diff --git "a/venv/lib/python3.10/site-packages/transformers/models/mega/modeling_mega.py" "b/venv/lib/python3.10/site-packages/transformers/models/mega/modeling_mega.py" new file mode 100644--- /dev/null +++ "b/venv/lib/python3.10/site-packages/transformers/models/mega/modeling_mega.py" @@ -0,0 +1,2273 @@ +# coding=utf-8 +# Copyright 2023 The Mega Authors and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch MEGA model.""" + +import math +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn.functional as F +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BaseModelOutputWithPoolingAndCrossAttentions, + CausalLMOutputWithCrossAttentions, + MaskedLMOutput, + MultipleChoiceModelOutput, + QuestionAnsweringModelOutput, + SequenceClassifierOutput, + TokenClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import ALL_LAYERNORM_LAYERS +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_mega import MegaConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "mnaylor/mega-base-wikitext" +_CONFIG_FOR_DOC = "MegaConfig" + + +from ..deprecated._archive_maps import MEGA_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +class MegaEmbeddings(nn.Module): + """ + Mega's basic implementation does not incorporate token type embeddings, so this is a stripped-down version of + RoBERTa's embeddings which optionally includes token types + """ + + def __init__(self, config: MegaConfig): + super().__init__() + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + self.use_token_types = config.add_token_type_embeddings + if self.use_token_types: + self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) + # registering a buffer here allows model tracing when not passing optional token type IDs + # more info at transformers issue #5664 + self.register_buffer( + "token_type_ids", torch.zeros(config.max_positions, dtype=torch.long).expand((1, -1)), persistent=False + ) + + self.padding_idx = config.pad_token_id + + def forward(self, input_ids=None, token_type_ids=None, inputs_embeds=None): + if (input_ids is None) and (inputs_embeds is None): + raise ValueError("Must provide one of input_ids or inputs_embeds") + elif input_ids is not None: + input_shape = input_ids.size() + device = input_ids.device + + # get the word embeddings if only IDs are provided + inputs_embeds = self.word_embeddings(input_ids) + else: + input_shape = inputs_embeds.size()[:-1] + device = inputs_embeds.device + + # the original Mega implementation did not include token type embeddings, so we add + # an option to use them if desired; if embeddings are present and token type IDs are + # not provided, we will use a registered buffer (which helps with tracing) + if self.use_token_types: + if token_type_ids is None: + if hasattr(self, "token_type_ids"): + buffered_token_type_ids = self.token_type_ids[:, : input_shape[1]] + buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], input_shape[1]) + token_type_ids = buffered_token_type_ids_expanded + else: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + + # access token type embeddings + token_type_embeddings = self.token_type_embeddings(token_type_ids) + # add the token type embeddings to the word embeddings + embeddings = inputs_embeds + token_type_embeddings + else: + embeddings = inputs_embeds + return embeddings + + +class MegaSimpleRelativePositionalBias(nn.Module): + """ + Simple relative positional embeddings copied from the Mega repo; renamed variables for better readability + """ + + def __init__(self, config: MegaConfig): + super().__init__() + self.config = config + self.max_positions = self.config.max_positions if self.config.chunk_size < 0 else self.config.chunk_size + self.rel_pos_bias = nn.Parameter(torch.Tensor(2 * config.max_positions - 1)) + + def forward(self, seq_len): + if seq_len > self.max_positions: + raise ValueError("Sequence length {} going beyond max length {}".format(seq_len, self.max_positions)) + + # seq_len * 2 - 1 + bias = self.rel_pos_bias[(self.max_positions - seq_len) : (self.max_positions + seq_len - 1)] + # seq_len * 3 - 1 + tile = F.pad(bias, (0, seq_len)) + # (seq_len * 3 - 1) * seq_len + tile = torch.tile(tile, (seq_len,)) + tile = tile[:-seq_len] + # seq_len x (3 * seq_len - 2) + tile = tile.view(seq_len, 3 * seq_len - 2) + start = (2 * seq_len - 1) // 2 + end = tile.size(1) - start + tile = tile[:, start:end] + return tile + + +class MegaRotaryRelativePositionalBias(nn.Module): + """ + Rotary relative bias for positional information; similar in concept to RoPE (i.e. RoFormer) but taken from the Mega + repo due to differences in implementation. + + When initialized, produces a positional bias which ranges from position 0 to config.max_positions, but can + extrapolate to longer sequences. Can be indexed according to input position IDs + """ + + def __init__(self, config: MegaConfig): + super().__init__() + if config.hidden_size % 2 != 0: + raise RuntimeError("Rotary positional bias requires `hidden_size` to be a multiple of 2") + self.config = config + self.embed_dim = config.shared_representation_size + self.max_positions = self.config.max_positions if self.config.chunk_size < 0 else self.config.chunk_size + self.sine, self.cosine = MegaRotaryRelativePositionalBias.get_sinusoid_embeddings( + config.max_positions, self.embed_dim + ) + # alpha and beta parameters for the rotary bias; beta renamed to b_param to avoid clashes with tf/flax weight handling + # in loading pretrained weights + self.alpha = nn.Parameter(torch.Tensor(1, self.embed_dim)) + self.b_param = nn.Parameter(torch.Tensor(1, self.embed_dim)) + self.register_buffer("_float_tensor", torch.FloatTensor([0.0])) + + @staticmethod + def get_sinusoid_embeddings(max_positions: int, embedding_dim: int): + half_dim = embedding_dim // 2 + emb = math.log(10000) / half_dim + emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb) + emb = torch.arange(max_positions, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0) + return torch.sin(emb), torch.cos(emb) + + def rotary(self, input): + seq_len, embed_dim = input.size() + chunk_1, chunk_2 = torch.chunk(input, 2, dim=-1) + if self.sine is None or seq_len > self.sine.size(0): + self.sine, self.cosine = MegaRotaryRelativePositionalBias.get_sinusoid_embeddings(seq_len, embed_dim) + self.max_positions = seq_len + self.sine = self.sine.to(self._float_tensor) + self.cosine = self.cosine.to(self._float_tensor) + + sin = self.sine[:seq_len] + cos = self.cosine[:seq_len] + return torch.cat([chunk_1 * cos - chunk_2 * sin, chunk_2 * cos + chunk_1 * sin], dim=1) + + def forward(self, seq_len): + rotary_alpha = self.rotary(self.alpha.expand(seq_len, self.embed_dim)) + rotary_beta = self.rotary(self.b_param.expand(seq_len, self.embed_dim)) + bias = torch.einsum("mk,nk->mn", rotary_alpha, rotary_beta) + return bias + + +class MegaDropout(nn.Module): + """ + A unified class for standard dropout functionality and featurewise dropout. + + The original fairseq Mega repo used 2 classes for these, which included some unnecessary handling of training logic + and an unused `inplace` option. The original implementation used torch.nn.functional instead of submodules, which + is retained here as well. + """ + + def __init__(self, dropout_probability, is_featurewise=False): + super().__init__() + self.dropout_probability = dropout_probability + self.is_featurewise = is_featurewise + + def forward(self, input, batch_first: bool = False): + if self.is_featurewise: + if batch_first: + # (batch_size X sequence_length X feature_dimension) + # -> (batch_size X feature_dimension X sequence_length) + # -> (batch_size X sequence_length X feature_dimension) + return F.dropout2d( + input.transpose(-1, -2), p=self.dropout_probability, training=self.training + ).transpose(-1, -2) + else: + if input.dim() != 3: + raise ValueError( + "Feature dropout inputs must be exactly 3-dimensional if inputs are ordered [sequence length, batch size, hidden dimension]" + ) + # (sequence_length X batch_size X feature_dimension) + # -> (batch_size X feature_dimension X sequence_length) + # -> (sequence_length X batch_size X feature_dimension) + return F.dropout2d(input.permute(1, 2, 0), p=self.dropout_probability, training=self.training).permute( + 2, 0, 1 + ) + else: + return F.dropout(input, p=self.dropout_probability, training=self.training) + + +class MegaRMSNorm(nn.Module): + """ + RMSNorm used in Mega implementation. Differs from T5's RMSNorm by applying the weight prior to taking the square + root (as opposed to after in T5) + """ + + def __init__(self, number_features, eps=1e-6, affine=True): + super().__init__() + self.num_features = number_features + self.eps = eps + self.affine = affine + if affine: + self.weight = nn.Parameter(torch.Tensor(self.num_features)) + else: + self.register_parameter("weight", None) + + def forward(self, input): + mean_square = torch.mean(torch.square(input), dim=-1, keepdim=True) + if self.weight is not None: + input = input * self.weight + + input * torch.rsqrt(mean_square + self.eps) + return input + + +class MegaScaleNorm(nn.Module): + """ + Scale normalization introduced in MEGA which is similar to RMSNorm, but uses a single parameter for scalar + multiplication instead of a vector, and applies over a specified dimension + """ + + def __init__(self, dim, eps=1e-6, affine=True): + super().__init__() + self.dim = dim + self.eps = eps + self.affine = affine + if affine: + self.scalar = nn.Parameter(torch.Tensor(1)) + else: + self.register_parameter("scalar", None) + + def forward(self, input): + mean_square = torch.mean(torch.square(input), dim=self.dim, keepdim=True) + if self.scalar is not None: + input = self.scalar * input + + output = input * torch.rsqrt(mean_square + self.eps) + return output + + +class MegaSequenceNorm(nn.Module): + """ + A wrapper class for various layer normalization options used in Mega. Used to handle differences in expectations on + input axis locations for different normalization methods. + """ + + def __init__(self, norm_type, embedding_dim, eps=1e-5, affine=True, export=False): + super().__init__() + if norm_type == "layernorm": + self.norm = nn.LayerNorm(embedding_dim, eps, elementwise_affine=affine) + elif norm_type == "scalenorm": + self.norm = MegaScaleNorm(dim=-1, eps=eps, affine=affine) + elif norm_type == "rmsnorm": + self.norm = MegaRMSNorm(embedding_dim, eps=eps, affine=affine) + elif norm_type == "batchnorm": + self.norm = nn.BatchNorm1d(embedding_dim, eps=eps, affine=affine) + elif norm_type == "syncbatchnorm": + self.norm = nn.SyncBatchNorm(embedding_dim, eps=eps, affine=affine) + else: + raise ValueError("Unknown norm type: {}".format(norm_type)) + + def forward(self, input): + if isinstance(self.norm, nn.modules.batchnorm._BatchNorm): + if input.dim() != 3: + raise ValueError("BatchNorm inputs must be exactly 3-dimensional") + input = input.permute(1, 2, 0) + input = self.norm(input) + return input.permute(2, 0, 1) + else: + return self.norm(input) + + +# add this layernorm class to ALL_LAYERNORM_LAYERS +ALL_LAYERNORM_LAYERS.append(MegaSequenceNorm) + + +class MegaMultiDimensionDampedEma(nn.Module): + """ + Mega's Exponential Moving Average layer, largely left unmodified from the original repo with the exception of + variable names and moving away from the stateful representation of incremental decoding state. See + "https://arxiv.org/abs/2209.10655" for more details. + """ + + def __init__(self, config: MegaConfig): + super().__init__() + + self.config = config + + self.embed_dim = config.hidden_size + self.ndim = config.ema_projection_size + self.bidirectional = config.bidirectional + self.truncation = config.truncation + self.scale = math.sqrt(1.0 / self.ndim) + + kernel_dim = 2 * config.hidden_size if self.bidirectional else config.hidden_size + # renamed delta (damping_factor) and alpha (decay_factor) to be more descriptive of what the parameters are doing + self.damping_factor = nn.Parameter(torch.Tensor(kernel_dim, self.ndim, 1)) + self.decay_factor = nn.Parameter(torch.Tensor(kernel_dim, self.ndim, 1)) + # renamed gamma (kernel_projection_matrix) and beta (ema_expansion_matrix) respectively to avoid HF renaming + # things and align with the paper's description of these params' behavior + self.ema_expansion_matrix = nn.Parameter(torch.Tensor(kernel_dim, self.ndim, 1)) + self.kernel_projection_matrix = nn.Parameter(torch.Tensor(kernel_dim, self.ndim)) + # renamed omega to residual_weight to describe what it's doing + self.residual_weight = nn.Parameter(torch.Tensor(config.hidden_size)) + self._kernel = None + self._coeffs = None + + def _compute_ema_coefficients(self): + self._coeffs = None + # convert the alpha and delta parameters (kernel_dim x EMA projection size x 1) to [0, 1] with sigmoid + damping_factor = torch.sigmoid(self.damping_factor) + decay_factor = torch.sigmoid(self.decay_factor) + previous_timestep_weight = 1.0 - damping_factor * decay_factor + return damping_factor, previous_timestep_weight + + def _compute_efficient_ema_kernel(self, length: int): + # computes the kernel used for efficient damped EMA applied via FFT convolution + self._kernel = None + # p and q have shape (kernel_dim x ema_projection_size x 1) + damping_factor, previous_timestep_weight = self._compute_ema_coefficients() + # extend the kernel to (kernel_dim X ema_projection_size X sequence_length) and + # multiply q by sequential ints up to the sequence length + vander = torch.arange(length).to(damping_factor).view(1, 1, length) * torch.log(previous_timestep_weight) + kernel = (damping_factor * self.ema_expansion_matrix) * torch.exp(vander) + # (kernel_dim X ema_projection_size X sequence_length) -> (kernel_dim, sequence_length) + return torch.einsum("dnl,dn->dl", kernel, self.kernel_projection_matrix * self.scale) + + def get_ema_coefficients(self): + if self.training: + return self._compute_ema_coefficients() + else: + if self._coeffs is None: + self._coeffs = self._compute_ema_coefficients() + return self._coeffs + + def get_ema_kernel(self, length: int): + kernel_size = length if self.truncation is None else min(self.truncation, length) + if self.training: + return self._compute_efficient_ema_kernel(kernel_size) + else: + if self._kernel is None or self._kernel.size(-1) < kernel_size: + self._kernel = self._compute_efficient_ema_kernel(kernel_size) + return self._kernel[..., :kernel_size] + + def fft_convolution(self, inputs, kernel, length): + # this is a wrapper for repeated use of EMA calculation via FFT (fast Fourier transform) convolution + inputs_fft = torch.fft.rfft(inputs.float(), n=2 * length) + kernel_fft = torch.fft.rfft(kernel.float(), n=2 * length) + convolved_sequence = torch.fft.irfft(inputs_fft * kernel_fft, n=2 * length) + return convolved_sequence + + def ema_step(self, inputs, length, past_state=None): + if length == 1: + return self.one_ema_step(inputs, past_state=past_state) + + # (kernel_dim X ema_projection_size X 1) + damping_factor, previous_timestep_weight = self.get_ema_coefficients() + # (kernel_dim X ema_projection_size X 1+sequence_length) + vander = torch.arange(length + 1).to(damping_factor).view(1, 1, length + 1) * torch.log( + previous_timestep_weight + ) + vander = torch.exp(vander) + if past_state is not None: + # (kernel_dim X ema_projection_size X sequence_length) * (kernel_dim X ema_projection_size X 1) + # -> (kernel_dim X ema_projection_size X sequence_length) + past_ema_proj = vander[:, :, 1:] * (self.kernel_projection_matrix * self.scale).unsqueeze(-1) + # past_state will be (batch_size, kernel_dim, ema_projection_size) + past_ema_state = torch.einsum("bdn,dnl->bdl", past_state, past_ema_proj) + # (kernel_dim X ema_projection_size) * (batch_size X kernel_dim X ema_projection_size) + # -> (batch_size X kernel_dim X ema_projection_size) + past_vandermonde = vander[:, :, -1] * past_state + else: + past_ema_state = None + past_vandermonde = None + + # (kernel_dim X ema_projection_size X sequence_length) + vander = vander[:, :, :-1] + kernel = (damping_factor * self.ema_expansion_matrix) * vander + kernel_proj = torch.einsum("dnl,dn->dl", kernel, self.kernel_projection_matrix * self.scale) + + ema_output = self.fft_convolution(inputs, kernel_proj, length=length)[..., 0:length] + ema_output = ema_output.type_as(inputs) + if past_ema_state is not None: + ema_output = ema_output + past_ema_state + + updated_hidden_state = torch.einsum("bdl,dnl->bdn", inputs, torch.flip(kernel, dims=[2])) + if past_vandermonde is not None: + updated_hidden_state = updated_hidden_state + past_vandermonde + # return a tuple: + # (sequence_length, batch_size, kernel_dim) + # (batch_size, kernel_dim, ema_projection_size) + return ema_output.permute(2, 0, 1), updated_hidden_state + + def one_ema_step(self, inputs, past_state=None): + damping_factor, previous_timestep_weight = self.get_ema_coefficients() + # (kernel_dim X ema_projection_size) x (batch_size X kernel_dim X 1) + # -> (batch_size X kernel_dim X ema_projection_size) + updated_state = (damping_factor * self.ema_expansion_matrix).squeeze(-1) * inputs + if past_state is not None: + updated_state = updated_state + previous_timestep_weight.squeeze(-1) * past_state + # (batch_size X kernel_dim) + out = torch.einsum("bdn,dn->bd", updated_state, self.kernel_projection_matrix * self.scale) + # (1 X batch_size X kernel_dim), (batch_size X kernel_dim X ema_projection_size) + return out.unsqueeze(0), updated_state + + def forward( + self, + inputs, + attention_mask: Optional[torch.Tensor] = None, + prev_state: Optional[torch.Tensor] = None, + use_cache: bool = False, + ) -> torch.Tensor: + """ + Mega's exponential moving average (EMA) sub-layer applied prior to single-headed (traditional) self-attention + + Args: + inputs (`torch.Tensor` of shape `(sequence_length, batch_size, hidden_size)`): + Hidden state / embedding input to update via EMA based on FFT convolution + attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indicates which inputs are to be ignored (mostly due to padding), where elements are either 1 for *not + masked* or 0 for *masked* + prev_state (`torch.Tensor` of shape `(batch_size, config.ndim)`, *optional*): + The hidden state returned from the previous timestep during incremental decoding. + use_cache (`bool`, default `False`): + Whether to perfom incremental decoding; uses `prev_state` as the prior timestep, and returns the + updated EMA hidden state for use in the next step + + Returns: + `tuple(torch.FloatTensor)` containing various elements depending on configuration ([`MegaConfig`]) and + inputs: + - **hidden_states** (`torch.FloatTensor` of shape `(sequence_length, batch_size, hidden_size)`) -- Hidden + states updated by EMA, with same shapes as inputs + - **updated_state** (*optional*, returned when `use_cache=True`) `torch.FloatTensor of shape `(batch_size, + config.ndim)` -- The incremental EMA state for use in the next step of incremental decoding + """ + + seq_len, bsz, embed_dim = inputs.size() + if embed_dim != self.embed_dim: + raise ValueError( + f"Unexpected embedding dimension received: input is {embed_dim}, model expects {self.embed_dim}" + ) + + # sequence_length X batch_size X hidden_size + residual = inputs * self.residual_weight + + # (sequence_length x batch_size x hidden_size) -> (batch_size x hidden_size x sequence_length) + inputs = inputs.permute(1, 2, 0) + # mask the input: output is a tensor with 0 in the masked positions + if attention_mask is not None: + inputs = inputs * (attention_mask.unsqueeze(1).type_as(inputs)) + + if self.bidirectional and use_cache: + raise RuntimeError("Bidirectional EMA does not support incremental state") + + if use_cache: + out, updated_state = self.ema_step(inputs, seq_len, past_state=prev_state) + + # (batch_size X hidden_size) -> (1 x batch_size x hidden_size) + out = F.silu(out + residual) + + # if incremental decoding, return the new state along with the output + return out, updated_state + else: + # (hidden_size x sequence_length) + kernel = self.get_ema_kernel(seq_len) + fft_len = seq_len + s_index = 0 + kernel_size = kernel.size(1) + if self.bidirectional: + # split the kernel for each direction of EMA + k1, k2 = torch.split(kernel, [self.embed_dim, self.embed_dim], dim=0) + # (hidden_size X 2*sequence_length - 1) + kernel = F.pad(k1, (kernel_size - 1, 0)) + F.pad(k2.flip(-1), (0, kernel_size - 1)) + inputs = F.pad(inputs, (kernel_size - 1, 0)) + fft_len = fft_len + kernel_size - 1 + s_index = 2 * kernel_size - 2 + + ema_output = self.fft_convolution(inputs, kernel, length=fft_len)[..., s_index : s_index + seq_len] + ema_output = ema_output.type_as(inputs) + # (batch_size X hidden_size X sequence_length) -> (sequence_length X batch_size X hidden_size) + gated_ema_output = F.silu(ema_output.permute(2, 0, 1) + residual) + + return gated_ema_output, None + + +class MegaGatedCrossAttention(nn.Module): + """ + Gated Structured State Attention for use in encoder-decoder model. See Mega paper for more details. Only + modifications from original implementation are variable names, removing the unnecessary `before_attn_fn` and + `static_kv` arguments, and the stateful representation of incremental decoder state. + """ + + def __init__(self, config: MegaConfig): + super().__init__() + + self.config = config + self.activation = ACT2FN[self.config.activation] + self.attention_activation = self.config.attention_activation + self.scaling = self.config.shared_representation_size**-0.5 if self.attention_activation == "softmax" else None + + self.dropout = MegaDropout(self.config.dropout_prob, is_featurewise=self.config.use_feature_dropout) + self.hidden_dropout = MegaDropout( + self.config.hidden_dropout_prob, is_featurewise=self.config.use_feature_dropout + ) + # Attention dropout is standard dropout + self.attention_dropout = MegaDropout(self.config.attention_probs_dropout_prob, is_featurewise=False) + + self.prenorm = self.config.normalize_before_mega + self.norm = MegaSequenceNorm( + self.config.normalization_type, self.config.hidden_size, affine=self.config.norm_affine + ) + + self.k_proj = nn.Linear(self.config.hidden_size, self.config.shared_representation_size) + self.v_proj = nn.Linear(self.config.hidden_size, self.config.hidden_size) + self.q_proj = nn.Linear( + self.config.hidden_size, 2 * self.config.hidden_size + self.config.shared_representation_size + ) + self.h_proj = nn.Linear(self.config.hidden_size, self.config.hidden_size) + + if self.config.relative_positional_bias == "simple": + self.rel_pos_bias = MegaSimpleRelativePositionalBias(config) + elif self.config.relative_positional_bias == "rotary": + self.rel_pos_bias = MegaRotaryRelativePositionalBias(config) + else: + raise ValueError("unknown relative position bias: {}".format(self.config.relative_positional_bias)) + + self.softmax = nn.Softmax(dim=-1) + + def element_attention(self, query, key, key_padding_mask, pidx): + bsz, src_len, _ = key.size() + tgt_len = query.size(1) if pidx is None else pidx + 1 + if key_padding_mask is not None: + # (batch_size X source_sequence_length) --> (batch_size X 1 X 1) + lengths = key_padding_mask.sum(dim=-1).view(bsz, 1, 1) + else: + lengths = src_len + + # (target_sequence_length X source_sequence_length) + bias = self.rel_pos_bias(max(tgt_len, src_len))[:, :src_len] + if pidx is not None: + if query.size(1) != 1: + raise ValueError("Position offset provided with queries longer than 1 token") + # source_sequence_length + bias = bias[pidx] + else: + # (target_sequence_length X source_sequence_length) + bias = bias[:tgt_len] + + # (batch_size X target_sequence_length X source_sequence_length) + qk = torch.bmm(query, key.transpose(1, 2)) / lengths + bias + + attn_weights = ACT2FN[self.attention_activation](qk).type_as(qk) + + if key_padding_mask is not None: + attn_weights = attn_weights * key_padding_mask.unsqueeze(1) + + return attn_weights + + def softmax_attention(self, query, key, key_padding_mask, pidx): + bsz, src_len, _ = key.size() + tgt_len = query.size(1) if pidx is None else pidx + 1 + + # (target_sequence_length X source_sequence_length) + bias = self.rel_pos_bias(max(tgt_len, src_len))[:, :src_len] + if pidx is not None: + if query.size(1) != 1: + raise ValueError("Position offset provided with queries longer than 1 token") + # source_sequence_length + bias = bias[pidx] + else: + # (target_sequence_length X source_sequence_length) + bias = bias[:tgt_len] + + # scaled attention + query = query * self.scaling + # (batch_size X target_sequence_length X source_sequence_length) + qk = torch.bmm(query, key.transpose(1, 2)) + bias + + if key_padding_mask is not None: + qk = qk.masked_fill((1 - key_padding_mask).unsqueeze(1).to(torch.bool), float("-inf")) + + attn_weights = self.softmax(qk).type_as(qk) + return attn_weights + + def forward( + self, + query, + key: Optional[torch.Tensor], + value: Optional[torch.Tensor], + key_padding_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[Tuple[torch.Tensor]] = None, + output_attentions: bool = False, + use_cache: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: + """ + Gated cross-attention used in Mega + + Args: + query (`torch.Tensor` of shape `(target_sequence_length, batch_size, hidden_size)`): + The self (or target) sequence input used as query inputs for cross-attention + key (`torch.Tensor` of shape `(source_sequence_length, batch_size, hidden_size)`): + The cross (or source) sequence input with shape used as keys in cross-attention + value (`torch.Tensor` of shape `(source_sequence_length, batch_size, hidden_size)`): + The cross (or source) sequence input with shape used as values in cross-attention + key_padding_mask (`torch.LongTensor` of shape `(batch_size, source_sequence_length)`, *optional*): + Padding mask corresponding to the source sequence, where entries are 1 for *not masked* and 0 for + *masked* tokens + past_key_values (`tuple(torch.FloatTensor)`, *optional*): + If provided, the hidden state returned from the previous timestep during incremental decoding; expects + that prior cross-attention keys and values will be the last two items in the tuple + output_attentions (`bool`, defaults to `False`): + Whether or not to return the cross-attention weights. + use_cache (`bool`, defaults to `False`): + Whether to perfom incremental decoding; uses `prev_state` as the prior timestep, and returns the + updated EMA hidden state for use in the next step + + Returns: + `tuple(torch.FloatTensor)` containing various elements depending on configuration ([`MegaConfig`]) and + inputs: + - **hidden_states** (`torch.FloatTensor` of shape `(target_sequence_length, batch_size, hidden_size)`) -- + Hidden states from target sequence updated by gated cross-attention + - **attn_weights** (*optional*, returned when `output_attentions=True`) `torch.FloatTensor` of shape + `(batch_size, source_sequence_length, target_sequence_length)` -- The pairwise cross-attention weights + corresponding to each token in the source and target sequences + - **cross_key** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size, + source_sequence_length, config.shared_representation_size)` -- The cross-attention key state for use in + the next step of incremental decoding + - **cross_value** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size, + source_sequence_length, config.hidden_size)` -- The cross-attention value state for use in the next step + of incremental decoding + """ + + seq_len, bsz, embed_dim = query.size() + if embed_dim != self.config.hidden_size: + raise ValueError( + f"Unexpected embedding dimension received: input is {embed_dim} but expected {self.config.hidden_size}" + ) + + if past_key_values is not None: + # make sure the inputs only have a sequence length of 1 if we're doing incremental decoding + if seq_len != 1: + raise ValueError(f"Incremental decoding requested with self-sequence length > 1: {seq_len}") + # expect past_key_values to have (self_key, self_value, self_ema, cross_key, cross_value) + prev_cross_key, prev_cross_value = past_key_values[-2:] + key = value = None + + # use the self-attention cache to get the position id of the current step + prev_self_key = past_key_values[0] + num_incremental_steps = prev_self_key.size(1) + 1 + else: + prev_cross_key = prev_cross_value = None + # we still need the position id if we're doing incremental decoding (past_key_values will be None for the first step) + num_incremental_steps = 0 if use_cache and (seq_len == 1) else None + + full_query = query + if self.prenorm: + full_query = self.norm(full_query) + + # (target_sequence_length X batch_size X 2*hidden_size + shared_representation_size) + query_projected = self.q_proj(full_query) + # split the query projections into separate components + # - residual_weight is passed through sigmoid and sent through elementwise multiplication to the gated/weighted targets prior to being added to the query directly + # - target_gate is a silu-gated tensor that is multiplied by the attention-weighted target below prior to residual connection + # - attention_query is the part that is passed to the attention function + residual_weight, target_gate, attention_query = torch.split( + query_projected, + [self.config.hidden_size, self.config.hidden_size, self.config.shared_representation_size], + dim=-1, + ) + + # (target_sequence_length X batch_size X hidden_size) + residual_weight = torch.sigmoid(residual_weight) + target_gate = F.silu(target_gate) + + if key is None: + if value is not None: + raise ValueError("Key and value must be `None` simultaneously") + projected_key = projected_value = None + else: + # (source_sequence_length X batch_size X shared_representation_size) + projected_key = self.k_proj(key) + # (source_sequence_length X batch_size X hidden_size) + projected_value = self.activation(self.v_proj(key)) + + # (target_sequence_length X batch_size X shared_representation_size) + # -> (batch_size X target_sequence_length X shared_representation_size) + attention_query = attention_query.transpose(0, 1) + if projected_key is not None: + projected_key = projected_key.transpose(0, 1) + if projected_value is not None: + projected_value = projected_value.transpose(0, 1) + + # if we're doing incremental decoding, k and v are None and need to be overwritten with past values + if past_key_values is not None: + projected_key = prev_cross_key + projected_value = prev_cross_value + + # if we're returning the cache for later use, store these now for later return (can be done without having past_key_values provided) + if use_cache: + updated_cross_key = projected_key + updated_cross_value = projected_value + + ctx_len = projected_key.size(1) + # This is part of a workaround to get around fork/join parallelism + # not supporting Optional types. + if key_padding_mask is not None and key_padding_mask.dim() == 0: + key_padding_mask = None + + if key_padding_mask is not None: + if key_padding_mask.size(0) != bsz: + raise ValueError("Key padding mask does not align on the batch dimension") + if key_padding_mask.size(1) != ctx_len: + raise ValueError("Key padding mask does not align on the sequence length dimension") + + if self.attention_activation == "softmax": + attn_weights = self.softmax_attention( + attention_query, projected_key, key_padding_mask, num_incremental_steps + ) + else: + attn_weights = self.element_attention( + attention_query, projected_key, key_padding_mask, num_incremental_steps + ) + + projected_value = self.hidden_dropout(projected_value, batch_first=True) + kernel = self.attention_dropout(attn_weights) + # (batch_size X target_sequence_length X hidden_size) + # -> (target_sequence_length X batch_size X hidden_size) + weighted_targets = torch.bmm(kernel, projected_value).transpose(0, 1) + # (target_sequence_length X batch_size X hidden_size) + weighted_targets = self.activation(self.h_proj(weighted_targets * target_gate)) + weighted_targets = self.dropout(weighted_targets) + out = torch.addcmul(query, residual_weight, weighted_targets - query) + + if not self.prenorm: + out = self.norm(out) + + outputs = (out, attn_weights) if output_attentions else (out,) + if use_cache: + outputs = outputs + (updated_cross_key, updated_cross_value) + + return outputs + + +class MegaMovingAverageGatedAttention(nn.Module): + """ + Pure PyTorch implementation of Mega block; see https://arxiv.org/abs/2209.10655 and original fairseq implementation + at https://github.com/facebookresearch/mega (copyright Meta Research, licensed under MIT License) + + Differences from original implementation include hidden state refactor and fixed inconsistency with additive / + multiplicative attention masks + """ + + def __init__(self, config: MegaConfig): + super().__init__() + self.config = config + self.activation = ACT2FN[self.config.activation] + self.scaling = ( + self.config.shared_representation_size**-0.5 if self.config.attention_activation == "softmax" else None + ) + self.dropout = MegaDropout(self.config.dropout_prob, is_featurewise=self.config.use_feature_dropout) + self.hidden_dropout = MegaDropout( + self.config.hidden_dropout_prob, is_featurewise=self.config.use_feature_dropout + ) + # attention dropout is standard dropout + self.attention_dropout = MegaDropout(self.config.attention_probs_dropout_prob, is_featurewise=False) + + self.norm = MegaSequenceNorm( + self.config.normalization_type, self.config.hidden_size, affine=self.config.norm_affine + ) + self.ema_gate = MegaMultiDimensionDampedEma(config) + + self.v_proj = nn.Linear(self.config.hidden_size, self.config.intermediate_size) + self.mx_proj = nn.Linear( + self.config.hidden_size, + self.config.shared_representation_size + self.config.intermediate_size + 2 * self.config.hidden_size, + ) + self.h_proj = nn.Linear(self.config.intermediate_size, self.config.hidden_size) + + self.qk_weight = nn.Parameter(torch.Tensor(2, self.config.shared_representation_size)) + self.qk_bias = nn.Parameter(torch.Tensor(2, self.config.shared_representation_size)) + + if self.config.relative_positional_bias == "simple": + self.rel_pos_bias = MegaSimpleRelativePositionalBias(config) + elif self.config.relative_positional_bias == "rotary": + self.rel_pos_bias = MegaRotaryRelativePositionalBias(config) + else: + raise ValueError(f"Unknown relative positional bias: {self.config.relative_positional_bias}") + + self.softmax = nn.Softmax(dim=-1) + self.attention_function = ( + self.softmax_attention if self.config.attention_activation == "softmax" else self.element_attention + ) + + def element_attention(self, query, key, padding_mask, causal_mask): + """ + Apply element-wise attention via relu^2 or laplace. Same as original implementation but with standardized + causal attention mask. Expects the Hugging Face standard attention mask paradigm: 1 for not masked, and 0 for + masked. + """ + seq_len = key.size(2) + if padding_mask is not None: + # (batch_size X number of chunks X 1) + lengths = padding_mask.sum(-1, keepdim=True) + # (batch_size X number of chunks X 1 X 1) + lengths = lengths.clamp(min=1.0).unsqueeze(-1) + else: + lengths = seq_len + + if causal_mask is not None: + lengths = causal_mask.sum(dim=-1, keepdim=True) + + # (sequence_length X sequence_length) + bias = self.rel_pos_bias(seq_len) + if seq_len != query.size(2): + if query.size(2) != 1: + raise ValueError("Size mismatch between Q and K in element attention") + # (1 X sequence_length) + bias = bias[-1:] + + # (batch_size X number of chunks X sequence_length X sequence_length) + qk = torch.matmul(query, key.transpose(2, 3)) / lengths + bias + + attn_weights = ACT2FN[self.config.attention_activation](qk).type_as(qk) + + if padding_mask is not None: + attn_weights = attn_weights * padding_mask.unsqueeze(2) + + if causal_mask is not None: + attn_weights = attn_weights * causal_mask + + return attn_weights + + def softmax_attention(self, query, key, padding_mask, causal_mask): + "Standard softmax self-attention, as in the original Transformer paper" + seq_len = key.size(2) + # (sequence_length X sequence_length) + bias = self.rel_pos_bias(seq_len) + if seq_len != query.size(2): + if query.size(2) != 1: + raise ValueError("Size mismatch between Q and K in softmax attention") + # (1 X sequence_length) + bias = bias[-1:] + + # scaled attention + query = query * self.scaling + + # (batch_size x number of chunks x chunk_size x chunk_size) if chunking + # (batch_size x 1 x sequence_length x sequence_length) otherwise + qk = torch.matmul(query, key.transpose(2, 3)) + bias + + # apply causal mask (presumed to be 1/0 for not masked / masked) + # additive, but convert to 0/-inf (which is not explicitly in the Mega source code) + if causal_mask is not None: + additive_causal_mask = torch.zeros_like(causal_mask, dtype=qk.dtype) + additive_causal_mask = additive_causal_mask.masked_fill((1 - causal_mask).bool(), float("-inf")) + qk = qk + additive_causal_mask + + if padding_mask is not None: + # 1 for tokens which are *not masked* + # 0 for tokens which are *masked* + # replace masked tokens with -inf to make softmax ignore them + # need to invert the padding mask to match what mega original did + padding_mask = 1 - padding_mask + padding_mask_all = padding_mask.all(dim=-1, keepdim=True) + padding_mask = torch.logical_and(padding_mask, ~padding_mask_all) + qk = qk.masked_fill(padding_mask.unsqueeze(2).to(torch.bool), float("-inf")) + + attn_weights = self.softmax(qk).type_as(qk) + return attn_weights + + def forward( + self, + input, + padding_mask: Optional[torch.Tensor] = None, + causal_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[Tuple[torch.Tensor]] = None, + output_attentions=False, + use_cache=False, + ): + """ + Mega's self-attention block, which combines multi-headed EMA with traditional self-attention + + Args: + input (`torch.Tensor` of shape `(sequence_length, batch_size, hidden_size)`): + Hidden states to be updated by Mega's self-attention + padding_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indicates which inputs are to be ignored due to padding, where elements are either 1 for *not masked* + or 0 for *masked* + causal_mask (`torch.LongTensor` of shape `(sequence_length, sequence_length)`, *optional*): + Indicates which inputs are to be ignored due to causal attention, where elements are either 1 for *not + masked* or 0 for *masked* + past_key_values (`tuple(torch.Tensor)`, *optional*): + The hidden states returned from the previous timestep during incremental decoding; expects that + self-attention key, value, and EMA states are the first 3 entries in the tuple + output_attentions (`bool`, default `False`): + Whether to return self-attention weights + use_cache (`bool`, default `False`): + Whether to perfom incremental decoding; uses `past_key_values` as prior state, and returns the updated + states for use in the next step + + Returns: + `tuple(torch.FloatTensor)` containing various elements depending on configuration ([`MegaConfig`]) and + inputs: + - **hidden_states** (`torch.FloatTensor` of shape `(sequence_length, batch_size, hidden_size)`) -- Hidden + states from target sequence updated by Mega's self-attention + - **attn_weights** (*optional*, returned when `output_attentions=True`) `torch.FloatTensor` of shape + `(batch_size, 1, sequence_length, sequence_length)` -- The self-attention weights corresponding to how + each token in the input sequence attends to every other token + - **self_key** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size, + sequence_length, config.shared_representation_size)` -- The self-attention key state for use in the next + step of incremental decoding + - **self_value** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size, + sequence_length, config.hidden_size)` -- The self-attention value state for use in the next step of + incremental decoding + - **self_ema_state** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape + `(batch_size, config.ndim)` The incremental EMA state for use in the next step of incremental decoding. + """ + + seq_len, bsz, embed_dim = input.size() + if embed_dim != self.config.hidden_size: + raise ValueError(f"Input embedding dimension should be {self.config.hidden_size}; received {embed_dim}") + + # store inputs for residual connection and handle pre-norm if requested + residual = input + if self.config.normalize_before_mega: + input = self.norm(input) + + # (sequence_length X batch_size X hidden_size) -> (sequence_length X batch_size X intermediate_size) + value = self.activation(self.v_proj(input)) + + # unpack the incremental state if provided + # assumed to be (self K, self V, self EMA state, cross K, cross V) + # also assumes that incremental decoding is working one token at a time, so input sequence length must be 1 + if self.config.is_decoder and (past_key_values is not None): + if seq_len > 1: + raise ValueError(f"Incremental decoding only supports self sequence length of 1; received {seq_len}") + # the first 3 items in the saved states will be these regardless of whether cross-attention is present + prev_self_key, prev_self_value, prev_ema_state = past_key_values[0:3] + else: + prev_self_key = prev_self_value = prev_ema_state = None + + # ema output is (sequence_length x batch_size x hidden_size) + # updated_ema_state will be None if use_cache=False; otherwise (batch_size, config.ndim) + ema_out, updated_ema_state = self.ema_gate( + input, attention_mask=padding_mask, prev_state=prev_ema_state, use_cache=use_cache + ) + ema_out = self.dropout(ema_out) + + # (sequence_length X batch_size X hidden_size) + # -> (sequence_length X batch_size X 2*hidden_size + config.shared_representation_size + config.intermediate_size) + # - residual_weight -> sigmoid -> applied to residual connection in torch.addcmul + # - query_key_gates -> split into two components: query_key becomes query and key for attention input, gates becomes gating for self-attention output + # - intermediate_state -> added to weighted attention output, sent through activation, and has inputs subtracted during + # torch.addcmul to create the final layer output + base = self.mx_proj(ema_out) + residual_weight, query_key_gates, intermediate_state = torch.split( + base, + [ + self.config.hidden_size, + self.config.shared_representation_size + self.config.intermediate_size, + self.config.hidden_size, + ], + dim=-1, + ) + + # (sequence_length X batch_size X hidden_size) + residual_weight = torch.sigmoid(residual_weight) + + # (sequence_length X batch_size X shared_representation_size + intermediate_size) + query_key_gates = F.silu(query_key_gates) + + # split into two different tensors: one for Q/K usage and the other for gating self-attention + query_key, attention_gate = torch.split( + query_key_gates, [self.config.shared_representation_size, self.config.intermediate_size], dim=-1 + ) + + # (sequence_length X batch_size X shared_representation_size) + # -> (sequence_length X batch_size X 1 X shared_representation_size) + # -> (sequence_length X batch_size X 2 X shared_representation_size) + query_key = query_key.unsqueeze(2) * self.qk_weight + self.qk_bias + + # (sequence_length X batch_size X 2 X shared_representation_size) + # -> 2 tensors of (sequence_length X batch_size X shared_representation_size) + query, key = torch.unbind(query_key, dim=2) + + # (sequence_length X batch_size X dimension) + # -> (batch_size X sequence_length X dimension) + # where `dimension` is either shared_representation_size (queries and keys) or intermediate_size (values) + query = query.transpose(0, 1) + key = key.transpose(0, 1) + value = value.transpose(0, 1) + + if self.config.is_decoder: + # combine history and current to save updated state (if history is provided) + # when chunking is applied, the past states will be None at the end of the chunk, in + # which case, proceed as if no K/V history had been provided + # saved states are stored with shape (batch_size X sequence_length X dimension) + if prev_self_key is not None: + key = torch.cat([prev_self_key, key], dim=1) + if prev_self_value is not None: + value = torch.cat([prev_self_value, value], dim=1) + + # if not chunking, store as-is + if not self.config.use_chunking: + updated_self_key = key + updated_self_value = value + else: + curr_len = key.size(1) % self.config.chunk_size + if curr_len == 0: + # if we're chunking and have reached the end of a chunk, wipe out the saved state + updated_self_key = None + updated_self_value = None + else: + updated_self_key = key + updated_self_value = value + + ctx_len = key.size(1) # potentially differs from seq_len because of incremental decoding + if not self.config.use_chunking: + # if we're not chunking, treat the entire sequence as one long chunk + # (batch_size X sequence_length X dimension) -> (batch_size X 1 X sequence_length X dimension) + query = query.unsqueeze(1) + key = key.unsqueeze(1) + value = value.unsqueeze(1) + if padding_mask is not None: + # (batch_size X sequence_length) -> (batch_size X 1 X sequence_length) + padding_mask = padding_mask.unsqueeze(1) + else: + # otherwise, split the sequences in the batch into `n_chunks` chunks of size `chunk_size` + if seq_len < self.config.chunk_size: + query = query.unsqueeze(1) + else: + # (batch_size X sequence_length X dimension) -> (batch_size X n_chunks X chunk_size X dimension) + n_chunks = seq_len // self.config.chunk_size + query = query.reshape(bsz, n_chunks, self.config.chunk_size, self.config.shared_representation_size) + + if ctx_len < self.config.chunk_size: + key = key.unsqueeze(1) + value = value.unsqueeze(1) + if padding_mask is not None: + padding_mask = padding_mask.unsqueeze(1) + else: + # (batch_size X sequence_length X dimension) -> (batch_size X n_chunks X chunk_size X dimension) + n_chunks = ctx_len // self.config.chunk_size + key = key.reshape(bsz, n_chunks, self.config.chunk_size, self.config.shared_representation_size) + value = value.reshape(bsz, n_chunks, self.config.chunk_size, self.config.intermediate_size) + if padding_mask is not None: + padding_mask = padding_mask.view(bsz, n_chunks, self.config.chunk_size) + + # this is in the original Mega implementation to work around fork/join parallelism not supporting optional types + if padding_mask is not None and padding_mask.dim() == 0: + padding_mask = None + + attn_weights = self.attention_function(query, key, padding_mask=padding_mask, causal_mask=causal_mask) + + value = self.hidden_dropout(value, batch_first=True) + kernel = self.attention_dropout(attn_weights) + + # (batch_size x n_chunks x chunk_size x intermediate_size) -> (sequence_length X batch_size X intermediate_size) + weighted_self_output = ( + torch.matmul(kernel, value).view(bsz, seq_len, self.config.intermediate_size).transpose(0, 1) + ) + + # (sequence_length X batch_size X intermediate_size) -> (sequence_length X batch_size X hidden_size) + weighted_self_output = self.activation(intermediate_state + self.h_proj(weighted_self_output * attention_gate)) + weighted_self_output = self.dropout(weighted_self_output) + # (sequence_length X batch_size X hidden_size) + out = torch.addcmul(residual, residual_weight, weighted_self_output - residual) + + if not self.config.normalize_before_mega: + out = self.norm(out) + + return_values = (out, attn_weights) if output_attentions else (out,) + + if self.config.is_decoder: + return_values = return_values + (updated_self_key, updated_self_value, updated_ema_state) + + return return_values + + +class MegaNormalizedFeedForwardNetwork(nn.Module): + """ + Normalized feed-forward network used in Mega blocks. Left as-is from original Mega repo aside from retrieving args + from Hugging Face config + """ + + def __init__(self, config: MegaConfig): + super().__init__() + + self.config = config + self.hidden_dim = config.nffn_hidden_size + self.act_fn = config.activation + self.activation = ACT2FN[config.activation] + + self.dropout = MegaDropout(self.config.dropout_prob, is_featurewise=self.config.use_feature_dropout) + self.hidden_dropout = MegaDropout( + self.config.nffn_activation_dropout_prob, is_featurewise=self.config.use_feature_dropout + ) + + self.prenorm = self.config.normalize_before_ffn + self.norm = MegaSequenceNorm( + self.config.normalization_type, self.config.hidden_size, affine=self.config.norm_affine + ) + + self.fc1 = nn.Linear(self.config.hidden_size, self.config.nffn_hidden_size) + self.fc2 = nn.Linear(self.config.nffn_hidden_size, self.config.hidden_size) + + def forward(self, inputs): + residual = inputs + + if self.prenorm: + inputs = self.norm(inputs) + + hidden = self.activation(self.fc1(inputs)) + hidden = self.hidden_dropout(hidden) + output = self.fc2(hidden) + output = self.dropout(output) + output = output + residual + + if not self.prenorm: + output = self.norm(output) + + return output + + +class MegaBlock(nn.Module): + def __init__(self, config: MegaConfig): + super().__init__() + self.seq_len_dim = 1 + self.mega_layer = MegaMovingAverageGatedAttention(config) + self.nffn = MegaNormalizedFeedForwardNetwork(config) if config.use_normalized_ffn else None + self.is_decoder = config.is_decoder + self.add_cross_attention = config.add_cross_attention + if self.add_cross_attention: + if not self.is_decoder: + raise ValueError(f"{self} should be used as a decoder model if cross attention is added") + self.cross_attn = MegaGatedCrossAttention(config) + else: + self.cross_attn = None + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.LongTensor] = None, + causal_mask: Optional[torch.LongTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[torch.FloatTensor]] = None, + output_attentions: Optional[bool] = False, + use_cache: bool = False, + ) -> Tuple[torch.Tensor]: + """ + A single Mega layer: either encoder or decoder, with optional cross-attention and optional normalized + feed-forward layer + + Args: + hidden_states (`torch.Tensor` of shape `(target_sequence_length, batch_size, hidden_size)`): + Hidden states to be updated by the Mega block + attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Indicates which entries in the self/target sequence are to be ignored (mostly due to padding), where + elements are either 1 for *not masked* or 0 for *masked*. Causal attention is enforced internally. + causal_mask (`torch.LongTensor` of shape `(sequence_length, sequence_length)`, *optional*): + Indicates which inputs are to be ignored due to causal attention, where elements are either 1 for *not + masked* or 0 for *masked* + encoder_hidden_states (`torch.Tensor`, of shape `(source_sequence_length, batch_size, hidden_size)`, *optional*): + Encoder hidden states to be used for cross-attention (and required for encoder-decoder model setup) + encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, source_sequence_length)`, *optional*): + Indicates which entries in the cross/source sequence are to be ignored (mostly due to padding), where + elements are either 1 for *not masked* or 0 for *masked*. + past_key_value (`tuple(torch.Tensor)`, *optional*): + The hidden states returned from the previous timestep during incremental decoding; expects that + self-attention key, value, and EMA states are the first 3 entries in the tuple, and (if doing + cross-attention) cross-attention key and value are the last 2 entries in the tuple + output_attentions (`bool`, default `False`): + Whether to return self-attention weights + use_cache (`bool`, default `False`): + Whether to perfom incremental decoding; uses `past_key_value` as prior state, and returns the updated + states for use in the next step + + Returns: + `tuple(torch.FloatTensor)` containing various elements depending on configuration ([`MegaConfig`]) and + inputs: + - **hidden_states** (`torch.FloatTensor` of shape `(target_sequence_length, batch_size, hidden_size)`) -- + Hidden states from target sequence updated by Mega + - **self_attn_weights** (*optional*, returned when `output_attentions=True`) `torch.FloatTensor` of shape + `(batch_size, 1, target_sequence_length, target_sequence_length)` -- The self-attention weights + corresponding to how each token in the input sequence attends to every other token + - **cross_attn_weights** (*optional*, returned when `output_attentions=True` and + `config.add_cross_attention=True`) `torch.FloatTensor` of shape `(batch_size, source_sequence_length, + target_sequence_length)` -- Pairwise cross-attention weights between every entry in the source sequence + and target sequence + - **self_key** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size, + sequence_length, config.shared_representation_size)` -- The self-attention key state for use in the next + step of incremental decoding + - **self_value** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size, + sequence_length, config.hidden_size)` -- The self-attention value state for use in the next step of + incremental decoding + - **self_ema_state** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape + `(batch_size, config.ndim)` The incremental EMA state for use in the next step of incremental decoding. + - **cross_key** (*optional*, returned when `use_cache=True` and `config.is_decoder=True`) + `torch.FloatTensor` of shape `(batch_size, source_sequence_length, config.shared_representation_size)` -- + The cross-attention key state for use in the next step of incremental decoding + - **cross_value** (*optional*, returned when `use_cache=True` and `config.is_decoder=True`) + `torch.FloatTensor` of shape `(batch_size, source_sequence_length, config.hidden_size)` -- The + cross-attention value state for use in the next step of incremental decoding + """ + + # incremental decoding in the MegaMultiDimensionDampedEma module requires that the attention mask has the same + # sequence length as the input tensor; if we're caching incremental states, we assume the input + # sequence length is 1 (Mega will break otherwise), so we take the padding mask for the final + # token in the input (mask is received as [batch X sequence length]) + if use_cache and (past_key_value is not None) and (attention_mask is not None): + mega_padding_mask = attention_mask[:, -1].unsqueeze(-1) + else: + mega_padding_mask = attention_mask + + mega_outputs = self.mega_layer( + input=hidden_states, + padding_mask=mega_padding_mask, + causal_mask=causal_mask, + past_key_values=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + ) + + new_hidden_states = mega_outputs[0] + self_key, self_value, self_ema_state = mega_outputs[-3:] if use_cache else (None, None, None) + self_attention_weights = mega_outputs[1] if output_attentions else None + + # optional cross attention + if self.cross_attn is not None: + if encoder_hidden_states is None: + raise ValueError("Requested cross-attention without providing encoder hidden states") + + cross_attn_outputs = self.cross_attn( + query=new_hidden_states, + key=encoder_hidden_states, + value=encoder_hidden_states, + key_padding_mask=encoder_attention_mask, + past_key_values=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + ) + + # update the hidden state from cross attention + new_hidden_states = cross_attn_outputs[0] + # store cross-attention k/v if caching + cross_key, cross_value = cross_attn_outputs[-2:] if use_cache else (None, None) + cross_attention_weights = cross_attn_outputs[1] if output_attentions else None + + # optional NFFN follows cross attention + if self.nffn is not None: + new_hidden_states = self.nffn(new_hidden_states) + + outs = (new_hidden_states,) + if output_attentions: + outs = outs + (self_attention_weights,) + if self.cross_attn is not None: + outs = outs + (cross_attention_weights,) + + if use_cache: + new_key_values = ( + self_key, + self_value, + self_ema_state, + ) + if self.cross_attn is not None: + new_key_values = new_key_values + (cross_key, cross_value) + + outs = outs + (new_key_values,) + + return outs + + +# copied from transformers.models.roberta.modeling_roberta.RobertaPooler with Roberta->Mega +class MegaPooler(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = nn.Tanh() + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + pooled_output = self.activation(pooled_output) + return pooled_output + + +class MegaPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = MegaConfig + base_model_prefix = "mega" + supports_gradient_checkpointing = False + _no_split_modules = ["MegaMovingAverageGatedAttention"] + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, MegaMultiDimensionDampedEma): + with torch.no_grad(): + # delta & alpha + nn.init.normal_(module.damping_factor, mean=0.0, std=self.config.ema_delta_alpha_range) + nn.init.normal_(module.decay_factor, mean=0.0, std=self.config.ema_delta_alpha_range) + # beta [1, -1, 1, -1, ...] seems more stable. + val = torch.ones(self.config.ema_projection_size, 1) + if self.config.ema_projection_size > 1: + idx = torch.tensor(list(range(1, self.config.ema_projection_size, 2))) + val.index_fill_(0, idx, -1.0) + module.ema_expansion_matrix.normal_(mean=0.0, std=self.config.ema_beta_range).add_(val) + # gamma & omega + nn.init.normal_(module.kernel_projection_matrix, mean=0.0, std=self.config.ema_gamma_omega_range) + nn.init.normal_(module.residual_weight, mean=0.0, std=self.config.ema_gamma_omega_range) + elif isinstance(module, MegaSimpleRelativePositionalBias): + nn.init.normal_(module.rel_pos_bias, mean=0.0, std=self.config.initializer_range) + elif isinstance(module, MegaRotaryRelativePositionalBias): + nn.init.normal_(module.alpha, mean=0.0, std=self.config.initializer_range) + nn.init.normal_(module.b_param, mean=0.0, std=self.config.initializer_range) + elif isinstance(module, MegaScaleNorm): + if self.config.norm_affine: + nn.init.constant_(module.scalar, 1.0) + elif isinstance(module, MegaRMSNorm): + if self.config.norm_affine: + nn.init.constant_(module.weight, 1.0) + elif isinstance(module, MegaMovingAverageGatedAttention): + # linear layers covered separately by the generic nn.Linear init below + nn.init.normal_(module.qk_weight, mean=0.0, std=self.config.initializer_range) + nn.init.constant_(module.qk_bias, 0.0) + elif isinstance(module, nn.Linear): + # initializes all linear layers in the entire network + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +MEGA_START_DOCSTRING = r""" + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`MegaConfig`]): Model configuration class with all the parameters of the + model. Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +MEGA_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + This parameter can only be used when the model is initialized with `add_token_type_embeddings` parameter + set to `True`. All the value in this tensor should be always < config.type_vocab_size. + + [What are token type IDs?](../glossary#token-type-ids) + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare MEGA Model transformer outputting raw hidden-states without any specific head on top.", + MEGA_START_DOCSTRING, +) +class MegaModel(MegaPreTrainedModel): + """ + + The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of + cross-attention is added after self-attention, following the architecture described in *Mega: Moving Average + Equipped Gated Attention*_ by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, + Jonathan May, and Luke Zettlemoyer + + To behave as a decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to + `True` and `bidirectional` set to `False`. To be used in a Seq2Seq model, the model needs to initialized with both + `is_decoder=True` and `bidirectional=False` argument as well as `add_cross_attention` set to `True`; an + `encoder_hidden_states` is then expected as an input to the forward pass. + + .. _*Mega: Moving Average Equipped Gated Attention*: https://arxiv.org/abs/2209.10655 + + """ + + def __init__(self, config: MegaConfig, add_pooling_layer=True): + super().__init__(config) + self.config = config + + self.embedding_layer = MegaEmbeddings(config) + self.layers = nn.ModuleList([MegaBlock(config) for _ in range(config.num_hidden_layers)]) + + self.pooler = MegaPooler(config) if add_pooling_layer else None + + # Initialize weights and apply final processing (retained from RoBERTa code) + self.post_init() + + def get_input_embeddings(self): + return self.embedding_layer.word_embeddings + + def set_input_embeddings(self, value): + self.embedding_layer.word_embeddings = value + + @add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPoolingAndCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: + r""" + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + """ + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + device = input_ids.device + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + device = inputs_embeds.device + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if self.config.use_chunking: + input_shape = torch.tensor([input_shape[0], self.config.chunk_size]) + + batch_size, sequence_length = input_shape + + if self.config.use_chunking and (sequence_length > self.config.chunk_size): + if sequence_length % self.config.chunk_size != 0: + raise ValueError( + f"config.use_chunking is activated; input sequence length must be shorter than or a multiple of config.chunk_size\nreceived sequence length of {sequence_length} with chunk size {self.config.chunk_size}" + ) + + if self.config.is_decoder: + use_cache = use_cache if use_cache is not None else self.config.use_cache + + # Mega expects the causal mask to be a 2D square matrix of (from) x (to) over the input sequence length + # the HF utility function generates a 3D causal mask which includes batch size, so we'll create a dummy + # mask with the correct device and all ones + temp_mask_for_extension = torch.ones((1, sequence_length), dtype=torch.long, device=device) + causal_mask = self.create_extended_attention_mask_for_decoder(input_shape, temp_mask_for_extension) + + # get rid of batch dimension in the generated mask; result is (sequence_length X sequence_length) + causal_mask = causal_mask.squeeze(0) + else: + use_cache = False + causal_mask = None + + # if using cache, make sure we have a tuple of tuples which matches the length of our hidden layers + if (past_key_values is not None) and (len(past_key_values) != self.config.num_hidden_layers): + raise ValueError( + f"Received past key/value cache with size mismatch; expected {self.config.num_hidden_layers}, received {len(past_key_values)}" + ) + + # get embeddings (batch X sequence length X embed dim) + embedding_output = self.embedding_layer( + input_ids=input_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds + ) + + # transpose for Mega --> (seq len X batch X embed dim) + hidden_states = embedding_output.transpose(0, 1) + + # we expect encoder hidden states to also have batch first in line + # with typical Hugging Face behavior (which is also how we return them) + # Mega expects sequence length first, so do the same transpose here + if encoder_hidden_states is not None: + encoder_hidden_states = encoder_hidden_states.transpose(0, 1) + + # pass through mega layers + all_hidden_states = (embedding_output,) if output_hidden_states else None + all_self_attentions = () if output_attentions else None + all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None + next_decoder_cache = () if use_cache else None + for i, mega_layer in enumerate(self.layers): + current_decoder_cache = past_key_values[i] if past_key_values is not None else None + mega_outputs = mega_layer( + hidden_states=hidden_states, + attention_mask=attention_mask, + causal_mask=causal_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_value=current_decoder_cache, + output_attentions=output_attentions, + use_cache=use_cache, + ) + + hidden_states = mega_outputs[0] + if output_hidden_states: + # store layer-wise hidden states in the way that the user expects + # (seq len X batch X embed dim) --> (batch X seq len X embed dim) + all_hidden_states += (hidden_states.transpose(0, 1),) + if output_attentions: + self_attn_weights = mega_outputs[1] + all_self_attentions += (self_attn_weights,) + if self.config.add_cross_attention: + cross_attn_weights = mega_outputs[2] + all_cross_attentions += (cross_attn_weights,) + if use_cache: + updated_cache = mega_outputs[-1] + next_decoder_cache += (updated_cache,) + + # transpose final hidden states + hidden_states = hidden_states.transpose(0, 1) + + # optional pooling layer + pooled_output = self.pooler(hidden_states) if self.pooler is not None else None + + if not return_dict: + return (hidden_states, pooled_output) + ( + all_hidden_states, + next_decoder_cache, + all_self_attentions, + all_cross_attentions, + ) + + return BaseModelOutputWithPoolingAndCrossAttentions( + last_hidden_state=hidden_states, + pooler_output=pooled_output, + past_key_values=next_decoder_cache, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + cross_attentions=all_cross_attentions, + ) + + +@add_start_docstrings( + """MEGA Model with a `language modeling` head on top for CLM fine-tuning.""", MEGA_START_DOCSTRING +) +class MegaForCausalLM(MegaPreTrainedModel): + _tied_weights_keys = ["lm_head.weight"] + + def __init__(self, config: MegaConfig): + super().__init__(config) + + if not config.is_decoder: + logger.warning("If you want to use `MegaForCausalLM` as a standalone, add `is_decoder=True.`") + + self.mega = MegaModel(config, add_pooling_layer=False) + + if config.add_lm_hidden_dense_layer: + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.hidden_activation = nn.Tanh() + else: + self.dense = None + self.hidden_activation = None + + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + @add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + past_key_values: Tuple[Tuple[torch.FloatTensor]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: + r""" + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in + `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are + ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, MegaForCausalLM, AutoConfig + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("mnaylor/mega-base-wikitext") + >>> config = AutoConfig.from_pretrained("mnaylor/mega-base-wikitext") + >>> config.is_decoder = True + >>> config.bidirectional = False + >>> model = MegaForCausalLM.from_pretrained( + ... "mnaylor/mega-base-wikitext", config=config, ignore_mismatched_sizes=True + ... ) + + >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") + >>> outputs = model(**inputs) + + >>> prediction_logits = outputs.logits + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + if labels is not None: + use_cache = False + + outputs = self.mega( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + if self.dense is not None: + sequence_output = self.dense(sequence_output) + sequence_output = self.hidden_activation(sequence_output) + + prediction_scores = self.lm_head(sequence_output) + + lm_loss = None + if labels is not None: + # we are doing next-token prediction; shift prediction scores and input ids by one + shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() + labels = labels[:, 1:].contiguous() + loss_fct = CrossEntropyLoss() + lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((lm_loss,) + output) if lm_loss is not None else output + + return CausalLMOutputWithCrossAttentions( + loss=lm_loss, + logits=prediction_scores, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs): + input_shape = input_ids.shape + # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly + if attention_mask is None: + attention_mask = input_ids.new_ones(input_shape) + + # cut decoder_input_ids if past is used + if past_key_values is not None: + input_ids = input_ids[:, -1:] + + return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values} + + def _reorder_cache(self, past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past + + +@add_start_docstrings("""MEGA Model with a `language modeling` head on top.""", MEGA_START_DOCSTRING) +class MegaForMaskedLM(MegaPreTrainedModel): + _tied_weights_keys = ["mlm_head.weight"] + + def __init__(self, config: MegaConfig): + super().__init__(config) + + if config.is_decoder: + logger.warning( + "If you want to use `MegaForMaskedLM`, set `config.is_decoder=False` for " + "bi-directional self-attention." + ) + + self.mega = MegaModel(config, add_pooling_layer=False) + if config.add_lm_hidden_dense_layer: + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.hidden_activation = nn.Tanh() + else: + self.dense = None + self.hidden_activation = None + self.mlm_head = nn.Linear(config.hidden_size, config.vocab_size) + self.dropout = nn.Dropout(config.dropout_prob) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.mlm_head + + def set_output_embeddings(self, new_embeddings): + self.mlm_head = new_embeddings + + @add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MaskedLMOutput, + config_class=_CONFIG_FOR_DOC, + mask="", + expected_output="' Paris'", + expected_loss=0.1, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + kwargs (`Dict[str, any]`, optional, defaults to *{}*): + Used to hide legacy arguments that have been deprecated. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.mega( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = outputs[0] + if self.dense is not None: + sequence_output = self.dense(sequence_output) + sequence_output = self.hidden_activation(sequence_output) + prediction_scores = self.mlm_head(sequence_output) + + masked_lm_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + + return MaskedLMOutput( + loss=masked_lm_loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + MEGA Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled + output) e.g. for GLUE tasks. + """, + MEGA_START_DOCSTRING, +) +class MegaForSequenceClassification(MegaPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.config = config + + self.mega = MegaModel(config, add_pooling_layer=False) + self.classifier = MegaClassificationHead(config) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=SequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.mega( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = outputs[0] + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + MEGA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a + softmax) e.g. for RocStories/SWAG tasks. + """, + MEGA_START_DOCSTRING, +) +class MegaForMultipleChoice(MegaPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.mega = MegaModel(config) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, 1) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MultipleChoiceModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., + num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See + `input_ids` above) + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] + + flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None + flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None + flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None + flat_inputs_embeds = ( + inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) + if inputs_embeds is not None + else None + ) + + outputs = self.mega( + flat_input_ids, + token_type_ids=flat_token_type_ids, + attention_mask=flat_attention_mask, + inputs_embeds=flat_inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + pooled_output = outputs[1] + + pooled_output = self.dropout(pooled_output) + logits = self.classifier(pooled_output) + reshaped_logits = logits.view(-1, num_choices) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(reshaped_logits, labels) + + if not return_dict: + output = (reshaped_logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return MultipleChoiceModelOutput( + loss=loss, + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + MEGA Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for + Named-Entity-Recognition (NER) tasks. + """, + MEGA_START_DOCSTRING, +) +class MegaForTokenClassification(MegaPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.mega = MegaModel(config, add_pooling_layer=False) + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(classifier_dropout) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.mega( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + sequence_output = self.dropout(sequence_output) + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +# copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->Mega +class MegaClassificationHead(nn.Module): + """Head for sentence-level classification tasks.""" + + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(classifier_dropout) + self.out_proj = nn.Linear(config.hidden_size, config.num_labels) + + def forward(self, features, **kwargs): + x = features[:, 0, :] # take token (equiv. to [CLS]) + x = self.dropout(x) + x = self.dense(x) + x = torch.tanh(x) + x = self.dropout(x) + x = self.out_proj(x) + return x + + +@add_start_docstrings( + """ + MEGA Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear + layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + MEGA_START_DOCSTRING, +) +class MegaForQuestionAnswering(MegaPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.mega = MegaModel(config, add_pooling_layer=False) + self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=QuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + start_positions: Optional[torch.LongTensor] = None, + end_positions: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.mega( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return QuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + )