Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step20/zero/21.attention.query_key_value.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step20/zero/25.attention.dense.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_cast_Half_native.h +21 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_cudnn_rnn_flatten_weight.h +91 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_dirichlet_grad_native.h +23 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_embedding_bag_cuda_dispatch.h +23 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_embedding_bag_dense_backward.h +91 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_fft_c2r.h +91 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_flash_attention_forward_native.h +21 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_acos_cpu_dispatch.h +24 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_copy_ops.h +50 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_reciprocal.h +44 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_functional_assert_async_cpu_dispatch.h +23 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_fused_adam_ops.h +83 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_int_mm_native.h +22 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_log_softmax_ops.h +39 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_make_per_tensor_quantized_tensor.h +39 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_native_multi_head_attention_native.h +23 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_new_zeros_with_same_feature_meta_ops.h +39 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_pin_memory_cuda_dispatch.h +23 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_coo_tensor_unsafe_compositeimplicitautograd_dispatch.h +26 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_coo_tensor_with_dims.h +43 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_coo_tensor_with_dims_native.h +22 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_mm_reduce_impl_ops.h +28 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_to_sparse_csr_cuda_dispatch.h +23 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bicubic2d_aa_compositeexplicitautogradnonfunctional_dispatch.h +24 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/_weight_norm_interface_cpu_dispatch.h +23 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/angle_native.h +24 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/batch_norm_gather_stats_native.h +22 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/bincount_native.h +23 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/bitwise_and_meta.h +27 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/conv2d_compositeimplicitautograd_dispatch.h +26 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/crow_indices_copy.h +39 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/dequantize.h +53 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/dist_compositeexplicitautograd_dispatch.h +25 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/embedding_renorm_compositeexplicitautograd_dispatch.h +25 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/empty_quantized_ops.h +39 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/empty_strided.h +113 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/fft_rfftn_native.h +22 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/floor_meta.h +27 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/fmax_meta_dispatch.h +25 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/frexp_compositeexplicitautograd_dispatch.h +23 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/fused_moving_avg_obs_fake_quant_ops.h +28 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/gather_compositeimplicitautograd_dispatch.h +25 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/hardshrink_backward_native.h +23 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/hardtanh_backward_ops.h +39 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/hypot_meta.h +27 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/is_floating_point_compositeimplicitautograd_dispatch.h +23 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/is_same_size_native.h +22 -0
- venv/lib/python3.10/site-packages/torch/include/ATen/ops/isposinf_cuda_dispatch.h +25 -0
ckpts/universal/global_step20/zero/21.attention.query_key_value.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ff64ed764b2e031df40ebcab57201b67bfeb20b8ff1493835f933e05d7ac187
|
3 |
+
size 50332843
|
ckpts/universal/global_step20/zero/25.attention.dense.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e6f9024dba19f02b2ff6b589638009b02d5b40b54cc27b675f92fcc7edd8785
|
3 |
+
size 16778317
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_cast_Half_native.h
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor _cast_Half(const at::Tensor & self, bool non_blocking=false);
|
20 |
+
} // namespace native
|
21 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_cudnn_rnn_flatten_weight.h
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_cudnn_rnn_flatten_weight_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_cudnn_rnn_flatten_weight(Tensor[] weight_arr, int weight_stride0, SymInt input_size, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, bool bidirectional) -> Tensor
|
26 |
+
inline at::Tensor _cudnn_rnn_flatten_weight(at::TensorList weight_arr, int64_t weight_stride0, int64_t input_size, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, bool bidirectional) {
|
27 |
+
return at::_ops::_cudnn_rnn_flatten_weight::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional);
|
28 |
+
}
|
29 |
+
namespace symint {
|
30 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
31 |
+
at::Tensor _cudnn_rnn_flatten_weight(at::TensorList weight_arr, int64_t weight_stride0, int64_t input_size, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, bool bidirectional) {
|
32 |
+
return at::_ops::_cudnn_rnn_flatten_weight::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional);
|
33 |
+
}
|
34 |
+
}
|
35 |
+
|
36 |
+
// aten::_cudnn_rnn_flatten_weight(Tensor[] weight_arr, int weight_stride0, SymInt input_size, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, bool bidirectional) -> Tensor
|
37 |
+
inline at::Tensor _cudnn_rnn_flatten_weight_symint(at::TensorList weight_arr, int64_t weight_stride0, c10::SymInt input_size, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, bool bidirectional) {
|
38 |
+
return at::_ops::_cudnn_rnn_flatten_weight::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional);
|
39 |
+
}
|
40 |
+
namespace symint {
|
41 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
42 |
+
at::Tensor _cudnn_rnn_flatten_weight(at::TensorList weight_arr, int64_t weight_stride0, c10::SymInt input_size, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, bool bidirectional) {
|
43 |
+
return at::_ops::_cudnn_rnn_flatten_weight::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional);
|
44 |
+
}
|
45 |
+
}
|
46 |
+
|
47 |
+
// aten::_cudnn_rnn_flatten_weight.out(Tensor[] weight_arr, int weight_stride0, SymInt input_size, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, bool bidirectional, *, Tensor(a!) out) -> Tensor(a!)
|
48 |
+
inline at::Tensor & _cudnn_rnn_flatten_weight_out(at::Tensor & out, at::TensorList weight_arr, int64_t weight_stride0, int64_t input_size, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, bool bidirectional) {
|
49 |
+
return at::_ops::_cudnn_rnn_flatten_weight_out::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional, out);
|
50 |
+
}
|
51 |
+
namespace symint {
|
52 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
53 |
+
at::Tensor & _cudnn_rnn_flatten_weight_out(at::Tensor & out, at::TensorList weight_arr, int64_t weight_stride0, int64_t input_size, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, bool bidirectional) {
|
54 |
+
return at::_ops::_cudnn_rnn_flatten_weight_out::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional, out);
|
55 |
+
}
|
56 |
+
}
|
57 |
+
|
58 |
+
// aten::_cudnn_rnn_flatten_weight.out(Tensor[] weight_arr, int weight_stride0, SymInt input_size, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, bool bidirectional, *, Tensor(a!) out) -> Tensor(a!)
|
59 |
+
inline at::Tensor & _cudnn_rnn_flatten_weight_outf(at::TensorList weight_arr, int64_t weight_stride0, int64_t input_size, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, bool bidirectional, at::Tensor & out) {
|
60 |
+
return at::_ops::_cudnn_rnn_flatten_weight_out::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional, out);
|
61 |
+
}
|
62 |
+
namespace symint {
|
63 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
64 |
+
at::Tensor & _cudnn_rnn_flatten_weight_outf(at::TensorList weight_arr, int64_t weight_stride0, int64_t input_size, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, bool bidirectional, at::Tensor & out) {
|
65 |
+
return at::_ops::_cudnn_rnn_flatten_weight_out::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional, out);
|
66 |
+
}
|
67 |
+
}
|
68 |
+
|
69 |
+
// aten::_cudnn_rnn_flatten_weight.out(Tensor[] weight_arr, int weight_stride0, SymInt input_size, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, bool bidirectional, *, Tensor(a!) out) -> Tensor(a!)
|
70 |
+
inline at::Tensor & _cudnn_rnn_flatten_weight_symint_out(at::Tensor & out, at::TensorList weight_arr, int64_t weight_stride0, c10::SymInt input_size, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, bool bidirectional) {
|
71 |
+
return at::_ops::_cudnn_rnn_flatten_weight_out::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional, out);
|
72 |
+
}
|
73 |
+
namespace symint {
|
74 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
75 |
+
at::Tensor & _cudnn_rnn_flatten_weight_out(at::Tensor & out, at::TensorList weight_arr, int64_t weight_stride0, c10::SymInt input_size, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, bool bidirectional) {
|
76 |
+
return at::_ops::_cudnn_rnn_flatten_weight_out::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional, out);
|
77 |
+
}
|
78 |
+
}
|
79 |
+
|
80 |
+
// aten::_cudnn_rnn_flatten_weight.out(Tensor[] weight_arr, int weight_stride0, SymInt input_size, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, bool bidirectional, *, Tensor(a!) out) -> Tensor(a!)
|
81 |
+
inline at::Tensor & _cudnn_rnn_flatten_weight_symint_outf(at::TensorList weight_arr, int64_t weight_stride0, c10::SymInt input_size, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, bool bidirectional, at::Tensor & out) {
|
82 |
+
return at::_ops::_cudnn_rnn_flatten_weight_out::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional, out);
|
83 |
+
}
|
84 |
+
namespace symint {
|
85 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
86 |
+
at::Tensor & _cudnn_rnn_flatten_weight_outf(at::TensorList weight_arr, int64_t weight_stride0, c10::SymInt input_size, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, bool bidirectional, at::Tensor & out) {
|
87 |
+
return at::_ops::_cudnn_rnn_flatten_weight_out::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional, out);
|
88 |
+
}
|
89 |
+
}
|
90 |
+
|
91 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_dirichlet_grad_native.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor & _dirichlet_grad_out(const at::Tensor & x, const at::Tensor & alpha, const at::Tensor & total, at::Tensor & out);
|
20 |
+
TORCH_API at::Tensor _dirichlet_grad_cpu(const at::Tensor & x, const at::Tensor & alpha, const at::Tensor & total);
|
21 |
+
TORCH_API at::Tensor _dirichlet_grad_cuda(const at::Tensor & x, const at::Tensor & alpha, const at::Tensor & total);
|
22 |
+
} // namespace native
|
23 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_embedding_bag_cuda_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor> _embedding_bag(const at::Tensor & weight, const at::Tensor & indices, const at::Tensor & offsets, bool scale_grad_by_freq=false, int64_t mode=0, bool sparse=false, const c10::optional<at::Tensor> & per_sample_weights={}, bool include_last_offset=false, int64_t padding_idx=-1);
|
21 |
+
|
22 |
+
} // namespace cuda
|
23 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_embedding_bag_dense_backward.h
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_embedding_bag_dense_backward_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_embedding_bag_dense_backward(Tensor grad, Tensor indices, Tensor offset2bag, Tensor bag_size, Tensor maximum_indices, SymInt num_weights, bool scale_grad_by_freq, int mode, Tensor? per_sample_weights, int padding_idx=-1) -> Tensor
|
26 |
+
inline at::Tensor _embedding_bag_dense_backward(const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offset2bag, const at::Tensor & bag_size, const at::Tensor & maximum_indices, int64_t num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx=-1) {
|
27 |
+
return at::_ops::_embedding_bag_dense_backward::call(grad, indices, offset2bag, bag_size, maximum_indices, num_weights, scale_grad_by_freq, mode, per_sample_weights, padding_idx);
|
28 |
+
}
|
29 |
+
namespace symint {
|
30 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
31 |
+
at::Tensor _embedding_bag_dense_backward(const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offset2bag, const at::Tensor & bag_size, const at::Tensor & maximum_indices, int64_t num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx=-1) {
|
32 |
+
return at::_ops::_embedding_bag_dense_backward::call(grad, indices, offset2bag, bag_size, maximum_indices, num_weights, scale_grad_by_freq, mode, per_sample_weights, padding_idx);
|
33 |
+
}
|
34 |
+
}
|
35 |
+
|
36 |
+
// aten::_embedding_bag_dense_backward(Tensor grad, Tensor indices, Tensor offset2bag, Tensor bag_size, Tensor maximum_indices, SymInt num_weights, bool scale_grad_by_freq, int mode, Tensor? per_sample_weights, int padding_idx=-1) -> Tensor
|
37 |
+
inline at::Tensor _embedding_bag_dense_backward_symint(const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offset2bag, const at::Tensor & bag_size, const at::Tensor & maximum_indices, c10::SymInt num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx=-1) {
|
38 |
+
return at::_ops::_embedding_bag_dense_backward::call(grad, indices, offset2bag, bag_size, maximum_indices, num_weights, scale_grad_by_freq, mode, per_sample_weights, padding_idx);
|
39 |
+
}
|
40 |
+
namespace symint {
|
41 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
42 |
+
at::Tensor _embedding_bag_dense_backward(const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offset2bag, const at::Tensor & bag_size, const at::Tensor & maximum_indices, c10::SymInt num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx=-1) {
|
43 |
+
return at::_ops::_embedding_bag_dense_backward::call(grad, indices, offset2bag, bag_size, maximum_indices, num_weights, scale_grad_by_freq, mode, per_sample_weights, padding_idx);
|
44 |
+
}
|
45 |
+
}
|
46 |
+
|
47 |
+
// aten::_embedding_bag_dense_backward.out(Tensor grad, Tensor indices, Tensor offset2bag, Tensor bag_size, Tensor maximum_indices, SymInt num_weights, bool scale_grad_by_freq, int mode, Tensor? per_sample_weights, int padding_idx=-1, *, Tensor(a!) out) -> Tensor(a!)
|
48 |
+
inline at::Tensor & _embedding_bag_dense_backward_out(at::Tensor & out, const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offset2bag, const at::Tensor & bag_size, const at::Tensor & maximum_indices, int64_t num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx=-1) {
|
49 |
+
return at::_ops::_embedding_bag_dense_backward_out::call(grad, indices, offset2bag, bag_size, maximum_indices, num_weights, scale_grad_by_freq, mode, per_sample_weights, padding_idx, out);
|
50 |
+
}
|
51 |
+
namespace symint {
|
52 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
53 |
+
at::Tensor & _embedding_bag_dense_backward_out(at::Tensor & out, const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offset2bag, const at::Tensor & bag_size, const at::Tensor & maximum_indices, int64_t num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx=-1) {
|
54 |
+
return at::_ops::_embedding_bag_dense_backward_out::call(grad, indices, offset2bag, bag_size, maximum_indices, num_weights, scale_grad_by_freq, mode, per_sample_weights, padding_idx, out);
|
55 |
+
}
|
56 |
+
}
|
57 |
+
|
58 |
+
// aten::_embedding_bag_dense_backward.out(Tensor grad, Tensor indices, Tensor offset2bag, Tensor bag_size, Tensor maximum_indices, SymInt num_weights, bool scale_grad_by_freq, int mode, Tensor? per_sample_weights, int padding_idx=-1, *, Tensor(a!) out) -> Tensor(a!)
|
59 |
+
inline at::Tensor & _embedding_bag_dense_backward_outf(const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offset2bag, const at::Tensor & bag_size, const at::Tensor & maximum_indices, int64_t num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx, at::Tensor & out) {
|
60 |
+
return at::_ops::_embedding_bag_dense_backward_out::call(grad, indices, offset2bag, bag_size, maximum_indices, num_weights, scale_grad_by_freq, mode, per_sample_weights, padding_idx, out);
|
61 |
+
}
|
62 |
+
namespace symint {
|
63 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
64 |
+
at::Tensor & _embedding_bag_dense_backward_outf(const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offset2bag, const at::Tensor & bag_size, const at::Tensor & maximum_indices, int64_t num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx, at::Tensor & out) {
|
65 |
+
return at::_ops::_embedding_bag_dense_backward_out::call(grad, indices, offset2bag, bag_size, maximum_indices, num_weights, scale_grad_by_freq, mode, per_sample_weights, padding_idx, out);
|
66 |
+
}
|
67 |
+
}
|
68 |
+
|
69 |
+
// aten::_embedding_bag_dense_backward.out(Tensor grad, Tensor indices, Tensor offset2bag, Tensor bag_size, Tensor maximum_indices, SymInt num_weights, bool scale_grad_by_freq, int mode, Tensor? per_sample_weights, int padding_idx=-1, *, Tensor(a!) out) -> Tensor(a!)
|
70 |
+
inline at::Tensor & _embedding_bag_dense_backward_symint_out(at::Tensor & out, const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offset2bag, const at::Tensor & bag_size, const at::Tensor & maximum_indices, c10::SymInt num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx=-1) {
|
71 |
+
return at::_ops::_embedding_bag_dense_backward_out::call(grad, indices, offset2bag, bag_size, maximum_indices, num_weights, scale_grad_by_freq, mode, per_sample_weights, padding_idx, out);
|
72 |
+
}
|
73 |
+
namespace symint {
|
74 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
75 |
+
at::Tensor & _embedding_bag_dense_backward_out(at::Tensor & out, const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offset2bag, const at::Tensor & bag_size, const at::Tensor & maximum_indices, c10::SymInt num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx=-1) {
|
76 |
+
return at::_ops::_embedding_bag_dense_backward_out::call(grad, indices, offset2bag, bag_size, maximum_indices, num_weights, scale_grad_by_freq, mode, per_sample_weights, padding_idx, out);
|
77 |
+
}
|
78 |
+
}
|
79 |
+
|
80 |
+
// aten::_embedding_bag_dense_backward.out(Tensor grad, Tensor indices, Tensor offset2bag, Tensor bag_size, Tensor maximum_indices, SymInt num_weights, bool scale_grad_by_freq, int mode, Tensor? per_sample_weights, int padding_idx=-1, *, Tensor(a!) out) -> Tensor(a!)
|
81 |
+
inline at::Tensor & _embedding_bag_dense_backward_symint_outf(const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offset2bag, const at::Tensor & bag_size, const at::Tensor & maximum_indices, c10::SymInt num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx, at::Tensor & out) {
|
82 |
+
return at::_ops::_embedding_bag_dense_backward_out::call(grad, indices, offset2bag, bag_size, maximum_indices, num_weights, scale_grad_by_freq, mode, per_sample_weights, padding_idx, out);
|
83 |
+
}
|
84 |
+
namespace symint {
|
85 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
86 |
+
at::Tensor & _embedding_bag_dense_backward_outf(const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offset2bag, const at::Tensor & bag_size, const at::Tensor & maximum_indices, c10::SymInt num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx, at::Tensor & out) {
|
87 |
+
return at::_ops::_embedding_bag_dense_backward_out::call(grad, indices, offset2bag, bag_size, maximum_indices, num_weights, scale_grad_by_freq, mode, per_sample_weights, padding_idx, out);
|
88 |
+
}
|
89 |
+
}
|
90 |
+
|
91 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_fft_c2r.h
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_fft_c2r_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_fft_c2r(Tensor self, int[] dim, int normalization, SymInt last_dim_size) -> Tensor
|
26 |
+
inline at::Tensor _fft_c2r(const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, int64_t last_dim_size) {
|
27 |
+
return at::_ops::_fft_c2r::call(self, dim, normalization, last_dim_size);
|
28 |
+
}
|
29 |
+
namespace symint {
|
30 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
31 |
+
at::Tensor _fft_c2r(const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, int64_t last_dim_size) {
|
32 |
+
return at::_ops::_fft_c2r::call(self, dim, normalization, last_dim_size);
|
33 |
+
}
|
34 |
+
}
|
35 |
+
|
36 |
+
// aten::_fft_c2r(Tensor self, int[] dim, int normalization, SymInt last_dim_size) -> Tensor
|
37 |
+
inline at::Tensor _fft_c2r_symint(const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, c10::SymInt last_dim_size) {
|
38 |
+
return at::_ops::_fft_c2r::call(self, dim, normalization, last_dim_size);
|
39 |
+
}
|
40 |
+
namespace symint {
|
41 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
42 |
+
at::Tensor _fft_c2r(const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, c10::SymInt last_dim_size) {
|
43 |
+
return at::_ops::_fft_c2r::call(self, dim, normalization, last_dim_size);
|
44 |
+
}
|
45 |
+
}
|
46 |
+
|
47 |
+
// aten::_fft_c2r.out(Tensor self, int[] dim, int normalization, SymInt last_dim_size, *, Tensor(a!) out) -> Tensor(a!)
|
48 |
+
inline at::Tensor & _fft_c2r_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, int64_t last_dim_size) {
|
49 |
+
return at::_ops::_fft_c2r_out::call(self, dim, normalization, last_dim_size, out);
|
50 |
+
}
|
51 |
+
namespace symint {
|
52 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
53 |
+
at::Tensor & _fft_c2r_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, int64_t last_dim_size) {
|
54 |
+
return at::_ops::_fft_c2r_out::call(self, dim, normalization, last_dim_size, out);
|
55 |
+
}
|
56 |
+
}
|
57 |
+
|
58 |
+
// aten::_fft_c2r.out(Tensor self, int[] dim, int normalization, SymInt last_dim_size, *, Tensor(a!) out) -> Tensor(a!)
|
59 |
+
inline at::Tensor & _fft_c2r_outf(const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, int64_t last_dim_size, at::Tensor & out) {
|
60 |
+
return at::_ops::_fft_c2r_out::call(self, dim, normalization, last_dim_size, out);
|
61 |
+
}
|
62 |
+
namespace symint {
|
63 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
64 |
+
at::Tensor & _fft_c2r_outf(const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, int64_t last_dim_size, at::Tensor & out) {
|
65 |
+
return at::_ops::_fft_c2r_out::call(self, dim, normalization, last_dim_size, out);
|
66 |
+
}
|
67 |
+
}
|
68 |
+
|
69 |
+
// aten::_fft_c2r.out(Tensor self, int[] dim, int normalization, SymInt last_dim_size, *, Tensor(a!) out) -> Tensor(a!)
|
70 |
+
inline at::Tensor & _fft_c2r_symint_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, c10::SymInt last_dim_size) {
|
71 |
+
return at::_ops::_fft_c2r_out::call(self, dim, normalization, last_dim_size, out);
|
72 |
+
}
|
73 |
+
namespace symint {
|
74 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
75 |
+
at::Tensor & _fft_c2r_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, c10::SymInt last_dim_size) {
|
76 |
+
return at::_ops::_fft_c2r_out::call(self, dim, normalization, last_dim_size, out);
|
77 |
+
}
|
78 |
+
}
|
79 |
+
|
80 |
+
// aten::_fft_c2r.out(Tensor self, int[] dim, int normalization, SymInt last_dim_size, *, Tensor(a!) out) -> Tensor(a!)
|
81 |
+
inline at::Tensor & _fft_c2r_symint_outf(const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, c10::SymInt last_dim_size, at::Tensor & out) {
|
82 |
+
return at::_ops::_fft_c2r_out::call(self, dim, normalization, last_dim_size, out);
|
83 |
+
}
|
84 |
+
namespace symint {
|
85 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
86 |
+
at::Tensor & _fft_c2r_outf(const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, c10::SymInt last_dim_size, at::Tensor & out) {
|
87 |
+
return at::_ops::_fft_c2r_out::call(self, dim, normalization, last_dim_size, out);
|
88 |
+
}
|
89 |
+
}
|
90 |
+
|
91 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_flash_attention_forward_native.h
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> _flash_attention_forward(const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, const c10::optional<at::Tensor> & cum_seq_q, const c10::optional<at::Tensor> & cum_seq_k, int64_t max_q, int64_t max_k, double dropout_p, bool is_causal, bool return_debug_mask, c10::optional<double> scale=c10::nullopt);
|
20 |
+
} // namespace native
|
21 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_acos_cpu_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API ::std::vector<at::Tensor> _foreach_acos(at::TensorList self);
|
21 |
+
TORCH_API void _foreach_acos_(at::TensorList self);
|
22 |
+
|
23 |
+
} // namespace cpu
|
24 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_copy_ops.h
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _foreach_copy_ {
|
18 |
+
using schema = void (at::TensorList, at::TensorList, bool);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_copy_")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_copy_(Tensor(a!)[] self, Tensor[] src, bool non_blocking=False) -> ()")
|
24 |
+
static void call(at::TensorList self, at::TensorList src, bool non_blocking);
|
25 |
+
static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList src, bool non_blocking);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API _foreach_copy_out {
|
29 |
+
using schema = void (at::TensorList, at::TensorList, bool, at::TensorList);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_copy")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_copy.out(Tensor[] self, Tensor[] src, bool non_blocking=False, *, Tensor(a!)[] out) -> ()")
|
35 |
+
static void call(at::TensorList self, at::TensorList src, bool non_blocking, at::TensorList out);
|
36 |
+
static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList src, bool non_blocking, at::TensorList out);
|
37 |
+
};
|
38 |
+
|
39 |
+
struct TORCH_API _foreach_copy {
|
40 |
+
using schema = ::std::vector<at::Tensor> (at::TensorList, at::TensorList, bool);
|
41 |
+
using ptr_schema = schema*;
|
42 |
+
// See Note [static constexpr char* members for windows NVCC]
|
43 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_copy")
|
44 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
45 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_copy(Tensor[] self, Tensor[] src, bool non_blocking=False) -> Tensor[] self_out")
|
46 |
+
static ::std::vector<at::Tensor> call(at::TensorList self, at::TensorList src, bool non_blocking);
|
47 |
+
static ::std::vector<at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList src, bool non_blocking);
|
48 |
+
};
|
49 |
+
|
50 |
+
}} // namespace at::_ops
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_reciprocal.h
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_foreach_reciprocal_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_foreach_reciprocal(Tensor[] self) -> Tensor[]
|
26 |
+
inline ::std::vector<at::Tensor> _foreach_reciprocal(at::TensorList self) {
|
27 |
+
return at::_ops::_foreach_reciprocal::call(self);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::_foreach_reciprocal_(Tensor(a!)[] self) -> ()
|
31 |
+
inline void _foreach_reciprocal_(at::TensorList self) {
|
32 |
+
return at::_ops::_foreach_reciprocal_::call(self);
|
33 |
+
}
|
34 |
+
|
35 |
+
// aten::_foreach_reciprocal.out(Tensor[] self, *, Tensor(a!)[] out) -> ()
|
36 |
+
inline void _foreach_reciprocal_out(at::TensorList out, at::TensorList self) {
|
37 |
+
return at::_ops::_foreach_reciprocal_out::call(self, out);
|
38 |
+
}
|
39 |
+
// aten::_foreach_reciprocal.out(Tensor[] self, *, Tensor(a!)[] out) -> ()
|
40 |
+
inline void _foreach_reciprocal_outf(at::TensorList self, at::TensorList out) {
|
41 |
+
return at::_ops::_foreach_reciprocal_out::call(self, out);
|
42 |
+
}
|
43 |
+
|
44 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_functional_assert_async_cpu_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _functional_assert_async(const at::Tensor & self, c10::string_view assert_msg, const at::Tensor & dep_token);
|
21 |
+
|
22 |
+
} // namespace cpu
|
23 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_fused_adam_ops.h
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _fused_adam_ {
|
18 |
+
using schema = void (at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, double, double, double, double, double, bool, bool, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_fused_adam_")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_fused_adam_(Tensor(a!)[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, float lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> ()")
|
24 |
+
static void call(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf);
|
25 |
+
static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API _fused_adam__tensor_lr {
|
29 |
+
using schema = void (at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, const at::Tensor &, double, double, double, double, bool, bool, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_fused_adam_")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "tensor_lr")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_fused_adam_.tensor_lr(Tensor(a!)[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, Tensor lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> ()")
|
35 |
+
static void call(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf);
|
36 |
+
static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf);
|
37 |
+
};
|
38 |
+
|
39 |
+
struct TORCH_API _fused_adam_out {
|
40 |
+
using schema = void (at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, double, double, double, double, double, bool, bool, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &, at::TensorList);
|
41 |
+
using ptr_schema = schema*;
|
42 |
+
// See Note [static constexpr char* members for windows NVCC]
|
43 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_fused_adam")
|
44 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
45 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_fused_adam.out(Tensor[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, float lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None, Tensor(a!)[] out) -> ()")
|
46 |
+
static void call(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf, at::TensorList out);
|
47 |
+
static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf, at::TensorList out);
|
48 |
+
};
|
49 |
+
|
50 |
+
struct TORCH_API _fused_adam {
|
51 |
+
using schema = ::std::tuple<::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>> (at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, double, double, double, double, double, bool, bool, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &);
|
52 |
+
using ptr_schema = schema*;
|
53 |
+
// See Note [static constexpr char* members for windows NVCC]
|
54 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_fused_adam")
|
55 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
56 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_fused_adam(Tensor[] self, Tensor[] grads, Tensor[] exp_avgs, Tensor[] exp_avg_sqs, Tensor[] max_exp_avg_sqs, Tensor[] state_steps, *, float lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> (Tensor[] self_out, Tensor[] grads_out, Tensor[] exp_avgs_out, Tensor[] exp_avg_sqs_out, Tensor[] max_exp_avg_sqs_out)")
|
57 |
+
static ::std::tuple<::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>> call(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf);
|
58 |
+
static ::std::tuple<::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>> redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf);
|
59 |
+
};
|
60 |
+
|
61 |
+
struct TORCH_API _fused_adam_tensor_lr_out {
|
62 |
+
using schema = void (at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, const at::Tensor &, double, double, double, double, bool, bool, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &, at::TensorList);
|
63 |
+
using ptr_schema = schema*;
|
64 |
+
// See Note [static constexpr char* members for windows NVCC]
|
65 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_fused_adam")
|
66 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "tensor_lr_out")
|
67 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_fused_adam.tensor_lr_out(Tensor[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, Tensor lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None, Tensor(a!)[] out) -> ()")
|
68 |
+
static void call(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf, at::TensorList out);
|
69 |
+
static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf, at::TensorList out);
|
70 |
+
};
|
71 |
+
|
72 |
+
struct TORCH_API _fused_adam_tensor_lr {
|
73 |
+
using schema = ::std::tuple<::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>> (at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, const at::Tensor &, double, double, double, double, bool, bool, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &);
|
74 |
+
using ptr_schema = schema*;
|
75 |
+
// See Note [static constexpr char* members for windows NVCC]
|
76 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_fused_adam")
|
77 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "tensor_lr")
|
78 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_fused_adam.tensor_lr(Tensor[] self, Tensor[] grads, Tensor[] exp_avgs, Tensor[] exp_avg_sqs, Tensor[] max_exp_avg_sqs, Tensor[] state_steps, *, Tensor lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> (Tensor[] self_out, Tensor[] grads_out, Tensor[] exp_avgs_out, Tensor[] exp_avg_sqs_out, Tensor[] max_exp_avg_sqs_out)")
|
79 |
+
static ::std::tuple<::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>> call(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf);
|
80 |
+
static ::std::tuple<::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>> redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf);
|
81 |
+
};
|
82 |
+
|
83 |
+
}} // namespace at::_ops
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_int_mm_native.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor _int_mm_cuda(const at::Tensor & self, const at::Tensor & mat2);
|
20 |
+
TORCH_API at::Tensor & _int_mm_out_cuda(const at::Tensor & self, const at::Tensor & mat2, at::Tensor & out);
|
21 |
+
} // namespace native
|
22 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_log_softmax_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _log_softmax {
|
18 |
+
using schema = at::Tensor (const at::Tensor &, int64_t, bool);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_log_softmax")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_log_softmax(Tensor self, int dim, bool half_to_float) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & self, int64_t dim, bool half_to_float);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, int64_t dim, bool half_to_float);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API _log_softmax_out {
|
29 |
+
using schema = at::Tensor & (const at::Tensor &, int64_t, bool, at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_log_softmax")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_log_softmax.out(Tensor self, int dim, bool half_to_float, *, Tensor(a!) out) -> Tensor(a!)")
|
35 |
+
static at::Tensor & call(const at::Tensor & self, int64_t dim, bool half_to_float, at::Tensor & out);
|
36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, int64_t dim, bool half_to_float, at::Tensor & out);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_make_per_tensor_quantized_tensor.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_make_per_tensor_quantized_tensor_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_make_per_tensor_quantized_tensor(Tensor self, float scale, int zero_point) -> Tensor
|
26 |
+
inline at::Tensor _make_per_tensor_quantized_tensor(const at::Tensor & self, double scale, int64_t zero_point) {
|
27 |
+
return at::_ops::_make_per_tensor_quantized_tensor::call(self, scale, zero_point);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::_make_per_tensor_quantized_tensor.out(Tensor self, float scale, int zero_point, *, Tensor(a!) out) -> Tensor(a!)
|
31 |
+
inline at::Tensor & _make_per_tensor_quantized_tensor_out(at::Tensor & out, const at::Tensor & self, double scale, int64_t zero_point) {
|
32 |
+
return at::_ops::_make_per_tensor_quantized_tensor_out::call(self, scale, zero_point, out);
|
33 |
+
}
|
34 |
+
// aten::_make_per_tensor_quantized_tensor.out(Tensor self, float scale, int zero_point, *, Tensor(a!) out) -> Tensor(a!)
|
35 |
+
inline at::Tensor & _make_per_tensor_quantized_tensor_outf(const at::Tensor & self, double scale, int64_t zero_point, at::Tensor & out) {
|
36 |
+
return at::_ops::_make_per_tensor_quantized_tensor_out::call(self, scale, zero_point, out);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_native_multi_head_attention_native.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> _native_multi_head_attention_out(const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, int64_t embed_dim, int64_t num_head, const at::Tensor & qkv_weight, const at::Tensor & qkv_bias, const at::Tensor & proj_weight, const at::Tensor & proj_bias, const c10::optional<at::Tensor> & mask, bool need_weights, bool average_attn_weights, c10::optional<int64_t> mask_type, at::Tensor & out0, at::Tensor & out1);
|
20 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor> native_multi_head_attention_cpu(const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, int64_t embed_dim, int64_t num_head, const at::Tensor & qkv_weight, const at::Tensor & qkv_bias, const at::Tensor & proj_weight, const at::Tensor & proj_bias, const c10::optional<at::Tensor> & mask={}, bool need_weights=true, bool average_attn_weights=true, c10::optional<int64_t> mask_type=c10::nullopt);
|
21 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor> native_multi_head_attention_cuda(const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, int64_t embed_dim, int64_t num_head, const at::Tensor & qkv_weight, const at::Tensor & qkv_bias, const at::Tensor & proj_weight, const at::Tensor & proj_bias, const c10::optional<at::Tensor> & mask={}, bool need_weights=true, bool average_attn_weights=true, c10::optional<int64_t> mask_type=c10::nullopt);
|
22 |
+
} // namespace native
|
23 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_new_zeros_with_same_feature_meta_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _new_zeros_with_same_feature_meta {
|
18 |
+
using schema = at::Tensor (const at::Tensor &, const at::Tensor &, int64_t);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_new_zeros_with_same_feature_meta")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_new_zeros_with_same_feature_meta(Tensor self, Tensor other, *, int self_num_batch_dims=0) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & self, const at::Tensor & other, int64_t self_num_batch_dims);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & other, int64_t self_num_batch_dims);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API _new_zeros_with_same_feature_meta_out {
|
29 |
+
using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, int64_t, at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_new_zeros_with_same_feature_meta")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_new_zeros_with_same_feature_meta.out(Tensor self, Tensor other, *, int self_num_batch_dims=0, Tensor(a!) out) -> Tensor(a!)")
|
35 |
+
static at::Tensor & call(const at::Tensor & self, const at::Tensor & other, int64_t self_num_batch_dims, at::Tensor & out);
|
36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & other, int64_t self_num_batch_dims, at::Tensor & out);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_pin_memory_cuda_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _pin_memory(const at::Tensor & self, c10::optional<at::Device> device=c10::nullopt);
|
21 |
+
|
22 |
+
} // namespace cuda
|
23 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_coo_tensor_unsafe_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _sparse_coo_tensor_unsafe(const at::Tensor & indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options={}, c10::optional<bool> is_coalesced=c10::nullopt);
|
21 |
+
TORCH_API at::Tensor _sparse_coo_tensor_unsafe(const at::Tensor & indices, const at::Tensor & values, at::IntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, c10::optional<bool> is_coalesced);
|
22 |
+
TORCH_API at::Tensor _sparse_coo_tensor_unsafe_symint(const at::Tensor & indices, const at::Tensor & values, c10::SymIntArrayRef size, at::TensorOptions options={}, c10::optional<bool> is_coalesced=c10::nullopt);
|
23 |
+
TORCH_API at::Tensor _sparse_coo_tensor_unsafe_symint(const at::Tensor & indices, const at::Tensor & values, c10::SymIntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, c10::optional<bool> is_coalesced);
|
24 |
+
|
25 |
+
} // namespace compositeimplicitautograd
|
26 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_coo_tensor_with_dims.h
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/_sparse_coo_tensor_with_dims_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::_sparse_coo_tensor_with_dims(int sparse_dim, int dense_dim, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor
|
26 |
+
inline at::Tensor _sparse_coo_tensor_with_dims(int64_t sparse_dim, int64_t dense_dim, at::IntArrayRef size, at::TensorOptions options) {
|
27 |
+
return at::_ops::_sparse_coo_tensor_with_dims::call(sparse_dim, dense_dim, size, c10::optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt());
|
28 |
+
}
|
29 |
+
// aten::_sparse_coo_tensor_with_dims(int sparse_dim, int dense_dim, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor
|
30 |
+
inline at::Tensor _sparse_coo_tensor_with_dims(int64_t sparse_dim, int64_t dense_dim, at::IntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory) {
|
31 |
+
return at::_ops::_sparse_coo_tensor_with_dims::call(sparse_dim, dense_dim, size, dtype, layout, device, pin_memory);
|
32 |
+
}
|
33 |
+
|
34 |
+
// aten::_sparse_coo_tensor_with_dims.out(int sparse_dim, int dense_dim, int[] size, *, Tensor(a!) out) -> Tensor(a!)
|
35 |
+
inline at::Tensor & _sparse_coo_tensor_with_dims_out(at::Tensor & out, int64_t sparse_dim, int64_t dense_dim, at::IntArrayRef size) {
|
36 |
+
return at::_ops::_sparse_coo_tensor_with_dims_out::call(sparse_dim, dense_dim, size, out);
|
37 |
+
}
|
38 |
+
// aten::_sparse_coo_tensor_with_dims.out(int sparse_dim, int dense_dim, int[] size, *, Tensor(a!) out) -> Tensor(a!)
|
39 |
+
inline at::Tensor & _sparse_coo_tensor_with_dims_outf(int64_t sparse_dim, int64_t dense_dim, at::IntArrayRef size, at::Tensor & out) {
|
40 |
+
return at::_ops::_sparse_coo_tensor_with_dims_out::call(sparse_dim, dense_dim, size, out);
|
41 |
+
}
|
42 |
+
|
43 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_coo_tensor_with_dims_native.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor & _sparse_coo_tensor_with_dims_out(int64_t sparse_dim, int64_t dense_dim, at::IntArrayRef size, at::Tensor & out);
|
20 |
+
TORCH_API at::Tensor new_with_dims_sparse(int64_t sparse_dim, int64_t dense_dim, at::IntArrayRef size, c10::optional<at::ScalarType> dtype={}, c10::optional<at::Layout> layout={}, c10::optional<at::Device> device={}, c10::optional<bool> pin_memory={});
|
21 |
+
} // namespace native
|
22 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_mm_reduce_impl_ops.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API _sparse_mm_reduce_impl {
|
18 |
+
using schema = ::std::tuple<at::Tensor,at::Tensor> (const at::Tensor &, const at::Tensor &, c10::string_view);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_sparse_mm_reduce_impl")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_sparse_mm_reduce_impl(Tensor self, Tensor other, str reduce) -> (Tensor, Tensor)")
|
24 |
+
static ::std::tuple<at::Tensor,at::Tensor> call(const at::Tensor & self, const at::Tensor & other, c10::string_view reduce);
|
25 |
+
static ::std::tuple<at::Tensor,at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & other, c10::string_view reduce);
|
26 |
+
};
|
27 |
+
|
28 |
+
}} // namespace at::_ops
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_to_sparse_csr_cuda_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _to_sparse_csr(const at::Tensor & self, c10::optional<int64_t> dense_dim=c10::nullopt);
|
21 |
+
|
22 |
+
} // namespace cuda
|
23 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bicubic2d_aa_compositeexplicitautogradnonfunctional_dispatch.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautogradnonfunctional {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor _upsample_bicubic2d_aa(const at::Tensor & self, at::IntArrayRef output_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
|
21 |
+
TORCH_API at::Tensor _upsample_bicubic2d_aa_symint(const at::Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
|
22 |
+
|
23 |
+
} // namespace compositeexplicitautogradnonfunctional
|
24 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_weight_norm_interface_cpu_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cpu {
|
19 |
+
|
20 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor> _weight_norm_interface(const at::Tensor & v, const at::Tensor & g, int64_t dim=0);
|
21 |
+
|
22 |
+
} // namespace cpu
|
23 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/angle_native.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor angle(const at::Tensor & self);
|
20 |
+
TORCH_API at::Tensor & angle_out(const at::Tensor & self, at::Tensor & out);
|
21 |
+
TORCH_API at::Tensor angle_sparse_csr(const at::Tensor & self);
|
22 |
+
TORCH_API at::Tensor & angle_sparse_csr_out(const at::Tensor & self, at::Tensor & out);
|
23 |
+
} // namespace native
|
24 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/batch_norm_gather_stats_native.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> batch_norm_gather_stats_out(const at::Tensor & input, const at::Tensor & mean, const at::Tensor & invstd, const c10::optional<at::Tensor> & running_mean, const c10::optional<at::Tensor> & running_var, double momentum, double eps, int64_t count, at::Tensor & out0, at::Tensor & out1);
|
20 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor> batch_norm_gather_stats_cuda(const at::Tensor & input, const at::Tensor & mean, const at::Tensor & invstd, const c10::optional<at::Tensor> & running_mean, const c10::optional<at::Tensor> & running_var, double momentum, double eps, int64_t count);
|
21 |
+
} // namespace native
|
22 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/bincount_native.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor & bincount_out(const at::Tensor & self, const c10::optional<at::Tensor> & weights, int64_t minlength, at::Tensor & out);
|
20 |
+
TORCH_API at::Tensor _bincount_cpu(const at::Tensor & self, const c10::optional<at::Tensor> & weights={}, int64_t minlength=0);
|
21 |
+
TORCH_API at::Tensor _bincount_cuda(const at::Tensor & self, const c10::optional<at::Tensor> & weights={}, int64_t minlength=0);
|
22 |
+
} // namespace native
|
23 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/bitwise_and_meta.h
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeMetaFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/TensorIterator.h>
|
13 |
+
#include <ATen/TensorMeta.h>
|
14 |
+
#include <tuple>
|
15 |
+
#include <vector>
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace meta {
|
19 |
+
|
20 |
+
struct TORCH_API structured_bitwise_and_Tensor : public TensorIteratorBase {
|
21 |
+
|
22 |
+
|
23 |
+
void meta(const at::Tensor & self, const at::Tensor & other);
|
24 |
+
};
|
25 |
+
|
26 |
+
} // namespace native
|
27 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/conv2d_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor conv2d(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias={}, at::IntArrayRef stride=1, at::IntArrayRef padding=0, at::IntArrayRef dilation=1, int64_t groups=1);
|
21 |
+
TORCH_API at::Tensor conv2d_symint(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias={}, c10::SymIntArrayRef stride=c10::SymInt(1), c10::SymIntArrayRef padding=c10::SymInt(0), c10::SymIntArrayRef dilation=c10::SymInt(1), c10::SymInt groups=1);
|
22 |
+
TORCH_API at::Tensor conv2d(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, c10::string_view padding, at::IntArrayRef dilation=1, int64_t groups=1);
|
23 |
+
TORCH_API at::Tensor conv2d_symint(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::string_view padding, c10::SymIntArrayRef dilation=c10::SymInt(1), c10::SymInt groups=1);
|
24 |
+
|
25 |
+
} // namespace compositeimplicitautograd
|
26 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/crow_indices_copy.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/crow_indices_copy_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::crow_indices_copy(Tensor self) -> Tensor
|
26 |
+
inline at::Tensor crow_indices_copy(const at::Tensor & self) {
|
27 |
+
return at::_ops::crow_indices_copy::call(self);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::crow_indices_copy.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
31 |
+
inline at::Tensor & crow_indices_copy_out(at::Tensor & out, const at::Tensor & self) {
|
32 |
+
return at::_ops::crow_indices_copy_out::call(self, out);
|
33 |
+
}
|
34 |
+
// aten::crow_indices_copy.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
35 |
+
inline at::Tensor & crow_indices_copy_outf(const at::Tensor & self, at::Tensor & out) {
|
36 |
+
return at::_ops::crow_indices_copy_out::call(self, out);
|
37 |
+
}
|
38 |
+
|
39 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/dequantize.h
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/dequantize_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::dequantize.self(Tensor self) -> Tensor
|
26 |
+
inline at::Tensor dequantize(const at::Tensor & self) {
|
27 |
+
return at::_ops::dequantize_self::call(self);
|
28 |
+
}
|
29 |
+
|
30 |
+
// aten::dequantize.tensors(Tensor[] tensors) -> Tensor[]
|
31 |
+
inline ::std::vector<at::Tensor> dequantize(at::TensorList tensors) {
|
32 |
+
return at::_ops::dequantize_tensors::call(tensors);
|
33 |
+
}
|
34 |
+
|
35 |
+
// aten::dequantize.self_out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
36 |
+
inline at::Tensor & dequantize_out(at::Tensor & out, const at::Tensor & self) {
|
37 |
+
return at::_ops::dequantize_self_out::call(self, out);
|
38 |
+
}
|
39 |
+
// aten::dequantize.self_out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
40 |
+
inline at::Tensor & dequantize_outf(const at::Tensor & self, at::Tensor & out) {
|
41 |
+
return at::_ops::dequantize_self_out::call(self, out);
|
42 |
+
}
|
43 |
+
|
44 |
+
// aten::dequantize.tensors_out(Tensor[] tensors, *, Tensor(a!)[] out) -> ()
|
45 |
+
inline void dequantize_out(at::TensorList out, at::TensorList tensors) {
|
46 |
+
return at::_ops::dequantize_tensors_out::call(tensors, out);
|
47 |
+
}
|
48 |
+
// aten::dequantize.tensors_out(Tensor[] tensors, *, Tensor(a!)[] out) -> ()
|
49 |
+
inline void dequantize_outf(at::TensorList tensors, at::TensorList out) {
|
50 |
+
return at::_ops::dequantize_tensors_out::call(tensors, out);
|
51 |
+
}
|
52 |
+
|
53 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/dist_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor dist(const at::Tensor & self, const at::Tensor & other, const at::Scalar & p=2);
|
21 |
+
TORCH_API at::Tensor & dist_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & other, const at::Scalar & p=2);
|
22 |
+
TORCH_API at::Tensor & dist_outf(const at::Tensor & self, const at::Tensor & other, const at::Scalar & p, at::Tensor & out);
|
23 |
+
|
24 |
+
} // namespace compositeexplicitautograd
|
25 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/embedding_renorm_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor embedding_renorm(const at::Tensor & self, const at::Tensor & indices, double max_norm, double norm_type);
|
21 |
+
TORCH_API at::Tensor & embedding_renorm_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & indices, double max_norm, double norm_type);
|
22 |
+
TORCH_API at::Tensor & embedding_renorm_outf(const at::Tensor & self, const at::Tensor & indices, double max_norm, double norm_type, at::Tensor & out);
|
23 |
+
|
24 |
+
} // namespace compositeexplicitautograd
|
25 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/empty_quantized_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API empty_quantized {
|
18 |
+
using schema = at::Tensor (at::IntArrayRef, const at::Tensor &, c10::optional<at::ScalarType>, c10::optional<at::Layout>, c10::optional<at::Device>, c10::optional<bool>, c10::optional<at::MemoryFormat>);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::empty_quantized")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "empty_quantized(int[] size, Tensor qtensor, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor")
|
24 |
+
static at::Tensor call(at::IntArrayRef size, const at::Tensor & qtensor, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, c10::optional<at::MemoryFormat> memory_format);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, at::IntArrayRef size, const at::Tensor & qtensor, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, c10::optional<at::MemoryFormat> memory_format);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API empty_quantized_out {
|
29 |
+
using schema = at::Tensor & (at::IntArrayRef, const at::Tensor &, c10::optional<at::MemoryFormat>, at::Tensor &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::empty_quantized")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "empty_quantized.out(int[] size, Tensor qtensor, *, MemoryFormat? memory_format=None, Tensor(a!) out) -> Tensor(a!)")
|
35 |
+
static at::Tensor & call(at::IntArrayRef size, const at::Tensor & qtensor, c10::optional<at::MemoryFormat> memory_format, at::Tensor & out);
|
36 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::IntArrayRef size, const at::Tensor & qtensor, c10::optional<at::MemoryFormat> memory_format, at::Tensor & out);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/empty_strided.h
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Function.h
|
4 |
+
|
5 |
+
#include <ATen/Context.h>
|
6 |
+
#include <ATen/DeviceGuard.h>
|
7 |
+
#include <ATen/TensorUtils.h>
|
8 |
+
#include <ATen/TracerMode.h>
|
9 |
+
#include <ATen/core/Generator.h>
|
10 |
+
#include <ATen/core/Reduction.h>
|
11 |
+
#include <ATen/core/Tensor.h>
|
12 |
+
#include <c10/core/Scalar.h>
|
13 |
+
#include <c10/core/Storage.h>
|
14 |
+
#include <c10/core/TensorOptions.h>
|
15 |
+
#include <c10/util/Deprecated.h>
|
16 |
+
#include <c10/util/Optional.h>
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
#include <ATen/ops/empty_strided_ops.h>
|
21 |
+
|
22 |
+
namespace at {
|
23 |
+
|
24 |
+
|
25 |
+
// aten::empty_strided(SymInt[] size, SymInt[] stride, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
26 |
+
inline at::Tensor empty_strided(at::IntArrayRef size, at::IntArrayRef stride, at::TensorOptions options={}) {
|
27 |
+
return at::_ops::empty_strided::call(c10::fromIntArrayRefSlow(size), c10::fromIntArrayRefSlow(stride), c10::optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt());
|
28 |
+
}
|
29 |
+
namespace symint {
|
30 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
31 |
+
at::Tensor empty_strided(at::IntArrayRef size, at::IntArrayRef stride, at::TensorOptions options={}) {
|
32 |
+
return at::_ops::empty_strided::call(c10::fromIntArrayRefSlow(size), c10::fromIntArrayRefSlow(stride), c10::optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt());
|
33 |
+
}
|
34 |
+
}
|
35 |
+
|
36 |
+
// aten::empty_strided(SymInt[] size, SymInt[] stride, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
37 |
+
inline at::Tensor empty_strided(at::IntArrayRef size, at::IntArrayRef stride, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory) {
|
38 |
+
return at::_ops::empty_strided::call(c10::fromIntArrayRefSlow(size), c10::fromIntArrayRefSlow(stride), dtype, layout, device, pin_memory);
|
39 |
+
}
|
40 |
+
namespace symint {
|
41 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
42 |
+
at::Tensor empty_strided(at::IntArrayRef size, at::IntArrayRef stride, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory) {
|
43 |
+
return at::_ops::empty_strided::call(c10::fromIntArrayRefSlow(size), c10::fromIntArrayRefSlow(stride), dtype, layout, device, pin_memory);
|
44 |
+
}
|
45 |
+
}
|
46 |
+
|
47 |
+
// aten::empty_strided(SymInt[] size, SymInt[] stride, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
48 |
+
inline at::Tensor empty_strided_symint(c10::SymIntArrayRef size, c10::SymIntArrayRef stride, at::TensorOptions options={}) {
|
49 |
+
return at::_ops::empty_strided::call(size, stride, c10::optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt());
|
50 |
+
}
|
51 |
+
namespace symint {
|
52 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
53 |
+
at::Tensor empty_strided(c10::SymIntArrayRef size, c10::SymIntArrayRef stride, at::TensorOptions options={}) {
|
54 |
+
return at::_ops::empty_strided::call(size, stride, c10::optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt());
|
55 |
+
}
|
56 |
+
}
|
57 |
+
|
58 |
+
// aten::empty_strided(SymInt[] size, SymInt[] stride, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
59 |
+
inline at::Tensor empty_strided_symint(c10::SymIntArrayRef size, c10::SymIntArrayRef stride, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory) {
|
60 |
+
return at::_ops::empty_strided::call(size, stride, dtype, layout, device, pin_memory);
|
61 |
+
}
|
62 |
+
namespace symint {
|
63 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
64 |
+
at::Tensor empty_strided(c10::SymIntArrayRef size, c10::SymIntArrayRef stride, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory) {
|
65 |
+
return at::_ops::empty_strided::call(size, stride, dtype, layout, device, pin_memory);
|
66 |
+
}
|
67 |
+
}
|
68 |
+
|
69 |
+
// aten::empty_strided.out(SymInt[] size, SymInt[] stride, *, Tensor(a!) out) -> Tensor(a!)
|
70 |
+
inline at::Tensor & empty_strided_out(at::Tensor & out, at::IntArrayRef size, at::IntArrayRef stride) {
|
71 |
+
return at::_ops::empty_strided_out::call(c10::fromIntArrayRefSlow(size), c10::fromIntArrayRefSlow(stride), out);
|
72 |
+
}
|
73 |
+
namespace symint {
|
74 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
75 |
+
at::Tensor & empty_strided_out(at::Tensor & out, at::IntArrayRef size, at::IntArrayRef stride) {
|
76 |
+
return at::_ops::empty_strided_out::call(c10::fromIntArrayRefSlow(size), c10::fromIntArrayRefSlow(stride), out);
|
77 |
+
}
|
78 |
+
}
|
79 |
+
|
80 |
+
// aten::empty_strided.out(SymInt[] size, SymInt[] stride, *, Tensor(a!) out) -> Tensor(a!)
|
81 |
+
inline at::Tensor & empty_strided_outf(at::IntArrayRef size, at::IntArrayRef stride, at::Tensor & out) {
|
82 |
+
return at::_ops::empty_strided_out::call(c10::fromIntArrayRefSlow(size), c10::fromIntArrayRefSlow(stride), out);
|
83 |
+
}
|
84 |
+
namespace symint {
|
85 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
|
86 |
+
at::Tensor & empty_strided_outf(at::IntArrayRef size, at::IntArrayRef stride, at::Tensor & out) {
|
87 |
+
return at::_ops::empty_strided_out::call(c10::fromIntArrayRefSlow(size), c10::fromIntArrayRefSlow(stride), out);
|
88 |
+
}
|
89 |
+
}
|
90 |
+
|
91 |
+
// aten::empty_strided.out(SymInt[] size, SymInt[] stride, *, Tensor(a!) out) -> Tensor(a!)
|
92 |
+
inline at::Tensor & empty_strided_symint_out(at::Tensor & out, c10::SymIntArrayRef size, c10::SymIntArrayRef stride) {
|
93 |
+
return at::_ops::empty_strided_out::call(size, stride, out);
|
94 |
+
}
|
95 |
+
namespace symint {
|
96 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
97 |
+
at::Tensor & empty_strided_out(at::Tensor & out, c10::SymIntArrayRef size, c10::SymIntArrayRef stride) {
|
98 |
+
return at::_ops::empty_strided_out::call(size, stride, out);
|
99 |
+
}
|
100 |
+
}
|
101 |
+
|
102 |
+
// aten::empty_strided.out(SymInt[] size, SymInt[] stride, *, Tensor(a!) out) -> Tensor(a!)
|
103 |
+
inline at::Tensor & empty_strided_symint_outf(c10::SymIntArrayRef size, c10::SymIntArrayRef stride, at::Tensor & out) {
|
104 |
+
return at::_ops::empty_strided_out::call(size, stride, out);
|
105 |
+
}
|
106 |
+
namespace symint {
|
107 |
+
template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
|
108 |
+
at::Tensor & empty_strided_outf(c10::SymIntArrayRef size, c10::SymIntArrayRef stride, at::Tensor & out) {
|
109 |
+
return at::_ops::empty_strided_out::call(size, stride, out);
|
110 |
+
}
|
111 |
+
}
|
112 |
+
|
113 |
+
}
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fft_rfftn_native.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API at::Tensor fft_rfftn_symint(const at::Tensor & self, at::OptionalSymIntArrayRef s=c10::nullopt, at::OptionalIntArrayRef dim=c10::nullopt, c10::optional<c10::string_view> norm=c10::nullopt);
|
20 |
+
TORCH_API at::Tensor & fft_rfftn_symint_out(const at::Tensor & self, at::OptionalSymIntArrayRef s, at::OptionalIntArrayRef dim, c10::optional<c10::string_view> norm, at::Tensor & out);
|
21 |
+
} // namespace native
|
22 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/floor_meta.h
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeMetaFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/TensorIterator.h>
|
13 |
+
#include <ATen/TensorMeta.h>
|
14 |
+
#include <tuple>
|
15 |
+
#include <vector>
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace meta {
|
19 |
+
|
20 |
+
struct TORCH_API structured_floor : public TensorIteratorBase {
|
21 |
+
|
22 |
+
|
23 |
+
void meta(const at::Tensor & self);
|
24 |
+
};
|
25 |
+
|
26 |
+
} // namespace native
|
27 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fmax_meta_dispatch.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace meta {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor fmax(const at::Tensor & self, const at::Tensor & other);
|
21 |
+
TORCH_API at::Tensor & fmax_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & other);
|
22 |
+
TORCH_API at::Tensor & fmax_outf(const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
|
23 |
+
|
24 |
+
} // namespace meta
|
25 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/frexp_compositeexplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeexplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API ::std::tuple<at::Tensor,at::Tensor> frexp(const at::Tensor & self);
|
21 |
+
|
22 |
+
} // namespace compositeexplicitautograd
|
23 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fused_moving_avg_obs_fake_quant_ops.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API fused_moving_avg_obs_fake_quant {
|
18 |
+
using schema = at::Tensor (const at::Tensor &, const at::Tensor &, const at::Tensor &, at::Tensor &, at::Tensor &, at::Tensor &, at::Tensor &, double, int64_t, int64_t, int64_t, bool, bool);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::fused_moving_avg_obs_fake_quant")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "fused_moving_avg_obs_fake_quant(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False) -> Tensor")
|
24 |
+
static at::Tensor call(const at::Tensor & self, const at::Tensor & observer_on, const at::Tensor & fake_quant_on, at::Tensor & running_min, at::Tensor & running_max, at::Tensor & scale, at::Tensor & zero_point, double averaging_const, int64_t quant_min, int64_t quant_max, int64_t ch_axis, bool per_row_fake_quant, bool symmetric_quant);
|
25 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & observer_on, const at::Tensor & fake_quant_on, at::Tensor & running_min, at::Tensor & running_max, at::Tensor & scale, at::Tensor & zero_point, double averaging_const, int64_t quant_min, int64_t quant_max, int64_t ch_axis, bool per_row_fake_quant, bool symmetric_quant);
|
26 |
+
};
|
27 |
+
|
28 |
+
}} // namespace at::_ops
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/gather_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor gather(const at::Tensor & self, at::Dimname dim, const at::Tensor & index, bool sparse_grad=false);
|
21 |
+
TORCH_API at::Tensor & gather_out(at::Tensor & out, const at::Tensor & self, at::Dimname dim, const at::Tensor & index, bool sparse_grad=false);
|
22 |
+
TORCH_API at::Tensor & gather_outf(const at::Tensor & self, at::Dimname dim, const at::Tensor & index, bool sparse_grad, at::Tensor & out);
|
23 |
+
|
24 |
+
} // namespace compositeimplicitautograd
|
25 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/hardshrink_backward_native.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
#include <ATen/ops/hardshrink_backward_meta.h>
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
struct TORCH_API structured_hardshrink_backward_out : public at::meta::structured_hardshrink_backward {
|
20 |
+
void impl(const at::Tensor & grad_out, const at::Tensor & self, const at::Scalar & lambd, const at::Tensor & grad_input);
|
21 |
+
};
|
22 |
+
} // namespace native
|
23 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/hardtanh_backward_ops.h
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from Operator.h
|
4 |
+
|
5 |
+
#include <tuple>
|
6 |
+
#include <vector>
|
7 |
+
|
8 |
+
// Forward declarations of any types needed in the operator signatures.
|
9 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
10 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
11 |
+
#include <ATen/core/ATen_fwd.h>
|
12 |
+
|
13 |
+
namespace at {
|
14 |
+
namespace _ops {
|
15 |
+
|
16 |
+
|
17 |
+
struct TORCH_API hardtanh_backward_grad_input {
|
18 |
+
using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, const at::Scalar &, const at::Scalar &, at::Tensor &);
|
19 |
+
using ptr_schema = schema*;
|
20 |
+
// See Note [static constexpr char* members for windows NVCC]
|
21 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::hardtanh_backward")
|
22 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "grad_input")
|
23 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "hardtanh_backward.grad_input(Tensor grad_output, Tensor self, Scalar min_val, Scalar max_val, *, Tensor(a!) grad_input) -> Tensor(a!)")
|
24 |
+
static at::Tensor & call(const at::Tensor & grad_output, const at::Tensor & self, const at::Scalar & min_val, const at::Scalar & max_val, at::Tensor & grad_input);
|
25 |
+
static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & grad_output, const at::Tensor & self, const at::Scalar & min_val, const at::Scalar & max_val, at::Tensor & grad_input);
|
26 |
+
};
|
27 |
+
|
28 |
+
struct TORCH_API hardtanh_backward {
|
29 |
+
using schema = at::Tensor (const at::Tensor &, const at::Tensor &, const at::Scalar &, const at::Scalar &);
|
30 |
+
using ptr_schema = schema*;
|
31 |
+
// See Note [static constexpr char* members for windows NVCC]
|
32 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::hardtanh_backward")
|
33 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
|
34 |
+
STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "hardtanh_backward(Tensor grad_output, Tensor self, Scalar min_val, Scalar max_val) -> Tensor")
|
35 |
+
static at::Tensor call(const at::Tensor & grad_output, const at::Tensor & self, const at::Scalar & min_val, const at::Scalar & max_val);
|
36 |
+
static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & grad_output, const at::Tensor & self, const at::Scalar & min_val, const at::Scalar & max_val);
|
37 |
+
};
|
38 |
+
|
39 |
+
}} // namespace at::_ops
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/hypot_meta.h
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeMetaFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/TensorIterator.h>
|
13 |
+
#include <ATen/TensorMeta.h>
|
14 |
+
#include <tuple>
|
15 |
+
#include <vector>
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace meta {
|
19 |
+
|
20 |
+
struct TORCH_API structured_hypot : public TensorIteratorBase {
|
21 |
+
|
22 |
+
|
23 |
+
void meta(const at::Tensor & self, const at::Tensor & other);
|
24 |
+
};
|
25 |
+
|
26 |
+
} // namespace native
|
27 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/is_floating_point_compositeimplicitautograd_dispatch.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace compositeimplicitautograd {
|
19 |
+
|
20 |
+
TORCH_API bool is_floating_point(const at::Tensor & self);
|
21 |
+
|
22 |
+
} // namespace compositeimplicitautograd
|
23 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/is_same_size_native.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// @generated by torchgen/gen.py from NativeFunction.h
|
4 |
+
|
5 |
+
#include <c10/core/Scalar.h>
|
6 |
+
#include <c10/core/Storage.h>
|
7 |
+
#include <c10/core/TensorOptions.h>
|
8 |
+
#include <c10/util/Deprecated.h>
|
9 |
+
#include <c10/util/Optional.h>
|
10 |
+
#include <c10/core/QScheme.h>
|
11 |
+
#include <ATen/core/Reduction.h>
|
12 |
+
#include <ATen/core/Tensor.h>
|
13 |
+
#include <tuple>
|
14 |
+
#include <vector>
|
15 |
+
|
16 |
+
|
17 |
+
namespace at {
|
18 |
+
namespace native {
|
19 |
+
TORCH_API bool is_same_size(const at::Tensor & self, const at::Tensor & other);
|
20 |
+
TORCH_API bool nested_is_same_size(const at::Tensor & self, const at::Tensor & other);
|
21 |
+
} // namespace native
|
22 |
+
} // namespace at
|
venv/lib/python3.10/site-packages/torch/include/ATen/ops/isposinf_cuda_dispatch.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
// @generated by torchgen/gen.py from DispatchKeyFunction.h
|
3 |
+
|
4 |
+
// NB: The implementing C++ file is RegisterDispatchKey.cpp
|
5 |
+
|
6 |
+
// The only #includes we need are for custom classes that have defaults in the C++ API
|
7 |
+
#include <c10/core/MemoryFormat.h>
|
8 |
+
#include <c10/core/Scalar.h>
|
9 |
+
#include <ATen/core/Reduction.h>
|
10 |
+
|
11 |
+
// Forward declarations of any types needed in the operator signatures.
|
12 |
+
// We can't directly include these classes because it will cause circular include dependencies.
|
13 |
+
// This file is included by TensorBody.h, which defines the Tensor class.
|
14 |
+
#include <ATen/core/ATen_fwd.h>
|
15 |
+
|
16 |
+
namespace at {
|
17 |
+
|
18 |
+
namespace cuda {
|
19 |
+
|
20 |
+
TORCH_API at::Tensor isposinf(const at::Tensor & self);
|
21 |
+
TORCH_API at::Tensor & isposinf_out(at::Tensor & out, const at::Tensor & self);
|
22 |
+
TORCH_API at::Tensor & isposinf_outf(const at::Tensor & self, at::Tensor & out);
|
23 |
+
|
24 |
+
} // namespace cuda
|
25 |
+
} // namespace at
|