
50 |
+
SHMEM_SZ);
|
51 |
+
size_t dimN = (N_Global - 1) / TilingConfig::TILE_N + 1;
|
52 |
+
size_t dimM = M_Global * Split_K / TilingConfig::TILE_M;
|
53 |
+
dim3 GridDim(dimN, dimM, 1);
|
54 |
+
dim3 BlockDim(WARP_SIZE * TilingConfig::BLOCK_WARPS, 1, 1);
|
55 |
+
|
56 |
+
#ifdef DEBUG_MODE
|
57 |
+
printf(
|
58 |
+
"GridDim.x: %d, GridDim.y: %d, GridDim.z: %d, BlockDim.x: %d, BlockDim.y: %d, BlockDim.z: "
|
59 |
+
"%d SHMEM_SZ: %d\n",
|
60 |
+
GridDim.x,
|
61 |
+
GridDim.y,
|
62 |
+
GridDim.z,
|
63 |
+
BlockDim.x,
|
64 |
+
BlockDim.y,
|
65 |
+
BlockDim.z,
|
66 |
+
SHMEM_SZ);
|
67 |
+
printf("\n");
|
68 |
+
#endif
|
69 |
+
|
70 |
+
QUANT_GEMM_Kernel<TilingConfig, OutputDataType><<<GridDim, BlockDim, SHMEM_SZ, stream>>>(
|
71 |
+
Weight1, Weight2, Scales, B, C, M_Global, N_Global, K_Global, Split_K);
|
72 |
+
}
|
73 |
+
|
74 |
+
/*
|
75 |
+
*
|
76 |
+
*/
|
77 |
+
cudaError_t fp6_linear_kernel(cudaStream_t stream,
|
78 |
+
const uint4* Weight1,
|
79 |
+
const uint4* Weight2,
|
80 |
+
const half* Scales,
|
81 |
+
const half* B,
|
82 |
+
half* C,
|
83 |
+
const size_t M_Global,
|
84 |
+
const size_t N_Global,
|
85 |
+
const size_t K_Global,
|
86 |
+
float* Reduction_Workspace, // Reduction_Workspace_Size = Split_K *
|
87 |
+
// M_Global * N_Global * sizeof(fp32)
|
88 |
+
int Split_K)
|
89 |
+
{
|
90 |
+
assert(M_Global % 256 == 0);
|
91 |
+
assert(K_Global % 64 == 0);
|
92 |
+
assert(N_Global > 0);
|
93 |
+
|
94 |
+
// Work around to support more N shapes:
|
95 |
+
size_t N_PowerOf2;
|
96 |
+
if (N_Global > 0 && N_Global <= 8) N_PowerOf2 = 8;
|
97 |
+
if (N_Global > 8 && N_Global <= 16) N_PowerOf2 = 16;
|
98 |
+
if (N_Global > 16 && N_Global <= 32) N_PowerOf2 = 32;
|
99 |
+
if (N_Global > 32 && N_Global <= 64) N_PowerOf2 = 64;
|
100 |
+
if (N_Global > 64 && N_Global <= 128) N_PowerOf2 = 128;
|
101 |
+
if (N_Global > 128) N_PowerOf2 = ((N_Global - 1) / 128 + 1) * 128;
|
102 |
+
|
103 |
+
if (Split_K == 1) {
|
104 |
+
switch (N_PowerOf2) {
|
105 |
+
case 8:
|
106 |
+
Kernel_Ex<TilingConfig<4, 1, 1>, half>(
|
107 |
+
stream, Weight1, Weight2, Scales, B, C, M_Global, N_Global, K_Global, Split_K);
|
108 |
+
break;
|
109 |
+
case 16:
|
110 |
+
Kernel_Ex<TilingConfig<4, 1, 2>, half>(
|
111 |
+
stream, Weight1, Weight2, Scales, B, C, M_Global, N_Global, K_Global, Split_K);
|
112 |
+
break;
|
113 |
+
case 32:
|
114 |
+
Kernel_Ex<TilingConfig<4, 1, 4>, half>(
|
115 |
+
stream, Weight1, Weight2, Scales, B, C, M_Global, N_Global, K_Global, Split_K);
|
116 |
+
break;
|
117 |
+
case 64:
|
118 |
+
Kernel_Ex<TilingConfig<4, 1, 8>, half>(
|
119 |
+
stream, Weight1, Weight2, Scales, B, C, M_Global, N_Global, K_Global, Split_K);
|
120 |
+
break;
|
121 |
+
case 128:
|
122 |
+
Kernel_Ex<TilingConfig<4, 1, 8>, half>(
|
123 |
+
stream, Weight1, Weight2, Scales, B, C, M_Global, N_Global, K_Global, Split_K);
|
124 |
+
break;
|
125 |
+
default:
|
126 |
+
if (N_PowerOf2 % 128 != 0) {
|
127 |
+
printf("QuantLLM_API Error: Unsupported N dimension %lu!\n", N_PowerOf2);
|
128 |
+
return cudaErrorUnknown;
|
129 |
+
}
|
130 |
+
Kernel_Ex<TilingConfig<4, 1, 8>, half>(
|
131 |
+
stream, Weight1, Weight2, Scales, B, C, M_Global, N_Global, K_Global, Split_K);
|
132 |
+
break;
|
133 |
+
}
|
134 |
+
} else {
|
135 |
+
switch (N_PowerOf2) {
|
136 |
+
case 8:
|
137 |
+
Kernel_Ex<TilingConfig<4, 1, 1>, float>(stream,
|
138 |
+
Weight1,
|
139 |
+
Weight2,
|
140 |
+
Scales,
|
141 |
+
B,
|
142 |
+
Reduction_Workspace,
|
143 |
+
M_Global,
|
144 |
+
N_Global,
|
145 |
+
K_Global,
|
146 |
+
Split_K);
|
147 |
+
break;
|
148 |
+
case 16:
|
149 |
+
Kernel_Ex<TilingConfig<4, 1, 2>, float>(stream,
|
150 |
+
Weight1,
|
151 |
+
Weight2,
|
152 |
+
Scales,
|
153 |
+
B,
|
154 |
+
Reduction_Workspace,
|
155 |
+
M_Global,
|
156 |
+
N_Global,
|
157 |
+
K_Global,
|
158 |
+
Split_K);
|
159 |
+
break;
|
160 |
+
case 32:
|
161 |
+
Kernel_Ex<TilingConfig<4, 1, 4>, float>(stream,
|
162 |
+
Weight1,
|
163 |
+
Weight2,
|
164 |
+
Scales,
|
165 |
+
B,
|
166 |
+
Reduction_Workspace,
|
167 |
+
M_Global,
|
168 |
+
N_Global,
|
169 |
+
K_Global,
|
170 |
+
Split_K);
|
171 |
+
break;
|
172 |
+
case 64:
|
173 |
+
Kernel_Ex<TilingConfig<4, 1, 8>, float>(stream,
|
174 |
+
Weight1,
|
175 |
+
Weight2,
|
176 |
+
Scales,
|
177 |
+
B,
|
178 |
+
Reduction_Workspace,
|
179 |
+
M_Global,
|
180 |
+
N_Global,
|
181 |
+
K_Global,
|
182 |
+
Split_K);
|
183 |
+
break;
|
184 |
+
case 128:
|
185 |
+
Kernel_Ex<TilingConfig<4, 1, 8>, float>(stream,
|
186 |
+
Weight1,
|
187 |
+
Weight2,
|
188 |
+
Scales,
|
189 |
+
B,
|
190 |
+
Reduction_Workspace,
|
191 |
+
M_Global,
|
192 |
+
N_Global,
|
193 |
+
K_Global,
|
194 |
+
Split_K);
|
195 |
+
break;
|
196 |
+
default:
|
197 |
+
if (N_PowerOf2 % 128 != 0) {
|
198 |
+
printf("QuantLLM_API Error: Unsupported N dimension %lu!\n", N_PowerOf2);
|
199 |
+
return cudaErrorUnknown;
|
200 |
+
}
|
201 |
+
Kernel_Ex<TilingConfig<4, 1, 8>, float>(stream,
|
202 |
+
Weight1,
|
203 |
+
Weight2,
|
204 |
+
Scales,
|
205 |
+
B,
|
206 |
+
Reduction_Workspace,
|
207 |
+
M_Global,
|
208 |
+
N_Global,
|
209 |
+
K_Global,
|
210 |
+
Split_K);
|
211 |
+
break;
|
212 |
+
}
|
213 |
+
// Reduction for SplitK
|
214 |
+
dim3 GridDim((M_Global * N_Global) / REDUCTION_ELEMENT_PER_THREADBLOCK, 1, 1);
|
215 |
+
dim3 BlockDim(WARP_SIZE, 1, 1);
|
216 |
+
SplitK_Reduction<<<GridDim, BlockDim, 0, stream>>>(
|
217 |
+
C, Reduction_Workspace, M_Global, N_Global, Split_K);
|
218 |
+
}
|
219 |
+
return cudaGetLastError();
|
220 |
+
}
|
221 |
+
|
222 |
+
/*
|
223 |
+
Computes FP6-FP16 GEMM (PyTorch interface).
|
224 |
+
|
225 |
+
[Mathematical Formula]
|
226 |
+
Standard definition of linear layer: Out = In * trans(W), where In, Out, and W are stored in
|
227 |
+
row-major. After Equivalent transformation : trans(Out) = W * trans(In). Note that we do not
|
228 |
+
perform "transpose" during runtime, we instead interpret the In/Out as column-major matrices when
|
229 |
+
calling our CUDA kernel.
|
230 |
+
|
231 |
+
[Inputs]
|
232 |
+
_in_feats: tensor of shape [B, IC]; // half
|
233 |
+
_weights: int tensor of shape [OC, IC // 16 * 3]; // 3 INT32 words contains 16 FP6 weights.
|
234 |
+
_scales: tensor of shape [OC]; // half
|
235 |
+
splitK: splitting the MatMul problem along K dimension for higher GPU utilization, default 1.
|
236 |
+
[Outputs]
|
237 |
+
_out_feats: tensor of shape [B, OC]; // half
|
238 |
+
*/
|
239 |
+
torch::Tensor fp6_linear_forward_cuda(torch::Tensor _in_feats,
|
240 |
+
torch::Tensor _weights,
|
241 |
+
torch::Tensor _scales,
|
242 |
+
int splitK)
|
243 |
+
{
|
244 |
+
int num_in_feats = _in_feats.size(0);
|
245 |
+
int num_in_channels = _in_feats.size(1);
|
246 |
+
int num_out_channels = _weights.size(0);
|
247 |
+
assert(num_in_channels % 64 == 0);
|
248 |
+
assert((num_in_channels / 16 * 3) ==
|
249 |
+
_weights.size(1)); // Making sure the K dimension is matched.
|
250 |
+
//
|
251 |
+
int M = num_out_channels;
|
252 |
+
int K = num_in_channels;
|
253 |
+
int N = num_in_feats;
|
254 |
+
// Input Tensors
|
255 |
+
auto weight1 = reinterpret_cast<const uint4*>(
|
256 |
+
_weights.data_ptr<int>()); // weights is [OC, IC] but in FP6.
|
257 |
+
auto weight2 = weight1 + num_in_channels * num_out_channels * 2 / 128;
|
258 |
+
auto in_feats = reinterpret_cast<const half*>(_in_feats.data_ptr<at::Half>());
|
259 |
+
auto scales = reinterpret_cast<const half*>(_scales.data_ptr<at::Half>());
|
260 |
+
// Output Tensors
|
261 |
+
auto options = torch::TensorOptions().dtype(_in_feats.dtype()).device(_in_feats.device());
|
262 |
+
at::Tensor _out_feats = torch::empty({num_in_feats, num_out_channels}, options);
|
263 |
+
auto out_feats = reinterpret_cast<half*>(_out_feats.data_ptr<at::Half>());
|
264 |
+
|
265 |
+
float* Reduction_Workspace = nullptr;
|
266 |
+
if (splitK != 1) {
|
267 |
+
auto options = torch::TensorOptions().dtype(torch::kFloat32).device(_in_feats.device());
|
268 |
+
at::Tensor _workspace = torch::empty({splitK, num_in_feats, num_out_channels}, options);
|
269 |
+
auto Reduction_Workspace = reinterpret_cast<float*>(
|
270 |
+
_out_feats.data_ptr<float>()); // Reduction_Workspace_Size = Split_K * M_Global *
|
271 |
+
// N_Global * sizeof(fp32)
|
272 |
+
}
|
273 |
+
|
274 |
+
fp6_linear_kernel(0, // Using default stream here.
|
275 |
+
weight1,
|
276 |
+
weight2,
|
277 |
+
scales,
|
278 |
+
in_feats,
|
279 |
+
out_feats,
|
280 |
+
M,
|
281 |
+
N,
|
282 |
+
K,
|
283 |
+
Reduction_Workspace,
|
284 |
+
splitK);
|
285 |
+
|
286 |
+
return _out_feats;
|
287 |
+
}
|
288 |
+
|
289 |
+
/*
|
290 |
+
* Inputs:
|
291 |
+
* (1) unsigned char Weight_6bit [M*K*6/8]
|
292 |
+
* Outputs:
|
293 |
+
* (1) unsigned char Weight_2bit [M*K*2/8]
|
294 |
+
* (2) unsigned char Weight_4bit [M*K*4/8]
|
295 |
+
*
|
296 |
+
* Assumption: Weight_6bit, Weight_2bit, Weight_4bit all stored continuously in row-major.
|
297 |
+
* 8 FP6 = 6 Bytes
|
298 |
+
* 8 FP4 = 4 Bytes
|
299 |
+
* 8 FP2 = 2 Bytes
|
300 |
+
*/
|
301 |
+
|
302 |
+
/*
|
303 |
+
* Weight prepacking (Pytorch interface).
|
304 |
+
* [Input & Output]
|
305 |
+
* fp6_tensor: int tensor of shape [OC, IC // 16 * 3]; // 3 INT32 words contains 16 FP6 weights.
|
306 |
+
* [Output]
|
307 |
+
* packed_tensor: int tensor of shape [OC, IC // 16 * 3];
|
308 |
+
*/
|
309 |
+
torch::Tensor weight_matrix_prepacking_cpu(torch::Tensor fp6_tensor, size_t OC, size_t IC)
|
310 |
+
{
|
311 |
+
assert((OC % 256 == 0) && (IC % 64 == 0));
|
312 |
+
assert((fp6_tensor.size(0) == OC) && (fp6_tensor.size(1) == IC / 16 * 3));
|
313 |
+
// auto packed_tensor = torch::empty_like(fp6_tensor);
|
314 |
+
// auto packed_tensor_ptr = reinterpret_cast<int*>(packed_tensor.data_ptr<int>());
|
315 |
+
auto fp6_tensor_ptr = reinterpret_cast<int*>(fp6_tensor.data_ptr<int>());
|
316 |
+
weight_matrix_prepacking(fp6_tensor_ptr, OC, IC);
|
317 |
+
return fp6_tensor;
|
318 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_linear/linear_kernels_cuda.h
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
// This is a copy of FP6-LLM kernel code: https://arxiv.org/abs/2401.14112
|
7 |
+
|
8 |
+
#ifndef DEEPSPEED_CUDA_LINEAR_FP6_LINEAR_CUH
|
9 |
+
#define DEEPSPEED_CUDA_LINEAR_FP6_LINEAR_CUH
|
10 |
+
|
11 |
+
#include <cuda.h>
|
12 |
+
#include <cuda_fp16.h>
|
13 |
+
#include <cuda_runtime.h>
|
14 |
+
|
15 |
+
#include <torch/extension.h>
|
16 |
+
|
17 |
+
/*
|
18 |
+
* Computes FP6-FP16 GEMM (C++ interface).
|
19 |
+
*/
|
20 |
+
cudaError_t fp6_linear_kernel(cudaStream_t stream,
|
21 |
+
const uint4* Weight1,
|
22 |
+
const uint4* Weight2,
|
23 |
+
const half* Scales,
|
24 |
+
const half* B,
|
25 |
+
half* C,
|
26 |
+
const size_t M_Global,
|
27 |
+
const size_t N_Global,
|
28 |
+
const size_t K_Global,
|
29 |
+
float* Reduction_Workspace, // Reduction_Workspace_Size = Split_K *
|
30 |
+
// M_Global * N_Global * sizeof(fp32)
|
31 |
+
int Split_K);
|
32 |
+
|
33 |
+
/*
|
34 |
+
* Computes FP6-FP16 GEMM (PyTorch interface).
|
35 |
+
*/
|
36 |
+
torch::Tensor fp6_linear_forward_cuda(torch::Tensor _in_feats,
|
37 |
+
torch::Tensor _weights,
|
38 |
+
torch::Tensor _scales,
|
39 |
+
int splitK = 1);
|
40 |
+
|
41 |
+
/*
|
42 |
+
* In-place weight prepacking (C++ interface).
|
43 |
+
*/
|
44 |
+
void weight_matrix_prepacking(int* FP6Weights, size_t M, size_t K);
|
45 |
+
|
46 |
+
/*
|
47 |
+
* Weight prepacking (Pytorch interface).
|
48 |
+
*/
|
49 |
+
torch::Tensor weight_matrix_prepacking_cpu(torch::Tensor fp6_tensor, size_t M, size_t K);
|
50 |
+
|
51 |
+
#endif
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_rms_norm/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from .rms_norm import CUDARMSNorm
|
7 |
+
from .rms_pre_norm import CUDARMSPreNorm
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_rms_norm/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (316 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_rms_norm/__pycache__/rms_norm.cpython-310.pyc
ADDED
Binary file (1.09 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_rms_norm/__pycache__/rms_norm_base.cpython-310.pyc
ADDED
Binary file (1.56 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_rms_norm/__pycache__/rms_pre_norm.cpython-310.pyc
ADDED
Binary file (1.51 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_rms_norm/rms_norm.cpp
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include "rms_norm.h"
|
7 |
+
|
8 |
+
#ifdef BF16_AVAILABLE
|
9 |
+
#define DISPATCH_FOR_FLOAT(DTYPE, ...) \
|
10 |
+
[&] { \
|
11 |
+
if (DTYPE == torch::kFloat32) { \
|
12 |
+
using scalar_t = float; \
|
13 |
+
return __VA_ARGS__(); \
|
14 |
+
} else if (DTYPE == torch::kFloat16) { \
|
15 |
+
using scalar_t = __half; \
|
16 |
+
return __VA_ARGS__(); \
|
17 |
+
} else if (DTYPE == torch::kBFloat16) { \
|
18 |
+
using scalar_t = __nv_bfloat16; \
|
19 |
+
return __VA_ARGS__(); \
|
20 |
+
} else { \
|
21 |
+
TORCH_CHECK(false, "Unsupported dtype for BiasActivation"); \
|
22 |
+
} \
|
23 |
+
}()
|
24 |
+
#else
|
25 |
+
#define DISPATCH_FOR_FLOAT(DTYPE, ...) \
|
26 |
+
[&] { \
|
27 |
+
if (DTYPE == torch::kFloat32) { \
|
28 |
+
using scalar_t = float; \
|
29 |
+
return __VA_ARGS__(); \
|
30 |
+
} else if (DTYPE == torch::kFloat16) { \
|
31 |
+
using scalar_t = __half; \
|
32 |
+
return __VA_ARGS__(); \
|
33 |
+
} else { \
|
34 |
+
TORCH_CHECK(false, "Unsupported dtype for BiasActivation"); \
|
35 |
+
} \
|
36 |
+
}()
|
37 |
+
#endif
|
38 |
+
|
39 |
+
void rms_norm(torch::Tensor& norm_output,
|
40 |
+
torch::Tensor& norm_input,
|
41 |
+
torch::Tensor& gamma,
|
42 |
+
float epsilon)
|
43 |
+
{
|
44 |
+
TORCH_CHECK(norm_output.scalar_type() == norm_input.scalar_type(),
|
45 |
+
"norm_output and norm_input should have the same data type");
|
46 |
+
TORCH_CHECK(norm_output.scalar_type() == gamma.scalar_type(),
|
47 |
+
"norm_output and gamma should have the same data type");
|
48 |
+
|
49 |
+
const int32_t rows = norm_input.size(0);
|
50 |
+
const int32_t cols = norm_input.size(1);
|
51 |
+
|
52 |
+
TORCH_CHECK(norm_output.size(0) == rows,
|
53 |
+
"norm_output and norm_input should have the same first dimension");
|
54 |
+
TORCH_CHECK(norm_output.size(1) == cols,
|
55 |
+
"norm_output and norm_input should have the same second dimension");
|
56 |
+
|
57 |
+
DISPATCH_FOR_FLOAT(norm_output.scalar_type(), [&] {
|
58 |
+
scalar_t* norm_output_ptr = reinterpret_cast<scalar_t*>(norm_output.data_ptr());
|
59 |
+
scalar_t* norm_input_ptr = reinterpret_cast<scalar_t*>(norm_input.data_ptr());
|
60 |
+
scalar_t* gamma_ptr = reinterpret_cast<scalar_t*>(gamma.data_ptr());
|
61 |
+
scalar_t* null_t = nullptr;
|
62 |
+
|
63 |
+
launch_rms_norm(norm_output_ptr,
|
64 |
+
null_t,
|
65 |
+
norm_input_ptr,
|
66 |
+
null_t,
|
67 |
+
gamma_ptr,
|
68 |
+
epsilon,
|
69 |
+
rows,
|
70 |
+
cols,
|
71 |
+
at::cuda::getCurrentCUDAStream());
|
72 |
+
});
|
73 |
+
}
|
74 |
+
|
75 |
+
void rms_pre_norm(torch::Tensor& norm_output,
|
76 |
+
torch::Tensor& residual_output,
|
77 |
+
torch::Tensor& norm_input,
|
78 |
+
torch::Tensor& residual_input,
|
79 |
+
torch::Tensor& gamma,
|
80 |
+
float epsilon)
|
81 |
+
{
|
82 |
+
TORCH_CHECK(norm_output.scalar_type() == norm_input.scalar_type(),
|
83 |
+
"norm_output and norm_input should have the same data type");
|
84 |
+
TORCH_CHECK(norm_output.scalar_type() == gamma.scalar_type(),
|
85 |
+
"norm_output and gamma should have the same data type");
|
86 |
+
|
87 |
+
const int32_t rows = norm_input.size(0);
|
88 |
+
const int32_t cols = norm_input.size(1);
|
89 |
+
|
90 |
+
TORCH_CHECK(norm_output.size(0) == rows,
|
91 |
+
"norm_output and norm_input should have the same first dimension");
|
92 |
+
TORCH_CHECK(norm_output.size(1) == cols,
|
93 |
+
"norm_output and norm_input should have the same second dimension");
|
94 |
+
|
95 |
+
TORCH_CHECK(residual_output.size(0) == rows,
|
96 |
+
"residual_output and norm_input should have the same first dimension");
|
97 |
+
TORCH_CHECK(residual_output.size(1) == cols,
|
98 |
+
"residual_output and norm_input should have the same second dimension");
|
99 |
+
|
100 |
+
TORCH_CHECK(residual_input.size(0) == rows,
|
101 |
+
"residual_input and norm_input should have the same first dimension");
|
102 |
+
TORCH_CHECK(residual_input.size(1) == cols,
|
103 |
+
"residual_input and norm_input should have the same second dimension");
|
104 |
+
|
105 |
+
DISPATCH_FOR_FLOAT(norm_output.scalar_type(), [&] {
|
106 |
+
scalar_t* norm_output_ptr = reinterpret_cast<scalar_t*>(norm_output.data_ptr());
|
107 |
+
scalar_t* residual_output_ptr = reinterpret_cast<scalar_t*>(residual_output.data_ptr());
|
108 |
+
const scalar_t* norm_input_ptr = reinterpret_cast<const scalar_t*>(norm_input.data_ptr());
|
109 |
+
const scalar_t* residual_input_ptr =
|
110 |
+
reinterpret_cast<const scalar_t*>(residual_input.data_ptr());
|
111 |
+
const scalar_t* gamma_ptr = reinterpret_cast<const scalar_t*>(gamma.data_ptr());
|
112 |
+
|
113 |
+
launch_rms_norm(norm_output_ptr,
|
114 |
+
residual_output_ptr,
|
115 |
+
norm_input_ptr,
|
116 |
+
residual_input_ptr,
|
117 |
+
gamma_ptr,
|
118 |
+
epsilon,
|
119 |
+
rows,
|
120 |
+
cols,
|
121 |
+
at::cuda::getCurrentCUDAStream());
|
122 |
+
});
|
123 |
+
}
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_rms_norm/rms_norm.h
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include <c10/cuda/CUDAStream.h>
|
9 |
+
#include <torch/extension.h>
|
10 |
+
#include "ds_kernel_utils.h"
|
11 |
+
|
12 |
+
template <typename T>
|
13 |
+
void launch_rms_norm(T* norm_output,
|
14 |
+
T* res_output,
|
15 |
+
const T* vals,
|
16 |
+
const T* residual,
|
17 |
+
const T* gamma,
|
18 |
+
float epsilon,
|
19 |
+
int rows,
|
20 |
+
int elems_per_row,
|
21 |
+
cudaStream_t stream);
|
22 |
+
|
23 |
+
void rms_norm(torch::Tensor& norm_output,
|
24 |
+
torch::Tensor& norm_input,
|
25 |
+
torch::Tensor& gamma,
|
26 |
+
float epsilon);
|
27 |
+
|
28 |
+
void rms_pre_norm(torch::Tensor& norm_output,
|
29 |
+
torch::Tensor& residual_output,
|
30 |
+
torch::Tensor& norm_input,
|
31 |
+
torch::Tensor& residual_input,
|
32 |
+
torch::Tensor& gamma,
|
33 |
+
float epsilon);
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_rms_norm/rms_norm.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from .rms_norm_base import CUDARMSNormBase
|
9 |
+
|
10 |
+
|
11 |
+
class CUDARMSNorm(CUDARMSNormBase):
|
12 |
+
"""
|
13 |
+
Floating point layer norm kernel for CUDA/RoCM.
|
14 |
+
|
15 |
+
Performs: z = ln(x)
|
16 |
+
"""
|
17 |
+
|
18 |
+
def __call__(self, output_z: torch.Tensor, input_x: torch.Tensor, gamma: torch.Tensor) -> torch.Tensor:
|
19 |
+
"""
|
20 |
+
output_z may alias input_x directly. All Tensors should have the same shape.
|
21 |
+
|
22 |
+
Parameters:
|
23 |
+
output_z (torch.Tensor): Output tensor.
|
24 |
+
input_x (torch.Tensor): Input tensor.
|
25 |
+
gamma (torch.Tensor): Gamma tensor.
|
26 |
+
"""
|
27 |
+
self.inf_module.rms_norm(output_z, input_x, gamma, self.epsilon)
|
28 |
+
return output_z
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_rms_norm/rms_norm_base.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from ... import DSKernelBase
|
9 |
+
from ....inference_utils import elem_size
|
10 |
+
from deepspeed.ops.op_builder import InferenceCoreBuilder
|
11 |
+
|
12 |
+
|
13 |
+
class CUDARMSNormBase(DSKernelBase):
|
14 |
+
"""
|
15 |
+
Base class for CUDA LN kernels. They all same the same validation logic,
|
16 |
+
so we can share it here.
|
17 |
+
"""
|
18 |
+
|
19 |
+
supported_dtypes = [torch.float16, torch.bfloat16, torch.float32]
|
20 |
+
|
21 |
+
def __init__(self, channels: int, fp_dtype: torch.dtype, epsilon: float = 1e-5):
|
22 |
+
"""
|
23 |
+
Parameters:
|
24 |
+
channels (int): Number of channels in the input tensor. Must be divisible to align
|
25 |
+
to 16 bytes.
|
26 |
+
fp_dtype (torch.dtype): Data type for the input/output/gamma. Supported values
|
27 |
+
are torch.float16, torch.bfloat16, and torch.float32.
|
28 |
+
"""
|
29 |
+
if fp_dtype not in CUDARMSNormBase.supported_dtypes:
|
30 |
+
raise ValueError("Unsupported data type: {}, supported_dtypes are {}".format(
|
31 |
+
fp_dtype, CUDARMSNormBase.supported_dtypes))
|
32 |
+
|
33 |
+
if elem_size(fp_dtype) * channels % 16 != 0:
|
34 |
+
raise ValueError("channels must be divisible by 16 bytes")
|
35 |
+
|
36 |
+
self.inf_module = InferenceCoreBuilder().load()
|
37 |
+
self.epsilon = epsilon
|
venv/lib/python3.10/site-packages/deepspeed/inference/v2/kernels/core_ops/cuda_rms_norm/rms_norm_cuda.cu
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) Microsoft Corporation.
|
2 |
+
// SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
// DeepSpeed Team
|
5 |
+
|
6 |
+
#include "conversion_utils.h"
|
7 |
+
#include "ds_kernel_utils.h"
|
8 |
+
#include "memory_access_utils.h"
|
9 |
+
#include "reduction_utils.h"
|
10 |
+
|
11 |
+
namespace cg = cooperative_groups;
|
12 |
+
using rop = reduce::ROpType;
|
13 |
+
|
14 |
+
namespace rms {
|
15 |
+
constexpr int granularity = 16;
|
16 |
+
} // namespace rms
|
17 |
+
|
18 |
+
template <typename T, int UNROLL, int threadsPerGroup, int maxThreads>
|
19 |
+
__global__ void rms_norm(T* output, const T* vals, const T* gamma, float epsilon, int elems_per_row)
|
20 |
+
{
|
21 |
+
constexpr int T_per_load = rms::granularity / sizeof(T);
|
22 |
+
|
23 |
+
cg::thread_block tb = cg::this_thread_block();
|
24 |
+
cg::thread_block_tile<hw_warp_size> warp = cg::tiled_partition<hw_warp_size>(tb);
|
25 |
+
|
26 |
+
// X-dimension of the block
|
27 |
+
const int block_offset = (tb.group_index().x * (maxThreads / threadsPerGroup) * elems_per_row) +
|
28 |
+
(tb.thread_index().y * elems_per_row);
|
29 |
+
const int thread_offset = tb.thread_index().x * T_per_load;
|
30 |
+
const int base_offset = block_offset + thread_offset;
|
31 |
+
const int stride = blockDim.x * T_per_load;
|
32 |
+
|
33 |
+
float var_sum = reduce::init<rop::Add, float>();
|
34 |
+
|
35 |
+
const T* input_base = vals + base_offset;
|
36 |
+
|
37 |
+
T local_buffer[UNROLL * T_per_load];
|
38 |
+
|
39 |
+
#pragma unroll
|
40 |
+
for (int i = 0; i < UNROLL; i++) {
|
41 |
+
T* iteration_buffer = local_buffer + (i * T_per_load);
|
42 |
+
|
43 |
+
mem_access::load_global<rms::granularity>(iteration_buffer,
|
44 |
+
input_base + (i * stride),
|
45 |
+
thread_offset + (i * stride) < elems_per_row);
|
46 |
+
|
47 |
+
#pragma unroll
|
48 |
+
for (int j = 0; j < T_per_load; j++) {
|
49 |
+
float up_cast = conversion::to<float>(iteration_buffer[j]);
|
50 |
+
float sq_val = up_cast * up_cast;
|
51 |
+
var_sum = reduce::element<rop::Add, float>(var_sum, sq_val);
|
52 |
+
}
|
53 |
+
}
|
54 |
+
|
55 |
+
reduce::partitioned_block<rop::Add, threadsPerGroup>(tb, warp, var_sum);
|
56 |
+
const float var = var_sum / elems_per_row;
|
57 |
+
const T denom = conversion::to<T>(__frsqrt_rn(var + epsilon));
|
58 |
+
|
59 |
+
T* block_output = output + block_offset;
|
60 |
+
|
61 |
+
#pragma unroll
|
62 |
+
for (int i = 0; i < UNROLL; i++) {
|
63 |
+
T* iteration_buffer = local_buffer + (i * T_per_load);
|
64 |
+
const int iter_idx = i * stride + thread_offset;
|
65 |
+
const bool do_loads = (iter_idx < elems_per_row);
|
66 |
+
|
67 |
+
T gamma_local[T_per_load];
|
68 |
+
|
69 |
+
mem_access::load_global<rms::granularity>(gamma_local, gamma + iter_idx, do_loads);
|
70 |
+
|
71 |
+
#pragma unroll
|
72 |
+
for (int j = 0; j < T_per_load; j++) {
|
73 |
+
iteration_buffer[j] *= denom;
|
74 |
+
iteration_buffer[j] *= gamma_local[j];
|
75 |
+
}
|
76 |
+
|
77 |
+
if (do_loads) {
|
78 |
+
mem_access::store_global<rms::granularity>(block_output + iter_idx, iteration_buffer);
|
79 |
+
}
|
80 |
+
}
|
81 |
+
}
|
82 |
+
|
83 |
+
template <typename T, int UNROLL, int threadsPerGroup, int maxThreads>
|
84 |
+
__global__ void pre_rms_norm(T* output,
|
85 |
+
T* res_out,
|
86 |
+
const T* vals,
|
87 |
+
const T* residual,
|
88 |
+
const T* gamma,
|
89 |
+
float epsilon,
|
90 |
+
int elems_per_row)
|
91 |
+
{
|
92 |
+
constexpr int T_per_load = rms::granularity / sizeof(T);
|
93 |
+
|
94 |
+
cg::thread_block tb = cg::this_thread_block();
|
95 |
+
cg::thread_block_tile<hw_warp_size> warp = cg::tiled_partition<hw_warp_size>(tb);
|
96 |
+
|
97 |
+
// X-dimension of the block
|
98 |
+
const int block_offset = (tb.group_index().x * (maxThreads / threadsPerGroup) * elems_per_row) +
|
99 |
+
(tb.thread_index().y * elems_per_row);
|
100 |
+
const int thread_offset = tb.thread_index().x * T_per_load;
|
101 |
+
const int base_offset = block_offset + thread_offset;
|
102 |
+
const int stride = blockDim.x * T_per_load;
|
103 |
+
|
104 |
+
float var_sum = reduce::init<rop::Add, float>();
|
105 |
+
|
106 |
+
const T* input_base = vals + base_offset;
|
107 |
+
const T* residual_base = residual + base_offset;
|
108 |
+
T* res_output = res_out + base_offset;
|
109 |
+
|
110 |
+
T local_buffer[UNROLL * T_per_load];
|
111 |
+
|
112 |
+
#pragma unroll
|
113 |
+
for (int i = 0; i < UNROLL; i++) {
|
114 |
+
T* iteration_buffer = local_buffer + (i * T_per_load);
|
115 |
+
T residual_buffer[T_per_load];
|
116 |
+
|
117 |
+
const int iter_offset = i * stride + thread_offset;
|
118 |
+
const bool do_loads = (iter_offset < elems_per_row);
|
119 |
+
|
120 |
+
mem_access::load_global<rms::granularity>(
|
121 |
+
iteration_buffer, input_base + (i * stride), do_loads);
|
122 |
+
mem_access::load_global<rms::granularity>(
|
123 |
+
residual_buffer, residual_base + (i * stride), do_loads);
|
124 |
+
|
125 |
+
#pragma unroll
|
126 |
+
for (int j = 0; j < T_per_load; j++) {
|
127 |
+
iteration_buffer[j] += residual_buffer[j];
|
128 |
+
float vals_up_cast = conversion::to<float>(iteration_buffer[j]);
|
129 |
+
|
130 |
+
var_sum = reduce::element<rop::Add, float>(var_sum, vals_up_cast * vals_up_cast);
|
131 |
+
}
|
132 |
+
|
133 |
+
if (do_loads) {
|
134 |
+
mem_access::store_global<rms::granularity>(res_output + i * stride, iteration_buffer);
|
135 |
+
}
|
136 |
+
}
|
137 |
+
|
138 |
+
reduce::partitioned_block<rop::Add, threadsPerGroup>(tb, warp, var_sum);
|
139 |
+
const float var = var_sum / elems_per_row;
|
140 |
+
const T denom = conversion::to<T>(__frsqrt_rn(var + epsilon));
|
141 |
+
|
142 |
+
T* block_output = output + block_offset;
|
143 |
+
|
144 |
+
#pragma unroll
|
145 |
+
for (int i = 0; i < UNROLL; i++) {
|
146 |
+
T* iteration_buffer = local_buffer + (i * T_per_load);
|
147 |
+
const int iter_idx = i * stride + thread_offset;
|
148 |
+
const bool do_loads = (iter_idx < elems_per_row);
|
149 |
+
|
150 |
+
T gamma_local[T_per_load];
|
151 |
+
|
152 |
+
mem_access::load_global<rms::granularity>(gamma_local, gamma + iter_idx, do_loads);
|
153 |
+
|
154 |
+
#pragma unroll
|
155 |
+
for (int j = 0; j < T_per_load; j++) {
|
156 |
+
iteration_buffer[j] *= denom;
|
157 |
+
iteration_buffer[j] *= gamma_local[j];
|
158 |
+
}
|
159 |
+
|
160 |
+
if (do_loads) {
|
161 |
+
mem_access::store_global<rms::granularity>(block_output + iter_idx, iteration_buffer);
|
162 |
+
}
|
163 |
+
}
|
164 |
+
}
|
165 |
+
|
166 |
+
#define LAUNCH_RMS_NORM(UNROLL, threadsPerGroup, maxThreads) \
|
167 |
+
rms_norm<T, UNROLL, threadsPerGroup, maxThreads> \
|
168 |
+
<<<grid, block, 0, stream>>>(norm_output, vals, gamma, epsilon, elems_per_row);
|
169 |
+
|
170 |
+
#define LAUNCH_PRE_RMS_NORM(UNROLL, threadsPerGroup, maxThreads) \
|
171 |
+
pre_rms_norm<T, UNROLL, threadsPerGroup, maxThreads><<<grid, block, 0, stream>>>( \
|
172 |
+
norm_output, res_output, vals, residual, gamma, epsilon, elems_per_row);
|
173 |
+
|
174 |
+
#define LAUNCH_ALL_RMS_NORM(UNROLL, threadsPerGroup, maxThreads) \
|
175 |
+
if (pre_norm) { \
|
176 |
+
LAUNCH_PRE_RMS_NORM(UNROLL, threadsPerGroup, maxThreads) \
|
177 |
+
} else { \
|
178 |
+
LAUNCH_RMS_NORM(UNROLL, threadsPerGroup, maxThreads) \
|
179 |
+
}
|
180 |
+
|
181 |
+
template <typename T>
|
182 |
+
void launch_rms_norm(T* norm_output,
|
183 |
+
T* res_output,
|
184 |
+
const T* vals,
|
185 |
+
const T* residual,
|
186 |
+
const T* gamma,
|
187 |
+
float epsilon,
|
188 |
+
int rows,
|
189 |
+
int elems_per_row,
|
190 |
+
cudaStream_t stream)
|
191 |
+
{
|
192 |
+
// 8 for __half, 4 for float
|
193 |
+
constexpr int T_per_load = rms::granularity / sizeof(T);
|
194 |
+
constexpr int maxThreads = 256;
|
195 |
+
constexpr int internalUnroll = sizeof(T) == 4 ? 4 : 2;
|
196 |
+
|
197 |
+
const bool is_subblock_schedule = (elems_per_row <= 128) ? true : false;
|
198 |
+
const int h_per_step = is_subblock_schedule ? T_per_load : T_per_load * internalUnroll;
|
199 |
+
|
200 |
+
// Scheduling concern: may be slightly faster for some inputs to assign multiple stages of
|
201 |
+
// warp-sized blocks rather than stepping up to 64/96 threads
|
202 |
+
const int one_step_threads = next_pow2((elems_per_row + h_per_step - 1) / h_per_step);
|
203 |
+
const int threads_per_group = (one_step_threads < maxThreads) ? one_step_threads : maxThreads;
|
204 |
+
|
205 |
+
const int groups_per_block_max =
|
206 |
+
is_subblock_schedule ? (maxThreads + threads_per_group - 1) / threads_per_group : 1;
|
207 |
+
const int groups_per_block = (rows < groups_per_block_max) ? rows : groups_per_block_max;
|
208 |
+
const int groups_launch = (groups_per_block + rows - 1) / groups_per_block;
|
209 |
+
|
210 |
+
dim3 block(threads_per_group, groups_per_block);
|
211 |
+
dim3 grid(groups_launch);
|
212 |
+
|
213 |
+
const int elems_per_step = threads_per_group * h_per_step;
|
214 |
+
const int external_unRoll = (elems_per_row + elems_per_step - 1) / elems_per_step;
|
215 |
+
|
216 |
+
bool pre_norm = (residual == nullptr) ? false : true;
|
217 |
+
|
218 |
+
if (is_subblock_schedule) {
|
219 |
+
// <=128
|
220 |
+
if (threads_per_group == 1) {
|
221 |
+
LAUNCH_ALL_RMS_NORM(1, 1, maxThreads);
|
222 |
+
} else if (threads_per_group == 2) {
|
223 |
+
LAUNCH_ALL_RMS_NORM(1, 2, maxThreads);
|
224 |
+
} else if (threads_per_group == 4) {
|
225 |
+
LAUNCH_ALL_RMS_NORM(1, 4, maxThreads);
|
226 |
+
} else if (threads_per_group == 8) {
|
227 |
+
LAUNCH_ALL_RMS_NORM(1, 8, maxThreads);
|
228 |
+
} else if (threads_per_group == 16) {
|
229 |
+
LAUNCH_ALL_RMS_NORM(1, 16, maxThreads);
|
230 |
+
}
|
231 |
+
} else if (external_unRoll == 1) {
|
232 |
+
// 129 - 4096 elems
|
233 |
+
// (this can launch with 1-7 warps as well)
|
234 |
+
LAUNCH_ALL_RMS_NORM(1 * internalUnroll, maxThreads, maxThreads);
|
235 |
+
} else if (external_unRoll == 2) {
|
236 |
+
// 4097 - 8192 elems
|
237 |
+
LAUNCH_ALL_RMS_NORM(2 * internalUnroll, maxThreads, maxThreads);
|
238 |
+
} else if (external_unRoll == 3) {
|
239 |
+
// 8193 - 12288 elems
|
240 |
+
LAUNCH_ALL_RMS_NORM(3 * internalUnroll, maxThreads, maxThreads);
|
241 |
+
} else if (external_unRoll == 4) {
|
242 |
+
// 12289 - 16384 elems
|
243 |
+
LAUNCH_ALL_RMS_NORM(4 * internalUnroll, maxThreads, maxThreads);
|
244 |
+
}
|
245 |
+
}
|
246 |
+
|
247 |
+
#define INSTANTIATE_LAUNCH_RMS_NORM(T) \
|
248 |
+
template void launch_rms_norm<T>(T * norm_output, \
|
249 |
+
T * res_output, \
|
250 |
+
const T* vals, \
|
251 |
+
const T* residual, \
|
252 |
+
const T* gamma, \
|
253 |
+
float epsilon, \
|
254 |
+
int rows, \
|
255 |
+
int elems_per_row, \
|
256 |
+
cudaStream_t stream);
|
257 |
+
|
258 |
+
INSTANTIATE_LAUNCH_RMS_NORM(float)
|
259 |
+
INSTANTIATE_LAUNCH_RMS_NORM(__half)
|
260 |
+
#ifdef BF16_AVAILABLE
|
261 |
+
INSTANTIATE_LAUNCH_RMS_NORM(__nv_bfloat16)
|
262 |
+
#endif
|