applied-ai-018 commited on
Commit
969af29
·
verified ·
1 Parent(s): 9152724

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step20/zero/21.attention.query_key_value.weight/exp_avg_sq.pt +3 -0
  2. ckpts/universal/global_step20/zero/25.attention.dense.weight/fp32.pt +3 -0
  3. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_cast_Half_native.h +21 -0
  4. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_cudnn_rnn_flatten_weight.h +91 -0
  5. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_dirichlet_grad_native.h +23 -0
  6. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_embedding_bag_cuda_dispatch.h +23 -0
  7. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_embedding_bag_dense_backward.h +91 -0
  8. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_fft_c2r.h +91 -0
  9. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_flash_attention_forward_native.h +21 -0
  10. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_acos_cpu_dispatch.h +24 -0
  11. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_copy_ops.h +50 -0
  12. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_reciprocal.h +44 -0
  13. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_functional_assert_async_cpu_dispatch.h +23 -0
  14. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_fused_adam_ops.h +83 -0
  15. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_int_mm_native.h +22 -0
  16. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_log_softmax_ops.h +39 -0
  17. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_make_per_tensor_quantized_tensor.h +39 -0
  18. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_native_multi_head_attention_native.h +23 -0
  19. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_new_zeros_with_same_feature_meta_ops.h +39 -0
  20. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_pin_memory_cuda_dispatch.h +23 -0
  21. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_coo_tensor_unsafe_compositeimplicitautograd_dispatch.h +26 -0
  22. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_coo_tensor_with_dims.h +43 -0
  23. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_coo_tensor_with_dims_native.h +22 -0
  24. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_mm_reduce_impl_ops.h +28 -0
  25. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_to_sparse_csr_cuda_dispatch.h +23 -0
  26. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bicubic2d_aa_compositeexplicitautogradnonfunctional_dispatch.h +24 -0
  27. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_weight_norm_interface_cpu_dispatch.h +23 -0
  28. venv/lib/python3.10/site-packages/torch/include/ATen/ops/angle_native.h +24 -0
  29. venv/lib/python3.10/site-packages/torch/include/ATen/ops/batch_norm_gather_stats_native.h +22 -0
  30. venv/lib/python3.10/site-packages/torch/include/ATen/ops/bincount_native.h +23 -0
  31. venv/lib/python3.10/site-packages/torch/include/ATen/ops/bitwise_and_meta.h +27 -0
  32. venv/lib/python3.10/site-packages/torch/include/ATen/ops/conv2d_compositeimplicitautograd_dispatch.h +26 -0
  33. venv/lib/python3.10/site-packages/torch/include/ATen/ops/crow_indices_copy.h +39 -0
  34. venv/lib/python3.10/site-packages/torch/include/ATen/ops/dequantize.h +53 -0
  35. venv/lib/python3.10/site-packages/torch/include/ATen/ops/dist_compositeexplicitautograd_dispatch.h +25 -0
  36. venv/lib/python3.10/site-packages/torch/include/ATen/ops/embedding_renorm_compositeexplicitautograd_dispatch.h +25 -0
  37. venv/lib/python3.10/site-packages/torch/include/ATen/ops/empty_quantized_ops.h +39 -0
  38. venv/lib/python3.10/site-packages/torch/include/ATen/ops/empty_strided.h +113 -0
  39. venv/lib/python3.10/site-packages/torch/include/ATen/ops/fft_rfftn_native.h +22 -0
  40. venv/lib/python3.10/site-packages/torch/include/ATen/ops/floor_meta.h +27 -0
  41. venv/lib/python3.10/site-packages/torch/include/ATen/ops/fmax_meta_dispatch.h +25 -0
  42. venv/lib/python3.10/site-packages/torch/include/ATen/ops/frexp_compositeexplicitautograd_dispatch.h +23 -0
  43. venv/lib/python3.10/site-packages/torch/include/ATen/ops/fused_moving_avg_obs_fake_quant_ops.h +28 -0
  44. venv/lib/python3.10/site-packages/torch/include/ATen/ops/gather_compositeimplicitautograd_dispatch.h +25 -0
  45. venv/lib/python3.10/site-packages/torch/include/ATen/ops/hardshrink_backward_native.h +23 -0
  46. venv/lib/python3.10/site-packages/torch/include/ATen/ops/hardtanh_backward_ops.h +39 -0
  47. venv/lib/python3.10/site-packages/torch/include/ATen/ops/hypot_meta.h +27 -0
  48. venv/lib/python3.10/site-packages/torch/include/ATen/ops/is_floating_point_compositeimplicitautograd_dispatch.h +23 -0
  49. venv/lib/python3.10/site-packages/torch/include/ATen/ops/is_same_size_native.h +22 -0
  50. venv/lib/python3.10/site-packages/torch/include/ATen/ops/isposinf_cuda_dispatch.h +25 -0
ckpts/universal/global_step20/zero/21.attention.query_key_value.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ff64ed764b2e031df40ebcab57201b67bfeb20b8ff1493835f933e05d7ac187
3
+ size 50332843
ckpts/universal/global_step20/zero/25.attention.dense.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e6f9024dba19f02b2ff6b589638009b02d5b40b54cc27b675f92fcc7edd8785
3
+ size 16778317
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_cast_Half_native.h ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor _cast_Half(const at::Tensor & self, bool non_blocking=false);
20
+ } // namespace native
21
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_cudnn_rnn_flatten_weight.h ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_cudnn_rnn_flatten_weight_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_cudnn_rnn_flatten_weight(Tensor[] weight_arr, int weight_stride0, SymInt input_size, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, bool bidirectional) -> Tensor
26
+ inline at::Tensor _cudnn_rnn_flatten_weight(at::TensorList weight_arr, int64_t weight_stride0, int64_t input_size, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, bool bidirectional) {
27
+ return at::_ops::_cudnn_rnn_flatten_weight::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional);
28
+ }
29
+ namespace symint {
30
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
31
+ at::Tensor _cudnn_rnn_flatten_weight(at::TensorList weight_arr, int64_t weight_stride0, int64_t input_size, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, bool bidirectional) {
32
+ return at::_ops::_cudnn_rnn_flatten_weight::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional);
33
+ }
34
+ }
35
+
36
+ // aten::_cudnn_rnn_flatten_weight(Tensor[] weight_arr, int weight_stride0, SymInt input_size, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, bool bidirectional) -> Tensor
37
+ inline at::Tensor _cudnn_rnn_flatten_weight_symint(at::TensorList weight_arr, int64_t weight_stride0, c10::SymInt input_size, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, bool bidirectional) {
38
+ return at::_ops::_cudnn_rnn_flatten_weight::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional);
39
+ }
40
+ namespace symint {
41
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
42
+ at::Tensor _cudnn_rnn_flatten_weight(at::TensorList weight_arr, int64_t weight_stride0, c10::SymInt input_size, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, bool bidirectional) {
43
+ return at::_ops::_cudnn_rnn_flatten_weight::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional);
44
+ }
45
+ }
46
+
47
+ // aten::_cudnn_rnn_flatten_weight.out(Tensor[] weight_arr, int weight_stride0, SymInt input_size, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, bool bidirectional, *, Tensor(a!) out) -> Tensor(a!)
48
+ inline at::Tensor & _cudnn_rnn_flatten_weight_out(at::Tensor & out, at::TensorList weight_arr, int64_t weight_stride0, int64_t input_size, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, bool bidirectional) {
49
+ return at::_ops::_cudnn_rnn_flatten_weight_out::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional, out);
50
+ }
51
+ namespace symint {
52
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
53
+ at::Tensor & _cudnn_rnn_flatten_weight_out(at::Tensor & out, at::TensorList weight_arr, int64_t weight_stride0, int64_t input_size, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, bool bidirectional) {
54
+ return at::_ops::_cudnn_rnn_flatten_weight_out::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional, out);
55
+ }
56
+ }
57
+
58
+ // aten::_cudnn_rnn_flatten_weight.out(Tensor[] weight_arr, int weight_stride0, SymInt input_size, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, bool bidirectional, *, Tensor(a!) out) -> Tensor(a!)
59
+ inline at::Tensor & _cudnn_rnn_flatten_weight_outf(at::TensorList weight_arr, int64_t weight_stride0, int64_t input_size, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, bool bidirectional, at::Tensor & out) {
60
+ return at::_ops::_cudnn_rnn_flatten_weight_out::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional, out);
61
+ }
62
+ namespace symint {
63
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
64
+ at::Tensor & _cudnn_rnn_flatten_weight_outf(at::TensorList weight_arr, int64_t weight_stride0, int64_t input_size, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, bool bidirectional, at::Tensor & out) {
65
+ return at::_ops::_cudnn_rnn_flatten_weight_out::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional, out);
66
+ }
67
+ }
68
+
69
+ // aten::_cudnn_rnn_flatten_weight.out(Tensor[] weight_arr, int weight_stride0, SymInt input_size, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, bool bidirectional, *, Tensor(a!) out) -> Tensor(a!)
70
+ inline at::Tensor & _cudnn_rnn_flatten_weight_symint_out(at::Tensor & out, at::TensorList weight_arr, int64_t weight_stride0, c10::SymInt input_size, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, bool bidirectional) {
71
+ return at::_ops::_cudnn_rnn_flatten_weight_out::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional, out);
72
+ }
73
+ namespace symint {
74
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
75
+ at::Tensor & _cudnn_rnn_flatten_weight_out(at::Tensor & out, at::TensorList weight_arr, int64_t weight_stride0, c10::SymInt input_size, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, bool bidirectional) {
76
+ return at::_ops::_cudnn_rnn_flatten_weight_out::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional, out);
77
+ }
78
+ }
79
+
80
+ // aten::_cudnn_rnn_flatten_weight.out(Tensor[] weight_arr, int weight_stride0, SymInt input_size, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, bool bidirectional, *, Tensor(a!) out) -> Tensor(a!)
81
+ inline at::Tensor & _cudnn_rnn_flatten_weight_symint_outf(at::TensorList weight_arr, int64_t weight_stride0, c10::SymInt input_size, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, bool bidirectional, at::Tensor & out) {
82
+ return at::_ops::_cudnn_rnn_flatten_weight_out::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional, out);
83
+ }
84
+ namespace symint {
85
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
86
+ at::Tensor & _cudnn_rnn_flatten_weight_outf(at::TensorList weight_arr, int64_t weight_stride0, c10::SymInt input_size, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, bool bidirectional, at::Tensor & out) {
87
+ return at::_ops::_cudnn_rnn_flatten_weight_out::call(weight_arr, weight_stride0, input_size, mode, hidden_size, proj_size, num_layers, batch_first, bidirectional, out);
88
+ }
89
+ }
90
+
91
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_dirichlet_grad_native.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor & _dirichlet_grad_out(const at::Tensor & x, const at::Tensor & alpha, const at::Tensor & total, at::Tensor & out);
20
+ TORCH_API at::Tensor _dirichlet_grad_cpu(const at::Tensor & x, const at::Tensor & alpha, const at::Tensor & total);
21
+ TORCH_API at::Tensor _dirichlet_grad_cuda(const at::Tensor & x, const at::Tensor & alpha, const at::Tensor & total);
22
+ } // namespace native
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_embedding_bag_cuda_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor> _embedding_bag(const at::Tensor & weight, const at::Tensor & indices, const at::Tensor & offsets, bool scale_grad_by_freq=false, int64_t mode=0, bool sparse=false, const c10::optional<at::Tensor> & per_sample_weights={}, bool include_last_offset=false, int64_t padding_idx=-1);
21
+
22
+ } // namespace cuda
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_embedding_bag_dense_backward.h ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_embedding_bag_dense_backward_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_embedding_bag_dense_backward(Tensor grad, Tensor indices, Tensor offset2bag, Tensor bag_size, Tensor maximum_indices, SymInt num_weights, bool scale_grad_by_freq, int mode, Tensor? per_sample_weights, int padding_idx=-1) -> Tensor
26
+ inline at::Tensor _embedding_bag_dense_backward(const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offset2bag, const at::Tensor & bag_size, const at::Tensor & maximum_indices, int64_t num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx=-1) {
27
+ return at::_ops::_embedding_bag_dense_backward::call(grad, indices, offset2bag, bag_size, maximum_indices, num_weights, scale_grad_by_freq, mode, per_sample_weights, padding_idx);
28
+ }
29
+ namespace symint {
30
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
31
+ at::Tensor _embedding_bag_dense_backward(const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offset2bag, const at::Tensor & bag_size, const at::Tensor & maximum_indices, int64_t num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx=-1) {
32
+ return at::_ops::_embedding_bag_dense_backward::call(grad, indices, offset2bag, bag_size, maximum_indices, num_weights, scale_grad_by_freq, mode, per_sample_weights, padding_idx);
33
+ }
34
+ }
35
+
36
+ // aten::_embedding_bag_dense_backward(Tensor grad, Tensor indices, Tensor offset2bag, Tensor bag_size, Tensor maximum_indices, SymInt num_weights, bool scale_grad_by_freq, int mode, Tensor? per_sample_weights, int padding_idx=-1) -> Tensor
37
+ inline at::Tensor _embedding_bag_dense_backward_symint(const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offset2bag, const at::Tensor & bag_size, const at::Tensor & maximum_indices, c10::SymInt num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx=-1) {
38
+ return at::_ops::_embedding_bag_dense_backward::call(grad, indices, offset2bag, bag_size, maximum_indices, num_weights, scale_grad_by_freq, mode, per_sample_weights, padding_idx);
39
+ }
40
+ namespace symint {
41
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
42
+ at::Tensor _embedding_bag_dense_backward(const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offset2bag, const at::Tensor & bag_size, const at::Tensor & maximum_indices, c10::SymInt num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx=-1) {
43
+ return at::_ops::_embedding_bag_dense_backward::call(grad, indices, offset2bag, bag_size, maximum_indices, num_weights, scale_grad_by_freq, mode, per_sample_weights, padding_idx);
44
+ }
45
+ }
46
+
47
+ // aten::_embedding_bag_dense_backward.out(Tensor grad, Tensor indices, Tensor offset2bag, Tensor bag_size, Tensor maximum_indices, SymInt num_weights, bool scale_grad_by_freq, int mode, Tensor? per_sample_weights, int padding_idx=-1, *, Tensor(a!) out) -> Tensor(a!)
48
+ inline at::Tensor & _embedding_bag_dense_backward_out(at::Tensor & out, const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offset2bag, const at::Tensor & bag_size, const at::Tensor & maximum_indices, int64_t num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx=-1) {
49
+ return at::_ops::_embedding_bag_dense_backward_out::call(grad, indices, offset2bag, bag_size, maximum_indices, num_weights, scale_grad_by_freq, mode, per_sample_weights, padding_idx, out);
50
+ }
51
+ namespace symint {
52
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
53
+ at::Tensor & _embedding_bag_dense_backward_out(at::Tensor & out, const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offset2bag, const at::Tensor & bag_size, const at::Tensor & maximum_indices, int64_t num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx=-1) {
54
+ return at::_ops::_embedding_bag_dense_backward_out::call(grad, indices, offset2bag, bag_size, maximum_indices, num_weights, scale_grad_by_freq, mode, per_sample_weights, padding_idx, out);
55
+ }
56
+ }
57
+
58
+ // aten::_embedding_bag_dense_backward.out(Tensor grad, Tensor indices, Tensor offset2bag, Tensor bag_size, Tensor maximum_indices, SymInt num_weights, bool scale_grad_by_freq, int mode, Tensor? per_sample_weights, int padding_idx=-1, *, Tensor(a!) out) -> Tensor(a!)
59
+ inline at::Tensor & _embedding_bag_dense_backward_outf(const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offset2bag, const at::Tensor & bag_size, const at::Tensor & maximum_indices, int64_t num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx, at::Tensor & out) {
60
+ return at::_ops::_embedding_bag_dense_backward_out::call(grad, indices, offset2bag, bag_size, maximum_indices, num_weights, scale_grad_by_freq, mode, per_sample_weights, padding_idx, out);
61
+ }
62
+ namespace symint {
63
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
64
+ at::Tensor & _embedding_bag_dense_backward_outf(const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offset2bag, const at::Tensor & bag_size, const at::Tensor & maximum_indices, int64_t num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx, at::Tensor & out) {
65
+ return at::_ops::_embedding_bag_dense_backward_out::call(grad, indices, offset2bag, bag_size, maximum_indices, num_weights, scale_grad_by_freq, mode, per_sample_weights, padding_idx, out);
66
+ }
67
+ }
68
+
69
+ // aten::_embedding_bag_dense_backward.out(Tensor grad, Tensor indices, Tensor offset2bag, Tensor bag_size, Tensor maximum_indices, SymInt num_weights, bool scale_grad_by_freq, int mode, Tensor? per_sample_weights, int padding_idx=-1, *, Tensor(a!) out) -> Tensor(a!)
70
+ inline at::Tensor & _embedding_bag_dense_backward_symint_out(at::Tensor & out, const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offset2bag, const at::Tensor & bag_size, const at::Tensor & maximum_indices, c10::SymInt num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx=-1) {
71
+ return at::_ops::_embedding_bag_dense_backward_out::call(grad, indices, offset2bag, bag_size, maximum_indices, num_weights, scale_grad_by_freq, mode, per_sample_weights, padding_idx, out);
72
+ }
73
+ namespace symint {
74
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
75
+ at::Tensor & _embedding_bag_dense_backward_out(at::Tensor & out, const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offset2bag, const at::Tensor & bag_size, const at::Tensor & maximum_indices, c10::SymInt num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx=-1) {
76
+ return at::_ops::_embedding_bag_dense_backward_out::call(grad, indices, offset2bag, bag_size, maximum_indices, num_weights, scale_grad_by_freq, mode, per_sample_weights, padding_idx, out);
77
+ }
78
+ }
79
+
80
+ // aten::_embedding_bag_dense_backward.out(Tensor grad, Tensor indices, Tensor offset2bag, Tensor bag_size, Tensor maximum_indices, SymInt num_weights, bool scale_grad_by_freq, int mode, Tensor? per_sample_weights, int padding_idx=-1, *, Tensor(a!) out) -> Tensor(a!)
81
+ inline at::Tensor & _embedding_bag_dense_backward_symint_outf(const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offset2bag, const at::Tensor & bag_size, const at::Tensor & maximum_indices, c10::SymInt num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx, at::Tensor & out) {
82
+ return at::_ops::_embedding_bag_dense_backward_out::call(grad, indices, offset2bag, bag_size, maximum_indices, num_weights, scale_grad_by_freq, mode, per_sample_weights, padding_idx, out);
83
+ }
84
+ namespace symint {
85
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
86
+ at::Tensor & _embedding_bag_dense_backward_outf(const at::Tensor & grad, const at::Tensor & indices, const at::Tensor & offset2bag, const at::Tensor & bag_size, const at::Tensor & maximum_indices, c10::SymInt num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<at::Tensor> & per_sample_weights, int64_t padding_idx, at::Tensor & out) {
87
+ return at::_ops::_embedding_bag_dense_backward_out::call(grad, indices, offset2bag, bag_size, maximum_indices, num_weights, scale_grad_by_freq, mode, per_sample_weights, padding_idx, out);
88
+ }
89
+ }
90
+
91
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_fft_c2r.h ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_fft_c2r_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_fft_c2r(Tensor self, int[] dim, int normalization, SymInt last_dim_size) -> Tensor
26
+ inline at::Tensor _fft_c2r(const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, int64_t last_dim_size) {
27
+ return at::_ops::_fft_c2r::call(self, dim, normalization, last_dim_size);
28
+ }
29
+ namespace symint {
30
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
31
+ at::Tensor _fft_c2r(const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, int64_t last_dim_size) {
32
+ return at::_ops::_fft_c2r::call(self, dim, normalization, last_dim_size);
33
+ }
34
+ }
35
+
36
+ // aten::_fft_c2r(Tensor self, int[] dim, int normalization, SymInt last_dim_size) -> Tensor
37
+ inline at::Tensor _fft_c2r_symint(const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, c10::SymInt last_dim_size) {
38
+ return at::_ops::_fft_c2r::call(self, dim, normalization, last_dim_size);
39
+ }
40
+ namespace symint {
41
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
42
+ at::Tensor _fft_c2r(const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, c10::SymInt last_dim_size) {
43
+ return at::_ops::_fft_c2r::call(self, dim, normalization, last_dim_size);
44
+ }
45
+ }
46
+
47
+ // aten::_fft_c2r.out(Tensor self, int[] dim, int normalization, SymInt last_dim_size, *, Tensor(a!) out) -> Tensor(a!)
48
+ inline at::Tensor & _fft_c2r_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, int64_t last_dim_size) {
49
+ return at::_ops::_fft_c2r_out::call(self, dim, normalization, last_dim_size, out);
50
+ }
51
+ namespace symint {
52
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
53
+ at::Tensor & _fft_c2r_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, int64_t last_dim_size) {
54
+ return at::_ops::_fft_c2r_out::call(self, dim, normalization, last_dim_size, out);
55
+ }
56
+ }
57
+
58
+ // aten::_fft_c2r.out(Tensor self, int[] dim, int normalization, SymInt last_dim_size, *, Tensor(a!) out) -> Tensor(a!)
59
+ inline at::Tensor & _fft_c2r_outf(const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, int64_t last_dim_size, at::Tensor & out) {
60
+ return at::_ops::_fft_c2r_out::call(self, dim, normalization, last_dim_size, out);
61
+ }
62
+ namespace symint {
63
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
64
+ at::Tensor & _fft_c2r_outf(const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, int64_t last_dim_size, at::Tensor & out) {
65
+ return at::_ops::_fft_c2r_out::call(self, dim, normalization, last_dim_size, out);
66
+ }
67
+ }
68
+
69
+ // aten::_fft_c2r.out(Tensor self, int[] dim, int normalization, SymInt last_dim_size, *, Tensor(a!) out) -> Tensor(a!)
70
+ inline at::Tensor & _fft_c2r_symint_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, c10::SymInt last_dim_size) {
71
+ return at::_ops::_fft_c2r_out::call(self, dim, normalization, last_dim_size, out);
72
+ }
73
+ namespace symint {
74
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
75
+ at::Tensor & _fft_c2r_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, c10::SymInt last_dim_size) {
76
+ return at::_ops::_fft_c2r_out::call(self, dim, normalization, last_dim_size, out);
77
+ }
78
+ }
79
+
80
+ // aten::_fft_c2r.out(Tensor self, int[] dim, int normalization, SymInt last_dim_size, *, Tensor(a!) out) -> Tensor(a!)
81
+ inline at::Tensor & _fft_c2r_symint_outf(const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, c10::SymInt last_dim_size, at::Tensor & out) {
82
+ return at::_ops::_fft_c2r_out::call(self, dim, normalization, last_dim_size, out);
83
+ }
84
+ namespace symint {
85
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
86
+ at::Tensor & _fft_c2r_outf(const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, c10::SymInt last_dim_size, at::Tensor & out) {
87
+ return at::_ops::_fft_c2r_out::call(self, dim, normalization, last_dim_size, out);
88
+ }
89
+ }
90
+
91
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_flash_attention_forward_native.h ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> _flash_attention_forward(const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, const c10::optional<at::Tensor> & cum_seq_q, const c10::optional<at::Tensor> & cum_seq_k, int64_t max_q, int64_t max_k, double dropout_p, bool is_causal, bool return_debug_mask, c10::optional<double> scale=c10::nullopt);
20
+ } // namespace native
21
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_acos_cpu_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API ::std::vector<at::Tensor> _foreach_acos(at::TensorList self);
21
+ TORCH_API void _foreach_acos_(at::TensorList self);
22
+
23
+ } // namespace cpu
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_copy_ops.h ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _foreach_copy_ {
18
+ using schema = void (at::TensorList, at::TensorList, bool);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_copy_")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_copy_(Tensor(a!)[] self, Tensor[] src, bool non_blocking=False) -> ()")
24
+ static void call(at::TensorList self, at::TensorList src, bool non_blocking);
25
+ static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList src, bool non_blocking);
26
+ };
27
+
28
+ struct TORCH_API _foreach_copy_out {
29
+ using schema = void (at::TensorList, at::TensorList, bool, at::TensorList);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_copy")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_copy.out(Tensor[] self, Tensor[] src, bool non_blocking=False, *, Tensor(a!)[] out) -> ()")
35
+ static void call(at::TensorList self, at::TensorList src, bool non_blocking, at::TensorList out);
36
+ static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList src, bool non_blocking, at::TensorList out);
37
+ };
38
+
39
+ struct TORCH_API _foreach_copy {
40
+ using schema = ::std::vector<at::Tensor> (at::TensorList, at::TensorList, bool);
41
+ using ptr_schema = schema*;
42
+ // See Note [static constexpr char* members for windows NVCC]
43
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_copy")
44
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
45
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_copy(Tensor[] self, Tensor[] src, bool non_blocking=False) -> Tensor[] self_out")
46
+ static ::std::vector<at::Tensor> call(at::TensorList self, at::TensorList src, bool non_blocking);
47
+ static ::std::vector<at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList src, bool non_blocking);
48
+ };
49
+
50
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_reciprocal.h ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_foreach_reciprocal_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_foreach_reciprocal(Tensor[] self) -> Tensor[]
26
+ inline ::std::vector<at::Tensor> _foreach_reciprocal(at::TensorList self) {
27
+ return at::_ops::_foreach_reciprocal::call(self);
28
+ }
29
+
30
+ // aten::_foreach_reciprocal_(Tensor(a!)[] self) -> ()
31
+ inline void _foreach_reciprocal_(at::TensorList self) {
32
+ return at::_ops::_foreach_reciprocal_::call(self);
33
+ }
34
+
35
+ // aten::_foreach_reciprocal.out(Tensor[] self, *, Tensor(a!)[] out) -> ()
36
+ inline void _foreach_reciprocal_out(at::TensorList out, at::TensorList self) {
37
+ return at::_ops::_foreach_reciprocal_out::call(self, out);
38
+ }
39
+ // aten::_foreach_reciprocal.out(Tensor[] self, *, Tensor(a!)[] out) -> ()
40
+ inline void _foreach_reciprocal_outf(at::TensorList self, at::TensorList out) {
41
+ return at::_ops::_foreach_reciprocal_out::call(self, out);
42
+ }
43
+
44
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_functional_assert_async_cpu_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor _functional_assert_async(const at::Tensor & self, c10::string_view assert_msg, const at::Tensor & dep_token);
21
+
22
+ } // namespace cpu
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_fused_adam_ops.h ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _fused_adam_ {
18
+ using schema = void (at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, double, double, double, double, double, bool, bool, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_fused_adam_")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_fused_adam_(Tensor(a!)[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, float lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> ()")
24
+ static void call(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf);
25
+ static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf);
26
+ };
27
+
28
+ struct TORCH_API _fused_adam__tensor_lr {
29
+ using schema = void (at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, const at::Tensor &, double, double, double, double, bool, bool, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_fused_adam_")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "tensor_lr")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_fused_adam_.tensor_lr(Tensor(a!)[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, Tensor lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> ()")
35
+ static void call(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf);
36
+ static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf);
37
+ };
38
+
39
+ struct TORCH_API _fused_adam_out {
40
+ using schema = void (at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, double, double, double, double, double, bool, bool, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &, at::TensorList);
41
+ using ptr_schema = schema*;
42
+ // See Note [static constexpr char* members for windows NVCC]
43
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_fused_adam")
44
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
45
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_fused_adam.out(Tensor[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, float lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None, Tensor(a!)[] out) -> ()")
46
+ static void call(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf, at::TensorList out);
47
+ static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf, at::TensorList out);
48
+ };
49
+
50
+ struct TORCH_API _fused_adam {
51
+ using schema = ::std::tuple<::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>> (at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, double, double, double, double, double, bool, bool, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &);
52
+ using ptr_schema = schema*;
53
+ // See Note [static constexpr char* members for windows NVCC]
54
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_fused_adam")
55
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
56
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_fused_adam(Tensor[] self, Tensor[] grads, Tensor[] exp_avgs, Tensor[] exp_avg_sqs, Tensor[] max_exp_avg_sqs, Tensor[] state_steps, *, float lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> (Tensor[] self_out, Tensor[] grads_out, Tensor[] exp_avgs_out, Tensor[] exp_avg_sqs_out, Tensor[] max_exp_avg_sqs_out)")
57
+ static ::std::tuple<::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>> call(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf);
58
+ static ::std::tuple<::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>> redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf);
59
+ };
60
+
61
+ struct TORCH_API _fused_adam_tensor_lr_out {
62
+ using schema = void (at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, const at::Tensor &, double, double, double, double, bool, bool, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &, at::TensorList);
63
+ using ptr_schema = schema*;
64
+ // See Note [static constexpr char* members for windows NVCC]
65
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_fused_adam")
66
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "tensor_lr_out")
67
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_fused_adam.tensor_lr_out(Tensor[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, Tensor lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None, Tensor(a!)[] out) -> ()")
68
+ static void call(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf, at::TensorList out);
69
+ static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf, at::TensorList out);
70
+ };
71
+
72
+ struct TORCH_API _fused_adam_tensor_lr {
73
+ using schema = ::std::tuple<::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>> (at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, const at::Tensor &, double, double, double, double, bool, bool, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &);
74
+ using ptr_schema = schema*;
75
+ // See Note [static constexpr char* members for windows NVCC]
76
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_fused_adam")
77
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "tensor_lr")
78
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_fused_adam.tensor_lr(Tensor[] self, Tensor[] grads, Tensor[] exp_avgs, Tensor[] exp_avg_sqs, Tensor[] max_exp_avg_sqs, Tensor[] state_steps, *, Tensor lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> (Tensor[] self_out, Tensor[] grads_out, Tensor[] exp_avgs_out, Tensor[] exp_avg_sqs_out, Tensor[] max_exp_avg_sqs_out)")
79
+ static ::std::tuple<::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>> call(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf);
80
+ static ::std::tuple<::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>> redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf);
81
+ };
82
+
83
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_int_mm_native.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor _int_mm_cuda(const at::Tensor & self, const at::Tensor & mat2);
20
+ TORCH_API at::Tensor & _int_mm_out_cuda(const at::Tensor & self, const at::Tensor & mat2, at::Tensor & out);
21
+ } // namespace native
22
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_log_softmax_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _log_softmax {
18
+ using schema = at::Tensor (const at::Tensor &, int64_t, bool);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_log_softmax")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_log_softmax(Tensor self, int dim, bool half_to_float) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & self, int64_t dim, bool half_to_float);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, int64_t dim, bool half_to_float);
26
+ };
27
+
28
+ struct TORCH_API _log_softmax_out {
29
+ using schema = at::Tensor & (const at::Tensor &, int64_t, bool, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_log_softmax")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_log_softmax.out(Tensor self, int dim, bool half_to_float, *, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(const at::Tensor & self, int64_t dim, bool half_to_float, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, int64_t dim, bool half_to_float, at::Tensor & out);
37
+ };
38
+
39
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_make_per_tensor_quantized_tensor.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_make_per_tensor_quantized_tensor_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_make_per_tensor_quantized_tensor(Tensor self, float scale, int zero_point) -> Tensor
26
+ inline at::Tensor _make_per_tensor_quantized_tensor(const at::Tensor & self, double scale, int64_t zero_point) {
27
+ return at::_ops::_make_per_tensor_quantized_tensor::call(self, scale, zero_point);
28
+ }
29
+
30
+ // aten::_make_per_tensor_quantized_tensor.out(Tensor self, float scale, int zero_point, *, Tensor(a!) out) -> Tensor(a!)
31
+ inline at::Tensor & _make_per_tensor_quantized_tensor_out(at::Tensor & out, const at::Tensor & self, double scale, int64_t zero_point) {
32
+ return at::_ops::_make_per_tensor_quantized_tensor_out::call(self, scale, zero_point, out);
33
+ }
34
+ // aten::_make_per_tensor_quantized_tensor.out(Tensor self, float scale, int zero_point, *, Tensor(a!) out) -> Tensor(a!)
35
+ inline at::Tensor & _make_per_tensor_quantized_tensor_outf(const at::Tensor & self, double scale, int64_t zero_point, at::Tensor & out) {
36
+ return at::_ops::_make_per_tensor_quantized_tensor_out::call(self, scale, zero_point, out);
37
+ }
38
+
39
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_native_multi_head_attention_native.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> _native_multi_head_attention_out(const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, int64_t embed_dim, int64_t num_head, const at::Tensor & qkv_weight, const at::Tensor & qkv_bias, const at::Tensor & proj_weight, const at::Tensor & proj_bias, const c10::optional<at::Tensor> & mask, bool need_weights, bool average_attn_weights, c10::optional<int64_t> mask_type, at::Tensor & out0, at::Tensor & out1);
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> native_multi_head_attention_cpu(const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, int64_t embed_dim, int64_t num_head, const at::Tensor & qkv_weight, const at::Tensor & qkv_bias, const at::Tensor & proj_weight, const at::Tensor & proj_bias, const c10::optional<at::Tensor> & mask={}, bool need_weights=true, bool average_attn_weights=true, c10::optional<int64_t> mask_type=c10::nullopt);
21
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> native_multi_head_attention_cuda(const at::Tensor & query, const at::Tensor & key, const at::Tensor & value, int64_t embed_dim, int64_t num_head, const at::Tensor & qkv_weight, const at::Tensor & qkv_bias, const at::Tensor & proj_weight, const at::Tensor & proj_bias, const c10::optional<at::Tensor> & mask={}, bool need_weights=true, bool average_attn_weights=true, c10::optional<int64_t> mask_type=c10::nullopt);
22
+ } // namespace native
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_new_zeros_with_same_feature_meta_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _new_zeros_with_same_feature_meta {
18
+ using schema = at::Tensor (const at::Tensor &, const at::Tensor &, int64_t);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_new_zeros_with_same_feature_meta")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_new_zeros_with_same_feature_meta(Tensor self, Tensor other, *, int self_num_batch_dims=0) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & self, const at::Tensor & other, int64_t self_num_batch_dims);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & other, int64_t self_num_batch_dims);
26
+ };
27
+
28
+ struct TORCH_API _new_zeros_with_same_feature_meta_out {
29
+ using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, int64_t, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_new_zeros_with_same_feature_meta")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_new_zeros_with_same_feature_meta.out(Tensor self, Tensor other, *, int self_num_batch_dims=0, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(const at::Tensor & self, const at::Tensor & other, int64_t self_num_batch_dims, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & other, int64_t self_num_batch_dims, at::Tensor & out);
37
+ };
38
+
39
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_pin_memory_cuda_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API at::Tensor _pin_memory(const at::Tensor & self, c10::optional<at::Device> device=c10::nullopt);
21
+
22
+ } // namespace cuda
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_coo_tensor_unsafe_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API at::Tensor _sparse_coo_tensor_unsafe(const at::Tensor & indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options={}, c10::optional<bool> is_coalesced=c10::nullopt);
21
+ TORCH_API at::Tensor _sparse_coo_tensor_unsafe(const at::Tensor & indices, const at::Tensor & values, at::IntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, c10::optional<bool> is_coalesced);
22
+ TORCH_API at::Tensor _sparse_coo_tensor_unsafe_symint(const at::Tensor & indices, const at::Tensor & values, c10::SymIntArrayRef size, at::TensorOptions options={}, c10::optional<bool> is_coalesced=c10::nullopt);
23
+ TORCH_API at::Tensor _sparse_coo_tensor_unsafe_symint(const at::Tensor & indices, const at::Tensor & values, c10::SymIntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, c10::optional<bool> is_coalesced);
24
+
25
+ } // namespace compositeimplicitautograd
26
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_coo_tensor_with_dims.h ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_sparse_coo_tensor_with_dims_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_sparse_coo_tensor_with_dims(int sparse_dim, int dense_dim, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor
26
+ inline at::Tensor _sparse_coo_tensor_with_dims(int64_t sparse_dim, int64_t dense_dim, at::IntArrayRef size, at::TensorOptions options) {
27
+ return at::_ops::_sparse_coo_tensor_with_dims::call(sparse_dim, dense_dim, size, c10::optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt());
28
+ }
29
+ // aten::_sparse_coo_tensor_with_dims(int sparse_dim, int dense_dim, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor
30
+ inline at::Tensor _sparse_coo_tensor_with_dims(int64_t sparse_dim, int64_t dense_dim, at::IntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory) {
31
+ return at::_ops::_sparse_coo_tensor_with_dims::call(sparse_dim, dense_dim, size, dtype, layout, device, pin_memory);
32
+ }
33
+
34
+ // aten::_sparse_coo_tensor_with_dims.out(int sparse_dim, int dense_dim, int[] size, *, Tensor(a!) out) -> Tensor(a!)
35
+ inline at::Tensor & _sparse_coo_tensor_with_dims_out(at::Tensor & out, int64_t sparse_dim, int64_t dense_dim, at::IntArrayRef size) {
36
+ return at::_ops::_sparse_coo_tensor_with_dims_out::call(sparse_dim, dense_dim, size, out);
37
+ }
38
+ // aten::_sparse_coo_tensor_with_dims.out(int sparse_dim, int dense_dim, int[] size, *, Tensor(a!) out) -> Tensor(a!)
39
+ inline at::Tensor & _sparse_coo_tensor_with_dims_outf(int64_t sparse_dim, int64_t dense_dim, at::IntArrayRef size, at::Tensor & out) {
40
+ return at::_ops::_sparse_coo_tensor_with_dims_out::call(sparse_dim, dense_dim, size, out);
41
+ }
42
+
43
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_coo_tensor_with_dims_native.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor & _sparse_coo_tensor_with_dims_out(int64_t sparse_dim, int64_t dense_dim, at::IntArrayRef size, at::Tensor & out);
20
+ TORCH_API at::Tensor new_with_dims_sparse(int64_t sparse_dim, int64_t dense_dim, at::IntArrayRef size, c10::optional<at::ScalarType> dtype={}, c10::optional<at::Layout> layout={}, c10::optional<at::Device> device={}, c10::optional<bool> pin_memory={});
21
+ } // namespace native
22
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_mm_reduce_impl_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _sparse_mm_reduce_impl {
18
+ using schema = ::std::tuple<at::Tensor,at::Tensor> (const at::Tensor &, const at::Tensor &, c10::string_view);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_sparse_mm_reduce_impl")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_sparse_mm_reduce_impl(Tensor self, Tensor other, str reduce) -> (Tensor, Tensor)")
24
+ static ::std::tuple<at::Tensor,at::Tensor> call(const at::Tensor & self, const at::Tensor & other, c10::string_view reduce);
25
+ static ::std::tuple<at::Tensor,at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & other, c10::string_view reduce);
26
+ };
27
+
28
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_to_sparse_csr_cuda_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API at::Tensor _to_sparse_csr(const at::Tensor & self, c10::optional<int64_t> dense_dim=c10::nullopt);
21
+
22
+ } // namespace cuda
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_bicubic2d_aa_compositeexplicitautogradnonfunctional_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautogradnonfunctional {
19
+
20
+ TORCH_API at::Tensor _upsample_bicubic2d_aa(const at::Tensor & self, at::IntArrayRef output_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
21
+ TORCH_API at::Tensor _upsample_bicubic2d_aa_symint(const at::Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional<double> scales_h=c10::nullopt, c10::optional<double> scales_w=c10::nullopt);
22
+
23
+ } // namespace compositeexplicitautogradnonfunctional
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_weight_norm_interface_cpu_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> _weight_norm_interface(const at::Tensor & v, const at::Tensor & g, int64_t dim=0);
21
+
22
+ } // namespace cpu
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/angle_native.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor angle(const at::Tensor & self);
20
+ TORCH_API at::Tensor & angle_out(const at::Tensor & self, at::Tensor & out);
21
+ TORCH_API at::Tensor angle_sparse_csr(const at::Tensor & self);
22
+ TORCH_API at::Tensor & angle_sparse_csr_out(const at::Tensor & self, at::Tensor & out);
23
+ } // namespace native
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/batch_norm_gather_stats_native.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> batch_norm_gather_stats_out(const at::Tensor & input, const at::Tensor & mean, const at::Tensor & invstd, const c10::optional<at::Tensor> & running_mean, const c10::optional<at::Tensor> & running_var, double momentum, double eps, int64_t count, at::Tensor & out0, at::Tensor & out1);
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> batch_norm_gather_stats_cuda(const at::Tensor & input, const at::Tensor & mean, const at::Tensor & invstd, const c10::optional<at::Tensor> & running_mean, const c10::optional<at::Tensor> & running_var, double momentum, double eps, int64_t count);
21
+ } // namespace native
22
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/bincount_native.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor & bincount_out(const at::Tensor & self, const c10::optional<at::Tensor> & weights, int64_t minlength, at::Tensor & out);
20
+ TORCH_API at::Tensor _bincount_cpu(const at::Tensor & self, const c10::optional<at::Tensor> & weights={}, int64_t minlength=0);
21
+ TORCH_API at::Tensor _bincount_cuda(const at::Tensor & self, const c10::optional<at::Tensor> & weights={}, int64_t minlength=0);
22
+ } // namespace native
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/bitwise_and_meta.h ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeMetaFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/TensorIterator.h>
13
+ #include <ATen/TensorMeta.h>
14
+ #include <tuple>
15
+ #include <vector>
16
+
17
+ namespace at {
18
+ namespace meta {
19
+
20
+ struct TORCH_API structured_bitwise_and_Tensor : public TensorIteratorBase {
21
+
22
+
23
+ void meta(const at::Tensor & self, const at::Tensor & other);
24
+ };
25
+
26
+ } // namespace native
27
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/conv2d_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API at::Tensor conv2d(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias={}, at::IntArrayRef stride=1, at::IntArrayRef padding=0, at::IntArrayRef dilation=1, int64_t groups=1);
21
+ TORCH_API at::Tensor conv2d_symint(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias={}, c10::SymIntArrayRef stride=c10::SymInt(1), c10::SymIntArrayRef padding=c10::SymInt(0), c10::SymIntArrayRef dilation=c10::SymInt(1), c10::SymInt groups=1);
22
+ TORCH_API at::Tensor conv2d(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, at::IntArrayRef stride, c10::string_view padding, at::IntArrayRef dilation=1, int64_t groups=1);
23
+ TORCH_API at::Tensor conv2d_symint(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, c10::SymIntArrayRef stride, c10::string_view padding, c10::SymIntArrayRef dilation=c10::SymInt(1), c10::SymInt groups=1);
24
+
25
+ } // namespace compositeimplicitautograd
26
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/crow_indices_copy.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/crow_indices_copy_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::crow_indices_copy(Tensor self) -> Tensor
26
+ inline at::Tensor crow_indices_copy(const at::Tensor & self) {
27
+ return at::_ops::crow_indices_copy::call(self);
28
+ }
29
+
30
+ // aten::crow_indices_copy.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
31
+ inline at::Tensor & crow_indices_copy_out(at::Tensor & out, const at::Tensor & self) {
32
+ return at::_ops::crow_indices_copy_out::call(self, out);
33
+ }
34
+ // aten::crow_indices_copy.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
35
+ inline at::Tensor & crow_indices_copy_outf(const at::Tensor & self, at::Tensor & out) {
36
+ return at::_ops::crow_indices_copy_out::call(self, out);
37
+ }
38
+
39
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/dequantize.h ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/dequantize_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::dequantize.self(Tensor self) -> Tensor
26
+ inline at::Tensor dequantize(const at::Tensor & self) {
27
+ return at::_ops::dequantize_self::call(self);
28
+ }
29
+
30
+ // aten::dequantize.tensors(Tensor[] tensors) -> Tensor[]
31
+ inline ::std::vector<at::Tensor> dequantize(at::TensorList tensors) {
32
+ return at::_ops::dequantize_tensors::call(tensors);
33
+ }
34
+
35
+ // aten::dequantize.self_out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
36
+ inline at::Tensor & dequantize_out(at::Tensor & out, const at::Tensor & self) {
37
+ return at::_ops::dequantize_self_out::call(self, out);
38
+ }
39
+ // aten::dequantize.self_out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
40
+ inline at::Tensor & dequantize_outf(const at::Tensor & self, at::Tensor & out) {
41
+ return at::_ops::dequantize_self_out::call(self, out);
42
+ }
43
+
44
+ // aten::dequantize.tensors_out(Tensor[] tensors, *, Tensor(a!)[] out) -> ()
45
+ inline void dequantize_out(at::TensorList out, at::TensorList tensors) {
46
+ return at::_ops::dequantize_tensors_out::call(tensors, out);
47
+ }
48
+ // aten::dequantize.tensors_out(Tensor[] tensors, *, Tensor(a!)[] out) -> ()
49
+ inline void dequantize_outf(at::TensorList tensors, at::TensorList out) {
50
+ return at::_ops::dequantize_tensors_out::call(tensors, out);
51
+ }
52
+
53
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/dist_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor dist(const at::Tensor & self, const at::Tensor & other, const at::Scalar & p=2);
21
+ TORCH_API at::Tensor & dist_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & other, const at::Scalar & p=2);
22
+ TORCH_API at::Tensor & dist_outf(const at::Tensor & self, const at::Tensor & other, const at::Scalar & p, at::Tensor & out);
23
+
24
+ } // namespace compositeexplicitautograd
25
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/embedding_renorm_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API at::Tensor embedding_renorm(const at::Tensor & self, const at::Tensor & indices, double max_norm, double norm_type);
21
+ TORCH_API at::Tensor & embedding_renorm_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & indices, double max_norm, double norm_type);
22
+ TORCH_API at::Tensor & embedding_renorm_outf(const at::Tensor & self, const at::Tensor & indices, double max_norm, double norm_type, at::Tensor & out);
23
+
24
+ } // namespace compositeexplicitautograd
25
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/empty_quantized_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API empty_quantized {
18
+ using schema = at::Tensor (at::IntArrayRef, const at::Tensor &, c10::optional<at::ScalarType>, c10::optional<at::Layout>, c10::optional<at::Device>, c10::optional<bool>, c10::optional<at::MemoryFormat>);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::empty_quantized")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "empty_quantized(int[] size, Tensor qtensor, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor")
24
+ static at::Tensor call(at::IntArrayRef size, const at::Tensor & qtensor, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, c10::optional<at::MemoryFormat> memory_format);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, at::IntArrayRef size, const at::Tensor & qtensor, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory, c10::optional<at::MemoryFormat> memory_format);
26
+ };
27
+
28
+ struct TORCH_API empty_quantized_out {
29
+ using schema = at::Tensor & (at::IntArrayRef, const at::Tensor &, c10::optional<at::MemoryFormat>, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::empty_quantized")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "empty_quantized.out(int[] size, Tensor qtensor, *, MemoryFormat? memory_format=None, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(at::IntArrayRef size, const at::Tensor & qtensor, c10::optional<at::MemoryFormat> memory_format, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::IntArrayRef size, const at::Tensor & qtensor, c10::optional<at::MemoryFormat> memory_format, at::Tensor & out);
37
+ };
38
+
39
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/empty_strided.h ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/empty_strided_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::empty_strided(SymInt[] size, SymInt[] stride, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
26
+ inline at::Tensor empty_strided(at::IntArrayRef size, at::IntArrayRef stride, at::TensorOptions options={}) {
27
+ return at::_ops::empty_strided::call(c10::fromIntArrayRefSlow(size), c10::fromIntArrayRefSlow(stride), c10::optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt());
28
+ }
29
+ namespace symint {
30
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
31
+ at::Tensor empty_strided(at::IntArrayRef size, at::IntArrayRef stride, at::TensorOptions options={}) {
32
+ return at::_ops::empty_strided::call(c10::fromIntArrayRefSlow(size), c10::fromIntArrayRefSlow(stride), c10::optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt());
33
+ }
34
+ }
35
+
36
+ // aten::empty_strided(SymInt[] size, SymInt[] stride, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
37
+ inline at::Tensor empty_strided(at::IntArrayRef size, at::IntArrayRef stride, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory) {
38
+ return at::_ops::empty_strided::call(c10::fromIntArrayRefSlow(size), c10::fromIntArrayRefSlow(stride), dtype, layout, device, pin_memory);
39
+ }
40
+ namespace symint {
41
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
42
+ at::Tensor empty_strided(at::IntArrayRef size, at::IntArrayRef stride, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory) {
43
+ return at::_ops::empty_strided::call(c10::fromIntArrayRefSlow(size), c10::fromIntArrayRefSlow(stride), dtype, layout, device, pin_memory);
44
+ }
45
+ }
46
+
47
+ // aten::empty_strided(SymInt[] size, SymInt[] stride, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
48
+ inline at::Tensor empty_strided_symint(c10::SymIntArrayRef size, c10::SymIntArrayRef stride, at::TensorOptions options={}) {
49
+ return at::_ops::empty_strided::call(size, stride, c10::optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt());
50
+ }
51
+ namespace symint {
52
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
53
+ at::Tensor empty_strided(c10::SymIntArrayRef size, c10::SymIntArrayRef stride, at::TensorOptions options={}) {
54
+ return at::_ops::empty_strided::call(size, stride, c10::optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt());
55
+ }
56
+ }
57
+
58
+ // aten::empty_strided(SymInt[] size, SymInt[] stride, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
59
+ inline at::Tensor empty_strided_symint(c10::SymIntArrayRef size, c10::SymIntArrayRef stride, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory) {
60
+ return at::_ops::empty_strided::call(size, stride, dtype, layout, device, pin_memory);
61
+ }
62
+ namespace symint {
63
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
64
+ at::Tensor empty_strided(c10::SymIntArrayRef size, c10::SymIntArrayRef stride, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory) {
65
+ return at::_ops::empty_strided::call(size, stride, dtype, layout, device, pin_memory);
66
+ }
67
+ }
68
+
69
+ // aten::empty_strided.out(SymInt[] size, SymInt[] stride, *, Tensor(a!) out) -> Tensor(a!)
70
+ inline at::Tensor & empty_strided_out(at::Tensor & out, at::IntArrayRef size, at::IntArrayRef stride) {
71
+ return at::_ops::empty_strided_out::call(c10::fromIntArrayRefSlow(size), c10::fromIntArrayRefSlow(stride), out);
72
+ }
73
+ namespace symint {
74
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
75
+ at::Tensor & empty_strided_out(at::Tensor & out, at::IntArrayRef size, at::IntArrayRef stride) {
76
+ return at::_ops::empty_strided_out::call(c10::fromIntArrayRefSlow(size), c10::fromIntArrayRefSlow(stride), out);
77
+ }
78
+ }
79
+
80
+ // aten::empty_strided.out(SymInt[] size, SymInt[] stride, *, Tensor(a!) out) -> Tensor(a!)
81
+ inline at::Tensor & empty_strided_outf(at::IntArrayRef size, at::IntArrayRef stride, at::Tensor & out) {
82
+ return at::_ops::empty_strided_out::call(c10::fromIntArrayRefSlow(size), c10::fromIntArrayRefSlow(stride), out);
83
+ }
84
+ namespace symint {
85
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
86
+ at::Tensor & empty_strided_outf(at::IntArrayRef size, at::IntArrayRef stride, at::Tensor & out) {
87
+ return at::_ops::empty_strided_out::call(c10::fromIntArrayRefSlow(size), c10::fromIntArrayRefSlow(stride), out);
88
+ }
89
+ }
90
+
91
+ // aten::empty_strided.out(SymInt[] size, SymInt[] stride, *, Tensor(a!) out) -> Tensor(a!)
92
+ inline at::Tensor & empty_strided_symint_out(at::Tensor & out, c10::SymIntArrayRef size, c10::SymIntArrayRef stride) {
93
+ return at::_ops::empty_strided_out::call(size, stride, out);
94
+ }
95
+ namespace symint {
96
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
97
+ at::Tensor & empty_strided_out(at::Tensor & out, c10::SymIntArrayRef size, c10::SymIntArrayRef stride) {
98
+ return at::_ops::empty_strided_out::call(size, stride, out);
99
+ }
100
+ }
101
+
102
+ // aten::empty_strided.out(SymInt[] size, SymInt[] stride, *, Tensor(a!) out) -> Tensor(a!)
103
+ inline at::Tensor & empty_strided_symint_outf(c10::SymIntArrayRef size, c10::SymIntArrayRef stride, at::Tensor & out) {
104
+ return at::_ops::empty_strided_out::call(size, stride, out);
105
+ }
106
+ namespace symint {
107
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
108
+ at::Tensor & empty_strided_outf(c10::SymIntArrayRef size, c10::SymIntArrayRef stride, at::Tensor & out) {
109
+ return at::_ops::empty_strided_out::call(size, stride, out);
110
+ }
111
+ }
112
+
113
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fft_rfftn_native.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor fft_rfftn_symint(const at::Tensor & self, at::OptionalSymIntArrayRef s=c10::nullopt, at::OptionalIntArrayRef dim=c10::nullopt, c10::optional<c10::string_view> norm=c10::nullopt);
20
+ TORCH_API at::Tensor & fft_rfftn_symint_out(const at::Tensor & self, at::OptionalSymIntArrayRef s, at::OptionalIntArrayRef dim, c10::optional<c10::string_view> norm, at::Tensor & out);
21
+ } // namespace native
22
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/floor_meta.h ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeMetaFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/TensorIterator.h>
13
+ #include <ATen/TensorMeta.h>
14
+ #include <tuple>
15
+ #include <vector>
16
+
17
+ namespace at {
18
+ namespace meta {
19
+
20
+ struct TORCH_API structured_floor : public TensorIteratorBase {
21
+
22
+
23
+ void meta(const at::Tensor & self);
24
+ };
25
+
26
+ } // namespace native
27
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fmax_meta_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace meta {
19
+
20
+ TORCH_API at::Tensor fmax(const at::Tensor & self, const at::Tensor & other);
21
+ TORCH_API at::Tensor & fmax_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & other);
22
+ TORCH_API at::Tensor & fmax_outf(const at::Tensor & self, const at::Tensor & other, at::Tensor & out);
23
+
24
+ } // namespace meta
25
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/frexp_compositeexplicitautograd_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautograd {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> frexp(const at::Tensor & self);
21
+
22
+ } // namespace compositeexplicitautograd
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fused_moving_avg_obs_fake_quant_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API fused_moving_avg_obs_fake_quant {
18
+ using schema = at::Tensor (const at::Tensor &, const at::Tensor &, const at::Tensor &, at::Tensor &, at::Tensor &, at::Tensor &, at::Tensor &, double, int64_t, int64_t, int64_t, bool, bool);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::fused_moving_avg_obs_fake_quant")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "fused_moving_avg_obs_fake_quant(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & self, const at::Tensor & observer_on, const at::Tensor & fake_quant_on, at::Tensor & running_min, at::Tensor & running_max, at::Tensor & scale, at::Tensor & zero_point, double averaging_const, int64_t quant_min, int64_t quant_max, int64_t ch_axis, bool per_row_fake_quant, bool symmetric_quant);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & observer_on, const at::Tensor & fake_quant_on, at::Tensor & running_min, at::Tensor & running_max, at::Tensor & scale, at::Tensor & zero_point, double averaging_const, int64_t quant_min, int64_t quant_max, int64_t ch_axis, bool per_row_fake_quant, bool symmetric_quant);
26
+ };
27
+
28
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/gather_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API at::Tensor gather(const at::Tensor & self, at::Dimname dim, const at::Tensor & index, bool sparse_grad=false);
21
+ TORCH_API at::Tensor & gather_out(at::Tensor & out, const at::Tensor & self, at::Dimname dim, const at::Tensor & index, bool sparse_grad=false);
22
+ TORCH_API at::Tensor & gather_outf(const at::Tensor & self, at::Dimname dim, const at::Tensor & index, bool sparse_grad, at::Tensor & out);
23
+
24
+ } // namespace compositeimplicitautograd
25
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/hardshrink_backward_native.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+ #include <ATen/ops/hardshrink_backward_meta.h>
16
+
17
+ namespace at {
18
+ namespace native {
19
+ struct TORCH_API structured_hardshrink_backward_out : public at::meta::structured_hardshrink_backward {
20
+ void impl(const at::Tensor & grad_out, const at::Tensor & self, const at::Scalar & lambd, const at::Tensor & grad_input);
21
+ };
22
+ } // namespace native
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/hardtanh_backward_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API hardtanh_backward_grad_input {
18
+ using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, const at::Scalar &, const at::Scalar &, at::Tensor &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::hardtanh_backward")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "grad_input")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "hardtanh_backward.grad_input(Tensor grad_output, Tensor self, Scalar min_val, Scalar max_val, *, Tensor(a!) grad_input) -> Tensor(a!)")
24
+ static at::Tensor & call(const at::Tensor & grad_output, const at::Tensor & self, const at::Scalar & min_val, const at::Scalar & max_val, at::Tensor & grad_input);
25
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & grad_output, const at::Tensor & self, const at::Scalar & min_val, const at::Scalar & max_val, at::Tensor & grad_input);
26
+ };
27
+
28
+ struct TORCH_API hardtanh_backward {
29
+ using schema = at::Tensor (const at::Tensor &, const at::Tensor &, const at::Scalar &, const at::Scalar &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::hardtanh_backward")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "hardtanh_backward(Tensor grad_output, Tensor self, Scalar min_val, Scalar max_val) -> Tensor")
35
+ static at::Tensor call(const at::Tensor & grad_output, const at::Tensor & self, const at::Scalar & min_val, const at::Scalar & max_val);
36
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & grad_output, const at::Tensor & self, const at::Scalar & min_val, const at::Scalar & max_val);
37
+ };
38
+
39
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/hypot_meta.h ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeMetaFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/TensorIterator.h>
13
+ #include <ATen/TensorMeta.h>
14
+ #include <tuple>
15
+ #include <vector>
16
+
17
+ namespace at {
18
+ namespace meta {
19
+
20
+ struct TORCH_API structured_hypot : public TensorIteratorBase {
21
+
22
+
23
+ void meta(const at::Tensor & self, const at::Tensor & other);
24
+ };
25
+
26
+ } // namespace native
27
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/is_floating_point_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API bool is_floating_point(const at::Tensor & self);
21
+
22
+ } // namespace compositeimplicitautograd
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/is_same_size_native.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API bool is_same_size(const at::Tensor & self, const at::Tensor & other);
20
+ TORCH_API bool nested_is_same_size(const at::Tensor & self, const at::Tensor & other);
21
+ } // namespace native
22
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/isposinf_cuda_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API at::Tensor isposinf(const at::Tensor & self);
21
+ TORCH_API at::Tensor & isposinf_out(at::Tensor & out, const at::Tensor & self);
22
+ TORCH_API at::Tensor & isposinf_outf(const at::Tensor & self, at::Tensor & out);
23
+
24
+ } // namespace cuda
25
+ } // namespace at