Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step40/zero/11.mlp.dense_4h_to_h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step40/zero/16.attention.dense.weight/fp32.pt +3 -0
- ckpts/universal/global_step40/zero/21.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step40/zero/21.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
- ckpts/universal/global_step40/zero/24.post_attention_layernorm.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step40/zero/24.post_attention_layernorm.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step40/zero/6.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
- ckpts/universal/global_step40/zero/8.post_attention_layernorm.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step40/zero/8.post_attention_layernorm.weight/exp_avg_sq.pt +3 -0
- venv/lib/python3.10/site-packages/peft/tuners/adalora/__init__.py +37 -0
- venv/lib/python3.10/site-packages/peft/tuners/adalora/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/peft/tuners/adalora/__pycache__/bnb.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/peft/tuners/adalora/__pycache__/config.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/peft/tuners/adalora/__pycache__/gptq.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/peft/tuners/adalora/__pycache__/layer.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/peft/tuners/adalora/__pycache__/model.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/peft/tuners/adalora/bnb.py +145 -0
- venv/lib/python3.10/site-packages/peft/tuners/adalora/config.py +52 -0
- venv/lib/python3.10/site-packages/peft/tuners/adalora/gptq.py +72 -0
- venv/lib/python3.10/site-packages/peft/tuners/adalora/layer.py +347 -0
- venv/lib/python3.10/site-packages/peft/tuners/adalora/model.py +346 -0
- venv/lib/python3.10/site-packages/peft/tuners/adaption_prompt/__init__.py +19 -0
- venv/lib/python3.10/site-packages/peft/tuners/adaption_prompt/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/peft/tuners/adaption_prompt/__pycache__/config.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/peft/tuners/adaption_prompt/__pycache__/layer.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/peft/tuners/adaption_prompt/__pycache__/model.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/peft/tuners/adaption_prompt/__pycache__/utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/peft/tuners/adaption_prompt/config.py +80 -0
- venv/lib/python3.10/site-packages/peft/tuners/adaption_prompt/layer.py +128 -0
- venv/lib/python3.10/site-packages/peft/tuners/adaption_prompt/model.py +161 -0
- venv/lib/python3.10/site-packages/peft/tuners/adaption_prompt/utils.py +121 -0
- venv/lib/python3.10/site-packages/peft/tuners/loha/__init__.py +20 -0
- venv/lib/python3.10/site-packages/peft/tuners/loha/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/peft/tuners/loha/__pycache__/config.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/peft/tuners/loha/__pycache__/layer.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/peft/tuners/loha/__pycache__/model.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/peft/tuners/loha/config.py +121 -0
- venv/lib/python3.10/site-packages/peft/tuners/loha/layer.py +375 -0
- venv/lib/python3.10/site-packages/peft/tuners/loha/model.py +114 -0
- venv/lib/python3.10/site-packages/peft/tuners/lokr/__init__.py +20 -0
- venv/lib/python3.10/site-packages/peft/tuners/lokr/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/peft/tuners/lokr/__pycache__/config.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/peft/tuners/lokr/__pycache__/layer.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/peft/tuners/lokr/__pycache__/model.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/peft/tuners/lokr/config.py +127 -0
- venv/lib/python3.10/site-packages/peft/tuners/lokr/layer.py +409 -0
- venv/lib/python3.10/site-packages/peft/tuners/lokr/model.py +115 -0
- venv/lib/python3.10/site-packages/peft/tuners/lora/__init__.py +37 -0
- venv/lib/python3.10/site-packages/peft/tuners/lora/aqlm.py +100 -0
- venv/lib/python3.10/site-packages/peft/tuners/lora/awq.py +108 -0
ckpts/universal/global_step40/zero/11.mlp.dense_4h_to_h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae69ae11da19eb3f0f90e38b82735b1b4d6b61687595d3b2cb49fc43cfe375bf
|
3 |
+
size 33555627
|
ckpts/universal/global_step40/zero/16.attention.dense.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:50a914a10bf528ac25f73ba96084c0de9bea41ec4b9b740c04f018ed8d7b89d8
|
3 |
+
size 16778317
|
ckpts/universal/global_step40/zero/21.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb2aeeebc268f877260c4feeefda1580ed4594768670f5d9eca792067e80e2d5
|
3 |
+
size 33555627
|
ckpts/universal/global_step40/zero/21.mlp.dense_h_to_4h_swiglu.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:36a9dc3593d1611889dc3563785301f13bb18607da4ef980650fed26c3da7fbe
|
3 |
+
size 33555533
|
ckpts/universal/global_step40/zero/24.post_attention_layernorm.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f062c10e2d5672e81b675d65059cc85268f9d1191fafac540a991c646c9e658f
|
3 |
+
size 9372
|
ckpts/universal/global_step40/zero/24.post_attention_layernorm.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43dbb9380349345c0c2f05c96223a0a9e2329da9ed5abccef4d393c32b97801f
|
3 |
+
size 9387
|
ckpts/universal/global_step40/zero/6.mlp.dense_4h_to_h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad3b5928a3a937caab1f83c2dbacf5a509a73bc3d28c972d55025464fed08d9a
|
3 |
+
size 33555533
|
ckpts/universal/global_step40/zero/8.post_attention_layernorm.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d04241237a4405155f28734b4ce383698b7057cee07580775a0a0440a67e8b5
|
3 |
+
size 9372
|
ckpts/universal/global_step40/zero/8.post_attention_layernorm.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8968dec1c28b7739a876894a92ecbf08b36a20e52c3327b016d37119bf2676cf
|
3 |
+
size 9387
|
venv/lib/python3.10/site-packages/peft/tuners/adalora/__init__.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from peft.import_utils import is_bnb_4bit_available, is_bnb_available
|
16 |
+
|
17 |
+
from .config import AdaLoraConfig
|
18 |
+
from .gptq import SVDQuantLinear
|
19 |
+
from .layer import AdaLoraLayer, RankAllocator, SVDLinear
|
20 |
+
from .model import AdaLoraModel
|
21 |
+
|
22 |
+
|
23 |
+
__all__ = ["AdaLoraConfig", "AdaLoraLayer", "AdaLoraModel", "SVDLinear", "RankAllocator", "SVDQuantLinear"]
|
24 |
+
|
25 |
+
|
26 |
+
def __getattr__(name):
|
27 |
+
if (name == "SVDLinear8bitLt") and is_bnb_available():
|
28 |
+
from .bnb import SVDLinear8bitLt
|
29 |
+
|
30 |
+
return SVDLinear8bitLt
|
31 |
+
|
32 |
+
if (name == "SVDLinear4bit") and is_bnb_4bit_available():
|
33 |
+
from .bnb import SVDLinear4bit
|
34 |
+
|
35 |
+
return SVDLinear4bit
|
36 |
+
|
37 |
+
raise AttributeError(f"module {__name__} has no attribute {name}")
|
venv/lib/python3.10/site-packages/peft/tuners/adalora/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (883 Bytes). View file
|
|
venv/lib/python3.10/site-packages/peft/tuners/adalora/__pycache__/bnb.cpython-310.pyc
ADDED
Binary file (3.18 kB). View file
|
|
venv/lib/python3.10/site-packages/peft/tuners/adalora/__pycache__/config.cpython-310.pyc
ADDED
Binary file (2.4 kB). View file
|
|
venv/lib/python3.10/site-packages/peft/tuners/adalora/__pycache__/gptq.cpython-310.pyc
ADDED
Binary file (1.62 kB). View file
|
|
venv/lib/python3.10/site-packages/peft/tuners/adalora/__pycache__/layer.cpython-310.pyc
ADDED
Binary file (10.3 kB). View file
|
|
venv/lib/python3.10/site-packages/peft/tuners/adalora/__pycache__/model.cpython-310.pyc
ADDED
Binary file (9.75 kB). View file
|
|
venv/lib/python3.10/site-packages/peft/tuners/adalora/bnb.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import Any
|
16 |
+
|
17 |
+
import torch
|
18 |
+
|
19 |
+
from peft.import_utils import is_bnb_4bit_available, is_bnb_available
|
20 |
+
|
21 |
+
from .layer import AdaLoraLayer
|
22 |
+
|
23 |
+
|
24 |
+
if is_bnb_available():
|
25 |
+
|
26 |
+
class SVDLinear8bitLt(torch.nn.Module, AdaLoraLayer):
|
27 |
+
# Low-rank matrix for SVD-based adaptation
|
28 |
+
def __init__(
|
29 |
+
self,
|
30 |
+
base_layer: torch.nn.Module,
|
31 |
+
adapter_name: str,
|
32 |
+
r: int = 0,
|
33 |
+
lora_alpha: int = 1,
|
34 |
+
lora_dropout: float = 0.0,
|
35 |
+
init_lora_weights: bool = True,
|
36 |
+
**kwargs,
|
37 |
+
) -> None:
|
38 |
+
super().__init__()
|
39 |
+
AdaLoraLayer.__init__(self, base_layer)
|
40 |
+
# Freezing the pre-trained weight matrix
|
41 |
+
self.get_base_layer().weight.requires_grad = False
|
42 |
+
|
43 |
+
self._active_adapter = adapter_name
|
44 |
+
self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights)
|
45 |
+
|
46 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
47 |
+
# note: no check for self.merged because merging is not supported (yet)
|
48 |
+
result = self.base_layer(x)
|
49 |
+
|
50 |
+
if self.disable_adapters:
|
51 |
+
return result
|
52 |
+
|
53 |
+
for active_adapter in self.active_adapters:
|
54 |
+
if active_adapter not in self.lora_A.keys():
|
55 |
+
continue
|
56 |
+
requires_conversion = not torch.is_autocast_enabled()
|
57 |
+
if requires_conversion:
|
58 |
+
expected_dtype = result.dtype
|
59 |
+
if x.dtype != torch.float32:
|
60 |
+
x = x.float()
|
61 |
+
|
62 |
+
lora_A = self.lora_A[active_adapter]
|
63 |
+
lora_B = self.lora_B[active_adapter]
|
64 |
+
lora_E = self.lora_E[active_adapter]
|
65 |
+
dropout = self.lora_dropout[active_adapter]
|
66 |
+
scaling = self.scaling[active_adapter]
|
67 |
+
ranknum = self.ranknum[active_adapter] + 1e-5
|
68 |
+
|
69 |
+
output = dropout(x) @ (lora_A * lora_E).T @ lora_B.T
|
70 |
+
if requires_conversion:
|
71 |
+
output = output.to(expected_dtype)
|
72 |
+
output = output * scaling / ranknum
|
73 |
+
# inplace operation on view is forbidden for MatMul8bitLtBackward, so avoid it
|
74 |
+
result = result + output
|
75 |
+
return result
|
76 |
+
|
77 |
+
def __repr__(self) -> str:
|
78 |
+
rep = super().__repr__()
|
79 |
+
return "adalora." + rep
|
80 |
+
|
81 |
+
|
82 |
+
if is_bnb_4bit_available():
|
83 |
+
|
84 |
+
class SVDLinear4bit(torch.nn.Module, AdaLoraLayer):
|
85 |
+
# Low-rank matrix for SVD-based adaptation
|
86 |
+
def __init__(
|
87 |
+
self,
|
88 |
+
base_layer: torch.nn.Module,
|
89 |
+
adapter_name: str,
|
90 |
+
r: int = 0,
|
91 |
+
lora_alpha: int = 1,
|
92 |
+
lora_dropout: float = 0.0,
|
93 |
+
init_lora_weights: bool = True,
|
94 |
+
**kwargs,
|
95 |
+
) -> None:
|
96 |
+
super().__init__()
|
97 |
+
AdaLoraLayer.__init__(self, base_layer)
|
98 |
+
# Freezing the pre-trained weight matrix
|
99 |
+
self.get_base_layer().weight.requires_grad = False
|
100 |
+
|
101 |
+
self._active_adapter = adapter_name
|
102 |
+
self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights)
|
103 |
+
|
104 |
+
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
|
105 |
+
# note: no check for self.merged because merging is not supported (yet)
|
106 |
+
result = self.base_layer(x, *args, **kwargs)
|
107 |
+
|
108 |
+
if self.disable_adapters:
|
109 |
+
return result
|
110 |
+
|
111 |
+
# As per Tim Dettmers, for 4bit, we need to defensively clone here.
|
112 |
+
# The reason is that in some cases, an error can occur that backprop
|
113 |
+
# does not work on a manipulated view. This issue may be solved with
|
114 |
+
# newer PyTorch versions but this would need extensive testing to be
|
115 |
+
# sure.
|
116 |
+
result = result.clone()
|
117 |
+
|
118 |
+
for active_adapter in self.active_adapters:
|
119 |
+
if active_adapter not in self.lora_A.keys():
|
120 |
+
continue
|
121 |
+
|
122 |
+
lora_A = self.lora_A[active_adapter]
|
123 |
+
lora_B = self.lora_B[active_adapter]
|
124 |
+
lora_E = self.lora_E[active_adapter]
|
125 |
+
dropout = self.lora_dropout[active_adapter]
|
126 |
+
scaling = self.scaling[active_adapter]
|
127 |
+
ranknum = self.ranknum[active_adapter] + 1e-5
|
128 |
+
|
129 |
+
requires_conversion = not torch.is_autocast_enabled()
|
130 |
+
if requires_conversion:
|
131 |
+
expected_dtype = result.dtype
|
132 |
+
compute_dtype = lora_A.dtype
|
133 |
+
if x.dtype != compute_dtype:
|
134 |
+
x = x.to(compute_dtype)
|
135 |
+
|
136 |
+
output = dropout(x) @ (lora_A * lora_E).T @ lora_B.T
|
137 |
+
if requires_conversion:
|
138 |
+
output = output.to(expected_dtype)
|
139 |
+
output = output * scaling / ranknum
|
140 |
+
result += output
|
141 |
+
return result
|
142 |
+
|
143 |
+
def __repr__(self) -> str:
|
144 |
+
rep = super().__repr__()
|
145 |
+
return "adalora." + rep
|
venv/lib/python3.10/site-packages/peft/tuners/adalora/config.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from dataclasses import dataclass, field
|
16 |
+
from typing import Optional
|
17 |
+
|
18 |
+
from peft.tuners.lora import LoraConfig
|
19 |
+
from peft.utils import PeftType
|
20 |
+
|
21 |
+
|
22 |
+
@dataclass
|
23 |
+
class AdaLoraConfig(LoraConfig):
|
24 |
+
"""
|
25 |
+
This is the configuration class to store the configuration of a [`~peft.AdaLora`].
|
26 |
+
|
27 |
+
Args:
|
28 |
+
target_r (`int`): The target average rank of incremental matrix.
|
29 |
+
init_r (`int`): The initial rank for each incremental matrix.
|
30 |
+
tinit (`int`): The steps of initial fine-tuning warmup.
|
31 |
+
tfinal (`int`): The step of final fine-tuning.
|
32 |
+
deltaT (`int`): The time internval between two budget allocations.
|
33 |
+
beta1 (`float`): The hyperparameter of EMA for sensitivity smoothing.
|
34 |
+
beta2 (`float`): The hyperparameter of EMA for undertainty quantification.
|
35 |
+
orth_reg_weight (`float`): The coefficient of orthogonal regularization.
|
36 |
+
total_step (`int`): The total training steps that should be specified before training.
|
37 |
+
rank_pattern (`list`): The allocated rank for each weight matrix by RankAllocator.
|
38 |
+
"""
|
39 |
+
|
40 |
+
target_r: int = field(default=8, metadata={"help": "Target Lora matrix dimension."})
|
41 |
+
init_r: int = field(default=12, metadata={"help": "Initial Lora matrix dimension."})
|
42 |
+
tinit: int = field(default=0, metadata={"help": "The steps of initial warmup."})
|
43 |
+
tfinal: int = field(default=0, metadata={"help": "The steps of final warmup."})
|
44 |
+
deltaT: int = field(default=1, metadata={"help": "Step interval of rank allocation."})
|
45 |
+
beta1: float = field(default=0.85, metadata={"help": "Hyperparameter of EMA."})
|
46 |
+
beta2: float = field(default=0.85, metadata={"help": "Hyperparameter of EMA."})
|
47 |
+
orth_reg_weight: float = field(default=0.5, metadata={"help": "The orthogonal regularization coefficient."})
|
48 |
+
total_step: Optional[int] = field(default=None, metadata={"help": "The total training steps."})
|
49 |
+
rank_pattern: Optional[dict] = field(default=None, metadata={"help": "The saved rank pattern."})
|
50 |
+
|
51 |
+
def __post_init__(self):
|
52 |
+
self.peft_type = PeftType.ADALORA
|
venv/lib/python3.10/site-packages/peft/tuners/adalora/gptq.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import torch
|
15 |
+
|
16 |
+
from .layer import AdaLoraLayer
|
17 |
+
|
18 |
+
|
19 |
+
class SVDQuantLinear(torch.nn.Module, AdaLoraLayer):
|
20 |
+
def __init__(
|
21 |
+
self,
|
22 |
+
base_layer,
|
23 |
+
adapter_name,
|
24 |
+
r: int = 0,
|
25 |
+
lora_alpha: int = 1,
|
26 |
+
lora_dropout: float = 0.0,
|
27 |
+
init_lora_weights: bool = True,
|
28 |
+
**kwargs,
|
29 |
+
) -> None:
|
30 |
+
super().__init__()
|
31 |
+
AdaLoraLayer.__init__(self, base_layer)
|
32 |
+
|
33 |
+
# self.base_layer and self.quant_linear_module are the same; we need the former for consistency and the latter
|
34 |
+
# for backwards compatibility
|
35 |
+
self.quant_linear_module = base_layer
|
36 |
+
self._active_adapter = adapter_name
|
37 |
+
self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights)
|
38 |
+
|
39 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
40 |
+
result = self.quant_linear_module(x)
|
41 |
+
|
42 |
+
if self.disable_adapters:
|
43 |
+
return result
|
44 |
+
|
45 |
+
for active_adapter in self.active_adapters:
|
46 |
+
if active_adapter not in self.lora_A.keys():
|
47 |
+
continue
|
48 |
+
lora_A = self.lora_A[active_adapter]
|
49 |
+
lora_B = self.lora_B[active_adapter]
|
50 |
+
lora_E = self.lora_E[active_adapter]
|
51 |
+
dropout = self.lora_dropout[active_adapter]
|
52 |
+
scaling = self.scaling[active_adapter]
|
53 |
+
ranknum = self.ranknum[active_adapter] + 1e-5
|
54 |
+
|
55 |
+
requires_conversion = not torch.is_autocast_enabled()
|
56 |
+
if requires_conversion:
|
57 |
+
expected_dtype = result.dtype
|
58 |
+
if x.dtype != torch.float32:
|
59 |
+
x = x.float()
|
60 |
+
|
61 |
+
output = (dropout(x) @ (lora_A * lora_E).T @ lora_B.T) * scaling / ranknum
|
62 |
+
# TODO: here, the dtype conversion is applied on the *whole expression*,
|
63 |
+
# not the intermediate result, unlike for SVDLinear8bitLT and
|
64 |
+
# SVDLinear4bit, is that correct?
|
65 |
+
if requires_conversion:
|
66 |
+
output = output.to(expected_dtype)
|
67 |
+
result += output
|
68 |
+
return result
|
69 |
+
|
70 |
+
def __repr__(self) -> str:
|
71 |
+
rep = super().__repr__()
|
72 |
+
return "adalora." + rep
|
venv/lib/python3.10/site-packages/peft/tuners/adalora/layer.py
ADDED
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import warnings
|
16 |
+
from typing import Any, List, Optional
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
from peft.tuners.lora import LoraLayer
|
22 |
+
from peft.tuners.tuners_utils import check_adapters_to_merge
|
23 |
+
from peft.utils import transpose
|
24 |
+
|
25 |
+
|
26 |
+
class AdaLoraLayer(LoraLayer):
|
27 |
+
# List all names of layers that may contain adapter weights
|
28 |
+
# Note: ranknum doesn't need to be included as it is not an nn.Module
|
29 |
+
adapter_layer_names = ("lora_A", "lora_B", "lora_E", "lora_embedding_A", "lora_embedding_B")
|
30 |
+
# other_param_names is defined in LoraLayer
|
31 |
+
|
32 |
+
def __init__(self, base_layer: nn.Module) -> None:
|
33 |
+
super().__init__(base_layer)
|
34 |
+
self.lora_E = nn.ParameterDict({})
|
35 |
+
self.lora_A = nn.ParameterDict({})
|
36 |
+
self.lora_B = nn.ParameterDict({})
|
37 |
+
self.ranknum = nn.ParameterDict({})
|
38 |
+
|
39 |
+
def update_layer(self, adapter_name, r, lora_alpha, lora_dropout, init_lora_weights):
|
40 |
+
if r < 0:
|
41 |
+
# note: r == 0 is allowed for AdaLora, see #1539
|
42 |
+
raise ValueError(f"`r` should be a positive integer or 0, but the value passed is {r}")
|
43 |
+
|
44 |
+
self.r[adapter_name] = r
|
45 |
+
self.lora_alpha[adapter_name] = lora_alpha
|
46 |
+
if lora_dropout > 0.0:
|
47 |
+
lora_dropout_layer = nn.Dropout(p=lora_dropout)
|
48 |
+
else:
|
49 |
+
lora_dropout_layer = nn.Identity()
|
50 |
+
|
51 |
+
self.lora_dropout[adapter_name] = lora_dropout_layer
|
52 |
+
# Actual trainable parameters
|
53 |
+
# Right singular vectors
|
54 |
+
self.lora_A[adapter_name] = nn.Parameter(torch.randn(r, self.in_features))
|
55 |
+
# Singular values
|
56 |
+
self.lora_E[adapter_name] = nn.Parameter(torch.randn(r, 1))
|
57 |
+
# Left singular vectors
|
58 |
+
self.lora_B[adapter_name] = nn.Parameter(torch.randn(self.out_features, r))
|
59 |
+
# The current rank
|
60 |
+
self.ranknum[adapter_name] = nn.Parameter(torch.randn(1), requires_grad=False)
|
61 |
+
self.ranknum[adapter_name].data.fill_(float(r))
|
62 |
+
self.ranknum[adapter_name].requires_grad = False
|
63 |
+
self.scaling[adapter_name] = lora_alpha if lora_alpha > 0 else float(r)
|
64 |
+
if init_lora_weights:
|
65 |
+
self.reset_lora_parameters(adapter_name)
|
66 |
+
|
67 |
+
if hasattr(self.get_base_layer(), "qweight"):
|
68 |
+
# QuantLinear
|
69 |
+
self.to(self.get_base_layer().qweight.device)
|
70 |
+
else:
|
71 |
+
self.to(self.get_base_layer().weight.device)
|
72 |
+
self.set_adapter(self.active_adapters)
|
73 |
+
|
74 |
+
def reset_lora_parameters(self, adapter_name):
|
75 |
+
if adapter_name in self.lora_A.keys():
|
76 |
+
nn.init.normal_(self.lora_E[adapter_name], mean=0.0, std=0.02)
|
77 |
+
nn.init.normal_(self.lora_A[adapter_name], mean=0.0, std=0.02)
|
78 |
+
nn.init.normal_(self.lora_B[adapter_name], mean=0.0, std=0.02)
|
79 |
+
|
80 |
+
|
81 |
+
class SVDLinear(nn.Module, AdaLoraLayer):
|
82 |
+
# SVD-based adaptation by a dense layer
|
83 |
+
def __init__(
|
84 |
+
self,
|
85 |
+
base_layer: nn.Module,
|
86 |
+
adapter_name: str,
|
87 |
+
r: int = 0,
|
88 |
+
lora_alpha: int = 1,
|
89 |
+
lora_dropout: float = 0.0,
|
90 |
+
fan_in_fan_out: bool = False,
|
91 |
+
init_lora_weights: bool = True,
|
92 |
+
**kwargs,
|
93 |
+
) -> None:
|
94 |
+
super().__init__()
|
95 |
+
AdaLoraLayer.__init__(self, base_layer)
|
96 |
+
# Freezing the pre-trained weight matrix
|
97 |
+
self.get_base_layer().weight.requires_grad = False
|
98 |
+
|
99 |
+
self.fan_in_fan_out = fan_in_fan_out
|
100 |
+
self._active_adapter = adapter_name
|
101 |
+
self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights)
|
102 |
+
|
103 |
+
def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None:
|
104 |
+
"""
|
105 |
+
Merge the active adapter weights into the base weights
|
106 |
+
|
107 |
+
Args:
|
108 |
+
safe_merge (`bool`, *optional*):
|
109 |
+
If True, the merge operation will be performed in a copy of the original weights and check for NaNs
|
110 |
+
before merging the weights. This is useful if you want to check if the merge operation will produce
|
111 |
+
NaNs. Defaults to `False`.
|
112 |
+
adapter_names (`List[str]`, *optional*):
|
113 |
+
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
|
114 |
+
to `None`.
|
115 |
+
"""
|
116 |
+
adapter_names = check_adapters_to_merge(self, adapter_names)
|
117 |
+
if not adapter_names:
|
118 |
+
# no adapter to merge
|
119 |
+
return
|
120 |
+
|
121 |
+
for active_adapter in adapter_names:
|
122 |
+
base_layer = self.get_base_layer()
|
123 |
+
if active_adapter in self.lora_A.keys():
|
124 |
+
if safe_merge:
|
125 |
+
# Note that safe_merge will be slower than the normal merge
|
126 |
+
# because of the copy operation.
|
127 |
+
orig_weights = base_layer.weight.data.clone()
|
128 |
+
orig_weights += self.get_delta_weight(active_adapter)
|
129 |
+
|
130 |
+
if not torch.isfinite(orig_weights).all():
|
131 |
+
raise ValueError(
|
132 |
+
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
|
133 |
+
)
|
134 |
+
|
135 |
+
base_layer.weight.data = orig_weights
|
136 |
+
else:
|
137 |
+
base_layer.weight.data += self.get_delta_weight(active_adapter)
|
138 |
+
self.merged_adapters.append(active_adapter)
|
139 |
+
|
140 |
+
def unmerge(self) -> None:
|
141 |
+
"""
|
142 |
+
This method unmerges all merged adapter layers from the base weights.
|
143 |
+
"""
|
144 |
+
if not self.merged:
|
145 |
+
warnings.warn("Already unmerged. Nothing to do.")
|
146 |
+
return
|
147 |
+
while len(self.merged_adapters) > 0:
|
148 |
+
active_adapter = self.merged_adapters.pop()
|
149 |
+
if active_adapter in self.lora_A.keys():
|
150 |
+
self.get_base_layer().weight.data -= self.get_delta_weight(active_adapter)
|
151 |
+
|
152 |
+
def get_delta_weight(self, adapter) -> torch.Tensor:
|
153 |
+
return (
|
154 |
+
transpose(self.lora_B[adapter] @ (self.lora_A[adapter] * self.lora_E[adapter]), self.fan_in_fan_out)
|
155 |
+
* self.scaling[adapter]
|
156 |
+
/ (self.ranknum[adapter] + 1e-5)
|
157 |
+
)
|
158 |
+
|
159 |
+
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
|
160 |
+
if self.disable_adapters:
|
161 |
+
if self.merged:
|
162 |
+
self.unmerge()
|
163 |
+
result = self.base_layer(x, *args, **kwargs)
|
164 |
+
elif self.merged:
|
165 |
+
result = self.base_layer(x, *args, **kwargs)
|
166 |
+
else:
|
167 |
+
result = self.base_layer(x, *args, **kwargs)
|
168 |
+
for active_adapter in self.active_adapters:
|
169 |
+
if active_adapter not in self.lora_A.keys():
|
170 |
+
continue
|
171 |
+
lora_A = self.lora_A[active_adapter]
|
172 |
+
lora_B = self.lora_B[active_adapter]
|
173 |
+
lora_E = self.lora_E[active_adapter]
|
174 |
+
dropout = self.lora_dropout[active_adapter]
|
175 |
+
scaling = self.scaling[active_adapter]
|
176 |
+
ranknum = self.ranknum[active_adapter] + 1e-5
|
177 |
+
|
178 |
+
x = x.to(lora_A.dtype)
|
179 |
+
result += (dropout(x) @ (lora_A * lora_E).T @ lora_B.T) * scaling / ranknum
|
180 |
+
|
181 |
+
return result
|
182 |
+
|
183 |
+
def __repr__(self) -> str:
|
184 |
+
rep = super().__repr__()
|
185 |
+
return "adalora." + rep
|
186 |
+
|
187 |
+
|
188 |
+
class RankAllocator:
|
189 |
+
"""
|
190 |
+
The RankAllocator for AdaLoraModel. Paper: https://openreview.net/pdf?id=lq62uWRJjiY
|
191 |
+
|
192 |
+
Args:
|
193 |
+
config ([`AdaLoraConfig`]): The configuration of the AdaLora model.
|
194 |
+
model: the model that we apply AdaLoRA to.
|
195 |
+
|
196 |
+
"""
|
197 |
+
|
198 |
+
def __init__(self, model, peft_config, adapter_name):
|
199 |
+
self.peft_config = peft_config
|
200 |
+
self.adapter_name = adapter_name
|
201 |
+
self.beta1 = peft_config.beta1
|
202 |
+
self.beta2 = peft_config.beta2
|
203 |
+
assert self.beta1 > 0 and self.beta1 < 1
|
204 |
+
assert self.beta2 > 0 and self.beta2 < 1
|
205 |
+
|
206 |
+
self.reset_ipt()
|
207 |
+
self._set_budget_scheduler(model)
|
208 |
+
|
209 |
+
def set_total_step(self, total_step):
|
210 |
+
self.peft_config.total_step = total_step
|
211 |
+
|
212 |
+
def reset_ipt(self):
|
213 |
+
self.ipt = {}
|
214 |
+
self.exp_avg_ipt = {}
|
215 |
+
self.exp_avg_unc = {}
|
216 |
+
|
217 |
+
def _set_budget_scheduler(self, model):
|
218 |
+
self.init_bgt = 0
|
219 |
+
self.name_set = set()
|
220 |
+
for n, p in model.named_parameters():
|
221 |
+
if f"lora_A.{self.adapter_name}" in n:
|
222 |
+
self.init_bgt += p.size(0)
|
223 |
+
self.name_set.add(n.replace("lora_A", "%s"))
|
224 |
+
self.name_set = sorted(self.name_set)
|
225 |
+
# The total final rank budget
|
226 |
+
self.target_bgt = self.peft_config.target_r * len(self.name_set)
|
227 |
+
|
228 |
+
def budget_schedule(self, step: int):
|
229 |
+
tinit = self.peft_config.tinit
|
230 |
+
tfinal = self.peft_config.tfinal
|
231 |
+
total_step = self.peft_config.total_step
|
232 |
+
# Initial warmup
|
233 |
+
if step <= tinit:
|
234 |
+
budget = self.init_bgt
|
235 |
+
mask_ind = False
|
236 |
+
# Final fine-tuning
|
237 |
+
elif step > total_step - tfinal:
|
238 |
+
budget = self.target_bgt
|
239 |
+
mask_ind = True
|
240 |
+
else:
|
241 |
+
# Budget decreasing with a cubic scheduler
|
242 |
+
mul_coeff = 1 - (step - tinit) / (total_step - tfinal - tinit)
|
243 |
+
budget = int((self.init_bgt - self.target_bgt) * (mul_coeff**3) + self.target_bgt)
|
244 |
+
mask_ind = True if step % self.peft_config.deltaT == 0 else False
|
245 |
+
return budget, mask_ind
|
246 |
+
|
247 |
+
def update_ipt(self, model):
|
248 |
+
# Update the sensitivity and uncertainty for every weight
|
249 |
+
for n, p in model.named_parameters():
|
250 |
+
if "lora_" in n and self.adapter_name in n:
|
251 |
+
if n not in self.ipt:
|
252 |
+
self.ipt[n] = torch.zeros_like(p)
|
253 |
+
self.exp_avg_ipt[n] = torch.zeros_like(p)
|
254 |
+
self.exp_avg_unc[n] = torch.zeros_like(p)
|
255 |
+
with torch.no_grad():
|
256 |
+
self.ipt[n] = (p * p.grad).abs().detach()
|
257 |
+
# Sensitivity smoothing
|
258 |
+
self.exp_avg_ipt[n] = self.beta1 * self.exp_avg_ipt[n] + (1 - self.beta1) * self.ipt[n]
|
259 |
+
# Uncertainty quantification
|
260 |
+
self.exp_avg_unc[n] = (
|
261 |
+
self.beta2 * self.exp_avg_unc[n] + (1 - self.beta2) * (self.ipt[n] - self.exp_avg_ipt[n]).abs()
|
262 |
+
)
|
263 |
+
|
264 |
+
def _element_score(self, n):
|
265 |
+
return self.exp_avg_ipt[n] * self.exp_avg_unc[n]
|
266 |
+
|
267 |
+
def _combine_ipt(self, ipt_E, ipt_AB):
|
268 |
+
ipt_AB = ipt_AB.sum(dim=1, keepdim=False)
|
269 |
+
sum_ipt = ipt_E.view(-1) + ipt_AB.view(-1)
|
270 |
+
return sum_ipt
|
271 |
+
|
272 |
+
def mask_to_budget(self, model, budget):
|
273 |
+
value_ipt = {}
|
274 |
+
vector_ipt = {}
|
275 |
+
triplet_ipt = {}
|
276 |
+
# Get the importance score for A, E, B
|
277 |
+
for n, p in model.named_parameters():
|
278 |
+
if f"lora_A.{self.adapter_name}" in n:
|
279 |
+
entry_ipt = self._element_score(n)
|
280 |
+
comb_ipt = torch.mean(entry_ipt, dim=1, keepdim=True)
|
281 |
+
name_m = n.replace("lora_A", "%s")
|
282 |
+
if name_m not in vector_ipt:
|
283 |
+
vector_ipt[name_m] = [comb_ipt]
|
284 |
+
else:
|
285 |
+
vector_ipt[name_m].append(comb_ipt)
|
286 |
+
if f"lora_B.{self.adapter_name}" in n:
|
287 |
+
entry_ipt = self._element_score(n)
|
288 |
+
comb_ipt = torch.mean(entry_ipt, dim=0, keepdim=False).view(-1, 1)
|
289 |
+
name_m = n.replace("lora_B", "%s")
|
290 |
+
if name_m not in vector_ipt:
|
291 |
+
vector_ipt[name_m] = [comb_ipt]
|
292 |
+
else:
|
293 |
+
vector_ipt[name_m].append(comb_ipt)
|
294 |
+
if f"lora_E.{self.adapter_name}" in n:
|
295 |
+
entry_ipt = self._element_score(n)
|
296 |
+
name_m = n.replace("lora_E", "%s")
|
297 |
+
value_ipt[name_m] = entry_ipt
|
298 |
+
|
299 |
+
all_score = []
|
300 |
+
# Calculate the score for each triplet
|
301 |
+
for name_m in vector_ipt:
|
302 |
+
ipt_E = value_ipt[name_m]
|
303 |
+
ipt_AB = torch.cat(vector_ipt[name_m], dim=1)
|
304 |
+
sum_ipt = self._combine_ipt(ipt_E, ipt_AB)
|
305 |
+
name_E = name_m % "lora_E"
|
306 |
+
triplet_ipt[name_E] = sum_ipt.view(-1, 1)
|
307 |
+
all_score.append(sum_ipt.view(-1))
|
308 |
+
|
309 |
+
# Get the threshold by ranking ipt
|
310 |
+
mask_threshold = torch.kthvalue(
|
311 |
+
torch.cat(all_score),
|
312 |
+
k=self.init_bgt - budget,
|
313 |
+
)[0].item()
|
314 |
+
|
315 |
+
rank_pattern = {}
|
316 |
+
# Mask the unimportant triplets
|
317 |
+
with torch.no_grad():
|
318 |
+
for n, p in model.named_parameters():
|
319 |
+
if f"lora_E.{self.adapter_name}" in n:
|
320 |
+
p.masked_fill_(triplet_ipt[n] <= mask_threshold, 0.0)
|
321 |
+
rank_pattern[n] = (~(triplet_ipt[n] <= mask_threshold)).view(-1).tolist()
|
322 |
+
return rank_pattern
|
323 |
+
|
324 |
+
def update_and_allocate(self, model, global_step, force_mask=False):
|
325 |
+
# # Update the importance score and allocate the budget
|
326 |
+
if global_step < self.peft_config.total_step - self.peft_config.tfinal:
|
327 |
+
self.update_ipt(model)
|
328 |
+
budget, mask_ind = self.budget_schedule(global_step)
|
329 |
+
# Allocate the budget according to importance scores
|
330 |
+
if mask_ind or force_mask:
|
331 |
+
rank_pattern = self.mask_to_budget(model, budget)
|
332 |
+
else:
|
333 |
+
rank_pattern = None
|
334 |
+
return budget, rank_pattern
|
335 |
+
|
336 |
+
def mask_using_rank_pattern(self, model, rank_pattern):
|
337 |
+
# Mask the unimportant triplets
|
338 |
+
is_adapter_name_truncated = False
|
339 |
+
if self.adapter_name not in next(iter(rank_pattern.keys())):
|
340 |
+
is_adapter_name_truncated = True
|
341 |
+
|
342 |
+
with torch.no_grad():
|
343 |
+
for n, p in model.named_parameters():
|
344 |
+
if f"lora_E.{self.adapter_name}" in n:
|
345 |
+
key = n if not is_adapter_name_truncated else n.replace(f".{self.adapter_name}", "")
|
346 |
+
mask = torch.Tensor(rank_pattern[key]).unsqueeze(-1).to(p.device)
|
347 |
+
p.masked_fill_(~mask.bool(), 0.0)
|
venv/lib/python3.10/site-packages/peft/tuners/adalora/model.py
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import warnings
|
16 |
+
|
17 |
+
import torch
|
18 |
+
from transformers.pytorch_utils import Conv1D
|
19 |
+
|
20 |
+
from peft.import_utils import is_bnb_4bit_available, is_bnb_available
|
21 |
+
from peft.tuners.lora import LoraConfig, LoraModel
|
22 |
+
from peft.tuners.tuners_utils import BaseTunerLayer
|
23 |
+
from peft.utils import (
|
24 |
+
TRANSFORMERS_MODELS_TO_ADALORA_TARGET_MODULES_MAPPING,
|
25 |
+
_freeze_adapter,
|
26 |
+
_get_submodules,
|
27 |
+
get_auto_gptq_quant_linear,
|
28 |
+
get_quantization_config,
|
29 |
+
)
|
30 |
+
|
31 |
+
from .gptq import SVDQuantLinear
|
32 |
+
from .layer import AdaLoraLayer, RankAllocator, SVDLinear
|
33 |
+
|
34 |
+
|
35 |
+
class AdaLoraModel(LoraModel):
|
36 |
+
"""
|
37 |
+
Creates AdaLoRA (Adaptive LoRA) model from a pretrained transformers model. Paper:
|
38 |
+
https://openreview.net/forum?id=lq62uWRJjiY
|
39 |
+
|
40 |
+
Args:
|
41 |
+
model ([`transformers.PreTrainedModel`]): The model to be adapted.
|
42 |
+
config ([`AdaLoraConfig`]): The configuration of the AdaLora model.
|
43 |
+
adapter_name (`str`): The name of the adapter, defaults to `"default"`.
|
44 |
+
|
45 |
+
Returns:
|
46 |
+
`torch.nn.Module`: The AdaLora model.
|
47 |
+
|
48 |
+
Example::
|
49 |
+
|
50 |
+
>>> from transformers import AutoModelForSeq2SeqLM, LoraConfig >>> from peft import AdaLoraModel, AdaLoraConfig
|
51 |
+
>>> config = AdaLoraConfig(
|
52 |
+
peft_type="ADALORA", task_type="SEQ_2_SEQ_LM", r=8, lora_alpha=32, target_modules=["q", "v"],
|
53 |
+
lora_dropout=0.01,
|
54 |
+
)
|
55 |
+
>>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base") >>> model = AdaLoraModel(model, config, "default")
|
56 |
+
|
57 |
+
**Attributes**:
|
58 |
+
- **model** ([`transformers.PreTrainedModel`]) -- The model to be adapted.
|
59 |
+
- **peft_config** ([`AdaLoraConfig`]): The configuration of the AdaLora model.
|
60 |
+
"""
|
61 |
+
|
62 |
+
# Note: don't redefine prefix here, it should be inherited from LoraModel
|
63 |
+
|
64 |
+
def __init__(self, model, config, adapter_name):
|
65 |
+
super().__init__(model, config, adapter_name)
|
66 |
+
|
67 |
+
traininable_mode_counter = 0
|
68 |
+
for config in self.peft_config.values():
|
69 |
+
if not config.inference_mode:
|
70 |
+
traininable_mode_counter += 1
|
71 |
+
|
72 |
+
if traininable_mode_counter > 1:
|
73 |
+
raise ValueError(
|
74 |
+
"AdaLoraModel supports only 1 trainable adapter. "
|
75 |
+
"When using multiple adapters, set inference_mode to True for all adapters except the one you want to train."
|
76 |
+
)
|
77 |
+
|
78 |
+
if self.peft_config[adapter_name].inference_mode:
|
79 |
+
_freeze_adapter(self.model, adapter_name)
|
80 |
+
else:
|
81 |
+
self.trainable_adapter_name = adapter_name
|
82 |
+
self.rankallocator = RankAllocator(self.model, self.peft_config[adapter_name], self.trainable_adapter_name)
|
83 |
+
|
84 |
+
def _check_new_adapter_config(self, config: LoraConfig) -> None:
|
85 |
+
"""
|
86 |
+
A helper method to check the config when a new adapter is being added.
|
87 |
+
|
88 |
+
Raise a ValueError if there is something wrong with the config or if it conflicts with existing adapters.
|
89 |
+
|
90 |
+
"""
|
91 |
+
super()._check_new_adapter_config(config)
|
92 |
+
|
93 |
+
traininable_mode_counter = 0
|
94 |
+
for config_ in self.peft_config.values():
|
95 |
+
if not config_.inference_mode:
|
96 |
+
traininable_mode_counter += 1
|
97 |
+
|
98 |
+
if traininable_mode_counter > 1:
|
99 |
+
raise ValueError(
|
100 |
+
f"{self.__class__.__name__} supports only 1 trainable adapter. "
|
101 |
+
"When using multiple adapters, set inference_mode to True for all adapters except the one "
|
102 |
+
"you want to train."
|
103 |
+
)
|
104 |
+
|
105 |
+
def _create_and_replace(
|
106 |
+
self,
|
107 |
+
lora_config,
|
108 |
+
adapter_name,
|
109 |
+
target,
|
110 |
+
target_name,
|
111 |
+
parent,
|
112 |
+
current_key,
|
113 |
+
):
|
114 |
+
kwargs = {
|
115 |
+
"r": lora_config.init_r,
|
116 |
+
"lora_alpha": lora_config.lora_alpha,
|
117 |
+
"lora_dropout": lora_config.lora_dropout,
|
118 |
+
"fan_in_fan_out": lora_config.fan_in_fan_out,
|
119 |
+
"init_lora_weights": lora_config.init_lora_weights,
|
120 |
+
"loaded_in_8bit": getattr(self.model, "is_loaded_in_8bit", False),
|
121 |
+
"loaded_in_4bit": getattr(self.model, "is_loaded_in_4bit", False),
|
122 |
+
}
|
123 |
+
if (kwargs["loaded_in_8bit"] or kwargs["loaded_in_4bit"]) and not is_bnb_available():
|
124 |
+
raise ImportError(
|
125 |
+
"To use AdaLora with 8-bit quantization, please install the `bitsandbytes` package. "
|
126 |
+
"You can install it with `pip install bitsandbytes`."
|
127 |
+
)
|
128 |
+
|
129 |
+
quantization_config = get_quantization_config(self.model, method="gptq")
|
130 |
+
if quantization_config is not None:
|
131 |
+
kwargs["gptq_quantization_config"] = quantization_config
|
132 |
+
|
133 |
+
# If it is not an AdaLoraLayer, create a new module, else update it with new adapters
|
134 |
+
if not isinstance(target, AdaLoraLayer):
|
135 |
+
new_module = self._create_new_module(lora_config, adapter_name, target, **kwargs)
|
136 |
+
if adapter_name != self.active_adapter:
|
137 |
+
# adding an additional adapter: it is not automatically trainable
|
138 |
+
new_module.requires_grad_(False)
|
139 |
+
self._replace_module(parent, target_name, new_module, target)
|
140 |
+
else:
|
141 |
+
target.update_layer(
|
142 |
+
adapter_name,
|
143 |
+
lora_config.init_r,
|
144 |
+
lora_config.lora_alpha,
|
145 |
+
lora_config.lora_dropout,
|
146 |
+
lora_config.init_lora_weights,
|
147 |
+
)
|
148 |
+
|
149 |
+
@staticmethod
|
150 |
+
def _create_new_module(lora_config, adapter_name, target, **kwargs):
|
151 |
+
# avoid eager bnb import
|
152 |
+
if is_bnb_available():
|
153 |
+
import bitsandbytes as bnb
|
154 |
+
|
155 |
+
from .bnb import SVDLinear8bitLt
|
156 |
+
if is_bnb_4bit_available():
|
157 |
+
from .bnb import SVDLinear4bit
|
158 |
+
|
159 |
+
gptq_quantization_config = kwargs.get("gptq_quantization_config", None)
|
160 |
+
AutoGPTQQuantLinear = get_auto_gptq_quant_linear(gptq_quantization_config)
|
161 |
+
|
162 |
+
loaded_in_8bit = kwargs.pop("loaded_in_8bit", False)
|
163 |
+
loaded_in_4bit = kwargs.pop("loaded_in_4bit", False)
|
164 |
+
|
165 |
+
if isinstance(target, BaseTunerLayer):
|
166 |
+
target_base_layer = target.get_base_layer()
|
167 |
+
else:
|
168 |
+
target_base_layer = target
|
169 |
+
|
170 |
+
if loaded_in_8bit and isinstance(target_base_layer, bnb.nn.Linear8bitLt):
|
171 |
+
kwargs.update(
|
172 |
+
{
|
173 |
+
"has_fp16_weights": target_base_layer.state.has_fp16_weights,
|
174 |
+
"memory_efficient_backward": target_base_layer.state.memory_efficient_backward,
|
175 |
+
"threshold": target_base_layer.state.threshold,
|
176 |
+
"index": target_base_layer.index,
|
177 |
+
}
|
178 |
+
)
|
179 |
+
new_module = SVDLinear8bitLt(target, adapter_name, **kwargs)
|
180 |
+
elif loaded_in_4bit and is_bnb_4bit_available() and isinstance(target_base_layer, bnb.nn.Linear4bit):
|
181 |
+
fourbit_kwargs = kwargs.copy()
|
182 |
+
fourbit_kwargs.update(
|
183 |
+
{
|
184 |
+
"compute_dtype": target_base_layer.compute_dtype,
|
185 |
+
"compress_statistics": target_base_layer.weight.compress_statistics,
|
186 |
+
"quant_type": target_base_layer.weight.quant_type,
|
187 |
+
}
|
188 |
+
)
|
189 |
+
new_module = SVDLinear4bit(target, adapter_name, **fourbit_kwargs)
|
190 |
+
elif AutoGPTQQuantLinear is not None and isinstance(target, AutoGPTQQuantLinear):
|
191 |
+
new_module = SVDQuantLinear(target, adapter_name, **kwargs)
|
192 |
+
else:
|
193 |
+
if isinstance(target_base_layer, torch.nn.Linear):
|
194 |
+
if kwargs["fan_in_fan_out"]:
|
195 |
+
warnings.warn(
|
196 |
+
"fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. "
|
197 |
+
"Setting fan_in_fan_out to False."
|
198 |
+
)
|
199 |
+
kwargs["fan_in_fan_out"] = lora_config.fan_in_fan_out = False
|
200 |
+
elif isinstance(target_base_layer, Conv1D):
|
201 |
+
if not kwargs["fan_in_fan_out"]:
|
202 |
+
warnings.warn(
|
203 |
+
"fan_in_fan_out is set to False but the target module is `Conv1D`. "
|
204 |
+
"Setting fan_in_fan_out to True."
|
205 |
+
)
|
206 |
+
kwargs["fan_in_fan_out"] = lora_config.fan_in_fan_out = True
|
207 |
+
else:
|
208 |
+
raise ValueError(
|
209 |
+
f"Target module {target} is not supported. "
|
210 |
+
f"Currently, only `torch.nn.Linear` and `Conv1D` are supported."
|
211 |
+
)
|
212 |
+
new_module = SVDLinear(target, adapter_name, **kwargs)
|
213 |
+
|
214 |
+
return new_module
|
215 |
+
|
216 |
+
@staticmethod
|
217 |
+
def _prepare_adapter_config(peft_config, model_config):
|
218 |
+
if peft_config.target_modules is None:
|
219 |
+
if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_ADALORA_TARGET_MODULES_MAPPING:
|
220 |
+
raise ValueError("Please specify `target_modules` in `peft_config`")
|
221 |
+
peft_config.target_modules = TRANSFORMERS_MODELS_TO_ADALORA_TARGET_MODULES_MAPPING[
|
222 |
+
model_config["model_type"]
|
223 |
+
]
|
224 |
+
return peft_config
|
225 |
+
|
226 |
+
def __getattr__(self, name: str):
|
227 |
+
"""Forward missing attributes to the wrapped module."""
|
228 |
+
try:
|
229 |
+
return super().__getattr__(name) # defer to nn.Module's logic
|
230 |
+
except AttributeError:
|
231 |
+
return getattr(self.model, name)
|
232 |
+
|
233 |
+
def forward(self, *args, **kwargs):
|
234 |
+
outputs = self.model.forward(*args, **kwargs)
|
235 |
+
|
236 |
+
if (getattr(outputs, "loss", None) is not None) and isinstance(outputs.loss, torch.Tensor):
|
237 |
+
# Calculate the orthogonal regularization
|
238 |
+
orth_reg_weight = self.peft_config[self.trainable_adapter_name].orth_reg_weight
|
239 |
+
|
240 |
+
if orth_reg_weight <= 0:
|
241 |
+
raise ValueError("orth_reg_weight should be greater than 0. ")
|
242 |
+
|
243 |
+
regu_loss = 0
|
244 |
+
num_param = 0
|
245 |
+
for n, p in self.model.named_parameters():
|
246 |
+
if ("lora_A" in n or "lora_B" in n) and self.trainable_adapter_name in n:
|
247 |
+
para_cov = p @ p.T if "lora_A" in n else p.T @ p
|
248 |
+
I = torch.eye(*para_cov.size(), out=torch.empty_like(para_cov)) # noqa: E741
|
249 |
+
I.requires_grad = False
|
250 |
+
num_param += 1
|
251 |
+
regu_loss += torch.norm(para_cov - I, p="fro")
|
252 |
+
if num_param > 0:
|
253 |
+
regu_loss = regu_loss / num_param
|
254 |
+
else:
|
255 |
+
regu_loss = 0
|
256 |
+
outputs.loss += orth_reg_weight * regu_loss
|
257 |
+
return outputs
|
258 |
+
|
259 |
+
def resize_modules_by_rank_pattern(self, rank_pattern, adapter_name):
|
260 |
+
lora_config = self.peft_config[adapter_name]
|
261 |
+
for name, rank_idx in rank_pattern.items():
|
262 |
+
if isinstance(rank_idx, list):
|
263 |
+
rank = sum(rank_idx)
|
264 |
+
elif isinstance(rank_idx, torch.Tensor):
|
265 |
+
rank_idx = rank_idx.view(-1)
|
266 |
+
rank = rank_idx.sum().item()
|
267 |
+
else:
|
268 |
+
raise ValueError("Unexpected type of rank_idx")
|
269 |
+
key = ".".join(name.split(".")[0:-2]) if adapter_name in name else ".".join(name.split(".")[0:-1])
|
270 |
+
_, target, _ = _get_submodules(self.model, key)
|
271 |
+
lora_E_weights = target.lora_E[adapter_name][rank_idx]
|
272 |
+
lora_A_weights = target.lora_A[adapter_name][rank_idx]
|
273 |
+
lora_B_weights = target.lora_B[adapter_name][:, rank_idx]
|
274 |
+
ranknum = target.ranknum[adapter_name]
|
275 |
+
target.update_layer(
|
276 |
+
adapter_name,
|
277 |
+
rank,
|
278 |
+
lora_config.lora_alpha,
|
279 |
+
lora_config.lora_dropout,
|
280 |
+
lora_config.init_lora_weights,
|
281 |
+
)
|
282 |
+
with torch.no_grad():
|
283 |
+
if rank > 0:
|
284 |
+
target.lora_E[adapter_name].copy_(lora_E_weights)
|
285 |
+
target.lora_A[adapter_name].copy_(lora_A_weights)
|
286 |
+
target.lora_B[adapter_name].copy_(lora_B_weights)
|
287 |
+
# The scaling is exactly as the previous
|
288 |
+
target.ranknum[adapter_name].copy_(ranknum)
|
289 |
+
|
290 |
+
def resize_state_dict_by_rank_pattern(self, rank_pattern, state_dict, adapter_name):
|
291 |
+
for name, rank_idx in rank_pattern.items():
|
292 |
+
rank = sum(rank_idx)
|
293 |
+
prefix = ".".join(name.split(".")[0:-2]) if adapter_name in name else ".".join(name.split(".")[0:-1])
|
294 |
+
for layer in ["lora_E", "lora_A", "lora_B"]:
|
295 |
+
key = f"base_model.model.{prefix}.{layer}.{adapter_name}"
|
296 |
+
if layer != "lora_B":
|
297 |
+
state_dict[key] = (
|
298 |
+
state_dict[key][rank_idx] if rank != state_dict[key].shape[0] else state_dict[key]
|
299 |
+
)
|
300 |
+
else:
|
301 |
+
state_dict[key] = (
|
302 |
+
state_dict[key][:, rank_idx] if rank != state_dict[key].shape[1] else state_dict[key]
|
303 |
+
)
|
304 |
+
return state_dict
|
305 |
+
|
306 |
+
def update_and_allocate(self, global_step):
|
307 |
+
"""
|
308 |
+
This method updates Adalora budget and mask.
|
309 |
+
|
310 |
+
This should be called in every training step after `loss.backward()` and before `zero_grad()`.
|
311 |
+
|
312 |
+
`tinit`, `tfinal` and `deltaT` are handled with in the method.
|
313 |
+
|
314 |
+
Args:
|
315 |
+
global_step (`int`): The current training step, it is used to calculate adalora budget.
|
316 |
+
|
317 |
+
Example:
|
318 |
+
|
319 |
+
```python
|
320 |
+
>>> loss = model(**input).loss
|
321 |
+
>>> loss.backward()
|
322 |
+
>>> optimizer.step()
|
323 |
+
>>> model.base_model.update_and_allocate(i_step)
|
324 |
+
>>> optimizer.zero_grad()
|
325 |
+
```
|
326 |
+
"""
|
327 |
+
lora_config = self.peft_config[self.trainable_adapter_name]
|
328 |
+
# Update the importance score and allocate the budget
|
329 |
+
if global_step < lora_config.total_step - lora_config.tfinal:
|
330 |
+
_, rank_pattern = self.rankallocator.update_and_allocate(self.model, global_step)
|
331 |
+
if rank_pattern:
|
332 |
+
lora_config.rank_pattern = rank_pattern
|
333 |
+
# Finalize the budget allocation
|
334 |
+
elif global_step == lora_config.total_step - lora_config.tfinal:
|
335 |
+
_, rank_pattern = self.rankallocator.update_and_allocate(self.model, global_step, force_mask=True)
|
336 |
+
# for some reason, this freezes the trainable parameters and nothing gets updates
|
337 |
+
# self.resize_modules_by_rank_pattern(rank_pattern, self.trainable_adapter_name)
|
338 |
+
lora_config.rank_pattern = rank_pattern
|
339 |
+
self.rankallocator.reset_ipt()
|
340 |
+
# Currently using inefficient way to mask the unimportant weights using the rank pattern
|
341 |
+
# due to problem mentioned above
|
342 |
+
elif global_step > lora_config.total_step - lora_config.tfinal:
|
343 |
+
self.rankallocator.mask_using_rank_pattern(self.model, lora_config.rank_pattern)
|
344 |
+
# Pass the function and do forward propagation
|
345 |
+
else:
|
346 |
+
return None
|
venv/lib/python3.10/site-packages/peft/tuners/adaption_prompt/__init__.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from .config import AdaptionPromptConfig
|
15 |
+
from .layer import AdaptedAttention
|
16 |
+
from .model import AdaptionPromptModel
|
17 |
+
|
18 |
+
|
19 |
+
__all__ = ["AdaptionPromptConfig", "AdaptedAttention", "AdaptionPromptModel"]
|
venv/lib/python3.10/site-packages/peft/tuners/adaption_prompt/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (377 Bytes). View file
|
|
venv/lib/python3.10/site-packages/peft/tuners/adaption_prompt/__pycache__/config.cpython-310.pyc
ADDED
Binary file (2.11 kB). View file
|
|
venv/lib/python3.10/site-packages/peft/tuners/adaption_prompt/__pycache__/layer.cpython-310.pyc
ADDED
Binary file (3.28 kB). View file
|
|
venv/lib/python3.10/site-packages/peft/tuners/adaption_prompt/__pycache__/model.cpython-310.pyc
ADDED
Binary file (5.56 kB). View file
|
|
venv/lib/python3.10/site-packages/peft/tuners/adaption_prompt/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (3.55 kB). View file
|
|
venv/lib/python3.10/site-packages/peft/tuners/adaption_prompt/config.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from collections import namedtuple
|
16 |
+
from dataclasses import dataclass, field
|
17 |
+
|
18 |
+
from peft.config import PeftConfig
|
19 |
+
from peft.utils import PeftType
|
20 |
+
|
21 |
+
from .utils import llama_compute_query_states
|
22 |
+
|
23 |
+
|
24 |
+
@dataclass
|
25 |
+
class AdaptionPromptConfig(PeftConfig):
|
26 |
+
"""Stores the configuration of an [`AdaptionPromptModel`]."""
|
27 |
+
|
28 |
+
target_modules: str = field(
|
29 |
+
default=None, metadata={"help": "Name of the attention submodules to insert adaption prompts into."}
|
30 |
+
)
|
31 |
+
adapter_len: int = field(default=None, metadata={"help": "Number of adapter tokens to insert"})
|
32 |
+
adapter_layers: int = field(default=None, metadata={"help": "Number of adapter layers (from the top)"})
|
33 |
+
|
34 |
+
def __post_init__(self):
|
35 |
+
self.peft_type = PeftType.ADAPTION_PROMPT
|
36 |
+
|
37 |
+
@property
|
38 |
+
def is_adaption_prompt(self) -> bool:
|
39 |
+
"""Return True if this is an adaption prompt config."""
|
40 |
+
return True
|
41 |
+
|
42 |
+
|
43 |
+
# Contains the config that is specific to a transformers model type.
|
44 |
+
ModelTypeConfig = namedtuple(
|
45 |
+
"ModelTypeConfig", ["compute_query_states", "target_modules", "k_proj_layer", "v_proj_layer", "o_proj_layer"]
|
46 |
+
)
|
47 |
+
|
48 |
+
# Mapping of transformers model types to their specific configuration.
|
49 |
+
TRANSFORMERS_MODEL_CONFIG = {
|
50 |
+
"llama": ModelTypeConfig(
|
51 |
+
compute_query_states=llama_compute_query_states,
|
52 |
+
target_modules="self_attn",
|
53 |
+
k_proj_layer="k_proj",
|
54 |
+
v_proj_layer="v_proj",
|
55 |
+
o_proj_layer="o_proj",
|
56 |
+
),
|
57 |
+
"mistral": ModelTypeConfig( # same as llama,
|
58 |
+
compute_query_states=llama_compute_query_states,
|
59 |
+
target_modules="self_attn",
|
60 |
+
k_proj_layer="k_proj",
|
61 |
+
v_proj_layer="v_proj",
|
62 |
+
o_proj_layer="o_proj",
|
63 |
+
),
|
64 |
+
}
|
65 |
+
|
66 |
+
|
67 |
+
def prepare_config(
|
68 |
+
peft_config: AdaptionPromptConfig,
|
69 |
+
model,
|
70 |
+
) -> AdaptionPromptConfig:
|
71 |
+
"""Prepare the config based on the llama model type."""
|
72 |
+
if model.config.model_type not in TRANSFORMERS_MODEL_CONFIG:
|
73 |
+
raise ValueError("Unsupported model type for adaption prompt: '{model.config.model_type}'.")
|
74 |
+
|
75 |
+
model_config = TRANSFORMERS_MODEL_CONFIG[model.config.model_type]
|
76 |
+
|
77 |
+
if peft_config.target_modules is None:
|
78 |
+
peft_config.target_modules = model_config.target_modules
|
79 |
+
|
80 |
+
return peft_config
|
venv/lib/python3.10/site-packages/peft/tuners/adaption_prompt/layer.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import math
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
import torch.nn.functional as F
|
20 |
+
|
21 |
+
from .config import TRANSFORMERS_MODEL_CONFIG
|
22 |
+
|
23 |
+
|
24 |
+
class AdaptedAttention(nn.Module):
|
25 |
+
"""This module wraps a LLamaAttention module and injects adaption prompts."""
|
26 |
+
|
27 |
+
def __init__(self, model_type: str, adapter_len: int, model):
|
28 |
+
"""
|
29 |
+
Initialize object.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
model_type: The transformer model type. This is used to retrieve the right method to
|
33 |
+
compute query states.
|
34 |
+
adapter_len: The length of the adaption prompt to insert.
|
35 |
+
model: The original transformer attention module that is being wrapped.
|
36 |
+
"""
|
37 |
+
assert not isinstance(model, AdaptedAttention)
|
38 |
+
super().__init__()
|
39 |
+
self.model_type = model_type
|
40 |
+
self.model = model
|
41 |
+
self.adapter_len = adapter_len
|
42 |
+
# Assume all parameters of the attention model we are wrapping are on the same device.
|
43 |
+
device = next(model.parameters()).device
|
44 |
+
# Don't think this was specified in the paper, but we follow the official repo which used an Embedding
|
45 |
+
# which initializes the tokens with standard normal values.
|
46 |
+
# https://github.com/ZrrSkywalker/LLaMA-Adapter/blob/41c3546fe1997ab8a65809dc8d8f9252b19d9faf/llama/model.py#L234
|
47 |
+
# (bsz, adapter_len, hidden_size)
|
48 |
+
target_dtype = (
|
49 |
+
model.q_proj.weight.dtype if model.q_proj.weight.dtype not in [torch.int8, torch.uint8] else torch.float32
|
50 |
+
)
|
51 |
+
self.adaption_prompt = nn.Parameter(
|
52 |
+
torch.empty(1, adapter_len, self.model.hidden_size, device=device, dtype=target_dtype).normal_()
|
53 |
+
)
|
54 |
+
# Initialize the gate to 0 as this is "zero-init".
|
55 |
+
self.adaption_gate = nn.Parameter(torch.zeros(1, device=device, dtype=target_dtype))
|
56 |
+
|
57 |
+
def forward(self, **kwargs):
|
58 |
+
"""
|
59 |
+
Forward pass for the adapter which wraps the original LlamaAttention module.
|
60 |
+
|
61 |
+
"Official" paper implementation:
|
62 |
+
https://github.com/ZrrSkywalker/LLaMA-Adapter/blob/41c3546fe1997ab8a65809dc8d8f9252b19d9faf/llama/model.py#L141
|
63 |
+
|
64 |
+
Args:
|
65 |
+
kwargs: See the original LlamaAttention module.
|
66 |
+
"""
|
67 |
+
if kwargs.get("output_attention", False):
|
68 |
+
raise NotImplementedError("output_attention is not currently supported.")
|
69 |
+
|
70 |
+
output, _, past_key_value = self.model(**kwargs)
|
71 |
+
bsz = output.shape[0]
|
72 |
+
q_len = output.shape[1]
|
73 |
+
embed_dim = output.shape[2]
|
74 |
+
k_proj_layer = TRANSFORMERS_MODEL_CONFIG[self.model_type].k_proj_layer
|
75 |
+
v_proj_layer = TRANSFORMERS_MODEL_CONFIG[self.model_type].v_proj_layer
|
76 |
+
o_proj_layer = TRANSFORMERS_MODEL_CONFIG[self.model_type].o_proj_layer
|
77 |
+
factor = (
|
78 |
+
self.model.k_proj.in_features // self.model.k_proj.out_features
|
79 |
+
) # Mistral has different input and output dimension for k_proj and v_proj layers
|
80 |
+
|
81 |
+
if k_proj_layer == v_proj_layer:
|
82 |
+
_, key, value = getattr(self.model, k_proj_layer)(self.adaption_prompt).split(embed_dim, dim=2)
|
83 |
+
else:
|
84 |
+
key = getattr(self.model, k_proj_layer)(self.adaption_prompt)
|
85 |
+
value = getattr(self.model, v_proj_layer)(self.adaption_prompt)
|
86 |
+
|
87 |
+
# (bsz, num_key_value_heads, adapter_len, head_dim)
|
88 |
+
adapter_k = (
|
89 |
+
key.view(1, self.adapter_len, (self.model.num_heads // factor), self.model.head_dim)
|
90 |
+
.repeat(bsz, 1, 1, 1)
|
91 |
+
.transpose(1, 2)
|
92 |
+
)
|
93 |
+
adapter_v = (
|
94 |
+
value.view(1, self.adapter_len, (self.model.num_heads // factor), self.model.head_dim)
|
95 |
+
.repeat(bsz, 1, 1, 1)
|
96 |
+
.transpose(1, 2)
|
97 |
+
)
|
98 |
+
# Below is taken from https://github.com/huggingface/transformers/blob/e547458c43dfdbbb8f6a7757237e234c44e20a8f/src/transformers/models/mistral/modeling_mistral.py#L181
|
99 |
+
# (bsz, num_heads, adapter_len, head_dim)
|
100 |
+
adapter_k = torch.repeat_interleave(adapter_k, repeats=factor, dim=1)
|
101 |
+
adapter_v = torch.repeat_interleave(adapter_v, repeats=factor, dim=1)
|
102 |
+
# Recompute query states.
|
103 |
+
compute_query_states = TRANSFORMERS_MODEL_CONFIG[self.model_type].compute_query_states
|
104 |
+
# (bsz, num_heads, q_len, head_dim)
|
105 |
+
query_states = compute_query_states(model=self.model, **kwargs)
|
106 |
+
|
107 |
+
previous_dtype = query_states.dtype
|
108 |
+
|
109 |
+
# (bsz, num_heads, q_len, adapter_len)
|
110 |
+
scores = torch.matmul(query_states, adapter_k.transpose(2, 3).to(previous_dtype)) / math.sqrt(
|
111 |
+
self.model.head_dim
|
112 |
+
)
|
113 |
+
# Upcast attention to fp32
|
114 |
+
# (bsz, num_heads, q_len, adapter_len)
|
115 |
+
scores = self.adaption_gate * F.softmax(scores, dim=-1, dtype=torch.float32).to(previous_dtype)
|
116 |
+
# (bsz, q_len, num_heads * head_dim)
|
117 |
+
adapter_output = torch.matmul(scores, adapter_v).transpose(1, 2).reshape(bsz, q_len, -1)
|
118 |
+
|
119 |
+
# (bsz, q_len, hidden_size)
|
120 |
+
if o_proj_layer is not None:
|
121 |
+
adapter_output = getattr(self.model, o_proj_layer)(adapter_output)
|
122 |
+
|
123 |
+
# Add adaption prompt output to original output.
|
124 |
+
output = output + adapter_output
|
125 |
+
|
126 |
+
# Restore original dtype.
|
127 |
+
output = output.to(previous_dtype)
|
128 |
+
return output, None, past_key_value
|
venv/lib/python3.10/site-packages/peft/tuners/adaption_prompt/model.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import Dict, List
|
16 |
+
|
17 |
+
import torch.nn as nn
|
18 |
+
|
19 |
+
from peft.utils import _freeze_adapter, _get_submodules
|
20 |
+
|
21 |
+
from .config import AdaptionPromptConfig, prepare_config
|
22 |
+
from .layer import AdaptedAttention
|
23 |
+
from .utils import is_adaption_prompt_trainable
|
24 |
+
|
25 |
+
|
26 |
+
class AdaptionPromptModel(nn.Module):
|
27 |
+
"""
|
28 |
+
Implements adaption prompts as described in https://arxiv.org/pdf/2303.16199.pdf.
|
29 |
+
|
30 |
+
The top L attention modules are replaced with AdaptedAttention modules that wrap the original ones, but insert
|
31 |
+
trainable prompts with gates (for zero init).
|
32 |
+
|
33 |
+
Notes on the multi-adapter pattern:
|
34 |
+
- We store the states of different adapters by keeping a dictionary of AdaptedAttention modules indexed by adapter
|
35 |
+
name.
|
36 |
+
- Every time we switch adapters, we remove the modules of the currently active adapter from the model, store them
|
37 |
+
in the dictionary, and replace them with the modules of the new adapter.
|
38 |
+
- To avoid duplicated and potentially inconsistent state, the currently active adapter is always removed from the
|
39 |
+
dictionary.
|
40 |
+
- Disabling the adapter would also result in the modules being removed from the model.
|
41 |
+
"""
|
42 |
+
|
43 |
+
def __init__(self, model, configs: Dict, adapter_name: str):
|
44 |
+
super().__init__()
|
45 |
+
self.model = model
|
46 |
+
# Store adapter configs by name.
|
47 |
+
self.peft_config: Dict[str, AdaptionPromptConfig] = {}
|
48 |
+
# Store lists of the parents of the affected attention modules by adapter name.
|
49 |
+
# We keep references to the parents so we can swap the adapters in-and-out of the model.
|
50 |
+
self._parents: Dict[str, List[nn.Module]] = {}
|
51 |
+
# Store lists of cached AdaptedAttention modules by name.
|
52 |
+
self._cached_adapters: Dict[str, List] = {}
|
53 |
+
# The name of the currently active adapter.
|
54 |
+
self._active_adapter = None
|
55 |
+
# Whether the adapter is enabled.
|
56 |
+
self._enabled = True
|
57 |
+
self.forward = self.model.forward
|
58 |
+
self.add_adapter(adapter_name, configs[adapter_name])
|
59 |
+
self._mark_only_adaption_prompts_as_trainable(self.model)
|
60 |
+
|
61 |
+
def add_adapter(self, adapter_name: str, config: AdaptionPromptConfig) -> None:
|
62 |
+
"""Add an adapter with the given name and config."""
|
63 |
+
config = prepare_config(config, self.model)
|
64 |
+
if adapter_name in self.peft_config:
|
65 |
+
raise ValueError(f"Adapter with name '{adapter_name}' already exists.")
|
66 |
+
|
67 |
+
parents = []
|
68 |
+
for name, _ in self.model.named_modules():
|
69 |
+
if name.endswith(config.target_modules):
|
70 |
+
par, _, _ = _get_submodules(self.model, name)
|
71 |
+
parents.append(par)
|
72 |
+
if len(parents) < config.adapter_layers:
|
73 |
+
raise ValueError(
|
74 |
+
f"Config specifies more adapter layers '{config.adapter_layers}'"
|
75 |
+
f" than the model has '{len(parents)}'."
|
76 |
+
)
|
77 |
+
# Note that if the target modules are not in Sequential, ModuleList, or
|
78 |
+
# some other PyTorch ordered container, the behavior is undefined as we
|
79 |
+
# assume here that the order of the modules is the same as the order of
|
80 |
+
# the transformer decoder layers.
|
81 |
+
parents = parents[-config.adapter_layers :]
|
82 |
+
self._parents[adapter_name] = parents
|
83 |
+
|
84 |
+
# It is only None during initialization.
|
85 |
+
# If it is disabled, we don't have to remove the modules.
|
86 |
+
if self._active_adapter is not None and self._enabled:
|
87 |
+
self._remove_adapted_attentions(self._active_adapter)
|
88 |
+
self._active_adapter = adapter_name
|
89 |
+
self.peft_config[adapter_name] = config
|
90 |
+
self._create_adapted_attentions(config, parents)
|
91 |
+
if not self._enabled:
|
92 |
+
self._remove_adapted_attentions(self._active_adapter)
|
93 |
+
|
94 |
+
if config.inference_mode:
|
95 |
+
_freeze_adapter(self.model, adapter_name)
|
96 |
+
|
97 |
+
def set_adapter(self, adapter_name: str) -> None:
|
98 |
+
"""Set the model to use the adapter with the given name."""
|
99 |
+
if self._active_adapter == adapter_name:
|
100 |
+
return
|
101 |
+
if adapter_name not in self.peft_config:
|
102 |
+
raise ValueError(f"Adapter with name '{adapter_name}' does not exist.")
|
103 |
+
|
104 |
+
if self._enabled:
|
105 |
+
self._remove_adapted_attentions(self._active_adapter)
|
106 |
+
self._set_adapted_attentions(adapter_name)
|
107 |
+
|
108 |
+
self._active_adapter = adapter_name
|
109 |
+
|
110 |
+
def enable_adapter_layers(self):
|
111 |
+
"""Enable adapter layers by swapping in cached AdaptedAttention modules."""
|
112 |
+
self._enabled = True
|
113 |
+
self._set_adapted_attentions(self._active_adapter)
|
114 |
+
|
115 |
+
def disable_adapter_layers(self):
|
116 |
+
"""Disable adapter layers by swapping out AdaptedAttention modules."""
|
117 |
+
self._enabled = False
|
118 |
+
self._remove_adapted_attentions(self._active_adapter)
|
119 |
+
|
120 |
+
def _create_adapted_attentions(self, config: AdaptionPromptConfig, parents: List[nn.Module]) -> None:
|
121 |
+
"""Wrap LlamaAttention modules with newly created AdaptedAttention modules."""
|
122 |
+
for par in parents:
|
123 |
+
attn = AdaptedAttention(
|
124 |
+
model_type=self.model.config.model_type,
|
125 |
+
adapter_len=config.adapter_len,
|
126 |
+
model=getattr(par, config.target_modules),
|
127 |
+
)
|
128 |
+
setattr(par, config.target_modules, attn)
|
129 |
+
|
130 |
+
def _set_adapted_attentions(self, adapter_name: str) -> None:
|
131 |
+
"""Replace LlamaAttention modules with cached AdaptedAttention modules."""
|
132 |
+
cached = self._cached_adapters[adapter_name]
|
133 |
+
del self._cached_adapters[adapter_name]
|
134 |
+
config = self.peft_config[adapter_name]
|
135 |
+
for i, par in enumerate(self._parents[adapter_name]):
|
136 |
+
setattr(par, config.target_modules, cached[i])
|
137 |
+
|
138 |
+
def _remove_adapted_attentions(self, adapter_name: str) -> None:
|
139 |
+
"""Remove AdaptedAttention modules from the model and store them in the cache."""
|
140 |
+
config = self.peft_config[adapter_name]
|
141 |
+
adapted_attentions = []
|
142 |
+
for par in self._parents[adapter_name]:
|
143 |
+
attn = getattr(par, config.target_modules)
|
144 |
+
adapted_attentions.append(attn)
|
145 |
+
setattr(par, config.target_modules, attn.model)
|
146 |
+
self._cached_adapters[adapter_name] = adapted_attentions
|
147 |
+
|
148 |
+
def _mark_only_adaption_prompts_as_trainable(self, model: nn.Module) -> None:
|
149 |
+
"""Freeze all parameters of the model except the adaption prompts."""
|
150 |
+
for n, p in model.named_parameters():
|
151 |
+
if not is_adaption_prompt_trainable(n):
|
152 |
+
p.requires_grad = False
|
153 |
+
|
154 |
+
def __getattr__(self, name: str):
|
155 |
+
"""Forward missing attributes to the wrapped module."""
|
156 |
+
try:
|
157 |
+
return super().__getattr__(name) # defer to nn.Module's logic
|
158 |
+
except AttributeError:
|
159 |
+
# This is necessary as e.g. causal models have various methods that we
|
160 |
+
# don't want to re-implement here.
|
161 |
+
return getattr(self.model, name)
|
venv/lib/python3.10/site-packages/peft/tuners/adaption_prompt/utils.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import inspect
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.nn as nn
|
18 |
+
|
19 |
+
|
20 |
+
def llama_rotate_half(x: torch.Tensor) -> torch.Tensor:
|
21 |
+
"""
|
22 |
+
Rotate half the hidden dims of the input.
|
23 |
+
|
24 |
+
This function was duplicated verbatim from:
|
25 |
+
https://github.com/huggingface/transformers/blob/1de8ce9ee1191ba761a593ac15d9ccbf5851bfc5/src/transformers/models/llama/modeling_llama.py#L126
|
26 |
+
|
27 |
+
This was done to eliminate the Llama transformers implementation as a dependency of this file. Note that some other
|
28 |
+
functions were also adapted from the transformers implementation but were modified.
|
29 |
+
"""
|
30 |
+
x1 = x[..., : x.shape[-1] // 2]
|
31 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
32 |
+
return torch.cat((-x2, x1), dim=-1)
|
33 |
+
|
34 |
+
|
35 |
+
def llama_apply_rotary_pos_emb(q, cos, sin, position_ids):
|
36 |
+
"""
|
37 |
+
Apply rotary position embedding to query states in the Llama model.
|
38 |
+
|
39 |
+
This function was adapted from:
|
40 |
+
https://github.com/huggingface/transformers/blob/1de8ce9ee1191ba761a593ac15d9ccbf5851bfc5/src/transformers/models/llama/modeling_llama.py#L133
|
41 |
+
|
42 |
+
It was modified to remove unnecessary processing of key states. The method is compatible with transformers <=
|
43 |
+
4.34.2 and also with the latest version (>=4.35).
|
44 |
+
"""
|
45 |
+
# In previous transformers version cos/sin cached had a shape of 4D
|
46 |
+
if len(cos.shape) == 4:
|
47 |
+
gather_indices = position_ids[:, None, :, None] # [bs, 1, seq_len, 1]
|
48 |
+
gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3])
|
49 |
+
cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
|
50 |
+
sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
|
51 |
+
# In the new version, it is 2D so we fall back to the new implementation
|
52 |
+
# https://github.com/huggingface/transformers/blame/eef7ea98c31a333bacdc7ae7a2372bde772be8e4/src/transformers/models/llama/modeling_llama.py#L222-L226
|
53 |
+
else:
|
54 |
+
cos = cos[position_ids].unsqueeze(1)
|
55 |
+
sin = sin[position_ids].unsqueeze(1)
|
56 |
+
q_embed = (q * cos) + (llama_rotate_half(q) * sin)
|
57 |
+
return q_embed
|
58 |
+
|
59 |
+
|
60 |
+
def llama_compute_query_states(model: nn.Module, **kwargs) -> torch.Tensor:
|
61 |
+
"""
|
62 |
+
Compute query states for Llama models specifically. They need to be recomputed as the forward() method of the
|
63 |
+
original LlamaModel in the transformers library does not return them. See the related discussion in the PR:
|
64 |
+
https://github.com/huggingface/peft/pull/268
|
65 |
+
"""
|
66 |
+
hidden_states = kwargs.get("hidden_states")
|
67 |
+
position_ids = kwargs.get("position_ids")
|
68 |
+
past_key_value = kwargs.get("past_key_value")
|
69 |
+
bsz, q_len, _ = hidden_states.size()
|
70 |
+
query_states = model.q_proj(hidden_states).view(bsz, q_len, model.num_heads, model.head_dim).transpose(1, 2)
|
71 |
+
|
72 |
+
factor = model.k_proj.in_features // model.k_proj.out_features
|
73 |
+
value_states = (
|
74 |
+
model.v_proj(hidden_states).view(bsz, q_len, (model.num_heads // factor), model.head_dim).transpose(1, 2)
|
75 |
+
)
|
76 |
+
|
77 |
+
seq_len = q_len
|
78 |
+
|
79 |
+
if past_key_value is not None:
|
80 |
+
if isinstance(past_key_value, tuple):
|
81 |
+
# for transformers <= 4.35
|
82 |
+
seq_len += past_key_value[0].shape[-2]
|
83 |
+
else:
|
84 |
+
# since transformers 4.36, this is a DynamicCache instance
|
85 |
+
seq_len += past_key_value.get_seq_length(model.layer_idx)
|
86 |
+
|
87 |
+
# For transformers > 4.37.2 `position_ids` became a required arguments in the rotary embedding's forward pass.
|
88 |
+
if "position_ids" not in inspect.signature(model.rotary_emb.forward).parameters:
|
89 |
+
# TODO we assume that position_ids is not None here, not sure if that is safe but the old code also did that
|
90 |
+
cos, sin = model.rotary_emb(value_states, seq_len=seq_len)
|
91 |
+
return llama_apply_rotary_pos_emb(query_states, cos, sin, position_ids)
|
92 |
+
|
93 |
+
past_seen_tokens = 0
|
94 |
+
if position_ids is None:
|
95 |
+
# Compute position_ids, since they are required for transformers > 4.37.2
|
96 |
+
if past_key_value is None:
|
97 |
+
new_cache_positions = torch.arange(q_len, q_len + q_len, device=value_states.device)
|
98 |
+
else:
|
99 |
+
past_seen_tokens = past_key_value.get_usable_length(q_len, model.layer_idx)
|
100 |
+
new_cache_positions = torch.arange(past_seen_tokens, past_seen_tokens + q_len, device=value_states.device)
|
101 |
+
position_ids = new_cache_positions.unsqueeze(0)
|
102 |
+
|
103 |
+
rotary_emb_kwargs = {"position_ids": position_ids}
|
104 |
+
# The `seq_len` argument has been officially removed in transformers >= 4.39.0
|
105 |
+
if "seq_len" in inspect.signature(model.rotary_emb.forward).parameters:
|
106 |
+
rotary_emb_kwargs["seq_len"] = q_len + past_seen_tokens
|
107 |
+
|
108 |
+
cos, sin = model.rotary_emb(value_states, **rotary_emb_kwargs)
|
109 |
+
|
110 |
+
# For batched inference unsqueeze it on the correct dim
|
111 |
+
# since: https://github.com/huggingface/transformers/pull/29109
|
112 |
+
if len(cos.shape) == 3:
|
113 |
+
cos = cos.unsqueeze(1)
|
114 |
+
sin = sin.unsqueeze(1)
|
115 |
+
|
116 |
+
return (query_states * cos) + (llama_rotate_half(query_states) * sin)
|
117 |
+
|
118 |
+
|
119 |
+
def is_adaption_prompt_trainable(params: str) -> bool:
|
120 |
+
"""Return True if module is trainable under adaption prompt fine-tuning."""
|
121 |
+
return params.split(".")[-1].startswith("adaption_")
|
venv/lib/python3.10/site-packages/peft/tuners/loha/__init__.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from .config import LoHaConfig
|
16 |
+
from .layer import Conv2d, Linear, LoHaLayer
|
17 |
+
from .model import LoHaModel
|
18 |
+
|
19 |
+
|
20 |
+
__all__ = ["LoHaConfig", "LoHaModel", "Conv2d", "Linear", "LoHaLayer"]
|
venv/lib/python3.10/site-packages/peft/tuners/loha/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (383 Bytes). View file
|
|
venv/lib/python3.10/site-packages/peft/tuners/loha/__pycache__/config.cpython-310.pyc
ADDED
Binary file (5.36 kB). View file
|
|
venv/lib/python3.10/site-packages/peft/tuners/loha/__pycache__/layer.cpython-310.pyc
ADDED
Binary file (10.1 kB). View file
|
|
venv/lib/python3.10/site-packages/peft/tuners/loha/__pycache__/model.cpython-310.pyc
ADDED
Binary file (3.9 kB). View file
|
|
venv/lib/python3.10/site-packages/peft/tuners/loha/config.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from dataclasses import dataclass, field
|
16 |
+
from typing import List, Optional, Union
|
17 |
+
|
18 |
+
from peft.tuners.lycoris_utils import LycorisConfig
|
19 |
+
from peft.utils import PeftType
|
20 |
+
|
21 |
+
|
22 |
+
@dataclass
|
23 |
+
class LoHaConfig(LycorisConfig):
|
24 |
+
"""
|
25 |
+
This is the configuration class to store the configuration of a [`LoHaModel`].
|
26 |
+
|
27 |
+
Args:
|
28 |
+
r (`int`):
|
29 |
+
LoHa rank.
|
30 |
+
alpha (`int`):
|
31 |
+
The alpha parameter for LoHa scaling.
|
32 |
+
rank_dropout (`float`):
|
33 |
+
The dropout probability for rank dimension during training.
|
34 |
+
module_dropout (`float`):
|
35 |
+
The dropout probability for disabling LoHa modules during training.
|
36 |
+
use_effective_conv2d (`bool`):
|
37 |
+
Use parameter effective decomposition for Conv2d with ksize > 1 ("Proposition 3" from FedPara paper).
|
38 |
+
target_modules (`Optional[Union[List[str], str]]`):
|
39 |
+
The names of the modules to apply the adapter to. If this is specified, only the modules with the specified
|
40 |
+
names will be replaced. When passing a string, a regex match will be performed. When passing a list of
|
41 |
+
strings, either an exact match will be performed or it is checked if the name of the module ends with any
|
42 |
+
of the passed strings. If this is specified as 'all-linear', then all linear/Conv1D modules are chosen,
|
43 |
+
excluding the output layer. If this is not specified, modules will be chosen according to the model
|
44 |
+
architecture. If the architecture is not known, an error will be raised -- in this case, you should specify
|
45 |
+
the target modules manually.
|
46 |
+
init_weights (`bool`):
|
47 |
+
Whether to perform initialization of adapter weights. This defaults to `True`, passing `False` is
|
48 |
+
discouraged.
|
49 |
+
layers_to_transform (`Union[List[int], int]`):
|
50 |
+
The layer indices to transform. If a list of ints is passed, it will apply the adapter to the layer indices
|
51 |
+
that are specified in this list. If a single integer is passed, it will apply the transformations on the
|
52 |
+
layer at this index.
|
53 |
+
layers_pattern (`str`):
|
54 |
+
The layer pattern name, used only if `layers_to_transform` is different from `None`.
|
55 |
+
rank_pattern (`dict`):
|
56 |
+
The mapping from layer names or regexp expression to ranks which are different from the default rank
|
57 |
+
specified by `r`.
|
58 |
+
alpha_pattern (`dict`):
|
59 |
+
The mapping from layer names or regexp expression to alphas which are different from the default alpha
|
60 |
+
specified by `alpha`.
|
61 |
+
modules_to_save (`Optional[List[str]]`):
|
62 |
+
List of modules apart from adapter layers to be set as trainable and saved in the final checkpoint.
|
63 |
+
"""
|
64 |
+
|
65 |
+
r: int = field(default=8, metadata={"help": "LoHa rank"})
|
66 |
+
alpha: int = field(default=8, metadata={"help": "LoHa alpha"})
|
67 |
+
rank_dropout: float = field(
|
68 |
+
default=0.0, metadata={"help": "The dropout probability for rank dimension during training"}
|
69 |
+
)
|
70 |
+
module_dropout: float = field(
|
71 |
+
default=0.0, metadata={"help": "The dropout probability for disabling LoHa modules during training"}
|
72 |
+
)
|
73 |
+
use_effective_conv2d: bool = field(
|
74 |
+
default=False,
|
75 |
+
metadata={
|
76 |
+
"help": 'Use parameter effective decomposition for Conv2d 3x3 with ksize > 1 ("Proposition 3" from FedPara paper)'
|
77 |
+
},
|
78 |
+
)
|
79 |
+
target_modules: Optional[Union[List[str], str]] = field(
|
80 |
+
default=None,
|
81 |
+
metadata={
|
82 |
+
"help": "List of module names or regex expression of the module names to replace with LoHa."
|
83 |
+
"For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$' "
|
84 |
+
"This can also be a wildcard 'all-linear' which matches all linear/Conv1D layers except the output layer."
|
85 |
+
},
|
86 |
+
)
|
87 |
+
init_weights: bool = field(
|
88 |
+
default=True,
|
89 |
+
metadata={
|
90 |
+
"help": (
|
91 |
+
"Whether to initialize the weights of the LoHa layers with their default initialization. Don't change "
|
92 |
+
"this setting, except if you know exactly what you're doing."
|
93 |
+
),
|
94 |
+
},
|
95 |
+
)
|
96 |
+
layers_to_transform: Optional[Union[List[int], int]] = field(
|
97 |
+
default=None,
|
98 |
+
metadata={
|
99 |
+
"help": "The layer indexes to transform, is this argument is specified, PEFT will transform only the layers indexes that are specified inside this list. If a single integer is passed, PEFT will transform only the layer at this index."
|
100 |
+
},
|
101 |
+
)
|
102 |
+
layers_pattern: Optional[str] = field(
|
103 |
+
default=None,
|
104 |
+
metadata={
|
105 |
+
"help": "The layer pattern name, used only if `layers_to_transform` is different to None and if the layer pattern is not in the common layers pattern."
|
106 |
+
},
|
107 |
+
)
|
108 |
+
modules_to_save: Optional[List[str]] = field(
|
109 |
+
default=None,
|
110 |
+
metadata={
|
111 |
+
"help": "List of modules apart from LoHA layers to be set as trainable and saved in the final checkpoint. "
|
112 |
+
"For example, in Sequence Classification or Token Classification tasks, "
|
113 |
+
"the final layer `classifier/score` are randomly initialized and as such need to be trainable and saved."
|
114 |
+
},
|
115 |
+
)
|
116 |
+
|
117 |
+
def __post_init__(self):
|
118 |
+
self.peft_type = PeftType.LOHA
|
119 |
+
self.target_modules = (
|
120 |
+
set(self.target_modules) if isinstance(self.target_modules, list) else self.target_modules
|
121 |
+
)
|
venv/lib/python3.10/site-packages/peft/tuners/loha/layer.py
ADDED
@@ -0,0 +1,375 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import math
|
16 |
+
from typing import Any, Set, Tuple
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.nn.functional as F
|
21 |
+
|
22 |
+
from peft.tuners.lycoris_utils import LycorisLayer
|
23 |
+
|
24 |
+
|
25 |
+
class LoHaLayer(nn.Module, LycorisLayer):
|
26 |
+
# All names of layers that may contain adapter weights
|
27 |
+
adapter_layer_names = ("hada_w1_a", "hada_w1_b", "hada_w2_a", "hada_w2_b", "hada_t1", "hada_t2")
|
28 |
+
# other_param_names is defined on parent class
|
29 |
+
|
30 |
+
def __init__(self, base_layer: nn.Module):
|
31 |
+
super().__init__()
|
32 |
+
LycorisLayer.__init__(self, base_layer)
|
33 |
+
|
34 |
+
# LoHa info
|
35 |
+
self.hada_w1_a = nn.ParameterDict({})
|
36 |
+
self.hada_w1_b = nn.ParameterDict({})
|
37 |
+
self.hada_w2_a = nn.ParameterDict({})
|
38 |
+
self.hada_w2_b = nn.ParameterDict({})
|
39 |
+
self.hada_t1 = nn.ParameterDict({})
|
40 |
+
self.hada_t2 = nn.ParameterDict({})
|
41 |
+
|
42 |
+
@property
|
43 |
+
def _available_adapters(self) -> Set[str]:
|
44 |
+
return {*self.hada_w1_a, *self.hada_w1_b, *self.hada_w2_a, *self.hada_w2_b, *self.hada_t1, *self.hada_t2}
|
45 |
+
|
46 |
+
def create_adapter_parameters(self, adapter_name: str, r: int, shape: Tuple[int, ...]):
|
47 |
+
# https://github.com/KohakuBlueleaf/LyCORIS/blob/eb460098187f752a5d66406d3affade6f0a07ece/lycoris/modules/loha.py#L130C9-L143C75
|
48 |
+
if len(shape) == 4:
|
49 |
+
self.hada_t1[adapter_name] = nn.Parameter(torch.empty(r, r, shape[2], shape[3]))
|
50 |
+
self.hada_w1_a[adapter_name] = nn.Parameter(torch.empty(r, shape[0])) # out_dim, 1-mode
|
51 |
+
self.hada_w1_b[adapter_name] = nn.Parameter(torch.empty(r, shape[1])) # in_dim , 2-mode
|
52 |
+
|
53 |
+
self.hada_t2[adapter_name] = nn.Parameter(torch.empty(r, r, shape[2], shape[3]))
|
54 |
+
self.hada_w2_a[adapter_name] = nn.Parameter(torch.empty(r, shape[0])) # out_dim, 1-mode
|
55 |
+
self.hada_w2_b[adapter_name] = nn.Parameter(torch.empty(r, shape[1])) # in_dim , 2-mode
|
56 |
+
else:
|
57 |
+
self.hada_w1_a[adapter_name] = nn.Parameter(torch.empty(shape[0], r))
|
58 |
+
self.hada_w1_b[adapter_name] = nn.Parameter(torch.empty(r, shape[1]))
|
59 |
+
|
60 |
+
self.hada_w2_a[adapter_name] = nn.Parameter(torch.empty(shape[0], r))
|
61 |
+
self.hada_w2_b[adapter_name] = nn.Parameter(torch.empty(r, shape[1]))
|
62 |
+
|
63 |
+
def reset_adapter_parameters(self, adapter_name: str):
|
64 |
+
# Original implementation performs initialization with normal distribution
|
65 |
+
# https://github.com/KohakuBlueleaf/LyCORIS/blob/3549fdef8f564761d68b695a08ef88b1122fdedc/lycoris/modules/loha.py#L158
|
66 |
+
|
67 |
+
# FedPara paper proposes to perform He initialization, let's stick with it
|
68 |
+
# It is enough to initialize only single matrix with zeros to make adapter do nothing after initialization
|
69 |
+
if adapter_name in self.hada_w1_a.keys():
|
70 |
+
nn.init.kaiming_uniform_(self.hada_w1_a[adapter_name], a=math.sqrt(5))
|
71 |
+
nn.init.kaiming_uniform_(self.hada_w1_b[adapter_name], a=math.sqrt(5))
|
72 |
+
nn.init.kaiming_uniform_(self.hada_w2_a[adapter_name], a=math.sqrt(5))
|
73 |
+
nn.init.zeros_(self.hada_w2_b[adapter_name])
|
74 |
+
if adapter_name in self.hada_t1.keys():
|
75 |
+
nn.init.kaiming_uniform_(self.hada_t1[adapter_name], a=math.sqrt(5))
|
76 |
+
nn.init.kaiming_uniform_(self.hada_t2[adapter_name], a=math.sqrt(5))
|
77 |
+
|
78 |
+
def reset_adapter_parameters_random(self, adapter_name: str):
|
79 |
+
# Original implementation performs initialization with normal distribution
|
80 |
+
# https://github.com/KohakuBlueleaf/LyCORIS/blob/3549fdef8f564761d68b695a08ef88b1122fdedc/lycoris/modules/loha.py#L158
|
81 |
+
|
82 |
+
# FedPara paper proposes to perform He initialization, let's stick with it
|
83 |
+
# It is enough to initialize only single matrix with zeros to make adapter do nothing after initialization
|
84 |
+
if adapter_name in self.hada_w1_a.keys():
|
85 |
+
nn.init.kaiming_uniform_(self.hada_w1_a[adapter_name], a=math.sqrt(5))
|
86 |
+
nn.init.kaiming_uniform_(self.hada_w1_b[adapter_name], a=math.sqrt(5))
|
87 |
+
nn.init.kaiming_uniform_(self.hada_w2_a[adapter_name], a=math.sqrt(5))
|
88 |
+
nn.init.kaiming_uniform_(self.hada_w2_b[adapter_name], a=math.sqrt(5))
|
89 |
+
if adapter_name in self.hada_t1.keys():
|
90 |
+
nn.init.kaiming_uniform_(self.hada_t1[adapter_name], a=math.sqrt(5))
|
91 |
+
nn.init.kaiming_uniform_(self.hada_t2[adapter_name], a=math.sqrt(5))
|
92 |
+
|
93 |
+
def update_layer(
|
94 |
+
self,
|
95 |
+
adapter_name: str,
|
96 |
+
r: int,
|
97 |
+
alpha: float,
|
98 |
+
rank_dropout: float,
|
99 |
+
module_dropout: float,
|
100 |
+
init_weights: bool,
|
101 |
+
use_effective_conv2d: bool = False,
|
102 |
+
**kwargs,
|
103 |
+
) -> None:
|
104 |
+
"""Internal function to create loha adapter
|
105 |
+
|
106 |
+
Args:
|
107 |
+
adapter_name (`str`): Name for the adapter to add.
|
108 |
+
r (`int`): Rank for the added adapter.
|
109 |
+
alpha (`float`): Alpha for the added adapter.
|
110 |
+
rank_dropout (`float`): The dropout probability for rank dimension during training.
|
111 |
+
module_dropout (`float`): The dropout probability for disabling adapter during training.
|
112 |
+
init_weights (`bool`): Whether to initialize weights.
|
113 |
+
use_effective_conv2d (`bool`, *optional*, defaults to `False`):
|
114 |
+
Use parameter effective decomposition for Conv2d with ksize > 1.
|
115 |
+
"""
|
116 |
+
if r <= 0:
|
117 |
+
raise ValueError(f"`r` should be a positive integer value but the value passed is {r}")
|
118 |
+
|
119 |
+
self.r[adapter_name] = r
|
120 |
+
self.alpha[adapter_name] = alpha
|
121 |
+
self.scaling[adapter_name] = alpha / r
|
122 |
+
self.rank_dropout[adapter_name] = rank_dropout
|
123 |
+
self.module_dropout[adapter_name] = module_dropout
|
124 |
+
|
125 |
+
# Determine shape of LoHa weights
|
126 |
+
base_layer = self.get_base_layer()
|
127 |
+
if isinstance(base_layer, nn.Linear):
|
128 |
+
shape = tuple(base_layer.weight.shape)
|
129 |
+
elif isinstance(base_layer, nn.Conv2d):
|
130 |
+
use_effective_conv2d = use_effective_conv2d and base_layer.kernel_size != (1, 1)
|
131 |
+
if use_effective_conv2d:
|
132 |
+
shape = (base_layer.out_channels, base_layer.in_channels, *base_layer.kernel_size)
|
133 |
+
else:
|
134 |
+
shape = (
|
135 |
+
base_layer.out_channels,
|
136 |
+
base_layer.in_channels * base_layer.kernel_size[0] * base_layer.kernel_size[1],
|
137 |
+
)
|
138 |
+
else:
|
139 |
+
raise TypeError(f"LoHa is not implemented for base layers of type {type(base_layer).__name__}")
|
140 |
+
|
141 |
+
# Create weights with provided shape
|
142 |
+
self.create_adapter_parameters(adapter_name, r, shape)
|
143 |
+
|
144 |
+
# Initialize weights
|
145 |
+
if init_weights:
|
146 |
+
self.reset_adapter_parameters(adapter_name)
|
147 |
+
else:
|
148 |
+
self.reset_adapter_parameters_random(adapter_name)
|
149 |
+
|
150 |
+
# Move new weights to device
|
151 |
+
weight = getattr(self.get_base_layer(), "weight", None)
|
152 |
+
if weight is not None:
|
153 |
+
# the layer is already completely initialized, this is an update
|
154 |
+
if weight.dtype.is_floating_point or weight.dtype.is_complex:
|
155 |
+
self.to(weight.device, dtype=weight.dtype)
|
156 |
+
else:
|
157 |
+
self.to(weight.device)
|
158 |
+
self.set_adapter(self.active_adapters)
|
159 |
+
|
160 |
+
def get_delta_weight(self, adapter_name: str) -> torch.Tensor:
|
161 |
+
# https://github.com/KohakuBlueleaf/LyCORIS/blob/eb460098187f752a5d66406d3affade6f0a07ece/lycoris/modules/loha.py#L178
|
162 |
+
if adapter_name in self.hada_t1.keys():
|
163 |
+
weight = make_weight_cp(
|
164 |
+
self.hada_t1[adapter_name],
|
165 |
+
self.hada_w1_a[adapter_name],
|
166 |
+
self.hada_w1_b[adapter_name],
|
167 |
+
self.hada_t2[adapter_name],
|
168 |
+
self.hada_w2_a[adapter_name],
|
169 |
+
self.hada_w2_b[adapter_name],
|
170 |
+
scale=torch.tensor(self.scaling[adapter_name]),
|
171 |
+
)
|
172 |
+
else:
|
173 |
+
weight = make_weight(
|
174 |
+
self.hada_w1_a[adapter_name],
|
175 |
+
self.hada_w1_b[adapter_name],
|
176 |
+
self.hada_w2_a[adapter_name],
|
177 |
+
self.hada_w2_b[adapter_name],
|
178 |
+
scale=torch.tensor(self.scaling[adapter_name]),
|
179 |
+
)
|
180 |
+
|
181 |
+
base_layer = self.get_base_layer()
|
182 |
+
weight = weight.reshape(base_layer.weight.shape)
|
183 |
+
|
184 |
+
# Perform rank dropout during training - drop rows of addition weights
|
185 |
+
rank_dropout = self.rank_dropout[adapter_name]
|
186 |
+
if self.training and rank_dropout:
|
187 |
+
drop = (torch.rand(weight.size(0)) > rank_dropout).to(weight.dtype)
|
188 |
+
drop = drop.view(-1, *[1] * len(weight.shape[1:])).to(weight.device)
|
189 |
+
# TODO: Investigate if there should be a scaler like in normal dropout during training
|
190 |
+
# Original implementation doesn't have it
|
191 |
+
# https://github.com/KohakuBlueleaf/LyCORIS/blob/eb460098187f752a5d66406d3affade6f0a07ece/lycoris/modules/loha.py#L193
|
192 |
+
drop /= drop.mean()
|
193 |
+
weight *= drop
|
194 |
+
|
195 |
+
return weight
|
196 |
+
|
197 |
+
def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
198 |
+
previous_dtype = x.dtype
|
199 |
+
|
200 |
+
if self.disable_adapters:
|
201 |
+
if self.merged:
|
202 |
+
self.unmerge()
|
203 |
+
result = self.base_layer(x, *args, **kwargs)
|
204 |
+
elif self.merged:
|
205 |
+
result = self.base_layer(x, *args, **kwargs)
|
206 |
+
else:
|
207 |
+
result = self.base_layer(x, *args, **kwargs)
|
208 |
+
|
209 |
+
# Execute all the adapters
|
210 |
+
for active_adapter in self.active_adapters:
|
211 |
+
if active_adapter not in self._available_adapters:
|
212 |
+
continue
|
213 |
+
|
214 |
+
module_dropout = self.module_dropout[active_adapter]
|
215 |
+
|
216 |
+
# Modify current execution weights
|
217 |
+
if (not self.training) or (self.training and torch.rand(1) > module_dropout):
|
218 |
+
result = result + self._get_delta_activations(active_adapter, x, *args, **kwargs)
|
219 |
+
|
220 |
+
result = result.to(previous_dtype)
|
221 |
+
return result
|
222 |
+
|
223 |
+
|
224 |
+
class Linear(LoHaLayer):
|
225 |
+
"""LoHa implemented in Linear layer"""
|
226 |
+
|
227 |
+
def __init__(
|
228 |
+
self,
|
229 |
+
base_layer: nn.Module,
|
230 |
+
adapter_name: str = "default",
|
231 |
+
r: int = 0,
|
232 |
+
alpha: float = 0.0,
|
233 |
+
rank_dropout: float = 0.0,
|
234 |
+
module_dropout: float = 0.0,
|
235 |
+
init_weights: bool = True,
|
236 |
+
**kwargs,
|
237 |
+
):
|
238 |
+
super().__init__(base_layer)
|
239 |
+
|
240 |
+
# Create adapter and set it active
|
241 |
+
self._active_adapter = adapter_name
|
242 |
+
self.update_layer(adapter_name, r, alpha, rank_dropout, module_dropout, init_weights, **kwargs)
|
243 |
+
|
244 |
+
def _get_delta_activations(
|
245 |
+
self, adapter_name: str, input: torch.Tensor, *args: Any, **kwargs: Any
|
246 |
+
) -> torch.Tensor:
|
247 |
+
delta_weight = self.get_delta_weight(adapter_name)
|
248 |
+
# don't add bias here, because the bias is already included in the output of the base_layer
|
249 |
+
return F.linear(input, delta_weight)
|
250 |
+
|
251 |
+
def __repr__(self) -> str:
|
252 |
+
rep = super().__repr__()
|
253 |
+
return "loha." + rep
|
254 |
+
|
255 |
+
|
256 |
+
class Conv2d(LoHaLayer):
|
257 |
+
"""LoHa implemented in Conv2d layer"""
|
258 |
+
|
259 |
+
def __init__(
|
260 |
+
self,
|
261 |
+
base_layer: nn.Module,
|
262 |
+
adapter_name: str = "default",
|
263 |
+
r: int = 0,
|
264 |
+
alpha: float = 0.0,
|
265 |
+
rank_dropout: float = 0.0,
|
266 |
+
module_dropout: float = 0.0,
|
267 |
+
use_effective_conv2d: bool = False,
|
268 |
+
init_weights: bool = True,
|
269 |
+
**kwargs,
|
270 |
+
):
|
271 |
+
super().__init__(base_layer)
|
272 |
+
|
273 |
+
# Create adapter and set it active
|
274 |
+
self._active_adapter = adapter_name
|
275 |
+
self.update_layer(
|
276 |
+
adapter_name, r, alpha, rank_dropout, module_dropout, init_weights, use_effective_conv2d, **kwargs
|
277 |
+
)
|
278 |
+
|
279 |
+
def _get_delta_activations(
|
280 |
+
self, adapter_name: str, input: torch.Tensor, *args: Any, **kwargs: Any
|
281 |
+
) -> torch.Tensor:
|
282 |
+
delta_weight = self.get_delta_weight(adapter_name)
|
283 |
+
# don't add bias here, because the bias is already included in the output of the base_layer
|
284 |
+
base_layer = self.get_base_layer()
|
285 |
+
return F.conv2d(
|
286 |
+
input,
|
287 |
+
delta_weight,
|
288 |
+
stride=base_layer.stride,
|
289 |
+
padding=base_layer.padding,
|
290 |
+
dilation=base_layer.dilation,
|
291 |
+
groups=base_layer.groups,
|
292 |
+
)
|
293 |
+
|
294 |
+
def __repr__(self) -> str:
|
295 |
+
rep = super().__repr__()
|
296 |
+
return "loha." + rep
|
297 |
+
|
298 |
+
|
299 |
+
# Below code is a direct copy from https://github.com/KohakuBlueleaf/LyCORIS/blob/eb460098187f752a5d66406d3affade6f0a07ece/lycoris/modules/loha.py#L9
|
300 |
+
|
301 |
+
|
302 |
+
class HadaWeight(torch.autograd.Function):
|
303 |
+
@staticmethod
|
304 |
+
def forward(ctx, w1a, w1b, w2a, w2b, scale=torch.tensor(1)):
|
305 |
+
ctx.save_for_backward(w1a, w1b, w2a, w2b, scale)
|
306 |
+
diff_weight = ((w1a @ w1b) * (w2a @ w2b)) * scale
|
307 |
+
return diff_weight
|
308 |
+
|
309 |
+
@staticmethod
|
310 |
+
def backward(ctx, grad_out):
|
311 |
+
(w1a, w1b, w2a, w2b, scale) = ctx.saved_tensors
|
312 |
+
grad_out = grad_out * scale
|
313 |
+
temp = grad_out * (w2a @ w2b)
|
314 |
+
grad_w1a = temp @ w1b.T
|
315 |
+
grad_w1b = w1a.T @ temp
|
316 |
+
|
317 |
+
temp = grad_out * (w1a @ w1b)
|
318 |
+
grad_w2a = temp @ w2b.T
|
319 |
+
grad_w2b = w2a.T @ temp
|
320 |
+
|
321 |
+
del temp
|
322 |
+
return grad_w1a, grad_w1b, grad_w2a, grad_w2b, None
|
323 |
+
|
324 |
+
|
325 |
+
class HadaWeightCP(torch.autograd.Function):
|
326 |
+
@staticmethod
|
327 |
+
def forward(ctx, t1, w1a, w1b, t2, w2a, w2b, scale=torch.tensor(1)):
|
328 |
+
ctx.save_for_backward(t1, w1a, w1b, t2, w2a, w2b, scale)
|
329 |
+
|
330 |
+
rebuild1 = torch.einsum("i j k l, j r, i p -> p r k l", t1, w1b, w1a)
|
331 |
+
rebuild2 = torch.einsum("i j k l, j r, i p -> p r k l", t2, w2b, w2a)
|
332 |
+
|
333 |
+
return rebuild1 * rebuild2 * scale
|
334 |
+
|
335 |
+
@staticmethod
|
336 |
+
def backward(ctx, grad_out):
|
337 |
+
(t1, w1a, w1b, t2, w2a, w2b, scale) = ctx.saved_tensors
|
338 |
+
grad_out = grad_out * scale
|
339 |
+
|
340 |
+
temp = torch.einsum("i j k l, j r -> i r k l", t2, w2b)
|
341 |
+
rebuild = torch.einsum("i j k l, i r -> r j k l", temp, w2a)
|
342 |
+
|
343 |
+
grad_w = rebuild * grad_out
|
344 |
+
del rebuild
|
345 |
+
|
346 |
+
grad_w1a = torch.einsum("r j k l, i j k l -> r i", temp, grad_w)
|
347 |
+
grad_temp = torch.einsum("i j k l, i r -> r j k l", grad_w, w1a.T)
|
348 |
+
del grad_w, temp
|
349 |
+
|
350 |
+
grad_w1b = torch.einsum("i r k l, i j k l -> r j", t1, grad_temp)
|
351 |
+
grad_t1 = torch.einsum("i j k l, j r -> i r k l", grad_temp, w1b.T)
|
352 |
+
del grad_temp
|
353 |
+
|
354 |
+
temp = torch.einsum("i j k l, j r -> i r k l", t1, w1b)
|
355 |
+
rebuild = torch.einsum("i j k l, i r -> r j k l", temp, w1a)
|
356 |
+
|
357 |
+
grad_w = rebuild * grad_out
|
358 |
+
del rebuild
|
359 |
+
|
360 |
+
grad_w2a = torch.einsum("r j k l, i j k l -> r i", temp, grad_w)
|
361 |
+
grad_temp = torch.einsum("i j k l, i r -> r j k l", grad_w, w2a.T)
|
362 |
+
del grad_w, temp
|
363 |
+
|
364 |
+
grad_w2b = torch.einsum("i r k l, i j k l -> r j", t2, grad_temp)
|
365 |
+
grad_t2 = torch.einsum("i j k l, j r -> i r k l", grad_temp, w2b.T)
|
366 |
+
del grad_temp
|
367 |
+
return grad_t1, grad_w1a, grad_w1b, grad_t2, grad_w2a, grad_w2b, None
|
368 |
+
|
369 |
+
|
370 |
+
def make_weight(w1a, w1b, w2a, w2b, scale):
|
371 |
+
return HadaWeight.apply(w1a, w1b, w2a, w2b, scale)
|
372 |
+
|
373 |
+
|
374 |
+
def make_weight_cp(t1, w1a, w1b, t2, w2a, w2b, scale):
|
375 |
+
return HadaWeightCP.apply(t1, w1a, w1b, t2, w2a, w2b, scale)
|
venv/lib/python3.10/site-packages/peft/tuners/loha/model.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import re
|
16 |
+
from itertools import chain
|
17 |
+
from typing import Dict, Type, Union
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from torch import nn
|
21 |
+
|
22 |
+
from peft.tuners.lycoris_utils import LycorisConfig, LycorisTuner
|
23 |
+
|
24 |
+
from .layer import Conv2d, Linear, LoHaLayer
|
25 |
+
|
26 |
+
|
27 |
+
class LoHaModel(LycorisTuner):
|
28 |
+
"""
|
29 |
+
Creates Low-Rank Hadamard Product model from a pretrained model. The method is partially described in
|
30 |
+
https://arxiv.org/abs/2108.06098 Current implementation heavily borrows from
|
31 |
+
https://github.com/KohakuBlueleaf/LyCORIS/blob/eb460098187f752a5d66406d3affade6f0a07ece/lycoris/modules/loha.py
|
32 |
+
|
33 |
+
Args:
|
34 |
+
model (`torch.nn.Module`): The model to which the adapter tuner layers will be attached.
|
35 |
+
config ([`LoHaConfig`]): The configuration of the LoHa model.
|
36 |
+
adapter_name (`str`): The name of the adapter, defaults to `"default"`.
|
37 |
+
|
38 |
+
Returns:
|
39 |
+
`torch.nn.Module`: The LoHa model.
|
40 |
+
|
41 |
+
Example:
|
42 |
+
```py
|
43 |
+
>>> from diffusers import StableDiffusionPipeline
|
44 |
+
>>> from peft import LoHaModel, LoHaConfig
|
45 |
+
|
46 |
+
>>> config_te = LoHaConfig(
|
47 |
+
... r=8,
|
48 |
+
... lora_alpha=32,
|
49 |
+
... target_modules=["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"],
|
50 |
+
... rank_dropout=0.0,
|
51 |
+
... module_dropout=0.0,
|
52 |
+
... init_weights=True,
|
53 |
+
... )
|
54 |
+
>>> config_unet = LoHaConfig(
|
55 |
+
... r=8,
|
56 |
+
... lora_alpha=32,
|
57 |
+
... target_modules=[
|
58 |
+
... "proj_in",
|
59 |
+
... "proj_out",
|
60 |
+
... "to_k",
|
61 |
+
... "to_q",
|
62 |
+
... "to_v",
|
63 |
+
... "to_out.0",
|
64 |
+
... "ff.net.0.proj",
|
65 |
+
... "ff.net.2",
|
66 |
+
... ],
|
67 |
+
... rank_dropout=0.0,
|
68 |
+
... module_dropout=0.0,
|
69 |
+
... init_weights=True,
|
70 |
+
... use_effective_conv2d=True,
|
71 |
+
... )
|
72 |
+
|
73 |
+
>>> model = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
|
74 |
+
>>> model.text_encoder = LoHaModel(model.text_encoder, config_te, "default")
|
75 |
+
>>> model.unet = LoHaModel(model.unet, config_unet, "default")
|
76 |
+
```
|
77 |
+
|
78 |
+
**Attributes**:
|
79 |
+
- **model** ([`~torch.nn.Module`]) -- The model to be adapted.
|
80 |
+
- **peft_config** ([`LoHaConfig`]): The configuration of the LoHa model.
|
81 |
+
"""
|
82 |
+
|
83 |
+
prefix: str = "hada_"
|
84 |
+
layers_mapping: Dict[Type[torch.nn.Module], Type[LoHaLayer]] = {
|
85 |
+
torch.nn.Conv2d: Conv2d,
|
86 |
+
torch.nn.Linear: Linear,
|
87 |
+
}
|
88 |
+
|
89 |
+
def _create_and_replace(
|
90 |
+
self,
|
91 |
+
config: LycorisConfig,
|
92 |
+
adapter_name: str,
|
93 |
+
target: Union[LoHaLayer, nn.Module],
|
94 |
+
target_name: str,
|
95 |
+
parent: nn.Module,
|
96 |
+
current_key: str,
|
97 |
+
) -> None:
|
98 |
+
"""
|
99 |
+
A private method to create and replace the target module with the adapter module.
|
100 |
+
"""
|
101 |
+
|
102 |
+
# Regexp matching - Find key which matches current target_name in patterns provided
|
103 |
+
pattern_keys = list(chain(config.rank_pattern.keys(), config.alpha_pattern.keys()))
|
104 |
+
target_name_key = next(filter(lambda key: re.match(rf"(.*\.)?{key}$", current_key), pattern_keys), target_name)
|
105 |
+
|
106 |
+
kwargs = config.to_dict()
|
107 |
+
kwargs["r"] = config.rank_pattern.get(target_name_key, config.r)
|
108 |
+
kwargs["alpha"] = config.alpha_pattern.get(target_name_key, config.alpha)
|
109 |
+
|
110 |
+
if isinstance(target, LoHaLayer):
|
111 |
+
target.update_layer(adapter_name, **kwargs)
|
112 |
+
else:
|
113 |
+
new_module = self._create_new_module(config, adapter_name, target, **kwargs)
|
114 |
+
self._replace_module(parent, target_name, new_module, target)
|
venv/lib/python3.10/site-packages/peft/tuners/lokr/__init__.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from .config import LoKrConfig
|
16 |
+
from .layer import Conv2d, Linear, LoKrLayer
|
17 |
+
from .model import LoKrModel
|
18 |
+
|
19 |
+
|
20 |
+
__all__ = ["LoKrConfig", "LoKrModel", "Conv2d", "Linear", "LoKrLayer"]
|
venv/lib/python3.10/site-packages/peft/tuners/lokr/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (383 Bytes). View file
|
|
venv/lib/python3.10/site-packages/peft/tuners/lokr/__pycache__/config.cpython-310.pyc
ADDED
Binary file (5.65 kB). View file
|
|
venv/lib/python3.10/site-packages/peft/tuners/lokr/__pycache__/layer.cpython-310.pyc
ADDED
Binary file (10.8 kB). View file
|
|
venv/lib/python3.10/site-packages/peft/tuners/lokr/__pycache__/model.cpython-310.pyc
ADDED
Binary file (3.95 kB). View file
|
|
venv/lib/python3.10/site-packages/peft/tuners/lokr/config.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from dataclasses import dataclass, field
|
16 |
+
from typing import List, Optional, Union
|
17 |
+
|
18 |
+
from peft.tuners.lycoris_utils import LycorisConfig
|
19 |
+
from peft.utils import PeftType
|
20 |
+
|
21 |
+
|
22 |
+
@dataclass
|
23 |
+
class LoKrConfig(LycorisConfig):
|
24 |
+
"""
|
25 |
+
Configuration class of [`LoKrModel`].
|
26 |
+
|
27 |
+
Args:
|
28 |
+
r (`int`):
|
29 |
+
LoKr rank.
|
30 |
+
alpha (`int`):
|
31 |
+
The alpha parameter for LoKr scaling.
|
32 |
+
rank_dropout (`float`):
|
33 |
+
The dropout probability for rank dimension during training.
|
34 |
+
module_dropout (`float`):
|
35 |
+
The dropout probability for disabling LoKr modules during training.
|
36 |
+
use_effective_conv2d (`bool`):
|
37 |
+
Use parameter effective decomposition for Conv2d with ksize > 1 ("Proposition 3" from FedPara paper).
|
38 |
+
decompose_both (`bool`):
|
39 |
+
Perform rank decomposition of left kronecker product matrix.
|
40 |
+
decompose_factor (`int`):
|
41 |
+
Kronecker product decomposition factor.
|
42 |
+
target_modules (`Optional[Union[List[str], str]]`):
|
43 |
+
The names of the modules to apply the adapter to. If this is specified, only the modules with the specified
|
44 |
+
names will be replaced. When passing a string, a regex match will be performed. When passing a list of
|
45 |
+
strings, either an exact match will be performed or it is checked if the name of the module ends with any
|
46 |
+
of the passed strings. If this is specified as 'all-linear', then all linear/Conv1D modules are chosen,
|
47 |
+
excluding the output layer. If this is not specified, modules will be chosen according to the model
|
48 |
+
architecture. If the architecture is not known, an error will be raised -- in this case, you should specify
|
49 |
+
the target modules manually.
|
50 |
+
init_weights (`bool`):
|
51 |
+
Whether to perform initialization of adapter weights. This defaults to `True`, passing `False` is
|
52 |
+
discouraged.
|
53 |
+
layers_to_transform (`Union[List[int], int]`):
|
54 |
+
The layer indices to transform. If a list of ints is passed, it will apply the adapter to the layer indices
|
55 |
+
that are specified in this list. If a single integer is passed, it will apply the transformations on the
|
56 |
+
layer at this index.
|
57 |
+
layers_pattern (`str`):
|
58 |
+
The layer pattern name, used only if `layers_to_transform` is different from `None`.
|
59 |
+
rank_pattern (`dict`):
|
60 |
+
The mapping from layer names or regexp expression to ranks which are different from the default rank
|
61 |
+
specified by `r`.
|
62 |
+
alpha_pattern (`dict`):
|
63 |
+
The mapping from layer names or regexp expression to alphas which are different from the default alpha
|
64 |
+
specified by `alpha`.
|
65 |
+
modules_to_save (`Optional[List[str]]`):
|
66 |
+
List of modules apart from adapter layers to be set as trainable and saved in the final checkpoint.
|
67 |
+
"""
|
68 |
+
|
69 |
+
r: int = field(default=8, metadata={"help": "LoKr rank"})
|
70 |
+
alpha: int = field(default=8, metadata={"help": "LoKr alpha"})
|
71 |
+
rank_dropout: float = field(
|
72 |
+
default=0.0, metadata={"help": "The dropout probability for rank dimension during training"}
|
73 |
+
)
|
74 |
+
module_dropout: float = field(
|
75 |
+
default=0.0, metadata={"help": "The dropout probability for disabling LoKr modules during training"}
|
76 |
+
)
|
77 |
+
use_effective_conv2d: bool = field(
|
78 |
+
default=False,
|
79 |
+
metadata={
|
80 |
+
"help": 'Use parameter effective decomposition for Conv2d 3x3 with ksize > 1 ("Proposition 3" from FedPara paper)'
|
81 |
+
},
|
82 |
+
)
|
83 |
+
decompose_both: bool = field(
|
84 |
+
default=False,
|
85 |
+
metadata={"help": "Perform rank decomposition of left kronecker product matrix."},
|
86 |
+
)
|
87 |
+
decompose_factor: int = field(default=-1, metadata={"help": "Kronecker product decomposition factor."})
|
88 |
+
target_modules: Optional[Union[List[str], str]] = field(
|
89 |
+
default=None,
|
90 |
+
metadata={
|
91 |
+
"help": "List of module names or regex expression of the module names to replace with LoKr."
|
92 |
+
"For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$' "
|
93 |
+
"This can also be a wildcard 'all-linear' which matches all linear/Conv1D layers except the output layer."
|
94 |
+
},
|
95 |
+
)
|
96 |
+
init_weights: bool = field(
|
97 |
+
default=True,
|
98 |
+
metadata={
|
99 |
+
"help": (
|
100 |
+
"Whether to initialize the weights of the LoKr layers with their default initialization. Don't change "
|
101 |
+
"this setting, except if you know exactly what you're doing."
|
102 |
+
),
|
103 |
+
},
|
104 |
+
)
|
105 |
+
layers_to_transform: Optional[Union[List[int], int]] = field(
|
106 |
+
default=None,
|
107 |
+
metadata={
|
108 |
+
"help": "The layer indexes to transform, is this argument is specified, PEFT will transform only the layers indexes that are specified inside this list. If a single integer is passed, PEFT will transform only the layer at this index."
|
109 |
+
},
|
110 |
+
)
|
111 |
+
layers_pattern: Optional[str] = field(
|
112 |
+
default=None,
|
113 |
+
metadata={
|
114 |
+
"help": "The layer pattern name, used only if `layers_to_transform` is different to None and if the layer pattern is not in the common layers pattern."
|
115 |
+
},
|
116 |
+
)
|
117 |
+
modules_to_save: Optional[List[str]] = field(
|
118 |
+
default=None,
|
119 |
+
metadata={
|
120 |
+
"help": "List of modules apart from LoKr layers to be set as trainable and saved in the final checkpoint. "
|
121 |
+
"For example, in Sequence Classification or Token Classification tasks, "
|
122 |
+
"the final layer `classifier/score` are randomly initialized and as such need to be trainable and saved."
|
123 |
+
},
|
124 |
+
)
|
125 |
+
|
126 |
+
def __post_init__(self):
|
127 |
+
self.peft_type = PeftType.LOKR
|
venv/lib/python3.10/site-packages/peft/tuners/lokr/layer.py
ADDED
@@ -0,0 +1,409 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import math
|
16 |
+
from typing import Any, Optional, Set, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.nn.functional as F
|
21 |
+
|
22 |
+
from peft.tuners.lycoris_utils import LycorisLayer
|
23 |
+
|
24 |
+
|
25 |
+
class LoKrLayer(nn.Module, LycorisLayer):
|
26 |
+
# All names of layers that may contain adapter weights
|
27 |
+
adapter_layer_names = (
|
28 |
+
"lokr_w1",
|
29 |
+
"lokr_w1_a",
|
30 |
+
"lokr_w1_b",
|
31 |
+
"lokr_w2",
|
32 |
+
"lokr_w2_a",
|
33 |
+
"lokr_w2_b",
|
34 |
+
"lokr_t2",
|
35 |
+
)
|
36 |
+
# other_param_names is defined on parent class
|
37 |
+
|
38 |
+
def __init__(self, base_layer: nn.Module) -> None:
|
39 |
+
super().__init__()
|
40 |
+
LycorisLayer.__init__(self, base_layer)
|
41 |
+
|
42 |
+
# LoKr info
|
43 |
+
self.lokr_w1 = nn.ParameterDict({})
|
44 |
+
self.lokr_w1_a = nn.ParameterDict({})
|
45 |
+
self.lokr_w1_b = nn.ParameterDict({})
|
46 |
+
self.lokr_w2 = nn.ParameterDict({})
|
47 |
+
self.lokr_w2_a = nn.ParameterDict({})
|
48 |
+
self.lokr_w2_b = nn.ParameterDict({})
|
49 |
+
self.lokr_t2 = nn.ParameterDict({})
|
50 |
+
|
51 |
+
@property
|
52 |
+
def _available_adapters(self) -> Set[str]:
|
53 |
+
return {
|
54 |
+
*self.lokr_w1,
|
55 |
+
*self.lokr_w1_a,
|
56 |
+
*self.lokr_w1_b,
|
57 |
+
*self.lokr_w2,
|
58 |
+
*self.lokr_w2_a,
|
59 |
+
*self.lokr_w2_b,
|
60 |
+
*self.lokr_t2,
|
61 |
+
}
|
62 |
+
|
63 |
+
def create_adapter_parameters(
|
64 |
+
self,
|
65 |
+
adapter_name: str,
|
66 |
+
r: int,
|
67 |
+
shape,
|
68 |
+
use_w1: bool,
|
69 |
+
use_w2: bool,
|
70 |
+
use_effective_conv2d: bool,
|
71 |
+
):
|
72 |
+
if use_w1:
|
73 |
+
self.lokr_w1[adapter_name] = nn.Parameter(torch.empty(shape[0][0], shape[1][0]))
|
74 |
+
else:
|
75 |
+
self.lokr_w1_a[adapter_name] = nn.Parameter(torch.empty(shape[0][0], r))
|
76 |
+
self.lokr_w1_b[adapter_name] = nn.Parameter(torch.empty(r, shape[1][0]))
|
77 |
+
|
78 |
+
if len(shape) == 4:
|
79 |
+
# Conv2d
|
80 |
+
if use_w2:
|
81 |
+
self.lokr_w2[adapter_name] = nn.Parameter(torch.empty(shape[0][1], shape[1][1], *shape[2:]))
|
82 |
+
elif use_effective_conv2d:
|
83 |
+
self.lokr_t2[adapter_name] = nn.Parameter(torch.empty(r, r, shape[2], shape[3]))
|
84 |
+
self.lokr_w2_a[adapter_name] = nn.Parameter(torch.empty(r, shape[0][1])) # b, 1-mode
|
85 |
+
self.lokr_w2_b[adapter_name] = nn.Parameter(torch.empty(r, shape[1][1])) # d, 2-mode
|
86 |
+
else:
|
87 |
+
self.lokr_w2_a[adapter_name] = nn.Parameter(torch.empty(shape[0][1], r))
|
88 |
+
self.lokr_w2_b[adapter_name] = nn.Parameter(torch.empty(r, shape[1][1] * shape[2] * shape[3]))
|
89 |
+
else:
|
90 |
+
# Linear
|
91 |
+
if use_w2:
|
92 |
+
self.lokr_w2[adapter_name] = nn.Parameter(torch.empty(shape[0][1], shape[1][1]))
|
93 |
+
else:
|
94 |
+
self.lokr_w2_a[adapter_name] = nn.Parameter(torch.empty(shape[0][1], r))
|
95 |
+
self.lokr_w2_b[adapter_name] = nn.Parameter(torch.empty(r, shape[1][1]))
|
96 |
+
|
97 |
+
def reset_adapter_parameters(self, adapter_name: str):
|
98 |
+
if adapter_name in self.lokr_w1:
|
99 |
+
nn.init.zeros_(self.lokr_w1[adapter_name])
|
100 |
+
else:
|
101 |
+
nn.init.zeros_(self.lokr_w1_a[adapter_name])
|
102 |
+
nn.init.kaiming_uniform_(self.lokr_w1_b[adapter_name], a=math.sqrt(5))
|
103 |
+
|
104 |
+
if adapter_name in self.lokr_w2:
|
105 |
+
nn.init.kaiming_uniform_(self.lokr_w2[adapter_name], a=math.sqrt(5))
|
106 |
+
else:
|
107 |
+
nn.init.kaiming_uniform_(self.lokr_w2_a[adapter_name], a=math.sqrt(5))
|
108 |
+
nn.init.kaiming_uniform_(self.lokr_w2_b[adapter_name], a=math.sqrt(5))
|
109 |
+
|
110 |
+
if adapter_name in self.lokr_t2:
|
111 |
+
nn.init.kaiming_uniform_(self.lokr_t2[adapter_name], a=math.sqrt(5))
|
112 |
+
|
113 |
+
def reset_adapter_parameters_random(self, adapter_name: str):
|
114 |
+
if adapter_name in self.lokr_w1:
|
115 |
+
nn.init.kaiming_uniform_(self.lokr_w1[adapter_name], a=math.sqrt(5))
|
116 |
+
else:
|
117 |
+
nn.init.kaiming_uniform_(self.lokr_w1_a[adapter_name], a=math.sqrt(5))
|
118 |
+
nn.init.kaiming_uniform_(self.lokr_w1_b[adapter_name], a=math.sqrt(5))
|
119 |
+
|
120 |
+
if adapter_name in self.lokr_w2:
|
121 |
+
nn.init.kaiming_uniform_(self.lokr_w2[adapter_name], a=math.sqrt(5))
|
122 |
+
else:
|
123 |
+
nn.init.kaiming_uniform_(self.lokr_w2_a[adapter_name], a=math.sqrt(5))
|
124 |
+
nn.init.kaiming_uniform_(self.lokr_w2_b[adapter_name], a=math.sqrt(5))
|
125 |
+
|
126 |
+
if adapter_name in self.lokr_t2:
|
127 |
+
nn.init.kaiming_uniform_(self.lokr_t2[adapter_name], a=math.sqrt(5))
|
128 |
+
|
129 |
+
def update_layer(
|
130 |
+
self,
|
131 |
+
adapter_name: str,
|
132 |
+
r: int,
|
133 |
+
alpha: float,
|
134 |
+
rank_dropout: float,
|
135 |
+
module_dropout: float,
|
136 |
+
init_weights: bool,
|
137 |
+
use_effective_conv2d: bool,
|
138 |
+
decompose_both: bool,
|
139 |
+
decompose_factor: int,
|
140 |
+
**kwargs,
|
141 |
+
) -> None:
|
142 |
+
"""Internal function to create lokr adapter
|
143 |
+
|
144 |
+
Args:
|
145 |
+
adapter_name (`str`): Name for the adapter to add.
|
146 |
+
r (`int`): Rank for the added adapter.
|
147 |
+
alpha (`float`): Alpha for the added adapter.
|
148 |
+
rank_dropout (`float`): The dropout probability for rank dimension during training
|
149 |
+
module_dropout (`float`): The dropout probability for disabling adapter during training.
|
150 |
+
init_weights (`bool`): Whether to initialize adapter weights.
|
151 |
+
use_effective_conv2d (`bool`): Use parameter effective decomposition for Conv2d with ksize > 1.
|
152 |
+
decompose_both (`bool`): Perform rank decomposition of left kronecker product matrix.
|
153 |
+
decompose_factor (`int`): Kronecker product decomposition factor.
|
154 |
+
"""
|
155 |
+
if r <= 0:
|
156 |
+
raise ValueError(f"`r` should be a positive integer value but the value passed is {r}")
|
157 |
+
|
158 |
+
self.r[adapter_name] = r
|
159 |
+
self.alpha[adapter_name] = alpha
|
160 |
+
self.scaling[adapter_name] = alpha / r
|
161 |
+
self.rank_dropout[adapter_name] = rank_dropout
|
162 |
+
self.module_dropout[adapter_name] = module_dropout
|
163 |
+
base_layer = self.get_base_layer()
|
164 |
+
|
165 |
+
# Determine shape of LoKr weights
|
166 |
+
if isinstance(base_layer, nn.Linear):
|
167 |
+
in_dim, out_dim = base_layer.in_features, base_layer.out_features
|
168 |
+
|
169 |
+
in_m, in_n = factorization(in_dim, decompose_factor)
|
170 |
+
out_l, out_k = factorization(out_dim, decompose_factor)
|
171 |
+
shape = ((out_l, out_k), (in_m, in_n)) # ((a, b), (c, d)), out_dim = a*c, in_dim = b*d
|
172 |
+
|
173 |
+
use_w1 = not (decompose_both and r < max(shape[0][0], shape[1][0]) / 2)
|
174 |
+
use_w2 = not (r < max(shape[0][1], shape[1][1]) / 2)
|
175 |
+
use_effective_conv2d = False
|
176 |
+
elif isinstance(base_layer, nn.Conv2d):
|
177 |
+
in_dim, out_dim = base_layer.in_channels, base_layer.out_channels
|
178 |
+
k_size = base_layer.kernel_size
|
179 |
+
|
180 |
+
in_m, in_n = factorization(in_dim, decompose_factor)
|
181 |
+
out_l, out_k = factorization(out_dim, decompose_factor)
|
182 |
+
shape = ((out_l, out_k), (in_m, in_n), *k_size) # ((a, b), (c, d), *k_size)
|
183 |
+
|
184 |
+
use_w1 = not (decompose_both and r < max(shape[0][0], shape[1][0]) / 2)
|
185 |
+
use_w2 = r >= max(shape[0][1], shape[1][1]) / 2
|
186 |
+
use_effective_conv2d = use_effective_conv2d and base_layer.kernel_size != (1, 1)
|
187 |
+
else:
|
188 |
+
raise TypeError(f"LoKr is not implemented for base layers of type {type(base_layer).__name__}")
|
189 |
+
|
190 |
+
# Create weights with provided shape
|
191 |
+
self.create_adapter_parameters(adapter_name, r, shape, use_w1, use_w2, use_effective_conv2d)
|
192 |
+
|
193 |
+
# Initialize weights
|
194 |
+
if init_weights:
|
195 |
+
self.reset_adapter_parameters(adapter_name)
|
196 |
+
else:
|
197 |
+
self.reset_adapter_parameters_random(adapter_name)
|
198 |
+
|
199 |
+
# Move new weights to device
|
200 |
+
weight = getattr(self.get_base_layer(), "weight", None)
|
201 |
+
if weight is not None:
|
202 |
+
# the layer is already completely initialized, this is an update
|
203 |
+
if weight.dtype.is_floating_point or weight.dtype.is_complex:
|
204 |
+
self.to(weight.device, dtype=weight.dtype)
|
205 |
+
else:
|
206 |
+
self.to(weight.device)
|
207 |
+
self.set_adapter(self.active_adapters)
|
208 |
+
|
209 |
+
def get_delta_weight(self, adapter_name: str) -> torch.Tensor:
|
210 |
+
# https://github.com/KohakuBlueleaf/LyCORIS/blob/e4259b870d3354a9615a96be61cb5d07455c58ea/lycoris/modules/lokr.py#L224
|
211 |
+
if adapter_name in self.lokr_w1:
|
212 |
+
w1 = self.lokr_w1[adapter_name]
|
213 |
+
else:
|
214 |
+
w1 = self.lokr_w1_a[adapter_name] @ self.lokr_w1_b[adapter_name]
|
215 |
+
|
216 |
+
if adapter_name in self.lokr_w2:
|
217 |
+
w2 = self.lokr_w2[adapter_name]
|
218 |
+
elif adapter_name in self.lokr_t2:
|
219 |
+
w2 = make_weight_cp(self.lokr_t2[adapter_name], self.lokr_w2_a[adapter_name], self.lokr_w2_b[adapter_name])
|
220 |
+
else:
|
221 |
+
w2 = self.lokr_w2_a[adapter_name] @ self.lokr_w2_b[adapter_name]
|
222 |
+
|
223 |
+
# Make weights with Kronecker product
|
224 |
+
weight = make_kron(w1, w2)
|
225 |
+
weight = weight.reshape(self.get_base_layer().weight.shape)
|
226 |
+
|
227 |
+
# Perform rank dropout during training - drop rows of addition weights
|
228 |
+
rank_dropout = self.rank_dropout[adapter_name]
|
229 |
+
if self.training and rank_dropout:
|
230 |
+
drop = (torch.rand(weight.size(0)) > rank_dropout).float()
|
231 |
+
drop = drop.view(-1, *[1] * len(weight.shape[1:])).to(weight.device)
|
232 |
+
drop /= drop.mean()
|
233 |
+
weight *= drop
|
234 |
+
|
235 |
+
return weight
|
236 |
+
|
237 |
+
def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
238 |
+
previous_dtype = x.dtype
|
239 |
+
|
240 |
+
if self.disable_adapters:
|
241 |
+
if self.merged:
|
242 |
+
self.unmerge()
|
243 |
+
result = self.base_layer(x, *args, **kwargs)
|
244 |
+
elif self.merged:
|
245 |
+
result = self.base_layer(x, *args, **kwargs)
|
246 |
+
else:
|
247 |
+
result = self.base_layer(x, *args, **kwargs)
|
248 |
+
|
249 |
+
# Execute all the adapters
|
250 |
+
for active_adapter in self.active_adapters:
|
251 |
+
if active_adapter not in self._available_adapters:
|
252 |
+
continue
|
253 |
+
|
254 |
+
module_dropout = self.module_dropout[active_adapter]
|
255 |
+
|
256 |
+
# Modify current execution weights
|
257 |
+
if (not self.training) or (self.training and torch.rand(1) > module_dropout):
|
258 |
+
result = result + self._get_delta_activations(active_adapter, x, *args, **kwargs)
|
259 |
+
|
260 |
+
result = result.to(previous_dtype)
|
261 |
+
return result
|
262 |
+
|
263 |
+
|
264 |
+
class Linear(LoKrLayer):
|
265 |
+
"""LoKr implemented in Linear layer"""
|
266 |
+
|
267 |
+
def __init__(
|
268 |
+
self,
|
269 |
+
base_layer: nn.Module,
|
270 |
+
device: Optional[Union[str, torch.device]] = None,
|
271 |
+
dtype: Optional[torch.dtype] = None,
|
272 |
+
adapter_name: str = "default",
|
273 |
+
r: int = 0,
|
274 |
+
alpha: float = 0.0,
|
275 |
+
rank_dropout: float = 0.0,
|
276 |
+
module_dropout: float = 0.0,
|
277 |
+
init_weights: bool = True,
|
278 |
+
**kwargs,
|
279 |
+
):
|
280 |
+
super().__init__(base_layer)
|
281 |
+
|
282 |
+
# Create adapter and set it active
|
283 |
+
self._active_adapter = adapter_name
|
284 |
+
self.update_layer(adapter_name, r, alpha, rank_dropout, module_dropout, init_weights, **kwargs)
|
285 |
+
|
286 |
+
def _get_delta_activations(
|
287 |
+
self, adapter_name: str, input: torch.Tensor, *args: Any, **kwargs: Any
|
288 |
+
) -> torch.Tensor:
|
289 |
+
delta_weight = self.get_delta_weight(adapter_name)
|
290 |
+
# don't add bias here, because the bias is already included in the output of the base_layer
|
291 |
+
return F.linear(input, delta_weight)
|
292 |
+
|
293 |
+
def __repr__(self) -> str:
|
294 |
+
rep = super().__repr__()
|
295 |
+
return "lokr." + rep
|
296 |
+
|
297 |
+
|
298 |
+
class Conv2d(LoKrLayer):
|
299 |
+
"""LoKr implemented in Conv2d layer"""
|
300 |
+
|
301 |
+
def __init__(
|
302 |
+
self,
|
303 |
+
base_layer: nn.Module,
|
304 |
+
device: Optional[Union[str, torch.device]] = None,
|
305 |
+
dtype: Optional[torch.dtype] = None,
|
306 |
+
adapter_name: str = "default",
|
307 |
+
r: int = 0,
|
308 |
+
alpha: float = 0.0,
|
309 |
+
rank_dropout: float = 0.0,
|
310 |
+
module_dropout: float = 0.0,
|
311 |
+
use_effective_conv2d: bool = False,
|
312 |
+
init_weights: bool = True,
|
313 |
+
**kwargs,
|
314 |
+
):
|
315 |
+
super().__init__(base_layer)
|
316 |
+
|
317 |
+
# Create adapter and set it active
|
318 |
+
self._active_adapter = adapter_name
|
319 |
+
self.update_layer(
|
320 |
+
adapter_name, r, alpha, rank_dropout, module_dropout, init_weights, use_effective_conv2d, **kwargs
|
321 |
+
)
|
322 |
+
|
323 |
+
def _get_delta_activations(
|
324 |
+
self, adapter_name: str, input: torch.Tensor, *args: Any, **kwargs: Any
|
325 |
+
) -> torch.Tensor:
|
326 |
+
delta_weight = self.get_delta_weight(adapter_name)
|
327 |
+
# don't add bias here, because the bias is already included in the output of the base_layer
|
328 |
+
base_layer = self.get_base_layer()
|
329 |
+
return F.conv2d(
|
330 |
+
input,
|
331 |
+
delta_weight,
|
332 |
+
stride=base_layer.stride,
|
333 |
+
padding=base_layer.padding,
|
334 |
+
dilation=base_layer.dilation,
|
335 |
+
groups=base_layer.groups,
|
336 |
+
)
|
337 |
+
|
338 |
+
def __repr__(self) -> str:
|
339 |
+
rep = super().__repr__()
|
340 |
+
return "lokr." + rep
|
341 |
+
|
342 |
+
|
343 |
+
# Below code is a direct copy from https://github.com/KohakuBlueleaf/LyCORIS/blob/eb460098187f752a5d66406d3affade6f0a07ece/lycoris/modules/lokr.py#L11
|
344 |
+
|
345 |
+
|
346 |
+
def factorization(dimension: int, factor: int = -1) -> Tuple[int, int]:
|
347 |
+
"""Factorizes the provided number into the product of two numbers
|
348 |
+
|
349 |
+
Args:
|
350 |
+
dimension (`int`): The number that needs to be factorized.
|
351 |
+
factor (`int`, optional):
|
352 |
+
Factorization divider. The algorithm will try to output two numbers, one of each will be as close to the
|
353 |
+
factor as possible. If -1 is provided, the decomposition algorithm would try to search dividers near the
|
354 |
+
square root of the dimension. Defaults to -1.
|
355 |
+
|
356 |
+
Returns:
|
357 |
+
Tuple[`int`, `int`]: A tuple of two numbers, whose product is equal to the provided number. The first number is
|
358 |
+
always less than or equal to the second.
|
359 |
+
|
360 |
+
Example:
|
361 |
+
```py
|
362 |
+
>>> factorization(256, factor=-1)
|
363 |
+
(16, 16)
|
364 |
+
|
365 |
+
>>> factorization(128, factor=-1)
|
366 |
+
(8, 16)
|
367 |
+
|
368 |
+
>>> factorization(127, factor=-1)
|
369 |
+
(1, 127)
|
370 |
+
|
371 |
+
>>> factorization(128, factor=4)
|
372 |
+
(4, 32)
|
373 |
+
```
|
374 |
+
"""
|
375 |
+
|
376 |
+
if factor > 0 and (dimension % factor) == 0:
|
377 |
+
m = factor
|
378 |
+
n = dimension // factor
|
379 |
+
return m, n
|
380 |
+
if factor == -1:
|
381 |
+
factor = dimension
|
382 |
+
m, n = 1, dimension
|
383 |
+
length = m + n
|
384 |
+
while m < n:
|
385 |
+
new_m = m + 1
|
386 |
+
while dimension % new_m != 0:
|
387 |
+
new_m += 1
|
388 |
+
new_n = dimension // new_m
|
389 |
+
if new_m + new_n > length or new_m > factor:
|
390 |
+
break
|
391 |
+
else:
|
392 |
+
m, n = new_m, new_n
|
393 |
+
if m > n:
|
394 |
+
n, m = m, n
|
395 |
+
return m, n
|
396 |
+
|
397 |
+
|
398 |
+
def make_weight_cp(t, wa, wb):
|
399 |
+
rebuild2 = torch.einsum("i j k l, i p, j r -> p r k l", t, wa, wb) # [c, d, k1, k2]
|
400 |
+
return rebuild2
|
401 |
+
|
402 |
+
|
403 |
+
def make_kron(w1, w2, scale=1.0):
|
404 |
+
if len(w2.shape) == 4:
|
405 |
+
w1 = w1.unsqueeze(2).unsqueeze(2)
|
406 |
+
w2 = w2.contiguous()
|
407 |
+
rebuild = torch.kron(w1, w2)
|
408 |
+
|
409 |
+
return rebuild * scale
|
venv/lib/python3.10/site-packages/peft/tuners/lokr/model.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import re
|
16 |
+
from itertools import chain
|
17 |
+
from typing import Dict, Type, Union
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from torch import nn
|
21 |
+
|
22 |
+
from peft.tuners.lycoris_utils import LycorisConfig, LycorisTuner
|
23 |
+
|
24 |
+
from .layer import Conv2d, Linear, LoKrLayer
|
25 |
+
|
26 |
+
|
27 |
+
class LoKrModel(LycorisTuner):
|
28 |
+
"""
|
29 |
+
Creates Low-Rank Kronecker Product model from a pretrained model. The original method is partially described in
|
30 |
+
https://arxiv.org/abs/2108.06098 and in https://arxiv.org/abs/2309.14859 Current implementation heavily borrows
|
31 |
+
from
|
32 |
+
https://github.com/KohakuBlueleaf/LyCORIS/blob/eb460098187f752a5d66406d3affade6f0a07ece/lycoris/modules/lokr.py
|
33 |
+
|
34 |
+
Args:
|
35 |
+
model (`torch.nn.Module`): The model to which the adapter tuner layers will be attached.
|
36 |
+
config ([`LoKrConfig`]): The configuration of the LoKr model.
|
37 |
+
adapter_name (`str`): The name of the adapter, defaults to `"default"`.
|
38 |
+
|
39 |
+
Returns:
|
40 |
+
`torch.nn.Module`: The LoKr model.
|
41 |
+
|
42 |
+
Example:
|
43 |
+
```py
|
44 |
+
>>> from diffusers import StableDiffusionPipeline
|
45 |
+
>>> from peft import LoKrModel, LoKrConfig
|
46 |
+
|
47 |
+
>>> config_te = LoKrConfig(
|
48 |
+
... r=8,
|
49 |
+
... lora_alpha=32,
|
50 |
+
... target_modules=["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"],
|
51 |
+
... rank_dropout=0.0,
|
52 |
+
... module_dropout=0.0,
|
53 |
+
... init_weights=True,
|
54 |
+
... )
|
55 |
+
>>> config_unet = LoKrConfig(
|
56 |
+
... r=8,
|
57 |
+
... lora_alpha=32,
|
58 |
+
... target_modules=[
|
59 |
+
... "proj_in",
|
60 |
+
... "proj_out",
|
61 |
+
... "to_k",
|
62 |
+
... "to_q",
|
63 |
+
... "to_v",
|
64 |
+
... "to_out.0",
|
65 |
+
... "ff.net.0.proj",
|
66 |
+
... "ff.net.2",
|
67 |
+
... ],
|
68 |
+
... rank_dropout=0.0,
|
69 |
+
... module_dropout=0.0,
|
70 |
+
... init_weights=True,
|
71 |
+
... use_effective_conv2d=True,
|
72 |
+
... )
|
73 |
+
|
74 |
+
>>> model = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
|
75 |
+
>>> model.text_encoder = LoKrModel(model.text_encoder, config_te, "default")
|
76 |
+
>>> model.unet = LoKrModel(model.unet, config_unet, "default")
|
77 |
+
```
|
78 |
+
|
79 |
+
**Attributes**:
|
80 |
+
- **model** ([`~torch.nn.Module`]) -- The model to be adapted.
|
81 |
+
- **peft_config** ([`LoKrConfig`]): The configuration of the LoKr model.
|
82 |
+
"""
|
83 |
+
|
84 |
+
prefix: str = "lokr_"
|
85 |
+
layers_mapping: Dict[Type[torch.nn.Module], Type[LoKrLayer]] = {
|
86 |
+
torch.nn.Conv2d: Conv2d,
|
87 |
+
torch.nn.Linear: Linear,
|
88 |
+
}
|
89 |
+
|
90 |
+
def _create_and_replace(
|
91 |
+
self,
|
92 |
+
config: LycorisConfig,
|
93 |
+
adapter_name: str,
|
94 |
+
target: Union[LoKrLayer, nn.Module],
|
95 |
+
target_name: str,
|
96 |
+
parent: nn.Module,
|
97 |
+
current_key: str,
|
98 |
+
) -> None:
|
99 |
+
"""
|
100 |
+
A private method to create and replace the target module with the adapter module.
|
101 |
+
"""
|
102 |
+
|
103 |
+
# Regexp matching - Find key which matches current target_name in patterns provided
|
104 |
+
pattern_keys = list(chain(config.rank_pattern.keys(), config.alpha_pattern.keys()))
|
105 |
+
target_name_key = next(filter(lambda key: re.match(rf"(.*\.)?{key}$", current_key), pattern_keys), target_name)
|
106 |
+
|
107 |
+
kwargs = config.to_dict()
|
108 |
+
kwargs["r"] = config.rank_pattern.get(target_name_key, config.r)
|
109 |
+
kwargs["alpha"] = config.alpha_pattern.get(target_name_key, config.alpha)
|
110 |
+
|
111 |
+
if isinstance(target, LoKrLayer):
|
112 |
+
target.update_layer(adapter_name, **kwargs)
|
113 |
+
else:
|
114 |
+
new_module = self._create_new_module(config, adapter_name, target, **kwargs)
|
115 |
+
self._replace_module(parent, target_name, new_module, target)
|
venv/lib/python3.10/site-packages/peft/tuners/lora/__init__.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from peft.import_utils import is_bnb_4bit_available, is_bnb_available
|
16 |
+
|
17 |
+
from .config import LoftQConfig, LoraConfig
|
18 |
+
from .gptq import QuantLinear
|
19 |
+
from .layer import Conv2d, Embedding, Linear, LoraLayer
|
20 |
+
from .model import LoraModel
|
21 |
+
|
22 |
+
|
23 |
+
__all__ = ["LoraConfig", "LoftQConfig", "Conv2d", "Embedding", "LoraLayer", "Linear", "LoraModel", "QuantLinear"]
|
24 |
+
|
25 |
+
|
26 |
+
def __getattr__(name):
|
27 |
+
if (name == "Linear8bitLt") and is_bnb_available():
|
28 |
+
from .bnb import Linear8bitLt
|
29 |
+
|
30 |
+
return Linear8bitLt
|
31 |
+
|
32 |
+
if (name == "Linear4bit") and is_bnb_4bit_available():
|
33 |
+
from .bnb import Linear4bit
|
34 |
+
|
35 |
+
return Linear4bit
|
36 |
+
|
37 |
+
raise AttributeError(f"module {__name__} has no attribute {name}")
|
venv/lib/python3.10/site-packages/peft/tuners/lora/aqlm.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import Any, Optional
|
16 |
+
|
17 |
+
import torch
|
18 |
+
|
19 |
+
from peft.import_utils import is_aqlm_available
|
20 |
+
from peft.tuners.lora.layer import LoraLayer
|
21 |
+
from peft.tuners.tuners_utils import BaseTunerLayer
|
22 |
+
|
23 |
+
|
24 |
+
if is_aqlm_available():
|
25 |
+
from aqlm import QuantizedLinear
|
26 |
+
|
27 |
+
|
28 |
+
class AqlmLoraLinear(torch.nn.Module, LoraLayer):
|
29 |
+
def __init__(
|
30 |
+
self,
|
31 |
+
base_layer,
|
32 |
+
adapter_name: str,
|
33 |
+
r: int = 0,
|
34 |
+
lora_alpha: int = 1,
|
35 |
+
lora_dropout: float = 0.0,
|
36 |
+
init_lora_weights: bool = True,
|
37 |
+
use_rslora: bool = False,
|
38 |
+
**kwargs,
|
39 |
+
):
|
40 |
+
super().__init__()
|
41 |
+
LoraLayer.__init__(self, base_layer)
|
42 |
+
|
43 |
+
self._active_adapter = adapter_name
|
44 |
+
self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights, use_rslora)
|
45 |
+
|
46 |
+
def forward(self, x: torch.Tensor):
|
47 |
+
# note: logic differs from default Linear because merging is not supported
|
48 |
+
result = self.base_layer(x)
|
49 |
+
|
50 |
+
if self.disable_adapters:
|
51 |
+
return result
|
52 |
+
|
53 |
+
for active_adapter in self.active_adapters:
|
54 |
+
if active_adapter not in self.lora_A.keys():
|
55 |
+
continue
|
56 |
+
lora_A = self.lora_A[active_adapter]
|
57 |
+
lora_B = self.lora_B[active_adapter]
|
58 |
+
dropout = self.lora_dropout[active_adapter]
|
59 |
+
scaling = self.scaling[active_adapter]
|
60 |
+
|
61 |
+
requires_conversion = not torch.is_autocast_enabled()
|
62 |
+
if requires_conversion:
|
63 |
+
expected_dtype = result.dtype
|
64 |
+
x = x.to(lora_A.weight.dtype)
|
65 |
+
|
66 |
+
output = lora_B(lora_A(dropout(x)))
|
67 |
+
if requires_conversion:
|
68 |
+
output = output.to(expected_dtype)
|
69 |
+
output = output * scaling
|
70 |
+
result += output
|
71 |
+
return result
|
72 |
+
|
73 |
+
def __repr__(self) -> str:
|
74 |
+
rep = super().__repr__()
|
75 |
+
return "lora." + rep
|
76 |
+
|
77 |
+
# TODO: Check if it is better as suggested by users https://github.com/PanQiWei/AutoGPTQ/pull/102
|
78 |
+
# def reset_lora_parameters(self, adapter_name):
|
79 |
+
# if adapter_name in self.lora_A.keys():
|
80 |
+
# torch.nn.init.xavier_uniform_(self.lora_A[adapter_name].weight)
|
81 |
+
# torch.nn.init.zeros_(self.lora_B[adapter_name].weight)
|
82 |
+
|
83 |
+
|
84 |
+
def dispatch_aqlm(
|
85 |
+
target: torch.nn.Module,
|
86 |
+
adapter_name: str,
|
87 |
+
**kwargs: Any,
|
88 |
+
) -> Optional[torch.nn.Module]:
|
89 |
+
new_module = None
|
90 |
+
|
91 |
+
if isinstance(target, BaseTunerLayer):
|
92 |
+
target_base_layer = target.get_base_layer()
|
93 |
+
else:
|
94 |
+
target_base_layer = target
|
95 |
+
|
96 |
+
if is_aqlm_available() and isinstance(target_base_layer, QuantizedLinear):
|
97 |
+
new_module = AqlmLoraLinear(target, adapter_name, **kwargs)
|
98 |
+
target.qweight = target_base_layer.codes
|
99 |
+
|
100 |
+
return new_module
|
venv/lib/python3.10/site-packages/peft/tuners/lora/awq.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import importlib.metadata as importlib_metadata
|
15 |
+
from typing import Any, Optional
|
16 |
+
|
17 |
+
import packaging.version
|
18 |
+
import torch
|
19 |
+
|
20 |
+
from peft.import_utils import is_auto_awq_available
|
21 |
+
from peft.tuners.lora.layer import LoraLayer
|
22 |
+
from peft.tuners.tuners_utils import BaseTunerLayer
|
23 |
+
|
24 |
+
|
25 |
+
if is_auto_awq_available():
|
26 |
+
from awq.modules.linear import WQLinear_GEMM
|
27 |
+
|
28 |
+
|
29 |
+
class AwqLoraLinear(torch.nn.Module, LoraLayer):
|
30 |
+
def __init__(
|
31 |
+
self,
|
32 |
+
base_layer,
|
33 |
+
adapter_name,
|
34 |
+
r: int = 0,
|
35 |
+
lora_alpha: int = 1,
|
36 |
+
lora_dropout: float = 0.0,
|
37 |
+
init_lora_weights: bool = True,
|
38 |
+
use_rslora: bool = False,
|
39 |
+
**kwargs,
|
40 |
+
):
|
41 |
+
super().__init__()
|
42 |
+
LoraLayer.__init__(self, base_layer)
|
43 |
+
|
44 |
+
# self.base_layer and self.quant_linear_module are the same; we need the former for consistency and the latter
|
45 |
+
# for backwards compatibility
|
46 |
+
self.quant_linear_module = base_layer
|
47 |
+
|
48 |
+
self._active_adapter = adapter_name
|
49 |
+
self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights, use_rslora)
|
50 |
+
|
51 |
+
def forward(self, x: torch.Tensor):
|
52 |
+
result = self.quant_linear_module(x)
|
53 |
+
|
54 |
+
if self.disable_adapters:
|
55 |
+
return result
|
56 |
+
|
57 |
+
for active_adapter in self.active_adapters:
|
58 |
+
if active_adapter not in self.lora_A.keys():
|
59 |
+
continue
|
60 |
+
lora_A = self.lora_A[active_adapter]
|
61 |
+
lora_B = self.lora_B[active_adapter]
|
62 |
+
dropout = self.lora_dropout[active_adapter]
|
63 |
+
scaling = self.scaling[active_adapter]
|
64 |
+
|
65 |
+
requires_conversion = not torch.is_autocast_enabled()
|
66 |
+
if requires_conversion:
|
67 |
+
expected_dtype = result.dtype
|
68 |
+
x = x.to(lora_A.weight.dtype)
|
69 |
+
|
70 |
+
output = lora_B(lora_A(dropout(x)))
|
71 |
+
if requires_conversion:
|
72 |
+
output = output.to(expected_dtype)
|
73 |
+
output = output * scaling
|
74 |
+
result = result + output
|
75 |
+
return result
|
76 |
+
|
77 |
+
def __repr__(self) -> str:
|
78 |
+
rep = super().__repr__()
|
79 |
+
return "lora." + rep
|
80 |
+
|
81 |
+
|
82 |
+
def dispatch_awq(
|
83 |
+
target: torch.nn.Module,
|
84 |
+
adapter_name: str,
|
85 |
+
**kwargs: Any,
|
86 |
+
) -> Optional[torch.nn.Module]:
|
87 |
+
new_module = None
|
88 |
+
|
89 |
+
if isinstance(target, BaseTunerLayer):
|
90 |
+
target_base_layer = target.get_base_layer()
|
91 |
+
else:
|
92 |
+
target_base_layer = target
|
93 |
+
|
94 |
+
if is_auto_awq_available() and isinstance(target_base_layer, WQLinear_GEMM):
|
95 |
+
# Raise the error only at the dispatch level
|
96 |
+
AUTOAWQ_MINIMUM_VERSION = packaging.version.parse("0.2.0")
|
97 |
+
version_autoawq = packaging.version.parse(importlib_metadata.version("autoawq"))
|
98 |
+
|
99 |
+
if AUTOAWQ_MINIMUM_VERSION > version_autoawq:
|
100 |
+
raise ImportError(
|
101 |
+
f"Found an incompatible version of auto-awq. Found version {version_autoawq}, "
|
102 |
+
f"but only versions above {AUTOAWQ_MINIMUM_VERSION} are supported for PEFT."
|
103 |
+
)
|
104 |
+
|
105 |
+
new_module = AwqLoraLinear(target, adapter_name, **kwargs)
|
106 |
+
target.qweight = target_base_layer.qweight
|
107 |
+
|
108 |
+
return new_module
|