diff --git "a/venv/lib/python3.10/site-packages/pandas/tests/frame/test_constructors.py" "b/venv/lib/python3.10/site-packages/pandas/tests/frame/test_constructors.py" new file mode 100644--- /dev/null +++ "b/venv/lib/python3.10/site-packages/pandas/tests/frame/test_constructors.py" @@ -0,0 +1,3348 @@ +import array +from collections import ( + OrderedDict, + abc, + defaultdict, + namedtuple, +) +from collections.abc import Iterator +from dataclasses import make_dataclass +from datetime import ( + date, + datetime, + timedelta, +) +import functools +import re + +import numpy as np +from numpy import ma +from numpy.ma import mrecords +import pytest +import pytz + +from pandas._config import using_pyarrow_string_dtype + +from pandas._libs import lib +from pandas.compat.numpy import np_version_gt2 +from pandas.errors import IntCastingNaNError +import pandas.util._test_decorators as td + +from pandas.core.dtypes.common import is_integer_dtype +from pandas.core.dtypes.dtypes import ( + DatetimeTZDtype, + IntervalDtype, + NumpyEADtype, + PeriodDtype, +) + +import pandas as pd +from pandas import ( + Categorical, + CategoricalIndex, + DataFrame, + DatetimeIndex, + Index, + Interval, + MultiIndex, + Period, + RangeIndex, + Series, + Timedelta, + Timestamp, + cut, + date_range, + isna, +) +import pandas._testing as tm +from pandas.arrays import ( + DatetimeArray, + IntervalArray, + PeriodArray, + SparseArray, + TimedeltaArray, +) + +MIXED_FLOAT_DTYPES = ["float16", "float32", "float64"] +MIXED_INT_DTYPES = [ + "uint8", + "uint16", + "uint32", + "uint64", + "int8", + "int16", + "int32", + "int64", +] + + +class TestDataFrameConstructors: + def test_constructor_from_ndarray_with_str_dtype(self): + # If we don't ravel/reshape around ensure_str_array, we end up + # with an array of strings each of which is e.g. "[0 1 2]" + arr = np.arange(12).reshape(4, 3) + df = DataFrame(arr, dtype=str) + expected = DataFrame(arr.astype(str), dtype=object) + tm.assert_frame_equal(df, expected) + + def test_constructor_from_2d_datetimearray(self, using_array_manager): + dti = date_range("2016-01-01", periods=6, tz="US/Pacific") + dta = dti._data.reshape(3, 2) + + df = DataFrame(dta) + expected = DataFrame({0: dta[:, 0], 1: dta[:, 1]}) + tm.assert_frame_equal(df, expected) + if not using_array_manager: + # GH#44724 big performance hit if we de-consolidate + assert len(df._mgr.blocks) == 1 + + def test_constructor_dict_with_tzaware_scalar(self): + # GH#42505 + dt = Timestamp("2019-11-03 01:00:00-0700").tz_convert("America/Los_Angeles") + dt = dt.as_unit("ns") + + df = DataFrame({"dt": dt}, index=[0]) + expected = DataFrame({"dt": [dt]}) + tm.assert_frame_equal(df, expected) + + # Non-homogeneous + df = DataFrame({"dt": dt, "value": [1]}) + expected = DataFrame({"dt": [dt], "value": [1]}) + tm.assert_frame_equal(df, expected) + + def test_construct_ndarray_with_nas_and_int_dtype(self): + # GH#26919 match Series by not casting np.nan to meaningless int + arr = np.array([[1, np.nan], [2, 3]]) + msg = r"Cannot convert non-finite values \(NA or inf\) to integer" + with pytest.raises(IntCastingNaNError, match=msg): + DataFrame(arr, dtype="i8") + + # check this matches Series behavior + with pytest.raises(IntCastingNaNError, match=msg): + Series(arr[0], dtype="i8", name=0) + + def test_construct_from_list_of_datetimes(self): + df = DataFrame([datetime.now(), datetime.now()]) + assert df[0].dtype == np.dtype("M8[ns]") + + def test_constructor_from_tzaware_datetimeindex(self): + # don't cast a DatetimeIndex WITH a tz, leave as object + # GH#6032 + naive = DatetimeIndex(["2013-1-1 13:00", "2013-1-2 14:00"], name="B") + idx = naive.tz_localize("US/Pacific") + + expected = Series(np.array(idx.tolist(), dtype="object"), name="B") + assert expected.dtype == idx.dtype + + # convert index to series + result = Series(idx) + tm.assert_series_equal(result, expected) + + def test_columns_with_leading_underscore_work_with_to_dict(self): + col_underscore = "_b" + df = DataFrame({"a": [1, 2], col_underscore: [3, 4]}) + d = df.to_dict(orient="records") + + ref_d = [{"a": 1, col_underscore: 3}, {"a": 2, col_underscore: 4}] + + assert ref_d == d + + def test_columns_with_leading_number_and_underscore_work_with_to_dict(self): + col_with_num = "1_b" + df = DataFrame({"a": [1, 2], col_with_num: [3, 4]}) + d = df.to_dict(orient="records") + + ref_d = [{"a": 1, col_with_num: 3}, {"a": 2, col_with_num: 4}] + + assert ref_d == d + + def test_array_of_dt64_nat_with_td64dtype_raises(self, frame_or_series): + # GH#39462 + nat = np.datetime64("NaT", "ns") + arr = np.array([nat], dtype=object) + if frame_or_series is DataFrame: + arr = arr.reshape(1, 1) + + msg = "Invalid type for timedelta scalar: " + with pytest.raises(TypeError, match=msg): + frame_or_series(arr, dtype="m8[ns]") + + @pytest.mark.parametrize("kind", ["m", "M"]) + def test_datetimelike_values_with_object_dtype(self, kind, frame_or_series): + # with dtype=object, we should cast dt64 values to Timestamps, not pydatetimes + if kind == "M": + dtype = "M8[ns]" + scalar_type = Timestamp + else: + dtype = "m8[ns]" + scalar_type = Timedelta + + arr = np.arange(6, dtype="i8").view(dtype).reshape(3, 2) + if frame_or_series is Series: + arr = arr[:, 0] + + obj = frame_or_series(arr, dtype=object) + assert obj._mgr.arrays[0].dtype == object + assert isinstance(obj._mgr.arrays[0].ravel()[0], scalar_type) + + # go through a different path in internals.construction + obj = frame_or_series(frame_or_series(arr), dtype=object) + assert obj._mgr.arrays[0].dtype == object + assert isinstance(obj._mgr.arrays[0].ravel()[0], scalar_type) + + obj = frame_or_series(frame_or_series(arr), dtype=NumpyEADtype(object)) + assert obj._mgr.arrays[0].dtype == object + assert isinstance(obj._mgr.arrays[0].ravel()[0], scalar_type) + + if frame_or_series is DataFrame: + # other paths through internals.construction + sers = [Series(x) for x in arr] + obj = frame_or_series(sers, dtype=object) + assert obj._mgr.arrays[0].dtype == object + assert isinstance(obj._mgr.arrays[0].ravel()[0], scalar_type) + + def test_series_with_name_not_matching_column(self): + # GH#9232 + x = Series(range(5), name=1) + y = Series(range(5), name=0) + + result = DataFrame(x, columns=[0]) + expected = DataFrame([], columns=[0]) + tm.assert_frame_equal(result, expected) + + result = DataFrame(y, columns=[1]) + expected = DataFrame([], columns=[1]) + tm.assert_frame_equal(result, expected) + + @pytest.mark.parametrize( + "constructor", + [ + lambda: DataFrame(), + lambda: DataFrame(None), + lambda: DataFrame(()), + lambda: DataFrame([]), + lambda: DataFrame(_ for _ in []), + lambda: DataFrame(range(0)), + lambda: DataFrame(data=None), + lambda: DataFrame(data=()), + lambda: DataFrame(data=[]), + lambda: DataFrame(data=(_ for _ in [])), + lambda: DataFrame(data=range(0)), + ], + ) + def test_empty_constructor(self, constructor): + expected = DataFrame() + result = constructor() + assert len(result.index) == 0 + assert len(result.columns) == 0 + tm.assert_frame_equal(result, expected) + + @pytest.mark.parametrize( + "constructor", + [ + lambda: DataFrame({}), + lambda: DataFrame(data={}), + ], + ) + def test_empty_constructor_object_index(self, constructor): + expected = DataFrame(index=RangeIndex(0), columns=RangeIndex(0)) + result = constructor() + assert len(result.index) == 0 + assert len(result.columns) == 0 + tm.assert_frame_equal(result, expected, check_index_type=True) + + @pytest.mark.parametrize( + "emptylike,expected_index,expected_columns", + [ + ([[]], RangeIndex(1), RangeIndex(0)), + ([[], []], RangeIndex(2), RangeIndex(0)), + ([(_ for _ in [])], RangeIndex(1), RangeIndex(0)), + ], + ) + def test_emptylike_constructor(self, emptylike, expected_index, expected_columns): + expected = DataFrame(index=expected_index, columns=expected_columns) + result = DataFrame(emptylike) + tm.assert_frame_equal(result, expected) + + def test_constructor_mixed(self, float_string_frame, using_infer_string): + dtype = "string" if using_infer_string else np.object_ + assert float_string_frame["foo"].dtype == dtype + + def test_constructor_cast_failure(self): + # as of 2.0, we raise if we can't respect "dtype", previously we + # silently ignored + msg = "could not convert string to float" + with pytest.raises(ValueError, match=msg): + DataFrame({"a": ["a", "b", "c"]}, dtype=np.float64) + + # GH 3010, constructing with odd arrays + df = DataFrame(np.ones((4, 2))) + + # this is ok + df["foo"] = np.ones((4, 2)).tolist() + + # this is not ok + msg = "Expected a 1D array, got an array with shape \\(4, 2\\)" + with pytest.raises(ValueError, match=msg): + df["test"] = np.ones((4, 2)) + + # this is ok + df["foo2"] = np.ones((4, 2)).tolist() + + def test_constructor_dtype_copy(self): + orig_df = DataFrame({"col1": [1.0], "col2": [2.0], "col3": [3.0]}) + + new_df = DataFrame(orig_df, dtype=float, copy=True) + + new_df["col1"] = 200.0 + assert orig_df["col1"][0] == 1.0 + + def test_constructor_dtype_nocast_view_dataframe( + self, using_copy_on_write, warn_copy_on_write + ): + df = DataFrame([[1, 2]]) + should_be_view = DataFrame(df, dtype=df[0].dtype) + if using_copy_on_write: + should_be_view.iloc[0, 0] = 99 + assert df.values[0, 0] == 1 + else: + with tm.assert_cow_warning(warn_copy_on_write): + should_be_view.iloc[0, 0] = 99 + assert df.values[0, 0] == 99 + + def test_constructor_dtype_nocast_view_2d_array( + self, using_array_manager, using_copy_on_write, warn_copy_on_write + ): + df = DataFrame([[1, 2], [3, 4]], dtype="int64") + if not using_array_manager and not using_copy_on_write: + should_be_view = DataFrame(df.values, dtype=df[0].dtype) + # TODO(CoW-warn) this should warn + # with tm.assert_cow_warning(warn_copy_on_write): + should_be_view.iloc[0, 0] = 97 + assert df.values[0, 0] == 97 + else: + # INFO(ArrayManager) DataFrame(ndarray) doesn't necessarily preserve + # a view on the array to ensure contiguous 1D arrays + df2 = DataFrame(df.values, dtype=df[0].dtype) + assert df2._mgr.arrays[0].flags.c_contiguous + + @td.skip_array_manager_invalid_test + @pytest.mark.xfail(using_pyarrow_string_dtype(), reason="conversion copies") + def test_1d_object_array_does_not_copy(self): + # https://github.com/pandas-dev/pandas/issues/39272 + arr = np.array(["a", "b"], dtype="object") + df = DataFrame(arr, copy=False) + assert np.shares_memory(df.values, arr) + + @td.skip_array_manager_invalid_test + @pytest.mark.xfail(using_pyarrow_string_dtype(), reason="conversion copies") + def test_2d_object_array_does_not_copy(self): + # https://github.com/pandas-dev/pandas/issues/39272 + arr = np.array([["a", "b"], ["c", "d"]], dtype="object") + df = DataFrame(arr, copy=False) + assert np.shares_memory(df.values, arr) + + def test_constructor_dtype_list_data(self): + df = DataFrame([[1, "2"], [None, "a"]], dtype=object) + assert df.loc[1, 0] is None + assert df.loc[0, 1] == "2" + + def test_constructor_list_of_2d_raises(self): + # https://github.com/pandas-dev/pandas/issues/32289 + a = DataFrame() + b = np.empty((0, 0)) + with pytest.raises(ValueError, match=r"shape=\(1, 0, 0\)"): + DataFrame([a]) + + with pytest.raises(ValueError, match=r"shape=\(1, 0, 0\)"): + DataFrame([b]) + + a = DataFrame({"A": [1, 2]}) + with pytest.raises(ValueError, match=r"shape=\(2, 2, 1\)"): + DataFrame([a, a]) + + @pytest.mark.parametrize( + "typ, ad", + [ + # mixed floating and integer coexist in the same frame + ["float", {}], + # add lots of types + ["float", {"A": 1, "B": "foo", "C": "bar"}], + # GH 622 + ["int", {}], + ], + ) + def test_constructor_mixed_dtypes(self, typ, ad): + if typ == "int": + dtypes = MIXED_INT_DTYPES + arrays = [ + np.array(np.random.default_rng(2).random(10), dtype=d) for d in dtypes + ] + elif typ == "float": + dtypes = MIXED_FLOAT_DTYPES + arrays = [ + np.array(np.random.default_rng(2).integers(10, size=10), dtype=d) + for d in dtypes + ] + + for d, a in zip(dtypes, arrays): + assert a.dtype == d + ad.update(dict(zip(dtypes, arrays))) + df = DataFrame(ad) + + dtypes = MIXED_FLOAT_DTYPES + MIXED_INT_DTYPES + for d in dtypes: + if d in df: + assert df.dtypes[d] == d + + def test_constructor_complex_dtypes(self): + # GH10952 + a = np.random.default_rng(2).random(10).astype(np.complex64) + b = np.random.default_rng(2).random(10).astype(np.complex128) + + df = DataFrame({"a": a, "b": b}) + assert a.dtype == df.a.dtype + assert b.dtype == df.b.dtype + + def test_constructor_dtype_str_na_values(self, string_dtype): + # https://github.com/pandas-dev/pandas/issues/21083 + df = DataFrame({"A": ["x", None]}, dtype=string_dtype) + result = df.isna() + expected = DataFrame({"A": [False, True]}) + tm.assert_frame_equal(result, expected) + assert df.iloc[1, 0] is None + + df = DataFrame({"A": ["x", np.nan]}, dtype=string_dtype) + assert np.isnan(df.iloc[1, 0]) + + def test_constructor_rec(self, float_frame): + rec = float_frame.to_records(index=False) + rec.dtype.names = list(rec.dtype.names)[::-1] + + index = float_frame.index + + df = DataFrame(rec) + tm.assert_index_equal(df.columns, Index(rec.dtype.names)) + + df2 = DataFrame(rec, index=index) + tm.assert_index_equal(df2.columns, Index(rec.dtype.names)) + tm.assert_index_equal(df2.index, index) + + # case with columns != the ones we would infer from the data + rng = np.arange(len(rec))[::-1] + df3 = DataFrame(rec, index=rng, columns=["C", "B"]) + expected = DataFrame(rec, index=rng).reindex(columns=["C", "B"]) + tm.assert_frame_equal(df3, expected) + + def test_constructor_bool(self): + df = DataFrame({0: np.ones(10, dtype=bool), 1: np.zeros(10, dtype=bool)}) + assert df.values.dtype == np.bool_ + + def test_constructor_overflow_int64(self): + # see gh-14881 + values = np.array([2**64 - i for i in range(1, 10)], dtype=np.uint64) + + result = DataFrame({"a": values}) + assert result["a"].dtype == np.uint64 + + # see gh-2355 + data_scores = [ + (6311132704823138710, 273), + (2685045978526272070, 23), + (8921811264899370420, 45), + (17019687244989530680, 270), + (9930107427299601010, 273), + ] + dtype = [("uid", "u8"), ("score", "u8")] + data = np.zeros((len(data_scores),), dtype=dtype) + data[:] = data_scores + df_crawls = DataFrame(data) + assert df_crawls["uid"].dtype == np.uint64 + + @pytest.mark.parametrize( + "values", + [ + np.array([2**64], dtype=object), + np.array([2**65]), + [2**64 + 1], + np.array([-(2**63) - 4], dtype=object), + np.array([-(2**64) - 1]), + [-(2**65) - 2], + ], + ) + def test_constructor_int_overflow(self, values): + # see gh-18584 + value = values[0] + result = DataFrame(values) + + assert result[0].dtype == object + assert result[0][0] == value + + @pytest.mark.parametrize( + "values", + [ + np.array([1], dtype=np.uint16), + np.array([1], dtype=np.uint32), + np.array([1], dtype=np.uint64), + [np.uint16(1)], + [np.uint32(1)], + [np.uint64(1)], + ], + ) + def test_constructor_numpy_uints(self, values): + # GH#47294 + value = values[0] + result = DataFrame(values) + + assert result[0].dtype == value.dtype + assert result[0][0] == value + + def test_constructor_ordereddict(self): + nitems = 100 + nums = list(range(nitems)) + np.random.default_rng(2).shuffle(nums) + expected = [f"A{i:d}" for i in nums] + df = DataFrame(OrderedDict(zip(expected, [[0]] * nitems))) + assert expected == list(df.columns) + + def test_constructor_dict(self): + datetime_series = Series( + np.arange(30, dtype=np.float64), index=date_range("2020-01-01", periods=30) + ) + # test expects index shifted by 5 + datetime_series_short = datetime_series[5:] + + frame = DataFrame({"col1": datetime_series, "col2": datetime_series_short}) + + # col2 is padded with NaN + assert len(datetime_series) == 30 + assert len(datetime_series_short) == 25 + + tm.assert_series_equal(frame["col1"], datetime_series.rename("col1")) + + exp = Series( + np.concatenate([[np.nan] * 5, datetime_series_short.values]), + index=datetime_series.index, + name="col2", + ) + tm.assert_series_equal(exp, frame["col2"]) + + frame = DataFrame( + {"col1": datetime_series, "col2": datetime_series_short}, + columns=["col2", "col3", "col4"], + ) + + assert len(frame) == len(datetime_series_short) + assert "col1" not in frame + assert isna(frame["col3"]).all() + + # Corner cases + assert len(DataFrame()) == 0 + + # mix dict and array, wrong size - no spec for which error should raise + # first + msg = "Mixing dicts with non-Series may lead to ambiguous ordering." + with pytest.raises(ValueError, match=msg): + DataFrame({"A": {"a": "a", "b": "b"}, "B": ["a", "b", "c"]}) + + def test_constructor_dict_length1(self): + # Length-one dict micro-optimization + frame = DataFrame({"A": {"1": 1, "2": 2}}) + tm.assert_index_equal(frame.index, Index(["1", "2"])) + + def test_constructor_dict_with_index(self): + # empty dict plus index + idx = Index([0, 1, 2]) + frame = DataFrame({}, index=idx) + assert frame.index is idx + + def test_constructor_dict_with_index_and_columns(self): + # empty dict with index and columns + idx = Index([0, 1, 2]) + frame = DataFrame({}, index=idx, columns=idx) + assert frame.index is idx + assert frame.columns is idx + assert len(frame._series) == 3 + + def test_constructor_dict_of_empty_lists(self): + # with dict of empty list and Series + frame = DataFrame({"A": [], "B": []}, columns=["A", "B"]) + tm.assert_index_equal(frame.index, RangeIndex(0), exact=True) + + def test_constructor_dict_with_none(self): + # GH 14381 + # Dict with None value + frame_none = DataFrame({"a": None}, index=[0]) + frame_none_list = DataFrame({"a": [None]}, index=[0]) + assert frame_none._get_value(0, "a") is None + assert frame_none_list._get_value(0, "a") is None + tm.assert_frame_equal(frame_none, frame_none_list) + + def test_constructor_dict_errors(self): + # GH10856 + # dict with scalar values should raise error, even if columns passed + msg = "If using all scalar values, you must pass an index" + with pytest.raises(ValueError, match=msg): + DataFrame({"a": 0.7}) + + with pytest.raises(ValueError, match=msg): + DataFrame({"a": 0.7}, columns=["a"]) + + @pytest.mark.parametrize("scalar", [2, np.nan, None, "D"]) + def test_constructor_invalid_items_unused(self, scalar): + # No error if invalid (scalar) value is in fact not used: + result = DataFrame({"a": scalar}, columns=["b"]) + expected = DataFrame(columns=["b"]) + tm.assert_frame_equal(result, expected) + + @pytest.mark.parametrize("value", [2, np.nan, None, float("nan")]) + def test_constructor_dict_nan_key(self, value): + # GH 18455 + cols = [1, value, 3] + idx = ["a", value] + values = [[0, 3], [1, 4], [2, 5]] + data = {cols[c]: Series(values[c], index=idx) for c in range(3)} + result = DataFrame(data).sort_values(1).sort_values("a", axis=1) + expected = DataFrame( + np.arange(6, dtype="int64").reshape(2, 3), index=idx, columns=cols + ) + tm.assert_frame_equal(result, expected) + + result = DataFrame(data, index=idx).sort_values("a", axis=1) + tm.assert_frame_equal(result, expected) + + result = DataFrame(data, index=idx, columns=cols) + tm.assert_frame_equal(result, expected) + + @pytest.mark.parametrize("value", [np.nan, None, float("nan")]) + def test_constructor_dict_nan_tuple_key(self, value): + # GH 18455 + cols = Index([(11, 21), (value, 22), (13, value)]) + idx = Index([("a", value), (value, 2)]) + values = [[0, 3], [1, 4], [2, 5]] + data = {cols[c]: Series(values[c], index=idx) for c in range(3)} + result = DataFrame(data).sort_values((11, 21)).sort_values(("a", value), axis=1) + expected = DataFrame( + np.arange(6, dtype="int64").reshape(2, 3), index=idx, columns=cols + ) + tm.assert_frame_equal(result, expected) + + result = DataFrame(data, index=idx).sort_values(("a", value), axis=1) + tm.assert_frame_equal(result, expected) + + result = DataFrame(data, index=idx, columns=cols) + tm.assert_frame_equal(result, expected) + + def test_constructor_dict_order_insertion(self): + datetime_series = Series( + np.arange(10, dtype=np.float64), index=date_range("2020-01-01", periods=10) + ) + datetime_series_short = datetime_series[:5] + + # GH19018 + # initialization ordering: by insertion order if python>= 3.6 + d = {"b": datetime_series_short, "a": datetime_series} + frame = DataFrame(data=d) + expected = DataFrame(data=d, columns=list("ba")) + tm.assert_frame_equal(frame, expected) + + def test_constructor_dict_nan_key_and_columns(self): + # GH 16894 + result = DataFrame({np.nan: [1, 2], 2: [2, 3]}, columns=[np.nan, 2]) + expected = DataFrame([[1, 2], [2, 3]], columns=[np.nan, 2]) + tm.assert_frame_equal(result, expected) + + def test_constructor_multi_index(self): + # GH 4078 + # construction error with mi and all-nan frame + tuples = [(2, 3), (3, 3), (3, 3)] + mi = MultiIndex.from_tuples(tuples) + df = DataFrame(index=mi, columns=mi) + assert isna(df).values.ravel().all() + + tuples = [(3, 3), (2, 3), (3, 3)] + mi = MultiIndex.from_tuples(tuples) + df = DataFrame(index=mi, columns=mi) + assert isna(df).values.ravel().all() + + def test_constructor_2d_index(self): + # GH 25416 + # handling of 2d index in construction + df = DataFrame([[1]], columns=[[1]], index=[1, 2]) + expected = DataFrame( + [1, 1], + index=Index([1, 2], dtype="int64"), + columns=MultiIndex(levels=[[1]], codes=[[0]]), + ) + tm.assert_frame_equal(df, expected) + + df = DataFrame([[1]], columns=[[1]], index=[[1, 2]]) + expected = DataFrame( + [1, 1], + index=MultiIndex(levels=[[1, 2]], codes=[[0, 1]]), + columns=MultiIndex(levels=[[1]], codes=[[0]]), + ) + tm.assert_frame_equal(df, expected) + + def test_constructor_error_msgs(self): + msg = "Empty data passed with indices specified." + # passing an empty array with columns specified. + with pytest.raises(ValueError, match=msg): + DataFrame(np.empty(0), index=[1]) + + msg = "Mixing dicts with non-Series may lead to ambiguous ordering." + # mix dict and array, wrong size + with pytest.raises(ValueError, match=msg): + DataFrame({"A": {"a": "a", "b": "b"}, "B": ["a", "b", "c"]}) + + # wrong size ndarray, GH 3105 + msg = r"Shape of passed values is \(4, 3\), indices imply \(3, 3\)" + with pytest.raises(ValueError, match=msg): + DataFrame( + np.arange(12).reshape((4, 3)), + columns=["foo", "bar", "baz"], + index=date_range("2000-01-01", periods=3), + ) + + arr = np.array([[4, 5, 6]]) + msg = r"Shape of passed values is \(1, 3\), indices imply \(1, 4\)" + with pytest.raises(ValueError, match=msg): + DataFrame(index=[0], columns=range(4), data=arr) + + arr = np.array([4, 5, 6]) + msg = r"Shape of passed values is \(3, 1\), indices imply \(1, 4\)" + with pytest.raises(ValueError, match=msg): + DataFrame(index=[0], columns=range(4), data=arr) + + # higher dim raise exception + with pytest.raises(ValueError, match="Must pass 2-d input"): + DataFrame(np.zeros((3, 3, 3)), columns=["A", "B", "C"], index=[1]) + + # wrong size axis labels + msg = r"Shape of passed values is \(2, 3\), indices imply \(1, 3\)" + with pytest.raises(ValueError, match=msg): + DataFrame( + np.random.default_rng(2).random((2, 3)), + columns=["A", "B", "C"], + index=[1], + ) + + msg = r"Shape of passed values is \(2, 3\), indices imply \(2, 2\)" + with pytest.raises(ValueError, match=msg): + DataFrame( + np.random.default_rng(2).random((2, 3)), + columns=["A", "B"], + index=[1, 2], + ) + + # gh-26429 + msg = "2 columns passed, passed data had 10 columns" + with pytest.raises(ValueError, match=msg): + DataFrame((range(10), range(10, 20)), columns=("ones", "twos")) + + msg = "If using all scalar values, you must pass an index" + with pytest.raises(ValueError, match=msg): + DataFrame({"a": False, "b": True}) + + def test_constructor_subclass_dict(self, dict_subclass): + # Test for passing dict subclass to constructor + data = { + "col1": dict_subclass((x, 10.0 * x) for x in range(10)), + "col2": dict_subclass((x, 20.0 * x) for x in range(10)), + } + df = DataFrame(data) + refdf = DataFrame({col: dict(val.items()) for col, val in data.items()}) + tm.assert_frame_equal(refdf, df) + + data = dict_subclass(data.items()) + df = DataFrame(data) + tm.assert_frame_equal(refdf, df) + + def test_constructor_defaultdict(self, float_frame): + # try with defaultdict + data = {} + float_frame.loc[: float_frame.index[10], "B"] = np.nan + + for k, v in float_frame.items(): + dct = defaultdict(dict) + dct.update(v.to_dict()) + data[k] = dct + frame = DataFrame(data) + expected = frame.reindex(index=float_frame.index) + tm.assert_frame_equal(float_frame, expected) + + def test_constructor_dict_block(self): + expected = np.array([[4.0, 3.0, 2.0, 1.0]]) + df = DataFrame( + {"d": [4.0], "c": [3.0], "b": [2.0], "a": [1.0]}, + columns=["d", "c", "b", "a"], + ) + tm.assert_numpy_array_equal(df.values, expected) + + def test_constructor_dict_cast(self, using_infer_string): + # cast float tests + test_data = {"A": {"1": 1, "2": 2}, "B": {"1": "1", "2": "2", "3": "3"}} + frame = DataFrame(test_data, dtype=float) + assert len(frame) == 3 + assert frame["B"].dtype == np.float64 + assert frame["A"].dtype == np.float64 + + frame = DataFrame(test_data) + assert len(frame) == 3 + assert frame["B"].dtype == np.object_ if not using_infer_string else "string" + assert frame["A"].dtype == np.float64 + + def test_constructor_dict_cast2(self): + # can't cast to float + test_data = { + "A": dict(zip(range(20), [f"word_{i}" for i in range(20)])), + "B": dict(zip(range(15), np.random.default_rng(2).standard_normal(15))), + } + with pytest.raises(ValueError, match="could not convert string"): + DataFrame(test_data, dtype=float) + + def test_constructor_dict_dont_upcast(self): + d = {"Col1": {"Row1": "A String", "Row2": np.nan}} + df = DataFrame(d) + assert isinstance(df["Col1"]["Row2"], float) + + def test_constructor_dict_dont_upcast2(self): + dm = DataFrame([[1, 2], ["a", "b"]], index=[1, 2], columns=[1, 2]) + assert isinstance(dm[1][1], int) + + def test_constructor_dict_of_tuples(self): + # GH #1491 + data = {"a": (1, 2, 3), "b": (4, 5, 6)} + + result = DataFrame(data) + expected = DataFrame({k: list(v) for k, v in data.items()}) + tm.assert_frame_equal(result, expected, check_dtype=False) + + def test_constructor_dict_of_ranges(self): + # GH 26356 + data = {"a": range(3), "b": range(3, 6)} + + result = DataFrame(data) + expected = DataFrame({"a": [0, 1, 2], "b": [3, 4, 5]}) + tm.assert_frame_equal(result, expected) + + def test_constructor_dict_of_iterators(self): + # GH 26349 + data = {"a": iter(range(3)), "b": reversed(range(3))} + + result = DataFrame(data) + expected = DataFrame({"a": [0, 1, 2], "b": [2, 1, 0]}) + tm.assert_frame_equal(result, expected) + + def test_constructor_dict_of_generators(self): + # GH 26349 + data = {"a": (i for i in (range(3))), "b": (i for i in reversed(range(3)))} + result = DataFrame(data) + expected = DataFrame({"a": [0, 1, 2], "b": [2, 1, 0]}) + tm.assert_frame_equal(result, expected) + + def test_constructor_dict_multiindex(self): + d = { + ("a", "a"): {("i", "i"): 0, ("i", "j"): 1, ("j", "i"): 2}, + ("b", "a"): {("i", "i"): 6, ("i", "j"): 5, ("j", "i"): 4}, + ("b", "c"): {("i", "i"): 7, ("i", "j"): 8, ("j", "i"): 9}, + } + _d = sorted(d.items()) + df = DataFrame(d) + expected = DataFrame( + [x[1] for x in _d], index=MultiIndex.from_tuples([x[0] for x in _d]) + ).T + expected.index = MultiIndex.from_tuples(expected.index) + tm.assert_frame_equal( + df, + expected, + ) + + d["z"] = {"y": 123.0, ("i", "i"): 111, ("i", "j"): 111, ("j", "i"): 111} + _d.insert(0, ("z", d["z"])) + expected = DataFrame( + [x[1] for x in _d], index=Index([x[0] for x in _d], tupleize_cols=False) + ).T + expected.index = Index(expected.index, tupleize_cols=False) + df = DataFrame(d) + df = df.reindex(columns=expected.columns, index=expected.index) + tm.assert_frame_equal(df, expected) + + def test_constructor_dict_datetime64_index(self): + # GH 10160 + dates_as_str = ["1984-02-19", "1988-11-06", "1989-12-03", "1990-03-15"] + + def create_data(constructor): + return {i: {constructor(s): 2 * i} for i, s in enumerate(dates_as_str)} + + data_datetime64 = create_data(np.datetime64) + data_datetime = create_data(lambda x: datetime.strptime(x, "%Y-%m-%d")) + data_Timestamp = create_data(Timestamp) + + expected = DataFrame( + [ + {0: 0, 1: None, 2: None, 3: None}, + {0: None, 1: 2, 2: None, 3: None}, + {0: None, 1: None, 2: 4, 3: None}, + {0: None, 1: None, 2: None, 3: 6}, + ], + index=[Timestamp(dt) for dt in dates_as_str], + ) + + result_datetime64 = DataFrame(data_datetime64) + result_datetime = DataFrame(data_datetime) + result_Timestamp = DataFrame(data_Timestamp) + tm.assert_frame_equal(result_datetime64, expected) + tm.assert_frame_equal(result_datetime, expected) + tm.assert_frame_equal(result_Timestamp, expected) + + @pytest.mark.parametrize( + "klass,name", + [ + (lambda x: np.timedelta64(x, "D"), "timedelta64"), + (lambda x: timedelta(days=x), "pytimedelta"), + (lambda x: Timedelta(x, "D"), "Timedelta[ns]"), + (lambda x: Timedelta(x, "D").as_unit("s"), "Timedelta[s]"), + ], + ) + def test_constructor_dict_timedelta64_index(self, klass, name): + # GH 10160 + td_as_int = [1, 2, 3, 4] + + data = {i: {klass(s): 2 * i} for i, s in enumerate(td_as_int)} + + expected = DataFrame( + [ + {0: 0, 1: None, 2: None, 3: None}, + {0: None, 1: 2, 2: None, 3: None}, + {0: None, 1: None, 2: 4, 3: None}, + {0: None, 1: None, 2: None, 3: 6}, + ], + index=[Timedelta(td, "D") for td in td_as_int], + ) + + result = DataFrame(data) + + tm.assert_frame_equal(result, expected) + + def test_constructor_period_dict(self): + # PeriodIndex + a = pd.PeriodIndex(["2012-01", "NaT", "2012-04"], freq="M") + b = pd.PeriodIndex(["2012-02-01", "2012-03-01", "NaT"], freq="D") + df = DataFrame({"a": a, "b": b}) + assert df["a"].dtype == a.dtype + assert df["b"].dtype == b.dtype + + # list of periods + df = DataFrame({"a": a.astype(object).tolist(), "b": b.astype(object).tolist()}) + assert df["a"].dtype == a.dtype + assert df["b"].dtype == b.dtype + + def test_constructor_dict_extension_scalar(self, ea_scalar_and_dtype): + ea_scalar, ea_dtype = ea_scalar_and_dtype + df = DataFrame({"a": ea_scalar}, index=[0]) + assert df["a"].dtype == ea_dtype + + expected = DataFrame(index=[0], columns=["a"], data=ea_scalar) + + tm.assert_frame_equal(df, expected) + + @pytest.mark.parametrize( + "data,dtype", + [ + (Period("2020-01"), PeriodDtype("M")), + (Interval(left=0, right=5), IntervalDtype("int64", "right")), + ( + Timestamp("2011-01-01", tz="US/Eastern"), + DatetimeTZDtype(unit="s", tz="US/Eastern"), + ), + ], + ) + def test_constructor_extension_scalar_data(self, data, dtype): + # GH 34832 + df = DataFrame(index=[0, 1], columns=["a", "b"], data=data) + + assert df["a"].dtype == dtype + assert df["b"].dtype == dtype + + arr = pd.array([data] * 2, dtype=dtype) + expected = DataFrame({"a": arr, "b": arr}) + + tm.assert_frame_equal(df, expected) + + def test_nested_dict_frame_constructor(self): + rng = pd.period_range("1/1/2000", periods=5) + df = DataFrame(np.random.default_rng(2).standard_normal((10, 5)), columns=rng) + + data = {} + for col in df.columns: + for row in df.index: + data.setdefault(col, {})[row] = df._get_value(row, col) + + result = DataFrame(data, columns=rng) + tm.assert_frame_equal(result, df) + + data = {} + for col in df.columns: + for row in df.index: + data.setdefault(row, {})[col] = df._get_value(row, col) + + result = DataFrame(data, index=rng).T + tm.assert_frame_equal(result, df) + + def _check_basic_constructor(self, empty): + # mat: 2d matrix with shape (3, 2) to input. empty - makes sized + # objects + mat = empty((2, 3), dtype=float) + # 2-D input + frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2]) + + assert len(frame.index) == 2 + assert len(frame.columns) == 3 + + # 1-D input + frame = DataFrame(empty((3,)), columns=["A"], index=[1, 2, 3]) + assert len(frame.index) == 3 + assert len(frame.columns) == 1 + + if empty is not np.ones: + msg = r"Cannot convert non-finite values \(NA or inf\) to integer" + with pytest.raises(IntCastingNaNError, match=msg): + DataFrame(mat, columns=["A", "B", "C"], index=[1, 2], dtype=np.int64) + return + else: + frame = DataFrame( + mat, columns=["A", "B", "C"], index=[1, 2], dtype=np.int64 + ) + assert frame.values.dtype == np.int64 + + # wrong size axis labels + msg = r"Shape of passed values is \(2, 3\), indices imply \(1, 3\)" + with pytest.raises(ValueError, match=msg): + DataFrame(mat, columns=["A", "B", "C"], index=[1]) + msg = r"Shape of passed values is \(2, 3\), indices imply \(2, 2\)" + with pytest.raises(ValueError, match=msg): + DataFrame(mat, columns=["A", "B"], index=[1, 2]) + + # higher dim raise exception + with pytest.raises(ValueError, match="Must pass 2-d input"): + DataFrame(empty((3, 3, 3)), columns=["A", "B", "C"], index=[1]) + + # automatic labeling + frame = DataFrame(mat) + tm.assert_index_equal(frame.index, Index(range(2)), exact=True) + tm.assert_index_equal(frame.columns, Index(range(3)), exact=True) + + frame = DataFrame(mat, index=[1, 2]) + tm.assert_index_equal(frame.columns, Index(range(3)), exact=True) + + frame = DataFrame(mat, columns=["A", "B", "C"]) + tm.assert_index_equal(frame.index, Index(range(2)), exact=True) + + # 0-length axis + frame = DataFrame(empty((0, 3))) + assert len(frame.index) == 0 + + frame = DataFrame(empty((3, 0))) + assert len(frame.columns) == 0 + + def test_constructor_ndarray(self): + self._check_basic_constructor(np.ones) + + frame = DataFrame(["foo", "bar"], index=[0, 1], columns=["A"]) + assert len(frame) == 2 + + def test_constructor_maskedarray(self): + self._check_basic_constructor(ma.masked_all) + + # Check non-masked values + mat = ma.masked_all((2, 3), dtype=float) + mat[0, 0] = 1.0 + mat[1, 2] = 2.0 + frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2]) + assert 1.0 == frame["A"][1] + assert 2.0 == frame["C"][2] + + # what is this even checking?? + mat = ma.masked_all((2, 3), dtype=float) + frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2]) + assert np.all(~np.asarray(frame == frame)) + + @pytest.mark.filterwarnings( + "ignore:elementwise comparison failed:DeprecationWarning" + ) + def test_constructor_maskedarray_nonfloat(self): + # masked int promoted to float + mat = ma.masked_all((2, 3), dtype=int) + # 2-D input + frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2]) + + assert len(frame.index) == 2 + assert len(frame.columns) == 3 + assert np.all(~np.asarray(frame == frame)) + + # cast type + frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2], dtype=np.float64) + assert frame.values.dtype == np.float64 + + # Check non-masked values + mat2 = ma.copy(mat) + mat2[0, 0] = 1 + mat2[1, 2] = 2 + frame = DataFrame(mat2, columns=["A", "B", "C"], index=[1, 2]) + assert 1 == frame["A"][1] + assert 2 == frame["C"][2] + + # masked np.datetime64 stays (use NaT as null) + mat = ma.masked_all((2, 3), dtype="M8[ns]") + # 2-D input + frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2]) + + assert len(frame.index) == 2 + assert len(frame.columns) == 3 + assert isna(frame).values.all() + + # cast type + msg = r"datetime64\[ns\] values and dtype=int64 is not supported" + with pytest.raises(TypeError, match=msg): + DataFrame(mat, columns=["A", "B", "C"], index=[1, 2], dtype=np.int64) + + # Check non-masked values + mat2 = ma.copy(mat) + mat2[0, 0] = 1 + mat2[1, 2] = 2 + frame = DataFrame(mat2, columns=["A", "B", "C"], index=[1, 2]) + assert 1 == frame["A"].astype("i8")[1] + assert 2 == frame["C"].astype("i8")[2] + + # masked bool promoted to object + mat = ma.masked_all((2, 3), dtype=bool) + # 2-D input + frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2]) + + assert len(frame.index) == 2 + assert len(frame.columns) == 3 + assert np.all(~np.asarray(frame == frame)) + + # cast type + frame = DataFrame(mat, columns=["A", "B", "C"], index=[1, 2], dtype=object) + assert frame.values.dtype == object + + # Check non-masked values + mat2 = ma.copy(mat) + mat2[0, 0] = True + mat2[1, 2] = False + frame = DataFrame(mat2, columns=["A", "B", "C"], index=[1, 2]) + assert frame["A"][1] is True + assert frame["C"][2] is False + + def test_constructor_maskedarray_hardened(self): + # Check numpy masked arrays with hard masks -- from GH24574 + mat_hard = ma.masked_all((2, 2), dtype=float).harden_mask() + result = DataFrame(mat_hard, columns=["A", "B"], index=[1, 2]) + expected = DataFrame( + {"A": [np.nan, np.nan], "B": [np.nan, np.nan]}, + columns=["A", "B"], + index=[1, 2], + dtype=float, + ) + tm.assert_frame_equal(result, expected) + # Check case where mask is hard but no data are masked + mat_hard = ma.ones((2, 2), dtype=float).harden_mask() + result = DataFrame(mat_hard, columns=["A", "B"], index=[1, 2]) + expected = DataFrame( + {"A": [1.0, 1.0], "B": [1.0, 1.0]}, + columns=["A", "B"], + index=[1, 2], + dtype=float, + ) + tm.assert_frame_equal(result, expected) + + def test_constructor_maskedrecarray_dtype(self): + # Ensure constructor honors dtype + data = np.ma.array( + np.ma.zeros(5, dtype=[("date", " None: + self._lst = lst + + def __getitem__(self, n): + return self._lst.__getitem__(n) + + def __len__(self) -> int: + return self._lst.__len__() + + lst_containers = [DummyContainer([1, "a"]), DummyContainer([2, "b"])] + columns = ["num", "str"] + result = DataFrame(lst_containers, columns=columns) + expected = DataFrame([[1, "a"], [2, "b"]], columns=columns) + tm.assert_frame_equal(result, expected, check_dtype=False) + + def test_constructor_stdlib_array(self): + # GH 4297 + # support Array + result = DataFrame({"A": array.array("i", range(10))}) + expected = DataFrame({"A": list(range(10))}) + tm.assert_frame_equal(result, expected, check_dtype=False) + + expected = DataFrame([list(range(10)), list(range(10))]) + result = DataFrame([array.array("i", range(10)), array.array("i", range(10))]) + tm.assert_frame_equal(result, expected, check_dtype=False) + + def test_constructor_range(self): + # GH26342 + result = DataFrame(range(10)) + expected = DataFrame(list(range(10))) + tm.assert_frame_equal(result, expected) + + def test_constructor_list_of_ranges(self): + result = DataFrame([range(10), range(10)]) + expected = DataFrame([list(range(10)), list(range(10))]) + tm.assert_frame_equal(result, expected) + + def test_constructor_iterable(self): + # GH 21987 + class Iter: + def __iter__(self) -> Iterator: + for i in range(10): + yield [1, 2, 3] + + expected = DataFrame([[1, 2, 3]] * 10) + result = DataFrame(Iter()) + tm.assert_frame_equal(result, expected) + + def test_constructor_iterator(self): + result = DataFrame(iter(range(10))) + expected = DataFrame(list(range(10))) + tm.assert_frame_equal(result, expected) + + def test_constructor_list_of_iterators(self): + result = DataFrame([iter(range(10)), iter(range(10))]) + expected = DataFrame([list(range(10)), list(range(10))]) + tm.assert_frame_equal(result, expected) + + def test_constructor_generator(self): + # related #2305 + + gen1 = (i for i in range(10)) + gen2 = (i for i in range(10)) + + expected = DataFrame([list(range(10)), list(range(10))]) + result = DataFrame([gen1, gen2]) + tm.assert_frame_equal(result, expected) + + gen = ([i, "a"] for i in range(10)) + result = DataFrame(gen) + expected = DataFrame({0: range(10), 1: "a"}) + tm.assert_frame_equal(result, expected, check_dtype=False) + + def test_constructor_list_of_dicts(self): + result = DataFrame([{}]) + expected = DataFrame(index=RangeIndex(1), columns=[]) + tm.assert_frame_equal(result, expected) + + def test_constructor_ordered_dict_nested_preserve_order(self): + # see gh-18166 + nested1 = OrderedDict([("b", 1), ("a", 2)]) + nested2 = OrderedDict([("b", 2), ("a", 5)]) + data = OrderedDict([("col2", nested1), ("col1", nested2)]) + result = DataFrame(data) + data = {"col2": [1, 2], "col1": [2, 5]} + expected = DataFrame(data=data, index=["b", "a"]) + tm.assert_frame_equal(result, expected) + + @pytest.mark.parametrize("dict_type", [dict, OrderedDict]) + def test_constructor_ordered_dict_preserve_order(self, dict_type): + # see gh-13304 + expected = DataFrame([[2, 1]], columns=["b", "a"]) + + data = dict_type() + data["b"] = [2] + data["a"] = [1] + + result = DataFrame(data) + tm.assert_frame_equal(result, expected) + + data = dict_type() + data["b"] = 2 + data["a"] = 1 + + result = DataFrame([data]) + tm.assert_frame_equal(result, expected) + + @pytest.mark.parametrize("dict_type", [dict, OrderedDict]) + def test_constructor_ordered_dict_conflicting_orders(self, dict_type): + # the first dict element sets the ordering for the DataFrame, + # even if there are conflicting orders from subsequent ones + row_one = dict_type() + row_one["b"] = 2 + row_one["a"] = 1 + + row_two = dict_type() + row_two["a"] = 1 + row_two["b"] = 2 + + row_three = {"b": 2, "a": 1} + + expected = DataFrame([[2, 1], [2, 1]], columns=["b", "a"]) + result = DataFrame([row_one, row_two]) + tm.assert_frame_equal(result, expected) + + expected = DataFrame([[2, 1], [2, 1], [2, 1]], columns=["b", "a"]) + result = DataFrame([row_one, row_two, row_three]) + tm.assert_frame_equal(result, expected) + + def test_constructor_list_of_series_aligned_index(self): + series = [Series(i, index=["b", "a", "c"], name=str(i)) for i in range(3)] + result = DataFrame(series) + expected = DataFrame( + {"b": [0, 1, 2], "a": [0, 1, 2], "c": [0, 1, 2]}, + columns=["b", "a", "c"], + index=["0", "1", "2"], + ) + tm.assert_frame_equal(result, expected) + + def test_constructor_list_of_derived_dicts(self): + class CustomDict(dict): + pass + + d = {"a": 1.5, "b": 3} + + data_custom = [CustomDict(d)] + data = [d] + + result_custom = DataFrame(data_custom) + result = DataFrame(data) + tm.assert_frame_equal(result, result_custom) + + def test_constructor_ragged(self): + data = { + "A": np.random.default_rng(2).standard_normal(10), + "B": np.random.default_rng(2).standard_normal(8), + } + with pytest.raises(ValueError, match="All arrays must be of the same length"): + DataFrame(data) + + def test_constructor_scalar(self): + idx = Index(range(3)) + df = DataFrame({"a": 0}, index=idx) + expected = DataFrame({"a": [0, 0, 0]}, index=idx) + tm.assert_frame_equal(df, expected, check_dtype=False) + + def test_constructor_Series_copy_bug(self, float_frame): + df = DataFrame(float_frame["A"], index=float_frame.index, columns=["A"]) + df.copy() + + def test_constructor_mixed_dict_and_Series(self): + data = {} + data["A"] = {"foo": 1, "bar": 2, "baz": 3} + data["B"] = Series([4, 3, 2, 1], index=["bar", "qux", "baz", "foo"]) + + result = DataFrame(data) + assert result.index.is_monotonic_increasing + + # ordering ambiguous, raise exception + with pytest.raises(ValueError, match="ambiguous ordering"): + DataFrame({"A": ["a", "b"], "B": {"a": "a", "b": "b"}}) + + # this is OK though + result = DataFrame({"A": ["a", "b"], "B": Series(["a", "b"], index=["a", "b"])}) + expected = DataFrame({"A": ["a", "b"], "B": ["a", "b"]}, index=["a", "b"]) + tm.assert_frame_equal(result, expected) + + def test_constructor_mixed_type_rows(self): + # Issue 25075 + data = [[1, 2], (3, 4)] + result = DataFrame(data) + expected = DataFrame([[1, 2], [3, 4]]) + tm.assert_frame_equal(result, expected) + + @pytest.mark.parametrize( + "tuples,lists", + [ + ((), []), + ((()), []), + (((), ()), [(), ()]), + (((), ()), [[], []]), + (([], []), [[], []]), + (([1], [2]), [[1], [2]]), # GH 32776 + (([1, 2, 3], [4, 5, 6]), [[1, 2, 3], [4, 5, 6]]), + ], + ) + def test_constructor_tuple(self, tuples, lists): + # GH 25691 + result = DataFrame(tuples) + expected = DataFrame(lists) + tm.assert_frame_equal(result, expected) + + def test_constructor_list_of_tuples(self): + result = DataFrame({"A": [(1, 2), (3, 4)]}) + expected = DataFrame({"A": Series([(1, 2), (3, 4)])}) + tm.assert_frame_equal(result, expected) + + def test_constructor_list_of_namedtuples(self): + # GH11181 + named_tuple = namedtuple("Pandas", list("ab")) + tuples = [named_tuple(1, 3), named_tuple(2, 4)] + expected = DataFrame({"a": [1, 2], "b": [3, 4]}) + result = DataFrame(tuples) + tm.assert_frame_equal(result, expected) + + # with columns + expected = DataFrame({"y": [1, 2], "z": [3, 4]}) + result = DataFrame(tuples, columns=["y", "z"]) + tm.assert_frame_equal(result, expected) + + def test_constructor_list_of_dataclasses(self): + # GH21910 + Point = make_dataclass("Point", [("x", int), ("y", int)]) + + data = [Point(0, 3), Point(1, 3)] + expected = DataFrame({"x": [0, 1], "y": [3, 3]}) + result = DataFrame(data) + tm.assert_frame_equal(result, expected) + + def test_constructor_list_of_dataclasses_with_varying_types(self): + # GH21910 + # varying types + Point = make_dataclass("Point", [("x", int), ("y", int)]) + HLine = make_dataclass("HLine", [("x0", int), ("x1", int), ("y", int)]) + + data = [Point(0, 3), HLine(1, 3, 3)] + + expected = DataFrame( + {"x": [0, np.nan], "y": [3, 3], "x0": [np.nan, 1], "x1": [np.nan, 3]} + ) + result = DataFrame(data) + tm.assert_frame_equal(result, expected) + + def test_constructor_list_of_dataclasses_error_thrown(self): + # GH21910 + Point = make_dataclass("Point", [("x", int), ("y", int)]) + + # expect TypeError + msg = "asdict() should be called on dataclass instances" + with pytest.raises(TypeError, match=re.escape(msg)): + DataFrame([Point(0, 0), {"x": 1, "y": 0}]) + + def test_constructor_list_of_dict_order(self): + # GH10056 + data = [ + {"First": 1, "Second": 4, "Third": 7, "Fourth": 10}, + {"Second": 5, "First": 2, "Fourth": 11, "Third": 8}, + {"Second": 6, "First": 3, "Fourth": 12, "Third": 9, "YYY": 14, "XXX": 13}, + ] + expected = DataFrame( + { + "First": [1, 2, 3], + "Second": [4, 5, 6], + "Third": [7, 8, 9], + "Fourth": [10, 11, 12], + "YYY": [None, None, 14], + "XXX": [None, None, 13], + } + ) + result = DataFrame(data) + tm.assert_frame_equal(result, expected) + + def test_constructor_Series_named(self): + a = Series([1, 2, 3], index=["a", "b", "c"], name="x") + df = DataFrame(a) + assert df.columns[0] == "x" + tm.assert_index_equal(df.index, a.index) + + # ndarray like + arr = np.random.default_rng(2).standard_normal(10) + s = Series(arr, name="x") + df = DataFrame(s) + expected = DataFrame({"x": s}) + tm.assert_frame_equal(df, expected) + + s = Series(arr, index=range(3, 13)) + df = DataFrame(s) + expected = DataFrame({0: s}) + tm.assert_frame_equal(df, expected) + + msg = r"Shape of passed values is \(10, 1\), indices imply \(10, 2\)" + with pytest.raises(ValueError, match=msg): + DataFrame(s, columns=[1, 2]) + + # #2234 + a = Series([], name="x", dtype=object) + df = DataFrame(a) + assert df.columns[0] == "x" + + # series with name and w/o + s1 = Series(arr, name="x") + df = DataFrame([s1, arr]).T + expected = DataFrame({"x": s1, "Unnamed 0": arr}, columns=["x", "Unnamed 0"]) + tm.assert_frame_equal(df, expected) + + # this is a bit non-intuitive here; the series collapse down to arrays + df = DataFrame([arr, s1]).T + expected = DataFrame({1: s1, 0: arr}, columns=[0, 1]) + tm.assert_frame_equal(df, expected) + + def test_constructor_Series_named_and_columns(self): + # GH 9232 validation + + s0 = Series(range(5), name=0) + s1 = Series(range(5), name=1) + + # matching name and column gives standard frame + tm.assert_frame_equal(DataFrame(s0, columns=[0]), s0.to_frame()) + tm.assert_frame_equal(DataFrame(s1, columns=[1]), s1.to_frame()) + + # non-matching produces empty frame + assert DataFrame(s0, columns=[1]).empty + assert DataFrame(s1, columns=[0]).empty + + def test_constructor_Series_differently_indexed(self): + # name + s1 = Series([1, 2, 3], index=["a", "b", "c"], name="x") + + # no name + s2 = Series([1, 2, 3], index=["a", "b", "c"]) + + other_index = Index(["a", "b"]) + + df1 = DataFrame(s1, index=other_index) + exp1 = DataFrame(s1.reindex(other_index)) + assert df1.columns[0] == "x" + tm.assert_frame_equal(df1, exp1) + + df2 = DataFrame(s2, index=other_index) + exp2 = DataFrame(s2.reindex(other_index)) + assert df2.columns[0] == 0 + tm.assert_index_equal(df2.index, other_index) + tm.assert_frame_equal(df2, exp2) + + @pytest.mark.parametrize( + "name_in1,name_in2,name_in3,name_out", + [ + ("idx", "idx", "idx", "idx"), + ("idx", "idx", None, None), + ("idx", None, None, None), + ("idx1", "idx2", None, None), + ("idx1", "idx1", "idx2", None), + ("idx1", "idx2", "idx3", None), + (None, None, None, None), + ], + ) + def test_constructor_index_names(self, name_in1, name_in2, name_in3, name_out): + # GH13475 + indices = [ + Index(["a", "b", "c"], name=name_in1), + Index(["b", "c", "d"], name=name_in2), + Index(["c", "d", "e"], name=name_in3), + ] + series = { + c: Series([0, 1, 2], index=i) for i, c in zip(indices, ["x", "y", "z"]) + } + result = DataFrame(series) + + exp_ind = Index(["a", "b", "c", "d", "e"], name=name_out) + expected = DataFrame( + { + "x": [0, 1, 2, np.nan, np.nan], + "y": [np.nan, 0, 1, 2, np.nan], + "z": [np.nan, np.nan, 0, 1, 2], + }, + index=exp_ind, + ) + + tm.assert_frame_equal(result, expected) + + def test_constructor_manager_resize(self, float_frame): + index = list(float_frame.index[:5]) + columns = list(float_frame.columns[:3]) + + msg = "Passing a BlockManager to DataFrame" + with tm.assert_produces_warning( + DeprecationWarning, match=msg, check_stacklevel=False + ): + result = DataFrame(float_frame._mgr, index=index, columns=columns) + tm.assert_index_equal(result.index, Index(index)) + tm.assert_index_equal(result.columns, Index(columns)) + + def test_constructor_mix_series_nonseries(self, float_frame): + df = DataFrame( + {"A": float_frame["A"], "B": list(float_frame["B"])}, columns=["A", "B"] + ) + tm.assert_frame_equal(df, float_frame.loc[:, ["A", "B"]]) + + msg = "does not match index length" + with pytest.raises(ValueError, match=msg): + DataFrame({"A": float_frame["A"], "B": list(float_frame["B"])[:-2]}) + + def test_constructor_miscast_na_int_dtype(self): + msg = r"Cannot convert non-finite values \(NA or inf\) to integer" + + with pytest.raises(IntCastingNaNError, match=msg): + DataFrame([[np.nan, 1], [1, 0]], dtype=np.int64) + + def test_constructor_column_duplicates(self): + # it works! #2079 + df = DataFrame([[8, 5]], columns=["a", "a"]) + edf = DataFrame([[8, 5]]) + edf.columns = ["a", "a"] + + tm.assert_frame_equal(df, edf) + + idf = DataFrame.from_records([(8, 5)], columns=["a", "a"]) + + tm.assert_frame_equal(idf, edf) + + def test_constructor_empty_with_string_dtype(self): + # GH 9428 + expected = DataFrame(index=[0, 1], columns=[0, 1], dtype=object) + + df = DataFrame(index=[0, 1], columns=[0, 1], dtype=str) + tm.assert_frame_equal(df, expected) + df = DataFrame(index=[0, 1], columns=[0, 1], dtype=np.str_) + tm.assert_frame_equal(df, expected) + df = DataFrame(index=[0, 1], columns=[0, 1], dtype="U5") + tm.assert_frame_equal(df, expected) + + def test_constructor_empty_with_string_extension(self, nullable_string_dtype): + # GH 34915 + expected = DataFrame(columns=["c1"], dtype=nullable_string_dtype) + df = DataFrame(columns=["c1"], dtype=nullable_string_dtype) + tm.assert_frame_equal(df, expected) + + def test_constructor_single_value(self): + # expecting single value upcasting here + df = DataFrame(0.0, index=[1, 2, 3], columns=["a", "b", "c"]) + tm.assert_frame_equal( + df, DataFrame(np.zeros(df.shape).astype("float64"), df.index, df.columns) + ) + + df = DataFrame(0, index=[1, 2, 3], columns=["a", "b", "c"]) + tm.assert_frame_equal( + df, DataFrame(np.zeros(df.shape).astype("int64"), df.index, df.columns) + ) + + df = DataFrame("a", index=[1, 2], columns=["a", "c"]) + tm.assert_frame_equal( + df, + DataFrame( + np.array([["a", "a"], ["a", "a"]], dtype=object), + index=[1, 2], + columns=["a", "c"], + ), + ) + + msg = "DataFrame constructor not properly called!" + with pytest.raises(ValueError, match=msg): + DataFrame("a", [1, 2]) + with pytest.raises(ValueError, match=msg): + DataFrame("a", columns=["a", "c"]) + + msg = "incompatible data and dtype" + with pytest.raises(TypeError, match=msg): + DataFrame("a", [1, 2], ["a", "c"], float) + + def test_constructor_with_datetimes(self, using_infer_string): + intname = np.dtype(int).name + floatname = np.dtype(np.float64).name + objectname = np.dtype(np.object_).name + + # single item + df = DataFrame( + { + "A": 1, + "B": "foo", + "C": "bar", + "D": Timestamp("20010101"), + "E": datetime(2001, 1, 2, 0, 0), + }, + index=np.arange(10), + ) + result = df.dtypes + expected = Series( + [np.dtype("int64")] + + [np.dtype(objectname) if not using_infer_string else "string"] * 2 + + [np.dtype("M8[s]"), np.dtype("M8[us]")], + index=list("ABCDE"), + ) + tm.assert_series_equal(result, expected) + + # check with ndarray construction ndim==0 (e.g. we are passing a ndim 0 + # ndarray with a dtype specified) + df = DataFrame( + { + "a": 1.0, + "b": 2, + "c": "foo", + floatname: np.array(1.0, dtype=floatname), + intname: np.array(1, dtype=intname), + }, + index=np.arange(10), + ) + result = df.dtypes + expected = Series( + [np.dtype("float64")] + + [np.dtype("int64")] + + [np.dtype("object") if not using_infer_string else "string"] + + [np.dtype("float64")] + + [np.dtype(intname)], + index=["a", "b", "c", floatname, intname], + ) + tm.assert_series_equal(result, expected) + + # check with ndarray construction ndim>0 + df = DataFrame( + { + "a": 1.0, + "b": 2, + "c": "foo", + floatname: np.array([1.0] * 10, dtype=floatname), + intname: np.array([1] * 10, dtype=intname), + }, + index=np.arange(10), + ) + result = df.dtypes + expected = Series( + [np.dtype("float64")] + + [np.dtype("int64")] + + [np.dtype("object") if not using_infer_string else "string"] + + [np.dtype("float64")] + + [np.dtype(intname)], + index=["a", "b", "c", floatname, intname], + ) + tm.assert_series_equal(result, expected) + + def test_constructor_with_datetimes1(self): + # GH 2809 + ind = date_range(start="2000-01-01", freq="D", periods=10) + datetimes = [ts.to_pydatetime() for ts in ind] + datetime_s = Series(datetimes) + assert datetime_s.dtype == "M8[ns]" + + def test_constructor_with_datetimes2(self): + # GH 2810 + ind = date_range(start="2000-01-01", freq="D", periods=10) + datetimes = [ts.to_pydatetime() for ts in ind] + dates = [ts.date() for ts in ind] + df = DataFrame(datetimes, columns=["datetimes"]) + df["dates"] = dates + result = df.dtypes + expected = Series( + [np.dtype("datetime64[ns]"), np.dtype("object")], + index=["datetimes", "dates"], + ) + tm.assert_series_equal(result, expected) + + def test_constructor_with_datetimes3(self): + # GH 7594 + # don't coerce tz-aware + tz = pytz.timezone("US/Eastern") + dt = tz.localize(datetime(2012, 1, 1)) + + df = DataFrame({"End Date": dt}, index=[0]) + assert df.iat[0, 0] == dt + tm.assert_series_equal( + df.dtypes, Series({"End Date": "datetime64[us, US/Eastern]"}, dtype=object) + ) + + df = DataFrame([{"End Date": dt}]) + assert df.iat[0, 0] == dt + tm.assert_series_equal( + df.dtypes, Series({"End Date": "datetime64[ns, US/Eastern]"}, dtype=object) + ) + + def test_constructor_with_datetimes4(self): + # tz-aware (UTC and other tz's) + # GH 8411 + dr = date_range("20130101", periods=3) + df = DataFrame({"value": dr}) + assert df.iat[0, 0].tz is None + dr = date_range("20130101", periods=3, tz="UTC") + df = DataFrame({"value": dr}) + assert str(df.iat[0, 0].tz) == "UTC" + dr = date_range("20130101", periods=3, tz="US/Eastern") + df = DataFrame({"value": dr}) + assert str(df.iat[0, 0].tz) == "US/Eastern" + + def test_constructor_with_datetimes5(self): + # GH 7822 + # preserver an index with a tz on dict construction + i = date_range("1/1/2011", periods=5, freq="10s", tz="US/Eastern") + + expected = DataFrame({"a": i.to_series().reset_index(drop=True)}) + df = DataFrame() + df["a"] = i + tm.assert_frame_equal(df, expected) + + df = DataFrame({"a": i}) + tm.assert_frame_equal(df, expected) + + def test_constructor_with_datetimes6(self): + # multiples + i = date_range("1/1/2011", periods=5, freq="10s", tz="US/Eastern") + i_no_tz = date_range("1/1/2011", periods=5, freq="10s") + df = DataFrame({"a": i, "b": i_no_tz}) + expected = DataFrame({"a": i.to_series().reset_index(drop=True), "b": i_no_tz}) + tm.assert_frame_equal(df, expected) + + @pytest.mark.parametrize( + "arr", + [ + np.array([None, None, None, None, datetime.now(), None]), + np.array([None, None, datetime.now(), None]), + [[np.datetime64("NaT")], [None]], + [[np.datetime64("NaT")], [pd.NaT]], + [[None], [np.datetime64("NaT")]], + [[None], [pd.NaT]], + [[pd.NaT], [np.datetime64("NaT")]], + [[pd.NaT], [None]], + ], + ) + def test_constructor_datetimes_with_nulls(self, arr): + # gh-15869, GH#11220 + result = DataFrame(arr).dtypes + expected = Series([np.dtype("datetime64[ns]")]) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("order", ["K", "A", "C", "F"]) + @pytest.mark.parametrize( + "unit", + ["M", "D", "h", "m", "s", "ms", "us", "ns"], + ) + def test_constructor_datetimes_non_ns(self, order, unit): + dtype = f"datetime64[{unit}]" + na = np.array( + [ + ["2015-01-01", "2015-01-02", "2015-01-03"], + ["2017-01-01", "2017-01-02", "2017-02-03"], + ], + dtype=dtype, + order=order, + ) + df = DataFrame(na) + expected = DataFrame(na.astype("M8[ns]")) + if unit in ["M", "D", "h", "m"]: + with pytest.raises(TypeError, match="Cannot cast"): + expected.astype(dtype) + + # instead the constructor casts to the closest supported reso, i.e. "s" + expected = expected.astype("datetime64[s]") + else: + expected = expected.astype(dtype=dtype) + + tm.assert_frame_equal(df, expected) + + @pytest.mark.parametrize("order", ["K", "A", "C", "F"]) + @pytest.mark.parametrize( + "unit", + [ + "D", + "h", + "m", + "s", + "ms", + "us", + "ns", + ], + ) + def test_constructor_timedelta_non_ns(self, order, unit): + dtype = f"timedelta64[{unit}]" + na = np.array( + [ + [np.timedelta64(1, "D"), np.timedelta64(2, "D")], + [np.timedelta64(4, "D"), np.timedelta64(5, "D")], + ], + dtype=dtype, + order=order, + ) + df = DataFrame(na) + if unit in ["D", "h", "m"]: + # we get the nearest supported unit, i.e. "s" + exp_unit = "s" + else: + exp_unit = unit + exp_dtype = np.dtype(f"m8[{exp_unit}]") + expected = DataFrame( + [ + [Timedelta(1, "D"), Timedelta(2, "D")], + [Timedelta(4, "D"), Timedelta(5, "D")], + ], + dtype=exp_dtype, + ) + # TODO(2.0): ideally we should get the same 'expected' without passing + # dtype=exp_dtype. + tm.assert_frame_equal(df, expected) + + def test_constructor_for_list_with_dtypes(self, using_infer_string): + # test list of lists/ndarrays + df = DataFrame([np.arange(5) for x in range(5)]) + result = df.dtypes + expected = Series([np.dtype("int")] * 5) + tm.assert_series_equal(result, expected) + + df = DataFrame([np.array(np.arange(5), dtype="int32") for x in range(5)]) + result = df.dtypes + expected = Series([np.dtype("int32")] * 5) + tm.assert_series_equal(result, expected) + + # overflow issue? (we always expected int64 upcasting here) + df = DataFrame({"a": [2**31, 2**31 + 1]}) + assert df.dtypes.iloc[0] == np.dtype("int64") + + # GH #2751 (construction with no index specified), make sure we cast to + # platform values + df = DataFrame([1, 2]) + assert df.dtypes.iloc[0] == np.dtype("int64") + + df = DataFrame([1.0, 2.0]) + assert df.dtypes.iloc[0] == np.dtype("float64") + + df = DataFrame({"a": [1, 2]}) + assert df.dtypes.iloc[0] == np.dtype("int64") + + df = DataFrame({"a": [1.0, 2.0]}) + assert df.dtypes.iloc[0] == np.dtype("float64") + + df = DataFrame({"a": 1}, index=range(3)) + assert df.dtypes.iloc[0] == np.dtype("int64") + + df = DataFrame({"a": 1.0}, index=range(3)) + assert df.dtypes.iloc[0] == np.dtype("float64") + + # with object list + df = DataFrame( + { + "a": [1, 2, 4, 7], + "b": [1.2, 2.3, 5.1, 6.3], + "c": list("abcd"), + "d": [datetime(2000, 1, 1) for i in range(4)], + "e": [1.0, 2, 4.0, 7], + } + ) + result = df.dtypes + expected = Series( + [ + np.dtype("int64"), + np.dtype("float64"), + np.dtype("object") if not using_infer_string else "string", + np.dtype("datetime64[ns]"), + np.dtype("float64"), + ], + index=list("abcde"), + ) + tm.assert_series_equal(result, expected) + + def test_constructor_frame_copy(self, float_frame): + cop = DataFrame(float_frame, copy=True) + cop["A"] = 5 + assert (cop["A"] == 5).all() + assert not (float_frame["A"] == 5).all() + + def test_constructor_frame_shallow_copy(self, float_frame): + # constructing a DataFrame from DataFrame with copy=False should still + # give a "shallow" copy (share data, not attributes) + # https://github.com/pandas-dev/pandas/issues/49523 + orig = float_frame.copy() + cop = DataFrame(float_frame) + assert cop._mgr is not float_frame._mgr + # Overwriting index of copy doesn't change original + cop.index = np.arange(len(cop)) + tm.assert_frame_equal(float_frame, orig) + + def test_constructor_ndarray_copy( + self, float_frame, using_array_manager, using_copy_on_write + ): + if not using_array_manager: + arr = float_frame.values.copy() + df = DataFrame(arr) + + arr[5] = 5 + if using_copy_on_write: + assert not (df.values[5] == 5).all() + else: + assert (df.values[5] == 5).all() + + df = DataFrame(arr, copy=True) + arr[6] = 6 + assert not (df.values[6] == 6).all() + else: + arr = float_frame.values.copy() + # default: copy to ensure contiguous arrays + df = DataFrame(arr) + assert df._mgr.arrays[0].flags.c_contiguous + arr[0, 0] = 100 + assert df.iloc[0, 0] != 100 + + # manually specify copy=False + df = DataFrame(arr, copy=False) + assert not df._mgr.arrays[0].flags.c_contiguous + arr[0, 0] = 1000 + assert df.iloc[0, 0] == 1000 + + def test_constructor_series_copy(self, float_frame): + series = float_frame._series + + df = DataFrame({"A": series["A"]}, copy=True) + # TODO can be replaced with `df.loc[:, "A"] = 5` after deprecation about + # inplace mutation is enforced + df.loc[df.index[0] : df.index[-1], "A"] = 5 + + assert not (series["A"] == 5).all() + + @pytest.mark.parametrize( + "df", + [ + DataFrame([[1, 2, 3], [4, 5, 6]], index=[1, np.nan]), + DataFrame([[1, 2, 3], [4, 5, 6]], columns=[1.1, 2.2, np.nan]), + DataFrame([[0, 1, 2, 3], [4, 5, 6, 7]], columns=[np.nan, 1.1, 2.2, np.nan]), + DataFrame( + [[0.0, 1, 2, 3.0], [4, 5, 6, 7]], columns=[np.nan, 1.1, 2.2, np.nan] + ), + DataFrame([[0.0, 1, 2, 3.0], [4, 5, 6, 7]], columns=[np.nan, 1, 2, 2]), + ], + ) + def test_constructor_with_nas(self, df): + # GH 5016 + # na's in indices + # GH 21428 (non-unique columns) + + for i in range(len(df.columns)): + df.iloc[:, i] + + indexer = np.arange(len(df.columns))[isna(df.columns)] + + # No NaN found -> error + if len(indexer) == 0: + with pytest.raises(KeyError, match="^nan$"): + df.loc[:, np.nan] + # single nan should result in Series + elif len(indexer) == 1: + tm.assert_series_equal(df.iloc[:, indexer[0]], df.loc[:, np.nan]) + # multiple nans should result in DataFrame + else: + tm.assert_frame_equal(df.iloc[:, indexer], df.loc[:, np.nan]) + + def test_constructor_lists_to_object_dtype(self): + # from #1074 + d = DataFrame({"a": [np.nan, False]}) + assert d["a"].dtype == np.object_ + assert not d["a"][1] + + def test_constructor_ndarray_categorical_dtype(self): + cat = Categorical(["A", "B", "C"]) + arr = np.array(cat).reshape(-1, 1) + arr = np.broadcast_to(arr, (3, 4)) + + result = DataFrame(arr, dtype=cat.dtype) + + expected = DataFrame({0: cat, 1: cat, 2: cat, 3: cat}) + tm.assert_frame_equal(result, expected) + + def test_constructor_categorical(self): + # GH8626 + + # dict creation + df = DataFrame({"A": list("abc")}, dtype="category") + expected = Series(list("abc"), dtype="category", name="A") + tm.assert_series_equal(df["A"], expected) + + # to_frame + s = Series(list("abc"), dtype="category") + result = s.to_frame() + expected = Series(list("abc"), dtype="category", name=0) + tm.assert_series_equal(result[0], expected) + result = s.to_frame(name="foo") + expected = Series(list("abc"), dtype="category", name="foo") + tm.assert_series_equal(result["foo"], expected) + + # list-like creation + df = DataFrame(list("abc"), dtype="category") + expected = Series(list("abc"), dtype="category", name=0) + tm.assert_series_equal(df[0], expected) + + def test_construct_from_1item_list_of_categorical(self): + # pre-2.0 this behaved as DataFrame({0: cat}), in 2.0 we remove + # Categorical special case + # ndim != 1 + cat = Categorical(list("abc")) + df = DataFrame([cat]) + expected = DataFrame([cat.astype(object)]) + tm.assert_frame_equal(df, expected) + + def test_construct_from_list_of_categoricals(self): + # pre-2.0 this behaved as DataFrame({0: cat}), in 2.0 we remove + # Categorical special case + + df = DataFrame([Categorical(list("abc")), Categorical(list("abd"))]) + expected = DataFrame([["a", "b", "c"], ["a", "b", "d"]]) + tm.assert_frame_equal(df, expected) + + def test_from_nested_listlike_mixed_types(self): + # pre-2.0 this behaved as DataFrame({0: cat}), in 2.0 we remove + # Categorical special case + # mixed + df = DataFrame([Categorical(list("abc")), list("def")]) + expected = DataFrame([["a", "b", "c"], ["d", "e", "f"]]) + tm.assert_frame_equal(df, expected) + + def test_construct_from_listlikes_mismatched_lengths(self): + df = DataFrame([Categorical(list("abc")), Categorical(list("abdefg"))]) + expected = DataFrame([list("abc"), list("abdefg")]) + tm.assert_frame_equal(df, expected) + + def test_constructor_categorical_series(self): + items = [1, 2, 3, 1] + exp = Series(items).astype("category") + res = Series(items, dtype="category") + tm.assert_series_equal(res, exp) + + items = ["a", "b", "c", "a"] + exp = Series(items).astype("category") + res = Series(items, dtype="category") + tm.assert_series_equal(res, exp) + + # insert into frame with different index + # GH 8076 + index = date_range("20000101", periods=3) + expected = Series( + Categorical(values=[np.nan, np.nan, np.nan], categories=["a", "b", "c"]) + ) + expected.index = index + + expected = DataFrame({"x": expected}) + df = DataFrame({"x": Series(["a", "b", "c"], dtype="category")}, index=index) + tm.assert_frame_equal(df, expected) + + @pytest.mark.parametrize( + "dtype", + tm.ALL_NUMERIC_DTYPES + + tm.DATETIME64_DTYPES + + tm.TIMEDELTA64_DTYPES + + tm.BOOL_DTYPES, + ) + def test_check_dtype_empty_numeric_column(self, dtype): + # GH24386: Ensure dtypes are set correctly for an empty DataFrame. + # Empty DataFrame is generated via dictionary data with non-overlapping columns. + data = DataFrame({"a": [1, 2]}, columns=["b"], dtype=dtype) + + assert data.b.dtype == dtype + + @pytest.mark.parametrize( + "dtype", tm.STRING_DTYPES + tm.BYTES_DTYPES + tm.OBJECT_DTYPES + ) + def test_check_dtype_empty_string_column(self, request, dtype, using_array_manager): + # GH24386: Ensure dtypes are set correctly for an empty DataFrame. + # Empty DataFrame is generated via dictionary data with non-overlapping columns. + data = DataFrame({"a": [1, 2]}, columns=["b"], dtype=dtype) + + if using_array_manager and dtype in tm.BYTES_DTYPES: + # TODO(ArrayManager) astype to bytes dtypes does not yet give object dtype + td.mark_array_manager_not_yet_implemented(request) + + assert data.b.dtype.name == "object" + + def test_to_frame_with_falsey_names(self): + # GH 16114 + result = Series(name=0, dtype=object).to_frame().dtypes + expected = Series({0: object}) + tm.assert_series_equal(result, expected) + + result = DataFrame(Series(name=0, dtype=object)).dtypes + tm.assert_series_equal(result, expected) + + @pytest.mark.arm_slow + @pytest.mark.parametrize("dtype", [None, "uint8", "category"]) + def test_constructor_range_dtype(self, dtype): + expected = DataFrame({"A": [0, 1, 2, 3, 4]}, dtype=dtype or "int64") + + # GH 26342 + result = DataFrame(range(5), columns=["A"], dtype=dtype) + tm.assert_frame_equal(result, expected) + + # GH 16804 + result = DataFrame({"A": range(5)}, dtype=dtype) + tm.assert_frame_equal(result, expected) + + def test_frame_from_list_subclass(self): + # GH21226 + class List(list): + pass + + expected = DataFrame([[1, 2, 3], [4, 5, 6]]) + result = DataFrame(List([List([1, 2, 3]), List([4, 5, 6])])) + tm.assert_frame_equal(result, expected) + + @pytest.mark.parametrize( + "extension_arr", + [ + Categorical(list("aabbc")), + SparseArray([1, np.nan, np.nan, np.nan]), + IntervalArray([Interval(0, 1), Interval(1, 5)]), + PeriodArray(pd.period_range(start="1/1/2017", end="1/1/2018", freq="M")), + ], + ) + def test_constructor_with_extension_array(self, extension_arr): + # GH11363 + expected = DataFrame(Series(extension_arr)) + result = DataFrame(extension_arr) + tm.assert_frame_equal(result, expected) + + def test_datetime_date_tuple_columns_from_dict(self): + # GH 10863 + v = date.today() + tup = v, v + result = DataFrame({tup: Series(range(3), index=range(3))}, columns=[tup]) + expected = DataFrame([0, 1, 2], columns=Index(Series([tup]))) + tm.assert_frame_equal(result, expected) + + def test_construct_with_two_categoricalindex_series(self): + # GH 14600 + s1 = Series([39, 6, 4], index=CategoricalIndex(["female", "male", "unknown"])) + s2 = Series( + [2, 152, 2, 242, 150], + index=CategoricalIndex(["f", "female", "m", "male", "unknown"]), + ) + result = DataFrame([s1, s2]) + expected = DataFrame( + np.array([[39, 6, 4, np.nan, np.nan], [152.0, 242.0, 150.0, 2.0, 2.0]]), + columns=["female", "male", "unknown", "f", "m"], + ) + tm.assert_frame_equal(result, expected) + + def test_constructor_series_nonexact_categoricalindex(self): + # GH 42424 + ser = Series(range(100)) + ser1 = cut(ser, 10).value_counts().head(5) + ser2 = cut(ser, 10).value_counts().tail(5) + result = DataFrame({"1": ser1, "2": ser2}) + index = CategoricalIndex( + [ + Interval(-0.099, 9.9, closed="right"), + Interval(9.9, 19.8, closed="right"), + Interval(19.8, 29.7, closed="right"), + Interval(29.7, 39.6, closed="right"), + Interval(39.6, 49.5, closed="right"), + Interval(49.5, 59.4, closed="right"), + Interval(59.4, 69.3, closed="right"), + Interval(69.3, 79.2, closed="right"), + Interval(79.2, 89.1, closed="right"), + Interval(89.1, 99, closed="right"), + ], + ordered=True, + ) + expected = DataFrame( + {"1": [10] * 5 + [np.nan] * 5, "2": [np.nan] * 5 + [10] * 5}, index=index + ) + tm.assert_frame_equal(expected, result) + + def test_from_M8_structured(self): + dates = [(datetime(2012, 9, 9, 0, 0), datetime(2012, 9, 8, 15, 10))] + arr = np.array(dates, dtype=[("Date", "M8[us]"), ("Forecasting", "M8[us]")]) + df = DataFrame(arr) + + assert df["Date"][0] == dates[0][0] + assert df["Forecasting"][0] == dates[0][1] + + s = Series(arr["Date"]) + assert isinstance(s[0], Timestamp) + assert s[0] == dates[0][0] + + def test_from_datetime_subclass(self): + # GH21142 Verify whether Datetime subclasses are also of dtype datetime + class DatetimeSubclass(datetime): + pass + + data = DataFrame({"datetime": [DatetimeSubclass(2020, 1, 1, 1, 1)]}) + assert data.datetime.dtype == "datetime64[ns]" + + def test_with_mismatched_index_length_raises(self): + # GH#33437 + dti = date_range("2016-01-01", periods=3, tz="US/Pacific") + msg = "Shape of passed values|Passed arrays should have the same length" + with pytest.raises(ValueError, match=msg): + DataFrame(dti, index=range(4)) + + def test_frame_ctor_datetime64_column(self): + rng = date_range("1/1/2000 00:00:00", "1/1/2000 1:59:50", freq="10s") + dates = np.asarray(rng) + + df = DataFrame( + {"A": np.random.default_rng(2).standard_normal(len(rng)), "B": dates} + ) + assert np.issubdtype(df["B"].dtype, np.dtype("M8[ns]")) + + def test_dataframe_constructor_infer_multiindex(self): + index_lists = [["a", "a", "b", "b"], ["x", "y", "x", "y"]] + + multi = DataFrame( + np.random.default_rng(2).standard_normal((4, 4)), + index=[np.array(x) for x in index_lists], + ) + assert isinstance(multi.index, MultiIndex) + assert not isinstance(multi.columns, MultiIndex) + + multi = DataFrame( + np.random.default_rng(2).standard_normal((4, 4)), columns=index_lists + ) + assert isinstance(multi.columns, MultiIndex) + + @pytest.mark.parametrize( + "input_vals", + [ + ([1, 2]), + (["1", "2"]), + (list(date_range("1/1/2011", periods=2, freq="h"))), + (list(date_range("1/1/2011", periods=2, freq="h", tz="US/Eastern"))), + ([Interval(left=0, right=5)]), + ], + ) + def test_constructor_list_str(self, input_vals, string_dtype): + # GH#16605 + # Ensure that data elements are converted to strings when + # dtype is str, 'str', or 'U' + + result = DataFrame({"A": input_vals}, dtype=string_dtype) + expected = DataFrame({"A": input_vals}).astype({"A": string_dtype}) + tm.assert_frame_equal(result, expected) + + def test_constructor_list_str_na(self, string_dtype): + result = DataFrame({"A": [1.0, 2.0, None]}, dtype=string_dtype) + expected = DataFrame({"A": ["1.0", "2.0", None]}, dtype=object) + tm.assert_frame_equal(result, expected) + + @pytest.mark.parametrize("copy", [False, True]) + def test_dict_nocopy( + self, + request, + copy, + any_numeric_ea_dtype, + any_numpy_dtype, + using_array_manager, + using_copy_on_write, + ): + if ( + using_array_manager + and not copy + and any_numpy_dtype not in tm.STRING_DTYPES + tm.BYTES_DTYPES + ): + # TODO(ArrayManager) properly honor copy keyword for dict input + td.mark_array_manager_not_yet_implemented(request) + + a = np.array([1, 2], dtype=any_numpy_dtype) + b = np.array([3, 4], dtype=any_numpy_dtype) + if b.dtype.kind in ["S", "U"]: + # These get cast, making the checks below more cumbersome + pytest.skip(f"{b.dtype} get cast, making the checks below more cumbersome") + + c = pd.array([1, 2], dtype=any_numeric_ea_dtype) + c_orig = c.copy() + df = DataFrame({"a": a, "b": b, "c": c}, copy=copy) + + def get_base(obj): + if isinstance(obj, np.ndarray): + return obj.base + elif isinstance(obj.dtype, np.dtype): + # i.e. DatetimeArray, TimedeltaArray + return obj._ndarray.base + else: + raise TypeError + + def check_views(c_only: bool = False): + # written to work for either BlockManager or ArrayManager + + # Check that the underlying data behind df["c"] is still `c` + # after setting with iloc. Since we don't know which entry in + # df._mgr.arrays corresponds to df["c"], we just check that exactly + # one of these arrays is `c`. GH#38939 + assert sum(x is c for x in df._mgr.arrays) == 1 + if c_only: + # If we ever stop consolidating in setitem_with_indexer, + # this will become unnecessary. + return + + assert ( + sum( + get_base(x) is a + for x in df._mgr.arrays + if isinstance(x.dtype, np.dtype) + ) + == 1 + ) + assert ( + sum( + get_base(x) is b + for x in df._mgr.arrays + if isinstance(x.dtype, np.dtype) + ) + == 1 + ) + + if not copy: + # constructor preserves views + check_views() + + # TODO: most of the rest of this test belongs in indexing tests + if lib.is_np_dtype(df.dtypes.iloc[0], "fciuO"): + warn = None + else: + warn = FutureWarning + with tm.assert_produces_warning(warn, match="incompatible dtype"): + df.iloc[0, 0] = 0 + df.iloc[0, 1] = 0 + if not copy: + check_views(True) + + # FIXME(GH#35417): until GH#35417, iloc.setitem into EA values does not preserve + # view, so we have to check in the other direction + df.iloc[:, 2] = pd.array([45, 46], dtype=c.dtype) + assert df.dtypes.iloc[2] == c.dtype + if not copy and not using_copy_on_write: + check_views(True) + + if copy: + if a.dtype.kind == "M": + assert a[0] == a.dtype.type(1, "ns") + assert b[0] == b.dtype.type(3, "ns") + else: + assert a[0] == a.dtype.type(1) + assert b[0] == b.dtype.type(3) + # FIXME(GH#35417): enable after GH#35417 + assert c[0] == c_orig[0] # i.e. df.iloc[0, 2]=45 did *not* update c + elif not using_copy_on_write: + # TODO: we can call check_views if we stop consolidating + # in setitem_with_indexer + assert c[0] == 45 # i.e. df.iloc[0, 2]=45 *did* update c + # TODO: we can check b[0] == 0 if we stop consolidating in + # setitem_with_indexer (except for datetimelike?) + + def test_construct_from_dict_ea_series(self): + # GH#53744 - default of copy=True should also apply for Series with + # extension dtype + ser = Series([1, 2, 3], dtype="Int64") + df = DataFrame({"a": ser}) + assert not np.shares_memory(ser.values._data, df["a"].values._data) + + def test_from_series_with_name_with_columns(self): + # GH 7893 + result = DataFrame(Series(1, name="foo"), columns=["bar"]) + expected = DataFrame(columns=["bar"]) + tm.assert_frame_equal(result, expected) + + def test_nested_list_columns(self): + # GH 14467 + result = DataFrame( + [[1, 2, 3], [4, 5, 6]], columns=[["A", "A", "A"], ["a", "b", "c"]] + ) + expected = DataFrame( + [[1, 2, 3], [4, 5, 6]], + columns=MultiIndex.from_tuples([("A", "a"), ("A", "b"), ("A", "c")]), + ) + tm.assert_frame_equal(result, expected) + + def test_from_2d_object_array_of_periods_or_intervals(self): + # Period analogue to GH#26825 + pi = pd.period_range("2016-04-05", periods=3) + data = pi._data.astype(object).reshape(1, -1) + df = DataFrame(data) + assert df.shape == (1, 3) + assert (df.dtypes == pi.dtype).all() + assert (df == pi).all().all() + + ii = pd.IntervalIndex.from_breaks([3, 4, 5, 6]) + data2 = ii._data.astype(object).reshape(1, -1) + df2 = DataFrame(data2) + assert df2.shape == (1, 3) + assert (df2.dtypes == ii.dtype).all() + assert (df2 == ii).all().all() + + # mixed + data3 = np.r_[data, data2, data, data2].T + df3 = DataFrame(data3) + expected = DataFrame({0: pi, 1: ii, 2: pi, 3: ii}) + tm.assert_frame_equal(df3, expected) + + @pytest.mark.parametrize( + "col_a, col_b", + [ + ([[1], [2]], np.array([[1], [2]])), + (np.array([[1], [2]]), [[1], [2]]), + (np.array([[1], [2]]), np.array([[1], [2]])), + ], + ) + def test_error_from_2darray(self, col_a, col_b): + msg = "Per-column arrays must each be 1-dimensional" + with pytest.raises(ValueError, match=msg): + DataFrame({"a": col_a, "b": col_b}) + + def test_from_dict_with_missing_copy_false(self): + # GH#45369 filled columns should not be views of one another + df = DataFrame(index=[1, 2, 3], columns=["a", "b", "c"], copy=False) + assert not np.shares_memory(df["a"]._values, df["b"]._values) + + df.iloc[0, 0] = 0 + expected = DataFrame( + { + "a": [0, np.nan, np.nan], + "b": [np.nan, np.nan, np.nan], + "c": [np.nan, np.nan, np.nan], + }, + index=[1, 2, 3], + dtype=object, + ) + tm.assert_frame_equal(df, expected) + + def test_construction_empty_array_multi_column_raises(self): + # GH#46822 + msg = r"Shape of passed values is \(0, 1\), indices imply \(0, 2\)" + with pytest.raises(ValueError, match=msg): + DataFrame(data=np.array([]), columns=["a", "b"]) + + def test_construct_with_strings_and_none(self): + # GH#32218 + df = DataFrame(["1", "2", None], columns=["a"], dtype="str") + expected = DataFrame({"a": ["1", "2", None]}, dtype="str") + tm.assert_frame_equal(df, expected) + + def test_frame_string_inference(self): + # GH#54430 + pytest.importorskip("pyarrow") + dtype = "string[pyarrow_numpy]" + expected = DataFrame( + {"a": ["a", "b"]}, dtype=dtype, columns=Index(["a"], dtype=dtype) + ) + with pd.option_context("future.infer_string", True): + df = DataFrame({"a": ["a", "b"]}) + tm.assert_frame_equal(df, expected) + + expected = DataFrame( + {"a": ["a", "b"]}, + dtype=dtype, + columns=Index(["a"], dtype=dtype), + index=Index(["x", "y"], dtype=dtype), + ) + with pd.option_context("future.infer_string", True): + df = DataFrame({"a": ["a", "b"]}, index=["x", "y"]) + tm.assert_frame_equal(df, expected) + + expected = DataFrame( + {"a": ["a", 1]}, dtype="object", columns=Index(["a"], dtype=dtype) + ) + with pd.option_context("future.infer_string", True): + df = DataFrame({"a": ["a", 1]}) + tm.assert_frame_equal(df, expected) + + expected = DataFrame( + {"a": ["a", "b"]}, dtype="object", columns=Index(["a"], dtype=dtype) + ) + with pd.option_context("future.infer_string", True): + df = DataFrame({"a": ["a", "b"]}, dtype="object") + tm.assert_frame_equal(df, expected) + + def test_frame_string_inference_array_string_dtype(self): + # GH#54496 + pytest.importorskip("pyarrow") + dtype = "string[pyarrow_numpy]" + expected = DataFrame( + {"a": ["a", "b"]}, dtype=dtype, columns=Index(["a"], dtype=dtype) + ) + with pd.option_context("future.infer_string", True): + df = DataFrame({"a": np.array(["a", "b"])}) + tm.assert_frame_equal(df, expected) + + expected = DataFrame({0: ["a", "b"], 1: ["c", "d"]}, dtype=dtype) + with pd.option_context("future.infer_string", True): + df = DataFrame(np.array([["a", "c"], ["b", "d"]])) + tm.assert_frame_equal(df, expected) + + expected = DataFrame( + {"a": ["a", "b"], "b": ["c", "d"]}, + dtype=dtype, + columns=Index(["a", "b"], dtype=dtype), + ) + with pd.option_context("future.infer_string", True): + df = DataFrame(np.array([["a", "c"], ["b", "d"]]), columns=["a", "b"]) + tm.assert_frame_equal(df, expected) + + def test_frame_string_inference_block_dim(self): + # GH#55363 + pytest.importorskip("pyarrow") + with pd.option_context("future.infer_string", True): + df = DataFrame(np.array([["hello", "goodbye"], ["hello", "Hello"]])) + assert df._mgr.blocks[0].ndim == 2 + + def test_inference_on_pandas_objects(self): + # GH#56012 + idx = Index([Timestamp("2019-12-31")], dtype=object) + with tm.assert_produces_warning(FutureWarning, match="Dtype inference"): + result = DataFrame(idx, columns=["a"]) + assert result.dtypes.iloc[0] != np.object_ + result = DataFrame({"a": idx}) + assert result.dtypes.iloc[0] == np.object_ + + ser = Series([Timestamp("2019-12-31")], dtype=object) + + with tm.assert_produces_warning(FutureWarning, match="Dtype inference"): + result = DataFrame(ser, columns=["a"]) + assert result.dtypes.iloc[0] != np.object_ + result = DataFrame({"a": ser}) + assert result.dtypes.iloc[0] == np.object_ + + +class TestDataFrameConstructorIndexInference: + def test_frame_from_dict_of_series_overlapping_monthly_period_indexes(self): + rng1 = pd.period_range("1/1/1999", "1/1/2012", freq="M") + s1 = Series(np.random.default_rng(2).standard_normal(len(rng1)), rng1) + + rng2 = pd.period_range("1/1/1980", "12/1/2001", freq="M") + s2 = Series(np.random.default_rng(2).standard_normal(len(rng2)), rng2) + df = DataFrame({"s1": s1, "s2": s2}) + + exp = pd.period_range("1/1/1980", "1/1/2012", freq="M") + tm.assert_index_equal(df.index, exp) + + def test_frame_from_dict_with_mixed_tzaware_indexes(self): + # GH#44091 + dti = date_range("2016-01-01", periods=3) + + ser1 = Series(range(3), index=dti) + ser2 = Series(range(3), index=dti.tz_localize("UTC")) + ser3 = Series(range(3), index=dti.tz_localize("US/Central")) + ser4 = Series(range(3)) + + # no tz-naive, but we do have mixed tzs and a non-DTI + df1 = DataFrame({"A": ser2, "B": ser3, "C": ser4}) + exp_index = Index( + list(ser2.index) + list(ser3.index) + list(ser4.index), dtype=object + ) + tm.assert_index_equal(df1.index, exp_index) + + df2 = DataFrame({"A": ser2, "C": ser4, "B": ser3}) + exp_index3 = Index( + list(ser2.index) + list(ser4.index) + list(ser3.index), dtype=object + ) + tm.assert_index_equal(df2.index, exp_index3) + + df3 = DataFrame({"B": ser3, "A": ser2, "C": ser4}) + exp_index3 = Index( + list(ser3.index) + list(ser2.index) + list(ser4.index), dtype=object + ) + tm.assert_index_equal(df3.index, exp_index3) + + df4 = DataFrame({"C": ser4, "B": ser3, "A": ser2}) + exp_index4 = Index( + list(ser4.index) + list(ser3.index) + list(ser2.index), dtype=object + ) + tm.assert_index_equal(df4.index, exp_index4) + + # TODO: not clear if these raising is desired (no extant tests), + # but this is de facto behavior 2021-12-22 + msg = "Cannot join tz-naive with tz-aware DatetimeIndex" + with pytest.raises(TypeError, match=msg): + DataFrame({"A": ser2, "B": ser3, "C": ser4, "D": ser1}) + with pytest.raises(TypeError, match=msg): + DataFrame({"A": ser2, "B": ser3, "D": ser1}) + with pytest.raises(TypeError, match=msg): + DataFrame({"D": ser1, "A": ser2, "B": ser3}) + + @pytest.mark.parametrize( + "key_val, col_vals, col_type", + [ + ["3", ["3", "4"], "utf8"], + [3, [3, 4], "int8"], + ], + ) + def test_dict_data_arrow_column_expansion(self, key_val, col_vals, col_type): + # GH 53617 + pa = pytest.importorskip("pyarrow") + cols = pd.arrays.ArrowExtensionArray( + pa.array(col_vals, type=pa.dictionary(pa.int8(), getattr(pa, col_type)())) + ) + result = DataFrame({key_val: [1, 2]}, columns=cols) + expected = DataFrame([[1, np.nan], [2, np.nan]], columns=cols) + expected.isetitem(1, expected.iloc[:, 1].astype(object)) + tm.assert_frame_equal(result, expected) + + +class TestDataFrameConstructorWithDtypeCoercion: + def test_floating_values_integer_dtype(self): + # GH#40110 make DataFrame behavior with arraylike floating data and + # inty dtype match Series behavior + + arr = np.random.default_rng(2).standard_normal((10, 5)) + + # GH#49599 in 2.0 we raise instead of either + # a) silently ignoring dtype and returningfloat (the old Series behavior) or + # b) rounding (the old DataFrame behavior) + msg = "Trying to coerce float values to integers" + with pytest.raises(ValueError, match=msg): + DataFrame(arr, dtype="i8") + + df = DataFrame(arr.round(), dtype="i8") + assert (df.dtypes == "i8").all() + + # with NaNs, we go through a different path with a different warning + arr[0, 0] = np.nan + msg = r"Cannot convert non-finite values \(NA or inf\) to integer" + with pytest.raises(IntCastingNaNError, match=msg): + DataFrame(arr, dtype="i8") + with pytest.raises(IntCastingNaNError, match=msg): + Series(arr[0], dtype="i8") + # The future (raising) behavior matches what we would get via astype: + msg = r"Cannot convert non-finite values \(NA or inf\) to integer" + with pytest.raises(IntCastingNaNError, match=msg): + DataFrame(arr).astype("i8") + with pytest.raises(IntCastingNaNError, match=msg): + Series(arr[0]).astype("i8") + + +class TestDataFrameConstructorWithDatetimeTZ: + @pytest.mark.parametrize("tz", ["US/Eastern", "dateutil/US/Eastern"]) + def test_construction_preserves_tzaware_dtypes(self, tz): + # after GH#7822 + # these retain the timezones on dict construction + dr = date_range("2011/1/1", "2012/1/1", freq="W-FRI") + dr_tz = dr.tz_localize(tz) + df = DataFrame({"A": "foo", "B": dr_tz}, index=dr) + tz_expected = DatetimeTZDtype("ns", dr_tz.tzinfo) + assert df["B"].dtype == tz_expected + + # GH#2810 (with timezones) + datetimes_naive = [ts.to_pydatetime() for ts in dr] + datetimes_with_tz = [ts.to_pydatetime() for ts in dr_tz] + df = DataFrame({"dr": dr}) + df["dr_tz"] = dr_tz + df["datetimes_naive"] = datetimes_naive + df["datetimes_with_tz"] = datetimes_with_tz + result = df.dtypes + expected = Series( + [ + np.dtype("datetime64[ns]"), + DatetimeTZDtype(tz=tz), + np.dtype("datetime64[ns]"), + DatetimeTZDtype(tz=tz), + ], + index=["dr", "dr_tz", "datetimes_naive", "datetimes_with_tz"], + ) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("pydt", [True, False]) + def test_constructor_data_aware_dtype_naive(self, tz_aware_fixture, pydt): + # GH#25843, GH#41555, GH#33401 + tz = tz_aware_fixture + ts = Timestamp("2019", tz=tz) + if pydt: + ts = ts.to_pydatetime() + + msg = ( + "Cannot convert timezone-aware data to timezone-naive dtype. " + r"Use pd.Series\(values\).dt.tz_localize\(None\) instead." + ) + with pytest.raises(ValueError, match=msg): + DataFrame({0: [ts]}, dtype="datetime64[ns]") + + msg2 = "Cannot unbox tzaware Timestamp to tznaive dtype" + with pytest.raises(TypeError, match=msg2): + DataFrame({0: ts}, index=[0], dtype="datetime64[ns]") + + with pytest.raises(ValueError, match=msg): + DataFrame([ts], dtype="datetime64[ns]") + + with pytest.raises(ValueError, match=msg): + DataFrame(np.array([ts], dtype=object), dtype="datetime64[ns]") + + with pytest.raises(TypeError, match=msg2): + DataFrame(ts, index=[0], columns=[0], dtype="datetime64[ns]") + + with pytest.raises(ValueError, match=msg): + DataFrame([Series([ts])], dtype="datetime64[ns]") + + with pytest.raises(ValueError, match=msg): + DataFrame([[ts]], columns=[0], dtype="datetime64[ns]") + + def test_from_dict(self): + # 8260 + # support datetime64 with tz + + idx = Index(date_range("20130101", periods=3, tz="US/Eastern"), name="foo") + dr = date_range("20130110", periods=3) + + # construction + df = DataFrame({"A": idx, "B": dr}) + assert df["A"].dtype, "M8[ns, US/Eastern" + assert df["A"].name == "A" + tm.assert_series_equal(df["A"], Series(idx, name="A")) + tm.assert_series_equal(df["B"], Series(dr, name="B")) + + def test_from_index(self): + # from index + idx2 = date_range("20130101", periods=3, tz="US/Eastern", name="foo") + df2 = DataFrame(idx2) + tm.assert_series_equal(df2["foo"], Series(idx2, name="foo")) + df2 = DataFrame(Series(idx2)) + tm.assert_series_equal(df2["foo"], Series(idx2, name="foo")) + + idx2 = date_range("20130101", periods=3, tz="US/Eastern") + df2 = DataFrame(idx2) + tm.assert_series_equal(df2[0], Series(idx2, name=0)) + df2 = DataFrame(Series(idx2)) + tm.assert_series_equal(df2[0], Series(idx2, name=0)) + + def test_frame_dict_constructor_datetime64_1680(self): + dr = date_range("1/1/2012", periods=10) + s = Series(dr, index=dr) + + # it works! + DataFrame({"a": "foo", "b": s}, index=dr) + DataFrame({"a": "foo", "b": s.values}, index=dr) + + def test_frame_datetime64_mixed_index_ctor_1681(self): + dr = date_range("2011/1/1", "2012/1/1", freq="W-FRI") + ts = Series(dr) + + # it works! + d = DataFrame({"A": "foo", "B": ts}, index=dr) + assert d["B"].isna().all() + + def test_frame_timeseries_column(self): + # GH19157 + dr = date_range( + start="20130101T10:00:00", periods=3, freq="min", tz="US/Eastern" + ) + result = DataFrame(dr, columns=["timestamps"]) + expected = DataFrame( + { + "timestamps": [ + Timestamp("20130101T10:00:00", tz="US/Eastern"), + Timestamp("20130101T10:01:00", tz="US/Eastern"), + Timestamp("20130101T10:02:00", tz="US/Eastern"), + ] + } + ) + tm.assert_frame_equal(result, expected) + + def test_nested_dict_construction(self): + # GH22227 + columns = ["Nevada", "Ohio"] + pop = { + "Nevada": {2001: 2.4, 2002: 2.9}, + "Ohio": {2000: 1.5, 2001: 1.7, 2002: 3.6}, + } + result = DataFrame(pop, index=[2001, 2002, 2003], columns=columns) + expected = DataFrame( + [(2.4, 1.7), (2.9, 3.6), (np.nan, np.nan)], + columns=columns, + index=Index([2001, 2002, 2003]), + ) + tm.assert_frame_equal(result, expected) + + def test_from_tzaware_object_array(self): + # GH#26825 2D object array of tzaware timestamps should not raise + dti = date_range("2016-04-05 04:30", periods=3, tz="UTC") + data = dti._data.astype(object).reshape(1, -1) + df = DataFrame(data) + assert df.shape == (1, 3) + assert (df.dtypes == dti.dtype).all() + assert (df == dti).all().all() + + def test_from_tzaware_mixed_object_array(self): + # GH#26825 + arr = np.array( + [ + [ + Timestamp("2013-01-01 00:00:00"), + Timestamp("2013-01-02 00:00:00"), + Timestamp("2013-01-03 00:00:00"), + ], + [ + Timestamp("2013-01-01 00:00:00-0500", tz="US/Eastern"), + pd.NaT, + Timestamp("2013-01-03 00:00:00-0500", tz="US/Eastern"), + ], + [ + Timestamp("2013-01-01 00:00:00+0100", tz="CET"), + pd.NaT, + Timestamp("2013-01-03 00:00:00+0100", tz="CET"), + ], + ], + dtype=object, + ).T + res = DataFrame(arr, columns=["A", "B", "C"]) + + expected_dtypes = [ + "datetime64[ns]", + "datetime64[ns, US/Eastern]", + "datetime64[ns, CET]", + ] + assert (res.dtypes == expected_dtypes).all() + + def test_from_2d_ndarray_with_dtype(self): + # GH#12513 + array_dim2 = np.arange(10).reshape((5, 2)) + df = DataFrame(array_dim2, dtype="datetime64[ns, UTC]") + + expected = DataFrame(array_dim2).astype("datetime64[ns, UTC]") + tm.assert_frame_equal(df, expected) + + @pytest.mark.parametrize("typ", [set, frozenset]) + def test_construction_from_set_raises(self, typ): + # https://github.com/pandas-dev/pandas/issues/32582 + values = typ({1, 2, 3}) + msg = f"'{typ.__name__}' type is unordered" + with pytest.raises(TypeError, match=msg): + DataFrame({"a": values}) + + with pytest.raises(TypeError, match=msg): + Series(values) + + def test_construction_from_ndarray_datetimelike(self): + # ensure the underlying arrays are properly wrapped as EA when + # constructed from 2D ndarray + arr = np.arange(0, 12, dtype="datetime64[ns]").reshape(4, 3) + df = DataFrame(arr) + assert all(isinstance(arr, DatetimeArray) for arr in df._mgr.arrays) + + def test_construction_from_ndarray_with_eadtype_mismatched_columns(self): + arr = np.random.default_rng(2).standard_normal((10, 2)) + dtype = pd.array([2.0]).dtype + msg = r"len\(arrays\) must match len\(columns\)" + with pytest.raises(ValueError, match=msg): + DataFrame(arr, columns=["foo"], dtype=dtype) + + arr2 = pd.array([2.0, 3.0, 4.0]) + with pytest.raises(ValueError, match=msg): + DataFrame(arr2, columns=["foo", "bar"]) + + def test_columns_indexes_raise_on_sets(self): + # GH 47215 + data = [[1, 2, 3], [4, 5, 6]] + with pytest.raises(ValueError, match="index cannot be a set"): + DataFrame(data, index={"a", "b"}) + with pytest.raises(ValueError, match="columns cannot be a set"): + DataFrame(data, columns={"a", "b", "c"}) + + # TODO: make this not cast to object in pandas 3.0 + @pytest.mark.skipif( + not np_version_gt2, reason="StringDType only available in numpy 2 and above" + ) + @pytest.mark.parametrize( + "data", + [ + {"a": ["a", "b", "c"], "b": [1.0, 2.0, 3.0], "c": ["d", "e", "f"]}, + ], + ) + def test_np_string_array_object_cast(self, data): + from numpy.dtypes import StringDType + + data["a"] = np.array(data["a"], dtype=StringDType()) + res = DataFrame(data) + assert res["a"].dtype == np.object_ + assert (res["a"] == data["a"]).all() + + +def get1(obj): # TODO: make a helper in tm? + if isinstance(obj, Series): + return obj.iloc[0] + else: + return obj.iloc[0, 0] + + +class TestFromScalar: + @pytest.fixture(params=[list, dict, None]) + def box(self, request): + return request.param + + @pytest.fixture + def constructor(self, frame_or_series, box): + extra = {"index": range(2)} + if frame_or_series is DataFrame: + extra["columns"] = ["A"] + + if box is None: + return functools.partial(frame_or_series, **extra) + + elif box is dict: + if frame_or_series is Series: + return lambda x, **kwargs: frame_or_series( + {0: x, 1: x}, **extra, **kwargs + ) + else: + return lambda x, **kwargs: frame_or_series({"A": x}, **extra, **kwargs) + elif frame_or_series is Series: + return lambda x, **kwargs: frame_or_series([x, x], **extra, **kwargs) + else: + return lambda x, **kwargs: frame_or_series({"A": [x, x]}, **extra, **kwargs) + + @pytest.mark.parametrize("dtype", ["M8[ns]", "m8[ns]"]) + def test_from_nat_scalar(self, dtype, constructor): + obj = constructor(pd.NaT, dtype=dtype) + assert np.all(obj.dtypes == dtype) + assert np.all(obj.isna()) + + def test_from_timedelta_scalar_preserves_nanos(self, constructor): + td = Timedelta(1) + + obj = constructor(td, dtype="m8[ns]") + assert get1(obj) == td + + def test_from_timestamp_scalar_preserves_nanos(self, constructor, fixed_now_ts): + ts = fixed_now_ts + Timedelta(1) + + obj = constructor(ts, dtype="M8[ns]") + assert get1(obj) == ts + + def test_from_timedelta64_scalar_object(self, constructor): + td = Timedelta(1) + td64 = td.to_timedelta64() + + obj = constructor(td64, dtype=object) + assert isinstance(get1(obj), np.timedelta64) + + @pytest.mark.parametrize("cls", [np.datetime64, np.timedelta64]) + def test_from_scalar_datetimelike_mismatched(self, constructor, cls): + scalar = cls("NaT", "ns") + dtype = {np.datetime64: "m8[ns]", np.timedelta64: "M8[ns]"}[cls] + + if cls is np.datetime64: + msg1 = "Invalid type for timedelta scalar: " + else: + msg1 = " is not convertible to datetime" + msg = "|".join(["Cannot cast", msg1]) + + with pytest.raises(TypeError, match=msg): + constructor(scalar, dtype=dtype) + + scalar = cls(4, "ns") + with pytest.raises(TypeError, match=msg): + constructor(scalar, dtype=dtype) + + @pytest.mark.parametrize("cls", [datetime, np.datetime64]) + def test_from_out_of_bounds_ns_datetime( + self, constructor, cls, request, box, frame_or_series + ): + # scalar that won't fit in nanosecond dt64, but will fit in microsecond + if box is list or (frame_or_series is Series and box is dict): + mark = pytest.mark.xfail( + reason="Timestamp constructor has been updated to cast dt64 to " + "non-nano, but DatetimeArray._from_sequence has not", + strict=True, + ) + request.applymarker(mark) + + scalar = datetime(9999, 1, 1) + exp_dtype = "M8[us]" # pydatetime objects default to this reso + + if cls is np.datetime64: + scalar = np.datetime64(scalar, "D") + exp_dtype = "M8[s]" # closest reso to input + result = constructor(scalar) + + item = get1(result) + dtype = tm.get_dtype(result) + + assert type(item) is Timestamp + assert item.asm8.dtype == exp_dtype + assert dtype == exp_dtype + + @pytest.mark.skip_ubsan + def test_out_of_s_bounds_datetime64(self, constructor): + scalar = np.datetime64(np.iinfo(np.int64).max, "D") + result = constructor(scalar) + item = get1(result) + assert type(item) is np.datetime64 + dtype = tm.get_dtype(result) + assert dtype == object + + @pytest.mark.parametrize("cls", [timedelta, np.timedelta64]) + def test_from_out_of_bounds_ns_timedelta( + self, constructor, cls, request, box, frame_or_series + ): + # scalar that won't fit in nanosecond td64, but will fit in microsecond + if box is list or (frame_or_series is Series and box is dict): + mark = pytest.mark.xfail( + reason="TimedeltaArray constructor has been updated to cast td64 " + "to non-nano, but TimedeltaArray._from_sequence has not", + strict=True, + ) + request.applymarker(mark) + + scalar = datetime(9999, 1, 1) - datetime(1970, 1, 1) + exp_dtype = "m8[us]" # smallest reso that fits + if cls is np.timedelta64: + scalar = np.timedelta64(scalar, "D") + exp_dtype = "m8[s]" # closest reso to input + result = constructor(scalar) + + item = get1(result) + dtype = tm.get_dtype(result) + + assert type(item) is Timedelta + assert item.asm8.dtype == exp_dtype + assert dtype == exp_dtype + + @pytest.mark.skip_ubsan + @pytest.mark.parametrize("cls", [np.datetime64, np.timedelta64]) + def test_out_of_s_bounds_timedelta64(self, constructor, cls): + scalar = cls(np.iinfo(np.int64).max, "D") + result = constructor(scalar) + item = get1(result) + assert type(item) is cls + dtype = tm.get_dtype(result) + assert dtype == object + + def test_tzaware_data_tznaive_dtype(self, constructor, box, frame_or_series): + tz = "US/Eastern" + ts = Timestamp("2019", tz=tz) + + if box is None or (frame_or_series is DataFrame and box is dict): + msg = "Cannot unbox tzaware Timestamp to tznaive dtype" + err = TypeError + else: + msg = ( + "Cannot convert timezone-aware data to timezone-naive dtype. " + r"Use pd.Series\(values\).dt.tz_localize\(None\) instead." + ) + err = ValueError + + with pytest.raises(err, match=msg): + constructor(ts, dtype="M8[ns]") + + +# TODO: better location for this test? +class TestAllowNonNano: + # Until 2.0, we do not preserve non-nano dt64/td64 when passed as ndarray, + # but do preserve it when passed as DTA/TDA + + @pytest.fixture(params=[True, False]) + def as_td(self, request): + return request.param + + @pytest.fixture + def arr(self, as_td): + values = np.arange(5).astype(np.int64).view("M8[s]") + if as_td: + values = values - values[0] + return TimedeltaArray._simple_new(values, dtype=values.dtype) + else: + return DatetimeArray._simple_new(values, dtype=values.dtype) + + def test_index_allow_non_nano(self, arr): + idx = Index(arr) + assert idx.dtype == arr.dtype + + def test_dti_tdi_allow_non_nano(self, arr, as_td): + if as_td: + idx = pd.TimedeltaIndex(arr) + else: + idx = DatetimeIndex(arr) + assert idx.dtype == arr.dtype + + def test_series_allow_non_nano(self, arr): + ser = Series(arr) + assert ser.dtype == arr.dtype + + def test_frame_allow_non_nano(self, arr): + df = DataFrame(arr) + assert df.dtypes[0] == arr.dtype + + def test_frame_from_dict_allow_non_nano(self, arr): + df = DataFrame({0: arr}) + assert df.dtypes[0] == arr.dtype