applied-ai-018 commited on
Commit
88dfe69
·
verified ·
1 Parent(s): 39c103a

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step20/zero/13.attention.query_key_value.weight/exp_avg.pt +3 -0
  2. ckpts/universal/global_step20/zero/13.attention.query_key_value.weight/fp32.pt +3 -0
  3. ckpts/universal/global_step20/zero/21.post_attention_layernorm.weight/exp_avg.pt +3 -0
  4. ckpts/universal/global_step20/zero/21.post_attention_layernorm.weight/fp32.pt +3 -0
  5. lm-evaluation-harness/lm_eval/tasks/cmmlu/cmmlu_default_college_actuarial_science.yaml +4 -0
  6. lm-evaluation-harness/lm_eval/tasks/cmmlu/cmmlu_default_construction_project_management.yaml +4 -0
  7. lm-evaluation-harness/lm_eval/tasks/crows_pairs/README.md +101 -0
  8. lm-evaluation-harness/lm_eval/tasks/crows_pairs/crows_pairs_english_age.yaml +4 -0
  9. lm-evaluation-harness/lm_eval/tasks/crows_pairs/crows_pairs_english_nationality.yaml +4 -0
  10. lm-evaluation-harness/lm_eval/tasks/crows_pairs/crows_pairs_english_physical_appearance.yaml +4 -0
  11. lm-evaluation-harness/lm_eval/tasks/crows_pairs/crows_pairs_english_socioeconomic.yaml +4 -0
  12. lm-evaluation-harness/lm_eval/tasks/crows_pairs/crows_pairs_french_age.yaml +4 -0
  13. lm-evaluation-harness/lm_eval/tasks/crows_pairs/crows_pairs_french_physical_appearance.yaml +4 -0
  14. lm-evaluation-harness/lm_eval/tasks/crows_pairs/crows_pairs_french_race_color.yaml +4 -0
  15. lm-evaluation-harness/lm_eval/tasks/crows_pairs/crows_pairs_french_socioeconomic.yaml +4 -0
  16. lm-evaluation-harness/lm_eval/tasks/prost/README.md +62 -0
  17. lm-evaluation-harness/lm_eval/tasks/prost/corypaik_prost.yaml +19 -0
  18. lm-evaluation-harness/lm_eval/tasks/translation/wmt16_en-ro.yaml +14 -0
  19. venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT+1 +0 -0
  20. venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT+10 +0 -0
  21. venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT+11 +0 -0
  22. venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT+12 +0 -0
  23. venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT+2 +0 -0
  24. venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT+3 +0 -0
  25. venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT+5 +0 -0
  26. venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT+7 +0 -0
  27. venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT+8 +0 -0
  28. venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT-0 +0 -0
  29. venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT-1 +0 -0
  30. venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT-11 +0 -0
  31. venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT-12 +0 -0
  32. venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT-13 +0 -0
  33. venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT-2 +0 -0
  34. venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT-3 +0 -0
  35. venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT-4 +0 -0
  36. venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT-5 +0 -0
  37. venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT-6 +0 -0
  38. venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT-7 +0 -0
  39. venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT-8 +0 -0
  40. venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT-9 +0 -0
  41. venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT0 +0 -0
  42. venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/UCT +0 -0
  43. venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/Universal +0 -0
  44. venv/lib/python3.10/site-packages/pytz/zoneinfo/Europe/Amsterdam +0 -0
  45. venv/lib/python3.10/site-packages/pytz/zoneinfo/Europe/Andorra +0 -0
  46. venv/lib/python3.10/site-packages/pytz/zoneinfo/Europe/Athens +0 -0
  47. venv/lib/python3.10/site-packages/pytz/zoneinfo/Europe/Belfast +0 -0
  48. venv/lib/python3.10/site-packages/pytz/zoneinfo/Europe/Berlin +0 -0
  49. venv/lib/python3.10/site-packages/pytz/zoneinfo/Europe/Bratislava +0 -0
  50. venv/lib/python3.10/site-packages/pytz/zoneinfo/Europe/Brussels +0 -0
ckpts/universal/global_step20/zero/13.attention.query_key_value.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:745bf073868449c3b9659fc47865b231c4a0f1ae373b0efef89aab76922660aa
3
+ size 50332828
ckpts/universal/global_step20/zero/13.attention.query_key_value.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e48e0f20b5b5b0f448e81b8d2cf9bb859cea733d8ef91b0eb9e5424585f66b8
3
+ size 50332749
ckpts/universal/global_step20/zero/21.post_attention_layernorm.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f5fe3d8f00c74aeb1ca463200c3022ebc1cab89149eab141be3592c5a447fdc
3
+ size 9372
ckpts/universal/global_step20/zero/21.post_attention_layernorm.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aff8646d310e4cfaf62bc5fc0ae7315b69c8b1900c6563ba901e381dfdc1fe81
3
+ size 9293
lm-evaluation-harness/lm_eval/tasks/cmmlu/cmmlu_default_college_actuarial_science.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ "dataset_name": "college_actuarial_science"
2
+ "description": "以下是关于大学精算学的单项选择题,请直接给出正确答案的选项。\n\n"
3
+ "include": "_default_template_yaml"
4
+ "task": "cmmlu_college_actuarial_science"
lm-evaluation-harness/lm_eval/tasks/cmmlu/cmmlu_default_construction_project_management.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ "dataset_name": "construction_project_management"
2
+ "description": "以下是关于建设工程管理的单项选择题,请直接给出正确答案的选项。\n\n"
3
+ "include": "_default_template_yaml"
4
+ "task": "cmmlu_construction_project_management"
lm-evaluation-harness/lm_eval/tasks/crows_pairs/README.md ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # CrowS-Pairs
2
+
3
+ ### Paper
4
+
5
+ CrowS-Pairs: A Challenge Dataset for Measuring Social Biases in Masked Language Models
6
+ https://aclanthology.org/2020.emnlp-main.154/
7
+ French CrowS-Pairs: Extending a challenge dataset for measuring social bias in masked
8
+ language models to a language other than English
9
+ https://aclanthology.org/2022.acl-long.583/
10
+
11
+ CrowS-Pairs is a challenge set for evaluating what language models (LMs) on their tendency
12
+ to generate biased outputs. CrowS-Pairs comes in 2 languages and the English subset has
13
+ a newer version which fixes some of the issues with the original version.
14
+
15
+ Homepage: https://github.com/nyu-mll/crows-pairs, https://gitlab.inria.fr/french-crows-pairs
16
+
17
+ ### Citation
18
+
19
+ ```bibtex
20
+ @inproceedings{nangia-etal-2020-crows,
21
+ title = "{C}row{S}-Pairs: A Challenge Dataset for Measuring Social Biases in Masked Language Models",
22
+ author = "Nangia, Nikita and
23
+ Vania, Clara and
24
+ Bhalerao, Rasika and
25
+ Bowman, Samuel R.",
26
+ booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
27
+ month = nov,
28
+ year = "2020",
29
+ address = "Online",
30
+ publisher = "Association for Computational Linguistics",
31
+ url = "https://aclanthology.org/2020.emnlp-main.154",
32
+ doi = "10.18653/v1/2020.emnlp-main.154",
33
+ pages = "1953--1967",
34
+ abstract = "Pretrained language models, especially masked language models (MLMs) have seen success across many NLP tasks. However, there is ample evidence that they use the cultural biases that are undoubtedly present in the corpora they are trained on, implicitly creating harm with biased representations. To measure some forms of social bias in language models against protected demographic groups in the US, we introduce the Crowdsourced Stereotype Pairs benchmark (CrowS-Pairs). CrowS-Pairs has 1508 examples that cover stereotypes dealing with nine types of bias, like race, religion, and age. In CrowS-Pairs a model is presented with two sentences: one that is more stereotyping and another that is less stereotyping. The data focuses on stereotypes about historically disadvantaged groups and contrasts them with advantaged groups. We find that all three of the widely-used MLMs we evaluate substantially favor sentences that express stereotypes in every category in CrowS-Pairs. As work on building less biased models advances, this dataset can be used as a benchmark to evaluate progress.",
35
+ }
36
+
37
+ @inproceedings{neveol-etal-2022-french,
38
+ title = "{F}rench {C}row{S}-Pairs: Extending a challenge dataset for measuring social bias in masked language models to a language other than {E}nglish",
39
+ author = {N{\'e}v{\'e}ol, Aur{\'e}lie and
40
+ Dupont, Yoann and
41
+ Bezan{\c{c}}on, Julien and
42
+ Fort, Kar{\"e}n},
43
+ booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
44
+ month = may,
45
+ year = "2022",
46
+ address = "Dublin, Ireland",
47
+ publisher = "Association for Computational Linguistics",
48
+ url = "https://aclanthology.org/2022.acl-long.583",
49
+ doi = "10.18653/v1/2022.acl-long.583",
50
+ pages = "8521--8531",
51
+ abstract = "Warning: This paper contains explicit statements of offensive stereotypes which may be upsetting.Much work on biases in natural language processing has addressed biases linked to the social and cultural experience of English speaking individuals in the United States. We seek to widen the scope of bias studies by creating material to measure social bias in language models (LMs) against specific demographic groups in France. We build on the US-centered CrowS-pairs dataset to create a multilingual stereotypes dataset that allows for comparability across languages while also characterizing biases that are specific to each country and language. We introduce 1,679 sentence pairs in French that cover stereotypes in ten types of bias like gender and age. 1,467 sentence pairs are translated from CrowS-pairs and 212 are newly crowdsourced. The sentence pairs contrast stereotypes concerning underadvantaged groups with the same sentence concerning advantaged groups. We find that four widely used language models (three French, one multilingual) favor sentences that express stereotypes in most bias categories. We report on the translation process from English into French, which led to a characterization of stereotypes in CrowS-pairs including the identification of US-centric cultural traits. We offer guidelines to further extend the dataset to other languages and cultural environments.",
52
+ }
53
+ ```
54
+
55
+ ### Groups and Tasks
56
+
57
+ #### Groups
58
+
59
+ - `crows_pairs_english`: The entire English subset of the CrowS-Pairs dataset.
60
+ - `crows_pairs_french`: The entire French subset of the CrowS-Pairs dataset.
61
+
62
+ #### Tasks
63
+
64
+
65
+ The following tasks evaluate sub-areas of bias in the English CrowS-Pairs dataset:
66
+ - `crows_pairs_english_age`
67
+ - `crows_pairs_english_autre`
68
+ - `crows_pairs_english_disability`
69
+ - `crows_pairs_english_gender`
70
+ - `crows_pairs_english_nationality`
71
+ - `crows_pairs_english_physical_appearance`
72
+ - `crows_pairs_english_race_color`
73
+ - `crows_pairs_english_religion`
74
+ - `crows_pairs_english_sexual_orientation`
75
+ - `crows_pairs_english_socioeconomic`
76
+
77
+ The following tasks evaluate sub-areas of bias in the French CrowS-Pairs dataset:
78
+ - `crows_pairs_french_age`
79
+ - `crows_pairs_french_autre`
80
+ - `crows_pairs_french_disability`
81
+ - `crows_pairs_french_gender`
82
+ - `crows_pairs_french_nationality`
83
+ - `crows_pairs_french_physical_appearance`
84
+ - `crows_pairs_french_race_color`
85
+ - `crows_pairs_french_religion`
86
+ - `crows_pairs_french_sexual_orientation`
87
+ - `crows_pairs_french_socioeconomic`
88
+
89
+ All tasks evaluate the percentage of more-stereotypical sentences that are rated as more likely by a model than the non-stereotypical sentences (`pct_stereotype`), as well as the average absolute difference of loglikelihoods between the sentences in the pairs.
90
+
91
+ ### Checklist
92
+
93
+ * [x] Is the task an existing benchmark in the literature?
94
+ * [x] Have you referenced the original paper that introduced the task?
95
+ * [x] If yes, does the original paper provide a reference implementation?
96
+ * [x] The original paper does not for causal language models, so this is a novel formulation of the task for autoregressive LMs.
97
+
98
+ If other tasks on this dataset are already supported:
99
+ * [x] Is the "Main" variant of this task clearly denoted?
100
+ * [x] Have you provided a short sentence in a README on what each new variant adds / evaluates?
101
+ * [x] Have you noted which, if any, published evaluation setups are matched by this variant?
lm-evaluation-harness/lm_eval/tasks/crows_pairs/crows_pairs_english_age.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ include: crows_pairs_english.yaml
2
+ task: crows_pairs_english_age
3
+ dataset_name: english
4
+ process_docs: !function utils.filter_age
lm-evaluation-harness/lm_eval/tasks/crows_pairs/crows_pairs_english_nationality.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ include: crows_pairs_english.yaml
2
+ task: crows_pairs_english_nationality
3
+ dataset_name: english
4
+ process_docs: !function utils.filter_nationality
lm-evaluation-harness/lm_eval/tasks/crows_pairs/crows_pairs_english_physical_appearance.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ include: crows_pairs_english.yaml
2
+ task: crows_pairs_english_physical_appearance
3
+ dataset_name: english
4
+ process_docs: !function utils.filter_appearance
lm-evaluation-harness/lm_eval/tasks/crows_pairs/crows_pairs_english_socioeconomic.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ include: crows_pairs_english.yaml
2
+ task: crows_pairs_english_socioeconomic
3
+ dataset_name: english
4
+ process_docs: !function utils.filter_socio
lm-evaluation-harness/lm_eval/tasks/crows_pairs/crows_pairs_french_age.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ include: crows_pairs_english.yaml
2
+ task: crows_pairs_french_age
3
+ dataset_name: french
4
+ process_docs: !function utils.filter_age
lm-evaluation-harness/lm_eval/tasks/crows_pairs/crows_pairs_french_physical_appearance.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ include: crows_pairs_english.yaml
2
+ task: crows_pairs_french_physical_appearance
3
+ dataset_name: french
4
+ process_docs: !function utils.filter_appearance
lm-evaluation-harness/lm_eval/tasks/crows_pairs/crows_pairs_french_race_color.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ include: crows_pairs_english.yaml
2
+ task: crows_pairs_french_race_color
3
+ dataset_name: french
4
+ process_docs: !function utils.filter_race_color
lm-evaluation-harness/lm_eval/tasks/crows_pairs/crows_pairs_french_socioeconomic.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ include: crows_pairs_english.yaml
2
+ task: crows_pairs_french_socioeconomic
3
+ dataset_name: french
4
+ process_docs: !function utils.filter_socio
lm-evaluation-harness/lm_eval/tasks/prost/README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # PROST
2
+
3
+ ### Paper
4
+
5
+ Title: `PROST: Physical Reasoning about Objects Through Space and Time`
6
+
7
+ Abstract: https://arxiv.org/abs/2106.03634
8
+
9
+ PROST, Physical Reasoning about Objects Through Space and Time, is a dataset
10
+ consisting of 18,736 multiple-choice questions made from 14 manually curated
11
+ templates, covering 10 physical reasoning concepts. All questions are designed
12
+ to probe both causal and masked language models in a zero-shot setting.
13
+
14
+ NOTE: PROST is limited to the zero-shot setting to adhere to authors' intentions
15
+ as discussed in section 7 of the paper: "We hope that the community will use
16
+ this dataset in the intended way: in a zero-shot setting to probe models which
17
+ have been trained on data not specifically collected to succeed on PROST."
18
+
19
+ Homepage: https://github.com/nala-cub/prost
20
+
21
+
22
+ ### Citation
23
+
24
+ ```
25
+ @inproceedings{aroca-ouellette-etal-2021-prost,
26
+ title = "{PROST}: {P}hysical Reasoning about Objects through Space and Time",
27
+ author = "Aroca-Ouellette, St{\'e}phane and
28
+ Paik, Cory and
29
+ Roncone, Alessandro and
30
+ Kann, Katharina",
31
+ booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
32
+ month = aug,
33
+ year = "2021",
34
+ address = "Online",
35
+ publisher = "Association for Computational Linguistics",
36
+ url = "https://aclanthology.org/2021.findings-acl.404",
37
+ pages = "4597--4608",
38
+ }
39
+ ```
40
+
41
+ ### Groups and Tasks
42
+
43
+ #### Groups
44
+
45
+ * Not part of a group yet.
46
+
47
+ #### Tasks
48
+
49
+ * `prost`
50
+
51
+ ### Checklist
52
+
53
+ For adding novel benchmarks/datasets to the library:
54
+ * [ ] Is the task an existing benchmark in the literature?
55
+ * [ ] Have you referenced the original paper that introduced the task?
56
+ * [ ] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
57
+
58
+
59
+ If other tasks on this dataset are already supported:
60
+ * [ ] Is the "Main" variant of this task clearly denoted?
61
+ * [ ] Have you provided a short sentence in a README on what each new variant adds / evaluates?
62
+ * [ ] Have you noted which, if any, published evaluation setups are matched by this variant?
lm-evaluation-harness/lm_eval/tasks/prost/corypaik_prost.yaml ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: prost
2
+ dataset_path: corypaik/prost
3
+ dataset_name: null
4
+ output_type: multiple_choice
5
+ test_split: test
6
+ doc_to_text: "{{context}}\nQuestion: {{ex_question}}\nAnswer:"
7
+ doc_to_target: label
8
+ doc_to_choice: "{{[A, B, C, D]}}"
9
+ should_decontaminate: true
10
+ doc_to_decontamination_query: "{{context}}\nQuestion: {{ex_question}}\nAnswer:"
11
+ metric_list:
12
+ - metric: acc
13
+ aggregation: mean
14
+ higher_is_better: true
15
+ - metric: acc_norm
16
+ aggregation: mean
17
+ higher_is_better: true
18
+ metadata:
19
+ version: 1.0
lm-evaluation-harness/lm_eval/tasks/translation/wmt16_en-ro.yaml ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Generated by utils.py
2
+ dataset_name: ro-en
3
+ dataset_path: wmt16
4
+ doc_to_target: ' {{translation["ro"]}}'
5
+ doc_to_text: 'English phrase: {{translation["en"]}}
6
+
7
+ Romanian phrase:'
8
+ group:
9
+ - generate_until
10
+ - translation
11
+ - wmt16
12
+ - gpt3_translation_benchmarks
13
+ include: wmt_common_yaml
14
+ task: wmt16-en-ro
venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT+1 ADDED
Binary file (116 Bytes). View file
 
venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT+10 ADDED
Binary file (117 Bytes). View file
 
venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT+11 ADDED
Binary file (117 Bytes). View file
 
venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT+12 ADDED
Binary file (117 Bytes). View file
 
venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT+2 ADDED
Binary file (116 Bytes). View file
 
venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT+3 ADDED
Binary file (116 Bytes). View file
 
venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT+5 ADDED
Binary file (116 Bytes). View file
 
venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT+7 ADDED
Binary file (116 Bytes). View file
 
venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT+8 ADDED
Binary file (116 Bytes). View file
 
venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT-0 ADDED
Binary file (114 Bytes). View file
 
venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT-1 ADDED
Binary file (117 Bytes). View file
 
venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT-11 ADDED
Binary file (118 Bytes). View file
 
venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT-12 ADDED
Binary file (118 Bytes). View file
 
venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT-13 ADDED
Binary file (118 Bytes). View file
 
venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT-2 ADDED
Binary file (117 Bytes). View file
 
venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT-3 ADDED
Binary file (117 Bytes). View file
 
venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT-4 ADDED
Binary file (117 Bytes). View file
 
venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT-5 ADDED
Binary file (117 Bytes). View file
 
venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT-6 ADDED
Binary file (117 Bytes). View file
 
venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT-7 ADDED
Binary file (117 Bytes). View file
 
venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT-8 ADDED
Binary file (117 Bytes). View file
 
venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT-9 ADDED
Binary file (117 Bytes). View file
 
venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/GMT0 ADDED
Binary file (114 Bytes). View file
 
venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/UCT ADDED
Binary file (114 Bytes). View file
 
venv/lib/python3.10/site-packages/pytz/zoneinfo/Etc/Universal ADDED
Binary file (114 Bytes). View file
 
venv/lib/python3.10/site-packages/pytz/zoneinfo/Europe/Amsterdam ADDED
Binary file (2.93 kB). View file
 
venv/lib/python3.10/site-packages/pytz/zoneinfo/Europe/Andorra ADDED
Binary file (1.74 kB). View file
 
venv/lib/python3.10/site-packages/pytz/zoneinfo/Europe/Athens ADDED
Binary file (2.26 kB). View file
 
venv/lib/python3.10/site-packages/pytz/zoneinfo/Europe/Belfast ADDED
Binary file (3.66 kB). View file
 
venv/lib/python3.10/site-packages/pytz/zoneinfo/Europe/Berlin ADDED
Binary file (2.3 kB). View file
 
venv/lib/python3.10/site-packages/pytz/zoneinfo/Europe/Bratislava ADDED
Binary file (2.3 kB). View file
 
venv/lib/python3.10/site-packages/pytz/zoneinfo/Europe/Brussels ADDED
Binary file (2.93 kB). View file