Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step60/zero/12.attention.dense.weight/fp32.pt +3 -0
- ckpts/universal/global_step60/zero/7.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step60/zero/7.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/numpy/ma/API_CHANGES.txt +135 -0
- venv/lib/python3.10/site-packages/numpy/ma/extras.py +2133 -0
- venv/lib/python3.10/site-packages/numpy/ma/mrecords.py +783 -0
- venv/lib/python3.10/site-packages/numpy/ma/setup.py +12 -0
- venv/lib/python3.10/site-packages/numpy/random/LICENSE.md +71 -0
- venv/lib/python3.10/site-packages/numpy/random/__init__.pxd +14 -0
- venv/lib/python3.10/site-packages/numpy/random/__init__.py +215 -0
- venv/lib/python3.10/site-packages/numpy/random/__init__.pyi +72 -0
- venv/lib/python3.10/site-packages/numpy/random/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/random/__pycache__/_pickle.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/random/_bounded_integers.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/numpy/random/_bounded_integers.pxd +29 -0
- venv/lib/python3.10/site-packages/numpy/random/_common.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/numpy/random/_common.pxd +106 -0
- venv/lib/python3.10/site-packages/numpy/random/_examples/cffi/__pycache__/extending.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/random/_examples/cffi/__pycache__/parse.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/random/_examples/cffi/extending.py +40 -0
- venv/lib/python3.10/site-packages/numpy/random/_examples/cffi/parse.py +54 -0
- venv/lib/python3.10/site-packages/numpy/random/_examples/cython/extending.pyx +78 -0
- venv/lib/python3.10/site-packages/numpy/random/_examples/cython/extending_distributions.pyx +117 -0
- venv/lib/python3.10/site-packages/numpy/random/_examples/cython/meson.build +45 -0
- venv/lib/python3.10/site-packages/numpy/random/_examples/numba/__pycache__/extending.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/random/_examples/numba/__pycache__/extending_distributions.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/random/_examples/numba/extending.py +84 -0
- venv/lib/python3.10/site-packages/numpy/random/_examples/numba/extending_distributions.py +67 -0
- venv/lib/python3.10/site-packages/numpy/random/_generator.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/numpy/random/_generator.pyi +681 -0
- venv/lib/python3.10/site-packages/numpy/random/_mt19937.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/numpy/random/_mt19937.pyi +22 -0
- venv/lib/python3.10/site-packages/numpy/random/_pcg64.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/numpy/random/_pcg64.pyi +42 -0
- venv/lib/python3.10/site-packages/numpy/random/_philox.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/numpy/random/_philox.pyi +36 -0
- venv/lib/python3.10/site-packages/numpy/random/_pickle.py +80 -0
- venv/lib/python3.10/site-packages/numpy/random/_sfc64.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/numpy/random/_sfc64.pyi +28 -0
- venv/lib/python3.10/site-packages/numpy/random/bit_generator.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/numpy/random/bit_generator.pxd +35 -0
- venv/lib/python3.10/site-packages/numpy/random/bit_generator.pyi +112 -0
- venv/lib/python3.10/site-packages/numpy/random/c_distributions.pxd +120 -0
- venv/lib/python3.10/site-packages/numpy/random/lib/libnpyrandom.a +0 -0
- venv/lib/python3.10/site-packages/numpy/random/mtrand.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/numpy/random/mtrand.pyi +571 -0
- venv/lib/python3.10/site-packages/numpy/random/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/random/tests/__pycache__/test_direct.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/random/tests/__pycache__/test_extending.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/random/tests/__pycache__/test_generator_mt19937.cpython-310.pyc +0 -0
ckpts/universal/global_step60/zero/12.attention.dense.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd6b1110c13ab85211ad8249ac8b6dfd16037292725b82a47f10bd6963c6b3ad
|
3 |
+
size 16778317
|
ckpts/universal/global_step60/zero/7.mlp.dense_4h_to_h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6b467f5f41cde22a4508ee4ee598fd25d222fd8806c27cf3093d5dc3f6391e6
|
3 |
+
size 33555612
|
ckpts/universal/global_step60/zero/7.mlp.dense_4h_to_h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f446c591065bd609cced8218e0d82f53080c74ca5b6751479adfa20f9b595e30
|
3 |
+
size 33555533
|
venv/lib/python3.10/site-packages/numpy/ma/API_CHANGES.txt
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.. -*- rest -*-
|
2 |
+
|
3 |
+
==================================================
|
4 |
+
API changes in the new masked array implementation
|
5 |
+
==================================================
|
6 |
+
|
7 |
+
Masked arrays are subclasses of ndarray
|
8 |
+
---------------------------------------
|
9 |
+
|
10 |
+
Contrary to the original implementation, masked arrays are now regular
|
11 |
+
ndarrays::
|
12 |
+
|
13 |
+
>>> x = masked_array([1,2,3],mask=[0,0,1])
|
14 |
+
>>> print isinstance(x, numpy.ndarray)
|
15 |
+
True
|
16 |
+
|
17 |
+
|
18 |
+
``_data`` returns a view of the masked array
|
19 |
+
--------------------------------------------
|
20 |
+
|
21 |
+
Masked arrays are composed of a ``_data`` part and a ``_mask``. Accessing the
|
22 |
+
``_data`` part will return a regular ndarray or any of its subclass, depending
|
23 |
+
on the initial data::
|
24 |
+
|
25 |
+
>>> x = masked_array(numpy.matrix([[1,2],[3,4]]),mask=[[0,0],[0,1]])
|
26 |
+
>>> print x._data
|
27 |
+
[[1 2]
|
28 |
+
[3 4]]
|
29 |
+
>>> print type(x._data)
|
30 |
+
<class 'numpy.matrixlib.defmatrix.matrix'>
|
31 |
+
|
32 |
+
|
33 |
+
In practice, ``_data`` is implemented as a property, not as an attribute.
|
34 |
+
Therefore, you cannot access it directly, and some simple tests such as the
|
35 |
+
following one will fail::
|
36 |
+
|
37 |
+
>>>x._data is x._data
|
38 |
+
False
|
39 |
+
|
40 |
+
|
41 |
+
``filled(x)`` can return a subclass of ndarray
|
42 |
+
----------------------------------------------
|
43 |
+
The function ``filled(a)`` returns an array of the same type as ``a._data``::
|
44 |
+
|
45 |
+
>>> x = masked_array(numpy.matrix([[1,2],[3,4]]),mask=[[0,0],[0,1]])
|
46 |
+
>>> y = filled(x)
|
47 |
+
>>> print type(y)
|
48 |
+
<class 'numpy.matrixlib.defmatrix.matrix'>
|
49 |
+
>>> print y
|
50 |
+
matrix([[ 1, 2],
|
51 |
+
[ 3, 999999]])
|
52 |
+
|
53 |
+
|
54 |
+
``put``, ``putmask`` behave like their ndarray counterparts
|
55 |
+
-----------------------------------------------------------
|
56 |
+
|
57 |
+
Previously, ``putmask`` was used like this::
|
58 |
+
|
59 |
+
mask = [False,True,True]
|
60 |
+
x = array([1,4,7],mask=mask)
|
61 |
+
putmask(x,mask,[3])
|
62 |
+
|
63 |
+
which translated to::
|
64 |
+
|
65 |
+
x[~mask] = [3]
|
66 |
+
|
67 |
+
(Note that a ``True``-value in a mask suppresses a value.)
|
68 |
+
|
69 |
+
In other words, the mask had the same length as ``x``, whereas
|
70 |
+
``values`` had ``sum(~mask)`` elements.
|
71 |
+
|
72 |
+
Now, the behaviour is similar to that of ``ndarray.putmask``, where
|
73 |
+
the mask and the values are both the same length as ``x``, i.e.
|
74 |
+
|
75 |
+
::
|
76 |
+
|
77 |
+
putmask(x,mask,[3,0,0])
|
78 |
+
|
79 |
+
|
80 |
+
``fill_value`` is a property
|
81 |
+
----------------------------
|
82 |
+
|
83 |
+
``fill_value`` is no longer a method, but a property::
|
84 |
+
|
85 |
+
>>> print x.fill_value
|
86 |
+
999999
|
87 |
+
|
88 |
+
``cumsum`` and ``cumprod`` ignore missing values
|
89 |
+
------------------------------------------------
|
90 |
+
|
91 |
+
Missing values are assumed to be the identity element, i.e. 0 for
|
92 |
+
``cumsum`` and 1 for ``cumprod``::
|
93 |
+
|
94 |
+
>>> x = N.ma.array([1,2,3,4],mask=[False,True,False,False])
|
95 |
+
>>> print x
|
96 |
+
[1 -- 3 4]
|
97 |
+
>>> print x.cumsum()
|
98 |
+
[1 -- 4 8]
|
99 |
+
>> print x.cumprod()
|
100 |
+
[1 -- 3 12]
|
101 |
+
|
102 |
+
``bool(x)`` raises a ValueError
|
103 |
+
-------------------------------
|
104 |
+
|
105 |
+
Masked arrays now behave like regular ``ndarrays``, in that they cannot be
|
106 |
+
converted to booleans:
|
107 |
+
|
108 |
+
::
|
109 |
+
|
110 |
+
>>> x = N.ma.array([1,2,3])
|
111 |
+
>>> bool(x)
|
112 |
+
Traceback (most recent call last):
|
113 |
+
File "<stdin>", line 1, in <module>
|
114 |
+
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
|
115 |
+
|
116 |
+
|
117 |
+
==================================
|
118 |
+
New features (non exhaustive list)
|
119 |
+
==================================
|
120 |
+
|
121 |
+
``mr_``
|
122 |
+
-------
|
123 |
+
|
124 |
+
``mr_`` mimics the behavior of ``r_`` for masked arrays::
|
125 |
+
|
126 |
+
>>> np.ma.mr_[3,4,5]
|
127 |
+
masked_array(data = [3 4 5],
|
128 |
+
mask = False,
|
129 |
+
fill_value=999999)
|
130 |
+
|
131 |
+
|
132 |
+
``anom``
|
133 |
+
--------
|
134 |
+
|
135 |
+
The ``anom`` method returns the deviations from the average (anomalies).
|
venv/lib/python3.10/site-packages/numpy/ma/extras.py
ADDED
@@ -0,0 +1,2133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Masked arrays add-ons.
|
3 |
+
|
4 |
+
A collection of utilities for `numpy.ma`.
|
5 |
+
|
6 |
+
:author: Pierre Gerard-Marchant
|
7 |
+
:contact: pierregm_at_uga_dot_edu
|
8 |
+
:version: $Id: extras.py 3473 2007-10-29 15:18:13Z jarrod.millman $
|
9 |
+
|
10 |
+
"""
|
11 |
+
__all__ = [
|
12 |
+
'apply_along_axis', 'apply_over_axes', 'atleast_1d', 'atleast_2d',
|
13 |
+
'atleast_3d', 'average', 'clump_masked', 'clump_unmasked', 'column_stack',
|
14 |
+
'compress_cols', 'compress_nd', 'compress_rowcols', 'compress_rows',
|
15 |
+
'count_masked', 'corrcoef', 'cov', 'diagflat', 'dot', 'dstack', 'ediff1d',
|
16 |
+
'flatnotmasked_contiguous', 'flatnotmasked_edges', 'hsplit', 'hstack',
|
17 |
+
'isin', 'in1d', 'intersect1d', 'mask_cols', 'mask_rowcols', 'mask_rows',
|
18 |
+
'masked_all', 'masked_all_like', 'median', 'mr_', 'ndenumerate',
|
19 |
+
'notmasked_contiguous', 'notmasked_edges', 'polyfit', 'row_stack',
|
20 |
+
'setdiff1d', 'setxor1d', 'stack', 'unique', 'union1d', 'vander', 'vstack',
|
21 |
+
]
|
22 |
+
|
23 |
+
import itertools
|
24 |
+
import warnings
|
25 |
+
|
26 |
+
from . import core as ma
|
27 |
+
from .core import (
|
28 |
+
MaskedArray, MAError, add, array, asarray, concatenate, filled, count,
|
29 |
+
getmask, getmaskarray, make_mask_descr, masked, masked_array, mask_or,
|
30 |
+
nomask, ones, sort, zeros, getdata, get_masked_subclass, dot
|
31 |
+
)
|
32 |
+
|
33 |
+
import numpy as np
|
34 |
+
from numpy import ndarray, array as nxarray
|
35 |
+
from numpy.core.multiarray import normalize_axis_index
|
36 |
+
from numpy.core.numeric import normalize_axis_tuple
|
37 |
+
from numpy.lib.function_base import _ureduce
|
38 |
+
from numpy.lib.index_tricks import AxisConcatenator
|
39 |
+
|
40 |
+
|
41 |
+
def issequence(seq):
|
42 |
+
"""
|
43 |
+
Is seq a sequence (ndarray, list or tuple)?
|
44 |
+
|
45 |
+
"""
|
46 |
+
return isinstance(seq, (ndarray, tuple, list))
|
47 |
+
|
48 |
+
|
49 |
+
def count_masked(arr, axis=None):
|
50 |
+
"""
|
51 |
+
Count the number of masked elements along the given axis.
|
52 |
+
|
53 |
+
Parameters
|
54 |
+
----------
|
55 |
+
arr : array_like
|
56 |
+
An array with (possibly) masked elements.
|
57 |
+
axis : int, optional
|
58 |
+
Axis along which to count. If None (default), a flattened
|
59 |
+
version of the array is used.
|
60 |
+
|
61 |
+
Returns
|
62 |
+
-------
|
63 |
+
count : int, ndarray
|
64 |
+
The total number of masked elements (axis=None) or the number
|
65 |
+
of masked elements along each slice of the given axis.
|
66 |
+
|
67 |
+
See Also
|
68 |
+
--------
|
69 |
+
MaskedArray.count : Count non-masked elements.
|
70 |
+
|
71 |
+
Examples
|
72 |
+
--------
|
73 |
+
>>> import numpy.ma as ma
|
74 |
+
>>> a = np.arange(9).reshape((3,3))
|
75 |
+
>>> a = ma.array(a)
|
76 |
+
>>> a[1, 0] = ma.masked
|
77 |
+
>>> a[1, 2] = ma.masked
|
78 |
+
>>> a[2, 1] = ma.masked
|
79 |
+
>>> a
|
80 |
+
masked_array(
|
81 |
+
data=[[0, 1, 2],
|
82 |
+
[--, 4, --],
|
83 |
+
[6, --, 8]],
|
84 |
+
mask=[[False, False, False],
|
85 |
+
[ True, False, True],
|
86 |
+
[False, True, False]],
|
87 |
+
fill_value=999999)
|
88 |
+
>>> ma.count_masked(a)
|
89 |
+
3
|
90 |
+
|
91 |
+
When the `axis` keyword is used an array is returned.
|
92 |
+
|
93 |
+
>>> ma.count_masked(a, axis=0)
|
94 |
+
array([1, 1, 1])
|
95 |
+
>>> ma.count_masked(a, axis=1)
|
96 |
+
array([0, 2, 1])
|
97 |
+
|
98 |
+
"""
|
99 |
+
m = getmaskarray(arr)
|
100 |
+
return m.sum(axis)
|
101 |
+
|
102 |
+
|
103 |
+
def masked_all(shape, dtype=float):
|
104 |
+
"""
|
105 |
+
Empty masked array with all elements masked.
|
106 |
+
|
107 |
+
Return an empty masked array of the given shape and dtype, where all the
|
108 |
+
data are masked.
|
109 |
+
|
110 |
+
Parameters
|
111 |
+
----------
|
112 |
+
shape : int or tuple of ints
|
113 |
+
Shape of the required MaskedArray, e.g., ``(2, 3)`` or ``2``.
|
114 |
+
dtype : dtype, optional
|
115 |
+
Data type of the output.
|
116 |
+
|
117 |
+
Returns
|
118 |
+
-------
|
119 |
+
a : MaskedArray
|
120 |
+
A masked array with all data masked.
|
121 |
+
|
122 |
+
See Also
|
123 |
+
--------
|
124 |
+
masked_all_like : Empty masked array modelled on an existing array.
|
125 |
+
|
126 |
+
Examples
|
127 |
+
--------
|
128 |
+
>>> import numpy.ma as ma
|
129 |
+
>>> ma.masked_all((3, 3))
|
130 |
+
masked_array(
|
131 |
+
data=[[--, --, --],
|
132 |
+
[--, --, --],
|
133 |
+
[--, --, --]],
|
134 |
+
mask=[[ True, True, True],
|
135 |
+
[ True, True, True],
|
136 |
+
[ True, True, True]],
|
137 |
+
fill_value=1e+20,
|
138 |
+
dtype=float64)
|
139 |
+
|
140 |
+
The `dtype` parameter defines the underlying data type.
|
141 |
+
|
142 |
+
>>> a = ma.masked_all((3, 3))
|
143 |
+
>>> a.dtype
|
144 |
+
dtype('float64')
|
145 |
+
>>> a = ma.masked_all((3, 3), dtype=np.int32)
|
146 |
+
>>> a.dtype
|
147 |
+
dtype('int32')
|
148 |
+
|
149 |
+
"""
|
150 |
+
a = masked_array(np.empty(shape, dtype),
|
151 |
+
mask=np.ones(shape, make_mask_descr(dtype)))
|
152 |
+
return a
|
153 |
+
|
154 |
+
|
155 |
+
def masked_all_like(arr):
|
156 |
+
"""
|
157 |
+
Empty masked array with the properties of an existing array.
|
158 |
+
|
159 |
+
Return an empty masked array of the same shape and dtype as
|
160 |
+
the array `arr`, where all the data are masked.
|
161 |
+
|
162 |
+
Parameters
|
163 |
+
----------
|
164 |
+
arr : ndarray
|
165 |
+
An array describing the shape and dtype of the required MaskedArray.
|
166 |
+
|
167 |
+
Returns
|
168 |
+
-------
|
169 |
+
a : MaskedArray
|
170 |
+
A masked array with all data masked.
|
171 |
+
|
172 |
+
Raises
|
173 |
+
------
|
174 |
+
AttributeError
|
175 |
+
If `arr` doesn't have a shape attribute (i.e. not an ndarray)
|
176 |
+
|
177 |
+
See Also
|
178 |
+
--------
|
179 |
+
masked_all : Empty masked array with all elements masked.
|
180 |
+
|
181 |
+
Examples
|
182 |
+
--------
|
183 |
+
>>> import numpy.ma as ma
|
184 |
+
>>> arr = np.zeros((2, 3), dtype=np.float32)
|
185 |
+
>>> arr
|
186 |
+
array([[0., 0., 0.],
|
187 |
+
[0., 0., 0.]], dtype=float32)
|
188 |
+
>>> ma.masked_all_like(arr)
|
189 |
+
masked_array(
|
190 |
+
data=[[--, --, --],
|
191 |
+
[--, --, --]],
|
192 |
+
mask=[[ True, True, True],
|
193 |
+
[ True, True, True]],
|
194 |
+
fill_value=1e+20,
|
195 |
+
dtype=float32)
|
196 |
+
|
197 |
+
The dtype of the masked array matches the dtype of `arr`.
|
198 |
+
|
199 |
+
>>> arr.dtype
|
200 |
+
dtype('float32')
|
201 |
+
>>> ma.masked_all_like(arr).dtype
|
202 |
+
dtype('float32')
|
203 |
+
|
204 |
+
"""
|
205 |
+
a = np.empty_like(arr).view(MaskedArray)
|
206 |
+
a._mask = np.ones(a.shape, dtype=make_mask_descr(a.dtype))
|
207 |
+
return a
|
208 |
+
|
209 |
+
|
210 |
+
#####--------------------------------------------------------------------------
|
211 |
+
#---- --- Standard functions ---
|
212 |
+
#####--------------------------------------------------------------------------
|
213 |
+
class _fromnxfunction:
|
214 |
+
"""
|
215 |
+
Defines a wrapper to adapt NumPy functions to masked arrays.
|
216 |
+
|
217 |
+
|
218 |
+
An instance of `_fromnxfunction` can be called with the same parameters
|
219 |
+
as the wrapped NumPy function. The docstring of `newfunc` is adapted from
|
220 |
+
the wrapped function as well, see `getdoc`.
|
221 |
+
|
222 |
+
This class should not be used directly. Instead, one of its extensions that
|
223 |
+
provides support for a specific type of input should be used.
|
224 |
+
|
225 |
+
Parameters
|
226 |
+
----------
|
227 |
+
funcname : str
|
228 |
+
The name of the function to be adapted. The function should be
|
229 |
+
in the NumPy namespace (i.e. ``np.funcname``).
|
230 |
+
|
231 |
+
"""
|
232 |
+
|
233 |
+
def __init__(self, funcname):
|
234 |
+
self.__name__ = funcname
|
235 |
+
self.__doc__ = self.getdoc()
|
236 |
+
|
237 |
+
def getdoc(self):
|
238 |
+
"""
|
239 |
+
Retrieve the docstring and signature from the function.
|
240 |
+
|
241 |
+
The ``__doc__`` attribute of the function is used as the docstring for
|
242 |
+
the new masked array version of the function. A note on application
|
243 |
+
of the function to the mask is appended.
|
244 |
+
|
245 |
+
Parameters
|
246 |
+
----------
|
247 |
+
None
|
248 |
+
|
249 |
+
"""
|
250 |
+
npfunc = getattr(np, self.__name__, None)
|
251 |
+
doc = getattr(npfunc, '__doc__', None)
|
252 |
+
if doc:
|
253 |
+
sig = self.__name__ + ma.get_object_signature(npfunc)
|
254 |
+
doc = ma.doc_note(doc, "The function is applied to both the _data "
|
255 |
+
"and the _mask, if any.")
|
256 |
+
return '\n\n'.join((sig, doc))
|
257 |
+
return
|
258 |
+
|
259 |
+
def __call__(self, *args, **params):
|
260 |
+
pass
|
261 |
+
|
262 |
+
|
263 |
+
class _fromnxfunction_single(_fromnxfunction):
|
264 |
+
"""
|
265 |
+
A version of `_fromnxfunction` that is called with a single array
|
266 |
+
argument followed by auxiliary args that are passed verbatim for
|
267 |
+
both the data and mask calls.
|
268 |
+
"""
|
269 |
+
def __call__(self, x, *args, **params):
|
270 |
+
func = getattr(np, self.__name__)
|
271 |
+
if isinstance(x, ndarray):
|
272 |
+
_d = func(x.__array__(), *args, **params)
|
273 |
+
_m = func(getmaskarray(x), *args, **params)
|
274 |
+
return masked_array(_d, mask=_m)
|
275 |
+
else:
|
276 |
+
_d = func(np.asarray(x), *args, **params)
|
277 |
+
_m = func(getmaskarray(x), *args, **params)
|
278 |
+
return masked_array(_d, mask=_m)
|
279 |
+
|
280 |
+
|
281 |
+
class _fromnxfunction_seq(_fromnxfunction):
|
282 |
+
"""
|
283 |
+
A version of `_fromnxfunction` that is called with a single sequence
|
284 |
+
of arrays followed by auxiliary args that are passed verbatim for
|
285 |
+
both the data and mask calls.
|
286 |
+
"""
|
287 |
+
def __call__(self, x, *args, **params):
|
288 |
+
func = getattr(np, self.__name__)
|
289 |
+
_d = func(tuple([np.asarray(a) for a in x]), *args, **params)
|
290 |
+
_m = func(tuple([getmaskarray(a) for a in x]), *args, **params)
|
291 |
+
return masked_array(_d, mask=_m)
|
292 |
+
|
293 |
+
|
294 |
+
class _fromnxfunction_args(_fromnxfunction):
|
295 |
+
"""
|
296 |
+
A version of `_fromnxfunction` that is called with multiple array
|
297 |
+
arguments. The first non-array-like input marks the beginning of the
|
298 |
+
arguments that are passed verbatim for both the data and mask calls.
|
299 |
+
Array arguments are processed independently and the results are
|
300 |
+
returned in a list. If only one array is found, the return value is
|
301 |
+
just the processed array instead of a list.
|
302 |
+
"""
|
303 |
+
def __call__(self, *args, **params):
|
304 |
+
func = getattr(np, self.__name__)
|
305 |
+
arrays = []
|
306 |
+
args = list(args)
|
307 |
+
while len(args) > 0 and issequence(args[0]):
|
308 |
+
arrays.append(args.pop(0))
|
309 |
+
res = []
|
310 |
+
for x in arrays:
|
311 |
+
_d = func(np.asarray(x), *args, **params)
|
312 |
+
_m = func(getmaskarray(x), *args, **params)
|
313 |
+
res.append(masked_array(_d, mask=_m))
|
314 |
+
if len(arrays) == 1:
|
315 |
+
return res[0]
|
316 |
+
return res
|
317 |
+
|
318 |
+
|
319 |
+
class _fromnxfunction_allargs(_fromnxfunction):
|
320 |
+
"""
|
321 |
+
A version of `_fromnxfunction` that is called with multiple array
|
322 |
+
arguments. Similar to `_fromnxfunction_args` except that all args
|
323 |
+
are converted to arrays even if they are not so already. This makes
|
324 |
+
it possible to process scalars as 1-D arrays. Only keyword arguments
|
325 |
+
are passed through verbatim for the data and mask calls. Arrays
|
326 |
+
arguments are processed independently and the results are returned
|
327 |
+
in a list. If only one arg is present, the return value is just the
|
328 |
+
processed array instead of a list.
|
329 |
+
"""
|
330 |
+
def __call__(self, *args, **params):
|
331 |
+
func = getattr(np, self.__name__)
|
332 |
+
res = []
|
333 |
+
for x in args:
|
334 |
+
_d = func(np.asarray(x), **params)
|
335 |
+
_m = func(getmaskarray(x), **params)
|
336 |
+
res.append(masked_array(_d, mask=_m))
|
337 |
+
if len(args) == 1:
|
338 |
+
return res[0]
|
339 |
+
return res
|
340 |
+
|
341 |
+
|
342 |
+
atleast_1d = _fromnxfunction_allargs('atleast_1d')
|
343 |
+
atleast_2d = _fromnxfunction_allargs('atleast_2d')
|
344 |
+
atleast_3d = _fromnxfunction_allargs('atleast_3d')
|
345 |
+
|
346 |
+
vstack = row_stack = _fromnxfunction_seq('vstack')
|
347 |
+
hstack = _fromnxfunction_seq('hstack')
|
348 |
+
column_stack = _fromnxfunction_seq('column_stack')
|
349 |
+
dstack = _fromnxfunction_seq('dstack')
|
350 |
+
stack = _fromnxfunction_seq('stack')
|
351 |
+
|
352 |
+
hsplit = _fromnxfunction_single('hsplit')
|
353 |
+
|
354 |
+
diagflat = _fromnxfunction_single('diagflat')
|
355 |
+
|
356 |
+
|
357 |
+
#####--------------------------------------------------------------------------
|
358 |
+
#----
|
359 |
+
#####--------------------------------------------------------------------------
|
360 |
+
def flatten_inplace(seq):
|
361 |
+
"""Flatten a sequence in place."""
|
362 |
+
k = 0
|
363 |
+
while (k != len(seq)):
|
364 |
+
while hasattr(seq[k], '__iter__'):
|
365 |
+
seq[k:(k + 1)] = seq[k]
|
366 |
+
k += 1
|
367 |
+
return seq
|
368 |
+
|
369 |
+
|
370 |
+
def apply_along_axis(func1d, axis, arr, *args, **kwargs):
|
371 |
+
"""
|
372 |
+
(This docstring should be overwritten)
|
373 |
+
"""
|
374 |
+
arr = array(arr, copy=False, subok=True)
|
375 |
+
nd = arr.ndim
|
376 |
+
axis = normalize_axis_index(axis, nd)
|
377 |
+
ind = [0] * (nd - 1)
|
378 |
+
i = np.zeros(nd, 'O')
|
379 |
+
indlist = list(range(nd))
|
380 |
+
indlist.remove(axis)
|
381 |
+
i[axis] = slice(None, None)
|
382 |
+
outshape = np.asarray(arr.shape).take(indlist)
|
383 |
+
i.put(indlist, ind)
|
384 |
+
res = func1d(arr[tuple(i.tolist())], *args, **kwargs)
|
385 |
+
# if res is a number, then we have a smaller output array
|
386 |
+
asscalar = np.isscalar(res)
|
387 |
+
if not asscalar:
|
388 |
+
try:
|
389 |
+
len(res)
|
390 |
+
except TypeError:
|
391 |
+
asscalar = True
|
392 |
+
# Note: we shouldn't set the dtype of the output from the first result
|
393 |
+
# so we force the type to object, and build a list of dtypes. We'll
|
394 |
+
# just take the largest, to avoid some downcasting
|
395 |
+
dtypes = []
|
396 |
+
if asscalar:
|
397 |
+
dtypes.append(np.asarray(res).dtype)
|
398 |
+
outarr = zeros(outshape, object)
|
399 |
+
outarr[tuple(ind)] = res
|
400 |
+
Ntot = np.prod(outshape)
|
401 |
+
k = 1
|
402 |
+
while k < Ntot:
|
403 |
+
# increment the index
|
404 |
+
ind[-1] += 1
|
405 |
+
n = -1
|
406 |
+
while (ind[n] >= outshape[n]) and (n > (1 - nd)):
|
407 |
+
ind[n - 1] += 1
|
408 |
+
ind[n] = 0
|
409 |
+
n -= 1
|
410 |
+
i.put(indlist, ind)
|
411 |
+
res = func1d(arr[tuple(i.tolist())], *args, **kwargs)
|
412 |
+
outarr[tuple(ind)] = res
|
413 |
+
dtypes.append(asarray(res).dtype)
|
414 |
+
k += 1
|
415 |
+
else:
|
416 |
+
res = array(res, copy=False, subok=True)
|
417 |
+
j = i.copy()
|
418 |
+
j[axis] = ([slice(None, None)] * res.ndim)
|
419 |
+
j.put(indlist, ind)
|
420 |
+
Ntot = np.prod(outshape)
|
421 |
+
holdshape = outshape
|
422 |
+
outshape = list(arr.shape)
|
423 |
+
outshape[axis] = res.shape
|
424 |
+
dtypes.append(asarray(res).dtype)
|
425 |
+
outshape = flatten_inplace(outshape)
|
426 |
+
outarr = zeros(outshape, object)
|
427 |
+
outarr[tuple(flatten_inplace(j.tolist()))] = res
|
428 |
+
k = 1
|
429 |
+
while k < Ntot:
|
430 |
+
# increment the index
|
431 |
+
ind[-1] += 1
|
432 |
+
n = -1
|
433 |
+
while (ind[n] >= holdshape[n]) and (n > (1 - nd)):
|
434 |
+
ind[n - 1] += 1
|
435 |
+
ind[n] = 0
|
436 |
+
n -= 1
|
437 |
+
i.put(indlist, ind)
|
438 |
+
j.put(indlist, ind)
|
439 |
+
res = func1d(arr[tuple(i.tolist())], *args, **kwargs)
|
440 |
+
outarr[tuple(flatten_inplace(j.tolist()))] = res
|
441 |
+
dtypes.append(asarray(res).dtype)
|
442 |
+
k += 1
|
443 |
+
max_dtypes = np.dtype(np.asarray(dtypes).max())
|
444 |
+
if not hasattr(arr, '_mask'):
|
445 |
+
result = np.asarray(outarr, dtype=max_dtypes)
|
446 |
+
else:
|
447 |
+
result = asarray(outarr, dtype=max_dtypes)
|
448 |
+
result.fill_value = ma.default_fill_value(result)
|
449 |
+
return result
|
450 |
+
apply_along_axis.__doc__ = np.apply_along_axis.__doc__
|
451 |
+
|
452 |
+
|
453 |
+
def apply_over_axes(func, a, axes):
|
454 |
+
"""
|
455 |
+
(This docstring will be overwritten)
|
456 |
+
"""
|
457 |
+
val = asarray(a)
|
458 |
+
N = a.ndim
|
459 |
+
if array(axes).ndim == 0:
|
460 |
+
axes = (axes,)
|
461 |
+
for axis in axes:
|
462 |
+
if axis < 0:
|
463 |
+
axis = N + axis
|
464 |
+
args = (val, axis)
|
465 |
+
res = func(*args)
|
466 |
+
if res.ndim == val.ndim:
|
467 |
+
val = res
|
468 |
+
else:
|
469 |
+
res = ma.expand_dims(res, axis)
|
470 |
+
if res.ndim == val.ndim:
|
471 |
+
val = res
|
472 |
+
else:
|
473 |
+
raise ValueError("function is not returning "
|
474 |
+
"an array of the correct shape")
|
475 |
+
return val
|
476 |
+
|
477 |
+
|
478 |
+
if apply_over_axes.__doc__ is not None:
|
479 |
+
apply_over_axes.__doc__ = np.apply_over_axes.__doc__[
|
480 |
+
:np.apply_over_axes.__doc__.find('Notes')].rstrip() + \
|
481 |
+
"""
|
482 |
+
|
483 |
+
Examples
|
484 |
+
--------
|
485 |
+
>>> a = np.ma.arange(24).reshape(2,3,4)
|
486 |
+
>>> a[:,0,1] = np.ma.masked
|
487 |
+
>>> a[:,1,:] = np.ma.masked
|
488 |
+
>>> a
|
489 |
+
masked_array(
|
490 |
+
data=[[[0, --, 2, 3],
|
491 |
+
[--, --, --, --],
|
492 |
+
[8, 9, 10, 11]],
|
493 |
+
[[12, --, 14, 15],
|
494 |
+
[--, --, --, --],
|
495 |
+
[20, 21, 22, 23]]],
|
496 |
+
mask=[[[False, True, False, False],
|
497 |
+
[ True, True, True, True],
|
498 |
+
[False, False, False, False]],
|
499 |
+
[[False, True, False, False],
|
500 |
+
[ True, True, True, True],
|
501 |
+
[False, False, False, False]]],
|
502 |
+
fill_value=999999)
|
503 |
+
>>> np.ma.apply_over_axes(np.ma.sum, a, [0,2])
|
504 |
+
masked_array(
|
505 |
+
data=[[[46],
|
506 |
+
[--],
|
507 |
+
[124]]],
|
508 |
+
mask=[[[False],
|
509 |
+
[ True],
|
510 |
+
[False]]],
|
511 |
+
fill_value=999999)
|
512 |
+
|
513 |
+
Tuple axis arguments to ufuncs are equivalent:
|
514 |
+
|
515 |
+
>>> np.ma.sum(a, axis=(0,2)).reshape((1,-1,1))
|
516 |
+
masked_array(
|
517 |
+
data=[[[46],
|
518 |
+
[--],
|
519 |
+
[124]]],
|
520 |
+
mask=[[[False],
|
521 |
+
[ True],
|
522 |
+
[False]]],
|
523 |
+
fill_value=999999)
|
524 |
+
"""
|
525 |
+
|
526 |
+
|
527 |
+
def average(a, axis=None, weights=None, returned=False, *,
|
528 |
+
keepdims=np._NoValue):
|
529 |
+
"""
|
530 |
+
Return the weighted average of array over the given axis.
|
531 |
+
|
532 |
+
Parameters
|
533 |
+
----------
|
534 |
+
a : array_like
|
535 |
+
Data to be averaged.
|
536 |
+
Masked entries are not taken into account in the computation.
|
537 |
+
axis : int, optional
|
538 |
+
Axis along which to average `a`. If None, averaging is done over
|
539 |
+
the flattened array.
|
540 |
+
weights : array_like, optional
|
541 |
+
The importance that each element has in the computation of the average.
|
542 |
+
The weights array can either be 1-D (in which case its length must be
|
543 |
+
the size of `a` along the given axis) or of the same shape as `a`.
|
544 |
+
If ``weights=None``, then all data in `a` are assumed to have a
|
545 |
+
weight equal to one. The 1-D calculation is::
|
546 |
+
|
547 |
+
avg = sum(a * weights) / sum(weights)
|
548 |
+
|
549 |
+
The only constraint on `weights` is that `sum(weights)` must not be 0.
|
550 |
+
returned : bool, optional
|
551 |
+
Flag indicating whether a tuple ``(result, sum of weights)``
|
552 |
+
should be returned as output (True), or just the result (False).
|
553 |
+
Default is False.
|
554 |
+
keepdims : bool, optional
|
555 |
+
If this is set to True, the axes which are reduced are left
|
556 |
+
in the result as dimensions with size one. With this option,
|
557 |
+
the result will broadcast correctly against the original `a`.
|
558 |
+
*Note:* `keepdims` will not work with instances of `numpy.matrix`
|
559 |
+
or other classes whose methods do not support `keepdims`.
|
560 |
+
|
561 |
+
.. versionadded:: 1.23.0
|
562 |
+
|
563 |
+
Returns
|
564 |
+
-------
|
565 |
+
average, [sum_of_weights] : (tuple of) scalar or MaskedArray
|
566 |
+
The average along the specified axis. When returned is `True`,
|
567 |
+
return a tuple with the average as the first element and the sum
|
568 |
+
of the weights as the second element. The return type is `np.float64`
|
569 |
+
if `a` is of integer type and floats smaller than `float64`, or the
|
570 |
+
input data-type, otherwise. If returned, `sum_of_weights` is always
|
571 |
+
`float64`.
|
572 |
+
|
573 |
+
Examples
|
574 |
+
--------
|
575 |
+
>>> a = np.ma.array([1., 2., 3., 4.], mask=[False, False, True, True])
|
576 |
+
>>> np.ma.average(a, weights=[3, 1, 0, 0])
|
577 |
+
1.25
|
578 |
+
|
579 |
+
>>> x = np.ma.arange(6.).reshape(3, 2)
|
580 |
+
>>> x
|
581 |
+
masked_array(
|
582 |
+
data=[[0., 1.],
|
583 |
+
[2., 3.],
|
584 |
+
[4., 5.]],
|
585 |
+
mask=False,
|
586 |
+
fill_value=1e+20)
|
587 |
+
>>> avg, sumweights = np.ma.average(x, axis=0, weights=[1, 2, 3],
|
588 |
+
... returned=True)
|
589 |
+
>>> avg
|
590 |
+
masked_array(data=[2.6666666666666665, 3.6666666666666665],
|
591 |
+
mask=[False, False],
|
592 |
+
fill_value=1e+20)
|
593 |
+
|
594 |
+
With ``keepdims=True``, the following result has shape (3, 1).
|
595 |
+
|
596 |
+
>>> np.ma.average(x, axis=1, keepdims=True)
|
597 |
+
masked_array(
|
598 |
+
data=[[0.5],
|
599 |
+
[2.5],
|
600 |
+
[4.5]],
|
601 |
+
mask=False,
|
602 |
+
fill_value=1e+20)
|
603 |
+
"""
|
604 |
+
a = asarray(a)
|
605 |
+
m = getmask(a)
|
606 |
+
|
607 |
+
# inspired by 'average' in numpy/lib/function_base.py
|
608 |
+
|
609 |
+
if keepdims is np._NoValue:
|
610 |
+
# Don't pass on the keepdims argument if one wasn't given.
|
611 |
+
keepdims_kw = {}
|
612 |
+
else:
|
613 |
+
keepdims_kw = {'keepdims': keepdims}
|
614 |
+
|
615 |
+
if weights is None:
|
616 |
+
avg = a.mean(axis, **keepdims_kw)
|
617 |
+
scl = avg.dtype.type(a.count(axis))
|
618 |
+
else:
|
619 |
+
wgt = asarray(weights)
|
620 |
+
|
621 |
+
if issubclass(a.dtype.type, (np.integer, np.bool_)):
|
622 |
+
result_dtype = np.result_type(a.dtype, wgt.dtype, 'f8')
|
623 |
+
else:
|
624 |
+
result_dtype = np.result_type(a.dtype, wgt.dtype)
|
625 |
+
|
626 |
+
# Sanity checks
|
627 |
+
if a.shape != wgt.shape:
|
628 |
+
if axis is None:
|
629 |
+
raise TypeError(
|
630 |
+
"Axis must be specified when shapes of a and weights "
|
631 |
+
"differ.")
|
632 |
+
if wgt.ndim != 1:
|
633 |
+
raise TypeError(
|
634 |
+
"1D weights expected when shapes of a and weights differ.")
|
635 |
+
if wgt.shape[0] != a.shape[axis]:
|
636 |
+
raise ValueError(
|
637 |
+
"Length of weights not compatible with specified axis.")
|
638 |
+
|
639 |
+
# setup wgt to broadcast along axis
|
640 |
+
wgt = np.broadcast_to(wgt, (a.ndim-1)*(1,) + wgt.shape, subok=True)
|
641 |
+
wgt = wgt.swapaxes(-1, axis)
|
642 |
+
|
643 |
+
if m is not nomask:
|
644 |
+
wgt = wgt*(~a.mask)
|
645 |
+
wgt.mask |= a.mask
|
646 |
+
|
647 |
+
scl = wgt.sum(axis=axis, dtype=result_dtype, **keepdims_kw)
|
648 |
+
avg = np.multiply(a, wgt,
|
649 |
+
dtype=result_dtype).sum(axis, **keepdims_kw) / scl
|
650 |
+
|
651 |
+
if returned:
|
652 |
+
if scl.shape != avg.shape:
|
653 |
+
scl = np.broadcast_to(scl, avg.shape).copy()
|
654 |
+
return avg, scl
|
655 |
+
else:
|
656 |
+
return avg
|
657 |
+
|
658 |
+
|
659 |
+
def median(a, axis=None, out=None, overwrite_input=False, keepdims=False):
|
660 |
+
"""
|
661 |
+
Compute the median along the specified axis.
|
662 |
+
|
663 |
+
Returns the median of the array elements.
|
664 |
+
|
665 |
+
Parameters
|
666 |
+
----------
|
667 |
+
a : array_like
|
668 |
+
Input array or object that can be converted to an array.
|
669 |
+
axis : int, optional
|
670 |
+
Axis along which the medians are computed. The default (None) is
|
671 |
+
to compute the median along a flattened version of the array.
|
672 |
+
out : ndarray, optional
|
673 |
+
Alternative output array in which to place the result. It must
|
674 |
+
have the same shape and buffer length as the expected output
|
675 |
+
but the type will be cast if necessary.
|
676 |
+
overwrite_input : bool, optional
|
677 |
+
If True, then allow use of memory of input array (a) for
|
678 |
+
calculations. The input array will be modified by the call to
|
679 |
+
median. This will save memory when you do not need to preserve
|
680 |
+
the contents of the input array. Treat the input as undefined,
|
681 |
+
but it will probably be fully or partially sorted. Default is
|
682 |
+
False. Note that, if `overwrite_input` is True, and the input
|
683 |
+
is not already an `ndarray`, an error will be raised.
|
684 |
+
keepdims : bool, optional
|
685 |
+
If this is set to True, the axes which are reduced are left
|
686 |
+
in the result as dimensions with size one. With this option,
|
687 |
+
the result will broadcast correctly against the input array.
|
688 |
+
|
689 |
+
.. versionadded:: 1.10.0
|
690 |
+
|
691 |
+
Returns
|
692 |
+
-------
|
693 |
+
median : ndarray
|
694 |
+
A new array holding the result is returned unless out is
|
695 |
+
specified, in which case a reference to out is returned.
|
696 |
+
Return data-type is `float64` for integers and floats smaller than
|
697 |
+
`float64`, or the input data-type, otherwise.
|
698 |
+
|
699 |
+
See Also
|
700 |
+
--------
|
701 |
+
mean
|
702 |
+
|
703 |
+
Notes
|
704 |
+
-----
|
705 |
+
Given a vector ``V`` with ``N`` non masked values, the median of ``V``
|
706 |
+
is the middle value of a sorted copy of ``V`` (``Vs``) - i.e.
|
707 |
+
``Vs[(N-1)/2]``, when ``N`` is odd, or ``{Vs[N/2 - 1] + Vs[N/2]}/2``
|
708 |
+
when ``N`` is even.
|
709 |
+
|
710 |
+
Examples
|
711 |
+
--------
|
712 |
+
>>> x = np.ma.array(np.arange(8), mask=[0]*4 + [1]*4)
|
713 |
+
>>> np.ma.median(x)
|
714 |
+
1.5
|
715 |
+
|
716 |
+
>>> x = np.ma.array(np.arange(10).reshape(2, 5), mask=[0]*6 + [1]*4)
|
717 |
+
>>> np.ma.median(x)
|
718 |
+
2.5
|
719 |
+
>>> np.ma.median(x, axis=-1, overwrite_input=True)
|
720 |
+
masked_array(data=[2.0, 5.0],
|
721 |
+
mask=[False, False],
|
722 |
+
fill_value=1e+20)
|
723 |
+
|
724 |
+
"""
|
725 |
+
if not hasattr(a, 'mask'):
|
726 |
+
m = np.median(getdata(a, subok=True), axis=axis,
|
727 |
+
out=out, overwrite_input=overwrite_input,
|
728 |
+
keepdims=keepdims)
|
729 |
+
if isinstance(m, np.ndarray) and 1 <= m.ndim:
|
730 |
+
return masked_array(m, copy=False)
|
731 |
+
else:
|
732 |
+
return m
|
733 |
+
|
734 |
+
return _ureduce(a, func=_median, keepdims=keepdims, axis=axis, out=out,
|
735 |
+
overwrite_input=overwrite_input)
|
736 |
+
|
737 |
+
|
738 |
+
def _median(a, axis=None, out=None, overwrite_input=False):
|
739 |
+
# when an unmasked NaN is present return it, so we need to sort the NaN
|
740 |
+
# values behind the mask
|
741 |
+
if np.issubdtype(a.dtype, np.inexact):
|
742 |
+
fill_value = np.inf
|
743 |
+
else:
|
744 |
+
fill_value = None
|
745 |
+
if overwrite_input:
|
746 |
+
if axis is None:
|
747 |
+
asorted = a.ravel()
|
748 |
+
asorted.sort(fill_value=fill_value)
|
749 |
+
else:
|
750 |
+
a.sort(axis=axis, fill_value=fill_value)
|
751 |
+
asorted = a
|
752 |
+
else:
|
753 |
+
asorted = sort(a, axis=axis, fill_value=fill_value)
|
754 |
+
|
755 |
+
if axis is None:
|
756 |
+
axis = 0
|
757 |
+
else:
|
758 |
+
axis = normalize_axis_index(axis, asorted.ndim)
|
759 |
+
|
760 |
+
if asorted.shape[axis] == 0:
|
761 |
+
# for empty axis integer indices fail so use slicing to get same result
|
762 |
+
# as median (which is mean of empty slice = nan)
|
763 |
+
indexer = [slice(None)] * asorted.ndim
|
764 |
+
indexer[axis] = slice(0, 0)
|
765 |
+
indexer = tuple(indexer)
|
766 |
+
return np.ma.mean(asorted[indexer], axis=axis, out=out)
|
767 |
+
|
768 |
+
if asorted.ndim == 1:
|
769 |
+
idx, odd = divmod(count(asorted), 2)
|
770 |
+
mid = asorted[idx + odd - 1:idx + 1]
|
771 |
+
if np.issubdtype(asorted.dtype, np.inexact) and asorted.size > 0:
|
772 |
+
# avoid inf / x = masked
|
773 |
+
s = mid.sum(out=out)
|
774 |
+
if not odd:
|
775 |
+
s = np.true_divide(s, 2., casting='safe', out=out)
|
776 |
+
s = np.lib.utils._median_nancheck(asorted, s, axis)
|
777 |
+
else:
|
778 |
+
s = mid.mean(out=out)
|
779 |
+
|
780 |
+
# if result is masked either the input contained enough
|
781 |
+
# minimum_fill_value so that it would be the median or all values
|
782 |
+
# masked
|
783 |
+
if np.ma.is_masked(s) and not np.all(asorted.mask):
|
784 |
+
return np.ma.minimum_fill_value(asorted)
|
785 |
+
return s
|
786 |
+
|
787 |
+
counts = count(asorted, axis=axis, keepdims=True)
|
788 |
+
h = counts // 2
|
789 |
+
|
790 |
+
# duplicate high if odd number of elements so mean does nothing
|
791 |
+
odd = counts % 2 == 1
|
792 |
+
l = np.where(odd, h, h-1)
|
793 |
+
|
794 |
+
lh = np.concatenate([l,h], axis=axis)
|
795 |
+
|
796 |
+
# get low and high median
|
797 |
+
low_high = np.take_along_axis(asorted, lh, axis=axis)
|
798 |
+
|
799 |
+
def replace_masked(s):
|
800 |
+
# Replace masked entries with minimum_full_value unless it all values
|
801 |
+
# are masked. This is required as the sort order of values equal or
|
802 |
+
# larger than the fill value is undefined and a valid value placed
|
803 |
+
# elsewhere, e.g. [4, --, inf].
|
804 |
+
if np.ma.is_masked(s):
|
805 |
+
rep = (~np.all(asorted.mask, axis=axis, keepdims=True)) & s.mask
|
806 |
+
s.data[rep] = np.ma.minimum_fill_value(asorted)
|
807 |
+
s.mask[rep] = False
|
808 |
+
|
809 |
+
replace_masked(low_high)
|
810 |
+
|
811 |
+
if np.issubdtype(asorted.dtype, np.inexact):
|
812 |
+
# avoid inf / x = masked
|
813 |
+
s = np.ma.sum(low_high, axis=axis, out=out)
|
814 |
+
np.true_divide(s.data, 2., casting='unsafe', out=s.data)
|
815 |
+
|
816 |
+
s = np.lib.utils._median_nancheck(asorted, s, axis)
|
817 |
+
else:
|
818 |
+
s = np.ma.mean(low_high, axis=axis, out=out)
|
819 |
+
|
820 |
+
return s
|
821 |
+
|
822 |
+
|
823 |
+
def compress_nd(x, axis=None):
|
824 |
+
"""Suppress slices from multiple dimensions which contain masked values.
|
825 |
+
|
826 |
+
Parameters
|
827 |
+
----------
|
828 |
+
x : array_like, MaskedArray
|
829 |
+
The array to operate on. If not a MaskedArray instance (or if no array
|
830 |
+
elements are masked), `x` is interpreted as a MaskedArray with `mask`
|
831 |
+
set to `nomask`.
|
832 |
+
axis : tuple of ints or int, optional
|
833 |
+
Which dimensions to suppress slices from can be configured with this
|
834 |
+
parameter.
|
835 |
+
- If axis is a tuple of ints, those are the axes to suppress slices from.
|
836 |
+
- If axis is an int, then that is the only axis to suppress slices from.
|
837 |
+
- If axis is None, all axis are selected.
|
838 |
+
|
839 |
+
Returns
|
840 |
+
-------
|
841 |
+
compress_array : ndarray
|
842 |
+
The compressed array.
|
843 |
+
"""
|
844 |
+
x = asarray(x)
|
845 |
+
m = getmask(x)
|
846 |
+
# Set axis to tuple of ints
|
847 |
+
if axis is None:
|
848 |
+
axis = tuple(range(x.ndim))
|
849 |
+
else:
|
850 |
+
axis = normalize_axis_tuple(axis, x.ndim)
|
851 |
+
|
852 |
+
# Nothing is masked: return x
|
853 |
+
if m is nomask or not m.any():
|
854 |
+
return x._data
|
855 |
+
# All is masked: return empty
|
856 |
+
if m.all():
|
857 |
+
return nxarray([])
|
858 |
+
# Filter elements through boolean indexing
|
859 |
+
data = x._data
|
860 |
+
for ax in axis:
|
861 |
+
axes = tuple(list(range(ax)) + list(range(ax + 1, x.ndim)))
|
862 |
+
data = data[(slice(None),)*ax + (~m.any(axis=axes),)]
|
863 |
+
return data
|
864 |
+
|
865 |
+
|
866 |
+
def compress_rowcols(x, axis=None):
|
867 |
+
"""
|
868 |
+
Suppress the rows and/or columns of a 2-D array that contain
|
869 |
+
masked values.
|
870 |
+
|
871 |
+
The suppression behavior is selected with the `axis` parameter.
|
872 |
+
|
873 |
+
- If axis is None, both rows and columns are suppressed.
|
874 |
+
- If axis is 0, only rows are suppressed.
|
875 |
+
- If axis is 1 or -1, only columns are suppressed.
|
876 |
+
|
877 |
+
Parameters
|
878 |
+
----------
|
879 |
+
x : array_like, MaskedArray
|
880 |
+
The array to operate on. If not a MaskedArray instance (or if no array
|
881 |
+
elements are masked), `x` is interpreted as a MaskedArray with
|
882 |
+
`mask` set to `nomask`. Must be a 2D array.
|
883 |
+
axis : int, optional
|
884 |
+
Axis along which to perform the operation. Default is None.
|
885 |
+
|
886 |
+
Returns
|
887 |
+
-------
|
888 |
+
compressed_array : ndarray
|
889 |
+
The compressed array.
|
890 |
+
|
891 |
+
Examples
|
892 |
+
--------
|
893 |
+
>>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0],
|
894 |
+
... [1, 0, 0],
|
895 |
+
... [0, 0, 0]])
|
896 |
+
>>> x
|
897 |
+
masked_array(
|
898 |
+
data=[[--, 1, 2],
|
899 |
+
[--, 4, 5],
|
900 |
+
[6, 7, 8]],
|
901 |
+
mask=[[ True, False, False],
|
902 |
+
[ True, False, False],
|
903 |
+
[False, False, False]],
|
904 |
+
fill_value=999999)
|
905 |
+
|
906 |
+
>>> np.ma.compress_rowcols(x)
|
907 |
+
array([[7, 8]])
|
908 |
+
>>> np.ma.compress_rowcols(x, 0)
|
909 |
+
array([[6, 7, 8]])
|
910 |
+
>>> np.ma.compress_rowcols(x, 1)
|
911 |
+
array([[1, 2],
|
912 |
+
[4, 5],
|
913 |
+
[7, 8]])
|
914 |
+
|
915 |
+
"""
|
916 |
+
if asarray(x).ndim != 2:
|
917 |
+
raise NotImplementedError("compress_rowcols works for 2D arrays only.")
|
918 |
+
return compress_nd(x, axis=axis)
|
919 |
+
|
920 |
+
|
921 |
+
def compress_rows(a):
|
922 |
+
"""
|
923 |
+
Suppress whole rows of a 2-D array that contain masked values.
|
924 |
+
|
925 |
+
This is equivalent to ``np.ma.compress_rowcols(a, 0)``, see
|
926 |
+
`compress_rowcols` for details.
|
927 |
+
|
928 |
+
See Also
|
929 |
+
--------
|
930 |
+
compress_rowcols
|
931 |
+
|
932 |
+
"""
|
933 |
+
a = asarray(a)
|
934 |
+
if a.ndim != 2:
|
935 |
+
raise NotImplementedError("compress_rows works for 2D arrays only.")
|
936 |
+
return compress_rowcols(a, 0)
|
937 |
+
|
938 |
+
|
939 |
+
def compress_cols(a):
|
940 |
+
"""
|
941 |
+
Suppress whole columns of a 2-D array that contain masked values.
|
942 |
+
|
943 |
+
This is equivalent to ``np.ma.compress_rowcols(a, 1)``, see
|
944 |
+
`compress_rowcols` for details.
|
945 |
+
|
946 |
+
See Also
|
947 |
+
--------
|
948 |
+
compress_rowcols
|
949 |
+
|
950 |
+
"""
|
951 |
+
a = asarray(a)
|
952 |
+
if a.ndim != 2:
|
953 |
+
raise NotImplementedError("compress_cols works for 2D arrays only.")
|
954 |
+
return compress_rowcols(a, 1)
|
955 |
+
|
956 |
+
|
957 |
+
def mask_rowcols(a, axis=None):
|
958 |
+
"""
|
959 |
+
Mask rows and/or columns of a 2D array that contain masked values.
|
960 |
+
|
961 |
+
Mask whole rows and/or columns of a 2D array that contain
|
962 |
+
masked values. The masking behavior is selected using the
|
963 |
+
`axis` parameter.
|
964 |
+
|
965 |
+
- If `axis` is None, rows *and* columns are masked.
|
966 |
+
- If `axis` is 0, only rows are masked.
|
967 |
+
- If `axis` is 1 or -1, only columns are masked.
|
968 |
+
|
969 |
+
Parameters
|
970 |
+
----------
|
971 |
+
a : array_like, MaskedArray
|
972 |
+
The array to mask. If not a MaskedArray instance (or if no array
|
973 |
+
elements are masked), the result is a MaskedArray with `mask` set
|
974 |
+
to `nomask` (False). Must be a 2D array.
|
975 |
+
axis : int, optional
|
976 |
+
Axis along which to perform the operation. If None, applies to a
|
977 |
+
flattened version of the array.
|
978 |
+
|
979 |
+
Returns
|
980 |
+
-------
|
981 |
+
a : MaskedArray
|
982 |
+
A modified version of the input array, masked depending on the value
|
983 |
+
of the `axis` parameter.
|
984 |
+
|
985 |
+
Raises
|
986 |
+
------
|
987 |
+
NotImplementedError
|
988 |
+
If input array `a` is not 2D.
|
989 |
+
|
990 |
+
See Also
|
991 |
+
--------
|
992 |
+
mask_rows : Mask rows of a 2D array that contain masked values.
|
993 |
+
mask_cols : Mask cols of a 2D array that contain masked values.
|
994 |
+
masked_where : Mask where a condition is met.
|
995 |
+
|
996 |
+
Notes
|
997 |
+
-----
|
998 |
+
The input array's mask is modified by this function.
|
999 |
+
|
1000 |
+
Examples
|
1001 |
+
--------
|
1002 |
+
>>> import numpy.ma as ma
|
1003 |
+
>>> a = np.zeros((3, 3), dtype=int)
|
1004 |
+
>>> a[1, 1] = 1
|
1005 |
+
>>> a
|
1006 |
+
array([[0, 0, 0],
|
1007 |
+
[0, 1, 0],
|
1008 |
+
[0, 0, 0]])
|
1009 |
+
>>> a = ma.masked_equal(a, 1)
|
1010 |
+
>>> a
|
1011 |
+
masked_array(
|
1012 |
+
data=[[0, 0, 0],
|
1013 |
+
[0, --, 0],
|
1014 |
+
[0, 0, 0]],
|
1015 |
+
mask=[[False, False, False],
|
1016 |
+
[False, True, False],
|
1017 |
+
[False, False, False]],
|
1018 |
+
fill_value=1)
|
1019 |
+
>>> ma.mask_rowcols(a)
|
1020 |
+
masked_array(
|
1021 |
+
data=[[0, --, 0],
|
1022 |
+
[--, --, --],
|
1023 |
+
[0, --, 0]],
|
1024 |
+
mask=[[False, True, False],
|
1025 |
+
[ True, True, True],
|
1026 |
+
[False, True, False]],
|
1027 |
+
fill_value=1)
|
1028 |
+
|
1029 |
+
"""
|
1030 |
+
a = array(a, subok=False)
|
1031 |
+
if a.ndim != 2:
|
1032 |
+
raise NotImplementedError("mask_rowcols works for 2D arrays only.")
|
1033 |
+
m = getmask(a)
|
1034 |
+
# Nothing is masked: return a
|
1035 |
+
if m is nomask or not m.any():
|
1036 |
+
return a
|
1037 |
+
maskedval = m.nonzero()
|
1038 |
+
a._mask = a._mask.copy()
|
1039 |
+
if not axis:
|
1040 |
+
a[np.unique(maskedval[0])] = masked
|
1041 |
+
if axis in [None, 1, -1]:
|
1042 |
+
a[:, np.unique(maskedval[1])] = masked
|
1043 |
+
return a
|
1044 |
+
|
1045 |
+
|
1046 |
+
def mask_rows(a, axis=np._NoValue):
|
1047 |
+
"""
|
1048 |
+
Mask rows of a 2D array that contain masked values.
|
1049 |
+
|
1050 |
+
This function is a shortcut to ``mask_rowcols`` with `axis` equal to 0.
|
1051 |
+
|
1052 |
+
See Also
|
1053 |
+
--------
|
1054 |
+
mask_rowcols : Mask rows and/or columns of a 2D array.
|
1055 |
+
masked_where : Mask where a condition is met.
|
1056 |
+
|
1057 |
+
Examples
|
1058 |
+
--------
|
1059 |
+
>>> import numpy.ma as ma
|
1060 |
+
>>> a = np.zeros((3, 3), dtype=int)
|
1061 |
+
>>> a[1, 1] = 1
|
1062 |
+
>>> a
|
1063 |
+
array([[0, 0, 0],
|
1064 |
+
[0, 1, 0],
|
1065 |
+
[0, 0, 0]])
|
1066 |
+
>>> a = ma.masked_equal(a, 1)
|
1067 |
+
>>> a
|
1068 |
+
masked_array(
|
1069 |
+
data=[[0, 0, 0],
|
1070 |
+
[0, --, 0],
|
1071 |
+
[0, 0, 0]],
|
1072 |
+
mask=[[False, False, False],
|
1073 |
+
[False, True, False],
|
1074 |
+
[False, False, False]],
|
1075 |
+
fill_value=1)
|
1076 |
+
|
1077 |
+
>>> ma.mask_rows(a)
|
1078 |
+
masked_array(
|
1079 |
+
data=[[0, 0, 0],
|
1080 |
+
[--, --, --],
|
1081 |
+
[0, 0, 0]],
|
1082 |
+
mask=[[False, False, False],
|
1083 |
+
[ True, True, True],
|
1084 |
+
[False, False, False]],
|
1085 |
+
fill_value=1)
|
1086 |
+
|
1087 |
+
"""
|
1088 |
+
if axis is not np._NoValue:
|
1089 |
+
# remove the axis argument when this deprecation expires
|
1090 |
+
# NumPy 1.18.0, 2019-11-28
|
1091 |
+
warnings.warn(
|
1092 |
+
"The axis argument has always been ignored, in future passing it "
|
1093 |
+
"will raise TypeError", DeprecationWarning, stacklevel=2)
|
1094 |
+
return mask_rowcols(a, 0)
|
1095 |
+
|
1096 |
+
|
1097 |
+
def mask_cols(a, axis=np._NoValue):
|
1098 |
+
"""
|
1099 |
+
Mask columns of a 2D array that contain masked values.
|
1100 |
+
|
1101 |
+
This function is a shortcut to ``mask_rowcols`` with `axis` equal to 1.
|
1102 |
+
|
1103 |
+
See Also
|
1104 |
+
--------
|
1105 |
+
mask_rowcols : Mask rows and/or columns of a 2D array.
|
1106 |
+
masked_where : Mask where a condition is met.
|
1107 |
+
|
1108 |
+
Examples
|
1109 |
+
--------
|
1110 |
+
>>> import numpy.ma as ma
|
1111 |
+
>>> a = np.zeros((3, 3), dtype=int)
|
1112 |
+
>>> a[1, 1] = 1
|
1113 |
+
>>> a
|
1114 |
+
array([[0, 0, 0],
|
1115 |
+
[0, 1, 0],
|
1116 |
+
[0, 0, 0]])
|
1117 |
+
>>> a = ma.masked_equal(a, 1)
|
1118 |
+
>>> a
|
1119 |
+
masked_array(
|
1120 |
+
data=[[0, 0, 0],
|
1121 |
+
[0, --, 0],
|
1122 |
+
[0, 0, 0]],
|
1123 |
+
mask=[[False, False, False],
|
1124 |
+
[False, True, False],
|
1125 |
+
[False, False, False]],
|
1126 |
+
fill_value=1)
|
1127 |
+
>>> ma.mask_cols(a)
|
1128 |
+
masked_array(
|
1129 |
+
data=[[0, --, 0],
|
1130 |
+
[0, --, 0],
|
1131 |
+
[0, --, 0]],
|
1132 |
+
mask=[[False, True, False],
|
1133 |
+
[False, True, False],
|
1134 |
+
[False, True, False]],
|
1135 |
+
fill_value=1)
|
1136 |
+
|
1137 |
+
"""
|
1138 |
+
if axis is not np._NoValue:
|
1139 |
+
# remove the axis argument when this deprecation expires
|
1140 |
+
# NumPy 1.18.0, 2019-11-28
|
1141 |
+
warnings.warn(
|
1142 |
+
"The axis argument has always been ignored, in future passing it "
|
1143 |
+
"will raise TypeError", DeprecationWarning, stacklevel=2)
|
1144 |
+
return mask_rowcols(a, 1)
|
1145 |
+
|
1146 |
+
|
1147 |
+
#####--------------------------------------------------------------------------
|
1148 |
+
#---- --- arraysetops ---
|
1149 |
+
#####--------------------------------------------------------------------------
|
1150 |
+
|
1151 |
+
def ediff1d(arr, to_end=None, to_begin=None):
|
1152 |
+
"""
|
1153 |
+
Compute the differences between consecutive elements of an array.
|
1154 |
+
|
1155 |
+
This function is the equivalent of `numpy.ediff1d` that takes masked
|
1156 |
+
values into account, see `numpy.ediff1d` for details.
|
1157 |
+
|
1158 |
+
See Also
|
1159 |
+
--------
|
1160 |
+
numpy.ediff1d : Equivalent function for ndarrays.
|
1161 |
+
|
1162 |
+
"""
|
1163 |
+
arr = ma.asanyarray(arr).flat
|
1164 |
+
ed = arr[1:] - arr[:-1]
|
1165 |
+
arrays = [ed]
|
1166 |
+
#
|
1167 |
+
if to_begin is not None:
|
1168 |
+
arrays.insert(0, to_begin)
|
1169 |
+
if to_end is not None:
|
1170 |
+
arrays.append(to_end)
|
1171 |
+
#
|
1172 |
+
if len(arrays) != 1:
|
1173 |
+
# We'll save ourselves a copy of a potentially large array in the common
|
1174 |
+
# case where neither to_begin or to_end was given.
|
1175 |
+
ed = hstack(arrays)
|
1176 |
+
#
|
1177 |
+
return ed
|
1178 |
+
|
1179 |
+
|
1180 |
+
def unique(ar1, return_index=False, return_inverse=False):
|
1181 |
+
"""
|
1182 |
+
Finds the unique elements of an array.
|
1183 |
+
|
1184 |
+
Masked values are considered the same element (masked). The output array
|
1185 |
+
is always a masked array. See `numpy.unique` for more details.
|
1186 |
+
|
1187 |
+
See Also
|
1188 |
+
--------
|
1189 |
+
numpy.unique : Equivalent function for ndarrays.
|
1190 |
+
|
1191 |
+
Examples
|
1192 |
+
--------
|
1193 |
+
>>> import numpy.ma as ma
|
1194 |
+
>>> a = [1, 2, 1000, 2, 3]
|
1195 |
+
>>> mask = [0, 0, 1, 0, 0]
|
1196 |
+
>>> masked_a = ma.masked_array(a, mask)
|
1197 |
+
>>> masked_a
|
1198 |
+
masked_array(data=[1, 2, --, 2, 3],
|
1199 |
+
mask=[False, False, True, False, False],
|
1200 |
+
fill_value=999999)
|
1201 |
+
>>> ma.unique(masked_a)
|
1202 |
+
masked_array(data=[1, 2, 3, --],
|
1203 |
+
mask=[False, False, False, True],
|
1204 |
+
fill_value=999999)
|
1205 |
+
>>> ma.unique(masked_a, return_index=True)
|
1206 |
+
(masked_array(data=[1, 2, 3, --],
|
1207 |
+
mask=[False, False, False, True],
|
1208 |
+
fill_value=999999), array([0, 1, 4, 2]))
|
1209 |
+
>>> ma.unique(masked_a, return_inverse=True)
|
1210 |
+
(masked_array(data=[1, 2, 3, --],
|
1211 |
+
mask=[False, False, False, True],
|
1212 |
+
fill_value=999999), array([0, 1, 3, 1, 2]))
|
1213 |
+
>>> ma.unique(masked_a, return_index=True, return_inverse=True)
|
1214 |
+
(masked_array(data=[1, 2, 3, --],
|
1215 |
+
mask=[False, False, False, True],
|
1216 |
+
fill_value=999999), array([0, 1, 4, 2]), array([0, 1, 3, 1, 2]))
|
1217 |
+
"""
|
1218 |
+
output = np.unique(ar1,
|
1219 |
+
return_index=return_index,
|
1220 |
+
return_inverse=return_inverse)
|
1221 |
+
if isinstance(output, tuple):
|
1222 |
+
output = list(output)
|
1223 |
+
output[0] = output[0].view(MaskedArray)
|
1224 |
+
output = tuple(output)
|
1225 |
+
else:
|
1226 |
+
output = output.view(MaskedArray)
|
1227 |
+
return output
|
1228 |
+
|
1229 |
+
|
1230 |
+
def intersect1d(ar1, ar2, assume_unique=False):
|
1231 |
+
"""
|
1232 |
+
Returns the unique elements common to both arrays.
|
1233 |
+
|
1234 |
+
Masked values are considered equal one to the other.
|
1235 |
+
The output is always a masked array.
|
1236 |
+
|
1237 |
+
See `numpy.intersect1d` for more details.
|
1238 |
+
|
1239 |
+
See Also
|
1240 |
+
--------
|
1241 |
+
numpy.intersect1d : Equivalent function for ndarrays.
|
1242 |
+
|
1243 |
+
Examples
|
1244 |
+
--------
|
1245 |
+
>>> x = np.ma.array([1, 3, 3, 3], mask=[0, 0, 0, 1])
|
1246 |
+
>>> y = np.ma.array([3, 1, 1, 1], mask=[0, 0, 0, 1])
|
1247 |
+
>>> np.ma.intersect1d(x, y)
|
1248 |
+
masked_array(data=[1, 3, --],
|
1249 |
+
mask=[False, False, True],
|
1250 |
+
fill_value=999999)
|
1251 |
+
|
1252 |
+
"""
|
1253 |
+
if assume_unique:
|
1254 |
+
aux = ma.concatenate((ar1, ar2))
|
1255 |
+
else:
|
1256 |
+
# Might be faster than unique( intersect1d( ar1, ar2 ) )?
|
1257 |
+
aux = ma.concatenate((unique(ar1), unique(ar2)))
|
1258 |
+
aux.sort()
|
1259 |
+
return aux[:-1][aux[1:] == aux[:-1]]
|
1260 |
+
|
1261 |
+
|
1262 |
+
def setxor1d(ar1, ar2, assume_unique=False):
|
1263 |
+
"""
|
1264 |
+
Set exclusive-or of 1-D arrays with unique elements.
|
1265 |
+
|
1266 |
+
The output is always a masked array. See `numpy.setxor1d` for more details.
|
1267 |
+
|
1268 |
+
See Also
|
1269 |
+
--------
|
1270 |
+
numpy.setxor1d : Equivalent function for ndarrays.
|
1271 |
+
|
1272 |
+
"""
|
1273 |
+
if not assume_unique:
|
1274 |
+
ar1 = unique(ar1)
|
1275 |
+
ar2 = unique(ar2)
|
1276 |
+
|
1277 |
+
aux = ma.concatenate((ar1, ar2))
|
1278 |
+
if aux.size == 0:
|
1279 |
+
return aux
|
1280 |
+
aux.sort()
|
1281 |
+
auxf = aux.filled()
|
1282 |
+
# flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0
|
1283 |
+
flag = ma.concatenate(([True], (auxf[1:] != auxf[:-1]), [True]))
|
1284 |
+
# flag2 = ediff1d( flag ) == 0
|
1285 |
+
flag2 = (flag[1:] == flag[:-1])
|
1286 |
+
return aux[flag2]
|
1287 |
+
|
1288 |
+
|
1289 |
+
def in1d(ar1, ar2, assume_unique=False, invert=False):
|
1290 |
+
"""
|
1291 |
+
Test whether each element of an array is also present in a second
|
1292 |
+
array.
|
1293 |
+
|
1294 |
+
The output is always a masked array. See `numpy.in1d` for more details.
|
1295 |
+
|
1296 |
+
We recommend using :func:`isin` instead of `in1d` for new code.
|
1297 |
+
|
1298 |
+
See Also
|
1299 |
+
--------
|
1300 |
+
isin : Version of this function that preserves the shape of ar1.
|
1301 |
+
numpy.in1d : Equivalent function for ndarrays.
|
1302 |
+
|
1303 |
+
Notes
|
1304 |
+
-----
|
1305 |
+
.. versionadded:: 1.4.0
|
1306 |
+
|
1307 |
+
"""
|
1308 |
+
if not assume_unique:
|
1309 |
+
ar1, rev_idx = unique(ar1, return_inverse=True)
|
1310 |
+
ar2 = unique(ar2)
|
1311 |
+
|
1312 |
+
ar = ma.concatenate((ar1, ar2))
|
1313 |
+
# We need this to be a stable sort, so always use 'mergesort'
|
1314 |
+
# here. The values from the first array should always come before
|
1315 |
+
# the values from the second array.
|
1316 |
+
order = ar.argsort(kind='mergesort')
|
1317 |
+
sar = ar[order]
|
1318 |
+
if invert:
|
1319 |
+
bool_ar = (sar[1:] != sar[:-1])
|
1320 |
+
else:
|
1321 |
+
bool_ar = (sar[1:] == sar[:-1])
|
1322 |
+
flag = ma.concatenate((bool_ar, [invert]))
|
1323 |
+
indx = order.argsort(kind='mergesort')[:len(ar1)]
|
1324 |
+
|
1325 |
+
if assume_unique:
|
1326 |
+
return flag[indx]
|
1327 |
+
else:
|
1328 |
+
return flag[indx][rev_idx]
|
1329 |
+
|
1330 |
+
|
1331 |
+
def isin(element, test_elements, assume_unique=False, invert=False):
|
1332 |
+
"""
|
1333 |
+
Calculates `element in test_elements`, broadcasting over
|
1334 |
+
`element` only.
|
1335 |
+
|
1336 |
+
The output is always a masked array of the same shape as `element`.
|
1337 |
+
See `numpy.isin` for more details.
|
1338 |
+
|
1339 |
+
See Also
|
1340 |
+
--------
|
1341 |
+
in1d : Flattened version of this function.
|
1342 |
+
numpy.isin : Equivalent function for ndarrays.
|
1343 |
+
|
1344 |
+
Notes
|
1345 |
+
-----
|
1346 |
+
.. versionadded:: 1.13.0
|
1347 |
+
|
1348 |
+
"""
|
1349 |
+
element = ma.asarray(element)
|
1350 |
+
return in1d(element, test_elements, assume_unique=assume_unique,
|
1351 |
+
invert=invert).reshape(element.shape)
|
1352 |
+
|
1353 |
+
|
1354 |
+
def union1d(ar1, ar2):
|
1355 |
+
"""
|
1356 |
+
Union of two arrays.
|
1357 |
+
|
1358 |
+
The output is always a masked array. See `numpy.union1d` for more details.
|
1359 |
+
|
1360 |
+
See Also
|
1361 |
+
--------
|
1362 |
+
numpy.union1d : Equivalent function for ndarrays.
|
1363 |
+
|
1364 |
+
"""
|
1365 |
+
return unique(ma.concatenate((ar1, ar2), axis=None))
|
1366 |
+
|
1367 |
+
|
1368 |
+
def setdiff1d(ar1, ar2, assume_unique=False):
|
1369 |
+
"""
|
1370 |
+
Set difference of 1D arrays with unique elements.
|
1371 |
+
|
1372 |
+
The output is always a masked array. See `numpy.setdiff1d` for more
|
1373 |
+
details.
|
1374 |
+
|
1375 |
+
See Also
|
1376 |
+
--------
|
1377 |
+
numpy.setdiff1d : Equivalent function for ndarrays.
|
1378 |
+
|
1379 |
+
Examples
|
1380 |
+
--------
|
1381 |
+
>>> x = np.ma.array([1, 2, 3, 4], mask=[0, 1, 0, 1])
|
1382 |
+
>>> np.ma.setdiff1d(x, [1, 2])
|
1383 |
+
masked_array(data=[3, --],
|
1384 |
+
mask=[False, True],
|
1385 |
+
fill_value=999999)
|
1386 |
+
|
1387 |
+
"""
|
1388 |
+
if assume_unique:
|
1389 |
+
ar1 = ma.asarray(ar1).ravel()
|
1390 |
+
else:
|
1391 |
+
ar1 = unique(ar1)
|
1392 |
+
ar2 = unique(ar2)
|
1393 |
+
return ar1[in1d(ar1, ar2, assume_unique=True, invert=True)]
|
1394 |
+
|
1395 |
+
|
1396 |
+
###############################################################################
|
1397 |
+
# Covariance #
|
1398 |
+
###############################################################################
|
1399 |
+
|
1400 |
+
|
1401 |
+
def _covhelper(x, y=None, rowvar=True, allow_masked=True):
|
1402 |
+
"""
|
1403 |
+
Private function for the computation of covariance and correlation
|
1404 |
+
coefficients.
|
1405 |
+
|
1406 |
+
"""
|
1407 |
+
x = ma.array(x, ndmin=2, copy=True, dtype=float)
|
1408 |
+
xmask = ma.getmaskarray(x)
|
1409 |
+
# Quick exit if we can't process masked data
|
1410 |
+
if not allow_masked and xmask.any():
|
1411 |
+
raise ValueError("Cannot process masked data.")
|
1412 |
+
#
|
1413 |
+
if x.shape[0] == 1:
|
1414 |
+
rowvar = True
|
1415 |
+
# Make sure that rowvar is either 0 or 1
|
1416 |
+
rowvar = int(bool(rowvar))
|
1417 |
+
axis = 1 - rowvar
|
1418 |
+
if rowvar:
|
1419 |
+
tup = (slice(None), None)
|
1420 |
+
else:
|
1421 |
+
tup = (None, slice(None))
|
1422 |
+
#
|
1423 |
+
if y is None:
|
1424 |
+
xnotmask = np.logical_not(xmask).astype(int)
|
1425 |
+
else:
|
1426 |
+
y = array(y, copy=False, ndmin=2, dtype=float)
|
1427 |
+
ymask = ma.getmaskarray(y)
|
1428 |
+
if not allow_masked and ymask.any():
|
1429 |
+
raise ValueError("Cannot process masked data.")
|
1430 |
+
if xmask.any() or ymask.any():
|
1431 |
+
if y.shape == x.shape:
|
1432 |
+
# Define some common mask
|
1433 |
+
common_mask = np.logical_or(xmask, ymask)
|
1434 |
+
if common_mask is not nomask:
|
1435 |
+
xmask = x._mask = y._mask = ymask = common_mask
|
1436 |
+
x._sharedmask = False
|
1437 |
+
y._sharedmask = False
|
1438 |
+
x = ma.concatenate((x, y), axis)
|
1439 |
+
xnotmask = np.logical_not(np.concatenate((xmask, ymask), axis)).astype(int)
|
1440 |
+
x -= x.mean(axis=rowvar)[tup]
|
1441 |
+
return (x, xnotmask, rowvar)
|
1442 |
+
|
1443 |
+
|
1444 |
+
def cov(x, y=None, rowvar=True, bias=False, allow_masked=True, ddof=None):
|
1445 |
+
"""
|
1446 |
+
Estimate the covariance matrix.
|
1447 |
+
|
1448 |
+
Except for the handling of missing data this function does the same as
|
1449 |
+
`numpy.cov`. For more details and examples, see `numpy.cov`.
|
1450 |
+
|
1451 |
+
By default, masked values are recognized as such. If `x` and `y` have the
|
1452 |
+
same shape, a common mask is allocated: if ``x[i,j]`` is masked, then
|
1453 |
+
``y[i,j]`` will also be masked.
|
1454 |
+
Setting `allow_masked` to False will raise an exception if values are
|
1455 |
+
missing in either of the input arrays.
|
1456 |
+
|
1457 |
+
Parameters
|
1458 |
+
----------
|
1459 |
+
x : array_like
|
1460 |
+
A 1-D or 2-D array containing multiple variables and observations.
|
1461 |
+
Each row of `x` represents a variable, and each column a single
|
1462 |
+
observation of all those variables. Also see `rowvar` below.
|
1463 |
+
y : array_like, optional
|
1464 |
+
An additional set of variables and observations. `y` has the same
|
1465 |
+
shape as `x`.
|
1466 |
+
rowvar : bool, optional
|
1467 |
+
If `rowvar` is True (default), then each row represents a
|
1468 |
+
variable, with observations in the columns. Otherwise, the relationship
|
1469 |
+
is transposed: each column represents a variable, while the rows
|
1470 |
+
contain observations.
|
1471 |
+
bias : bool, optional
|
1472 |
+
Default normalization (False) is by ``(N-1)``, where ``N`` is the
|
1473 |
+
number of observations given (unbiased estimate). If `bias` is True,
|
1474 |
+
then normalization is by ``N``. This keyword can be overridden by
|
1475 |
+
the keyword ``ddof`` in numpy versions >= 1.5.
|
1476 |
+
allow_masked : bool, optional
|
1477 |
+
If True, masked values are propagated pair-wise: if a value is masked
|
1478 |
+
in `x`, the corresponding value is masked in `y`.
|
1479 |
+
If False, raises a `ValueError` exception when some values are missing.
|
1480 |
+
ddof : {None, int}, optional
|
1481 |
+
If not ``None`` normalization is by ``(N - ddof)``, where ``N`` is
|
1482 |
+
the number of observations; this overrides the value implied by
|
1483 |
+
``bias``. The default value is ``None``.
|
1484 |
+
|
1485 |
+
.. versionadded:: 1.5
|
1486 |
+
|
1487 |
+
Raises
|
1488 |
+
------
|
1489 |
+
ValueError
|
1490 |
+
Raised if some values are missing and `allow_masked` is False.
|
1491 |
+
|
1492 |
+
See Also
|
1493 |
+
--------
|
1494 |
+
numpy.cov
|
1495 |
+
|
1496 |
+
"""
|
1497 |
+
# Check inputs
|
1498 |
+
if ddof is not None and ddof != int(ddof):
|
1499 |
+
raise ValueError("ddof must be an integer")
|
1500 |
+
# Set up ddof
|
1501 |
+
if ddof is None:
|
1502 |
+
if bias:
|
1503 |
+
ddof = 0
|
1504 |
+
else:
|
1505 |
+
ddof = 1
|
1506 |
+
|
1507 |
+
(x, xnotmask, rowvar) = _covhelper(x, y, rowvar, allow_masked)
|
1508 |
+
if not rowvar:
|
1509 |
+
fact = np.dot(xnotmask.T, xnotmask) * 1. - ddof
|
1510 |
+
result = (dot(x.T, x.conj(), strict=False) / fact).squeeze()
|
1511 |
+
else:
|
1512 |
+
fact = np.dot(xnotmask, xnotmask.T) * 1. - ddof
|
1513 |
+
result = (dot(x, x.T.conj(), strict=False) / fact).squeeze()
|
1514 |
+
return result
|
1515 |
+
|
1516 |
+
|
1517 |
+
def corrcoef(x, y=None, rowvar=True, bias=np._NoValue, allow_masked=True,
|
1518 |
+
ddof=np._NoValue):
|
1519 |
+
"""
|
1520 |
+
Return Pearson product-moment correlation coefficients.
|
1521 |
+
|
1522 |
+
Except for the handling of missing data this function does the same as
|
1523 |
+
`numpy.corrcoef`. For more details and examples, see `numpy.corrcoef`.
|
1524 |
+
|
1525 |
+
Parameters
|
1526 |
+
----------
|
1527 |
+
x : array_like
|
1528 |
+
A 1-D or 2-D array containing multiple variables and observations.
|
1529 |
+
Each row of `x` represents a variable, and each column a single
|
1530 |
+
observation of all those variables. Also see `rowvar` below.
|
1531 |
+
y : array_like, optional
|
1532 |
+
An additional set of variables and observations. `y` has the same
|
1533 |
+
shape as `x`.
|
1534 |
+
rowvar : bool, optional
|
1535 |
+
If `rowvar` is True (default), then each row represents a
|
1536 |
+
variable, with observations in the columns. Otherwise, the relationship
|
1537 |
+
is transposed: each column represents a variable, while the rows
|
1538 |
+
contain observations.
|
1539 |
+
bias : _NoValue, optional
|
1540 |
+
Has no effect, do not use.
|
1541 |
+
|
1542 |
+
.. deprecated:: 1.10.0
|
1543 |
+
allow_masked : bool, optional
|
1544 |
+
If True, masked values are propagated pair-wise: if a value is masked
|
1545 |
+
in `x`, the corresponding value is masked in `y`.
|
1546 |
+
If False, raises an exception. Because `bias` is deprecated, this
|
1547 |
+
argument needs to be treated as keyword only to avoid a warning.
|
1548 |
+
ddof : _NoValue, optional
|
1549 |
+
Has no effect, do not use.
|
1550 |
+
|
1551 |
+
.. deprecated:: 1.10.0
|
1552 |
+
|
1553 |
+
See Also
|
1554 |
+
--------
|
1555 |
+
numpy.corrcoef : Equivalent function in top-level NumPy module.
|
1556 |
+
cov : Estimate the covariance matrix.
|
1557 |
+
|
1558 |
+
Notes
|
1559 |
+
-----
|
1560 |
+
This function accepts but discards arguments `bias` and `ddof`. This is
|
1561 |
+
for backwards compatibility with previous versions of this function. These
|
1562 |
+
arguments had no effect on the return values of the function and can be
|
1563 |
+
safely ignored in this and previous versions of numpy.
|
1564 |
+
"""
|
1565 |
+
msg = 'bias and ddof have no effect and are deprecated'
|
1566 |
+
if bias is not np._NoValue or ddof is not np._NoValue:
|
1567 |
+
# 2015-03-15, 1.10
|
1568 |
+
warnings.warn(msg, DeprecationWarning, stacklevel=2)
|
1569 |
+
# Get the data
|
1570 |
+
(x, xnotmask, rowvar) = _covhelper(x, y, rowvar, allow_masked)
|
1571 |
+
# Compute the covariance matrix
|
1572 |
+
if not rowvar:
|
1573 |
+
fact = np.dot(xnotmask.T, xnotmask) * 1.
|
1574 |
+
c = (dot(x.T, x.conj(), strict=False) / fact).squeeze()
|
1575 |
+
else:
|
1576 |
+
fact = np.dot(xnotmask, xnotmask.T) * 1.
|
1577 |
+
c = (dot(x, x.T.conj(), strict=False) / fact).squeeze()
|
1578 |
+
# Check whether we have a scalar
|
1579 |
+
try:
|
1580 |
+
diag = ma.diagonal(c)
|
1581 |
+
except ValueError:
|
1582 |
+
return 1
|
1583 |
+
#
|
1584 |
+
if xnotmask.all():
|
1585 |
+
_denom = ma.sqrt(ma.multiply.outer(diag, diag))
|
1586 |
+
else:
|
1587 |
+
_denom = diagflat(diag)
|
1588 |
+
_denom._sharedmask = False # We know return is always a copy
|
1589 |
+
n = x.shape[1 - rowvar]
|
1590 |
+
if rowvar:
|
1591 |
+
for i in range(n - 1):
|
1592 |
+
for j in range(i + 1, n):
|
1593 |
+
_x = mask_cols(vstack((x[i], x[j]))).var(axis=1)
|
1594 |
+
_denom[i, j] = _denom[j, i] = ma.sqrt(ma.multiply.reduce(_x))
|
1595 |
+
else:
|
1596 |
+
for i in range(n - 1):
|
1597 |
+
for j in range(i + 1, n):
|
1598 |
+
_x = mask_cols(
|
1599 |
+
vstack((x[:, i], x[:, j]))).var(axis=1)
|
1600 |
+
_denom[i, j] = _denom[j, i] = ma.sqrt(ma.multiply.reduce(_x))
|
1601 |
+
return c / _denom
|
1602 |
+
|
1603 |
+
#####--------------------------------------------------------------------------
|
1604 |
+
#---- --- Concatenation helpers ---
|
1605 |
+
#####--------------------------------------------------------------------------
|
1606 |
+
|
1607 |
+
class MAxisConcatenator(AxisConcatenator):
|
1608 |
+
"""
|
1609 |
+
Translate slice objects to concatenation along an axis.
|
1610 |
+
|
1611 |
+
For documentation on usage, see `mr_class`.
|
1612 |
+
|
1613 |
+
See Also
|
1614 |
+
--------
|
1615 |
+
mr_class
|
1616 |
+
|
1617 |
+
"""
|
1618 |
+
concatenate = staticmethod(concatenate)
|
1619 |
+
|
1620 |
+
@classmethod
|
1621 |
+
def makemat(cls, arr):
|
1622 |
+
# There used to be a view as np.matrix here, but we may eventually
|
1623 |
+
# deprecate that class. In preparation, we use the unmasked version
|
1624 |
+
# to construct the matrix (with copy=False for backwards compatibility
|
1625 |
+
# with the .view)
|
1626 |
+
data = super().makemat(arr.data, copy=False)
|
1627 |
+
return array(data, mask=arr.mask)
|
1628 |
+
|
1629 |
+
def __getitem__(self, key):
|
1630 |
+
# matrix builder syntax, like 'a, b; c, d'
|
1631 |
+
if isinstance(key, str):
|
1632 |
+
raise MAError("Unavailable for masked array.")
|
1633 |
+
|
1634 |
+
return super().__getitem__(key)
|
1635 |
+
|
1636 |
+
|
1637 |
+
class mr_class(MAxisConcatenator):
|
1638 |
+
"""
|
1639 |
+
Translate slice objects to concatenation along the first axis.
|
1640 |
+
|
1641 |
+
This is the masked array version of `lib.index_tricks.RClass`.
|
1642 |
+
|
1643 |
+
See Also
|
1644 |
+
--------
|
1645 |
+
lib.index_tricks.RClass
|
1646 |
+
|
1647 |
+
Examples
|
1648 |
+
--------
|
1649 |
+
>>> np.ma.mr_[np.ma.array([1,2,3]), 0, 0, np.ma.array([4,5,6])]
|
1650 |
+
masked_array(data=[1, 2, 3, ..., 4, 5, 6],
|
1651 |
+
mask=False,
|
1652 |
+
fill_value=999999)
|
1653 |
+
|
1654 |
+
"""
|
1655 |
+
def __init__(self):
|
1656 |
+
MAxisConcatenator.__init__(self, 0)
|
1657 |
+
|
1658 |
+
mr_ = mr_class()
|
1659 |
+
|
1660 |
+
|
1661 |
+
#####--------------------------------------------------------------------------
|
1662 |
+
#---- Find unmasked data ---
|
1663 |
+
#####--------------------------------------------------------------------------
|
1664 |
+
|
1665 |
+
def ndenumerate(a, compressed=True):
|
1666 |
+
"""
|
1667 |
+
Multidimensional index iterator.
|
1668 |
+
|
1669 |
+
Return an iterator yielding pairs of array coordinates and values,
|
1670 |
+
skipping elements that are masked. With `compressed=False`,
|
1671 |
+
`ma.masked` is yielded as the value of masked elements. This
|
1672 |
+
behavior differs from that of `numpy.ndenumerate`, which yields the
|
1673 |
+
value of the underlying data array.
|
1674 |
+
|
1675 |
+
Notes
|
1676 |
+
-----
|
1677 |
+
.. versionadded:: 1.23.0
|
1678 |
+
|
1679 |
+
Parameters
|
1680 |
+
----------
|
1681 |
+
a : array_like
|
1682 |
+
An array with (possibly) masked elements.
|
1683 |
+
compressed : bool, optional
|
1684 |
+
If True (default), masked elements are skipped.
|
1685 |
+
|
1686 |
+
See Also
|
1687 |
+
--------
|
1688 |
+
numpy.ndenumerate : Equivalent function ignoring any mask.
|
1689 |
+
|
1690 |
+
Examples
|
1691 |
+
--------
|
1692 |
+
>>> a = np.ma.arange(9).reshape((3, 3))
|
1693 |
+
>>> a[1, 0] = np.ma.masked
|
1694 |
+
>>> a[1, 2] = np.ma.masked
|
1695 |
+
>>> a[2, 1] = np.ma.masked
|
1696 |
+
>>> a
|
1697 |
+
masked_array(
|
1698 |
+
data=[[0, 1, 2],
|
1699 |
+
[--, 4, --],
|
1700 |
+
[6, --, 8]],
|
1701 |
+
mask=[[False, False, False],
|
1702 |
+
[ True, False, True],
|
1703 |
+
[False, True, False]],
|
1704 |
+
fill_value=999999)
|
1705 |
+
>>> for index, x in np.ma.ndenumerate(a):
|
1706 |
+
... print(index, x)
|
1707 |
+
(0, 0) 0
|
1708 |
+
(0, 1) 1
|
1709 |
+
(0, 2) 2
|
1710 |
+
(1, 1) 4
|
1711 |
+
(2, 0) 6
|
1712 |
+
(2, 2) 8
|
1713 |
+
|
1714 |
+
>>> for index, x in np.ma.ndenumerate(a, compressed=False):
|
1715 |
+
... print(index, x)
|
1716 |
+
(0, 0) 0
|
1717 |
+
(0, 1) 1
|
1718 |
+
(0, 2) 2
|
1719 |
+
(1, 0) --
|
1720 |
+
(1, 1) 4
|
1721 |
+
(1, 2) --
|
1722 |
+
(2, 0) 6
|
1723 |
+
(2, 1) --
|
1724 |
+
(2, 2) 8
|
1725 |
+
"""
|
1726 |
+
for it, mask in zip(np.ndenumerate(a), getmaskarray(a).flat):
|
1727 |
+
if not mask:
|
1728 |
+
yield it
|
1729 |
+
elif not compressed:
|
1730 |
+
yield it[0], masked
|
1731 |
+
|
1732 |
+
|
1733 |
+
def flatnotmasked_edges(a):
|
1734 |
+
"""
|
1735 |
+
Find the indices of the first and last unmasked values.
|
1736 |
+
|
1737 |
+
Expects a 1-D `MaskedArray`, returns None if all values are masked.
|
1738 |
+
|
1739 |
+
Parameters
|
1740 |
+
----------
|
1741 |
+
a : array_like
|
1742 |
+
Input 1-D `MaskedArray`
|
1743 |
+
|
1744 |
+
Returns
|
1745 |
+
-------
|
1746 |
+
edges : ndarray or None
|
1747 |
+
The indices of first and last non-masked value in the array.
|
1748 |
+
Returns None if all values are masked.
|
1749 |
+
|
1750 |
+
See Also
|
1751 |
+
--------
|
1752 |
+
flatnotmasked_contiguous, notmasked_contiguous, notmasked_edges
|
1753 |
+
clump_masked, clump_unmasked
|
1754 |
+
|
1755 |
+
Notes
|
1756 |
+
-----
|
1757 |
+
Only accepts 1-D arrays.
|
1758 |
+
|
1759 |
+
Examples
|
1760 |
+
--------
|
1761 |
+
>>> a = np.ma.arange(10)
|
1762 |
+
>>> np.ma.flatnotmasked_edges(a)
|
1763 |
+
array([0, 9])
|
1764 |
+
|
1765 |
+
>>> mask = (a < 3) | (a > 8) | (a == 5)
|
1766 |
+
>>> a[mask] = np.ma.masked
|
1767 |
+
>>> np.array(a[~a.mask])
|
1768 |
+
array([3, 4, 6, 7, 8])
|
1769 |
+
|
1770 |
+
>>> np.ma.flatnotmasked_edges(a)
|
1771 |
+
array([3, 8])
|
1772 |
+
|
1773 |
+
>>> a[:] = np.ma.masked
|
1774 |
+
>>> print(np.ma.flatnotmasked_edges(a))
|
1775 |
+
None
|
1776 |
+
|
1777 |
+
"""
|
1778 |
+
m = getmask(a)
|
1779 |
+
if m is nomask or not np.any(m):
|
1780 |
+
return np.array([0, a.size - 1])
|
1781 |
+
unmasked = np.flatnonzero(~m)
|
1782 |
+
if len(unmasked) > 0:
|
1783 |
+
return unmasked[[0, -1]]
|
1784 |
+
else:
|
1785 |
+
return None
|
1786 |
+
|
1787 |
+
|
1788 |
+
def notmasked_edges(a, axis=None):
|
1789 |
+
"""
|
1790 |
+
Find the indices of the first and last unmasked values along an axis.
|
1791 |
+
|
1792 |
+
If all values are masked, return None. Otherwise, return a list
|
1793 |
+
of two tuples, corresponding to the indices of the first and last
|
1794 |
+
unmasked values respectively.
|
1795 |
+
|
1796 |
+
Parameters
|
1797 |
+
----------
|
1798 |
+
a : array_like
|
1799 |
+
The input array.
|
1800 |
+
axis : int, optional
|
1801 |
+
Axis along which to perform the operation.
|
1802 |
+
If None (default), applies to a flattened version of the array.
|
1803 |
+
|
1804 |
+
Returns
|
1805 |
+
-------
|
1806 |
+
edges : ndarray or list
|
1807 |
+
An array of start and end indexes if there are any masked data in
|
1808 |
+
the array. If there are no masked data in the array, `edges` is a
|
1809 |
+
list of the first and last index.
|
1810 |
+
|
1811 |
+
See Also
|
1812 |
+
--------
|
1813 |
+
flatnotmasked_contiguous, flatnotmasked_edges, notmasked_contiguous
|
1814 |
+
clump_masked, clump_unmasked
|
1815 |
+
|
1816 |
+
Examples
|
1817 |
+
--------
|
1818 |
+
>>> a = np.arange(9).reshape((3, 3))
|
1819 |
+
>>> m = np.zeros_like(a)
|
1820 |
+
>>> m[1:, 1:] = 1
|
1821 |
+
|
1822 |
+
>>> am = np.ma.array(a, mask=m)
|
1823 |
+
>>> np.array(am[~am.mask])
|
1824 |
+
array([0, 1, 2, 3, 6])
|
1825 |
+
|
1826 |
+
>>> np.ma.notmasked_edges(am)
|
1827 |
+
array([0, 6])
|
1828 |
+
|
1829 |
+
"""
|
1830 |
+
a = asarray(a)
|
1831 |
+
if axis is None or a.ndim == 1:
|
1832 |
+
return flatnotmasked_edges(a)
|
1833 |
+
m = getmaskarray(a)
|
1834 |
+
idx = array(np.indices(a.shape), mask=np.asarray([m] * a.ndim))
|
1835 |
+
return [tuple([idx[i].min(axis).compressed() for i in range(a.ndim)]),
|
1836 |
+
tuple([idx[i].max(axis).compressed() for i in range(a.ndim)]), ]
|
1837 |
+
|
1838 |
+
|
1839 |
+
def flatnotmasked_contiguous(a):
|
1840 |
+
"""
|
1841 |
+
Find contiguous unmasked data in a masked array.
|
1842 |
+
|
1843 |
+
Parameters
|
1844 |
+
----------
|
1845 |
+
a : array_like
|
1846 |
+
The input array.
|
1847 |
+
|
1848 |
+
Returns
|
1849 |
+
-------
|
1850 |
+
slice_list : list
|
1851 |
+
A sorted sequence of `slice` objects (start index, end index).
|
1852 |
+
|
1853 |
+
.. versionchanged:: 1.15.0
|
1854 |
+
Now returns an empty list instead of None for a fully masked array
|
1855 |
+
|
1856 |
+
See Also
|
1857 |
+
--------
|
1858 |
+
flatnotmasked_edges, notmasked_contiguous, notmasked_edges
|
1859 |
+
clump_masked, clump_unmasked
|
1860 |
+
|
1861 |
+
Notes
|
1862 |
+
-----
|
1863 |
+
Only accepts 2-D arrays at most.
|
1864 |
+
|
1865 |
+
Examples
|
1866 |
+
--------
|
1867 |
+
>>> a = np.ma.arange(10)
|
1868 |
+
>>> np.ma.flatnotmasked_contiguous(a)
|
1869 |
+
[slice(0, 10, None)]
|
1870 |
+
|
1871 |
+
>>> mask = (a < 3) | (a > 8) | (a == 5)
|
1872 |
+
>>> a[mask] = np.ma.masked
|
1873 |
+
>>> np.array(a[~a.mask])
|
1874 |
+
array([3, 4, 6, 7, 8])
|
1875 |
+
|
1876 |
+
>>> np.ma.flatnotmasked_contiguous(a)
|
1877 |
+
[slice(3, 5, None), slice(6, 9, None)]
|
1878 |
+
>>> a[:] = np.ma.masked
|
1879 |
+
>>> np.ma.flatnotmasked_contiguous(a)
|
1880 |
+
[]
|
1881 |
+
|
1882 |
+
"""
|
1883 |
+
m = getmask(a)
|
1884 |
+
if m is nomask:
|
1885 |
+
return [slice(0, a.size)]
|
1886 |
+
i = 0
|
1887 |
+
result = []
|
1888 |
+
for (k, g) in itertools.groupby(m.ravel()):
|
1889 |
+
n = len(list(g))
|
1890 |
+
if not k:
|
1891 |
+
result.append(slice(i, i + n))
|
1892 |
+
i += n
|
1893 |
+
return result
|
1894 |
+
|
1895 |
+
|
1896 |
+
def notmasked_contiguous(a, axis=None):
|
1897 |
+
"""
|
1898 |
+
Find contiguous unmasked data in a masked array along the given axis.
|
1899 |
+
|
1900 |
+
Parameters
|
1901 |
+
----------
|
1902 |
+
a : array_like
|
1903 |
+
The input array.
|
1904 |
+
axis : int, optional
|
1905 |
+
Axis along which to perform the operation.
|
1906 |
+
If None (default), applies to a flattened version of the array, and this
|
1907 |
+
is the same as `flatnotmasked_contiguous`.
|
1908 |
+
|
1909 |
+
Returns
|
1910 |
+
-------
|
1911 |
+
endpoints : list
|
1912 |
+
A list of slices (start and end indexes) of unmasked indexes
|
1913 |
+
in the array.
|
1914 |
+
|
1915 |
+
If the input is 2d and axis is specified, the result is a list of lists.
|
1916 |
+
|
1917 |
+
See Also
|
1918 |
+
--------
|
1919 |
+
flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges
|
1920 |
+
clump_masked, clump_unmasked
|
1921 |
+
|
1922 |
+
Notes
|
1923 |
+
-----
|
1924 |
+
Only accepts 2-D arrays at most.
|
1925 |
+
|
1926 |
+
Examples
|
1927 |
+
--------
|
1928 |
+
>>> a = np.arange(12).reshape((3, 4))
|
1929 |
+
>>> mask = np.zeros_like(a)
|
1930 |
+
>>> mask[1:, :-1] = 1; mask[0, 1] = 1; mask[-1, 0] = 0
|
1931 |
+
>>> ma = np.ma.array(a, mask=mask)
|
1932 |
+
>>> ma
|
1933 |
+
masked_array(
|
1934 |
+
data=[[0, --, 2, 3],
|
1935 |
+
[--, --, --, 7],
|
1936 |
+
[8, --, --, 11]],
|
1937 |
+
mask=[[False, True, False, False],
|
1938 |
+
[ True, True, True, False],
|
1939 |
+
[False, True, True, False]],
|
1940 |
+
fill_value=999999)
|
1941 |
+
>>> np.array(ma[~ma.mask])
|
1942 |
+
array([ 0, 2, 3, 7, 8, 11])
|
1943 |
+
|
1944 |
+
>>> np.ma.notmasked_contiguous(ma)
|
1945 |
+
[slice(0, 1, None), slice(2, 4, None), slice(7, 9, None), slice(11, 12, None)]
|
1946 |
+
|
1947 |
+
>>> np.ma.notmasked_contiguous(ma, axis=0)
|
1948 |
+
[[slice(0, 1, None), slice(2, 3, None)], [], [slice(0, 1, None)], [slice(0, 3, None)]]
|
1949 |
+
|
1950 |
+
>>> np.ma.notmasked_contiguous(ma, axis=1)
|
1951 |
+
[[slice(0, 1, None), slice(2, 4, None)], [slice(3, 4, None)], [slice(0, 1, None), slice(3, 4, None)]]
|
1952 |
+
|
1953 |
+
"""
|
1954 |
+
a = asarray(a)
|
1955 |
+
nd = a.ndim
|
1956 |
+
if nd > 2:
|
1957 |
+
raise NotImplementedError("Currently limited to at most 2D array.")
|
1958 |
+
if axis is None or nd == 1:
|
1959 |
+
return flatnotmasked_contiguous(a)
|
1960 |
+
#
|
1961 |
+
result = []
|
1962 |
+
#
|
1963 |
+
other = (axis + 1) % 2
|
1964 |
+
idx = [0, 0]
|
1965 |
+
idx[axis] = slice(None, None)
|
1966 |
+
#
|
1967 |
+
for i in range(a.shape[other]):
|
1968 |
+
idx[other] = i
|
1969 |
+
result.append(flatnotmasked_contiguous(a[tuple(idx)]))
|
1970 |
+
return result
|
1971 |
+
|
1972 |
+
|
1973 |
+
def _ezclump(mask):
|
1974 |
+
"""
|
1975 |
+
Finds the clumps (groups of data with the same values) for a 1D bool array.
|
1976 |
+
|
1977 |
+
Returns a series of slices.
|
1978 |
+
"""
|
1979 |
+
if mask.ndim > 1:
|
1980 |
+
mask = mask.ravel()
|
1981 |
+
idx = (mask[1:] ^ mask[:-1]).nonzero()
|
1982 |
+
idx = idx[0] + 1
|
1983 |
+
|
1984 |
+
if mask[0]:
|
1985 |
+
if len(idx) == 0:
|
1986 |
+
return [slice(0, mask.size)]
|
1987 |
+
|
1988 |
+
r = [slice(0, idx[0])]
|
1989 |
+
r.extend((slice(left, right)
|
1990 |
+
for left, right in zip(idx[1:-1:2], idx[2::2])))
|
1991 |
+
else:
|
1992 |
+
if len(idx) == 0:
|
1993 |
+
return []
|
1994 |
+
|
1995 |
+
r = [slice(left, right) for left, right in zip(idx[:-1:2], idx[1::2])]
|
1996 |
+
|
1997 |
+
if mask[-1]:
|
1998 |
+
r.append(slice(idx[-1], mask.size))
|
1999 |
+
return r
|
2000 |
+
|
2001 |
+
|
2002 |
+
def clump_unmasked(a):
|
2003 |
+
"""
|
2004 |
+
Return list of slices corresponding to the unmasked clumps of a 1-D array.
|
2005 |
+
(A "clump" is defined as a contiguous region of the array).
|
2006 |
+
|
2007 |
+
Parameters
|
2008 |
+
----------
|
2009 |
+
a : ndarray
|
2010 |
+
A one-dimensional masked array.
|
2011 |
+
|
2012 |
+
Returns
|
2013 |
+
-------
|
2014 |
+
slices : list of slice
|
2015 |
+
The list of slices, one for each continuous region of unmasked
|
2016 |
+
elements in `a`.
|
2017 |
+
|
2018 |
+
Notes
|
2019 |
+
-----
|
2020 |
+
.. versionadded:: 1.4.0
|
2021 |
+
|
2022 |
+
See Also
|
2023 |
+
--------
|
2024 |
+
flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges
|
2025 |
+
notmasked_contiguous, clump_masked
|
2026 |
+
|
2027 |
+
Examples
|
2028 |
+
--------
|
2029 |
+
>>> a = np.ma.masked_array(np.arange(10))
|
2030 |
+
>>> a[[0, 1, 2, 6, 8, 9]] = np.ma.masked
|
2031 |
+
>>> np.ma.clump_unmasked(a)
|
2032 |
+
[slice(3, 6, None), slice(7, 8, None)]
|
2033 |
+
|
2034 |
+
"""
|
2035 |
+
mask = getattr(a, '_mask', nomask)
|
2036 |
+
if mask is nomask:
|
2037 |
+
return [slice(0, a.size)]
|
2038 |
+
return _ezclump(~mask)
|
2039 |
+
|
2040 |
+
|
2041 |
+
def clump_masked(a):
|
2042 |
+
"""
|
2043 |
+
Returns a list of slices corresponding to the masked clumps of a 1-D array.
|
2044 |
+
(A "clump" is defined as a contiguous region of the array).
|
2045 |
+
|
2046 |
+
Parameters
|
2047 |
+
----------
|
2048 |
+
a : ndarray
|
2049 |
+
A one-dimensional masked array.
|
2050 |
+
|
2051 |
+
Returns
|
2052 |
+
-------
|
2053 |
+
slices : list of slice
|
2054 |
+
The list of slices, one for each continuous region of masked elements
|
2055 |
+
in `a`.
|
2056 |
+
|
2057 |
+
Notes
|
2058 |
+
-----
|
2059 |
+
.. versionadded:: 1.4.0
|
2060 |
+
|
2061 |
+
See Also
|
2062 |
+
--------
|
2063 |
+
flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges
|
2064 |
+
notmasked_contiguous, clump_unmasked
|
2065 |
+
|
2066 |
+
Examples
|
2067 |
+
--------
|
2068 |
+
>>> a = np.ma.masked_array(np.arange(10))
|
2069 |
+
>>> a[[0, 1, 2, 6, 8, 9]] = np.ma.masked
|
2070 |
+
>>> np.ma.clump_masked(a)
|
2071 |
+
[slice(0, 3, None), slice(6, 7, None), slice(8, 10, None)]
|
2072 |
+
|
2073 |
+
"""
|
2074 |
+
mask = ma.getmask(a)
|
2075 |
+
if mask is nomask:
|
2076 |
+
return []
|
2077 |
+
return _ezclump(mask)
|
2078 |
+
|
2079 |
+
|
2080 |
+
###############################################################################
|
2081 |
+
# Polynomial fit #
|
2082 |
+
###############################################################################
|
2083 |
+
|
2084 |
+
|
2085 |
+
def vander(x, n=None):
|
2086 |
+
"""
|
2087 |
+
Masked values in the input array result in rows of zeros.
|
2088 |
+
|
2089 |
+
"""
|
2090 |
+
_vander = np.vander(x, n)
|
2091 |
+
m = getmask(x)
|
2092 |
+
if m is not nomask:
|
2093 |
+
_vander[m] = 0
|
2094 |
+
return _vander
|
2095 |
+
|
2096 |
+
vander.__doc__ = ma.doc_note(np.vander.__doc__, vander.__doc__)
|
2097 |
+
|
2098 |
+
|
2099 |
+
def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False):
|
2100 |
+
"""
|
2101 |
+
Any masked values in x is propagated in y, and vice-versa.
|
2102 |
+
|
2103 |
+
"""
|
2104 |
+
x = asarray(x)
|
2105 |
+
y = asarray(y)
|
2106 |
+
|
2107 |
+
m = getmask(x)
|
2108 |
+
if y.ndim == 1:
|
2109 |
+
m = mask_or(m, getmask(y))
|
2110 |
+
elif y.ndim == 2:
|
2111 |
+
my = getmask(mask_rows(y))
|
2112 |
+
if my is not nomask:
|
2113 |
+
m = mask_or(m, my[:, 0])
|
2114 |
+
else:
|
2115 |
+
raise TypeError("Expected a 1D or 2D array for y!")
|
2116 |
+
|
2117 |
+
if w is not None:
|
2118 |
+
w = asarray(w)
|
2119 |
+
if w.ndim != 1:
|
2120 |
+
raise TypeError("expected a 1-d array for weights")
|
2121 |
+
if w.shape[0] != y.shape[0]:
|
2122 |
+
raise TypeError("expected w and y to have the same length")
|
2123 |
+
m = mask_or(m, getmask(w))
|
2124 |
+
|
2125 |
+
if m is not nomask:
|
2126 |
+
not_m = ~m
|
2127 |
+
if w is not None:
|
2128 |
+
w = w[not_m]
|
2129 |
+
return np.polyfit(x[not_m], y[not_m], deg, rcond, full, w, cov)
|
2130 |
+
else:
|
2131 |
+
return np.polyfit(x, y, deg, rcond, full, w, cov)
|
2132 |
+
|
2133 |
+
polyfit.__doc__ = ma.doc_note(np.polyfit.__doc__, polyfit.__doc__)
|
venv/lib/python3.10/site-packages/numpy/ma/mrecords.py
ADDED
@@ -0,0 +1,783 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""":mod:`numpy.ma..mrecords`
|
2 |
+
|
3 |
+
Defines the equivalent of :class:`numpy.recarrays` for masked arrays,
|
4 |
+
where fields can be accessed as attributes.
|
5 |
+
Note that :class:`numpy.ma.MaskedArray` already supports structured datatypes
|
6 |
+
and the masking of individual fields.
|
7 |
+
|
8 |
+
.. moduleauthor:: Pierre Gerard-Marchant
|
9 |
+
|
10 |
+
"""
|
11 |
+
# We should make sure that no field is called '_mask','mask','_fieldmask',
|
12 |
+
# or whatever restricted keywords. An idea would be to no bother in the
|
13 |
+
# first place, and then rename the invalid fields with a trailing
|
14 |
+
# underscore. Maybe we could just overload the parser function ?
|
15 |
+
|
16 |
+
from numpy.ma import (
|
17 |
+
MAError, MaskedArray, masked, nomask, masked_array, getdata,
|
18 |
+
getmaskarray, filled
|
19 |
+
)
|
20 |
+
import numpy.ma as ma
|
21 |
+
import warnings
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
from numpy import (
|
25 |
+
bool_, dtype, ndarray, recarray, array as narray
|
26 |
+
)
|
27 |
+
from numpy.core.records import (
|
28 |
+
fromarrays as recfromarrays, fromrecords as recfromrecords
|
29 |
+
)
|
30 |
+
|
31 |
+
_byteorderconv = np.core.records._byteorderconv
|
32 |
+
|
33 |
+
|
34 |
+
_check_fill_value = ma.core._check_fill_value
|
35 |
+
|
36 |
+
|
37 |
+
__all__ = [
|
38 |
+
'MaskedRecords', 'mrecarray', 'fromarrays', 'fromrecords',
|
39 |
+
'fromtextfile', 'addfield',
|
40 |
+
]
|
41 |
+
|
42 |
+
reserved_fields = ['_data', '_mask', '_fieldmask', 'dtype']
|
43 |
+
|
44 |
+
|
45 |
+
def _checknames(descr, names=None):
|
46 |
+
"""
|
47 |
+
Checks that field names ``descr`` are not reserved keywords.
|
48 |
+
|
49 |
+
If this is the case, a default 'f%i' is substituted. If the argument
|
50 |
+
`names` is not None, updates the field names to valid names.
|
51 |
+
|
52 |
+
"""
|
53 |
+
ndescr = len(descr)
|
54 |
+
default_names = ['f%i' % i for i in range(ndescr)]
|
55 |
+
if names is None:
|
56 |
+
new_names = default_names
|
57 |
+
else:
|
58 |
+
if isinstance(names, (tuple, list)):
|
59 |
+
new_names = names
|
60 |
+
elif isinstance(names, str):
|
61 |
+
new_names = names.split(',')
|
62 |
+
else:
|
63 |
+
raise NameError(f'illegal input names {names!r}')
|
64 |
+
nnames = len(new_names)
|
65 |
+
if nnames < ndescr:
|
66 |
+
new_names += default_names[nnames:]
|
67 |
+
ndescr = []
|
68 |
+
for (n, d, t) in zip(new_names, default_names, descr.descr):
|
69 |
+
if n in reserved_fields:
|
70 |
+
if t[0] in reserved_fields:
|
71 |
+
ndescr.append((d, t[1]))
|
72 |
+
else:
|
73 |
+
ndescr.append(t)
|
74 |
+
else:
|
75 |
+
ndescr.append((n, t[1]))
|
76 |
+
return np.dtype(ndescr)
|
77 |
+
|
78 |
+
|
79 |
+
def _get_fieldmask(self):
|
80 |
+
mdescr = [(n, '|b1') for n in self.dtype.names]
|
81 |
+
fdmask = np.empty(self.shape, dtype=mdescr)
|
82 |
+
fdmask.flat = tuple([False] * len(mdescr))
|
83 |
+
return fdmask
|
84 |
+
|
85 |
+
|
86 |
+
class MaskedRecords(MaskedArray):
|
87 |
+
"""
|
88 |
+
|
89 |
+
Attributes
|
90 |
+
----------
|
91 |
+
_data : recarray
|
92 |
+
Underlying data, as a record array.
|
93 |
+
_mask : boolean array
|
94 |
+
Mask of the records. A record is masked when all its fields are
|
95 |
+
masked.
|
96 |
+
_fieldmask : boolean recarray
|
97 |
+
Record array of booleans, setting the mask of each individual field
|
98 |
+
of each record.
|
99 |
+
_fill_value : record
|
100 |
+
Filling values for each field.
|
101 |
+
|
102 |
+
"""
|
103 |
+
|
104 |
+
def __new__(cls, shape, dtype=None, buf=None, offset=0, strides=None,
|
105 |
+
formats=None, names=None, titles=None,
|
106 |
+
byteorder=None, aligned=False,
|
107 |
+
mask=nomask, hard_mask=False, fill_value=None, keep_mask=True,
|
108 |
+
copy=False,
|
109 |
+
**options):
|
110 |
+
|
111 |
+
self = recarray.__new__(cls, shape, dtype=dtype, buf=buf, offset=offset,
|
112 |
+
strides=strides, formats=formats, names=names,
|
113 |
+
titles=titles, byteorder=byteorder,
|
114 |
+
aligned=aligned,)
|
115 |
+
|
116 |
+
mdtype = ma.make_mask_descr(self.dtype)
|
117 |
+
if mask is nomask or not np.size(mask):
|
118 |
+
if not keep_mask:
|
119 |
+
self._mask = tuple([False] * len(mdtype))
|
120 |
+
else:
|
121 |
+
mask = np.array(mask, copy=copy)
|
122 |
+
if mask.shape != self.shape:
|
123 |
+
(nd, nm) = (self.size, mask.size)
|
124 |
+
if nm == 1:
|
125 |
+
mask = np.resize(mask, self.shape)
|
126 |
+
elif nm == nd:
|
127 |
+
mask = np.reshape(mask, self.shape)
|
128 |
+
else:
|
129 |
+
msg = "Mask and data not compatible: data size is %i, " + \
|
130 |
+
"mask size is %i."
|
131 |
+
raise MAError(msg % (nd, nm))
|
132 |
+
if not keep_mask:
|
133 |
+
self.__setmask__(mask)
|
134 |
+
self._sharedmask = True
|
135 |
+
else:
|
136 |
+
if mask.dtype == mdtype:
|
137 |
+
_mask = mask
|
138 |
+
else:
|
139 |
+
_mask = np.array([tuple([m] * len(mdtype)) for m in mask],
|
140 |
+
dtype=mdtype)
|
141 |
+
self._mask = _mask
|
142 |
+
return self
|
143 |
+
|
144 |
+
def __array_finalize__(self, obj):
|
145 |
+
# Make sure we have a _fieldmask by default
|
146 |
+
_mask = getattr(obj, '_mask', None)
|
147 |
+
if _mask is None:
|
148 |
+
objmask = getattr(obj, '_mask', nomask)
|
149 |
+
_dtype = ndarray.__getattribute__(self, 'dtype')
|
150 |
+
if objmask is nomask:
|
151 |
+
_mask = ma.make_mask_none(self.shape, dtype=_dtype)
|
152 |
+
else:
|
153 |
+
mdescr = ma.make_mask_descr(_dtype)
|
154 |
+
_mask = narray([tuple([m] * len(mdescr)) for m in objmask],
|
155 |
+
dtype=mdescr).view(recarray)
|
156 |
+
# Update some of the attributes
|
157 |
+
_dict = self.__dict__
|
158 |
+
_dict.update(_mask=_mask)
|
159 |
+
self._update_from(obj)
|
160 |
+
if _dict['_baseclass'] == ndarray:
|
161 |
+
_dict['_baseclass'] = recarray
|
162 |
+
return
|
163 |
+
|
164 |
+
@property
|
165 |
+
def _data(self):
|
166 |
+
"""
|
167 |
+
Returns the data as a recarray.
|
168 |
+
|
169 |
+
"""
|
170 |
+
return ndarray.view(self, recarray)
|
171 |
+
|
172 |
+
@property
|
173 |
+
def _fieldmask(self):
|
174 |
+
"""
|
175 |
+
Alias to mask.
|
176 |
+
|
177 |
+
"""
|
178 |
+
return self._mask
|
179 |
+
|
180 |
+
def __len__(self):
|
181 |
+
"""
|
182 |
+
Returns the length
|
183 |
+
|
184 |
+
"""
|
185 |
+
# We have more than one record
|
186 |
+
if self.ndim:
|
187 |
+
return len(self._data)
|
188 |
+
# We have only one record: return the nb of fields
|
189 |
+
return len(self.dtype)
|
190 |
+
|
191 |
+
def __getattribute__(self, attr):
|
192 |
+
try:
|
193 |
+
return object.__getattribute__(self, attr)
|
194 |
+
except AttributeError:
|
195 |
+
# attr must be a fieldname
|
196 |
+
pass
|
197 |
+
fielddict = ndarray.__getattribute__(self, 'dtype').fields
|
198 |
+
try:
|
199 |
+
res = fielddict[attr][:2]
|
200 |
+
except (TypeError, KeyError) as e:
|
201 |
+
raise AttributeError(
|
202 |
+
f'record array has no attribute {attr}') from e
|
203 |
+
# So far, so good
|
204 |
+
_localdict = ndarray.__getattribute__(self, '__dict__')
|
205 |
+
_data = ndarray.view(self, _localdict['_baseclass'])
|
206 |
+
obj = _data.getfield(*res)
|
207 |
+
if obj.dtype.names is not None:
|
208 |
+
raise NotImplementedError("MaskedRecords is currently limited to"
|
209 |
+
"simple records.")
|
210 |
+
# Get some special attributes
|
211 |
+
# Reset the object's mask
|
212 |
+
hasmasked = False
|
213 |
+
_mask = _localdict.get('_mask', None)
|
214 |
+
if _mask is not None:
|
215 |
+
try:
|
216 |
+
_mask = _mask[attr]
|
217 |
+
except IndexError:
|
218 |
+
# Couldn't find a mask: use the default (nomask)
|
219 |
+
pass
|
220 |
+
tp_len = len(_mask.dtype)
|
221 |
+
hasmasked = _mask.view((bool, ((tp_len,) if tp_len else ()))).any()
|
222 |
+
if (obj.shape or hasmasked):
|
223 |
+
obj = obj.view(MaskedArray)
|
224 |
+
obj._baseclass = ndarray
|
225 |
+
obj._isfield = True
|
226 |
+
obj._mask = _mask
|
227 |
+
# Reset the field values
|
228 |
+
_fill_value = _localdict.get('_fill_value', None)
|
229 |
+
if _fill_value is not None:
|
230 |
+
try:
|
231 |
+
obj._fill_value = _fill_value[attr]
|
232 |
+
except ValueError:
|
233 |
+
obj._fill_value = None
|
234 |
+
else:
|
235 |
+
obj = obj.item()
|
236 |
+
return obj
|
237 |
+
|
238 |
+
def __setattr__(self, attr, val):
|
239 |
+
"""
|
240 |
+
Sets the attribute attr to the value val.
|
241 |
+
|
242 |
+
"""
|
243 |
+
# Should we call __setmask__ first ?
|
244 |
+
if attr in ['mask', 'fieldmask']:
|
245 |
+
self.__setmask__(val)
|
246 |
+
return
|
247 |
+
# Create a shortcut (so that we don't have to call getattr all the time)
|
248 |
+
_localdict = object.__getattribute__(self, '__dict__')
|
249 |
+
# Check whether we're creating a new field
|
250 |
+
newattr = attr not in _localdict
|
251 |
+
try:
|
252 |
+
# Is attr a generic attribute ?
|
253 |
+
ret = object.__setattr__(self, attr, val)
|
254 |
+
except Exception:
|
255 |
+
# Not a generic attribute: exit if it's not a valid field
|
256 |
+
fielddict = ndarray.__getattribute__(self, 'dtype').fields or {}
|
257 |
+
optinfo = ndarray.__getattribute__(self, '_optinfo') or {}
|
258 |
+
if not (attr in fielddict or attr in optinfo):
|
259 |
+
raise
|
260 |
+
else:
|
261 |
+
# Get the list of names
|
262 |
+
fielddict = ndarray.__getattribute__(self, 'dtype').fields or {}
|
263 |
+
# Check the attribute
|
264 |
+
if attr not in fielddict:
|
265 |
+
return ret
|
266 |
+
if newattr:
|
267 |
+
# We just added this one or this setattr worked on an
|
268 |
+
# internal attribute.
|
269 |
+
try:
|
270 |
+
object.__delattr__(self, attr)
|
271 |
+
except Exception:
|
272 |
+
return ret
|
273 |
+
# Let's try to set the field
|
274 |
+
try:
|
275 |
+
res = fielddict[attr][:2]
|
276 |
+
except (TypeError, KeyError) as e:
|
277 |
+
raise AttributeError(
|
278 |
+
f'record array has no attribute {attr}') from e
|
279 |
+
|
280 |
+
if val is masked:
|
281 |
+
_fill_value = _localdict['_fill_value']
|
282 |
+
if _fill_value is not None:
|
283 |
+
dval = _localdict['_fill_value'][attr]
|
284 |
+
else:
|
285 |
+
dval = val
|
286 |
+
mval = True
|
287 |
+
else:
|
288 |
+
dval = filled(val)
|
289 |
+
mval = getmaskarray(val)
|
290 |
+
obj = ndarray.__getattribute__(self, '_data').setfield(dval, *res)
|
291 |
+
_localdict['_mask'].__setitem__(attr, mval)
|
292 |
+
return obj
|
293 |
+
|
294 |
+
def __getitem__(self, indx):
|
295 |
+
"""
|
296 |
+
Returns all the fields sharing the same fieldname base.
|
297 |
+
|
298 |
+
The fieldname base is either `_data` or `_mask`.
|
299 |
+
|
300 |
+
"""
|
301 |
+
_localdict = self.__dict__
|
302 |
+
_mask = ndarray.__getattribute__(self, '_mask')
|
303 |
+
_data = ndarray.view(self, _localdict['_baseclass'])
|
304 |
+
# We want a field
|
305 |
+
if isinstance(indx, str):
|
306 |
+
# Make sure _sharedmask is True to propagate back to _fieldmask
|
307 |
+
# Don't use _set_mask, there are some copies being made that
|
308 |
+
# break propagation Don't force the mask to nomask, that wreaks
|
309 |
+
# easy masking
|
310 |
+
obj = _data[indx].view(MaskedArray)
|
311 |
+
obj._mask = _mask[indx]
|
312 |
+
obj._sharedmask = True
|
313 |
+
fval = _localdict['_fill_value']
|
314 |
+
if fval is not None:
|
315 |
+
obj._fill_value = fval[indx]
|
316 |
+
# Force to masked if the mask is True
|
317 |
+
if not obj.ndim and obj._mask:
|
318 |
+
return masked
|
319 |
+
return obj
|
320 |
+
# We want some elements.
|
321 |
+
# First, the data.
|
322 |
+
obj = np.array(_data[indx], copy=False).view(mrecarray)
|
323 |
+
obj._mask = np.array(_mask[indx], copy=False).view(recarray)
|
324 |
+
return obj
|
325 |
+
|
326 |
+
def __setitem__(self, indx, value):
|
327 |
+
"""
|
328 |
+
Sets the given record to value.
|
329 |
+
|
330 |
+
"""
|
331 |
+
MaskedArray.__setitem__(self, indx, value)
|
332 |
+
if isinstance(indx, str):
|
333 |
+
self._mask[indx] = ma.getmaskarray(value)
|
334 |
+
|
335 |
+
def __str__(self):
|
336 |
+
"""
|
337 |
+
Calculates the string representation.
|
338 |
+
|
339 |
+
"""
|
340 |
+
if self.size > 1:
|
341 |
+
mstr = [f"({','.join([str(i) for i in s])})"
|
342 |
+
for s in zip(*[getattr(self, f) for f in self.dtype.names])]
|
343 |
+
return f"[{', '.join(mstr)}]"
|
344 |
+
else:
|
345 |
+
mstr = [f"{','.join([str(i) for i in s])}"
|
346 |
+
for s in zip([getattr(self, f) for f in self.dtype.names])]
|
347 |
+
return f"({', '.join(mstr)})"
|
348 |
+
|
349 |
+
def __repr__(self):
|
350 |
+
"""
|
351 |
+
Calculates the repr representation.
|
352 |
+
|
353 |
+
"""
|
354 |
+
_names = self.dtype.names
|
355 |
+
fmt = "%%%is : %%s" % (max([len(n) for n in _names]) + 4,)
|
356 |
+
reprstr = [fmt % (f, getattr(self, f)) for f in self.dtype.names]
|
357 |
+
reprstr.insert(0, 'masked_records(')
|
358 |
+
reprstr.extend([fmt % (' fill_value', self.fill_value),
|
359 |
+
' )'])
|
360 |
+
return str("\n".join(reprstr))
|
361 |
+
|
362 |
+
def view(self, dtype=None, type=None):
|
363 |
+
"""
|
364 |
+
Returns a view of the mrecarray.
|
365 |
+
|
366 |
+
"""
|
367 |
+
# OK, basic copy-paste from MaskedArray.view.
|
368 |
+
if dtype is None:
|
369 |
+
if type is None:
|
370 |
+
output = ndarray.view(self)
|
371 |
+
else:
|
372 |
+
output = ndarray.view(self, type)
|
373 |
+
# Here again.
|
374 |
+
elif type is None:
|
375 |
+
try:
|
376 |
+
if issubclass(dtype, ndarray):
|
377 |
+
output = ndarray.view(self, dtype)
|
378 |
+
else:
|
379 |
+
output = ndarray.view(self, dtype)
|
380 |
+
# OK, there's the change
|
381 |
+
except TypeError:
|
382 |
+
dtype = np.dtype(dtype)
|
383 |
+
# we need to revert to MaskedArray, but keeping the possibility
|
384 |
+
# of subclasses (eg, TimeSeriesRecords), so we'll force a type
|
385 |
+
# set to the first parent
|
386 |
+
if dtype.fields is None:
|
387 |
+
basetype = self.__class__.__bases__[0]
|
388 |
+
output = self.__array__().view(dtype, basetype)
|
389 |
+
output._update_from(self)
|
390 |
+
else:
|
391 |
+
output = ndarray.view(self, dtype)
|
392 |
+
output._fill_value = None
|
393 |
+
else:
|
394 |
+
output = ndarray.view(self, dtype, type)
|
395 |
+
# Update the mask, just like in MaskedArray.view
|
396 |
+
if (getattr(output, '_mask', nomask) is not nomask):
|
397 |
+
mdtype = ma.make_mask_descr(output.dtype)
|
398 |
+
output._mask = self._mask.view(mdtype, ndarray)
|
399 |
+
output._mask.shape = output.shape
|
400 |
+
return output
|
401 |
+
|
402 |
+
def harden_mask(self):
|
403 |
+
"""
|
404 |
+
Forces the mask to hard.
|
405 |
+
|
406 |
+
"""
|
407 |
+
self._hardmask = True
|
408 |
+
|
409 |
+
def soften_mask(self):
|
410 |
+
"""
|
411 |
+
Forces the mask to soft
|
412 |
+
|
413 |
+
"""
|
414 |
+
self._hardmask = False
|
415 |
+
|
416 |
+
def copy(self):
|
417 |
+
"""
|
418 |
+
Returns a copy of the masked record.
|
419 |
+
|
420 |
+
"""
|
421 |
+
copied = self._data.copy().view(type(self))
|
422 |
+
copied._mask = self._mask.copy()
|
423 |
+
return copied
|
424 |
+
|
425 |
+
def tolist(self, fill_value=None):
|
426 |
+
"""
|
427 |
+
Return the data portion of the array as a list.
|
428 |
+
|
429 |
+
Data items are converted to the nearest compatible Python type.
|
430 |
+
Masked values are converted to fill_value. If fill_value is None,
|
431 |
+
the corresponding entries in the output list will be ``None``.
|
432 |
+
|
433 |
+
"""
|
434 |
+
if fill_value is not None:
|
435 |
+
return self.filled(fill_value).tolist()
|
436 |
+
result = narray(self.filled().tolist(), dtype=object)
|
437 |
+
mask = narray(self._mask.tolist())
|
438 |
+
result[mask] = None
|
439 |
+
return result.tolist()
|
440 |
+
|
441 |
+
def __getstate__(self):
|
442 |
+
"""Return the internal state of the masked array.
|
443 |
+
|
444 |
+
This is for pickling.
|
445 |
+
|
446 |
+
"""
|
447 |
+
state = (1,
|
448 |
+
self.shape,
|
449 |
+
self.dtype,
|
450 |
+
self.flags.fnc,
|
451 |
+
self._data.tobytes(),
|
452 |
+
self._mask.tobytes(),
|
453 |
+
self._fill_value,
|
454 |
+
)
|
455 |
+
return state
|
456 |
+
|
457 |
+
def __setstate__(self, state):
|
458 |
+
"""
|
459 |
+
Restore the internal state of the masked array.
|
460 |
+
|
461 |
+
This is for pickling. ``state`` is typically the output of the
|
462 |
+
``__getstate__`` output, and is a 5-tuple:
|
463 |
+
|
464 |
+
- class name
|
465 |
+
- a tuple giving the shape of the data
|
466 |
+
- a typecode for the data
|
467 |
+
- a binary string for the data
|
468 |
+
- a binary string for the mask.
|
469 |
+
|
470 |
+
"""
|
471 |
+
(ver, shp, typ, isf, raw, msk, flv) = state
|
472 |
+
ndarray.__setstate__(self, (shp, typ, isf, raw))
|
473 |
+
mdtype = dtype([(k, bool_) for (k, _) in self.dtype.descr])
|
474 |
+
self.__dict__['_mask'].__setstate__((shp, mdtype, isf, msk))
|
475 |
+
self.fill_value = flv
|
476 |
+
|
477 |
+
def __reduce__(self):
|
478 |
+
"""
|
479 |
+
Return a 3-tuple for pickling a MaskedArray.
|
480 |
+
|
481 |
+
"""
|
482 |
+
return (_mrreconstruct,
|
483 |
+
(self.__class__, self._baseclass, (0,), 'b',),
|
484 |
+
self.__getstate__())
|
485 |
+
|
486 |
+
|
487 |
+
def _mrreconstruct(subtype, baseclass, baseshape, basetype,):
|
488 |
+
"""
|
489 |
+
Build a new MaskedArray from the information stored in a pickle.
|
490 |
+
|
491 |
+
"""
|
492 |
+
_data = ndarray.__new__(baseclass, baseshape, basetype).view(subtype)
|
493 |
+
_mask = ndarray.__new__(ndarray, baseshape, 'b1')
|
494 |
+
return subtype.__new__(subtype, _data, mask=_mask, dtype=basetype,)
|
495 |
+
|
496 |
+
mrecarray = MaskedRecords
|
497 |
+
|
498 |
+
|
499 |
+
###############################################################################
|
500 |
+
# Constructors #
|
501 |
+
###############################################################################
|
502 |
+
|
503 |
+
|
504 |
+
def fromarrays(arraylist, dtype=None, shape=None, formats=None,
|
505 |
+
names=None, titles=None, aligned=False, byteorder=None,
|
506 |
+
fill_value=None):
|
507 |
+
"""
|
508 |
+
Creates a mrecarray from a (flat) list of masked arrays.
|
509 |
+
|
510 |
+
Parameters
|
511 |
+
----------
|
512 |
+
arraylist : sequence
|
513 |
+
A list of (masked) arrays. Each element of the sequence is first converted
|
514 |
+
to a masked array if needed. If a 2D array is passed as argument, it is
|
515 |
+
processed line by line
|
516 |
+
dtype : {None, dtype}, optional
|
517 |
+
Data type descriptor.
|
518 |
+
shape : {None, integer}, optional
|
519 |
+
Number of records. If None, shape is defined from the shape of the
|
520 |
+
first array in the list.
|
521 |
+
formats : {None, sequence}, optional
|
522 |
+
Sequence of formats for each individual field. If None, the formats will
|
523 |
+
be autodetected by inspecting the fields and selecting the highest dtype
|
524 |
+
possible.
|
525 |
+
names : {None, sequence}, optional
|
526 |
+
Sequence of the names of each field.
|
527 |
+
fill_value : {None, sequence}, optional
|
528 |
+
Sequence of data to be used as filling values.
|
529 |
+
|
530 |
+
Notes
|
531 |
+
-----
|
532 |
+
Lists of tuples should be preferred over lists of lists for faster processing.
|
533 |
+
|
534 |
+
"""
|
535 |
+
datalist = [getdata(x) for x in arraylist]
|
536 |
+
masklist = [np.atleast_1d(getmaskarray(x)) for x in arraylist]
|
537 |
+
_array = recfromarrays(datalist,
|
538 |
+
dtype=dtype, shape=shape, formats=formats,
|
539 |
+
names=names, titles=titles, aligned=aligned,
|
540 |
+
byteorder=byteorder).view(mrecarray)
|
541 |
+
_array._mask.flat = list(zip(*masklist))
|
542 |
+
if fill_value is not None:
|
543 |
+
_array.fill_value = fill_value
|
544 |
+
return _array
|
545 |
+
|
546 |
+
|
547 |
+
def fromrecords(reclist, dtype=None, shape=None, formats=None, names=None,
|
548 |
+
titles=None, aligned=False, byteorder=None,
|
549 |
+
fill_value=None, mask=nomask):
|
550 |
+
"""
|
551 |
+
Creates a MaskedRecords from a list of records.
|
552 |
+
|
553 |
+
Parameters
|
554 |
+
----------
|
555 |
+
reclist : sequence
|
556 |
+
A list of records. Each element of the sequence is first converted
|
557 |
+
to a masked array if needed. If a 2D array is passed as argument, it is
|
558 |
+
processed line by line
|
559 |
+
dtype : {None, dtype}, optional
|
560 |
+
Data type descriptor.
|
561 |
+
shape : {None,int}, optional
|
562 |
+
Number of records. If None, ``shape`` is defined from the shape of the
|
563 |
+
first array in the list.
|
564 |
+
formats : {None, sequence}, optional
|
565 |
+
Sequence of formats for each individual field. If None, the formats will
|
566 |
+
be autodetected by inspecting the fields and selecting the highest dtype
|
567 |
+
possible.
|
568 |
+
names : {None, sequence}, optional
|
569 |
+
Sequence of the names of each field.
|
570 |
+
fill_value : {None, sequence}, optional
|
571 |
+
Sequence of data to be used as filling values.
|
572 |
+
mask : {nomask, sequence}, optional.
|
573 |
+
External mask to apply on the data.
|
574 |
+
|
575 |
+
Notes
|
576 |
+
-----
|
577 |
+
Lists of tuples should be preferred over lists of lists for faster processing.
|
578 |
+
|
579 |
+
"""
|
580 |
+
# Grab the initial _fieldmask, if needed:
|
581 |
+
_mask = getattr(reclist, '_mask', None)
|
582 |
+
# Get the list of records.
|
583 |
+
if isinstance(reclist, ndarray):
|
584 |
+
# Make sure we don't have some hidden mask
|
585 |
+
if isinstance(reclist, MaskedArray):
|
586 |
+
reclist = reclist.filled().view(ndarray)
|
587 |
+
# Grab the initial dtype, just in case
|
588 |
+
if dtype is None:
|
589 |
+
dtype = reclist.dtype
|
590 |
+
reclist = reclist.tolist()
|
591 |
+
mrec = recfromrecords(reclist, dtype=dtype, shape=shape, formats=formats,
|
592 |
+
names=names, titles=titles,
|
593 |
+
aligned=aligned, byteorder=byteorder).view(mrecarray)
|
594 |
+
# Set the fill_value if needed
|
595 |
+
if fill_value is not None:
|
596 |
+
mrec.fill_value = fill_value
|
597 |
+
# Now, let's deal w/ the mask
|
598 |
+
if mask is not nomask:
|
599 |
+
mask = np.array(mask, copy=False)
|
600 |
+
maskrecordlength = len(mask.dtype)
|
601 |
+
if maskrecordlength:
|
602 |
+
mrec._mask.flat = mask
|
603 |
+
elif mask.ndim == 2:
|
604 |
+
mrec._mask.flat = [tuple(m) for m in mask]
|
605 |
+
else:
|
606 |
+
mrec.__setmask__(mask)
|
607 |
+
if _mask is not None:
|
608 |
+
mrec._mask[:] = _mask
|
609 |
+
return mrec
|
610 |
+
|
611 |
+
|
612 |
+
def _guessvartypes(arr):
|
613 |
+
"""
|
614 |
+
Tries to guess the dtypes of the str_ ndarray `arr`.
|
615 |
+
|
616 |
+
Guesses by testing element-wise conversion. Returns a list of dtypes.
|
617 |
+
The array is first converted to ndarray. If the array is 2D, the test
|
618 |
+
is performed on the first line. An exception is raised if the file is
|
619 |
+
3D or more.
|
620 |
+
|
621 |
+
"""
|
622 |
+
vartypes = []
|
623 |
+
arr = np.asarray(arr)
|
624 |
+
if arr.ndim == 2:
|
625 |
+
arr = arr[0]
|
626 |
+
elif arr.ndim > 2:
|
627 |
+
raise ValueError("The array should be 2D at most!")
|
628 |
+
# Start the conversion loop.
|
629 |
+
for f in arr:
|
630 |
+
try:
|
631 |
+
int(f)
|
632 |
+
except (ValueError, TypeError):
|
633 |
+
try:
|
634 |
+
float(f)
|
635 |
+
except (ValueError, TypeError):
|
636 |
+
try:
|
637 |
+
complex(f)
|
638 |
+
except (ValueError, TypeError):
|
639 |
+
vartypes.append(arr.dtype)
|
640 |
+
else:
|
641 |
+
vartypes.append(np.dtype(complex))
|
642 |
+
else:
|
643 |
+
vartypes.append(np.dtype(float))
|
644 |
+
else:
|
645 |
+
vartypes.append(np.dtype(int))
|
646 |
+
return vartypes
|
647 |
+
|
648 |
+
|
649 |
+
def openfile(fname):
|
650 |
+
"""
|
651 |
+
Opens the file handle of file `fname`.
|
652 |
+
|
653 |
+
"""
|
654 |
+
# A file handle
|
655 |
+
if hasattr(fname, 'readline'):
|
656 |
+
return fname
|
657 |
+
# Try to open the file and guess its type
|
658 |
+
try:
|
659 |
+
f = open(fname)
|
660 |
+
except FileNotFoundError as e:
|
661 |
+
raise FileNotFoundError(f"No such file: '{fname}'") from e
|
662 |
+
if f.readline()[:2] != "\\x":
|
663 |
+
f.seek(0, 0)
|
664 |
+
return f
|
665 |
+
f.close()
|
666 |
+
raise NotImplementedError("Wow, binary file")
|
667 |
+
|
668 |
+
|
669 |
+
def fromtextfile(fname, delimiter=None, commentchar='#', missingchar='',
|
670 |
+
varnames=None, vartypes=None,
|
671 |
+
*, delimitor=np._NoValue): # backwards compatibility
|
672 |
+
"""
|
673 |
+
Creates a mrecarray from data stored in the file `filename`.
|
674 |
+
|
675 |
+
Parameters
|
676 |
+
----------
|
677 |
+
fname : {file name/handle}
|
678 |
+
Handle of an opened file.
|
679 |
+
delimiter : {None, string}, optional
|
680 |
+
Alphanumeric character used to separate columns in the file.
|
681 |
+
If None, any (group of) white spacestring(s) will be used.
|
682 |
+
commentchar : {'#', string}, optional
|
683 |
+
Alphanumeric character used to mark the start of a comment.
|
684 |
+
missingchar : {'', string}, optional
|
685 |
+
String indicating missing data, and used to create the masks.
|
686 |
+
varnames : {None, sequence}, optional
|
687 |
+
Sequence of the variable names. If None, a list will be created from
|
688 |
+
the first non empty line of the file.
|
689 |
+
vartypes : {None, sequence}, optional
|
690 |
+
Sequence of the variables dtypes. If None, it will be estimated from
|
691 |
+
the first non-commented line.
|
692 |
+
|
693 |
+
|
694 |
+
Ultra simple: the varnames are in the header, one line"""
|
695 |
+
if delimitor is not np._NoValue:
|
696 |
+
if delimiter is not None:
|
697 |
+
raise TypeError("fromtextfile() got multiple values for argument "
|
698 |
+
"'delimiter'")
|
699 |
+
# NumPy 1.22.0, 2021-09-23
|
700 |
+
warnings.warn("The 'delimitor' keyword argument of "
|
701 |
+
"numpy.ma.mrecords.fromtextfile() is deprecated "
|
702 |
+
"since NumPy 1.22.0, use 'delimiter' instead.",
|
703 |
+
DeprecationWarning, stacklevel=2)
|
704 |
+
delimiter = delimitor
|
705 |
+
|
706 |
+
# Try to open the file.
|
707 |
+
ftext = openfile(fname)
|
708 |
+
|
709 |
+
# Get the first non-empty line as the varnames
|
710 |
+
while True:
|
711 |
+
line = ftext.readline()
|
712 |
+
firstline = line[:line.find(commentchar)].strip()
|
713 |
+
_varnames = firstline.split(delimiter)
|
714 |
+
if len(_varnames) > 1:
|
715 |
+
break
|
716 |
+
if varnames is None:
|
717 |
+
varnames = _varnames
|
718 |
+
|
719 |
+
# Get the data.
|
720 |
+
_variables = masked_array([line.strip().split(delimiter) for line in ftext
|
721 |
+
if line[0] != commentchar and len(line) > 1])
|
722 |
+
(_, nfields) = _variables.shape
|
723 |
+
ftext.close()
|
724 |
+
|
725 |
+
# Try to guess the dtype.
|
726 |
+
if vartypes is None:
|
727 |
+
vartypes = _guessvartypes(_variables[0])
|
728 |
+
else:
|
729 |
+
vartypes = [np.dtype(v) for v in vartypes]
|
730 |
+
if len(vartypes) != nfields:
|
731 |
+
msg = "Attempting to %i dtypes for %i fields!"
|
732 |
+
msg += " Reverting to default."
|
733 |
+
warnings.warn(msg % (len(vartypes), nfields), stacklevel=2)
|
734 |
+
vartypes = _guessvartypes(_variables[0])
|
735 |
+
|
736 |
+
# Construct the descriptor.
|
737 |
+
mdescr = [(n, f) for (n, f) in zip(varnames, vartypes)]
|
738 |
+
mfillv = [ma.default_fill_value(f) for f in vartypes]
|
739 |
+
|
740 |
+
# Get the data and the mask.
|
741 |
+
# We just need a list of masked_arrays. It's easier to create it like that:
|
742 |
+
_mask = (_variables.T == missingchar)
|
743 |
+
_datalist = [masked_array(a, mask=m, dtype=t, fill_value=f)
|
744 |
+
for (a, m, t, f) in zip(_variables.T, _mask, vartypes, mfillv)]
|
745 |
+
|
746 |
+
return fromarrays(_datalist, dtype=mdescr)
|
747 |
+
|
748 |
+
|
749 |
+
def addfield(mrecord, newfield, newfieldname=None):
|
750 |
+
"""Adds a new field to the masked record array
|
751 |
+
|
752 |
+
Uses `newfield` as data and `newfieldname` as name. If `newfieldname`
|
753 |
+
is None, the new field name is set to 'fi', where `i` is the number of
|
754 |
+
existing fields.
|
755 |
+
|
756 |
+
"""
|
757 |
+
_data = mrecord._data
|
758 |
+
_mask = mrecord._mask
|
759 |
+
if newfieldname is None or newfieldname in reserved_fields:
|
760 |
+
newfieldname = 'f%i' % len(_data.dtype)
|
761 |
+
newfield = ma.array(newfield)
|
762 |
+
# Get the new data.
|
763 |
+
# Create a new empty recarray
|
764 |
+
newdtype = np.dtype(_data.dtype.descr + [(newfieldname, newfield.dtype)])
|
765 |
+
newdata = recarray(_data.shape, newdtype)
|
766 |
+
# Add the existing field
|
767 |
+
[newdata.setfield(_data.getfield(*f), *f)
|
768 |
+
for f in _data.dtype.fields.values()]
|
769 |
+
# Add the new field
|
770 |
+
newdata.setfield(newfield._data, *newdata.dtype.fields[newfieldname])
|
771 |
+
newdata = newdata.view(MaskedRecords)
|
772 |
+
# Get the new mask
|
773 |
+
# Create a new empty recarray
|
774 |
+
newmdtype = np.dtype([(n, bool_) for n in newdtype.names])
|
775 |
+
newmask = recarray(_data.shape, newmdtype)
|
776 |
+
# Add the old masks
|
777 |
+
[newmask.setfield(_mask.getfield(*f), *f)
|
778 |
+
for f in _mask.dtype.fields.values()]
|
779 |
+
# Add the mask of the new field
|
780 |
+
newmask.setfield(getmaskarray(newfield),
|
781 |
+
*newmask.dtype.fields[newfieldname])
|
782 |
+
newdata._mask = newmask
|
783 |
+
return newdata
|
venv/lib/python3.10/site-packages/numpy/ma/setup.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
def configuration(parent_package='',top_path=None):
|
3 |
+
from numpy.distutils.misc_util import Configuration
|
4 |
+
config = Configuration('ma', parent_package, top_path)
|
5 |
+
config.add_subpackage('tests')
|
6 |
+
config.add_data_files('*.pyi')
|
7 |
+
return config
|
8 |
+
|
9 |
+
if __name__ == "__main__":
|
10 |
+
from numpy.distutils.core import setup
|
11 |
+
config = configuration(top_path='').todict()
|
12 |
+
setup(**config)
|
venv/lib/python3.10/site-packages/numpy/random/LICENSE.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
**This software is dual-licensed under the The University of Illinois/NCSA
|
2 |
+
Open Source License (NCSA) and The 3-Clause BSD License**
|
3 |
+
|
4 |
+
# NCSA Open Source License
|
5 |
+
**Copyright (c) 2019 Kevin Sheppard. All rights reserved.**
|
6 |
+
|
7 |
+
Developed by: Kevin Sheppard (<[email protected]>,
|
8 |
+
<[email protected]>)
|
9 |
+
[http://www.kevinsheppard.com](http://www.kevinsheppard.com)
|
10 |
+
|
11 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy of
|
12 |
+
this software and associated documentation files (the "Software"), to deal with
|
13 |
+
the Software without restriction, including without limitation the rights to
|
14 |
+
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
|
15 |
+
of the Software, and to permit persons to whom the Software is furnished to do
|
16 |
+
so, subject to the following conditions:
|
17 |
+
|
18 |
+
Redistributions of source code must retain the above copyright notice, this
|
19 |
+
list of conditions and the following disclaimers.
|
20 |
+
|
21 |
+
Redistributions in binary form must reproduce the above copyright notice, this
|
22 |
+
list of conditions and the following disclaimers in the documentation and/or
|
23 |
+
other materials provided with the distribution.
|
24 |
+
|
25 |
+
Neither the names of Kevin Sheppard, nor the names of any contributors may be
|
26 |
+
used to endorse or promote products derived from this Software without specific
|
27 |
+
prior written permission.
|
28 |
+
|
29 |
+
**THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
30 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
31 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
32 |
+
CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
33 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
34 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH
|
35 |
+
THE SOFTWARE.**
|
36 |
+
|
37 |
+
|
38 |
+
# 3-Clause BSD License
|
39 |
+
**Copyright (c) 2019 Kevin Sheppard. All rights reserved.**
|
40 |
+
|
41 |
+
Redistribution and use in source and binary forms, with or without
|
42 |
+
modification, are permitted provided that the following conditions are met:
|
43 |
+
|
44 |
+
1. Redistributions of source code must retain the above copyright notice,
|
45 |
+
this list of conditions and the following disclaimer.
|
46 |
+
|
47 |
+
2. Redistributions in binary form must reproduce the above copyright notice,
|
48 |
+
this list of conditions and the following disclaimer in the documentation
|
49 |
+
and/or other materials provided with the distribution.
|
50 |
+
|
51 |
+
3. Neither the name of the copyright holder nor the names of its contributors
|
52 |
+
may be used to endorse or promote products derived from this software
|
53 |
+
without specific prior written permission.
|
54 |
+
|
55 |
+
**THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
56 |
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
57 |
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
58 |
+
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
59 |
+
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
60 |
+
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
61 |
+
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
62 |
+
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
63 |
+
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
64 |
+
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
65 |
+
THE POSSIBILITY OF SUCH DAMAGE.**
|
66 |
+
|
67 |
+
# Components
|
68 |
+
|
69 |
+
Many parts of this module have been derived from original sources,
|
70 |
+
often the algorithm's designer. Component licenses are located with
|
71 |
+
the component code.
|
venv/lib/python3.10/site-packages/numpy/random/__init__.pxd
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
cimport numpy as np
|
2 |
+
from libc.stdint cimport uint32_t, uint64_t
|
3 |
+
|
4 |
+
cdef extern from "numpy/random/bitgen.h":
|
5 |
+
struct bitgen:
|
6 |
+
void *state
|
7 |
+
uint64_t (*next_uint64)(void *st) nogil
|
8 |
+
uint32_t (*next_uint32)(void *st) nogil
|
9 |
+
double (*next_double)(void *st) nogil
|
10 |
+
uint64_t (*next_raw)(void *st) nogil
|
11 |
+
|
12 |
+
ctypedef bitgen bitgen_t
|
13 |
+
|
14 |
+
from numpy.random.bit_generator cimport BitGenerator, SeedSequence
|
venv/lib/python3.10/site-packages/numpy/random/__init__.py
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
========================
|
3 |
+
Random Number Generation
|
4 |
+
========================
|
5 |
+
|
6 |
+
Use ``default_rng()`` to create a `Generator` and call its methods.
|
7 |
+
|
8 |
+
=============== =========================================================
|
9 |
+
Generator
|
10 |
+
--------------- ---------------------------------------------------------
|
11 |
+
Generator Class implementing all of the random number distributions
|
12 |
+
default_rng Default constructor for ``Generator``
|
13 |
+
=============== =========================================================
|
14 |
+
|
15 |
+
============================================= ===
|
16 |
+
BitGenerator Streams that work with Generator
|
17 |
+
--------------------------------------------- ---
|
18 |
+
MT19937
|
19 |
+
PCG64
|
20 |
+
PCG64DXSM
|
21 |
+
Philox
|
22 |
+
SFC64
|
23 |
+
============================================= ===
|
24 |
+
|
25 |
+
============================================= ===
|
26 |
+
Getting entropy to initialize a BitGenerator
|
27 |
+
--------------------------------------------- ---
|
28 |
+
SeedSequence
|
29 |
+
============================================= ===
|
30 |
+
|
31 |
+
|
32 |
+
Legacy
|
33 |
+
------
|
34 |
+
|
35 |
+
For backwards compatibility with previous versions of numpy before 1.17, the
|
36 |
+
various aliases to the global `RandomState` methods are left alone and do not
|
37 |
+
use the new `Generator` API.
|
38 |
+
|
39 |
+
==================== =========================================================
|
40 |
+
Utility functions
|
41 |
+
-------------------- ---------------------------------------------------------
|
42 |
+
random Uniformly distributed floats over ``[0, 1)``
|
43 |
+
bytes Uniformly distributed random bytes.
|
44 |
+
permutation Randomly permute a sequence / generate a random sequence.
|
45 |
+
shuffle Randomly permute a sequence in place.
|
46 |
+
choice Random sample from 1-D array.
|
47 |
+
==================== =========================================================
|
48 |
+
|
49 |
+
==================== =========================================================
|
50 |
+
Compatibility
|
51 |
+
functions - removed
|
52 |
+
in the new API
|
53 |
+
-------------------- ---------------------------------------------------------
|
54 |
+
rand Uniformly distributed values.
|
55 |
+
randn Normally distributed values.
|
56 |
+
ranf Uniformly distributed floating point numbers.
|
57 |
+
random_integers Uniformly distributed integers in a given range.
|
58 |
+
(deprecated, use ``integers(..., closed=True)`` instead)
|
59 |
+
random_sample Alias for `random_sample`
|
60 |
+
randint Uniformly distributed integers in a given range
|
61 |
+
seed Seed the legacy random number generator.
|
62 |
+
==================== =========================================================
|
63 |
+
|
64 |
+
==================== =========================================================
|
65 |
+
Univariate
|
66 |
+
distributions
|
67 |
+
-------------------- ---------------------------------------------------------
|
68 |
+
beta Beta distribution over ``[0, 1]``.
|
69 |
+
binomial Binomial distribution.
|
70 |
+
chisquare :math:`\\chi^2` distribution.
|
71 |
+
exponential Exponential distribution.
|
72 |
+
f F (Fisher-Snedecor) distribution.
|
73 |
+
gamma Gamma distribution.
|
74 |
+
geometric Geometric distribution.
|
75 |
+
gumbel Gumbel distribution.
|
76 |
+
hypergeometric Hypergeometric distribution.
|
77 |
+
laplace Laplace distribution.
|
78 |
+
logistic Logistic distribution.
|
79 |
+
lognormal Log-normal distribution.
|
80 |
+
logseries Logarithmic series distribution.
|
81 |
+
negative_binomial Negative binomial distribution.
|
82 |
+
noncentral_chisquare Non-central chi-square distribution.
|
83 |
+
noncentral_f Non-central F distribution.
|
84 |
+
normal Normal / Gaussian distribution.
|
85 |
+
pareto Pareto distribution.
|
86 |
+
poisson Poisson distribution.
|
87 |
+
power Power distribution.
|
88 |
+
rayleigh Rayleigh distribution.
|
89 |
+
triangular Triangular distribution.
|
90 |
+
uniform Uniform distribution.
|
91 |
+
vonmises Von Mises circular distribution.
|
92 |
+
wald Wald (inverse Gaussian) distribution.
|
93 |
+
weibull Weibull distribution.
|
94 |
+
zipf Zipf's distribution over ranked data.
|
95 |
+
==================== =========================================================
|
96 |
+
|
97 |
+
==================== ==========================================================
|
98 |
+
Multivariate
|
99 |
+
distributions
|
100 |
+
-------------------- ----------------------------------------------------------
|
101 |
+
dirichlet Multivariate generalization of Beta distribution.
|
102 |
+
multinomial Multivariate generalization of the binomial distribution.
|
103 |
+
multivariate_normal Multivariate generalization of the normal distribution.
|
104 |
+
==================== ==========================================================
|
105 |
+
|
106 |
+
==================== =========================================================
|
107 |
+
Standard
|
108 |
+
distributions
|
109 |
+
-------------------- ---------------------------------------------------------
|
110 |
+
standard_cauchy Standard Cauchy-Lorentz distribution.
|
111 |
+
standard_exponential Standard exponential distribution.
|
112 |
+
standard_gamma Standard Gamma distribution.
|
113 |
+
standard_normal Standard normal distribution.
|
114 |
+
standard_t Standard Student's t-distribution.
|
115 |
+
==================== =========================================================
|
116 |
+
|
117 |
+
==================== =========================================================
|
118 |
+
Internal functions
|
119 |
+
-------------------- ---------------------------------------------------------
|
120 |
+
get_state Get tuple representing internal state of generator.
|
121 |
+
set_state Set state of generator.
|
122 |
+
==================== =========================================================
|
123 |
+
|
124 |
+
|
125 |
+
"""
|
126 |
+
__all__ = [
|
127 |
+
'beta',
|
128 |
+
'binomial',
|
129 |
+
'bytes',
|
130 |
+
'chisquare',
|
131 |
+
'choice',
|
132 |
+
'dirichlet',
|
133 |
+
'exponential',
|
134 |
+
'f',
|
135 |
+
'gamma',
|
136 |
+
'geometric',
|
137 |
+
'get_state',
|
138 |
+
'gumbel',
|
139 |
+
'hypergeometric',
|
140 |
+
'laplace',
|
141 |
+
'logistic',
|
142 |
+
'lognormal',
|
143 |
+
'logseries',
|
144 |
+
'multinomial',
|
145 |
+
'multivariate_normal',
|
146 |
+
'negative_binomial',
|
147 |
+
'noncentral_chisquare',
|
148 |
+
'noncentral_f',
|
149 |
+
'normal',
|
150 |
+
'pareto',
|
151 |
+
'permutation',
|
152 |
+
'poisson',
|
153 |
+
'power',
|
154 |
+
'rand',
|
155 |
+
'randint',
|
156 |
+
'randn',
|
157 |
+
'random',
|
158 |
+
'random_integers',
|
159 |
+
'random_sample',
|
160 |
+
'ranf',
|
161 |
+
'rayleigh',
|
162 |
+
'sample',
|
163 |
+
'seed',
|
164 |
+
'set_state',
|
165 |
+
'shuffle',
|
166 |
+
'standard_cauchy',
|
167 |
+
'standard_exponential',
|
168 |
+
'standard_gamma',
|
169 |
+
'standard_normal',
|
170 |
+
'standard_t',
|
171 |
+
'triangular',
|
172 |
+
'uniform',
|
173 |
+
'vonmises',
|
174 |
+
'wald',
|
175 |
+
'weibull',
|
176 |
+
'zipf',
|
177 |
+
]
|
178 |
+
|
179 |
+
# add these for module-freeze analysis (like PyInstaller)
|
180 |
+
from . import _pickle
|
181 |
+
from . import _common
|
182 |
+
from . import _bounded_integers
|
183 |
+
|
184 |
+
from ._generator import Generator, default_rng
|
185 |
+
from .bit_generator import SeedSequence, BitGenerator
|
186 |
+
from ._mt19937 import MT19937
|
187 |
+
from ._pcg64 import PCG64, PCG64DXSM
|
188 |
+
from ._philox import Philox
|
189 |
+
from ._sfc64 import SFC64
|
190 |
+
from .mtrand import *
|
191 |
+
|
192 |
+
__all__ += ['Generator', 'RandomState', 'SeedSequence', 'MT19937',
|
193 |
+
'Philox', 'PCG64', 'PCG64DXSM', 'SFC64', 'default_rng',
|
194 |
+
'BitGenerator']
|
195 |
+
|
196 |
+
|
197 |
+
def __RandomState_ctor():
|
198 |
+
"""Return a RandomState instance.
|
199 |
+
|
200 |
+
This function exists solely to assist (un)pickling.
|
201 |
+
|
202 |
+
Note that the state of the RandomState returned here is irrelevant, as this
|
203 |
+
function's entire purpose is to return a newly allocated RandomState whose
|
204 |
+
state pickle can set. Consequently the RandomState returned by this function
|
205 |
+
is a freshly allocated copy with a seed=0.
|
206 |
+
|
207 |
+
See https://github.com/numpy/numpy/issues/4763 for a detailed discussion
|
208 |
+
|
209 |
+
"""
|
210 |
+
return RandomState(seed=0)
|
211 |
+
|
212 |
+
|
213 |
+
from numpy._pytesttester import PytestTester
|
214 |
+
test = PytestTester(__name__)
|
215 |
+
del PytestTester
|
venv/lib/python3.10/site-packages/numpy/random/__init__.pyi
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from numpy._pytesttester import PytestTester
|
2 |
+
|
3 |
+
from numpy.random._generator import Generator as Generator
|
4 |
+
from numpy.random._generator import default_rng as default_rng
|
5 |
+
from numpy.random._mt19937 import MT19937 as MT19937
|
6 |
+
from numpy.random._pcg64 import (
|
7 |
+
PCG64 as PCG64,
|
8 |
+
PCG64DXSM as PCG64DXSM,
|
9 |
+
)
|
10 |
+
from numpy.random._philox import Philox as Philox
|
11 |
+
from numpy.random._sfc64 import SFC64 as SFC64
|
12 |
+
from numpy.random.bit_generator import BitGenerator as BitGenerator
|
13 |
+
from numpy.random.bit_generator import SeedSequence as SeedSequence
|
14 |
+
from numpy.random.mtrand import (
|
15 |
+
RandomState as RandomState,
|
16 |
+
beta as beta,
|
17 |
+
binomial as binomial,
|
18 |
+
bytes as bytes,
|
19 |
+
chisquare as chisquare,
|
20 |
+
choice as choice,
|
21 |
+
dirichlet as dirichlet,
|
22 |
+
exponential as exponential,
|
23 |
+
f as f,
|
24 |
+
gamma as gamma,
|
25 |
+
geometric as geometric,
|
26 |
+
get_bit_generator as get_bit_generator,
|
27 |
+
get_state as get_state,
|
28 |
+
gumbel as gumbel,
|
29 |
+
hypergeometric as hypergeometric,
|
30 |
+
laplace as laplace,
|
31 |
+
logistic as logistic,
|
32 |
+
lognormal as lognormal,
|
33 |
+
logseries as logseries,
|
34 |
+
multinomial as multinomial,
|
35 |
+
multivariate_normal as multivariate_normal,
|
36 |
+
negative_binomial as negative_binomial,
|
37 |
+
noncentral_chisquare as noncentral_chisquare,
|
38 |
+
noncentral_f as noncentral_f,
|
39 |
+
normal as normal,
|
40 |
+
pareto as pareto,
|
41 |
+
permutation as permutation,
|
42 |
+
poisson as poisson,
|
43 |
+
power as power,
|
44 |
+
rand as rand,
|
45 |
+
randint as randint,
|
46 |
+
randn as randn,
|
47 |
+
random as random,
|
48 |
+
random_integers as random_integers,
|
49 |
+
random_sample as random_sample,
|
50 |
+
ranf as ranf,
|
51 |
+
rayleigh as rayleigh,
|
52 |
+
sample as sample,
|
53 |
+
seed as seed,
|
54 |
+
set_bit_generator as set_bit_generator,
|
55 |
+
set_state as set_state,
|
56 |
+
shuffle as shuffle,
|
57 |
+
standard_cauchy as standard_cauchy,
|
58 |
+
standard_exponential as standard_exponential,
|
59 |
+
standard_gamma as standard_gamma,
|
60 |
+
standard_normal as standard_normal,
|
61 |
+
standard_t as standard_t,
|
62 |
+
triangular as triangular,
|
63 |
+
uniform as uniform,
|
64 |
+
vonmises as vonmises,
|
65 |
+
wald as wald,
|
66 |
+
weibull as weibull,
|
67 |
+
zipf as zipf,
|
68 |
+
)
|
69 |
+
|
70 |
+
__all__: list[str]
|
71 |
+
__path__: list[str]
|
72 |
+
test: PytestTester
|
venv/lib/python3.10/site-packages/numpy/random/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (7.43 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/random/__pycache__/_pickle.cpython-310.pyc
ADDED
Binary file (2.23 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/random/_bounded_integers.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (379 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/random/_bounded_integers.pxd
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from libc.stdint cimport (uint8_t, uint16_t, uint32_t, uint64_t,
|
2 |
+
int8_t, int16_t, int32_t, int64_t, intptr_t)
|
3 |
+
import numpy as np
|
4 |
+
cimport numpy as np
|
5 |
+
ctypedef np.npy_bool bool_t
|
6 |
+
|
7 |
+
from numpy.random cimport bitgen_t
|
8 |
+
|
9 |
+
cdef inline uint64_t _gen_mask(uint64_t max_val) nogil:
|
10 |
+
"""Mask generator for use in bounded random numbers"""
|
11 |
+
# Smallest bit mask >= max
|
12 |
+
cdef uint64_t mask = max_val
|
13 |
+
mask |= mask >> 1
|
14 |
+
mask |= mask >> 2
|
15 |
+
mask |= mask >> 4
|
16 |
+
mask |= mask >> 8
|
17 |
+
mask |= mask >> 16
|
18 |
+
mask |= mask >> 32
|
19 |
+
return mask
|
20 |
+
|
21 |
+
cdef object _rand_uint64(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock)
|
22 |
+
cdef object _rand_uint32(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock)
|
23 |
+
cdef object _rand_uint16(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock)
|
24 |
+
cdef object _rand_uint8(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock)
|
25 |
+
cdef object _rand_bool(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock)
|
26 |
+
cdef object _rand_int64(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock)
|
27 |
+
cdef object _rand_int32(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock)
|
28 |
+
cdef object _rand_int16(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock)
|
29 |
+
cdef object _rand_int8(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock)
|
venv/lib/python3.10/site-packages/numpy/random/_common.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (276 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/random/_common.pxd
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#cython: language_level=3
|
2 |
+
|
3 |
+
from libc.stdint cimport uint32_t, uint64_t, int32_t, int64_t
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
cimport numpy as np
|
7 |
+
|
8 |
+
from numpy.random cimport bitgen_t
|
9 |
+
|
10 |
+
cdef double POISSON_LAM_MAX
|
11 |
+
cdef double LEGACY_POISSON_LAM_MAX
|
12 |
+
cdef uint64_t MAXSIZE
|
13 |
+
|
14 |
+
cdef enum ConstraintType:
|
15 |
+
CONS_NONE
|
16 |
+
CONS_NON_NEGATIVE
|
17 |
+
CONS_POSITIVE
|
18 |
+
CONS_POSITIVE_NOT_NAN
|
19 |
+
CONS_BOUNDED_0_1
|
20 |
+
CONS_BOUNDED_GT_0_1
|
21 |
+
CONS_BOUNDED_LT_0_1
|
22 |
+
CONS_GT_1
|
23 |
+
CONS_GTE_1
|
24 |
+
CONS_POISSON
|
25 |
+
LEGACY_CONS_POISSON
|
26 |
+
|
27 |
+
ctypedef ConstraintType constraint_type
|
28 |
+
|
29 |
+
cdef object benchmark(bitgen_t *bitgen, object lock, Py_ssize_t cnt, object method)
|
30 |
+
cdef object random_raw(bitgen_t *bitgen, object lock, object size, object output)
|
31 |
+
cdef object prepare_cffi(bitgen_t *bitgen)
|
32 |
+
cdef object prepare_ctypes(bitgen_t *bitgen)
|
33 |
+
cdef int check_constraint(double val, object name, constraint_type cons) except -1
|
34 |
+
cdef int check_array_constraint(np.ndarray val, object name, constraint_type cons) except -1
|
35 |
+
|
36 |
+
cdef extern from "include/aligned_malloc.h":
|
37 |
+
cdef void *PyArray_realloc_aligned(void *p, size_t n)
|
38 |
+
cdef void *PyArray_malloc_aligned(size_t n)
|
39 |
+
cdef void *PyArray_calloc_aligned(size_t n, size_t s)
|
40 |
+
cdef void PyArray_free_aligned(void *p)
|
41 |
+
|
42 |
+
ctypedef void (*random_double_fill)(bitgen_t *state, np.npy_intp count, double* out) noexcept nogil
|
43 |
+
ctypedef double (*random_double_0)(void *state) noexcept nogil
|
44 |
+
ctypedef double (*random_double_1)(void *state, double a) noexcept nogil
|
45 |
+
ctypedef double (*random_double_2)(void *state, double a, double b) noexcept nogil
|
46 |
+
ctypedef double (*random_double_3)(void *state, double a, double b, double c) noexcept nogil
|
47 |
+
|
48 |
+
ctypedef void (*random_float_fill)(bitgen_t *state, np.npy_intp count, float* out) noexcept nogil
|
49 |
+
ctypedef float (*random_float_0)(bitgen_t *state) noexcept nogil
|
50 |
+
ctypedef float (*random_float_1)(bitgen_t *state, float a) noexcept nogil
|
51 |
+
|
52 |
+
ctypedef int64_t (*random_uint_0)(void *state) noexcept nogil
|
53 |
+
ctypedef int64_t (*random_uint_d)(void *state, double a) noexcept nogil
|
54 |
+
ctypedef int64_t (*random_uint_dd)(void *state, double a, double b) noexcept nogil
|
55 |
+
ctypedef int64_t (*random_uint_di)(void *state, double a, uint64_t b) noexcept nogil
|
56 |
+
ctypedef int64_t (*random_uint_i)(void *state, int64_t a) noexcept nogil
|
57 |
+
ctypedef int64_t (*random_uint_iii)(void *state, int64_t a, int64_t b, int64_t c) noexcept nogil
|
58 |
+
|
59 |
+
ctypedef uint32_t (*random_uint_0_32)(bitgen_t *state) noexcept nogil
|
60 |
+
ctypedef uint32_t (*random_uint_1_i_32)(bitgen_t *state, uint32_t a) noexcept nogil
|
61 |
+
|
62 |
+
ctypedef int32_t (*random_int_2_i_32)(bitgen_t *state, int32_t a, int32_t b) noexcept nogil
|
63 |
+
ctypedef int64_t (*random_int_2_i)(bitgen_t *state, int64_t a, int64_t b) noexcept nogil
|
64 |
+
|
65 |
+
cdef double kahan_sum(double *darr, np.npy_intp n) noexcept
|
66 |
+
|
67 |
+
cdef inline double uint64_to_double(uint64_t rnd) noexcept nogil:
|
68 |
+
return (rnd >> 11) * (1.0 / 9007199254740992.0)
|
69 |
+
|
70 |
+
cdef object double_fill(void *func, bitgen_t *state, object size, object lock, object out)
|
71 |
+
|
72 |
+
cdef object float_fill(void *func, bitgen_t *state, object size, object lock, object out)
|
73 |
+
|
74 |
+
cdef object float_fill_from_double(void *func, bitgen_t *state, object size, object lock, object out)
|
75 |
+
|
76 |
+
cdef object wrap_int(object val, object bits)
|
77 |
+
|
78 |
+
cdef np.ndarray int_to_array(object value, object name, object bits, object uint_size)
|
79 |
+
|
80 |
+
cdef validate_output_shape(iter_shape, np.ndarray output)
|
81 |
+
|
82 |
+
cdef object cont(void *func, void *state, object size, object lock, int narg,
|
83 |
+
object a, object a_name, constraint_type a_constraint,
|
84 |
+
object b, object b_name, constraint_type b_constraint,
|
85 |
+
object c, object c_name, constraint_type c_constraint,
|
86 |
+
object out)
|
87 |
+
|
88 |
+
cdef object disc(void *func, void *state, object size, object lock,
|
89 |
+
int narg_double, int narg_int64,
|
90 |
+
object a, object a_name, constraint_type a_constraint,
|
91 |
+
object b, object b_name, constraint_type b_constraint,
|
92 |
+
object c, object c_name, constraint_type c_constraint)
|
93 |
+
|
94 |
+
cdef object cont_f(void *func, bitgen_t *state, object size, object lock,
|
95 |
+
object a, object a_name, constraint_type a_constraint,
|
96 |
+
object out)
|
97 |
+
|
98 |
+
cdef object cont_broadcast_3(void *func, void *state, object size, object lock,
|
99 |
+
np.ndarray a_arr, object a_name, constraint_type a_constraint,
|
100 |
+
np.ndarray b_arr, object b_name, constraint_type b_constraint,
|
101 |
+
np.ndarray c_arr, object c_name, constraint_type c_constraint)
|
102 |
+
|
103 |
+
cdef object discrete_broadcast_iii(void *func, void *state, object size, object lock,
|
104 |
+
np.ndarray a_arr, object a_name, constraint_type a_constraint,
|
105 |
+
np.ndarray b_arr, object b_name, constraint_type b_constraint,
|
106 |
+
np.ndarray c_arr, object c_name, constraint_type c_constraint)
|
venv/lib/python3.10/site-packages/numpy/random/_examples/cffi/__pycache__/extending.cpython-310.pyc
ADDED
Binary file (943 Bytes). View file
|
|
venv/lib/python3.10/site-packages/numpy/random/_examples/cffi/__pycache__/parse.cpython-310.pyc
ADDED
Binary file (1.2 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/random/_examples/cffi/extending.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Use cffi to access any of the underlying C functions from distributions.h
|
3 |
+
"""
|
4 |
+
import os
|
5 |
+
import numpy as np
|
6 |
+
import cffi
|
7 |
+
from .parse import parse_distributions_h
|
8 |
+
ffi = cffi.FFI()
|
9 |
+
|
10 |
+
inc_dir = os.path.join(np.get_include(), 'numpy')
|
11 |
+
|
12 |
+
# Basic numpy types
|
13 |
+
ffi.cdef('''
|
14 |
+
typedef intptr_t npy_intp;
|
15 |
+
typedef unsigned char npy_bool;
|
16 |
+
|
17 |
+
''')
|
18 |
+
|
19 |
+
parse_distributions_h(ffi, inc_dir)
|
20 |
+
|
21 |
+
lib = ffi.dlopen(np.random._generator.__file__)
|
22 |
+
|
23 |
+
# Compare the distributions.h random_standard_normal_fill to
|
24 |
+
# Generator.standard_random
|
25 |
+
bit_gen = np.random.PCG64()
|
26 |
+
rng = np.random.Generator(bit_gen)
|
27 |
+
state = bit_gen.state
|
28 |
+
|
29 |
+
interface = rng.bit_generator.cffi
|
30 |
+
n = 100
|
31 |
+
vals_cffi = ffi.new('double[%d]' % n)
|
32 |
+
lib.random_standard_normal_fill(interface.bit_generator, n, vals_cffi)
|
33 |
+
|
34 |
+
# reset the state
|
35 |
+
bit_gen.state = state
|
36 |
+
|
37 |
+
vals = rng.standard_normal(n)
|
38 |
+
|
39 |
+
for i in range(n):
|
40 |
+
assert vals[i] == vals_cffi[i]
|
venv/lib/python3.10/site-packages/numpy/random/_examples/cffi/parse.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
|
4 |
+
def parse_distributions_h(ffi, inc_dir):
|
5 |
+
"""
|
6 |
+
Parse distributions.h located in inc_dir for CFFI, filling in the ffi.cdef
|
7 |
+
|
8 |
+
Read the function declarations without the "#define ..." macros that will
|
9 |
+
be filled in when loading the library.
|
10 |
+
"""
|
11 |
+
|
12 |
+
with open(os.path.join(inc_dir, 'random', 'bitgen.h')) as fid:
|
13 |
+
s = []
|
14 |
+
for line in fid:
|
15 |
+
# massage the include file
|
16 |
+
if line.strip().startswith('#'):
|
17 |
+
continue
|
18 |
+
s.append(line)
|
19 |
+
ffi.cdef('\n'.join(s))
|
20 |
+
|
21 |
+
with open(os.path.join(inc_dir, 'random', 'distributions.h')) as fid:
|
22 |
+
s = []
|
23 |
+
in_skip = 0
|
24 |
+
ignoring = False
|
25 |
+
for line in fid:
|
26 |
+
# check for and remove extern "C" guards
|
27 |
+
if ignoring:
|
28 |
+
if line.strip().startswith('#endif'):
|
29 |
+
ignoring = False
|
30 |
+
continue
|
31 |
+
if line.strip().startswith('#ifdef __cplusplus'):
|
32 |
+
ignoring = True
|
33 |
+
|
34 |
+
# massage the include file
|
35 |
+
if line.strip().startswith('#'):
|
36 |
+
continue
|
37 |
+
|
38 |
+
# skip any inlined function definition
|
39 |
+
# which starts with 'static inline xxx(...) {'
|
40 |
+
# and ends with a closing '}'
|
41 |
+
if line.strip().startswith('static inline'):
|
42 |
+
in_skip += line.count('{')
|
43 |
+
continue
|
44 |
+
elif in_skip > 0:
|
45 |
+
in_skip += line.count('{')
|
46 |
+
in_skip -= line.count('}')
|
47 |
+
continue
|
48 |
+
|
49 |
+
# replace defines with their value or remove them
|
50 |
+
line = line.replace('DECLDIR', '')
|
51 |
+
line = line.replace('RAND_INT_TYPE', 'int64_t')
|
52 |
+
s.append(line)
|
53 |
+
ffi.cdef('\n'.join(s))
|
54 |
+
|
venv/lib/python3.10/site-packages/numpy/random/_examples/cython/extending.pyx
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
#cython: language_level=3
|
3 |
+
|
4 |
+
from libc.stdint cimport uint32_t
|
5 |
+
from cpython.pycapsule cimport PyCapsule_IsValid, PyCapsule_GetPointer
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
cimport numpy as np
|
9 |
+
cimport cython
|
10 |
+
|
11 |
+
from numpy.random cimport bitgen_t
|
12 |
+
from numpy.random import PCG64
|
13 |
+
|
14 |
+
np.import_array()
|
15 |
+
|
16 |
+
|
17 |
+
@cython.boundscheck(False)
|
18 |
+
@cython.wraparound(False)
|
19 |
+
def uniform_mean(Py_ssize_t n):
|
20 |
+
cdef Py_ssize_t i
|
21 |
+
cdef bitgen_t *rng
|
22 |
+
cdef const char *capsule_name = "BitGenerator"
|
23 |
+
cdef double[::1] random_values
|
24 |
+
cdef np.ndarray randoms
|
25 |
+
|
26 |
+
x = PCG64()
|
27 |
+
capsule = x.capsule
|
28 |
+
if not PyCapsule_IsValid(capsule, capsule_name):
|
29 |
+
raise ValueError("Invalid pointer to anon_func_state")
|
30 |
+
rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name)
|
31 |
+
random_values = np.empty(n)
|
32 |
+
# Best practice is to acquire the lock whenever generating random values.
|
33 |
+
# This prevents other threads from modifying the state. Acquiring the lock
|
34 |
+
# is only necessary if the GIL is also released, as in this example.
|
35 |
+
with x.lock, nogil:
|
36 |
+
for i in range(n):
|
37 |
+
random_values[i] = rng.next_double(rng.state)
|
38 |
+
randoms = np.asarray(random_values)
|
39 |
+
return randoms.mean()
|
40 |
+
|
41 |
+
|
42 |
+
# This function is declared nogil so it can be used without the GIL below
|
43 |
+
cdef uint32_t bounded_uint(uint32_t lb, uint32_t ub, bitgen_t *rng) nogil:
|
44 |
+
cdef uint32_t mask, delta, val
|
45 |
+
mask = delta = ub - lb
|
46 |
+
mask |= mask >> 1
|
47 |
+
mask |= mask >> 2
|
48 |
+
mask |= mask >> 4
|
49 |
+
mask |= mask >> 8
|
50 |
+
mask |= mask >> 16
|
51 |
+
|
52 |
+
val = rng.next_uint32(rng.state) & mask
|
53 |
+
while val > delta:
|
54 |
+
val = rng.next_uint32(rng.state) & mask
|
55 |
+
|
56 |
+
return lb + val
|
57 |
+
|
58 |
+
|
59 |
+
@cython.boundscheck(False)
|
60 |
+
@cython.wraparound(False)
|
61 |
+
def bounded_uints(uint32_t lb, uint32_t ub, Py_ssize_t n):
|
62 |
+
cdef Py_ssize_t i
|
63 |
+
cdef bitgen_t *rng
|
64 |
+
cdef uint32_t[::1] out
|
65 |
+
cdef const char *capsule_name = "BitGenerator"
|
66 |
+
|
67 |
+
x = PCG64()
|
68 |
+
out = np.empty(n, dtype=np.uint32)
|
69 |
+
capsule = x.capsule
|
70 |
+
|
71 |
+
if not PyCapsule_IsValid(capsule, capsule_name):
|
72 |
+
raise ValueError("Invalid pointer to anon_func_state")
|
73 |
+
rng = <bitgen_t *>PyCapsule_GetPointer(capsule, capsule_name)
|
74 |
+
|
75 |
+
with x.lock, nogil:
|
76 |
+
for i in range(n):
|
77 |
+
out[i] = bounded_uint(lb, ub, rng)
|
78 |
+
return np.asarray(out)
|
venv/lib/python3.10/site-packages/numpy/random/_examples/cython/extending_distributions.pyx
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
#cython: language_level=3
|
3 |
+
"""
|
4 |
+
This file shows how the to use a BitGenerator to create a distribution.
|
5 |
+
"""
|
6 |
+
import numpy as np
|
7 |
+
cimport numpy as np
|
8 |
+
cimport cython
|
9 |
+
from cpython.pycapsule cimport PyCapsule_IsValid, PyCapsule_GetPointer
|
10 |
+
from libc.stdint cimport uint16_t, uint64_t
|
11 |
+
from numpy.random cimport bitgen_t
|
12 |
+
from numpy.random import PCG64
|
13 |
+
from numpy.random.c_distributions cimport (
|
14 |
+
random_standard_uniform_fill, random_standard_uniform_fill_f)
|
15 |
+
|
16 |
+
|
17 |
+
@cython.boundscheck(False)
|
18 |
+
@cython.wraparound(False)
|
19 |
+
def uniforms(Py_ssize_t n):
|
20 |
+
"""
|
21 |
+
Create an array of `n` uniformly distributed doubles.
|
22 |
+
A 'real' distribution would want to process the values into
|
23 |
+
some non-uniform distribution
|
24 |
+
"""
|
25 |
+
cdef Py_ssize_t i
|
26 |
+
cdef bitgen_t *rng
|
27 |
+
cdef const char *capsule_name = "BitGenerator"
|
28 |
+
cdef double[::1] random_values
|
29 |
+
|
30 |
+
x = PCG64()
|
31 |
+
capsule = x.capsule
|
32 |
+
# Optional check that the capsule if from a BitGenerator
|
33 |
+
if not PyCapsule_IsValid(capsule, capsule_name):
|
34 |
+
raise ValueError("Invalid pointer to anon_func_state")
|
35 |
+
# Cast the pointer
|
36 |
+
rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name)
|
37 |
+
random_values = np.empty(n, dtype='float64')
|
38 |
+
with x.lock, nogil:
|
39 |
+
for i in range(n):
|
40 |
+
# Call the function
|
41 |
+
random_values[i] = rng.next_double(rng.state)
|
42 |
+
randoms = np.asarray(random_values)
|
43 |
+
|
44 |
+
return randoms
|
45 |
+
|
46 |
+
# cython example 2
|
47 |
+
@cython.boundscheck(False)
|
48 |
+
@cython.wraparound(False)
|
49 |
+
def uint10_uniforms(Py_ssize_t n):
|
50 |
+
"""Uniform 10 bit integers stored as 16-bit unsigned integers"""
|
51 |
+
cdef Py_ssize_t i
|
52 |
+
cdef bitgen_t *rng
|
53 |
+
cdef const char *capsule_name = "BitGenerator"
|
54 |
+
cdef uint16_t[::1] random_values
|
55 |
+
cdef int bits_remaining
|
56 |
+
cdef int width = 10
|
57 |
+
cdef uint64_t buff, mask = 0x3FF
|
58 |
+
|
59 |
+
x = PCG64()
|
60 |
+
capsule = x.capsule
|
61 |
+
if not PyCapsule_IsValid(capsule, capsule_name):
|
62 |
+
raise ValueError("Invalid pointer to anon_func_state")
|
63 |
+
rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name)
|
64 |
+
random_values = np.empty(n, dtype='uint16')
|
65 |
+
# Best practice is to release GIL and acquire the lock
|
66 |
+
bits_remaining = 0
|
67 |
+
with x.lock, nogil:
|
68 |
+
for i in range(n):
|
69 |
+
if bits_remaining < width:
|
70 |
+
buff = rng.next_uint64(rng.state)
|
71 |
+
random_values[i] = buff & mask
|
72 |
+
buff >>= width
|
73 |
+
|
74 |
+
randoms = np.asarray(random_values)
|
75 |
+
return randoms
|
76 |
+
|
77 |
+
# cython example 3
|
78 |
+
def uniforms_ex(bit_generator, Py_ssize_t n, dtype=np.float64):
|
79 |
+
"""
|
80 |
+
Create an array of `n` uniformly distributed doubles via a "fill" function.
|
81 |
+
|
82 |
+
A 'real' distribution would want to process the values into
|
83 |
+
some non-uniform distribution
|
84 |
+
|
85 |
+
Parameters
|
86 |
+
----------
|
87 |
+
bit_generator: BitGenerator instance
|
88 |
+
n: int
|
89 |
+
Output vector length
|
90 |
+
dtype: {str, dtype}, optional
|
91 |
+
Desired dtype, either 'd' (or 'float64') or 'f' (or 'float32'). The
|
92 |
+
default dtype value is 'd'
|
93 |
+
"""
|
94 |
+
cdef Py_ssize_t i
|
95 |
+
cdef bitgen_t *rng
|
96 |
+
cdef const char *capsule_name = "BitGenerator"
|
97 |
+
cdef np.ndarray randoms
|
98 |
+
|
99 |
+
capsule = bit_generator.capsule
|
100 |
+
# Optional check that the capsule if from a BitGenerator
|
101 |
+
if not PyCapsule_IsValid(capsule, capsule_name):
|
102 |
+
raise ValueError("Invalid pointer to anon_func_state")
|
103 |
+
# Cast the pointer
|
104 |
+
rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name)
|
105 |
+
|
106 |
+
_dtype = np.dtype(dtype)
|
107 |
+
randoms = np.empty(n, dtype=_dtype)
|
108 |
+
if _dtype == np.float32:
|
109 |
+
with bit_generator.lock:
|
110 |
+
random_standard_uniform_fill_f(rng, n, <float*>np.PyArray_DATA(randoms))
|
111 |
+
elif _dtype == np.float64:
|
112 |
+
with bit_generator.lock:
|
113 |
+
random_standard_uniform_fill(rng, n, <double*>np.PyArray_DATA(randoms))
|
114 |
+
else:
|
115 |
+
raise TypeError('Unsupported dtype %r for random' % _dtype)
|
116 |
+
return randoms
|
117 |
+
|
venv/lib/python3.10/site-packages/numpy/random/_examples/cython/meson.build
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
project('random-build-examples', 'c', 'cpp', 'cython')
|
2 |
+
|
3 |
+
py_mod = import('python')
|
4 |
+
py3 = py_mod.find_installation(pure: false)
|
5 |
+
|
6 |
+
cc = meson.get_compiler('c')
|
7 |
+
cy = meson.get_compiler('cython')
|
8 |
+
|
9 |
+
if not cy.version().version_compare('>=0.29.35')
|
10 |
+
error('tests requires Cython >= 0.29.35')
|
11 |
+
endif
|
12 |
+
|
13 |
+
_numpy_abs = run_command(py3, ['-c',
|
14 |
+
'import os; os.chdir(".."); import numpy; print(os.path.abspath(numpy.get_include() + "../../.."))'],
|
15 |
+
check: true).stdout().strip()
|
16 |
+
|
17 |
+
npymath_path = _numpy_abs / 'core' / 'lib'
|
18 |
+
npy_include_path = _numpy_abs / 'core' / 'include'
|
19 |
+
npyrandom_path = _numpy_abs / 'random' / 'lib'
|
20 |
+
npymath_lib = cc.find_library('npymath', dirs: npymath_path)
|
21 |
+
npyrandom_lib = cc.find_library('npyrandom', dirs: npyrandom_path)
|
22 |
+
|
23 |
+
py3.extension_module(
|
24 |
+
'extending_distributions',
|
25 |
+
'extending_distributions.pyx',
|
26 |
+
install: false,
|
27 |
+
include_directories: [npy_include_path],
|
28 |
+
dependencies: [npyrandom_lib, npymath_lib],
|
29 |
+
)
|
30 |
+
py3.extension_module(
|
31 |
+
'extending',
|
32 |
+
'extending.pyx',
|
33 |
+
install: false,
|
34 |
+
include_directories: [npy_include_path],
|
35 |
+
dependencies: [npyrandom_lib, npymath_lib],
|
36 |
+
)
|
37 |
+
py3.extension_module(
|
38 |
+
'extending_cpp',
|
39 |
+
'extending_distributions.pyx',
|
40 |
+
install: false,
|
41 |
+
override_options : ['cython_language=cpp'],
|
42 |
+
cython_args: ['--module-name', 'extending_cpp'],
|
43 |
+
include_directories: [npy_include_path],
|
44 |
+
dependencies: [npyrandom_lib, npymath_lib],
|
45 |
+
)
|
venv/lib/python3.10/site-packages/numpy/random/_examples/numba/__pycache__/extending.cpython-310.pyc
ADDED
Binary file (2.18 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/random/_examples/numba/__pycache__/extending_distributions.cpython-310.pyc
ADDED
Binary file (2.11 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/random/_examples/numba/extending.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import numba as nb
|
3 |
+
|
4 |
+
from numpy.random import PCG64
|
5 |
+
from timeit import timeit
|
6 |
+
|
7 |
+
bit_gen = PCG64()
|
8 |
+
next_d = bit_gen.cffi.next_double
|
9 |
+
state_addr = bit_gen.cffi.state_address
|
10 |
+
|
11 |
+
def normals(n, state):
|
12 |
+
out = np.empty(n)
|
13 |
+
for i in range((n + 1) // 2):
|
14 |
+
x1 = 2.0 * next_d(state) - 1.0
|
15 |
+
x2 = 2.0 * next_d(state) - 1.0
|
16 |
+
r2 = x1 * x1 + x2 * x2
|
17 |
+
while r2 >= 1.0 or r2 == 0.0:
|
18 |
+
x1 = 2.0 * next_d(state) - 1.0
|
19 |
+
x2 = 2.0 * next_d(state) - 1.0
|
20 |
+
r2 = x1 * x1 + x2 * x2
|
21 |
+
f = np.sqrt(-2.0 * np.log(r2) / r2)
|
22 |
+
out[2 * i] = f * x1
|
23 |
+
if 2 * i + 1 < n:
|
24 |
+
out[2 * i + 1] = f * x2
|
25 |
+
return out
|
26 |
+
|
27 |
+
# Compile using Numba
|
28 |
+
normalsj = nb.jit(normals, nopython=True)
|
29 |
+
# Must use state address not state with numba
|
30 |
+
n = 10000
|
31 |
+
|
32 |
+
def numbacall():
|
33 |
+
return normalsj(n, state_addr)
|
34 |
+
|
35 |
+
rg = np.random.Generator(PCG64())
|
36 |
+
|
37 |
+
def numpycall():
|
38 |
+
return rg.normal(size=n)
|
39 |
+
|
40 |
+
# Check that the functions work
|
41 |
+
r1 = numbacall()
|
42 |
+
r2 = numpycall()
|
43 |
+
assert r1.shape == (n,)
|
44 |
+
assert r1.shape == r2.shape
|
45 |
+
|
46 |
+
t1 = timeit(numbacall, number=1000)
|
47 |
+
print(f'{t1:.2f} secs for {n} PCG64 (Numba/PCG64) gaussian randoms')
|
48 |
+
t2 = timeit(numpycall, number=1000)
|
49 |
+
print(f'{t2:.2f} secs for {n} PCG64 (NumPy/PCG64) gaussian randoms')
|
50 |
+
|
51 |
+
# example 2
|
52 |
+
|
53 |
+
next_u32 = bit_gen.ctypes.next_uint32
|
54 |
+
ctypes_state = bit_gen.ctypes.state
|
55 |
+
|
56 |
+
@nb.jit(nopython=True)
|
57 |
+
def bounded_uint(lb, ub, state):
|
58 |
+
mask = delta = ub - lb
|
59 |
+
mask |= mask >> 1
|
60 |
+
mask |= mask >> 2
|
61 |
+
mask |= mask >> 4
|
62 |
+
mask |= mask >> 8
|
63 |
+
mask |= mask >> 16
|
64 |
+
|
65 |
+
val = next_u32(state) & mask
|
66 |
+
while val > delta:
|
67 |
+
val = next_u32(state) & mask
|
68 |
+
|
69 |
+
return lb + val
|
70 |
+
|
71 |
+
|
72 |
+
print(bounded_uint(323, 2394691, ctypes_state.value))
|
73 |
+
|
74 |
+
|
75 |
+
@nb.jit(nopython=True)
|
76 |
+
def bounded_uints(lb, ub, n, state):
|
77 |
+
out = np.empty(n, dtype=np.uint32)
|
78 |
+
for i in range(n):
|
79 |
+
out[i] = bounded_uint(lb, ub, state)
|
80 |
+
|
81 |
+
|
82 |
+
bounded_uints(323, 2394691, 10000000, ctypes_state.value)
|
83 |
+
|
84 |
+
|
venv/lib/python3.10/site-packages/numpy/random/_examples/numba/extending_distributions.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""
|
2 |
+
Building the required library in this example requires a source distribution
|
3 |
+
of NumPy or clone of the NumPy git repository since distributions.c is not
|
4 |
+
included in binary distributions.
|
5 |
+
|
6 |
+
On *nix, execute in numpy/random/src/distributions
|
7 |
+
|
8 |
+
export ${PYTHON_VERSION}=3.8 # Python version
|
9 |
+
export PYTHON_INCLUDE=#path to Python's include folder, usually \
|
10 |
+
${PYTHON_HOME}/include/python${PYTHON_VERSION}m
|
11 |
+
export NUMPY_INCLUDE=#path to numpy's include folder, usually \
|
12 |
+
${PYTHON_HOME}/lib/python${PYTHON_VERSION}/site-packages/numpy/core/include
|
13 |
+
gcc -shared -o libdistributions.so -fPIC distributions.c \
|
14 |
+
-I${NUMPY_INCLUDE} -I${PYTHON_INCLUDE}
|
15 |
+
mv libdistributions.so ../../_examples/numba/
|
16 |
+
|
17 |
+
On Windows
|
18 |
+
|
19 |
+
rem PYTHON_HOME and PYTHON_VERSION are setup dependent, this is an example
|
20 |
+
set PYTHON_HOME=c:\Anaconda
|
21 |
+
set PYTHON_VERSION=38
|
22 |
+
cl.exe /LD .\distributions.c -DDLL_EXPORT \
|
23 |
+
-I%PYTHON_HOME%\lib\site-packages\numpy\core\include \
|
24 |
+
-I%PYTHON_HOME%\include %PYTHON_HOME%\libs\python%PYTHON_VERSION%.lib
|
25 |
+
move distributions.dll ../../_examples/numba/
|
26 |
+
"""
|
27 |
+
import os
|
28 |
+
|
29 |
+
import numba as nb
|
30 |
+
import numpy as np
|
31 |
+
from cffi import FFI
|
32 |
+
|
33 |
+
from numpy.random import PCG64
|
34 |
+
|
35 |
+
ffi = FFI()
|
36 |
+
if os.path.exists('./distributions.dll'):
|
37 |
+
lib = ffi.dlopen('./distributions.dll')
|
38 |
+
elif os.path.exists('./libdistributions.so'):
|
39 |
+
lib = ffi.dlopen('./libdistributions.so')
|
40 |
+
else:
|
41 |
+
raise RuntimeError('Required DLL/so file was not found.')
|
42 |
+
|
43 |
+
ffi.cdef("""
|
44 |
+
double random_standard_normal(void *bitgen_state);
|
45 |
+
""")
|
46 |
+
x = PCG64()
|
47 |
+
xffi = x.cffi
|
48 |
+
bit_generator = xffi.bit_generator
|
49 |
+
|
50 |
+
random_standard_normal = lib.random_standard_normal
|
51 |
+
|
52 |
+
|
53 |
+
def normals(n, bit_generator):
|
54 |
+
out = np.empty(n)
|
55 |
+
for i in range(n):
|
56 |
+
out[i] = random_standard_normal(bit_generator)
|
57 |
+
return out
|
58 |
+
|
59 |
+
|
60 |
+
normalsj = nb.jit(normals, nopython=True)
|
61 |
+
|
62 |
+
# Numba requires a memory address for void *
|
63 |
+
# Can also get address from x.ctypes.bit_generator.value
|
64 |
+
bit_generator_address = int(ffi.cast('uintptr_t', bit_generator))
|
65 |
+
|
66 |
+
norm = normalsj(1000, bit_generator_address)
|
67 |
+
print(norm[:12])
|
venv/lib/python3.10/site-packages/numpy/random/_generator.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (976 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/random/_generator.pyi
ADDED
@@ -0,0 +1,681 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections.abc import Callable
|
2 |
+
from typing import Any, Union, overload, TypeVar, Literal
|
3 |
+
|
4 |
+
from numpy import (
|
5 |
+
bool_,
|
6 |
+
dtype,
|
7 |
+
float32,
|
8 |
+
float64,
|
9 |
+
int8,
|
10 |
+
int16,
|
11 |
+
int32,
|
12 |
+
int64,
|
13 |
+
int_,
|
14 |
+
ndarray,
|
15 |
+
uint,
|
16 |
+
uint8,
|
17 |
+
uint16,
|
18 |
+
uint32,
|
19 |
+
uint64,
|
20 |
+
)
|
21 |
+
from numpy.random import BitGenerator, SeedSequence
|
22 |
+
from numpy._typing import (
|
23 |
+
ArrayLike,
|
24 |
+
_ArrayLikeFloat_co,
|
25 |
+
_ArrayLikeInt_co,
|
26 |
+
_DoubleCodes,
|
27 |
+
_DTypeLikeBool,
|
28 |
+
_DTypeLikeInt,
|
29 |
+
_DTypeLikeUInt,
|
30 |
+
_Float32Codes,
|
31 |
+
_Float64Codes,
|
32 |
+
_FloatLike_co,
|
33 |
+
_Int8Codes,
|
34 |
+
_Int16Codes,
|
35 |
+
_Int32Codes,
|
36 |
+
_Int64Codes,
|
37 |
+
_IntCodes,
|
38 |
+
_ShapeLike,
|
39 |
+
_SingleCodes,
|
40 |
+
_SupportsDType,
|
41 |
+
_UInt8Codes,
|
42 |
+
_UInt16Codes,
|
43 |
+
_UInt32Codes,
|
44 |
+
_UInt64Codes,
|
45 |
+
_UIntCodes,
|
46 |
+
)
|
47 |
+
|
48 |
+
_ArrayType = TypeVar("_ArrayType", bound=ndarray[Any, Any])
|
49 |
+
|
50 |
+
_DTypeLikeFloat32 = Union[
|
51 |
+
dtype[float32],
|
52 |
+
_SupportsDType[dtype[float32]],
|
53 |
+
type[float32],
|
54 |
+
_Float32Codes,
|
55 |
+
_SingleCodes,
|
56 |
+
]
|
57 |
+
|
58 |
+
_DTypeLikeFloat64 = Union[
|
59 |
+
dtype[float64],
|
60 |
+
_SupportsDType[dtype[float64]],
|
61 |
+
type[float],
|
62 |
+
type[float64],
|
63 |
+
_Float64Codes,
|
64 |
+
_DoubleCodes,
|
65 |
+
]
|
66 |
+
|
67 |
+
class Generator:
|
68 |
+
def __init__(self, bit_generator: BitGenerator) -> None: ...
|
69 |
+
def __repr__(self) -> str: ...
|
70 |
+
def __str__(self) -> str: ...
|
71 |
+
def __getstate__(self) -> dict[str, Any]: ...
|
72 |
+
def __setstate__(self, state: dict[str, Any]) -> None: ...
|
73 |
+
def __reduce__(self) -> tuple[Callable[[str], Generator], tuple[str], dict[str, Any]]: ...
|
74 |
+
@property
|
75 |
+
def bit_generator(self) -> BitGenerator: ...
|
76 |
+
def spawn(self, n_children: int) -> list[Generator]: ...
|
77 |
+
def bytes(self, length: int) -> bytes: ...
|
78 |
+
@overload
|
79 |
+
def standard_normal( # type: ignore[misc]
|
80 |
+
self,
|
81 |
+
size: None = ...,
|
82 |
+
dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
|
83 |
+
out: None = ...,
|
84 |
+
) -> float: ...
|
85 |
+
@overload
|
86 |
+
def standard_normal( # type: ignore[misc]
|
87 |
+
self,
|
88 |
+
size: _ShapeLike = ...,
|
89 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
90 |
+
@overload
|
91 |
+
def standard_normal( # type: ignore[misc]
|
92 |
+
self,
|
93 |
+
*,
|
94 |
+
out: ndarray[Any, dtype[float64]] = ...,
|
95 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
96 |
+
@overload
|
97 |
+
def standard_normal( # type: ignore[misc]
|
98 |
+
self,
|
99 |
+
size: _ShapeLike = ...,
|
100 |
+
dtype: _DTypeLikeFloat32 = ...,
|
101 |
+
out: None | ndarray[Any, dtype[float32]] = ...,
|
102 |
+
) -> ndarray[Any, dtype[float32]]: ...
|
103 |
+
@overload
|
104 |
+
def standard_normal( # type: ignore[misc]
|
105 |
+
self,
|
106 |
+
size: _ShapeLike = ...,
|
107 |
+
dtype: _DTypeLikeFloat64 = ...,
|
108 |
+
out: None | ndarray[Any, dtype[float64]] = ...,
|
109 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
110 |
+
@overload
|
111 |
+
def permutation(self, x: int, axis: int = ...) -> ndarray[Any, dtype[int64]]: ...
|
112 |
+
@overload
|
113 |
+
def permutation(self, x: ArrayLike, axis: int = ...) -> ndarray[Any, Any]: ...
|
114 |
+
@overload
|
115 |
+
def standard_exponential( # type: ignore[misc]
|
116 |
+
self,
|
117 |
+
size: None = ...,
|
118 |
+
dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
|
119 |
+
method: Literal["zig", "inv"] = ...,
|
120 |
+
out: None = ...,
|
121 |
+
) -> float: ...
|
122 |
+
@overload
|
123 |
+
def standard_exponential(
|
124 |
+
self,
|
125 |
+
size: _ShapeLike = ...,
|
126 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
127 |
+
@overload
|
128 |
+
def standard_exponential(
|
129 |
+
self,
|
130 |
+
*,
|
131 |
+
out: ndarray[Any, dtype[float64]] = ...,
|
132 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
133 |
+
@overload
|
134 |
+
def standard_exponential(
|
135 |
+
self,
|
136 |
+
size: _ShapeLike = ...,
|
137 |
+
*,
|
138 |
+
method: Literal["zig", "inv"] = ...,
|
139 |
+
out: None | ndarray[Any, dtype[float64]] = ...,
|
140 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
141 |
+
@overload
|
142 |
+
def standard_exponential(
|
143 |
+
self,
|
144 |
+
size: _ShapeLike = ...,
|
145 |
+
dtype: _DTypeLikeFloat32 = ...,
|
146 |
+
method: Literal["zig", "inv"] = ...,
|
147 |
+
out: None | ndarray[Any, dtype[float32]] = ...,
|
148 |
+
) -> ndarray[Any, dtype[float32]]: ...
|
149 |
+
@overload
|
150 |
+
def standard_exponential(
|
151 |
+
self,
|
152 |
+
size: _ShapeLike = ...,
|
153 |
+
dtype: _DTypeLikeFloat64 = ...,
|
154 |
+
method: Literal["zig", "inv"] = ...,
|
155 |
+
out: None | ndarray[Any, dtype[float64]] = ...,
|
156 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
157 |
+
@overload
|
158 |
+
def random( # type: ignore[misc]
|
159 |
+
self,
|
160 |
+
size: None = ...,
|
161 |
+
dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
|
162 |
+
out: None = ...,
|
163 |
+
) -> float: ...
|
164 |
+
@overload
|
165 |
+
def random(
|
166 |
+
self,
|
167 |
+
*,
|
168 |
+
out: ndarray[Any, dtype[float64]] = ...,
|
169 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
170 |
+
@overload
|
171 |
+
def random(
|
172 |
+
self,
|
173 |
+
size: _ShapeLike = ...,
|
174 |
+
*,
|
175 |
+
out: None | ndarray[Any, dtype[float64]] = ...,
|
176 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
177 |
+
@overload
|
178 |
+
def random(
|
179 |
+
self,
|
180 |
+
size: _ShapeLike = ...,
|
181 |
+
dtype: _DTypeLikeFloat32 = ...,
|
182 |
+
out: None | ndarray[Any, dtype[float32]] = ...,
|
183 |
+
) -> ndarray[Any, dtype[float32]]: ...
|
184 |
+
@overload
|
185 |
+
def random(
|
186 |
+
self,
|
187 |
+
size: _ShapeLike = ...,
|
188 |
+
dtype: _DTypeLikeFloat64 = ...,
|
189 |
+
out: None | ndarray[Any, dtype[float64]] = ...,
|
190 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
191 |
+
@overload
|
192 |
+
def beta(
|
193 |
+
self,
|
194 |
+
a: _FloatLike_co,
|
195 |
+
b: _FloatLike_co,
|
196 |
+
size: None = ...,
|
197 |
+
) -> float: ... # type: ignore[misc]
|
198 |
+
@overload
|
199 |
+
def beta(
|
200 |
+
self, a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
201 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
202 |
+
@overload
|
203 |
+
def exponential(self, scale: _FloatLike_co = ..., size: None = ...) -> float: ... # type: ignore[misc]
|
204 |
+
@overload
|
205 |
+
def exponential(
|
206 |
+
self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
|
207 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
208 |
+
@overload
|
209 |
+
def integers( # type: ignore[misc]
|
210 |
+
self,
|
211 |
+
low: int,
|
212 |
+
high: None | int = ...,
|
213 |
+
) -> int: ...
|
214 |
+
@overload
|
215 |
+
def integers( # type: ignore[misc]
|
216 |
+
self,
|
217 |
+
low: int,
|
218 |
+
high: None | int = ...,
|
219 |
+
size: None = ...,
|
220 |
+
dtype: _DTypeLikeBool = ...,
|
221 |
+
endpoint: bool = ...,
|
222 |
+
) -> bool: ...
|
223 |
+
@overload
|
224 |
+
def integers( # type: ignore[misc]
|
225 |
+
self,
|
226 |
+
low: int,
|
227 |
+
high: None | int = ...,
|
228 |
+
size: None = ...,
|
229 |
+
dtype: _DTypeLikeInt | _DTypeLikeUInt = ...,
|
230 |
+
endpoint: bool = ...,
|
231 |
+
) -> int: ...
|
232 |
+
@overload
|
233 |
+
def integers( # type: ignore[misc]
|
234 |
+
self,
|
235 |
+
low: _ArrayLikeInt_co,
|
236 |
+
high: None | _ArrayLikeInt_co = ...,
|
237 |
+
size: None | _ShapeLike = ...,
|
238 |
+
) -> ndarray[Any, dtype[int64]]: ...
|
239 |
+
@overload
|
240 |
+
def integers( # type: ignore[misc]
|
241 |
+
self,
|
242 |
+
low: _ArrayLikeInt_co,
|
243 |
+
high: None | _ArrayLikeInt_co = ...,
|
244 |
+
size: None | _ShapeLike = ...,
|
245 |
+
dtype: _DTypeLikeBool = ...,
|
246 |
+
endpoint: bool = ...,
|
247 |
+
) -> ndarray[Any, dtype[bool_]]: ...
|
248 |
+
@overload
|
249 |
+
def integers( # type: ignore[misc]
|
250 |
+
self,
|
251 |
+
low: _ArrayLikeInt_co,
|
252 |
+
high: None | _ArrayLikeInt_co = ...,
|
253 |
+
size: None | _ShapeLike = ...,
|
254 |
+
dtype: dtype[int8] | type[int8] | _Int8Codes | _SupportsDType[dtype[int8]] = ...,
|
255 |
+
endpoint: bool = ...,
|
256 |
+
) -> ndarray[Any, dtype[int8]]: ...
|
257 |
+
@overload
|
258 |
+
def integers( # type: ignore[misc]
|
259 |
+
self,
|
260 |
+
low: _ArrayLikeInt_co,
|
261 |
+
high: None | _ArrayLikeInt_co = ...,
|
262 |
+
size: None | _ShapeLike = ...,
|
263 |
+
dtype: dtype[int16] | type[int16] | _Int16Codes | _SupportsDType[dtype[int16]] = ...,
|
264 |
+
endpoint: bool = ...,
|
265 |
+
) -> ndarray[Any, dtype[int16]]: ...
|
266 |
+
@overload
|
267 |
+
def integers( # type: ignore[misc]
|
268 |
+
self,
|
269 |
+
low: _ArrayLikeInt_co,
|
270 |
+
high: None | _ArrayLikeInt_co = ...,
|
271 |
+
size: None | _ShapeLike = ...,
|
272 |
+
dtype: dtype[int32] | type[int32] | _Int32Codes | _SupportsDType[dtype[int32]] = ...,
|
273 |
+
endpoint: bool = ...,
|
274 |
+
) -> ndarray[Any, dtype[int32]]: ...
|
275 |
+
@overload
|
276 |
+
def integers( # type: ignore[misc]
|
277 |
+
self,
|
278 |
+
low: _ArrayLikeInt_co,
|
279 |
+
high: None | _ArrayLikeInt_co = ...,
|
280 |
+
size: None | _ShapeLike = ...,
|
281 |
+
dtype: None | dtype[int64] | type[int64] | _Int64Codes | _SupportsDType[dtype[int64]] = ...,
|
282 |
+
endpoint: bool = ...,
|
283 |
+
) -> ndarray[Any, dtype[int64]]: ...
|
284 |
+
@overload
|
285 |
+
def integers( # type: ignore[misc]
|
286 |
+
self,
|
287 |
+
low: _ArrayLikeInt_co,
|
288 |
+
high: None | _ArrayLikeInt_co = ...,
|
289 |
+
size: None | _ShapeLike = ...,
|
290 |
+
dtype: dtype[uint8] | type[uint8] | _UInt8Codes | _SupportsDType[dtype[uint8]] = ...,
|
291 |
+
endpoint: bool = ...,
|
292 |
+
) -> ndarray[Any, dtype[uint8]]: ...
|
293 |
+
@overload
|
294 |
+
def integers( # type: ignore[misc]
|
295 |
+
self,
|
296 |
+
low: _ArrayLikeInt_co,
|
297 |
+
high: None | _ArrayLikeInt_co = ...,
|
298 |
+
size: None | _ShapeLike = ...,
|
299 |
+
dtype: dtype[uint16] | type[uint16] | _UInt16Codes | _SupportsDType[dtype[uint16]] = ...,
|
300 |
+
endpoint: bool = ...,
|
301 |
+
) -> ndarray[Any, dtype[uint16]]: ...
|
302 |
+
@overload
|
303 |
+
def integers( # type: ignore[misc]
|
304 |
+
self,
|
305 |
+
low: _ArrayLikeInt_co,
|
306 |
+
high: None | _ArrayLikeInt_co = ...,
|
307 |
+
size: None | _ShapeLike = ...,
|
308 |
+
dtype: dtype[uint32] | type[uint32] | _UInt32Codes | _SupportsDType[dtype[uint32]] = ...,
|
309 |
+
endpoint: bool = ...,
|
310 |
+
) -> ndarray[Any, dtype[uint32]]: ...
|
311 |
+
@overload
|
312 |
+
def integers( # type: ignore[misc]
|
313 |
+
self,
|
314 |
+
low: _ArrayLikeInt_co,
|
315 |
+
high: None | _ArrayLikeInt_co = ...,
|
316 |
+
size: None | _ShapeLike = ...,
|
317 |
+
dtype: dtype[uint64] | type[uint64] | _UInt64Codes | _SupportsDType[dtype[uint64]] = ...,
|
318 |
+
endpoint: bool = ...,
|
319 |
+
) -> ndarray[Any, dtype[uint64]]: ...
|
320 |
+
@overload
|
321 |
+
def integers( # type: ignore[misc]
|
322 |
+
self,
|
323 |
+
low: _ArrayLikeInt_co,
|
324 |
+
high: None | _ArrayLikeInt_co = ...,
|
325 |
+
size: None | _ShapeLike = ...,
|
326 |
+
dtype: dtype[int_] | type[int] | type[int_] | _IntCodes | _SupportsDType[dtype[int_]] = ...,
|
327 |
+
endpoint: bool = ...,
|
328 |
+
) -> ndarray[Any, dtype[int_]]: ...
|
329 |
+
@overload
|
330 |
+
def integers( # type: ignore[misc]
|
331 |
+
self,
|
332 |
+
low: _ArrayLikeInt_co,
|
333 |
+
high: None | _ArrayLikeInt_co = ...,
|
334 |
+
size: None | _ShapeLike = ...,
|
335 |
+
dtype: dtype[uint] | type[uint] | _UIntCodes | _SupportsDType[dtype[uint]] = ...,
|
336 |
+
endpoint: bool = ...,
|
337 |
+
) -> ndarray[Any, dtype[uint]]: ...
|
338 |
+
# TODO: Use a TypeVar _T here to get away from Any output? Should be int->ndarray[Any,dtype[int64]], ArrayLike[_T] -> _T | ndarray[Any,Any]
|
339 |
+
@overload
|
340 |
+
def choice(
|
341 |
+
self,
|
342 |
+
a: int,
|
343 |
+
size: None = ...,
|
344 |
+
replace: bool = ...,
|
345 |
+
p: None | _ArrayLikeFloat_co = ...,
|
346 |
+
axis: int = ...,
|
347 |
+
shuffle: bool = ...,
|
348 |
+
) -> int: ...
|
349 |
+
@overload
|
350 |
+
def choice(
|
351 |
+
self,
|
352 |
+
a: int,
|
353 |
+
size: _ShapeLike = ...,
|
354 |
+
replace: bool = ...,
|
355 |
+
p: None | _ArrayLikeFloat_co = ...,
|
356 |
+
axis: int = ...,
|
357 |
+
shuffle: bool = ...,
|
358 |
+
) -> ndarray[Any, dtype[int64]]: ...
|
359 |
+
@overload
|
360 |
+
def choice(
|
361 |
+
self,
|
362 |
+
a: ArrayLike,
|
363 |
+
size: None = ...,
|
364 |
+
replace: bool = ...,
|
365 |
+
p: None | _ArrayLikeFloat_co = ...,
|
366 |
+
axis: int = ...,
|
367 |
+
shuffle: bool = ...,
|
368 |
+
) -> Any: ...
|
369 |
+
@overload
|
370 |
+
def choice(
|
371 |
+
self,
|
372 |
+
a: ArrayLike,
|
373 |
+
size: _ShapeLike = ...,
|
374 |
+
replace: bool = ...,
|
375 |
+
p: None | _ArrayLikeFloat_co = ...,
|
376 |
+
axis: int = ...,
|
377 |
+
shuffle: bool = ...,
|
378 |
+
) -> ndarray[Any, Any]: ...
|
379 |
+
@overload
|
380 |
+
def uniform(
|
381 |
+
self,
|
382 |
+
low: _FloatLike_co = ...,
|
383 |
+
high: _FloatLike_co = ...,
|
384 |
+
size: None = ...,
|
385 |
+
) -> float: ... # type: ignore[misc]
|
386 |
+
@overload
|
387 |
+
def uniform(
|
388 |
+
self,
|
389 |
+
low: _ArrayLikeFloat_co = ...,
|
390 |
+
high: _ArrayLikeFloat_co = ...,
|
391 |
+
size: None | _ShapeLike = ...,
|
392 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
393 |
+
@overload
|
394 |
+
def normal(
|
395 |
+
self,
|
396 |
+
loc: _FloatLike_co = ...,
|
397 |
+
scale: _FloatLike_co = ...,
|
398 |
+
size: None = ...,
|
399 |
+
) -> float: ... # type: ignore[misc]
|
400 |
+
@overload
|
401 |
+
def normal(
|
402 |
+
self,
|
403 |
+
loc: _ArrayLikeFloat_co = ...,
|
404 |
+
scale: _ArrayLikeFloat_co = ...,
|
405 |
+
size: None | _ShapeLike = ...,
|
406 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
407 |
+
@overload
|
408 |
+
def standard_gamma( # type: ignore[misc]
|
409 |
+
self,
|
410 |
+
shape: _FloatLike_co,
|
411 |
+
size: None = ...,
|
412 |
+
dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
|
413 |
+
out: None = ...,
|
414 |
+
) -> float: ...
|
415 |
+
@overload
|
416 |
+
def standard_gamma(
|
417 |
+
self,
|
418 |
+
shape: _ArrayLikeFloat_co,
|
419 |
+
size: None | _ShapeLike = ...,
|
420 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
421 |
+
@overload
|
422 |
+
def standard_gamma(
|
423 |
+
self,
|
424 |
+
shape: _ArrayLikeFloat_co,
|
425 |
+
*,
|
426 |
+
out: ndarray[Any, dtype[float64]] = ...,
|
427 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
428 |
+
@overload
|
429 |
+
def standard_gamma(
|
430 |
+
self,
|
431 |
+
shape: _ArrayLikeFloat_co,
|
432 |
+
size: None | _ShapeLike = ...,
|
433 |
+
dtype: _DTypeLikeFloat32 = ...,
|
434 |
+
out: None | ndarray[Any, dtype[float32]] = ...,
|
435 |
+
) -> ndarray[Any, dtype[float32]]: ...
|
436 |
+
@overload
|
437 |
+
def standard_gamma(
|
438 |
+
self,
|
439 |
+
shape: _ArrayLikeFloat_co,
|
440 |
+
size: None | _ShapeLike = ...,
|
441 |
+
dtype: _DTypeLikeFloat64 = ...,
|
442 |
+
out: None | ndarray[Any, dtype[float64]] = ...,
|
443 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
444 |
+
@overload
|
445 |
+
def gamma(self, shape: _FloatLike_co, scale: _FloatLike_co = ..., size: None = ...) -> float: ... # type: ignore[misc]
|
446 |
+
@overload
|
447 |
+
def gamma(
|
448 |
+
self,
|
449 |
+
shape: _ArrayLikeFloat_co,
|
450 |
+
scale: _ArrayLikeFloat_co = ...,
|
451 |
+
size: None | _ShapeLike = ...,
|
452 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
453 |
+
@overload
|
454 |
+
def f(self, dfnum: _FloatLike_co, dfden: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
|
455 |
+
@overload
|
456 |
+
def f(
|
457 |
+
self, dfnum: _ArrayLikeFloat_co, dfden: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
458 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
459 |
+
@overload
|
460 |
+
def noncentral_f(self, dfnum: _FloatLike_co, dfden: _FloatLike_co, nonc: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
|
461 |
+
@overload
|
462 |
+
def noncentral_f(
|
463 |
+
self,
|
464 |
+
dfnum: _ArrayLikeFloat_co,
|
465 |
+
dfden: _ArrayLikeFloat_co,
|
466 |
+
nonc: _ArrayLikeFloat_co,
|
467 |
+
size: None | _ShapeLike = ...,
|
468 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
469 |
+
@overload
|
470 |
+
def chisquare(self, df: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
|
471 |
+
@overload
|
472 |
+
def chisquare(
|
473 |
+
self, df: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
474 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
475 |
+
@overload
|
476 |
+
def noncentral_chisquare(self, df: _FloatLike_co, nonc: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
|
477 |
+
@overload
|
478 |
+
def noncentral_chisquare(
|
479 |
+
self, df: _ArrayLikeFloat_co, nonc: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
480 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
481 |
+
@overload
|
482 |
+
def standard_t(self, df: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
|
483 |
+
@overload
|
484 |
+
def standard_t(
|
485 |
+
self, df: _ArrayLikeFloat_co, size: None = ...
|
486 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
487 |
+
@overload
|
488 |
+
def standard_t(
|
489 |
+
self, df: _ArrayLikeFloat_co, size: _ShapeLike = ...
|
490 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
491 |
+
@overload
|
492 |
+
def vonmises(self, mu: _FloatLike_co, kappa: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
|
493 |
+
@overload
|
494 |
+
def vonmises(
|
495 |
+
self, mu: _ArrayLikeFloat_co, kappa: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
496 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
497 |
+
@overload
|
498 |
+
def pareto(self, a: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
|
499 |
+
@overload
|
500 |
+
def pareto(
|
501 |
+
self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
502 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
503 |
+
@overload
|
504 |
+
def weibull(self, a: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
|
505 |
+
@overload
|
506 |
+
def weibull(
|
507 |
+
self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
508 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
509 |
+
@overload
|
510 |
+
def power(self, a: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
|
511 |
+
@overload
|
512 |
+
def power(
|
513 |
+
self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
514 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
515 |
+
@overload
|
516 |
+
def standard_cauchy(self, size: None = ...) -> float: ... # type: ignore[misc]
|
517 |
+
@overload
|
518 |
+
def standard_cauchy(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
|
519 |
+
@overload
|
520 |
+
def laplace(
|
521 |
+
self,
|
522 |
+
loc: _FloatLike_co = ...,
|
523 |
+
scale: _FloatLike_co = ...,
|
524 |
+
size: None = ...,
|
525 |
+
) -> float: ... # type: ignore[misc]
|
526 |
+
@overload
|
527 |
+
def laplace(
|
528 |
+
self,
|
529 |
+
loc: _ArrayLikeFloat_co = ...,
|
530 |
+
scale: _ArrayLikeFloat_co = ...,
|
531 |
+
size: None | _ShapeLike = ...,
|
532 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
533 |
+
@overload
|
534 |
+
def gumbel(
|
535 |
+
self,
|
536 |
+
loc: _FloatLike_co = ...,
|
537 |
+
scale: _FloatLike_co = ...,
|
538 |
+
size: None = ...,
|
539 |
+
) -> float: ... # type: ignore[misc]
|
540 |
+
@overload
|
541 |
+
def gumbel(
|
542 |
+
self,
|
543 |
+
loc: _ArrayLikeFloat_co = ...,
|
544 |
+
scale: _ArrayLikeFloat_co = ...,
|
545 |
+
size: None | _ShapeLike = ...,
|
546 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
547 |
+
@overload
|
548 |
+
def logistic(
|
549 |
+
self,
|
550 |
+
loc: _FloatLike_co = ...,
|
551 |
+
scale: _FloatLike_co = ...,
|
552 |
+
size: None = ...,
|
553 |
+
) -> float: ... # type: ignore[misc]
|
554 |
+
@overload
|
555 |
+
def logistic(
|
556 |
+
self,
|
557 |
+
loc: _ArrayLikeFloat_co = ...,
|
558 |
+
scale: _ArrayLikeFloat_co = ...,
|
559 |
+
size: None | _ShapeLike = ...,
|
560 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
561 |
+
@overload
|
562 |
+
def lognormal(
|
563 |
+
self,
|
564 |
+
mean: _FloatLike_co = ...,
|
565 |
+
sigma: _FloatLike_co = ...,
|
566 |
+
size: None = ...,
|
567 |
+
) -> float: ... # type: ignore[misc]
|
568 |
+
@overload
|
569 |
+
def lognormal(
|
570 |
+
self,
|
571 |
+
mean: _ArrayLikeFloat_co = ...,
|
572 |
+
sigma: _ArrayLikeFloat_co = ...,
|
573 |
+
size: None | _ShapeLike = ...,
|
574 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
575 |
+
@overload
|
576 |
+
def rayleigh(self, scale: _FloatLike_co = ..., size: None = ...) -> float: ... # type: ignore[misc]
|
577 |
+
@overload
|
578 |
+
def rayleigh(
|
579 |
+
self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
|
580 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
581 |
+
@overload
|
582 |
+
def wald(self, mean: _FloatLike_co, scale: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
|
583 |
+
@overload
|
584 |
+
def wald(
|
585 |
+
self, mean: _ArrayLikeFloat_co, scale: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
586 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
587 |
+
@overload
|
588 |
+
def triangular(
|
589 |
+
self,
|
590 |
+
left: _FloatLike_co,
|
591 |
+
mode: _FloatLike_co,
|
592 |
+
right: _FloatLike_co,
|
593 |
+
size: None = ...,
|
594 |
+
) -> float: ... # type: ignore[misc]
|
595 |
+
@overload
|
596 |
+
def triangular(
|
597 |
+
self,
|
598 |
+
left: _ArrayLikeFloat_co,
|
599 |
+
mode: _ArrayLikeFloat_co,
|
600 |
+
right: _ArrayLikeFloat_co,
|
601 |
+
size: None | _ShapeLike = ...,
|
602 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
603 |
+
@overload
|
604 |
+
def binomial(self, n: int, p: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc]
|
605 |
+
@overload
|
606 |
+
def binomial(
|
607 |
+
self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
608 |
+
) -> ndarray[Any, dtype[int64]]: ...
|
609 |
+
@overload
|
610 |
+
def negative_binomial(self, n: _FloatLike_co, p: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc]
|
611 |
+
@overload
|
612 |
+
def negative_binomial(
|
613 |
+
self, n: _ArrayLikeFloat_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
614 |
+
) -> ndarray[Any, dtype[int64]]: ...
|
615 |
+
@overload
|
616 |
+
def poisson(self, lam: _FloatLike_co = ..., size: None = ...) -> int: ... # type: ignore[misc]
|
617 |
+
@overload
|
618 |
+
def poisson(
|
619 |
+
self, lam: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
|
620 |
+
) -> ndarray[Any, dtype[int64]]: ...
|
621 |
+
@overload
|
622 |
+
def zipf(self, a: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc]
|
623 |
+
@overload
|
624 |
+
def zipf(
|
625 |
+
self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
626 |
+
) -> ndarray[Any, dtype[int64]]: ...
|
627 |
+
@overload
|
628 |
+
def geometric(self, p: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc]
|
629 |
+
@overload
|
630 |
+
def geometric(
|
631 |
+
self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
632 |
+
) -> ndarray[Any, dtype[int64]]: ...
|
633 |
+
@overload
|
634 |
+
def hypergeometric(self, ngood: int, nbad: int, nsample: int, size: None = ...) -> int: ... # type: ignore[misc]
|
635 |
+
@overload
|
636 |
+
def hypergeometric(
|
637 |
+
self,
|
638 |
+
ngood: _ArrayLikeInt_co,
|
639 |
+
nbad: _ArrayLikeInt_co,
|
640 |
+
nsample: _ArrayLikeInt_co,
|
641 |
+
size: None | _ShapeLike = ...,
|
642 |
+
) -> ndarray[Any, dtype[int64]]: ...
|
643 |
+
@overload
|
644 |
+
def logseries(self, p: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc]
|
645 |
+
@overload
|
646 |
+
def logseries(
|
647 |
+
self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
648 |
+
) -> ndarray[Any, dtype[int64]]: ...
|
649 |
+
def multivariate_normal(
|
650 |
+
self,
|
651 |
+
mean: _ArrayLikeFloat_co,
|
652 |
+
cov: _ArrayLikeFloat_co,
|
653 |
+
size: None | _ShapeLike = ...,
|
654 |
+
check_valid: Literal["warn", "raise", "ignore"] = ...,
|
655 |
+
tol: float = ...,
|
656 |
+
*,
|
657 |
+
method: Literal["svd", "eigh", "cholesky"] = ...,
|
658 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
659 |
+
def multinomial(
|
660 |
+
self, n: _ArrayLikeInt_co,
|
661 |
+
pvals: _ArrayLikeFloat_co,
|
662 |
+
size: None | _ShapeLike = ...
|
663 |
+
) -> ndarray[Any, dtype[int64]]: ...
|
664 |
+
def multivariate_hypergeometric(
|
665 |
+
self,
|
666 |
+
colors: _ArrayLikeInt_co,
|
667 |
+
nsample: int,
|
668 |
+
size: None | _ShapeLike = ...,
|
669 |
+
method: Literal["marginals", "count"] = ...,
|
670 |
+
) -> ndarray[Any, dtype[int64]]: ...
|
671 |
+
def dirichlet(
|
672 |
+
self, alpha: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
673 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
674 |
+
def permuted(
|
675 |
+
self, x: ArrayLike, *, axis: None | int = ..., out: None | ndarray[Any, Any] = ...
|
676 |
+
) -> ndarray[Any, Any]: ...
|
677 |
+
def shuffle(self, x: ArrayLike, axis: int = ...) -> None: ...
|
678 |
+
|
679 |
+
def default_rng(
|
680 |
+
seed: None | _ArrayLikeInt_co | SeedSequence | BitGenerator | Generator = ...
|
681 |
+
) -> Generator: ...
|
venv/lib/python3.10/site-packages/numpy/random/_mt19937.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (120 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/random/_mt19937.pyi
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, TypedDict
|
2 |
+
|
3 |
+
from numpy import dtype, ndarray, uint32
|
4 |
+
from numpy.random.bit_generator import BitGenerator, SeedSequence
|
5 |
+
from numpy._typing import _ArrayLikeInt_co
|
6 |
+
|
7 |
+
class _MT19937Internal(TypedDict):
|
8 |
+
key: ndarray[Any, dtype[uint32]]
|
9 |
+
pos: int
|
10 |
+
|
11 |
+
class _MT19937State(TypedDict):
|
12 |
+
bit_generator: str
|
13 |
+
state: _MT19937Internal
|
14 |
+
|
15 |
+
class MT19937(BitGenerator):
|
16 |
+
def __init__(self, seed: None | _ArrayLikeInt_co | SeedSequence = ...) -> None: ...
|
17 |
+
def _legacy_seeding(self, seed: _ArrayLikeInt_co) -> None: ...
|
18 |
+
def jumped(self, jumps: int = ...) -> MT19937: ...
|
19 |
+
@property
|
20 |
+
def state(self) -> _MT19937State: ...
|
21 |
+
@state.setter
|
22 |
+
def state(self, value: _MT19937State) -> None: ...
|
venv/lib/python3.10/site-packages/numpy/random/_pcg64.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (126 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/random/_pcg64.pyi
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import TypedDict
|
2 |
+
|
3 |
+
from numpy.random.bit_generator import BitGenerator, SeedSequence
|
4 |
+
from numpy._typing import _ArrayLikeInt_co
|
5 |
+
|
6 |
+
class _PCG64Internal(TypedDict):
|
7 |
+
state: int
|
8 |
+
inc: int
|
9 |
+
|
10 |
+
class _PCG64State(TypedDict):
|
11 |
+
bit_generator: str
|
12 |
+
state: _PCG64Internal
|
13 |
+
has_uint32: int
|
14 |
+
uinteger: int
|
15 |
+
|
16 |
+
class PCG64(BitGenerator):
|
17 |
+
def __init__(self, seed: None | _ArrayLikeInt_co | SeedSequence = ...) -> None: ...
|
18 |
+
def jumped(self, jumps: int = ...) -> PCG64: ...
|
19 |
+
@property
|
20 |
+
def state(
|
21 |
+
self,
|
22 |
+
) -> _PCG64State: ...
|
23 |
+
@state.setter
|
24 |
+
def state(
|
25 |
+
self,
|
26 |
+
value: _PCG64State,
|
27 |
+
) -> None: ...
|
28 |
+
def advance(self, delta: int) -> PCG64: ...
|
29 |
+
|
30 |
+
class PCG64DXSM(BitGenerator):
|
31 |
+
def __init__(self, seed: None | _ArrayLikeInt_co | SeedSequence = ...) -> None: ...
|
32 |
+
def jumped(self, jumps: int = ...) -> PCG64DXSM: ...
|
33 |
+
@property
|
34 |
+
def state(
|
35 |
+
self,
|
36 |
+
) -> _PCG64State: ...
|
37 |
+
@state.setter
|
38 |
+
def state(
|
39 |
+
self,
|
40 |
+
value: _PCG64State,
|
41 |
+
) -> None: ...
|
42 |
+
def advance(self, delta: int) -> PCG64DXSM: ...
|
venv/lib/python3.10/site-packages/numpy/random/_philox.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (107 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/random/_philox.pyi
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, TypedDict
|
2 |
+
|
3 |
+
from numpy import dtype, ndarray, uint64
|
4 |
+
from numpy.random.bit_generator import BitGenerator, SeedSequence
|
5 |
+
from numpy._typing import _ArrayLikeInt_co
|
6 |
+
|
7 |
+
class _PhiloxInternal(TypedDict):
|
8 |
+
counter: ndarray[Any, dtype[uint64]]
|
9 |
+
key: ndarray[Any, dtype[uint64]]
|
10 |
+
|
11 |
+
class _PhiloxState(TypedDict):
|
12 |
+
bit_generator: str
|
13 |
+
state: _PhiloxInternal
|
14 |
+
buffer: ndarray[Any, dtype[uint64]]
|
15 |
+
buffer_pos: int
|
16 |
+
has_uint32: int
|
17 |
+
uinteger: int
|
18 |
+
|
19 |
+
class Philox(BitGenerator):
|
20 |
+
def __init__(
|
21 |
+
self,
|
22 |
+
seed: None | _ArrayLikeInt_co | SeedSequence = ...,
|
23 |
+
counter: None | _ArrayLikeInt_co = ...,
|
24 |
+
key: None | _ArrayLikeInt_co = ...,
|
25 |
+
) -> None: ...
|
26 |
+
@property
|
27 |
+
def state(
|
28 |
+
self,
|
29 |
+
) -> _PhiloxState: ...
|
30 |
+
@state.setter
|
31 |
+
def state(
|
32 |
+
self,
|
33 |
+
value: _PhiloxState,
|
34 |
+
) -> None: ...
|
35 |
+
def jumped(self, jumps: int = ...) -> Philox: ...
|
36 |
+
def advance(self, delta: int) -> Philox: ...
|
venv/lib/python3.10/site-packages/numpy/random/_pickle.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .mtrand import RandomState
|
2 |
+
from ._philox import Philox
|
3 |
+
from ._pcg64 import PCG64, PCG64DXSM
|
4 |
+
from ._sfc64 import SFC64
|
5 |
+
|
6 |
+
from ._generator import Generator
|
7 |
+
from ._mt19937 import MT19937
|
8 |
+
|
9 |
+
BitGenerators = {'MT19937': MT19937,
|
10 |
+
'PCG64': PCG64,
|
11 |
+
'PCG64DXSM': PCG64DXSM,
|
12 |
+
'Philox': Philox,
|
13 |
+
'SFC64': SFC64,
|
14 |
+
}
|
15 |
+
|
16 |
+
|
17 |
+
def __bit_generator_ctor(bit_generator_name='MT19937'):
|
18 |
+
"""
|
19 |
+
Pickling helper function that returns a bit generator object
|
20 |
+
|
21 |
+
Parameters
|
22 |
+
----------
|
23 |
+
bit_generator_name : str
|
24 |
+
String containing the name of the BitGenerator
|
25 |
+
|
26 |
+
Returns
|
27 |
+
-------
|
28 |
+
bit_generator : BitGenerator
|
29 |
+
BitGenerator instance
|
30 |
+
"""
|
31 |
+
if bit_generator_name in BitGenerators:
|
32 |
+
bit_generator = BitGenerators[bit_generator_name]
|
33 |
+
else:
|
34 |
+
raise ValueError(str(bit_generator_name) + ' is not a known '
|
35 |
+
'BitGenerator module.')
|
36 |
+
|
37 |
+
return bit_generator()
|
38 |
+
|
39 |
+
|
40 |
+
def __generator_ctor(bit_generator_name="MT19937",
|
41 |
+
bit_generator_ctor=__bit_generator_ctor):
|
42 |
+
"""
|
43 |
+
Pickling helper function that returns a Generator object
|
44 |
+
|
45 |
+
Parameters
|
46 |
+
----------
|
47 |
+
bit_generator_name : str
|
48 |
+
String containing the core BitGenerator's name
|
49 |
+
bit_generator_ctor : callable, optional
|
50 |
+
Callable function that takes bit_generator_name as its only argument
|
51 |
+
and returns an instantized bit generator.
|
52 |
+
|
53 |
+
Returns
|
54 |
+
-------
|
55 |
+
rg : Generator
|
56 |
+
Generator using the named core BitGenerator
|
57 |
+
"""
|
58 |
+
return Generator(bit_generator_ctor(bit_generator_name))
|
59 |
+
|
60 |
+
|
61 |
+
def __randomstate_ctor(bit_generator_name="MT19937",
|
62 |
+
bit_generator_ctor=__bit_generator_ctor):
|
63 |
+
"""
|
64 |
+
Pickling helper function that returns a legacy RandomState-like object
|
65 |
+
|
66 |
+
Parameters
|
67 |
+
----------
|
68 |
+
bit_generator_name : str
|
69 |
+
String containing the core BitGenerator's name
|
70 |
+
bit_generator_ctor : callable, optional
|
71 |
+
Callable function that takes bit_generator_name as its only argument
|
72 |
+
and returns an instantized bit generator.
|
73 |
+
|
74 |
+
Returns
|
75 |
+
-------
|
76 |
+
rs : RandomState
|
77 |
+
Legacy RandomState using the named core BitGenerator
|
78 |
+
"""
|
79 |
+
|
80 |
+
return RandomState(bit_generator_ctor(bit_generator_name))
|
venv/lib/python3.10/site-packages/numpy/random/_sfc64.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (76.7 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/random/_sfc64.pyi
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, TypedDict
|
2 |
+
|
3 |
+
from numpy import dtype as dtype
|
4 |
+
from numpy import ndarray as ndarray
|
5 |
+
from numpy import uint64
|
6 |
+
from numpy.random.bit_generator import BitGenerator, SeedSequence
|
7 |
+
from numpy._typing import _ArrayLikeInt_co
|
8 |
+
|
9 |
+
class _SFC64Internal(TypedDict):
|
10 |
+
state: ndarray[Any, dtype[uint64]]
|
11 |
+
|
12 |
+
class _SFC64State(TypedDict):
|
13 |
+
bit_generator: str
|
14 |
+
state: _SFC64Internal
|
15 |
+
has_uint32: int
|
16 |
+
uinteger: int
|
17 |
+
|
18 |
+
class SFC64(BitGenerator):
|
19 |
+
def __init__(self, seed: None | _ArrayLikeInt_co | SeedSequence = ...) -> None: ...
|
20 |
+
@property
|
21 |
+
def state(
|
22 |
+
self,
|
23 |
+
) -> _SFC64State: ...
|
24 |
+
@state.setter
|
25 |
+
def state(
|
26 |
+
self,
|
27 |
+
value: _SFC64State,
|
28 |
+
) -> None: ...
|
venv/lib/python3.10/site-packages/numpy/random/bit_generator.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (247 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/random/bit_generator.pxd
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
cimport numpy as np
|
2 |
+
from libc.stdint cimport uint32_t, uint64_t
|
3 |
+
|
4 |
+
cdef extern from "numpy/random/bitgen.h":
|
5 |
+
struct bitgen:
|
6 |
+
void *state
|
7 |
+
uint64_t (*next_uint64)(void *st) nogil
|
8 |
+
uint32_t (*next_uint32)(void *st) nogil
|
9 |
+
double (*next_double)(void *st) nogil
|
10 |
+
uint64_t (*next_raw)(void *st) nogil
|
11 |
+
|
12 |
+
ctypedef bitgen bitgen_t
|
13 |
+
|
14 |
+
cdef class BitGenerator():
|
15 |
+
cdef readonly object _seed_seq
|
16 |
+
cdef readonly object lock
|
17 |
+
cdef bitgen_t _bitgen
|
18 |
+
cdef readonly object _ctypes
|
19 |
+
cdef readonly object _cffi
|
20 |
+
cdef readonly object capsule
|
21 |
+
|
22 |
+
|
23 |
+
cdef class SeedSequence():
|
24 |
+
cdef readonly object entropy
|
25 |
+
cdef readonly tuple spawn_key
|
26 |
+
cdef readonly Py_ssize_t pool_size
|
27 |
+
cdef readonly object pool
|
28 |
+
cdef readonly uint32_t n_children_spawned
|
29 |
+
|
30 |
+
cdef mix_entropy(self, np.ndarray[np.npy_uint32, ndim=1] mixer,
|
31 |
+
np.ndarray[np.npy_uint32, ndim=1] entropy_array)
|
32 |
+
cdef get_assembled_entropy(self)
|
33 |
+
|
34 |
+
cdef class SeedlessSequence():
|
35 |
+
pass
|
venv/lib/python3.10/site-packages/numpy/random/bit_generator.pyi
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import abc
|
2 |
+
from threading import Lock
|
3 |
+
from collections.abc import Callable, Mapping, Sequence
|
4 |
+
from typing import (
|
5 |
+
Any,
|
6 |
+
NamedTuple,
|
7 |
+
TypedDict,
|
8 |
+
TypeVar,
|
9 |
+
Union,
|
10 |
+
overload,
|
11 |
+
Literal,
|
12 |
+
)
|
13 |
+
|
14 |
+
from numpy import dtype, ndarray, uint32, uint64
|
15 |
+
from numpy._typing import _ArrayLikeInt_co, _ShapeLike, _SupportsDType, _UInt32Codes, _UInt64Codes
|
16 |
+
|
17 |
+
_T = TypeVar("_T")
|
18 |
+
|
19 |
+
_DTypeLikeUint32 = Union[
|
20 |
+
dtype[uint32],
|
21 |
+
_SupportsDType[dtype[uint32]],
|
22 |
+
type[uint32],
|
23 |
+
_UInt32Codes,
|
24 |
+
]
|
25 |
+
_DTypeLikeUint64 = Union[
|
26 |
+
dtype[uint64],
|
27 |
+
_SupportsDType[dtype[uint64]],
|
28 |
+
type[uint64],
|
29 |
+
_UInt64Codes,
|
30 |
+
]
|
31 |
+
|
32 |
+
class _SeedSeqState(TypedDict):
|
33 |
+
entropy: None | int | Sequence[int]
|
34 |
+
spawn_key: tuple[int, ...]
|
35 |
+
pool_size: int
|
36 |
+
n_children_spawned: int
|
37 |
+
|
38 |
+
class _Interface(NamedTuple):
|
39 |
+
state_address: Any
|
40 |
+
state: Any
|
41 |
+
next_uint64: Any
|
42 |
+
next_uint32: Any
|
43 |
+
next_double: Any
|
44 |
+
bit_generator: Any
|
45 |
+
|
46 |
+
class ISeedSequence(abc.ABC):
|
47 |
+
@abc.abstractmethod
|
48 |
+
def generate_state(
|
49 |
+
self, n_words: int, dtype: _DTypeLikeUint32 | _DTypeLikeUint64 = ...
|
50 |
+
) -> ndarray[Any, dtype[uint32 | uint64]]: ...
|
51 |
+
|
52 |
+
class ISpawnableSeedSequence(ISeedSequence):
|
53 |
+
@abc.abstractmethod
|
54 |
+
def spawn(self: _T, n_children: int) -> list[_T]: ...
|
55 |
+
|
56 |
+
class SeedlessSeedSequence(ISpawnableSeedSequence):
|
57 |
+
def generate_state(
|
58 |
+
self, n_words: int, dtype: _DTypeLikeUint32 | _DTypeLikeUint64 = ...
|
59 |
+
) -> ndarray[Any, dtype[uint32 | uint64]]: ...
|
60 |
+
def spawn(self: _T, n_children: int) -> list[_T]: ...
|
61 |
+
|
62 |
+
class SeedSequence(ISpawnableSeedSequence):
|
63 |
+
entropy: None | int | Sequence[int]
|
64 |
+
spawn_key: tuple[int, ...]
|
65 |
+
pool_size: int
|
66 |
+
n_children_spawned: int
|
67 |
+
pool: ndarray[Any, dtype[uint32]]
|
68 |
+
def __init__(
|
69 |
+
self,
|
70 |
+
entropy: None | int | Sequence[int] | _ArrayLikeInt_co = ...,
|
71 |
+
*,
|
72 |
+
spawn_key: Sequence[int] = ...,
|
73 |
+
pool_size: int = ...,
|
74 |
+
n_children_spawned: int = ...,
|
75 |
+
) -> None: ...
|
76 |
+
def __repr__(self) -> str: ...
|
77 |
+
@property
|
78 |
+
def state(
|
79 |
+
self,
|
80 |
+
) -> _SeedSeqState: ...
|
81 |
+
def generate_state(
|
82 |
+
self, n_words: int, dtype: _DTypeLikeUint32 | _DTypeLikeUint64 = ...
|
83 |
+
) -> ndarray[Any, dtype[uint32 | uint64]]: ...
|
84 |
+
def spawn(self, n_children: int) -> list[SeedSequence]: ...
|
85 |
+
|
86 |
+
class BitGenerator(abc.ABC):
|
87 |
+
lock: Lock
|
88 |
+
def __init__(self, seed: None | _ArrayLikeInt_co | SeedSequence = ...) -> None: ...
|
89 |
+
def __getstate__(self) -> dict[str, Any]: ...
|
90 |
+
def __setstate__(self, state: dict[str, Any]) -> None: ...
|
91 |
+
def __reduce__(
|
92 |
+
self,
|
93 |
+
) -> tuple[Callable[[str], BitGenerator], tuple[str], tuple[dict[str, Any]]]: ...
|
94 |
+
@abc.abstractmethod
|
95 |
+
@property
|
96 |
+
def state(self) -> Mapping[str, Any]: ...
|
97 |
+
@state.setter
|
98 |
+
def state(self, value: Mapping[str, Any]) -> None: ...
|
99 |
+
@property
|
100 |
+
def seed_seq(self) -> ISeedSequence: ...
|
101 |
+
def spawn(self, n_children: int) -> list[BitGenerator]: ...
|
102 |
+
@overload
|
103 |
+
def random_raw(self, size: None = ..., output: Literal[True] = ...) -> int: ... # type: ignore[misc]
|
104 |
+
@overload
|
105 |
+
def random_raw(self, size: _ShapeLike = ..., output: Literal[True] = ...) -> ndarray[Any, dtype[uint64]]: ... # type: ignore[misc]
|
106 |
+
@overload
|
107 |
+
def random_raw(self, size: None | _ShapeLike = ..., output: Literal[False] = ...) -> None: ... # type: ignore[misc]
|
108 |
+
def _benchmark(self, cnt: int, method: str = ...) -> None: ...
|
109 |
+
@property
|
110 |
+
def ctypes(self) -> _Interface: ...
|
111 |
+
@property
|
112 |
+
def cffi(self) -> _Interface: ...
|
venv/lib/python3.10/site-packages/numpy/random/c_distributions.pxd
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!python
|
2 |
+
#cython: wraparound=False, nonecheck=False, boundscheck=False, cdivision=True, language_level=3
|
3 |
+
from numpy cimport npy_intp
|
4 |
+
|
5 |
+
from libc.stdint cimport (uint64_t, int32_t, int64_t)
|
6 |
+
from numpy.random cimport bitgen_t
|
7 |
+
|
8 |
+
cdef extern from "numpy/random/distributions.h":
|
9 |
+
|
10 |
+
struct s_binomial_t:
|
11 |
+
int has_binomial
|
12 |
+
double psave
|
13 |
+
int64_t nsave
|
14 |
+
double r
|
15 |
+
double q
|
16 |
+
double fm
|
17 |
+
int64_t m
|
18 |
+
double p1
|
19 |
+
double xm
|
20 |
+
double xl
|
21 |
+
double xr
|
22 |
+
double c
|
23 |
+
double laml
|
24 |
+
double lamr
|
25 |
+
double p2
|
26 |
+
double p3
|
27 |
+
double p4
|
28 |
+
|
29 |
+
ctypedef s_binomial_t binomial_t
|
30 |
+
|
31 |
+
float random_standard_uniform_f(bitgen_t *bitgen_state) nogil
|
32 |
+
double random_standard_uniform(bitgen_t *bitgen_state) nogil
|
33 |
+
void random_standard_uniform_fill(bitgen_t* bitgen_state, npy_intp cnt, double *out) nogil
|
34 |
+
void random_standard_uniform_fill_f(bitgen_t *bitgen_state, npy_intp cnt, float *out) nogil
|
35 |
+
|
36 |
+
double random_standard_exponential(bitgen_t *bitgen_state) nogil
|
37 |
+
float random_standard_exponential_f(bitgen_t *bitgen_state) nogil
|
38 |
+
void random_standard_exponential_fill(bitgen_t *bitgen_state, npy_intp cnt, double *out) nogil
|
39 |
+
void random_standard_exponential_fill_f(bitgen_t *bitgen_state, npy_intp cnt, float *out) nogil
|
40 |
+
void random_standard_exponential_inv_fill(bitgen_t *bitgen_state, npy_intp cnt, double *out) nogil
|
41 |
+
void random_standard_exponential_inv_fill_f(bitgen_t *bitgen_state, npy_intp cnt, float *out) nogil
|
42 |
+
|
43 |
+
double random_standard_normal(bitgen_t* bitgen_state) nogil
|
44 |
+
float random_standard_normal_f(bitgen_t *bitgen_state) nogil
|
45 |
+
void random_standard_normal_fill(bitgen_t *bitgen_state, npy_intp count, double *out) nogil
|
46 |
+
void random_standard_normal_fill_f(bitgen_t *bitgen_state, npy_intp count, float *out) nogil
|
47 |
+
double random_standard_gamma(bitgen_t *bitgen_state, double shape) nogil
|
48 |
+
float random_standard_gamma_f(bitgen_t *bitgen_state, float shape) nogil
|
49 |
+
|
50 |
+
float random_standard_uniform_f(bitgen_t *bitgen_state) nogil
|
51 |
+
void random_standard_uniform_fill_f(bitgen_t* bitgen_state, npy_intp cnt, float *out) nogil
|
52 |
+
float random_standard_normal_f(bitgen_t* bitgen_state) nogil
|
53 |
+
float random_standard_gamma_f(bitgen_t *bitgen_state, float shape) nogil
|
54 |
+
|
55 |
+
int64_t random_positive_int64(bitgen_t *bitgen_state) nogil
|
56 |
+
int32_t random_positive_int32(bitgen_t *bitgen_state) nogil
|
57 |
+
int64_t random_positive_int(bitgen_t *bitgen_state) nogil
|
58 |
+
uint64_t random_uint(bitgen_t *bitgen_state) nogil
|
59 |
+
|
60 |
+
double random_normal(bitgen_t *bitgen_state, double loc, double scale) nogil
|
61 |
+
|
62 |
+
double random_gamma(bitgen_t *bitgen_state, double shape, double scale) nogil
|
63 |
+
float random_gamma_f(bitgen_t *bitgen_state, float shape, float scale) nogil
|
64 |
+
|
65 |
+
double random_exponential(bitgen_t *bitgen_state, double scale) nogil
|
66 |
+
double random_uniform(bitgen_t *bitgen_state, double lower, double range) nogil
|
67 |
+
double random_beta(bitgen_t *bitgen_state, double a, double b) nogil
|
68 |
+
double random_chisquare(bitgen_t *bitgen_state, double df) nogil
|
69 |
+
double random_f(bitgen_t *bitgen_state, double dfnum, double dfden) nogil
|
70 |
+
double random_standard_cauchy(bitgen_t *bitgen_state) nogil
|
71 |
+
double random_pareto(bitgen_t *bitgen_state, double a) nogil
|
72 |
+
double random_weibull(bitgen_t *bitgen_state, double a) nogil
|
73 |
+
double random_power(bitgen_t *bitgen_state, double a) nogil
|
74 |
+
double random_laplace(bitgen_t *bitgen_state, double loc, double scale) nogil
|
75 |
+
double random_gumbel(bitgen_t *bitgen_state, double loc, double scale) nogil
|
76 |
+
double random_logistic(bitgen_t *bitgen_state, double loc, double scale) nogil
|
77 |
+
double random_lognormal(bitgen_t *bitgen_state, double mean, double sigma) nogil
|
78 |
+
double random_rayleigh(bitgen_t *bitgen_state, double mode) nogil
|
79 |
+
double random_standard_t(bitgen_t *bitgen_state, double df) nogil
|
80 |
+
double random_noncentral_chisquare(bitgen_t *bitgen_state, double df,
|
81 |
+
double nonc) nogil
|
82 |
+
double random_noncentral_f(bitgen_t *bitgen_state, double dfnum,
|
83 |
+
double dfden, double nonc) nogil
|
84 |
+
double random_wald(bitgen_t *bitgen_state, double mean, double scale) nogil
|
85 |
+
double random_vonmises(bitgen_t *bitgen_state, double mu, double kappa) nogil
|
86 |
+
double random_triangular(bitgen_t *bitgen_state, double left, double mode,
|
87 |
+
double right) nogil
|
88 |
+
|
89 |
+
int64_t random_poisson(bitgen_t *bitgen_state, double lam) nogil
|
90 |
+
int64_t random_negative_binomial(bitgen_t *bitgen_state, double n, double p) nogil
|
91 |
+
int64_t random_binomial(bitgen_t *bitgen_state, double p, int64_t n, binomial_t *binomial) nogil
|
92 |
+
int64_t random_logseries(bitgen_t *bitgen_state, double p) nogil
|
93 |
+
int64_t random_geometric_search(bitgen_t *bitgen_state, double p) nogil
|
94 |
+
int64_t random_geometric_inversion(bitgen_t *bitgen_state, double p) nogil
|
95 |
+
int64_t random_geometric(bitgen_t *bitgen_state, double p) nogil
|
96 |
+
int64_t random_zipf(bitgen_t *bitgen_state, double a) nogil
|
97 |
+
int64_t random_hypergeometric(bitgen_t *bitgen_state, int64_t good, int64_t bad,
|
98 |
+
int64_t sample) nogil
|
99 |
+
|
100 |
+
uint64_t random_interval(bitgen_t *bitgen_state, uint64_t max) nogil
|
101 |
+
|
102 |
+
# Generate random uint64 numbers in closed interval [off, off + rng].
|
103 |
+
uint64_t random_bounded_uint64(bitgen_t *bitgen_state,
|
104 |
+
uint64_t off, uint64_t rng,
|
105 |
+
uint64_t mask, bint use_masked) nogil
|
106 |
+
|
107 |
+
void random_multinomial(bitgen_t *bitgen_state, int64_t n, int64_t *mnix,
|
108 |
+
double *pix, npy_intp d, binomial_t *binomial) nogil
|
109 |
+
|
110 |
+
int random_multivariate_hypergeometric_count(bitgen_t *bitgen_state,
|
111 |
+
int64_t total,
|
112 |
+
size_t num_colors, int64_t *colors,
|
113 |
+
int64_t nsample,
|
114 |
+
size_t num_variates, int64_t *variates) nogil
|
115 |
+
void random_multivariate_hypergeometric_marginals(bitgen_t *bitgen_state,
|
116 |
+
int64_t total,
|
117 |
+
size_t num_colors, int64_t *colors,
|
118 |
+
int64_t nsample,
|
119 |
+
size_t num_variates, int64_t *variates) nogil
|
120 |
+
|
venv/lib/python3.10/site-packages/numpy/random/lib/libnpyrandom.a
ADDED
Binary file (71.9 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/random/mtrand.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (784 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/random/mtrand.pyi
ADDED
@@ -0,0 +1,571 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import builtins
|
2 |
+
from collections.abc import Callable
|
3 |
+
from typing import Any, Union, overload, Literal
|
4 |
+
|
5 |
+
from numpy import (
|
6 |
+
bool_,
|
7 |
+
dtype,
|
8 |
+
float32,
|
9 |
+
float64,
|
10 |
+
int8,
|
11 |
+
int16,
|
12 |
+
int32,
|
13 |
+
int64,
|
14 |
+
int_,
|
15 |
+
ndarray,
|
16 |
+
uint,
|
17 |
+
uint8,
|
18 |
+
uint16,
|
19 |
+
uint32,
|
20 |
+
uint64,
|
21 |
+
)
|
22 |
+
from numpy.random.bit_generator import BitGenerator
|
23 |
+
from numpy._typing import (
|
24 |
+
ArrayLike,
|
25 |
+
_ArrayLikeFloat_co,
|
26 |
+
_ArrayLikeInt_co,
|
27 |
+
_DoubleCodes,
|
28 |
+
_DTypeLikeBool,
|
29 |
+
_DTypeLikeInt,
|
30 |
+
_DTypeLikeUInt,
|
31 |
+
_Float32Codes,
|
32 |
+
_Float64Codes,
|
33 |
+
_Int8Codes,
|
34 |
+
_Int16Codes,
|
35 |
+
_Int32Codes,
|
36 |
+
_Int64Codes,
|
37 |
+
_IntCodes,
|
38 |
+
_ShapeLike,
|
39 |
+
_SingleCodes,
|
40 |
+
_SupportsDType,
|
41 |
+
_UInt8Codes,
|
42 |
+
_UInt16Codes,
|
43 |
+
_UInt32Codes,
|
44 |
+
_UInt64Codes,
|
45 |
+
_UIntCodes,
|
46 |
+
)
|
47 |
+
|
48 |
+
_DTypeLikeFloat32 = Union[
|
49 |
+
dtype[float32],
|
50 |
+
_SupportsDType[dtype[float32]],
|
51 |
+
type[float32],
|
52 |
+
_Float32Codes,
|
53 |
+
_SingleCodes,
|
54 |
+
]
|
55 |
+
|
56 |
+
_DTypeLikeFloat64 = Union[
|
57 |
+
dtype[float64],
|
58 |
+
_SupportsDType[dtype[float64]],
|
59 |
+
type[float],
|
60 |
+
type[float64],
|
61 |
+
_Float64Codes,
|
62 |
+
_DoubleCodes,
|
63 |
+
]
|
64 |
+
|
65 |
+
class RandomState:
|
66 |
+
_bit_generator: BitGenerator
|
67 |
+
def __init__(self, seed: None | _ArrayLikeInt_co | BitGenerator = ...) -> None: ...
|
68 |
+
def __repr__(self) -> str: ...
|
69 |
+
def __str__(self) -> str: ...
|
70 |
+
def __getstate__(self) -> dict[str, Any]: ...
|
71 |
+
def __setstate__(self, state: dict[str, Any]) -> None: ...
|
72 |
+
def __reduce__(self) -> tuple[Callable[[str], RandomState], tuple[str], dict[str, Any]]: ...
|
73 |
+
def seed(self, seed: None | _ArrayLikeFloat_co = ...) -> None: ...
|
74 |
+
@overload
|
75 |
+
def get_state(self, legacy: Literal[False] = ...) -> dict[str, Any]: ...
|
76 |
+
@overload
|
77 |
+
def get_state(
|
78 |
+
self, legacy: Literal[True] = ...
|
79 |
+
) -> dict[str, Any] | tuple[str, ndarray[Any, dtype[uint32]], int, int, float]: ...
|
80 |
+
def set_state(
|
81 |
+
self, state: dict[str, Any] | tuple[str, ndarray[Any, dtype[uint32]], int, int, float]
|
82 |
+
) -> None: ...
|
83 |
+
@overload
|
84 |
+
def random_sample(self, size: None = ...) -> float: ... # type: ignore[misc]
|
85 |
+
@overload
|
86 |
+
def random_sample(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
|
87 |
+
@overload
|
88 |
+
def random(self, size: None = ...) -> float: ... # type: ignore[misc]
|
89 |
+
@overload
|
90 |
+
def random(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
|
91 |
+
@overload
|
92 |
+
def beta(self, a: float, b: float, size: None = ...) -> float: ... # type: ignore[misc]
|
93 |
+
@overload
|
94 |
+
def beta(
|
95 |
+
self, a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
96 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
97 |
+
@overload
|
98 |
+
def exponential(self, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
|
99 |
+
@overload
|
100 |
+
def exponential(
|
101 |
+
self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
|
102 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
103 |
+
@overload
|
104 |
+
def standard_exponential(self, size: None = ...) -> float: ... # type: ignore[misc]
|
105 |
+
@overload
|
106 |
+
def standard_exponential(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
|
107 |
+
@overload
|
108 |
+
def tomaxint(self, size: None = ...) -> int: ... # type: ignore[misc]
|
109 |
+
@overload
|
110 |
+
def tomaxint(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[int_]]: ...
|
111 |
+
@overload
|
112 |
+
def randint( # type: ignore[misc]
|
113 |
+
self,
|
114 |
+
low: int,
|
115 |
+
high: None | int = ...,
|
116 |
+
) -> int: ...
|
117 |
+
@overload
|
118 |
+
def randint( # type: ignore[misc]
|
119 |
+
self,
|
120 |
+
low: int,
|
121 |
+
high: None | int = ...,
|
122 |
+
size: None = ...,
|
123 |
+
dtype: _DTypeLikeBool = ...,
|
124 |
+
) -> bool: ...
|
125 |
+
@overload
|
126 |
+
def randint( # type: ignore[misc]
|
127 |
+
self,
|
128 |
+
low: int,
|
129 |
+
high: None | int = ...,
|
130 |
+
size: None = ...,
|
131 |
+
dtype: _DTypeLikeInt | _DTypeLikeUInt = ...,
|
132 |
+
) -> int: ...
|
133 |
+
@overload
|
134 |
+
def randint( # type: ignore[misc]
|
135 |
+
self,
|
136 |
+
low: _ArrayLikeInt_co,
|
137 |
+
high: None | _ArrayLikeInt_co = ...,
|
138 |
+
size: None | _ShapeLike = ...,
|
139 |
+
) -> ndarray[Any, dtype[int_]]: ...
|
140 |
+
@overload
|
141 |
+
def randint( # type: ignore[misc]
|
142 |
+
self,
|
143 |
+
low: _ArrayLikeInt_co,
|
144 |
+
high: None | _ArrayLikeInt_co = ...,
|
145 |
+
size: None | _ShapeLike = ...,
|
146 |
+
dtype: _DTypeLikeBool = ...,
|
147 |
+
) -> ndarray[Any, dtype[bool_]]: ...
|
148 |
+
@overload
|
149 |
+
def randint( # type: ignore[misc]
|
150 |
+
self,
|
151 |
+
low: _ArrayLikeInt_co,
|
152 |
+
high: None | _ArrayLikeInt_co = ...,
|
153 |
+
size: None | _ShapeLike = ...,
|
154 |
+
dtype: dtype[int8] | type[int8] | _Int8Codes | _SupportsDType[dtype[int8]] = ...,
|
155 |
+
) -> ndarray[Any, dtype[int8]]: ...
|
156 |
+
@overload
|
157 |
+
def randint( # type: ignore[misc]
|
158 |
+
self,
|
159 |
+
low: _ArrayLikeInt_co,
|
160 |
+
high: None | _ArrayLikeInt_co = ...,
|
161 |
+
size: None | _ShapeLike = ...,
|
162 |
+
dtype: dtype[int16] | type[int16] | _Int16Codes | _SupportsDType[dtype[int16]] = ...,
|
163 |
+
) -> ndarray[Any, dtype[int16]]: ...
|
164 |
+
@overload
|
165 |
+
def randint( # type: ignore[misc]
|
166 |
+
self,
|
167 |
+
low: _ArrayLikeInt_co,
|
168 |
+
high: None | _ArrayLikeInt_co = ...,
|
169 |
+
size: None | _ShapeLike = ...,
|
170 |
+
dtype: dtype[int32] | type[int32] | _Int32Codes | _SupportsDType[dtype[int32]] = ...,
|
171 |
+
) -> ndarray[Any, dtype[int32]]: ...
|
172 |
+
@overload
|
173 |
+
def randint( # type: ignore[misc]
|
174 |
+
self,
|
175 |
+
low: _ArrayLikeInt_co,
|
176 |
+
high: None | _ArrayLikeInt_co = ...,
|
177 |
+
size: None | _ShapeLike = ...,
|
178 |
+
dtype: None | dtype[int64] | type[int64] | _Int64Codes | _SupportsDType[dtype[int64]] = ...,
|
179 |
+
) -> ndarray[Any, dtype[int64]]: ...
|
180 |
+
@overload
|
181 |
+
def randint( # type: ignore[misc]
|
182 |
+
self,
|
183 |
+
low: _ArrayLikeInt_co,
|
184 |
+
high: None | _ArrayLikeInt_co = ...,
|
185 |
+
size: None | _ShapeLike = ...,
|
186 |
+
dtype: dtype[uint8] | type[uint8] | _UInt8Codes | _SupportsDType[dtype[uint8]] = ...,
|
187 |
+
) -> ndarray[Any, dtype[uint8]]: ...
|
188 |
+
@overload
|
189 |
+
def randint( # type: ignore[misc]
|
190 |
+
self,
|
191 |
+
low: _ArrayLikeInt_co,
|
192 |
+
high: None | _ArrayLikeInt_co = ...,
|
193 |
+
size: None | _ShapeLike = ...,
|
194 |
+
dtype: dtype[uint16] | type[uint16] | _UInt16Codes | _SupportsDType[dtype[uint16]] = ...,
|
195 |
+
) -> ndarray[Any, dtype[uint16]]: ...
|
196 |
+
@overload
|
197 |
+
def randint( # type: ignore[misc]
|
198 |
+
self,
|
199 |
+
low: _ArrayLikeInt_co,
|
200 |
+
high: None | _ArrayLikeInt_co = ...,
|
201 |
+
size: None | _ShapeLike = ...,
|
202 |
+
dtype: dtype[uint32] | type[uint32] | _UInt32Codes | _SupportsDType[dtype[uint32]] = ...,
|
203 |
+
) -> ndarray[Any, dtype[uint32]]: ...
|
204 |
+
@overload
|
205 |
+
def randint( # type: ignore[misc]
|
206 |
+
self,
|
207 |
+
low: _ArrayLikeInt_co,
|
208 |
+
high: None | _ArrayLikeInt_co = ...,
|
209 |
+
size: None | _ShapeLike = ...,
|
210 |
+
dtype: dtype[uint64] | type[uint64] | _UInt64Codes | _SupportsDType[dtype[uint64]] = ...,
|
211 |
+
) -> ndarray[Any, dtype[uint64]]: ...
|
212 |
+
@overload
|
213 |
+
def randint( # type: ignore[misc]
|
214 |
+
self,
|
215 |
+
low: _ArrayLikeInt_co,
|
216 |
+
high: None | _ArrayLikeInt_co = ...,
|
217 |
+
size: None | _ShapeLike = ...,
|
218 |
+
dtype: dtype[int_] | type[int] | type[int_] | _IntCodes | _SupportsDType[dtype[int_]] = ...,
|
219 |
+
) -> ndarray[Any, dtype[int_]]: ...
|
220 |
+
@overload
|
221 |
+
def randint( # type: ignore[misc]
|
222 |
+
self,
|
223 |
+
low: _ArrayLikeInt_co,
|
224 |
+
high: None | _ArrayLikeInt_co = ...,
|
225 |
+
size: None | _ShapeLike = ...,
|
226 |
+
dtype: dtype[uint] | type[uint] | _UIntCodes | _SupportsDType[dtype[uint]] = ...,
|
227 |
+
) -> ndarray[Any, dtype[uint]]: ...
|
228 |
+
def bytes(self, length: int) -> builtins.bytes: ...
|
229 |
+
@overload
|
230 |
+
def choice(
|
231 |
+
self,
|
232 |
+
a: int,
|
233 |
+
size: None = ...,
|
234 |
+
replace: bool = ...,
|
235 |
+
p: None | _ArrayLikeFloat_co = ...,
|
236 |
+
) -> int: ...
|
237 |
+
@overload
|
238 |
+
def choice(
|
239 |
+
self,
|
240 |
+
a: int,
|
241 |
+
size: _ShapeLike = ...,
|
242 |
+
replace: bool = ...,
|
243 |
+
p: None | _ArrayLikeFloat_co = ...,
|
244 |
+
) -> ndarray[Any, dtype[int_]]: ...
|
245 |
+
@overload
|
246 |
+
def choice(
|
247 |
+
self,
|
248 |
+
a: ArrayLike,
|
249 |
+
size: None = ...,
|
250 |
+
replace: bool = ...,
|
251 |
+
p: None | _ArrayLikeFloat_co = ...,
|
252 |
+
) -> Any: ...
|
253 |
+
@overload
|
254 |
+
def choice(
|
255 |
+
self,
|
256 |
+
a: ArrayLike,
|
257 |
+
size: _ShapeLike = ...,
|
258 |
+
replace: bool = ...,
|
259 |
+
p: None | _ArrayLikeFloat_co = ...,
|
260 |
+
) -> ndarray[Any, Any]: ...
|
261 |
+
@overload
|
262 |
+
def uniform(self, low: float = ..., high: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
|
263 |
+
@overload
|
264 |
+
def uniform(
|
265 |
+
self,
|
266 |
+
low: _ArrayLikeFloat_co = ...,
|
267 |
+
high: _ArrayLikeFloat_co = ...,
|
268 |
+
size: None | _ShapeLike = ...,
|
269 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
270 |
+
@overload
|
271 |
+
def rand(self) -> float: ...
|
272 |
+
@overload
|
273 |
+
def rand(self, *args: int) -> ndarray[Any, dtype[float64]]: ...
|
274 |
+
@overload
|
275 |
+
def randn(self) -> float: ...
|
276 |
+
@overload
|
277 |
+
def randn(self, *args: int) -> ndarray[Any, dtype[float64]]: ...
|
278 |
+
@overload
|
279 |
+
def random_integers(self, low: int, high: None | int = ..., size: None = ...) -> int: ... # type: ignore[misc]
|
280 |
+
@overload
|
281 |
+
def random_integers(
|
282 |
+
self,
|
283 |
+
low: _ArrayLikeInt_co,
|
284 |
+
high: None | _ArrayLikeInt_co = ...,
|
285 |
+
size: None | _ShapeLike = ...,
|
286 |
+
) -> ndarray[Any, dtype[int_]]: ...
|
287 |
+
@overload
|
288 |
+
def standard_normal(self, size: None = ...) -> float: ... # type: ignore[misc]
|
289 |
+
@overload
|
290 |
+
def standard_normal( # type: ignore[misc]
|
291 |
+
self, size: _ShapeLike = ...
|
292 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
293 |
+
@overload
|
294 |
+
def normal(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
|
295 |
+
@overload
|
296 |
+
def normal(
|
297 |
+
self,
|
298 |
+
loc: _ArrayLikeFloat_co = ...,
|
299 |
+
scale: _ArrayLikeFloat_co = ...,
|
300 |
+
size: None | _ShapeLike = ...,
|
301 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
302 |
+
@overload
|
303 |
+
def standard_gamma( # type: ignore[misc]
|
304 |
+
self,
|
305 |
+
shape: float,
|
306 |
+
size: None = ...,
|
307 |
+
) -> float: ...
|
308 |
+
@overload
|
309 |
+
def standard_gamma(
|
310 |
+
self,
|
311 |
+
shape: _ArrayLikeFloat_co,
|
312 |
+
size: None | _ShapeLike = ...,
|
313 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
314 |
+
@overload
|
315 |
+
def gamma(self, shape: float, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
|
316 |
+
@overload
|
317 |
+
def gamma(
|
318 |
+
self,
|
319 |
+
shape: _ArrayLikeFloat_co,
|
320 |
+
scale: _ArrayLikeFloat_co = ...,
|
321 |
+
size: None | _ShapeLike = ...,
|
322 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
323 |
+
@overload
|
324 |
+
def f(self, dfnum: float, dfden: float, size: None = ...) -> float: ... # type: ignore[misc]
|
325 |
+
@overload
|
326 |
+
def f(
|
327 |
+
self, dfnum: _ArrayLikeFloat_co, dfden: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
328 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
329 |
+
@overload
|
330 |
+
def noncentral_f(self, dfnum: float, dfden: float, nonc: float, size: None = ...) -> float: ... # type: ignore[misc]
|
331 |
+
@overload
|
332 |
+
def noncentral_f(
|
333 |
+
self,
|
334 |
+
dfnum: _ArrayLikeFloat_co,
|
335 |
+
dfden: _ArrayLikeFloat_co,
|
336 |
+
nonc: _ArrayLikeFloat_co,
|
337 |
+
size: None | _ShapeLike = ...,
|
338 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
339 |
+
@overload
|
340 |
+
def chisquare(self, df: float, size: None = ...) -> float: ... # type: ignore[misc]
|
341 |
+
@overload
|
342 |
+
def chisquare(
|
343 |
+
self, df: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
344 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
345 |
+
@overload
|
346 |
+
def noncentral_chisquare(self, df: float, nonc: float, size: None = ...) -> float: ... # type: ignore[misc]
|
347 |
+
@overload
|
348 |
+
def noncentral_chisquare(
|
349 |
+
self, df: _ArrayLikeFloat_co, nonc: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
350 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
351 |
+
@overload
|
352 |
+
def standard_t(self, df: float, size: None = ...) -> float: ... # type: ignore[misc]
|
353 |
+
@overload
|
354 |
+
def standard_t(
|
355 |
+
self, df: _ArrayLikeFloat_co, size: None = ...
|
356 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
357 |
+
@overload
|
358 |
+
def standard_t(
|
359 |
+
self, df: _ArrayLikeFloat_co, size: _ShapeLike = ...
|
360 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
361 |
+
@overload
|
362 |
+
def vonmises(self, mu: float, kappa: float, size: None = ...) -> float: ... # type: ignore[misc]
|
363 |
+
@overload
|
364 |
+
def vonmises(
|
365 |
+
self, mu: _ArrayLikeFloat_co, kappa: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
366 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
367 |
+
@overload
|
368 |
+
def pareto(self, a: float, size: None = ...) -> float: ... # type: ignore[misc]
|
369 |
+
@overload
|
370 |
+
def pareto(
|
371 |
+
self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
372 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
373 |
+
@overload
|
374 |
+
def weibull(self, a: float, size: None = ...) -> float: ... # type: ignore[misc]
|
375 |
+
@overload
|
376 |
+
def weibull(
|
377 |
+
self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
378 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
379 |
+
@overload
|
380 |
+
def power(self, a: float, size: None = ...) -> float: ... # type: ignore[misc]
|
381 |
+
@overload
|
382 |
+
def power(
|
383 |
+
self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
384 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
385 |
+
@overload
|
386 |
+
def standard_cauchy(self, size: None = ...) -> float: ... # type: ignore[misc]
|
387 |
+
@overload
|
388 |
+
def standard_cauchy(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
|
389 |
+
@overload
|
390 |
+
def laplace(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
|
391 |
+
@overload
|
392 |
+
def laplace(
|
393 |
+
self,
|
394 |
+
loc: _ArrayLikeFloat_co = ...,
|
395 |
+
scale: _ArrayLikeFloat_co = ...,
|
396 |
+
size: None | _ShapeLike = ...,
|
397 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
398 |
+
@overload
|
399 |
+
def gumbel(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
|
400 |
+
@overload
|
401 |
+
def gumbel(
|
402 |
+
self,
|
403 |
+
loc: _ArrayLikeFloat_co = ...,
|
404 |
+
scale: _ArrayLikeFloat_co = ...,
|
405 |
+
size: None | _ShapeLike = ...,
|
406 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
407 |
+
@overload
|
408 |
+
def logistic(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
|
409 |
+
@overload
|
410 |
+
def logistic(
|
411 |
+
self,
|
412 |
+
loc: _ArrayLikeFloat_co = ...,
|
413 |
+
scale: _ArrayLikeFloat_co = ...,
|
414 |
+
size: None | _ShapeLike = ...,
|
415 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
416 |
+
@overload
|
417 |
+
def lognormal(self, mean: float = ..., sigma: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
|
418 |
+
@overload
|
419 |
+
def lognormal(
|
420 |
+
self,
|
421 |
+
mean: _ArrayLikeFloat_co = ...,
|
422 |
+
sigma: _ArrayLikeFloat_co = ...,
|
423 |
+
size: None | _ShapeLike = ...,
|
424 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
425 |
+
@overload
|
426 |
+
def rayleigh(self, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
|
427 |
+
@overload
|
428 |
+
def rayleigh(
|
429 |
+
self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
|
430 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
431 |
+
@overload
|
432 |
+
def wald(self, mean: float, scale: float, size: None = ...) -> float: ... # type: ignore[misc]
|
433 |
+
@overload
|
434 |
+
def wald(
|
435 |
+
self, mean: _ArrayLikeFloat_co, scale: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
436 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
437 |
+
@overload
|
438 |
+
def triangular(self, left: float, mode: float, right: float, size: None = ...) -> float: ... # type: ignore[misc]
|
439 |
+
@overload
|
440 |
+
def triangular(
|
441 |
+
self,
|
442 |
+
left: _ArrayLikeFloat_co,
|
443 |
+
mode: _ArrayLikeFloat_co,
|
444 |
+
right: _ArrayLikeFloat_co,
|
445 |
+
size: None | _ShapeLike = ...,
|
446 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
447 |
+
@overload
|
448 |
+
def binomial(self, n: int, p: float, size: None = ...) -> int: ... # type: ignore[misc]
|
449 |
+
@overload
|
450 |
+
def binomial(
|
451 |
+
self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
452 |
+
) -> ndarray[Any, dtype[int_]]: ...
|
453 |
+
@overload
|
454 |
+
def negative_binomial(self, n: float, p: float, size: None = ...) -> int: ... # type: ignore[misc]
|
455 |
+
@overload
|
456 |
+
def negative_binomial(
|
457 |
+
self, n: _ArrayLikeFloat_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
458 |
+
) -> ndarray[Any, dtype[int_]]: ...
|
459 |
+
@overload
|
460 |
+
def poisson(self, lam: float = ..., size: None = ...) -> int: ... # type: ignore[misc]
|
461 |
+
@overload
|
462 |
+
def poisson(
|
463 |
+
self, lam: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
|
464 |
+
) -> ndarray[Any, dtype[int_]]: ...
|
465 |
+
@overload
|
466 |
+
def zipf(self, a: float, size: None = ...) -> int: ... # type: ignore[misc]
|
467 |
+
@overload
|
468 |
+
def zipf(
|
469 |
+
self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
470 |
+
) -> ndarray[Any, dtype[int_]]: ...
|
471 |
+
@overload
|
472 |
+
def geometric(self, p: float, size: None = ...) -> int: ... # type: ignore[misc]
|
473 |
+
@overload
|
474 |
+
def geometric(
|
475 |
+
self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
476 |
+
) -> ndarray[Any, dtype[int_]]: ...
|
477 |
+
@overload
|
478 |
+
def hypergeometric(self, ngood: int, nbad: int, nsample: int, size: None = ...) -> int: ... # type: ignore[misc]
|
479 |
+
@overload
|
480 |
+
def hypergeometric(
|
481 |
+
self,
|
482 |
+
ngood: _ArrayLikeInt_co,
|
483 |
+
nbad: _ArrayLikeInt_co,
|
484 |
+
nsample: _ArrayLikeInt_co,
|
485 |
+
size: None | _ShapeLike = ...,
|
486 |
+
) -> ndarray[Any, dtype[int_]]: ...
|
487 |
+
@overload
|
488 |
+
def logseries(self, p: float, size: None = ...) -> int: ... # type: ignore[misc]
|
489 |
+
@overload
|
490 |
+
def logseries(
|
491 |
+
self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
492 |
+
) -> ndarray[Any, dtype[int_]]: ...
|
493 |
+
def multivariate_normal(
|
494 |
+
self,
|
495 |
+
mean: _ArrayLikeFloat_co,
|
496 |
+
cov: _ArrayLikeFloat_co,
|
497 |
+
size: None | _ShapeLike = ...,
|
498 |
+
check_valid: Literal["warn", "raise", "ignore"] = ...,
|
499 |
+
tol: float = ...,
|
500 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
501 |
+
def multinomial(
|
502 |
+
self, n: _ArrayLikeInt_co, pvals: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
503 |
+
) -> ndarray[Any, dtype[int_]]: ...
|
504 |
+
def dirichlet(
|
505 |
+
self, alpha: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
506 |
+
) -> ndarray[Any, dtype[float64]]: ...
|
507 |
+
def shuffle(self, x: ArrayLike) -> None: ...
|
508 |
+
@overload
|
509 |
+
def permutation(self, x: int) -> ndarray[Any, dtype[int_]]: ...
|
510 |
+
@overload
|
511 |
+
def permutation(self, x: ArrayLike) -> ndarray[Any, Any]: ...
|
512 |
+
|
513 |
+
_rand: RandomState
|
514 |
+
|
515 |
+
beta = _rand.beta
|
516 |
+
binomial = _rand.binomial
|
517 |
+
bytes = _rand.bytes
|
518 |
+
chisquare = _rand.chisquare
|
519 |
+
choice = _rand.choice
|
520 |
+
dirichlet = _rand.dirichlet
|
521 |
+
exponential = _rand.exponential
|
522 |
+
f = _rand.f
|
523 |
+
gamma = _rand.gamma
|
524 |
+
get_state = _rand.get_state
|
525 |
+
geometric = _rand.geometric
|
526 |
+
gumbel = _rand.gumbel
|
527 |
+
hypergeometric = _rand.hypergeometric
|
528 |
+
laplace = _rand.laplace
|
529 |
+
logistic = _rand.logistic
|
530 |
+
lognormal = _rand.lognormal
|
531 |
+
logseries = _rand.logseries
|
532 |
+
multinomial = _rand.multinomial
|
533 |
+
multivariate_normal = _rand.multivariate_normal
|
534 |
+
negative_binomial = _rand.negative_binomial
|
535 |
+
noncentral_chisquare = _rand.noncentral_chisquare
|
536 |
+
noncentral_f = _rand.noncentral_f
|
537 |
+
normal = _rand.normal
|
538 |
+
pareto = _rand.pareto
|
539 |
+
permutation = _rand.permutation
|
540 |
+
poisson = _rand.poisson
|
541 |
+
power = _rand.power
|
542 |
+
rand = _rand.rand
|
543 |
+
randint = _rand.randint
|
544 |
+
randn = _rand.randn
|
545 |
+
random = _rand.random
|
546 |
+
random_integers = _rand.random_integers
|
547 |
+
random_sample = _rand.random_sample
|
548 |
+
rayleigh = _rand.rayleigh
|
549 |
+
seed = _rand.seed
|
550 |
+
set_state = _rand.set_state
|
551 |
+
shuffle = _rand.shuffle
|
552 |
+
standard_cauchy = _rand.standard_cauchy
|
553 |
+
standard_exponential = _rand.standard_exponential
|
554 |
+
standard_gamma = _rand.standard_gamma
|
555 |
+
standard_normal = _rand.standard_normal
|
556 |
+
standard_t = _rand.standard_t
|
557 |
+
triangular = _rand.triangular
|
558 |
+
uniform = _rand.uniform
|
559 |
+
vonmises = _rand.vonmises
|
560 |
+
wald = _rand.wald
|
561 |
+
weibull = _rand.weibull
|
562 |
+
zipf = _rand.zipf
|
563 |
+
# Two legacy that are trivial wrappers around random_sample
|
564 |
+
sample = _rand.random_sample
|
565 |
+
ranf = _rand.random_sample
|
566 |
+
|
567 |
+
def set_bit_generator(bitgen: BitGenerator) -> None:
|
568 |
+
...
|
569 |
+
|
570 |
+
def get_bit_generator() -> BitGenerator:
|
571 |
+
...
|
venv/lib/python3.10/site-packages/numpy/random/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (186 Bytes). View file
|
|
venv/lib/python3.10/site-packages/numpy/random/tests/__pycache__/test_direct.cpython-310.pyc
ADDED
Binary file (17.5 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/random/tests/__pycache__/test_extending.cpython-310.pyc
ADDED
Binary file (3.15 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/random/tests/__pycache__/test_generator_mt19937.cpython-310.pyc
ADDED
Binary file (88.9 kB). View file
|
|