Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step120/zero/1.word_embeddings.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step120/zero/25.attention.dense.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step120/zero/3.attention.query_key_value.weight/exp_avg.pt +3 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/AtomicAddFloat.h +37 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/CatKernel.h +12 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/ChannelShuffleKernel.h +14 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/CopyKernel.h +12 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/DepthwiseConvKernel.h +21 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/DistributionTemplates.h +369 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/GridSamplerKernel.h +34 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/IndexKernelUtils.h +88 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/Intrinsics.h +33 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/IsContiguous.h +62 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/LogAddExp.h +61 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/Loops.h +394 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/MaxUnpoolKernel.h +14 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/PixelShuffleKernel.h +14 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/Reduce.h +314 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/ReduceUtils.h +238 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/SampledAddmmKernel.h +12 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/SerialStackImpl.h +144 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/SoftmaxKernel.h +28 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/SpmmReduceKernel.h +22 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/StackKernel.h +12 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/UpSampleKernelAVXAntialias.h +1376 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/WeightNormKernel.h +20 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/avx_mathfun.h +522 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/int_mm_kernel.h +16 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/mixed_data_type.h +41 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/moments_utils.h +206 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/utils.h +198 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/zmath.h +250 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/BinaryInternal.h +48 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/CompositeRandomAccessor.h +35 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/Copy.h +10 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/CuFFTPlanCache.h +494 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/CuFFTUtils.h +73 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/ForeachMinMaxFunctors.cuh +22 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/GridSampler.cuh +321 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/GridSampler.h +32 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/IndexKernel.h +16 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/JitLoops.cuh +187 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/KernelUtils.cuh +149 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/LaunchUtils.h +18 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/Loops.cuh +326 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/Math.cuh +0 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/MemoryAccess.cuh +384 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/Normalization.cuh +1742 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/PersistentSoftmax.cuh +401 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/Pow.cuh +58 -0
ckpts/universal/global_step120/zero/1.word_embeddings.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26fa04eeadf9328273156571c6bdda26a708eeceab40d27d154baeebd0146941
|
3 |
+
size 415237404
|
ckpts/universal/global_step120/zero/25.attention.dense.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e9bd4a9faa76ff2d7d8d492e5511db35f0a0ae9b318b1f8090157d19e11865d
|
3 |
+
size 16778411
|
ckpts/universal/global_step120/zero/3.attention.query_key_value.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:604df502700ab22fc781bc1f33d7a06bb90d9e02f99d6167537b34b90d0d0c8d
|
3 |
+
size 50332828
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/AtomicAddFloat.h
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#ifndef ATOMIC_ADD_FLOAT
|
2 |
+
#define ATOMIC_ADD_FLOAT
|
3 |
+
|
4 |
+
#if (defined(__x86_64__) || defined(__i386__) || defined(__aarch64__))
|
5 |
+
#include <ATen/native/cpu/Intrinsics.h>
|
6 |
+
#else
|
7 |
+
#define _mm_pause()
|
8 |
+
#endif
|
9 |
+
|
10 |
+
#include <atomic>
|
11 |
+
|
12 |
+
static inline void cpu_atomic_add_float(float* dst, float fvalue)
|
13 |
+
{
|
14 |
+
typedef union {
|
15 |
+
unsigned intV;
|
16 |
+
float floatV;
|
17 |
+
} uf32_t;
|
18 |
+
|
19 |
+
uf32_t new_value, old_value;
|
20 |
+
std::atomic<unsigned>* dst_intV = (std::atomic<unsigned>*)(dst);
|
21 |
+
|
22 |
+
old_value.floatV = *dst;
|
23 |
+
new_value.floatV = old_value.floatV + fvalue;
|
24 |
+
|
25 |
+
unsigned* old_intV = (unsigned*)(&old_value.intV);
|
26 |
+
while (!std::atomic_compare_exchange_strong(dst_intV, old_intV, new_value.intV)) {
|
27 |
+
#ifdef __aarch64__
|
28 |
+
__asm__ __volatile__("yield;" : : : "memory");
|
29 |
+
#else
|
30 |
+
_mm_pause();
|
31 |
+
#endif
|
32 |
+
old_value.floatV = *dst;
|
33 |
+
new_value.floatV = old_value.floatV + fvalue;
|
34 |
+
}
|
35 |
+
}
|
36 |
+
|
37 |
+
#endif
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/CatKernel.h
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/Tensor.h>
|
4 |
+
#include <ATen/native/DispatchStub.h>
|
5 |
+
#include <ATen/core/IListRef.h>
|
6 |
+
|
7 |
+
namespace at { namespace native {
|
8 |
+
|
9 |
+
using cat_serial_fn = void(*)(const Tensor &, const MaterializedITensorListRef&, int64_t);
|
10 |
+
DECLARE_DISPATCH(cat_serial_fn, cat_serial_stub);
|
11 |
+
|
12 |
+
}} // namespace at::native
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/ChannelShuffleKernel.h
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/native/DispatchStub.h>
|
3 |
+
#include <cstdint>
|
4 |
+
|
5 |
+
namespace at {
|
6 |
+
class TensorBase;
|
7 |
+
}
|
8 |
+
|
9 |
+
namespace at { namespace native {
|
10 |
+
|
11 |
+
using channel_shuffle_fn = void(*)(TensorBase&, const TensorBase&, int64_t);
|
12 |
+
DECLARE_DISPATCH(channel_shuffle_fn, channel_shuffle_kernel);
|
13 |
+
|
14 |
+
}} // at::native
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/CopyKernel.h
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
namespace at {
|
4 |
+
struct TensorIteratorBase;
|
5 |
+
|
6 |
+
namespace native {
|
7 |
+
inline namespace CPU_CAPABILITY {
|
8 |
+
|
9 |
+
void direct_copy_kernel(TensorIteratorBase &iter);
|
10 |
+
void copy_kernel(TensorIterator& iter, bool /*non_blocking*/);
|
11 |
+
|
12 |
+
}}} // namespace at::native::CPU_CAPABILITY
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/DepthwiseConvKernel.h
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/native/DispatchStub.h>
|
4 |
+
#include <c10/util/ArrayRef.h>
|
5 |
+
|
6 |
+
/*
|
7 |
+
Depthwise 3x3 Winograd convolution operator
|
8 |
+
*/
|
9 |
+
|
10 |
+
namespace at {
|
11 |
+
class Tensor;
|
12 |
+
|
13 |
+
namespace native {
|
14 |
+
|
15 |
+
using convolution_depthwise3x3_winograd_fn =
|
16 |
+
Tensor (*)(const Tensor &, const Tensor &, const Tensor &, IntArrayRef, IntArrayRef, int64_t);
|
17 |
+
|
18 |
+
DECLARE_DISPATCH(convolution_depthwise3x3_winograd_fn, convolution_depthwise3x3_winograd_stub);
|
19 |
+
|
20 |
+
} // namespace native
|
21 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/DistributionTemplates.h
ADDED
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/CPUApplyUtils.h>
|
4 |
+
#include <ATen/Dispatch.h>
|
5 |
+
#include <ATen/Dispatch_v2.h>
|
6 |
+
#include <ATen/ExpandBase.h>
|
7 |
+
#include <ATen/core/DistributionsHelper.h>
|
8 |
+
#include <ATen/native/TensorIterator.h>
|
9 |
+
#include <ATen/native/cpu/Loops.h>
|
10 |
+
#include <limits>
|
11 |
+
#include <mutex>
|
12 |
+
|
13 |
+
#ifdef CPU_CAPABILITY_AVX2
|
14 |
+
#include <ATen/native/cpu/avx_mathfun.h>
|
15 |
+
#include <c10/util/irange.h>
|
16 |
+
#endif
|
17 |
+
|
18 |
+
|
19 |
+
namespace at {
|
20 |
+
namespace native {
|
21 |
+
namespace templates {
|
22 |
+
namespace cpu {
|
23 |
+
namespace {
|
24 |
+
|
25 |
+
// ==================================================== Random ========================================================
|
26 |
+
|
27 |
+
template<typename RNG>
|
28 |
+
void random_from_to_kernel(TensorIteratorBase& iter, uint64_t range, int64_t base, RNG generator) {
|
29 |
+
AT_DISPATCH_V2(iter.dtype(), "random_from_to_kernel_cpu", AT_WRAP([&] {
|
30 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
31 |
+
cpu_serial_kernel(iter, [range, base, generator]() -> scalar_t {
|
32 |
+
uniform_int_from_to_distribution<scalar_t> random(range, base);
|
33 |
+
return random(generator);
|
34 |
+
});
|
35 |
+
}), kBool, kHalf, kBFloat16, AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_BAREBONES_UNSIGNED_TYPES));
|
36 |
+
}
|
37 |
+
|
38 |
+
// This is the special kernel to handle single specific case:
|
39 |
+
// from(inclusive) = std::numeric_limits<int64_t>::lowest()
|
40 |
+
// to(exclusive) = None (= std::numeric_limits<int64_t>::max() + 1)
|
41 |
+
template<typename RNG>
|
42 |
+
void random_full_64_bits_range_kernel(TensorIteratorBase& iter, RNG generator) {
|
43 |
+
AT_DISPATCH_ALL_TYPES_AND(at::ScalarType::BFloat16, iter.dtype(), "random_full_64_bits_range_kernel_cpu", [&] {
|
44 |
+
if constexpr (std::is_same<scalar_t, int64_t>::value ||
|
45 |
+
std::is_same<scalar_t, double>::value ||
|
46 |
+
std::is_same<scalar_t, float>::value ||
|
47 |
+
std::is_same<scalar_t, at::BFloat16>::value) {
|
48 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
49 |
+
cpu_serial_kernel(iter, [generator]() -> scalar_t {
|
50 |
+
uniform_int_full_range_distribution<scalar_t> random;
|
51 |
+
return random(generator);
|
52 |
+
});
|
53 |
+
} else {
|
54 |
+
TORCH_CHECK(false, "random_full_64_bits_range_kernel_cpu handles only int64, double, float and bfloat16");
|
55 |
+
}
|
56 |
+
});
|
57 |
+
}
|
58 |
+
|
59 |
+
template<typename RNG>
|
60 |
+
struct RandomFromToKernel {
|
61 |
+
void operator()(TensorIteratorBase& iter, uint64_t range, int64_t base, c10::optional<Generator> gen) {
|
62 |
+
random_from_to_kernel(iter, range, base, check_generator<RNG>(gen));
|
63 |
+
}
|
64 |
+
void operator()(TensorIteratorBase& iter, c10::optional<Generator> gen) {
|
65 |
+
random_full_64_bits_range_kernel(iter, check_generator<RNG>(gen));
|
66 |
+
}
|
67 |
+
};
|
68 |
+
|
69 |
+
template<typename RNG>
|
70 |
+
void random_kernel(TensorIteratorBase& iter, RNG generator) {
|
71 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
72 |
+
AT_DISPATCH_ALL_TYPES_AND3(at::ScalarType::Half, at::ScalarType::BFloat16, at::ScalarType::Bool, iter.dtype(), "random_kernel_cpu", [&] {
|
73 |
+
cpu_serial_kernel(iter, [generator]() -> scalar_t {
|
74 |
+
uniform_int_distribution<scalar_t> random;
|
75 |
+
return random(generator);
|
76 |
+
});
|
77 |
+
});
|
78 |
+
}
|
79 |
+
|
80 |
+
template<typename RNG>
|
81 |
+
struct RandomKernel {
|
82 |
+
void operator()(TensorIteratorBase& iter, c10::optional<Generator> gen) {
|
83 |
+
random_kernel(iter, check_generator<RNG>(gen));
|
84 |
+
}
|
85 |
+
};
|
86 |
+
|
87 |
+
// ==================================================== Normal ========================================================
|
88 |
+
|
89 |
+
#ifdef CPU_CAPABILITY_AVX2
|
90 |
+
static void normal_fill_16_AVX2(float *data,
|
91 |
+
const __m256* two_pi,
|
92 |
+
const __m256* one,
|
93 |
+
const __m256* minus_two,
|
94 |
+
const __m256* mean,
|
95 |
+
const __m256* std_v) {
|
96 |
+
const __m256 u1 = _mm256_sub_ps(*one, _mm256_loadu_ps(data));
|
97 |
+
const __m256 u2 = _mm256_loadu_ps(data + 8);
|
98 |
+
// sincos256_ps and log256_ps are from avx_mathfun.h
|
99 |
+
const __m256 radius = _mm256_sqrt_ps(_mm256_mul_ps(*minus_two, log256_ps(u1)));
|
100 |
+
const __m256 theta = _mm256_mul_ps(*two_pi, u2);
|
101 |
+
__m256 sintheta, costheta;
|
102 |
+
sincos256_ps(theta, &sintheta, &costheta);
|
103 |
+
const __m256 n1 = _mm256_mul_ps(radius, costheta);
|
104 |
+
const __m256 n2 = _mm256_mul_ps(radius, sintheta);
|
105 |
+
_mm256_storeu_ps(data, _mm256_fmadd_ps(n1, *std_v, *mean));
|
106 |
+
_mm256_storeu_ps(data + 8, _mm256_fmadd_ps(n2, *std_v, *mean));
|
107 |
+
}
|
108 |
+
|
109 |
+
template<typename RNG>
|
110 |
+
void normal_fill_AVX2(const TensorBase &self, const float mean, const float std, RNG generator) {
|
111 |
+
float *data = self.data_ptr<float>();
|
112 |
+
auto size = self.numel();
|
113 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
114 |
+
for (const auto i : c10::irange(size)) {
|
115 |
+
at::uniform_real_distribution<float> uniform(0, 1);
|
116 |
+
data[i] = uniform(generator);
|
117 |
+
}
|
118 |
+
const __m256 two_pi = _mm256_set1_ps(2.0f * c10::pi<double>);
|
119 |
+
const __m256 one = _mm256_set1_ps(1.0f);
|
120 |
+
const __m256 minus_two = _mm256_set1_ps(-2.0f);
|
121 |
+
const __m256 mean_v = _mm256_set1_ps(mean);
|
122 |
+
const __m256 std_v = _mm256_set1_ps(std);
|
123 |
+
|
124 |
+
for (int64_t i = 0; i < size - 15; i += 16) {
|
125 |
+
normal_fill_16_AVX2(data + i, &two_pi, &one, &minus_two, &mean_v, &std_v);
|
126 |
+
}
|
127 |
+
|
128 |
+
if (size % 16 != 0) {
|
129 |
+
// Recompute the last 16 values.
|
130 |
+
data = data + size - 16;
|
131 |
+
for (const auto i : c10::irange(16)) {
|
132 |
+
at::uniform_real_distribution<float> uniform(0, 1);
|
133 |
+
data[i] = uniform(generator);
|
134 |
+
}
|
135 |
+
normal_fill_16_AVX2(data, &two_pi, &one, &minus_two, &mean_v, &std_v);
|
136 |
+
}
|
137 |
+
}
|
138 |
+
#endif
|
139 |
+
|
140 |
+
template <typename scalar_t>
|
141 |
+
static void normal_fill_16(scalar_t *data, const scalar_t mean, const scalar_t std) {
|
142 |
+
for (const auto j : c10::irange(8)) {
|
143 |
+
const scalar_t u1 = 1 - data[j]; // [0, 1) -> (0, 1] for log.
|
144 |
+
const scalar_t u2 = data[j + 8];
|
145 |
+
const scalar_t radius = std::sqrt(-2 * std::log(u1));
|
146 |
+
const scalar_t theta = 2.0f * c10::pi<double> * u2;
|
147 |
+
data[j] = radius * std::cos(theta) * std + mean;
|
148 |
+
data[j + 8] = radius * std::sin(theta) * std + mean;
|
149 |
+
}
|
150 |
+
}
|
151 |
+
|
152 |
+
template <typename scalar_t, typename RNG>
|
153 |
+
void normal_fill(const TensorBase &self, const scalar_t mean, const scalar_t std, RNG generator) {
|
154 |
+
scalar_t *data = self.data_ptr<scalar_t>();
|
155 |
+
auto size = self.numel();
|
156 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
157 |
+
for (const auto i : c10::irange(size)) {
|
158 |
+
at::uniform_real_distribution<scalar_t> uniform(0, 1);
|
159 |
+
data[i] = uniform(generator);
|
160 |
+
}
|
161 |
+
|
162 |
+
for (int64_t i = 0; i < size - 15; i += 16) {
|
163 |
+
normal_fill_16<scalar_t>(data + i, mean, std);
|
164 |
+
}
|
165 |
+
if (size % 16 != 0) {
|
166 |
+
// Recompute the last 16 values.
|
167 |
+
data = data + size - 16;
|
168 |
+
for (const auto i : c10::irange(16)) {
|
169 |
+
at::uniform_real_distribution<scalar_t> uniform(0, 1);
|
170 |
+
data[i] = uniform(generator);
|
171 |
+
}
|
172 |
+
normal_fill_16<scalar_t>(data, mean, std);
|
173 |
+
}
|
174 |
+
}
|
175 |
+
|
176 |
+
template<typename RNG>
|
177 |
+
void normal_kernel(const TensorBase &self, double mean, double std, RNG generator) {
|
178 |
+
auto size = self.numel();
|
179 |
+
if (self.scalar_type() == ScalarType::Float && size >= 16 && self.is_contiguous()) {
|
180 |
+
#ifdef CPU_CAPABILITY_AVX2
|
181 |
+
normal_fill_AVX2(self, static_cast<float>(mean), static_cast<float>(std), generator);
|
182 |
+
#else
|
183 |
+
normal_fill(self, static_cast<float>(mean), static_cast<float>(std), generator);
|
184 |
+
#endif
|
185 |
+
} else {
|
186 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, self.scalar_type(), "normal_kernel_cpu", [&] {
|
187 |
+
if (size >= 16 && self.is_contiguous()) {
|
188 |
+
normal_fill<scalar_t>(self, static_cast<scalar_t>(mean), static_cast<scalar_t>(std), generator);
|
189 |
+
} else {
|
190 |
+
auto iter = TensorIterator::borrowing_nullary_op(self);
|
191 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
192 |
+
cpu_serial_kernel(iter, [mean, std, generator]() -> scalar_t {
|
193 |
+
at::normal_distribution<double> normal(mean, std);
|
194 |
+
return static_cast<scalar_t>(normal(generator));
|
195 |
+
});
|
196 |
+
}
|
197 |
+
});
|
198 |
+
}
|
199 |
+
}
|
200 |
+
|
201 |
+
template<typename RNG>
|
202 |
+
struct NormalKernel {
|
203 |
+
void operator()(Tensor& self, double mean, double std, c10::optional<Generator> gen) {
|
204 |
+
normal_kernel(self, mean, std, check_generator<RNG>(gen));
|
205 |
+
}
|
206 |
+
};
|
207 |
+
|
208 |
+
// ==================================================== Uniform =======================================================
|
209 |
+
|
210 |
+
template<typename RNG>
|
211 |
+
void uniform_kernel(TensorIteratorBase& iter, double from_, double to_, RNG generator) {
|
212 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, iter.dtype(), "uniform_kernel_cpu", [&]() {
|
213 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
214 |
+
auto from = static_cast<scalar_t>(from_);
|
215 |
+
auto to = static_cast<scalar_t>(to_);
|
216 |
+
at::uniform_real_distribution<scalar_t> uniform(from, to);
|
217 |
+
cpu_serial_kernel(iter, [&uniform, generator]() -> scalar_t {
|
218 |
+
return static_cast<scalar_t>(uniform(generator));
|
219 |
+
});
|
220 |
+
});
|
221 |
+
}
|
222 |
+
|
223 |
+
template<typename RNG>
|
224 |
+
struct UniformKernel {
|
225 |
+
void operator()(TensorIteratorBase& iter, double from, double to, c10::optional<Generator> gen) {
|
226 |
+
uniform_kernel(iter, from, to, check_generator<RNG>(gen));
|
227 |
+
}
|
228 |
+
};
|
229 |
+
|
230 |
+
// ==================================================== Cauchy ========================================================
|
231 |
+
|
232 |
+
template<typename RNG>
|
233 |
+
void cauchy_kernel(TensorIteratorBase& iter, double median, double sigma, RNG generator) {
|
234 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, iter.dtype(), "cauchy_cpu", [&]() {
|
235 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
236 |
+
at::cauchy_distribution<double> cauchy(median, sigma);
|
237 |
+
cpu_serial_kernel(iter, [&cauchy, generator]() -> scalar_t {
|
238 |
+
return static_cast<scalar_t>(cauchy(generator));
|
239 |
+
});
|
240 |
+
});
|
241 |
+
}
|
242 |
+
|
243 |
+
template<typename RNG>
|
244 |
+
struct CauchyKernel {
|
245 |
+
void operator()(TensorIteratorBase& iter, double median, double sigma, c10::optional<Generator> gen) {
|
246 |
+
cauchy_kernel(iter, median, sigma, check_generator<RNG>(gen));
|
247 |
+
}
|
248 |
+
};
|
249 |
+
|
250 |
+
// ================================================== LogNormal =======================================================
|
251 |
+
|
252 |
+
template<typename RNG>
|
253 |
+
void log_normal_kernel(TensorIteratorBase& iter, double mean, double std, RNG generator) {
|
254 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "log_normal_cpu", [&]() {
|
255 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
256 |
+
at::lognormal_distribution<double> logNormal(mean, std);
|
257 |
+
cpu_serial_kernel(iter, [&logNormal, generator]() -> scalar_t {
|
258 |
+
return static_cast<scalar_t>(logNormal(generator));
|
259 |
+
});
|
260 |
+
});
|
261 |
+
}
|
262 |
+
|
263 |
+
template<typename RNG>
|
264 |
+
struct LogNormalKernel {
|
265 |
+
void operator()(TensorIteratorBase& iter, double mean, double std, c10::optional<Generator> gen) {
|
266 |
+
log_normal_kernel(iter, mean, std, check_generator<RNG>(gen));
|
267 |
+
}
|
268 |
+
};
|
269 |
+
|
270 |
+
// =================================================== Geometric ======================================================
|
271 |
+
|
272 |
+
template<typename RNG>
|
273 |
+
void geometric_kernel(TensorIteratorBase& iter, double p, RNG generator) {
|
274 |
+
AT_DISPATCH_ALL_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "geometric_cpu", [&]() {
|
275 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
276 |
+
at::geometric_distribution<double> geometric(p);
|
277 |
+
cpu_serial_kernel(iter, [&geometric, generator]() -> scalar_t {
|
278 |
+
return static_cast<scalar_t>(geometric(generator));
|
279 |
+
});
|
280 |
+
});
|
281 |
+
}
|
282 |
+
|
283 |
+
template<typename RNG>
|
284 |
+
struct GeometricKernel {
|
285 |
+
void operator()(TensorIteratorBase& iter, double p, c10::optional<Generator> gen) {
|
286 |
+
geometric_kernel(iter, p, check_generator<RNG>(gen));
|
287 |
+
}
|
288 |
+
};
|
289 |
+
|
290 |
+
// ================================================== Exponential =====================================================
|
291 |
+
|
292 |
+
template<typename RNG>
|
293 |
+
void exponential_kernel(TensorIteratorBase& iter, double lambda, RNG generator) {
|
294 |
+
TORCH_CHECK(isFloatingType(iter.dtype()), "Exponential distribution is a continuous probability distribution. dtype must be a floating point but you specified ", iter.dtype());
|
295 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "exponential_cpu", [&]() {
|
296 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
297 |
+
at::exponential_distribution<double> exponential(lambda);
|
298 |
+
cpu_serial_kernel(iter, [&exponential, generator]() -> scalar_t {
|
299 |
+
return static_cast<scalar_t>(exponential(generator));
|
300 |
+
});
|
301 |
+
});
|
302 |
+
}
|
303 |
+
|
304 |
+
template<typename RNG>
|
305 |
+
struct ExponentialKernel {
|
306 |
+
void operator()(TensorIteratorBase& iter, double lambda, c10::optional<Generator> gen) {
|
307 |
+
exponential_kernel(iter, lambda, check_generator<RNG>(gen));
|
308 |
+
}
|
309 |
+
};
|
310 |
+
|
311 |
+
// ================================================== Bernoulli =======================================================
|
312 |
+
|
313 |
+
template<typename RNG>
|
314 |
+
void bernoulli_kernel(const TensorBase &self, const TensorBase &p_, RNG generator) {
|
315 |
+
AT_DISPATCH_ALL_TYPES_AND3(at::ScalarType::Bool, at::ScalarType::BFloat16, at::ScalarType::Half,
|
316 |
+
self.scalar_type(), "bernoulli_tensor_cpu_self_", [&] {
|
317 |
+
// See Note [Acquire lock when using random generators]
|
318 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
319 |
+
using self_t = scalar_t;
|
320 |
+
auto p_cpu = p_.to(kCPU);
|
321 |
+
auto p = expand_inplace(self, p_cpu);
|
322 |
+
auto iter = TensorIteratorConfig()
|
323 |
+
.add_output(self)
|
324 |
+
.add_input(*p)
|
325 |
+
.check_all_same_dtype(false)
|
326 |
+
.build();
|
327 |
+
if (p->scalar_type() == kDouble) {
|
328 |
+
cpu_serial_kernel(iter, [&](const double p_val) -> self_t {
|
329 |
+
at::bernoulli_distribution<double> bernoulli(p_val);
|
330 |
+
return static_cast<self_t>(bernoulli(generator));
|
331 |
+
});
|
332 |
+
} else {
|
333 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::BFloat16, at::ScalarType::Half,
|
334 |
+
p->scalar_type(), "bernoulli_tensor_cpu_p_", [&] {
|
335 |
+
using p_t = scalar_t;
|
336 |
+
cpu_serial_kernel(iter, [&](const p_t p_val) -> self_t {
|
337 |
+
at::bernoulli_distribution<float> bernoulli(p_val);
|
338 |
+
return static_cast<self_t>(bernoulli(generator));
|
339 |
+
});
|
340 |
+
});
|
341 |
+
}
|
342 |
+
});
|
343 |
+
}
|
344 |
+
|
345 |
+
template<typename RNG>
|
346 |
+
void bernoulli_kernel(const TensorBase &self, double p, RNG generator) {
|
347 |
+
AT_DISPATCH_ALL_TYPES_AND3(at::ScalarType::Bool, at::ScalarType::BFloat16, at::ScalarType::Half,
|
348 |
+
self.scalar_type(), "bernoulli_scalar_cpu_", [&] {
|
349 |
+
// See Note [Acquire lock when using random generators]
|
350 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
351 |
+
auto iter = TensorIterator::borrowing_nullary_op(self);
|
352 |
+
cpu_serial_kernel(iter, [p, generator]() -> scalar_t {
|
353 |
+
at::bernoulli_distribution<double> bernoulli(p);
|
354 |
+
return static_cast<scalar_t>(bernoulli(generator));
|
355 |
+
});
|
356 |
+
});
|
357 |
+
}
|
358 |
+
|
359 |
+
template<typename RNG>
|
360 |
+
struct BernoulliKernel {
|
361 |
+
void operator()(const TensorBase &self, double p, c10::optional<Generator> gen) {
|
362 |
+
bernoulli_kernel(self, p, check_generator<RNG>(gen));
|
363 |
+
}
|
364 |
+
void operator()(const TensorBase &self, const TensorBase &p_, c10::optional<Generator> gen) {
|
365 |
+
bernoulli_kernel(self, p_, check_generator<RNG>(gen));
|
366 |
+
}
|
367 |
+
};
|
368 |
+
|
369 |
+
}}}}}
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/GridSamplerKernel.h
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/native/DispatchStub.h>
|
4 |
+
|
5 |
+
#include <array>
|
6 |
+
#include <cstdint>
|
7 |
+
|
8 |
+
namespace at {
|
9 |
+
class TensorBase;
|
10 |
+
}
|
11 |
+
|
12 |
+
namespace at { namespace native {
|
13 |
+
|
14 |
+
using forward_2d_fn = void (*) (
|
15 |
+
const TensorBase &output,
|
16 |
+
const TensorBase &input,
|
17 |
+
const TensorBase &grid,
|
18 |
+
int64_t interpolation_mode,
|
19 |
+
int64_t padding_mode,
|
20 |
+
bool align_corners);
|
21 |
+
using backward_2d_fn = void (*) (
|
22 |
+
const TensorBase &grad_input,
|
23 |
+
const TensorBase &grad_grid,
|
24 |
+
const TensorBase &grad_output,
|
25 |
+
const TensorBase &input,
|
26 |
+
const TensorBase &grid,
|
27 |
+
int64_t interpolation_mode,
|
28 |
+
int64_t padding_mode,
|
29 |
+
bool align_corners,
|
30 |
+
std::array<bool, 2> output_mask);
|
31 |
+
DECLARE_DISPATCH(forward_2d_fn, grid_sampler_2d_cpu_kernel);
|
32 |
+
DECLARE_DISPATCH(backward_2d_fn, grid_sampler_2d_backward_cpu_kernel);
|
33 |
+
|
34 |
+
}} // namespace at::native
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/IndexKernelUtils.h
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/native/TensorIterator.h>
|
3 |
+
#include <c10/util/irange.h>
|
4 |
+
|
5 |
+
namespace at {
|
6 |
+
namespace native {
|
7 |
+
|
8 |
+
namespace {
|
9 |
+
static bool is_constant_index(int ntensor, const int64_t* strides) {
|
10 |
+
AT_ASSERT(ntensor >= 3);
|
11 |
+
for (const auto arg : c10::irange(2, ntensor)) {
|
12 |
+
if (strides[arg] != 0) {
|
13 |
+
return false;
|
14 |
+
}
|
15 |
+
}
|
16 |
+
return true;
|
17 |
+
}
|
18 |
+
|
19 |
+
|
20 |
+
struct Indexer {
|
21 |
+
Indexer(int64_t num_indexers, char** indexers, const int64_t* indexer_strides,
|
22 |
+
IntArrayRef original_sizes, IntArrayRef original_strides)
|
23 |
+
: num_indexers(num_indexers)
|
24 |
+
, indexers(indexers)
|
25 |
+
, indexer_strides(indexer_strides)
|
26 |
+
, original_strides(original_strides.data())
|
27 |
+
, original_sizes(original_sizes.data()) {
|
28 |
+
AT_ASSERT(static_cast<int64_t>(original_strides.size()) == num_indexers);
|
29 |
+
AT_ASSERT(static_cast<int64_t>(original_sizes.size()) == num_indexers);
|
30 |
+
}
|
31 |
+
|
32 |
+
int64_t num_indexers;
|
33 |
+
char** indexers;
|
34 |
+
const int64_t* indexer_strides;
|
35 |
+
const int64_t* original_strides;
|
36 |
+
const int64_t* original_sizes;
|
37 |
+
|
38 |
+
int64_t get(int64_t idx) {
|
39 |
+
int64_t offset = 0;
|
40 |
+
for (const auto j : c10::irange(num_indexers)) {
|
41 |
+
int64_t value = *(int64_t*)&indexers[j][idx * indexer_strides[j]];
|
42 |
+
int64_t size = original_sizes[j];
|
43 |
+
TORCH_CHECK_INDEX(value >= -size && value < size,
|
44 |
+
"index ", value, " is out of bounds for dimension ", j, " with size ", size);
|
45 |
+
if (value < 0) {
|
46 |
+
value += size;
|
47 |
+
}
|
48 |
+
offset += value * original_strides[j];
|
49 |
+
}
|
50 |
+
return offset;
|
51 |
+
}
|
52 |
+
};
|
53 |
+
} // anonymous namespace
|
54 |
+
|
55 |
+
template <typename scalar_t, typename func_t>
|
56 |
+
void cpu_index_kernel(TensorIteratorBase& iter, IntArrayRef index_size, IntArrayRef index_stride,
|
57 |
+
const func_t& f, bool serial_execution=false)
|
58 |
+
{
|
59 |
+
int ntensor = iter.ntensors();
|
60 |
+
// When launch the index parallel version, set a relative small grain size less than the INTERNAL::GRAIN_SIZE
|
61 |
+
// to make the whole available thread numbers get more balanced work load and a better cache location.
|
62 |
+
// The grain size here is chosen by the op benchmark to overcome the thread launch overhead
|
63 |
+
const int index_parallel_grain_size = 3000;
|
64 |
+
auto loop = [&](char** data, const int64_t* strides, int64_t n) {
|
65 |
+
auto indexer = Indexer(ntensor - 2, &data[2], &strides[2], index_size, index_stride);
|
66 |
+
char* dst = data[0];
|
67 |
+
char* src = data[1];
|
68 |
+
if (is_constant_index(ntensor, strides)) {
|
69 |
+
// specialization for when every element uses the same index
|
70 |
+
int64_t offset = indexer.get(0);
|
71 |
+
for (const auto i : c10::irange(n)) {
|
72 |
+
f(dst + strides[0] * i, src + strides[1] * i, offset);
|
73 |
+
}
|
74 |
+
} else {
|
75 |
+
for (const auto i : c10::irange(n)) {
|
76 |
+
int64_t offset = indexer.get(i);
|
77 |
+
f(dst + strides[0] * i, src + strides[1] * i, offset);
|
78 |
+
}
|
79 |
+
}
|
80 |
+
};
|
81 |
+
if (serial_execution) {
|
82 |
+
iter.serial_for_each(loop, {0, iter.numel()});
|
83 |
+
} else {
|
84 |
+
iter.for_each(loop, index_parallel_grain_size);
|
85 |
+
}
|
86 |
+
}
|
87 |
+
} // at
|
88 |
+
} // native
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/Intrinsics.h
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#if defined(__clang__) && (defined(__x86_64__) || defined(__i386__))
|
4 |
+
/* Clang-compatible compiler, targeting x86/x86-64 */
|
5 |
+
#include <x86intrin.h>
|
6 |
+
#elif defined(_MSC_VER)
|
7 |
+
/* Microsoft C/C++-compatible compiler */
|
8 |
+
#include <intrin.h>
|
9 |
+
#if _MSC_VER <= 1900
|
10 |
+
#define _mm256_extract_epi64(X, Y) (((uint64_t*)&X)[Y])
|
11 |
+
#endif
|
12 |
+
#elif defined(__GNUC__) && (defined(__x86_64__) || defined(__i386__))
|
13 |
+
/* GCC-compatible compiler, targeting x86/x86-64 */
|
14 |
+
#include <x86intrin.h>
|
15 |
+
#elif defined(__GNUC__) && defined(__ARM_NEON__)
|
16 |
+
/* GCC-compatible compiler, targeting ARM with NEON */
|
17 |
+
#include <arm_neon.h>
|
18 |
+
#elif defined(__GNUC__) && defined(__IWMMXT__)
|
19 |
+
/* GCC-compatible compiler, targeting ARM with WMMX */
|
20 |
+
#include <mmintrin.h>
|
21 |
+
#elif (defined(__GNUC__) || defined(__xlC__)) && \
|
22 |
+
(defined(__VEC__) || defined(__ALTIVEC__))
|
23 |
+
/* XLC or GCC-compatible compiler, targeting PowerPC with VMX/VSX */
|
24 |
+
#include <altivec.h>
|
25 |
+
/* We need to undef those tokens defined by <altivec.h> to avoid conflicts
|
26 |
+
with the C++ types. => Can still use __bool/__vector */
|
27 |
+
#undef bool
|
28 |
+
#undef vector
|
29 |
+
#undef pixel
|
30 |
+
#elif defined(__GNUC__) && defined(__SPE__)
|
31 |
+
/* GCC-compatible compiler, targeting PowerPC with SPE */
|
32 |
+
#include <spe.h>
|
33 |
+
#endif
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/IsContiguous.h
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
namespace at { namespace native { inline namespace CPU_CAPABILITY {
|
4 |
+
|
5 |
+
// n: number of function arguments (arity)
|
6 |
+
// traits: function_traits (see FunctionTraits.h)
|
7 |
+
// s: index of scalar argument or -1
|
8 |
+
template <int n, int stride_index, typename traits, int s=-1>
|
9 |
+
struct IsContiguous {
|
10 |
+
static bool eval(const int64_t* strides) {
|
11 |
+
using type = typename traits::template arg<n - 1>::type;
|
12 |
+
return strides[stride_index] == (s == n ? 0 : sizeof(type)) &&
|
13 |
+
IsContiguous<n - 1, stride_index - 1, traits, s>::eval(strides);
|
14 |
+
}
|
15 |
+
};
|
16 |
+
|
17 |
+
// will be called when there is an output exists
|
18 |
+
template <typename traits, int s>
|
19 |
+
struct IsContiguous<0, 0, traits, s> {
|
20 |
+
static bool eval(const int64_t* strides) {
|
21 |
+
return strides[0] == sizeof(typename traits::result_type);
|
22 |
+
}
|
23 |
+
};
|
24 |
+
|
25 |
+
// will be called when there is no output
|
26 |
+
template <typename traits, int s>
|
27 |
+
struct IsContiguous<0, -1, traits, s> {
|
28 |
+
static bool eval(const int64_t* /*strides*/) {
|
29 |
+
return true;
|
30 |
+
}
|
31 |
+
};
|
32 |
+
|
33 |
+
// output and all inputs are contiguous
|
34 |
+
template <typename traits,
|
35 |
+
typename std::enable_if<std::is_void<typename traits::result_type>::value>::type* = nullptr>
|
36 |
+
static inline bool is_contiguous(const int64_t* strides) {
|
37 |
+
return IsContiguous<traits::arity, traits::arity - 1, traits>::eval(strides);
|
38 |
+
}
|
39 |
+
|
40 |
+
template <typename traits,
|
41 |
+
typename std::enable_if<!std::is_void<typename traits::result_type>::value>::type* = nullptr>
|
42 |
+
static inline bool is_contiguous(const int64_t* strides) {
|
43 |
+
return IsContiguous<traits::arity, traits::arity, traits>::eval(strides);
|
44 |
+
}
|
45 |
+
|
46 |
+
// input at `s` is scalar (stride 0); output and other inputs are contiguous
|
47 |
+
// NB: output is typically at strides[0] so first input corresponds to s=1
|
48 |
+
template <typename traits, int s,
|
49 |
+
typename std::enable_if<std::is_void<typename traits::result_type>::value>::type* = nullptr>
|
50 |
+
static inline bool is_contiguous_scalar(const int64_t* strides) {
|
51 |
+
static_assert(s > 0 && s <= traits::arity, "scalar argument index out of bounds");
|
52 |
+
return IsContiguous<traits::arity, traits::arity - 1, traits, s>::eval(strides);
|
53 |
+
}
|
54 |
+
|
55 |
+
template <typename traits, int s,
|
56 |
+
typename std::enable_if<!std::is_void<typename traits::result_type>::value>::type* = nullptr>
|
57 |
+
static inline bool is_contiguous_scalar(const int64_t* strides) {
|
58 |
+
static_assert(s > 0 && s <= traits::arity, "scalar argument index out of bounds");
|
59 |
+
return IsContiguous<traits::arity, traits::arity, traits, s>::eval(strides);
|
60 |
+
}
|
61 |
+
|
62 |
+
}}}
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/LogAddExp.h
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/util/complex.h>
|
4 |
+
#include <ATen/NumericUtils.h>
|
5 |
+
|
6 |
+
namespace at { namespace native {
|
7 |
+
inline namespace CPU_CAPABILITY {
|
8 |
+
|
9 |
+
// custom min and max to be used in logcumsumexp for complex arguments
|
10 |
+
template <typename scalar_t>
|
11 |
+
std::pair<c10::complex<scalar_t>, c10::complex<scalar_t>> _logcumsumexp_minmax(c10::complex<scalar_t> x, c10::complex<scalar_t> y) {
|
12 |
+
if (at::_isnan(y)) { // either real is nan or imag is nan
|
13 |
+
return std::make_pair(y, y);
|
14 |
+
} else if (at::_isnan(x)) { // either real is nan or imag is nan
|
15 |
+
return std::make_pair(x, x);
|
16 |
+
} else {
|
17 |
+
return (x.real() < y.real()) ? std::make_pair(x, y) : std::make_pair(y, x);
|
18 |
+
}
|
19 |
+
}
|
20 |
+
|
21 |
+
template <typename scalar_t>
|
22 |
+
scalar_t _log_add_exp_helper(scalar_t x, scalar_t y) {
|
23 |
+
// Reference : https://www.tensorflow.org/api_docs/python/tf/math/cumulative_logsumexp
|
24 |
+
scalar_t min = at::_isnan(y) ? y : std::min(x, y); // std::min returns first arg if one of the args is nan
|
25 |
+
scalar_t max = at::_isnan(y) ? y : std::max(x, y); // std::max returns first arg if one of the args is nan
|
26 |
+
if (min != max || std::isfinite(min)) {
|
27 |
+
// nan will be propagated here
|
28 |
+
return std::log1p(std::exp(min - max)) + max;
|
29 |
+
} else {
|
30 |
+
// special case to correctly handle infinite cases
|
31 |
+
return x;
|
32 |
+
}
|
33 |
+
}
|
34 |
+
|
35 |
+
template <typename scalar_t>
|
36 |
+
c10::complex<scalar_t> _log_add_exp_helper(const c10::complex<scalar_t>& x, const c10::complex<scalar_t>& y) {
|
37 |
+
auto [min, max] = _logcumsumexp_minmax<scalar_t>(x, y);
|
38 |
+
auto min_real = std::real(min);
|
39 |
+
auto max_real = std::real(max);
|
40 |
+
|
41 |
+
if (at::_isnan(min)) { // either real is nan or imag is nan
|
42 |
+
// handling the "infectious" NaNs
|
43 |
+
return {std::numeric_limits<scalar_t>::quiet_NaN(), std::numeric_limits<scalar_t>::quiet_NaN()};
|
44 |
+
} else if (!std::isfinite(min_real) && (min_real == max_real)) {
|
45 |
+
if (min_real < 0) {
|
46 |
+
// handle the -inf case, the imaginary part here does not really matter as the exp(value)
|
47 |
+
// will be around 0.0 and the angle (i.e. the imaginary part) cannot be determined.
|
48 |
+
// It does not matter if we're taking the exp of this value
|
49 |
+
return min;
|
50 |
+
} else {
|
51 |
+
// handle the +inf case, we don't need the special precision for log1p for small values
|
52 |
+
// and to avoid producing nan in case of real(max) == real(min) == +inf
|
53 |
+
return std::log(std::exp(min) + std::exp(max));
|
54 |
+
}
|
55 |
+
} else {
|
56 |
+
return std::log1p(std::exp(min - max)) + max;
|
57 |
+
}
|
58 |
+
}
|
59 |
+
|
60 |
+
} // end namespace
|
61 |
+
}} //end at::native
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/Loops.h
ADDED
@@ -0,0 +1,394 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// This file provides two functions to help write elementwise kernels:
|
4 |
+
//
|
5 |
+
// cpu_kernel(TensorIterator iter, <lambda>)
|
6 |
+
// cpu_kernel_vec(TensorIterator iter, <lambda>, <vec_lambda>)
|
7 |
+
//
|
8 |
+
// Both functions may generate vectorized code. The cpu_kernel implementation
|
9 |
+
// relies on the compiler's auto-vectorization. The cpu_kernel_vec
|
10 |
+
// implementation uses x86 SIMD intrinsics when available. These functions
|
11 |
+
// are only intended to be used in the ATen/native/cpu subdirectory, since files
|
12 |
+
// in other directories are not compiled with AVX/AVX2 enabled. See README.md
|
13 |
+
// for more details.
|
14 |
+
//
|
15 |
+
// For example, to write a multiplication kernel for float:
|
16 |
+
//
|
17 |
+
// cpu_kernel(iter, [](float a, float b) { return a * b; });
|
18 |
+
//
|
19 |
+
// Or you may write:
|
20 |
+
//
|
21 |
+
// cpu_kernel_vec(iter,
|
22 |
+
// [](float a, float b) { return a * b; },
|
23 |
+
// [](Vectorized<float> a, Vectorized<float> b) { return a * b; });
|
24 |
+
//
|
25 |
+
// See BinaryOpsKernel.cpp for the complete implementation
|
26 |
+
//
|
27 |
+
//
|
28 |
+
|
29 |
+
#include <stdint.h>
|
30 |
+
#include <c10/util/C++17.h>
|
31 |
+
#include <c10/util/Load.h>
|
32 |
+
#include <c10/util/irange.h>
|
33 |
+
#include <ATen/detail/FunctionTraits.h>
|
34 |
+
#include <ATen/native/cpu/IsContiguous.h>
|
35 |
+
#include <ATen/native/TensorIterator.h>
|
36 |
+
#include <ATen/native/TensorIteratorDynamicCasting.h>
|
37 |
+
#include <ATen/cpu/vec/vec.h>
|
38 |
+
|
39 |
+
#include <utility>
|
40 |
+
|
41 |
+
namespace at { namespace native { inline namespace CPU_CAPABILITY {
|
42 |
+
|
43 |
+
using namespace vec;
|
44 |
+
|
45 |
+
template <typename traits, std::size_t... INDEX>
|
46 |
+
typename traits::ArgsTuple
|
47 |
+
dereference_impl(char* C10_RESTRICT data[], const int64_t* strides, int64_t i,
|
48 |
+
std::index_sequence<INDEX...>) {
|
49 |
+
return std::make_tuple(
|
50 |
+
c10::load<typename traits::template arg<INDEX>::type>(
|
51 |
+
data[INDEX] + i * strides[INDEX])...);
|
52 |
+
}
|
53 |
+
|
54 |
+
template <typename traits>
|
55 |
+
typename traits::ArgsTuple
|
56 |
+
dereference(char* C10_RESTRICT data[], const int64_t* strides, int64_t i) {
|
57 |
+
using Indices = std::make_index_sequence<traits::arity>;
|
58 |
+
return dereference_impl<traits>(data, strides, i, Indices{});
|
59 |
+
}
|
60 |
+
|
61 |
+
template <typename traits, std::size_t... INDEX>
|
62 |
+
typename traits::ArgsTuple
|
63 |
+
dereference_vec_impl(char* C10_RESTRICT data[],
|
64 |
+
const typename traits::result_type& opt_scalar,
|
65 |
+
size_t S,
|
66 |
+
int64_t i,
|
67 |
+
std::index_sequence<INDEX...>) {
|
68 |
+
using Vec = typename traits::result_type;
|
69 |
+
using scalar_t = typename Vec::value_type;
|
70 |
+
return std::make_tuple(
|
71 |
+
S == INDEX + 1 ?
|
72 |
+
opt_scalar :
|
73 |
+
Vec::loadu(data[INDEX] + i * sizeof(scalar_t))...);
|
74 |
+
}
|
75 |
+
|
76 |
+
template <typename traits>
|
77 |
+
typename traits::ArgsTuple
|
78 |
+
dereference_vec(char* C10_RESTRICT data[], const typename traits::result_type& opt_scalar, size_t S, int64_t i) {
|
79 |
+
using Indices = std::make_index_sequence<traits::arity>;
|
80 |
+
return dereference_vec_impl<traits>(data, opt_scalar, S, i, Indices{});
|
81 |
+
}
|
82 |
+
|
83 |
+
template <typename func_t,
|
84 |
+
typename std::enable_if<!std::is_void<typename function_traits<func_t>::result_type>::value>::type* = nullptr>
|
85 |
+
static inline void
|
86 |
+
execute_op(char* C10_RESTRICT data[], const int64_t* strides, int64_t i, int64_t n, func_t&& op) {
|
87 |
+
using traits = function_traits<func_t>;
|
88 |
+
using result_type = typename traits::result_type;
|
89 |
+
for (; i < n; i++) {
|
90 |
+
result_type* out_ptr = (result_type*)(data[0] + i * strides[0]);
|
91 |
+
*out_ptr = c10::guts::apply(std::forward<func_t>(op), dereference<traits>(
|
92 |
+
&data[1],
|
93 |
+
&strides[1],
|
94 |
+
i));
|
95 |
+
}
|
96 |
+
}
|
97 |
+
|
98 |
+
template <typename func_t,
|
99 |
+
typename std::enable_if<std::is_void<typename function_traits<func_t>::result_type>::value>::type* = nullptr>
|
100 |
+
static inline void
|
101 |
+
execute_op(char* C10_RESTRICT data[], const int64_t* strides, int64_t i, int64_t n, func_t&& op) {
|
102 |
+
using traits = function_traits<func_t>;
|
103 |
+
for (; i < n; i++) {
|
104 |
+
c10::guts::apply(std::forward<func_t>(op), dereference<traits>(
|
105 |
+
&data[0],
|
106 |
+
&strides[0],
|
107 |
+
i));
|
108 |
+
}
|
109 |
+
}
|
110 |
+
|
111 |
+
// Basic loop operation (one output, N inputs). May be auto-vectorized
|
112 |
+
// by the compiler. Supports inputs and outputs of different types.
|
113 |
+
template <typename func_t>
|
114 |
+
static inline void
|
115 |
+
basic_loop(char* C10_RESTRICT data[], const int64_t* strides_, int64_t i, int64_t n, func_t&& op) {
|
116 |
+
using traits = function_traits<func_t>;
|
117 |
+
constexpr int ntensors = traits::arity + 1;
|
118 |
+
|
119 |
+
// Copying strides to temporary array helps auto vectorization in older GCC
|
120 |
+
// versions.
|
121 |
+
int64_t strides[ntensors];
|
122 |
+
for (const auto arg : c10::irange(ntensors)) {
|
123 |
+
strides[arg] = strides_[arg];
|
124 |
+
}
|
125 |
+
|
126 |
+
execute_op(data, strides, i, n, std::forward<func_t>(op));
|
127 |
+
}
|
128 |
+
|
129 |
+
// the recursive variadic template for iterating over the returned tuple
|
130 |
+
template<class T, size_t N>
|
131 |
+
struct TupleOutput {
|
132 |
+
static void handle(char *C10_RESTRICT data[], const int64_t *strides, int64_t i,
|
133 |
+
const T &tuple) {
|
134 |
+
TupleOutput<T, N - 1>::handle(data, strides, i, tuple);
|
135 |
+
|
136 |
+
auto output = std::get<N - 1>(tuple);
|
137 |
+
using output_type = decltype(output);
|
138 |
+
output_type * out_ptr = (output_type *)(data[N - 1] + i * strides[N - 1]);
|
139 |
+
*out_ptr = output;
|
140 |
+
}
|
141 |
+
};
|
142 |
+
|
143 |
+
// Base case for the above recursive template
|
144 |
+
template<class T>
|
145 |
+
struct TupleOutput<T, 1> {
|
146 |
+
static void handle(char *C10_RESTRICT data[], const int64_t *strides, int64_t i,
|
147 |
+
const T &tuple) {
|
148 |
+
auto output = std::get<0>(tuple);
|
149 |
+
using output_type = decltype(output);
|
150 |
+
output_type* out_ptr = (output_type *)(data[0] + i * strides[0]);
|
151 |
+
*out_ptr = output;
|
152 |
+
}
|
153 |
+
};
|
154 |
+
|
155 |
+
template<class... Args>
|
156 |
+
void handle_tuple_outputs(char* C10_RESTRICT data[],
|
157 |
+
const int64_t* strides,
|
158 |
+
int64_t i,
|
159 |
+
const std::tuple<Args...> &tuple) {
|
160 |
+
TupleOutput<decltype(tuple), sizeof...(Args)>::handle(data, strides, i, tuple);
|
161 |
+
}
|
162 |
+
|
163 |
+
// Loop operation for `cpu_kernel_multiple_outputs`.
|
164 |
+
// 1. Use `c10::guts::apply` to make dynamic method invocation
|
165 |
+
// for the lambda passed in `cpu_kernel_multiple_outputs`.
|
166 |
+
// 2. Iterate over the members of the returned tuple, set the corresponding
|
167 |
+
// output tensor by the tuple member in `handle_tuple_outputs` function.
|
168 |
+
template <typename func_t>
|
169 |
+
static inline void
|
170 |
+
multiple_outputs_loop(char* C10_RESTRICT data[], const int64_t* strides_, int64_t i, int64_t n, func_t&& op) {
|
171 |
+
using traits = function_traits<func_t>;
|
172 |
+
|
173 |
+
using result_type = typename traits::result_type;
|
174 |
+
constexpr int num_outputs = std::tuple_size<result_type>::value;
|
175 |
+
constexpr int ntensors = traits::arity + num_outputs;
|
176 |
+
|
177 |
+
// Copying strides to temporary array helps auto vectorization in older GCC
|
178 |
+
// versions.
|
179 |
+
int64_t strides[ntensors];
|
180 |
+
for (const auto arg : c10::irange(ntensors)) {
|
181 |
+
strides[arg] = strides_[arg];
|
182 |
+
}
|
183 |
+
|
184 |
+
for (; i < n; i++) {
|
185 |
+
auto output = c10::guts::apply(op, dereference<traits>(
|
186 |
+
&data[num_outputs],
|
187 |
+
&strides[num_outputs],
|
188 |
+
i));
|
189 |
+
handle_tuple_outputs(data, strides, i, output);
|
190 |
+
}
|
191 |
+
}
|
192 |
+
|
193 |
+
// Explicitly vectorized loop implementation. All inputs and outputs must be
|
194 |
+
// the same type and contiguous with one exception: a single input may be
|
195 |
+
// a scalar (stride 0). It's position is indicated by the argument `S`. If `S`
|
196 |
+
// is 0, then there are no scalar inputs.
|
197 |
+
template <typename func_t, typename vec_func_t>
|
198 |
+
static inline void
|
199 |
+
vectorized_loop(char** C10_RESTRICT data_, int64_t n, int64_t S, func_t&& op, vec_func_t&& vop) {
|
200 |
+
using traits = function_traits<vec_func_t>;
|
201 |
+
using scalar_t = typename function_traits<func_t>::result_type;
|
202 |
+
using Vec = Vectorized<scalar_t>;
|
203 |
+
constexpr int ntensors = traits::arity + 1;
|
204 |
+
|
205 |
+
char* C10_RESTRICT data[ntensors];
|
206 |
+
for (const auto arg : c10::irange(ntensors)) {
|
207 |
+
data[arg] = data_[arg];
|
208 |
+
}
|
209 |
+
|
210 |
+
Vec opt_scalar = Vec(S > 0 ? *(scalar_t*)data[S] : scalar_t(0));
|
211 |
+
int64_t i = 0;
|
212 |
+
for (; i <= n - 2 * Vec::size(); i += 2 * Vec::size()) {
|
213 |
+
auto args1 = dereference_vec<traits>(&data[1], opt_scalar, S, i);
|
214 |
+
auto args2 = dereference_vec<traits>(&data[1], opt_scalar, S, i + Vec::size());
|
215 |
+
auto out1 = c10::guts::apply(std::forward<vec_func_t>(vop), std::move(args1));
|
216 |
+
auto out2 = c10::guts::apply(std::forward<vec_func_t>(vop), std::move(args2));
|
217 |
+
out1.store(data[0] + i * sizeof(scalar_t));
|
218 |
+
out2.store(data[0] + (i + Vec::size()) * sizeof(scalar_t));
|
219 |
+
}
|
220 |
+
if (i < n) {
|
221 |
+
int64_t strides[ntensors];
|
222 |
+
for (const auto arg : c10::irange(ntensors)) {
|
223 |
+
strides[arg] = (S > 0 && arg == S) ? 0 : sizeof(scalar_t);
|
224 |
+
}
|
225 |
+
basic_loop(data, strides, i, n, std::forward<func_t>(op));
|
226 |
+
}
|
227 |
+
}
|
228 |
+
|
229 |
+
|
230 |
+
template <typename traits, typename cb_t>
|
231 |
+
static inline void unroll_contiguous_scalar_checks(
|
232 |
+
const int64_t* /*strides*/,
|
233 |
+
std::index_sequence<>,
|
234 |
+
cb_t&& cb) {
|
235 |
+
cb(0);
|
236 |
+
}
|
237 |
+
|
238 |
+
template <typename traits, typename cb_t, size_t INDEX0, size_t ...INDEX>
|
239 |
+
static inline void unroll_contiguous_scalar_checks(
|
240 |
+
const int64_t* strides,
|
241 |
+
std::index_sequence<INDEX0, INDEX...>,
|
242 |
+
cb_t&& cb) {
|
243 |
+
if (is_contiguous_scalar<traits, INDEX0 + 1>(strides)) {
|
244 |
+
cb(INDEX0 + 1);
|
245 |
+
} else {
|
246 |
+
unroll_contiguous_scalar_checks<traits>(strides, std::index_sequence<INDEX...>{}, std::forward<cb_t>(cb));
|
247 |
+
}
|
248 |
+
}
|
249 |
+
|
250 |
+
template <typename op_t, typename vop_t>
|
251 |
+
struct VectorizedLoop2d {
|
252 |
+
op_t op;
|
253 |
+
vop_t vop;
|
254 |
+
|
255 |
+
using traits = function_traits<op_t>;
|
256 |
+
static constexpr int ntensors = traits::arity + 1;
|
257 |
+
using data_t = std::array<char*, ntensors>;
|
258 |
+
|
259 |
+
VectorizedLoop2d(const op_t &op, vop_t vop):
|
260 |
+
op(op), vop(std::move(vop)) {}
|
261 |
+
|
262 |
+
static void advance(data_t &data, const int64_t *outer_strides) {
|
263 |
+
for (const auto arg : c10::irange(data.size())) {
|
264 |
+
data[arg] += outer_strides[arg];
|
265 |
+
}
|
266 |
+
}
|
267 |
+
|
268 |
+
void operator()(char** base, const int64_t *strides, int64_t size0, int64_t size1) {
|
269 |
+
data_t data;
|
270 |
+
std::copy_n(base, ntensors, data.data());
|
271 |
+
const int64_t *outer_strides = &strides[ntensors];
|
272 |
+
|
273 |
+
if (is_contiguous<traits>(strides)) {
|
274 |
+
for (const auto i C10_UNUSED : c10::irange(size1)) {
|
275 |
+
vectorized_loop(data.data(), size0, 0, op, vop);
|
276 |
+
advance(data, outer_strides);
|
277 |
+
}
|
278 |
+
} else {
|
279 |
+
using Indices = std::make_index_sequence<traits::arity>;
|
280 |
+
unroll_contiguous_scalar_checks<traits>(strides, Indices{}, [&](size_t idx) {
|
281 |
+
if (idx) {
|
282 |
+
for (const auto i C10_UNUSED : c10::irange(size1)) {
|
283 |
+
vectorized_loop(data.data(), size0, idx, op, vop);
|
284 |
+
advance(data, outer_strides);
|
285 |
+
}
|
286 |
+
} else {
|
287 |
+
for (const auto i C10_UNUSED : c10::irange(size1)) {
|
288 |
+
basic_loop(data.data(), strides, 0, size0, op);
|
289 |
+
advance(data, outer_strides);
|
290 |
+
}
|
291 |
+
}
|
292 |
+
});
|
293 |
+
}
|
294 |
+
}
|
295 |
+
};
|
296 |
+
|
297 |
+
template <typename op_t, typename vop_t>
|
298 |
+
VectorizedLoop2d<op_t, vop_t> make_vectorized_loop2d(
|
299 |
+
const op_t &op, const vop_t &vop) {
|
300 |
+
return VectorizedLoop2d<op_t, vop_t>(op, vop);
|
301 |
+
}
|
302 |
+
|
303 |
+
template <typename func_t>
|
304 |
+
void cpu_kernel(TensorIteratorBase& iter, func_t&& op, int64_t grain_size = at::internal::GRAIN_SIZE) {
|
305 |
+
using traits = function_traits<func_t>;
|
306 |
+
// this could be extended to work with void return types
|
307 |
+
TORCH_INTERNAL_ASSERT(iter.ninputs() == traits::arity);
|
308 |
+
TORCH_INTERNAL_ASSERT(iter.noutputs() == 1);
|
309 |
+
// dynamic casting not currently supported on CPU
|
310 |
+
TORCH_INTERNAL_ASSERT(!needs_dynamic_casting<func_t>::check(iter));
|
311 |
+
|
312 |
+
iter.for_each([&](char** data, const int64_t* strides, int64_t n) {
|
313 |
+
// basic loop can handle 1d slices with arbitrary strides, and 1d slices is all that
|
314 |
+
// iter.for_each is ever sending to the loop lambda
|
315 |
+
basic_loop(data, strides, 0, n, std::forward<func_t>(op));
|
316 |
+
}, grain_size);
|
317 |
+
iter.cast_outputs();
|
318 |
+
}
|
319 |
+
|
320 |
+
// This function helps write elementwise kernels that requires multiple outputs.
|
321 |
+
// It follows the similar structure of cpu_kernel.
|
322 |
+
// Instead of `basic_loop` function, a new `multiple_outputs_loop` function is
|
323 |
+
// manipulated to handle multiple return values.
|
324 |
+
// For now `needs_dynamic_casting` check is not added as the passed lambda (`func_t`)
|
325 |
+
// of `multiple_outputs_loop` returns `std::tuple` instead of `scalar_t`.
|
326 |
+
// The `gpu_kernel_multiple_outputs` is also implemented without this check,
|
327 |
+
// We could extend `needs_dynamic_casting` to support both `std::tuple` and
|
328 |
+
// `thrust::tuple` in the future.
|
329 |
+
template <typename func_t>
|
330 |
+
void cpu_kernel_multiple_outputs(TensorIteratorBase& iter, func_t&& op, int64_t grain_size = at::internal::GRAIN_SIZE) {
|
331 |
+
using traits = function_traits<func_t>;
|
332 |
+
TORCH_INTERNAL_ASSERT(iter.ninputs() == traits::arity);
|
333 |
+
|
334 |
+
iter.for_each([&](char** data, const int64_t* strides, int64_t n) {
|
335 |
+
multiple_outputs_loop(data, strides, 0, n, std::forward<func_t>(op));
|
336 |
+
}, grain_size);
|
337 |
+
iter.cast_outputs();
|
338 |
+
}
|
339 |
+
|
340 |
+
template <bool check_dynamic_cast=true, typename func_t, typename vec_func_t>
|
341 |
+
void cpu_kernel_vec(TensorIteratorBase& iter, func_t&& op, vec_func_t&& vop, int64_t grain_size = at::internal::GRAIN_SIZE) {
|
342 |
+
using traits = function_traits<func_t>;
|
343 |
+
// this could be extended to work with void return types
|
344 |
+
TORCH_INTERNAL_ASSERT(iter.ninputs() == traits::arity);
|
345 |
+
TORCH_INTERNAL_ASSERT(iter.noutputs() == 1);
|
346 |
+
// dynamic casting not currently supported on CPU, but some kernels (like Fill)
|
347 |
+
// explicitly dynamic_cast, so we give the opt-out of checking.
|
348 |
+
if constexpr (check_dynamic_cast) {
|
349 |
+
TORCH_INTERNAL_ASSERT(!needs_dynamic_casting<func_t>::check(iter));
|
350 |
+
}
|
351 |
+
|
352 |
+
iter.for_each(make_vectorized_loop2d(op, vop), grain_size);
|
353 |
+
iter.cast_outputs();
|
354 |
+
}
|
355 |
+
|
356 |
+
template <typename func_t>
|
357 |
+
void cpu_serial_kernel(TensorIteratorBase& iter, func_t&& op, const Range& range) {
|
358 |
+
using traits = function_traits<func_t>;
|
359 |
+
constexpr bool result_void = std::is_void<typename traits::result_type>::value;
|
360 |
+
TORCH_INTERNAL_ASSERT(iter.ninputs() == traits::arity &&
|
361 |
+
((result_void && iter.noutputs() == 0) || (!result_void && iter.noutputs() == 1)));
|
362 |
+
// dynamic casting not currently supported on CPU
|
363 |
+
TORCH_INTERNAL_ASSERT(!needs_dynamic_casting<func_t>::check(iter));
|
364 |
+
|
365 |
+
iter.serial_for_each([&](char** data, const int64_t* strides, int64_t n) {
|
366 |
+
basic_loop(data, strides, 0, n, std::forward<func_t>(op));
|
367 |
+
}, range);
|
368 |
+
iter.cast_outputs();
|
369 |
+
}
|
370 |
+
|
371 |
+
template <typename func_t>
|
372 |
+
void cpu_serial_kernel(TensorIteratorBase& iter, func_t&& op) {
|
373 |
+
cpu_serial_kernel(iter, op, {0, iter.numel()});
|
374 |
+
}
|
375 |
+
|
376 |
+
template <typename func_t, typename vec_func_t>
|
377 |
+
void cpu_serial_kernel_vec(TensorIteratorBase& iter, func_t&& op, vec_func_t&& vop, const Range& range) {
|
378 |
+
using traits = function_traits<func_t>;
|
379 |
+
// this could be extended to work with void return types
|
380 |
+
TORCH_INTERNAL_ASSERT(iter.ninputs() == traits::arity);
|
381 |
+
TORCH_INTERNAL_ASSERT(iter.noutputs() == 1);
|
382 |
+
// dynamic casting not currently supported on CPU
|
383 |
+
TORCH_INTERNAL_ASSERT(!needs_dynamic_casting<func_t>::check(iter));
|
384 |
+
|
385 |
+
iter.serial_for_each(make_vectorized_loop2d(op, vop), range);
|
386 |
+
iter.cast_outputs();
|
387 |
+
}
|
388 |
+
|
389 |
+
template <typename func_t, typename vec_func_t>
|
390 |
+
void cpu_serial_kernel_vec(TensorIteratorBase& iter, func_t&& op, vec_func_t&& vop) {
|
391 |
+
cpu_serial_kernel_vec(iter, op, vop, {0, iter.numel()});
|
392 |
+
}
|
393 |
+
|
394 |
+
}}} // namespace at::native::<anonymous>
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/MaxUnpoolKernel.h
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/native/DispatchStub.h>
|
3 |
+
|
4 |
+
namespace at {
|
5 |
+
class Tensor;
|
6 |
+
|
7 |
+
namespace native {
|
8 |
+
|
9 |
+
using max_unpooling_fn = void(*)(Tensor&, const Tensor&, const Tensor&);
|
10 |
+
|
11 |
+
DECLARE_DISPATCH(max_unpooling_fn, max_unpool2d_kernel);
|
12 |
+
DECLARE_DISPATCH(max_unpooling_fn, max_unpool3d_kernel);
|
13 |
+
|
14 |
+
}} // at::native
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/PixelShuffleKernel.h
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/native/DispatchStub.h>
|
3 |
+
|
4 |
+
namespace at {
|
5 |
+
class TensorBase;
|
6 |
+
}
|
7 |
+
|
8 |
+
namespace at { namespace native {
|
9 |
+
|
10 |
+
using pixel_shuffle_fn = void(*)(TensorBase&, const TensorBase&, int64_t);
|
11 |
+
DECLARE_DISPATCH(pixel_shuffle_fn, pixel_shuffle_kernel);
|
12 |
+
DECLARE_DISPATCH(pixel_shuffle_fn, pixel_unshuffle_kernel);
|
13 |
+
|
14 |
+
}} // at::native
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/Reduce.h
ADDED
@@ -0,0 +1,314 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/native/cpu/Loops.h>
|
4 |
+
#include <ATen/Parallel.h>
|
5 |
+
#include <c10/util/TypeList.h>
|
6 |
+
#include <c10/core/Scalar.h>
|
7 |
+
#include <c10/util/irange.h>
|
8 |
+
|
9 |
+
#include <sstream>
|
10 |
+
#include <type_traits>
|
11 |
+
|
12 |
+
namespace at { namespace native { inline namespace CPU_CAPABILITY {
|
13 |
+
|
14 |
+
using namespace vec;
|
15 |
+
|
16 |
+
#define VEC_LOOP_HEADER(func_t, data) \
|
17 |
+
using scalar_t = typename function_traits<func_t>::result_type; \
|
18 |
+
using Vec = Vectorized<scalar_t>; \
|
19 |
+
char* out_ptr = data[0]; \
|
20 |
+
(void) out_ptr;
|
21 |
+
|
22 |
+
// reduction that is contiguous over the input in dim 0
|
23 |
+
template <typename traits>
|
24 |
+
static inline bool is_contiguous_reduction(const int64_t* strides) {
|
25 |
+
return strides[0] == 0 &&
|
26 |
+
strides[1] == sizeof(typename traits::arg2_t);
|
27 |
+
}
|
28 |
+
|
29 |
+
// reduction that is contiguous over the input in dim 1
|
30 |
+
template <typename traits>
|
31 |
+
static inline bool is_outer_reduction(const int64_t* strides) {
|
32 |
+
return strides[0] == 0 &&
|
33 |
+
strides[2] == sizeof(typename traits::result_type) &&
|
34 |
+
strides[3] == sizeof(typename traits::arg2_t);
|
35 |
+
}
|
36 |
+
|
37 |
+
template <typename func_t, typename vec_func_t>
|
38 |
+
static inline void vectorized_reduction(char** data, int64_t n, int64_t stride,
|
39 |
+
func_t op, vec_func_t vop, bool reduce) {
|
40 |
+
VEC_LOOP_HEADER(func_t, data)
|
41 |
+
const char* in1_ptr = data[1];
|
42 |
+
Vec acc[4];
|
43 |
+
for (const auto j : c10::irange(4)) {
|
44 |
+
acc[j] = Vec::loadu(in1_ptr + j * Vec::size() * sizeof(scalar_t));
|
45 |
+
}
|
46 |
+
for (const auto i : c10::irange(1, n)) {
|
47 |
+
const char* ptr = in1_ptr + stride * i;
|
48 |
+
acc[0] = vop(acc[0], Vec::loadu(ptr + (0 * Vec::size() * sizeof(scalar_t))));
|
49 |
+
acc[1] = vop(acc[1], Vec::loadu(ptr + (1 * Vec::size() * sizeof(scalar_t))));
|
50 |
+
acc[2] = vop(acc[2], Vec::loadu(ptr + (2 * Vec::size() * sizeof(scalar_t))));
|
51 |
+
acc[3] = vop(acc[3], Vec::loadu(ptr + (3 * Vec::size() * sizeof(scalar_t))));
|
52 |
+
}
|
53 |
+
if (reduce) {
|
54 |
+
scalar_t buffer[Vec::size()];
|
55 |
+
acc[0] = vop(vop(acc[0], acc[1]), vop(acc[2], acc[3]));
|
56 |
+
acc[0].store(buffer);
|
57 |
+
for (const auto j : c10::irange(1, Vec::size())) {
|
58 |
+
buffer[0] = op(buffer[0], buffer[j]);
|
59 |
+
}
|
60 |
+
auto dst = (scalar_t*)out_ptr;
|
61 |
+
*dst = op(*dst, buffer[0]);
|
62 |
+
} else {
|
63 |
+
for (const auto j : c10::irange(4)) {
|
64 |
+
auto dst = out_ptr + j * Vec::size() * sizeof(scalar_t);
|
65 |
+
acc[j] = vop(acc[j], Vec::loadu(dst));
|
66 |
+
acc[j].store(dst);
|
67 |
+
}
|
68 |
+
}
|
69 |
+
}
|
70 |
+
|
71 |
+
template <typename F>
|
72 |
+
static inline void UNARY_OUTER_LOOP(char* data[2], const int64_t strides[2], int64_t n, F f) {
|
73 |
+
for (const auto j C10_UNUSED : c10::irange(n)) {
|
74 |
+
f();
|
75 |
+
data[0] += strides[0];
|
76 |
+
data[1] += strides[1];
|
77 |
+
}
|
78 |
+
}
|
79 |
+
|
80 |
+
// computes the reduction out = op(out, in)
|
81 |
+
template <typename func_t, typename vec_func_t>
|
82 |
+
static inline void vectorized_inner_reduction(char** data, int64_t n, func_t op, vec_func_t vop) {
|
83 |
+
VEC_LOOP_HEADER(func_t, data)
|
84 |
+
int64_t vector_stride = 4 * Vec::size() * sizeof(scalar_t);
|
85 |
+
int64_t count = n / (4 * Vec::size());
|
86 |
+
if (count > 0) {
|
87 |
+
vectorized_reduction(data, count, vector_stride, op, vop, /*reduce=*/true);
|
88 |
+
}
|
89 |
+
char* ptrs[3] = { data[0], data[0], data[1] };
|
90 |
+
int64_t strides[] = { 0, 0, sizeof(scalar_t) };
|
91 |
+
basic_loop(ptrs, strides, count * 4 * Vec::size(), n, op);
|
92 |
+
}
|
93 |
+
|
94 |
+
// computes the reduction out = op(out, in)
|
95 |
+
template <typename func_t, typename vec_func_t>
|
96 |
+
static inline void vectorized_outer_reduction(char** data, int64_t inner_stride, int64_t size0, int64_t size1, func_t op, vec_func_t vop) {
|
97 |
+
VEC_LOOP_HEADER(func_t, data)
|
98 |
+
|
99 |
+
// reduce down each column of 4 * Vec::size() elements (128 or 256 bytes)
|
100 |
+
#if defined(CPU_CAPABILITY_AVX512)
|
101 |
+
int64_t outer_stride[2] = { 256, 256 };
|
102 |
+
#else
|
103 |
+
int64_t outer_stride[2] = { 128, 128 };
|
104 |
+
#endif
|
105 |
+
UNARY_OUTER_LOOP(data, outer_stride, size1 / (4 * Vec::size()), [&] {
|
106 |
+
vectorized_reduction(data, size0, inner_stride, op, vop, /*reduce=*/false);
|
107 |
+
});
|
108 |
+
|
109 |
+
// reduce down the remaining columns
|
110 |
+
int64_t step[] = { sizeof(scalar_t), sizeof(scalar_t) };
|
111 |
+
int64_t remaining = size1 % (4 * Vec::size());
|
112 |
+
UNARY_OUTER_LOOP(data, step, remaining, [&] {
|
113 |
+
char* ptrs[3] = { data[0], data[0], data[1] };
|
114 |
+
int64_t strides[] = { 0, 0, inner_stride };
|
115 |
+
basic_loop(ptrs, strides, 0, size0, op);
|
116 |
+
});
|
117 |
+
}
|
118 |
+
|
119 |
+
template<typename traits, typename res_t>
|
120 |
+
static void set_result(const int index, const res_t result, const TensorIteratorBase &iter, const int num_outputs) {
|
121 |
+
// static_assert(std::is_same<res_t, typename traits::arg2_t>::value, "data types must match");
|
122 |
+
if (index < num_outputs) {
|
123 |
+
char *out = (char *) iter.data_ptr(index);
|
124 |
+
*(res_t *) out = result;
|
125 |
+
}
|
126 |
+
}
|
127 |
+
|
128 |
+
template<typename traits, typename res_t>
|
129 |
+
static void set_results(const res_t result, const TensorIteratorBase &iter, const int num_outputs) {
|
130 |
+
AT_ASSERT(num_outputs == 1);
|
131 |
+
set_result<traits>(0, result, iter, num_outputs);
|
132 |
+
}
|
133 |
+
|
134 |
+
template<typename traits, std::size_t i = 0, typename... tuple_t>
|
135 |
+
static inline typename std::enable_if<i == sizeof...(tuple_t), std::size_t>::type
|
136 |
+
for_each_in_tuple(const std::tuple<tuple_t...>& /*t*/, const TensorIteratorBase& /*iter*/, const int /*num_outputs*/) {
|
137 |
+
return i;
|
138 |
+
}
|
139 |
+
|
140 |
+
template<typename traits, std::size_t i = 0, typename... tuple_t>
|
141 |
+
static inline typename std::enable_if<i < sizeof...(tuple_t), std::size_t>::type
|
142 |
+
for_each_in_tuple(const std::tuple<tuple_t...>& t, const TensorIteratorBase &iter, const int num_outputs) {
|
143 |
+
if (i < (size_t)num_outputs) {
|
144 |
+
set_result<traits>(i, std::get<i>(t), iter, num_outputs);
|
145 |
+
return for_each_in_tuple<traits, i + 1, tuple_t...>(t, iter, num_outputs);
|
146 |
+
}
|
147 |
+
return i;
|
148 |
+
}
|
149 |
+
|
150 |
+
template<typename traits, typename... res_t>
|
151 |
+
static void set_results(const std::tuple<res_t...>& result, const TensorIteratorBase &iter, const int num_outputs) {
|
152 |
+
AT_ASSERT(num_outputs >= 1);
|
153 |
+
std::size_t result_size = for_each_in_tuple<traits>(result, iter, num_outputs);
|
154 |
+
AT_ASSERT((size_t)num_outputs == result_size);
|
155 |
+
}
|
156 |
+
|
157 |
+
template <typename T, typename... Args>
|
158 |
+
struct all_same : std::conjunction<
|
159 |
+
std::is_same<T, Args>...
|
160 |
+
> {};
|
161 |
+
|
162 |
+
// data_t is the input/output data type.
|
163 |
+
// acc_t is a type that contains all the necessary data
|
164 |
+
// to continue reducing.
|
165 |
+
// index_t is a one-dimensional index
|
166 |
+
//
|
167 |
+
// ops_t is such that &ops_t::reduce, &ops_t::combine, and &ops_t::project exist and satisfy
|
168 |
+
// the following.
|
169 |
+
// reduce: (acc_t, data_t, index_t) -> acc_t adds one data point to the accumulated value.
|
170 |
+
// combine: (acc_t, acc_t) -> acc_t combines two accumulated values into one.
|
171 |
+
// project: acc_t -> out_t finishes the reduction, getting the required output.
|
172 |
+
//
|
173 |
+
// Additionally, acc_t must be default-constructible:
|
174 |
+
// acc_t {} is an identity for combine,
|
175 |
+
// and project(acc_t {}) is the value of the operation on zero elements.
|
176 |
+
//
|
177 |
+
// The point of `combine` is to support parallelization -
|
178 |
+
// the idea is to one sequence of `reduce` calls per thread of execution,
|
179 |
+
// and then to combine them at the end with `combine`.
|
180 |
+
//
|
181 |
+
// If there is more than one output element,
|
182 |
+
// our parallelization strategy is to use one thread for each of them,
|
183 |
+
// which means that `combine` will never be called.
|
184 |
+
//
|
185 |
+
// If, on the other hand, there is only one, then we split the input into
|
186 |
+
// into several pieces, reduce each separately, and then combine them.
|
187 |
+
|
188 |
+
template <typename ops_t, typename init_t>
|
189 |
+
void binary_kernel_reduce(TensorIteratorBase& iter, ops_t ops, init_t init) {
|
190 |
+
using rf_t = decltype(&ops_t::reduce);
|
191 |
+
using cf_t = decltype(&ops_t::combine);
|
192 |
+
using pf_t = decltype(&ops_t::project);
|
193 |
+
using r_traits = binary_function_traits<rf_t>;
|
194 |
+
using c_traits = binary_function_traits<cf_t>;
|
195 |
+
using p_traits = unary_function_traits<pf_t>;
|
196 |
+
using acc_t = typename p_traits::arg1_t;
|
197 |
+
using data_t = typename r_traits::arg2_t;
|
198 |
+
static_assert(
|
199 |
+
all_same<
|
200 |
+
acc_t,
|
201 |
+
init_t,
|
202 |
+
typename r_traits::arg1_t,
|
203 |
+
typename r_traits::result_type,
|
204 |
+
typename c_traits::arg1_t,
|
205 |
+
typename c_traits::arg2_t,
|
206 |
+
typename c_traits::result_type>::value,
|
207 |
+
"all accumulate types must match");
|
208 |
+
static_assert(
|
209 |
+
std::is_default_constructible<acc_t>::value,
|
210 |
+
"the accumulate type must be default-constructible"
|
211 |
+
);
|
212 |
+
const int num_outputs = iter.noutputs();
|
213 |
+
iter.foreach_reduced_elt([&ops, &init, num_outputs](TensorIteratorBase &sub_iter) {
|
214 |
+
auto reduction_body = [&ops, &sub_iter, num_outputs](acc_t acc, int64_t begin, int64_t end) -> acc_t {
|
215 |
+
int ntensors = sub_iter.ntensors();
|
216 |
+
sub_iter.serial_for_each([&acc, &ops, num_outputs, ntensors, begin](char** data, const int64_t* strides, int64_t size) {
|
217 |
+
AT_ASSERT(ntensors - num_outputs == 1);
|
218 |
+
char *in = data[ntensors - 1];
|
219 |
+
int64_t stride = strides[ntensors - 1];
|
220 |
+
for (const auto i : c10::irange(size)) {
|
221 |
+
acc = ops.reduce(acc, c10::load<data_t>(in), begin + i);
|
222 |
+
in += stride;
|
223 |
+
}
|
224 |
+
}, {begin, end});
|
225 |
+
return ops.translate_idx(acc, sub_iter.view_offsets()[0]);
|
226 |
+
};
|
227 |
+
acc_t total_acc = init;
|
228 |
+
auto numel = sub_iter.numel();
|
229 |
+
if (numel < at::internal::GRAIN_SIZE || at::get_num_threads() == 1 ||
|
230 |
+
at::in_parallel_region()) {
|
231 |
+
total_acc = reduction_body(total_acc, 0, numel);
|
232 |
+
} else {
|
233 |
+
int max_threads = at::get_num_threads();
|
234 |
+
AT_ASSERT(max_threads > 0);
|
235 |
+
static_assert(
|
236 |
+
!std::is_same<acc_t, bool>::value,
|
237 |
+
"Concurrently modifying different references into std::vector<bool> is UB."
|
238 |
+
);
|
239 |
+
std::vector<acc_t> buffer((unsigned)max_threads, init);
|
240 |
+
at::parallel_for(0, numel, internal::GRAIN_SIZE,
|
241 |
+
[&](int64_t begin, int64_t end) {
|
242 |
+
auto& acc = buffer[at::get_thread_num()];
|
243 |
+
acc = reduction_body(acc, begin, end);
|
244 |
+
}
|
245 |
+
);
|
246 |
+
for (const auto i : c10::irange(max_threads)) {
|
247 |
+
total_acc = ops.combine(total_acc, buffer[i]);
|
248 |
+
}
|
249 |
+
}
|
250 |
+
set_results<r_traits>(ops.project(total_acc), sub_iter, num_outputs);
|
251 |
+
});
|
252 |
+
}
|
253 |
+
|
254 |
+
template <typename func_t, typename vec_func_t>
|
255 |
+
void binary_kernel_reduce_vec(TensorIteratorBase& iter, func_t op, vec_func_t vop, double ident = 0) {
|
256 |
+
using traits = binary_function_traits<func_t>;
|
257 |
+
static_assert(
|
258 |
+
all_same<
|
259 |
+
typename traits::result_type,
|
260 |
+
typename traits::arg1_t,
|
261 |
+
typename traits::arg2_t>::value,
|
262 |
+
"all types must match");
|
263 |
+
|
264 |
+
iter.output_base().fill_(ident);
|
265 |
+
iter.parallel_reduce([&](char** data, const int64_t* strides, int64_t size0, int64_t size1) {
|
266 |
+
int64_t outer_strides[] = { strides[2], strides[3] };
|
267 |
+
if (is_contiguous_reduction<traits>(strides)) {
|
268 |
+
// input is contiguous in dim 0, output is reduced in dim 0
|
269 |
+
UNARY_OUTER_LOOP(data, outer_strides, size1, [&] {
|
270 |
+
vectorized_inner_reduction(data, size0, op, vop);
|
271 |
+
});
|
272 |
+
} else if (is_outer_reduction<traits>(strides)) {
|
273 |
+
// input and output are contiguous in dim 1
|
274 |
+
int64_t inner_stride = strides[1]; // stride of input in dim 0
|
275 |
+
vectorized_outer_reduction(data, inner_stride, size0, size1, op, vop);
|
276 |
+
} else {
|
277 |
+
UNARY_OUTER_LOOP(data, outer_strides, size1, [&] {
|
278 |
+
char* ptrs[3] = { data[0], data[0], data[1] };
|
279 |
+
int64_t inner_strides[3] = { strides[0], strides[0], strides[1] };
|
280 |
+
basic_loop(ptrs, inner_strides, 0, size0, op);
|
281 |
+
});
|
282 |
+
}
|
283 |
+
});
|
284 |
+
}
|
285 |
+
|
286 |
+
// when reduction is on most inner dimension (dim 0 in TensorIterator)
|
287 |
+
// and input has contiguous most inner dimension, `binary_kernel_reduce_lastdim`
|
288 |
+
// can be used.
|
289 |
+
static inline bool is_reduce_lastdim(TensorIteratorBase& iter) {
|
290 |
+
return iter.num_reduce_dims() == 1 && iter.is_dim_reduced(0)
|
291 |
+
&& iter.ninputs() == 1 && iter.strides(1)[0] == iter.element_size(1);
|
292 |
+
}
|
293 |
+
|
294 |
+
template <typename reduce_func_t>
|
295 |
+
void binary_kernel_reduce_lastdim(TensorIteratorBase& iter, reduce_func_t reduce_op) {
|
296 |
+
auto shape = iter.shape();
|
297 |
+
int64_t dim_size = shape[0];
|
298 |
+
int64_t grain_size = std::max((int64_t) 1, at::internal::GRAIN_SIZE / dim_size);
|
299 |
+
TensorIterator sub_iter(iter);
|
300 |
+
// create sub iterator to parallel on all non-reduce-dims
|
301 |
+
sub_iter.narrow(0, 0, 1);
|
302 |
+
auto loop = [&](char** data, const int64_t* strides, int64_t size) {
|
303 |
+
char* out = data[0];
|
304 |
+
char* in = data[1];
|
305 |
+
for (int64_t i = 0; i < size; ++i) {
|
306 |
+
reduce_op(out, in, dim_size);
|
307 |
+
out += strides[0];
|
308 |
+
in += strides[1];
|
309 |
+
}
|
310 |
+
};
|
311 |
+
sub_iter.for_each(loop, grain_size);
|
312 |
+
}
|
313 |
+
|
314 |
+
}}} // namespace at::native::<anonymous>
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/ReduceUtils.h
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/Parallel.h>
|
4 |
+
#include <ATen/NumericUtils.h>
|
5 |
+
#include <ATen/cpu/vec/vec.h>
|
6 |
+
#include <ATen/cpu/vec/functional.h>
|
7 |
+
#include <ATen/native/ReductionType.h>
|
8 |
+
#include <c10/util/irange.h>
|
9 |
+
#include <ATen/OpMathType.h>
|
10 |
+
#include <ATen/native/cpu/utils.h>
|
11 |
+
#include <ATen/OpMathType.h>
|
12 |
+
|
13 |
+
namespace at::native {
|
14 |
+
inline namespace CPU_CAPABILITY {
|
15 |
+
|
16 |
+
using namespace vec;
|
17 |
+
|
18 |
+
#define AT_DISPATCH_REDUCTION_TYPES(op, ...) \
|
19 |
+
[&] { \
|
20 |
+
switch (op) { \
|
21 |
+
case ReductionType::SUM: { \
|
22 |
+
static constexpr auto reduce = ReductionType::SUM; \
|
23 |
+
return __VA_ARGS__(); \
|
24 |
+
} \
|
25 |
+
case ReductionType::MEAN: { \
|
26 |
+
static constexpr auto reduce = ReductionType::MEAN; \
|
27 |
+
return __VA_ARGS__(); \
|
28 |
+
} \
|
29 |
+
case ReductionType::MIN: { \
|
30 |
+
static constexpr auto reduce = ReductionType::MIN; \
|
31 |
+
return __VA_ARGS__(); \
|
32 |
+
} \
|
33 |
+
case ReductionType::MAX: { \
|
34 |
+
static constexpr auto reduce = ReductionType::MAX; \
|
35 |
+
return __VA_ARGS__(); \
|
36 |
+
} \
|
37 |
+
case ReductionType::PROD: { \
|
38 |
+
static constexpr auto reduce = ReductionType::PROD; \
|
39 |
+
return __VA_ARGS__(); \
|
40 |
+
} \
|
41 |
+
} \
|
42 |
+
}()
|
43 |
+
|
44 |
+
template <typename scalar_t, ReductionType reduce>
|
45 |
+
inline vec_scalar_t<scalar_t> init_value() {
|
46 |
+
using acc_t = vec_scalar_t<scalar_t>;
|
47 |
+
acc_t val;
|
48 |
+
if (reduce == ReductionType::SUM ||
|
49 |
+
reduce == ReductionType::MEAN) {
|
50 |
+
val = static_cast<acc_t>(0);
|
51 |
+
} else if (reduce == ReductionType::PROD) {
|
52 |
+
val = static_cast<acc_t>(1);
|
53 |
+
} else if (reduce == ReductionType::MAX) {
|
54 |
+
val = -std::numeric_limits<acc_t>::infinity();
|
55 |
+
} else {
|
56 |
+
TORCH_INTERNAL_ASSERT(reduce == ReductionType::MIN);
|
57 |
+
val = std::numeric_limits<acc_t>::infinity();
|
58 |
+
}
|
59 |
+
return val;
|
60 |
+
}
|
61 |
+
|
62 |
+
template <typename scalar_t, ReductionType reduce>
|
63 |
+
inline vec_scalar_t<scalar_t> init_value(const c10::optional<Scalar>& initial) {
|
64 |
+
using acc_t = vec_scalar_t<scalar_t>;
|
65 |
+
if (initial.has_value()) {
|
66 |
+
return initial.value().to<acc_t>();
|
67 |
+
} else {
|
68 |
+
return init_value<scalar_t, reduce>();
|
69 |
+
}
|
70 |
+
}
|
71 |
+
|
72 |
+
template <typename scalar_t>
|
73 |
+
inline void init(scalar_t* out, int64_t size, const vec_scalar_t<scalar_t>& val) {
|
74 |
+
using Vec = Vectorized<vec_scalar_t<scalar_t>>;
|
75 |
+
map<scalar_t>(
|
76 |
+
[val](Vec x) { return Vec(val); },
|
77 |
+
out,
|
78 |
+
out,
|
79 |
+
size);
|
80 |
+
}
|
81 |
+
|
82 |
+
template <typename scalar_t, ReductionType reduce>
|
83 |
+
inline void init(scalar_t* out, int64_t size, const c10::optional<Scalar>& initial) {
|
84 |
+
using acc_t = vec_scalar_t<scalar_t>;
|
85 |
+
acc_t val = init_value<scalar_t, reduce>(initial);
|
86 |
+
init(out, size, val);
|
87 |
+
}
|
88 |
+
|
89 |
+
// overload with `include_self`, used by scatter_reduce
|
90 |
+
template <typename scalar_t, ReductionType reduce>
|
91 |
+
inline void init(scalar_t* out, int64_t size, bool include_self = false) {
|
92 |
+
using acc_t = vec_scalar_t<scalar_t>;
|
93 |
+
if (!include_self) {
|
94 |
+
acc_t val = init_value<scalar_t, reduce>();
|
95 |
+
init(out, size, val);
|
96 |
+
}
|
97 |
+
}
|
98 |
+
|
99 |
+
template <typename scalar_t, ReductionType reduce>
|
100 |
+
inline void _init(scalar_t* self_ptr, at::opmath_type<scalar_t>* buffer_ptr, int64_t size, bool include_self) {
|
101 |
+
if (!include_self) {
|
102 |
+
init<at::opmath_type<scalar_t>, reduce>(buffer_ptr, size, include_self);
|
103 |
+
} else {
|
104 |
+
vec::convert(self_ptr, buffer_ptr, size);
|
105 |
+
}
|
106 |
+
}
|
107 |
+
|
108 |
+
template <typename scalar_t>
|
109 |
+
inline typename std::enable_if<!std::is_same<scalar_t, Vec2>::value, scalar_t>::type
|
110 |
+
_max(const scalar_t& x, const scalar_t& y) {
|
111 |
+
return at::_isnan(y) ? y : std::max(x, y);
|
112 |
+
}
|
113 |
+
|
114 |
+
template <typename scalar_t>
|
115 |
+
inline Vectorized<scalar_t> _max(const Vectorized<scalar_t>& x, const Vectorized<scalar_t>& y) {
|
116 |
+
// vec::maximum propagates NaN
|
117 |
+
return vec::maximum(x, y);
|
118 |
+
}
|
119 |
+
|
120 |
+
template <typename vec_t>
|
121 |
+
inline typename std::enable_if<std::is_same<vec_t, Vec2>::value, Vec2>::type
|
122 |
+
_max(const vec_t& x, const vec_t& y) {
|
123 |
+
// vec::maximum propagates NaN
|
124 |
+
return maximum(x, y);
|
125 |
+
}
|
126 |
+
|
127 |
+
template <typename scalar_t>
|
128 |
+
inline typename std::enable_if<!std::is_same<scalar_t, Vec2>::value, scalar_t>::type
|
129 |
+
_min(const scalar_t& x, const scalar_t& y) {
|
130 |
+
return at::_isnan(y) ? y : std::min(x, y);
|
131 |
+
}
|
132 |
+
|
133 |
+
template <typename scalar_t>
|
134 |
+
inline Vectorized<scalar_t> _min(const Vectorized<scalar_t>& x, const Vectorized<scalar_t>& y) {
|
135 |
+
// vec::minimum propagates NaN
|
136 |
+
return vec::minimum(x, y);
|
137 |
+
}
|
138 |
+
|
139 |
+
template <typename vec_t>
|
140 |
+
inline typename std::enable_if<std::is_same<vec_t, Vec2>::value, Vec2>::type
|
141 |
+
_min(const vec_t& x, const vec_t& y) {
|
142 |
+
// vec::minimum propagates NaN
|
143 |
+
return minimum(x, y);
|
144 |
+
}
|
145 |
+
|
146 |
+
template <typename scalar_t, typename accumut, typename Op,
|
147 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
148 |
+
inline void map_acc(
|
149 |
+
const Op& vec_fun,
|
150 |
+
accumut* output_data,
|
151 |
+
const accumut* input_data,
|
152 |
+
const scalar_t* input_data2,
|
153 |
+
int64_t size) {
|
154 |
+
using Vec = vec::Vectorized<scalar_t>;
|
155 |
+
using aVec = vec::Vectorized<accumut>;
|
156 |
+
int64_t d = 0;
|
157 |
+
constexpr int64_t kVecSize = Vec::size();
|
158 |
+
constexpr int64_t kaVecSize = aVec::size();
|
159 |
+
for (d = 0; d < size - (size % kVecSize); d += kVecSize) {
|
160 |
+
Vec data2_vec = Vec::loadu(input_data2 + d);
|
161 |
+
auto [data2_avec0, data2_avec1] = convert_to_float<scalar_t>(data2_vec);
|
162 |
+
aVec input_vec0 = aVec::loadu(input_data + d);
|
163 |
+
aVec input_vec1 = aVec::loadu(input_data + d + kaVecSize);
|
164 |
+
vec_fun(input_vec0, data2_avec0).store(output_data + d);
|
165 |
+
vec_fun(input_vec1, data2_avec1).store(output_data + d + kaVecSize);
|
166 |
+
}
|
167 |
+
if (size - d > 0) {
|
168 |
+
int64_t tail_size = size - d;
|
169 |
+
Vec data2_vec = Vec::loadu(input_data2 + d, tail_size);
|
170 |
+
auto [data2_avec0, data2_avec1] = convert_to_float<scalar_t>(data2_vec);
|
171 |
+
if (tail_size > kaVecSize) {
|
172 |
+
aVec input_vec0 = aVec::loadu(input_data + d);
|
173 |
+
aVec input_vec1 = aVec::loadu(input_data + d + kaVecSize, tail_size - kaVecSize);
|
174 |
+
vec_fun(input_vec0, data2_avec0).store(output_data + d);
|
175 |
+
vec_fun(input_vec1, data2_avec1).store(output_data + d + kaVecSize, tail_size - kaVecSize);
|
176 |
+
} else {
|
177 |
+
aVec input_vec0 = aVec::loadu(input_data + d, tail_size);
|
178 |
+
vec_fun(input_vec0, data2_avec0).store(output_data + d, tail_size);
|
179 |
+
}
|
180 |
+
}
|
181 |
+
}
|
182 |
+
|
183 |
+
// for Max and Min, propagate NaN:
|
184 |
+
template <typename T, ReductionType reduce>
|
185 |
+
inline T update(const T& x, const T& y) {
|
186 |
+
if (reduce == ReductionType::SUM ||
|
187 |
+
reduce == ReductionType::MEAN) {
|
188 |
+
return x + y;
|
189 |
+
} else if (reduce == ReductionType::PROD) {
|
190 |
+
return x * y;
|
191 |
+
} else if (reduce == ReductionType::MAX) {
|
192 |
+
return _max(x, y);
|
193 |
+
} else {
|
194 |
+
TORCH_INTERNAL_ASSERT(reduce == ReductionType::MIN);
|
195 |
+
return _min(x, y);
|
196 |
+
}
|
197 |
+
}
|
198 |
+
|
199 |
+
template <typename scalar_t, ReductionType reduce>
|
200 |
+
inline void update(scalar_t* out, const scalar_t* data, int64_t K) {
|
201 |
+
using Vec = vec::Vectorized<vec_scalar_t<scalar_t>>;
|
202 |
+
map2<scalar_t>(
|
203 |
+
[](Vec x, Vec y) { return update<Vec, reduce>(x, y); },
|
204 |
+
out,
|
205 |
+
out,
|
206 |
+
data,
|
207 |
+
K);
|
208 |
+
}
|
209 |
+
|
210 |
+
template <typename scalar_t, ReductionType reduce,
|
211 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
212 |
+
inline void update(at::opmath_type<scalar_t>* out, const scalar_t* data, int64_t K) {
|
213 |
+
using opmath_t = at::opmath_type<scalar_t>;
|
214 |
+
using Vec = vec::Vectorized<opmath_t>;
|
215 |
+
map_acc<scalar_t, opmath_t>(
|
216 |
+
[](Vec x, Vec y) { return update<Vec, reduce>(x, y); },
|
217 |
+
out,
|
218 |
+
out,
|
219 |
+
data,
|
220 |
+
K);
|
221 |
+
}
|
222 |
+
|
223 |
+
template <typename scalar_t, ReductionType reduce>
|
224 |
+
inline void write(scalar_t* out, int64_t count, int64_t K) {
|
225 |
+
using Vec = vec::Vectorized<vec_scalar_t<scalar_t>>;
|
226 |
+
if (reduce == ReductionType::MEAN) {
|
227 |
+
if (count > 0) {
|
228 |
+
vec::map<scalar_t>(
|
229 |
+
[count](Vec x) { return x / Vec(count); },
|
230 |
+
out,
|
231 |
+
out,
|
232 |
+
K);
|
233 |
+
}
|
234 |
+
}
|
235 |
+
}
|
236 |
+
|
237 |
+
} // namespace CPU_CAPABILITY
|
238 |
+
} // namespace at::native
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/SampledAddmmKernel.h
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/Tensor.h>
|
4 |
+
#include <ATen/native/DispatchStub.h>
|
5 |
+
|
6 |
+
namespace at { namespace native {
|
7 |
+
|
8 |
+
using sampled_addmm_sparse_csr_fn = void(*)(const Tensor&, const Tensor&, const Scalar&, const Scalar&, const Tensor&);
|
9 |
+
|
10 |
+
DECLARE_DISPATCH(sampled_addmm_sparse_csr_fn, sampled_addmm_sparse_csr_stub);
|
11 |
+
|
12 |
+
}} // at::native
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/SerialStackImpl.h
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright 2004-present Facebook. All Rights Reserved.
|
2 |
+
#pragma once
|
3 |
+
|
4 |
+
#include <ATen/core/Tensor.h>
|
5 |
+
|
6 |
+
#include <ATen/MemoryOverlap.h>
|
7 |
+
#include <ATen/Parallel.h>
|
8 |
+
#include <ATen/TensorIterator.h>
|
9 |
+
#include <ATen/cpu/vec/functional.h>
|
10 |
+
#include <ATen/cpu/vec/vec.h>
|
11 |
+
#include <c10/util/irange.h>
|
12 |
+
|
13 |
+
namespace at { namespace native { namespace detail {
|
14 |
+
|
15 |
+
struct InputMeta {
|
16 |
+
void* data_ptr;
|
17 |
+
int64_t inner_size;
|
18 |
+
|
19 |
+
InputMeta(const Tensor& t, int64_t dim, int64_t inner)
|
20 |
+
: data_ptr(t.data_ptr()), inner_size(t.sizes()[dim] * inner) {}
|
21 |
+
};
|
22 |
+
|
23 |
+
// This kernel is used by two TensorList types:
|
24 |
+
// 1. stack_serial_kernel uses at::ArrayRef<Tensor>
|
25 |
+
// 2. Static runtime calls this kernel directly (csrc/jit/runtime/static/ops.cpp) with
|
26 |
+
// ProcessedNodeInputWrapper.
|
27 |
+
// When making changes, make sure that they are compatible with both types!
|
28 |
+
template <typename scalar_t, typename TensorListType>
|
29 |
+
void stack_serial_kernel_impl(Tensor& result, TensorListType tensors, int64_t dim) {
|
30 |
+
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
|
31 |
+
dim >= 0 && dim <= result.dim(),
|
32 |
+
"dim out of range in stack_serial_kernel_impl");
|
33 |
+
int64_t outer =
|
34 |
+
result.numel() / (result.sizes()[dim] * result.strides()[dim]);
|
35 |
+
scalar_t* result_data = result.data_ptr<scalar_t>();
|
36 |
+
int64_t ninputs = tensors.size();
|
37 |
+
std::vector<InputMeta> inputs;
|
38 |
+
inputs.reserve(ninputs);
|
39 |
+
for (const auto& tensor : tensors) {
|
40 |
+
inputs.emplace_back(tensor, dim, tensor.strides()[dim]);
|
41 |
+
}
|
42 |
+
|
43 |
+
using Vec = vec::Vectorized<scalar_t>;
|
44 |
+
scalar_t* result_ptr = result_data;
|
45 |
+
for (const auto i : c10::irange(outer)) {
|
46 |
+
for (const auto j : c10::irange(ninputs)) {
|
47 |
+
int64_t local_inner = inputs[j].inner_size;
|
48 |
+
scalar_t* input_ptr = (scalar_t*)(inputs[j].data_ptr) + i * local_inner;
|
49 |
+
|
50 |
+
if (local_inner < Vec::size()) {
|
51 |
+
for (const auto k : c10::irange(local_inner)) {
|
52 |
+
result_ptr[k] = input_ptr[k];
|
53 |
+
}
|
54 |
+
} else {
|
55 |
+
vec::map(
|
56 |
+
[](Vec x) { return x; }, result_ptr, input_ptr, local_inner);
|
57 |
+
}
|
58 |
+
result_ptr += local_inner;
|
59 |
+
}
|
60 |
+
}
|
61 |
+
}
|
62 |
+
|
63 |
+
// Checks to see whether native stack can be invoked under these conditions:
|
64 |
+
// - result and input tensors are contiguous
|
65 |
+
// - only one thread is used
|
66 |
+
// - no type promotion has to occur
|
67 |
+
// - tensors dtype is Double or Float
|
68 |
+
template <typename TensorListType>
|
69 |
+
bool can_use_native_serial_stack_impl(Tensor& result, TensorListType tensors, int64_t dim) {
|
70 |
+
TORCH_CHECK(tensors.size() > 0, "expected a non-empty list of Tensors");
|
71 |
+
const Tensor& first_tensor = tensors[0];
|
72 |
+
// stack dimension should be in range [0,firstTensor.dim())
|
73 |
+
// dim == firstTensor.dim() is a valid input, but it is handled by default code path
|
74 |
+
// that uses unsqueeze
|
75 |
+
if (dim >= first_tensor.dim()) return false;
|
76 |
+
// Native stack doesn't apply any tensor is skipped.
|
77 |
+
if (first_tensor.numel() == 0 && first_tensor.dim() == 1) return false;
|
78 |
+
// there should be no type promotion
|
79 |
+
if (result.dtype() != first_tensor.dtype()) return false;
|
80 |
+
|
81 |
+
auto first_tensor_mem_format = first_tensor.suggest_memory_format();
|
82 |
+
ScalarType dtype = first_tensor.scalar_type();
|
83 |
+
|
84 |
+
if (!result.is_contiguous(first_tensor_mem_format)) {
|
85 |
+
return false;
|
86 |
+
}
|
87 |
+
|
88 |
+
// fast path only works for Double and Float
|
89 |
+
if (dtype != ScalarType::Double && dtype != ScalarType::Float) {
|
90 |
+
return false;
|
91 |
+
}
|
92 |
+
|
93 |
+
// check remainder of inputs
|
94 |
+
auto const &first_tensor_shape = first_tensor.sizes();
|
95 |
+
for (const auto i : c10::irange(1, tensors.size())) {
|
96 |
+
auto const &tensor = tensors[i];
|
97 |
+
TORCH_CHECK(tensors[i].sizes() == first_tensor.sizes(),
|
98 |
+
"stack expects each tensor to be equal size, but got ", first_tensor_shape,
|
99 |
+
" at entry 0 and ", tensor.sizes(), " at entry ", i);
|
100 |
+
|
101 |
+
// every tensor must be contiguous
|
102 |
+
// tensor sizes and strides must be the same
|
103 |
+
// there should be no type promotion
|
104 |
+
if (!tensor.is_contiguous(first_tensor_mem_format) ||
|
105 |
+
tensor.strides() != first_tensor.strides() ||
|
106 |
+
tensor.dtype() != dtype) {
|
107 |
+
return false;
|
108 |
+
}
|
109 |
+
}
|
110 |
+
|
111 |
+
// fast native stack should only be used when it is not worth using multiple threads
|
112 |
+
// or there is only one thread. Note that we aren't checking result.numel() here because
|
113 |
+
// it may not have been resized and we want to defer that cost till later.
|
114 |
+
int64_t numel_in_stack = first_tensor.numel() * tensors.size();
|
115 |
+
return numel_in_stack < at::internal::GRAIN_SIZE || at::get_num_threads() == 1;
|
116 |
+
}
|
117 |
+
|
118 |
+
template <typename TensorListType, bool should_skip_overlap_check>
|
119 |
+
struct CanUseNativeSerialStack;
|
120 |
+
|
121 |
+
template <typename TensorListType>
|
122 |
+
struct CanUseNativeSerialStack<TensorListType, false> {
|
123 |
+
static bool call(Tensor& result, TensorListType tensors, int64_t dim) {
|
124 |
+
// Inputs cannot alias the output tensor
|
125 |
+
for (const auto i : c10::irange(tensors.size())) {
|
126 |
+
auto lap = at::get_overlap_status(result, tensors[i]);
|
127 |
+
TORCH_CHECK(lap != at::MemOverlapStatus::Partial &&
|
128 |
+
lap != at::MemOverlapStatus::Full, 0,
|
129 |
+
"unsupported operation: the input tensors cannot refer to any of the "
|
130 |
+
"output memory locations. Found overlap in input tensor ", i);
|
131 |
+
}
|
132 |
+
|
133 |
+
return can_use_native_serial_stack_impl(result, tensors, dim);
|
134 |
+
}
|
135 |
+
};
|
136 |
+
|
137 |
+
template <typename TensorListType>
|
138 |
+
struct CanUseNativeSerialStack<TensorListType, true> {
|
139 |
+
static bool call(Tensor& result, TensorListType tensors, int64_t dim) {
|
140 |
+
return can_use_native_serial_stack_impl(result, tensors, dim);
|
141 |
+
}
|
142 |
+
};
|
143 |
+
|
144 |
+
}}} // namespace at::native::detail
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/SoftmaxKernel.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/native/DispatchStub.h>
|
4 |
+
#include <cstdint>
|
5 |
+
|
6 |
+
namespace at {
|
7 |
+
class Tensor;
|
8 |
+
|
9 |
+
namespace native {
|
10 |
+
|
11 |
+
using forward_fn = void (*)(const Tensor&, const Tensor&);
|
12 |
+
using backward_fn = void(*)(const Tensor &, const Tensor &, const Tensor&);
|
13 |
+
|
14 |
+
DECLARE_DISPATCH(forward_fn, softmax_lastdim_kernel);
|
15 |
+
DECLARE_DISPATCH(forward_fn, log_softmax_lastdim_kernel);
|
16 |
+
DECLARE_DISPATCH(backward_fn, softmax_backward_lastdim_kernel);
|
17 |
+
DECLARE_DISPATCH(backward_fn, log_softmax_backward_lastdim_kernel);
|
18 |
+
|
19 |
+
using forward_fn_with_dim = void(*)(const Tensor &, const Tensor &, const int64_t);
|
20 |
+
using backward_fn_with_dim =
|
21 |
+
void (*)(const Tensor&, const Tensor&, const Tensor&, const int64_t);
|
22 |
+
|
23 |
+
DECLARE_DISPATCH(forward_fn_with_dim, softmax_kernel);
|
24 |
+
DECLARE_DISPATCH(forward_fn_with_dim, log_softmax_kernel);
|
25 |
+
DECLARE_DISPATCH(backward_fn_with_dim, softmax_backward_kernel);
|
26 |
+
DECLARE_DISPATCH(backward_fn_with_dim, log_softmax_backward_kernel);
|
27 |
+
}
|
28 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/SpmmReduceKernel.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/Tensor.h>
|
4 |
+
#include <ATen/native/DispatchStub.h>
|
5 |
+
#include <ATen/native/ReductionType.h>
|
6 |
+
|
7 |
+
namespace at::native {
|
8 |
+
|
9 |
+
using spmm_reduce_fn = void(*)(const Tensor&, const Tensor&, const Tensor&, const Tensor&, const Tensor&, ReductionType op);
|
10 |
+
using spmm_reduce_arg_fn = void(*)(const Tensor&, const Tensor&, const Tensor&, const Tensor&, const Tensor&, const Tensor&, ReductionType op);
|
11 |
+
using spmm_reduce_backward_input_fn = void(*)(const Tensor&, const Tensor&, const Tensor&, const Tensor&, const Tensor&, const Tensor&, ReductionType op);
|
12 |
+
using spmm_reduce_backward_input_arg_fn = void(*)(const Tensor&, const Tensor&, const Tensor&, const Tensor&, const Tensor&, ReductionType op);
|
13 |
+
using spmm_reduce_backward_other_fn = void(*)(const Tensor&, const Tensor&, const Tensor&, const Tensor&, const Tensor&, const Tensor&, const Tensor&, ReductionType op);
|
14 |
+
|
15 |
+
DECLARE_DISPATCH(spmm_reduce_fn, spmm_reduce_stub);
|
16 |
+
DECLARE_DISPATCH(spmm_reduce_arg_fn, spmm_reduce_arg_stub);
|
17 |
+
DECLARE_DISPATCH(spmm_reduce_backward_input_fn, spmm_reduce_backward_input_stub);
|
18 |
+
DECLARE_DISPATCH(spmm_reduce_backward_input_arg_fn, spmm_reduce_backward_input_arg_stub);
|
19 |
+
DECLARE_DISPATCH(spmm_reduce_backward_other_fn, spmm_reduce_backward_other_stub);
|
20 |
+
DECLARE_DISPATCH(spmm_reduce_backward_input_arg_fn, spmm_reduce_backward_other_arg_stub);
|
21 |
+
|
22 |
+
} // at::native
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/StackKernel.h
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright 2004-present Facebook. All Rights Reserved.
|
2 |
+
#pragma once
|
3 |
+
|
4 |
+
#include <ATen/core/Tensor.h>
|
5 |
+
#include <ATen/native/DispatchStub.h>
|
6 |
+
|
7 |
+
namespace at { namespace native {
|
8 |
+
|
9 |
+
using stack_serial_fn = void(*)(Tensor &, TensorList, int64_t);
|
10 |
+
DECLARE_DISPATCH(stack_serial_fn, stack_serial_stub);
|
11 |
+
|
12 |
+
}} // namespace at::native
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/UpSampleKernelAVXAntialias.h
ADDED
@@ -0,0 +1,1376 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
The Python Imaging Library (PIL) is
|
3 |
+
|
4 |
+
Copyright © 1997-2011 by Secret Labs AB
|
5 |
+
Copyright © 1995-2011 by Fredrik Lundh
|
6 |
+
|
7 |
+
Pillow is the friendly PIL fork. It is
|
8 |
+
|
9 |
+
Copyright © 2010-2022 by Alex Clark and contributors
|
10 |
+
|
11 |
+
Like PIL, Pillow is licensed under the open source HPND License
|
12 |
+
*/
|
13 |
+
|
14 |
+
// This code is heavily inspired from PILLOW-SIMD's implementation:
|
15 |
+
// https://github.com/uploadcare/pillow-simd/blob/simd/master/src/libImaging/Resample.c
|
16 |
+
|
17 |
+
#pragma once
|
18 |
+
#ifdef CPU_CAPABILITY_AVX2
|
19 |
+
// TODO: This file only supports AVX2. We could split the AVX kernels into
|
20 |
+
// smaller logical blocks in order to port them into the Vec.h logic. This would
|
21 |
+
// allow to support other vectorization architectures and perhaps also support
|
22 |
+
// the non-vectorized fallback (we'd need to make sure it's not slower than the
|
23 |
+
// current fallback).
|
24 |
+
|
25 |
+
#include <ATen/core/Tensor.h>
|
26 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
27 |
+
#include <c10/util/irange.h>
|
28 |
+
|
29 |
+
#ifndef AT_PER_OPERATOR_HEADERS
|
30 |
+
#include <ATen/Functions.h>
|
31 |
+
#else
|
32 |
+
#include <ATen/ops/empty.h>
|
33 |
+
#endif
|
34 |
+
|
35 |
+
|
36 |
+
namespace {
|
37 |
+
|
38 |
+
static inline __m128i mm_cvtsi32_si128(const uint8_t* C10_RESTRICT ptr, bool i32_aligned) {
|
39 |
+
int32_t v;
|
40 |
+
if (i32_aligned) {
|
41 |
+
v = *(const int32_t*)ptr;
|
42 |
+
} else {
|
43 |
+
std::memcpy(&v, ptr, 4);
|
44 |
+
}
|
45 |
+
return _mm_cvtsi32_si128(v);
|
46 |
+
}
|
47 |
+
|
48 |
+
static inline __m128i mm_cvtepu8_epi32(const uint8_t* C10_RESTRICT ptr, bool i32_aligned) {
|
49 |
+
return _mm_cvtepu8_epi32(mm_cvtsi32_si128(ptr, i32_aligned));
|
50 |
+
}
|
51 |
+
|
52 |
+
static inline void _write_endline_rgb_as_uint32(
|
53 |
+
uint8_t* C10_RESTRICT output,
|
54 |
+
uint32_t data
|
55 |
+
) {
|
56 |
+
// data is (R G B X), output is (X1 X2 X3 | R1 B1 G1 R2 ...)
|
57 |
+
// Here we explicitly set X as R1
|
58 |
+
uint8_t* data_ptr = reinterpret_cast<uint8_t*>(&data);
|
59 |
+
data_ptr[3] = output[3];
|
60 |
+
std::memcpy(output, data_ptr, 4);
|
61 |
+
}
|
62 |
+
|
63 |
+
at::Tensor unpack_rgb(const at::Tensor& packed_tensor) {
|
64 |
+
// Convert a "packed" tensor (typically RGBRGBRGB if channels_last) into
|
65 |
+
// RGBARGBARGBA format where A is hard-coded to 0. Each pixel is encoded
|
66 |
+
// into as 32 bits. This generalizes to num_channels <= 4 and also works for
|
67 |
+
// non-channels_last tensors.
|
68 |
+
|
69 |
+
const uint8_t* packed = (const uint8_t*)packed_tensor.data_ptr<uint8_t>();
|
70 |
+
auto num_pixels = packed_tensor.size(1) * packed_tensor.size(2);
|
71 |
+
auto num_channels = packed_tensor.size(0);
|
72 |
+
|
73 |
+
constexpr int rgba_size = 4;
|
74 |
+
auto unpacked_tensor = at::empty({rgba_size, packed_tensor.size(1), packed_tensor.size(2)}, at::CPU(at::kByte));
|
75 |
+
uint8_t* unpacked = (uint8_t*) unpacked_tensor.data_ptr<uint8_t>();
|
76 |
+
|
77 |
+
auto stride_i = packed_tensor.stride(2);
|
78 |
+
auto stride_j = packed_tensor.stride(0);
|
79 |
+
|
80 |
+
for (const auto i : c10::irange(num_pixels)) {
|
81 |
+
for (const auto j : c10::irange(rgba_size)) {
|
82 |
+
unpacked[rgba_size * i + j] = (j < num_channels) ? packed[stride_i * i + stride_j * j] : 0;
|
83 |
+
}
|
84 |
+
}
|
85 |
+
return unpacked_tensor;
|
86 |
+
}
|
87 |
+
|
88 |
+
void pack_rgb(
|
89 |
+
const at::Tensor& unpacked_tensor, // IN
|
90 |
+
const at::Tensor& packed_tensor // OUT
|
91 |
+
) {
|
92 |
+
// Convert from unpacked channels last 3-channels or 4-channels tensor into original data layout.
|
93 |
+
|
94 |
+
uint8_t* unpacked = (uint8_t*)unpacked_tensor.data_ptr<uint8_t>();
|
95 |
+
uint8_t* packed = (uint8_t*)packed_tensor.data_ptr<uint8_t>();
|
96 |
+
auto num_pixels = packed_tensor.size(1) * packed_tensor.size(2);
|
97 |
+
auto num_channels = packed_tensor.size(0);
|
98 |
+
|
99 |
+
auto unpacked_increment = unpacked_tensor.size(0);
|
100 |
+
auto packed_increment = packed_tensor.stride(2);
|
101 |
+
auto packed_stride = packed_tensor.stride(0);
|
102 |
+
|
103 |
+
TORCH_INTERNAL_ASSERT(unpacked_increment == 3 || unpacked_increment == 4);
|
104 |
+
|
105 |
+
for (const auto i C10_UNUSED : c10::irange(num_pixels)) {
|
106 |
+
for (const auto j : c10::irange(num_channels)) {
|
107 |
+
packed[j * packed_stride] = unpacked[j];
|
108 |
+
}
|
109 |
+
unpacked += unpacked_increment;
|
110 |
+
packed += packed_increment;
|
111 |
+
}
|
112 |
+
}
|
113 |
+
|
114 |
+
void ImagingResampleHorizontalConvolution8u4x(
|
115 |
+
uint8_t* C10_RESTRICT lineOut0,
|
116 |
+
uint8_t* C10_RESTRICT lineOut1,
|
117 |
+
uint8_t* C10_RESTRICT lineOut2,
|
118 |
+
uint8_t* C10_RESTRICT lineOut3,
|
119 |
+
int64_t out_xsize,
|
120 |
+
const uint8_t* C10_RESTRICT lineIn0,
|
121 |
+
const uint8_t* C10_RESTRICT lineIn1,
|
122 |
+
const uint8_t* C10_RESTRICT lineIn2,
|
123 |
+
const uint8_t* C10_RESTRICT lineIn3,
|
124 |
+
int64_t in_xsize,
|
125 |
+
const int64_t* idx_ptr_xmin,
|
126 |
+
const int64_t* idx_ptr_size,
|
127 |
+
const int16_t* kk,
|
128 |
+
int kmax,
|
129 |
+
unsigned int coefs_precision,
|
130 |
+
int64_t num_channels,
|
131 |
+
bool is_last_line);
|
132 |
+
|
133 |
+
void ImagingResampleHorizontalConvolution8u(
|
134 |
+
uint8_t* C10_RESTRICT lineOut,
|
135 |
+
int64_t out_xsize,
|
136 |
+
const uint8_t* C10_RESTRICT lineIn,
|
137 |
+
int64_t in_xsize,
|
138 |
+
const int64_t* idx_ptr_xmin,
|
139 |
+
const int64_t* idx_ptr_size,
|
140 |
+
const int16_t* kk,
|
141 |
+
int kmax,
|
142 |
+
unsigned int coefs_precision,
|
143 |
+
int64_t num_channels,
|
144 |
+
bool is_last_line);
|
145 |
+
|
146 |
+
void ImagingResampleVerticalConvolution8u(
|
147 |
+
uint8_t* C10_RESTRICT lineOut,
|
148 |
+
const uint8_t* C10_RESTRICT lineIn,
|
149 |
+
int64_t xsize,
|
150 |
+
int64_t ids_min,
|
151 |
+
int64_t ids_size,
|
152 |
+
const int16_t* k,
|
153 |
+
unsigned int coefs_precision,
|
154 |
+
int64_t num_channels);
|
155 |
+
|
156 |
+
template<int num_channels>
|
157 |
+
void ImagingResampleHorizontal(
|
158 |
+
const at::Tensor & unpacked_output,
|
159 |
+
const at::Tensor & unpacked_input,
|
160 |
+
int ksize,
|
161 |
+
const std::vector<at::Tensor>& horiz_indices_weights,
|
162 |
+
unsigned int horiz_weights_precision) {
|
163 |
+
|
164 |
+
// Interpolation horizontal pass: we compute x-axis (image width) interpolation outputs.
|
165 |
+
|
166 |
+
// Input data is stored as
|
167 |
+
// input = [r[0], g[0], b[0], a[0], r[1], g[1], b[1], a[1], r[2], g[2], b[2], a[2], ...]
|
168 |
+
// Weights are float values computed for each output pixel and rescaled to uint16:
|
169 |
+
// weights[i] = [w[i, 0], w[i, 1], ..., w[i, K-1]]
|
170 |
+
// We want to compute the output as following:
|
171 |
+
// output = [oR[0], oG[0], oB[0], oA[0], oR[1], oG[1], oB[1], oA[1], ...]
|
172 |
+
// where
|
173 |
+
// oR[yoffset + i] = r[yoffset + xmin[i]] * w[i, 0] + ... + r[yoffset + xmin[i] + K-1] * w[i, K-1]
|
174 |
+
// oG[yoffset + i] = g[yoffset + xmin[i]] * w[i, 0] + ... + g[yoffset + xmin[i] + K-1] * w[i, K-1]
|
175 |
+
// oB[yoffset + i] = b[yoffset + xmin[i]] * w[i, 0] + ... + b[yoffset + xmin[i] + K-1] * w[i, K-1]
|
176 |
+
//
|
177 |
+
|
178 |
+
// TODO: we may want to merge that into the fallback code (currently called
|
179 |
+
// basic_loop_aa_horizontal<uint8_t>)
|
180 |
+
// Although this may not be needed if / when we port all this code to use
|
181 |
+
// Vec.h since this would potentially give us another fall-back implem
|
182 |
+
|
183 |
+
const int16_t* kk = (int16_t*)(horiz_indices_weights[3].data_ptr<double>());
|
184 |
+
|
185 |
+
auto xout = unpacked_output.size(2);
|
186 |
+
auto yout = unpacked_output.size(1);
|
187 |
+
auto xin = unpacked_input.size(2);
|
188 |
+
TORCH_INTERNAL_ASSERT(num_channels == unpacked_input.size(0));
|
189 |
+
|
190 |
+
const int64_t* idx_ptr_xmin = horiz_indices_weights[0].data_ptr<int64_t>();
|
191 |
+
const int64_t* idx_ptr_size = horiz_indices_weights[1].data_ptr<int64_t>();
|
192 |
+
|
193 |
+
uint8_t* unpacked_output_p = unpacked_output.data_ptr<uint8_t>();
|
194 |
+
const uint8_t* unpacked_input_p = unpacked_input.data_ptr<uint8_t>();
|
195 |
+
|
196 |
+
int64_t yy = 0;
|
197 |
+
auto xout_stride = xout * num_channels;
|
198 |
+
auto xin_stride = xin * num_channels;
|
199 |
+
for (; yy < yout - 3; yy += 4) {
|
200 |
+
ImagingResampleHorizontalConvolution8u4x(
|
201 |
+
unpacked_output_p + yy * xout_stride,
|
202 |
+
unpacked_output_p + (yy + 1) * xout_stride,
|
203 |
+
unpacked_output_p + (yy + 2) * xout_stride,
|
204 |
+
unpacked_output_p + (yy + 3) * xout_stride,
|
205 |
+
xout,
|
206 |
+
unpacked_input_p + yy * xin_stride,
|
207 |
+
unpacked_input_p + (yy + 1) * xin_stride,
|
208 |
+
unpacked_input_p + (yy + 2) * xin_stride,
|
209 |
+
unpacked_input_p + (yy + 3) * xin_stride,
|
210 |
+
xin,
|
211 |
+
idx_ptr_xmin,
|
212 |
+
idx_ptr_size,
|
213 |
+
kk,
|
214 |
+
ksize,
|
215 |
+
horiz_weights_precision,
|
216 |
+
num_channels,
|
217 |
+
yy + 3 == yout - 1);
|
218 |
+
}
|
219 |
+
for (; yy < yout; yy++) {
|
220 |
+
ImagingResampleHorizontalConvolution8u(
|
221 |
+
unpacked_output_p + yy * xout_stride,
|
222 |
+
xout,
|
223 |
+
unpacked_input_p + yy * xin_stride,
|
224 |
+
xin,
|
225 |
+
idx_ptr_xmin,
|
226 |
+
idx_ptr_size,
|
227 |
+
kk,
|
228 |
+
ksize,
|
229 |
+
horiz_weights_precision,
|
230 |
+
num_channels,
|
231 |
+
yy == yout - 1);
|
232 |
+
}
|
233 |
+
}
|
234 |
+
|
235 |
+
void ImagingResampleVertical(
|
236 |
+
const at::Tensor & unpacked_output,
|
237 |
+
const at::Tensor & unpacked_input,
|
238 |
+
int ksize,
|
239 |
+
const std::vector<at::Tensor>& vert_indices_weights,
|
240 |
+
unsigned int vert_weights_precision) {
|
241 |
+
|
242 |
+
// Interpolation vertical pass: we compute y-axis interpolation outputs.
|
243 |
+
// Input data is stored as
|
244 |
+
// input = [r[0], g[0], b[0], a[0], r[1], g[1], b[1], a[1], r[2], g[2], b[2], a[2], ...]
|
245 |
+
// Weights are float values computed for each output pixel and rescaled to uint16:
|
246 |
+
// weights[i] = [w[i, 0], w[i, 1], ..., w[i, K-1]]
|
247 |
+
// We want to compute the output as following:
|
248 |
+
// output = [oR[0], oG[0], oB[0], oA[0], oR[1], oG[1], oB[1], oA[1], ...]
|
249 |
+
// where
|
250 |
+
// oR[xoffset + i] = r[xoffset + ymin[i]] * w[i, 0] + ... + r[xoffset + ymin[i] + (K-1) * xsize] * w[i, K-1]
|
251 |
+
// oG[xoffset + i] = g[xoffset + ymin[i]] * w[i, 0] + ... + g[xoffset + ymin[i] + (K-1) * xsize] * w[i, K-1]
|
252 |
+
// oB[xoffset + i] = b[xoffset + ymin[i]] * w[i, 0] + ... + b[xoffset + ymin[i] + (K-1) * xsize] * w[i, K-1]
|
253 |
+
|
254 |
+
// TODO: we may want to merge that into the fallback code (currently called
|
255 |
+
// basic_loop_aa_vertical<uint8_t>)
|
256 |
+
// Although this may not be needed if / when we port all this code to use
|
257 |
+
// Vec.h since this would potentially give us another fall-back implem
|
258 |
+
const int16_t* kk = (int16_t*)(vert_indices_weights[3].data_ptr<double>());
|
259 |
+
|
260 |
+
const int64_t* idx_ptr_xmin = vert_indices_weights[0].data_ptr<int64_t>();
|
261 |
+
const int64_t* idx_ptr_size = vert_indices_weights[1].data_ptr<int64_t>();
|
262 |
+
|
263 |
+
uint8_t* unpacked_output_p = unpacked_output.data_ptr<uint8_t>();
|
264 |
+
const uint8_t* unpacked_input_p = unpacked_input.data_ptr<uint8_t>();
|
265 |
+
|
266 |
+
auto xout = unpacked_output.size(2);
|
267 |
+
auto yout = unpacked_output.size(1);
|
268 |
+
const auto num_channels = unpacked_input.size(0);
|
269 |
+
TORCH_INTERNAL_ASSERT(num_channels == unpacked_output.size(0));
|
270 |
+
|
271 |
+
auto xout_stride = xout * num_channels;
|
272 |
+
for (const auto yy : c10::irange(yout)) {
|
273 |
+
const auto* k = &kk[yy * ksize];
|
274 |
+
auto ids_min = idx_ptr_xmin[yy];
|
275 |
+
auto ids_size = idx_ptr_size[yy];
|
276 |
+
ImagingResampleVerticalConvolution8u(
|
277 |
+
unpacked_output_p + yy * xout_stride,
|
278 |
+
unpacked_input_p,
|
279 |
+
xout,
|
280 |
+
ids_min,
|
281 |
+
ids_size,
|
282 |
+
k,
|
283 |
+
vert_weights_precision,
|
284 |
+
num_channels);
|
285 |
+
}
|
286 |
+
}
|
287 |
+
|
288 |
+
// This is the only public entry point in this file. It supports bilinear or bicubic
|
289 |
+
// mode for uint8 dtype when C <= 4, with or without antialias. The
|
290 |
+
// implem is based on PIL-SIMD.
|
291 |
+
// Its equivalent implementation (fallback) for when AVX isn't supported or when
|
292 |
+
// C > 4 is separable_upsample_generic_Nd_kernel_impl() There are a bunch of
|
293 |
+
// future improvement that can be done: look for the TODOs in this file.
|
294 |
+
// For details on how the weights are computed and how the multiplications are
|
295 |
+
// run on int (instead of float weights), see
|
296 |
+
// [ Weights computation for uint8_t and multiplication trick ]
|
297 |
+
// For details on how the AVX kernels are implemented, see
|
298 |
+
// https://gist.github.com/NicolasHug/47c97d731f05eaad5694c173849b86f5
|
299 |
+
// See also [ Support for antialias=False as a subcase of antialias=True ] to
|
300 |
+
// learn more about how the antialias=False case is computed. The same holds
|
301 |
+
// here: all these kernels are general enough to handle an arbitrary number of
|
302 |
+
// weights, but when aa=False they could be optimized further.
|
303 |
+
template <typename scale_type, class F>
|
304 |
+
void upsample_avx_bilinear_bicubic_uint8(
|
305 |
+
const at::Tensor& input_,
|
306 |
+
const at::Tensor& output,
|
307 |
+
bool align_corners,
|
308 |
+
const scale_type& scales,
|
309 |
+
bool antialias) {
|
310 |
+
auto batch_size = input_.size(0);
|
311 |
+
auto num_channels = input_.size(1);
|
312 |
+
auto xin = input_.size(3);
|
313 |
+
auto yin = input_.size(2);
|
314 |
+
auto xout = output.size(3);
|
315 |
+
auto yout = output.size(2);
|
316 |
+
|
317 |
+
if (xin == xout && yin == yout) {
|
318 |
+
output.copy_(input_);
|
319 |
+
return;
|
320 |
+
}
|
321 |
+
|
322 |
+
at::Tensor input = input_;
|
323 |
+
if (!(input.is_contiguous() || input.is_contiguous(at::MemoryFormat::ChannelsLast))) {
|
324 |
+
// If input is not contiguous with memory format channels first or channels last,
|
325 |
+
// we explicitly convert the input to contiguous channels last memory format.
|
326 |
+
// This simplifies the rest of the code and let us assume that the format is only contiguous channels first or channels last,
|
327 |
+
// Most tensors going through this `if` block won't need to go through unpacking, but those having C < 3 may
|
328 |
+
// have to (this means 2 copies are made). We could avoid the extra copy by handling non-contiguous input
|
329 |
+
// directly within unpack_rgb() and pack_rgb(), but initial attempts showed that this is fairly complex.
|
330 |
+
input = input.contiguous(at::MemoryFormat::ChannelsLast);
|
331 |
+
}
|
332 |
+
|
333 |
+
auto need_horizontal = xout != xin;
|
334 |
+
auto need_vertical = yout != yin;
|
335 |
+
|
336 |
+
int ksize_horiz, ksize_vert;
|
337 |
+
std::vector<at::Tensor> horiz_indices_weights, vert_indices_weights;
|
338 |
+
unsigned int horiz_weights_precision, vert_weights_precision;
|
339 |
+
|
340 |
+
bool skip_unpacking = (num_channels == 3 || num_channels == 4) && input.is_contiguous(at::MemoryFormat::ChannelsLast);
|
341 |
+
bool skip_packing = (num_channels == 3 || num_channels == 4) && output.is_contiguous(at::MemoryFormat::ChannelsLast);
|
342 |
+
|
343 |
+
if (need_horizontal) {
|
344 |
+
int interp_dim = 3;
|
345 |
+
auto stride = (skip_unpacking) ? num_channels : 4;
|
346 |
+
std::tie(horiz_indices_weights, ksize_horiz, horiz_weights_precision) =
|
347 |
+
F::compute_index_ranges_int16_weights(
|
348 |
+
/*input_size=*/xin,
|
349 |
+
/*output_size=*/xout,
|
350 |
+
/*stride=*/stride,
|
351 |
+
/*ndims=*/4,
|
352 |
+
/*reshape_dim=*/interp_dim,
|
353 |
+
/*align_corners=*/align_corners,
|
354 |
+
/*opt_scale=*/scales[interp_dim - 2],
|
355 |
+
/*antialias=*/antialias,
|
356 |
+
/*align_i32=*/true);
|
357 |
+
}
|
358 |
+
|
359 |
+
if (need_vertical) {
|
360 |
+
int interp_dim = 2;
|
361 |
+
auto stride = (skip_unpacking) ? num_channels * xout : 4 * xout;
|
362 |
+
std::tie(vert_indices_weights, ksize_vert, vert_weights_precision) =
|
363 |
+
F::compute_index_ranges_int16_weights(
|
364 |
+
/*input_size=*/yin,
|
365 |
+
/*output_size=*/yout,
|
366 |
+
/*stride=*/stride,
|
367 |
+
/*ndims=*/4,
|
368 |
+
/*reshape_dim=*/interp_dim,
|
369 |
+
/*align_corners=*/align_corners,
|
370 |
+
/*opt_scale=*/scales[interp_dim - 2],
|
371 |
+
/*antialias=*/antialias,
|
372 |
+
/*align_i32=*/true);
|
373 |
+
}
|
374 |
+
|
375 |
+
at::Tensor buffer_horiz, buffer_vert;
|
376 |
+
// Minor optimization: we can avoid allocating an extra buffer if we're performing
|
377 |
+
// horizontal-only or vertical-only interpolation, and if the tensor doesn't
|
378 |
+
// need repacking
|
379 |
+
if (need_horizontal && (need_vertical || !skip_packing)) {
|
380 |
+
auto c = (skip_unpacking) ? num_channels : 4;
|
381 |
+
buffer_horiz = at::empty({c, yin, xout}, input.options());
|
382 |
+
}
|
383 |
+
if (need_vertical && !skip_packing) {
|
384 |
+
auto c = (skip_unpacking) ? num_channels : 4;
|
385 |
+
buffer_vert = at::empty({c, yout, xout}, input.options());
|
386 |
+
}
|
387 |
+
|
388 |
+
for (const auto i : c10::irange(batch_size)) {
|
389 |
+
|
390 |
+
at::Tensor unpacked_input = (skip_unpacking) ? input[i] : unpack_rgb(input[i]);
|
391 |
+
at::Tensor unpacked_output;
|
392 |
+
|
393 |
+
if (need_horizontal) {
|
394 |
+
at::Tensor unpacked_output_temp = (need_vertical || !skip_packing) ? buffer_horiz : output[i];
|
395 |
+
|
396 |
+
if (skip_unpacking && num_channels == 3) {
|
397 |
+
ImagingResampleHorizontal<3>(
|
398 |
+
unpacked_output_temp,
|
399 |
+
unpacked_input,
|
400 |
+
ksize_horiz,
|
401 |
+
horiz_indices_weights,
|
402 |
+
horiz_weights_precision);
|
403 |
+
} else {
|
404 |
+
ImagingResampleHorizontal<4>(
|
405 |
+
unpacked_output_temp,
|
406 |
+
unpacked_input,
|
407 |
+
ksize_horiz,
|
408 |
+
horiz_indices_weights,
|
409 |
+
horiz_weights_precision);
|
410 |
+
}
|
411 |
+
unpacked_output = unpacked_input = unpacked_output_temp;
|
412 |
+
}
|
413 |
+
if (need_vertical) {
|
414 |
+
unpacked_output = (skip_packing) ? output[i] : buffer_vert;
|
415 |
+
|
416 |
+
ImagingResampleVertical(
|
417 |
+
unpacked_output,
|
418 |
+
unpacked_input,
|
419 |
+
ksize_vert,
|
420 |
+
vert_indices_weights,
|
421 |
+
vert_weights_precision
|
422 |
+
);
|
423 |
+
}
|
424 |
+
|
425 |
+
TORCH_INTERNAL_ASSERT(unpacked_output.defined());
|
426 |
+
|
427 |
+
if (!skip_packing) {
|
428 |
+
pack_rgb(unpacked_output, output[i]);
|
429 |
+
}
|
430 |
+
}
|
431 |
+
}
|
432 |
+
|
433 |
+
void ImagingResampleHorizontalConvolution8u4x(
|
434 |
+
uint8_t* C10_RESTRICT lineOut0,
|
435 |
+
uint8_t* C10_RESTRICT lineOut1,
|
436 |
+
uint8_t* C10_RESTRICT lineOut2,
|
437 |
+
uint8_t* C10_RESTRICT lineOut3,
|
438 |
+
int64_t out_xsize,
|
439 |
+
const uint8_t* C10_RESTRICT lineIn0,
|
440 |
+
const uint8_t* C10_RESTRICT lineIn1,
|
441 |
+
const uint8_t* C10_RESTRICT lineIn2,
|
442 |
+
const uint8_t* C10_RESTRICT lineIn3,
|
443 |
+
int64_t in_xsize,
|
444 |
+
const int64_t* idx_ptr_xmin,
|
445 |
+
const int64_t* idx_ptr_size,
|
446 |
+
const int16_t* kk,
|
447 |
+
int kmax,
|
448 |
+
unsigned int coefs_precision,
|
449 |
+
int64_t num_channels,
|
450 |
+
bool is_last_line) {
|
451 |
+
|
452 |
+
// Interpolation horizontal pass processing together 4 vertical lines.
|
453 |
+
// - Input data format is RGBA or RGB with R,G,B,A being uint8. In case of RGBA
|
454 |
+
// we can encode 4 values as a single uint32 value.
|
455 |
+
// - We split the size of weight vector for a given output index as a sum:
|
456 |
+
// ids_size = num_blocks_4 * 4 + num_blocks_2 * 2 + num_blocks_1.
|
457 |
+
// - We load and process 4 weights values in a loop ("block 4") then we process 2 weights values
|
458 |
+
// in another loop ("block 2") and finally we process 1 weights value in the final loop ("block 1").
|
459 |
+
|
460 |
+
// Define shuffling masks (low/high) for num_channels 4 and 3
|
461 |
+
// Mask low casts lower half of each lane to epi16 and reorder RGBARGBA -> RRGGBBAA:
|
462 |
+
// [r1 g1 b1 a1 r2 g2 b2 a2 ... | R1 G1 B1 A1 R2 G2 B2 A2 ... ] ->
|
463 |
+
// [r1 0 r2 0 g1 0 g2 0 b1 0 b2 0 a1 0 a2 0 | R1 0 R2 0 G1 0 G2 0 B1 0 B2 0 A1 0 A2 0]
|
464 |
+
// Mask high casts upper half of each lane to epi16 and reorder RGBARGBA -> RRGGBBAA::
|
465 |
+
// [ ... r3 g3 b3 a3 r4 g4 b4 a4 | ... R3 G3 B3 A3 R4 G4 B4 A4 ] ->
|
466 |
+
// [r3 0 r4 0 g3 0 g4 0 b3 0 b4 0 a3 0 a4 0 | R3 0 R4 0 G3 0 G4 0 B3 0 B4 0 A3 0 A4 0]
|
467 |
+
|
468 |
+
const auto mask_low_c4 = _mm256_set_epi8(
|
469 |
+
-1, 7, -1, 3, -1, 6, -1, 2, -1, 5, -1, 1, -1, 4, -1, 0,
|
470 |
+
-1, 7, -1, 3, -1, 6, -1, 2, -1, 5, -1, 1, -1, 4, -1, 0);
|
471 |
+
const auto mask_high_c4 = _mm256_set_epi8(
|
472 |
+
-1, 15, -1, 11, -1, 14, -1, 10, -1, 13, -1, 9, -1, 12, -1, 8,
|
473 |
+
-1, 15, -1, 11, -1, 14, -1, 10, -1, 13, -1, 9, -1, 12, -1, 8);
|
474 |
+
const auto mask_low_c3 = _mm256_set_epi8(
|
475 |
+
-1, -1, -1, -1, -1, 5, -1, 2, -1, 4, -1, 1, -1, 3, -1, 0,
|
476 |
+
-1, -1, -1, -1, -1, 5, -1, 2, -1, 4, -1, 1, -1, 3, -1, 0);
|
477 |
+
const auto mask_high_c3 = _mm256_set_epi8(
|
478 |
+
-1, -1, -1, -1, -1, 11, -1, 8, -1, 10, -1, 7, -1, 9, -1, 6,
|
479 |
+
-1, -1, -1, -1, -1, 11, -1, 8, -1, 10, -1, 7, -1, 9, -1, 6);
|
480 |
+
|
481 |
+
const auto mask_low = (num_channels == 3) ? mask_low_c3 : mask_low_c4;
|
482 |
+
const auto mask_high = (num_channels == 3) ? mask_high_c3 : mask_high_c4;
|
483 |
+
|
484 |
+
const auto stride = num_channels * sizeof(uint8_t);
|
485 |
+
|
486 |
+
TORCH_INTERNAL_ASSERT(stride == 3 || stride == 4);
|
487 |
+
|
488 |
+
// out_xsize = output width, out_x = output x index
|
489 |
+
// ids_min is the input offset index corresponding to out_x
|
490 |
+
// ids_size is the interpolation size for out_x
|
491 |
+
|
492 |
+
// Let's precompute ids_size limits for block 4 and block 2.
|
493 |
+
//
|
494 |
+
// In block 4 (4 means we process 4 weight values together), we read input data
|
495 |
+
// with _mm_loadu_si128, i.e. 16 bytes, per one line:
|
496 |
+
// lineIn0 + stride * (i + ids_min) + 16 <= lineIn0 + stride * (ids_size + ids_min)
|
497 |
+
// --> i <= ids_size - 16.0 / stride
|
498 |
+
// Strict boundary:
|
499 |
+
// --> i < ids_size + 1 - int(ceil(16.0 / stride)) = ids_size - b4_delta
|
500 |
+
// Soft boundary for reading inside the buffer except its boundaries:
|
501 |
+
// --> i < ids_size + 1 - int(16.0 / stride) = ids_size - b4_delta_soft
|
502 |
+
// RGBA: b4_delta = b4_delta_soft = 3
|
503 |
+
// RGB : b4_delta = 5
|
504 |
+
// RGB : b4_delta_soft = 4
|
505 |
+
const auto b4_delta = (stride == 4) ? 3 : ((is_last_line) ? 5 : 4);
|
506 |
+
|
507 |
+
// In block 2 (2 means we process 2 weights values together), we read input data
|
508 |
+
// with _mm_loadl_epi64, i.e. 8 bytes, per one line:
|
509 |
+
// lineIn0 + stride * (i + ids_min) + 8 <= lineIn0 + stride * (ids_size + ids_min)
|
510 |
+
// --> i <= ids_size - 8.0 / stride
|
511 |
+
// Strict boundary:
|
512 |
+
// --> i < ids_size + 1 - int(ceil(8.0 / stride)) = ids_size - b2_delta
|
513 |
+
// Soft boundary for reading inside the buffer except its boundaries:
|
514 |
+
// --> i < ids_size + 1 - int(8.0 / stride) = ids_size - b2_delta_soft
|
515 |
+
// RGBA: b2_delta = b2_delta_soft = 1
|
516 |
+
// RGB : b2_delta = 2
|
517 |
+
// RGB : b2_delta_soft = 1
|
518 |
+
const auto b2_delta = (stride == 4) ? 1 : ((is_last_line) ? 2 : 1);
|
519 |
+
|
520 |
+
const auto max_out_x_strided = out_xsize * stride;
|
521 |
+
const auto max_in_x_strided = in_xsize * stride;
|
522 |
+
|
523 |
+
const auto zero = _mm256_setzero_si256();
|
524 |
+
const auto initial = _mm256_set1_epi32(1 << (coefs_precision - 1));
|
525 |
+
|
526 |
+
for (const auto out_x : c10::irange(out_xsize)) {
|
527 |
+
const auto ids_min = idx_ptr_xmin[out_x];
|
528 |
+
const auto ids_size = idx_ptr_size[out_x];
|
529 |
+
const auto * k = &kk[out_x * kmax];
|
530 |
+
int64_t i = 0;
|
531 |
+
|
532 |
+
auto sss0 = initial;
|
533 |
+
auto sss1 = initial;
|
534 |
+
|
535 |
+
const auto * lineIn0_min = lineIn0 + ids_min;
|
536 |
+
const auto * lineIn1_min = lineIn1 + ids_min;
|
537 |
+
const auto * lineIn2_min = lineIn2 + ids_min;
|
538 |
+
const auto * lineIn3_min = lineIn3 + ids_min;
|
539 |
+
|
540 |
+
// block 4
|
541 |
+
for (; i < ids_size - b4_delta; i += 4) {
|
542 |
+
// Load 4 values from weight vector
|
543 |
+
// mmk0 = [wl_0 wh_0 wl_1 wh_1 wl_0 wh_0 wl_1 wh_1 ...]
|
544 |
+
// mmk1 = [wl_2 wh_2 wl_3 wh_3 wl_2 wh_2 wl_3 wh_3 ...]
|
545 |
+
const auto mmk0 = _mm256_set1_epi32(*(int32_t*)&k[i]);
|
546 |
+
const auto mmk1 = _mm256_set1_epi32(*(int32_t*)&k[i + 2]);
|
547 |
+
|
548 |
+
// RGBA: Load 8 pixels (4 per line) from input lines 0 and 1:
|
549 |
+
// source = [
|
550 |
+
// r0 g0 b0 a0 r1 g1 b1 a1 r2 g2 b2 a2 r3 g3 b3 a3
|
551 |
+
// R0 G0 B0 A0 R1 G1 B1 A1 R2 G2 B2 A2 R3 G3 B3 A3
|
552 |
+
// ]
|
553 |
+
// RGB: Load 10 pixels (5 per line)
|
554 |
+
// source = [
|
555 |
+
// r0 g0 b0 r1 g1 b1 r2 g2 b2 r3 g3 b3 r4 g4 b4 r5
|
556 |
+
// R0 G0 B0 R1 G1 B1 R2 G2 B2 R3 G3 B3 R4 G4 B4 R5
|
557 |
+
// ]
|
558 |
+
auto source = _mm256_inserti128_si256(_mm256_castsi128_si256(
|
559 |
+
_mm_loadu_si128((__m128i *) (lineIn0_min + stride * i))),
|
560 |
+
_mm_loadu_si128((__m128i *) (lineIn1_min + stride * i)), 1);
|
561 |
+
|
562 |
+
// Apply mask_low:
|
563 |
+
// RGBA:
|
564 |
+
// [r0 0 r1 0 g0 0 g1 0 b0 0 b1 0 a0 0 a1 0 | R0 0 R1 0 G0 0 G1 0 B0 0 B1 0 A0 0 A1 0]
|
565 |
+
// RGB:
|
566 |
+
// [r0 0 r1 0 g0 0 g1 0 b0 0 b1 0 0 0 0 0 | R0 0 R1 0 G0 0 G1 0 B0 0 B1 0 0 0 0 0]
|
567 |
+
auto pix1 = _mm256_shuffle_epi8(source, mask_low);
|
568 |
+
// Compute output value as C += w0 * C0 + w1 * C1 for each channel in 32-bit precision
|
569 |
+
sss0 = _mm256_add_epi32(sss0, _mm256_madd_epi16(pix1, mmk0));
|
570 |
+
|
571 |
+
// Apply mask_high:
|
572 |
+
// RGBA:
|
573 |
+
// [r2 0 r3 0 g2 0 g3 0 b2 0 b3 0 a2 0 a3 0 | R2 0 R3 0 G2 0 G3 0 B2 0 B3 0 A2 0 A3 0]
|
574 |
+
// RGB:
|
575 |
+
// [r2 0 r3 0 g2 0 g3 0 b2 0 b3 0 0 0 0 0 | R2 0 R3 0 G2 0 G3 0 B2 0 B3 0 0 0 0 0]
|
576 |
+
auto pix2 = _mm256_shuffle_epi8(source, mask_high);
|
577 |
+
// Compute output value as C += w2 * C2 + w3 * C3 for each channel in 32-bit precision
|
578 |
+
sss0 = _mm256_add_epi32(sss0, _mm256_madd_epi16(pix2, mmk1));
|
579 |
+
|
580 |
+
// Same as above to next lines 2 and 3:
|
581 |
+
auto source2 = _mm256_inserti128_si256(_mm256_castsi128_si256(
|
582 |
+
_mm_loadu_si128((__m128i *) (lineIn2_min + stride * i))),
|
583 |
+
_mm_loadu_si128((__m128i *) (lineIn3_min + stride * i)), 1);
|
584 |
+
auto pix3 = _mm256_shuffle_epi8(source2, mask_low);
|
585 |
+
sss1 = _mm256_add_epi32(sss1, _mm256_madd_epi16(pix3, mmk0));
|
586 |
+
auto pix4 = _mm256_shuffle_epi8(source2, mask_high);
|
587 |
+
sss1 = _mm256_add_epi32(sss1, _mm256_madd_epi16(pix4, mmk1));
|
588 |
+
}
|
589 |
+
|
590 |
+
// block 2
|
591 |
+
for (; i < ids_size - b2_delta; i += 2) {
|
592 |
+
// Load 2 values from weight vector
|
593 |
+
// mmk = [wl_0 wh_0 wl_1 wh_1 wl_0 wh_0 wl_1 wh_1 ...]
|
594 |
+
const auto mmk = _mm256_set1_epi32(*(int32_t*)&k[i]);
|
595 |
+
|
596 |
+
// Load 4 pixels (2 per line) from input lines 0 and 1:
|
597 |
+
// RGBA: source1 = [
|
598 |
+
// r0 g0 b0 a0 r1 g1 b1 a1 0 0 0 0 0 0 0 0
|
599 |
+
// R0 G0 B0 A0 R1 G1 B1 A1 0 0 0 0 0 0 0 0
|
600 |
+
// ]
|
601 |
+
// RGB: source1 = [
|
602 |
+
// r0 g0 b0 r1 g1 b1 r2 0 0 0 0 0 0 0 0
|
603 |
+
// R0 G0 B0 R1 G1 B1 R2 0 0 0 0 0 0 0 0
|
604 |
+
// ]
|
605 |
+
auto source1 = _mm256_inserti128_si256(_mm256_castsi128_si256(
|
606 |
+
_mm_loadl_epi64((__m128i *) (lineIn0_min + stride * i))),
|
607 |
+
_mm_loadl_epi64((__m128i *) (lineIn1_min + stride * i)), 1);
|
608 |
+
// Apply mask_low:
|
609 |
+
// RGBA:
|
610 |
+
// [r0 0 r1 0 g0 0 g1 0 b0 0 b1 0 a0 0 a1 0 | R0 0 R1 0 G0 0 G1 0 B0 0 B1 0 A0 0 A1 0]
|
611 |
+
// RGB:
|
612 |
+
// [r0 0 r1 0 g0 0 g1 0 b0 0 b1 0 0 0 0 0 | R0 0 R1 0 G0 0 G1 0 B0 0 B1 0 0 0 0 0]
|
613 |
+
auto pix1 = _mm256_shuffle_epi8(source1, mask_low);
|
614 |
+
// Compute output value as C += w0 * C0 + w1 * C1 for each channel in 32-bit precision
|
615 |
+
sss0 = _mm256_add_epi32(sss0, _mm256_madd_epi16(pix1, mmk));
|
616 |
+
|
617 |
+
// Same as above for lines 2 and 3:
|
618 |
+
auto source2 = _mm256_inserti128_si256(_mm256_castsi128_si256(
|
619 |
+
_mm_loadl_epi64((__m128i *) (lineIn2_min + stride * i))),
|
620 |
+
_mm_loadl_epi64((__m128i *) (lineIn3_min + stride * i)), 1);
|
621 |
+
auto pix2 = _mm256_shuffle_epi8(source2, mask_low);
|
622 |
+
sss1 = _mm256_add_epi32(sss1, _mm256_madd_epi16(pix2, mmk));
|
623 |
+
}
|
624 |
+
|
625 |
+
// block 1
|
626 |
+
const auto i32_aligned = num_channels == 4;
|
627 |
+
for (; i < ids_size - 1; i++) {
|
628 |
+
// Load 1 value from weight vector
|
629 |
+
// mmk = [wl_0 wh_0 0 0 wl_0 wh_0 0 0 ...]
|
630 |
+
const auto mmk = _mm256_set1_epi32(k[i]);
|
631 |
+
|
632 |
+
// Load 2 pixels (one per line) from input lines 0 and 1:
|
633 |
+
// RGBA: pix1 = [
|
634 |
+
// r0 0 0 0 g0 0 0 0 b0 0 0 0 a0 0 0 0
|
635 |
+
// R0 0 0 0 G0 0 0 0 B0 0 0 0 A0 0 0 0
|
636 |
+
// ]
|
637 |
+
// RGB: pix1 = [
|
638 |
+
// r0 0 0 0 g0 0 0 0 b0 0 0 0 r1 0 0 0
|
639 |
+
// R0 0 0 0 G0 0 0 0 B0 0 0 0 R1 0 0 0
|
640 |
+
// ]
|
641 |
+
auto pix1 = _mm256_inserti128_si256(_mm256_castsi128_si256(
|
642 |
+
mm_cvtepu8_epi32(lineIn0_min + stride * i, i32_aligned)),
|
643 |
+
mm_cvtepu8_epi32(lineIn1_min + stride * i, i32_aligned), 1);
|
644 |
+
// Compute output value as C += w0 * C0 for each channel in 32-bit precision
|
645 |
+
sss0 = _mm256_add_epi32(sss0, _mm256_madd_epi16(pix1, mmk));
|
646 |
+
|
647 |
+
// Same as above for lines 2 and 3
|
648 |
+
auto pix2 = _mm256_inserti128_si256(_mm256_castsi128_si256(
|
649 |
+
mm_cvtepu8_epi32(lineIn2_min + stride * i, i32_aligned)),
|
650 |
+
mm_cvtepu8_epi32(lineIn3_min + stride * i, i32_aligned), 1);
|
651 |
+
sss1 = _mm256_add_epi32(sss1, _mm256_madd_epi16(pix2, mmk));
|
652 |
+
}
|
653 |
+
|
654 |
+
if (i == ids_size - 1) {
|
655 |
+
// last element
|
656 |
+
auto mmk = _mm256_set1_epi32(k[i]);
|
657 |
+
// For num_channels == 3 (3 bytes = one pixel) we tolerate to read 4 bytes
|
658 |
+
// lines 0, 1 and 2 wont go out of allocated memory bounds
|
659 |
+
auto pix = _mm256_inserti128_si256(_mm256_castsi128_si256(
|
660 |
+
mm_cvtepu8_epi32(lineIn0_min + stride * i, i32_aligned)),
|
661 |
+
mm_cvtepu8_epi32(lineIn1_min + stride * i, i32_aligned), 1);
|
662 |
+
sss0 = _mm256_add_epi32(sss0, _mm256_madd_epi16(pix, mmk));
|
663 |
+
|
664 |
+
auto p0 = mm_cvtepu8_epi32(lineIn2_min + stride * i, i32_aligned);
|
665 |
+
__m128i p1;
|
666 |
+
if (num_channels == 3 && C10_UNLIKELY(is_last_line && ids_min + stride * i + 4 >= max_in_x_strided)) {
|
667 |
+
uint8_t input[4];
|
668 |
+
std::memcpy(input, lineIn3_min + stride * i, 3);
|
669 |
+
p1 = mm_cvtepu8_epi32(input, true);
|
670 |
+
} else {
|
671 |
+
p1 = mm_cvtepu8_epi32(lineIn3_min + stride * i, i32_aligned);
|
672 |
+
}
|
673 |
+
auto pix2 = _mm256_inserti128_si256(_mm256_castsi128_si256(p0), p1, 1);
|
674 |
+
sss1 = _mm256_add_epi32(sss1, _mm256_madd_epi16(pix2, mmk));
|
675 |
+
}
|
676 |
+
|
677 |
+
// Convert fixed point values back to integers (truncating)
|
678 |
+
sss0 = _mm256_srai_epi32(sss0, coefs_precision);
|
679 |
+
sss1 = _mm256_srai_epi32(sss1, coefs_precision);
|
680 |
+
// Convert packed signed 32-bit integers to packed 16-bit integers using signed saturation
|
681 |
+
// (a a a a b b b b c c c c d d d d) -> (a a b b c c d d 0 0 0 0 0 0 0 0)
|
682 |
+
sss0 = _mm256_packs_epi32(sss0, zero);
|
683 |
+
sss1 = _mm256_packs_epi32(sss1, zero);
|
684 |
+
// Convert packed signed 16-bit integers to packed 8-bit integers using unsigned saturation
|
685 |
+
// (a a b b c c d d) -> (a b c d 0 0 0 0)
|
686 |
+
sss0 = _mm256_packus_epi16(sss0, zero);
|
687 |
+
sss1 = _mm256_packus_epi16(sss1, zero);
|
688 |
+
|
689 |
+
// Write the output into single uint32
|
690 |
+
// (a b c d) -> x_uint32
|
691 |
+
auto o0 = _mm_cvtsi128_si32(_mm256_castsi256_si128(sss0));
|
692 |
+
auto o1 = _mm_cvtsi128_si32(_mm256_extracti128_si256(sss0, 1));
|
693 |
+
auto o2 = _mm_cvtsi128_si32(_mm256_castsi256_si128(sss1));
|
694 |
+
auto o3 = _mm_cvtsi128_si32(_mm256_extracti128_si256(sss1, 1));
|
695 |
+
|
696 |
+
const auto out_x_strided = stride * out_x;
|
697 |
+
|
698 |
+
if (num_channels == 3 && C10_UNLIKELY(out_x_strided + 4 >= max_out_x_strided)) {
|
699 |
+
// Memcpy 4-bytes is faster than 3-bytes and this is a boundary case when we want to write
|
700 |
+
// 4 bytes (R G B | X) to the output buffer (X1 X2 X3 | R1).
|
701 |
+
// The 4th byte in the register (X) has a garbage value and 4th byte in the output buffer (R1) has a correct
|
702 |
+
// value which was previously computed by another line. In other words, it means that we can not overwrite
|
703 |
+
// it by simply writing 4 bytes from the register to the output. We'll do the following:
|
704 |
+
// v----------|
|
705 |
+
// Output = [... X1 X2 X3 | R1 G1 B1 R2 ...]
|
706 |
+
// First, we write R1 value to the 4th byte of (R G B | X) -> (R G B | R1)
|
707 |
+
// Second, we write 4 bytes from the register to the output: (X1 X2 X3 | R1) -> (R G B | R1)
|
708 |
+
// Output = [... R G B | R1 G1 B1 R2 ...]
|
709 |
+
|
710 |
+
_write_endline_rgb_as_uint32(lineOut0 + out_x_strided, o0);
|
711 |
+
_write_endline_rgb_as_uint32(lineOut1 + out_x_strided, o1);
|
712 |
+
_write_endline_rgb_as_uint32(lineOut2 + out_x_strided, o2);
|
713 |
+
|
714 |
+
if (C10_UNLIKELY(is_last_line)) {
|
715 |
+
// When we handle the last line, we can not access the next 4 bytes
|
716 |
+
// as they are out of memory bounds.
|
717 |
+
std::memcpy(lineOut3 + out_x_strided, (uint8_t *) &o3, num_channels);
|
718 |
+
} else {
|
719 |
+
_write_endline_rgb_as_uint32(lineOut3 + out_x_strided, o3);
|
720 |
+
}
|
721 |
+
} else if (num_channels == 3) {
|
722 |
+
// Memcpy 4-bytes is faster than 3-bytes and here
|
723 |
+
// we simply write 4 bytes (... R G B X 0 0 0 0 0 ...) where X is a garbage value
|
724 |
+
// that we will overwrite on the next iteration: (... R G B R G B X 0 0 ...)
|
725 |
+
std::memcpy(lineOut0 + out_x_strided, (uint8_t *) &o0, 4);
|
726 |
+
std::memcpy(lineOut1 + out_x_strided, (uint8_t *) &o1, 4);
|
727 |
+
std::memcpy(lineOut2 + out_x_strided, (uint8_t *) &o2, 4);
|
728 |
+
std::memcpy(lineOut3 + out_x_strided, (uint8_t *) &o3, 4);
|
729 |
+
} else {
|
730 |
+
// num_channels = 4 -> lineOutX + out_x_strided should be uint32 aligned
|
731 |
+
*(uint32_t *)(lineOut0 + out_x_strided) = o0;
|
732 |
+
*(uint32_t *)(lineOut1 + out_x_strided) = o1;
|
733 |
+
*(uint32_t *)(lineOut2 + out_x_strided) = o2;
|
734 |
+
*(uint32_t *)(lineOut3 + out_x_strided) = o3;
|
735 |
+
}
|
736 |
+
}
|
737 |
+
}
|
738 |
+
|
739 |
+
void ImagingResampleHorizontalConvolution8u(
|
740 |
+
uint8_t* C10_RESTRICT lineOut,
|
741 |
+
int64_t out_xsize,
|
742 |
+
const uint8_t* C10_RESTRICT lineIn,
|
743 |
+
int64_t in_xsize,
|
744 |
+
const int64_t* idx_ptr_xmin,
|
745 |
+
const int64_t* idx_ptr_size,
|
746 |
+
const int16_t* kk,
|
747 |
+
int kmax,
|
748 |
+
unsigned int coefs_precision,
|
749 |
+
int64_t num_channels,
|
750 |
+
bool is_last_line) {
|
751 |
+
|
752 |
+
// Interpolation horizontal pass processing only one vertical line.
|
753 |
+
// - Input data format is RGBA or RGB with R,G,B,A being uint8. In case of RGBA
|
754 |
+
// we can encode 4 values as a single uint32 value.
|
755 |
+
// - We split the size of weight vector for a given output index as a sum:
|
756 |
+
// ids_size = num_blocks_8 * 8 + num_blocks_4 * 4 + num_blocks_2 * 2 + num_blocks_1
|
757 |
+
// - We load and process 8 weights values in a loop ("block 8") then 4 weights and 2 weights values in
|
758 |
+
// in another loops ("block 4" and "block 2") and finally we process 1 weight value in the final loop ("block 1").
|
759 |
+
|
760 |
+
// Define various shuffling masks
|
761 |
+
const auto kmask_low = _mm256_set_epi8(
|
762 |
+
11, 10, 9, 8, 11, 10, 9, 8, 11, 10, 9, 8, 11, 10, 9, 8,
|
763 |
+
3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 0);
|
764 |
+
const auto kmask_high = _mm256_set_epi8(
|
765 |
+
15, 14, 13, 12, 15, 14, 13, 12, 15, 14, 13, 12, 15, 14, 13, 12,
|
766 |
+
7, 6, 5, 4, 7, 6, 5, 4, 7, 6, 5, 4, 7, 6, 5, 4);
|
767 |
+
const auto kmask_hl = _mm256_set_epi8(
|
768 |
+
7, 6, 5, 4, 7, 6, 5, 4, 7, 6, 5, 4, 7, 6, 5, 4,
|
769 |
+
3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 0);
|
770 |
+
|
771 |
+
const auto mask_low_c4 = _mm256_set_epi8(
|
772 |
+
-1, 7, -1, 3, -1, 6, -1, 2, -1, 5, -1, 1, -1, 4, -1, 0,
|
773 |
+
-1, 7, -1, 3, -1, 6, -1, 2, -1, 5, -1, 1, -1, 4, -1, 0);
|
774 |
+
const auto mask_high_c4 = _mm256_set_epi8(
|
775 |
+
-1, 15, -1, 11, -1, 14, -1, 10, -1, 13, -1, 9, -1, 12, -1, 8,
|
776 |
+
-1, 15, -1, 11, -1, 14, -1, 10, -1, 13, -1, 9, -1, 12, -1, 8);
|
777 |
+
const auto mask_low_c3 = _mm256_set_epi8(
|
778 |
+
-1, -1, -1, -1, -1, 5, -1, 2, -1, 4, -1, 1, -1, 3, -1, 0,
|
779 |
+
-1, -1, -1, -1, -1, 5, -1, 2, -1, 4, -1, 1, -1, 3, -1, 0);
|
780 |
+
const auto mask_high_c3 = _mm256_set_epi8(
|
781 |
+
-1, -1, -1, -1, -1, 11, -1, 8, -1, 10, -1, 7, -1, 9, -1, 6,
|
782 |
+
-1, -1, -1, -1, -1, 11, -1, 8, -1, 10, -1, 7, -1, 9, -1, 6);
|
783 |
+
const auto mask_hl_c3 = _mm256_set_epi8(
|
784 |
+
-1, -1, -1, -1, -1, 11, -1, 8, -1, 10, -1, 7, -1, 9, -1, 6,
|
785 |
+
-1, -1, -1, -1, -1, 5, -1, 2, -1, 4, -1, 1, -1, 3, -1, 0);
|
786 |
+
const auto mask_hl_c4 = _mm256_set_epi8(
|
787 |
+
-1, 15, -1, 11, -1, 14, -1, 10, -1, 13, -1, 9, -1, 12, -1, 8,
|
788 |
+
-1, 7, -1, 3, -1, 6, -1, 2, -1, 5, -1, 1, -1, 4, -1, 0);
|
789 |
+
|
790 |
+
const auto mask_low128_c3 = _mm_set_epi8(
|
791 |
+
-1, -1, -1, -1, -1, 5, -1, 2, -1, 4, -1, 1, -1, 3, -1, 0);
|
792 |
+
const auto mask_low128_c4 = _mm_set_epi8(
|
793 |
+
-1, 7, -1, 3, -1, 6, -1, 2, -1, 5, -1, 1, -1, 4, -1, 0);
|
794 |
+
|
795 |
+
const auto mask_low = (num_channels == 3) ? mask_low_c3 : mask_low_c4;
|
796 |
+
const auto mask_high = (num_channels == 3) ? mask_high_c3 : mask_high_c4;
|
797 |
+
const auto mask_hl = (num_channels == 3) ? mask_hl_c3 : mask_hl_c4;
|
798 |
+
const auto mask_low128 = (num_channels == 3) ? mask_low128_c3 : mask_low128_c4;
|
799 |
+
|
800 |
+
// out_xsize = output width, out_x = output x index
|
801 |
+
// ids_min is the input offset index corresponding to out_x
|
802 |
+
// ids_size is the interpolation size for out_x
|
803 |
+
|
804 |
+
const auto stride = num_channels * sizeof(uint8_t);
|
805 |
+
const auto zero = _mm_setzero_si128();
|
806 |
+
|
807 |
+
TORCH_INTERNAL_ASSERT(stride == 3 || stride == 4);
|
808 |
+
|
809 |
+
// Let's precompute ids_size limits for block 8, block 4 and block 2
|
810 |
+
//
|
811 |
+
// In block 8 (8 means we process 8 weight values together), we read at
|
812 |
+
// most 32 bytes input data (16 + 16 bytes for RGBA and 12 + 16 bytes for RGB)
|
813 |
+
// lineIn + stride * (i + ids_min) + 32 <= lineIn + stride * (ids_size + ids_min)
|
814 |
+
// --> i <= ids_size - 32.0 / stride
|
815 |
+
// Strict boundary:
|
816 |
+
// --> i < ids_size + 1 - int(ceil(32.0 / stride)) = ids_size - b8_delta
|
817 |
+
// Soft boundary for reading inside the buffer except its boundaries:
|
818 |
+
// --> i < ids_size + 1 - int(32.0 / stride) = ids_size - b8_delta_soft
|
819 |
+
// RGBA: b8_delta = b8_delta_soft = 7
|
820 |
+
// RGB : b8_delta = 10
|
821 |
+
// RGB : b8_delta_soft = 9
|
822 |
+
const auto b8_delta = (stride == 4) ? 7 : ((is_last_line) ? 10 : 9);
|
823 |
+
|
824 |
+
// In block 4 (4 means we process 4 weight values together), we read
|
825 |
+
// 16 bytes of input data.
|
826 |
+
// lineIn + stride * (i + ids_min) + 16 <= lineIn0 + stride * (ids_size + ids_min)
|
827 |
+
// --> i <= ids_size - 16.0 / stride
|
828 |
+
// Strict boundary:
|
829 |
+
// --> i < ids_size + 1 - int(ceil(16.0 / stride)) = ids_size - b4_delta
|
830 |
+
// Soft boundary for reading inside the buffer except its boundaries:
|
831 |
+
// --> i < ids_size + 1 - int(16.0 / stride) = ids_size - b4_delta_soft
|
832 |
+
// RGBA: b4_delta = b4_delta_soft = 3
|
833 |
+
// RGB : b4_delta = 5
|
834 |
+
// RGB : b4_delta_soft = 4
|
835 |
+
const auto b4_delta = (stride == 4) ? 3 : ((is_last_line) ? 5 : 4);
|
836 |
+
|
837 |
+
// In block 2 (2 means we process 2 weight values together), we read
|
838 |
+
// 8 bytes of input data.
|
839 |
+
// lineIn0 + stride * (i + ids_min) + 8 <= lineIn0 + stride * (ids_size + ids_min)
|
840 |
+
// --> i <= ids_size - 8.0 / stride
|
841 |
+
// Strict boundary:
|
842 |
+
// --> i < ids_size + 1 - int(ceil(8.0 / stride)) = ids_size - b2_delta
|
843 |
+
// Soft boundary for reading inside the buffer except its boundaries:
|
844 |
+
// --> i < ids_size + 1 - int(8.0 / stride) = ids_size - b2_delta_soft
|
845 |
+
// RGBA: b2_delta = b2_delta_soft = 1
|
846 |
+
// RGB : b2_delta = 2
|
847 |
+
// RGB : b2_delta_soft = 1
|
848 |
+
const auto b2_delta = (stride == 4) ? 1 : ((is_last_line) ? 2 : 1);
|
849 |
+
|
850 |
+
const auto max_out_x_strided = out_xsize * stride;
|
851 |
+
const auto max_in_x_strided = in_xsize * stride;
|
852 |
+
|
853 |
+
for (const auto out_x : c10::irange(out_xsize)) {
|
854 |
+
__m128i sss;
|
855 |
+
const auto ids_min = idx_ptr_xmin[out_x];
|
856 |
+
const auto ids_size = idx_ptr_size[out_x];
|
857 |
+
const auto * k = &kk[out_x * kmax];
|
858 |
+
int64_t i = 0;
|
859 |
+
|
860 |
+
const auto * lineIn_min = lineIn + ids_min;
|
861 |
+
|
862 |
+
if (ids_size < 8) {
|
863 |
+
sss = _mm_set1_epi32(1 << (coefs_precision - 1));
|
864 |
+
} else {
|
865 |
+
// Lower part will be added to higher, use only half of the error
|
866 |
+
auto sss256 = _mm256_set1_epi32(1 << (coefs_precision - 2));
|
867 |
+
|
868 |
+
// block 8
|
869 |
+
for (; i < ids_size - b8_delta; i += 8) {
|
870 |
+
// Load 8 values from weight vector
|
871 |
+
auto tmp = _mm_loadu_si128((__m128i*)&k[i]);
|
872 |
+
// ksource = [
|
873 |
+
// wl_0 wh_0 wl_1 wh_1 wl_2 wh_2 wl_3 wh_3 wl_4 wh_4 wl_5 wh_5 wl_6 wh_6 wl_7 wh_7
|
874 |
+
// wl_0 wh_0 wl_1 wh_1 wl_2 wh_2 wl_3 wh_3 wl_4 wh_4 wl_5 wh_5 wl_6 wh_6 wl_7 wh_7
|
875 |
+
// ]
|
876 |
+
auto ksource = _mm256_insertf128_si256(_mm256_castsi128_si256(tmp), tmp, 1);
|
877 |
+
|
878 |
+
// RGBA: Load 8 pixels from input:
|
879 |
+
// source = [
|
880 |
+
// r0 g0 b0 a0 r1 g1 b1 a1 r2 g2 b2 a2 r3 g3 b3 a3
|
881 |
+
// r4 g4 b4 a4 r5 g5 b5 a5 r6 g6 b6 a6 r7 g7 b7 a7
|
882 |
+
// ]
|
883 |
+
// RGB: Load 10 pixels from input (however we can process only 8 pixels):
|
884 |
+
// source = [
|
885 |
+
// r0 g0 b0 r1 g1 b1 r2 g2 b2 r3 g3 b3 r4 g4 b4 r5
|
886 |
+
// r4 g4 b4 r5 g5 b5 r6 g6 b6 r7 g7 b7 r8 g8 b8 r9
|
887 |
+
// ]
|
888 |
+
auto source = _mm256_inserti128_si256(_mm256_castsi128_si256(
|
889 |
+
_mm_loadu_si128((__m128i *) (lineIn_min + stride * i))),
|
890 |
+
_mm_loadu_si128((__m128i *) (lineIn_min + stride * (i + 4))), 1);
|
891 |
+
|
892 |
+
// Extract lower part of each lane, cast to epi16 and reoder RGBARGBA -> RRGGBBAA
|
893 |
+
// RGBA: pix1 = [
|
894 |
+
// r0 0 r1 0 g0 0 g1 0 b0 0 b1 0 a0 0 a1 0
|
895 |
+
// r4 0 r5 0 g4 0 g5 0 b4 0 b5 0 a4 0 a5 0
|
896 |
+
// ]
|
897 |
+
// RGB: pix1 = [
|
898 |
+
// r0 0 r1 0 g0 0 g1 0 b0 0 b1 0 0 0 0 0
|
899 |
+
// r4 0 r5 0 g4 0 g5 0 b4 0 b5 0 0 0 0 0
|
900 |
+
// ]
|
901 |
+
auto pix1 = _mm256_shuffle_epi8(source, mask_low);
|
902 |
+
// mmk1 = [
|
903 |
+
// wl_0 wh_0 wl_1 wh_1 wl_0 wh_0 wl_1 wh_1 ... ...
|
904 |
+
// wl_4 wh_4 wl_5 wh_5 wl_4 wh_4 wl_5 wh_5 ... ...
|
905 |
+
// ]
|
906 |
+
auto mmk1 = _mm256_shuffle_epi8(ksource, kmask_low);
|
907 |
+
// Compute output value as
|
908 |
+
// C += w0 * C0 + w1 * C1
|
909 |
+
// C += w4 * C4 + w5 * C5 for each channel in 32-bit precision
|
910 |
+
sss256 = _mm256_add_epi32(sss256, _mm256_madd_epi16(pix1, mmk1));
|
911 |
+
|
912 |
+
// Same as above for higher part of each lane
|
913 |
+
auto pix2 = _mm256_shuffle_epi8(source, mask_high);
|
914 |
+
auto mmk2 = _mm256_shuffle_epi8(ksource, kmask_high);
|
915 |
+
// Compute output value as
|
916 |
+
// C += w2 * C2 + w3 * C3
|
917 |
+
// C += w6 * C6 + w7 * C7 for each channel in 32-bit precision
|
918 |
+
sss256 = _mm256_add_epi32(sss256, _mm256_madd_epi16(pix2, mmk2));
|
919 |
+
}
|
920 |
+
|
921 |
+
// block 4
|
922 |
+
for (; i < ids_size - b4_delta; i += 4) {
|
923 |
+
// Load 4 values from weight vector
|
924 |
+
auto tmp = _mm_loadl_epi64((__m128i *) &k[i]);
|
925 |
+
// ksource = [
|
926 |
+
// wl_0 wh_0 wl_1 wh_1 wl_2 wh_2 wl_3 wh_3 0 0 0 0 0 0 0 0
|
927 |
+
// wl_0 wh_0 wl_1 wh_1 wl_2 wh_2 wl_3 wh_3 0 0 0 0 0 0 0 0
|
928 |
+
// ]
|
929 |
+
auto ksource = _mm256_insertf128_si256(_mm256_castsi128_si256(tmp), tmp, 1);
|
930 |
+
|
931 |
+
// Load pixels from input line
|
932 |
+
tmp = _mm_loadu_si128((__m128i *) (lineIn_min + stride * i));
|
933 |
+
// RGBA: source = [
|
934 |
+
// r0 g0 b0 a0 r1 g1 b1 a1 r2 g2 b2 a2 r3 g3 b3 a3
|
935 |
+
// r0 g0 b0 a0 r1 g1 b1 a1 r2 g2 b2 a2 r3 g3 b3 a3
|
936 |
+
// ]
|
937 |
+
// RGB: source = [
|
938 |
+
// r0 g0 b0 r1 g1 b1 r2 g2 b2 r3 g3 b3 r4 g4 b4 r5
|
939 |
+
// r0 g0 b0 r1 g1 b1 r2 g2 b2 r3 g3 b3 r4 g4 b4 r5
|
940 |
+
// ]
|
941 |
+
auto source = _mm256_insertf128_si256(_mm256_castsi128_si256(tmp), tmp, 1);
|
942 |
+
|
943 |
+
// Cast source to epi16 and reorder RGBARGBA -> RRGGBBAA
|
944 |
+
// RGBA: pix = [
|
945 |
+
// r0 0 r1 0 g0 0 g1 0 b0 0 b1 0 a0 0 a1 0
|
946 |
+
// r2 0 r3 0 g2 0 g3 0 b2 0 b3 0 a2 0 a3 0
|
947 |
+
// ]
|
948 |
+
// RGB: pix = [
|
949 |
+
// r0 0 r1 0 g0 0 g1 0 b0 0 b1 0 0 0 0 0
|
950 |
+
// r2 0 r3 0 g2 0 g3 0 b2 0 b3 0 0 0 0 0
|
951 |
+
// ]
|
952 |
+
auto pix = _mm256_shuffle_epi8(source, mask_hl);
|
953 |
+
// mmk = [
|
954 |
+
// wl_0 wh_0 wl_1 wh_1 wl_0 wh_0 wl_1 wh_1 ... ...
|
955 |
+
// wl_2 wh_2 wl_3 wh_3 wl_2 wh_2 wl_3 wh_3 ... ...
|
956 |
+
// ]
|
957 |
+
auto mmk = _mm256_shuffle_epi8(ksource, kmask_hl);
|
958 |
+
// Compute output value as
|
959 |
+
// C += w0 * C0 + w1 * C1
|
960 |
+
// C += w2 * C2 + w3 * C3 for each channel in 32-bit precision
|
961 |
+
sss256 = _mm256_add_epi32(sss256, _mm256_madd_epi16(pix, mmk));
|
962 |
+
}
|
963 |
+
|
964 |
+
// Sum results between the lanes
|
965 |
+
sss = _mm_add_epi32(
|
966 |
+
_mm256_extracti128_si256(sss256, 0),
|
967 |
+
_mm256_extracti128_si256(sss256, 1));
|
968 |
+
}
|
969 |
+
|
970 |
+
// block 2
|
971 |
+
for (; i < ids_size - b2_delta; i += 2) {
|
972 |
+
// Load 2 values from weight vector
|
973 |
+
// mmk = [wl_0 wh_0 wl_1 wh_1 wl_0 wh_0 wl_1 wh_1 ...]
|
974 |
+
auto mmk = _mm_set1_epi32(*(int32_t*)&k[i]);
|
975 |
+
// Load pixels from input line
|
976 |
+
// RGBA: source = [
|
977 |
+
// r0 g0 b0 a0 r1 g1 b1 a1 0 0 0 0 0 0 0 0
|
978 |
+
// ]
|
979 |
+
// RGB: source = [
|
980 |
+
// r0 g0 b0 r1 g1 b1 r2 g2 0 0 0 0 0 0 0 0
|
981 |
+
// ]
|
982 |
+
auto source = _mm_loadl_epi64((__m128i *) (lineIn_min + stride * i));
|
983 |
+
// Cast source to epi16 and reorder RGBARGBA -> RRGGBBAA
|
984 |
+
auto pix = _mm_shuffle_epi8(source, mask_low128);
|
985 |
+
// Compute output value as C += w0 * C0 + w1 * C1 for each channel in 32-bit precision
|
986 |
+
sss = _mm_add_epi32(sss, _mm_madd_epi16(pix, mmk));
|
987 |
+
}
|
988 |
+
|
989 |
+
// block 1
|
990 |
+
const auto i32_aligned = num_channels == 4;
|
991 |
+
for (; i < ids_size - 1; i++) {
|
992 |
+
// Load 1 value from weight vector
|
993 |
+
// mmk = [wl_0 wh_0 0 0 wl_0 wh_0 0 0 ...]
|
994 |
+
auto mmk = _mm_set1_epi32(k[i]);
|
995 |
+
// Load one pixel from input line
|
996 |
+
// RGBA: pix = [
|
997 |
+
// r0 0 0 0 g0 0 0 0 b0 0 0 0 a0 0 0 0
|
998 |
+
// ]
|
999 |
+
// RGB: pix = [
|
1000 |
+
// r0 0 0 0 g0 0 0 0 b0 0 0 0 r1 0 0 0
|
1001 |
+
// ]
|
1002 |
+
auto pix = mm_cvtepu8_epi32(lineIn_min + stride * i, i32_aligned);
|
1003 |
+
// Compute output value as C += w0 * C0 for each channel in 32-bit precision
|
1004 |
+
sss = _mm_add_epi32(sss, _mm_madd_epi16(pix, mmk));
|
1005 |
+
}
|
1006 |
+
|
1007 |
+
if (i == ids_size - 1) {
|
1008 |
+
// last element
|
1009 |
+
auto mmk = _mm_set1_epi32(k[i]);
|
1010 |
+
__m128i pix;
|
1011 |
+
auto p = lineIn_min + stride * i;
|
1012 |
+
if (num_channels == 3 && C10_UNLIKELY(is_last_line && ids_min + stride * i + 4 >= max_in_x_strided)) {
|
1013 |
+
uint8_t input[4];
|
1014 |
+
std::memcpy(input, p, 3);
|
1015 |
+
pix = mm_cvtepu8_epi32(input, true);
|
1016 |
+
} else {
|
1017 |
+
pix = mm_cvtepu8_epi32(p, i32_aligned);
|
1018 |
+
}
|
1019 |
+
sss = _mm_add_epi32(sss, _mm_madd_epi16(pix, mmk));
|
1020 |
+
}
|
1021 |
+
|
1022 |
+
// Convert fixed point values back to integers (truncating)
|
1023 |
+
sss = _mm_srai_epi32(sss, coefs_precision);
|
1024 |
+
// Convert packed signed 32-bit integers to packed 16-bit integers using signed saturation
|
1025 |
+
// (a a a a b b b b c c c c d d d d) -> (a a b b c c d d 0 0 0 0 0 0 0 0)
|
1026 |
+
sss = _mm_packs_epi32(sss, zero);
|
1027 |
+
// Convert packed signed 16-bit integers to packed 8-bit integers using unsigned saturation
|
1028 |
+
// (a a b b c c d d) -> (a b c d 0 0 0 0)
|
1029 |
+
sss = _mm_packus_epi16(sss, zero);
|
1030 |
+
// Write the output into single uint32
|
1031 |
+
// (a b c d) -> x_uint32
|
1032 |
+
auto o = _mm_cvtsi128_si32(sss);
|
1033 |
+
const auto out_x_strided = stride * out_x;
|
1034 |
+
if (num_channels == 3 && C10_UNLIKELY(out_x_strided + 4 >= max_out_x_strided)) {
|
1035 |
+
if (C10_UNLIKELY(is_last_line)) {
|
1036 |
+
// When we handle the last line, we can not access the next 4 bytes
|
1037 |
+
// as they are out of memory bounds.
|
1038 |
+
std::memcpy(lineOut + out_x_strided, (uint8_t *) &o, 3);
|
1039 |
+
} else {
|
1040 |
+
// Memcpy 4-bytes is faster than 3-bytes and this is a boundary case when we want to write
|
1041 |
+
// 4 bytes (R G B | X) to the output buffer (X1 X2 X3 | R1).
|
1042 |
+
// The 4th byte in the register (X) has a garbage value and 4th byte in the output buffer (R1) has a correct
|
1043 |
+
// value which was previously computed by another line. In other words, it means that we can not overwrite
|
1044 |
+
// it by simply writing 4 bytes from the register to the output. We'll do the following:
|
1045 |
+
// v----------|
|
1046 |
+
// Output = [... X1 X2 X3 | R1 G1 B1 R2 ...]
|
1047 |
+
// First, we write R1 value to the 4th byte of (R G B | X) -> (R G B | R1)
|
1048 |
+
// Second, we write 4 bytes from the register to the output: (X1 X2 X3 | R1) -> (R G B | R1)
|
1049 |
+
// Output = [... R G B | R1 G1 B1 R2 ...]
|
1050 |
+
_write_endline_rgb_as_uint32(lineOut + out_x_strided, o);
|
1051 |
+
}
|
1052 |
+
} else if (num_channels == 3) {
|
1053 |
+
// Memcpy 4-bytes is faster than 3-bytes and here
|
1054 |
+
// we simply write 4 bytes (... R G B X 0 0 0 0 0 ...) where X is a garbage value
|
1055 |
+
// that we will overwrite on the next iteration: (... R G B R G B X 0 0 ...)
|
1056 |
+
std::memcpy(lineOut + out_x_strided, (uint8_t *) &o, 4);
|
1057 |
+
} else {
|
1058 |
+
// num_channels = 4 -> lineOut + out_x_strided should be uint32 aligned
|
1059 |
+
*(uint32_t *)(lineOut + out_x_strided) = o;
|
1060 |
+
}
|
1061 |
+
}
|
1062 |
+
}
|
1063 |
+
|
1064 |
+
void ImagingResampleVerticalConvolution8u(
|
1065 |
+
uint8_t* C10_RESTRICT lineOut,
|
1066 |
+
const uint8_t* C10_RESTRICT lineIn,
|
1067 |
+
int64_t xsize,
|
1068 |
+
int64_t ids_min,
|
1069 |
+
int64_t ids_size,
|
1070 |
+
const int16_t* k,
|
1071 |
+
unsigned int coefs_precision,
|
1072 |
+
int64_t num_channels) {
|
1073 |
+
|
1074 |
+
// Interpolation vertical pass processing one line.
|
1075 |
+
// - We process x-axis data with blocks of 8, 2 and 1
|
1076 |
+
// - We split the size of weight vector for a given output index as a sum: K = n * 2 + m.
|
1077 |
+
|
1078 |
+
// xsize = output width, also equals to input width
|
1079 |
+
// ids_size = interpolation size
|
1080 |
+
// ids_min = input y start index
|
1081 |
+
const auto stride = num_channels * sizeof(uint8_t);
|
1082 |
+
|
1083 |
+
TORCH_INTERNAL_ASSERT(stride == 3 || stride == 4);
|
1084 |
+
|
1085 |
+
const int64_t data_size = xsize * stride;
|
1086 |
+
const int64_t data_stride = stride;
|
1087 |
+
constexpr auto vec_size = 256 / 8;
|
1088 |
+
|
1089 |
+
const auto initial = _mm_set1_epi32(1 << (coefs_precision - 1));
|
1090 |
+
const auto initial_256 = _mm256_set1_epi32(1 << (coefs_precision - 1));
|
1091 |
+
const auto zero = _mm_setzero_si128();
|
1092 |
+
const auto zero_256 = _mm256_setzero_si256();
|
1093 |
+
|
1094 |
+
int64_t j = 0;
|
1095 |
+
// block 8
|
1096 |
+
const auto b8_usable_vec_stride = (vec_size / data_stride) * data_stride;
|
1097 |
+
for (; j < data_size - vec_size; j += b8_usable_vec_stride) {
|
1098 |
+
auto sss0 = initial_256;
|
1099 |
+
auto sss1 = initial_256;
|
1100 |
+
auto sss2 = initial_256;
|
1101 |
+
auto sss3 = initial_256;
|
1102 |
+
int64_t i = 0;
|
1103 |
+
const auto * lineIn_min = lineIn + j + ids_min;
|
1104 |
+
|
1105 |
+
for (; i < ids_size - 1; i += 2) {
|
1106 |
+
// Load 2 values from weight vector
|
1107 |
+
auto mmk = _mm256_set1_epi32(*(int32_t*)&k[i]);
|
1108 |
+
|
1109 |
+
// RGBA: Load 8 pixels per line
|
1110 |
+
// source1 = [
|
1111 |
+
// r0 g0 b0 a0 r1 g1 b1 a1 r2 g2 b2 a2 r3 g3 b3 a3
|
1112 |
+
// r4 g4 b4 a4 r5 g5 b5 a5 r6 g6 b6 a6 r7 g7 b7 a7
|
1113 |
+
// ]
|
1114 |
+
// RGB: Load 10 pixels per line (however we can process only 8 pixels):
|
1115 |
+
// source1 = [
|
1116 |
+
// r0 g0 b0 r1 g1 b1 r2 g2 b2 r3 g3 b3 r4 g4 b4 r5
|
1117 |
+
// r4 g4 b4 r5 g5 b5 r6 g6 b6 r7 g7 b7 r8 g8 b8 r9
|
1118 |
+
// ]
|
1119 |
+
auto source1 =
|
1120 |
+
_mm256_loadu_si256((__m256i*)(lineIn_min + data_size * i));
|
1121 |
+
auto source2 =
|
1122 |
+
_mm256_loadu_si256((__m256i*)(lineIn_min + data_size * (i + 1)));
|
1123 |
+
|
1124 |
+
// Interleave source1 and source2 from the low half of each 128-bit lane
|
1125 |
+
// and cast the result to epi16
|
1126 |
+
// RGBA: pix1 = [
|
1127 |
+
// r0 0 R0 0 g0 0 G0 0 b0 0 B0 0 a0 0 A0 0
|
1128 |
+
// r1 0 R1 0 g1 0 G1 0 b1 0 B1 0 a1 0 A1 0
|
1129 |
+
// ]
|
1130 |
+
// RGB: pix1 = [
|
1131 |
+
// r0 0 R0 0 g0 0 G0 0 b0 0 B0 0 0 0 0 0
|
1132 |
+
// r1 0 R1 0 g1 0 G1 0 b1 0 B1 0 0 0 0 0
|
1133 |
+
// ]
|
1134 |
+
auto source_lo = _mm256_unpacklo_epi8(source1, source2);
|
1135 |
+
auto pix1 = _mm256_unpacklo_epi8(source_lo, zero_256);
|
1136 |
+
// Compute output value as
|
1137 |
+
// C += w0 * c0 + w1 * C0
|
1138 |
+
// C += w0 * c1 + w1 * C1 for each channel in 32-bit precision
|
1139 |
+
sss0 = _mm256_add_epi32(sss0, _mm256_madd_epi16(pix1, mmk));
|
1140 |
+
|
1141 |
+
// RGBA: pix2 = [
|
1142 |
+
// r2 0 R2 0 g2 0 G2 0 b2 0 B2 0 a2 0 A2 0
|
1143 |
+
// r3 0 R3 0 g3 0 G3 0 b3 0 B3 0 a3 0 A3 0
|
1144 |
+
// ]
|
1145 |
+
// RGB: pix2 = [
|
1146 |
+
// r2 0 R2 0 g2 0 G2 0 b2 0 B2 0 0 0 0 0
|
1147 |
+
// r3 0 R3 0 g3 0 G3 0 b3 0 B3 0 0 0 0 0
|
1148 |
+
// ]
|
1149 |
+
auto pix2 = _mm256_unpackhi_epi8(source_lo, zero_256);
|
1150 |
+
// Compute output value as
|
1151 |
+
// C += w0 * c2 + w1 * C2
|
1152 |
+
// C += w0 * c3 + w1 * C3 for each channel in 32-bit precision
|
1153 |
+
sss1 = _mm256_add_epi32(sss1, _mm256_madd_epi16(pix2, mmk));
|
1154 |
+
|
1155 |
+
// Same as above for the high half of each 128-bit lane
|
1156 |
+
auto source_hi = _mm256_unpackhi_epi8(source1, source2);
|
1157 |
+
auto pix3 = _mm256_unpacklo_epi8(source_hi, zero_256);
|
1158 |
+
sss2 = _mm256_add_epi32(sss2, _mm256_madd_epi16(pix3, mmk));
|
1159 |
+
auto pix4 = _mm256_unpackhi_epi8(source_hi, zero_256);
|
1160 |
+
sss3 = _mm256_add_epi32(sss3, _mm256_madd_epi16(pix4, mmk));
|
1161 |
+
}
|
1162 |
+
// Same processing as above but with a single weight value
|
1163 |
+
for (; i < ids_size; i += 1) {
|
1164 |
+
auto mmk = _mm256_set1_epi32(k[i]);
|
1165 |
+
|
1166 |
+
auto source1 = _mm256_loadu_si256((__m256i*)(lineIn_min + i * data_size));
|
1167 |
+
|
1168 |
+
auto source_lo = _mm256_unpacklo_epi8(source1, zero_256);
|
1169 |
+
auto pix1 = _mm256_unpacklo_epi8(source_lo, zero_256);
|
1170 |
+
sss0 = _mm256_add_epi32(sss0, _mm256_madd_epi16(pix1, mmk));
|
1171 |
+
auto pix2 = _mm256_unpackhi_epi8(source_lo, zero_256);
|
1172 |
+
sss1 = _mm256_add_epi32(sss1, _mm256_madd_epi16(pix2, mmk));
|
1173 |
+
|
1174 |
+
auto source_hi = _mm256_unpackhi_epi8(source1, zero_256);
|
1175 |
+
auto pix3 = _mm256_unpacklo_epi8(source_hi, _mm256_setzero_si256());
|
1176 |
+
sss2 = _mm256_add_epi32(sss2, _mm256_madd_epi16(pix3, mmk));
|
1177 |
+
auto pix4 = _mm256_unpackhi_epi8(source_hi, _mm256_setzero_si256());
|
1178 |
+
sss3 = _mm256_add_epi32(sss3, _mm256_madd_epi16(pix4, mmk));
|
1179 |
+
}
|
1180 |
+
// Convert fixed point values back to integers (truncating)
|
1181 |
+
sss0 = _mm256_srai_epi32(sss0, coefs_precision);
|
1182 |
+
sss1 = _mm256_srai_epi32(sss1, coefs_precision);
|
1183 |
+
sss2 = _mm256_srai_epi32(sss2, coefs_precision);
|
1184 |
+
sss3 = _mm256_srai_epi32(sss3, coefs_precision);
|
1185 |
+
// Convert packed signed 32-bit integers to packed 16-bit integers using signed saturation
|
1186 |
+
// (a a a a b b b b c c c c d d d d) -> (a a b b c c d d)
|
1187 |
+
sss0 = _mm256_packs_epi32(sss0, sss1);
|
1188 |
+
sss2 = _mm256_packs_epi32(sss2, sss3);
|
1189 |
+
// Convert packed signed 16-bit integers to packed 8-bit integers using unsigned saturation
|
1190 |
+
// (a a b b c c d d) -> (a b c d)
|
1191 |
+
sss0 = _mm256_packus_epi16(sss0, sss2);
|
1192 |
+
|
1193 |
+
// Stores 32 bytes
|
1194 |
+
_mm256_storeu_si256((__m256i*)(lineOut + j), sss0);
|
1195 |
+
}
|
1196 |
+
|
1197 |
+
// TODO: Do we also need block 4 ???
|
1198 |
+
// block 2
|
1199 |
+
const auto b2_usable_vec_stride = (8 / data_stride) * data_stride;
|
1200 |
+
for (; j < data_size - vec_size / 4; j += b2_usable_vec_stride) {
|
1201 |
+
auto sss0 = initial;
|
1202 |
+
auto sss1 = initial;
|
1203 |
+
int64_t i = 0;
|
1204 |
+
const auto * lineIn_min = lineIn + j + ids_min;
|
1205 |
+
|
1206 |
+
for (; i < ids_size - 1; i += 2) {
|
1207 |
+
// Load 2 values from weight vector
|
1208 |
+
// mmk = [wl_0 wh_0 wl_1 wh_1 wl_0 wh_0 wl_1 wh_1 ... ]
|
1209 |
+
auto mmk = _mm_set1_epi32(*(int32_t*)&k[i]);
|
1210 |
+
|
1211 |
+
// Load 2 pixels per line
|
1212 |
+
// RGBA: source1 = [
|
1213 |
+
// r0 g0 b0 a0 r1 g1 b1 a1 0 0 0 0 0 0 0 0
|
1214 |
+
// ]
|
1215 |
+
// RGB: source1 = [
|
1216 |
+
// r0 g0 b0 r1 g1 b1 r2 g2 0 0 0 0 0 0 0 0
|
1217 |
+
// ]
|
1218 |
+
auto source1 = _mm_loadl_epi64((__m128i *) (lineIn_min + i * data_size));
|
1219 |
+
auto source2 = _mm_loadl_epi64((__m128i *) (lineIn_min + (i + 1) * data_size));
|
1220 |
+
// Interleave source1 and source2 and cast the result to epi16
|
1221 |
+
// RGBA: pix = [
|
1222 |
+
// r0 0 R0 0 g0 0 G0 0 b0 0 B0 0 a0 0 A0 0
|
1223 |
+
// ]
|
1224 |
+
// RGB: pix = [
|
1225 |
+
// r0 0 R0 0 g0 0 G0 0 b0 0 B0 0 0 0 0 0
|
1226 |
+
// ]
|
1227 |
+
auto source = _mm_unpacklo_epi8(source1, source2);
|
1228 |
+
auto pix = _mm_unpacklo_epi8(source, zero);
|
1229 |
+
// Compute output value as C += w0 * c0 + w1 * C0 for each channel in 32-bit precision
|
1230 |
+
sss0 = _mm_add_epi32(sss0, _mm_madd_epi16(pix, mmk));
|
1231 |
+
// RGBA: pix = [
|
1232 |
+
// r1 0 R1 0 g1 0 G1 0 b1 0 B1 0 a1 0 A1 0
|
1233 |
+
// ]
|
1234 |
+
// RGB: pix = [
|
1235 |
+
// r1 0 R1 0 g1 0 G1 0 b1 0 B1 0 0 0 0 0
|
1236 |
+
// ]
|
1237 |
+
pix = _mm_unpackhi_epi8(source, zero);
|
1238 |
+
// Compute output value as C += w0 * c1 + w1 * C1 for each channel in 32-bit precision
|
1239 |
+
sss1 = _mm_add_epi32(sss1, _mm_madd_epi16(pix, mmk));
|
1240 |
+
}
|
1241 |
+
// Same processing as above but with a single weight value
|
1242 |
+
for (; i < ids_size; i += 1) {
|
1243 |
+
auto mmk = _mm_set1_epi32(k[i]);
|
1244 |
+
|
1245 |
+
auto source1 = _mm_loadl_epi64((__m128i*) (lineIn_min + i * data_size));
|
1246 |
+
|
1247 |
+
auto source = _mm_unpacklo_epi8(source1, zero);
|
1248 |
+
auto pix1 = _mm_unpacklo_epi8(source, zero);
|
1249 |
+
sss0 = _mm_add_epi32(sss0, _mm_madd_epi16(pix1, mmk));
|
1250 |
+
auto pix2 = _mm_unpackhi_epi8(source, zero);
|
1251 |
+
sss1 = _mm_add_epi32(sss1, _mm_madd_epi16(pix2, mmk));
|
1252 |
+
}
|
1253 |
+
// Convert fixed point values back to integers (truncating)
|
1254 |
+
sss0 = _mm_srai_epi32(sss0, coefs_precision);
|
1255 |
+
sss1 = _mm_srai_epi32(sss1, coefs_precision);
|
1256 |
+
// Convert packed signed 32-bit integers to packed 16-bit integers using signed saturation
|
1257 |
+
// (a a a a b b b b c c c c d d d d) -> (a a b b c c d d)
|
1258 |
+
sss0 = _mm_packs_epi32(sss0, sss1);
|
1259 |
+
// Convert packed signed 16-bit integers to packed 8-bit integers using unsigned saturation
|
1260 |
+
// (a a b b c c d d) -> (a b c d)
|
1261 |
+
sss0 = _mm_packus_epi16(sss0, sss0);
|
1262 |
+
// Store 2 pixels to the output
|
1263 |
+
_mm_storel_epi64((__m128i*)(lineOut + j), sss0);
|
1264 |
+
}
|
1265 |
+
|
1266 |
+
// block 1
|
1267 |
+
const auto b1_usable_vec_stride = (4 / data_stride) * data_stride;
|
1268 |
+
const auto i32_aligned = num_channels == 4;
|
1269 |
+
for (; j < data_size - 4; j += b1_usable_vec_stride) {
|
1270 |
+
auto sss = initial;
|
1271 |
+
int64_t i = 0;
|
1272 |
+
const auto * lineIn_min = lineIn + j + ids_min;
|
1273 |
+
|
1274 |
+
for (; i < ids_size - 1; i += 2) {
|
1275 |
+
// Load 2 values from weight vector
|
1276 |
+
// mmk = [wl_0 wh_0 wl_1 wh_1 wl_0 wh_0 wl_1 wh_1 ... ]
|
1277 |
+
auto mmk = _mm_set1_epi32(*(int32_t*)&k[i]);
|
1278 |
+
|
1279 |
+
// Load one pixel per line
|
1280 |
+
// RGBA: source1 = [
|
1281 |
+
// r0 g0 b0 a0 0 0 0 0 0 0 0 0 0 0 0 0
|
1282 |
+
// ]
|
1283 |
+
// RGB: source1 = [
|
1284 |
+
// r0 g0 b0 r1 0 0 0 0 0 0 0 0 0 0 0 0
|
1285 |
+
// ]
|
1286 |
+
auto source1 = mm_cvtsi32_si128(lineIn_min + i * data_size, i32_aligned);
|
1287 |
+
auto source2 = mm_cvtsi32_si128(lineIn_min + (i + 1) * data_size, i32_aligned);
|
1288 |
+
|
1289 |
+
// Interleave source1 and source2 and cast the result to epi16
|
1290 |
+
// RGBA: pix = [
|
1291 |
+
// r0 0 R0 0 g0 0 G0 0 b0 0 B0 0 a0 0 A0 0
|
1292 |
+
// ]
|
1293 |
+
// RGB: pix = [
|
1294 |
+
// r0 0 R0 0 g0 0 G0 0 b0 0 B0 0 0 0 0 0
|
1295 |
+
// ]
|
1296 |
+
auto source = _mm_unpacklo_epi8(source1, source2);
|
1297 |
+
auto pix = _mm_unpacklo_epi8(source, zero);
|
1298 |
+
// Compute output value as C += w0 * c0 + w1 * C0 for each channel in 32-bit precision
|
1299 |
+
sss = _mm_add_epi32(sss, _mm_madd_epi16(pix, mmk));
|
1300 |
+
}
|
1301 |
+
|
1302 |
+
for (; i < ids_size; i++) {
|
1303 |
+
auto mmk = _mm_set1_epi32(k[i]);
|
1304 |
+
auto pix = mm_cvtepu8_epi32(lineIn_min + i * data_size, i32_aligned);
|
1305 |
+
sss = _mm_add_epi32(sss, _mm_madd_epi16(pix, mmk));
|
1306 |
+
}
|
1307 |
+
sss = _mm_srai_epi32(sss, coefs_precision);
|
1308 |
+
sss = _mm_packs_epi32(sss, zero);
|
1309 |
+
sss = _mm_packus_epi16(sss, zero);
|
1310 |
+
|
1311 |
+
auto o = _mm_cvtsi128_si32(sss);
|
1312 |
+
|
1313 |
+
// Here we write 4 bytes to the output even if num_channels < 4, e.g o = {r,g,b,X} for num_channels=3
|
1314 |
+
// It is OK to write 4th byte (e.g. X) as on the next step we will overwrite it with new data.
|
1315 |
+
// We also wont go out of bounds of lineOut memory allocation
|
1316 |
+
std::memcpy(lineOut + j, (uint8_t *) &o, 4);
|
1317 |
+
}
|
1318 |
+
|
1319 |
+
for (; j < data_size; j += data_stride) {
|
1320 |
+
auto sss = initial;
|
1321 |
+
int64_t i = 0;
|
1322 |
+
const auto * lineIn_min = lineIn + j + ids_min;
|
1323 |
+
// For RGBA we can use (ids_size - 1) as tighter limit but for RGB we can read outside memory boundary
|
1324 |
+
// for the last remaining line
|
1325 |
+
for (; i < ids_size - 2; i += 2) {
|
1326 |
+
// Load two coefficients at once
|
1327 |
+
auto mmk = _mm_set1_epi32(*(int32_t*)&k[i]);
|
1328 |
+
|
1329 |
+
// Load 2 lines
|
1330 |
+
auto source1 = mm_cvtsi32_si128(lineIn_min + i * data_size, i32_aligned);
|
1331 |
+
auto source2 = mm_cvtsi32_si128(lineIn_min + (i + 1) * data_size, i32_aligned);
|
1332 |
+
|
1333 |
+
auto source = _mm_unpacklo_epi8(source1, source2);
|
1334 |
+
auto pix = _mm_unpacklo_epi8(source, zero);
|
1335 |
+
sss = _mm_add_epi32(sss, _mm_madd_epi16(pix, mmk));
|
1336 |
+
}
|
1337 |
+
|
1338 |
+
// Same processing as above but with a single weight value
|
1339 |
+
for (; i < ids_size; i++) {
|
1340 |
+
auto mmk = _mm_set1_epi32(k[i]);
|
1341 |
+
|
1342 |
+
const uint8_t * p = lineIn_min + i * data_size;
|
1343 |
+
__m128i pix;
|
1344 |
+
// There is no much perf gain using more detailed condition like
|
1345 |
+
// num_channels == 3 && ids_min + j + data_size * i + 4 >= in_max_size
|
1346 |
+
// const int64_t in_max_size = data_size * in_ysize;
|
1347 |
+
if (num_channels == 3) {
|
1348 |
+
uint8_t input[4];
|
1349 |
+
std::memcpy(input, p, 3);
|
1350 |
+
pix = mm_cvtepu8_epi32(input, true);
|
1351 |
+
} else {
|
1352 |
+
pix = mm_cvtepu8_epi32(p, true);
|
1353 |
+
}
|
1354 |
+
sss = _mm_add_epi32(sss, _mm_madd_epi16(pix, mmk));
|
1355 |
+
}
|
1356 |
+
|
1357 |
+
// Convert fixed point values back to integers (truncating)
|
1358 |
+
sss = _mm_srai_epi32(sss, coefs_precision);
|
1359 |
+
// Convert packed signed 32-bit integers to packed 16-bit integers using signed saturation
|
1360 |
+
// (a a a a b b b b c c c c d d d d) -> (a a b b c c d d)
|
1361 |
+
sss = _mm_packs_epi32(sss, zero);
|
1362 |
+
// Convert packed signed 16-bit integers to packed 8-bit integers using unsigned saturation
|
1363 |
+
// (a a b b c c d d) -> (a b c d)
|
1364 |
+
sss = _mm_packus_epi16(sss, zero);
|
1365 |
+
// Store one pixel to the output
|
1366 |
+
auto o = _mm_cvtsi128_si32(sss);
|
1367 |
+
if (num_channels == 3 && C10_UNLIKELY(j + 4 >= data_size)) {
|
1368 |
+
std::memcpy(lineOut + j, (uint8_t *) &o, 3);
|
1369 |
+
} else {
|
1370 |
+
std::memcpy(lineOut + j, (uint8_t *) &o, 4);
|
1371 |
+
}
|
1372 |
+
}
|
1373 |
+
}
|
1374 |
+
|
1375 |
+
} // anonymous namespace
|
1376 |
+
#endif // CPU_CAPABILITY_AVX2
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/WeightNormKernel.h
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/native/DispatchStub.h>
|
3 |
+
#include <cstdint>
|
4 |
+
|
5 |
+
namespace at {
|
6 |
+
class TensorBase;
|
7 |
+
}
|
8 |
+
|
9 |
+
namespace at { namespace native {
|
10 |
+
|
11 |
+
using weight_norm_fn = void(*)(
|
12 |
+
TensorBase&, TensorBase&, const TensorBase&, const TensorBase&, int64_t);
|
13 |
+
using weight_norm_backward_fn = void(*)(
|
14 |
+
TensorBase&, TensorBase&, const TensorBase&, const TensorBase&,
|
15 |
+
const TensorBase&, const TensorBase&, int64_t);
|
16 |
+
|
17 |
+
DECLARE_DISPATCH(weight_norm_fn, weight_norm_stub);
|
18 |
+
DECLARE_DISPATCH(weight_norm_backward_fn, weight_norm_backward_stub);
|
19 |
+
|
20 |
+
}} // namespace at::native
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/avx_mathfun.h
ADDED
@@ -0,0 +1,522 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
/*
|
3 |
+
AVX implementation of sin, cos, sincos, exp and log
|
4 |
+
|
5 |
+
Based on "sse_mathfun.h", by Julien Pommier
|
6 |
+
http://gruntthepeon.free.fr/ssemath/
|
7 |
+
|
8 |
+
Copyright (C) 2012 Giovanni Garberoglio
|
9 |
+
Interdisciplinary Laboratory for Computational Science (LISC)
|
10 |
+
Fondazione Bruno Kessler and University of Trento
|
11 |
+
via Sommarive, 18
|
12 |
+
I-38123 Trento (Italy)
|
13 |
+
|
14 |
+
This software is provided 'as-is', without any express or implied
|
15 |
+
warranty. In no event will the authors be held liable for any damages
|
16 |
+
arising from the use of this software.
|
17 |
+
|
18 |
+
Permission is granted to anyone to use this software for any purpose,
|
19 |
+
including commercial applications, and to alter it and redistribute it
|
20 |
+
freely, subject to the following restrictions:
|
21 |
+
|
22 |
+
1. The origin of this software must not be misrepresented; you must not
|
23 |
+
claim that you wrote the original software. If you use this software
|
24 |
+
in a product, an acknowledgment in the product documentation would be
|
25 |
+
appreciated but is not required.
|
26 |
+
2. Altered source versions must be plainly marked as such, and must not be
|
27 |
+
misrepresented as being the original software.
|
28 |
+
3. This notice may not be removed or altered from any source distribution.
|
29 |
+
|
30 |
+
(this is the zlib license)
|
31 |
+
*/
|
32 |
+
|
33 |
+
#include <ATen/native/cpu/Intrinsics.h>
|
34 |
+
|
35 |
+
/* The original source of this file has been modified. */
|
36 |
+
#if defined(CPU_CAPABILITY_AVX2)
|
37 |
+
|
38 |
+
#if defined(__GNUC__)
|
39 |
+
# define ALIGN32_BEG __attribute__((aligned(32)))
|
40 |
+
#elif defined(_WIN32)
|
41 |
+
# define ALIGN32_BEG __declspec(align(32))
|
42 |
+
#endif
|
43 |
+
|
44 |
+
typedef __m256 v8sf; // vector of 8 float (avx2)
|
45 |
+
typedef __m256i v8si; // vector of 8 int (avx2)
|
46 |
+
|
47 |
+
/* declare some AVX constants -- why can't I figure a better way to do that? */
|
48 |
+
#define _PS256_CONST(Name, Val) \
|
49 |
+
static const ALIGN32_BEG float _ps256_##Name[8] = { Val, Val, Val, Val, Val, Val, Val, Val }
|
50 |
+
#define _PI32_CONST256(Name, Val) \
|
51 |
+
static const ALIGN32_BEG int _pi32_256_##Name[8] = { Val, Val, Val, Val, Val, Val, Val, Val }
|
52 |
+
#define _PS256_CONST_TYPE(Name, Type, Val) \
|
53 |
+
static const ALIGN32_BEG Type _ps256_##Name[8] = { Val, Val, Val, Val, Val, Val, Val, Val }
|
54 |
+
|
55 |
+
_PS256_CONST(1 , 1.0f);
|
56 |
+
_PS256_CONST(0p5, 0.5f);
|
57 |
+
/* the smallest non denormalized float number */
|
58 |
+
_PS256_CONST_TYPE(min_norm_pos, int, 0x00800000);
|
59 |
+
_PS256_CONST_TYPE(mant_mask, int, 0x7f800000);
|
60 |
+
_PS256_CONST_TYPE(inv_mant_mask, int, ~0x7f800000);
|
61 |
+
|
62 |
+
_PS256_CONST_TYPE(sign_mask, int, (int)0x80000000);
|
63 |
+
_PS256_CONST_TYPE(inv_sign_mask, int, ~0x80000000);
|
64 |
+
|
65 |
+
_PI32_CONST256(0, 0);
|
66 |
+
_PI32_CONST256(1, 1);
|
67 |
+
_PI32_CONST256(inv1, ~1);
|
68 |
+
_PI32_CONST256(2, 2);
|
69 |
+
_PI32_CONST256(4, 4);
|
70 |
+
_PI32_CONST256(0x7f, 0x7f);
|
71 |
+
|
72 |
+
_PS256_CONST(cephes_SQRTHF, 0.707106781186547524);
|
73 |
+
_PS256_CONST(cephes_log_p0, 7.0376836292E-2);
|
74 |
+
_PS256_CONST(cephes_log_p1, - 1.1514610310E-1);
|
75 |
+
_PS256_CONST(cephes_log_p2, 1.1676998740E-1);
|
76 |
+
_PS256_CONST(cephes_log_p3, - 1.2420140846E-1);
|
77 |
+
_PS256_CONST(cephes_log_p4, + 1.4249322787E-1);
|
78 |
+
_PS256_CONST(cephes_log_p5, - 1.6668057665E-1);
|
79 |
+
_PS256_CONST(cephes_log_p6, + 2.0000714765E-1);
|
80 |
+
_PS256_CONST(cephes_log_p7, - 2.4999993993E-1);
|
81 |
+
_PS256_CONST(cephes_log_p8, + 3.3333331174E-1);
|
82 |
+
_PS256_CONST(cephes_log_q1, -2.12194440e-4);
|
83 |
+
_PS256_CONST(cephes_log_q2, 0.693359375);
|
84 |
+
|
85 |
+
|
86 |
+
/* natural logarithm computed for 8 simultaneous float
|
87 |
+
return NaN for x <= 0
|
88 |
+
*/
|
89 |
+
inline v8sf log256_ps(v8sf x) {
|
90 |
+
v8si imm0;
|
91 |
+
v8sf one = *(v8sf*)_ps256_1;
|
92 |
+
|
93 |
+
//v8sf invalid_mask = _mm256_cmple_ps(x, _mm256_setzero_ps());
|
94 |
+
v8sf invalid_mask = _mm256_cmp_ps(x, _mm256_setzero_ps(), _CMP_LE_OS);
|
95 |
+
|
96 |
+
x = _mm256_max_ps(x, *(v8sf*)_ps256_min_norm_pos); /* cut off denormalized stuff */
|
97 |
+
|
98 |
+
// can be done with AVX2
|
99 |
+
imm0 = _mm256_srli_epi32(_mm256_castps_si256(x), 23);
|
100 |
+
|
101 |
+
/* keep only the fractional part */
|
102 |
+
x = _mm256_and_ps(x, *(v8sf*)_ps256_inv_mant_mask);
|
103 |
+
x = _mm256_or_ps(x, *(v8sf*)_ps256_0p5);
|
104 |
+
|
105 |
+
// this is again another AVX2 instruction
|
106 |
+
imm0 = _mm256_sub_epi32(imm0, *(v8si*)_pi32_256_0x7f);
|
107 |
+
v8sf e = _mm256_cvtepi32_ps(imm0);
|
108 |
+
|
109 |
+
e = _mm256_add_ps(e, one);
|
110 |
+
|
111 |
+
/* part2:
|
112 |
+
if( x < SQRTHF ) {
|
113 |
+
e -= 1;
|
114 |
+
x = x + x - 1.0;
|
115 |
+
} else { x = x - 1.0; }
|
116 |
+
*/
|
117 |
+
//v8sf mask = _mm256_cmplt_ps(x, *(v8sf*)_ps256_cephes_SQRTHF);
|
118 |
+
v8sf mask = _mm256_cmp_ps(x, *(v8sf*)_ps256_cephes_SQRTHF, _CMP_LT_OS);
|
119 |
+
v8sf tmp = _mm256_and_ps(x, mask);
|
120 |
+
x = _mm256_sub_ps(x, one);
|
121 |
+
e = _mm256_sub_ps(e, _mm256_and_ps(one, mask));
|
122 |
+
x = _mm256_add_ps(x, tmp);
|
123 |
+
|
124 |
+
v8sf z = _mm256_mul_ps(x,x);
|
125 |
+
|
126 |
+
v8sf y = *(v8sf*)_ps256_cephes_log_p0;
|
127 |
+
y = _mm256_mul_ps(y, x);
|
128 |
+
y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_log_p1);
|
129 |
+
y = _mm256_mul_ps(y, x);
|
130 |
+
y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_log_p2);
|
131 |
+
y = _mm256_mul_ps(y, x);
|
132 |
+
y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_log_p3);
|
133 |
+
y = _mm256_mul_ps(y, x);
|
134 |
+
y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_log_p4);
|
135 |
+
y = _mm256_mul_ps(y, x);
|
136 |
+
y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_log_p5);
|
137 |
+
y = _mm256_mul_ps(y, x);
|
138 |
+
y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_log_p6);
|
139 |
+
y = _mm256_mul_ps(y, x);
|
140 |
+
y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_log_p7);
|
141 |
+
y = _mm256_mul_ps(y, x);
|
142 |
+
y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_log_p8);
|
143 |
+
y = _mm256_mul_ps(y, x);
|
144 |
+
|
145 |
+
y = _mm256_mul_ps(y, z);
|
146 |
+
|
147 |
+
tmp = _mm256_mul_ps(e, *(v8sf*)_ps256_cephes_log_q1);
|
148 |
+
y = _mm256_add_ps(y, tmp);
|
149 |
+
|
150 |
+
|
151 |
+
tmp = _mm256_mul_ps(z, *(v8sf*)_ps256_0p5);
|
152 |
+
y = _mm256_sub_ps(y, tmp);
|
153 |
+
|
154 |
+
tmp = _mm256_mul_ps(e, *(v8sf*)_ps256_cephes_log_q2);
|
155 |
+
x = _mm256_add_ps(x, y);
|
156 |
+
x = _mm256_add_ps(x, tmp);
|
157 |
+
x = _mm256_or_ps(x, invalid_mask); // negative arg will be NAN
|
158 |
+
return x;
|
159 |
+
}
|
160 |
+
|
161 |
+
_PS256_CONST(exp_hi, 88.3762626647949f);
|
162 |
+
_PS256_CONST(exp_lo, -88.3762626647949f);
|
163 |
+
|
164 |
+
_PS256_CONST(cephes_LOG2EF, 1.44269504088896341);
|
165 |
+
_PS256_CONST(cephes_exp_C1, 0.693359375);
|
166 |
+
_PS256_CONST(cephes_exp_C2, -2.12194440e-4);
|
167 |
+
|
168 |
+
_PS256_CONST(cephes_exp_p0, 1.9875691500E-4);
|
169 |
+
_PS256_CONST(cephes_exp_p1, 1.3981999507E-3);
|
170 |
+
_PS256_CONST(cephes_exp_p2, 8.3334519073E-3);
|
171 |
+
_PS256_CONST(cephes_exp_p3, 4.1665795894E-2);
|
172 |
+
_PS256_CONST(cephes_exp_p4, 1.6666665459E-1);
|
173 |
+
_PS256_CONST(cephes_exp_p5, 5.0000001201E-1);
|
174 |
+
|
175 |
+
inline v8sf exp256_ps(v8sf x) {
|
176 |
+
v8sf tmp = _mm256_setzero_ps(), fx;
|
177 |
+
v8si imm0;
|
178 |
+
v8sf one = *(v8sf*)_ps256_1;
|
179 |
+
|
180 |
+
x = _mm256_min_ps(x, *(v8sf*)_ps256_exp_hi);
|
181 |
+
x = _mm256_max_ps(x, *(v8sf*)_ps256_exp_lo);
|
182 |
+
|
183 |
+
/* express exp(x) as exp(g + n*log(2)) */
|
184 |
+
fx = _mm256_mul_ps(x, *(v8sf*)_ps256_cephes_LOG2EF);
|
185 |
+
fx = _mm256_add_ps(fx, *(v8sf*)_ps256_0p5);
|
186 |
+
|
187 |
+
/* how to perform a floorf with SSE: just below */
|
188 |
+
//imm0 = _mm256_cvttps_epi32(fx);
|
189 |
+
//tmp = _mm256_cvtepi32_ps(imm0);
|
190 |
+
|
191 |
+
tmp = _mm256_floor_ps(fx);
|
192 |
+
|
193 |
+
/* if greater, subtract 1 */
|
194 |
+
//v8sf mask = _mm256_cmpgt_ps(tmp, fx);
|
195 |
+
v8sf mask = _mm256_cmp_ps(tmp, fx, _CMP_GT_OS);
|
196 |
+
mask = _mm256_and_ps(mask, one);
|
197 |
+
fx = _mm256_sub_ps(tmp, mask);
|
198 |
+
|
199 |
+
tmp = _mm256_mul_ps(fx, *(v8sf*)_ps256_cephes_exp_C1);
|
200 |
+
v8sf z = _mm256_mul_ps(fx, *(v8sf*)_ps256_cephes_exp_C2);
|
201 |
+
x = _mm256_sub_ps(x, tmp);
|
202 |
+
x = _mm256_sub_ps(x, z);
|
203 |
+
|
204 |
+
z = _mm256_mul_ps(x,x);
|
205 |
+
|
206 |
+
v8sf y = *(v8sf*)_ps256_cephes_exp_p0;
|
207 |
+
y = _mm256_mul_ps(y, x);
|
208 |
+
y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_exp_p1);
|
209 |
+
y = _mm256_mul_ps(y, x);
|
210 |
+
y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_exp_p2);
|
211 |
+
y = _mm256_mul_ps(y, x);
|
212 |
+
y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_exp_p3);
|
213 |
+
y = _mm256_mul_ps(y, x);
|
214 |
+
y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_exp_p4);
|
215 |
+
y = _mm256_mul_ps(y, x);
|
216 |
+
y = _mm256_add_ps(y, *(v8sf*)_ps256_cephes_exp_p5);
|
217 |
+
y = _mm256_mul_ps(y, z);
|
218 |
+
y = _mm256_add_ps(y, x);
|
219 |
+
y = _mm256_add_ps(y, one);
|
220 |
+
|
221 |
+
/* build 2^n */
|
222 |
+
imm0 = _mm256_cvttps_epi32(fx);
|
223 |
+
// another two AVX2 instructions
|
224 |
+
imm0 = _mm256_add_epi32(imm0, *(v8si*)_pi32_256_0x7f);
|
225 |
+
imm0 = _mm256_slli_epi32(imm0, 23);
|
226 |
+
v8sf pow2n = _mm256_castsi256_ps(imm0);
|
227 |
+
y = _mm256_mul_ps(y, pow2n);
|
228 |
+
return y;
|
229 |
+
}
|
230 |
+
|
231 |
+
_PS256_CONST(minus_cephes_DP1, -0.78515625);
|
232 |
+
_PS256_CONST(minus_cephes_DP2, -2.4187564849853515625e-4);
|
233 |
+
_PS256_CONST(minus_cephes_DP3, -3.77489497744594108e-8);
|
234 |
+
_PS256_CONST(sincof_p0, -1.9515295891E-4);
|
235 |
+
_PS256_CONST(sincof_p1, 8.3321608736E-3);
|
236 |
+
_PS256_CONST(sincof_p2, -1.6666654611E-1);
|
237 |
+
_PS256_CONST(coscof_p0, 2.443315711809948E-005);
|
238 |
+
_PS256_CONST(coscof_p1, -1.388731625493765E-003);
|
239 |
+
_PS256_CONST(coscof_p2, 4.166664568298827E-002);
|
240 |
+
_PS256_CONST(cephes_FOPI, 1.27323954473516); // 4 / M_PI
|
241 |
+
|
242 |
+
|
243 |
+
/* evaluation of 8 sines at onces using AVX intrinsics
|
244 |
+
|
245 |
+
The code is the exact rewriting of the cephes sinf function.
|
246 |
+
Precision is excellent as long as x < 8192 (I did not bother to
|
247 |
+
take into account the special handling they have for greater values
|
248 |
+
-- it does not return garbage for arguments over 8192, though, but
|
249 |
+
the extra precision is missing).
|
250 |
+
|
251 |
+
Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
|
252 |
+
surprising but correct result.
|
253 |
+
|
254 |
+
*/
|
255 |
+
inline v8sf sin256_ps(v8sf x) { // any x
|
256 |
+
v8sf xmm1, xmm2 = _mm256_setzero_ps(), xmm3, sign_bit, y;
|
257 |
+
v8si imm0, imm2;
|
258 |
+
|
259 |
+
sign_bit = x;
|
260 |
+
/* take the absolute value */
|
261 |
+
x = _mm256_and_ps(x, *(v8sf*)_ps256_inv_sign_mask);
|
262 |
+
/* extract the sign bit (upper one) */
|
263 |
+
sign_bit = _mm256_and_ps(sign_bit, *(v8sf*)_ps256_sign_mask);
|
264 |
+
|
265 |
+
/* scale by 4/Pi */
|
266 |
+
y = _mm256_mul_ps(x, *(v8sf*)_ps256_cephes_FOPI);
|
267 |
+
|
268 |
+
/*
|
269 |
+
Here we start a series of integer operations, which are in the
|
270 |
+
realm of AVX2.
|
271 |
+
If we don't have AVX, let's perform them using SSE2 directives
|
272 |
+
*/
|
273 |
+
|
274 |
+
/* store the integer part of y in mm0 */
|
275 |
+
imm2 = _mm256_cvttps_epi32(y);
|
276 |
+
/* j=(j+1) & (~1) (see the cephes sources) */
|
277 |
+
// another two AVX2 instruction
|
278 |
+
imm2 = _mm256_add_epi32(imm2, *(v8si*)_pi32_256_1);
|
279 |
+
imm2 = _mm256_and_si256(imm2, *(v8si*)_pi32_256_inv1);
|
280 |
+
y = _mm256_cvtepi32_ps(imm2);
|
281 |
+
|
282 |
+
/* get the swap sign flag */
|
283 |
+
imm0 = _mm256_and_si256(imm2, *(v8si*)_pi32_256_4);
|
284 |
+
imm0 = _mm256_slli_epi32(imm0, 29);
|
285 |
+
/* get the polynom selection mask
|
286 |
+
there is one polynom for 0 <= x <= Pi/4
|
287 |
+
and another one for Pi/4<x<=Pi/2
|
288 |
+
|
289 |
+
Both branches will be computed.
|
290 |
+
*/
|
291 |
+
imm2 = _mm256_and_si256(imm2, *(v8si*)_pi32_256_2);
|
292 |
+
imm2 = _mm256_cmpeq_epi32(imm2,*(v8si*)_pi32_256_0);
|
293 |
+
|
294 |
+
v8sf swap_sign_bit = _mm256_castsi256_ps(imm0);
|
295 |
+
v8sf poly_mask = _mm256_castsi256_ps(imm2);
|
296 |
+
sign_bit = _mm256_xor_ps(sign_bit, swap_sign_bit);
|
297 |
+
|
298 |
+
/* The magic pass: "Extended precision modular arithmetic"
|
299 |
+
x = ((x - y * DP1) - y * DP2) - y * DP3; */
|
300 |
+
xmm1 = *(v8sf*)_ps256_minus_cephes_DP1;
|
301 |
+
xmm2 = *(v8sf*)_ps256_minus_cephes_DP2;
|
302 |
+
xmm3 = *(v8sf*)_ps256_minus_cephes_DP3;
|
303 |
+
xmm1 = _mm256_mul_ps(y, xmm1);
|
304 |
+
xmm2 = _mm256_mul_ps(y, xmm2);
|
305 |
+
xmm3 = _mm256_mul_ps(y, xmm3);
|
306 |
+
x = _mm256_add_ps(x, xmm1);
|
307 |
+
x = _mm256_add_ps(x, xmm2);
|
308 |
+
x = _mm256_add_ps(x, xmm3);
|
309 |
+
|
310 |
+
/* Evaluate the first polynom (0 <= x <= Pi/4) */
|
311 |
+
y = *(v8sf*)_ps256_coscof_p0;
|
312 |
+
v8sf z = _mm256_mul_ps(x,x);
|
313 |
+
|
314 |
+
y = _mm256_mul_ps(y, z);
|
315 |
+
y = _mm256_add_ps(y, *(v8sf*)_ps256_coscof_p1);
|
316 |
+
y = _mm256_mul_ps(y, z);
|
317 |
+
y = _mm256_add_ps(y, *(v8sf*)_ps256_coscof_p2);
|
318 |
+
y = _mm256_mul_ps(y, z);
|
319 |
+
y = _mm256_mul_ps(y, z);
|
320 |
+
v8sf tmp = _mm256_mul_ps(z, *(v8sf*)_ps256_0p5);
|
321 |
+
y = _mm256_sub_ps(y, tmp);
|
322 |
+
y = _mm256_add_ps(y, *(v8sf*)_ps256_1);
|
323 |
+
|
324 |
+
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
|
325 |
+
|
326 |
+
v8sf y2 = *(v8sf*)_ps256_sincof_p0;
|
327 |
+
y2 = _mm256_mul_ps(y2, z);
|
328 |
+
y2 = _mm256_add_ps(y2, *(v8sf*)_ps256_sincof_p1);
|
329 |
+
y2 = _mm256_mul_ps(y2, z);
|
330 |
+
y2 = _mm256_add_ps(y2, *(v8sf*)_ps256_sincof_p2);
|
331 |
+
y2 = _mm256_mul_ps(y2, z);
|
332 |
+
y2 = _mm256_mul_ps(y2, x);
|
333 |
+
y2 = _mm256_add_ps(y2, x);
|
334 |
+
|
335 |
+
/* select the correct result from the two polynoms */
|
336 |
+
xmm3 = poly_mask;
|
337 |
+
y2 = _mm256_and_ps(xmm3, y2); //, xmm3);
|
338 |
+
y = _mm256_andnot_ps(xmm3, y);
|
339 |
+
y = _mm256_add_ps(y,y2);
|
340 |
+
/* update the sign */
|
341 |
+
y = _mm256_xor_ps(y, sign_bit);
|
342 |
+
|
343 |
+
return y;
|
344 |
+
}
|
345 |
+
|
346 |
+
/* almost the same as sin_ps */
|
347 |
+
inline v8sf cos256_ps(v8sf x) { // any x
|
348 |
+
v8sf xmm1, xmm2 = _mm256_setzero_ps(), xmm3, y;
|
349 |
+
v8si imm0, imm2;
|
350 |
+
|
351 |
+
/* take the absolute value */
|
352 |
+
x = _mm256_and_ps(x, *(v8sf*)_ps256_inv_sign_mask);
|
353 |
+
|
354 |
+
/* scale by 4/Pi */
|
355 |
+
y = _mm256_mul_ps(x, *(v8sf*)_ps256_cephes_FOPI);
|
356 |
+
|
357 |
+
/* store the integer part of y in mm0 */
|
358 |
+
imm2 = _mm256_cvttps_epi32(y);
|
359 |
+
/* j=(j+1) & (~1) (see the cephes sources) */
|
360 |
+
imm2 = _mm256_add_epi32(imm2, *(v8si*)_pi32_256_1);
|
361 |
+
imm2 = _mm256_and_si256(imm2, *(v8si*)_pi32_256_inv1);
|
362 |
+
y = _mm256_cvtepi32_ps(imm2);
|
363 |
+
imm2 = _mm256_sub_epi32(imm2, *(v8si*)_pi32_256_2);
|
364 |
+
|
365 |
+
/* get the swap sign flag */
|
366 |
+
imm0 = _mm256_andnot_si256(imm2, *(v8si*)_pi32_256_4);
|
367 |
+
imm0 = _mm256_slli_epi32(imm0, 29);
|
368 |
+
/* get the polynom selection mask */
|
369 |
+
imm2 = _mm256_and_si256(imm2, *(v8si*)_pi32_256_2);
|
370 |
+
imm2 = _mm256_cmpeq_epi32(imm2, *(v8si*)_pi32_256_0);
|
371 |
+
|
372 |
+
v8sf sign_bit = _mm256_castsi256_ps(imm0);
|
373 |
+
v8sf poly_mask = _mm256_castsi256_ps(imm2);
|
374 |
+
|
375 |
+
/* The magic pass: "Extended precision modular arithmetic"
|
376 |
+
x = ((x - y * DP1) - y * DP2) - y * DP3; */
|
377 |
+
xmm1 = *(v8sf*)_ps256_minus_cephes_DP1;
|
378 |
+
xmm2 = *(v8sf*)_ps256_minus_cephes_DP2;
|
379 |
+
xmm3 = *(v8sf*)_ps256_minus_cephes_DP3;
|
380 |
+
xmm1 = _mm256_mul_ps(y, xmm1);
|
381 |
+
xmm2 = _mm256_mul_ps(y, xmm2);
|
382 |
+
xmm3 = _mm256_mul_ps(y, xmm3);
|
383 |
+
x = _mm256_add_ps(x, xmm1);
|
384 |
+
x = _mm256_add_ps(x, xmm2);
|
385 |
+
x = _mm256_add_ps(x, xmm3);
|
386 |
+
|
387 |
+
/* Evaluate the first polynom (0 <= x <= Pi/4) */
|
388 |
+
y = *(v8sf*)_ps256_coscof_p0;
|
389 |
+
v8sf z = _mm256_mul_ps(x,x);
|
390 |
+
|
391 |
+
y = _mm256_mul_ps(y, z);
|
392 |
+
y = _mm256_add_ps(y, *(v8sf*)_ps256_coscof_p1);
|
393 |
+
y = _mm256_mul_ps(y, z);
|
394 |
+
y = _mm256_add_ps(y, *(v8sf*)_ps256_coscof_p2);
|
395 |
+
y = _mm256_mul_ps(y, z);
|
396 |
+
y = _mm256_mul_ps(y, z);
|
397 |
+
v8sf tmp = _mm256_mul_ps(z, *(v8sf*)_ps256_0p5);
|
398 |
+
y = _mm256_sub_ps(y, tmp);
|
399 |
+
y = _mm256_add_ps(y, *(v8sf*)_ps256_1);
|
400 |
+
|
401 |
+
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
|
402 |
+
|
403 |
+
v8sf y2 = *(v8sf*)_ps256_sincof_p0;
|
404 |
+
y2 = _mm256_mul_ps(y2, z);
|
405 |
+
y2 = _mm256_add_ps(y2, *(v8sf*)_ps256_sincof_p1);
|
406 |
+
y2 = _mm256_mul_ps(y2, z);
|
407 |
+
y2 = _mm256_add_ps(y2, *(v8sf*)_ps256_sincof_p2);
|
408 |
+
y2 = _mm256_mul_ps(y2, z);
|
409 |
+
y2 = _mm256_mul_ps(y2, x);
|
410 |
+
y2 = _mm256_add_ps(y2, x);
|
411 |
+
|
412 |
+
/* select the correct result from the two polynoms */
|
413 |
+
xmm3 = poly_mask;
|
414 |
+
y2 = _mm256_and_ps(xmm3, y2); //, xmm3);
|
415 |
+
y = _mm256_andnot_ps(xmm3, y);
|
416 |
+
y = _mm256_add_ps(y,y2);
|
417 |
+
/* update the sign */
|
418 |
+
y = _mm256_xor_ps(y, sign_bit);
|
419 |
+
|
420 |
+
return y;
|
421 |
+
}
|
422 |
+
|
423 |
+
/* since sin256_ps and cos256_ps are almost identical, sincos256_ps could replace both of them..
|
424 |
+
it is almost as fast, and gives you a free cosine with your sine */
|
425 |
+
inline void sincos256_ps(v8sf x, v8sf *s, v8sf *c) {
|
426 |
+
|
427 |
+
v8sf xmm1, xmm2, xmm3 = _mm256_setzero_ps(), sign_bit_sin, y;
|
428 |
+
v8si imm0, imm2, imm4;
|
429 |
+
|
430 |
+
sign_bit_sin = x;
|
431 |
+
/* take the absolute value */
|
432 |
+
x = _mm256_and_ps(x, *(v8sf*)_ps256_inv_sign_mask);
|
433 |
+
/* extract the sign bit (upper one) */
|
434 |
+
sign_bit_sin = _mm256_and_ps(sign_bit_sin, *(v8sf*)_ps256_sign_mask);
|
435 |
+
|
436 |
+
/* scale by 4/Pi */
|
437 |
+
y = _mm256_mul_ps(x, *(v8sf*)_ps256_cephes_FOPI);
|
438 |
+
|
439 |
+
/* store the integer part of y in imm2 */
|
440 |
+
imm2 = _mm256_cvttps_epi32(y);
|
441 |
+
|
442 |
+
/* j=(j+1) & (~1) (see the cephes sources) */
|
443 |
+
imm2 = _mm256_add_epi32(imm2, *(v8si*)_pi32_256_1);
|
444 |
+
imm2 = _mm256_and_si256(imm2, *(v8si*)_pi32_256_inv1);
|
445 |
+
|
446 |
+
y = _mm256_cvtepi32_ps(imm2);
|
447 |
+
imm4 = imm2;
|
448 |
+
|
449 |
+
/* get the swap sign flag for the sine */
|
450 |
+
imm0 = _mm256_and_si256(imm2, *(v8si*)_pi32_256_4);
|
451 |
+
imm0 = _mm256_slli_epi32(imm0, 29);
|
452 |
+
//v8sf swap_sign_bit_sin = _mm256_castsi256_ps(imm0);
|
453 |
+
|
454 |
+
/* get the polynom selection mask for the sine*/
|
455 |
+
imm2 = _mm256_and_si256(imm2, *(v8si*)_pi32_256_2);
|
456 |
+
imm2 = _mm256_cmpeq_epi32(imm2, *(v8si*)_pi32_256_0);
|
457 |
+
//v8sf poly_mask = _mm256_castsi256_ps(imm2);
|
458 |
+
|
459 |
+
v8sf swap_sign_bit_sin = _mm256_castsi256_ps(imm0);
|
460 |
+
v8sf poly_mask = _mm256_castsi256_ps(imm2);
|
461 |
+
|
462 |
+
/* The magic pass: "Extended precision modular arithmetic"
|
463 |
+
x = ((x - y * DP1) - y * DP2) - y * DP3; */
|
464 |
+
xmm1 = *(v8sf*)_ps256_minus_cephes_DP1;
|
465 |
+
xmm2 = *(v8sf*)_ps256_minus_cephes_DP2;
|
466 |
+
xmm3 = *(v8sf*)_ps256_minus_cephes_DP3;
|
467 |
+
xmm1 = _mm256_mul_ps(y, xmm1);
|
468 |
+
xmm2 = _mm256_mul_ps(y, xmm2);
|
469 |
+
xmm3 = _mm256_mul_ps(y, xmm3);
|
470 |
+
x = _mm256_add_ps(x, xmm1);
|
471 |
+
x = _mm256_add_ps(x, xmm2);
|
472 |
+
x = _mm256_add_ps(x, xmm3);
|
473 |
+
|
474 |
+
imm4 = _mm256_sub_epi32(imm4, *(v8si*)_pi32_256_2);
|
475 |
+
imm4 = _mm256_andnot_si256(imm4, *(v8si*)_pi32_256_4);
|
476 |
+
imm4 = _mm256_slli_epi32(imm4, 29);
|
477 |
+
|
478 |
+
v8sf sign_bit_cos = _mm256_castsi256_ps(imm4);
|
479 |
+
|
480 |
+
sign_bit_sin = _mm256_xor_ps(sign_bit_sin, swap_sign_bit_sin);
|
481 |
+
|
482 |
+
/* Evaluate the first polynom (0 <= x <= Pi/4) */
|
483 |
+
v8sf z = _mm256_mul_ps(x,x);
|
484 |
+
y = *(v8sf*)_ps256_coscof_p0;
|
485 |
+
|
486 |
+
y = _mm256_mul_ps(y, z);
|
487 |
+
y = _mm256_add_ps(y, *(v8sf*)_ps256_coscof_p1);
|
488 |
+
y = _mm256_mul_ps(y, z);
|
489 |
+
y = _mm256_add_ps(y, *(v8sf*)_ps256_coscof_p2);
|
490 |
+
y = _mm256_mul_ps(y, z);
|
491 |
+
y = _mm256_mul_ps(y, z);
|
492 |
+
v8sf tmp = _mm256_mul_ps(z, *(v8sf*)_ps256_0p5);
|
493 |
+
y = _mm256_sub_ps(y, tmp);
|
494 |
+
y = _mm256_add_ps(y, *(v8sf*)_ps256_1);
|
495 |
+
|
496 |
+
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
|
497 |
+
|
498 |
+
v8sf y2 = *(v8sf*)_ps256_sincof_p0;
|
499 |
+
y2 = _mm256_mul_ps(y2, z);
|
500 |
+
y2 = _mm256_add_ps(y2, *(v8sf*)_ps256_sincof_p1);
|
501 |
+
y2 = _mm256_mul_ps(y2, z);
|
502 |
+
y2 = _mm256_add_ps(y2, *(v8sf*)_ps256_sincof_p2);
|
503 |
+
y2 = _mm256_mul_ps(y2, z);
|
504 |
+
y2 = _mm256_mul_ps(y2, x);
|
505 |
+
y2 = _mm256_add_ps(y2, x);
|
506 |
+
|
507 |
+
/* select the correct result from the two polynoms */
|
508 |
+
xmm3 = poly_mask;
|
509 |
+
v8sf ysin2 = _mm256_and_ps(xmm3, y2);
|
510 |
+
v8sf ysin1 = _mm256_andnot_ps(xmm3, y);
|
511 |
+
y2 = _mm256_sub_ps(y2,ysin2);
|
512 |
+
y = _mm256_sub_ps(y, ysin1);
|
513 |
+
|
514 |
+
xmm1 = _mm256_add_ps(ysin1,ysin2);
|
515 |
+
xmm2 = _mm256_add_ps(y,y2);
|
516 |
+
|
517 |
+
/* update the sign */
|
518 |
+
*s = _mm256_xor_ps(xmm1, sign_bit_sin);
|
519 |
+
*c = _mm256_xor_ps(xmm2, sign_bit_cos);
|
520 |
+
}
|
521 |
+
|
522 |
+
#endif // CPU_CAPABILITY_AVX2
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/int_mm_kernel.h
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/Tensor.h>
|
4 |
+
#include <ATen/native/DispatchStub.h>
|
5 |
+
|
6 |
+
namespace at::native {
|
7 |
+
|
8 |
+
using weight_to_int4pack_fn = void(*)(const Tensor&, const Tensor&, int, int);
|
9 |
+
using int4pack_mm_fn = void(*)(const Tensor&, const Tensor&, const Tensor&, int, const Tensor&, int, int);
|
10 |
+
using int8pack_mm_fn = void(*)(const Tensor&, const Tensor&, const Tensor&, const Tensor&);
|
11 |
+
|
12 |
+
DECLARE_DISPATCH(weight_to_int4pack_fn, weight_to_int4pack_stub);
|
13 |
+
DECLARE_DISPATCH(int4pack_mm_fn, int4pack_mm_stub);
|
14 |
+
DECLARE_DISPATCH(int8pack_mm_fn, int8pack_mm_stub);
|
15 |
+
|
16 |
+
} // namespace at::native
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/mixed_data_type.h
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/Tensor.h>
|
4 |
+
|
5 |
+
namespace at { namespace native {
|
6 |
+
|
7 |
+
inline ScalarType first_type() {
|
8 |
+
return ScalarType::Undefined;
|
9 |
+
}
|
10 |
+
|
11 |
+
template <typename... Args>
|
12 |
+
inline ScalarType first_type(const Tensor& arg, const Args&... parameters) {
|
13 |
+
return arg.defined() ? arg.scalar_type() : first_type(parameters...);
|
14 |
+
}
|
15 |
+
|
16 |
+
template <typename... Args>
|
17 |
+
inline bool is_mixed_type(const Tensor& input, const Args&... parameters) {
|
18 |
+
const auto parameter_type = first_type(parameters...);
|
19 |
+
return ((parameter_type != ScalarType::Undefined) &&
|
20 |
+
(parameter_type != input.scalar_type()));
|
21 |
+
}
|
22 |
+
|
23 |
+
// currently on CPU, mixed data type is only supported
|
24 |
+
// when input is 'BFloat16' or 'Half' and parameters are 'Float'
|
25 |
+
inline void check_mixed_data_type(const Tensor& input) {
|
26 |
+
TORCH_CHECK(at::isReducedFloatingType(input.scalar_type()),
|
27 |
+
"mixed dtype (CPU): all inputs must share same datatype.");
|
28 |
+
}
|
29 |
+
|
30 |
+
template <typename... Args>
|
31 |
+
inline void check_mixed_data_type(const Tensor& input, const Tensor& parameter, const Args&... parameters) {
|
32 |
+
TORCH_CHECK(!parameter.defined() || parameter.scalar_type() == ScalarType::Float,
|
33 |
+
"mixed dtype (CPU): expect parameter to have scalar type of Float");
|
34 |
+
check_mixed_data_type(input, parameters...);
|
35 |
+
}
|
36 |
+
|
37 |
+
inline ScalarType param_scalar_type(const Tensor& t, bool is_mixed_type) {
|
38 |
+
return is_mixed_type ? ScalarType::Float : t.scalar_type();
|
39 |
+
}
|
40 |
+
|
41 |
+
}} // namespace at::native
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/moments_utils.h
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <array>
|
4 |
+
#include <cstring>
|
5 |
+
#include <numeric>
|
6 |
+
#include <utility>
|
7 |
+
#include <vector>
|
8 |
+
|
9 |
+
#include <ATen/Parallel.h>
|
10 |
+
#include <ATen/OpMathType.h>
|
11 |
+
#include <ATen/cpu/vec/vec.h>
|
12 |
+
#include <ATen/native/cpu/utils.h>
|
13 |
+
#include <c10/util/SmallVector.h>
|
14 |
+
#include <c10/util/irange.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
namespace native {
|
18 |
+
inline namespace CPU_CAPABILITY {
|
19 |
+
|
20 |
+
template<typename T> using opmath_t = at::opmath_type<T>;
|
21 |
+
|
22 |
+
constexpr int64_t kChunkSize = 16;
|
23 |
+
|
24 |
+
template <typename T>
|
25 |
+
void AddMoments(
|
26 |
+
int64_t m0_add,
|
27 |
+
const T& m1_add,
|
28 |
+
const T& m2_add,
|
29 |
+
int64_t& m0,
|
30 |
+
T& m1,
|
31 |
+
T& m2) {
|
32 |
+
const int64_t n = m0 + m0_add;
|
33 |
+
const T c = n == 0 ? static_cast<T>(0) : static_cast<T>(m0_add) / static_cast<T>(n);
|
34 |
+
const T delta = m1_add - m1;
|
35 |
+
m1 += c * delta;
|
36 |
+
m2 += m2_add + delta * delta * c * static_cast<T>(m0);
|
37 |
+
m0 = n;
|
38 |
+
}
|
39 |
+
|
40 |
+
template <typename T>
|
41 |
+
C10_ALWAYS_INLINE void AddMomentsVec(
|
42 |
+
int64_t m0_add,
|
43 |
+
const vec::Vectorized<T>& m1_add,
|
44 |
+
const vec::Vectorized<T>& m2_add,
|
45 |
+
int64_t& m0,
|
46 |
+
vec::Vectorized<T>& m1,
|
47 |
+
vec::Vectorized<T>& m2) {
|
48 |
+
using Vec = vec::Vectorized<T>;
|
49 |
+
const int64_t n = m0 + m0_add;
|
50 |
+
const T c = n == 0 ? static_cast<T>(0) : static_cast<T>(m0_add) / static_cast<T>(n);
|
51 |
+
const Vec c_vec(c);
|
52 |
+
const Vec delta = m1_add - m1;
|
53 |
+
m1 += c_vec * delta;
|
54 |
+
m2 += m2_add + delta * delta * c_vec * Vec(static_cast<T>(m0));
|
55 |
+
m0 = n;
|
56 |
+
}
|
57 |
+
|
58 |
+
template <typename T>
|
59 |
+
inline typename std::enable_if<std::is_same<T, opmath_t<T>>::value, void>::type
|
60 |
+
UpdateMomentsVec(
|
61 |
+
int64_t m0,
|
62 |
+
const T* X_ptr,
|
63 |
+
const std::array<vec::Vectorized<opmath_t<T>>, kChunkSize>& c_vecs,
|
64 |
+
int64_t& m0_stk0,
|
65 |
+
vec::Vectorized<opmath_t<T>>& m1_stk0,
|
66 |
+
vec::Vectorized<opmath_t<T>>& m2_stk0) {
|
67 |
+
using Vec = vec::Vectorized<opmath_t<T>>;
|
68 |
+
Vec m1_vec(0);
|
69 |
+
Vec m2_vec(0);
|
70 |
+
for (const auto j : c10::irange(m0)) {
|
71 |
+
const Vec x_vec = Vec::loadu(X_ptr + j * Vec::size());
|
72 |
+
const Vec delta_vec = x_vec - m1_vec;
|
73 |
+
m1_vec += delta_vec * c_vecs[j];
|
74 |
+
m2_vec += delta_vec * (x_vec - m1_vec);
|
75 |
+
}
|
76 |
+
AddMomentsVec(m0, m1_vec, m2_vec, m0_stk0, m1_stk0, m2_stk0);
|
77 |
+
}
|
78 |
+
|
79 |
+
// each bfloat16/half vector will be converted to two float vectors,
|
80 |
+
// and accumulated successively on m1_stk0/m2_stk0.
|
81 |
+
template <typename T>
|
82 |
+
inline typename std::enable_if<!std::is_same<T, at::opmath_type<T>>::value, void>::type
|
83 |
+
UpdateMomentsVec(
|
84 |
+
int64_t m0,
|
85 |
+
const T* X_ptr,
|
86 |
+
const std::array<vec::Vectorized<at::opmath_type<T>>, kChunkSize>& c_vecs,
|
87 |
+
int64_t& m0_stk0,
|
88 |
+
vec::Vectorized<at::opmath_type<T>>& m1_stk0,
|
89 |
+
vec::Vectorized<at::opmath_type<T>>& m2_stk0) {
|
90 |
+
using Vec = vec::Vectorized<T>;
|
91 |
+
using fVec = vec::Vectorized<at::opmath_type<T>>;
|
92 |
+
fVec m1_fvec0(0), m1_fvec1(0);
|
93 |
+
fVec m2_fvec0(0), m2_fvec1(0);
|
94 |
+
for (const auto j : c10::irange(m0)) {
|
95 |
+
const Vec x_bvec = Vec::loadu(X_ptr + j * Vec::size());
|
96 |
+
auto [x_fvec0, x_fvec1] = convert_to_float<T>(x_bvec);
|
97 |
+
const fVec delta_fvec0 = x_fvec0 - m1_fvec0;
|
98 |
+
const fVec delta_fvec1 = x_fvec1 - m1_fvec1;
|
99 |
+
m1_fvec0 += delta_fvec0 * c_vecs[j];
|
100 |
+
m1_fvec1 += delta_fvec1 * c_vecs[j];
|
101 |
+
m2_fvec0 += delta_fvec0 * (x_fvec0 - m1_fvec0);
|
102 |
+
m2_fvec1 += delta_fvec1 * (x_fvec1 - m1_fvec1);
|
103 |
+
}
|
104 |
+
AddMomentsVec(m0, m1_fvec0, m2_fvec0, m0_stk0, m1_stk0, m2_stk0);
|
105 |
+
AddMomentsVec(m0, m1_fvec1, m2_fvec1, m0_stk0, m1_stk0, m2_stk0);
|
106 |
+
}
|
107 |
+
|
108 |
+
// Compute rowwise moments by Welford algorithm and cascade sum to improve
|
109 |
+
// numerical stability.
|
110 |
+
// https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
|
111 |
+
// https://en.wikipedia.org/wiki/Pairwise_summation
|
112 |
+
template <typename T, int64_t kMaxDepth>
|
113 |
+
std::pair<opmath_t<T>, opmath_t<T>> RowwiseMomentsImpl(const T* X, int64_t N, int64_t ddof = 0) {
|
114 |
+
using math_t = opmath_t<T>;
|
115 |
+
|
116 |
+
constexpr int64_t kVecSize = vec::Vectorized<T>::size();
|
117 |
+
constexpr int64_t kAccVecSize = vec::Vectorized<math_t>::size();
|
118 |
+
const int64_t n = N / kVecSize;
|
119 |
+
const int64_t m = divup(n, kChunkSize);
|
120 |
+
const int64_t depth = utils::CeilLog2(m);
|
121 |
+
|
122 |
+
using Vec = vec::Vectorized<math_t>;
|
123 |
+
const Vec kZeroVec(math_t(0));
|
124 |
+
c10::SmallVector<int64_t, kMaxDepth> m0_stk(depth, 0);
|
125 |
+
c10::SmallVector<Vec, kMaxDepth> m1_stk(depth, kZeroVec);
|
126 |
+
c10::SmallVector<Vec, kMaxDepth> m2_stk(depth, kZeroVec);
|
127 |
+
|
128 |
+
for (const auto i : c10::irange(m)) {
|
129 |
+
const T* X_ptr = X + i * kChunkSize * kVecSize;
|
130 |
+
const int64_t m0 = std::min(kChunkSize, n - i * kChunkSize);
|
131 |
+
static std::array<Vec, kChunkSize> c_vecs = ([]() {
|
132 |
+
std::array<Vec, kChunkSize> result;
|
133 |
+
for (const auto i : c10::irange(kChunkSize)) {
|
134 |
+
result[i] = Vec(math_t(1) / static_cast<math_t>(i + 1));
|
135 |
+
}
|
136 |
+
return result;
|
137 |
+
})();
|
138 |
+
UpdateMomentsVec(m0, X_ptr, c_vecs, m0_stk[0], m1_stk[0], m2_stk[0]);
|
139 |
+
|
140 |
+
int64_t mask = i + 1;
|
141 |
+
for (int64_t j = 1; j < depth && (mask & 1) == 0; ++j) {
|
142 |
+
AddMomentsVec(
|
143 |
+
m0_stk[j - 1],
|
144 |
+
m1_stk[j - 1],
|
145 |
+
m2_stk[j - 1],
|
146 |
+
m0_stk[j],
|
147 |
+
m1_stk[j],
|
148 |
+
m2_stk[j]);
|
149 |
+
m0_stk[j - 1] = 0;
|
150 |
+
m1_stk[j - 1] = kZeroVec;
|
151 |
+
m2_stk[j - 1] = kZeroVec;
|
152 |
+
mask >>= 1;
|
153 |
+
}
|
154 |
+
}
|
155 |
+
for (const auto i : c10::irange(1, depth)) {
|
156 |
+
AddMomentsVec(
|
157 |
+
m0_stk[i], m1_stk[i], m2_stk[i], m0_stk[0], m1_stk[0], m2_stk[0]);
|
158 |
+
}
|
159 |
+
|
160 |
+
std::array<math_t, kAccVecSize> m1_arr{};
|
161 |
+
std::array<math_t, kAccVecSize> m2_arr{};
|
162 |
+
m1_stk[0].store(m1_arr.data());
|
163 |
+
m2_stk[0].store(m2_arr.data());
|
164 |
+
|
165 |
+
int64_t m0 = 0;
|
166 |
+
math_t m1 = 0;
|
167 |
+
math_t m2 = 0;
|
168 |
+
for (int64_t i = n * kVecSize; i < N; ++i) {
|
169 |
+
math_t x = static_cast<math_t>(X[i]);
|
170 |
+
const math_t delta = x - m1;
|
171 |
+
++m0;
|
172 |
+
m1 += delta / static_cast<math_t>(m0);
|
173 |
+
m2 += delta * (x - m1);
|
174 |
+
}
|
175 |
+
// for BFloat16, each vector in m1_arr/m2_arr holds 2*n accumulated result
|
176 |
+
int64_t m0_add = n * kVecSize / kAccVecSize;
|
177 |
+
for (const auto i : c10::irange(kAccVecSize)) {
|
178 |
+
AddMoments(m0_add, m1_arr[i], m2_arr[i], m0, m1, m2);
|
179 |
+
}
|
180 |
+
|
181 |
+
return std::make_pair(m1, m2 / static_cast<math_t>(N - ddof));
|
182 |
+
}
|
183 |
+
|
184 |
+
template <typename T>
|
185 |
+
std::pair<opmath_t<T>, opmath_t<T>> RowwiseMoments(const T* X, int64_t N, int64_t ddof = 0) {
|
186 |
+
using Vec = vec::Vectorized<T>;
|
187 |
+
constexpr int64_t kVecSize = Vec::size();
|
188 |
+
const int64_t n = N / kVecSize;
|
189 |
+
const int64_t m = divup(n, kChunkSize);
|
190 |
+
const int64_t depth = utils::CeilLog2(m);
|
191 |
+
if (depth <= 4) {
|
192 |
+
return RowwiseMomentsImpl<T, 4>(X, N, ddof);
|
193 |
+
} else if (depth <= 8) {
|
194 |
+
return RowwiseMomentsImpl<T, 8>(X, N, ddof);
|
195 |
+
} else if (depth <= 16) {
|
196 |
+
return RowwiseMomentsImpl<T, 16>(X, N, ddof);
|
197 |
+
} else if (depth <= 32) {
|
198 |
+
return RowwiseMomentsImpl<T, 32>(X, N, ddof);
|
199 |
+
} else {
|
200 |
+
return RowwiseMomentsImpl<T, 64>(X, N, ddof);
|
201 |
+
}
|
202 |
+
}
|
203 |
+
|
204 |
+
} // namespace CPU_CAPABILITY
|
205 |
+
} // namespace native
|
206 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/utils.h
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/Parallel.h>
|
4 |
+
#include <ATen/cpu/vec/vec.h>
|
5 |
+
#include <c10/util/llvmMathExtras.h>
|
6 |
+
|
7 |
+
#ifdef USE_FBGEMM
|
8 |
+
#include <fbgemm/Fbgemm.h>
|
9 |
+
#endif
|
10 |
+
|
11 |
+
namespace at {
|
12 |
+
namespace native {
|
13 |
+
|
14 |
+
template <typename T>
|
15 |
+
inline void _store(T* dst, at::vec::Vectorized<T> src) {
|
16 |
+
src.store(dst);
|
17 |
+
}
|
18 |
+
|
19 |
+
inline void _store(at::BFloat16* dst, at::vec::Vectorized<float> src) {
|
20 |
+
auto res = at::vec::convert_float_bfloat16(src, src);
|
21 |
+
res.store(dst, at::vec::Vectorized<float>::size());
|
22 |
+
}
|
23 |
+
|
24 |
+
inline void _store(at::Half* dst, at::vec::Vectorized<float> src) {
|
25 |
+
auto res = at::vec::convert_float_half(src, src);
|
26 |
+
res.store(dst, at::vec::Vectorized<float>::size());
|
27 |
+
}
|
28 |
+
|
29 |
+
inline namespace CPU_CAPABILITY {
|
30 |
+
|
31 |
+
template <typename T>
|
32 |
+
inline T data_index_init(T offset) {
|
33 |
+
return offset;
|
34 |
+
}
|
35 |
+
|
36 |
+
template <typename T, typename... Args>
|
37 |
+
inline T data_index_init(T offset, T& x, const T& X, Args&&... args) {
|
38 |
+
offset = data_index_init(offset, std::forward<Args>(args)...);
|
39 |
+
x = offset % X;
|
40 |
+
return offset / X;
|
41 |
+
}
|
42 |
+
|
43 |
+
inline bool data_index_step() {
|
44 |
+
return true;
|
45 |
+
}
|
46 |
+
|
47 |
+
template <typename T, typename... Args>
|
48 |
+
inline bool data_index_step(T& x, const T& X, Args&&... args) {
|
49 |
+
if (data_index_step(std::forward<Args>(args)...)) {
|
50 |
+
x = ((x + 1) == X) ? 0 : (x + 1);
|
51 |
+
return x == 0;
|
52 |
+
}
|
53 |
+
return false;
|
54 |
+
}
|
55 |
+
|
56 |
+
// Helper struct for bfloat16 vectorization
|
57 |
+
// Useful when you need float as immediate dtype or accumulate dtype
|
58 |
+
using namespace vec;
|
59 |
+
struct Vec2 {
|
60 |
+
Vectorized<float> val0, val1;
|
61 |
+
Vec2(Vectorized<float> v0, Vectorized<float> v1) : val0(v0), val1(v1) {}
|
62 |
+
Vec2(float v) : val0(v), val1(v) {}
|
63 |
+
static Vec2 loadu(const BFloat16* ptr) {
|
64 |
+
auto [v0, v1] = convert_bfloat16_float(Vectorized<BFloat16>::loadu(ptr));
|
65 |
+
return {v0, v1};
|
66 |
+
}
|
67 |
+
static Vec2 loadu(const float* ptr) {
|
68 |
+
return {Vectorized<float>::loadu(ptr), Vectorized<float>::loadu(ptr + Vectorized<float>::size())};
|
69 |
+
}
|
70 |
+
void store(BFloat16* ptr) const {
|
71 |
+
Vectorized<BFloat16> val = convert_float_bfloat16(val0, val1);
|
72 |
+
val.store(ptr);
|
73 |
+
}
|
74 |
+
void store(float* ptr) const {
|
75 |
+
val0.store(ptr);
|
76 |
+
val1.store(ptr + Vectorized<float>::size());
|
77 |
+
}
|
78 |
+
};
|
79 |
+
inline Vec2 operator+(const Vec2& a, const Vec2& b) { return {a.val0 + b.val0, a.val1 + b.val1}; }
|
80 |
+
inline Vec2 operator*(const Vec2& a, const Vec2& b) { return {a.val0 * b.val0, a.val1 * b.val1}; }
|
81 |
+
inline Vec2 operator-(const Vec2& a, const Vec2& b) { return {a.val0 - b.val0, a.val1 - b.val1}; }
|
82 |
+
inline Vec2 operator/(const Vec2& a, const Vec2& b) { return {a.val0 / b.val0, a.val1 / b.val1}; }
|
83 |
+
inline Vec2 maximum(const Vec2& a, const Vec2& b) { return {vec::maximum(a.val0, b.val0), vec::maximum(a.val1, b.val1)}; }
|
84 |
+
inline Vec2 minimum(const Vec2& a, const Vec2& b) { return {vec::minimum(a.val0, b.val0), vec::minimum(a.val1, b.val1)}; }
|
85 |
+
|
86 |
+
template <typename scalar_t> struct VectorizedType { using type = Vectorized<scalar_t>; };
|
87 |
+
template <> struct VectorizedType<BFloat16> { using type = Vec2; };
|
88 |
+
template <typename scalar_t> using VecType = typename VectorizedType<scalar_t>::type;
|
89 |
+
|
90 |
+
// Helper for mixed data type parameter Vec::load
|
91 |
+
inline std::tuple<Vectorized<float>, Vectorized<float>> load2f(const BFloat16* ptr) {
|
92 |
+
return convert_bfloat16_float(Vectorized<BFloat16>::loadu(ptr));
|
93 |
+
}
|
94 |
+
|
95 |
+
inline std::tuple<Vectorized<float>, Vectorized<float>> load2f(const Half* ptr) {
|
96 |
+
return convert_half_float(Vectorized<Half>::loadu(ptr));
|
97 |
+
}
|
98 |
+
|
99 |
+
inline std::tuple<Vectorized<float>, Vectorized<float>> load2f(const float* ptr) {
|
100 |
+
using Vec = Vectorized<float>;
|
101 |
+
return std::make_tuple(Vec::loadu(ptr), Vec::loadu(ptr + Vec::size()));
|
102 |
+
}
|
103 |
+
|
104 |
+
inline std::tuple<Vectorized<float>, Vectorized<float>> load2f(const BFloat16* ptr, int64_t count) {
|
105 |
+
return convert_bfloat16_float(Vectorized<BFloat16>::loadu(ptr, count));
|
106 |
+
}
|
107 |
+
|
108 |
+
inline std::tuple<Vectorized<float>, Vectorized<float>> load2f(const Half* ptr, int64_t count) {
|
109 |
+
return convert_half_float(Vectorized<Half>::loadu(ptr, count));
|
110 |
+
}
|
111 |
+
|
112 |
+
inline std::tuple<Vectorized<float>, Vectorized<float>> load2f(const float* ptr, int64_t count) {
|
113 |
+
using Vec = Vectorized<float>;
|
114 |
+
if (count > Vec::size()) {
|
115 |
+
return std::make_tuple(Vec::loadu(ptr), Vec::loadu(ptr + Vec::size(), count - Vec::size()));
|
116 |
+
} else {
|
117 |
+
return std::make_tuple(Vec::loadu(ptr, count), Vec(0));
|
118 |
+
}
|
119 |
+
}
|
120 |
+
|
121 |
+
} // namespace
|
122 |
+
|
123 |
+
namespace utils {
|
124 |
+
|
125 |
+
template <typename T>
|
126 |
+
T CeilLog2(const T& x) {
|
127 |
+
if (x <= 2) {
|
128 |
+
return 1;
|
129 |
+
}
|
130 |
+
// Last set bit is floor(log2(x)), floor + 1 is ceil
|
131 |
+
// except when x is an exact powers of 2, so subtract 1 first
|
132 |
+
return static_cast<T>(llvm::findLastSet(static_cast<uint64_t>(x) - 1)) + 1;
|
133 |
+
}
|
134 |
+
|
135 |
+
// matrix transpose:
|
136 |
+
// src has shape of M by N, with leading dimension of ld_src
|
137 |
+
// dst has shape of N by M, with leading dimension of ld_dst
|
138 |
+
template <typename T>
|
139 |
+
inline void transpose(int64_t M, int64_t N, const T* src, int64_t ld_src, T* dst, int64_t ld_dst) {
|
140 |
+
for (int64_t j = 0; j < N; j++) {
|
141 |
+
for (int64_t i = 0; i < M; i++) {
|
142 |
+
dst[j * ld_dst + i] = src[i * ld_src + j];
|
143 |
+
}
|
144 |
+
}
|
145 |
+
}
|
146 |
+
|
147 |
+
#ifdef USE_FBGEMM
|
148 |
+
template <>
|
149 |
+
inline void transpose<float>(int64_t M, int64_t N, const float* src, int64_t ld_src, float* dst, int64_t ld_dst) {
|
150 |
+
TORCH_CHECK(fbgemm::fbgemmSupportedCPU(), "Your CPU does not support FBGEMM.");
|
151 |
+
fbgemm::transpose_simd<float>(M, N, src, ld_src, dst, ld_dst);
|
152 |
+
}
|
153 |
+
#endif
|
154 |
+
|
155 |
+
template <typename index_t, typename F>
|
156 |
+
inline void parallel_sparse_csr(
|
157 |
+
const TensorAccessor<index_t, 1>& crow_acc,
|
158 |
+
const int64_t M,
|
159 |
+
const int64_t nnz,
|
160 |
+
const F& f) {
|
161 |
+
TORCH_CHECK(crow_acc.size(0) == M + 1);
|
162 |
+
|
163 |
+
// directly parallel on `M` may lead to load imbalance,
|
164 |
+
// statically determine thread partition here to average payload
|
165 |
+
// for each thread.
|
166 |
+
int num_threads = at::get_num_threads();
|
167 |
+
std::vector<int64_t> thread_splits(num_threads + 1, M);
|
168 |
+
|
169 |
+
int64_t thread_averge_payload = std::max((int64_t)1, divup(nnz, num_threads));
|
170 |
+
|
171 |
+
thread_splits[0] = 0;
|
172 |
+
int64_t sum = 0;
|
173 |
+
int64_t t = 1;
|
174 |
+
for (const auto m : c10::irange(M)) {
|
175 |
+
int64_t row_start = crow_acc[m];
|
176 |
+
int64_t row_end = crow_acc[m + 1];
|
177 |
+
sum += row_end - row_start;
|
178 |
+
if (sum > t * thread_averge_payload) {
|
179 |
+
thread_splits[t] = m;
|
180 |
+
t++;
|
181 |
+
}
|
182 |
+
}
|
183 |
+
// need to restore the last index,
|
184 |
+
// due to rounding error when calculating `thread_averge_payload`.
|
185 |
+
thread_splits[num_threads] = M;
|
186 |
+
|
187 |
+
at::parallel_for(0, num_threads, 1, [&](int64_t cbegin, int64_t cend) {
|
188 |
+
int tid = at::get_thread_num();
|
189 |
+
int64_t begin = thread_splits[tid];
|
190 |
+
int64_t end = thread_splits[tid + 1];
|
191 |
+
f(begin, end);
|
192 |
+
});
|
193 |
+
}
|
194 |
+
|
195 |
+
} // namespace utils
|
196 |
+
|
197 |
+
} // namespace native
|
198 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cpu/zmath.h
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// Complex number math operations that act as no-ops for other dtypes.
|
4 |
+
#include <c10/util/complex.h>
|
5 |
+
#include <c10/util/MathConstants.h>
|
6 |
+
#include<ATen/NumericUtils.h>
|
7 |
+
|
8 |
+
namespace at { namespace native {
|
9 |
+
inline namespace CPU_CAPABILITY {
|
10 |
+
|
11 |
+
template <typename SCALAR_TYPE, typename VALUE_TYPE=SCALAR_TYPE>
|
12 |
+
inline VALUE_TYPE zabs (SCALAR_TYPE z) {
|
13 |
+
return z;
|
14 |
+
}
|
15 |
+
|
16 |
+
template<>
|
17 |
+
inline c10::complex<float> zabs <c10::complex<float>> (c10::complex<float> z) {
|
18 |
+
return c10::complex<float>(std::abs(z));
|
19 |
+
}
|
20 |
+
|
21 |
+
template<>
|
22 |
+
inline float zabs <c10::complex<float>, float> (c10::complex<float> z) {
|
23 |
+
return std::abs(z);
|
24 |
+
}
|
25 |
+
|
26 |
+
template<>
|
27 |
+
inline c10::complex<double> zabs <c10::complex<double>> (c10::complex<double> z) {
|
28 |
+
return c10::complex<double>(std::abs(z));
|
29 |
+
}
|
30 |
+
|
31 |
+
template<>
|
32 |
+
inline double zabs <c10::complex<double>, double> (c10::complex<double> z) {
|
33 |
+
return std::abs(z);
|
34 |
+
}
|
35 |
+
|
36 |
+
// This overload corresponds to non-complex dtypes.
|
37 |
+
// The function is consistent with its NumPy equivalent
|
38 |
+
// for non-complex dtypes where `pi` is returned for
|
39 |
+
// negative real numbers and `0` is returned for 0 or positive
|
40 |
+
// real numbers.
|
41 |
+
// Note: `nan` is propagated.
|
42 |
+
template <typename SCALAR_TYPE, typename VALUE_TYPE=SCALAR_TYPE>
|
43 |
+
inline VALUE_TYPE angle_impl (SCALAR_TYPE z) {
|
44 |
+
if (at::_isnan(z)) {
|
45 |
+
return z;
|
46 |
+
}
|
47 |
+
return z < 0 ? c10::pi<double> : 0;
|
48 |
+
}
|
49 |
+
|
50 |
+
template<>
|
51 |
+
inline c10::complex<float> angle_impl <c10::complex<float>> (c10::complex<float> z) {
|
52 |
+
return c10::complex<float>(std::arg(z), 0.0);
|
53 |
+
}
|
54 |
+
|
55 |
+
template<>
|
56 |
+
inline float angle_impl <c10::complex<float>, float> (c10::complex<float> z) {
|
57 |
+
return std::arg(z);
|
58 |
+
}
|
59 |
+
|
60 |
+
template<>
|
61 |
+
inline c10::complex<double> angle_impl <c10::complex<double>> (c10::complex<double> z) {
|
62 |
+
return c10::complex<double>(std::arg(z), 0.0);
|
63 |
+
}
|
64 |
+
|
65 |
+
template<>
|
66 |
+
inline double angle_impl <c10::complex<double>, double> (c10::complex<double> z) {
|
67 |
+
return std::arg(z);
|
68 |
+
}
|
69 |
+
|
70 |
+
template <typename SCALAR_TYPE, typename VALUE_TYPE=SCALAR_TYPE>
|
71 |
+
constexpr VALUE_TYPE real_impl (SCALAR_TYPE z) {
|
72 |
+
return z; //No-Op
|
73 |
+
}
|
74 |
+
|
75 |
+
template<>
|
76 |
+
constexpr c10::complex<float> real_impl <c10::complex<float>> (c10::complex<float> z) {
|
77 |
+
return c10::complex<float>(z.real(), 0.0);
|
78 |
+
}
|
79 |
+
|
80 |
+
template<>
|
81 |
+
constexpr float real_impl <c10::complex<float>, float> (c10::complex<float> z) {
|
82 |
+
return z.real();
|
83 |
+
}
|
84 |
+
|
85 |
+
template<>
|
86 |
+
constexpr c10::complex<double> real_impl <c10::complex<double>> (c10::complex<double> z) {
|
87 |
+
return c10::complex<double>(z.real(), 0.0);
|
88 |
+
}
|
89 |
+
|
90 |
+
template<>
|
91 |
+
constexpr double real_impl <c10::complex<double>, double> (c10::complex<double> z) {
|
92 |
+
return z.real();
|
93 |
+
}
|
94 |
+
|
95 |
+
template <typename SCALAR_TYPE, typename VALUE_TYPE=SCALAR_TYPE>
|
96 |
+
constexpr VALUE_TYPE imag_impl (SCALAR_TYPE /*z*/) {
|
97 |
+
return 0;
|
98 |
+
}
|
99 |
+
|
100 |
+
template<>
|
101 |
+
constexpr c10::complex<float> imag_impl <c10::complex<float>> (c10::complex<float> z) {
|
102 |
+
return c10::complex<float>(z.imag(), 0.0);
|
103 |
+
}
|
104 |
+
|
105 |
+
template<>
|
106 |
+
constexpr float imag_impl <c10::complex<float>, float> (c10::complex<float> z) {
|
107 |
+
return z.imag();
|
108 |
+
}
|
109 |
+
|
110 |
+
template<>
|
111 |
+
constexpr c10::complex<double> imag_impl <c10::complex<double>> (c10::complex<double> z) {
|
112 |
+
return c10::complex<double>(z.imag(), 0.0);
|
113 |
+
}
|
114 |
+
|
115 |
+
template<>
|
116 |
+
constexpr double imag_impl <c10::complex<double>, double> (c10::complex<double> z) {
|
117 |
+
return z.imag();
|
118 |
+
}
|
119 |
+
|
120 |
+
template <typename TYPE>
|
121 |
+
inline TYPE conj_impl (TYPE z) {
|
122 |
+
return z; //No-Op
|
123 |
+
}
|
124 |
+
|
125 |
+
template<>
|
126 |
+
inline c10::complex<at::Half> conj_impl <c10::complex<at::Half>> (c10::complex<at::Half> z) {
|
127 |
+
return c10::complex<at::Half>{z.real(), -z.imag()};
|
128 |
+
}
|
129 |
+
|
130 |
+
template<>
|
131 |
+
inline c10::complex<float> conj_impl <c10::complex<float>> (c10::complex<float> z) {
|
132 |
+
return c10::complex<float>(z.real(), -z.imag());
|
133 |
+
}
|
134 |
+
|
135 |
+
template<>
|
136 |
+
inline c10::complex<double> conj_impl <c10::complex<double>> (c10::complex<double> z) {
|
137 |
+
return c10::complex<double>(z.real(), -z.imag());
|
138 |
+
}
|
139 |
+
|
140 |
+
template <typename TYPE>
|
141 |
+
inline TYPE ceil_impl (TYPE z) {
|
142 |
+
return std::ceil(z);
|
143 |
+
}
|
144 |
+
|
145 |
+
template <>
|
146 |
+
inline c10::complex<float> ceil_impl (c10::complex<float> z) {
|
147 |
+
return c10::complex<float>(std::ceil(z.real()), std::ceil(z.imag()));
|
148 |
+
}
|
149 |
+
|
150 |
+
template <>
|
151 |
+
inline c10::complex<double> ceil_impl (c10::complex<double> z) {
|
152 |
+
return c10::complex<double>(std::ceil(z.real()), std::ceil(z.imag()));
|
153 |
+
}
|
154 |
+
|
155 |
+
template<typename T>
|
156 |
+
inline c10::complex<T> sgn_impl (c10::complex<T> z) {
|
157 |
+
if (z == c10::complex<T>(0, 0)) {
|
158 |
+
return c10::complex<T>(0, 0);
|
159 |
+
} else {
|
160 |
+
return z / zabs(z);
|
161 |
+
}
|
162 |
+
}
|
163 |
+
|
164 |
+
template <typename TYPE>
|
165 |
+
inline TYPE floor_impl (TYPE z) {
|
166 |
+
return std::floor(z);
|
167 |
+
}
|
168 |
+
|
169 |
+
template <>
|
170 |
+
inline c10::complex<float> floor_impl (c10::complex<float> z) {
|
171 |
+
return c10::complex<float>(std::floor(z.real()), std::floor(z.imag()));
|
172 |
+
}
|
173 |
+
|
174 |
+
template <>
|
175 |
+
inline c10::complex<double> floor_impl (c10::complex<double> z) {
|
176 |
+
return c10::complex<double>(std::floor(z.real()), std::floor(z.imag()));
|
177 |
+
}
|
178 |
+
|
179 |
+
template <typename TYPE>
|
180 |
+
inline TYPE round_impl (TYPE z) {
|
181 |
+
return std::nearbyint(z);
|
182 |
+
}
|
183 |
+
|
184 |
+
template <>
|
185 |
+
inline c10::complex<float> round_impl (c10::complex<float> z) {
|
186 |
+
return c10::complex<float>(std::nearbyint(z.real()), std::nearbyint(z.imag()));
|
187 |
+
}
|
188 |
+
|
189 |
+
template <>
|
190 |
+
inline c10::complex<double> round_impl (c10::complex<double> z) {
|
191 |
+
return c10::complex<double>(std::nearbyint(z.real()), std::nearbyint(z.imag()));
|
192 |
+
}
|
193 |
+
|
194 |
+
template <typename TYPE>
|
195 |
+
inline TYPE trunc_impl (TYPE z) {
|
196 |
+
return std::trunc(z);
|
197 |
+
}
|
198 |
+
|
199 |
+
template <>
|
200 |
+
inline c10::complex<float> trunc_impl (c10::complex<float> z) {
|
201 |
+
return c10::complex<float>(std::trunc(z.real()), std::trunc(z.imag()));
|
202 |
+
}
|
203 |
+
|
204 |
+
template <>
|
205 |
+
inline c10::complex<double> trunc_impl (c10::complex<double> z) {
|
206 |
+
return c10::complex<double>(std::trunc(z.real()), std::trunc(z.imag()));
|
207 |
+
}
|
208 |
+
|
209 |
+
template <typename TYPE, std::enable_if_t<!c10::is_complex<TYPE>::value, int> = 0>
|
210 |
+
inline TYPE max_impl (TYPE a, TYPE b) {
|
211 |
+
if (_isnan<TYPE>(a) || _isnan<TYPE>(b)) {
|
212 |
+
return std::numeric_limits<TYPE>::quiet_NaN();
|
213 |
+
} else {
|
214 |
+
return std::max(a, b);
|
215 |
+
}
|
216 |
+
}
|
217 |
+
|
218 |
+
template <typename TYPE, std::enable_if_t<c10::is_complex<TYPE>::value, int> = 0>
|
219 |
+
inline TYPE max_impl (TYPE a, TYPE b) {
|
220 |
+
if (_isnan<TYPE>(a)) {
|
221 |
+
return a;
|
222 |
+
} else if (_isnan<TYPE>(b)) {
|
223 |
+
return b;
|
224 |
+
} else {
|
225 |
+
return std::abs(a) > std::abs(b) ? a : b;
|
226 |
+
}
|
227 |
+
}
|
228 |
+
|
229 |
+
template <typename TYPE, std::enable_if_t<!c10::is_complex<TYPE>::value, int> = 0>
|
230 |
+
inline TYPE min_impl (TYPE a, TYPE b) {
|
231 |
+
if (_isnan<TYPE>(a) || _isnan<TYPE>(b)) {
|
232 |
+
return std::numeric_limits<TYPE>::quiet_NaN();
|
233 |
+
} else {
|
234 |
+
return std::min(a, b);
|
235 |
+
}
|
236 |
+
}
|
237 |
+
|
238 |
+
template <typename TYPE, std::enable_if_t<c10::is_complex<TYPE>::value, int> = 0>
|
239 |
+
inline TYPE min_impl (TYPE a, TYPE b) {
|
240 |
+
if (_isnan<TYPE>(a)) {
|
241 |
+
return a;
|
242 |
+
} else if (_isnan<TYPE>(b)) {
|
243 |
+
return b;
|
244 |
+
} else {
|
245 |
+
return std::abs(a) < std::abs(b) ? a : b;
|
246 |
+
}
|
247 |
+
}
|
248 |
+
|
249 |
+
} // end namespace
|
250 |
+
}} //end at::native
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/BinaryInternal.h
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// DON'T include this except from Binary*.cu files. It should not leak into
|
2 |
+
// headers.
|
3 |
+
#pragma once
|
4 |
+
#define TORCH_ASSERT_NO_OPERATORS
|
5 |
+
#include <ATen/AccumulateType.h>
|
6 |
+
#include <ATen/Dispatch.h>
|
7 |
+
#include <ATen/native/BinaryOps.h>
|
8 |
+
#include <ATen/native/DispatchStub.h>
|
9 |
+
#include <ATen/native/TensorIterator.h>
|
10 |
+
#include <c10/cuda/CUDAGuard.h>
|
11 |
+
#include <c10/cuda/CUDAMathCompat.h>
|
12 |
+
#include <c10/util/TypeSafeSignMath.h>
|
13 |
+
#include <ATen/native/cuda/JitLoops.cuh>
|
14 |
+
#include <ATen/native/cuda/Loops.cuh>
|
15 |
+
|
16 |
+
#include <type_traits>
|
17 |
+
|
18 |
+
namespace at {
|
19 |
+
namespace native {
|
20 |
+
namespace binary_internal {
|
21 |
+
|
22 |
+
template <typename scalar_t>
|
23 |
+
struct DivFunctor {
|
24 |
+
__device__ scalar_t operator()(scalar_t a, scalar_t b) const {
|
25 |
+
return a / b;
|
26 |
+
}
|
27 |
+
};
|
28 |
+
|
29 |
+
template <typename T>
|
30 |
+
struct MulFunctor {
|
31 |
+
__device__ T operator()(T a, T b) const {
|
32 |
+
return a * b;
|
33 |
+
}
|
34 |
+
};
|
35 |
+
|
36 |
+
// Workaround for the error: '*' in boolean context, suggest '&&' instead
|
37 |
+
// [-Werror=int-in-bool-context]
|
38 |
+
template <>
|
39 |
+
struct MulFunctor<bool> {
|
40 |
+
__device__ bool operator()(bool a, bool b) const {
|
41 |
+
return a && b;
|
42 |
+
}
|
43 |
+
};
|
44 |
+
void div_true_kernel_cuda(TensorIteratorBase& iter);
|
45 |
+
void div_trunc_kernel_cuda(TensorIteratorBase& iter);
|
46 |
+
} // namespace binary_internal
|
47 |
+
} // namespace native
|
48 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/CompositeRandomAccessor.h
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/native/CompositeRandomAccessorCommon.h>
|
4 |
+
#include <thrust/tuple.h>
|
5 |
+
|
6 |
+
namespace at { namespace native {
|
7 |
+
|
8 |
+
struct TupleInfoCPU {
|
9 |
+
template <typename ...Types>
|
10 |
+
using tuple = thrust::tuple<Types...>;
|
11 |
+
|
12 |
+
template <typename ...Types>
|
13 |
+
static constexpr auto tie(Types&... args) noexcept {
|
14 |
+
return thrust::tie(args...);
|
15 |
+
}
|
16 |
+
};
|
17 |
+
|
18 |
+
template <typename KeyAccessor, typename ValueAccessor>
|
19 |
+
using CompositeRandomAccessorCPU =
|
20 |
+
CompositeRandomAccessor<KeyAccessor, ValueAccessor, TupleInfoCPU>;
|
21 |
+
|
22 |
+
template <typename Values, typename References>
|
23 |
+
void swap(
|
24 |
+
references_holder<Values, References> rh1,
|
25 |
+
references_holder<Values, References> rh2
|
26 |
+
) {
|
27 |
+
return thrust::swap(rh1.data(), rh2.data());
|
28 |
+
}
|
29 |
+
|
30 |
+
template <int N, typename Values, typename References>
|
31 |
+
auto get(references_holder<Values, References> rh) -> decltype(thrust::get<N>(rh.data())) {
|
32 |
+
return thrust::get<N>(rh.data());
|
33 |
+
}
|
34 |
+
|
35 |
+
}} // namespace at::native
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/Copy.h
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
namespace at {
|
4 |
+
struct TensorIteratorBase;
|
5 |
+
|
6 |
+
namespace native {
|
7 |
+
|
8 |
+
void direct_copy_kernel_cuda(TensorIteratorBase &iter);
|
9 |
+
|
10 |
+
}} // namespace at::native
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/CuFFTPlanCache.h
ADDED
@@ -0,0 +1,494 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <ATen/Config.h>
|
2 |
+
#include <ATen/core/DimVector.h>
|
3 |
+
#include <ATen/cuda/CUDAContext.h>
|
4 |
+
#include <ATen/native/cuda/CuFFTUtils.h>
|
5 |
+
#include <ATen/native/utils/ParamsHash.h>
|
6 |
+
#include <c10/util/accumulate.h>
|
7 |
+
#include <c10/util/irange.h>
|
8 |
+
|
9 |
+
#include <cufft.h>
|
10 |
+
#include <cufftXt.h>
|
11 |
+
|
12 |
+
#include <limits>
|
13 |
+
#include <list>
|
14 |
+
#include <sstream>
|
15 |
+
#include <stdexcept>
|
16 |
+
#include <string>
|
17 |
+
#include <unordered_map>
|
18 |
+
|
19 |
+
namespace at { namespace native { namespace detail {
|
20 |
+
|
21 |
+
// Enum representing the FFT type
|
22 |
+
enum class CuFFTTransformType : int8_t {
|
23 |
+
C2C, // Complex-to-complex
|
24 |
+
R2C, // Real-to-complex
|
25 |
+
C2R, // Complex-to-real
|
26 |
+
};
|
27 |
+
|
28 |
+
// This struct is used to let us easily compute hashes of the
|
29 |
+
// parameters.
|
30 |
+
// It will be the **key** to the plan cache.
|
31 |
+
struct CuFFTParams
|
32 |
+
{
|
33 |
+
int64_t signal_ndim_; // between 1 and max_rank, i.e., 1 <= signal_ndim <= 3
|
34 |
+
// These include additional batch dimension as well.
|
35 |
+
int64_t sizes_[max_rank + 1];
|
36 |
+
int64_t input_strides_[max_rank + 1];
|
37 |
+
int64_t output_strides_[max_rank + 1];
|
38 |
+
CuFFTTransformType fft_type_;
|
39 |
+
ScalarType value_type_;
|
40 |
+
|
41 |
+
CuFFTParams() = default;
|
42 |
+
|
43 |
+
CuFFTParams(IntArrayRef in_strides, IntArrayRef out_strides,
|
44 |
+
IntArrayRef signal_sizes, CuFFTTransformType fft_type, ScalarType value_type) {
|
45 |
+
// Padding bits must be zeroed for hashing
|
46 |
+
memset(this, 0, sizeof(*this));
|
47 |
+
signal_ndim_ = signal_sizes.size() - 1;
|
48 |
+
fft_type_ = fft_type;
|
49 |
+
value_type_ = value_type;
|
50 |
+
|
51 |
+
TORCH_INTERNAL_ASSERT(in_strides.size() == signal_sizes.size());
|
52 |
+
TORCH_INTERNAL_ASSERT(out_strides.size() == signal_sizes.size());
|
53 |
+
TORCH_INTERNAL_ASSERT(1 <= signal_ndim_ && signal_ndim_ <= max_rank);
|
54 |
+
|
55 |
+
std::copy(signal_sizes.cbegin(), signal_sizes.cend(), sizes_);
|
56 |
+
std::copy(in_strides.cbegin(), in_strides.cend(), input_strides_);
|
57 |
+
std::copy(out_strides.cbegin(), out_strides.cend(), output_strides_);
|
58 |
+
}
|
59 |
+
};
|
60 |
+
|
61 |
+
static_assert(std::is_trivial<CuFFTParams>::value, "");
|
62 |
+
|
63 |
+
// Returns true if the transform type has complex input
|
64 |
+
inline bool cufft_complex_input(CuFFTTransformType type) {
|
65 |
+
switch (type) {
|
66 |
+
case CuFFTTransformType::C2C:
|
67 |
+
case CuFFTTransformType::C2R:
|
68 |
+
return true;
|
69 |
+
|
70 |
+
case CuFFTTransformType::R2C:
|
71 |
+
return false;
|
72 |
+
}
|
73 |
+
TORCH_INTERNAL_ASSERT(false);
|
74 |
+
}
|
75 |
+
|
76 |
+
// Returns true if the transform type has complex output
|
77 |
+
inline bool cufft_complex_output(CuFFTTransformType type) {
|
78 |
+
switch (type) {
|
79 |
+
case CuFFTTransformType::C2C:
|
80 |
+
case CuFFTTransformType::R2C:
|
81 |
+
return true;
|
82 |
+
|
83 |
+
case CuFFTTransformType::C2R:
|
84 |
+
return false;
|
85 |
+
}
|
86 |
+
TORCH_INTERNAL_ASSERT(false);
|
87 |
+
}
|
88 |
+
|
89 |
+
// Create transform type enum from bools representing if input and output are complex
|
90 |
+
inline CuFFTTransformType GetCuFFTTransformType(bool complex_input, bool complex_output) {
|
91 |
+
if (complex_input && complex_output) {
|
92 |
+
return CuFFTTransformType::C2C;
|
93 |
+
} else if (complex_input && !complex_output) {
|
94 |
+
return CuFFTTransformType::C2R;
|
95 |
+
} else if (!complex_input && complex_output) {
|
96 |
+
return CuFFTTransformType::R2C;
|
97 |
+
}
|
98 |
+
TORCH_INTERNAL_ASSERT(false, "Real to real FFTs are not supported");
|
99 |
+
}
|
100 |
+
|
101 |
+
|
102 |
+
class CuFFTHandle {
|
103 |
+
::cufftHandle handle_;
|
104 |
+
public:
|
105 |
+
|
106 |
+
CuFFTHandle() {
|
107 |
+
CUFFT_CHECK(cufftCreate(&handle_));
|
108 |
+
}
|
109 |
+
|
110 |
+
::cufftHandle & get() { return handle_; }
|
111 |
+
const ::cufftHandle & get() const { return handle_; }
|
112 |
+
|
113 |
+
~CuFFTHandle() {
|
114 |
+
// Not using fftDestroy() for rocFFT to work around double freeing of handles
|
115 |
+
#if !defined(USE_ROCM)
|
116 |
+
cufftDestroy(handle_);
|
117 |
+
#endif
|
118 |
+
}
|
119 |
+
};
|
120 |
+
|
121 |
+
__forceinline__
|
122 |
+
static bool is_pow_of_two(int64_t x) {
|
123 |
+
return (x & (x - 1)) == 0;
|
124 |
+
}
|
125 |
+
|
126 |
+
using cufft_size_type = long long int;
|
127 |
+
|
128 |
+
using CuFFTDimVector = c10::SmallVector<cufft_size_type, at::kDimVectorStaticSize>;
|
129 |
+
|
130 |
+
// Struct representing a tensor in CuFFT's data layout for planning transforms
|
131 |
+
// See NOTE [ cuFFT Embedded Strides ].
|
132 |
+
struct CuFFTDataLayout {
|
133 |
+
CuFFTDimVector embed;
|
134 |
+
cufft_size_type stride, dist;
|
135 |
+
bool must_clone, simple;
|
136 |
+
};
|
137 |
+
|
138 |
+
// Returns a cufft embedding for a contiguous signal of the given size.
|
139 |
+
// e.g. if the input is cloned, this will be the resulting data layout
|
140 |
+
// See NOTE [ cuFFT Embedded Strides ].
|
141 |
+
inline CuFFTDataLayout cufft_simple_embed(IntArrayRef sizes, bool onesided) {
|
142 |
+
CuFFTDataLayout layout;
|
143 |
+
layout.simple = true;
|
144 |
+
layout.must_clone = false;
|
145 |
+
layout.embed.assign(sizes.cbegin() + 1, sizes.cend());
|
146 |
+
if (onesided) {
|
147 |
+
layout.embed.back() = sizes.back() / 2 + 1;
|
148 |
+
}
|
149 |
+
layout.stride = 1;
|
150 |
+
layout.dist = 1;
|
151 |
+
for (const auto& len : layout.embed) {
|
152 |
+
layout.dist *= len;
|
153 |
+
}
|
154 |
+
return layout;
|
155 |
+
}
|
156 |
+
|
157 |
+
// Convert strides to a CuFFT embedded representation.
|
158 |
+
// If strides cannot be embedded, returns a simple layout and sets must_clone flag
|
159 |
+
// See NOTE [ cuFFT Embedded Strides ].
|
160 |
+
inline CuFFTDataLayout as_cufft_embed(IntArrayRef strides, IntArrayRef sizes, bool onesided) {
|
161 |
+
const auto signal_ndim = strides.size() - 1;
|
162 |
+
CuFFTDataLayout layout;
|
163 |
+
auto last_stride = strides[signal_ndim];
|
164 |
+
layout.must_clone = (last_stride <= 0);
|
165 |
+
|
166 |
+
const auto last_dim_size = onesided ?
|
167 |
+
sizes[signal_ndim] / 2 + 1 : sizes[signal_ndim];
|
168 |
+
const auto signal_numel = c10::multiply_integers(sizes.slice(1, sizes.size() - 2)) * last_dim_size;
|
169 |
+
|
170 |
+
// Zero stides are not allowed, even if the batch size is one.
|
171 |
+
// If that happens just set a dummy case
|
172 |
+
if (sizes[0] == 1) {
|
173 |
+
layout.dist = signal_numel;
|
174 |
+
} else if (strides[0] == 0) {
|
175 |
+
layout.must_clone = true;
|
176 |
+
} else {
|
177 |
+
layout.dist = strides[0];
|
178 |
+
}
|
179 |
+
|
180 |
+
// Calculate the embedding shape, or set must_clone if the strides cannot be embedded
|
181 |
+
layout.embed.resize(signal_ndim);
|
182 |
+
for (auto i = signal_ndim - 1; !layout.must_clone && i > 0; i--) {
|
183 |
+
auto stride = strides[i];
|
184 |
+
if (sizes[i] == 1) {
|
185 |
+
layout.embed[i] = 1;
|
186 |
+
} else if (stride > 0 && stride % last_stride == 0) {
|
187 |
+
layout.embed[i] = stride / last_stride;
|
188 |
+
last_stride = stride;
|
189 |
+
} else {
|
190 |
+
layout.must_clone = true;
|
191 |
+
}
|
192 |
+
}
|
193 |
+
|
194 |
+
if (layout.must_clone) {
|
195 |
+
// If the input needs to be cloned, assume it will be contiguous
|
196 |
+
layout = cufft_simple_embed(sizes, onesided);
|
197 |
+
layout.must_clone = true;
|
198 |
+
} else {
|
199 |
+
layout.embed[0] = sizes[1];
|
200 |
+
layout.stride = strides[signal_ndim];
|
201 |
+
// Determine if layout represents a simple embedding (contiguous data)
|
202 |
+
layout.simple = [&] {
|
203 |
+
for (const auto i : c10::irange(1, signal_ndim - 1)) {
|
204 |
+
if (layout.embed[i] != sizes[i + 1]) {
|
205 |
+
return false;
|
206 |
+
}
|
207 |
+
}
|
208 |
+
|
209 |
+
return (layout.stride == 1 && layout.dist == signal_numel &&
|
210 |
+
layout.embed.back() == last_dim_size);
|
211 |
+
}();
|
212 |
+
}
|
213 |
+
return layout;
|
214 |
+
}
|
215 |
+
|
216 |
+
// This class contains all the information needed to execute a cuFFT plan:
|
217 |
+
// 1. the plan
|
218 |
+
// 2. whether to clone input before executing the plan
|
219 |
+
// 3. the workspace size needed
|
220 |
+
//
|
221 |
+
// This class will be the **value** in the plan cache.
|
222 |
+
// It **owns** the raw plan via a unique_ptr.
|
223 |
+
class CuFFTConfig {
|
224 |
+
public:
|
225 |
+
|
226 |
+
// Only move semantics is enought for this class. Although we already use
|
227 |
+
// unique_ptr for the plan, still remove copy constructor and assignment op so
|
228 |
+
// we don't accidentally copy and take perf hit.
|
229 |
+
CuFFTConfig(const CuFFTConfig&) = delete;
|
230 |
+
CuFFTConfig& operator=(CuFFTConfig const&) = delete;
|
231 |
+
|
232 |
+
explicit CuFFTConfig(const CuFFTParams& params):
|
233 |
+
CuFFTConfig(
|
234 |
+
IntArrayRef(params.input_strides_, params.signal_ndim_ + 1),
|
235 |
+
IntArrayRef(params.output_strides_, params.signal_ndim_ + 1),
|
236 |
+
IntArrayRef(params.sizes_, params.signal_ndim_ + 1),
|
237 |
+
params.fft_type_,
|
238 |
+
params.value_type_) {}
|
239 |
+
|
240 |
+
// For complex types, strides are in units of 2 * element_size(dtype)
|
241 |
+
// sizes are for the full signal, including batch size and always two-sided
|
242 |
+
CuFFTConfig(IntArrayRef in_strides, IntArrayRef out_strides,
|
243 |
+
IntArrayRef sizes, CuFFTTransformType fft_type, ScalarType dtype):
|
244 |
+
fft_type_(fft_type), value_type_(dtype) {
|
245 |
+
|
246 |
+
// signal sizes (excluding batch dim)
|
247 |
+
CuFFTDimVector signal_sizes(sizes.begin() + 1, sizes.end());
|
248 |
+
|
249 |
+
// input batch size
|
250 |
+
const int64_t batch = sizes[0];
|
251 |
+
const int64_t signal_ndim = sizes.size() - 1;
|
252 |
+
|
253 |
+
// Since cuFFT has limited non-unit stride support and various constraints, we
|
254 |
+
// use a flag to keep track throughout this function to see if we need to
|
255 |
+
// input = input.clone();
|
256 |
+
|
257 |
+
#if defined(USE_ROCM)
|
258 |
+
// clone input to avoid issues with hipfft clobering the input and failing tests
|
259 |
+
clone_input = true;
|
260 |
+
#else
|
261 |
+
clone_input = false;
|
262 |
+
#endif
|
263 |
+
|
264 |
+
// For half, base strides on the real part of real-to-complex and
|
265 |
+
// complex-to-real transforms are not supported. Since our output is always
|
266 |
+
// contiguous, only need to check real-to-complex case.
|
267 |
+
if (dtype == ScalarType::Half) {
|
268 |
+
// cuFFT on half requires compute capability of at least SM_53
|
269 |
+
auto dev_prop = at::cuda::getCurrentDeviceProperties();
|
270 |
+
TORCH_CHECK(dev_prop->major >= 5 && !(dev_prop->major == 5 && dev_prop->minor < 3),
|
271 |
+
"cuFFT doesn't support signals of half type with compute "
|
272 |
+
"capability less than SM_53, but the device containing input half "
|
273 |
+
"tensor only has SM_", dev_prop->major, dev_prop->minor);
|
274 |
+
for (const auto i : c10::irange(signal_ndim)) {
|
275 |
+
TORCH_CHECK(is_pow_of_two(sizes[i + 1]),
|
276 |
+
"cuFFT only supports dimensions whose sizes are powers of two when"
|
277 |
+
" computing in half precision, but got a signal size of",
|
278 |
+
sizes.slice(1));
|
279 |
+
}
|
280 |
+
clone_input |= in_strides.back() != 1;
|
281 |
+
}
|
282 |
+
|
283 |
+
CuFFTDataLayout in_layout;
|
284 |
+
if (clone_input) {
|
285 |
+
in_layout = cufft_simple_embed(sizes, fft_type == CuFFTTransformType::C2R);
|
286 |
+
} else {
|
287 |
+
in_layout = as_cufft_embed(in_strides, sizes, fft_type == CuFFTTransformType::C2R);
|
288 |
+
}
|
289 |
+
auto out_layout = as_cufft_embed(out_strides, sizes, fft_type == CuFFTTransformType::R2C);
|
290 |
+
TORCH_INTERNAL_ASSERT(!out_layout.must_clone, "Out strides cannot be represented as CuFFT embedding");
|
291 |
+
clone_input |= in_layout.must_clone;
|
292 |
+
|
293 |
+
// Check if we can take advantage of simple data layout.
|
294 |
+
//
|
295 |
+
// See NOTE [ cuFFT Embedded Strides ] in native/cuda/SpectralOps.cu.
|
296 |
+
|
297 |
+
const bool simple_layout = in_layout.simple && out_layout.simple;
|
298 |
+
cudaDataType itype, otype, exec_type;
|
299 |
+
const auto complex_input = cufft_complex_input(fft_type);
|
300 |
+
const auto complex_output = cufft_complex_output(fft_type);
|
301 |
+
if (dtype == ScalarType::Float) {
|
302 |
+
itype = complex_input ? CUDA_C_32F : CUDA_R_32F;
|
303 |
+
otype = complex_output ? CUDA_C_32F : CUDA_R_32F;
|
304 |
+
exec_type = CUDA_C_32F;
|
305 |
+
} else if (dtype == ScalarType::Double) {
|
306 |
+
itype = complex_input ? CUDA_C_64F : CUDA_R_64F;
|
307 |
+
otype = complex_output ? CUDA_C_64F : CUDA_R_64F;
|
308 |
+
exec_type = CUDA_C_64F;
|
309 |
+
} else if (dtype == ScalarType::Half) {
|
310 |
+
itype = complex_input ? CUDA_C_16F : CUDA_R_16F;
|
311 |
+
otype = complex_output ? CUDA_C_16F : CUDA_R_16F;
|
312 |
+
exec_type = CUDA_C_16F;
|
313 |
+
} else {
|
314 |
+
TORCH_CHECK(false, "cuFFT doesn't support tensor of type: ", dtype);
|
315 |
+
}
|
316 |
+
|
317 |
+
// disable auto allocation of workspace to use THC allocator
|
318 |
+
CUFFT_CHECK(cufftSetAutoAllocation(plan(), /* autoAllocate */ 0));
|
319 |
+
|
320 |
+
size_t ws_size_t;
|
321 |
+
|
322 |
+
// make plan
|
323 |
+
if (simple_layout) {
|
324 |
+
// If with unit-stride, we tell cuFFT by setting inembed == onembed == NULL.
|
325 |
+
// In such case, cuFFT ignores istride, ostride, idist, and odist
|
326 |
+
// by assuming istride = ostride = 1.
|
327 |
+
//
|
328 |
+
// See NOTE [ cuFFT Embedded Strides ] in native/cuda/SpectralOps.cu.
|
329 |
+
CUFFT_CHECK(cufftXtMakePlanMany(plan(), signal_ndim, signal_sizes.data(),
|
330 |
+
/* inembed */ nullptr, /* base_istride */ 1, /* idist */ 1, itype,
|
331 |
+
/* onembed */ nullptr, /* base_ostride */ 1, /* odist */ 1, otype,
|
332 |
+
batch, &ws_size_t, exec_type));
|
333 |
+
} else {
|
334 |
+
CUFFT_CHECK(cufftXtMakePlanMany(plan(), signal_ndim, signal_sizes.data(),
|
335 |
+
in_layout.embed.data(), in_layout.stride, in_layout.dist, itype,
|
336 |
+
out_layout.embed.data(), out_layout.stride, out_layout.dist, otype,
|
337 |
+
batch, &ws_size_t, exec_type));
|
338 |
+
}
|
339 |
+
ws_size = static_cast<int64_t>(ws_size_t);
|
340 |
+
}
|
341 |
+
|
342 |
+
const cufftHandle &plan() const { return plan_ptr.get(); }
|
343 |
+
|
344 |
+
CuFFTTransformType transform_type() const { return fft_type_; }
|
345 |
+
ScalarType data_type() const { return value_type_; }
|
346 |
+
bool should_clone_input() const { return clone_input; }
|
347 |
+
int64_t workspace_size() const { return ws_size; }
|
348 |
+
|
349 |
+
private:
|
350 |
+
CuFFTHandle plan_ptr;
|
351 |
+
bool clone_input;
|
352 |
+
int64_t ws_size;
|
353 |
+
CuFFTTransformType fft_type_;
|
354 |
+
ScalarType value_type_;
|
355 |
+
};
|
356 |
+
|
357 |
+
#if defined(USE_ROCM)
|
358 |
+
// Note that the max plan number for CUDA version < 10 has to be 1023
|
359 |
+
// due to a bug that fails on the 1024th plan
|
360 |
+
constexpr int64_t CUFFT_MAX_PLAN_NUM = 1023;
|
361 |
+
constexpr int64_t CUFFT_DEFAULT_CACHE_SIZE = CUFFT_MAX_PLAN_NUM;
|
362 |
+
#else
|
363 |
+
constexpr int64_t CUFFT_MAX_PLAN_NUM = std::numeric_limits<int64_t>::max();
|
364 |
+
// The default max cache size chosen for CUDA version > 10 is arbitrary.
|
365 |
+
// This number puts a limit on how big of a plan cache should we maintain by
|
366 |
+
// default. Users can always configure it via cufft_set_plan_cache_max_size.
|
367 |
+
constexpr int64_t CUFFT_DEFAULT_CACHE_SIZE = 4096;
|
368 |
+
#endif
|
369 |
+
static_assert(0 <= CUFFT_MAX_PLAN_NUM && CUFFT_MAX_PLAN_NUM <= std::numeric_limits<int64_t>::max(),
|
370 |
+
"CUFFT_MAX_PLAN_NUM not in size_t range");
|
371 |
+
static_assert(CUFFT_DEFAULT_CACHE_SIZE >= 0 && CUFFT_DEFAULT_CACHE_SIZE <= CUFFT_MAX_PLAN_NUM,
|
372 |
+
"CUFFT_DEFAULT_CACHE_SIZE not in [0, CUFFT_MAX_PLAN_NUM] range");
|
373 |
+
|
374 |
+
// This cache assumes that the mapping from key to value never changes.
|
375 |
+
// This is **NOT** thread-safe. Please use a mutex when using it **AND** the
|
376 |
+
// value returned from try_emplace_value.
|
377 |
+
// The contract of using this cache is that try_emplace_value should only be
|
378 |
+
// used when the max_size is positive.
|
379 |
+
class CuFFTParamsLRUCache {
|
380 |
+
public:
|
381 |
+
using kv_t = typename std::pair<CuFFTParams, CuFFTConfig>;
|
382 |
+
using map_t = typename std::unordered_map<std::reference_wrapper<CuFFTParams>,
|
383 |
+
typename std::list<kv_t>::iterator,
|
384 |
+
ParamsHash<CuFFTParams>,
|
385 |
+
ParamsEqual<CuFFTParams>>;
|
386 |
+
using map_kkv_iter_t = typename map_t::iterator;
|
387 |
+
|
388 |
+
|
389 |
+
CuFFTParamsLRUCache() : CuFFTParamsLRUCache(CUFFT_DEFAULT_CACHE_SIZE) {}
|
390 |
+
|
391 |
+
CuFFTParamsLRUCache(int64_t max_size) {
|
392 |
+
_set_max_size(max_size);
|
393 |
+
}
|
394 |
+
|
395 |
+
CuFFTParamsLRUCache(CuFFTParamsLRUCache&& other) noexcept :
|
396 |
+
_usage_list(std::move(other._usage_list)),
|
397 |
+
_cache_map(std::move(other._cache_map)),
|
398 |
+
_max_size(other._max_size) {}
|
399 |
+
|
400 |
+
CuFFTParamsLRUCache& operator=(CuFFTParamsLRUCache&& other) noexcept {
|
401 |
+
_usage_list = std::move(other._usage_list);
|
402 |
+
_cache_map = std::move(other._cache_map);
|
403 |
+
_max_size = other._max_size;
|
404 |
+
return *this;
|
405 |
+
}
|
406 |
+
|
407 |
+
// If key is in this cache, return the cached config. Otherwise, emplace the
|
408 |
+
// config in this cache and return it.
|
409 |
+
// Return const reference because CuFFTConfig shouldn't be tampered with once
|
410 |
+
// created.
|
411 |
+
const CuFFTConfig &lookup(CuFFTParams params) {
|
412 |
+
AT_ASSERT(_max_size > 0);
|
413 |
+
|
414 |
+
map_kkv_iter_t map_it = _cache_map.find(params);
|
415 |
+
// Hit, put to list front
|
416 |
+
if (map_it != _cache_map.end()) {
|
417 |
+
_usage_list.splice(_usage_list.begin(), _usage_list, map_it->second);
|
418 |
+
return map_it->second->second;
|
419 |
+
}
|
420 |
+
|
421 |
+
// Miss
|
422 |
+
// remove if needed
|
423 |
+
if (_usage_list.size() >= _max_size) {
|
424 |
+
auto last = _usage_list.end();
|
425 |
+
last--;
|
426 |
+
_cache_map.erase(last->first);
|
427 |
+
_usage_list.pop_back();
|
428 |
+
}
|
429 |
+
|
430 |
+
// construct new plan at list front, then insert into _cache_map
|
431 |
+
_usage_list.emplace_front(std::piecewise_construct,
|
432 |
+
std::forward_as_tuple(params),
|
433 |
+
std::forward_as_tuple(params));
|
434 |
+
auto kv_it = _usage_list.begin();
|
435 |
+
_cache_map.emplace(std::piecewise_construct,
|
436 |
+
std::forward_as_tuple(kv_it->first),
|
437 |
+
std::forward_as_tuple(kv_it));
|
438 |
+
return kv_it->second;
|
439 |
+
}
|
440 |
+
|
441 |
+
void clear() {
|
442 |
+
_cache_map.clear();
|
443 |
+
_usage_list.clear();
|
444 |
+
}
|
445 |
+
|
446 |
+
void resize(int64_t new_size) {
|
447 |
+
_set_max_size(new_size);
|
448 |
+
auto cur_size = _usage_list.size();
|
449 |
+
if (cur_size > _max_size) {
|
450 |
+
auto delete_it = _usage_list.end();
|
451 |
+
for (size_t i = 0; i < cur_size - _max_size; i++) {
|
452 |
+
delete_it--;
|
453 |
+
_cache_map.erase(delete_it->first);
|
454 |
+
}
|
455 |
+
_usage_list.erase(delete_it, _usage_list.end());
|
456 |
+
}
|
457 |
+
}
|
458 |
+
|
459 |
+
size_t size() const { return _cache_map.size(); }
|
460 |
+
|
461 |
+
size_t max_size() const noexcept { return _max_size; }
|
462 |
+
|
463 |
+
std::mutex mutex;
|
464 |
+
|
465 |
+
private:
|
466 |
+
// Only sets size and does value check. Does not resize the data structures.
|
467 |
+
void _set_max_size(int64_t new_size) {
|
468 |
+
// We check that 0 <= new_size <= CUFFT_MAX_PLAN_NUM here. Since
|
469 |
+
// CUFFT_MAX_PLAN_NUM is of type size_t, we need to do non-negativity check
|
470 |
+
// first.
|
471 |
+
TORCH_CHECK(new_size >= 0,
|
472 |
+
"cuFFT plan cache size must be non-negative, but got ", new_size);
|
473 |
+
TORCH_CHECK(new_size <= CUFFT_MAX_PLAN_NUM,
|
474 |
+
"cuFFT plan cache size can not be larger than ", CUFFT_MAX_PLAN_NUM, ", but got ", new_size);
|
475 |
+
_max_size = static_cast<size_t>(new_size);
|
476 |
+
}
|
477 |
+
|
478 |
+
std::list<kv_t> _usage_list;
|
479 |
+
map_t _cache_map;
|
480 |
+
size_t _max_size;
|
481 |
+
};
|
482 |
+
|
483 |
+
// Since ATen is separated into CPU build and CUDA build, we need a way to call
|
484 |
+
// these functions only when CUDA is loaded. We use CUDA hooks for this purpose
|
485 |
+
// (at cuda/detail/CUDAHooks.cpp), and call the hooked functions from the actual
|
486 |
+
// native function counterparts (at native/SpectralOps.cpp), i.e.,
|
487 |
+
// _cufft_get_plan_cache_max_size, _cufft_set_plan_cache_max_size
|
488 |
+
// _cufft_get_plan_cache_size, and _cufft_clear_plan_cache.
|
489 |
+
int64_t cufft_get_plan_cache_max_size_impl(DeviceIndex device_index);
|
490 |
+
void cufft_set_plan_cache_max_size_impl(DeviceIndex device_index, int64_t max_size);
|
491 |
+
int64_t cufft_get_plan_cache_size_impl(DeviceIndex device_index);
|
492 |
+
void cufft_clear_plan_cache_impl(DeviceIndex device_index);
|
493 |
+
|
494 |
+
}}} // namespace at::native::detail
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/CuFFTUtils.h
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/Config.h>
|
4 |
+
|
5 |
+
#include <string>
|
6 |
+
#include <stdexcept>
|
7 |
+
#include <sstream>
|
8 |
+
#include <cufft.h>
|
9 |
+
#include <cufftXt.h>
|
10 |
+
|
11 |
+
namespace at { namespace native {
|
12 |
+
|
13 |
+
// This means that max dim is 3 + 2 = 5 with batch dimension and possible
|
14 |
+
// complex dimension
|
15 |
+
constexpr int max_rank = 3;
|
16 |
+
|
17 |
+
static inline std::string _cudaGetErrorEnum(cufftResult error)
|
18 |
+
{
|
19 |
+
switch (error)
|
20 |
+
{
|
21 |
+
case CUFFT_SUCCESS:
|
22 |
+
return "CUFFT_SUCCESS";
|
23 |
+
case CUFFT_INVALID_PLAN:
|
24 |
+
return "CUFFT_INVALID_PLAN";
|
25 |
+
case CUFFT_ALLOC_FAILED:
|
26 |
+
return "CUFFT_ALLOC_FAILED";
|
27 |
+
case CUFFT_INVALID_TYPE:
|
28 |
+
return "CUFFT_INVALID_TYPE";
|
29 |
+
case CUFFT_INVALID_VALUE:
|
30 |
+
return "CUFFT_INVALID_VALUE";
|
31 |
+
case CUFFT_INTERNAL_ERROR:
|
32 |
+
return "CUFFT_INTERNAL_ERROR";
|
33 |
+
case CUFFT_EXEC_FAILED:
|
34 |
+
return "CUFFT_EXEC_FAILED";
|
35 |
+
case CUFFT_SETUP_FAILED:
|
36 |
+
return "CUFFT_SETUP_FAILED";
|
37 |
+
case CUFFT_INVALID_SIZE:
|
38 |
+
return "CUFFT_INVALID_SIZE";
|
39 |
+
case CUFFT_UNALIGNED_DATA:
|
40 |
+
return "CUFFT_UNALIGNED_DATA";
|
41 |
+
case CUFFT_INCOMPLETE_PARAMETER_LIST:
|
42 |
+
return "CUFFT_INCOMPLETE_PARAMETER_LIST";
|
43 |
+
case CUFFT_INVALID_DEVICE:
|
44 |
+
return "CUFFT_INVALID_DEVICE";
|
45 |
+
case CUFFT_PARSE_ERROR:
|
46 |
+
return "CUFFT_PARSE_ERROR";
|
47 |
+
case CUFFT_NO_WORKSPACE:
|
48 |
+
return "CUFFT_NO_WORKSPACE";
|
49 |
+
case CUFFT_NOT_IMPLEMENTED:
|
50 |
+
return "CUFFT_NOT_IMPLEMENTED";
|
51 |
+
#if !defined(USE_ROCM)
|
52 |
+
case CUFFT_LICENSE_ERROR:
|
53 |
+
return "CUFFT_LICENSE_ERROR";
|
54 |
+
#endif
|
55 |
+
case CUFFT_NOT_SUPPORTED:
|
56 |
+
return "CUFFT_NOT_SUPPORTED";
|
57 |
+
default:
|
58 |
+
std::ostringstream ss;
|
59 |
+
ss << "unknown error " << error;
|
60 |
+
return ss.str();
|
61 |
+
}
|
62 |
+
}
|
63 |
+
|
64 |
+
static inline void CUFFT_CHECK(cufftResult error)
|
65 |
+
{
|
66 |
+
if (error != CUFFT_SUCCESS) {
|
67 |
+
std::ostringstream ss;
|
68 |
+
ss << "cuFFT error: " << _cudaGetErrorEnum(error);
|
69 |
+
AT_ERROR(ss.str());
|
70 |
+
}
|
71 |
+
}
|
72 |
+
|
73 |
+
}} // at::native
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/ForeachMinMaxFunctors.cuh
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/NumericUtils.h>
|
4 |
+
|
5 |
+
namespace at::native {
|
6 |
+
|
7 |
+
// std:: does not have clamp functors
|
8 |
+
template <typename T>
|
9 |
+
struct minimum {
|
10 |
+
__device__ T operator()(const T& a, const T& b) const {
|
11 |
+
return (_isnan(a) || a < b) ? a : b;
|
12 |
+
}
|
13 |
+
};
|
14 |
+
|
15 |
+
template <typename T>
|
16 |
+
struct maximum {
|
17 |
+
__device__ T operator()(const T& a, const T& b) const {
|
18 |
+
return (_isnan(a) || a > b) ? a : b;
|
19 |
+
}
|
20 |
+
};
|
21 |
+
|
22 |
+
} // namespace at::native
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/GridSampler.cuh
ADDED
@@ -0,0 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/native/cuda/KernelUtils.cuh>
|
3 |
+
#include <ATen/native/GridSamplerUtils.h>
|
4 |
+
|
5 |
+
namespace at { namespace native {
|
6 |
+
|
7 |
+
using detail::GridSamplerInterpolation;
|
8 |
+
using detail::GridSamplerPadding;
|
9 |
+
|
10 |
+
// Unnormalizes a coordinate from the -1 to +1 scale to its pixel index value,
|
11 |
+
// where we view each pixel as an area between (idx - 0.5) and (idx + 0.5).
|
12 |
+
// if align_corners: -1 and +1 get sent to the centers of the corner pixels
|
13 |
+
// -1 --> 0
|
14 |
+
// +1 --> (size - 1)
|
15 |
+
// scale_factor = (size - 1) / 2
|
16 |
+
// if not align_corners: -1 and +1 get sent to the image edges
|
17 |
+
// -1 --> -0.5
|
18 |
+
// +1 --> (size - 1) + 0.5 == size - 0.5
|
19 |
+
// scale_factor = size / 2
|
20 |
+
template <typename scalar_t>
|
21 |
+
static __forceinline__ __device__
|
22 |
+
scalar_t grid_sampler_unnormalize(scalar_t coord, int size, bool align_corners) {
|
23 |
+
if (align_corners) {
|
24 |
+
// unnormalize coord from [-1, 1] to [0, size - 1]
|
25 |
+
return ((coord + 1.f) / 2) * (size - 1);
|
26 |
+
} else {
|
27 |
+
// unnormalize coord from [-1, 1] to [-0.5, size - 0.5]
|
28 |
+
return ((coord + 1.f) * size - 1) / 2;
|
29 |
+
}
|
30 |
+
}
|
31 |
+
|
32 |
+
// grid_sampler_unnormalize_set_grad works the same as grid_sampler_unnormalize
|
33 |
+
// except that it also returns the `d output / d input` via pointer argument
|
34 |
+
// `grad_in`.
|
35 |
+
// This is useful in the backward pass of grid_sampler.
|
36 |
+
template <typename scalar_t>
|
37 |
+
static __forceinline__ __device__
|
38 |
+
scalar_t grid_sampler_unnormalize_set_grad(scalar_t coord, int size,
|
39 |
+
bool align_corners, scalar_t *grad_in) {
|
40 |
+
if (align_corners) {
|
41 |
+
// unnormalize coord from [-1, 1] to [0, size - 1]
|
42 |
+
*grad_in = static_cast<scalar_t>(size - 1) / 2;
|
43 |
+
return ((coord + 1.f) / 2) * (size - 1);
|
44 |
+
} else {
|
45 |
+
// unnormalize coord from [-1, 1] to [-0.5, size - 0.5]
|
46 |
+
*grad_in = static_cast<scalar_t>(size) / 2;
|
47 |
+
return ((coord + 1.f) * size - 1) / 2;
|
48 |
+
}
|
49 |
+
}
|
50 |
+
|
51 |
+
// Clips coordinates to between 0 and clip_limit - 1
|
52 |
+
template <typename scalar_t>
|
53 |
+
static __forceinline__ __device__
|
54 |
+
scalar_t clip_coordinates(scalar_t in, int clip_limit) {
|
55 |
+
return ::min(static_cast<scalar_t>(clip_limit - 1), ::max(in, static_cast<scalar_t>(0)));
|
56 |
+
}
|
57 |
+
|
58 |
+
// clip_coordinates_set_grad works similarly to clip_coordinates except that
|
59 |
+
// it also returns the `d output / d input` via pointer argument `grad_in`.
|
60 |
+
// This is useful in the backward pass of grid_sampler.
|
61 |
+
template <typename scalar_t>
|
62 |
+
static __forceinline__ __device__
|
63 |
+
scalar_t clip_coordinates_set_grad(scalar_t in, int clip_limit, scalar_t *grad_in) {
|
64 |
+
// Note that it is important for the gradient calculation that borders
|
65 |
+
// are considered out of bounds.
|
66 |
+
if (in <= static_cast<scalar_t>(0)) {
|
67 |
+
*grad_in = static_cast<scalar_t>(0);
|
68 |
+
return static_cast<scalar_t>(0);
|
69 |
+
} else {
|
70 |
+
scalar_t max = static_cast<scalar_t>(clip_limit - 1);
|
71 |
+
if (in >= max) {
|
72 |
+
*grad_in = static_cast<scalar_t>(0);
|
73 |
+
return max;
|
74 |
+
} else {
|
75 |
+
*grad_in = static_cast<scalar_t>(1);
|
76 |
+
return in;
|
77 |
+
}
|
78 |
+
}
|
79 |
+
}
|
80 |
+
|
81 |
+
// Reflects coordinates until they fall between low and high (inclusive).
|
82 |
+
// The bounds are passed as twice their value so that half-integer values
|
83 |
+
// can be represented as ints.
|
84 |
+
template <typename scalar_t>
|
85 |
+
static __forceinline__ __device__
|
86 |
+
scalar_t reflect_coordinates(scalar_t in, int twice_low, int twice_high) {
|
87 |
+
if (twice_low == twice_high) {
|
88 |
+
return static_cast<scalar_t>(0);
|
89 |
+
}
|
90 |
+
scalar_t min = static_cast<scalar_t>(twice_low) / 2;
|
91 |
+
scalar_t span = static_cast<scalar_t>(twice_high - twice_low) / 2;
|
92 |
+
in = ::fabs(in - min);
|
93 |
+
// `fmod` returns same sign as `in`, which is positive after the `fabs` above.
|
94 |
+
scalar_t extra = ::fmod(in, span);
|
95 |
+
int flips = static_cast<int>(::floor(in / span));
|
96 |
+
if (flips % 2 == 0) {
|
97 |
+
return extra + min;
|
98 |
+
} else {
|
99 |
+
return span - extra + min;
|
100 |
+
}
|
101 |
+
}
|
102 |
+
|
103 |
+
// reflect_coordinates_set_grad works similarly to reflect_coordinates except
|
104 |
+
// that it also returns the `d output / d input` via pointer argument
|
105 |
+
// `grad_in`.
|
106 |
+
// This is useful in the backward pass of grid_sampler.
|
107 |
+
template <typename scalar_t>
|
108 |
+
static __forceinline__ __device__
|
109 |
+
scalar_t reflect_coordinates_set_grad(scalar_t in, int twice_low, int twice_high,
|
110 |
+
scalar_t *grad_in) {
|
111 |
+
if (twice_low == twice_high) {
|
112 |
+
*grad_in = static_cast<scalar_t>(0);
|
113 |
+
return static_cast<scalar_t>(0);
|
114 |
+
}
|
115 |
+
int grad_in_mult_;
|
116 |
+
scalar_t min = static_cast<scalar_t>(twice_low) / 2;
|
117 |
+
scalar_t span = static_cast<scalar_t>(twice_high - twice_low) / 2;
|
118 |
+
in = in - min;
|
119 |
+
if (in < static_cast<scalar_t>(0)) {
|
120 |
+
grad_in_mult_ = -1;
|
121 |
+
in = -in;
|
122 |
+
} else {
|
123 |
+
grad_in_mult_ = 1;
|
124 |
+
}
|
125 |
+
// `fmod` returns same sign as `in`, which is positive after the `if` above.
|
126 |
+
scalar_t extra = ::fmod(in, span);
|
127 |
+
int flips = static_cast<int>(::floor(in / span));
|
128 |
+
if (flips % 2 == 0) {
|
129 |
+
*grad_in = static_cast<scalar_t>(grad_in_mult_);
|
130 |
+
return extra + min;
|
131 |
+
} else {
|
132 |
+
*grad_in = static_cast<scalar_t>(-grad_in_mult_);
|
133 |
+
return span - extra + min;
|
134 |
+
}
|
135 |
+
}
|
136 |
+
|
137 |
+
template<typename scalar_t>
|
138 |
+
static __forceinline__ __device__
|
139 |
+
scalar_t safe_downgrade_to_int_range(scalar_t x){
|
140 |
+
// -100.0 does not have special meaning. This is just to make sure
|
141 |
+
// it's not within_bounds_2d or within_bounds_3d, and does not cause
|
142 |
+
// undefined behavior. See #35506.
|
143 |
+
if (x > INT_MAX-1 || x < INT_MIN || !::isfinite(static_cast<double>(x)))
|
144 |
+
return static_cast<scalar_t>(-100.0);
|
145 |
+
return x;
|
146 |
+
}
|
147 |
+
|
148 |
+
template<typename scalar_t>
|
149 |
+
static __forceinline__ __device__
|
150 |
+
scalar_t compute_coordinates(scalar_t coord, int size,
|
151 |
+
GridSamplerPadding padding_mode,
|
152 |
+
bool align_corners) {
|
153 |
+
if (padding_mode == GridSamplerPadding::Border) {
|
154 |
+
// clip coordinates to image borders
|
155 |
+
coord = clip_coordinates(coord, size);
|
156 |
+
} else if (padding_mode == GridSamplerPadding::Reflection) {
|
157 |
+
// reflect coordinates by image borders
|
158 |
+
if (align_corners) {
|
159 |
+
coord = reflect_coordinates(coord, 0, 2*(size - 1));
|
160 |
+
} else {
|
161 |
+
coord = reflect_coordinates(coord, -1, 2*size - 1);
|
162 |
+
}
|
163 |
+
// clip coordinates to image borders
|
164 |
+
coord = clip_coordinates(coord, size);
|
165 |
+
}
|
166 |
+
|
167 |
+
coord = safe_downgrade_to_int_range(coord);
|
168 |
+
return coord;
|
169 |
+
}
|
170 |
+
|
171 |
+
// Computes the pixel source index value for a grid coordinate
|
172 |
+
template <typename scalar_t>
|
173 |
+
static __forceinline__ __device__
|
174 |
+
scalar_t grid_sampler_compute_source_index(
|
175 |
+
scalar_t coord,
|
176 |
+
int size,
|
177 |
+
GridSamplerPadding padding_mode,
|
178 |
+
bool align_corners) {
|
179 |
+
coord = grid_sampler_unnormalize(coord, size, align_corners);
|
180 |
+
coord = compute_coordinates(coord, size, padding_mode, align_corners);
|
181 |
+
return coord;
|
182 |
+
}
|
183 |
+
|
184 |
+
// grid_sampler_compute_source_index_set_grad works similarly to
|
185 |
+
// grid_sampler_compute_source_index except that it also returns the
|
186 |
+
// `d output / d input` via pointer argument `grad_in`.
|
187 |
+
// This is useful in the backward pass of grid_sampler.
|
188 |
+
template <typename scalar_t>
|
189 |
+
static __forceinline__ __device__
|
190 |
+
scalar_t grid_sampler_compute_source_index_set_grad(
|
191 |
+
scalar_t coord,
|
192 |
+
int size,
|
193 |
+
GridSamplerPadding padding_mode,
|
194 |
+
bool align_corners,
|
195 |
+
scalar_t *grad_in) {
|
196 |
+
scalar_t grad_clip, grad_refl;
|
197 |
+
coord = grid_sampler_unnormalize_set_grad(coord, size, align_corners, grad_in);
|
198 |
+
if (padding_mode == GridSamplerPadding::Border) {
|
199 |
+
// clip coordinates to image borders
|
200 |
+
coord = clip_coordinates_set_grad(coord, size, &grad_clip);
|
201 |
+
*grad_in = (*grad_in) * grad_clip;
|
202 |
+
} else if (padding_mode == GridSamplerPadding::Reflection) {
|
203 |
+
// reflect coordinates by image borders
|
204 |
+
if (align_corners) {
|
205 |
+
coord = reflect_coordinates_set_grad(coord, 0, 2*(size - 1), &grad_refl);
|
206 |
+
} else {
|
207 |
+
coord = reflect_coordinates_set_grad(coord, -1, 2*size - 1, &grad_refl);
|
208 |
+
}
|
209 |
+
// clip coordinates to image borders
|
210 |
+
coord = clip_coordinates_set_grad(coord, size, &grad_clip);
|
211 |
+
*grad_in = (*grad_in) * grad_refl * grad_clip;
|
212 |
+
}
|
213 |
+
|
214 |
+
coord = safe_downgrade_to_int_range(coord);
|
215 |
+
return coord;
|
216 |
+
}
|
217 |
+
|
218 |
+
static __forceinline__ __device__
|
219 |
+
bool within_bounds_2d(int h, int w, int H, int W) {
|
220 |
+
return h >= 0 && h < H && w >= 0 && w < W;
|
221 |
+
}
|
222 |
+
|
223 |
+
static __forceinline__ __device__
|
224 |
+
bool within_bounds_3d(int d, int h, int w, int D, int H, int W) {
|
225 |
+
return d >= 0 && d < D && h >= 0 && h < H && w >= 0 && w < W;
|
226 |
+
}
|
227 |
+
|
228 |
+
template<typename scalar_t>
|
229 |
+
static __forceinline__ __device__
|
230 |
+
scalar_t get_value_bounded(
|
231 |
+
scalar_t *data, scalar_t x, scalar_t y, int W, int H, int sW, int sH,
|
232 |
+
GridSamplerPadding padding_mode,
|
233 |
+
bool align_corners) {
|
234 |
+
|
235 |
+
x = compute_coordinates(x, W, padding_mode, align_corners);
|
236 |
+
y = compute_coordinates(y, H, padding_mode, align_corners);
|
237 |
+
|
238 |
+
int ix = static_cast<int>(x);
|
239 |
+
int iy = static_cast<int>(y);
|
240 |
+
|
241 |
+
if (within_bounds_2d(iy, ix, H, W)) {
|
242 |
+
return data[iy * sH + ix * sW];
|
243 |
+
}
|
244 |
+
return static_cast<scalar_t>(0);
|
245 |
+
}
|
246 |
+
|
247 |
+
template<typename scalar_t, typename index_t>
|
248 |
+
static __forceinline__ __device__
|
249 |
+
void safe_add_2d(scalar_t *data, int h, int w,
|
250 |
+
int sH, int sW, int H, int W,
|
251 |
+
scalar_t delta,
|
252 |
+
const index_t NC_offset,
|
253 |
+
const index_t memory_span) {
|
254 |
+
if (within_bounds_2d(h, w, H, W)) {
|
255 |
+
fastAtomicAdd(data,
|
256 |
+
NC_offset + h * sH + w * sW,
|
257 |
+
memory_span,
|
258 |
+
delta,
|
259 |
+
true);
|
260 |
+
}
|
261 |
+
}
|
262 |
+
|
263 |
+
template<typename scalar_t, typename index_t>
|
264 |
+
static __forceinline__ __device__
|
265 |
+
void safe_add_3d(scalar_t *data, int d, int h, int w,
|
266 |
+
int sD, int sH, int sW, int D, int H, int W,
|
267 |
+
scalar_t delta,
|
268 |
+
const index_t NC_offset,
|
269 |
+
const index_t memory_span) {
|
270 |
+
if (within_bounds_3d(d, h, w, D, H, W)) {
|
271 |
+
fastAtomicAdd(data,
|
272 |
+
NC_offset + d * sD + h * sH + w * sW,
|
273 |
+
memory_span,
|
274 |
+
delta,
|
275 |
+
true);
|
276 |
+
}
|
277 |
+
}
|
278 |
+
|
279 |
+
template<typename scalar_t, typename index_t>
|
280 |
+
static __forceinline__ __device__
|
281 |
+
void add_value_bounded(
|
282 |
+
scalar_t* data, scalar_t x, scalar_t y, int W, int H, int sW, int sH,
|
283 |
+
scalar_t delta,
|
284 |
+
GridSamplerPadding padding_mode,
|
285 |
+
bool align_corners,
|
286 |
+
const index_t NC_offset,
|
287 |
+
const index_t memory_span) {
|
288 |
+
|
289 |
+
x = compute_coordinates(x, W, padding_mode, align_corners);
|
290 |
+
y = compute_coordinates(y, H, padding_mode, align_corners);
|
291 |
+
|
292 |
+
int ix = static_cast<int>(x);
|
293 |
+
int iy = static_cast<int>(y);
|
294 |
+
|
295 |
+
safe_add_2d(data, iy, ix, sH, sW, H, W, delta, NC_offset, memory_span);
|
296 |
+
}
|
297 |
+
|
298 |
+
// Calculate the differential of the cubic convolution, i.e. `d coeff / d x`
|
299 |
+
template<typename scalar_t>
|
300 |
+
static __forceinline__ __device__
|
301 |
+
void get_cubic_coefficients_grad(
|
302 |
+
scalar_t coeffs[4],
|
303 |
+
scalar_t t) {
|
304 |
+
|
305 |
+
// Must be the same as forward calculation in
|
306 |
+
// aten/src/ATen/native/cuda/UpSample.cuh:get_cubic_upsample_coefficients
|
307 |
+
scalar_t A = -0.75;
|
308 |
+
|
309 |
+
scalar_t x;
|
310 |
+
x = -1 - t; // 1 < x = |-1 - tx| < 2
|
311 |
+
coeffs[0] = (-3 * A * x - 10 * A ) * x - 8 * A;
|
312 |
+
x = -t; // x = |0 - tx| <= 1
|
313 |
+
coeffs[1] = (-3 * (A + 2) * x - 2 * (A + 3)) * x;
|
314 |
+
x = 1 - t; // x = |1 - tx| <= 1
|
315 |
+
coeffs[2] = (3 * (A + 2) * x - 2 * (A + 3)) * x;
|
316 |
+
x = 2 - t; // 1 < x = |2 - tx| < 2
|
317 |
+
coeffs[3] = (3 * A * x - 10 * A) * x + 8 * A;
|
318 |
+
}
|
319 |
+
|
320 |
+
|
321 |
+
}} // namespace at::native
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/GridSampler.h
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <array>
|
3 |
+
#include <cstdint>
|
4 |
+
|
5 |
+
namespace at {
|
6 |
+
class TensorBase;
|
7 |
+
}
|
8 |
+
|
9 |
+
namespace at {
|
10 |
+
namespace native {
|
11 |
+
|
12 |
+
void launch_grid_sampler_2d_forward_kernel(
|
13 |
+
const TensorBase &output, const TensorBase &input, const TensorBase &grid,
|
14 |
+
int64_t interpolation_mode, int64_t padding_mode, bool align_corners);
|
15 |
+
|
16 |
+
void launch_grid_sampler_3d_forward_kernel(
|
17 |
+
const TensorBase &output, const TensorBase &input, const TensorBase &grid,
|
18 |
+
int64_t interpolation_mode, int64_t padding_mode, bool align_corners);
|
19 |
+
|
20 |
+
void launch_grid_sampler_2d_backward_kernel(
|
21 |
+
const TensorBase &grad_input, const TensorBase &grad_grid,
|
22 |
+
const TensorBase &grad_output, const TensorBase &input,
|
23 |
+
const TensorBase &grid, int64_t interpolation_mode, int64_t padding_mode,
|
24 |
+
bool align_corners, std::array<bool, 2> output_mask);
|
25 |
+
|
26 |
+
void launch_grid_sampler_3d_backward_kernel(
|
27 |
+
const TensorBase &grad_input, const TensorBase &grad_grid,
|
28 |
+
const TensorBase &grad_output, const TensorBase &input,
|
29 |
+
const TensorBase &grid, int64_t interpolation_mode, int64_t padding_mode,
|
30 |
+
bool align_corners, std::array<bool, 2> output_mask);
|
31 |
+
|
32 |
+
}} // namespace at::native
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/IndexKernel.h
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <c10/core/ScalarType.h>
|
3 |
+
#include <cstdint>
|
4 |
+
|
5 |
+
namespace at {
|
6 |
+
struct TensorIteratorBase;
|
7 |
+
class TensorBase;
|
8 |
+
}
|
9 |
+
|
10 |
+
namespace at {
|
11 |
+
namespace native {
|
12 |
+
/// @param maskPrefixSum[in,out]
|
13 |
+
void launch_masked_scatter_kernel(
|
14 |
+
const TensorBase &self, const TensorBase &mask,
|
15 |
+
const TensorBase &maskPrefixSum, const TensorBase &source);
|
16 |
+
}}
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/JitLoops.cuh
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/jit_macros.h>
|
4 |
+
|
5 |
+
#if AT_USE_JITERATOR()
|
6 |
+
|
7 |
+
#include <ATen/cuda/CUDAConfig.h>
|
8 |
+
|
9 |
+
#include <ATen/OpMathType.h>
|
10 |
+
#include <ATen/TensorIterator.h>
|
11 |
+
#include <ATen/native/TensorIteratorDynamicCasting.h>
|
12 |
+
|
13 |
+
#include <ATen/native/cuda/MemoryAccess.cuh>
|
14 |
+
|
15 |
+
#include <ATen/native/cuda/CUDAJitLoops.cuh>
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
|
20 |
+
/* Note [Jiterator]
|
21 |
+
The "jiterator" simply just-in-time compiles the same kernels that
|
22 |
+
Loops.cuh (and CUDALoops.cuh) usually build. This reduces build time,
|
23 |
+
build size, and initial CUDA context size.
|
24 |
+
|
25 |
+
By default on non-Windows systems, it also caches compiled kernels in ~/.cache/torch/kernels.
|
26 |
+
This behavior is controlled with two environment variables:
|
27 |
+
- USE_PYTORCH_KERNEL_CACHE, if set to zero then this will disable all cache use
|
28 |
+
- PYTORCH_KERNEL_CACHE_PATH, if set specifies the folder to use for cached kernels
|
29 |
+
|
30 |
+
The jiterator currently has some limitations, however. It cannot:
|
31 |
+
- handle math on complex datatypes
|
32 |
+
- handle kernels with scalar parameters
|
33 |
+
|
34 |
+
These improvements will likely come soon.
|
35 |
+
|
36 |
+
For examples of how to use the jiterator see the i1 and gcd kernel
|
37 |
+
implementations, which pass jittable strings implementing their
|
38 |
+
operations instead of the typical CUDA functors.
|
39 |
+
|
40 |
+
To pass a runtime argument (similar to lambda captures in non-JIT kernels),
|
41 |
+
we need to pass to additional arguments to `jitted_gpu_kernel` by value.
|
42 |
+
Currently only primitive C++ types used for computation are valid.
|
43 |
+
The order of these extra arguments should be same as the order they appear
|
44 |
+
in kernel's function signature. (look at polygamma for example)
|
45 |
+
|
46 |
+
NOTE: One big restriction being that these arguments should be after the
|
47 |
+
arguments provided by TensorIterator. Eg. While capturing `n`, where
|
48 |
+
`scalar_t x` and `scalar_t y` are provided by TensorIterator,
|
49 |
+
* foo(scalar_t x, scalar_t y, int n) works!
|
50 |
+
* foo(int n, scalar_t x, scalar_y) doesn't work
|
51 |
+
* foo(scalar_t x, int n, scalar_y) doesn't work
|
52 |
+
|
53 |
+
*/
|
54 |
+
|
55 |
+
// Entrypoint for jitted GPU kernels.
|
56 |
+
// Only handles elementwise unary and binary kernels with a
|
57 |
+
// common dtype and a single output.
|
58 |
+
// NOTE: this assumes the op's iterator has a common_dtype.
|
59 |
+
// NOTE: We use std::tuple instead of parameter pack
|
60 |
+
// for `extra_args` due to following
|
61 |
+
// bug on older versions of clang
|
62 |
+
// https://bugs.llvm.org/show_bug.cgi?id=23029
|
63 |
+
template <
|
64 |
+
char const* name,
|
65 |
+
typename return_type,
|
66 |
+
typename f_inputs_type,
|
67 |
+
int arity,
|
68 |
+
typename... Args>
|
69 |
+
void jitted_gpu_kernel(
|
70 |
+
TensorIteratorBase& iter,
|
71 |
+
const std::string& f,
|
72 |
+
at::cuda::jit::BinaryFuncVariant scalar_pos =
|
73 |
+
at::cuda::jit::BinaryFuncVariant::NoScalar,
|
74 |
+
at::opmath_type<f_inputs_type> scalar_val = 0,
|
75 |
+
std::tuple<Args...> extra_args = std::make_tuple()) {
|
76 |
+
// TODO: much of preamble is common to both jitted_gpu_kernel and gpu_kernel
|
77 |
+
// Maybe it could be refactored?
|
78 |
+
for (int arg = 0; arg < iter.ntensors(); arg++) {
|
79 |
+
TORCH_INTERNAL_ASSERT(
|
80 |
+
iter.device(arg).is_cuda(),
|
81 |
+
"argument ", arg, ": expected a CUDA device but found ", iter.device(arg));
|
82 |
+
}
|
83 |
+
|
84 |
+
if (iter.numel() == 0) {
|
85 |
+
return;
|
86 |
+
}
|
87 |
+
|
88 |
+
if (!iter.can_use_32bit_indexing()) {
|
89 |
+
for (auto& sub_iter : iter.with_32bit_indexing()) {
|
90 |
+
jitted_gpu_kernel<name, return_type, f_inputs_type, arity>(
|
91 |
+
sub_iter, f, scalar_pos, scalar_val, extra_args);
|
92 |
+
}
|
93 |
+
|
94 |
+
return;
|
95 |
+
}
|
96 |
+
|
97 |
+
// Computes if dynamic casting is needed
|
98 |
+
// Dynamic casting is needed if an input's dtype differs from the common dtype
|
99 |
+
// or if the result dtype differs from the output's dtype
|
100 |
+
// Note: this is intentionally divergent from calling needs_dynamic_casting,
|
101 |
+
// which is more general and inspects a lambda to determine if dynamic
|
102 |
+
// casting is needed.
|
103 |
+
bool needs_dynamic_casting = false;
|
104 |
+
|
105 |
+
// Checks output
|
106 |
+
const ScalarType return_scalar_type = c10::CppTypeToScalarType<return_type>::value;
|
107 |
+
const auto dtype0 = iter.dtype(0);
|
108 |
+
if (dtype0 != return_scalar_type) {
|
109 |
+
needs_dynamic_casting = true;
|
110 |
+
}
|
111 |
+
|
112 |
+
// Checks input(s)
|
113 |
+
const ScalarType inputs_scalar_type = c10::CppTypeToScalarType<f_inputs_type>::value;
|
114 |
+
for (auto i = decltype(arity){1}; i < (arity + 1); ++i) {
|
115 |
+
const auto dtypei = iter.dtype(i);
|
116 |
+
if (dtypei != inputs_scalar_type) {
|
117 |
+
needs_dynamic_casting = true;
|
118 |
+
break;
|
119 |
+
}
|
120 |
+
}
|
121 |
+
if (scalar_pos == at::cuda::jit::BinaryFuncVariant::NoScalar) {
|
122 |
+
// NOTE: With `scalar_pos=NoScalar`,`scalar_val` is not used
|
123 |
+
// for computation in the generated code and hence we pass a dummy
|
124 |
+
// value of `0`.
|
125 |
+
jitted_gpu_kernel_impl<
|
126 |
+
/*name*/ name,
|
127 |
+
/*return_type=*/return_type,
|
128 |
+
/*f_inputs_type=*/f_inputs_type,
|
129 |
+
arity,
|
130 |
+
at::cuda::jit::BinaryFuncVariant::NoScalar>(
|
131 |
+
iter, f, needs_dynamic_casting, /*scalar_val=*/scalar_val, extra_args);
|
132 |
+
} else if (scalar_pos == at::cuda::jit::BinaryFuncVariant::RhsScalar) {
|
133 |
+
jitted_gpu_kernel_impl<
|
134 |
+
/*name*/ name,
|
135 |
+
/*return_type=*/return_type,
|
136 |
+
/*f_inputs_type=*/f_inputs_type,
|
137 |
+
arity,
|
138 |
+
at::cuda::jit::BinaryFuncVariant::RhsScalar>(
|
139 |
+
iter,
|
140 |
+
f,
|
141 |
+
needs_dynamic_casting,
|
142 |
+
scalar_val,
|
143 |
+
extra_args);
|
144 |
+
|
145 |
+
} else {
|
146 |
+
jitted_gpu_kernel_impl<
|
147 |
+
/*name*/ name,
|
148 |
+
/*return_type=*/return_type,
|
149 |
+
/*f_inputs_type=*/f_inputs_type,
|
150 |
+
arity,
|
151 |
+
at::cuda::jit::BinaryFuncVariant::LhsScalar>(
|
152 |
+
iter,
|
153 |
+
f,
|
154 |
+
needs_dynamic_casting,
|
155 |
+
scalar_val,
|
156 |
+
extra_args);
|
157 |
+
}
|
158 |
+
}
|
159 |
+
|
160 |
+
// TODO: support runtime state capture similar to `jitted_gpu_kernel`.
|
161 |
+
template <char const *name, typename return_type, typename f_inputs_type>
|
162 |
+
void opmath_jitted_gpu_kernel_with_scalars(TensorIteratorBase& iter, const std::string& f) {
|
163 |
+
TORCH_INTERNAL_ASSERT(iter.ntensors() == 3);
|
164 |
+
//currently jiterator only handles binary functions where both inputs are of the same type (f_inputs_type)
|
165 |
+
using opmath_t = at::opmath_type<f_inputs_type>;
|
166 |
+
if (iter.is_cpu_scalar(1)) {
|
167 |
+
auto scalar_val = iter.scalar_value<opmath_t>(1);
|
168 |
+
iter.remove_operand(1);
|
169 |
+
// TODO: When all kernels that use gpu_kernel_with_scalars are
|
170 |
+
// ported to structured, this device guard can be deleted. This
|
171 |
+
// works around incorrect device guard generation for pre-structured
|
172 |
+
// kernels device guards, but structured kernels do it right and
|
173 |
+
// we can assume the device is already set correctly
|
174 |
+
const OptionalDeviceGuard device_guard(iter.device(1));
|
175 |
+
jitted_gpu_kernel<name, return_type, f_inputs_type, 1>(iter, f, at::cuda::jit::BinaryFuncVariant::LhsScalar, scalar_val);
|
176 |
+
} else if (iter.is_cpu_scalar(2)) {
|
177 |
+
auto scalar_val = iter.scalar_value<opmath_t>(2);
|
178 |
+
iter.remove_operand(2);
|
179 |
+
jitted_gpu_kernel<name, return_type, f_inputs_type, 1>(iter, f, at::cuda::jit::BinaryFuncVariant::RhsScalar, scalar_val);
|
180 |
+
} else {
|
181 |
+
jitted_gpu_kernel<name, return_type, f_inputs_type, 2>(iter, f);
|
182 |
+
}
|
183 |
+
}
|
184 |
+
|
185 |
+
}} // at::native
|
186 |
+
|
187 |
+
#endif // AT_USE_JITERATOR()
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/KernelUtils.cuh
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/cuda/Atomic.cuh>
|
3 |
+
|
4 |
+
#if !(defined(USE_ROCM) || ((defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 800))))
|
5 |
+
#include <cuda_bf16.h>
|
6 |
+
#endif
|
7 |
+
|
8 |
+
namespace at {
|
9 |
+
namespace native {
|
10 |
+
|
11 |
+
__device__ __forceinline__ size_t
|
12 |
+
idx(const size_t nc,
|
13 |
+
const size_t height,
|
14 |
+
const size_t width,
|
15 |
+
const size_t h,
|
16 |
+
const size_t w) {
|
17 |
+
return (nc * height + h) * width + w;
|
18 |
+
}
|
19 |
+
|
20 |
+
// for channels-last
|
21 |
+
__device__ __forceinline__ size_t
|
22 |
+
idx_cl(
|
23 |
+
const size_t n, const size_t h, const size_t w, const size_t c,
|
24 |
+
const size_t height, const size_t width, const size_t channel
|
25 |
+
) {
|
26 |
+
return ((n * height + h) * width + w) * channel + c;
|
27 |
+
}
|
28 |
+
|
29 |
+
// fastSpecializedAtomicAdd (and fastAtomicAdd) are an optimization
|
30 |
+
// that speed up half-precision atomics. The situation with half
|
31 |
+
// precision atomics is that we have a slow __half atomic, and
|
32 |
+
// a fast vectored __half2 atomic (this can be worth up to a 6x
|
33 |
+
// speedup, see https://github.com/pytorch/pytorch/pull/21879).
|
34 |
+
// We can convert a __half atomic into a __half2 atomic by simply
|
35 |
+
// pairing the __half with a zero entry on the left/right depending
|
36 |
+
// on alignment... but only if this wouldn't cause an out of bounds
|
37 |
+
// access! Thus, you must specify tensor and numel so we can check
|
38 |
+
// if you would be out-of-bounds and use a plain __half atomic if
|
39 |
+
// you would be.
|
40 |
+
template <
|
41 |
+
typename scalar_t,
|
42 |
+
typename index_t,
|
43 |
+
typename std::enable_if<std::is_same<c10::Half, scalar_t>::value>::type* =
|
44 |
+
nullptr>
|
45 |
+
__device__ __forceinline__ void fastSpecializedAtomicAdd(
|
46 |
+
scalar_t* tensor,
|
47 |
+
index_t index,
|
48 |
+
const index_t numel,
|
49 |
+
scalar_t value) {
|
50 |
+
#if ( \
|
51 |
+
(defined(USE_ROCM)) || \
|
52 |
+
(defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 700)))
|
53 |
+
gpuAtomicAddNoReturn(
|
54 |
+
reinterpret_cast<at::Half*>(tensor) + index,
|
55 |
+
static_cast<at::Half>(value));
|
56 |
+
#else
|
57 |
+
// Accounts for the chance tensor falls on an odd 16 bit alignment (ie, not 32 bit aligned)
|
58 |
+
__half* target_addr = reinterpret_cast<__half*>(tensor + index);
|
59 |
+
bool low_byte = (reinterpret_cast<std::uintptr_t>(target_addr) % sizeof(__half2) == 0);
|
60 |
+
|
61 |
+
if (low_byte && index < (numel - 1)) {
|
62 |
+
__half2 value2;
|
63 |
+
value2.x = static_cast<__half>(value);
|
64 |
+
value2.y = __int2half_rz(0);
|
65 |
+
atomicAdd(reinterpret_cast<__half2*>(target_addr), value2);
|
66 |
+
|
67 |
+
} else if (!low_byte && index > 0) {
|
68 |
+
__half2 value2;
|
69 |
+
value2.x = __int2half_rz(0);
|
70 |
+
value2.y = static_cast<__half>(value);
|
71 |
+
atomicAdd(reinterpret_cast<__half2*>(target_addr - 1), value2);
|
72 |
+
|
73 |
+
} else {
|
74 |
+
atomicAdd(
|
75 |
+
reinterpret_cast<__half*>(tensor) + index, static_cast<__half>(value));
|
76 |
+
}
|
77 |
+
#endif
|
78 |
+
}
|
79 |
+
|
80 |
+
template <
|
81 |
+
typename scalar_t,
|
82 |
+
typename index_t,
|
83 |
+
typename std::enable_if<std::is_same<c10::BFloat16, scalar_t>::value>::type* =
|
84 |
+
nullptr>
|
85 |
+
__device__ __forceinline__ void fastSpecializedAtomicAdd(
|
86 |
+
scalar_t* tensor,
|
87 |
+
index_t index,
|
88 |
+
const index_t numel,
|
89 |
+
scalar_t value) {
|
90 |
+
#if ( \
|
91 |
+
(defined(USE_ROCM)) || \
|
92 |
+
(defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 800)))
|
93 |
+
gpuAtomicAddNoReturn(
|
94 |
+
reinterpret_cast<at::BFloat16*>(tensor) + index,
|
95 |
+
static_cast<at::BFloat16>(value));
|
96 |
+
#else
|
97 |
+
// Accounts for the chance tensor falls on an odd 16 bit alignment (ie, not 32 bit aligned)
|
98 |
+
__nv_bfloat16* target_addr = reinterpret_cast<__nv_bfloat16*>(tensor + index);
|
99 |
+
bool low_byte = (reinterpret_cast<std::uintptr_t>(target_addr) % sizeof(__nv_bfloat162) == 0);
|
100 |
+
|
101 |
+
if (low_byte && index < (numel - 1)) {
|
102 |
+
__nv_bfloat162 value2;
|
103 |
+
value2.x = *reinterpret_cast<__nv_bfloat16*>(&value);
|
104 |
+
value2.y = __int2bfloat16_rz(0);
|
105 |
+
atomicAdd(reinterpret_cast<__nv_bfloat162*>(target_addr), value2);
|
106 |
+
|
107 |
+
} else if (!low_byte && index > 0) {
|
108 |
+
__nv_bfloat162 value2;
|
109 |
+
value2.x = __int2bfloat16_rz(0);
|
110 |
+
value2.y = *reinterpret_cast<__nv_bfloat16*>(&value);
|
111 |
+
atomicAdd(reinterpret_cast<__nv_bfloat162*>(target_addr - 1), value2);
|
112 |
+
|
113 |
+
} else {
|
114 |
+
atomicAdd(
|
115 |
+
reinterpret_cast<__nv_bfloat16*>(tensor) + index, *reinterpret_cast<__nv_bfloat16*>(&value));
|
116 |
+
}
|
117 |
+
#endif
|
118 |
+
}
|
119 |
+
|
120 |
+
|
121 |
+
template <
|
122 |
+
typename scalar_t,
|
123 |
+
typename index_t,
|
124 |
+
typename std::enable_if<!std::is_same<c10::Half, scalar_t>::value && !std::is_same<c10::BFloat16, scalar_t>::value >::type* =
|
125 |
+
nullptr>
|
126 |
+
__device__ __forceinline__ void fastSpecializedAtomicAdd(
|
127 |
+
scalar_t* tensor,
|
128 |
+
index_t index,
|
129 |
+
const index_t numel,
|
130 |
+
scalar_t value) {
|
131 |
+
gpuAtomicAddNoReturn(tensor + index, value);
|
132 |
+
}
|
133 |
+
|
134 |
+
template <class scalar_t, class index_t>
|
135 |
+
__device__ __forceinline__ void fastAtomicAdd(
|
136 |
+
scalar_t* tensor,
|
137 |
+
index_t index,
|
138 |
+
const index_t numel,
|
139 |
+
scalar_t value,
|
140 |
+
bool fast_atomics) {
|
141 |
+
if (fast_atomics) {
|
142 |
+
fastSpecializedAtomicAdd(tensor, index, numel, value);
|
143 |
+
} else {
|
144 |
+
gpuAtomicAddNoReturn(tensor + index, value);
|
145 |
+
}
|
146 |
+
}
|
147 |
+
|
148 |
+
} // namespace native
|
149 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/LaunchUtils.h
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include<algorithm>
|
3 |
+
|
4 |
+
namespace at {
|
5 |
+
namespace native {
|
6 |
+
|
7 |
+
// returns 2**floor(log2(n))
|
8 |
+
static int lastPow2(unsigned int n) {
|
9 |
+
n |= (n >> 1);
|
10 |
+
n |= (n >> 2);
|
11 |
+
n |= (n >> 4);
|
12 |
+
n |= (n >> 8);
|
13 |
+
n |= (n >> 16);
|
14 |
+
return std::max<int>(1, n - (n >> 1));
|
15 |
+
}
|
16 |
+
|
17 |
+
} // namespace native
|
18 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/Loops.cuh
ADDED
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/detail/FunctionTraits.h>
|
4 |
+
#include <ATen/native/TensorIterator.h>
|
5 |
+
#include <ATen/native/TensorIteratorDynamicCasting.h>
|
6 |
+
#include <ATen/cuda/detail/OffsetCalculator.cuh>
|
7 |
+
#include <ATen/OpMathType.h>
|
8 |
+
#include <ATen/native/cuda/thread_constants.h>
|
9 |
+
|
10 |
+
#include <thrust/tuple.h>
|
11 |
+
|
12 |
+
#include <ATen/native/cuda/MemoryAccess.cuh>
|
13 |
+
|
14 |
+
|
15 |
+
namespace at { namespace native {
|
16 |
+
|
17 |
+
template<int N>
|
18 |
+
static OffsetCalculator<N> make_input_offset_calculator(const TensorIteratorBase& iter) {
|
19 |
+
// array size can not be 0, this happens when N == 0
|
20 |
+
constexpr int array_size = std::max<int>(N, 1);
|
21 |
+
TORCH_INTERNAL_ASSERT(N == iter.ntensors() - iter.noutputs());
|
22 |
+
std::array<const int64_t*, array_size> strides;
|
23 |
+
int64_t element_sizes[array_size];
|
24 |
+
for (int i = 0; i < N; i++) {
|
25 |
+
strides[i] = iter.strides(i + iter.noutputs()).data();
|
26 |
+
element_sizes[i] = iter.element_size(i + iter.noutputs());
|
27 |
+
}
|
28 |
+
return OffsetCalculator<N>(iter.ndim(), iter.shape().data(), strides.data(), element_sizes);
|
29 |
+
}
|
30 |
+
|
31 |
+
template <int num_outputs = 1>
|
32 |
+
static OffsetCalculator<num_outputs> make_output_offset_calculator(const TensorIteratorBase& iter) {
|
33 |
+
TORCH_INTERNAL_ASSERT(num_outputs == iter.noutputs());
|
34 |
+
std::array<const int64_t*, num_outputs> strides;
|
35 |
+
int64_t element_sizes[num_outputs];
|
36 |
+
for (int i = 0; i < num_outputs; i++) {
|
37 |
+
strides[i] = iter.strides(i).data();
|
38 |
+
element_sizes[i] = iter.element_size(i);
|
39 |
+
}
|
40 |
+
return OffsetCalculator<num_outputs>(iter.ndim(), iter.shape().data(), strides.data(), element_sizes);
|
41 |
+
}
|
42 |
+
|
43 |
+
template<typename func_t, typename policy_t>
|
44 |
+
__device__ inline void elementwise_kernel_helper(func_t f, policy_t policy) {
|
45 |
+
using traits = function_traits<func_t>;
|
46 |
+
using return_t = typename traits::result_type;
|
47 |
+
using args_t = typename traits::ArgsTuple;
|
48 |
+
|
49 |
+
int idx = blockIdx.x;
|
50 |
+
|
51 |
+
return_t results[thread_work_size()];
|
52 |
+
args_t args[thread_work_size()];
|
53 |
+
|
54 |
+
// load
|
55 |
+
policy.load(args, idx);
|
56 |
+
|
57 |
+
// compute
|
58 |
+
#pragma unroll
|
59 |
+
for (int i = 0; i < thread_work_size(); i++) {
|
60 |
+
if (policy.check_inbounds(i)) {
|
61 |
+
results[i] = c10::guts::apply(f, args[i]);
|
62 |
+
}
|
63 |
+
}
|
64 |
+
|
65 |
+
// store
|
66 |
+
policy.store(results, idx);
|
67 |
+
}
|
68 |
+
|
69 |
+
}} // namespace at::native
|
70 |
+
|
71 |
+
#include <ATen/native/cuda/CUDALoops.cuh>
|
72 |
+
|
73 |
+
namespace at:: native {
|
74 |
+
|
75 |
+
template <typename func_t>
|
76 |
+
void gpu_kernel_nocast(TensorIteratorBase& iter, const func_t& f) {
|
77 |
+
|
78 |
+
for (int arg = 0; arg < iter.ntensors(); arg++) {
|
79 |
+
TORCH_INTERNAL_ASSERT(
|
80 |
+
iter.device(arg).is_cuda(),
|
81 |
+
"argument ", arg, ": expected a CUDA device but found ", iter.device(arg));
|
82 |
+
}
|
83 |
+
|
84 |
+
if (iter.numel() == 0) {
|
85 |
+
return;
|
86 |
+
}
|
87 |
+
|
88 |
+
if (!iter.can_use_32bit_indexing()) {
|
89 |
+
for (auto& sub_iter : iter.with_32bit_indexing()) {
|
90 |
+
gpu_kernel_nocast(sub_iter, f);
|
91 |
+
}
|
92 |
+
return;
|
93 |
+
}
|
94 |
+
|
95 |
+
gpu_kernel_impl_nocast(iter, f);
|
96 |
+
}
|
97 |
+
|
98 |
+
template <typename func_t>
|
99 |
+
void gpu_kernel(TensorIteratorBase& iter, const func_t& f) {
|
100 |
+
|
101 |
+
for (int arg = 0; arg < iter.ntensors(); arg++) {
|
102 |
+
TORCH_INTERNAL_ASSERT(
|
103 |
+
iter.device(arg).is_cuda(),
|
104 |
+
"argument ", arg, ": expected a CUDA device but found ", iter.device(arg));
|
105 |
+
}
|
106 |
+
|
107 |
+
if (iter.numel() == 0) {
|
108 |
+
return;
|
109 |
+
}
|
110 |
+
|
111 |
+
if (!iter.can_use_32bit_indexing()) {
|
112 |
+
for (auto& sub_iter : iter.with_32bit_indexing()) {
|
113 |
+
gpu_kernel(sub_iter, f);
|
114 |
+
}
|
115 |
+
return;
|
116 |
+
}
|
117 |
+
|
118 |
+
gpu_kernel_impl(iter, f);
|
119 |
+
}
|
120 |
+
|
121 |
+
template<typename arg1_t, typename arg2_t, typename return_t, typename func_t>
|
122 |
+
struct AUnaryFunctor {
|
123 |
+
using traits = function_traits<func_t>;
|
124 |
+
using opmath_arg1_t = typename traits::template arg<0>::type;
|
125 |
+
__device__ return_t operator()(arg2_t b) const {
|
126 |
+
return f(a, b);
|
127 |
+
}
|
128 |
+
// NB: scalar is stored in higher precision!
|
129 |
+
AUnaryFunctor(func_t f_, opmath_arg1_t a_): f(f_), a(a_) {}
|
130 |
+
private:
|
131 |
+
func_t f;
|
132 |
+
opmath_arg1_t a;
|
133 |
+
};
|
134 |
+
|
135 |
+
template<typename arg1_t, typename arg2_t, typename return_t, typename func_t>
|
136 |
+
struct BUnaryFunctor {
|
137 |
+
using traits = function_traits<func_t>;
|
138 |
+
using opmath_arg2_t = typename traits::template arg<1>::type;
|
139 |
+
__device__ return_t operator()(arg1_t a) const {
|
140 |
+
return f(a, b);
|
141 |
+
}
|
142 |
+
// NB: scalar is stored in higher precision!
|
143 |
+
BUnaryFunctor(func_t f_, opmath_arg2_t b_): f(f_), b(b_) {}
|
144 |
+
private:
|
145 |
+
func_t f;
|
146 |
+
opmath_arg2_t b;
|
147 |
+
};
|
148 |
+
|
149 |
+
// Though seemingly noop, this inserts casts from arg1_t to func_t's type
|
150 |
+
// (which may be higher precision), as well as casts to return_t
|
151 |
+
template <typename arg1_t, typename arg2_t, typename return_t, typename func_t>
|
152 |
+
struct BinaryFunctor {
|
153 |
+
__device__ return_t operator()(arg1_t a, arg2_t b) const {
|
154 |
+
return f(a, b);
|
155 |
+
}
|
156 |
+
BinaryFunctor(func_t f_): f(f_) {}
|
157 |
+
private:
|
158 |
+
func_t f;
|
159 |
+
};
|
160 |
+
|
161 |
+
// Unlike gpu_kernel_with_scalars, this allows you to pass a func_t which
|
162 |
+
// accepts inputs at higher precision (typically opmath_t), but then
|
163 |
+
// ensure that we load from memory at the correct precision (scalar_t)
|
164 |
+
// to avoid expensive loads. For the whole sordid story see
|
165 |
+
// https://dev-discuss.pytorch.org/t/cuda-loops-case-study-code-generation-vs-templates/302
|
166 |
+
template <typename arg1_t, typename arg2_t = arg1_t, typename return_t = arg1_t, typename func_t>
|
167 |
+
void opmath_gpu_kernel_with_scalars(TensorIteratorBase& iter, const func_t& f) {
|
168 |
+
TORCH_INTERNAL_ASSERT(iter.ntensors() == 3);
|
169 |
+
|
170 |
+
using traits = function_traits<func_t>;
|
171 |
+
using opmath_arg1_t = typename traits::template arg<0>::type;
|
172 |
+
using opmath_arg2_t = typename traits::template arg<1>::type;
|
173 |
+
static_assert(
|
174 |
+
traits::arity == 2,
|
175 |
+
"gpu_kernel_with_scalars only supports two input arguments");
|
176 |
+
|
177 |
+
if (iter.is_cpu_scalar(1)) {
|
178 |
+
AUnaryFunctor<arg1_t, arg2_t, return_t, func_t> af(f, iter.scalar_value<opmath_arg1_t>(1));
|
179 |
+
iter.remove_operand(1);
|
180 |
+
// TODO: When all kernels that use gpu_kernel_with_scalars are
|
181 |
+
// ported to structured, this device guard can be deleted. This
|
182 |
+
// works around incorrect device guard generation for pre-structured
|
183 |
+
// kernels device guards, but structured kernels do it right and
|
184 |
+
// we can assume the device is already set correctly
|
185 |
+
const OptionalDeviceGuard device_guard(iter.device(1));
|
186 |
+
gpu_kernel(iter, af);
|
187 |
+
} else if (iter.is_cpu_scalar(2)) {
|
188 |
+
BUnaryFunctor<arg1_t, arg2_t, return_t, func_t> bf(f, iter.scalar_value<opmath_arg2_t>(2));
|
189 |
+
iter.remove_operand(2);
|
190 |
+
gpu_kernel(iter, bf);
|
191 |
+
} else {
|
192 |
+
gpu_kernel(iter, BinaryFunctor<arg1_t, arg2_t, return_t, func_t>(f));
|
193 |
+
}
|
194 |
+
}
|
195 |
+
|
196 |
+
template <typename scalar_t, typename return_t = scalar_t, typename func_t>
|
197 |
+
void opmath_symmetric_gpu_kernel_with_scalars(TensorIteratorBase& iter, const func_t& f) {
|
198 |
+
// Use symmetric property of the functor to reduce number of kernels,
|
199 |
+
// requires f(a, b) == f(b, a)
|
200 |
+
TORCH_INTERNAL_ASSERT(iter.ntensors() == 3);
|
201 |
+
|
202 |
+
using traits = function_traits<func_t>;
|
203 |
+
using opmath_arg_t = typename traits::template arg<0>::type;
|
204 |
+
static_assert(
|
205 |
+
traits::arity == 2,
|
206 |
+
"gpu_kernel_with_scalars only supports two input arguments");
|
207 |
+
static_assert(std::is_same<opmath_arg_t, typename traits::template arg<1>::type>::value,
|
208 |
+
"f is not symmetric");
|
209 |
+
|
210 |
+
OptionalDeviceGuard device_guard;
|
211 |
+
opmath_arg_t scalar_val{};
|
212 |
+
|
213 |
+
if (iter.is_cpu_scalar(1)) {
|
214 |
+
scalar_val = iter.scalar_value<opmath_arg_t>(1);
|
215 |
+
iter.remove_operand(1);
|
216 |
+
|
217 |
+
// TODO: When all kernels that use gpu_kernel_with_scalars are
|
218 |
+
// ported to structured, this device guard can be deleted. This
|
219 |
+
// works around incorrect device guard generation for pre-structured
|
220 |
+
// kernels device guards, but structured kernels do it right and
|
221 |
+
// we can assume the device is already set correctly
|
222 |
+
device_guard.reset_device(iter.device(1));
|
223 |
+
} else if (iter.is_cpu_scalar(2)) {
|
224 |
+
scalar_val = iter.scalar_value<opmath_arg_t>(2);
|
225 |
+
iter.remove_operand(2);
|
226 |
+
}
|
227 |
+
|
228 |
+
if (iter.ninputs() == 2) {
|
229 |
+
gpu_kernel(iter, BinaryFunctor<scalar_t, scalar_t, return_t, func_t>(f));
|
230 |
+
} else {
|
231 |
+
AUnaryFunctor<scalar_t, scalar_t, return_t, func_t> unary_f(f, scalar_val);
|
232 |
+
gpu_kernel(iter, unary_f);
|
233 |
+
}
|
234 |
+
}
|
235 |
+
|
236 |
+
// Legacy variant that assumes that func_t has the correct types
|
237 |
+
// that we expect to load from memory
|
238 |
+
template <typename func_t>
|
239 |
+
void gpu_kernel_with_scalars(TensorIteratorBase& iter, const func_t& f) {
|
240 |
+
using traits = function_traits<func_t>;
|
241 |
+
static_assert(
|
242 |
+
traits::arity == 2,
|
243 |
+
"gpu_kernel_with_scalars only supports two input arguments");
|
244 |
+
using arg1_t = typename traits::template arg<0>::type;
|
245 |
+
using arg2_t = typename traits::template arg<1>::type;
|
246 |
+
using return_t = typename traits::result_type;
|
247 |
+
opmath_gpu_kernel_with_scalars<arg1_t, arg2_t, return_t, func_t>(iter, f);
|
248 |
+
}
|
249 |
+
|
250 |
+
namespace { // functions for `gpu_kernel_multiple_outputs`.
|
251 |
+
|
252 |
+
// check the return type is `thrust::tuple`, not `std::tuple`.
|
253 |
+
template <typename T> struct is_tuple: std::false_type {};
|
254 |
+
|
255 |
+
template <typename ...T> struct is_tuple<thrust::tuple<T...>>: std::true_type {};
|
256 |
+
|
257 |
+
template <int num_outputs, typename func_t, typename array_t, typename inp_calc_t, typename out_calc_t>
|
258 |
+
C10_LAUNCH_BOUNDS_1(num_threads())
|
259 |
+
__global__ void unrolled_elementwise_kernel_for_multi_outputs(int N, func_t f, array_t data, inp_calc_t ic, out_calc_t oc) {
|
260 |
+
int remaining = N - block_work_size() * blockIdx.x;
|
261 |
+
elementwise_kernel_helper(f, memory::policies::multi_outputs_unroll<array_t, inp_calc_t, out_calc_t, num_outputs>(data, remaining, ic, oc));
|
262 |
+
}
|
263 |
+
|
264 |
+
template <int num_outputs, typename func_t, typename array_t, typename inp_calc_t, typename out_calc_t>
|
265 |
+
static inline void launch_unrolled_kernel_for_multi_outputs(int64_t N, const func_t& f, array_t data, inp_calc_t ic, out_calc_t oc) {
|
266 |
+
TORCH_INTERNAL_ASSERT(N > 0 && N <= std::numeric_limits<int32_t>::max());
|
267 |
+
int64_t grid = (N + block_work_size() - 1) / block_work_size();
|
268 |
+
auto stream = at::cuda::getCurrentCUDAStream();
|
269 |
+
unrolled_elementwise_kernel_for_multi_outputs<num_outputs, func_t, array_t><<<grid, num_threads(), 0, stream>>>(N, f, data, ic, oc);
|
270 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
271 |
+
}
|
272 |
+
|
273 |
+
template <typename func_t>
|
274 |
+
void gpu_kernel_multiple_outputs_impl(TensorIteratorBase& iter, const func_t& f) {
|
275 |
+
using traits = function_traits<func_t>;
|
276 |
+
using output_t = typename traits::result_type;
|
277 |
+
static_assert(is_tuple<output_t>::value, "f's return type must be `thrust::tuple`");
|
278 |
+
constexpr int num_outputs = thrust::tuple_size<output_t>::value;
|
279 |
+
constexpr int num_inputs = traits::arity;
|
280 |
+
constexpr int ntensors = num_outputs + num_inputs;
|
281 |
+
|
282 |
+
TORCH_INTERNAL_ASSERT(iter.can_use_32bit_indexing());
|
283 |
+
TORCH_INTERNAL_ASSERT(iter.ntensors() == ntensors);
|
284 |
+
|
285 |
+
at::detail::Array<char*, ntensors> data;
|
286 |
+
for (int i = 0; i < ntensors; i++) {
|
287 |
+
data[i] = (char*)iter.data_ptr(i);
|
288 |
+
}
|
289 |
+
|
290 |
+
int64_t numel = iter.numel();
|
291 |
+
|
292 |
+
if (iter.is_contiguous()) {
|
293 |
+
auto input_calc = TrivialOffsetCalculator<num_inputs>();
|
294 |
+
auto output_calc = TrivialOffsetCalculator<num_outputs>();
|
295 |
+
launch_unrolled_kernel_for_multi_outputs<num_outputs>(numel, f, data, input_calc, output_calc);
|
296 |
+
} else {
|
297 |
+
auto input_calc = make_input_offset_calculator<num_inputs>(iter);
|
298 |
+
auto output_calc = make_output_offset_calculator<num_outputs>(iter);
|
299 |
+
launch_unrolled_kernel_for_multi_outputs<num_outputs>(numel, f, data, input_calc, output_calc);
|
300 |
+
}
|
301 |
+
}
|
302 |
+
} // namespace
|
303 |
+
|
304 |
+
template <typename func_t>
|
305 |
+
void gpu_kernel_multiple_outputs(TensorIteratorBase& iter, const func_t& f) {
|
306 |
+
ASSERT_HOST_DEVICE_LAMBDA(func_t);
|
307 |
+
|
308 |
+
for (int arg = 0; arg < iter.ntensors(); arg++) {
|
309 |
+
TORCH_INTERNAL_ASSERT(iter.device(arg).is_cuda());
|
310 |
+
}
|
311 |
+
|
312 |
+
if (iter.numel() == 0) {
|
313 |
+
return;
|
314 |
+
}
|
315 |
+
|
316 |
+
if (!iter.can_use_32bit_indexing()) {
|
317 |
+
for (auto& sub_iter : iter.with_32bit_indexing()) {
|
318 |
+
gpu_kernel_multiple_outputs(sub_iter, f);
|
319 |
+
}
|
320 |
+
return;
|
321 |
+
}
|
322 |
+
|
323 |
+
gpu_kernel_multiple_outputs_impl(iter, f);
|
324 |
+
}
|
325 |
+
|
326 |
+
} //namespace at::native
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/Math.cuh
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/MemoryAccess.cuh
ADDED
@@ -0,0 +1,384 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <cstdint>
|
4 |
+
#include <type_traits>
|
5 |
+
#include <c10/core/DynamicCast.h>
|
6 |
+
#include <c10/util/Exception.h>
|
7 |
+
#include <c10/util/TypeCast.h>
|
8 |
+
#include <c10/macros/Macros.h>
|
9 |
+
#include <ATen/core/Array.h>
|
10 |
+
#include <ATen/detail/FunctionTraits.h>
|
11 |
+
#include <ATen/cuda/detail/OffsetCalculator.cuh>
|
12 |
+
#include <ATen/native/cuda/thread_constants.h>
|
13 |
+
|
14 |
+
#include <thrust/tuple.h>
|
15 |
+
|
16 |
+
// References:
|
17 |
+
// https://devblogs.nvidia.com/cuda-pro-tip-increase-performance-with-vectorized-memory-access/
|
18 |
+
|
19 |
+
namespace at { namespace native { namespace memory {
|
20 |
+
|
21 |
+
namespace detail {
|
22 |
+
|
23 |
+
// What does the `static_unroll` do?
|
24 |
+
//
|
25 |
+
// We want to do something like:
|
26 |
+
//
|
27 |
+
// using args_t = typename traits::ArgsTuple;
|
28 |
+
// args_t args;
|
29 |
+
// #pragma unroll
|
30 |
+
// for (int i = 0; i < traits::arity; i++) {
|
31 |
+
// std::get<i>(args) = ....
|
32 |
+
// }
|
33 |
+
//
|
34 |
+
// but unfortunately the above code does not work because
|
35 |
+
// the template argument has to be a compile time constant
|
36 |
+
// so `static_unroll` is created to simulate `#pragma unroll`
|
37 |
+
// using template metaprogramming.
|
38 |
+
|
39 |
+
template<template<int i> typename func, int end, int current=0>
|
40 |
+
struct static_unroll {
|
41 |
+
template<typename... Args>
|
42 |
+
static inline C10_HOST_DEVICE void with_args(Args&&... args) {
|
43 |
+
func<current>::apply(std::forward<Args>(args)...);
|
44 |
+
static_unroll<func, end, current+1>::with_args(args...);
|
45 |
+
}
|
46 |
+
};
|
47 |
+
|
48 |
+
template<template<int i> typename func, int end>
|
49 |
+
struct static_unroll<func, end, end> {
|
50 |
+
template<typename... Args>
|
51 |
+
static inline C10_HOST_DEVICE void with_args(Args... args) {}
|
52 |
+
};
|
53 |
+
|
54 |
+
// helper structs to be used with static_unroll to load arguments
|
55 |
+
// one by one
|
56 |
+
|
57 |
+
template<int arg_index>
|
58 |
+
struct vectorized_load_helper {
|
59 |
+
template <typename args_t, typename policy_t>
|
60 |
+
static __device__ void apply(policy_t &self, args_t *args, int idx) {
|
61 |
+
using arg_t = std::tuple_element_t<arg_index, args_t>;
|
62 |
+
// `data` hold the data_ptr for tensors [output, input0, input1, ...], so we
|
63 |
+
// need a +1 offset to get the input
|
64 |
+
auto ptr = reinterpret_cast<arg_t *>(self.data[arg_index + 1]) + block_work_size() * idx;
|
65 |
+
auto args_accessor = [&args] __device__ (int thread_unroll_idx) -> arg_t & { return std::get<arg_index>(args[thread_unroll_idx]); };
|
66 |
+
self.load_single_arg(args_accessor, ptr);
|
67 |
+
}
|
68 |
+
};
|
69 |
+
|
70 |
+
template<int arg_index>
|
71 |
+
struct unroll_load_helper {
|
72 |
+
template <typename args_t, typename policy_t, typename offset_t, typename loader_t>
|
73 |
+
static __device__ void apply(policy_t &self, args_t *args, offset_t offset, loader_t loader, int j, int num_outputs) {
|
74 |
+
using arg_t = std::tuple_element_t<arg_index, args_t>;
|
75 |
+
// `data` hold the data_ptr for tensors [output, input0, input1, ...], so we
|
76 |
+
// need a +1 offset to get the input
|
77 |
+
std::get<arg_index>(args[j]) = loader.template load<arg_t>(self.data[arg_index + num_outputs], offset[arg_index], arg_index);
|
78 |
+
}
|
79 |
+
};
|
80 |
+
|
81 |
+
template <int current>
|
82 |
+
struct multi_outputs_store_helper {
|
83 |
+
template<int ntensors, int num_outputs, typename ...Args>
|
84 |
+
C10_HOST_DEVICE static void apply(
|
85 |
+
at::detail::Array<char*, ntensors> data,
|
86 |
+
at::detail::Array<uint32_t, num_outputs> offsets,
|
87 |
+
thrust::tuple<Args...> ret) {
|
88 |
+
using T = typename thrust::tuple_element<current, thrust::tuple<Args...>>::type;
|
89 |
+
T *to = reinterpret_cast<T *>(data[current]) + offsets[current];
|
90 |
+
*to = thrust::get<current>(ret);
|
91 |
+
}
|
92 |
+
};
|
93 |
+
|
94 |
+
} // namespace detail
|
95 |
+
|
96 |
+
struct LoadWithoutCast {
|
97 |
+
template<typename scalar_t>
|
98 |
+
__device__ scalar_t load(char *base_ptr, uint32_t offset, int arg) {
|
99 |
+
return c10::load(reinterpret_cast<scalar_t *>(base_ptr) + offset);
|
100 |
+
}
|
101 |
+
};
|
102 |
+
|
103 |
+
template <int N>
|
104 |
+
struct LoadWithCast {
|
105 |
+
using array_t = at::detail::Array<at::ScalarType, std::max<int>(N, 1)>;
|
106 |
+
using size_array_t = at::detail::Array<uint32_t, std::max<int>(N, 1)>;
|
107 |
+
|
108 |
+
array_t dtypes;
|
109 |
+
size_array_t element_sizes;
|
110 |
+
|
111 |
+
LoadWithCast(const TensorIteratorBase& iter) {
|
112 |
+
CUDA_KERNEL_ASSERT(iter.ninputs() == N);
|
113 |
+
#pragma unroll
|
114 |
+
for (auto i = 0; i < N; ++i) {
|
115 |
+
this->dtypes[i] = iter.dtype(i + iter.noutputs());
|
116 |
+
element_sizes[i] = c10::elementSize(iter.dtype(i + iter.noutputs()));
|
117 |
+
}
|
118 |
+
}
|
119 |
+
|
120 |
+
template<typename scalar_t>
|
121 |
+
__device__ scalar_t load(char *base_ptr, uint32_t offset, int arg) {
|
122 |
+
void *ptr = base_ptr + element_sizes[arg] * offset;
|
123 |
+
return c10::fetch_and_cast<scalar_t>(dtypes[arg], ptr);
|
124 |
+
}
|
125 |
+
};
|
126 |
+
|
127 |
+
struct StoreWithoutCast {
|
128 |
+
template<typename scalar_t>
|
129 |
+
__device__ void store(scalar_t value, char *base_ptr, uint32_t offset, int arg = 0) {
|
130 |
+
*(reinterpret_cast<scalar_t *>(base_ptr) + offset) = value;
|
131 |
+
}
|
132 |
+
};
|
133 |
+
|
134 |
+
template <int N = 1>
|
135 |
+
struct StoreWithCast {
|
136 |
+
using array_t = at::detail::Array<at::ScalarType, std::max<int>(N, 1)>;
|
137 |
+
using size_array_t = at::detail::Array<uint32_t, std::max<int>(N, 1)>;
|
138 |
+
|
139 |
+
array_t dtypes;
|
140 |
+
size_array_t element_sizes;
|
141 |
+
|
142 |
+
StoreWithCast(const TensorIteratorBase& iter) {
|
143 |
+
CUDA_KERNEL_ASSERT(iter.noutputs() == N);
|
144 |
+
#pragma unroll
|
145 |
+
for (auto i = 0; i < N; ++i) {
|
146 |
+
this->dtypes[i] = iter.dtype(i);
|
147 |
+
element_sizes[i] = c10::elementSize(iter.dtype(i));
|
148 |
+
}
|
149 |
+
}
|
150 |
+
|
151 |
+
template<typename scalar_t>
|
152 |
+
__device__ void store(scalar_t value, char *base_ptr, uint32_t offset, int arg = 0) {
|
153 |
+
void *ptr = base_ptr + element_sizes[arg] * offset;
|
154 |
+
c10::cast_and_store<scalar_t>(dtypes[arg], ptr, value);
|
155 |
+
}
|
156 |
+
};
|
157 |
+
|
158 |
+
// aligned vector generates vectorized load/store on CUDA
|
159 |
+
template<typename scalar_t, int vec_size>
|
160 |
+
struct alignas(sizeof(scalar_t) * vec_size) aligned_vector {
|
161 |
+
scalar_t val[vec_size];
|
162 |
+
};
|
163 |
+
|
164 |
+
template <int vec_size, typename scalar_t>
|
165 |
+
__device__ aligned_vector<scalar_t, vec_size> load_vector(const scalar_t *base_ptr, uint32_t offset) {
|
166 |
+
using vec_t = aligned_vector<scalar_t, vec_size>;
|
167 |
+
auto *from = reinterpret_cast<const vec_t *>(base_ptr);
|
168 |
+
return from[offset];
|
169 |
+
}
|
170 |
+
|
171 |
+
template <int vec_size>
|
172 |
+
__device__ aligned_vector<bool, vec_size> load_vector(const bool *base_ptr, uint32_t offset) {
|
173 |
+
// See NOTE [Loading boolean values]
|
174 |
+
auto tmp = load_vector<vec_size>(reinterpret_cast<const uint8_t*>(base_ptr), offset);
|
175 |
+
aligned_vector<bool, vec_size> ret;
|
176 |
+
for (int i = 0; i < vec_size; ++i) {
|
177 |
+
ret.val[i] = bool(tmp.val[i]);
|
178 |
+
}
|
179 |
+
return ret;
|
180 |
+
}
|
181 |
+
|
182 |
+
namespace policies {
|
183 |
+
|
184 |
+
// Assumption:
|
185 |
+
// all tensors are contiguous, that is: stride == sizeof(type) for all tensors
|
186 |
+
template<typename data_t, typename inp_calc_t, typename out_calc_t, typename loader_t, typename storer_t, int num_outputs = 1>
|
187 |
+
struct unroll {
|
188 |
+
|
189 |
+
data_t data;
|
190 |
+
int remaining;
|
191 |
+
inp_calc_t input_offset_calculator;
|
192 |
+
out_calc_t output_offset_calculator;
|
193 |
+
loader_t loader;
|
194 |
+
storer_t storer;
|
195 |
+
|
196 |
+
__device__ unroll(data_t data, int remaining, inp_calc_t ic, out_calc_t oc, loader_t l, storer_t s):
|
197 |
+
data(data), remaining(remaining), input_offset_calculator(ic), output_offset_calculator(oc), loader(l), storer(s) {}
|
198 |
+
|
199 |
+
__device__ inline bool check_inbounds(int thread_work_elem) {
|
200 |
+
return ((int)(threadIdx.x + thread_work_elem*num_threads()) < remaining);
|
201 |
+
}
|
202 |
+
|
203 |
+
template<typename args_t>
|
204 |
+
__device__ inline void load(args_t *args, int idx) {
|
205 |
+
constexpr int arity = std::tuple_size<args_t>::value;
|
206 |
+
int thread_idx = threadIdx.x;
|
207 |
+
#pragma unroll
|
208 |
+
for (int i = 0; i < thread_work_size(); i++) {
|
209 |
+
if (thread_idx >= remaining) {
|
210 |
+
return;
|
211 |
+
}
|
212 |
+
int linear_idx = thread_idx + block_work_size() * idx;
|
213 |
+
auto offset = input_offset_calculator.get(linear_idx);
|
214 |
+
detail::static_unroll<detail::unroll_load_helper, arity>::with_args(*this, args, offset, loader, i, num_outputs);
|
215 |
+
thread_idx += num_threads();
|
216 |
+
}
|
217 |
+
}
|
218 |
+
|
219 |
+
template<typename scalar_t>
|
220 |
+
__device__ inline void store(scalar_t *from, int idx) {
|
221 |
+
int thread_idx = threadIdx.x;
|
222 |
+
#pragma unroll
|
223 |
+
for (int i = 0; i < thread_work_size(); i++) {
|
224 |
+
if (thread_idx >= remaining) {
|
225 |
+
return;
|
226 |
+
}
|
227 |
+
int linear_idx = thread_idx + block_work_size() * idx;
|
228 |
+
int offset = output_offset_calculator.get(linear_idx)[0];
|
229 |
+
storer.store(from[i], data[0], offset);
|
230 |
+
thread_idx += num_threads();
|
231 |
+
}
|
232 |
+
}
|
233 |
+
};
|
234 |
+
|
235 |
+
// Assumption:
|
236 |
+
// all tensors are contiguous, that is: stride == sizeof(type) for all tensors
|
237 |
+
// Note:
|
238 |
+
// Functions in vectorized policy does not do boundary check. It assumes the whole block
|
239 |
+
// has its job to do. So the reminders should be handled by the caller manually.
|
240 |
+
template <int vec_size, typename data_t> // vec_size: number of scalars, can be 1, 2, or 4.
|
241 |
+
struct vectorized {
|
242 |
+
|
243 |
+
static_assert(thread_work_size() % vec_size == 0, "The workload per thread must be a multiple of vec_size");
|
244 |
+
static constexpr int loop_size = thread_work_size() / vec_size;
|
245 |
+
|
246 |
+
data_t data;
|
247 |
+
|
248 |
+
__device__ vectorized(data_t data) : data(data) {}
|
249 |
+
|
250 |
+
__device__ inline constexpr bool check_inbounds(int thread_work_elem) {
|
251 |
+
return true;
|
252 |
+
}
|
253 |
+
|
254 |
+
template<typename accessor_t, typename scalar_t>
|
255 |
+
__device__ inline void load_single_arg(accessor_t to, scalar_t *from) {
|
256 |
+
int thread_idx = threadIdx.x;
|
257 |
+
#pragma unroll
|
258 |
+
for (int i = 0; i < loop_size; i++) {
|
259 |
+
int index = thread_idx + i * num_threads();
|
260 |
+
auto v = load_vector<vec_size>(from, index);
|
261 |
+
#pragma unroll
|
262 |
+
for (int j = 0; j < vec_size; j++) {
|
263 |
+
to(vec_size * i + j) = v.val[j];
|
264 |
+
}
|
265 |
+
}
|
266 |
+
}
|
267 |
+
|
268 |
+
template<typename args_t>
|
269 |
+
__device__ inline void load(args_t *args, int idx) {
|
270 |
+
constexpr int arity = std::tuple_size<args_t>::value;
|
271 |
+
detail::static_unroll<detail::vectorized_load_helper, arity>::with_args(*this, args, idx);
|
272 |
+
}
|
273 |
+
|
274 |
+
template<typename scalar_t>
|
275 |
+
__device__ inline void store(scalar_t *from, int idx) {
|
276 |
+
using vec_t = aligned_vector<scalar_t, vec_size>;
|
277 |
+
scalar_t *to = reinterpret_cast<scalar_t *>(data[0]) + block_work_size() * idx;
|
278 |
+
vec_t *to_ = reinterpret_cast<vec_t *>(to);
|
279 |
+
int thread_idx = threadIdx.x;
|
280 |
+
#pragma unroll
|
281 |
+
for (int i = 0; i < loop_size; i++) {
|
282 |
+
int index = thread_idx + i * num_threads();
|
283 |
+
vec_t v;
|
284 |
+
for (int j = 0; j < vec_size; j++) {
|
285 |
+
v.val[j] = from[vec_size * i + j];
|
286 |
+
}
|
287 |
+
to_[index] = v;
|
288 |
+
}
|
289 |
+
}
|
290 |
+
};
|
291 |
+
|
292 |
+
template <typename data_t, typename inp_calc_t, typename out_calc_t, int num_outputs>
|
293 |
+
struct multi_outputs_unroll {
|
294 |
+
//multi_outputs_unroll struct members and check_inbounds and load methods are copypasted from unroll struct
|
295 |
+
//we don't use inheritance because of compiler bug in cuda 10.2+
|
296 |
+
data_t data;
|
297 |
+
int remaining;
|
298 |
+
inp_calc_t input_offset_calculator;
|
299 |
+
out_calc_t output_offset_calculator;
|
300 |
+
LoadWithoutCast loader;
|
301 |
+
StoreWithoutCast storer;
|
302 |
+
|
303 |
+
__device__ multi_outputs_unroll(data_t data, int remaining, inp_calc_t ic, out_calc_t oc):
|
304 |
+
data(data), remaining(remaining), input_offset_calculator(ic), output_offset_calculator(oc) {}
|
305 |
+
|
306 |
+
__device__ inline bool check_inbounds(int thread_work_elem) {
|
307 |
+
return ((int)(threadIdx.x + thread_work_elem*num_threads()) < remaining);
|
308 |
+
}
|
309 |
+
|
310 |
+
template<typename args_t>
|
311 |
+
__device__ inline void load(args_t *args, int idx) {
|
312 |
+
constexpr int arity = std::tuple_size<args_t>::value;
|
313 |
+
int thread_idx = threadIdx.x;
|
314 |
+
#pragma unroll
|
315 |
+
for (int i = 0; i < thread_work_size(); i++) {
|
316 |
+
if (thread_idx >= remaining) {
|
317 |
+
return;
|
318 |
+
}
|
319 |
+
int linear_idx = thread_idx + block_work_size() * idx;
|
320 |
+
auto offset = input_offset_calculator.get(linear_idx);
|
321 |
+
detail::static_unroll<detail::unroll_load_helper, arity>::with_args(*this, args, offset, loader, i, num_outputs);
|
322 |
+
thread_idx += num_threads();
|
323 |
+
}
|
324 |
+
}
|
325 |
+
|
326 |
+
|
327 |
+
template <typename return_t>
|
328 |
+
__device__ inline void store(return_t *from, int idx) {
|
329 |
+
int thread_idx = threadIdx.x;
|
330 |
+
#pragma unroll
|
331 |
+
for (int i = 0; i < thread_work_size(); i++) {
|
332 |
+
if (thread_idx >= this->remaining) {
|
333 |
+
return;
|
334 |
+
}
|
335 |
+
int linear_idx = thread_idx + block_work_size() * idx;
|
336 |
+
auto offsets = this->output_offset_calculator.get(linear_idx);
|
337 |
+
memory::detail::static_unroll<detail::multi_outputs_store_helper, num_outputs>::with_args(this->data, offsets, from[i]);
|
338 |
+
thread_idx += num_threads();
|
339 |
+
}
|
340 |
+
}
|
341 |
+
};
|
342 |
+
|
343 |
+
} // namespace policies
|
344 |
+
|
345 |
+
// This is only used in host, but we will wrap this into some templates
|
346 |
+
// which is C10_HOST_DEVICE, so we have to make this C10_HOST_DEVICE
|
347 |
+
// in order to compile
|
348 |
+
template<typename scalar_t>
|
349 |
+
inline C10_HOST_DEVICE int can_vectorize_up_to(char *pointer) {
|
350 |
+
uint64_t address = reinterpret_cast<uint64_t>(pointer);
|
351 |
+
constexpr int vec2_alignment = std::alignment_of<aligned_vector<scalar_t, 2>>::value;
|
352 |
+
constexpr int vec4_alignment = std::alignment_of<aligned_vector<scalar_t, 4>>::value;
|
353 |
+
if (address % vec4_alignment == 0) {
|
354 |
+
return 4;
|
355 |
+
} else if (address % vec2_alignment == 0) {
|
356 |
+
return 2;
|
357 |
+
}
|
358 |
+
return 1;
|
359 |
+
}
|
360 |
+
|
361 |
+
template<int i>
|
362 |
+
struct can_vectorize_up_to_helper {
|
363 |
+
template <typename array_t, typename traits>
|
364 |
+
static C10_HOST_DEVICE void apply(int &result, array_t pointers, traits _) {
|
365 |
+
using arg_t = typename traits::template arg<i>::type;
|
366 |
+
// `pointers` hold the data_ptr for tensors [output, input0, input1, ...], so we
|
367 |
+
// need a +1 offset to get the input
|
368 |
+
result = std::min<int>(result, can_vectorize_up_to<arg_t>(pointers[i + 1]));
|
369 |
+
}
|
370 |
+
};
|
371 |
+
|
372 |
+
template<typename func_t, typename array_t>
|
373 |
+
inline int can_vectorize_up_to(array_t pointers) {
|
374 |
+
using traits = function_traits<func_t>;
|
375 |
+
using return_t = typename traits::result_type;
|
376 |
+
constexpr int arity = traits::arity;
|
377 |
+
int result = can_vectorize_up_to<return_t>(pointers[0]);
|
378 |
+
// We need to get the type for each argument of `func_t`, this can only
|
379 |
+
// be done at compile time.
|
380 |
+
detail::static_unroll<can_vectorize_up_to_helper, arity>::with_args(result, pointers, traits());
|
381 |
+
return result;
|
382 |
+
}
|
383 |
+
|
384 |
+
}}} // namespace at::native::memory
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/Normalization.cuh
ADDED
@@ -0,0 +1,1742 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/Tensor.h>
|
4 |
+
#include <ATen/Dispatch.h>
|
5 |
+
#include <ATen/AccumulateType.h>
|
6 |
+
#include <ATen/ceil_div.h>
|
7 |
+
#include <ATen/cuda/CUDAContext.h>
|
8 |
+
#include <ATen/cuda/DeviceUtils.cuh>
|
9 |
+
#include <ATen/native/cuda/block_reduce.cuh>
|
10 |
+
#include <ATen/native/cuda/DeviceSqrt.cuh>
|
11 |
+
#include <ATen/native/cuda/LaunchUtils.h>
|
12 |
+
#include <c10/macros/Macros.h>
|
13 |
+
|
14 |
+
#ifndef AT_PER_OPERATOR_HEADERS
|
15 |
+
#include <ATen/Functions.h>
|
16 |
+
#else
|
17 |
+
#include <ATen/ops/empty.h>
|
18 |
+
#include <ATen/ops/empty_like.h>
|
19 |
+
#include <ATen/ops/zeros.h>
|
20 |
+
#endif
|
21 |
+
|
22 |
+
namespace at { namespace native {
|
23 |
+
|
24 |
+
// The maximum number of threads in a block
|
25 |
+
#if defined(USE_ROCM)
|
26 |
+
constexpr int MAX_BLOCK_SIZE = 256;
|
27 |
+
#else
|
28 |
+
constexpr int MAX_BLOCK_SIZE = 512;
|
29 |
+
#endif
|
30 |
+
|
31 |
+
constexpr unsigned MAX_GRID_SIZE = 65535u;
|
32 |
+
|
33 |
+
// Number of threads in a block given an input size up to MAX_BLOCK_SIZE
|
34 |
+
static int getNumThreads(int nElem) {
|
35 |
+
#if defined(USE_ROCM)
|
36 |
+
int threadSizes[5] = { 16, 32, 64, 128, MAX_BLOCK_SIZE };
|
37 |
+
#else
|
38 |
+
int threadSizes[5] = { 32, 64, 128, 256, MAX_BLOCK_SIZE };
|
39 |
+
#endif
|
40 |
+
for (int i = 0; i != 5; ++i) {
|
41 |
+
if (nElem <= threadSizes[i]) {
|
42 |
+
return threadSizes[i];
|
43 |
+
}
|
44 |
+
}
|
45 |
+
return MAX_BLOCK_SIZE;
|
46 |
+
}
|
47 |
+
|
48 |
+
// Returns the index of the most significant 1 bit in `val`.
|
49 |
+
__device__ __forceinline__ int getMSB(int val) {
|
50 |
+
return 31 - __clz(val);
|
51 |
+
}
|
52 |
+
|
53 |
+
template <typename scalar_t, typename accscalar_t>
|
54 |
+
struct Float2 {
|
55 |
+
accscalar_t v1, v2;
|
56 |
+
__device__ Float2() {}
|
57 |
+
__device__ Float2(scalar_t v1, scalar_t v2) : v1(static_cast<accscalar_t>(v1)), v2(static_cast<accscalar_t>(v2)) {}
|
58 |
+
__device__ Float2(int v) : v1(static_cast<accscalar_t>(v)), v2(static_cast<accscalar_t>(v)) {}
|
59 |
+
__device__ Float2& operator+=(const Float2& a) {
|
60 |
+
v1 += a.v1;
|
61 |
+
v2 += a.v2;
|
62 |
+
return *this;
|
63 |
+
}
|
64 |
+
__device__ friend Float2 operator+(Float2 a, const Float2& b) {
|
65 |
+
a += b;
|
66 |
+
return a;
|
67 |
+
}
|
68 |
+
};
|
69 |
+
|
70 |
+
template <typename scalar_t, typename accscalar_t, typename PTA>
|
71 |
+
struct GradOp {
|
72 |
+
__device__ GradOp(accscalar_t m, const PTA& i, const PTA& g)
|
73 |
+
: mean(m), input(i), grad_output(g) {}
|
74 |
+
__device__ __forceinline__ Float2<scalar_t, accscalar_t> operator()(int batch, int plane, int n) {
|
75 |
+
accscalar_t g = grad_output[batch][plane][n];
|
76 |
+
accscalar_t c = static_cast<accscalar_t>(input[batch][plane][n]) - mean;
|
77 |
+
return Float2<scalar_t, accscalar_t>(g, g * c);
|
78 |
+
}
|
79 |
+
const accscalar_t mean;
|
80 |
+
const PTA& input;
|
81 |
+
const PTA& grad_output;
|
82 |
+
};
|
83 |
+
|
84 |
+
template <typename acc_t>
|
85 |
+
struct SumReduceOp {
|
86 |
+
__device__ __forceinline__ acc_t combine(acc_t a, acc_t b) const { return a + b; }
|
87 |
+
|
88 |
+
__device__ __forceinline__ acc_t warp_shfl_down(acc_t data, int offset) const {
|
89 |
+
return WARP_SHFL_DOWN(data, offset);
|
90 |
+
}
|
91 |
+
};
|
92 |
+
|
93 |
+
template <typename scalar_t, typename accscalar_t>
|
94 |
+
struct SumReduceOp<Float2<scalar_t, accscalar_t>> {
|
95 |
+
using acc_t = Float2<scalar_t, accscalar_t>;
|
96 |
+
|
97 |
+
__device__ __forceinline__ acc_t combine(acc_t a, acc_t b) const { return a + b; }
|
98 |
+
|
99 |
+
__device__ __forceinline__ acc_t warp_shfl_down(acc_t data, int offset) const {
|
100 |
+
return {WARP_SHFL_DOWN(data.v1, offset), WARP_SHFL_DOWN(data.v2, offset)};
|
101 |
+
}
|
102 |
+
};
|
103 |
+
|
104 |
+
// Sum across (batch, x/y/z) applying Op() pointwise
|
105 |
+
// this works by first having each thread sum it's part
|
106 |
+
// of the data. Then there is a double-shuffling reduction.
|
107 |
+
// First each warp (of C10_WARP_SIZE threads) uses warpSum to reduce its
|
108 |
+
// data to the "warp leader", who writes its value into shared memory.
|
109 |
+
// Then a single warp reads the remaining (at most C10_WARP_SIZE) items
|
110 |
+
// and reduces them using another warpSum.
|
111 |
+
// The implicit assumption is that there are no more
|
112 |
+
// than C10_WARP_SIZE**2 threads.
|
113 |
+
template<typename scalar_t, typename Op, typename PTA>
|
114 |
+
__device__ scalar_t reduce(Op op, PTA tensor, int plane) {
|
115 |
+
// first the reductions each thread does separately
|
116 |
+
scalar_t sum = static_cast<scalar_t>(0);
|
117 |
+
for (int batch = threadIdx.y; batch < tensor.size(0); batch += blockDim.y) {
|
118 |
+
for (int x = threadIdx.x; x < tensor.size(2); x += blockDim.x) {
|
119 |
+
sum += op(batch, plane, x);
|
120 |
+
}
|
121 |
+
}
|
122 |
+
__shared__ scalar_t shared[C10_WARP_SIZE];
|
123 |
+
SumReduceOp<scalar_t> reduce_op;
|
124 |
+
sum = cuda_utils::BlockReduce<scalar_t, SumReduceOp<scalar_t>, cuda_utils::Block2D>(sum, reduce_op, 0, shared);
|
125 |
+
if (threadIdx.x == 0 && threadIdx.y == 0) {
|
126 |
+
shared[0] = sum;
|
127 |
+
}
|
128 |
+
__syncthreads();
|
129 |
+
// Everyone picks it up, should be broadcast into the whole grad_input
|
130 |
+
return shared[0];
|
131 |
+
}
|
132 |
+
|
133 |
+
constexpr int ELEMENTS_PER_ITER = 4; // enables concurrency within each thread to hide latency
|
134 |
+
constexpr int ELEMENTS_PER_THREAD = 16;
|
135 |
+
constexpr int OPTIMAL_TILE_W = 32;
|
136 |
+
constexpr int MAX_H_BLOCK = 128;
|
137 |
+
|
138 |
+
__host__ void flexible_launch_configs(
|
139 |
+
const int reduction,
|
140 |
+
const int stride,
|
141 |
+
dim3 &block,
|
142 |
+
dim3 &grid,
|
143 |
+
const bool coop_flag = false) {
|
144 |
+
int block_x = std::min(lastPow2(stride), OPTIMAL_TILE_W);
|
145 |
+
int block_y = std::min(lastPow2(at::ceil_div(reduction , ELEMENTS_PER_THREAD)),
|
146 |
+
MAX_BLOCK_SIZE / block_x);
|
147 |
+
if (block_x * block_y != MAX_BLOCK_SIZE) {
|
148 |
+
block_x = std::min(lastPow2(stride), MAX_BLOCK_SIZE / block_y);
|
149 |
+
}
|
150 |
+
|
151 |
+
int grid_x = at::ceil_div(stride, block_x);
|
152 |
+
int grid_y = std::min(at::ceil_div(reduction, block_y * ELEMENTS_PER_THREAD), MAX_H_BLOCK);
|
153 |
+
if (coop_flag) {
|
154 |
+
// it's not worth having a grid reduction if the reduction dimension is not big enough
|
155 |
+
grid_y = grid_y < 8 ? 1 : grid_y;
|
156 |
+
}
|
157 |
+
|
158 |
+
block.x = block_x;
|
159 |
+
block.y = block_y;
|
160 |
+
block.z = 1;
|
161 |
+
grid.x = grid_x;
|
162 |
+
grid.y = grid_y;
|
163 |
+
grid.z = 1;
|
164 |
+
}
|
165 |
+
|
166 |
+
template<typename T, typename C>
|
167 |
+
__device__ __forceinline__ void welford_merge_element(C& count,
|
168 |
+
T& mean,
|
169 |
+
T& m2n,
|
170 |
+
const C& count_new,
|
171 |
+
const T& mean_new,
|
172 |
+
const T& m2n_new) {
|
173 |
+
T factor = T(1.0) / ::max(1, (count + count_new));
|
174 |
+
T delta0 = mean - mean_new;
|
175 |
+
mean = (mean_new * count_new + mean * count) * factor;
|
176 |
+
m2n += m2n_new + delta0 * delta0 * count_new * count * factor;
|
177 |
+
count += count_new;
|
178 |
+
}
|
179 |
+
|
180 |
+
// merge mean/m2n among threadIdx.y within block
|
181 |
+
template<typename T, typename C>
|
182 |
+
__device__ __forceinline__ void welford_merge_block_vertical(C& count,
|
183 |
+
T& mean,
|
184 |
+
T& m2n,
|
185 |
+
C* shmem_count,
|
186 |
+
T* shmem_mean,
|
187 |
+
T* shmem_m2n) {
|
188 |
+
// write to shared memory
|
189 |
+
auto address_base = threadIdx.x + threadIdx.y * blockDim.x;
|
190 |
+
|
191 |
+
#pragma unroll
|
192 |
+
for (int offset = blockDim.y/2; offset > 0; offset >>= 1) {
|
193 |
+
if (threadIdx.y < offset*2) {
|
194 |
+
shmem_mean[address_base] = mean;
|
195 |
+
shmem_m2n[address_base] = m2n;
|
196 |
+
shmem_count[address_base] = count;
|
197 |
+
}
|
198 |
+
__syncthreads();
|
199 |
+
if (threadIdx.y < offset && threadIdx.y + offset < blockDim.y) {
|
200 |
+
auto address = address_base + offset * blockDim.x;
|
201 |
+
// read shared memory back to register for reduction
|
202 |
+
auto count_new = shmem_count[address];
|
203 |
+
auto mean_new = shmem_mean[address];
|
204 |
+
auto m2n_new = shmem_m2n[address];
|
205 |
+
|
206 |
+
welford_merge_element(count, mean, m2n, count_new, mean_new, m2n_new);
|
207 |
+
}
|
208 |
+
}
|
209 |
+
}
|
210 |
+
|
211 |
+
template <typename input_scalar_t, typename stat_scalar_t, typename stat_accscalar_t, bool train, typename index_t>
|
212 |
+
__global__ void batch_norm_transform_input_kernel(
|
213 |
+
const GenericPackedTensorAccessor<input_scalar_t, 3, RestrictPtrTraits, index_t> input,
|
214 |
+
GenericPackedTensorAccessor<input_scalar_t, 3, RestrictPtrTraits, index_t> output,
|
215 |
+
const GenericPackedTensorAccessor<typename std::conditional<train, stat_accscalar_t, stat_scalar_t>::type, 1, RestrictPtrTraits, index_t> mean_,
|
216 |
+
const GenericPackedTensorAccessor<typename std::conditional<train, stat_accscalar_t, stat_scalar_t>::type, 1, RestrictPtrTraits, index_t> var_or_invstd,
|
217 |
+
const GenericPackedTensorAccessor<stat_scalar_t, 1, RestrictPtrTraits, index_t> weight,
|
218 |
+
const GenericPackedTensorAccessor<stat_scalar_t, 1, RestrictPtrTraits, index_t> bias,
|
219 |
+
stat_accscalar_t epsilon) {
|
220 |
+
|
221 |
+
index_t plane = blockIdx.x;
|
222 |
+
|
223 |
+
if (plane >= input.size(1)) {
|
224 |
+
return;
|
225 |
+
}
|
226 |
+
|
227 |
+
stat_accscalar_t gamma = weight.size(0) > 0 ? static_cast<stat_accscalar_t>(weight[plane]) : static_cast<stat_accscalar_t>(1);
|
228 |
+
stat_accscalar_t beta = bias.size(0) > 0 ? static_cast<stat_accscalar_t>(bias[plane]) : static_cast<stat_accscalar_t>(0);
|
229 |
+
stat_accscalar_t mean = static_cast<stat_accscalar_t>(mean_[plane]);
|
230 |
+
stat_accscalar_t invstd;
|
231 |
+
if (train) {
|
232 |
+
invstd = var_or_invstd[plane];
|
233 |
+
} else {
|
234 |
+
invstd = static_cast<stat_accscalar_t>(1) / device_sqrt(static_cast<stat_accscalar_t>(var_or_invstd[plane]) + epsilon);
|
235 |
+
}
|
236 |
+
|
237 |
+
index_t bs = input.size(0);
|
238 |
+
index_t fs = input.size(2);
|
239 |
+
|
240 |
+
index_t bstep = blockDim.y * gridDim.y;
|
241 |
+
for (index_t batch = threadIdx.y + blockIdx.y * blockDim.y; batch < bs; batch += bstep) {
|
242 |
+
auto o = output[batch][plane];
|
243 |
+
auto i = input[batch][plane];
|
244 |
+
for (index_t feature = threadIdx.x; feature < fs; feature += blockDim.x) {
|
245 |
+
o[feature] = static_cast<input_scalar_t>(gamma * (i[feature] - mean) * invstd + beta);
|
246 |
+
}
|
247 |
+
}
|
248 |
+
}
|
249 |
+
|
250 |
+
struct InvStd {
|
251 |
+
template <typename T>
|
252 |
+
__device__ __forceinline__ T operator()(T var, double epsilon) const {
|
253 |
+
T invstd = 0;
|
254 |
+
if (var != static_cast<T>(0) || epsilon != static_cast<T>(0)) {
|
255 |
+
invstd = static_cast<T>(1) / device_sqrt(var + epsilon);
|
256 |
+
}
|
257 |
+
return invstd;
|
258 |
+
}
|
259 |
+
};
|
260 |
+
|
261 |
+
struct Var {
|
262 |
+
template <typename T>
|
263 |
+
__device__ __forceinline__ T operator()(T var, double epsilon) const {
|
264 |
+
return var;
|
265 |
+
}
|
266 |
+
};
|
267 |
+
|
268 |
+
template <typename VarTransform, typename input_scalar_t, typename stat_scalar_t, typename stat_accscalar_t, typename index_t>
|
269 |
+
__global__ void batch_norm_collect_statistics_kernel(
|
270 |
+
const GenericPackedTensorAccessor<input_scalar_t, 3, RestrictPtrTraits, index_t> input,
|
271 |
+
const stat_accscalar_t epsilon,
|
272 |
+
const stat_accscalar_t momentum,
|
273 |
+
GenericPackedTensorAccessor<stat_accscalar_t, 1, RestrictPtrTraits, index_t> save_mean,
|
274 |
+
GenericPackedTensorAccessor<stat_accscalar_t, 1, RestrictPtrTraits, index_t> save_transformed_var) {
|
275 |
+
|
276 |
+
__shared__ int shared_n[2 * 2 * C10_WARP_SIZE + C10_WARP_SIZE];
|
277 |
+
|
278 |
+
int plane = blockIdx.x;
|
279 |
+
int N = input.size(0) * input.size(2);
|
280 |
+
int tid = threadIdx.x + threadIdx.y * blockDim.x;
|
281 |
+
|
282 |
+
// Compute the mean and variance across (batch, x/y/z)
|
283 |
+
// this uses the Welford (in the for loop)/parallel algorithm (to sum across the block)
|
284 |
+
// https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_Online_algorithm
|
285 |
+
// and the parallel algorithm on the same page.
|
286 |
+
// We use two shuffles to reduce across the entire block.
|
287 |
+
// https://devblogs.nvidia.com/faster-parallel-reductions-kepler/ has a description.
|
288 |
+
stat_accscalar_t* shared_avg_var = (stat_accscalar_t*) &shared_n[C10_WARP_SIZE];
|
289 |
+
|
290 |
+
// first the reductions each thread does separately
|
291 |
+
stat_accscalar_t avg = 0;
|
292 |
+
stat_accscalar_t var_n = 0;
|
293 |
+
int n = 0;
|
294 |
+
for (int batch = threadIdx.y; batch < input.size(0); batch += blockDim.y) {
|
295 |
+
for (int x = threadIdx.x; x < input.size(2); x += blockDim.x) {
|
296 |
+
stat_accscalar_t v = input[batch][plane][x];
|
297 |
+
stat_accscalar_t d1 = v - avg;
|
298 |
+
n++;
|
299 |
+
avg += d1 / n;
|
300 |
+
var_n += d1 * (v - avg);
|
301 |
+
}
|
302 |
+
}
|
303 |
+
|
304 |
+
// first warpSum to get one value per thread to
|
305 |
+
// one value per warp
|
306 |
+
for (int i = 0; i < getMSB(C10_WARP_SIZE); ++i) {
|
307 |
+
stat_accscalar_t o_avg = WARP_SHFL_XOR(avg, 1 << i, C10_WARP_SIZE);
|
308 |
+
int o_n = WARP_SHFL_XOR(n, 1 << i, C10_WARP_SIZE);
|
309 |
+
stat_accscalar_t factor = 1.0 / fmaxf(1.0, n+o_n);
|
310 |
+
var_n += WARP_SHFL_XOR(var_n, 1 << i, C10_WARP_SIZE) + (avg - o_avg) * (avg - o_avg) * n * o_n * factor;
|
311 |
+
avg = (n * avg + o_n * o_avg) * factor;
|
312 |
+
n += o_n;
|
313 |
+
}
|
314 |
+
|
315 |
+
// this writes each warps item into shared memory
|
316 |
+
// there are at most C10_WARP_SIZE items left because
|
317 |
+
// there are at most C10_WARP_SIZE**2 threads at the beginning
|
318 |
+
__syncthreads();
|
319 |
+
if (tid % C10_WARP_SIZE == 0) {
|
320 |
+
shared_n[tid / C10_WARP_SIZE] = n;
|
321 |
+
shared_avg_var[tid / C10_WARP_SIZE * 2] = avg;
|
322 |
+
shared_avg_var[tid / C10_WARP_SIZE * 2 + 1] = var_n;
|
323 |
+
}
|
324 |
+
__syncthreads();
|
325 |
+
// now have a second warpSum to reduce the intermediate values
|
326 |
+
// from shared memory to a single number. The very first
|
327 |
+
// thread writes it to shared memory.
|
328 |
+
|
329 |
+
if (tid < C10_WARP_SIZE) {
|
330 |
+
n = (tid < blockDim.x * blockDim.y / C10_WARP_SIZE ? shared_n[tid] : 0);
|
331 |
+
avg = (tid < blockDim.x * blockDim.y / C10_WARP_SIZE ? shared_avg_var[2 * tid] : stat_accscalar_t(0));
|
332 |
+
var_n = (tid < blockDim.x * blockDim.y / C10_WARP_SIZE ? shared_avg_var[2 * tid + 1] : stat_accscalar_t(0));
|
333 |
+
}
|
334 |
+
for (int i = 0; i < getMSB(C10_WARP_SIZE); ++i) {
|
335 |
+
stat_accscalar_t o_avg = WARP_SHFL_XOR(avg, 1 << i, C10_WARP_SIZE);
|
336 |
+
int o_n = WARP_SHFL_XOR(n, 1 << i, C10_WARP_SIZE);
|
337 |
+
stat_accscalar_t factor = 1.0 / fmaxf(1.0, n+o_n);
|
338 |
+
var_n += WARP_SHFL_XOR(var_n, 1 << i, C10_WARP_SIZE) + (avg - o_avg) * (avg - o_avg) * n * o_n * factor;
|
339 |
+
avg = (n * avg + o_n * o_avg) * factor;
|
340 |
+
n += o_n;
|
341 |
+
}
|
342 |
+
|
343 |
+
// Save the mean, variance, and moving averages
|
344 |
+
if (tid == 0) {
|
345 |
+
if (save_mean.data() != NULL) {
|
346 |
+
save_mean[plane] = avg;
|
347 |
+
}
|
348 |
+
if (save_transformed_var.data() != NULL) {
|
349 |
+
save_transformed_var[plane] = VarTransform{}(var_n / N, epsilon);
|
350 |
+
}
|
351 |
+
}
|
352 |
+
|
353 |
+
}
|
354 |
+
|
355 |
+
template <typename input_scalar_t, typename stat_scalar_t, typename stat_accscalar_t, typename index_t>
|
356 |
+
__global__ void batch_norm_backward_kernel(
|
357 |
+
const GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> input,
|
358 |
+
const GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> grad_output,
|
359 |
+
GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> grad_input,
|
360 |
+
GenericPackedTensorAccessor<stat_scalar_t, 1, DefaultPtrTraits, index_t> grad_weight,
|
361 |
+
GenericPackedTensorAccessor<stat_scalar_t, 1, DefaultPtrTraits, index_t> grad_bias,
|
362 |
+
const GenericPackedTensorAccessor<stat_scalar_t, 1, DefaultPtrTraits, index_t> weight,
|
363 |
+
const GenericPackedTensorAccessor<stat_scalar_t, 1, DefaultPtrTraits, index_t> running_mean,
|
364 |
+
const GenericPackedTensorAccessor<stat_scalar_t, 1, DefaultPtrTraits, index_t> running_var,
|
365 |
+
const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> save_mean,
|
366 |
+
const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> save_invstd,
|
367 |
+
bool train,
|
368 |
+
stat_accscalar_t epsilon) {
|
369 |
+
|
370 |
+
index_t plane = blockIdx.x;
|
371 |
+
index_t N = grad_output.size(0) * grad_output.size(2);
|
372 |
+
|
373 |
+
stat_accscalar_t mean, invstd;
|
374 |
+
if (train) {
|
375 |
+
mean = save_mean[plane];
|
376 |
+
invstd = save_invstd[plane];
|
377 |
+
} else {
|
378 |
+
mean = static_cast<stat_accscalar_t>(running_mean[plane]);
|
379 |
+
invstd = static_cast<stat_accscalar_t>(1) / device_sqrt(static_cast<stat_accscalar_t>(running_var[plane]) + epsilon);
|
380 |
+
}
|
381 |
+
|
382 |
+
stat_accscalar_t weight_val = weight.size(0) > 0 ? static_cast<stat_accscalar_t>(weight[plane]) : stat_accscalar_t(1);
|
383 |
+
stat_accscalar_t norm = stat_accscalar_t(1) / N;
|
384 |
+
|
385 |
+
// Compute two values across (batch, x/y/z) in one pass:
|
386 |
+
// 1. Sum(grad_output)
|
387 |
+
// 2. DotProduct(input - mean, grad_output)
|
388 |
+
GradOp<input_scalar_t, stat_accscalar_t, GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t>> g(mean, input, grad_output);
|
389 |
+
auto res = reduce<Float2<input_scalar_t, stat_accscalar_t>>(g, grad_output, plane);
|
390 |
+
|
391 |
+
stat_accscalar_t grad_output_sum = res.v1;
|
392 |
+
stat_accscalar_t dot_p = res.v2;
|
393 |
+
|
394 |
+
stat_accscalar_t grad_mean = grad_output_sum * norm;
|
395 |
+
stat_accscalar_t proj_scale = dot_p * norm * invstd * invstd;
|
396 |
+
stat_accscalar_t grad_scale = invstd * weight_val;
|
397 |
+
|
398 |
+
if (grad_input.data() != NULL) {
|
399 |
+
for (int batch = threadIdx.y; batch < grad_output.size(0); batch += blockDim.y) {
|
400 |
+
for (int x = threadIdx.x; x < grad_output.size(2); x += blockDim.x) {
|
401 |
+
input_scalar_t go = grad_output[batch][plane][x];
|
402 |
+
if (train) {
|
403 |
+
stat_accscalar_t inp = input[batch][plane][x];
|
404 |
+
stat_accscalar_t proj = (inp - mean) * proj_scale;
|
405 |
+
grad_input[batch][plane][x] = static_cast<input_scalar_t>((go - proj - grad_mean) * grad_scale);
|
406 |
+
} else {
|
407 |
+
grad_input[batch][plane][x] = static_cast<input_scalar_t>(go * grad_scale);
|
408 |
+
}
|
409 |
+
}
|
410 |
+
}
|
411 |
+
}
|
412 |
+
|
413 |
+
if (grad_weight.size(0) > 0) {
|
414 |
+
if (threadIdx.x == 0) {
|
415 |
+
grad_weight[plane] = static_cast<stat_scalar_t>(dot_p * invstd);
|
416 |
+
}
|
417 |
+
}
|
418 |
+
|
419 |
+
if (grad_bias.size(0) > 0) {
|
420 |
+
if (threadIdx.x == 0) {
|
421 |
+
grad_bias[plane] = static_cast<stat_scalar_t>(grad_output_sum);
|
422 |
+
}
|
423 |
+
}
|
424 |
+
}
|
425 |
+
|
426 |
+
template <typename scalar_t, typename accscalar_t, typename index_t>
|
427 |
+
__global__ void batch_norm_reduce_statistics_kernel(
|
428 |
+
const GenericPackedTensorAccessor<accscalar_t, 2, RestrictPtrTraits, index_t> vec_mean,
|
429 |
+
const GenericPackedTensorAccessor<accscalar_t, 2, RestrictPtrTraits, index_t> vec_invstd,
|
430 |
+
GenericPackedTensorAccessor<accscalar_t, 1, RestrictPtrTraits, index_t> mean,
|
431 |
+
GenericPackedTensorAccessor<accscalar_t, 1, RestrictPtrTraits, index_t> invstd,
|
432 |
+
GenericPackedTensorAccessor<scalar_t, 1, RestrictPtrTraits, index_t> running_mean,
|
433 |
+
GenericPackedTensorAccessor<scalar_t, 1, RestrictPtrTraits, index_t> running_var,
|
434 |
+
const accscalar_t epsilon,
|
435 |
+
const accscalar_t momentum,
|
436 |
+
const GenericPackedTensorAccessor<scalar_t, 1, RestrictPtrTraits, index_t> counts) {
|
437 |
+
|
438 |
+
int feature_size = vec_mean.size(1);
|
439 |
+
int world_size = vec_mean.size(0);
|
440 |
+
|
441 |
+
int bid = blockIdx.x;
|
442 |
+
int tid = threadIdx.x;
|
443 |
+
|
444 |
+
// first the reductions each thread does separately
|
445 |
+
for (int i = bid*blockDim.x+tid; i < feature_size; i += gridDim.x*blockDim.x) {
|
446 |
+
accscalar_t avg = 0;
|
447 |
+
accscalar_t var_n = 0;
|
448 |
+
index_t n = 0;
|
449 |
+
for (int j = 0; j < world_size; j++) {
|
450 |
+
scalar_t count = counts[j];
|
451 |
+
accscalar_t m = vec_mean[j][i];
|
452 |
+
accscalar_t v = accscalar_t(1.0) / (vec_invstd[j][i]);
|
453 |
+
v = (v * v - epsilon) * count;
|
454 |
+
accscalar_t factor = 1.0 / (n + count);
|
455 |
+
var_n += v + (avg - m) * (avg - m) * n * count * factor;
|
456 |
+
avg = n * factor * avg + count * factor * m;
|
457 |
+
n += count;
|
458 |
+
}
|
459 |
+
mean[i] = avg;
|
460 |
+
invstd[i] = static_cast<accscalar_t>(1) / device_sqrt(var_n / n + epsilon);
|
461 |
+
if (running_mean.data() != NULL) {
|
462 |
+
running_mean[i] = static_cast<scalar_t>((1 - momentum) * running_mean[i] + momentum * avg);
|
463 |
+
}
|
464 |
+
accscalar_t unbiasedVar = var_n / (n - 1);
|
465 |
+
if (running_var.data() != NULL) {
|
466 |
+
running_var[i] = static_cast<scalar_t>((1 - momentum) * running_var[i] + momentum * unbiasedVar);
|
467 |
+
}
|
468 |
+
}
|
469 |
+
|
470 |
+
}
|
471 |
+
|
472 |
+
template <typename input_scalar_t, typename stat_scalar_t, typename stat_accscalar_t, typename index_t>
|
473 |
+
__global__ void batch_norm_backward_reduce_kernel(
|
474 |
+
const GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> input,
|
475 |
+
const GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> grad_output,
|
476 |
+
GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> mean,
|
477 |
+
GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> invstd,
|
478 |
+
GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> sum_dy,
|
479 |
+
GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> sum_dy_xmu,
|
480 |
+
GenericPackedTensorAccessor<stat_scalar_t, 1, DefaultPtrTraits, index_t> grad_weight,
|
481 |
+
GenericPackedTensorAccessor<stat_scalar_t, 1, DefaultPtrTraits, index_t> grad_bias) {
|
482 |
+
|
483 |
+
index_t plane = blockIdx.x;
|
484 |
+
|
485 |
+
stat_accscalar_t r_mean = mean[plane];
|
486 |
+
stat_accscalar_t factor = invstd[plane];
|
487 |
+
|
488 |
+
GradOp<input_scalar_t, stat_accscalar_t, GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t>> g(r_mean, input, grad_output);
|
489 |
+
auto res = reduce<Float2<input_scalar_t, stat_accscalar_t>>(g, grad_output, plane);
|
490 |
+
|
491 |
+
if (threadIdx.x == 0) {
|
492 |
+
if (grad_weight.size(0) > 0) {
|
493 |
+
grad_weight[plane] = static_cast<stat_scalar_t>(res.v2 * factor);
|
494 |
+
}
|
495 |
+
if (grad_bias.size(0) > 0) {
|
496 |
+
grad_bias[plane] = static_cast<stat_scalar_t>(res.v1);
|
497 |
+
}
|
498 |
+
if (sum_dy.size(0) > 0) {
|
499 |
+
sum_dy[plane] = static_cast<stat_accscalar_t>(res.v1);
|
500 |
+
}
|
501 |
+
if (sum_dy_xmu.size(0) > 0) {
|
502 |
+
sum_dy_xmu[plane] = static_cast<stat_accscalar_t>(res.v2);
|
503 |
+
}
|
504 |
+
}
|
505 |
+
}
|
506 |
+
|
507 |
+
template <typename input_scalar_t, typename stat_scalar_t, typename stat_accscalar_t, typename index_t>
|
508 |
+
__device__ __forceinline__ void batch_norm_backward_elemt_kernel_impl(
|
509 |
+
const GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> input,
|
510 |
+
const GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> grad_output,
|
511 |
+
const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> mean,
|
512 |
+
const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> invstd,
|
513 |
+
const GenericPackedTensorAccessor<stat_scalar_t, 1, DefaultPtrTraits, index_t> weight,
|
514 |
+
const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> sum_dy,
|
515 |
+
const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> sum_dy_xmu,
|
516 |
+
GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> grad_input,
|
517 |
+
const stat_accscalar_t norm_fct) {
|
518 |
+
index_t plane = blockIdx.x;
|
519 |
+
|
520 |
+
if (plane >= input.size(1)) {
|
521 |
+
return;
|
522 |
+
}
|
523 |
+
|
524 |
+
stat_accscalar_t m_c = mean[plane];
|
525 |
+
stat_accscalar_t m_dy_c = sum_dy[plane] * norm_fct;
|
526 |
+
stat_accscalar_t factor_1_c = invstd[plane];
|
527 |
+
stat_accscalar_t factor_2_c = weight.size(0) > 0 ? static_cast<stat_accscalar_t>(weight[plane]) : stat_accscalar_t(1);
|
528 |
+
factor_2_c *= factor_1_c;
|
529 |
+
factor_1_c = factor_1_c * factor_1_c * sum_dy_xmu[plane] * norm_fct;
|
530 |
+
|
531 |
+
index_t bs = input.size(0);
|
532 |
+
index_t fs = input.size(2);
|
533 |
+
|
534 |
+
index_t bstep = blockDim.y * gridDim.y;
|
535 |
+
for (index_t batch = threadIdx.y + blockIdx.y * blockDim.y; batch < bs; batch += bstep) {
|
536 |
+
auto g_i = grad_input[batch][plane];
|
537 |
+
auto g_o = grad_output[batch][plane];
|
538 |
+
auto i = input[batch][plane];
|
539 |
+
for (index_t feature = threadIdx.x; feature < fs; feature += blockDim.x) {
|
540 |
+
g_i[feature] = static_cast<input_scalar_t>((g_o[feature] - m_dy_c - (i[feature] - m_c) * factor_1_c) * factor_2_c);
|
541 |
+
}
|
542 |
+
}
|
543 |
+
}
|
544 |
+
|
545 |
+
template <typename input_scalar_t, typename stat_scalar_t, typename stat_accscalar_t, typename index_t>
|
546 |
+
__global__ void batch_norm_backward_elemt_kernel(
|
547 |
+
const GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> input,
|
548 |
+
const GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> grad_output,
|
549 |
+
const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> mean,
|
550 |
+
const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> invstd,
|
551 |
+
const GenericPackedTensorAccessor<stat_scalar_t, 1, DefaultPtrTraits, index_t> weight,
|
552 |
+
const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> sum_dy,
|
553 |
+
const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> sum_dy_xmu,
|
554 |
+
GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> grad_input,
|
555 |
+
const int* __restrict__ numel, const int world_size) {
|
556 |
+
int64_t total_numel = 0;
|
557 |
+
for (int i = 0; i < world_size; i ++) {
|
558 |
+
total_numel += numel[i];
|
559 |
+
}
|
560 |
+
|
561 |
+
const stat_accscalar_t norm_fct =
|
562 |
+
static_cast<stat_accscalar_t>(1) / static_cast<stat_accscalar_t>(total_numel);
|
563 |
+
batch_norm_backward_elemt_kernel_impl(
|
564 |
+
input, grad_output, mean, invstd, weight, sum_dy, sum_dy_xmu, grad_input, norm_fct);
|
565 |
+
}
|
566 |
+
|
567 |
+
template <typename input_scalar_t, typename stat_scalar_t, typename stat_accscalar_t, typename index_t>
|
568 |
+
__global__ void batch_norm_backward_elemt_kernel(
|
569 |
+
const GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> input,
|
570 |
+
const GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> grad_output,
|
571 |
+
const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> mean,
|
572 |
+
const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> invstd,
|
573 |
+
const GenericPackedTensorAccessor<stat_scalar_t, 1, DefaultPtrTraits, index_t> weight,
|
574 |
+
const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> sum_dy,
|
575 |
+
const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> sum_dy_xmu,
|
576 |
+
GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> grad_input,
|
577 |
+
const stat_accscalar_t norm_fct) {
|
578 |
+
batch_norm_backward_elemt_kernel_impl(
|
579 |
+
input, grad_output, mean, invstd, weight, sum_dy, sum_dy_xmu, grad_input, norm_fct);
|
580 |
+
}
|
581 |
+
|
582 |
+
template <typename scalar_t, int64_t dim, template <typename U> class PtrTraits = DefaultPtrTraits, typename index_t = int64_t>
|
583 |
+
static GenericPackedTensorAccessor<scalar_t, dim, PtrTraits, index_t> get_packed_accessor(
|
584 |
+
const Tensor& t, c10::string_view var_name) {
|
585 |
+
constexpr auto expect_type = c10::CppTypeToScalarType<scalar_t>::value;
|
586 |
+
const auto actual_type = t.scalar_type();
|
587 |
+
TORCH_CHECK(actual_type == expect_type, "Expected ", var_name,
|
588 |
+
" to have type ", expect_type, " but got ", actual_type);
|
589 |
+
return t.generic_packed_accessor<scalar_t, dim, PtrTraits, index_t>();
|
590 |
+
}
|
591 |
+
|
592 |
+
template <typename scalar_t, int64_t dim, template <typename U> class PtrTraits = DefaultPtrTraits, typename index_t = int64_t>
|
593 |
+
static GenericPackedTensorAccessor<scalar_t, dim, PtrTraits, index_t> packed_accessor_or_dummy(
|
594 |
+
const Tensor& t, c10::string_view var_name) {
|
595 |
+
if (!t.defined()) {
|
596 |
+
const std::array<index_t, dim> zeros{{0}};
|
597 |
+
return GenericPackedTensorAccessor<scalar_t, dim, PtrTraits, index_t>(nullptr, zeros.data(), zeros.data());
|
598 |
+
}
|
599 |
+
return get_packed_accessor<scalar_t, dim, PtrTraits, index_t>(t, var_name);
|
600 |
+
}
|
601 |
+
|
602 |
+
template<typename input_scalar_t, typename stat_scalar_t, typename index_t>
|
603 |
+
std::tuple<Tensor, Tensor, Tensor> batch_norm_backward_cuda_template(const Tensor& grad_out_, const Tensor& input_, const Tensor& weight_,
|
604 |
+
const Tensor& running_mean_, const Tensor& running_var_, const Tensor& save_mean_, const Tensor& save_invstd_,
|
605 |
+
bool train, double epsilon, std::array<bool,3> grad_input_mask) {
|
606 |
+
|
607 |
+
using accscalar_t = at::acc_type<stat_scalar_t, true>;
|
608 |
+
Tensor grad_input_;
|
609 |
+
Tensor grad_input_reshaped;
|
610 |
+
Tensor grad_weight_;
|
611 |
+
Tensor grad_bias_;
|
612 |
+
auto input_reshaped = input_.reshape({input_.size(0), input_.size(1), -1});
|
613 |
+
auto grad_output_reshaped = grad_out_.reshape(input_reshaped.sizes());
|
614 |
+
|
615 |
+
if (grad_input_mask[0]) {
|
616 |
+
grad_input_ = at::empty_like(input_, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
|
617 |
+
grad_input_reshaped = grad_input_.view(input_reshaped.sizes());
|
618 |
+
}
|
619 |
+
if (grad_input_mask[1]) {
|
620 |
+
grad_weight_ = at::empty_like(weight_, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
|
621 |
+
}
|
622 |
+
if (grad_input_mask[2]) {
|
623 |
+
grad_bias_ = at::empty_like(weight_, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
|
624 |
+
}
|
625 |
+
|
626 |
+
auto input = get_packed_accessor<
|
627 |
+
input_scalar_t, 3, DefaultPtrTraits, index_t>(input_reshaped, "input");
|
628 |
+
auto grad_output = get_packed_accessor<
|
629 |
+
input_scalar_t, 3, DefaultPtrTraits, index_t>(grad_output_reshaped, "grad_output");
|
630 |
+
auto grad_input = packed_accessor_or_dummy<
|
631 |
+
input_scalar_t, 3, DefaultPtrTraits, index_t>(grad_input_reshaped, "grad_input");
|
632 |
+
auto weight = packed_accessor_or_dummy<
|
633 |
+
stat_scalar_t, 1, DefaultPtrTraits, index_t>(weight_, "weight");
|
634 |
+
auto grad_weight = packed_accessor_or_dummy<
|
635 |
+
stat_scalar_t, 1, DefaultPtrTraits, index_t>(grad_weight_, "grad_weight");
|
636 |
+
auto grad_bias = packed_accessor_or_dummy<
|
637 |
+
stat_scalar_t, 1, DefaultPtrTraits, index_t>(grad_bias_, "grad_bias");
|
638 |
+
auto running_mean = packed_accessor_or_dummy<
|
639 |
+
stat_scalar_t, 1, DefaultPtrTraits, index_t>(running_mean_, "running_mean");
|
640 |
+
auto running_var = packed_accessor_or_dummy<
|
641 |
+
stat_scalar_t, 1, DefaultPtrTraits, index_t>(running_var_, "running_var");
|
642 |
+
auto save_mean = packed_accessor_or_dummy<
|
643 |
+
accscalar_t, 1, DefaultPtrTraits, index_t>(save_mean_, "save_mean");
|
644 |
+
auto save_invstd = packed_accessor_or_dummy<
|
645 |
+
accscalar_t, 1, DefaultPtrTraits, index_t>(save_invstd_, "save_invstd");
|
646 |
+
|
647 |
+
auto stream = at::cuda::getCurrentCUDAStream();
|
648 |
+
dim3 blocks(input.size(1));
|
649 |
+
int tf = getNumThreads(input.size(2));
|
650 |
+
dim3 threads(tf, std::max<int>(1, MAX_BLOCK_SIZE/tf));
|
651 |
+
|
652 |
+
batch_norm_backward_kernel<input_scalar_t, stat_scalar_t, accscalar_t, index_t> <<<blocks, threads, 0, stream>>>
|
653 |
+
(input, grad_output, grad_input, grad_weight, grad_bias, weight, running_mean, running_var,
|
654 |
+
save_mean, save_invstd, train, epsilon);
|
655 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
656 |
+
|
657 |
+
return std::make_tuple(grad_input_, grad_weight_, grad_bias_);
|
658 |
+
}
|
659 |
+
|
660 |
+
template<typename scalar_t, typename index_t, typename VarTransform>
|
661 |
+
void batch_norm_stats_cuda_template(
|
662 |
+
const Tensor& out_mean, const Tensor& out_invstd, const Tensor& input_, double epsilon) {
|
663 |
+
|
664 |
+
using accscalar_t = at::acc_type<scalar_t, true>;
|
665 |
+
int64_t n_input = input_.size(1);
|
666 |
+
Tensor dummy_mean_;
|
667 |
+
Tensor dummy_var_;
|
668 |
+
auto input_reshaped = input_.reshape({input_.size(0), input_.size(1), -1}); // internally we merge the feature dimensions
|
669 |
+
|
670 |
+
resize_output(out_mean, {n_input});
|
671 |
+
resize_output(out_invstd, {n_input});
|
672 |
+
auto input = get_packed_accessor<
|
673 |
+
scalar_t, 3, RestrictPtrTraits, index_t>(input_reshaped, "input");
|
674 |
+
TORCH_INTERNAL_ASSERT(out_invstd.dim() == 1 && out_invstd.is_contiguous() &&
|
675 |
+
out_invstd.sizes()[0]);
|
676 |
+
TORCH_INTERNAL_ASSERT(out_mean.dim() == 1 && out_mean.is_contiguous() &&
|
677 |
+
out_mean.sizes()[0]);
|
678 |
+
|
679 |
+
auto mean = packed_accessor_or_dummy<
|
680 |
+
accscalar_t, 1, RestrictPtrTraits, index_t>(out_mean, "out_mean");
|
681 |
+
auto invstd = packed_accessor_or_dummy<
|
682 |
+
accscalar_t, 1, RestrictPtrTraits, index_t>(out_invstd, "out_invstd");
|
683 |
+
auto stream = at::cuda::getCurrentCUDAStream();
|
684 |
+
|
685 |
+
dim3 blocks(input.size(1));
|
686 |
+
int tf = getNumThreads(input.size(2));
|
687 |
+
dim3 threads(tf, std::max<int>(1, MAX_BLOCK_SIZE/tf));
|
688 |
+
batch_norm_collect_statistics_kernel<VarTransform, scalar_t, scalar_t, accscalar_t, index_t> <<<blocks, threads, 0, stream>>>
|
689 |
+
(input, epsilon, 0.0, mean, invstd);
|
690 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
691 |
+
}
|
692 |
+
|
693 |
+
template<typename input_scalar_t, typename stat_scalar_t, typename index_t>
|
694 |
+
void batch_norm_elemt_cuda_template(const Tensor& output_, const Tensor& input_, const Tensor& weight_,
|
695 |
+
const Tensor& bias_, const Tensor& mean_, const Tensor& invstd_) {
|
696 |
+
|
697 |
+
using stat_accscalar_t = at::acc_type<stat_scalar_t, true>;
|
698 |
+
int64_t n_input = input_.size(1);
|
699 |
+
auto input_reshaped = input_.reshape({input_.size(0), input_.size(1), -1}); // internally we merge the feature dimensions
|
700 |
+
auto output_reshaped = output_.view({input_.size(0), input_.size(1), -1});
|
701 |
+
|
702 |
+
auto input = get_packed_accessor<
|
703 |
+
input_scalar_t, 3, RestrictPtrTraits, index_t>(input_reshaped, "input");
|
704 |
+
auto output = get_packed_accessor<
|
705 |
+
input_scalar_t, 3, RestrictPtrTraits, index_t>(output_reshaped, "output");
|
706 |
+
auto weight = packed_accessor_or_dummy<
|
707 |
+
stat_scalar_t, 1, RestrictPtrTraits, index_t>(weight_, "weight");
|
708 |
+
auto bias = packed_accessor_or_dummy<
|
709 |
+
stat_scalar_t, 1, RestrictPtrTraits, index_t>(bias_, "bias");
|
710 |
+
auto mean = packed_accessor_or_dummy<
|
711 |
+
stat_accscalar_t, 1, RestrictPtrTraits, index_t>(mean_, "mean");
|
712 |
+
auto invstd = packed_accessor_or_dummy<
|
713 |
+
stat_accscalar_t, 1, RestrictPtrTraits, index_t>(invstd_, "invstd");
|
714 |
+
auto stream = at::cuda::getCurrentCUDAStream();
|
715 |
+
|
716 |
+
// NOTE: We use transform_input_kernel in training mode, which ignores epsilon
|
717 |
+
const double dummy_epsilon = 1e-5;
|
718 |
+
|
719 |
+
// The input_transform kernel is pointwise, but we need to balance reading parameters (save_var/mean,
|
720 |
+
// weight/bias) - which we only do once and have a for loop afterwards - with having many threads and blocks
|
721 |
+
// and good occupancy. Quiet likely, we could go with even more blocks than 1024.
|
722 |
+
// The various planes are independent, so we use blocks for them.
|
723 |
+
int tf = std::max<int>(getNumThreads(input.size(2)/4),
|
724 |
+
std::min<int>(getNumThreads(input.size(2)), 64));
|
725 |
+
int tb = std::max<int>(64/tf, 1);
|
726 |
+
dim3 blocks_trans(input.size(1), std::max<int>(1, std::min<int>((256*1024)/input.size(1),
|
727 |
+
(input.size(0)+tb-1)/tb)));
|
728 |
+
blocks_trans.y = std::min(blocks_trans.y, MAX_GRID_SIZE);
|
729 |
+
dim3 threads_trans(tf, tb);
|
730 |
+
batch_norm_transform_input_kernel<input_scalar_t, stat_scalar_t, stat_accscalar_t, true, index_t> <<<blocks_trans, threads_trans, 0, stream>>>
|
731 |
+
(input, output, mean, invstd, weight, bias, dummy_epsilon);
|
732 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
733 |
+
}
|
734 |
+
|
735 |
+
template<typename scalar_t, typename accscalar_t, typename index_t>
|
736 |
+
std::tuple<Tensor, Tensor> batch_norm_gather_stats_cuda_template(const Tensor& mean_, const Tensor& invstd_,
|
737 |
+
const Tensor& running_mean_, const Tensor& running_var_,
|
738 |
+
double momentum, double epsilon, const Tensor& counts_) {
|
739 |
+
|
740 |
+
Tensor save_mean_;
|
741 |
+
Tensor save_invstd_;
|
742 |
+
|
743 |
+
auto features = mean_.size(1);
|
744 |
+
auto input_options = mean_.options();
|
745 |
+
if (mean_.scalar_type() == at::ScalarType::Half || mean_.scalar_type() == at::ScalarType::BFloat16) {
|
746 |
+
input_options = input_options.dtype(ScalarType::Float);
|
747 |
+
}
|
748 |
+
save_mean_ = at::empty({features}, input_options);
|
749 |
+
save_invstd_ = at::empty({features}, input_options);
|
750 |
+
|
751 |
+
auto mean = packed_accessor_or_dummy<
|
752 |
+
accscalar_t, 2, RestrictPtrTraits, index_t>(mean_, "mean");
|
753 |
+
auto invstd = packed_accessor_or_dummy<
|
754 |
+
accscalar_t, 2, RestrictPtrTraits, index_t>(invstd_, "invstd");
|
755 |
+
auto running_mean = packed_accessor_or_dummy<
|
756 |
+
scalar_t, 1, RestrictPtrTraits, index_t>(running_mean_, "running_mean");
|
757 |
+
auto running_var = packed_accessor_or_dummy<
|
758 |
+
scalar_t, 1, RestrictPtrTraits, index_t>(running_var_, "running_mean");
|
759 |
+
auto counts = packed_accessor_or_dummy<
|
760 |
+
scalar_t, 1, RestrictPtrTraits, index_t>(counts_, "counts");
|
761 |
+
|
762 |
+
auto save_mean = get_packed_accessor<
|
763 |
+
accscalar_t, 1, RestrictPtrTraits, index_t>(save_mean_, "save_mean");
|
764 |
+
auto save_invstd = get_packed_accessor<
|
765 |
+
accscalar_t, 1, RestrictPtrTraits, index_t>(save_invstd_, "save_invstd");
|
766 |
+
auto stream = at::cuda::getCurrentCUDAStream();
|
767 |
+
|
768 |
+
int block = getNumThreads(features);
|
769 |
+
int grid = std::max<int>(1, features/block);
|
770 |
+
batch_norm_reduce_statistics_kernel<scalar_t, accscalar_t, index_t> <<<grid, block, 0, stream>>>
|
771 |
+
(mean, invstd, save_mean, save_invstd, running_mean, running_var, epsilon, momentum, counts);
|
772 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
773 |
+
|
774 |
+
return std::make_tuple(save_mean_, save_invstd_);
|
775 |
+
}
|
776 |
+
|
777 |
+
template<typename input_scalar_t, typename stat_scalar_t, typename index_t>
|
778 |
+
std::tuple<Tensor, Tensor, Tensor, Tensor> batch_norm_backward_reduce_cuda_template(const Tensor& grad_out_, const Tensor& input_,
|
779 |
+
const Tensor& mean_, const Tensor& invstd_, const Tensor& weight_,
|
780 |
+
const bool input_g, const bool weight_g, const bool bias_g) {
|
781 |
+
|
782 |
+
using stat_accscalar_t = at::acc_type<stat_scalar_t, true>;
|
783 |
+
int64_t n_input = input_.size(1);
|
784 |
+
Tensor sum_dy_;
|
785 |
+
Tensor sum_dy_xmu_;
|
786 |
+
Tensor grad_weight_;
|
787 |
+
Tensor grad_bias_;
|
788 |
+
auto input_reshaped = input_.reshape({input_.size(0), input_.size(1), -1}); // internally we merge the feature dimensions
|
789 |
+
auto grad_output_reshaped = grad_out_.reshape(input_reshaped.sizes());
|
790 |
+
|
791 |
+
if (input_g) {
|
792 |
+
sum_dy_ = at::empty_like(mean_, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
|
793 |
+
sum_dy_xmu_ = at::empty_like(mean_, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
|
794 |
+
}
|
795 |
+
if (weight_g) {
|
796 |
+
grad_weight_ = at::empty({n_input}, weight_.options());
|
797 |
+
}
|
798 |
+
if (bias_g) {
|
799 |
+
grad_bias_ = at::empty({n_input}, weight_.options());
|
800 |
+
}
|
801 |
+
|
802 |
+
auto input = get_packed_accessor<
|
803 |
+
input_scalar_t, 3, DefaultPtrTraits, index_t>(input_reshaped, "input");
|
804 |
+
auto grad_output = get_packed_accessor<
|
805 |
+
input_scalar_t, 3, DefaultPtrTraits, index_t>(grad_output_reshaped, "grad_output");
|
806 |
+
auto grad_weight = packed_accessor_or_dummy<
|
807 |
+
stat_scalar_t, 1, DefaultPtrTraits, index_t>(grad_weight_, "grad_weight");
|
808 |
+
auto grad_bias = packed_accessor_or_dummy<
|
809 |
+
stat_scalar_t, 1, DefaultPtrTraits, index_t>(grad_bias_, "grad_bias");
|
810 |
+
auto mean = packed_accessor_or_dummy<
|
811 |
+
stat_accscalar_t, 1, DefaultPtrTraits, index_t>(mean_, "mean");
|
812 |
+
auto invstd = packed_accessor_or_dummy<
|
813 |
+
stat_accscalar_t, 1, DefaultPtrTraits, index_t>(invstd_, "invstd");
|
814 |
+
auto sum_dy = packed_accessor_or_dummy<
|
815 |
+
stat_accscalar_t, 1, DefaultPtrTraits, index_t>(sum_dy_, "sum_dy");
|
816 |
+
auto sum_dy_xmu = packed_accessor_or_dummy<
|
817 |
+
stat_accscalar_t, 1, DefaultPtrTraits, index_t>(sum_dy_xmu_, "sum_dy_xmu");
|
818 |
+
|
819 |
+
auto batch_size = input_reshaped.size(0);
|
820 |
+
auto feature_size = input_reshaped.size(2);
|
821 |
+
auto stream = at::cuda::getCurrentCUDAStream();
|
822 |
+
|
823 |
+
int warp_size = at::cuda::warp_size();
|
824 |
+
int block_y = std::min<int>(lastPow2(batch_size), MAX_BLOCK_SIZE/warp_size);
|
825 |
+
// We want block_x to be at least a warp width
|
826 |
+
int block_x = std::min<int>(std::max<int>(getNumThreads(feature_size), warp_size), MAX_BLOCK_SIZE/block_y);
|
827 |
+
const dim3 block(block_x, block_y);
|
828 |
+
const dim3 grid(n_input);
|
829 |
+
|
830 |
+
batch_norm_backward_reduce_kernel<input_scalar_t, stat_scalar_t, stat_accscalar_t, index_t> <<<grid, block, 0, stream>>>
|
831 |
+
(input, grad_output, mean, invstd, sum_dy, sum_dy_xmu, grad_weight, grad_bias);
|
832 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
833 |
+
|
834 |
+
return std::make_tuple(sum_dy_, sum_dy_xmu_, grad_weight_, grad_bias_);
|
835 |
+
}
|
836 |
+
|
837 |
+
template<typename input_scalar_t, typename stat_scalar_t, typename index_t>
|
838 |
+
Tensor batch_norm_backward_elemt_cuda_template(const Tensor& grad_out_, const Tensor& input_,
|
839 |
+
const Tensor& mean_, const Tensor& invstd_,
|
840 |
+
const Tensor& weight_, const Tensor& sum_dy_, const Tensor& sum_dy_xmu_) {
|
841 |
+
|
842 |
+
using stat_accscalar_t = at::acc_type<stat_scalar_t, true>;
|
843 |
+
int64_t n_input = input_.size(1);
|
844 |
+
auto input_reshaped = input_.reshape({input_.size(0), input_.size(1), -1}); // internally we merge the feature dimensions
|
845 |
+
auto grad_output_reshaped = grad_out_.reshape(input_reshaped.sizes());
|
846 |
+
auto grad_input_reshaped = at::empty_like(input_reshaped, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
|
847 |
+
|
848 |
+
auto input = get_packed_accessor<
|
849 |
+
input_scalar_t, 3, DefaultPtrTraits, index_t>(input_reshaped, "input");
|
850 |
+
auto grad_input = get_packed_accessor<
|
851 |
+
input_scalar_t, 3, DefaultPtrTraits, index_t>(grad_input_reshaped, "grad_input");
|
852 |
+
auto grad_output = get_packed_accessor<
|
853 |
+
input_scalar_t, 3, DefaultPtrTraits, index_t>(grad_output_reshaped, "grad_output");
|
854 |
+
auto mean = packed_accessor_or_dummy<
|
855 |
+
stat_accscalar_t, 1, DefaultPtrTraits, index_t>(mean_, "mean");
|
856 |
+
auto invstd = packed_accessor_or_dummy<
|
857 |
+
stat_accscalar_t, 1, DefaultPtrTraits, index_t>(invstd_, "invstd");
|
858 |
+
auto weight = packed_accessor_or_dummy<
|
859 |
+
stat_scalar_t, 1, DefaultPtrTraits, index_t>(weight_, "weight");
|
860 |
+
auto sum_dy = packed_accessor_or_dummy<
|
861 |
+
stat_accscalar_t, 1, DefaultPtrTraits, index_t>(sum_dy_, "sum_dy");
|
862 |
+
auto sum_dy_xmu = packed_accessor_or_dummy<
|
863 |
+
stat_accscalar_t, 1, DefaultPtrTraits, index_t>(sum_dy_xmu_, "sum_dy_xmu");
|
864 |
+
|
865 |
+
auto stream = at::cuda::getCurrentCUDAStream();
|
866 |
+
|
867 |
+
// The kernel is pointwise, but we need to balance reading parameters (save_var/mean,
|
868 |
+
// weight/bias) - which we only do once and have a for loop afterwards - with having many threads and blocks
|
869 |
+
// and good occupancy. Quiet likely, we could go with even more blocks than 1024.
|
870 |
+
// The various planes are independent, so we use blocks for them.
|
871 |
+
int tf = std::max<int>(getNumThreads(input.size(2)/4),
|
872 |
+
std::min<int>(getNumThreads(input.size(2)), 64));
|
873 |
+
int tb = std::max<int>(64/tf, 1);
|
874 |
+
dim3 blocks_trans(input.size(1), std::max<int>(1, std::min<int>((256*1024)/input.size(1),
|
875 |
+
(input.size(0)+tb-1)/tb)));
|
876 |
+
blocks_trans.y = std::min(blocks_trans.y, MAX_GRID_SIZE);
|
877 |
+
dim3 threads_trans(tf, tb);
|
878 |
+
auto reduction_size = input_.numel() / n_input;
|
879 |
+
auto norm_fct = static_cast<stat_accscalar_t>(1.0 / reduction_size);
|
880 |
+
batch_norm_backward_elemt_kernel<input_scalar_t, stat_scalar_t, stat_accscalar_t, index_t>
|
881 |
+
<<<blocks_trans, threads_trans, 0, stream>>>
|
882 |
+
(input, grad_output, mean, invstd, weight, sum_dy, sum_dy_xmu, grad_input, norm_fct);
|
883 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
884 |
+
|
885 |
+
return grad_input_reshaped.view(input_.sizes());
|
886 |
+
}
|
887 |
+
|
888 |
+
template<typename input_scalar_t, typename stat_scalar_t, typename index_t>
|
889 |
+
Tensor batch_norm_backward_elemt_cuda_template(const Tensor& grad_out_, const Tensor& input_,
|
890 |
+
const Tensor& mean_, const Tensor& invstd_,
|
891 |
+
const Tensor& weight_, const Tensor& sum_dy_, const Tensor& sum_dy_xmu_, const Tensor& count) {
|
892 |
+
|
893 |
+
using stat_accscalar_t = at::acc_type<stat_scalar_t, true>;
|
894 |
+
int64_t n_input = input_.size(1);
|
895 |
+
auto input_reshaped = input_.reshape({input_.size(0), input_.size(1), -1}); // internally we merge the feature dimensions
|
896 |
+
auto grad_output_reshaped = grad_out_.reshape(input_reshaped.sizes());
|
897 |
+
auto grad_input_reshaped = at::empty_like(input_reshaped, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
|
898 |
+
|
899 |
+
auto input = get_packed_accessor<
|
900 |
+
input_scalar_t, 3, DefaultPtrTraits, index_t>(input_reshaped, "input");
|
901 |
+
auto grad_input = get_packed_accessor<
|
902 |
+
input_scalar_t, 3, DefaultPtrTraits, index_t>(grad_input_reshaped, "grad_input");
|
903 |
+
auto grad_output = get_packed_accessor<
|
904 |
+
input_scalar_t, 3, DefaultPtrTraits, index_t>(grad_output_reshaped, "grad_output");
|
905 |
+
auto mean = packed_accessor_or_dummy<
|
906 |
+
stat_accscalar_t, 1, DefaultPtrTraits, index_t>(mean_, "mean");
|
907 |
+
auto invstd = packed_accessor_or_dummy<
|
908 |
+
stat_accscalar_t, 1, DefaultPtrTraits, index_t>(invstd_, "invstd");
|
909 |
+
auto weight = packed_accessor_or_dummy<
|
910 |
+
stat_scalar_t, 1, DefaultPtrTraits, index_t>(weight_, "weight");
|
911 |
+
auto sum_dy = packed_accessor_or_dummy<
|
912 |
+
stat_accscalar_t, 1, DefaultPtrTraits, index_t>(sum_dy_, "sum_dy");
|
913 |
+
auto sum_dy_xmu = packed_accessor_or_dummy<
|
914 |
+
stat_accscalar_t, 1, DefaultPtrTraits, index_t>(sum_dy_xmu_, "sum_dy_xmu");
|
915 |
+
|
916 |
+
auto stream = at::cuda::getCurrentCUDAStream();
|
917 |
+
|
918 |
+
// The kernel is pointwise, but we need to balance reading parameters (save_var/mean,
|
919 |
+
// weight/bias) - which we only do once and have a for loop afterwards - with having many threads and blocks
|
920 |
+
// and good occupancy. Quiet likely, we could go with even more blocks than 1024.
|
921 |
+
// The various planes are independent, so we use blocks for them.
|
922 |
+
int tf = std::max<int>(getNumThreads(input.size(2)/4),
|
923 |
+
std::min<int>(getNumThreads(input.size(2)), 64));
|
924 |
+
int tb = std::max<int>(64/tf, 1);
|
925 |
+
dim3 blocks_trans(input.size(1), std::max<int>(1, std::min<int>((256*1024)/input.size(1),
|
926 |
+
(input.size(0)+tb-1)/tb)));
|
927 |
+
blocks_trans.y = std::min(blocks_trans.y, MAX_GRID_SIZE);
|
928 |
+
dim3 threads_trans(tf, tb);
|
929 |
+
batch_norm_backward_elemt_kernel<input_scalar_t, stat_scalar_t, stat_accscalar_t, index_t> <<<blocks_trans, threads_trans, 0, stream>>>
|
930 |
+
(input, grad_output, mean, invstd, weight, sum_dy, sum_dy_xmu, grad_input, count.const_data_ptr<int>(), count.numel());
|
931 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
932 |
+
|
933 |
+
return grad_input_reshaped.view(input_.sizes());
|
934 |
+
}
|
935 |
+
|
936 |
+
// welford kernel for c last tensor calculating mean/biased_variance/unbiased_variance
|
937 |
+
// original apex name: welford_kernel_c_last
|
938 |
+
template
|
939 |
+
<typename VarTransform,
|
940 |
+
typename scalar_t,
|
941 |
+
typename accscalar_t,
|
942 |
+
int PARALLEL_LOADS>
|
943 |
+
__global__ void
|
944 |
+
batch_norm_collect_statistics_channels_last_kernel(
|
945 |
+
const scalar_t* __restrict__ input,
|
946 |
+
accscalar_t* __restrict__ out_mean,
|
947 |
+
accscalar_t* __restrict__ out_invstd,
|
948 |
+
volatile accscalar_t* staging_data,
|
949 |
+
int* semaphores,
|
950 |
+
const int reduction_size,
|
951 |
+
const int stride,
|
952 |
+
accscalar_t epsilon) {
|
953 |
+
// hide latency with concurrency
|
954 |
+
accscalar_t x_mean[PARALLEL_LOADS];
|
955 |
+
accscalar_t m_2_n[PARALLEL_LOADS];
|
956 |
+
int count[PARALLEL_LOADS];
|
957 |
+
|
958 |
+
#pragma unroll
|
959 |
+
for (int i = 0; i < PARALLEL_LOADS; i++) {
|
960 |
+
x_mean[i] = accscalar_t(0);
|
961 |
+
m_2_n[i] = accscalar_t(0);
|
962 |
+
count[i] = accscalar_t(0);
|
963 |
+
}
|
964 |
+
// tensor dimension (m,c)
|
965 |
+
|
966 |
+
// loop along m dimension
|
967 |
+
int inner_loop_stride = blockDim.y * gridDim.y;
|
968 |
+
|
969 |
+
// offset along m dimension
|
970 |
+
int m_offset = blockIdx.y * blockDim.y + threadIdx.y;
|
971 |
+
int c_offset = blockIdx.x * blockDim.x + threadIdx.x;
|
972 |
+
|
973 |
+
int loop_count = 1 + (reduction_size - 1) / (inner_loop_stride * PARALLEL_LOADS);
|
974 |
+
int address_base = m_offset * stride + c_offset;
|
975 |
+
int address_increment = inner_loop_stride * stride;
|
976 |
+
|
977 |
+
for (int i = 0; i < loop_count; i++) {
|
978 |
+
accscalar_t x_math[PARALLEL_LOADS];
|
979 |
+
accscalar_t x_count_inv[PARALLEL_LOADS];
|
980 |
+
accscalar_t is_valid[PARALLEL_LOADS];
|
981 |
+
|
982 |
+
// load multiple data in
|
983 |
+
#pragma unroll
|
984 |
+
for (int j = 0; j < PARALLEL_LOADS; j++) {
|
985 |
+
if (c_offset < stride && m_offset < reduction_size) {
|
986 |
+
x_math[j] = input[address_base];
|
987 |
+
count[j]++;
|
988 |
+
x_count_inv[j] = accscalar_t(1) / count[j];
|
989 |
+
is_valid[j] = accscalar_t(1);
|
990 |
+
} else {
|
991 |
+
x_math[j] = accscalar_t(0);
|
992 |
+
x_count_inv[j] = accscalar_t(0);
|
993 |
+
is_valid[j] = accscalar_t(0);
|
994 |
+
}
|
995 |
+
m_offset += inner_loop_stride;
|
996 |
+
address_base += address_increment;
|
997 |
+
}
|
998 |
+
|
999 |
+
// calculate mean/m2n with welford
|
1000 |
+
#pragma unroll
|
1001 |
+
for (int j = 0; j < PARALLEL_LOADS; j++) {
|
1002 |
+
accscalar_t delta0 = x_math[j] - x_mean[j];
|
1003 |
+
x_mean[j] += delta0 * x_count_inv[j];
|
1004 |
+
accscalar_t delta1 = x_math[j] - x_mean[j];
|
1005 |
+
m_2_n[j] += delta0 * delta1 * is_valid[j];
|
1006 |
+
}
|
1007 |
+
}
|
1008 |
+
|
1009 |
+
// thread reduction to accumulate mean/m_2_n/count between PARALLEL_LOADS
|
1010 |
+
#pragma unroll
|
1011 |
+
for (int j = 1; j < PARALLEL_LOADS; j++) {
|
1012 |
+
welford_merge_element(count[0], x_mean[0], m_2_n[0], count[j], x_mean[j], m_2_n[j]);
|
1013 |
+
}
|
1014 |
+
|
1015 |
+
// release x_mean / m_2_n
|
1016 |
+
auto mean_th = x_mean[0];
|
1017 |
+
auto m2_th = m_2_n[0];
|
1018 |
+
auto count_th = count[0];
|
1019 |
+
|
1020 |
+
// block-wise reduction with shared memory (since reduction cannot be done within a warp)
|
1021 |
+
static __shared__ accscalar_t shmem_mean[MAX_BLOCK_SIZE];
|
1022 |
+
static __shared__ accscalar_t shmem_m2n[MAX_BLOCK_SIZE];
|
1023 |
+
static __shared__ int shmem_count[MAX_BLOCK_SIZE];
|
1024 |
+
|
1025 |
+
welford_merge_block_vertical(count_th, mean_th, m2_th, shmem_count, shmem_mean, shmem_m2n);
|
1026 |
+
|
1027 |
+
if (gridDim.y > 1) {
|
1028 |
+
volatile accscalar_t* staging_mean = staging_data;
|
1029 |
+
volatile accscalar_t* staging_m2n = &staging_data[stride*gridDim.y];
|
1030 |
+
volatile int* staging_count = reinterpret_cast<volatile int*>(&staging_m2n[stride*gridDim.y]);
|
1031 |
+
|
1032 |
+
address_base = c_offset + blockIdx.y * stride;
|
1033 |
+
// write data to staging_data;
|
1034 |
+
if (threadIdx.y == 0 && c_offset < stride) {
|
1035 |
+
staging_mean[address_base] = mean_th;
|
1036 |
+
staging_m2n[address_base] = m2_th;
|
1037 |
+
staging_count[address_base] = count_th;
|
1038 |
+
}
|
1039 |
+
|
1040 |
+
__threadfence();
|
1041 |
+
__syncthreads(); // ensuring writes to staging_ is visible to all blocks
|
1042 |
+
|
1043 |
+
__shared__ bool is_last_block_done;
|
1044 |
+
// mark block done
|
1045 |
+
if (threadIdx.x == 0 && threadIdx.y == 0) {
|
1046 |
+
int old = atomicAdd(&semaphores[blockIdx.x], 1);
|
1047 |
+
is_last_block_done = (old == (gridDim.y-1));
|
1048 |
+
}
|
1049 |
+
|
1050 |
+
__syncthreads();
|
1051 |
+
|
1052 |
+
// check that all data is now available in global memory
|
1053 |
+
if (is_last_block_done) {
|
1054 |
+
count_th = 0;
|
1055 |
+
mean_th = accscalar_t(0.0);
|
1056 |
+
m2_th = accscalar_t(0.0);
|
1057 |
+
|
1058 |
+
for (int y = threadIdx.y; y < gridDim.y; y += blockDim.y) {
|
1059 |
+
address_base = c_offset + y * stride;
|
1060 |
+
int count_new = c_offset < stride ? staging_count[address_base] : 0;
|
1061 |
+
accscalar_t mean_new = c_offset < stride ? staging_mean[address_base] : accscalar_t(0.0);
|
1062 |
+
accscalar_t m2n_new = c_offset < stride ? staging_m2n[address_base] : accscalar_t(0.0);
|
1063 |
+
|
1064 |
+
welford_merge_element(count_th, mean_th, m2_th, count_new, mean_new, m2n_new);
|
1065 |
+
}
|
1066 |
+
|
1067 |
+
welford_merge_block_vertical(count_th, mean_th, m2_th, shmem_count, shmem_mean, shmem_m2n);
|
1068 |
+
if (threadIdx.y == 0 && c_offset < stride) {
|
1069 |
+
out_mean[c_offset] = static_cast<accscalar_t>(mean_th);
|
1070 |
+
out_invstd[c_offset] = VarTransform{}(m2_th/count_th, epsilon);
|
1071 |
+
}
|
1072 |
+
}
|
1073 |
+
} else {
|
1074 |
+
if (blockIdx.y == 0 && threadIdx.y == 0 && c_offset < stride) {
|
1075 |
+
out_mean[c_offset] = static_cast<accscalar_t>(mean_th);
|
1076 |
+
out_invstd[c_offset] = VarTransform{}(m2_th/count_th, epsilon);
|
1077 |
+
}
|
1078 |
+
}
|
1079 |
+
}
|
1080 |
+
|
1081 |
+
// elementwise BN kernel
|
1082 |
+
// original apex name: batchnorm_forward_c_last_kernel
|
1083 |
+
template <
|
1084 |
+
typename scalar_t,
|
1085 |
+
typename accscalar_t,
|
1086 |
+
typename layerscalar_t,
|
1087 |
+
int PARALLEL_LOADS>
|
1088 |
+
__global__ void batch_norm_transform_input_channels_last_kernel(
|
1089 |
+
const scalar_t* __restrict__ input,
|
1090 |
+
const scalar_t* __restrict__ z,
|
1091 |
+
const accscalar_t* __restrict__ mean,
|
1092 |
+
const accscalar_t* __restrict__ inv_std,
|
1093 |
+
const layerscalar_t* __restrict__ weight,
|
1094 |
+
const layerscalar_t* __restrict__ shift,
|
1095 |
+
scalar_t* __restrict__ out,
|
1096 |
+
const int reduction_size,
|
1097 |
+
const int stride,
|
1098 |
+
const bool fuse_relu) {
|
1099 |
+
// tensor dimension (m,c)
|
1100 |
+
// loop along m dimension
|
1101 |
+
int inner_loop_stride = blockDim.y * gridDim.y;
|
1102 |
+
|
1103 |
+
// offset along m dimension
|
1104 |
+
int m_offset = blockIdx.y * blockDim.y + threadIdx.y;
|
1105 |
+
int c_offset = blockIdx.x * blockDim.x + threadIdx.x;
|
1106 |
+
|
1107 |
+
if (c_offset >= stride || m_offset >= reduction_size) {
|
1108 |
+
return;
|
1109 |
+
}
|
1110 |
+
|
1111 |
+
auto m_c = mean[c_offset];
|
1112 |
+
auto inv_std_c = static_cast<accscalar_t>(inv_std[c_offset]);
|
1113 |
+
auto w_c = weight == nullptr ? accscalar_t(1.0) : static_cast<accscalar_t>(weight[c_offset]);
|
1114 |
+
auto s_c = shift == nullptr ? accscalar_t(0.0) : static_cast<accscalar_t>(shift[c_offset]);
|
1115 |
+
|
1116 |
+
int loop_count = 1 + (reduction_size - 1) / (inner_loop_stride * PARALLEL_LOADS);
|
1117 |
+
int address_base = m_offset * stride + c_offset;
|
1118 |
+
int address_increment = inner_loop_stride * stride;
|
1119 |
+
|
1120 |
+
for (int i = 0; i < loop_count; i++) {
|
1121 |
+
#pragma unroll
|
1122 |
+
for (int j = 0; j < PARALLEL_LOADS; j++) {
|
1123 |
+
if (c_offset < stride && m_offset < reduction_size) {
|
1124 |
+
auto tmp = w_c * (static_cast<accscalar_t>(input[address_base]) - m_c ) * inv_std_c + s_c;
|
1125 |
+
if (z != nullptr) {
|
1126 |
+
tmp += z[address_base];
|
1127 |
+
}
|
1128 |
+
out[address_base] = (fuse_relu && tmp <= accscalar_t(0.0) ? scalar_t(0.0) : static_cast<scalar_t>(tmp));
|
1129 |
+
}
|
1130 |
+
m_offset += inner_loop_stride;
|
1131 |
+
address_base += address_increment;
|
1132 |
+
}
|
1133 |
+
}
|
1134 |
+
}
|
1135 |
+
|
1136 |
+
template<typename T>
|
1137 |
+
__device__ __forceinline__ void merge_block_vertical_backward(T& sum_dy,
|
1138 |
+
T& sum_dy_xmu,
|
1139 |
+
T* shmem_sum_dy,
|
1140 |
+
T* shmem_sum_dy_xmu) {
|
1141 |
+
// write to shared memory
|
1142 |
+
auto address_base = threadIdx.x + threadIdx.y * blockDim.x;
|
1143 |
+
|
1144 |
+
#pragma unroll
|
1145 |
+
for (int offset = blockDim.y/2; offset > 0; offset >>= 1) {
|
1146 |
+
if (threadIdx.y < offset*2) {
|
1147 |
+
shmem_sum_dy[address_base] = sum_dy;
|
1148 |
+
shmem_sum_dy_xmu[address_base] = sum_dy_xmu;
|
1149 |
+
}
|
1150 |
+
__syncthreads();
|
1151 |
+
if (threadIdx.y < offset && threadIdx.y + offset < blockDim.y) {
|
1152 |
+
auto address = address_base + offset * blockDim.x;
|
1153 |
+
|
1154 |
+
sum_dy += shmem_sum_dy[address];
|
1155 |
+
sum_dy_xmu += shmem_sum_dy_xmu[address];
|
1156 |
+
}
|
1157 |
+
}
|
1158 |
+
}
|
1159 |
+
|
1160 |
+
// batchnorm backward kernel for c last tensor
|
1161 |
+
// original apex name: reduce_bn_c_last_kernel
|
1162 |
+
template <
|
1163 |
+
int PARALLEL_LOADS,
|
1164 |
+
typename scalar_t,
|
1165 |
+
typename accscalar_t,
|
1166 |
+
typename layerscalar_t>
|
1167 |
+
__global__ void batch_norm_backward_reduce_channels_last_kernel(
|
1168 |
+
const scalar_t* __restrict__ input,
|
1169 |
+
const scalar_t* __restrict__ grad_output,
|
1170 |
+
const accscalar_t* __restrict__ mean,
|
1171 |
+
const accscalar_t* __restrict__ inv_std,
|
1172 |
+
accscalar_t* __restrict__ sum_dy_o,
|
1173 |
+
accscalar_t* __restrict__ sum_dy_xmu_o,
|
1174 |
+
layerscalar_t* __restrict__ grad_weight,
|
1175 |
+
layerscalar_t* __restrict__ grad_bias,
|
1176 |
+
volatile accscalar_t* staging_data,
|
1177 |
+
int* semaphores,
|
1178 |
+
const int reduction_size,
|
1179 |
+
const int stride) {
|
1180 |
+
|
1181 |
+
// hide latency with concurrency
|
1182 |
+
accscalar_t sum_dy[PARALLEL_LOADS];
|
1183 |
+
accscalar_t sum_dy_xmu[PARALLEL_LOADS];
|
1184 |
+
|
1185 |
+
#pragma unroll
|
1186 |
+
for (int i = 0; i < PARALLEL_LOADS; i++) {
|
1187 |
+
sum_dy[i] = accscalar_t(0);
|
1188 |
+
sum_dy_xmu[i] = accscalar_t(0);
|
1189 |
+
}
|
1190 |
+
// tensor dimension (m,c)
|
1191 |
+
|
1192 |
+
// loop along m dimension
|
1193 |
+
int inner_loop_stride = blockDim.y * gridDim.y;
|
1194 |
+
|
1195 |
+
// offset along m dimension
|
1196 |
+
int m_offset = blockIdx.y * blockDim.y + threadIdx.y;
|
1197 |
+
int c_offset = blockIdx.x * blockDim.x + threadIdx.x;
|
1198 |
+
|
1199 |
+
if (c_offset >= stride || m_offset >= reduction_size) {
|
1200 |
+
return;
|
1201 |
+
}
|
1202 |
+
|
1203 |
+
int loop_count = 1 + (reduction_size - 1) / (inner_loop_stride * PARALLEL_LOADS);
|
1204 |
+
int address_base = m_offset * stride + c_offset;
|
1205 |
+
int address_increment = inner_loop_stride * stride;
|
1206 |
+
|
1207 |
+
auto r_mean = mean[c_offset];
|
1208 |
+
auto factor = inv_std[c_offset];
|
1209 |
+
|
1210 |
+
for (int i = 0; i < loop_count; i++) {
|
1211 |
+
accscalar_t x_input[PARALLEL_LOADS];
|
1212 |
+
accscalar_t x_grad_output[PARALLEL_LOADS];
|
1213 |
+
|
1214 |
+
// load multiple data in
|
1215 |
+
#pragma unroll
|
1216 |
+
for (int j = 0; j < PARALLEL_LOADS; j++) {
|
1217 |
+
if (c_offset < stride && m_offset < reduction_size) {
|
1218 |
+
x_input[j] = input[address_base];
|
1219 |
+
x_grad_output[j] = grad_output[address_base];
|
1220 |
+
} else {
|
1221 |
+
x_input[j] = accscalar_t(0);
|
1222 |
+
x_grad_output[j] = accscalar_t(0);
|
1223 |
+
}
|
1224 |
+
m_offset += inner_loop_stride;
|
1225 |
+
address_base += address_increment;
|
1226 |
+
}
|
1227 |
+
|
1228 |
+
// calculate sum_dy / sum_dy_xmu
|
1229 |
+
#pragma unroll
|
1230 |
+
for (int j = 0; j < PARALLEL_LOADS; j++) {
|
1231 |
+
sum_dy[j] += x_grad_output[j];
|
1232 |
+
sum_dy_xmu[j] += x_grad_output[j] * (x_input[j] - r_mean);
|
1233 |
+
}
|
1234 |
+
}
|
1235 |
+
|
1236 |
+
// thread reduction to accumulate sum_dy / sum_dy_xmu between PARALLEL_LOADS
|
1237 |
+
#pragma unroll
|
1238 |
+
for (int j = 1; j < PARALLEL_LOADS; j++) {
|
1239 |
+
sum_dy[0] += sum_dy[j];
|
1240 |
+
sum_dy_xmu[0] += sum_dy_xmu[j];
|
1241 |
+
}
|
1242 |
+
|
1243 |
+
// release array of registers
|
1244 |
+
auto sum_dy_th = sum_dy[0];
|
1245 |
+
auto sum_dy_xmu_th = sum_dy_xmu[0];
|
1246 |
+
|
1247 |
+
// block-wise reduction with shared memory (since reduction cannot be done within a warp)
|
1248 |
+
static __shared__ accscalar_t shmem_sum_dy[MAX_BLOCK_SIZE];
|
1249 |
+
static __shared__ accscalar_t shmem_sum_dy_xmu[MAX_BLOCK_SIZE];
|
1250 |
+
|
1251 |
+
merge_block_vertical_backward(sum_dy_th, sum_dy_xmu_th, shmem_sum_dy, shmem_sum_dy_xmu);
|
1252 |
+
|
1253 |
+
if (gridDim.y > 1) {
|
1254 |
+
volatile accscalar_t* staging_sum_dy = staging_data;
|
1255 |
+
volatile accscalar_t* staging_sum_dy_xmu = &staging_data[stride*gridDim.y];
|
1256 |
+
|
1257 |
+
address_base = c_offset + blockIdx.y * stride;
|
1258 |
+
// write data to staging_data;
|
1259 |
+
if (threadIdx.y == 0 && c_offset < stride) {
|
1260 |
+
staging_sum_dy[address_base] = sum_dy_th;
|
1261 |
+
staging_sum_dy_xmu[address_base] = sum_dy_xmu_th;
|
1262 |
+
}
|
1263 |
+
|
1264 |
+
__threadfence();
|
1265 |
+
__syncthreads(); // ensuring writes to staging_ is visible to all blocks
|
1266 |
+
|
1267 |
+
__shared__ bool is_last_block_done;
|
1268 |
+
// mark block done
|
1269 |
+
if (threadIdx.x == 0 && threadIdx.y == 0) {
|
1270 |
+
int old = atomicAdd(&semaphores[blockIdx.x], 1);
|
1271 |
+
is_last_block_done = (old == (gridDim.y-1));
|
1272 |
+
}
|
1273 |
+
|
1274 |
+
__syncthreads();
|
1275 |
+
|
1276 |
+
// check that all data is now available in global memory
|
1277 |
+
if (is_last_block_done) {
|
1278 |
+
sum_dy_th = accscalar_t(0.0);
|
1279 |
+
sum_dy_xmu_th = accscalar_t(0.0);
|
1280 |
+
|
1281 |
+
for (int y = threadIdx.y; y < gridDim.y; y += blockDim.y) {
|
1282 |
+
address_base = c_offset + y * stride;
|
1283 |
+
sum_dy_th += (c_offset < stride ? staging_sum_dy[address_base] : accscalar_t(0.0));
|
1284 |
+
sum_dy_xmu_th += (c_offset < stride ? staging_sum_dy_xmu[address_base] : accscalar_t(0.0));
|
1285 |
+
}
|
1286 |
+
|
1287 |
+
merge_block_vertical_backward(sum_dy_th, sum_dy_xmu_th, shmem_sum_dy, shmem_sum_dy_xmu);
|
1288 |
+
if (threadIdx.y == 0 && c_offset < stride) {
|
1289 |
+
if (grad_bias != nullptr) {
|
1290 |
+
grad_bias[c_offset] = static_cast<layerscalar_t>(sum_dy_th);
|
1291 |
+
}
|
1292 |
+
if (grad_weight != nullptr) {
|
1293 |
+
grad_weight[c_offset] = static_cast<layerscalar_t>(sum_dy_xmu_th * factor);
|
1294 |
+
}
|
1295 |
+
//mean_dy[c_offset] = sum_dy_th / reduction_size;
|
1296 |
+
//mean_dy_xmu[c_offset] = sum_dy_xmu_th / reduction_size;
|
1297 |
+
sum_dy_o[c_offset] = sum_dy_th;
|
1298 |
+
sum_dy_xmu_o[c_offset] = sum_dy_xmu_th;
|
1299 |
+
}
|
1300 |
+
}
|
1301 |
+
} else {
|
1302 |
+
if (blockIdx.y == 0 && threadIdx.y == 0 && c_offset < stride) {
|
1303 |
+
if (grad_bias != nullptr) {
|
1304 |
+
grad_bias[c_offset] = static_cast<layerscalar_t>(sum_dy_th);
|
1305 |
+
}
|
1306 |
+
if (grad_weight != nullptr) {
|
1307 |
+
grad_weight[c_offset] = static_cast<layerscalar_t>(sum_dy_xmu_th * factor);
|
1308 |
+
}
|
1309 |
+
//mean_dy[c_offset] = sum_dy_th / reduction_size;
|
1310 |
+
//mean_dy_xmu[c_offset] = sum_dy_xmu_th / reduction_size;
|
1311 |
+
sum_dy_o[c_offset] = sum_dy_th;
|
1312 |
+
sum_dy_xmu_o[c_offset] = sum_dy_xmu_th;
|
1313 |
+
}
|
1314 |
+
}
|
1315 |
+
}
|
1316 |
+
|
1317 |
+
// elementwise BN kernel
|
1318 |
+
// original apex name: batchnorm_backward_c_last_kernel
|
1319 |
+
template <
|
1320 |
+
int PARALLEL_LOADS,
|
1321 |
+
typename scalar_t,
|
1322 |
+
typename accscalar_t,
|
1323 |
+
typename layerscalar_t>
|
1324 |
+
__device__ __forceinline__ void batch_norm_backward_elemt_channels_last_kernel_impl(
|
1325 |
+
const scalar_t* __restrict__ grad_output,
|
1326 |
+
const scalar_t* __restrict__ input,
|
1327 |
+
const accscalar_t* __restrict__ mean,
|
1328 |
+
const accscalar_t* __restrict__ inv_std,
|
1329 |
+
const layerscalar_t* __restrict__ weight,
|
1330 |
+
const accscalar_t* __restrict__ sum_dy,
|
1331 |
+
const accscalar_t* __restrict__ sum_dy_xmu,
|
1332 |
+
scalar_t* __restrict__ grad_input,
|
1333 |
+
const accscalar_t norm_fct,
|
1334 |
+
const int reduction_size,
|
1335 |
+
const int stride) {
|
1336 |
+
// tensor dimension (m,c)
|
1337 |
+
// loop along m dimension
|
1338 |
+
int inner_loop_stride = blockDim.y * gridDim.y;
|
1339 |
+
|
1340 |
+
// offset along m dimension
|
1341 |
+
int m_offset = blockIdx.y * blockDim.y + threadIdx.y;
|
1342 |
+
int c_offset = blockIdx.x * blockDim.x + threadIdx.x;
|
1343 |
+
|
1344 |
+
if (c_offset >= stride || m_offset >= reduction_size) {
|
1345 |
+
return;
|
1346 |
+
}
|
1347 |
+
|
1348 |
+
auto m_c = mean[c_offset];
|
1349 |
+
auto m_dy_c = sum_dy[c_offset] * norm_fct;
|
1350 |
+
auto factor_1_c = inv_std[c_offset];
|
1351 |
+
auto factor_2_c = (weight == nullptr? accscalar_t(1.0) : static_cast<accscalar_t>(weight[c_offset])) * factor_1_c;
|
1352 |
+
factor_1_c = factor_1_c * factor_1_c * sum_dy_xmu[c_offset] * norm_fct;
|
1353 |
+
|
1354 |
+
int loop_count = 1 + (reduction_size - 1) / (inner_loop_stride * PARALLEL_LOADS);
|
1355 |
+
int address_base = m_offset * stride + c_offset;
|
1356 |
+
int address_increment = inner_loop_stride * stride;
|
1357 |
+
|
1358 |
+
for (int i = 0; i < loop_count; i++) {
|
1359 |
+
#pragma unroll
|
1360 |
+
for (int j = 0; j < PARALLEL_LOADS; j++) {
|
1361 |
+
if (c_offset < stride && m_offset < reduction_size) {
|
1362 |
+
grad_input[address_base] = static_cast<scalar_t>(
|
1363 |
+
(static_cast<accscalar_t>(grad_output[address_base]) - m_dy_c -
|
1364 |
+
(static_cast<accscalar_t>(input[address_base]) - m_c) * factor_1_c)
|
1365 |
+
* factor_2_c);
|
1366 |
+
}
|
1367 |
+
m_offset += inner_loop_stride;
|
1368 |
+
address_base += address_increment;
|
1369 |
+
}
|
1370 |
+
}
|
1371 |
+
}
|
1372 |
+
|
1373 |
+
template <
|
1374 |
+
int PARALLEL_LOADS,
|
1375 |
+
typename scalar_t,
|
1376 |
+
typename accscalar_t,
|
1377 |
+
typename layerscalar_t>
|
1378 |
+
__global__ void batch_norm_backward_elemt_channels_last_kernel(
|
1379 |
+
const scalar_t* __restrict__ grad_output,
|
1380 |
+
const scalar_t* __restrict__ input,
|
1381 |
+
const accscalar_t* __restrict__ mean,
|
1382 |
+
const accscalar_t* __restrict__ inv_std,
|
1383 |
+
const layerscalar_t* __restrict__ weight,
|
1384 |
+
const accscalar_t* __restrict__ sum_dy,
|
1385 |
+
const accscalar_t* __restrict__ sum_dy_xmu,
|
1386 |
+
const int* __restrict__ numel,
|
1387 |
+
scalar_t* __restrict__ grad_input,
|
1388 |
+
const int64_t world_size,
|
1389 |
+
const int reduction_size,
|
1390 |
+
const int stride) {
|
1391 |
+
|
1392 |
+
int64_t total_numel = 0;
|
1393 |
+
for (int i = 0; i < world_size; i++) {
|
1394 |
+
total_numel += numel[i];
|
1395 |
+
}
|
1396 |
+
|
1397 |
+
auto norm_fct = static_cast<accscalar_t>(1) / static_cast<accscalar_t>(total_numel);
|
1398 |
+
batch_norm_backward_elemt_channels_last_kernel_impl<PARALLEL_LOADS>(
|
1399 |
+
grad_output, input, mean, inv_std, weight, sum_dy, sum_dy_xmu,
|
1400 |
+
grad_input, norm_fct, reduction_size, stride);
|
1401 |
+
}
|
1402 |
+
|
1403 |
+
template <
|
1404 |
+
int PARALLEL_LOADS,
|
1405 |
+
typename scalar_t,
|
1406 |
+
typename accscalar_t,
|
1407 |
+
typename layerscalar_t>
|
1408 |
+
__global__ void batch_norm_backward_elemt_channels_last_kernel(
|
1409 |
+
const scalar_t* __restrict__ grad_output,
|
1410 |
+
const scalar_t* __restrict__ input,
|
1411 |
+
const accscalar_t* __restrict__ mean,
|
1412 |
+
const accscalar_t* __restrict__ inv_std,
|
1413 |
+
const layerscalar_t* __restrict__ weight,
|
1414 |
+
const accscalar_t* __restrict__ sum_dy,
|
1415 |
+
const accscalar_t* __restrict__ sum_dy_xmu,
|
1416 |
+
scalar_t* __restrict__ grad_input,
|
1417 |
+
const accscalar_t norm_fct,
|
1418 |
+
const int reduction_size,
|
1419 |
+
const int stride) {
|
1420 |
+
batch_norm_backward_elemt_channels_last_kernel_impl<PARALLEL_LOADS>(
|
1421 |
+
grad_output, input, mean, inv_std, weight, sum_dy, sum_dy_xmu,
|
1422 |
+
grad_input, norm_fct, reduction_size, stride);
|
1423 |
+
}
|
1424 |
+
|
1425 |
+
template<typename scalar_t, typename VarTransform>
|
1426 |
+
void batch_norm_stats_channels_last_cuda_template(
|
1427 |
+
const Tensor& out_mean, const Tensor& out_invstd, const Tensor& input, double epsilon) {
|
1428 |
+
using accscalar_t = at::acc_type<scalar_t, true>;
|
1429 |
+
|
1430 |
+
const auto stride = input.sizes()[1];
|
1431 |
+
const auto reduction_size = input.numel() / stride;
|
1432 |
+
|
1433 |
+
resize_output(out_mean, {stride});
|
1434 |
+
resize_output(out_invstd, {stride});
|
1435 |
+
TORCH_INTERNAL_ASSERT(out_invstd.dim() == 1 && out_invstd.is_contiguous() &&
|
1436 |
+
out_invstd.sizes()[0]);
|
1437 |
+
TORCH_INTERNAL_ASSERT(out_mean.dim() == 1 && out_mean.is_contiguous() &&
|
1438 |
+
out_mean.sizes()[0]);
|
1439 |
+
|
1440 |
+
dim3 block;
|
1441 |
+
dim3 grid;
|
1442 |
+
flexible_launch_configs(reduction_size, stride, block, grid, true);
|
1443 |
+
|
1444 |
+
at::Tensor staging_data;
|
1445 |
+
at::Tensor semaphores;
|
1446 |
+
if (grid.y > 1) {
|
1447 |
+
staging_data = at::empty({4*stride*grid.y}, out_mean.options());
|
1448 |
+
semaphores = at::zeros({grid.x}, input.options().dtype(at::kInt));
|
1449 |
+
}
|
1450 |
+
|
1451 |
+
accscalar_t* staging_data_ptr = grid.y > 1 ? staging_data.mutable_data_ptr<accscalar_t>() : nullptr;
|
1452 |
+
int* semaphores_ptr = grid.y > 1 ? semaphores.mutable_data_ptr<int>() : nullptr;
|
1453 |
+
batch_norm_collect_statistics_channels_last_kernel<VarTransform, scalar_t, accscalar_t, ELEMENTS_PER_ITER>
|
1454 |
+
<<<grid, block, 0, at::cuda::getCurrentCUDAStream()>>>(
|
1455 |
+
input.const_data_ptr<scalar_t>(),
|
1456 |
+
out_mean.mutable_data_ptr<accscalar_t>(),
|
1457 |
+
out_invstd.mutable_data_ptr<accscalar_t>(),
|
1458 |
+
staging_data_ptr,
|
1459 |
+
semaphores_ptr,
|
1460 |
+
reduction_size,
|
1461 |
+
stride,
|
1462 |
+
epsilon);
|
1463 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
1464 |
+
}
|
1465 |
+
|
1466 |
+
void batch_norm_elemt_channels_last_cuda_template(
|
1467 |
+
const at::Tensor& output,
|
1468 |
+
const at::Tensor& input,
|
1469 |
+
const at::Tensor& weight,
|
1470 |
+
const at::Tensor& shift, // bias of BN
|
1471 |
+
const at::Tensor& mean,
|
1472 |
+
const at::Tensor& inv_std,
|
1473 |
+
const at::optional<at::Tensor>& z = c10::nullopt, // bias after BN
|
1474 |
+
const bool fuse_relu = false) {
|
1475 |
+
const auto stride = input.sizes()[1];
|
1476 |
+
const auto reduction_size = input.numel() / stride;
|
1477 |
+
|
1478 |
+
dim3 block;
|
1479 |
+
dim3 grid;
|
1480 |
+
flexible_launch_configs(reduction_size, stride, block, grid);
|
1481 |
+
|
1482 |
+
auto stream = at::cuda::getCurrentCUDAStream();
|
1483 |
+
const auto second_dtype = weight.defined() ? weight.scalar_type() :
|
1484 |
+
(shift.defined() ? shift.scalar_type() : input.scalar_type());
|
1485 |
+
|
1486 |
+
if (input.scalar_type() != second_dtype) {
|
1487 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, input.scalar_type(), "batchnorm_forward", [&] {
|
1488 |
+
using accscalar_t = at::acc_type<scalar_t, true>;
|
1489 |
+
batch_norm_transform_input_channels_last_kernel<scalar_t, accscalar_t, accscalar_t, ELEMENTS_PER_ITER>
|
1490 |
+
<<<grid, block, 0, stream>>>(
|
1491 |
+
input.const_data_ptr<scalar_t>(),
|
1492 |
+
z.has_value() ? z.value().const_data_ptr<scalar_t>() : nullptr,
|
1493 |
+
mean.const_data_ptr<accscalar_t>(),
|
1494 |
+
inv_std.const_data_ptr<accscalar_t>(),
|
1495 |
+
weight.defined() ? weight.const_data_ptr<accscalar_t>() : nullptr,
|
1496 |
+
shift.defined() ? shift.const_data_ptr<accscalar_t>() : nullptr,
|
1497 |
+
output.mutable_data_ptr<scalar_t>(),
|
1498 |
+
reduction_size,
|
1499 |
+
stride,
|
1500 |
+
fuse_relu);
|
1501 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
1502 |
+
});
|
1503 |
+
} else {
|
1504 |
+
if (weight.defined()){
|
1505 |
+
TORCH_CHECK(input.scalar_type() == weight.scalar_type(), "batchnorm_forward: input.scalar_type() ", input.scalar_type(),
|
1506 |
+
" is not supported with weight.scalar_type() ", weight.scalar_type());
|
1507 |
+
}
|
1508 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, input.scalar_type(), "batchnorm_forward", [&] {
|
1509 |
+
using accscalar_t = at::acc_type<scalar_t, true>;
|
1510 |
+
batch_norm_transform_input_channels_last_kernel<scalar_t, accscalar_t, scalar_t, ELEMENTS_PER_ITER>
|
1511 |
+
<<<grid, block, 0, stream>>>(
|
1512 |
+
input.const_data_ptr<scalar_t>(),
|
1513 |
+
z.has_value() ? z.value().const_data_ptr<scalar_t>() : nullptr,
|
1514 |
+
mean.const_data_ptr<accscalar_t>(),
|
1515 |
+
inv_std.const_data_ptr<accscalar_t>(),
|
1516 |
+
weight.defined() ? weight.const_data_ptr<scalar_t>() : nullptr,
|
1517 |
+
shift.defined() ? shift.const_data_ptr<scalar_t>(): nullptr,
|
1518 |
+
output.mutable_data_ptr<scalar_t>(),
|
1519 |
+
reduction_size,
|
1520 |
+
stride,
|
1521 |
+
fuse_relu);
|
1522 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
1523 |
+
});
|
1524 |
+
}
|
1525 |
+
}
|
1526 |
+
|
1527 |
+
std::tuple<Tensor, Tensor, Tensor, Tensor>
|
1528 |
+
batch_norm_backward_reduce_cuda_channels_last_template(const at::Tensor& grad_output,
|
1529 |
+
const at::Tensor& input,
|
1530 |
+
const at::Tensor& mean,
|
1531 |
+
const at::Tensor& inv_std,
|
1532 |
+
const at::Tensor& weight,
|
1533 |
+
const bool input_g, const bool weight_g, const bool bias_g) {
|
1534 |
+
const auto stride = input.sizes()[1];
|
1535 |
+
const auto reduction_size = input.numel() / stride;
|
1536 |
+
|
1537 |
+
at::Tensor sumn_dy = at::empty({stride}, mean.options());
|
1538 |
+
at::Tensor sum_dy_xmu = at::empty({stride}, mean.options());
|
1539 |
+
|
1540 |
+
at::Tensor grad_weight;
|
1541 |
+
at::Tensor grad_bias;
|
1542 |
+
if (weight.defined()) {
|
1543 |
+
grad_weight = at::empty({stride}, weight.options());
|
1544 |
+
grad_bias = at::empty({stride}, weight.options());
|
1545 |
+
} else {
|
1546 |
+
// because I cannot return an uninitialized at::Tensor
|
1547 |
+
grad_weight = at::empty({0}, mean.options());
|
1548 |
+
grad_bias = at::empty({0}, mean.options());
|
1549 |
+
}
|
1550 |
+
|
1551 |
+
dim3 block;
|
1552 |
+
dim3 grid;
|
1553 |
+
flexible_launch_configs(reduction_size, stride, block, grid, true);
|
1554 |
+
|
1555 |
+
at::Tensor staging_data;
|
1556 |
+
at::Tensor semaphores;
|
1557 |
+
if (grid.y > 1) {
|
1558 |
+
staging_data = at::empty({2*stride*grid.y}, mean.options());
|
1559 |
+
semaphores = at::zeros({grid.x}, input.options().dtype(at::kInt));
|
1560 |
+
}
|
1561 |
+
auto stream = at::cuda::getCurrentCUDAStream();
|
1562 |
+
|
1563 |
+
if (weight.defined() && input.scalar_type() != weight.scalar_type()) {
|
1564 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, input.scalar_type(), "batchnorm_backward_reduce", [&] {
|
1565 |
+
using accscalar_t = at::acc_type<scalar_t, true>;
|
1566 |
+
accscalar_t* staging_data_ptr = grid.y > 1 ? staging_data.mutable_data_ptr<accscalar_t>() : nullptr;
|
1567 |
+
int* semaphores_ptr = grid.y > 1 ? semaphores.mutable_data_ptr<int>() : nullptr;
|
1568 |
+
batch_norm_backward_reduce_channels_last_kernel<ELEMENTS_PER_ITER>
|
1569 |
+
<<<grid, block, 0, stream>>>(
|
1570 |
+
input.const_data_ptr<scalar_t>(),
|
1571 |
+
grad_output.const_data_ptr<scalar_t>(),
|
1572 |
+
mean.const_data_ptr<accscalar_t>(),
|
1573 |
+
inv_std.const_data_ptr<accscalar_t>(),
|
1574 |
+
sumn_dy.mutable_data_ptr<accscalar_t>(),
|
1575 |
+
sum_dy_xmu.mutable_data_ptr<accscalar_t>(),
|
1576 |
+
grad_weight.mutable_data_ptr<accscalar_t>(),
|
1577 |
+
grad_bias.mutable_data_ptr<accscalar_t>(),
|
1578 |
+
staging_data_ptr,
|
1579 |
+
semaphores_ptr,
|
1580 |
+
reduction_size,
|
1581 |
+
stride);
|
1582 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
1583 |
+
});
|
1584 |
+
} else {
|
1585 |
+
if (weight.defined()) {
|
1586 |
+
TORCH_CHECK(input.scalar_type() == weight.scalar_type(), "batchnorm_backward_reduce: input.scalar_type() ", input.scalar_type(),
|
1587 |
+
" is not supported with weight.scalar_type() ", weight.scalar_type());
|
1588 |
+
}
|
1589 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, input.scalar_type(), "batchnorm_backward_reduce", [&] {
|
1590 |
+
using accscalar_t = at::acc_type<scalar_t, true>;
|
1591 |
+
accscalar_t* staging_data_ptr = grid.y > 1 ? staging_data.mutable_data_ptr<accscalar_t>() : nullptr;
|
1592 |
+
int* semaphores_ptr = grid.y > 1 ? semaphores.mutable_data_ptr<int>() : nullptr;
|
1593 |
+
batch_norm_backward_reduce_channels_last_kernel<ELEMENTS_PER_ITER>
|
1594 |
+
<<<grid, block, 0, stream>>>(
|
1595 |
+
input.const_data_ptr<scalar_t>(),
|
1596 |
+
grad_output.const_data_ptr<scalar_t>(),
|
1597 |
+
mean.const_data_ptr<accscalar_t>(),
|
1598 |
+
inv_std.const_data_ptr<accscalar_t>(),
|
1599 |
+
sumn_dy.mutable_data_ptr<accscalar_t>(),
|
1600 |
+
sum_dy_xmu.mutable_data_ptr<accscalar_t>(),
|
1601 |
+
weight.defined() ? grad_weight.mutable_data_ptr<scalar_t>() : nullptr,
|
1602 |
+
weight.defined() ? grad_bias.mutable_data_ptr<scalar_t>() : nullptr,
|
1603 |
+
staging_data_ptr,
|
1604 |
+
semaphores_ptr,
|
1605 |
+
reduction_size,
|
1606 |
+
stride);
|
1607 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
1608 |
+
});
|
1609 |
+
}
|
1610 |
+
|
1611 |
+
return std::make_tuple(sumn_dy, sum_dy_xmu, grad_weight, grad_bias);
|
1612 |
+
}
|
1613 |
+
|
1614 |
+
at::Tensor batch_norm_backward_elemt_channels_last_cuda_template(
|
1615 |
+
const at::Tensor& grad_output,
|
1616 |
+
const at::Tensor& input,
|
1617 |
+
const at::Tensor& mean,
|
1618 |
+
const at::Tensor& inv_std,
|
1619 |
+
const at::Tensor& weight,
|
1620 |
+
const at::Tensor& sum_dy,
|
1621 |
+
const at::Tensor& sum_dy_xmu,
|
1622 |
+
const at::Tensor& count) {
|
1623 |
+
const auto stride = input.sizes()[1];
|
1624 |
+
const auto reduction_size = input.numel() / stride;
|
1625 |
+
|
1626 |
+
// Input is guarunteed to be channels-last compatible
|
1627 |
+
at::Tensor grad_input = at::empty_like(input);
|
1628 |
+
|
1629 |
+
dim3 block;
|
1630 |
+
dim3 grid;
|
1631 |
+
flexible_launch_configs(reduction_size, stride, block, grid);
|
1632 |
+
|
1633 |
+
auto stream = at::cuda::getCurrentCUDAStream();
|
1634 |
+
|
1635 |
+
if (weight.defined() && weight.scalar_type() != input.scalar_type()) {
|
1636 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, input.scalar_type(), "batchnorm_backward_element", [&] {
|
1637 |
+
using accscalar_t = at::acc_type<scalar_t, true>;
|
1638 |
+
batch_norm_backward_elemt_channels_last_kernel<ELEMENTS_PER_ITER>
|
1639 |
+
<<<grid, block, 0, stream>>>(
|
1640 |
+
grad_output.const_data_ptr<scalar_t>(),
|
1641 |
+
input.const_data_ptr<scalar_t>(),
|
1642 |
+
mean.const_data_ptr<accscalar_t>(),
|
1643 |
+
inv_std.const_data_ptr<accscalar_t>(),
|
1644 |
+
weight.const_data_ptr<accscalar_t>(),
|
1645 |
+
sum_dy.const_data_ptr<accscalar_t>(),
|
1646 |
+
sum_dy_xmu.const_data_ptr<accscalar_t>(),
|
1647 |
+
count.const_data_ptr<int>(),
|
1648 |
+
grad_input.mutable_data_ptr<scalar_t>(),
|
1649 |
+
count.numel(),
|
1650 |
+
reduction_size,
|
1651 |
+
stride);
|
1652 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
1653 |
+
});
|
1654 |
+
} else {
|
1655 |
+
if (weight.defined()) {
|
1656 |
+
TORCH_CHECK(input.scalar_type() == weight.scalar_type(), "batchnorm_backward_element: input.scalar_type() ", input.scalar_type(),
|
1657 |
+
" is not supported with weight.scalar_type() ", weight.scalar_type());
|
1658 |
+
}
|
1659 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, input.scalar_type(), "batchnorm_backward_element", [&] {
|
1660 |
+
using accscalar_t = at::acc_type<scalar_t, true>;
|
1661 |
+
batch_norm_backward_elemt_channels_last_kernel<ELEMENTS_PER_ITER>
|
1662 |
+
<<<grid, block, 0, stream>>>(
|
1663 |
+
grad_output.const_data_ptr<scalar_t>(),
|
1664 |
+
input.const_data_ptr<scalar_t>(),
|
1665 |
+
mean.const_data_ptr<accscalar_t>(),
|
1666 |
+
inv_std.const_data_ptr<accscalar_t>(),
|
1667 |
+
weight.defined() ? weight.const_data_ptr<scalar_t>() : nullptr,
|
1668 |
+
sum_dy.const_data_ptr<accscalar_t>(),
|
1669 |
+
sum_dy_xmu.const_data_ptr<accscalar_t>(),
|
1670 |
+
count.const_data_ptr<int>(),
|
1671 |
+
grad_input.mutable_data_ptr<scalar_t>(),
|
1672 |
+
count.numel(),
|
1673 |
+
reduction_size,
|
1674 |
+
stride);
|
1675 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
1676 |
+
});
|
1677 |
+
}
|
1678 |
+
|
1679 |
+
return grad_input;
|
1680 |
+
}
|
1681 |
+
|
1682 |
+
at::Tensor batch_norm_backward_elemt_channels_last_cuda_template(
|
1683 |
+
const at::Tensor& grad_output,
|
1684 |
+
const at::Tensor& input,
|
1685 |
+
const at::Tensor& mean,
|
1686 |
+
const at::Tensor& inv_std,
|
1687 |
+
const at::Tensor& weight,
|
1688 |
+
const at::Tensor& sum_dy,
|
1689 |
+
const at::Tensor& sum_dy_xmu) {
|
1690 |
+
const auto stride = input.sizes()[1];
|
1691 |
+
const auto reduction_size = input.numel() / stride;
|
1692 |
+
auto norm_fct = 1.0 / reduction_size;
|
1693 |
+
|
1694 |
+
// Input is guarunteed to be channels-last compatible
|
1695 |
+
at::Tensor grad_input = at::empty_like(input);
|
1696 |
+
|
1697 |
+
dim3 block;
|
1698 |
+
dim3 grid;
|
1699 |
+
flexible_launch_configs(reduction_size, stride, block, grid);
|
1700 |
+
|
1701 |
+
auto stream = at::cuda::getCurrentCUDAStream();
|
1702 |
+
|
1703 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, input.scalar_type(), "batchnorm_backward_element", [&] {
|
1704 |
+
using accscalar_t = at::acc_type<scalar_t, true>;
|
1705 |
+
|
1706 |
+
if (weight.defined() && weight.scalar_type() != input.scalar_type()) {
|
1707 |
+
batch_norm_backward_elemt_channels_last_kernel<ELEMENTS_PER_ITER>
|
1708 |
+
<<<grid, block, 0, stream>>>(
|
1709 |
+
grad_output.const_data_ptr<scalar_t>(),
|
1710 |
+
input.const_data_ptr<scalar_t>(),
|
1711 |
+
mean.const_data_ptr<accscalar_t>(),
|
1712 |
+
inv_std.const_data_ptr<accscalar_t>(),
|
1713 |
+
weight.const_data_ptr<accscalar_t>(),
|
1714 |
+
sum_dy.const_data_ptr<accscalar_t>(),
|
1715 |
+
sum_dy_xmu.const_data_ptr<accscalar_t>(),
|
1716 |
+
grad_input.mutable_data_ptr<scalar_t>(),
|
1717 |
+
static_cast<accscalar_t>(norm_fct),
|
1718 |
+
reduction_size,
|
1719 |
+
stride);
|
1720 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
1721 |
+
} else {
|
1722 |
+
batch_norm_backward_elemt_channels_last_kernel<ELEMENTS_PER_ITER>
|
1723 |
+
<<<grid, block, 0, stream>>>(
|
1724 |
+
grad_output.const_data_ptr<scalar_t>(),
|
1725 |
+
input.const_data_ptr<scalar_t>(),
|
1726 |
+
mean.const_data_ptr<accscalar_t>(),
|
1727 |
+
inv_std.const_data_ptr<accscalar_t>(),
|
1728 |
+
weight.defined() ? weight.const_data_ptr<scalar_t>() : nullptr,
|
1729 |
+
sum_dy.const_data_ptr<accscalar_t>(),
|
1730 |
+
sum_dy_xmu.const_data_ptr<accscalar_t>(),
|
1731 |
+
grad_input.mutable_data_ptr<scalar_t>(),
|
1732 |
+
static_cast<accscalar_t>(norm_fct),
|
1733 |
+
reduction_size,
|
1734 |
+
stride);
|
1735 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
1736 |
+
}
|
1737 |
+
});
|
1738 |
+
|
1739 |
+
return grad_input;
|
1740 |
+
}
|
1741 |
+
|
1742 |
+
} } // namespace at::native
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/PersistentSoftmax.cuh
ADDED
@@ -0,0 +1,401 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <cfloat>
|
4 |
+
#include <limits>
|
5 |
+
#include <stdint.h>
|
6 |
+
#include <cuda_fp16.h>
|
7 |
+
#include <c10/macros/Macros.h>
|
8 |
+
|
9 |
+
#include <ATen/cuda/DeviceUtils.cuh>
|
10 |
+
|
11 |
+
namespace {
|
12 |
+
|
13 |
+
int log2_ceil(int value) {
|
14 |
+
int log2_value = 0;
|
15 |
+
while ((1 << log2_value) < value) ++log2_value;
|
16 |
+
return log2_value;
|
17 |
+
}
|
18 |
+
|
19 |
+
template<typename T>
|
20 |
+
struct Add {
|
21 |
+
__device__ __forceinline__ T operator()(T a, T b) const {
|
22 |
+
return a + b;
|
23 |
+
}
|
24 |
+
};
|
25 |
+
|
26 |
+
template<typename T>
|
27 |
+
struct Max {
|
28 |
+
__device__ __forceinline__ T operator()(T a, T b) const {
|
29 |
+
return a < b ? b : a;
|
30 |
+
}
|
31 |
+
};
|
32 |
+
|
33 |
+
template <typename acc_t, int WARP_BATCH, int WARP_SIZE, template<typename> class ReduceOp>
|
34 |
+
__device__ __forceinline__ void warp_reduce(acc_t* sum) {
|
35 |
+
ReduceOp<acc_t> r;
|
36 |
+
#pragma unroll
|
37 |
+
for (int offset = WARP_SIZE / 2; offset > 0; offset /= 2) {
|
38 |
+
#pragma unroll
|
39 |
+
for (int i = 0; i < WARP_BATCH; ++i) {
|
40 |
+
acc_t b = WARP_SHFL_XOR(sum[i], offset, WARP_SIZE);
|
41 |
+
sum[i] = r(sum[i], b);
|
42 |
+
}
|
43 |
+
}
|
44 |
+
}
|
45 |
+
|
46 |
+
// The softmax_warp_* methods perform softmax forward and backward propagation on samples spanning the fast dimension.
|
47 |
+
// Each sample contains element_count scalar elements. element_count can be any integer value <= 1024.
|
48 |
+
// The template arguments have the following meaning:
|
49 |
+
// One "WARP" works on one "BATCH". One "BATCH" contains "WARP_BATCH" samples.
|
50 |
+
// WARP_BATCH is equal to 1 when element_count is large, and > 1 when element_count is small.
|
51 |
+
// A "WARP" contains "C10_WARPS_SIZE" threads, these treads are guaranteed to belong to the same warp.
|
52 |
+
// This is important because it means only __shfl_ instructions are required for reductions.
|
53 |
+
// Note that this means WARP_SIZE must be a power of two and <= architecture warp size.
|
54 |
+
// CUDA warp size is 32 for all existing GPU architectures, but there is no guarantee this will not change for future arch.
|
55 |
+
// ROCm warp size is 64 for all currently ROCm-supported GPU architectures, but this may change for future archs.
|
56 |
+
// is_log_softmax is a flag indicating whether SoftMax or LogSoftMax should be computed.
|
57 |
+
// is_masked is a flag indicating whether SoftMax or MaskedSoftMax should be computed.
|
58 |
+
// The template can be instantiated with any floating point type for the type arguments input_t, output_t and acc_t.
|
59 |
+
// This allows SoftMax to be fused with a cast immediately following the SoftMax.
|
60 |
+
// The mask should have the same shape as input, with a boolean indicate if the value is masked.
|
61 |
+
// The head_chunk_size is only used for transformer mask softmax, equals to H * D * D.
|
62 |
+
// For instance:
|
63 |
+
// input_t=half, acc_t=float, output_t=half => read half tensor, float accumulators, write half tensor.
|
64 |
+
// input_t=half, acc_t=float, output_t=float => read half tensor, float accumulators, write float tensor.
|
65 |
+
// input_t_float, acc_t=float, output_t=half => read float tensor, float accumulators, write half tensor.
|
66 |
+
|
67 |
+
template <typename input_t, typename output_t, typename acc_t, int log2_elements, bool is_log_softmax, bool is_masked>
|
68 |
+
__global__ void softmax_warp_forward(output_t *dst, const input_t *src, int batch_size, int stride, int element_count, const bool *mask = nullptr, const int head_chunk_size = -1, bool is_transformer_mask = false)
|
69 |
+
{
|
70 |
+
// WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and warp_size of method warp_softmax_forward_kernel.
|
71 |
+
constexpr int next_power_of_two = 1 << log2_elements;
|
72 |
+
constexpr int WARP_SIZE = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE;
|
73 |
+
constexpr int WARP_ITERATIONS = next_power_of_two / WARP_SIZE;
|
74 |
+
constexpr int WARP_BATCH = (next_power_of_two <= 128) ? 2 : 1;
|
75 |
+
|
76 |
+
int first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * WARP_BATCH;
|
77 |
+
|
78 |
+
// batch_size might not be a multiple of WARP_BATCH. Check how
|
79 |
+
// many batches have to computed within this WARP.
|
80 |
+
int local_batches = batch_size - first_batch;
|
81 |
+
if (local_batches > WARP_BATCH)
|
82 |
+
local_batches = WARP_BATCH;
|
83 |
+
|
84 |
+
// there might be multiple batches per warp. compute the index within the batch
|
85 |
+
int local_idx = threadIdx.x;
|
86 |
+
int idx_offset = first_batch * stride + local_idx;
|
87 |
+
|
88 |
+
src += idx_offset;
|
89 |
+
dst += idx_offset;
|
90 |
+
|
91 |
+
if (is_transformer_mask) {
|
92 |
+
mask += ((first_batch * stride) / head_chunk_size) * stride + local_idx;
|
93 |
+
} else {
|
94 |
+
mask += idx_offset;
|
95 |
+
}
|
96 |
+
// The nested loops over WARP_BATCH and then WARP_ITERATIONS can be simplified to one loop,
|
97 |
+
// but I think doing so would obfuscate the logic of the algorithm, thus I chose to keep
|
98 |
+
// the nested loops.
|
99 |
+
// This should have no impact on performance because the loops are unrolled anyway.
|
100 |
+
|
101 |
+
// load data from global memory
|
102 |
+
acc_t elements[WARP_BATCH][WARP_ITERATIONS];
|
103 |
+
for (int i = 0; i < WARP_BATCH; ++i) {
|
104 |
+
int batch_element_count = (i >= local_batches) ? 0 : element_count;
|
105 |
+
for (int it = 0; it < WARP_ITERATIONS; ++it) {
|
106 |
+
int element_index = local_idx + it * WARP_SIZE;
|
107 |
+
if (element_index < batch_element_count) {
|
108 |
+
elements[i][it] = src[i*element_count+it*WARP_SIZE];
|
109 |
+
} else {
|
110 |
+
elements[i][it] = -std::numeric_limits<acc_t>::infinity();
|
111 |
+
}
|
112 |
+
}
|
113 |
+
}
|
114 |
+
|
115 |
+
// compute max_value
|
116 |
+
acc_t max_value[WARP_BATCH];
|
117 |
+
#pragma unroll
|
118 |
+
for (int i = 0; i < WARP_BATCH; ++i) {
|
119 |
+
int batch_element_count = (i >= local_batches) ? 0 : element_count;
|
120 |
+
bool is_meaningful_max = false;
|
121 |
+
max_value[i] = elements[i][0];
|
122 |
+
#pragma unroll
|
123 |
+
for (int it = 0; it < WARP_ITERATIONS; ++it) {
|
124 |
+
if (is_masked) {
|
125 |
+
int idx = it*WARP_SIZE;
|
126 |
+
if ((idx + local_idx) < batch_element_count) {
|
127 |
+
if (!is_transformer_mask) {
|
128 |
+
idx += i*element_count;
|
129 |
+
}
|
130 |
+
if (!mask[idx]) {
|
131 |
+
max_value[i] = (is_meaningful_max && max_value[i] > elements[i][it]) ? max_value[i] : elements[i][it];
|
132 |
+
is_meaningful_max = true;
|
133 |
+
}
|
134 |
+
}
|
135 |
+
} else {
|
136 |
+
max_value[i] = max_value[i] > elements[i][it] ? max_value[i] : elements[i][it];
|
137 |
+
}
|
138 |
+
}
|
139 |
+
if (is_masked) {
|
140 |
+
if (!is_meaningful_max) {
|
141 |
+
max_value[i] = -std::numeric_limits<acc_t>::infinity();
|
142 |
+
}
|
143 |
+
}
|
144 |
+
}
|
145 |
+
warp_reduce<acc_t, WARP_BATCH, WARP_SIZE, Max>(max_value);
|
146 |
+
|
147 |
+
acc_t sum[WARP_BATCH] { 0.0f };
|
148 |
+
#pragma unroll
|
149 |
+
for (int i = 0; i < WARP_BATCH; ++i) {
|
150 |
+
int batch_element_count = (i >= local_batches) ? 0 : element_count;
|
151 |
+
#pragma unroll
|
152 |
+
for (int it = 0; it < WARP_ITERATIONS; ++it) {
|
153 |
+
if (!is_masked) {
|
154 |
+
if (is_log_softmax) {
|
155 |
+
sum[i] += std::exp(elements[i][it] - max_value[i]);
|
156 |
+
} else {
|
157 |
+
elements[i][it] = std::exp(elements[i][it] - max_value[i]);
|
158 |
+
sum[i] += elements[i][it];
|
159 |
+
}
|
160 |
+
} else {
|
161 |
+
int idx = it*WARP_SIZE;
|
162 |
+
bool valid = (idx + local_idx) < batch_element_count;
|
163 |
+
if (!is_transformer_mask) {
|
164 |
+
idx += i*element_count;
|
165 |
+
}
|
166 |
+
if (valid) {
|
167 |
+
if (!mask[idx]) {
|
168 |
+
if (is_log_softmax) {
|
169 |
+
sum[i] += std::exp(elements[i][it] - max_value[i]);
|
170 |
+
} else {
|
171 |
+
elements[i][it] = std::exp(elements[i][it] - max_value[i]);
|
172 |
+
sum[i] += elements[i][it];
|
173 |
+
}
|
174 |
+
} else {
|
175 |
+
if (!is_log_softmax) {
|
176 |
+
// Masked values are treated as -infinity, and std::exp(-infinity) is 0.
|
177 |
+
elements[i][it] = 0;
|
178 |
+
}
|
179 |
+
}
|
180 |
+
} else {
|
181 |
+
if (!is_log_softmax) {
|
182 |
+
elements[i][it] = 0.;
|
183 |
+
}
|
184 |
+
}
|
185 |
+
}
|
186 |
+
}
|
187 |
+
}
|
188 |
+
warp_reduce<acc_t, WARP_BATCH, WARP_SIZE, Add>(sum);
|
189 |
+
|
190 |
+
// store result
|
191 |
+
#pragma unroll
|
192 |
+
for (int i = 0; i < WARP_BATCH; ++i) {
|
193 |
+
if (i >= local_batches)
|
194 |
+
break;
|
195 |
+
if (is_log_softmax) sum[i] = std::log(sum[i]);
|
196 |
+
#pragma unroll
|
197 |
+
for (int it = 0; it < WARP_ITERATIONS; ++it) {
|
198 |
+
int element_index = local_idx + it * WARP_SIZE;
|
199 |
+
if (element_index < element_count) {
|
200 |
+
if (is_log_softmax) {
|
201 |
+
dst[i*element_count+it*WARP_SIZE] = elements[i][it] - max_value[i] - sum[i];
|
202 |
+
} else if (sum[i] == 0) {
|
203 |
+
dst[i*element_count+it*WARP_SIZE] = std::numeric_limits<acc_t>::quiet_NaN();
|
204 |
+
} else {
|
205 |
+
dst[i*element_count+it*WARP_SIZE] = elements[i][it] / sum[i];
|
206 |
+
}
|
207 |
+
} else {
|
208 |
+
break;
|
209 |
+
}
|
210 |
+
}
|
211 |
+
}
|
212 |
+
}
|
213 |
+
|
214 |
+
template <typename input_t, typename output_t, typename acc_t, int log2_elements, bool is_log_softmax, bool is_masked>
|
215 |
+
__global__ void softmax_warp_backward(output_t *gradInput, const input_t *grad, const input_t *output, int batch_size, int stride, int element_count, const bool *mask = nullptr)
|
216 |
+
{
|
217 |
+
// WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and warp_size of method warp_softmax_backward_kernel.
|
218 |
+
constexpr int next_power_of_two = 1 << log2_elements;
|
219 |
+
constexpr int WARP_SIZE = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE;
|
220 |
+
constexpr int WARP_ITERATIONS = next_power_of_two / WARP_SIZE;
|
221 |
+
constexpr int WARP_BATCH = (next_power_of_two <= 128) ? 2 : 1;
|
222 |
+
|
223 |
+
int first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * WARP_BATCH;
|
224 |
+
|
225 |
+
// batch_size might not be a multiple of WARP_BATCH. Check how
|
226 |
+
// many batches have to computed within this WARP.
|
227 |
+
int local_batches = batch_size - first_batch;
|
228 |
+
if (local_batches > WARP_BATCH)
|
229 |
+
local_batches = WARP_BATCH;
|
230 |
+
|
231 |
+
// there might be multiple batches per warp. compute the index within the batch
|
232 |
+
int local_idx = threadIdx.x % WARP_SIZE;
|
233 |
+
|
234 |
+
// the first element to process by the current thread
|
235 |
+
int thread_offset = first_batch * stride + local_idx;
|
236 |
+
grad += thread_offset;
|
237 |
+
output += thread_offset;
|
238 |
+
gradInput += thread_offset;
|
239 |
+
if (is_masked) {
|
240 |
+
mask += thread_offset;
|
241 |
+
}
|
242 |
+
|
243 |
+
// The nested loops over WARP_BATCH and then WARP_ITERATIONS can be simplified to one loop,
|
244 |
+
// but I think doing so would obfuscate the logic of the algorithm, thus I chose to keep
|
245 |
+
// the nested loops.
|
246 |
+
// This should have no impact on performance because the loops are unrolled anyway.
|
247 |
+
|
248 |
+
// load data from global memory
|
249 |
+
acc_t grad_reg[WARP_BATCH][WARP_ITERATIONS];
|
250 |
+
acc_t output_reg[WARP_BATCH][WARP_ITERATIONS];
|
251 |
+
for (int i = 0; i < WARP_BATCH; ++i) {
|
252 |
+
int batch_element_count = (i >= local_batches) ? 0 : element_count;
|
253 |
+
for (int it = 0; it < WARP_ITERATIONS; ++it) {
|
254 |
+
int element_index = local_idx + it * WARP_SIZE;
|
255 |
+
if (element_index < batch_element_count) {
|
256 |
+
grad_reg[i][it] = grad[i*element_count+it*WARP_SIZE];
|
257 |
+
output_reg[i][it] = output[i*element_count+it*WARP_SIZE];
|
258 |
+
} else {
|
259 |
+
grad_reg[i][it] = acc_t(0);
|
260 |
+
output_reg[i][it] = acc_t(0);
|
261 |
+
}
|
262 |
+
}
|
263 |
+
}
|
264 |
+
|
265 |
+
acc_t sum[WARP_BATCH] { 0.0f };
|
266 |
+
#pragma unroll
|
267 |
+
for (int i = 0; i < WARP_BATCH; ++i) {
|
268 |
+
#pragma unroll
|
269 |
+
for (int it = 0; it < WARP_ITERATIONS; ++it) {
|
270 |
+
if (!is_masked || !mask[i*element_count+it*WARP_SIZE]) {
|
271 |
+
sum[i] += grad_reg[i][it];
|
272 |
+
}
|
273 |
+
}
|
274 |
+
}
|
275 |
+
warp_reduce<acc_t, WARP_BATCH, WARP_SIZE, Add>(sum);
|
276 |
+
|
277 |
+
// store result
|
278 |
+
#pragma unroll
|
279 |
+
for (int i = 0; i < WARP_BATCH; ++i) {
|
280 |
+
if (i >= local_batches)
|
281 |
+
break;
|
282 |
+
#pragma unroll
|
283 |
+
for (int it = 0; it < WARP_ITERATIONS; ++it) {
|
284 |
+
int element_index = local_idx + it * WARP_SIZE;
|
285 |
+
if (element_index < element_count) {
|
286 |
+
if (is_masked && mask[i*element_count+it*WARP_SIZE]) {
|
287 |
+
gradInput[i*element_count+it*WARP_SIZE] = 0;
|
288 |
+
}
|
289 |
+
// compute gradients
|
290 |
+
else if (is_log_softmax) {
|
291 |
+
gradInput[i*element_count+it*WARP_SIZE] = (grad_reg[i][it] - std::exp(output_reg[i][it]) * sum[i]);
|
292 |
+
} else {
|
293 |
+
gradInput[i*element_count+it*WARP_SIZE] = (grad_reg[i][it] - output_reg[i][it] * sum[i]);
|
294 |
+
}
|
295 |
+
}
|
296 |
+
}
|
297 |
+
}
|
298 |
+
}
|
299 |
+
|
300 |
+
} // end of anonymous namespace
|
301 |
+
|
302 |
+
template<typename input_t, typename output_t, typename acc_t, bool is_log_softmax, bool is_masked>
|
303 |
+
void dispatch_softmax_forward(output_t *dst, const input_t *src, int softmax_elements, int softmax_elements_stride, int batch_count, const bool *mask = nullptr, int chunk_size = -1, bool is_transformer_mask = false)
|
304 |
+
{
|
305 |
+
TORCH_INTERNAL_ASSERT( softmax_elements >= 0 && softmax_elements <= 1024 );
|
306 |
+
if (softmax_elements == 0) {
|
307 |
+
return;
|
308 |
+
} else {
|
309 |
+
int log2_elements = log2_ceil(softmax_elements);
|
310 |
+
const int next_power_of_two = 1 << log2_elements;
|
311 |
+
|
312 |
+
// This value must match the WARP_SIZE constexpr value computed inside softmax_warp_forward.
|
313 |
+
int warp_size = at::cuda::warp_size();
|
314 |
+
warp_size = (next_power_of_two < warp_size) ? next_power_of_two : warp_size;
|
315 |
+
|
316 |
+
// This value must match the WARP_BATCH constexpr value computed inside softmax_warp_forward.
|
317 |
+
int batches_per_warp = (next_power_of_two <= 128) ? 2 : 1;
|
318 |
+
|
319 |
+
// use 128 threads per block to maximize gpu utilization
|
320 |
+
constexpr int threads_per_block = 128;
|
321 |
+
|
322 |
+
int warps_per_block = (threads_per_block / warp_size);
|
323 |
+
int batches_per_block = warps_per_block * batches_per_warp;
|
324 |
+
int blocks = (batch_count + batches_per_block - 1) / batches_per_block;
|
325 |
+
dim3 threads(warp_size, warps_per_block, 1);
|
326 |
+
// Launch code would be more elegant if C++ supported FOR CONSTEXPR
|
327 |
+
switch (log2_elements) {
|
328 |
+
#define LAUNCH_SOFTMAX_WARP_FORWARD(L2E) case L2E: \
|
329 |
+
softmax_warp_forward<input_t, output_t, acc_t, L2E, is_log_softmax, is_masked> \
|
330 |
+
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, \
|
331 |
+
src, batch_count, softmax_elements_stride, softmax_elements, mask, chunk_size, is_transformer_mask); \
|
332 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK(); \
|
333 |
+
break;
|
334 |
+
|
335 |
+
LAUNCH_SOFTMAX_WARP_FORWARD(0); // 1
|
336 |
+
LAUNCH_SOFTMAX_WARP_FORWARD(1); // 2
|
337 |
+
LAUNCH_SOFTMAX_WARP_FORWARD(2); // 4
|
338 |
+
LAUNCH_SOFTMAX_WARP_FORWARD(3); // 8
|
339 |
+
LAUNCH_SOFTMAX_WARP_FORWARD(4); // 16
|
340 |
+
LAUNCH_SOFTMAX_WARP_FORWARD(5); // 32
|
341 |
+
LAUNCH_SOFTMAX_WARP_FORWARD(6); // 64
|
342 |
+
LAUNCH_SOFTMAX_WARP_FORWARD(7); // 128
|
343 |
+
LAUNCH_SOFTMAX_WARP_FORWARD(8); // 256
|
344 |
+
LAUNCH_SOFTMAX_WARP_FORWARD(9); // 512
|
345 |
+
LAUNCH_SOFTMAX_WARP_FORWARD(10); ; // 1024
|
346 |
+
default:
|
347 |
+
break;
|
348 |
+
}
|
349 |
+
}
|
350 |
+
}
|
351 |
+
|
352 |
+
template<typename input_t, typename output_t, typename acc_t, bool is_log_softmax, bool is_masked>
|
353 |
+
void dispatch_softmax_backward(output_t *grad_input, const input_t *grad, const input_t *output, int softmax_elements, int softmax_elements_stride, int batch_count, const bool *mask = nullptr)
|
354 |
+
{
|
355 |
+
TORCH_INTERNAL_ASSERT( softmax_elements >= 0 && softmax_elements <= 1024 );
|
356 |
+
if (softmax_elements == 0) {
|
357 |
+
return;
|
358 |
+
} else {
|
359 |
+
int log2_elements = log2_ceil(softmax_elements);
|
360 |
+
const int next_power_of_two = 1 << log2_elements;
|
361 |
+
|
362 |
+
// This value must match the WARP_SIZE constexpr value computed inside softmax_warp_backward.
|
363 |
+
int warp_size = at::cuda::warp_size();
|
364 |
+
warp_size = (next_power_of_two < warp_size) ? next_power_of_two : warp_size;
|
365 |
+
|
366 |
+
// This value must match the WARP_BATCH constexpr value computed inside softmax_warp_backward.
|
367 |
+
int batches_per_warp = (next_power_of_two <= 128) ? 2 : 1;
|
368 |
+
|
369 |
+
// use 128 threads per block to maximize gpu utilization
|
370 |
+
constexpr int threads_per_block = 128;
|
371 |
+
|
372 |
+
int warps_per_block = (threads_per_block / warp_size);
|
373 |
+
int batches_per_block = warps_per_block * batches_per_warp;
|
374 |
+
int blocks = (batch_count + batches_per_block - 1) / batches_per_block;
|
375 |
+
dim3 threads(warp_size, warps_per_block, 1);
|
376 |
+
// Launch code would be more elegant if C++ supported FOR CONSTEXPR
|
377 |
+
switch (log2_elements) {
|
378 |
+
#define LAUNCH_SOFTMAX_WARP_BACKWARD(L2E) case L2E: \
|
379 |
+
softmax_warp_backward<input_t, output_t, acc_t, L2E, is_log_softmax, is_masked> \
|
380 |
+
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>> \
|
381 |
+
(grad_input, grad, output, batch_count, softmax_elements_stride, \
|
382 |
+
softmax_elements, mask); \
|
383 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK(); \
|
384 |
+
break;
|
385 |
+
|
386 |
+
LAUNCH_SOFTMAX_WARP_BACKWARD(0); // 1
|
387 |
+
LAUNCH_SOFTMAX_WARP_BACKWARD(1); // 2
|
388 |
+
LAUNCH_SOFTMAX_WARP_BACKWARD(2); // 4
|
389 |
+
LAUNCH_SOFTMAX_WARP_BACKWARD(3); // 8
|
390 |
+
LAUNCH_SOFTMAX_WARP_BACKWARD(4); // 16
|
391 |
+
LAUNCH_SOFTMAX_WARP_BACKWARD(5); // 32
|
392 |
+
LAUNCH_SOFTMAX_WARP_BACKWARD(6); // 64
|
393 |
+
LAUNCH_SOFTMAX_WARP_BACKWARD(7); // 128
|
394 |
+
LAUNCH_SOFTMAX_WARP_BACKWARD(8); // 256
|
395 |
+
LAUNCH_SOFTMAX_WARP_BACKWARD(9); // 512
|
396 |
+
LAUNCH_SOFTMAX_WARP_BACKWARD(10); // 1024
|
397 |
+
default:
|
398 |
+
break;
|
399 |
+
}
|
400 |
+
}
|
401 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/ATen/native/cuda/Pow.cuh
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/native/Pow.h>
|
3 |
+
#include <c10/core/Scalar.h>
|
4 |
+
|
5 |
+
namespace at { namespace native {
|
6 |
+
|
7 |
+
namespace {
|
8 |
+
|
9 |
+
|
10 |
+
// SFINAE doesn't work well with NVCC under Windows for math functions like pow and sqrt.
|
11 |
+
// So we need to define the functions with the explicit function signatures.
|
12 |
+
// As for pow, the following signatures are defined as the device function:
|
13 |
+
// pow(float, int)
|
14 |
+
// pow(double, int)
|
15 |
+
// pow(float, float)
|
16 |
+
// pow(double, double)
|
17 |
+
#ifdef _MSC_VER
|
18 |
+
// Functions for pow
|
19 |
+
// pow for at::Half
|
20 |
+
static inline __host__ __device__ at::Half pow_(at::Half base, at::Half exp) {
|
21 |
+
return static_cast<at::Half>(std::pow(static_cast<float>(base), static_cast<float>(exp)));
|
22 |
+
}
|
23 |
+
// pow for at::BFloat16
|
24 |
+
static inline __host__ __device__ at::BFloat16 pow_(at::BFloat16 base, at::BFloat16 exp) {
|
25 |
+
return static_cast<at::BFloat16>(std::pow(static_cast<float>(base), static_cast<float>(exp)));
|
26 |
+
}
|
27 |
+
// pow (floating, floating/int)
|
28 |
+
template <typename Base_type, typename Exp_type>
|
29 |
+
static inline __host__ __device__ typename std::enable_if<std::is_floating_point<Base_type>::value && (std::is_same<Base_type, Exp_type>::value || std::is_same<Exp_type, int>::value), Base_type>::type
|
30 |
+
pow_(Base_type base, Exp_type exp) {
|
31 |
+
return std::pow(base, exp);
|
32 |
+
}
|
33 |
+
// pow (Otherwise)
|
34 |
+
template <typename Base_type, typename Exp_type>
|
35 |
+
static inline __host__ __device__ typename std::enable_if<!std::is_same<Base_type, Exp_type>::value && !std::is_same<Exp_type, int>::value, Base_type>::type
|
36 |
+
pow_(Base_type base, Exp_type exp) {
|
37 |
+
return static_cast<Base_type>(std::pow(static_cast<double>(base), static_cast<double>(exp)));
|
38 |
+
}
|
39 |
+
#else
|
40 |
+
template <typename Base_type, typename Exp_type>
|
41 |
+
static inline __host__ __device__ Base_type pow_(Base_type base, Exp_type exp) {
|
42 |
+
return ::pow(base, exp);
|
43 |
+
}
|
44 |
+
#endif
|
45 |
+
|
46 |
+
template <typename T>
|
47 |
+
static inline __host__ __device__ std::enable_if_t<std::is_integral<T>::value, T> pow_(
|
48 |
+
T base, T exp) {
|
49 |
+
return at::native::powi(base, exp);
|
50 |
+
}
|
51 |
+
|
52 |
+
template <typename T>
|
53 |
+
static inline __host__ __device__ c10::complex<T> pow_(c10::complex<T> base, c10::complex<T> exp) {
|
54 |
+
return c10_complex_math::pow(base, exp);
|
55 |
+
}
|
56 |
+
|
57 |
+
} // namespace
|
58 |
+
}} // namespace at::native
|