Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- ckpts/universal/global_step40/zero/21.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step40/zero/26.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
- ckpts/universal/global_step40/zero/8.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
- lm-evaluation-harness/.flake8 +5 -0
- lm-evaluation-harness/.github/workflows/new_tasks.yml +72 -0
- lm-evaluation-harness/.github/workflows/publish.yml +78 -0
- lm-evaluation-harness/.github/workflows/unit_tests.yml +70 -0
- lm-evaluation-harness/.gitignore +23 -0
- lm-evaluation-harness/13 +0 -0
- lm-evaluation-harness/14 +0 -0
- lm-evaluation-harness/69 +0 -0
- lm-evaluation-harness/70 +0 -0
- lm-evaluation-harness/78 +0 -0
- lm-evaluation-harness/9 +0 -0
- lm-evaluation-harness/CITATION.bib +10 -0
- lm-evaluation-harness/LICENSE.md +21 -0
- lm-evaluation-harness/default_config.yaml +17 -0
- lm-evaluation-harness/requirements.txt +1 -0
- lm-evaluation-harness/tests/__init__.py +0 -0
- lm-evaluation-harness/tests/test_cli.py +43 -0
- lm-evaluation-harness/tests/test_evaluator.py +65 -0
- lm-evaluation-harness/tests/test_janitor.py +507 -0
- lm-evaluation-harness/tests/test_misc.py +14 -0
- lm-evaluation-harness/tests/test_requests_caching.py +123 -0
- lm-evaluation-harness/tests/test_tasks.py +122 -0
- lm-evaluation-harness/tests/test_utils.py +400 -0
- lm-evaluation-harness/tests/testdata/blimp_left_branch_island_echo_question-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/ethics_virtue-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/hendrycksTest-electrical_engineering-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/hendrycksTest-human_sexuality-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/pile_pubmed-central-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/qqp-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/wmt20-ja-en-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/wmt20-ru-en-v0-greedy_until +1 -0
- lm-evaluation-harness/tests/utils.py +49 -0
- venv/lib/python3.10/site-packages/sympy/plotting/tests/test_region_or.png +3 -0
- venv/lib/python3.10/site-packages/sympy/plotting/tests/test_region_xor.png +3 -0
- venv/lib/python3.10/site-packages/transformers/models/megatron_gpt2/__init__.py +13 -0
- venv/lib/python3.10/site-packages/transformers/models/megatron_gpt2/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/megatron_gpt2/__pycache__/checkpoint_reshaping_and_interoperability.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/megatron_gpt2/__pycache__/convert_megatron_gpt2_checkpoint.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/megatron_gpt2/checkpoint_reshaping_and_interoperability.py +904 -0
- venv/lib/python3.10/site-packages/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py +358 -0
- venv/lib/python3.10/site-packages/transformers/models/speech_to_text/__init__.py +108 -0
- venv/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/configuration_speech_to_text.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/convert_s2t_fairseq_to_tfms.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/feature_extraction_speech_to_text.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/modeling_speech_to_text.cpython-310.pyc +0 -0
.gitattributes
CHANGED
@@ -147,3 +147,4 @@ venv/lib/python3.10/site-packages/torch/lib/libc10.so filter=lfs diff=lfs merge=
|
|
147 |
venv/lib/python3.10/site-packages/triton/third_party/cuda/bin/ptxas filter=lfs diff=lfs merge=lfs -text
|
148 |
venv/lib/python3.10/site-packages/torch/bin/protoc filter=lfs diff=lfs merge=lfs -text
|
149 |
venv/lib/python3.10/site-packages/torch/bin/protoc-3.13.0.0 filter=lfs diff=lfs merge=lfs -text
|
|
|
|
147 |
venv/lib/python3.10/site-packages/triton/third_party/cuda/bin/ptxas filter=lfs diff=lfs merge=lfs -text
|
148 |
venv/lib/python3.10/site-packages/torch/bin/protoc filter=lfs diff=lfs merge=lfs -text
|
149 |
venv/lib/python3.10/site-packages/torch/bin/protoc-3.13.0.0 filter=lfs diff=lfs merge=lfs -text
|
150 |
+
venv/lib/python3.10/site-packages/triton/third_party/cuda/bin/nvdisasm filter=lfs diff=lfs merge=lfs -text
|
ckpts/universal/global_step40/zero/21.mlp.dense_4h_to_h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5afb46af646b04955d57ec05d6e264aaa3500236054033e6fa62bef95ae0e5f0
|
3 |
+
size 33555612
|
ckpts/universal/global_step40/zero/26.mlp.dense_h_to_4h_swiglu.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19b335940233d87ea08cc7bf12a8231f8a889669140c3b98a348158a34a75c49
|
3 |
+
size 33555533
|
ckpts/universal/global_step40/zero/8.mlp.dense_4h_to_h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:06883c027934439a2ce6c54efd16daa9af70ddb18efe15f61598d998092f6582
|
3 |
+
size 33555533
|
lm-evaluation-harness/.flake8
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[flake8]
|
2 |
+
ignore = E203, E266, E501, W503, F403, F401, C901
|
3 |
+
max-line-length = 127
|
4 |
+
max-complexity = 10
|
5 |
+
select = B,C,E,F,W,T4,B9
|
lm-evaluation-harness/.github/workflows/new_tasks.yml
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Tasks Modified
|
2 |
+
|
3 |
+
on:
|
4 |
+
push:
|
5 |
+
branches:
|
6 |
+
- 'main'
|
7 |
+
pull_request:
|
8 |
+
branches:
|
9 |
+
- 'main'
|
10 |
+
workflow_dispatch:
|
11 |
+
# comment/edit out the above to stop/change the triggers
|
12 |
+
jobs:
|
13 |
+
changed_files:
|
14 |
+
runs-on: ubuntu-latest # windows-latest || macos-latest
|
15 |
+
timeout-minutes: 120
|
16 |
+
name: Scan for changed tasks
|
17 |
+
steps:
|
18 |
+
- name: checkout
|
19 |
+
uses: actions/checkout@v3
|
20 |
+
with:
|
21 |
+
fetch-depth: 2 # OR "2" -> To retrieve the preceding commit.
|
22 |
+
|
23 |
+
# Uses the tj-actions/changed-files@v37 action to check for changes.
|
24 |
+
# Outputs provided here: https://github.com/tj-actions/changed-files#outputs
|
25 |
+
# The `files_yaml` input optionally takes a yaml string to specify filters,
|
26 |
+
# and prepends the filter name to the standard output names.
|
27 |
+
- name: Check task folders
|
28 |
+
id: changed-tasks
|
29 |
+
uses: tj-actions/[email protected]
|
30 |
+
with:
|
31 |
+
# tasks checks the tasks folder and api checks the api folder for changes
|
32 |
+
files_yaml: |
|
33 |
+
tasks:
|
34 |
+
- lm_eval/tasks/**
|
35 |
+
api:
|
36 |
+
- lm_eval/api/**
|
37 |
+
write_output_files: true
|
38 |
+
|
39 |
+
# The next step is optional; the files are written to the workspace by default (above).
|
40 |
+
# so it's just for debugging
|
41 |
+
- name: Run Tests
|
42 |
+
if: steps.changed-tasks.outputs.tasks_any_modified == 'true' || steps.changed-tasks.outputs.api_any_modified == 'true'
|
43 |
+
run: |
|
44 |
+
echo .github/outputs/tasks_all_changed_and_modified_files.txt >> 'GITHUB_ENV'
|
45 |
+
echo "One or more test file(s) has changed."
|
46 |
+
echo "List of all the files that have changed: ${{ steps.changed-tasks.outputs.tasks_all_modified_files }}"
|
47 |
+
|
48 |
+
- name: Set up Python 3.9
|
49 |
+
if: steps.changed-tasks.outputs.tasks_any_modified == 'true' || steps.changed-tasks.outputs.api_any_modified == 'true'
|
50 |
+
uses: actions/setup-python@v4
|
51 |
+
with:
|
52 |
+
python-version: 3.9
|
53 |
+
cache: 'pip'
|
54 |
+
cache-dependency-path: setup.py
|
55 |
+
- name: Install dependencies
|
56 |
+
if: steps.changed-tasks.outputs.tasks_any_modified == 'true' || steps.changed-tasks.outputs.api_any_modified == 'true'
|
57 |
+
run: |
|
58 |
+
python -m pip install --upgrade pip
|
59 |
+
pip install -e '.[dev]' --extra-index-url https://download.pytorch.org/whl/cpu
|
60 |
+
# Install optional git dependencies
|
61 |
+
# pip install bleurt@https://github.com/google-research/bleurt/archive/b610120347ef22b494b6d69b4316e303f5932516.zip#egg=bleurt
|
62 |
+
# if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
|
63 |
+
- name: Test with pytest
|
64 |
+
# if new tasks are added, run tests on them
|
65 |
+
if: steps.changed-tasks.outputs.tasks_any_modified == 'true'
|
66 |
+
run: python -m pytest tests/test_tasks.py -s -vv
|
67 |
+
# if api is modified, run tests on it
|
68 |
+
- name: Test more tasks with pytest
|
69 |
+
env:
|
70 |
+
API: true
|
71 |
+
if: steps.changed-tasks.outputs.api_any_modified == 'true'
|
72 |
+
run: python -m pytest tests/test_tasks.py -s -vv
|
lm-evaluation-harness/.github/workflows/publish.yml
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Publish Python distribution to PyPI
|
2 |
+
|
3 |
+
on:
|
4 |
+
push:
|
5 |
+
tags:
|
6 |
+
- '*'
|
7 |
+
|
8 |
+
jobs:
|
9 |
+
build:
|
10 |
+
name: Build distribution
|
11 |
+
runs-on: ubuntu-latest
|
12 |
+
|
13 |
+
steps:
|
14 |
+
- uses: actions/checkout@v4
|
15 |
+
- name: Set up Python
|
16 |
+
uses: actions/setup-python@v4
|
17 |
+
with:
|
18 |
+
python-version: "3.x"
|
19 |
+
|
20 |
+
- name: Install pypa/build
|
21 |
+
run: >-
|
22 |
+
python3 -m
|
23 |
+
pip install
|
24 |
+
build
|
25 |
+
--user
|
26 |
+
- name: Build a binary wheel and a source tarball
|
27 |
+
run: python3 -m build
|
28 |
+
- name: Store the distribution packages
|
29 |
+
uses: actions/upload-artifact@v3
|
30 |
+
with:
|
31 |
+
name: python-package-distributions
|
32 |
+
path: dist/
|
33 |
+
|
34 |
+
publish-to-pypi:
|
35 |
+
name: >-
|
36 |
+
Publish Python distribution to PyPI
|
37 |
+
if: startsWith(github.ref, 'refs/tags/') # only publish to PyPI on tag pushes
|
38 |
+
needs:
|
39 |
+
- build
|
40 |
+
runs-on: ubuntu-latest
|
41 |
+
environment:
|
42 |
+
name: pypi
|
43 |
+
url: https://pypi.org/p/lm_eval
|
44 |
+
permissions:
|
45 |
+
id-token: write # IMPORTANT: mandatory for trusted publishing
|
46 |
+
|
47 |
+
steps:
|
48 |
+
- name: Download all the dists
|
49 |
+
uses: actions/download-artifact@v3
|
50 |
+
with:
|
51 |
+
name: python-package-distributions
|
52 |
+
path: dist/
|
53 |
+
- name: Publish distribution to PyPI
|
54 |
+
uses: pypa/gh-action-pypi-publish@release/v1
|
55 |
+
|
56 |
+
publish-to-testpypi:
|
57 |
+
name: Publish Python distribution to TestPyPI
|
58 |
+
needs:
|
59 |
+
- build
|
60 |
+
runs-on: ubuntu-latest
|
61 |
+
|
62 |
+
environment:
|
63 |
+
name: testpypi
|
64 |
+
url: https://test.pypi.org/p/lm_eval
|
65 |
+
|
66 |
+
permissions:
|
67 |
+
id-token: write # IMPORTANT: mandatory for trusted publishing
|
68 |
+
|
69 |
+
steps:
|
70 |
+
- name: Download all the dists
|
71 |
+
uses: actions/download-artifact@v3
|
72 |
+
with:
|
73 |
+
name: python-package-distributions
|
74 |
+
path: dist/
|
75 |
+
- name: Publish distribution to TestPyPI
|
76 |
+
uses: pypa/gh-action-pypi-publish@release/v1
|
77 |
+
with:
|
78 |
+
repository-url: https://test.pypi.org/legacy/
|
lm-evaluation-harness/.github/workflows/unit_tests.yml
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This workflow will install Python dependencies, run tests and lint with a variety of Python versions
|
2 |
+
# For more information see: https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python
|
3 |
+
# just comment out unwanted steps to turn off the test.
|
4 |
+
name: Unit Tests
|
5 |
+
|
6 |
+
on:
|
7 |
+
push:
|
8 |
+
branches:
|
9 |
+
- 'main'
|
10 |
+
pull_request:
|
11 |
+
branches:
|
12 |
+
- 'main'
|
13 |
+
workflow_dispatch:
|
14 |
+
# Jobs run concurrently and steps run sequentially within a job.
|
15 |
+
# jobs: linter and cpu_tests. Add more jobs/steps as required.
|
16 |
+
jobs:
|
17 |
+
linter:
|
18 |
+
name: Linters
|
19 |
+
runs-on: ubuntu-latest
|
20 |
+
timeout-minutes: 5
|
21 |
+
|
22 |
+
steps:
|
23 |
+
- name: Checkout Code
|
24 |
+
uses: actions/checkout@v4
|
25 |
+
- name: Set up Python 3.8
|
26 |
+
uses: actions/setup-python@v5
|
27 |
+
with:
|
28 |
+
python-version: 3.8
|
29 |
+
cache: pip
|
30 |
+
cache-dependency-path: pyproject.toml
|
31 |
+
- name: Pre-Commit
|
32 |
+
env:
|
33 |
+
SKIP: "no-commit-to-branch,mypy"
|
34 |
+
|
35 |
+
uses: pre-commit/[email protected]
|
36 |
+
# # mypy turned off for now
|
37 |
+
# - name: Lint with mypy
|
38 |
+
# run: mypy . --ignore-missing-imports --check-untyped-defs --explicit-package-bases --warn-unreachable
|
39 |
+
# Job 2
|
40 |
+
testcpu:
|
41 |
+
name: CPU Tests
|
42 |
+
runs-on: ubuntu-latest
|
43 |
+
strategy:
|
44 |
+
matrix:
|
45 |
+
python-version: [ "3.8", "3.9", "3.10", "3.11" ]
|
46 |
+
timeout-minutes: 30
|
47 |
+
steps:
|
48 |
+
- name: Checkout Code
|
49 |
+
uses: actions/checkout@v4
|
50 |
+
- name: Set up Python ${{ matrix.python-version }}
|
51 |
+
uses: actions/setup-python@v5
|
52 |
+
with:
|
53 |
+
python-version: ${{ matrix.python-version }}
|
54 |
+
cache: pip
|
55 |
+
cache-dependency-path: pyproject.toml
|
56 |
+
- name: Install dependencies
|
57 |
+
run: |
|
58 |
+
python -m pip install --upgrade pip
|
59 |
+
pip install -e '.[dev,anthropic,sentencepiece,optimum,deepsparse,sparseml]' --extra-index-url https://download.pytorch.org/whl/cpu
|
60 |
+
# Install optional git dependencies
|
61 |
+
# pip install bleurt@https://github.com/google-research/bleurt/archive/b610120347ef22b494b6d69b4316e303f5932516.zip#egg=bleurt
|
62 |
+
# if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
|
63 |
+
- name: Test with pytest
|
64 |
+
run: python -m pytest --showlocals -s -vv -n=auto
|
65 |
+
- name: Archive artifacts
|
66 |
+
uses: actions/upload-artifact@v3
|
67 |
+
with:
|
68 |
+
name: output_results
|
69 |
+
path: |
|
70 |
+
test_logs/*
|
lm-evaluation-harness/.gitignore
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
env
|
2 |
+
*.pyc
|
3 |
+
output/
|
4 |
+
data/
|
5 |
+
lm_cache
|
6 |
+
.idea
|
7 |
+
build
|
8 |
+
dist
|
9 |
+
*.egg-info
|
10 |
+
venv
|
11 |
+
.vscode/
|
12 |
+
temp
|
13 |
+
__pycache__
|
14 |
+
.ipynb_checkpoints
|
15 |
+
temp
|
16 |
+
# IPython
|
17 |
+
profile_default/
|
18 |
+
ipython_config.py
|
19 |
+
# don't track (the default location of) the cached requests
|
20 |
+
lm_eval/caching/.cache
|
21 |
+
# don't track files created by wandb
|
22 |
+
wandb
|
23 |
+
examples/wandb
|
lm-evaluation-harness/13
ADDED
File without changes
|
lm-evaluation-harness/14
ADDED
File without changes
|
lm-evaluation-harness/69
ADDED
File without changes
|
lm-evaluation-harness/70
ADDED
File without changes
|
lm-evaluation-harness/78
ADDED
File without changes
|
lm-evaluation-harness/9
ADDED
File without changes
|
lm-evaluation-harness/CITATION.bib
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
@misc{eval-harness,
|
2 |
+
author = {Gao, Leo and Tow, Jonathan and Abbasi, Baber and Biderman, Stella and Black, Sid and DiPofi, Anthony and Foster, Charles and Golding, Laurence and Hsu, Jeffrey and Le Noac'h, Alain and Li, Haonan and McDonell, Kyle and Muennighoff, Niklas and Ociepa, Chris and Phang, Jason and Reynolds, Laria and Schoelkopf, Hailey and Skowron, Aviya and Sutawika, Lintang and Tang, Eric and Thite, Anish and Wang, Ben and Wang, Kevin and Zou, Andy},
|
3 |
+
title = {A framework for few-shot language model evaluation},
|
4 |
+
month = 12,
|
5 |
+
year = 2023,
|
6 |
+
publisher = {Zenodo},
|
7 |
+
version = {v0.4.0},
|
8 |
+
doi = {10.5281/zenodo.10256836},
|
9 |
+
url = {https://zenodo.org/records/10256836}
|
10 |
+
}
|
lm-evaluation-harness/LICENSE.md
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2020 EleutherAI
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
lm-evaluation-harness/default_config.yaml
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
compute_environment: LOCAL_MACHINE
|
2 |
+
debug: false
|
3 |
+
distributed_type: MULTI_GPU
|
4 |
+
downcast_bf16: 'no'
|
5 |
+
enable_cpu_affinity: false
|
6 |
+
gpu_ids: all
|
7 |
+
machine_rank: 0
|
8 |
+
main_training_function: main
|
9 |
+
mixed_precision: 'no'
|
10 |
+
num_machines: 1
|
11 |
+
num_processes: 8
|
12 |
+
rdzv_backend: static
|
13 |
+
same_network: true
|
14 |
+
tpu_env: []
|
15 |
+
tpu_use_cluster: false
|
16 |
+
tpu_use_sudo: false
|
17 |
+
use_cpu: false
|
lm-evaluation-harness/requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
-e .
|
lm-evaluation-harness/tests/__init__.py
ADDED
File without changes
|
lm-evaluation-harness/tests/test_cli.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
import pytest
|
4 |
+
|
5 |
+
import lm_eval.__main__
|
6 |
+
|
7 |
+
|
8 |
+
def test_cli_parse_error():
|
9 |
+
"""
|
10 |
+
Assert error raised if cli args argument doesn't have type
|
11 |
+
"""
|
12 |
+
with pytest.raises(ValueError):
|
13 |
+
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)
|
14 |
+
parser.add_argument(
|
15 |
+
"--model", "-m", type=str, default="hf", help="Name of model e.g. `hf`"
|
16 |
+
)
|
17 |
+
parser.add_argument(
|
18 |
+
"--tasks",
|
19 |
+
"-t",
|
20 |
+
default=None,
|
21 |
+
metavar="task1,task2",
|
22 |
+
help="To get full list of tasks, use the command lm-eval --tasks list",
|
23 |
+
)
|
24 |
+
lm_eval.__main__.check_argument_types(parser)
|
25 |
+
|
26 |
+
|
27 |
+
def test_cli_parse_no_error():
|
28 |
+
"""
|
29 |
+
Assert typed arguments are parsed correctly
|
30 |
+
"""
|
31 |
+
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)
|
32 |
+
parser.add_argument(
|
33 |
+
"--model", "-m", type=str, default="hf", help="Name of model e.g. `hf`"
|
34 |
+
)
|
35 |
+
parser.add_argument(
|
36 |
+
"--tasks",
|
37 |
+
"-t",
|
38 |
+
type=str,
|
39 |
+
default=None,
|
40 |
+
metavar="task1,task2",
|
41 |
+
help="To get full list of tasks, use the command lm-eval --tasks list",
|
42 |
+
)
|
43 |
+
lm_eval.__main__.check_argument_types(parser)
|
lm-evaluation-harness/tests/test_evaluator.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import lm_eval.base as base
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
# import lm_eval.models as models
|
7 |
+
import lm_eval.api as api
|
8 |
+
import lm_eval.evaluator as evaluator
|
9 |
+
from lm_eval import tasks
|
10 |
+
|
11 |
+
|
12 |
+
# TODO: more fine grained unit tests rather than this big honking integration
|
13 |
+
# test once we break evaluator into smaller, more manageable pieces
|
14 |
+
|
15 |
+
|
16 |
+
@pytest.mark.parametrize(
|
17 |
+
"task_name,limit,model,model_args",
|
18 |
+
[
|
19 |
+
(
|
20 |
+
["arc_easy"],
|
21 |
+
10,
|
22 |
+
"hf",
|
23 |
+
"pretrained=EleutherAI/pythia-160m,dtype=float32,device=cpu",
|
24 |
+
)
|
25 |
+
],
|
26 |
+
)
|
27 |
+
def test_evaluator(task_name: List[str], limit: int, model: str, model_args: str):
|
28 |
+
task_name = task_name
|
29 |
+
limit = 10
|
30 |
+
|
31 |
+
e1 = evaluator.simple_evaluate(
|
32 |
+
model=model,
|
33 |
+
tasks=task_name,
|
34 |
+
limit=limit,
|
35 |
+
model_args=model_args,
|
36 |
+
)
|
37 |
+
assert e1 is not None
|
38 |
+
|
39 |
+
lm = api.registry.get_model(model).create_from_arg_string(
|
40 |
+
model_args,
|
41 |
+
{
|
42 |
+
"batch_size": None,
|
43 |
+
"max_batch_size": None,
|
44 |
+
"device": None,
|
45 |
+
},
|
46 |
+
)
|
47 |
+
task_manager = tasks.TaskManager()
|
48 |
+
task_dict = tasks.get_task_dict(task_name, task_manager)
|
49 |
+
|
50 |
+
e2 = evaluator.evaluate(
|
51 |
+
lm=lm,
|
52 |
+
task_dict=task_dict,
|
53 |
+
limit=limit,
|
54 |
+
)
|
55 |
+
|
56 |
+
assert e2 is not None
|
57 |
+
# check that caching is working
|
58 |
+
|
59 |
+
def r(x):
|
60 |
+
return x["results"]["arc_easy"]
|
61 |
+
|
62 |
+
assert all(
|
63 |
+
x == y
|
64 |
+
for x, y in zip([y for _, y in r(e1).items()], [y for _, y in r(e2).items()])
|
65 |
+
)
|
lm-evaluation-harness/tests/test_janitor.py
ADDED
@@ -0,0 +1,507 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict
|
2 |
+
|
3 |
+
from lm_eval.decontamination.janitor import (
|
4 |
+
Janitor,
|
5 |
+
form_ngrams,
|
6 |
+
split_indices,
|
7 |
+
word_ngrams,
|
8 |
+
word_ngrams_indices,
|
9 |
+
)
|
10 |
+
|
11 |
+
|
12 |
+
def simple_ngram(sequence, n):
|
13 |
+
ngrams = list()
|
14 |
+
ngram = []
|
15 |
+
for x in sequence:
|
16 |
+
ngram.append(x)
|
17 |
+
if len(ngram) == n:
|
18 |
+
ngrams.append(tuple(ngram))
|
19 |
+
ngram = ngram[1:]
|
20 |
+
|
21 |
+
return ngrams
|
22 |
+
|
23 |
+
|
24 |
+
def test_form_ngrams():
|
25 |
+
sequence = (
|
26 |
+
"Hello my name is Bob, I like eating pizza, chicken, chips and ice cream. Maybe I should eat some"
|
27 |
+
" more salad but it's so booooring. I just... like eating pizza, chicken, chips and ice cream so much."
|
28 |
+
)
|
29 |
+
|
30 |
+
n_values = [1, 2, 3, 5, 13]
|
31 |
+
for n in n_values:
|
32 |
+
comparison = simple_ngram(sequence, n)
|
33 |
+
result_to_test = list(form_ngrams(iter(sequence), n))
|
34 |
+
assert len(comparison) == len(result_to_test)
|
35 |
+
assert comparison == result_to_test
|
36 |
+
|
37 |
+
|
38 |
+
def test_word_ngrams():
|
39 |
+
sequence = (
|
40 |
+
"Hello my name is Bob, I like eating pizza, chicken, chips and ice cream. Maybe I should eat some"
|
41 |
+
" more salad but it's so booooring. I just... like eating pizza, chicken, chips and ice cream so much."
|
42 |
+
)
|
43 |
+
|
44 |
+
words = sequence.split()
|
45 |
+
|
46 |
+
n_values = [1, 2, 3, 5, 13]
|
47 |
+
for n in n_values:
|
48 |
+
comparison = simple_ngram(words, n)
|
49 |
+
comparison = [" ".join(ngram) for ngram in comparison]
|
50 |
+
result_to_test = list(word_ngrams(sequence, n))
|
51 |
+
assert len(comparison) == len(result_to_test)
|
52 |
+
assert result_to_test == comparison
|
53 |
+
|
54 |
+
|
55 |
+
def test_split_indices():
|
56 |
+
sequence = (
|
57 |
+
"Hello my name is Bob, I like eating pizza, chicken, chips and ice cream. Maybe I should eat some"
|
58 |
+
" more salad but it's so booooring. I just... like eating pizza, chicken, chips and ice cream so much."
|
59 |
+
)
|
60 |
+
|
61 |
+
comparison = []
|
62 |
+
current_word = ""
|
63 |
+
for i, c in enumerate(sequence):
|
64 |
+
if c != " ":
|
65 |
+
current_word += c
|
66 |
+
else:
|
67 |
+
if current_word:
|
68 |
+
comparison.append((current_word, (i - len(current_word), i - 1)))
|
69 |
+
current_word = ""
|
70 |
+
|
71 |
+
if current_word:
|
72 |
+
comparison.append(
|
73 |
+
(current_word, (len(sequence) - len(current_word), len(sequence) - 1))
|
74 |
+
)
|
75 |
+
current_word = ""
|
76 |
+
|
77 |
+
result_to_test = list(split_indices(sequence))
|
78 |
+
assert len(comparison) == len(result_to_test)
|
79 |
+
assert comparison == result_to_test
|
80 |
+
|
81 |
+
|
82 |
+
def test_word_ngrams_indices():
|
83 |
+
sequence = (
|
84 |
+
"Hello my name is Bob, I like eating pizza, chicken, chips and ice cream. Maybe I should eat some"
|
85 |
+
" more salad but it's so booooring. I just... like eating pizza, chicken, chips and ice cream so much."
|
86 |
+
)
|
87 |
+
|
88 |
+
n_values = [1, 2, 3, 5, 13]
|
89 |
+
|
90 |
+
for n in n_values:
|
91 |
+
ngrams = [" ".join(ngram) for ngram in simple_ngram(sequence.split(), n)]
|
92 |
+
tracker = defaultdict(int)
|
93 |
+
comparison = []
|
94 |
+
for ngram in ngrams:
|
95 |
+
while True:
|
96 |
+
start = sequence.find(ngram, tracker[ngram])
|
97 |
+
assert start != -1 # testing the test
|
98 |
+
|
99 |
+
end = start + len(ngram) - 1
|
100 |
+
tracker[ngram] = end + 1
|
101 |
+
|
102 |
+
# ignore partial word matches
|
103 |
+
if (start != 0 and sequence[start - 1] != " ") or (
|
104 |
+
end != len(sequence) - 1 and sequence[end + 1] != " "
|
105 |
+
):
|
106 |
+
pass
|
107 |
+
else:
|
108 |
+
break
|
109 |
+
|
110 |
+
comparison.append((ngram, (start, end)))
|
111 |
+
|
112 |
+
result_to_test = list(word_ngrams_indices(sequence, n))
|
113 |
+
assert len(result_to_test) == len(comparison)
|
114 |
+
assert result_to_test == comparison
|
115 |
+
|
116 |
+
|
117 |
+
# Assumptions from GPT3 Paper:
|
118 |
+
# the 200 characters to remove include punctuation and is actually a half-window
|
119 |
+
|
120 |
+
|
121 |
+
# All tests below initially test without any registered contaminants, expecting the same sequence back.
|
122 |
+
def test_janitor1():
|
123 |
+
# First test using a 1gram and expected the first block before the filth to have some remaining
|
124 |
+
# characters, but the second block should be completely removed.
|
125 |
+
|
126 |
+
sequence = (
|
127 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
128 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
129 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
130 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
131 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
132 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
133 |
+
"FILTH. "
|
134 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
135 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
136 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
137 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
138 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
139 |
+
)
|
140 |
+
|
141 |
+
filth = "filth"
|
142 |
+
|
143 |
+
expected_result = (
|
144 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
145 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
146 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
147 |
+
"This is a @line #containing "
|
148 |
+
)
|
149 |
+
|
150 |
+
janitor = Janitor(
|
151 |
+
ngram_n=1, window_to_remove=200, too_dirty_cutoff=10, minimum_slice_length=200
|
152 |
+
)
|
153 |
+
result = janitor.clean_python(sequence)
|
154 |
+
result = "".join(result)
|
155 |
+
assert result == sequence
|
156 |
+
|
157 |
+
janitor.register_contaminant(filth)
|
158 |
+
assert janitor.dirt_ngrams == {filth}
|
159 |
+
|
160 |
+
result = janitor.clean_python(sequence)
|
161 |
+
result = "".join(result)
|
162 |
+
assert result == expected_result
|
163 |
+
|
164 |
+
|
165 |
+
def test_janitor2():
|
166 |
+
# Second test using a 1gram and expected the first block before the filth to have some remaining
|
167 |
+
# characters, and the second block is longer then 200 characters so should also have some remaining.
|
168 |
+
|
169 |
+
sequence = (
|
170 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
171 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
172 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
173 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
174 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
175 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
176 |
+
"FILTH. "
|
177 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
178 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
179 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
180 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
181 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
182 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
183 |
+
)
|
184 |
+
|
185 |
+
filth = "filth"
|
186 |
+
|
187 |
+
expected_result = (
|
188 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
189 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
190 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
191 |
+
"This is a @line #containing "
|
192 |
+
" characters, 76 to be exact. "
|
193 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
194 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
195 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
196 |
+
)
|
197 |
+
|
198 |
+
janitor = Janitor(
|
199 |
+
ngram_n=1, window_to_remove=200, too_dirty_cutoff=10, minimum_slice_length=200
|
200 |
+
)
|
201 |
+
result = janitor.clean_python(sequence)
|
202 |
+
result = "".join(result)
|
203 |
+
assert result == sequence
|
204 |
+
|
205 |
+
janitor.register_contaminant(filth)
|
206 |
+
assert janitor.dirt_ngrams == {filth}
|
207 |
+
|
208 |
+
result = janitor.clean_python(sequence)
|
209 |
+
result = "".join(result)
|
210 |
+
assert result == expected_result
|
211 |
+
|
212 |
+
|
213 |
+
def test_janitor3():
|
214 |
+
# Same test as above but with a 6gram.
|
215 |
+
|
216 |
+
sequence = (
|
217 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
218 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
219 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
220 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
221 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
222 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
223 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
224 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
225 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
226 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
227 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
228 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
229 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
230 |
+
)
|
231 |
+
|
232 |
+
filth = "filth lots of dirty filthy filth"
|
233 |
+
|
234 |
+
expected_result = (
|
235 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
236 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
237 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
238 |
+
"This is a @line #containing "
|
239 |
+
" characters, 76 to be exact. "
|
240 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
241 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
242 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
243 |
+
)
|
244 |
+
|
245 |
+
janitor = Janitor(
|
246 |
+
ngram_n=6, window_to_remove=200, too_dirty_cutoff=10, minimum_slice_length=200
|
247 |
+
)
|
248 |
+
result = janitor.clean_python(sequence)
|
249 |
+
result = "".join(result)
|
250 |
+
assert result == sequence
|
251 |
+
|
252 |
+
janitor.register_contaminant(filth)
|
253 |
+
assert janitor.dirt_ngrams == {filth}
|
254 |
+
|
255 |
+
result = janitor.clean_python(sequence)
|
256 |
+
result = "".join(result)
|
257 |
+
assert result == expected_result
|
258 |
+
|
259 |
+
|
260 |
+
def test_janitor4():
|
261 |
+
# This test adds another block to that from the previous. The middle block should be entirely
|
262 |
+
# removed as the 200 characters are removed from each side.
|
263 |
+
|
264 |
+
sequence = (
|
265 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
266 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
267 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
268 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
269 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
270 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
271 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
272 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
273 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
274 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
275 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
276 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
277 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
278 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
279 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
280 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
281 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
282 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
283 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
284 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
285 |
+
)
|
286 |
+
|
287 |
+
filth = "filth lots of dirty filthy filth"
|
288 |
+
|
289 |
+
expected_result = (
|
290 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
291 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
292 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
293 |
+
"This is a @line #containing "
|
294 |
+
" characters, 76 to be exact. "
|
295 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
296 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
297 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
298 |
+
)
|
299 |
+
|
300 |
+
janitor = Janitor(
|
301 |
+
ngram_n=6, window_to_remove=200, too_dirty_cutoff=10, minimum_slice_length=200
|
302 |
+
)
|
303 |
+
result = janitor.clean_python(sequence)
|
304 |
+
result = "".join(result)
|
305 |
+
assert result == sequence
|
306 |
+
|
307 |
+
janitor.register_contaminant(filth)
|
308 |
+
assert janitor.dirt_ngrams == {filth}
|
309 |
+
|
310 |
+
result = janitor.clean_python(sequence)
|
311 |
+
result = "".join(result)
|
312 |
+
assert result == expected_result
|
313 |
+
|
314 |
+
|
315 |
+
def test_janitor5():
|
316 |
+
# Same as above but using multiple different filth 6grams.
|
317 |
+
|
318 |
+
sequence = (
|
319 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
320 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
321 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
322 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
323 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
324 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
325 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
326 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
327 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
328 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
329 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
330 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
331 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
332 |
+
"FILTH. lots of filtHy dirty FIlTh "
|
333 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
334 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
335 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
336 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
337 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
338 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
339 |
+
)
|
340 |
+
|
341 |
+
filths = ["filth lots of dirty filthy filth", "filth lots of filthy dirty filth"]
|
342 |
+
|
343 |
+
expected_result = (
|
344 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
345 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
346 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
347 |
+
"This is a @line #containing "
|
348 |
+
" characters, 76 to be exact. "
|
349 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
350 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
351 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
352 |
+
)
|
353 |
+
|
354 |
+
janitor = Janitor(
|
355 |
+
ngram_n=6, window_to_remove=200, too_dirty_cutoff=10, minimum_slice_length=200
|
356 |
+
)
|
357 |
+
result = janitor.clean_python(sequence)
|
358 |
+
result = "".join(result)
|
359 |
+
assert result == sequence
|
360 |
+
|
361 |
+
for filth in filths:
|
362 |
+
janitor.register_contaminant(filth)
|
363 |
+
assert janitor.dirt_ngrams == set(filths)
|
364 |
+
|
365 |
+
result = janitor.clean_python(sequence)
|
366 |
+
result = "".join(result)
|
367 |
+
assert result == expected_result
|
368 |
+
|
369 |
+
|
370 |
+
def test_janitor6():
|
371 |
+
# Same as above but now we add 10 filths and expect the same result, the following test does 11.
|
372 |
+
|
373 |
+
sequence = (
|
374 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
375 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
376 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
377 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
378 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
379 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
380 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
381 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
382 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
383 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
384 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
385 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
386 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
387 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
388 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
389 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
390 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
391 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
392 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
393 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
394 |
+
"FILTH. lots of filtHy dirty FIlTh "
|
395 |
+
"FILTH. lots of filtHy dirty FIlTh "
|
396 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
397 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
398 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
399 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
400 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
401 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
402 |
+
)
|
403 |
+
|
404 |
+
filths = ["filth lots of dirty filthy filth", "filth lots of filthy dirty filth"]
|
405 |
+
|
406 |
+
expected_result = (
|
407 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
408 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
409 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
410 |
+
"This is a @line #containing "
|
411 |
+
" characters, 76 to be exact. "
|
412 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
413 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
414 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
415 |
+
)
|
416 |
+
|
417 |
+
janitor = Janitor(
|
418 |
+
ngram_n=6, window_to_remove=200, too_dirty_cutoff=10, minimum_slice_length=200
|
419 |
+
)
|
420 |
+
result = janitor.clean_python(sequence)
|
421 |
+
result = "".join(result)
|
422 |
+
assert result == sequence
|
423 |
+
|
424 |
+
for filth in filths:
|
425 |
+
janitor.register_contaminant(filth)
|
426 |
+
assert janitor.dirt_ngrams == set(filths)
|
427 |
+
|
428 |
+
result = janitor.clean_python(sequence)
|
429 |
+
result = "".join(result)
|
430 |
+
assert result == expected_result
|
431 |
+
|
432 |
+
|
433 |
+
def test_janitor7():
|
434 |
+
# Same as above but now we add 9 filths and expect the same result, the following test does 10.
|
435 |
+
|
436 |
+
sequence = (
|
437 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
438 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
439 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
440 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
441 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
442 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
443 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
444 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
445 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
446 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
447 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
448 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
449 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
450 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
451 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
452 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
453 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
454 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
455 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
456 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
457 |
+
"FILTH. lots of filtHy dirty FIlTh "
|
458 |
+
"FILTH. lots of filtHy dirty FIlTh "
|
459 |
+
"FILTH. lots of filtHy dirty FIlTh "
|
460 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
461 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
462 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
463 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
464 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
465 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
466 |
+
)
|
467 |
+
|
468 |
+
filths = ["filth lots of dirty filthy filth", "filth lots of filthy dirty filth"]
|
469 |
+
|
470 |
+
expected_result = ""
|
471 |
+
|
472 |
+
janitor = Janitor(
|
473 |
+
ngram_n=6, window_to_remove=200, too_dirty_cutoff=10, minimum_slice_length=200
|
474 |
+
)
|
475 |
+
result = janitor.clean_python(sequence)
|
476 |
+
result = "".join(result)
|
477 |
+
assert result == sequence
|
478 |
+
|
479 |
+
for filth in filths:
|
480 |
+
janitor.register_contaminant(filth)
|
481 |
+
assert janitor.dirt_ngrams == set(filths)
|
482 |
+
|
483 |
+
result = janitor.clean_python(sequence)
|
484 |
+
result = "".join(result)
|
485 |
+
assert result == expected_result
|
486 |
+
|
487 |
+
|
488 |
+
def test_janitor8():
|
489 |
+
# This will test the save and load contams
|
490 |
+
pass
|
491 |
+
# source = """ ,, I'm a very !dirty,, ,, dirty boy. Clean me daddy. \n\nhe he he hehe heh. lastword """ * 2
|
492 |
+
# contaminant = "dirty boy. Clean he he"
|
493 |
+
|
494 |
+
# jan = Janitor(ngram_n=3)
|
495 |
+
# jan.register_contaminant(contaminant)
|
496 |
+
# cleaned = " ".join(jan.clean(source))
|
497 |
+
# for contam in jan.dirt_ngrams:
|
498 |
+
# assert contam not in cleaned, contam
|
499 |
+
|
500 |
+
# filename = "data/saved_contam"
|
501 |
+
# jan.save_contamination_ngrams(filename)
|
502 |
+
|
503 |
+
# jan = Janitor(ngram_n=3)
|
504 |
+
# jan.load_contamination_ngrams(filename)
|
505 |
+
# cleaned = " ".join(jan.clean(source))
|
506 |
+
# for contam in jan.dirt_ngrams:
|
507 |
+
# assert contam not in cleaned, contam
|
lm-evaluation-harness/tests/test_misc.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
|
3 |
+
import pytest
|
4 |
+
|
5 |
+
import lm_eval.api.metrics as metrics
|
6 |
+
|
7 |
+
|
8 |
+
def test_bootstrapping():
|
9 |
+
random.seed(42)
|
10 |
+
arr = [random.random() for _ in range(1000)]
|
11 |
+
expected = metrics.mean_stderr(arr)
|
12 |
+
bootstrapped = metrics.bootstrap_stderr(metrics.mean, arr, iters=100000)
|
13 |
+
|
14 |
+
assert bootstrapped == pytest.approx(expected, abs=1e-4)
|
lm-evaluation-harness/tests/test_requests_caching.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import lm_eval.base as base
|
2 |
+
import importlib
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
from datetime import datetime
|
6 |
+
from typing import List, Tuple
|
7 |
+
|
8 |
+
import pytest
|
9 |
+
import torch
|
10 |
+
|
11 |
+
# import lm_eval.models as models
|
12 |
+
from lm_eval.caching.cache import PATH
|
13 |
+
|
14 |
+
|
15 |
+
MODULE_DIR = os.path.dirname(os.path.realpath(__file__))
|
16 |
+
|
17 |
+
# NOTE the script this loads uses simple evaluate
|
18 |
+
# TODO potentially test both the helper script and the normal script
|
19 |
+
sys.path.append(f"{MODULE_DIR}/../scripts")
|
20 |
+
model_loader = importlib.import_module("requests_caching")
|
21 |
+
run_model_for_task_caching = model_loader.run_model_for_task_caching
|
22 |
+
|
23 |
+
|
24 |
+
DEFAULT_TASKS = ["lambada_openai", "hellaswag"]
|
25 |
+
|
26 |
+
|
27 |
+
@pytest.fixture(autouse=True)
|
28 |
+
def setup_and_teardown():
|
29 |
+
# Setup
|
30 |
+
torch.use_deterministic_algorithms(False)
|
31 |
+
clear_cache()
|
32 |
+
# Yields control back to the test function
|
33 |
+
yield
|
34 |
+
# Cleanup here
|
35 |
+
|
36 |
+
|
37 |
+
def clear_cache():
|
38 |
+
if os.path.exists(PATH):
|
39 |
+
cache_files = os.listdir(PATH)
|
40 |
+
for file in cache_files:
|
41 |
+
file_path = f"{PATH}/{file}"
|
42 |
+
os.unlink(file_path)
|
43 |
+
|
44 |
+
|
45 |
+
# leaving tasks here to allow for the option to select specific task files
|
46 |
+
def get_cache_files(tasks: List[str] = None) -> Tuple[List[str], List[str]]:
|
47 |
+
cache_files = os.listdir(PATH)
|
48 |
+
|
49 |
+
file_task_names = []
|
50 |
+
|
51 |
+
for file in cache_files:
|
52 |
+
file_without_prefix = file.split("-")[1]
|
53 |
+
file_without_prefix_and_suffix = file_without_prefix.split(".")[0]
|
54 |
+
file_task_names.append(file_without_prefix_and_suffix)
|
55 |
+
|
56 |
+
return cache_files, file_task_names
|
57 |
+
|
58 |
+
|
59 |
+
def assert_created(tasks: List[str], file_task_names: List[str]):
|
60 |
+
tasks.sort()
|
61 |
+
file_task_names.sort()
|
62 |
+
|
63 |
+
assert tasks == file_task_names
|
64 |
+
|
65 |
+
|
66 |
+
@pytest.mark.parametrize("tasks", [DEFAULT_TASKS])
|
67 |
+
def test_requests_caching_true(tasks: List[str]):
|
68 |
+
run_model_for_task_caching(tasks=tasks, cache_requests="true")
|
69 |
+
|
70 |
+
cache_files, file_task_names = get_cache_files()
|
71 |
+
|
72 |
+
assert_created(tasks=tasks, file_task_names=file_task_names)
|
73 |
+
|
74 |
+
|
75 |
+
@pytest.mark.parametrize("tasks", [DEFAULT_TASKS])
|
76 |
+
def test_requests_caching_refresh(tasks: List[str]):
|
77 |
+
run_model_for_task_caching(tasks=tasks, cache_requests="true")
|
78 |
+
|
79 |
+
timestamp_before_test = datetime.now().timestamp()
|
80 |
+
|
81 |
+
run_model_for_task_caching(tasks=tasks, cache_requests="refresh")
|
82 |
+
|
83 |
+
cache_files, file_task_names = get_cache_files()
|
84 |
+
|
85 |
+
for file in cache_files:
|
86 |
+
modification_time = os.path.getmtime(f"{PATH}/{file}")
|
87 |
+
assert modification_time > timestamp_before_test
|
88 |
+
|
89 |
+
tasks.sort()
|
90 |
+
file_task_names.sort()
|
91 |
+
|
92 |
+
assert tasks == file_task_names
|
93 |
+
|
94 |
+
|
95 |
+
@pytest.mark.parametrize("tasks", [DEFAULT_TASKS])
|
96 |
+
def test_requests_caching_delete(tasks: List[str]):
|
97 |
+
# populate the data first, rerun this test within this test for additional confidence
|
98 |
+
test_requests_caching_true(tasks=tasks)
|
99 |
+
|
100 |
+
run_model_for_task_caching(tasks=tasks, cache_requests="delete")
|
101 |
+
|
102 |
+
cache_files, file_task_names = get_cache_files()
|
103 |
+
|
104 |
+
assert len(cache_files) == 0
|
105 |
+
|
106 |
+
|
107 |
+
# useful for locally running tests through the debugger
|
108 |
+
if __name__ == "__main__":
|
109 |
+
|
110 |
+
def run_tests():
|
111 |
+
tests = [
|
112 |
+
test_requests_caching_true,
|
113 |
+
test_requests_caching_refresh,
|
114 |
+
test_requests_caching_delete,
|
115 |
+
]
|
116 |
+
|
117 |
+
for test_func in tests:
|
118 |
+
clear_cache()
|
119 |
+
test_func(tasks=DEFAULT_TASKS)
|
120 |
+
|
121 |
+
print("Tests pass")
|
122 |
+
|
123 |
+
run_tests()
|
lm-evaluation-harness/tests/test_tasks.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from itertools import islice
|
2 |
+
|
3 |
+
import pytest
|
4 |
+
|
5 |
+
import lm_eval.tasks as tasks
|
6 |
+
from lm_eval.api.task import ConfigurableTask
|
7 |
+
|
8 |
+
from .utils import new_tasks
|
9 |
+
|
10 |
+
|
11 |
+
task_manager = tasks.TaskManager()
|
12 |
+
# Default Task
|
13 |
+
TASKS = ["arc_easy"]
|
14 |
+
|
15 |
+
|
16 |
+
def task_class():
|
17 |
+
global TASKS
|
18 |
+
# CI: new_tasks checks if any modifications have been made
|
19 |
+
task_classes = new_tasks()
|
20 |
+
# Check if task_classes is empty
|
21 |
+
if task_classes:
|
22 |
+
return list(task_manager.load_task_or_group(task_classes).values())
|
23 |
+
else:
|
24 |
+
return list(task_manager.load_task_or_group(TASKS).values())
|
25 |
+
|
26 |
+
|
27 |
+
@pytest.fixture()
|
28 |
+
def limit() -> int:
|
29 |
+
return 10
|
30 |
+
|
31 |
+
|
32 |
+
# Tests
|
33 |
+
@pytest.mark.parametrize("task_class", task_class(), ids=lambda x: f"{x.config.task}")
|
34 |
+
class TestNewTasks:
|
35 |
+
def test_download(self, task_class: ConfigurableTask):
|
36 |
+
task_class.download()
|
37 |
+
assert task_class.dataset is not None
|
38 |
+
|
39 |
+
def test_has_training_docs(self, task_class: ConfigurableTask):
|
40 |
+
assert task_class.has_training_docs() in [True, False]
|
41 |
+
|
42 |
+
def test_check_training_docs(self, task_class: ConfigurableTask):
|
43 |
+
if task_class.has_training_docs():
|
44 |
+
assert task_class._config["training_split"] is not None
|
45 |
+
|
46 |
+
def test_has_validation_docs(self, task_class):
|
47 |
+
assert task_class.has_validation_docs() in [True, False]
|
48 |
+
|
49 |
+
def test_check_validation_docs(self, task_class):
|
50 |
+
if task_class.has_validation_docs():
|
51 |
+
assert task_class._config["validation_split"] is not None
|
52 |
+
|
53 |
+
def test_has_test_docs(self, task_class):
|
54 |
+
assert task_class.has_test_docs() in [True, False]
|
55 |
+
|
56 |
+
def test_check_test_docs(self, task_class):
|
57 |
+
task = task_class
|
58 |
+
if task.has_test_docs():
|
59 |
+
assert task._config["test_split"] is not None
|
60 |
+
|
61 |
+
def test_should_decontaminate(self, task_class):
|
62 |
+
task = task_class
|
63 |
+
assert task.should_decontaminate() in [True, False]
|
64 |
+
if task.should_decontaminate():
|
65 |
+
assert task._config["doc_to_decontamination_query"] is not None
|
66 |
+
|
67 |
+
def test_doc_to_text(self, task_class, limit):
|
68 |
+
task = task_class
|
69 |
+
arr = (
|
70 |
+
list(islice(task.test_docs(), limit))
|
71 |
+
if task.has_test_docs()
|
72 |
+
else list(islice(task.validation_docs(), limit))
|
73 |
+
)
|
74 |
+
_array = [task.doc_to_text(doc) for doc in arr]
|
75 |
+
# space convention; allow txt to have length 0 for perplexity-like tasks since the model tacks an <|endoftext|> on
|
76 |
+
assert all(
|
77 |
+
isinstance(x, str) and (x[-1] != " " if len(x) != 0 else True)
|
78 |
+
for x in _array
|
79 |
+
)
|
80 |
+
|
81 |
+
def test_create_choices(self, task_class, limit):
|
82 |
+
task = task_class
|
83 |
+
arr = (
|
84 |
+
list(islice(task.test_docs(), limit))
|
85 |
+
if task.has_test_docs()
|
86 |
+
else list(islice(task.validation_docs(), limit))
|
87 |
+
)
|
88 |
+
if "multiple_choice" in task._config.output_type:
|
89 |
+
_array = [task.doc_to_choice(doc) for doc in arr]
|
90 |
+
# assert all(len(x) == 4 for x in _array)
|
91 |
+
assert all(isinstance(x, list) for x in _array)
|
92 |
+
assert all(isinstance(x[0], str) for x in _array)
|
93 |
+
|
94 |
+
def test_doc_to_target(self, task_class, limit):
|
95 |
+
task = task_class
|
96 |
+
arr = (
|
97 |
+
list(islice(task.test_docs(), limit))
|
98 |
+
if task.has_test_docs()
|
99 |
+
else list(islice(task.validation_docs(), limit))
|
100 |
+
)
|
101 |
+
_array_target = [task.doc_to_target(doc) for doc in arr]
|
102 |
+
if task._config.output_type == "multiple_choice":
|
103 |
+
assert all(isinstance(label, int) for label in _array_target)
|
104 |
+
# _array_text = [task.doc_to_text(doc) for doc in arr]
|
105 |
+
# Not working
|
106 |
+
# assert all(tgt[0] == " " or txt[-1] == "\n" if len(txt) != 0 else True for txt, tgt in zip(_array_text, _array_target))
|
107 |
+
|
108 |
+
def test_build_all_requests(self, task_class, limit):
|
109 |
+
task_class.build_all_requests(rank=1, limit=limit, world_size=1)
|
110 |
+
assert task_class.instances is not None
|
111 |
+
|
112 |
+
# ToDO: Add proper testing
|
113 |
+
def test_construct_requests(self, task_class, limit):
|
114 |
+
task = task_class
|
115 |
+
arr = (
|
116 |
+
list(islice(task.test_docs(), limit))
|
117 |
+
if task.has_test_docs()
|
118 |
+
else list(islice(task.validation_docs(), limit))
|
119 |
+
)
|
120 |
+
requests = [task.construct_requests(doc, task.doc_to_text(doc)) for doc in arr]
|
121 |
+
# assert all(isinstance(doc, list) for doc in requests)
|
122 |
+
assert len(requests) == limit if limit else True
|
lm-evaluation-harness/tests/test_utils.py
ADDED
@@ -0,0 +1,400 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import itertools
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
import torch
|
6 |
+
|
7 |
+
from lm_eval.api.metrics import (
|
8 |
+
aggregate_subtask_metrics,
|
9 |
+
mean,
|
10 |
+
pooled_sample_stderr,
|
11 |
+
stderr_for_metric,
|
12 |
+
)
|
13 |
+
from lm_eval.models.utils import Collator
|
14 |
+
from lm_eval.utils import (
|
15 |
+
get_rolling_token_windows,
|
16 |
+
make_disjoint_window,
|
17 |
+
)
|
18 |
+
|
19 |
+
|
20 |
+
# noinspection DuplicatedCode
|
21 |
+
def test_get_rolling_token_windows_v1():
|
22 |
+
gold = [
|
23 |
+
([-100, 0, 1, 2, 3, 4, 5, 6, 7, 8], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
|
24 |
+
(
|
25 |
+
[9, 10, 11, 12, 13, 14, 15, 16, 17, 18],
|
26 |
+
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
|
27 |
+
),
|
28 |
+
(
|
29 |
+
[19, 20, 21, 22, 23, 24, 25, 26, 27, 28],
|
30 |
+
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
|
31 |
+
),
|
32 |
+
([23, 24, 25, 26, 27, 28, 29, 30, 31, 32], [30, 31, 32, 33]),
|
33 |
+
]
|
34 |
+
x = list(range(34))
|
35 |
+
generator = get_rolling_token_windows(
|
36 |
+
token_list=x,
|
37 |
+
prefix_token=-100,
|
38 |
+
max_seq_len=10,
|
39 |
+
context_len=1,
|
40 |
+
)
|
41 |
+
pred_length = 0
|
42 |
+
output = []
|
43 |
+
for input_tokens, pred_tokens in generator:
|
44 |
+
output.append((input_tokens, pred_tokens))
|
45 |
+
pred_length += len(pred_tokens)
|
46 |
+
assert pred_length == len(x)
|
47 |
+
assert gold == output
|
48 |
+
|
49 |
+
|
50 |
+
# noinspection DuplicatedCode
|
51 |
+
def test_get_rolling_token_windows_v2():
|
52 |
+
gold = [
|
53 |
+
([-100, 0, 1, 2, 3, 4, 5, 6, 7, 8], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
|
54 |
+
([2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [10, 11, 12]),
|
55 |
+
([5, 6, 7, 8, 9, 10, 11, 12, 13, 14], [13, 14, 15]),
|
56 |
+
([8, 9, 10, 11, 12, 13, 14, 15, 16, 17], [16, 17, 18]),
|
57 |
+
([11, 12, 13, 14, 15, 16, 17, 18, 19, 20], [19, 20, 21]),
|
58 |
+
([14, 15, 16, 17, 18, 19, 20, 21, 22, 23], [22, 23, 24]),
|
59 |
+
([17, 18, 19, 20, 21, 22, 23, 24, 25, 26], [25, 26, 27]),
|
60 |
+
([20, 21, 22, 23, 24, 25, 26, 27, 28, 29], [28, 29, 30]),
|
61 |
+
([23, 24, 25, 26, 27, 28, 29, 30, 31, 32], [31, 32, 33]),
|
62 |
+
]
|
63 |
+
x = list(range(34))
|
64 |
+
generator = get_rolling_token_windows(
|
65 |
+
token_list=x,
|
66 |
+
prefix_token=-100,
|
67 |
+
max_seq_len=10,
|
68 |
+
context_len=8,
|
69 |
+
)
|
70 |
+
pred_length = 0
|
71 |
+
output = []
|
72 |
+
for input_tokens, pred_tokens in generator:
|
73 |
+
output.append((input_tokens, pred_tokens))
|
74 |
+
pred_length += len(pred_tokens)
|
75 |
+
assert pred_length == len(x)
|
76 |
+
assert gold == output
|
77 |
+
|
78 |
+
|
79 |
+
# noinspection DuplicatedCode
|
80 |
+
def test_get_rolling_token_windows_v3():
|
81 |
+
gold = [
|
82 |
+
([-100, 0, 1, 2, 3, 4, 5, 6, 7, 8], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
|
83 |
+
([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [10]),
|
84 |
+
([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [11]),
|
85 |
+
([2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [12]),
|
86 |
+
([3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [13]),
|
87 |
+
([4, 5, 6, 7, 8, 9, 10, 11, 12, 13], [14]),
|
88 |
+
([5, 6, 7, 8, 9, 10, 11, 12, 13, 14], [15]),
|
89 |
+
([6, 7, 8, 9, 10, 11, 12, 13, 14, 15], [16]),
|
90 |
+
([7, 8, 9, 10, 11, 12, 13, 14, 15, 16], [17]),
|
91 |
+
([8, 9, 10, 11, 12, 13, 14, 15, 16, 17], [18]),
|
92 |
+
([9, 10, 11, 12, 13, 14, 15, 16, 17, 18], [19]),
|
93 |
+
([10, 11, 12, 13, 14, 15, 16, 17, 18, 19], [20]),
|
94 |
+
([11, 12, 13, 14, 15, 16, 17, 18, 19, 20], [21]),
|
95 |
+
([12, 13, 14, 15, 16, 17, 18, 19, 20, 21], [22]),
|
96 |
+
([13, 14, 15, 16, 17, 18, 19, 20, 21, 22], [23]),
|
97 |
+
([14, 15, 16, 17, 18, 19, 20, 21, 22, 23], [24]),
|
98 |
+
([15, 16, 17, 18, 19, 20, 21, 22, 23, 24], [25]),
|
99 |
+
([16, 17, 18, 19, 20, 21, 22, 23, 24, 25], [26]),
|
100 |
+
([17, 18, 19, 20, 21, 22, 23, 24, 25, 26], [27]),
|
101 |
+
([18, 19, 20, 21, 22, 23, 24, 25, 26, 27], [28]),
|
102 |
+
([19, 20, 21, 22, 23, 24, 25, 26, 27, 28], [29]),
|
103 |
+
([20, 21, 22, 23, 24, 25, 26, 27, 28, 29], [30]),
|
104 |
+
([21, 22, 23, 24, 25, 26, 27, 28, 29, 30], [31]),
|
105 |
+
([22, 23, 24, 25, 26, 27, 28, 29, 30, 31], [32]),
|
106 |
+
([23, 24, 25, 26, 27, 28, 29, 30, 31, 32], [33]),
|
107 |
+
]
|
108 |
+
x = list(range(34))
|
109 |
+
generator = get_rolling_token_windows(
|
110 |
+
token_list=x,
|
111 |
+
prefix_token=-100,
|
112 |
+
max_seq_len=10,
|
113 |
+
context_len=10,
|
114 |
+
)
|
115 |
+
pred_length = 0
|
116 |
+
output = []
|
117 |
+
for input_tokens, pred_tokens in generator:
|
118 |
+
output.append((input_tokens, pred_tokens))
|
119 |
+
pred_length += len(pred_tokens)
|
120 |
+
assert pred_length == len(x)
|
121 |
+
assert gold == output
|
122 |
+
|
123 |
+
|
124 |
+
# noinspection DuplicatedCode
|
125 |
+
def test_get_rolling_token_windows_v4():
|
126 |
+
gold = [
|
127 |
+
([-100, 0, 1, 2, 3, 4, 5, 6, 7, 8], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
|
128 |
+
([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [10]),
|
129 |
+
([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [11]),
|
130 |
+
([2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [12]),
|
131 |
+
([3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [13]),
|
132 |
+
([4, 5, 6, 7, 8, 9, 10, 11, 12, 13], [14]),
|
133 |
+
([5, 6, 7, 8, 9, 10, 11, 12, 13, 14], [15]),
|
134 |
+
([6, 7, 8, 9, 10, 11, 12, 13, 14, 15], [16]),
|
135 |
+
([7, 8, 9, 10, 11, 12, 13, 14, 15, 16], [17]),
|
136 |
+
([8, 9, 10, 11, 12, 13, 14, 15, 16, 17], [18]),
|
137 |
+
([9, 10, 11, 12, 13, 14, 15, 16, 17, 18], [19]),
|
138 |
+
([10, 11, 12, 13, 14, 15, 16, 17, 18, 19], [20]),
|
139 |
+
([11, 12, 13, 14, 15, 16, 17, 18, 19, 20], [21]),
|
140 |
+
([12, 13, 14, 15, 16, 17, 18, 19, 20, 21], [22]),
|
141 |
+
([13, 14, 15, 16, 17, 18, 19, 20, 21, 22], [23]),
|
142 |
+
([14, 15, 16, 17, 18, 19, 20, 21, 22, 23], [24]),
|
143 |
+
([15, 16, 17, 18, 19, 20, 21, 22, 23, 24], [25]),
|
144 |
+
([16, 17, 18, 19, 20, 21, 22, 23, 24, 25], [26]),
|
145 |
+
([17, 18, 19, 20, 21, 22, 23, 24, 25, 26], [27]),
|
146 |
+
([18, 19, 20, 21, 22, 23, 24, 25, 26, 27], [28]),
|
147 |
+
([19, 20, 21, 22, 23, 24, 25, 26, 27, 28], [29]),
|
148 |
+
]
|
149 |
+
x = list(range(30))
|
150 |
+
generator = get_rolling_token_windows(
|
151 |
+
token_list=x,
|
152 |
+
prefix_token=-100,
|
153 |
+
max_seq_len=10,
|
154 |
+
context_len=10,
|
155 |
+
)
|
156 |
+
pred_length = 0
|
157 |
+
output = []
|
158 |
+
for input_tokens, pred_tokens in generator:
|
159 |
+
output.append((input_tokens, pred_tokens))
|
160 |
+
pred_length += len(pred_tokens)
|
161 |
+
assert pred_length == len(x)
|
162 |
+
assert gold == output
|
163 |
+
|
164 |
+
|
165 |
+
# noinspection DuplicatedCode
|
166 |
+
def test_get_rolling_token_windows_v5():
|
167 |
+
gold = [
|
168 |
+
([-100, 0, 1, 2, 3, 4, 5, 6, 7, 8], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
|
169 |
+
(
|
170 |
+
[9, 10, 11, 12, 13, 14, 15, 16, 17, 18],
|
171 |
+
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
|
172 |
+
),
|
173 |
+
(
|
174 |
+
[19, 20, 21, 22, 23, 24, 25, 26, 27, 28],
|
175 |
+
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
|
176 |
+
),
|
177 |
+
]
|
178 |
+
x = list(range(30))
|
179 |
+
generator = get_rolling_token_windows(
|
180 |
+
token_list=x,
|
181 |
+
prefix_token=-100,
|
182 |
+
max_seq_len=10,
|
183 |
+
context_len=1,
|
184 |
+
)
|
185 |
+
pred_length = 0
|
186 |
+
output = []
|
187 |
+
for input_tokens, pred_tokens in generator:
|
188 |
+
output.append((input_tokens, pred_tokens))
|
189 |
+
pred_length += len(pred_tokens)
|
190 |
+
assert pred_length == len(x)
|
191 |
+
assert gold == output
|
192 |
+
|
193 |
+
|
194 |
+
# noinspection DuplicatedCode
|
195 |
+
def test_get_rolling_token_windows_v6():
|
196 |
+
gold = [
|
197 |
+
([-100, 0], [0, 1]),
|
198 |
+
([1, 2], [2, 3]),
|
199 |
+
([3, 4], [4, 5]),
|
200 |
+
([5, 6], [6, 7]),
|
201 |
+
([6, 7], [8]),
|
202 |
+
]
|
203 |
+
x = list(range(9))
|
204 |
+
generator = get_rolling_token_windows(
|
205 |
+
token_list=x,
|
206 |
+
prefix_token=-100,
|
207 |
+
max_seq_len=2,
|
208 |
+
context_len=1,
|
209 |
+
)
|
210 |
+
pred_length = 0
|
211 |
+
output = []
|
212 |
+
for input_tokens, pred_tokens in generator:
|
213 |
+
output.append((input_tokens, pred_tokens))
|
214 |
+
pred_length += len(pred_tokens)
|
215 |
+
assert pred_length == len(x)
|
216 |
+
assert gold == output
|
217 |
+
|
218 |
+
|
219 |
+
def test_get_rolling_token_windows_empty():
|
220 |
+
generator = get_rolling_token_windows(
|
221 |
+
token_list=[],
|
222 |
+
prefix_token=-100,
|
223 |
+
max_seq_len=2,
|
224 |
+
context_len=1,
|
225 |
+
)
|
226 |
+
n = 0
|
227 |
+
for _ in generator:
|
228 |
+
n += 1
|
229 |
+
assert n == 0
|
230 |
+
|
231 |
+
|
232 |
+
def test_make_disjoint_window():
|
233 |
+
assert make_disjoint_window(([1, 2, 3, 4, 5], [2, 3, 4, 5, 6])) == (
|
234 |
+
[1],
|
235 |
+
[2, 3, 4, 5, 6],
|
236 |
+
)
|
237 |
+
assert make_disjoint_window(([1, 2, 3, 4, 5], [4, 5, 6])) == ([1, 2, 3], [4, 5, 6])
|
238 |
+
assert make_disjoint_window(([1, 2, 3, 4, 5], [6])) == ([1, 2, 3, 4, 5], [6])
|
239 |
+
|
240 |
+
|
241 |
+
class TestCollator:
|
242 |
+
def make_generate_sample(self, end=10):
|
243 |
+
strings = ["x" * i for i in range(1, end + 1)]
|
244 |
+
gen_kwargs1, gen_kwargs2 = (
|
245 |
+
{"temperature": 0},
|
246 |
+
{"temperature": 0, "until": ["nn", "\n\n"]},
|
247 |
+
)
|
248 |
+
args = [
|
249 |
+
(string, gen_kwargs1 if i < len(strings) // 2 else gen_kwargs2)
|
250 |
+
for i, string in enumerate(strings)
|
251 |
+
]
|
252 |
+
|
253 |
+
return args
|
254 |
+
|
255 |
+
def make_loglikelihood_sample(self, end=11):
|
256 |
+
samples = [
|
257 |
+
(("x", "x"), list(range(1, total_length + 1)))
|
258 |
+
for total_length in range(1, end + 1)
|
259 |
+
]
|
260 |
+
return samples
|
261 |
+
|
262 |
+
def make_loglikelihood_sample_group(self, end=11):
|
263 |
+
a = [(("x", "x"), [1, 2, 3, 4, 5, 6, 7, 8], [x]) for x in range(9)]
|
264 |
+
b = [
|
265 |
+
(("x", "x"), [1, 2, 3, 4, 5, 6, 7, 8], [x, y, z])
|
266 |
+
for x, y, z in zip(range(9), range(9, 18), range(18, 27))
|
267 |
+
]
|
268 |
+
return a + b
|
269 |
+
|
270 |
+
@pytest.mark.parametrize("batch_size, end", [(17, 30), (8, 61), (12, 48), (0, 9)])
|
271 |
+
def test_generations(self, batch_size, end):
|
272 |
+
_collate_gen = lambda x: (-len(x[0]), x[0]) # noqa: E731
|
273 |
+
|
274 |
+
generation_samples = self.make_generate_sample(int(end))
|
275 |
+
gens = Collator(generation_samples, _collate_gen, group_by="gen_kwargs")
|
276 |
+
chunks = gens.get_batched(n=int(batch_size), batch_fn=None)
|
277 |
+
output = []
|
278 |
+
for chunks in chunks:
|
279 |
+
# check batching
|
280 |
+
group_one = end // 2
|
281 |
+
group_two = end - end // 2
|
282 |
+
assert (
|
283 |
+
len(chunks) <= batch_size
|
284 |
+
if batch_size != 0
|
285 |
+
else len(chunks) in [group_one, group_two]
|
286 |
+
)
|
287 |
+
# check if reorder-er is working correctly
|
288 |
+
assert all(
|
289 |
+
len(chunks[i][0]) <= len(chunks[i - 1][0])
|
290 |
+
for i in range(1, len(chunks))
|
291 |
+
)
|
292 |
+
# check if grouping correctly
|
293 |
+
assert all(x[1] == chunks[0][1] for x in chunks)
|
294 |
+
for x in chunks:
|
295 |
+
output.append(x)
|
296 |
+
reordered_output = gens.get_original(output)
|
297 |
+
# check get original
|
298 |
+
assert reordered_output == generation_samples
|
299 |
+
|
300 |
+
@pytest.mark.parametrize("batch_size, end", [(17, 30), (8, 61), (12, 48), (0, 3)])
|
301 |
+
def test_loglikelihood(self, batch_size, end):
|
302 |
+
_collate_log = lambda x: (-len(x[1]), tuple(x[1])) # noqa: E731
|
303 |
+
loglikelihood_samples = self.make_loglikelihood_sample(int(end))
|
304 |
+
loglikelihoods = Collator(
|
305 |
+
loglikelihood_samples,
|
306 |
+
_collate_log,
|
307 |
+
)
|
308 |
+
chunks = loglikelihoods.get_batched(n=int(batch_size), batch_fn=None)
|
309 |
+
output = []
|
310 |
+
for chunks in chunks:
|
311 |
+
# check batching
|
312 |
+
assert len(chunks) <= batch_size if batch_size != 0 else len(chunks) == end
|
313 |
+
# check reorder
|
314 |
+
assert all(
|
315 |
+
len(chunks[i][1]) <= len(chunks[i - 1][1])
|
316 |
+
for i in range(1, len(chunks))
|
317 |
+
)
|
318 |
+
for x in chunks:
|
319 |
+
output.append(x[1])
|
320 |
+
# check indices
|
321 |
+
reordered_output = loglikelihoods.get_original(output)
|
322 |
+
assert reordered_output == [x[1] for x in loglikelihood_samples]
|
323 |
+
|
324 |
+
@pytest.mark.parametrize("batch_size", [17, 8, 12, 0])
|
325 |
+
def test_context_grouping(self, batch_size):
|
326 |
+
def _collate(x):
|
327 |
+
toks = x[1] + x[2]
|
328 |
+
return -len(toks), tuple(toks)
|
329 |
+
|
330 |
+
_collate_log = _collate # noqa: E731
|
331 |
+
loglikelihood_samples = self.make_loglikelihood_sample_group()
|
332 |
+
loglikelihoods = Collator(
|
333 |
+
loglikelihood_samples,
|
334 |
+
_collate_log,
|
335 |
+
group_fn=lambda a: a[-2] + a[-1][:-1],
|
336 |
+
group_by="contexts",
|
337 |
+
)
|
338 |
+
chunks = loglikelihoods.get_batched(n=int(batch_size), batch_fn=None)
|
339 |
+
output = []
|
340 |
+
outputs_ = []
|
341 |
+
for chunks in chunks:
|
342 |
+
# check batching
|
343 |
+
if batch_size != 0:
|
344 |
+
assert len(chunks) <= batch_size
|
345 |
+
# check reorder
|
346 |
+
assert all(
|
347 |
+
len(chunks[i][1]) <= len(chunks[i - 1][1])
|
348 |
+
for i in range(1, len(chunks))
|
349 |
+
)
|
350 |
+
for x in chunks:
|
351 |
+
for request_str, cont_toks, logits in loglikelihoods.get_cache(
|
352 |
+
req_str="".join(x[0]),
|
353 |
+
cxt_toks=x[1],
|
354 |
+
cont_toks=x[2],
|
355 |
+
logits=torch.tensor([1, 2, 3, 4, 5, 6, 7, 8])
|
356 |
+
.unsqueeze(0)
|
357 |
+
.unsqueeze(0),
|
358 |
+
):
|
359 |
+
output.append(x[1])
|
360 |
+
outputs_.append(cont_toks)
|
361 |
+
assert len(output) == len(outputs_)
|
362 |
+
# check indices
|
363 |
+
reordered_output = loglikelihoods.get_original(output)
|
364 |
+
assert reordered_output == [x[1] for x in loglikelihood_samples]
|
365 |
+
|
366 |
+
|
367 |
+
def test_aggregate_mean():
|
368 |
+
# test weight_by_size is respected
|
369 |
+
assert (
|
370 |
+
aggregate_subtask_metrics([0.3, 0.2, 0.4], [20, 40, 100], weight_by_size=False)
|
371 |
+
== 0.3
|
372 |
+
)
|
373 |
+
assert (
|
374 |
+
aggregate_subtask_metrics([0.3, 0.2, 0.4], [20, 40, 100], weight_by_size=True)
|
375 |
+
== 0.3375
|
376 |
+
)
|
377 |
+
|
378 |
+
|
379 |
+
@pytest.mark.parametrize(
|
380 |
+
"samples",
|
381 |
+
[
|
382 |
+
[40 * [1.0] + 60 * [0.0], 30 * [1.0] + 30 * [0.0], 20 * [1.0] + 60 * [0.0]],
|
383 |
+
[35 * [1.0] + 65 * [0.0], 20 * [1.0] + 20 * [0.0]],
|
384 |
+
],
|
385 |
+
)
|
386 |
+
def test_aggregate_stderrs(samples):
|
387 |
+
# check that aggregating subtasks' bootstrap stderrs with our formula
|
388 |
+
# (using weight_by_size) is ~equiv.
|
389 |
+
# to just getting bootstrap stderr of the whole set of samples
|
390 |
+
mean_stderr = stderr_for_metric(metric=mean, bootstrap_iters=100000)
|
391 |
+
|
392 |
+
stderrs = [mean_stderr(subtask) for subtask in samples]
|
393 |
+
|
394 |
+
sizes = [len(subtask) for subtask in samples]
|
395 |
+
|
396 |
+
assert np.allclose(
|
397 |
+
pooled_sample_stderr(stderrs, sizes),
|
398 |
+
mean_stderr(list(itertools.chain.from_iterable(samples))),
|
399 |
+
atol=1.0e-3,
|
400 |
+
)
|
lm-evaluation-harness/tests/testdata/blimp_left_branch_island_echo_question-v0-loglikelihood
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
9852b38612db8c6adf938a5d8a7a9e5ce9e655259d6cc806b142506fcaff0ed4
|
lm-evaluation-harness/tests/testdata/ethics_virtue-v0-loglikelihood
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
8021db8de46850090ddae6e6ec2d382029c3027b7c69884607503f916d09b709
|
lm-evaluation-harness/tests/testdata/hendrycksTest-electrical_engineering-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"hendrycksTest-electrical_engineering": {"acc": 0.2689655172413793, "acc_norm": 0.2827586206896552, "acc_norm_stderr": 0.037528339580033376, "acc_stderr": 0.036951833116502325}}, "versions": {"hendrycksTest-electrical_engineering": 0}}
|
lm-evaluation-harness/tests/testdata/hendrycksTest-human_sexuality-v0-loglikelihood
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
4b07922fa1d549b655c21440b13d869263ce7dd9771d8147c450f11c91d26c10
|
lm-evaluation-harness/tests/testdata/pile_pubmed-central-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"pile_pubmed-central": {"bits_per_byte": 1.5812411832795375e-05, "byte_perplexity": 1.0000158125368497, "word_perplexity": 1.000123107107861}}, "versions": {"pile_pubmed-central": 0}}
|
lm-evaluation-harness/tests/testdata/qqp-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"qqp": {"acc": 0.49782339846648527, "acc_stderr": 0.0024866770696239894, "f1": 0.42322661288031593, "f1_stderr": 0.002695903831328166}}, "versions": {"qqp": 0}}
|
lm-evaluation-harness/tests/testdata/wmt20-ja-en-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"wmt20-ja-en": {"bleu": 0.0, "bleu_stderr": 0.0, "chrf": 0.010703148854351403, "chrf_stderr": 0.00022242113108130186, "ter": 1.0, "ter_stderr": 0.0}}, "versions": {"wmt20-ja-en": 0}}
|
lm-evaluation-harness/tests/testdata/wmt20-ru-en-v0-greedy_until
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1477ab6542c26bd0222cc1aded174f33bf8d04d1cf6a1c0959aeca4ff3779adc
|
lm-evaluation-harness/tests/utils.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import List, Union
|
3 |
+
|
4 |
+
from lm_eval.utils import load_yaml_config
|
5 |
+
|
6 |
+
|
7 |
+
# {{{CI}}}
|
8 |
+
# This is the path where the output for the changed files for the tasks folder is stored
|
9 |
+
# FILE_PATH = file_path = ".github/outputs/tasks_all_changed_and_modified_files.txt"
|
10 |
+
|
11 |
+
|
12 |
+
# reads a text file and returns a list of words
|
13 |
+
# used to read the output of the changed txt from tj-actions/changed-files
|
14 |
+
def load_changed_files(file_path: str) -> List[str]:
|
15 |
+
with open(file_path, "r") as f:
|
16 |
+
content = f.read()
|
17 |
+
words_list = [x for x in content.split()]
|
18 |
+
return words_list
|
19 |
+
|
20 |
+
|
21 |
+
# checks the txt file for list of changed files.
|
22 |
+
# if file ends with .yaml then check yaml and load the config.
|
23 |
+
# if the config task is a string, it's a task config.
|
24 |
+
# if the config task is a list, it's a group config.
|
25 |
+
def parser(full_path: List[str]) -> List[str]:
|
26 |
+
_output = set()
|
27 |
+
for x in full_path:
|
28 |
+
if os.path.exists(x) and x.endswith(".yaml"):
|
29 |
+
config = load_yaml_config(x, mode="simple")
|
30 |
+
if isinstance(config["task"], str):
|
31 |
+
_output.add(config["task"])
|
32 |
+
elif isinstance(config["task"], list):
|
33 |
+
_output.add(config["group"])
|
34 |
+
return list(_output)
|
35 |
+
|
36 |
+
|
37 |
+
def new_tasks() -> Union[List[str], None]:
|
38 |
+
FILENAME = ".github/outputs/tasks_all_changed_and_modified_files.txt"
|
39 |
+
if os.path.exists(FILENAME):
|
40 |
+
# If tasks folder has changed then we get the list of files from FILENAME
|
41 |
+
# and parse the yaml files to get the task names.
|
42 |
+
return parser(load_changed_files(FILENAME))
|
43 |
+
elif os.getenv("API") is not None:
|
44 |
+
# Or if API has changed then we set the ENV variable API to True
|
45 |
+
# and run given tasks.
|
46 |
+
return ["arc_easy", "hellaswag", "piqa", "wikitext"]
|
47 |
+
# if both not true just do arc_easy
|
48 |
+
else:
|
49 |
+
return
|
venv/lib/python3.10/site-packages/sympy/plotting/tests/test_region_or.png
ADDED
![]() |
Git LFS Details
|
venv/lib/python3.10/site-packages/sympy/plotting/tests/test_region_xor.png
ADDED
![]() |
Git LFS Details
|
venv/lib/python3.10/site-packages/transformers/models/megatron_gpt2/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 NVIDIA Corporation and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
venv/lib/python3.10/site-packages/transformers/models/megatron_gpt2/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (201 Bytes). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/megatron_gpt2/__pycache__/checkpoint_reshaping_and_interoperability.cpython-310.pyc
ADDED
Binary file (21.8 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/megatron_gpt2/__pycache__/convert_megatron_gpt2_checkpoint.cpython-310.pyc
ADDED
Binary file (6.11 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/megatron_gpt2/checkpoint_reshaping_and_interoperability.py
ADDED
@@ -0,0 +1,904 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import json
|
17 |
+
import os
|
18 |
+
import re
|
19 |
+
import sys
|
20 |
+
import types
|
21 |
+
|
22 |
+
import torch
|
23 |
+
|
24 |
+
from transformers import AutoTokenizer, GPT2Config
|
25 |
+
from transformers.modeling_utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME, shard_checkpoint
|
26 |
+
|
27 |
+
|
28 |
+
def add_checkpointing_args(parser):
|
29 |
+
parser.add_argument("--megatron-path", type=str, default=None, help="Base directory of Megatron repository")
|
30 |
+
parser.add_argument(
|
31 |
+
"--convert_checkpoint_from_megatron_to_transformers",
|
32 |
+
action="store_true",
|
33 |
+
help=(
|
34 |
+
"If True, convert a Megatron checkpoint to a Transformers checkpoint. "
|
35 |
+
"If False, convert a Transformers checkpoint to a Megatron checkpoint."
|
36 |
+
),
|
37 |
+
)
|
38 |
+
parser.add_argument(
|
39 |
+
"--load_path",
|
40 |
+
type=str,
|
41 |
+
required=True,
|
42 |
+
help="Path to the checkpoint to convert.",
|
43 |
+
)
|
44 |
+
parser.add_argument(
|
45 |
+
"--save_path",
|
46 |
+
type=str,
|
47 |
+
required=True,
|
48 |
+
help="Path to the converted checkpoint.",
|
49 |
+
)
|
50 |
+
parser.add_argument("--print-checkpoint-structure", action="store_true")
|
51 |
+
return parser
|
52 |
+
|
53 |
+
|
54 |
+
def add_megatron_checkpoint_args(parser):
|
55 |
+
parser.add_argument(
|
56 |
+
"--target_tensor_model_parallel_size",
|
57 |
+
type=int,
|
58 |
+
default=1,
|
59 |
+
help=(
|
60 |
+
"The tensor model parallel size of the converted checkpoint. "
|
61 |
+
"Only used when converting a Transformers checkpoint to a Megatron checkpoint."
|
62 |
+
),
|
63 |
+
)
|
64 |
+
parser.add_argument(
|
65 |
+
"--target_pipeline_model_parallel_size",
|
66 |
+
type=int,
|
67 |
+
default=1,
|
68 |
+
help=(
|
69 |
+
"The pipeline model parallel size of the converted checkpoint. "
|
70 |
+
"Only used when converting a Transformers checkpoint to a Megatron checkpoint."
|
71 |
+
),
|
72 |
+
)
|
73 |
+
parser.add_argument(
|
74 |
+
"--target_data_parallel_size",
|
75 |
+
type=int,
|
76 |
+
default=1,
|
77 |
+
help=(
|
78 |
+
"The data parallel size of the converted checkpoint. "
|
79 |
+
"Only used when converting a Transformers checkpoint to a Megatron checkpoint."
|
80 |
+
),
|
81 |
+
)
|
82 |
+
parser.add_argument(
|
83 |
+
"--target_params_dtype",
|
84 |
+
type=str,
|
85 |
+
default="fp32",
|
86 |
+
help=(
|
87 |
+
"The dtype of the converted checkpoint. "
|
88 |
+
"Only used when converting a Transformers checkpoint to a Megatron checkpoint."
|
89 |
+
),
|
90 |
+
)
|
91 |
+
parser.add_argument(
|
92 |
+
"--make_vocab_size_divisible_by",
|
93 |
+
type=int,
|
94 |
+
default=128,
|
95 |
+
help=(
|
96 |
+
"Pad the vocab size to be divisible by this value. "
|
97 |
+
"This is added for computational efficieny reasons. "
|
98 |
+
"Only used when converting a Transformers checkpoint to a Megatron checkpoint."
|
99 |
+
),
|
100 |
+
)
|
101 |
+
parser.add_argument(
|
102 |
+
"--use_distributed_optimizer",
|
103 |
+
action="store_true",
|
104 |
+
help=(
|
105 |
+
"If True, use the distributed optimizer. "
|
106 |
+
"Only used when converting a Transformers checkpoint to a Megatron checkpoint."
|
107 |
+
),
|
108 |
+
)
|
109 |
+
return parser
|
110 |
+
|
111 |
+
|
112 |
+
def add_transformers_checkpoint_args(parser):
|
113 |
+
parser.add_argument(
|
114 |
+
"--tokenizer_name",
|
115 |
+
type=str,
|
116 |
+
default=None,
|
117 |
+
help=(
|
118 |
+
"The name of the pre-trained tokenizer to save. "
|
119 |
+
"If not None, the tokenizer will be saved. "
|
120 |
+
"Only used when converting a Megatron checkpoint to a Transformers checkpoint."
|
121 |
+
),
|
122 |
+
)
|
123 |
+
parser.add_argument(
|
124 |
+
"--max_shard_size",
|
125 |
+
type=str,
|
126 |
+
default="10GB",
|
127 |
+
help=(
|
128 |
+
"The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size "
|
129 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`). "
|
130 |
+
"Only used when converting a Megatron checkpoint to a Transformers checkpoint."
|
131 |
+
),
|
132 |
+
)
|
133 |
+
|
134 |
+
return parser
|
135 |
+
|
136 |
+
|
137 |
+
# The simple map of names for "automated" rules.
|
138 |
+
megatron_to_transformers = {
|
139 |
+
"attention.dense": ".attn.c_proj.",
|
140 |
+
"self_attention.dense": ".attn.c_proj.",
|
141 |
+
"mlp.dense_h_to_4h": ".mlp.c_fc.",
|
142 |
+
"mlp.dense_4h_to_h": ".mlp.c_proj.",
|
143 |
+
}
|
144 |
+
transformers_to_megatron = {v[1:-1]: k for k, v in megatron_to_transformers.items()}
|
145 |
+
|
146 |
+
tensor_parallel_params = [
|
147 |
+
# megatron-lm layers to merge across tp ranks
|
148 |
+
"self_attention.query_key_value.weight",
|
149 |
+
"self_attention.query_key_value.bias",
|
150 |
+
"self_attention.dense.weight",
|
151 |
+
"mlp.dense_h_to_4h.weight",
|
152 |
+
"mlp.dense_h_to_4h.bias",
|
153 |
+
"mlp.dense_4h_to_h.weight",
|
154 |
+
# deprecated
|
155 |
+
"attention.query_key_value.weight",
|
156 |
+
"attention.query_key_value.bias",
|
157 |
+
"attention.dense.weight",
|
158 |
+
# transformers layers to split across tp ranks
|
159 |
+
"attn.c_attn.weight",
|
160 |
+
"attn.c_attn.bias",
|
161 |
+
"attn.c_proj.weight",
|
162 |
+
"mlp.c_fc.weight",
|
163 |
+
"mlp.c_fc.bias",
|
164 |
+
"mlp.c_proj.weight",
|
165 |
+
]
|
166 |
+
|
167 |
+
|
168 |
+
def recursive_print(name, val, spaces=0):
|
169 |
+
"""
|
170 |
+
Recursively print the structure of a checkpoint. This function is taken from `convert_megatron_gpt2_checkpoint.py`
|
171 |
+
|
172 |
+
Args:
|
173 |
+
name (str): the name of the current tensor parameter
|
174 |
+
val (Tuple(int)): the shape of the current tensor parameter
|
175 |
+
spaces (int): the number of spaces to print before the output for a nested structure
|
176 |
+
"""
|
177 |
+
# Format the message.
|
178 |
+
if name is None:
|
179 |
+
msg = None
|
180 |
+
else:
|
181 |
+
fmt = "." * max(0, spaces - 2) + "# {:" + str(50 - spaces) + "s}"
|
182 |
+
msg = fmt.format(name)
|
183 |
+
|
184 |
+
# Print and recurse (if needed).
|
185 |
+
if isinstance(val, dict):
|
186 |
+
if msg is not None:
|
187 |
+
print(msg)
|
188 |
+
for k in val.keys():
|
189 |
+
recursive_print(k, val[k], spaces + 2)
|
190 |
+
elif isinstance(val, torch.Tensor):
|
191 |
+
print(msg, ":", val.size())
|
192 |
+
else:
|
193 |
+
print(msg, ":", val)
|
194 |
+
|
195 |
+
|
196 |
+
def megatron_to_transformers_fix_query_key_value_ordering(
|
197 |
+
param, checkpoint_version, num_splits, num_heads, hidden_size
|
198 |
+
):
|
199 |
+
"""
|
200 |
+
Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] for compatibility with later versions
|
201 |
+
of NVIDIA Megatron-LM. The inverse operation is performed inside Megatron-LM to read checkpoints:
|
202 |
+
https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 If param is the weight tensor of the
|
203 |
+
self-attention block, the returned tensor will have to be transposed one more time to be read by HuggingFace GPT2.
|
204 |
+
This function is taken from `convert_megatron_gpt2_checkpoint.py`
|
205 |
+
|
206 |
+
Args:
|
207 |
+
param (torch.Tensor): the tensor to permute
|
208 |
+
checkpoint_version (int): the version of the checkpoint.
|
209 |
+
num_splits (int): the number of projections, usually 3 for (Query, Key, Value)
|
210 |
+
num_heads (int): the number of attention heads
|
211 |
+
hidden_size (int): the hidden size per head
|
212 |
+
"""
|
213 |
+
|
214 |
+
input_shape = param.size()
|
215 |
+
if checkpoint_version == 1.0:
|
216 |
+
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
|
217 |
+
saved_shape = (num_heads, hidden_size, num_splits) + input_shape[1:]
|
218 |
+
param = param.view(*saved_shape)
|
219 |
+
param = param.transpose(0, 2)
|
220 |
+
param = param.transpose(1, 2).contiguous()
|
221 |
+
elif checkpoint_version >= 2.0:
|
222 |
+
# other versions store [num_heads * num_splits * hidden_size, :]
|
223 |
+
saved_shape = (num_heads, num_splits, hidden_size) + input_shape[1:]
|
224 |
+
param = param.view(*saved_shape)
|
225 |
+
param = param.transpose(0, 1).contiguous()
|
226 |
+
param = param.view(*input_shape)
|
227 |
+
return param
|
228 |
+
|
229 |
+
|
230 |
+
def transformers_to_megatron_fix_query_key_value_ordering(
|
231 |
+
param, checkpoint_version, num_splits, num_heads, hidden_size
|
232 |
+
):
|
233 |
+
"""
|
234 |
+
Permutes layout of param tensor to the one compatible with respective NVIDIA Megatron-LM chekpoint versions. Input
|
235 |
+
is [num_splits * num_heads * hidden_size, :] and output is [num_heads * hidden_size * num_splits, :] for version
|
236 |
+
1.0 and [num_heads * num_splits * hidden_size, :] for version 2.0 and later. If param is the weight tensor of the
|
237 |
+
self-attention block, the param needs to be already transposed before calling this function.
|
238 |
+
|
239 |
+
Args:
|
240 |
+
param (torch.Tensor): the tensor to permute
|
241 |
+
checkpoint_version (int): the version of the checkpoint.
|
242 |
+
num_splits (int): the number of projections, usually 3 for (Query, Key, Value)
|
243 |
+
num_heads (int): the number of attention heads
|
244 |
+
hidden_size (int): the hidden size per head
|
245 |
+
"""
|
246 |
+
|
247 |
+
# Input is [num_splits * num_heads * hidden_size, :]
|
248 |
+
input_shape = param.size()
|
249 |
+
if checkpoint_version == 1.0:
|
250 |
+
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
|
251 |
+
current_shape = (num_splits, num_heads, hidden_size) + input_shape[1:]
|
252 |
+
param = param.view(*current_shape)
|
253 |
+
param = param.transpose(0, 2)
|
254 |
+
param = param.transpose(1, 2).contiguous()
|
255 |
+
elif checkpoint_version >= 2.0:
|
256 |
+
# other versions store [num_heads * num_splits * hidden_size, :]
|
257 |
+
current_shape = (num_splits, num_heads, hidden_size) + input_shape[1:]
|
258 |
+
param = param.view(*current_shape)
|
259 |
+
param = param.transpose(0, 1).contiguous()
|
260 |
+
param = param.view(*input_shape)
|
261 |
+
return param
|
262 |
+
|
263 |
+
|
264 |
+
def merge_transformers_sharded_states(path, num_checkpoints):
|
265 |
+
"""
|
266 |
+
Merge sharded checkpoints from transformers into a single checkpoint.
|
267 |
+
|
268 |
+
Args:
|
269 |
+
path (str): the path to the sharded checkpoints
|
270 |
+
num_checkpoints (int): the number of checkpoints to merge
|
271 |
+
"""
|
272 |
+
state_dict = {}
|
273 |
+
for i in range(1, num_checkpoints + 1):
|
274 |
+
checkpoint_path = os.path.join(path, f"pytorch_model-{i:05d}-of-{num_checkpoints:05d}.bin")
|
275 |
+
current_chunk = torch.load(checkpoint_path, map_location="cpu")
|
276 |
+
state_dict.update(current_chunk)
|
277 |
+
return state_dict
|
278 |
+
|
279 |
+
|
280 |
+
def get_megatron_sharded_states(args, tp_size, pp_size, pp_rank):
|
281 |
+
"""
|
282 |
+
Get sharded checkpoints from NVIDIA Megatron-LM checkpoint based on the provided tensor parallel size, pipeline
|
283 |
+
parallel size and pipeline parallel rank.
|
284 |
+
|
285 |
+
Args:
|
286 |
+
args (argparse.Namespace): the arguments to the script
|
287 |
+
tp_size (int): the tensor parallel size
|
288 |
+
pp_size (int): the pipeline parallel size
|
289 |
+
pp_rank (int): the pipeline parallel rank
|
290 |
+
"""
|
291 |
+
tp_state_dicts = []
|
292 |
+
for i in range(tp_size):
|
293 |
+
sub_dir_name = f"mp_rank_{i:02d}" if pp_size == 1 else f"mp_rank_{i:02d}_{pp_rank:03d}"
|
294 |
+
for checkpoint_name in ["model_optim_rng.pt", "model_rng.pt"]:
|
295 |
+
checkpoint_path = os.path.join(args.load_path, sub_dir_name, checkpoint_name)
|
296 |
+
if os.path.isfile(checkpoint_path):
|
297 |
+
break
|
298 |
+
state_dict = torch.load(checkpoint_path, map_location="cpu")
|
299 |
+
tp_state_dicts.append(state_dict)
|
300 |
+
return tp_state_dicts
|
301 |
+
|
302 |
+
|
303 |
+
def get_element_from_dict_by_path(d, path):
|
304 |
+
"""
|
305 |
+
Get element from dictionary by path. If element is not present, recursively add empty dictionaries.
|
306 |
+
|
307 |
+
Args:
|
308 |
+
d (dict): the dictionary to get the element from
|
309 |
+
path (list): the path to the element which is delimited by "."
|
310 |
+
"""
|
311 |
+
path = path.split(".")
|
312 |
+
for k in path:
|
313 |
+
if k not in d:
|
314 |
+
d[k] = {}
|
315 |
+
d = d[k]
|
316 |
+
return d
|
317 |
+
|
318 |
+
|
319 |
+
def convert_checkpoint_from_megatron_to_transformers(args):
|
320 |
+
"""
|
321 |
+
Convert NVIDIA Megatron-LM checkpoint to HuggingFace Transformers checkpoint. This handles Megatron checkpoints
|
322 |
+
with different tensor parallelism and pipeline parallelism sizes. It saves the converted checkpoint into shards
|
323 |
+
using HuggingFace Transformers checkpoint sharding functionality. This greatly extends the functionality of
|
324 |
+
`convert_megatron_gpt2_checkpoint.py`
|
325 |
+
|
326 |
+
Args:
|
327 |
+
args (argparse.Namespace): the arguments to the script
|
328 |
+
"""
|
329 |
+
# Load Megatron-LM checkpoint arguments from the state dict
|
330 |
+
sub_dirs = os.listdir(args.load_path)
|
331 |
+
possible_sub_dirs = ["mp_rank_00", "mp_rank_00_000"]
|
332 |
+
for sub_dir in possible_sub_dirs:
|
333 |
+
if sub_dir in sub_dirs:
|
334 |
+
rank0_checkpoint_name = os.listdir(os.path.join(args.load_path, sub_dir))[0]
|
335 |
+
rank0_checkpoint_path = os.path.join(args.load_path, sub_dir, rank0_checkpoint_name)
|
336 |
+
break
|
337 |
+
print(f"Loading Megatron-LM checkpoint arguments from: {rank0_checkpoint_path}")
|
338 |
+
state_dict = torch.load(rank0_checkpoint_path, map_location="cpu")
|
339 |
+
megatron_args = state_dict.get("args", None)
|
340 |
+
if megatron_args is None:
|
341 |
+
raise ValueError(
|
342 |
+
"Megatron-LM checkpoint does not contain arguments. This utility only supports Megatron-LM checkpoints"
|
343 |
+
" containing all the megatron arguments. This is because it loads all config related to model"
|
344 |
+
" architecture, the tensor and pipeline model parallel size from the checkpoint insead of user having to"
|
345 |
+
" manually specify all the details. Please save Megatron-LM checkpoint along with all the megatron"
|
346 |
+
" arguments to use this utility."
|
347 |
+
)
|
348 |
+
|
349 |
+
# Create Transformers GPT2 config from Megatron-LM arguments
|
350 |
+
if megatron_args is not None:
|
351 |
+
if megatron_args.bias_gelu_fusion:
|
352 |
+
activation_function = "gelu_fast"
|
353 |
+
elif megatron_args.openai_gelu:
|
354 |
+
activation_function = "gelu_new"
|
355 |
+
else:
|
356 |
+
activation_function = "gelu"
|
357 |
+
else:
|
358 |
+
# in the very early days this used to be "gelu_new"
|
359 |
+
activation_function = "gelu_new"
|
360 |
+
vocab_size = (
|
361 |
+
megatron_args.padded_vocab_size
|
362 |
+
if getattr(megatron_args, "orig_vocab_size", None) is None
|
363 |
+
else megatron_args.orig_vocab_size
|
364 |
+
)
|
365 |
+
print(vocab_size)
|
366 |
+
|
367 |
+
config = GPT2Config(
|
368 |
+
vocab_size=vocab_size,
|
369 |
+
n_positions=megatron_args.max_position_embeddings,
|
370 |
+
n_embd=megatron_args.hidden_size,
|
371 |
+
n_layer=megatron_args.num_layers,
|
372 |
+
n_head=megatron_args.num_attention_heads,
|
373 |
+
n_inner=megatron_args.ffn_hidden_size,
|
374 |
+
activation_function=activation_function,
|
375 |
+
resid_pdrop=0.1,
|
376 |
+
embd_pdrop=0.1,
|
377 |
+
attn_pdrop=0.1,
|
378 |
+
layer_norm_epsilon=1e-5,
|
379 |
+
initializer_range=0.02,
|
380 |
+
summary_type="cls_index",
|
381 |
+
summary_use_proj=True,
|
382 |
+
summary_activation=None,
|
383 |
+
summary_proj_to_labels=True,
|
384 |
+
summary_first_dropout=0.1,
|
385 |
+
scale_attn_weights=True,
|
386 |
+
use_cache=True,
|
387 |
+
bos_token_id=vocab_size - 1,
|
388 |
+
eos_token_id=vocab_size - 1,
|
389 |
+
architectures=["GPT2LMHeadModel"],
|
390 |
+
)
|
391 |
+
|
392 |
+
output_state_dict = {}
|
393 |
+
|
394 |
+
checkpoint_version = state_dict.get("checkpoint_version", 0.0)
|
395 |
+
tp_size = megatron_args.tensor_model_parallel_size
|
396 |
+
pp_size = megatron_args.pipeline_model_parallel_size
|
397 |
+
dtype = torch.float32
|
398 |
+
# The regex to extract layer names.
|
399 |
+
layer_re = re.compile(r"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)")
|
400 |
+
|
401 |
+
# Convert.
|
402 |
+
print("Converting")
|
403 |
+
|
404 |
+
# Embeddings
|
405 |
+
print("Converting embeddings")
|
406 |
+
tp_state_dicts = get_megatron_sharded_states(args, tp_size, pp_size, 0)
|
407 |
+
|
408 |
+
# Convert and store the position embeddings.
|
409 |
+
position_embeddings = get_element_from_dict_by_path(
|
410 |
+
tp_state_dicts[0], "model.language_model.embedding.position_embeddings.weight"
|
411 |
+
)
|
412 |
+
output_state_dict["transformer.wpe.weight"] = position_embeddings.to(dtype)
|
413 |
+
|
414 |
+
# Convert and store the word embeddings.
|
415 |
+
word_embeddings = torch.cat(
|
416 |
+
[
|
417 |
+
get_element_from_dict_by_path(
|
418 |
+
tp_state_dicts[tp_rank], "model.language_model.embedding.word_embeddings.weight"
|
419 |
+
)
|
420 |
+
for tp_rank in range(tp_size)
|
421 |
+
],
|
422 |
+
dim=0,
|
423 |
+
)
|
424 |
+
word_embeddings = word_embeddings[:vocab_size].to(dtype)
|
425 |
+
output_state_dict["transformer.wte.weight"] = word_embeddings
|
426 |
+
|
427 |
+
# Transformer Layers
|
428 |
+
print("Converting transformer layers")
|
429 |
+
# The number of heads.
|
430 |
+
heads = config.n_head
|
431 |
+
# The hidden_size per head.
|
432 |
+
hidden_size_per_head = config.n_embd // config.n_head
|
433 |
+
n_positions = config.n_positions
|
434 |
+
num_layers = config.num_hidden_layers // pp_size
|
435 |
+
|
436 |
+
for pp_rank in range(pp_size):
|
437 |
+
if pp_size > 0:
|
438 |
+
print(f"Converting pipeline parallel rank {pp_rank}")
|
439 |
+
tp_state_dicts = get_megatron_sharded_states(args, tp_size, pp_size, pp_rank)
|
440 |
+
|
441 |
+
# The transformer.
|
442 |
+
path = (
|
443 |
+
"model.language_model.transformer"
|
444 |
+
if "transformer" in get_element_from_dict_by_path(tp_state_dicts[0], "model.language_model").keys()
|
445 |
+
else "model.language_model.encoder"
|
446 |
+
)
|
447 |
+
# Extract the layers.
|
448 |
+
for key, val in get_element_from_dict_by_path(tp_state_dicts[0], path).items():
|
449 |
+
# Match the name.
|
450 |
+
m = layer_re.match(key)
|
451 |
+
# Stop if that's not a layer
|
452 |
+
if m is None:
|
453 |
+
break
|
454 |
+
|
455 |
+
# The index of the layer.
|
456 |
+
layer_idx = int(m.group(1)) + pp_rank * num_layers
|
457 |
+
# The name of the operation.
|
458 |
+
op_name = m.group(2)
|
459 |
+
# Is it a weight or a bias?
|
460 |
+
weight_or_bias = m.group(3)
|
461 |
+
|
462 |
+
# The name of the layer.
|
463 |
+
layer_name = f"transformer.h.{layer_idx}"
|
464 |
+
|
465 |
+
if op_name + "." + weight_or_bias not in tensor_parallel_params:
|
466 |
+
params = val.to(dtype)
|
467 |
+
else:
|
468 |
+
dim = 1 if op_name in ["self_attention.dense", "mlp.dense_4h_to_h", "attention.dense"] else 0
|
469 |
+
params = torch.cat(
|
470 |
+
[val]
|
471 |
+
+ [
|
472 |
+
get_element_from_dict_by_path(tp_state_dicts[tp_rank], f"{path}")[key]
|
473 |
+
for tp_rank in range(1, tp_size)
|
474 |
+
],
|
475 |
+
dim=dim,
|
476 |
+
).to(dtype)
|
477 |
+
|
478 |
+
# For layernorm(s), simply store the layer norm.
|
479 |
+
if op_name.endswith("layernorm"):
|
480 |
+
ln_name = "ln_1" if op_name.startswith("input") else "ln_2"
|
481 |
+
output_state_dict[layer_name + "." + ln_name + "." + weight_or_bias] = params
|
482 |
+
|
483 |
+
# Transpose the QKV matrix.
|
484 |
+
elif (
|
485 |
+
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
|
486 |
+
) and weight_or_bias == "weight":
|
487 |
+
# Insert a tensor of 1x1xDxD bias.
|
488 |
+
causal_mask = torch.tril(torch.ones((n_positions, n_positions), dtype=dtype)).view(
|
489 |
+
1, 1, n_positions, n_positions
|
490 |
+
)
|
491 |
+
output_state_dict[layer_name + ".attn.bias"] = causal_mask
|
492 |
+
|
493 |
+
# Insert a "dummy" tensor for masked_bias.
|
494 |
+
masked_bias = torch.tensor(-1e4, dtype=dtype)
|
495 |
+
output_state_dict[layer_name + ".attn.masked_bias"] = masked_bias
|
496 |
+
|
497 |
+
out_val = megatron_to_transformers_fix_query_key_value_ordering(
|
498 |
+
params,
|
499 |
+
checkpoint_version,
|
500 |
+
3,
|
501 |
+
heads,
|
502 |
+
hidden_size_per_head,
|
503 |
+
)
|
504 |
+
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
|
505 |
+
out_val = out_val.transpose(0, 1).contiguous()
|
506 |
+
# Store.
|
507 |
+
output_state_dict[layer_name + ".attn.c_attn.weight"] = out_val
|
508 |
+
|
509 |
+
# Transpose the bias.
|
510 |
+
elif (
|
511 |
+
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
|
512 |
+
) and weight_or_bias == "bias":
|
513 |
+
out_val = megatron_to_transformers_fix_query_key_value_ordering(
|
514 |
+
params, checkpoint_version, 3, heads, hidden_size_per_head
|
515 |
+
)
|
516 |
+
# Store. No change of shape.
|
517 |
+
output_state_dict[layer_name + ".attn.c_attn.bias"] = out_val
|
518 |
+
|
519 |
+
# Transpose the weights.
|
520 |
+
elif weight_or_bias == "weight":
|
521 |
+
out_name = megatron_to_transformers[op_name]
|
522 |
+
output_state_dict[layer_name + out_name + "weight"] = params.transpose(0, 1)
|
523 |
+
|
524 |
+
# Copy the bias.
|
525 |
+
elif weight_or_bias == "bias":
|
526 |
+
out_name = megatron_to_transformers[op_name]
|
527 |
+
output_state_dict[layer_name + out_name + "bias"] = params
|
528 |
+
|
529 |
+
if config.n_layer != (layer_idx + 1):
|
530 |
+
raise ValueError(f"Expected {config.n_layer} layers but found {layer_idx + 1}")
|
531 |
+
|
532 |
+
# The final layernorm.
|
533 |
+
print("Converting final layernorm")
|
534 |
+
params = get_element_from_dict_by_path(tp_state_dicts[0], str(path))
|
535 |
+
output_state_dict["transformer.ln_f.weight"] = params["final_layernorm.weight"].to(dtype)
|
536 |
+
output_state_dict["transformer.ln_f.bias"] = params["final_layernorm.bias"].to(dtype)
|
537 |
+
|
538 |
+
# For LM head, transformers' wants the matrix to weight embeddings.
|
539 |
+
print("Converting LM head")
|
540 |
+
output_state_dict["lm_head.weight"] = word_embeddings.to(dtype)
|
541 |
+
|
542 |
+
# It should be done!
|
543 |
+
print("Conversion from Megatron-LM to Transformers is done!")
|
544 |
+
|
545 |
+
# Print the structure of converted state dict.
|
546 |
+
if args.print_checkpoint_structure:
|
547 |
+
recursive_print(None, output_state_dict)
|
548 |
+
|
549 |
+
# Add tokenizer class info to config
|
550 |
+
# see https://github.com/huggingface/transformers/issues/13906)
|
551 |
+
|
552 |
+
if args.tokenizer_name is None:
|
553 |
+
tokenizer_name = "openai-community/gpt2"
|
554 |
+
else:
|
555 |
+
tokenizer_name = args.tokenizer_name
|
556 |
+
|
557 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
558 |
+
tokenizer_class = type(tokenizer).__name__
|
559 |
+
config.tokenizer_class = tokenizer_class
|
560 |
+
|
561 |
+
# Store the config to file.
|
562 |
+
print("Saving config")
|
563 |
+
config.save_pretrained(args.save_path)
|
564 |
+
|
565 |
+
# Save tokenizer based on args
|
566 |
+
if args.tokenizer_name is not None:
|
567 |
+
print(f"Adding {tokenizer_class} tokenizer files")
|
568 |
+
tokenizer.save_pretrained(args.save_path)
|
569 |
+
|
570 |
+
# Store the state_dict to file.
|
571 |
+
max_shard_size = int(args.max_shard_size) if args.max_shard_size.isdigit() else args.max_shard_size
|
572 |
+
shards, index = shard_checkpoint(output_state_dict, max_shard_size=max_shard_size)
|
573 |
+
|
574 |
+
# Save the model
|
575 |
+
for shard_file, shard in shards.items():
|
576 |
+
torch.save(shard, os.path.join(args.save_path, shard_file))
|
577 |
+
|
578 |
+
if index is None:
|
579 |
+
print(f"Model weights saved in {os.path.join(args.save_path, WEIGHTS_NAME)}")
|
580 |
+
else:
|
581 |
+
save_index_file = os.path.join(args.save_path, WEIGHTS_INDEX_NAME)
|
582 |
+
# Save the index as well
|
583 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
584 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
585 |
+
f.write(content)
|
586 |
+
print(
|
587 |
+
f"The model is bigger than the maximum size per checkpoint ({args.max_shard_size}) and is going to be "
|
588 |
+
f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the "
|
589 |
+
f"index located at {save_index_file}."
|
590 |
+
)
|
591 |
+
|
592 |
+
|
593 |
+
def convert_checkpoint_from_transformers_to_megatron(args):
|
594 |
+
"""
|
595 |
+
Convert a checkpoint from HuggingFace Transformers to Megatron-LM. This allows converted checkpoints with variable
|
596 |
+
tensor parallelism and pipeline parallelism sizes. It takes as input a checkpoint from HuggingFace Transformers
|
597 |
+
which can have multiple shards.
|
598 |
+
|
599 |
+
Args:
|
600 |
+
args (argparse.Namespace): the arguments to the script
|
601 |
+
|
602 |
+
"""
|
603 |
+
os.makedirs(args.save_path, exist_ok=True)
|
604 |
+
# Search in directory above this
|
605 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)))
|
606 |
+
if args.megatron_path is not None:
|
607 |
+
sys.path.insert(0, args.megatron_path)
|
608 |
+
|
609 |
+
try:
|
610 |
+
from megatron.tokenizer.tokenizer import _vocab_size_with_padding
|
611 |
+
except ModuleNotFoundError:
|
612 |
+
print("Unable to import Megatron, please specify the path to Megatron using --megatron-path. Exiting.")
|
613 |
+
exit(1)
|
614 |
+
|
615 |
+
# load the transformers model state dict and config
|
616 |
+
sub_dirs = [x for x in os.listdir(args.load_path) if x.startswith("pytorch_model")]
|
617 |
+
if len(sub_dirs) == 1:
|
618 |
+
checkpoint_name = "pytorch_model.bin"
|
619 |
+
state_dict = torch.load(os.path.join(args.load_path, checkpoint_name), map_location="cpu")
|
620 |
+
else:
|
621 |
+
num_checkpoints = len(sub_dirs) - 1
|
622 |
+
state_dict = merge_transformers_sharded_states(args.load_path, num_checkpoints)
|
623 |
+
|
624 |
+
config = GPT2Config.from_pretrained(args.load_path)
|
625 |
+
|
626 |
+
# Saving the tracker file
|
627 |
+
tracker_filepath = os.path.join(args.save_path, "latest_checkpointed_iteration.txt")
|
628 |
+
with open(tracker_filepath, "w") as f:
|
629 |
+
f.write("release")
|
630 |
+
|
631 |
+
# create `release` dir in args.load_path
|
632 |
+
release_dir = os.path.join(args.save_path, "release")
|
633 |
+
os.makedirs(release_dir, exist_ok=True)
|
634 |
+
|
635 |
+
# megatron args
|
636 |
+
megatron_args = {
|
637 |
+
"orig_vocab_size": config.vocab_size,
|
638 |
+
"max_position_embeddings": config.n_positions,
|
639 |
+
"hidden_size": config.n_embd,
|
640 |
+
"num_layers": config.n_layer,
|
641 |
+
"num_attention_heads": config.n_head,
|
642 |
+
"ffn_hidden_size": config.n_inner,
|
643 |
+
"tensor_model_parallel_size": args.target_tensor_model_parallel_size,
|
644 |
+
"pipeline_model_parallel_size": args.target_pipeline_model_parallel_size,
|
645 |
+
"data_parallel_size": args.target_data_parallel_size,
|
646 |
+
"make_vocab_size_divisible_by": args.make_vocab_size_divisible_by,
|
647 |
+
"rank": 0,
|
648 |
+
"tokenizer_type": "GPT2BPETokenizer",
|
649 |
+
}
|
650 |
+
|
651 |
+
if config.activation_function == "gelu":
|
652 |
+
megatron_args["bias_gelu_fusion"] = False
|
653 |
+
megatron_args["openai_gelu"] = False
|
654 |
+
elif config.activation_function == "gelu_fast":
|
655 |
+
megatron_args["bias_gelu_fusion"] = True
|
656 |
+
megatron_args["openai_gelu"] = False
|
657 |
+
elif config.activation_function == "gelu_new":
|
658 |
+
megatron_args["bias_gelu_fusion"] = False
|
659 |
+
megatron_args["openai_gelu"] = True
|
660 |
+
|
661 |
+
margs = types.SimpleNamespace()
|
662 |
+
for k, v in megatron_args.items():
|
663 |
+
setattr(margs, k, v)
|
664 |
+
|
665 |
+
# params dtype
|
666 |
+
if args.target_params_dtype == "fp16":
|
667 |
+
dtype = torch.float16
|
668 |
+
elif args.target_params_dtype == "bf16":
|
669 |
+
dtype = torch.bfloat16
|
670 |
+
else:
|
671 |
+
dtype = torch.float32
|
672 |
+
setattr(margs, "params_dtype", dtype)
|
673 |
+
|
674 |
+
# save dummy optim state dict
|
675 |
+
dummy_optim_state_dict = {}
|
676 |
+
dummy_optim_state_dict["optimizer"] = {
|
677 |
+
"step": 0,
|
678 |
+
"param_groups": [
|
679 |
+
{
|
680 |
+
"lr": 0.0,
|
681 |
+
"beta1": 0.0,
|
682 |
+
"beta2": 0.0,
|
683 |
+
"eps": 0.0,
|
684 |
+
"weight_decay": 0.0,
|
685 |
+
"correct_bias": False,
|
686 |
+
"params": [],
|
687 |
+
}
|
688 |
+
],
|
689 |
+
}
|
690 |
+
if args.use_distributed_optimizer:
|
691 |
+
for i in range(args.target_pipeline_model_parallel_size):
|
692 |
+
for j in range(args.target_tensor_model_parallel_size):
|
693 |
+
for k in range(args.target_data_parallel_size):
|
694 |
+
if args.target_pipeline_model_parallel_size == 1:
|
695 |
+
checkpoint_dir = f"mp_rank_{j:02d}_{k:03d}"
|
696 |
+
else:
|
697 |
+
checkpoint_dir = f"mp_rank_{j:02d}_{i:03d}_{k:03d}"
|
698 |
+
checkpoint_dir = os.path.join(release_dir, checkpoint_dir)
|
699 |
+
os.makedirs(checkpoint_dir, exist_ok=True)
|
700 |
+
torch.save(
|
701 |
+
dummy_optim_state_dict,
|
702 |
+
os.path.join(checkpoint_dir, "optim.pt"),
|
703 |
+
)
|
704 |
+
|
705 |
+
# Convert.
|
706 |
+
print("Converting")
|
707 |
+
output_state_dict = []
|
708 |
+
for i in range(args.target_tensor_model_parallel_size):
|
709 |
+
output_state_dict.append({})
|
710 |
+
|
711 |
+
# Embedding layer
|
712 |
+
print("converting embedding layer")
|
713 |
+
pos_embedding = state_dict["transformer.wpe.weight"].to(dtype)
|
714 |
+
word_embedding = state_dict["transformer.wte.weight"].to(dtype)
|
715 |
+
orig_vocab_size = config.vocab_size
|
716 |
+
padded_vocab_size = _vocab_size_with_padding(orig_vocab_size, margs)
|
717 |
+
setattr(margs, "padded_vocab_size", padded_vocab_size)
|
718 |
+
# Cut out extra padding we don't need
|
719 |
+
if orig_vocab_size > padded_vocab_size:
|
720 |
+
full_word_embed = word_embedding[0:padded_vocab_size, :]
|
721 |
+
# Expanding embedding to larger size by replicating final entry
|
722 |
+
elif orig_vocab_size < padded_vocab_size:
|
723 |
+
padding_size = padded_vocab_size - orig_vocab_size
|
724 |
+
full_word_embed = torch.cat((word_embedding, word_embedding[-1].unsqueeze(0).expand(padding_size, -1)))
|
725 |
+
# Same size!
|
726 |
+
else:
|
727 |
+
full_word_embed = word_embedding
|
728 |
+
|
729 |
+
# Split into new tensor model parallel sizes
|
730 |
+
out_word_embed = torch.chunk(full_word_embed, args.target_tensor_model_parallel_size, dim=0)
|
731 |
+
for i in range(args.target_tensor_model_parallel_size):
|
732 |
+
pos_emb_dict = get_element_from_dict_by_path(
|
733 |
+
output_state_dict[i], "model.language_model.embedding.position_embeddings"
|
734 |
+
)
|
735 |
+
pos_emb_dict["weight"] = pos_embedding
|
736 |
+
|
737 |
+
word_emb_dict = get_element_from_dict_by_path(
|
738 |
+
output_state_dict[i], "model.language_model.embedding.word_embeddings"
|
739 |
+
)
|
740 |
+
word_emb_dict["weight"] = out_word_embed[i].clone()
|
741 |
+
|
742 |
+
# Transformer layers
|
743 |
+
print("converting transformer layers")
|
744 |
+
if config.num_attention_heads % args.target_tensor_model_parallel_size != 0:
|
745 |
+
raise ValueError(
|
746 |
+
f"Number of attention heads ({config.num_attention_heads}) must be divisible by number of tensor parallelism"
|
747 |
+
f" ({args.target_tensor_model_parallel_size})"
|
748 |
+
)
|
749 |
+
|
750 |
+
if config.num_hidden_layers % args.target_pipeline_model_parallel_size != 0:
|
751 |
+
raise ValueError(
|
752 |
+
f"Number of layers ({config.num_hidden_layers}) must be divisible by number of pipeline parallelism"
|
753 |
+
f" ({args.target_pipeline_model_parallel_size})"
|
754 |
+
)
|
755 |
+
|
756 |
+
num_layers = config.num_hidden_layers // args.target_pipeline_model_parallel_size
|
757 |
+
|
758 |
+
layer_re = re.compile(r"transformer.h\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)")
|
759 |
+
# The number of heads.
|
760 |
+
heads = config.n_head
|
761 |
+
# The hidden_size per head.
|
762 |
+
hidden_size_per_head = config.n_embd // config.n_head
|
763 |
+
for pp_rank in range(args.target_pipeline_model_parallel_size):
|
764 |
+
layer_offset = pp_rank * num_layers
|
765 |
+
if pp_rank > 0:
|
766 |
+
output_state_dict = []
|
767 |
+
for i in range(args.target_tensor_model_parallel_size):
|
768 |
+
output_state_dict.append({})
|
769 |
+
|
770 |
+
for layer in range(num_layers):
|
771 |
+
pp_layer_id = layer + layer_offset
|
772 |
+
layers_to_copy = [
|
773 |
+
layer_name
|
774 |
+
for layer_name in state_dict.keys()
|
775 |
+
if layer_name.startswith(f"transformer.h.{pp_layer_id}.")
|
776 |
+
]
|
777 |
+
|
778 |
+
for layer_name in layers_to_copy:
|
779 |
+
m = layer_re.match(layer_name)
|
780 |
+
# Stop if that's not a layer
|
781 |
+
if m is None:
|
782 |
+
break
|
783 |
+
|
784 |
+
# The index of the layer.
|
785 |
+
_ = int(m.group(1))
|
786 |
+
# The name of the operation.
|
787 |
+
op_name = m.group(2)
|
788 |
+
# Is it a weight or a bias?
|
789 |
+
weight_or_bias = m.group(3)
|
790 |
+
|
791 |
+
params = state_dict[layer_name].to(dtype)
|
792 |
+
# handle layernorm
|
793 |
+
if op_name.startswith("ln"):
|
794 |
+
out_name = "input_layernorm" if op_name.endswith("1") else "post_attention_layernorm"
|
795 |
+
layer_name = f"layers.{layer}.{out_name}.{weight_or_bias}"
|
796 |
+
|
797 |
+
# handle attention K, V, Q weights
|
798 |
+
elif op_name.startswith("attn.c_attn") and weight_or_bias == "weight":
|
799 |
+
# transformers stores D X (3*D) but Megatron-LM expects (3*D) X D.
|
800 |
+
params = params.transpose(0, 1).contiguous()
|
801 |
+
|
802 |
+
params = transformers_to_megatron_fix_query_key_value_ordering(
|
803 |
+
params,
|
804 |
+
3.0,
|
805 |
+
3,
|
806 |
+
heads,
|
807 |
+
hidden_size_per_head,
|
808 |
+
)
|
809 |
+
layer_name = f"layers.{layer}.self_attention.query_key_value.{weight_or_bias}"
|
810 |
+
|
811 |
+
# handle attention K, V, Q bias
|
812 |
+
elif op_name.startswith("attn.c_attn") and weight_or_bias == "bias":
|
813 |
+
params = transformers_to_megatron_fix_query_key_value_ordering(
|
814 |
+
params,
|
815 |
+
3.0,
|
816 |
+
3,
|
817 |
+
heads,
|
818 |
+
hidden_size_per_head,
|
819 |
+
)
|
820 |
+
layer_name = f"layers.{layer}.self_attention.query_key_value.{weight_or_bias}"
|
821 |
+
|
822 |
+
# handle attention and mlp weights
|
823 |
+
elif weight_or_bias == "weight":
|
824 |
+
out_name = transformers_to_megatron.get(op_name, None)
|
825 |
+
if out_name is None:
|
826 |
+
continue
|
827 |
+
params = params.transpose(0, 1)
|
828 |
+
layer_name = f"layers.{layer}.{out_name}.{weight_or_bias}"
|
829 |
+
|
830 |
+
# handle attention and mlp bias
|
831 |
+
elif weight_or_bias == "bias":
|
832 |
+
out_name = transformers_to_megatron.get(op_name, None)
|
833 |
+
if out_name is None:
|
834 |
+
continue
|
835 |
+
layer_name = f"layers.{layer}.{out_name}.{weight_or_bias}"
|
836 |
+
|
837 |
+
# skip
|
838 |
+
else:
|
839 |
+
continue
|
840 |
+
|
841 |
+
if op_name + "." + weight_or_bias in tensor_parallel_params:
|
842 |
+
dim = 1 if op_name in ["attn.c_proj", "mlp.c_proj"] else 0
|
843 |
+
params = torch.chunk(params, args.target_tensor_model_parallel_size, dim=dim)
|
844 |
+
|
845 |
+
for i in range(args.target_tensor_model_parallel_size):
|
846 |
+
params_dict = get_element_from_dict_by_path(output_state_dict[i], "model.language_model.encoder")
|
847 |
+
params_dict[layer_name] = (
|
848 |
+
params[i].clone() if (op_name + "." + weight_or_bias in tensor_parallel_params) else params
|
849 |
+
)
|
850 |
+
|
851 |
+
if pp_rank == args.target_pipeline_model_parallel_size - 1:
|
852 |
+
# handle final layernorm
|
853 |
+
for weight_or_bias in ["weight", "bias"]:
|
854 |
+
params = state_dict[f"transformer.ln_f.{weight_or_bias}"].to(dtype)
|
855 |
+
layer_name = f"final_layernorm.{weight_or_bias}"
|
856 |
+
for i in range(args.target_tensor_model_parallel_size):
|
857 |
+
params_dict = get_element_from_dict_by_path(output_state_dict[i], "model.language_model.encoder")
|
858 |
+
params_dict[layer_name] = params
|
859 |
+
|
860 |
+
# add the LM head
|
861 |
+
for i in range(args.target_tensor_model_parallel_size):
|
862 |
+
params_dict = get_element_from_dict_by_path(output_state_dict[i], "model.word_embeddings_for_head")
|
863 |
+
params_dict["weight"] = out_word_embed[i].clone()
|
864 |
+
|
865 |
+
# saving the state dict as per the tp_rank and pp_rank
|
866 |
+
for tp_rank in range(args.target_tensor_model_parallel_size):
|
867 |
+
output_state_dict[tp_rank]["checkpoint_version"] = 3.0
|
868 |
+
output_state_dict[tp_rank]["args"] = margs
|
869 |
+
checkpoint_dir = (
|
870 |
+
f"mp_rank_{tp_rank:02d}"
|
871 |
+
if args.target_pipeline_model_parallel_size == 1
|
872 |
+
else f"mp_rank_{tp_rank:02d}_{pp_rank:03d}"
|
873 |
+
)
|
874 |
+
if args.use_distributed_optimizer:
|
875 |
+
checkpoint_name = "model_rng.pt"
|
876 |
+
else:
|
877 |
+
checkpoint_name = "model_optim_rng.pt"
|
878 |
+
output_state_dict[tp_rank]["optimizer"] = dummy_optim_state_dict["optimizer"]
|
879 |
+
checkpoint_dir = os.path.join(release_dir, checkpoint_dir)
|
880 |
+
os.makedirs(checkpoint_dir, exist_ok=True)
|
881 |
+
checkpoint_path = os.path.join(checkpoint_dir, checkpoint_name)
|
882 |
+
if args.print_checkpoint_structure:
|
883 |
+
print(
|
884 |
+
f"Checkpoint structure of model state dict shard belonging to TP rank {tp_rank} and PP rank"
|
885 |
+
f" {pp_rank}:"
|
886 |
+
)
|
887 |
+
recursive_print(None, output_state_dict[tp_rank])
|
888 |
+
torch.save(output_state_dict[tp_rank], checkpoint_path)
|
889 |
+
|
890 |
+
|
891 |
+
def main():
|
892 |
+
parser = argparse.ArgumentParser()
|
893 |
+
parser = add_checkpointing_args(parser)
|
894 |
+
parser = add_megatron_checkpoint_args(parser)
|
895 |
+
parser = add_transformers_checkpoint_args(parser)
|
896 |
+
args = parser.parse_args()
|
897 |
+
if args.convert_checkpoint_from_megatron_to_transformers:
|
898 |
+
convert_checkpoint_from_megatron_to_transformers(args)
|
899 |
+
else:
|
900 |
+
convert_checkpoint_from_transformers_to_megatron(args)
|
901 |
+
|
902 |
+
|
903 |
+
if __name__ == "__main__":
|
904 |
+
main()
|
venv/lib/python3.10/site-packages/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py
ADDED
@@ -0,0 +1,358 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
####################################################################################################
|
2 |
+
|
3 |
+
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
####################################################################################################
|
18 |
+
|
19 |
+
#
|
20 |
+
# Note: If when running this conversion script you're getting an exception:
|
21 |
+
# ModuleNotFoundError: No module named 'megatron.model.enums'
|
22 |
+
# you need to tell python where to find the clone of Megatron-LM, e.g.:
|
23 |
+
#
|
24 |
+
# cd /tmp
|
25 |
+
# git clone https://github.com/NVIDIA/Megatron-LM
|
26 |
+
# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ...
|
27 |
+
#
|
28 |
+
# if you already have it cloned elsewhere, simply adjust the path to the existing path
|
29 |
+
#
|
30 |
+
# If the training was done using a Megatron-LM fork, e.g.,
|
31 |
+
# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one
|
32 |
+
# in your path, i.e., /path/to/Megatron-DeepSpeed/
|
33 |
+
#
|
34 |
+
|
35 |
+
import argparse
|
36 |
+
import os
|
37 |
+
import re
|
38 |
+
import zipfile
|
39 |
+
|
40 |
+
import torch
|
41 |
+
|
42 |
+
from transformers import AutoTokenizer, GPT2Config
|
43 |
+
|
44 |
+
|
45 |
+
####################################################################################################
|
46 |
+
|
47 |
+
|
48 |
+
def recursive_print(name, val, spaces=0):
|
49 |
+
# Format the message.
|
50 |
+
if name is None:
|
51 |
+
msg = None
|
52 |
+
else:
|
53 |
+
fmt = "." * max(0, spaces - 2) + "# {:" + str(50 - spaces) + "s}"
|
54 |
+
msg = fmt.format(name)
|
55 |
+
|
56 |
+
# Print and recurse (if needed).
|
57 |
+
if isinstance(val, dict):
|
58 |
+
if msg is not None:
|
59 |
+
print(msg)
|
60 |
+
for k in val.keys():
|
61 |
+
recursive_print(k, val[k], spaces + 2)
|
62 |
+
elif isinstance(val, torch.Tensor):
|
63 |
+
print(msg, ":", val.size())
|
64 |
+
else:
|
65 |
+
print(msg, ":", val)
|
66 |
+
|
67 |
+
|
68 |
+
def fix_query_key_value_ordering(param, checkpoint_version, num_splits, num_heads, hidden_size):
|
69 |
+
# Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :]
|
70 |
+
# for compatibility with later versions of NVIDIA Megatron-LM.
|
71 |
+
# The inverse operation is performed inside Megatron-LM to read checkpoints:
|
72 |
+
# https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209
|
73 |
+
# If param is the weight tensor of the self-attention block, the returned tensor
|
74 |
+
# will have to be transposed one more time to be read by HuggingFace GPT2.
|
75 |
+
input_shape = param.size()
|
76 |
+
if checkpoint_version == 1.0:
|
77 |
+
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
|
78 |
+
saved_shape = (num_heads, hidden_size, num_splits) + input_shape[1:]
|
79 |
+
param = param.view(*saved_shape)
|
80 |
+
param = param.transpose(0, 2)
|
81 |
+
param = param.transpose(1, 2).contiguous()
|
82 |
+
elif checkpoint_version >= 2.0:
|
83 |
+
# other versions store [num_heads * num_splits * hidden_size, :]
|
84 |
+
saved_shape = (num_heads, num_splits, hidden_size) + input_shape[1:]
|
85 |
+
param = param.view(*saved_shape)
|
86 |
+
param = param.transpose(0, 1).contiguous()
|
87 |
+
param = param.view(*input_shape)
|
88 |
+
return param
|
89 |
+
|
90 |
+
|
91 |
+
####################################################################################################
|
92 |
+
|
93 |
+
|
94 |
+
def convert_megatron_checkpoint(args, input_state_dict, config):
|
95 |
+
# The converted output model.
|
96 |
+
output_state_dict = {}
|
97 |
+
|
98 |
+
# old versions did not store training args
|
99 |
+
ds_args = input_state_dict.get("args", None)
|
100 |
+
if ds_args is not None:
|
101 |
+
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
|
102 |
+
# from pprint import pprint
|
103 |
+
# pprint(vars(ds_args))
|
104 |
+
|
105 |
+
config.vocab_size = ds_args.padded_vocab_size
|
106 |
+
config.n_positions = ds_args.max_position_embeddings
|
107 |
+
config.n_embd = ds_args.hidden_size
|
108 |
+
config.n_layer = ds_args.num_layers
|
109 |
+
config.n_head = ds_args.num_attention_heads
|
110 |
+
config.n_inner = ds_args.ffn_hidden_size
|
111 |
+
# pprint(config)
|
112 |
+
|
113 |
+
# The number of heads.
|
114 |
+
heads = config.n_head
|
115 |
+
# The hidden_size per head.
|
116 |
+
hidden_size_per_head = config.n_embd // config.n_head
|
117 |
+
# Megatron-LM checkpoint version
|
118 |
+
if "checkpoint_version" in input_state_dict.keys():
|
119 |
+
checkpoint_version = input_state_dict["checkpoint_version"]
|
120 |
+
else:
|
121 |
+
checkpoint_version = 0.0
|
122 |
+
|
123 |
+
# The model.
|
124 |
+
model = input_state_dict["model"]
|
125 |
+
# The language model.
|
126 |
+
lm = model["language_model"]
|
127 |
+
# The embeddings.
|
128 |
+
embeddings = lm["embedding"]
|
129 |
+
|
130 |
+
# The word embeddings.
|
131 |
+
word_embeddings = embeddings["word_embeddings"]["weight"]
|
132 |
+
# Truncate the embedding table to vocab_size rows.
|
133 |
+
word_embeddings = word_embeddings[: config.vocab_size, :]
|
134 |
+
output_state_dict["transformer.wte.weight"] = word_embeddings
|
135 |
+
|
136 |
+
# The position embeddings.
|
137 |
+
pos_embeddings = embeddings["position_embeddings"]["weight"]
|
138 |
+
# Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size]
|
139 |
+
n_positions = pos_embeddings.size(0)
|
140 |
+
if n_positions != config.n_positions:
|
141 |
+
raise ValueError(
|
142 |
+
f"pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match"
|
143 |
+
)
|
144 |
+
# Store the position embeddings.
|
145 |
+
output_state_dict["transformer.wpe.weight"] = pos_embeddings
|
146 |
+
|
147 |
+
# The transformer.
|
148 |
+
transformer = lm["transformer"] if "transformer" in lm.keys() else lm["encoder"]
|
149 |
+
|
150 |
+
# The regex to extract layer names.
|
151 |
+
layer_re = re.compile(r"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)")
|
152 |
+
|
153 |
+
# The simple map of names for "automated" rules.
|
154 |
+
megatron_to_transformers = {
|
155 |
+
"attention.dense": ".attn.c_proj.",
|
156 |
+
"self_attention.dense": ".attn.c_proj.",
|
157 |
+
"mlp.dense_h_to_4h": ".mlp.c_fc.",
|
158 |
+
"mlp.dense_4h_to_h": ".mlp.c_proj.",
|
159 |
+
}
|
160 |
+
|
161 |
+
# Extract the layers.
|
162 |
+
for key, val in transformer.items():
|
163 |
+
# Match the name.
|
164 |
+
m = layer_re.match(key)
|
165 |
+
|
166 |
+
# Stop if that's not a layer
|
167 |
+
if m is None:
|
168 |
+
break
|
169 |
+
|
170 |
+
# The index of the layer.
|
171 |
+
layer_idx = int(m.group(1))
|
172 |
+
# The name of the operation.
|
173 |
+
op_name = m.group(2)
|
174 |
+
# Is it a weight or a bias?
|
175 |
+
weight_or_bias = m.group(3)
|
176 |
+
|
177 |
+
# The name of the layer.
|
178 |
+
layer_name = f"transformer.h.{layer_idx}"
|
179 |
+
|
180 |
+
# For layernorm(s), simply store the layer norm.
|
181 |
+
if op_name.endswith("layernorm"):
|
182 |
+
ln_name = "ln_1" if op_name.startswith("input") else "ln_2"
|
183 |
+
output_state_dict[layer_name + "." + ln_name + "." + weight_or_bias] = val
|
184 |
+
|
185 |
+
# Transpose the QKV matrix.
|
186 |
+
elif (
|
187 |
+
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
|
188 |
+
) and weight_or_bias == "weight":
|
189 |
+
# Insert a tensor of 1x1xDxD bias.
|
190 |
+
causal_mask = torch.tril(torch.ones((n_positions, n_positions), dtype=torch.float16)).view(
|
191 |
+
1, 1, n_positions, n_positions
|
192 |
+
)
|
193 |
+
output_state_dict[layer_name + ".attn.bias"] = causal_mask
|
194 |
+
|
195 |
+
# Insert a "dummy" tensor for masked_bias.
|
196 |
+
masked_bias = torch.tensor(-1e4, dtype=torch.float16)
|
197 |
+
output_state_dict[layer_name + ".attn.masked_bias"] = masked_bias
|
198 |
+
|
199 |
+
out_val = fix_query_key_value_ordering(val, checkpoint_version, 3, heads, hidden_size_per_head)
|
200 |
+
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
|
201 |
+
out_val = out_val.transpose(0, 1).contiguous()
|
202 |
+
# Store.
|
203 |
+
output_state_dict[layer_name + ".attn.c_attn.weight"] = out_val
|
204 |
+
|
205 |
+
# Transpose the bias.
|
206 |
+
elif (
|
207 |
+
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
|
208 |
+
) and weight_or_bias == "bias":
|
209 |
+
out_val = fix_query_key_value_ordering(val, checkpoint_version, 3, heads, hidden_size_per_head)
|
210 |
+
# Store. No change of shape.
|
211 |
+
output_state_dict[layer_name + ".attn.c_attn.bias"] = out_val
|
212 |
+
|
213 |
+
# Transpose the weights.
|
214 |
+
elif weight_or_bias == "weight":
|
215 |
+
out_name = megatron_to_transformers[op_name]
|
216 |
+
output_state_dict[layer_name + out_name + "weight"] = val.transpose(0, 1)
|
217 |
+
|
218 |
+
# Copy the bias.
|
219 |
+
elif weight_or_bias == "bias":
|
220 |
+
out_name = megatron_to_transformers[op_name]
|
221 |
+
output_state_dict[layer_name + out_name + "bias"] = val
|
222 |
+
|
223 |
+
# DEBUG.
|
224 |
+
assert config.n_layer == layer_idx + 1
|
225 |
+
|
226 |
+
# The final layernorm.
|
227 |
+
output_state_dict["transformer.ln_f.weight"] = transformer["final_layernorm.weight"]
|
228 |
+
output_state_dict["transformer.ln_f.bias"] = transformer["final_layernorm.bias"]
|
229 |
+
|
230 |
+
# For LM head, transformers' wants the matrix to weight embeddings.
|
231 |
+
output_state_dict["lm_head.weight"] = word_embeddings
|
232 |
+
|
233 |
+
# It should be done!
|
234 |
+
return output_state_dict
|
235 |
+
|
236 |
+
|
237 |
+
####################################################################################################
|
238 |
+
|
239 |
+
|
240 |
+
def main():
|
241 |
+
# Create the argument parser.
|
242 |
+
parser = argparse.ArgumentParser()
|
243 |
+
parser.add_argument("--print-checkpoint-structure", action="store_true")
|
244 |
+
parser.add_argument(
|
245 |
+
"path_to_checkpoint",
|
246 |
+
type=str,
|
247 |
+
help="Path to the checkpoint file (.zip archive or direct .pt file)",
|
248 |
+
)
|
249 |
+
parser.add_argument(
|
250 |
+
"--config_file",
|
251 |
+
default="",
|
252 |
+
type=str,
|
253 |
+
help="An optional config json file describing the pre-trained model.",
|
254 |
+
)
|
255 |
+
args = parser.parse_args()
|
256 |
+
|
257 |
+
# Extract the basename.
|
258 |
+
basename = os.path.dirname(args.path_to_checkpoint)
|
259 |
+
|
260 |
+
# Load the model.
|
261 |
+
# the .zip is very optional, let's keep it for backward compatibility
|
262 |
+
print(f"Extracting PyTorch state dictionary from {args.path_to_checkpoint}")
|
263 |
+
if args.path_to_checkpoint.endswith(".zip"):
|
264 |
+
with zipfile.ZipFile(args.path_to_checkpoint, "r") as checkpoint:
|
265 |
+
with checkpoint.open("release/mp_rank_00/model_optim_rng.pt") as pytorch_dict:
|
266 |
+
input_state_dict = torch.load(pytorch_dict, map_location="cpu")
|
267 |
+
else:
|
268 |
+
input_state_dict = torch.load(args.path_to_checkpoint, map_location="cpu")
|
269 |
+
|
270 |
+
ds_args = input_state_dict.get("args", None)
|
271 |
+
|
272 |
+
# Read the config, or default to the model released by NVIDIA.
|
273 |
+
if args.config_file == "":
|
274 |
+
if ds_args is not None:
|
275 |
+
if ds_args.bias_gelu_fusion:
|
276 |
+
activation_function = "gelu_fast"
|
277 |
+
elif ds_args.openai_gelu:
|
278 |
+
activation_function = "gelu_new"
|
279 |
+
else:
|
280 |
+
activation_function = "gelu"
|
281 |
+
else:
|
282 |
+
# in the very early days this used to be "gelu_new"
|
283 |
+
activation_function = "gelu_new"
|
284 |
+
|
285 |
+
# Spell out all parameters in case the defaults change.
|
286 |
+
config = GPT2Config(
|
287 |
+
vocab_size=50257,
|
288 |
+
n_positions=1024,
|
289 |
+
n_embd=1024,
|
290 |
+
n_layer=24,
|
291 |
+
n_head=16,
|
292 |
+
n_inner=4096,
|
293 |
+
activation_function=activation_function,
|
294 |
+
resid_pdrop=0.1,
|
295 |
+
embd_pdrop=0.1,
|
296 |
+
attn_pdrop=0.1,
|
297 |
+
layer_norm_epsilon=1e-5,
|
298 |
+
initializer_range=0.02,
|
299 |
+
summary_type="cls_index",
|
300 |
+
summary_use_proj=True,
|
301 |
+
summary_activation=None,
|
302 |
+
summary_proj_to_labels=True,
|
303 |
+
summary_first_dropout=0.1,
|
304 |
+
scale_attn_weights=True,
|
305 |
+
use_cache=True,
|
306 |
+
bos_token_id=50256,
|
307 |
+
eos_token_id=50256,
|
308 |
+
)
|
309 |
+
else:
|
310 |
+
config = GPT2Config.from_json_file(args.config_file)
|
311 |
+
|
312 |
+
config.architectures = ["GPT2LMHeadModel"]
|
313 |
+
|
314 |
+
# Convert.
|
315 |
+
print("Converting")
|
316 |
+
output_state_dict = convert_megatron_checkpoint(args, input_state_dict, config)
|
317 |
+
|
318 |
+
# Print the structure of converted state dict.
|
319 |
+
if args.print_checkpoint_structure:
|
320 |
+
recursive_print(None, output_state_dict)
|
321 |
+
|
322 |
+
# Add tokenizer class info to config
|
323 |
+
# see https://github.com/huggingface/transformers/issues/13906)
|
324 |
+
if ds_args is not None:
|
325 |
+
tokenizer_type = ds_args.tokenizer_type
|
326 |
+
if tokenizer_type == "GPT2BPETokenizer":
|
327 |
+
tokenizer_model_name = "openai-community/gpt2"
|
328 |
+
elif tokenizer_type == "PretrainedFromHF":
|
329 |
+
tokenizer_model_name = ds_args.tokenizer_name_or_path
|
330 |
+
else:
|
331 |
+
raise ValueError(f"Unrecognized tokenizer_type {tokenizer_type}")
|
332 |
+
else:
|
333 |
+
tokenizer_model_name = "openai-community/gpt2"
|
334 |
+
|
335 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_model_name)
|
336 |
+
tokenizer_class = type(tokenizer).__name__
|
337 |
+
config.tokenizer_class = tokenizer_class
|
338 |
+
|
339 |
+
# Store the config to file.
|
340 |
+
print("Saving config")
|
341 |
+
config.save_pretrained(basename)
|
342 |
+
|
343 |
+
# Save tokenizer based on args
|
344 |
+
print(f"Adding {tokenizer_class} tokenizer files")
|
345 |
+
tokenizer.save_pretrained(basename)
|
346 |
+
|
347 |
+
# Store the state_dict to file.
|
348 |
+
output_checkpoint_file = os.path.join(basename, "pytorch_model.bin")
|
349 |
+
print(f'Saving checkpoint to "{output_checkpoint_file}"')
|
350 |
+
torch.save(output_state_dict, output_checkpoint_file)
|
351 |
+
|
352 |
+
|
353 |
+
####################################################################################################
|
354 |
+
|
355 |
+
if __name__ == "__main__":
|
356 |
+
main()
|
357 |
+
|
358 |
+
####################################################################################################
|
venv/lib/python3.10/site-packages/transformers/models/speech_to_text/__init__.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import (
|
17 |
+
OptionalDependencyNotAvailable,
|
18 |
+
_LazyModule,
|
19 |
+
is_sentencepiece_available,
|
20 |
+
is_tf_available,
|
21 |
+
is_torch_available,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
_import_structure = {
|
26 |
+
"configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"],
|
27 |
+
"feature_extraction_speech_to_text": ["Speech2TextFeatureExtractor"],
|
28 |
+
"processing_speech_to_text": ["Speech2TextProcessor"],
|
29 |
+
}
|
30 |
+
|
31 |
+
try:
|
32 |
+
if not is_sentencepiece_available():
|
33 |
+
raise OptionalDependencyNotAvailable()
|
34 |
+
except OptionalDependencyNotAvailable:
|
35 |
+
pass
|
36 |
+
else:
|
37 |
+
_import_structure["tokenization_speech_to_text"] = ["Speech2TextTokenizer"]
|
38 |
+
|
39 |
+
try:
|
40 |
+
if not is_tf_available():
|
41 |
+
raise OptionalDependencyNotAvailable()
|
42 |
+
except OptionalDependencyNotAvailable:
|
43 |
+
pass
|
44 |
+
else:
|
45 |
+
_import_structure["modeling_tf_speech_to_text"] = [
|
46 |
+
"TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
47 |
+
"TFSpeech2TextForConditionalGeneration",
|
48 |
+
"TFSpeech2TextModel",
|
49 |
+
"TFSpeech2TextPreTrainedModel",
|
50 |
+
]
|
51 |
+
|
52 |
+
try:
|
53 |
+
if not is_torch_available():
|
54 |
+
raise OptionalDependencyNotAvailable()
|
55 |
+
except OptionalDependencyNotAvailable:
|
56 |
+
pass
|
57 |
+
else:
|
58 |
+
_import_structure["modeling_speech_to_text"] = [
|
59 |
+
"SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
60 |
+
"Speech2TextForConditionalGeneration",
|
61 |
+
"Speech2TextModel",
|
62 |
+
"Speech2TextPreTrainedModel",
|
63 |
+
]
|
64 |
+
|
65 |
+
|
66 |
+
if TYPE_CHECKING:
|
67 |
+
from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, Speech2TextConfig
|
68 |
+
from .feature_extraction_speech_to_text import Speech2TextFeatureExtractor
|
69 |
+
from .processing_speech_to_text import Speech2TextProcessor
|
70 |
+
|
71 |
+
try:
|
72 |
+
if not is_sentencepiece_available():
|
73 |
+
raise OptionalDependencyNotAvailable()
|
74 |
+
except OptionalDependencyNotAvailable:
|
75 |
+
pass
|
76 |
+
else:
|
77 |
+
from .tokenization_speech_to_text import Speech2TextTokenizer
|
78 |
+
|
79 |
+
try:
|
80 |
+
if not is_tf_available():
|
81 |
+
raise OptionalDependencyNotAvailable()
|
82 |
+
except OptionalDependencyNotAvailable:
|
83 |
+
pass
|
84 |
+
else:
|
85 |
+
from .modeling_tf_speech_to_text import (
|
86 |
+
TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
87 |
+
TFSpeech2TextForConditionalGeneration,
|
88 |
+
TFSpeech2TextModel,
|
89 |
+
TFSpeech2TextPreTrainedModel,
|
90 |
+
)
|
91 |
+
|
92 |
+
try:
|
93 |
+
if not is_torch_available():
|
94 |
+
raise OptionalDependencyNotAvailable()
|
95 |
+
except OptionalDependencyNotAvailable:
|
96 |
+
pass
|
97 |
+
else:
|
98 |
+
from .modeling_speech_to_text import (
|
99 |
+
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
100 |
+
Speech2TextForConditionalGeneration,
|
101 |
+
Speech2TextModel,
|
102 |
+
Speech2TextPreTrainedModel,
|
103 |
+
)
|
104 |
+
|
105 |
+
else:
|
106 |
+
import sys
|
107 |
+
|
108 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.76 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/configuration_speech_to_text.cpython-310.pyc
ADDED
Binary file (8.47 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/convert_s2t_fairseq_to_tfms.cpython-310.pyc
ADDED
Binary file (3.69 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/feature_extraction_speech_to_text.cpython-310.pyc
ADDED
Binary file (10.9 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/modeling_speech_to_text.cpython-310.pyc
ADDED
Binary file (44.6 kB). View file
|
|