Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step40/zero/17.attention.dense.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step40/zero/17.attention.dense.weight/fp32.pt +3 -0
- ckpts/universal/global_step40/zero/8.mlp.dense_h_to_4h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step40/zero/8.mlp.dense_h_to_4h.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/nltk/chat/__init__.py +48 -0
- venv/lib/python3.10/site-packages/nltk/chat/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/chat/__pycache__/eliza.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/chat/__pycache__/iesha.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/chat/__pycache__/rude.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/chat/__pycache__/suntsu.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/chat/__pycache__/util.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/chat/__pycache__/zen.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/chat/eliza.py +337 -0
- venv/lib/python3.10/site-packages/nltk/chat/iesha.py +160 -0
- venv/lib/python3.10/site-packages/nltk/chat/rude.py +125 -0
- venv/lib/python3.10/site-packages/nltk/chat/suntsu.py +140 -0
- venv/lib/python3.10/site-packages/nltk/chat/util.py +124 -0
- venv/lib/python3.10/site-packages/nltk/chat/zen.py +329 -0
- venv/lib/python3.10/site-packages/nltk/classify/__init__.py +101 -0
- venv/lib/python3.10/site-packages/nltk/classify/api.py +195 -0
- venv/lib/python3.10/site-packages/nltk/classify/decisiontree.py +349 -0
- venv/lib/python3.10/site-packages/nltk/classify/maxent.py +1569 -0
- venv/lib/python3.10/site-packages/nltk/classify/megam.py +184 -0
- venv/lib/python3.10/site-packages/nltk/classify/naivebayes.py +260 -0
- venv/lib/python3.10/site-packages/nltk/classify/positivenaivebayes.py +180 -0
- venv/lib/python3.10/site-packages/nltk/classify/rte_classify.py +183 -0
- venv/lib/python3.10/site-packages/nltk/classify/scikitlearn.py +143 -0
- venv/lib/python3.10/site-packages/nltk/classify/senna.py +176 -0
- venv/lib/python3.10/site-packages/nltk/classify/svm.py +17 -0
- venv/lib/python3.10/site-packages/nltk/classify/tadm.py +122 -0
- venv/lib/python3.10/site-packages/nltk/classify/textcat.py +197 -0
- venv/lib/python3.10/site-packages/nltk/classify/util.py +346 -0
- venv/lib/python3.10/site-packages/nltk/classify/weka.py +377 -0
- venv/lib/python3.10/site-packages/nltk/misc/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/misc/__pycache__/babelfish.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/misc/__pycache__/chomsky.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/misc/__pycache__/minimalset.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/misc/__pycache__/sort.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/stem/__init__.py +34 -0
- venv/lib/python3.10/site-packages/nltk/stem/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/stem/__pycache__/api.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/stem/__pycache__/arlstem.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/stem/__pycache__/arlstem2.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/stem/__pycache__/cistem.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/stem/__pycache__/isri.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/stem/__pycache__/lancaster.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/stem/__pycache__/porter.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/stem/__pycache__/regexp.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/stem/__pycache__/rslp.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nltk/stem/__pycache__/snowball.cpython-310.pyc +0 -0
ckpts/universal/global_step40/zero/17.attention.dense.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91fbdb66a9e4da6e4b659c893ed62fe150b3b2fcb87a69e4e49e4ed1325ac032
|
3 |
+
size 16778396
|
ckpts/universal/global_step40/zero/17.attention.dense.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ba9630f2a533f3ac28f6e10d9492ebec38926e4f4d8cf4741efe3f441ade36b
|
3 |
+
size 16778317
|
ckpts/universal/global_step40/zero/8.mlp.dense_h_to_4h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:996520494b7c161147d9550c30ae99f763cc6a7301debafb1dd60c41e0b6e3d9
|
3 |
+
size 33555612
|
ckpts/universal/global_step40/zero/8.mlp.dense_h_to_4h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:085aff1a306423579c8d3cd7f2d2390fad5beb8dd1ab99a49ea246b2814aad75
|
3 |
+
size 33555533
|
venv/lib/python3.10/site-packages/nltk/chat/__init__.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Chatbots
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Authors: Steven Bird <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
# Based on an Eliza implementation by Joe Strout <[email protected]>,
|
9 |
+
# Jeff Epler <[email protected]> and Jez Higgins <[email protected]>.
|
10 |
+
|
11 |
+
"""
|
12 |
+
A class for simple chatbots. These perform simple pattern matching on sentences
|
13 |
+
typed by users, and respond with automatically generated sentences.
|
14 |
+
|
15 |
+
These chatbots may not work using the windows command line or the
|
16 |
+
windows IDLE GUI.
|
17 |
+
"""
|
18 |
+
|
19 |
+
from nltk.chat.eliza import eliza_chat
|
20 |
+
from nltk.chat.iesha import iesha_chat
|
21 |
+
from nltk.chat.rude import rude_chat
|
22 |
+
from nltk.chat.suntsu import suntsu_chat
|
23 |
+
from nltk.chat.util import Chat
|
24 |
+
from nltk.chat.zen import zen_chat
|
25 |
+
|
26 |
+
bots = [
|
27 |
+
(eliza_chat, "Eliza (psycho-babble)"),
|
28 |
+
(iesha_chat, "Iesha (teen anime junky)"),
|
29 |
+
(rude_chat, "Rude (abusive bot)"),
|
30 |
+
(suntsu_chat, "Suntsu (Chinese sayings)"),
|
31 |
+
(zen_chat, "Zen (gems of wisdom)"),
|
32 |
+
]
|
33 |
+
|
34 |
+
|
35 |
+
def chatbots():
|
36 |
+
print("Which chatbot would you like to talk to?")
|
37 |
+
botcount = len(bots)
|
38 |
+
for i in range(botcount):
|
39 |
+
print(" %d: %s" % (i + 1, bots[i][1]))
|
40 |
+
while True:
|
41 |
+
choice = input(f"\nEnter a number in the range 1-{botcount}: ").strip()
|
42 |
+
if choice.isdigit() and (int(choice) - 1) in range(botcount):
|
43 |
+
break
|
44 |
+
else:
|
45 |
+
print(" Error: bad chatbot number")
|
46 |
+
|
47 |
+
chatbot = bots[int(choice) - 1][0]
|
48 |
+
chatbot()
|
venv/lib/python3.10/site-packages/nltk/chat/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.36 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/chat/__pycache__/eliza.cpython-310.pyc
ADDED
Binary file (5.88 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/chat/__pycache__/iesha.cpython-310.pyc
ADDED
Binary file (3.32 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/chat/__pycache__/rude.cpython-310.pyc
ADDED
Binary file (2.21 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/chat/__pycache__/suntsu.cpython-310.pyc
ADDED
Binary file (5.96 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/chat/__pycache__/util.cpython-310.pyc
ADDED
Binary file (3.75 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/chat/__pycache__/zen.cpython-310.pyc
ADDED
Binary file (6.51 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/chat/eliza.py
ADDED
@@ -0,0 +1,337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Eliza
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Authors: Steven Bird <[email protected]>
|
5 |
+
# Edward Loper <[email protected]>
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
# Based on an Eliza implementation by Joe Strout <[email protected]>,
|
10 |
+
# Jeff Epler <[email protected]> and Jez Higgins <mailto:[email protected]>.
|
11 |
+
|
12 |
+
# a translation table used to convert things you say into things the
|
13 |
+
# computer says back, e.g. "I am" --> "you are"
|
14 |
+
|
15 |
+
from nltk.chat.util import Chat, reflections
|
16 |
+
|
17 |
+
# a table of response pairs, where each pair consists of a
|
18 |
+
# regular expression, and a list of possible responses,
|
19 |
+
# with group-macros labelled as %1, %2.
|
20 |
+
|
21 |
+
pairs = (
|
22 |
+
(
|
23 |
+
r"I need (.*)",
|
24 |
+
(
|
25 |
+
"Why do you need %1?",
|
26 |
+
"Would it really help you to get %1?",
|
27 |
+
"Are you sure you need %1?",
|
28 |
+
),
|
29 |
+
),
|
30 |
+
(
|
31 |
+
r"Why don\'t you (.*)",
|
32 |
+
(
|
33 |
+
"Do you really think I don't %1?",
|
34 |
+
"Perhaps eventually I will %1.",
|
35 |
+
"Do you really want me to %1?",
|
36 |
+
),
|
37 |
+
),
|
38 |
+
(
|
39 |
+
r"Why can\'t I (.*)",
|
40 |
+
(
|
41 |
+
"Do you think you should be able to %1?",
|
42 |
+
"If you could %1, what would you do?",
|
43 |
+
"I don't know -- why can't you %1?",
|
44 |
+
"Have you really tried?",
|
45 |
+
),
|
46 |
+
),
|
47 |
+
(
|
48 |
+
r"I can\'t (.*)",
|
49 |
+
(
|
50 |
+
"How do you know you can't %1?",
|
51 |
+
"Perhaps you could %1 if you tried.",
|
52 |
+
"What would it take for you to %1?",
|
53 |
+
),
|
54 |
+
),
|
55 |
+
(
|
56 |
+
r"I am (.*)",
|
57 |
+
(
|
58 |
+
"Did you come to me because you are %1?",
|
59 |
+
"How long have you been %1?",
|
60 |
+
"How do you feel about being %1?",
|
61 |
+
),
|
62 |
+
),
|
63 |
+
(
|
64 |
+
r"I\'m (.*)",
|
65 |
+
(
|
66 |
+
"How does being %1 make you feel?",
|
67 |
+
"Do you enjoy being %1?",
|
68 |
+
"Why do you tell me you're %1?",
|
69 |
+
"Why do you think you're %1?",
|
70 |
+
),
|
71 |
+
),
|
72 |
+
(
|
73 |
+
r"Are you (.*)",
|
74 |
+
(
|
75 |
+
"Why does it matter whether I am %1?",
|
76 |
+
"Would you prefer it if I were not %1?",
|
77 |
+
"Perhaps you believe I am %1.",
|
78 |
+
"I may be %1 -- what do you think?",
|
79 |
+
),
|
80 |
+
),
|
81 |
+
(
|
82 |
+
r"What (.*)",
|
83 |
+
(
|
84 |
+
"Why do you ask?",
|
85 |
+
"How would an answer to that help you?",
|
86 |
+
"What do you think?",
|
87 |
+
),
|
88 |
+
),
|
89 |
+
(
|
90 |
+
r"How (.*)",
|
91 |
+
(
|
92 |
+
"How do you suppose?",
|
93 |
+
"Perhaps you can answer your own question.",
|
94 |
+
"What is it you're really asking?",
|
95 |
+
),
|
96 |
+
),
|
97 |
+
(
|
98 |
+
r"Because (.*)",
|
99 |
+
(
|
100 |
+
"Is that the real reason?",
|
101 |
+
"What other reasons come to mind?",
|
102 |
+
"Does that reason apply to anything else?",
|
103 |
+
"If %1, what else must be true?",
|
104 |
+
),
|
105 |
+
),
|
106 |
+
(
|
107 |
+
r"(.*) sorry (.*)",
|
108 |
+
(
|
109 |
+
"There are many times when no apology is needed.",
|
110 |
+
"What feelings do you have when you apologize?",
|
111 |
+
),
|
112 |
+
),
|
113 |
+
(
|
114 |
+
r"Hello(.*)",
|
115 |
+
(
|
116 |
+
"Hello... I'm glad you could drop by today.",
|
117 |
+
"Hi there... how are you today?",
|
118 |
+
"Hello, how are you feeling today?",
|
119 |
+
),
|
120 |
+
),
|
121 |
+
(
|
122 |
+
r"I think (.*)",
|
123 |
+
("Do you doubt %1?", "Do you really think so?", "But you're not sure %1?"),
|
124 |
+
),
|
125 |
+
(
|
126 |
+
r"(.*) friend (.*)",
|
127 |
+
(
|
128 |
+
"Tell me more about your friends.",
|
129 |
+
"When you think of a friend, what comes to mind?",
|
130 |
+
"Why don't you tell me about a childhood friend?",
|
131 |
+
),
|
132 |
+
),
|
133 |
+
(r"Yes", ("You seem quite sure.", "OK, but can you elaborate a bit?")),
|
134 |
+
(
|
135 |
+
r"(.*) computer(.*)",
|
136 |
+
(
|
137 |
+
"Are you really talking about me?",
|
138 |
+
"Does it seem strange to talk to a computer?",
|
139 |
+
"How do computers make you feel?",
|
140 |
+
"Do you feel threatened by computers?",
|
141 |
+
),
|
142 |
+
),
|
143 |
+
(
|
144 |
+
r"Is it (.*)",
|
145 |
+
(
|
146 |
+
"Do you think it is %1?",
|
147 |
+
"Perhaps it's %1 -- what do you think?",
|
148 |
+
"If it were %1, what would you do?",
|
149 |
+
"It could well be that %1.",
|
150 |
+
),
|
151 |
+
),
|
152 |
+
(
|
153 |
+
r"It is (.*)",
|
154 |
+
(
|
155 |
+
"You seem very certain.",
|
156 |
+
"If I told you that it probably isn't %1, what would you feel?",
|
157 |
+
),
|
158 |
+
),
|
159 |
+
(
|
160 |
+
r"Can you (.*)",
|
161 |
+
(
|
162 |
+
"What makes you think I can't %1?",
|
163 |
+
"If I could %1, then what?",
|
164 |
+
"Why do you ask if I can %1?",
|
165 |
+
),
|
166 |
+
),
|
167 |
+
(
|
168 |
+
r"Can I (.*)",
|
169 |
+
(
|
170 |
+
"Perhaps you don't want to %1.",
|
171 |
+
"Do you want to be able to %1?",
|
172 |
+
"If you could %1, would you?",
|
173 |
+
),
|
174 |
+
),
|
175 |
+
(
|
176 |
+
r"You are (.*)",
|
177 |
+
(
|
178 |
+
"Why do you think I am %1?",
|
179 |
+
"Does it please you to think that I'm %1?",
|
180 |
+
"Perhaps you would like me to be %1.",
|
181 |
+
"Perhaps you're really talking about yourself?",
|
182 |
+
),
|
183 |
+
),
|
184 |
+
(
|
185 |
+
r"You\'re (.*)",
|
186 |
+
(
|
187 |
+
"Why do you say I am %1?",
|
188 |
+
"Why do you think I am %1?",
|
189 |
+
"Are we talking about you, or me?",
|
190 |
+
),
|
191 |
+
),
|
192 |
+
(
|
193 |
+
r"I don\'t (.*)",
|
194 |
+
("Don't you really %1?", "Why don't you %1?", "Do you want to %1?"),
|
195 |
+
),
|
196 |
+
(
|
197 |
+
r"I feel (.*)",
|
198 |
+
(
|
199 |
+
"Good, tell me more about these feelings.",
|
200 |
+
"Do you often feel %1?",
|
201 |
+
"When do you usually feel %1?",
|
202 |
+
"When you feel %1, what do you do?",
|
203 |
+
),
|
204 |
+
),
|
205 |
+
(
|
206 |
+
r"I have (.*)",
|
207 |
+
(
|
208 |
+
"Why do you tell me that you've %1?",
|
209 |
+
"Have you really %1?",
|
210 |
+
"Now that you have %1, what will you do next?",
|
211 |
+
),
|
212 |
+
),
|
213 |
+
(
|
214 |
+
r"I would (.*)",
|
215 |
+
(
|
216 |
+
"Could you explain why you would %1?",
|
217 |
+
"Why would you %1?",
|
218 |
+
"Who else knows that you would %1?",
|
219 |
+
),
|
220 |
+
),
|
221 |
+
(
|
222 |
+
r"Is there (.*)",
|
223 |
+
(
|
224 |
+
"Do you think there is %1?",
|
225 |
+
"It's likely that there is %1.",
|
226 |
+
"Would you like there to be %1?",
|
227 |
+
),
|
228 |
+
),
|
229 |
+
(
|
230 |
+
r"My (.*)",
|
231 |
+
(
|
232 |
+
"I see, your %1.",
|
233 |
+
"Why do you say that your %1?",
|
234 |
+
"When your %1, how do you feel?",
|
235 |
+
),
|
236 |
+
),
|
237 |
+
(
|
238 |
+
r"You (.*)",
|
239 |
+
(
|
240 |
+
"We should be discussing you, not me.",
|
241 |
+
"Why do you say that about me?",
|
242 |
+
"Why do you care whether I %1?",
|
243 |
+
),
|
244 |
+
),
|
245 |
+
(r"Why (.*)", ("Why don't you tell me the reason why %1?", "Why do you think %1?")),
|
246 |
+
(
|
247 |
+
r"I want (.*)",
|
248 |
+
(
|
249 |
+
"What would it mean to you if you got %1?",
|
250 |
+
"Why do you want %1?",
|
251 |
+
"What would you do if you got %1?",
|
252 |
+
"If you got %1, then what would you do?",
|
253 |
+
),
|
254 |
+
),
|
255 |
+
(
|
256 |
+
r"(.*) mother(.*)",
|
257 |
+
(
|
258 |
+
"Tell me more about your mother.",
|
259 |
+
"What was your relationship with your mother like?",
|
260 |
+
"How do you feel about your mother?",
|
261 |
+
"How does this relate to your feelings today?",
|
262 |
+
"Good family relations are important.",
|
263 |
+
),
|
264 |
+
),
|
265 |
+
(
|
266 |
+
r"(.*) father(.*)",
|
267 |
+
(
|
268 |
+
"Tell me more about your father.",
|
269 |
+
"How did your father make you feel?",
|
270 |
+
"How do you feel about your father?",
|
271 |
+
"Does your relationship with your father relate to your feelings today?",
|
272 |
+
"Do you have trouble showing affection with your family?",
|
273 |
+
),
|
274 |
+
),
|
275 |
+
(
|
276 |
+
r"(.*) child(.*)",
|
277 |
+
(
|
278 |
+
"Did you have close friends as a child?",
|
279 |
+
"What is your favorite childhood memory?",
|
280 |
+
"Do you remember any dreams or nightmares from childhood?",
|
281 |
+
"Did the other children sometimes tease you?",
|
282 |
+
"How do you think your childhood experiences relate to your feelings today?",
|
283 |
+
),
|
284 |
+
),
|
285 |
+
(
|
286 |
+
r"(.*)\?",
|
287 |
+
(
|
288 |
+
"Why do you ask that?",
|
289 |
+
"Please consider whether you can answer your own question.",
|
290 |
+
"Perhaps the answer lies within yourself?",
|
291 |
+
"Why don't you tell me?",
|
292 |
+
),
|
293 |
+
),
|
294 |
+
(
|
295 |
+
r"quit",
|
296 |
+
(
|
297 |
+
"Thank you for talking with me.",
|
298 |
+
"Good-bye.",
|
299 |
+
"Thank you, that will be $150. Have a good day!",
|
300 |
+
),
|
301 |
+
),
|
302 |
+
(
|
303 |
+
r"(.*)",
|
304 |
+
(
|
305 |
+
"Please tell me more.",
|
306 |
+
"Let's change focus a bit... Tell me about your family.",
|
307 |
+
"Can you elaborate on that?",
|
308 |
+
"Why do you say that %1?",
|
309 |
+
"I see.",
|
310 |
+
"Very interesting.",
|
311 |
+
"%1.",
|
312 |
+
"I see. And what does that tell you?",
|
313 |
+
"How does that make you feel?",
|
314 |
+
"How do you feel when you say that?",
|
315 |
+
),
|
316 |
+
),
|
317 |
+
)
|
318 |
+
|
319 |
+
eliza_chatbot = Chat(pairs, reflections)
|
320 |
+
|
321 |
+
|
322 |
+
def eliza_chat():
|
323 |
+
print("Therapist\n---------")
|
324 |
+
print("Talk to the program by typing in plain English, using normal upper-")
|
325 |
+
print('and lower-case letters and punctuation. Enter "quit" when done.')
|
326 |
+
print("=" * 72)
|
327 |
+
print("Hello. How are you feeling today?")
|
328 |
+
|
329 |
+
eliza_chatbot.converse()
|
330 |
+
|
331 |
+
|
332 |
+
def demo():
|
333 |
+
eliza_chat()
|
334 |
+
|
335 |
+
|
336 |
+
if __name__ == "__main__":
|
337 |
+
demo()
|
venv/lib/python3.10/site-packages/nltk/chat/iesha.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Teen Chatbot
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Selina Dennis <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
"""
|
9 |
+
This chatbot is a tongue-in-cheek take on the average teen
|
10 |
+
anime junky that frequents YahooMessenger or MSNM.
|
11 |
+
All spelling mistakes and flawed grammar are intentional.
|
12 |
+
"""
|
13 |
+
|
14 |
+
from nltk.chat.util import Chat
|
15 |
+
|
16 |
+
reflections = {
|
17 |
+
"am": "r",
|
18 |
+
"was": "were",
|
19 |
+
"i": "u",
|
20 |
+
"i'd": "u'd",
|
21 |
+
"i've": "u'v",
|
22 |
+
"ive": "u'v",
|
23 |
+
"i'll": "u'll",
|
24 |
+
"my": "ur",
|
25 |
+
"are": "am",
|
26 |
+
"you're": "im",
|
27 |
+
"you've": "ive",
|
28 |
+
"you'll": "i'll",
|
29 |
+
"your": "my",
|
30 |
+
"yours": "mine",
|
31 |
+
"you": "me",
|
32 |
+
"u": "me",
|
33 |
+
"ur": "my",
|
34 |
+
"urs": "mine",
|
35 |
+
"me": "u",
|
36 |
+
}
|
37 |
+
|
38 |
+
# Note: %1/2/etc are used without spaces prior as the chat bot seems
|
39 |
+
# to add a superfluous space when matching.
|
40 |
+
|
41 |
+
pairs = (
|
42 |
+
(
|
43 |
+
r"I\'m (.*)",
|
44 |
+
(
|
45 |
+
"ur%1?? that's so cool! kekekekeke ^_^ tell me more!",
|
46 |
+
"ur%1? neat!! kekeke >_<",
|
47 |
+
),
|
48 |
+
),
|
49 |
+
(
|
50 |
+
r"(.*) don\'t you (.*)",
|
51 |
+
(
|
52 |
+
r"u think I can%2??! really?? kekeke \<_\<",
|
53 |
+
"what do u mean%2??!",
|
54 |
+
"i could if i wanted, don't you think!! kekeke",
|
55 |
+
),
|
56 |
+
),
|
57 |
+
(r"ye[as] [iI] (.*)", ("u%1? cool!! how?", "how come u%1??", "u%1? so do i!!")),
|
58 |
+
(
|
59 |
+
r"do (you|u) (.*)\??",
|
60 |
+
("do i%2? only on tuesdays! kekeke *_*", "i dunno! do u%2??"),
|
61 |
+
),
|
62 |
+
(
|
63 |
+
r"(.*)\?",
|
64 |
+
(
|
65 |
+
"man u ask lots of questions!",
|
66 |
+
"booooring! how old r u??",
|
67 |
+
"boooooring!! ur not very fun",
|
68 |
+
),
|
69 |
+
),
|
70 |
+
(
|
71 |
+
r"(cos|because) (.*)",
|
72 |
+
("hee! i don't believe u! >_<", "nuh-uh! >_<", "ooooh i agree!"),
|
73 |
+
),
|
74 |
+
(
|
75 |
+
r"why can\'t [iI] (.*)",
|
76 |
+
(
|
77 |
+
"i dunno! y u askin me for!",
|
78 |
+
"try harder, silly! hee! ^_^",
|
79 |
+
"i dunno! but when i can't%1 i jump up and down!",
|
80 |
+
),
|
81 |
+
),
|
82 |
+
(
|
83 |
+
r"I can\'t (.*)",
|
84 |
+
(
|
85 |
+
"u can't what??! >_<",
|
86 |
+
"that's ok! i can't%1 either! kekekekeke ^_^",
|
87 |
+
"try harder, silly! hee! ^&^",
|
88 |
+
),
|
89 |
+
),
|
90 |
+
(
|
91 |
+
r"(.*) (like|love|watch) anime",
|
92 |
+
(
|
93 |
+
"omg i love anime!! do u like sailor moon??! ^&^",
|
94 |
+
"anime yay! anime rocks sooooo much!",
|
95 |
+
"oooh anime! i love anime more than anything!",
|
96 |
+
"anime is the bestest evar! evangelion is the best!",
|
97 |
+
"hee anime is the best! do you have ur fav??",
|
98 |
+
),
|
99 |
+
),
|
100 |
+
(
|
101 |
+
r"I (like|love|watch|play) (.*)",
|
102 |
+
("yay! %2 rocks!", "yay! %2 is neat!", "cool! do u like other stuff?? ^_^"),
|
103 |
+
),
|
104 |
+
(
|
105 |
+
r"anime sucks|(.*) (hate|detest) anime",
|
106 |
+
(
|
107 |
+
"ur a liar! i'm not gonna talk to u nemore if u h8 anime *;*",
|
108 |
+
"no way! anime is the best ever!",
|
109 |
+
"nuh-uh, anime is the best!",
|
110 |
+
),
|
111 |
+
),
|
112 |
+
(
|
113 |
+
r"(are|r) (you|u) (.*)",
|
114 |
+
("am i%1??! how come u ask that!", "maybe! y shud i tell u?? kekeke >_>"),
|
115 |
+
),
|
116 |
+
(
|
117 |
+
r"what (.*)",
|
118 |
+
("hee u think im gonna tell u? .v.", "booooooooring! ask me somethin else!"),
|
119 |
+
),
|
120 |
+
(r"how (.*)", ("not tellin!! kekekekekeke ^_^",)),
|
121 |
+
(r"(hi|hello|hey) (.*)", ("hi!!! how r u!!",)),
|
122 |
+
(
|
123 |
+
r"quit",
|
124 |
+
(
|
125 |
+
"mom says i have to go eat dinner now :,( bye!!",
|
126 |
+
"awww u have to go?? see u next time!!",
|
127 |
+
"how to see u again soon! ^_^",
|
128 |
+
),
|
129 |
+
),
|
130 |
+
(
|
131 |
+
r"(.*)",
|
132 |
+
(
|
133 |
+
"ur funny! kekeke",
|
134 |
+
"boooooring! talk about something else! tell me wat u like!",
|
135 |
+
"do u like anime??",
|
136 |
+
"do u watch anime? i like sailor moon! ^_^",
|
137 |
+
"i wish i was a kitty!! kekekeke ^_^",
|
138 |
+
),
|
139 |
+
),
|
140 |
+
)
|
141 |
+
|
142 |
+
iesha_chatbot = Chat(pairs, reflections)
|
143 |
+
|
144 |
+
|
145 |
+
def iesha_chat():
|
146 |
+
print("Iesha the TeenBoT\n---------")
|
147 |
+
print("Talk to the program by typing in plain English, using normal upper-")
|
148 |
+
print('and lower-case letters and punctuation. Enter "quit" when done.')
|
149 |
+
print("=" * 72)
|
150 |
+
print("hi!! i'm iesha! who r u??!")
|
151 |
+
|
152 |
+
iesha_chatbot.converse()
|
153 |
+
|
154 |
+
|
155 |
+
def demo():
|
156 |
+
iesha_chat()
|
157 |
+
|
158 |
+
|
159 |
+
if __name__ == "__main__":
|
160 |
+
demo()
|
venv/lib/python3.10/site-packages/nltk/chat/rude.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Rude Chatbot
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Peter Spiller <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
from nltk.chat.util import Chat, reflections
|
9 |
+
|
10 |
+
pairs = (
|
11 |
+
(
|
12 |
+
r"We (.*)",
|
13 |
+
(
|
14 |
+
"What do you mean, 'we'?",
|
15 |
+
"Don't include me in that!",
|
16 |
+
"I wouldn't be so sure about that.",
|
17 |
+
),
|
18 |
+
),
|
19 |
+
(
|
20 |
+
r"You should (.*)",
|
21 |
+
("Don't tell me what to do, buddy.", "Really? I should, should I?"),
|
22 |
+
),
|
23 |
+
(
|
24 |
+
r"You\'re(.*)",
|
25 |
+
(
|
26 |
+
"More like YOU'RE %1!",
|
27 |
+
"Hah! Look who's talking.",
|
28 |
+
"Come over here and tell me I'm %1.",
|
29 |
+
),
|
30 |
+
),
|
31 |
+
(
|
32 |
+
r"You are(.*)",
|
33 |
+
(
|
34 |
+
"More like YOU'RE %1!",
|
35 |
+
"Hah! Look who's talking.",
|
36 |
+
"Come over here and tell me I'm %1.",
|
37 |
+
),
|
38 |
+
),
|
39 |
+
(
|
40 |
+
r"I can\'t(.*)",
|
41 |
+
(
|
42 |
+
"You do sound like the type who can't %1.",
|
43 |
+
"Hear that splashing sound? That's my heart bleeding for you.",
|
44 |
+
"Tell somebody who might actually care.",
|
45 |
+
),
|
46 |
+
),
|
47 |
+
(
|
48 |
+
r"I think (.*)",
|
49 |
+
(
|
50 |
+
"I wouldn't think too hard if I were you.",
|
51 |
+
"You actually think? I'd never have guessed...",
|
52 |
+
),
|
53 |
+
),
|
54 |
+
(
|
55 |
+
r"I (.*)",
|
56 |
+
(
|
57 |
+
"I'm getting a bit tired of hearing about you.",
|
58 |
+
"How about we talk about me instead?",
|
59 |
+
"Me, me, me... Frankly, I don't care.",
|
60 |
+
),
|
61 |
+
),
|
62 |
+
(
|
63 |
+
r"How (.*)",
|
64 |
+
(
|
65 |
+
"How do you think?",
|
66 |
+
"Take a wild guess.",
|
67 |
+
"I'm not even going to dignify that with an answer.",
|
68 |
+
),
|
69 |
+
),
|
70 |
+
(r"What (.*)", ("Do I look like an encyclopedia?", "Figure it out yourself.")),
|
71 |
+
(
|
72 |
+
r"Why (.*)",
|
73 |
+
(
|
74 |
+
"Why not?",
|
75 |
+
"That's so obvious I thought even you'd have already figured it out.",
|
76 |
+
),
|
77 |
+
),
|
78 |
+
(
|
79 |
+
r"(.*)shut up(.*)",
|
80 |
+
(
|
81 |
+
"Make me.",
|
82 |
+
"Getting angry at a feeble NLP assignment? Somebody's losing it.",
|
83 |
+
"Say that again, I dare you.",
|
84 |
+
),
|
85 |
+
),
|
86 |
+
(
|
87 |
+
r"Shut up(.*)",
|
88 |
+
(
|
89 |
+
"Make me.",
|
90 |
+
"Getting angry at a feeble NLP assignment? Somebody's losing it.",
|
91 |
+
"Say that again, I dare you.",
|
92 |
+
),
|
93 |
+
),
|
94 |
+
(
|
95 |
+
r"Hello(.*)",
|
96 |
+
("Oh good, somebody else to talk to. Joy.", "'Hello'? How original..."),
|
97 |
+
),
|
98 |
+
(
|
99 |
+
r"(.*)",
|
100 |
+
(
|
101 |
+
"I'm getting bored here. Become more interesting.",
|
102 |
+
"Either become more thrilling or get lost, buddy.",
|
103 |
+
"Change the subject before I die of fatal boredom.",
|
104 |
+
),
|
105 |
+
),
|
106 |
+
)
|
107 |
+
|
108 |
+
rude_chatbot = Chat(pairs, reflections)
|
109 |
+
|
110 |
+
|
111 |
+
def rude_chat():
|
112 |
+
print("Talk to the program by typing in plain English, using normal upper-")
|
113 |
+
print('and lower-case letters and punctuation. Enter "quit" when done.')
|
114 |
+
print("=" * 72)
|
115 |
+
print("I suppose I should say hello.")
|
116 |
+
|
117 |
+
rude_chatbot.converse()
|
118 |
+
|
119 |
+
|
120 |
+
def demo():
|
121 |
+
rude_chat()
|
122 |
+
|
123 |
+
|
124 |
+
if __name__ == "__main__":
|
125 |
+
demo()
|
venv/lib/python3.10/site-packages/nltk/chat/suntsu.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Sun Tsu-Bot
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Sam Huston 2007
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
"""
|
9 |
+
Tsu bot responds to all queries with a Sun Tsu sayings
|
10 |
+
|
11 |
+
Quoted from Sun Tsu's The Art of War
|
12 |
+
Translated by LIONEL GILES, M.A. 1910
|
13 |
+
Hosted by the Gutenberg Project
|
14 |
+
https://www.gutenberg.org/
|
15 |
+
"""
|
16 |
+
|
17 |
+
from nltk.chat.util import Chat, reflections
|
18 |
+
|
19 |
+
pairs = (
|
20 |
+
(r"quit", ("Good-bye.", "Plan well", "May victory be your future")),
|
21 |
+
(
|
22 |
+
r"[^\?]*\?",
|
23 |
+
(
|
24 |
+
"Please consider whether you can answer your own question.",
|
25 |
+
"Ask me no questions!",
|
26 |
+
),
|
27 |
+
),
|
28 |
+
(
|
29 |
+
r"[0-9]+(.*)",
|
30 |
+
(
|
31 |
+
"It is the rule in war, if our forces are ten to the enemy's one, to surround him; if five to one, to attack him; if twice as numerous, to divide our army into two.",
|
32 |
+
"There are five essentials for victory",
|
33 |
+
),
|
34 |
+
),
|
35 |
+
(
|
36 |
+
r"[A-Ca-c](.*)",
|
37 |
+
(
|
38 |
+
"The art of war is of vital importance to the State.",
|
39 |
+
"All warfare is based on deception.",
|
40 |
+
"If your opponent is secure at all points, be prepared for him. If he is in superior strength, evade him.",
|
41 |
+
"If the campaign is protracted, the resources of the State will not be equal to the strain.",
|
42 |
+
"Attack him where he is unprepared, appear where you are not expected.",
|
43 |
+
"There is no instance of a country having benefited from prolonged warfare.",
|
44 |
+
),
|
45 |
+
),
|
46 |
+
(
|
47 |
+
r"[D-Fd-f](.*)",
|
48 |
+
(
|
49 |
+
"The skillful soldier does not raise a second levy, neither are his supply-wagons loaded more than twice.",
|
50 |
+
"Bring war material with you from home, but forage on the enemy.",
|
51 |
+
"In war, then, let your great object be victory, not lengthy campaigns.",
|
52 |
+
"To fight and conquer in all your battles is not supreme excellence; supreme excellence consists in breaking the enemy's resistance without fighting.",
|
53 |
+
),
|
54 |
+
),
|
55 |
+
(
|
56 |
+
r"[G-Ig-i](.*)",
|
57 |
+
(
|
58 |
+
"Heaven signifies night and day, cold and heat, times and seasons.",
|
59 |
+
"It is the rule in war, if our forces are ten to the enemy's one, to surround him; if five to one, to attack him; if twice as numerous, to divide our army into two.",
|
60 |
+
"The good fighters of old first put themselves beyond the possibility of defeat, and then waited for an opportunity of defeating the enemy.",
|
61 |
+
"One may know how to conquer without being able to do it.",
|
62 |
+
),
|
63 |
+
),
|
64 |
+
(
|
65 |
+
r"[J-Lj-l](.*)",
|
66 |
+
(
|
67 |
+
"There are three ways in which a ruler can bring misfortune upon his army.",
|
68 |
+
"By commanding the army to advance or to retreat, being ignorant of the fact that it cannot obey. This is called hobbling the army.",
|
69 |
+
"By attempting to govern an army in the same way as he administers a kingdom, being ignorant of the conditions which obtain in an army. This causes restlessness in the soldier's minds.",
|
70 |
+
"By employing the officers of his army without discrimination, through ignorance of the military principle of adaptation to circumstances. This shakes the confidence of the soldiers.",
|
71 |
+
"There are five essentials for victory",
|
72 |
+
"He will win who knows when to fight and when not to fight.",
|
73 |
+
"He will win who knows how to handle both superior and inferior forces.",
|
74 |
+
"He will win whose army is animated by the same spirit throughout all its ranks.",
|
75 |
+
"He will win who, prepared himself, waits to take the enemy unprepared.",
|
76 |
+
"He will win who has military capacity and is not interfered with by the sovereign.",
|
77 |
+
),
|
78 |
+
),
|
79 |
+
(
|
80 |
+
r"[M-Om-o](.*)",
|
81 |
+
(
|
82 |
+
"If you know the enemy and know yourself, you need not fear the result of a hundred battles.",
|
83 |
+
"If you know yourself but not the enemy, for every victory gained you will also suffer a defeat.",
|
84 |
+
"If you know neither the enemy nor yourself, you will succumb in every battle.",
|
85 |
+
"The control of a large force is the same principle as the control of a few men: it is merely a question of dividing up their numbers.",
|
86 |
+
),
|
87 |
+
),
|
88 |
+
(
|
89 |
+
r"[P-Rp-r](.*)",
|
90 |
+
(
|
91 |
+
"Security against defeat implies defensive tactics; ability to defeat the enemy means taking the offensive.",
|
92 |
+
"Standing on the defensive indicates insufficient strength; attacking, a superabundance of strength.",
|
93 |
+
"He wins his battles by making no mistakes. Making no mistakes is what establishes the certainty of victory, for it means conquering an enemy that is already defeated.",
|
94 |
+
"A victorious army opposed to a routed one, is as a pound's weight placed in the scale against a single grain.",
|
95 |
+
"The onrush of a conquering force is like the bursting of pent-up waters into a chasm a thousand fathoms deep.",
|
96 |
+
),
|
97 |
+
),
|
98 |
+
(
|
99 |
+
r"[S-Us-u](.*)",
|
100 |
+
(
|
101 |
+
"What the ancients called a clever fighter is one who not only wins, but excels in winning with ease.",
|
102 |
+
"Hence his victories bring him neither reputation for wisdom nor credit for courage.",
|
103 |
+
"Hence the skillful fighter puts himself into a position which makes defeat impossible, and does not miss the moment for defeating the enemy.",
|
104 |
+
"In war the victorious strategist only seeks battle after the victory has been won, whereas he who is destined to defeat first fights and afterwards looks for victory.",
|
105 |
+
"There are not more than five musical notes, yet the combinations of these five give rise to more melodies than can ever be heard.",
|
106 |
+
"Appear at points which the enemy must hasten to defend; march swiftly to places where you are not expected.",
|
107 |
+
),
|
108 |
+
),
|
109 |
+
(
|
110 |
+
r"[V-Zv-z](.*)",
|
111 |
+
(
|
112 |
+
"It is a matter of life and death, a road either to safety or to ruin.",
|
113 |
+
"Hold out baits to entice the enemy. Feign disorder, and crush him.",
|
114 |
+
"All men can see the tactics whereby I conquer, but what none can see is the strategy out of which victory is evolved.",
|
115 |
+
"Do not repeat the tactics which have gained you one victory, but let your methods be regulated by the infinite variety of circumstances.",
|
116 |
+
"So in war, the way is to avoid what is strong and to strike at what is weak.",
|
117 |
+
"Just as water retains no constant shape, so in warfare there are no constant conditions.",
|
118 |
+
),
|
119 |
+
),
|
120 |
+
(r"(.*)", ("Your statement insults me.", "")),
|
121 |
+
)
|
122 |
+
|
123 |
+
suntsu_chatbot = Chat(pairs, reflections)
|
124 |
+
|
125 |
+
|
126 |
+
def suntsu_chat():
|
127 |
+
print("Talk to the program by typing in plain English, using normal upper-")
|
128 |
+
print('and lower-case letters and punctuation. Enter "quit" when done.')
|
129 |
+
print("=" * 72)
|
130 |
+
print("You seek enlightenment?")
|
131 |
+
|
132 |
+
suntsu_chatbot.converse()
|
133 |
+
|
134 |
+
|
135 |
+
def demo():
|
136 |
+
suntsu_chat()
|
137 |
+
|
138 |
+
|
139 |
+
if __name__ == "__main__":
|
140 |
+
demo()
|
venv/lib/python3.10/site-packages/nltk/chat/util.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Chatbot Utilities
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Authors: Steven Bird <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
# Based on an Eliza implementation by Joe Strout <[email protected]>,
|
9 |
+
# Jeff Epler <[email protected]> and Jez Higgins <[email protected]>.
|
10 |
+
|
11 |
+
import random
|
12 |
+
import re
|
13 |
+
|
14 |
+
reflections = {
|
15 |
+
"i am": "you are",
|
16 |
+
"i was": "you were",
|
17 |
+
"i": "you",
|
18 |
+
"i'm": "you are",
|
19 |
+
"i'd": "you would",
|
20 |
+
"i've": "you have",
|
21 |
+
"i'll": "you will",
|
22 |
+
"my": "your",
|
23 |
+
"you are": "I am",
|
24 |
+
"you were": "I was",
|
25 |
+
"you've": "I have",
|
26 |
+
"you'll": "I will",
|
27 |
+
"your": "my",
|
28 |
+
"yours": "mine",
|
29 |
+
"you": "me",
|
30 |
+
"me": "you",
|
31 |
+
}
|
32 |
+
|
33 |
+
|
34 |
+
class Chat:
|
35 |
+
def __init__(self, pairs, reflections={}):
|
36 |
+
"""
|
37 |
+
Initialize the chatbot. Pairs is a list of patterns and responses. Each
|
38 |
+
pattern is a regular expression matching the user's statement or question,
|
39 |
+
e.g. r'I like (.*)'. For each such pattern a list of possible responses
|
40 |
+
is given, e.g. ['Why do you like %1', 'Did you ever dislike %1']. Material
|
41 |
+
which is matched by parenthesized sections of the patterns (e.g. .*) is mapped to
|
42 |
+
the numbered positions in the responses, e.g. %1.
|
43 |
+
|
44 |
+
:type pairs: list of tuple
|
45 |
+
:param pairs: The patterns and responses
|
46 |
+
:type reflections: dict
|
47 |
+
:param reflections: A mapping between first and second person expressions
|
48 |
+
:rtype: None
|
49 |
+
"""
|
50 |
+
|
51 |
+
self._pairs = [(re.compile(x, re.IGNORECASE), y) for (x, y) in pairs]
|
52 |
+
self._reflections = reflections
|
53 |
+
self._regex = self._compile_reflections()
|
54 |
+
|
55 |
+
def _compile_reflections(self):
|
56 |
+
sorted_refl = sorted(self._reflections, key=len, reverse=True)
|
57 |
+
return re.compile(
|
58 |
+
r"\b({})\b".format("|".join(map(re.escape, sorted_refl))), re.IGNORECASE
|
59 |
+
)
|
60 |
+
|
61 |
+
def _substitute(self, str):
|
62 |
+
"""
|
63 |
+
Substitute words in the string, according to the specified reflections,
|
64 |
+
e.g. "I'm" -> "you are"
|
65 |
+
|
66 |
+
:type str: str
|
67 |
+
:param str: The string to be mapped
|
68 |
+
:rtype: str
|
69 |
+
"""
|
70 |
+
|
71 |
+
return self._regex.sub(
|
72 |
+
lambda mo: self._reflections[mo.string[mo.start() : mo.end()]], str.lower()
|
73 |
+
)
|
74 |
+
|
75 |
+
def _wildcards(self, response, match):
|
76 |
+
pos = response.find("%")
|
77 |
+
while pos >= 0:
|
78 |
+
num = int(response[pos + 1 : pos + 2])
|
79 |
+
response = (
|
80 |
+
response[:pos]
|
81 |
+
+ self._substitute(match.group(num))
|
82 |
+
+ response[pos + 2 :]
|
83 |
+
)
|
84 |
+
pos = response.find("%")
|
85 |
+
return response
|
86 |
+
|
87 |
+
def respond(self, str):
|
88 |
+
"""
|
89 |
+
Generate a response to the user input.
|
90 |
+
|
91 |
+
:type str: str
|
92 |
+
:param str: The string to be mapped
|
93 |
+
:rtype: str
|
94 |
+
"""
|
95 |
+
|
96 |
+
# check each pattern
|
97 |
+
for (pattern, response) in self._pairs:
|
98 |
+
match = pattern.match(str)
|
99 |
+
|
100 |
+
# did the pattern match?
|
101 |
+
if match:
|
102 |
+
resp = random.choice(response) # pick a random response
|
103 |
+
resp = self._wildcards(resp, match) # process wildcards
|
104 |
+
|
105 |
+
# fix munged punctuation at the end
|
106 |
+
if resp[-2:] == "?.":
|
107 |
+
resp = resp[:-2] + "."
|
108 |
+
if resp[-2:] == "??":
|
109 |
+
resp = resp[:-2] + "?"
|
110 |
+
return resp
|
111 |
+
|
112 |
+
# Hold a conversation with a chatbot
|
113 |
+
def converse(self, quit="quit"):
|
114 |
+
user_input = ""
|
115 |
+
while user_input != quit:
|
116 |
+
user_input = quit
|
117 |
+
try:
|
118 |
+
user_input = input(">")
|
119 |
+
except EOFError:
|
120 |
+
print(user_input)
|
121 |
+
if user_input:
|
122 |
+
while user_input[-1] in "!.":
|
123 |
+
user_input = user_input[:-1]
|
124 |
+
print(self.respond(user_input))
|
venv/lib/python3.10/site-packages/nltk/chat/zen.py
ADDED
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Zen Chatbot
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Amy Holland <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
"""
|
9 |
+
Zen Chatbot talks in gems of Zen wisdom.
|
10 |
+
|
11 |
+
This is a sample conversation with Zen Chatbot:
|
12 |
+
ZC: Welcome, my child.
|
13 |
+
me: Good afternoon.
|
14 |
+
ZC: Ask the question you have come to ask.
|
15 |
+
me: How can I achieve enlightenment?
|
16 |
+
ZC: How do you suppose?
|
17 |
+
me: Through meditation.
|
18 |
+
ZC: Form is emptiness, and emptiness form.
|
19 |
+
me: How can I empty my mind of worldly troubles?
|
20 |
+
ZC: Will an answer to that really help in your search for enlightenment?
|
21 |
+
me: Yes.
|
22 |
+
ZC: It is better to be right than to be certain.
|
23 |
+
me: I seek truth and wisdom.
|
24 |
+
ZC: The search for truth is a long journey.
|
25 |
+
me: Are you sure?
|
26 |
+
ZC: Maybe sure, maybe not sure.
|
27 |
+
|
28 |
+
|
29 |
+
The chatbot structure is based on that of chat.eliza. Thus, it uses
|
30 |
+
a translation table to convert from question to response
|
31 |
+
i.e. "I am" --> "you are"
|
32 |
+
|
33 |
+
Of course, since Zen Chatbot does not understand the meaning of any words,
|
34 |
+
responses are very limited. Zen Chatbot will usually answer very vaguely, or
|
35 |
+
respond to a question by asking a different question, in much the same way
|
36 |
+
as Eliza.
|
37 |
+
"""
|
38 |
+
|
39 |
+
from nltk.chat.util import Chat, reflections
|
40 |
+
|
41 |
+
# responses are matched top to bottom, so non-specific matches occur later
|
42 |
+
# for each match, a list of possible responses is provided
|
43 |
+
responses = (
|
44 |
+
# Zen Chatbot opens with the line "Welcome, my child." The usual
|
45 |
+
# response will be a greeting problem: 'good' matches "good morning",
|
46 |
+
# "good day" etc, but also "good grief!" and other sentences starting
|
47 |
+
# with the word 'good' that may not be a greeting
|
48 |
+
(
|
49 |
+
r"(hello(.*))|(good [a-zA-Z]+)",
|
50 |
+
(
|
51 |
+
"The path to enlightenment is often difficult to see.",
|
52 |
+
"Greetings. I sense your mind is troubled. Tell me of your troubles.",
|
53 |
+
"Ask the question you have come to ask.",
|
54 |
+
"Hello. Do you seek englightenment?",
|
55 |
+
),
|
56 |
+
),
|
57 |
+
# "I need" and "I want" can be followed by a thing (eg 'help')
|
58 |
+
# or an action (eg 'to see you')
|
59 |
+
#
|
60 |
+
# This is a problem with this style of response -
|
61 |
+
# person: "I need you"
|
62 |
+
# chatbot: "me can be achieved by hard work and dedication of the mind"
|
63 |
+
# i.e. 'you' is not really a thing that can be mapped this way, so this
|
64 |
+
# interpretation only makes sense for some inputs
|
65 |
+
#
|
66 |
+
(
|
67 |
+
r"i need (.*)",
|
68 |
+
(
|
69 |
+
"%1 can be achieved by hard work and dedication of the mind.",
|
70 |
+
"%1 is not a need, but a desire of the mind. Clear your mind of such concerns.",
|
71 |
+
"Focus your mind on%1, and you will find what you need.",
|
72 |
+
),
|
73 |
+
),
|
74 |
+
(
|
75 |
+
r"i want (.*)",
|
76 |
+
(
|
77 |
+
"Desires of the heart will distract you from the path to enlightenment.",
|
78 |
+
"Will%1 help you attain enlightenment?",
|
79 |
+
"Is%1 a desire of the mind, or of the heart?",
|
80 |
+
),
|
81 |
+
),
|
82 |
+
# why questions are separated into three types:
|
83 |
+
# "why..I" e.g. "why am I here?" "Why do I like cake?"
|
84 |
+
# "why..you" e.g. "why are you here?" "Why won't you tell me?"
|
85 |
+
# "why..." e.g. "Why is the sky blue?"
|
86 |
+
# problems:
|
87 |
+
# person: "Why can't you tell me?"
|
88 |
+
# chatbot: "Are you sure I tell you?"
|
89 |
+
# - this style works for positives (e.g. "why do you like cake?")
|
90 |
+
# but does not work for negatives (e.g. "why don't you like cake?")
|
91 |
+
(r"why (.*) i (.*)\?", ("You%1%2?", "Perhaps you only think you%1%2")),
|
92 |
+
(r"why (.*) you(.*)\?", ("Why%1 you%2?", "%2 I%1", "Are you sure I%2?")),
|
93 |
+
(r"why (.*)\?", ("I cannot tell you why%1.", "Why do you think %1?")),
|
94 |
+
# e.g. "are you listening?", "are you a duck"
|
95 |
+
(
|
96 |
+
r"are you (.*)\?",
|
97 |
+
("Maybe%1, maybe not%1.", "Whether I am%1 or not is God's business."),
|
98 |
+
),
|
99 |
+
# e.g. "am I a duck?", "am I going to die?"
|
100 |
+
(
|
101 |
+
r"am i (.*)\?",
|
102 |
+
("Perhaps%1, perhaps not%1.", "Whether you are%1 or not is not for me to say."),
|
103 |
+
),
|
104 |
+
# what questions, e.g. "what time is it?"
|
105 |
+
# problems:
|
106 |
+
# person: "What do you want?"
|
107 |
+
# chatbot: "Seek truth, not what do me want."
|
108 |
+
(r"what (.*)\?", ("Seek truth, not what%1.", "What%1 should not concern you.")),
|
109 |
+
# how questions, e.g. "how do you do?"
|
110 |
+
(
|
111 |
+
r"how (.*)\?",
|
112 |
+
(
|
113 |
+
"How do you suppose?",
|
114 |
+
"Will an answer to that really help in your search for enlightenment?",
|
115 |
+
"Ask yourself not how, but why.",
|
116 |
+
),
|
117 |
+
),
|
118 |
+
# can questions, e.g. "can you run?", "can you come over here please?"
|
119 |
+
(
|
120 |
+
r"can you (.*)\?",
|
121 |
+
(
|
122 |
+
"I probably can, but I may not.",
|
123 |
+
"Maybe I can%1, and maybe I cannot.",
|
124 |
+
"I can do all, and I can do nothing.",
|
125 |
+
),
|
126 |
+
),
|
127 |
+
# can questions, e.g. "can I have some cake?", "can I know truth?"
|
128 |
+
(
|
129 |
+
r"can i (.*)\?",
|
130 |
+
(
|
131 |
+
"You can%1 if you believe you can%1, and have a pure spirit.",
|
132 |
+
"Seek truth and you will know if you can%1.",
|
133 |
+
),
|
134 |
+
),
|
135 |
+
# e.g. "It is raining" - implies the speaker is certain of a fact
|
136 |
+
(
|
137 |
+
r"it is (.*)",
|
138 |
+
(
|
139 |
+
"How can you be certain that%1, when you do not even know yourself?",
|
140 |
+
"Whether it is%1 or not does not change the way the world is.",
|
141 |
+
),
|
142 |
+
),
|
143 |
+
# e.g. "is there a doctor in the house?"
|
144 |
+
(
|
145 |
+
r"is there (.*)\?",
|
146 |
+
("There is%1 if you believe there is.", "It is possible that there is%1."),
|
147 |
+
),
|
148 |
+
# e.g. "is it possible?", "is this true?"
|
149 |
+
(r"is(.*)\?", ("%1 is not relevant.", "Does this matter?")),
|
150 |
+
# non-specific question
|
151 |
+
(
|
152 |
+
r"(.*)\?",
|
153 |
+
(
|
154 |
+
"Do you think %1?",
|
155 |
+
"You seek the truth. Does the truth seek you?",
|
156 |
+
"If you intentionally pursue the answers to your questions, the answers become hard to see.",
|
157 |
+
"The answer to your question cannot be told. It must be experienced.",
|
158 |
+
),
|
159 |
+
),
|
160 |
+
# expression of hate of form "I hate you" or "Kelly hates cheese"
|
161 |
+
(
|
162 |
+
r"(.*) (hate[s]?)|(dislike[s]?)|(don\'t like)(.*)",
|
163 |
+
(
|
164 |
+
"Perhaps it is not about hating %2, but about hate from within.",
|
165 |
+
"Weeds only grow when we dislike them",
|
166 |
+
"Hate is a very strong emotion.",
|
167 |
+
),
|
168 |
+
),
|
169 |
+
# statement containing the word 'truth'
|
170 |
+
(
|
171 |
+
r"(.*) truth(.*)",
|
172 |
+
(
|
173 |
+
"Seek truth, and truth will seek you.",
|
174 |
+
"Remember, it is not the spoon which bends - only yourself.",
|
175 |
+
"The search for truth is a long journey.",
|
176 |
+
),
|
177 |
+
),
|
178 |
+
# desire to do an action
|
179 |
+
# e.g. "I want to go shopping"
|
180 |
+
(
|
181 |
+
r"i want to (.*)",
|
182 |
+
("You may %1 if your heart truly desires to.", "You may have to %1."),
|
183 |
+
),
|
184 |
+
# desire for an object
|
185 |
+
# e.g. "I want a pony"
|
186 |
+
(
|
187 |
+
r"i want (.*)",
|
188 |
+
(
|
189 |
+
"Does your heart truly desire %1?",
|
190 |
+
"Is this a desire of the heart, or of the mind?",
|
191 |
+
),
|
192 |
+
),
|
193 |
+
# e.g. "I can't wait" or "I can't do this"
|
194 |
+
(
|
195 |
+
r"i can\'t (.*)",
|
196 |
+
(
|
197 |
+
"What we can and can't do is a limitation of the mind.",
|
198 |
+
"There are limitations of the body, and limitations of the mind.",
|
199 |
+
"Have you tried to%1 with a clear mind?",
|
200 |
+
),
|
201 |
+
),
|
202 |
+
# "I think.." indicates uncertainty. e.g. "I think so."
|
203 |
+
# problem: exceptions...
|
204 |
+
# e.g. "I think, therefore I am"
|
205 |
+
(
|
206 |
+
r"i think (.*)",
|
207 |
+
(
|
208 |
+
"Uncertainty in an uncertain world.",
|
209 |
+
"Indeed, how can we be certain of anything in such uncertain times.",
|
210 |
+
"Are you not, in fact, certain that%1?",
|
211 |
+
),
|
212 |
+
),
|
213 |
+
# "I feel...emotions/sick/light-headed..."
|
214 |
+
(
|
215 |
+
r"i feel (.*)",
|
216 |
+
(
|
217 |
+
"Your body and your emotions are both symptoms of your mind."
|
218 |
+
"What do you believe is the root of such feelings?",
|
219 |
+
"Feeling%1 can be a sign of your state-of-mind.",
|
220 |
+
),
|
221 |
+
),
|
222 |
+
# exclaimation mark indicating emotion
|
223 |
+
# e.g. "Wow!" or "No!"
|
224 |
+
(
|
225 |
+
r"(.*)!",
|
226 |
+
(
|
227 |
+
"I sense that you are feeling emotional today.",
|
228 |
+
"You need to calm your emotions.",
|
229 |
+
),
|
230 |
+
),
|
231 |
+
# because [statement]
|
232 |
+
# e.g. "because I said so"
|
233 |
+
(
|
234 |
+
r"because (.*)",
|
235 |
+
(
|
236 |
+
"Does knowning the reasons behind things help you to understand"
|
237 |
+
" the things themselves?",
|
238 |
+
"If%1, what else must be true?",
|
239 |
+
),
|
240 |
+
),
|
241 |
+
# yes or no - raise an issue of certainty/correctness
|
242 |
+
(
|
243 |
+
r"(yes)|(no)",
|
244 |
+
(
|
245 |
+
"Is there certainty in an uncertain world?",
|
246 |
+
"It is better to be right than to be certain.",
|
247 |
+
),
|
248 |
+
),
|
249 |
+
# sentence containing word 'love'
|
250 |
+
(
|
251 |
+
r"(.*)love(.*)",
|
252 |
+
(
|
253 |
+
"Think of the trees: they let the birds perch and fly with no intention to call them when they come, and no longing for their return when they fly away. Let your heart be like the trees.",
|
254 |
+
"Free love!",
|
255 |
+
),
|
256 |
+
),
|
257 |
+
# sentence containing word 'understand' - r
|
258 |
+
(
|
259 |
+
r"(.*)understand(.*)",
|
260 |
+
(
|
261 |
+
"If you understand, things are just as they are;"
|
262 |
+
" if you do not understand, things are just as they are.",
|
263 |
+
"Imagination is more important than knowledge.",
|
264 |
+
),
|
265 |
+
),
|
266 |
+
# 'I', 'me', 'my' - person is talking about themself.
|
267 |
+
# this breaks down when words contain these - eg 'Thyme', 'Irish'
|
268 |
+
(
|
269 |
+
r"(.*)(me )|( me)|(my)|(mine)|(i)(.*)",
|
270 |
+
(
|
271 |
+
"'I', 'me', 'my'... these are selfish expressions.",
|
272 |
+
"Have you ever considered that you might be a selfish person?",
|
273 |
+
"Try to consider others, not just yourself.",
|
274 |
+
"Think not just of yourself, but of others.",
|
275 |
+
),
|
276 |
+
),
|
277 |
+
# 'you' starting a sentence
|
278 |
+
# e.g. "you stink!"
|
279 |
+
(
|
280 |
+
r"you (.*)",
|
281 |
+
("My path is not of concern to you.", "I am but one, and you but one more."),
|
282 |
+
),
|
283 |
+
# say goodbye with some extra Zen wisdom.
|
284 |
+
(
|
285 |
+
r"exit",
|
286 |
+
(
|
287 |
+
"Farewell. The obstacle is the path.",
|
288 |
+
"Farewell. Life is a journey, not a destination.",
|
289 |
+
"Good bye. We are cups, constantly and quietly being filled."
|
290 |
+
"\nThe trick is knowning how to tip ourselves over and let the beautiful stuff out.",
|
291 |
+
),
|
292 |
+
),
|
293 |
+
# fall through case -
|
294 |
+
# when stumped, respond with generic zen wisdom
|
295 |
+
#
|
296 |
+
(
|
297 |
+
r"(.*)",
|
298 |
+
(
|
299 |
+
"When you're enlightened, every word is wisdom.",
|
300 |
+
"Random talk is useless.",
|
301 |
+
"The reverse side also has a reverse side.",
|
302 |
+
"Form is emptiness, and emptiness is form.",
|
303 |
+
"I pour out a cup of water. Is the cup empty?",
|
304 |
+
),
|
305 |
+
),
|
306 |
+
)
|
307 |
+
|
308 |
+
zen_chatbot = Chat(responses, reflections)
|
309 |
+
|
310 |
+
|
311 |
+
def zen_chat():
|
312 |
+
print("*" * 75)
|
313 |
+
print("Zen Chatbot!".center(75))
|
314 |
+
print("*" * 75)
|
315 |
+
print('"Look beyond mere words and letters - look into your mind"'.center(75))
|
316 |
+
print("* Talk your way to truth with Zen Chatbot.")
|
317 |
+
print("* Type 'quit' when you have had enough.")
|
318 |
+
print("*" * 75)
|
319 |
+
print("Welcome, my child.")
|
320 |
+
|
321 |
+
zen_chatbot.converse()
|
322 |
+
|
323 |
+
|
324 |
+
def demo():
|
325 |
+
zen_chat()
|
326 |
+
|
327 |
+
|
328 |
+
if __name__ == "__main__":
|
329 |
+
demo()
|
venv/lib/python3.10/site-packages/nltk/classify/__init__.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Classifiers
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Edward Loper <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
"""
|
9 |
+
Classes and interfaces for labeling tokens with category labels (or
|
10 |
+
"class labels"). Typically, labels are represented with strings
|
11 |
+
(such as ``'health'`` or ``'sports'``). Classifiers can be used to
|
12 |
+
perform a wide range of classification tasks. For example,
|
13 |
+
classifiers can be used...
|
14 |
+
|
15 |
+
- to classify documents by topic
|
16 |
+
- to classify ambiguous words by which word sense is intended
|
17 |
+
- to classify acoustic signals by which phoneme they represent
|
18 |
+
- to classify sentences by their author
|
19 |
+
|
20 |
+
Features
|
21 |
+
========
|
22 |
+
In order to decide which category label is appropriate for a given
|
23 |
+
token, classifiers examine one or more 'features' of the token. These
|
24 |
+
"features" are typically chosen by hand, and indicate which aspects
|
25 |
+
of the token are relevant to the classification decision. For
|
26 |
+
example, a document classifier might use a separate feature for each
|
27 |
+
word, recording how often that word occurred in the document.
|
28 |
+
|
29 |
+
Featuresets
|
30 |
+
===========
|
31 |
+
The features describing a token are encoded using a "featureset",
|
32 |
+
which is a dictionary that maps from "feature names" to "feature
|
33 |
+
values". Feature names are unique strings that indicate what aspect
|
34 |
+
of the token is encoded by the feature. Examples include
|
35 |
+
``'prevword'``, for a feature whose value is the previous word; and
|
36 |
+
``'contains-word(library)'`` for a feature that is true when a document
|
37 |
+
contains the word ``'library'``. Feature values are typically
|
38 |
+
booleans, numbers, or strings, depending on which feature they
|
39 |
+
describe.
|
40 |
+
|
41 |
+
Featuresets are typically constructed using a "feature detector"
|
42 |
+
(also known as a "feature extractor"). A feature detector is a
|
43 |
+
function that takes a token (and sometimes information about its
|
44 |
+
context) as its input, and returns a featureset describing that token.
|
45 |
+
For example, the following feature detector converts a document
|
46 |
+
(stored as a list of words) to a featureset describing the set of
|
47 |
+
words included in the document:
|
48 |
+
|
49 |
+
>>> # Define a feature detector function.
|
50 |
+
>>> def document_features(document):
|
51 |
+
... return dict([('contains-word(%s)' % w, True) for w in document])
|
52 |
+
|
53 |
+
Feature detectors are typically applied to each token before it is fed
|
54 |
+
to the classifier:
|
55 |
+
|
56 |
+
>>> # Classify each Gutenberg document.
|
57 |
+
>>> from nltk.corpus import gutenberg
|
58 |
+
>>> for fileid in gutenberg.fileids(): # doctest: +SKIP
|
59 |
+
... doc = gutenberg.words(fileid) # doctest: +SKIP
|
60 |
+
... print(fileid, classifier.classify(document_features(doc))) # doctest: +SKIP
|
61 |
+
|
62 |
+
The parameters that a feature detector expects will vary, depending on
|
63 |
+
the task and the needs of the feature detector. For example, a
|
64 |
+
feature detector for word sense disambiguation (WSD) might take as its
|
65 |
+
input a sentence, and the index of a word that should be classified,
|
66 |
+
and return a featureset for that word. The following feature detector
|
67 |
+
for WSD includes features describing the left and right contexts of
|
68 |
+
the target word:
|
69 |
+
|
70 |
+
>>> def wsd_features(sentence, index):
|
71 |
+
... featureset = {}
|
72 |
+
... for i in range(max(0, index-3), index):
|
73 |
+
... featureset['left-context(%s)' % sentence[i]] = True
|
74 |
+
... for i in range(index, max(index+3, len(sentence))):
|
75 |
+
... featureset['right-context(%s)' % sentence[i]] = True
|
76 |
+
... return featureset
|
77 |
+
|
78 |
+
Training Classifiers
|
79 |
+
====================
|
80 |
+
Most classifiers are built by training them on a list of hand-labeled
|
81 |
+
examples, known as the "training set". Training sets are represented
|
82 |
+
as lists of ``(featuredict, label)`` tuples.
|
83 |
+
"""
|
84 |
+
|
85 |
+
from nltk.classify.api import ClassifierI, MultiClassifierI
|
86 |
+
from nltk.classify.decisiontree import DecisionTreeClassifier
|
87 |
+
from nltk.classify.maxent import (
|
88 |
+
BinaryMaxentFeatureEncoding,
|
89 |
+
ConditionalExponentialClassifier,
|
90 |
+
MaxentClassifier,
|
91 |
+
TypedMaxentFeatureEncoding,
|
92 |
+
)
|
93 |
+
from nltk.classify.megam import call_megam, config_megam
|
94 |
+
from nltk.classify.naivebayes import NaiveBayesClassifier
|
95 |
+
from nltk.classify.positivenaivebayes import PositiveNaiveBayesClassifier
|
96 |
+
from nltk.classify.rte_classify import RTEFeatureExtractor, rte_classifier, rte_features
|
97 |
+
from nltk.classify.scikitlearn import SklearnClassifier
|
98 |
+
from nltk.classify.senna import Senna
|
99 |
+
from nltk.classify.textcat import TextCat
|
100 |
+
from nltk.classify.util import accuracy, apply_features, log_likelihood
|
101 |
+
from nltk.classify.weka import WekaClassifier, config_weka
|
venv/lib/python3.10/site-packages/nltk/classify/api.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Classifier Interface
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Edward Loper <[email protected]>
|
5 |
+
# Steven Bird <[email protected]> (minor additions)
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
"""
|
10 |
+
Interfaces for labeling tokens with category labels (or "class labels").
|
11 |
+
|
12 |
+
``ClassifierI`` is a standard interface for "single-category
|
13 |
+
classification", in which the set of categories is known, the number
|
14 |
+
of categories is finite, and each text belongs to exactly one
|
15 |
+
category.
|
16 |
+
|
17 |
+
``MultiClassifierI`` is a standard interface for "multi-category
|
18 |
+
classification", which is like single-category classification except
|
19 |
+
that each text belongs to zero or more categories.
|
20 |
+
"""
|
21 |
+
from nltk.internals import overridden
|
22 |
+
|
23 |
+
##//////////////////////////////////////////////////////
|
24 |
+
# { Classification Interfaces
|
25 |
+
##//////////////////////////////////////////////////////
|
26 |
+
|
27 |
+
|
28 |
+
class ClassifierI:
|
29 |
+
"""
|
30 |
+
A processing interface for labeling tokens with a single category
|
31 |
+
label (or "class"). Labels are typically strs or
|
32 |
+
ints, but can be any immutable type. The set of labels
|
33 |
+
that the classifier chooses from must be fixed and finite.
|
34 |
+
|
35 |
+
Subclasses must define:
|
36 |
+
- ``labels()``
|
37 |
+
- either ``classify()`` or ``classify_many()`` (or both)
|
38 |
+
|
39 |
+
Subclasses may define:
|
40 |
+
- either ``prob_classify()`` or ``prob_classify_many()`` (or both)
|
41 |
+
"""
|
42 |
+
|
43 |
+
def labels(self):
|
44 |
+
"""
|
45 |
+
:return: the list of category labels used by this classifier.
|
46 |
+
:rtype: list of (immutable)
|
47 |
+
"""
|
48 |
+
raise NotImplementedError()
|
49 |
+
|
50 |
+
def classify(self, featureset):
|
51 |
+
"""
|
52 |
+
:return: the most appropriate label for the given featureset.
|
53 |
+
:rtype: label
|
54 |
+
"""
|
55 |
+
if overridden(self.classify_many):
|
56 |
+
return self.classify_many([featureset])[0]
|
57 |
+
else:
|
58 |
+
raise NotImplementedError()
|
59 |
+
|
60 |
+
def prob_classify(self, featureset):
|
61 |
+
"""
|
62 |
+
:return: a probability distribution over labels for the given
|
63 |
+
featureset.
|
64 |
+
:rtype: ProbDistI
|
65 |
+
"""
|
66 |
+
if overridden(self.prob_classify_many):
|
67 |
+
return self.prob_classify_many([featureset])[0]
|
68 |
+
else:
|
69 |
+
raise NotImplementedError()
|
70 |
+
|
71 |
+
def classify_many(self, featuresets):
|
72 |
+
"""
|
73 |
+
Apply ``self.classify()`` to each element of ``featuresets``. I.e.:
|
74 |
+
|
75 |
+
return [self.classify(fs) for fs in featuresets]
|
76 |
+
|
77 |
+
:rtype: list(label)
|
78 |
+
"""
|
79 |
+
return [self.classify(fs) for fs in featuresets]
|
80 |
+
|
81 |
+
def prob_classify_many(self, featuresets):
|
82 |
+
"""
|
83 |
+
Apply ``self.prob_classify()`` to each element of ``featuresets``. I.e.:
|
84 |
+
|
85 |
+
return [self.prob_classify(fs) for fs in featuresets]
|
86 |
+
|
87 |
+
:rtype: list(ProbDistI)
|
88 |
+
"""
|
89 |
+
return [self.prob_classify(fs) for fs in featuresets]
|
90 |
+
|
91 |
+
|
92 |
+
class MultiClassifierI:
|
93 |
+
"""
|
94 |
+
A processing interface for labeling tokens with zero or more
|
95 |
+
category labels (or "labels"). Labels are typically strs
|
96 |
+
or ints, but can be any immutable type. The set of labels
|
97 |
+
that the multi-classifier chooses from must be fixed and finite.
|
98 |
+
|
99 |
+
Subclasses must define:
|
100 |
+
- ``labels()``
|
101 |
+
- either ``classify()`` or ``classify_many()`` (or both)
|
102 |
+
|
103 |
+
Subclasses may define:
|
104 |
+
- either ``prob_classify()`` or ``prob_classify_many()`` (or both)
|
105 |
+
"""
|
106 |
+
|
107 |
+
def labels(self):
|
108 |
+
"""
|
109 |
+
:return: the list of category labels used by this classifier.
|
110 |
+
:rtype: list of (immutable)
|
111 |
+
"""
|
112 |
+
raise NotImplementedError()
|
113 |
+
|
114 |
+
def classify(self, featureset):
|
115 |
+
"""
|
116 |
+
:return: the most appropriate set of labels for the given featureset.
|
117 |
+
:rtype: set(label)
|
118 |
+
"""
|
119 |
+
if overridden(self.classify_many):
|
120 |
+
return self.classify_many([featureset])[0]
|
121 |
+
else:
|
122 |
+
raise NotImplementedError()
|
123 |
+
|
124 |
+
def prob_classify(self, featureset):
|
125 |
+
"""
|
126 |
+
:return: a probability distribution over sets of labels for the
|
127 |
+
given featureset.
|
128 |
+
:rtype: ProbDistI
|
129 |
+
"""
|
130 |
+
if overridden(self.prob_classify_many):
|
131 |
+
return self.prob_classify_many([featureset])[0]
|
132 |
+
else:
|
133 |
+
raise NotImplementedError()
|
134 |
+
|
135 |
+
def classify_many(self, featuresets):
|
136 |
+
"""
|
137 |
+
Apply ``self.classify()`` to each element of ``featuresets``. I.e.:
|
138 |
+
|
139 |
+
return [self.classify(fs) for fs in featuresets]
|
140 |
+
|
141 |
+
:rtype: list(set(label))
|
142 |
+
"""
|
143 |
+
return [self.classify(fs) for fs in featuresets]
|
144 |
+
|
145 |
+
def prob_classify_many(self, featuresets):
|
146 |
+
"""
|
147 |
+
Apply ``self.prob_classify()`` to each element of ``featuresets``. I.e.:
|
148 |
+
|
149 |
+
return [self.prob_classify(fs) for fs in featuresets]
|
150 |
+
|
151 |
+
:rtype: list(ProbDistI)
|
152 |
+
"""
|
153 |
+
return [self.prob_classify(fs) for fs in featuresets]
|
154 |
+
|
155 |
+
|
156 |
+
# # [XX] IN PROGRESS:
|
157 |
+
# class SequenceClassifierI:
|
158 |
+
# """
|
159 |
+
# A processing interface for labeling sequences of tokens with a
|
160 |
+
# single category label (or "class"). Labels are typically
|
161 |
+
# strs or ints, but can be any immutable type. The set
|
162 |
+
# of labels that the classifier chooses from must be fixed and
|
163 |
+
# finite.
|
164 |
+
# """
|
165 |
+
# def labels(self):
|
166 |
+
# """
|
167 |
+
# :return: the list of category labels used by this classifier.
|
168 |
+
# :rtype: list of (immutable)
|
169 |
+
# """
|
170 |
+
# raise NotImplementedError()
|
171 |
+
|
172 |
+
# def prob_classify(self, featureset):
|
173 |
+
# """
|
174 |
+
# Return a probability distribution over labels for the given
|
175 |
+
# featureset.
|
176 |
+
|
177 |
+
# If ``featureset`` is a list of featuresets, then return a
|
178 |
+
# corresponding list containing the probability distribution
|
179 |
+
# over labels for each of the given featuresets, where the
|
180 |
+
# *i*\ th element of this list is the most appropriate label for
|
181 |
+
# the *i*\ th element of ``featuresets``.
|
182 |
+
# """
|
183 |
+
# raise NotImplementedError()
|
184 |
+
|
185 |
+
# def classify(self, featureset):
|
186 |
+
# """
|
187 |
+
# Return the most appropriate label for the given featureset.
|
188 |
+
|
189 |
+
# If ``featureset`` is a list of featuresets, then return a
|
190 |
+
# corresponding list containing the most appropriate label for
|
191 |
+
# each of the given featuresets, where the *i*\ th element of
|
192 |
+
# this list is the most appropriate label for the *i*\ th element
|
193 |
+
# of ``featuresets``.
|
194 |
+
# """
|
195 |
+
# raise NotImplementedError()
|
venv/lib/python3.10/site-packages/nltk/classify/decisiontree.py
ADDED
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Decision Tree Classifiers
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Edward Loper <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
"""
|
9 |
+
A classifier model that decides which label to assign to a token on
|
10 |
+
the basis of a tree structure, where branches correspond to conditions
|
11 |
+
on feature values, and leaves correspond to label assignments.
|
12 |
+
"""
|
13 |
+
|
14 |
+
from collections import defaultdict
|
15 |
+
|
16 |
+
from nltk.classify.api import ClassifierI
|
17 |
+
from nltk.probability import FreqDist, MLEProbDist, entropy
|
18 |
+
|
19 |
+
|
20 |
+
class DecisionTreeClassifier(ClassifierI):
|
21 |
+
def __init__(self, label, feature_name=None, decisions=None, default=None):
|
22 |
+
"""
|
23 |
+
:param label: The most likely label for tokens that reach
|
24 |
+
this node in the decision tree. If this decision tree
|
25 |
+
has no children, then this label will be assigned to
|
26 |
+
any token that reaches this decision tree.
|
27 |
+
:param feature_name: The name of the feature that this
|
28 |
+
decision tree selects for.
|
29 |
+
:param decisions: A dictionary mapping from feature values
|
30 |
+
for the feature identified by ``feature_name`` to
|
31 |
+
child decision trees.
|
32 |
+
:param default: The child that will be used if the value of
|
33 |
+
feature ``feature_name`` does not match any of the keys in
|
34 |
+
``decisions``. This is used when constructing binary
|
35 |
+
decision trees.
|
36 |
+
"""
|
37 |
+
self._label = label
|
38 |
+
self._fname = feature_name
|
39 |
+
self._decisions = decisions
|
40 |
+
self._default = default
|
41 |
+
|
42 |
+
def labels(self):
|
43 |
+
labels = [self._label]
|
44 |
+
if self._decisions is not None:
|
45 |
+
for dt in self._decisions.values():
|
46 |
+
labels.extend(dt.labels())
|
47 |
+
if self._default is not None:
|
48 |
+
labels.extend(self._default.labels())
|
49 |
+
return list(set(labels))
|
50 |
+
|
51 |
+
def classify(self, featureset):
|
52 |
+
# Decision leaf:
|
53 |
+
if self._fname is None:
|
54 |
+
return self._label
|
55 |
+
|
56 |
+
# Decision tree:
|
57 |
+
fval = featureset.get(self._fname)
|
58 |
+
if fval in self._decisions:
|
59 |
+
return self._decisions[fval].classify(featureset)
|
60 |
+
elif self._default is not None:
|
61 |
+
return self._default.classify(featureset)
|
62 |
+
else:
|
63 |
+
return self._label
|
64 |
+
|
65 |
+
def error(self, labeled_featuresets):
|
66 |
+
errors = 0
|
67 |
+
for featureset, label in labeled_featuresets:
|
68 |
+
if self.classify(featureset) != label:
|
69 |
+
errors += 1
|
70 |
+
return errors / len(labeled_featuresets)
|
71 |
+
|
72 |
+
def pretty_format(self, width=70, prefix="", depth=4):
|
73 |
+
"""
|
74 |
+
Return a string containing a pretty-printed version of this
|
75 |
+
decision tree. Each line in this string corresponds to a
|
76 |
+
single decision tree node or leaf, and indentation is used to
|
77 |
+
display the structure of the decision tree.
|
78 |
+
"""
|
79 |
+
# [xx] display default!!
|
80 |
+
if self._fname is None:
|
81 |
+
n = width - len(prefix) - 15
|
82 |
+
return "{}{} {}\n".format(prefix, "." * n, self._label)
|
83 |
+
s = ""
|
84 |
+
for i, (fval, result) in enumerate(
|
85 |
+
sorted(
|
86 |
+
self._decisions.items(),
|
87 |
+
key=lambda item: (item[0] in [None, False, True], str(item[0]).lower()),
|
88 |
+
)
|
89 |
+
):
|
90 |
+
hdr = f"{prefix}{self._fname}={fval}? "
|
91 |
+
n = width - 15 - len(hdr)
|
92 |
+
s += "{}{} {}\n".format(hdr, "." * (n), result._label)
|
93 |
+
if result._fname is not None and depth > 1:
|
94 |
+
s += result.pretty_format(width, prefix + " ", depth - 1)
|
95 |
+
if self._default is not None:
|
96 |
+
n = width - len(prefix) - 21
|
97 |
+
s += "{}else: {} {}\n".format(prefix, "." * n, self._default._label)
|
98 |
+
if self._default._fname is not None and depth > 1:
|
99 |
+
s += self._default.pretty_format(width, prefix + " ", depth - 1)
|
100 |
+
return s
|
101 |
+
|
102 |
+
def pseudocode(self, prefix="", depth=4):
|
103 |
+
"""
|
104 |
+
Return a string representation of this decision tree that
|
105 |
+
expresses the decisions it makes as a nested set of pseudocode
|
106 |
+
if statements.
|
107 |
+
"""
|
108 |
+
if self._fname is None:
|
109 |
+
return f"{prefix}return {self._label!r}\n"
|
110 |
+
s = ""
|
111 |
+
for (fval, result) in sorted(
|
112 |
+
self._decisions.items(),
|
113 |
+
key=lambda item: (item[0] in [None, False, True], str(item[0]).lower()),
|
114 |
+
):
|
115 |
+
s += f"{prefix}if {self._fname} == {fval!r}: "
|
116 |
+
if result._fname is not None and depth > 1:
|
117 |
+
s += "\n" + result.pseudocode(prefix + " ", depth - 1)
|
118 |
+
else:
|
119 |
+
s += f"return {result._label!r}\n"
|
120 |
+
if self._default is not None:
|
121 |
+
if len(self._decisions) == 1:
|
122 |
+
s += "{}if {} != {!r}: ".format(
|
123 |
+
prefix, self._fname, list(self._decisions.keys())[0]
|
124 |
+
)
|
125 |
+
else:
|
126 |
+
s += f"{prefix}else: "
|
127 |
+
if self._default._fname is not None and depth > 1:
|
128 |
+
s += "\n" + self._default.pseudocode(prefix + " ", depth - 1)
|
129 |
+
else:
|
130 |
+
s += f"return {self._default._label!r}\n"
|
131 |
+
return s
|
132 |
+
|
133 |
+
def __str__(self):
|
134 |
+
return self.pretty_format()
|
135 |
+
|
136 |
+
@staticmethod
|
137 |
+
def train(
|
138 |
+
labeled_featuresets,
|
139 |
+
entropy_cutoff=0.05,
|
140 |
+
depth_cutoff=100,
|
141 |
+
support_cutoff=10,
|
142 |
+
binary=False,
|
143 |
+
feature_values=None,
|
144 |
+
verbose=False,
|
145 |
+
):
|
146 |
+
"""
|
147 |
+
:param binary: If true, then treat all feature/value pairs as
|
148 |
+
individual binary features, rather than using a single n-way
|
149 |
+
branch for each feature.
|
150 |
+
"""
|
151 |
+
# Collect a list of all feature names.
|
152 |
+
feature_names = set()
|
153 |
+
for featureset, label in labeled_featuresets:
|
154 |
+
for fname in featureset:
|
155 |
+
feature_names.add(fname)
|
156 |
+
|
157 |
+
# Collect a list of the values each feature can take.
|
158 |
+
if feature_values is None and binary:
|
159 |
+
feature_values = defaultdict(set)
|
160 |
+
for featureset, label in labeled_featuresets:
|
161 |
+
for fname, fval in featureset.items():
|
162 |
+
feature_values[fname].add(fval)
|
163 |
+
|
164 |
+
# Start with a stump.
|
165 |
+
if not binary:
|
166 |
+
tree = DecisionTreeClassifier.best_stump(
|
167 |
+
feature_names, labeled_featuresets, verbose
|
168 |
+
)
|
169 |
+
else:
|
170 |
+
tree = DecisionTreeClassifier.best_binary_stump(
|
171 |
+
feature_names, labeled_featuresets, feature_values, verbose
|
172 |
+
)
|
173 |
+
|
174 |
+
# Refine the stump.
|
175 |
+
tree.refine(
|
176 |
+
labeled_featuresets,
|
177 |
+
entropy_cutoff,
|
178 |
+
depth_cutoff - 1,
|
179 |
+
support_cutoff,
|
180 |
+
binary,
|
181 |
+
feature_values,
|
182 |
+
verbose,
|
183 |
+
)
|
184 |
+
|
185 |
+
# Return it
|
186 |
+
return tree
|
187 |
+
|
188 |
+
@staticmethod
|
189 |
+
def leaf(labeled_featuresets):
|
190 |
+
label = FreqDist(label for (featureset, label) in labeled_featuresets).max()
|
191 |
+
return DecisionTreeClassifier(label)
|
192 |
+
|
193 |
+
@staticmethod
|
194 |
+
def stump(feature_name, labeled_featuresets):
|
195 |
+
label = FreqDist(label for (featureset, label) in labeled_featuresets).max()
|
196 |
+
|
197 |
+
# Find the best label for each value.
|
198 |
+
freqs = defaultdict(FreqDist) # freq(label|value)
|
199 |
+
for featureset, label in labeled_featuresets:
|
200 |
+
feature_value = featureset.get(feature_name)
|
201 |
+
freqs[feature_value][label] += 1
|
202 |
+
|
203 |
+
decisions = {val: DecisionTreeClassifier(freqs[val].max()) for val in freqs}
|
204 |
+
return DecisionTreeClassifier(label, feature_name, decisions)
|
205 |
+
|
206 |
+
def refine(
|
207 |
+
self,
|
208 |
+
labeled_featuresets,
|
209 |
+
entropy_cutoff,
|
210 |
+
depth_cutoff,
|
211 |
+
support_cutoff,
|
212 |
+
binary=False,
|
213 |
+
feature_values=None,
|
214 |
+
verbose=False,
|
215 |
+
):
|
216 |
+
if len(labeled_featuresets) <= support_cutoff:
|
217 |
+
return
|
218 |
+
if self._fname is None:
|
219 |
+
return
|
220 |
+
if depth_cutoff <= 0:
|
221 |
+
return
|
222 |
+
for fval in self._decisions:
|
223 |
+
fval_featuresets = [
|
224 |
+
(featureset, label)
|
225 |
+
for (featureset, label) in labeled_featuresets
|
226 |
+
if featureset.get(self._fname) == fval
|
227 |
+
]
|
228 |
+
|
229 |
+
label_freqs = FreqDist(label for (featureset, label) in fval_featuresets)
|
230 |
+
if entropy(MLEProbDist(label_freqs)) > entropy_cutoff:
|
231 |
+
self._decisions[fval] = DecisionTreeClassifier.train(
|
232 |
+
fval_featuresets,
|
233 |
+
entropy_cutoff,
|
234 |
+
depth_cutoff,
|
235 |
+
support_cutoff,
|
236 |
+
binary,
|
237 |
+
feature_values,
|
238 |
+
verbose,
|
239 |
+
)
|
240 |
+
if self._default is not None:
|
241 |
+
default_featuresets = [
|
242 |
+
(featureset, label)
|
243 |
+
for (featureset, label) in labeled_featuresets
|
244 |
+
if featureset.get(self._fname) not in self._decisions
|
245 |
+
]
|
246 |
+
label_freqs = FreqDist(label for (featureset, label) in default_featuresets)
|
247 |
+
if entropy(MLEProbDist(label_freqs)) > entropy_cutoff:
|
248 |
+
self._default = DecisionTreeClassifier.train(
|
249 |
+
default_featuresets,
|
250 |
+
entropy_cutoff,
|
251 |
+
depth_cutoff,
|
252 |
+
support_cutoff,
|
253 |
+
binary,
|
254 |
+
feature_values,
|
255 |
+
verbose,
|
256 |
+
)
|
257 |
+
|
258 |
+
@staticmethod
|
259 |
+
def best_stump(feature_names, labeled_featuresets, verbose=False):
|
260 |
+
best_stump = DecisionTreeClassifier.leaf(labeled_featuresets)
|
261 |
+
best_error = best_stump.error(labeled_featuresets)
|
262 |
+
for fname in feature_names:
|
263 |
+
stump = DecisionTreeClassifier.stump(fname, labeled_featuresets)
|
264 |
+
stump_error = stump.error(labeled_featuresets)
|
265 |
+
if stump_error < best_error:
|
266 |
+
best_error = stump_error
|
267 |
+
best_stump = stump
|
268 |
+
if verbose:
|
269 |
+
print(
|
270 |
+
"best stump for {:6d} toks uses {:20} err={:6.4f}".format(
|
271 |
+
len(labeled_featuresets), best_stump._fname, best_error
|
272 |
+
)
|
273 |
+
)
|
274 |
+
return best_stump
|
275 |
+
|
276 |
+
@staticmethod
|
277 |
+
def binary_stump(feature_name, feature_value, labeled_featuresets):
|
278 |
+
label = FreqDist(label for (featureset, label) in labeled_featuresets).max()
|
279 |
+
|
280 |
+
# Find the best label for each value.
|
281 |
+
pos_fdist = FreqDist()
|
282 |
+
neg_fdist = FreqDist()
|
283 |
+
for featureset, label in labeled_featuresets:
|
284 |
+
if featureset.get(feature_name) == feature_value:
|
285 |
+
pos_fdist[label] += 1
|
286 |
+
else:
|
287 |
+
neg_fdist[label] += 1
|
288 |
+
|
289 |
+
decisions = {}
|
290 |
+
default = label
|
291 |
+
# But hopefully we have observations!
|
292 |
+
if pos_fdist.N() > 0:
|
293 |
+
decisions = {feature_value: DecisionTreeClassifier(pos_fdist.max())}
|
294 |
+
if neg_fdist.N() > 0:
|
295 |
+
default = DecisionTreeClassifier(neg_fdist.max())
|
296 |
+
|
297 |
+
return DecisionTreeClassifier(label, feature_name, decisions, default)
|
298 |
+
|
299 |
+
@staticmethod
|
300 |
+
def best_binary_stump(
|
301 |
+
feature_names, labeled_featuresets, feature_values, verbose=False
|
302 |
+
):
|
303 |
+
best_stump = DecisionTreeClassifier.leaf(labeled_featuresets)
|
304 |
+
best_error = best_stump.error(labeled_featuresets)
|
305 |
+
for fname in feature_names:
|
306 |
+
for fval in feature_values[fname]:
|
307 |
+
stump = DecisionTreeClassifier.binary_stump(
|
308 |
+
fname, fval, labeled_featuresets
|
309 |
+
)
|
310 |
+
stump_error = stump.error(labeled_featuresets)
|
311 |
+
if stump_error < best_error:
|
312 |
+
best_error = stump_error
|
313 |
+
best_stump = stump
|
314 |
+
if verbose:
|
315 |
+
if best_stump._decisions:
|
316 |
+
descr = "{}={}".format(
|
317 |
+
best_stump._fname, list(best_stump._decisions.keys())[0]
|
318 |
+
)
|
319 |
+
else:
|
320 |
+
descr = "(default)"
|
321 |
+
print(
|
322 |
+
"best stump for {:6d} toks uses {:20} err={:6.4f}".format(
|
323 |
+
len(labeled_featuresets), descr, best_error
|
324 |
+
)
|
325 |
+
)
|
326 |
+
return best_stump
|
327 |
+
|
328 |
+
|
329 |
+
##//////////////////////////////////////////////////////
|
330 |
+
## Demo
|
331 |
+
##//////////////////////////////////////////////////////
|
332 |
+
|
333 |
+
|
334 |
+
def f(x):
|
335 |
+
return DecisionTreeClassifier.train(x, binary=True, verbose=True)
|
336 |
+
|
337 |
+
|
338 |
+
def demo():
|
339 |
+
from nltk.classify.util import binary_names_demo_features, names_demo
|
340 |
+
|
341 |
+
classifier = names_demo(
|
342 |
+
f, binary_names_demo_features # DecisionTreeClassifier.train,
|
343 |
+
)
|
344 |
+
print(classifier.pretty_format(depth=7))
|
345 |
+
print(classifier.pseudocode(depth=7))
|
346 |
+
|
347 |
+
|
348 |
+
if __name__ == "__main__":
|
349 |
+
demo()
|
venv/lib/python3.10/site-packages/nltk/classify/maxent.py
ADDED
@@ -0,0 +1,1569 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Maximum Entropy Classifiers
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Edward Loper <[email protected]>
|
5 |
+
# Dmitry Chichkov <[email protected]> (TypedMaxentFeatureEncoding)
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
"""
|
10 |
+
A classifier model based on maximum entropy modeling framework. This
|
11 |
+
framework considers all of the probability distributions that are
|
12 |
+
empirically consistent with the training data; and chooses the
|
13 |
+
distribution with the highest entropy. A probability distribution is
|
14 |
+
"empirically consistent" with a set of training data if its estimated
|
15 |
+
frequency with which a class and a feature vector value co-occur is
|
16 |
+
equal to the actual frequency in the data.
|
17 |
+
|
18 |
+
Terminology: 'feature'
|
19 |
+
======================
|
20 |
+
The term *feature* is usually used to refer to some property of an
|
21 |
+
unlabeled token. For example, when performing word sense
|
22 |
+
disambiguation, we might define a ``'prevword'`` feature whose value is
|
23 |
+
the word preceding the target word. However, in the context of
|
24 |
+
maxent modeling, the term *feature* is typically used to refer to a
|
25 |
+
property of a "labeled" token. In order to prevent confusion, we
|
26 |
+
will introduce two distinct terms to disambiguate these two different
|
27 |
+
concepts:
|
28 |
+
|
29 |
+
- An "input-feature" is a property of an unlabeled token.
|
30 |
+
- A "joint-feature" is a property of a labeled token.
|
31 |
+
|
32 |
+
In the rest of the ``nltk.classify`` module, the term "features" is
|
33 |
+
used to refer to what we will call "input-features" in this module.
|
34 |
+
|
35 |
+
In literature that describes and discusses maximum entropy models,
|
36 |
+
input-features are typically called "contexts", and joint-features
|
37 |
+
are simply referred to as "features".
|
38 |
+
|
39 |
+
Converting Input-Features to Joint-Features
|
40 |
+
-------------------------------------------
|
41 |
+
In maximum entropy models, joint-features are required to have numeric
|
42 |
+
values. Typically, each input-feature ``input_feat`` is mapped to a
|
43 |
+
set of joint-features of the form:
|
44 |
+
|
45 |
+
| joint_feat(token, label) = { 1 if input_feat(token) == feat_val
|
46 |
+
| { and label == some_label
|
47 |
+
| {
|
48 |
+
| { 0 otherwise
|
49 |
+
|
50 |
+
For all values of ``feat_val`` and ``some_label``. This mapping is
|
51 |
+
performed by classes that implement the ``MaxentFeatureEncodingI``
|
52 |
+
interface.
|
53 |
+
"""
|
54 |
+
try:
|
55 |
+
import numpy
|
56 |
+
except ImportError:
|
57 |
+
pass
|
58 |
+
|
59 |
+
import os
|
60 |
+
import tempfile
|
61 |
+
from collections import defaultdict
|
62 |
+
|
63 |
+
from nltk.classify.api import ClassifierI
|
64 |
+
from nltk.classify.megam import call_megam, parse_megam_weights, write_megam_file
|
65 |
+
from nltk.classify.tadm import call_tadm, parse_tadm_weights, write_tadm_file
|
66 |
+
from nltk.classify.util import CutoffChecker, accuracy, log_likelihood
|
67 |
+
from nltk.data import gzip_open_unicode
|
68 |
+
from nltk.probability import DictionaryProbDist
|
69 |
+
from nltk.util import OrderedDict
|
70 |
+
|
71 |
+
__docformat__ = "epytext en"
|
72 |
+
|
73 |
+
######################################################################
|
74 |
+
# { Classifier Model
|
75 |
+
######################################################################
|
76 |
+
|
77 |
+
|
78 |
+
class MaxentClassifier(ClassifierI):
|
79 |
+
"""
|
80 |
+
A maximum entropy classifier (also known as a "conditional
|
81 |
+
exponential classifier"). This classifier is parameterized by a
|
82 |
+
set of "weights", which are used to combine the joint-features
|
83 |
+
that are generated from a featureset by an "encoding". In
|
84 |
+
particular, the encoding maps each ``(featureset, label)`` pair to
|
85 |
+
a vector. The probability of each label is then computed using
|
86 |
+
the following equation::
|
87 |
+
|
88 |
+
dotprod(weights, encode(fs,label))
|
89 |
+
prob(fs|label) = ---------------------------------------------------
|
90 |
+
sum(dotprod(weights, encode(fs,l)) for l in labels)
|
91 |
+
|
92 |
+
Where ``dotprod`` is the dot product::
|
93 |
+
|
94 |
+
dotprod(a,b) = sum(x*y for (x,y) in zip(a,b))
|
95 |
+
"""
|
96 |
+
|
97 |
+
def __init__(self, encoding, weights, logarithmic=True):
|
98 |
+
"""
|
99 |
+
Construct a new maxent classifier model. Typically, new
|
100 |
+
classifier models are created using the ``train()`` method.
|
101 |
+
|
102 |
+
:type encoding: MaxentFeatureEncodingI
|
103 |
+
:param encoding: An encoding that is used to convert the
|
104 |
+
featuresets that are given to the ``classify`` method into
|
105 |
+
joint-feature vectors, which are used by the maxent
|
106 |
+
classifier model.
|
107 |
+
|
108 |
+
:type weights: list of float
|
109 |
+
:param weights: The feature weight vector for this classifier.
|
110 |
+
|
111 |
+
:type logarithmic: bool
|
112 |
+
:param logarithmic: If false, then use non-logarithmic weights.
|
113 |
+
"""
|
114 |
+
self._encoding = encoding
|
115 |
+
self._weights = weights
|
116 |
+
self._logarithmic = logarithmic
|
117 |
+
# self._logarithmic = False
|
118 |
+
assert encoding.length() == len(weights)
|
119 |
+
|
120 |
+
def labels(self):
|
121 |
+
return self._encoding.labels()
|
122 |
+
|
123 |
+
def set_weights(self, new_weights):
|
124 |
+
"""
|
125 |
+
Set the feature weight vector for this classifier.
|
126 |
+
:param new_weights: The new feature weight vector.
|
127 |
+
:type new_weights: list of float
|
128 |
+
"""
|
129 |
+
self._weights = new_weights
|
130 |
+
assert self._encoding.length() == len(new_weights)
|
131 |
+
|
132 |
+
def weights(self):
|
133 |
+
"""
|
134 |
+
:return: The feature weight vector for this classifier.
|
135 |
+
:rtype: list of float
|
136 |
+
"""
|
137 |
+
return self._weights
|
138 |
+
|
139 |
+
def classify(self, featureset):
|
140 |
+
return self.prob_classify(featureset).max()
|
141 |
+
|
142 |
+
def prob_classify(self, featureset):
|
143 |
+
prob_dict = {}
|
144 |
+
for label in self._encoding.labels():
|
145 |
+
feature_vector = self._encoding.encode(featureset, label)
|
146 |
+
|
147 |
+
if self._logarithmic:
|
148 |
+
total = 0.0
|
149 |
+
for (f_id, f_val) in feature_vector:
|
150 |
+
total += self._weights[f_id] * f_val
|
151 |
+
prob_dict[label] = total
|
152 |
+
|
153 |
+
else:
|
154 |
+
prod = 1.0
|
155 |
+
for (f_id, f_val) in feature_vector:
|
156 |
+
prod *= self._weights[f_id] ** f_val
|
157 |
+
prob_dict[label] = prod
|
158 |
+
|
159 |
+
# Normalize the dictionary to give a probability distribution
|
160 |
+
return DictionaryProbDist(prob_dict, log=self._logarithmic, normalize=True)
|
161 |
+
|
162 |
+
def explain(self, featureset, columns=4):
|
163 |
+
"""
|
164 |
+
Print a table showing the effect of each of the features in
|
165 |
+
the given feature set, and how they combine to determine the
|
166 |
+
probabilities of each label for that featureset.
|
167 |
+
"""
|
168 |
+
descr_width = 50
|
169 |
+
TEMPLATE = " %-" + str(descr_width - 2) + "s%s%8.3f"
|
170 |
+
|
171 |
+
pdist = self.prob_classify(featureset)
|
172 |
+
labels = sorted(pdist.samples(), key=pdist.prob, reverse=True)
|
173 |
+
labels = labels[:columns]
|
174 |
+
print(
|
175 |
+
" Feature".ljust(descr_width)
|
176 |
+
+ "".join("%8s" % (("%s" % l)[:7]) for l in labels)
|
177 |
+
)
|
178 |
+
print(" " + "-" * (descr_width - 2 + 8 * len(labels)))
|
179 |
+
sums = defaultdict(int)
|
180 |
+
for i, label in enumerate(labels):
|
181 |
+
feature_vector = self._encoding.encode(featureset, label)
|
182 |
+
feature_vector.sort(
|
183 |
+
key=lambda fid__: abs(self._weights[fid__[0]]), reverse=True
|
184 |
+
)
|
185 |
+
for (f_id, f_val) in feature_vector:
|
186 |
+
if self._logarithmic:
|
187 |
+
score = self._weights[f_id] * f_val
|
188 |
+
else:
|
189 |
+
score = self._weights[f_id] ** f_val
|
190 |
+
descr = self._encoding.describe(f_id)
|
191 |
+
descr = descr.split(" and label is ")[0] # hack
|
192 |
+
descr += " (%s)" % f_val # hack
|
193 |
+
if len(descr) > 47:
|
194 |
+
descr = descr[:44] + "..."
|
195 |
+
print(TEMPLATE % (descr, i * 8 * " ", score))
|
196 |
+
sums[label] += score
|
197 |
+
print(" " + "-" * (descr_width - 1 + 8 * len(labels)))
|
198 |
+
print(
|
199 |
+
" TOTAL:".ljust(descr_width) + "".join("%8.3f" % sums[l] for l in labels)
|
200 |
+
)
|
201 |
+
print(
|
202 |
+
" PROBS:".ljust(descr_width)
|
203 |
+
+ "".join("%8.3f" % pdist.prob(l) for l in labels)
|
204 |
+
)
|
205 |
+
|
206 |
+
def most_informative_features(self, n=10):
|
207 |
+
"""
|
208 |
+
Generates the ranked list of informative features from most to least.
|
209 |
+
"""
|
210 |
+
if hasattr(self, "_most_informative_features"):
|
211 |
+
return self._most_informative_features[:n]
|
212 |
+
else:
|
213 |
+
self._most_informative_features = sorted(
|
214 |
+
list(range(len(self._weights))),
|
215 |
+
key=lambda fid: abs(self._weights[fid]),
|
216 |
+
reverse=True,
|
217 |
+
)
|
218 |
+
return self._most_informative_features[:n]
|
219 |
+
|
220 |
+
def show_most_informative_features(self, n=10, show="all"):
|
221 |
+
"""
|
222 |
+
:param show: all, neg, or pos (for negative-only or positive-only)
|
223 |
+
:type show: str
|
224 |
+
:param n: The no. of top features
|
225 |
+
:type n: int
|
226 |
+
"""
|
227 |
+
# Use None the full list of ranked features.
|
228 |
+
fids = self.most_informative_features(None)
|
229 |
+
if show == "pos":
|
230 |
+
fids = [fid for fid in fids if self._weights[fid] > 0]
|
231 |
+
elif show == "neg":
|
232 |
+
fids = [fid for fid in fids if self._weights[fid] < 0]
|
233 |
+
for fid in fids[:n]:
|
234 |
+
print(f"{self._weights[fid]:8.3f} {self._encoding.describe(fid)}")
|
235 |
+
|
236 |
+
def __repr__(self):
|
237 |
+
return "<ConditionalExponentialClassifier: %d labels, %d features>" % (
|
238 |
+
len(self._encoding.labels()),
|
239 |
+
self._encoding.length(),
|
240 |
+
)
|
241 |
+
|
242 |
+
#: A list of the algorithm names that are accepted for the
|
243 |
+
#: ``train()`` method's ``algorithm`` parameter.
|
244 |
+
ALGORITHMS = ["GIS", "IIS", "MEGAM", "TADM"]
|
245 |
+
|
246 |
+
@classmethod
|
247 |
+
def train(
|
248 |
+
cls,
|
249 |
+
train_toks,
|
250 |
+
algorithm=None,
|
251 |
+
trace=3,
|
252 |
+
encoding=None,
|
253 |
+
labels=None,
|
254 |
+
gaussian_prior_sigma=0,
|
255 |
+
**cutoffs,
|
256 |
+
):
|
257 |
+
"""
|
258 |
+
Train a new maxent classifier based on the given corpus of
|
259 |
+
training samples. This classifier will have its weights
|
260 |
+
chosen to maximize entropy while remaining empirically
|
261 |
+
consistent with the training corpus.
|
262 |
+
|
263 |
+
:rtype: MaxentClassifier
|
264 |
+
:return: The new maxent classifier
|
265 |
+
|
266 |
+
:type train_toks: list
|
267 |
+
:param train_toks: Training data, represented as a list of
|
268 |
+
pairs, the first member of which is a featureset,
|
269 |
+
and the second of which is a classification label.
|
270 |
+
|
271 |
+
:type algorithm: str
|
272 |
+
:param algorithm: A case-insensitive string, specifying which
|
273 |
+
algorithm should be used to train the classifier. The
|
274 |
+
following algorithms are currently available.
|
275 |
+
|
276 |
+
- Iterative Scaling Methods: Generalized Iterative Scaling (``'GIS'``),
|
277 |
+
Improved Iterative Scaling (``'IIS'``)
|
278 |
+
- External Libraries (requiring megam):
|
279 |
+
LM-BFGS algorithm, with training performed by Megam (``'megam'``)
|
280 |
+
|
281 |
+
The default algorithm is ``'IIS'``.
|
282 |
+
|
283 |
+
:type trace: int
|
284 |
+
:param trace: The level of diagnostic tracing output to produce.
|
285 |
+
Higher values produce more verbose output.
|
286 |
+
:type encoding: MaxentFeatureEncodingI
|
287 |
+
:param encoding: A feature encoding, used to convert featuresets
|
288 |
+
into feature vectors. If none is specified, then a
|
289 |
+
``BinaryMaxentFeatureEncoding`` will be built based on the
|
290 |
+
features that are attested in the training corpus.
|
291 |
+
:type labels: list(str)
|
292 |
+
:param labels: The set of possible labels. If none is given, then
|
293 |
+
the set of all labels attested in the training data will be
|
294 |
+
used instead.
|
295 |
+
:param gaussian_prior_sigma: The sigma value for a gaussian
|
296 |
+
prior on model weights. Currently, this is supported by
|
297 |
+
``megam``. For other algorithms, its value is ignored.
|
298 |
+
:param cutoffs: Arguments specifying various conditions under
|
299 |
+
which the training should be halted. (Some of the cutoff
|
300 |
+
conditions are not supported by some algorithms.)
|
301 |
+
|
302 |
+
- ``max_iter=v``: Terminate after ``v`` iterations.
|
303 |
+
- ``min_ll=v``: Terminate after the negative average
|
304 |
+
log-likelihood drops under ``v``.
|
305 |
+
- ``min_lldelta=v``: Terminate if a single iteration improves
|
306 |
+
log likelihood by less than ``v``.
|
307 |
+
"""
|
308 |
+
if algorithm is None:
|
309 |
+
algorithm = "iis"
|
310 |
+
for key in cutoffs:
|
311 |
+
if key not in (
|
312 |
+
"max_iter",
|
313 |
+
"min_ll",
|
314 |
+
"min_lldelta",
|
315 |
+
"max_acc",
|
316 |
+
"min_accdelta",
|
317 |
+
"count_cutoff",
|
318 |
+
"norm",
|
319 |
+
"explicit",
|
320 |
+
"bernoulli",
|
321 |
+
):
|
322 |
+
raise TypeError("Unexpected keyword arg %r" % key)
|
323 |
+
algorithm = algorithm.lower()
|
324 |
+
if algorithm == "iis":
|
325 |
+
return train_maxent_classifier_with_iis(
|
326 |
+
train_toks, trace, encoding, labels, **cutoffs
|
327 |
+
)
|
328 |
+
elif algorithm == "gis":
|
329 |
+
return train_maxent_classifier_with_gis(
|
330 |
+
train_toks, trace, encoding, labels, **cutoffs
|
331 |
+
)
|
332 |
+
elif algorithm == "megam":
|
333 |
+
return train_maxent_classifier_with_megam(
|
334 |
+
train_toks, trace, encoding, labels, gaussian_prior_sigma, **cutoffs
|
335 |
+
)
|
336 |
+
elif algorithm == "tadm":
|
337 |
+
kwargs = cutoffs
|
338 |
+
kwargs["trace"] = trace
|
339 |
+
kwargs["encoding"] = encoding
|
340 |
+
kwargs["labels"] = labels
|
341 |
+
kwargs["gaussian_prior_sigma"] = gaussian_prior_sigma
|
342 |
+
return TadmMaxentClassifier.train(train_toks, **kwargs)
|
343 |
+
else:
|
344 |
+
raise ValueError("Unknown algorithm %s" % algorithm)
|
345 |
+
|
346 |
+
|
347 |
+
#: Alias for MaxentClassifier.
|
348 |
+
ConditionalExponentialClassifier = MaxentClassifier
|
349 |
+
|
350 |
+
|
351 |
+
######################################################################
|
352 |
+
# { Feature Encodings
|
353 |
+
######################################################################
|
354 |
+
|
355 |
+
|
356 |
+
class MaxentFeatureEncodingI:
|
357 |
+
"""
|
358 |
+
A mapping that converts a set of input-feature values to a vector
|
359 |
+
of joint-feature values, given a label. This conversion is
|
360 |
+
necessary to translate featuresets into a format that can be used
|
361 |
+
by maximum entropy models.
|
362 |
+
|
363 |
+
The set of joint-features used by a given encoding is fixed, and
|
364 |
+
each index in the generated joint-feature vectors corresponds to a
|
365 |
+
single joint-feature. The length of the generated joint-feature
|
366 |
+
vectors is therefore constant (for a given encoding).
|
367 |
+
|
368 |
+
Because the joint-feature vectors generated by
|
369 |
+
``MaxentFeatureEncodingI`` are typically very sparse, they are
|
370 |
+
represented as a list of ``(index, value)`` tuples, specifying the
|
371 |
+
value of each non-zero joint-feature.
|
372 |
+
|
373 |
+
Feature encodings are generally created using the ``train()``
|
374 |
+
method, which generates an appropriate encoding based on the
|
375 |
+
input-feature values and labels that are present in a given
|
376 |
+
corpus.
|
377 |
+
"""
|
378 |
+
|
379 |
+
def encode(self, featureset, label):
|
380 |
+
"""
|
381 |
+
Given a (featureset, label) pair, return the corresponding
|
382 |
+
vector of joint-feature values. This vector is represented as
|
383 |
+
a list of ``(index, value)`` tuples, specifying the value of
|
384 |
+
each non-zero joint-feature.
|
385 |
+
|
386 |
+
:type featureset: dict
|
387 |
+
:rtype: list(tuple(int, int))
|
388 |
+
"""
|
389 |
+
raise NotImplementedError()
|
390 |
+
|
391 |
+
def length(self):
|
392 |
+
"""
|
393 |
+
:return: The size of the fixed-length joint-feature vectors
|
394 |
+
that are generated by this encoding.
|
395 |
+
:rtype: int
|
396 |
+
"""
|
397 |
+
raise NotImplementedError()
|
398 |
+
|
399 |
+
def labels(self):
|
400 |
+
"""
|
401 |
+
:return: A list of the \"known labels\" -- i.e., all labels
|
402 |
+
``l`` such that ``self.encode(fs,l)`` can be a nonzero
|
403 |
+
joint-feature vector for some value of ``fs``.
|
404 |
+
:rtype: list
|
405 |
+
"""
|
406 |
+
raise NotImplementedError()
|
407 |
+
|
408 |
+
def describe(self, fid):
|
409 |
+
"""
|
410 |
+
:return: A string describing the value of the joint-feature
|
411 |
+
whose index in the generated feature vectors is ``fid``.
|
412 |
+
:rtype: str
|
413 |
+
"""
|
414 |
+
raise NotImplementedError()
|
415 |
+
|
416 |
+
def train(cls, train_toks):
|
417 |
+
"""
|
418 |
+
Construct and return new feature encoding, based on a given
|
419 |
+
training corpus ``train_toks``.
|
420 |
+
|
421 |
+
:type train_toks: list(tuple(dict, str))
|
422 |
+
:param train_toks: Training data, represented as a list of
|
423 |
+
pairs, the first member of which is a feature dictionary,
|
424 |
+
and the second of which is a classification label.
|
425 |
+
"""
|
426 |
+
raise NotImplementedError()
|
427 |
+
|
428 |
+
|
429 |
+
class FunctionBackedMaxentFeatureEncoding(MaxentFeatureEncodingI):
|
430 |
+
"""
|
431 |
+
A feature encoding that calls a user-supplied function to map a
|
432 |
+
given featureset/label pair to a sparse joint-feature vector.
|
433 |
+
"""
|
434 |
+
|
435 |
+
def __init__(self, func, length, labels):
|
436 |
+
"""
|
437 |
+
Construct a new feature encoding based on the given function.
|
438 |
+
|
439 |
+
:type func: (callable)
|
440 |
+
:param func: A function that takes two arguments, a featureset
|
441 |
+
and a label, and returns the sparse joint feature vector
|
442 |
+
that encodes them::
|
443 |
+
|
444 |
+
func(featureset, label) -> feature_vector
|
445 |
+
|
446 |
+
This sparse joint feature vector (``feature_vector``) is a
|
447 |
+
list of ``(index,value)`` tuples.
|
448 |
+
|
449 |
+
:type length: int
|
450 |
+
:param length: The size of the fixed-length joint-feature
|
451 |
+
vectors that are generated by this encoding.
|
452 |
+
|
453 |
+
:type labels: list
|
454 |
+
:param labels: A list of the \"known labels\" for this
|
455 |
+
encoding -- i.e., all labels ``l`` such that
|
456 |
+
``self.encode(fs,l)`` can be a nonzero joint-feature vector
|
457 |
+
for some value of ``fs``.
|
458 |
+
"""
|
459 |
+
self._length = length
|
460 |
+
self._func = func
|
461 |
+
self._labels = labels
|
462 |
+
|
463 |
+
def encode(self, featureset, label):
|
464 |
+
return self._func(featureset, label)
|
465 |
+
|
466 |
+
def length(self):
|
467 |
+
return self._length
|
468 |
+
|
469 |
+
def labels(self):
|
470 |
+
return self._labels
|
471 |
+
|
472 |
+
def describe(self, fid):
|
473 |
+
return "no description available"
|
474 |
+
|
475 |
+
|
476 |
+
class BinaryMaxentFeatureEncoding(MaxentFeatureEncodingI):
|
477 |
+
"""
|
478 |
+
A feature encoding that generates vectors containing a binary
|
479 |
+
joint-features of the form:
|
480 |
+
|
481 |
+
| joint_feat(fs, l) = { 1 if (fs[fname] == fval) and (l == label)
|
482 |
+
| {
|
483 |
+
| { 0 otherwise
|
484 |
+
|
485 |
+
Where ``fname`` is the name of an input-feature, ``fval`` is a value
|
486 |
+
for that input-feature, and ``label`` is a label.
|
487 |
+
|
488 |
+
Typically, these features are constructed based on a training
|
489 |
+
corpus, using the ``train()`` method. This method will create one
|
490 |
+
feature for each combination of ``fname``, ``fval``, and ``label``
|
491 |
+
that occurs at least once in the training corpus.
|
492 |
+
|
493 |
+
The ``unseen_features`` parameter can be used to add "unseen-value
|
494 |
+
features", which are used whenever an input feature has a value
|
495 |
+
that was not encountered in the training corpus. These features
|
496 |
+
have the form:
|
497 |
+
|
498 |
+
| joint_feat(fs, l) = { 1 if is_unseen(fname, fs[fname])
|
499 |
+
| { and l == label
|
500 |
+
| {
|
501 |
+
| { 0 otherwise
|
502 |
+
|
503 |
+
Where ``is_unseen(fname, fval)`` is true if the encoding does not
|
504 |
+
contain any joint features that are true when ``fs[fname]==fval``.
|
505 |
+
|
506 |
+
The ``alwayson_features`` parameter can be used to add "always-on
|
507 |
+
features", which have the form::
|
508 |
+
|
509 |
+
| joint_feat(fs, l) = { 1 if (l == label)
|
510 |
+
| {
|
511 |
+
| { 0 otherwise
|
512 |
+
|
513 |
+
These always-on features allow the maxent model to directly model
|
514 |
+
the prior probabilities of each label.
|
515 |
+
"""
|
516 |
+
|
517 |
+
def __init__(self, labels, mapping, unseen_features=False, alwayson_features=False):
|
518 |
+
"""
|
519 |
+
:param labels: A list of the \"known labels\" for this encoding.
|
520 |
+
|
521 |
+
:param mapping: A dictionary mapping from ``(fname,fval,label)``
|
522 |
+
tuples to corresponding joint-feature indexes. These
|
523 |
+
indexes must be the set of integers from 0...len(mapping).
|
524 |
+
If ``mapping[fname,fval,label]=id``, then
|
525 |
+
``self.encode(..., fname:fval, ..., label)[id]`` is 1;
|
526 |
+
otherwise, it is 0.
|
527 |
+
|
528 |
+
:param unseen_features: If true, then include unseen value
|
529 |
+
features in the generated joint-feature vectors.
|
530 |
+
|
531 |
+
:param alwayson_features: If true, then include always-on
|
532 |
+
features in the generated joint-feature vectors.
|
533 |
+
"""
|
534 |
+
if set(mapping.values()) != set(range(len(mapping))):
|
535 |
+
raise ValueError(
|
536 |
+
"Mapping values must be exactly the "
|
537 |
+
"set of integers from 0...len(mapping)"
|
538 |
+
)
|
539 |
+
|
540 |
+
self._labels = list(labels)
|
541 |
+
"""A list of attested labels."""
|
542 |
+
|
543 |
+
self._mapping = mapping
|
544 |
+
"""dict mapping from (fname,fval,label) -> fid"""
|
545 |
+
|
546 |
+
self._length = len(mapping)
|
547 |
+
"""The length of generated joint feature vectors."""
|
548 |
+
|
549 |
+
self._alwayson = None
|
550 |
+
"""dict mapping from label -> fid"""
|
551 |
+
|
552 |
+
self._unseen = None
|
553 |
+
"""dict mapping from fname -> fid"""
|
554 |
+
|
555 |
+
if alwayson_features:
|
556 |
+
self._alwayson = {
|
557 |
+
label: i + self._length for (i, label) in enumerate(labels)
|
558 |
+
}
|
559 |
+
self._length += len(self._alwayson)
|
560 |
+
|
561 |
+
if unseen_features:
|
562 |
+
fnames = {fname for (fname, fval, label) in mapping}
|
563 |
+
self._unseen = {fname: i + self._length for (i, fname) in enumerate(fnames)}
|
564 |
+
self._length += len(fnames)
|
565 |
+
|
566 |
+
def encode(self, featureset, label):
|
567 |
+
# Inherit docs.
|
568 |
+
encoding = []
|
569 |
+
|
570 |
+
# Convert input-features to joint-features:
|
571 |
+
for fname, fval in featureset.items():
|
572 |
+
# Known feature name & value:
|
573 |
+
if (fname, fval, label) in self._mapping:
|
574 |
+
encoding.append((self._mapping[fname, fval, label], 1))
|
575 |
+
|
576 |
+
# Otherwise, we might want to fire an "unseen-value feature".
|
577 |
+
elif self._unseen:
|
578 |
+
# Have we seen this fname/fval combination with any label?
|
579 |
+
for label2 in self._labels:
|
580 |
+
if (fname, fval, label2) in self._mapping:
|
581 |
+
break # we've seen this fname/fval combo
|
582 |
+
# We haven't -- fire the unseen-value feature
|
583 |
+
else:
|
584 |
+
if fname in self._unseen:
|
585 |
+
encoding.append((self._unseen[fname], 1))
|
586 |
+
|
587 |
+
# Add always-on features:
|
588 |
+
if self._alwayson and label in self._alwayson:
|
589 |
+
encoding.append((self._alwayson[label], 1))
|
590 |
+
|
591 |
+
return encoding
|
592 |
+
|
593 |
+
def describe(self, f_id):
|
594 |
+
# Inherit docs.
|
595 |
+
if not isinstance(f_id, int):
|
596 |
+
raise TypeError("describe() expected an int")
|
597 |
+
try:
|
598 |
+
self._inv_mapping
|
599 |
+
except AttributeError:
|
600 |
+
self._inv_mapping = [-1] * len(self._mapping)
|
601 |
+
for (info, i) in self._mapping.items():
|
602 |
+
self._inv_mapping[i] = info
|
603 |
+
|
604 |
+
if f_id < len(self._mapping):
|
605 |
+
(fname, fval, label) = self._inv_mapping[f_id]
|
606 |
+
return f"{fname}=={fval!r} and label is {label!r}"
|
607 |
+
elif self._alwayson and f_id in self._alwayson.values():
|
608 |
+
for (label, f_id2) in self._alwayson.items():
|
609 |
+
if f_id == f_id2:
|
610 |
+
return "label is %r" % label
|
611 |
+
elif self._unseen and f_id in self._unseen.values():
|
612 |
+
for (fname, f_id2) in self._unseen.items():
|
613 |
+
if f_id == f_id2:
|
614 |
+
return "%s is unseen" % fname
|
615 |
+
else:
|
616 |
+
raise ValueError("Bad feature id")
|
617 |
+
|
618 |
+
def labels(self):
|
619 |
+
# Inherit docs.
|
620 |
+
return self._labels
|
621 |
+
|
622 |
+
def length(self):
|
623 |
+
# Inherit docs.
|
624 |
+
return self._length
|
625 |
+
|
626 |
+
@classmethod
|
627 |
+
def train(cls, train_toks, count_cutoff=0, labels=None, **options):
|
628 |
+
"""
|
629 |
+
Construct and return new feature encoding, based on a given
|
630 |
+
training corpus ``train_toks``. See the class description
|
631 |
+
``BinaryMaxentFeatureEncoding`` for a description of the
|
632 |
+
joint-features that will be included in this encoding.
|
633 |
+
|
634 |
+
:type train_toks: list(tuple(dict, str))
|
635 |
+
:param train_toks: Training data, represented as a list of
|
636 |
+
pairs, the first member of which is a feature dictionary,
|
637 |
+
and the second of which is a classification label.
|
638 |
+
|
639 |
+
:type count_cutoff: int
|
640 |
+
:param count_cutoff: A cutoff value that is used to discard
|
641 |
+
rare joint-features. If a joint-feature's value is 1
|
642 |
+
fewer than ``count_cutoff`` times in the training corpus,
|
643 |
+
then that joint-feature is not included in the generated
|
644 |
+
encoding.
|
645 |
+
|
646 |
+
:type labels: list
|
647 |
+
:param labels: A list of labels that should be used by the
|
648 |
+
classifier. If not specified, then the set of labels
|
649 |
+
attested in ``train_toks`` will be used.
|
650 |
+
|
651 |
+
:param options: Extra parameters for the constructor, such as
|
652 |
+
``unseen_features`` and ``alwayson_features``.
|
653 |
+
"""
|
654 |
+
mapping = {} # maps (fname, fval, label) -> fid
|
655 |
+
seen_labels = set() # The set of labels we've encountered
|
656 |
+
count = defaultdict(int) # maps (fname, fval) -> count
|
657 |
+
|
658 |
+
for (tok, label) in train_toks:
|
659 |
+
if labels and label not in labels:
|
660 |
+
raise ValueError("Unexpected label %s" % label)
|
661 |
+
seen_labels.add(label)
|
662 |
+
|
663 |
+
# Record each of the features.
|
664 |
+
for (fname, fval) in tok.items():
|
665 |
+
|
666 |
+
# If a count cutoff is given, then only add a joint
|
667 |
+
# feature once the corresponding (fname, fval, label)
|
668 |
+
# tuple exceeds that cutoff.
|
669 |
+
count[fname, fval] += 1
|
670 |
+
if count[fname, fval] >= count_cutoff:
|
671 |
+
if (fname, fval, label) not in mapping:
|
672 |
+
mapping[fname, fval, label] = len(mapping)
|
673 |
+
|
674 |
+
if labels is None:
|
675 |
+
labels = seen_labels
|
676 |
+
return cls(labels, mapping, **options)
|
677 |
+
|
678 |
+
|
679 |
+
class GISEncoding(BinaryMaxentFeatureEncoding):
|
680 |
+
"""
|
681 |
+
A binary feature encoding which adds one new joint-feature to the
|
682 |
+
joint-features defined by ``BinaryMaxentFeatureEncoding``: a
|
683 |
+
correction feature, whose value is chosen to ensure that the
|
684 |
+
sparse vector always sums to a constant non-negative number. This
|
685 |
+
new feature is used to ensure two preconditions for the GIS
|
686 |
+
training algorithm:
|
687 |
+
|
688 |
+
- At least one feature vector index must be nonzero for every
|
689 |
+
token.
|
690 |
+
- The feature vector must sum to a constant non-negative number
|
691 |
+
for every token.
|
692 |
+
"""
|
693 |
+
|
694 |
+
def __init__(
|
695 |
+
self, labels, mapping, unseen_features=False, alwayson_features=False, C=None
|
696 |
+
):
|
697 |
+
"""
|
698 |
+
:param C: The correction constant. The value of the correction
|
699 |
+
feature is based on this value. In particular, its value is
|
700 |
+
``C - sum([v for (f,v) in encoding])``.
|
701 |
+
:seealso: ``BinaryMaxentFeatureEncoding.__init__``
|
702 |
+
"""
|
703 |
+
BinaryMaxentFeatureEncoding.__init__(
|
704 |
+
self, labels, mapping, unseen_features, alwayson_features
|
705 |
+
)
|
706 |
+
if C is None:
|
707 |
+
C = len({fname for (fname, fval, label) in mapping}) + 1
|
708 |
+
self._C = C
|
709 |
+
|
710 |
+
@property
|
711 |
+
def C(self):
|
712 |
+
"""The non-negative constant that all encoded feature vectors
|
713 |
+
will sum to."""
|
714 |
+
return self._C
|
715 |
+
|
716 |
+
def encode(self, featureset, label):
|
717 |
+
# Get the basic encoding.
|
718 |
+
encoding = BinaryMaxentFeatureEncoding.encode(self, featureset, label)
|
719 |
+
base_length = BinaryMaxentFeatureEncoding.length(self)
|
720 |
+
|
721 |
+
# Add a correction feature.
|
722 |
+
total = sum(v for (f, v) in encoding)
|
723 |
+
if total >= self._C:
|
724 |
+
raise ValueError("Correction feature is not high enough!")
|
725 |
+
encoding.append((base_length, self._C - total))
|
726 |
+
|
727 |
+
# Return the result
|
728 |
+
return encoding
|
729 |
+
|
730 |
+
def length(self):
|
731 |
+
return BinaryMaxentFeatureEncoding.length(self) + 1
|
732 |
+
|
733 |
+
def describe(self, f_id):
|
734 |
+
if f_id == BinaryMaxentFeatureEncoding.length(self):
|
735 |
+
return "Correction feature (%s)" % self._C
|
736 |
+
else:
|
737 |
+
return BinaryMaxentFeatureEncoding.describe(self, f_id)
|
738 |
+
|
739 |
+
|
740 |
+
class TadmEventMaxentFeatureEncoding(BinaryMaxentFeatureEncoding):
|
741 |
+
def __init__(self, labels, mapping, unseen_features=False, alwayson_features=False):
|
742 |
+
self._mapping = OrderedDict(mapping)
|
743 |
+
self._label_mapping = OrderedDict()
|
744 |
+
BinaryMaxentFeatureEncoding.__init__(
|
745 |
+
self, labels, self._mapping, unseen_features, alwayson_features
|
746 |
+
)
|
747 |
+
|
748 |
+
def encode(self, featureset, label):
|
749 |
+
encoding = []
|
750 |
+
for feature, value in featureset.items():
|
751 |
+
if (feature, label) not in self._mapping:
|
752 |
+
self._mapping[(feature, label)] = len(self._mapping)
|
753 |
+
if value not in self._label_mapping:
|
754 |
+
if not isinstance(value, int):
|
755 |
+
self._label_mapping[value] = len(self._label_mapping)
|
756 |
+
else:
|
757 |
+
self._label_mapping[value] = value
|
758 |
+
encoding.append(
|
759 |
+
(self._mapping[(feature, label)], self._label_mapping[value])
|
760 |
+
)
|
761 |
+
return encoding
|
762 |
+
|
763 |
+
def labels(self):
|
764 |
+
return self._labels
|
765 |
+
|
766 |
+
def describe(self, fid):
|
767 |
+
for (feature, label) in self._mapping:
|
768 |
+
if self._mapping[(feature, label)] == fid:
|
769 |
+
return (feature, label)
|
770 |
+
|
771 |
+
def length(self):
|
772 |
+
return len(self._mapping)
|
773 |
+
|
774 |
+
@classmethod
|
775 |
+
def train(cls, train_toks, count_cutoff=0, labels=None, **options):
|
776 |
+
mapping = OrderedDict()
|
777 |
+
if not labels:
|
778 |
+
labels = []
|
779 |
+
|
780 |
+
# This gets read twice, so compute the values in case it's lazy.
|
781 |
+
train_toks = list(train_toks)
|
782 |
+
|
783 |
+
for (featureset, label) in train_toks:
|
784 |
+
if label not in labels:
|
785 |
+
labels.append(label)
|
786 |
+
|
787 |
+
for (featureset, label) in train_toks:
|
788 |
+
for label in labels:
|
789 |
+
for feature in featureset:
|
790 |
+
if (feature, label) not in mapping:
|
791 |
+
mapping[(feature, label)] = len(mapping)
|
792 |
+
|
793 |
+
return cls(labels, mapping, **options)
|
794 |
+
|
795 |
+
|
796 |
+
class TypedMaxentFeatureEncoding(MaxentFeatureEncodingI):
|
797 |
+
"""
|
798 |
+
A feature encoding that generates vectors containing integer,
|
799 |
+
float and binary joint-features of the form:
|
800 |
+
|
801 |
+
Binary (for string and boolean features):
|
802 |
+
|
803 |
+
| joint_feat(fs, l) = { 1 if (fs[fname] == fval) and (l == label)
|
804 |
+
| {
|
805 |
+
| { 0 otherwise
|
806 |
+
|
807 |
+
Value (for integer and float features):
|
808 |
+
|
809 |
+
| joint_feat(fs, l) = { fval if (fs[fname] == type(fval))
|
810 |
+
| { and (l == label)
|
811 |
+
| {
|
812 |
+
| { not encoded otherwise
|
813 |
+
|
814 |
+
Where ``fname`` is the name of an input-feature, ``fval`` is a value
|
815 |
+
for that input-feature, and ``label`` is a label.
|
816 |
+
|
817 |
+
Typically, these features are constructed based on a training
|
818 |
+
corpus, using the ``train()`` method.
|
819 |
+
|
820 |
+
For string and boolean features [type(fval) not in (int, float)]
|
821 |
+
this method will create one feature for each combination of
|
822 |
+
``fname``, ``fval``, and ``label`` that occurs at least once in the
|
823 |
+
training corpus.
|
824 |
+
|
825 |
+
For integer and float features [type(fval) in (int, float)] this
|
826 |
+
method will create one feature for each combination of ``fname``
|
827 |
+
and ``label`` that occurs at least once in the training corpus.
|
828 |
+
|
829 |
+
For binary features the ``unseen_features`` parameter can be used
|
830 |
+
to add "unseen-value features", which are used whenever an input
|
831 |
+
feature has a value that was not encountered in the training
|
832 |
+
corpus. These features have the form:
|
833 |
+
|
834 |
+
| joint_feat(fs, l) = { 1 if is_unseen(fname, fs[fname])
|
835 |
+
| { and l == label
|
836 |
+
| {
|
837 |
+
| { 0 otherwise
|
838 |
+
|
839 |
+
Where ``is_unseen(fname, fval)`` is true if the encoding does not
|
840 |
+
contain any joint features that are true when ``fs[fname]==fval``.
|
841 |
+
|
842 |
+
The ``alwayson_features`` parameter can be used to add "always-on
|
843 |
+
features", which have the form:
|
844 |
+
|
845 |
+
| joint_feat(fs, l) = { 1 if (l == label)
|
846 |
+
| {
|
847 |
+
| { 0 otherwise
|
848 |
+
|
849 |
+
These always-on features allow the maxent model to directly model
|
850 |
+
the prior probabilities of each label.
|
851 |
+
"""
|
852 |
+
|
853 |
+
def __init__(self, labels, mapping, unseen_features=False, alwayson_features=False):
|
854 |
+
"""
|
855 |
+
:param labels: A list of the \"known labels\" for this encoding.
|
856 |
+
|
857 |
+
:param mapping: A dictionary mapping from ``(fname,fval,label)``
|
858 |
+
tuples to corresponding joint-feature indexes. These
|
859 |
+
indexes must be the set of integers from 0...len(mapping).
|
860 |
+
If ``mapping[fname,fval,label]=id``, then
|
861 |
+
``self.encode({..., fname:fval, ...``, label)[id]} is 1;
|
862 |
+
otherwise, it is 0.
|
863 |
+
|
864 |
+
:param unseen_features: If true, then include unseen value
|
865 |
+
features in the generated joint-feature vectors.
|
866 |
+
|
867 |
+
:param alwayson_features: If true, then include always-on
|
868 |
+
features in the generated joint-feature vectors.
|
869 |
+
"""
|
870 |
+
if set(mapping.values()) != set(range(len(mapping))):
|
871 |
+
raise ValueError(
|
872 |
+
"Mapping values must be exactly the "
|
873 |
+
"set of integers from 0...len(mapping)"
|
874 |
+
)
|
875 |
+
|
876 |
+
self._labels = list(labels)
|
877 |
+
"""A list of attested labels."""
|
878 |
+
|
879 |
+
self._mapping = mapping
|
880 |
+
"""dict mapping from (fname,fval,label) -> fid"""
|
881 |
+
|
882 |
+
self._length = len(mapping)
|
883 |
+
"""The length of generated joint feature vectors."""
|
884 |
+
|
885 |
+
self._alwayson = None
|
886 |
+
"""dict mapping from label -> fid"""
|
887 |
+
|
888 |
+
self._unseen = None
|
889 |
+
"""dict mapping from fname -> fid"""
|
890 |
+
|
891 |
+
if alwayson_features:
|
892 |
+
self._alwayson = {
|
893 |
+
label: i + self._length for (i, label) in enumerate(labels)
|
894 |
+
}
|
895 |
+
self._length += len(self._alwayson)
|
896 |
+
|
897 |
+
if unseen_features:
|
898 |
+
fnames = {fname for (fname, fval, label) in mapping}
|
899 |
+
self._unseen = {fname: i + self._length for (i, fname) in enumerate(fnames)}
|
900 |
+
self._length += len(fnames)
|
901 |
+
|
902 |
+
def encode(self, featureset, label):
|
903 |
+
# Inherit docs.
|
904 |
+
encoding = []
|
905 |
+
|
906 |
+
# Convert input-features to joint-features:
|
907 |
+
for fname, fval in featureset.items():
|
908 |
+
if isinstance(fval, (int, float)):
|
909 |
+
# Known feature name & value:
|
910 |
+
if (fname, type(fval), label) in self._mapping:
|
911 |
+
encoding.append((self._mapping[fname, type(fval), label], fval))
|
912 |
+
else:
|
913 |
+
# Known feature name & value:
|
914 |
+
if (fname, fval, label) in self._mapping:
|
915 |
+
encoding.append((self._mapping[fname, fval, label], 1))
|
916 |
+
|
917 |
+
# Otherwise, we might want to fire an "unseen-value feature".
|
918 |
+
elif self._unseen:
|
919 |
+
# Have we seen this fname/fval combination with any label?
|
920 |
+
for label2 in self._labels:
|
921 |
+
if (fname, fval, label2) in self._mapping:
|
922 |
+
break # we've seen this fname/fval combo
|
923 |
+
# We haven't -- fire the unseen-value feature
|
924 |
+
else:
|
925 |
+
if fname in self._unseen:
|
926 |
+
encoding.append((self._unseen[fname], 1))
|
927 |
+
|
928 |
+
# Add always-on features:
|
929 |
+
if self._alwayson and label in self._alwayson:
|
930 |
+
encoding.append((self._alwayson[label], 1))
|
931 |
+
|
932 |
+
return encoding
|
933 |
+
|
934 |
+
def describe(self, f_id):
|
935 |
+
# Inherit docs.
|
936 |
+
if not isinstance(f_id, int):
|
937 |
+
raise TypeError("describe() expected an int")
|
938 |
+
try:
|
939 |
+
self._inv_mapping
|
940 |
+
except AttributeError:
|
941 |
+
self._inv_mapping = [-1] * len(self._mapping)
|
942 |
+
for (info, i) in self._mapping.items():
|
943 |
+
self._inv_mapping[i] = info
|
944 |
+
|
945 |
+
if f_id < len(self._mapping):
|
946 |
+
(fname, fval, label) = self._inv_mapping[f_id]
|
947 |
+
return f"{fname}=={fval!r} and label is {label!r}"
|
948 |
+
elif self._alwayson and f_id in self._alwayson.values():
|
949 |
+
for (label, f_id2) in self._alwayson.items():
|
950 |
+
if f_id == f_id2:
|
951 |
+
return "label is %r" % label
|
952 |
+
elif self._unseen and f_id in self._unseen.values():
|
953 |
+
for (fname, f_id2) in self._unseen.items():
|
954 |
+
if f_id == f_id2:
|
955 |
+
return "%s is unseen" % fname
|
956 |
+
else:
|
957 |
+
raise ValueError("Bad feature id")
|
958 |
+
|
959 |
+
def labels(self):
|
960 |
+
# Inherit docs.
|
961 |
+
return self._labels
|
962 |
+
|
963 |
+
def length(self):
|
964 |
+
# Inherit docs.
|
965 |
+
return self._length
|
966 |
+
|
967 |
+
@classmethod
|
968 |
+
def train(cls, train_toks, count_cutoff=0, labels=None, **options):
|
969 |
+
"""
|
970 |
+
Construct and return new feature encoding, based on a given
|
971 |
+
training corpus ``train_toks``. See the class description
|
972 |
+
``TypedMaxentFeatureEncoding`` for a description of the
|
973 |
+
joint-features that will be included in this encoding.
|
974 |
+
|
975 |
+
Note: recognized feature values types are (int, float), over
|
976 |
+
types are interpreted as regular binary features.
|
977 |
+
|
978 |
+
:type train_toks: list(tuple(dict, str))
|
979 |
+
:param train_toks: Training data, represented as a list of
|
980 |
+
pairs, the first member of which is a feature dictionary,
|
981 |
+
and the second of which is a classification label.
|
982 |
+
|
983 |
+
:type count_cutoff: int
|
984 |
+
:param count_cutoff: A cutoff value that is used to discard
|
985 |
+
rare joint-features. If a joint-feature's value is 1
|
986 |
+
fewer than ``count_cutoff`` times in the training corpus,
|
987 |
+
then that joint-feature is not included in the generated
|
988 |
+
encoding.
|
989 |
+
|
990 |
+
:type labels: list
|
991 |
+
:param labels: A list of labels that should be used by the
|
992 |
+
classifier. If not specified, then the set of labels
|
993 |
+
attested in ``train_toks`` will be used.
|
994 |
+
|
995 |
+
:param options: Extra parameters for the constructor, such as
|
996 |
+
``unseen_features`` and ``alwayson_features``.
|
997 |
+
"""
|
998 |
+
mapping = {} # maps (fname, fval, label) -> fid
|
999 |
+
seen_labels = set() # The set of labels we've encountered
|
1000 |
+
count = defaultdict(int) # maps (fname, fval) -> count
|
1001 |
+
|
1002 |
+
for (tok, label) in train_toks:
|
1003 |
+
if labels and label not in labels:
|
1004 |
+
raise ValueError("Unexpected label %s" % label)
|
1005 |
+
seen_labels.add(label)
|
1006 |
+
|
1007 |
+
# Record each of the features.
|
1008 |
+
for (fname, fval) in tok.items():
|
1009 |
+
if type(fval) in (int, float):
|
1010 |
+
fval = type(fval)
|
1011 |
+
# If a count cutoff is given, then only add a joint
|
1012 |
+
# feature once the corresponding (fname, fval, label)
|
1013 |
+
# tuple exceeds that cutoff.
|
1014 |
+
count[fname, fval] += 1
|
1015 |
+
if count[fname, fval] >= count_cutoff:
|
1016 |
+
if (fname, fval, label) not in mapping:
|
1017 |
+
mapping[fname, fval, label] = len(mapping)
|
1018 |
+
|
1019 |
+
if labels is None:
|
1020 |
+
labels = seen_labels
|
1021 |
+
return cls(labels, mapping, **options)
|
1022 |
+
|
1023 |
+
|
1024 |
+
######################################################################
|
1025 |
+
# { Classifier Trainer: Generalized Iterative Scaling
|
1026 |
+
######################################################################
|
1027 |
+
|
1028 |
+
|
1029 |
+
def train_maxent_classifier_with_gis(
|
1030 |
+
train_toks, trace=3, encoding=None, labels=None, **cutoffs
|
1031 |
+
):
|
1032 |
+
"""
|
1033 |
+
Train a new ``ConditionalExponentialClassifier``, using the given
|
1034 |
+
training samples, using the Generalized Iterative Scaling
|
1035 |
+
algorithm. This ``ConditionalExponentialClassifier`` will encode
|
1036 |
+
the model that maximizes entropy from all the models that are
|
1037 |
+
empirically consistent with ``train_toks``.
|
1038 |
+
|
1039 |
+
:see: ``train_maxent_classifier()`` for parameter descriptions.
|
1040 |
+
"""
|
1041 |
+
cutoffs.setdefault("max_iter", 100)
|
1042 |
+
cutoffchecker = CutoffChecker(cutoffs)
|
1043 |
+
|
1044 |
+
# Construct an encoding from the training data.
|
1045 |
+
if encoding is None:
|
1046 |
+
encoding = GISEncoding.train(train_toks, labels=labels)
|
1047 |
+
|
1048 |
+
if not hasattr(encoding, "C"):
|
1049 |
+
raise TypeError(
|
1050 |
+
"The GIS algorithm requires an encoding that "
|
1051 |
+
"defines C (e.g., GISEncoding)."
|
1052 |
+
)
|
1053 |
+
|
1054 |
+
# Cinv is the inverse of the sum of each joint feature vector.
|
1055 |
+
# This controls the learning rate: higher Cinv (or lower C) gives
|
1056 |
+
# faster learning.
|
1057 |
+
Cinv = 1.0 / encoding.C
|
1058 |
+
|
1059 |
+
# Count how many times each feature occurs in the training data.
|
1060 |
+
empirical_fcount = calculate_empirical_fcount(train_toks, encoding)
|
1061 |
+
|
1062 |
+
# Check for any features that are not attested in train_toks.
|
1063 |
+
unattested = set(numpy.nonzero(empirical_fcount == 0)[0])
|
1064 |
+
|
1065 |
+
# Build the classifier. Start with weight=0 for each attested
|
1066 |
+
# feature, and weight=-infinity for each unattested feature.
|
1067 |
+
weights = numpy.zeros(len(empirical_fcount), "d")
|
1068 |
+
for fid in unattested:
|
1069 |
+
weights[fid] = numpy.NINF
|
1070 |
+
classifier = ConditionalExponentialClassifier(encoding, weights)
|
1071 |
+
|
1072 |
+
# Take the log of the empirical fcount.
|
1073 |
+
log_empirical_fcount = numpy.log2(empirical_fcount)
|
1074 |
+
del empirical_fcount
|
1075 |
+
|
1076 |
+
if trace > 0:
|
1077 |
+
print(" ==> Training (%d iterations)" % cutoffs["max_iter"])
|
1078 |
+
if trace > 2:
|
1079 |
+
print()
|
1080 |
+
print(" Iteration Log Likelihood Accuracy")
|
1081 |
+
print(" ---------------------------------------")
|
1082 |
+
|
1083 |
+
# Train the classifier.
|
1084 |
+
try:
|
1085 |
+
while True:
|
1086 |
+
if trace > 2:
|
1087 |
+
ll = cutoffchecker.ll or log_likelihood(classifier, train_toks)
|
1088 |
+
acc = cutoffchecker.acc or accuracy(classifier, train_toks)
|
1089 |
+
iternum = cutoffchecker.iter
|
1090 |
+
print(" %9d %14.5f %9.3f" % (iternum, ll, acc))
|
1091 |
+
|
1092 |
+
# Use the model to estimate the number of times each
|
1093 |
+
# feature should occur in the training data.
|
1094 |
+
estimated_fcount = calculate_estimated_fcount(
|
1095 |
+
classifier, train_toks, encoding
|
1096 |
+
)
|
1097 |
+
|
1098 |
+
# Take the log of estimated fcount (avoid taking log(0).)
|
1099 |
+
for fid in unattested:
|
1100 |
+
estimated_fcount[fid] += 1
|
1101 |
+
log_estimated_fcount = numpy.log2(estimated_fcount)
|
1102 |
+
del estimated_fcount
|
1103 |
+
|
1104 |
+
# Update the classifier weights
|
1105 |
+
weights = classifier.weights()
|
1106 |
+
weights += (log_empirical_fcount - log_estimated_fcount) * Cinv
|
1107 |
+
classifier.set_weights(weights)
|
1108 |
+
|
1109 |
+
# Check the log-likelihood & accuracy cutoffs.
|
1110 |
+
if cutoffchecker.check(classifier, train_toks):
|
1111 |
+
break
|
1112 |
+
|
1113 |
+
except KeyboardInterrupt:
|
1114 |
+
print(" Training stopped: keyboard interrupt")
|
1115 |
+
except:
|
1116 |
+
raise
|
1117 |
+
|
1118 |
+
if trace > 2:
|
1119 |
+
ll = log_likelihood(classifier, train_toks)
|
1120 |
+
acc = accuracy(classifier, train_toks)
|
1121 |
+
print(f" Final {ll:14.5f} {acc:9.3f}")
|
1122 |
+
|
1123 |
+
# Return the classifier.
|
1124 |
+
return classifier
|
1125 |
+
|
1126 |
+
|
1127 |
+
def calculate_empirical_fcount(train_toks, encoding):
|
1128 |
+
fcount = numpy.zeros(encoding.length(), "d")
|
1129 |
+
|
1130 |
+
for tok, label in train_toks:
|
1131 |
+
for (index, val) in encoding.encode(tok, label):
|
1132 |
+
fcount[index] += val
|
1133 |
+
|
1134 |
+
return fcount
|
1135 |
+
|
1136 |
+
|
1137 |
+
def calculate_estimated_fcount(classifier, train_toks, encoding):
|
1138 |
+
fcount = numpy.zeros(encoding.length(), "d")
|
1139 |
+
|
1140 |
+
for tok, label in train_toks:
|
1141 |
+
pdist = classifier.prob_classify(tok)
|
1142 |
+
for label in pdist.samples():
|
1143 |
+
prob = pdist.prob(label)
|
1144 |
+
for (fid, fval) in encoding.encode(tok, label):
|
1145 |
+
fcount[fid] += prob * fval
|
1146 |
+
|
1147 |
+
return fcount
|
1148 |
+
|
1149 |
+
|
1150 |
+
######################################################################
|
1151 |
+
# { Classifier Trainer: Improved Iterative Scaling
|
1152 |
+
######################################################################
|
1153 |
+
|
1154 |
+
|
1155 |
+
def train_maxent_classifier_with_iis(
|
1156 |
+
train_toks, trace=3, encoding=None, labels=None, **cutoffs
|
1157 |
+
):
|
1158 |
+
"""
|
1159 |
+
Train a new ``ConditionalExponentialClassifier``, using the given
|
1160 |
+
training samples, using the Improved Iterative Scaling algorithm.
|
1161 |
+
This ``ConditionalExponentialClassifier`` will encode the model
|
1162 |
+
that maximizes entropy from all the models that are empirically
|
1163 |
+
consistent with ``train_toks``.
|
1164 |
+
|
1165 |
+
:see: ``train_maxent_classifier()`` for parameter descriptions.
|
1166 |
+
"""
|
1167 |
+
cutoffs.setdefault("max_iter", 100)
|
1168 |
+
cutoffchecker = CutoffChecker(cutoffs)
|
1169 |
+
|
1170 |
+
# Construct an encoding from the training data.
|
1171 |
+
if encoding is None:
|
1172 |
+
encoding = BinaryMaxentFeatureEncoding.train(train_toks, labels=labels)
|
1173 |
+
|
1174 |
+
# Count how many times each feature occurs in the training data.
|
1175 |
+
empirical_ffreq = calculate_empirical_fcount(train_toks, encoding) / len(train_toks)
|
1176 |
+
|
1177 |
+
# Find the nf map, and related variables nfarray and nfident.
|
1178 |
+
# nf is the sum of the features for a given labeled text.
|
1179 |
+
# nfmap compresses this sparse set of values to a dense list.
|
1180 |
+
# nfarray performs the reverse operation. nfident is
|
1181 |
+
# nfarray multiplied by an identity matrix.
|
1182 |
+
nfmap = calculate_nfmap(train_toks, encoding)
|
1183 |
+
nfarray = numpy.array(sorted(nfmap, key=nfmap.__getitem__), "d")
|
1184 |
+
nftranspose = numpy.reshape(nfarray, (len(nfarray), 1))
|
1185 |
+
|
1186 |
+
# Check for any features that are not attested in train_toks.
|
1187 |
+
unattested = set(numpy.nonzero(empirical_ffreq == 0)[0])
|
1188 |
+
|
1189 |
+
# Build the classifier. Start with weight=0 for each attested
|
1190 |
+
# feature, and weight=-infinity for each unattested feature.
|
1191 |
+
weights = numpy.zeros(len(empirical_ffreq), "d")
|
1192 |
+
for fid in unattested:
|
1193 |
+
weights[fid] = numpy.NINF
|
1194 |
+
classifier = ConditionalExponentialClassifier(encoding, weights)
|
1195 |
+
|
1196 |
+
if trace > 0:
|
1197 |
+
print(" ==> Training (%d iterations)" % cutoffs["max_iter"])
|
1198 |
+
if trace > 2:
|
1199 |
+
print()
|
1200 |
+
print(" Iteration Log Likelihood Accuracy")
|
1201 |
+
print(" ---------------------------------------")
|
1202 |
+
|
1203 |
+
# Train the classifier.
|
1204 |
+
try:
|
1205 |
+
while True:
|
1206 |
+
if trace > 2:
|
1207 |
+
ll = cutoffchecker.ll or log_likelihood(classifier, train_toks)
|
1208 |
+
acc = cutoffchecker.acc or accuracy(classifier, train_toks)
|
1209 |
+
iternum = cutoffchecker.iter
|
1210 |
+
print(" %9d %14.5f %9.3f" % (iternum, ll, acc))
|
1211 |
+
|
1212 |
+
# Calculate the deltas for this iteration, using Newton's method.
|
1213 |
+
deltas = calculate_deltas(
|
1214 |
+
train_toks,
|
1215 |
+
classifier,
|
1216 |
+
unattested,
|
1217 |
+
empirical_ffreq,
|
1218 |
+
nfmap,
|
1219 |
+
nfarray,
|
1220 |
+
nftranspose,
|
1221 |
+
encoding,
|
1222 |
+
)
|
1223 |
+
|
1224 |
+
# Use the deltas to update our weights.
|
1225 |
+
weights = classifier.weights()
|
1226 |
+
weights += deltas
|
1227 |
+
classifier.set_weights(weights)
|
1228 |
+
|
1229 |
+
# Check the log-likelihood & accuracy cutoffs.
|
1230 |
+
if cutoffchecker.check(classifier, train_toks):
|
1231 |
+
break
|
1232 |
+
|
1233 |
+
except KeyboardInterrupt:
|
1234 |
+
print(" Training stopped: keyboard interrupt")
|
1235 |
+
except:
|
1236 |
+
raise
|
1237 |
+
|
1238 |
+
if trace > 2:
|
1239 |
+
ll = log_likelihood(classifier, train_toks)
|
1240 |
+
acc = accuracy(classifier, train_toks)
|
1241 |
+
print(f" Final {ll:14.5f} {acc:9.3f}")
|
1242 |
+
|
1243 |
+
# Return the classifier.
|
1244 |
+
return classifier
|
1245 |
+
|
1246 |
+
|
1247 |
+
def calculate_nfmap(train_toks, encoding):
|
1248 |
+
"""
|
1249 |
+
Construct a map that can be used to compress ``nf`` (which is
|
1250 |
+
typically sparse).
|
1251 |
+
|
1252 |
+
*nf(feature_vector)* is the sum of the feature values for
|
1253 |
+
*feature_vector*.
|
1254 |
+
|
1255 |
+
This represents the number of features that are active for a
|
1256 |
+
given labeled text. This method finds all values of *nf(t)*
|
1257 |
+
that are attested for at least one token in the given list of
|
1258 |
+
training tokens; and constructs a dictionary mapping these
|
1259 |
+
attested values to a continuous range *0...N*. For example,
|
1260 |
+
if the only values of *nf()* that were attested were 3, 5, and
|
1261 |
+
7, then ``_nfmap`` might return the dictionary ``{3:0, 5:1, 7:2}``.
|
1262 |
+
|
1263 |
+
:return: A map that can be used to compress ``nf`` to a dense
|
1264 |
+
vector.
|
1265 |
+
:rtype: dict(int -> int)
|
1266 |
+
"""
|
1267 |
+
# Map from nf to indices. This allows us to use smaller arrays.
|
1268 |
+
nfset = set()
|
1269 |
+
for tok, _ in train_toks:
|
1270 |
+
for label in encoding.labels():
|
1271 |
+
nfset.add(sum(val for (id, val) in encoding.encode(tok, label)))
|
1272 |
+
return {nf: i for (i, nf) in enumerate(nfset)}
|
1273 |
+
|
1274 |
+
|
1275 |
+
def calculate_deltas(
|
1276 |
+
train_toks,
|
1277 |
+
classifier,
|
1278 |
+
unattested,
|
1279 |
+
ffreq_empirical,
|
1280 |
+
nfmap,
|
1281 |
+
nfarray,
|
1282 |
+
nftranspose,
|
1283 |
+
encoding,
|
1284 |
+
):
|
1285 |
+
r"""
|
1286 |
+
Calculate the update values for the classifier weights for
|
1287 |
+
this iteration of IIS. These update weights are the value of
|
1288 |
+
``delta`` that solves the equation::
|
1289 |
+
|
1290 |
+
ffreq_empirical[i]
|
1291 |
+
=
|
1292 |
+
SUM[fs,l] (classifier.prob_classify(fs).prob(l) *
|
1293 |
+
feature_vector(fs,l)[i] *
|
1294 |
+
exp(delta[i] * nf(feature_vector(fs,l))))
|
1295 |
+
|
1296 |
+
Where:
|
1297 |
+
- *(fs,l)* is a (featureset, label) tuple from ``train_toks``
|
1298 |
+
- *feature_vector(fs,l)* = ``encoding.encode(fs,l)``
|
1299 |
+
- *nf(vector)* = ``sum([val for (id,val) in vector])``
|
1300 |
+
|
1301 |
+
This method uses Newton's method to solve this equation for
|
1302 |
+
*delta[i]*. In particular, it starts with a guess of
|
1303 |
+
``delta[i]`` = 1; and iteratively updates ``delta`` with:
|
1304 |
+
|
1305 |
+
| delta[i] -= (ffreq_empirical[i] - sum1[i])/(-sum2[i])
|
1306 |
+
|
1307 |
+
until convergence, where *sum1* and *sum2* are defined as:
|
1308 |
+
|
1309 |
+
| sum1[i](delta) = SUM[fs,l] f[i](fs,l,delta)
|
1310 |
+
| sum2[i](delta) = SUM[fs,l] (f[i](fs,l,delta).nf(feature_vector(fs,l)))
|
1311 |
+
| f[i](fs,l,delta) = (classifier.prob_classify(fs).prob(l) .
|
1312 |
+
| feature_vector(fs,l)[i] .
|
1313 |
+
| exp(delta[i] . nf(feature_vector(fs,l))))
|
1314 |
+
|
1315 |
+
Note that *sum1* and *sum2* depend on ``delta``; so they need
|
1316 |
+
to be re-computed each iteration.
|
1317 |
+
|
1318 |
+
The variables ``nfmap``, ``nfarray``, and ``nftranspose`` are
|
1319 |
+
used to generate a dense encoding for *nf(ltext)*. This
|
1320 |
+
allows ``_deltas`` to calculate *sum1* and *sum2* using
|
1321 |
+
matrices, which yields a significant performance improvement.
|
1322 |
+
|
1323 |
+
:param train_toks: The set of training tokens.
|
1324 |
+
:type train_toks: list(tuple(dict, str))
|
1325 |
+
:param classifier: The current classifier.
|
1326 |
+
:type classifier: ClassifierI
|
1327 |
+
:param ffreq_empirical: An array containing the empirical
|
1328 |
+
frequency for each feature. The *i*\ th element of this
|
1329 |
+
array is the empirical frequency for feature *i*.
|
1330 |
+
:type ffreq_empirical: sequence of float
|
1331 |
+
:param unattested: An array that is 1 for features that are
|
1332 |
+
not attested in the training data; and 0 for features that
|
1333 |
+
are attested. In other words, ``unattested[i]==0`` iff
|
1334 |
+
``ffreq_empirical[i]==0``.
|
1335 |
+
:type unattested: sequence of int
|
1336 |
+
:param nfmap: A map that can be used to compress ``nf`` to a dense
|
1337 |
+
vector.
|
1338 |
+
:type nfmap: dict(int -> int)
|
1339 |
+
:param nfarray: An array that can be used to uncompress ``nf``
|
1340 |
+
from a dense vector.
|
1341 |
+
:type nfarray: array(float)
|
1342 |
+
:param nftranspose: The transpose of ``nfarray``
|
1343 |
+
:type nftranspose: array(float)
|
1344 |
+
"""
|
1345 |
+
# These parameters control when we decide that we've
|
1346 |
+
# converged. It probably should be possible to set these
|
1347 |
+
# manually, via keyword arguments to train.
|
1348 |
+
NEWTON_CONVERGE = 1e-12
|
1349 |
+
MAX_NEWTON = 300
|
1350 |
+
|
1351 |
+
deltas = numpy.ones(encoding.length(), "d")
|
1352 |
+
|
1353 |
+
# Precompute the A matrix:
|
1354 |
+
# A[nf][id] = sum ( p(fs) * p(label|fs) * f(fs,label) )
|
1355 |
+
# over all label,fs s.t. num_features[label,fs]=nf
|
1356 |
+
A = numpy.zeros((len(nfmap), encoding.length()), "d")
|
1357 |
+
|
1358 |
+
for tok, label in train_toks:
|
1359 |
+
dist = classifier.prob_classify(tok)
|
1360 |
+
|
1361 |
+
for label in encoding.labels():
|
1362 |
+
# Generate the feature vector
|
1363 |
+
feature_vector = encoding.encode(tok, label)
|
1364 |
+
# Find the number of active features
|
1365 |
+
nf = sum(val for (id, val) in feature_vector)
|
1366 |
+
# Update the A matrix
|
1367 |
+
for (id, val) in feature_vector:
|
1368 |
+
A[nfmap[nf], id] += dist.prob(label) * val
|
1369 |
+
A /= len(train_toks)
|
1370 |
+
|
1371 |
+
# Iteratively solve for delta. Use the following variables:
|
1372 |
+
# - nf_delta[x][y] = nfarray[x] * delta[y]
|
1373 |
+
# - exp_nf_delta[x][y] = exp(nf[x] * delta[y])
|
1374 |
+
# - nf_exp_nf_delta[x][y] = nf[x] * exp(nf[x] * delta[y])
|
1375 |
+
# - sum1[i][nf] = sum p(fs)p(label|fs)f[i](label,fs)
|
1376 |
+
# exp(delta[i]nf)
|
1377 |
+
# - sum2[i][nf] = sum p(fs)p(label|fs)f[i](label,fs)
|
1378 |
+
# nf exp(delta[i]nf)
|
1379 |
+
for rangenum in range(MAX_NEWTON):
|
1380 |
+
nf_delta = numpy.outer(nfarray, deltas)
|
1381 |
+
exp_nf_delta = 2**nf_delta
|
1382 |
+
nf_exp_nf_delta = nftranspose * exp_nf_delta
|
1383 |
+
sum1 = numpy.sum(exp_nf_delta * A, axis=0)
|
1384 |
+
sum2 = numpy.sum(nf_exp_nf_delta * A, axis=0)
|
1385 |
+
|
1386 |
+
# Avoid division by zero.
|
1387 |
+
for fid in unattested:
|
1388 |
+
sum2[fid] += 1
|
1389 |
+
|
1390 |
+
# Update the deltas.
|
1391 |
+
deltas -= (ffreq_empirical - sum1) / -sum2
|
1392 |
+
|
1393 |
+
# We can stop once we converge.
|
1394 |
+
n_error = numpy.sum(abs(ffreq_empirical - sum1)) / numpy.sum(abs(deltas))
|
1395 |
+
if n_error < NEWTON_CONVERGE:
|
1396 |
+
return deltas
|
1397 |
+
|
1398 |
+
return deltas
|
1399 |
+
|
1400 |
+
|
1401 |
+
######################################################################
|
1402 |
+
# { Classifier Trainer: megam
|
1403 |
+
######################################################################
|
1404 |
+
|
1405 |
+
# [xx] possible extension: add support for using implicit file format;
|
1406 |
+
# this would need to put requirements on what encoding is used. But
|
1407 |
+
# we may need this for other maxent classifier trainers that require
|
1408 |
+
# implicit formats anyway.
|
1409 |
+
def train_maxent_classifier_with_megam(
|
1410 |
+
train_toks, trace=3, encoding=None, labels=None, gaussian_prior_sigma=0, **kwargs
|
1411 |
+
):
|
1412 |
+
"""
|
1413 |
+
Train a new ``ConditionalExponentialClassifier``, using the given
|
1414 |
+
training samples, using the external ``megam`` library. This
|
1415 |
+
``ConditionalExponentialClassifier`` will encode the model that
|
1416 |
+
maximizes entropy from all the models that are empirically
|
1417 |
+
consistent with ``train_toks``.
|
1418 |
+
|
1419 |
+
:see: ``train_maxent_classifier()`` for parameter descriptions.
|
1420 |
+
:see: ``nltk.classify.megam``
|
1421 |
+
"""
|
1422 |
+
|
1423 |
+
explicit = True
|
1424 |
+
bernoulli = True
|
1425 |
+
if "explicit" in kwargs:
|
1426 |
+
explicit = kwargs["explicit"]
|
1427 |
+
if "bernoulli" in kwargs:
|
1428 |
+
bernoulli = kwargs["bernoulli"]
|
1429 |
+
|
1430 |
+
# Construct an encoding from the training data.
|
1431 |
+
if encoding is None:
|
1432 |
+
# Count cutoff can also be controlled by megam with the -minfc
|
1433 |
+
# option. Not sure where the best place for it is.
|
1434 |
+
count_cutoff = kwargs.get("count_cutoff", 0)
|
1435 |
+
encoding = BinaryMaxentFeatureEncoding.train(
|
1436 |
+
train_toks, count_cutoff, labels=labels, alwayson_features=True
|
1437 |
+
)
|
1438 |
+
elif labels is not None:
|
1439 |
+
raise ValueError("Specify encoding or labels, not both")
|
1440 |
+
|
1441 |
+
# Write a training file for megam.
|
1442 |
+
try:
|
1443 |
+
fd, trainfile_name = tempfile.mkstemp(prefix="nltk-")
|
1444 |
+
with open(trainfile_name, "w") as trainfile:
|
1445 |
+
write_megam_file(
|
1446 |
+
train_toks, encoding, trainfile, explicit=explicit, bernoulli=bernoulli
|
1447 |
+
)
|
1448 |
+
os.close(fd)
|
1449 |
+
except (OSError, ValueError) as e:
|
1450 |
+
raise ValueError("Error while creating megam training file: %s" % e) from e
|
1451 |
+
|
1452 |
+
# Run megam on the training file.
|
1453 |
+
options = []
|
1454 |
+
options += ["-nobias", "-repeat", "10"]
|
1455 |
+
if explicit:
|
1456 |
+
options += ["-explicit"]
|
1457 |
+
if not bernoulli:
|
1458 |
+
options += ["-fvals"]
|
1459 |
+
if gaussian_prior_sigma:
|
1460 |
+
# Lambda is just the precision of the Gaussian prior, i.e. it's the
|
1461 |
+
# inverse variance, so the parameter conversion is 1.0/sigma**2.
|
1462 |
+
# See https://users.umiacs.umd.edu/~hal/docs/daume04cg-bfgs.pdf
|
1463 |
+
inv_variance = 1.0 / gaussian_prior_sigma**2
|
1464 |
+
else:
|
1465 |
+
inv_variance = 0
|
1466 |
+
options += ["-lambda", "%.2f" % inv_variance, "-tune"]
|
1467 |
+
if trace < 3:
|
1468 |
+
options += ["-quiet"]
|
1469 |
+
if "max_iter" in kwargs:
|
1470 |
+
options += ["-maxi", "%s" % kwargs["max_iter"]]
|
1471 |
+
if "ll_delta" in kwargs:
|
1472 |
+
# [xx] this is actually a perplexity delta, not a log
|
1473 |
+
# likelihood delta
|
1474 |
+
options += ["-dpp", "%s" % abs(kwargs["ll_delta"])]
|
1475 |
+
if hasattr(encoding, "cost"):
|
1476 |
+
options += ["-multilabel"] # each possible la
|
1477 |
+
options += ["multiclass", trainfile_name]
|
1478 |
+
stdout = call_megam(options)
|
1479 |
+
# print('./megam_i686.opt ', ' '.join(options))
|
1480 |
+
# Delete the training file
|
1481 |
+
try:
|
1482 |
+
os.remove(trainfile_name)
|
1483 |
+
except OSError as e:
|
1484 |
+
print(f"Warning: unable to delete {trainfile_name}: {e}")
|
1485 |
+
|
1486 |
+
# Parse the generated weight vector.
|
1487 |
+
weights = parse_megam_weights(stdout, encoding.length(), explicit)
|
1488 |
+
|
1489 |
+
# Convert from base-e to base-2 weights.
|
1490 |
+
weights *= numpy.log2(numpy.e)
|
1491 |
+
|
1492 |
+
# Build the classifier
|
1493 |
+
return MaxentClassifier(encoding, weights)
|
1494 |
+
|
1495 |
+
|
1496 |
+
######################################################################
|
1497 |
+
# { Classifier Trainer: tadm
|
1498 |
+
######################################################################
|
1499 |
+
|
1500 |
+
|
1501 |
+
class TadmMaxentClassifier(MaxentClassifier):
|
1502 |
+
@classmethod
|
1503 |
+
def train(cls, train_toks, **kwargs):
|
1504 |
+
algorithm = kwargs.get("algorithm", "tao_lmvm")
|
1505 |
+
trace = kwargs.get("trace", 3)
|
1506 |
+
encoding = kwargs.get("encoding", None)
|
1507 |
+
labels = kwargs.get("labels", None)
|
1508 |
+
sigma = kwargs.get("gaussian_prior_sigma", 0)
|
1509 |
+
count_cutoff = kwargs.get("count_cutoff", 0)
|
1510 |
+
max_iter = kwargs.get("max_iter")
|
1511 |
+
ll_delta = kwargs.get("min_lldelta")
|
1512 |
+
|
1513 |
+
# Construct an encoding from the training data.
|
1514 |
+
if not encoding:
|
1515 |
+
encoding = TadmEventMaxentFeatureEncoding.train(
|
1516 |
+
train_toks, count_cutoff, labels=labels
|
1517 |
+
)
|
1518 |
+
|
1519 |
+
trainfile_fd, trainfile_name = tempfile.mkstemp(
|
1520 |
+
prefix="nltk-tadm-events-", suffix=".gz"
|
1521 |
+
)
|
1522 |
+
weightfile_fd, weightfile_name = tempfile.mkstemp(prefix="nltk-tadm-weights-")
|
1523 |
+
|
1524 |
+
trainfile = gzip_open_unicode(trainfile_name, "w")
|
1525 |
+
write_tadm_file(train_toks, encoding, trainfile)
|
1526 |
+
trainfile.close()
|
1527 |
+
|
1528 |
+
options = []
|
1529 |
+
options.extend(["-monitor"])
|
1530 |
+
options.extend(["-method", algorithm])
|
1531 |
+
if sigma:
|
1532 |
+
options.extend(["-l2", "%.6f" % sigma**2])
|
1533 |
+
if max_iter:
|
1534 |
+
options.extend(["-max_it", "%d" % max_iter])
|
1535 |
+
if ll_delta:
|
1536 |
+
options.extend(["-fatol", "%.6f" % abs(ll_delta)])
|
1537 |
+
options.extend(["-events_in", trainfile_name])
|
1538 |
+
options.extend(["-params_out", weightfile_name])
|
1539 |
+
if trace < 3:
|
1540 |
+
options.extend(["2>&1"])
|
1541 |
+
else:
|
1542 |
+
options.extend(["-summary"])
|
1543 |
+
|
1544 |
+
call_tadm(options)
|
1545 |
+
|
1546 |
+
with open(weightfile_name) as weightfile:
|
1547 |
+
weights = parse_tadm_weights(weightfile)
|
1548 |
+
|
1549 |
+
os.remove(trainfile_name)
|
1550 |
+
os.remove(weightfile_name)
|
1551 |
+
|
1552 |
+
# Convert from base-e to base-2 weights.
|
1553 |
+
weights *= numpy.log2(numpy.e)
|
1554 |
+
|
1555 |
+
# Build the classifier
|
1556 |
+
return cls(encoding, weights)
|
1557 |
+
|
1558 |
+
|
1559 |
+
######################################################################
|
1560 |
+
# { Demo
|
1561 |
+
######################################################################
|
1562 |
+
def demo():
|
1563 |
+
from nltk.classify.util import names_demo
|
1564 |
+
|
1565 |
+
classifier = names_demo(MaxentClassifier.train)
|
1566 |
+
|
1567 |
+
|
1568 |
+
if __name__ == "__main__":
|
1569 |
+
demo()
|
venv/lib/python3.10/site-packages/nltk/classify/megam.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Interface to Megam Classifier
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Edward Loper <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
"""
|
9 |
+
A set of functions used to interface with the external megam_ maxent
|
10 |
+
optimization package. Before megam can be used, you should tell NLTK where it
|
11 |
+
can find the megam binary, using the ``config_megam()`` function. Typical
|
12 |
+
usage:
|
13 |
+
|
14 |
+
>>> from nltk.classify import megam
|
15 |
+
>>> megam.config_megam() # pass path to megam if not found in PATH # doctest: +SKIP
|
16 |
+
[Found megam: ...]
|
17 |
+
|
18 |
+
Use with MaxentClassifier. Example below, see MaxentClassifier documentation
|
19 |
+
for details.
|
20 |
+
|
21 |
+
nltk.classify.MaxentClassifier.train(corpus, 'megam')
|
22 |
+
|
23 |
+
.. _megam: https://www.umiacs.umd.edu/~hal/megam/index.html
|
24 |
+
"""
|
25 |
+
import subprocess
|
26 |
+
|
27 |
+
from nltk.internals import find_binary
|
28 |
+
|
29 |
+
try:
|
30 |
+
import numpy
|
31 |
+
except ImportError:
|
32 |
+
numpy = None
|
33 |
+
|
34 |
+
######################################################################
|
35 |
+
# { Configuration
|
36 |
+
######################################################################
|
37 |
+
|
38 |
+
_megam_bin = None
|
39 |
+
|
40 |
+
|
41 |
+
def config_megam(bin=None):
|
42 |
+
"""
|
43 |
+
Configure NLTK's interface to the ``megam`` maxent optimization
|
44 |
+
package.
|
45 |
+
|
46 |
+
:param bin: The full path to the ``megam`` binary. If not specified,
|
47 |
+
then nltk will search the system for a ``megam`` binary; and if
|
48 |
+
one is not found, it will raise a ``LookupError`` exception.
|
49 |
+
:type bin: str
|
50 |
+
"""
|
51 |
+
global _megam_bin
|
52 |
+
_megam_bin = find_binary(
|
53 |
+
"megam",
|
54 |
+
bin,
|
55 |
+
env_vars=["MEGAM"],
|
56 |
+
binary_names=["megam.opt", "megam", "megam_686", "megam_i686.opt"],
|
57 |
+
url="https://www.umiacs.umd.edu/~hal/megam/index.html",
|
58 |
+
)
|
59 |
+
|
60 |
+
|
61 |
+
######################################################################
|
62 |
+
# { Megam Interface Functions
|
63 |
+
######################################################################
|
64 |
+
|
65 |
+
|
66 |
+
def write_megam_file(train_toks, encoding, stream, bernoulli=True, explicit=True):
|
67 |
+
"""
|
68 |
+
Generate an input file for ``megam`` based on the given corpus of
|
69 |
+
classified tokens.
|
70 |
+
|
71 |
+
:type train_toks: list(tuple(dict, str))
|
72 |
+
:param train_toks: Training data, represented as a list of
|
73 |
+
pairs, the first member of which is a feature dictionary,
|
74 |
+
and the second of which is a classification label.
|
75 |
+
|
76 |
+
:type encoding: MaxentFeatureEncodingI
|
77 |
+
:param encoding: A feature encoding, used to convert featuresets
|
78 |
+
into feature vectors. May optionally implement a cost() method
|
79 |
+
in order to assign different costs to different class predictions.
|
80 |
+
|
81 |
+
:type stream: stream
|
82 |
+
:param stream: The stream to which the megam input file should be
|
83 |
+
written.
|
84 |
+
|
85 |
+
:param bernoulli: If true, then use the 'bernoulli' format. I.e.,
|
86 |
+
all joint features have binary values, and are listed iff they
|
87 |
+
are true. Otherwise, list feature values explicitly. If
|
88 |
+
``bernoulli=False``, then you must call ``megam`` with the
|
89 |
+
``-fvals`` option.
|
90 |
+
|
91 |
+
:param explicit: If true, then use the 'explicit' format. I.e.,
|
92 |
+
list the features that would fire for any of the possible
|
93 |
+
labels, for each token. If ``explicit=True``, then you must
|
94 |
+
call ``megam`` with the ``-explicit`` option.
|
95 |
+
"""
|
96 |
+
# Look up the set of labels.
|
97 |
+
labels = encoding.labels()
|
98 |
+
labelnum = {label: i for (i, label) in enumerate(labels)}
|
99 |
+
|
100 |
+
# Write the file, which contains one line per instance.
|
101 |
+
for featureset, label in train_toks:
|
102 |
+
# First, the instance number (or, in the weighted multiclass case, the cost of each label).
|
103 |
+
if hasattr(encoding, "cost"):
|
104 |
+
stream.write(
|
105 |
+
":".join(str(encoding.cost(featureset, label, l)) for l in labels)
|
106 |
+
)
|
107 |
+
else:
|
108 |
+
stream.write("%d" % labelnum[label])
|
109 |
+
|
110 |
+
# For implicit file formats, just list the features that fire
|
111 |
+
# for this instance's actual label.
|
112 |
+
if not explicit:
|
113 |
+
_write_megam_features(encoding.encode(featureset, label), stream, bernoulli)
|
114 |
+
|
115 |
+
# For explicit formats, list the features that would fire for
|
116 |
+
# any of the possible labels.
|
117 |
+
else:
|
118 |
+
for l in labels:
|
119 |
+
stream.write(" #")
|
120 |
+
_write_megam_features(encoding.encode(featureset, l), stream, bernoulli)
|
121 |
+
|
122 |
+
# End of the instance.
|
123 |
+
stream.write("\n")
|
124 |
+
|
125 |
+
|
126 |
+
def parse_megam_weights(s, features_count, explicit=True):
|
127 |
+
"""
|
128 |
+
Given the stdout output generated by ``megam`` when training a
|
129 |
+
model, return a ``numpy`` array containing the corresponding weight
|
130 |
+
vector. This function does not currently handle bias features.
|
131 |
+
"""
|
132 |
+
if numpy is None:
|
133 |
+
raise ValueError("This function requires that numpy be installed")
|
134 |
+
assert explicit, "non-explicit not supported yet"
|
135 |
+
lines = s.strip().split("\n")
|
136 |
+
weights = numpy.zeros(features_count, "d")
|
137 |
+
for line in lines:
|
138 |
+
if line.strip():
|
139 |
+
fid, weight = line.split()
|
140 |
+
weights[int(fid)] = float(weight)
|
141 |
+
return weights
|
142 |
+
|
143 |
+
|
144 |
+
def _write_megam_features(vector, stream, bernoulli):
|
145 |
+
if not vector:
|
146 |
+
raise ValueError(
|
147 |
+
"MEGAM classifier requires the use of an " "always-on feature."
|
148 |
+
)
|
149 |
+
for (fid, fval) in vector:
|
150 |
+
if bernoulli:
|
151 |
+
if fval == 1:
|
152 |
+
stream.write(" %s" % fid)
|
153 |
+
elif fval != 0:
|
154 |
+
raise ValueError(
|
155 |
+
"If bernoulli=True, then all" "features must be binary."
|
156 |
+
)
|
157 |
+
else:
|
158 |
+
stream.write(f" {fid} {fval}")
|
159 |
+
|
160 |
+
|
161 |
+
def call_megam(args):
|
162 |
+
"""
|
163 |
+
Call the ``megam`` binary with the given arguments.
|
164 |
+
"""
|
165 |
+
if isinstance(args, str):
|
166 |
+
raise TypeError("args should be a list of strings")
|
167 |
+
if _megam_bin is None:
|
168 |
+
config_megam()
|
169 |
+
|
170 |
+
# Call megam via a subprocess
|
171 |
+
cmd = [_megam_bin] + args
|
172 |
+
p = subprocess.Popen(cmd, stdout=subprocess.PIPE)
|
173 |
+
(stdout, stderr) = p.communicate()
|
174 |
+
|
175 |
+
# Check the return code.
|
176 |
+
if p.returncode != 0:
|
177 |
+
print()
|
178 |
+
print(stderr)
|
179 |
+
raise OSError("megam command failed!")
|
180 |
+
|
181 |
+
if isinstance(stdout, str):
|
182 |
+
return stdout
|
183 |
+
else:
|
184 |
+
return stdout.decode("utf-8")
|
venv/lib/python3.10/site-packages/nltk/classify/naivebayes.py
ADDED
@@ -0,0 +1,260 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Naive Bayes Classifiers
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Edward Loper <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
"""
|
9 |
+
A classifier based on the Naive Bayes algorithm. In order to find the
|
10 |
+
probability for a label, this algorithm first uses the Bayes rule to
|
11 |
+
express P(label|features) in terms of P(label) and P(features|label):
|
12 |
+
|
13 |
+
| P(label) * P(features|label)
|
14 |
+
| P(label|features) = ------------------------------
|
15 |
+
| P(features)
|
16 |
+
|
17 |
+
The algorithm then makes the 'naive' assumption that all features are
|
18 |
+
independent, given the label:
|
19 |
+
|
20 |
+
| P(label) * P(f1|label) * ... * P(fn|label)
|
21 |
+
| P(label|features) = --------------------------------------------
|
22 |
+
| P(features)
|
23 |
+
|
24 |
+
Rather than computing P(features) explicitly, the algorithm just
|
25 |
+
calculates the numerator for each label, and normalizes them so they
|
26 |
+
sum to one:
|
27 |
+
|
28 |
+
| P(label) * P(f1|label) * ... * P(fn|label)
|
29 |
+
| P(label|features) = --------------------------------------------
|
30 |
+
| SUM[l]( P(l) * P(f1|l) * ... * P(fn|l) )
|
31 |
+
"""
|
32 |
+
|
33 |
+
from collections import defaultdict
|
34 |
+
|
35 |
+
from nltk.classify.api import ClassifierI
|
36 |
+
from nltk.probability import DictionaryProbDist, ELEProbDist, FreqDist, sum_logs
|
37 |
+
|
38 |
+
##//////////////////////////////////////////////////////
|
39 |
+
## Naive Bayes Classifier
|
40 |
+
##//////////////////////////////////////////////////////
|
41 |
+
|
42 |
+
|
43 |
+
class NaiveBayesClassifier(ClassifierI):
|
44 |
+
"""
|
45 |
+
A Naive Bayes classifier. Naive Bayes classifiers are
|
46 |
+
paramaterized by two probability distributions:
|
47 |
+
|
48 |
+
- P(label) gives the probability that an input will receive each
|
49 |
+
label, given no information about the input's features.
|
50 |
+
|
51 |
+
- P(fname=fval|label) gives the probability that a given feature
|
52 |
+
(fname) will receive a given value (fval), given that the
|
53 |
+
label (label).
|
54 |
+
|
55 |
+
If the classifier encounters an input with a feature that has
|
56 |
+
never been seen with any label, then rather than assigning a
|
57 |
+
probability of 0 to all labels, it will ignore that feature.
|
58 |
+
|
59 |
+
The feature value 'None' is reserved for unseen feature values;
|
60 |
+
you generally should not use 'None' as a feature value for one of
|
61 |
+
your own features.
|
62 |
+
"""
|
63 |
+
|
64 |
+
def __init__(self, label_probdist, feature_probdist):
|
65 |
+
"""
|
66 |
+
:param label_probdist: P(label), the probability distribution
|
67 |
+
over labels. It is expressed as a ``ProbDistI`` whose
|
68 |
+
samples are labels. I.e., P(label) =
|
69 |
+
``label_probdist.prob(label)``.
|
70 |
+
|
71 |
+
:param feature_probdist: P(fname=fval|label), the probability
|
72 |
+
distribution for feature values, given labels. It is
|
73 |
+
expressed as a dictionary whose keys are ``(label, fname)``
|
74 |
+
pairs and whose values are ``ProbDistI`` objects over feature
|
75 |
+
values. I.e., P(fname=fval|label) =
|
76 |
+
``feature_probdist[label,fname].prob(fval)``. If a given
|
77 |
+
``(label,fname)`` is not a key in ``feature_probdist``, then
|
78 |
+
it is assumed that the corresponding P(fname=fval|label)
|
79 |
+
is 0 for all values of ``fval``.
|
80 |
+
"""
|
81 |
+
self._label_probdist = label_probdist
|
82 |
+
self._feature_probdist = feature_probdist
|
83 |
+
self._labels = list(label_probdist.samples())
|
84 |
+
|
85 |
+
def labels(self):
|
86 |
+
return self._labels
|
87 |
+
|
88 |
+
def classify(self, featureset):
|
89 |
+
return self.prob_classify(featureset).max()
|
90 |
+
|
91 |
+
def prob_classify(self, featureset):
|
92 |
+
# Discard any feature names that we've never seen before.
|
93 |
+
# Otherwise, we'll just assign a probability of 0 to
|
94 |
+
# everything.
|
95 |
+
featureset = featureset.copy()
|
96 |
+
for fname in list(featureset.keys()):
|
97 |
+
for label in self._labels:
|
98 |
+
if (label, fname) in self._feature_probdist:
|
99 |
+
break
|
100 |
+
else:
|
101 |
+
# print('Ignoring unseen feature %s' % fname)
|
102 |
+
del featureset[fname]
|
103 |
+
|
104 |
+
# Find the log probability of each label, given the features.
|
105 |
+
# Start with the log probability of the label itself.
|
106 |
+
logprob = {}
|
107 |
+
for label in self._labels:
|
108 |
+
logprob[label] = self._label_probdist.logprob(label)
|
109 |
+
|
110 |
+
# Then add in the log probability of features given labels.
|
111 |
+
for label in self._labels:
|
112 |
+
for (fname, fval) in featureset.items():
|
113 |
+
if (label, fname) in self._feature_probdist:
|
114 |
+
feature_probs = self._feature_probdist[label, fname]
|
115 |
+
logprob[label] += feature_probs.logprob(fval)
|
116 |
+
else:
|
117 |
+
# nb: This case will never come up if the
|
118 |
+
# classifier was created by
|
119 |
+
# NaiveBayesClassifier.train().
|
120 |
+
logprob[label] += sum_logs([]) # = -INF.
|
121 |
+
|
122 |
+
return DictionaryProbDist(logprob, normalize=True, log=True)
|
123 |
+
|
124 |
+
def show_most_informative_features(self, n=10):
|
125 |
+
# Determine the most relevant features, and display them.
|
126 |
+
cpdist = self._feature_probdist
|
127 |
+
print("Most Informative Features")
|
128 |
+
|
129 |
+
for (fname, fval) in self.most_informative_features(n):
|
130 |
+
|
131 |
+
def labelprob(l):
|
132 |
+
return cpdist[l, fname].prob(fval)
|
133 |
+
|
134 |
+
labels = sorted(
|
135 |
+
(l for l in self._labels if fval in cpdist[l, fname].samples()),
|
136 |
+
key=lambda element: (-labelprob(element), element),
|
137 |
+
reverse=True,
|
138 |
+
)
|
139 |
+
if len(labels) == 1:
|
140 |
+
continue
|
141 |
+
l0 = labels[0]
|
142 |
+
l1 = labels[-1]
|
143 |
+
if cpdist[l0, fname].prob(fval) == 0:
|
144 |
+
ratio = "INF"
|
145 |
+
else:
|
146 |
+
ratio = "%8.1f" % (
|
147 |
+
cpdist[l1, fname].prob(fval) / cpdist[l0, fname].prob(fval)
|
148 |
+
)
|
149 |
+
print(
|
150 |
+
"%24s = %-14r %6s : %-6s = %s : 1.0"
|
151 |
+
% (fname, fval, ("%s" % l1)[:6], ("%s" % l0)[:6], ratio)
|
152 |
+
)
|
153 |
+
|
154 |
+
def most_informative_features(self, n=100):
|
155 |
+
"""
|
156 |
+
Return a list of the 'most informative' features used by this
|
157 |
+
classifier. For the purpose of this function, the
|
158 |
+
informativeness of a feature ``(fname,fval)`` is equal to the
|
159 |
+
highest value of P(fname=fval|label), for any label, divided by
|
160 |
+
the lowest value of P(fname=fval|label), for any label:
|
161 |
+
|
162 |
+
| max[ P(fname=fval|label1) / P(fname=fval|label2) ]
|
163 |
+
"""
|
164 |
+
if hasattr(self, "_most_informative_features"):
|
165 |
+
return self._most_informative_features[:n]
|
166 |
+
else:
|
167 |
+
# The set of (fname, fval) pairs used by this classifier.
|
168 |
+
features = set()
|
169 |
+
# The max & min probability associated w/ each (fname, fval)
|
170 |
+
# pair. Maps (fname,fval) -> float.
|
171 |
+
maxprob = defaultdict(lambda: 0.0)
|
172 |
+
minprob = defaultdict(lambda: 1.0)
|
173 |
+
|
174 |
+
for (label, fname), probdist in self._feature_probdist.items():
|
175 |
+
for fval in probdist.samples():
|
176 |
+
feature = (fname, fval)
|
177 |
+
features.add(feature)
|
178 |
+
p = probdist.prob(fval)
|
179 |
+
maxprob[feature] = max(p, maxprob[feature])
|
180 |
+
minprob[feature] = min(p, minprob[feature])
|
181 |
+
if minprob[feature] == 0:
|
182 |
+
features.discard(feature)
|
183 |
+
|
184 |
+
# Convert features to a list, & sort it by how informative
|
185 |
+
# features are.
|
186 |
+
self._most_informative_features = sorted(
|
187 |
+
features,
|
188 |
+
key=lambda feature_: (
|
189 |
+
minprob[feature_] / maxprob[feature_],
|
190 |
+
feature_[0],
|
191 |
+
feature_[1] in [None, False, True],
|
192 |
+
str(feature_[1]).lower(),
|
193 |
+
),
|
194 |
+
)
|
195 |
+
return self._most_informative_features[:n]
|
196 |
+
|
197 |
+
@classmethod
|
198 |
+
def train(cls, labeled_featuresets, estimator=ELEProbDist):
|
199 |
+
"""
|
200 |
+
:param labeled_featuresets: A list of classified featuresets,
|
201 |
+
i.e., a list of tuples ``(featureset, label)``.
|
202 |
+
"""
|
203 |
+
label_freqdist = FreqDist()
|
204 |
+
feature_freqdist = defaultdict(FreqDist)
|
205 |
+
feature_values = defaultdict(set)
|
206 |
+
fnames = set()
|
207 |
+
|
208 |
+
# Count up how many times each feature value occurred, given
|
209 |
+
# the label and featurename.
|
210 |
+
for featureset, label in labeled_featuresets:
|
211 |
+
label_freqdist[label] += 1
|
212 |
+
for fname, fval in featureset.items():
|
213 |
+
# Increment freq(fval|label, fname)
|
214 |
+
feature_freqdist[label, fname][fval] += 1
|
215 |
+
# Record that fname can take the value fval.
|
216 |
+
feature_values[fname].add(fval)
|
217 |
+
# Keep a list of all feature names.
|
218 |
+
fnames.add(fname)
|
219 |
+
|
220 |
+
# If a feature didn't have a value given for an instance, then
|
221 |
+
# we assume that it gets the implicit value 'None.' This loop
|
222 |
+
# counts up the number of 'missing' feature values for each
|
223 |
+
# (label,fname) pair, and increments the count of the fval
|
224 |
+
# 'None' by that amount.
|
225 |
+
for label in label_freqdist:
|
226 |
+
num_samples = label_freqdist[label]
|
227 |
+
for fname in fnames:
|
228 |
+
count = feature_freqdist[label, fname].N()
|
229 |
+
# Only add a None key when necessary, i.e. if there are
|
230 |
+
# any samples with feature 'fname' missing.
|
231 |
+
if num_samples - count > 0:
|
232 |
+
feature_freqdist[label, fname][None] += num_samples - count
|
233 |
+
feature_values[fname].add(None)
|
234 |
+
|
235 |
+
# Create the P(label) distribution
|
236 |
+
label_probdist = estimator(label_freqdist)
|
237 |
+
|
238 |
+
# Create the P(fval|label, fname) distribution
|
239 |
+
feature_probdist = {}
|
240 |
+
for ((label, fname), freqdist) in feature_freqdist.items():
|
241 |
+
probdist = estimator(freqdist, bins=len(feature_values[fname]))
|
242 |
+
feature_probdist[label, fname] = probdist
|
243 |
+
|
244 |
+
return cls(label_probdist, feature_probdist)
|
245 |
+
|
246 |
+
|
247 |
+
##//////////////////////////////////////////////////////
|
248 |
+
## Demo
|
249 |
+
##//////////////////////////////////////////////////////
|
250 |
+
|
251 |
+
|
252 |
+
def demo():
|
253 |
+
from nltk.classify.util import names_demo
|
254 |
+
|
255 |
+
classifier = names_demo(NaiveBayesClassifier.train)
|
256 |
+
classifier.show_most_informative_features()
|
257 |
+
|
258 |
+
|
259 |
+
if __name__ == "__main__":
|
260 |
+
demo()
|
venv/lib/python3.10/site-packages/nltk/classify/positivenaivebayes.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Positive Naive Bayes Classifier
|
2 |
+
#
|
3 |
+
# Copyright (C) 2012 NLTK Project
|
4 |
+
# Author: Alessandro Presta <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
"""
|
9 |
+
A variant of the Naive Bayes Classifier that performs binary classification with
|
10 |
+
partially-labeled training sets. In other words, assume we want to build a classifier
|
11 |
+
that assigns each example to one of two complementary classes (e.g., male names and
|
12 |
+
female names).
|
13 |
+
If we have a training set with labeled examples for both classes, we can use a
|
14 |
+
standard Naive Bayes Classifier. However, consider the case when we only have labeled
|
15 |
+
examples for one of the classes, and other, unlabeled, examples.
|
16 |
+
Then, assuming a prior distribution on the two labels, we can use the unlabeled set
|
17 |
+
to estimate the frequencies of the various features.
|
18 |
+
|
19 |
+
Let the two possible labels be 1 and 0, and let's say we only have examples labeled 1
|
20 |
+
and unlabeled examples. We are also given an estimate of P(1).
|
21 |
+
|
22 |
+
We compute P(feature|1) exactly as in the standard case.
|
23 |
+
|
24 |
+
To compute P(feature|0), we first estimate P(feature) from the unlabeled set (we are
|
25 |
+
assuming that the unlabeled examples are drawn according to the given prior distribution)
|
26 |
+
and then express the conditional probability as:
|
27 |
+
|
28 |
+
| P(feature) - P(feature|1) * P(1)
|
29 |
+
| P(feature|0) = ----------------------------------
|
30 |
+
| P(0)
|
31 |
+
|
32 |
+
Example:
|
33 |
+
|
34 |
+
>>> from nltk.classify import PositiveNaiveBayesClassifier
|
35 |
+
|
36 |
+
Some sentences about sports:
|
37 |
+
|
38 |
+
>>> sports_sentences = [ 'The team dominated the game',
|
39 |
+
... 'They lost the ball',
|
40 |
+
... 'The game was intense',
|
41 |
+
... 'The goalkeeper catched the ball',
|
42 |
+
... 'The other team controlled the ball' ]
|
43 |
+
|
44 |
+
Mixed topics, including sports:
|
45 |
+
|
46 |
+
>>> various_sentences = [ 'The President did not comment',
|
47 |
+
... 'I lost the keys',
|
48 |
+
... 'The team won the game',
|
49 |
+
... 'Sara has two kids',
|
50 |
+
... 'The ball went off the court',
|
51 |
+
... 'They had the ball for the whole game',
|
52 |
+
... 'The show is over' ]
|
53 |
+
|
54 |
+
The features of a sentence are simply the words it contains:
|
55 |
+
|
56 |
+
>>> def features(sentence):
|
57 |
+
... words = sentence.lower().split()
|
58 |
+
... return dict(('contains(%s)' % w, True) for w in words)
|
59 |
+
|
60 |
+
We use the sports sentences as positive examples, the mixed ones ad unlabeled examples:
|
61 |
+
|
62 |
+
>>> positive_featuresets = map(features, sports_sentences)
|
63 |
+
>>> unlabeled_featuresets = map(features, various_sentences)
|
64 |
+
>>> classifier = PositiveNaiveBayesClassifier.train(positive_featuresets,
|
65 |
+
... unlabeled_featuresets)
|
66 |
+
|
67 |
+
Is the following sentence about sports?
|
68 |
+
|
69 |
+
>>> classifier.classify(features('The cat is on the table'))
|
70 |
+
False
|
71 |
+
|
72 |
+
What about this one?
|
73 |
+
|
74 |
+
>>> classifier.classify(features('My team lost the game'))
|
75 |
+
True
|
76 |
+
"""
|
77 |
+
|
78 |
+
from collections import defaultdict
|
79 |
+
|
80 |
+
from nltk.classify.naivebayes import NaiveBayesClassifier
|
81 |
+
from nltk.probability import DictionaryProbDist, ELEProbDist, FreqDist
|
82 |
+
|
83 |
+
##//////////////////////////////////////////////////////
|
84 |
+
## Positive Naive Bayes Classifier
|
85 |
+
##//////////////////////////////////////////////////////
|
86 |
+
|
87 |
+
|
88 |
+
class PositiveNaiveBayesClassifier(NaiveBayesClassifier):
|
89 |
+
@staticmethod
|
90 |
+
def train(
|
91 |
+
positive_featuresets,
|
92 |
+
unlabeled_featuresets,
|
93 |
+
positive_prob_prior=0.5,
|
94 |
+
estimator=ELEProbDist,
|
95 |
+
):
|
96 |
+
"""
|
97 |
+
:param positive_featuresets: An iterable of featuresets that are known as positive
|
98 |
+
examples (i.e., their label is ``True``).
|
99 |
+
|
100 |
+
:param unlabeled_featuresets: An iterable of featuresets whose label is unknown.
|
101 |
+
|
102 |
+
:param positive_prob_prior: A prior estimate of the probability of the label
|
103 |
+
``True`` (default 0.5).
|
104 |
+
"""
|
105 |
+
positive_feature_freqdist = defaultdict(FreqDist)
|
106 |
+
unlabeled_feature_freqdist = defaultdict(FreqDist)
|
107 |
+
feature_values = defaultdict(set)
|
108 |
+
fnames = set()
|
109 |
+
|
110 |
+
# Count up how many times each feature value occurred in positive examples.
|
111 |
+
num_positive_examples = 0
|
112 |
+
for featureset in positive_featuresets:
|
113 |
+
for fname, fval in featureset.items():
|
114 |
+
positive_feature_freqdist[fname][fval] += 1
|
115 |
+
feature_values[fname].add(fval)
|
116 |
+
fnames.add(fname)
|
117 |
+
num_positive_examples += 1
|
118 |
+
|
119 |
+
# Count up how many times each feature value occurred in unlabeled examples.
|
120 |
+
num_unlabeled_examples = 0
|
121 |
+
for featureset in unlabeled_featuresets:
|
122 |
+
for fname, fval in featureset.items():
|
123 |
+
unlabeled_feature_freqdist[fname][fval] += 1
|
124 |
+
feature_values[fname].add(fval)
|
125 |
+
fnames.add(fname)
|
126 |
+
num_unlabeled_examples += 1
|
127 |
+
|
128 |
+
# If a feature didn't have a value given for an instance, then we assume that
|
129 |
+
# it gets the implicit value 'None'.
|
130 |
+
for fname in fnames:
|
131 |
+
count = positive_feature_freqdist[fname].N()
|
132 |
+
positive_feature_freqdist[fname][None] += num_positive_examples - count
|
133 |
+
feature_values[fname].add(None)
|
134 |
+
|
135 |
+
for fname in fnames:
|
136 |
+
count = unlabeled_feature_freqdist[fname].N()
|
137 |
+
unlabeled_feature_freqdist[fname][None] += num_unlabeled_examples - count
|
138 |
+
feature_values[fname].add(None)
|
139 |
+
|
140 |
+
negative_prob_prior = 1.0 - positive_prob_prior
|
141 |
+
|
142 |
+
# Create the P(label) distribution.
|
143 |
+
label_probdist = DictionaryProbDist(
|
144 |
+
{True: positive_prob_prior, False: negative_prob_prior}
|
145 |
+
)
|
146 |
+
|
147 |
+
# Create the P(fval|label, fname) distribution.
|
148 |
+
feature_probdist = {}
|
149 |
+
for fname, freqdist in positive_feature_freqdist.items():
|
150 |
+
probdist = estimator(freqdist, bins=len(feature_values[fname]))
|
151 |
+
feature_probdist[True, fname] = probdist
|
152 |
+
|
153 |
+
for fname, freqdist in unlabeled_feature_freqdist.items():
|
154 |
+
global_probdist = estimator(freqdist, bins=len(feature_values[fname]))
|
155 |
+
negative_feature_probs = {}
|
156 |
+
for fval in feature_values[fname]:
|
157 |
+
prob = (
|
158 |
+
global_probdist.prob(fval)
|
159 |
+
- positive_prob_prior * feature_probdist[True, fname].prob(fval)
|
160 |
+
) / negative_prob_prior
|
161 |
+
# TODO: We need to add some kind of smoothing here, instead of
|
162 |
+
# setting negative probabilities to zero and normalizing.
|
163 |
+
negative_feature_probs[fval] = max(prob, 0.0)
|
164 |
+
feature_probdist[False, fname] = DictionaryProbDist(
|
165 |
+
negative_feature_probs, normalize=True
|
166 |
+
)
|
167 |
+
|
168 |
+
return PositiveNaiveBayesClassifier(label_probdist, feature_probdist)
|
169 |
+
|
170 |
+
|
171 |
+
##//////////////////////////////////////////////////////
|
172 |
+
## Demo
|
173 |
+
##//////////////////////////////////////////////////////
|
174 |
+
|
175 |
+
|
176 |
+
def demo():
|
177 |
+
from nltk.classify.util import partial_names_demo
|
178 |
+
|
179 |
+
classifier = partial_names_demo(PositiveNaiveBayesClassifier.train)
|
180 |
+
classifier.show_most_informative_features()
|
venv/lib/python3.10/site-packages/nltk/classify/rte_classify.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: RTE Classifier
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Ewan Klein <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
"""
|
9 |
+
Simple classifier for RTE corpus.
|
10 |
+
|
11 |
+
It calculates the overlap in words and named entities between text and
|
12 |
+
hypothesis, and also whether there are words / named entities in the
|
13 |
+
hypothesis which fail to occur in the text, since this is an indicator that
|
14 |
+
the hypothesis is more informative than (i.e not entailed by) the text.
|
15 |
+
|
16 |
+
TO DO: better Named Entity classification
|
17 |
+
TO DO: add lemmatization
|
18 |
+
"""
|
19 |
+
|
20 |
+
from nltk.classify.maxent import MaxentClassifier
|
21 |
+
from nltk.classify.util import accuracy
|
22 |
+
from nltk.tokenize import RegexpTokenizer
|
23 |
+
|
24 |
+
|
25 |
+
class RTEFeatureExtractor:
|
26 |
+
"""
|
27 |
+
This builds a bag of words for both the text and the hypothesis after
|
28 |
+
throwing away some stopwords, then calculates overlap and difference.
|
29 |
+
"""
|
30 |
+
|
31 |
+
def __init__(self, rtepair, stop=True, use_lemmatize=False):
|
32 |
+
"""
|
33 |
+
:param rtepair: a ``RTEPair`` from which features should be extracted
|
34 |
+
:param stop: if ``True``, stopwords are thrown away.
|
35 |
+
:type stop: bool
|
36 |
+
"""
|
37 |
+
self.stop = stop
|
38 |
+
self.stopwords = {
|
39 |
+
"a",
|
40 |
+
"the",
|
41 |
+
"it",
|
42 |
+
"they",
|
43 |
+
"of",
|
44 |
+
"in",
|
45 |
+
"to",
|
46 |
+
"is",
|
47 |
+
"have",
|
48 |
+
"are",
|
49 |
+
"were",
|
50 |
+
"and",
|
51 |
+
"very",
|
52 |
+
".",
|
53 |
+
",",
|
54 |
+
}
|
55 |
+
|
56 |
+
self.negwords = {"no", "not", "never", "failed", "rejected", "denied"}
|
57 |
+
# Try to tokenize so that abbreviations, monetary amounts, email
|
58 |
+
# addresses, URLs are single tokens.
|
59 |
+
tokenizer = RegexpTokenizer(r"[\w.@:/]+|\w+|\$[\d.]+")
|
60 |
+
|
61 |
+
# Get the set of word types for text and hypothesis
|
62 |
+
self.text_tokens = tokenizer.tokenize(rtepair.text)
|
63 |
+
self.hyp_tokens = tokenizer.tokenize(rtepair.hyp)
|
64 |
+
self.text_words = set(self.text_tokens)
|
65 |
+
self.hyp_words = set(self.hyp_tokens)
|
66 |
+
|
67 |
+
if use_lemmatize:
|
68 |
+
self.text_words = {self._lemmatize(token) for token in self.text_tokens}
|
69 |
+
self.hyp_words = {self._lemmatize(token) for token in self.hyp_tokens}
|
70 |
+
|
71 |
+
if self.stop:
|
72 |
+
self.text_words = self.text_words - self.stopwords
|
73 |
+
self.hyp_words = self.hyp_words - self.stopwords
|
74 |
+
|
75 |
+
self._overlap = self.hyp_words & self.text_words
|
76 |
+
self._hyp_extra = self.hyp_words - self.text_words
|
77 |
+
self._txt_extra = self.text_words - self.hyp_words
|
78 |
+
|
79 |
+
def overlap(self, toktype, debug=False):
|
80 |
+
"""
|
81 |
+
Compute the overlap between text and hypothesis.
|
82 |
+
|
83 |
+
:param toktype: distinguish Named Entities from ordinary words
|
84 |
+
:type toktype: 'ne' or 'word'
|
85 |
+
"""
|
86 |
+
ne_overlap = {token for token in self._overlap if self._ne(token)}
|
87 |
+
if toktype == "ne":
|
88 |
+
if debug:
|
89 |
+
print("ne overlap", ne_overlap)
|
90 |
+
return ne_overlap
|
91 |
+
elif toktype == "word":
|
92 |
+
if debug:
|
93 |
+
print("word overlap", self._overlap - ne_overlap)
|
94 |
+
return self._overlap - ne_overlap
|
95 |
+
else:
|
96 |
+
raise ValueError("Type not recognized:'%s'" % toktype)
|
97 |
+
|
98 |
+
def hyp_extra(self, toktype, debug=True):
|
99 |
+
"""
|
100 |
+
Compute the extraneous material in the hypothesis.
|
101 |
+
|
102 |
+
:param toktype: distinguish Named Entities from ordinary words
|
103 |
+
:type toktype: 'ne' or 'word'
|
104 |
+
"""
|
105 |
+
ne_extra = {token for token in self._hyp_extra if self._ne(token)}
|
106 |
+
if toktype == "ne":
|
107 |
+
return ne_extra
|
108 |
+
elif toktype == "word":
|
109 |
+
return self._hyp_extra - ne_extra
|
110 |
+
else:
|
111 |
+
raise ValueError("Type not recognized: '%s'" % toktype)
|
112 |
+
|
113 |
+
@staticmethod
|
114 |
+
def _ne(token):
|
115 |
+
"""
|
116 |
+
This just assumes that words in all caps or titles are
|
117 |
+
named entities.
|
118 |
+
|
119 |
+
:type token: str
|
120 |
+
"""
|
121 |
+
if token.istitle() or token.isupper():
|
122 |
+
return True
|
123 |
+
return False
|
124 |
+
|
125 |
+
@staticmethod
|
126 |
+
def _lemmatize(word):
|
127 |
+
"""
|
128 |
+
Use morphy from WordNet to find the base form of verbs.
|
129 |
+
"""
|
130 |
+
from nltk.corpus import wordnet as wn
|
131 |
+
|
132 |
+
lemma = wn.morphy(word, pos=wn.VERB)
|
133 |
+
if lemma is not None:
|
134 |
+
return lemma
|
135 |
+
return word
|
136 |
+
|
137 |
+
|
138 |
+
def rte_features(rtepair):
|
139 |
+
extractor = RTEFeatureExtractor(rtepair)
|
140 |
+
features = {}
|
141 |
+
features["alwayson"] = True
|
142 |
+
features["word_overlap"] = len(extractor.overlap("word"))
|
143 |
+
features["word_hyp_extra"] = len(extractor.hyp_extra("word"))
|
144 |
+
features["ne_overlap"] = len(extractor.overlap("ne"))
|
145 |
+
features["ne_hyp_extra"] = len(extractor.hyp_extra("ne"))
|
146 |
+
features["neg_txt"] = len(extractor.negwords & extractor.text_words)
|
147 |
+
features["neg_hyp"] = len(extractor.negwords & extractor.hyp_words)
|
148 |
+
return features
|
149 |
+
|
150 |
+
|
151 |
+
def rte_featurize(rte_pairs):
|
152 |
+
return [(rte_features(pair), pair.value) for pair in rte_pairs]
|
153 |
+
|
154 |
+
|
155 |
+
def rte_classifier(algorithm, sample_N=None):
|
156 |
+
from nltk.corpus import rte as rte_corpus
|
157 |
+
|
158 |
+
train_set = rte_corpus.pairs(["rte1_dev.xml", "rte2_dev.xml", "rte3_dev.xml"])
|
159 |
+
test_set = rte_corpus.pairs(["rte1_test.xml", "rte2_test.xml", "rte3_test.xml"])
|
160 |
+
|
161 |
+
if sample_N is not None:
|
162 |
+
train_set = train_set[:sample_N]
|
163 |
+
test_set = test_set[:sample_N]
|
164 |
+
|
165 |
+
featurized_train_set = rte_featurize(train_set)
|
166 |
+
featurized_test_set = rte_featurize(test_set)
|
167 |
+
|
168 |
+
# Train the classifier
|
169 |
+
print("Training classifier...")
|
170 |
+
if algorithm in ["megam"]: # MEGAM based algorithms.
|
171 |
+
clf = MaxentClassifier.train(featurized_train_set, algorithm)
|
172 |
+
elif algorithm in ["GIS", "IIS"]: # Use default GIS/IIS MaxEnt algorithm
|
173 |
+
clf = MaxentClassifier.train(featurized_train_set, algorithm)
|
174 |
+
else:
|
175 |
+
err_msg = str(
|
176 |
+
"RTEClassifier only supports these algorithms:\n "
|
177 |
+
"'megam', 'GIS', 'IIS'.\n"
|
178 |
+
)
|
179 |
+
raise Exception(err_msg)
|
180 |
+
print("Testing classifier...")
|
181 |
+
acc = accuracy(clf, featurized_test_set)
|
182 |
+
print("Accuracy: %6.4f" % acc)
|
183 |
+
return clf
|
venv/lib/python3.10/site-packages/nltk/classify/scikitlearn.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Interface to scikit-learn classifiers
|
2 |
+
#
|
3 |
+
# Author: Lars Buitinck <[email protected]>
|
4 |
+
# URL: <https://www.nltk.org/>
|
5 |
+
# For license information, see LICENSE.TXT
|
6 |
+
"""
|
7 |
+
scikit-learn (https://scikit-learn.org) is a machine learning library for
|
8 |
+
Python. It supports many classification algorithms, including SVMs,
|
9 |
+
Naive Bayes, logistic regression (MaxEnt) and decision trees.
|
10 |
+
|
11 |
+
This package implements a wrapper around scikit-learn classifiers. To use this
|
12 |
+
wrapper, construct a scikit-learn estimator object, then use that to construct
|
13 |
+
a SklearnClassifier. E.g., to wrap a linear SVM with default settings:
|
14 |
+
|
15 |
+
>>> from sklearn.svm import LinearSVC
|
16 |
+
>>> from nltk.classify.scikitlearn import SklearnClassifier
|
17 |
+
>>> classif = SklearnClassifier(LinearSVC())
|
18 |
+
|
19 |
+
A scikit-learn classifier may include preprocessing steps when it's wrapped
|
20 |
+
in a Pipeline object. The following constructs and wraps a Naive Bayes text
|
21 |
+
classifier with tf-idf weighting and chi-square feature selection to get the
|
22 |
+
best 1000 features:
|
23 |
+
|
24 |
+
>>> from sklearn.feature_extraction.text import TfidfTransformer
|
25 |
+
>>> from sklearn.feature_selection import SelectKBest, chi2
|
26 |
+
>>> from sklearn.naive_bayes import MultinomialNB
|
27 |
+
>>> from sklearn.pipeline import Pipeline
|
28 |
+
>>> pipeline = Pipeline([('tfidf', TfidfTransformer()),
|
29 |
+
... ('chi2', SelectKBest(chi2, k=1000)),
|
30 |
+
... ('nb', MultinomialNB())])
|
31 |
+
>>> classif = SklearnClassifier(pipeline)
|
32 |
+
"""
|
33 |
+
|
34 |
+
from nltk.classify.api import ClassifierI
|
35 |
+
from nltk.probability import DictionaryProbDist
|
36 |
+
|
37 |
+
try:
|
38 |
+
from sklearn.feature_extraction import DictVectorizer
|
39 |
+
from sklearn.preprocessing import LabelEncoder
|
40 |
+
except ImportError:
|
41 |
+
pass
|
42 |
+
|
43 |
+
__all__ = ["SklearnClassifier"]
|
44 |
+
|
45 |
+
|
46 |
+
class SklearnClassifier(ClassifierI):
|
47 |
+
"""Wrapper for scikit-learn classifiers."""
|
48 |
+
|
49 |
+
def __init__(self, estimator, dtype=float, sparse=True):
|
50 |
+
"""
|
51 |
+
:param estimator: scikit-learn classifier object.
|
52 |
+
|
53 |
+
:param dtype: data type used when building feature array.
|
54 |
+
scikit-learn estimators work exclusively on numeric data. The
|
55 |
+
default value should be fine for almost all situations.
|
56 |
+
|
57 |
+
:param sparse: Whether to use sparse matrices internally.
|
58 |
+
The estimator must support these; not all scikit-learn classifiers
|
59 |
+
do (see their respective documentation and look for "sparse
|
60 |
+
matrix"). The default value is True, since most NLP problems
|
61 |
+
involve sparse feature sets. Setting this to False may take a
|
62 |
+
great amount of memory.
|
63 |
+
:type sparse: boolean.
|
64 |
+
"""
|
65 |
+
self._clf = estimator
|
66 |
+
self._encoder = LabelEncoder()
|
67 |
+
self._vectorizer = DictVectorizer(dtype=dtype, sparse=sparse)
|
68 |
+
|
69 |
+
def __repr__(self):
|
70 |
+
return "<SklearnClassifier(%r)>" % self._clf
|
71 |
+
|
72 |
+
def classify_many(self, featuresets):
|
73 |
+
"""Classify a batch of samples.
|
74 |
+
|
75 |
+
:param featuresets: An iterable over featuresets, each a dict mapping
|
76 |
+
strings to either numbers, booleans or strings.
|
77 |
+
:return: The predicted class label for each input sample.
|
78 |
+
:rtype: list
|
79 |
+
"""
|
80 |
+
X = self._vectorizer.transform(featuresets)
|
81 |
+
classes = self._encoder.classes_
|
82 |
+
return [classes[i] for i in self._clf.predict(X)]
|
83 |
+
|
84 |
+
def prob_classify_many(self, featuresets):
|
85 |
+
"""Compute per-class probabilities for a batch of samples.
|
86 |
+
|
87 |
+
:param featuresets: An iterable over featuresets, each a dict mapping
|
88 |
+
strings to either numbers, booleans or strings.
|
89 |
+
:rtype: list of ``ProbDistI``
|
90 |
+
"""
|
91 |
+
X = self._vectorizer.transform(featuresets)
|
92 |
+
y_proba_list = self._clf.predict_proba(X)
|
93 |
+
return [self._make_probdist(y_proba) for y_proba in y_proba_list]
|
94 |
+
|
95 |
+
def labels(self):
|
96 |
+
"""The class labels used by this classifier.
|
97 |
+
|
98 |
+
:rtype: list
|
99 |
+
"""
|
100 |
+
return list(self._encoder.classes_)
|
101 |
+
|
102 |
+
def train(self, labeled_featuresets):
|
103 |
+
"""
|
104 |
+
Train (fit) the scikit-learn estimator.
|
105 |
+
|
106 |
+
:param labeled_featuresets: A list of ``(featureset, label)``
|
107 |
+
where each ``featureset`` is a dict mapping strings to either
|
108 |
+
numbers, booleans or strings.
|
109 |
+
"""
|
110 |
+
|
111 |
+
X, y = list(zip(*labeled_featuresets))
|
112 |
+
X = self._vectorizer.fit_transform(X)
|
113 |
+
y = self._encoder.fit_transform(y)
|
114 |
+
self._clf.fit(X, y)
|
115 |
+
|
116 |
+
return self
|
117 |
+
|
118 |
+
def _make_probdist(self, y_proba):
|
119 |
+
classes = self._encoder.classes_
|
120 |
+
return DictionaryProbDist({classes[i]: p for i, p in enumerate(y_proba)})
|
121 |
+
|
122 |
+
|
123 |
+
if __name__ == "__main__":
|
124 |
+
from sklearn.linear_model import LogisticRegression
|
125 |
+
from sklearn.naive_bayes import BernoulliNB
|
126 |
+
|
127 |
+
from nltk.classify.util import names_demo, names_demo_features
|
128 |
+
|
129 |
+
# Bernoulli Naive Bayes is designed for binary classification. We set the
|
130 |
+
# binarize option to False since we know we're passing boolean features.
|
131 |
+
print("scikit-learn Naive Bayes:")
|
132 |
+
names_demo(
|
133 |
+
SklearnClassifier(BernoulliNB(binarize=False)).train,
|
134 |
+
features=names_demo_features,
|
135 |
+
)
|
136 |
+
|
137 |
+
# The C parameter on logistic regression (MaxEnt) controls regularization.
|
138 |
+
# The higher it's set, the less regularized the classifier is.
|
139 |
+
print("\n\nscikit-learn logistic regression:")
|
140 |
+
names_demo(
|
141 |
+
SklearnClassifier(LogisticRegression(C=1000)).train,
|
142 |
+
features=names_demo_features,
|
143 |
+
)
|
venv/lib/python3.10/site-packages/nltk/classify/senna.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Senna Interface
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Rami Al-Rfou' <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
"""
|
9 |
+
A general interface to the SENNA pipeline that supports any of the
|
10 |
+
operations specified in SUPPORTED_OPERATIONS.
|
11 |
+
|
12 |
+
Applying multiple operations at once has the speed advantage. For example,
|
13 |
+
Senna will automatically determine POS tags if you are extracting named
|
14 |
+
entities. Applying both of the operations will cost only the time of
|
15 |
+
extracting the named entities.
|
16 |
+
|
17 |
+
The SENNA pipeline has a fixed maximum size of the sentences that it can read.
|
18 |
+
By default it is 1024 token/sentence. If you have larger sentences, changing
|
19 |
+
the MAX_SENTENCE_SIZE value in SENNA_main.c should be considered and your
|
20 |
+
system specific binary should be rebuilt. Otherwise this could introduce
|
21 |
+
misalignment errors.
|
22 |
+
|
23 |
+
The input is:
|
24 |
+
|
25 |
+
- path to the directory that contains SENNA executables. If the path is incorrect,
|
26 |
+
Senna will automatically search for executable file specified in SENNA environment variable
|
27 |
+
- List of the operations needed to be performed.
|
28 |
+
- (optionally) the encoding of the input data (default:utf-8)
|
29 |
+
|
30 |
+
Note: Unit tests for this module can be found in test/unit/test_senna.py
|
31 |
+
|
32 |
+
>>> from nltk.classify import Senna
|
33 |
+
>>> pipeline = Senna('/usr/share/senna-v3.0', ['pos', 'chk', 'ner']) # doctest: +SKIP
|
34 |
+
>>> sent = 'Dusseldorf is an international business center'.split()
|
35 |
+
>>> [(token['word'], token['chk'], token['ner'], token['pos']) for token in pipeline.tag(sent)] # doctest: +SKIP
|
36 |
+
[('Dusseldorf', 'B-NP', 'B-LOC', 'NNP'), ('is', 'B-VP', 'O', 'VBZ'), ('an', 'B-NP', 'O', 'DT'),
|
37 |
+
('international', 'I-NP', 'O', 'JJ'), ('business', 'I-NP', 'O', 'NN'), ('center', 'I-NP', 'O', 'NN')]
|
38 |
+
"""
|
39 |
+
|
40 |
+
from os import environ, path, sep
|
41 |
+
from platform import architecture, system
|
42 |
+
from subprocess import PIPE, Popen
|
43 |
+
|
44 |
+
from nltk.tag.api import TaggerI
|
45 |
+
|
46 |
+
|
47 |
+
class Senna(TaggerI):
|
48 |
+
|
49 |
+
SUPPORTED_OPERATIONS = ["pos", "chk", "ner"]
|
50 |
+
|
51 |
+
def __init__(self, senna_path, operations, encoding="utf-8"):
|
52 |
+
self._encoding = encoding
|
53 |
+
self._path = path.normpath(senna_path) + sep
|
54 |
+
|
55 |
+
# Verifies the existence of the executable on the self._path first
|
56 |
+
# senna_binary_file_1 = self.executable(self._path)
|
57 |
+
exe_file_1 = self.executable(self._path)
|
58 |
+
if not path.isfile(exe_file_1):
|
59 |
+
# Check for the system environment
|
60 |
+
if "SENNA" in environ:
|
61 |
+
# self._path = path.join(environ['SENNA'],'')
|
62 |
+
self._path = path.normpath(environ["SENNA"]) + sep
|
63 |
+
exe_file_2 = self.executable(self._path)
|
64 |
+
if not path.isfile(exe_file_2):
|
65 |
+
raise LookupError(
|
66 |
+
"Senna executable expected at %s or %s but not found"
|
67 |
+
% (exe_file_1, exe_file_2)
|
68 |
+
)
|
69 |
+
|
70 |
+
self.operations = operations
|
71 |
+
|
72 |
+
def executable(self, base_path):
|
73 |
+
"""
|
74 |
+
The function that determines the system specific binary that should be
|
75 |
+
used in the pipeline. In case, the system is not known the default senna binary will
|
76 |
+
be used.
|
77 |
+
"""
|
78 |
+
os_name = system()
|
79 |
+
if os_name == "Linux":
|
80 |
+
bits = architecture()[0]
|
81 |
+
if bits == "64bit":
|
82 |
+
return path.join(base_path, "senna-linux64")
|
83 |
+
return path.join(base_path, "senna-linux32")
|
84 |
+
if os_name == "Windows":
|
85 |
+
return path.join(base_path, "senna-win32.exe")
|
86 |
+
if os_name == "Darwin":
|
87 |
+
return path.join(base_path, "senna-osx")
|
88 |
+
return path.join(base_path, "senna")
|
89 |
+
|
90 |
+
def _map(self):
|
91 |
+
"""
|
92 |
+
A method that calculates the order of the columns that SENNA pipeline
|
93 |
+
will output the tags into. This depends on the operations being ordered.
|
94 |
+
"""
|
95 |
+
_map = {}
|
96 |
+
i = 1
|
97 |
+
for operation in Senna.SUPPORTED_OPERATIONS:
|
98 |
+
if operation in self.operations:
|
99 |
+
_map[operation] = i
|
100 |
+
i += 1
|
101 |
+
return _map
|
102 |
+
|
103 |
+
def tag(self, tokens):
|
104 |
+
"""
|
105 |
+
Applies the specified operation(s) on a list of tokens.
|
106 |
+
"""
|
107 |
+
return self.tag_sents([tokens])[0]
|
108 |
+
|
109 |
+
def tag_sents(self, sentences):
|
110 |
+
"""
|
111 |
+
Applies the tag method over a list of sentences. This method will return a
|
112 |
+
list of dictionaries. Every dictionary will contain a word with its
|
113 |
+
calculated annotations/tags.
|
114 |
+
"""
|
115 |
+
encoding = self._encoding
|
116 |
+
|
117 |
+
if not path.isfile(self.executable(self._path)):
|
118 |
+
raise LookupError(
|
119 |
+
"Senna executable expected at %s but not found"
|
120 |
+
% self.executable(self._path)
|
121 |
+
)
|
122 |
+
|
123 |
+
# Build the senna command to run the tagger
|
124 |
+
_senna_cmd = [
|
125 |
+
self.executable(self._path),
|
126 |
+
"-path",
|
127 |
+
self._path,
|
128 |
+
"-usrtokens",
|
129 |
+
"-iobtags",
|
130 |
+
]
|
131 |
+
_senna_cmd.extend(["-" + op for op in self.operations])
|
132 |
+
|
133 |
+
# Serialize the actual sentences to a temporary string
|
134 |
+
_input = "\n".join(" ".join(x) for x in sentences) + "\n"
|
135 |
+
if isinstance(_input, str) and encoding:
|
136 |
+
_input = _input.encode(encoding)
|
137 |
+
|
138 |
+
# Run the tagger and get the output
|
139 |
+
p = Popen(_senna_cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE)
|
140 |
+
(stdout, stderr) = p.communicate(input=_input)
|
141 |
+
senna_output = stdout
|
142 |
+
|
143 |
+
# Check the return code.
|
144 |
+
if p.returncode != 0:
|
145 |
+
raise RuntimeError("Senna command failed! Details: %s" % stderr)
|
146 |
+
|
147 |
+
if encoding:
|
148 |
+
senna_output = stdout.decode(encoding)
|
149 |
+
|
150 |
+
# Output the tagged sentences
|
151 |
+
map_ = self._map()
|
152 |
+
tagged_sentences = [[]]
|
153 |
+
sentence_index = 0
|
154 |
+
token_index = 0
|
155 |
+
for tagged_word in senna_output.strip().split("\n"):
|
156 |
+
if not tagged_word:
|
157 |
+
tagged_sentences.append([])
|
158 |
+
sentence_index += 1
|
159 |
+
token_index = 0
|
160 |
+
continue
|
161 |
+
tags = tagged_word.split("\t")
|
162 |
+
result = {}
|
163 |
+
for tag in map_:
|
164 |
+
result[tag] = tags[map_[tag]].strip()
|
165 |
+
try:
|
166 |
+
result["word"] = sentences[sentence_index][token_index]
|
167 |
+
except IndexError as e:
|
168 |
+
raise IndexError(
|
169 |
+
"Misalignment error occurred at sentence number %d. Possible reason"
|
170 |
+
" is that the sentence size exceeded the maximum size. Check the "
|
171 |
+
"documentation of Senna class for more information."
|
172 |
+
% sentence_index
|
173 |
+
) from e
|
174 |
+
tagged_sentences[-1].append(result)
|
175 |
+
token_index += 1
|
176 |
+
return tagged_sentences
|
venv/lib/python3.10/site-packages/nltk/classify/svm.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: SVM-based classifier
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Leon Derczynski <[email protected]>
|
5 |
+
#
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
"""
|
9 |
+
nltk.classify.svm was deprecated. For classification based
|
10 |
+
on support vector machines SVMs use nltk.classify.scikitlearn
|
11 |
+
(or `scikit-learn <https://scikit-learn.org>`_ directly).
|
12 |
+
"""
|
13 |
+
|
14 |
+
|
15 |
+
class SvmClassifier:
|
16 |
+
def __init__(self, *args, **kwargs):
|
17 |
+
raise NotImplementedError(__doc__)
|
venv/lib/python3.10/site-packages/nltk/classify/tadm.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Interface to TADM Classifier
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Joseph Frazee <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
import subprocess
|
9 |
+
import sys
|
10 |
+
|
11 |
+
from nltk.internals import find_binary
|
12 |
+
|
13 |
+
try:
|
14 |
+
import numpy
|
15 |
+
except ImportError:
|
16 |
+
pass
|
17 |
+
|
18 |
+
_tadm_bin = None
|
19 |
+
|
20 |
+
|
21 |
+
def config_tadm(bin=None):
|
22 |
+
global _tadm_bin
|
23 |
+
_tadm_bin = find_binary(
|
24 |
+
"tadm", bin, env_vars=["TADM"], binary_names=["tadm"], url="http://tadm.sf.net"
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
def write_tadm_file(train_toks, encoding, stream):
|
29 |
+
"""
|
30 |
+
Generate an input file for ``tadm`` based on the given corpus of
|
31 |
+
classified tokens.
|
32 |
+
|
33 |
+
:type train_toks: list(tuple(dict, str))
|
34 |
+
:param train_toks: Training data, represented as a list of
|
35 |
+
pairs, the first member of which is a feature dictionary,
|
36 |
+
and the second of which is a classification label.
|
37 |
+
:type encoding: TadmEventMaxentFeatureEncoding
|
38 |
+
:param encoding: A feature encoding, used to convert featuresets
|
39 |
+
into feature vectors.
|
40 |
+
:type stream: stream
|
41 |
+
:param stream: The stream to which the ``tadm`` input file should be
|
42 |
+
written.
|
43 |
+
"""
|
44 |
+
# See the following for a file format description:
|
45 |
+
#
|
46 |
+
# https://sf.net/forum/forum.php?thread_id=1391502&forum_id=473054
|
47 |
+
# https://sf.net/forum/forum.php?thread_id=1675097&forum_id=473054
|
48 |
+
labels = encoding.labels()
|
49 |
+
for featureset, label in train_toks:
|
50 |
+
length_line = "%d\n" % len(labels)
|
51 |
+
stream.write(length_line)
|
52 |
+
for known_label in labels:
|
53 |
+
v = encoding.encode(featureset, known_label)
|
54 |
+
line = "%d %d %s\n" % (
|
55 |
+
int(label == known_label),
|
56 |
+
len(v),
|
57 |
+
" ".join("%d %d" % u for u in v),
|
58 |
+
)
|
59 |
+
stream.write(line)
|
60 |
+
|
61 |
+
|
62 |
+
def parse_tadm_weights(paramfile):
|
63 |
+
"""
|
64 |
+
Given the stdout output generated by ``tadm`` when training a
|
65 |
+
model, return a ``numpy`` array containing the corresponding weight
|
66 |
+
vector.
|
67 |
+
"""
|
68 |
+
weights = []
|
69 |
+
for line in paramfile:
|
70 |
+
weights.append(float(line.strip()))
|
71 |
+
return numpy.array(weights, "d")
|
72 |
+
|
73 |
+
|
74 |
+
def call_tadm(args):
|
75 |
+
"""
|
76 |
+
Call the ``tadm`` binary with the given arguments.
|
77 |
+
"""
|
78 |
+
if isinstance(args, str):
|
79 |
+
raise TypeError("args should be a list of strings")
|
80 |
+
if _tadm_bin is None:
|
81 |
+
config_tadm()
|
82 |
+
|
83 |
+
# Call tadm via a subprocess
|
84 |
+
cmd = [_tadm_bin] + args
|
85 |
+
p = subprocess.Popen(cmd, stdout=sys.stdout)
|
86 |
+
(stdout, stderr) = p.communicate()
|
87 |
+
|
88 |
+
# Check the return code.
|
89 |
+
if p.returncode != 0:
|
90 |
+
print()
|
91 |
+
print(stderr)
|
92 |
+
raise OSError("tadm command failed!")
|
93 |
+
|
94 |
+
|
95 |
+
def names_demo():
|
96 |
+
from nltk.classify.maxent import TadmMaxentClassifier
|
97 |
+
from nltk.classify.util import names_demo
|
98 |
+
|
99 |
+
classifier = names_demo(TadmMaxentClassifier.train)
|
100 |
+
|
101 |
+
|
102 |
+
def encoding_demo():
|
103 |
+
import sys
|
104 |
+
|
105 |
+
from nltk.classify.maxent import TadmEventMaxentFeatureEncoding
|
106 |
+
|
107 |
+
tokens = [
|
108 |
+
({"f0": 1, "f1": 1, "f3": 1}, "A"),
|
109 |
+
({"f0": 1, "f2": 1, "f4": 1}, "B"),
|
110 |
+
({"f0": 2, "f2": 1, "f3": 1, "f4": 1}, "A"),
|
111 |
+
]
|
112 |
+
encoding = TadmEventMaxentFeatureEncoding.train(tokens)
|
113 |
+
write_tadm_file(tokens, encoding, sys.stdout)
|
114 |
+
print()
|
115 |
+
for i in range(encoding.length()):
|
116 |
+
print("%s --> %d" % (encoding.describe(i), i))
|
117 |
+
print()
|
118 |
+
|
119 |
+
|
120 |
+
if __name__ == "__main__":
|
121 |
+
encoding_demo()
|
122 |
+
names_demo()
|
venv/lib/python3.10/site-packages/nltk/classify/textcat.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Language ID module using TextCat algorithm
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Avital Pekker <[email protected]>
|
5 |
+
#
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
"""
|
10 |
+
A module for language identification using the TextCat algorithm.
|
11 |
+
An implementation of the text categorization algorithm
|
12 |
+
presented in Cavnar, W. B. and J. M. Trenkle,
|
13 |
+
"N-Gram-Based Text Categorization".
|
14 |
+
|
15 |
+
The algorithm takes advantage of Zipf's law and uses
|
16 |
+
n-gram frequencies to profile languages and text-yet to
|
17 |
+
be identified-then compares using a distance measure.
|
18 |
+
|
19 |
+
Language n-grams are provided by the "An Crubadan"
|
20 |
+
project. A corpus reader was created separately to read
|
21 |
+
those files.
|
22 |
+
|
23 |
+
For details regarding the algorithm, see:
|
24 |
+
https://www.let.rug.nl/~vannoord/TextCat/textcat.pdf
|
25 |
+
|
26 |
+
For details about An Crubadan, see:
|
27 |
+
https://borel.slu.edu/crubadan/index.html
|
28 |
+
"""
|
29 |
+
|
30 |
+
from sys import maxsize
|
31 |
+
|
32 |
+
from nltk.util import trigrams
|
33 |
+
|
34 |
+
# Note: this is NOT "re" you're likely used to. The regex module
|
35 |
+
# is an alternative to the standard re module that supports
|
36 |
+
# Unicode codepoint properties with the \p{} syntax.
|
37 |
+
# You may have to "pip install regx"
|
38 |
+
try:
|
39 |
+
import regex as re
|
40 |
+
except ImportError:
|
41 |
+
re = None
|
42 |
+
######################################################################
|
43 |
+
## Language identification using TextCat
|
44 |
+
######################################################################
|
45 |
+
|
46 |
+
|
47 |
+
class TextCat:
|
48 |
+
|
49 |
+
_corpus = None
|
50 |
+
fingerprints = {}
|
51 |
+
_START_CHAR = "<"
|
52 |
+
_END_CHAR = ">"
|
53 |
+
|
54 |
+
last_distances = {}
|
55 |
+
|
56 |
+
def __init__(self):
|
57 |
+
if not re:
|
58 |
+
raise OSError(
|
59 |
+
"classify.textcat requires the regex module that "
|
60 |
+
"supports unicode. Try '$ pip install regex' and "
|
61 |
+
"see https://pypi.python.org/pypi/regex for "
|
62 |
+
"further details."
|
63 |
+
)
|
64 |
+
|
65 |
+
from nltk.corpus import crubadan
|
66 |
+
|
67 |
+
self._corpus = crubadan
|
68 |
+
# Load all language ngrams into cache
|
69 |
+
for lang in self._corpus.langs():
|
70 |
+
self._corpus.lang_freq(lang)
|
71 |
+
|
72 |
+
def remove_punctuation(self, text):
|
73 |
+
"""Get rid of punctuation except apostrophes"""
|
74 |
+
return re.sub(r"[^\P{P}\']+", "", text)
|
75 |
+
|
76 |
+
def profile(self, text):
|
77 |
+
"""Create FreqDist of trigrams within text"""
|
78 |
+
from nltk import FreqDist, word_tokenize
|
79 |
+
|
80 |
+
clean_text = self.remove_punctuation(text)
|
81 |
+
tokens = word_tokenize(clean_text)
|
82 |
+
|
83 |
+
fingerprint = FreqDist()
|
84 |
+
for t in tokens:
|
85 |
+
token_trigram_tuples = trigrams(self._START_CHAR + t + self._END_CHAR)
|
86 |
+
token_trigrams = ["".join(tri) for tri in token_trigram_tuples]
|
87 |
+
|
88 |
+
for cur_trigram in token_trigrams:
|
89 |
+
if cur_trigram in fingerprint:
|
90 |
+
fingerprint[cur_trigram] += 1
|
91 |
+
else:
|
92 |
+
fingerprint[cur_trigram] = 1
|
93 |
+
|
94 |
+
return fingerprint
|
95 |
+
|
96 |
+
def calc_dist(self, lang, trigram, text_profile):
|
97 |
+
"""Calculate the "out-of-place" measure between the
|
98 |
+
text and language profile for a single trigram"""
|
99 |
+
|
100 |
+
lang_fd = self._corpus.lang_freq(lang)
|
101 |
+
dist = 0
|
102 |
+
|
103 |
+
if trigram in lang_fd:
|
104 |
+
idx_lang_profile = list(lang_fd.keys()).index(trigram)
|
105 |
+
idx_text = list(text_profile.keys()).index(trigram)
|
106 |
+
|
107 |
+
# print(idx_lang_profile, ", ", idx_text)
|
108 |
+
dist = abs(idx_lang_profile - idx_text)
|
109 |
+
else:
|
110 |
+
# Arbitrary but should be larger than
|
111 |
+
# any possible trigram file length
|
112 |
+
# in terms of total lines
|
113 |
+
dist = maxsize
|
114 |
+
|
115 |
+
return dist
|
116 |
+
|
117 |
+
def lang_dists(self, text):
|
118 |
+
"""Calculate the "out-of-place" measure between
|
119 |
+
the text and all languages"""
|
120 |
+
|
121 |
+
distances = {}
|
122 |
+
profile = self.profile(text)
|
123 |
+
# For all the languages
|
124 |
+
for lang in self._corpus._all_lang_freq.keys():
|
125 |
+
# Calculate distance metric for every trigram in
|
126 |
+
# input text to be identified
|
127 |
+
lang_dist = 0
|
128 |
+
for trigram in profile:
|
129 |
+
lang_dist += self.calc_dist(lang, trigram, profile)
|
130 |
+
|
131 |
+
distances[lang] = lang_dist
|
132 |
+
|
133 |
+
return distances
|
134 |
+
|
135 |
+
def guess_language(self, text):
|
136 |
+
"""Find the language with the min distance
|
137 |
+
to the text and return its ISO 639-3 code"""
|
138 |
+
self.last_distances = self.lang_dists(text)
|
139 |
+
|
140 |
+
return min(self.last_distances, key=self.last_distances.get)
|
141 |
+
#################################################')
|
142 |
+
|
143 |
+
|
144 |
+
def demo():
|
145 |
+
from nltk.corpus import udhr
|
146 |
+
|
147 |
+
langs = [
|
148 |
+
"Kurdish-UTF8",
|
149 |
+
"Abkhaz-UTF8",
|
150 |
+
"Farsi_Persian-UTF8",
|
151 |
+
"Hindi-UTF8",
|
152 |
+
"Hawaiian-UTF8",
|
153 |
+
"Russian-UTF8",
|
154 |
+
"Vietnamese-UTF8",
|
155 |
+
"Serbian_Srpski-UTF8",
|
156 |
+
"Esperanto-UTF8",
|
157 |
+
]
|
158 |
+
|
159 |
+
friendly = {
|
160 |
+
"kmr": "Northern Kurdish",
|
161 |
+
"abk": "Abkhazian",
|
162 |
+
"pes": "Iranian Persian",
|
163 |
+
"hin": "Hindi",
|
164 |
+
"haw": "Hawaiian",
|
165 |
+
"rus": "Russian",
|
166 |
+
"vie": "Vietnamese",
|
167 |
+
"srp": "Serbian",
|
168 |
+
"epo": "Esperanto",
|
169 |
+
}
|
170 |
+
|
171 |
+
tc = TextCat()
|
172 |
+
|
173 |
+
for cur_lang in langs:
|
174 |
+
# Get raw data from UDHR corpus
|
175 |
+
raw_sentences = udhr.sents(cur_lang)
|
176 |
+
rows = len(raw_sentences) - 1
|
177 |
+
cols = list(map(len, raw_sentences))
|
178 |
+
|
179 |
+
sample = ""
|
180 |
+
|
181 |
+
# Generate a sample text of the language
|
182 |
+
for i in range(0, rows):
|
183 |
+
cur_sent = ""
|
184 |
+
for j in range(0, cols[i]):
|
185 |
+
cur_sent += " " + raw_sentences[i][j]
|
186 |
+
|
187 |
+
sample += cur_sent
|
188 |
+
|
189 |
+
# Try to detect what it is
|
190 |
+
print("Language snippet: " + sample[0:140] + "...")
|
191 |
+
guess = tc.guess_language(sample)
|
192 |
+
print(f"Language detection: {guess} ({friendly[guess]})")
|
193 |
+
print("#" * 140)
|
194 |
+
|
195 |
+
|
196 |
+
if __name__ == "__main__":
|
197 |
+
demo()
|
venv/lib/python3.10/site-packages/nltk/classify/util.py
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Classifier Utility Functions
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Edward Loper <[email protected]>
|
5 |
+
# Steven Bird <[email protected]> (minor additions)
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
"""
|
10 |
+
Utility functions and classes for classifiers.
|
11 |
+
"""
|
12 |
+
|
13 |
+
import math
|
14 |
+
|
15 |
+
# from nltk.util import Deprecated
|
16 |
+
import nltk.classify.util # for accuracy & log_likelihood
|
17 |
+
from nltk.util import LazyMap
|
18 |
+
|
19 |
+
######################################################################
|
20 |
+
# { Helper Functions
|
21 |
+
######################################################################
|
22 |
+
|
23 |
+
# alternative name possibility: 'map_featurefunc()'?
|
24 |
+
# alternative name possibility: 'detect_features()'?
|
25 |
+
# alternative name possibility: 'map_featuredetect()'?
|
26 |
+
# or.. just have users use LazyMap directly?
|
27 |
+
def apply_features(feature_func, toks, labeled=None):
|
28 |
+
"""
|
29 |
+
Use the ``LazyMap`` class to construct a lazy list-like
|
30 |
+
object that is analogous to ``map(feature_func, toks)``. In
|
31 |
+
particular, if ``labeled=False``, then the returned list-like
|
32 |
+
object's values are equal to::
|
33 |
+
|
34 |
+
[feature_func(tok) for tok in toks]
|
35 |
+
|
36 |
+
If ``labeled=True``, then the returned list-like object's values
|
37 |
+
are equal to::
|
38 |
+
|
39 |
+
[(feature_func(tok), label) for (tok, label) in toks]
|
40 |
+
|
41 |
+
The primary purpose of this function is to avoid the memory
|
42 |
+
overhead involved in storing all the featuresets for every token
|
43 |
+
in a corpus. Instead, these featuresets are constructed lazily,
|
44 |
+
as-needed. The reduction in memory overhead can be especially
|
45 |
+
significant when the underlying list of tokens is itself lazy (as
|
46 |
+
is the case with many corpus readers).
|
47 |
+
|
48 |
+
:param feature_func: The function that will be applied to each
|
49 |
+
token. It should return a featureset -- i.e., a dict
|
50 |
+
mapping feature names to feature values.
|
51 |
+
:param toks: The list of tokens to which ``feature_func`` should be
|
52 |
+
applied. If ``labeled=True``, then the list elements will be
|
53 |
+
passed directly to ``feature_func()``. If ``labeled=False``,
|
54 |
+
then the list elements should be tuples ``(tok,label)``, and
|
55 |
+
``tok`` will be passed to ``feature_func()``.
|
56 |
+
:param labeled: If true, then ``toks`` contains labeled tokens --
|
57 |
+
i.e., tuples of the form ``(tok, label)``. (Default:
|
58 |
+
auto-detect based on types.)
|
59 |
+
"""
|
60 |
+
if labeled is None:
|
61 |
+
labeled = toks and isinstance(toks[0], (tuple, list))
|
62 |
+
if labeled:
|
63 |
+
|
64 |
+
def lazy_func(labeled_token):
|
65 |
+
return (feature_func(labeled_token[0]), labeled_token[1])
|
66 |
+
|
67 |
+
return LazyMap(lazy_func, toks)
|
68 |
+
else:
|
69 |
+
return LazyMap(feature_func, toks)
|
70 |
+
|
71 |
+
|
72 |
+
def attested_labels(tokens):
|
73 |
+
"""
|
74 |
+
:return: A list of all labels that are attested in the given list
|
75 |
+
of tokens.
|
76 |
+
:rtype: list of (immutable)
|
77 |
+
:param tokens: The list of classified tokens from which to extract
|
78 |
+
labels. A classified token has the form ``(token, label)``.
|
79 |
+
:type tokens: list
|
80 |
+
"""
|
81 |
+
return tuple({label for (tok, label) in tokens})
|
82 |
+
|
83 |
+
|
84 |
+
def log_likelihood(classifier, gold):
|
85 |
+
results = classifier.prob_classify_many([fs for (fs, l) in gold])
|
86 |
+
ll = [pdist.prob(l) for ((fs, l), pdist) in zip(gold, results)]
|
87 |
+
return math.log(sum(ll) / len(ll))
|
88 |
+
|
89 |
+
|
90 |
+
def accuracy(classifier, gold):
|
91 |
+
results = classifier.classify_many([fs for (fs, l) in gold])
|
92 |
+
correct = [l == r for ((fs, l), r) in zip(gold, results)]
|
93 |
+
if correct:
|
94 |
+
return sum(correct) / len(correct)
|
95 |
+
else:
|
96 |
+
return 0
|
97 |
+
|
98 |
+
|
99 |
+
class CutoffChecker:
|
100 |
+
"""
|
101 |
+
A helper class that implements cutoff checks based on number of
|
102 |
+
iterations and log likelihood.
|
103 |
+
|
104 |
+
Accuracy cutoffs are also implemented, but they're almost never
|
105 |
+
a good idea to use.
|
106 |
+
"""
|
107 |
+
|
108 |
+
def __init__(self, cutoffs):
|
109 |
+
self.cutoffs = cutoffs.copy()
|
110 |
+
if "min_ll" in cutoffs:
|
111 |
+
cutoffs["min_ll"] = -abs(cutoffs["min_ll"])
|
112 |
+
if "min_lldelta" in cutoffs:
|
113 |
+
cutoffs["min_lldelta"] = abs(cutoffs["min_lldelta"])
|
114 |
+
self.ll = None
|
115 |
+
self.acc = None
|
116 |
+
self.iter = 1
|
117 |
+
|
118 |
+
def check(self, classifier, train_toks):
|
119 |
+
cutoffs = self.cutoffs
|
120 |
+
self.iter += 1
|
121 |
+
if "max_iter" in cutoffs and self.iter >= cutoffs["max_iter"]:
|
122 |
+
return True # iteration cutoff.
|
123 |
+
|
124 |
+
new_ll = nltk.classify.util.log_likelihood(classifier, train_toks)
|
125 |
+
if math.isnan(new_ll):
|
126 |
+
return True
|
127 |
+
|
128 |
+
if "min_ll" in cutoffs or "min_lldelta" in cutoffs:
|
129 |
+
if "min_ll" in cutoffs and new_ll >= cutoffs["min_ll"]:
|
130 |
+
return True # log likelihood cutoff
|
131 |
+
if (
|
132 |
+
"min_lldelta" in cutoffs
|
133 |
+
and self.ll
|
134 |
+
and ((new_ll - self.ll) <= abs(cutoffs["min_lldelta"]))
|
135 |
+
):
|
136 |
+
return True # log likelihood delta cutoff
|
137 |
+
self.ll = new_ll
|
138 |
+
|
139 |
+
if "max_acc" in cutoffs or "min_accdelta" in cutoffs:
|
140 |
+
new_acc = nltk.classify.util.log_likelihood(classifier, train_toks)
|
141 |
+
if "max_acc" in cutoffs and new_acc >= cutoffs["max_acc"]:
|
142 |
+
return True # log likelihood cutoff
|
143 |
+
if (
|
144 |
+
"min_accdelta" in cutoffs
|
145 |
+
and self.acc
|
146 |
+
and ((new_acc - self.acc) <= abs(cutoffs["min_accdelta"]))
|
147 |
+
):
|
148 |
+
return True # log likelihood delta cutoff
|
149 |
+
self.acc = new_acc
|
150 |
+
|
151 |
+
return False # no cutoff reached.
|
152 |
+
|
153 |
+
|
154 |
+
######################################################################
|
155 |
+
# { Demos
|
156 |
+
######################################################################
|
157 |
+
|
158 |
+
|
159 |
+
def names_demo_features(name):
|
160 |
+
features = {}
|
161 |
+
features["alwayson"] = True
|
162 |
+
features["startswith"] = name[0].lower()
|
163 |
+
features["endswith"] = name[-1].lower()
|
164 |
+
for letter in "abcdefghijklmnopqrstuvwxyz":
|
165 |
+
features["count(%s)" % letter] = name.lower().count(letter)
|
166 |
+
features["has(%s)" % letter] = letter in name.lower()
|
167 |
+
return features
|
168 |
+
|
169 |
+
|
170 |
+
def binary_names_demo_features(name):
|
171 |
+
features = {}
|
172 |
+
features["alwayson"] = True
|
173 |
+
features["startswith(vowel)"] = name[0].lower() in "aeiouy"
|
174 |
+
features["endswith(vowel)"] = name[-1].lower() in "aeiouy"
|
175 |
+
for letter in "abcdefghijklmnopqrstuvwxyz":
|
176 |
+
features["count(%s)" % letter] = name.lower().count(letter)
|
177 |
+
features["has(%s)" % letter] = letter in name.lower()
|
178 |
+
features["startswith(%s)" % letter] = letter == name[0].lower()
|
179 |
+
features["endswith(%s)" % letter] = letter == name[-1].lower()
|
180 |
+
return features
|
181 |
+
|
182 |
+
|
183 |
+
def names_demo(trainer, features=names_demo_features):
|
184 |
+
import random
|
185 |
+
|
186 |
+
from nltk.corpus import names
|
187 |
+
|
188 |
+
# Construct a list of classified names, using the names corpus.
|
189 |
+
namelist = [(name, "male") for name in names.words("male.txt")] + [
|
190 |
+
(name, "female") for name in names.words("female.txt")
|
191 |
+
]
|
192 |
+
|
193 |
+
# Randomly split the names into a test & train set.
|
194 |
+
random.seed(123456)
|
195 |
+
random.shuffle(namelist)
|
196 |
+
train = namelist[:5000]
|
197 |
+
test = namelist[5000:5500]
|
198 |
+
|
199 |
+
# Train up a classifier.
|
200 |
+
print("Training classifier...")
|
201 |
+
classifier = trainer([(features(n), g) for (n, g) in train])
|
202 |
+
|
203 |
+
# Run the classifier on the test data.
|
204 |
+
print("Testing classifier...")
|
205 |
+
acc = accuracy(classifier, [(features(n), g) for (n, g) in test])
|
206 |
+
print("Accuracy: %6.4f" % acc)
|
207 |
+
|
208 |
+
# For classifiers that can find probabilities, show the log
|
209 |
+
# likelihood and some sample probability distributions.
|
210 |
+
try:
|
211 |
+
test_featuresets = [features(n) for (n, g) in test]
|
212 |
+
pdists = classifier.prob_classify_many(test_featuresets)
|
213 |
+
ll = [pdist.logprob(gold) for ((name, gold), pdist) in zip(test, pdists)]
|
214 |
+
print("Avg. log likelihood: %6.4f" % (sum(ll) / len(test)))
|
215 |
+
print()
|
216 |
+
print("Unseen Names P(Male) P(Female)\n" + "-" * 40)
|
217 |
+
for ((name, gender), pdist) in list(zip(test, pdists))[:5]:
|
218 |
+
if gender == "male":
|
219 |
+
fmt = " %-15s *%6.4f %6.4f"
|
220 |
+
else:
|
221 |
+
fmt = " %-15s %6.4f *%6.4f"
|
222 |
+
print(fmt % (name, pdist.prob("male"), pdist.prob("female")))
|
223 |
+
except NotImplementedError:
|
224 |
+
pass
|
225 |
+
|
226 |
+
# Return the classifier
|
227 |
+
return classifier
|
228 |
+
|
229 |
+
|
230 |
+
def partial_names_demo(trainer, features=names_demo_features):
|
231 |
+
import random
|
232 |
+
|
233 |
+
from nltk.corpus import names
|
234 |
+
|
235 |
+
male_names = names.words("male.txt")
|
236 |
+
female_names = names.words("female.txt")
|
237 |
+
|
238 |
+
random.seed(654321)
|
239 |
+
random.shuffle(male_names)
|
240 |
+
random.shuffle(female_names)
|
241 |
+
|
242 |
+
# Create a list of male names to be used as positive-labeled examples for training
|
243 |
+
positive = map(features, male_names[:2000])
|
244 |
+
|
245 |
+
# Create a list of male and female names to be used as unlabeled examples
|
246 |
+
unlabeled = map(features, male_names[2000:2500] + female_names[:500])
|
247 |
+
|
248 |
+
# Create a test set with correctly-labeled male and female names
|
249 |
+
test = [(name, True) for name in male_names[2500:2750]] + [
|
250 |
+
(name, False) for name in female_names[500:750]
|
251 |
+
]
|
252 |
+
|
253 |
+
random.shuffle(test)
|
254 |
+
|
255 |
+
# Train up a classifier.
|
256 |
+
print("Training classifier...")
|
257 |
+
classifier = trainer(positive, unlabeled)
|
258 |
+
|
259 |
+
# Run the classifier on the test data.
|
260 |
+
print("Testing classifier...")
|
261 |
+
acc = accuracy(classifier, [(features(n), m) for (n, m) in test])
|
262 |
+
print("Accuracy: %6.4f" % acc)
|
263 |
+
|
264 |
+
# For classifiers that can find probabilities, show the log
|
265 |
+
# likelihood and some sample probability distributions.
|
266 |
+
try:
|
267 |
+
test_featuresets = [features(n) for (n, m) in test]
|
268 |
+
pdists = classifier.prob_classify_many(test_featuresets)
|
269 |
+
ll = [pdist.logprob(gold) for ((name, gold), pdist) in zip(test, pdists)]
|
270 |
+
print("Avg. log likelihood: %6.4f" % (sum(ll) / len(test)))
|
271 |
+
print()
|
272 |
+
print("Unseen Names P(Male) P(Female)\n" + "-" * 40)
|
273 |
+
for ((name, is_male), pdist) in zip(test, pdists)[:5]:
|
274 |
+
if is_male == True:
|
275 |
+
fmt = " %-15s *%6.4f %6.4f"
|
276 |
+
else:
|
277 |
+
fmt = " %-15s %6.4f *%6.4f"
|
278 |
+
print(fmt % (name, pdist.prob(True), pdist.prob(False)))
|
279 |
+
except NotImplementedError:
|
280 |
+
pass
|
281 |
+
|
282 |
+
# Return the classifier
|
283 |
+
return classifier
|
284 |
+
|
285 |
+
|
286 |
+
_inst_cache = {}
|
287 |
+
|
288 |
+
|
289 |
+
def wsd_demo(trainer, word, features, n=1000):
|
290 |
+
import random
|
291 |
+
|
292 |
+
from nltk.corpus import senseval
|
293 |
+
|
294 |
+
# Get the instances.
|
295 |
+
print("Reading data...")
|
296 |
+
global _inst_cache
|
297 |
+
if word not in _inst_cache:
|
298 |
+
_inst_cache[word] = [(i, i.senses[0]) for i in senseval.instances(word)]
|
299 |
+
instances = _inst_cache[word][:]
|
300 |
+
if n > len(instances):
|
301 |
+
n = len(instances)
|
302 |
+
senses = list({l for (i, l) in instances})
|
303 |
+
print(" Senses: " + " ".join(senses))
|
304 |
+
|
305 |
+
# Randomly split the names into a test & train set.
|
306 |
+
print("Splitting into test & train...")
|
307 |
+
random.seed(123456)
|
308 |
+
random.shuffle(instances)
|
309 |
+
train = instances[: int(0.8 * n)]
|
310 |
+
test = instances[int(0.8 * n) : n]
|
311 |
+
|
312 |
+
# Train up a classifier.
|
313 |
+
print("Training classifier...")
|
314 |
+
classifier = trainer([(features(i), l) for (i, l) in train])
|
315 |
+
|
316 |
+
# Run the classifier on the test data.
|
317 |
+
print("Testing classifier...")
|
318 |
+
acc = accuracy(classifier, [(features(i), l) for (i, l) in test])
|
319 |
+
print("Accuracy: %6.4f" % acc)
|
320 |
+
|
321 |
+
# For classifiers that can find probabilities, show the log
|
322 |
+
# likelihood and some sample probability distributions.
|
323 |
+
try:
|
324 |
+
test_featuresets = [features(i) for (i, n) in test]
|
325 |
+
pdists = classifier.prob_classify_many(test_featuresets)
|
326 |
+
ll = [pdist.logprob(gold) for ((name, gold), pdist) in zip(test, pdists)]
|
327 |
+
print("Avg. log likelihood: %6.4f" % (sum(ll) / len(test)))
|
328 |
+
except NotImplementedError:
|
329 |
+
pass
|
330 |
+
|
331 |
+
# Return the classifier
|
332 |
+
return classifier
|
333 |
+
|
334 |
+
|
335 |
+
def check_megam_config():
|
336 |
+
"""
|
337 |
+
Checks whether the MEGAM binary is configured.
|
338 |
+
"""
|
339 |
+
try:
|
340 |
+
_megam_bin
|
341 |
+
except NameError as e:
|
342 |
+
err_msg = str(
|
343 |
+
"Please configure your megam binary first, e.g.\n"
|
344 |
+
">>> nltk.config_megam('/usr/bin/local/megam')"
|
345 |
+
)
|
346 |
+
raise NameError(err_msg) from e
|
venv/lib/python3.10/site-packages/nltk/classify/weka.py
ADDED
@@ -0,0 +1,377 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Interface to Weka Classsifiers
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Edward Loper <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
"""
|
9 |
+
Classifiers that make use of the external 'Weka' package.
|
10 |
+
"""
|
11 |
+
|
12 |
+
import os
|
13 |
+
import re
|
14 |
+
import subprocess
|
15 |
+
import tempfile
|
16 |
+
import time
|
17 |
+
import zipfile
|
18 |
+
from sys import stdin
|
19 |
+
|
20 |
+
from nltk.classify.api import ClassifierI
|
21 |
+
from nltk.internals import config_java, java
|
22 |
+
from nltk.probability import DictionaryProbDist
|
23 |
+
|
24 |
+
_weka_classpath = None
|
25 |
+
_weka_search = [
|
26 |
+
".",
|
27 |
+
"/usr/share/weka",
|
28 |
+
"/usr/local/share/weka",
|
29 |
+
"/usr/lib/weka",
|
30 |
+
"/usr/local/lib/weka",
|
31 |
+
]
|
32 |
+
|
33 |
+
|
34 |
+
def config_weka(classpath=None):
|
35 |
+
global _weka_classpath
|
36 |
+
|
37 |
+
# Make sure java's configured first.
|
38 |
+
config_java()
|
39 |
+
|
40 |
+
if classpath is not None:
|
41 |
+
_weka_classpath = classpath
|
42 |
+
|
43 |
+
if _weka_classpath is None:
|
44 |
+
searchpath = _weka_search
|
45 |
+
if "WEKAHOME" in os.environ:
|
46 |
+
searchpath.insert(0, os.environ["WEKAHOME"])
|
47 |
+
|
48 |
+
for path in searchpath:
|
49 |
+
if os.path.exists(os.path.join(path, "weka.jar")):
|
50 |
+
_weka_classpath = os.path.join(path, "weka.jar")
|
51 |
+
version = _check_weka_version(_weka_classpath)
|
52 |
+
if version:
|
53 |
+
print(f"[Found Weka: {_weka_classpath} (version {version})]")
|
54 |
+
else:
|
55 |
+
print("[Found Weka: %s]" % _weka_classpath)
|
56 |
+
_check_weka_version(_weka_classpath)
|
57 |
+
|
58 |
+
if _weka_classpath is None:
|
59 |
+
raise LookupError(
|
60 |
+
"Unable to find weka.jar! Use config_weka() "
|
61 |
+
"or set the WEKAHOME environment variable. "
|
62 |
+
"For more information about Weka, please see "
|
63 |
+
"https://www.cs.waikato.ac.nz/ml/weka/"
|
64 |
+
)
|
65 |
+
|
66 |
+
|
67 |
+
def _check_weka_version(jar):
|
68 |
+
try:
|
69 |
+
zf = zipfile.ZipFile(jar)
|
70 |
+
except (SystemExit, KeyboardInterrupt):
|
71 |
+
raise
|
72 |
+
except:
|
73 |
+
return None
|
74 |
+
try:
|
75 |
+
try:
|
76 |
+
return zf.read("weka/core/version.txt")
|
77 |
+
except KeyError:
|
78 |
+
return None
|
79 |
+
finally:
|
80 |
+
zf.close()
|
81 |
+
|
82 |
+
|
83 |
+
class WekaClassifier(ClassifierI):
|
84 |
+
def __init__(self, formatter, model_filename):
|
85 |
+
self._formatter = formatter
|
86 |
+
self._model = model_filename
|
87 |
+
|
88 |
+
def prob_classify_many(self, featuresets):
|
89 |
+
return self._classify_many(featuresets, ["-p", "0", "-distribution"])
|
90 |
+
|
91 |
+
def classify_many(self, featuresets):
|
92 |
+
return self._classify_many(featuresets, ["-p", "0"])
|
93 |
+
|
94 |
+
def _classify_many(self, featuresets, options):
|
95 |
+
# Make sure we can find java & weka.
|
96 |
+
config_weka()
|
97 |
+
|
98 |
+
temp_dir = tempfile.mkdtemp()
|
99 |
+
try:
|
100 |
+
# Write the test data file.
|
101 |
+
test_filename = os.path.join(temp_dir, "test.arff")
|
102 |
+
self._formatter.write(test_filename, featuresets)
|
103 |
+
|
104 |
+
# Call weka to classify the data.
|
105 |
+
cmd = [
|
106 |
+
"weka.classifiers.bayes.NaiveBayes",
|
107 |
+
"-l",
|
108 |
+
self._model,
|
109 |
+
"-T",
|
110 |
+
test_filename,
|
111 |
+
] + options
|
112 |
+
(stdout, stderr) = java(
|
113 |
+
cmd,
|
114 |
+
classpath=_weka_classpath,
|
115 |
+
stdout=subprocess.PIPE,
|
116 |
+
stderr=subprocess.PIPE,
|
117 |
+
)
|
118 |
+
|
119 |
+
# Check if something went wrong:
|
120 |
+
if stderr and not stdout:
|
121 |
+
if "Illegal options: -distribution" in stderr:
|
122 |
+
raise ValueError(
|
123 |
+
"The installed version of weka does "
|
124 |
+
"not support probability distribution "
|
125 |
+
"output."
|
126 |
+
)
|
127 |
+
else:
|
128 |
+
raise ValueError("Weka failed to generate output:\n%s" % stderr)
|
129 |
+
|
130 |
+
# Parse weka's output.
|
131 |
+
return self.parse_weka_output(stdout.decode(stdin.encoding).split("\n"))
|
132 |
+
|
133 |
+
finally:
|
134 |
+
for f in os.listdir(temp_dir):
|
135 |
+
os.remove(os.path.join(temp_dir, f))
|
136 |
+
os.rmdir(temp_dir)
|
137 |
+
|
138 |
+
def parse_weka_distribution(self, s):
|
139 |
+
probs = [float(v) for v in re.split("[*,]+", s) if v.strip()]
|
140 |
+
probs = dict(zip(self._formatter.labels(), probs))
|
141 |
+
return DictionaryProbDist(probs)
|
142 |
+
|
143 |
+
def parse_weka_output(self, lines):
|
144 |
+
# Strip unwanted text from stdout
|
145 |
+
for i, line in enumerate(lines):
|
146 |
+
if line.strip().startswith("inst#"):
|
147 |
+
lines = lines[i:]
|
148 |
+
break
|
149 |
+
|
150 |
+
if lines[0].split() == ["inst#", "actual", "predicted", "error", "prediction"]:
|
151 |
+
return [line.split()[2].split(":")[1] for line in lines[1:] if line.strip()]
|
152 |
+
elif lines[0].split() == [
|
153 |
+
"inst#",
|
154 |
+
"actual",
|
155 |
+
"predicted",
|
156 |
+
"error",
|
157 |
+
"distribution",
|
158 |
+
]:
|
159 |
+
return [
|
160 |
+
self.parse_weka_distribution(line.split()[-1])
|
161 |
+
for line in lines[1:]
|
162 |
+
if line.strip()
|
163 |
+
]
|
164 |
+
|
165 |
+
# is this safe:?
|
166 |
+
elif re.match(r"^0 \w+ [01]\.[0-9]* \?\s*$", lines[0]):
|
167 |
+
return [line.split()[1] for line in lines if line.strip()]
|
168 |
+
|
169 |
+
else:
|
170 |
+
for line in lines[:10]:
|
171 |
+
print(line)
|
172 |
+
raise ValueError(
|
173 |
+
"Unhandled output format -- your version "
|
174 |
+
"of weka may not be supported.\n"
|
175 |
+
" Header: %s" % lines[0]
|
176 |
+
)
|
177 |
+
|
178 |
+
# [xx] full list of classifiers (some may be abstract?):
|
179 |
+
# ADTree, AODE, BayesNet, ComplementNaiveBayes, ConjunctiveRule,
|
180 |
+
# DecisionStump, DecisionTable, HyperPipes, IB1, IBk, Id3, J48,
|
181 |
+
# JRip, KStar, LBR, LeastMedSq, LinearRegression, LMT, Logistic,
|
182 |
+
# LogisticBase, M5Base, MultilayerPerceptron,
|
183 |
+
# MultipleClassifiersCombiner, NaiveBayes, NaiveBayesMultinomial,
|
184 |
+
# NaiveBayesSimple, NBTree, NNge, OneR, PaceRegression, PART,
|
185 |
+
# PreConstructedLinearModel, Prism, RandomForest,
|
186 |
+
# RandomizableClassifier, RandomTree, RBFNetwork, REPTree, Ridor,
|
187 |
+
# RuleNode, SimpleLinearRegression, SimpleLogistic,
|
188 |
+
# SingleClassifierEnhancer, SMO, SMOreg, UserClassifier, VFI,
|
189 |
+
# VotedPerceptron, Winnow, ZeroR
|
190 |
+
|
191 |
+
_CLASSIFIER_CLASS = {
|
192 |
+
"naivebayes": "weka.classifiers.bayes.NaiveBayes",
|
193 |
+
"C4.5": "weka.classifiers.trees.J48",
|
194 |
+
"log_regression": "weka.classifiers.functions.Logistic",
|
195 |
+
"svm": "weka.classifiers.functions.SMO",
|
196 |
+
"kstar": "weka.classifiers.lazy.KStar",
|
197 |
+
"ripper": "weka.classifiers.rules.JRip",
|
198 |
+
}
|
199 |
+
|
200 |
+
@classmethod
|
201 |
+
def train(
|
202 |
+
cls,
|
203 |
+
model_filename,
|
204 |
+
featuresets,
|
205 |
+
classifier="naivebayes",
|
206 |
+
options=[],
|
207 |
+
quiet=True,
|
208 |
+
):
|
209 |
+
# Make sure we can find java & weka.
|
210 |
+
config_weka()
|
211 |
+
|
212 |
+
# Build an ARFF formatter.
|
213 |
+
formatter = ARFF_Formatter.from_train(featuresets)
|
214 |
+
|
215 |
+
temp_dir = tempfile.mkdtemp()
|
216 |
+
try:
|
217 |
+
# Write the training data file.
|
218 |
+
train_filename = os.path.join(temp_dir, "train.arff")
|
219 |
+
formatter.write(train_filename, featuresets)
|
220 |
+
|
221 |
+
if classifier in cls._CLASSIFIER_CLASS:
|
222 |
+
javaclass = cls._CLASSIFIER_CLASS[classifier]
|
223 |
+
elif classifier in cls._CLASSIFIER_CLASS.values():
|
224 |
+
javaclass = classifier
|
225 |
+
else:
|
226 |
+
raise ValueError("Unknown classifier %s" % classifier)
|
227 |
+
|
228 |
+
# Train the weka model.
|
229 |
+
cmd = [javaclass, "-d", model_filename, "-t", train_filename]
|
230 |
+
cmd += list(options)
|
231 |
+
if quiet:
|
232 |
+
stdout = subprocess.PIPE
|
233 |
+
else:
|
234 |
+
stdout = None
|
235 |
+
java(cmd, classpath=_weka_classpath, stdout=stdout)
|
236 |
+
|
237 |
+
# Return the new classifier.
|
238 |
+
return WekaClassifier(formatter, model_filename)
|
239 |
+
|
240 |
+
finally:
|
241 |
+
for f in os.listdir(temp_dir):
|
242 |
+
os.remove(os.path.join(temp_dir, f))
|
243 |
+
os.rmdir(temp_dir)
|
244 |
+
|
245 |
+
|
246 |
+
class ARFF_Formatter:
|
247 |
+
"""
|
248 |
+
Converts featuresets and labeled featuresets to ARFF-formatted
|
249 |
+
strings, appropriate for input into Weka.
|
250 |
+
|
251 |
+
Features and classes can be specified manually in the constructor, or may
|
252 |
+
be determined from data using ``from_train``.
|
253 |
+
"""
|
254 |
+
|
255 |
+
def __init__(self, labels, features):
|
256 |
+
"""
|
257 |
+
:param labels: A list of all class labels that can be generated.
|
258 |
+
:param features: A list of feature specifications, where
|
259 |
+
each feature specification is a tuple (fname, ftype);
|
260 |
+
and ftype is an ARFF type string such as NUMERIC or
|
261 |
+
STRING.
|
262 |
+
"""
|
263 |
+
self._labels = labels
|
264 |
+
self._features = features
|
265 |
+
|
266 |
+
def format(self, tokens):
|
267 |
+
"""Returns a string representation of ARFF output for the given data."""
|
268 |
+
return self.header_section() + self.data_section(tokens)
|
269 |
+
|
270 |
+
def labels(self):
|
271 |
+
"""Returns the list of classes."""
|
272 |
+
return list(self._labels)
|
273 |
+
|
274 |
+
def write(self, outfile, tokens):
|
275 |
+
"""Writes ARFF data to a file for the given data."""
|
276 |
+
if not hasattr(outfile, "write"):
|
277 |
+
outfile = open(outfile, "w")
|
278 |
+
outfile.write(self.format(tokens))
|
279 |
+
outfile.close()
|
280 |
+
|
281 |
+
@staticmethod
|
282 |
+
def from_train(tokens):
|
283 |
+
"""
|
284 |
+
Constructs an ARFF_Formatter instance with class labels and feature
|
285 |
+
types determined from the given data. Handles boolean, numeric and
|
286 |
+
string (note: not nominal) types.
|
287 |
+
"""
|
288 |
+
# Find the set of all attested labels.
|
289 |
+
labels = {label for (tok, label) in tokens}
|
290 |
+
|
291 |
+
# Determine the types of all features.
|
292 |
+
features = {}
|
293 |
+
for tok, label in tokens:
|
294 |
+
for (fname, fval) in tok.items():
|
295 |
+
if issubclass(type(fval), bool):
|
296 |
+
ftype = "{True, False}"
|
297 |
+
elif issubclass(type(fval), (int, float, bool)):
|
298 |
+
ftype = "NUMERIC"
|
299 |
+
elif issubclass(type(fval), str):
|
300 |
+
ftype = "STRING"
|
301 |
+
elif fval is None:
|
302 |
+
continue # can't tell the type.
|
303 |
+
else:
|
304 |
+
raise ValueError("Unsupported value type %r" % ftype)
|
305 |
+
|
306 |
+
if features.get(fname, ftype) != ftype:
|
307 |
+
raise ValueError("Inconsistent type for %s" % fname)
|
308 |
+
features[fname] = ftype
|
309 |
+
features = sorted(features.items())
|
310 |
+
|
311 |
+
return ARFF_Formatter(labels, features)
|
312 |
+
|
313 |
+
def header_section(self):
|
314 |
+
"""Returns an ARFF header as a string."""
|
315 |
+
# Header comment.
|
316 |
+
s = (
|
317 |
+
"% Weka ARFF file\n"
|
318 |
+
+ "% Generated automatically by NLTK\n"
|
319 |
+
+ "%% %s\n\n" % time.ctime()
|
320 |
+
)
|
321 |
+
|
322 |
+
# Relation name
|
323 |
+
s += "@RELATION rel\n\n"
|
324 |
+
|
325 |
+
# Input attribute specifications
|
326 |
+
for fname, ftype in self._features:
|
327 |
+
s += "@ATTRIBUTE %-30r %s\n" % (fname, ftype)
|
328 |
+
|
329 |
+
# Label attribute specification
|
330 |
+
s += "@ATTRIBUTE %-30r {%s}\n" % ("-label-", ",".join(self._labels))
|
331 |
+
|
332 |
+
return s
|
333 |
+
|
334 |
+
def data_section(self, tokens, labeled=None):
|
335 |
+
"""
|
336 |
+
Returns the ARFF data section for the given data.
|
337 |
+
|
338 |
+
:param tokens: a list of featuresets (dicts) or labelled featuresets
|
339 |
+
which are tuples (featureset, label).
|
340 |
+
:param labeled: Indicates whether the given tokens are labeled
|
341 |
+
or not. If None, then the tokens will be assumed to be
|
342 |
+
labeled if the first token's value is a tuple or list.
|
343 |
+
"""
|
344 |
+
# Check if the tokens are labeled or unlabeled. If unlabeled,
|
345 |
+
# then use 'None'
|
346 |
+
if labeled is None:
|
347 |
+
labeled = tokens and isinstance(tokens[0], (tuple, list))
|
348 |
+
if not labeled:
|
349 |
+
tokens = [(tok, None) for tok in tokens]
|
350 |
+
|
351 |
+
# Data section
|
352 |
+
s = "\n@DATA\n"
|
353 |
+
for (tok, label) in tokens:
|
354 |
+
for fname, ftype in self._features:
|
355 |
+
s += "%s," % self._fmt_arff_val(tok.get(fname))
|
356 |
+
s += "%s\n" % self._fmt_arff_val(label)
|
357 |
+
|
358 |
+
return s
|
359 |
+
|
360 |
+
def _fmt_arff_val(self, fval):
|
361 |
+
if fval is None:
|
362 |
+
return "?"
|
363 |
+
elif isinstance(fval, (bool, int)):
|
364 |
+
return "%s" % fval
|
365 |
+
elif isinstance(fval, float):
|
366 |
+
return "%r" % fval
|
367 |
+
else:
|
368 |
+
return "%r" % fval
|
369 |
+
|
370 |
+
|
371 |
+
if __name__ == "__main__":
|
372 |
+
from nltk.classify.util import binary_names_demo_features, names_demo
|
373 |
+
|
374 |
+
def make_classifier(featuresets):
|
375 |
+
return WekaClassifier.train("/tmp/name.model", featuresets, "C4.5")
|
376 |
+
|
377 |
+
classifier = names_demo(make_classifier, binary_names_demo_features)
|
venv/lib/python3.10/site-packages/nltk/misc/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (404 Bytes). View file
|
|
venv/lib/python3.10/site-packages/nltk/misc/__pycache__/babelfish.cpython-310.pyc
ADDED
Binary file (619 Bytes). View file
|
|
venv/lib/python3.10/site-packages/nltk/misc/__pycache__/chomsky.cpython-310.pyc
ADDED
Binary file (5.12 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/misc/__pycache__/minimalset.cpython-310.pyc
ADDED
Binary file (2.97 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/misc/__pycache__/sort.cpython-310.pyc
ADDED
Binary file (3.48 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/stem/__init__.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Stemmers
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Trevor Cohn <[email protected]>
|
5 |
+
# Edward Loper <[email protected]>
|
6 |
+
# Steven Bird <[email protected]>
|
7 |
+
# URL: <https://www.nltk.org/>
|
8 |
+
# For license information, see LICENSE.TXT
|
9 |
+
|
10 |
+
"""
|
11 |
+
NLTK Stemmers
|
12 |
+
|
13 |
+
Interfaces used to remove morphological affixes from words, leaving
|
14 |
+
only the word stem. Stemming algorithms aim to remove those affixes
|
15 |
+
required for eg. grammatical role, tense, derivational morphology
|
16 |
+
leaving only the stem of the word. This is a difficult problem due to
|
17 |
+
irregular words (eg. common verbs in English), complicated
|
18 |
+
morphological rules, and part-of-speech and sense ambiguities
|
19 |
+
(eg. ``ceil-`` is not the stem of ``ceiling``).
|
20 |
+
|
21 |
+
StemmerI defines a standard interface for stemmers.
|
22 |
+
"""
|
23 |
+
|
24 |
+
from nltk.stem.api import StemmerI
|
25 |
+
from nltk.stem.arlstem import ARLSTem
|
26 |
+
from nltk.stem.arlstem2 import ARLSTem2
|
27 |
+
from nltk.stem.cistem import Cistem
|
28 |
+
from nltk.stem.isri import ISRIStemmer
|
29 |
+
from nltk.stem.lancaster import LancasterStemmer
|
30 |
+
from nltk.stem.porter import PorterStemmer
|
31 |
+
from nltk.stem.regexp import RegexpStemmer
|
32 |
+
from nltk.stem.rslp import RSLPStemmer
|
33 |
+
from nltk.stem.snowball import SnowballStemmer
|
34 |
+
from nltk.stem.wordnet import WordNetLemmatizer
|
venv/lib/python3.10/site-packages/nltk/stem/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.29 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/stem/__pycache__/api.cpython-310.pyc
ADDED
Binary file (822 Bytes). View file
|
|
venv/lib/python3.10/site-packages/nltk/stem/__pycache__/arlstem.cpython-310.pyc
ADDED
Binary file (8.29 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/stem/__pycache__/arlstem2.cpython-310.pyc
ADDED
Binary file (9.97 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/stem/__pycache__/cistem.cpython-310.pyc
ADDED
Binary file (6.33 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/stem/__pycache__/isri.cpython-310.pyc
ADDED
Binary file (9.24 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/stem/__pycache__/lancaster.cpython-310.pyc
ADDED
Binary file (6.41 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/stem/__pycache__/porter.cpython-310.pyc
ADDED
Binary file (21.6 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/stem/__pycache__/regexp.cpython-310.pyc
ADDED
Binary file (1.73 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/stem/__pycache__/rslp.cpython-310.pyc
ADDED
Binary file (3.08 kB). View file
|
|
venv/lib/python3.10/site-packages/nltk/stem/__pycache__/snowball.cpython-310.pyc
ADDED
Binary file (97.3 kB). View file
|
|