applied-ai-018 commited on
Commit
8931e57
·
verified ·
1 Parent(s): b43ef48

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step120/zero/12.mlp.dense_h_to_4h.weight/exp_avg.pt +3 -0
  2. ckpts/universal/global_step120/zero/12.mlp.dense_h_to_4h.weight/exp_avg_sq.pt +3 -0
  3. ckpts/universal/global_step120/zero/12.mlp.dense_h_to_4h.weight/fp32.pt +3 -0
  4. ckpts/universal/global_step120/zero/22.attention.dense.weight/exp_avg.pt +3 -0
  5. ckpts/universal/global_step120/zero/22.attention.dense.weight/fp32.pt +3 -0
  6. ckpts/universal/global_step120/zero/4.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt +3 -0
  7. venv/lib/python3.10/site-packages/sympy/matrices/__init__.py +71 -0
  8. venv/lib/python3.10/site-packages/sympy/matrices/common.py +3227 -0
  9. venv/lib/python3.10/site-packages/sympy/matrices/decompositions.py +1629 -0
  10. venv/lib/python3.10/site-packages/sympy/matrices/dense.py +1090 -0
  11. venv/lib/python3.10/site-packages/sympy/matrices/determinant.py +898 -0
  12. venv/lib/python3.10/site-packages/sympy/matrices/eigen.py +1343 -0
  13. venv/lib/python3.10/site-packages/sympy/matrices/expressions/__init__.py +62 -0
  14. venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/__init__.cpython-310.pyc +0 -0
  15. venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/_shape.cpython-310.pyc +0 -0
  16. venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/adjoint.cpython-310.pyc +0 -0
  17. venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/applyfunc.cpython-310.pyc +0 -0
  18. venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/blockmatrix.cpython-310.pyc +0 -0
  19. venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/companion.cpython-310.pyc +0 -0
  20. venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/determinant.cpython-310.pyc +0 -0
  21. venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/diagonal.cpython-310.pyc +0 -0
  22. venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/dotproduct.cpython-310.pyc +0 -0
  23. venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/factorizations.cpython-310.pyc +0 -0
  24. venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/fourier.cpython-310.pyc +0 -0
  25. venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/funcmatrix.cpython-310.pyc +0 -0
  26. venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/hadamard.cpython-310.pyc +0 -0
  27. venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/inverse.cpython-310.pyc +0 -0
  28. venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/kronecker.cpython-310.pyc +0 -0
  29. venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/matadd.cpython-310.pyc +0 -0
  30. venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/matexpr.cpython-310.pyc +0 -0
  31. venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/matmul.cpython-310.pyc +0 -0
  32. venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/matpow.cpython-310.pyc +0 -0
  33. venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/permutation.cpython-310.pyc +0 -0
  34. venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/sets.cpython-310.pyc +0 -0
  35. venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/slice.cpython-310.pyc +0 -0
  36. venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/special.cpython-310.pyc +0 -0
  37. venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/trace.cpython-310.pyc +0 -0
  38. venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/transpose.cpython-310.pyc +0 -0
  39. venv/lib/python3.10/site-packages/sympy/matrices/expressions/_shape.py +102 -0
  40. venv/lib/python3.10/site-packages/sympy/matrices/expressions/adjoint.py +61 -0
  41. venv/lib/python3.10/site-packages/sympy/matrices/expressions/applyfunc.py +204 -0
  42. venv/lib/python3.10/site-packages/sympy/matrices/expressions/blockmatrix.py +979 -0
  43. venv/lib/python3.10/site-packages/sympy/matrices/expressions/companion.py +56 -0
  44. venv/lib/python3.10/site-packages/sympy/matrices/expressions/determinant.py +141 -0
  45. venv/lib/python3.10/site-packages/sympy/matrices/expressions/diagonal.py +220 -0
  46. venv/lib/python3.10/site-packages/sympy/matrices/expressions/dotproduct.py +55 -0
  47. venv/lib/python3.10/site-packages/sympy/matrices/expressions/factorizations.py +62 -0
  48. venv/lib/python3.10/site-packages/sympy/matrices/expressions/fourier.py +91 -0
  49. venv/lib/python3.10/site-packages/sympy/matrices/expressions/funcmatrix.py +118 -0
  50. venv/lib/python3.10/site-packages/sympy/matrices/expressions/hadamard.py +464 -0
ckpts/universal/global_step120/zero/12.mlp.dense_h_to_4h.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7db96ae90a2528bbdfb7bd14e1b594cb55cf63a2a5c9df1e4f72929c697ee400
3
+ size 33555612
ckpts/universal/global_step120/zero/12.mlp.dense_h_to_4h.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7cceb5e1a070dc0299466bfc8bcaa50d5e9f0b43061562c102027ea5716c23d0
3
+ size 33555627
ckpts/universal/global_step120/zero/12.mlp.dense_h_to_4h.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6eeef10c55fb09d83fc18a1094e244bbc7a4dd1e80f98c59eb74711cf56ef533
3
+ size 33555533
ckpts/universal/global_step120/zero/22.attention.dense.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91cf52098e01840bde747b6ff66857526083b4ecdf818fd612852b2610a41a6d
3
+ size 16778396
ckpts/universal/global_step120/zero/22.attention.dense.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a38c570fa777460d7e69a636e398f55752a2170e0ce77bc4dbb1fdef9616e4cb
3
+ size 16778317
ckpts/universal/global_step120/zero/4.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1b621cafb8fbdaa128a9f6bc02ae379ce059d05cc1b93351e3d980b24844134
3
+ size 33555627
venv/lib/python3.10/site-packages/sympy/matrices/__init__.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """A module that handles matrices.
2
+
3
+ Includes functions for fast creating matrices like zero, one/eye, random
4
+ matrix, etc.
5
+ """
6
+ from .common import ShapeError, NonSquareMatrixError, MatrixKind
7
+ from .dense import (
8
+ GramSchmidt, casoratian, diag, eye, hessian, jordan_cell,
9
+ list2numpy, matrix2numpy, matrix_multiply_elementwise, ones,
10
+ randMatrix, rot_axis1, rot_axis2, rot_axis3, rot_ccw_axis1,
11
+ rot_ccw_axis2, rot_ccw_axis3, rot_givens,
12
+ symarray, wronskian, zeros)
13
+ from .dense import MutableDenseMatrix
14
+ from .matrices import DeferredVector, MatrixBase
15
+
16
+ MutableMatrix = MutableDenseMatrix
17
+ Matrix = MutableMatrix
18
+
19
+ from .sparse import MutableSparseMatrix
20
+ from .sparsetools import banded
21
+ from .immutable import ImmutableDenseMatrix, ImmutableSparseMatrix
22
+
23
+ ImmutableMatrix = ImmutableDenseMatrix
24
+ SparseMatrix = MutableSparseMatrix
25
+
26
+ from .expressions import (
27
+ MatrixSlice, BlockDiagMatrix, BlockMatrix, FunctionMatrix, Identity,
28
+ Inverse, MatAdd, MatMul, MatPow, MatrixExpr, MatrixSymbol, Trace,
29
+ Transpose, ZeroMatrix, OneMatrix, blockcut, block_collapse, matrix_symbols, Adjoint,
30
+ hadamard_product, HadamardProduct, HadamardPower, Determinant, det,
31
+ diagonalize_vector, DiagMatrix, DiagonalMatrix, DiagonalOf, trace,
32
+ DotProduct, kronecker_product, KroneckerProduct,
33
+ PermutationMatrix, MatrixPermute, MatrixSet, Permanent, per)
34
+
35
+ from .utilities import dotprodsimp
36
+
37
+ __all__ = [
38
+ 'ShapeError', 'NonSquareMatrixError', 'MatrixKind',
39
+
40
+ 'GramSchmidt', 'casoratian', 'diag', 'eye', 'hessian', 'jordan_cell',
41
+ 'list2numpy', 'matrix2numpy', 'matrix_multiply_elementwise', 'ones',
42
+ 'randMatrix', 'rot_axis1', 'rot_axis2', 'rot_axis3', 'symarray',
43
+ 'wronskian', 'zeros', 'rot_ccw_axis1', 'rot_ccw_axis2', 'rot_ccw_axis3',
44
+ 'rot_givens',
45
+
46
+ 'MutableDenseMatrix',
47
+
48
+ 'DeferredVector', 'MatrixBase',
49
+
50
+ 'Matrix', 'MutableMatrix',
51
+
52
+ 'MutableSparseMatrix',
53
+
54
+ 'banded',
55
+
56
+ 'ImmutableDenseMatrix', 'ImmutableSparseMatrix',
57
+
58
+ 'ImmutableMatrix', 'SparseMatrix',
59
+
60
+ 'MatrixSlice', 'BlockDiagMatrix', 'BlockMatrix', 'FunctionMatrix',
61
+ 'Identity', 'Inverse', 'MatAdd', 'MatMul', 'MatPow', 'MatrixExpr',
62
+ 'MatrixSymbol', 'Trace', 'Transpose', 'ZeroMatrix', 'OneMatrix',
63
+ 'blockcut', 'block_collapse', 'matrix_symbols', 'Adjoint',
64
+ 'hadamard_product', 'HadamardProduct', 'HadamardPower', 'Determinant',
65
+ 'det', 'diagonalize_vector', 'DiagMatrix', 'DiagonalMatrix',
66
+ 'DiagonalOf', 'trace', 'DotProduct', 'kronecker_product',
67
+ 'KroneckerProduct', 'PermutationMatrix', 'MatrixPermute', 'MatrixSet',
68
+ 'Permanent', 'per',
69
+
70
+ 'dotprodsimp',
71
+ ]
venv/lib/python3.10/site-packages/sympy/matrices/common.py ADDED
@@ -0,0 +1,3227 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Basic methods common to all matrices to be used
3
+ when creating more advanced matrices (e.g., matrices over rings,
4
+ etc.).
5
+ """
6
+
7
+ from collections import defaultdict
8
+ from collections.abc import Iterable
9
+ from inspect import isfunction
10
+ from functools import reduce
11
+
12
+ from sympy.assumptions.refine import refine
13
+ from sympy.core import SympifyError, Add
14
+ from sympy.core.basic import Atom
15
+ from sympy.core.decorators import call_highest_priority
16
+ from sympy.core.kind import Kind, NumberKind
17
+ from sympy.core.logic import fuzzy_and, FuzzyBool
18
+ from sympy.core.mod import Mod
19
+ from sympy.core.singleton import S
20
+ from sympy.core.symbol import Symbol
21
+ from sympy.core.sympify import sympify
22
+ from sympy.functions.elementary.complexes import Abs, re, im
23
+ from .utilities import _dotprodsimp, _simplify
24
+ from sympy.polys.polytools import Poly
25
+ from sympy.utilities.iterables import flatten, is_sequence
26
+ from sympy.utilities.misc import as_int, filldedent
27
+ from sympy.tensor.array import NDimArray
28
+
29
+ from .utilities import _get_intermediate_simp_bool
30
+
31
+
32
+ class MatrixError(Exception):
33
+ pass
34
+
35
+
36
+ class ShapeError(ValueError, MatrixError):
37
+ """Wrong matrix shape"""
38
+ pass
39
+
40
+
41
+ class NonSquareMatrixError(ShapeError):
42
+ pass
43
+
44
+
45
+ class NonInvertibleMatrixError(ValueError, MatrixError):
46
+ """The matrix in not invertible (division by multidimensional zero error)."""
47
+ pass
48
+
49
+
50
+ class NonPositiveDefiniteMatrixError(ValueError, MatrixError):
51
+ """The matrix is not a positive-definite matrix."""
52
+ pass
53
+
54
+
55
+ class MatrixRequired:
56
+ """All subclasses of matrix objects must implement the
57
+ required matrix properties listed here."""
58
+ rows = None # type: int
59
+ cols = None # type: int
60
+ _simplify = None
61
+
62
+ @classmethod
63
+ def _new(cls, *args, **kwargs):
64
+ """`_new` must, at minimum, be callable as
65
+ `_new(rows, cols, mat) where mat is a flat list of the
66
+ elements of the matrix."""
67
+ raise NotImplementedError("Subclasses must implement this.")
68
+
69
+ def __eq__(self, other):
70
+ raise NotImplementedError("Subclasses must implement this.")
71
+
72
+ def __getitem__(self, key):
73
+ """Implementations of __getitem__ should accept ints, in which
74
+ case the matrix is indexed as a flat list, tuples (i,j) in which
75
+ case the (i,j) entry is returned, slices, or mixed tuples (a,b)
76
+ where a and b are any combination of slices and integers."""
77
+ raise NotImplementedError("Subclasses must implement this.")
78
+
79
+ def __len__(self):
80
+ """The total number of entries in the matrix."""
81
+ raise NotImplementedError("Subclasses must implement this.")
82
+
83
+ @property
84
+ def shape(self):
85
+ raise NotImplementedError("Subclasses must implement this.")
86
+
87
+
88
+ class MatrixShaping(MatrixRequired):
89
+ """Provides basic matrix shaping and extracting of submatrices"""
90
+
91
+ def _eval_col_del(self, col):
92
+ def entry(i, j):
93
+ return self[i, j] if j < col else self[i, j + 1]
94
+ return self._new(self.rows, self.cols - 1, entry)
95
+
96
+ def _eval_col_insert(self, pos, other):
97
+
98
+ def entry(i, j):
99
+ if j < pos:
100
+ return self[i, j]
101
+ elif pos <= j < pos + other.cols:
102
+ return other[i, j - pos]
103
+ return self[i, j - other.cols]
104
+
105
+ return self._new(self.rows, self.cols + other.cols, entry)
106
+
107
+ def _eval_col_join(self, other):
108
+ rows = self.rows
109
+
110
+ def entry(i, j):
111
+ if i < rows:
112
+ return self[i, j]
113
+ return other[i - rows, j]
114
+
115
+ return classof(self, other)._new(self.rows + other.rows, self.cols,
116
+ entry)
117
+
118
+ def _eval_extract(self, rowsList, colsList):
119
+ mat = list(self)
120
+ cols = self.cols
121
+ indices = (i * cols + j for i in rowsList for j in colsList)
122
+ return self._new(len(rowsList), len(colsList),
123
+ [mat[i] for i in indices])
124
+
125
+ def _eval_get_diag_blocks(self):
126
+ sub_blocks = []
127
+
128
+ def recurse_sub_blocks(M):
129
+ i = 1
130
+ while i <= M.shape[0]:
131
+ if i == 1:
132
+ to_the_right = M[0, i:]
133
+ to_the_bottom = M[i:, 0]
134
+ else:
135
+ to_the_right = M[:i, i:]
136
+ to_the_bottom = M[i:, :i]
137
+ if any(to_the_right) or any(to_the_bottom):
138
+ i += 1
139
+ continue
140
+ else:
141
+ sub_blocks.append(M[:i, :i])
142
+ if M.shape == M[:i, :i].shape:
143
+ return
144
+ else:
145
+ recurse_sub_blocks(M[i:, i:])
146
+ return
147
+
148
+ recurse_sub_blocks(self)
149
+ return sub_blocks
150
+
151
+ def _eval_row_del(self, row):
152
+ def entry(i, j):
153
+ return self[i, j] if i < row else self[i + 1, j]
154
+ return self._new(self.rows - 1, self.cols, entry)
155
+
156
+ def _eval_row_insert(self, pos, other):
157
+ entries = list(self)
158
+ insert_pos = pos * self.cols
159
+ entries[insert_pos:insert_pos] = list(other)
160
+ return self._new(self.rows + other.rows, self.cols, entries)
161
+
162
+ def _eval_row_join(self, other):
163
+ cols = self.cols
164
+
165
+ def entry(i, j):
166
+ if j < cols:
167
+ return self[i, j]
168
+ return other[i, j - cols]
169
+
170
+ return classof(self, other)._new(self.rows, self.cols + other.cols,
171
+ entry)
172
+
173
+ def _eval_tolist(self):
174
+ return [list(self[i,:]) for i in range(self.rows)]
175
+
176
+ def _eval_todok(self):
177
+ dok = {}
178
+ rows, cols = self.shape
179
+ for i in range(rows):
180
+ for j in range(cols):
181
+ val = self[i, j]
182
+ if val != self.zero:
183
+ dok[i, j] = val
184
+ return dok
185
+
186
+ def _eval_vec(self):
187
+ rows = self.rows
188
+
189
+ def entry(n, _):
190
+ # we want to read off the columns first
191
+ j = n // rows
192
+ i = n - j * rows
193
+ return self[i, j]
194
+
195
+ return self._new(len(self), 1, entry)
196
+
197
+ def _eval_vech(self, diagonal):
198
+ c = self.cols
199
+ v = []
200
+ if diagonal:
201
+ for j in range(c):
202
+ for i in range(j, c):
203
+ v.append(self[i, j])
204
+ else:
205
+ for j in range(c):
206
+ for i in range(j + 1, c):
207
+ v.append(self[i, j])
208
+ return self._new(len(v), 1, v)
209
+
210
+ def col_del(self, col):
211
+ """Delete the specified column."""
212
+ if col < 0:
213
+ col += self.cols
214
+ if not 0 <= col < self.cols:
215
+ raise IndexError("Column {} is out of range.".format(col))
216
+ return self._eval_col_del(col)
217
+
218
+ def col_insert(self, pos, other):
219
+ """Insert one or more columns at the given column position.
220
+
221
+ Examples
222
+ ========
223
+
224
+ >>> from sympy import zeros, ones
225
+ >>> M = zeros(3)
226
+ >>> V = ones(3, 1)
227
+ >>> M.col_insert(1, V)
228
+ Matrix([
229
+ [0, 1, 0, 0],
230
+ [0, 1, 0, 0],
231
+ [0, 1, 0, 0]])
232
+
233
+ See Also
234
+ ========
235
+
236
+ col
237
+ row_insert
238
+ """
239
+ # Allows you to build a matrix even if it is null matrix
240
+ if not self:
241
+ return type(self)(other)
242
+
243
+ pos = as_int(pos)
244
+
245
+ if pos < 0:
246
+ pos = self.cols + pos
247
+ if pos < 0:
248
+ pos = 0
249
+ elif pos > self.cols:
250
+ pos = self.cols
251
+
252
+ if self.rows != other.rows:
253
+ raise ShapeError(
254
+ "The matrices have incompatible number of rows ({} and {})"
255
+ .format(self.rows, other.rows))
256
+
257
+ return self._eval_col_insert(pos, other)
258
+
259
+ def col_join(self, other):
260
+ """Concatenates two matrices along self's last and other's first row.
261
+
262
+ Examples
263
+ ========
264
+
265
+ >>> from sympy import zeros, ones
266
+ >>> M = zeros(3)
267
+ >>> V = ones(1, 3)
268
+ >>> M.col_join(V)
269
+ Matrix([
270
+ [0, 0, 0],
271
+ [0, 0, 0],
272
+ [0, 0, 0],
273
+ [1, 1, 1]])
274
+
275
+ See Also
276
+ ========
277
+
278
+ col
279
+ row_join
280
+ """
281
+ # A null matrix can always be stacked (see #10770)
282
+ if self.rows == 0 and self.cols != other.cols:
283
+ return self._new(0, other.cols, []).col_join(other)
284
+
285
+ if self.cols != other.cols:
286
+ raise ShapeError(
287
+ "The matrices have incompatible number of columns ({} and {})"
288
+ .format(self.cols, other.cols))
289
+ return self._eval_col_join(other)
290
+
291
+ def col(self, j):
292
+ """Elementary column selector.
293
+
294
+ Examples
295
+ ========
296
+
297
+ >>> from sympy import eye
298
+ >>> eye(2).col(0)
299
+ Matrix([
300
+ [1],
301
+ [0]])
302
+
303
+ See Also
304
+ ========
305
+
306
+ row
307
+ col_del
308
+ col_join
309
+ col_insert
310
+ """
311
+ return self[:, j]
312
+
313
+ def extract(self, rowsList, colsList):
314
+ r"""Return a submatrix by specifying a list of rows and columns.
315
+ Negative indices can be given. All indices must be in the range
316
+ $-n \le i < n$ where $n$ is the number of rows or columns.
317
+
318
+ Examples
319
+ ========
320
+
321
+ >>> from sympy import Matrix
322
+ >>> m = Matrix(4, 3, range(12))
323
+ >>> m
324
+ Matrix([
325
+ [0, 1, 2],
326
+ [3, 4, 5],
327
+ [6, 7, 8],
328
+ [9, 10, 11]])
329
+ >>> m.extract([0, 1, 3], [0, 1])
330
+ Matrix([
331
+ [0, 1],
332
+ [3, 4],
333
+ [9, 10]])
334
+
335
+ Rows or columns can be repeated:
336
+
337
+ >>> m.extract([0, 0, 1], [-1])
338
+ Matrix([
339
+ [2],
340
+ [2],
341
+ [5]])
342
+
343
+ Every other row can be taken by using range to provide the indices:
344
+
345
+ >>> m.extract(range(0, m.rows, 2), [-1])
346
+ Matrix([
347
+ [2],
348
+ [8]])
349
+
350
+ RowsList or colsList can also be a list of booleans, in which case
351
+ the rows or columns corresponding to the True values will be selected:
352
+
353
+ >>> m.extract([0, 1, 2, 3], [True, False, True])
354
+ Matrix([
355
+ [0, 2],
356
+ [3, 5],
357
+ [6, 8],
358
+ [9, 11]])
359
+ """
360
+
361
+ if not is_sequence(rowsList) or not is_sequence(colsList):
362
+ raise TypeError("rowsList and colsList must be iterable")
363
+ # ensure rowsList and colsList are lists of integers
364
+ if rowsList and all(isinstance(i, bool) for i in rowsList):
365
+ rowsList = [index for index, item in enumerate(rowsList) if item]
366
+ if colsList and all(isinstance(i, bool) for i in colsList):
367
+ colsList = [index for index, item in enumerate(colsList) if item]
368
+
369
+ # ensure everything is in range
370
+ rowsList = [a2idx(k, self.rows) for k in rowsList]
371
+ colsList = [a2idx(k, self.cols) for k in colsList]
372
+
373
+ return self._eval_extract(rowsList, colsList)
374
+
375
+ def get_diag_blocks(self):
376
+ """Obtains the square sub-matrices on the main diagonal of a square matrix.
377
+
378
+ Useful for inverting symbolic matrices or solving systems of
379
+ linear equations which may be decoupled by having a block diagonal
380
+ structure.
381
+
382
+ Examples
383
+ ========
384
+
385
+ >>> from sympy import Matrix
386
+ >>> from sympy.abc import x, y, z
387
+ >>> A = Matrix([[1, 3, 0, 0], [y, z*z, 0, 0], [0, 0, x, 0], [0, 0, 0, 0]])
388
+ >>> a1, a2, a3 = A.get_diag_blocks()
389
+ >>> a1
390
+ Matrix([
391
+ [1, 3],
392
+ [y, z**2]])
393
+ >>> a2
394
+ Matrix([[x]])
395
+ >>> a3
396
+ Matrix([[0]])
397
+
398
+ """
399
+ return self._eval_get_diag_blocks()
400
+
401
+ @classmethod
402
+ def hstack(cls, *args):
403
+ """Return a matrix formed by joining args horizontally (i.e.
404
+ by repeated application of row_join).
405
+
406
+ Examples
407
+ ========
408
+
409
+ >>> from sympy import Matrix, eye
410
+ >>> Matrix.hstack(eye(2), 2*eye(2))
411
+ Matrix([
412
+ [1, 0, 2, 0],
413
+ [0, 1, 0, 2]])
414
+ """
415
+ if len(args) == 0:
416
+ return cls._new()
417
+
418
+ kls = type(args[0])
419
+ return reduce(kls.row_join, args)
420
+
421
+ def reshape(self, rows, cols):
422
+ """Reshape the matrix. Total number of elements must remain the same.
423
+
424
+ Examples
425
+ ========
426
+
427
+ >>> from sympy import Matrix
428
+ >>> m = Matrix(2, 3, lambda i, j: 1)
429
+ >>> m
430
+ Matrix([
431
+ [1, 1, 1],
432
+ [1, 1, 1]])
433
+ >>> m.reshape(1, 6)
434
+ Matrix([[1, 1, 1, 1, 1, 1]])
435
+ >>> m.reshape(3, 2)
436
+ Matrix([
437
+ [1, 1],
438
+ [1, 1],
439
+ [1, 1]])
440
+
441
+ """
442
+ if self.rows * self.cols != rows * cols:
443
+ raise ValueError("Invalid reshape parameters %d %d" % (rows, cols))
444
+ return self._new(rows, cols, lambda i, j: self[i * cols + j])
445
+
446
+ def row_del(self, row):
447
+ """Delete the specified row."""
448
+ if row < 0:
449
+ row += self.rows
450
+ if not 0 <= row < self.rows:
451
+ raise IndexError("Row {} is out of range.".format(row))
452
+
453
+ return self._eval_row_del(row)
454
+
455
+ def row_insert(self, pos, other):
456
+ """Insert one or more rows at the given row position.
457
+
458
+ Examples
459
+ ========
460
+
461
+ >>> from sympy import zeros, ones
462
+ >>> M = zeros(3)
463
+ >>> V = ones(1, 3)
464
+ >>> M.row_insert(1, V)
465
+ Matrix([
466
+ [0, 0, 0],
467
+ [1, 1, 1],
468
+ [0, 0, 0],
469
+ [0, 0, 0]])
470
+
471
+ See Also
472
+ ========
473
+
474
+ row
475
+ col_insert
476
+ """
477
+ # Allows you to build a matrix even if it is null matrix
478
+ if not self:
479
+ return self._new(other)
480
+
481
+ pos = as_int(pos)
482
+
483
+ if pos < 0:
484
+ pos = self.rows + pos
485
+ if pos < 0:
486
+ pos = 0
487
+ elif pos > self.rows:
488
+ pos = self.rows
489
+
490
+ if self.cols != other.cols:
491
+ raise ShapeError(
492
+ "The matrices have incompatible number of columns ({} and {})"
493
+ .format(self.cols, other.cols))
494
+
495
+ return self._eval_row_insert(pos, other)
496
+
497
+ def row_join(self, other):
498
+ """Concatenates two matrices along self's last and rhs's first column
499
+
500
+ Examples
501
+ ========
502
+
503
+ >>> from sympy import zeros, ones
504
+ >>> M = zeros(3)
505
+ >>> V = ones(3, 1)
506
+ >>> M.row_join(V)
507
+ Matrix([
508
+ [0, 0, 0, 1],
509
+ [0, 0, 0, 1],
510
+ [0, 0, 0, 1]])
511
+
512
+ See Also
513
+ ========
514
+
515
+ row
516
+ col_join
517
+ """
518
+ # A null matrix can always be stacked (see #10770)
519
+ if self.cols == 0 and self.rows != other.rows:
520
+ return self._new(other.rows, 0, []).row_join(other)
521
+
522
+ if self.rows != other.rows:
523
+ raise ShapeError(
524
+ "The matrices have incompatible number of rows ({} and {})"
525
+ .format(self.rows, other.rows))
526
+ return self._eval_row_join(other)
527
+
528
+ def diagonal(self, k=0):
529
+ """Returns the kth diagonal of self. The main diagonal
530
+ corresponds to `k=0`; diagonals above and below correspond to
531
+ `k > 0` and `k < 0`, respectively. The values of `self[i, j]`
532
+ for which `j - i = k`, are returned in order of increasing
533
+ `i + j`, starting with `i + j = |k|`.
534
+
535
+ Examples
536
+ ========
537
+
538
+ >>> from sympy import Matrix
539
+ >>> m = Matrix(3, 3, lambda i, j: j - i); m
540
+ Matrix([
541
+ [ 0, 1, 2],
542
+ [-1, 0, 1],
543
+ [-2, -1, 0]])
544
+ >>> _.diagonal()
545
+ Matrix([[0, 0, 0]])
546
+ >>> m.diagonal(1)
547
+ Matrix([[1, 1]])
548
+ >>> m.diagonal(-2)
549
+ Matrix([[-2]])
550
+
551
+ Even though the diagonal is returned as a Matrix, the element
552
+ retrieval can be done with a single index:
553
+
554
+ >>> Matrix.diag(1, 2, 3).diagonal()[1] # instead of [0, 1]
555
+ 2
556
+
557
+ See Also
558
+ ========
559
+
560
+ diag
561
+ """
562
+ rv = []
563
+ k = as_int(k)
564
+ r = 0 if k > 0 else -k
565
+ c = 0 if r else k
566
+ while True:
567
+ if r == self.rows or c == self.cols:
568
+ break
569
+ rv.append(self[r, c])
570
+ r += 1
571
+ c += 1
572
+ if not rv:
573
+ raise ValueError(filldedent('''
574
+ The %s diagonal is out of range [%s, %s]''' % (
575
+ k, 1 - self.rows, self.cols - 1)))
576
+ return self._new(1, len(rv), rv)
577
+
578
+ def row(self, i):
579
+ """Elementary row selector.
580
+
581
+ Examples
582
+ ========
583
+
584
+ >>> from sympy import eye
585
+ >>> eye(2).row(0)
586
+ Matrix([[1, 0]])
587
+
588
+ See Also
589
+ ========
590
+
591
+ col
592
+ row_del
593
+ row_join
594
+ row_insert
595
+ """
596
+ return self[i, :]
597
+
598
+ @property
599
+ def shape(self):
600
+ """The shape (dimensions) of the matrix as the 2-tuple (rows, cols).
601
+
602
+ Examples
603
+ ========
604
+
605
+ >>> from sympy import zeros
606
+ >>> M = zeros(2, 3)
607
+ >>> M.shape
608
+ (2, 3)
609
+ >>> M.rows
610
+ 2
611
+ >>> M.cols
612
+ 3
613
+ """
614
+ return (self.rows, self.cols)
615
+
616
+ def todok(self):
617
+ """Return the matrix as dictionary of keys.
618
+
619
+ Examples
620
+ ========
621
+
622
+ >>> from sympy import Matrix
623
+ >>> M = Matrix.eye(3)
624
+ >>> M.todok()
625
+ {(0, 0): 1, (1, 1): 1, (2, 2): 1}
626
+ """
627
+ return self._eval_todok()
628
+
629
+ def tolist(self):
630
+ """Return the Matrix as a nested Python list.
631
+
632
+ Examples
633
+ ========
634
+
635
+ >>> from sympy import Matrix, ones
636
+ >>> m = Matrix(3, 3, range(9))
637
+ >>> m
638
+ Matrix([
639
+ [0, 1, 2],
640
+ [3, 4, 5],
641
+ [6, 7, 8]])
642
+ >>> m.tolist()
643
+ [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
644
+ >>> ones(3, 0).tolist()
645
+ [[], [], []]
646
+
647
+ When there are no rows then it will not be possible to tell how
648
+ many columns were in the original matrix:
649
+
650
+ >>> ones(0, 3).tolist()
651
+ []
652
+
653
+ """
654
+ if not self.rows:
655
+ return []
656
+ if not self.cols:
657
+ return [[] for i in range(self.rows)]
658
+ return self._eval_tolist()
659
+
660
+ def todod(M):
661
+ """Returns matrix as dict of dicts containing non-zero elements of the Matrix
662
+
663
+ Examples
664
+ ========
665
+
666
+ >>> from sympy import Matrix
667
+ >>> A = Matrix([[0, 1],[0, 3]])
668
+ >>> A
669
+ Matrix([
670
+ [0, 1],
671
+ [0, 3]])
672
+ >>> A.todod()
673
+ {0: {1: 1}, 1: {1: 3}}
674
+
675
+
676
+ """
677
+ rowsdict = {}
678
+ Mlol = M.tolist()
679
+ for i, Mi in enumerate(Mlol):
680
+ row = {j: Mij for j, Mij in enumerate(Mi) if Mij}
681
+ if row:
682
+ rowsdict[i] = row
683
+ return rowsdict
684
+
685
+ def vec(self):
686
+ """Return the Matrix converted into a one column matrix by stacking columns
687
+
688
+ Examples
689
+ ========
690
+
691
+ >>> from sympy import Matrix
692
+ >>> m=Matrix([[1, 3], [2, 4]])
693
+ >>> m
694
+ Matrix([
695
+ [1, 3],
696
+ [2, 4]])
697
+ >>> m.vec()
698
+ Matrix([
699
+ [1],
700
+ [2],
701
+ [3],
702
+ [4]])
703
+
704
+ See Also
705
+ ========
706
+
707
+ vech
708
+ """
709
+ return self._eval_vec()
710
+
711
+ def vech(self, diagonal=True, check_symmetry=True):
712
+ """Reshapes the matrix into a column vector by stacking the
713
+ elements in the lower triangle.
714
+
715
+ Parameters
716
+ ==========
717
+
718
+ diagonal : bool, optional
719
+ If ``True``, it includes the diagonal elements.
720
+
721
+ check_symmetry : bool, optional
722
+ If ``True``, it checks whether the matrix is symmetric.
723
+
724
+ Examples
725
+ ========
726
+
727
+ >>> from sympy import Matrix
728
+ >>> m=Matrix([[1, 2], [2, 3]])
729
+ >>> m
730
+ Matrix([
731
+ [1, 2],
732
+ [2, 3]])
733
+ >>> m.vech()
734
+ Matrix([
735
+ [1],
736
+ [2],
737
+ [3]])
738
+ >>> m.vech(diagonal=False)
739
+ Matrix([[2]])
740
+
741
+ Notes
742
+ =====
743
+
744
+ This should work for symmetric matrices and ``vech`` can
745
+ represent symmetric matrices in vector form with less size than
746
+ ``vec``.
747
+
748
+ See Also
749
+ ========
750
+
751
+ vec
752
+ """
753
+ if not self.is_square:
754
+ raise NonSquareMatrixError
755
+
756
+ if check_symmetry and not self.is_symmetric():
757
+ raise ValueError("The matrix is not symmetric.")
758
+
759
+ return self._eval_vech(diagonal)
760
+
761
+ @classmethod
762
+ def vstack(cls, *args):
763
+ """Return a matrix formed by joining args vertically (i.e.
764
+ by repeated application of col_join).
765
+
766
+ Examples
767
+ ========
768
+
769
+ >>> from sympy import Matrix, eye
770
+ >>> Matrix.vstack(eye(2), 2*eye(2))
771
+ Matrix([
772
+ [1, 0],
773
+ [0, 1],
774
+ [2, 0],
775
+ [0, 2]])
776
+ """
777
+ if len(args) == 0:
778
+ return cls._new()
779
+
780
+ kls = type(args[0])
781
+ return reduce(kls.col_join, args)
782
+
783
+
784
+ class MatrixSpecial(MatrixRequired):
785
+ """Construction of special matrices"""
786
+
787
+ @classmethod
788
+ def _eval_diag(cls, rows, cols, diag_dict):
789
+ """diag_dict is a defaultdict containing
790
+ all the entries of the diagonal matrix."""
791
+ def entry(i, j):
792
+ return diag_dict[(i, j)]
793
+ return cls._new(rows, cols, entry)
794
+
795
+ @classmethod
796
+ def _eval_eye(cls, rows, cols):
797
+ vals = [cls.zero]*(rows*cols)
798
+ vals[::cols+1] = [cls.one]*min(rows, cols)
799
+ return cls._new(rows, cols, vals, copy=False)
800
+
801
+ @classmethod
802
+ def _eval_jordan_block(cls, size: int, eigenvalue, band='upper'):
803
+ if band == 'lower':
804
+ def entry(i, j):
805
+ if i == j:
806
+ return eigenvalue
807
+ elif j + 1 == i:
808
+ return cls.one
809
+ return cls.zero
810
+ else:
811
+ def entry(i, j):
812
+ if i == j:
813
+ return eigenvalue
814
+ elif i + 1 == j:
815
+ return cls.one
816
+ return cls.zero
817
+ return cls._new(size, size, entry)
818
+
819
+ @classmethod
820
+ def _eval_ones(cls, rows, cols):
821
+ def entry(i, j):
822
+ return cls.one
823
+ return cls._new(rows, cols, entry)
824
+
825
+ @classmethod
826
+ def _eval_zeros(cls, rows, cols):
827
+ return cls._new(rows, cols, [cls.zero]*(rows*cols), copy=False)
828
+
829
+ @classmethod
830
+ def _eval_wilkinson(cls, n):
831
+ def entry(i, j):
832
+ return cls.one if i + 1 == j else cls.zero
833
+
834
+ D = cls._new(2*n + 1, 2*n + 1, entry)
835
+
836
+ wminus = cls.diag(list(range(-n, n + 1)), unpack=True) + D + D.T
837
+ wplus = abs(cls.diag(list(range(-n, n + 1)), unpack=True)) + D + D.T
838
+
839
+ return wminus, wplus
840
+
841
+ @classmethod
842
+ def diag(kls, *args, strict=False, unpack=True, rows=None, cols=None, **kwargs):
843
+ """Returns a matrix with the specified diagonal.
844
+ If matrices are passed, a block-diagonal matrix
845
+ is created (i.e. the "direct sum" of the matrices).
846
+
847
+ kwargs
848
+ ======
849
+
850
+ rows : rows of the resulting matrix; computed if
851
+ not given.
852
+
853
+ cols : columns of the resulting matrix; computed if
854
+ not given.
855
+
856
+ cls : class for the resulting matrix
857
+
858
+ unpack : bool which, when True (default), unpacks a single
859
+ sequence rather than interpreting it as a Matrix.
860
+
861
+ strict : bool which, when False (default), allows Matrices to
862
+ have variable-length rows.
863
+
864
+ Examples
865
+ ========
866
+
867
+ >>> from sympy import Matrix
868
+ >>> Matrix.diag(1, 2, 3)
869
+ Matrix([
870
+ [1, 0, 0],
871
+ [0, 2, 0],
872
+ [0, 0, 3]])
873
+
874
+ The current default is to unpack a single sequence. If this is
875
+ not desired, set `unpack=False` and it will be interpreted as
876
+ a matrix.
877
+
878
+ >>> Matrix.diag([1, 2, 3]) == Matrix.diag(1, 2, 3)
879
+ True
880
+
881
+ When more than one element is passed, each is interpreted as
882
+ something to put on the diagonal. Lists are converted to
883
+ matrices. Filling of the diagonal always continues from
884
+ the bottom right hand corner of the previous item: this
885
+ will create a block-diagonal matrix whether the matrices
886
+ are square or not.
887
+
888
+ >>> col = [1, 2, 3]
889
+ >>> row = [[4, 5]]
890
+ >>> Matrix.diag(col, row)
891
+ Matrix([
892
+ [1, 0, 0],
893
+ [2, 0, 0],
894
+ [3, 0, 0],
895
+ [0, 4, 5]])
896
+
897
+ When `unpack` is False, elements within a list need not all be
898
+ of the same length. Setting `strict` to True would raise a
899
+ ValueError for the following:
900
+
901
+ >>> Matrix.diag([[1, 2, 3], [4, 5], [6]], unpack=False)
902
+ Matrix([
903
+ [1, 2, 3],
904
+ [4, 5, 0],
905
+ [6, 0, 0]])
906
+
907
+ The type of the returned matrix can be set with the ``cls``
908
+ keyword.
909
+
910
+ >>> from sympy import ImmutableMatrix
911
+ >>> from sympy.utilities.misc import func_name
912
+ >>> func_name(Matrix.diag(1, cls=ImmutableMatrix))
913
+ 'ImmutableDenseMatrix'
914
+
915
+ A zero dimension matrix can be used to position the start of
916
+ the filling at the start of an arbitrary row or column:
917
+
918
+ >>> from sympy import ones
919
+ >>> r2 = ones(0, 2)
920
+ >>> Matrix.diag(r2, 1, 2)
921
+ Matrix([
922
+ [0, 0, 1, 0],
923
+ [0, 0, 0, 2]])
924
+
925
+ See Also
926
+ ========
927
+ eye
928
+ diagonal
929
+ .dense.diag
930
+ .expressions.blockmatrix.BlockMatrix
931
+ .sparsetools.banded
932
+ """
933
+ from sympy.matrices.matrices import MatrixBase
934
+ from sympy.matrices.dense import Matrix
935
+ from sympy.matrices import SparseMatrix
936
+ klass = kwargs.get('cls', kls)
937
+ if unpack and len(args) == 1 and is_sequence(args[0]) and \
938
+ not isinstance(args[0], MatrixBase):
939
+ args = args[0]
940
+
941
+ # fill a default dict with the diagonal entries
942
+ diag_entries = defaultdict(int)
943
+ rmax = cmax = 0 # keep track of the biggest index seen
944
+ for m in args:
945
+ if isinstance(m, list):
946
+ if strict:
947
+ # if malformed, Matrix will raise an error
948
+ _ = Matrix(m)
949
+ r, c = _.shape
950
+ m = _.tolist()
951
+ else:
952
+ r, c, smat = SparseMatrix._handle_creation_inputs(m)
953
+ for (i, j), _ in smat.items():
954
+ diag_entries[(i + rmax, j + cmax)] = _
955
+ m = [] # to skip process below
956
+ elif hasattr(m, 'shape'): # a Matrix
957
+ # convert to list of lists
958
+ r, c = m.shape
959
+ m = m.tolist()
960
+ else: # in this case, we're a single value
961
+ diag_entries[(rmax, cmax)] = m
962
+ rmax += 1
963
+ cmax += 1
964
+ continue
965
+ # process list of lists
966
+ for i, mi in enumerate(m):
967
+ for j, _ in enumerate(mi):
968
+ diag_entries[(i + rmax, j + cmax)] = _
969
+ rmax += r
970
+ cmax += c
971
+ if rows is None:
972
+ rows, cols = cols, rows
973
+ if rows is None:
974
+ rows, cols = rmax, cmax
975
+ else:
976
+ cols = rows if cols is None else cols
977
+ if rows < rmax or cols < cmax:
978
+ raise ValueError(filldedent('''
979
+ The constructed matrix is {} x {} but a size of {} x {}
980
+ was specified.'''.format(rmax, cmax, rows, cols)))
981
+ return klass._eval_diag(rows, cols, diag_entries)
982
+
983
+ @classmethod
984
+ def eye(kls, rows, cols=None, **kwargs):
985
+ """Returns an identity matrix.
986
+
987
+ Parameters
988
+ ==========
989
+
990
+ rows : rows of the matrix
991
+ cols : cols of the matrix (if None, cols=rows)
992
+
993
+ kwargs
994
+ ======
995
+ cls : class of the returned matrix
996
+ """
997
+ if cols is None:
998
+ cols = rows
999
+ if rows < 0 or cols < 0:
1000
+ raise ValueError("Cannot create a {} x {} matrix. "
1001
+ "Both dimensions must be positive".format(rows, cols))
1002
+ klass = kwargs.get('cls', kls)
1003
+ rows, cols = as_int(rows), as_int(cols)
1004
+
1005
+ return klass._eval_eye(rows, cols)
1006
+
1007
+ @classmethod
1008
+ def jordan_block(kls, size=None, eigenvalue=None, *, band='upper', **kwargs):
1009
+ """Returns a Jordan block
1010
+
1011
+ Parameters
1012
+ ==========
1013
+
1014
+ size : Integer, optional
1015
+ Specifies the shape of the Jordan block matrix.
1016
+
1017
+ eigenvalue : Number or Symbol
1018
+ Specifies the value for the main diagonal of the matrix.
1019
+
1020
+ .. note::
1021
+ The keyword ``eigenval`` is also specified as an alias
1022
+ of this keyword, but it is not recommended to use.
1023
+
1024
+ We may deprecate the alias in later release.
1025
+
1026
+ band : 'upper' or 'lower', optional
1027
+ Specifies the position of the off-diagonal to put `1` s on.
1028
+
1029
+ cls : Matrix, optional
1030
+ Specifies the matrix class of the output form.
1031
+
1032
+ If it is not specified, the class type where the method is
1033
+ being executed on will be returned.
1034
+
1035
+ Returns
1036
+ =======
1037
+
1038
+ Matrix
1039
+ A Jordan block matrix.
1040
+
1041
+ Raises
1042
+ ======
1043
+
1044
+ ValueError
1045
+ If insufficient arguments are given for matrix size
1046
+ specification, or no eigenvalue is given.
1047
+
1048
+ Examples
1049
+ ========
1050
+
1051
+ Creating a default Jordan block:
1052
+
1053
+ >>> from sympy import Matrix
1054
+ >>> from sympy.abc import x
1055
+ >>> Matrix.jordan_block(4, x)
1056
+ Matrix([
1057
+ [x, 1, 0, 0],
1058
+ [0, x, 1, 0],
1059
+ [0, 0, x, 1],
1060
+ [0, 0, 0, x]])
1061
+
1062
+ Creating an alternative Jordan block matrix where `1` is on
1063
+ lower off-diagonal:
1064
+
1065
+ >>> Matrix.jordan_block(4, x, band='lower')
1066
+ Matrix([
1067
+ [x, 0, 0, 0],
1068
+ [1, x, 0, 0],
1069
+ [0, 1, x, 0],
1070
+ [0, 0, 1, x]])
1071
+
1072
+ Creating a Jordan block with keyword arguments
1073
+
1074
+ >>> Matrix.jordan_block(size=4, eigenvalue=x)
1075
+ Matrix([
1076
+ [x, 1, 0, 0],
1077
+ [0, x, 1, 0],
1078
+ [0, 0, x, 1],
1079
+ [0, 0, 0, x]])
1080
+
1081
+ References
1082
+ ==========
1083
+
1084
+ .. [1] https://en.wikipedia.org/wiki/Jordan_matrix
1085
+ """
1086
+ klass = kwargs.pop('cls', kls)
1087
+
1088
+ eigenval = kwargs.get('eigenval', None)
1089
+ if eigenvalue is None and eigenval is None:
1090
+ raise ValueError("Must supply an eigenvalue")
1091
+ elif eigenvalue != eigenval and None not in (eigenval, eigenvalue):
1092
+ raise ValueError(
1093
+ "Inconsistent values are given: 'eigenval'={}, "
1094
+ "'eigenvalue'={}".format(eigenval, eigenvalue))
1095
+ else:
1096
+ if eigenval is not None:
1097
+ eigenvalue = eigenval
1098
+
1099
+ if size is None:
1100
+ raise ValueError("Must supply a matrix size")
1101
+
1102
+ size = as_int(size)
1103
+ return klass._eval_jordan_block(size, eigenvalue, band)
1104
+
1105
+ @classmethod
1106
+ def ones(kls, rows, cols=None, **kwargs):
1107
+ """Returns a matrix of ones.
1108
+
1109
+ Parameters
1110
+ ==========
1111
+
1112
+ rows : rows of the matrix
1113
+ cols : cols of the matrix (if None, cols=rows)
1114
+
1115
+ kwargs
1116
+ ======
1117
+ cls : class of the returned matrix
1118
+ """
1119
+ if cols is None:
1120
+ cols = rows
1121
+ klass = kwargs.get('cls', kls)
1122
+ rows, cols = as_int(rows), as_int(cols)
1123
+
1124
+ return klass._eval_ones(rows, cols)
1125
+
1126
+ @classmethod
1127
+ def zeros(kls, rows, cols=None, **kwargs):
1128
+ """Returns a matrix of zeros.
1129
+
1130
+ Parameters
1131
+ ==========
1132
+
1133
+ rows : rows of the matrix
1134
+ cols : cols of the matrix (if None, cols=rows)
1135
+
1136
+ kwargs
1137
+ ======
1138
+ cls : class of the returned matrix
1139
+ """
1140
+ if cols is None:
1141
+ cols = rows
1142
+ if rows < 0 or cols < 0:
1143
+ raise ValueError("Cannot create a {} x {} matrix. "
1144
+ "Both dimensions must be positive".format(rows, cols))
1145
+ klass = kwargs.get('cls', kls)
1146
+ rows, cols = as_int(rows), as_int(cols)
1147
+
1148
+ return klass._eval_zeros(rows, cols)
1149
+
1150
+ @classmethod
1151
+ def companion(kls, poly):
1152
+ """Returns a companion matrix of a polynomial.
1153
+
1154
+ Examples
1155
+ ========
1156
+
1157
+ >>> from sympy import Matrix, Poly, Symbol, symbols
1158
+ >>> x = Symbol('x')
1159
+ >>> c0, c1, c2, c3, c4 = symbols('c0:5')
1160
+ >>> p = Poly(c0 + c1*x + c2*x**2 + c3*x**3 + c4*x**4 + x**5, x)
1161
+ >>> Matrix.companion(p)
1162
+ Matrix([
1163
+ [0, 0, 0, 0, -c0],
1164
+ [1, 0, 0, 0, -c1],
1165
+ [0, 1, 0, 0, -c2],
1166
+ [0, 0, 1, 0, -c3],
1167
+ [0, 0, 0, 1, -c4]])
1168
+ """
1169
+ poly = kls._sympify(poly)
1170
+ if not isinstance(poly, Poly):
1171
+ raise ValueError("{} must be a Poly instance.".format(poly))
1172
+ if not poly.is_monic:
1173
+ raise ValueError("{} must be a monic polynomial.".format(poly))
1174
+ if not poly.is_univariate:
1175
+ raise ValueError(
1176
+ "{} must be a univariate polynomial.".format(poly))
1177
+
1178
+ size = poly.degree()
1179
+ if not size >= 1:
1180
+ raise ValueError(
1181
+ "{} must have degree not less than 1.".format(poly))
1182
+
1183
+ coeffs = poly.all_coeffs()
1184
+ def entry(i, j):
1185
+ if j == size - 1:
1186
+ return -coeffs[-1 - i]
1187
+ elif i == j + 1:
1188
+ return kls.one
1189
+ return kls.zero
1190
+ return kls._new(size, size, entry)
1191
+
1192
+
1193
+ @classmethod
1194
+ def wilkinson(kls, n, **kwargs):
1195
+ """Returns two square Wilkinson Matrix of size 2*n + 1
1196
+ $W_{2n + 1}^-, W_{2n + 1}^+ =$ Wilkinson(n)
1197
+
1198
+ Examples
1199
+ ========
1200
+
1201
+ >>> from sympy import Matrix
1202
+ >>> wminus, wplus = Matrix.wilkinson(3)
1203
+ >>> wminus
1204
+ Matrix([
1205
+ [-3, 1, 0, 0, 0, 0, 0],
1206
+ [ 1, -2, 1, 0, 0, 0, 0],
1207
+ [ 0, 1, -1, 1, 0, 0, 0],
1208
+ [ 0, 0, 1, 0, 1, 0, 0],
1209
+ [ 0, 0, 0, 1, 1, 1, 0],
1210
+ [ 0, 0, 0, 0, 1, 2, 1],
1211
+ [ 0, 0, 0, 0, 0, 1, 3]])
1212
+ >>> wplus
1213
+ Matrix([
1214
+ [3, 1, 0, 0, 0, 0, 0],
1215
+ [1, 2, 1, 0, 0, 0, 0],
1216
+ [0, 1, 1, 1, 0, 0, 0],
1217
+ [0, 0, 1, 0, 1, 0, 0],
1218
+ [0, 0, 0, 1, 1, 1, 0],
1219
+ [0, 0, 0, 0, 1, 2, 1],
1220
+ [0, 0, 0, 0, 0, 1, 3]])
1221
+
1222
+ References
1223
+ ==========
1224
+
1225
+ .. [1] https://blogs.mathworks.com/cleve/2013/04/15/wilkinsons-matrices-2/
1226
+ .. [2] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Claredon Press, Oxford, 1965, 662 pp.
1227
+
1228
+ """
1229
+ klass = kwargs.get('cls', kls)
1230
+ n = as_int(n)
1231
+ return klass._eval_wilkinson(n)
1232
+
1233
+ class MatrixProperties(MatrixRequired):
1234
+ """Provides basic properties of a matrix."""
1235
+
1236
+ def _eval_atoms(self, *types):
1237
+ result = set()
1238
+ for i in self:
1239
+ result.update(i.atoms(*types))
1240
+ return result
1241
+
1242
+ def _eval_free_symbols(self):
1243
+ return set().union(*(i.free_symbols for i in self if i))
1244
+
1245
+ def _eval_has(self, *patterns):
1246
+ return any(a.has(*patterns) for a in self)
1247
+
1248
+ def _eval_is_anti_symmetric(self, simpfunc):
1249
+ if not all(simpfunc(self[i, j] + self[j, i]).is_zero for i in range(self.rows) for j in range(self.cols)):
1250
+ return False
1251
+ return True
1252
+
1253
+ def _eval_is_diagonal(self):
1254
+ for i in range(self.rows):
1255
+ for j in range(self.cols):
1256
+ if i != j and self[i, j]:
1257
+ return False
1258
+ return True
1259
+
1260
+ # _eval_is_hermitian is called by some general SymPy
1261
+ # routines and has a different *args signature. Make
1262
+ # sure the names don't clash by adding `_matrix_` in name.
1263
+ def _eval_is_matrix_hermitian(self, simpfunc):
1264
+ mat = self._new(self.rows, self.cols, lambda i, j: simpfunc(self[i, j] - self[j, i].conjugate()))
1265
+ return mat.is_zero_matrix
1266
+
1267
+ def _eval_is_Identity(self) -> FuzzyBool:
1268
+ def dirac(i, j):
1269
+ if i == j:
1270
+ return 1
1271
+ return 0
1272
+
1273
+ return all(self[i, j] == dirac(i, j)
1274
+ for i in range(self.rows)
1275
+ for j in range(self.cols))
1276
+
1277
+ def _eval_is_lower_hessenberg(self):
1278
+ return all(self[i, j].is_zero
1279
+ for i in range(self.rows)
1280
+ for j in range(i + 2, self.cols))
1281
+
1282
+ def _eval_is_lower(self):
1283
+ return all(self[i, j].is_zero
1284
+ for i in range(self.rows)
1285
+ for j in range(i + 1, self.cols))
1286
+
1287
+ def _eval_is_symbolic(self):
1288
+ return self.has(Symbol)
1289
+
1290
+ def _eval_is_symmetric(self, simpfunc):
1291
+ mat = self._new(self.rows, self.cols, lambda i, j: simpfunc(self[i, j] - self[j, i]))
1292
+ return mat.is_zero_matrix
1293
+
1294
+ def _eval_is_zero_matrix(self):
1295
+ if any(i.is_zero == False for i in self):
1296
+ return False
1297
+ if any(i.is_zero is None for i in self):
1298
+ return None
1299
+ return True
1300
+
1301
+ def _eval_is_upper_hessenberg(self):
1302
+ return all(self[i, j].is_zero
1303
+ for i in range(2, self.rows)
1304
+ for j in range(min(self.cols, (i - 1))))
1305
+
1306
+ def _eval_values(self):
1307
+ return [i for i in self if not i.is_zero]
1308
+
1309
+ def _has_positive_diagonals(self):
1310
+ diagonal_entries = (self[i, i] for i in range(self.rows))
1311
+ return fuzzy_and(x.is_positive for x in diagonal_entries)
1312
+
1313
+ def _has_nonnegative_diagonals(self):
1314
+ diagonal_entries = (self[i, i] for i in range(self.rows))
1315
+ return fuzzy_and(x.is_nonnegative for x in diagonal_entries)
1316
+
1317
+ def atoms(self, *types):
1318
+ """Returns the atoms that form the current object.
1319
+
1320
+ Examples
1321
+ ========
1322
+
1323
+ >>> from sympy.abc import x, y
1324
+ >>> from sympy import Matrix
1325
+ >>> Matrix([[x]])
1326
+ Matrix([[x]])
1327
+ >>> _.atoms()
1328
+ {x}
1329
+ >>> Matrix([[x, y], [y, x]])
1330
+ Matrix([
1331
+ [x, y],
1332
+ [y, x]])
1333
+ >>> _.atoms()
1334
+ {x, y}
1335
+ """
1336
+
1337
+ types = tuple(t if isinstance(t, type) else type(t) for t in types)
1338
+ if not types:
1339
+ types = (Atom,)
1340
+ return self._eval_atoms(*types)
1341
+
1342
+ @property
1343
+ def free_symbols(self):
1344
+ """Returns the free symbols within the matrix.
1345
+
1346
+ Examples
1347
+ ========
1348
+
1349
+ >>> from sympy.abc import x
1350
+ >>> from sympy import Matrix
1351
+ >>> Matrix([[x], [1]]).free_symbols
1352
+ {x}
1353
+ """
1354
+ return self._eval_free_symbols()
1355
+
1356
+ def has(self, *patterns):
1357
+ """Test whether any subexpression matches any of the patterns.
1358
+
1359
+ Examples
1360
+ ========
1361
+
1362
+ >>> from sympy import Matrix, SparseMatrix, Float
1363
+ >>> from sympy.abc import x, y
1364
+ >>> A = Matrix(((1, x), (0.2, 3)))
1365
+ >>> B = SparseMatrix(((1, x), (0.2, 3)))
1366
+ >>> A.has(x)
1367
+ True
1368
+ >>> A.has(y)
1369
+ False
1370
+ >>> A.has(Float)
1371
+ True
1372
+ >>> B.has(x)
1373
+ True
1374
+ >>> B.has(y)
1375
+ False
1376
+ >>> B.has(Float)
1377
+ True
1378
+ """
1379
+ return self._eval_has(*patterns)
1380
+
1381
+ def is_anti_symmetric(self, simplify=True):
1382
+ """Check if matrix M is an antisymmetric matrix,
1383
+ that is, M is a square matrix with all M[i, j] == -M[j, i].
1384
+
1385
+ When ``simplify=True`` (default), the sum M[i, j] + M[j, i] is
1386
+ simplified before testing to see if it is zero. By default,
1387
+ the SymPy simplify function is used. To use a custom function
1388
+ set simplify to a function that accepts a single argument which
1389
+ returns a simplified expression. To skip simplification, set
1390
+ simplify to False but note that although this will be faster,
1391
+ it may induce false negatives.
1392
+
1393
+ Examples
1394
+ ========
1395
+
1396
+ >>> from sympy import Matrix, symbols
1397
+ >>> m = Matrix(2, 2, [0, 1, -1, 0])
1398
+ >>> m
1399
+ Matrix([
1400
+ [ 0, 1],
1401
+ [-1, 0]])
1402
+ >>> m.is_anti_symmetric()
1403
+ True
1404
+ >>> x, y = symbols('x y')
1405
+ >>> m = Matrix(2, 3, [0, 0, x, -y, 0, 0])
1406
+ >>> m
1407
+ Matrix([
1408
+ [ 0, 0, x],
1409
+ [-y, 0, 0]])
1410
+ >>> m.is_anti_symmetric()
1411
+ False
1412
+
1413
+ >>> from sympy.abc import x, y
1414
+ >>> m = Matrix(3, 3, [0, x**2 + 2*x + 1, y,
1415
+ ... -(x + 1)**2, 0, x*y,
1416
+ ... -y, -x*y, 0])
1417
+
1418
+ Simplification of matrix elements is done by default so even
1419
+ though two elements which should be equal and opposite would not
1420
+ pass an equality test, the matrix is still reported as
1421
+ anti-symmetric:
1422
+
1423
+ >>> m[0, 1] == -m[1, 0]
1424
+ False
1425
+ >>> m.is_anti_symmetric()
1426
+ True
1427
+
1428
+ If ``simplify=False`` is used for the case when a Matrix is already
1429
+ simplified, this will speed things up. Here, we see that without
1430
+ simplification the matrix does not appear anti-symmetric:
1431
+
1432
+ >>> m.is_anti_symmetric(simplify=False)
1433
+ False
1434
+
1435
+ But if the matrix were already expanded, then it would appear
1436
+ anti-symmetric and simplification in the is_anti_symmetric routine
1437
+ is not needed:
1438
+
1439
+ >>> m = m.expand()
1440
+ >>> m.is_anti_symmetric(simplify=False)
1441
+ True
1442
+ """
1443
+ # accept custom simplification
1444
+ simpfunc = simplify
1445
+ if not isfunction(simplify):
1446
+ simpfunc = _simplify if simplify else lambda x: x
1447
+
1448
+ if not self.is_square:
1449
+ return False
1450
+ return self._eval_is_anti_symmetric(simpfunc)
1451
+
1452
+ def is_diagonal(self):
1453
+ """Check if matrix is diagonal,
1454
+ that is matrix in which the entries outside the main diagonal are all zero.
1455
+
1456
+ Examples
1457
+ ========
1458
+
1459
+ >>> from sympy import Matrix, diag
1460
+ >>> m = Matrix(2, 2, [1, 0, 0, 2])
1461
+ >>> m
1462
+ Matrix([
1463
+ [1, 0],
1464
+ [0, 2]])
1465
+ >>> m.is_diagonal()
1466
+ True
1467
+
1468
+ >>> m = Matrix(2, 2, [1, 1, 0, 2])
1469
+ >>> m
1470
+ Matrix([
1471
+ [1, 1],
1472
+ [0, 2]])
1473
+ >>> m.is_diagonal()
1474
+ False
1475
+
1476
+ >>> m = diag(1, 2, 3)
1477
+ >>> m
1478
+ Matrix([
1479
+ [1, 0, 0],
1480
+ [0, 2, 0],
1481
+ [0, 0, 3]])
1482
+ >>> m.is_diagonal()
1483
+ True
1484
+
1485
+ See Also
1486
+ ========
1487
+
1488
+ is_lower
1489
+ is_upper
1490
+ sympy.matrices.matrices.MatrixEigen.is_diagonalizable
1491
+ diagonalize
1492
+ """
1493
+ return self._eval_is_diagonal()
1494
+
1495
+ @property
1496
+ def is_weakly_diagonally_dominant(self):
1497
+ r"""Tests if the matrix is row weakly diagonally dominant.
1498
+
1499
+ Explanation
1500
+ ===========
1501
+
1502
+ A $n, n$ matrix $A$ is row weakly diagonally dominant if
1503
+
1504
+ .. math::
1505
+ \left|A_{i, i}\right| \ge \sum_{j = 0, j \neq i}^{n-1}
1506
+ \left|A_{i, j}\right| \quad {\text{for all }}
1507
+ i \in \{ 0, ..., n-1 \}
1508
+
1509
+ Examples
1510
+ ========
1511
+
1512
+ >>> from sympy import Matrix
1513
+ >>> A = Matrix([[3, -2, 1], [1, -3, 2], [-1, 2, 4]])
1514
+ >>> A.is_weakly_diagonally_dominant
1515
+ True
1516
+
1517
+ >>> A = Matrix([[-2, 2, 1], [1, 3, 2], [1, -2, 0]])
1518
+ >>> A.is_weakly_diagonally_dominant
1519
+ False
1520
+
1521
+ >>> A = Matrix([[-4, 2, 1], [1, 6, 2], [1, -2, 5]])
1522
+ >>> A.is_weakly_diagonally_dominant
1523
+ True
1524
+
1525
+ Notes
1526
+ =====
1527
+
1528
+ If you want to test whether a matrix is column diagonally
1529
+ dominant, you can apply the test after transposing the matrix.
1530
+ """
1531
+ if not self.is_square:
1532
+ return False
1533
+
1534
+ rows, cols = self.shape
1535
+
1536
+ def test_row(i):
1537
+ summation = self.zero
1538
+ for j in range(cols):
1539
+ if i != j:
1540
+ summation += Abs(self[i, j])
1541
+ return (Abs(self[i, i]) - summation).is_nonnegative
1542
+
1543
+ return fuzzy_and(test_row(i) for i in range(rows))
1544
+
1545
+ @property
1546
+ def is_strongly_diagonally_dominant(self):
1547
+ r"""Tests if the matrix is row strongly diagonally dominant.
1548
+
1549
+ Explanation
1550
+ ===========
1551
+
1552
+ A $n, n$ matrix $A$ is row strongly diagonally dominant if
1553
+
1554
+ .. math::
1555
+ \left|A_{i, i}\right| > \sum_{j = 0, j \neq i}^{n-1}
1556
+ \left|A_{i, j}\right| \quad {\text{for all }}
1557
+ i \in \{ 0, ..., n-1 \}
1558
+
1559
+ Examples
1560
+ ========
1561
+
1562
+ >>> from sympy import Matrix
1563
+ >>> A = Matrix([[3, -2, 1], [1, -3, 2], [-1, 2, 4]])
1564
+ >>> A.is_strongly_diagonally_dominant
1565
+ False
1566
+
1567
+ >>> A = Matrix([[-2, 2, 1], [1, 3, 2], [1, -2, 0]])
1568
+ >>> A.is_strongly_diagonally_dominant
1569
+ False
1570
+
1571
+ >>> A = Matrix([[-4, 2, 1], [1, 6, 2], [1, -2, 5]])
1572
+ >>> A.is_strongly_diagonally_dominant
1573
+ True
1574
+
1575
+ Notes
1576
+ =====
1577
+
1578
+ If you want to test whether a matrix is column diagonally
1579
+ dominant, you can apply the test after transposing the matrix.
1580
+ """
1581
+ if not self.is_square:
1582
+ return False
1583
+
1584
+ rows, cols = self.shape
1585
+
1586
+ def test_row(i):
1587
+ summation = self.zero
1588
+ for j in range(cols):
1589
+ if i != j:
1590
+ summation += Abs(self[i, j])
1591
+ return (Abs(self[i, i]) - summation).is_positive
1592
+
1593
+ return fuzzy_and(test_row(i) for i in range(rows))
1594
+
1595
+ @property
1596
+ def is_hermitian(self):
1597
+ """Checks if the matrix is Hermitian.
1598
+
1599
+ In a Hermitian matrix element i,j is the complex conjugate of
1600
+ element j,i.
1601
+
1602
+ Examples
1603
+ ========
1604
+
1605
+ >>> from sympy import Matrix
1606
+ >>> from sympy import I
1607
+ >>> from sympy.abc import x
1608
+ >>> a = Matrix([[1, I], [-I, 1]])
1609
+ >>> a
1610
+ Matrix([
1611
+ [ 1, I],
1612
+ [-I, 1]])
1613
+ >>> a.is_hermitian
1614
+ True
1615
+ >>> a[0, 0] = 2*I
1616
+ >>> a.is_hermitian
1617
+ False
1618
+ >>> a[0, 0] = x
1619
+ >>> a.is_hermitian
1620
+ >>> a[0, 1] = a[1, 0]*I
1621
+ >>> a.is_hermitian
1622
+ False
1623
+ """
1624
+ if not self.is_square:
1625
+ return False
1626
+
1627
+ return self._eval_is_matrix_hermitian(_simplify)
1628
+
1629
+ @property
1630
+ def is_Identity(self) -> FuzzyBool:
1631
+ if not self.is_square:
1632
+ return False
1633
+ return self._eval_is_Identity()
1634
+
1635
+ @property
1636
+ def is_lower_hessenberg(self):
1637
+ r"""Checks if the matrix is in the lower-Hessenberg form.
1638
+
1639
+ The lower hessenberg matrix has zero entries
1640
+ above the first superdiagonal.
1641
+
1642
+ Examples
1643
+ ========
1644
+
1645
+ >>> from sympy import Matrix
1646
+ >>> a = Matrix([[1, 2, 0, 0], [5, 2, 3, 0], [3, 4, 3, 7], [5, 6, 1, 1]])
1647
+ >>> a
1648
+ Matrix([
1649
+ [1, 2, 0, 0],
1650
+ [5, 2, 3, 0],
1651
+ [3, 4, 3, 7],
1652
+ [5, 6, 1, 1]])
1653
+ >>> a.is_lower_hessenberg
1654
+ True
1655
+
1656
+ See Also
1657
+ ========
1658
+
1659
+ is_upper_hessenberg
1660
+ is_lower
1661
+ """
1662
+ return self._eval_is_lower_hessenberg()
1663
+
1664
+ @property
1665
+ def is_lower(self):
1666
+ """Check if matrix is a lower triangular matrix. True can be returned
1667
+ even if the matrix is not square.
1668
+
1669
+ Examples
1670
+ ========
1671
+
1672
+ >>> from sympy import Matrix
1673
+ >>> m = Matrix(2, 2, [1, 0, 0, 1])
1674
+ >>> m
1675
+ Matrix([
1676
+ [1, 0],
1677
+ [0, 1]])
1678
+ >>> m.is_lower
1679
+ True
1680
+
1681
+ >>> m = Matrix(4, 3, [0, 0, 0, 2, 0, 0, 1, 4, 0, 6, 6, 5])
1682
+ >>> m
1683
+ Matrix([
1684
+ [0, 0, 0],
1685
+ [2, 0, 0],
1686
+ [1, 4, 0],
1687
+ [6, 6, 5]])
1688
+ >>> m.is_lower
1689
+ True
1690
+
1691
+ >>> from sympy.abc import x, y
1692
+ >>> m = Matrix(2, 2, [x**2 + y, y**2 + x, 0, x + y])
1693
+ >>> m
1694
+ Matrix([
1695
+ [x**2 + y, x + y**2],
1696
+ [ 0, x + y]])
1697
+ >>> m.is_lower
1698
+ False
1699
+
1700
+ See Also
1701
+ ========
1702
+
1703
+ is_upper
1704
+ is_diagonal
1705
+ is_lower_hessenberg
1706
+ """
1707
+ return self._eval_is_lower()
1708
+
1709
+ @property
1710
+ def is_square(self):
1711
+ """Checks if a matrix is square.
1712
+
1713
+ A matrix is square if the number of rows equals the number of columns.
1714
+ The empty matrix is square by definition, since the number of rows and
1715
+ the number of columns are both zero.
1716
+
1717
+ Examples
1718
+ ========
1719
+
1720
+ >>> from sympy import Matrix
1721
+ >>> a = Matrix([[1, 2, 3], [4, 5, 6]])
1722
+ >>> b = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
1723
+ >>> c = Matrix([])
1724
+ >>> a.is_square
1725
+ False
1726
+ >>> b.is_square
1727
+ True
1728
+ >>> c.is_square
1729
+ True
1730
+ """
1731
+ return self.rows == self.cols
1732
+
1733
+ def is_symbolic(self):
1734
+ """Checks if any elements contain Symbols.
1735
+
1736
+ Examples
1737
+ ========
1738
+
1739
+ >>> from sympy import Matrix
1740
+ >>> from sympy.abc import x, y
1741
+ >>> M = Matrix([[x, y], [1, 0]])
1742
+ >>> M.is_symbolic()
1743
+ True
1744
+
1745
+ """
1746
+ return self._eval_is_symbolic()
1747
+
1748
+ def is_symmetric(self, simplify=True):
1749
+ """Check if matrix is symmetric matrix,
1750
+ that is square matrix and is equal to its transpose.
1751
+
1752
+ By default, simplifications occur before testing symmetry.
1753
+ They can be skipped using 'simplify=False'; while speeding things a bit,
1754
+ this may however induce false negatives.
1755
+
1756
+ Examples
1757
+ ========
1758
+
1759
+ >>> from sympy import Matrix
1760
+ >>> m = Matrix(2, 2, [0, 1, 1, 2])
1761
+ >>> m
1762
+ Matrix([
1763
+ [0, 1],
1764
+ [1, 2]])
1765
+ >>> m.is_symmetric()
1766
+ True
1767
+
1768
+ >>> m = Matrix(2, 2, [0, 1, 2, 0])
1769
+ >>> m
1770
+ Matrix([
1771
+ [0, 1],
1772
+ [2, 0]])
1773
+ >>> m.is_symmetric()
1774
+ False
1775
+
1776
+ >>> m = Matrix(2, 3, [0, 0, 0, 0, 0, 0])
1777
+ >>> m
1778
+ Matrix([
1779
+ [0, 0, 0],
1780
+ [0, 0, 0]])
1781
+ >>> m.is_symmetric()
1782
+ False
1783
+
1784
+ >>> from sympy.abc import x, y
1785
+ >>> m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2, 2, 0, y, 0, 3])
1786
+ >>> m
1787
+ Matrix([
1788
+ [ 1, x**2 + 2*x + 1, y],
1789
+ [(x + 1)**2, 2, 0],
1790
+ [ y, 0, 3]])
1791
+ >>> m.is_symmetric()
1792
+ True
1793
+
1794
+ If the matrix is already simplified, you may speed-up is_symmetric()
1795
+ test by using 'simplify=False'.
1796
+
1797
+ >>> bool(m.is_symmetric(simplify=False))
1798
+ False
1799
+ >>> m1 = m.expand()
1800
+ >>> m1.is_symmetric(simplify=False)
1801
+ True
1802
+ """
1803
+ simpfunc = simplify
1804
+ if not isfunction(simplify):
1805
+ simpfunc = _simplify if simplify else lambda x: x
1806
+
1807
+ if not self.is_square:
1808
+ return False
1809
+
1810
+ return self._eval_is_symmetric(simpfunc)
1811
+
1812
+ @property
1813
+ def is_upper_hessenberg(self):
1814
+ """Checks if the matrix is the upper-Hessenberg form.
1815
+
1816
+ The upper hessenberg matrix has zero entries
1817
+ below the first subdiagonal.
1818
+
1819
+ Examples
1820
+ ========
1821
+
1822
+ >>> from sympy import Matrix
1823
+ >>> a = Matrix([[1, 4, 2, 3], [3, 4, 1, 7], [0, 2, 3, 4], [0, 0, 1, 3]])
1824
+ >>> a
1825
+ Matrix([
1826
+ [1, 4, 2, 3],
1827
+ [3, 4, 1, 7],
1828
+ [0, 2, 3, 4],
1829
+ [0, 0, 1, 3]])
1830
+ >>> a.is_upper_hessenberg
1831
+ True
1832
+
1833
+ See Also
1834
+ ========
1835
+
1836
+ is_lower_hessenberg
1837
+ is_upper
1838
+ """
1839
+ return self._eval_is_upper_hessenberg()
1840
+
1841
+ @property
1842
+ def is_upper(self):
1843
+ """Check if matrix is an upper triangular matrix. True can be returned
1844
+ even if the matrix is not square.
1845
+
1846
+ Examples
1847
+ ========
1848
+
1849
+ >>> from sympy import Matrix
1850
+ >>> m = Matrix(2, 2, [1, 0, 0, 1])
1851
+ >>> m
1852
+ Matrix([
1853
+ [1, 0],
1854
+ [0, 1]])
1855
+ >>> m.is_upper
1856
+ True
1857
+
1858
+ >>> m = Matrix(4, 3, [5, 1, 9, 0, 4, 6, 0, 0, 5, 0, 0, 0])
1859
+ >>> m
1860
+ Matrix([
1861
+ [5, 1, 9],
1862
+ [0, 4, 6],
1863
+ [0, 0, 5],
1864
+ [0, 0, 0]])
1865
+ >>> m.is_upper
1866
+ True
1867
+
1868
+ >>> m = Matrix(2, 3, [4, 2, 5, 6, 1, 1])
1869
+ >>> m
1870
+ Matrix([
1871
+ [4, 2, 5],
1872
+ [6, 1, 1]])
1873
+ >>> m.is_upper
1874
+ False
1875
+
1876
+ See Also
1877
+ ========
1878
+
1879
+ is_lower
1880
+ is_diagonal
1881
+ is_upper_hessenberg
1882
+ """
1883
+ return all(self[i, j].is_zero
1884
+ for i in range(1, self.rows)
1885
+ for j in range(min(i, self.cols)))
1886
+
1887
+ @property
1888
+ def is_zero_matrix(self):
1889
+ """Checks if a matrix is a zero matrix.
1890
+
1891
+ A matrix is zero if every element is zero. A matrix need not be square
1892
+ to be considered zero. The empty matrix is zero by the principle of
1893
+ vacuous truth. For a matrix that may or may not be zero (e.g.
1894
+ contains a symbol), this will be None
1895
+
1896
+ Examples
1897
+ ========
1898
+
1899
+ >>> from sympy import Matrix, zeros
1900
+ >>> from sympy.abc import x
1901
+ >>> a = Matrix([[0, 0], [0, 0]])
1902
+ >>> b = zeros(3, 4)
1903
+ >>> c = Matrix([[0, 1], [0, 0]])
1904
+ >>> d = Matrix([])
1905
+ >>> e = Matrix([[x, 0], [0, 0]])
1906
+ >>> a.is_zero_matrix
1907
+ True
1908
+ >>> b.is_zero_matrix
1909
+ True
1910
+ >>> c.is_zero_matrix
1911
+ False
1912
+ >>> d.is_zero_matrix
1913
+ True
1914
+ >>> e.is_zero_matrix
1915
+ """
1916
+ return self._eval_is_zero_matrix()
1917
+
1918
+ def values(self):
1919
+ """Return non-zero values of self."""
1920
+ return self._eval_values()
1921
+
1922
+
1923
+ class MatrixOperations(MatrixRequired):
1924
+ """Provides basic matrix shape and elementwise
1925
+ operations. Should not be instantiated directly."""
1926
+
1927
+ def _eval_adjoint(self):
1928
+ return self.transpose().conjugate()
1929
+
1930
+ def _eval_applyfunc(self, f):
1931
+ out = self._new(self.rows, self.cols, [f(x) for x in self])
1932
+ return out
1933
+
1934
+ def _eval_as_real_imag(self): # type: ignore
1935
+ return (self.applyfunc(re), self.applyfunc(im))
1936
+
1937
+ def _eval_conjugate(self):
1938
+ return self.applyfunc(lambda x: x.conjugate())
1939
+
1940
+ def _eval_permute_cols(self, perm):
1941
+ # apply the permutation to a list
1942
+ mapping = list(perm)
1943
+
1944
+ def entry(i, j):
1945
+ return self[i, mapping[j]]
1946
+
1947
+ return self._new(self.rows, self.cols, entry)
1948
+
1949
+ def _eval_permute_rows(self, perm):
1950
+ # apply the permutation to a list
1951
+ mapping = list(perm)
1952
+
1953
+ def entry(i, j):
1954
+ return self[mapping[i], j]
1955
+
1956
+ return self._new(self.rows, self.cols, entry)
1957
+
1958
+ def _eval_trace(self):
1959
+ return sum(self[i, i] for i in range(self.rows))
1960
+
1961
+ def _eval_transpose(self):
1962
+ return self._new(self.cols, self.rows, lambda i, j: self[j, i])
1963
+
1964
+ def adjoint(self):
1965
+ """Conjugate transpose or Hermitian conjugation."""
1966
+ return self._eval_adjoint()
1967
+
1968
+ def applyfunc(self, f):
1969
+ """Apply a function to each element of the matrix.
1970
+
1971
+ Examples
1972
+ ========
1973
+
1974
+ >>> from sympy import Matrix
1975
+ >>> m = Matrix(2, 2, lambda i, j: i*2+j)
1976
+ >>> m
1977
+ Matrix([
1978
+ [0, 1],
1979
+ [2, 3]])
1980
+ >>> m.applyfunc(lambda i: 2*i)
1981
+ Matrix([
1982
+ [0, 2],
1983
+ [4, 6]])
1984
+
1985
+ """
1986
+ if not callable(f):
1987
+ raise TypeError("`f` must be callable.")
1988
+
1989
+ return self._eval_applyfunc(f)
1990
+
1991
+ def as_real_imag(self, deep=True, **hints):
1992
+ """Returns a tuple containing the (real, imaginary) part of matrix."""
1993
+ # XXX: Ignoring deep and hints...
1994
+ return self._eval_as_real_imag()
1995
+
1996
+ def conjugate(self):
1997
+ """Return the by-element conjugation.
1998
+
1999
+ Examples
2000
+ ========
2001
+
2002
+ >>> from sympy import SparseMatrix, I
2003
+ >>> a = SparseMatrix(((1, 2 + I), (3, 4), (I, -I)))
2004
+ >>> a
2005
+ Matrix([
2006
+ [1, 2 + I],
2007
+ [3, 4],
2008
+ [I, -I]])
2009
+ >>> a.C
2010
+ Matrix([
2011
+ [ 1, 2 - I],
2012
+ [ 3, 4],
2013
+ [-I, I]])
2014
+
2015
+ See Also
2016
+ ========
2017
+
2018
+ transpose: Matrix transposition
2019
+ H: Hermite conjugation
2020
+ sympy.matrices.matrices.MatrixBase.D: Dirac conjugation
2021
+ """
2022
+ return self._eval_conjugate()
2023
+
2024
+ def doit(self, **hints):
2025
+ return self.applyfunc(lambda x: x.doit(**hints))
2026
+
2027
+ def evalf(self, n=15, subs=None, maxn=100, chop=False, strict=False, quad=None, verbose=False):
2028
+ """Apply evalf() to each element of self."""
2029
+ options = {'subs':subs, 'maxn':maxn, 'chop':chop, 'strict':strict,
2030
+ 'quad':quad, 'verbose':verbose}
2031
+ return self.applyfunc(lambda i: i.evalf(n, **options))
2032
+
2033
+ def expand(self, deep=True, modulus=None, power_base=True, power_exp=True,
2034
+ mul=True, log=True, multinomial=True, basic=True, **hints):
2035
+ """Apply core.function.expand to each entry of the matrix.
2036
+
2037
+ Examples
2038
+ ========
2039
+
2040
+ >>> from sympy.abc import x
2041
+ >>> from sympy import Matrix
2042
+ >>> Matrix(1, 1, [x*(x+1)])
2043
+ Matrix([[x*(x + 1)]])
2044
+ >>> _.expand()
2045
+ Matrix([[x**2 + x]])
2046
+
2047
+ """
2048
+ return self.applyfunc(lambda x: x.expand(
2049
+ deep, modulus, power_base, power_exp, mul, log, multinomial, basic,
2050
+ **hints))
2051
+
2052
+ @property
2053
+ def H(self):
2054
+ """Return Hermite conjugate.
2055
+
2056
+ Examples
2057
+ ========
2058
+
2059
+ >>> from sympy import Matrix, I
2060
+ >>> m = Matrix((0, 1 + I, 2, 3))
2061
+ >>> m
2062
+ Matrix([
2063
+ [ 0],
2064
+ [1 + I],
2065
+ [ 2],
2066
+ [ 3]])
2067
+ >>> m.H
2068
+ Matrix([[0, 1 - I, 2, 3]])
2069
+
2070
+ See Also
2071
+ ========
2072
+
2073
+ conjugate: By-element conjugation
2074
+ sympy.matrices.matrices.MatrixBase.D: Dirac conjugation
2075
+ """
2076
+ return self.T.C
2077
+
2078
+ def permute(self, perm, orientation='rows', direction='forward'):
2079
+ r"""Permute the rows or columns of a matrix by the given list of
2080
+ swaps.
2081
+
2082
+ Parameters
2083
+ ==========
2084
+
2085
+ perm : Permutation, list, or list of lists
2086
+ A representation for the permutation.
2087
+
2088
+ If it is ``Permutation``, it is used directly with some
2089
+ resizing with respect to the matrix size.
2090
+
2091
+ If it is specified as list of lists,
2092
+ (e.g., ``[[0, 1], [0, 2]]``), then the permutation is formed
2093
+ from applying the product of cycles. The direction how the
2094
+ cyclic product is applied is described in below.
2095
+
2096
+ If it is specified as a list, the list should represent
2097
+ an array form of a permutation. (e.g., ``[1, 2, 0]``) which
2098
+ would would form the swapping function
2099
+ `0 \mapsto 1, 1 \mapsto 2, 2\mapsto 0`.
2100
+
2101
+ orientation : 'rows', 'cols'
2102
+ A flag to control whether to permute the rows or the columns
2103
+
2104
+ direction : 'forward', 'backward'
2105
+ A flag to control whether to apply the permutations from
2106
+ the start of the list first, or from the back of the list
2107
+ first.
2108
+
2109
+ For example, if the permutation specification is
2110
+ ``[[0, 1], [0, 2]]``,
2111
+
2112
+ If the flag is set to ``'forward'``, the cycle would be
2113
+ formed as `0 \mapsto 2, 2 \mapsto 1, 1 \mapsto 0`.
2114
+
2115
+ If the flag is set to ``'backward'``, the cycle would be
2116
+ formed as `0 \mapsto 1, 1 \mapsto 2, 2 \mapsto 0`.
2117
+
2118
+ If the argument ``perm`` is not in a form of list of lists,
2119
+ this flag takes no effect.
2120
+
2121
+ Examples
2122
+ ========
2123
+
2124
+ >>> from sympy import eye
2125
+ >>> M = eye(3)
2126
+ >>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='forward')
2127
+ Matrix([
2128
+ [0, 0, 1],
2129
+ [1, 0, 0],
2130
+ [0, 1, 0]])
2131
+
2132
+ >>> from sympy import eye
2133
+ >>> M = eye(3)
2134
+ >>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='backward')
2135
+ Matrix([
2136
+ [0, 1, 0],
2137
+ [0, 0, 1],
2138
+ [1, 0, 0]])
2139
+
2140
+ Notes
2141
+ =====
2142
+
2143
+ If a bijective function
2144
+ `\sigma : \mathbb{N}_0 \rightarrow \mathbb{N}_0` denotes the
2145
+ permutation.
2146
+
2147
+ If the matrix `A` is the matrix to permute, represented as
2148
+ a horizontal or a vertical stack of vectors:
2149
+
2150
+ .. math::
2151
+ A =
2152
+ \begin{bmatrix}
2153
+ a_0 \\ a_1 \\ \vdots \\ a_{n-1}
2154
+ \end{bmatrix} =
2155
+ \begin{bmatrix}
2156
+ \alpha_0 & \alpha_1 & \cdots & \alpha_{n-1}
2157
+ \end{bmatrix}
2158
+
2159
+ If the matrix `B` is the result, the permutation of matrix rows
2160
+ is defined as:
2161
+
2162
+ .. math::
2163
+ B := \begin{bmatrix}
2164
+ a_{\sigma(0)} \\ a_{\sigma(1)} \\ \vdots \\ a_{\sigma(n-1)}
2165
+ \end{bmatrix}
2166
+
2167
+ And the permutation of matrix columns is defined as:
2168
+
2169
+ .. math::
2170
+ B := \begin{bmatrix}
2171
+ \alpha_{\sigma(0)} & \alpha_{\sigma(1)} &
2172
+ \cdots & \alpha_{\sigma(n-1)}
2173
+ \end{bmatrix}
2174
+ """
2175
+ from sympy.combinatorics import Permutation
2176
+
2177
+ # allow british variants and `columns`
2178
+ if direction == 'forwards':
2179
+ direction = 'forward'
2180
+ if direction == 'backwards':
2181
+ direction = 'backward'
2182
+ if orientation == 'columns':
2183
+ orientation = 'cols'
2184
+
2185
+ if direction not in ('forward', 'backward'):
2186
+ raise TypeError("direction='{}' is an invalid kwarg. "
2187
+ "Try 'forward' or 'backward'".format(direction))
2188
+ if orientation not in ('rows', 'cols'):
2189
+ raise TypeError("orientation='{}' is an invalid kwarg. "
2190
+ "Try 'rows' or 'cols'".format(orientation))
2191
+
2192
+ if not isinstance(perm, (Permutation, Iterable)):
2193
+ raise ValueError(
2194
+ "{} must be a list, a list of lists, "
2195
+ "or a SymPy permutation object.".format(perm))
2196
+
2197
+ # ensure all swaps are in range
2198
+ max_index = self.rows if orientation == 'rows' else self.cols
2199
+ if not all(0 <= t <= max_index for t in flatten(list(perm))):
2200
+ raise IndexError("`swap` indices out of range.")
2201
+
2202
+ if perm and not isinstance(perm, Permutation) and \
2203
+ isinstance(perm[0], Iterable):
2204
+ if direction == 'forward':
2205
+ perm = list(reversed(perm))
2206
+ perm = Permutation(perm, size=max_index+1)
2207
+ else:
2208
+ perm = Permutation(perm, size=max_index+1)
2209
+
2210
+ if orientation == 'rows':
2211
+ return self._eval_permute_rows(perm)
2212
+ if orientation == 'cols':
2213
+ return self._eval_permute_cols(perm)
2214
+
2215
+ def permute_cols(self, swaps, direction='forward'):
2216
+ """Alias for
2217
+ ``self.permute(swaps, orientation='cols', direction=direction)``
2218
+
2219
+ See Also
2220
+ ========
2221
+
2222
+ permute
2223
+ """
2224
+ return self.permute(swaps, orientation='cols', direction=direction)
2225
+
2226
+ def permute_rows(self, swaps, direction='forward'):
2227
+ """Alias for
2228
+ ``self.permute(swaps, orientation='rows', direction=direction)``
2229
+
2230
+ See Also
2231
+ ========
2232
+
2233
+ permute
2234
+ """
2235
+ return self.permute(swaps, orientation='rows', direction=direction)
2236
+
2237
+ def refine(self, assumptions=True):
2238
+ """Apply refine to each element of the matrix.
2239
+
2240
+ Examples
2241
+ ========
2242
+
2243
+ >>> from sympy import Symbol, Matrix, Abs, sqrt, Q
2244
+ >>> x = Symbol('x')
2245
+ >>> Matrix([[Abs(x)**2, sqrt(x**2)],[sqrt(x**2), Abs(x)**2]])
2246
+ Matrix([
2247
+ [ Abs(x)**2, sqrt(x**2)],
2248
+ [sqrt(x**2), Abs(x)**2]])
2249
+ >>> _.refine(Q.real(x))
2250
+ Matrix([
2251
+ [ x**2, Abs(x)],
2252
+ [Abs(x), x**2]])
2253
+
2254
+ """
2255
+ return self.applyfunc(lambda x: refine(x, assumptions))
2256
+
2257
+ def replace(self, F, G, map=False, simultaneous=True, exact=None):
2258
+ """Replaces Function F in Matrix entries with Function G.
2259
+
2260
+ Examples
2261
+ ========
2262
+
2263
+ >>> from sympy import symbols, Function, Matrix
2264
+ >>> F, G = symbols('F, G', cls=Function)
2265
+ >>> M = Matrix(2, 2, lambda i, j: F(i+j)) ; M
2266
+ Matrix([
2267
+ [F(0), F(1)],
2268
+ [F(1), F(2)]])
2269
+ >>> N = M.replace(F,G)
2270
+ >>> N
2271
+ Matrix([
2272
+ [G(0), G(1)],
2273
+ [G(1), G(2)]])
2274
+ """
2275
+ return self.applyfunc(
2276
+ lambda x: x.replace(F, G, map=map, simultaneous=simultaneous, exact=exact))
2277
+
2278
+ def rot90(self, k=1):
2279
+ """Rotates Matrix by 90 degrees
2280
+
2281
+ Parameters
2282
+ ==========
2283
+
2284
+ k : int
2285
+ Specifies how many times the matrix is rotated by 90 degrees
2286
+ (clockwise when positive, counter-clockwise when negative).
2287
+
2288
+ Examples
2289
+ ========
2290
+
2291
+ >>> from sympy import Matrix, symbols
2292
+ >>> A = Matrix(2, 2, symbols('a:d'))
2293
+ >>> A
2294
+ Matrix([
2295
+ [a, b],
2296
+ [c, d]])
2297
+
2298
+ Rotating the matrix clockwise one time:
2299
+
2300
+ >>> A.rot90(1)
2301
+ Matrix([
2302
+ [c, a],
2303
+ [d, b]])
2304
+
2305
+ Rotating the matrix anticlockwise two times:
2306
+
2307
+ >>> A.rot90(-2)
2308
+ Matrix([
2309
+ [d, c],
2310
+ [b, a]])
2311
+ """
2312
+
2313
+ mod = k%4
2314
+ if mod == 0:
2315
+ return self
2316
+ if mod == 1:
2317
+ return self[::-1, ::].T
2318
+ if mod == 2:
2319
+ return self[::-1, ::-1]
2320
+ if mod == 3:
2321
+ return self[::, ::-1].T
2322
+
2323
+ def simplify(self, **kwargs):
2324
+ """Apply simplify to each element of the matrix.
2325
+
2326
+ Examples
2327
+ ========
2328
+
2329
+ >>> from sympy.abc import x, y
2330
+ >>> from sympy import SparseMatrix, sin, cos
2331
+ >>> SparseMatrix(1, 1, [x*sin(y)**2 + x*cos(y)**2])
2332
+ Matrix([[x*sin(y)**2 + x*cos(y)**2]])
2333
+ >>> _.simplify()
2334
+ Matrix([[x]])
2335
+ """
2336
+ return self.applyfunc(lambda x: x.simplify(**kwargs))
2337
+
2338
+ def subs(self, *args, **kwargs): # should mirror core.basic.subs
2339
+ """Return a new matrix with subs applied to each entry.
2340
+
2341
+ Examples
2342
+ ========
2343
+
2344
+ >>> from sympy.abc import x, y
2345
+ >>> from sympy import SparseMatrix, Matrix
2346
+ >>> SparseMatrix(1, 1, [x])
2347
+ Matrix([[x]])
2348
+ >>> _.subs(x, y)
2349
+ Matrix([[y]])
2350
+ >>> Matrix(_).subs(y, x)
2351
+ Matrix([[x]])
2352
+ """
2353
+
2354
+ if len(args) == 1 and not isinstance(args[0], (dict, set)) and iter(args[0]) and not is_sequence(args[0]):
2355
+ args = (list(args[0]),)
2356
+
2357
+ return self.applyfunc(lambda x: x.subs(*args, **kwargs))
2358
+
2359
+ def trace(self):
2360
+ """
2361
+ Returns the trace of a square matrix i.e. the sum of the
2362
+ diagonal elements.
2363
+
2364
+ Examples
2365
+ ========
2366
+
2367
+ >>> from sympy import Matrix
2368
+ >>> A = Matrix(2, 2, [1, 2, 3, 4])
2369
+ >>> A.trace()
2370
+ 5
2371
+
2372
+ """
2373
+ if self.rows != self.cols:
2374
+ raise NonSquareMatrixError()
2375
+ return self._eval_trace()
2376
+
2377
+ def transpose(self):
2378
+ """
2379
+ Returns the transpose of the matrix.
2380
+
2381
+ Examples
2382
+ ========
2383
+
2384
+ >>> from sympy import Matrix
2385
+ >>> A = Matrix(2, 2, [1, 2, 3, 4])
2386
+ >>> A.transpose()
2387
+ Matrix([
2388
+ [1, 3],
2389
+ [2, 4]])
2390
+
2391
+ >>> from sympy import Matrix, I
2392
+ >>> m=Matrix(((1, 2+I), (3, 4)))
2393
+ >>> m
2394
+ Matrix([
2395
+ [1, 2 + I],
2396
+ [3, 4]])
2397
+ >>> m.transpose()
2398
+ Matrix([
2399
+ [ 1, 3],
2400
+ [2 + I, 4]])
2401
+ >>> m.T == m.transpose()
2402
+ True
2403
+
2404
+ See Also
2405
+ ========
2406
+
2407
+ conjugate: By-element conjugation
2408
+
2409
+ """
2410
+ return self._eval_transpose()
2411
+
2412
+ @property
2413
+ def T(self):
2414
+ '''Matrix transposition'''
2415
+ return self.transpose()
2416
+
2417
+ @property
2418
+ def C(self):
2419
+ '''By-element conjugation'''
2420
+ return self.conjugate()
2421
+
2422
+ def n(self, *args, **kwargs):
2423
+ """Apply evalf() to each element of self."""
2424
+ return self.evalf(*args, **kwargs)
2425
+
2426
+ def xreplace(self, rule): # should mirror core.basic.xreplace
2427
+ """Return a new matrix with xreplace applied to each entry.
2428
+
2429
+ Examples
2430
+ ========
2431
+
2432
+ >>> from sympy.abc import x, y
2433
+ >>> from sympy import SparseMatrix, Matrix
2434
+ >>> SparseMatrix(1, 1, [x])
2435
+ Matrix([[x]])
2436
+ >>> _.xreplace({x: y})
2437
+ Matrix([[y]])
2438
+ >>> Matrix(_).xreplace({y: x})
2439
+ Matrix([[x]])
2440
+ """
2441
+ return self.applyfunc(lambda x: x.xreplace(rule))
2442
+
2443
+ def _eval_simplify(self, **kwargs):
2444
+ # XXX: We can't use self.simplify here as mutable subclasses will
2445
+ # override simplify and have it return None
2446
+ return MatrixOperations.simplify(self, **kwargs)
2447
+
2448
+ def _eval_trigsimp(self, **opts):
2449
+ from sympy.simplify.trigsimp import trigsimp
2450
+ return self.applyfunc(lambda x: trigsimp(x, **opts))
2451
+
2452
+ def upper_triangular(self, k=0):
2453
+ """Return the elements on and above the kth diagonal of a matrix.
2454
+ If k is not specified then simply returns upper-triangular portion
2455
+ of a matrix
2456
+
2457
+ Examples
2458
+ ========
2459
+
2460
+ >>> from sympy import ones
2461
+ >>> A = ones(4)
2462
+ >>> A.upper_triangular()
2463
+ Matrix([
2464
+ [1, 1, 1, 1],
2465
+ [0, 1, 1, 1],
2466
+ [0, 0, 1, 1],
2467
+ [0, 0, 0, 1]])
2468
+
2469
+ >>> A.upper_triangular(2)
2470
+ Matrix([
2471
+ [0, 0, 1, 1],
2472
+ [0, 0, 0, 1],
2473
+ [0, 0, 0, 0],
2474
+ [0, 0, 0, 0]])
2475
+
2476
+ >>> A.upper_triangular(-1)
2477
+ Matrix([
2478
+ [1, 1, 1, 1],
2479
+ [1, 1, 1, 1],
2480
+ [0, 1, 1, 1],
2481
+ [0, 0, 1, 1]])
2482
+
2483
+ """
2484
+
2485
+ def entry(i, j):
2486
+ return self[i, j] if i + k <= j else self.zero
2487
+
2488
+ return self._new(self.rows, self.cols, entry)
2489
+
2490
+
2491
+ def lower_triangular(self, k=0):
2492
+ """Return the elements on and below the kth diagonal of a matrix.
2493
+ If k is not specified then simply returns lower-triangular portion
2494
+ of a matrix
2495
+
2496
+ Examples
2497
+ ========
2498
+
2499
+ >>> from sympy import ones
2500
+ >>> A = ones(4)
2501
+ >>> A.lower_triangular()
2502
+ Matrix([
2503
+ [1, 0, 0, 0],
2504
+ [1, 1, 0, 0],
2505
+ [1, 1, 1, 0],
2506
+ [1, 1, 1, 1]])
2507
+
2508
+ >>> A.lower_triangular(-2)
2509
+ Matrix([
2510
+ [0, 0, 0, 0],
2511
+ [0, 0, 0, 0],
2512
+ [1, 0, 0, 0],
2513
+ [1, 1, 0, 0]])
2514
+
2515
+ >>> A.lower_triangular(1)
2516
+ Matrix([
2517
+ [1, 1, 0, 0],
2518
+ [1, 1, 1, 0],
2519
+ [1, 1, 1, 1],
2520
+ [1, 1, 1, 1]])
2521
+
2522
+ """
2523
+
2524
+ def entry(i, j):
2525
+ return self[i, j] if i + k >= j else self.zero
2526
+
2527
+ return self._new(self.rows, self.cols, entry)
2528
+
2529
+
2530
+
2531
+ class MatrixArithmetic(MatrixRequired):
2532
+ """Provides basic matrix arithmetic operations.
2533
+ Should not be instantiated directly."""
2534
+
2535
+ _op_priority = 10.01
2536
+
2537
+ def _eval_Abs(self):
2538
+ return self._new(self.rows, self.cols, lambda i, j: Abs(self[i, j]))
2539
+
2540
+ def _eval_add(self, other):
2541
+ return self._new(self.rows, self.cols,
2542
+ lambda i, j: self[i, j] + other[i, j])
2543
+
2544
+ def _eval_matrix_mul(self, other):
2545
+ def entry(i, j):
2546
+ vec = [self[i,k]*other[k,j] for k in range(self.cols)]
2547
+ try:
2548
+ return Add(*vec)
2549
+ except (TypeError, SympifyError):
2550
+ # Some matrices don't work with `sum` or `Add`
2551
+ # They don't work with `sum` because `sum` tries to add `0`
2552
+ # Fall back to a safe way to multiply if the `Add` fails.
2553
+ return reduce(lambda a, b: a + b, vec)
2554
+
2555
+ return self._new(self.rows, other.cols, entry)
2556
+
2557
+ def _eval_matrix_mul_elementwise(self, other):
2558
+ return self._new(self.rows, self.cols, lambda i, j: self[i,j]*other[i,j])
2559
+
2560
+ def _eval_matrix_rmul(self, other):
2561
+ def entry(i, j):
2562
+ return sum(other[i,k]*self[k,j] for k in range(other.cols))
2563
+ return self._new(other.rows, self.cols, entry)
2564
+
2565
+ def _eval_pow_by_recursion(self, num):
2566
+ if num == 1:
2567
+ return self
2568
+
2569
+ if num % 2 == 1:
2570
+ a, b = self, self._eval_pow_by_recursion(num - 1)
2571
+ else:
2572
+ a = b = self._eval_pow_by_recursion(num // 2)
2573
+
2574
+ return a.multiply(b)
2575
+
2576
+ def _eval_pow_by_cayley(self, exp):
2577
+ from sympy.discrete.recurrences import linrec_coeffs
2578
+ row = self.shape[0]
2579
+ p = self.charpoly()
2580
+
2581
+ coeffs = (-p).all_coeffs()[1:]
2582
+ coeffs = linrec_coeffs(coeffs, exp)
2583
+ new_mat = self.eye(row)
2584
+ ans = self.zeros(row)
2585
+
2586
+ for i in range(row):
2587
+ ans += coeffs[i]*new_mat
2588
+ new_mat *= self
2589
+
2590
+ return ans
2591
+
2592
+ def _eval_pow_by_recursion_dotprodsimp(self, num, prevsimp=None):
2593
+ if prevsimp is None:
2594
+ prevsimp = [True]*len(self)
2595
+
2596
+ if num == 1:
2597
+ return self
2598
+
2599
+ if num % 2 == 1:
2600
+ a, b = self, self._eval_pow_by_recursion_dotprodsimp(num - 1,
2601
+ prevsimp=prevsimp)
2602
+ else:
2603
+ a = b = self._eval_pow_by_recursion_dotprodsimp(num // 2,
2604
+ prevsimp=prevsimp)
2605
+
2606
+ m = a.multiply(b, dotprodsimp=False)
2607
+ lenm = len(m)
2608
+ elems = [None]*lenm
2609
+
2610
+ for i in range(lenm):
2611
+ if prevsimp[i]:
2612
+ elems[i], prevsimp[i] = _dotprodsimp(m[i], withsimp=True)
2613
+ else:
2614
+ elems[i] = m[i]
2615
+
2616
+ return m._new(m.rows, m.cols, elems)
2617
+
2618
+ def _eval_scalar_mul(self, other):
2619
+ return self._new(self.rows, self.cols, lambda i, j: self[i,j]*other)
2620
+
2621
+ def _eval_scalar_rmul(self, other):
2622
+ return self._new(self.rows, self.cols, lambda i, j: other*self[i,j])
2623
+
2624
+ def _eval_Mod(self, other):
2625
+ return self._new(self.rows, self.cols, lambda i, j: Mod(self[i, j], other))
2626
+
2627
+ # Python arithmetic functions
2628
+ def __abs__(self):
2629
+ """Returns a new matrix with entry-wise absolute values."""
2630
+ return self._eval_Abs()
2631
+
2632
+ @call_highest_priority('__radd__')
2633
+ def __add__(self, other):
2634
+ """Return self + other, raising ShapeError if shapes do not match."""
2635
+ if isinstance(other, NDimArray): # Matrix and array addition is currently not implemented
2636
+ return NotImplemented
2637
+ other = _matrixify(other)
2638
+ # matrix-like objects can have shapes. This is
2639
+ # our first sanity check.
2640
+ if hasattr(other, 'shape'):
2641
+ if self.shape != other.shape:
2642
+ raise ShapeError("Matrix size mismatch: %s + %s" % (
2643
+ self.shape, other.shape))
2644
+
2645
+ # honest SymPy matrices defer to their class's routine
2646
+ if getattr(other, 'is_Matrix', False):
2647
+ # call the highest-priority class's _eval_add
2648
+ a, b = self, other
2649
+ if a.__class__ != classof(a, b):
2650
+ b, a = a, b
2651
+ return a._eval_add(b)
2652
+ # Matrix-like objects can be passed to CommonMatrix routines directly.
2653
+ if getattr(other, 'is_MatrixLike', False):
2654
+ return MatrixArithmetic._eval_add(self, other)
2655
+
2656
+ raise TypeError('cannot add %s and %s' % (type(self), type(other)))
2657
+
2658
+ @call_highest_priority('__rtruediv__')
2659
+ def __truediv__(self, other):
2660
+ return self * (self.one / other)
2661
+
2662
+ @call_highest_priority('__rmatmul__')
2663
+ def __matmul__(self, other):
2664
+ other = _matrixify(other)
2665
+ if not getattr(other, 'is_Matrix', False) and not getattr(other, 'is_MatrixLike', False):
2666
+ return NotImplemented
2667
+
2668
+ return self.__mul__(other)
2669
+
2670
+ def __mod__(self, other):
2671
+ return self.applyfunc(lambda x: x % other)
2672
+
2673
+ @call_highest_priority('__rmul__')
2674
+ def __mul__(self, other):
2675
+ """Return self*other where other is either a scalar or a matrix
2676
+ of compatible dimensions.
2677
+
2678
+ Examples
2679
+ ========
2680
+
2681
+ >>> from sympy import Matrix
2682
+ >>> A = Matrix([[1, 2, 3], [4, 5, 6]])
2683
+ >>> 2*A == A*2 == Matrix([[2, 4, 6], [8, 10, 12]])
2684
+ True
2685
+ >>> B = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
2686
+ >>> A*B
2687
+ Matrix([
2688
+ [30, 36, 42],
2689
+ [66, 81, 96]])
2690
+ >>> B*A
2691
+ Traceback (most recent call last):
2692
+ ...
2693
+ ShapeError: Matrices size mismatch.
2694
+ >>>
2695
+
2696
+ See Also
2697
+ ========
2698
+
2699
+ matrix_multiply_elementwise
2700
+ """
2701
+
2702
+ return self.multiply(other)
2703
+
2704
+ def multiply(self, other, dotprodsimp=None):
2705
+ """Same as __mul__() but with optional simplification.
2706
+
2707
+ Parameters
2708
+ ==========
2709
+
2710
+ dotprodsimp : bool, optional
2711
+ Specifies whether intermediate term algebraic simplification is used
2712
+ during matrix multiplications to control expression blowup and thus
2713
+ speed up calculation. Default is off.
2714
+ """
2715
+
2716
+ isimpbool = _get_intermediate_simp_bool(False, dotprodsimp)
2717
+ other = _matrixify(other)
2718
+ # matrix-like objects can have shapes. This is
2719
+ # our first sanity check. Double check other is not explicitly not a Matrix.
2720
+ if (hasattr(other, 'shape') and len(other.shape) == 2 and
2721
+ (getattr(other, 'is_Matrix', True) or
2722
+ getattr(other, 'is_MatrixLike', True))):
2723
+ if self.shape[1] != other.shape[0]:
2724
+ raise ShapeError("Matrix size mismatch: %s * %s." % (
2725
+ self.shape, other.shape))
2726
+
2727
+ # honest SymPy matrices defer to their class's routine
2728
+ if getattr(other, 'is_Matrix', False):
2729
+ m = self._eval_matrix_mul(other)
2730
+ if isimpbool:
2731
+ return m._new(m.rows, m.cols, [_dotprodsimp(e) for e in m])
2732
+ return m
2733
+
2734
+ # Matrix-like objects can be passed to CommonMatrix routines directly.
2735
+ if getattr(other, 'is_MatrixLike', False):
2736
+ return MatrixArithmetic._eval_matrix_mul(self, other)
2737
+
2738
+ # if 'other' is not iterable then scalar multiplication.
2739
+ if not isinstance(other, Iterable):
2740
+ try:
2741
+ return self._eval_scalar_mul(other)
2742
+ except TypeError:
2743
+ pass
2744
+
2745
+ return NotImplemented
2746
+
2747
+ def multiply_elementwise(self, other):
2748
+ """Return the Hadamard product (elementwise product) of A and B
2749
+
2750
+ Examples
2751
+ ========
2752
+
2753
+ >>> from sympy import Matrix
2754
+ >>> A = Matrix([[0, 1, 2], [3, 4, 5]])
2755
+ >>> B = Matrix([[1, 10, 100], [100, 10, 1]])
2756
+ >>> A.multiply_elementwise(B)
2757
+ Matrix([
2758
+ [ 0, 10, 200],
2759
+ [300, 40, 5]])
2760
+
2761
+ See Also
2762
+ ========
2763
+
2764
+ sympy.matrices.matrices.MatrixBase.cross
2765
+ sympy.matrices.matrices.MatrixBase.dot
2766
+ multiply
2767
+ """
2768
+ if self.shape != other.shape:
2769
+ raise ShapeError("Matrix shapes must agree {} != {}".format(self.shape, other.shape))
2770
+
2771
+ return self._eval_matrix_mul_elementwise(other)
2772
+
2773
+ def __neg__(self):
2774
+ return self._eval_scalar_mul(-1)
2775
+
2776
+ @call_highest_priority('__rpow__')
2777
+ def __pow__(self, exp):
2778
+ """Return self**exp a scalar or symbol."""
2779
+
2780
+ return self.pow(exp)
2781
+
2782
+
2783
+ def pow(self, exp, method=None):
2784
+ r"""Return self**exp a scalar or symbol.
2785
+
2786
+ Parameters
2787
+ ==========
2788
+
2789
+ method : multiply, mulsimp, jordan, cayley
2790
+ If multiply then it returns exponentiation using recursion.
2791
+ If jordan then Jordan form exponentiation will be used.
2792
+ If cayley then the exponentiation is done using Cayley-Hamilton
2793
+ theorem.
2794
+ If mulsimp then the exponentiation is done using recursion
2795
+ with dotprodsimp. This specifies whether intermediate term
2796
+ algebraic simplification is used during naive matrix power to
2797
+ control expression blowup and thus speed up calculation.
2798
+ If None, then it heuristically decides which method to use.
2799
+
2800
+ """
2801
+
2802
+ if method is not None and method not in ['multiply', 'mulsimp', 'jordan', 'cayley']:
2803
+ raise TypeError('No such method')
2804
+ if self.rows != self.cols:
2805
+ raise NonSquareMatrixError()
2806
+ a = self
2807
+ jordan_pow = getattr(a, '_matrix_pow_by_jordan_blocks', None)
2808
+ exp = sympify(exp)
2809
+
2810
+ if exp.is_zero:
2811
+ return a._new(a.rows, a.cols, lambda i, j: int(i == j))
2812
+ if exp == 1:
2813
+ return a
2814
+
2815
+ diagonal = getattr(a, 'is_diagonal', None)
2816
+ if diagonal is not None and diagonal():
2817
+ return a._new(a.rows, a.cols, lambda i, j: a[i,j]**exp if i == j else 0)
2818
+
2819
+ if exp.is_Number and exp % 1 == 0:
2820
+ if a.rows == 1:
2821
+ return a._new([[a[0]**exp]])
2822
+ if exp < 0:
2823
+ exp = -exp
2824
+ a = a.inv()
2825
+ # When certain conditions are met,
2826
+ # Jordan block algorithm is faster than
2827
+ # computation by recursion.
2828
+ if method == 'jordan':
2829
+ try:
2830
+ return jordan_pow(exp)
2831
+ except MatrixError:
2832
+ if method == 'jordan':
2833
+ raise
2834
+
2835
+ elif method == 'cayley':
2836
+ if not exp.is_Number or exp % 1 != 0:
2837
+ raise ValueError("cayley method is only valid for integer powers")
2838
+ return a._eval_pow_by_cayley(exp)
2839
+
2840
+ elif method == "mulsimp":
2841
+ if not exp.is_Number or exp % 1 != 0:
2842
+ raise ValueError("mulsimp method is only valid for integer powers")
2843
+ return a._eval_pow_by_recursion_dotprodsimp(exp)
2844
+
2845
+ elif method == "multiply":
2846
+ if not exp.is_Number or exp % 1 != 0:
2847
+ raise ValueError("multiply method is only valid for integer powers")
2848
+ return a._eval_pow_by_recursion(exp)
2849
+
2850
+ elif method is None and exp.is_Number and exp % 1 == 0:
2851
+ # Decide heuristically which method to apply
2852
+ if a.rows == 2 and exp > 100000:
2853
+ return jordan_pow(exp)
2854
+ elif _get_intermediate_simp_bool(True, None):
2855
+ return a._eval_pow_by_recursion_dotprodsimp(exp)
2856
+ elif exp > 10000:
2857
+ return a._eval_pow_by_cayley(exp)
2858
+ else:
2859
+ return a._eval_pow_by_recursion(exp)
2860
+
2861
+ if jordan_pow:
2862
+ try:
2863
+ return jordan_pow(exp)
2864
+ except NonInvertibleMatrixError:
2865
+ # Raised by jordan_pow on zero determinant matrix unless exp is
2866
+ # definitely known to be a non-negative integer.
2867
+ # Here we raise if n is definitely not a non-negative integer
2868
+ # but otherwise we can leave this as an unevaluated MatPow.
2869
+ if exp.is_integer is False or exp.is_nonnegative is False:
2870
+ raise
2871
+
2872
+ from sympy.matrices.expressions import MatPow
2873
+ return MatPow(a, exp)
2874
+
2875
+ @call_highest_priority('__add__')
2876
+ def __radd__(self, other):
2877
+ return self + other
2878
+
2879
+ @call_highest_priority('__matmul__')
2880
+ def __rmatmul__(self, other):
2881
+ other = _matrixify(other)
2882
+ if not getattr(other, 'is_Matrix', False) and not getattr(other, 'is_MatrixLike', False):
2883
+ return NotImplemented
2884
+
2885
+ return self.__rmul__(other)
2886
+
2887
+ @call_highest_priority('__mul__')
2888
+ def __rmul__(self, other):
2889
+ return self.rmultiply(other)
2890
+
2891
+ def rmultiply(self, other, dotprodsimp=None):
2892
+ """Same as __rmul__() but with optional simplification.
2893
+
2894
+ Parameters
2895
+ ==========
2896
+
2897
+ dotprodsimp : bool, optional
2898
+ Specifies whether intermediate term algebraic simplification is used
2899
+ during matrix multiplications to control expression blowup and thus
2900
+ speed up calculation. Default is off.
2901
+ """
2902
+ isimpbool = _get_intermediate_simp_bool(False, dotprodsimp)
2903
+ other = _matrixify(other)
2904
+ # matrix-like objects can have shapes. This is
2905
+ # our first sanity check. Double check other is not explicitly not a Matrix.
2906
+ if (hasattr(other, 'shape') and len(other.shape) == 2 and
2907
+ (getattr(other, 'is_Matrix', True) or
2908
+ getattr(other, 'is_MatrixLike', True))):
2909
+ if self.shape[0] != other.shape[1]:
2910
+ raise ShapeError("Matrix size mismatch.")
2911
+
2912
+ # honest SymPy matrices defer to their class's routine
2913
+ if getattr(other, 'is_Matrix', False):
2914
+ m = self._eval_matrix_rmul(other)
2915
+ if isimpbool:
2916
+ return m._new(m.rows, m.cols, [_dotprodsimp(e) for e in m])
2917
+ return m
2918
+ # Matrix-like objects can be passed to CommonMatrix routines directly.
2919
+ if getattr(other, 'is_MatrixLike', False):
2920
+ return MatrixArithmetic._eval_matrix_rmul(self, other)
2921
+
2922
+ # if 'other' is not iterable then scalar multiplication.
2923
+ if not isinstance(other, Iterable):
2924
+ try:
2925
+ return self._eval_scalar_rmul(other)
2926
+ except TypeError:
2927
+ pass
2928
+
2929
+ return NotImplemented
2930
+
2931
+ @call_highest_priority('__sub__')
2932
+ def __rsub__(self, a):
2933
+ return (-self) + a
2934
+
2935
+ @call_highest_priority('__rsub__')
2936
+ def __sub__(self, a):
2937
+ return self + (-a)
2938
+
2939
+ class MatrixCommon(MatrixArithmetic, MatrixOperations, MatrixProperties,
2940
+ MatrixSpecial, MatrixShaping):
2941
+ """All common matrix operations including basic arithmetic, shaping,
2942
+ and special matrices like `zeros`, and `eye`."""
2943
+ _diff_wrt = True # type: bool
2944
+
2945
+
2946
+ class _MinimalMatrix:
2947
+ """Class providing the minimum functionality
2948
+ for a matrix-like object and implementing every method
2949
+ required for a `MatrixRequired`. This class does not have everything
2950
+ needed to become a full-fledged SymPy object, but it will satisfy the
2951
+ requirements of anything inheriting from `MatrixRequired`. If you wish
2952
+ to make a specialized matrix type, make sure to implement these
2953
+ methods and properties with the exception of `__init__` and `__repr__`
2954
+ which are included for convenience."""
2955
+
2956
+ is_MatrixLike = True
2957
+ _sympify = staticmethod(sympify)
2958
+ _class_priority = 3
2959
+ zero = S.Zero
2960
+ one = S.One
2961
+
2962
+ is_Matrix = True
2963
+ is_MatrixExpr = False
2964
+
2965
+ @classmethod
2966
+ def _new(cls, *args, **kwargs):
2967
+ return cls(*args, **kwargs)
2968
+
2969
+ def __init__(self, rows, cols=None, mat=None, copy=False):
2970
+ if isfunction(mat):
2971
+ # if we passed in a function, use that to populate the indices
2972
+ mat = [mat(i, j) for i in range(rows) for j in range(cols)]
2973
+ if cols is None and mat is None:
2974
+ mat = rows
2975
+ rows, cols = getattr(mat, 'shape', (rows, cols))
2976
+ try:
2977
+ # if we passed in a list of lists, flatten it and set the size
2978
+ if cols is None and mat is None:
2979
+ mat = rows
2980
+ cols = len(mat[0])
2981
+ rows = len(mat)
2982
+ mat = [x for l in mat for x in l]
2983
+ except (IndexError, TypeError):
2984
+ pass
2985
+ self.mat = tuple(self._sympify(x) for x in mat)
2986
+ self.rows, self.cols = rows, cols
2987
+ if self.rows is None or self.cols is None:
2988
+ raise NotImplementedError("Cannot initialize matrix with given parameters")
2989
+
2990
+ def __getitem__(self, key):
2991
+ def _normalize_slices(row_slice, col_slice):
2992
+ """Ensure that row_slice and col_slice do not have
2993
+ `None` in their arguments. Any integers are converted
2994
+ to slices of length 1"""
2995
+ if not isinstance(row_slice, slice):
2996
+ row_slice = slice(row_slice, row_slice + 1, None)
2997
+ row_slice = slice(*row_slice.indices(self.rows))
2998
+
2999
+ if not isinstance(col_slice, slice):
3000
+ col_slice = slice(col_slice, col_slice + 1, None)
3001
+ col_slice = slice(*col_slice.indices(self.cols))
3002
+
3003
+ return (row_slice, col_slice)
3004
+
3005
+ def _coord_to_index(i, j):
3006
+ """Return the index in _mat corresponding
3007
+ to the (i,j) position in the matrix. """
3008
+ return i * self.cols + j
3009
+
3010
+ if isinstance(key, tuple):
3011
+ i, j = key
3012
+ if isinstance(i, slice) or isinstance(j, slice):
3013
+ # if the coordinates are not slices, make them so
3014
+ # and expand the slices so they don't contain `None`
3015
+ i, j = _normalize_slices(i, j)
3016
+
3017
+ rowsList, colsList = list(range(self.rows))[i], \
3018
+ list(range(self.cols))[j]
3019
+ indices = (i * self.cols + j for i in rowsList for j in
3020
+ colsList)
3021
+ return self._new(len(rowsList), len(colsList),
3022
+ [self.mat[i] for i in indices])
3023
+
3024
+ # if the key is a tuple of ints, change
3025
+ # it to an array index
3026
+ key = _coord_to_index(i, j)
3027
+ return self.mat[key]
3028
+
3029
+ def __eq__(self, other):
3030
+ try:
3031
+ classof(self, other)
3032
+ except TypeError:
3033
+ return False
3034
+ return (
3035
+ self.shape == other.shape and list(self) == list(other))
3036
+
3037
+ def __len__(self):
3038
+ return self.rows*self.cols
3039
+
3040
+ def __repr__(self):
3041
+ return "_MinimalMatrix({}, {}, {})".format(self.rows, self.cols,
3042
+ self.mat)
3043
+
3044
+ @property
3045
+ def shape(self):
3046
+ return (self.rows, self.cols)
3047
+
3048
+
3049
+ class _CastableMatrix: # this is needed here ONLY FOR TESTS.
3050
+ def as_mutable(self):
3051
+ return self
3052
+
3053
+ def as_immutable(self):
3054
+ return self
3055
+
3056
+
3057
+ class _MatrixWrapper:
3058
+ """Wrapper class providing the minimum functionality for a matrix-like
3059
+ object: .rows, .cols, .shape, indexability, and iterability. CommonMatrix
3060
+ math operations should work on matrix-like objects. This one is intended for
3061
+ matrix-like objects which use the same indexing format as SymPy with respect
3062
+ to returning matrix elements instead of rows for non-tuple indexes.
3063
+ """
3064
+
3065
+ is_Matrix = False # needs to be here because of __getattr__
3066
+ is_MatrixLike = True
3067
+
3068
+ def __init__(self, mat, shape):
3069
+ self.mat = mat
3070
+ self.shape = shape
3071
+ self.rows, self.cols = shape
3072
+
3073
+ def __getitem__(self, key):
3074
+ if isinstance(key, tuple):
3075
+ return sympify(self.mat.__getitem__(key))
3076
+
3077
+ return sympify(self.mat.__getitem__((key // self.rows, key % self.cols)))
3078
+
3079
+ def __iter__(self): # supports numpy.matrix and numpy.array
3080
+ mat = self.mat
3081
+ cols = self.cols
3082
+
3083
+ return iter(sympify(mat[r, c]) for r in range(self.rows) for c in range(cols))
3084
+
3085
+
3086
+ class MatrixKind(Kind):
3087
+ """
3088
+ Kind for all matrices in SymPy.
3089
+
3090
+ Basic class for this kind is ``MatrixBase`` and ``MatrixExpr``,
3091
+ but any expression representing the matrix can have this.
3092
+
3093
+ Parameters
3094
+ ==========
3095
+
3096
+ element_kind : Kind
3097
+ Kind of the element. Default is
3098
+ :class:`sympy.core.kind.NumberKind`,
3099
+ which means that the matrix contains only numbers.
3100
+
3101
+ Examples
3102
+ ========
3103
+
3104
+ Any instance of matrix class has ``MatrixKind``:
3105
+
3106
+ >>> from sympy import MatrixSymbol
3107
+ >>> A = MatrixSymbol('A', 2,2)
3108
+ >>> A.kind
3109
+ MatrixKind(NumberKind)
3110
+
3111
+ Although expression representing a matrix may be not instance of
3112
+ matrix class, it will have ``MatrixKind`` as well:
3113
+
3114
+ >>> from sympy import MatrixExpr, Integral
3115
+ >>> from sympy.abc import x
3116
+ >>> intM = Integral(A, x)
3117
+ >>> isinstance(intM, MatrixExpr)
3118
+ False
3119
+ >>> intM.kind
3120
+ MatrixKind(NumberKind)
3121
+
3122
+ Use ``isinstance()`` to check for ``MatrixKind`` without specifying
3123
+ the element kind. Use ``is`` with specifying the element kind:
3124
+
3125
+ >>> from sympy import Matrix
3126
+ >>> from sympy.core import NumberKind
3127
+ >>> from sympy.matrices import MatrixKind
3128
+ >>> M = Matrix([1, 2])
3129
+ >>> isinstance(M.kind, MatrixKind)
3130
+ True
3131
+ >>> M.kind is MatrixKind(NumberKind)
3132
+ True
3133
+
3134
+ See Also
3135
+ ========
3136
+
3137
+ sympy.core.kind.NumberKind
3138
+ sympy.core.kind.UndefinedKind
3139
+ sympy.core.containers.TupleKind
3140
+ sympy.sets.sets.SetKind
3141
+
3142
+ """
3143
+ def __new__(cls, element_kind=NumberKind):
3144
+ obj = super().__new__(cls, element_kind)
3145
+ obj.element_kind = element_kind
3146
+ return obj
3147
+
3148
+ def __repr__(self):
3149
+ return "MatrixKind(%s)" % self.element_kind
3150
+
3151
+
3152
+ def _matrixify(mat):
3153
+ """If `mat` is a Matrix or is matrix-like,
3154
+ return a Matrix or MatrixWrapper object. Otherwise
3155
+ `mat` is passed through without modification."""
3156
+
3157
+ if getattr(mat, 'is_Matrix', False) or getattr(mat, 'is_MatrixLike', False):
3158
+ return mat
3159
+
3160
+ if not(getattr(mat, 'is_Matrix', True) or getattr(mat, 'is_MatrixLike', True)):
3161
+ return mat
3162
+
3163
+ shape = None
3164
+
3165
+ if hasattr(mat, 'shape'): # numpy, scipy.sparse
3166
+ if len(mat.shape) == 2:
3167
+ shape = mat.shape
3168
+ elif hasattr(mat, 'rows') and hasattr(mat, 'cols'): # mpmath
3169
+ shape = (mat.rows, mat.cols)
3170
+
3171
+ if shape:
3172
+ return _MatrixWrapper(mat, shape)
3173
+
3174
+ return mat
3175
+
3176
+
3177
+ def a2idx(j, n=None):
3178
+ """Return integer after making positive and validating against n."""
3179
+ if not isinstance(j, int):
3180
+ jindex = getattr(j, '__index__', None)
3181
+ if jindex is not None:
3182
+ j = jindex()
3183
+ else:
3184
+ raise IndexError("Invalid index a[%r]" % (j,))
3185
+ if n is not None:
3186
+ if j < 0:
3187
+ j += n
3188
+ if not (j >= 0 and j < n):
3189
+ raise IndexError("Index out of range: a[%s]" % (j,))
3190
+ return int(j)
3191
+
3192
+
3193
+ def classof(A, B):
3194
+ """
3195
+ Get the type of the result when combining matrices of different types.
3196
+
3197
+ Currently the strategy is that immutability is contagious.
3198
+
3199
+ Examples
3200
+ ========
3201
+
3202
+ >>> from sympy import Matrix, ImmutableMatrix
3203
+ >>> from sympy.matrices.common import classof
3204
+ >>> M = Matrix([[1, 2], [3, 4]]) # a Mutable Matrix
3205
+ >>> IM = ImmutableMatrix([[1, 2], [3, 4]])
3206
+ >>> classof(M, IM)
3207
+ <class 'sympy.matrices.immutable.ImmutableDenseMatrix'>
3208
+ """
3209
+ priority_A = getattr(A, '_class_priority', None)
3210
+ priority_B = getattr(B, '_class_priority', None)
3211
+ if None not in (priority_A, priority_B):
3212
+ if A._class_priority > B._class_priority:
3213
+ return A.__class__
3214
+ else:
3215
+ return B.__class__
3216
+
3217
+ try:
3218
+ import numpy
3219
+ except ImportError:
3220
+ pass
3221
+ else:
3222
+ if isinstance(A, numpy.ndarray):
3223
+ return B.__class__
3224
+ if isinstance(B, numpy.ndarray):
3225
+ return A.__class__
3226
+
3227
+ raise TypeError("Incompatible classes %s, %s" % (A.__class__, B.__class__))
venv/lib/python3.10/site-packages/sympy/matrices/decompositions.py ADDED
@@ -0,0 +1,1629 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+
3
+ from sympy.core import S
4
+ from sympy.core.function import expand_mul
5
+ from sympy.functions.elementary.miscellaneous import Min, sqrt
6
+ from sympy.functions.elementary.complexes import sign
7
+
8
+ from .common import NonSquareMatrixError, NonPositiveDefiniteMatrixError
9
+ from .utilities import _get_intermediate_simp, _iszero
10
+ from .determinant import _find_reasonable_pivot_naive
11
+
12
+
13
+ def _rank_decomposition(M, iszerofunc=_iszero, simplify=False):
14
+ r"""Returns a pair of matrices (`C`, `F`) with matching rank
15
+ such that `A = C F`.
16
+
17
+ Parameters
18
+ ==========
19
+
20
+ iszerofunc : Function, optional
21
+ A function used for detecting whether an element can
22
+ act as a pivot. ``lambda x: x.is_zero`` is used by default.
23
+
24
+ simplify : Bool or Function, optional
25
+ A function used to simplify elements when looking for a
26
+ pivot. By default SymPy's ``simplify`` is used.
27
+
28
+ Returns
29
+ =======
30
+
31
+ (C, F) : Matrices
32
+ `C` and `F` are full-rank matrices with rank as same as `A`,
33
+ whose product gives `A`.
34
+
35
+ See Notes for additional mathematical details.
36
+
37
+ Examples
38
+ ========
39
+
40
+ >>> from sympy import Matrix
41
+ >>> A = Matrix([
42
+ ... [1, 3, 1, 4],
43
+ ... [2, 7, 3, 9],
44
+ ... [1, 5, 3, 1],
45
+ ... [1, 2, 0, 8]
46
+ ... ])
47
+ >>> C, F = A.rank_decomposition()
48
+ >>> C
49
+ Matrix([
50
+ [1, 3, 4],
51
+ [2, 7, 9],
52
+ [1, 5, 1],
53
+ [1, 2, 8]])
54
+ >>> F
55
+ Matrix([
56
+ [1, 0, -2, 0],
57
+ [0, 1, 1, 0],
58
+ [0, 0, 0, 1]])
59
+ >>> C * F == A
60
+ True
61
+
62
+ Notes
63
+ =====
64
+
65
+ Obtaining `F`, an RREF of `A`, is equivalent to creating a
66
+ product
67
+
68
+ .. math::
69
+ E_n E_{n-1} ... E_1 A = F
70
+
71
+ where `E_n, E_{n-1}, \dots, E_1` are the elimination matrices or
72
+ permutation matrices equivalent to each row-reduction step.
73
+
74
+ The inverse of the same product of elimination matrices gives
75
+ `C`:
76
+
77
+ .. math::
78
+ C = \left(E_n E_{n-1} \dots E_1\right)^{-1}
79
+
80
+ It is not necessary, however, to actually compute the inverse:
81
+ the columns of `C` are those from the original matrix with the
82
+ same column indices as the indices of the pivot columns of `F`.
83
+
84
+ References
85
+ ==========
86
+
87
+ .. [1] https://en.wikipedia.org/wiki/Rank_factorization
88
+
89
+ .. [2] Piziak, R.; Odell, P. L. (1 June 1999).
90
+ "Full Rank Factorization of Matrices".
91
+ Mathematics Magazine. 72 (3): 193. doi:10.2307/2690882
92
+
93
+ See Also
94
+ ========
95
+
96
+ sympy.matrices.matrices.MatrixReductions.rref
97
+ """
98
+
99
+ F, pivot_cols = M.rref(simplify=simplify, iszerofunc=iszerofunc,
100
+ pivots=True)
101
+ rank = len(pivot_cols)
102
+
103
+ C = M.extract(range(M.rows), pivot_cols)
104
+ F = F[:rank, :]
105
+
106
+ return C, F
107
+
108
+
109
+ def _liupc(M):
110
+ """Liu's algorithm, for pre-determination of the Elimination Tree of
111
+ the given matrix, used in row-based symbolic Cholesky factorization.
112
+
113
+ Examples
114
+ ========
115
+
116
+ >>> from sympy import SparseMatrix
117
+ >>> S = SparseMatrix([
118
+ ... [1, 0, 3, 2],
119
+ ... [0, 0, 1, 0],
120
+ ... [4, 0, 0, 5],
121
+ ... [0, 6, 7, 0]])
122
+ >>> S.liupc()
123
+ ([[0], [], [0], [1, 2]], [4, 3, 4, 4])
124
+
125
+ References
126
+ ==========
127
+
128
+ .. [1] Symbolic Sparse Cholesky Factorization using Elimination Trees,
129
+ Jeroen Van Grondelle (1999)
130
+ https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.7582
131
+ """
132
+ # Algorithm 2.4, p 17 of reference
133
+
134
+ # get the indices of the elements that are non-zero on or below diag
135
+ R = [[] for r in range(M.rows)]
136
+
137
+ for r, c, _ in M.row_list():
138
+ if c <= r:
139
+ R[r].append(c)
140
+
141
+ inf = len(R) # nothing will be this large
142
+ parent = [inf]*M.rows
143
+ virtual = [inf]*M.rows
144
+
145
+ for r in range(M.rows):
146
+ for c in R[r][:-1]:
147
+ while virtual[c] < r:
148
+ t = virtual[c]
149
+ virtual[c] = r
150
+ c = t
151
+
152
+ if virtual[c] == inf:
153
+ parent[c] = virtual[c] = r
154
+
155
+ return R, parent
156
+
157
+ def _row_structure_symbolic_cholesky(M):
158
+ """Symbolic cholesky factorization, for pre-determination of the
159
+ non-zero structure of the Cholesky factororization.
160
+
161
+ Examples
162
+ ========
163
+
164
+ >>> from sympy import SparseMatrix
165
+ >>> S = SparseMatrix([
166
+ ... [1, 0, 3, 2],
167
+ ... [0, 0, 1, 0],
168
+ ... [4, 0, 0, 5],
169
+ ... [0, 6, 7, 0]])
170
+ >>> S.row_structure_symbolic_cholesky()
171
+ [[0], [], [0], [1, 2]]
172
+
173
+ References
174
+ ==========
175
+
176
+ .. [1] Symbolic Sparse Cholesky Factorization using Elimination Trees,
177
+ Jeroen Van Grondelle (1999)
178
+ https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.7582
179
+ """
180
+
181
+ R, parent = M.liupc()
182
+ inf = len(R) # this acts as infinity
183
+ Lrow = copy.deepcopy(R)
184
+
185
+ for k in range(M.rows):
186
+ for j in R[k]:
187
+ while j != inf and j != k:
188
+ Lrow[k].append(j)
189
+ j = parent[j]
190
+
191
+ Lrow[k] = sorted(set(Lrow[k]))
192
+
193
+ return Lrow
194
+
195
+
196
+ def _cholesky(M, hermitian=True):
197
+ """Returns the Cholesky-type decomposition L of a matrix A
198
+ such that L * L.H == A if hermitian flag is True,
199
+ or L * L.T == A if hermitian is False.
200
+
201
+ A must be a Hermitian positive-definite matrix if hermitian is True,
202
+ or a symmetric matrix if it is False.
203
+
204
+ Examples
205
+ ========
206
+
207
+ >>> from sympy import Matrix
208
+ >>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
209
+ >>> A.cholesky()
210
+ Matrix([
211
+ [ 5, 0, 0],
212
+ [ 3, 3, 0],
213
+ [-1, 1, 3]])
214
+ >>> A.cholesky() * A.cholesky().T
215
+ Matrix([
216
+ [25, 15, -5],
217
+ [15, 18, 0],
218
+ [-5, 0, 11]])
219
+
220
+ The matrix can have complex entries:
221
+
222
+ >>> from sympy import I
223
+ >>> A = Matrix(((9, 3*I), (-3*I, 5)))
224
+ >>> A.cholesky()
225
+ Matrix([
226
+ [ 3, 0],
227
+ [-I, 2]])
228
+ >>> A.cholesky() * A.cholesky().H
229
+ Matrix([
230
+ [ 9, 3*I],
231
+ [-3*I, 5]])
232
+
233
+ Non-hermitian Cholesky-type decomposition may be useful when the
234
+ matrix is not positive-definite.
235
+
236
+ >>> A = Matrix([[1, 2], [2, 1]])
237
+ >>> L = A.cholesky(hermitian=False)
238
+ >>> L
239
+ Matrix([
240
+ [1, 0],
241
+ [2, sqrt(3)*I]])
242
+ >>> L*L.T == A
243
+ True
244
+
245
+ See Also
246
+ ========
247
+
248
+ sympy.matrices.dense.DenseMatrix.LDLdecomposition
249
+ sympy.matrices.matrices.MatrixBase.LUdecomposition
250
+ QRdecomposition
251
+ """
252
+
253
+ from .dense import MutableDenseMatrix
254
+
255
+ if not M.is_square:
256
+ raise NonSquareMatrixError("Matrix must be square.")
257
+ if hermitian and not M.is_hermitian:
258
+ raise ValueError("Matrix must be Hermitian.")
259
+ if not hermitian and not M.is_symmetric():
260
+ raise ValueError("Matrix must be symmetric.")
261
+
262
+ L = MutableDenseMatrix.zeros(M.rows, M.rows)
263
+
264
+ if hermitian:
265
+ for i in range(M.rows):
266
+ for j in range(i):
267
+ L[i, j] = ((1 / L[j, j])*(M[i, j] -
268
+ sum(L[i, k]*L[j, k].conjugate() for k in range(j))))
269
+
270
+ Lii2 = (M[i, i] -
271
+ sum(L[i, k]*L[i, k].conjugate() for k in range(i)))
272
+
273
+ if Lii2.is_positive is False:
274
+ raise NonPositiveDefiniteMatrixError(
275
+ "Matrix must be positive-definite")
276
+
277
+ L[i, i] = sqrt(Lii2)
278
+
279
+ else:
280
+ for i in range(M.rows):
281
+ for j in range(i):
282
+ L[i, j] = ((1 / L[j, j])*(M[i, j] -
283
+ sum(L[i, k]*L[j, k] for k in range(j))))
284
+
285
+ L[i, i] = sqrt(M[i, i] -
286
+ sum(L[i, k]**2 for k in range(i)))
287
+
288
+ return M._new(L)
289
+
290
+ def _cholesky_sparse(M, hermitian=True):
291
+ """
292
+ Returns the Cholesky decomposition L of a matrix A
293
+ such that L * L.T = A
294
+
295
+ A must be a square, symmetric, positive-definite
296
+ and non-singular matrix
297
+
298
+ Examples
299
+ ========
300
+
301
+ >>> from sympy import SparseMatrix
302
+ >>> A = SparseMatrix(((25,15,-5),(15,18,0),(-5,0,11)))
303
+ >>> A.cholesky()
304
+ Matrix([
305
+ [ 5, 0, 0],
306
+ [ 3, 3, 0],
307
+ [-1, 1, 3]])
308
+ >>> A.cholesky() * A.cholesky().T == A
309
+ True
310
+
311
+ The matrix can have complex entries:
312
+
313
+ >>> from sympy import I
314
+ >>> A = SparseMatrix(((9, 3*I), (-3*I, 5)))
315
+ >>> A.cholesky()
316
+ Matrix([
317
+ [ 3, 0],
318
+ [-I, 2]])
319
+ >>> A.cholesky() * A.cholesky().H
320
+ Matrix([
321
+ [ 9, 3*I],
322
+ [-3*I, 5]])
323
+
324
+ Non-hermitian Cholesky-type decomposition may be useful when the
325
+ matrix is not positive-definite.
326
+
327
+ >>> A = SparseMatrix([[1, 2], [2, 1]])
328
+ >>> L = A.cholesky(hermitian=False)
329
+ >>> L
330
+ Matrix([
331
+ [1, 0],
332
+ [2, sqrt(3)*I]])
333
+ >>> L*L.T == A
334
+ True
335
+
336
+ See Also
337
+ ========
338
+
339
+ sympy.matrices.sparse.SparseMatrix.LDLdecomposition
340
+ sympy.matrices.matrices.MatrixBase.LUdecomposition
341
+ QRdecomposition
342
+ """
343
+
344
+ from .dense import MutableDenseMatrix
345
+
346
+ if not M.is_square:
347
+ raise NonSquareMatrixError("Matrix must be square.")
348
+ if hermitian and not M.is_hermitian:
349
+ raise ValueError("Matrix must be Hermitian.")
350
+ if not hermitian and not M.is_symmetric():
351
+ raise ValueError("Matrix must be symmetric.")
352
+
353
+ dps = _get_intermediate_simp(expand_mul, expand_mul)
354
+ Crowstruc = M.row_structure_symbolic_cholesky()
355
+ C = MutableDenseMatrix.zeros(M.rows)
356
+
357
+ for i in range(len(Crowstruc)):
358
+ for j in Crowstruc[i]:
359
+ if i != j:
360
+ C[i, j] = M[i, j]
361
+ summ = 0
362
+
363
+ for p1 in Crowstruc[i]:
364
+ if p1 < j:
365
+ for p2 in Crowstruc[j]:
366
+ if p2 < j:
367
+ if p1 == p2:
368
+ if hermitian:
369
+ summ += C[i, p1]*C[j, p1].conjugate()
370
+ else:
371
+ summ += C[i, p1]*C[j, p1]
372
+ else:
373
+ break
374
+ else:
375
+ break
376
+
377
+ C[i, j] = dps((C[i, j] - summ) / C[j, j])
378
+
379
+ else: # i == j
380
+ C[j, j] = M[j, j]
381
+ summ = 0
382
+
383
+ for k in Crowstruc[j]:
384
+ if k < j:
385
+ if hermitian:
386
+ summ += C[j, k]*C[j, k].conjugate()
387
+ else:
388
+ summ += C[j, k]**2
389
+ else:
390
+ break
391
+
392
+ Cjj2 = dps(C[j, j] - summ)
393
+
394
+ if hermitian and Cjj2.is_positive is False:
395
+ raise NonPositiveDefiniteMatrixError(
396
+ "Matrix must be positive-definite")
397
+
398
+ C[j, j] = sqrt(Cjj2)
399
+
400
+ return M._new(C)
401
+
402
+
403
+ def _LDLdecomposition(M, hermitian=True):
404
+ """Returns the LDL Decomposition (L, D) of matrix A,
405
+ such that L * D * L.H == A if hermitian flag is True, or
406
+ L * D * L.T == A if hermitian is False.
407
+ This method eliminates the use of square root.
408
+ Further this ensures that all the diagonal entries of L are 1.
409
+ A must be a Hermitian positive-definite matrix if hermitian is True,
410
+ or a symmetric matrix otherwise.
411
+
412
+ Examples
413
+ ========
414
+
415
+ >>> from sympy import Matrix, eye
416
+ >>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
417
+ >>> L, D = A.LDLdecomposition()
418
+ >>> L
419
+ Matrix([
420
+ [ 1, 0, 0],
421
+ [ 3/5, 1, 0],
422
+ [-1/5, 1/3, 1]])
423
+ >>> D
424
+ Matrix([
425
+ [25, 0, 0],
426
+ [ 0, 9, 0],
427
+ [ 0, 0, 9]])
428
+ >>> L * D * L.T * A.inv() == eye(A.rows)
429
+ True
430
+
431
+ The matrix can have complex entries:
432
+
433
+ >>> from sympy import I
434
+ >>> A = Matrix(((9, 3*I), (-3*I, 5)))
435
+ >>> L, D = A.LDLdecomposition()
436
+ >>> L
437
+ Matrix([
438
+ [ 1, 0],
439
+ [-I/3, 1]])
440
+ >>> D
441
+ Matrix([
442
+ [9, 0],
443
+ [0, 4]])
444
+ >>> L*D*L.H == A
445
+ True
446
+
447
+ See Also
448
+ ========
449
+
450
+ sympy.matrices.dense.DenseMatrix.cholesky
451
+ sympy.matrices.matrices.MatrixBase.LUdecomposition
452
+ QRdecomposition
453
+ """
454
+
455
+ from .dense import MutableDenseMatrix
456
+
457
+ if not M.is_square:
458
+ raise NonSquareMatrixError("Matrix must be square.")
459
+ if hermitian and not M.is_hermitian:
460
+ raise ValueError("Matrix must be Hermitian.")
461
+ if not hermitian and not M.is_symmetric():
462
+ raise ValueError("Matrix must be symmetric.")
463
+
464
+ D = MutableDenseMatrix.zeros(M.rows, M.rows)
465
+ L = MutableDenseMatrix.eye(M.rows)
466
+
467
+ if hermitian:
468
+ for i in range(M.rows):
469
+ for j in range(i):
470
+ L[i, j] = (1 / D[j, j])*(M[i, j] - sum(
471
+ L[i, k]*L[j, k].conjugate()*D[k, k] for k in range(j)))
472
+
473
+ D[i, i] = (M[i, i] -
474
+ sum(L[i, k]*L[i, k].conjugate()*D[k, k] for k in range(i)))
475
+
476
+ if D[i, i].is_positive is False:
477
+ raise NonPositiveDefiniteMatrixError(
478
+ "Matrix must be positive-definite")
479
+
480
+ else:
481
+ for i in range(M.rows):
482
+ for j in range(i):
483
+ L[i, j] = (1 / D[j, j])*(M[i, j] - sum(
484
+ L[i, k]*L[j, k]*D[k, k] for k in range(j)))
485
+
486
+ D[i, i] = M[i, i] - sum(L[i, k]**2*D[k, k] for k in range(i))
487
+
488
+ return M._new(L), M._new(D)
489
+
490
+ def _LDLdecomposition_sparse(M, hermitian=True):
491
+ """
492
+ Returns the LDL Decomposition (matrices ``L`` and ``D``) of matrix
493
+ ``A``, such that ``L * D * L.T == A``. ``A`` must be a square,
494
+ symmetric, positive-definite and non-singular.
495
+
496
+ This method eliminates the use of square root and ensures that all
497
+ the diagonal entries of L are 1.
498
+
499
+ Examples
500
+ ========
501
+
502
+ >>> from sympy import SparseMatrix
503
+ >>> A = SparseMatrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
504
+ >>> L, D = A.LDLdecomposition()
505
+ >>> L
506
+ Matrix([
507
+ [ 1, 0, 0],
508
+ [ 3/5, 1, 0],
509
+ [-1/5, 1/3, 1]])
510
+ >>> D
511
+ Matrix([
512
+ [25, 0, 0],
513
+ [ 0, 9, 0],
514
+ [ 0, 0, 9]])
515
+ >>> L * D * L.T == A
516
+ True
517
+
518
+ """
519
+
520
+ from .dense import MutableDenseMatrix
521
+
522
+ if not M.is_square:
523
+ raise NonSquareMatrixError("Matrix must be square.")
524
+ if hermitian and not M.is_hermitian:
525
+ raise ValueError("Matrix must be Hermitian.")
526
+ if not hermitian and not M.is_symmetric():
527
+ raise ValueError("Matrix must be symmetric.")
528
+
529
+ dps = _get_intermediate_simp(expand_mul, expand_mul)
530
+ Lrowstruc = M.row_structure_symbolic_cholesky()
531
+ L = MutableDenseMatrix.eye(M.rows)
532
+ D = MutableDenseMatrix.zeros(M.rows, M.cols)
533
+
534
+ for i in range(len(Lrowstruc)):
535
+ for j in Lrowstruc[i]:
536
+ if i != j:
537
+ L[i, j] = M[i, j]
538
+ summ = 0
539
+
540
+ for p1 in Lrowstruc[i]:
541
+ if p1 < j:
542
+ for p2 in Lrowstruc[j]:
543
+ if p2 < j:
544
+ if p1 == p2:
545
+ if hermitian:
546
+ summ += L[i, p1]*L[j, p1].conjugate()*D[p1, p1]
547
+ else:
548
+ summ += L[i, p1]*L[j, p1]*D[p1, p1]
549
+ else:
550
+ break
551
+ else:
552
+ break
553
+
554
+ L[i, j] = dps((L[i, j] - summ) / D[j, j])
555
+
556
+ else: # i == j
557
+ D[i, i] = M[i, i]
558
+ summ = 0
559
+
560
+ for k in Lrowstruc[i]:
561
+ if k < i:
562
+ if hermitian:
563
+ summ += L[i, k]*L[i, k].conjugate()*D[k, k]
564
+ else:
565
+ summ += L[i, k]**2*D[k, k]
566
+ else:
567
+ break
568
+
569
+ D[i, i] = dps(D[i, i] - summ)
570
+
571
+ if hermitian and D[i, i].is_positive is False:
572
+ raise NonPositiveDefiniteMatrixError(
573
+ "Matrix must be positive-definite")
574
+
575
+ return M._new(L), M._new(D)
576
+
577
+
578
+ def _LUdecomposition(M, iszerofunc=_iszero, simpfunc=None, rankcheck=False):
579
+ """Returns (L, U, perm) where L is a lower triangular matrix with unit
580
+ diagonal, U is an upper triangular matrix, and perm is a list of row
581
+ swap index pairs. If A is the original matrix, then
582
+ ``A = (L*U).permuteBkwd(perm)``, and the row permutation matrix P such
583
+ that $P A = L U$ can be computed by ``P = eye(A.rows).permuteFwd(perm)``.
584
+
585
+ See documentation for LUCombined for details about the keyword argument
586
+ rankcheck, iszerofunc, and simpfunc.
587
+
588
+ Parameters
589
+ ==========
590
+
591
+ rankcheck : bool, optional
592
+ Determines if this function should detect the rank
593
+ deficiency of the matrixis and should raise a
594
+ ``ValueError``.
595
+
596
+ iszerofunc : function, optional
597
+ A function which determines if a given expression is zero.
598
+
599
+ The function should be a callable that takes a single
600
+ SymPy expression and returns a 3-valued boolean value
601
+ ``True``, ``False``, or ``None``.
602
+
603
+ It is internally used by the pivot searching algorithm.
604
+ See the notes section for a more information about the
605
+ pivot searching algorithm.
606
+
607
+ simpfunc : function or None, optional
608
+ A function that simplifies the input.
609
+
610
+ If this is specified as a function, this function should be
611
+ a callable that takes a single SymPy expression and returns
612
+ an another SymPy expression that is algebraically
613
+ equivalent.
614
+
615
+ If ``None``, it indicates that the pivot search algorithm
616
+ should not attempt to simplify any candidate pivots.
617
+
618
+ It is internally used by the pivot searching algorithm.
619
+ See the notes section for a more information about the
620
+ pivot searching algorithm.
621
+
622
+ Examples
623
+ ========
624
+
625
+ >>> from sympy import Matrix
626
+ >>> a = Matrix([[4, 3], [6, 3]])
627
+ >>> L, U, _ = a.LUdecomposition()
628
+ >>> L
629
+ Matrix([
630
+ [ 1, 0],
631
+ [3/2, 1]])
632
+ >>> U
633
+ Matrix([
634
+ [4, 3],
635
+ [0, -3/2]])
636
+
637
+ See Also
638
+ ========
639
+
640
+ sympy.matrices.dense.DenseMatrix.cholesky
641
+ sympy.matrices.dense.DenseMatrix.LDLdecomposition
642
+ QRdecomposition
643
+ LUdecomposition_Simple
644
+ LUdecompositionFF
645
+ LUsolve
646
+ """
647
+
648
+ combined, p = M.LUdecomposition_Simple(iszerofunc=iszerofunc,
649
+ simpfunc=simpfunc, rankcheck=rankcheck)
650
+
651
+ # L is lower triangular ``M.rows x M.rows``
652
+ # U is upper triangular ``M.rows x M.cols``
653
+ # L has unit diagonal. For each column in combined, the subcolumn
654
+ # below the diagonal of combined is shared by L.
655
+ # If L has more columns than combined, then the remaining subcolumns
656
+ # below the diagonal of L are zero.
657
+ # The upper triangular portion of L and combined are equal.
658
+ def entry_L(i, j):
659
+ if i < j:
660
+ # Super diagonal entry
661
+ return M.zero
662
+ elif i == j:
663
+ return M.one
664
+ elif j < combined.cols:
665
+ return combined[i, j]
666
+
667
+ # Subdiagonal entry of L with no corresponding
668
+ # entry in combined
669
+ return M.zero
670
+
671
+ def entry_U(i, j):
672
+ return M.zero if i > j else combined[i, j]
673
+
674
+ L = M._new(combined.rows, combined.rows, entry_L)
675
+ U = M._new(combined.rows, combined.cols, entry_U)
676
+
677
+ return L, U, p
678
+
679
+ def _LUdecomposition_Simple(M, iszerofunc=_iszero, simpfunc=None,
680
+ rankcheck=False):
681
+ r"""Compute the PLU decomposition of the matrix.
682
+
683
+ Parameters
684
+ ==========
685
+
686
+ rankcheck : bool, optional
687
+ Determines if this function should detect the rank
688
+ deficiency of the matrixis and should raise a
689
+ ``ValueError``.
690
+
691
+ iszerofunc : function, optional
692
+ A function which determines if a given expression is zero.
693
+
694
+ The function should be a callable that takes a single
695
+ SymPy expression and returns a 3-valued boolean value
696
+ ``True``, ``False``, or ``None``.
697
+
698
+ It is internally used by the pivot searching algorithm.
699
+ See the notes section for a more information about the
700
+ pivot searching algorithm.
701
+
702
+ simpfunc : function or None, optional
703
+ A function that simplifies the input.
704
+
705
+ If this is specified as a function, this function should be
706
+ a callable that takes a single SymPy expression and returns
707
+ an another SymPy expression that is algebraically
708
+ equivalent.
709
+
710
+ If ``None``, it indicates that the pivot search algorithm
711
+ should not attempt to simplify any candidate pivots.
712
+
713
+ It is internally used by the pivot searching algorithm.
714
+ See the notes section for a more information about the
715
+ pivot searching algorithm.
716
+
717
+ Returns
718
+ =======
719
+
720
+ (lu, row_swaps) : (Matrix, list)
721
+ If the original matrix is a $m, n$ matrix:
722
+
723
+ *lu* is a $m, n$ matrix, which contains result of the
724
+ decomposition in a compressed form. See the notes section
725
+ to see how the matrix is compressed.
726
+
727
+ *row_swaps* is a $m$-element list where each element is a
728
+ pair of row exchange indices.
729
+
730
+ ``A = (L*U).permute_backward(perm)``, and the row
731
+ permutation matrix $P$ from the formula $P A = L U$ can be
732
+ computed by ``P=eye(A.row).permute_forward(perm)``.
733
+
734
+ Raises
735
+ ======
736
+
737
+ ValueError
738
+ Raised if ``rankcheck=True`` and the matrix is found to
739
+ be rank deficient during the computation.
740
+
741
+ Notes
742
+ =====
743
+
744
+ About the PLU decomposition:
745
+
746
+ PLU decomposition is a generalization of a LU decomposition
747
+ which can be extended for rank-deficient matrices.
748
+
749
+ It can further be generalized for non-square matrices, and this
750
+ is the notation that SymPy is using.
751
+
752
+ PLU decomposition is a decomposition of a $m, n$ matrix $A$ in
753
+ the form of $P A = L U$ where
754
+
755
+ * $L$ is a $m, m$ lower triangular matrix with unit diagonal
756
+ entries.
757
+ * $U$ is a $m, n$ upper triangular matrix.
758
+ * $P$ is a $m, m$ permutation matrix.
759
+
760
+ So, for a square matrix, the decomposition would look like:
761
+
762
+ .. math::
763
+ L = \begin{bmatrix}
764
+ 1 & 0 & 0 & \cdots & 0 \\
765
+ L_{1, 0} & 1 & 0 & \cdots & 0 \\
766
+ L_{2, 0} & L_{2, 1} & 1 & \cdots & 0 \\
767
+ \vdots & \vdots & \vdots & \ddots & \vdots \\
768
+ L_{n-1, 0} & L_{n-1, 1} & L_{n-1, 2} & \cdots & 1
769
+ \end{bmatrix}
770
+
771
+ .. math::
772
+ U = \begin{bmatrix}
773
+ U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, n-1} \\
774
+ 0 & U_{1, 1} & U_{1, 2} & \cdots & U_{1, n-1} \\
775
+ 0 & 0 & U_{2, 2} & \cdots & U_{2, n-1} \\
776
+ \vdots & \vdots & \vdots & \ddots & \vdots \\
777
+ 0 & 0 & 0 & \cdots & U_{n-1, n-1}
778
+ \end{bmatrix}
779
+
780
+ And for a matrix with more rows than the columns,
781
+ the decomposition would look like:
782
+
783
+ .. math::
784
+ L = \begin{bmatrix}
785
+ 1 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
786
+ L_{1, 0} & 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
787
+ L_{2, 0} & L_{2, 1} & 1 & \cdots & 0 & 0 & \cdots & 0 \\
788
+ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots
789
+ & \vdots \\
790
+ L_{n-1, 0} & L_{n-1, 1} & L_{n-1, 2} & \cdots & 1 & 0
791
+ & \cdots & 0 \\
792
+ L_{n, 0} & L_{n, 1} & L_{n, 2} & \cdots & L_{n, n-1} & 1
793
+ & \cdots & 0 \\
794
+ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots
795
+ & \ddots & \vdots \\
796
+ L_{m-1, 0} & L_{m-1, 1} & L_{m-1, 2} & \cdots & L_{m-1, n-1}
797
+ & 0 & \cdots & 1 \\
798
+ \end{bmatrix}
799
+
800
+ .. math::
801
+ U = \begin{bmatrix}
802
+ U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, n-1} \\
803
+ 0 & U_{1, 1} & U_{1, 2} & \cdots & U_{1, n-1} \\
804
+ 0 & 0 & U_{2, 2} & \cdots & U_{2, n-1} \\
805
+ \vdots & \vdots & \vdots & \ddots & \vdots \\
806
+ 0 & 0 & 0 & \cdots & U_{n-1, n-1} \\
807
+ 0 & 0 & 0 & \cdots & 0 \\
808
+ \vdots & \vdots & \vdots & \ddots & \vdots \\
809
+ 0 & 0 & 0 & \cdots & 0
810
+ \end{bmatrix}
811
+
812
+ Finally, for a matrix with more columns than the rows, the
813
+ decomposition would look like:
814
+
815
+ .. math::
816
+ L = \begin{bmatrix}
817
+ 1 & 0 & 0 & \cdots & 0 \\
818
+ L_{1, 0} & 1 & 0 & \cdots & 0 \\
819
+ L_{2, 0} & L_{2, 1} & 1 & \cdots & 0 \\
820
+ \vdots & \vdots & \vdots & \ddots & \vdots \\
821
+ L_{m-1, 0} & L_{m-1, 1} & L_{m-1, 2} & \cdots & 1
822
+ \end{bmatrix}
823
+
824
+ .. math::
825
+ U = \begin{bmatrix}
826
+ U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, m-1}
827
+ & \cdots & U_{0, n-1} \\
828
+ 0 & U_{1, 1} & U_{1, 2} & \cdots & U_{1, m-1}
829
+ & \cdots & U_{1, n-1} \\
830
+ 0 & 0 & U_{2, 2} & \cdots & U_{2, m-1}
831
+ & \cdots & U_{2, n-1} \\
832
+ \vdots & \vdots & \vdots & \ddots & \vdots
833
+ & \cdots & \vdots \\
834
+ 0 & 0 & 0 & \cdots & U_{m-1, m-1}
835
+ & \cdots & U_{m-1, n-1} \\
836
+ \end{bmatrix}
837
+
838
+ About the compressed LU storage:
839
+
840
+ The results of the decomposition are often stored in compressed
841
+ forms rather than returning $L$ and $U$ matrices individually.
842
+
843
+ It may be less intiuitive, but it is commonly used for a lot of
844
+ numeric libraries because of the efficiency.
845
+
846
+ The storage matrix is defined as following for this specific
847
+ method:
848
+
849
+ * The subdiagonal elements of $L$ are stored in the subdiagonal
850
+ portion of $LU$, that is $LU_{i, j} = L_{i, j}$ whenever
851
+ $i > j$.
852
+ * The elements on the diagonal of $L$ are all 1, and are not
853
+ explicitly stored.
854
+ * $U$ is stored in the upper triangular portion of $LU$, that is
855
+ $LU_{i, j} = U_{i, j}$ whenever $i <= j$.
856
+ * For a case of $m > n$, the right side of the $L$ matrix is
857
+ trivial to store.
858
+ * For a case of $m < n$, the below side of the $U$ matrix is
859
+ trivial to store.
860
+
861
+ So, for a square matrix, the compressed output matrix would be:
862
+
863
+ .. math::
864
+ LU = \begin{bmatrix}
865
+ U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, n-1} \\
866
+ L_{1, 0} & U_{1, 1} & U_{1, 2} & \cdots & U_{1, n-1} \\
867
+ L_{2, 0} & L_{2, 1} & U_{2, 2} & \cdots & U_{2, n-1} \\
868
+ \vdots & \vdots & \vdots & \ddots & \vdots \\
869
+ L_{n-1, 0} & L_{n-1, 1} & L_{n-1, 2} & \cdots & U_{n-1, n-1}
870
+ \end{bmatrix}
871
+
872
+ For a matrix with more rows than the columns, the compressed
873
+ output matrix would be:
874
+
875
+ .. math::
876
+ LU = \begin{bmatrix}
877
+ U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, n-1} \\
878
+ L_{1, 0} & U_{1, 1} & U_{1, 2} & \cdots & U_{1, n-1} \\
879
+ L_{2, 0} & L_{2, 1} & U_{2, 2} & \cdots & U_{2, n-1} \\
880
+ \vdots & \vdots & \vdots & \ddots & \vdots \\
881
+ L_{n-1, 0} & L_{n-1, 1} & L_{n-1, 2} & \cdots
882
+ & U_{n-1, n-1} \\
883
+ \vdots & \vdots & \vdots & \ddots & \vdots \\
884
+ L_{m-1, 0} & L_{m-1, 1} & L_{m-1, 2} & \cdots
885
+ & L_{m-1, n-1} \\
886
+ \end{bmatrix}
887
+
888
+ For a matrix with more columns than the rows, the compressed
889
+ output matrix would be:
890
+
891
+ .. math::
892
+ LU = \begin{bmatrix}
893
+ U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, m-1}
894
+ & \cdots & U_{0, n-1} \\
895
+ L_{1, 0} & U_{1, 1} & U_{1, 2} & \cdots & U_{1, m-1}
896
+ & \cdots & U_{1, n-1} \\
897
+ L_{2, 0} & L_{2, 1} & U_{2, 2} & \cdots & U_{2, m-1}
898
+ & \cdots & U_{2, n-1} \\
899
+ \vdots & \vdots & \vdots & \ddots & \vdots
900
+ & \cdots & \vdots \\
901
+ L_{m-1, 0} & L_{m-1, 1} & L_{m-1, 2} & \cdots & U_{m-1, m-1}
902
+ & \cdots & U_{m-1, n-1} \\
903
+ \end{bmatrix}
904
+
905
+ About the pivot searching algorithm:
906
+
907
+ When a matrix contains symbolic entries, the pivot search algorithm
908
+ differs from the case where every entry can be categorized as zero or
909
+ nonzero.
910
+ The algorithm searches column by column through the submatrix whose
911
+ top left entry coincides with the pivot position.
912
+ If it exists, the pivot is the first entry in the current search
913
+ column that iszerofunc guarantees is nonzero.
914
+ If no such candidate exists, then each candidate pivot is simplified
915
+ if simpfunc is not None.
916
+ The search is repeated, with the difference that a candidate may be
917
+ the pivot if ``iszerofunc()`` cannot guarantee that it is nonzero.
918
+ In the second search the pivot is the first candidate that
919
+ iszerofunc can guarantee is nonzero.
920
+ If no such candidate exists, then the pivot is the first candidate
921
+ for which iszerofunc returns None.
922
+ If no such candidate exists, then the search is repeated in the next
923
+ column to the right.
924
+ The pivot search algorithm differs from the one in ``rref()``, which
925
+ relies on ``_find_reasonable_pivot()``.
926
+ Future versions of ``LUdecomposition_simple()`` may use
927
+ ``_find_reasonable_pivot()``.
928
+
929
+ See Also
930
+ ========
931
+
932
+ sympy.matrices.matrices.MatrixBase.LUdecomposition
933
+ LUdecompositionFF
934
+ LUsolve
935
+ """
936
+
937
+ if rankcheck:
938
+ # https://github.com/sympy/sympy/issues/9796
939
+ pass
940
+
941
+ if S.Zero in M.shape:
942
+ # Define LU decomposition of a matrix with no entries as a matrix
943
+ # of the same dimensions with all zero entries.
944
+ return M.zeros(M.rows, M.cols), []
945
+
946
+ dps = _get_intermediate_simp()
947
+ lu = M.as_mutable()
948
+ row_swaps = []
949
+
950
+ pivot_col = 0
951
+
952
+ for pivot_row in range(0, lu.rows - 1):
953
+ # Search for pivot. Prefer entry that iszeropivot determines
954
+ # is nonzero, over entry that iszeropivot cannot guarantee
955
+ # is zero.
956
+ # XXX ``_find_reasonable_pivot`` uses slow zero testing. Blocked by bug #10279
957
+ # Future versions of LUdecomposition_simple can pass iszerofunc and simpfunc
958
+ # to _find_reasonable_pivot().
959
+ # In pass 3 of _find_reasonable_pivot(), the predicate in ``if x.equals(S.Zero):``
960
+ # calls sympy.simplify(), and not the simplification function passed in via
961
+ # the keyword argument simpfunc.
962
+ iszeropivot = True
963
+
964
+ while pivot_col != M.cols and iszeropivot:
965
+ sub_col = (lu[r, pivot_col] for r in range(pivot_row, M.rows))
966
+
967
+ pivot_row_offset, pivot_value, is_assumed_non_zero, ind_simplified_pairs =\
968
+ _find_reasonable_pivot_naive(sub_col, iszerofunc, simpfunc)
969
+
970
+ iszeropivot = pivot_value is None
971
+
972
+ if iszeropivot:
973
+ # All candidate pivots in this column are zero.
974
+ # Proceed to next column.
975
+ pivot_col += 1
976
+
977
+ if rankcheck and pivot_col != pivot_row:
978
+ # All entries including and below the pivot position are
979
+ # zero, which indicates that the rank of the matrix is
980
+ # strictly less than min(num rows, num cols)
981
+ # Mimic behavior of previous implementation, by throwing a
982
+ # ValueError.
983
+ raise ValueError("Rank of matrix is strictly less than"
984
+ " number of rows or columns."
985
+ " Pass keyword argument"
986
+ " rankcheck=False to compute"
987
+ " the LU decomposition of this matrix.")
988
+
989
+ candidate_pivot_row = None if pivot_row_offset is None else pivot_row + pivot_row_offset
990
+
991
+ if candidate_pivot_row is None and iszeropivot:
992
+ # If candidate_pivot_row is None and iszeropivot is True
993
+ # after pivot search has completed, then the submatrix
994
+ # below and to the right of (pivot_row, pivot_col) is
995
+ # all zeros, indicating that Gaussian elimination is
996
+ # complete.
997
+ return lu, row_swaps
998
+
999
+ # Update entries simplified during pivot search.
1000
+ for offset, val in ind_simplified_pairs:
1001
+ lu[pivot_row + offset, pivot_col] = val
1002
+
1003
+ if pivot_row != candidate_pivot_row:
1004
+ # Row swap book keeping:
1005
+ # Record which rows were swapped.
1006
+ # Update stored portion of L factor by multiplying L on the
1007
+ # left and right with the current permutation.
1008
+ # Swap rows of U.
1009
+ row_swaps.append([pivot_row, candidate_pivot_row])
1010
+
1011
+ # Update L.
1012
+ lu[pivot_row, 0:pivot_row], lu[candidate_pivot_row, 0:pivot_row] = \
1013
+ lu[candidate_pivot_row, 0:pivot_row], lu[pivot_row, 0:pivot_row]
1014
+
1015
+ # Swap pivot row of U with candidate pivot row.
1016
+ lu[pivot_row, pivot_col:lu.cols], lu[candidate_pivot_row, pivot_col:lu.cols] = \
1017
+ lu[candidate_pivot_row, pivot_col:lu.cols], lu[pivot_row, pivot_col:lu.cols]
1018
+
1019
+ # Introduce zeros below the pivot by adding a multiple of the
1020
+ # pivot row to a row under it, and store the result in the
1021
+ # row under it.
1022
+ # Only entries in the target row whose index is greater than
1023
+ # start_col may be nonzero.
1024
+ start_col = pivot_col + 1
1025
+
1026
+ for row in range(pivot_row + 1, lu.rows):
1027
+ # Store factors of L in the subcolumn below
1028
+ # (pivot_row, pivot_row).
1029
+ lu[row, pivot_row] = \
1030
+ dps(lu[row, pivot_col]/lu[pivot_row, pivot_col])
1031
+
1032
+ # Form the linear combination of the pivot row and the current
1033
+ # row below the pivot row that zeros the entries below the pivot.
1034
+ # Employing slicing instead of a loop here raises
1035
+ # NotImplementedError: Cannot add Zero to MutableSparseMatrix
1036
+ # in sympy/matrices/tests/test_sparse.py.
1037
+ # c = pivot_row + 1 if pivot_row == pivot_col else pivot_col
1038
+ for c in range(start_col, lu.cols):
1039
+ lu[row, c] = dps(lu[row, c] - lu[row, pivot_row]*lu[pivot_row, c])
1040
+
1041
+ if pivot_row != pivot_col:
1042
+ # matrix rank < min(num rows, num cols),
1043
+ # so factors of L are not stored directly below the pivot.
1044
+ # These entries are zero by construction, so don't bother
1045
+ # computing them.
1046
+ for row in range(pivot_row + 1, lu.rows):
1047
+ lu[row, pivot_col] = M.zero
1048
+
1049
+ pivot_col += 1
1050
+
1051
+ if pivot_col == lu.cols:
1052
+ # All candidate pivots are zero implies that Gaussian
1053
+ # elimination is complete.
1054
+ return lu, row_swaps
1055
+
1056
+ if rankcheck:
1057
+ if iszerofunc(
1058
+ lu[Min(lu.rows, lu.cols) - 1, Min(lu.rows, lu.cols) - 1]):
1059
+ raise ValueError("Rank of matrix is strictly less than"
1060
+ " number of rows or columns."
1061
+ " Pass keyword argument"
1062
+ " rankcheck=False to compute"
1063
+ " the LU decomposition of this matrix.")
1064
+
1065
+ return lu, row_swaps
1066
+
1067
+ def _LUdecompositionFF(M):
1068
+ """Compute a fraction-free LU decomposition.
1069
+
1070
+ Returns 4 matrices P, L, D, U such that PA = L D**-1 U.
1071
+ If the elements of the matrix belong to some integral domain I, then all
1072
+ elements of L, D and U are guaranteed to belong to I.
1073
+
1074
+ See Also
1075
+ ========
1076
+
1077
+ sympy.matrices.matrices.MatrixBase.LUdecomposition
1078
+ LUdecomposition_Simple
1079
+ LUsolve
1080
+
1081
+ References
1082
+ ==========
1083
+
1084
+ .. [1] W. Zhou & D.J. Jeffrey, "Fraction-free matrix factors: new forms
1085
+ for LU and QR factors". Frontiers in Computer Science in China,
1086
+ Vol 2, no. 1, pp. 67-80, 2008.
1087
+ """
1088
+
1089
+ from sympy.matrices import SparseMatrix
1090
+
1091
+ zeros = SparseMatrix.zeros
1092
+ eye = SparseMatrix.eye
1093
+ n, m = M.rows, M.cols
1094
+ U, L, P = M.as_mutable(), eye(n), eye(n)
1095
+ DD = zeros(n, n)
1096
+ oldpivot = 1
1097
+
1098
+ for k in range(n - 1):
1099
+ if U[k, k] == 0:
1100
+ for kpivot in range(k + 1, n):
1101
+ if U[kpivot, k]:
1102
+ break
1103
+ else:
1104
+ raise ValueError("Matrix is not full rank")
1105
+
1106
+ U[k, k:], U[kpivot, k:] = U[kpivot, k:], U[k, k:]
1107
+ L[k, :k], L[kpivot, :k] = L[kpivot, :k], L[k, :k]
1108
+ P[k, :], P[kpivot, :] = P[kpivot, :], P[k, :]
1109
+
1110
+ L [k, k] = Ukk = U[k, k]
1111
+ DD[k, k] = oldpivot * Ukk
1112
+
1113
+ for i in range(k + 1, n):
1114
+ L[i, k] = Uik = U[i, k]
1115
+
1116
+ for j in range(k + 1, m):
1117
+ U[i, j] = (Ukk * U[i, j] - U[k, j] * Uik) / oldpivot
1118
+
1119
+ U[i, k] = 0
1120
+
1121
+ oldpivot = Ukk
1122
+
1123
+ DD[n - 1, n - 1] = oldpivot
1124
+
1125
+ return P, L, DD, U
1126
+
1127
+ def _singular_value_decomposition(A):
1128
+ r"""Returns a Condensed Singular Value decomposition.
1129
+
1130
+ Explanation
1131
+ ===========
1132
+
1133
+ A Singular Value decomposition is a decomposition in the form $A = U \Sigma V$
1134
+ where
1135
+
1136
+ - $U, V$ are column orthogonal matrix.
1137
+ - $\Sigma$ is a diagonal matrix, where the main diagonal contains singular
1138
+ values of matrix A.
1139
+
1140
+ A column orthogonal matrix satisfies
1141
+ $\mathbb{I} = U^H U$ while a full orthogonal matrix satisfies
1142
+ relation $\mathbb{I} = U U^H = U^H U$ where $\mathbb{I}$ is an identity
1143
+ matrix with matching dimensions.
1144
+
1145
+ For matrices which are not square or are rank-deficient, it is
1146
+ sufficient to return a column orthogonal matrix because augmenting
1147
+ them may introduce redundant computations.
1148
+ In condensed Singular Value Decomposition we only return column orthogonal
1149
+ matrices because of this reason
1150
+
1151
+ If you want to augment the results to return a full orthogonal
1152
+ decomposition, you should use the following procedures.
1153
+
1154
+ - Augment the $U, V$ matrices with columns that are orthogonal to every
1155
+ other columns and make it square.
1156
+ - Augment the $\Sigma$ matrix with zero rows to make it have the same
1157
+ shape as the original matrix.
1158
+
1159
+ The procedure will be illustrated in the examples section.
1160
+
1161
+ Examples
1162
+ ========
1163
+
1164
+ we take a full rank matrix first:
1165
+
1166
+ >>> from sympy import Matrix
1167
+ >>> A = Matrix([[1, 2],[2,1]])
1168
+ >>> U, S, V = A.singular_value_decomposition()
1169
+ >>> U
1170
+ Matrix([
1171
+ [ sqrt(2)/2, sqrt(2)/2],
1172
+ [-sqrt(2)/2, sqrt(2)/2]])
1173
+ >>> S
1174
+ Matrix([
1175
+ [1, 0],
1176
+ [0, 3]])
1177
+ >>> V
1178
+ Matrix([
1179
+ [-sqrt(2)/2, sqrt(2)/2],
1180
+ [ sqrt(2)/2, sqrt(2)/2]])
1181
+
1182
+ If a matrix if square and full rank both U, V
1183
+ are orthogonal in both directions
1184
+
1185
+ >>> U * U.H
1186
+ Matrix([
1187
+ [1, 0],
1188
+ [0, 1]])
1189
+ >>> U.H * U
1190
+ Matrix([
1191
+ [1, 0],
1192
+ [0, 1]])
1193
+
1194
+ >>> V * V.H
1195
+ Matrix([
1196
+ [1, 0],
1197
+ [0, 1]])
1198
+ >>> V.H * V
1199
+ Matrix([
1200
+ [1, 0],
1201
+ [0, 1]])
1202
+ >>> A == U * S * V.H
1203
+ True
1204
+
1205
+ >>> C = Matrix([
1206
+ ... [1, 0, 0, 0, 2],
1207
+ ... [0, 0, 3, 0, 0],
1208
+ ... [0, 0, 0, 0, 0],
1209
+ ... [0, 2, 0, 0, 0],
1210
+ ... ])
1211
+ >>> U, S, V = C.singular_value_decomposition()
1212
+
1213
+ >>> V.H * V
1214
+ Matrix([
1215
+ [1, 0, 0],
1216
+ [0, 1, 0],
1217
+ [0, 0, 1]])
1218
+ >>> V * V.H
1219
+ Matrix([
1220
+ [1/5, 0, 0, 0, 2/5],
1221
+ [ 0, 1, 0, 0, 0],
1222
+ [ 0, 0, 1, 0, 0],
1223
+ [ 0, 0, 0, 0, 0],
1224
+ [2/5, 0, 0, 0, 4/5]])
1225
+
1226
+ If you want to augment the results to be a full orthogonal
1227
+ decomposition, you should augment $V$ with an another orthogonal
1228
+ column.
1229
+
1230
+ You are able to append an arbitrary standard basis that are linearly
1231
+ independent to every other columns and you can run the Gram-Schmidt
1232
+ process to make them augmented as orthogonal basis.
1233
+
1234
+ >>> V_aug = V.row_join(Matrix([[0,0,0,0,1],
1235
+ ... [0,0,0,1,0]]).H)
1236
+ >>> V_aug = V_aug.QRdecomposition()[0]
1237
+ >>> V_aug
1238
+ Matrix([
1239
+ [0, sqrt(5)/5, 0, -2*sqrt(5)/5, 0],
1240
+ [1, 0, 0, 0, 0],
1241
+ [0, 0, 1, 0, 0],
1242
+ [0, 0, 0, 0, 1],
1243
+ [0, 2*sqrt(5)/5, 0, sqrt(5)/5, 0]])
1244
+ >>> V_aug.H * V_aug
1245
+ Matrix([
1246
+ [1, 0, 0, 0, 0],
1247
+ [0, 1, 0, 0, 0],
1248
+ [0, 0, 1, 0, 0],
1249
+ [0, 0, 0, 1, 0],
1250
+ [0, 0, 0, 0, 1]])
1251
+ >>> V_aug * V_aug.H
1252
+ Matrix([
1253
+ [1, 0, 0, 0, 0],
1254
+ [0, 1, 0, 0, 0],
1255
+ [0, 0, 1, 0, 0],
1256
+ [0, 0, 0, 1, 0],
1257
+ [0, 0, 0, 0, 1]])
1258
+
1259
+ Similarly we augment U
1260
+
1261
+ >>> U_aug = U.row_join(Matrix([0,0,1,0]))
1262
+ >>> U_aug = U_aug.QRdecomposition()[0]
1263
+ >>> U_aug
1264
+ Matrix([
1265
+ [0, 1, 0, 0],
1266
+ [0, 0, 1, 0],
1267
+ [0, 0, 0, 1],
1268
+ [1, 0, 0, 0]])
1269
+
1270
+ >>> U_aug.H * U_aug
1271
+ Matrix([
1272
+ [1, 0, 0, 0],
1273
+ [0, 1, 0, 0],
1274
+ [0, 0, 1, 0],
1275
+ [0, 0, 0, 1]])
1276
+ >>> U_aug * U_aug.H
1277
+ Matrix([
1278
+ [1, 0, 0, 0],
1279
+ [0, 1, 0, 0],
1280
+ [0, 0, 1, 0],
1281
+ [0, 0, 0, 1]])
1282
+
1283
+ We add 2 zero columns and one row to S
1284
+
1285
+ >>> S_aug = S.col_join(Matrix([[0,0,0]]))
1286
+ >>> S_aug = S_aug.row_join(Matrix([[0,0,0,0],
1287
+ ... [0,0,0,0]]).H)
1288
+ >>> S_aug
1289
+ Matrix([
1290
+ [2, 0, 0, 0, 0],
1291
+ [0, sqrt(5), 0, 0, 0],
1292
+ [0, 0, 3, 0, 0],
1293
+ [0, 0, 0, 0, 0]])
1294
+
1295
+
1296
+
1297
+ >>> U_aug * S_aug * V_aug.H == C
1298
+ True
1299
+
1300
+ """
1301
+
1302
+ AH = A.H
1303
+ m, n = A.shape
1304
+ if m >= n:
1305
+ V, S = (AH * A).diagonalize()
1306
+
1307
+ ranked = []
1308
+ for i, x in enumerate(S.diagonal()):
1309
+ if not x.is_zero:
1310
+ ranked.append(i)
1311
+
1312
+ V = V[:, ranked]
1313
+
1314
+ Singular_vals = [sqrt(S[i, i]) for i in range(S.rows) if i in ranked]
1315
+
1316
+ S = S.zeros(len(Singular_vals))
1317
+
1318
+ for i, sv in enumerate(Singular_vals):
1319
+ S[i, i] = sv
1320
+
1321
+ V, _ = V.QRdecomposition()
1322
+ U = A * V * S.inv()
1323
+ else:
1324
+ U, S = (A * AH).diagonalize()
1325
+
1326
+ ranked = []
1327
+ for i, x in enumerate(S.diagonal()):
1328
+ if not x.is_zero:
1329
+ ranked.append(i)
1330
+
1331
+ U = U[:, ranked]
1332
+ Singular_vals = [sqrt(S[i, i]) for i in range(S.rows) if i in ranked]
1333
+
1334
+ S = S.zeros(len(Singular_vals))
1335
+
1336
+ for i, sv in enumerate(Singular_vals):
1337
+ S[i, i] = sv
1338
+
1339
+ U, _ = U.QRdecomposition()
1340
+ V = AH * U * S.inv()
1341
+
1342
+ return U, S, V
1343
+
1344
+ def _QRdecomposition_optional(M, normalize=True):
1345
+ def dot(u, v):
1346
+ return u.dot(v, hermitian=True)
1347
+
1348
+ dps = _get_intermediate_simp(expand_mul, expand_mul)
1349
+
1350
+ A = M.as_mutable()
1351
+ ranked = []
1352
+
1353
+ Q = A
1354
+ R = A.zeros(A.cols)
1355
+
1356
+ for j in range(A.cols):
1357
+ for i in range(j):
1358
+ if Q[:, i].is_zero_matrix:
1359
+ continue
1360
+
1361
+ R[i, j] = dot(Q[:, i], Q[:, j]) / dot(Q[:, i], Q[:, i])
1362
+ R[i, j] = dps(R[i, j])
1363
+ Q[:, j] -= Q[:, i] * R[i, j]
1364
+
1365
+ Q[:, j] = dps(Q[:, j])
1366
+ if Q[:, j].is_zero_matrix is not True:
1367
+ ranked.append(j)
1368
+ R[j, j] = M.one
1369
+
1370
+ Q = Q.extract(range(Q.rows), ranked)
1371
+ R = R.extract(ranked, range(R.cols))
1372
+
1373
+ if normalize:
1374
+ # Normalization
1375
+ for i in range(Q.cols):
1376
+ norm = Q[:, i].norm()
1377
+ Q[:, i] /= norm
1378
+ R[i, :] *= norm
1379
+
1380
+ return M.__class__(Q), M.__class__(R)
1381
+
1382
+
1383
+ def _QRdecomposition(M):
1384
+ r"""Returns a QR decomposition.
1385
+
1386
+ Explanation
1387
+ ===========
1388
+
1389
+ A QR decomposition is a decomposition in the form $A = Q R$
1390
+ where
1391
+
1392
+ - $Q$ is a column orthogonal matrix.
1393
+ - $R$ is a upper triangular (trapezoidal) matrix.
1394
+
1395
+ A column orthogonal matrix satisfies
1396
+ $\mathbb{I} = Q^H Q$ while a full orthogonal matrix satisfies
1397
+ relation $\mathbb{I} = Q Q^H = Q^H Q$ where $I$ is an identity
1398
+ matrix with matching dimensions.
1399
+
1400
+ For matrices which are not square or are rank-deficient, it is
1401
+ sufficient to return a column orthogonal matrix because augmenting
1402
+ them may introduce redundant computations.
1403
+ And an another advantage of this is that you can easily inspect the
1404
+ matrix rank by counting the number of columns of $Q$.
1405
+
1406
+ If you want to augment the results to return a full orthogonal
1407
+ decomposition, you should use the following procedures.
1408
+
1409
+ - Augment the $Q$ matrix with columns that are orthogonal to every
1410
+ other columns and make it square.
1411
+ - Augment the $R$ matrix with zero rows to make it have the same
1412
+ shape as the original matrix.
1413
+
1414
+ The procedure will be illustrated in the examples section.
1415
+
1416
+ Examples
1417
+ ========
1418
+
1419
+ A full rank matrix example:
1420
+
1421
+ >>> from sympy import Matrix
1422
+ >>> A = Matrix([[12, -51, 4], [6, 167, -68], [-4, 24, -41]])
1423
+ >>> Q, R = A.QRdecomposition()
1424
+ >>> Q
1425
+ Matrix([
1426
+ [ 6/7, -69/175, -58/175],
1427
+ [ 3/7, 158/175, 6/175],
1428
+ [-2/7, 6/35, -33/35]])
1429
+ >>> R
1430
+ Matrix([
1431
+ [14, 21, -14],
1432
+ [ 0, 175, -70],
1433
+ [ 0, 0, 35]])
1434
+
1435
+ If the matrix is square and full rank, the $Q$ matrix becomes
1436
+ orthogonal in both directions, and needs no augmentation.
1437
+
1438
+ >>> Q * Q.H
1439
+ Matrix([
1440
+ [1, 0, 0],
1441
+ [0, 1, 0],
1442
+ [0, 0, 1]])
1443
+ >>> Q.H * Q
1444
+ Matrix([
1445
+ [1, 0, 0],
1446
+ [0, 1, 0],
1447
+ [0, 0, 1]])
1448
+
1449
+ >>> A == Q*R
1450
+ True
1451
+
1452
+ A rank deficient matrix example:
1453
+
1454
+ >>> A = Matrix([[12, -51, 0], [6, 167, 0], [-4, 24, 0]])
1455
+ >>> Q, R = A.QRdecomposition()
1456
+ >>> Q
1457
+ Matrix([
1458
+ [ 6/7, -69/175],
1459
+ [ 3/7, 158/175],
1460
+ [-2/7, 6/35]])
1461
+ >>> R
1462
+ Matrix([
1463
+ [14, 21, 0],
1464
+ [ 0, 175, 0]])
1465
+
1466
+ QRdecomposition might return a matrix Q that is rectangular.
1467
+ In this case the orthogonality condition might be satisfied as
1468
+ $\mathbb{I} = Q.H*Q$ but not in the reversed product
1469
+ $\mathbb{I} = Q * Q.H$.
1470
+
1471
+ >>> Q.H * Q
1472
+ Matrix([
1473
+ [1, 0],
1474
+ [0, 1]])
1475
+ >>> Q * Q.H
1476
+ Matrix([
1477
+ [27261/30625, 348/30625, -1914/6125],
1478
+ [ 348/30625, 30589/30625, 198/6125],
1479
+ [ -1914/6125, 198/6125, 136/1225]])
1480
+
1481
+ If you want to augment the results to be a full orthogonal
1482
+ decomposition, you should augment $Q$ with an another orthogonal
1483
+ column.
1484
+
1485
+ You are able to append an arbitrary standard basis that are linearly
1486
+ independent to every other columns and you can run the Gram-Schmidt
1487
+ process to make them augmented as orthogonal basis.
1488
+
1489
+ >>> Q_aug = Q.row_join(Matrix([0, 0, 1]))
1490
+ >>> Q_aug = Q_aug.QRdecomposition()[0]
1491
+ >>> Q_aug
1492
+ Matrix([
1493
+ [ 6/7, -69/175, 58/175],
1494
+ [ 3/7, 158/175, -6/175],
1495
+ [-2/7, 6/35, 33/35]])
1496
+ >>> Q_aug.H * Q_aug
1497
+ Matrix([
1498
+ [1, 0, 0],
1499
+ [0, 1, 0],
1500
+ [0, 0, 1]])
1501
+ >>> Q_aug * Q_aug.H
1502
+ Matrix([
1503
+ [1, 0, 0],
1504
+ [0, 1, 0],
1505
+ [0, 0, 1]])
1506
+
1507
+ Augmenting the $R$ matrix with zero row is straightforward.
1508
+
1509
+ >>> R_aug = R.col_join(Matrix([[0, 0, 0]]))
1510
+ >>> R_aug
1511
+ Matrix([
1512
+ [14, 21, 0],
1513
+ [ 0, 175, 0],
1514
+ [ 0, 0, 0]])
1515
+ >>> Q_aug * R_aug == A
1516
+ True
1517
+
1518
+ A zero matrix example:
1519
+
1520
+ >>> from sympy import Matrix
1521
+ >>> A = Matrix.zeros(3, 4)
1522
+ >>> Q, R = A.QRdecomposition()
1523
+
1524
+ They may return matrices with zero rows and columns.
1525
+
1526
+ >>> Q
1527
+ Matrix(3, 0, [])
1528
+ >>> R
1529
+ Matrix(0, 4, [])
1530
+ >>> Q*R
1531
+ Matrix([
1532
+ [0, 0, 0, 0],
1533
+ [0, 0, 0, 0],
1534
+ [0, 0, 0, 0]])
1535
+
1536
+ As the same augmentation rule described above, $Q$ can be augmented
1537
+ with columns of an identity matrix and $R$ can be augmented with
1538
+ rows of a zero matrix.
1539
+
1540
+ >>> Q_aug = Q.row_join(Matrix.eye(3))
1541
+ >>> R_aug = R.col_join(Matrix.zeros(3, 4))
1542
+ >>> Q_aug * Q_aug.T
1543
+ Matrix([
1544
+ [1, 0, 0],
1545
+ [0, 1, 0],
1546
+ [0, 0, 1]])
1547
+ >>> R_aug
1548
+ Matrix([
1549
+ [0, 0, 0, 0],
1550
+ [0, 0, 0, 0],
1551
+ [0, 0, 0, 0]])
1552
+ >>> Q_aug * R_aug == A
1553
+ True
1554
+
1555
+ See Also
1556
+ ========
1557
+
1558
+ sympy.matrices.dense.DenseMatrix.cholesky
1559
+ sympy.matrices.dense.DenseMatrix.LDLdecomposition
1560
+ sympy.matrices.matrices.MatrixBase.LUdecomposition
1561
+ QRsolve
1562
+ """
1563
+ return _QRdecomposition_optional(M, normalize=True)
1564
+
1565
+ def _upper_hessenberg_decomposition(A):
1566
+ """Converts a matrix into Hessenberg matrix H.
1567
+
1568
+ Returns 2 matrices H, P s.t.
1569
+ $P H P^{T} = A$, where H is an upper hessenberg matrix
1570
+ and P is an orthogonal matrix
1571
+
1572
+ Examples
1573
+ ========
1574
+
1575
+ >>> from sympy import Matrix
1576
+ >>> A = Matrix([
1577
+ ... [1,2,3],
1578
+ ... [-3,5,6],
1579
+ ... [4,-8,9],
1580
+ ... ])
1581
+ >>> H, P = A.upper_hessenberg_decomposition()
1582
+ >>> H
1583
+ Matrix([
1584
+ [1, 6/5, 17/5],
1585
+ [5, 213/25, -134/25],
1586
+ [0, 216/25, 137/25]])
1587
+ >>> P
1588
+ Matrix([
1589
+ [1, 0, 0],
1590
+ [0, -3/5, 4/5],
1591
+ [0, 4/5, 3/5]])
1592
+ >>> P * H * P.H == A
1593
+ True
1594
+
1595
+
1596
+ References
1597
+ ==========
1598
+
1599
+ .. [#] https://mathworld.wolfram.com/HessenbergDecomposition.html
1600
+ """
1601
+
1602
+ M = A.as_mutable()
1603
+
1604
+ if not M.is_square:
1605
+ raise NonSquareMatrixError("Matrix must be square.")
1606
+
1607
+ n = M.cols
1608
+ P = M.eye(n)
1609
+ H = M
1610
+
1611
+ for j in range(n - 2):
1612
+
1613
+ u = H[j + 1:, j]
1614
+
1615
+ if u[1:, :].is_zero_matrix:
1616
+ continue
1617
+
1618
+ if sign(u[0]) != 0:
1619
+ u[0] = u[0] + sign(u[0]) * u.norm()
1620
+ else:
1621
+ u[0] = u[0] + u.norm()
1622
+
1623
+ v = u / u.norm()
1624
+
1625
+ H[j + 1:, :] = H[j + 1:, :] - 2 * v * (v.H * H[j + 1:, :])
1626
+ H[:, j + 1:] = H[:, j + 1:] - (H[:, j + 1:] * (2 * v)) * v.H
1627
+ P[:, j + 1:] = P[:, j + 1:] - (P[:, j + 1:] * (2 * v)) * v.H
1628
+
1629
+ return H, P
venv/lib/python3.10/site-packages/sympy/matrices/dense.py ADDED
@@ -0,0 +1,1090 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+
3
+ from sympy.core.basic import Basic
4
+ from sympy.core.singleton import S
5
+ from sympy.core.symbol import Symbol
6
+ from sympy.core.sympify import sympify
7
+ from sympy.functions.elementary.trigonometric import cos, sin
8
+ from sympy.utilities.decorator import doctest_depends_on
9
+ from sympy.utilities.exceptions import sympy_deprecation_warning
10
+ from sympy.utilities.iterables import is_sequence
11
+
12
+ from .common import ShapeError
13
+ from .decompositions import _cholesky, _LDLdecomposition
14
+ from .matrices import MatrixBase
15
+ from .repmatrix import MutableRepMatrix, RepMatrix
16
+ from .solvers import _lower_triangular_solve, _upper_triangular_solve
17
+
18
+
19
+ def _iszero(x):
20
+ """Returns True if x is zero."""
21
+ return x.is_zero
22
+
23
+
24
+ class DenseMatrix(RepMatrix):
25
+ """Matrix implementation based on DomainMatrix as the internal representation"""
26
+
27
+ #
28
+ # DenseMatrix is a superclass for both MutableDenseMatrix and
29
+ # ImmutableDenseMatrix. Methods shared by both classes but not for the
30
+ # Sparse classes should be implemented here.
31
+ #
32
+
33
+ is_MatrixExpr = False # type: bool
34
+
35
+ _op_priority = 10.01
36
+ _class_priority = 4
37
+
38
+ @property
39
+ def _mat(self):
40
+ sympy_deprecation_warning(
41
+ """
42
+ The private _mat attribute of Matrix is deprecated. Use the
43
+ .flat() method instead.
44
+ """,
45
+ deprecated_since_version="1.9",
46
+ active_deprecations_target="deprecated-private-matrix-attributes"
47
+ )
48
+
49
+ return self.flat()
50
+
51
+ def _eval_inverse(self, **kwargs):
52
+ return self.inv(method=kwargs.get('method', 'GE'),
53
+ iszerofunc=kwargs.get('iszerofunc', _iszero),
54
+ try_block_diag=kwargs.get('try_block_diag', False))
55
+
56
+ def as_immutable(self):
57
+ """Returns an Immutable version of this Matrix
58
+ """
59
+ from .immutable import ImmutableDenseMatrix as cls
60
+ return cls._fromrep(self._rep.copy())
61
+
62
+ def as_mutable(self):
63
+ """Returns a mutable version of this matrix
64
+
65
+ Examples
66
+ ========
67
+
68
+ >>> from sympy import ImmutableMatrix
69
+ >>> X = ImmutableMatrix([[1, 2], [3, 4]])
70
+ >>> Y = X.as_mutable()
71
+ >>> Y[1, 1] = 5 # Can set values in Y
72
+ >>> Y
73
+ Matrix([
74
+ [1, 2],
75
+ [3, 5]])
76
+ """
77
+ return Matrix(self)
78
+
79
+ def cholesky(self, hermitian=True):
80
+ return _cholesky(self, hermitian=hermitian)
81
+
82
+ def LDLdecomposition(self, hermitian=True):
83
+ return _LDLdecomposition(self, hermitian=hermitian)
84
+
85
+ def lower_triangular_solve(self, rhs):
86
+ return _lower_triangular_solve(self, rhs)
87
+
88
+ def upper_triangular_solve(self, rhs):
89
+ return _upper_triangular_solve(self, rhs)
90
+
91
+ cholesky.__doc__ = _cholesky.__doc__
92
+ LDLdecomposition.__doc__ = _LDLdecomposition.__doc__
93
+ lower_triangular_solve.__doc__ = _lower_triangular_solve.__doc__
94
+ upper_triangular_solve.__doc__ = _upper_triangular_solve.__doc__
95
+
96
+
97
+ def _force_mutable(x):
98
+ """Return a matrix as a Matrix, otherwise return x."""
99
+ if getattr(x, 'is_Matrix', False):
100
+ return x.as_mutable()
101
+ elif isinstance(x, Basic):
102
+ return x
103
+ elif hasattr(x, '__array__'):
104
+ a = x.__array__()
105
+ if len(a.shape) == 0:
106
+ return sympify(a)
107
+ return Matrix(x)
108
+ return x
109
+
110
+
111
+ class MutableDenseMatrix(DenseMatrix, MutableRepMatrix):
112
+
113
+ def simplify(self, **kwargs):
114
+ """Applies simplify to the elements of a matrix in place.
115
+
116
+ This is a shortcut for M.applyfunc(lambda x: simplify(x, ratio, measure))
117
+
118
+ See Also
119
+ ========
120
+
121
+ sympy.simplify.simplify.simplify
122
+ """
123
+ from sympy.simplify.simplify import simplify as _simplify
124
+ for (i, j), element in self.todok().items():
125
+ self[i, j] = _simplify(element, **kwargs)
126
+
127
+
128
+ MutableMatrix = Matrix = MutableDenseMatrix
129
+
130
+ ###########
131
+ # Numpy Utility Functions:
132
+ # list2numpy, matrix2numpy, symmarray
133
+ ###########
134
+
135
+
136
+ def list2numpy(l, dtype=object): # pragma: no cover
137
+ """Converts Python list of SymPy expressions to a NumPy array.
138
+
139
+ See Also
140
+ ========
141
+
142
+ matrix2numpy
143
+ """
144
+ from numpy import empty
145
+ a = empty(len(l), dtype)
146
+ for i, s in enumerate(l):
147
+ a[i] = s
148
+ return a
149
+
150
+
151
+ def matrix2numpy(m, dtype=object): # pragma: no cover
152
+ """Converts SymPy's matrix to a NumPy array.
153
+
154
+ See Also
155
+ ========
156
+
157
+ list2numpy
158
+ """
159
+ from numpy import empty
160
+ a = empty(m.shape, dtype)
161
+ for i in range(m.rows):
162
+ for j in range(m.cols):
163
+ a[i, j] = m[i, j]
164
+ return a
165
+
166
+
167
+ ###########
168
+ # Rotation matrices:
169
+ # rot_givens, rot_axis[123], rot_ccw_axis[123]
170
+ ###########
171
+
172
+
173
+ def rot_givens(i, j, theta, dim=3):
174
+ r"""Returns a a Givens rotation matrix, a a rotation in the
175
+ plane spanned by two coordinates axes.
176
+
177
+ Explanation
178
+ ===========
179
+
180
+ The Givens rotation corresponds to a generalization of rotation
181
+ matrices to any number of dimensions, given by:
182
+
183
+ .. math::
184
+ G(i, j, \theta) =
185
+ \begin{bmatrix}
186
+ 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\
187
+ \vdots & \ddots & \vdots & & \vdots & & \vdots \\
188
+ 0 & \cdots & c & \cdots & -s & \cdots & 0 \\
189
+ \vdots & & \vdots & \ddots & \vdots & & \vdots \\
190
+ 0 & \cdots & s & \cdots & c & \cdots & 0 \\
191
+ \vdots & & \vdots & & \vdots & \ddots & \vdots \\
192
+ 0 & \cdots & 0 & \cdots & 0 & \cdots & 1
193
+ \end{bmatrix}
194
+
195
+ Where $c = \cos(\theta)$ and $s = \sin(\theta)$ appear at the intersections
196
+ ``i``\th and ``j``\th rows and columns.
197
+
198
+ For fixed ``i > j``\, the non-zero elements of a Givens matrix are
199
+ given by:
200
+
201
+ - $g_{kk} = 1$ for $k \ne i,\,j$
202
+ - $g_{kk} = c$ for $k = i,\,j$
203
+ - $g_{ji} = -g_{ij} = -s$
204
+
205
+ Parameters
206
+ ==========
207
+
208
+ i : int between ``0`` and ``dim - 1``
209
+ Represents first axis
210
+ j : int between ``0`` and ``dim - 1``
211
+ Represents second axis
212
+ dim : int bigger than 1
213
+ Number of dimentions. Defaults to 3.
214
+
215
+ Examples
216
+ ========
217
+
218
+ >>> from sympy import pi, rot_givens
219
+
220
+ A counterclockwise rotation of pi/3 (60 degrees) around
221
+ the third axis (z-axis):
222
+
223
+ >>> rot_givens(1, 0, pi/3)
224
+ Matrix([
225
+ [ 1/2, -sqrt(3)/2, 0],
226
+ [sqrt(3)/2, 1/2, 0],
227
+ [ 0, 0, 1]])
228
+
229
+ If we rotate by pi/2 (90 degrees):
230
+
231
+ >>> rot_givens(1, 0, pi/2)
232
+ Matrix([
233
+ [0, -1, 0],
234
+ [1, 0, 0],
235
+ [0, 0, 1]])
236
+
237
+ This can be generalized to any number
238
+ of dimensions:
239
+
240
+ >>> rot_givens(1, 0, pi/2, dim=4)
241
+ Matrix([
242
+ [0, -1, 0, 0],
243
+ [1, 0, 0, 0],
244
+ [0, 0, 1, 0],
245
+ [0, 0, 0, 1]])
246
+
247
+ References
248
+ ==========
249
+
250
+ .. [1] https://en.wikipedia.org/wiki/Givens_rotation
251
+
252
+ See Also
253
+ ========
254
+
255
+ rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
256
+ about the 1-axis (clockwise around the x axis)
257
+ rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
258
+ about the 2-axis (clockwise around the y axis)
259
+ rot_axis3: Returns a rotation matrix for a rotation of theta (in radians)
260
+ about the 3-axis (clockwise around the z axis)
261
+ rot_ccw_axis1: Returns a rotation matrix for a rotation of theta (in radians)
262
+ about the 1-axis (counterclockwise around the x axis)
263
+ rot_ccw_axis2: Returns a rotation matrix for a rotation of theta (in radians)
264
+ about the 2-axis (counterclockwise around the y axis)
265
+ rot_ccw_axis3: Returns a rotation matrix for a rotation of theta (in radians)
266
+ about the 3-axis (counterclockwise around the z axis)
267
+ """
268
+ if not isinstance(dim, int) or dim < 2:
269
+ raise ValueError('dim must be an integer biggen than one, '
270
+ 'got {}.'.format(dim))
271
+
272
+ if i == j:
273
+ raise ValueError('i and j must be different, '
274
+ 'got ({}, {})'.format(i, j))
275
+
276
+ for ij in [i, j]:
277
+ if not isinstance(ij, int) or ij < 0 or ij > dim - 1:
278
+ raise ValueError('i and j must be integers between 0 and '
279
+ '{}, got i={} and j={}.'.format(dim-1, i, j))
280
+
281
+ theta = sympify(theta)
282
+ c = cos(theta)
283
+ s = sin(theta)
284
+ M = eye(dim)
285
+ M[i, i] = c
286
+ M[j, j] = c
287
+ M[i, j] = s
288
+ M[j, i] = -s
289
+ return M
290
+
291
+
292
+ def rot_axis3(theta):
293
+ r"""Returns a rotation matrix for a rotation of theta (in radians)
294
+ about the 3-axis.
295
+
296
+ Explanation
297
+ ===========
298
+
299
+ For a right-handed coordinate system, this corresponds to a
300
+ clockwise rotation around the `z`-axis, given by:
301
+
302
+ .. math::
303
+
304
+ R = \begin{bmatrix}
305
+ \cos(\theta) & \sin(\theta) & 0 \\
306
+ -\sin(\theta) & \cos(\theta) & 0 \\
307
+ 0 & 0 & 1
308
+ \end{bmatrix}
309
+
310
+ Examples
311
+ ========
312
+
313
+ >>> from sympy import pi, rot_axis3
314
+
315
+ A rotation of pi/3 (60 degrees):
316
+
317
+ >>> theta = pi/3
318
+ >>> rot_axis3(theta)
319
+ Matrix([
320
+ [ 1/2, sqrt(3)/2, 0],
321
+ [-sqrt(3)/2, 1/2, 0],
322
+ [ 0, 0, 1]])
323
+
324
+ If we rotate by pi/2 (90 degrees):
325
+
326
+ >>> rot_axis3(pi/2)
327
+ Matrix([
328
+ [ 0, 1, 0],
329
+ [-1, 0, 0],
330
+ [ 0, 0, 1]])
331
+
332
+ See Also
333
+ ========
334
+
335
+ rot_givens: Returns a Givens rotation matrix (generalized rotation for
336
+ any number of dimensions)
337
+ rot_ccw_axis3: Returns a rotation matrix for a rotation of theta (in radians)
338
+ about the 3-axis (counterclockwise around the z axis)
339
+ rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
340
+ about the 1-axis (clockwise around the x axis)
341
+ rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
342
+ about the 2-axis (clockwise around the y axis)
343
+ """
344
+ return rot_givens(0, 1, theta, dim=3)
345
+
346
+
347
+ def rot_axis2(theta):
348
+ r"""Returns a rotation matrix for a rotation of theta (in radians)
349
+ about the 2-axis.
350
+
351
+ Explanation
352
+ ===========
353
+
354
+ For a right-handed coordinate system, this corresponds to a
355
+ clockwise rotation around the `y`-axis, given by:
356
+
357
+ .. math::
358
+
359
+ R = \begin{bmatrix}
360
+ \cos(\theta) & 0 & -\sin(\theta) \\
361
+ 0 & 1 & 0 \\
362
+ \sin(\theta) & 0 & \cos(\theta)
363
+ \end{bmatrix}
364
+
365
+ Examples
366
+ ========
367
+
368
+ >>> from sympy import pi, rot_axis2
369
+
370
+ A rotation of pi/3 (60 degrees):
371
+
372
+ >>> theta = pi/3
373
+ >>> rot_axis2(theta)
374
+ Matrix([
375
+ [ 1/2, 0, -sqrt(3)/2],
376
+ [ 0, 1, 0],
377
+ [sqrt(3)/2, 0, 1/2]])
378
+
379
+ If we rotate by pi/2 (90 degrees):
380
+
381
+ >>> rot_axis2(pi/2)
382
+ Matrix([
383
+ [0, 0, -1],
384
+ [0, 1, 0],
385
+ [1, 0, 0]])
386
+
387
+ See Also
388
+ ========
389
+
390
+ rot_givens: Returns a Givens rotation matrix (generalized rotation for
391
+ any number of dimensions)
392
+ rot_ccw_axis2: Returns a rotation matrix for a rotation of theta (in radians)
393
+ about the 2-axis (clockwise around the y axis)
394
+ rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
395
+ about the 1-axis (counterclockwise around the x axis)
396
+ rot_axis3: Returns a rotation matrix for a rotation of theta (in radians)
397
+ about the 3-axis (counterclockwise around the z axis)
398
+ """
399
+ return rot_givens(2, 0, theta, dim=3)
400
+
401
+
402
+ def rot_axis1(theta):
403
+ r"""Returns a rotation matrix for a rotation of theta (in radians)
404
+ about the 1-axis.
405
+
406
+ Explanation
407
+ ===========
408
+
409
+ For a right-handed coordinate system, this corresponds to a
410
+ clockwise rotation around the `x`-axis, given by:
411
+
412
+ .. math::
413
+
414
+ R = \begin{bmatrix}
415
+ 1 & 0 & 0 \\
416
+ 0 & \cos(\theta) & \sin(\theta) \\
417
+ 0 & -\sin(\theta) & \cos(\theta)
418
+ \end{bmatrix}
419
+
420
+ Examples
421
+ ========
422
+
423
+ >>> from sympy import pi, rot_axis1
424
+
425
+ A rotation of pi/3 (60 degrees):
426
+
427
+ >>> theta = pi/3
428
+ >>> rot_axis1(theta)
429
+ Matrix([
430
+ [1, 0, 0],
431
+ [0, 1/2, sqrt(3)/2],
432
+ [0, -sqrt(3)/2, 1/2]])
433
+
434
+ If we rotate by pi/2 (90 degrees):
435
+
436
+ >>> rot_axis1(pi/2)
437
+ Matrix([
438
+ [1, 0, 0],
439
+ [0, 0, 1],
440
+ [0, -1, 0]])
441
+
442
+ See Also
443
+ ========
444
+
445
+ rot_givens: Returns a Givens rotation matrix (generalized rotation for
446
+ any number of dimensions)
447
+ rot_ccw_axis1: Returns a rotation matrix for a rotation of theta (in radians)
448
+ about the 1-axis (counterclockwise around the x axis)
449
+ rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
450
+ about the 2-axis (clockwise around the y axis)
451
+ rot_axis3: Returns a rotation matrix for a rotation of theta (in radians)
452
+ about the 3-axis (clockwise around the z axis)
453
+ """
454
+ return rot_givens(1, 2, theta, dim=3)
455
+
456
+
457
+ def rot_ccw_axis3(theta):
458
+ r"""Returns a rotation matrix for a rotation of theta (in radians)
459
+ about the 3-axis.
460
+
461
+ Explanation
462
+ ===========
463
+
464
+ For a right-handed coordinate system, this corresponds to a
465
+ counterclockwise rotation around the `z`-axis, given by:
466
+
467
+ .. math::
468
+
469
+ R = \begin{bmatrix}
470
+ \cos(\theta) & -\sin(\theta) & 0 \\
471
+ \sin(\theta) & \cos(\theta) & 0 \\
472
+ 0 & 0 & 1
473
+ \end{bmatrix}
474
+
475
+ Examples
476
+ ========
477
+
478
+ >>> from sympy import pi, rot_ccw_axis3
479
+
480
+ A rotation of pi/3 (60 degrees):
481
+
482
+ >>> theta = pi/3
483
+ >>> rot_ccw_axis3(theta)
484
+ Matrix([
485
+ [ 1/2, -sqrt(3)/2, 0],
486
+ [sqrt(3)/2, 1/2, 0],
487
+ [ 0, 0, 1]])
488
+
489
+ If we rotate by pi/2 (90 degrees):
490
+
491
+ >>> rot_ccw_axis3(pi/2)
492
+ Matrix([
493
+ [0, -1, 0],
494
+ [1, 0, 0],
495
+ [0, 0, 1]])
496
+
497
+ See Also
498
+ ========
499
+
500
+ rot_givens: Returns a Givens rotation matrix (generalized rotation for
501
+ any number of dimensions)
502
+ rot_axis3: Returns a rotation matrix for a rotation of theta (in radians)
503
+ about the 3-axis (clockwise around the z axis)
504
+ rot_ccw_axis1: Returns a rotation matrix for a rotation of theta (in radians)
505
+ about the 1-axis (counterclockwise around the x axis)
506
+ rot_ccw_axis2: Returns a rotation matrix for a rotation of theta (in radians)
507
+ about the 2-axis (counterclockwise around the y axis)
508
+ """
509
+ return rot_givens(1, 0, theta, dim=3)
510
+
511
+
512
+ def rot_ccw_axis2(theta):
513
+ r"""Returns a rotation matrix for a rotation of theta (in radians)
514
+ about the 2-axis.
515
+
516
+ Explanation
517
+ ===========
518
+
519
+ For a right-handed coordinate system, this corresponds to a
520
+ counterclockwise rotation around the `y`-axis, given by:
521
+
522
+ .. math::
523
+
524
+ R = \begin{bmatrix}
525
+ \cos(\theta) & 0 & \sin(\theta) \\
526
+ 0 & 1 & 0 \\
527
+ -\sin(\theta) & 0 & \cos(\theta)
528
+ \end{bmatrix}
529
+
530
+ Examples
531
+ ========
532
+
533
+ >>> from sympy import pi, rot_ccw_axis2
534
+
535
+ A rotation of pi/3 (60 degrees):
536
+
537
+ >>> theta = pi/3
538
+ >>> rot_ccw_axis2(theta)
539
+ Matrix([
540
+ [ 1/2, 0, sqrt(3)/2],
541
+ [ 0, 1, 0],
542
+ [-sqrt(3)/2, 0, 1/2]])
543
+
544
+ If we rotate by pi/2 (90 degrees):
545
+
546
+ >>> rot_ccw_axis2(pi/2)
547
+ Matrix([
548
+ [ 0, 0, 1],
549
+ [ 0, 1, 0],
550
+ [-1, 0, 0]])
551
+
552
+ See Also
553
+ ========
554
+
555
+ rot_givens: Returns a Givens rotation matrix (generalized rotation for
556
+ any number of dimensions)
557
+ rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
558
+ about the 2-axis (clockwise around the y axis)
559
+ rot_ccw_axis1: Returns a rotation matrix for a rotation of theta (in radians)
560
+ about the 1-axis (counterclockwise around the x axis)
561
+ rot_ccw_axis3: Returns a rotation matrix for a rotation of theta (in radians)
562
+ about the 3-axis (counterclockwise around the z axis)
563
+ """
564
+ return rot_givens(0, 2, theta, dim=3)
565
+
566
+
567
+ def rot_ccw_axis1(theta):
568
+ r"""Returns a rotation matrix for a rotation of theta (in radians)
569
+ about the 1-axis.
570
+
571
+ Explanation
572
+ ===========
573
+
574
+ For a right-handed coordinate system, this corresponds to a
575
+ counterclockwise rotation around the `x`-axis, given by:
576
+
577
+ .. math::
578
+
579
+ R = \begin{bmatrix}
580
+ 1 & 0 & 0 \\
581
+ 0 & \cos(\theta) & -\sin(\theta) \\
582
+ 0 & \sin(\theta) & \cos(\theta)
583
+ \end{bmatrix}
584
+
585
+ Examples
586
+ ========
587
+
588
+ >>> from sympy import pi, rot_ccw_axis1
589
+
590
+ A rotation of pi/3 (60 degrees):
591
+
592
+ >>> theta = pi/3
593
+ >>> rot_ccw_axis1(theta)
594
+ Matrix([
595
+ [1, 0, 0],
596
+ [0, 1/2, -sqrt(3)/2],
597
+ [0, sqrt(3)/2, 1/2]])
598
+
599
+ If we rotate by pi/2 (90 degrees):
600
+
601
+ >>> rot_ccw_axis1(pi/2)
602
+ Matrix([
603
+ [1, 0, 0],
604
+ [0, 0, -1],
605
+ [0, 1, 0]])
606
+
607
+ See Also
608
+ ========
609
+
610
+ rot_givens: Returns a Givens rotation matrix (generalized rotation for
611
+ any number of dimensions)
612
+ rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
613
+ about the 1-axis (clockwise around the x axis)
614
+ rot_ccw_axis2: Returns a rotation matrix for a rotation of theta (in radians)
615
+ about the 2-axis (counterclockwise around the y axis)
616
+ rot_ccw_axis3: Returns a rotation matrix for a rotation of theta (in radians)
617
+ about the 3-axis (counterclockwise around the z axis)
618
+ """
619
+ return rot_givens(2, 1, theta, dim=3)
620
+
621
+
622
+ @doctest_depends_on(modules=('numpy',))
623
+ def symarray(prefix, shape, **kwargs): # pragma: no cover
624
+ r"""Create a numpy ndarray of symbols (as an object array).
625
+
626
+ The created symbols are named ``prefix_i1_i2_``... You should thus provide a
627
+ non-empty prefix if you want your symbols to be unique for different output
628
+ arrays, as SymPy symbols with identical names are the same object.
629
+
630
+ Parameters
631
+ ----------
632
+
633
+ prefix : string
634
+ A prefix prepended to the name of every symbol.
635
+
636
+ shape : int or tuple
637
+ Shape of the created array. If an int, the array is one-dimensional; for
638
+ more than one dimension the shape must be a tuple.
639
+
640
+ \*\*kwargs : dict
641
+ keyword arguments passed on to Symbol
642
+
643
+ Examples
644
+ ========
645
+ These doctests require numpy.
646
+
647
+ >>> from sympy import symarray
648
+ >>> symarray('', 3)
649
+ [_0 _1 _2]
650
+
651
+ If you want multiple symarrays to contain distinct symbols, you *must*
652
+ provide unique prefixes:
653
+
654
+ >>> a = symarray('', 3)
655
+ >>> b = symarray('', 3)
656
+ >>> a[0] == b[0]
657
+ True
658
+ >>> a = symarray('a', 3)
659
+ >>> b = symarray('b', 3)
660
+ >>> a[0] == b[0]
661
+ False
662
+
663
+ Creating symarrays with a prefix:
664
+
665
+ >>> symarray('a', 3)
666
+ [a_0 a_1 a_2]
667
+
668
+ For more than one dimension, the shape must be given as a tuple:
669
+
670
+ >>> symarray('a', (2, 3))
671
+ [[a_0_0 a_0_1 a_0_2]
672
+ [a_1_0 a_1_1 a_1_2]]
673
+ >>> symarray('a', (2, 3, 2))
674
+ [[[a_0_0_0 a_0_0_1]
675
+ [a_0_1_0 a_0_1_1]
676
+ [a_0_2_0 a_0_2_1]]
677
+ <BLANKLINE>
678
+ [[a_1_0_0 a_1_0_1]
679
+ [a_1_1_0 a_1_1_1]
680
+ [a_1_2_0 a_1_2_1]]]
681
+
682
+ For setting assumptions of the underlying Symbols:
683
+
684
+ >>> [s.is_real for s in symarray('a', 2, real=True)]
685
+ [True, True]
686
+ """
687
+ from numpy import empty, ndindex
688
+ arr = empty(shape, dtype=object)
689
+ for index in ndindex(shape):
690
+ arr[index] = Symbol('%s_%s' % (prefix, '_'.join(map(str, index))),
691
+ **kwargs)
692
+ return arr
693
+
694
+
695
+ ###############
696
+ # Functions
697
+ ###############
698
+
699
+ def casoratian(seqs, n, zero=True):
700
+ """Given linear difference operator L of order 'k' and homogeneous
701
+ equation Ly = 0 we want to compute kernel of L, which is a set
702
+ of 'k' sequences: a(n), b(n), ... z(n).
703
+
704
+ Solutions of L are linearly independent iff their Casoratian,
705
+ denoted as C(a, b, ..., z), do not vanish for n = 0.
706
+
707
+ Casoratian is defined by k x k determinant::
708
+
709
+ + a(n) b(n) . . . z(n) +
710
+ | a(n+1) b(n+1) . . . z(n+1) |
711
+ | . . . . |
712
+ | . . . . |
713
+ | . . . . |
714
+ + a(n+k-1) b(n+k-1) . . . z(n+k-1) +
715
+
716
+ It proves very useful in rsolve_hyper() where it is applied
717
+ to a generating set of a recurrence to factor out linearly
718
+ dependent solutions and return a basis:
719
+
720
+ >>> from sympy import Symbol, casoratian, factorial
721
+ >>> n = Symbol('n', integer=True)
722
+
723
+ Exponential and factorial are linearly independent:
724
+
725
+ >>> casoratian([2**n, factorial(n)], n) != 0
726
+ True
727
+
728
+ """
729
+
730
+ seqs = list(map(sympify, seqs))
731
+
732
+ if not zero:
733
+ f = lambda i, j: seqs[j].subs(n, n + i)
734
+ else:
735
+ f = lambda i, j: seqs[j].subs(n, i)
736
+
737
+ k = len(seqs)
738
+
739
+ return Matrix(k, k, f).det()
740
+
741
+
742
+ def eye(*args, **kwargs):
743
+ """Create square identity matrix n x n
744
+
745
+ See Also
746
+ ========
747
+
748
+ diag
749
+ zeros
750
+ ones
751
+ """
752
+
753
+ return Matrix.eye(*args, **kwargs)
754
+
755
+
756
+ def diag(*values, strict=True, unpack=False, **kwargs):
757
+ """Returns a matrix with the provided values placed on the
758
+ diagonal. If non-square matrices are included, they will
759
+ produce a block-diagonal matrix.
760
+
761
+ Examples
762
+ ========
763
+
764
+ This version of diag is a thin wrapper to Matrix.diag that differs
765
+ in that it treats all lists like matrices -- even when a single list
766
+ is given. If this is not desired, either put a `*` before the list or
767
+ set `unpack=True`.
768
+
769
+ >>> from sympy import diag
770
+
771
+ >>> diag([1, 2, 3], unpack=True) # = diag(1,2,3) or diag(*[1,2,3])
772
+ Matrix([
773
+ [1, 0, 0],
774
+ [0, 2, 0],
775
+ [0, 0, 3]])
776
+
777
+ >>> diag([1, 2, 3]) # a column vector
778
+ Matrix([
779
+ [1],
780
+ [2],
781
+ [3]])
782
+
783
+ See Also
784
+ ========
785
+ .common.MatrixCommon.eye
786
+ .common.MatrixCommon.diagonal
787
+ .common.MatrixCommon.diag
788
+ .expressions.blockmatrix.BlockMatrix
789
+ """
790
+ return Matrix.diag(*values, strict=strict, unpack=unpack, **kwargs)
791
+
792
+
793
+ def GramSchmidt(vlist, orthonormal=False):
794
+ """Apply the Gram-Schmidt process to a set of vectors.
795
+
796
+ Parameters
797
+ ==========
798
+
799
+ vlist : List of Matrix
800
+ Vectors to be orthogonalized for.
801
+
802
+ orthonormal : Bool, optional
803
+ If true, return an orthonormal basis.
804
+
805
+ Returns
806
+ =======
807
+
808
+ vlist : List of Matrix
809
+ Orthogonalized vectors
810
+
811
+ Notes
812
+ =====
813
+
814
+ This routine is mostly duplicate from ``Matrix.orthogonalize``,
815
+ except for some difference that this always raises error when
816
+ linearly dependent vectors are found, and the keyword ``normalize``
817
+ has been named as ``orthonormal`` in this function.
818
+
819
+ See Also
820
+ ========
821
+
822
+ .matrices.MatrixSubspaces.orthogonalize
823
+
824
+ References
825
+ ==========
826
+
827
+ .. [1] https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process
828
+ """
829
+ return MutableDenseMatrix.orthogonalize(
830
+ *vlist, normalize=orthonormal, rankcheck=True
831
+ )
832
+
833
+
834
+ def hessian(f, varlist, constraints=()):
835
+ """Compute Hessian matrix for a function f wrt parameters in varlist
836
+ which may be given as a sequence or a row/column vector. A list of
837
+ constraints may optionally be given.
838
+
839
+ Examples
840
+ ========
841
+
842
+ >>> from sympy import Function, hessian, pprint
843
+ >>> from sympy.abc import x, y
844
+ >>> f = Function('f')(x, y)
845
+ >>> g1 = Function('g')(x, y)
846
+ >>> g2 = x**2 + 3*y
847
+ >>> pprint(hessian(f, (x, y), [g1, g2]))
848
+ [ d d ]
849
+ [ 0 0 --(g(x, y)) --(g(x, y)) ]
850
+ [ dx dy ]
851
+ [ ]
852
+ [ 0 0 2*x 3 ]
853
+ [ ]
854
+ [ 2 2 ]
855
+ [d d d ]
856
+ [--(g(x, y)) 2*x ---(f(x, y)) -----(f(x, y))]
857
+ [dx 2 dy dx ]
858
+ [ dx ]
859
+ [ ]
860
+ [ 2 2 ]
861
+ [d d d ]
862
+ [--(g(x, y)) 3 -----(f(x, y)) ---(f(x, y)) ]
863
+ [dy dy dx 2 ]
864
+ [ dy ]
865
+
866
+ References
867
+ ==========
868
+
869
+ .. [1] https://en.wikipedia.org/wiki/Hessian_matrix
870
+
871
+ See Also
872
+ ========
873
+
874
+ sympy.matrices.matrices.MatrixCalculus.jacobian
875
+ wronskian
876
+ """
877
+ # f is the expression representing a function f, return regular matrix
878
+ if isinstance(varlist, MatrixBase):
879
+ if 1 not in varlist.shape:
880
+ raise ShapeError("`varlist` must be a column or row vector.")
881
+ if varlist.cols == 1:
882
+ varlist = varlist.T
883
+ varlist = varlist.tolist()[0]
884
+ if is_sequence(varlist):
885
+ n = len(varlist)
886
+ if not n:
887
+ raise ShapeError("`len(varlist)` must not be zero.")
888
+ else:
889
+ raise ValueError("Improper variable list in hessian function")
890
+ if not getattr(f, 'diff'):
891
+ # check differentiability
892
+ raise ValueError("Function `f` (%s) is not differentiable" % f)
893
+ m = len(constraints)
894
+ N = m + n
895
+ out = zeros(N)
896
+ for k, g in enumerate(constraints):
897
+ if not getattr(g, 'diff'):
898
+ # check differentiability
899
+ raise ValueError("Function `f` (%s) is not differentiable" % f)
900
+ for i in range(n):
901
+ out[k, i + m] = g.diff(varlist[i])
902
+ for i in range(n):
903
+ for j in range(i, n):
904
+ out[i + m, j + m] = f.diff(varlist[i]).diff(varlist[j])
905
+ for i in range(N):
906
+ for j in range(i + 1, N):
907
+ out[j, i] = out[i, j]
908
+ return out
909
+
910
+
911
+ def jordan_cell(eigenval, n):
912
+ """
913
+ Create a Jordan block:
914
+
915
+ Examples
916
+ ========
917
+
918
+ >>> from sympy import jordan_cell
919
+ >>> from sympy.abc import x
920
+ >>> jordan_cell(x, 4)
921
+ Matrix([
922
+ [x, 1, 0, 0],
923
+ [0, x, 1, 0],
924
+ [0, 0, x, 1],
925
+ [0, 0, 0, x]])
926
+ """
927
+
928
+ return Matrix.jordan_block(size=n, eigenvalue=eigenval)
929
+
930
+
931
+ def matrix_multiply_elementwise(A, B):
932
+ """Return the Hadamard product (elementwise product) of A and B
933
+
934
+ >>> from sympy import Matrix, matrix_multiply_elementwise
935
+ >>> A = Matrix([[0, 1, 2], [3, 4, 5]])
936
+ >>> B = Matrix([[1, 10, 100], [100, 10, 1]])
937
+ >>> matrix_multiply_elementwise(A, B)
938
+ Matrix([
939
+ [ 0, 10, 200],
940
+ [300, 40, 5]])
941
+
942
+ See Also
943
+ ========
944
+
945
+ sympy.matrices.common.MatrixCommon.__mul__
946
+ """
947
+ return A.multiply_elementwise(B)
948
+
949
+
950
+ def ones(*args, **kwargs):
951
+ """Returns a matrix of ones with ``rows`` rows and ``cols`` columns;
952
+ if ``cols`` is omitted a square matrix will be returned.
953
+
954
+ See Also
955
+ ========
956
+
957
+ zeros
958
+ eye
959
+ diag
960
+ """
961
+
962
+ if 'c' in kwargs:
963
+ kwargs['cols'] = kwargs.pop('c')
964
+
965
+ return Matrix.ones(*args, **kwargs)
966
+
967
+
968
+ def randMatrix(r, c=None, min=0, max=99, seed=None, symmetric=False,
969
+ percent=100, prng=None):
970
+ """Create random matrix with dimensions ``r`` x ``c``. If ``c`` is omitted
971
+ the matrix will be square. If ``symmetric`` is True the matrix must be
972
+ square. If ``percent`` is less than 100 then only approximately the given
973
+ percentage of elements will be non-zero.
974
+
975
+ The pseudo-random number generator used to generate matrix is chosen in the
976
+ following way.
977
+
978
+ * If ``prng`` is supplied, it will be used as random number generator.
979
+ It should be an instance of ``random.Random``, or at least have
980
+ ``randint`` and ``shuffle`` methods with same signatures.
981
+ * if ``prng`` is not supplied but ``seed`` is supplied, then new
982
+ ``random.Random`` with given ``seed`` will be created;
983
+ * otherwise, a new ``random.Random`` with default seed will be used.
984
+
985
+ Examples
986
+ ========
987
+
988
+ >>> from sympy import randMatrix
989
+ >>> randMatrix(3) # doctest:+SKIP
990
+ [25, 45, 27]
991
+ [44, 54, 9]
992
+ [23, 96, 46]
993
+ >>> randMatrix(3, 2) # doctest:+SKIP
994
+ [87, 29]
995
+ [23, 37]
996
+ [90, 26]
997
+ >>> randMatrix(3, 3, 0, 2) # doctest:+SKIP
998
+ [0, 2, 0]
999
+ [2, 0, 1]
1000
+ [0, 0, 1]
1001
+ >>> randMatrix(3, symmetric=True) # doctest:+SKIP
1002
+ [85, 26, 29]
1003
+ [26, 71, 43]
1004
+ [29, 43, 57]
1005
+ >>> A = randMatrix(3, seed=1)
1006
+ >>> B = randMatrix(3, seed=2)
1007
+ >>> A == B
1008
+ False
1009
+ >>> A == randMatrix(3, seed=1)
1010
+ True
1011
+ >>> randMatrix(3, symmetric=True, percent=50) # doctest:+SKIP
1012
+ [77, 70, 0],
1013
+ [70, 0, 0],
1014
+ [ 0, 0, 88]
1015
+ """
1016
+ # Note that ``Random()`` is equivalent to ``Random(None)``
1017
+ prng = prng or random.Random(seed)
1018
+
1019
+ if c is None:
1020
+ c = r
1021
+
1022
+ if symmetric and r != c:
1023
+ raise ValueError('For symmetric matrices, r must equal c, but %i != %i' % (r, c))
1024
+
1025
+ ij = range(r * c)
1026
+ if percent != 100:
1027
+ ij = prng.sample(ij, int(len(ij)*percent // 100))
1028
+
1029
+ m = zeros(r, c)
1030
+
1031
+ if not symmetric:
1032
+ for ijk in ij:
1033
+ i, j = divmod(ijk, c)
1034
+ m[i, j] = prng.randint(min, max)
1035
+ else:
1036
+ for ijk in ij:
1037
+ i, j = divmod(ijk, c)
1038
+ if i <= j:
1039
+ m[i, j] = m[j, i] = prng.randint(min, max)
1040
+
1041
+ return m
1042
+
1043
+
1044
+ def wronskian(functions, var, method='bareiss'):
1045
+ """
1046
+ Compute Wronskian for [] of functions
1047
+
1048
+ ::
1049
+
1050
+ | f1 f2 ... fn |
1051
+ | f1' f2' ... fn' |
1052
+ | . . . . |
1053
+ W(f1, ..., fn) = | . . . . |
1054
+ | . . . . |
1055
+ | (n) (n) (n) |
1056
+ | D (f1) D (f2) ... D (fn) |
1057
+
1058
+ see: https://en.wikipedia.org/wiki/Wronskian
1059
+
1060
+ See Also
1061
+ ========
1062
+
1063
+ sympy.matrices.matrices.MatrixCalculus.jacobian
1064
+ hessian
1065
+ """
1066
+
1067
+ functions = [sympify(f) for f in functions]
1068
+ n = len(functions)
1069
+ if n == 0:
1070
+ return S.One
1071
+ W = Matrix(n, n, lambda i, j: functions[i].diff(var, j))
1072
+ return W.det(method)
1073
+
1074
+
1075
+ def zeros(*args, **kwargs):
1076
+ """Returns a matrix of zeros with ``rows`` rows and ``cols`` columns;
1077
+ if ``cols`` is omitted a square matrix will be returned.
1078
+
1079
+ See Also
1080
+ ========
1081
+
1082
+ ones
1083
+ eye
1084
+ diag
1085
+ """
1086
+
1087
+ if 'c' in kwargs:
1088
+ kwargs['cols'] = kwargs.pop('c')
1089
+
1090
+ return Matrix.zeros(*args, **kwargs)
venv/lib/python3.10/site-packages/sympy/matrices/determinant.py ADDED
@@ -0,0 +1,898 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from types import FunctionType
2
+
3
+ from sympy.core.numbers import Float, Integer
4
+ from sympy.core.singleton import S
5
+ from sympy.core.symbol import uniquely_named_symbol
6
+ from sympy.core.mul import Mul
7
+ from sympy.polys import PurePoly, cancel
8
+ from sympy.functions.combinatorial.numbers import nC
9
+ from sympy.polys.matrices.domainmatrix import DomainMatrix
10
+
11
+ from .common import NonSquareMatrixError
12
+ from .utilities import (
13
+ _get_intermediate_simp, _get_intermediate_simp_bool,
14
+ _iszero, _is_zero_after_expand_mul, _dotprodsimp, _simplify)
15
+
16
+
17
+ def _find_reasonable_pivot(col, iszerofunc=_iszero, simpfunc=_simplify):
18
+ """ Find the lowest index of an item in ``col`` that is
19
+ suitable for a pivot. If ``col`` consists only of
20
+ Floats, the pivot with the largest norm is returned.
21
+ Otherwise, the first element where ``iszerofunc`` returns
22
+ False is used. If ``iszerofunc`` does not return false,
23
+ items are simplified and retested until a suitable
24
+ pivot is found.
25
+
26
+ Returns a 4-tuple
27
+ (pivot_offset, pivot_val, assumed_nonzero, newly_determined)
28
+ where pivot_offset is the index of the pivot, pivot_val is
29
+ the (possibly simplified) value of the pivot, assumed_nonzero
30
+ is True if an assumption that the pivot was non-zero
31
+ was made without being proved, and newly_determined are
32
+ elements that were simplified during the process of pivot
33
+ finding."""
34
+
35
+ newly_determined = []
36
+ col = list(col)
37
+ # a column that contains a mix of floats and integers
38
+ # but at least one float is considered a numerical
39
+ # column, and so we do partial pivoting
40
+ if all(isinstance(x, (Float, Integer)) for x in col) and any(
41
+ isinstance(x, Float) for x in col):
42
+ col_abs = [abs(x) for x in col]
43
+ max_value = max(col_abs)
44
+ if iszerofunc(max_value):
45
+ # just because iszerofunc returned True, doesn't
46
+ # mean the value is numerically zero. Make sure
47
+ # to replace all entries with numerical zeros
48
+ if max_value != 0:
49
+ newly_determined = [(i, 0) for i, x in enumerate(col) if x != 0]
50
+ return (None, None, False, newly_determined)
51
+ index = col_abs.index(max_value)
52
+ return (index, col[index], False, newly_determined)
53
+
54
+ # PASS 1 (iszerofunc directly)
55
+ possible_zeros = []
56
+ for i, x in enumerate(col):
57
+ is_zero = iszerofunc(x)
58
+ # is someone wrote a custom iszerofunc, it may return
59
+ # BooleanFalse or BooleanTrue instead of True or False,
60
+ # so use == for comparison instead of `is`
61
+ if is_zero == False:
62
+ # we found something that is definitely not zero
63
+ return (i, x, False, newly_determined)
64
+ possible_zeros.append(is_zero)
65
+
66
+ # by this point, we've found no certain non-zeros
67
+ if all(possible_zeros):
68
+ # if everything is definitely zero, we have
69
+ # no pivot
70
+ return (None, None, False, newly_determined)
71
+
72
+ # PASS 2 (iszerofunc after simplify)
73
+ # we haven't found any for-sure non-zeros, so
74
+ # go through the elements iszerofunc couldn't
75
+ # make a determination about and opportunistically
76
+ # simplify to see if we find something
77
+ for i, x in enumerate(col):
78
+ if possible_zeros[i] is not None:
79
+ continue
80
+ simped = simpfunc(x)
81
+ is_zero = iszerofunc(simped)
82
+ if is_zero in (True, False):
83
+ newly_determined.append((i, simped))
84
+ if is_zero == False:
85
+ return (i, simped, False, newly_determined)
86
+ possible_zeros[i] = is_zero
87
+
88
+ # after simplifying, some things that were recognized
89
+ # as zeros might be zeros
90
+ if all(possible_zeros):
91
+ # if everything is definitely zero, we have
92
+ # no pivot
93
+ return (None, None, False, newly_determined)
94
+
95
+ # PASS 3 (.equals(0))
96
+ # some expressions fail to simplify to zero, but
97
+ # ``.equals(0)`` evaluates to True. As a last-ditch
98
+ # attempt, apply ``.equals`` to these expressions
99
+ for i, x in enumerate(col):
100
+ if possible_zeros[i] is not None:
101
+ continue
102
+ if x.equals(S.Zero):
103
+ # ``.iszero`` may return False with
104
+ # an implicit assumption (e.g., ``x.equals(0)``
105
+ # when ``x`` is a symbol), so only treat it
106
+ # as proved when ``.equals(0)`` returns True
107
+ possible_zeros[i] = True
108
+ newly_determined.append((i, S.Zero))
109
+
110
+ if all(possible_zeros):
111
+ return (None, None, False, newly_determined)
112
+
113
+ # at this point there is nothing that could definitely
114
+ # be a pivot. To maintain compatibility with existing
115
+ # behavior, we'll assume that an illdetermined thing is
116
+ # non-zero. We should probably raise a warning in this case
117
+ i = possible_zeros.index(None)
118
+ return (i, col[i], True, newly_determined)
119
+
120
+
121
+ def _find_reasonable_pivot_naive(col, iszerofunc=_iszero, simpfunc=None):
122
+ """
123
+ Helper that computes the pivot value and location from a
124
+ sequence of contiguous matrix column elements. As a side effect
125
+ of the pivot search, this function may simplify some of the elements
126
+ of the input column. A list of these simplified entries and their
127
+ indices are also returned.
128
+ This function mimics the behavior of _find_reasonable_pivot(),
129
+ but does less work trying to determine if an indeterminate candidate
130
+ pivot simplifies to zero. This more naive approach can be much faster,
131
+ with the trade-off that it may erroneously return a pivot that is zero.
132
+
133
+ ``col`` is a sequence of contiguous column entries to be searched for
134
+ a suitable pivot.
135
+ ``iszerofunc`` is a callable that returns a Boolean that indicates
136
+ if its input is zero, or None if no such determination can be made.
137
+ ``simpfunc`` is a callable that simplifies its input. It must return
138
+ its input if it does not simplify its input. Passing in
139
+ ``simpfunc=None`` indicates that the pivot search should not attempt
140
+ to simplify any candidate pivots.
141
+
142
+ Returns a 4-tuple:
143
+ (pivot_offset, pivot_val, assumed_nonzero, newly_determined)
144
+ ``pivot_offset`` is the sequence index of the pivot.
145
+ ``pivot_val`` is the value of the pivot.
146
+ pivot_val and col[pivot_index] are equivalent, but will be different
147
+ when col[pivot_index] was simplified during the pivot search.
148
+ ``assumed_nonzero`` is a boolean indicating if the pivot cannot be
149
+ guaranteed to be zero. If assumed_nonzero is true, then the pivot
150
+ may or may not be non-zero. If assumed_nonzero is false, then
151
+ the pivot is non-zero.
152
+ ``newly_determined`` is a list of index-value pairs of pivot candidates
153
+ that were simplified during the pivot search.
154
+ """
155
+
156
+ # indeterminates holds the index-value pairs of each pivot candidate
157
+ # that is neither zero or non-zero, as determined by iszerofunc().
158
+ # If iszerofunc() indicates that a candidate pivot is guaranteed
159
+ # non-zero, or that every candidate pivot is zero then the contents
160
+ # of indeterminates are unused.
161
+ # Otherwise, the only viable candidate pivots are symbolic.
162
+ # In this case, indeterminates will have at least one entry,
163
+ # and all but the first entry are ignored when simpfunc is None.
164
+ indeterminates = []
165
+ for i, col_val in enumerate(col):
166
+ col_val_is_zero = iszerofunc(col_val)
167
+ if col_val_is_zero == False:
168
+ # This pivot candidate is non-zero.
169
+ return i, col_val, False, []
170
+ elif col_val_is_zero is None:
171
+ # The candidate pivot's comparison with zero
172
+ # is indeterminate.
173
+ indeterminates.append((i, col_val))
174
+
175
+ if len(indeterminates) == 0:
176
+ # All candidate pivots are guaranteed to be zero, i.e. there is
177
+ # no pivot.
178
+ return None, None, False, []
179
+
180
+ if simpfunc is None:
181
+ # Caller did not pass in a simplification function that might
182
+ # determine if an indeterminate pivot candidate is guaranteed
183
+ # to be nonzero, so assume the first indeterminate candidate
184
+ # is non-zero.
185
+ return indeterminates[0][0], indeterminates[0][1], True, []
186
+
187
+ # newly_determined holds index-value pairs of candidate pivots
188
+ # that were simplified during the search for a non-zero pivot.
189
+ newly_determined = []
190
+ for i, col_val in indeterminates:
191
+ tmp_col_val = simpfunc(col_val)
192
+ if id(col_val) != id(tmp_col_val):
193
+ # simpfunc() simplified this candidate pivot.
194
+ newly_determined.append((i, tmp_col_val))
195
+ if iszerofunc(tmp_col_val) == False:
196
+ # Candidate pivot simplified to a guaranteed non-zero value.
197
+ return i, tmp_col_val, False, newly_determined
198
+
199
+ return indeterminates[0][0], indeterminates[0][1], True, newly_determined
200
+
201
+
202
+ # This functions is a candidate for caching if it gets implemented for matrices.
203
+ def _berkowitz_toeplitz_matrix(M):
204
+ """Return (A,T) where T the Toeplitz matrix used in the Berkowitz algorithm
205
+ corresponding to ``M`` and A is the first principal submatrix.
206
+ """
207
+
208
+ # the 0 x 0 case is trivial
209
+ if M.rows == 0 and M.cols == 0:
210
+ return M._new(1,1, [M.one])
211
+
212
+ #
213
+ # Partition M = [ a_11 R ]
214
+ # [ C A ]
215
+ #
216
+
217
+ a, R = M[0,0], M[0, 1:]
218
+ C, A = M[1:, 0], M[1:,1:]
219
+
220
+ #
221
+ # The Toeplitz matrix looks like
222
+ #
223
+ # [ 1 ]
224
+ # [ -a 1 ]
225
+ # [ -RC -a 1 ]
226
+ # [ -RAC -RC -a 1 ]
227
+ # [ -RA**2C -RAC -RC -a 1 ]
228
+ # etc.
229
+
230
+ # Compute the diagonal entries.
231
+ # Because multiplying matrix times vector is so much
232
+ # more efficient than matrix times matrix, recursively
233
+ # compute -R * A**n * C.
234
+ diags = [C]
235
+ for i in range(M.rows - 2):
236
+ diags.append(A.multiply(diags[i], dotprodsimp=None))
237
+ diags = [(-R).multiply(d, dotprodsimp=None)[0, 0] for d in diags]
238
+ diags = [M.one, -a] + diags
239
+
240
+ def entry(i,j):
241
+ if j > i:
242
+ return M.zero
243
+ return diags[i - j]
244
+
245
+ toeplitz = M._new(M.cols + 1, M.rows, entry)
246
+ return (A, toeplitz)
247
+
248
+
249
+ # This functions is a candidate for caching if it gets implemented for matrices.
250
+ def _berkowitz_vector(M):
251
+ """ Run the Berkowitz algorithm and return a vector whose entries
252
+ are the coefficients of the characteristic polynomial of ``M``.
253
+
254
+ Given N x N matrix, efficiently compute
255
+ coefficients of characteristic polynomials of ``M``
256
+ without division in the ground domain.
257
+
258
+ This method is particularly useful for computing determinant,
259
+ principal minors and characteristic polynomial when ``M``
260
+ has complicated coefficients e.g. polynomials. Semi-direct
261
+ usage of this algorithm is also important in computing
262
+ efficiently sub-resultant PRS.
263
+
264
+ Assuming that M is a square matrix of dimension N x N and
265
+ I is N x N identity matrix, then the Berkowitz vector is
266
+ an N x 1 vector whose entries are coefficients of the
267
+ polynomial
268
+
269
+ charpoly(M) = det(t*I - M)
270
+
271
+ As a consequence, all polynomials generated by Berkowitz
272
+ algorithm are monic.
273
+
274
+ For more information on the implemented algorithm refer to:
275
+
276
+ [1] S.J. Berkowitz, On computing the determinant in small
277
+ parallel time using a small number of processors, ACM,
278
+ Information Processing Letters 18, 1984, pp. 147-150
279
+
280
+ [2] M. Keber, Division-Free computation of sub-resultants
281
+ using Bezout matrices, Tech. Report MPI-I-2006-1-006,
282
+ Saarbrucken, 2006
283
+ """
284
+
285
+ # handle the trivial cases
286
+ if M.rows == 0 and M.cols == 0:
287
+ return M._new(1, 1, [M.one])
288
+ elif M.rows == 1 and M.cols == 1:
289
+ return M._new(2, 1, [M.one, -M[0,0]])
290
+
291
+ submat, toeplitz = _berkowitz_toeplitz_matrix(M)
292
+
293
+ return toeplitz.multiply(_berkowitz_vector(submat), dotprodsimp=None)
294
+
295
+
296
+ def _adjugate(M, method="berkowitz"):
297
+ """Returns the adjugate, or classical adjoint, of
298
+ a matrix. That is, the transpose of the matrix of cofactors.
299
+
300
+ https://en.wikipedia.org/wiki/Adjugate
301
+
302
+ Parameters
303
+ ==========
304
+
305
+ method : string, optional
306
+ Method to use to find the cofactors, can be "bareiss", "berkowitz" or
307
+ "lu".
308
+
309
+ Examples
310
+ ========
311
+
312
+ >>> from sympy import Matrix
313
+ >>> M = Matrix([[1, 2], [3, 4]])
314
+ >>> M.adjugate()
315
+ Matrix([
316
+ [ 4, -2],
317
+ [-3, 1]])
318
+
319
+ See Also
320
+ ========
321
+
322
+ cofactor_matrix
323
+ sympy.matrices.common.MatrixCommon.transpose
324
+ """
325
+
326
+ return M.cofactor_matrix(method=method).transpose()
327
+
328
+
329
+ # This functions is a candidate for caching if it gets implemented for matrices.
330
+ def _charpoly(M, x='lambda', simplify=_simplify):
331
+ """Computes characteristic polynomial det(x*I - M) where I is
332
+ the identity matrix.
333
+
334
+ A PurePoly is returned, so using different variables for ``x`` does
335
+ not affect the comparison or the polynomials:
336
+
337
+ Parameters
338
+ ==========
339
+
340
+ x : string, optional
341
+ Name for the "lambda" variable, defaults to "lambda".
342
+
343
+ simplify : function, optional
344
+ Simplification function to use on the characteristic polynomial
345
+ calculated. Defaults to ``simplify``.
346
+
347
+ Examples
348
+ ========
349
+
350
+ >>> from sympy import Matrix
351
+ >>> from sympy.abc import x, y
352
+ >>> M = Matrix([[1, 3], [2, 0]])
353
+ >>> M.charpoly()
354
+ PurePoly(lambda**2 - lambda - 6, lambda, domain='ZZ')
355
+ >>> M.charpoly(x) == M.charpoly(y)
356
+ True
357
+ >>> M.charpoly(x) == M.charpoly(y)
358
+ True
359
+
360
+ Specifying ``x`` is optional; a symbol named ``lambda`` is used by
361
+ default (which looks good when pretty-printed in unicode):
362
+
363
+ >>> M.charpoly().as_expr()
364
+ lambda**2 - lambda - 6
365
+
366
+ And if ``x`` clashes with an existing symbol, underscores will
367
+ be prepended to the name to make it unique:
368
+
369
+ >>> M = Matrix([[1, 2], [x, 0]])
370
+ >>> M.charpoly(x).as_expr()
371
+ _x**2 - _x - 2*x
372
+
373
+ Whether you pass a symbol or not, the generator can be obtained
374
+ with the gen attribute since it may not be the same as the symbol
375
+ that was passed:
376
+
377
+ >>> M.charpoly(x).gen
378
+ _x
379
+ >>> M.charpoly(x).gen == x
380
+ False
381
+
382
+ Notes
383
+ =====
384
+
385
+ The Samuelson-Berkowitz algorithm is used to compute
386
+ the characteristic polynomial efficiently and without any
387
+ division operations. Thus the characteristic polynomial over any
388
+ commutative ring without zero divisors can be computed.
389
+
390
+ If the determinant det(x*I - M) can be found out easily as
391
+ in the case of an upper or a lower triangular matrix, then
392
+ instead of Samuelson-Berkowitz algorithm, eigenvalues are computed
393
+ and the characteristic polynomial with their help.
394
+
395
+ See Also
396
+ ========
397
+
398
+ det
399
+ """
400
+
401
+ if not M.is_square:
402
+ raise NonSquareMatrixError()
403
+ if M.is_lower or M.is_upper:
404
+ diagonal_elements = M.diagonal()
405
+ x = uniquely_named_symbol(x, diagonal_elements, modify=lambda s: '_' + s)
406
+ m = 1
407
+ for i in diagonal_elements:
408
+ m = m * (x - simplify(i))
409
+ return PurePoly(m, x)
410
+
411
+ berk_vector = _berkowitz_vector(M)
412
+ x = uniquely_named_symbol(x, berk_vector, modify=lambda s: '_' + s)
413
+
414
+ return PurePoly([simplify(a) for a in berk_vector], x)
415
+
416
+
417
+ def _cofactor(M, i, j, method="berkowitz"):
418
+ """Calculate the cofactor of an element.
419
+
420
+ Parameters
421
+ ==========
422
+
423
+ method : string, optional
424
+ Method to use to find the cofactors, can be "bareiss", "berkowitz" or
425
+ "lu".
426
+
427
+ Examples
428
+ ========
429
+
430
+ >>> from sympy import Matrix
431
+ >>> M = Matrix([[1, 2], [3, 4]])
432
+ >>> M.cofactor(0, 1)
433
+ -3
434
+
435
+ See Also
436
+ ========
437
+
438
+ cofactor_matrix
439
+ minor
440
+ minor_submatrix
441
+ """
442
+
443
+ if not M.is_square or M.rows < 1:
444
+ raise NonSquareMatrixError()
445
+
446
+ return S.NegativeOne**((i + j) % 2) * M.minor(i, j, method)
447
+
448
+
449
+ def _cofactor_matrix(M, method="berkowitz"):
450
+ """Return a matrix containing the cofactor of each element.
451
+
452
+ Parameters
453
+ ==========
454
+
455
+ method : string, optional
456
+ Method to use to find the cofactors, can be "bareiss", "berkowitz" or
457
+ "lu".
458
+
459
+ Examples
460
+ ========
461
+
462
+ >>> from sympy import Matrix
463
+ >>> M = Matrix([[1, 2], [3, 4]])
464
+ >>> M.cofactor_matrix()
465
+ Matrix([
466
+ [ 4, -3],
467
+ [-2, 1]])
468
+
469
+ See Also
470
+ ========
471
+
472
+ cofactor
473
+ minor
474
+ minor_submatrix
475
+ """
476
+
477
+ if not M.is_square or M.rows < 1:
478
+ raise NonSquareMatrixError()
479
+
480
+ return M._new(M.rows, M.cols,
481
+ lambda i, j: M.cofactor(i, j, method))
482
+
483
+ def _per(M):
484
+ """Returns the permanent of a matrix. Unlike determinant,
485
+ permanent is defined for both square and non-square matrices.
486
+
487
+ For an m x n matrix, with m less than or equal to n,
488
+ it is given as the sum over the permutations s of size
489
+ less than or equal to m on [1, 2, . . . n] of the product
490
+ from i = 1 to m of M[i, s[i]]. Taking the transpose will
491
+ not affect the value of the permanent.
492
+
493
+ In the case of a square matrix, this is the same as the permutation
494
+ definition of the determinant, but it does not take the sign of the
495
+ permutation into account. Computing the permanent with this definition
496
+ is quite inefficient, so here the Ryser formula is used.
497
+
498
+ Examples
499
+ ========
500
+
501
+ >>> from sympy import Matrix
502
+ >>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
503
+ >>> M.per()
504
+ 450
505
+ >>> M = Matrix([1, 5, 7])
506
+ >>> M.per()
507
+ 13
508
+
509
+ References
510
+ ==========
511
+
512
+ .. [1] Prof. Frank Ben's notes: https://math.berkeley.edu/~bernd/ban275.pdf
513
+ .. [2] Wikipedia article on Permanent: https://en.wikipedia.org/wiki/Permanent_%28mathematics%29
514
+ .. [3] https://reference.wolfram.com/language/ref/Permanent.html
515
+ .. [4] Permanent of a rectangular matrix : https://arxiv.org/pdf/0904.3251.pdf
516
+ """
517
+ import itertools
518
+
519
+ m, n = M.shape
520
+ if m > n:
521
+ M = M.T
522
+ m, n = n, m
523
+ s = list(range(n))
524
+
525
+ subsets = []
526
+ for i in range(1, m + 1):
527
+ subsets += list(map(list, itertools.combinations(s, i)))
528
+
529
+ perm = 0
530
+ for subset in subsets:
531
+ prod = 1
532
+ sub_len = len(subset)
533
+ for i in range(m):
534
+ prod *= sum([M[i, j] for j in subset])
535
+ perm += prod * S.NegativeOne**sub_len * nC(n - sub_len, m - sub_len)
536
+ perm *= S.NegativeOne**m
537
+ return perm.simplify()
538
+
539
+ def _det_DOM(M):
540
+ DOM = DomainMatrix.from_Matrix(M, field=True, extension=True)
541
+ K = DOM.domain
542
+ return K.to_sympy(DOM.det())
543
+
544
+ # This functions is a candidate for caching if it gets implemented for matrices.
545
+ def _det(M, method="bareiss", iszerofunc=None):
546
+ """Computes the determinant of a matrix if ``M`` is a concrete matrix object
547
+ otherwise return an expressions ``Determinant(M)`` if ``M`` is a
548
+ ``MatrixSymbol`` or other expression.
549
+
550
+ Parameters
551
+ ==========
552
+
553
+ method : string, optional
554
+ Specifies the algorithm used for computing the matrix determinant.
555
+
556
+ If the matrix is at most 3x3, a hard-coded formula is used and the
557
+ specified method is ignored. Otherwise, it defaults to
558
+ ``'bareiss'``.
559
+
560
+ Also, if the matrix is an upper or a lower triangular matrix, determinant
561
+ is computed by simple multiplication of diagonal elements, and the
562
+ specified method is ignored.
563
+
564
+ If it is set to ``'domain-ge'``, then Gaussian elimination method will
565
+ be used via using DomainMatrix.
566
+
567
+ If it is set to ``'bareiss'``, Bareiss' fraction-free algorithm will
568
+ be used.
569
+
570
+ If it is set to ``'berkowitz'``, Berkowitz' algorithm will be used.
571
+
572
+ Otherwise, if it is set to ``'lu'``, LU decomposition will be used.
573
+
574
+ .. note::
575
+ For backward compatibility, legacy keys like "bareis" and
576
+ "det_lu" can still be used to indicate the corresponding
577
+ methods.
578
+ And the keys are also case-insensitive for now. However, it is
579
+ suggested to use the precise keys for specifying the method.
580
+
581
+ iszerofunc : FunctionType or None, optional
582
+ If it is set to ``None``, it will be defaulted to ``_iszero`` if the
583
+ method is set to ``'bareiss'``, and ``_is_zero_after_expand_mul`` if
584
+ the method is set to ``'lu'``.
585
+
586
+ It can also accept any user-specified zero testing function, if it
587
+ is formatted as a function which accepts a single symbolic argument
588
+ and returns ``True`` if it is tested as zero and ``False`` if it
589
+ tested as non-zero, and also ``None`` if it is undecidable.
590
+
591
+ Returns
592
+ =======
593
+
594
+ det : Basic
595
+ Result of determinant.
596
+
597
+ Raises
598
+ ======
599
+
600
+ ValueError
601
+ If unrecognized keys are given for ``method`` or ``iszerofunc``.
602
+
603
+ NonSquareMatrixError
604
+ If attempted to calculate determinant from a non-square matrix.
605
+
606
+ Examples
607
+ ========
608
+
609
+ >>> from sympy import Matrix, eye, det
610
+ >>> I3 = eye(3)
611
+ >>> det(I3)
612
+ 1
613
+ >>> M = Matrix([[1, 2], [3, 4]])
614
+ >>> det(M)
615
+ -2
616
+ >>> det(M) == M.det()
617
+ True
618
+ >>> M.det(method="domain-ge")
619
+ -2
620
+ """
621
+
622
+ # sanitize `method`
623
+ method = method.lower()
624
+
625
+ if method == "bareis":
626
+ method = "bareiss"
627
+ elif method == "det_lu":
628
+ method = "lu"
629
+
630
+ if method not in ("bareiss", "berkowitz", "lu", "domain-ge"):
631
+ raise ValueError("Determinant method '%s' unrecognized" % method)
632
+
633
+ if iszerofunc is None:
634
+ if method == "bareiss":
635
+ iszerofunc = _is_zero_after_expand_mul
636
+ elif method == "lu":
637
+ iszerofunc = _iszero
638
+
639
+ elif not isinstance(iszerofunc, FunctionType):
640
+ raise ValueError("Zero testing method '%s' unrecognized" % iszerofunc)
641
+
642
+ n = M.rows
643
+
644
+ if n == M.cols: # square check is done in individual method functions
645
+ if n == 0:
646
+ return M.one
647
+ elif n == 1:
648
+ return M[0, 0]
649
+ elif n == 2:
650
+ m = M[0, 0] * M[1, 1] - M[0, 1] * M[1, 0]
651
+ return _get_intermediate_simp(_dotprodsimp)(m)
652
+ elif n == 3:
653
+ m = (M[0, 0] * M[1, 1] * M[2, 2]
654
+ + M[0, 1] * M[1, 2] * M[2, 0]
655
+ + M[0, 2] * M[1, 0] * M[2, 1]
656
+ - M[0, 2] * M[1, 1] * M[2, 0]
657
+ - M[0, 0] * M[1, 2] * M[2, 1]
658
+ - M[0, 1] * M[1, 0] * M[2, 2])
659
+ return _get_intermediate_simp(_dotprodsimp)(m)
660
+
661
+ dets = []
662
+ for b in M.strongly_connected_components():
663
+ if method == "domain-ge": # uses DomainMatrix to evaluate determinant
664
+ det = _det_DOM(M[b, b])
665
+ elif method == "bareiss":
666
+ det = M[b, b]._eval_det_bareiss(iszerofunc=iszerofunc)
667
+ elif method == "berkowitz":
668
+ det = M[b, b]._eval_det_berkowitz()
669
+ elif method == "lu":
670
+ det = M[b, b]._eval_det_lu(iszerofunc=iszerofunc)
671
+ dets.append(det)
672
+ return Mul(*dets)
673
+
674
+
675
+ # This functions is a candidate for caching if it gets implemented for matrices.
676
+ def _det_bareiss(M, iszerofunc=_is_zero_after_expand_mul):
677
+ """Compute matrix determinant using Bareiss' fraction-free
678
+ algorithm which is an extension of the well known Gaussian
679
+ elimination method. This approach is best suited for dense
680
+ symbolic matrices and will result in a determinant with
681
+ minimal number of fractions. It means that less term
682
+ rewriting is needed on resulting formulae.
683
+
684
+ Parameters
685
+ ==========
686
+
687
+ iszerofunc : function, optional
688
+ The function to use to determine zeros when doing an LU decomposition.
689
+ Defaults to ``lambda x: x.is_zero``.
690
+
691
+ TODO: Implement algorithm for sparse matrices (SFF),
692
+ http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps.
693
+ """
694
+
695
+ # Recursively implemented Bareiss' algorithm as per Deanna Richelle Leggett's
696
+ # thesis http://www.math.usm.edu/perry/Research/Thesis_DRL.pdf
697
+ def bareiss(mat, cumm=1):
698
+ if mat.rows == 0:
699
+ return mat.one
700
+ elif mat.rows == 1:
701
+ return mat[0, 0]
702
+
703
+ # find a pivot and extract the remaining matrix
704
+ # With the default iszerofunc, _find_reasonable_pivot slows down
705
+ # the computation by the factor of 2.5 in one test.
706
+ # Relevant issues: #10279 and #13877.
707
+ pivot_pos, pivot_val, _, _ = _find_reasonable_pivot(mat[:, 0], iszerofunc=iszerofunc)
708
+ if pivot_pos is None:
709
+ return mat.zero
710
+
711
+ # if we have a valid pivot, we'll do a "row swap", so keep the
712
+ # sign of the det
713
+ sign = (-1) ** (pivot_pos % 2)
714
+
715
+ # we want every row but the pivot row and every column
716
+ rows = [i for i in range(mat.rows) if i != pivot_pos]
717
+ cols = list(range(mat.cols))
718
+ tmp_mat = mat.extract(rows, cols)
719
+
720
+ def entry(i, j):
721
+ ret = (pivot_val*tmp_mat[i, j + 1] - mat[pivot_pos, j + 1]*tmp_mat[i, 0]) / cumm
722
+ if _get_intermediate_simp_bool(True):
723
+ return _dotprodsimp(ret)
724
+ elif not ret.is_Atom:
725
+ return cancel(ret)
726
+ return ret
727
+
728
+ return sign*bareiss(M._new(mat.rows - 1, mat.cols - 1, entry), pivot_val)
729
+
730
+ if not M.is_square:
731
+ raise NonSquareMatrixError()
732
+
733
+ if M.rows == 0:
734
+ return M.one
735
+ # sympy/matrices/tests/test_matrices.py contains a test that
736
+ # suggests that the determinant of a 0 x 0 matrix is one, by
737
+ # convention.
738
+
739
+ return bareiss(M)
740
+
741
+
742
+ def _det_berkowitz(M):
743
+ """ Use the Berkowitz algorithm to compute the determinant."""
744
+
745
+ if not M.is_square:
746
+ raise NonSquareMatrixError()
747
+
748
+ if M.rows == 0:
749
+ return M.one
750
+ # sympy/matrices/tests/test_matrices.py contains a test that
751
+ # suggests that the determinant of a 0 x 0 matrix is one, by
752
+ # convention.
753
+
754
+ berk_vector = _berkowitz_vector(M)
755
+ return (-1)**(len(berk_vector) - 1) * berk_vector[-1]
756
+
757
+
758
+ # This functions is a candidate for caching if it gets implemented for matrices.
759
+ def _det_LU(M, iszerofunc=_iszero, simpfunc=None):
760
+ """ Computes the determinant of a matrix from its LU decomposition.
761
+ This function uses the LU decomposition computed by
762
+ LUDecomposition_Simple().
763
+
764
+ The keyword arguments iszerofunc and simpfunc are passed to
765
+ LUDecomposition_Simple().
766
+ iszerofunc is a callable that returns a boolean indicating if its
767
+ input is zero, or None if it cannot make the determination.
768
+ simpfunc is a callable that simplifies its input.
769
+ The default is simpfunc=None, which indicate that the pivot search
770
+ algorithm should not attempt to simplify any candidate pivots.
771
+ If simpfunc fails to simplify its input, then it must return its input
772
+ instead of a copy.
773
+
774
+ Parameters
775
+ ==========
776
+
777
+ iszerofunc : function, optional
778
+ The function to use to determine zeros when doing an LU decomposition.
779
+ Defaults to ``lambda x: x.is_zero``.
780
+
781
+ simpfunc : function, optional
782
+ The simplification function to use when looking for zeros for pivots.
783
+ """
784
+
785
+ if not M.is_square:
786
+ raise NonSquareMatrixError()
787
+
788
+ if M.rows == 0:
789
+ return M.one
790
+ # sympy/matrices/tests/test_matrices.py contains a test that
791
+ # suggests that the determinant of a 0 x 0 matrix is one, by
792
+ # convention.
793
+
794
+ lu, row_swaps = M.LUdecomposition_Simple(iszerofunc=iszerofunc,
795
+ simpfunc=simpfunc)
796
+ # P*A = L*U => det(A) = det(L)*det(U)/det(P) = det(P)*det(U).
797
+ # Lower triangular factor L encoded in lu has unit diagonal => det(L) = 1.
798
+ # P is a permutation matrix => det(P) in {-1, 1} => 1/det(P) = det(P).
799
+ # LUdecomposition_Simple() returns a list of row exchange index pairs, rather
800
+ # than a permutation matrix, but det(P) = (-1)**len(row_swaps).
801
+
802
+ # Avoid forming the potentially time consuming product of U's diagonal entries
803
+ # if the product is zero.
804
+ # Bottom right entry of U is 0 => det(A) = 0.
805
+ # It may be impossible to determine if this entry of U is zero when it is symbolic.
806
+ if iszerofunc(lu[lu.rows-1, lu.rows-1]):
807
+ return M.zero
808
+
809
+ # Compute det(P)
810
+ det = -M.one if len(row_swaps)%2 else M.one
811
+
812
+ # Compute det(U) by calculating the product of U's diagonal entries.
813
+ # The upper triangular portion of lu is the upper triangular portion of the
814
+ # U factor in the LU decomposition.
815
+ for k in range(lu.rows):
816
+ det *= lu[k, k]
817
+
818
+ # return det(P)*det(U)
819
+ return det
820
+
821
+
822
+ def _minor(M, i, j, method="berkowitz"):
823
+ """Return the (i,j) minor of ``M``. That is,
824
+ return the determinant of the matrix obtained by deleting
825
+ the `i`th row and `j`th column from ``M``.
826
+
827
+ Parameters
828
+ ==========
829
+
830
+ i, j : int
831
+ The row and column to exclude to obtain the submatrix.
832
+
833
+ method : string, optional
834
+ Method to use to find the determinant of the submatrix, can be
835
+ "bareiss", "berkowitz" or "lu".
836
+
837
+ Examples
838
+ ========
839
+
840
+ >>> from sympy import Matrix
841
+ >>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
842
+ >>> M.minor(1, 1)
843
+ -12
844
+
845
+ See Also
846
+ ========
847
+
848
+ minor_submatrix
849
+ cofactor
850
+ det
851
+ """
852
+
853
+ if not M.is_square:
854
+ raise NonSquareMatrixError()
855
+
856
+ return M.minor_submatrix(i, j).det(method=method)
857
+
858
+
859
+ def _minor_submatrix(M, i, j):
860
+ """Return the submatrix obtained by removing the `i`th row
861
+ and `j`th column from ``M`` (works with Pythonic negative indices).
862
+
863
+ Parameters
864
+ ==========
865
+
866
+ i, j : int
867
+ The row and column to exclude to obtain the submatrix.
868
+
869
+ Examples
870
+ ========
871
+
872
+ >>> from sympy import Matrix
873
+ >>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
874
+ >>> M.minor_submatrix(1, 1)
875
+ Matrix([
876
+ [1, 3],
877
+ [7, 9]])
878
+
879
+ See Also
880
+ ========
881
+
882
+ minor
883
+ cofactor
884
+ """
885
+
886
+ if i < 0:
887
+ i += M.rows
888
+ if j < 0:
889
+ j += M.cols
890
+
891
+ if not 0 <= i < M.rows or not 0 <= j < M.cols:
892
+ raise ValueError("`i` and `j` must satisfy 0 <= i < ``M.rows`` "
893
+ "(%d)" % M.rows + "and 0 <= j < ``M.cols`` (%d)." % M.cols)
894
+
895
+ rows = [a for a in range(M.rows) if a != i]
896
+ cols = [a for a in range(M.cols) if a != j]
897
+
898
+ return M.extract(rows, cols)
venv/lib/python3.10/site-packages/sympy/matrices/eigen.py ADDED
@@ -0,0 +1,1343 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from types import FunctionType
2
+ from collections import Counter
3
+
4
+ from mpmath import mp, workprec
5
+ from mpmath.libmp.libmpf import prec_to_dps
6
+
7
+ from sympy.core.sorting import default_sort_key
8
+ from sympy.core.evalf import DEFAULT_MAXPREC, PrecisionExhausted
9
+ from sympy.core.logic import fuzzy_and, fuzzy_or
10
+ from sympy.core.numbers import Float
11
+ from sympy.core.sympify import _sympify
12
+ from sympy.functions.elementary.miscellaneous import sqrt
13
+ from sympy.polys import roots, CRootOf, ZZ, QQ, EX
14
+ from sympy.polys.matrices import DomainMatrix
15
+ from sympy.polys.matrices.eigen import dom_eigenvects, dom_eigenvects_to_sympy
16
+ from sympy.polys.polytools import gcd
17
+
18
+ from .common import MatrixError, NonSquareMatrixError
19
+ from .determinant import _find_reasonable_pivot
20
+
21
+ from .utilities import _iszero, _simplify
22
+
23
+
24
+ def _eigenvals_eigenvects_mpmath(M):
25
+ norm2 = lambda v: mp.sqrt(sum(i**2 for i in v))
26
+
27
+ v1 = None
28
+ prec = max([x._prec for x in M.atoms(Float)])
29
+ eps = 2**-prec
30
+
31
+ while prec < DEFAULT_MAXPREC:
32
+ with workprec(prec):
33
+ A = mp.matrix(M.evalf(n=prec_to_dps(prec)))
34
+ E, ER = mp.eig(A)
35
+ v2 = norm2([i for e in E for i in (mp.re(e), mp.im(e))])
36
+ if v1 is not None and mp.fabs(v1 - v2) < eps:
37
+ return E, ER
38
+ v1 = v2
39
+ prec *= 2
40
+
41
+ # we get here because the next step would have taken us
42
+ # past MAXPREC or because we never took a step; in case
43
+ # of the latter, we refuse to send back a solution since
44
+ # it would not have been verified; we also resist taking
45
+ # a small step to arrive exactly at MAXPREC since then
46
+ # the two calculations might be artificially close.
47
+ raise PrecisionExhausted
48
+
49
+
50
+ def _eigenvals_mpmath(M, multiple=False):
51
+ """Compute eigenvalues using mpmath"""
52
+ E, _ = _eigenvals_eigenvects_mpmath(M)
53
+ result = [_sympify(x) for x in E]
54
+ if multiple:
55
+ return result
56
+ return dict(Counter(result))
57
+
58
+
59
+ def _eigenvects_mpmath(M):
60
+ E, ER = _eigenvals_eigenvects_mpmath(M)
61
+ result = []
62
+ for i in range(M.rows):
63
+ eigenval = _sympify(E[i])
64
+ eigenvect = _sympify(ER[:, i])
65
+ result.append((eigenval, 1, [eigenvect]))
66
+
67
+ return result
68
+
69
+
70
+ # This function is a candidate for caching if it gets implemented for matrices.
71
+ def _eigenvals(
72
+ M, error_when_incomplete=True, *, simplify=False, multiple=False,
73
+ rational=False, **flags):
74
+ r"""Compute eigenvalues of the matrix.
75
+
76
+ Parameters
77
+ ==========
78
+
79
+ error_when_incomplete : bool, optional
80
+ If it is set to ``True``, it will raise an error if not all
81
+ eigenvalues are computed. This is caused by ``roots`` not returning
82
+ a full list of eigenvalues.
83
+
84
+ simplify : bool or function, optional
85
+ If it is set to ``True``, it attempts to return the most
86
+ simplified form of expressions returned by applying default
87
+ simplification method in every routine.
88
+
89
+ If it is set to ``False``, it will skip simplification in this
90
+ particular routine to save computation resources.
91
+
92
+ If a function is passed to, it will attempt to apply
93
+ the particular function as simplification method.
94
+
95
+ rational : bool, optional
96
+ If it is set to ``True``, every floating point numbers would be
97
+ replaced with rationals before computation. It can solve some
98
+ issues of ``roots`` routine not working well with floats.
99
+
100
+ multiple : bool, optional
101
+ If it is set to ``True``, the result will be in the form of a
102
+ list.
103
+
104
+ If it is set to ``False``, the result will be in the form of a
105
+ dictionary.
106
+
107
+ Returns
108
+ =======
109
+
110
+ eigs : list or dict
111
+ Eigenvalues of a matrix. The return format would be specified by
112
+ the key ``multiple``.
113
+
114
+ Raises
115
+ ======
116
+
117
+ MatrixError
118
+ If not enough roots had got computed.
119
+
120
+ NonSquareMatrixError
121
+ If attempted to compute eigenvalues from a non-square matrix.
122
+
123
+ Examples
124
+ ========
125
+
126
+ >>> from sympy import Matrix
127
+ >>> M = Matrix(3, 3, [0, 1, 1, 1, 0, 0, 1, 1, 1])
128
+ >>> M.eigenvals()
129
+ {-1: 1, 0: 1, 2: 1}
130
+
131
+ See Also
132
+ ========
133
+
134
+ MatrixDeterminant.charpoly
135
+ eigenvects
136
+
137
+ Notes
138
+ =====
139
+
140
+ Eigenvalues of a matrix $A$ can be computed by solving a matrix
141
+ equation $\det(A - \lambda I) = 0$
142
+
143
+ It's not always possible to return radical solutions for
144
+ eigenvalues for matrices larger than $4, 4$ shape due to
145
+ Abel-Ruffini theorem.
146
+
147
+ If there is no radical solution is found for the eigenvalue,
148
+ it may return eigenvalues in the form of
149
+ :class:`sympy.polys.rootoftools.ComplexRootOf`.
150
+ """
151
+ if not M:
152
+ if multiple:
153
+ return []
154
+ return {}
155
+
156
+ if not M.is_square:
157
+ raise NonSquareMatrixError("{} must be a square matrix.".format(M))
158
+
159
+ if M._rep.domain not in (ZZ, QQ):
160
+ # Skip this check for ZZ/QQ because it can be slow
161
+ if all(x.is_number for x in M) and M.has(Float):
162
+ return _eigenvals_mpmath(M, multiple=multiple)
163
+
164
+ if rational:
165
+ from sympy.simplify import nsimplify
166
+ M = M.applyfunc(
167
+ lambda x: nsimplify(x, rational=True) if x.has(Float) else x)
168
+
169
+ if multiple:
170
+ return _eigenvals_list(
171
+ M, error_when_incomplete=error_when_incomplete, simplify=simplify,
172
+ **flags)
173
+ return _eigenvals_dict(
174
+ M, error_when_incomplete=error_when_incomplete, simplify=simplify,
175
+ **flags)
176
+
177
+
178
+ eigenvals_error_message = \
179
+ "It is not always possible to express the eigenvalues of a matrix " + \
180
+ "of size 5x5 or higher in radicals. " + \
181
+ "We have CRootOf, but domains other than the rationals are not " + \
182
+ "currently supported. " + \
183
+ "If there are no symbols in the matrix, " + \
184
+ "it should still be possible to compute numeric approximations " + \
185
+ "of the eigenvalues using " + \
186
+ "M.evalf().eigenvals() or M.charpoly().nroots()."
187
+
188
+
189
+ def _eigenvals_list(
190
+ M, error_when_incomplete=True, simplify=False, **flags):
191
+ iblocks = M.strongly_connected_components()
192
+ all_eigs = []
193
+ is_dom = M._rep.domain in (ZZ, QQ)
194
+ for b in iblocks:
195
+
196
+ # Fast path for a 1x1 block:
197
+ if is_dom and len(b) == 1:
198
+ index = b[0]
199
+ val = M[index, index]
200
+ all_eigs.append(val)
201
+ continue
202
+
203
+ block = M[b, b]
204
+
205
+ if isinstance(simplify, FunctionType):
206
+ charpoly = block.charpoly(simplify=simplify)
207
+ else:
208
+ charpoly = block.charpoly()
209
+
210
+ eigs = roots(charpoly, multiple=True, **flags)
211
+
212
+ if len(eigs) != block.rows:
213
+ degree = int(charpoly.degree())
214
+ f = charpoly.as_expr()
215
+ x = charpoly.gen
216
+ try:
217
+ eigs = [CRootOf(f, x, idx) for idx in range(degree)]
218
+ except NotImplementedError:
219
+ if error_when_incomplete:
220
+ raise MatrixError(eigenvals_error_message)
221
+ else:
222
+ eigs = []
223
+
224
+ all_eigs += eigs
225
+
226
+ if not simplify:
227
+ return all_eigs
228
+ if not isinstance(simplify, FunctionType):
229
+ simplify = _simplify
230
+ return [simplify(value) for value in all_eigs]
231
+
232
+
233
+ def _eigenvals_dict(
234
+ M, error_when_incomplete=True, simplify=False, **flags):
235
+ iblocks = M.strongly_connected_components()
236
+ all_eigs = {}
237
+ is_dom = M._rep.domain in (ZZ, QQ)
238
+ for b in iblocks:
239
+
240
+ # Fast path for a 1x1 block:
241
+ if is_dom and len(b) == 1:
242
+ index = b[0]
243
+ val = M[index, index]
244
+ all_eigs[val] = all_eigs.get(val, 0) + 1
245
+ continue
246
+
247
+ block = M[b, b]
248
+
249
+ if isinstance(simplify, FunctionType):
250
+ charpoly = block.charpoly(simplify=simplify)
251
+ else:
252
+ charpoly = block.charpoly()
253
+
254
+ eigs = roots(charpoly, multiple=False, **flags)
255
+
256
+ if sum(eigs.values()) != block.rows:
257
+ degree = int(charpoly.degree())
258
+ f = charpoly.as_expr()
259
+ x = charpoly.gen
260
+ try:
261
+ eigs = {CRootOf(f, x, idx): 1 for idx in range(degree)}
262
+ except NotImplementedError:
263
+ if error_when_incomplete:
264
+ raise MatrixError(eigenvals_error_message)
265
+ else:
266
+ eigs = {}
267
+
268
+ for k, v in eigs.items():
269
+ if k in all_eigs:
270
+ all_eigs[k] += v
271
+ else:
272
+ all_eigs[k] = v
273
+
274
+ if not simplify:
275
+ return all_eigs
276
+ if not isinstance(simplify, FunctionType):
277
+ simplify = _simplify
278
+ return {simplify(key): value for key, value in all_eigs.items()}
279
+
280
+
281
+ def _eigenspace(M, eigenval, iszerofunc=_iszero, simplify=False):
282
+ """Get a basis for the eigenspace for a particular eigenvalue"""
283
+ m = M - M.eye(M.rows) * eigenval
284
+ ret = m.nullspace(iszerofunc=iszerofunc)
285
+
286
+ # The nullspace for a real eigenvalue should be non-trivial.
287
+ # If we didn't find an eigenvector, try once more a little harder
288
+ if len(ret) == 0 and simplify:
289
+ ret = m.nullspace(iszerofunc=iszerofunc, simplify=True)
290
+ if len(ret) == 0:
291
+ raise NotImplementedError(
292
+ "Can't evaluate eigenvector for eigenvalue {}".format(eigenval))
293
+ return ret
294
+
295
+
296
+ def _eigenvects_DOM(M, **kwargs):
297
+ DOM = DomainMatrix.from_Matrix(M, field=True, extension=True)
298
+ DOM = DOM.to_dense()
299
+
300
+ if DOM.domain != EX:
301
+ rational, algebraic = dom_eigenvects(DOM)
302
+ eigenvects = dom_eigenvects_to_sympy(
303
+ rational, algebraic, M.__class__, **kwargs)
304
+ eigenvects = sorted(eigenvects, key=lambda x: default_sort_key(x[0]))
305
+
306
+ return eigenvects
307
+ return None
308
+
309
+
310
+ def _eigenvects_sympy(M, iszerofunc, simplify=True, **flags):
311
+ eigenvals = M.eigenvals(rational=False, **flags)
312
+
313
+ # Make sure that we have all roots in radical form
314
+ for x in eigenvals:
315
+ if x.has(CRootOf):
316
+ raise MatrixError(
317
+ "Eigenvector computation is not implemented if the matrix have "
318
+ "eigenvalues in CRootOf form")
319
+
320
+ eigenvals = sorted(eigenvals.items(), key=default_sort_key)
321
+ ret = []
322
+ for val, mult in eigenvals:
323
+ vects = _eigenspace(M, val, iszerofunc=iszerofunc, simplify=simplify)
324
+ ret.append((val, mult, vects))
325
+ return ret
326
+
327
+
328
+ # This functions is a candidate for caching if it gets implemented for matrices.
329
+ def _eigenvects(M, error_when_incomplete=True, iszerofunc=_iszero, *, chop=False, **flags):
330
+ """Compute eigenvectors of the matrix.
331
+
332
+ Parameters
333
+ ==========
334
+
335
+ error_when_incomplete : bool, optional
336
+ Raise an error when not all eigenvalues are computed. This is
337
+ caused by ``roots`` not returning a full list of eigenvalues.
338
+
339
+ iszerofunc : function, optional
340
+ Specifies a zero testing function to be used in ``rref``.
341
+
342
+ Default value is ``_iszero``, which uses SymPy's naive and fast
343
+ default assumption handler.
344
+
345
+ It can also accept any user-specified zero testing function, if it
346
+ is formatted as a function which accepts a single symbolic argument
347
+ and returns ``True`` if it is tested as zero and ``False`` if it
348
+ is tested as non-zero, and ``None`` if it is undecidable.
349
+
350
+ simplify : bool or function, optional
351
+ If ``True``, ``as_content_primitive()`` will be used to tidy up
352
+ normalization artifacts.
353
+
354
+ It will also be used by the ``nullspace`` routine.
355
+
356
+ chop : bool or positive number, optional
357
+ If the matrix contains any Floats, they will be changed to Rationals
358
+ for computation purposes, but the answers will be returned after
359
+ being evaluated with evalf. The ``chop`` flag is passed to ``evalf``.
360
+ When ``chop=True`` a default precision will be used; a number will
361
+ be interpreted as the desired level of precision.
362
+
363
+ Returns
364
+ =======
365
+
366
+ ret : [(eigenval, multiplicity, eigenspace), ...]
367
+ A ragged list containing tuples of data obtained by ``eigenvals``
368
+ and ``nullspace``.
369
+
370
+ ``eigenspace`` is a list containing the ``eigenvector`` for each
371
+ eigenvalue.
372
+
373
+ ``eigenvector`` is a vector in the form of a ``Matrix``. e.g.
374
+ a vector of length 3 is returned as ``Matrix([a_1, a_2, a_3])``.
375
+
376
+ Raises
377
+ ======
378
+
379
+ NotImplementedError
380
+ If failed to compute nullspace.
381
+
382
+ Examples
383
+ ========
384
+
385
+ >>> from sympy import Matrix
386
+ >>> M = Matrix(3, 3, [0, 1, 1, 1, 0, 0, 1, 1, 1])
387
+ >>> M.eigenvects()
388
+ [(-1, 1, [Matrix([
389
+ [-1],
390
+ [ 1],
391
+ [ 0]])]), (0, 1, [Matrix([
392
+ [ 0],
393
+ [-1],
394
+ [ 1]])]), (2, 1, [Matrix([
395
+ [2/3],
396
+ [1/3],
397
+ [ 1]])])]
398
+
399
+ See Also
400
+ ========
401
+
402
+ eigenvals
403
+ MatrixSubspaces.nullspace
404
+ """
405
+ simplify = flags.get('simplify', True)
406
+ primitive = flags.get('simplify', False)
407
+ flags.pop('simplify', None) # remove this if it's there
408
+ flags.pop('multiple', None) # remove this if it's there
409
+
410
+ if not isinstance(simplify, FunctionType):
411
+ simpfunc = _simplify if simplify else lambda x: x
412
+
413
+ has_floats = M.has(Float)
414
+ if has_floats:
415
+ if all(x.is_number for x in M):
416
+ return _eigenvects_mpmath(M)
417
+ from sympy.simplify import nsimplify
418
+ M = M.applyfunc(lambda x: nsimplify(x, rational=True))
419
+
420
+ ret = _eigenvects_DOM(M)
421
+ if ret is None:
422
+ ret = _eigenvects_sympy(M, iszerofunc, simplify=simplify, **flags)
423
+
424
+ if primitive:
425
+ # if the primitive flag is set, get rid of any common
426
+ # integer denominators
427
+ def denom_clean(l):
428
+ return [(v / gcd(list(v))).applyfunc(simpfunc) for v in l]
429
+
430
+ ret = [(val, mult, denom_clean(es)) for val, mult, es in ret]
431
+
432
+ if has_floats:
433
+ # if we had floats to start with, turn the eigenvectors to floats
434
+ ret = [(val.evalf(chop=chop), mult, [v.evalf(chop=chop) for v in es])
435
+ for val, mult, es in ret]
436
+
437
+ return ret
438
+
439
+
440
+ def _is_diagonalizable_with_eigen(M, reals_only=False):
441
+ """See _is_diagonalizable. This function returns the bool along with the
442
+ eigenvectors to avoid calculating them again in functions like
443
+ ``diagonalize``."""
444
+
445
+ if not M.is_square:
446
+ return False, []
447
+
448
+ eigenvecs = M.eigenvects(simplify=True)
449
+
450
+ for val, mult, basis in eigenvecs:
451
+ if reals_only and not val.is_real: # if we have a complex eigenvalue
452
+ return False, eigenvecs
453
+
454
+ if mult != len(basis): # if the geometric multiplicity doesn't equal the algebraic
455
+ return False, eigenvecs
456
+
457
+ return True, eigenvecs
458
+
459
+ def _is_diagonalizable(M, reals_only=False, **kwargs):
460
+ """Returns ``True`` if a matrix is diagonalizable.
461
+
462
+ Parameters
463
+ ==========
464
+
465
+ reals_only : bool, optional
466
+ If ``True``, it tests whether the matrix can be diagonalized
467
+ to contain only real numbers on the diagonal.
468
+
469
+
470
+ If ``False``, it tests whether the matrix can be diagonalized
471
+ at all, even with numbers that may not be real.
472
+
473
+ Examples
474
+ ========
475
+
476
+ Example of a diagonalizable matrix:
477
+
478
+ >>> from sympy import Matrix
479
+ >>> M = Matrix([[1, 2, 0], [0, 3, 0], [2, -4, 2]])
480
+ >>> M.is_diagonalizable()
481
+ True
482
+
483
+ Example of a non-diagonalizable matrix:
484
+
485
+ >>> M = Matrix([[0, 1], [0, 0]])
486
+ >>> M.is_diagonalizable()
487
+ False
488
+
489
+ Example of a matrix that is diagonalized in terms of non-real entries:
490
+
491
+ >>> M = Matrix([[0, 1], [-1, 0]])
492
+ >>> M.is_diagonalizable(reals_only=False)
493
+ True
494
+ >>> M.is_diagonalizable(reals_only=True)
495
+ False
496
+
497
+ See Also
498
+ ========
499
+
500
+ is_diagonal
501
+ diagonalize
502
+ """
503
+ if not M.is_square:
504
+ return False
505
+
506
+ if all(e.is_real for e in M) and M.is_symmetric():
507
+ return True
508
+
509
+ if all(e.is_complex for e in M) and M.is_hermitian:
510
+ return True
511
+
512
+ return _is_diagonalizable_with_eigen(M, reals_only=reals_only)[0]
513
+
514
+
515
+ #G&VL, Matrix Computations, Algo 5.4.2
516
+ def _householder_vector(x):
517
+ if not x.cols == 1:
518
+ raise ValueError("Input must be a column matrix")
519
+ v = x.copy()
520
+ v_plus = x.copy()
521
+ v_minus = x.copy()
522
+ q = x[0, 0] / abs(x[0, 0])
523
+ norm_x = x.norm()
524
+ v_plus[0, 0] = x[0, 0] + q * norm_x
525
+ v_minus[0, 0] = x[0, 0] - q * norm_x
526
+ if x[1:, 0].norm() == 0:
527
+ bet = 0
528
+ v[0, 0] = 1
529
+ else:
530
+ if v_plus.norm() <= v_minus.norm():
531
+ v = v_plus
532
+ else:
533
+ v = v_minus
534
+ v = v / v[0]
535
+ bet = 2 / (v.norm() ** 2)
536
+ return v, bet
537
+
538
+
539
+ def _bidiagonal_decmp_hholder(M):
540
+ m = M.rows
541
+ n = M.cols
542
+ A = M.as_mutable()
543
+ U, V = A.eye(m), A.eye(n)
544
+ for i in range(min(m, n)):
545
+ v, bet = _householder_vector(A[i:, i])
546
+ hh_mat = A.eye(m - i) - bet * v * v.H
547
+ A[i:, i:] = hh_mat * A[i:, i:]
548
+ temp = A.eye(m)
549
+ temp[i:, i:] = hh_mat
550
+ U = U * temp
551
+ if i + 1 <= n - 2:
552
+ v, bet = _householder_vector(A[i, i+1:].T)
553
+ hh_mat = A.eye(n - i - 1) - bet * v * v.H
554
+ A[i:, i+1:] = A[i:, i+1:] * hh_mat
555
+ temp = A.eye(n)
556
+ temp[i+1:, i+1:] = hh_mat
557
+ V = temp * V
558
+ return U, A, V
559
+
560
+
561
+ def _eval_bidiag_hholder(M):
562
+ m = M.rows
563
+ n = M.cols
564
+ A = M.as_mutable()
565
+ for i in range(min(m, n)):
566
+ v, bet = _householder_vector(A[i:, i])
567
+ hh_mat = A.eye(m-i) - bet * v * v.H
568
+ A[i:, i:] = hh_mat * A[i:, i:]
569
+ if i + 1 <= n - 2:
570
+ v, bet = _householder_vector(A[i, i+1:].T)
571
+ hh_mat = A.eye(n - i - 1) - bet * v * v.H
572
+ A[i:, i+1:] = A[i:, i+1:] * hh_mat
573
+ return A
574
+
575
+
576
+ def _bidiagonal_decomposition(M, upper=True):
577
+ """
578
+ Returns $(U,B,V.H)$ for
579
+
580
+ $$A = UBV^{H}$$
581
+
582
+ where $A$ is the input matrix, and $B$ is its Bidiagonalized form
583
+
584
+ Note: Bidiagonal Computation can hang for symbolic matrices.
585
+
586
+ Parameters
587
+ ==========
588
+
589
+ upper : bool. Whether to do upper bidiagnalization or lower.
590
+ True for upper and False for lower.
591
+
592
+ References
593
+ ==========
594
+
595
+ .. [1] Algorithm 5.4.2, Matrix computations by Golub and Van Loan, 4th edition
596
+ .. [2] Complex Matrix Bidiagonalization, https://github.com/vslobody/Householder-Bidiagonalization
597
+
598
+ """
599
+
600
+ if not isinstance(upper, bool):
601
+ raise ValueError("upper must be a boolean")
602
+
603
+ if upper:
604
+ return _bidiagonal_decmp_hholder(M)
605
+
606
+ X = _bidiagonal_decmp_hholder(M.H)
607
+ return X[2].H, X[1].H, X[0].H
608
+
609
+
610
+ def _bidiagonalize(M, upper=True):
611
+ """
612
+ Returns $B$, the Bidiagonalized form of the input matrix.
613
+
614
+ Note: Bidiagonal Computation can hang for symbolic matrices.
615
+
616
+ Parameters
617
+ ==========
618
+
619
+ upper : bool. Whether to do upper bidiagnalization or lower.
620
+ True for upper and False for lower.
621
+
622
+ References
623
+ ==========
624
+
625
+ .. [1] Algorithm 5.4.2, Matrix computations by Golub and Van Loan, 4th edition
626
+ .. [2] Complex Matrix Bidiagonalization : https://github.com/vslobody/Householder-Bidiagonalization
627
+
628
+ """
629
+
630
+ if not isinstance(upper, bool):
631
+ raise ValueError("upper must be a boolean")
632
+
633
+ if upper:
634
+ return _eval_bidiag_hholder(M)
635
+ return _eval_bidiag_hholder(M.H).H
636
+
637
+
638
+ def _diagonalize(M, reals_only=False, sort=False, normalize=False):
639
+ """
640
+ Return (P, D), where D is diagonal and
641
+
642
+ D = P^-1 * M * P
643
+
644
+ where M is current matrix.
645
+
646
+ Parameters
647
+ ==========
648
+
649
+ reals_only : bool. Whether to throw an error if complex numbers are need
650
+ to diagonalize. (Default: False)
651
+
652
+ sort : bool. Sort the eigenvalues along the diagonal. (Default: False)
653
+
654
+ normalize : bool. If True, normalize the columns of P. (Default: False)
655
+
656
+ Examples
657
+ ========
658
+
659
+ >>> from sympy import Matrix
660
+ >>> M = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2])
661
+ >>> M
662
+ Matrix([
663
+ [1, 2, 0],
664
+ [0, 3, 0],
665
+ [2, -4, 2]])
666
+ >>> (P, D) = M.diagonalize()
667
+ >>> D
668
+ Matrix([
669
+ [1, 0, 0],
670
+ [0, 2, 0],
671
+ [0, 0, 3]])
672
+ >>> P
673
+ Matrix([
674
+ [-1, 0, -1],
675
+ [ 0, 0, -1],
676
+ [ 2, 1, 2]])
677
+ >>> P.inv() * M * P
678
+ Matrix([
679
+ [1, 0, 0],
680
+ [0, 2, 0],
681
+ [0, 0, 3]])
682
+
683
+ See Also
684
+ ========
685
+
686
+ is_diagonal
687
+ is_diagonalizable
688
+ """
689
+
690
+ if not M.is_square:
691
+ raise NonSquareMatrixError()
692
+
693
+ is_diagonalizable, eigenvecs = _is_diagonalizable_with_eigen(M,
694
+ reals_only=reals_only)
695
+
696
+ if not is_diagonalizable:
697
+ raise MatrixError("Matrix is not diagonalizable")
698
+
699
+ if sort:
700
+ eigenvecs = sorted(eigenvecs, key=default_sort_key)
701
+
702
+ p_cols, diag = [], []
703
+
704
+ for val, mult, basis in eigenvecs:
705
+ diag += [val] * mult
706
+ p_cols += basis
707
+
708
+ if normalize:
709
+ p_cols = [v / v.norm() for v in p_cols]
710
+
711
+ return M.hstack(*p_cols), M.diag(*diag)
712
+
713
+
714
+ def _fuzzy_positive_definite(M):
715
+ positive_diagonals = M._has_positive_diagonals()
716
+ if positive_diagonals is False:
717
+ return False
718
+
719
+ if positive_diagonals and M.is_strongly_diagonally_dominant:
720
+ return True
721
+
722
+ return None
723
+
724
+
725
+ def _fuzzy_positive_semidefinite(M):
726
+ nonnegative_diagonals = M._has_nonnegative_diagonals()
727
+ if nonnegative_diagonals is False:
728
+ return False
729
+
730
+ if nonnegative_diagonals and M.is_weakly_diagonally_dominant:
731
+ return True
732
+
733
+ return None
734
+
735
+
736
+ def _is_positive_definite(M):
737
+ if not M.is_hermitian:
738
+ if not M.is_square:
739
+ return False
740
+ M = M + M.H
741
+
742
+ fuzzy = _fuzzy_positive_definite(M)
743
+ if fuzzy is not None:
744
+ return fuzzy
745
+
746
+ return _is_positive_definite_GE(M)
747
+
748
+
749
+ def _is_positive_semidefinite(M):
750
+ if not M.is_hermitian:
751
+ if not M.is_square:
752
+ return False
753
+ M = M + M.H
754
+
755
+ fuzzy = _fuzzy_positive_semidefinite(M)
756
+ if fuzzy is not None:
757
+ return fuzzy
758
+
759
+ return _is_positive_semidefinite_cholesky(M)
760
+
761
+
762
+ def _is_negative_definite(M):
763
+ return _is_positive_definite(-M)
764
+
765
+
766
+ def _is_negative_semidefinite(M):
767
+ return _is_positive_semidefinite(-M)
768
+
769
+
770
+ def _is_indefinite(M):
771
+ if M.is_hermitian:
772
+ eigen = M.eigenvals()
773
+ args1 = [x.is_positive for x in eigen.keys()]
774
+ any_positive = fuzzy_or(args1)
775
+ args2 = [x.is_negative for x in eigen.keys()]
776
+ any_negative = fuzzy_or(args2)
777
+
778
+ return fuzzy_and([any_positive, any_negative])
779
+
780
+ elif M.is_square:
781
+ return (M + M.H).is_indefinite
782
+
783
+ return False
784
+
785
+
786
+ def _is_positive_definite_GE(M):
787
+ """A division-free gaussian elimination method for testing
788
+ positive-definiteness."""
789
+ M = M.as_mutable()
790
+ size = M.rows
791
+
792
+ for i in range(size):
793
+ is_positive = M[i, i].is_positive
794
+ if is_positive is not True:
795
+ return is_positive
796
+ for j in range(i+1, size):
797
+ M[j, i+1:] = M[i, i] * M[j, i+1:] - M[j, i] * M[i, i+1:]
798
+ return True
799
+
800
+
801
+ def _is_positive_semidefinite_cholesky(M):
802
+ """Uses Cholesky factorization with complete pivoting
803
+
804
+ References
805
+ ==========
806
+
807
+ .. [1] http://eprints.ma.man.ac.uk/1199/1/covered/MIMS_ep2008_116.pdf
808
+
809
+ .. [2] https://www.value-at-risk.net/cholesky-factorization/
810
+ """
811
+ M = M.as_mutable()
812
+ for k in range(M.rows):
813
+ diags = [M[i, i] for i in range(k, M.rows)]
814
+ pivot, pivot_val, nonzero, _ = _find_reasonable_pivot(diags)
815
+
816
+ if nonzero:
817
+ return None
818
+
819
+ if pivot is None:
820
+ for i in range(k+1, M.rows):
821
+ for j in range(k, M.cols):
822
+ iszero = M[i, j].is_zero
823
+ if iszero is None:
824
+ return None
825
+ elif iszero is False:
826
+ return False
827
+ return True
828
+
829
+ if M[k, k].is_negative or pivot_val.is_negative:
830
+ return False
831
+ elif not (M[k, k].is_nonnegative and pivot_val.is_nonnegative):
832
+ return None
833
+
834
+ if pivot > 0:
835
+ M.col_swap(k, k+pivot)
836
+ M.row_swap(k, k+pivot)
837
+
838
+ M[k, k] = sqrt(M[k, k])
839
+ M[k, k+1:] /= M[k, k]
840
+ M[k+1:, k+1:] -= M[k, k+1:].H * M[k, k+1:]
841
+
842
+ return M[-1, -1].is_nonnegative
843
+
844
+
845
+ _doc_positive_definite = \
846
+ r"""Finds out the definiteness of a matrix.
847
+
848
+ Explanation
849
+ ===========
850
+
851
+ A square real matrix $A$ is:
852
+
853
+ - A positive definite matrix if $x^T A x > 0$
854
+ for all non-zero real vectors $x$.
855
+ - A positive semidefinite matrix if $x^T A x \geq 0$
856
+ for all non-zero real vectors $x$.
857
+ - A negative definite matrix if $x^T A x < 0$
858
+ for all non-zero real vectors $x$.
859
+ - A negative semidefinite matrix if $x^T A x \leq 0$
860
+ for all non-zero real vectors $x$.
861
+ - An indefinite matrix if there exists non-zero real vectors
862
+ $x, y$ with $x^T A x > 0 > y^T A y$.
863
+
864
+ A square complex matrix $A$ is:
865
+
866
+ - A positive definite matrix if $\text{re}(x^H A x) > 0$
867
+ for all non-zero complex vectors $x$.
868
+ - A positive semidefinite matrix if $\text{re}(x^H A x) \geq 0$
869
+ for all non-zero complex vectors $x$.
870
+ - A negative definite matrix if $\text{re}(x^H A x) < 0$
871
+ for all non-zero complex vectors $x$.
872
+ - A negative semidefinite matrix if $\text{re}(x^H A x) \leq 0$
873
+ for all non-zero complex vectors $x$.
874
+ - An indefinite matrix if there exists non-zero complex vectors
875
+ $x, y$ with $\text{re}(x^H A x) > 0 > \text{re}(y^H A y)$.
876
+
877
+ A matrix need not be symmetric or hermitian to be positive definite.
878
+
879
+ - A real non-symmetric matrix is positive definite if and only if
880
+ $\frac{A + A^T}{2}$ is positive definite.
881
+ - A complex non-hermitian matrix is positive definite if and only if
882
+ $\frac{A + A^H}{2}$ is positive definite.
883
+
884
+ And this extension can apply for all the definitions above.
885
+
886
+ However, for complex cases, you can restrict the definition of
887
+ $\text{re}(x^H A x) > 0$ to $x^H A x > 0$ and require the matrix
888
+ to be hermitian.
889
+ But we do not present this restriction for computation because you
890
+ can check ``M.is_hermitian`` independently with this and use
891
+ the same procedure.
892
+
893
+ Examples
894
+ ========
895
+
896
+ An example of symmetric positive definite matrix:
897
+
898
+ .. plot::
899
+ :context: reset
900
+ :format: doctest
901
+ :include-source: True
902
+
903
+ >>> from sympy import Matrix, symbols
904
+ >>> from sympy.plotting import plot3d
905
+ >>> a, b = symbols('a b')
906
+ >>> x = Matrix([a, b])
907
+
908
+ >>> A = Matrix([[1, 0], [0, 1]])
909
+ >>> A.is_positive_definite
910
+ True
911
+ >>> A.is_positive_semidefinite
912
+ True
913
+
914
+ >>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
915
+
916
+ An example of symmetric positive semidefinite matrix:
917
+
918
+ .. plot::
919
+ :context: close-figs
920
+ :format: doctest
921
+ :include-source: True
922
+
923
+ >>> A = Matrix([[1, -1], [-1, 1]])
924
+ >>> A.is_positive_definite
925
+ False
926
+ >>> A.is_positive_semidefinite
927
+ True
928
+
929
+ >>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
930
+
931
+ An example of symmetric negative definite matrix:
932
+
933
+ .. plot::
934
+ :context: close-figs
935
+ :format: doctest
936
+ :include-source: True
937
+
938
+ >>> A = Matrix([[-1, 0], [0, -1]])
939
+ >>> A.is_negative_definite
940
+ True
941
+ >>> A.is_negative_semidefinite
942
+ True
943
+ >>> A.is_indefinite
944
+ False
945
+
946
+ >>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
947
+
948
+ An example of symmetric indefinite matrix:
949
+
950
+ .. plot::
951
+ :context: close-figs
952
+ :format: doctest
953
+ :include-source: True
954
+
955
+ >>> A = Matrix([[1, 2], [2, -1]])
956
+ >>> A.is_indefinite
957
+ True
958
+
959
+ >>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
960
+
961
+ An example of non-symmetric positive definite matrix.
962
+
963
+ .. plot::
964
+ :context: close-figs
965
+ :format: doctest
966
+ :include-source: True
967
+
968
+ >>> A = Matrix([[1, 2], [-2, 1]])
969
+ >>> A.is_positive_definite
970
+ True
971
+ >>> A.is_positive_semidefinite
972
+ True
973
+
974
+ >>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1))
975
+
976
+ Notes
977
+ =====
978
+
979
+ Although some people trivialize the definition of positive definite
980
+ matrices only for symmetric or hermitian matrices, this restriction
981
+ is not correct because it does not classify all instances of
982
+ positive definite matrices from the definition $x^T A x > 0$ or
983
+ $\text{re}(x^H A x) > 0$.
984
+
985
+ For instance, ``Matrix([[1, 2], [-2, 1]])`` presented in
986
+ the example above is an example of real positive definite matrix
987
+ that is not symmetric.
988
+
989
+ However, since the following formula holds true;
990
+
991
+ .. math::
992
+ \text{re}(x^H A x) > 0 \iff
993
+ \text{re}(x^H \frac{A + A^H}{2} x) > 0
994
+
995
+ We can classify all positive definite matrices that may or may not
996
+ be symmetric or hermitian by transforming the matrix to
997
+ $\frac{A + A^T}{2}$ or $\frac{A + A^H}{2}$
998
+ (which is guaranteed to be always real symmetric or complex
999
+ hermitian) and we can defer most of the studies to symmetric or
1000
+ hermitian positive definite matrices.
1001
+
1002
+ But it is a different problem for the existance of Cholesky
1003
+ decomposition. Because even though a non symmetric or a non
1004
+ hermitian matrix can be positive definite, Cholesky or LDL
1005
+ decomposition does not exist because the decompositions require the
1006
+ matrix to be symmetric or hermitian.
1007
+
1008
+ References
1009
+ ==========
1010
+
1011
+ .. [1] https://en.wikipedia.org/wiki/Definiteness_of_a_matrix#Eigenvalues
1012
+
1013
+ .. [2] https://mathworld.wolfram.com/PositiveDefiniteMatrix.html
1014
+
1015
+ .. [3] Johnson, C. R. "Positive Definite Matrices." Amer.
1016
+ Math. Monthly 77, 259-264 1970.
1017
+ """
1018
+
1019
+ _is_positive_definite.__doc__ = _doc_positive_definite
1020
+ _is_positive_semidefinite.__doc__ = _doc_positive_definite
1021
+ _is_negative_definite.__doc__ = _doc_positive_definite
1022
+ _is_negative_semidefinite.__doc__ = _doc_positive_definite
1023
+ _is_indefinite.__doc__ = _doc_positive_definite
1024
+
1025
+
1026
+ def _jordan_form(M, calc_transform=True, *, chop=False):
1027
+ """Return $(P, J)$ where $J$ is a Jordan block
1028
+ matrix and $P$ is a matrix such that $M = P J P^{-1}$
1029
+
1030
+ Parameters
1031
+ ==========
1032
+
1033
+ calc_transform : bool
1034
+ If ``False``, then only $J$ is returned.
1035
+
1036
+ chop : bool
1037
+ All matrices are converted to exact types when computing
1038
+ eigenvalues and eigenvectors. As a result, there may be
1039
+ approximation errors. If ``chop==True``, these errors
1040
+ will be truncated.
1041
+
1042
+ Examples
1043
+ ========
1044
+
1045
+ >>> from sympy import Matrix
1046
+ >>> M = Matrix([[ 6, 5, -2, -3], [-3, -1, 3, 3], [ 2, 1, -2, -3], [-1, 1, 5, 5]])
1047
+ >>> P, J = M.jordan_form()
1048
+ >>> J
1049
+ Matrix([
1050
+ [2, 1, 0, 0],
1051
+ [0, 2, 0, 0],
1052
+ [0, 0, 2, 1],
1053
+ [0, 0, 0, 2]])
1054
+
1055
+ See Also
1056
+ ========
1057
+
1058
+ jordan_block
1059
+ """
1060
+
1061
+ if not M.is_square:
1062
+ raise NonSquareMatrixError("Only square matrices have Jordan forms")
1063
+
1064
+ mat = M
1065
+ has_floats = M.has(Float)
1066
+
1067
+ if has_floats:
1068
+ try:
1069
+ max_prec = max(term._prec for term in M.values() if isinstance(term, Float))
1070
+ except ValueError:
1071
+ # if no term in the matrix is explicitly a Float calling max()
1072
+ # will throw a error so setting max_prec to default value of 53
1073
+ max_prec = 53
1074
+
1075
+ # setting minimum max_dps to 15 to prevent loss of precision in
1076
+ # matrix containing non evaluated expressions
1077
+ max_dps = max(prec_to_dps(max_prec), 15)
1078
+
1079
+ def restore_floats(*args):
1080
+ """If ``has_floats`` is `True`, cast all ``args`` as
1081
+ matrices of floats."""
1082
+
1083
+ if has_floats:
1084
+ args = [m.evalf(n=max_dps, chop=chop) for m in args]
1085
+ if len(args) == 1:
1086
+ return args[0]
1087
+
1088
+ return args
1089
+
1090
+ # cache calculations for some speedup
1091
+ mat_cache = {}
1092
+
1093
+ def eig_mat(val, pow):
1094
+ """Cache computations of ``(M - val*I)**pow`` for quick
1095
+ retrieval"""
1096
+
1097
+ if (val, pow) in mat_cache:
1098
+ return mat_cache[(val, pow)]
1099
+
1100
+ if (val, pow - 1) in mat_cache:
1101
+ mat_cache[(val, pow)] = mat_cache[(val, pow - 1)].multiply(
1102
+ mat_cache[(val, 1)], dotprodsimp=None)
1103
+ else:
1104
+ mat_cache[(val, pow)] = (mat - val*M.eye(M.rows)).pow(pow)
1105
+
1106
+ return mat_cache[(val, pow)]
1107
+
1108
+ # helper functions
1109
+ def nullity_chain(val, algebraic_multiplicity):
1110
+ """Calculate the sequence [0, nullity(E), nullity(E**2), ...]
1111
+ until it is constant where ``E = M - val*I``"""
1112
+
1113
+ # mat.rank() is faster than computing the null space,
1114
+ # so use the rank-nullity theorem
1115
+ cols = M.cols
1116
+ ret = [0]
1117
+ nullity = cols - eig_mat(val, 1).rank()
1118
+ i = 2
1119
+
1120
+ while nullity != ret[-1]:
1121
+ ret.append(nullity)
1122
+
1123
+ if nullity == algebraic_multiplicity:
1124
+ break
1125
+
1126
+ nullity = cols - eig_mat(val, i).rank()
1127
+ i += 1
1128
+
1129
+ # Due to issues like #7146 and #15872, SymPy sometimes
1130
+ # gives the wrong rank. In this case, raise an error
1131
+ # instead of returning an incorrect matrix
1132
+ if nullity < ret[-1] or nullity > algebraic_multiplicity:
1133
+ raise MatrixError(
1134
+ "SymPy had encountered an inconsistent "
1135
+ "result while computing Jordan block: "
1136
+ "{}".format(M))
1137
+
1138
+ return ret
1139
+
1140
+ def blocks_from_nullity_chain(d):
1141
+ """Return a list of the size of each Jordan block.
1142
+ If d_n is the nullity of E**n, then the number
1143
+ of Jordan blocks of size n is
1144
+
1145
+ 2*d_n - d_(n-1) - d_(n+1)"""
1146
+
1147
+ # d[0] is always the number of columns, so skip past it
1148
+ mid = [2*d[n] - d[n - 1] - d[n + 1] for n in range(1, len(d) - 1)]
1149
+ # d is assumed to plateau with "d[ len(d) ] == d[-1]", so
1150
+ # 2*d_n - d_(n-1) - d_(n+1) == d_n - d_(n-1)
1151
+ end = [d[-1] - d[-2]] if len(d) > 1 else [d[0]]
1152
+
1153
+ return mid + end
1154
+
1155
+ def pick_vec(small_basis, big_basis):
1156
+ """Picks a vector from big_basis that isn't in
1157
+ the subspace spanned by small_basis"""
1158
+
1159
+ if len(small_basis) == 0:
1160
+ return big_basis[0]
1161
+
1162
+ for v in big_basis:
1163
+ _, pivots = M.hstack(*(small_basis + [v])).echelon_form(
1164
+ with_pivots=True)
1165
+
1166
+ if pivots[-1] == len(small_basis):
1167
+ return v
1168
+
1169
+ # roots doesn't like Floats, so replace them with Rationals
1170
+ if has_floats:
1171
+ from sympy.simplify import nsimplify
1172
+ mat = mat.applyfunc(lambda x: nsimplify(x, rational=True))
1173
+
1174
+ # first calculate the jordan block structure
1175
+ eigs = mat.eigenvals()
1176
+
1177
+ # Make sure that we have all roots in radical form
1178
+ for x in eigs:
1179
+ if x.has(CRootOf):
1180
+ raise MatrixError(
1181
+ "Jordan normal form is not implemented if the matrix have "
1182
+ "eigenvalues in CRootOf form")
1183
+
1184
+ # most matrices have distinct eigenvalues
1185
+ # and so are diagonalizable. In this case, don't
1186
+ # do extra work!
1187
+ if len(eigs.keys()) == mat.cols:
1188
+ blocks = sorted(eigs.keys(), key=default_sort_key)
1189
+ jordan_mat = mat.diag(*blocks)
1190
+
1191
+ if not calc_transform:
1192
+ return restore_floats(jordan_mat)
1193
+
1194
+ jordan_basis = [eig_mat(eig, 1).nullspace()[0]
1195
+ for eig in blocks]
1196
+ basis_mat = mat.hstack(*jordan_basis)
1197
+
1198
+ return restore_floats(basis_mat, jordan_mat)
1199
+
1200
+ block_structure = []
1201
+
1202
+ for eig in sorted(eigs.keys(), key=default_sort_key):
1203
+ algebraic_multiplicity = eigs[eig]
1204
+ chain = nullity_chain(eig, algebraic_multiplicity)
1205
+ block_sizes = blocks_from_nullity_chain(chain)
1206
+
1207
+ # if block_sizes = = [a, b, c, ...], then the number of
1208
+ # Jordan blocks of size 1 is a, of size 2 is b, etc.
1209
+ # create an array that has (eig, block_size) with one
1210
+ # entry for each block
1211
+ size_nums = [(i+1, num) for i, num in enumerate(block_sizes)]
1212
+
1213
+ # we expect larger Jordan blocks to come earlier
1214
+ size_nums.reverse()
1215
+
1216
+ block_structure.extend(
1217
+ [(eig, size) for size, num in size_nums for _ in range(num)])
1218
+
1219
+ jordan_form_size = sum(size for eig, size in block_structure)
1220
+
1221
+ if jordan_form_size != M.rows:
1222
+ raise MatrixError(
1223
+ "SymPy had encountered an inconsistent result while "
1224
+ "computing Jordan block. : {}".format(M))
1225
+
1226
+ blocks = (mat.jordan_block(size=size, eigenvalue=eig) for eig, size in block_structure)
1227
+ jordan_mat = mat.diag(*blocks)
1228
+
1229
+ if not calc_transform:
1230
+ return restore_floats(jordan_mat)
1231
+
1232
+ # For each generalized eigenspace, calculate a basis.
1233
+ # We start by looking for a vector in null( (A - eig*I)**n )
1234
+ # which isn't in null( (A - eig*I)**(n-1) ) where n is
1235
+ # the size of the Jordan block
1236
+ #
1237
+ # Ideally we'd just loop through block_structure and
1238
+ # compute each generalized eigenspace. However, this
1239
+ # causes a lot of unneeded computation. Instead, we
1240
+ # go through the eigenvalues separately, since we know
1241
+ # their generalized eigenspaces must have bases that
1242
+ # are linearly independent.
1243
+ jordan_basis = []
1244
+
1245
+ for eig in sorted(eigs.keys(), key=default_sort_key):
1246
+ eig_basis = []
1247
+
1248
+ for block_eig, size in block_structure:
1249
+ if block_eig != eig:
1250
+ continue
1251
+
1252
+ null_big = (eig_mat(eig, size)).nullspace()
1253
+ null_small = (eig_mat(eig, size - 1)).nullspace()
1254
+
1255
+ # we want to pick something that is in the big basis
1256
+ # and not the small, but also something that is independent
1257
+ # of any other generalized eigenvectors from a different
1258
+ # generalized eigenspace sharing the same eigenvalue.
1259
+ vec = pick_vec(null_small + eig_basis, null_big)
1260
+ new_vecs = [eig_mat(eig, i).multiply(vec, dotprodsimp=None)
1261
+ for i in range(size)]
1262
+
1263
+ eig_basis.extend(new_vecs)
1264
+ jordan_basis.extend(reversed(new_vecs))
1265
+
1266
+ basis_mat = mat.hstack(*jordan_basis)
1267
+
1268
+ return restore_floats(basis_mat, jordan_mat)
1269
+
1270
+
1271
+ def _left_eigenvects(M, **flags):
1272
+ """Returns left eigenvectors and eigenvalues.
1273
+
1274
+ This function returns the list of triples (eigenval, multiplicity,
1275
+ basis) for the left eigenvectors. Options are the same as for
1276
+ eigenvects(), i.e. the ``**flags`` arguments gets passed directly to
1277
+ eigenvects().
1278
+
1279
+ Examples
1280
+ ========
1281
+
1282
+ >>> from sympy import Matrix
1283
+ >>> M = Matrix([[0, 1, 1], [1, 0, 0], [1, 1, 1]])
1284
+ >>> M.eigenvects()
1285
+ [(-1, 1, [Matrix([
1286
+ [-1],
1287
+ [ 1],
1288
+ [ 0]])]), (0, 1, [Matrix([
1289
+ [ 0],
1290
+ [-1],
1291
+ [ 1]])]), (2, 1, [Matrix([
1292
+ [2/3],
1293
+ [1/3],
1294
+ [ 1]])])]
1295
+ >>> M.left_eigenvects()
1296
+ [(-1, 1, [Matrix([[-2, 1, 1]])]), (0, 1, [Matrix([[-1, -1, 1]])]), (2,
1297
+ 1, [Matrix([[1, 1, 1]])])]
1298
+
1299
+ """
1300
+
1301
+ eigs = M.transpose().eigenvects(**flags)
1302
+
1303
+ return [(val, mult, [l.transpose() for l in basis]) for val, mult, basis in eigs]
1304
+
1305
+
1306
+ def _singular_values(M):
1307
+ """Compute the singular values of a Matrix
1308
+
1309
+ Examples
1310
+ ========
1311
+
1312
+ >>> from sympy import Matrix, Symbol
1313
+ >>> x = Symbol('x', real=True)
1314
+ >>> M = Matrix([[0, 1, 0], [0, x, 0], [-1, 0, 0]])
1315
+ >>> M.singular_values()
1316
+ [sqrt(x**2 + 1), 1, 0]
1317
+
1318
+ See Also
1319
+ ========
1320
+
1321
+ condition_number
1322
+ """
1323
+
1324
+ if M.rows >= M.cols:
1325
+ valmultpairs = M.H.multiply(M).eigenvals()
1326
+ else:
1327
+ valmultpairs = M.multiply(M.H).eigenvals()
1328
+
1329
+ # Expands result from eigenvals into a simple list
1330
+ vals = []
1331
+
1332
+ for k, v in valmultpairs.items():
1333
+ vals += [sqrt(k)] * v # dangerous! same k in several spots!
1334
+
1335
+ # Pad with zeros if singular values are computed in reverse way,
1336
+ # to give consistent format.
1337
+ if len(vals) < M.cols:
1338
+ vals += [M.zero] * (M.cols - len(vals))
1339
+
1340
+ # sort them in descending order
1341
+ vals.sort(reverse=True, key=default_sort_key)
1342
+
1343
+ return vals
venv/lib/python3.10/site-packages/sympy/matrices/expressions/__init__.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ A module which handles Matrix Expressions """
2
+
3
+ from .slice import MatrixSlice
4
+ from .blockmatrix import BlockMatrix, BlockDiagMatrix, block_collapse, blockcut
5
+ from .companion import CompanionMatrix
6
+ from .funcmatrix import FunctionMatrix
7
+ from .inverse import Inverse
8
+ from .matadd import MatAdd
9
+ from .matexpr import MatrixExpr, MatrixSymbol, matrix_symbols
10
+ from .matmul import MatMul
11
+ from .matpow import MatPow
12
+ from .trace import Trace, trace
13
+ from .determinant import Determinant, det, Permanent, per
14
+ from .transpose import Transpose
15
+ from .adjoint import Adjoint
16
+ from .hadamard import hadamard_product, HadamardProduct, hadamard_power, HadamardPower
17
+ from .diagonal import DiagonalMatrix, DiagonalOf, DiagMatrix, diagonalize_vector
18
+ from .dotproduct import DotProduct
19
+ from .kronecker import kronecker_product, KroneckerProduct, combine_kronecker
20
+ from .permutation import PermutationMatrix, MatrixPermute
21
+ from .sets import MatrixSet
22
+ from .special import ZeroMatrix, Identity, OneMatrix
23
+
24
+ __all__ = [
25
+ 'MatrixSlice',
26
+
27
+ 'BlockMatrix', 'BlockDiagMatrix', 'block_collapse', 'blockcut',
28
+ 'FunctionMatrix',
29
+
30
+ 'CompanionMatrix',
31
+
32
+ 'Inverse',
33
+
34
+ 'MatAdd',
35
+
36
+ 'Identity', 'MatrixExpr', 'MatrixSymbol', 'ZeroMatrix', 'OneMatrix',
37
+ 'matrix_symbols', 'MatrixSet',
38
+
39
+ 'MatMul',
40
+
41
+ 'MatPow',
42
+
43
+ 'Trace', 'trace',
44
+
45
+ 'Determinant', 'det',
46
+
47
+ 'Transpose',
48
+
49
+ 'Adjoint',
50
+
51
+ 'hadamard_product', 'HadamardProduct', 'hadamard_power', 'HadamardPower',
52
+
53
+ 'DiagonalMatrix', 'DiagonalOf', 'DiagMatrix', 'diagonalize_vector',
54
+
55
+ 'DotProduct',
56
+
57
+ 'kronecker_product', 'KroneckerProduct', 'combine_kronecker',
58
+
59
+ 'PermutationMatrix', 'MatrixPermute',
60
+
61
+ 'Permanent', 'per'
62
+ ]
venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.78 kB). View file
 
venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/_shape.cpython-310.pyc ADDED
Binary file (4.26 kB). View file
 
venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/adjoint.cpython-310.pyc ADDED
Binary file (2.48 kB). View file
 
venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/applyfunc.cpython-310.pyc ADDED
Binary file (5.52 kB). View file
 
venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/blockmatrix.cpython-310.pyc ADDED
Binary file (33.8 kB). View file
 
venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/companion.cpython-310.pyc ADDED
Binary file (2.22 kB). View file
 
venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/determinant.cpython-310.pyc ADDED
Binary file (3.99 kB). View file
 
venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/diagonal.cpython-310.pyc ADDED
Binary file (7.07 kB). View file
 
venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/dotproduct.cpython-310.pyc ADDED
Binary file (2.04 kB). View file
 
venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/factorizations.cpython-310.pyc ADDED
Binary file (3.4 kB). View file
 
venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/fourier.cpython-310.pyc ADDED
Binary file (3.08 kB). View file
 
venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/funcmatrix.cpython-310.pyc ADDED
Binary file (4.25 kB). View file
 
venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/hadamard.cpython-310.pyc ADDED
Binary file (14.2 kB). View file
 
venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/inverse.cpython-310.pyc ADDED
Binary file (3.32 kB). View file
 
venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/kronecker.cpython-310.pyc ADDED
Binary file (16.4 kB). View file
 
venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/matadd.cpython-310.pyc ADDED
Binary file (6.92 kB). View file
 
venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/matexpr.cpython-310.pyc ADDED
Binary file (29.9 kB). View file
 
venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/matmul.cpython-310.pyc ADDED
Binary file (16.2 kB). View file
 
venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/matpow.cpython-310.pyc ADDED
Binary file (4.95 kB). View file
 
venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/permutation.cpython-310.pyc ADDED
Binary file (7.66 kB). View file
 
venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/sets.cpython-310.pyc ADDED
Binary file (2.82 kB). View file
 
venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/slice.cpython-310.pyc ADDED
Binary file (3.56 kB). View file
 
venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/special.cpython-310.pyc ADDED
Binary file (10.7 kB). View file
 
venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/trace.cpython-310.pyc ADDED
Binary file (4.86 kB). View file
 
venv/lib/python3.10/site-packages/sympy/matrices/expressions/__pycache__/transpose.cpython-310.pyc ADDED
Binary file (3.89 kB). View file
 
venv/lib/python3.10/site-packages/sympy/matrices/expressions/_shape.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.relational import Eq
2
+ from sympy.core.expr import Expr
3
+ from sympy.core.numbers import Integer
4
+ from sympy.logic.boolalg import Boolean, And
5
+ from sympy.matrices.expressions.matexpr import MatrixExpr
6
+ from sympy.matrices.common import ShapeError
7
+ from typing import Union
8
+
9
+
10
+ def is_matadd_valid(*args: MatrixExpr) -> Boolean:
11
+ """Return the symbolic condition how ``MatAdd``, ``HadamardProduct``
12
+ makes sense.
13
+
14
+ Parameters
15
+ ==========
16
+
17
+ args
18
+ The list of arguments of matrices to be tested for.
19
+
20
+ Examples
21
+ ========
22
+
23
+ >>> from sympy import MatrixSymbol, symbols
24
+ >>> from sympy.matrices.expressions._shape import is_matadd_valid
25
+
26
+ >>> m, n, p, q = symbols('m n p q')
27
+ >>> A = MatrixSymbol('A', m, n)
28
+ >>> B = MatrixSymbol('B', p, q)
29
+ >>> is_matadd_valid(A, B)
30
+ Eq(m, p) & Eq(n, q)
31
+ """
32
+ rows, cols = zip(*(arg.shape for arg in args))
33
+ return And(
34
+ *(Eq(i, j) for i, j in zip(rows[:-1], rows[1:])),
35
+ *(Eq(i, j) for i, j in zip(cols[:-1], cols[1:])),
36
+ )
37
+
38
+
39
+ def is_matmul_valid(*args: Union[MatrixExpr, Expr]) -> Boolean:
40
+ """Return the symbolic condition how ``MatMul`` makes sense
41
+
42
+ Parameters
43
+ ==========
44
+
45
+ args
46
+ The list of arguments of matrices and scalar expressions to be tested
47
+ for.
48
+
49
+ Examples
50
+ ========
51
+
52
+ >>> from sympy import MatrixSymbol, symbols
53
+ >>> from sympy.matrices.expressions._shape import is_matmul_valid
54
+
55
+ >>> m, n, p, q = symbols('m n p q')
56
+ >>> A = MatrixSymbol('A', m, n)
57
+ >>> B = MatrixSymbol('B', p, q)
58
+ >>> is_matmul_valid(A, B)
59
+ Eq(n, p)
60
+ """
61
+ rows, cols = zip(*(arg.shape for arg in args if isinstance(arg, MatrixExpr)))
62
+ return And(*(Eq(i, j) for i, j in zip(cols[:-1], rows[1:])))
63
+
64
+
65
+ def is_square(arg: MatrixExpr, /) -> Boolean:
66
+ """Return the symbolic condition how the matrix is assumed to be square
67
+
68
+ Parameters
69
+ ==========
70
+
71
+ arg
72
+ The matrix to be tested for.
73
+
74
+ Examples
75
+ ========
76
+
77
+ >>> from sympy import MatrixSymbol, symbols
78
+ >>> from sympy.matrices.expressions._shape import is_square
79
+
80
+ >>> m, n = symbols('m n')
81
+ >>> A = MatrixSymbol('A', m, n)
82
+ >>> is_square(A)
83
+ Eq(m, n)
84
+ """
85
+ return Eq(arg.rows, arg.cols)
86
+
87
+
88
+ def validate_matadd_integer(*args: MatrixExpr) -> None:
89
+ """Validate matrix shape for addition only for integer values"""
90
+ rows, cols = zip(*(x.shape for x in args))
91
+ if len(set(filter(lambda x: isinstance(x, (int, Integer)), rows))) > 1:
92
+ raise ShapeError(f"Matrices have mismatching shape: {rows}")
93
+ if len(set(filter(lambda x: isinstance(x, (int, Integer)), cols))) > 1:
94
+ raise ShapeError(f"Matrices have mismatching shape: {cols}")
95
+
96
+
97
+ def validate_matmul_integer(*args: MatrixExpr) -> None:
98
+ """Validate matrix shape for multiplication only for integer values"""
99
+ for A, B in zip(args[:-1], args[1:]):
100
+ i, j = A.cols, B.rows
101
+ if isinstance(i, (int, Integer)) and isinstance(j, (int, Integer)) and i != j:
102
+ raise ShapeError("Matrices are not aligned", i, j)
venv/lib/python3.10/site-packages/sympy/matrices/expressions/adjoint.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core import Basic
2
+ from sympy.functions import adjoint, conjugate
3
+ from sympy.matrices.expressions.transpose import transpose
4
+ from sympy.matrices.expressions.matexpr import MatrixExpr
5
+
6
+
7
+ class Adjoint(MatrixExpr):
8
+ """
9
+ The Hermitian adjoint of a matrix expression.
10
+
11
+ This is a symbolic object that simply stores its argument without
12
+ evaluating it. To actually compute the adjoint, use the ``adjoint()``
13
+ function.
14
+
15
+ Examples
16
+ ========
17
+
18
+ >>> from sympy import MatrixSymbol, Adjoint, adjoint
19
+ >>> A = MatrixSymbol('A', 3, 5)
20
+ >>> B = MatrixSymbol('B', 5, 3)
21
+ >>> Adjoint(A*B)
22
+ Adjoint(A*B)
23
+ >>> adjoint(A*B)
24
+ Adjoint(B)*Adjoint(A)
25
+ >>> adjoint(A*B) == Adjoint(A*B)
26
+ False
27
+ >>> adjoint(A*B) == Adjoint(A*B).doit()
28
+ True
29
+ """
30
+ is_Adjoint = True
31
+
32
+ def doit(self, **hints):
33
+ arg = self.arg
34
+ if hints.get('deep', True) and isinstance(arg, Basic):
35
+ return adjoint(arg.doit(**hints))
36
+ else:
37
+ return adjoint(self.arg)
38
+
39
+ @property
40
+ def arg(self):
41
+ return self.args[0]
42
+
43
+ @property
44
+ def shape(self):
45
+ return self.arg.shape[::-1]
46
+
47
+ def _entry(self, i, j, **kwargs):
48
+ return conjugate(self.arg._entry(j, i, **kwargs))
49
+
50
+ def _eval_adjoint(self):
51
+ return self.arg
52
+
53
+ def _eval_conjugate(self):
54
+ return transpose(self.arg)
55
+
56
+ def _eval_trace(self):
57
+ from sympy.matrices.expressions.trace import Trace
58
+ return conjugate(Trace(self.arg))
59
+
60
+ def _eval_transpose(self):
61
+ return conjugate(self.arg)
venv/lib/python3.10/site-packages/sympy/matrices/expressions/applyfunc.py ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.expr import ExprBuilder
2
+ from sympy.core.function import (Function, FunctionClass, Lambda)
3
+ from sympy.core.symbol import Dummy
4
+ from sympy.core.sympify import sympify, _sympify
5
+ from sympy.matrices.expressions import MatrixExpr
6
+ from sympy.matrices.matrices import MatrixBase
7
+
8
+
9
+ class ElementwiseApplyFunction(MatrixExpr):
10
+ r"""
11
+ Apply function to a matrix elementwise without evaluating.
12
+
13
+ Examples
14
+ ========
15
+
16
+ It can be created by calling ``.applyfunc(<function>)`` on a matrix
17
+ expression:
18
+
19
+ >>> from sympy import MatrixSymbol
20
+ >>> from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction
21
+ >>> from sympy import exp
22
+ >>> X = MatrixSymbol("X", 3, 3)
23
+ >>> X.applyfunc(exp)
24
+ Lambda(_d, exp(_d)).(X)
25
+
26
+ Otherwise using the class constructor:
27
+
28
+ >>> from sympy import eye
29
+ >>> expr = ElementwiseApplyFunction(exp, eye(3))
30
+ >>> expr
31
+ Lambda(_d, exp(_d)).(Matrix([
32
+ [1, 0, 0],
33
+ [0, 1, 0],
34
+ [0, 0, 1]]))
35
+ >>> expr.doit()
36
+ Matrix([
37
+ [E, 1, 1],
38
+ [1, E, 1],
39
+ [1, 1, E]])
40
+
41
+ Notice the difference with the real mathematical functions:
42
+
43
+ >>> exp(eye(3))
44
+ Matrix([
45
+ [E, 0, 0],
46
+ [0, E, 0],
47
+ [0, 0, E]])
48
+ """
49
+
50
+ def __new__(cls, function, expr):
51
+ expr = _sympify(expr)
52
+ if not expr.is_Matrix:
53
+ raise ValueError("{} must be a matrix instance.".format(expr))
54
+
55
+ if expr.shape == (1, 1):
56
+ # Check if the function returns a matrix, in that case, just apply
57
+ # the function instead of creating an ElementwiseApplyFunc object:
58
+ ret = function(expr)
59
+ if isinstance(ret, MatrixExpr):
60
+ return ret
61
+
62
+ if not isinstance(function, (FunctionClass, Lambda)):
63
+ d = Dummy('d')
64
+ function = Lambda(d, function(d))
65
+
66
+ function = sympify(function)
67
+ if not isinstance(function, (FunctionClass, Lambda)):
68
+ raise ValueError(
69
+ "{} should be compatible with SymPy function classes."
70
+ .format(function))
71
+
72
+ if 1 not in function.nargs:
73
+ raise ValueError(
74
+ '{} should be able to accept 1 arguments.'.format(function))
75
+
76
+ if not isinstance(function, Lambda):
77
+ d = Dummy('d')
78
+ function = Lambda(d, function(d))
79
+
80
+ obj = MatrixExpr.__new__(cls, function, expr)
81
+ return obj
82
+
83
+ @property
84
+ def function(self):
85
+ return self.args[0]
86
+
87
+ @property
88
+ def expr(self):
89
+ return self.args[1]
90
+
91
+ @property
92
+ def shape(self):
93
+ return self.expr.shape
94
+
95
+ def doit(self, **hints):
96
+ deep = hints.get("deep", True)
97
+ expr = self.expr
98
+ if deep:
99
+ expr = expr.doit(**hints)
100
+ function = self.function
101
+ if isinstance(function, Lambda) and function.is_identity:
102
+ # This is a Lambda containing the identity function.
103
+ return expr
104
+ if isinstance(expr, MatrixBase):
105
+ return expr.applyfunc(self.function)
106
+ elif isinstance(expr, ElementwiseApplyFunction):
107
+ return ElementwiseApplyFunction(
108
+ lambda x: self.function(expr.function(x)),
109
+ expr.expr
110
+ ).doit(**hints)
111
+ else:
112
+ return self
113
+
114
+ def _entry(self, i, j, **kwargs):
115
+ return self.function(self.expr._entry(i, j, **kwargs))
116
+
117
+ def _get_function_fdiff(self):
118
+ d = Dummy("d")
119
+ function = self.function(d)
120
+ fdiff = function.diff(d)
121
+ if isinstance(fdiff, Function):
122
+ fdiff = type(fdiff)
123
+ else:
124
+ fdiff = Lambda(d, fdiff)
125
+ return fdiff
126
+
127
+ def _eval_derivative(self, x):
128
+ from sympy.matrices.expressions.hadamard import hadamard_product
129
+ dexpr = self.expr.diff(x)
130
+ fdiff = self._get_function_fdiff()
131
+ return hadamard_product(
132
+ dexpr,
133
+ ElementwiseApplyFunction(fdiff, self.expr)
134
+ )
135
+
136
+ def _eval_derivative_matrix_lines(self, x):
137
+ from sympy.matrices.expressions.special import Identity
138
+ from sympy.tensor.array.expressions.array_expressions import ArrayContraction
139
+ from sympy.tensor.array.expressions.array_expressions import ArrayDiagonal
140
+ from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
141
+
142
+ fdiff = self._get_function_fdiff()
143
+ lr = self.expr._eval_derivative_matrix_lines(x)
144
+ ewdiff = ElementwiseApplyFunction(fdiff, self.expr)
145
+ if 1 in x.shape:
146
+ # Vector:
147
+ iscolumn = self.shape[1] == 1
148
+ for i in lr:
149
+ if iscolumn:
150
+ ptr1 = i.first_pointer
151
+ ptr2 = Identity(self.shape[1])
152
+ else:
153
+ ptr1 = Identity(self.shape[0])
154
+ ptr2 = i.second_pointer
155
+
156
+ subexpr = ExprBuilder(
157
+ ArrayDiagonal,
158
+ [
159
+ ExprBuilder(
160
+ ArrayTensorProduct,
161
+ [
162
+ ewdiff,
163
+ ptr1,
164
+ ptr2,
165
+ ]
166
+ ),
167
+ (0, 2) if iscolumn else (1, 4)
168
+ ],
169
+ validator=ArrayDiagonal._validate
170
+ )
171
+ i._lines = [subexpr]
172
+ i._first_pointer_parent = subexpr.args[0].args
173
+ i._first_pointer_index = 1
174
+ i._second_pointer_parent = subexpr.args[0].args
175
+ i._second_pointer_index = 2
176
+ else:
177
+ # Matrix case:
178
+ for i in lr:
179
+ ptr1 = i.first_pointer
180
+ ptr2 = i.second_pointer
181
+ newptr1 = Identity(ptr1.shape[1])
182
+ newptr2 = Identity(ptr2.shape[1])
183
+ subexpr = ExprBuilder(
184
+ ArrayContraction,
185
+ [
186
+ ExprBuilder(
187
+ ArrayTensorProduct,
188
+ [ptr1, newptr1, ewdiff, ptr2, newptr2]
189
+ ),
190
+ (1, 2, 4),
191
+ (5, 7, 8),
192
+ ],
193
+ validator=ArrayContraction._validate
194
+ )
195
+ i._first_pointer_parent = subexpr.args[0].args
196
+ i._first_pointer_index = 1
197
+ i._second_pointer_parent = subexpr.args[0].args
198
+ i._second_pointer_index = 4
199
+ i._lines = [subexpr]
200
+ return lr
201
+
202
+ def _eval_transpose(self):
203
+ from sympy.matrices.expressions.transpose import Transpose
204
+ return self.func(self.function, Transpose(self.expr).doit())
venv/lib/python3.10/site-packages/sympy/matrices/expressions/blockmatrix.py ADDED
@@ -0,0 +1,979 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.assumptions.ask import (Q, ask)
2
+ from sympy.core import Basic, Add, Mul, S
3
+ from sympy.core.sympify import _sympify
4
+ from sympy.functions import adjoint
5
+ from sympy.functions.elementary.complexes import re, im
6
+ from sympy.strategies import typed, exhaust, condition, do_one, unpack
7
+ from sympy.strategies.traverse import bottom_up
8
+ from sympy.utilities.iterables import is_sequence, sift
9
+ from sympy.utilities.misc import filldedent
10
+
11
+ from sympy.matrices import Matrix, ShapeError
12
+ from sympy.matrices.common import NonInvertibleMatrixError
13
+ from sympy.matrices.expressions.determinant import det, Determinant
14
+ from sympy.matrices.expressions.inverse import Inverse
15
+ from sympy.matrices.expressions.matadd import MatAdd
16
+ from sympy.matrices.expressions.matexpr import MatrixExpr, MatrixElement
17
+ from sympy.matrices.expressions.matmul import MatMul
18
+ from sympy.matrices.expressions.matpow import MatPow
19
+ from sympy.matrices.expressions.slice import MatrixSlice
20
+ from sympy.matrices.expressions.special import ZeroMatrix, Identity
21
+ from sympy.matrices.expressions.trace import trace
22
+ from sympy.matrices.expressions.transpose import Transpose, transpose
23
+
24
+
25
+ class BlockMatrix(MatrixExpr):
26
+ """A BlockMatrix is a Matrix comprised of other matrices.
27
+
28
+ The submatrices are stored in a SymPy Matrix object but accessed as part of
29
+ a Matrix Expression
30
+
31
+ >>> from sympy import (MatrixSymbol, BlockMatrix, symbols,
32
+ ... Identity, ZeroMatrix, block_collapse)
33
+ >>> n,m,l = symbols('n m l')
34
+ >>> X = MatrixSymbol('X', n, n)
35
+ >>> Y = MatrixSymbol('Y', m, m)
36
+ >>> Z = MatrixSymbol('Z', n, m)
37
+ >>> B = BlockMatrix([[X, Z], [ZeroMatrix(m,n), Y]])
38
+ >>> print(B)
39
+ Matrix([
40
+ [X, Z],
41
+ [0, Y]])
42
+
43
+ >>> C = BlockMatrix([[Identity(n), Z]])
44
+ >>> print(C)
45
+ Matrix([[I, Z]])
46
+
47
+ >>> print(block_collapse(C*B))
48
+ Matrix([[X, Z + Z*Y]])
49
+
50
+ Some matrices might be comprised of rows of blocks with
51
+ the matrices in each row having the same height and the
52
+ rows all having the same total number of columns but
53
+ not having the same number of columns for each matrix
54
+ in each row. In this case, the matrix is not a block
55
+ matrix and should be instantiated by Matrix.
56
+
57
+ >>> from sympy import ones, Matrix
58
+ >>> dat = [
59
+ ... [ones(3,2), ones(3,3)*2],
60
+ ... [ones(2,3)*3, ones(2,2)*4]]
61
+ ...
62
+ >>> BlockMatrix(dat)
63
+ Traceback (most recent call last):
64
+ ...
65
+ ValueError:
66
+ Although this matrix is comprised of blocks, the blocks do not fill
67
+ the matrix in a size-symmetric fashion. To create a full matrix from
68
+ these arguments, pass them directly to Matrix.
69
+ >>> Matrix(dat)
70
+ Matrix([
71
+ [1, 1, 2, 2, 2],
72
+ [1, 1, 2, 2, 2],
73
+ [1, 1, 2, 2, 2],
74
+ [3, 3, 3, 4, 4],
75
+ [3, 3, 3, 4, 4]])
76
+
77
+ See Also
78
+ ========
79
+ sympy.matrices.matrices.MatrixBase.irregular
80
+ """
81
+ def __new__(cls, *args, **kwargs):
82
+ from sympy.matrices.immutable import ImmutableDenseMatrix
83
+ isMat = lambda i: getattr(i, 'is_Matrix', False)
84
+ if len(args) != 1 or \
85
+ not is_sequence(args[0]) or \
86
+ len({isMat(r) for r in args[0]}) != 1:
87
+ raise ValueError(filldedent('''
88
+ expecting a sequence of 1 or more rows
89
+ containing Matrices.'''))
90
+ rows = args[0] if args else []
91
+ if not isMat(rows):
92
+ if rows and isMat(rows[0]):
93
+ rows = [rows] # rows is not list of lists or []
94
+ # regularity check
95
+ # same number of matrices in each row
96
+ blocky = ok = len({len(r) for r in rows}) == 1
97
+ if ok:
98
+ # same number of rows for each matrix in a row
99
+ for r in rows:
100
+ ok = len({i.rows for i in r}) == 1
101
+ if not ok:
102
+ break
103
+ blocky = ok
104
+ if ok:
105
+ # same number of cols for each matrix in each col
106
+ for c in range(len(rows[0])):
107
+ ok = len({rows[i][c].cols
108
+ for i in range(len(rows))}) == 1
109
+ if not ok:
110
+ break
111
+ if not ok:
112
+ # same total cols in each row
113
+ ok = len({
114
+ sum([i.cols for i in r]) for r in rows}) == 1
115
+ if blocky and ok:
116
+ raise ValueError(filldedent('''
117
+ Although this matrix is comprised of blocks,
118
+ the blocks do not fill the matrix in a
119
+ size-symmetric fashion. To create a full matrix
120
+ from these arguments, pass them directly to
121
+ Matrix.'''))
122
+ raise ValueError(filldedent('''
123
+ When there are not the same number of rows in each
124
+ row's matrices or there are not the same number of
125
+ total columns in each row, the matrix is not a
126
+ block matrix. If this matrix is known to consist of
127
+ blocks fully filling a 2-D space then see
128
+ Matrix.irregular.'''))
129
+ mat = ImmutableDenseMatrix(rows, evaluate=False)
130
+ obj = Basic.__new__(cls, mat)
131
+ return obj
132
+
133
+ @property
134
+ def shape(self):
135
+ numrows = numcols = 0
136
+ M = self.blocks
137
+ for i in range(M.shape[0]):
138
+ numrows += M[i, 0].shape[0]
139
+ for i in range(M.shape[1]):
140
+ numcols += M[0, i].shape[1]
141
+ return (numrows, numcols)
142
+
143
+ @property
144
+ def blockshape(self):
145
+ return self.blocks.shape
146
+
147
+ @property
148
+ def blocks(self):
149
+ return self.args[0]
150
+
151
+ @property
152
+ def rowblocksizes(self):
153
+ return [self.blocks[i, 0].rows for i in range(self.blockshape[0])]
154
+
155
+ @property
156
+ def colblocksizes(self):
157
+ return [self.blocks[0, i].cols for i in range(self.blockshape[1])]
158
+
159
+ def structurally_equal(self, other):
160
+ return (isinstance(other, BlockMatrix)
161
+ and self.shape == other.shape
162
+ and self.blockshape == other.blockshape
163
+ and self.rowblocksizes == other.rowblocksizes
164
+ and self.colblocksizes == other.colblocksizes)
165
+
166
+ def _blockmul(self, other):
167
+ if (isinstance(other, BlockMatrix) and
168
+ self.colblocksizes == other.rowblocksizes):
169
+ return BlockMatrix(self.blocks*other.blocks)
170
+
171
+ return self * other
172
+
173
+ def _blockadd(self, other):
174
+ if (isinstance(other, BlockMatrix)
175
+ and self.structurally_equal(other)):
176
+ return BlockMatrix(self.blocks + other.blocks)
177
+
178
+ return self + other
179
+
180
+ def _eval_transpose(self):
181
+ # Flip all the individual matrices
182
+ matrices = [transpose(matrix) for matrix in self.blocks]
183
+ # Make a copy
184
+ M = Matrix(self.blockshape[0], self.blockshape[1], matrices)
185
+ # Transpose the block structure
186
+ M = M.transpose()
187
+ return BlockMatrix(M)
188
+
189
+ def _eval_adjoint(self):
190
+ # Adjoint all the individual matrices
191
+ matrices = [adjoint(matrix) for matrix in self.blocks]
192
+ # Make a copy
193
+ M = Matrix(self.blockshape[0], self.blockshape[1], matrices)
194
+ # Transpose the block structure
195
+ M = M.transpose()
196
+ return BlockMatrix(M)
197
+
198
+ def _eval_trace(self):
199
+ if self.rowblocksizes == self.colblocksizes:
200
+ return Add(*[trace(self.blocks[i, i])
201
+ for i in range(self.blockshape[0])])
202
+ raise NotImplementedError(
203
+ "Can't perform trace of irregular blockshape")
204
+
205
+ def _eval_determinant(self):
206
+ if self.blockshape == (1, 1):
207
+ return det(self.blocks[0, 0])
208
+ if self.blockshape == (2, 2):
209
+ [[A, B],
210
+ [C, D]] = self.blocks.tolist()
211
+ if ask(Q.invertible(A)):
212
+ return det(A)*det(D - C*A.I*B)
213
+ elif ask(Q.invertible(D)):
214
+ return det(D)*det(A - B*D.I*C)
215
+ return Determinant(self)
216
+
217
+ def _eval_as_real_imag(self):
218
+ real_matrices = [re(matrix) for matrix in self.blocks]
219
+ real_matrices = Matrix(self.blockshape[0], self.blockshape[1], real_matrices)
220
+
221
+ im_matrices = [im(matrix) for matrix in self.blocks]
222
+ im_matrices = Matrix(self.blockshape[0], self.blockshape[1], im_matrices)
223
+
224
+ return (BlockMatrix(real_matrices), BlockMatrix(im_matrices))
225
+
226
+ def transpose(self):
227
+ """Return transpose of matrix.
228
+
229
+ Examples
230
+ ========
231
+
232
+ >>> from sympy import MatrixSymbol, BlockMatrix, ZeroMatrix
233
+ >>> from sympy.abc import m, n
234
+ >>> X = MatrixSymbol('X', n, n)
235
+ >>> Y = MatrixSymbol('Y', m, m)
236
+ >>> Z = MatrixSymbol('Z', n, m)
237
+ >>> B = BlockMatrix([[X, Z], [ZeroMatrix(m,n), Y]])
238
+ >>> B.transpose()
239
+ Matrix([
240
+ [X.T, 0],
241
+ [Z.T, Y.T]])
242
+ >>> _.transpose()
243
+ Matrix([
244
+ [X, Z],
245
+ [0, Y]])
246
+ """
247
+ return self._eval_transpose()
248
+
249
+ def schur(self, mat = 'A', generalized = False):
250
+ """Return the Schur Complement of the 2x2 BlockMatrix
251
+
252
+ Parameters
253
+ ==========
254
+
255
+ mat : String, optional
256
+ The matrix with respect to which the
257
+ Schur Complement is calculated. 'A' is
258
+ used by default
259
+
260
+ generalized : bool, optional
261
+ If True, returns the generalized Schur
262
+ Component which uses Moore-Penrose Inverse
263
+
264
+ Examples
265
+ ========
266
+
267
+ >>> from sympy import symbols, MatrixSymbol, BlockMatrix
268
+ >>> m, n = symbols('m n')
269
+ >>> A = MatrixSymbol('A', n, n)
270
+ >>> B = MatrixSymbol('B', n, m)
271
+ >>> C = MatrixSymbol('C', m, n)
272
+ >>> D = MatrixSymbol('D', m, m)
273
+ >>> X = BlockMatrix([[A, B], [C, D]])
274
+
275
+ The default Schur Complement is evaluated with "A"
276
+
277
+ >>> X.schur()
278
+ -C*A**(-1)*B + D
279
+ >>> X.schur('D')
280
+ A - B*D**(-1)*C
281
+
282
+ Schur complement with non-invertible matrices is not
283
+ defined. Instead, the generalized Schur complement can
284
+ be calculated which uses the Moore-Penrose Inverse. To
285
+ achieve this, `generalized` must be set to `True`
286
+
287
+ >>> X.schur('B', generalized=True)
288
+ C - D*(B.T*B)**(-1)*B.T*A
289
+ >>> X.schur('C', generalized=True)
290
+ -A*(C.T*C)**(-1)*C.T*D + B
291
+
292
+ Returns
293
+ =======
294
+
295
+ M : Matrix
296
+ The Schur Complement Matrix
297
+
298
+ Raises
299
+ ======
300
+
301
+ ShapeError
302
+ If the block matrix is not a 2x2 matrix
303
+
304
+ NonInvertibleMatrixError
305
+ If given matrix is non-invertible
306
+
307
+ References
308
+ ==========
309
+
310
+ .. [1] Wikipedia Article on Schur Component : https://en.wikipedia.org/wiki/Schur_complement
311
+
312
+ See Also
313
+ ========
314
+
315
+ sympy.matrices.matrices.MatrixBase.pinv
316
+ """
317
+
318
+ if self.blockshape == (2, 2):
319
+ [[A, B],
320
+ [C, D]] = self.blocks.tolist()
321
+ d={'A' : A, 'B' : B, 'C' : C, 'D' : D}
322
+ try:
323
+ inv = (d[mat].T*d[mat]).inv()*d[mat].T if generalized else d[mat].inv()
324
+ if mat == 'A':
325
+ return D - C * inv * B
326
+ elif mat == 'B':
327
+ return C - D * inv * A
328
+ elif mat == 'C':
329
+ return B - A * inv * D
330
+ elif mat == 'D':
331
+ return A - B * inv * C
332
+ #For matrices where no sub-matrix is square
333
+ return self
334
+ except NonInvertibleMatrixError:
335
+ raise NonInvertibleMatrixError('The given matrix is not invertible. Please set generalized=True \
336
+ to compute the generalized Schur Complement which uses Moore-Penrose Inverse')
337
+ else:
338
+ raise ShapeError('Schur Complement can only be calculated for 2x2 block matrices')
339
+
340
+ def LDUdecomposition(self):
341
+ """Returns the Block LDU decomposition of
342
+ a 2x2 Block Matrix
343
+
344
+ Returns
345
+ =======
346
+
347
+ (L, D, U) : Matrices
348
+ L : Lower Diagonal Matrix
349
+ D : Diagonal Matrix
350
+ U : Upper Diagonal Matrix
351
+
352
+ Examples
353
+ ========
354
+
355
+ >>> from sympy import symbols, MatrixSymbol, BlockMatrix, block_collapse
356
+ >>> m, n = symbols('m n')
357
+ >>> A = MatrixSymbol('A', n, n)
358
+ >>> B = MatrixSymbol('B', n, m)
359
+ >>> C = MatrixSymbol('C', m, n)
360
+ >>> D = MatrixSymbol('D', m, m)
361
+ >>> X = BlockMatrix([[A, B], [C, D]])
362
+ >>> L, D, U = X.LDUdecomposition()
363
+ >>> block_collapse(L*D*U)
364
+ Matrix([
365
+ [A, B],
366
+ [C, D]])
367
+
368
+ Raises
369
+ ======
370
+
371
+ ShapeError
372
+ If the block matrix is not a 2x2 matrix
373
+
374
+ NonInvertibleMatrixError
375
+ If the matrix "A" is non-invertible
376
+
377
+ See Also
378
+ ========
379
+ sympy.matrices.expressions.blockmatrix.BlockMatrix.UDLdecomposition
380
+ sympy.matrices.expressions.blockmatrix.BlockMatrix.LUdecomposition
381
+ """
382
+ if self.blockshape == (2,2):
383
+ [[A, B],
384
+ [C, D]] = self.blocks.tolist()
385
+ try:
386
+ AI = A.I
387
+ except NonInvertibleMatrixError:
388
+ raise NonInvertibleMatrixError('Block LDU decomposition cannot be calculated when\
389
+ "A" is singular')
390
+ Ip = Identity(B.shape[0])
391
+ Iq = Identity(B.shape[1])
392
+ Z = ZeroMatrix(*B.shape)
393
+ L = BlockMatrix([[Ip, Z], [C*AI, Iq]])
394
+ D = BlockDiagMatrix(A, self.schur())
395
+ U = BlockMatrix([[Ip, AI*B],[Z.T, Iq]])
396
+ return L, D, U
397
+ else:
398
+ raise ShapeError("Block LDU decomposition is supported only for 2x2 block matrices")
399
+
400
+ def UDLdecomposition(self):
401
+ """Returns the Block UDL decomposition of
402
+ a 2x2 Block Matrix
403
+
404
+ Returns
405
+ =======
406
+
407
+ (U, D, L) : Matrices
408
+ U : Upper Diagonal Matrix
409
+ D : Diagonal Matrix
410
+ L : Lower Diagonal Matrix
411
+
412
+ Examples
413
+ ========
414
+
415
+ >>> from sympy import symbols, MatrixSymbol, BlockMatrix, block_collapse
416
+ >>> m, n = symbols('m n')
417
+ >>> A = MatrixSymbol('A', n, n)
418
+ >>> B = MatrixSymbol('B', n, m)
419
+ >>> C = MatrixSymbol('C', m, n)
420
+ >>> D = MatrixSymbol('D', m, m)
421
+ >>> X = BlockMatrix([[A, B], [C, D]])
422
+ >>> U, D, L = X.UDLdecomposition()
423
+ >>> block_collapse(U*D*L)
424
+ Matrix([
425
+ [A, B],
426
+ [C, D]])
427
+
428
+ Raises
429
+ ======
430
+
431
+ ShapeError
432
+ If the block matrix is not a 2x2 matrix
433
+
434
+ NonInvertibleMatrixError
435
+ If the matrix "D" is non-invertible
436
+
437
+ See Also
438
+ ========
439
+ sympy.matrices.expressions.blockmatrix.BlockMatrix.LDUdecomposition
440
+ sympy.matrices.expressions.blockmatrix.BlockMatrix.LUdecomposition
441
+ """
442
+ if self.blockshape == (2,2):
443
+ [[A, B],
444
+ [C, D]] = self.blocks.tolist()
445
+ try:
446
+ DI = D.I
447
+ except NonInvertibleMatrixError:
448
+ raise NonInvertibleMatrixError('Block UDL decomposition cannot be calculated when\
449
+ "D" is singular')
450
+ Ip = Identity(A.shape[0])
451
+ Iq = Identity(B.shape[1])
452
+ Z = ZeroMatrix(*B.shape)
453
+ U = BlockMatrix([[Ip, B*DI], [Z.T, Iq]])
454
+ D = BlockDiagMatrix(self.schur('D'), D)
455
+ L = BlockMatrix([[Ip, Z],[DI*C, Iq]])
456
+ return U, D, L
457
+ else:
458
+ raise ShapeError("Block UDL decomposition is supported only for 2x2 block matrices")
459
+
460
+ def LUdecomposition(self):
461
+ """Returns the Block LU decomposition of
462
+ a 2x2 Block Matrix
463
+
464
+ Returns
465
+ =======
466
+
467
+ (L, U) : Matrices
468
+ L : Lower Diagonal Matrix
469
+ U : Upper Diagonal Matrix
470
+
471
+ Examples
472
+ ========
473
+
474
+ >>> from sympy import symbols, MatrixSymbol, BlockMatrix, block_collapse
475
+ >>> m, n = symbols('m n')
476
+ >>> A = MatrixSymbol('A', n, n)
477
+ >>> B = MatrixSymbol('B', n, m)
478
+ >>> C = MatrixSymbol('C', m, n)
479
+ >>> D = MatrixSymbol('D', m, m)
480
+ >>> X = BlockMatrix([[A, B], [C, D]])
481
+ >>> L, U = X.LUdecomposition()
482
+ >>> block_collapse(L*U)
483
+ Matrix([
484
+ [A, B],
485
+ [C, D]])
486
+
487
+ Raises
488
+ ======
489
+
490
+ ShapeError
491
+ If the block matrix is not a 2x2 matrix
492
+
493
+ NonInvertibleMatrixError
494
+ If the matrix "A" is non-invertible
495
+
496
+ See Also
497
+ ========
498
+ sympy.matrices.expressions.blockmatrix.BlockMatrix.UDLdecomposition
499
+ sympy.matrices.expressions.blockmatrix.BlockMatrix.LDUdecomposition
500
+ """
501
+ if self.blockshape == (2,2):
502
+ [[A, B],
503
+ [C, D]] = self.blocks.tolist()
504
+ try:
505
+ A = A**0.5
506
+ AI = A.I
507
+ except NonInvertibleMatrixError:
508
+ raise NonInvertibleMatrixError('Block LU decomposition cannot be calculated when\
509
+ "A" is singular')
510
+ Z = ZeroMatrix(*B.shape)
511
+ Q = self.schur()**0.5
512
+ L = BlockMatrix([[A, Z], [C*AI, Q]])
513
+ U = BlockMatrix([[A, AI*B],[Z.T, Q]])
514
+ return L, U
515
+ else:
516
+ raise ShapeError("Block LU decomposition is supported only for 2x2 block matrices")
517
+
518
+ def _entry(self, i, j, **kwargs):
519
+ # Find row entry
520
+ orig_i, orig_j = i, j
521
+ for row_block, numrows in enumerate(self.rowblocksizes):
522
+ cmp = i < numrows
523
+ if cmp == True:
524
+ break
525
+ elif cmp == False:
526
+ i -= numrows
527
+ elif row_block < self.blockshape[0] - 1:
528
+ # Can't tell which block and it's not the last one, return unevaluated
529
+ return MatrixElement(self, orig_i, orig_j)
530
+ for col_block, numcols in enumerate(self.colblocksizes):
531
+ cmp = j < numcols
532
+ if cmp == True:
533
+ break
534
+ elif cmp == False:
535
+ j -= numcols
536
+ elif col_block < self.blockshape[1] - 1:
537
+ return MatrixElement(self, orig_i, orig_j)
538
+ return self.blocks[row_block, col_block][i, j]
539
+
540
+ @property
541
+ def is_Identity(self):
542
+ if self.blockshape[0] != self.blockshape[1]:
543
+ return False
544
+ for i in range(self.blockshape[0]):
545
+ for j in range(self.blockshape[1]):
546
+ if i==j and not self.blocks[i, j].is_Identity:
547
+ return False
548
+ if i!=j and not self.blocks[i, j].is_ZeroMatrix:
549
+ return False
550
+ return True
551
+
552
+ @property
553
+ def is_structurally_symmetric(self):
554
+ return self.rowblocksizes == self.colblocksizes
555
+
556
+ def equals(self, other):
557
+ if self == other:
558
+ return True
559
+ if (isinstance(other, BlockMatrix) and self.blocks == other.blocks):
560
+ return True
561
+ return super().equals(other)
562
+
563
+
564
+ class BlockDiagMatrix(BlockMatrix):
565
+ """A sparse matrix with block matrices along its diagonals
566
+
567
+ Examples
568
+ ========
569
+
570
+ >>> from sympy import MatrixSymbol, BlockDiagMatrix, symbols
571
+ >>> n, m, l = symbols('n m l')
572
+ >>> X = MatrixSymbol('X', n, n)
573
+ >>> Y = MatrixSymbol('Y', m, m)
574
+ >>> BlockDiagMatrix(X, Y)
575
+ Matrix([
576
+ [X, 0],
577
+ [0, Y]])
578
+
579
+ Notes
580
+ =====
581
+
582
+ If you want to get the individual diagonal blocks, use
583
+ :meth:`get_diag_blocks`.
584
+
585
+ See Also
586
+ ========
587
+
588
+ sympy.matrices.dense.diag
589
+ """
590
+ def __new__(cls, *mats):
591
+ return Basic.__new__(BlockDiagMatrix, *[_sympify(m) for m in mats])
592
+
593
+ @property
594
+ def diag(self):
595
+ return self.args
596
+
597
+ @property
598
+ def blocks(self):
599
+ from sympy.matrices.immutable import ImmutableDenseMatrix
600
+ mats = self.args
601
+ data = [[mats[i] if i == j else ZeroMatrix(mats[i].rows, mats[j].cols)
602
+ for j in range(len(mats))]
603
+ for i in range(len(mats))]
604
+ return ImmutableDenseMatrix(data, evaluate=False)
605
+
606
+ @property
607
+ def shape(self):
608
+ return (sum(block.rows for block in self.args),
609
+ sum(block.cols for block in self.args))
610
+
611
+ @property
612
+ def blockshape(self):
613
+ n = len(self.args)
614
+ return (n, n)
615
+
616
+ @property
617
+ def rowblocksizes(self):
618
+ return [block.rows for block in self.args]
619
+
620
+ @property
621
+ def colblocksizes(self):
622
+ return [block.cols for block in self.args]
623
+
624
+ def _all_square_blocks(self):
625
+ """Returns true if all blocks are square"""
626
+ return all(mat.is_square for mat in self.args)
627
+
628
+ def _eval_determinant(self):
629
+ if self._all_square_blocks():
630
+ return Mul(*[det(mat) for mat in self.args])
631
+ # At least one block is non-square. Since the entire matrix must be square we know there must
632
+ # be at least two blocks in this matrix, in which case the entire matrix is necessarily rank-deficient
633
+ return S.Zero
634
+
635
+ def _eval_inverse(self, expand='ignored'):
636
+ if self._all_square_blocks():
637
+ return BlockDiagMatrix(*[mat.inverse() for mat in self.args])
638
+ # See comment in _eval_determinant()
639
+ raise NonInvertibleMatrixError('Matrix det == 0; not invertible.')
640
+
641
+ def _eval_transpose(self):
642
+ return BlockDiagMatrix(*[mat.transpose() for mat in self.args])
643
+
644
+ def _blockmul(self, other):
645
+ if (isinstance(other, BlockDiagMatrix) and
646
+ self.colblocksizes == other.rowblocksizes):
647
+ return BlockDiagMatrix(*[a*b for a, b in zip(self.args, other.args)])
648
+ else:
649
+ return BlockMatrix._blockmul(self, other)
650
+
651
+ def _blockadd(self, other):
652
+ if (isinstance(other, BlockDiagMatrix) and
653
+ self.blockshape == other.blockshape and
654
+ self.rowblocksizes == other.rowblocksizes and
655
+ self.colblocksizes == other.colblocksizes):
656
+ return BlockDiagMatrix(*[a + b for a, b in zip(self.args, other.args)])
657
+ else:
658
+ return BlockMatrix._blockadd(self, other)
659
+
660
+ def get_diag_blocks(self):
661
+ """Return the list of diagonal blocks of the matrix.
662
+
663
+ Examples
664
+ ========
665
+
666
+ >>> from sympy import BlockDiagMatrix, Matrix
667
+
668
+ >>> A = Matrix([[1, 2], [3, 4]])
669
+ >>> B = Matrix([[5, 6], [7, 8]])
670
+ >>> M = BlockDiagMatrix(A, B)
671
+
672
+ How to get diagonal blocks from the block diagonal matrix:
673
+
674
+ >>> diag_blocks = M.get_diag_blocks()
675
+ >>> diag_blocks[0]
676
+ Matrix([
677
+ [1, 2],
678
+ [3, 4]])
679
+ >>> diag_blocks[1]
680
+ Matrix([
681
+ [5, 6],
682
+ [7, 8]])
683
+ """
684
+ return self.args
685
+
686
+
687
+ def block_collapse(expr):
688
+ """Evaluates a block matrix expression
689
+
690
+ >>> from sympy import MatrixSymbol, BlockMatrix, symbols, Identity, ZeroMatrix, block_collapse
691
+ >>> n,m,l = symbols('n m l')
692
+ >>> X = MatrixSymbol('X', n, n)
693
+ >>> Y = MatrixSymbol('Y', m, m)
694
+ >>> Z = MatrixSymbol('Z', n, m)
695
+ >>> B = BlockMatrix([[X, Z], [ZeroMatrix(m, n), Y]])
696
+ >>> print(B)
697
+ Matrix([
698
+ [X, Z],
699
+ [0, Y]])
700
+
701
+ >>> C = BlockMatrix([[Identity(n), Z]])
702
+ >>> print(C)
703
+ Matrix([[I, Z]])
704
+
705
+ >>> print(block_collapse(C*B))
706
+ Matrix([[X, Z + Z*Y]])
707
+ """
708
+ from sympy.strategies.util import expr_fns
709
+
710
+ hasbm = lambda expr: isinstance(expr, MatrixExpr) and expr.has(BlockMatrix)
711
+
712
+ conditioned_rl = condition(
713
+ hasbm,
714
+ typed(
715
+ {MatAdd: do_one(bc_matadd, bc_block_plus_ident),
716
+ MatMul: do_one(bc_matmul, bc_dist),
717
+ MatPow: bc_matmul,
718
+ Transpose: bc_transpose,
719
+ Inverse: bc_inverse,
720
+ BlockMatrix: do_one(bc_unpack, deblock)}
721
+ )
722
+ )
723
+
724
+ rule = exhaust(
725
+ bottom_up(
726
+ exhaust(conditioned_rl),
727
+ fns=expr_fns
728
+ )
729
+ )
730
+
731
+ result = rule(expr)
732
+ doit = getattr(result, 'doit', None)
733
+ if doit is not None:
734
+ return doit()
735
+ else:
736
+ return result
737
+
738
+ def bc_unpack(expr):
739
+ if expr.blockshape == (1, 1):
740
+ return expr.blocks[0, 0]
741
+ return expr
742
+
743
+ def bc_matadd(expr):
744
+ args = sift(expr.args, lambda M: isinstance(M, BlockMatrix))
745
+ blocks = args[True]
746
+ if not blocks:
747
+ return expr
748
+
749
+ nonblocks = args[False]
750
+ block = blocks[0]
751
+ for b in blocks[1:]:
752
+ block = block._blockadd(b)
753
+ if nonblocks:
754
+ return MatAdd(*nonblocks) + block
755
+ else:
756
+ return block
757
+
758
+ def bc_block_plus_ident(expr):
759
+ idents = [arg for arg in expr.args if arg.is_Identity]
760
+ if not idents:
761
+ return expr
762
+
763
+ blocks = [arg for arg in expr.args if isinstance(arg, BlockMatrix)]
764
+ if (blocks and all(b.structurally_equal(blocks[0]) for b in blocks)
765
+ and blocks[0].is_structurally_symmetric):
766
+ block_id = BlockDiagMatrix(*[Identity(k)
767
+ for k in blocks[0].rowblocksizes])
768
+ rest = [arg for arg in expr.args if not arg.is_Identity and not isinstance(arg, BlockMatrix)]
769
+ return MatAdd(block_id * len(idents), *blocks, *rest).doit()
770
+
771
+ return expr
772
+
773
+ def bc_dist(expr):
774
+ """ Turn a*[X, Y] into [a*X, a*Y] """
775
+ factor, mat = expr.as_coeff_mmul()
776
+ if factor == 1:
777
+ return expr
778
+
779
+ unpacked = unpack(mat)
780
+
781
+ if isinstance(unpacked, BlockDiagMatrix):
782
+ B = unpacked.diag
783
+ new_B = [factor * mat for mat in B]
784
+ return BlockDiagMatrix(*new_B)
785
+ elif isinstance(unpacked, BlockMatrix):
786
+ B = unpacked.blocks
787
+ new_B = [
788
+ [factor * B[i, j] for j in range(B.cols)] for i in range(B.rows)]
789
+ return BlockMatrix(new_B)
790
+ return expr
791
+
792
+
793
+ def bc_matmul(expr):
794
+ if isinstance(expr, MatPow):
795
+ if expr.args[1].is_Integer:
796
+ factor, matrices = (1, [expr.args[0]]*expr.args[1])
797
+ else:
798
+ return expr
799
+ else:
800
+ factor, matrices = expr.as_coeff_matrices()
801
+
802
+ i = 0
803
+ while (i+1 < len(matrices)):
804
+ A, B = matrices[i:i+2]
805
+ if isinstance(A, BlockMatrix) and isinstance(B, BlockMatrix):
806
+ matrices[i] = A._blockmul(B)
807
+ matrices.pop(i+1)
808
+ elif isinstance(A, BlockMatrix):
809
+ matrices[i] = A._blockmul(BlockMatrix([[B]]))
810
+ matrices.pop(i+1)
811
+ elif isinstance(B, BlockMatrix):
812
+ matrices[i] = BlockMatrix([[A]])._blockmul(B)
813
+ matrices.pop(i+1)
814
+ else:
815
+ i+=1
816
+ return MatMul(factor, *matrices).doit()
817
+
818
+ def bc_transpose(expr):
819
+ collapse = block_collapse(expr.arg)
820
+ return collapse._eval_transpose()
821
+
822
+
823
+ def bc_inverse(expr):
824
+ if isinstance(expr.arg, BlockDiagMatrix):
825
+ return expr.inverse()
826
+
827
+ expr2 = blockinverse_1x1(expr)
828
+ if expr != expr2:
829
+ return expr2
830
+ return blockinverse_2x2(Inverse(reblock_2x2(expr.arg)))
831
+
832
+ def blockinverse_1x1(expr):
833
+ if isinstance(expr.arg, BlockMatrix) and expr.arg.blockshape == (1, 1):
834
+ mat = Matrix([[expr.arg.blocks[0].inverse()]])
835
+ return BlockMatrix(mat)
836
+ return expr
837
+
838
+
839
+ def blockinverse_2x2(expr):
840
+ if isinstance(expr.arg, BlockMatrix) and expr.arg.blockshape == (2, 2):
841
+ # See: Inverses of 2x2 Block Matrices, Tzon-Tzer Lu and Sheng-Hua Shiou
842
+ [[A, B],
843
+ [C, D]] = expr.arg.blocks.tolist()
844
+
845
+ formula = _choose_2x2_inversion_formula(A, B, C, D)
846
+ if formula != None:
847
+ MI = expr.arg.schur(formula).I
848
+ if formula == 'A':
849
+ AI = A.I
850
+ return BlockMatrix([[AI + AI * B * MI * C * AI, -AI * B * MI], [-MI * C * AI, MI]])
851
+ if formula == 'B':
852
+ BI = B.I
853
+ return BlockMatrix([[-MI * D * BI, MI], [BI + BI * A * MI * D * BI, -BI * A * MI]])
854
+ if formula == 'C':
855
+ CI = C.I
856
+ return BlockMatrix([[-CI * D * MI, CI + CI * D * MI * A * CI], [MI, -MI * A * CI]])
857
+ if formula == 'D':
858
+ DI = D.I
859
+ return BlockMatrix([[MI, -MI * B * DI], [-DI * C * MI, DI + DI * C * MI * B * DI]])
860
+
861
+ return expr
862
+
863
+
864
+ def _choose_2x2_inversion_formula(A, B, C, D):
865
+ """
866
+ Assuming [[A, B], [C, D]] would form a valid square block matrix, find
867
+ which of the classical 2x2 block matrix inversion formulas would be
868
+ best suited.
869
+
870
+ Returns 'A', 'B', 'C', 'D' to represent the algorithm involving inversion
871
+ of the given argument or None if the matrix cannot be inverted using
872
+ any of those formulas.
873
+ """
874
+ # Try to find a known invertible matrix. Note that the Schur complement
875
+ # is currently not being considered for this
876
+ A_inv = ask(Q.invertible(A))
877
+ if A_inv == True:
878
+ return 'A'
879
+ B_inv = ask(Q.invertible(B))
880
+ if B_inv == True:
881
+ return 'B'
882
+ C_inv = ask(Q.invertible(C))
883
+ if C_inv == True:
884
+ return 'C'
885
+ D_inv = ask(Q.invertible(D))
886
+ if D_inv == True:
887
+ return 'D'
888
+ # Otherwise try to find a matrix that isn't known to be non-invertible
889
+ if A_inv != False:
890
+ return 'A'
891
+ if B_inv != False:
892
+ return 'B'
893
+ if C_inv != False:
894
+ return 'C'
895
+ if D_inv != False:
896
+ return 'D'
897
+ return None
898
+
899
+
900
+ def deblock(B):
901
+ """ Flatten a BlockMatrix of BlockMatrices """
902
+ if not isinstance(B, BlockMatrix) or not B.blocks.has(BlockMatrix):
903
+ return B
904
+ wrap = lambda x: x if isinstance(x, BlockMatrix) else BlockMatrix([[x]])
905
+ bb = B.blocks.applyfunc(wrap) # everything is a block
906
+
907
+ try:
908
+ MM = Matrix(0, sum(bb[0, i].blocks.shape[1] for i in range(bb.shape[1])), [])
909
+ for row in range(0, bb.shape[0]):
910
+ M = Matrix(bb[row, 0].blocks)
911
+ for col in range(1, bb.shape[1]):
912
+ M = M.row_join(bb[row, col].blocks)
913
+ MM = MM.col_join(M)
914
+
915
+ return BlockMatrix(MM)
916
+ except ShapeError:
917
+ return B
918
+
919
+
920
+ def reblock_2x2(expr):
921
+ """
922
+ Reblock a BlockMatrix so that it has 2x2 blocks of block matrices. If
923
+ possible in such a way that the matrix continues to be invertible using the
924
+ classical 2x2 block inversion formulas.
925
+ """
926
+ if not isinstance(expr, BlockMatrix) or not all(d > 2 for d in expr.blockshape):
927
+ return expr
928
+
929
+ BM = BlockMatrix # for brevity's sake
930
+ rowblocks, colblocks = expr.blockshape
931
+ blocks = expr.blocks
932
+ for i in range(1, rowblocks):
933
+ for j in range(1, colblocks):
934
+ # try to split rows at i and cols at j
935
+ A = bc_unpack(BM(blocks[:i, :j]))
936
+ B = bc_unpack(BM(blocks[:i, j:]))
937
+ C = bc_unpack(BM(blocks[i:, :j]))
938
+ D = bc_unpack(BM(blocks[i:, j:]))
939
+
940
+ formula = _choose_2x2_inversion_formula(A, B, C, D)
941
+ if formula is not None:
942
+ return BlockMatrix([[A, B], [C, D]])
943
+
944
+ # else: nothing worked, just split upper left corner
945
+ return BM([[blocks[0, 0], BM(blocks[0, 1:])],
946
+ [BM(blocks[1:, 0]), BM(blocks[1:, 1:])]])
947
+
948
+
949
+ def bounds(sizes):
950
+ """ Convert sequence of numbers into pairs of low-high pairs
951
+
952
+ >>> from sympy.matrices.expressions.blockmatrix import bounds
953
+ >>> bounds((1, 10, 50))
954
+ [(0, 1), (1, 11), (11, 61)]
955
+ """
956
+ low = 0
957
+ rv = []
958
+ for size in sizes:
959
+ rv.append((low, low + size))
960
+ low += size
961
+ return rv
962
+
963
+ def blockcut(expr, rowsizes, colsizes):
964
+ """ Cut a matrix expression into Blocks
965
+
966
+ >>> from sympy import ImmutableMatrix, blockcut
967
+ >>> M = ImmutableMatrix(4, 4, range(16))
968
+ >>> B = blockcut(M, (1, 3), (1, 3))
969
+ >>> type(B).__name__
970
+ 'BlockMatrix'
971
+ >>> ImmutableMatrix(B.blocks[0, 1])
972
+ Matrix([[1, 2, 3]])
973
+ """
974
+
975
+ rowbounds = bounds(rowsizes)
976
+ colbounds = bounds(colsizes)
977
+ return BlockMatrix([[MatrixSlice(expr, rowbound, colbound)
978
+ for colbound in colbounds]
979
+ for rowbound in rowbounds])
venv/lib/python3.10/site-packages/sympy/matrices/expressions/companion.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.singleton import S
2
+ from sympy.core.sympify import _sympify
3
+ from sympy.polys.polytools import Poly
4
+
5
+ from .matexpr import MatrixExpr
6
+
7
+
8
+ class CompanionMatrix(MatrixExpr):
9
+ """A symbolic companion matrix of a polynomial.
10
+
11
+ Examples
12
+ ========
13
+
14
+ >>> from sympy import Poly, Symbol, symbols
15
+ >>> from sympy.matrices.expressions import CompanionMatrix
16
+ >>> x = Symbol('x')
17
+ >>> c0, c1, c2, c3, c4 = symbols('c0:5')
18
+ >>> p = Poly(c0 + c1*x + c2*x**2 + c3*x**3 + c4*x**4 + x**5, x)
19
+ >>> CompanionMatrix(p)
20
+ CompanionMatrix(Poly(x**5 + c4*x**4 + c3*x**3 + c2*x**2 + c1*x + c0,
21
+ x, domain='ZZ[c0,c1,c2,c3,c4]'))
22
+ """
23
+ def __new__(cls, poly):
24
+ poly = _sympify(poly)
25
+ if not isinstance(poly, Poly):
26
+ raise ValueError("{} must be a Poly instance.".format(poly))
27
+ if not poly.is_monic:
28
+ raise ValueError("{} must be a monic polynomial.".format(poly))
29
+ if not poly.is_univariate:
30
+ raise ValueError(
31
+ "{} must be a univariate polynomial.".format(poly))
32
+ if not poly.degree() >= 1:
33
+ raise ValueError(
34
+ "{} must have degree not less than 1.".format(poly))
35
+
36
+ return super().__new__(cls, poly)
37
+
38
+
39
+ @property
40
+ def shape(self):
41
+ poly = self.args[0]
42
+ size = poly.degree()
43
+ return size, size
44
+
45
+
46
+ def _entry(self, i, j):
47
+ if j == self.cols - 1:
48
+ return -self.args[0].all_coeffs()[-1 - i]
49
+ elif i == j + 1:
50
+ return S.One
51
+ return S.Zero
52
+
53
+
54
+ def as_explicit(self):
55
+ from sympy.matrices.immutable import ImmutableDenseMatrix
56
+ return ImmutableDenseMatrix.companion(self.args[0])
venv/lib/python3.10/site-packages/sympy/matrices/expressions/determinant.py ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.basic import Basic
2
+ from sympy.core.expr import Expr
3
+ from sympy.core.singleton import S
4
+ from sympy.core.sympify import sympify
5
+ from sympy.matrices.common import NonSquareMatrixError
6
+
7
+
8
+ class Determinant(Expr):
9
+ """Matrix Determinant
10
+
11
+ Represents the determinant of a matrix expression.
12
+
13
+ Examples
14
+ ========
15
+
16
+ >>> from sympy import MatrixSymbol, Determinant, eye
17
+ >>> A = MatrixSymbol('A', 3, 3)
18
+ >>> Determinant(A)
19
+ Determinant(A)
20
+ >>> Determinant(eye(3)).doit()
21
+ 1
22
+ """
23
+ is_commutative = True
24
+
25
+ def __new__(cls, mat):
26
+ mat = sympify(mat)
27
+ if not mat.is_Matrix:
28
+ raise TypeError("Input to Determinant, %s, not a matrix" % str(mat))
29
+
30
+ if mat.is_square is False:
31
+ raise NonSquareMatrixError("Det of a non-square matrix")
32
+
33
+ return Basic.__new__(cls, mat)
34
+
35
+ @property
36
+ def arg(self):
37
+ return self.args[0]
38
+
39
+ @property
40
+ def kind(self):
41
+ return self.arg.kind.element_kind
42
+
43
+ def doit(self, expand=False, **hints):
44
+ try:
45
+ return self.arg._eval_determinant()
46
+ except (AttributeError, NotImplementedError):
47
+ return self
48
+
49
+ def det(matexpr):
50
+ """ Matrix Determinant
51
+
52
+ Examples
53
+ ========
54
+
55
+ >>> from sympy import MatrixSymbol, det, eye
56
+ >>> A = MatrixSymbol('A', 3, 3)
57
+ >>> det(A)
58
+ Determinant(A)
59
+ >>> det(eye(3))
60
+ 1
61
+ """
62
+
63
+ return Determinant(matexpr).doit()
64
+
65
+ class Permanent(Expr):
66
+ """Matrix Permanent
67
+
68
+ Represents the permanent of a matrix expression.
69
+
70
+ Examples
71
+ ========
72
+
73
+ >>> from sympy import MatrixSymbol, Permanent, ones
74
+ >>> A = MatrixSymbol('A', 3, 3)
75
+ >>> Permanent(A)
76
+ Permanent(A)
77
+ >>> Permanent(ones(3, 3)).doit()
78
+ 6
79
+ """
80
+
81
+ def __new__(cls, mat):
82
+ mat = sympify(mat)
83
+ if not mat.is_Matrix:
84
+ raise TypeError("Input to Permanent, %s, not a matrix" % str(mat))
85
+
86
+ return Basic.__new__(cls, mat)
87
+
88
+ @property
89
+ def arg(self):
90
+ return self.args[0]
91
+
92
+ def doit(self, expand=False, **hints):
93
+ try:
94
+ return self.arg.per()
95
+ except (AttributeError, NotImplementedError):
96
+ return self
97
+
98
+ def per(matexpr):
99
+ """ Matrix Permanent
100
+
101
+ Examples
102
+ ========
103
+
104
+ >>> from sympy import MatrixSymbol, Matrix, per, ones
105
+ >>> A = MatrixSymbol('A', 3, 3)
106
+ >>> per(A)
107
+ Permanent(A)
108
+ >>> per(ones(5, 5))
109
+ 120
110
+ >>> M = Matrix([1, 2, 5])
111
+ >>> per(M)
112
+ 8
113
+ """
114
+
115
+ return Permanent(matexpr).doit()
116
+
117
+ from sympy.assumptions.ask import ask, Q
118
+ from sympy.assumptions.refine import handlers_dict
119
+
120
+
121
+ def refine_Determinant(expr, assumptions):
122
+ """
123
+ >>> from sympy import MatrixSymbol, Q, assuming, refine, det
124
+ >>> X = MatrixSymbol('X', 2, 2)
125
+ >>> det(X)
126
+ Determinant(X)
127
+ >>> with assuming(Q.orthogonal(X)):
128
+ ... print(refine(det(X)))
129
+ 1
130
+ """
131
+ if ask(Q.orthogonal(expr.arg), assumptions):
132
+ return S.One
133
+ elif ask(Q.singular(expr.arg), assumptions):
134
+ return S.Zero
135
+ elif ask(Q.unit_triangular(expr.arg), assumptions):
136
+ return S.One
137
+
138
+ return expr
139
+
140
+
141
+ handlers_dict['Determinant'] = refine_Determinant
venv/lib/python3.10/site-packages/sympy/matrices/expressions/diagonal.py ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.sympify import _sympify
2
+
3
+ from sympy.matrices.expressions import MatrixExpr
4
+ from sympy.core import S, Eq, Ge
5
+ from sympy.core.mul import Mul
6
+ from sympy.functions.special.tensor_functions import KroneckerDelta
7
+
8
+
9
+ class DiagonalMatrix(MatrixExpr):
10
+ """DiagonalMatrix(M) will create a matrix expression that
11
+ behaves as though all off-diagonal elements,
12
+ `M[i, j]` where `i != j`, are zero.
13
+
14
+ Examples
15
+ ========
16
+
17
+ >>> from sympy import MatrixSymbol, DiagonalMatrix, Symbol
18
+ >>> n = Symbol('n', integer=True)
19
+ >>> m = Symbol('m', integer=True)
20
+ >>> D = DiagonalMatrix(MatrixSymbol('x', 2, 3))
21
+ >>> D[1, 2]
22
+ 0
23
+ >>> D[1, 1]
24
+ x[1, 1]
25
+
26
+ The length of the diagonal -- the lesser of the two dimensions of `M` --
27
+ is accessed through the `diagonal_length` property:
28
+
29
+ >>> D.diagonal_length
30
+ 2
31
+ >>> DiagonalMatrix(MatrixSymbol('x', n + 1, n)).diagonal_length
32
+ n
33
+
34
+ When one of the dimensions is symbolic the other will be treated as
35
+ though it is smaller:
36
+
37
+ >>> tall = DiagonalMatrix(MatrixSymbol('x', n, 3))
38
+ >>> tall.diagonal_length
39
+ 3
40
+ >>> tall[10, 1]
41
+ 0
42
+
43
+ When the size of the diagonal is not known, a value of None will
44
+ be returned:
45
+
46
+ >>> DiagonalMatrix(MatrixSymbol('x', n, m)).diagonal_length is None
47
+ True
48
+
49
+ """
50
+ arg = property(lambda self: self.args[0])
51
+
52
+ shape = property(lambda self: self.arg.shape) # type:ignore
53
+
54
+ @property
55
+ def diagonal_length(self):
56
+ r, c = self.shape
57
+ if r.is_Integer and c.is_Integer:
58
+ m = min(r, c)
59
+ elif r.is_Integer and not c.is_Integer:
60
+ m = r
61
+ elif c.is_Integer and not r.is_Integer:
62
+ m = c
63
+ elif r == c:
64
+ m = r
65
+ else:
66
+ try:
67
+ m = min(r, c)
68
+ except TypeError:
69
+ m = None
70
+ return m
71
+
72
+ def _entry(self, i, j, **kwargs):
73
+ if self.diagonal_length is not None:
74
+ if Ge(i, self.diagonal_length) is S.true:
75
+ return S.Zero
76
+ elif Ge(j, self.diagonal_length) is S.true:
77
+ return S.Zero
78
+ eq = Eq(i, j)
79
+ if eq is S.true:
80
+ return self.arg[i, i]
81
+ elif eq is S.false:
82
+ return S.Zero
83
+ return self.arg[i, j]*KroneckerDelta(i, j)
84
+
85
+
86
+ class DiagonalOf(MatrixExpr):
87
+ """DiagonalOf(M) will create a matrix expression that
88
+ is equivalent to the diagonal of `M`, represented as
89
+ a single column matrix.
90
+
91
+ Examples
92
+ ========
93
+
94
+ >>> from sympy import MatrixSymbol, DiagonalOf, Symbol
95
+ >>> n = Symbol('n', integer=True)
96
+ >>> m = Symbol('m', integer=True)
97
+ >>> x = MatrixSymbol('x', 2, 3)
98
+ >>> diag = DiagonalOf(x)
99
+ >>> diag.shape
100
+ (2, 1)
101
+
102
+ The diagonal can be addressed like a matrix or vector and will
103
+ return the corresponding element of the original matrix:
104
+
105
+ >>> diag[1, 0] == diag[1] == x[1, 1]
106
+ True
107
+
108
+ The length of the diagonal -- the lesser of the two dimensions of `M` --
109
+ is accessed through the `diagonal_length` property:
110
+
111
+ >>> diag.diagonal_length
112
+ 2
113
+ >>> DiagonalOf(MatrixSymbol('x', n + 1, n)).diagonal_length
114
+ n
115
+
116
+ When only one of the dimensions is symbolic the other will be
117
+ treated as though it is smaller:
118
+
119
+ >>> dtall = DiagonalOf(MatrixSymbol('x', n, 3))
120
+ >>> dtall.diagonal_length
121
+ 3
122
+
123
+ When the size of the diagonal is not known, a value of None will
124
+ be returned:
125
+
126
+ >>> DiagonalOf(MatrixSymbol('x', n, m)).diagonal_length is None
127
+ True
128
+
129
+ """
130
+ arg = property(lambda self: self.args[0])
131
+ @property
132
+ def shape(self):
133
+ r, c = self.arg.shape
134
+ if r.is_Integer and c.is_Integer:
135
+ m = min(r, c)
136
+ elif r.is_Integer and not c.is_Integer:
137
+ m = r
138
+ elif c.is_Integer and not r.is_Integer:
139
+ m = c
140
+ elif r == c:
141
+ m = r
142
+ else:
143
+ try:
144
+ m = min(r, c)
145
+ except TypeError:
146
+ m = None
147
+ return m, S.One
148
+
149
+ @property
150
+ def diagonal_length(self):
151
+ return self.shape[0]
152
+
153
+ def _entry(self, i, j, **kwargs):
154
+ return self.arg._entry(i, i, **kwargs)
155
+
156
+
157
+ class DiagMatrix(MatrixExpr):
158
+ """
159
+ Turn a vector into a diagonal matrix.
160
+ """
161
+ def __new__(cls, vector):
162
+ vector = _sympify(vector)
163
+ obj = MatrixExpr.__new__(cls, vector)
164
+ shape = vector.shape
165
+ dim = shape[1] if shape[0] == 1 else shape[0]
166
+ if vector.shape[0] != 1:
167
+ obj._iscolumn = True
168
+ else:
169
+ obj._iscolumn = False
170
+ obj._shape = (dim, dim)
171
+ obj._vector = vector
172
+ return obj
173
+
174
+ @property
175
+ def shape(self):
176
+ return self._shape
177
+
178
+ def _entry(self, i, j, **kwargs):
179
+ if self._iscolumn:
180
+ result = self._vector._entry(i, 0, **kwargs)
181
+ else:
182
+ result = self._vector._entry(0, j, **kwargs)
183
+ if i != j:
184
+ result *= KroneckerDelta(i, j)
185
+ return result
186
+
187
+ def _eval_transpose(self):
188
+ return self
189
+
190
+ def as_explicit(self):
191
+ from sympy.matrices.dense import diag
192
+ return diag(*list(self._vector.as_explicit()))
193
+
194
+ def doit(self, **hints):
195
+ from sympy.assumptions import ask, Q
196
+ from sympy.matrices.expressions.matmul import MatMul
197
+ from sympy.matrices.expressions.transpose import Transpose
198
+ from sympy.matrices.dense import eye
199
+ from sympy.matrices.matrices import MatrixBase
200
+ vector = self._vector
201
+ # This accounts for shape (1, 1) and identity matrices, among others:
202
+ if ask(Q.diagonal(vector)):
203
+ return vector
204
+ if isinstance(vector, MatrixBase):
205
+ ret = eye(max(vector.shape))
206
+ for i in range(ret.shape[0]):
207
+ ret[i, i] = vector[i]
208
+ return type(vector)(ret)
209
+ if vector.is_MatMul:
210
+ matrices = [arg for arg in vector.args if arg.is_Matrix]
211
+ scalars = [arg for arg in vector.args if arg not in matrices]
212
+ if scalars:
213
+ return Mul.fromiter(scalars)*DiagMatrix(MatMul.fromiter(matrices).doit()).doit()
214
+ if isinstance(vector, Transpose):
215
+ vector = vector.arg
216
+ return DiagMatrix(vector)
217
+
218
+
219
+ def diagonalize_vector(vector):
220
+ return DiagMatrix(vector).doit()
venv/lib/python3.10/site-packages/sympy/matrices/expressions/dotproduct.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core import Basic, Expr
2
+ from sympy.core.sympify import _sympify
3
+ from sympy.matrices.expressions.transpose import transpose
4
+
5
+
6
+ class DotProduct(Expr):
7
+ """
8
+ Dot product of vector matrices
9
+
10
+ The input should be two 1 x n or n x 1 matrices. The output represents the
11
+ scalar dotproduct.
12
+
13
+ This is similar to using MatrixElement and MatMul, except DotProduct does
14
+ not require that one vector to be a row vector and the other vector to be
15
+ a column vector.
16
+
17
+ >>> from sympy import MatrixSymbol, DotProduct
18
+ >>> A = MatrixSymbol('A', 1, 3)
19
+ >>> B = MatrixSymbol('B', 1, 3)
20
+ >>> DotProduct(A, B)
21
+ DotProduct(A, B)
22
+ >>> DotProduct(A, B).doit()
23
+ A[0, 0]*B[0, 0] + A[0, 1]*B[0, 1] + A[0, 2]*B[0, 2]
24
+ """
25
+
26
+ def __new__(cls, arg1, arg2):
27
+ arg1, arg2 = _sympify((arg1, arg2))
28
+
29
+ if not arg1.is_Matrix:
30
+ raise TypeError("Argument 1 of DotProduct is not a matrix")
31
+ if not arg2.is_Matrix:
32
+ raise TypeError("Argument 2 of DotProduct is not a matrix")
33
+ if not (1 in arg1.shape):
34
+ raise TypeError("Argument 1 of DotProduct is not a vector")
35
+ if not (1 in arg2.shape):
36
+ raise TypeError("Argument 2 of DotProduct is not a vector")
37
+
38
+ if set(arg1.shape) != set(arg2.shape):
39
+ raise TypeError("DotProduct arguments are not the same length")
40
+
41
+ return Basic.__new__(cls, arg1, arg2)
42
+
43
+ def doit(self, expand=False, **hints):
44
+ if self.args[0].shape == self.args[1].shape:
45
+ if self.args[0].shape[0] == 1:
46
+ mul = self.args[0]*transpose(self.args[1])
47
+ else:
48
+ mul = transpose(self.args[0])*self.args[1]
49
+ else:
50
+ if self.args[0].shape[0] == 1:
51
+ mul = self.args[0]*self.args[1]
52
+ else:
53
+ mul = transpose(self.args[0])*transpose(self.args[1])
54
+
55
+ return mul[0]
venv/lib/python3.10/site-packages/sympy/matrices/expressions/factorizations.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.matrices.expressions import MatrixExpr
2
+ from sympy.assumptions.ask import Q
3
+
4
+ class Factorization(MatrixExpr):
5
+ arg = property(lambda self: self.args[0])
6
+ shape = property(lambda self: self.arg.shape) # type: ignore
7
+
8
+ class LofLU(Factorization):
9
+ @property
10
+ def predicates(self):
11
+ return (Q.lower_triangular,)
12
+ class UofLU(Factorization):
13
+ @property
14
+ def predicates(self):
15
+ return (Q.upper_triangular,)
16
+
17
+ class LofCholesky(LofLU): pass
18
+ class UofCholesky(UofLU): pass
19
+
20
+ class QofQR(Factorization):
21
+ @property
22
+ def predicates(self):
23
+ return (Q.orthogonal,)
24
+ class RofQR(Factorization):
25
+ @property
26
+ def predicates(self):
27
+ return (Q.upper_triangular,)
28
+
29
+ class EigenVectors(Factorization):
30
+ @property
31
+ def predicates(self):
32
+ return (Q.orthogonal,)
33
+ class EigenValues(Factorization):
34
+ @property
35
+ def predicates(self):
36
+ return (Q.diagonal,)
37
+
38
+ class UofSVD(Factorization):
39
+ @property
40
+ def predicates(self):
41
+ return (Q.orthogonal,)
42
+ class SofSVD(Factorization):
43
+ @property
44
+ def predicates(self):
45
+ return (Q.diagonal,)
46
+ class VofSVD(Factorization):
47
+ @property
48
+ def predicates(self):
49
+ return (Q.orthogonal,)
50
+
51
+
52
+ def lu(expr):
53
+ return LofLU(expr), UofLU(expr)
54
+
55
+ def qr(expr):
56
+ return QofQR(expr), RofQR(expr)
57
+
58
+ def eig(expr):
59
+ return EigenValues(expr), EigenVectors(expr)
60
+
61
+ def svd(expr):
62
+ return UofSVD(expr), SofSVD(expr), VofSVD(expr)
venv/lib/python3.10/site-packages/sympy/matrices/expressions/fourier.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.sympify import _sympify
2
+ from sympy.matrices.expressions import MatrixExpr
3
+ from sympy.core.numbers import I
4
+ from sympy.core.singleton import S
5
+ from sympy.functions.elementary.exponential import exp
6
+ from sympy.functions.elementary.miscellaneous import sqrt
7
+
8
+
9
+ class DFT(MatrixExpr):
10
+ r"""
11
+ Returns a discrete Fourier transform matrix. The matrix is scaled
12
+ with :math:`\frac{1}{\sqrt{n}}` so that it is unitary.
13
+
14
+ Parameters
15
+ ==========
16
+
17
+ n : integer or Symbol
18
+ Size of the transform.
19
+
20
+ Examples
21
+ ========
22
+
23
+ >>> from sympy.abc import n
24
+ >>> from sympy.matrices.expressions.fourier import DFT
25
+ >>> DFT(3)
26
+ DFT(3)
27
+ >>> DFT(3).as_explicit()
28
+ Matrix([
29
+ [sqrt(3)/3, sqrt(3)/3, sqrt(3)/3],
30
+ [sqrt(3)/3, sqrt(3)*exp(-2*I*pi/3)/3, sqrt(3)*exp(2*I*pi/3)/3],
31
+ [sqrt(3)/3, sqrt(3)*exp(2*I*pi/3)/3, sqrt(3)*exp(-2*I*pi/3)/3]])
32
+ >>> DFT(n).shape
33
+ (n, n)
34
+
35
+ References
36
+ ==========
37
+
38
+ .. [1] https://en.wikipedia.org/wiki/DFT_matrix
39
+
40
+ """
41
+
42
+ def __new__(cls, n):
43
+ n = _sympify(n)
44
+ cls._check_dim(n)
45
+
46
+ obj = super().__new__(cls, n)
47
+ return obj
48
+
49
+ n = property(lambda self: self.args[0]) # type: ignore
50
+ shape = property(lambda self: (self.n, self.n)) # type: ignore
51
+
52
+ def _entry(self, i, j, **kwargs):
53
+ w = exp(-2*S.Pi*I/self.n)
54
+ return w**(i*j) / sqrt(self.n)
55
+
56
+ def _eval_inverse(self):
57
+ return IDFT(self.n)
58
+
59
+
60
+ class IDFT(DFT):
61
+ r"""
62
+ Returns an inverse discrete Fourier transform matrix. The matrix is scaled
63
+ with :math:`\frac{1}{\sqrt{n}}` so that it is unitary.
64
+
65
+ Parameters
66
+ ==========
67
+
68
+ n : integer or Symbol
69
+ Size of the transform
70
+
71
+ Examples
72
+ ========
73
+
74
+ >>> from sympy.matrices.expressions.fourier import DFT, IDFT
75
+ >>> IDFT(3)
76
+ IDFT(3)
77
+ >>> IDFT(4)*DFT(4)
78
+ I
79
+
80
+ See Also
81
+ ========
82
+
83
+ DFT
84
+
85
+ """
86
+ def _entry(self, i, j, **kwargs):
87
+ w = exp(-2*S.Pi*I/self.n)
88
+ return w**(-i*j) / sqrt(self.n)
89
+
90
+ def _eval_inverse(self):
91
+ return DFT(self.n)
venv/lib/python3.10/site-packages/sympy/matrices/expressions/funcmatrix.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .matexpr import MatrixExpr
2
+ from sympy.core.function import FunctionClass, Lambda
3
+ from sympy.core.symbol import Dummy
4
+ from sympy.core.sympify import _sympify, sympify
5
+ from sympy.matrices import Matrix
6
+ from sympy.functions.elementary.complexes import re, im
7
+
8
+
9
+ class FunctionMatrix(MatrixExpr):
10
+ """Represents a matrix using a function (``Lambda``) which gives
11
+ outputs according to the coordinates of each matrix entries.
12
+
13
+ Parameters
14
+ ==========
15
+
16
+ rows : nonnegative integer. Can be symbolic.
17
+
18
+ cols : nonnegative integer. Can be symbolic.
19
+
20
+ lamda : Function, Lambda or str
21
+ If it is a SymPy ``Function`` or ``Lambda`` instance,
22
+ it should be able to accept two arguments which represents the
23
+ matrix coordinates.
24
+
25
+ If it is a pure string containing Python ``lambda`` semantics,
26
+ it is interpreted by the SymPy parser and casted into a SymPy
27
+ ``Lambda`` instance.
28
+
29
+ Examples
30
+ ========
31
+
32
+ Creating a ``FunctionMatrix`` from ``Lambda``:
33
+
34
+ >>> from sympy import FunctionMatrix, symbols, Lambda, MatPow
35
+ >>> i, j, n, m = symbols('i,j,n,m')
36
+ >>> FunctionMatrix(n, m, Lambda((i, j), i + j))
37
+ FunctionMatrix(n, m, Lambda((i, j), i + j))
38
+
39
+ Creating a ``FunctionMatrix`` from a SymPy function:
40
+
41
+ >>> from sympy import KroneckerDelta
42
+ >>> X = FunctionMatrix(3, 3, KroneckerDelta)
43
+ >>> X.as_explicit()
44
+ Matrix([
45
+ [1, 0, 0],
46
+ [0, 1, 0],
47
+ [0, 0, 1]])
48
+
49
+ Creating a ``FunctionMatrix`` from a SymPy undefined function:
50
+
51
+ >>> from sympy import Function
52
+ >>> f = Function('f')
53
+ >>> X = FunctionMatrix(3, 3, f)
54
+ >>> X.as_explicit()
55
+ Matrix([
56
+ [f(0, 0), f(0, 1), f(0, 2)],
57
+ [f(1, 0), f(1, 1), f(1, 2)],
58
+ [f(2, 0), f(2, 1), f(2, 2)]])
59
+
60
+ Creating a ``FunctionMatrix`` from Python ``lambda``:
61
+
62
+ >>> FunctionMatrix(n, m, 'lambda i, j: i + j')
63
+ FunctionMatrix(n, m, Lambda((i, j), i + j))
64
+
65
+ Example of lazy evaluation of matrix product:
66
+
67
+ >>> Y = FunctionMatrix(1000, 1000, Lambda((i, j), i + j))
68
+ >>> isinstance(Y*Y, MatPow) # this is an expression object
69
+ True
70
+ >>> (Y**2)[10,10] # So this is evaluated lazily
71
+ 342923500
72
+
73
+ Notes
74
+ =====
75
+
76
+ This class provides an alternative way to represent an extremely
77
+ dense matrix with entries in some form of a sequence, in a most
78
+ sparse way.
79
+ """
80
+ def __new__(cls, rows, cols, lamda):
81
+ rows, cols = _sympify(rows), _sympify(cols)
82
+ cls._check_dim(rows)
83
+ cls._check_dim(cols)
84
+
85
+ lamda = sympify(lamda)
86
+ if not isinstance(lamda, (FunctionClass, Lambda)):
87
+ raise ValueError(
88
+ "{} should be compatible with SymPy function classes."
89
+ .format(lamda))
90
+
91
+ if 2 not in lamda.nargs:
92
+ raise ValueError(
93
+ '{} should be able to accept 2 arguments.'.format(lamda))
94
+
95
+ if not isinstance(lamda, Lambda):
96
+ i, j = Dummy('i'), Dummy('j')
97
+ lamda = Lambda((i, j), lamda(i, j))
98
+
99
+ return super().__new__(cls, rows, cols, lamda)
100
+
101
+ @property
102
+ def shape(self):
103
+ return self.args[0:2]
104
+
105
+ @property
106
+ def lamda(self):
107
+ return self.args[2]
108
+
109
+ def _entry(self, i, j, **kwargs):
110
+ return self.lamda(i, j)
111
+
112
+ def _eval_trace(self):
113
+ from sympy.matrices.expressions.trace import Trace
114
+ from sympy.concrete.summations import Sum
115
+ return Trace(self).rewrite(Sum).doit()
116
+
117
+ def _eval_as_real_imag(self):
118
+ return (re(Matrix(self)), im(Matrix(self)))
venv/lib/python3.10/site-packages/sympy/matrices/expressions/hadamard.py ADDED
@@ -0,0 +1,464 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import Counter
2
+
3
+ from sympy.core import Mul, sympify
4
+ from sympy.core.add import Add
5
+ from sympy.core.expr import ExprBuilder
6
+ from sympy.core.sorting import default_sort_key
7
+ from sympy.functions.elementary.exponential import log
8
+ from sympy.matrices.expressions.matexpr import MatrixExpr
9
+ from sympy.matrices.expressions._shape import validate_matadd_integer as validate
10
+ from sympy.matrices.expressions.special import ZeroMatrix, OneMatrix
11
+ from sympy.strategies import (
12
+ unpack, flatten, condition, exhaust, rm_id, sort
13
+ )
14
+ from sympy.utilities.exceptions import sympy_deprecation_warning
15
+
16
+
17
+ def hadamard_product(*matrices):
18
+ """
19
+ Return the elementwise (aka Hadamard) product of matrices.
20
+
21
+ Examples
22
+ ========
23
+
24
+ >>> from sympy import hadamard_product, MatrixSymbol
25
+ >>> A = MatrixSymbol('A', 2, 3)
26
+ >>> B = MatrixSymbol('B', 2, 3)
27
+ >>> hadamard_product(A)
28
+ A
29
+ >>> hadamard_product(A, B)
30
+ HadamardProduct(A, B)
31
+ >>> hadamard_product(A, B)[0, 1]
32
+ A[0, 1]*B[0, 1]
33
+ """
34
+ if not matrices:
35
+ raise TypeError("Empty Hadamard product is undefined")
36
+ if len(matrices) == 1:
37
+ return matrices[0]
38
+ return HadamardProduct(*matrices).doit()
39
+
40
+
41
+ class HadamardProduct(MatrixExpr):
42
+ """
43
+ Elementwise product of matrix expressions
44
+
45
+ Examples
46
+ ========
47
+
48
+ Hadamard product for matrix symbols:
49
+
50
+ >>> from sympy import hadamard_product, HadamardProduct, MatrixSymbol
51
+ >>> A = MatrixSymbol('A', 5, 5)
52
+ >>> B = MatrixSymbol('B', 5, 5)
53
+ >>> isinstance(hadamard_product(A, B), HadamardProduct)
54
+ True
55
+
56
+ Notes
57
+ =====
58
+
59
+ This is a symbolic object that simply stores its argument without
60
+ evaluating it. To actually compute the product, use the function
61
+ ``hadamard_product()`` or ``HadamardProduct.doit``
62
+ """
63
+ is_HadamardProduct = True
64
+
65
+ def __new__(cls, *args, evaluate=False, check=None):
66
+ args = list(map(sympify, args))
67
+ if len(args) == 0:
68
+ # We currently don't have a way to support one-matrices of generic dimensions:
69
+ raise ValueError("HadamardProduct needs at least one argument")
70
+
71
+ if not all(isinstance(arg, MatrixExpr) for arg in args):
72
+ raise TypeError("Mix of Matrix and Scalar symbols")
73
+
74
+ if check is not None:
75
+ sympy_deprecation_warning(
76
+ "Passing check to HadamardProduct is deprecated and the check argument will be removed in a future version.",
77
+ deprecated_since_version="1.11",
78
+ active_deprecations_target='remove-check-argument-from-matrix-operations')
79
+
80
+ if check is not False:
81
+ validate(*args)
82
+
83
+ obj = super().__new__(cls, *args)
84
+ if evaluate:
85
+ obj = obj.doit(deep=False)
86
+ return obj
87
+
88
+ @property
89
+ def shape(self):
90
+ return self.args[0].shape
91
+
92
+ def _entry(self, i, j, **kwargs):
93
+ return Mul(*[arg._entry(i, j, **kwargs) for arg in self.args])
94
+
95
+ def _eval_transpose(self):
96
+ from sympy.matrices.expressions.transpose import transpose
97
+ return HadamardProduct(*list(map(transpose, self.args)))
98
+
99
+ def doit(self, **hints):
100
+ expr = self.func(*(i.doit(**hints) for i in self.args))
101
+ # Check for explicit matrices:
102
+ from sympy.matrices.matrices import MatrixBase
103
+ from sympy.matrices.immutable import ImmutableMatrix
104
+
105
+ explicit = [i for i in expr.args if isinstance(i, MatrixBase)]
106
+ if explicit:
107
+ remainder = [i for i in expr.args if i not in explicit]
108
+ expl_mat = ImmutableMatrix([
109
+ Mul.fromiter(i) for i in zip(*explicit)
110
+ ]).reshape(*self.shape)
111
+ expr = HadamardProduct(*([expl_mat] + remainder))
112
+
113
+ return canonicalize(expr)
114
+
115
+ def _eval_derivative(self, x):
116
+ terms = []
117
+ args = list(self.args)
118
+ for i in range(len(args)):
119
+ factors = args[:i] + [args[i].diff(x)] + args[i+1:]
120
+ terms.append(hadamard_product(*factors))
121
+ return Add.fromiter(terms)
122
+
123
+ def _eval_derivative_matrix_lines(self, x):
124
+ from sympy.tensor.array.expressions.array_expressions import ArrayDiagonal
125
+ from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
126
+ from sympy.matrices.expressions.matexpr import _make_matrix
127
+
128
+ with_x_ind = [i for i, arg in enumerate(self.args) if arg.has(x)]
129
+ lines = []
130
+ for ind in with_x_ind:
131
+ left_args = self.args[:ind]
132
+ right_args = self.args[ind+1:]
133
+
134
+ d = self.args[ind]._eval_derivative_matrix_lines(x)
135
+ hadam = hadamard_product(*(right_args + left_args))
136
+ diagonal = [(0, 2), (3, 4)]
137
+ diagonal = [e for j, e in enumerate(diagonal) if self.shape[j] != 1]
138
+ for i in d:
139
+ l1 = i._lines[i._first_line_index]
140
+ l2 = i._lines[i._second_line_index]
141
+ subexpr = ExprBuilder(
142
+ ArrayDiagonal,
143
+ [
144
+ ExprBuilder(
145
+ ArrayTensorProduct,
146
+ [
147
+ ExprBuilder(_make_matrix, [l1]),
148
+ hadam,
149
+ ExprBuilder(_make_matrix, [l2]),
150
+ ]
151
+ ),
152
+ *diagonal],
153
+
154
+ )
155
+ i._first_pointer_parent = subexpr.args[0].args[0].args
156
+ i._first_pointer_index = 0
157
+ i._second_pointer_parent = subexpr.args[0].args[2].args
158
+ i._second_pointer_index = 0
159
+ i._lines = [subexpr]
160
+ lines.append(i)
161
+
162
+ return lines
163
+
164
+
165
+ # TODO Implement algorithm for rewriting Hadamard product as diagonal matrix
166
+ # if matmul identy matrix is multiplied.
167
+ def canonicalize(x):
168
+ """Canonicalize the Hadamard product ``x`` with mathematical properties.
169
+
170
+ Examples
171
+ ========
172
+
173
+ >>> from sympy import MatrixSymbol, HadamardProduct
174
+ >>> from sympy import OneMatrix, ZeroMatrix
175
+ >>> from sympy.matrices.expressions.hadamard import canonicalize
176
+ >>> from sympy import init_printing
177
+ >>> init_printing(use_unicode=False)
178
+
179
+ >>> A = MatrixSymbol('A', 2, 2)
180
+ >>> B = MatrixSymbol('B', 2, 2)
181
+ >>> C = MatrixSymbol('C', 2, 2)
182
+
183
+ Hadamard product associativity:
184
+
185
+ >>> X = HadamardProduct(A, HadamardProduct(B, C))
186
+ >>> X
187
+ A.*(B.*C)
188
+ >>> canonicalize(X)
189
+ A.*B.*C
190
+
191
+ Hadamard product commutativity:
192
+
193
+ >>> X = HadamardProduct(A, B)
194
+ >>> Y = HadamardProduct(B, A)
195
+ >>> X
196
+ A.*B
197
+ >>> Y
198
+ B.*A
199
+ >>> canonicalize(X)
200
+ A.*B
201
+ >>> canonicalize(Y)
202
+ A.*B
203
+
204
+ Hadamard product identity:
205
+
206
+ >>> X = HadamardProduct(A, OneMatrix(2, 2))
207
+ >>> X
208
+ A.*1
209
+ >>> canonicalize(X)
210
+ A
211
+
212
+ Absorbing element of Hadamard product:
213
+
214
+ >>> X = HadamardProduct(A, ZeroMatrix(2, 2))
215
+ >>> X
216
+ A.*0
217
+ >>> canonicalize(X)
218
+ 0
219
+
220
+ Rewriting to Hadamard Power
221
+
222
+ >>> X = HadamardProduct(A, A, A)
223
+ >>> X
224
+ A.*A.*A
225
+ >>> canonicalize(X)
226
+ .3
227
+ A
228
+
229
+ Notes
230
+ =====
231
+
232
+ As the Hadamard product is associative, nested products can be flattened.
233
+
234
+ The Hadamard product is commutative so that factors can be sorted for
235
+ canonical form.
236
+
237
+ A matrix of only ones is an identity for Hadamard product,
238
+ so every matrices of only ones can be removed.
239
+
240
+ Any zero matrix will make the whole product a zero matrix.
241
+
242
+ Duplicate elements can be collected and rewritten as HadamardPower
243
+
244
+ References
245
+ ==========
246
+
247
+ .. [1] https://en.wikipedia.org/wiki/Hadamard_product_(matrices)
248
+ """
249
+ # Associativity
250
+ rule = condition(
251
+ lambda x: isinstance(x, HadamardProduct),
252
+ flatten
253
+ )
254
+ fun = exhaust(rule)
255
+ x = fun(x)
256
+
257
+ # Identity
258
+ fun = condition(
259
+ lambda x: isinstance(x, HadamardProduct),
260
+ rm_id(lambda x: isinstance(x, OneMatrix))
261
+ )
262
+ x = fun(x)
263
+
264
+ # Absorbing by Zero Matrix
265
+ def absorb(x):
266
+ if any(isinstance(c, ZeroMatrix) for c in x.args):
267
+ return ZeroMatrix(*x.shape)
268
+ else:
269
+ return x
270
+ fun = condition(
271
+ lambda x: isinstance(x, HadamardProduct),
272
+ absorb
273
+ )
274
+ x = fun(x)
275
+
276
+ # Rewriting with HadamardPower
277
+ if isinstance(x, HadamardProduct):
278
+ tally = Counter(x.args)
279
+
280
+ new_arg = []
281
+ for base, exp in tally.items():
282
+ if exp == 1:
283
+ new_arg.append(base)
284
+ else:
285
+ new_arg.append(HadamardPower(base, exp))
286
+
287
+ x = HadamardProduct(*new_arg)
288
+
289
+ # Commutativity
290
+ fun = condition(
291
+ lambda x: isinstance(x, HadamardProduct),
292
+ sort(default_sort_key)
293
+ )
294
+ x = fun(x)
295
+
296
+ # Unpacking
297
+ x = unpack(x)
298
+ return x
299
+
300
+
301
+ def hadamard_power(base, exp):
302
+ base = sympify(base)
303
+ exp = sympify(exp)
304
+ if exp == 1:
305
+ return base
306
+ if not base.is_Matrix:
307
+ return base**exp
308
+ if exp.is_Matrix:
309
+ raise ValueError("cannot raise expression to a matrix")
310
+ return HadamardPower(base, exp)
311
+
312
+
313
+ class HadamardPower(MatrixExpr):
314
+ r"""
315
+ Elementwise power of matrix expressions
316
+
317
+ Parameters
318
+ ==========
319
+
320
+ base : scalar or matrix
321
+
322
+ exp : scalar or matrix
323
+
324
+ Notes
325
+ =====
326
+
327
+ There are four definitions for the hadamard power which can be used.
328
+ Let's consider `A, B` as `(m, n)` matrices, and `a, b` as scalars.
329
+
330
+ Matrix raised to a scalar exponent:
331
+
332
+ .. math::
333
+ A^{\circ b} = \begin{bmatrix}
334
+ A_{0, 0}^b & A_{0, 1}^b & \cdots & A_{0, n-1}^b \\
335
+ A_{1, 0}^b & A_{1, 1}^b & \cdots & A_{1, n-1}^b \\
336
+ \vdots & \vdots & \ddots & \vdots \\
337
+ A_{m-1, 0}^b & A_{m-1, 1}^b & \cdots & A_{m-1, n-1}^b
338
+ \end{bmatrix}
339
+
340
+ Scalar raised to a matrix exponent:
341
+
342
+ .. math::
343
+ a^{\circ B} = \begin{bmatrix}
344
+ a^{B_{0, 0}} & a^{B_{0, 1}} & \cdots & a^{B_{0, n-1}} \\
345
+ a^{B_{1, 0}} & a^{B_{1, 1}} & \cdots & a^{B_{1, n-1}} \\
346
+ \vdots & \vdots & \ddots & \vdots \\
347
+ a^{B_{m-1, 0}} & a^{B_{m-1, 1}} & \cdots & a^{B_{m-1, n-1}}
348
+ \end{bmatrix}
349
+
350
+ Matrix raised to a matrix exponent:
351
+
352
+ .. math::
353
+ A^{\circ B} = \begin{bmatrix}
354
+ A_{0, 0}^{B_{0, 0}} & A_{0, 1}^{B_{0, 1}} &
355
+ \cdots & A_{0, n-1}^{B_{0, n-1}} \\
356
+ A_{1, 0}^{B_{1, 0}} & A_{1, 1}^{B_{1, 1}} &
357
+ \cdots & A_{1, n-1}^{B_{1, n-1}} \\
358
+ \vdots & \vdots &
359
+ \ddots & \vdots \\
360
+ A_{m-1, 0}^{B_{m-1, 0}} & A_{m-1, 1}^{B_{m-1, 1}} &
361
+ \cdots & A_{m-1, n-1}^{B_{m-1, n-1}}
362
+ \end{bmatrix}
363
+
364
+ Scalar raised to a scalar exponent:
365
+
366
+ .. math::
367
+ a^{\circ b} = a^b
368
+ """
369
+
370
+ def __new__(cls, base, exp):
371
+ base = sympify(base)
372
+ exp = sympify(exp)
373
+
374
+ if base.is_scalar and exp.is_scalar:
375
+ return base ** exp
376
+
377
+ if isinstance(base, MatrixExpr) and isinstance(exp, MatrixExpr):
378
+ validate(base, exp)
379
+
380
+ obj = super().__new__(cls, base, exp)
381
+ return obj
382
+
383
+ @property
384
+ def base(self):
385
+ return self._args[0]
386
+
387
+ @property
388
+ def exp(self):
389
+ return self._args[1]
390
+
391
+ @property
392
+ def shape(self):
393
+ if self.base.is_Matrix:
394
+ return self.base.shape
395
+ return self.exp.shape
396
+
397
+ def _entry(self, i, j, **kwargs):
398
+ base = self.base
399
+ exp = self.exp
400
+
401
+ if base.is_Matrix:
402
+ a = base._entry(i, j, **kwargs)
403
+ elif base.is_scalar:
404
+ a = base
405
+ else:
406
+ raise ValueError(
407
+ 'The base {} must be a scalar or a matrix.'.format(base))
408
+
409
+ if exp.is_Matrix:
410
+ b = exp._entry(i, j, **kwargs)
411
+ elif exp.is_scalar:
412
+ b = exp
413
+ else:
414
+ raise ValueError(
415
+ 'The exponent {} must be a scalar or a matrix.'.format(exp))
416
+
417
+ return a ** b
418
+
419
+ def _eval_transpose(self):
420
+ from sympy.matrices.expressions.transpose import transpose
421
+ return HadamardPower(transpose(self.base), self.exp)
422
+
423
+ def _eval_derivative(self, x):
424
+ dexp = self.exp.diff(x)
425
+ logbase = self.base.applyfunc(log)
426
+ dlbase = logbase.diff(x)
427
+ return hadamard_product(
428
+ dexp*logbase + self.exp*dlbase,
429
+ self
430
+ )
431
+
432
+ def _eval_derivative_matrix_lines(self, x):
433
+ from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
434
+ from sympy.tensor.array.expressions.array_expressions import ArrayDiagonal
435
+ from sympy.matrices.expressions.matexpr import _make_matrix
436
+
437
+ lr = self.base._eval_derivative_matrix_lines(x)
438
+ for i in lr:
439
+ diagonal = [(1, 2), (3, 4)]
440
+ diagonal = [e for j, e in enumerate(diagonal) if self.base.shape[j] != 1]
441
+ l1 = i._lines[i._first_line_index]
442
+ l2 = i._lines[i._second_line_index]
443
+ subexpr = ExprBuilder(
444
+ ArrayDiagonal,
445
+ [
446
+ ExprBuilder(
447
+ ArrayTensorProduct,
448
+ [
449
+ ExprBuilder(_make_matrix, [l1]),
450
+ self.exp*hadamard_power(self.base, self.exp-1),
451
+ ExprBuilder(_make_matrix, [l2]),
452
+ ]
453
+ ),
454
+ *diagonal],
455
+ validator=ArrayDiagonal._validate
456
+ )
457
+ i._first_pointer_parent = subexpr.args[0].args[0].args
458
+ i._first_pointer_index = 0
459
+ i._first_line_index = 0
460
+ i._second_pointer_parent = subexpr.args[0].args[2].args
461
+ i._second_pointer_index = 0
462
+ i._second_line_index = 0
463
+ i._lines = [subexpr]
464
+ return lr