diff --git a/ckpts/universal/global_step40/zero/3.attention.dense.weight/exp_avg.pt b/ckpts/universal/global_step40/zero/3.attention.dense.weight/exp_avg.pt new file mode 100644 index 0000000000000000000000000000000000000000..f99dea85a8d4b04741e7abbb5e9f84a2c1c9440a --- /dev/null +++ b/ckpts/universal/global_step40/zero/3.attention.dense.weight/exp_avg.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5b588c70cede7ffe1b732d97f8f32ad71485d46da0408df5fae31adcd578134d +size 16778396 diff --git a/ckpts/universal/global_step40/zero/3.attention.dense.weight/exp_avg_sq.pt b/ckpts/universal/global_step40/zero/3.attention.dense.weight/exp_avg_sq.pt new file mode 100644 index 0000000000000000000000000000000000000000..690456291690ab97f79e9a78245a8aae9fb914b1 --- /dev/null +++ b/ckpts/universal/global_step40/zero/3.attention.dense.weight/exp_avg_sq.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7aa7db819afbc6acd2148db7d8d6b72aa976ba04911431b65b16c17051115a72 +size 16778411 diff --git a/ckpts/universal/global_step40/zero/3.attention.dense.weight/fp32.pt b/ckpts/universal/global_step40/zero/3.attention.dense.weight/fp32.pt new file mode 100644 index 0000000000000000000000000000000000000000..54dc18cfe50840ea6c6c85069a3c967693fdc52e --- /dev/null +++ b/ckpts/universal/global_step40/zero/3.attention.dense.weight/fp32.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c33aed89b6d0e7eb56b961c7fcf71a6634b286fef47dea6f4bdc1c5436d24da8 +size 16778317 diff --git a/ckpts/universal/global_step40/zero/4.attention.query_key_value.weight/fp32.pt b/ckpts/universal/global_step40/zero/4.attention.query_key_value.weight/fp32.pt new file mode 100644 index 0000000000000000000000000000000000000000..a2784c60366a350028165ab52d23c322e3550005 --- /dev/null +++ b/ckpts/universal/global_step40/zero/4.attention.query_key_value.weight/fp32.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dd7e146aae41fdbc5f5a689399d9636eb147eddd29ec2f6bf93f171a587683a7 +size 50332749 diff --git a/ckpts/universal/global_step40/zero/5.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt b/ckpts/universal/global_step40/zero/5.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt new file mode 100644 index 0000000000000000000000000000000000000000..1150a677ff5b05816ba4ba5f513445f964644a62 --- /dev/null +++ b/ckpts/universal/global_step40/zero/5.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b9533d1c9f687b2e0ab23df7a75dac8468253232ce849b3f69478c4896211eca +size 33555627 diff --git a/venv/lib/python3.10/site-packages/pydantic/__pycache__/decorator.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/__pycache__/decorator.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..67f31792e82313d082398d71b1ff77ad478cbb01 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/__pycache__/decorator.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/__pycache__/main.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/__pycache__/main.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ed1426f41eef34eb965ebfd228e18cb74d88716c Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/__pycache__/main.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/__pycache__/type_adapter.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/__pycache__/type_adapter.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fff6dabde39c4e5aaa5fd8f07125424206bf00d9 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/__pycache__/type_adapter.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/deprecated/__init__.py b/venv/lib/python3.10/site-packages/pydantic/deprecated/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/venv/lib/python3.10/site-packages/pydantic/deprecated/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/deprecated/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6a0bb58d132a28107031a84e21162d8e134b0914 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/deprecated/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/deprecated/__pycache__/class_validators.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/deprecated/__pycache__/class_validators.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..576a0c9879358b914f42d13d3f218fb960536d63 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/deprecated/__pycache__/class_validators.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/deprecated/__pycache__/config.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/deprecated/__pycache__/config.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b64ffefc320251f7e35d37e7b3dbc9a37a81bab6 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/deprecated/__pycache__/config.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/deprecated/__pycache__/copy_internals.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/deprecated/__pycache__/copy_internals.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..59c984e454c7507d7e58490c7359a409e807535c Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/deprecated/__pycache__/copy_internals.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/deprecated/__pycache__/decorator.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/deprecated/__pycache__/decorator.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..88c3c6264c8e99469bf78bf37354cbc430d7e1e5 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/deprecated/__pycache__/decorator.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/deprecated/__pycache__/json.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/deprecated/__pycache__/json.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..98ba9cb50b25b34835b765bc986be138720b7a80 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/deprecated/__pycache__/json.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/deprecated/__pycache__/parse.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/deprecated/__pycache__/parse.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8242dbfb6ac3f24ecf7261cd81001c9395633f68 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/deprecated/__pycache__/parse.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/deprecated/__pycache__/tools.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/deprecated/__pycache__/tools.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..60e7e71148ea1a346daf30e367470b3f50eba326 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/deprecated/__pycache__/tools.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/deprecated/class_validators.py b/venv/lib/python3.10/site-packages/pydantic/deprecated/class_validators.py new file mode 100644 index 0000000000000000000000000000000000000000..540e40eea983a79b90a75bb23a1aee6de5aa05e4 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/deprecated/class_validators.py @@ -0,0 +1,265 @@ +"""Old `@validator` and `@root_validator` function validators from V1.""" + +from __future__ import annotations as _annotations + +from functools import partial, partialmethod +from types import FunctionType +from typing import TYPE_CHECKING, Any, Callable, TypeVar, Union, overload +from warnings import warn + +from typing_extensions import Literal, Protocol, TypeAlias, deprecated + +from .._internal import _decorators, _decorators_v1 +from ..errors import PydanticUserError +from ..warnings import PydanticDeprecatedSince20 + +_ALLOW_REUSE_WARNING_MESSAGE = '`allow_reuse` is deprecated and will be ignored; it should no longer be necessary' + + +if TYPE_CHECKING: + + class _OnlyValueValidatorClsMethod(Protocol): + def __call__(self, __cls: Any, __value: Any) -> Any: + ... + + class _V1ValidatorWithValuesClsMethod(Protocol): + def __call__(self, __cls: Any, __value: Any, values: dict[str, Any]) -> Any: + ... + + class _V1ValidatorWithValuesKwOnlyClsMethod(Protocol): + def __call__(self, __cls: Any, __value: Any, *, values: dict[str, Any]) -> Any: + ... + + class _V1ValidatorWithKwargsClsMethod(Protocol): + def __call__(self, __cls: Any, **kwargs: Any) -> Any: + ... + + class _V1ValidatorWithValuesAndKwargsClsMethod(Protocol): + def __call__(self, __cls: Any, values: dict[str, Any], **kwargs: Any) -> Any: + ... + + class _V1RootValidatorClsMethod(Protocol): + def __call__( + self, __cls: Any, __values: _decorators_v1.RootValidatorValues + ) -> _decorators_v1.RootValidatorValues: + ... + + V1Validator = Union[ + _OnlyValueValidatorClsMethod, + _V1ValidatorWithValuesClsMethod, + _V1ValidatorWithValuesKwOnlyClsMethod, + _V1ValidatorWithKwargsClsMethod, + _V1ValidatorWithValuesAndKwargsClsMethod, + _decorators_v1.V1ValidatorWithValues, + _decorators_v1.V1ValidatorWithValuesKwOnly, + _decorators_v1.V1ValidatorWithKwargs, + _decorators_v1.V1ValidatorWithValuesAndKwargs, + ] + + V1RootValidator = Union[ + _V1RootValidatorClsMethod, + _decorators_v1.V1RootValidatorFunction, + ] + + _PartialClsOrStaticMethod: TypeAlias = Union[classmethod[Any, Any, Any], staticmethod[Any, Any], partialmethod[Any]] + + # Allow both a V1 (assumed pre=False) or V2 (assumed mode='after') validator + # We lie to type checkers and say we return the same thing we get + # but in reality we return a proxy object that _mostly_ behaves like the wrapped thing + _V1ValidatorType = TypeVar('_V1ValidatorType', V1Validator, _PartialClsOrStaticMethod) + _V1RootValidatorFunctionType = TypeVar( + '_V1RootValidatorFunctionType', + _decorators_v1.V1RootValidatorFunction, + _V1RootValidatorClsMethod, + _PartialClsOrStaticMethod, + ) +else: + # See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915 + # and https://youtrack.jetbrains.com/issue/PY-51428 + DeprecationWarning = PydanticDeprecatedSince20 + + +@deprecated( + 'Pydantic V1 style `@validator` validators are deprecated.' + ' You should migrate to Pydantic V2 style `@field_validator` validators,' + ' see the migration guide for more details', + category=None, +) +def validator( + __field: str, + *fields: str, + pre: bool = False, + each_item: bool = False, + always: bool = False, + check_fields: bool | None = None, + allow_reuse: bool = False, +) -> Callable[[_V1ValidatorType], _V1ValidatorType]: + """Decorate methods on the class indicating that they should be used to validate fields. + + Args: + __field (str): The first field the validator should be called on; this is separate + from `fields` to ensure an error is raised if you don't pass at least one. + *fields (str): Additional field(s) the validator should be called on. + pre (bool, optional): Whether this validator should be called before the standard + validators (else after). Defaults to False. + each_item (bool, optional): For complex objects (sets, lists etc.) whether to validate + individual elements rather than the whole object. Defaults to False. + always (bool, optional): Whether this method and other validators should be called even if + the value is missing. Defaults to False. + check_fields (bool | None, optional): Whether to check that the fields actually exist on the model. + Defaults to None. + allow_reuse (bool, optional): Whether to track and raise an error if another validator refers to + the decorated function. Defaults to False. + + Returns: + Callable: A decorator that can be used to decorate a + function to be used as a validator. + """ + warn( + 'Pydantic V1 style `@validator` validators are deprecated.' + ' You should migrate to Pydantic V2 style `@field_validator` validators,' + ' see the migration guide for more details', + DeprecationWarning, + stacklevel=2, + ) + + if allow_reuse is True: # pragma: no cover + warn(_ALLOW_REUSE_WARNING_MESSAGE, DeprecationWarning) + fields = tuple((__field, *fields)) + if isinstance(fields[0], FunctionType): + raise PydanticUserError( + '`@validator` should be used with fields and keyword arguments, not bare. ' + "E.g. usage should be `@validator('', ...)`", + code='validator-no-fields', + ) + elif not all(isinstance(field, str) for field in fields): + raise PydanticUserError( + '`@validator` fields should be passed as separate string args. ' + "E.g. usage should be `@validator('', '', ...)`", + code='validator-invalid-fields', + ) + + mode: Literal['before', 'after'] = 'before' if pre is True else 'after' + + def dec(f: Any) -> _decorators.PydanticDescriptorProxy[Any]: + if _decorators.is_instance_method_from_sig(f): + raise PydanticUserError( + '`@validator` cannot be applied to instance methods', code='validator-instance-method' + ) + # auto apply the @classmethod decorator + f = _decorators.ensure_classmethod_based_on_signature(f) + wrap = _decorators_v1.make_generic_v1_field_validator + validator_wrapper_info = _decorators.ValidatorDecoratorInfo( + fields=fields, + mode=mode, + each_item=each_item, + always=always, + check_fields=check_fields, + ) + return _decorators.PydanticDescriptorProxy(f, validator_wrapper_info, shim=wrap) + + return dec # type: ignore[return-value] + + +@overload +def root_validator( + *, + # if you don't specify `pre` the default is `pre=False` + # which means you need to specify `skip_on_failure=True` + skip_on_failure: Literal[True], + allow_reuse: bool = ..., +) -> Callable[ + [_V1RootValidatorFunctionType], + _V1RootValidatorFunctionType, +]: + ... + + +@overload +def root_validator( + *, + # if you specify `pre=True` then you don't need to specify + # `skip_on_failure`, in fact it is not allowed as an argument! + pre: Literal[True], + allow_reuse: bool = ..., +) -> Callable[ + [_V1RootValidatorFunctionType], + _V1RootValidatorFunctionType, +]: + ... + + +@overload +def root_validator( + *, + # if you explicitly specify `pre=False` then you + # MUST specify `skip_on_failure=True` + pre: Literal[False], + skip_on_failure: Literal[True], + allow_reuse: bool = ..., +) -> Callable[ + [_V1RootValidatorFunctionType], + _V1RootValidatorFunctionType, +]: + ... + + +@deprecated( + 'Pydantic V1 style `@root_validator` validators are deprecated.' + ' You should migrate to Pydantic V2 style `@model_validator` validators,' + ' see the migration guide for more details', + category=None, +) +def root_validator( + *__args, + pre: bool = False, + skip_on_failure: bool = False, + allow_reuse: bool = False, +) -> Any: + """Decorate methods on a model indicating that they should be used to validate (and perhaps + modify) data either before or after standard model parsing/validation is performed. + + Args: + pre (bool, optional): Whether this validator should be called before the standard + validators (else after). Defaults to False. + skip_on_failure (bool, optional): Whether to stop validation and return as soon as a + failure is encountered. Defaults to False. + allow_reuse (bool, optional): Whether to track and raise an error if another validator + refers to the decorated function. Defaults to False. + + Returns: + Any: A decorator that can be used to decorate a function to be used as a root_validator. + """ + warn( + 'Pydantic V1 style `@root_validator` validators are deprecated.' + ' You should migrate to Pydantic V2 style `@model_validator` validators,' + ' see the migration guide for more details', + DeprecationWarning, + stacklevel=2, + ) + + if __args: + # Ensure a nice error is raised if someone attempts to use the bare decorator + return root_validator()(*__args) # type: ignore + + if allow_reuse is True: # pragma: no cover + warn(_ALLOW_REUSE_WARNING_MESSAGE, DeprecationWarning) + mode: Literal['before', 'after'] = 'before' if pre is True else 'after' + if pre is False and skip_on_failure is not True: + raise PydanticUserError( + 'If you use `@root_validator` with pre=False (the default) you MUST specify `skip_on_failure=True`.' + ' Note that `@root_validator` is deprecated and should be replaced with `@model_validator`.', + code='root-validator-pre-skip', + ) + + wrap = partial(_decorators_v1.make_v1_generic_root_validator, pre=pre) + + def dec(f: Callable[..., Any] | classmethod[Any, Any, Any] | staticmethod[Any, Any]) -> Any: + if _decorators.is_instance_method_from_sig(f): + raise TypeError('`@root_validator` cannot be applied to instance methods') + # auto apply the @classmethod decorator + res = _decorators.ensure_classmethod_based_on_signature(f) + dec_info = _decorators.RootValidatorDecoratorInfo(mode=mode) + return _decorators.PydanticDescriptorProxy(res, dec_info, shim=wrap) + + return dec diff --git a/venv/lib/python3.10/site-packages/pydantic/deprecated/config.py b/venv/lib/python3.10/site-packages/pydantic/deprecated/config.py new file mode 100644 index 0000000000000000000000000000000000000000..45400c6584e065715ec471af445eb78d583b16dc --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/deprecated/config.py @@ -0,0 +1,72 @@ +from __future__ import annotations as _annotations + +import warnings +from typing import TYPE_CHECKING, Any + +from typing_extensions import Literal, deprecated + +from .._internal import _config +from ..warnings import PydanticDeprecatedSince20 + +if not TYPE_CHECKING: + # See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915 + # and https://youtrack.jetbrains.com/issue/PY-51428 + DeprecationWarning = PydanticDeprecatedSince20 + +__all__ = 'BaseConfig', 'Extra' + + +class _ConfigMetaclass(type): + def __getattr__(self, item: str) -> Any: + try: + obj = _config.config_defaults[item] + warnings.warn(_config.DEPRECATION_MESSAGE, DeprecationWarning) + return obj + except KeyError as exc: + raise AttributeError(f"type object '{self.__name__}' has no attribute {exc}") from exc + + +@deprecated('BaseConfig is deprecated. Use the `pydantic.ConfigDict` instead.', category=PydanticDeprecatedSince20) +class BaseConfig(metaclass=_ConfigMetaclass): + """This class is only retained for backwards compatibility. + + !!! Warning "Deprecated" + BaseConfig is deprecated. Use the [`pydantic.ConfigDict`][pydantic.ConfigDict] instead. + """ + + def __getattr__(self, item: str) -> Any: + try: + obj = super().__getattribute__(item) + warnings.warn(_config.DEPRECATION_MESSAGE, DeprecationWarning) + return obj + except AttributeError as exc: + try: + return getattr(type(self), item) + except AttributeError: + # re-raising changes the displayed text to reflect that `self` is not a type + raise AttributeError(str(exc)) from exc + + def __init_subclass__(cls, **kwargs: Any) -> None: + warnings.warn(_config.DEPRECATION_MESSAGE, DeprecationWarning) + return super().__init_subclass__(**kwargs) + + +class _ExtraMeta(type): + def __getattribute__(self, __name: str) -> Any: + # The @deprecated decorator accesses other attributes, so we only emit a warning for the expected ones + if __name in {'allow', 'ignore', 'forbid'}: + warnings.warn( + "`pydantic.config.Extra` is deprecated, use literal values instead (e.g. `extra='allow'`)", + DeprecationWarning, + stacklevel=2, + ) + return super().__getattribute__(__name) + + +@deprecated( + "Extra is deprecated. Use literal values instead (e.g. `extra='allow'`)", category=PydanticDeprecatedSince20 +) +class Extra(metaclass=_ExtraMeta): + allow: Literal['allow'] = 'allow' + ignore: Literal['ignore'] = 'ignore' + forbid: Literal['forbid'] = 'forbid' diff --git a/venv/lib/python3.10/site-packages/pydantic/deprecated/copy_internals.py b/venv/lib/python3.10/site-packages/pydantic/deprecated/copy_internals.py new file mode 100644 index 0000000000000000000000000000000000000000..efe5de289969339d7beb390f4076cdaf26c87e06 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/deprecated/copy_internals.py @@ -0,0 +1,224 @@ +from __future__ import annotations as _annotations + +import typing +from copy import deepcopy +from enum import Enum +from typing import Any, Tuple + +import typing_extensions + +from .._internal import ( + _model_construction, + _typing_extra, + _utils, +) + +if typing.TYPE_CHECKING: + from .. import BaseModel + from .._internal._utils import AbstractSetIntStr, MappingIntStrAny + + AnyClassMethod = classmethod[Any, Any, Any] + TupleGenerator = typing.Generator[Tuple[str, Any], None, None] + Model = typing.TypeVar('Model', bound='BaseModel') + # should be `set[int] | set[str] | dict[int, IncEx] | dict[str, IncEx] | None`, but mypy can't cope + IncEx: typing_extensions.TypeAlias = 'set[int] | set[str] | dict[int, Any] | dict[str, Any] | None' + +_object_setattr = _model_construction.object_setattr + + +def _iter( + self: BaseModel, + to_dict: bool = False, + by_alias: bool = False, + include: AbstractSetIntStr | MappingIntStrAny | None = None, + exclude: AbstractSetIntStr | MappingIntStrAny | None = None, + exclude_unset: bool = False, + exclude_defaults: bool = False, + exclude_none: bool = False, +) -> TupleGenerator: + # Merge field set excludes with explicit exclude parameter with explicit overriding field set options. + # The extra "is not None" guards are not logically necessary but optimizes performance for the simple case. + if exclude is not None: + exclude = _utils.ValueItems.merge( + {k: v.exclude for k, v in self.model_fields.items() if v.exclude is not None}, exclude + ) + + if include is not None: + include = _utils.ValueItems.merge({k: True for k in self.model_fields}, include, intersect=True) + + allowed_keys = _calculate_keys(self, include=include, exclude=exclude, exclude_unset=exclude_unset) # type: ignore + if allowed_keys is None and not (to_dict or by_alias or exclude_unset or exclude_defaults or exclude_none): + # huge boost for plain _iter() + yield from self.__dict__.items() + if self.__pydantic_extra__: + yield from self.__pydantic_extra__.items() + return + + value_exclude = _utils.ValueItems(self, exclude) if exclude is not None else None + value_include = _utils.ValueItems(self, include) if include is not None else None + + if self.__pydantic_extra__ is None: + items = self.__dict__.items() + else: + items = list(self.__dict__.items()) + list(self.__pydantic_extra__.items()) + + for field_key, v in items: + if (allowed_keys is not None and field_key not in allowed_keys) or (exclude_none and v is None): + continue + + if exclude_defaults: + try: + field = self.model_fields[field_key] + except KeyError: + pass + else: + if not field.is_required() and field.default == v: + continue + + if by_alias and field_key in self.model_fields: + dict_key = self.model_fields[field_key].alias or field_key + else: + dict_key = field_key + + if to_dict or value_include or value_exclude: + v = _get_value( + type(self), + v, + to_dict=to_dict, + by_alias=by_alias, + include=value_include and value_include.for_element(field_key), + exclude=value_exclude and value_exclude.for_element(field_key), + exclude_unset=exclude_unset, + exclude_defaults=exclude_defaults, + exclude_none=exclude_none, + ) + yield dict_key, v + + +def _copy_and_set_values( + self: Model, + values: dict[str, Any], + fields_set: set[str], + extra: dict[str, Any] | None = None, + private: dict[str, Any] | None = None, + *, + deep: bool, # UP006 +) -> Model: + if deep: + # chances of having empty dict here are quite low for using smart_deepcopy + values = deepcopy(values) + extra = deepcopy(extra) + private = deepcopy(private) + + cls = self.__class__ + m = cls.__new__(cls) + _object_setattr(m, '__dict__', values) + _object_setattr(m, '__pydantic_extra__', extra) + _object_setattr(m, '__pydantic_fields_set__', fields_set) + _object_setattr(m, '__pydantic_private__', private) + + return m + + +@typing.no_type_check +def _get_value( + cls: type[BaseModel], + v: Any, + to_dict: bool, + by_alias: bool, + include: AbstractSetIntStr | MappingIntStrAny | None, + exclude: AbstractSetIntStr | MappingIntStrAny | None, + exclude_unset: bool, + exclude_defaults: bool, + exclude_none: bool, +) -> Any: + from .. import BaseModel + + if isinstance(v, BaseModel): + if to_dict: + return v.model_dump( + by_alias=by_alias, + exclude_unset=exclude_unset, + exclude_defaults=exclude_defaults, + include=include, # type: ignore + exclude=exclude, # type: ignore + exclude_none=exclude_none, + ) + else: + return v.copy(include=include, exclude=exclude) + + value_exclude = _utils.ValueItems(v, exclude) if exclude else None + value_include = _utils.ValueItems(v, include) if include else None + + if isinstance(v, dict): + return { + k_: _get_value( + cls, + v_, + to_dict=to_dict, + by_alias=by_alias, + exclude_unset=exclude_unset, + exclude_defaults=exclude_defaults, + include=value_include and value_include.for_element(k_), + exclude=value_exclude and value_exclude.for_element(k_), + exclude_none=exclude_none, + ) + for k_, v_ in v.items() + if (not value_exclude or not value_exclude.is_excluded(k_)) + and (not value_include or value_include.is_included(k_)) + } + + elif _utils.sequence_like(v): + seq_args = ( + _get_value( + cls, + v_, + to_dict=to_dict, + by_alias=by_alias, + exclude_unset=exclude_unset, + exclude_defaults=exclude_defaults, + include=value_include and value_include.for_element(i), + exclude=value_exclude and value_exclude.for_element(i), + exclude_none=exclude_none, + ) + for i, v_ in enumerate(v) + if (not value_exclude or not value_exclude.is_excluded(i)) + and (not value_include or value_include.is_included(i)) + ) + + return v.__class__(*seq_args) if _typing_extra.is_namedtuple(v.__class__) else v.__class__(seq_args) + + elif isinstance(v, Enum) and getattr(cls.model_config, 'use_enum_values', False): + return v.value + + else: + return v + + +def _calculate_keys( + self: BaseModel, + include: MappingIntStrAny | None, + exclude: MappingIntStrAny | None, + exclude_unset: bool, + update: typing.Dict[str, Any] | None = None, # noqa UP006 +) -> typing.AbstractSet[str] | None: + if include is None and exclude is None and exclude_unset is False: + return None + + keys: typing.AbstractSet[str] + if exclude_unset: + keys = self.__pydantic_fields_set__.copy() + else: + keys = set(self.__dict__.keys()) + keys = keys | (self.__pydantic_extra__ or {}).keys() + + if include is not None: + keys &= include.keys() + + if update: + keys -= update.keys() + + if exclude: + keys -= {k for k, v in exclude.items() if _utils.ValueItems.is_true(v)} + + return keys diff --git a/venv/lib/python3.10/site-packages/pydantic/deprecated/decorator.py b/venv/lib/python3.10/site-packages/pydantic/deprecated/decorator.py new file mode 100644 index 0000000000000000000000000000000000000000..36bd069001f411bf7a5eb0afd7d3744c628c1a42 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/deprecated/decorator.py @@ -0,0 +1,279 @@ +import warnings +from functools import wraps +from typing import TYPE_CHECKING, Any, Callable, Dict, List, Mapping, Optional, Tuple, Type, TypeVar, Union, overload + +from typing_extensions import deprecated + +from .._internal import _config, _typing_extra +from ..alias_generators import to_pascal +from ..errors import PydanticUserError +from ..functional_validators import field_validator +from ..main import BaseModel, create_model +from ..warnings import PydanticDeprecatedSince20 + +if not TYPE_CHECKING: + # See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915 + # and https://youtrack.jetbrains.com/issue/PY-51428 + DeprecationWarning = PydanticDeprecatedSince20 + +__all__ = ('validate_arguments',) + +if TYPE_CHECKING: + AnyCallable = Callable[..., Any] + + AnyCallableT = TypeVar('AnyCallableT', bound=AnyCallable) + ConfigType = Union[None, Type[Any], Dict[str, Any]] + + +@overload +def validate_arguments(func: None = None, *, config: 'ConfigType' = None) -> Callable[['AnyCallableT'], 'AnyCallableT']: + ... + + +@overload +def validate_arguments(func: 'AnyCallableT') -> 'AnyCallableT': + ... + + +@deprecated( + 'The `validate_arguments` method is deprecated; use `validate_call` instead.', + category=None, +) +def validate_arguments(func: Optional['AnyCallableT'] = None, *, config: 'ConfigType' = None) -> Any: + """Decorator to validate the arguments passed to a function.""" + warnings.warn( + 'The `validate_arguments` method is deprecated; use `validate_call` instead.', + PydanticDeprecatedSince20, + stacklevel=2, + ) + + def validate(_func: 'AnyCallable') -> 'AnyCallable': + vd = ValidatedFunction(_func, config) + + @wraps(_func) + def wrapper_function(*args: Any, **kwargs: Any) -> Any: + return vd.call(*args, **kwargs) + + wrapper_function.vd = vd # type: ignore + wrapper_function.validate = vd.init_model_instance # type: ignore + wrapper_function.raw_function = vd.raw_function # type: ignore + wrapper_function.model = vd.model # type: ignore + return wrapper_function + + if func: + return validate(func) + else: + return validate + + +ALT_V_ARGS = 'v__args' +ALT_V_KWARGS = 'v__kwargs' +V_POSITIONAL_ONLY_NAME = 'v__positional_only' +V_DUPLICATE_KWARGS = 'v__duplicate_kwargs' + + +class ValidatedFunction: + def __init__(self, function: 'AnyCallable', config: 'ConfigType'): + from inspect import Parameter, signature + + parameters: Mapping[str, Parameter] = signature(function).parameters + + if parameters.keys() & {ALT_V_ARGS, ALT_V_KWARGS, V_POSITIONAL_ONLY_NAME, V_DUPLICATE_KWARGS}: + raise PydanticUserError( + f'"{ALT_V_ARGS}", "{ALT_V_KWARGS}", "{V_POSITIONAL_ONLY_NAME}" and "{V_DUPLICATE_KWARGS}" ' + f'are not permitted as argument names when using the "{validate_arguments.__name__}" decorator', + code=None, + ) + + self.raw_function = function + self.arg_mapping: Dict[int, str] = {} + self.positional_only_args: set[str] = set() + self.v_args_name = 'args' + self.v_kwargs_name = 'kwargs' + + type_hints = _typing_extra.get_type_hints(function, include_extras=True) + takes_args = False + takes_kwargs = False + fields: Dict[str, Tuple[Any, Any]] = {} + for i, (name, p) in enumerate(parameters.items()): + if p.annotation is p.empty: + annotation = Any + else: + annotation = type_hints[name] + + default = ... if p.default is p.empty else p.default + if p.kind == Parameter.POSITIONAL_ONLY: + self.arg_mapping[i] = name + fields[name] = annotation, default + fields[V_POSITIONAL_ONLY_NAME] = List[str], None + self.positional_only_args.add(name) + elif p.kind == Parameter.POSITIONAL_OR_KEYWORD: + self.arg_mapping[i] = name + fields[name] = annotation, default + fields[V_DUPLICATE_KWARGS] = List[str], None + elif p.kind == Parameter.KEYWORD_ONLY: + fields[name] = annotation, default + elif p.kind == Parameter.VAR_POSITIONAL: + self.v_args_name = name + fields[name] = Tuple[annotation, ...], None + takes_args = True + else: + assert p.kind == Parameter.VAR_KEYWORD, p.kind + self.v_kwargs_name = name + fields[name] = Dict[str, annotation], None + takes_kwargs = True + + # these checks avoid a clash between "args" and a field with that name + if not takes_args and self.v_args_name in fields: + self.v_args_name = ALT_V_ARGS + + # same with "kwargs" + if not takes_kwargs and self.v_kwargs_name in fields: + self.v_kwargs_name = ALT_V_KWARGS + + if not takes_args: + # we add the field so validation below can raise the correct exception + fields[self.v_args_name] = List[Any], None + + if not takes_kwargs: + # same with kwargs + fields[self.v_kwargs_name] = Dict[Any, Any], None + + self.create_model(fields, takes_args, takes_kwargs, config) + + def init_model_instance(self, *args: Any, **kwargs: Any) -> BaseModel: + values = self.build_values(args, kwargs) + return self.model(**values) + + def call(self, *args: Any, **kwargs: Any) -> Any: + m = self.init_model_instance(*args, **kwargs) + return self.execute(m) + + def build_values(self, args: Tuple[Any, ...], kwargs: Dict[str, Any]) -> Dict[str, Any]: + values: Dict[str, Any] = {} + if args: + arg_iter = enumerate(args) + while True: + try: + i, a = next(arg_iter) + except StopIteration: + break + arg_name = self.arg_mapping.get(i) + if arg_name is not None: + values[arg_name] = a + else: + values[self.v_args_name] = [a] + [a for _, a in arg_iter] + break + + var_kwargs: Dict[str, Any] = {} + wrong_positional_args = [] + duplicate_kwargs = [] + fields_alias = [ + field.alias + for name, field in self.model.model_fields.items() + if name not in (self.v_args_name, self.v_kwargs_name) + ] + non_var_fields = set(self.model.model_fields) - {self.v_args_name, self.v_kwargs_name} + for k, v in kwargs.items(): + if k in non_var_fields or k in fields_alias: + if k in self.positional_only_args: + wrong_positional_args.append(k) + if k in values: + duplicate_kwargs.append(k) + values[k] = v + else: + var_kwargs[k] = v + + if var_kwargs: + values[self.v_kwargs_name] = var_kwargs + if wrong_positional_args: + values[V_POSITIONAL_ONLY_NAME] = wrong_positional_args + if duplicate_kwargs: + values[V_DUPLICATE_KWARGS] = duplicate_kwargs + return values + + def execute(self, m: BaseModel) -> Any: + d = {k: v for k, v in m.__dict__.items() if k in m.__pydantic_fields_set__ or m.model_fields[k].default_factory} + var_kwargs = d.pop(self.v_kwargs_name, {}) + + if self.v_args_name in d: + args_: List[Any] = [] + in_kwargs = False + kwargs = {} + for name, value in d.items(): + if in_kwargs: + kwargs[name] = value + elif name == self.v_args_name: + args_ += value + in_kwargs = True + else: + args_.append(value) + return self.raw_function(*args_, **kwargs, **var_kwargs) + elif self.positional_only_args: + args_ = [] + kwargs = {} + for name, value in d.items(): + if name in self.positional_only_args: + args_.append(value) + else: + kwargs[name] = value + return self.raw_function(*args_, **kwargs, **var_kwargs) + else: + return self.raw_function(**d, **var_kwargs) + + def create_model(self, fields: Dict[str, Any], takes_args: bool, takes_kwargs: bool, config: 'ConfigType') -> None: + pos_args = len(self.arg_mapping) + + config_wrapper = _config.ConfigWrapper(config) + + if config_wrapper.alias_generator: + raise PydanticUserError( + 'Setting the "alias_generator" property on custom Config for ' + '@validate_arguments is not yet supported, please remove.', + code=None, + ) + if config_wrapper.extra is None: + config_wrapper.config_dict['extra'] = 'forbid' + + class DecoratorBaseModel(BaseModel): + @field_validator(self.v_args_name, check_fields=False) + @classmethod + def check_args(cls, v: Optional[List[Any]]) -> Optional[List[Any]]: + if takes_args or v is None: + return v + + raise TypeError(f'{pos_args} positional arguments expected but {pos_args + len(v)} given') + + @field_validator(self.v_kwargs_name, check_fields=False) + @classmethod + def check_kwargs(cls, v: Optional[Dict[str, Any]]) -> Optional[Dict[str, Any]]: + if takes_kwargs or v is None: + return v + + plural = '' if len(v) == 1 else 's' + keys = ', '.join(map(repr, v.keys())) + raise TypeError(f'unexpected keyword argument{plural}: {keys}') + + @field_validator(V_POSITIONAL_ONLY_NAME, check_fields=False) + @classmethod + def check_positional_only(cls, v: Optional[List[str]]) -> None: + if v is None: + return + + plural = '' if len(v) == 1 else 's' + keys = ', '.join(map(repr, v)) + raise TypeError(f'positional-only argument{plural} passed as keyword argument{plural}: {keys}') + + @field_validator(V_DUPLICATE_KWARGS, check_fields=False) + @classmethod + def check_duplicate_kwargs(cls, v: Optional[List[str]]) -> None: + if v is None: + return + + plural = '' if len(v) == 1 else 's' + keys = ', '.join(map(repr, v)) + raise TypeError(f'multiple values for argument{plural}: {keys}') + + model_config = config_wrapper.config_dict + + self.model = create_model(to_pascal(self.raw_function.__name__), __base__=DecoratorBaseModel, **fields) diff --git a/venv/lib/python3.10/site-packages/pydantic/deprecated/json.py b/venv/lib/python3.10/site-packages/pydantic/deprecated/json.py new file mode 100644 index 0000000000000000000000000000000000000000..79e2f44a9da323e7c9754083d9dd6155862cb203 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/deprecated/json.py @@ -0,0 +1,140 @@ +import datetime +import warnings +from collections import deque +from decimal import Decimal +from enum import Enum +from ipaddress import IPv4Address, IPv4Interface, IPv4Network, IPv6Address, IPv6Interface, IPv6Network +from pathlib import Path +from re import Pattern +from types import GeneratorType +from typing import TYPE_CHECKING, Any, Callable, Dict, Type, Union +from uuid import UUID + +from typing_extensions import deprecated + +from ..color import Color +from ..networks import NameEmail +from ..types import SecretBytes, SecretStr +from ..warnings import PydanticDeprecatedSince20 + +if not TYPE_CHECKING: + # See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915 + # and https://youtrack.jetbrains.com/issue/PY-51428 + DeprecationWarning = PydanticDeprecatedSince20 + +__all__ = 'pydantic_encoder', 'custom_pydantic_encoder', 'timedelta_isoformat' + + +def isoformat(o: Union[datetime.date, datetime.time]) -> str: + return o.isoformat() + + +def decimal_encoder(dec_value: Decimal) -> Union[int, float]: + """Encodes a Decimal as int of there's no exponent, otherwise float. + + This is useful when we use ConstrainedDecimal to represent Numeric(x,0) + where a integer (but not int typed) is used. Encoding this as a float + results in failed round-tripping between encode and parse. + Our Id type is a prime example of this. + + >>> decimal_encoder(Decimal("1.0")) + 1.0 + + >>> decimal_encoder(Decimal("1")) + 1 + """ + exponent = dec_value.as_tuple().exponent + if isinstance(exponent, int) and exponent >= 0: + return int(dec_value) + else: + return float(dec_value) + + +ENCODERS_BY_TYPE: Dict[Type[Any], Callable[[Any], Any]] = { + bytes: lambda o: o.decode(), + Color: str, + datetime.date: isoformat, + datetime.datetime: isoformat, + datetime.time: isoformat, + datetime.timedelta: lambda td: td.total_seconds(), + Decimal: decimal_encoder, + Enum: lambda o: o.value, + frozenset: list, + deque: list, + GeneratorType: list, + IPv4Address: str, + IPv4Interface: str, + IPv4Network: str, + IPv6Address: str, + IPv6Interface: str, + IPv6Network: str, + NameEmail: str, + Path: str, + Pattern: lambda o: o.pattern, + SecretBytes: str, + SecretStr: str, + set: list, + UUID: str, +} + + +@deprecated( + '`pydantic_encoder` is deprecated, use `pydantic_core.to_jsonable_python` instead.', + category=None, +) +def pydantic_encoder(obj: Any) -> Any: + warnings.warn( + '`pydantic_encoder` is deprecated, use `pydantic_core.to_jsonable_python` instead.', + category=PydanticDeprecatedSince20, + stacklevel=2, + ) + from dataclasses import asdict, is_dataclass + + from ..main import BaseModel + + if isinstance(obj, BaseModel): + return obj.model_dump() + elif is_dataclass(obj): + return asdict(obj) + + # Check the class type and its superclasses for a matching encoder + for base in obj.__class__.__mro__[:-1]: + try: + encoder = ENCODERS_BY_TYPE[base] + except KeyError: + continue + return encoder(obj) + else: # We have exited the for loop without finding a suitable encoder + raise TypeError(f"Object of type '{obj.__class__.__name__}' is not JSON serializable") + + +# TODO: Add a suggested migration path once there is a way to use custom encoders +@deprecated( + '`custom_pydantic_encoder` is deprecated, use `BaseModel.model_dump` instead.', + category=None, +) +def custom_pydantic_encoder(type_encoders: Dict[Any, Callable[[Type[Any]], Any]], obj: Any) -> Any: + warnings.warn( + '`custom_pydantic_encoder` is deprecated, use `BaseModel.model_dump` instead.', + category=PydanticDeprecatedSince20, + stacklevel=2, + ) + # Check the class type and its superclasses for a matching encoder + for base in obj.__class__.__mro__[:-1]: + try: + encoder = type_encoders[base] + except KeyError: + continue + + return encoder(obj) + else: # We have exited the for loop without finding a suitable encoder + return pydantic_encoder(obj) + + +@deprecated('`timedelta_isoformat` is deprecated.', category=None) +def timedelta_isoformat(td: datetime.timedelta) -> str: + """ISO 8601 encoding for Python timedelta object.""" + warnings.warn('`timedelta_isoformat` is deprecated.', category=PydanticDeprecatedSince20, stacklevel=2) + minutes, seconds = divmod(td.seconds, 60) + hours, minutes = divmod(minutes, 60) + return f'{"-" if td.days < 0 else ""}P{abs(td.days)}DT{hours:d}H{minutes:d}M{seconds:d}.{td.microseconds:06d}S' diff --git a/venv/lib/python3.10/site-packages/pydantic/deprecated/parse.py b/venv/lib/python3.10/site-packages/pydantic/deprecated/parse.py new file mode 100644 index 0000000000000000000000000000000000000000..2a92e62b7b2e8dab77cbe0c2dbb79c810af7f452 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/deprecated/parse.py @@ -0,0 +1,80 @@ +from __future__ import annotations + +import json +import pickle +import warnings +from enum import Enum +from pathlib import Path +from typing import TYPE_CHECKING, Any, Callable + +from typing_extensions import deprecated + +from ..warnings import PydanticDeprecatedSince20 + +if not TYPE_CHECKING: + # See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915 + # and https://youtrack.jetbrains.com/issue/PY-51428 + DeprecationWarning = PydanticDeprecatedSince20 + + +class Protocol(str, Enum): + json = 'json' + pickle = 'pickle' + + +@deprecated('`load_str_bytes` is deprecated.', category=None) +def load_str_bytes( + b: str | bytes, + *, + content_type: str | None = None, + encoding: str = 'utf8', + proto: Protocol | None = None, + allow_pickle: bool = False, + json_loads: Callable[[str], Any] = json.loads, +) -> Any: + warnings.warn('`load_str_bytes` is deprecated.', category=PydanticDeprecatedSince20, stacklevel=2) + if proto is None and content_type: + if content_type.endswith(('json', 'javascript')): + pass + elif allow_pickle and content_type.endswith('pickle'): + proto = Protocol.pickle + else: + raise TypeError(f'Unknown content-type: {content_type}') + + proto = proto or Protocol.json + + if proto == Protocol.json: + if isinstance(b, bytes): + b = b.decode(encoding) + return json_loads(b) # type: ignore + elif proto == Protocol.pickle: + if not allow_pickle: + raise RuntimeError('Trying to decode with pickle with allow_pickle=False') + bb = b if isinstance(b, bytes) else b.encode() # type: ignore + return pickle.loads(bb) + else: + raise TypeError(f'Unknown protocol: {proto}') + + +@deprecated('`load_file` is deprecated.', category=None) +def load_file( + path: str | Path, + *, + content_type: str | None = None, + encoding: str = 'utf8', + proto: Protocol | None = None, + allow_pickle: bool = False, + json_loads: Callable[[str], Any] = json.loads, +) -> Any: + warnings.warn('`load_file` is deprecated.', category=PydanticDeprecatedSince20, stacklevel=2) + path = Path(path) + b = path.read_bytes() + if content_type is None: + if path.suffix in ('.js', '.json'): + proto = Protocol.json + elif path.suffix == '.pkl': + proto = Protocol.pickle + + return load_str_bytes( + b, proto=proto, content_type=content_type, encoding=encoding, allow_pickle=allow_pickle, json_loads=json_loads + ) diff --git a/venv/lib/python3.10/site-packages/pydantic/deprecated/tools.py b/venv/lib/python3.10/site-packages/pydantic/deprecated/tools.py new file mode 100644 index 0000000000000000000000000000000000000000..b04eae400fd445201600bf6b1b4dd1d9d9ec6035 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/deprecated/tools.py @@ -0,0 +1,103 @@ +from __future__ import annotations + +import json +import warnings +from typing import TYPE_CHECKING, Any, Callable, Type, TypeVar, Union + +from typing_extensions import deprecated + +from ..json_schema import DEFAULT_REF_TEMPLATE, GenerateJsonSchema +from ..type_adapter import TypeAdapter +from ..warnings import PydanticDeprecatedSince20 + +if not TYPE_CHECKING: + # See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915 + # and https://youtrack.jetbrains.com/issue/PY-51428 + DeprecationWarning = PydanticDeprecatedSince20 + +__all__ = 'parse_obj_as', 'schema_of', 'schema_json_of' + +NameFactory = Union[str, Callable[[Type[Any]], str]] + + +T = TypeVar('T') + + +@deprecated( + '`parse_obj_as` is deprecated. Use `pydantic.TypeAdapter.validate_python` instead.', + category=None, +) +def parse_obj_as(type_: type[T], obj: Any, type_name: NameFactory | None = None) -> T: + warnings.warn( + '`parse_obj_as` is deprecated. Use `pydantic.TypeAdapter.validate_python` instead.', + category=PydanticDeprecatedSince20, + stacklevel=2, + ) + if type_name is not None: # pragma: no cover + warnings.warn( + 'The type_name parameter is deprecated. parse_obj_as no longer creates temporary models', + DeprecationWarning, + stacklevel=2, + ) + return TypeAdapter(type_).validate_python(obj) + + +@deprecated( + '`schema_of` is deprecated. Use `pydantic.TypeAdapter.json_schema` instead.', + category=None, +) +def schema_of( + type_: Any, + *, + title: NameFactory | None = None, + by_alias: bool = True, + ref_template: str = DEFAULT_REF_TEMPLATE, + schema_generator: type[GenerateJsonSchema] = GenerateJsonSchema, +) -> dict[str, Any]: + """Generate a JSON schema (as dict) for the passed model or dynamically generated one.""" + warnings.warn( + '`schema_of` is deprecated. Use `pydantic.TypeAdapter.json_schema` instead.', + category=PydanticDeprecatedSince20, + stacklevel=2, + ) + res = TypeAdapter(type_).json_schema( + by_alias=by_alias, + schema_generator=schema_generator, + ref_template=ref_template, + ) + if title is not None: + if isinstance(title, str): + res['title'] = title + else: + warnings.warn( + 'Passing a callable for the `title` parameter is deprecated and no longer supported', + DeprecationWarning, + stacklevel=2, + ) + res['title'] = title(type_) + return res + + +@deprecated( + '`schema_json_of` is deprecated. Use `pydantic.TypeAdapter.json_schema` instead.', + category=None, +) +def schema_json_of( + type_: Any, + *, + title: NameFactory | None = None, + by_alias: bool = True, + ref_template: str = DEFAULT_REF_TEMPLATE, + schema_generator: type[GenerateJsonSchema] = GenerateJsonSchema, + **dumps_kwargs: Any, +) -> str: + """Generate a JSON schema (as JSON) for the passed model or dynamically generated one.""" + warnings.warn( + '`schema_json_of` is deprecated. Use `pydantic.TypeAdapter.json_schema` instead.', + category=PydanticDeprecatedSince20, + stacklevel=2, + ) + return json.dumps( + schema_of(type_, title=title, by_alias=by_alias, ref_template=ref_template, schema_generator=schema_generator), + **dumps_kwargs, + ) diff --git a/venv/lib/python3.10/site-packages/pydantic/plugin/__init__.py b/venv/lib/python3.10/site-packages/pydantic/plugin/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..6a9b1eb6b21d7fb6696a74f2ab8d539005bb28b9 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/plugin/__init__.py @@ -0,0 +1,170 @@ +"""Usage docs: https://docs.pydantic.dev/2.7/concepts/plugins#build-a-plugin + +Plugin interface for Pydantic plugins, and related types. +""" +from __future__ import annotations + +from typing import Any, Callable, NamedTuple + +from pydantic_core import CoreConfig, CoreSchema, ValidationError +from typing_extensions import Literal, Protocol, TypeAlias + +__all__ = ( + 'PydanticPluginProtocol', + 'BaseValidateHandlerProtocol', + 'ValidatePythonHandlerProtocol', + 'ValidateJsonHandlerProtocol', + 'ValidateStringsHandlerProtocol', + 'NewSchemaReturns', + 'SchemaTypePath', + 'SchemaKind', +) + +NewSchemaReturns: TypeAlias = 'tuple[ValidatePythonHandlerProtocol | None, ValidateJsonHandlerProtocol | None, ValidateStringsHandlerProtocol | None]' + + +class SchemaTypePath(NamedTuple): + """Path defining where `schema_type` was defined, or where `TypeAdapter` was called.""" + + module: str + name: str + + +SchemaKind: TypeAlias = Literal['BaseModel', 'TypeAdapter', 'dataclass', 'create_model', 'validate_call'] + + +class PydanticPluginProtocol(Protocol): + """Protocol defining the interface for Pydantic plugins.""" + + def new_schema_validator( + self, + schema: CoreSchema, + schema_type: Any, + schema_type_path: SchemaTypePath, + schema_kind: SchemaKind, + config: CoreConfig | None, + plugin_settings: dict[str, object], + ) -> tuple[ + ValidatePythonHandlerProtocol | None, ValidateJsonHandlerProtocol | None, ValidateStringsHandlerProtocol | None + ]: + """This method is called for each plugin every time a new [`SchemaValidator`][pydantic_core.SchemaValidator] + is created. + + It should return an event handler for each of the three validation methods, or `None` if the plugin does not + implement that method. + + Args: + schema: The schema to validate against. + schema_type: The original type which the schema was created from, e.g. the model class. + schema_type_path: Path defining where `schema_type` was defined, or where `TypeAdapter` was called. + schema_kind: The kind of schema to validate against. + config: The config to use for validation. + plugin_settings: Any plugin settings. + + Returns: + A tuple of optional event handlers for each of the three validation methods - + `validate_python`, `validate_json`, `validate_strings`. + """ + raise NotImplementedError('Pydantic plugins should implement `new_schema_validator`.') + + +class BaseValidateHandlerProtocol(Protocol): + """Base class for plugin callbacks protocols. + + You shouldn't implement this protocol directly, instead use one of the subclasses with adds the correctly + typed `on_error` method. + """ + + on_enter: Callable[..., None] + """`on_enter` is changed to be more specific on all subclasses""" + + def on_success(self, result: Any) -> None: + """Callback to be notified of successful validation. + + Args: + result: The result of the validation. + """ + return + + def on_error(self, error: ValidationError) -> None: + """Callback to be notified of validation errors. + + Args: + error: The validation error. + """ + return + + def on_exception(self, exception: Exception) -> None: + """Callback to be notified of validation exceptions. + + Args: + exception: The exception raised during validation. + """ + return + + +class ValidatePythonHandlerProtocol(BaseValidateHandlerProtocol, Protocol): + """Event handler for `SchemaValidator.validate_python`.""" + + def on_enter( + self, + input: Any, + *, + strict: bool | None = None, + from_attributes: bool | None = None, + context: dict[str, Any] | None = None, + self_instance: Any | None = None, + ) -> None: + """Callback to be notified of validation start, and create an instance of the event handler. + + Args: + input: The input to be validated. + strict: Whether to validate the object in strict mode. + from_attributes: Whether to validate objects as inputs by extracting attributes. + context: The context to use for validation, this is passed to functional validators. + self_instance: An instance of a model to set attributes on from validation, this is used when running + validation from the `__init__` method of a model. + """ + pass + + +class ValidateJsonHandlerProtocol(BaseValidateHandlerProtocol, Protocol): + """Event handler for `SchemaValidator.validate_json`.""" + + def on_enter( + self, + input: str | bytes | bytearray, + *, + strict: bool | None = None, + context: dict[str, Any] | None = None, + self_instance: Any | None = None, + ) -> None: + """Callback to be notified of validation start, and create an instance of the event handler. + + Args: + input: The JSON data to be validated. + strict: Whether to validate the object in strict mode. + context: The context to use for validation, this is passed to functional validators. + self_instance: An instance of a model to set attributes on from validation, this is used when running + validation from the `__init__` method of a model. + """ + pass + + +StringInput: TypeAlias = 'dict[str, StringInput]' + + +class ValidateStringsHandlerProtocol(BaseValidateHandlerProtocol, Protocol): + """Event handler for `SchemaValidator.validate_strings`.""" + + def on_enter( + self, input: StringInput, *, strict: bool | None = None, context: dict[str, Any] | None = None + ) -> None: + """Callback to be notified of validation start, and create an instance of the event handler. + + Args: + input: The string data to be validated. + strict: Whether to validate the object in strict mode. + context: The context to use for validation, this is passed to functional validators. + """ + pass diff --git a/venv/lib/python3.10/site-packages/pydantic/plugin/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/plugin/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f5d42b772e43cdabc8d389cad009711e8f380c9a Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/plugin/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/plugin/__pycache__/_loader.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/plugin/__pycache__/_loader.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..555186d29478a6298879fde47977ce81c8e37ab4 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/plugin/__pycache__/_loader.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/plugin/__pycache__/_schema_validator.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/plugin/__pycache__/_schema_validator.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5714a6c492df4c3d3f68bb449604519bc5eb4174 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/plugin/__pycache__/_schema_validator.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/plugin/_loader.py b/venv/lib/python3.10/site-packages/pydantic/plugin/_loader.py new file mode 100644 index 0000000000000000000000000000000000000000..2f90dc541cd9dbf42d2cbb0a1a408120b2603161 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/plugin/_loader.py @@ -0,0 +1,56 @@ +from __future__ import annotations + +import importlib.metadata as importlib_metadata +import os +import warnings +from typing import TYPE_CHECKING, Final, Iterable + +if TYPE_CHECKING: + from . import PydanticPluginProtocol + + +PYDANTIC_ENTRY_POINT_GROUP: Final[str] = 'pydantic' + +# cache of plugins +_plugins: dict[str, PydanticPluginProtocol] | None = None +# return no plugins while loading plugins to avoid recursion and errors while import plugins +# this means that if plugins use pydantic +_loading_plugins: bool = False + + +def get_plugins() -> Iterable[PydanticPluginProtocol]: + """Load plugins for Pydantic. + + Inspired by: https://github.com/pytest-dev/pluggy/blob/1.3.0/src/pluggy/_manager.py#L376-L402 + """ + disabled_plugins = os.getenv('PYDANTIC_DISABLE_PLUGINS') + global _plugins, _loading_plugins + if _loading_plugins: + # this happens when plugins themselves use pydantic, we return no plugins + return () + elif disabled_plugins in ('__all__', '1', 'true'): + return () + elif _plugins is None: + _plugins = {} + # set _loading_plugins so any plugins that use pydantic don't themselves use plugins + _loading_plugins = True + try: + for dist in importlib_metadata.distributions(): + for entry_point in dist.entry_points: + if entry_point.group != PYDANTIC_ENTRY_POINT_GROUP: + continue + if entry_point.value in _plugins: + continue + if disabled_plugins is not None and entry_point.name in disabled_plugins.split(','): + continue + try: + _plugins[entry_point.value] = entry_point.load() + except (ImportError, AttributeError) as e: + warnings.warn( + f'{e.__class__.__name__} while loading the `{entry_point.name}` Pydantic plugin, ' + f'this plugin will not be installed.\n\n{e!r}' + ) + finally: + _loading_plugins = False + + return _plugins.values() diff --git a/venv/lib/python3.10/site-packages/pydantic/plugin/_schema_validator.py b/venv/lib/python3.10/site-packages/pydantic/plugin/_schema_validator.py new file mode 100644 index 0000000000000000000000000000000000000000..7186ece61d3679aac1a6cd7d830c044c4b346eb5 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/plugin/_schema_validator.py @@ -0,0 +1,138 @@ +"""Pluggable schema validator for pydantic.""" +from __future__ import annotations + +import functools +from typing import TYPE_CHECKING, Any, Callable, Iterable, TypeVar + +from pydantic_core import CoreConfig, CoreSchema, SchemaValidator, ValidationError +from typing_extensions import Literal, ParamSpec + +if TYPE_CHECKING: + from . import BaseValidateHandlerProtocol, PydanticPluginProtocol, SchemaKind, SchemaTypePath + + +P = ParamSpec('P') +R = TypeVar('R') +Event = Literal['on_validate_python', 'on_validate_json', 'on_validate_strings'] +events: list[Event] = list(Event.__args__) # type: ignore + + +def create_schema_validator( + schema: CoreSchema, + schema_type: Any, + schema_type_module: str, + schema_type_name: str, + schema_kind: SchemaKind, + config: CoreConfig | None = None, + plugin_settings: dict[str, Any] | None = None, +) -> SchemaValidator: + """Create a `SchemaValidator` or `PluggableSchemaValidator` if plugins are installed. + + Returns: + If plugins are installed then return `PluggableSchemaValidator`, otherwise return `SchemaValidator`. + """ + from . import SchemaTypePath + from ._loader import get_plugins + + plugins = get_plugins() + if plugins: + return PluggableSchemaValidator( + schema, + schema_type, + SchemaTypePath(schema_type_module, schema_type_name), + schema_kind, + config, + plugins, + plugin_settings or {}, + ) # type: ignore + else: + return SchemaValidator(schema, config) + + +class PluggableSchemaValidator: + """Pluggable schema validator.""" + + __slots__ = '_schema_validator', 'validate_json', 'validate_python', 'validate_strings' + + def __init__( + self, + schema: CoreSchema, + schema_type: Any, + schema_type_path: SchemaTypePath, + schema_kind: SchemaKind, + config: CoreConfig | None, + plugins: Iterable[PydanticPluginProtocol], + plugin_settings: dict[str, Any], + ) -> None: + self._schema_validator = SchemaValidator(schema, config) + + python_event_handlers: list[BaseValidateHandlerProtocol] = [] + json_event_handlers: list[BaseValidateHandlerProtocol] = [] + strings_event_handlers: list[BaseValidateHandlerProtocol] = [] + for plugin in plugins: + try: + p, j, s = plugin.new_schema_validator( + schema, schema_type, schema_type_path, schema_kind, config, plugin_settings + ) + except TypeError as e: # pragma: no cover + raise TypeError(f'Error using plugin `{plugin.__module__}:{plugin.__class__.__name__}`: {e}') from e + if p is not None: + python_event_handlers.append(p) + if j is not None: + json_event_handlers.append(j) + if s is not None: + strings_event_handlers.append(s) + + self.validate_python = build_wrapper(self._schema_validator.validate_python, python_event_handlers) + self.validate_json = build_wrapper(self._schema_validator.validate_json, json_event_handlers) + self.validate_strings = build_wrapper(self._schema_validator.validate_strings, strings_event_handlers) + + def __getattr__(self, name: str) -> Any: + return getattr(self._schema_validator, name) + + +def build_wrapper(func: Callable[P, R], event_handlers: list[BaseValidateHandlerProtocol]) -> Callable[P, R]: + if not event_handlers: + return func + else: + on_enters = tuple(h.on_enter for h in event_handlers if filter_handlers(h, 'on_enter')) + on_successes = tuple(h.on_success for h in event_handlers if filter_handlers(h, 'on_success')) + on_errors = tuple(h.on_error for h in event_handlers if filter_handlers(h, 'on_error')) + on_exceptions = tuple(h.on_exception for h in event_handlers if filter_handlers(h, 'on_exception')) + + @functools.wraps(func) + def wrapper(*args: P.args, **kwargs: P.kwargs) -> R: + for on_enter_handler in on_enters: + on_enter_handler(*args, **kwargs) + + try: + result = func(*args, **kwargs) + except ValidationError as error: + for on_error_handler in on_errors: + on_error_handler(error) + raise + except Exception as exception: + for on_exception_handler in on_exceptions: + on_exception_handler(exception) + raise + else: + for on_success_handler in on_successes: + on_success_handler(result) + return result + + return wrapper + + +def filter_handlers(handler_cls: BaseValidateHandlerProtocol, method_name: str) -> bool: + """Filter out handler methods which are not implemented by the plugin directly - e.g. are missing + or are inherited from the protocol. + """ + handler = getattr(handler_cls, method_name, None) + if handler is None: + return False + elif handler.__module__ == 'pydantic.plugin': + # this is the original handler, from the protocol due to runtime inheritance + # we don't want to call it + return False + else: + return True diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/__init__.py b/venv/lib/python3.10/site-packages/pydantic/v1/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..3bf1418f38b0349f0476dfaa433e3e99e1a6227a --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/v1/__init__.py @@ -0,0 +1,131 @@ +# flake8: noqa +from . import dataclasses +from .annotated_types import create_model_from_namedtuple, create_model_from_typeddict +from .class_validators import root_validator, validator +from .config import BaseConfig, ConfigDict, Extra +from .decorator import validate_arguments +from .env_settings import BaseSettings +from .error_wrappers import ValidationError +from .errors import * +from .fields import Field, PrivateAttr, Required +from .main import * +from .networks import * +from .parse import Protocol +from .tools import * +from .types import * +from .version import VERSION, compiled + +__version__ = VERSION + +# WARNING __all__ from .errors is not included here, it will be removed as an export here in v2 +# please use "from pydantic.errors import ..." instead +__all__ = [ + # annotated types utils + 'create_model_from_namedtuple', + 'create_model_from_typeddict', + # dataclasses + 'dataclasses', + # class_validators + 'root_validator', + 'validator', + # config + 'BaseConfig', + 'ConfigDict', + 'Extra', + # decorator + 'validate_arguments', + # env_settings + 'BaseSettings', + # error_wrappers + 'ValidationError', + # fields + 'Field', + 'Required', + # main + 'BaseModel', + 'create_model', + 'validate_model', + # network + 'AnyUrl', + 'AnyHttpUrl', + 'FileUrl', + 'HttpUrl', + 'stricturl', + 'EmailStr', + 'NameEmail', + 'IPvAnyAddress', + 'IPvAnyInterface', + 'IPvAnyNetwork', + 'PostgresDsn', + 'CockroachDsn', + 'AmqpDsn', + 'RedisDsn', + 'MongoDsn', + 'KafkaDsn', + 'validate_email', + # parse + 'Protocol', + # tools + 'parse_file_as', + 'parse_obj_as', + 'parse_raw_as', + 'schema_of', + 'schema_json_of', + # types + 'NoneStr', + 'NoneBytes', + 'StrBytes', + 'NoneStrBytes', + 'StrictStr', + 'ConstrainedBytes', + 'conbytes', + 'ConstrainedList', + 'conlist', + 'ConstrainedSet', + 'conset', + 'ConstrainedFrozenSet', + 'confrozenset', + 'ConstrainedStr', + 'constr', + 'PyObject', + 'ConstrainedInt', + 'conint', + 'PositiveInt', + 'NegativeInt', + 'NonNegativeInt', + 'NonPositiveInt', + 'ConstrainedFloat', + 'confloat', + 'PositiveFloat', + 'NegativeFloat', + 'NonNegativeFloat', + 'NonPositiveFloat', + 'FiniteFloat', + 'ConstrainedDecimal', + 'condecimal', + 'ConstrainedDate', + 'condate', + 'UUID1', + 'UUID3', + 'UUID4', + 'UUID5', + 'FilePath', + 'DirectoryPath', + 'Json', + 'JsonWrapper', + 'SecretField', + 'SecretStr', + 'SecretBytes', + 'StrictBool', + 'StrictBytes', + 'StrictInt', + 'StrictFloat', + 'PaymentCardNumber', + 'PrivateAttr', + 'ByteSize', + 'PastDate', + 'FutureDate', + # version + 'compiled', + 'VERSION', +] diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3e1f184e9c1eb926e70926d3e098cb01190eb713 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/_hypothesis_plugin.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/_hypothesis_plugin.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7dc226ff4e696efab40d44dc476a5788764dc0fb Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/_hypothesis_plugin.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/annotated_types.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/annotated_types.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..22d3f63b1fcbe84ec614eb8c6ec39c64408e1995 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/annotated_types.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/class_validators.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/class_validators.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..96d14e2b86ce0214c5cfcad26dc95d881ba1163d Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/class_validators.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/color.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/color.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2a4e212a544041da65a5a2b8f7ddda8f1629c2cd Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/color.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/config.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/config.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fca07ee3b0f77f8af89513884b6ffcc70378a650 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/config.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/dataclasses.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/dataclasses.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a7c5cf19f6a16046f9b2ac15b2ebbf68255f6956 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/dataclasses.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/datetime_parse.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/datetime_parse.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d091405a295645f6990a36057b258fc021e19937 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/datetime_parse.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/decorator.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/decorator.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5f73a837e9db4d9ab18cc56ca10fd5e782cee5bf Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/decorator.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/env_settings.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/env_settings.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1c914f79c60b59675425265f095d5c8a4821901f Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/env_settings.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/fields.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/fields.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..094621d8212010bd0bc7cd32d60ac80a47870124 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/fields.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/generics.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/generics.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..41fd85845a57e43c39977fc4ccc6e4d1677b5179 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/generics.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/main.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/main.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0480dde3b09b84ab705c790728c9140ece4aa0f6 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/main.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/mypy.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/mypy.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..12a85cfe34e95d6fe4794b0574b1b90fc0b83a8c Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/mypy.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/parse.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/parse.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d6ce83a6bff1bd513af9ff3118638c09d0694759 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/parse.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/schema.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/schema.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a9fdf3b921d3bd8d8595af5f0de75df3ca85eb7e Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/schema.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/tools.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/tools.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b080170dac537ca7b483f9fd2df4ff9857b6d9d3 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/tools.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/types.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/types.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3d0d691a354ca177944b20ec14500cbee614ef48 Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/types.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/typing.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/typing.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..99acb87336206e632ff9ba645078711e4c6175df Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/typing.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/utils.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/utils.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..332df6210f78989098d21029072ef7310621712a Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/utils.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/v1.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/v1.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7f68d822587ee658ede0f87ee81347a8a2ef596f Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/v1.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/version.cpython-310.pyc b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/version.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e020cb536ac3f998135a43b69d099d585e52db3a Binary files /dev/null and b/venv/lib/python3.10/site-packages/pydantic/v1/__pycache__/version.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/_hypothesis_plugin.py b/venv/lib/python3.10/site-packages/pydantic/v1/_hypothesis_plugin.py new file mode 100644 index 0000000000000000000000000000000000000000..0c529620f20cb17efc559152985dc6ccb56a20d4 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/v1/_hypothesis_plugin.py @@ -0,0 +1,391 @@ +""" +Register Hypothesis strategies for Pydantic custom types. + +This enables fully-automatic generation of test data for most Pydantic classes. + +Note that this module has *no* runtime impact on Pydantic itself; instead it +is registered as a setuptools entry point and Hypothesis will import it if +Pydantic is installed. See also: + +https://hypothesis.readthedocs.io/en/latest/strategies.html#registering-strategies-via-setuptools-entry-points +https://hypothesis.readthedocs.io/en/latest/data.html#hypothesis.strategies.register_type_strategy +https://hypothesis.readthedocs.io/en/latest/strategies.html#interaction-with-pytest-cov +https://docs.pydantic.dev/usage/types/#pydantic-types + +Note that because our motivation is to *improve user experience*, the strategies +are always sound (never generate invalid data) but sacrifice completeness for +maintainability (ie may be unable to generate some tricky but valid data). + +Finally, this module makes liberal use of `# type: ignore[]` pragmas. +This is because Hypothesis annotates `register_type_strategy()` with +`(T, SearchStrategy[T])`, but in most cases we register e.g. `ConstrainedInt` +to generate instances of the builtin `int` type which match the constraints. +""" + +import contextlib +import datetime +import ipaddress +import json +import math +from fractions import Fraction +from typing import Callable, Dict, Type, Union, cast, overload + +import hypothesis.strategies as st + +import pydantic +import pydantic.color +import pydantic.types +from pydantic.utils import lenient_issubclass + +# FilePath and DirectoryPath are explicitly unsupported, as we'd have to create +# them on-disk, and that's unsafe in general without being told *where* to do so. +# +# URLs are unsupported because it's easy for users to define their own strategy for +# "normal" URLs, and hard for us to define a general strategy which includes "weird" +# URLs but doesn't also have unpredictable performance problems. +# +# conlist() and conset() are unsupported for now, because the workarounds for +# Cython and Hypothesis to handle parametrized generic types are incompatible. +# We are rethinking Hypothesis compatibility in Pydantic v2. + +# Emails +try: + import email_validator +except ImportError: # pragma: no cover + pass +else: + + def is_valid_email(s: str) -> bool: + # Hypothesis' st.emails() occasionally generates emails like 0@A0--0.ac + # that are invalid according to email-validator, so we filter those out. + try: + email_validator.validate_email(s, check_deliverability=False) + return True + except email_validator.EmailNotValidError: # pragma: no cover + return False + + # Note that these strategies deliberately stay away from any tricky Unicode + # or other encoding issues; we're just trying to generate *something* valid. + st.register_type_strategy(pydantic.EmailStr, st.emails().filter(is_valid_email)) # type: ignore[arg-type] + st.register_type_strategy( + pydantic.NameEmail, + st.builds( + '{} <{}>'.format, # type: ignore[arg-type] + st.from_regex('[A-Za-z0-9_]+( [A-Za-z0-9_]+){0,5}', fullmatch=True), + st.emails().filter(is_valid_email), + ), + ) + +# PyObject - dotted names, in this case taken from the math module. +st.register_type_strategy( + pydantic.PyObject, # type: ignore[arg-type] + st.sampled_from( + [cast(pydantic.PyObject, f'math.{name}') for name in sorted(vars(math)) if not name.startswith('_')] + ), +) + +# CSS3 Colors; as name, hex, rgb(a) tuples or strings, or hsl strings +_color_regexes = ( + '|'.join( + ( + pydantic.color.r_hex_short, + pydantic.color.r_hex_long, + pydantic.color.r_rgb, + pydantic.color.r_rgba, + pydantic.color.r_hsl, + pydantic.color.r_hsla, + ) + ) + # Use more precise regex patterns to avoid value-out-of-range errors + .replace(pydantic.color._r_sl, r'(?:(\d\d?(?:\.\d+)?|100(?:\.0+)?)%)') + .replace(pydantic.color._r_alpha, r'(?:(0(?:\.\d+)?|1(?:\.0+)?|\.\d+|\d{1,2}%))') + .replace(pydantic.color._r_255, r'(?:((?:\d|\d\d|[01]\d\d|2[0-4]\d|25[0-4])(?:\.\d+)?|255(?:\.0+)?))') +) +st.register_type_strategy( + pydantic.color.Color, + st.one_of( + st.sampled_from(sorted(pydantic.color.COLORS_BY_NAME)), + st.tuples( + st.integers(0, 255), + st.integers(0, 255), + st.integers(0, 255), + st.none() | st.floats(0, 1) | st.floats(0, 100).map('{}%'.format), + ), + st.from_regex(_color_regexes, fullmatch=True), + ), +) + + +# Card numbers, valid according to the Luhn algorithm + + +def add_luhn_digit(card_number: str) -> str: + # See https://en.wikipedia.org/wiki/Luhn_algorithm + for digit in '0123456789': + with contextlib.suppress(Exception): + pydantic.PaymentCardNumber.validate_luhn_check_digit(card_number + digit) + return card_number + digit + raise AssertionError('Unreachable') # pragma: no cover + + +card_patterns = ( + # Note that these patterns omit the Luhn check digit; that's added by the function above + '4[0-9]{14}', # Visa + '5[12345][0-9]{13}', # Mastercard + '3[47][0-9]{12}', # American Express + '[0-26-9][0-9]{10,17}', # other (incomplete to avoid overlap) +) +st.register_type_strategy( + pydantic.PaymentCardNumber, + st.from_regex('|'.join(card_patterns), fullmatch=True).map(add_luhn_digit), # type: ignore[arg-type] +) + +# UUIDs +st.register_type_strategy(pydantic.UUID1, st.uuids(version=1)) +st.register_type_strategy(pydantic.UUID3, st.uuids(version=3)) +st.register_type_strategy(pydantic.UUID4, st.uuids(version=4)) +st.register_type_strategy(pydantic.UUID5, st.uuids(version=5)) + +# Secrets +st.register_type_strategy(pydantic.SecretBytes, st.binary().map(pydantic.SecretBytes)) +st.register_type_strategy(pydantic.SecretStr, st.text().map(pydantic.SecretStr)) + +# IP addresses, networks, and interfaces +st.register_type_strategy(pydantic.IPvAnyAddress, st.ip_addresses()) # type: ignore[arg-type] +st.register_type_strategy( + pydantic.IPvAnyInterface, + st.from_type(ipaddress.IPv4Interface) | st.from_type(ipaddress.IPv6Interface), # type: ignore[arg-type] +) +st.register_type_strategy( + pydantic.IPvAnyNetwork, + st.from_type(ipaddress.IPv4Network) | st.from_type(ipaddress.IPv6Network), # type: ignore[arg-type] +) + +# We hook into the con***() functions and the ConstrainedNumberMeta metaclass, +# so here we only have to register subclasses for other constrained types which +# don't go via those mechanisms. Then there are the registration hooks below. +st.register_type_strategy(pydantic.StrictBool, st.booleans()) +st.register_type_strategy(pydantic.StrictStr, st.text()) + + +# FutureDate, PastDate +st.register_type_strategy(pydantic.FutureDate, st.dates(min_value=datetime.date.today() + datetime.timedelta(days=1))) +st.register_type_strategy(pydantic.PastDate, st.dates(max_value=datetime.date.today() - datetime.timedelta(days=1))) + + +# Constrained-type resolver functions +# +# For these ones, we actually want to inspect the type in order to work out a +# satisfying strategy. First up, the machinery for tracking resolver functions: + +RESOLVERS: Dict[type, Callable[[type], st.SearchStrategy]] = {} # type: ignore[type-arg] + + +@overload +def _registered(typ: Type[pydantic.types.T]) -> Type[pydantic.types.T]: + pass + + +@overload +def _registered(typ: pydantic.types.ConstrainedNumberMeta) -> pydantic.types.ConstrainedNumberMeta: + pass + + +def _registered( + typ: Union[Type[pydantic.types.T], pydantic.types.ConstrainedNumberMeta] +) -> Union[Type[pydantic.types.T], pydantic.types.ConstrainedNumberMeta]: + # This function replaces the version in `pydantic.types`, in order to + # effect the registration of new constrained types so that Hypothesis + # can generate valid examples. + pydantic.types._DEFINED_TYPES.add(typ) + for supertype, resolver in RESOLVERS.items(): + if issubclass(typ, supertype): + st.register_type_strategy(typ, resolver(typ)) # type: ignore + return typ + raise NotImplementedError(f'Unknown type {typ!r} has no resolver to register') # pragma: no cover + + +def resolves( + typ: Union[type, pydantic.types.ConstrainedNumberMeta] +) -> Callable[[Callable[..., st.SearchStrategy]], Callable[..., st.SearchStrategy]]: # type: ignore[type-arg] + def inner(f): # type: ignore + assert f not in RESOLVERS + RESOLVERS[typ] = f + return f + + return inner + + +# Type-to-strategy resolver functions + + +@resolves(pydantic.JsonWrapper) +def resolve_json(cls): # type: ignore[no-untyped-def] + try: + inner = st.none() if cls.inner_type is None else st.from_type(cls.inner_type) + except Exception: # pragma: no cover + finite = st.floats(allow_infinity=False, allow_nan=False) + inner = st.recursive( + base=st.one_of(st.none(), st.booleans(), st.integers(), finite, st.text()), + extend=lambda x: st.lists(x) | st.dictionaries(st.text(), x), # type: ignore + ) + inner_type = getattr(cls, 'inner_type', None) + return st.builds( + cls.inner_type.json if lenient_issubclass(inner_type, pydantic.BaseModel) else json.dumps, + inner, + ensure_ascii=st.booleans(), + indent=st.none() | st.integers(0, 16), + sort_keys=st.booleans(), + ) + + +@resolves(pydantic.ConstrainedBytes) +def resolve_conbytes(cls): # type: ignore[no-untyped-def] # pragma: no cover + min_size = cls.min_length or 0 + max_size = cls.max_length + if not cls.strip_whitespace: + return st.binary(min_size=min_size, max_size=max_size) + # Fun with regex to ensure we neither start nor end with whitespace + repeats = '{{{},{}}}'.format( + min_size - 2 if min_size > 2 else 0, + max_size - 2 if (max_size or 0) > 2 else '', + ) + if min_size >= 2: + pattern = rf'\W.{repeats}\W' + elif min_size == 1: + pattern = rf'\W(.{repeats}\W)?' + else: + assert min_size == 0 + pattern = rf'(\W(.{repeats}\W)?)?' + return st.from_regex(pattern.encode(), fullmatch=True) + + +@resolves(pydantic.ConstrainedDecimal) +def resolve_condecimal(cls): # type: ignore[no-untyped-def] + min_value = cls.ge + max_value = cls.le + if cls.gt is not None: + assert min_value is None, 'Set `gt` or `ge`, but not both' + min_value = cls.gt + if cls.lt is not None: + assert max_value is None, 'Set `lt` or `le`, but not both' + max_value = cls.lt + s = st.decimals(min_value, max_value, allow_nan=False, places=cls.decimal_places) + if cls.lt is not None: + s = s.filter(lambda d: d < cls.lt) + if cls.gt is not None: + s = s.filter(lambda d: cls.gt < d) + return s + + +@resolves(pydantic.ConstrainedFloat) +def resolve_confloat(cls): # type: ignore[no-untyped-def] + min_value = cls.ge + max_value = cls.le + exclude_min = False + exclude_max = False + + if cls.gt is not None: + assert min_value is None, 'Set `gt` or `ge`, but not both' + min_value = cls.gt + exclude_min = True + if cls.lt is not None: + assert max_value is None, 'Set `lt` or `le`, but not both' + max_value = cls.lt + exclude_max = True + + if cls.multiple_of is None: + return st.floats(min_value, max_value, exclude_min=exclude_min, exclude_max=exclude_max, allow_nan=False) + + if min_value is not None: + min_value = math.ceil(min_value / cls.multiple_of) + if exclude_min: + min_value = min_value + 1 + if max_value is not None: + assert max_value >= cls.multiple_of, 'Cannot build model with max value smaller than multiple of' + max_value = math.floor(max_value / cls.multiple_of) + if exclude_max: + max_value = max_value - 1 + + return st.integers(min_value, max_value).map(lambda x: x * cls.multiple_of) + + +@resolves(pydantic.ConstrainedInt) +def resolve_conint(cls): # type: ignore[no-untyped-def] + min_value = cls.ge + max_value = cls.le + if cls.gt is not None: + assert min_value is None, 'Set `gt` or `ge`, but not both' + min_value = cls.gt + 1 + if cls.lt is not None: + assert max_value is None, 'Set `lt` or `le`, but not both' + max_value = cls.lt - 1 + + if cls.multiple_of is None or cls.multiple_of == 1: + return st.integers(min_value, max_value) + + # These adjustments and the .map handle integer-valued multiples, while the + # .filter handles trickier cases as for confloat. + if min_value is not None: + min_value = math.ceil(Fraction(min_value) / Fraction(cls.multiple_of)) + if max_value is not None: + max_value = math.floor(Fraction(max_value) / Fraction(cls.multiple_of)) + return st.integers(min_value, max_value).map(lambda x: x * cls.multiple_of) + + +@resolves(pydantic.ConstrainedDate) +def resolve_condate(cls): # type: ignore[no-untyped-def] + if cls.ge is not None: + assert cls.gt is None, 'Set `gt` or `ge`, but not both' + min_value = cls.ge + elif cls.gt is not None: + min_value = cls.gt + datetime.timedelta(days=1) + else: + min_value = datetime.date.min + if cls.le is not None: + assert cls.lt is None, 'Set `lt` or `le`, but not both' + max_value = cls.le + elif cls.lt is not None: + max_value = cls.lt - datetime.timedelta(days=1) + else: + max_value = datetime.date.max + return st.dates(min_value, max_value) + + +@resolves(pydantic.ConstrainedStr) +def resolve_constr(cls): # type: ignore[no-untyped-def] # pragma: no cover + min_size = cls.min_length or 0 + max_size = cls.max_length + + if cls.regex is None and not cls.strip_whitespace: + return st.text(min_size=min_size, max_size=max_size) + + if cls.regex is not None: + strategy = st.from_regex(cls.regex) + if cls.strip_whitespace: + strategy = strategy.filter(lambda s: s == s.strip()) + elif cls.strip_whitespace: + repeats = '{{{},{}}}'.format( + min_size - 2 if min_size > 2 else 0, + max_size - 2 if (max_size or 0) > 2 else '', + ) + if min_size >= 2: + strategy = st.from_regex(rf'\W.{repeats}\W') + elif min_size == 1: + strategy = st.from_regex(rf'\W(.{repeats}\W)?') + else: + assert min_size == 0 + strategy = st.from_regex(rf'(\W(.{repeats}\W)?)?') + + if min_size == 0 and max_size is None: + return strategy + elif max_size is None: + return strategy.filter(lambda s: min_size <= len(s)) + return strategy.filter(lambda s: min_size <= len(s) <= max_size) + + +# Finally, register all previously-defined types, and patch in our new function +for typ in list(pydantic.types._DEFINED_TYPES): + _registered(typ) +pydantic.types._registered = _registered +st.register_type_strategy(pydantic.Json, resolve_json) diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/annotated_types.py b/venv/lib/python3.10/site-packages/pydantic/v1/annotated_types.py new file mode 100644 index 0000000000000000000000000000000000000000..d333457f31b7e277388c4efcd9891abcd9258fe8 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/v1/annotated_types.py @@ -0,0 +1,72 @@ +import sys +from typing import TYPE_CHECKING, Any, Dict, FrozenSet, NamedTuple, Type + +from .fields import Required +from .main import BaseModel, create_model +from .typing import is_typeddict, is_typeddict_special + +if TYPE_CHECKING: + from typing_extensions import TypedDict + +if sys.version_info < (3, 11): + + def is_legacy_typeddict(typeddict_cls: Type['TypedDict']) -> bool: # type: ignore[valid-type] + return is_typeddict(typeddict_cls) and type(typeddict_cls).__module__ == 'typing' + +else: + + def is_legacy_typeddict(_: Any) -> Any: + return False + + +def create_model_from_typeddict( + # Mypy bug: `Type[TypedDict]` is resolved as `Any` https://github.com/python/mypy/issues/11030 + typeddict_cls: Type['TypedDict'], # type: ignore[valid-type] + **kwargs: Any, +) -> Type['BaseModel']: + """ + Create a `BaseModel` based on the fields of a `TypedDict`. + Since `typing.TypedDict` in Python 3.8 does not store runtime information about optional keys, + we raise an error if this happens (see https://bugs.python.org/issue38834). + """ + field_definitions: Dict[str, Any] + + # Best case scenario: with python 3.9+ or when `TypedDict` is imported from `typing_extensions` + if not hasattr(typeddict_cls, '__required_keys__'): + raise TypeError( + 'You should use `typing_extensions.TypedDict` instead of `typing.TypedDict` with Python < 3.9.2. ' + 'Without it, there is no way to differentiate required and optional fields when subclassed.' + ) + + if is_legacy_typeddict(typeddict_cls) and any( + is_typeddict_special(t) for t in typeddict_cls.__annotations__.values() + ): + raise TypeError( + 'You should use `typing_extensions.TypedDict` instead of `typing.TypedDict` with Python < 3.11. ' + 'Without it, there is no way to reflect Required/NotRequired keys.' + ) + + required_keys: FrozenSet[str] = typeddict_cls.__required_keys__ # type: ignore[attr-defined] + field_definitions = { + field_name: (field_type, Required if field_name in required_keys else None) + for field_name, field_type in typeddict_cls.__annotations__.items() + } + + return create_model(typeddict_cls.__name__, **kwargs, **field_definitions) + + +def create_model_from_namedtuple(namedtuple_cls: Type['NamedTuple'], **kwargs: Any) -> Type['BaseModel']: + """ + Create a `BaseModel` based on the fields of a named tuple. + A named tuple can be created with `typing.NamedTuple` and declared annotations + but also with `collections.namedtuple`, in this case we consider all fields + to have type `Any`. + """ + # With python 3.10+, `__annotations__` always exists but can be empty hence the `getattr... or...` logic + namedtuple_annotations: Dict[str, Type[Any]] = getattr(namedtuple_cls, '__annotations__', None) or { + k: Any for k in namedtuple_cls._fields + } + field_definitions: Dict[str, Any] = { + field_name: (field_type, Required) for field_name, field_type in namedtuple_annotations.items() + } + return create_model(namedtuple_cls.__name__, **kwargs, **field_definitions) diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/class_validators.py b/venv/lib/python3.10/site-packages/pydantic/v1/class_validators.py new file mode 100644 index 0000000000000000000000000000000000000000..71e66509398510a493286d4a23aa112b73cbe6c6 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/v1/class_validators.py @@ -0,0 +1,361 @@ +import warnings +from collections import ChainMap +from functools import partial, partialmethod, wraps +from itertools import chain +from types import FunctionType +from typing import TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Optional, Set, Tuple, Type, Union, overload + +from .errors import ConfigError +from .typing import AnyCallable +from .utils import ROOT_KEY, in_ipython + +if TYPE_CHECKING: + from .typing import AnyClassMethod + + +class Validator: + __slots__ = 'func', 'pre', 'each_item', 'always', 'check_fields', 'skip_on_failure' + + def __init__( + self, + func: AnyCallable, + pre: bool = False, + each_item: bool = False, + always: bool = False, + check_fields: bool = False, + skip_on_failure: bool = False, + ): + self.func = func + self.pre = pre + self.each_item = each_item + self.always = always + self.check_fields = check_fields + self.skip_on_failure = skip_on_failure + + +if TYPE_CHECKING: + from inspect import Signature + + from .config import BaseConfig + from .fields import ModelField + from .types import ModelOrDc + + ValidatorCallable = Callable[[Optional[ModelOrDc], Any, Dict[str, Any], ModelField, Type[BaseConfig]], Any] + ValidatorsList = List[ValidatorCallable] + ValidatorListDict = Dict[str, List[Validator]] + +_FUNCS: Set[str] = set() +VALIDATOR_CONFIG_KEY = '__validator_config__' +ROOT_VALIDATOR_CONFIG_KEY = '__root_validator_config__' + + +def validator( + *fields: str, + pre: bool = False, + each_item: bool = False, + always: bool = False, + check_fields: bool = True, + whole: Optional[bool] = None, + allow_reuse: bool = False, +) -> Callable[[AnyCallable], 'AnyClassMethod']: + """ + Decorate methods on the class indicating that they should be used to validate fields + :param fields: which field(s) the method should be called on + :param pre: whether or not this validator should be called before the standard validators (else after) + :param each_item: for complex objects (sets, lists etc.) whether to validate individual elements rather than the + whole object + :param always: whether this method and other validators should be called even if the value is missing + :param check_fields: whether to check that the fields actually exist on the model + :param allow_reuse: whether to track and raise an error if another validator refers to the decorated function + """ + if not fields: + raise ConfigError('validator with no fields specified') + elif isinstance(fields[0], FunctionType): + raise ConfigError( + "validators should be used with fields and keyword arguments, not bare. " # noqa: Q000 + "E.g. usage should be `@validator('', ...)`" + ) + elif not all(isinstance(field, str) for field in fields): + raise ConfigError( + "validator fields should be passed as separate string args. " # noqa: Q000 + "E.g. usage should be `@validator('', '', ...)`" + ) + + if whole is not None: + warnings.warn( + 'The "whole" keyword argument is deprecated, use "each_item" (inverse meaning, default False) instead', + DeprecationWarning, + ) + assert each_item is False, '"each_item" and "whole" conflict, remove "whole"' + each_item = not whole + + def dec(f: AnyCallable) -> 'AnyClassMethod': + f_cls = _prepare_validator(f, allow_reuse) + setattr( + f_cls, + VALIDATOR_CONFIG_KEY, + ( + fields, + Validator(func=f_cls.__func__, pre=pre, each_item=each_item, always=always, check_fields=check_fields), + ), + ) + return f_cls + + return dec + + +@overload +def root_validator(_func: AnyCallable) -> 'AnyClassMethod': + ... + + +@overload +def root_validator( + *, pre: bool = False, allow_reuse: bool = False, skip_on_failure: bool = False +) -> Callable[[AnyCallable], 'AnyClassMethod']: + ... + + +def root_validator( + _func: Optional[AnyCallable] = None, *, pre: bool = False, allow_reuse: bool = False, skip_on_failure: bool = False +) -> Union['AnyClassMethod', Callable[[AnyCallable], 'AnyClassMethod']]: + """ + Decorate methods on a model indicating that they should be used to validate (and perhaps modify) data either + before or after standard model parsing/validation is performed. + """ + if _func: + f_cls = _prepare_validator(_func, allow_reuse) + setattr( + f_cls, ROOT_VALIDATOR_CONFIG_KEY, Validator(func=f_cls.__func__, pre=pre, skip_on_failure=skip_on_failure) + ) + return f_cls + + def dec(f: AnyCallable) -> 'AnyClassMethod': + f_cls = _prepare_validator(f, allow_reuse) + setattr( + f_cls, ROOT_VALIDATOR_CONFIG_KEY, Validator(func=f_cls.__func__, pre=pre, skip_on_failure=skip_on_failure) + ) + return f_cls + + return dec + + +def _prepare_validator(function: AnyCallable, allow_reuse: bool) -> 'AnyClassMethod': + """ + Avoid validators with duplicated names since without this, validators can be overwritten silently + which generally isn't the intended behaviour, don't run in ipython (see #312) or if allow_reuse is False. + """ + f_cls = function if isinstance(function, classmethod) else classmethod(function) + if not in_ipython() and not allow_reuse: + ref = ( + getattr(f_cls.__func__, '__module__', '') + + '.' + + getattr(f_cls.__func__, '__qualname__', f'') + ) + if ref in _FUNCS: + raise ConfigError(f'duplicate validator function "{ref}"; if this is intended, set `allow_reuse=True`') + _FUNCS.add(ref) + return f_cls + + +class ValidatorGroup: + def __init__(self, validators: 'ValidatorListDict') -> None: + self.validators = validators + self.used_validators = {'*'} + + def get_validators(self, name: str) -> Optional[Dict[str, Validator]]: + self.used_validators.add(name) + validators = self.validators.get(name, []) + if name != ROOT_KEY: + validators += self.validators.get('*', []) + if validators: + return {getattr(v.func, '__name__', f''): v for v in validators} + else: + return None + + def check_for_unused(self) -> None: + unused_validators = set( + chain.from_iterable( + ( + getattr(v.func, '__name__', f'') + for v in self.validators[f] + if v.check_fields + ) + for f in (self.validators.keys() - self.used_validators) + ) + ) + if unused_validators: + fn = ', '.join(unused_validators) + raise ConfigError( + f"Validators defined with incorrect fields: {fn} " # noqa: Q000 + f"(use check_fields=False if you're inheriting from the model and intended this)" + ) + + +def extract_validators(namespace: Dict[str, Any]) -> Dict[str, List[Validator]]: + validators: Dict[str, List[Validator]] = {} + for var_name, value in namespace.items(): + validator_config = getattr(value, VALIDATOR_CONFIG_KEY, None) + if validator_config: + fields, v = validator_config + for field in fields: + if field in validators: + validators[field].append(v) + else: + validators[field] = [v] + return validators + + +def extract_root_validators(namespace: Dict[str, Any]) -> Tuple[List[AnyCallable], List[Tuple[bool, AnyCallable]]]: + from inspect import signature + + pre_validators: List[AnyCallable] = [] + post_validators: List[Tuple[bool, AnyCallable]] = [] + for name, value in namespace.items(): + validator_config: Optional[Validator] = getattr(value, ROOT_VALIDATOR_CONFIG_KEY, None) + if validator_config: + sig = signature(validator_config.func) + args = list(sig.parameters.keys()) + if args[0] == 'self': + raise ConfigError( + f'Invalid signature for root validator {name}: {sig}, "self" not permitted as first argument, ' + f'should be: (cls, values).' + ) + if len(args) != 2: + raise ConfigError(f'Invalid signature for root validator {name}: {sig}, should be: (cls, values).') + # check function signature + if validator_config.pre: + pre_validators.append(validator_config.func) + else: + post_validators.append((validator_config.skip_on_failure, validator_config.func)) + return pre_validators, post_validators + + +def inherit_validators(base_validators: 'ValidatorListDict', validators: 'ValidatorListDict') -> 'ValidatorListDict': + for field, field_validators in base_validators.items(): + if field not in validators: + validators[field] = [] + validators[field] += field_validators + return validators + + +def make_generic_validator(validator: AnyCallable) -> 'ValidatorCallable': + """ + Make a generic function which calls a validator with the right arguments. + + Unfortunately other approaches (eg. return a partial of a function that builds the arguments) is slow, + hence this laborious way of doing things. + + It's done like this so validators don't all need **kwargs in their signature, eg. any combination of + the arguments "values", "fields" and/or "config" are permitted. + """ + from inspect import signature + + if not isinstance(validator, (partial, partialmethod)): + # This should be the default case, so overhead is reduced + sig = signature(validator) + args = list(sig.parameters.keys()) + else: + # Fix the generated argument lists of partial methods + sig = signature(validator.func) + args = [ + k + for k in signature(validator.func).parameters.keys() + if k not in validator.args | validator.keywords.keys() + ] + + first_arg = args.pop(0) + if first_arg == 'self': + raise ConfigError( + f'Invalid signature for validator {validator}: {sig}, "self" not permitted as first argument, ' + f'should be: (cls, value, values, config, field), "values", "config" and "field" are all optional.' + ) + elif first_arg == 'cls': + # assume the second argument is value + return wraps(validator)(_generic_validator_cls(validator, sig, set(args[1:]))) + else: + # assume the first argument was value which has already been removed + return wraps(validator)(_generic_validator_basic(validator, sig, set(args))) + + +def prep_validators(v_funcs: Iterable[AnyCallable]) -> 'ValidatorsList': + return [make_generic_validator(f) for f in v_funcs if f] + + +all_kwargs = {'values', 'field', 'config'} + + +def _generic_validator_cls(validator: AnyCallable, sig: 'Signature', args: Set[str]) -> 'ValidatorCallable': + # assume the first argument is value + has_kwargs = False + if 'kwargs' in args: + has_kwargs = True + args -= {'kwargs'} + + if not args.issubset(all_kwargs): + raise ConfigError( + f'Invalid signature for validator {validator}: {sig}, should be: ' + f'(cls, value, values, config, field), "values", "config" and "field" are all optional.' + ) + + if has_kwargs: + return lambda cls, v, values, field, config: validator(cls, v, values=values, field=field, config=config) + elif args == set(): + return lambda cls, v, values, field, config: validator(cls, v) + elif args == {'values'}: + return lambda cls, v, values, field, config: validator(cls, v, values=values) + elif args == {'field'}: + return lambda cls, v, values, field, config: validator(cls, v, field=field) + elif args == {'config'}: + return lambda cls, v, values, field, config: validator(cls, v, config=config) + elif args == {'values', 'field'}: + return lambda cls, v, values, field, config: validator(cls, v, values=values, field=field) + elif args == {'values', 'config'}: + return lambda cls, v, values, field, config: validator(cls, v, values=values, config=config) + elif args == {'field', 'config'}: + return lambda cls, v, values, field, config: validator(cls, v, field=field, config=config) + else: + # args == {'values', 'field', 'config'} + return lambda cls, v, values, field, config: validator(cls, v, values=values, field=field, config=config) + + +def _generic_validator_basic(validator: AnyCallable, sig: 'Signature', args: Set[str]) -> 'ValidatorCallable': + has_kwargs = False + if 'kwargs' in args: + has_kwargs = True + args -= {'kwargs'} + + if not args.issubset(all_kwargs): + raise ConfigError( + f'Invalid signature for validator {validator}: {sig}, should be: ' + f'(value, values, config, field), "values", "config" and "field" are all optional.' + ) + + if has_kwargs: + return lambda cls, v, values, field, config: validator(v, values=values, field=field, config=config) + elif args == set(): + return lambda cls, v, values, field, config: validator(v) + elif args == {'values'}: + return lambda cls, v, values, field, config: validator(v, values=values) + elif args == {'field'}: + return lambda cls, v, values, field, config: validator(v, field=field) + elif args == {'config'}: + return lambda cls, v, values, field, config: validator(v, config=config) + elif args == {'values', 'field'}: + return lambda cls, v, values, field, config: validator(v, values=values, field=field) + elif args == {'values', 'config'}: + return lambda cls, v, values, field, config: validator(v, values=values, config=config) + elif args == {'field', 'config'}: + return lambda cls, v, values, field, config: validator(v, field=field, config=config) + else: + # args == {'values', 'field', 'config'} + return lambda cls, v, values, field, config: validator(v, values=values, field=field, config=config) + + +def gather_all_validators(type_: 'ModelOrDc') -> Dict[str, 'AnyClassMethod']: + all_attributes = ChainMap(*[cls.__dict__ for cls in type_.__mro__]) # type: ignore[arg-type,var-annotated] + return { + k: v + for k, v in all_attributes.items() + if hasattr(v, VALIDATOR_CONFIG_KEY) or hasattr(v, ROOT_VALIDATOR_CONFIG_KEY) + } diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/color.py b/venv/lib/python3.10/site-packages/pydantic/v1/color.py new file mode 100644 index 0000000000000000000000000000000000000000..6fdc9fb1448d7f92d0e9a473c677800491018f14 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/v1/color.py @@ -0,0 +1,494 @@ +""" +Color definitions are used as per CSS3 specification: +http://www.w3.org/TR/css3-color/#svg-color + +A few colors have multiple names referring to the sames colors, eg. `grey` and `gray` or `aqua` and `cyan`. + +In these cases the LAST color when sorted alphabetically takes preferences, +eg. Color((0, 255, 255)).as_named() == 'cyan' because "cyan" comes after "aqua". +""" +import math +import re +from colorsys import hls_to_rgb, rgb_to_hls +from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union, cast + +from .errors import ColorError +from .utils import Representation, almost_equal_floats + +if TYPE_CHECKING: + from .typing import CallableGenerator, ReprArgs + +ColorTuple = Union[Tuple[int, int, int], Tuple[int, int, int, float]] +ColorType = Union[ColorTuple, str] +HslColorTuple = Union[Tuple[float, float, float], Tuple[float, float, float, float]] + + +class RGBA: + """ + Internal use only as a representation of a color. + """ + + __slots__ = 'r', 'g', 'b', 'alpha', '_tuple' + + def __init__(self, r: float, g: float, b: float, alpha: Optional[float]): + self.r = r + self.g = g + self.b = b + self.alpha = alpha + + self._tuple: Tuple[float, float, float, Optional[float]] = (r, g, b, alpha) + + def __getitem__(self, item: Any) -> Any: + return self._tuple[item] + + +# these are not compiled here to avoid import slowdown, they'll be compiled the first time they're used, then cached +r_hex_short = r'\s*(?:#|0x)?([0-9a-f])([0-9a-f])([0-9a-f])([0-9a-f])?\s*' +r_hex_long = r'\s*(?:#|0x)?([0-9a-f]{2})([0-9a-f]{2})([0-9a-f]{2})([0-9a-f]{2})?\s*' +_r_255 = r'(\d{1,3}(?:\.\d+)?)' +_r_comma = r'\s*,\s*' +r_rgb = fr'\s*rgb\(\s*{_r_255}{_r_comma}{_r_255}{_r_comma}{_r_255}\)\s*' +_r_alpha = r'(\d(?:\.\d+)?|\.\d+|\d{1,2}%)' +r_rgba = fr'\s*rgba\(\s*{_r_255}{_r_comma}{_r_255}{_r_comma}{_r_255}{_r_comma}{_r_alpha}\s*\)\s*' +_r_h = r'(-?\d+(?:\.\d+)?|-?\.\d+)(deg|rad|turn)?' +_r_sl = r'(\d{1,3}(?:\.\d+)?)%' +r_hsl = fr'\s*hsl\(\s*{_r_h}{_r_comma}{_r_sl}{_r_comma}{_r_sl}\s*\)\s*' +r_hsla = fr'\s*hsl\(\s*{_r_h}{_r_comma}{_r_sl}{_r_comma}{_r_sl}{_r_comma}{_r_alpha}\s*\)\s*' + +# colors where the two hex characters are the same, if all colors match this the short version of hex colors can be used +repeat_colors = {int(c * 2, 16) for c in '0123456789abcdef'} +rads = 2 * math.pi + + +class Color(Representation): + __slots__ = '_original', '_rgba' + + def __init__(self, value: ColorType) -> None: + self._rgba: RGBA + self._original: ColorType + if isinstance(value, (tuple, list)): + self._rgba = parse_tuple(value) + elif isinstance(value, str): + self._rgba = parse_str(value) + elif isinstance(value, Color): + self._rgba = value._rgba + value = value._original + else: + raise ColorError(reason='value must be a tuple, list or string') + + # if we've got here value must be a valid color + self._original = value + + @classmethod + def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: + field_schema.update(type='string', format='color') + + def original(self) -> ColorType: + """ + Original value passed to Color + """ + return self._original + + def as_named(self, *, fallback: bool = False) -> str: + if self._rgba.alpha is None: + rgb = cast(Tuple[int, int, int], self.as_rgb_tuple()) + try: + return COLORS_BY_VALUE[rgb] + except KeyError as e: + if fallback: + return self.as_hex() + else: + raise ValueError('no named color found, use fallback=True, as_hex() or as_rgb()') from e + else: + return self.as_hex() + + def as_hex(self) -> str: + """ + Hex string representing the color can be 3, 4, 6 or 8 characters depending on whether the string + a "short" representation of the color is possible and whether there's an alpha channel. + """ + values = [float_to_255(c) for c in self._rgba[:3]] + if self._rgba.alpha is not None: + values.append(float_to_255(self._rgba.alpha)) + + as_hex = ''.join(f'{v:02x}' for v in values) + if all(c in repeat_colors for c in values): + as_hex = ''.join(as_hex[c] for c in range(0, len(as_hex), 2)) + return '#' + as_hex + + def as_rgb(self) -> str: + """ + Color as an rgb(, , ) or rgba(, , , ) string. + """ + if self._rgba.alpha is None: + return f'rgb({float_to_255(self._rgba.r)}, {float_to_255(self._rgba.g)}, {float_to_255(self._rgba.b)})' + else: + return ( + f'rgba({float_to_255(self._rgba.r)}, {float_to_255(self._rgba.g)}, {float_to_255(self._rgba.b)}, ' + f'{round(self._alpha_float(), 2)})' + ) + + def as_rgb_tuple(self, *, alpha: Optional[bool] = None) -> ColorTuple: + """ + Color as an RGB or RGBA tuple; red, green and blue are in the range 0 to 255, alpha if included is + in the range 0 to 1. + + :param alpha: whether to include the alpha channel, options are + None - (default) include alpha only if it's set (e.g. not None) + True - always include alpha, + False - always omit alpha, + """ + r, g, b = (float_to_255(c) for c in self._rgba[:3]) + if alpha is None: + if self._rgba.alpha is None: + return r, g, b + else: + return r, g, b, self._alpha_float() + elif alpha: + return r, g, b, self._alpha_float() + else: + # alpha is False + return r, g, b + + def as_hsl(self) -> str: + """ + Color as an hsl(, , ) or hsl(, , , ) string. + """ + if self._rgba.alpha is None: + h, s, li = self.as_hsl_tuple(alpha=False) # type: ignore + return f'hsl({h * 360:0.0f}, {s:0.0%}, {li:0.0%})' + else: + h, s, li, a = self.as_hsl_tuple(alpha=True) # type: ignore + return f'hsl({h * 360:0.0f}, {s:0.0%}, {li:0.0%}, {round(a, 2)})' + + def as_hsl_tuple(self, *, alpha: Optional[bool] = None) -> HslColorTuple: + """ + Color as an HSL or HSLA tuple, e.g. hue, saturation, lightness and optionally alpha; all elements are in + the range 0 to 1. + + NOTE: this is HSL as used in HTML and most other places, not HLS as used in python's colorsys. + + :param alpha: whether to include the alpha channel, options are + None - (default) include alpha only if it's set (e.g. not None) + True - always include alpha, + False - always omit alpha, + """ + h, l, s = rgb_to_hls(self._rgba.r, self._rgba.g, self._rgba.b) + if alpha is None: + if self._rgba.alpha is None: + return h, s, l + else: + return h, s, l, self._alpha_float() + if alpha: + return h, s, l, self._alpha_float() + else: + # alpha is False + return h, s, l + + def _alpha_float(self) -> float: + return 1 if self._rgba.alpha is None else self._rgba.alpha + + @classmethod + def __get_validators__(cls) -> 'CallableGenerator': + yield cls + + def __str__(self) -> str: + return self.as_named(fallback=True) + + def __repr_args__(self) -> 'ReprArgs': + return [(None, self.as_named(fallback=True))] + [('rgb', self.as_rgb_tuple())] # type: ignore + + def __eq__(self, other: Any) -> bool: + return isinstance(other, Color) and self.as_rgb_tuple() == other.as_rgb_tuple() + + def __hash__(self) -> int: + return hash(self.as_rgb_tuple()) + + +def parse_tuple(value: Tuple[Any, ...]) -> RGBA: + """ + Parse a tuple or list as a color. + """ + if len(value) == 3: + r, g, b = (parse_color_value(v) for v in value) + return RGBA(r, g, b, None) + elif len(value) == 4: + r, g, b = (parse_color_value(v) for v in value[:3]) + return RGBA(r, g, b, parse_float_alpha(value[3])) + else: + raise ColorError(reason='tuples must have length 3 or 4') + + +def parse_str(value: str) -> RGBA: + """ + Parse a string to an RGBA tuple, trying the following formats (in this order): + * named color, see COLORS_BY_NAME below + * hex short eg. `fff` (prefix can be `#`, `0x` or nothing) + * hex long eg. `ffffff` (prefix can be `#`, `0x` or nothing) + * `rgb(, , ) ` + * `rgba(, , , )` + """ + value_lower = value.lower() + try: + r, g, b = COLORS_BY_NAME[value_lower] + except KeyError: + pass + else: + return ints_to_rgba(r, g, b, None) + + m = re.fullmatch(r_hex_short, value_lower) + if m: + *rgb, a = m.groups() + r, g, b = (int(v * 2, 16) for v in rgb) + if a: + alpha: Optional[float] = int(a * 2, 16) / 255 + else: + alpha = None + return ints_to_rgba(r, g, b, alpha) + + m = re.fullmatch(r_hex_long, value_lower) + if m: + *rgb, a = m.groups() + r, g, b = (int(v, 16) for v in rgb) + if a: + alpha = int(a, 16) / 255 + else: + alpha = None + return ints_to_rgba(r, g, b, alpha) + + m = re.fullmatch(r_rgb, value_lower) + if m: + return ints_to_rgba(*m.groups(), None) # type: ignore + + m = re.fullmatch(r_rgba, value_lower) + if m: + return ints_to_rgba(*m.groups()) # type: ignore + + m = re.fullmatch(r_hsl, value_lower) + if m: + h, h_units, s, l_ = m.groups() + return parse_hsl(h, h_units, s, l_) + + m = re.fullmatch(r_hsla, value_lower) + if m: + h, h_units, s, l_, a = m.groups() + return parse_hsl(h, h_units, s, l_, parse_float_alpha(a)) + + raise ColorError(reason='string not recognised as a valid color') + + +def ints_to_rgba(r: Union[int, str], g: Union[int, str], b: Union[int, str], alpha: Optional[float]) -> RGBA: + return RGBA(parse_color_value(r), parse_color_value(g), parse_color_value(b), parse_float_alpha(alpha)) + + +def parse_color_value(value: Union[int, str], max_val: int = 255) -> float: + """ + Parse a value checking it's a valid int in the range 0 to max_val and divide by max_val to give a number + in the range 0 to 1 + """ + try: + color = float(value) + except ValueError: + raise ColorError(reason='color values must be a valid number') + if 0 <= color <= max_val: + return color / max_val + else: + raise ColorError(reason=f'color values must be in the range 0 to {max_val}') + + +def parse_float_alpha(value: Union[None, str, float, int]) -> Optional[float]: + """ + Parse a value checking it's a valid float in the range 0 to 1 + """ + if value is None: + return None + try: + if isinstance(value, str) and value.endswith('%'): + alpha = float(value[:-1]) / 100 + else: + alpha = float(value) + except ValueError: + raise ColorError(reason='alpha values must be a valid float') + + if almost_equal_floats(alpha, 1): + return None + elif 0 <= alpha <= 1: + return alpha + else: + raise ColorError(reason='alpha values must be in the range 0 to 1') + + +def parse_hsl(h: str, h_units: str, sat: str, light: str, alpha: Optional[float] = None) -> RGBA: + """ + Parse raw hue, saturation, lightness and alpha values and convert to RGBA. + """ + s_value, l_value = parse_color_value(sat, 100), parse_color_value(light, 100) + + h_value = float(h) + if h_units in {None, 'deg'}: + h_value = h_value % 360 / 360 + elif h_units == 'rad': + h_value = h_value % rads / rads + else: + # turns + h_value = h_value % 1 + + r, g, b = hls_to_rgb(h_value, l_value, s_value) + return RGBA(r, g, b, alpha) + + +def float_to_255(c: float) -> int: + return int(round(c * 255)) + + +COLORS_BY_NAME = { + 'aliceblue': (240, 248, 255), + 'antiquewhite': (250, 235, 215), + 'aqua': (0, 255, 255), + 'aquamarine': (127, 255, 212), + 'azure': (240, 255, 255), + 'beige': (245, 245, 220), + 'bisque': (255, 228, 196), + 'black': (0, 0, 0), + 'blanchedalmond': (255, 235, 205), + 'blue': (0, 0, 255), + 'blueviolet': (138, 43, 226), + 'brown': (165, 42, 42), + 'burlywood': (222, 184, 135), + 'cadetblue': (95, 158, 160), + 'chartreuse': (127, 255, 0), + 'chocolate': (210, 105, 30), + 'coral': (255, 127, 80), + 'cornflowerblue': (100, 149, 237), + 'cornsilk': (255, 248, 220), + 'crimson': (220, 20, 60), + 'cyan': (0, 255, 255), + 'darkblue': (0, 0, 139), + 'darkcyan': (0, 139, 139), + 'darkgoldenrod': (184, 134, 11), + 'darkgray': (169, 169, 169), + 'darkgreen': (0, 100, 0), + 'darkgrey': (169, 169, 169), + 'darkkhaki': (189, 183, 107), + 'darkmagenta': (139, 0, 139), + 'darkolivegreen': (85, 107, 47), + 'darkorange': (255, 140, 0), + 'darkorchid': (153, 50, 204), + 'darkred': (139, 0, 0), + 'darksalmon': (233, 150, 122), + 'darkseagreen': (143, 188, 143), + 'darkslateblue': (72, 61, 139), + 'darkslategray': (47, 79, 79), + 'darkslategrey': (47, 79, 79), + 'darkturquoise': (0, 206, 209), + 'darkviolet': (148, 0, 211), + 'deeppink': (255, 20, 147), + 'deepskyblue': (0, 191, 255), + 'dimgray': (105, 105, 105), + 'dimgrey': (105, 105, 105), + 'dodgerblue': (30, 144, 255), + 'firebrick': (178, 34, 34), + 'floralwhite': (255, 250, 240), + 'forestgreen': (34, 139, 34), + 'fuchsia': (255, 0, 255), + 'gainsboro': (220, 220, 220), + 'ghostwhite': (248, 248, 255), + 'gold': (255, 215, 0), + 'goldenrod': (218, 165, 32), + 'gray': (128, 128, 128), + 'green': (0, 128, 0), + 'greenyellow': (173, 255, 47), + 'grey': (128, 128, 128), + 'honeydew': (240, 255, 240), + 'hotpink': (255, 105, 180), + 'indianred': (205, 92, 92), + 'indigo': (75, 0, 130), + 'ivory': (255, 255, 240), + 'khaki': (240, 230, 140), + 'lavender': (230, 230, 250), + 'lavenderblush': (255, 240, 245), + 'lawngreen': (124, 252, 0), + 'lemonchiffon': (255, 250, 205), + 'lightblue': (173, 216, 230), + 'lightcoral': (240, 128, 128), + 'lightcyan': (224, 255, 255), + 'lightgoldenrodyellow': (250, 250, 210), + 'lightgray': (211, 211, 211), + 'lightgreen': (144, 238, 144), + 'lightgrey': (211, 211, 211), + 'lightpink': (255, 182, 193), + 'lightsalmon': (255, 160, 122), + 'lightseagreen': (32, 178, 170), + 'lightskyblue': (135, 206, 250), + 'lightslategray': (119, 136, 153), + 'lightslategrey': (119, 136, 153), + 'lightsteelblue': (176, 196, 222), + 'lightyellow': (255, 255, 224), + 'lime': (0, 255, 0), + 'limegreen': (50, 205, 50), + 'linen': (250, 240, 230), + 'magenta': (255, 0, 255), + 'maroon': (128, 0, 0), + 'mediumaquamarine': (102, 205, 170), + 'mediumblue': (0, 0, 205), + 'mediumorchid': (186, 85, 211), + 'mediumpurple': (147, 112, 219), + 'mediumseagreen': (60, 179, 113), + 'mediumslateblue': (123, 104, 238), + 'mediumspringgreen': (0, 250, 154), + 'mediumturquoise': (72, 209, 204), + 'mediumvioletred': (199, 21, 133), + 'midnightblue': (25, 25, 112), + 'mintcream': (245, 255, 250), + 'mistyrose': (255, 228, 225), + 'moccasin': (255, 228, 181), + 'navajowhite': (255, 222, 173), + 'navy': (0, 0, 128), + 'oldlace': (253, 245, 230), + 'olive': (128, 128, 0), + 'olivedrab': (107, 142, 35), + 'orange': (255, 165, 0), + 'orangered': (255, 69, 0), + 'orchid': (218, 112, 214), + 'palegoldenrod': (238, 232, 170), + 'palegreen': (152, 251, 152), + 'paleturquoise': (175, 238, 238), + 'palevioletred': (219, 112, 147), + 'papayawhip': (255, 239, 213), + 'peachpuff': (255, 218, 185), + 'peru': (205, 133, 63), + 'pink': (255, 192, 203), + 'plum': (221, 160, 221), + 'powderblue': (176, 224, 230), + 'purple': (128, 0, 128), + 'red': (255, 0, 0), + 'rosybrown': (188, 143, 143), + 'royalblue': (65, 105, 225), + 'saddlebrown': (139, 69, 19), + 'salmon': (250, 128, 114), + 'sandybrown': (244, 164, 96), + 'seagreen': (46, 139, 87), + 'seashell': (255, 245, 238), + 'sienna': (160, 82, 45), + 'silver': (192, 192, 192), + 'skyblue': (135, 206, 235), + 'slateblue': (106, 90, 205), + 'slategray': (112, 128, 144), + 'slategrey': (112, 128, 144), + 'snow': (255, 250, 250), + 'springgreen': (0, 255, 127), + 'steelblue': (70, 130, 180), + 'tan': (210, 180, 140), + 'teal': (0, 128, 128), + 'thistle': (216, 191, 216), + 'tomato': (255, 99, 71), + 'turquoise': (64, 224, 208), + 'violet': (238, 130, 238), + 'wheat': (245, 222, 179), + 'white': (255, 255, 255), + 'whitesmoke': (245, 245, 245), + 'yellow': (255, 255, 0), + 'yellowgreen': (154, 205, 50), +} + +COLORS_BY_VALUE = {v: k for k, v in COLORS_BY_NAME.items()} diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/config.py b/venv/lib/python3.10/site-packages/pydantic/v1/config.py new file mode 100644 index 0000000000000000000000000000000000000000..a25973af4a07e83270e98ec055509bdb0ab162e1 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/v1/config.py @@ -0,0 +1,191 @@ +import json +from enum import Enum +from typing import TYPE_CHECKING, Any, Callable, Dict, ForwardRef, Optional, Tuple, Type, Union + +from typing_extensions import Literal, Protocol + +from .typing import AnyArgTCallable, AnyCallable +from .utils import GetterDict +from .version import compiled + +if TYPE_CHECKING: + from typing import overload + + from .fields import ModelField + from .main import BaseModel + + ConfigType = Type['BaseConfig'] + + class SchemaExtraCallable(Protocol): + @overload + def __call__(self, schema: Dict[str, Any]) -> None: + pass + + @overload + def __call__(self, schema: Dict[str, Any], model_class: Type[BaseModel]) -> None: + pass + +else: + SchemaExtraCallable = Callable[..., None] + +__all__ = 'BaseConfig', 'ConfigDict', 'get_config', 'Extra', 'inherit_config', 'prepare_config' + + +class Extra(str, Enum): + allow = 'allow' + ignore = 'ignore' + forbid = 'forbid' + + +# https://github.com/cython/cython/issues/4003 +# Fixed in Cython 3 and Pydantic v1 won't support Cython 3. +# Pydantic v2 doesn't depend on Cython at all. +if not compiled: + from typing_extensions import TypedDict + + class ConfigDict(TypedDict, total=False): + title: Optional[str] + anystr_lower: bool + anystr_strip_whitespace: bool + min_anystr_length: int + max_anystr_length: Optional[int] + validate_all: bool + extra: Extra + allow_mutation: bool + frozen: bool + allow_population_by_field_name: bool + use_enum_values: bool + fields: Dict[str, Union[str, Dict[str, str]]] + validate_assignment: bool + error_msg_templates: Dict[str, str] + arbitrary_types_allowed: bool + orm_mode: bool + getter_dict: Type[GetterDict] + alias_generator: Optional[Callable[[str], str]] + keep_untouched: Tuple[type, ...] + schema_extra: Union[Dict[str, object], 'SchemaExtraCallable'] + json_loads: Callable[[str], object] + json_dumps: AnyArgTCallable[str] + json_encoders: Dict[Type[object], AnyCallable] + underscore_attrs_are_private: bool + allow_inf_nan: bool + copy_on_model_validation: Literal['none', 'deep', 'shallow'] + # whether dataclass `__post_init__` should be run after validation + post_init_call: Literal['before_validation', 'after_validation'] + +else: + ConfigDict = dict # type: ignore + + +class BaseConfig: + title: Optional[str] = None + anystr_lower: bool = False + anystr_upper: bool = False + anystr_strip_whitespace: bool = False + min_anystr_length: int = 0 + max_anystr_length: Optional[int] = None + validate_all: bool = False + extra: Extra = Extra.ignore + allow_mutation: bool = True + frozen: bool = False + allow_population_by_field_name: bool = False + use_enum_values: bool = False + fields: Dict[str, Union[str, Dict[str, str]]] = {} + validate_assignment: bool = False + error_msg_templates: Dict[str, str] = {} + arbitrary_types_allowed: bool = False + orm_mode: bool = False + getter_dict: Type[GetterDict] = GetterDict + alias_generator: Optional[Callable[[str], str]] = None + keep_untouched: Tuple[type, ...] = () + schema_extra: Union[Dict[str, Any], 'SchemaExtraCallable'] = {} + json_loads: Callable[[str], Any] = json.loads + json_dumps: Callable[..., str] = json.dumps + json_encoders: Dict[Union[Type[Any], str, ForwardRef], AnyCallable] = {} + underscore_attrs_are_private: bool = False + allow_inf_nan: bool = True + + # whether inherited models as fields should be reconstructed as base model, + # and whether such a copy should be shallow or deep + copy_on_model_validation: Literal['none', 'deep', 'shallow'] = 'shallow' + + # whether `Union` should check all allowed types before even trying to coerce + smart_union: bool = False + # whether dataclass `__post_init__` should be run before or after validation + post_init_call: Literal['before_validation', 'after_validation'] = 'before_validation' + + @classmethod + def get_field_info(cls, name: str) -> Dict[str, Any]: + """ + Get properties of FieldInfo from the `fields` property of the config class. + """ + + fields_value = cls.fields.get(name) + + if isinstance(fields_value, str): + field_info: Dict[str, Any] = {'alias': fields_value} + elif isinstance(fields_value, dict): + field_info = fields_value + else: + field_info = {} + + if 'alias' in field_info: + field_info.setdefault('alias_priority', 2) + + if field_info.get('alias_priority', 0) <= 1 and cls.alias_generator: + alias = cls.alias_generator(name) + if not isinstance(alias, str): + raise TypeError(f'Config.alias_generator must return str, not {alias.__class__}') + field_info.update(alias=alias, alias_priority=1) + return field_info + + @classmethod + def prepare_field(cls, field: 'ModelField') -> None: + """ + Optional hook to check or modify fields during model creation. + """ + pass + + +def get_config(config: Union[ConfigDict, Type[object], None]) -> Type[BaseConfig]: + if config is None: + return BaseConfig + + else: + config_dict = ( + config + if isinstance(config, dict) + else {k: getattr(config, k) for k in dir(config) if not k.startswith('__')} + ) + + class Config(BaseConfig): + ... + + for k, v in config_dict.items(): + setattr(Config, k, v) + return Config + + +def inherit_config(self_config: 'ConfigType', parent_config: 'ConfigType', **namespace: Any) -> 'ConfigType': + if not self_config: + base_classes: Tuple['ConfigType', ...] = (parent_config,) + elif self_config == parent_config: + base_classes = (self_config,) + else: + base_classes = self_config, parent_config + + namespace['json_encoders'] = { + **getattr(parent_config, 'json_encoders', {}), + **getattr(self_config, 'json_encoders', {}), + **namespace.get('json_encoders', {}), + } + + return type('Config', base_classes, namespace) + + +def prepare_config(config: Type[BaseConfig], cls_name: str) -> None: + if not isinstance(config.extra, Extra): + try: + config.extra = Extra(config.extra) + except ValueError: + raise ValueError(f'"{cls_name}": {config.extra} is not a valid value for "extra"') diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/dataclasses.py b/venv/lib/python3.10/site-packages/pydantic/v1/dataclasses.py new file mode 100644 index 0000000000000000000000000000000000000000..2df3987a0598b2f27546cff2b5496aa18c193547 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/v1/dataclasses.py @@ -0,0 +1,500 @@ +""" +The main purpose is to enhance stdlib dataclasses by adding validation +A pydantic dataclass can be generated from scratch or from a stdlib one. + +Behind the scene, a pydantic dataclass is just like a regular one on which we attach +a `BaseModel` and magic methods to trigger the validation of the data. +`__init__` and `__post_init__` are hence overridden and have extra logic to be +able to validate input data. + +When a pydantic dataclass is generated from scratch, it's just a plain dataclass +with validation triggered at initialization + +The tricky part if for stdlib dataclasses that are converted after into pydantic ones e.g. + +```py +@dataclasses.dataclass +class M: + x: int + +ValidatedM = pydantic.dataclasses.dataclass(M) +``` + +We indeed still want to support equality, hashing, repr, ... as if it was the stdlib one! + +```py +assert isinstance(ValidatedM(x=1), M) +assert ValidatedM(x=1) == M(x=1) +``` + +This means we **don't want to create a new dataclass that inherits from it** +The trick is to create a wrapper around `M` that will act as a proxy to trigger +validation without altering default `M` behaviour. +""" +import copy +import dataclasses +import sys +from contextlib import contextmanager +from functools import wraps + +try: + from functools import cached_property +except ImportError: + # cached_property available only for python3.8+ + pass + +from typing import TYPE_CHECKING, Any, Callable, ClassVar, Dict, Generator, Optional, Type, TypeVar, Union, overload + +from typing_extensions import dataclass_transform + +from .class_validators import gather_all_validators +from .config import BaseConfig, ConfigDict, Extra, get_config +from .error_wrappers import ValidationError +from .errors import DataclassTypeError +from .fields import Field, FieldInfo, Required, Undefined +from .main import create_model, validate_model +from .utils import ClassAttribute + +if TYPE_CHECKING: + from .main import BaseModel + from .typing import CallableGenerator, NoArgAnyCallable + + DataclassT = TypeVar('DataclassT', bound='Dataclass') + + DataclassClassOrWrapper = Union[Type['Dataclass'], 'DataclassProxy'] + + class Dataclass: + # stdlib attributes + __dataclass_fields__: ClassVar[Dict[str, Any]] + __dataclass_params__: ClassVar[Any] # in reality `dataclasses._DataclassParams` + __post_init__: ClassVar[Callable[..., None]] + + # Added by pydantic + __pydantic_run_validation__: ClassVar[bool] + __post_init_post_parse__: ClassVar[Callable[..., None]] + __pydantic_initialised__: ClassVar[bool] + __pydantic_model__: ClassVar[Type[BaseModel]] + __pydantic_validate_values__: ClassVar[Callable[['Dataclass'], None]] + __pydantic_has_field_info_default__: ClassVar[bool] # whether a `pydantic.Field` is used as default value + + def __init__(self, *args: object, **kwargs: object) -> None: + pass + + @classmethod + def __get_validators__(cls: Type['Dataclass']) -> 'CallableGenerator': + pass + + @classmethod + def __validate__(cls: Type['DataclassT'], v: Any) -> 'DataclassT': + pass + + +__all__ = [ + 'dataclass', + 'set_validation', + 'create_pydantic_model_from_dataclass', + 'is_builtin_dataclass', + 'make_dataclass_validator', +] + +_T = TypeVar('_T') + +if sys.version_info >= (3, 10): + + @dataclass_transform(field_specifiers=(dataclasses.field, Field)) + @overload + def dataclass( + *, + init: bool = True, + repr: bool = True, + eq: bool = True, + order: bool = False, + unsafe_hash: bool = False, + frozen: bool = False, + config: Union[ConfigDict, Type[object], None] = None, + validate_on_init: Optional[bool] = None, + use_proxy: Optional[bool] = None, + kw_only: bool = ..., + ) -> Callable[[Type[_T]], 'DataclassClassOrWrapper']: + ... + + @dataclass_transform(field_specifiers=(dataclasses.field, Field)) + @overload + def dataclass( + _cls: Type[_T], + *, + init: bool = True, + repr: bool = True, + eq: bool = True, + order: bool = False, + unsafe_hash: bool = False, + frozen: bool = False, + config: Union[ConfigDict, Type[object], None] = None, + validate_on_init: Optional[bool] = None, + use_proxy: Optional[bool] = None, + kw_only: bool = ..., + ) -> 'DataclassClassOrWrapper': + ... + +else: + + @dataclass_transform(field_specifiers=(dataclasses.field, Field)) + @overload + def dataclass( + *, + init: bool = True, + repr: bool = True, + eq: bool = True, + order: bool = False, + unsafe_hash: bool = False, + frozen: bool = False, + config: Union[ConfigDict, Type[object], None] = None, + validate_on_init: Optional[bool] = None, + use_proxy: Optional[bool] = None, + ) -> Callable[[Type[_T]], 'DataclassClassOrWrapper']: + ... + + @dataclass_transform(field_specifiers=(dataclasses.field, Field)) + @overload + def dataclass( + _cls: Type[_T], + *, + init: bool = True, + repr: bool = True, + eq: bool = True, + order: bool = False, + unsafe_hash: bool = False, + frozen: bool = False, + config: Union[ConfigDict, Type[object], None] = None, + validate_on_init: Optional[bool] = None, + use_proxy: Optional[bool] = None, + ) -> 'DataclassClassOrWrapper': + ... + + +@dataclass_transform(field_specifiers=(dataclasses.field, Field)) +def dataclass( + _cls: Optional[Type[_T]] = None, + *, + init: bool = True, + repr: bool = True, + eq: bool = True, + order: bool = False, + unsafe_hash: bool = False, + frozen: bool = False, + config: Union[ConfigDict, Type[object], None] = None, + validate_on_init: Optional[bool] = None, + use_proxy: Optional[bool] = None, + kw_only: bool = False, +) -> Union[Callable[[Type[_T]], 'DataclassClassOrWrapper'], 'DataclassClassOrWrapper']: + """ + Like the python standard lib dataclasses but with type validation. + The result is either a pydantic dataclass that will validate input data + or a wrapper that will trigger validation around a stdlib dataclass + to avoid modifying it directly + """ + the_config = get_config(config) + + def wrap(cls: Type[Any]) -> 'DataclassClassOrWrapper': + should_use_proxy = ( + use_proxy + if use_proxy is not None + else ( + is_builtin_dataclass(cls) + and (cls.__bases__[0] is object or set(dir(cls)) == set(dir(cls.__bases__[0]))) + ) + ) + if should_use_proxy: + dc_cls_doc = '' + dc_cls = DataclassProxy(cls) + default_validate_on_init = False + else: + dc_cls_doc = cls.__doc__ or '' # needs to be done before generating dataclass + if sys.version_info >= (3, 10): + dc_cls = dataclasses.dataclass( + cls, + init=init, + repr=repr, + eq=eq, + order=order, + unsafe_hash=unsafe_hash, + frozen=frozen, + kw_only=kw_only, + ) + else: + dc_cls = dataclasses.dataclass( # type: ignore + cls, init=init, repr=repr, eq=eq, order=order, unsafe_hash=unsafe_hash, frozen=frozen + ) + default_validate_on_init = True + + should_validate_on_init = default_validate_on_init if validate_on_init is None else validate_on_init + _add_pydantic_validation_attributes(cls, the_config, should_validate_on_init, dc_cls_doc) + dc_cls.__pydantic_model__.__try_update_forward_refs__(**{cls.__name__: cls}) + return dc_cls + + if _cls is None: + return wrap + + return wrap(_cls) + + +@contextmanager +def set_validation(cls: Type['DataclassT'], value: bool) -> Generator[Type['DataclassT'], None, None]: + original_run_validation = cls.__pydantic_run_validation__ + try: + cls.__pydantic_run_validation__ = value + yield cls + finally: + cls.__pydantic_run_validation__ = original_run_validation + + +class DataclassProxy: + __slots__ = '__dataclass__' + + def __init__(self, dc_cls: Type['Dataclass']) -> None: + object.__setattr__(self, '__dataclass__', dc_cls) + + def __call__(self, *args: Any, **kwargs: Any) -> Any: + with set_validation(self.__dataclass__, True): + return self.__dataclass__(*args, **kwargs) + + def __getattr__(self, name: str) -> Any: + return getattr(self.__dataclass__, name) + + def __setattr__(self, __name: str, __value: Any) -> None: + return setattr(self.__dataclass__, __name, __value) + + def __instancecheck__(self, instance: Any) -> bool: + return isinstance(instance, self.__dataclass__) + + def __copy__(self) -> 'DataclassProxy': + return DataclassProxy(copy.copy(self.__dataclass__)) + + def __deepcopy__(self, memo: Any) -> 'DataclassProxy': + return DataclassProxy(copy.deepcopy(self.__dataclass__, memo)) + + +def _add_pydantic_validation_attributes( # noqa: C901 (ignore complexity) + dc_cls: Type['Dataclass'], + config: Type[BaseConfig], + validate_on_init: bool, + dc_cls_doc: str, +) -> None: + """ + We need to replace the right method. If no `__post_init__` has been set in the stdlib dataclass + it won't even exist (code is generated on the fly by `dataclasses`) + By default, we run validation after `__init__` or `__post_init__` if defined + """ + init = dc_cls.__init__ + + @wraps(init) + def handle_extra_init(self: 'Dataclass', *args: Any, **kwargs: Any) -> None: + if config.extra == Extra.ignore: + init(self, *args, **{k: v for k, v in kwargs.items() if k in self.__dataclass_fields__}) + + elif config.extra == Extra.allow: + for k, v in kwargs.items(): + self.__dict__.setdefault(k, v) + init(self, *args, **{k: v for k, v in kwargs.items() if k in self.__dataclass_fields__}) + + else: + init(self, *args, **kwargs) + + if hasattr(dc_cls, '__post_init__'): + try: + post_init = dc_cls.__post_init__.__wrapped__ # type: ignore[attr-defined] + except AttributeError: + post_init = dc_cls.__post_init__ + + @wraps(post_init) + def new_post_init(self: 'Dataclass', *args: Any, **kwargs: Any) -> None: + if config.post_init_call == 'before_validation': + post_init(self, *args, **kwargs) + + if self.__class__.__pydantic_run_validation__: + self.__pydantic_validate_values__() + if hasattr(self, '__post_init_post_parse__'): + self.__post_init_post_parse__(*args, **kwargs) + + if config.post_init_call == 'after_validation': + post_init(self, *args, **kwargs) + + setattr(dc_cls, '__init__', handle_extra_init) + setattr(dc_cls, '__post_init__', new_post_init) + + else: + + @wraps(init) + def new_init(self: 'Dataclass', *args: Any, **kwargs: Any) -> None: + handle_extra_init(self, *args, **kwargs) + + if self.__class__.__pydantic_run_validation__: + self.__pydantic_validate_values__() + + if hasattr(self, '__post_init_post_parse__'): + # We need to find again the initvars. To do that we use `__dataclass_fields__` instead of + # public method `dataclasses.fields` + + # get all initvars and their default values + initvars_and_values: Dict[str, Any] = {} + for i, f in enumerate(self.__class__.__dataclass_fields__.values()): + if f._field_type is dataclasses._FIELD_INITVAR: # type: ignore[attr-defined] + try: + # set arg value by default + initvars_and_values[f.name] = args[i] + except IndexError: + initvars_and_values[f.name] = kwargs.get(f.name, f.default) + + self.__post_init_post_parse__(**initvars_and_values) + + setattr(dc_cls, '__init__', new_init) + + setattr(dc_cls, '__pydantic_run_validation__', ClassAttribute('__pydantic_run_validation__', validate_on_init)) + setattr(dc_cls, '__pydantic_initialised__', False) + setattr(dc_cls, '__pydantic_model__', create_pydantic_model_from_dataclass(dc_cls, config, dc_cls_doc)) + setattr(dc_cls, '__pydantic_validate_values__', _dataclass_validate_values) + setattr(dc_cls, '__validate__', classmethod(_validate_dataclass)) + setattr(dc_cls, '__get_validators__', classmethod(_get_validators)) + + if dc_cls.__pydantic_model__.__config__.validate_assignment and not dc_cls.__dataclass_params__.frozen: + setattr(dc_cls, '__setattr__', _dataclass_validate_assignment_setattr) + + +def _get_validators(cls: 'DataclassClassOrWrapper') -> 'CallableGenerator': + yield cls.__validate__ + + +def _validate_dataclass(cls: Type['DataclassT'], v: Any) -> 'DataclassT': + with set_validation(cls, True): + if isinstance(v, cls): + v.__pydantic_validate_values__() + return v + elif isinstance(v, (list, tuple)): + return cls(*v) + elif isinstance(v, dict): + return cls(**v) + else: + raise DataclassTypeError(class_name=cls.__name__) + + +def create_pydantic_model_from_dataclass( + dc_cls: Type['Dataclass'], + config: Type[Any] = BaseConfig, + dc_cls_doc: Optional[str] = None, +) -> Type['BaseModel']: + field_definitions: Dict[str, Any] = {} + for field in dataclasses.fields(dc_cls): + default: Any = Undefined + default_factory: Optional['NoArgAnyCallable'] = None + field_info: FieldInfo + + if field.default is not dataclasses.MISSING: + default = field.default + elif field.default_factory is not dataclasses.MISSING: + default_factory = field.default_factory + else: + default = Required + + if isinstance(default, FieldInfo): + field_info = default + dc_cls.__pydantic_has_field_info_default__ = True + else: + field_info = Field(default=default, default_factory=default_factory, **field.metadata) + + field_definitions[field.name] = (field.type, field_info) + + validators = gather_all_validators(dc_cls) + model: Type['BaseModel'] = create_model( + dc_cls.__name__, + __config__=config, + __module__=dc_cls.__module__, + __validators__=validators, + __cls_kwargs__={'__resolve_forward_refs__': False}, + **field_definitions, + ) + model.__doc__ = dc_cls_doc if dc_cls_doc is not None else dc_cls.__doc__ or '' + return model + + +if sys.version_info >= (3, 8): + + def _is_field_cached_property(obj: 'Dataclass', k: str) -> bool: + return isinstance(getattr(type(obj), k, None), cached_property) + +else: + + def _is_field_cached_property(obj: 'Dataclass', k: str) -> bool: + return False + + +def _dataclass_validate_values(self: 'Dataclass') -> None: + # validation errors can occur if this function is called twice on an already initialised dataclass. + # for example if Extra.forbid is enabled, it would consider __pydantic_initialised__ an invalid extra property + if getattr(self, '__pydantic_initialised__'): + return + if getattr(self, '__pydantic_has_field_info_default__', False): + # We need to remove `FieldInfo` values since they are not valid as input + # It's ok to do that because they are obviously the default values! + input_data = { + k: v + for k, v in self.__dict__.items() + if not (isinstance(v, FieldInfo) or _is_field_cached_property(self, k)) + } + else: + input_data = {k: v for k, v in self.__dict__.items() if not _is_field_cached_property(self, k)} + d, _, validation_error = validate_model(self.__pydantic_model__, input_data, cls=self.__class__) + if validation_error: + raise validation_error + self.__dict__.update(d) + object.__setattr__(self, '__pydantic_initialised__', True) + + +def _dataclass_validate_assignment_setattr(self: 'Dataclass', name: str, value: Any) -> None: + if self.__pydantic_initialised__: + d = dict(self.__dict__) + d.pop(name, None) + known_field = self.__pydantic_model__.__fields__.get(name, None) + if known_field: + value, error_ = known_field.validate(value, d, loc=name, cls=self.__class__) + if error_: + raise ValidationError([error_], self.__class__) + + object.__setattr__(self, name, value) + + +def is_builtin_dataclass(_cls: Type[Any]) -> bool: + """ + Whether a class is a stdlib dataclass + (useful to discriminated a pydantic dataclass that is actually a wrapper around a stdlib dataclass) + + we check that + - `_cls` is a dataclass + - `_cls` is not a processed pydantic dataclass (with a basemodel attached) + - `_cls` is not a pydantic dataclass inheriting directly from a stdlib dataclass + e.g. + ``` + @dataclasses.dataclass + class A: + x: int + + @pydantic.dataclasses.dataclass + class B(A): + y: int + ``` + In this case, when we first check `B`, we make an extra check and look at the annotations ('y'), + which won't be a superset of all the dataclass fields (only the stdlib fields i.e. 'x') + """ + return ( + dataclasses.is_dataclass(_cls) + and not hasattr(_cls, '__pydantic_model__') + and set(_cls.__dataclass_fields__).issuperset(set(getattr(_cls, '__annotations__', {}))) + ) + + +def make_dataclass_validator(dc_cls: Type['Dataclass'], config: Type[BaseConfig]) -> 'CallableGenerator': + """ + Create a pydantic.dataclass from a builtin dataclass to add type validation + and yield the validators + It retrieves the parameters of the dataclass and forwards them to the newly created dataclass + """ + yield from _get_validators(dataclass(dc_cls, config=config, use_proxy=True)) diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/datetime_parse.py b/venv/lib/python3.10/site-packages/pydantic/v1/datetime_parse.py new file mode 100644 index 0000000000000000000000000000000000000000..cfd54593b51ec4d167b1edb4d2ca0ffa935370d7 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/v1/datetime_parse.py @@ -0,0 +1,248 @@ +""" +Functions to parse datetime objects. + +We're using regular expressions rather than time.strptime because: +- They provide both validation and parsing. +- They're more flexible for datetimes. +- The date/datetime/time constructors produce friendlier error messages. + +Stolen from https://raw.githubusercontent.com/django/django/main/django/utils/dateparse.py at +9718fa2e8abe430c3526a9278dd976443d4ae3c6 + +Changed to: +* use standard python datetime types not django.utils.timezone +* raise ValueError when regex doesn't match rather than returning None +* support parsing unix timestamps for dates and datetimes +""" +import re +from datetime import date, datetime, time, timedelta, timezone +from typing import Dict, Optional, Type, Union + +from . import errors + +date_expr = r'(?P\d{4})-(?P\d{1,2})-(?P\d{1,2})' +time_expr = ( + r'(?P\d{1,2}):(?P\d{1,2})' + r'(?::(?P\d{1,2})(?:\.(?P\d{1,6})\d{0,6})?)?' + r'(?PZ|[+-]\d{2}(?::?\d{2})?)?$' +) + +date_re = re.compile(f'{date_expr}$') +time_re = re.compile(time_expr) +datetime_re = re.compile(f'{date_expr}[T ]{time_expr}') + +standard_duration_re = re.compile( + r'^' + r'(?:(?P-?\d+) (days?, )?)?' + r'((?:(?P-?\d+):)(?=\d+:\d+))?' + r'(?:(?P-?\d+):)?' + r'(?P-?\d+)' + r'(?:\.(?P\d{1,6})\d{0,6})?' + r'$' +) + +# Support the sections of ISO 8601 date representation that are accepted by timedelta +iso8601_duration_re = re.compile( + r'^(?P[-+]?)' + r'P' + r'(?:(?P\d+(.\d+)?)D)?' + r'(?:T' + r'(?:(?P\d+(.\d+)?)H)?' + r'(?:(?P\d+(.\d+)?)M)?' + r'(?:(?P\d+(.\d+)?)S)?' + r')?' + r'$' +) + +EPOCH = datetime(1970, 1, 1) +# if greater than this, the number is in ms, if less than or equal it's in seconds +# (in seconds this is 11th October 2603, in ms it's 20th August 1970) +MS_WATERSHED = int(2e10) +# slightly more than datetime.max in ns - (datetime.max - EPOCH).total_seconds() * 1e9 +MAX_NUMBER = int(3e20) +StrBytesIntFloat = Union[str, bytes, int, float] + + +def get_numeric(value: StrBytesIntFloat, native_expected_type: str) -> Union[None, int, float]: + if isinstance(value, (int, float)): + return value + try: + return float(value) + except ValueError: + return None + except TypeError: + raise TypeError(f'invalid type; expected {native_expected_type}, string, bytes, int or float') + + +def from_unix_seconds(seconds: Union[int, float]) -> datetime: + if seconds > MAX_NUMBER: + return datetime.max + elif seconds < -MAX_NUMBER: + return datetime.min + + while abs(seconds) > MS_WATERSHED: + seconds /= 1000 + dt = EPOCH + timedelta(seconds=seconds) + return dt.replace(tzinfo=timezone.utc) + + +def _parse_timezone(value: Optional[str], error: Type[Exception]) -> Union[None, int, timezone]: + if value == 'Z': + return timezone.utc + elif value is not None: + offset_mins = int(value[-2:]) if len(value) > 3 else 0 + offset = 60 * int(value[1:3]) + offset_mins + if value[0] == '-': + offset = -offset + try: + return timezone(timedelta(minutes=offset)) + except ValueError: + raise error() + else: + return None + + +def parse_date(value: Union[date, StrBytesIntFloat]) -> date: + """ + Parse a date/int/float/string and return a datetime.date. + + Raise ValueError if the input is well formatted but not a valid date. + Raise ValueError if the input isn't well formatted. + """ + if isinstance(value, date): + if isinstance(value, datetime): + return value.date() + else: + return value + + number = get_numeric(value, 'date') + if number is not None: + return from_unix_seconds(number).date() + + if isinstance(value, bytes): + value = value.decode() + + match = date_re.match(value) # type: ignore + if match is None: + raise errors.DateError() + + kw = {k: int(v) for k, v in match.groupdict().items()} + + try: + return date(**kw) + except ValueError: + raise errors.DateError() + + +def parse_time(value: Union[time, StrBytesIntFloat]) -> time: + """ + Parse a time/string and return a datetime.time. + + Raise ValueError if the input is well formatted but not a valid time. + Raise ValueError if the input isn't well formatted, in particular if it contains an offset. + """ + if isinstance(value, time): + return value + + number = get_numeric(value, 'time') + if number is not None: + if number >= 86400: + # doesn't make sense since the time time loop back around to 0 + raise errors.TimeError() + return (datetime.min + timedelta(seconds=number)).time() + + if isinstance(value, bytes): + value = value.decode() + + match = time_re.match(value) # type: ignore + if match is None: + raise errors.TimeError() + + kw = match.groupdict() + if kw['microsecond']: + kw['microsecond'] = kw['microsecond'].ljust(6, '0') + + tzinfo = _parse_timezone(kw.pop('tzinfo'), errors.TimeError) + kw_: Dict[str, Union[None, int, timezone]] = {k: int(v) for k, v in kw.items() if v is not None} + kw_['tzinfo'] = tzinfo + + try: + return time(**kw_) # type: ignore + except ValueError: + raise errors.TimeError() + + +def parse_datetime(value: Union[datetime, StrBytesIntFloat]) -> datetime: + """ + Parse a datetime/int/float/string and return a datetime.datetime. + + This function supports time zone offsets. When the input contains one, + the output uses a timezone with a fixed offset from UTC. + + Raise ValueError if the input is well formatted but not a valid datetime. + Raise ValueError if the input isn't well formatted. + """ + if isinstance(value, datetime): + return value + + number = get_numeric(value, 'datetime') + if number is not None: + return from_unix_seconds(number) + + if isinstance(value, bytes): + value = value.decode() + + match = datetime_re.match(value) # type: ignore + if match is None: + raise errors.DateTimeError() + + kw = match.groupdict() + if kw['microsecond']: + kw['microsecond'] = kw['microsecond'].ljust(6, '0') + + tzinfo = _parse_timezone(kw.pop('tzinfo'), errors.DateTimeError) + kw_: Dict[str, Union[None, int, timezone]] = {k: int(v) for k, v in kw.items() if v is not None} + kw_['tzinfo'] = tzinfo + + try: + return datetime(**kw_) # type: ignore + except ValueError: + raise errors.DateTimeError() + + +def parse_duration(value: StrBytesIntFloat) -> timedelta: + """ + Parse a duration int/float/string and return a datetime.timedelta. + + The preferred format for durations in Django is '%d %H:%M:%S.%f'. + + Also supports ISO 8601 representation. + """ + if isinstance(value, timedelta): + return value + + if isinstance(value, (int, float)): + # below code requires a string + value = f'{value:f}' + elif isinstance(value, bytes): + value = value.decode() + + try: + match = standard_duration_re.match(value) or iso8601_duration_re.match(value) + except TypeError: + raise TypeError('invalid type; expected timedelta, string, bytes, int or float') + + if not match: + raise errors.DurationError() + + kw = match.groupdict() + sign = -1 if kw.pop('sign', '+') == '-' else 1 + if kw.get('microseconds'): + kw['microseconds'] = kw['microseconds'].ljust(6, '0') + + if kw.get('seconds') and kw.get('microseconds') and kw['seconds'].startswith('-'): + kw['microseconds'] = '-' + kw['microseconds'] + + kw_ = {k: float(v) for k, v in kw.items() if v is not None} + + return sign * timedelta(**kw_) diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/decorator.py b/venv/lib/python3.10/site-packages/pydantic/v1/decorator.py new file mode 100644 index 0000000000000000000000000000000000000000..089aab65f514820d0e381517e72f151b12979a0c --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/v1/decorator.py @@ -0,0 +1,264 @@ +from functools import wraps +from typing import TYPE_CHECKING, Any, Callable, Dict, List, Mapping, Optional, Tuple, Type, TypeVar, Union, overload + +from . import validator +from .config import Extra +from .errors import ConfigError +from .main import BaseModel, create_model +from .typing import get_all_type_hints +from .utils import to_camel + +__all__ = ('validate_arguments',) + +if TYPE_CHECKING: + from .typing import AnyCallable + + AnyCallableT = TypeVar('AnyCallableT', bound=AnyCallable) + ConfigType = Union[None, Type[Any], Dict[str, Any]] + + +@overload +def validate_arguments(func: None = None, *, config: 'ConfigType' = None) -> Callable[['AnyCallableT'], 'AnyCallableT']: + ... + + +@overload +def validate_arguments(func: 'AnyCallableT') -> 'AnyCallableT': + ... + + +def validate_arguments(func: Optional['AnyCallableT'] = None, *, config: 'ConfigType' = None) -> Any: + """ + Decorator to validate the arguments passed to a function. + """ + + def validate(_func: 'AnyCallable') -> 'AnyCallable': + vd = ValidatedFunction(_func, config) + + @wraps(_func) + def wrapper_function(*args: Any, **kwargs: Any) -> Any: + return vd.call(*args, **kwargs) + + wrapper_function.vd = vd # type: ignore + wrapper_function.validate = vd.init_model_instance # type: ignore + wrapper_function.raw_function = vd.raw_function # type: ignore + wrapper_function.model = vd.model # type: ignore + return wrapper_function + + if func: + return validate(func) + else: + return validate + + +ALT_V_ARGS = 'v__args' +ALT_V_KWARGS = 'v__kwargs' +V_POSITIONAL_ONLY_NAME = 'v__positional_only' +V_DUPLICATE_KWARGS = 'v__duplicate_kwargs' + + +class ValidatedFunction: + def __init__(self, function: 'AnyCallableT', config: 'ConfigType'): # noqa C901 + from inspect import Parameter, signature + + parameters: Mapping[str, Parameter] = signature(function).parameters + + if parameters.keys() & {ALT_V_ARGS, ALT_V_KWARGS, V_POSITIONAL_ONLY_NAME, V_DUPLICATE_KWARGS}: + raise ConfigError( + f'"{ALT_V_ARGS}", "{ALT_V_KWARGS}", "{V_POSITIONAL_ONLY_NAME}" and "{V_DUPLICATE_KWARGS}" ' + f'are not permitted as argument names when using the "{validate_arguments.__name__}" decorator' + ) + + self.raw_function = function + self.arg_mapping: Dict[int, str] = {} + self.positional_only_args = set() + self.v_args_name = 'args' + self.v_kwargs_name = 'kwargs' + + type_hints = get_all_type_hints(function) + takes_args = False + takes_kwargs = False + fields: Dict[str, Tuple[Any, Any]] = {} + for i, (name, p) in enumerate(parameters.items()): + if p.annotation is p.empty: + annotation = Any + else: + annotation = type_hints[name] + + default = ... if p.default is p.empty else p.default + if p.kind == Parameter.POSITIONAL_ONLY: + self.arg_mapping[i] = name + fields[name] = annotation, default + fields[V_POSITIONAL_ONLY_NAME] = List[str], None + self.positional_only_args.add(name) + elif p.kind == Parameter.POSITIONAL_OR_KEYWORD: + self.arg_mapping[i] = name + fields[name] = annotation, default + fields[V_DUPLICATE_KWARGS] = List[str], None + elif p.kind == Parameter.KEYWORD_ONLY: + fields[name] = annotation, default + elif p.kind == Parameter.VAR_POSITIONAL: + self.v_args_name = name + fields[name] = Tuple[annotation, ...], None + takes_args = True + else: + assert p.kind == Parameter.VAR_KEYWORD, p.kind + self.v_kwargs_name = name + fields[name] = Dict[str, annotation], None # type: ignore + takes_kwargs = True + + # these checks avoid a clash between "args" and a field with that name + if not takes_args and self.v_args_name in fields: + self.v_args_name = ALT_V_ARGS + + # same with "kwargs" + if not takes_kwargs and self.v_kwargs_name in fields: + self.v_kwargs_name = ALT_V_KWARGS + + if not takes_args: + # we add the field so validation below can raise the correct exception + fields[self.v_args_name] = List[Any], None + + if not takes_kwargs: + # same with kwargs + fields[self.v_kwargs_name] = Dict[Any, Any], None + + self.create_model(fields, takes_args, takes_kwargs, config) + + def init_model_instance(self, *args: Any, **kwargs: Any) -> BaseModel: + values = self.build_values(args, kwargs) + return self.model(**values) + + def call(self, *args: Any, **kwargs: Any) -> Any: + m = self.init_model_instance(*args, **kwargs) + return self.execute(m) + + def build_values(self, args: Tuple[Any, ...], kwargs: Dict[str, Any]) -> Dict[str, Any]: + values: Dict[str, Any] = {} + if args: + arg_iter = enumerate(args) + while True: + try: + i, a = next(arg_iter) + except StopIteration: + break + arg_name = self.arg_mapping.get(i) + if arg_name is not None: + values[arg_name] = a + else: + values[self.v_args_name] = [a] + [a for _, a in arg_iter] + break + + var_kwargs: Dict[str, Any] = {} + wrong_positional_args = [] + duplicate_kwargs = [] + fields_alias = [ + field.alias + for name, field in self.model.__fields__.items() + if name not in (self.v_args_name, self.v_kwargs_name) + ] + non_var_fields = set(self.model.__fields__) - {self.v_args_name, self.v_kwargs_name} + for k, v in kwargs.items(): + if k in non_var_fields or k in fields_alias: + if k in self.positional_only_args: + wrong_positional_args.append(k) + if k in values: + duplicate_kwargs.append(k) + values[k] = v + else: + var_kwargs[k] = v + + if var_kwargs: + values[self.v_kwargs_name] = var_kwargs + if wrong_positional_args: + values[V_POSITIONAL_ONLY_NAME] = wrong_positional_args + if duplicate_kwargs: + values[V_DUPLICATE_KWARGS] = duplicate_kwargs + return values + + def execute(self, m: BaseModel) -> Any: + d = {k: v for k, v in m._iter() if k in m.__fields_set__ or m.__fields__[k].default_factory} + var_kwargs = d.pop(self.v_kwargs_name, {}) + + if self.v_args_name in d: + args_: List[Any] = [] + in_kwargs = False + kwargs = {} + for name, value in d.items(): + if in_kwargs: + kwargs[name] = value + elif name == self.v_args_name: + args_ += value + in_kwargs = True + else: + args_.append(value) + return self.raw_function(*args_, **kwargs, **var_kwargs) + elif self.positional_only_args: + args_ = [] + kwargs = {} + for name, value in d.items(): + if name in self.positional_only_args: + args_.append(value) + else: + kwargs[name] = value + return self.raw_function(*args_, **kwargs, **var_kwargs) + else: + return self.raw_function(**d, **var_kwargs) + + def create_model(self, fields: Dict[str, Any], takes_args: bool, takes_kwargs: bool, config: 'ConfigType') -> None: + pos_args = len(self.arg_mapping) + + class CustomConfig: + pass + + if not TYPE_CHECKING: # pragma: no branch + if isinstance(config, dict): + CustomConfig = type('Config', (), config) # noqa: F811 + elif config is not None: + CustomConfig = config # noqa: F811 + + if hasattr(CustomConfig, 'fields') or hasattr(CustomConfig, 'alias_generator'): + raise ConfigError( + 'Setting the "fields" and "alias_generator" property on custom Config for ' + '@validate_arguments is not yet supported, please remove.' + ) + + class DecoratorBaseModel(BaseModel): + @validator(self.v_args_name, check_fields=False, allow_reuse=True) + def check_args(cls, v: Optional[List[Any]]) -> Optional[List[Any]]: + if takes_args or v is None: + return v + + raise TypeError(f'{pos_args} positional arguments expected but {pos_args + len(v)} given') + + @validator(self.v_kwargs_name, check_fields=False, allow_reuse=True) + def check_kwargs(cls, v: Optional[Dict[str, Any]]) -> Optional[Dict[str, Any]]: + if takes_kwargs or v is None: + return v + + plural = '' if len(v) == 1 else 's' + keys = ', '.join(map(repr, v.keys())) + raise TypeError(f'unexpected keyword argument{plural}: {keys}') + + @validator(V_POSITIONAL_ONLY_NAME, check_fields=False, allow_reuse=True) + def check_positional_only(cls, v: Optional[List[str]]) -> None: + if v is None: + return + + plural = '' if len(v) == 1 else 's' + keys = ', '.join(map(repr, v)) + raise TypeError(f'positional-only argument{plural} passed as keyword argument{plural}: {keys}') + + @validator(V_DUPLICATE_KWARGS, check_fields=False, allow_reuse=True) + def check_duplicate_kwargs(cls, v: Optional[List[str]]) -> None: + if v is None: + return + + plural = '' if len(v) == 1 else 's' + keys = ', '.join(map(repr, v)) + raise TypeError(f'multiple values for argument{plural}: {keys}') + + class Config(CustomConfig): + extra = getattr(CustomConfig, 'extra', Extra.forbid) + + self.model = create_model(to_camel(self.raw_function.__name__), __base__=DecoratorBaseModel, **fields) diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/env_settings.py b/venv/lib/python3.10/site-packages/pydantic/v1/env_settings.py new file mode 100644 index 0000000000000000000000000000000000000000..6c446e51c6abf91a61edd87554aa05b27af7f2e3 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/v1/env_settings.py @@ -0,0 +1,350 @@ +import os +import warnings +from pathlib import Path +from typing import AbstractSet, Any, Callable, ClassVar, Dict, List, Mapping, Optional, Tuple, Type, Union + +from .config import BaseConfig, Extra +from .fields import ModelField +from .main import BaseModel +from .types import JsonWrapper +from .typing import StrPath, display_as_type, get_origin, is_union +from .utils import deep_update, lenient_issubclass, path_type, sequence_like + +env_file_sentinel = str(object()) + +SettingsSourceCallable = Callable[['BaseSettings'], Dict[str, Any]] +DotenvType = Union[StrPath, List[StrPath], Tuple[StrPath, ...]] + + +class SettingsError(ValueError): + pass + + +class BaseSettings(BaseModel): + """ + Base class for settings, allowing values to be overridden by environment variables. + + This is useful in production for secrets you do not wish to save in code, it plays nicely with docker(-compose), + Heroku and any 12 factor app design. + """ + + def __init__( + __pydantic_self__, + _env_file: Optional[DotenvType] = env_file_sentinel, + _env_file_encoding: Optional[str] = None, + _env_nested_delimiter: Optional[str] = None, + _secrets_dir: Optional[StrPath] = None, + **values: Any, + ) -> None: + # Uses something other than `self` the first arg to allow "self" as a settable attribute + super().__init__( + **__pydantic_self__._build_values( + values, + _env_file=_env_file, + _env_file_encoding=_env_file_encoding, + _env_nested_delimiter=_env_nested_delimiter, + _secrets_dir=_secrets_dir, + ) + ) + + def _build_values( + self, + init_kwargs: Dict[str, Any], + _env_file: Optional[DotenvType] = None, + _env_file_encoding: Optional[str] = None, + _env_nested_delimiter: Optional[str] = None, + _secrets_dir: Optional[StrPath] = None, + ) -> Dict[str, Any]: + # Configure built-in sources + init_settings = InitSettingsSource(init_kwargs=init_kwargs) + env_settings = EnvSettingsSource( + env_file=(_env_file if _env_file != env_file_sentinel else self.__config__.env_file), + env_file_encoding=( + _env_file_encoding if _env_file_encoding is not None else self.__config__.env_file_encoding + ), + env_nested_delimiter=( + _env_nested_delimiter if _env_nested_delimiter is not None else self.__config__.env_nested_delimiter + ), + env_prefix_len=len(self.__config__.env_prefix), + ) + file_secret_settings = SecretsSettingsSource(secrets_dir=_secrets_dir or self.__config__.secrets_dir) + # Provide a hook to set built-in sources priority and add / remove sources + sources = self.__config__.customise_sources( + init_settings=init_settings, env_settings=env_settings, file_secret_settings=file_secret_settings + ) + if sources: + return deep_update(*reversed([source(self) for source in sources])) + else: + # no one should mean to do this, but I think returning an empty dict is marginally preferable + # to an informative error and much better than a confusing error + return {} + + class Config(BaseConfig): + env_prefix: str = '' + env_file: Optional[DotenvType] = None + env_file_encoding: Optional[str] = None + env_nested_delimiter: Optional[str] = None + secrets_dir: Optional[StrPath] = None + validate_all: bool = True + extra: Extra = Extra.forbid + arbitrary_types_allowed: bool = True + case_sensitive: bool = False + + @classmethod + def prepare_field(cls, field: ModelField) -> None: + env_names: Union[List[str], AbstractSet[str]] + field_info_from_config = cls.get_field_info(field.name) + + env = field_info_from_config.get('env') or field.field_info.extra.get('env') + if env is None: + if field.has_alias: + warnings.warn( + 'aliases are no longer used by BaseSettings to define which environment variables to read. ' + 'Instead use the "env" field setting. ' + 'See https://pydantic-docs.helpmanual.io/usage/settings/#environment-variable-names', + FutureWarning, + ) + env_names = {cls.env_prefix + field.name} + elif isinstance(env, str): + env_names = {env} + elif isinstance(env, (set, frozenset)): + env_names = env + elif sequence_like(env): + env_names = list(env) + else: + raise TypeError(f'invalid field env: {env!r} ({display_as_type(env)}); should be string, list or set') + + if not cls.case_sensitive: + env_names = env_names.__class__(n.lower() for n in env_names) + field.field_info.extra['env_names'] = env_names + + @classmethod + def customise_sources( + cls, + init_settings: SettingsSourceCallable, + env_settings: SettingsSourceCallable, + file_secret_settings: SettingsSourceCallable, + ) -> Tuple[SettingsSourceCallable, ...]: + return init_settings, env_settings, file_secret_settings + + @classmethod + def parse_env_var(cls, field_name: str, raw_val: str) -> Any: + return cls.json_loads(raw_val) + + # populated by the metaclass using the Config class defined above, annotated here to help IDEs only + __config__: ClassVar[Type[Config]] + + +class InitSettingsSource: + __slots__ = ('init_kwargs',) + + def __init__(self, init_kwargs: Dict[str, Any]): + self.init_kwargs = init_kwargs + + def __call__(self, settings: BaseSettings) -> Dict[str, Any]: + return self.init_kwargs + + def __repr__(self) -> str: + return f'InitSettingsSource(init_kwargs={self.init_kwargs!r})' + + +class EnvSettingsSource: + __slots__ = ('env_file', 'env_file_encoding', 'env_nested_delimiter', 'env_prefix_len') + + def __init__( + self, + env_file: Optional[DotenvType], + env_file_encoding: Optional[str], + env_nested_delimiter: Optional[str] = None, + env_prefix_len: int = 0, + ): + self.env_file: Optional[DotenvType] = env_file + self.env_file_encoding: Optional[str] = env_file_encoding + self.env_nested_delimiter: Optional[str] = env_nested_delimiter + self.env_prefix_len: int = env_prefix_len + + def __call__(self, settings: BaseSettings) -> Dict[str, Any]: # noqa C901 + """ + Build environment variables suitable for passing to the Model. + """ + d: Dict[str, Any] = {} + + if settings.__config__.case_sensitive: + env_vars: Mapping[str, Optional[str]] = os.environ + else: + env_vars = {k.lower(): v for k, v in os.environ.items()} + + dotenv_vars = self._read_env_files(settings.__config__.case_sensitive) + if dotenv_vars: + env_vars = {**dotenv_vars, **env_vars} + + for field in settings.__fields__.values(): + env_val: Optional[str] = None + for env_name in field.field_info.extra['env_names']: + env_val = env_vars.get(env_name) + if env_val is not None: + break + + is_complex, allow_parse_failure = self.field_is_complex(field) + if is_complex: + if env_val is None: + # field is complex but no value found so far, try explode_env_vars + env_val_built = self.explode_env_vars(field, env_vars) + if env_val_built: + d[field.alias] = env_val_built + else: + # field is complex and there's a value, decode that as JSON, then add explode_env_vars + try: + env_val = settings.__config__.parse_env_var(field.name, env_val) + except ValueError as e: + if not allow_parse_failure: + raise SettingsError(f'error parsing env var "{env_name}"') from e + + if isinstance(env_val, dict): + d[field.alias] = deep_update(env_val, self.explode_env_vars(field, env_vars)) + else: + d[field.alias] = env_val + elif env_val is not None: + # simplest case, field is not complex, we only need to add the value if it was found + d[field.alias] = env_val + + return d + + def _read_env_files(self, case_sensitive: bool) -> Dict[str, Optional[str]]: + env_files = self.env_file + if env_files is None: + return {} + + if isinstance(env_files, (str, os.PathLike)): + env_files = [env_files] + + dotenv_vars = {} + for env_file in env_files: + env_path = Path(env_file).expanduser() + if env_path.is_file(): + dotenv_vars.update( + read_env_file(env_path, encoding=self.env_file_encoding, case_sensitive=case_sensitive) + ) + + return dotenv_vars + + def field_is_complex(self, field: ModelField) -> Tuple[bool, bool]: + """ + Find out if a field is complex, and if so whether JSON errors should be ignored + """ + if lenient_issubclass(field.annotation, JsonWrapper): + return False, False + + if field.is_complex(): + allow_parse_failure = False + elif is_union(get_origin(field.type_)) and field.sub_fields and any(f.is_complex() for f in field.sub_fields): + allow_parse_failure = True + else: + return False, False + + return True, allow_parse_failure + + def explode_env_vars(self, field: ModelField, env_vars: Mapping[str, Optional[str]]) -> Dict[str, Any]: + """ + Process env_vars and extract the values of keys containing env_nested_delimiter into nested dictionaries. + + This is applied to a single field, hence filtering by env_var prefix. + """ + prefixes = [f'{env_name}{self.env_nested_delimiter}' for env_name in field.field_info.extra['env_names']] + result: Dict[str, Any] = {} + for env_name, env_val in env_vars.items(): + if not any(env_name.startswith(prefix) for prefix in prefixes): + continue + # we remove the prefix before splitting in case the prefix has characters in common with the delimiter + env_name_without_prefix = env_name[self.env_prefix_len :] + _, *keys, last_key = env_name_without_prefix.split(self.env_nested_delimiter) + env_var = result + for key in keys: + env_var = env_var.setdefault(key, {}) + env_var[last_key] = env_val + + return result + + def __repr__(self) -> str: + return ( + f'EnvSettingsSource(env_file={self.env_file!r}, env_file_encoding={self.env_file_encoding!r}, ' + f'env_nested_delimiter={self.env_nested_delimiter!r})' + ) + + +class SecretsSettingsSource: + __slots__ = ('secrets_dir',) + + def __init__(self, secrets_dir: Optional[StrPath]): + self.secrets_dir: Optional[StrPath] = secrets_dir + + def __call__(self, settings: BaseSettings) -> Dict[str, Any]: + """ + Build fields from "secrets" files. + """ + secrets: Dict[str, Optional[str]] = {} + + if self.secrets_dir is None: + return secrets + + secrets_path = Path(self.secrets_dir).expanduser() + + if not secrets_path.exists(): + warnings.warn(f'directory "{secrets_path}" does not exist') + return secrets + + if not secrets_path.is_dir(): + raise SettingsError(f'secrets_dir must reference a directory, not a {path_type(secrets_path)}') + + for field in settings.__fields__.values(): + for env_name in field.field_info.extra['env_names']: + path = find_case_path(secrets_path, env_name, settings.__config__.case_sensitive) + if not path: + # path does not exist, we currently don't return a warning for this + continue + + if path.is_file(): + secret_value = path.read_text().strip() + if field.is_complex(): + try: + secret_value = settings.__config__.parse_env_var(field.name, secret_value) + except ValueError as e: + raise SettingsError(f'error parsing env var "{env_name}"') from e + + secrets[field.alias] = secret_value + else: + warnings.warn( + f'attempted to load secret file "{path}" but found a {path_type(path)} instead.', + stacklevel=4, + ) + return secrets + + def __repr__(self) -> str: + return f'SecretsSettingsSource(secrets_dir={self.secrets_dir!r})' + + +def read_env_file( + file_path: StrPath, *, encoding: str = None, case_sensitive: bool = False +) -> Dict[str, Optional[str]]: + try: + from dotenv import dotenv_values + except ImportError as e: + raise ImportError('python-dotenv is not installed, run `pip install pydantic[dotenv]`') from e + + file_vars: Dict[str, Optional[str]] = dotenv_values(file_path, encoding=encoding or 'utf8') + if not case_sensitive: + return {k.lower(): v for k, v in file_vars.items()} + else: + return file_vars + + +def find_case_path(dir_path: Path, file_name: str, case_sensitive: bool) -> Optional[Path]: + """ + Find a file within path's directory matching filename, optionally ignoring case. + """ + for f in dir_path.iterdir(): + if f.name == file_name: + return f + elif not case_sensitive and f.name.lower() == file_name.lower(): + return f + return None diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/error_wrappers.py b/venv/lib/python3.10/site-packages/pydantic/v1/error_wrappers.py new file mode 100644 index 0000000000000000000000000000000000000000..d89a500cb4db57ed3b71bda4931f74ec26f72012 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/v1/error_wrappers.py @@ -0,0 +1,161 @@ +import json +from typing import TYPE_CHECKING, Any, Dict, Generator, List, Optional, Sequence, Tuple, Type, Union + +from .json import pydantic_encoder +from .utils import Representation + +if TYPE_CHECKING: + from typing_extensions import TypedDict + + from .config import BaseConfig + from .types import ModelOrDc + from .typing import ReprArgs + + Loc = Tuple[Union[int, str], ...] + + class _ErrorDictRequired(TypedDict): + loc: Loc + msg: str + type: str + + class ErrorDict(_ErrorDictRequired, total=False): + ctx: Dict[str, Any] + + +__all__ = 'ErrorWrapper', 'ValidationError' + + +class ErrorWrapper(Representation): + __slots__ = 'exc', '_loc' + + def __init__(self, exc: Exception, loc: Union[str, 'Loc']) -> None: + self.exc = exc + self._loc = loc + + def loc_tuple(self) -> 'Loc': + if isinstance(self._loc, tuple): + return self._loc + else: + return (self._loc,) + + def __repr_args__(self) -> 'ReprArgs': + return [('exc', self.exc), ('loc', self.loc_tuple())] + + +# ErrorList is something like Union[List[Union[List[ErrorWrapper], ErrorWrapper]], ErrorWrapper] +# but recursive, therefore just use: +ErrorList = Union[Sequence[Any], ErrorWrapper] + + +class ValidationError(Representation, ValueError): + __slots__ = 'raw_errors', 'model', '_error_cache' + + def __init__(self, errors: Sequence[ErrorList], model: 'ModelOrDc') -> None: + self.raw_errors = errors + self.model = model + self._error_cache: Optional[List['ErrorDict']] = None + + def errors(self) -> List['ErrorDict']: + if self._error_cache is None: + try: + config = self.model.__config__ # type: ignore + except AttributeError: + config = self.model.__pydantic_model__.__config__ # type: ignore + self._error_cache = list(flatten_errors(self.raw_errors, config)) + return self._error_cache + + def json(self, *, indent: Union[None, int, str] = 2) -> str: + return json.dumps(self.errors(), indent=indent, default=pydantic_encoder) + + def __str__(self) -> str: + errors = self.errors() + no_errors = len(errors) + return ( + f'{no_errors} validation error{"" if no_errors == 1 else "s"} for {self.model.__name__}\n' + f'{display_errors(errors)}' + ) + + def __repr_args__(self) -> 'ReprArgs': + return [('model', self.model.__name__), ('errors', self.errors())] + + +def display_errors(errors: List['ErrorDict']) -> str: + return '\n'.join(f'{_display_error_loc(e)}\n {e["msg"]} ({_display_error_type_and_ctx(e)})' for e in errors) + + +def _display_error_loc(error: 'ErrorDict') -> str: + return ' -> '.join(str(e) for e in error['loc']) + + +def _display_error_type_and_ctx(error: 'ErrorDict') -> str: + t = 'type=' + error['type'] + ctx = error.get('ctx') + if ctx: + return t + ''.join(f'; {k}={v}' for k, v in ctx.items()) + else: + return t + + +def flatten_errors( + errors: Sequence[Any], config: Type['BaseConfig'], loc: Optional['Loc'] = None +) -> Generator['ErrorDict', None, None]: + for error in errors: + if isinstance(error, ErrorWrapper): + if loc: + error_loc = loc + error.loc_tuple() + else: + error_loc = error.loc_tuple() + + if isinstance(error.exc, ValidationError): + yield from flatten_errors(error.exc.raw_errors, config, error_loc) + else: + yield error_dict(error.exc, config, error_loc) + elif isinstance(error, list): + yield from flatten_errors(error, config, loc=loc) + else: + raise RuntimeError(f'Unknown error object: {error}') + + +def error_dict(exc: Exception, config: Type['BaseConfig'], loc: 'Loc') -> 'ErrorDict': + type_ = get_exc_type(exc.__class__) + msg_template = config.error_msg_templates.get(type_) or getattr(exc, 'msg_template', None) + ctx = exc.__dict__ + if msg_template: + msg = msg_template.format(**ctx) + else: + msg = str(exc) + + d: 'ErrorDict' = {'loc': loc, 'msg': msg, 'type': type_} + + if ctx: + d['ctx'] = ctx + + return d + + +_EXC_TYPE_CACHE: Dict[Type[Exception], str] = {} + + +def get_exc_type(cls: Type[Exception]) -> str: + # slightly more efficient than using lru_cache since we don't need to worry about the cache filling up + try: + return _EXC_TYPE_CACHE[cls] + except KeyError: + r = _get_exc_type(cls) + _EXC_TYPE_CACHE[cls] = r + return r + + +def _get_exc_type(cls: Type[Exception]) -> str: + if issubclass(cls, AssertionError): + return 'assertion_error' + + base_name = 'type_error' if issubclass(cls, TypeError) else 'value_error' + if cls in (TypeError, ValueError): + # just TypeError or ValueError, no extra code + return base_name + + # if it's not a TypeError or ValueError, we just take the lowercase of the exception name + # no chaining or snake case logic, use "code" for more complex error types. + code = getattr(cls, 'code', None) or cls.__name__.replace('Error', '').lower() + return base_name + '.' + code diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/errors.py b/venv/lib/python3.10/site-packages/pydantic/v1/errors.py new file mode 100644 index 0000000000000000000000000000000000000000..7bdafdd17f3972a676d68ee5a70ba2d9263e2f4e --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/v1/errors.py @@ -0,0 +1,646 @@ +from decimal import Decimal +from pathlib import Path +from typing import TYPE_CHECKING, Any, Callable, Sequence, Set, Tuple, Type, Union + +from .typing import display_as_type + +if TYPE_CHECKING: + from .typing import DictStrAny + +# explicitly state exports to avoid "from .errors import *" also importing Decimal, Path etc. +__all__ = ( + 'PydanticTypeError', + 'PydanticValueError', + 'ConfigError', + 'MissingError', + 'ExtraError', + 'NoneIsNotAllowedError', + 'NoneIsAllowedError', + 'WrongConstantError', + 'NotNoneError', + 'BoolError', + 'BytesError', + 'DictError', + 'EmailError', + 'UrlError', + 'UrlSchemeError', + 'UrlSchemePermittedError', + 'UrlUserInfoError', + 'UrlHostError', + 'UrlHostTldError', + 'UrlPortError', + 'UrlExtraError', + 'EnumError', + 'IntEnumError', + 'EnumMemberError', + 'IntegerError', + 'FloatError', + 'PathError', + 'PathNotExistsError', + 'PathNotAFileError', + 'PathNotADirectoryError', + 'PyObjectError', + 'SequenceError', + 'ListError', + 'SetError', + 'FrozenSetError', + 'TupleError', + 'TupleLengthError', + 'ListMinLengthError', + 'ListMaxLengthError', + 'ListUniqueItemsError', + 'SetMinLengthError', + 'SetMaxLengthError', + 'FrozenSetMinLengthError', + 'FrozenSetMaxLengthError', + 'AnyStrMinLengthError', + 'AnyStrMaxLengthError', + 'StrError', + 'StrRegexError', + 'NumberNotGtError', + 'NumberNotGeError', + 'NumberNotLtError', + 'NumberNotLeError', + 'NumberNotMultipleError', + 'DecimalError', + 'DecimalIsNotFiniteError', + 'DecimalMaxDigitsError', + 'DecimalMaxPlacesError', + 'DecimalWholeDigitsError', + 'DateTimeError', + 'DateError', + 'DateNotInThePastError', + 'DateNotInTheFutureError', + 'TimeError', + 'DurationError', + 'HashableError', + 'UUIDError', + 'UUIDVersionError', + 'ArbitraryTypeError', + 'ClassError', + 'SubclassError', + 'JsonError', + 'JsonTypeError', + 'PatternError', + 'DataclassTypeError', + 'CallableError', + 'IPvAnyAddressError', + 'IPvAnyInterfaceError', + 'IPvAnyNetworkError', + 'IPv4AddressError', + 'IPv6AddressError', + 'IPv4NetworkError', + 'IPv6NetworkError', + 'IPv4InterfaceError', + 'IPv6InterfaceError', + 'ColorError', + 'StrictBoolError', + 'NotDigitError', + 'LuhnValidationError', + 'InvalidLengthForBrand', + 'InvalidByteSize', + 'InvalidByteSizeUnit', + 'MissingDiscriminator', + 'InvalidDiscriminator', +) + + +def cls_kwargs(cls: Type['PydanticErrorMixin'], ctx: 'DictStrAny') -> 'PydanticErrorMixin': + """ + For built-in exceptions like ValueError or TypeError, we need to implement + __reduce__ to override the default behaviour (instead of __getstate__/__setstate__) + By default pickle protocol 2 calls `cls.__new__(cls, *args)`. + Since we only use kwargs, we need a little constructor to change that. + Note: the callable can't be a lambda as pickle looks in the namespace to find it + """ + return cls(**ctx) + + +class PydanticErrorMixin: + code: str + msg_template: str + + def __init__(self, **ctx: Any) -> None: + self.__dict__ = ctx + + def __str__(self) -> str: + return self.msg_template.format(**self.__dict__) + + def __reduce__(self) -> Tuple[Callable[..., 'PydanticErrorMixin'], Tuple[Type['PydanticErrorMixin'], 'DictStrAny']]: + return cls_kwargs, (self.__class__, self.__dict__) + + +class PydanticTypeError(PydanticErrorMixin, TypeError): + pass + + +class PydanticValueError(PydanticErrorMixin, ValueError): + pass + + +class ConfigError(RuntimeError): + pass + + +class MissingError(PydanticValueError): + msg_template = 'field required' + + +class ExtraError(PydanticValueError): + msg_template = 'extra fields not permitted' + + +class NoneIsNotAllowedError(PydanticTypeError): + code = 'none.not_allowed' + msg_template = 'none is not an allowed value' + + +class NoneIsAllowedError(PydanticTypeError): + code = 'none.allowed' + msg_template = 'value is not none' + + +class WrongConstantError(PydanticValueError): + code = 'const' + + def __str__(self) -> str: + permitted = ', '.join(repr(v) for v in self.permitted) # type: ignore + return f'unexpected value; permitted: {permitted}' + + +class NotNoneError(PydanticTypeError): + code = 'not_none' + msg_template = 'value is not None' + + +class BoolError(PydanticTypeError): + msg_template = 'value could not be parsed to a boolean' + + +class BytesError(PydanticTypeError): + msg_template = 'byte type expected' + + +class DictError(PydanticTypeError): + msg_template = 'value is not a valid dict' + + +class EmailError(PydanticValueError): + msg_template = 'value is not a valid email address' + + +class UrlError(PydanticValueError): + code = 'url' + + +class UrlSchemeError(UrlError): + code = 'url.scheme' + msg_template = 'invalid or missing URL scheme' + + +class UrlSchemePermittedError(UrlError): + code = 'url.scheme' + msg_template = 'URL scheme not permitted' + + def __init__(self, allowed_schemes: Set[str]): + super().__init__(allowed_schemes=allowed_schemes) + + +class UrlUserInfoError(UrlError): + code = 'url.userinfo' + msg_template = 'userinfo required in URL but missing' + + +class UrlHostError(UrlError): + code = 'url.host' + msg_template = 'URL host invalid' + + +class UrlHostTldError(UrlError): + code = 'url.host' + msg_template = 'URL host invalid, top level domain required' + + +class UrlPortError(UrlError): + code = 'url.port' + msg_template = 'URL port invalid, port cannot exceed 65535' + + +class UrlExtraError(UrlError): + code = 'url.extra' + msg_template = 'URL invalid, extra characters found after valid URL: {extra!r}' + + +class EnumMemberError(PydanticTypeError): + code = 'enum' + + def __str__(self) -> str: + permitted = ', '.join(repr(v.value) for v in self.enum_values) # type: ignore + return f'value is not a valid enumeration member; permitted: {permitted}' + + +class IntegerError(PydanticTypeError): + msg_template = 'value is not a valid integer' + + +class FloatError(PydanticTypeError): + msg_template = 'value is not a valid float' + + +class PathError(PydanticTypeError): + msg_template = 'value is not a valid path' + + +class _PathValueError(PydanticValueError): + def __init__(self, *, path: Path) -> None: + super().__init__(path=str(path)) + + +class PathNotExistsError(_PathValueError): + code = 'path.not_exists' + msg_template = 'file or directory at path "{path}" does not exist' + + +class PathNotAFileError(_PathValueError): + code = 'path.not_a_file' + msg_template = 'path "{path}" does not point to a file' + + +class PathNotADirectoryError(_PathValueError): + code = 'path.not_a_directory' + msg_template = 'path "{path}" does not point to a directory' + + +class PyObjectError(PydanticTypeError): + msg_template = 'ensure this value contains valid import path or valid callable: {error_message}' + + +class SequenceError(PydanticTypeError): + msg_template = 'value is not a valid sequence' + + +class IterableError(PydanticTypeError): + msg_template = 'value is not a valid iterable' + + +class ListError(PydanticTypeError): + msg_template = 'value is not a valid list' + + +class SetError(PydanticTypeError): + msg_template = 'value is not a valid set' + + +class FrozenSetError(PydanticTypeError): + msg_template = 'value is not a valid frozenset' + + +class DequeError(PydanticTypeError): + msg_template = 'value is not a valid deque' + + +class TupleError(PydanticTypeError): + msg_template = 'value is not a valid tuple' + + +class TupleLengthError(PydanticValueError): + code = 'tuple.length' + msg_template = 'wrong tuple length {actual_length}, expected {expected_length}' + + def __init__(self, *, actual_length: int, expected_length: int) -> None: + super().__init__(actual_length=actual_length, expected_length=expected_length) + + +class ListMinLengthError(PydanticValueError): + code = 'list.min_items' + msg_template = 'ensure this value has at least {limit_value} items' + + def __init__(self, *, limit_value: int) -> None: + super().__init__(limit_value=limit_value) + + +class ListMaxLengthError(PydanticValueError): + code = 'list.max_items' + msg_template = 'ensure this value has at most {limit_value} items' + + def __init__(self, *, limit_value: int) -> None: + super().__init__(limit_value=limit_value) + + +class ListUniqueItemsError(PydanticValueError): + code = 'list.unique_items' + msg_template = 'the list has duplicated items' + + +class SetMinLengthError(PydanticValueError): + code = 'set.min_items' + msg_template = 'ensure this value has at least {limit_value} items' + + def __init__(self, *, limit_value: int) -> None: + super().__init__(limit_value=limit_value) + + +class SetMaxLengthError(PydanticValueError): + code = 'set.max_items' + msg_template = 'ensure this value has at most {limit_value} items' + + def __init__(self, *, limit_value: int) -> None: + super().__init__(limit_value=limit_value) + + +class FrozenSetMinLengthError(PydanticValueError): + code = 'frozenset.min_items' + msg_template = 'ensure this value has at least {limit_value} items' + + def __init__(self, *, limit_value: int) -> None: + super().__init__(limit_value=limit_value) + + +class FrozenSetMaxLengthError(PydanticValueError): + code = 'frozenset.max_items' + msg_template = 'ensure this value has at most {limit_value} items' + + def __init__(self, *, limit_value: int) -> None: + super().__init__(limit_value=limit_value) + + +class AnyStrMinLengthError(PydanticValueError): + code = 'any_str.min_length' + msg_template = 'ensure this value has at least {limit_value} characters' + + def __init__(self, *, limit_value: int) -> None: + super().__init__(limit_value=limit_value) + + +class AnyStrMaxLengthError(PydanticValueError): + code = 'any_str.max_length' + msg_template = 'ensure this value has at most {limit_value} characters' + + def __init__(self, *, limit_value: int) -> None: + super().__init__(limit_value=limit_value) + + +class StrError(PydanticTypeError): + msg_template = 'str type expected' + + +class StrRegexError(PydanticValueError): + code = 'str.regex' + msg_template = 'string does not match regex "{pattern}"' + + def __init__(self, *, pattern: str) -> None: + super().__init__(pattern=pattern) + + +class _NumberBoundError(PydanticValueError): + def __init__(self, *, limit_value: Union[int, float, Decimal]) -> None: + super().__init__(limit_value=limit_value) + + +class NumberNotGtError(_NumberBoundError): + code = 'number.not_gt' + msg_template = 'ensure this value is greater than {limit_value}' + + +class NumberNotGeError(_NumberBoundError): + code = 'number.not_ge' + msg_template = 'ensure this value is greater than or equal to {limit_value}' + + +class NumberNotLtError(_NumberBoundError): + code = 'number.not_lt' + msg_template = 'ensure this value is less than {limit_value}' + + +class NumberNotLeError(_NumberBoundError): + code = 'number.not_le' + msg_template = 'ensure this value is less than or equal to {limit_value}' + + +class NumberNotFiniteError(PydanticValueError): + code = 'number.not_finite_number' + msg_template = 'ensure this value is a finite number' + + +class NumberNotMultipleError(PydanticValueError): + code = 'number.not_multiple' + msg_template = 'ensure this value is a multiple of {multiple_of}' + + def __init__(self, *, multiple_of: Union[int, float, Decimal]) -> None: + super().__init__(multiple_of=multiple_of) + + +class DecimalError(PydanticTypeError): + msg_template = 'value is not a valid decimal' + + +class DecimalIsNotFiniteError(PydanticValueError): + code = 'decimal.not_finite' + msg_template = 'value is not a valid decimal' + + +class DecimalMaxDigitsError(PydanticValueError): + code = 'decimal.max_digits' + msg_template = 'ensure that there are no more than {max_digits} digits in total' + + def __init__(self, *, max_digits: int) -> None: + super().__init__(max_digits=max_digits) + + +class DecimalMaxPlacesError(PydanticValueError): + code = 'decimal.max_places' + msg_template = 'ensure that there are no more than {decimal_places} decimal places' + + def __init__(self, *, decimal_places: int) -> None: + super().__init__(decimal_places=decimal_places) + + +class DecimalWholeDigitsError(PydanticValueError): + code = 'decimal.whole_digits' + msg_template = 'ensure that there are no more than {whole_digits} digits before the decimal point' + + def __init__(self, *, whole_digits: int) -> None: + super().__init__(whole_digits=whole_digits) + + +class DateTimeError(PydanticValueError): + msg_template = 'invalid datetime format' + + +class DateError(PydanticValueError): + msg_template = 'invalid date format' + + +class DateNotInThePastError(PydanticValueError): + code = 'date.not_in_the_past' + msg_template = 'date is not in the past' + + +class DateNotInTheFutureError(PydanticValueError): + code = 'date.not_in_the_future' + msg_template = 'date is not in the future' + + +class TimeError(PydanticValueError): + msg_template = 'invalid time format' + + +class DurationError(PydanticValueError): + msg_template = 'invalid duration format' + + +class HashableError(PydanticTypeError): + msg_template = 'value is not a valid hashable' + + +class UUIDError(PydanticTypeError): + msg_template = 'value is not a valid uuid' + + +class UUIDVersionError(PydanticValueError): + code = 'uuid.version' + msg_template = 'uuid version {required_version} expected' + + def __init__(self, *, required_version: int) -> None: + super().__init__(required_version=required_version) + + +class ArbitraryTypeError(PydanticTypeError): + code = 'arbitrary_type' + msg_template = 'instance of {expected_arbitrary_type} expected' + + def __init__(self, *, expected_arbitrary_type: Type[Any]) -> None: + super().__init__(expected_arbitrary_type=display_as_type(expected_arbitrary_type)) + + +class ClassError(PydanticTypeError): + code = 'class' + msg_template = 'a class is expected' + + +class SubclassError(PydanticTypeError): + code = 'subclass' + msg_template = 'subclass of {expected_class} expected' + + def __init__(self, *, expected_class: Type[Any]) -> None: + super().__init__(expected_class=display_as_type(expected_class)) + + +class JsonError(PydanticValueError): + msg_template = 'Invalid JSON' + + +class JsonTypeError(PydanticTypeError): + code = 'json' + msg_template = 'JSON object must be str, bytes or bytearray' + + +class PatternError(PydanticValueError): + code = 'regex_pattern' + msg_template = 'Invalid regular expression' + + +class DataclassTypeError(PydanticTypeError): + code = 'dataclass' + msg_template = 'instance of {class_name}, tuple or dict expected' + + +class CallableError(PydanticTypeError): + msg_template = '{value} is not callable' + + +class EnumError(PydanticTypeError): + code = 'enum_instance' + msg_template = '{value} is not a valid Enum instance' + + +class IntEnumError(PydanticTypeError): + code = 'int_enum_instance' + msg_template = '{value} is not a valid IntEnum instance' + + +class IPvAnyAddressError(PydanticValueError): + msg_template = 'value is not a valid IPv4 or IPv6 address' + + +class IPvAnyInterfaceError(PydanticValueError): + msg_template = 'value is not a valid IPv4 or IPv6 interface' + + +class IPvAnyNetworkError(PydanticValueError): + msg_template = 'value is not a valid IPv4 or IPv6 network' + + +class IPv4AddressError(PydanticValueError): + msg_template = 'value is not a valid IPv4 address' + + +class IPv6AddressError(PydanticValueError): + msg_template = 'value is not a valid IPv6 address' + + +class IPv4NetworkError(PydanticValueError): + msg_template = 'value is not a valid IPv4 network' + + +class IPv6NetworkError(PydanticValueError): + msg_template = 'value is not a valid IPv6 network' + + +class IPv4InterfaceError(PydanticValueError): + msg_template = 'value is not a valid IPv4 interface' + + +class IPv6InterfaceError(PydanticValueError): + msg_template = 'value is not a valid IPv6 interface' + + +class ColorError(PydanticValueError): + msg_template = 'value is not a valid color: {reason}' + + +class StrictBoolError(PydanticValueError): + msg_template = 'value is not a valid boolean' + + +class NotDigitError(PydanticValueError): + code = 'payment_card_number.digits' + msg_template = 'card number is not all digits' + + +class LuhnValidationError(PydanticValueError): + code = 'payment_card_number.luhn_check' + msg_template = 'card number is not luhn valid' + + +class InvalidLengthForBrand(PydanticValueError): + code = 'payment_card_number.invalid_length_for_brand' + msg_template = 'Length for a {brand} card must be {required_length}' + + +class InvalidByteSize(PydanticValueError): + msg_template = 'could not parse value and unit from byte string' + + +class InvalidByteSizeUnit(PydanticValueError): + msg_template = 'could not interpret byte unit: {unit}' + + +class MissingDiscriminator(PydanticValueError): + code = 'discriminated_union.missing_discriminator' + msg_template = 'Discriminator {discriminator_key!r} is missing in value' + + +class InvalidDiscriminator(PydanticValueError): + code = 'discriminated_union.invalid_discriminator' + msg_template = ( + 'No match for discriminator {discriminator_key!r} and value {discriminator_value!r} ' + '(allowed values: {allowed_values})' + ) + + def __init__(self, *, discriminator_key: str, discriminator_value: Any, allowed_values: Sequence[Any]) -> None: + super().__init__( + discriminator_key=discriminator_key, + discriminator_value=discriminator_value, + allowed_values=', '.join(map(repr, allowed_values)), + ) diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/fields.py b/venv/lib/python3.10/site-packages/pydantic/v1/fields.py new file mode 100644 index 0000000000000000000000000000000000000000..60d260e94626f5a3720d3be6f3dff32eba53922a --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/v1/fields.py @@ -0,0 +1,1253 @@ +import copy +import re +from collections import Counter as CollectionCounter, defaultdict, deque +from collections.abc import Callable, Hashable as CollectionsHashable, Iterable as CollectionsIterable +from typing import ( + TYPE_CHECKING, + Any, + Counter, + DefaultDict, + Deque, + Dict, + ForwardRef, + FrozenSet, + Generator, + Iterable, + Iterator, + List, + Mapping, + Optional, + Pattern, + Sequence, + Set, + Tuple, + Type, + TypeVar, + Union, +) + +from typing_extensions import Annotated, Final + +from . import errors as errors_ +from .class_validators import Validator, make_generic_validator, prep_validators +from .error_wrappers import ErrorWrapper +from .errors import ConfigError, InvalidDiscriminator, MissingDiscriminator, NoneIsNotAllowedError +from .types import Json, JsonWrapper +from .typing import ( + NoArgAnyCallable, + convert_generics, + display_as_type, + get_args, + get_origin, + is_finalvar, + is_literal_type, + is_new_type, + is_none_type, + is_typeddict, + is_typeddict_special, + is_union, + new_type_supertype, +) +from .utils import ( + PyObjectStr, + Representation, + ValueItems, + get_discriminator_alias_and_values, + get_unique_discriminator_alias, + lenient_isinstance, + lenient_issubclass, + sequence_like, + smart_deepcopy, +) +from .validators import constant_validator, dict_validator, find_validators, validate_json + +Required: Any = Ellipsis + +T = TypeVar('T') + + +class UndefinedType: + def __repr__(self) -> str: + return 'PydanticUndefined' + + def __copy__(self: T) -> T: + return self + + def __reduce__(self) -> str: + return 'Undefined' + + def __deepcopy__(self: T, _: Any) -> T: + return self + + +Undefined = UndefinedType() + +if TYPE_CHECKING: + from .class_validators import ValidatorsList + from .config import BaseConfig + from .error_wrappers import ErrorList + from .types import ModelOrDc + from .typing import AbstractSetIntStr, MappingIntStrAny, ReprArgs + + ValidateReturn = Tuple[Optional[Any], Optional[ErrorList]] + LocStr = Union[Tuple[Union[int, str], ...], str] + BoolUndefined = Union[bool, UndefinedType] + + +class FieldInfo(Representation): + """ + Captures extra information about a field. + """ + + __slots__ = ( + 'default', + 'default_factory', + 'alias', + 'alias_priority', + 'title', + 'description', + 'exclude', + 'include', + 'const', + 'gt', + 'ge', + 'lt', + 'le', + 'multiple_of', + 'allow_inf_nan', + 'max_digits', + 'decimal_places', + 'min_items', + 'max_items', + 'unique_items', + 'min_length', + 'max_length', + 'allow_mutation', + 'repr', + 'regex', + 'discriminator', + 'extra', + ) + + # field constraints with the default value, it's also used in update_from_config below + __field_constraints__ = { + 'min_length': None, + 'max_length': None, + 'regex': None, + 'gt': None, + 'lt': None, + 'ge': None, + 'le': None, + 'multiple_of': None, + 'allow_inf_nan': None, + 'max_digits': None, + 'decimal_places': None, + 'min_items': None, + 'max_items': None, + 'unique_items': None, + 'allow_mutation': True, + } + + def __init__(self, default: Any = Undefined, **kwargs: Any) -> None: + self.default = default + self.default_factory = kwargs.pop('default_factory', None) + self.alias = kwargs.pop('alias', None) + self.alias_priority = kwargs.pop('alias_priority', 2 if self.alias is not None else None) + self.title = kwargs.pop('title', None) + self.description = kwargs.pop('description', None) + self.exclude = kwargs.pop('exclude', None) + self.include = kwargs.pop('include', None) + self.const = kwargs.pop('const', None) + self.gt = kwargs.pop('gt', None) + self.ge = kwargs.pop('ge', None) + self.lt = kwargs.pop('lt', None) + self.le = kwargs.pop('le', None) + self.multiple_of = kwargs.pop('multiple_of', None) + self.allow_inf_nan = kwargs.pop('allow_inf_nan', None) + self.max_digits = kwargs.pop('max_digits', None) + self.decimal_places = kwargs.pop('decimal_places', None) + self.min_items = kwargs.pop('min_items', None) + self.max_items = kwargs.pop('max_items', None) + self.unique_items = kwargs.pop('unique_items', None) + self.min_length = kwargs.pop('min_length', None) + self.max_length = kwargs.pop('max_length', None) + self.allow_mutation = kwargs.pop('allow_mutation', True) + self.regex = kwargs.pop('regex', None) + self.discriminator = kwargs.pop('discriminator', None) + self.repr = kwargs.pop('repr', True) + self.extra = kwargs + + def __repr_args__(self) -> 'ReprArgs': + field_defaults_to_hide: Dict[str, Any] = { + 'repr': True, + **self.__field_constraints__, + } + + attrs = ((s, getattr(self, s)) for s in self.__slots__) + return [(a, v) for a, v in attrs if v != field_defaults_to_hide.get(a, None)] + + def get_constraints(self) -> Set[str]: + """ + Gets the constraints set on the field by comparing the constraint value with its default value + + :return: the constraints set on field_info + """ + return {attr for attr, default in self.__field_constraints__.items() if getattr(self, attr) != default} + + def update_from_config(self, from_config: Dict[str, Any]) -> None: + """ + Update this FieldInfo based on a dict from get_field_info, only fields which have not been set are dated. + """ + for attr_name, value in from_config.items(): + try: + current_value = getattr(self, attr_name) + except AttributeError: + # attr_name is not an attribute of FieldInfo, it should therefore be added to extra + # (except if extra already has this value!) + self.extra.setdefault(attr_name, value) + else: + if current_value is self.__field_constraints__.get(attr_name, None): + setattr(self, attr_name, value) + elif attr_name == 'exclude': + self.exclude = ValueItems.merge(value, current_value) + elif attr_name == 'include': + self.include = ValueItems.merge(value, current_value, intersect=True) + + def _validate(self) -> None: + if self.default is not Undefined and self.default_factory is not None: + raise ValueError('cannot specify both default and default_factory') + + +def Field( + default: Any = Undefined, + *, + default_factory: Optional[NoArgAnyCallable] = None, + alias: Optional[str] = None, + title: Optional[str] = None, + description: Optional[str] = None, + exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny', Any]] = None, + include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny', Any]] = None, + const: Optional[bool] = None, + gt: Optional[float] = None, + ge: Optional[float] = None, + lt: Optional[float] = None, + le: Optional[float] = None, + multiple_of: Optional[float] = None, + allow_inf_nan: Optional[bool] = None, + max_digits: Optional[int] = None, + decimal_places: Optional[int] = None, + min_items: Optional[int] = None, + max_items: Optional[int] = None, + unique_items: Optional[bool] = None, + min_length: Optional[int] = None, + max_length: Optional[int] = None, + allow_mutation: bool = True, + regex: Optional[str] = None, + discriminator: Optional[str] = None, + repr: bool = True, + **extra: Any, +) -> Any: + """ + Used to provide extra information about a field, either for the model schema or complex validation. Some arguments + apply only to number fields (``int``, ``float``, ``Decimal``) and some apply only to ``str``. + + :param default: since this is replacing the field’s default, its first argument is used + to set the default, use ellipsis (``...``) to indicate the field is required + :param default_factory: callable that will be called when a default value is needed for this field + If both `default` and `default_factory` are set, an error is raised. + :param alias: the public name of the field + :param title: can be any string, used in the schema + :param description: can be any string, used in the schema + :param exclude: exclude this field while dumping. + Takes same values as the ``include`` and ``exclude`` arguments on the ``.dict`` method. + :param include: include this field while dumping. + Takes same values as the ``include`` and ``exclude`` arguments on the ``.dict`` method. + :param const: this field is required and *must* take it's default value + :param gt: only applies to numbers, requires the field to be "greater than". The schema + will have an ``exclusiveMinimum`` validation keyword + :param ge: only applies to numbers, requires the field to be "greater than or equal to". The + schema will have a ``minimum`` validation keyword + :param lt: only applies to numbers, requires the field to be "less than". The schema + will have an ``exclusiveMaximum`` validation keyword + :param le: only applies to numbers, requires the field to be "less than or equal to". The + schema will have a ``maximum`` validation keyword + :param multiple_of: only applies to numbers, requires the field to be "a multiple of". The + schema will have a ``multipleOf`` validation keyword + :param allow_inf_nan: only applies to numbers, allows the field to be NaN or infinity (+inf or -inf), + which is a valid Python float. Default True, set to False for compatibility with JSON. + :param max_digits: only applies to Decimals, requires the field to have a maximum number + of digits within the decimal. It does not include a zero before the decimal point or trailing decimal zeroes. + :param decimal_places: only applies to Decimals, requires the field to have at most a number of decimal places + allowed. It does not include trailing decimal zeroes. + :param min_items: only applies to lists, requires the field to have a minimum number of + elements. The schema will have a ``minItems`` validation keyword + :param max_items: only applies to lists, requires the field to have a maximum number of + elements. The schema will have a ``maxItems`` validation keyword + :param unique_items: only applies to lists, requires the field not to have duplicated + elements. The schema will have a ``uniqueItems`` validation keyword + :param min_length: only applies to strings, requires the field to have a minimum length. The + schema will have a ``minLength`` validation keyword + :param max_length: only applies to strings, requires the field to have a maximum length. The + schema will have a ``maxLength`` validation keyword + :param allow_mutation: a boolean which defaults to True. When False, the field raises a TypeError if the field is + assigned on an instance. The BaseModel Config must set validate_assignment to True + :param regex: only applies to strings, requires the field match against a regular expression + pattern string. The schema will have a ``pattern`` validation keyword + :param discriminator: only useful with a (discriminated a.k.a. tagged) `Union` of sub models with a common field. + The `discriminator` is the name of this common field to shorten validation and improve generated schema + :param repr: show this field in the representation + :param **extra: any additional keyword arguments will be added as is to the schema + """ + field_info = FieldInfo( + default, + default_factory=default_factory, + alias=alias, + title=title, + description=description, + exclude=exclude, + include=include, + const=const, + gt=gt, + ge=ge, + lt=lt, + le=le, + multiple_of=multiple_of, + allow_inf_nan=allow_inf_nan, + max_digits=max_digits, + decimal_places=decimal_places, + min_items=min_items, + max_items=max_items, + unique_items=unique_items, + min_length=min_length, + max_length=max_length, + allow_mutation=allow_mutation, + regex=regex, + discriminator=discriminator, + repr=repr, + **extra, + ) + field_info._validate() + return field_info + + +# used to be an enum but changed to int's for small performance improvement as less access overhead +SHAPE_SINGLETON = 1 +SHAPE_LIST = 2 +SHAPE_SET = 3 +SHAPE_MAPPING = 4 +SHAPE_TUPLE = 5 +SHAPE_TUPLE_ELLIPSIS = 6 +SHAPE_SEQUENCE = 7 +SHAPE_FROZENSET = 8 +SHAPE_ITERABLE = 9 +SHAPE_GENERIC = 10 +SHAPE_DEQUE = 11 +SHAPE_DICT = 12 +SHAPE_DEFAULTDICT = 13 +SHAPE_COUNTER = 14 +SHAPE_NAME_LOOKUP = { + SHAPE_LIST: 'List[{}]', + SHAPE_SET: 'Set[{}]', + SHAPE_TUPLE_ELLIPSIS: 'Tuple[{}, ...]', + SHAPE_SEQUENCE: 'Sequence[{}]', + SHAPE_FROZENSET: 'FrozenSet[{}]', + SHAPE_ITERABLE: 'Iterable[{}]', + SHAPE_DEQUE: 'Deque[{}]', + SHAPE_DICT: 'Dict[{}]', + SHAPE_DEFAULTDICT: 'DefaultDict[{}]', + SHAPE_COUNTER: 'Counter[{}]', +} + +MAPPING_LIKE_SHAPES: Set[int] = {SHAPE_DEFAULTDICT, SHAPE_DICT, SHAPE_MAPPING, SHAPE_COUNTER} + + +class ModelField(Representation): + __slots__ = ( + 'type_', + 'outer_type_', + 'annotation', + 'sub_fields', + 'sub_fields_mapping', + 'key_field', + 'validators', + 'pre_validators', + 'post_validators', + 'default', + 'default_factory', + 'required', + 'final', + 'model_config', + 'name', + 'alias', + 'has_alias', + 'field_info', + 'discriminator_key', + 'discriminator_alias', + 'validate_always', + 'allow_none', + 'shape', + 'class_validators', + 'parse_json', + ) + + def __init__( + self, + *, + name: str, + type_: Type[Any], + class_validators: Optional[Dict[str, Validator]], + model_config: Type['BaseConfig'], + default: Any = None, + default_factory: Optional[NoArgAnyCallable] = None, + required: 'BoolUndefined' = Undefined, + final: bool = False, + alias: Optional[str] = None, + field_info: Optional[FieldInfo] = None, + ) -> None: + self.name: str = name + self.has_alias: bool = alias is not None + self.alias: str = alias if alias is not None else name + self.annotation = type_ + self.type_: Any = convert_generics(type_) + self.outer_type_: Any = type_ + self.class_validators = class_validators or {} + self.default: Any = default + self.default_factory: Optional[NoArgAnyCallable] = default_factory + self.required: 'BoolUndefined' = required + self.final: bool = final + self.model_config = model_config + self.field_info: FieldInfo = field_info or FieldInfo(default) + self.discriminator_key: Optional[str] = self.field_info.discriminator + self.discriminator_alias: Optional[str] = self.discriminator_key + + self.allow_none: bool = False + self.validate_always: bool = False + self.sub_fields: Optional[List[ModelField]] = None + self.sub_fields_mapping: Optional[Dict[str, 'ModelField']] = None # used for discriminated union + self.key_field: Optional[ModelField] = None + self.validators: 'ValidatorsList' = [] + self.pre_validators: Optional['ValidatorsList'] = None + self.post_validators: Optional['ValidatorsList'] = None + self.parse_json: bool = False + self.shape: int = SHAPE_SINGLETON + self.model_config.prepare_field(self) + self.prepare() + + def get_default(self) -> Any: + return smart_deepcopy(self.default) if self.default_factory is None else self.default_factory() + + @staticmethod + def _get_field_info( + field_name: str, annotation: Any, value: Any, config: Type['BaseConfig'] + ) -> Tuple[FieldInfo, Any]: + """ + Get a FieldInfo from a root typing.Annotated annotation, value, or config default. + + The FieldInfo may be set in typing.Annotated or the value, but not both. If neither contain + a FieldInfo, a new one will be created using the config. + + :param field_name: name of the field for use in error messages + :param annotation: a type hint such as `str` or `Annotated[str, Field(..., min_length=5)]` + :param value: the field's assigned value + :param config: the model's config object + :return: the FieldInfo contained in the `annotation`, the value, or a new one from the config. + """ + field_info_from_config = config.get_field_info(field_name) + + field_info = None + if get_origin(annotation) is Annotated: + field_infos = [arg for arg in get_args(annotation)[1:] if isinstance(arg, FieldInfo)] + if len(field_infos) > 1: + raise ValueError(f'cannot specify multiple `Annotated` `Field`s for {field_name!r}') + field_info = next(iter(field_infos), None) + if field_info is not None: + field_info = copy.copy(field_info) + field_info.update_from_config(field_info_from_config) + if field_info.default not in (Undefined, Required): + raise ValueError(f'`Field` default cannot be set in `Annotated` for {field_name!r}') + if value is not Undefined and value is not Required: + # check also `Required` because of `validate_arguments` that sets `...` as default value + field_info.default = value + + if isinstance(value, FieldInfo): + if field_info is not None: + raise ValueError(f'cannot specify `Annotated` and value `Field`s together for {field_name!r}') + field_info = value + field_info.update_from_config(field_info_from_config) + elif field_info is None: + field_info = FieldInfo(value, **field_info_from_config) + value = None if field_info.default_factory is not None else field_info.default + field_info._validate() + return field_info, value + + @classmethod + def infer( + cls, + *, + name: str, + value: Any, + annotation: Any, + class_validators: Optional[Dict[str, Validator]], + config: Type['BaseConfig'], + ) -> 'ModelField': + from .schema import get_annotation_from_field_info + + field_info, value = cls._get_field_info(name, annotation, value, config) + required: 'BoolUndefined' = Undefined + if value is Required: + required = True + value = None + elif value is not Undefined: + required = False + annotation = get_annotation_from_field_info(annotation, field_info, name, config.validate_assignment) + + return cls( + name=name, + type_=annotation, + alias=field_info.alias, + class_validators=class_validators, + default=value, + default_factory=field_info.default_factory, + required=required, + model_config=config, + field_info=field_info, + ) + + def set_config(self, config: Type['BaseConfig']) -> None: + self.model_config = config + info_from_config = config.get_field_info(self.name) + config.prepare_field(self) + new_alias = info_from_config.get('alias') + new_alias_priority = info_from_config.get('alias_priority') or 0 + if new_alias and new_alias_priority >= (self.field_info.alias_priority or 0): + self.field_info.alias = new_alias + self.field_info.alias_priority = new_alias_priority + self.alias = new_alias + new_exclude = info_from_config.get('exclude') + if new_exclude is not None: + self.field_info.exclude = ValueItems.merge(self.field_info.exclude, new_exclude) + new_include = info_from_config.get('include') + if new_include is not None: + self.field_info.include = ValueItems.merge(self.field_info.include, new_include, intersect=True) + + @property + def alt_alias(self) -> bool: + return self.name != self.alias + + def prepare(self) -> None: + """ + Prepare the field but inspecting self.default, self.type_ etc. + + Note: this method is **not** idempotent (because _type_analysis is not idempotent), + e.g. calling it it multiple times may modify the field and configure it incorrectly. + """ + self._set_default_and_type() + if self.type_.__class__ is ForwardRef or self.type_.__class__ is DeferredType: + # self.type_ is currently a ForwardRef and there's nothing we can do now, + # user will need to call model.update_forward_refs() + return + + self._type_analysis() + if self.required is Undefined: + self.required = True + if self.default is Undefined and self.default_factory is None: + self.default = None + self.populate_validators() + + def _set_default_and_type(self) -> None: + """ + Set the default value, infer the type if needed and check if `None` value is valid. + """ + if self.default_factory is not None: + if self.type_ is Undefined: + raise errors_.ConfigError( + f'you need to set the type of field {self.name!r} when using `default_factory`' + ) + return + + default_value = self.get_default() + + if default_value is not None and self.type_ is Undefined: + self.type_ = default_value.__class__ + self.outer_type_ = self.type_ + self.annotation = self.type_ + + if self.type_ is Undefined: + raise errors_.ConfigError(f'unable to infer type for attribute "{self.name}"') + + if self.required is False and default_value is None: + self.allow_none = True + + def _type_analysis(self) -> None: # noqa: C901 (ignore complexity) + # typing interface is horrible, we have to do some ugly checks + if lenient_issubclass(self.type_, JsonWrapper): + self.type_ = self.type_.inner_type + self.parse_json = True + elif lenient_issubclass(self.type_, Json): + self.type_ = Any + self.parse_json = True + elif isinstance(self.type_, TypeVar): + if self.type_.__bound__: + self.type_ = self.type_.__bound__ + elif self.type_.__constraints__: + self.type_ = Union[self.type_.__constraints__] + else: + self.type_ = Any + elif is_new_type(self.type_): + self.type_ = new_type_supertype(self.type_) + + if self.type_ is Any or self.type_ is object: + if self.required is Undefined: + self.required = False + self.allow_none = True + return + elif self.type_ is Pattern or self.type_ is re.Pattern: + # python 3.7 only, Pattern is a typing object but without sub fields + return + elif is_literal_type(self.type_): + return + elif is_typeddict(self.type_): + return + + if is_finalvar(self.type_): + self.final = True + + if self.type_ is Final: + self.type_ = Any + else: + self.type_ = get_args(self.type_)[0] + + self._type_analysis() + return + + origin = get_origin(self.type_) + + if origin is Annotated or is_typeddict_special(origin): + self.type_ = get_args(self.type_)[0] + self._type_analysis() + return + + if self.discriminator_key is not None and not is_union(origin): + raise TypeError('`discriminator` can only be used with `Union` type with more than one variant') + + # add extra check for `collections.abc.Hashable` for python 3.10+ where origin is not `None` + if origin is None or origin is CollectionsHashable: + # field is not "typing" object eg. Union, Dict, List etc. + # allow None for virtual superclasses of NoneType, e.g. Hashable + if isinstance(self.type_, type) and isinstance(None, self.type_): + self.allow_none = True + return + elif origin is Callable: + return + elif is_union(origin): + types_ = [] + for type_ in get_args(self.type_): + if is_none_type(type_) or type_ is Any or type_ is object: + if self.required is Undefined: + self.required = False + self.allow_none = True + if is_none_type(type_): + continue + types_.append(type_) + + if len(types_) == 1: + # Optional[] + self.type_ = types_[0] + # this is the one case where the "outer type" isn't just the original type + self.outer_type_ = self.type_ + # re-run to correctly interpret the new self.type_ + self._type_analysis() + else: + self.sub_fields = [self._create_sub_type(t, f'{self.name}_{display_as_type(t)}') for t in types_] + + if self.discriminator_key is not None: + self.prepare_discriminated_union_sub_fields() + return + elif issubclass(origin, Tuple): # type: ignore + # origin == Tuple without item type + args = get_args(self.type_) + if not args: # plain tuple + self.type_ = Any + self.shape = SHAPE_TUPLE_ELLIPSIS + elif len(args) == 2 and args[1] is Ellipsis: # e.g. Tuple[int, ...] + self.type_ = args[0] + self.shape = SHAPE_TUPLE_ELLIPSIS + self.sub_fields = [self._create_sub_type(args[0], f'{self.name}_0')] + elif args == ((),): # Tuple[()] means empty tuple + self.shape = SHAPE_TUPLE + self.type_ = Any + self.sub_fields = [] + else: + self.shape = SHAPE_TUPLE + self.sub_fields = [self._create_sub_type(t, f'{self.name}_{i}') for i, t in enumerate(args)] + return + elif issubclass(origin, List): + # Create self validators + get_validators = getattr(self.type_, '__get_validators__', None) + if get_validators: + self.class_validators.update( + {f'list_{i}': Validator(validator, pre=True) for i, validator in enumerate(get_validators())} + ) + + self.type_ = get_args(self.type_)[0] + self.shape = SHAPE_LIST + elif issubclass(origin, Set): + # Create self validators + get_validators = getattr(self.type_, '__get_validators__', None) + if get_validators: + self.class_validators.update( + {f'set_{i}': Validator(validator, pre=True) for i, validator in enumerate(get_validators())} + ) + + self.type_ = get_args(self.type_)[0] + self.shape = SHAPE_SET + elif issubclass(origin, FrozenSet): + # Create self validators + get_validators = getattr(self.type_, '__get_validators__', None) + if get_validators: + self.class_validators.update( + {f'frozenset_{i}': Validator(validator, pre=True) for i, validator in enumerate(get_validators())} + ) + + self.type_ = get_args(self.type_)[0] + self.shape = SHAPE_FROZENSET + elif issubclass(origin, Deque): + self.type_ = get_args(self.type_)[0] + self.shape = SHAPE_DEQUE + elif issubclass(origin, Sequence): + self.type_ = get_args(self.type_)[0] + self.shape = SHAPE_SEQUENCE + # priority to most common mapping: dict + elif origin is dict or origin is Dict: + self.key_field = self._create_sub_type(get_args(self.type_)[0], 'key_' + self.name, for_keys=True) + self.type_ = get_args(self.type_)[1] + self.shape = SHAPE_DICT + elif issubclass(origin, DefaultDict): + self.key_field = self._create_sub_type(get_args(self.type_)[0], 'key_' + self.name, for_keys=True) + self.type_ = get_args(self.type_)[1] + self.shape = SHAPE_DEFAULTDICT + elif issubclass(origin, Counter): + self.key_field = self._create_sub_type(get_args(self.type_)[0], 'key_' + self.name, for_keys=True) + self.type_ = int + self.shape = SHAPE_COUNTER + elif issubclass(origin, Mapping): + self.key_field = self._create_sub_type(get_args(self.type_)[0], 'key_' + self.name, for_keys=True) + self.type_ = get_args(self.type_)[1] + self.shape = SHAPE_MAPPING + # Equality check as almost everything inherits form Iterable, including str + # check for Iterable and CollectionsIterable, as it could receive one even when declared with the other + elif origin in {Iterable, CollectionsIterable}: + self.type_ = get_args(self.type_)[0] + self.shape = SHAPE_ITERABLE + self.sub_fields = [self._create_sub_type(self.type_, f'{self.name}_type')] + elif issubclass(origin, Type): # type: ignore + return + elif hasattr(origin, '__get_validators__') or self.model_config.arbitrary_types_allowed: + # Is a Pydantic-compatible generic that handles itself + # or we have arbitrary_types_allowed = True + self.shape = SHAPE_GENERIC + self.sub_fields = [self._create_sub_type(t, f'{self.name}_{i}') for i, t in enumerate(get_args(self.type_))] + self.type_ = origin + return + else: + raise TypeError(f'Fields of type "{origin}" are not supported.') + + # type_ has been refined eg. as the type of a List and sub_fields needs to be populated + self.sub_fields = [self._create_sub_type(self.type_, '_' + self.name)] + + def prepare_discriminated_union_sub_fields(self) -> None: + """ + Prepare the mapping -> and update `sub_fields` + Note that this process can be aborted if a `ForwardRef` is encountered + """ + assert self.discriminator_key is not None + + if self.type_.__class__ is DeferredType: + return + + assert self.sub_fields is not None + sub_fields_mapping: Dict[str, 'ModelField'] = {} + all_aliases: Set[str] = set() + + for sub_field in self.sub_fields: + t = sub_field.type_ + if t.__class__ is ForwardRef: + # Stopping everything...will need to call `update_forward_refs` + return + + alias, discriminator_values = get_discriminator_alias_and_values(t, self.discriminator_key) + all_aliases.add(alias) + for discriminator_value in discriminator_values: + sub_fields_mapping[discriminator_value] = sub_field + + self.sub_fields_mapping = sub_fields_mapping + self.discriminator_alias = get_unique_discriminator_alias(all_aliases, self.discriminator_key) + + def _create_sub_type(self, type_: Type[Any], name: str, *, for_keys: bool = False) -> 'ModelField': + if for_keys: + class_validators = None + else: + # validators for sub items should not have `each_item` as we want to check only the first sublevel + class_validators = { + k: Validator( + func=v.func, + pre=v.pre, + each_item=False, + always=v.always, + check_fields=v.check_fields, + skip_on_failure=v.skip_on_failure, + ) + for k, v in self.class_validators.items() + if v.each_item + } + + field_info, _ = self._get_field_info(name, type_, None, self.model_config) + + return self.__class__( + type_=type_, + name=name, + class_validators=class_validators, + model_config=self.model_config, + field_info=field_info, + ) + + def populate_validators(self) -> None: + """ + Prepare self.pre_validators, self.validators, and self.post_validators based on self.type_'s __get_validators__ + and class validators. This method should be idempotent, e.g. it should be safe to call multiple times + without mis-configuring the field. + """ + self.validate_always = getattr(self.type_, 'validate_always', False) or any( + v.always for v in self.class_validators.values() + ) + + class_validators_ = self.class_validators.values() + if not self.sub_fields or self.shape == SHAPE_GENERIC: + get_validators = getattr(self.type_, '__get_validators__', None) + v_funcs = ( + *[v.func for v in class_validators_ if v.each_item and v.pre], + *(get_validators() if get_validators else list(find_validators(self.type_, self.model_config))), + *[v.func for v in class_validators_ if v.each_item and not v.pre], + ) + self.validators = prep_validators(v_funcs) + + self.pre_validators = [] + self.post_validators = [] + + if self.field_info and self.field_info.const: + self.post_validators.append(make_generic_validator(constant_validator)) + + if class_validators_: + self.pre_validators += prep_validators(v.func for v in class_validators_ if not v.each_item and v.pre) + self.post_validators += prep_validators(v.func for v in class_validators_ if not v.each_item and not v.pre) + + if self.parse_json: + self.pre_validators.append(make_generic_validator(validate_json)) + + self.pre_validators = self.pre_validators or None + self.post_validators = self.post_validators or None + + def validate( + self, v: Any, values: Dict[str, Any], *, loc: 'LocStr', cls: Optional['ModelOrDc'] = None + ) -> 'ValidateReturn': + assert self.type_.__class__ is not DeferredType + + if self.type_.__class__ is ForwardRef: + assert cls is not None + raise ConfigError( + f'field "{self.name}" not yet prepared so type is still a ForwardRef, ' + f'you might need to call {cls.__name__}.update_forward_refs().' + ) + + errors: Optional['ErrorList'] + if self.pre_validators: + v, errors = self._apply_validators(v, values, loc, cls, self.pre_validators) + if errors: + return v, errors + + if v is None: + if is_none_type(self.type_): + # keep validating + pass + elif self.allow_none: + if self.post_validators: + return self._apply_validators(v, values, loc, cls, self.post_validators) + else: + return None, None + else: + return v, ErrorWrapper(NoneIsNotAllowedError(), loc) + + if self.shape == SHAPE_SINGLETON: + v, errors = self._validate_singleton(v, values, loc, cls) + elif self.shape in MAPPING_LIKE_SHAPES: + v, errors = self._validate_mapping_like(v, values, loc, cls) + elif self.shape == SHAPE_TUPLE: + v, errors = self._validate_tuple(v, values, loc, cls) + elif self.shape == SHAPE_ITERABLE: + v, errors = self._validate_iterable(v, values, loc, cls) + elif self.shape == SHAPE_GENERIC: + v, errors = self._apply_validators(v, values, loc, cls, self.validators) + else: + # sequence, list, set, generator, tuple with ellipsis, frozen set + v, errors = self._validate_sequence_like(v, values, loc, cls) + + if not errors and self.post_validators: + v, errors = self._apply_validators(v, values, loc, cls, self.post_validators) + return v, errors + + def _validate_sequence_like( # noqa: C901 (ignore complexity) + self, v: Any, values: Dict[str, Any], loc: 'LocStr', cls: Optional['ModelOrDc'] + ) -> 'ValidateReturn': + """ + Validate sequence-like containers: lists, tuples, sets and generators + Note that large if-else blocks are necessary to enable Cython + optimization, which is why we disable the complexity check above. + """ + if not sequence_like(v): + e: errors_.PydanticTypeError + if self.shape == SHAPE_LIST: + e = errors_.ListError() + elif self.shape in (SHAPE_TUPLE, SHAPE_TUPLE_ELLIPSIS): + e = errors_.TupleError() + elif self.shape == SHAPE_SET: + e = errors_.SetError() + elif self.shape == SHAPE_FROZENSET: + e = errors_.FrozenSetError() + else: + e = errors_.SequenceError() + return v, ErrorWrapper(e, loc) + + loc = loc if isinstance(loc, tuple) else (loc,) + result = [] + errors: List[ErrorList] = [] + for i, v_ in enumerate(v): + v_loc = *loc, i + r, ee = self._validate_singleton(v_, values, v_loc, cls) + if ee: + errors.append(ee) + else: + result.append(r) + + if errors: + return v, errors + + converted: Union[List[Any], Set[Any], FrozenSet[Any], Tuple[Any, ...], Iterator[Any], Deque[Any]] = result + + if self.shape == SHAPE_SET: + converted = set(result) + elif self.shape == SHAPE_FROZENSET: + converted = frozenset(result) + elif self.shape == SHAPE_TUPLE_ELLIPSIS: + converted = tuple(result) + elif self.shape == SHAPE_DEQUE: + converted = deque(result, maxlen=getattr(v, 'maxlen', None)) + elif self.shape == SHAPE_SEQUENCE: + if isinstance(v, tuple): + converted = tuple(result) + elif isinstance(v, set): + converted = set(result) + elif isinstance(v, Generator): + converted = iter(result) + elif isinstance(v, deque): + converted = deque(result, maxlen=getattr(v, 'maxlen', None)) + return converted, None + + def _validate_iterable( + self, v: Any, values: Dict[str, Any], loc: 'LocStr', cls: Optional['ModelOrDc'] + ) -> 'ValidateReturn': + """ + Validate Iterables. + + This intentionally doesn't validate values to allow infinite generators. + """ + + try: + iterable = iter(v) + except TypeError: + return v, ErrorWrapper(errors_.IterableError(), loc) + return iterable, None + + def _validate_tuple( + self, v: Any, values: Dict[str, Any], loc: 'LocStr', cls: Optional['ModelOrDc'] + ) -> 'ValidateReturn': + e: Optional[Exception] = None + if not sequence_like(v): + e = errors_.TupleError() + else: + actual_length, expected_length = len(v), len(self.sub_fields) # type: ignore + if actual_length != expected_length: + e = errors_.TupleLengthError(actual_length=actual_length, expected_length=expected_length) + + if e: + return v, ErrorWrapper(e, loc) + + loc = loc if isinstance(loc, tuple) else (loc,) + result = [] + errors: List[ErrorList] = [] + for i, (v_, field) in enumerate(zip(v, self.sub_fields)): # type: ignore + v_loc = *loc, i + r, ee = field.validate(v_, values, loc=v_loc, cls=cls) + if ee: + errors.append(ee) + else: + result.append(r) + + if errors: + return v, errors + else: + return tuple(result), None + + def _validate_mapping_like( + self, v: Any, values: Dict[str, Any], loc: 'LocStr', cls: Optional['ModelOrDc'] + ) -> 'ValidateReturn': + try: + v_iter = dict_validator(v) + except TypeError as exc: + return v, ErrorWrapper(exc, loc) + + loc = loc if isinstance(loc, tuple) else (loc,) + result, errors = {}, [] + for k, v_ in v_iter.items(): + v_loc = *loc, '__key__' + key_result, key_errors = self.key_field.validate(k, values, loc=v_loc, cls=cls) # type: ignore + if key_errors: + errors.append(key_errors) + continue + + v_loc = *loc, k + value_result, value_errors = self._validate_singleton(v_, values, v_loc, cls) + if value_errors: + errors.append(value_errors) + continue + + result[key_result] = value_result + if errors: + return v, errors + elif self.shape == SHAPE_DICT: + return result, None + elif self.shape == SHAPE_DEFAULTDICT: + return defaultdict(self.type_, result), None + elif self.shape == SHAPE_COUNTER: + return CollectionCounter(result), None + else: + return self._get_mapping_value(v, result), None + + def _get_mapping_value(self, original: T, converted: Dict[Any, Any]) -> Union[T, Dict[Any, Any]]: + """ + When type is `Mapping[KT, KV]` (or another unsupported mapping), we try to avoid + coercing to `dict` unwillingly. + """ + original_cls = original.__class__ + + if original_cls == dict or original_cls == Dict: + return converted + elif original_cls in {defaultdict, DefaultDict}: + return defaultdict(self.type_, converted) + else: + try: + # Counter, OrderedDict, UserDict, ... + return original_cls(converted) # type: ignore + except TypeError: + raise RuntimeError(f'Could not convert dictionary to {original_cls.__name__!r}') from None + + def _validate_singleton( + self, v: Any, values: Dict[str, Any], loc: 'LocStr', cls: Optional['ModelOrDc'] + ) -> 'ValidateReturn': + if self.sub_fields: + if self.discriminator_key is not None: + return self._validate_discriminated_union(v, values, loc, cls) + + errors = [] + + if self.model_config.smart_union and is_union(get_origin(self.type_)): + # 1st pass: check if the value is an exact instance of one of the Union types + # (e.g. to avoid coercing a bool into an int) + for field in self.sub_fields: + if v.__class__ is field.outer_type_: + return v, None + + # 2nd pass: check if the value is an instance of any subclass of the Union types + for field in self.sub_fields: + # This whole logic will be improved later on to support more complex `isinstance` checks + # It will probably be done once a strict mode is added and be something like: + # ``` + # value, error = field.validate(v, values, strict=True) + # if error is None: + # return value, None + # ``` + try: + if isinstance(v, field.outer_type_): + return v, None + except TypeError: + # compound type + if lenient_isinstance(v, get_origin(field.outer_type_)): + value, error = field.validate(v, values, loc=loc, cls=cls) + if not error: + return value, None + + # 1st pass by default or 3rd pass with `smart_union` enabled: + # check if the value can be coerced into one of the Union types + for field in self.sub_fields: + value, error = field.validate(v, values, loc=loc, cls=cls) + if error: + errors.append(error) + else: + return value, None + return v, errors + else: + return self._apply_validators(v, values, loc, cls, self.validators) + + def _validate_discriminated_union( + self, v: Any, values: Dict[str, Any], loc: 'LocStr', cls: Optional['ModelOrDc'] + ) -> 'ValidateReturn': + assert self.discriminator_key is not None + assert self.discriminator_alias is not None + + try: + try: + discriminator_value = v[self.discriminator_alias] + except KeyError: + if self.model_config.allow_population_by_field_name: + discriminator_value = v[self.discriminator_key] + else: + raise + except KeyError: + return v, ErrorWrapper(MissingDiscriminator(discriminator_key=self.discriminator_key), loc) + except TypeError: + try: + # BaseModel or dataclass + discriminator_value = getattr(v, self.discriminator_key) + except (AttributeError, TypeError): + return v, ErrorWrapper(MissingDiscriminator(discriminator_key=self.discriminator_key), loc) + + if self.sub_fields_mapping is None: + assert cls is not None + raise ConfigError( + f'field "{self.name}" not yet prepared so type is still a ForwardRef, ' + f'you might need to call {cls.__name__}.update_forward_refs().' + ) + + try: + sub_field = self.sub_fields_mapping[discriminator_value] + except (KeyError, TypeError): + # KeyError: `discriminator_value` is not in the dictionary. + # TypeError: `discriminator_value` is unhashable. + assert self.sub_fields_mapping is not None + return v, ErrorWrapper( + InvalidDiscriminator( + discriminator_key=self.discriminator_key, + discriminator_value=discriminator_value, + allowed_values=list(self.sub_fields_mapping), + ), + loc, + ) + else: + if not isinstance(loc, tuple): + loc = (loc,) + return sub_field.validate(v, values, loc=(*loc, display_as_type(sub_field.type_)), cls=cls) + + def _apply_validators( + self, v: Any, values: Dict[str, Any], loc: 'LocStr', cls: Optional['ModelOrDc'], validators: 'ValidatorsList' + ) -> 'ValidateReturn': + for validator in validators: + try: + v = validator(cls, v, values, self, self.model_config) + except (ValueError, TypeError, AssertionError) as exc: + return v, ErrorWrapper(exc, loc) + return v, None + + def is_complex(self) -> bool: + """ + Whether the field is "complex" eg. env variables should be parsed as JSON. + """ + from .main import BaseModel + + return ( + self.shape != SHAPE_SINGLETON + or hasattr(self.type_, '__pydantic_model__') + or lenient_issubclass(self.type_, (BaseModel, list, set, frozenset, dict)) + ) + + def _type_display(self) -> PyObjectStr: + t = display_as_type(self.type_) + + if self.shape in MAPPING_LIKE_SHAPES: + t = f'Mapping[{display_as_type(self.key_field.type_)}, {t}]' # type: ignore + elif self.shape == SHAPE_TUPLE: + t = 'Tuple[{}]'.format(', '.join(display_as_type(f.type_) for f in self.sub_fields)) # type: ignore + elif self.shape == SHAPE_GENERIC: + assert self.sub_fields + t = '{}[{}]'.format( + display_as_type(self.type_), ', '.join(display_as_type(f.type_) for f in self.sub_fields) + ) + elif self.shape != SHAPE_SINGLETON: + t = SHAPE_NAME_LOOKUP[self.shape].format(t) + + if self.allow_none and (self.shape != SHAPE_SINGLETON or not self.sub_fields): + t = f'Optional[{t}]' + return PyObjectStr(t) + + def __repr_args__(self) -> 'ReprArgs': + args = [('name', self.name), ('type', self._type_display()), ('required', self.required)] + + if not self.required: + if self.default_factory is not None: + args.append(('default_factory', f'')) + else: + args.append(('default', self.default)) + + if self.alt_alias: + args.append(('alias', self.alias)) + return args + + +class ModelPrivateAttr(Representation): + __slots__ = ('default', 'default_factory') + + def __init__(self, default: Any = Undefined, *, default_factory: Optional[NoArgAnyCallable] = None) -> None: + self.default = default + self.default_factory = default_factory + + def get_default(self) -> Any: + return smart_deepcopy(self.default) if self.default_factory is None else self.default_factory() + + def __eq__(self, other: Any) -> bool: + return isinstance(other, self.__class__) and (self.default, self.default_factory) == ( + other.default, + other.default_factory, + ) + + +def PrivateAttr( + default: Any = Undefined, + *, + default_factory: Optional[NoArgAnyCallable] = None, +) -> Any: + """ + Indicates that attribute is only used internally and never mixed with regular fields. + + Types or values of private attrs are not checked by pydantic and it's up to you to keep them relevant. + + Private attrs are stored in model __slots__. + + :param default: the attribute’s default value + :param default_factory: callable that will be called when a default value is needed for this attribute + If both `default` and `default_factory` are set, an error is raised. + """ + if default is not Undefined and default_factory is not None: + raise ValueError('cannot specify both default and default_factory') + + return ModelPrivateAttr( + default, + default_factory=default_factory, + ) + + +class DeferredType: + """ + Used to postpone field preparation, while creating recursive generic models. + """ + + +def is_finalvar_with_default_val(type_: Type[Any], val: Any) -> bool: + return is_finalvar(type_) and val is not Undefined and not isinstance(val, FieldInfo) diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/generics.py b/venv/lib/python3.10/site-packages/pydantic/v1/generics.py new file mode 100644 index 0000000000000000000000000000000000000000..a75b6b987da7335f390945ee40195ea2f96c65e9 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/v1/generics.py @@ -0,0 +1,400 @@ +import sys +import types +import typing +from typing import ( + TYPE_CHECKING, + Any, + ClassVar, + Dict, + ForwardRef, + Generic, + Iterator, + List, + Mapping, + Optional, + Tuple, + Type, + TypeVar, + Union, + cast, +) +from weakref import WeakKeyDictionary, WeakValueDictionary + +from typing_extensions import Annotated, Literal as ExtLiteral + +from .class_validators import gather_all_validators +from .fields import DeferredType +from .main import BaseModel, create_model +from .types import JsonWrapper +from .typing import display_as_type, get_all_type_hints, get_args, get_origin, typing_base +from .utils import all_identical, lenient_issubclass + +if sys.version_info >= (3, 10): + from typing import _UnionGenericAlias +if sys.version_info >= (3, 8): + from typing import Literal + +GenericModelT = TypeVar('GenericModelT', bound='GenericModel') +TypeVarType = Any # since mypy doesn't allow the use of TypeVar as a type + +CacheKey = Tuple[Type[Any], Any, Tuple[Any, ...]] +Parametrization = Mapping[TypeVarType, Type[Any]] + +# weak dictionaries allow the dynamically created parametrized versions of generic models to get collected +# once they are no longer referenced by the caller. +if sys.version_info >= (3, 9): # Typing for weak dictionaries available at 3.9 + GenericTypesCache = WeakValueDictionary[CacheKey, Type[BaseModel]] + AssignedParameters = WeakKeyDictionary[Type[BaseModel], Parametrization] +else: + GenericTypesCache = WeakValueDictionary + AssignedParameters = WeakKeyDictionary + +# _generic_types_cache is a Mapping from __class_getitem__ arguments to the parametrized version of generic models. +# This ensures multiple calls of e.g. A[B] return always the same class. +_generic_types_cache = GenericTypesCache() + +# _assigned_parameters is a Mapping from parametrized version of generic models to assigned types of parametrizations +# as captured during construction of the class (not instances). +# E.g., for generic model `Model[A, B]`, when parametrized model `Model[int, str]` is created, +# `Model[int, str]`: {A: int, B: str}` will be stored in `_assigned_parameters`. +# (This information is only otherwise available after creation from the class name string). +_assigned_parameters = AssignedParameters() + + +class GenericModel(BaseModel): + __slots__ = () + __concrete__: ClassVar[bool] = False + + if TYPE_CHECKING: + # Putting this in a TYPE_CHECKING block allows us to replace `if Generic not in cls.__bases__` with + # `not hasattr(cls, "__parameters__")`. This means we don't need to force non-concrete subclasses of + # `GenericModel` to also inherit from `Generic`, which would require changes to the use of `create_model` below. + __parameters__: ClassVar[Tuple[TypeVarType, ...]] + + # Setting the return type as Type[Any] instead of Type[BaseModel] prevents PyCharm warnings + def __class_getitem__(cls: Type[GenericModelT], params: Union[Type[Any], Tuple[Type[Any], ...]]) -> Type[Any]: + """Instantiates a new class from a generic class `cls` and type variables `params`. + + :param params: Tuple of types the class . Given a generic class + `Model` with 2 type variables and a concrete model `Model[str, int]`, + the value `(str, int)` would be passed to `params`. + :return: New model class inheriting from `cls` with instantiated + types described by `params`. If no parameters are given, `cls` is + returned as is. + + """ + + def _cache_key(_params: Any) -> CacheKey: + args = get_args(_params) + # python returns a list for Callables, which is not hashable + if len(args) == 2 and isinstance(args[0], list): + args = (tuple(args[0]), args[1]) + return cls, _params, args + + cached = _generic_types_cache.get(_cache_key(params)) + if cached is not None: + return cached + if cls.__concrete__ and Generic not in cls.__bases__: + raise TypeError('Cannot parameterize a concrete instantiation of a generic model') + if not isinstance(params, tuple): + params = (params,) + if cls is GenericModel and any(isinstance(param, TypeVar) for param in params): + raise TypeError('Type parameters should be placed on typing.Generic, not GenericModel') + if not hasattr(cls, '__parameters__'): + raise TypeError(f'Type {cls.__name__} must inherit from typing.Generic before being parameterized') + + check_parameters_count(cls, params) + # Build map from generic typevars to passed params + typevars_map: Dict[TypeVarType, Type[Any]] = dict(zip(cls.__parameters__, params)) + if all_identical(typevars_map.keys(), typevars_map.values()) and typevars_map: + return cls # if arguments are equal to parameters it's the same object + + # Create new model with original model as parent inserting fields with DeferredType. + model_name = cls.__concrete_name__(params) + validators = gather_all_validators(cls) + + type_hints = get_all_type_hints(cls).items() + instance_type_hints = {k: v for k, v in type_hints if get_origin(v) is not ClassVar} + + fields = {k: (DeferredType(), cls.__fields__[k].field_info) for k in instance_type_hints if k in cls.__fields__} + + model_module, called_globally = get_caller_frame_info() + created_model = cast( + Type[GenericModel], # casting ensures mypy is aware of the __concrete__ and __parameters__ attributes + create_model( + model_name, + __module__=model_module or cls.__module__, + __base__=(cls,) + tuple(cls.__parameterized_bases__(typevars_map)), + __config__=None, + __validators__=validators, + __cls_kwargs__=None, + **fields, + ), + ) + + _assigned_parameters[created_model] = typevars_map + + if called_globally: # create global reference and therefore allow pickling + object_by_reference = None + reference_name = model_name + reference_module_globals = sys.modules[created_model.__module__].__dict__ + while object_by_reference is not created_model: + object_by_reference = reference_module_globals.setdefault(reference_name, created_model) + reference_name += '_' + + created_model.Config = cls.Config + + # Find any typevars that are still present in the model. + # If none are left, the model is fully "concrete", otherwise the new + # class is a generic class as well taking the found typevars as + # parameters. + new_params = tuple( + {param: None for param in iter_contained_typevars(typevars_map.values())} + ) # use dict as ordered set + created_model.__concrete__ = not new_params + if new_params: + created_model.__parameters__ = new_params + + # Save created model in cache so we don't end up creating duplicate + # models that should be identical. + _generic_types_cache[_cache_key(params)] = created_model + if len(params) == 1: + _generic_types_cache[_cache_key(params[0])] = created_model + + # Recursively walk class type hints and replace generic typevars + # with concrete types that were passed. + _prepare_model_fields(created_model, fields, instance_type_hints, typevars_map) + + return created_model + + @classmethod + def __concrete_name__(cls: Type[Any], params: Tuple[Type[Any], ...]) -> str: + """Compute class name for child classes. + + :param params: Tuple of types the class . Given a generic class + `Model` with 2 type variables and a concrete model `Model[str, int]`, + the value `(str, int)` would be passed to `params`. + :return: String representing a the new class where `params` are + passed to `cls` as type variables. + + This method can be overridden to achieve a custom naming scheme for GenericModels. + """ + param_names = [display_as_type(param) for param in params] + params_component = ', '.join(param_names) + return f'{cls.__name__}[{params_component}]' + + @classmethod + def __parameterized_bases__(cls, typevars_map: Parametrization) -> Iterator[Type[Any]]: + """ + Returns unbound bases of cls parameterised to given type variables + + :param typevars_map: Dictionary of type applications for binding subclasses. + Given a generic class `Model` with 2 type variables [S, T] + and a concrete model `Model[str, int]`, + the value `{S: str, T: int}` would be passed to `typevars_map`. + :return: an iterator of generic sub classes, parameterised by `typevars_map` + and other assigned parameters of `cls` + + e.g.: + ``` + class A(GenericModel, Generic[T]): + ... + + class B(A[V], Generic[V]): + ... + + assert A[int] in B.__parameterized_bases__({V: int}) + ``` + """ + + def build_base_model( + base_model: Type[GenericModel], mapped_types: Parametrization + ) -> Iterator[Type[GenericModel]]: + base_parameters = tuple(mapped_types[param] for param in base_model.__parameters__) + parameterized_base = base_model.__class_getitem__(base_parameters) + if parameterized_base is base_model or parameterized_base is cls: + # Avoid duplication in MRO + return + yield parameterized_base + + for base_model in cls.__bases__: + if not issubclass(base_model, GenericModel): + # not a class that can be meaningfully parameterized + continue + elif not getattr(base_model, '__parameters__', None): + # base_model is "GenericModel" (and has no __parameters__) + # or + # base_model is already concrete, and will be included transitively via cls. + continue + elif cls in _assigned_parameters: + if base_model in _assigned_parameters: + # cls is partially parameterised but not from base_model + # e.g. cls = B[S], base_model = A[S] + # B[S][int] should subclass A[int], (and will be transitively via B[int]) + # but it's not viable to consistently subclass types with arbitrary construction + # So don't attempt to include A[S][int] + continue + else: # base_model not in _assigned_parameters: + # cls is partially parameterized, base_model is original generic + # e.g. cls = B[str, T], base_model = B[S, T] + # Need to determine the mapping for the base_model parameters + mapped_types: Parametrization = { + key: typevars_map.get(value, value) for key, value in _assigned_parameters[cls].items() + } + yield from build_base_model(base_model, mapped_types) + else: + # cls is base generic, so base_class has a distinct base + # can construct the Parameterised base model using typevars_map directly + yield from build_base_model(base_model, typevars_map) + + +def replace_types(type_: Any, type_map: Mapping[Any, Any]) -> Any: + """Return type with all occurrences of `type_map` keys recursively replaced with their values. + + :param type_: Any type, class or generic alias + :param type_map: Mapping from `TypeVar` instance to concrete types. + :return: New type representing the basic structure of `type_` with all + `typevar_map` keys recursively replaced. + + >>> replace_types(Tuple[str, Union[List[str], float]], {str: int}) + Tuple[int, Union[List[int], float]] + + """ + if not type_map: + return type_ + + type_args = get_args(type_) + origin_type = get_origin(type_) + + if origin_type is Annotated: + annotated_type, *annotations = type_args + return Annotated[replace_types(annotated_type, type_map), tuple(annotations)] + + if (origin_type is ExtLiteral) or (sys.version_info >= (3, 8) and origin_type is Literal): + return type_map.get(type_, type_) + # Having type args is a good indicator that this is a typing module + # class instantiation or a generic alias of some sort. + if type_args: + resolved_type_args = tuple(replace_types(arg, type_map) for arg in type_args) + if all_identical(type_args, resolved_type_args): + # If all arguments are the same, there is no need to modify the + # type or create a new object at all + return type_ + if ( + origin_type is not None + and isinstance(type_, typing_base) + and not isinstance(origin_type, typing_base) + and getattr(type_, '_name', None) is not None + ): + # In python < 3.9 generic aliases don't exist so any of these like `list`, + # `type` or `collections.abc.Callable` need to be translated. + # See: https://www.python.org/dev/peps/pep-0585 + origin_type = getattr(typing, type_._name) + assert origin_type is not None + # PEP-604 syntax (Ex.: list | str) is represented with a types.UnionType object that does not have __getitem__. + # We also cannot use isinstance() since we have to compare types. + if sys.version_info >= (3, 10) and origin_type is types.UnionType: # noqa: E721 + return _UnionGenericAlias(origin_type, resolved_type_args) + return origin_type[resolved_type_args] + + # We handle pydantic generic models separately as they don't have the same + # semantics as "typing" classes or generic aliases + if not origin_type and lenient_issubclass(type_, GenericModel) and not type_.__concrete__: + type_args = type_.__parameters__ + resolved_type_args = tuple(replace_types(t, type_map) for t in type_args) + if all_identical(type_args, resolved_type_args): + return type_ + return type_[resolved_type_args] + + # Handle special case for typehints that can have lists as arguments. + # `typing.Callable[[int, str], int]` is an example for this. + if isinstance(type_, (List, list)): + resolved_list = list(replace_types(element, type_map) for element in type_) + if all_identical(type_, resolved_list): + return type_ + return resolved_list + + # For JsonWrapperValue, need to handle its inner type to allow correct parsing + # of generic Json arguments like Json[T] + if not origin_type and lenient_issubclass(type_, JsonWrapper): + type_.inner_type = replace_types(type_.inner_type, type_map) + return type_ + + # If all else fails, we try to resolve the type directly and otherwise just + # return the input with no modifications. + new_type = type_map.get(type_, type_) + # Convert string to ForwardRef + if isinstance(new_type, str): + return ForwardRef(new_type) + else: + return new_type + + +def check_parameters_count(cls: Type[GenericModel], parameters: Tuple[Any, ...]) -> None: + actual = len(parameters) + expected = len(cls.__parameters__) + if actual != expected: + description = 'many' if actual > expected else 'few' + raise TypeError(f'Too {description} parameters for {cls.__name__}; actual {actual}, expected {expected}') + + +DictValues: Type[Any] = {}.values().__class__ + + +def iter_contained_typevars(v: Any) -> Iterator[TypeVarType]: + """Recursively iterate through all subtypes and type args of `v` and yield any typevars that are found.""" + if isinstance(v, TypeVar): + yield v + elif hasattr(v, '__parameters__') and not get_origin(v) and lenient_issubclass(v, GenericModel): + yield from v.__parameters__ + elif isinstance(v, (DictValues, list)): + for var in v: + yield from iter_contained_typevars(var) + else: + args = get_args(v) + for arg in args: + yield from iter_contained_typevars(arg) + + +def get_caller_frame_info() -> Tuple[Optional[str], bool]: + """ + Used inside a function to check whether it was called globally + + Will only work against non-compiled code, therefore used only in pydantic.generics + + :returns Tuple[module_name, called_globally] + """ + try: + previous_caller_frame = sys._getframe(2) + except ValueError as e: + raise RuntimeError('This function must be used inside another function') from e + except AttributeError: # sys module does not have _getframe function, so there's nothing we can do about it + return None, False + frame_globals = previous_caller_frame.f_globals + return frame_globals.get('__name__'), previous_caller_frame.f_locals is frame_globals + + +def _prepare_model_fields( + created_model: Type[GenericModel], + fields: Mapping[str, Any], + instance_type_hints: Mapping[str, type], + typevars_map: Mapping[Any, type], +) -> None: + """ + Replace DeferredType fields with concrete type hints and prepare them. + """ + + for key, field in created_model.__fields__.items(): + if key not in fields: + assert field.type_.__class__ is not DeferredType + # https://github.com/nedbat/coveragepy/issues/198 + continue # pragma: no cover + + assert field.type_.__class__ is DeferredType, field.type_.__class__ + + field_type_hint = instance_type_hints[key] + concrete_type = replace_types(field_type_hint, typevars_map) + field.type_ = concrete_type + field.outer_type_ = concrete_type + field.prepare() + created_model.__annotations__[key] = concrete_type diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/json.py b/venv/lib/python3.10/site-packages/pydantic/v1/json.py new file mode 100644 index 0000000000000000000000000000000000000000..b358b850a471214456f54dd73db473c8a41a032e --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/v1/json.py @@ -0,0 +1,112 @@ +import datetime +from collections import deque +from decimal import Decimal +from enum import Enum +from ipaddress import IPv4Address, IPv4Interface, IPv4Network, IPv6Address, IPv6Interface, IPv6Network +from pathlib import Path +from re import Pattern +from types import GeneratorType +from typing import Any, Callable, Dict, Type, Union +from uuid import UUID + +from .color import Color +from .networks import NameEmail +from .types import SecretBytes, SecretStr + +__all__ = 'pydantic_encoder', 'custom_pydantic_encoder', 'timedelta_isoformat' + + +def isoformat(o: Union[datetime.date, datetime.time]) -> str: + return o.isoformat() + + +def decimal_encoder(dec_value: Decimal) -> Union[int, float]: + """ + Encodes a Decimal as int of there's no exponent, otherwise float + + This is useful when we use ConstrainedDecimal to represent Numeric(x,0) + where a integer (but not int typed) is used. Encoding this as a float + results in failed round-tripping between encode and parse. + Our Id type is a prime example of this. + + >>> decimal_encoder(Decimal("1.0")) + 1.0 + + >>> decimal_encoder(Decimal("1")) + 1 + """ + if dec_value.as_tuple().exponent >= 0: + return int(dec_value) + else: + return float(dec_value) + + +ENCODERS_BY_TYPE: Dict[Type[Any], Callable[[Any], Any]] = { + bytes: lambda o: o.decode(), + Color: str, + datetime.date: isoformat, + datetime.datetime: isoformat, + datetime.time: isoformat, + datetime.timedelta: lambda td: td.total_seconds(), + Decimal: decimal_encoder, + Enum: lambda o: o.value, + frozenset: list, + deque: list, + GeneratorType: list, + IPv4Address: str, + IPv4Interface: str, + IPv4Network: str, + IPv6Address: str, + IPv6Interface: str, + IPv6Network: str, + NameEmail: str, + Path: str, + Pattern: lambda o: o.pattern, + SecretBytes: str, + SecretStr: str, + set: list, + UUID: str, +} + + +def pydantic_encoder(obj: Any) -> Any: + from dataclasses import asdict, is_dataclass + + from .main import BaseModel + + if isinstance(obj, BaseModel): + return obj.dict() + elif is_dataclass(obj): + return asdict(obj) + + # Check the class type and its superclasses for a matching encoder + for base in obj.__class__.__mro__[:-1]: + try: + encoder = ENCODERS_BY_TYPE[base] + except KeyError: + continue + return encoder(obj) + else: # We have exited the for loop without finding a suitable encoder + raise TypeError(f"Object of type '{obj.__class__.__name__}' is not JSON serializable") + + +def custom_pydantic_encoder(type_encoders: Dict[Any, Callable[[Type[Any]], Any]], obj: Any) -> Any: + # Check the class type and its superclasses for a matching encoder + for base in obj.__class__.__mro__[:-1]: + try: + encoder = type_encoders[base] + except KeyError: + continue + + return encoder(obj) + else: # We have exited the for loop without finding a suitable encoder + return pydantic_encoder(obj) + + +def timedelta_isoformat(td: datetime.timedelta) -> str: + """ + ISO 8601 encoding for Python timedelta object. + """ + minutes, seconds = divmod(td.seconds, 60) + hours, minutes = divmod(minutes, 60) + return f'{"-" if td.days < 0 else ""}P{abs(td.days)}DT{hours:d}H{minutes:d}M{seconds:d}.{td.microseconds:06d}S' diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/main.py b/venv/lib/python3.10/site-packages/pydantic/v1/main.py new file mode 100644 index 0000000000000000000000000000000000000000..08b8af558ea15d0f4b26964677841826da8399e2 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/v1/main.py @@ -0,0 +1,1107 @@ +import warnings +from abc import ABCMeta +from copy import deepcopy +from enum import Enum +from functools import partial +from pathlib import Path +from types import FunctionType, prepare_class, resolve_bases +from typing import ( + TYPE_CHECKING, + AbstractSet, + Any, + Callable, + ClassVar, + Dict, + List, + Mapping, + Optional, + Tuple, + Type, + TypeVar, + Union, + cast, + no_type_check, + overload, +) + +from typing_extensions import dataclass_transform + +from .class_validators import ValidatorGroup, extract_root_validators, extract_validators, inherit_validators +from .config import BaseConfig, Extra, inherit_config, prepare_config +from .error_wrappers import ErrorWrapper, ValidationError +from .errors import ConfigError, DictError, ExtraError, MissingError +from .fields import ( + MAPPING_LIKE_SHAPES, + Field, + ModelField, + ModelPrivateAttr, + PrivateAttr, + Undefined, + is_finalvar_with_default_val, +) +from .json import custom_pydantic_encoder, pydantic_encoder +from .parse import Protocol, load_file, load_str_bytes +from .schema import default_ref_template, model_schema +from .types import PyObject, StrBytes +from .typing import ( + AnyCallable, + get_args, + get_origin, + is_classvar, + is_namedtuple, + is_union, + resolve_annotations, + update_model_forward_refs, +) +from .utils import ( + DUNDER_ATTRIBUTES, + ROOT_KEY, + ClassAttribute, + GetterDict, + Representation, + ValueItems, + generate_model_signature, + is_valid_field, + is_valid_private_name, + lenient_issubclass, + sequence_like, + smart_deepcopy, + unique_list, + validate_field_name, +) + +if TYPE_CHECKING: + from inspect import Signature + + from .class_validators import ValidatorListDict + from .types import ModelOrDc + from .typing import ( + AbstractSetIntStr, + AnyClassMethod, + CallableGenerator, + DictAny, + DictStrAny, + MappingIntStrAny, + ReprArgs, + SetStr, + TupleGenerator, + ) + + Model = TypeVar('Model', bound='BaseModel') + +__all__ = 'BaseModel', 'create_model', 'validate_model' + +_T = TypeVar('_T') + + +def validate_custom_root_type(fields: Dict[str, ModelField]) -> None: + if len(fields) > 1: + raise ValueError(f'{ROOT_KEY} cannot be mixed with other fields') + + +def generate_hash_function(frozen: bool) -> Optional[Callable[[Any], int]]: + def hash_function(self_: Any) -> int: + return hash(self_.__class__) + hash(tuple(self_.__dict__.values())) + + return hash_function if frozen else None + + +# If a field is of type `Callable`, its default value should be a function and cannot to ignored. +ANNOTATED_FIELD_UNTOUCHED_TYPES: Tuple[Any, ...] = (property, type, classmethod, staticmethod) +# When creating a `BaseModel` instance, we bypass all the methods, properties... added to the model +UNTOUCHED_TYPES: Tuple[Any, ...] = (FunctionType,) + ANNOTATED_FIELD_UNTOUCHED_TYPES +# Note `ModelMetaclass` refers to `BaseModel`, but is also used to *create* `BaseModel`, so we need to add this extra +# (somewhat hacky) boolean to keep track of whether we've created the `BaseModel` class yet, and therefore whether it's +# safe to refer to it. If it *hasn't* been created, we assume that the `__new__` call we're in the middle of is for +# the `BaseModel` class, since that's defined immediately after the metaclass. +_is_base_model_class_defined = False + + +@dataclass_transform(kw_only_default=True, field_specifiers=(Field,)) +class ModelMetaclass(ABCMeta): + @no_type_check # noqa C901 + def __new__(mcs, name, bases, namespace, **kwargs): # noqa C901 + fields: Dict[str, ModelField] = {} + config = BaseConfig + validators: 'ValidatorListDict' = {} + + pre_root_validators, post_root_validators = [], [] + private_attributes: Dict[str, ModelPrivateAttr] = {} + base_private_attributes: Dict[str, ModelPrivateAttr] = {} + slots: SetStr = namespace.get('__slots__', ()) + slots = {slots} if isinstance(slots, str) else set(slots) + class_vars: SetStr = set() + hash_func: Optional[Callable[[Any], int]] = None + + for base in reversed(bases): + if _is_base_model_class_defined and issubclass(base, BaseModel) and base != BaseModel: + fields.update(smart_deepcopy(base.__fields__)) + config = inherit_config(base.__config__, config) + validators = inherit_validators(base.__validators__, validators) + pre_root_validators += base.__pre_root_validators__ + post_root_validators += base.__post_root_validators__ + base_private_attributes.update(base.__private_attributes__) + class_vars.update(base.__class_vars__) + hash_func = base.__hash__ + + resolve_forward_refs = kwargs.pop('__resolve_forward_refs__', True) + allowed_config_kwargs: SetStr = { + key + for key in dir(config) + if not (key.startswith('__') and key.endswith('__')) # skip dunder methods and attributes + } + config_kwargs = {key: kwargs.pop(key) for key in kwargs.keys() & allowed_config_kwargs} + config_from_namespace = namespace.get('Config') + if config_kwargs and config_from_namespace: + raise TypeError('Specifying config in two places is ambiguous, use either Config attribute or class kwargs') + config = inherit_config(config_from_namespace, config, **config_kwargs) + + validators = inherit_validators(extract_validators(namespace), validators) + vg = ValidatorGroup(validators) + + for f in fields.values(): + f.set_config(config) + extra_validators = vg.get_validators(f.name) + if extra_validators: + f.class_validators.update(extra_validators) + # re-run prepare to add extra validators + f.populate_validators() + + prepare_config(config, name) + + untouched_types = ANNOTATED_FIELD_UNTOUCHED_TYPES + + def is_untouched(v: Any) -> bool: + return isinstance(v, untouched_types) or v.__class__.__name__ == 'cython_function_or_method' + + if (namespace.get('__module__'), namespace.get('__qualname__')) != ('pydantic.main', 'BaseModel'): + annotations = resolve_annotations(namespace.get('__annotations__', {}), namespace.get('__module__', None)) + # annotation only fields need to come first in fields + for ann_name, ann_type in annotations.items(): + if is_classvar(ann_type): + class_vars.add(ann_name) + elif is_finalvar_with_default_val(ann_type, namespace.get(ann_name, Undefined)): + class_vars.add(ann_name) + elif is_valid_field(ann_name): + validate_field_name(bases, ann_name) + value = namespace.get(ann_name, Undefined) + allowed_types = get_args(ann_type) if is_union(get_origin(ann_type)) else (ann_type,) + if ( + is_untouched(value) + and ann_type != PyObject + and not any( + lenient_issubclass(get_origin(allowed_type), Type) for allowed_type in allowed_types + ) + ): + continue + fields[ann_name] = ModelField.infer( + name=ann_name, + value=value, + annotation=ann_type, + class_validators=vg.get_validators(ann_name), + config=config, + ) + elif ann_name not in namespace and config.underscore_attrs_are_private: + private_attributes[ann_name] = PrivateAttr() + + untouched_types = UNTOUCHED_TYPES + config.keep_untouched + for var_name, value in namespace.items(): + can_be_changed = var_name not in class_vars and not is_untouched(value) + if isinstance(value, ModelPrivateAttr): + if not is_valid_private_name(var_name): + raise NameError( + f'Private attributes "{var_name}" must not be a valid field name; ' + f'Use sunder or dunder names, e. g. "_{var_name}" or "__{var_name}__"' + ) + private_attributes[var_name] = value + elif config.underscore_attrs_are_private and is_valid_private_name(var_name) and can_be_changed: + private_attributes[var_name] = PrivateAttr(default=value) + elif is_valid_field(var_name) and var_name not in annotations and can_be_changed: + validate_field_name(bases, var_name) + inferred = ModelField.infer( + name=var_name, + value=value, + annotation=annotations.get(var_name, Undefined), + class_validators=vg.get_validators(var_name), + config=config, + ) + if var_name in fields: + if lenient_issubclass(inferred.type_, fields[var_name].type_): + inferred.type_ = fields[var_name].type_ + else: + raise TypeError( + f'The type of {name}.{var_name} differs from the new default value; ' + f'if you wish to change the type of this field, please use a type annotation' + ) + fields[var_name] = inferred + + _custom_root_type = ROOT_KEY in fields + if _custom_root_type: + validate_custom_root_type(fields) + vg.check_for_unused() + if config.json_encoders: + json_encoder = partial(custom_pydantic_encoder, config.json_encoders) + else: + json_encoder = pydantic_encoder + pre_rv_new, post_rv_new = extract_root_validators(namespace) + + if hash_func is None: + hash_func = generate_hash_function(config.frozen) + + exclude_from_namespace = fields | private_attributes.keys() | {'__slots__'} + new_namespace = { + '__config__': config, + '__fields__': fields, + '__exclude_fields__': { + name: field.field_info.exclude for name, field in fields.items() if field.field_info.exclude is not None + } + or None, + '__include_fields__': { + name: field.field_info.include for name, field in fields.items() if field.field_info.include is not None + } + or None, + '__validators__': vg.validators, + '__pre_root_validators__': unique_list( + pre_root_validators + pre_rv_new, + name_factory=lambda v: v.__name__, + ), + '__post_root_validators__': unique_list( + post_root_validators + post_rv_new, + name_factory=lambda skip_on_failure_and_v: skip_on_failure_and_v[1].__name__, + ), + '__schema_cache__': {}, + '__json_encoder__': staticmethod(json_encoder), + '__custom_root_type__': _custom_root_type, + '__private_attributes__': {**base_private_attributes, **private_attributes}, + '__slots__': slots | private_attributes.keys(), + '__hash__': hash_func, + '__class_vars__': class_vars, + **{n: v for n, v in namespace.items() if n not in exclude_from_namespace}, + } + + cls = super().__new__(mcs, name, bases, new_namespace, **kwargs) + # set __signature__ attr only for model class, but not for its instances + cls.__signature__ = ClassAttribute('__signature__', generate_model_signature(cls.__init__, fields, config)) + if resolve_forward_refs: + cls.__try_update_forward_refs__() + + # preserve `__set_name__` protocol defined in https://peps.python.org/pep-0487 + # for attributes not in `new_namespace` (e.g. private attributes) + for name, obj in namespace.items(): + if name not in new_namespace: + set_name = getattr(obj, '__set_name__', None) + if callable(set_name): + set_name(cls, name) + + return cls + + def __instancecheck__(self, instance: Any) -> bool: + """ + Avoid calling ABC _abc_subclasscheck unless we're pretty sure. + + See #3829 and python/cpython#92810 + """ + return hasattr(instance, '__fields__') and super().__instancecheck__(instance) + + +object_setattr = object.__setattr__ + + +class BaseModel(Representation, metaclass=ModelMetaclass): + if TYPE_CHECKING: + # populated by the metaclass, defined here to help IDEs only + __fields__: ClassVar[Dict[str, ModelField]] = {} + __include_fields__: ClassVar[Optional[Mapping[str, Any]]] = None + __exclude_fields__: ClassVar[Optional[Mapping[str, Any]]] = None + __validators__: ClassVar[Dict[str, AnyCallable]] = {} + __pre_root_validators__: ClassVar[List[AnyCallable]] + __post_root_validators__: ClassVar[List[Tuple[bool, AnyCallable]]] + __config__: ClassVar[Type[BaseConfig]] = BaseConfig + __json_encoder__: ClassVar[Callable[[Any], Any]] = lambda x: x + __schema_cache__: ClassVar['DictAny'] = {} + __custom_root_type__: ClassVar[bool] = False + __signature__: ClassVar['Signature'] + __private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] + __class_vars__: ClassVar[SetStr] + __fields_set__: ClassVar[SetStr] = set() + + Config = BaseConfig + __slots__ = ('__dict__', '__fields_set__') + __doc__ = '' # Null out the Representation docstring + + def __init__(__pydantic_self__, **data: Any) -> None: + """ + Create a new model by parsing and validating input data from keyword arguments. + + Raises ValidationError if the input data cannot be parsed to form a valid model. + """ + # Uses something other than `self` the first arg to allow "self" as a settable attribute + values, fields_set, validation_error = validate_model(__pydantic_self__.__class__, data) + if validation_error: + raise validation_error + try: + object_setattr(__pydantic_self__, '__dict__', values) + except TypeError as e: + raise TypeError( + 'Model values must be a dict; you may not have returned a dictionary from a root validator' + ) from e + object_setattr(__pydantic_self__, '__fields_set__', fields_set) + __pydantic_self__._init_private_attributes() + + @no_type_check + def __setattr__(self, name, value): # noqa: C901 (ignore complexity) + if name in self.__private_attributes__ or name in DUNDER_ATTRIBUTES: + return object_setattr(self, name, value) + + if self.__config__.extra is not Extra.allow and name not in self.__fields__: + raise ValueError(f'"{self.__class__.__name__}" object has no field "{name}"') + elif not self.__config__.allow_mutation or self.__config__.frozen: + raise TypeError(f'"{self.__class__.__name__}" is immutable and does not support item assignment') + elif name in self.__fields__ and self.__fields__[name].final: + raise TypeError( + f'"{self.__class__.__name__}" object "{name}" field is final and does not support reassignment' + ) + elif self.__config__.validate_assignment: + new_values = {**self.__dict__, name: value} + + for validator in self.__pre_root_validators__: + try: + new_values = validator(self.__class__, new_values) + except (ValueError, TypeError, AssertionError) as exc: + raise ValidationError([ErrorWrapper(exc, loc=ROOT_KEY)], self.__class__) + + known_field = self.__fields__.get(name, None) + if known_field: + # We want to + # - make sure validators are called without the current value for this field inside `values` + # - keep other values (e.g. submodels) untouched (using `BaseModel.dict()` will change them into dicts) + # - keep the order of the fields + if not known_field.field_info.allow_mutation: + raise TypeError(f'"{known_field.name}" has allow_mutation set to False and cannot be assigned') + dict_without_original_value = {k: v for k, v in self.__dict__.items() if k != name} + value, error_ = known_field.validate(value, dict_without_original_value, loc=name, cls=self.__class__) + if error_: + raise ValidationError([error_], self.__class__) + else: + new_values[name] = value + + errors = [] + for skip_on_failure, validator in self.__post_root_validators__: + if skip_on_failure and errors: + continue + try: + new_values = validator(self.__class__, new_values) + except (ValueError, TypeError, AssertionError) as exc: + errors.append(ErrorWrapper(exc, loc=ROOT_KEY)) + if errors: + raise ValidationError(errors, self.__class__) + + # update the whole __dict__ as other values than just `value` + # may be changed (e.g. with `root_validator`) + object_setattr(self, '__dict__', new_values) + else: + self.__dict__[name] = value + + self.__fields_set__.add(name) + + def __getstate__(self) -> 'DictAny': + private_attrs = ((k, getattr(self, k, Undefined)) for k in self.__private_attributes__) + return { + '__dict__': self.__dict__, + '__fields_set__': self.__fields_set__, + '__private_attribute_values__': {k: v for k, v in private_attrs if v is not Undefined}, + } + + def __setstate__(self, state: 'DictAny') -> None: + object_setattr(self, '__dict__', state['__dict__']) + object_setattr(self, '__fields_set__', state['__fields_set__']) + for name, value in state.get('__private_attribute_values__', {}).items(): + object_setattr(self, name, value) + + def _init_private_attributes(self) -> None: + for name, private_attr in self.__private_attributes__.items(): + default = private_attr.get_default() + if default is not Undefined: + object_setattr(self, name, default) + + def dict( + self, + *, + include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, + exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, + by_alias: bool = False, + skip_defaults: Optional[bool] = None, + exclude_unset: bool = False, + exclude_defaults: bool = False, + exclude_none: bool = False, + ) -> 'DictStrAny': + """ + Generate a dictionary representation of the model, optionally specifying which fields to include or exclude. + + """ + if skip_defaults is not None: + warnings.warn( + f'{self.__class__.__name__}.dict(): "skip_defaults" is deprecated and replaced by "exclude_unset"', + DeprecationWarning, + ) + exclude_unset = skip_defaults + + return dict( + self._iter( + to_dict=True, + by_alias=by_alias, + include=include, + exclude=exclude, + exclude_unset=exclude_unset, + exclude_defaults=exclude_defaults, + exclude_none=exclude_none, + ) + ) + + def json( + self, + *, + include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, + exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, + by_alias: bool = False, + skip_defaults: Optional[bool] = None, + exclude_unset: bool = False, + exclude_defaults: bool = False, + exclude_none: bool = False, + encoder: Optional[Callable[[Any], Any]] = None, + models_as_dict: bool = True, + **dumps_kwargs: Any, + ) -> str: + """ + Generate a JSON representation of the model, `include` and `exclude` arguments as per `dict()`. + + `encoder` is an optional function to supply as `default` to json.dumps(), other arguments as per `json.dumps()`. + """ + if skip_defaults is not None: + warnings.warn( + f'{self.__class__.__name__}.json(): "skip_defaults" is deprecated and replaced by "exclude_unset"', + DeprecationWarning, + ) + exclude_unset = skip_defaults + encoder = cast(Callable[[Any], Any], encoder or self.__json_encoder__) + + # We don't directly call `self.dict()`, which does exactly this with `to_dict=True` + # because we want to be able to keep raw `BaseModel` instances and not as `dict`. + # This allows users to write custom JSON encoders for given `BaseModel` classes. + data = dict( + self._iter( + to_dict=models_as_dict, + by_alias=by_alias, + include=include, + exclude=exclude, + exclude_unset=exclude_unset, + exclude_defaults=exclude_defaults, + exclude_none=exclude_none, + ) + ) + if self.__custom_root_type__: + data = data[ROOT_KEY] + return self.__config__.json_dumps(data, default=encoder, **dumps_kwargs) + + @classmethod + def _enforce_dict_if_root(cls, obj: Any) -> Any: + if cls.__custom_root_type__ and ( + not (isinstance(obj, dict) and obj.keys() == {ROOT_KEY}) + and not (isinstance(obj, BaseModel) and obj.__fields__.keys() == {ROOT_KEY}) + or cls.__fields__[ROOT_KEY].shape in MAPPING_LIKE_SHAPES + ): + return {ROOT_KEY: obj} + else: + return obj + + @classmethod + def parse_obj(cls: Type['Model'], obj: Any) -> 'Model': + obj = cls._enforce_dict_if_root(obj) + if not isinstance(obj, dict): + try: + obj = dict(obj) + except (TypeError, ValueError) as e: + exc = TypeError(f'{cls.__name__} expected dict not {obj.__class__.__name__}') + raise ValidationError([ErrorWrapper(exc, loc=ROOT_KEY)], cls) from e + return cls(**obj) + + @classmethod + def parse_raw( + cls: Type['Model'], + b: StrBytes, + *, + content_type: str = None, + encoding: str = 'utf8', + proto: Protocol = None, + allow_pickle: bool = False, + ) -> 'Model': + try: + obj = load_str_bytes( + b, + proto=proto, + content_type=content_type, + encoding=encoding, + allow_pickle=allow_pickle, + json_loads=cls.__config__.json_loads, + ) + except (ValueError, TypeError, UnicodeDecodeError) as e: + raise ValidationError([ErrorWrapper(e, loc=ROOT_KEY)], cls) + return cls.parse_obj(obj) + + @classmethod + def parse_file( + cls: Type['Model'], + path: Union[str, Path], + *, + content_type: str = None, + encoding: str = 'utf8', + proto: Protocol = None, + allow_pickle: bool = False, + ) -> 'Model': + obj = load_file( + path, + proto=proto, + content_type=content_type, + encoding=encoding, + allow_pickle=allow_pickle, + json_loads=cls.__config__.json_loads, + ) + return cls.parse_obj(obj) + + @classmethod + def from_orm(cls: Type['Model'], obj: Any) -> 'Model': + if not cls.__config__.orm_mode: + raise ConfigError('You must have the config attribute orm_mode=True to use from_orm') + obj = {ROOT_KEY: obj} if cls.__custom_root_type__ else cls._decompose_class(obj) + m = cls.__new__(cls) + values, fields_set, validation_error = validate_model(cls, obj) + if validation_error: + raise validation_error + object_setattr(m, '__dict__', values) + object_setattr(m, '__fields_set__', fields_set) + m._init_private_attributes() + return m + + @classmethod + def construct(cls: Type['Model'], _fields_set: Optional['SetStr'] = None, **values: Any) -> 'Model': + """ + Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. + Default values are respected, but no other validation is performed. + Behaves as if `Config.extra = 'allow'` was set since it adds all passed values + """ + m = cls.__new__(cls) + fields_values: Dict[str, Any] = {} + for name, field in cls.__fields__.items(): + if field.alt_alias and field.alias in values: + fields_values[name] = values[field.alias] + elif name in values: + fields_values[name] = values[name] + elif not field.required: + fields_values[name] = field.get_default() + fields_values.update(values) + object_setattr(m, '__dict__', fields_values) + if _fields_set is None: + _fields_set = set(values.keys()) + object_setattr(m, '__fields_set__', _fields_set) + m._init_private_attributes() + return m + + def _copy_and_set_values(self: 'Model', values: 'DictStrAny', fields_set: 'SetStr', *, deep: bool) -> 'Model': + if deep: + # chances of having empty dict here are quite low for using smart_deepcopy + values = deepcopy(values) + + cls = self.__class__ + m = cls.__new__(cls) + object_setattr(m, '__dict__', values) + object_setattr(m, '__fields_set__', fields_set) + for name in self.__private_attributes__: + value = getattr(self, name, Undefined) + if value is not Undefined: + if deep: + value = deepcopy(value) + object_setattr(m, name, value) + + return m + + def copy( + self: 'Model', + *, + include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, + exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, + update: Optional['DictStrAny'] = None, + deep: bool = False, + ) -> 'Model': + """ + Duplicate a model, optionally choose which fields to include, exclude and change. + + :param include: fields to include in new model + :param exclude: fields to exclude from new model, as with values this takes precedence over include + :param update: values to change/add in the new model. Note: the data is not validated before creating + the new model: you should trust this data + :param deep: set to `True` to make a deep copy of the model + :return: new model instance + """ + + values = dict( + self._iter(to_dict=False, by_alias=False, include=include, exclude=exclude, exclude_unset=False), + **(update or {}), + ) + + # new `__fields_set__` can have unset optional fields with a set value in `update` kwarg + if update: + fields_set = self.__fields_set__ | update.keys() + else: + fields_set = set(self.__fields_set__) + + return self._copy_and_set_values(values, fields_set, deep=deep) + + @classmethod + def schema(cls, by_alias: bool = True, ref_template: str = default_ref_template) -> 'DictStrAny': + cached = cls.__schema_cache__.get((by_alias, ref_template)) + if cached is not None: + return cached + s = model_schema(cls, by_alias=by_alias, ref_template=ref_template) + cls.__schema_cache__[(by_alias, ref_template)] = s + return s + + @classmethod + def schema_json( + cls, *, by_alias: bool = True, ref_template: str = default_ref_template, **dumps_kwargs: Any + ) -> str: + from .json import pydantic_encoder + + return cls.__config__.json_dumps( + cls.schema(by_alias=by_alias, ref_template=ref_template), default=pydantic_encoder, **dumps_kwargs + ) + + @classmethod + def __get_validators__(cls) -> 'CallableGenerator': + yield cls.validate + + @classmethod + def validate(cls: Type['Model'], value: Any) -> 'Model': + if isinstance(value, cls): + copy_on_model_validation = cls.__config__.copy_on_model_validation + # whether to deep or shallow copy the model on validation, None means do not copy + deep_copy: Optional[bool] = None + if copy_on_model_validation not in {'deep', 'shallow', 'none'}: + # Warn about deprecated behavior + warnings.warn( + "`copy_on_model_validation` should be a string: 'deep', 'shallow' or 'none'", DeprecationWarning + ) + if copy_on_model_validation: + deep_copy = False + + if copy_on_model_validation == 'shallow': + # shallow copy + deep_copy = False + elif copy_on_model_validation == 'deep': + # deep copy + deep_copy = True + + if deep_copy is None: + return value + else: + return value._copy_and_set_values(value.__dict__, value.__fields_set__, deep=deep_copy) + + value = cls._enforce_dict_if_root(value) + + if isinstance(value, dict): + return cls(**value) + elif cls.__config__.orm_mode: + return cls.from_orm(value) + else: + try: + value_as_dict = dict(value) + except (TypeError, ValueError) as e: + raise DictError() from e + return cls(**value_as_dict) + + @classmethod + def _decompose_class(cls: Type['Model'], obj: Any) -> GetterDict: + if isinstance(obj, GetterDict): + return obj + return cls.__config__.getter_dict(obj) + + @classmethod + @no_type_check + def _get_value( + cls, + v: Any, + to_dict: bool, + by_alias: bool, + include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']], + exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']], + exclude_unset: bool, + exclude_defaults: bool, + exclude_none: bool, + ) -> Any: + if isinstance(v, BaseModel): + if to_dict: + v_dict = v.dict( + by_alias=by_alias, + exclude_unset=exclude_unset, + exclude_defaults=exclude_defaults, + include=include, + exclude=exclude, + exclude_none=exclude_none, + ) + if ROOT_KEY in v_dict: + return v_dict[ROOT_KEY] + return v_dict + else: + return v.copy(include=include, exclude=exclude) + + value_exclude = ValueItems(v, exclude) if exclude else None + value_include = ValueItems(v, include) if include else None + + if isinstance(v, dict): + return { + k_: cls._get_value( + v_, + to_dict=to_dict, + by_alias=by_alias, + exclude_unset=exclude_unset, + exclude_defaults=exclude_defaults, + include=value_include and value_include.for_element(k_), + exclude=value_exclude and value_exclude.for_element(k_), + exclude_none=exclude_none, + ) + for k_, v_ in v.items() + if (not value_exclude or not value_exclude.is_excluded(k_)) + and (not value_include or value_include.is_included(k_)) + } + + elif sequence_like(v): + seq_args = ( + cls._get_value( + v_, + to_dict=to_dict, + by_alias=by_alias, + exclude_unset=exclude_unset, + exclude_defaults=exclude_defaults, + include=value_include and value_include.for_element(i), + exclude=value_exclude and value_exclude.for_element(i), + exclude_none=exclude_none, + ) + for i, v_ in enumerate(v) + if (not value_exclude or not value_exclude.is_excluded(i)) + and (not value_include or value_include.is_included(i)) + ) + + return v.__class__(*seq_args) if is_namedtuple(v.__class__) else v.__class__(seq_args) + + elif isinstance(v, Enum) and getattr(cls.Config, 'use_enum_values', False): + return v.value + + else: + return v + + @classmethod + def __try_update_forward_refs__(cls, **localns: Any) -> None: + """ + Same as update_forward_refs but will not raise exception + when forward references are not defined. + """ + update_model_forward_refs(cls, cls.__fields__.values(), cls.__config__.json_encoders, localns, (NameError,)) + + @classmethod + def update_forward_refs(cls, **localns: Any) -> None: + """ + Try to update ForwardRefs on fields based on this Model, globalns and localns. + """ + update_model_forward_refs(cls, cls.__fields__.values(), cls.__config__.json_encoders, localns) + + def __iter__(self) -> 'TupleGenerator': + """ + so `dict(model)` works + """ + yield from self.__dict__.items() + + def _iter( + self, + to_dict: bool = False, + by_alias: bool = False, + include: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, + exclude: Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']] = None, + exclude_unset: bool = False, + exclude_defaults: bool = False, + exclude_none: bool = False, + ) -> 'TupleGenerator': + # Merge field set excludes with explicit exclude parameter with explicit overriding field set options. + # The extra "is not None" guards are not logically necessary but optimizes performance for the simple case. + if exclude is not None or self.__exclude_fields__ is not None: + exclude = ValueItems.merge(self.__exclude_fields__, exclude) + + if include is not None or self.__include_fields__ is not None: + include = ValueItems.merge(self.__include_fields__, include, intersect=True) + + allowed_keys = self._calculate_keys( + include=include, exclude=exclude, exclude_unset=exclude_unset # type: ignore + ) + if allowed_keys is None and not (to_dict or by_alias or exclude_unset or exclude_defaults or exclude_none): + # huge boost for plain _iter() + yield from self.__dict__.items() + return + + value_exclude = ValueItems(self, exclude) if exclude is not None else None + value_include = ValueItems(self, include) if include is not None else None + + for field_key, v in self.__dict__.items(): + if (allowed_keys is not None and field_key not in allowed_keys) or (exclude_none and v is None): + continue + + if exclude_defaults: + model_field = self.__fields__.get(field_key) + if not getattr(model_field, 'required', True) and getattr(model_field, 'default', _missing) == v: + continue + + if by_alias and field_key in self.__fields__: + dict_key = self.__fields__[field_key].alias + else: + dict_key = field_key + + if to_dict or value_include or value_exclude: + v = self._get_value( + v, + to_dict=to_dict, + by_alias=by_alias, + include=value_include and value_include.for_element(field_key), + exclude=value_exclude and value_exclude.for_element(field_key), + exclude_unset=exclude_unset, + exclude_defaults=exclude_defaults, + exclude_none=exclude_none, + ) + yield dict_key, v + + def _calculate_keys( + self, + include: Optional['MappingIntStrAny'], + exclude: Optional['MappingIntStrAny'], + exclude_unset: bool, + update: Optional['DictStrAny'] = None, + ) -> Optional[AbstractSet[str]]: + if include is None and exclude is None and exclude_unset is False: + return None + + keys: AbstractSet[str] + if exclude_unset: + keys = self.__fields_set__.copy() + else: + keys = self.__dict__.keys() + + if include is not None: + keys &= include.keys() + + if update: + keys -= update.keys() + + if exclude: + keys -= {k for k, v in exclude.items() if ValueItems.is_true(v)} + + return keys + + def __eq__(self, other: Any) -> bool: + if isinstance(other, BaseModel): + return self.dict() == other.dict() + else: + return self.dict() == other + + def __repr_args__(self) -> 'ReprArgs': + return [ + (k, v) + for k, v in self.__dict__.items() + if k not in DUNDER_ATTRIBUTES and (k not in self.__fields__ or self.__fields__[k].field_info.repr) + ] + + +_is_base_model_class_defined = True + + +@overload +def create_model( + __model_name: str, + *, + __config__: Optional[Type[BaseConfig]] = None, + __base__: None = None, + __module__: str = __name__, + __validators__: Dict[str, 'AnyClassMethod'] = None, + __cls_kwargs__: Dict[str, Any] = None, + **field_definitions: Any, +) -> Type['BaseModel']: + ... + + +@overload +def create_model( + __model_name: str, + *, + __config__: Optional[Type[BaseConfig]] = None, + __base__: Union[Type['Model'], Tuple[Type['Model'], ...]], + __module__: str = __name__, + __validators__: Dict[str, 'AnyClassMethod'] = None, + __cls_kwargs__: Dict[str, Any] = None, + **field_definitions: Any, +) -> Type['Model']: + ... + + +def create_model( + __model_name: str, + *, + __config__: Optional[Type[BaseConfig]] = None, + __base__: Union[None, Type['Model'], Tuple[Type['Model'], ...]] = None, + __module__: str = __name__, + __validators__: Dict[str, 'AnyClassMethod'] = None, + __cls_kwargs__: Dict[str, Any] = None, + __slots__: Optional[Tuple[str, ...]] = None, + **field_definitions: Any, +) -> Type['Model']: + """ + Dynamically create a model. + :param __model_name: name of the created model + :param __config__: config class to use for the new model + :param __base__: base class for the new model to inherit from + :param __module__: module of the created model + :param __validators__: a dict of method names and @validator class methods + :param __cls_kwargs__: a dict for class creation + :param __slots__: Deprecated, `__slots__` should not be passed to `create_model` + :param field_definitions: fields of the model (or extra fields if a base is supplied) + in the format `=(, )` or `=, e.g. + `foobar=(str, ...)` or `foobar=123`, or, for complex use-cases, in the format + `=` or `=(, )`, e.g. + `foo=Field(datetime, default_factory=datetime.utcnow, alias='bar')` or + `foo=(str, FieldInfo(title='Foo'))` + """ + if __slots__ is not None: + # __slots__ will be ignored from here on + warnings.warn('__slots__ should not be passed to create_model', RuntimeWarning) + + if __base__ is not None: + if __config__ is not None: + raise ConfigError('to avoid confusion __config__ and __base__ cannot be used together') + if not isinstance(__base__, tuple): + __base__ = (__base__,) + else: + __base__ = (cast(Type['Model'], BaseModel),) + + __cls_kwargs__ = __cls_kwargs__ or {} + + fields = {} + annotations = {} + + for f_name, f_def in field_definitions.items(): + if not is_valid_field(f_name): + warnings.warn(f'fields may not start with an underscore, ignoring "{f_name}"', RuntimeWarning) + if isinstance(f_def, tuple): + try: + f_annotation, f_value = f_def + except ValueError as e: + raise ConfigError( + 'field definitions should either be a tuple of (, ) or just a ' + 'default value, unfortunately this means tuples as ' + 'default values are not allowed' + ) from e + else: + f_annotation, f_value = None, f_def + + if f_annotation: + annotations[f_name] = f_annotation + fields[f_name] = f_value + + namespace: 'DictStrAny' = {'__annotations__': annotations, '__module__': __module__} + if __validators__: + namespace.update(__validators__) + namespace.update(fields) + if __config__: + namespace['Config'] = inherit_config(__config__, BaseConfig) + resolved_bases = resolve_bases(__base__) + meta, ns, kwds = prepare_class(__model_name, resolved_bases, kwds=__cls_kwargs__) + if resolved_bases is not __base__: + ns['__orig_bases__'] = __base__ + namespace.update(ns) + return meta(__model_name, resolved_bases, namespace, **kwds) + + +_missing = object() + + +def validate_model( # noqa: C901 (ignore complexity) + model: Type[BaseModel], input_data: 'DictStrAny', cls: 'ModelOrDc' = None +) -> Tuple['DictStrAny', 'SetStr', Optional[ValidationError]]: + """ + validate data against a model. + """ + values = {} + errors = [] + # input_data names, possibly alias + names_used = set() + # field names, never aliases + fields_set = set() + config = model.__config__ + check_extra = config.extra is not Extra.ignore + cls_ = cls or model + + for validator in model.__pre_root_validators__: + try: + input_data = validator(cls_, input_data) + except (ValueError, TypeError, AssertionError) as exc: + return {}, set(), ValidationError([ErrorWrapper(exc, loc=ROOT_KEY)], cls_) + + for name, field in model.__fields__.items(): + value = input_data.get(field.alias, _missing) + using_name = False + if value is _missing and config.allow_population_by_field_name and field.alt_alias: + value = input_data.get(field.name, _missing) + using_name = True + + if value is _missing: + if field.required: + errors.append(ErrorWrapper(MissingError(), loc=field.alias)) + continue + + value = field.get_default() + + if not config.validate_all and not field.validate_always: + values[name] = value + continue + else: + fields_set.add(name) + if check_extra: + names_used.add(field.name if using_name else field.alias) + + v_, errors_ = field.validate(value, values, loc=field.alias, cls=cls_) + if isinstance(errors_, ErrorWrapper): + errors.append(errors_) + elif isinstance(errors_, list): + errors.extend(errors_) + else: + values[name] = v_ + + if check_extra: + if isinstance(input_data, GetterDict): + extra = input_data.extra_keys() - names_used + else: + extra = input_data.keys() - names_used + if extra: + fields_set |= extra + if config.extra is Extra.allow: + for f in extra: + values[f] = input_data[f] + else: + for f in sorted(extra): + errors.append(ErrorWrapper(ExtraError(), loc=f)) + + for skip_on_failure, validator in model.__post_root_validators__: + if skip_on_failure and errors: + continue + try: + values = validator(cls_, values) + except (ValueError, TypeError, AssertionError) as exc: + errors.append(ErrorWrapper(exc, loc=ROOT_KEY)) + + if errors: + return values, fields_set, ValidationError(errors, cls_) + else: + return values, fields_set, None diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/mypy.py b/venv/lib/python3.10/site-packages/pydantic/v1/mypy.py new file mode 100644 index 0000000000000000000000000000000000000000..0262120f1bf6cdd76a3876765d30f599aaa068c6 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/v1/mypy.py @@ -0,0 +1,944 @@ +import sys +from configparser import ConfigParser +from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Type as TypingType, Union + +from mypy.errorcodes import ErrorCode +from mypy.nodes import ( + ARG_NAMED, + ARG_NAMED_OPT, + ARG_OPT, + ARG_POS, + ARG_STAR2, + MDEF, + Argument, + AssignmentStmt, + Block, + CallExpr, + ClassDef, + Context, + Decorator, + EllipsisExpr, + FuncBase, + FuncDef, + JsonDict, + MemberExpr, + NameExpr, + PassStmt, + PlaceholderNode, + RefExpr, + StrExpr, + SymbolNode, + SymbolTableNode, + TempNode, + TypeInfo, + TypeVarExpr, + Var, +) +from mypy.options import Options +from mypy.plugin import ( + CheckerPluginInterface, + ClassDefContext, + FunctionContext, + MethodContext, + Plugin, + ReportConfigContext, + SemanticAnalyzerPluginInterface, +) +from mypy.plugins import dataclasses +from mypy.semanal import set_callable_name # type: ignore +from mypy.server.trigger import make_wildcard_trigger +from mypy.types import ( + AnyType, + CallableType, + Instance, + NoneType, + Overloaded, + ProperType, + Type, + TypeOfAny, + TypeType, + TypeVarType, + UnionType, + get_proper_type, +) +from mypy.typevars import fill_typevars +from mypy.util import get_unique_redefinition_name +from mypy.version import __version__ as mypy_version + +from .utils import is_valid_field + +try: + from mypy.types import TypeVarDef # type: ignore[attr-defined] +except ImportError: # pragma: no cover + # Backward-compatible with TypeVarDef from Mypy 0.910. + from mypy.types import TypeVarType as TypeVarDef + +CONFIGFILE_KEY = 'pydantic-mypy' +METADATA_KEY = 'pydantic-mypy-metadata' +_NAMESPACE = __name__[:-5] # 'pydantic' in 1.10.X, 'pydantic.v1' in v2.X +BASEMODEL_FULLNAME = f'{_NAMESPACE}.main.BaseModel' +BASESETTINGS_FULLNAME = f'{_NAMESPACE}.env_settings.BaseSettings' +MODEL_METACLASS_FULLNAME = f'{_NAMESPACE}.main.ModelMetaclass' +FIELD_FULLNAME = f'{_NAMESPACE}.fields.Field' +DATACLASS_FULLNAME = f'{_NAMESPACE}.dataclasses.dataclass' + + +def parse_mypy_version(version: str) -> Tuple[int, ...]: + return tuple(map(int, version.partition('+')[0].split('.'))) + + +MYPY_VERSION_TUPLE = parse_mypy_version(mypy_version) +BUILTINS_NAME = 'builtins' if MYPY_VERSION_TUPLE >= (0, 930) else '__builtins__' + +# Increment version if plugin changes and mypy caches should be invalidated +__version__ = 2 + + +def plugin(version: str) -> 'TypingType[Plugin]': + """ + `version` is the mypy version string + + We might want to use this to print a warning if the mypy version being used is + newer, or especially older, than we expect (or need). + """ + return PydanticPlugin + + +class PydanticPlugin(Plugin): + def __init__(self, options: Options) -> None: + self.plugin_config = PydanticPluginConfig(options) + self._plugin_data = self.plugin_config.to_data() + super().__init__(options) + + def get_base_class_hook(self, fullname: str) -> 'Optional[Callable[[ClassDefContext], None]]': + sym = self.lookup_fully_qualified(fullname) + if sym and isinstance(sym.node, TypeInfo): # pragma: no branch + # No branching may occur if the mypy cache has not been cleared + if any(get_fullname(base) == BASEMODEL_FULLNAME for base in sym.node.mro): + return self._pydantic_model_class_maker_callback + return None + + def get_metaclass_hook(self, fullname: str) -> Optional[Callable[[ClassDefContext], None]]: + if fullname == MODEL_METACLASS_FULLNAME: + return self._pydantic_model_metaclass_marker_callback + return None + + def get_function_hook(self, fullname: str) -> 'Optional[Callable[[FunctionContext], Type]]': + sym = self.lookup_fully_qualified(fullname) + if sym and sym.fullname == FIELD_FULLNAME: + return self._pydantic_field_callback + return None + + def get_method_hook(self, fullname: str) -> Optional[Callable[[MethodContext], Type]]: + if fullname.endswith('.from_orm'): + return from_orm_callback + return None + + def get_class_decorator_hook(self, fullname: str) -> Optional[Callable[[ClassDefContext], None]]: + """Mark pydantic.dataclasses as dataclass. + + Mypy version 1.1.1 added support for `@dataclass_transform` decorator. + """ + if fullname == DATACLASS_FULLNAME and MYPY_VERSION_TUPLE < (1, 1): + return dataclasses.dataclass_class_maker_callback # type: ignore[return-value] + return None + + def report_config_data(self, ctx: ReportConfigContext) -> Dict[str, Any]: + """Return all plugin config data. + + Used by mypy to determine if cache needs to be discarded. + """ + return self._plugin_data + + def _pydantic_model_class_maker_callback(self, ctx: ClassDefContext) -> None: + transformer = PydanticModelTransformer(ctx, self.plugin_config) + transformer.transform() + + def _pydantic_model_metaclass_marker_callback(self, ctx: ClassDefContext) -> None: + """Reset dataclass_transform_spec attribute of ModelMetaclass. + + Let the plugin handle it. This behavior can be disabled + if 'debug_dataclass_transform' is set to True', for testing purposes. + """ + if self.plugin_config.debug_dataclass_transform: + return + info_metaclass = ctx.cls.info.declared_metaclass + assert info_metaclass, "callback not passed from 'get_metaclass_hook'" + if getattr(info_metaclass.type, 'dataclass_transform_spec', None): + info_metaclass.type.dataclass_transform_spec = None # type: ignore[attr-defined] + + def _pydantic_field_callback(self, ctx: FunctionContext) -> 'Type': + """ + Extract the type of the `default` argument from the Field function, and use it as the return type. + + In particular: + * Check whether the default and default_factory argument is specified. + * Output an error if both are specified. + * Retrieve the type of the argument which is specified, and use it as return type for the function. + """ + default_any_type = ctx.default_return_type + + assert ctx.callee_arg_names[0] == 'default', '"default" is no longer first argument in Field()' + assert ctx.callee_arg_names[1] == 'default_factory', '"default_factory" is no longer second argument in Field()' + default_args = ctx.args[0] + default_factory_args = ctx.args[1] + + if default_args and default_factory_args: + error_default_and_default_factory_specified(ctx.api, ctx.context) + return default_any_type + + if default_args: + default_type = ctx.arg_types[0][0] + default_arg = default_args[0] + + # Fallback to default Any type if the field is required + if not isinstance(default_arg, EllipsisExpr): + return default_type + + elif default_factory_args: + default_factory_type = ctx.arg_types[1][0] + + # Functions which use `ParamSpec` can be overloaded, exposing the callable's types as a parameter + # Pydantic calls the default factory without any argument, so we retrieve the first item + if isinstance(default_factory_type, Overloaded): + if MYPY_VERSION_TUPLE > (0, 910): + default_factory_type = default_factory_type.items[0] + else: + # Mypy0.910 exposes the items of overloaded types in a function + default_factory_type = default_factory_type.items()[0] # type: ignore[operator] + + if isinstance(default_factory_type, CallableType): + ret_type = default_factory_type.ret_type + # mypy doesn't think `ret_type` has `args`, you'd think mypy should know, + # add this check in case it varies by version + args = getattr(ret_type, 'args', None) + if args: + if all(isinstance(arg, TypeVarType) for arg in args): + # Looks like the default factory is a type like `list` or `dict`, replace all args with `Any` + ret_type.args = tuple(default_any_type for _ in args) # type: ignore[attr-defined] + return ret_type + + return default_any_type + + +class PydanticPluginConfig: + __slots__ = ( + 'init_forbid_extra', + 'init_typed', + 'warn_required_dynamic_aliases', + 'warn_untyped_fields', + 'debug_dataclass_transform', + ) + init_forbid_extra: bool + init_typed: bool + warn_required_dynamic_aliases: bool + warn_untyped_fields: bool + debug_dataclass_transform: bool # undocumented + + def __init__(self, options: Options) -> None: + if options.config_file is None: # pragma: no cover + return + + toml_config = parse_toml(options.config_file) + if toml_config is not None: + config = toml_config.get('tool', {}).get('pydantic-mypy', {}) + for key in self.__slots__: + setting = config.get(key, False) + if not isinstance(setting, bool): + raise ValueError(f'Configuration value must be a boolean for key: {key}') + setattr(self, key, setting) + else: + plugin_config = ConfigParser() + plugin_config.read(options.config_file) + for key in self.__slots__: + setting = plugin_config.getboolean(CONFIGFILE_KEY, key, fallback=False) + setattr(self, key, setting) + + def to_data(self) -> Dict[str, Any]: + return {key: getattr(self, key) for key in self.__slots__} + + +def from_orm_callback(ctx: MethodContext) -> Type: + """ + Raise an error if orm_mode is not enabled + """ + model_type: Instance + ctx_type = ctx.type + if isinstance(ctx_type, TypeType): + ctx_type = ctx_type.item + if isinstance(ctx_type, CallableType) and isinstance(ctx_type.ret_type, Instance): + model_type = ctx_type.ret_type # called on the class + elif isinstance(ctx_type, Instance): + model_type = ctx_type # called on an instance (unusual, but still valid) + else: # pragma: no cover + detail = f'ctx.type: {ctx_type} (of type {ctx_type.__class__.__name__})' + error_unexpected_behavior(detail, ctx.api, ctx.context) + return ctx.default_return_type + pydantic_metadata = model_type.type.metadata.get(METADATA_KEY) + if pydantic_metadata is None: + return ctx.default_return_type + orm_mode = pydantic_metadata.get('config', {}).get('orm_mode') + if orm_mode is not True: + error_from_orm(get_name(model_type.type), ctx.api, ctx.context) + return ctx.default_return_type + + +class PydanticModelTransformer: + tracked_config_fields: Set[str] = { + 'extra', + 'allow_mutation', + 'frozen', + 'orm_mode', + 'allow_population_by_field_name', + 'alias_generator', + } + + def __init__(self, ctx: ClassDefContext, plugin_config: PydanticPluginConfig) -> None: + self._ctx = ctx + self.plugin_config = plugin_config + + def transform(self) -> None: + """ + Configures the BaseModel subclass according to the plugin settings. + + In particular: + * determines the model config and fields, + * adds a fields-aware signature for the initializer and construct methods + * freezes the class if allow_mutation = False or frozen = True + * stores the fields, config, and if the class is settings in the mypy metadata for access by subclasses + """ + ctx = self._ctx + info = ctx.cls.info + + self.adjust_validator_signatures() + config = self.collect_config() + fields = self.collect_fields(config) + is_settings = any(get_fullname(base) == BASESETTINGS_FULLNAME for base in info.mro[:-1]) + self.add_initializer(fields, config, is_settings) + self.add_construct_method(fields) + self.set_frozen(fields, frozen=config.allow_mutation is False or config.frozen is True) + info.metadata[METADATA_KEY] = { + 'fields': {field.name: field.serialize() for field in fields}, + 'config': config.set_values_dict(), + } + + def adjust_validator_signatures(self) -> None: + """When we decorate a function `f` with `pydantic.validator(...), mypy sees + `f` as a regular method taking a `self` instance, even though pydantic + internally wraps `f` with `classmethod` if necessary. + + Teach mypy this by marking any function whose outermost decorator is a + `validator()` call as a classmethod. + """ + for name, sym in self._ctx.cls.info.names.items(): + if isinstance(sym.node, Decorator): + first_dec = sym.node.original_decorators[0] + if ( + isinstance(first_dec, CallExpr) + and isinstance(first_dec.callee, NameExpr) + and first_dec.callee.fullname == f'{_NAMESPACE}.class_validators.validator' + ): + sym.node.func.is_class = True + + def collect_config(self) -> 'ModelConfigData': + """ + Collects the values of the config attributes that are used by the plugin, accounting for parent classes. + """ + ctx = self._ctx + cls = ctx.cls + config = ModelConfigData() + for stmt in cls.defs.body: + if not isinstance(stmt, ClassDef): + continue + if stmt.name == 'Config': + for substmt in stmt.defs.body: + if not isinstance(substmt, AssignmentStmt): + continue + config.update(self.get_config_update(substmt)) + if ( + config.has_alias_generator + and not config.allow_population_by_field_name + and self.plugin_config.warn_required_dynamic_aliases + ): + error_required_dynamic_aliases(ctx.api, stmt) + for info in cls.info.mro[1:]: # 0 is the current class + if METADATA_KEY not in info.metadata: + continue + + # Each class depends on the set of fields in its ancestors + ctx.api.add_plugin_dependency(make_wildcard_trigger(get_fullname(info))) + for name, value in info.metadata[METADATA_KEY]['config'].items(): + config.setdefault(name, value) + return config + + def collect_fields(self, model_config: 'ModelConfigData') -> List['PydanticModelField']: + """ + Collects the fields for the model, accounting for parent classes + """ + # First, collect fields belonging to the current class. + ctx = self._ctx + cls = self._ctx.cls + fields = [] # type: List[PydanticModelField] + known_fields = set() # type: Set[str] + for stmt in cls.defs.body: + if not isinstance(stmt, AssignmentStmt): # `and stmt.new_syntax` to require annotation + continue + + lhs = stmt.lvalues[0] + if not isinstance(lhs, NameExpr) or not is_valid_field(lhs.name): + continue + + if not stmt.new_syntax and self.plugin_config.warn_untyped_fields: + error_untyped_fields(ctx.api, stmt) + + # if lhs.name == '__config__': # BaseConfig not well handled; I'm not sure why yet + # continue + + sym = cls.info.names.get(lhs.name) + if sym is None: # pragma: no cover + # This is likely due to a star import (see the dataclasses plugin for a more detailed explanation) + # This is the same logic used in the dataclasses plugin + continue + + node = sym.node + if isinstance(node, PlaceholderNode): # pragma: no cover + # See the PlaceholderNode docstring for more detail about how this can occur + # Basically, it is an edge case when dealing with complex import logic + # This is the same logic used in the dataclasses plugin + continue + if not isinstance(node, Var): # pragma: no cover + # Don't know if this edge case still happens with the `is_valid_field` check above + # but better safe than sorry + continue + + # x: ClassVar[int] is ignored by dataclasses. + if node.is_classvar: + continue + + is_required = self.get_is_required(cls, stmt, lhs) + alias, has_dynamic_alias = self.get_alias_info(stmt) + if ( + has_dynamic_alias + and not model_config.allow_population_by_field_name + and self.plugin_config.warn_required_dynamic_aliases + ): + error_required_dynamic_aliases(ctx.api, stmt) + fields.append( + PydanticModelField( + name=lhs.name, + is_required=is_required, + alias=alias, + has_dynamic_alias=has_dynamic_alias, + line=stmt.line, + column=stmt.column, + ) + ) + known_fields.add(lhs.name) + all_fields = fields.copy() + for info in cls.info.mro[1:]: # 0 is the current class, -2 is BaseModel, -1 is object + if METADATA_KEY not in info.metadata: + continue + + superclass_fields = [] + # Each class depends on the set of fields in its ancestors + ctx.api.add_plugin_dependency(make_wildcard_trigger(get_fullname(info))) + + for name, data in info.metadata[METADATA_KEY]['fields'].items(): + if name not in known_fields: + field = PydanticModelField.deserialize(info, data) + known_fields.add(name) + superclass_fields.append(field) + else: + (field,) = (a for a in all_fields if a.name == name) + all_fields.remove(field) + superclass_fields.append(field) + all_fields = superclass_fields + all_fields + return all_fields + + def add_initializer(self, fields: List['PydanticModelField'], config: 'ModelConfigData', is_settings: bool) -> None: + """ + Adds a fields-aware `__init__` method to the class. + + The added `__init__` will be annotated with types vs. all `Any` depending on the plugin settings. + """ + ctx = self._ctx + typed = self.plugin_config.init_typed + use_alias = config.allow_population_by_field_name is not True + force_all_optional = is_settings or bool( + config.has_alias_generator and not config.allow_population_by_field_name + ) + init_arguments = self.get_field_arguments( + fields, typed=typed, force_all_optional=force_all_optional, use_alias=use_alias + ) + if not self.should_init_forbid_extra(fields, config): + var = Var('kwargs') + init_arguments.append(Argument(var, AnyType(TypeOfAny.explicit), None, ARG_STAR2)) + + if '__init__' not in ctx.cls.info.names: + add_method(ctx, '__init__', init_arguments, NoneType()) + + def add_construct_method(self, fields: List['PydanticModelField']) -> None: + """ + Adds a fully typed `construct` classmethod to the class. + + Similar to the fields-aware __init__ method, but always uses the field names (not aliases), + and does not treat settings fields as optional. + """ + ctx = self._ctx + set_str = ctx.api.named_type(f'{BUILTINS_NAME}.set', [ctx.api.named_type(f'{BUILTINS_NAME}.str')]) + optional_set_str = UnionType([set_str, NoneType()]) + fields_set_argument = Argument(Var('_fields_set', optional_set_str), optional_set_str, None, ARG_OPT) + construct_arguments = self.get_field_arguments(fields, typed=True, force_all_optional=False, use_alias=False) + construct_arguments = [fields_set_argument] + construct_arguments + + obj_type = ctx.api.named_type(f'{BUILTINS_NAME}.object') + self_tvar_name = '_PydanticBaseModel' # Make sure it does not conflict with other names in the class + tvar_fullname = ctx.cls.fullname + '.' + self_tvar_name + if MYPY_VERSION_TUPLE >= (1, 4): + tvd = TypeVarType( + self_tvar_name, + tvar_fullname, + -1, + [], + obj_type, + AnyType(TypeOfAny.from_omitted_generics), # type: ignore[arg-type] + ) + self_tvar_expr = TypeVarExpr( + self_tvar_name, + tvar_fullname, + [], + obj_type, + AnyType(TypeOfAny.from_omitted_generics), # type: ignore[arg-type] + ) + else: + tvd = TypeVarDef(self_tvar_name, tvar_fullname, -1, [], obj_type) + self_tvar_expr = TypeVarExpr(self_tvar_name, tvar_fullname, [], obj_type) + ctx.cls.info.names[self_tvar_name] = SymbolTableNode(MDEF, self_tvar_expr) + + # Backward-compatible with TypeVarDef from Mypy 0.910. + if isinstance(tvd, TypeVarType): + self_type = tvd + else: + self_type = TypeVarType(tvd) + + add_method( + ctx, + 'construct', + construct_arguments, + return_type=self_type, + self_type=self_type, + tvar_def=tvd, + is_classmethod=True, + ) + + def set_frozen(self, fields: List['PydanticModelField'], frozen: bool) -> None: + """ + Marks all fields as properties so that attempts to set them trigger mypy errors. + + This is the same approach used by the attrs and dataclasses plugins. + """ + ctx = self._ctx + info = ctx.cls.info + for field in fields: + sym_node = info.names.get(field.name) + if sym_node is not None: + var = sym_node.node + if isinstance(var, Var): + var.is_property = frozen + elif isinstance(var, PlaceholderNode) and not ctx.api.final_iteration: + # See https://github.com/pydantic/pydantic/issues/5191 to hit this branch for test coverage + ctx.api.defer() + else: # pragma: no cover + # I don't know whether it's possible to hit this branch, but I've added it for safety + try: + var_str = str(var) + except TypeError: + # This happens for PlaceholderNode; perhaps it will happen for other types in the future.. + var_str = repr(var) + detail = f'sym_node.node: {var_str} (of type {var.__class__})' + error_unexpected_behavior(detail, ctx.api, ctx.cls) + else: + var = field.to_var(info, use_alias=False) + var.info = info + var.is_property = frozen + var._fullname = get_fullname(info) + '.' + get_name(var) + info.names[get_name(var)] = SymbolTableNode(MDEF, var) + + def get_config_update(self, substmt: AssignmentStmt) -> Optional['ModelConfigData']: + """ + Determines the config update due to a single statement in the Config class definition. + + Warns if a tracked config attribute is set to a value the plugin doesn't know how to interpret (e.g., an int) + """ + lhs = substmt.lvalues[0] + if not (isinstance(lhs, NameExpr) and lhs.name in self.tracked_config_fields): + return None + if lhs.name == 'extra': + if isinstance(substmt.rvalue, StrExpr): + forbid_extra = substmt.rvalue.value == 'forbid' + elif isinstance(substmt.rvalue, MemberExpr): + forbid_extra = substmt.rvalue.name == 'forbid' + else: + error_invalid_config_value(lhs.name, self._ctx.api, substmt) + return None + return ModelConfigData(forbid_extra=forbid_extra) + if lhs.name == 'alias_generator': + has_alias_generator = True + if isinstance(substmt.rvalue, NameExpr) and substmt.rvalue.fullname == 'builtins.None': + has_alias_generator = False + return ModelConfigData(has_alias_generator=has_alias_generator) + if isinstance(substmt.rvalue, NameExpr) and substmt.rvalue.fullname in ('builtins.True', 'builtins.False'): + return ModelConfigData(**{lhs.name: substmt.rvalue.fullname == 'builtins.True'}) + error_invalid_config_value(lhs.name, self._ctx.api, substmt) + return None + + @staticmethod + def get_is_required(cls: ClassDef, stmt: AssignmentStmt, lhs: NameExpr) -> bool: + """ + Returns a boolean indicating whether the field defined in `stmt` is a required field. + """ + expr = stmt.rvalue + if isinstance(expr, TempNode): + # TempNode means annotation-only, so only non-required if Optional + value_type = get_proper_type(cls.info[lhs.name].type) + return not PydanticModelTransformer.type_has_implicit_default(value_type) + if isinstance(expr, CallExpr) and isinstance(expr.callee, RefExpr) and expr.callee.fullname == FIELD_FULLNAME: + # The "default value" is a call to `Field`; at this point, the field is + # only required if default is Ellipsis (i.e., `field_name: Annotation = Field(...)`) or if default_factory + # is specified. + for arg, name in zip(expr.args, expr.arg_names): + # If name is None, then this arg is the default because it is the only positional argument. + if name is None or name == 'default': + return arg.__class__ is EllipsisExpr + if name == 'default_factory': + return False + # In this case, default and default_factory are not specified, so we need to look at the annotation + value_type = get_proper_type(cls.info[lhs.name].type) + return not PydanticModelTransformer.type_has_implicit_default(value_type) + # Only required if the "default value" is Ellipsis (i.e., `field_name: Annotation = ...`) + return isinstance(expr, EllipsisExpr) + + @staticmethod + def type_has_implicit_default(type_: Optional[ProperType]) -> bool: + """ + Returns True if the passed type will be given an implicit default value. + + In pydantic v1, this is the case for Optional types and Any (with default value None). + """ + if isinstance(type_, AnyType): + # Annotated as Any + return True + if isinstance(type_, UnionType) and any( + isinstance(item, NoneType) or isinstance(item, AnyType) for item in type_.items + ): + # Annotated as Optional, or otherwise having NoneType or AnyType in the union + return True + return False + + @staticmethod + def get_alias_info(stmt: AssignmentStmt) -> Tuple[Optional[str], bool]: + """ + Returns a pair (alias, has_dynamic_alias), extracted from the declaration of the field defined in `stmt`. + + `has_dynamic_alias` is True if and only if an alias is provided, but not as a string literal. + If `has_dynamic_alias` is True, `alias` will be None. + """ + expr = stmt.rvalue + if isinstance(expr, TempNode): + # TempNode means annotation-only + return None, False + + if not ( + isinstance(expr, CallExpr) and isinstance(expr.callee, RefExpr) and expr.callee.fullname == FIELD_FULLNAME + ): + # Assigned value is not a call to pydantic.fields.Field + return None, False + + for i, arg_name in enumerate(expr.arg_names): + if arg_name != 'alias': + continue + arg = expr.args[i] + if isinstance(arg, StrExpr): + return arg.value, False + else: + return None, True + return None, False + + def get_field_arguments( + self, fields: List['PydanticModelField'], typed: bool, force_all_optional: bool, use_alias: bool + ) -> List[Argument]: + """ + Helper function used during the construction of the `__init__` and `construct` method signatures. + + Returns a list of mypy Argument instances for use in the generated signatures. + """ + info = self._ctx.cls.info + arguments = [ + field.to_argument(info, typed=typed, force_optional=force_all_optional, use_alias=use_alias) + for field in fields + if not (use_alias and field.has_dynamic_alias) + ] + return arguments + + def should_init_forbid_extra(self, fields: List['PydanticModelField'], config: 'ModelConfigData') -> bool: + """ + Indicates whether the generated `__init__` should get a `**kwargs` at the end of its signature + + We disallow arbitrary kwargs if the extra config setting is "forbid", or if the plugin config says to, + *unless* a required dynamic alias is present (since then we can't determine a valid signature). + """ + if not config.allow_population_by_field_name: + if self.is_dynamic_alias_present(fields, bool(config.has_alias_generator)): + return False + if config.forbid_extra: + return True + return self.plugin_config.init_forbid_extra + + @staticmethod + def is_dynamic_alias_present(fields: List['PydanticModelField'], has_alias_generator: bool) -> bool: + """ + Returns whether any fields on the model have a "dynamic alias", i.e., an alias that cannot be + determined during static analysis. + """ + for field in fields: + if field.has_dynamic_alias: + return True + if has_alias_generator: + for field in fields: + if field.alias is None: + return True + return False + + +class PydanticModelField: + def __init__( + self, name: str, is_required: bool, alias: Optional[str], has_dynamic_alias: bool, line: int, column: int + ): + self.name = name + self.is_required = is_required + self.alias = alias + self.has_dynamic_alias = has_dynamic_alias + self.line = line + self.column = column + + def to_var(self, info: TypeInfo, use_alias: bool) -> Var: + name = self.name + if use_alias and self.alias is not None: + name = self.alias + return Var(name, info[self.name].type) + + def to_argument(self, info: TypeInfo, typed: bool, force_optional: bool, use_alias: bool) -> Argument: + if typed and info[self.name].type is not None: + type_annotation = info[self.name].type + else: + type_annotation = AnyType(TypeOfAny.explicit) + return Argument( + variable=self.to_var(info, use_alias), + type_annotation=type_annotation, + initializer=None, + kind=ARG_NAMED_OPT if force_optional or not self.is_required else ARG_NAMED, + ) + + def serialize(self) -> JsonDict: + return self.__dict__ + + @classmethod + def deserialize(cls, info: TypeInfo, data: JsonDict) -> 'PydanticModelField': + return cls(**data) + + +class ModelConfigData: + def __init__( + self, + forbid_extra: Optional[bool] = None, + allow_mutation: Optional[bool] = None, + frozen: Optional[bool] = None, + orm_mode: Optional[bool] = None, + allow_population_by_field_name: Optional[bool] = None, + has_alias_generator: Optional[bool] = None, + ): + self.forbid_extra = forbid_extra + self.allow_mutation = allow_mutation + self.frozen = frozen + self.orm_mode = orm_mode + self.allow_population_by_field_name = allow_population_by_field_name + self.has_alias_generator = has_alias_generator + + def set_values_dict(self) -> Dict[str, Any]: + return {k: v for k, v in self.__dict__.items() if v is not None} + + def update(self, config: Optional['ModelConfigData']) -> None: + if config is None: + return + for k, v in config.set_values_dict().items(): + setattr(self, k, v) + + def setdefault(self, key: str, value: Any) -> None: + if getattr(self, key) is None: + setattr(self, key, value) + + +ERROR_ORM = ErrorCode('pydantic-orm', 'Invalid from_orm call', 'Pydantic') +ERROR_CONFIG = ErrorCode('pydantic-config', 'Invalid config value', 'Pydantic') +ERROR_ALIAS = ErrorCode('pydantic-alias', 'Dynamic alias disallowed', 'Pydantic') +ERROR_UNEXPECTED = ErrorCode('pydantic-unexpected', 'Unexpected behavior', 'Pydantic') +ERROR_UNTYPED = ErrorCode('pydantic-field', 'Untyped field disallowed', 'Pydantic') +ERROR_FIELD_DEFAULTS = ErrorCode('pydantic-field', 'Invalid Field defaults', 'Pydantic') + + +def error_from_orm(model_name: str, api: CheckerPluginInterface, context: Context) -> None: + api.fail(f'"{model_name}" does not have orm_mode=True', context, code=ERROR_ORM) + + +def error_invalid_config_value(name: str, api: SemanticAnalyzerPluginInterface, context: Context) -> None: + api.fail(f'Invalid value for "Config.{name}"', context, code=ERROR_CONFIG) + + +def error_required_dynamic_aliases(api: SemanticAnalyzerPluginInterface, context: Context) -> None: + api.fail('Required dynamic aliases disallowed', context, code=ERROR_ALIAS) + + +def error_unexpected_behavior( + detail: str, api: Union[CheckerPluginInterface, SemanticAnalyzerPluginInterface], context: Context +) -> None: # pragma: no cover + # Can't think of a good way to test this, but I confirmed it renders as desired by adding to a non-error path + link = 'https://github.com/pydantic/pydantic/issues/new/choose' + full_message = f'The pydantic mypy plugin ran into unexpected behavior: {detail}\n' + full_message += f'Please consider reporting this bug at {link} so we can try to fix it!' + api.fail(full_message, context, code=ERROR_UNEXPECTED) + + +def error_untyped_fields(api: SemanticAnalyzerPluginInterface, context: Context) -> None: + api.fail('Untyped fields disallowed', context, code=ERROR_UNTYPED) + + +def error_default_and_default_factory_specified(api: CheckerPluginInterface, context: Context) -> None: + api.fail('Field default and default_factory cannot be specified together', context, code=ERROR_FIELD_DEFAULTS) + + +def add_method( + ctx: ClassDefContext, + name: str, + args: List[Argument], + return_type: Type, + self_type: Optional[Type] = None, + tvar_def: Optional[TypeVarDef] = None, + is_classmethod: bool = False, + is_new: bool = False, + # is_staticmethod: bool = False, +) -> None: + """ + Adds a new method to a class. + + This can be dropped if/when https://github.com/python/mypy/issues/7301 is merged + """ + info = ctx.cls.info + + # First remove any previously generated methods with the same name + # to avoid clashes and problems in the semantic analyzer. + if name in info.names: + sym = info.names[name] + if sym.plugin_generated and isinstance(sym.node, FuncDef): + ctx.cls.defs.body.remove(sym.node) # pragma: no cover + + self_type = self_type or fill_typevars(info) + if is_classmethod or is_new: + first = [Argument(Var('_cls'), TypeType.make_normalized(self_type), None, ARG_POS)] + # elif is_staticmethod: + # first = [] + else: + self_type = self_type or fill_typevars(info) + first = [Argument(Var('__pydantic_self__'), self_type, None, ARG_POS)] + args = first + args + arg_types, arg_names, arg_kinds = [], [], [] + for arg in args: + assert arg.type_annotation, 'All arguments must be fully typed.' + arg_types.append(arg.type_annotation) + arg_names.append(get_name(arg.variable)) + arg_kinds.append(arg.kind) + + function_type = ctx.api.named_type(f'{BUILTINS_NAME}.function') + signature = CallableType(arg_types, arg_kinds, arg_names, return_type, function_type) + if tvar_def: + signature.variables = [tvar_def] + + func = FuncDef(name, args, Block([PassStmt()])) + func.info = info + func.type = set_callable_name(signature, func) + func.is_class = is_classmethod + # func.is_static = is_staticmethod + func._fullname = get_fullname(info) + '.' + name + func.line = info.line + + # NOTE: we would like the plugin generated node to dominate, but we still + # need to keep any existing definitions so they get semantically analyzed. + if name in info.names: + # Get a nice unique name instead. + r_name = get_unique_redefinition_name(name, info.names) + info.names[r_name] = info.names[name] + + if is_classmethod: # or is_staticmethod: + func.is_decorated = True + v = Var(name, func.type) + v.info = info + v._fullname = func._fullname + # if is_classmethod: + v.is_classmethod = True + dec = Decorator(func, [NameExpr('classmethod')], v) + # else: + # v.is_staticmethod = True + # dec = Decorator(func, [NameExpr('staticmethod')], v) + + dec.line = info.line + sym = SymbolTableNode(MDEF, dec) + else: + sym = SymbolTableNode(MDEF, func) + sym.plugin_generated = True + + info.names[name] = sym + info.defn.defs.body.append(func) + + +def get_fullname(x: Union[FuncBase, SymbolNode]) -> str: + """ + Used for compatibility with mypy 0.740; can be dropped once support for 0.740 is dropped. + """ + fn = x.fullname + if callable(fn): # pragma: no cover + return fn() + return fn + + +def get_name(x: Union[FuncBase, SymbolNode]) -> str: + """ + Used for compatibility with mypy 0.740; can be dropped once support for 0.740 is dropped. + """ + fn = x.name + if callable(fn): # pragma: no cover + return fn() + return fn + + +def parse_toml(config_file: str) -> Optional[Dict[str, Any]]: + if not config_file.endswith('.toml'): + return None + + read_mode = 'rb' + if sys.version_info >= (3, 11): + import tomllib as toml_ + else: + try: + import tomli as toml_ + except ImportError: + # older versions of mypy have toml as a dependency, not tomli + read_mode = 'r' + try: + import toml as toml_ # type: ignore[no-redef] + except ImportError: # pragma: no cover + import warnings + + warnings.warn('No TOML parser installed, cannot read configuration from `pyproject.toml`.') + return None + + with open(config_file, read_mode) as rf: + return toml_.load(rf) # type: ignore[arg-type] diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/networks.py b/venv/lib/python3.10/site-packages/pydantic/v1/networks.py new file mode 100644 index 0000000000000000000000000000000000000000..cfebe588e4e86cde22d1c94dd2881314d752e51a --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/v1/networks.py @@ -0,0 +1,747 @@ +import re +from ipaddress import ( + IPv4Address, + IPv4Interface, + IPv4Network, + IPv6Address, + IPv6Interface, + IPv6Network, + _BaseAddress, + _BaseNetwork, +) +from typing import ( + TYPE_CHECKING, + Any, + Collection, + Dict, + Generator, + List, + Match, + Optional, + Pattern, + Set, + Tuple, + Type, + Union, + cast, + no_type_check, +) + +from . import errors +from .utils import Representation, update_not_none +from .validators import constr_length_validator, str_validator + +if TYPE_CHECKING: + import email_validator + from typing_extensions import TypedDict + + from .config import BaseConfig + from .fields import ModelField + from .typing import AnyCallable + + CallableGenerator = Generator[AnyCallable, None, None] + + class Parts(TypedDict, total=False): + scheme: str + user: Optional[str] + password: Optional[str] + ipv4: Optional[str] + ipv6: Optional[str] + domain: Optional[str] + port: Optional[str] + path: Optional[str] + query: Optional[str] + fragment: Optional[str] + + class HostParts(TypedDict, total=False): + host: str + tld: Optional[str] + host_type: Optional[str] + port: Optional[str] + rebuild: bool + +else: + email_validator = None + + class Parts(dict): + pass + + +NetworkType = Union[str, bytes, int, Tuple[Union[str, bytes, int], Union[str, int]]] + +__all__ = [ + 'AnyUrl', + 'AnyHttpUrl', + 'FileUrl', + 'HttpUrl', + 'stricturl', + 'EmailStr', + 'NameEmail', + 'IPvAnyAddress', + 'IPvAnyInterface', + 'IPvAnyNetwork', + 'PostgresDsn', + 'CockroachDsn', + 'AmqpDsn', + 'RedisDsn', + 'MongoDsn', + 'KafkaDsn', + 'validate_email', +] + +_url_regex_cache = None +_multi_host_url_regex_cache = None +_ascii_domain_regex_cache = None +_int_domain_regex_cache = None +_host_regex_cache = None + +_host_regex = ( + r'(?:' + r'(?P(?:\d{1,3}\.){3}\d{1,3})(?=$|[/:#?])|' # ipv4 + r'(?P\[[A-F0-9]*:[A-F0-9:]+\])(?=$|[/:#?])|' # ipv6 + r'(?P[^\s/:?#]+)' # domain, validation occurs later + r')?' + r'(?::(?P\d+))?' # port +) +_scheme_regex = r'(?:(?P[a-z][a-z0-9+\-.]+)://)?' # scheme https://tools.ietf.org/html/rfc3986#appendix-A +_user_info_regex = r'(?:(?P[^\s:/]*)(?::(?P[^\s/]*))?@)?' +_path_regex = r'(?P/[^\s?#]*)?' +_query_regex = r'(?:\?(?P[^\s#]*))?' +_fragment_regex = r'(?:#(?P[^\s#]*))?' + + +def url_regex() -> Pattern[str]: + global _url_regex_cache + if _url_regex_cache is None: + _url_regex_cache = re.compile( + rf'{_scheme_regex}{_user_info_regex}{_host_regex}{_path_regex}{_query_regex}{_fragment_regex}', + re.IGNORECASE, + ) + return _url_regex_cache + + +def multi_host_url_regex() -> Pattern[str]: + """ + Compiled multi host url regex. + + Additionally to `url_regex` it allows to match multiple hosts. + E.g. host1.db.net,host2.db.net + """ + global _multi_host_url_regex_cache + if _multi_host_url_regex_cache is None: + _multi_host_url_regex_cache = re.compile( + rf'{_scheme_regex}{_user_info_regex}' + r'(?P([^/]*))' # validation occurs later + rf'{_path_regex}{_query_regex}{_fragment_regex}', + re.IGNORECASE, + ) + return _multi_host_url_regex_cache + + +def ascii_domain_regex() -> Pattern[str]: + global _ascii_domain_regex_cache + if _ascii_domain_regex_cache is None: + ascii_chunk = r'[_0-9a-z](?:[-_0-9a-z]{0,61}[_0-9a-z])?' + ascii_domain_ending = r'(?P\.[a-z]{2,63})?\.?' + _ascii_domain_regex_cache = re.compile( + fr'(?:{ascii_chunk}\.)*?{ascii_chunk}{ascii_domain_ending}', re.IGNORECASE + ) + return _ascii_domain_regex_cache + + +def int_domain_regex() -> Pattern[str]: + global _int_domain_regex_cache + if _int_domain_regex_cache is None: + int_chunk = r'[_0-9a-\U00040000](?:[-_0-9a-\U00040000]{0,61}[_0-9a-\U00040000])?' + int_domain_ending = r'(?P(\.[^\W\d_]{2,63})|(\.(?:xn--)[_0-9a-z-]{2,63}))?\.?' + _int_domain_regex_cache = re.compile(fr'(?:{int_chunk}\.)*?{int_chunk}{int_domain_ending}', re.IGNORECASE) + return _int_domain_regex_cache + + +def host_regex() -> Pattern[str]: + global _host_regex_cache + if _host_regex_cache is None: + _host_regex_cache = re.compile( + _host_regex, + re.IGNORECASE, + ) + return _host_regex_cache + + +class AnyUrl(str): + strip_whitespace = True + min_length = 1 + max_length = 2**16 + allowed_schemes: Optional[Collection[str]] = None + tld_required: bool = False + user_required: bool = False + host_required: bool = True + hidden_parts: Set[str] = set() + + __slots__ = ('scheme', 'user', 'password', 'host', 'tld', 'host_type', 'port', 'path', 'query', 'fragment') + + @no_type_check + def __new__(cls, url: Optional[str], **kwargs) -> object: + return str.__new__(cls, cls.build(**kwargs) if url is None else url) + + def __init__( + self, + url: str, + *, + scheme: str, + user: Optional[str] = None, + password: Optional[str] = None, + host: Optional[str] = None, + tld: Optional[str] = None, + host_type: str = 'domain', + port: Optional[str] = None, + path: Optional[str] = None, + query: Optional[str] = None, + fragment: Optional[str] = None, + ) -> None: + str.__init__(url) + self.scheme = scheme + self.user = user + self.password = password + self.host = host + self.tld = tld + self.host_type = host_type + self.port = port + self.path = path + self.query = query + self.fragment = fragment + + @classmethod + def build( + cls, + *, + scheme: str, + user: Optional[str] = None, + password: Optional[str] = None, + host: str, + port: Optional[str] = None, + path: Optional[str] = None, + query: Optional[str] = None, + fragment: Optional[str] = None, + **_kwargs: str, + ) -> str: + parts = Parts( + scheme=scheme, + user=user, + password=password, + host=host, + port=port, + path=path, + query=query, + fragment=fragment, + **_kwargs, # type: ignore[misc] + ) + + url = scheme + '://' + if user: + url += user + if password: + url += ':' + password + if user or password: + url += '@' + url += host + if port and ('port' not in cls.hidden_parts or cls.get_default_parts(parts).get('port') != port): + url += ':' + port + if path: + url += path + if query: + url += '?' + query + if fragment: + url += '#' + fragment + return url + + @classmethod + def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: + update_not_none(field_schema, minLength=cls.min_length, maxLength=cls.max_length, format='uri') + + @classmethod + def __get_validators__(cls) -> 'CallableGenerator': + yield cls.validate + + @classmethod + def validate(cls, value: Any, field: 'ModelField', config: 'BaseConfig') -> 'AnyUrl': + if value.__class__ == cls: + return value + value = str_validator(value) + if cls.strip_whitespace: + value = value.strip() + url: str = cast(str, constr_length_validator(value, field, config)) + + m = cls._match_url(url) + # the regex should always match, if it doesn't please report with details of the URL tried + assert m, 'URL regex failed unexpectedly' + + original_parts = cast('Parts', m.groupdict()) + parts = cls.apply_default_parts(original_parts) + parts = cls.validate_parts(parts) + + if m.end() != len(url): + raise errors.UrlExtraError(extra=url[m.end() :]) + + return cls._build_url(m, url, parts) + + @classmethod + def _build_url(cls, m: Match[str], url: str, parts: 'Parts') -> 'AnyUrl': + """ + Validate hosts and build the AnyUrl object. Split from `validate` so this method + can be altered in `MultiHostDsn`. + """ + host, tld, host_type, rebuild = cls.validate_host(parts) + + return cls( + None if rebuild else url, + scheme=parts['scheme'], + user=parts['user'], + password=parts['password'], + host=host, + tld=tld, + host_type=host_type, + port=parts['port'], + path=parts['path'], + query=parts['query'], + fragment=parts['fragment'], + ) + + @staticmethod + def _match_url(url: str) -> Optional[Match[str]]: + return url_regex().match(url) + + @staticmethod + def _validate_port(port: Optional[str]) -> None: + if port is not None and int(port) > 65_535: + raise errors.UrlPortError() + + @classmethod + def validate_parts(cls, parts: 'Parts', validate_port: bool = True) -> 'Parts': + """ + A method used to validate parts of a URL. + Could be overridden to set default values for parts if missing + """ + scheme = parts['scheme'] + if scheme is None: + raise errors.UrlSchemeError() + + if cls.allowed_schemes and scheme.lower() not in cls.allowed_schemes: + raise errors.UrlSchemePermittedError(set(cls.allowed_schemes)) + + if validate_port: + cls._validate_port(parts['port']) + + user = parts['user'] + if cls.user_required and user is None: + raise errors.UrlUserInfoError() + + return parts + + @classmethod + def validate_host(cls, parts: 'Parts') -> Tuple[str, Optional[str], str, bool]: + tld, host_type, rebuild = None, None, False + for f in ('domain', 'ipv4', 'ipv6'): + host = parts[f] # type: ignore[literal-required] + if host: + host_type = f + break + + if host is None: + if cls.host_required: + raise errors.UrlHostError() + elif host_type == 'domain': + is_international = False + d = ascii_domain_regex().fullmatch(host) + if d is None: + d = int_domain_regex().fullmatch(host) + if d is None: + raise errors.UrlHostError() + is_international = True + + tld = d.group('tld') + if tld is None and not is_international: + d = int_domain_regex().fullmatch(host) + assert d is not None + tld = d.group('tld') + is_international = True + + if tld is not None: + tld = tld[1:] + elif cls.tld_required: + raise errors.UrlHostTldError() + + if is_international: + host_type = 'int_domain' + rebuild = True + host = host.encode('idna').decode('ascii') + if tld is not None: + tld = tld.encode('idna').decode('ascii') + + return host, tld, host_type, rebuild # type: ignore + + @staticmethod + def get_default_parts(parts: 'Parts') -> 'Parts': + return {} + + @classmethod + def apply_default_parts(cls, parts: 'Parts') -> 'Parts': + for key, value in cls.get_default_parts(parts).items(): + if not parts[key]: # type: ignore[literal-required] + parts[key] = value # type: ignore[literal-required] + return parts + + def __repr__(self) -> str: + extra = ', '.join(f'{n}={getattr(self, n)!r}' for n in self.__slots__ if getattr(self, n) is not None) + return f'{self.__class__.__name__}({super().__repr__()}, {extra})' + + +class AnyHttpUrl(AnyUrl): + allowed_schemes = {'http', 'https'} + + __slots__ = () + + +class HttpUrl(AnyHttpUrl): + tld_required = True + # https://stackoverflow.com/questions/417142/what-is-the-maximum-length-of-a-url-in-different-browsers + max_length = 2083 + hidden_parts = {'port'} + + @staticmethod + def get_default_parts(parts: 'Parts') -> 'Parts': + return {'port': '80' if parts['scheme'] == 'http' else '443'} + + +class FileUrl(AnyUrl): + allowed_schemes = {'file'} + host_required = False + + __slots__ = () + + +class MultiHostDsn(AnyUrl): + __slots__ = AnyUrl.__slots__ + ('hosts',) + + def __init__(self, *args: Any, hosts: Optional[List['HostParts']] = None, **kwargs: Any): + super().__init__(*args, **kwargs) + self.hosts = hosts + + @staticmethod + def _match_url(url: str) -> Optional[Match[str]]: + return multi_host_url_regex().match(url) + + @classmethod + def validate_parts(cls, parts: 'Parts', validate_port: bool = True) -> 'Parts': + return super().validate_parts(parts, validate_port=False) + + @classmethod + def _build_url(cls, m: Match[str], url: str, parts: 'Parts') -> 'MultiHostDsn': + hosts_parts: List['HostParts'] = [] + host_re = host_regex() + for host in m.groupdict()['hosts'].split(','): + d: Parts = host_re.match(host).groupdict() # type: ignore + host, tld, host_type, rebuild = cls.validate_host(d) + port = d.get('port') + cls._validate_port(port) + hosts_parts.append( + { + 'host': host, + 'host_type': host_type, + 'tld': tld, + 'rebuild': rebuild, + 'port': port, + } + ) + + if len(hosts_parts) > 1: + return cls( + None if any([hp['rebuild'] for hp in hosts_parts]) else url, + scheme=parts['scheme'], + user=parts['user'], + password=parts['password'], + path=parts['path'], + query=parts['query'], + fragment=parts['fragment'], + host_type=None, + hosts=hosts_parts, + ) + else: + # backwards compatibility with single host + host_part = hosts_parts[0] + return cls( + None if host_part['rebuild'] else url, + scheme=parts['scheme'], + user=parts['user'], + password=parts['password'], + host=host_part['host'], + tld=host_part['tld'], + host_type=host_part['host_type'], + port=host_part.get('port'), + path=parts['path'], + query=parts['query'], + fragment=parts['fragment'], + ) + + +class PostgresDsn(MultiHostDsn): + allowed_schemes = { + 'postgres', + 'postgresql', + 'postgresql+asyncpg', + 'postgresql+pg8000', + 'postgresql+psycopg', + 'postgresql+psycopg2', + 'postgresql+psycopg2cffi', + 'postgresql+py-postgresql', + 'postgresql+pygresql', + } + user_required = True + + __slots__ = () + + +class CockroachDsn(AnyUrl): + allowed_schemes = { + 'cockroachdb', + 'cockroachdb+psycopg2', + 'cockroachdb+asyncpg', + } + user_required = True + + +class AmqpDsn(AnyUrl): + allowed_schemes = {'amqp', 'amqps'} + host_required = False + + +class RedisDsn(AnyUrl): + __slots__ = () + allowed_schemes = {'redis', 'rediss'} + host_required = False + + @staticmethod + def get_default_parts(parts: 'Parts') -> 'Parts': + return { + 'domain': 'localhost' if not (parts['ipv4'] or parts['ipv6']) else '', + 'port': '6379', + 'path': '/0', + } + + +class MongoDsn(AnyUrl): + allowed_schemes = {'mongodb'} + + # TODO: Needed to generic "Parts" for "Replica Set", "Sharded Cluster", and other mongodb deployment modes + @staticmethod + def get_default_parts(parts: 'Parts') -> 'Parts': + return { + 'port': '27017', + } + + +class KafkaDsn(AnyUrl): + allowed_schemes = {'kafka'} + + @staticmethod + def get_default_parts(parts: 'Parts') -> 'Parts': + return { + 'domain': 'localhost', + 'port': '9092', + } + + +def stricturl( + *, + strip_whitespace: bool = True, + min_length: int = 1, + max_length: int = 2**16, + tld_required: bool = True, + host_required: bool = True, + allowed_schemes: Optional[Collection[str]] = None, +) -> Type[AnyUrl]: + # use kwargs then define conf in a dict to aid with IDE type hinting + namespace = dict( + strip_whitespace=strip_whitespace, + min_length=min_length, + max_length=max_length, + tld_required=tld_required, + host_required=host_required, + allowed_schemes=allowed_schemes, + ) + return type('UrlValue', (AnyUrl,), namespace) + + +def import_email_validator() -> None: + global email_validator + try: + import email_validator + except ImportError as e: + raise ImportError('email-validator is not installed, run `pip install pydantic[email]`') from e + + +class EmailStr(str): + @classmethod + def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: + field_schema.update(type='string', format='email') + + @classmethod + def __get_validators__(cls) -> 'CallableGenerator': + # included here and below so the error happens straight away + import_email_validator() + + yield str_validator + yield cls.validate + + @classmethod + def validate(cls, value: Union[str]) -> str: + return validate_email(value)[1] + + +class NameEmail(Representation): + __slots__ = 'name', 'email' + + def __init__(self, name: str, email: str): + self.name = name + self.email = email + + def __eq__(self, other: Any) -> bool: + return isinstance(other, NameEmail) and (self.name, self.email) == (other.name, other.email) + + @classmethod + def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: + field_schema.update(type='string', format='name-email') + + @classmethod + def __get_validators__(cls) -> 'CallableGenerator': + import_email_validator() + + yield cls.validate + + @classmethod + def validate(cls, value: Any) -> 'NameEmail': + if value.__class__ == cls: + return value + value = str_validator(value) + return cls(*validate_email(value)) + + def __str__(self) -> str: + return f'{self.name} <{self.email}>' + + +class IPvAnyAddress(_BaseAddress): + __slots__ = () + + @classmethod + def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: + field_schema.update(type='string', format='ipvanyaddress') + + @classmethod + def __get_validators__(cls) -> 'CallableGenerator': + yield cls.validate + + @classmethod + def validate(cls, value: Union[str, bytes, int]) -> Union[IPv4Address, IPv6Address]: + try: + return IPv4Address(value) + except ValueError: + pass + + try: + return IPv6Address(value) + except ValueError: + raise errors.IPvAnyAddressError() + + +class IPvAnyInterface(_BaseAddress): + __slots__ = () + + @classmethod + def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: + field_schema.update(type='string', format='ipvanyinterface') + + @classmethod + def __get_validators__(cls) -> 'CallableGenerator': + yield cls.validate + + @classmethod + def validate(cls, value: NetworkType) -> Union[IPv4Interface, IPv6Interface]: + try: + return IPv4Interface(value) + except ValueError: + pass + + try: + return IPv6Interface(value) + except ValueError: + raise errors.IPvAnyInterfaceError() + + +class IPvAnyNetwork(_BaseNetwork): # type: ignore + @classmethod + def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: + field_schema.update(type='string', format='ipvanynetwork') + + @classmethod + def __get_validators__(cls) -> 'CallableGenerator': + yield cls.validate + + @classmethod + def validate(cls, value: NetworkType) -> Union[IPv4Network, IPv6Network]: + # Assume IP Network is defined with a default value for ``strict`` argument. + # Define your own class if you want to specify network address check strictness. + try: + return IPv4Network(value) + except ValueError: + pass + + try: + return IPv6Network(value) + except ValueError: + raise errors.IPvAnyNetworkError() + + +pretty_email_regex = re.compile(r'([\w ]*?) *<(.*)> *') +MAX_EMAIL_LENGTH = 2048 +"""Maximum length for an email. +A somewhat arbitrary but very generous number compared to what is allowed by most implementations. +""" + + +def validate_email(value: Union[str]) -> Tuple[str, str]: + """ + Email address validation using https://pypi.org/project/email-validator/ + Notes: + * raw ip address (literal) domain parts are not allowed. + * "John Doe " style "pretty" email addresses are processed + * spaces are striped from the beginning and end of addresses but no error is raised + """ + if email_validator is None: + import_email_validator() + + if len(value) > MAX_EMAIL_LENGTH: + raise errors.EmailError() + + m = pretty_email_regex.fullmatch(value) + name: Union[str, None] = None + if m: + name, value = m.groups() + email = value.strip() + try: + parts = email_validator.validate_email(email, check_deliverability=False) + except email_validator.EmailNotValidError as e: + raise errors.EmailError from e + + if hasattr(parts, 'normalized'): + # email-validator >= 2 + email = parts.normalized + assert email is not None + name = name or parts.local_part + return name, email + else: + # email-validator >1, <2 + at_index = email.index('@') + local_part = email[:at_index] # RFC 5321, local part must be case-sensitive. + global_part = email[at_index:].lower() + + return name or local_part, local_part + global_part diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/parse.py b/venv/lib/python3.10/site-packages/pydantic/v1/parse.py new file mode 100644 index 0000000000000000000000000000000000000000..7ac330cadc62053126c410eb1716b243d9d48473 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/v1/parse.py @@ -0,0 +1,66 @@ +import json +import pickle +from enum import Enum +from pathlib import Path +from typing import Any, Callable, Union + +from .types import StrBytes + + +class Protocol(str, Enum): + json = 'json' + pickle = 'pickle' + + +def load_str_bytes( + b: StrBytes, + *, + content_type: str = None, + encoding: str = 'utf8', + proto: Protocol = None, + allow_pickle: bool = False, + json_loads: Callable[[str], Any] = json.loads, +) -> Any: + if proto is None and content_type: + if content_type.endswith(('json', 'javascript')): + pass + elif allow_pickle and content_type.endswith('pickle'): + proto = Protocol.pickle + else: + raise TypeError(f'Unknown content-type: {content_type}') + + proto = proto or Protocol.json + + if proto == Protocol.json: + if isinstance(b, bytes): + b = b.decode(encoding) + return json_loads(b) + elif proto == Protocol.pickle: + if not allow_pickle: + raise RuntimeError('Trying to decode with pickle with allow_pickle=False') + bb = b if isinstance(b, bytes) else b.encode() + return pickle.loads(bb) + else: + raise TypeError(f'Unknown protocol: {proto}') + + +def load_file( + path: Union[str, Path], + *, + content_type: str = None, + encoding: str = 'utf8', + proto: Protocol = None, + allow_pickle: bool = False, + json_loads: Callable[[str], Any] = json.loads, +) -> Any: + path = Path(path) + b = path.read_bytes() + if content_type is None: + if path.suffix in ('.js', '.json'): + proto = Protocol.json + elif path.suffix == '.pkl': + proto = Protocol.pickle + + return load_str_bytes( + b, proto=proto, content_type=content_type, encoding=encoding, allow_pickle=allow_pickle, json_loads=json_loads + ) diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/py.typed b/venv/lib/python3.10/site-packages/pydantic/v1/py.typed new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/schema.py b/venv/lib/python3.10/site-packages/pydantic/v1/schema.py new file mode 100644 index 0000000000000000000000000000000000000000..ea16a72a6663c426138a58ee97f0df162b871408 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/v1/schema.py @@ -0,0 +1,1163 @@ +import re +import warnings +from collections import defaultdict +from dataclasses import is_dataclass +from datetime import date, datetime, time, timedelta +from decimal import Decimal +from enum import Enum +from ipaddress import IPv4Address, IPv4Interface, IPv4Network, IPv6Address, IPv6Interface, IPv6Network +from pathlib import Path +from typing import ( + TYPE_CHECKING, + Any, + Callable, + Dict, + ForwardRef, + FrozenSet, + Generic, + Iterable, + List, + Optional, + Pattern, + Sequence, + Set, + Tuple, + Type, + TypeVar, + Union, + cast, +) +from uuid import UUID + +from typing_extensions import Annotated, Literal + +from .fields import ( + MAPPING_LIKE_SHAPES, + SHAPE_DEQUE, + SHAPE_FROZENSET, + SHAPE_GENERIC, + SHAPE_ITERABLE, + SHAPE_LIST, + SHAPE_SEQUENCE, + SHAPE_SET, + SHAPE_SINGLETON, + SHAPE_TUPLE, + SHAPE_TUPLE_ELLIPSIS, + FieldInfo, + ModelField, +) +from .json import pydantic_encoder +from .networks import AnyUrl, EmailStr +from .types import ( + ConstrainedDecimal, + ConstrainedFloat, + ConstrainedFrozenSet, + ConstrainedInt, + ConstrainedList, + ConstrainedSet, + ConstrainedStr, + SecretBytes, + SecretStr, + StrictBytes, + StrictStr, + conbytes, + condecimal, + confloat, + confrozenset, + conint, + conlist, + conset, + constr, +) +from .typing import ( + all_literal_values, + get_args, + get_origin, + get_sub_types, + is_callable_type, + is_literal_type, + is_namedtuple, + is_none_type, + is_union, +) +from .utils import ROOT_KEY, get_model, lenient_issubclass + +if TYPE_CHECKING: + from .dataclasses import Dataclass + from .main import BaseModel + +default_prefix = '#/definitions/' +default_ref_template = '#/definitions/{model}' + +TypeModelOrEnum = Union[Type['BaseModel'], Type[Enum]] +TypeModelSet = Set[TypeModelOrEnum] + + +def _apply_modify_schema( + modify_schema: Callable[..., None], field: Optional[ModelField], field_schema: Dict[str, Any] +) -> None: + from inspect import signature + + sig = signature(modify_schema) + args = set(sig.parameters.keys()) + if 'field' in args or 'kwargs' in args: + modify_schema(field_schema, field=field) + else: + modify_schema(field_schema) + + +def schema( + models: Sequence[Union[Type['BaseModel'], Type['Dataclass']]], + *, + by_alias: bool = True, + title: Optional[str] = None, + description: Optional[str] = None, + ref_prefix: Optional[str] = None, + ref_template: str = default_ref_template, +) -> Dict[str, Any]: + """ + Process a list of models and generate a single JSON Schema with all of them defined in the ``definitions`` + top-level JSON key, including their sub-models. + + :param models: a list of models to include in the generated JSON Schema + :param by_alias: generate the schemas using the aliases defined, if any + :param title: title for the generated schema that includes the definitions + :param description: description for the generated schema + :param ref_prefix: the JSON Pointer prefix for schema references with ``$ref``, if None, will be set to the + default of ``#/definitions/``. Update it if you want the schemas to reference the definitions somewhere + else, e.g. for OpenAPI use ``#/components/schemas/``. The resulting generated schemas will still be at the + top-level key ``definitions``, so you can extract them from there. But all the references will have the set + prefix. + :param ref_template: Use a ``string.format()`` template for ``$ref`` instead of a prefix. This can be useful + for references that cannot be represented by ``ref_prefix`` such as a definition stored in another file. For + a sibling json file in a ``/schemas`` directory use ``"/schemas/${model}.json#"``. + :return: dict with the JSON Schema with a ``definitions`` top-level key including the schema definitions for + the models and sub-models passed in ``models``. + """ + clean_models = [get_model(model) for model in models] + flat_models = get_flat_models_from_models(clean_models) + model_name_map = get_model_name_map(flat_models) + definitions = {} + output_schema: Dict[str, Any] = {} + if title: + output_schema['title'] = title + if description: + output_schema['description'] = description + for model in clean_models: + m_schema, m_definitions, m_nested_models = model_process_schema( + model, + by_alias=by_alias, + model_name_map=model_name_map, + ref_prefix=ref_prefix, + ref_template=ref_template, + ) + definitions.update(m_definitions) + model_name = model_name_map[model] + definitions[model_name] = m_schema + if definitions: + output_schema['definitions'] = definitions + return output_schema + + +def model_schema( + model: Union[Type['BaseModel'], Type['Dataclass']], + by_alias: bool = True, + ref_prefix: Optional[str] = None, + ref_template: str = default_ref_template, +) -> Dict[str, Any]: + """ + Generate a JSON Schema for one model. With all the sub-models defined in the ``definitions`` top-level + JSON key. + + :param model: a Pydantic model (a class that inherits from BaseModel) + :param by_alias: generate the schemas using the aliases defined, if any + :param ref_prefix: the JSON Pointer prefix for schema references with ``$ref``, if None, will be set to the + default of ``#/definitions/``. Update it if you want the schemas to reference the definitions somewhere + else, e.g. for OpenAPI use ``#/components/schemas/``. The resulting generated schemas will still be at the + top-level key ``definitions``, so you can extract them from there. But all the references will have the set + prefix. + :param ref_template: Use a ``string.format()`` template for ``$ref`` instead of a prefix. This can be useful for + references that cannot be represented by ``ref_prefix`` such as a definition stored in another file. For a + sibling json file in a ``/schemas`` directory use ``"/schemas/${model}.json#"``. + :return: dict with the JSON Schema for the passed ``model`` + """ + model = get_model(model) + flat_models = get_flat_models_from_model(model) + model_name_map = get_model_name_map(flat_models) + model_name = model_name_map[model] + m_schema, m_definitions, nested_models = model_process_schema( + model, by_alias=by_alias, model_name_map=model_name_map, ref_prefix=ref_prefix, ref_template=ref_template + ) + if model_name in nested_models: + # model_name is in Nested models, it has circular references + m_definitions[model_name] = m_schema + m_schema = get_schema_ref(model_name, ref_prefix, ref_template, False) + if m_definitions: + m_schema.update({'definitions': m_definitions}) + return m_schema + + +def get_field_info_schema(field: ModelField, schema_overrides: bool = False) -> Tuple[Dict[str, Any], bool]: + # If no title is explicitly set, we don't set title in the schema for enums. + # The behaviour is the same as `BaseModel` reference, where the default title + # is in the definitions part of the schema. + schema_: Dict[str, Any] = {} + if field.field_info.title or not lenient_issubclass(field.type_, Enum): + schema_['title'] = field.field_info.title or field.alias.title().replace('_', ' ') + + if field.field_info.title: + schema_overrides = True + + if field.field_info.description: + schema_['description'] = field.field_info.description + schema_overrides = True + + if not field.required and field.default is not None and not is_callable_type(field.outer_type_): + schema_['default'] = encode_default(field.default) + schema_overrides = True + + return schema_, schema_overrides + + +def field_schema( + field: ModelField, + *, + by_alias: bool = True, + model_name_map: Dict[TypeModelOrEnum, str], + ref_prefix: Optional[str] = None, + ref_template: str = default_ref_template, + known_models: Optional[TypeModelSet] = None, +) -> Tuple[Dict[str, Any], Dict[str, Any], Set[str]]: + """ + Process a Pydantic field and return a tuple with a JSON Schema for it as the first item. + Also return a dictionary of definitions with models as keys and their schemas as values. If the passed field + is a model and has sub-models, and those sub-models don't have overrides (as ``title``, ``default``, etc), they + will be included in the definitions and referenced in the schema instead of included recursively. + + :param field: a Pydantic ``ModelField`` + :param by_alias: use the defined alias (if any) in the returned schema + :param model_name_map: used to generate the JSON Schema references to other models included in the definitions + :param ref_prefix: the JSON Pointer prefix to use for references to other schemas, if None, the default of + #/definitions/ will be used + :param ref_template: Use a ``string.format()`` template for ``$ref`` instead of a prefix. This can be useful for + references that cannot be represented by ``ref_prefix`` such as a definition stored in another file. For a + sibling json file in a ``/schemas`` directory use ``"/schemas/${model}.json#"``. + :param known_models: used to solve circular references + :return: tuple of the schema for this field and additional definitions + """ + s, schema_overrides = get_field_info_schema(field) + + validation_schema = get_field_schema_validations(field) + if validation_schema: + s.update(validation_schema) + schema_overrides = True + + f_schema, f_definitions, f_nested_models = field_type_schema( + field, + by_alias=by_alias, + model_name_map=model_name_map, + schema_overrides=schema_overrides, + ref_prefix=ref_prefix, + ref_template=ref_template, + known_models=known_models or set(), + ) + + # $ref will only be returned when there are no schema_overrides + if '$ref' in f_schema: + return f_schema, f_definitions, f_nested_models + else: + s.update(f_schema) + return s, f_definitions, f_nested_models + + +numeric_types = (int, float, Decimal) +_str_types_attrs: Tuple[Tuple[str, Union[type, Tuple[type, ...]], str], ...] = ( + ('max_length', numeric_types, 'maxLength'), + ('min_length', numeric_types, 'minLength'), + ('regex', str, 'pattern'), +) + +_numeric_types_attrs: Tuple[Tuple[str, Union[type, Tuple[type, ...]], str], ...] = ( + ('gt', numeric_types, 'exclusiveMinimum'), + ('lt', numeric_types, 'exclusiveMaximum'), + ('ge', numeric_types, 'minimum'), + ('le', numeric_types, 'maximum'), + ('multiple_of', numeric_types, 'multipleOf'), +) + + +def get_field_schema_validations(field: ModelField) -> Dict[str, Any]: + """ + Get the JSON Schema validation keywords for a ``field`` with an annotation of + a Pydantic ``FieldInfo`` with validation arguments. + """ + f_schema: Dict[str, Any] = {} + + if lenient_issubclass(field.type_, Enum): + # schema is already updated by `enum_process_schema`; just update with field extra + if field.field_info.extra: + f_schema.update(field.field_info.extra) + return f_schema + + if lenient_issubclass(field.type_, (str, bytes)): + for attr_name, t, keyword in _str_types_attrs: + attr = getattr(field.field_info, attr_name, None) + if isinstance(attr, t): + f_schema[keyword] = attr + if lenient_issubclass(field.type_, numeric_types) and not issubclass(field.type_, bool): + for attr_name, t, keyword in _numeric_types_attrs: + attr = getattr(field.field_info, attr_name, None) + if isinstance(attr, t): + f_schema[keyword] = attr + if field.field_info is not None and field.field_info.const: + f_schema['const'] = field.default + if field.field_info.extra: + f_schema.update(field.field_info.extra) + modify_schema = getattr(field.outer_type_, '__modify_schema__', None) + if modify_schema: + _apply_modify_schema(modify_schema, field, f_schema) + return f_schema + + +def get_model_name_map(unique_models: TypeModelSet) -> Dict[TypeModelOrEnum, str]: + """ + Process a set of models and generate unique names for them to be used as keys in the JSON Schema + definitions. By default the names are the same as the class name. But if two models in different Python + modules have the same name (e.g. "users.Model" and "items.Model"), the generated names will be + based on the Python module path for those conflicting models to prevent name collisions. + + :param unique_models: a Python set of models + :return: dict mapping models to names + """ + name_model_map = {} + conflicting_names: Set[str] = set() + for model in unique_models: + model_name = normalize_name(model.__name__) + if model_name in conflicting_names: + model_name = get_long_model_name(model) + name_model_map[model_name] = model + elif model_name in name_model_map: + conflicting_names.add(model_name) + conflicting_model = name_model_map.pop(model_name) + name_model_map[get_long_model_name(conflicting_model)] = conflicting_model + name_model_map[get_long_model_name(model)] = model + else: + name_model_map[model_name] = model + return {v: k for k, v in name_model_map.items()} + + +def get_flat_models_from_model(model: Type['BaseModel'], known_models: Optional[TypeModelSet] = None) -> TypeModelSet: + """ + Take a single ``model`` and generate a set with itself and all the sub-models in the tree. I.e. if you pass + model ``Foo`` (subclass of Pydantic ``BaseModel``) as ``model``, and it has a field of type ``Bar`` (also + subclass of ``BaseModel``) and that model ``Bar`` has a field of type ``Baz`` (also subclass of ``BaseModel``), + the return value will be ``set([Foo, Bar, Baz])``. + + :param model: a Pydantic ``BaseModel`` subclass + :param known_models: used to solve circular references + :return: a set with the initial model and all its sub-models + """ + known_models = known_models or set() + flat_models: TypeModelSet = set() + flat_models.add(model) + known_models |= flat_models + fields = cast(Sequence[ModelField], model.__fields__.values()) + flat_models |= get_flat_models_from_fields(fields, known_models=known_models) + return flat_models + + +def get_flat_models_from_field(field: ModelField, known_models: TypeModelSet) -> TypeModelSet: + """ + Take a single Pydantic ``ModelField`` (from a model) that could have been declared as a subclass of BaseModel + (so, it could be a submodel), and generate a set with its model and all the sub-models in the tree. + I.e. if you pass a field that was declared to be of type ``Foo`` (subclass of BaseModel) as ``field``, and that + model ``Foo`` has a field of type ``Bar`` (also subclass of ``BaseModel``) and that model ``Bar`` has a field of + type ``Baz`` (also subclass of ``BaseModel``), the return value will be ``set([Foo, Bar, Baz])``. + + :param field: a Pydantic ``ModelField`` + :param known_models: used to solve circular references + :return: a set with the model used in the declaration for this field, if any, and all its sub-models + """ + from .main import BaseModel + + flat_models: TypeModelSet = set() + + field_type = field.type_ + if lenient_issubclass(getattr(field_type, '__pydantic_model__', None), BaseModel): + field_type = field_type.__pydantic_model__ + + if field.sub_fields and not lenient_issubclass(field_type, BaseModel): + flat_models |= get_flat_models_from_fields(field.sub_fields, known_models=known_models) + elif lenient_issubclass(field_type, BaseModel) and field_type not in known_models: + flat_models |= get_flat_models_from_model(field_type, known_models=known_models) + elif lenient_issubclass(field_type, Enum): + flat_models.add(field_type) + return flat_models + + +def get_flat_models_from_fields(fields: Sequence[ModelField], known_models: TypeModelSet) -> TypeModelSet: + """ + Take a list of Pydantic ``ModelField``s (from a model) that could have been declared as subclasses of ``BaseModel`` + (so, any of them could be a submodel), and generate a set with their models and all the sub-models in the tree. + I.e. if you pass a the fields of a model ``Foo`` (subclass of ``BaseModel``) as ``fields``, and on of them has a + field of type ``Bar`` (also subclass of ``BaseModel``) and that model ``Bar`` has a field of type ``Baz`` (also + subclass of ``BaseModel``), the return value will be ``set([Foo, Bar, Baz])``. + + :param fields: a list of Pydantic ``ModelField``s + :param known_models: used to solve circular references + :return: a set with any model declared in the fields, and all their sub-models + """ + flat_models: TypeModelSet = set() + for field in fields: + flat_models |= get_flat_models_from_field(field, known_models=known_models) + return flat_models + + +def get_flat_models_from_models(models: Sequence[Type['BaseModel']]) -> TypeModelSet: + """ + Take a list of ``models`` and generate a set with them and all their sub-models in their trees. I.e. if you pass + a list of two models, ``Foo`` and ``Bar``, both subclasses of Pydantic ``BaseModel`` as models, and ``Bar`` has + a field of type ``Baz`` (also subclass of ``BaseModel``), the return value will be ``set([Foo, Bar, Baz])``. + """ + flat_models: TypeModelSet = set() + for model in models: + flat_models |= get_flat_models_from_model(model) + return flat_models + + +def get_long_model_name(model: TypeModelOrEnum) -> str: + return f'{model.__module__}__{model.__qualname__}'.replace('.', '__') + + +def field_type_schema( + field: ModelField, + *, + by_alias: bool, + model_name_map: Dict[TypeModelOrEnum, str], + ref_template: str, + schema_overrides: bool = False, + ref_prefix: Optional[str] = None, + known_models: TypeModelSet, +) -> Tuple[Dict[str, Any], Dict[str, Any], Set[str]]: + """ + Used by ``field_schema()``, you probably should be using that function. + + Take a single ``field`` and generate the schema for its type only, not including additional + information as title, etc. Also return additional schema definitions, from sub-models. + """ + from .main import BaseModel # noqa: F811 + + definitions = {} + nested_models: Set[str] = set() + f_schema: Dict[str, Any] + if field.shape in { + SHAPE_LIST, + SHAPE_TUPLE_ELLIPSIS, + SHAPE_SEQUENCE, + SHAPE_SET, + SHAPE_FROZENSET, + SHAPE_ITERABLE, + SHAPE_DEQUE, + }: + items_schema, f_definitions, f_nested_models = field_singleton_schema( + field, + by_alias=by_alias, + model_name_map=model_name_map, + ref_prefix=ref_prefix, + ref_template=ref_template, + known_models=known_models, + ) + definitions.update(f_definitions) + nested_models.update(f_nested_models) + f_schema = {'type': 'array', 'items': items_schema} + if field.shape in {SHAPE_SET, SHAPE_FROZENSET}: + f_schema['uniqueItems'] = True + + elif field.shape in MAPPING_LIKE_SHAPES: + f_schema = {'type': 'object'} + key_field = cast(ModelField, field.key_field) + regex = getattr(key_field.type_, 'regex', None) + items_schema, f_definitions, f_nested_models = field_singleton_schema( + field, + by_alias=by_alias, + model_name_map=model_name_map, + ref_prefix=ref_prefix, + ref_template=ref_template, + known_models=known_models, + ) + definitions.update(f_definitions) + nested_models.update(f_nested_models) + if regex: + # Dict keys have a regex pattern + # items_schema might be a schema or empty dict, add it either way + f_schema['patternProperties'] = {ConstrainedStr._get_pattern(regex): items_schema} + if items_schema: + # The dict values are not simply Any, so they need a schema + f_schema['additionalProperties'] = items_schema + elif field.shape == SHAPE_TUPLE or (field.shape == SHAPE_GENERIC and not issubclass(field.type_, BaseModel)): + sub_schema = [] + sub_fields = cast(List[ModelField], field.sub_fields) + for sf in sub_fields: + sf_schema, sf_definitions, sf_nested_models = field_type_schema( + sf, + by_alias=by_alias, + model_name_map=model_name_map, + ref_prefix=ref_prefix, + ref_template=ref_template, + known_models=known_models, + ) + definitions.update(sf_definitions) + nested_models.update(sf_nested_models) + sub_schema.append(sf_schema) + + sub_fields_len = len(sub_fields) + if field.shape == SHAPE_GENERIC: + all_of_schemas = sub_schema[0] if sub_fields_len == 1 else {'type': 'array', 'items': sub_schema} + f_schema = {'allOf': [all_of_schemas]} + else: + f_schema = { + 'type': 'array', + 'minItems': sub_fields_len, + 'maxItems': sub_fields_len, + } + if sub_fields_len >= 1: + f_schema['items'] = sub_schema + else: + assert field.shape in {SHAPE_SINGLETON, SHAPE_GENERIC}, field.shape + f_schema, f_definitions, f_nested_models = field_singleton_schema( + field, + by_alias=by_alias, + model_name_map=model_name_map, + schema_overrides=schema_overrides, + ref_prefix=ref_prefix, + ref_template=ref_template, + known_models=known_models, + ) + definitions.update(f_definitions) + nested_models.update(f_nested_models) + + # check field type to avoid repeated calls to the same __modify_schema__ method + if field.type_ != field.outer_type_: + if field.shape == SHAPE_GENERIC: + field_type = field.type_ + else: + field_type = field.outer_type_ + modify_schema = getattr(field_type, '__modify_schema__', None) + if modify_schema: + _apply_modify_schema(modify_schema, field, f_schema) + return f_schema, definitions, nested_models + + +def model_process_schema( + model: TypeModelOrEnum, + *, + by_alias: bool = True, + model_name_map: Dict[TypeModelOrEnum, str], + ref_prefix: Optional[str] = None, + ref_template: str = default_ref_template, + known_models: Optional[TypeModelSet] = None, + field: Optional[ModelField] = None, +) -> Tuple[Dict[str, Any], Dict[str, Any], Set[str]]: + """ + Used by ``model_schema()``, you probably should be using that function. + + Take a single ``model`` and generate its schema. Also return additional schema definitions, from sub-models. The + sub-models of the returned schema will be referenced, but their definitions will not be included in the schema. All + the definitions are returned as the second value. + """ + from inspect import getdoc, signature + + known_models = known_models or set() + if lenient_issubclass(model, Enum): + model = cast(Type[Enum], model) + s = enum_process_schema(model, field=field) + return s, {}, set() + model = cast(Type['BaseModel'], model) + s = {'title': model.__config__.title or model.__name__} + doc = getdoc(model) + if doc: + s['description'] = doc + known_models.add(model) + m_schema, m_definitions, nested_models = model_type_schema( + model, + by_alias=by_alias, + model_name_map=model_name_map, + ref_prefix=ref_prefix, + ref_template=ref_template, + known_models=known_models, + ) + s.update(m_schema) + schema_extra = model.__config__.schema_extra + if callable(schema_extra): + if len(signature(schema_extra).parameters) == 1: + schema_extra(s) + else: + schema_extra(s, model) + else: + s.update(schema_extra) + return s, m_definitions, nested_models + + +def model_type_schema( + model: Type['BaseModel'], + *, + by_alias: bool, + model_name_map: Dict[TypeModelOrEnum, str], + ref_template: str, + ref_prefix: Optional[str] = None, + known_models: TypeModelSet, +) -> Tuple[Dict[str, Any], Dict[str, Any], Set[str]]: + """ + You probably should be using ``model_schema()``, this function is indirectly used by that function. + + Take a single ``model`` and generate the schema for its type only, not including additional + information as title, etc. Also return additional schema definitions, from sub-models. + """ + properties = {} + required = [] + definitions: Dict[str, Any] = {} + nested_models: Set[str] = set() + for k, f in model.__fields__.items(): + try: + f_schema, f_definitions, f_nested_models = field_schema( + f, + by_alias=by_alias, + model_name_map=model_name_map, + ref_prefix=ref_prefix, + ref_template=ref_template, + known_models=known_models, + ) + except SkipField as skip: + warnings.warn(skip.message, UserWarning) + continue + definitions.update(f_definitions) + nested_models.update(f_nested_models) + if by_alias: + properties[f.alias] = f_schema + if f.required: + required.append(f.alias) + else: + properties[k] = f_schema + if f.required: + required.append(k) + if ROOT_KEY in properties: + out_schema = properties[ROOT_KEY] + out_schema['title'] = model.__config__.title or model.__name__ + else: + out_schema = {'type': 'object', 'properties': properties} + if required: + out_schema['required'] = required + if model.__config__.extra == 'forbid': + out_schema['additionalProperties'] = False + return out_schema, definitions, nested_models + + +def enum_process_schema(enum: Type[Enum], *, field: Optional[ModelField] = None) -> Dict[str, Any]: + """ + Take a single `enum` and generate its schema. + + This is similar to the `model_process_schema` function, but applies to ``Enum`` objects. + """ + import inspect + + schema_: Dict[str, Any] = { + 'title': enum.__name__, + # Python assigns all enums a default docstring value of 'An enumeration', so + # all enums will have a description field even if not explicitly provided. + 'description': inspect.cleandoc(enum.__doc__ or 'An enumeration.'), + # Add enum values and the enum field type to the schema. + 'enum': [item.value for item in cast(Iterable[Enum], enum)], + } + + add_field_type_to_schema(enum, schema_) + + modify_schema = getattr(enum, '__modify_schema__', None) + if modify_schema: + _apply_modify_schema(modify_schema, field, schema_) + + return schema_ + + +def field_singleton_sub_fields_schema( + field: ModelField, + *, + by_alias: bool, + model_name_map: Dict[TypeModelOrEnum, str], + ref_template: str, + schema_overrides: bool = False, + ref_prefix: Optional[str] = None, + known_models: TypeModelSet, +) -> Tuple[Dict[str, Any], Dict[str, Any], Set[str]]: + """ + This function is indirectly used by ``field_schema()``, you probably should be using that function. + + Take a list of Pydantic ``ModelField`` from the declaration of a type with parameters, and generate their + schema. I.e., fields used as "type parameters", like ``str`` and ``int`` in ``Tuple[str, int]``. + """ + sub_fields = cast(List[ModelField], field.sub_fields) + definitions = {} + nested_models: Set[str] = set() + if len(sub_fields) == 1: + return field_type_schema( + sub_fields[0], + by_alias=by_alias, + model_name_map=model_name_map, + schema_overrides=schema_overrides, + ref_prefix=ref_prefix, + ref_template=ref_template, + known_models=known_models, + ) + else: + s: Dict[str, Any] = {} + # https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md#discriminator-object + field_has_discriminator: bool = field.discriminator_key is not None + if field_has_discriminator: + assert field.sub_fields_mapping is not None + + discriminator_models_refs: Dict[str, Union[str, Dict[str, Any]]] = {} + + for discriminator_value, sub_field in field.sub_fields_mapping.items(): + if isinstance(discriminator_value, Enum): + discriminator_value = str(discriminator_value.value) + # sub_field is either a `BaseModel` or directly an `Annotated` `Union` of many + if is_union(get_origin(sub_field.type_)): + sub_models = get_sub_types(sub_field.type_) + discriminator_models_refs[discriminator_value] = { + model_name_map[sub_model]: get_schema_ref( + model_name_map[sub_model], ref_prefix, ref_template, False + ) + for sub_model in sub_models + } + else: + sub_field_type = sub_field.type_ + if hasattr(sub_field_type, '__pydantic_model__'): + sub_field_type = sub_field_type.__pydantic_model__ + + discriminator_model_name = model_name_map[sub_field_type] + discriminator_model_ref = get_schema_ref(discriminator_model_name, ref_prefix, ref_template, False) + discriminator_models_refs[discriminator_value] = discriminator_model_ref['$ref'] + + s['discriminator'] = { + 'propertyName': field.discriminator_alias, + 'mapping': discriminator_models_refs, + } + + sub_field_schemas = [] + for sf in sub_fields: + sub_schema, sub_definitions, sub_nested_models = field_type_schema( + sf, + by_alias=by_alias, + model_name_map=model_name_map, + schema_overrides=schema_overrides, + ref_prefix=ref_prefix, + ref_template=ref_template, + known_models=known_models, + ) + definitions.update(sub_definitions) + if schema_overrides and 'allOf' in sub_schema: + # if the sub_field is a referenced schema we only need the referenced + # object. Otherwise we will end up with several allOf inside anyOf/oneOf. + # See https://github.com/pydantic/pydantic/issues/1209 + sub_schema = sub_schema['allOf'][0] + + if sub_schema.keys() == {'discriminator', 'oneOf'}: + # we don't want discriminator information inside oneOf choices, this is dealt with elsewhere + sub_schema.pop('discriminator') + sub_field_schemas.append(sub_schema) + nested_models.update(sub_nested_models) + s['oneOf' if field_has_discriminator else 'anyOf'] = sub_field_schemas + return s, definitions, nested_models + + +# Order is important, e.g. subclasses of str must go before str +# this is used only for standard library types, custom types should use __modify_schema__ instead +field_class_to_schema: Tuple[Tuple[Any, Dict[str, Any]], ...] = ( + (Path, {'type': 'string', 'format': 'path'}), + (datetime, {'type': 'string', 'format': 'date-time'}), + (date, {'type': 'string', 'format': 'date'}), + (time, {'type': 'string', 'format': 'time'}), + (timedelta, {'type': 'number', 'format': 'time-delta'}), + (IPv4Network, {'type': 'string', 'format': 'ipv4network'}), + (IPv6Network, {'type': 'string', 'format': 'ipv6network'}), + (IPv4Interface, {'type': 'string', 'format': 'ipv4interface'}), + (IPv6Interface, {'type': 'string', 'format': 'ipv6interface'}), + (IPv4Address, {'type': 'string', 'format': 'ipv4'}), + (IPv6Address, {'type': 'string', 'format': 'ipv6'}), + (Pattern, {'type': 'string', 'format': 'regex'}), + (str, {'type': 'string'}), + (bytes, {'type': 'string', 'format': 'binary'}), + (bool, {'type': 'boolean'}), + (int, {'type': 'integer'}), + (float, {'type': 'number'}), + (Decimal, {'type': 'number'}), + (UUID, {'type': 'string', 'format': 'uuid'}), + (dict, {'type': 'object'}), + (list, {'type': 'array', 'items': {}}), + (tuple, {'type': 'array', 'items': {}}), + (set, {'type': 'array', 'items': {}, 'uniqueItems': True}), + (frozenset, {'type': 'array', 'items': {}, 'uniqueItems': True}), +) + +json_scheme = {'type': 'string', 'format': 'json-string'} + + +def add_field_type_to_schema(field_type: Any, schema_: Dict[str, Any]) -> None: + """ + Update the given `schema` with the type-specific metadata for the given `field_type`. + + This function looks through `field_class_to_schema` for a class that matches the given `field_type`, + and then modifies the given `schema` with the information from that type. + """ + for type_, t_schema in field_class_to_schema: + # Fallback for `typing.Pattern` and `re.Pattern` as they are not a valid class + if lenient_issubclass(field_type, type_) or field_type is type_ is Pattern: + schema_.update(t_schema) + break + + +def get_schema_ref(name: str, ref_prefix: Optional[str], ref_template: str, schema_overrides: bool) -> Dict[str, Any]: + if ref_prefix: + schema_ref = {'$ref': ref_prefix + name} + else: + schema_ref = {'$ref': ref_template.format(model=name)} + return {'allOf': [schema_ref]} if schema_overrides else schema_ref + + +def field_singleton_schema( # noqa: C901 (ignore complexity) + field: ModelField, + *, + by_alias: bool, + model_name_map: Dict[TypeModelOrEnum, str], + ref_template: str, + schema_overrides: bool = False, + ref_prefix: Optional[str] = None, + known_models: TypeModelSet, +) -> Tuple[Dict[str, Any], Dict[str, Any], Set[str]]: + """ + This function is indirectly used by ``field_schema()``, you should probably be using that function. + + Take a single Pydantic ``ModelField``, and return its schema and any additional definitions from sub-models. + """ + from .main import BaseModel + + definitions: Dict[str, Any] = {} + nested_models: Set[str] = set() + field_type = field.type_ + + # Recurse into this field if it contains sub_fields and is NOT a + # BaseModel OR that BaseModel is a const + if field.sub_fields and ( + (field.field_info and field.field_info.const) or not lenient_issubclass(field_type, BaseModel) + ): + return field_singleton_sub_fields_schema( + field, + by_alias=by_alias, + model_name_map=model_name_map, + schema_overrides=schema_overrides, + ref_prefix=ref_prefix, + ref_template=ref_template, + known_models=known_models, + ) + if field_type is Any or field_type is object or field_type.__class__ == TypeVar or get_origin(field_type) is type: + return {}, definitions, nested_models # no restrictions + if is_none_type(field_type): + return {'type': 'null'}, definitions, nested_models + if is_callable_type(field_type): + raise SkipField(f'Callable {field.name} was excluded from schema since JSON schema has no equivalent type.') + f_schema: Dict[str, Any] = {} + if field.field_info is not None and field.field_info.const: + f_schema['const'] = field.default + + if is_literal_type(field_type): + values = tuple(x.value if isinstance(x, Enum) else x for x in all_literal_values(field_type)) + + if len({v.__class__ for v in values}) > 1: + return field_schema( + multitypes_literal_field_for_schema(values, field), + by_alias=by_alias, + model_name_map=model_name_map, + ref_prefix=ref_prefix, + ref_template=ref_template, + known_models=known_models, + ) + + # All values have the same type + field_type = values[0].__class__ + f_schema['enum'] = list(values) + add_field_type_to_schema(field_type, f_schema) + elif lenient_issubclass(field_type, Enum): + enum_name = model_name_map[field_type] + f_schema, schema_overrides = get_field_info_schema(field, schema_overrides) + f_schema.update(get_schema_ref(enum_name, ref_prefix, ref_template, schema_overrides)) + definitions[enum_name] = enum_process_schema(field_type, field=field) + elif is_namedtuple(field_type): + sub_schema, *_ = model_process_schema( + field_type.__pydantic_model__, + by_alias=by_alias, + model_name_map=model_name_map, + ref_prefix=ref_prefix, + ref_template=ref_template, + known_models=known_models, + field=field, + ) + items_schemas = list(sub_schema['properties'].values()) + f_schema.update( + { + 'type': 'array', + 'items': items_schemas, + 'minItems': len(items_schemas), + 'maxItems': len(items_schemas), + } + ) + elif not hasattr(field_type, '__pydantic_model__'): + add_field_type_to_schema(field_type, f_schema) + + modify_schema = getattr(field_type, '__modify_schema__', None) + if modify_schema: + _apply_modify_schema(modify_schema, field, f_schema) + + if f_schema: + return f_schema, definitions, nested_models + + # Handle dataclass-based models + if lenient_issubclass(getattr(field_type, '__pydantic_model__', None), BaseModel): + field_type = field_type.__pydantic_model__ + + if issubclass(field_type, BaseModel): + model_name = model_name_map[field_type] + if field_type not in known_models: + sub_schema, sub_definitions, sub_nested_models = model_process_schema( + field_type, + by_alias=by_alias, + model_name_map=model_name_map, + ref_prefix=ref_prefix, + ref_template=ref_template, + known_models=known_models, + field=field, + ) + definitions.update(sub_definitions) + definitions[model_name] = sub_schema + nested_models.update(sub_nested_models) + else: + nested_models.add(model_name) + schema_ref = get_schema_ref(model_name, ref_prefix, ref_template, schema_overrides) + return schema_ref, definitions, nested_models + + # For generics with no args + args = get_args(field_type) + if args is not None and not args and Generic in field_type.__bases__: + return f_schema, definitions, nested_models + + raise ValueError(f'Value not declarable with JSON Schema, field: {field}') + + +def multitypes_literal_field_for_schema(values: Tuple[Any, ...], field: ModelField) -> ModelField: + """ + To support `Literal` with values of different types, we split it into multiple `Literal` with same type + e.g. `Literal['qwe', 'asd', 1, 2]` becomes `Union[Literal['qwe', 'asd'], Literal[1, 2]]` + """ + literal_distinct_types = defaultdict(list) + for v in values: + literal_distinct_types[v.__class__].append(v) + distinct_literals = (Literal[tuple(same_type_values)] for same_type_values in literal_distinct_types.values()) + + return ModelField( + name=field.name, + type_=Union[tuple(distinct_literals)], # type: ignore + class_validators=field.class_validators, + model_config=field.model_config, + default=field.default, + required=field.required, + alias=field.alias, + field_info=field.field_info, + ) + + +def encode_default(dft: Any) -> Any: + from .main import BaseModel + + if isinstance(dft, BaseModel) or is_dataclass(dft): + dft = cast('dict[str, Any]', pydantic_encoder(dft)) + + if isinstance(dft, dict): + return {encode_default(k): encode_default(v) for k, v in dft.items()} + elif isinstance(dft, Enum): + return dft.value + elif isinstance(dft, (int, float, str)): + return dft + elif isinstance(dft, (list, tuple)): + t = dft.__class__ + seq_args = (encode_default(v) for v in dft) + return t(*seq_args) if is_namedtuple(t) else t(seq_args) + elif dft is None: + return None + else: + return pydantic_encoder(dft) + + +_map_types_constraint: Dict[Any, Callable[..., type]] = {int: conint, float: confloat, Decimal: condecimal} + + +def get_annotation_from_field_info( + annotation: Any, field_info: FieldInfo, field_name: str, validate_assignment: bool = False +) -> Type[Any]: + """ + Get an annotation with validation implemented for numbers and strings based on the field_info. + :param annotation: an annotation from a field specification, as ``str``, ``ConstrainedStr`` + :param field_info: an instance of FieldInfo, possibly with declarations for validations and JSON Schema + :param field_name: name of the field for use in error messages + :param validate_assignment: default False, flag for BaseModel Config value of validate_assignment + :return: the same ``annotation`` if unmodified or a new annotation with validation in place + """ + constraints = field_info.get_constraints() + used_constraints: Set[str] = set() + if constraints: + annotation, used_constraints = get_annotation_with_constraints(annotation, field_info) + if validate_assignment: + used_constraints.add('allow_mutation') + + unused_constraints = constraints - used_constraints + if unused_constraints: + raise ValueError( + f'On field "{field_name}" the following field constraints are set but not enforced: ' + f'{", ".join(unused_constraints)}. ' + f'\nFor more details see https://docs.pydantic.dev/usage/schema/#unenforced-field-constraints' + ) + + return annotation + + +def get_annotation_with_constraints(annotation: Any, field_info: FieldInfo) -> Tuple[Type[Any], Set[str]]: # noqa: C901 + """ + Get an annotation with used constraints implemented for numbers and strings based on the field_info. + + :param annotation: an annotation from a field specification, as ``str``, ``ConstrainedStr`` + :param field_info: an instance of FieldInfo, possibly with declarations for validations and JSON Schema + :return: the same ``annotation`` if unmodified or a new annotation along with the used constraints. + """ + used_constraints: Set[str] = set() + + def go(type_: Any) -> Type[Any]: + if ( + is_literal_type(type_) + or isinstance(type_, ForwardRef) + or lenient_issubclass(type_, (ConstrainedList, ConstrainedSet, ConstrainedFrozenSet)) + ): + return type_ + origin = get_origin(type_) + if origin is not None: + args: Tuple[Any, ...] = get_args(type_) + if any(isinstance(a, ForwardRef) for a in args): + # forward refs cause infinite recursion below + return type_ + + if origin is Annotated: + return go(args[0]) + if is_union(origin): + return Union[tuple(go(a) for a in args)] # type: ignore + + if issubclass(origin, List) and ( + field_info.min_items is not None + or field_info.max_items is not None + or field_info.unique_items is not None + ): + used_constraints.update({'min_items', 'max_items', 'unique_items'}) + return conlist( + go(args[0]), + min_items=field_info.min_items, + max_items=field_info.max_items, + unique_items=field_info.unique_items, + ) + + if issubclass(origin, Set) and (field_info.min_items is not None or field_info.max_items is not None): + used_constraints.update({'min_items', 'max_items'}) + return conset(go(args[0]), min_items=field_info.min_items, max_items=field_info.max_items) + + if issubclass(origin, FrozenSet) and (field_info.min_items is not None or field_info.max_items is not None): + used_constraints.update({'min_items', 'max_items'}) + return confrozenset(go(args[0]), min_items=field_info.min_items, max_items=field_info.max_items) + + for t in (Tuple, List, Set, FrozenSet, Sequence): + if issubclass(origin, t): # type: ignore + return t[tuple(go(a) for a in args)] # type: ignore + + if issubclass(origin, Dict): + return Dict[args[0], go(args[1])] # type: ignore + + attrs: Optional[Tuple[str, ...]] = None + constraint_func: Optional[Callable[..., type]] = None + if isinstance(type_, type): + if issubclass(type_, (SecretStr, SecretBytes)): + attrs = ('max_length', 'min_length') + + def constraint_func(**kw: Any) -> Type[Any]: + return type(type_.__name__, (type_,), kw) + + elif issubclass(type_, str) and not issubclass(type_, (EmailStr, AnyUrl)): + attrs = ('max_length', 'min_length', 'regex') + if issubclass(type_, StrictStr): + + def constraint_func(**kw: Any) -> Type[Any]: + return type(type_.__name__, (type_,), kw) + + else: + constraint_func = constr + elif issubclass(type_, bytes): + attrs = ('max_length', 'min_length', 'regex') + if issubclass(type_, StrictBytes): + + def constraint_func(**kw: Any) -> Type[Any]: + return type(type_.__name__, (type_,), kw) + + else: + constraint_func = conbytes + elif issubclass(type_, numeric_types) and not issubclass( + type_, + ( + ConstrainedInt, + ConstrainedFloat, + ConstrainedDecimal, + ConstrainedList, + ConstrainedSet, + ConstrainedFrozenSet, + bool, + ), + ): + # Is numeric type + attrs = ('gt', 'lt', 'ge', 'le', 'multiple_of') + if issubclass(type_, float): + attrs += ('allow_inf_nan',) + if issubclass(type_, Decimal): + attrs += ('max_digits', 'decimal_places') + numeric_type = next(t for t in numeric_types if issubclass(type_, t)) # pragma: no branch + constraint_func = _map_types_constraint[numeric_type] + + if attrs: + used_constraints.update(set(attrs)) + kwargs = { + attr_name: attr + for attr_name, attr in ((attr_name, getattr(field_info, attr_name)) for attr_name in attrs) + if attr is not None + } + if kwargs: + constraint_func = cast(Callable[..., type], constraint_func) + return constraint_func(**kwargs) + return type_ + + return go(annotation), used_constraints + + +def normalize_name(name: str) -> str: + """ + Normalizes the given name. This can be applied to either a model *or* enum. + """ + return re.sub(r'[^a-zA-Z0-9.\-_]', '_', name) + + +class SkipField(Exception): + """ + Utility exception used to exclude fields from schema. + """ + + def __init__(self, message: str) -> None: + self.message = message diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/tools.py b/venv/lib/python3.10/site-packages/pydantic/v1/tools.py new file mode 100644 index 0000000000000000000000000000000000000000..45be27704cbc9df2bcc2bf5294b87f2083960980 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/v1/tools.py @@ -0,0 +1,92 @@ +import json +from functools import lru_cache +from pathlib import Path +from typing import TYPE_CHECKING, Any, Callable, Optional, Type, TypeVar, Union + +from .parse import Protocol, load_file, load_str_bytes +from .types import StrBytes +from .typing import display_as_type + +__all__ = ('parse_file_as', 'parse_obj_as', 'parse_raw_as', 'schema_of', 'schema_json_of') + +NameFactory = Union[str, Callable[[Type[Any]], str]] + +if TYPE_CHECKING: + from .typing import DictStrAny + + +def _generate_parsing_type_name(type_: Any) -> str: + return f'ParsingModel[{display_as_type(type_)}]' + + +@lru_cache(maxsize=2048) +def _get_parsing_type(type_: Any, *, type_name: Optional[NameFactory] = None) -> Any: + from .main import create_model + + if type_name is None: + type_name = _generate_parsing_type_name + if not isinstance(type_name, str): + type_name = type_name(type_) + return create_model(type_name, __root__=(type_, ...)) + + +T = TypeVar('T') + + +def parse_obj_as(type_: Type[T], obj: Any, *, type_name: Optional[NameFactory] = None) -> T: + model_type = _get_parsing_type(type_, type_name=type_name) # type: ignore[arg-type] + return model_type(__root__=obj).__root__ + + +def parse_file_as( + type_: Type[T], + path: Union[str, Path], + *, + content_type: str = None, + encoding: str = 'utf8', + proto: Protocol = None, + allow_pickle: bool = False, + json_loads: Callable[[str], Any] = json.loads, + type_name: Optional[NameFactory] = None, +) -> T: + obj = load_file( + path, + proto=proto, + content_type=content_type, + encoding=encoding, + allow_pickle=allow_pickle, + json_loads=json_loads, + ) + return parse_obj_as(type_, obj, type_name=type_name) + + +def parse_raw_as( + type_: Type[T], + b: StrBytes, + *, + content_type: str = None, + encoding: str = 'utf8', + proto: Protocol = None, + allow_pickle: bool = False, + json_loads: Callable[[str], Any] = json.loads, + type_name: Optional[NameFactory] = None, +) -> T: + obj = load_str_bytes( + b, + proto=proto, + content_type=content_type, + encoding=encoding, + allow_pickle=allow_pickle, + json_loads=json_loads, + ) + return parse_obj_as(type_, obj, type_name=type_name) + + +def schema_of(type_: Any, *, title: Optional[NameFactory] = None, **schema_kwargs: Any) -> 'DictStrAny': + """Generate a JSON schema (as dict) for the passed model or dynamically generated one""" + return _get_parsing_type(type_, type_name=title).schema(**schema_kwargs) + + +def schema_json_of(type_: Any, *, title: Optional[NameFactory] = None, **schema_json_kwargs: Any) -> str: + """Generate a JSON schema (as JSON) for the passed model or dynamically generated one""" + return _get_parsing_type(type_, type_name=title).schema_json(**schema_json_kwargs) diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/types.py b/venv/lib/python3.10/site-packages/pydantic/v1/types.py new file mode 100644 index 0000000000000000000000000000000000000000..754e58fff6824e6cc0499ead752b25f8e909c697 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/v1/types.py @@ -0,0 +1,1205 @@ +import abc +import math +import re +import warnings +from datetime import date +from decimal import Decimal, InvalidOperation +from enum import Enum +from pathlib import Path +from types import new_class +from typing import ( + TYPE_CHECKING, + Any, + Callable, + ClassVar, + Dict, + FrozenSet, + List, + Optional, + Pattern, + Set, + Tuple, + Type, + TypeVar, + Union, + cast, + overload, +) +from uuid import UUID +from weakref import WeakSet + +from . import errors +from .datetime_parse import parse_date +from .utils import import_string, update_not_none +from .validators import ( + bytes_validator, + constr_length_validator, + constr_lower, + constr_strip_whitespace, + constr_upper, + decimal_validator, + float_finite_validator, + float_validator, + frozenset_validator, + int_validator, + list_validator, + number_multiple_validator, + number_size_validator, + path_exists_validator, + path_validator, + set_validator, + str_validator, + strict_bytes_validator, + strict_float_validator, + strict_int_validator, + strict_str_validator, +) + +__all__ = [ + 'NoneStr', + 'NoneBytes', + 'StrBytes', + 'NoneStrBytes', + 'StrictStr', + 'ConstrainedBytes', + 'conbytes', + 'ConstrainedList', + 'conlist', + 'ConstrainedSet', + 'conset', + 'ConstrainedFrozenSet', + 'confrozenset', + 'ConstrainedStr', + 'constr', + 'PyObject', + 'ConstrainedInt', + 'conint', + 'PositiveInt', + 'NegativeInt', + 'NonNegativeInt', + 'NonPositiveInt', + 'ConstrainedFloat', + 'confloat', + 'PositiveFloat', + 'NegativeFloat', + 'NonNegativeFloat', + 'NonPositiveFloat', + 'FiniteFloat', + 'ConstrainedDecimal', + 'condecimal', + 'UUID1', + 'UUID3', + 'UUID4', + 'UUID5', + 'FilePath', + 'DirectoryPath', + 'Json', + 'JsonWrapper', + 'SecretField', + 'SecretStr', + 'SecretBytes', + 'StrictBool', + 'StrictBytes', + 'StrictInt', + 'StrictFloat', + 'PaymentCardNumber', + 'ByteSize', + 'PastDate', + 'FutureDate', + 'ConstrainedDate', + 'condate', +] + +NoneStr = Optional[str] +NoneBytes = Optional[bytes] +StrBytes = Union[str, bytes] +NoneStrBytes = Optional[StrBytes] +OptionalInt = Optional[int] +OptionalIntFloat = Union[OptionalInt, float] +OptionalIntFloatDecimal = Union[OptionalIntFloat, Decimal] +OptionalDate = Optional[date] +StrIntFloat = Union[str, int, float] + +if TYPE_CHECKING: + from typing_extensions import Annotated + + from .dataclasses import Dataclass + from .main import BaseModel + from .typing import CallableGenerator + + ModelOrDc = Type[Union[BaseModel, Dataclass]] + +T = TypeVar('T') +_DEFINED_TYPES: 'WeakSet[type]' = WeakSet() + + +@overload +def _registered(typ: Type[T]) -> Type[T]: + pass + + +@overload +def _registered(typ: 'ConstrainedNumberMeta') -> 'ConstrainedNumberMeta': + pass + + +def _registered(typ: Union[Type[T], 'ConstrainedNumberMeta']) -> Union[Type[T], 'ConstrainedNumberMeta']: + # In order to generate valid examples of constrained types, Hypothesis needs + # to inspect the type object - so we keep a weakref to each contype object + # until it can be registered. When (or if) our Hypothesis plugin is loaded, + # it monkeypatches this function. + # If Hypothesis is never used, the total effect is to keep a weak reference + # which has minimal memory usage and doesn't even affect garbage collection. + _DEFINED_TYPES.add(typ) + return typ + + +class ConstrainedNumberMeta(type): + def __new__(cls, name: str, bases: Any, dct: Dict[str, Any]) -> 'ConstrainedInt': # type: ignore + new_cls = cast('ConstrainedInt', type.__new__(cls, name, bases, dct)) + + if new_cls.gt is not None and new_cls.ge is not None: + raise errors.ConfigError('bounds gt and ge cannot be specified at the same time') + if new_cls.lt is not None and new_cls.le is not None: + raise errors.ConfigError('bounds lt and le cannot be specified at the same time') + + return _registered(new_cls) # type: ignore + + +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ BOOLEAN TYPES ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +if TYPE_CHECKING: + StrictBool = bool +else: + + class StrictBool(int): + """ + StrictBool to allow for bools which are not type-coerced. + """ + + @classmethod + def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: + field_schema.update(type='boolean') + + @classmethod + def __get_validators__(cls) -> 'CallableGenerator': + yield cls.validate + + @classmethod + def validate(cls, value: Any) -> bool: + """ + Ensure that we only allow bools. + """ + if isinstance(value, bool): + return value + + raise errors.StrictBoolError() + + +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ INTEGER TYPES ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + +class ConstrainedInt(int, metaclass=ConstrainedNumberMeta): + strict: bool = False + gt: OptionalInt = None + ge: OptionalInt = None + lt: OptionalInt = None + le: OptionalInt = None + multiple_of: OptionalInt = None + + @classmethod + def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: + update_not_none( + field_schema, + exclusiveMinimum=cls.gt, + exclusiveMaximum=cls.lt, + minimum=cls.ge, + maximum=cls.le, + multipleOf=cls.multiple_of, + ) + + @classmethod + def __get_validators__(cls) -> 'CallableGenerator': + yield strict_int_validator if cls.strict else int_validator + yield number_size_validator + yield number_multiple_validator + + +def conint( + *, + strict: bool = False, + gt: Optional[int] = None, + ge: Optional[int] = None, + lt: Optional[int] = None, + le: Optional[int] = None, + multiple_of: Optional[int] = None, +) -> Type[int]: + # use kwargs then define conf in a dict to aid with IDE type hinting + namespace = dict(strict=strict, gt=gt, ge=ge, lt=lt, le=le, multiple_of=multiple_of) + return type('ConstrainedIntValue', (ConstrainedInt,), namespace) + + +if TYPE_CHECKING: + PositiveInt = int + NegativeInt = int + NonPositiveInt = int + NonNegativeInt = int + StrictInt = int +else: + + class PositiveInt(ConstrainedInt): + gt = 0 + + class NegativeInt(ConstrainedInt): + lt = 0 + + class NonPositiveInt(ConstrainedInt): + le = 0 + + class NonNegativeInt(ConstrainedInt): + ge = 0 + + class StrictInt(ConstrainedInt): + strict = True + + +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ FLOAT TYPES ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + +class ConstrainedFloat(float, metaclass=ConstrainedNumberMeta): + strict: bool = False + gt: OptionalIntFloat = None + ge: OptionalIntFloat = None + lt: OptionalIntFloat = None + le: OptionalIntFloat = None + multiple_of: OptionalIntFloat = None + allow_inf_nan: Optional[bool] = None + + @classmethod + def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: + update_not_none( + field_schema, + exclusiveMinimum=cls.gt, + exclusiveMaximum=cls.lt, + minimum=cls.ge, + maximum=cls.le, + multipleOf=cls.multiple_of, + ) + # Modify constraints to account for differences between IEEE floats and JSON + if field_schema.get('exclusiveMinimum') == -math.inf: + del field_schema['exclusiveMinimum'] + if field_schema.get('minimum') == -math.inf: + del field_schema['minimum'] + if field_schema.get('exclusiveMaximum') == math.inf: + del field_schema['exclusiveMaximum'] + if field_schema.get('maximum') == math.inf: + del field_schema['maximum'] + + @classmethod + def __get_validators__(cls) -> 'CallableGenerator': + yield strict_float_validator if cls.strict else float_validator + yield number_size_validator + yield number_multiple_validator + yield float_finite_validator + + +def confloat( + *, + strict: bool = False, + gt: float = None, + ge: float = None, + lt: float = None, + le: float = None, + multiple_of: float = None, + allow_inf_nan: Optional[bool] = None, +) -> Type[float]: + # use kwargs then define conf in a dict to aid with IDE type hinting + namespace = dict(strict=strict, gt=gt, ge=ge, lt=lt, le=le, multiple_of=multiple_of, allow_inf_nan=allow_inf_nan) + return type('ConstrainedFloatValue', (ConstrainedFloat,), namespace) + + +if TYPE_CHECKING: + PositiveFloat = float + NegativeFloat = float + NonPositiveFloat = float + NonNegativeFloat = float + StrictFloat = float + FiniteFloat = float +else: + + class PositiveFloat(ConstrainedFloat): + gt = 0 + + class NegativeFloat(ConstrainedFloat): + lt = 0 + + class NonPositiveFloat(ConstrainedFloat): + le = 0 + + class NonNegativeFloat(ConstrainedFloat): + ge = 0 + + class StrictFloat(ConstrainedFloat): + strict = True + + class FiniteFloat(ConstrainedFloat): + allow_inf_nan = False + + +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ BYTES TYPES ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + +class ConstrainedBytes(bytes): + strip_whitespace = False + to_upper = False + to_lower = False + min_length: OptionalInt = None + max_length: OptionalInt = None + strict: bool = False + + @classmethod + def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: + update_not_none(field_schema, minLength=cls.min_length, maxLength=cls.max_length) + + @classmethod + def __get_validators__(cls) -> 'CallableGenerator': + yield strict_bytes_validator if cls.strict else bytes_validator + yield constr_strip_whitespace + yield constr_upper + yield constr_lower + yield constr_length_validator + + +def conbytes( + *, + strip_whitespace: bool = False, + to_upper: bool = False, + to_lower: bool = False, + min_length: Optional[int] = None, + max_length: Optional[int] = None, + strict: bool = False, +) -> Type[bytes]: + # use kwargs then define conf in a dict to aid with IDE type hinting + namespace = dict( + strip_whitespace=strip_whitespace, + to_upper=to_upper, + to_lower=to_lower, + min_length=min_length, + max_length=max_length, + strict=strict, + ) + return _registered(type('ConstrainedBytesValue', (ConstrainedBytes,), namespace)) + + +if TYPE_CHECKING: + StrictBytes = bytes +else: + + class StrictBytes(ConstrainedBytes): + strict = True + + +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ STRING TYPES ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + +class ConstrainedStr(str): + strip_whitespace = False + to_upper = False + to_lower = False + min_length: OptionalInt = None + max_length: OptionalInt = None + curtail_length: OptionalInt = None + regex: Optional[Union[str, Pattern[str]]] = None + strict = False + + @classmethod + def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: + update_not_none( + field_schema, + minLength=cls.min_length, + maxLength=cls.max_length, + pattern=cls.regex and cls._get_pattern(cls.regex), + ) + + @classmethod + def __get_validators__(cls) -> 'CallableGenerator': + yield strict_str_validator if cls.strict else str_validator + yield constr_strip_whitespace + yield constr_upper + yield constr_lower + yield constr_length_validator + yield cls.validate + + @classmethod + def validate(cls, value: Union[str]) -> Union[str]: + if cls.curtail_length and len(value) > cls.curtail_length: + value = value[: cls.curtail_length] + + if cls.regex: + if not re.match(cls.regex, value): + raise errors.StrRegexError(pattern=cls._get_pattern(cls.regex)) + + return value + + @staticmethod + def _get_pattern(regex: Union[str, Pattern[str]]) -> str: + return regex if isinstance(regex, str) else regex.pattern + + +def constr( + *, + strip_whitespace: bool = False, + to_upper: bool = False, + to_lower: bool = False, + strict: bool = False, + min_length: Optional[int] = None, + max_length: Optional[int] = None, + curtail_length: Optional[int] = None, + regex: Optional[str] = None, +) -> Type[str]: + # use kwargs then define conf in a dict to aid with IDE type hinting + namespace = dict( + strip_whitespace=strip_whitespace, + to_upper=to_upper, + to_lower=to_lower, + strict=strict, + min_length=min_length, + max_length=max_length, + curtail_length=curtail_length, + regex=regex and re.compile(regex), + ) + return _registered(type('ConstrainedStrValue', (ConstrainedStr,), namespace)) + + +if TYPE_CHECKING: + StrictStr = str +else: + + class StrictStr(ConstrainedStr): + strict = True + + +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ SET TYPES ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + +# This types superclass should be Set[T], but cython chokes on that... +class ConstrainedSet(set): # type: ignore + # Needed for pydantic to detect that this is a set + __origin__ = set + __args__: Set[Type[T]] # type: ignore + + min_items: Optional[int] = None + max_items: Optional[int] = None + item_type: Type[T] # type: ignore + + @classmethod + def __get_validators__(cls) -> 'CallableGenerator': + yield cls.set_length_validator + + @classmethod + def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: + update_not_none(field_schema, minItems=cls.min_items, maxItems=cls.max_items) + + @classmethod + def set_length_validator(cls, v: 'Optional[Set[T]]') -> 'Optional[Set[T]]': + if v is None: + return None + + v = set_validator(v) + v_len = len(v) + + if cls.min_items is not None and v_len < cls.min_items: + raise errors.SetMinLengthError(limit_value=cls.min_items) + + if cls.max_items is not None and v_len > cls.max_items: + raise errors.SetMaxLengthError(limit_value=cls.max_items) + + return v + + +def conset(item_type: Type[T], *, min_items: Optional[int] = None, max_items: Optional[int] = None) -> Type[Set[T]]: + # __args__ is needed to conform to typing generics api + namespace = {'min_items': min_items, 'max_items': max_items, 'item_type': item_type, '__args__': [item_type]} + # We use new_class to be able to deal with Generic types + return new_class('ConstrainedSetValue', (ConstrainedSet,), {}, lambda ns: ns.update(namespace)) + + +# This types superclass should be FrozenSet[T], but cython chokes on that... +class ConstrainedFrozenSet(frozenset): # type: ignore + # Needed for pydantic to detect that this is a set + __origin__ = frozenset + __args__: FrozenSet[Type[T]] # type: ignore + + min_items: Optional[int] = None + max_items: Optional[int] = None + item_type: Type[T] # type: ignore + + @classmethod + def __get_validators__(cls) -> 'CallableGenerator': + yield cls.frozenset_length_validator + + @classmethod + def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: + update_not_none(field_schema, minItems=cls.min_items, maxItems=cls.max_items) + + @classmethod + def frozenset_length_validator(cls, v: 'Optional[FrozenSet[T]]') -> 'Optional[FrozenSet[T]]': + if v is None: + return None + + v = frozenset_validator(v) + v_len = len(v) + + if cls.min_items is not None and v_len < cls.min_items: + raise errors.FrozenSetMinLengthError(limit_value=cls.min_items) + + if cls.max_items is not None and v_len > cls.max_items: + raise errors.FrozenSetMaxLengthError(limit_value=cls.max_items) + + return v + + +def confrozenset( + item_type: Type[T], *, min_items: Optional[int] = None, max_items: Optional[int] = None +) -> Type[FrozenSet[T]]: + # __args__ is needed to conform to typing generics api + namespace = {'min_items': min_items, 'max_items': max_items, 'item_type': item_type, '__args__': [item_type]} + # We use new_class to be able to deal with Generic types + return new_class('ConstrainedFrozenSetValue', (ConstrainedFrozenSet,), {}, lambda ns: ns.update(namespace)) + + +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ LIST TYPES ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + +# This types superclass should be List[T], but cython chokes on that... +class ConstrainedList(list): # type: ignore + # Needed for pydantic to detect that this is a list + __origin__ = list + __args__: Tuple[Type[T], ...] # type: ignore + + min_items: Optional[int] = None + max_items: Optional[int] = None + unique_items: Optional[bool] = None + item_type: Type[T] # type: ignore + + @classmethod + def __get_validators__(cls) -> 'CallableGenerator': + yield cls.list_length_validator + if cls.unique_items: + yield cls.unique_items_validator + + @classmethod + def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: + update_not_none(field_schema, minItems=cls.min_items, maxItems=cls.max_items, uniqueItems=cls.unique_items) + + @classmethod + def list_length_validator(cls, v: 'Optional[List[T]]') -> 'Optional[List[T]]': + if v is None: + return None + + v = list_validator(v) + v_len = len(v) + + if cls.min_items is not None and v_len < cls.min_items: + raise errors.ListMinLengthError(limit_value=cls.min_items) + + if cls.max_items is not None and v_len > cls.max_items: + raise errors.ListMaxLengthError(limit_value=cls.max_items) + + return v + + @classmethod + def unique_items_validator(cls, v: 'Optional[List[T]]') -> 'Optional[List[T]]': + if v is None: + return None + + for i, value in enumerate(v, start=1): + if value in v[i:]: + raise errors.ListUniqueItemsError() + + return v + + +def conlist( + item_type: Type[T], *, min_items: Optional[int] = None, max_items: Optional[int] = None, unique_items: bool = None +) -> Type[List[T]]: + # __args__ is needed to conform to typing generics api + namespace = dict( + min_items=min_items, max_items=max_items, unique_items=unique_items, item_type=item_type, __args__=(item_type,) + ) + # We use new_class to be able to deal with Generic types + return new_class('ConstrainedListValue', (ConstrainedList,), {}, lambda ns: ns.update(namespace)) + + +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ PYOBJECT TYPE ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + +if TYPE_CHECKING: + PyObject = Callable[..., Any] +else: + + class PyObject: + validate_always = True + + @classmethod + def __get_validators__(cls) -> 'CallableGenerator': + yield cls.validate + + @classmethod + def validate(cls, value: Any) -> Any: + if isinstance(value, Callable): + return value + + try: + value = str_validator(value) + except errors.StrError: + raise errors.PyObjectError(error_message='value is neither a valid import path not a valid callable') + + try: + return import_string(value) + except ImportError as e: + raise errors.PyObjectError(error_message=str(e)) + + +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DECIMAL TYPES ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + +class ConstrainedDecimal(Decimal, metaclass=ConstrainedNumberMeta): + gt: OptionalIntFloatDecimal = None + ge: OptionalIntFloatDecimal = None + lt: OptionalIntFloatDecimal = None + le: OptionalIntFloatDecimal = None + max_digits: OptionalInt = None + decimal_places: OptionalInt = None + multiple_of: OptionalIntFloatDecimal = None + + @classmethod + def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: + update_not_none( + field_schema, + exclusiveMinimum=cls.gt, + exclusiveMaximum=cls.lt, + minimum=cls.ge, + maximum=cls.le, + multipleOf=cls.multiple_of, + ) + + @classmethod + def __get_validators__(cls) -> 'CallableGenerator': + yield decimal_validator + yield number_size_validator + yield number_multiple_validator + yield cls.validate + + @classmethod + def validate(cls, value: Decimal) -> Decimal: + try: + normalized_value = value.normalize() + except InvalidOperation: + normalized_value = value + digit_tuple, exponent = normalized_value.as_tuple()[1:] + if exponent in {'F', 'n', 'N'}: + raise errors.DecimalIsNotFiniteError() + + if exponent >= 0: + # A positive exponent adds that many trailing zeros. + digits = len(digit_tuple) + exponent + decimals = 0 + else: + # If the absolute value of the negative exponent is larger than the + # number of digits, then it's the same as the number of digits, + # because it'll consume all of the digits in digit_tuple and then + # add abs(exponent) - len(digit_tuple) leading zeros after the + # decimal point. + if abs(exponent) > len(digit_tuple): + digits = decimals = abs(exponent) + else: + digits = len(digit_tuple) + decimals = abs(exponent) + whole_digits = digits - decimals + + if cls.max_digits is not None and digits > cls.max_digits: + raise errors.DecimalMaxDigitsError(max_digits=cls.max_digits) + + if cls.decimal_places is not None and decimals > cls.decimal_places: + raise errors.DecimalMaxPlacesError(decimal_places=cls.decimal_places) + + if cls.max_digits is not None and cls.decimal_places is not None: + expected = cls.max_digits - cls.decimal_places + if whole_digits > expected: + raise errors.DecimalWholeDigitsError(whole_digits=expected) + + return value + + +def condecimal( + *, + gt: Decimal = None, + ge: Decimal = None, + lt: Decimal = None, + le: Decimal = None, + max_digits: Optional[int] = None, + decimal_places: Optional[int] = None, + multiple_of: Decimal = None, +) -> Type[Decimal]: + # use kwargs then define conf in a dict to aid with IDE type hinting + namespace = dict( + gt=gt, ge=ge, lt=lt, le=le, max_digits=max_digits, decimal_places=decimal_places, multiple_of=multiple_of + ) + return type('ConstrainedDecimalValue', (ConstrainedDecimal,), namespace) + + +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ UUID TYPES ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +if TYPE_CHECKING: + UUID1 = UUID + UUID3 = UUID + UUID4 = UUID + UUID5 = UUID +else: + + class UUID1(UUID): + _required_version = 1 + + @classmethod + def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: + field_schema.update(type='string', format=f'uuid{cls._required_version}') + + class UUID3(UUID1): + _required_version = 3 + + class UUID4(UUID1): + _required_version = 4 + + class UUID5(UUID1): + _required_version = 5 + + +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ PATH TYPES ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +if TYPE_CHECKING: + FilePath = Path + DirectoryPath = Path +else: + + class FilePath(Path): + @classmethod + def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: + field_schema.update(format='file-path') + + @classmethod + def __get_validators__(cls) -> 'CallableGenerator': + yield path_validator + yield path_exists_validator + yield cls.validate + + @classmethod + def validate(cls, value: Path) -> Path: + if not value.is_file(): + raise errors.PathNotAFileError(path=value) + + return value + + class DirectoryPath(Path): + @classmethod + def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: + field_schema.update(format='directory-path') + + @classmethod + def __get_validators__(cls) -> 'CallableGenerator': + yield path_validator + yield path_exists_validator + yield cls.validate + + @classmethod + def validate(cls, value: Path) -> Path: + if not value.is_dir(): + raise errors.PathNotADirectoryError(path=value) + + return value + + +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ JSON TYPE ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + +class JsonWrapper: + pass + + +class JsonMeta(type): + def __getitem__(self, t: Type[Any]) -> Type[JsonWrapper]: + if t is Any: + return Json # allow Json[Any] to replecate plain Json + return _registered(type('JsonWrapperValue', (JsonWrapper,), {'inner_type': t})) + + +if TYPE_CHECKING: + Json = Annotated[T, ...] # Json[list[str]] will be recognized by type checkers as list[str] + +else: + + class Json(metaclass=JsonMeta): + @classmethod + def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: + field_schema.update(type='string', format='json-string') + + +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ SECRET TYPES ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + +class SecretField(abc.ABC): + """ + Note: this should be implemented as a generic like `SecretField(ABC, Generic[T])`, + the `__init__()` should be part of the abstract class and the + `get_secret_value()` method should use the generic `T` type. + + However Cython doesn't support very well generics at the moment and + the generated code fails to be imported (see + https://github.com/cython/cython/issues/2753). + """ + + def __eq__(self, other: Any) -> bool: + return isinstance(other, self.__class__) and self.get_secret_value() == other.get_secret_value() + + def __str__(self) -> str: + return '**********' if self.get_secret_value() else '' + + def __hash__(self) -> int: + return hash(self.get_secret_value()) + + @abc.abstractmethod + def get_secret_value(self) -> Any: # pragma: no cover + ... + + +class SecretStr(SecretField): + min_length: OptionalInt = None + max_length: OptionalInt = None + + @classmethod + def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: + update_not_none( + field_schema, + type='string', + writeOnly=True, + format='password', + minLength=cls.min_length, + maxLength=cls.max_length, + ) + + @classmethod + def __get_validators__(cls) -> 'CallableGenerator': + yield cls.validate + yield constr_length_validator + + @classmethod + def validate(cls, value: Any) -> 'SecretStr': + if isinstance(value, cls): + return value + value = str_validator(value) + return cls(value) + + def __init__(self, value: str): + self._secret_value = value + + def __repr__(self) -> str: + return f"SecretStr('{self}')" + + def __len__(self) -> int: + return len(self._secret_value) + + def display(self) -> str: + warnings.warn('`secret_str.display()` is deprecated, use `str(secret_str)` instead', DeprecationWarning) + return str(self) + + def get_secret_value(self) -> str: + return self._secret_value + + +class SecretBytes(SecretField): + min_length: OptionalInt = None + max_length: OptionalInt = None + + @classmethod + def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: + update_not_none( + field_schema, + type='string', + writeOnly=True, + format='password', + minLength=cls.min_length, + maxLength=cls.max_length, + ) + + @classmethod + def __get_validators__(cls) -> 'CallableGenerator': + yield cls.validate + yield constr_length_validator + + @classmethod + def validate(cls, value: Any) -> 'SecretBytes': + if isinstance(value, cls): + return value + value = bytes_validator(value) + return cls(value) + + def __init__(self, value: bytes): + self._secret_value = value + + def __repr__(self) -> str: + return f"SecretBytes(b'{self}')" + + def __len__(self) -> int: + return len(self._secret_value) + + def display(self) -> str: + warnings.warn('`secret_bytes.display()` is deprecated, use `str(secret_bytes)` instead', DeprecationWarning) + return str(self) + + def get_secret_value(self) -> bytes: + return self._secret_value + + +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ PAYMENT CARD TYPES ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + +class PaymentCardBrand(str, Enum): + # If you add another card type, please also add it to the + # Hypothesis strategy in `pydantic._hypothesis_plugin`. + amex = 'American Express' + mastercard = 'Mastercard' + visa = 'Visa' + other = 'other' + + def __str__(self) -> str: + return self.value + + +class PaymentCardNumber(str): + """ + Based on: https://en.wikipedia.org/wiki/Payment_card_number + """ + + strip_whitespace: ClassVar[bool] = True + min_length: ClassVar[int] = 12 + max_length: ClassVar[int] = 19 + bin: str + last4: str + brand: PaymentCardBrand + + def __init__(self, card_number: str): + self.bin = card_number[:6] + self.last4 = card_number[-4:] + self.brand = self._get_brand(card_number) + + @classmethod + def __get_validators__(cls) -> 'CallableGenerator': + yield str_validator + yield constr_strip_whitespace + yield constr_length_validator + yield cls.validate_digits + yield cls.validate_luhn_check_digit + yield cls + yield cls.validate_length_for_brand + + @property + def masked(self) -> str: + num_masked = len(self) - 10 # len(bin) + len(last4) == 10 + return f'{self.bin}{"*" * num_masked}{self.last4}' + + @classmethod + def validate_digits(cls, card_number: str) -> str: + if not card_number.isdigit(): + raise errors.NotDigitError + return card_number + + @classmethod + def validate_luhn_check_digit(cls, card_number: str) -> str: + """ + Based on: https://en.wikipedia.org/wiki/Luhn_algorithm + """ + sum_ = int(card_number[-1]) + length = len(card_number) + parity = length % 2 + for i in range(length - 1): + digit = int(card_number[i]) + if i % 2 == parity: + digit *= 2 + if digit > 9: + digit -= 9 + sum_ += digit + valid = sum_ % 10 == 0 + if not valid: + raise errors.LuhnValidationError + return card_number + + @classmethod + def validate_length_for_brand(cls, card_number: 'PaymentCardNumber') -> 'PaymentCardNumber': + """ + Validate length based on BIN for major brands: + https://en.wikipedia.org/wiki/Payment_card_number#Issuer_identification_number_(IIN) + """ + required_length: Union[None, int, str] = None + if card_number.brand in PaymentCardBrand.mastercard: + required_length = 16 + valid = len(card_number) == required_length + elif card_number.brand == PaymentCardBrand.visa: + required_length = '13, 16 or 19' + valid = len(card_number) in {13, 16, 19} + elif card_number.brand == PaymentCardBrand.amex: + required_length = 15 + valid = len(card_number) == required_length + else: + valid = True + if not valid: + raise errors.InvalidLengthForBrand(brand=card_number.brand, required_length=required_length) + return card_number + + @staticmethod + def _get_brand(card_number: str) -> PaymentCardBrand: + if card_number[0] == '4': + brand = PaymentCardBrand.visa + elif 51 <= int(card_number[:2]) <= 55: + brand = PaymentCardBrand.mastercard + elif card_number[:2] in {'34', '37'}: + brand = PaymentCardBrand.amex + else: + brand = PaymentCardBrand.other + return brand + + +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ BYTE SIZE TYPE ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +BYTE_SIZES = { + 'b': 1, + 'kb': 10**3, + 'mb': 10**6, + 'gb': 10**9, + 'tb': 10**12, + 'pb': 10**15, + 'eb': 10**18, + 'kib': 2**10, + 'mib': 2**20, + 'gib': 2**30, + 'tib': 2**40, + 'pib': 2**50, + 'eib': 2**60, +} +BYTE_SIZES.update({k.lower()[0]: v for k, v in BYTE_SIZES.items() if 'i' not in k}) +byte_string_re = re.compile(r'^\s*(\d*\.?\d+)\s*(\w+)?', re.IGNORECASE) + + +class ByteSize(int): + @classmethod + def __get_validators__(cls) -> 'CallableGenerator': + yield cls.validate + + @classmethod + def validate(cls, v: StrIntFloat) -> 'ByteSize': + try: + return cls(int(v)) + except ValueError: + pass + + str_match = byte_string_re.match(str(v)) + if str_match is None: + raise errors.InvalidByteSize() + + scalar, unit = str_match.groups() + if unit is None: + unit = 'b' + + try: + unit_mult = BYTE_SIZES[unit.lower()] + except KeyError: + raise errors.InvalidByteSizeUnit(unit=unit) + + return cls(int(float(scalar) * unit_mult)) + + def human_readable(self, decimal: bool = False) -> str: + if decimal: + divisor = 1000 + units = ['B', 'KB', 'MB', 'GB', 'TB', 'PB'] + final_unit = 'EB' + else: + divisor = 1024 + units = ['B', 'KiB', 'MiB', 'GiB', 'TiB', 'PiB'] + final_unit = 'EiB' + + num = float(self) + for unit in units: + if abs(num) < divisor: + return f'{num:0.1f}{unit}' + num /= divisor + + return f'{num:0.1f}{final_unit}' + + def to(self, unit: str) -> float: + try: + unit_div = BYTE_SIZES[unit.lower()] + except KeyError: + raise errors.InvalidByteSizeUnit(unit=unit) + + return self / unit_div + + +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DATE TYPES ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +if TYPE_CHECKING: + PastDate = date + FutureDate = date +else: + + class PastDate(date): + @classmethod + def __get_validators__(cls) -> 'CallableGenerator': + yield parse_date + yield cls.validate + + @classmethod + def validate(cls, value: date) -> date: + if value >= date.today(): + raise errors.DateNotInThePastError() + + return value + + class FutureDate(date): + @classmethod + def __get_validators__(cls) -> 'CallableGenerator': + yield parse_date + yield cls.validate + + @classmethod + def validate(cls, value: date) -> date: + if value <= date.today(): + raise errors.DateNotInTheFutureError() + + return value + + +class ConstrainedDate(date, metaclass=ConstrainedNumberMeta): + gt: OptionalDate = None + ge: OptionalDate = None + lt: OptionalDate = None + le: OptionalDate = None + + @classmethod + def __modify_schema__(cls, field_schema: Dict[str, Any]) -> None: + update_not_none(field_schema, exclusiveMinimum=cls.gt, exclusiveMaximum=cls.lt, minimum=cls.ge, maximum=cls.le) + + @classmethod + def __get_validators__(cls) -> 'CallableGenerator': + yield parse_date + yield number_size_validator + + +def condate( + *, + gt: date = None, + ge: date = None, + lt: date = None, + le: date = None, +) -> Type[date]: + # use kwargs then define conf in a dict to aid with IDE type hinting + namespace = dict(gt=gt, ge=ge, lt=lt, le=le) + return type('ConstrainedDateValue', (ConstrainedDate,), namespace) diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/typing.py b/venv/lib/python3.10/site-packages/pydantic/v1/typing.py new file mode 100644 index 0000000000000000000000000000000000000000..a690a053a26f7fe4b375fea186c2a7e5443bc484 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/v1/typing.py @@ -0,0 +1,603 @@ +import sys +import typing +from collections.abc import Callable +from os import PathLike +from typing import ( # type: ignore + TYPE_CHECKING, + AbstractSet, + Any, + Callable as TypingCallable, + ClassVar, + Dict, + ForwardRef, + Generator, + Iterable, + List, + Mapping, + NewType, + Optional, + Sequence, + Set, + Tuple, + Type, + TypeVar, + Union, + _eval_type, + cast, + get_type_hints, +) + +from typing_extensions import ( + Annotated, + Final, + Literal, + NotRequired as TypedDictNotRequired, + Required as TypedDictRequired, +) + +try: + from typing import _TypingBase as typing_base # type: ignore +except ImportError: + from typing import _Final as typing_base # type: ignore + +try: + from typing import GenericAlias as TypingGenericAlias # type: ignore +except ImportError: + # python < 3.9 does not have GenericAlias (list[int], tuple[str, ...] and so on) + TypingGenericAlias = () + +try: + from types import UnionType as TypesUnionType # type: ignore +except ImportError: + # python < 3.10 does not have UnionType (str | int, byte | bool and so on) + TypesUnionType = () + + +if sys.version_info < (3, 9): + + def evaluate_forwardref(type_: ForwardRef, globalns: Any, localns: Any) -> Any: + return type_._evaluate(globalns, localns) + +else: + + def evaluate_forwardref(type_: ForwardRef, globalns: Any, localns: Any) -> Any: + # Even though it is the right signature for python 3.9, mypy complains with + # `error: Too many arguments for "_evaluate" of "ForwardRef"` hence the cast... + return cast(Any, type_)._evaluate(globalns, localns, set()) + + +if sys.version_info < (3, 9): + # Ensure we always get all the whole `Annotated` hint, not just the annotated type. + # For 3.7 to 3.8, `get_type_hints` doesn't recognize `typing_extensions.Annotated`, + # so it already returns the full annotation + get_all_type_hints = get_type_hints + +else: + + def get_all_type_hints(obj: Any, globalns: Any = None, localns: Any = None) -> Any: + return get_type_hints(obj, globalns, localns, include_extras=True) + + +_T = TypeVar('_T') + +AnyCallable = TypingCallable[..., Any] +NoArgAnyCallable = TypingCallable[[], Any] + +# workaround for https://github.com/python/mypy/issues/9496 +AnyArgTCallable = TypingCallable[..., _T] + + +# Annotated[...] is implemented by returning an instance of one of these classes, depending on +# python/typing_extensions version. +AnnotatedTypeNames = {'AnnotatedMeta', '_AnnotatedAlias'} + + +LITERAL_TYPES: Set[Any] = {Literal} +if hasattr(typing, 'Literal'): + LITERAL_TYPES.add(typing.Literal) + + +if sys.version_info < (3, 8): + + def get_origin(t: Type[Any]) -> Optional[Type[Any]]: + if type(t).__name__ in AnnotatedTypeNames: + # weirdly this is a runtime requirement, as well as for mypy + return cast(Type[Any], Annotated) + return getattr(t, '__origin__', None) + +else: + from typing import get_origin as _typing_get_origin + + def get_origin(tp: Type[Any]) -> Optional[Type[Any]]: + """ + We can't directly use `typing.get_origin` since we need a fallback to support + custom generic classes like `ConstrainedList` + It should be useless once https://github.com/cython/cython/issues/3537 is + solved and https://github.com/pydantic/pydantic/pull/1753 is merged. + """ + if type(tp).__name__ in AnnotatedTypeNames: + return cast(Type[Any], Annotated) # mypy complains about _SpecialForm + return _typing_get_origin(tp) or getattr(tp, '__origin__', None) + + +if sys.version_info < (3, 8): + from typing import _GenericAlias + + def get_args(t: Type[Any]) -> Tuple[Any, ...]: + """Compatibility version of get_args for python 3.7. + + Mostly compatible with the python 3.8 `typing` module version + and able to handle almost all use cases. + """ + if type(t).__name__ in AnnotatedTypeNames: + return t.__args__ + t.__metadata__ + if isinstance(t, _GenericAlias): + res = t.__args__ + if t.__origin__ is Callable and res and res[0] is not Ellipsis: + res = (list(res[:-1]), res[-1]) + return res + return getattr(t, '__args__', ()) + +else: + from typing import get_args as _typing_get_args + + def _generic_get_args(tp: Type[Any]) -> Tuple[Any, ...]: + """ + In python 3.9, `typing.Dict`, `typing.List`, ... + do have an empty `__args__` by default (instead of the generic ~T for example). + In order to still support `Dict` for example and consider it as `Dict[Any, Any]`, + we retrieve the `_nparams` value that tells us how many parameters it needs. + """ + if hasattr(tp, '_nparams'): + return (Any,) * tp._nparams + # Special case for `tuple[()]`, which used to return ((),) with `typing.Tuple` + # in python 3.10- but now returns () for `tuple` and `Tuple`. + # This will probably be clarified in pydantic v2 + try: + if tp == Tuple[()] or sys.version_info >= (3, 9) and tp == tuple[()]: # type: ignore[misc] + return ((),) + # there is a TypeError when compiled with cython + except TypeError: # pragma: no cover + pass + return () + + def get_args(tp: Type[Any]) -> Tuple[Any, ...]: + """Get type arguments with all substitutions performed. + + For unions, basic simplifications used by Union constructor are performed. + Examples:: + get_args(Dict[str, int]) == (str, int) + get_args(int) == () + get_args(Union[int, Union[T, int], str][int]) == (int, str) + get_args(Union[int, Tuple[T, int]][str]) == (int, Tuple[str, int]) + get_args(Callable[[], T][int]) == ([], int) + """ + if type(tp).__name__ in AnnotatedTypeNames: + return tp.__args__ + tp.__metadata__ + # the fallback is needed for the same reasons as `get_origin` (see above) + return _typing_get_args(tp) or getattr(tp, '__args__', ()) or _generic_get_args(tp) + + +if sys.version_info < (3, 9): + + def convert_generics(tp: Type[Any]) -> Type[Any]: + """Python 3.9 and older only supports generics from `typing` module. + They convert strings to ForwardRef automatically. + + Examples:: + typing.List['Hero'] == typing.List[ForwardRef('Hero')] + """ + return tp + +else: + from typing import _UnionGenericAlias # type: ignore + + from typing_extensions import _AnnotatedAlias + + def convert_generics(tp: Type[Any]) -> Type[Any]: + """ + Recursively searches for `str` type hints and replaces them with ForwardRef. + + Examples:: + convert_generics(list['Hero']) == list[ForwardRef('Hero')] + convert_generics(dict['Hero', 'Team']) == dict[ForwardRef('Hero'), ForwardRef('Team')] + convert_generics(typing.Dict['Hero', 'Team']) == typing.Dict[ForwardRef('Hero'), ForwardRef('Team')] + convert_generics(list[str | 'Hero'] | int) == list[str | ForwardRef('Hero')] | int + """ + origin = get_origin(tp) + if not origin or not hasattr(tp, '__args__'): + return tp + + args = get_args(tp) + + # typing.Annotated needs special treatment + if origin is Annotated: + return _AnnotatedAlias(convert_generics(args[0]), args[1:]) + + # recursively replace `str` instances inside of `GenericAlias` with `ForwardRef(arg)` + converted = tuple( + ForwardRef(arg) if isinstance(arg, str) and isinstance(tp, TypingGenericAlias) else convert_generics(arg) + for arg in args + ) + + if converted == args: + return tp + elif isinstance(tp, TypingGenericAlias): + return TypingGenericAlias(origin, converted) + elif isinstance(tp, TypesUnionType): + # recreate types.UnionType (PEP604, Python >= 3.10) + return _UnionGenericAlias(origin, converted) + else: + try: + setattr(tp, '__args__', converted) + except AttributeError: + pass + return tp + + +if sys.version_info < (3, 10): + + def is_union(tp: Optional[Type[Any]]) -> bool: + return tp is Union + + WithArgsTypes = (TypingGenericAlias,) + +else: + import types + import typing + + def is_union(tp: Optional[Type[Any]]) -> bool: + return tp is Union or tp is types.UnionType # noqa: E721 + + WithArgsTypes = (typing._GenericAlias, types.GenericAlias, types.UnionType) + + +StrPath = Union[str, PathLike] + + +if TYPE_CHECKING: + from .fields import ModelField + + TupleGenerator = Generator[Tuple[str, Any], None, None] + DictStrAny = Dict[str, Any] + DictAny = Dict[Any, Any] + SetStr = Set[str] + ListStr = List[str] + IntStr = Union[int, str] + AbstractSetIntStr = AbstractSet[IntStr] + DictIntStrAny = Dict[IntStr, Any] + MappingIntStrAny = Mapping[IntStr, Any] + CallableGenerator = Generator[AnyCallable, None, None] + ReprArgs = Sequence[Tuple[Optional[str], Any]] + + MYPY = False + if MYPY: + AnyClassMethod = classmethod[Any] + else: + # classmethod[TargetType, CallableParamSpecType, CallableReturnType] + AnyClassMethod = classmethod[Any, Any, Any] + +__all__ = ( + 'AnyCallable', + 'NoArgAnyCallable', + 'NoneType', + 'is_none_type', + 'display_as_type', + 'resolve_annotations', + 'is_callable_type', + 'is_literal_type', + 'all_literal_values', + 'is_namedtuple', + 'is_typeddict', + 'is_typeddict_special', + 'is_new_type', + 'new_type_supertype', + 'is_classvar', + 'is_finalvar', + 'update_field_forward_refs', + 'update_model_forward_refs', + 'TupleGenerator', + 'DictStrAny', + 'DictAny', + 'SetStr', + 'ListStr', + 'IntStr', + 'AbstractSetIntStr', + 'DictIntStrAny', + 'CallableGenerator', + 'ReprArgs', + 'AnyClassMethod', + 'CallableGenerator', + 'WithArgsTypes', + 'get_args', + 'get_origin', + 'get_sub_types', + 'typing_base', + 'get_all_type_hints', + 'is_union', + 'StrPath', + 'MappingIntStrAny', +) + + +NoneType = None.__class__ + + +NONE_TYPES: Tuple[Any, Any, Any] = (None, NoneType, Literal[None]) + + +if sys.version_info < (3, 8): + # Even though this implementation is slower, we need it for python 3.7: + # In python 3.7 "Literal" is not a builtin type and uses a different + # mechanism. + # for this reason `Literal[None] is Literal[None]` evaluates to `False`, + # breaking the faster implementation used for the other python versions. + + def is_none_type(type_: Any) -> bool: + return type_ in NONE_TYPES + +elif sys.version_info[:2] == (3, 8): + + def is_none_type(type_: Any) -> bool: + for none_type in NONE_TYPES: + if type_ is none_type: + return True + # With python 3.8, specifically 3.8.10, Literal "is" check sare very flakey + # can change on very subtle changes like use of types in other modules, + # hopefully this check avoids that issue. + if is_literal_type(type_): # pragma: no cover + return all_literal_values(type_) == (None,) + return False + +else: + + def is_none_type(type_: Any) -> bool: + return type_ in NONE_TYPES + + +def display_as_type(v: Type[Any]) -> str: + if not isinstance(v, typing_base) and not isinstance(v, WithArgsTypes) and not isinstance(v, type): + v = v.__class__ + + if is_union(get_origin(v)): + return f'Union[{", ".join(map(display_as_type, get_args(v)))}]' + + if isinstance(v, WithArgsTypes): + # Generic alias are constructs like `list[int]` + return str(v).replace('typing.', '') + + try: + return v.__name__ + except AttributeError: + # happens with typing objects + return str(v).replace('typing.', '') + + +def resolve_annotations(raw_annotations: Dict[str, Type[Any]], module_name: Optional[str]) -> Dict[str, Type[Any]]: + """ + Partially taken from typing.get_type_hints. + + Resolve string or ForwardRef annotations into type objects if possible. + """ + base_globals: Optional[Dict[str, Any]] = None + if module_name: + try: + module = sys.modules[module_name] + except KeyError: + # happens occasionally, see https://github.com/pydantic/pydantic/issues/2363 + pass + else: + base_globals = module.__dict__ + + annotations = {} + for name, value in raw_annotations.items(): + if isinstance(value, str): + if (3, 10) > sys.version_info >= (3, 9, 8) or sys.version_info >= (3, 10, 1): + value = ForwardRef(value, is_argument=False, is_class=True) + else: + value = ForwardRef(value, is_argument=False) + try: + value = _eval_type(value, base_globals, None) + except NameError: + # this is ok, it can be fixed with update_forward_refs + pass + annotations[name] = value + return annotations + + +def is_callable_type(type_: Type[Any]) -> bool: + return type_ is Callable or get_origin(type_) is Callable + + +def is_literal_type(type_: Type[Any]) -> bool: + return Literal is not None and get_origin(type_) in LITERAL_TYPES + + +def literal_values(type_: Type[Any]) -> Tuple[Any, ...]: + return get_args(type_) + + +def all_literal_values(type_: Type[Any]) -> Tuple[Any, ...]: + """ + This method is used to retrieve all Literal values as + Literal can be used recursively (see https://www.python.org/dev/peps/pep-0586) + e.g. `Literal[Literal[Literal[1, 2, 3], "foo"], 5, None]` + """ + if not is_literal_type(type_): + return (type_,) + + values = literal_values(type_) + return tuple(x for value in values for x in all_literal_values(value)) + + +def is_namedtuple(type_: Type[Any]) -> bool: + """ + Check if a given class is a named tuple. + It can be either a `typing.NamedTuple` or `collections.namedtuple` + """ + from .utils import lenient_issubclass + + return lenient_issubclass(type_, tuple) and hasattr(type_, '_fields') + + +def is_typeddict(type_: Type[Any]) -> bool: + """ + Check if a given class is a typed dict (from `typing` or `typing_extensions`) + In 3.10, there will be a public method (https://docs.python.org/3.10/library/typing.html#typing.is_typeddict) + """ + from .utils import lenient_issubclass + + return lenient_issubclass(type_, dict) and hasattr(type_, '__total__') + + +def _check_typeddict_special(type_: Any) -> bool: + return type_ is TypedDictRequired or type_ is TypedDictNotRequired + + +def is_typeddict_special(type_: Any) -> bool: + """ + Check if type is a TypedDict special form (Required or NotRequired). + """ + return _check_typeddict_special(type_) or _check_typeddict_special(get_origin(type_)) + + +test_type = NewType('test_type', str) + + +def is_new_type(type_: Type[Any]) -> bool: + """ + Check whether type_ was created using typing.NewType + """ + return isinstance(type_, test_type.__class__) and hasattr(type_, '__supertype__') # type: ignore + + +def new_type_supertype(type_: Type[Any]) -> Type[Any]: + while hasattr(type_, '__supertype__'): + type_ = type_.__supertype__ + return type_ + + +def _check_classvar(v: Optional[Type[Any]]) -> bool: + if v is None: + return False + + return v.__class__ == ClassVar.__class__ and getattr(v, '_name', None) == 'ClassVar' + + +def _check_finalvar(v: Optional[Type[Any]]) -> bool: + """ + Check if a given type is a `typing.Final` type. + """ + if v is None: + return False + + return v.__class__ == Final.__class__ and (sys.version_info < (3, 8) or getattr(v, '_name', None) == 'Final') + + +def is_classvar(ann_type: Type[Any]) -> bool: + if _check_classvar(ann_type) or _check_classvar(get_origin(ann_type)): + return True + + # this is an ugly workaround for class vars that contain forward references and are therefore themselves + # forward references, see #3679 + if ann_type.__class__ == ForwardRef and ann_type.__forward_arg__.startswith('ClassVar['): + return True + + return False + + +def is_finalvar(ann_type: Type[Any]) -> bool: + return _check_finalvar(ann_type) or _check_finalvar(get_origin(ann_type)) + + +def update_field_forward_refs(field: 'ModelField', globalns: Any, localns: Any) -> None: + """ + Try to update ForwardRefs on fields based on this ModelField, globalns and localns. + """ + prepare = False + if field.type_.__class__ == ForwardRef: + prepare = True + field.type_ = evaluate_forwardref(field.type_, globalns, localns or None) + if field.outer_type_.__class__ == ForwardRef: + prepare = True + field.outer_type_ = evaluate_forwardref(field.outer_type_, globalns, localns or None) + if prepare: + field.prepare() + + if field.sub_fields: + for sub_f in field.sub_fields: + update_field_forward_refs(sub_f, globalns=globalns, localns=localns) + + if field.discriminator_key is not None: + field.prepare_discriminated_union_sub_fields() + + +def update_model_forward_refs( + model: Type[Any], + fields: Iterable['ModelField'], + json_encoders: Dict[Union[Type[Any], str, ForwardRef], AnyCallable], + localns: 'DictStrAny', + exc_to_suppress: Tuple[Type[BaseException], ...] = (), +) -> None: + """ + Try to update model fields ForwardRefs based on model and localns. + """ + if model.__module__ in sys.modules: + globalns = sys.modules[model.__module__].__dict__.copy() + else: + globalns = {} + + globalns.setdefault(model.__name__, model) + + for f in fields: + try: + update_field_forward_refs(f, globalns=globalns, localns=localns) + except exc_to_suppress: + pass + + for key in set(json_encoders.keys()): + if isinstance(key, str): + fr: ForwardRef = ForwardRef(key) + elif isinstance(key, ForwardRef): + fr = key + else: + continue + + try: + new_key = evaluate_forwardref(fr, globalns, localns or None) + except exc_to_suppress: # pragma: no cover + continue + + json_encoders[new_key] = json_encoders.pop(key) + + +def get_class(type_: Type[Any]) -> Union[None, bool, Type[Any]]: + """ + Tries to get the class of a Type[T] annotation. Returns True if Type is used + without brackets. Otherwise returns None. + """ + if type_ is type: + return True + + if get_origin(type_) is None: + return None + + args = get_args(type_) + if not args or not isinstance(args[0], type): + return True + else: + return args[0] + + +def get_sub_types(tp: Any) -> List[Any]: + """ + Return all the types that are allowed by type `tp` + `tp` can be a `Union` of allowed types or an `Annotated` type + """ + origin = get_origin(tp) + if origin is Annotated: + return get_sub_types(get_args(tp)[0]) + elif is_union(origin): + return [x for t in get_args(tp) for x in get_sub_types(t)] + else: + return [tp] diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/utils.py b/venv/lib/python3.10/site-packages/pydantic/v1/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..4d0f68ed499835d099428a344f4395eab6c57536 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/v1/utils.py @@ -0,0 +1,803 @@ +import keyword +import warnings +import weakref +from collections import OrderedDict, defaultdict, deque +from copy import deepcopy +from itertools import islice, zip_longest +from types import BuiltinFunctionType, CodeType, FunctionType, GeneratorType, LambdaType, ModuleType +from typing import ( + TYPE_CHECKING, + AbstractSet, + Any, + Callable, + Collection, + Dict, + Generator, + Iterable, + Iterator, + List, + Mapping, + NoReturn, + Optional, + Set, + Tuple, + Type, + TypeVar, + Union, +) + +from typing_extensions import Annotated + +from .errors import ConfigError +from .typing import ( + NoneType, + WithArgsTypes, + all_literal_values, + display_as_type, + get_args, + get_origin, + is_literal_type, + is_union, +) +from .version import version_info + +if TYPE_CHECKING: + from inspect import Signature + from pathlib import Path + + from .config import BaseConfig + from .dataclasses import Dataclass + from .fields import ModelField + from .main import BaseModel + from .typing import AbstractSetIntStr, DictIntStrAny, IntStr, MappingIntStrAny, ReprArgs + + RichReprResult = Iterable[Union[Any, Tuple[Any], Tuple[str, Any], Tuple[str, Any, Any]]] + +__all__ = ( + 'import_string', + 'sequence_like', + 'validate_field_name', + 'lenient_isinstance', + 'lenient_issubclass', + 'in_ipython', + 'is_valid_identifier', + 'deep_update', + 'update_not_none', + 'almost_equal_floats', + 'get_model', + 'to_camel', + 'is_valid_field', + 'smart_deepcopy', + 'PyObjectStr', + 'Representation', + 'GetterDict', + 'ValueItems', + 'version_info', # required here to match behaviour in v1.3 + 'ClassAttribute', + 'path_type', + 'ROOT_KEY', + 'get_unique_discriminator_alias', + 'get_discriminator_alias_and_values', + 'DUNDER_ATTRIBUTES', +) + +ROOT_KEY = '__root__' +# these are types that are returned unchanged by deepcopy +IMMUTABLE_NON_COLLECTIONS_TYPES: Set[Type[Any]] = { + int, + float, + complex, + str, + bool, + bytes, + type, + NoneType, + FunctionType, + BuiltinFunctionType, + LambdaType, + weakref.ref, + CodeType, + # note: including ModuleType will differ from behaviour of deepcopy by not producing error. + # It might be not a good idea in general, but considering that this function used only internally + # against default values of fields, this will allow to actually have a field with module as default value + ModuleType, + NotImplemented.__class__, + Ellipsis.__class__, +} + +# these are types that if empty, might be copied with simple copy() instead of deepcopy() +BUILTIN_COLLECTIONS: Set[Type[Any]] = { + list, + set, + tuple, + frozenset, + dict, + OrderedDict, + defaultdict, + deque, +} + + +def import_string(dotted_path: str) -> Any: + """ + Stolen approximately from django. Import a dotted module path and return the attribute/class designated by the + last name in the path. Raise ImportError if the import fails. + """ + from importlib import import_module + + try: + module_path, class_name = dotted_path.strip(' ').rsplit('.', 1) + except ValueError as e: + raise ImportError(f'"{dotted_path}" doesn\'t look like a module path') from e + + module = import_module(module_path) + try: + return getattr(module, class_name) + except AttributeError as e: + raise ImportError(f'Module "{module_path}" does not define a "{class_name}" attribute') from e + + +def truncate(v: Union[str], *, max_len: int = 80) -> str: + """ + Truncate a value and add a unicode ellipsis (three dots) to the end if it was too long + """ + warnings.warn('`truncate` is no-longer used by pydantic and is deprecated', DeprecationWarning) + if isinstance(v, str) and len(v) > (max_len - 2): + # -3 so quote + string + … + quote has correct length + return (v[: (max_len - 3)] + '…').__repr__() + try: + v = v.__repr__() + except TypeError: + v = v.__class__.__repr__(v) # in case v is a type + if len(v) > max_len: + v = v[: max_len - 1] + '…' + return v + + +def sequence_like(v: Any) -> bool: + return isinstance(v, (list, tuple, set, frozenset, GeneratorType, deque)) + + +def validate_field_name(bases: List[Type['BaseModel']], field_name: str) -> None: + """ + Ensure that the field's name does not shadow an existing attribute of the model. + """ + for base in bases: + if getattr(base, field_name, None): + raise NameError( + f'Field name "{field_name}" shadows a BaseModel attribute; ' + f'use a different field name with "alias=\'{field_name}\'".' + ) + + +def lenient_isinstance(o: Any, class_or_tuple: Union[Type[Any], Tuple[Type[Any], ...], None]) -> bool: + try: + return isinstance(o, class_or_tuple) # type: ignore[arg-type] + except TypeError: + return False + + +def lenient_issubclass(cls: Any, class_or_tuple: Union[Type[Any], Tuple[Type[Any], ...], None]) -> bool: + try: + return isinstance(cls, type) and issubclass(cls, class_or_tuple) # type: ignore[arg-type] + except TypeError: + if isinstance(cls, WithArgsTypes): + return False + raise # pragma: no cover + + +def in_ipython() -> bool: + """ + Check whether we're in an ipython environment, including jupyter notebooks. + """ + try: + eval('__IPYTHON__') + except NameError: + return False + else: # pragma: no cover + return True + + +def is_valid_identifier(identifier: str) -> bool: + """ + Checks that a string is a valid identifier and not a Python keyword. + :param identifier: The identifier to test. + :return: True if the identifier is valid. + """ + return identifier.isidentifier() and not keyword.iskeyword(identifier) + + +KeyType = TypeVar('KeyType') + + +def deep_update(mapping: Dict[KeyType, Any], *updating_mappings: Dict[KeyType, Any]) -> Dict[KeyType, Any]: + updated_mapping = mapping.copy() + for updating_mapping in updating_mappings: + for k, v in updating_mapping.items(): + if k in updated_mapping and isinstance(updated_mapping[k], dict) and isinstance(v, dict): + updated_mapping[k] = deep_update(updated_mapping[k], v) + else: + updated_mapping[k] = v + return updated_mapping + + +def update_not_none(mapping: Dict[Any, Any], **update: Any) -> None: + mapping.update({k: v for k, v in update.items() if v is not None}) + + +def almost_equal_floats(value_1: float, value_2: float, *, delta: float = 1e-8) -> bool: + """ + Return True if two floats are almost equal + """ + return abs(value_1 - value_2) <= delta + + +def generate_model_signature( + init: Callable[..., None], fields: Dict[str, 'ModelField'], config: Type['BaseConfig'] +) -> 'Signature': + """ + Generate signature for model based on its fields + """ + from inspect import Parameter, Signature, signature + + from .config import Extra + + present_params = signature(init).parameters.values() + merged_params: Dict[str, Parameter] = {} + var_kw = None + use_var_kw = False + + for param in islice(present_params, 1, None): # skip self arg + if param.kind is param.VAR_KEYWORD: + var_kw = param + continue + merged_params[param.name] = param + + if var_kw: # if custom init has no var_kw, fields which are not declared in it cannot be passed through + allow_names = config.allow_population_by_field_name + for field_name, field in fields.items(): + param_name = field.alias + if field_name in merged_params or param_name in merged_params: + continue + elif not is_valid_identifier(param_name): + if allow_names and is_valid_identifier(field_name): + param_name = field_name + else: + use_var_kw = True + continue + + # TODO: replace annotation with actual expected types once #1055 solved + kwargs = {'default': field.default} if not field.required else {} + merged_params[param_name] = Parameter( + param_name, Parameter.KEYWORD_ONLY, annotation=field.annotation, **kwargs + ) + + if config.extra is Extra.allow: + use_var_kw = True + + if var_kw and use_var_kw: + # Make sure the parameter for extra kwargs + # does not have the same name as a field + default_model_signature = [ + ('__pydantic_self__', Parameter.POSITIONAL_OR_KEYWORD), + ('data', Parameter.VAR_KEYWORD), + ] + if [(p.name, p.kind) for p in present_params] == default_model_signature: + # if this is the standard model signature, use extra_data as the extra args name + var_kw_name = 'extra_data' + else: + # else start from var_kw + var_kw_name = var_kw.name + + # generate a name that's definitely unique + while var_kw_name in fields: + var_kw_name += '_' + merged_params[var_kw_name] = var_kw.replace(name=var_kw_name) + + return Signature(parameters=list(merged_params.values()), return_annotation=None) + + +def get_model(obj: Union[Type['BaseModel'], Type['Dataclass']]) -> Type['BaseModel']: + from .main import BaseModel + + try: + model_cls = obj.__pydantic_model__ # type: ignore + except AttributeError: + model_cls = obj + + if not issubclass(model_cls, BaseModel): + raise TypeError('Unsupported type, must be either BaseModel or dataclass') + return model_cls + + +def to_camel(string: str) -> str: + return ''.join(word.capitalize() for word in string.split('_')) + + +def to_lower_camel(string: str) -> str: + if len(string) >= 1: + pascal_string = to_camel(string) + return pascal_string[0].lower() + pascal_string[1:] + return string.lower() + + +T = TypeVar('T') + + +def unique_list( + input_list: Union[List[T], Tuple[T, ...]], + *, + name_factory: Callable[[T], str] = str, +) -> List[T]: + """ + Make a list unique while maintaining order. + We update the list if another one with the same name is set + (e.g. root validator overridden in subclass) + """ + result: List[T] = [] + result_names: List[str] = [] + for v in input_list: + v_name = name_factory(v) + if v_name not in result_names: + result_names.append(v_name) + result.append(v) + else: + result[result_names.index(v_name)] = v + + return result + + +class PyObjectStr(str): + """ + String class where repr doesn't include quotes. Useful with Representation when you want to return a string + representation of something that valid (or pseudo-valid) python. + """ + + def __repr__(self) -> str: + return str(self) + + +class Representation: + """ + Mixin to provide __str__, __repr__, and __pretty__ methods. See #884 for more details. + + __pretty__ is used by [devtools](https://python-devtools.helpmanual.io/) to provide human readable representations + of objects. + """ + + __slots__: Tuple[str, ...] = tuple() + + def __repr_args__(self) -> 'ReprArgs': + """ + Returns the attributes to show in __str__, __repr__, and __pretty__ this is generally overridden. + + Can either return: + * name - value pairs, e.g.: `[('foo_name', 'foo'), ('bar_name', ['b', 'a', 'r'])]` + * or, just values, e.g.: `[(None, 'foo'), (None, ['b', 'a', 'r'])]` + """ + attrs = ((s, getattr(self, s)) for s in self.__slots__) + return [(a, v) for a, v in attrs if v is not None] + + def __repr_name__(self) -> str: + """ + Name of the instance's class, used in __repr__. + """ + return self.__class__.__name__ + + def __repr_str__(self, join_str: str) -> str: + return join_str.join(repr(v) if a is None else f'{a}={v!r}' for a, v in self.__repr_args__()) + + def __pretty__(self, fmt: Callable[[Any], Any], **kwargs: Any) -> Generator[Any, None, None]: + """ + Used by devtools (https://python-devtools.helpmanual.io/) to provide a human readable representations of objects + """ + yield self.__repr_name__() + '(' + yield 1 + for name, value in self.__repr_args__(): + if name is not None: + yield name + '=' + yield fmt(value) + yield ',' + yield 0 + yield -1 + yield ')' + + def __str__(self) -> str: + return self.__repr_str__(' ') + + def __repr__(self) -> str: + return f'{self.__repr_name__()}({self.__repr_str__(", ")})' + + def __rich_repr__(self) -> 'RichReprResult': + """Get fields for Rich library""" + for name, field_repr in self.__repr_args__(): + if name is None: + yield field_repr + else: + yield name, field_repr + + +class GetterDict(Representation): + """ + Hack to make object's smell just enough like dicts for validate_model. + + We can't inherit from Mapping[str, Any] because it upsets cython so we have to implement all methods ourselves. + """ + + __slots__ = ('_obj',) + + def __init__(self, obj: Any): + self._obj = obj + + def __getitem__(self, key: str) -> Any: + try: + return getattr(self._obj, key) + except AttributeError as e: + raise KeyError(key) from e + + def get(self, key: Any, default: Any = None) -> Any: + return getattr(self._obj, key, default) + + def extra_keys(self) -> Set[Any]: + """ + We don't want to get any other attributes of obj if the model didn't explicitly ask for them + """ + return set() + + def keys(self) -> List[Any]: + """ + Keys of the pseudo dictionary, uses a list not set so order information can be maintained like python + dictionaries. + """ + return list(self) + + def values(self) -> List[Any]: + return [self[k] for k in self] + + def items(self) -> Iterator[Tuple[str, Any]]: + for k in self: + yield k, self.get(k) + + def __iter__(self) -> Iterator[str]: + for name in dir(self._obj): + if not name.startswith('_'): + yield name + + def __len__(self) -> int: + return sum(1 for _ in self) + + def __contains__(self, item: Any) -> bool: + return item in self.keys() + + def __eq__(self, other: Any) -> bool: + return dict(self) == dict(other.items()) + + def __repr_args__(self) -> 'ReprArgs': + return [(None, dict(self))] + + def __repr_name__(self) -> str: + return f'GetterDict[{display_as_type(self._obj)}]' + + +class ValueItems(Representation): + """ + Class for more convenient calculation of excluded or included fields on values. + """ + + __slots__ = ('_items', '_type') + + def __init__(self, value: Any, items: Union['AbstractSetIntStr', 'MappingIntStrAny']) -> None: + items = self._coerce_items(items) + + if isinstance(value, (list, tuple)): + items = self._normalize_indexes(items, len(value)) + + self._items: 'MappingIntStrAny' = items + + def is_excluded(self, item: Any) -> bool: + """ + Check if item is fully excluded. + + :param item: key or index of a value + """ + return self.is_true(self._items.get(item)) + + def is_included(self, item: Any) -> bool: + """ + Check if value is contained in self._items + + :param item: key or index of value + """ + return item in self._items + + def for_element(self, e: 'IntStr') -> Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']]: + """ + :param e: key or index of element on value + :return: raw values for element if self._items is dict and contain needed element + """ + + item = self._items.get(e) + return item if not self.is_true(item) else None + + def _normalize_indexes(self, items: 'MappingIntStrAny', v_length: int) -> 'DictIntStrAny': + """ + :param items: dict or set of indexes which will be normalized + :param v_length: length of sequence indexes of which will be + + >>> self._normalize_indexes({0: True, -2: True, -1: True}, 4) + {0: True, 2: True, 3: True} + >>> self._normalize_indexes({'__all__': True}, 4) + {0: True, 1: True, 2: True, 3: True} + """ + + normalized_items: 'DictIntStrAny' = {} + all_items = None + for i, v in items.items(): + if not (isinstance(v, Mapping) or isinstance(v, AbstractSet) or self.is_true(v)): + raise TypeError(f'Unexpected type of exclude value for index "{i}" {v.__class__}') + if i == '__all__': + all_items = self._coerce_value(v) + continue + if not isinstance(i, int): + raise TypeError( + 'Excluding fields from a sequence of sub-models or dicts must be performed index-wise: ' + 'expected integer keys or keyword "__all__"' + ) + normalized_i = v_length + i if i < 0 else i + normalized_items[normalized_i] = self.merge(v, normalized_items.get(normalized_i)) + + if not all_items: + return normalized_items + if self.is_true(all_items): + for i in range(v_length): + normalized_items.setdefault(i, ...) + return normalized_items + for i in range(v_length): + normalized_item = normalized_items.setdefault(i, {}) + if not self.is_true(normalized_item): + normalized_items[i] = self.merge(all_items, normalized_item) + return normalized_items + + @classmethod + def merge(cls, base: Any, override: Any, intersect: bool = False) -> Any: + """ + Merge a ``base`` item with an ``override`` item. + + Both ``base`` and ``override`` are converted to dictionaries if possible. + Sets are converted to dictionaries with the sets entries as keys and + Ellipsis as values. + + Each key-value pair existing in ``base`` is merged with ``override``, + while the rest of the key-value pairs are updated recursively with this function. + + Merging takes place based on the "union" of keys if ``intersect`` is + set to ``False`` (default) and on the intersection of keys if + ``intersect`` is set to ``True``. + """ + override = cls._coerce_value(override) + base = cls._coerce_value(base) + if override is None: + return base + if cls.is_true(base) or base is None: + return override + if cls.is_true(override): + return base if intersect else override + + # intersection or union of keys while preserving ordering: + if intersect: + merge_keys = [k for k in base if k in override] + [k for k in override if k in base] + else: + merge_keys = list(base) + [k for k in override if k not in base] + + merged: 'DictIntStrAny' = {} + for k in merge_keys: + merged_item = cls.merge(base.get(k), override.get(k), intersect=intersect) + if merged_item is not None: + merged[k] = merged_item + + return merged + + @staticmethod + def _coerce_items(items: Union['AbstractSetIntStr', 'MappingIntStrAny']) -> 'MappingIntStrAny': + if isinstance(items, Mapping): + pass + elif isinstance(items, AbstractSet): + items = dict.fromkeys(items, ...) + else: + class_name = getattr(items, '__class__', '???') + assert_never( + items, + f'Unexpected type of exclude value {class_name}', + ) + return items + + @classmethod + def _coerce_value(cls, value: Any) -> Any: + if value is None or cls.is_true(value): + return value + return cls._coerce_items(value) + + @staticmethod + def is_true(v: Any) -> bool: + return v is True or v is ... + + def __repr_args__(self) -> 'ReprArgs': + return [(None, self._items)] + + +class ClassAttribute: + """ + Hide class attribute from its instances + """ + + __slots__ = ( + 'name', + 'value', + ) + + def __init__(self, name: str, value: Any) -> None: + self.name = name + self.value = value + + def __get__(self, instance: Any, owner: Type[Any]) -> None: + if instance is None: + return self.value + raise AttributeError(f'{self.name!r} attribute of {owner.__name__!r} is class-only') + + +path_types = { + 'is_dir': 'directory', + 'is_file': 'file', + 'is_mount': 'mount point', + 'is_symlink': 'symlink', + 'is_block_device': 'block device', + 'is_char_device': 'char device', + 'is_fifo': 'FIFO', + 'is_socket': 'socket', +} + + +def path_type(p: 'Path') -> str: + """ + Find out what sort of thing a path is. + """ + assert p.exists(), 'path does not exist' + for method, name in path_types.items(): + if getattr(p, method)(): + return name + + return 'unknown' + + +Obj = TypeVar('Obj') + + +def smart_deepcopy(obj: Obj) -> Obj: + """ + Return type as is for immutable built-in types + Use obj.copy() for built-in empty collections + Use copy.deepcopy() for non-empty collections and unknown objects + """ + + obj_type = obj.__class__ + if obj_type in IMMUTABLE_NON_COLLECTIONS_TYPES: + return obj # fastest case: obj is immutable and not collection therefore will not be copied anyway + try: + if not obj and obj_type in BUILTIN_COLLECTIONS: + # faster way for empty collections, no need to copy its members + return obj if obj_type is tuple else obj.copy() # type: ignore # tuple doesn't have copy method + except (TypeError, ValueError, RuntimeError): + # do we really dare to catch ALL errors? Seems a bit risky + pass + + return deepcopy(obj) # slowest way when we actually might need a deepcopy + + +def is_valid_field(name: str) -> bool: + if not name.startswith('_'): + return True + return ROOT_KEY == name + + +DUNDER_ATTRIBUTES = { + '__annotations__', + '__classcell__', + '__doc__', + '__module__', + '__orig_bases__', + '__orig_class__', + '__qualname__', +} + + +def is_valid_private_name(name: str) -> bool: + return not is_valid_field(name) and name not in DUNDER_ATTRIBUTES + + +_EMPTY = object() + + +def all_identical(left: Iterable[Any], right: Iterable[Any]) -> bool: + """ + Check that the items of `left` are the same objects as those in `right`. + + >>> a, b = object(), object() + >>> all_identical([a, b, a], [a, b, a]) + True + >>> all_identical([a, b, [a]], [a, b, [a]]) # new list object, while "equal" is not "identical" + False + """ + for left_item, right_item in zip_longest(left, right, fillvalue=_EMPTY): + if left_item is not right_item: + return False + return True + + +def assert_never(obj: NoReturn, msg: str) -> NoReturn: + """ + Helper to make sure that we have covered all possible types. + + This is mostly useful for ``mypy``, docs: + https://mypy.readthedocs.io/en/latest/literal_types.html#exhaustive-checks + """ + raise TypeError(msg) + + +def get_unique_discriminator_alias(all_aliases: Collection[str], discriminator_key: str) -> str: + """Validate that all aliases are the same and if that's the case return the alias""" + unique_aliases = set(all_aliases) + if len(unique_aliases) > 1: + raise ConfigError( + f'Aliases for discriminator {discriminator_key!r} must be the same (got {", ".join(sorted(all_aliases))})' + ) + return unique_aliases.pop() + + +def get_discriminator_alias_and_values(tp: Any, discriminator_key: str) -> Tuple[str, Tuple[str, ...]]: + """ + Get alias and all valid values in the `Literal` type of the discriminator field + `tp` can be a `BaseModel` class or directly an `Annotated` `Union` of many. + """ + is_root_model = getattr(tp, '__custom_root_type__', False) + + if get_origin(tp) is Annotated: + tp = get_args(tp)[0] + + if hasattr(tp, '__pydantic_model__'): + tp = tp.__pydantic_model__ + + if is_union(get_origin(tp)): + alias, all_values = _get_union_alias_and_all_values(tp, discriminator_key) + return alias, tuple(v for values in all_values for v in values) + elif is_root_model: + union_type = tp.__fields__[ROOT_KEY].type_ + alias, all_values = _get_union_alias_and_all_values(union_type, discriminator_key) + + if len(set(all_values)) > 1: + raise ConfigError( + f'Field {discriminator_key!r} is not the same for all submodels of {display_as_type(tp)!r}' + ) + + return alias, all_values[0] + + else: + try: + t_discriminator_type = tp.__fields__[discriminator_key].type_ + except AttributeError as e: + raise TypeError(f'Type {tp.__name__!r} is not a valid `BaseModel` or `dataclass`') from e + except KeyError as e: + raise ConfigError(f'Model {tp.__name__!r} needs a discriminator field for key {discriminator_key!r}') from e + + if not is_literal_type(t_discriminator_type): + raise ConfigError(f'Field {discriminator_key!r} of model {tp.__name__!r} needs to be a `Literal`') + + return tp.__fields__[discriminator_key].alias, all_literal_values(t_discriminator_type) + + +def _get_union_alias_and_all_values( + union_type: Type[Any], discriminator_key: str +) -> Tuple[str, Tuple[Tuple[str, ...], ...]]: + zipped_aliases_values = [get_discriminator_alias_and_values(t, discriminator_key) for t in get_args(union_type)] + # unzip: [('alias_a',('v1', 'v2)), ('alias_b', ('v3',))] => [('alias_a', 'alias_b'), (('v1', 'v2'), ('v3',))] + all_aliases, all_values = zip(*zipped_aliases_values) + return get_unique_discriminator_alias(all_aliases, discriminator_key), all_values diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/v1.py b/venv/lib/python3.10/site-packages/pydantic/v1/v1.py new file mode 100644 index 0000000000000000000000000000000000000000..7e7895ccd673609a5349bb3e730bb855a60c74fa --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/v1/v1.py @@ -0,0 +1,116 @@ +# NOTE This file aliases the pydantic namespace as pydantic.v1 for smoother v1 -> v2 transition +# flake8: noqa +from pydantic import * + +# WARNING __all__ from .errors is not included here, it will be removed as an export here in v2 +# please use "from pydantic.errors import ..." instead +__all__ = [ + # annotated types utils + "create_model_from_namedtuple", + "create_model_from_typeddict", + # dataclasses + "dataclasses", + # class_validators + "root_validator", + "validator", + # config + "BaseConfig", + "ConfigDict", + "Extra", + # decorator + "validate_arguments", + # env_settings + "BaseSettings", + # error_wrappers + "ValidationError", + # fields + "Field", + "Required", + # main + "BaseModel", + "create_model", + "validate_model", + # network + "AnyUrl", + "AnyHttpUrl", + "FileUrl", + "HttpUrl", + "stricturl", + "EmailStr", + "NameEmail", + "IPvAnyAddress", + "IPvAnyInterface", + "IPvAnyNetwork", + "PostgresDsn", + "CockroachDsn", + "AmqpDsn", + "RedisDsn", + "MongoDsn", + "KafkaDsn", + "validate_email", + # parse + "Protocol", + # tools + "parse_file_as", + "parse_obj_as", + "parse_raw_as", + "schema_of", + "schema_json_of", + # types + "NoneStr", + "NoneBytes", + "StrBytes", + "NoneStrBytes", + "StrictStr", + "ConstrainedBytes", + "conbytes", + "ConstrainedList", + "conlist", + "ConstrainedSet", + "conset", + "ConstrainedFrozenSet", + "confrozenset", + "ConstrainedStr", + "constr", + "PyObject", + "ConstrainedInt", + "conint", + "PositiveInt", + "NegativeInt", + "NonNegativeInt", + "NonPositiveInt", + "ConstrainedFloat", + "confloat", + "PositiveFloat", + "NegativeFloat", + "NonNegativeFloat", + "NonPositiveFloat", + "FiniteFloat", + "ConstrainedDecimal", + "condecimal", + "ConstrainedDate", + "condate", + "UUID1", + "UUID3", + "UUID4", + "UUID5", + "FilePath", + "DirectoryPath", + "Json", + "JsonWrapper", + "SecretField", + "SecretStr", + "SecretBytes", + "StrictBool", + "StrictBytes", + "StrictInt", + "StrictFloat", + "PaymentCardNumber", + "PrivateAttr", + "ByteSize", + "PastDate", + "FutureDate", + # version + "compiled", + "VERSION", +] diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/validators.py b/venv/lib/python3.10/site-packages/pydantic/v1/validators.py new file mode 100644 index 0000000000000000000000000000000000000000..549a235e0c3dec621afb4eb0d872dda986e6bae1 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/v1/validators.py @@ -0,0 +1,765 @@ +import math +import re +from collections import OrderedDict, deque +from collections.abc import Hashable as CollectionsHashable +from datetime import date, datetime, time, timedelta +from decimal import Decimal, DecimalException +from enum import Enum, IntEnum +from ipaddress import IPv4Address, IPv4Interface, IPv4Network, IPv6Address, IPv6Interface, IPv6Network +from pathlib import Path +from typing import ( + TYPE_CHECKING, + Any, + Callable, + Deque, + Dict, + ForwardRef, + FrozenSet, + Generator, + Hashable, + List, + NamedTuple, + Pattern, + Set, + Tuple, + Type, + TypeVar, + Union, +) +from uuid import UUID + +from . import errors +from .datetime_parse import parse_date, parse_datetime, parse_duration, parse_time +from .typing import ( + AnyCallable, + all_literal_values, + display_as_type, + get_class, + is_callable_type, + is_literal_type, + is_namedtuple, + is_none_type, + is_typeddict, +) +from .utils import almost_equal_floats, lenient_issubclass, sequence_like + +if TYPE_CHECKING: + from typing_extensions import Literal, TypedDict + + from .config import BaseConfig + from .fields import ModelField + from .types import ConstrainedDecimal, ConstrainedFloat, ConstrainedInt + + ConstrainedNumber = Union[ConstrainedDecimal, ConstrainedFloat, ConstrainedInt] + AnyOrderedDict = OrderedDict[Any, Any] + Number = Union[int, float, Decimal] + StrBytes = Union[str, bytes] + + +def str_validator(v: Any) -> Union[str]: + if isinstance(v, str): + if isinstance(v, Enum): + return v.value + else: + return v + elif isinstance(v, (float, int, Decimal)): + # is there anything else we want to add here? If you think so, create an issue. + return str(v) + elif isinstance(v, (bytes, bytearray)): + return v.decode() + else: + raise errors.StrError() + + +def strict_str_validator(v: Any) -> Union[str]: + if isinstance(v, str) and not isinstance(v, Enum): + return v + raise errors.StrError() + + +def bytes_validator(v: Any) -> Union[bytes]: + if isinstance(v, bytes): + return v + elif isinstance(v, bytearray): + return bytes(v) + elif isinstance(v, str): + return v.encode() + elif isinstance(v, (float, int, Decimal)): + return str(v).encode() + else: + raise errors.BytesError() + + +def strict_bytes_validator(v: Any) -> Union[bytes]: + if isinstance(v, bytes): + return v + elif isinstance(v, bytearray): + return bytes(v) + else: + raise errors.BytesError() + + +BOOL_FALSE = {0, '0', 'off', 'f', 'false', 'n', 'no'} +BOOL_TRUE = {1, '1', 'on', 't', 'true', 'y', 'yes'} + + +def bool_validator(v: Any) -> bool: + if v is True or v is False: + return v + if isinstance(v, bytes): + v = v.decode() + if isinstance(v, str): + v = v.lower() + try: + if v in BOOL_TRUE: + return True + if v in BOOL_FALSE: + return False + except TypeError: + raise errors.BoolError() + raise errors.BoolError() + + +# matches the default limit cpython, see https://github.com/python/cpython/pull/96500 +max_str_int = 4_300 + + +def int_validator(v: Any) -> int: + if isinstance(v, int) and not (v is True or v is False): + return v + + # see https://github.com/pydantic/pydantic/issues/1477 and in turn, https://github.com/python/cpython/issues/95778 + # this check should be unnecessary once patch releases are out for 3.7, 3.8, 3.9 and 3.10 + # but better to check here until then. + # NOTICE: this does not fully protect user from the DOS risk since the standard library JSON implementation + # (and other std lib modules like xml) use `int()` and are likely called before this, the best workaround is to + # 1. update to the latest patch release of python once released, 2. use a different JSON library like ujson + if isinstance(v, (str, bytes, bytearray)) and len(v) > max_str_int: + raise errors.IntegerError() + + try: + return int(v) + except (TypeError, ValueError, OverflowError): + raise errors.IntegerError() + + +def strict_int_validator(v: Any) -> int: + if isinstance(v, int) and not (v is True or v is False): + return v + raise errors.IntegerError() + + +def float_validator(v: Any) -> float: + if isinstance(v, float): + return v + + try: + return float(v) + except (TypeError, ValueError): + raise errors.FloatError() + + +def strict_float_validator(v: Any) -> float: + if isinstance(v, float): + return v + raise errors.FloatError() + + +def float_finite_validator(v: 'Number', field: 'ModelField', config: 'BaseConfig') -> 'Number': + allow_inf_nan = getattr(field.type_, 'allow_inf_nan', None) + if allow_inf_nan is None: + allow_inf_nan = config.allow_inf_nan + + if allow_inf_nan is False and (math.isnan(v) or math.isinf(v)): + raise errors.NumberNotFiniteError() + return v + + +def number_multiple_validator(v: 'Number', field: 'ModelField') -> 'Number': + field_type: ConstrainedNumber = field.type_ + if field_type.multiple_of is not None: + mod = float(v) / float(field_type.multiple_of) % 1 + if not almost_equal_floats(mod, 0.0) and not almost_equal_floats(mod, 1.0): + raise errors.NumberNotMultipleError(multiple_of=field_type.multiple_of) + return v + + +def number_size_validator(v: 'Number', field: 'ModelField') -> 'Number': + field_type: ConstrainedNumber = field.type_ + if field_type.gt is not None and not v > field_type.gt: + raise errors.NumberNotGtError(limit_value=field_type.gt) + elif field_type.ge is not None and not v >= field_type.ge: + raise errors.NumberNotGeError(limit_value=field_type.ge) + + if field_type.lt is not None and not v < field_type.lt: + raise errors.NumberNotLtError(limit_value=field_type.lt) + if field_type.le is not None and not v <= field_type.le: + raise errors.NumberNotLeError(limit_value=field_type.le) + + return v + + +def constant_validator(v: 'Any', field: 'ModelField') -> 'Any': + """Validate ``const`` fields. + + The value provided for a ``const`` field must be equal to the default value + of the field. This is to support the keyword of the same name in JSON + Schema. + """ + if v != field.default: + raise errors.WrongConstantError(given=v, permitted=[field.default]) + + return v + + +def anystr_length_validator(v: 'StrBytes', config: 'BaseConfig') -> 'StrBytes': + v_len = len(v) + + min_length = config.min_anystr_length + if v_len < min_length: + raise errors.AnyStrMinLengthError(limit_value=min_length) + + max_length = config.max_anystr_length + if max_length is not None and v_len > max_length: + raise errors.AnyStrMaxLengthError(limit_value=max_length) + + return v + + +def anystr_strip_whitespace(v: 'StrBytes') -> 'StrBytes': + return v.strip() + + +def anystr_upper(v: 'StrBytes') -> 'StrBytes': + return v.upper() + + +def anystr_lower(v: 'StrBytes') -> 'StrBytes': + return v.lower() + + +def ordered_dict_validator(v: Any) -> 'AnyOrderedDict': + if isinstance(v, OrderedDict): + return v + + try: + return OrderedDict(v) + except (TypeError, ValueError): + raise errors.DictError() + + +def dict_validator(v: Any) -> Dict[Any, Any]: + if isinstance(v, dict): + return v + + try: + return dict(v) + except (TypeError, ValueError): + raise errors.DictError() + + +def list_validator(v: Any) -> List[Any]: + if isinstance(v, list): + return v + elif sequence_like(v): + return list(v) + else: + raise errors.ListError() + + +def tuple_validator(v: Any) -> Tuple[Any, ...]: + if isinstance(v, tuple): + return v + elif sequence_like(v): + return tuple(v) + else: + raise errors.TupleError() + + +def set_validator(v: Any) -> Set[Any]: + if isinstance(v, set): + return v + elif sequence_like(v): + return set(v) + else: + raise errors.SetError() + + +def frozenset_validator(v: Any) -> FrozenSet[Any]: + if isinstance(v, frozenset): + return v + elif sequence_like(v): + return frozenset(v) + else: + raise errors.FrozenSetError() + + +def deque_validator(v: Any) -> Deque[Any]: + if isinstance(v, deque): + return v + elif sequence_like(v): + return deque(v) + else: + raise errors.DequeError() + + +def enum_member_validator(v: Any, field: 'ModelField', config: 'BaseConfig') -> Enum: + try: + enum_v = field.type_(v) + except ValueError: + # field.type_ should be an enum, so will be iterable + raise errors.EnumMemberError(enum_values=list(field.type_)) + return enum_v.value if config.use_enum_values else enum_v + + +def uuid_validator(v: Any, field: 'ModelField') -> UUID: + try: + if isinstance(v, str): + v = UUID(v) + elif isinstance(v, (bytes, bytearray)): + try: + v = UUID(v.decode()) + except ValueError: + # 16 bytes in big-endian order as the bytes argument fail + # the above check + v = UUID(bytes=v) + except ValueError: + raise errors.UUIDError() + + if not isinstance(v, UUID): + raise errors.UUIDError() + + required_version = getattr(field.type_, '_required_version', None) + if required_version and v.version != required_version: + raise errors.UUIDVersionError(required_version=required_version) + + return v + + +def decimal_validator(v: Any) -> Decimal: + if isinstance(v, Decimal): + return v + elif isinstance(v, (bytes, bytearray)): + v = v.decode() + + v = str(v).strip() + + try: + v = Decimal(v) + except DecimalException: + raise errors.DecimalError() + + if not v.is_finite(): + raise errors.DecimalIsNotFiniteError() + + return v + + +def hashable_validator(v: Any) -> Hashable: + if isinstance(v, Hashable): + return v + + raise errors.HashableError() + + +def ip_v4_address_validator(v: Any) -> IPv4Address: + if isinstance(v, IPv4Address): + return v + + try: + return IPv4Address(v) + except ValueError: + raise errors.IPv4AddressError() + + +def ip_v6_address_validator(v: Any) -> IPv6Address: + if isinstance(v, IPv6Address): + return v + + try: + return IPv6Address(v) + except ValueError: + raise errors.IPv6AddressError() + + +def ip_v4_network_validator(v: Any) -> IPv4Network: + """ + Assume IPv4Network initialised with a default ``strict`` argument + + See more: + https://docs.python.org/library/ipaddress.html#ipaddress.IPv4Network + """ + if isinstance(v, IPv4Network): + return v + + try: + return IPv4Network(v) + except ValueError: + raise errors.IPv4NetworkError() + + +def ip_v6_network_validator(v: Any) -> IPv6Network: + """ + Assume IPv6Network initialised with a default ``strict`` argument + + See more: + https://docs.python.org/library/ipaddress.html#ipaddress.IPv6Network + """ + if isinstance(v, IPv6Network): + return v + + try: + return IPv6Network(v) + except ValueError: + raise errors.IPv6NetworkError() + + +def ip_v4_interface_validator(v: Any) -> IPv4Interface: + if isinstance(v, IPv4Interface): + return v + + try: + return IPv4Interface(v) + except ValueError: + raise errors.IPv4InterfaceError() + + +def ip_v6_interface_validator(v: Any) -> IPv6Interface: + if isinstance(v, IPv6Interface): + return v + + try: + return IPv6Interface(v) + except ValueError: + raise errors.IPv6InterfaceError() + + +def path_validator(v: Any) -> Path: + if isinstance(v, Path): + return v + + try: + return Path(v) + except TypeError: + raise errors.PathError() + + +def path_exists_validator(v: Any) -> Path: + if not v.exists(): + raise errors.PathNotExistsError(path=v) + + return v + + +def callable_validator(v: Any) -> AnyCallable: + """ + Perform a simple check if the value is callable. + + Note: complete matching of argument type hints and return types is not performed + """ + if callable(v): + return v + + raise errors.CallableError(value=v) + + +def enum_validator(v: Any) -> Enum: + if isinstance(v, Enum): + return v + + raise errors.EnumError(value=v) + + +def int_enum_validator(v: Any) -> IntEnum: + if isinstance(v, IntEnum): + return v + + raise errors.IntEnumError(value=v) + + +def make_literal_validator(type_: Any) -> Callable[[Any], Any]: + permitted_choices = all_literal_values(type_) + + # To have a O(1) complexity and still return one of the values set inside the `Literal`, + # we create a dict with the set values (a set causes some problems with the way intersection works). + # In some cases the set value and checked value can indeed be different (see `test_literal_validator_str_enum`) + allowed_choices = {v: v for v in permitted_choices} + + def literal_validator(v: Any) -> Any: + try: + return allowed_choices[v] + except (KeyError, TypeError): + raise errors.WrongConstantError(given=v, permitted=permitted_choices) + + return literal_validator + + +def constr_length_validator(v: 'StrBytes', field: 'ModelField', config: 'BaseConfig') -> 'StrBytes': + v_len = len(v) + + min_length = field.type_.min_length if field.type_.min_length is not None else config.min_anystr_length + if v_len < min_length: + raise errors.AnyStrMinLengthError(limit_value=min_length) + + max_length = field.type_.max_length if field.type_.max_length is not None else config.max_anystr_length + if max_length is not None and v_len > max_length: + raise errors.AnyStrMaxLengthError(limit_value=max_length) + + return v + + +def constr_strip_whitespace(v: 'StrBytes', field: 'ModelField', config: 'BaseConfig') -> 'StrBytes': + strip_whitespace = field.type_.strip_whitespace or config.anystr_strip_whitespace + if strip_whitespace: + v = v.strip() + + return v + + +def constr_upper(v: 'StrBytes', field: 'ModelField', config: 'BaseConfig') -> 'StrBytes': + upper = field.type_.to_upper or config.anystr_upper + if upper: + v = v.upper() + + return v + + +def constr_lower(v: 'StrBytes', field: 'ModelField', config: 'BaseConfig') -> 'StrBytes': + lower = field.type_.to_lower or config.anystr_lower + if lower: + v = v.lower() + return v + + +def validate_json(v: Any, config: 'BaseConfig') -> Any: + if v is None: + # pass None through to other validators + return v + try: + return config.json_loads(v) # type: ignore + except ValueError: + raise errors.JsonError() + except TypeError: + raise errors.JsonTypeError() + + +T = TypeVar('T') + + +def make_arbitrary_type_validator(type_: Type[T]) -> Callable[[T], T]: + def arbitrary_type_validator(v: Any) -> T: + if isinstance(v, type_): + return v + raise errors.ArbitraryTypeError(expected_arbitrary_type=type_) + + return arbitrary_type_validator + + +def make_class_validator(type_: Type[T]) -> Callable[[Any], Type[T]]: + def class_validator(v: Any) -> Type[T]: + if lenient_issubclass(v, type_): + return v + raise errors.SubclassError(expected_class=type_) + + return class_validator + + +def any_class_validator(v: Any) -> Type[T]: + if isinstance(v, type): + return v + raise errors.ClassError() + + +def none_validator(v: Any) -> 'Literal[None]': + if v is None: + return v + raise errors.NotNoneError() + + +def pattern_validator(v: Any) -> Pattern[str]: + if isinstance(v, Pattern): + return v + + str_value = str_validator(v) + + try: + return re.compile(str_value) + except re.error: + raise errors.PatternError() + + +NamedTupleT = TypeVar('NamedTupleT', bound=NamedTuple) + + +def make_namedtuple_validator( + namedtuple_cls: Type[NamedTupleT], config: Type['BaseConfig'] +) -> Callable[[Tuple[Any, ...]], NamedTupleT]: + from .annotated_types import create_model_from_namedtuple + + NamedTupleModel = create_model_from_namedtuple( + namedtuple_cls, + __config__=config, + __module__=namedtuple_cls.__module__, + ) + namedtuple_cls.__pydantic_model__ = NamedTupleModel # type: ignore[attr-defined] + + def namedtuple_validator(values: Tuple[Any, ...]) -> NamedTupleT: + annotations = NamedTupleModel.__annotations__ + + if len(values) > len(annotations): + raise errors.ListMaxLengthError(limit_value=len(annotations)) + + dict_values: Dict[str, Any] = dict(zip(annotations, values)) + validated_dict_values: Dict[str, Any] = dict(NamedTupleModel(**dict_values)) + return namedtuple_cls(**validated_dict_values) + + return namedtuple_validator + + +def make_typeddict_validator( + typeddict_cls: Type['TypedDict'], config: Type['BaseConfig'] # type: ignore[valid-type] +) -> Callable[[Any], Dict[str, Any]]: + from .annotated_types import create_model_from_typeddict + + TypedDictModel = create_model_from_typeddict( + typeddict_cls, + __config__=config, + __module__=typeddict_cls.__module__, + ) + typeddict_cls.__pydantic_model__ = TypedDictModel # type: ignore[attr-defined] + + def typeddict_validator(values: 'TypedDict') -> Dict[str, Any]: # type: ignore[valid-type] + return TypedDictModel.parse_obj(values).dict(exclude_unset=True) + + return typeddict_validator + + +class IfConfig: + def __init__(self, validator: AnyCallable, *config_attr_names: str, ignored_value: Any = False) -> None: + self.validator = validator + self.config_attr_names = config_attr_names + self.ignored_value = ignored_value + + def check(self, config: Type['BaseConfig']) -> bool: + return any(getattr(config, name) not in {None, self.ignored_value} for name in self.config_attr_names) + + +# order is important here, for example: bool is a subclass of int so has to come first, datetime before date same, +# IPv4Interface before IPv4Address, etc +_VALIDATORS: List[Tuple[Type[Any], List[Any]]] = [ + (IntEnum, [int_validator, enum_member_validator]), + (Enum, [enum_member_validator]), + ( + str, + [ + str_validator, + IfConfig(anystr_strip_whitespace, 'anystr_strip_whitespace'), + IfConfig(anystr_upper, 'anystr_upper'), + IfConfig(anystr_lower, 'anystr_lower'), + IfConfig(anystr_length_validator, 'min_anystr_length', 'max_anystr_length'), + ], + ), + ( + bytes, + [ + bytes_validator, + IfConfig(anystr_strip_whitespace, 'anystr_strip_whitespace'), + IfConfig(anystr_upper, 'anystr_upper'), + IfConfig(anystr_lower, 'anystr_lower'), + IfConfig(anystr_length_validator, 'min_anystr_length', 'max_anystr_length'), + ], + ), + (bool, [bool_validator]), + (int, [int_validator]), + (float, [float_validator, IfConfig(float_finite_validator, 'allow_inf_nan', ignored_value=True)]), + (Path, [path_validator]), + (datetime, [parse_datetime]), + (date, [parse_date]), + (time, [parse_time]), + (timedelta, [parse_duration]), + (OrderedDict, [ordered_dict_validator]), + (dict, [dict_validator]), + (list, [list_validator]), + (tuple, [tuple_validator]), + (set, [set_validator]), + (frozenset, [frozenset_validator]), + (deque, [deque_validator]), + (UUID, [uuid_validator]), + (Decimal, [decimal_validator]), + (IPv4Interface, [ip_v4_interface_validator]), + (IPv6Interface, [ip_v6_interface_validator]), + (IPv4Address, [ip_v4_address_validator]), + (IPv6Address, [ip_v6_address_validator]), + (IPv4Network, [ip_v4_network_validator]), + (IPv6Network, [ip_v6_network_validator]), +] + + +def find_validators( # noqa: C901 (ignore complexity) + type_: Type[Any], config: Type['BaseConfig'] +) -> Generator[AnyCallable, None, None]: + from .dataclasses import is_builtin_dataclass, make_dataclass_validator + + if type_ is Any or type_ is object: + return + type_type = type_.__class__ + if type_type == ForwardRef or type_type == TypeVar: + return + + if is_none_type(type_): + yield none_validator + return + if type_ is Pattern or type_ is re.Pattern: + yield pattern_validator + return + if type_ is Hashable or type_ is CollectionsHashable: + yield hashable_validator + return + if is_callable_type(type_): + yield callable_validator + return + if is_literal_type(type_): + yield make_literal_validator(type_) + return + if is_builtin_dataclass(type_): + yield from make_dataclass_validator(type_, config) + return + if type_ is Enum: + yield enum_validator + return + if type_ is IntEnum: + yield int_enum_validator + return + if is_namedtuple(type_): + yield tuple_validator + yield make_namedtuple_validator(type_, config) + return + if is_typeddict(type_): + yield make_typeddict_validator(type_, config) + return + + class_ = get_class(type_) + if class_ is not None: + if class_ is not Any and isinstance(class_, type): + yield make_class_validator(class_) + else: + yield any_class_validator + return + + for val_type, validators in _VALIDATORS: + try: + if issubclass(type_, val_type): + for v in validators: + if isinstance(v, IfConfig): + if v.check(config): + yield v.validator + else: + yield v + return + except TypeError: + raise RuntimeError(f'error checking inheritance of {type_!r} (type: {display_as_type(type_)})') + + if config.arbitrary_types_allowed: + yield make_arbitrary_type_validator(type_) + else: + raise RuntimeError(f'no validator found for {type_}, see `arbitrary_types_allowed` in Config') diff --git a/venv/lib/python3.10/site-packages/pydantic/v1/version.py b/venv/lib/python3.10/site-packages/pydantic/v1/version.py new file mode 100644 index 0000000000000000000000000000000000000000..b1c5547750c17ceab65baf2bc8c49fb74aa5d826 --- /dev/null +++ b/venv/lib/python3.10/site-packages/pydantic/v1/version.py @@ -0,0 +1,38 @@ +__all__ = 'compiled', 'VERSION', 'version_info' + +VERSION = '1.10.15' + +try: + import cython # type: ignore +except ImportError: + compiled: bool = False +else: # pragma: no cover + try: + compiled = cython.compiled + except AttributeError: + compiled = False + + +def version_info() -> str: + import platform + import sys + from importlib import import_module + from pathlib import Path + + optional_deps = [] + for p in ('devtools', 'dotenv', 'email-validator', 'typing-extensions'): + try: + import_module(p.replace('-', '_')) + except ImportError: + continue + optional_deps.append(p) + + info = { + 'pydantic version': VERSION, + 'pydantic compiled': compiled, + 'install path': Path(__file__).resolve().parent, + 'python version': sys.version, + 'platform': platform.platform(), + 'optional deps. installed': optional_deps, + } + return '\n'.join('{:>30} {}'.format(k + ':', str(v).replace('\n', ' ')) for k, v in info.items())