Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step120/zero/15.input_layernorm.weight/fp32.pt +3 -0
- ckpts/universal/global_step120/zero/21.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
- ckpts/universal/global_step120/zero/4.mlp.dense_h_to_4h.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/tabledata-1.3.3.dist-info/INSTALLER +1 -0
- venv/lib/python3.10/site-packages/tabledata-1.3.3.dist-info/LICENSE +21 -0
- venv/lib/python3.10/site-packages/tabledata-1.3.3.dist-info/METADATA +102 -0
- venv/lib/python3.10/site-packages/tabledata-1.3.3.dist-info/RECORD +29 -0
- venv/lib/python3.10/site-packages/tabledata-1.3.3.dist-info/WHEEL +5 -0
- venv/lib/python3.10/site-packages/tabledata-1.3.3.dist-info/top_level.txt +1 -0
- venv/lib/python3.10/site-packages/torchgen/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torchgen/__pycache__/code_template.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torchgen/__pycache__/context.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torchgen/__pycache__/gen.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torchgen/__pycache__/gen_aoti_c_shim.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torchgen/__pycache__/gen_backend_stubs.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torchgen/__pycache__/gen_executorch.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torchgen/__pycache__/gen_functionalization_type.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torchgen/__pycache__/gen_lazy_tensor.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torchgen/__pycache__/gen_vmap_plumbing.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torchgen/__pycache__/local.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torchgen/__pycache__/model.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torchgen/__pycache__/native_function_generation.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torchgen/__pycache__/utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torchgen/__pycache__/yaml_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torchgen/executorch/__init__.py +0 -0
- venv/lib/python3.10/site-packages/torchgen/executorch/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torchgen/executorch/__pycache__/model.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torchgen/executorch/__pycache__/parse.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torchgen/executorch/api/__init__.py +0 -0
- venv/lib/python3.10/site-packages/torchgen/executorch/api/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torchgen/executorch/api/__pycache__/custom_ops.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torchgen/executorch/api/__pycache__/et_cpp.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torchgen/executorch/api/__pycache__/unboxing.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torchgen/executorch/api/custom_ops.py +142 -0
- venv/lib/python3.10/site-packages/torchgen/executorch/api/et_cpp.py +368 -0
- venv/lib/python3.10/site-packages/torchgen/executorch/api/types/__init__.py +2 -0
- venv/lib/python3.10/site-packages/torchgen/executorch/api/types/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torchgen/executorch/api/types/__pycache__/signatures.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torchgen/executorch/api/types/__pycache__/types.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torchgen/executorch/api/types/signatures.py +73 -0
- venv/lib/python3.10/site-packages/torchgen/executorch/api/types/types.py +81 -0
- venv/lib/python3.10/site-packages/torchgen/executorch/api/unboxing.py +213 -0
- venv/lib/python3.10/site-packages/torchgen/executorch/model.py +220 -0
- venv/lib/python3.10/site-packages/torchgen/executorch/parse.py +151 -0
- venv/lib/python3.10/site-packages/torchgen/operator_versions/__init__.py +0 -0
- venv/lib/python3.10/site-packages/torchgen/operator_versions/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torchgen/operator_versions/__pycache__/gen_mobile_upgraders.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torchgen/operator_versions/__pycache__/gen_mobile_upgraders_constant.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torchgen/operator_versions/gen_mobile_upgraders.py +392 -0
- venv/lib/python3.10/site-packages/torchgen/operator_versions/gen_mobile_upgraders_constant.py +7 -0
ckpts/universal/global_step120/zero/15.input_layernorm.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b11171abcbb32326f56c2eb0db8091bd8a2367cfd1c556f7349591e73dd84e4
|
3 |
+
size 9293
|
ckpts/universal/global_step120/zero/21.mlp.dense_h_to_4h_swiglu.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eef756aaf0216b5a75ad77c8a12da70b98e5d9850cec810be54f27a0b7527fed
|
3 |
+
size 33555533
|
ckpts/universal/global_step120/zero/4.mlp.dense_h_to_4h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e2e19a993f23ee14741479fea4b62fd90d8220342f7f5da3acc8ceafc0942c98
|
3 |
+
size 33555533
|
venv/lib/python3.10/site-packages/tabledata-1.3.3.dist-info/INSTALLER
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
pip
|
venv/lib/python3.10/site-packages/tabledata-1.3.3.dist-info/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2017 Tsuyoshi Hombashi
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
venv/lib/python3.10/site-packages/tabledata-1.3.3.dist-info/METADATA
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Metadata-Version: 2.1
|
2 |
+
Name: tabledata
|
3 |
+
Version: 1.3.3
|
4 |
+
Summary: tabledata is a Python library to represent tabular data. Used for pytablewriter/pytablereader/SimpleSQLite/etc.
|
5 |
+
Home-page: https://github.com/thombashi/tabledata
|
6 |
+
Author: Tsuyoshi Hombashi
|
7 |
+
Author-email: [email protected]
|
8 |
+
License: MIT License
|
9 |
+
Project-URL: Changlog, https://github.com/thombashi/tabledata/releases
|
10 |
+
Project-URL: Documentation, https://tabledata.rtfd.io/
|
11 |
+
Project-URL: Source, https://github.com/thombashi/tabledata
|
12 |
+
Project-URL: Tracker, https://github.com/thombashi/tabledata/issues
|
13 |
+
Keywords: table
|
14 |
+
Classifier: Development Status :: 5 - Production/Stable
|
15 |
+
Classifier: Intended Audience :: Developers
|
16 |
+
Classifier: Intended Audience :: Information Technology
|
17 |
+
Classifier: License :: OSI Approved :: MIT License
|
18 |
+
Classifier: Operating System :: OS Independent
|
19 |
+
Classifier: Programming Language :: Python :: 3
|
20 |
+
Classifier: Programming Language :: Python :: 3.7
|
21 |
+
Classifier: Programming Language :: Python :: 3.8
|
22 |
+
Classifier: Programming Language :: Python :: 3.9
|
23 |
+
Classifier: Programming Language :: Python :: 3.10
|
24 |
+
Classifier: Programming Language :: Python :: 3.11
|
25 |
+
Classifier: Programming Language :: Python :: 3 :: Only
|
26 |
+
Classifier: Programming Language :: Python :: Implementation :: CPython
|
27 |
+
Classifier: Programming Language :: Python :: Implementation :: PyPy
|
28 |
+
Classifier: Topic :: Software Development :: Libraries
|
29 |
+
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
30 |
+
Requires-Python: >=3.7
|
31 |
+
Description-Content-Type: text/x-rst
|
32 |
+
License-File: LICENSE
|
33 |
+
Requires-Dist: DataProperty <2,>=1.0.1
|
34 |
+
Requires-Dist: typepy <2,>=1.2.0
|
35 |
+
Provides-Extra: logging
|
36 |
+
Requires-Dist: loguru <1,>=0.4.1 ; extra == 'logging'
|
37 |
+
Provides-Extra: test
|
38 |
+
Requires-Dist: pytablewriter >=0.46 ; extra == 'test'
|
39 |
+
Requires-Dist: pytest ; extra == 'test'
|
40 |
+
|
41 |
+
.. contents:: **tabledata**
|
42 |
+
:backlinks: top
|
43 |
+
:depth: 2
|
44 |
+
|
45 |
+
Summary
|
46 |
+
---------
|
47 |
+
`tabledata <https://github.com/thombashi/tabledata>`__ is a Python library to represent tabular data. Used for pytablewriter/pytablereader/SimpleSQLite/etc.
|
48 |
+
|
49 |
+
.. image:: https://badge.fury.io/py/tabledata.svg
|
50 |
+
:target: https://badge.fury.io/py/tabledata
|
51 |
+
:alt: PyPI package version
|
52 |
+
|
53 |
+
.. image:: https://img.shields.io/pypi/pyversions/tabledata.svg
|
54 |
+
:target: https://pypi.org/project/tabledata
|
55 |
+
:alt: Supported Python versions
|
56 |
+
|
57 |
+
.. image:: https://img.shields.io/pypi/implementation/tabledata.svg
|
58 |
+
:target: https://pypi.org/project/tabledata
|
59 |
+
:alt: Supported Python implementations
|
60 |
+
|
61 |
+
.. image:: https://github.com/thombashi/tabledata/actions/workflows/ci.yml/badge.svg
|
62 |
+
:target: https://github.com/thombashi/tabledata/actions/workflows/ci.yml
|
63 |
+
:alt: Linux/macOS/Windows CI status
|
64 |
+
|
65 |
+
.. image:: https://coveralls.io/repos/github/thombashi/tabledata/badge.svg?branch=master
|
66 |
+
:target: https://coveralls.io/github/thombashi/tabledata?branch=master
|
67 |
+
:alt: Test coverage
|
68 |
+
|
69 |
+
Installation
|
70 |
+
============
|
71 |
+
|
72 |
+
Install from PyPI
|
73 |
+
------------------------------
|
74 |
+
::
|
75 |
+
|
76 |
+
pip install tabledata
|
77 |
+
|
78 |
+
Install from PPA (for Ubuntu)
|
79 |
+
------------------------------
|
80 |
+
::
|
81 |
+
|
82 |
+
sudo add-apt-repository ppa:thombashi/ppa
|
83 |
+
sudo apt update
|
84 |
+
sudo apt install python3-tabledata
|
85 |
+
|
86 |
+
|
87 |
+
Dependencies
|
88 |
+
============
|
89 |
+
- Python 3.7+
|
90 |
+
- `Mandatory Python package dependencies (automatically installed) <https://github.com/thombashi/tabledata/network/dependencies>`__
|
91 |
+
|
92 |
+
Optional Python packages
|
93 |
+
------------------------------------------------
|
94 |
+
- `loguru <https://github.com/Delgan/loguru>`__
|
95 |
+
- Used for logging if the package installed
|
96 |
+
- `pandas <https://pandas.pydata.org/>`__
|
97 |
+
- required to get table data as a pandas data frame
|
98 |
+
|
99 |
+
Documentation
|
100 |
+
===============
|
101 |
+
https://tabledata.rtfd.io/
|
102 |
+
|
venv/lib/python3.10/site-packages/tabledata-1.3.3.dist-info/RECORD
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tabledata-1.3.3.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
|
2 |
+
tabledata-1.3.3.dist-info/LICENSE,sha256=vrvfBSShR_iaYV__U9eb3JDLx2MVUPtLclzT873NJPY,1074
|
3 |
+
tabledata-1.3.3.dist-info/METADATA,sha256=IKxSJeg1Qrr6dSTCJdvnBIiKl6IKCa4aAIC_B4Ngwfg,3657
|
4 |
+
tabledata-1.3.3.dist-info/RECORD,,
|
5 |
+
tabledata-1.3.3.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
|
6 |
+
tabledata-1.3.3.dist-info/top_level.txt,sha256=wPYCjph2PxB5odPJWPADX_65iL1gAIjMQFlAyZi80iI,10
|
7 |
+
tabledata/__init__.py,sha256=OkkMA83NWJOKsmUru4qWiUXrwTxF5jDhHXl_dR2zQBQ,683
|
8 |
+
tabledata/__pycache__/__init__.cpython-310.pyc,,
|
9 |
+
tabledata/__pycache__/__version__.cpython-310.pyc,,
|
10 |
+
tabledata/__pycache__/_common.cpython-310.pyc,,
|
11 |
+
tabledata/__pycache__/_constant.cpython-310.pyc,,
|
12 |
+
tabledata/__pycache__/_converter.cpython-310.pyc,,
|
13 |
+
tabledata/__pycache__/_core.cpython-310.pyc,,
|
14 |
+
tabledata/__pycache__/error.cpython-310.pyc,,
|
15 |
+
tabledata/__pycache__/normalizer.cpython-310.pyc,,
|
16 |
+
tabledata/__version__.py,sha256=JC4TkyHfH-eP9nAvfI04H3gEbgfItYa1jLE09ARSNSc,201
|
17 |
+
tabledata/_common.py,sha256=eB3xHflvbF5p5hz1f5D9xNHQCujy6Uk91NLPTy5fFHY,274
|
18 |
+
tabledata/_constant.py,sha256=I763_Fx-9IT_ZQTTncxi04WsXd6tK78z2VBYZ3up5Aw,154
|
19 |
+
tabledata/_converter.py,sha256=0H61eirjQw_rs0h1N_APtCthRRFbYkKZVUHK-5-0GAE,895
|
20 |
+
tabledata/_core.py,sha256=4y0sLRCEcvjJvqi_pUlhz5qjIass_pZu5FcnK_kpr7U,14530
|
21 |
+
tabledata/_logger/__init__.py,sha256=7rkhAj6PGbUI3fouTa7GEzjRelUFj0_UPfzkZ_Yk71g,55
|
22 |
+
tabledata/_logger/__pycache__/__init__.cpython-310.pyc,,
|
23 |
+
tabledata/_logger/__pycache__/_logger.cpython-310.pyc,,
|
24 |
+
tabledata/_logger/__pycache__/_null_logger.cpython-310.pyc,,
|
25 |
+
tabledata/_logger/_logger.py,sha256=3HreG22mzHGZvexAGZpjkU4A995ZZmGJmiIkPcrkA4o,783
|
26 |
+
tabledata/_logger/_null_logger.py,sha256=QJuaErUIV_x6NjQ9qNX9eNSi_GB_9CrO7lKeXYZnuaw,1088
|
27 |
+
tabledata/error.py,sha256=UGGJm3_9oLQi9GBWZz4cqp1dnzc5Kbu37c6CsiWozME,526
|
28 |
+
tabledata/normalizer.py,sha256=lVz4agT8Bm97rvKUUUhP3OT1pGDsMczB5rAlx316XoY,6465
|
29 |
+
tabledata/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
venv/lib/python3.10/site-packages/tabledata-1.3.3.dist-info/WHEEL
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Wheel-Version: 1.0
|
2 |
+
Generator: bdist_wheel (0.41.2)
|
3 |
+
Root-Is-Purelib: true
|
4 |
+
Tag: py3-none-any
|
5 |
+
|
venv/lib/python3.10/site-packages/tabledata-1.3.3.dist-info/top_level.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
tabledata
|
venv/lib/python3.10/site-packages/torchgen/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (532 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torchgen/__pycache__/code_template.cpython-310.pyc
ADDED
Binary file (3.05 kB). View file
|
|
venv/lib/python3.10/site-packages/torchgen/__pycache__/context.cpython-310.pyc
ADDED
Binary file (3.89 kB). View file
|
|
venv/lib/python3.10/site-packages/torchgen/__pycache__/gen.cpython-310.pyc
ADDED
Binary file (66 kB). View file
|
|
venv/lib/python3.10/site-packages/torchgen/__pycache__/gen_aoti_c_shim.cpython-310.pyc
ADDED
Binary file (9.98 kB). View file
|
|
venv/lib/python3.10/site-packages/torchgen/__pycache__/gen_backend_stubs.cpython-310.pyc
ADDED
Binary file (15.2 kB). View file
|
|
venv/lib/python3.10/site-packages/torchgen/__pycache__/gen_executorch.cpython-310.pyc
ADDED
Binary file (27.9 kB). View file
|
|
venv/lib/python3.10/site-packages/torchgen/__pycache__/gen_functionalization_type.cpython-310.pyc
ADDED
Binary file (22.7 kB). View file
|
|
venv/lib/python3.10/site-packages/torchgen/__pycache__/gen_lazy_tensor.cpython-310.pyc
ADDED
Binary file (14 kB). View file
|
|
venv/lib/python3.10/site-packages/torchgen/__pycache__/gen_vmap_plumbing.cpython-310.pyc
ADDED
Binary file (8.76 kB). View file
|
|
venv/lib/python3.10/site-packages/torchgen/__pycache__/local.cpython-310.pyc
ADDED
Binary file (1.36 kB). View file
|
|
venv/lib/python3.10/site-packages/torchgen/__pycache__/model.cpython-310.pyc
ADDED
Binary file (65.1 kB). View file
|
|
venv/lib/python3.10/site-packages/torchgen/__pycache__/native_function_generation.cpython-310.pyc
ADDED
Binary file (12.6 kB). View file
|
|
venv/lib/python3.10/site-packages/torchgen/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (14.9 kB). View file
|
|
venv/lib/python3.10/site-packages/torchgen/__pycache__/yaml_utils.cpython-310.pyc
ADDED
Binary file (1.03 kB). View file
|
|
venv/lib/python3.10/site-packages/torchgen/executorch/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/torchgen/executorch/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (187 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torchgen/executorch/__pycache__/model.cpython-310.pyc
ADDED
Binary file (7.33 kB). View file
|
|
venv/lib/python3.10/site-packages/torchgen/executorch/__pycache__/parse.cpython-310.pyc
ADDED
Binary file (4.3 kB). View file
|
|
venv/lib/python3.10/site-packages/torchgen/executorch/api/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/torchgen/executorch/api/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (191 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torchgen/executorch/api/__pycache__/custom_ops.cpython-310.pyc
ADDED
Binary file (4.25 kB). View file
|
|
venv/lib/python3.10/site-packages/torchgen/executorch/api/__pycache__/et_cpp.cpython-310.pyc
ADDED
Binary file (7.45 kB). View file
|
|
venv/lib/python3.10/site-packages/torchgen/executorch/api/__pycache__/unboxing.cpython-310.pyc
ADDED
Binary file (6.38 kB). View file
|
|
venv/lib/python3.10/site-packages/torchgen/executorch/api/custom_ops.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict
|
2 |
+
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Dict, List, Optional, Sequence, Tuple
|
5 |
+
|
6 |
+
from torchgen import dest
|
7 |
+
|
8 |
+
# disable import sorting to avoid circular dependency.
|
9 |
+
from torchgen.api.types import DispatcherSignature # isort:skip
|
10 |
+
from torchgen.context import method_with_native_function
|
11 |
+
from torchgen.executorch.model import ETKernelIndex
|
12 |
+
from torchgen.model import BaseTy, BaseType, DispatchKey, NativeFunction, Variant
|
13 |
+
from torchgen.selective_build.selector import SelectiveBuilder
|
14 |
+
from torchgen.utils import concatMap, Target
|
15 |
+
|
16 |
+
|
17 |
+
# Generates RegisterKernelStub.cpp, which provides placeholder kernels for custom operators. This will be used at
|
18 |
+
# model authoring side.
|
19 |
+
@dataclass(frozen=True)
|
20 |
+
class ComputeNativeFunctionStub:
|
21 |
+
@method_with_native_function
|
22 |
+
def __call__(self, f: NativeFunction) -> Optional[str]:
|
23 |
+
if Variant.function not in f.variants:
|
24 |
+
return None
|
25 |
+
|
26 |
+
sig = DispatcherSignature.from_schema(
|
27 |
+
f.func, prefix=f"wrapper_CPU_{f.func.name.overload_name}_", symint=False
|
28 |
+
)
|
29 |
+
assert sig is not None
|
30 |
+
if len(f.func.returns) == 0:
|
31 |
+
ret_name = ""
|
32 |
+
elif len(f.func.returns) == 1:
|
33 |
+
if f.func.arguments.out:
|
34 |
+
ret_name = f.func.arguments.out[0].name
|
35 |
+
else:
|
36 |
+
ret_name = next(
|
37 |
+
(
|
38 |
+
a.name
|
39 |
+
for a in f.func.arguments.flat_non_out
|
40 |
+
if a.type == f.func.returns[0].type
|
41 |
+
),
|
42 |
+
"",
|
43 |
+
)
|
44 |
+
if not ret_name:
|
45 |
+
# if return type is tensor
|
46 |
+
if f.func.returns[0].type == BaseType(BaseTy.Tensor):
|
47 |
+
# Returns an empty tensor
|
48 |
+
ret_name = "at::Tensor()"
|
49 |
+
else:
|
50 |
+
raise Exception(f"Can't handle this return type {f.func}")
|
51 |
+
elif len(f.func.arguments.out) == len(f.func.returns):
|
52 |
+
# Returns a tuple of out arguments
|
53 |
+
tensor_type = "at::Tensor &"
|
54 |
+
comma = ", "
|
55 |
+
ret_name = f"""::std::tuple<{comma.join([tensor_type] * len(f.func.returns))}>(
|
56 |
+
{comma.join([r.name for r in f.func.arguments.out])}
|
57 |
+
)"""
|
58 |
+
else:
|
59 |
+
assert all(
|
60 |
+
a.type == BaseType(BaseTy.Tensor) for a in f.func.returns
|
61 |
+
), f"Only support tensor returns but got {f.func.returns}"
|
62 |
+
# Returns a tuple of empty tensors
|
63 |
+
tensor_type = "at::Tensor"
|
64 |
+
comma = ", "
|
65 |
+
ret_name = f"""::std::tuple<{comma.join([tensor_type] * len(f.func.returns))}>(
|
66 |
+
{comma.join(["at::Tensor()" for _ in f.func.returns])}
|
67 |
+
)"""
|
68 |
+
ret_str = f"return {ret_name};" if len(f.func.returns) > 0 else ""
|
69 |
+
return f"""
|
70 |
+
{sig.defn()} {{
|
71 |
+
{ret_str}
|
72 |
+
}}
|
73 |
+
"""
|
74 |
+
|
75 |
+
|
76 |
+
def gen_custom_ops_registration(
|
77 |
+
*,
|
78 |
+
native_functions: Sequence[NativeFunction],
|
79 |
+
selector: SelectiveBuilder,
|
80 |
+
kernel_index: ETKernelIndex,
|
81 |
+
rocm: bool,
|
82 |
+
) -> Tuple[str, str]:
|
83 |
+
"""
|
84 |
+
Generate custom ops registration code for dest.RegisterDispatchKey.
|
85 |
+
|
86 |
+
:param native_functions: a sequence of `NativeFunction`
|
87 |
+
:param selector: for selective build.
|
88 |
+
:param kernel_index: kernels for all the ops.
|
89 |
+
:param rocm: bool for dest.RegisterDispatchKey.
|
90 |
+
:return: generated C++ code to register custom operators into PyTorch
|
91 |
+
"""
|
92 |
+
|
93 |
+
# convert kernel index to BackendIndex. This is because we can't handle ETKernelIndex yet.
|
94 |
+
# TODO larryliu: evaluate if this code is still needed. If yes let it handle ETKernelIndex.
|
95 |
+
|
96 |
+
dispatch_key = DispatchKey.CPU
|
97 |
+
backend_index = kernel_index._to_backend_index()
|
98 |
+
static_init_dispatch_registrations = ""
|
99 |
+
ns_grouped_native_functions: Dict[str, List[NativeFunction]] = defaultdict(list)
|
100 |
+
for native_function in native_functions:
|
101 |
+
ns_grouped_native_functions[native_function.namespace].append(native_function)
|
102 |
+
|
103 |
+
for namespace, functions in ns_grouped_native_functions.items():
|
104 |
+
if len(functions) == 0:
|
105 |
+
continue
|
106 |
+
dispatch_registrations_body = "\n".join(
|
107 |
+
list(
|
108 |
+
concatMap(
|
109 |
+
dest.RegisterDispatchKey(
|
110 |
+
backend_index,
|
111 |
+
Target.REGISTRATION,
|
112 |
+
selector,
|
113 |
+
rocm=rocm,
|
114 |
+
symint=False,
|
115 |
+
class_method_name=None,
|
116 |
+
skip_dispatcher_op_registration=False,
|
117 |
+
),
|
118 |
+
functions,
|
119 |
+
)
|
120 |
+
)
|
121 |
+
)
|
122 |
+
static_init_dispatch_registrations += f"""
|
123 |
+
TORCH_LIBRARY_IMPL({namespace}, {dispatch_key}, m) {{
|
124 |
+
{dispatch_registrations_body}
|
125 |
+
}};"""
|
126 |
+
anonymous_definition = "\n".join(
|
127 |
+
list(
|
128 |
+
concatMap(
|
129 |
+
dest.RegisterDispatchKey(
|
130 |
+
backend_index,
|
131 |
+
Target.ANONYMOUS_DEFINITION,
|
132 |
+
selector,
|
133 |
+
rocm=rocm,
|
134 |
+
symint=False,
|
135 |
+
class_method_name=None,
|
136 |
+
skip_dispatcher_op_registration=False,
|
137 |
+
),
|
138 |
+
native_functions,
|
139 |
+
)
|
140 |
+
)
|
141 |
+
)
|
142 |
+
return anonymous_definition, static_init_dispatch_registrations
|
venv/lib/python3.10/site-packages/torchgen/executorch/api/et_cpp.py
ADDED
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Sequence, Set, Union
|
2 |
+
|
3 |
+
from torchgen import local
|
4 |
+
from torchgen.api.types import (
|
5 |
+
ArgName,
|
6 |
+
ArrayCType,
|
7 |
+
BaseCType,
|
8 |
+
Binding,
|
9 |
+
ConstRefCType,
|
10 |
+
CType,
|
11 |
+
MutRefCType,
|
12 |
+
NamedCType,
|
13 |
+
SpecialArgName,
|
14 |
+
TupleCType,
|
15 |
+
VectorCType,
|
16 |
+
voidT,
|
17 |
+
)
|
18 |
+
from torchgen.model import (
|
19 |
+
Argument,
|
20 |
+
Arguments,
|
21 |
+
BaseTy,
|
22 |
+
BaseType,
|
23 |
+
ListType,
|
24 |
+
NativeFunction,
|
25 |
+
OptionalType,
|
26 |
+
Return,
|
27 |
+
SelfArgument,
|
28 |
+
TensorOptionsArguments,
|
29 |
+
Type,
|
30 |
+
)
|
31 |
+
from torchgen.utils import assert_never
|
32 |
+
from .types import (
|
33 |
+
ArrayRefCType,
|
34 |
+
BaseTypeToCppMapping,
|
35 |
+
OptionalCType,
|
36 |
+
scalarT,
|
37 |
+
tensorListT,
|
38 |
+
tensorT,
|
39 |
+
)
|
40 |
+
|
41 |
+
"""
|
42 |
+
This file describes the translation of JIT schema to the public C++ API, which is what people use when they call
|
43 |
+
functions like at::add. It also serves as a native function API, which is the signature of kernels,
|
44 |
+
since in Executorch CppSignature is the same as NativeSignature.
|
45 |
+
|
46 |
+
Difference between this file and torchgen.api.cpp.py:
|
47 |
+
|
48 |
+
- Executorch doesn't support TensorOptions, however in this file we still keep the logic here to be compatible with
|
49 |
+
torchgen.api.cpp, so that we can do stuff like ATen mode (running ATen kernels in Executorch).
|
50 |
+
|
51 |
+
- Executorch doesn't support Dimname.
|
52 |
+
|
53 |
+
- Executorch runtime doesn't support SymInt, will treat it as int.
|
54 |
+
"""
|
55 |
+
|
56 |
+
|
57 |
+
# Translation of "value types" in JIT schema to C++ API type. Value
|
58 |
+
# types look the same no matter if they are argument types or return
|
59 |
+
# types. Returns None if the type in question is not a value type.
|
60 |
+
def valuetype_type(
|
61 |
+
t: Type,
|
62 |
+
*,
|
63 |
+
binds: ArgName,
|
64 |
+
remove_non_owning_ref_types: bool = False,
|
65 |
+
) -> Optional[NamedCType]:
|
66 |
+
if isinstance(t, BaseType):
|
67 |
+
if t.name == BaseTy.Tensor or t.name == BaseTy.Scalar:
|
68 |
+
return None
|
69 |
+
# For SymInt we simply treat it as int.
|
70 |
+
elif str(t) == "SymInt":
|
71 |
+
return NamedCType(binds, BaseCType(BaseTypeToCppMapping[BaseTy.int]))
|
72 |
+
if remove_non_owning_ref_types:
|
73 |
+
if t.name == BaseTy.str:
|
74 |
+
raise AssertionError(
|
75 |
+
"string ref->value conversion: not implemented yet"
|
76 |
+
)
|
77 |
+
# All other BaseType currently map directly to BaseCppTypes.
|
78 |
+
return NamedCType(binds, BaseCType(BaseTypeToCppMapping[t.name]))
|
79 |
+
elif isinstance(t, OptionalType):
|
80 |
+
elem = valuetype_type(t.elem, binds=binds)
|
81 |
+
if elem is None:
|
82 |
+
return None
|
83 |
+
return NamedCType(binds, OptionalCType(elem.type))
|
84 |
+
elif isinstance(t, ListType):
|
85 |
+
if str(t.elem) == "bool":
|
86 |
+
assert t.size is not None
|
87 |
+
return NamedCType(
|
88 |
+
binds, ArrayCType(BaseCType(BaseTypeToCppMapping[BaseTy.bool]), t.size)
|
89 |
+
)
|
90 |
+
else:
|
91 |
+
return None
|
92 |
+
else:
|
93 |
+
raise AssertionError(f"unrecognized type {repr(t)}")
|
94 |
+
|
95 |
+
|
96 |
+
# Translation of types occurring in JIT arguments to a C++ argument type.
|
97 |
+
# If remove_non_owning_ref_types is set, we'll guarantee that the outputed CType is not a non-owning reference type.
|
98 |
+
# For example, we'll return std::vector<int> instead of IntArrayRef.
|
99 |
+
# See Note [translation from C++ reference to value types]
|
100 |
+
def argumenttype_type(
|
101 |
+
t: Type,
|
102 |
+
*,
|
103 |
+
mutable: bool,
|
104 |
+
binds: ArgName,
|
105 |
+
remove_non_owning_ref_types: bool = False,
|
106 |
+
) -> NamedCType:
|
107 |
+
# If it's a value type, do the value type translation
|
108 |
+
r = valuetype_type(
|
109 |
+
t,
|
110 |
+
binds=binds,
|
111 |
+
remove_non_owning_ref_types=remove_non_owning_ref_types,
|
112 |
+
)
|
113 |
+
if r is not None:
|
114 |
+
return r
|
115 |
+
if isinstance(t, BaseType):
|
116 |
+
if t.name == BaseTy.Tensor:
|
117 |
+
if mutable and not local.use_const_ref_for_mutable_tensors():
|
118 |
+
return NamedCType(binds, MutRefCType(BaseCType(tensorT)))
|
119 |
+
else:
|
120 |
+
return NamedCType(binds, ConstRefCType(BaseCType(tensorT)))
|
121 |
+
elif t.name == BaseTy.Scalar:
|
122 |
+
return NamedCType(binds, ConstRefCType(BaseCType(scalarT)))
|
123 |
+
else:
|
124 |
+
raise AssertionError(f"base type should have been value type {t}")
|
125 |
+
elif isinstance(t, OptionalType):
|
126 |
+
if str(t.elem) == "Tensor":
|
127 |
+
if mutable and not local.use_const_ref_for_mutable_tensors():
|
128 |
+
return NamedCType(
|
129 |
+
binds, MutRefCType(BaseCType(tensorT))
|
130 |
+
) # TODO: fix this discrepancy
|
131 |
+
else:
|
132 |
+
return NamedCType(
|
133 |
+
binds, ConstRefCType(OptionalCType(BaseCType(tensorT)))
|
134 |
+
)
|
135 |
+
elif str(t.elem) == "Scalar":
|
136 |
+
return NamedCType(binds, ConstRefCType(OptionalCType(BaseCType(scalarT))))
|
137 |
+
elem = argumenttype_type(t.elem, mutable=mutable, binds=binds)
|
138 |
+
return NamedCType(binds, OptionalCType(elem.type))
|
139 |
+
elif isinstance(t, ListType):
|
140 |
+
# TODO: keeping these special cases for Tensor[] and Tensor?[] so that we can hookup with ATen kernels.
|
141 |
+
if str(t.elem) == "Tensor":
|
142 |
+
return NamedCType(binds, BaseCType(tensorListT))
|
143 |
+
elif str(t.elem) == "Dimname":
|
144 |
+
raise NotImplementedError("Executorch doesn't support Dimname")
|
145 |
+
elif str(t.elem) == "Tensor?":
|
146 |
+
return NamedCType(binds, ArrayRefCType(OptionalCType(BaseCType(tensorT))))
|
147 |
+
elem = argumenttype_type(t.elem, mutable=mutable, binds=binds)
|
148 |
+
return NamedCType(binds, ArrayRefCType(elem.type))
|
149 |
+
else:
|
150 |
+
raise AssertionError(f"unrecognized type {repr(t)}")
|
151 |
+
|
152 |
+
|
153 |
+
# Translate a JIT argument into its C++ type
|
154 |
+
def argument_type(a: Argument, *, binds: ArgName) -> NamedCType:
|
155 |
+
return argumenttype_type(a.type, mutable=a.is_write, binds=binds)
|
156 |
+
|
157 |
+
|
158 |
+
# Translation of a (non-multi) return type from JIT to C++
|
159 |
+
# N.B: returntype_type returns a CType, not a NamedCType.
|
160 |
+
# This is mostly because of the mismatch between return types and return names.
|
161 |
+
# e.g. a function with a return type of 'void' has 0 return names,
|
162 |
+
# and a function with a return type of 'std::tuple' has >1 return name.
|
163 |
+
def returntype_type(t: Type, *, mutable: bool) -> CType:
|
164 |
+
# placeholder is ignored
|
165 |
+
r = valuetype_type(t, binds="__placeholder__")
|
166 |
+
if r is not None:
|
167 |
+
return r.type
|
168 |
+
|
169 |
+
if isinstance(t, BaseType):
|
170 |
+
if t.name == BaseTy.Tensor:
|
171 |
+
if mutable:
|
172 |
+
if local.use_const_ref_for_mutable_tensors():
|
173 |
+
return ConstRefCType(BaseCType(tensorT))
|
174 |
+
else:
|
175 |
+
return MutRefCType(BaseCType(tensorT))
|
176 |
+
else:
|
177 |
+
# Note [Tensor Copy Returns]
|
178 |
+
# Currently, we use "Argument.is_write" to determine
|
179 |
+
# whether or not Tensor return types should be copies or references.
|
180 |
+
# If that ever changes, take a look at other locations of this note!
|
181 |
+
return BaseCType(tensorT)
|
182 |
+
elif t.name == BaseTy.Scalar:
|
183 |
+
return BaseCType(scalarT)
|
184 |
+
elif isinstance(t, ListType):
|
185 |
+
assert (
|
186 |
+
not mutable
|
187 |
+
), "Native functions should never return a mutable tensor list. They should return void."
|
188 |
+
elem = returntype_type(t.elem, mutable=False)
|
189 |
+
assert t.size is None, f"fixed size list returns not supported: {t}"
|
190 |
+
return VectorCType(elem)
|
191 |
+
|
192 |
+
raise AssertionError(f"unrecognized return type {t}")
|
193 |
+
|
194 |
+
|
195 |
+
# Translation of a single return to its C++ type
|
196 |
+
def return_type(r: Return) -> CType:
|
197 |
+
return returntype_type(r.type, mutable=r.is_write)
|
198 |
+
|
199 |
+
|
200 |
+
# Translation of a full (possibly multi) return from JIT to its C++ type
|
201 |
+
def returns_type(rs: Sequence[Return]) -> CType:
|
202 |
+
if len(rs) == 0:
|
203 |
+
return BaseCType(voidT)
|
204 |
+
elif len(rs) == 1:
|
205 |
+
return return_type(rs[0])
|
206 |
+
else:
|
207 |
+
return TupleCType([return_type(r) for r in rs])
|
208 |
+
|
209 |
+
|
210 |
+
def return_names(f: NativeFunction, *, fallback_name: str = "result") -> Sequence[str]:
|
211 |
+
returns: List[str] = []
|
212 |
+
for i, r in enumerate(f.func.returns):
|
213 |
+
# If we have an inplace function, the return argument is
|
214 |
+
# implicitly named self.
|
215 |
+
# TODO: Consider incorporating this into the data model
|
216 |
+
if f.func.name.name.inplace:
|
217 |
+
assert i == 0, "illegal inplace function with multiple returns"
|
218 |
+
name = "self"
|
219 |
+
# If we are out function, the name is the name of the
|
220 |
+
# corresponding output function (r.name will get recorded
|
221 |
+
# in field_name later.)
|
222 |
+
elif f.func.is_out_fn():
|
223 |
+
name = f.func.arguments.out[i].name
|
224 |
+
# If the return argument is explicitly named...
|
225 |
+
elif r.name:
|
226 |
+
name_conflict = any(
|
227 |
+
r.name == a.name for a in f.func.schema_order_arguments()
|
228 |
+
)
|
229 |
+
if name_conflict and not f.func.is_out_fn():
|
230 |
+
name = f"{r.name}_return"
|
231 |
+
else:
|
232 |
+
name = r.name
|
233 |
+
# If there is no explicit name and no fallback name was passed in, we just name the output result,
|
234 |
+
# unless it's a multi-return, in which case it's result0,
|
235 |
+
# result1, etc (zero-indexed)
|
236 |
+
else:
|
237 |
+
name = fallback_name if len(f.func.returns) == 1 else f"{fallback_name}{i}"
|
238 |
+
returns.append(name)
|
239 |
+
return returns
|
240 |
+
|
241 |
+
|
242 |
+
JIT_TO_CPP_DEFAULT = {
|
243 |
+
"False": "false",
|
244 |
+
"True": "true",
|
245 |
+
"None": "torch::executorch::nullopt", # UGH this one is type directed
|
246 |
+
"[]": "{}",
|
247 |
+
"contiguous_format": "torch::executorch::MemoryFormat::Contiguous",
|
248 |
+
"long": "torch::executorch::kLong",
|
249 |
+
}
|
250 |
+
|
251 |
+
|
252 |
+
# Convert a JIT default into C++ expression representing the default
|
253 |
+
def default_expr(d: str, t: Type) -> str:
|
254 |
+
if d == "None" and str(t) == "Tensor?":
|
255 |
+
return "{}"
|
256 |
+
if isinstance(t, BaseType) and t.name is BaseTy.str:
|
257 |
+
# Schema allows single quotes but C++ needs double
|
258 |
+
if len(d) >= 2 and d[0] == "'" and d[-1] == "'":
|
259 |
+
s = ""
|
260 |
+
i = 1
|
261 |
+
while i + 1 < len(d):
|
262 |
+
if d[i] != "\\":
|
263 |
+
if d[i] == '"':
|
264 |
+
s += '\\"'
|
265 |
+
else:
|
266 |
+
s += d[i]
|
267 |
+
i += 1
|
268 |
+
else:
|
269 |
+
if d[i + 1] == "'":
|
270 |
+
s += "'"
|
271 |
+
else:
|
272 |
+
s += d[i : i + 2]
|
273 |
+
i += 2
|
274 |
+
|
275 |
+
return f'"{s}"'
|
276 |
+
|
277 |
+
if isinstance(t, OptionalType):
|
278 |
+
if d == "None":
|
279 |
+
return "torch::executor::nullopt"
|
280 |
+
|
281 |
+
return default_expr(d, t.elem)
|
282 |
+
|
283 |
+
if isinstance(t, ListType):
|
284 |
+
if d.startswith("[") and d.endswith("]"):
|
285 |
+
return "{" + d[1:-1] + "}"
|
286 |
+
elif t.size is None:
|
287 |
+
# NOTE: Sized lists can have scalar defaults
|
288 |
+
raise ValueError(f"Expected a list default '[...]' but found: '{d}'")
|
289 |
+
|
290 |
+
return JIT_TO_CPP_DEFAULT.get(d, d)
|
291 |
+
|
292 |
+
|
293 |
+
# Convert an argument into its C++ API form
|
294 |
+
|
295 |
+
|
296 |
+
def argument(
|
297 |
+
a: Union[Argument, TensorOptionsArguments, SelfArgument],
|
298 |
+
*,
|
299 |
+
cpp_no_default_args: Set[str],
|
300 |
+
method: bool,
|
301 |
+
faithful: bool,
|
302 |
+
has_tensor_options: bool,
|
303 |
+
) -> List[Binding]:
|
304 |
+
def sub_argument(
|
305 |
+
a: Union[Argument, TensorOptionsArguments, SelfArgument]
|
306 |
+
) -> List[Binding]:
|
307 |
+
return argument(
|
308 |
+
a,
|
309 |
+
cpp_no_default_args=cpp_no_default_args,
|
310 |
+
method=method,
|
311 |
+
faithful=faithful,
|
312 |
+
has_tensor_options=has_tensor_options,
|
313 |
+
)
|
314 |
+
|
315 |
+
if isinstance(a, Argument):
|
316 |
+
binds: ArgName
|
317 |
+
if a.name == "memory_format" and has_tensor_options:
|
318 |
+
binds = SpecialArgName.possibly_redundant_memory_format
|
319 |
+
else:
|
320 |
+
binds = a.name
|
321 |
+
default: Optional[str] = None
|
322 |
+
if a.name not in cpp_no_default_args and a.default is not None:
|
323 |
+
default = default_expr(a.default, a.type)
|
324 |
+
return [
|
325 |
+
Binding(
|
326 |
+
nctype=argument_type(a, binds=binds),
|
327 |
+
name=a.name,
|
328 |
+
default=default,
|
329 |
+
argument=a,
|
330 |
+
)
|
331 |
+
]
|
332 |
+
elif isinstance(a, TensorOptionsArguments):
|
333 |
+
raise NotImplementedError("Need to implement type resolution for TensorOptions")
|
334 |
+
elif isinstance(a, SelfArgument):
|
335 |
+
if method:
|
336 |
+
# Caller is responsible for installing implicit this in context!
|
337 |
+
return []
|
338 |
+
else:
|
339 |
+
return sub_argument(a.argument)
|
340 |
+
else:
|
341 |
+
assert_never(a)
|
342 |
+
|
343 |
+
|
344 |
+
def arguments(
|
345 |
+
arguments: Arguments,
|
346 |
+
*,
|
347 |
+
faithful: bool,
|
348 |
+
method: bool,
|
349 |
+
cpp_no_default_args: Set[str],
|
350 |
+
) -> List[Binding]:
|
351 |
+
args: List[Union[Argument, TensorOptionsArguments, SelfArgument]] = []
|
352 |
+
if faithful:
|
353 |
+
args.extend(arguments.non_out)
|
354 |
+
args.extend(arguments.out)
|
355 |
+
else:
|
356 |
+
args.extend(arguments.out)
|
357 |
+
args.extend(arguments.non_out)
|
358 |
+
return [
|
359 |
+
r.no_default() if faithful else r
|
360 |
+
for a in args
|
361 |
+
for r in argument(
|
362 |
+
a,
|
363 |
+
faithful=faithful,
|
364 |
+
method=method,
|
365 |
+
has_tensor_options=arguments.tensor_options is not None,
|
366 |
+
cpp_no_default_args=cpp_no_default_args,
|
367 |
+
)
|
368 |
+
]
|
venv/lib/python3.10/site-packages/torchgen/executorch/api/types/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .types import *
|
2 |
+
from .signatures import * # isort:skip
|
venv/lib/python3.10/site-packages/torchgen/executorch/api/types/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (241 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torchgen/executorch/api/types/__pycache__/signatures.cpython-310.pyc
ADDED
Binary file (3.05 kB). View file
|
|
venv/lib/python3.10/site-packages/torchgen/executorch/api/types/__pycache__/types.cpython-310.pyc
ADDED
Binary file (2.61 kB). View file
|
|
venv/lib/python3.10/site-packages/torchgen/executorch/api/types/signatures.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import List, Optional, Set
|
3 |
+
|
4 |
+
import torchgen.api.cpp as aten_cpp
|
5 |
+
|
6 |
+
from torchgen.api.types import Binding, CType
|
7 |
+
from torchgen.model import FunctionSchema, NativeFunction
|
8 |
+
|
9 |
+
from .types import contextArg
|
10 |
+
|
11 |
+
|
12 |
+
@dataclass(frozen=True)
|
13 |
+
class ExecutorchCppSignature:
|
14 |
+
"""
|
15 |
+
This signature is merely a CppSignature with Executorch types (optionally
|
16 |
+
contains KernelRuntimeContext as well). The inline definition of
|
17 |
+
CppSignature is generated in Functions.h and it's used by unboxing
|
18 |
+
functions.
|
19 |
+
"""
|
20 |
+
|
21 |
+
# The schema this signature is derived from
|
22 |
+
func: FunctionSchema
|
23 |
+
|
24 |
+
# The set of C++ arguments which should not have defaults applied to them
|
25 |
+
cpp_no_default_args: Set[str]
|
26 |
+
|
27 |
+
# Allows you to prepend an arbitrary prefix to the signature name.
|
28 |
+
# This is useful for parts of the codegen that generate wrappers around kernels,
|
29 |
+
# and need to avoid naming collisions.
|
30 |
+
prefix: str = ""
|
31 |
+
|
32 |
+
def arguments(self, *, include_context: bool = True) -> List[Binding]:
|
33 |
+
return ([contextArg] if include_context else []) + et_cpp.arguments(
|
34 |
+
self.func.arguments,
|
35 |
+
faithful=True, # always faithful, out argument at the end
|
36 |
+
method=False, # method not supported
|
37 |
+
cpp_no_default_args=self.cpp_no_default_args,
|
38 |
+
)
|
39 |
+
|
40 |
+
def name(self) -> str:
|
41 |
+
return self.prefix + aten_cpp.name(
|
42 |
+
self.func,
|
43 |
+
faithful_name_for_out_overloads=True,
|
44 |
+
)
|
45 |
+
|
46 |
+
def decl(self, name: Optional[str] = None, *, include_context: bool = True) -> str:
|
47 |
+
args_str = ", ".join(
|
48 |
+
a.decl() for a in self.arguments(include_context=include_context)
|
49 |
+
)
|
50 |
+
if name is None:
|
51 |
+
name = self.name()
|
52 |
+
return f"{self.returns_type().cpp_type()} {name}({args_str})"
|
53 |
+
|
54 |
+
def defn(self, name: Optional[str] = None) -> str:
|
55 |
+
args = [a.defn() for a in self.arguments()]
|
56 |
+
args_str = ", ".join(args)
|
57 |
+
if name is None:
|
58 |
+
name = self.name()
|
59 |
+
return f"{self.returns_type().cpp_type()} {name}({args_str})"
|
60 |
+
|
61 |
+
def returns_type(self) -> CType:
|
62 |
+
return et_cpp.returns_type(self.func.returns)
|
63 |
+
|
64 |
+
@staticmethod
|
65 |
+
def from_native_function(
|
66 |
+
f: NativeFunction, *, prefix: str = ""
|
67 |
+
) -> "ExecutorchCppSignature":
|
68 |
+
return ExecutorchCppSignature(
|
69 |
+
func=f.func, prefix=prefix, cpp_no_default_args=f.cpp_no_default_args
|
70 |
+
)
|
71 |
+
|
72 |
+
|
73 |
+
from torchgen.executorch.api import et_cpp
|
venv/lib/python3.10/site-packages/torchgen/executorch/api/types/types.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Dict
|
3 |
+
|
4 |
+
from torchgen.api.types import (
|
5 |
+
BaseCppType,
|
6 |
+
BaseCType,
|
7 |
+
Binding,
|
8 |
+
boolT,
|
9 |
+
CType,
|
10 |
+
doubleT,
|
11 |
+
Expr,
|
12 |
+
longT,
|
13 |
+
MutRefCType,
|
14 |
+
NamedCType,
|
15 |
+
)
|
16 |
+
from torchgen.model import BaseTy
|
17 |
+
|
18 |
+
halfT = BaseCppType("torch::executor", "Half")
|
19 |
+
bfloat16T = BaseCppType("torch::executor", "BFloat16")
|
20 |
+
stringT = BaseCppType("torch::executor", "string_view")
|
21 |
+
scalarTypeT = BaseCppType("torch::executor", "ScalarType")
|
22 |
+
tensorT = BaseCppType("torch::executor", "Tensor")
|
23 |
+
tensorListT = BaseCppType("torch::executor", "TensorList")
|
24 |
+
scalarT = BaseCppType("torch::executor", "Scalar")
|
25 |
+
memoryFormatT = BaseCppType("torch::executor", "MemoryFormat")
|
26 |
+
intArrayRefT = BaseCppType("torch::executor", "IntArrayRef")
|
27 |
+
optionalT = BaseCppType("torch::executor", "optional")
|
28 |
+
contextT = BaseCppType("torch::executor", "KernelRuntimeContext")
|
29 |
+
|
30 |
+
contextExpr = Expr(
|
31 |
+
expr="context",
|
32 |
+
type=NamedCType(name="context", type=MutRefCType(BaseCType(contextT))),
|
33 |
+
)
|
34 |
+
|
35 |
+
contextArg = Binding(
|
36 |
+
name="context",
|
37 |
+
nctype=contextExpr.type,
|
38 |
+
argument=None, # type: ignore[arg-type]
|
39 |
+
default=None,
|
40 |
+
)
|
41 |
+
|
42 |
+
BaseTypeToCppMapping: Dict[BaseTy, BaseCppType] = {
|
43 |
+
BaseTy.int: longT,
|
44 |
+
BaseTy.float: doubleT,
|
45 |
+
BaseTy.bool: boolT,
|
46 |
+
BaseTy.str: stringT,
|
47 |
+
BaseTy.ScalarType: scalarTypeT,
|
48 |
+
BaseTy.Tensor: tensorT,
|
49 |
+
BaseTy.Scalar: scalarT,
|
50 |
+
BaseTy.MemoryFormat: memoryFormatT,
|
51 |
+
}
|
52 |
+
|
53 |
+
|
54 |
+
@dataclass(frozen=True)
|
55 |
+
class OptionalCType(CType):
|
56 |
+
elem: "CType"
|
57 |
+
|
58 |
+
def cpp_type(self, *, strip_ref: bool = False) -> str:
|
59 |
+
# Do not pass `strip_ref` recursively.
|
60 |
+
return f"torch::executor::optional<{self.elem.cpp_type()}>"
|
61 |
+
|
62 |
+
def cpp_type_registration_declarations(self) -> str:
|
63 |
+
return f"torch::executor::optional<{self.elem.cpp_type_registration_declarations()}>"
|
64 |
+
|
65 |
+
def remove_const_ref(self) -> "CType":
|
66 |
+
return OptionalCType(self.elem.remove_const_ref())
|
67 |
+
|
68 |
+
|
69 |
+
@dataclass(frozen=True)
|
70 |
+
class ArrayRefCType(CType):
|
71 |
+
elem: "CType"
|
72 |
+
|
73 |
+
def cpp_type(self, *, strip_ref: bool = False) -> str:
|
74 |
+
# Do not pass `strip_ref` recursively.
|
75 |
+
return f"torch::executor::ArrayRef<{self.elem.cpp_type()}>"
|
76 |
+
|
77 |
+
def cpp_type_registration_declarations(self) -> str:
|
78 |
+
return f"torch::executor::ArrayRef<{self.elem.cpp_type_registration_declarations()}>"
|
79 |
+
|
80 |
+
def remove_const_ref(self) -> "CType":
|
81 |
+
return ArrayRefCType(self.elem.remove_const_ref())
|
venv/lib/python3.10/site-packages/torchgen/executorch/api/unboxing.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Callable, List, Sequence, Tuple
|
3 |
+
|
4 |
+
from torchgen.api.types import Binding, CType, NamedCType
|
5 |
+
from torchgen.model import (
|
6 |
+
Argument,
|
7 |
+
BaseTy,
|
8 |
+
BaseType,
|
9 |
+
ListType,
|
10 |
+
NativeFunction,
|
11 |
+
OptionalType,
|
12 |
+
Type,
|
13 |
+
)
|
14 |
+
|
15 |
+
connector = "\n\t"
|
16 |
+
|
17 |
+
|
18 |
+
# Return unboxing function name for a NativeFunction
|
19 |
+
def name(f: NativeFunction) -> str:
|
20 |
+
return f.func.name.unambiguous_name()
|
21 |
+
|
22 |
+
|
23 |
+
@dataclass(frozen=True)
|
24 |
+
class Unboxing:
|
25 |
+
"""
|
26 |
+
Takes a sequence of Bindings and unbox EValues to these Bindings. Return generated code that performs correct unboxing.
|
27 |
+
A sample generated code:
|
28 |
+
// aten::mul.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
29 |
+
void mul_out(EValue** stack) {
|
30 |
+
EValue& self = *stack[0];
|
31 |
+
EValue& other = *stack[1];
|
32 |
+
EValue& out = *stack[2];
|
33 |
+
const torch::executor::Tensor & self_base = self.to<torch::executor::Tensor>();
|
34 |
+
const torch::executor::Tensor & other_base = other.to<torch::executor::Tensor>();
|
35 |
+
torch::executor::Tensor & out_base = out.to<torch::executor::Tensor>();
|
36 |
+
|
37 |
+
EXECUTORCH_SCOPE_PROF("native_call_mul.out");
|
38 |
+
torch::executor::mul_outf(self_base, other_base, out_base);
|
39 |
+
|
40 |
+
|
41 |
+
}
|
42 |
+
"""
|
43 |
+
|
44 |
+
# this is a callable that converts a JIT argument, into its C++ type.
|
45 |
+
# Translates (type, mutability, binds) to NamedCType. E.g., torchgen.api.cpp.argumenttype_type.
|
46 |
+
argument_type_gen: Callable[
|
47 |
+
...,
|
48 |
+
NamedCType,
|
49 |
+
]
|
50 |
+
|
51 |
+
# Convert all the arguments in a NativeFunction to C++ code
|
52 |
+
def convert_arguments(
|
53 |
+
self, args: Sequence[Binding]
|
54 |
+
) -> Tuple[List[Binding], List[str]]:
|
55 |
+
code_list = [f"EValue& {args[i].name} = *stack[{i}];" for i in range(len(args))]
|
56 |
+
binding_list = []
|
57 |
+
for arg in args:
|
58 |
+
# expecting only Argument
|
59 |
+
if not isinstance(arg.argument, Argument):
|
60 |
+
raise Exception(
|
61 |
+
f"Unexpected argument type, expecting `Argument` but got {arg}"
|
62 |
+
)
|
63 |
+
argument: Argument = arg.argument
|
64 |
+
unboxed_name, _, code, decl = self.argumenttype_evalue_convert(
|
65 |
+
argument.type, argument.name, mutable=argument.is_write
|
66 |
+
)
|
67 |
+
code_list.extend(decl)
|
68 |
+
code_list.extend(code)
|
69 |
+
binding_list.append(arg.with_name(unboxed_name))
|
70 |
+
return binding_list, code_list
|
71 |
+
|
72 |
+
def argumenttype_evalue_convert(
|
73 |
+
self, t: Type, arg_name: str, *, mutable: bool = False
|
74 |
+
) -> Tuple[str, CType, List[str], List[str]]:
|
75 |
+
"""
|
76 |
+
Takes in the type, name and mutability corresponding to an argument, and generates a tuple of:
|
77 |
+
(1) the C++ code necessary to unbox the argument
|
78 |
+
(2) A Binding corresponding to the newly created unboxed variable, including variable name and its CType
|
79 |
+
:param t: a `Type` of an argument
|
80 |
+
:param arg_name: argument name
|
81 |
+
:param mutable: boolean for whether this argument type is mutable
|
82 |
+
:return: unboxed result
|
83 |
+
"""
|
84 |
+
ctype = self.argument_type_gen(t, mutable=mutable, binds=arg_name).type
|
85 |
+
|
86 |
+
if isinstance(t, BaseType):
|
87 |
+
out_name = f"{arg_name}_base"
|
88 |
+
code, decl = self._gen_code_base_type(
|
89 |
+
arg_name=arg_name, out_name=out_name, ctype=ctype
|
90 |
+
)
|
91 |
+
elif isinstance(t, OptionalType):
|
92 |
+
out_name = f"{arg_name}_opt_out"
|
93 |
+
code, decl = self._gen_code_optional_type(
|
94 |
+
arg_name=arg_name, out_name=out_name, t=t, ctype=ctype
|
95 |
+
)
|
96 |
+
elif isinstance(t, ListType):
|
97 |
+
out_name = f"{arg_name}_list_out"
|
98 |
+
code, decl = self._gen_code_list_type(
|
99 |
+
arg_name=arg_name, out_name=out_name, t=t, ctype=ctype
|
100 |
+
)
|
101 |
+
else:
|
102 |
+
raise Exception(f"Cannot handle type {t}. arg_name: {arg_name}")
|
103 |
+
return out_name, ctype, code, decl
|
104 |
+
|
105 |
+
def _gen_code_base_type(
|
106 |
+
self, arg_name: str, out_name: str, ctype: CType
|
107 |
+
) -> Tuple[List[str], List[str]]:
|
108 |
+
return [
|
109 |
+
f"{ctype.cpp_type()} {out_name} = {arg_name}.to<{ctype.cpp_type(strip_ref=True)}>();"
|
110 |
+
], []
|
111 |
+
|
112 |
+
def _gen_code_optional_type(
|
113 |
+
self, arg_name: str, out_name: str, t: OptionalType, ctype: CType
|
114 |
+
) -> Tuple[List[str], List[str]]:
|
115 |
+
in_name = f"{arg_name}_opt_in"
|
116 |
+
res_name, base_type, res_code, decl = self.argumenttype_evalue_convert(
|
117 |
+
t.elem, in_name
|
118 |
+
)
|
119 |
+
return (
|
120 |
+
f"""
|
121 |
+
{ctype.cpp_type(strip_ref=True)} {out_name} = {arg_name}.toOptional<{base_type.cpp_type(strip_ref=True)}>();
|
122 |
+
""".split(
|
123 |
+
"\n"
|
124 |
+
),
|
125 |
+
decl,
|
126 |
+
)
|
127 |
+
|
128 |
+
def _gen_code_list_type(
|
129 |
+
self, arg_name: str, out_name: str, t: ListType, ctype: CType
|
130 |
+
) -> Tuple[List[str], List[str]]:
|
131 |
+
in_name = f"{arg_name}_list_in"
|
132 |
+
elem_name = f"{arg_name}_elem"
|
133 |
+
code = []
|
134 |
+
res_name, res_ctype, res_code, decl = self.argumenttype_evalue_convert(
|
135 |
+
t.elem, elem_name
|
136 |
+
)
|
137 |
+
|
138 |
+
if isinstance(t.elem, BaseType) and t.elem.name == BaseTy.Tensor:
|
139 |
+
code.extend(
|
140 |
+
f"""
|
141 |
+
{ctype.cpp_type(strip_ref=True)} {out_name} = {arg_name}.toTensorList();
|
142 |
+
""".split(
|
143 |
+
"\n"
|
144 |
+
)
|
145 |
+
)
|
146 |
+
elif isinstance(t.elem, BaseType) and (
|
147 |
+
t.elem.name == BaseTy.int or t.elem.name == BaseTy.SymInt
|
148 |
+
):
|
149 |
+
code.extend(
|
150 |
+
f"""
|
151 |
+
{ctype.cpp_type(strip_ref=True)} {out_name} = {arg_name}.toIntList();
|
152 |
+
""".split(
|
153 |
+
"\n"
|
154 |
+
)
|
155 |
+
)
|
156 |
+
elif isinstance(t.elem, BaseType) and t.elem.name == BaseTy.float:
|
157 |
+
code.extend(
|
158 |
+
f"""
|
159 |
+
{ctype.cpp_type(strip_ref=True)} {out_name} = {arg_name}.toDoubleList();
|
160 |
+
""".split(
|
161 |
+
"\n"
|
162 |
+
)
|
163 |
+
)
|
164 |
+
elif isinstance(t.elem, BaseType) and t.elem.name == BaseTy.bool:
|
165 |
+
# handle list type with size, e.g., bool[4]
|
166 |
+
code.extend(
|
167 |
+
f"""
|
168 |
+
{ctype.cpp_type(strip_ref=True)} {out_name} = {arg_name}.toBoolList();
|
169 |
+
""".split(
|
170 |
+
"\n"
|
171 |
+
)
|
172 |
+
)
|
173 |
+
# pytorch codegen:
|
174 |
+
# we have to use c10::List for optional element. e.g., Tensor?[] -> c10::List<c10::optional<at::Tensor>>
|
175 |
+
elif (
|
176 |
+
isinstance(t.elem, OptionalType)
|
177 |
+
and isinstance(t.elem.elem, BaseType)
|
178 |
+
and t.elem.elem.name == BaseTy.Tensor
|
179 |
+
):
|
180 |
+
code.extend(
|
181 |
+
f"""
|
182 |
+
#ifdef USE_ATEN_LIB
|
183 |
+
at::ArrayRef<c10::optional<at::Tensor>> {in_name} = {arg_name}.toListOptionalTensor();
|
184 |
+
c10::List<c10::optional<at::Tensor>> {out_name};
|
185 |
+
for (auto {elem_name}: {in_name}) {{
|
186 |
+
{out_name}.push_back({elem_name});
|
187 |
+
}}
|
188 |
+
#else
|
189 |
+
torch::executor::ArrayRef<torch::executor::optional<torch::executor::Tensor>> {out_name} = {arg_name}.toListOptionalTensor();
|
190 |
+
#endif
|
191 |
+
""".split(
|
192 |
+
"\n"
|
193 |
+
)
|
194 |
+
)
|
195 |
+
else:
|
196 |
+
# use ArrayRef as default.
|
197 |
+
vec_name = arg_name + "_vec"
|
198 |
+
# need to bring vector instantiation out of scope so that ArrayRef has valid data
|
199 |
+
decl.append(
|
200 |
+
f"std::vector<{res_ctype.cpp_type(strip_ref=True)}> {vec_name};"
|
201 |
+
)
|
202 |
+
code.extend(
|
203 |
+
f"""
|
204 |
+
for (EValue {elem_name}: {in_name}) {{
|
205 |
+
{connector.join(res_code)}
|
206 |
+
{vec_name}.push_back({res_name});
|
207 |
+
}}
|
208 |
+
{ctype.cpp_type(strip_ref=True)} {out_name}({vec_name});
|
209 |
+
""".split(
|
210 |
+
"\n"
|
211 |
+
)
|
212 |
+
)
|
213 |
+
return code, decl
|
venv/lib/python3.10/site-packages/torchgen/executorch/model.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Represents all kernels used by an Executorch model.
|
2 |
+
# It maintains a Dict[OperatorName, Dict[ETKernelKey, BackendMetadata]] structure.
|
3 |
+
|
4 |
+
import itertools
|
5 |
+
from collections import defaultdict, namedtuple
|
6 |
+
from dataclasses import dataclass
|
7 |
+
from enum import IntEnum
|
8 |
+
from typing import Dict, List, Tuple, Union
|
9 |
+
|
10 |
+
from torchgen.model import (
|
11 |
+
BackendIndex,
|
12 |
+
BackendMetadata,
|
13 |
+
DispatchKey,
|
14 |
+
NativeFunction,
|
15 |
+
NativeFunctionsGroup,
|
16 |
+
OperatorName,
|
17 |
+
)
|
18 |
+
from torchgen.utils import assert_never
|
19 |
+
|
20 |
+
KERNEL_KEY_VERSION = 1
|
21 |
+
|
22 |
+
|
23 |
+
# TODO: Duplicated Subset from codegen.tool.gen_oplist, remove declaration in codegen
|
24 |
+
class ScalarType(IntEnum):
|
25 |
+
Byte = 0
|
26 |
+
Char = 1
|
27 |
+
Short = 2
|
28 |
+
Int = 3
|
29 |
+
Long = 4
|
30 |
+
Float = 6
|
31 |
+
Double = 7
|
32 |
+
Bool = 11
|
33 |
+
|
34 |
+
|
35 |
+
ETParsedYaml = namedtuple("ETParsedYaml", ["native_functions", "kernel_index"])
|
36 |
+
|
37 |
+
|
38 |
+
@dataclass(frozen=True)
|
39 |
+
class ETKernelKeyOpArgMeta:
|
40 |
+
arg_name: str
|
41 |
+
dtype: str
|
42 |
+
# The order of the dimensions if entry is a Tensor
|
43 |
+
dim_order: Tuple[int, ...]
|
44 |
+
|
45 |
+
def to_native_string(self) -> str:
|
46 |
+
dtype_str = ScalarType[self.dtype].value
|
47 |
+
dim_str = str(self.dim_order)[1:-1].replace(" ", "")
|
48 |
+
return f"{dtype_str};{dim_str}"
|
49 |
+
|
50 |
+
|
51 |
+
@dataclass(frozen=True)
|
52 |
+
class ETKernelKey:
|
53 |
+
# Field undefined is default = True
|
54 |
+
arg_meta: Tuple[ETKernelKeyOpArgMeta, ...] = ()
|
55 |
+
|
56 |
+
# Indicator for this kernel being used as a catch all
|
57 |
+
default: bool = False
|
58 |
+
|
59 |
+
version: int = KERNEL_KEY_VERSION
|
60 |
+
|
61 |
+
@staticmethod
|
62 |
+
def gen_from_yaml(
|
63 |
+
args: Dict[str, Tuple[str, str]],
|
64 |
+
type_alias_map: Dict[str, List[str]], # TODO: Support unwrapped str val
|
65 |
+
dim_order_alias_map: Dict[str, List[int]],
|
66 |
+
) -> List["ETKernelKey"]:
|
67 |
+
"""Generate ETKernelKeys from arg kernel specs
|
68 |
+
Multiple ETKernelKeys are returned due to dtype permutations from utilizing
|
69 |
+
type_alias_map (actualizing each potential type permutation as a KernelKey)
|
70 |
+
|
71 |
+
Args:
|
72 |
+
args: Mapping from argument name to kernel specs
|
73 |
+
Kernel specs are a tuple of (dtype, dim_order).
|
74 |
+
Currently tuple entries must be aliased via the alias map arguments
|
75 |
+
type_alias_map: Mapping from type alias to potential type enums
|
76 |
+
i.e { T0 : [Double, Int] } means T0 can be either Double or Int
|
77 |
+
Used for lookup by args
|
78 |
+
dim_order_alias_map: Mapping from alias to a list of dimension orders
|
79 |
+
Used for lookup by args
|
80 |
+
"""
|
81 |
+
# Cast to dim order to int
|
82 |
+
dim_order_alias_map = {
|
83 |
+
k: [int(alias) for alias in v] for k, v in dim_order_alias_map.items()
|
84 |
+
}
|
85 |
+
kernel_keys = []
|
86 |
+
|
87 |
+
# Get all used Dtype Alias
|
88 |
+
dtype_alias_used = set()
|
89 |
+
for type_alias, dim_order in args.values():
|
90 |
+
# Enforce usage of alias initially
|
91 |
+
# TODO: Support inlined arguments
|
92 |
+
assert type_alias in type_alias_map, "Undefined type alias: " + str(
|
93 |
+
type_alias
|
94 |
+
)
|
95 |
+
assert (
|
96 |
+
dim_order in dim_order_alias_map
|
97 |
+
), "Undefined dim_order alias: " + str(dim_order)
|
98 |
+
dtype_alias_used.add(type_alias)
|
99 |
+
|
100 |
+
# Generate all permutations of dtype alias values
|
101 |
+
alias_dtypes = [
|
102 |
+
[(alias, dtype) for dtype in type_alias_map[alias]]
|
103 |
+
for alias in dtype_alias_used
|
104 |
+
]
|
105 |
+
alias_permutations = [
|
106 |
+
dict(permutation) for permutation in list(itertools.product(*alias_dtypes))
|
107 |
+
]
|
108 |
+
|
109 |
+
# Using each alias value permutation, generate kernel keys
|
110 |
+
op_arg_cache = {}
|
111 |
+
for permutation in alias_permutations:
|
112 |
+
arg_list = []
|
113 |
+
for arg_name, arg_spec in args.items():
|
114 |
+
dtype = permutation[arg_spec[0]]
|
115 |
+
dim_order = dim_order_alias_map[arg_spec[1]] # type: ignore[assignment]
|
116 |
+
if (
|
117 |
+
cache_key := (arg_name, dtype, tuple(dim_order))
|
118 |
+
) not in op_arg_cache:
|
119 |
+
op_arg_cache[cache_key] = ETKernelKeyOpArgMeta(*cache_key) # type: ignore[arg-type]
|
120 |
+
|
121 |
+
arg_list.append(op_arg_cache[cache_key])
|
122 |
+
kernel_keys.append(ETKernelKey(tuple(arg_list)))
|
123 |
+
|
124 |
+
return kernel_keys
|
125 |
+
|
126 |
+
def to_native_string(self) -> str:
|
127 |
+
if self.default:
|
128 |
+
return "default"
|
129 |
+
return (
|
130 |
+
"v"
|
131 |
+
+ str(KERNEL_KEY_VERSION)
|
132 |
+
+ "/"
|
133 |
+
+ "|".join([arg.to_native_string() for arg in self.arg_meta])
|
134 |
+
)
|
135 |
+
|
136 |
+
|
137 |
+
@dataclass(frozen=True)
|
138 |
+
class ETKernelIndex:
|
139 |
+
index: Dict[OperatorName, Dict[ETKernelKey, BackendMetadata]]
|
140 |
+
|
141 |
+
def has_kernels(self, g: Union[NativeFunction, NativeFunctionsGroup]) -> bool:
|
142 |
+
m = self.get_kernels(g)
|
143 |
+
return m is not None
|
144 |
+
|
145 |
+
def get_kernels(
|
146 |
+
self, g: Union[NativeFunction, NativeFunctionsGroup]
|
147 |
+
) -> Dict[ETKernelKey, BackendMetadata]:
|
148 |
+
if isinstance(g, NativeFunction):
|
149 |
+
f = g
|
150 |
+
elif isinstance(g, NativeFunctionsGroup):
|
151 |
+
f = g.functional
|
152 |
+
else:
|
153 |
+
assert_never(g)
|
154 |
+
if f.func.name not in self.index:
|
155 |
+
return {}
|
156 |
+
return self.index[f.func.name]
|
157 |
+
|
158 |
+
@staticmethod
|
159 |
+
def grow_from_backend_indices(
|
160 |
+
kernel_index: Dict[OperatorName, Dict[ETKernelKey, BackendMetadata]],
|
161 |
+
backend_indices: Dict[DispatchKey, Dict[OperatorName, BackendMetadata]],
|
162 |
+
) -> None:
|
163 |
+
for dk in backend_indices:
|
164 |
+
index = backend_indices[dk]
|
165 |
+
for op, backend_metadata in index.items():
|
166 |
+
if op in kernel_index:
|
167 |
+
kernel_index[op][ETKernelKey(default=True)] = backend_metadata
|
168 |
+
else:
|
169 |
+
kernel_index[op] = {ETKernelKey(default=True): backend_metadata}
|
170 |
+
|
171 |
+
@staticmethod
|
172 |
+
def from_backend_indices(
|
173 |
+
backend_indices: Dict[DispatchKey, Dict[OperatorName, BackendMetadata]]
|
174 |
+
) -> "ETKernelIndex":
|
175 |
+
kernel_index: Dict[
|
176 |
+
OperatorName, Dict[ETKernelKey, BackendMetadata]
|
177 |
+
] = defaultdict(dict)
|
178 |
+
ETKernelIndex.grow_from_backend_indices(kernel_index, backend_indices)
|
179 |
+
return ETKernelIndex(kernel_index)
|
180 |
+
|
181 |
+
def grow(
|
182 |
+
self, backend_indices: Dict[DispatchKey, Dict[OperatorName, BackendMetadata]]
|
183 |
+
) -> "ETKernelIndex":
|
184 |
+
ETKernelIndex.grow_from_backend_indices(self.index, backend_indices)
|
185 |
+
return self
|
186 |
+
|
187 |
+
def _to_backend_index(self) -> BackendIndex:
|
188 |
+
"""
|
189 |
+
WARNING: this will be deprecated once all the codegen places know how to handle ETKernelIndex.
|
190 |
+
"""
|
191 |
+
index: Dict[OperatorName, BackendMetadata] = {}
|
192 |
+
for op in self.index:
|
193 |
+
kernel_dict = self.index[op]
|
194 |
+
assert (
|
195 |
+
len(kernel_dict.values()) == 1
|
196 |
+
), f"Can't convert ETKernelIndex to BackendIndex because {op} has more than one kernels. Got {kernel_dict}"
|
197 |
+
index[op] = kernel_dict.get(
|
198 |
+
ETKernelKey(default=True),
|
199 |
+
BackendMetadata(kernel="", structured=False, cpp_namespace=""),
|
200 |
+
)
|
201 |
+
return BackendIndex(
|
202 |
+
dispatch_key=DispatchKey.CPU,
|
203 |
+
use_out_as_primary=False,
|
204 |
+
device_guard=False,
|
205 |
+
external=False,
|
206 |
+
index=index,
|
207 |
+
)
|
208 |
+
|
209 |
+
# Note duplicate ETKernelKey from index_b will clobber the metadata from index_a
|
210 |
+
@staticmethod
|
211 |
+
def merge_indices(
|
212 |
+
index_a: "ETKernelIndex", index_b: "ETKernelIndex"
|
213 |
+
) -> "ETKernelIndex":
|
214 |
+
combined = defaultdict(dict, index_a.index.copy())
|
215 |
+
|
216 |
+
for op, entry in index_b.index.items():
|
217 |
+
for key, metadata in entry.items():
|
218 |
+
combined[op][key] = metadata
|
219 |
+
|
220 |
+
return ETKernelIndex(combined)
|
venv/lib/python3.10/site-packages/torchgen/executorch/parse.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict, namedtuple
|
2 |
+
from typing import Any, Dict, List, Optional, Set, Tuple
|
3 |
+
|
4 |
+
import yaml
|
5 |
+
|
6 |
+
from torchgen.executorch.model import ETKernelIndex, ETKernelKey
|
7 |
+
|
8 |
+
from torchgen.gen import LineLoader, parse_native_yaml
|
9 |
+
from torchgen.model import (
|
10 |
+
BackendMetadata,
|
11 |
+
DispatchKey,
|
12 |
+
FunctionSchema,
|
13 |
+
NativeFunction,
|
14 |
+
OperatorName,
|
15 |
+
)
|
16 |
+
from torchgen.utils import NamespaceHelper
|
17 |
+
|
18 |
+
# Parse native_functions.yaml into a sequence of NativeFunctions and ET Backend Indices.
|
19 |
+
ETParsedYaml = namedtuple("ETParsedYaml", ["native_functions", "et_kernel_indices"])
|
20 |
+
|
21 |
+
# Fields in native_functions.yaml used to determine which kernels should be used
|
22 |
+
ET_FIELDS = ["kernels", "type_alias", "dim_order_alias"]
|
23 |
+
|
24 |
+
|
25 |
+
def parse_from_yaml(ei: Dict[str, object]) -> Dict[ETKernelKey, BackendMetadata]:
|
26 |
+
"""Given a loaded yaml representing kernel assignment information, extract the
|
27 |
+
mapping from `kernel keys` to `BackendMetadata` (the latter representing the kernel instance)
|
28 |
+
|
29 |
+
Args:
|
30 |
+
ei: Dict keys {kernels, type_alias, dim_order_alias}
|
31 |
+
See ETKernelKey for description of arguments
|
32 |
+
"""
|
33 |
+
e = ei.copy()
|
34 |
+
if (kernels := e.pop("kernels", None)) is None:
|
35 |
+
return {}
|
36 |
+
|
37 |
+
type_alias: Dict[str, List[str]] = e.pop("type_alias", {}) # type: ignore[assignment]
|
38 |
+
dim_order_alias: Dict[str, List[str]] = e.pop("dim_order_alias", {}) # type: ignore[assignment]
|
39 |
+
dim_order_alias.pop("__line__", None)
|
40 |
+
|
41 |
+
kernel_mapping: Dict[ETKernelKey, BackendMetadata] = {}
|
42 |
+
|
43 |
+
for entry in kernels: # type: ignore[attr-defined]
|
44 |
+
arg_meta = entry.get("arg_meta")
|
45 |
+
if arg_meta is not None:
|
46 |
+
arg_meta.pop("__line__")
|
47 |
+
|
48 |
+
kernel_name = entry.get("kernel_name")
|
49 |
+
namespace_helper = NamespaceHelper.from_namespaced_entity(
|
50 |
+
kernel_name, max_level=3
|
51 |
+
)
|
52 |
+
kernel_namespace = namespace_helper.get_cpp_namespace(default="at")
|
53 |
+
backend_metadata = BackendMetadata(
|
54 |
+
kernel=namespace_helper.entity_name,
|
55 |
+
structured=False,
|
56 |
+
cpp_namespace=(kernel_namespace + "::native"),
|
57 |
+
)
|
58 |
+
|
59 |
+
kernel_keys = (
|
60 |
+
[ETKernelKey((), default=True)]
|
61 |
+
if arg_meta is None
|
62 |
+
else ETKernelKey.gen_from_yaml(arg_meta, type_alias, dim_order_alias) # type: ignore[arg-type]
|
63 |
+
)
|
64 |
+
|
65 |
+
for kernel_key in kernel_keys:
|
66 |
+
assert kernel_key not in kernel_mapping, (
|
67 |
+
"Duplicate kernel key: " + str(kernel_key) + " " + str(e)
|
68 |
+
)
|
69 |
+
kernel_mapping[kernel_key] = backend_metadata
|
70 |
+
|
71 |
+
return kernel_mapping
|
72 |
+
|
73 |
+
|
74 |
+
def parse_et_yaml_struct(es: object) -> ETKernelIndex:
|
75 |
+
"""Given a loaded yaml representing a list of operators, for each op extract the mapping
|
76 |
+
of `kernel keys` to `BackendMetadata` (the latter representing the kernel instance
|
77 |
+
that should be used by the kernel key).
|
78 |
+
"""
|
79 |
+
indices: Dict[OperatorName, Dict[ETKernelKey, BackendMetadata]] = {}
|
80 |
+
for ei in es: # type: ignore[attr-defined]
|
81 |
+
e = ei.copy()
|
82 |
+
|
83 |
+
funcs = e.pop("func")
|
84 |
+
assert isinstance(funcs, str), f"not a str: {funcs}"
|
85 |
+
namespace_helper = NamespaceHelper.from_namespaced_entity(
|
86 |
+
namespaced_entity=funcs, max_level=1
|
87 |
+
)
|
88 |
+
opname = FunctionSchema.parse(namespace_helper.entity_name).name
|
89 |
+
|
90 |
+
assert opname not in indices, f"Duplicate func found in yaml: {opname} already"
|
91 |
+
|
92 |
+
if len(index := parse_from_yaml(e)) != 0:
|
93 |
+
indices[opname] = index
|
94 |
+
|
95 |
+
return ETKernelIndex(indices)
|
96 |
+
|
97 |
+
|
98 |
+
def extract_kernel_fields(es: object) -> Dict[OperatorName, Dict[str, Any]]:
|
99 |
+
"""Given a loaded yaml representing a list of operators, extract the
|
100 |
+
kernel key related fields indexed by the operator name.
|
101 |
+
"""
|
102 |
+
fields: Dict[OperatorName, Dict[str, Any]] = defaultdict(dict)
|
103 |
+
for ei in es: # type: ignore[attr-defined]
|
104 |
+
funcs = ei.get("func")
|
105 |
+
assert isinstance(funcs, str), f"not a str: {funcs}"
|
106 |
+
namespace_helper = NamespaceHelper.from_namespaced_entity(
|
107 |
+
namespaced_entity=funcs, max_level=1
|
108 |
+
)
|
109 |
+
opname = FunctionSchema.parse(namespace_helper.entity_name).name
|
110 |
+
|
111 |
+
for field in ET_FIELDS:
|
112 |
+
if (value := ei.get(field)) is not None:
|
113 |
+
fields[opname][field] = value
|
114 |
+
|
115 |
+
return fields
|
116 |
+
|
117 |
+
|
118 |
+
def parse_et_yaml(
|
119 |
+
path: str,
|
120 |
+
tags_yaml_path: str,
|
121 |
+
ignore_keys: Optional[Set[DispatchKey]] = None,
|
122 |
+
skip_native_fns_gen: bool = False,
|
123 |
+
) -> Tuple[List[NativeFunction], Dict[OperatorName, Dict[str, Any]]]:
|
124 |
+
"""Parse native_functions.yaml into NativeFunctions and an Operator Indexed Dict
|
125 |
+
of fields to persist from native_functions.yaml to functions.yaml
|
126 |
+
"""
|
127 |
+
with open(path) as f:
|
128 |
+
es = yaml.load(f, Loader=LineLoader)
|
129 |
+
|
130 |
+
et_kernel = extract_kernel_fields(es)
|
131 |
+
|
132 |
+
# Remove ET specific fields from entries for BC compatibility
|
133 |
+
strip_et_fields(es)
|
134 |
+
|
135 |
+
native_yaml = parse_native_yaml(
|
136 |
+
path,
|
137 |
+
tags_yaml_path,
|
138 |
+
ignore_keys,
|
139 |
+
skip_native_fns_gen=skip_native_fns_gen,
|
140 |
+
loaded_yaml=es,
|
141 |
+
)
|
142 |
+
return native_yaml.native_functions, et_kernel
|
143 |
+
|
144 |
+
|
145 |
+
def strip_et_fields(es: object) -> None:
|
146 |
+
"""Given a loaded yaml representing a list of operators,
|
147 |
+
remove ET specific fields from every entries for BC compatibility
|
148 |
+
"""
|
149 |
+
for entry in es: # type: ignore[attr-defined]
|
150 |
+
for field in ET_FIELDS:
|
151 |
+
entry.pop(field, None)
|
venv/lib/python3.10/site-packages/torchgen/operator_versions/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/torchgen/operator_versions/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (194 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torchgen/operator_versions/__pycache__/gen_mobile_upgraders.cpython-310.pyc
ADDED
Binary file (9.84 kB). View file
|
|
venv/lib/python3.10/site-packages/torchgen/operator_versions/__pycache__/gen_mobile_upgraders_constant.cpython-310.pyc
ADDED
Binary file (453 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torchgen/operator_versions/gen_mobile_upgraders.py
ADDED
@@ -0,0 +1,392 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import os
|
3 |
+
from enum import Enum
|
4 |
+
from pathlib import Path
|
5 |
+
from typing import Any, Dict, List
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch.jit.generate_bytecode import generate_upgraders_bytecode
|
9 |
+
|
10 |
+
from torchgen.code_template import CodeTemplate
|
11 |
+
from torchgen.operator_versions.gen_mobile_upgraders_constant import (
|
12 |
+
MOBILE_UPGRADERS_HEADER_DESCRIPTION,
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
class ByteCode(Enum):
|
17 |
+
instructions = 1
|
18 |
+
constants = 2
|
19 |
+
types = 3
|
20 |
+
operators = 4
|
21 |
+
register_size = 5
|
22 |
+
|
23 |
+
|
24 |
+
EXCLUDED_OP_SET = [
|
25 |
+
"aten::full.names",
|
26 |
+
"aten::full.out",
|
27 |
+
"aten::full",
|
28 |
+
]
|
29 |
+
|
30 |
+
EXCLUE_UPGRADER_SET = ["full_0_4", "full_out_0_4"]
|
31 |
+
|
32 |
+
ONE_INSTRUCTION = CodeTemplate(
|
33 |
+
"""
|
34 |
+
Instruction{OpCode::${operator_name}, ${X}, ${N}},"""
|
35 |
+
)
|
36 |
+
|
37 |
+
INSTRUCTION_LIST = CodeTemplate(
|
38 |
+
"""std::vector<Instruction>({
|
39 |
+
${instruction_list}
|
40 |
+
}), // instructions list"""
|
41 |
+
)
|
42 |
+
|
43 |
+
ONE_CONSTANT = CodeTemplate(
|
44 |
+
"""
|
45 |
+
c10::IValue(${constant}),"""
|
46 |
+
)
|
47 |
+
|
48 |
+
CONSTANT_LIST = CodeTemplate(
|
49 |
+
"""std::vector<c10::IValue>({
|
50 |
+
${constant_list}
|
51 |
+
}), // constants list"""
|
52 |
+
)
|
53 |
+
|
54 |
+
CONSTANTS_LIST_EMPTY = """std::vector<c10::IValue>(), // constants list"""
|
55 |
+
|
56 |
+
ONE_TYPE = CodeTemplate("""c10::parseType("${type_str}"),""")
|
57 |
+
|
58 |
+
TYPE_LIST = CodeTemplate(
|
59 |
+
"""std::vector<c10::TypePtr>({
|
60 |
+
${type_list}
|
61 |
+
}), // types list"""
|
62 |
+
)
|
63 |
+
|
64 |
+
TYPE_LIST_EMPTY = """std::vector<c10::TypePtr>(), // types list"""
|
65 |
+
|
66 |
+
ONE_OPERATOTR_STRING = CodeTemplate(
|
67 |
+
"""
|
68 |
+
OperatorString({"${operator_name}", "${overload_name}", ${num_of_args}}),"""
|
69 |
+
)
|
70 |
+
|
71 |
+
OPERATOR_STRING_LIST = CodeTemplate(
|
72 |
+
"""
|
73 |
+
std::vector<OperatorString>({
|
74 |
+
${operator_string_list}
|
75 |
+
}), // operators list"""
|
76 |
+
)
|
77 |
+
|
78 |
+
ONE_UPGRADER_FUNCTION = CodeTemplate(
|
79 |
+
"""
|
80 |
+
mobile::Function::registerFunc(
|
81 |
+
"${upgrader_name}",
|
82 |
+
${instruction_list},
|
83 |
+
${constant_list},
|
84 |
+
${type_list},
|
85 |
+
${register_size}
|
86 |
+
)"""
|
87 |
+
)
|
88 |
+
|
89 |
+
ONE_UPGRADER_SRC = CodeTemplate(
|
90 |
+
"""
|
91 |
+
ByteCodeFunctionWithOperator({
|
92 |
+
${bytecode_function},
|
93 |
+
${operator_string_list}
|
94 |
+
}),"""
|
95 |
+
)
|
96 |
+
|
97 |
+
|
98 |
+
ONE_UPGRADER_IN_VERSION_MAP = CodeTemplate(
|
99 |
+
"""Upgrader({${upgrader_min_version}, ${upgrader_max_version}, "${upgrader_name}", ${bytecode_func_index}})"""
|
100 |
+
) # noqa: E501
|
101 |
+
|
102 |
+
ONE_OPERATOR_IN_VERSION_MAP = CodeTemplate(
|
103 |
+
"""
|
104 |
+
{std::string("${operator_name}"),
|
105 |
+
std::vector<Upgrader>({
|
106 |
+
${upgrader_list_in_version_map}
|
107 |
+
})},"""
|
108 |
+
)
|
109 |
+
|
110 |
+
|
111 |
+
OPERATOR_VERSION_MAP = CodeTemplate(
|
112 |
+
"""
|
113 |
+
const std::unordered_map<std::string, std::vector<Upgrader>>
|
114 |
+
getOperatorVersionMapForMobile() {
|
115 |
+
static std::unordered_map<std::string, std::vector<Upgrader>>
|
116 |
+
operatorVersionMapForMobile({
|
117 |
+
${operator_list_in_version_map}
|
118 |
+
});
|
119 |
+
return operatorVersionMapForMobile;
|
120 |
+
}
|
121 |
+
"""
|
122 |
+
)
|
123 |
+
|
124 |
+
|
125 |
+
UPGRADER_CPP_SRC = CodeTemplate(
|
126 |
+
MOBILE_UPGRADERS_HEADER_DESCRIPTION
|
127 |
+
+ """
|
128 |
+
#include <caffe2/serialize/versions.h>
|
129 |
+
#include <torch/csrc/jit/mobile/upgrader_mobile.h>
|
130 |
+
|
131 |
+
namespace c10 {
|
132 |
+
TypePtr parseType(const std::string& pythonStr);
|
133 |
+
} // namespace c10
|
134 |
+
|
135 |
+
namespace torch {
|
136 |
+
namespace jit {
|
137 |
+
|
138 |
+
// clang-format off
|
139 |
+
|
140 |
+
// From operator_versions_map
|
141 |
+
${operator_version_map}
|
142 |
+
|
143 |
+
const std::vector<ByteCodeFunctionWithOperator>& getUpgraderBytecodeList() {
|
144 |
+
auto generate_upgrader_bytecode_list = []() {
|
145 |
+
std::vector<ByteCodeFunctionWithOperator> upgrader_function_list({
|
146 |
+
${upgrader_bytecode}
|
147 |
+
});
|
148 |
+
for (const auto& upgrader_function : upgrader_function_list) {
|
149 |
+
for (const auto& op : upgrader_function.operators) {
|
150 |
+
upgrader_function.function.append_operator(
|
151 |
+
op.name,
|
152 |
+
op.overload_name,
|
153 |
+
op.num_specified_args);
|
154 |
+
}
|
155 |
+
}
|
156 |
+
return upgrader_function_list;
|
157 |
+
};
|
158 |
+
static std::vector<ByteCodeFunctionWithOperator> upgraderBytecodeList =
|
159 |
+
generate_upgrader_bytecode_list();
|
160 |
+
return upgraderBytecodeList;
|
161 |
+
}
|
162 |
+
|
163 |
+
// clang-format on
|
164 |
+
|
165 |
+
} // namespace jit
|
166 |
+
} // namespace torch
|
167 |
+
"""
|
168 |
+
)
|
169 |
+
|
170 |
+
UPGRADER_MOBILE_FILE_NAME = "upgrader_mobile.cpp"
|
171 |
+
|
172 |
+
UPGRADER_ELEMENT = CodeTemplate(
|
173 |
+
"""\
|
174 |
+
Upgrader({${min_version}, ${max_version}, ${operator_name}, ${index}}),
|
175 |
+
"""
|
176 |
+
)
|
177 |
+
|
178 |
+
PER_OPERATOR_UPGRADER_LIST = CodeTemplate(
|
179 |
+
"""\
|
180 |
+
{
|
181 |
+
std::string(${operator_name}),
|
182 |
+
std::vector<Upgrader>({${upgrader_list}});
|
183 |
+
}
|
184 |
+
"""
|
185 |
+
)
|
186 |
+
|
187 |
+
|
188 |
+
def construct_instruction(instruction_list_from_yaml: List[Any]) -> str:
|
189 |
+
instruction_list_part = []
|
190 |
+
for instruction in instruction_list_from_yaml:
|
191 |
+
instruction_list_part.append(
|
192 |
+
ONE_INSTRUCTION.substitute(
|
193 |
+
operator_name=instruction[0],
|
194 |
+
X=instruction[1],
|
195 |
+
N=instruction[2],
|
196 |
+
)
|
197 |
+
)
|
198 |
+
return INSTRUCTION_LIST.substitute(
|
199 |
+
instruction_list="".join(instruction_list_part).lstrip("\n")
|
200 |
+
)
|
201 |
+
|
202 |
+
|
203 |
+
def construct_constants(constants_list_from_yaml: List[Any]) -> str:
|
204 |
+
constants_list_part = []
|
205 |
+
for constant_from_yaml in constants_list_from_yaml:
|
206 |
+
convert_constant = None
|
207 |
+
if isinstance(constant_from_yaml, str):
|
208 |
+
# Add quotes if it's string
|
209 |
+
convert_constant = f'"{constant_from_yaml}"'
|
210 |
+
elif isinstance(constant_from_yaml, bool):
|
211 |
+
convert_constant = "true" if constant_from_yaml else "false"
|
212 |
+
elif constant_from_yaml is None:
|
213 |
+
convert_constant = ""
|
214 |
+
elif isinstance(constant_from_yaml, int):
|
215 |
+
convert_constant = str(constant_from_yaml)
|
216 |
+
else:
|
217 |
+
raise ValueError(
|
218 |
+
f"The type of {constant_from_yaml} is {type(constant_from_yaml)}. "
|
219 |
+
"Please add change in construct_constants function in gen_mobile_upgraders.py."
|
220 |
+
)
|
221 |
+
constants_list_part.append(ONE_CONSTANT.substitute(constant=convert_constant))
|
222 |
+
if len(constants_list_part) == 0:
|
223 |
+
return CONSTANTS_LIST_EMPTY
|
224 |
+
return CONSTANT_LIST.substitute(
|
225 |
+
constant_list="".join(constants_list_part).lstrip("\n")
|
226 |
+
)
|
227 |
+
|
228 |
+
|
229 |
+
def construct_operators(operator_list_from_yaml: List[Any]) -> str:
|
230 |
+
operator_list_part = []
|
231 |
+
for operator in operator_list_from_yaml:
|
232 |
+
operator_list_part.append(
|
233 |
+
ONE_OPERATOTR_STRING.substitute(
|
234 |
+
operator_name=operator[0],
|
235 |
+
overload_name=operator[1],
|
236 |
+
num_of_args=operator[2],
|
237 |
+
)
|
238 |
+
)
|
239 |
+
return OPERATOR_STRING_LIST.substitute(
|
240 |
+
operator_string_list="".join(operator_list_part).lstrip("\n")
|
241 |
+
)
|
242 |
+
|
243 |
+
|
244 |
+
def construct_types(types_tr_list_from_yaml: List[Any]) -> str:
|
245 |
+
types_tr_list_part = []
|
246 |
+
for types_tr in types_tr_list_from_yaml:
|
247 |
+
types_tr_list_part.append(ONE_TYPE.substitute(type_str=types_tr))
|
248 |
+
if len(types_tr_list_part) == 0:
|
249 |
+
return TYPE_LIST_EMPTY
|
250 |
+
return TYPE_LIST.substitute(type_list="".join(types_tr_list_part).lstrip("\n"))
|
251 |
+
|
252 |
+
|
253 |
+
def construct_register_size(register_size_from_yaml: int) -> str:
|
254 |
+
if not isinstance(register_size_from_yaml, int):
|
255 |
+
raise ValueError(
|
256 |
+
f"Input register size is {register_size_from_yaml} and"
|
257 |
+
"it's type is {type(register_size_from_yaml)}. An int type is expected."
|
258 |
+
)
|
259 |
+
return str(register_size_from_yaml)
|
260 |
+
|
261 |
+
|
262 |
+
def construct_version_maps(
|
263 |
+
upgrader_bytecode_function_to_index_map: Dict[str, Any]
|
264 |
+
) -> str:
|
265 |
+
version_map = torch._C._get_operator_version_map()
|
266 |
+
sorted_version_map_ = sorted(version_map.items(), key=lambda item: item[0]) # type: ignore[no-any-return]
|
267 |
+
sorted_version_map = dict(sorted_version_map_)
|
268 |
+
|
269 |
+
operator_list_in_version_map_part = []
|
270 |
+
for op_name in sorted_version_map:
|
271 |
+
upgraders_in_version_map_part = []
|
272 |
+
# TODO: remove the skip after these two operators schemas are fixed
|
273 |
+
if op_name in EXCLUDED_OP_SET:
|
274 |
+
continue
|
275 |
+
upgrader_ranges = torch._C._get_upgrader_ranges(op_name)
|
276 |
+
upgrader_entries = sorted_version_map[op_name]
|
277 |
+
assert len(upgrader_ranges) == len(upgrader_entries)
|
278 |
+
for idx, upgrader_entry in enumerate(upgrader_entries):
|
279 |
+
upgrader_name = upgrader_entry.upgrader_name
|
280 |
+
bytecode_function_index = upgrader_bytecode_function_to_index_map[
|
281 |
+
upgrader_name
|
282 |
+
]
|
283 |
+
upgraders_in_version_map_part.append(
|
284 |
+
ONE_UPGRADER_IN_VERSION_MAP.substitute(
|
285 |
+
upgrader_min_version=upgrader_ranges[idx].min_version,
|
286 |
+
upgrader_max_version=upgrader_ranges[idx].max_version,
|
287 |
+
upgrader_name=upgrader_name,
|
288 |
+
bytecode_func_index=bytecode_function_index,
|
289 |
+
)
|
290 |
+
)
|
291 |
+
operator_list_in_version_map_part.append(
|
292 |
+
ONE_OPERATOR_IN_VERSION_MAP.substitute(
|
293 |
+
operator_name=op_name,
|
294 |
+
upgrader_list_in_version_map="".join(upgraders_in_version_map_part),
|
295 |
+
)
|
296 |
+
)
|
297 |
+
return OPERATOR_VERSION_MAP.substitute(
|
298 |
+
operator_list_in_version_map="".join(operator_list_in_version_map_part).lstrip(
|
299 |
+
"\n"
|
300 |
+
)
|
301 |
+
)
|
302 |
+
|
303 |
+
|
304 |
+
def get_upgrader_bytecode_function_to_index_map(
|
305 |
+
upgrader_dict: List[Dict[str, Any]]
|
306 |
+
) -> Dict[str, Any]:
|
307 |
+
upgrader_bytecode_function_to_index_map = {}
|
308 |
+
index = 0
|
309 |
+
for upgrader_bytecode in upgrader_dict:
|
310 |
+
for upgrader_name in upgrader_bytecode.keys():
|
311 |
+
if upgrader_name in EXCLUE_UPGRADER_SET:
|
312 |
+
continue
|
313 |
+
upgrader_bytecode_function_to_index_map[upgrader_name] = index
|
314 |
+
index += 1
|
315 |
+
return upgrader_bytecode_function_to_index_map
|
316 |
+
|
317 |
+
|
318 |
+
def write_cpp(cpp_path: str, upgrader_dict: List[Dict[str, Any]]) -> None:
|
319 |
+
body_parts = []
|
320 |
+
upgrader_bytecode_function_to_index_map = (
|
321 |
+
get_upgrader_bytecode_function_to_index_map(upgrader_dict)
|
322 |
+
)
|
323 |
+
version_map_src = construct_version_maps(upgrader_bytecode_function_to_index_map)
|
324 |
+
all_upgrader_src_string = []
|
325 |
+
for upgrader_bytecode in upgrader_dict:
|
326 |
+
for upgrader_name, bytecode in upgrader_bytecode.items():
|
327 |
+
# TODO: remove the skip after these two operators schemas are fixed
|
328 |
+
if upgrader_name in EXCLUE_UPGRADER_SET:
|
329 |
+
continue
|
330 |
+
instruction_list_str = ""
|
331 |
+
constant_list_str = ""
|
332 |
+
type_list_str = ""
|
333 |
+
register_size_str = ""
|
334 |
+
operator_list_str = ""
|
335 |
+
for table_name, contents in bytecode.items():
|
336 |
+
element = ByteCode[table_name]
|
337 |
+
body_string = ""
|
338 |
+
if element is ByteCode.instructions:
|
339 |
+
instruction_list_str = construct_instruction(contents)
|
340 |
+
elif element is ByteCode.constants:
|
341 |
+
constant_list_str = construct_constants(contents)
|
342 |
+
elif element is ByteCode.operators:
|
343 |
+
operator_list_str = construct_operators(contents)
|
344 |
+
elif element is ByteCode.types:
|
345 |
+
type_list_str = construct_types(contents)
|
346 |
+
elif element is ByteCode.register_size:
|
347 |
+
register_size_str = construct_register_size(contents)
|
348 |
+
|
349 |
+
one_upgrader_function_string = ONE_UPGRADER_FUNCTION.substitute(
|
350 |
+
upgrader_name=upgrader_name,
|
351 |
+
instruction_list=instruction_list_str,
|
352 |
+
constant_list=constant_list_str,
|
353 |
+
type_list=type_list_str,
|
354 |
+
register_size=register_size_str,
|
355 |
+
)
|
356 |
+
one_upgrader_src_string = ONE_UPGRADER_SRC.substitute(
|
357 |
+
bytecode_function=one_upgrader_function_string.lstrip("\n"),
|
358 |
+
operator_string_list=operator_list_str.lstrip("\n"),
|
359 |
+
)
|
360 |
+
all_upgrader_src_string.append(one_upgrader_src_string)
|
361 |
+
|
362 |
+
upgrader_file_content = UPGRADER_CPP_SRC.substitute(
|
363 |
+
operator_version_map=version_map_src,
|
364 |
+
upgrader_bytecode="".join(all_upgrader_src_string).lstrip("\n"),
|
365 |
+
)
|
366 |
+
body_parts.append(upgrader_file_content)
|
367 |
+
print("writing file to : ", cpp_path + "/" + UPGRADER_MOBILE_FILE_NAME)
|
368 |
+
with open(os.path.join(cpp_path, UPGRADER_MOBILE_FILE_NAME), "wb") as out_file:
|
369 |
+
final_output = "".join(body_parts)
|
370 |
+
out_file.write(upgrader_file_content.encode("utf-8"))
|
371 |
+
|
372 |
+
|
373 |
+
def sort_upgrader(upgrader_list: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
374 |
+
sorted_upgrader_list = sorted(
|
375 |
+
upgrader_list, key=lambda one_upgrader: next(iter(one_upgrader))
|
376 |
+
)
|
377 |
+
return sorted_upgrader_list
|
378 |
+
|
379 |
+
|
380 |
+
def main() -> None:
|
381 |
+
upgrader_list = generate_upgraders_bytecode()
|
382 |
+
sorted_upgrader_list = sort_upgrader(upgrader_list)
|
383 |
+
for up in sorted_upgrader_list:
|
384 |
+
print("after sort upgrader : ", next(iter(up)))
|
385 |
+
|
386 |
+
pytorch_dir = Path(__file__).resolve().parents[2]
|
387 |
+
upgrader_path = pytorch_dir / "torch" / "csrc" / "jit" / "mobile"
|
388 |
+
write_cpp(str(upgrader_path), sorted_upgrader_list)
|
389 |
+
|
390 |
+
|
391 |
+
if __name__ == "__main__":
|
392 |
+
main()
|
venv/lib/python3.10/site-packages/torchgen/operator_versions/gen_mobile_upgraders_constant.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MOBILE_UPGRADERS_HEADER_DESCRIPTION = """/**
|
2 |
+
* @generated
|
3 |
+
* This is an auto-generated file. Please do not modify it by hand.
|
4 |
+
* To re-generate, please run:
|
5 |
+
* cd ~/pytorch && python torchgen/operator_versions/gen_mobile_upgraders.py
|
6 |
+
*/
|
7 |
+
"""
|