Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +3 -0
- venv/lib/python3.10/site-packages/deepspeed/elasticity/__init__.py +10 -0
- venv/lib/python3.10/site-packages/deepspeed/elasticity/__pycache__/utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/elasticity/config.py +110 -0
- venv/lib/python3.10/site-packages/deepspeed/elasticity/constants.py +81 -0
- venv/lib/python3.10/site-packages/deepspeed/elasticity/elastic_agent.py +188 -0
- venv/lib/python3.10/site-packages/deepspeed/elasticity/elasticity.py +378 -0
- venv/lib/python3.10/site-packages/deepspeed/elasticity/utils.py +14 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/base_optimizer.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/compiler.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/config.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/config_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/constants.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/dataloader.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/eigenvalue.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/engine.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/hybrid_engine.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/lr_schedules.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/progressive_layer_drop.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/quantize.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/sparse_tensor.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/state_dict_factory.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/weight_quantizer.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/activation_checkpointing/__init__.py +5 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/activation_checkpointing/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/activation_checkpointing/__pycache__/checkpointing.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/activation_checkpointing/__pycache__/config.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/checkpoint_engine/__init__.py +5 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/checkpoint_engine/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/checkpoint_engine/__pycache__/checkpoint_engine.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/checkpoint_engine/__pycache__/nebula_checkpoint_engine.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/checkpoint_engine/__pycache__/torch_checkpoint_engine.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/checkpoint_engine/checkpoint_engine.py +30 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/checkpoint_engine/nebula_checkpoint_engine.py +107 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/checkpoint_engine/torch_checkpoint_engine.py +34 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/compression/__init__.py +5 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/compression/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/compression/__pycache__/cupy.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/compression/cupy.py +26 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/pipe/__init__.py +7 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/pipe/engine.py +1437 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/pipe/schedule.py +494 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/pipe/topology.py +456 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/zero/__init__.py +15 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/zero/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/zero/__pycache__/config.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/zero/__pycache__/contiguous_memory_allocator.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/zero/__pycache__/linear.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/runtime/zero/__pycache__/mics.cpython-310.pyc +0 -0
.gitattributes
CHANGED
@@ -138,3 +138,6 @@ venv/lib/python3.10/site-packages/aiohttp/_http_parser.cpython-310-x86_64-linux-
|
|
138 |
venv/lib/python3.10/site-packages/scipy.libs/libgfortran-040039e1.so.5.0.0 filter=lfs diff=lfs merge=lfs -text
|
139 |
venv/lib/python3.10/site-packages/numpy.libs/libgfortran-040039e1.so.5.0.0 filter=lfs diff=lfs merge=lfs -text
|
140 |
venv/lib/python3.10/site-packages/numpy/core/_multiarray_umath.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
138 |
venv/lib/python3.10/site-packages/scipy.libs/libgfortran-040039e1.so.5.0.0 filter=lfs diff=lfs merge=lfs -text
|
139 |
venv/lib/python3.10/site-packages/numpy.libs/libgfortran-040039e1.so.5.0.0 filter=lfs diff=lfs merge=lfs -text
|
140 |
venv/lib/python3.10/site-packages/numpy/core/_multiarray_umath.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
141 |
+
venv/lib/python3.10/site-packages/tokenizers/tokenizers.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
142 |
+
venv/lib/python3.10/site-packages/numpy.libs/libopenblas64_p-r0-0cf96a72.3.23.dev.so filter=lfs diff=lfs merge=lfs -text
|
143 |
+
venv/lib/python3.10/site-packages/scipy.libs/libopenblasp-r0-24bff013.3.26.dev.so filter=lfs diff=lfs merge=lfs -text
|
venv/lib/python3.10/site-packages/deepspeed/elasticity/__init__.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from .elasticity import compute_elastic_config, elasticity_enabled, ensure_immutable_elastic_config
|
7 |
+
from .utils import is_torch_elastic_compatible
|
8 |
+
from .constants import ENABLED, ENABLED_DEFAULT, ELASTICITY
|
9 |
+
if is_torch_elastic_compatible():
|
10 |
+
from .elastic_agent import DSElasticAgent
|
venv/lib/python3.10/site-packages/deepspeed/elasticity/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (500 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/elasticity/config.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import json
|
7 |
+
from .constants import *
|
8 |
+
|
9 |
+
|
10 |
+
class ElasticityError(Exception):
|
11 |
+
"""
|
12 |
+
Base exception for all elasticity related errors
|
13 |
+
"""
|
14 |
+
|
15 |
+
|
16 |
+
class ElasticityConfigError(ElasticityError):
|
17 |
+
"""
|
18 |
+
Elasticity configuration error
|
19 |
+
"""
|
20 |
+
|
21 |
+
|
22 |
+
class ElasticityIncompatibleWorldSize(ElasticityError):
|
23 |
+
"""
|
24 |
+
Attempting to run a world size that is incompatible with a given elastic config
|
25 |
+
"""
|
26 |
+
|
27 |
+
|
28 |
+
class ElasticityConfig:
|
29 |
+
"""
|
30 |
+
Elastic config object, constructed from a param dictionary that only contains elastic
|
31 |
+
config parameters, example below:
|
32 |
+
|
33 |
+
If elasticity is enabled, user must specify (at least) max_train_batch_size
|
34 |
+
and micro_batch_sizes.
|
35 |
+
|
36 |
+
{
|
37 |
+
"enabled": true,
|
38 |
+
"max_train_batch_size": 2000,
|
39 |
+
"micro_batch_sizes": [2,4,6],
|
40 |
+
"min_gpus": 1,
|
41 |
+
"max_gpus" : 10000
|
42 |
+
"min_time": 20
|
43 |
+
"ignore_non_elastic_batch_info": false
|
44 |
+
"version": 0.1
|
45 |
+
}
|
46 |
+
"""
|
47 |
+
|
48 |
+
def __init__(self, param_dict):
|
49 |
+
self.enabled = param_dict.get(ENABLED, ENABLED_DEFAULT)
|
50 |
+
if self.enabled:
|
51 |
+
if MAX_ACCEPTABLE_BATCH_SIZE in param_dict:
|
52 |
+
self.max_acceptable_batch_size = param_dict[MAX_ACCEPTABLE_BATCH_SIZE]
|
53 |
+
else:
|
54 |
+
raise ElasticityConfigError(f"Elasticity config missing {MAX_ACCEPTABLE_BATCH_SIZE}")
|
55 |
+
if MICRO_BATCHES in param_dict:
|
56 |
+
self.micro_batches = param_dict[MICRO_BATCHES]
|
57 |
+
else:
|
58 |
+
raise ElasticityConfigError(f"Elasticity config missing {MICRO_BATCHES}")
|
59 |
+
else:
|
60 |
+
self.max_acceptable_batch_size = param_dict.get(MAX_ACCEPTABLE_BATCH_SIZE,
|
61 |
+
MAX_ACCEPTABLE_BATCH_SIZE_DEFAULT)
|
62 |
+
self.micro_batches = param_dict.get(MICRO_BATCHES, MICRO_BATCHES_DEFAULT)
|
63 |
+
|
64 |
+
if not isinstance(self.micro_batches, list):
|
65 |
+
raise ElasticityConfigError(
|
66 |
+
f"Elasticity expected value of {MICRO_BATCHES} to be a "
|
67 |
+
f"list of micro batches, instead is: {type(self.micro_batches)}, containing: {self.micro_batches}")
|
68 |
+
|
69 |
+
if not all(map(lambda m: isinstance(m, int), self.micro_batches)):
|
70 |
+
raise ElasticityConfigError(f"Elasticity expected {MICRO_BATCHES} to only contain a list of integers, "
|
71 |
+
f"instead contains: f{self.micro_batches}")
|
72 |
+
|
73 |
+
if not all(map(lambda m: m > 0, self.micro_batches)):
|
74 |
+
raise ElasticityConfigError(f"Elasticity expected {MICRO_BATCHES} to only contain positive integers, "
|
75 |
+
f"instead contains: f{self.micro_batches}")
|
76 |
+
|
77 |
+
self.min_gpus = param_dict.get(MIN_GPUS, MIN_GPUS_DEFAULT)
|
78 |
+
self.max_gpus = param_dict.get(MAX_GPUS, MAX_GPUS_DEFAULT)
|
79 |
+
|
80 |
+
if self.min_gpus < 1 or self.max_gpus < 1:
|
81 |
+
raise ElasticityConfigError("Elasticity min/max gpus must be > 0, "
|
82 |
+
f"given min_gpus: {self.min_gpus}, max_gpus: {self.max_gpus}")
|
83 |
+
if self.max_gpus < self.min_gpus:
|
84 |
+
raise ElasticityConfigError("Elasticity min_gpus cannot be greater than max_gpus, "
|
85 |
+
f"given min_gpus: {self.min_gpus}, max_gpus: {self.max_gpus}")
|
86 |
+
|
87 |
+
self.model_parallel_size = param_dict.get(MODEL_PARALLEL_SIZE, MODEL_PARALLEL_SIZE_DEFAULT)
|
88 |
+
if self.model_parallel_size < 1:
|
89 |
+
raise ElasticityConfigError("Model-Parallel size cannot be less than 1, "
|
90 |
+
f"given model-parallel size: {self.model_parallel_size}")
|
91 |
+
|
92 |
+
self.num_gpus_per_node = param_dict.get(NUM_GPUS_PER_NODE, NUM_GPUS_PER_NODE_DEFAULT)
|
93 |
+
if self.num_gpus_per_node < 1:
|
94 |
+
raise ElasticityConfigError("Number of GPUs per node cannot be less than 1, "
|
95 |
+
f"given number of GPUs per node: {self.num_gpus_per_node}")
|
96 |
+
|
97 |
+
self.min_time = param_dict.get(MIN_TIME, MIN_TIME_DEFAULT)
|
98 |
+
if self.min_time < 0:
|
99 |
+
raise ElasticityConfigError(f"Elasticity min time needs to be >= 0: given {self.min_time}")
|
100 |
+
|
101 |
+
self.version = param_dict.get(VERSION, VERSION_DEFAULT)
|
102 |
+
self.prefer_larger_batch_size = param_dict.get(PREFER_LARGER_BATCH, PREFER_LARGER_BATCH_DEFAULT)
|
103 |
+
self.ignore_non_elastic_batch_info = param_dict.get(IGNORE_NON_ELASTIC_BATCH_INFO,
|
104 |
+
IGNORE_NON_ELASTIC_BATCH_INFO_DEFAULT)
|
105 |
+
|
106 |
+
def repr(self):
|
107 |
+
return self.__dict__
|
108 |
+
|
109 |
+
def __repr__(self):
|
110 |
+
return json.dumps(self.__dict__, sort_keys=True, indent=4)
|
venv/lib/python3.10/site-packages/deepspeed/elasticity/constants.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
#########################################
|
7 |
+
# Elasticity
|
8 |
+
#########################################
|
9 |
+
''' Elasticity Utility in DeepSpeed can be used to create highly elastic jobs compatible
|
10 |
+
with a large number of GPUs. For elastic jobs, DeepSpeed will provide a batch size that
|
11 |
+
can support a large number of GPUs based on the user specified parameters
|
12 |
+
'''
|
13 |
+
FORMAT = '''
|
14 |
+
Elasticity should be enabled as:
|
15 |
+
"elasticity": {
|
16 |
+
"enabled": true,
|
17 |
+
"max_train_batch_size": 2000,
|
18 |
+
"micro_batch_sizes": [2,4,6],
|
19 |
+
"min_gpus": 1,
|
20 |
+
"max_gpus" : 10000,
|
21 |
+
"min_time": 20,
|
22 |
+
"prefer_larger_batch": true,
|
23 |
+
"ignore_non_elastic_batch_info": false,
|
24 |
+
"version": 0.1
|
25 |
+
}
|
26 |
+
'''
|
27 |
+
|
28 |
+
ELASTICITY = 'elasticity'
|
29 |
+
|
30 |
+
# Current elasticity version
|
31 |
+
LATEST_ELASTICITY_VERSION = 0.2
|
32 |
+
|
33 |
+
ENABLED = 'enabled'
|
34 |
+
ENABLED_DEFAULT = False
|
35 |
+
|
36 |
+
# Max acceptable train_batch_size
|
37 |
+
MAX_ACCEPTABLE_BATCH_SIZE = 'max_train_batch_size'
|
38 |
+
MAX_ACCEPTABLE_BATCH_SIZE_DEFAULT = 2000
|
39 |
+
|
40 |
+
# Acceptable micro batch sizes, same as train_micro_batch_size_per_gpu
|
41 |
+
MICRO_BATCHES = 'micro_batch_sizes'
|
42 |
+
MICRO_BATCHES_DEFAULT = [2, 4, 6]
|
43 |
+
|
44 |
+
# Min/max of GPUs to search over
|
45 |
+
MIN_GPUS = 'min_gpus'
|
46 |
+
MIN_GPUS_DEFAULT = 1
|
47 |
+
MAX_GPUS = 'max_gpus'
|
48 |
+
MAX_GPUS_DEFAULT = 10000
|
49 |
+
|
50 |
+
NUM_GPUS_PER_NODE = 'num_gpus_per_node'
|
51 |
+
NUM_GPUS_PER_NODE_DEFAULT = 1
|
52 |
+
|
53 |
+
MODEL_PARALLEL_SIZE = "model_parallel_size"
|
54 |
+
MODEL_PARALLEL_SIZE_DEFAULT = 1
|
55 |
+
|
56 |
+
# Minimum running time (minutes) before the scheduler will scale us, 0 implies it's unknown
|
57 |
+
MIN_TIME = "min_time"
|
58 |
+
MIN_TIME_DEFAULT = 0
|
59 |
+
|
60 |
+
# When finding a suitable batch size, attempt to find one that is closest
|
61 |
+
# to the max train batch size given.
|
62 |
+
PREFER_LARGER_BATCH = 'prefer_larger_batch'
|
63 |
+
PREFER_LARGER_BATCH_DEFAULT = True
|
64 |
+
|
65 |
+
# In order to reduce confusion, if elastic mode is enabled we
|
66 |
+
# require (via assert) that no batch info is set outside of the
|
67 |
+
# elastic config. You can turn off this assert via this config
|
68 |
+
# but keep in mind that all batch info defined outside the
|
69 |
+
# elastic mode *will be ignored*.
|
70 |
+
IGNORE_NON_ELASTIC_BATCH_INFO = 'ignore_non_elastic_batch_info'
|
71 |
+
IGNORE_NON_ELASTIC_BATCH_INFO_DEFAULT = False
|
72 |
+
|
73 |
+
# Version of elastic logic to use
|
74 |
+
VERSION = "version"
|
75 |
+
VERSION_DEFAULT = LATEST_ELASTICITY_VERSION
|
76 |
+
|
77 |
+
# Minimum deepspeed version to use elasticity
|
78 |
+
MINIMUM_DEEPSPEED_VERSION = "0.3.8"
|
79 |
+
|
80 |
+
# Environment variable storing elastic config from resource scheduler
|
81 |
+
DEEPSPEED_ELASTICITY_CONFIG = "DEEPSPEED_ELASTICITY_CONFIG"
|
venv/lib/python3.10/site-packages/deepspeed/elasticity/elastic_agent.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from torch.distributed.elastic.agent.server.local_elastic_agent import LocalElasticAgent
|
7 |
+
from typing import Any, Dict, Optional, Tuple
|
8 |
+
from datetime import datetime
|
9 |
+
from torch.distributed.elastic.agent.server.api import _get_socket_with_port
|
10 |
+
from torch.distributed.elastic.metrics import put_metric
|
11 |
+
from torch.distributed.elastic.agent.server.api import (
|
12 |
+
RunResult,
|
13 |
+
WorkerGroup,
|
14 |
+
WorkerSpec,
|
15 |
+
WorkerState,
|
16 |
+
)
|
17 |
+
from torch.distributed import Store
|
18 |
+
import time
|
19 |
+
import os
|
20 |
+
from torch.distributed.elastic.multiprocessing import start_processes
|
21 |
+
from torch.distributed.elastic.utils import macros
|
22 |
+
import shutil
|
23 |
+
import copy
|
24 |
+
from contextlib import closing
|
25 |
+
import subprocess
|
26 |
+
|
27 |
+
from torch.distributed.elastic.utils.logging import get_logger
|
28 |
+
|
29 |
+
log = get_logger(__name__)
|
30 |
+
|
31 |
+
|
32 |
+
class DSElasticAgent(LocalElasticAgent):
|
33 |
+
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
spec: WorkerSpec,
|
37 |
+
env: Dict,
|
38 |
+
start_method="spawn",
|
39 |
+
exit_barrier_timeout: float = 300,
|
40 |
+
log_dir: Optional[str] = None,
|
41 |
+
):
|
42 |
+
super().__init__(spec, start_method, exit_barrier_timeout, log_dir)
|
43 |
+
self.ds_env = env
|
44 |
+
|
45 |
+
@staticmethod
|
46 |
+
def _set_master_addr_port(store: Store,
|
47 |
+
master_addr: Optional[str],
|
48 |
+
master_port: Optional[int],
|
49 |
+
local_addr: Optional[str] = None):
|
50 |
+
if master_port is None:
|
51 |
+
sock = _get_socket_with_port()
|
52 |
+
with closing(sock):
|
53 |
+
master_port = sock.getsockname()[1]
|
54 |
+
|
55 |
+
if master_addr is None:
|
56 |
+
# master_addr = _get_fq_hostname()
|
57 |
+
result = subprocess.check_output("hostname -I", shell=True)
|
58 |
+
master_addr = result.decode('utf-8').split()[0]
|
59 |
+
|
60 |
+
store.set("MASTER_ADDR", master_addr.encode(encoding="UTF-8"))
|
61 |
+
store.set("MASTER_PORT", str(master_port).encode(encoding="UTF-8"))
|
62 |
+
|
63 |
+
def _start_workers(self, worker_group: WorkerGroup) -> Dict[int, Any]:
|
64 |
+
spec = worker_group.spec
|
65 |
+
store = worker_group.store
|
66 |
+
assert store is not None
|
67 |
+
master_addr, master_port = super()._get_master_addr_port(store)
|
68 |
+
restart_count = spec.max_restarts - self._remaining_restarts
|
69 |
+
|
70 |
+
use_agent_store = spec.rdzv_handler.get_backend() == "static"
|
71 |
+
|
72 |
+
args: Dict[int, Tuple] = {}
|
73 |
+
envs: Dict[int, Dict[str, str]] = {}
|
74 |
+
for worker in worker_group.workers:
|
75 |
+
local_rank = worker.local_rank
|
76 |
+
|
77 |
+
worker_env_ds = copy.deepcopy(self.ds_env)
|
78 |
+
worker_env_elastic = {
|
79 |
+
"LOCAL_RANK": str(local_rank),
|
80 |
+
"RANK": str(worker.global_rank),
|
81 |
+
"GROUP_RANK": str(worker_group.group_rank),
|
82 |
+
"ROLE_RANK": str(worker.role_rank),
|
83 |
+
"ROLE_NAME": spec.role,
|
84 |
+
"LOCAL_WORLD_SIZE": str(spec.local_world_size),
|
85 |
+
"WORLD_SIZE": str(worker.world_size),
|
86 |
+
"GROUP_WORLD_SIZE": str(worker_group.group_world_size),
|
87 |
+
"ROLE_WORLD_SIZE": str(worker.role_world_size),
|
88 |
+
"MASTER_ADDR": master_addr,
|
89 |
+
"MASTER_PORT": str(master_port),
|
90 |
+
"TORCHELASTIC_RESTART_COUNT": str(restart_count),
|
91 |
+
"TORCHELASTIC_MAX_RESTARTS": str(spec.max_restarts),
|
92 |
+
"TORCHELASTIC_RUN_ID": spec.rdzv_handler.get_run_id(),
|
93 |
+
"TORCHELASTIC_USE_AGENT_STORE": str(use_agent_store),
|
94 |
+
"NCCL_ASYNC_ERROR_HANDLING": os.getenv("NCCL_ASYNC_ERROR_HANDLING", str(1)),
|
95 |
+
}
|
96 |
+
worker_env_ds.update(worker_env_elastic)
|
97 |
+
if "OMP_NUM_THREADS" in os.environ:
|
98 |
+
worker_env_ds["OMP_NUM_THREADS"] = os.environ["OMP_NUM_THREADS"]
|
99 |
+
|
100 |
+
envs[local_rank] = worker_env_ds
|
101 |
+
worker_args = list(spec.args)
|
102 |
+
worker_args = macros.substitute(worker_args, str(local_rank))
|
103 |
+
args[local_rank] = tuple(worker_args)
|
104 |
+
|
105 |
+
# scaling events do not count towards restarts (gets same attempt #)
|
106 |
+
# remove existing log dir if this restart is due to a scaling event
|
107 |
+
attempt_log_dir = os.path.join(self._log_dir, f"attempt_{restart_count}")
|
108 |
+
shutil.rmtree(attempt_log_dir, ignore_errors=True)
|
109 |
+
os.makedirs(attempt_log_dir)
|
110 |
+
|
111 |
+
assert spec.entrypoint is not None
|
112 |
+
self._pcontext = start_processes(
|
113 |
+
name=spec.role,
|
114 |
+
entrypoint=spec.entrypoint,
|
115 |
+
args=args,
|
116 |
+
envs=envs,
|
117 |
+
log_dir=attempt_log_dir,
|
118 |
+
start_method=self._start_method,
|
119 |
+
redirects=spec.redirects,
|
120 |
+
tee=spec.tee,
|
121 |
+
)
|
122 |
+
|
123 |
+
return self._pcontext.pids()
|
124 |
+
|
125 |
+
def _invoke_run(self, role: str = "default") -> RunResult:
|
126 |
+
# NOTE: currently only works for a single role
|
127 |
+
|
128 |
+
spec = self._worker_group.spec
|
129 |
+
role = spec.role
|
130 |
+
|
131 |
+
log.info(f"[{role}] starting workers for entrypoint: {spec.get_entrypoint_name()}")
|
132 |
+
|
133 |
+
self._initialize_workers(self._worker_group)
|
134 |
+
monitor_interval = spec.monitor_interval
|
135 |
+
rdzv_handler = spec.rdzv_handler
|
136 |
+
|
137 |
+
participants = rdzv_handler._state_holder.state.participants
|
138 |
+
|
139 |
+
while True:
|
140 |
+
assert self._worker_group.state != WorkerState.INIT
|
141 |
+
time.sleep(monitor_interval)
|
142 |
+
run_result = self._monitor_workers(self._worker_group)
|
143 |
+
state = run_result.state
|
144 |
+
self._worker_group.state = state
|
145 |
+
|
146 |
+
expire_time = datetime.utcnow() - (rdzv_handler._settings.keep_alive_interval *
|
147 |
+
rdzv_handler._settings.keep_alive_max_attempt)
|
148 |
+
_dead_nodes = [
|
149 |
+
node for node, last_heartbeat in rdzv_handler._state_holder.state.last_heartbeats.items()
|
150 |
+
if last_heartbeat < expire_time
|
151 |
+
]
|
152 |
+
|
153 |
+
put_metric(f"workers.{role}.remaining_restarts", self._remaining_restarts)
|
154 |
+
put_metric(f"workers.{role}.{state.name.lower()}", 1)
|
155 |
+
|
156 |
+
if state == WorkerState.SUCCEEDED:
|
157 |
+
log.info(f"[{role}] worker group successfully finished."
|
158 |
+
f" Waiting {self._exit_barrier_timeout} seconds for other agents to finish.")
|
159 |
+
self._exit_barrier()
|
160 |
+
return run_result
|
161 |
+
elif state in {WorkerState.UNHEALTHY, WorkerState.FAILED
|
162 |
+
} or len(participants) > len(rdzv_handler._state_holder.state.participants):
|
163 |
+
if self._remaining_restarts > 0:
|
164 |
+
log.info(f"[{role}] Worker group {state.name}. "
|
165 |
+
f"{self._remaining_restarts}/{spec.max_restarts} attempts left;"
|
166 |
+
f" will restart worker group")
|
167 |
+
self._remaining_restarts -= 1
|
168 |
+
# rdzv_handler._state_holder.state.restart = False
|
169 |
+
self._restart_workers(self._worker_group)
|
170 |
+
participants = rdzv_handler._state_holder.state.participants
|
171 |
+
|
172 |
+
else:
|
173 |
+
self._stop_workers(self._worker_group)
|
174 |
+
self._worker_group.state = WorkerState.FAILED
|
175 |
+
self._exit_barrier()
|
176 |
+
return run_result
|
177 |
+
elif state == WorkerState.HEALTHY:
|
178 |
+
# membership changes do not count as retries
|
179 |
+
num_nodes_waiting = rdzv_handler.num_nodes_waiting()
|
180 |
+
group_rank = self._worker_group.group_rank
|
181 |
+
if num_nodes_waiting > 0:
|
182 |
+
log.info(f"[{role}] Detected {num_nodes_waiting} "
|
183 |
+
f"new nodes from group_rank={group_rank}; "
|
184 |
+
f"will restart worker group")
|
185 |
+
self._restart_workers(self._worker_group)
|
186 |
+
participants = rdzv_handler._state_holder.state.participants
|
187 |
+
else:
|
188 |
+
raise Exception(f"[{role}] Worker group in {state.name} state")
|
venv/lib/python3.10/site-packages/deepspeed/elasticity/elasticity.py
ADDED
@@ -0,0 +1,378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import os
|
7 |
+
import json
|
8 |
+
import numpy as np
|
9 |
+
import math
|
10 |
+
from packaging import version as pkg_version
|
11 |
+
|
12 |
+
from .config import ElasticityConfig, ElasticityConfigError, ElasticityError, \
|
13 |
+
ElasticityIncompatibleWorldSize
|
14 |
+
from .constants import ELASTICITY, ENABLED, ENABLED_DEFAULT, LATEST_ELASTICITY_VERSION, \
|
15 |
+
MINIMUM_DEEPSPEED_VERSION, DEEPSPEED_ELASTICITY_CONFIG
|
16 |
+
from ..git_version_info import version as __version__
|
17 |
+
from ..utils import logger
|
18 |
+
|
19 |
+
# Thirty eight smallest highly composite numbers. The list should
|
20 |
+
# be enough to support up to 720K batch size.
|
21 |
+
HCN_LIST = [
|
22 |
+
1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560, 10080, 15120, 20160,
|
23 |
+
25200, 27720, 45360, 50400, 55440, 83160, 110880, 166320, 221760, 277200, 332640, 498960, 554400, 665280, 720720
|
24 |
+
]
|
25 |
+
|
26 |
+
|
27 |
+
def get_candidate_batch_sizes(base_list, max_acceptable_batch_size):
|
28 |
+
candidate_batch_size = []
|
29 |
+
for base in base_list:
|
30 |
+
if base >= max_acceptable_batch_size:
|
31 |
+
candidate_batch_size.append(base)
|
32 |
+
else:
|
33 |
+
value = max_acceptable_batch_size // base
|
34 |
+
index = np.argmax(np.asarray(HCN_LIST) > value)
|
35 |
+
candidate_batch_size.append(HCN_LIST[index - 1] * base)
|
36 |
+
candidate_batch_size = list(set(candidate_batch_size))
|
37 |
+
logger.info(f"Candidate batch size: {candidate_batch_size}")
|
38 |
+
return candidate_batch_size
|
39 |
+
|
40 |
+
|
41 |
+
def get_valid_gpus(batch_size, micro_batches, min_valid_gpus, max_valid_gpus):
|
42 |
+
valid_gpus = []
|
43 |
+
for micro_batch in micro_batches:
|
44 |
+
if batch_size % micro_batch == 0:
|
45 |
+
|
46 |
+
max_gpus = batch_size // micro_batch
|
47 |
+
if min_valid_gpus <= max_gpus <= max_valid_gpus:
|
48 |
+
valid_gpus.append(max_gpus)
|
49 |
+
|
50 |
+
# find all factors less than max_gpus / 2
|
51 |
+
for i in range(1, max_gpus // 2 + 1):
|
52 |
+
if i > max_valid_gpus:
|
53 |
+
break
|
54 |
+
if i < min_valid_gpus:
|
55 |
+
continue
|
56 |
+
if max_gpus % i == 0:
|
57 |
+
valid_gpus.append(i)
|
58 |
+
valid_gpus = set(valid_gpus)
|
59 |
+
valid_gpus = sorted(list(valid_gpus))
|
60 |
+
return valid_gpus
|
61 |
+
|
62 |
+
|
63 |
+
def get_best_candidates(candidate_batch_sizes, micro_batches, min_gpus, max_gpus, prefer_larger):
|
64 |
+
|
65 |
+
max_valid_gpus = 0
|
66 |
+
valid_gpus = None
|
67 |
+
final_batch_size = int(min(micro_batches))
|
68 |
+
|
69 |
+
for batch_size in candidate_batch_sizes:
|
70 |
+
|
71 |
+
current_valid_gpus = get_valid_gpus(batch_size, micro_batches, min_gpus, max_gpus)
|
72 |
+
|
73 |
+
if (len(current_valid_gpus) > max_valid_gpus or (len(current_valid_gpus) == max_valid_gpus and
|
74 |
+
((prefer_larger and batch_size > final_batch_size) or
|
75 |
+
(not prefer_larger and batch_size < final_batch_size)))):
|
76 |
+
max_valid_gpus = len(current_valid_gpus)
|
77 |
+
valid_gpus = current_valid_gpus
|
78 |
+
final_batch_size = batch_size
|
79 |
+
|
80 |
+
return final_batch_size, valid_gpus
|
81 |
+
|
82 |
+
|
83 |
+
def _get_compatible_gpus_v01(micro_batches,
|
84 |
+
max_acceptable_batch_size,
|
85 |
+
min_gpus=None,
|
86 |
+
max_gpus=None,
|
87 |
+
prefer_larger=True):
|
88 |
+
'''We use two heuristics to compute the batch size
|
89 |
+
1. We use the Lowest Common Multiple of the micro-batches
|
90 |
+
as the base batch size and scale it by a HCN such that the result is
|
91 |
+
the largest batch size less than the max_acceptable batch size
|
92 |
+
2. We use each of the micro batches as a base and scale it
|
93 |
+
by a HCN such that the result is the largest batch size less than the
|
94 |
+
max_acceptable batch size.
|
95 |
+
|
96 |
+
We then use brute force to count the number of compatible GPU count for
|
97 |
+
each of the aforementioned cases, and return the batch size with the most number of
|
98 |
+
compatible GPU counts in the min-max GPU range if provided, other wise
|
99 |
+
we return the batch size with the most number of total compatible GPU counts.
|
100 |
+
|
101 |
+
Returns:
|
102 |
+
final_batch_size
|
103 |
+
valid_gpus
|
104 |
+
'''
|
105 |
+
min_gpus = min_gpus or 1
|
106 |
+
max_gpus = max_gpus or max_acceptable_batch_size // min(micro_batches)
|
107 |
+
|
108 |
+
if not all(mb <= max_acceptable_batch_size for mb in micro_batches):
|
109 |
+
raise ValueError(f"All micro batches must be less than \
|
110 |
+
or equal to max_acceptable_batch_size: {max_acceptable_batch_size}")
|
111 |
+
|
112 |
+
lcm = np.lcm.reduce(micro_batches)
|
113 |
+
|
114 |
+
base_list = []
|
115 |
+
base_list.extend(micro_batches)
|
116 |
+
base_list.append(lcm)
|
117 |
+
|
118 |
+
candidate_batch_sizes = get_candidate_batch_sizes(base_list, max_acceptable_batch_size)
|
119 |
+
|
120 |
+
final_batch_size, valid_gpus = get_best_candidates(candidate_batch_sizes, micro_batches, min_gpus, max_gpus,
|
121 |
+
prefer_larger)
|
122 |
+
|
123 |
+
return final_batch_size, valid_gpus
|
124 |
+
|
125 |
+
|
126 |
+
def _get_compatible_gpus_v02(micro_batches,
|
127 |
+
max_acceptable_batch_size,
|
128 |
+
current_num_gpus,
|
129 |
+
min_gpus=None,
|
130 |
+
max_gpus=None,
|
131 |
+
prefer_larger=True,
|
132 |
+
num_gpus_per_node=1,
|
133 |
+
model_parallel_size=1):
|
134 |
+
'''
|
135 |
+
Returns:
|
136 |
+
final_batch_size
|
137 |
+
valid_gpus
|
138 |
+
micro-batch size
|
139 |
+
'''
|
140 |
+
if num_gpus_per_node % model_parallel_size != 0:
|
141 |
+
raise ElasticityError(
|
142 |
+
f"In Elasticity v0.2, number of GPUs per node:" \
|
143 |
+
f"{num_gpus_per_node} should be divisible by " \
|
144 |
+
f"model parallel size {model_parallel_size}")
|
145 |
+
|
146 |
+
def get_microbatch(final_batch_size):
|
147 |
+
candidate_microbatch = None
|
148 |
+
|
149 |
+
for micro_batch in micro_batches:
|
150 |
+
if final_batch_size // current_num_gpus % micro_batch == 0:
|
151 |
+
if candidate_microbatch is None:
|
152 |
+
candidate_microbatch = micro_batch
|
153 |
+
if prefer_larger and candidate_microbatch < micro_batch:
|
154 |
+
candidate_microbatch = micro_batch
|
155 |
+
return candidate_microbatch
|
156 |
+
|
157 |
+
dp_size_per_node = num_gpus_per_node // model_parallel_size
|
158 |
+
|
159 |
+
final_batch_size, valid_world_size = _get_compatible_gpus_v01(
|
160 |
+
micro_batches,
|
161 |
+
int(max_acceptable_batch_size / dp_size_per_node),
|
162 |
+
int(min_gpus / num_gpus_per_node),
|
163 |
+
int(max_gpus / num_gpus_per_node), # Passing number of max nodes as Elasticity v2 works at node level
|
164 |
+
prefer_larger=prefer_larger)
|
165 |
+
|
166 |
+
final_batch_size = int(final_batch_size) * dp_size_per_node
|
167 |
+
valid_dp_world_size = [i * dp_size_per_node for i in valid_world_size]
|
168 |
+
if current_num_gpus // model_parallel_size in valid_dp_world_size:
|
169 |
+
candidate_microbatch = get_microbatch(final_batch_size)
|
170 |
+
return final_batch_size, valid_dp_world_size, candidate_microbatch
|
171 |
+
|
172 |
+
current_dp_size = (current_num_gpus / num_gpus_per_node) * dp_size_per_node
|
173 |
+
candidate_batch_sizes = []
|
174 |
+
for micro_batch in micro_batches:
|
175 |
+
min_batch_size = micro_batch * current_dp_size
|
176 |
+
|
177 |
+
factor = math.floor(max_acceptable_batch_size / float(min_batch_size))
|
178 |
+
candidate_batch_sizes.append(factor * min_batch_size)
|
179 |
+
|
180 |
+
used_microbatch = None
|
181 |
+
if prefer_larger:
|
182 |
+
candidate_batch_size = max(candidate_batch_sizes)
|
183 |
+
else:
|
184 |
+
candidate_batch_size = min(candidate_batch_sizes)
|
185 |
+
|
186 |
+
candidate_microbatch = get_microbatch(candidate_batch_size)
|
187 |
+
|
188 |
+
return candidate_batch_size, [int(current_dp_size)], candidate_microbatch
|
189 |
+
|
190 |
+
|
191 |
+
def _compatible_ds_version_check(target_deepspeed_version: str):
|
192 |
+
min_version = pkg_version.parse(MINIMUM_DEEPSPEED_VERSION)
|
193 |
+
target_version = pkg_version.parse(target_deepspeed_version)
|
194 |
+
|
195 |
+
err_str = f"Target deepspeed version of {target_deepspeed_version} is not compatible " \
|
196 |
+
f"with minimum version {MINIMUM_DEEPSPEED_VERSION} supporting elasticity."
|
197 |
+
if target_version < min_version:
|
198 |
+
raise ElasticityError(err_str)
|
199 |
+
return True
|
200 |
+
|
201 |
+
|
202 |
+
def elasticity_enabled(ds_config: dict):
|
203 |
+
if ELASTICITY not in ds_config:
|
204 |
+
return False
|
205 |
+
return ds_config[ELASTICITY].get(ENABLED, ENABLED_DEFAULT)
|
206 |
+
|
207 |
+
|
208 |
+
def ensure_immutable_elastic_config(runtime_elastic_config_dict: dict):
|
209 |
+
"""
|
210 |
+
Ensure the resource scheduler saw the same elastic config we are using at runtime
|
211 |
+
"""
|
212 |
+
if DEEPSPEED_ELASTICITY_CONFIG in os.environ:
|
213 |
+
scheduler_elastic_config_dict = json.loads(os.environ[DEEPSPEED_ELASTICITY_CONFIG])
|
214 |
+
scheduler_elastic_config = ElasticityConfig(scheduler_elastic_config_dict)
|
215 |
+
runtime_elastic_config = ElasticityConfig(runtime_elastic_config_dict)
|
216 |
+
err_str = "Elastic config '{}={}' seen by resource scheduler does not match config passed to runtime {}={}"
|
217 |
+
if runtime_elastic_config.max_acceptable_batch_size != scheduler_elastic_config.max_acceptable_batch_size:
|
218 |
+
raise ElasticityConfigError(
|
219 |
+
err_str.format('max_acceptable_batch_size', scheduler_elastic_config.max_acceptable_batch_size,
|
220 |
+
'max_acceptable_batch_size', runtime_elastic_config.max_acceptable_batch_size))
|
221 |
+
if runtime_elastic_config.micro_batches != scheduler_elastic_config.micro_batches:
|
222 |
+
raise ElasticityConfigError(
|
223 |
+
err_str.format('micro_batches', scheduler_elastic_config.micro_batches, 'micro_batches',
|
224 |
+
runtime_elastic_config.micro_batches))
|
225 |
+
if runtime_elastic_config.version != scheduler_elastic_config.version:
|
226 |
+
raise ElasticityConfigError(
|
227 |
+
err_str.format('version', scheduler_elastic_config.version, 'version', runtime_elastic_config.version))
|
228 |
+
else:
|
229 |
+
logger.warning("Unable to find DEEPSPEED_ELASTICITY_CONFIG environment variable, cannot " \
|
230 |
+
"guarantee resource scheduler will scale this job using compatible GPU counts.")
|
231 |
+
|
232 |
+
|
233 |
+
def compute_elastic_config(ds_config: dict, target_deepspeed_version: str, world_size=0, return_microbatch=False):
|
234 |
+
"""Core deepspeed elasticity API. Given an elastic config (similar to the example below)
|
235 |
+
DeepSpeed will compute a total train batch size corresponding valid GPU count list that
|
236 |
+
provides a high level of elasticity. Elasticity in this case means we are safe to scale
|
237 |
+
the training job up/down across the GPU count list *without* any negative impacts on
|
238 |
+
training convergence. This is achievable primarily due to DeepSpeed's gradient accumulation
|
239 |
+
feature which allows us to decompose a global training batch size into:
|
240 |
+
micro-batch-size * gradient-accumulation-steps * world-size.
|
241 |
+
|
242 |
+
"elasticity": {
|
243 |
+
"enabled": true,
|
244 |
+
"max_train_batch_size": 2000,
|
245 |
+
"micro_batch_sizes": [2,4,6],
|
246 |
+
"min_gpus": 1,
|
247 |
+
"max_gpus" : 10000
|
248 |
+
"min_time": 20
|
249 |
+
"version": 0.1
|
250 |
+
}
|
251 |
+
|
252 |
+
Intended to be called both by scheduling infrastructure and deepspeed runtime.
|
253 |
+
For the same `ds_config` we should return deterministic results.
|
254 |
+
|
255 |
+
Args:
|
256 |
+
ds_config (dict): DeepSpeed config dictionary/json
|
257 |
+
target_deepspeed_version (str): When called from scheduling
|
258 |
+
infrastructure we want to ensure that the target deepspeed version is
|
259 |
+
compatible with the elasticity version used in the backend.
|
260 |
+
world_size (int, optional): Intended/current DP world size, will do some sanity
|
261 |
+
checks to ensure world size is actually valid with the config.
|
262 |
+
return_microbatch (bool, optional): whether to return micro batch size or not.
|
263 |
+
|
264 |
+
Raises:
|
265 |
+
ElasticityConfigError: Missing required elasticity config or elasticity disabled
|
266 |
+
ElasticityError: If target deepspeed version is not compatible with current version
|
267 |
+
|
268 |
+
Returns:
|
269 |
+
final_batch_size (int): total batch size used for training
|
270 |
+
valid_gpus (list(int)): list of valid GPU counts with this config
|
271 |
+
micro_batch_size (int, optional): if world_size is provided will return
|
272 |
+
specific micro batch size
|
273 |
+
"""
|
274 |
+
if not isinstance(ds_config, dict):
|
275 |
+
raise ValueError("Expected ds_config to be a dictionary but received " \
|
276 |
+
f"a {type(ds_config)}, containing: {ds_config}")
|
277 |
+
|
278 |
+
if ELASTICITY not in ds_config:
|
279 |
+
raise ElasticityConfigError(f"'{ELASTICITY}' is missing from config json," \
|
280 |
+
" please add it if running an elastic training job.")
|
281 |
+
|
282 |
+
elastic_config_dict = ds_config[ELASTICITY]
|
283 |
+
if not elastic_config_dict.get(ENABLED, ENABLED_DEFAULT):
|
284 |
+
raise ElasticityConfigError("Elasticity is disabled, please enable it " \
|
285 |
+
"('enabled':true) if running an elastic training job.")
|
286 |
+
|
287 |
+
elastic_config = ElasticityConfig(elastic_config_dict)
|
288 |
+
model_parallel_size = elastic_config.model_parallel_size
|
289 |
+
num_gpus_per_node = elastic_config.num_gpus_per_node
|
290 |
+
|
291 |
+
if model_parallel_size > 1 and float(elastic_config.version) != 0.2:
|
292 |
+
raise ElasticityConfigError(f"Elasticity V{elastic_config.version} " \
|
293 |
+
f"does not support model-parallel training. Given model-parallel size: " \
|
294 |
+
f"{model_parallel_size}")
|
295 |
+
|
296 |
+
if float(elastic_config.version) > LATEST_ELASTICITY_VERSION:
|
297 |
+
raise ElasticityConfigError("Attempting to run elasticity version " \
|
298 |
+
f"{elastic_config.version} but runtime only supports up " \
|
299 |
+
f"to {LATEST_ELASTICITY_VERSION}")
|
300 |
+
|
301 |
+
# Ensure target deepspeed version works with intended elasticity version
|
302 |
+
if not _compatible_ds_version_check(target_deepspeed_version):
|
303 |
+
raise ElasticityError("Unable to run elasticity on target deepspeed version of" \
|
304 |
+
f" {target_deepspeed_version}, currently {__version__}")
|
305 |
+
|
306 |
+
if float(elastic_config.version) == 0.1:
|
307 |
+
final_batch_size, valid_gpus = _get_compatible_gpus_v01(
|
308 |
+
micro_batches=elastic_config.micro_batches,
|
309 |
+
max_acceptable_batch_size=elastic_config.max_acceptable_batch_size,
|
310 |
+
min_gpus=elastic_config.min_gpus,
|
311 |
+
max_gpus=elastic_config.max_gpus,
|
312 |
+
prefer_larger=elastic_config.prefer_larger_batch_size)
|
313 |
+
# ensure batch size is int dtype
|
314 |
+
final_batch_size = int(final_batch_size)
|
315 |
+
elif float(elastic_config.version) == 0.2:
|
316 |
+
if world_size != 0:
|
317 |
+
current_num_gpus = world_size
|
318 |
+
else:
|
319 |
+
if "WORLD_SIZE" in os.environ and \
|
320 |
+
os.getenv('WORLD_SIZE').isnumeric():
|
321 |
+
current_num_gpus = int(os.getenv('WORLD_SIZE'))
|
322 |
+
else:
|
323 |
+
WORLD_SIZE = os.getenv('WORLD_SIZE')
|
324 |
+
raise ElasticityConfigError(
|
325 |
+
'Elasticity V 0.2 needs WORLD_SIZE '\
|
326 |
+
'to compute valid batch size. '\
|
327 |
+
'Either give it as argument to function compute_elastic_config '\
|
328 |
+
'or set it as an environment variable. '\
|
329 |
+
f'Value of WORLD_SIZE as environment variable is {WORLD_SIZE}')
|
330 |
+
|
331 |
+
final_batch_size, valid_gpus, candidate_microbatch_size = _get_compatible_gpus_v02(
|
332 |
+
micro_batches=elastic_config.micro_batches,
|
333 |
+
max_acceptable_batch_size=elastic_config.max_acceptable_batch_size,
|
334 |
+
current_num_gpus=current_num_gpus,
|
335 |
+
min_gpus=elastic_config.min_gpus,
|
336 |
+
max_gpus=elastic_config.max_gpus,
|
337 |
+
prefer_larger=elastic_config.prefer_larger_batch_size,
|
338 |
+
num_gpus_per_node=num_gpus_per_node,
|
339 |
+
model_parallel_size=model_parallel_size)
|
340 |
+
# ensure batch size is int dtype
|
341 |
+
final_batch_size = int(final_batch_size)
|
342 |
+
else:
|
343 |
+
raise NotImplementedError(f"Unable to find elastic logic for version: {elastic_config.version}")
|
344 |
+
|
345 |
+
logger.info(f"Valid World Size (GPUs / Model Parallel Size): {valid_gpus}")
|
346 |
+
|
347 |
+
if world_size > 0:
|
348 |
+
if world_size not in valid_gpus:
|
349 |
+
raise ElasticityIncompatibleWorldSize(f"World size ({world_size}) is not valid " \
|
350 |
+
f"with the current list of valid GPU counts: {valid_gpus}")
|
351 |
+
|
352 |
+
# Pick largest valid micro batch size
|
353 |
+
micro_batch_size = None
|
354 |
+
for mbsz in sorted(list(set(elastic_config.micro_batches)), reverse=True):
|
355 |
+
if final_batch_size // world_size % mbsz == 0:
|
356 |
+
micro_batch_size = mbsz
|
357 |
+
break
|
358 |
+
assert micro_batch_size is not None, "Unable to find divisible micro batch size" \
|
359 |
+
f" world_size={world_size}, final_batch_size={final_batch_size}, and " \
|
360 |
+
f" micro_batches={elastic_config.micro_batches}."
|
361 |
+
return final_batch_size, valid_gpus, micro_batch_size
|
362 |
+
|
363 |
+
if return_microbatch:
|
364 |
+
# Pick a valid micro batch size
|
365 |
+
if float(elastic_config.version) == 0.2:
|
366 |
+
return final_batch_size, valid_gpus, candidate_microbatch_size
|
367 |
+
else:
|
368 |
+
micro_batch_size = None
|
369 |
+
for mbsz in sorted(list(set(elastic_config.micro_batches)), reverse=True):
|
370 |
+
if final_batch_size // world_size % mbsz == 0:
|
371 |
+
micro_batch_size = mbsz
|
372 |
+
break
|
373 |
+
assert micro_batch_size is not None, "Unable to find divisible micro batch size" \
|
374 |
+
f" world_size={world_size}, final_batch_size={final_batch_size}, and " \
|
375 |
+
f" micro_batches={elastic_config.micro_batches}."
|
376 |
+
return final_batch_size, valid_gpus, micro_batch_size
|
377 |
+
|
378 |
+
return final_batch_size, valid_gpus
|
venv/lib/python3.10/site-packages/deepspeed/elasticity/utils.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from deepspeed.utils.torch import required_torch_version
|
7 |
+
|
8 |
+
|
9 |
+
def is_torch_elastic_compatible():
|
10 |
+
'''
|
11 |
+
Helper to lookup torch version. Elastic training is
|
12 |
+
introduced in 1.11.x
|
13 |
+
'''
|
14 |
+
return required_torch_version(min_version=1.11)
|
venv/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/base_optimizer.cpython-310.pyc
ADDED
Binary file (2.4 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/compiler.cpython-310.pyc
ADDED
Binary file (5.93 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/config.cpython-310.pyc
ADDED
Binary file (29.8 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/config_utils.cpython-310.pyc
ADDED
Binary file (8.7 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/constants.cpython-310.pyc
ADDED
Binary file (8.87 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/dataloader.cpython-310.pyc
ADDED
Binary file (4.22 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/eigenvalue.cpython-310.pyc
ADDED
Binary file (5.33 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/engine.cpython-310.pyc
ADDED
Binary file (112 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/hybrid_engine.cpython-310.pyc
ADDED
Binary file (12.7 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/lr_schedules.cpython-310.pyc
ADDED
Binary file (30.8 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/progressive_layer_drop.cpython-310.pyc
ADDED
Binary file (2.06 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/quantize.cpython-310.pyc
ADDED
Binary file (5.22 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/sparse_tensor.cpython-310.pyc
ADDED
Binary file (2.75 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/state_dict_factory.cpython-310.pyc
ADDED
Binary file (11.6 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (31.7 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/weight_quantizer.cpython-310.pyc
ADDED
Binary file (6.64 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/runtime/activation_checkpointing/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
'''Copyright The Microsoft DeepSpeed Team'''
|
venv/lib/python3.10/site-packages/deepspeed/runtime/activation_checkpointing/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (260 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/runtime/activation_checkpointing/__pycache__/checkpointing.cpython-310.pyc
ADDED
Binary file (28.6 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/runtime/activation_checkpointing/__pycache__/config.cpython-310.pyc
ADDED
Binary file (2.41 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/runtime/checkpoint_engine/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
'''Copyright The Microsoft DeepSpeed Team'''
|
venv/lib/python3.10/site-packages/deepspeed/runtime/checkpoint_engine/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (253 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/runtime/checkpoint_engine/__pycache__/checkpoint_engine.cpython-310.pyc
ADDED
Binary file (1.26 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/runtime/checkpoint_engine/__pycache__/nebula_checkpoint_engine.cpython-310.pyc
ADDED
Binary file (3.77 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/runtime/checkpoint_engine/__pycache__/torch_checkpoint_engine.cpython-310.pyc
ADDED
Binary file (1.75 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/runtime/checkpoint_engine/checkpoint_engine.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import os
|
7 |
+
|
8 |
+
|
9 |
+
class CheckpointEngine(object):
|
10 |
+
|
11 |
+
# init checkpoint engine for save/load
|
12 |
+
def __init__(self, config_params=None):
|
13 |
+
pass
|
14 |
+
|
15 |
+
def create(self, tag):
|
16 |
+
# create checkpoint on give tag for save/load.
|
17 |
+
pass
|
18 |
+
|
19 |
+
def makedirs(self, path, exist_ok=False):
|
20 |
+
os.makedirs(path, exist_ok=exist_ok)
|
21 |
+
|
22 |
+
def save(self, state_dict, path: str):
|
23 |
+
pass
|
24 |
+
|
25 |
+
def load(self, path: str, map_location=None):
|
26 |
+
pass
|
27 |
+
|
28 |
+
def commit(self, tag):
|
29 |
+
# to tell checkpoint services if all files are ready.
|
30 |
+
pass
|
venv/lib/python3.10/site-packages/deepspeed/runtime/checkpoint_engine/nebula_checkpoint_engine.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import os
|
7 |
+
import torch
|
8 |
+
import torch_nebula
|
9 |
+
|
10 |
+
from deepspeed.runtime.checkpoint_engine.checkpoint_engine import \
|
11 |
+
CheckpointEngine
|
12 |
+
from deepspeed.utils import logger, log_dist
|
13 |
+
from deepspeed.nebula.constants import *
|
14 |
+
|
15 |
+
|
16 |
+
def _get_tag_from_path(path):
|
17 |
+
return os.path.basename(os.path.dirname(path))
|
18 |
+
|
19 |
+
|
20 |
+
class NebulaCheckpointEngine(CheckpointEngine):
|
21 |
+
|
22 |
+
def __init__(self, config_params=None):
|
23 |
+
super().__init__(config_params)
|
24 |
+
self.checkpoint = None
|
25 |
+
self.tag_flag = None
|
26 |
+
self.enable_nebula_load = config_params.enable_nebula_load
|
27 |
+
self.nebula_load_path = config_params.load_path
|
28 |
+
if self.nebula_load_path is None:
|
29 |
+
self.nebula_load_path = config_params.persistent_storage_path
|
30 |
+
|
31 |
+
nebula_config_params = {
|
32 |
+
NEBULA_PERSISTENT_STORAGE_PATH: config_params.persistent_storage_path,
|
33 |
+
NEBULA_PERSISTENT_TIME_INTERVAL: config_params.persistent_time_interval,
|
34 |
+
NEBULA_NUM_OF_VERSION_IN_RETENTION: config_params.num_of_version_in_retention,
|
35 |
+
}
|
36 |
+
torch_nebula.init(**nebula_config_params)
|
37 |
+
|
38 |
+
def create(self, tag):
|
39 |
+
log_dist(f"[Nebula] Start Checkpoint for tag:{tag}", ranks=[0])
|
40 |
+
# -2 means: customer needs to explicitly tell nebula
|
41 |
+
# current checkpoint is complete by commit method.
|
42 |
+
self.checkpoint = torch_nebula.Checkpoint(tag, -2)
|
43 |
+
|
44 |
+
def save(self, state_dict, path: str):
|
45 |
+
log_dist(f"[Nebula] Create dummy files for loading.")
|
46 |
+
torch.save("", path)
|
47 |
+
|
48 |
+
tag = _get_tag_from_path(path)
|
49 |
+
partition_name = os.path.basename(path)
|
50 |
+
logger.info(f"[Nebula] Saving {partition_name} under tag {tag}...")
|
51 |
+
self.checkpoint.save(partition_name, state_dict)
|
52 |
+
logger.info(f"[Nebula] Saved {partition_name} under tag {tag}.")
|
53 |
+
return None
|
54 |
+
|
55 |
+
def load(self, path: str, map_location=None):
|
56 |
+
tag = _get_tag_from_path(path)
|
57 |
+
first_load_flag = self.tag_flag is None or self.tag_flag == tag
|
58 |
+
if not self.enable_nebula_load and first_load_flag:
|
59 |
+
self.tag_flag = tag
|
60 |
+
logger.info(f"[Nebula] Disable nebula load. Loading checkpoint from {path} ...")
|
61 |
+
partition = torch.load(path, map_location=map_location)
|
62 |
+
logger.info(f"[Nebula] Disable nebula load. Loaded checkpoint from {path} .")
|
63 |
+
return partition
|
64 |
+
|
65 |
+
partition_name = os.path.basename(path)
|
66 |
+
logger.info(f"[Nebula] Loading {path} under tag {tag} from nebula path {self.nebula_load_path}...")
|
67 |
+
|
68 |
+
checkpoint = None
|
69 |
+
if tag in (None, 'latest', 'latest_universal'):
|
70 |
+
# In some cases, there is the inconsistent tag between deepspeed metadata (latest file)
|
71 |
+
# and nebula metadata, will lead to the failure on loading with deepspeed tag. Then we
|
72 |
+
# will try to load the valid latest checkpoint from nebula(tier3 > tier1). So, in summary
|
73 |
+
# when met failure loading for given tag, the loading priority would be like:
|
74 |
+
# nebula tier3 latest > nebula tier1 latest.
|
75 |
+
checkpoint = torch_nebula.get_latest_checkpoint(persist_path=self.nebula_load_path)
|
76 |
+
else:
|
77 |
+
checkpoint = torch_nebula.get_checkpoint(tag=tag, persist_path=self.nebula_load_path)
|
78 |
+
|
79 |
+
if checkpoint is None or (checkpoint is not None and checkpoint.tag == ''):
|
80 |
+
logger.info(
|
81 |
+
f"Unable to find valid checkpoint tag:{tag} from Nebula, try to get latest checkpoint again from nebula {self.nebula_load_path} path!"
|
82 |
+
)
|
83 |
+
# nebula tier3 latest
|
84 |
+
checkpoint = torch_nebula.get_latest_checkpoint(persist_path=self.nebula_load_path)
|
85 |
+
if checkpoint is None or (checkpoint is not None and checkpoint.tag == ''):
|
86 |
+
logger.info(
|
87 |
+
f"Unable to find latest checkpoint from Nebula tier3, try to get latest checkpoint again from nebula tier1 path!"
|
88 |
+
)
|
89 |
+
# nebula tier1 latest
|
90 |
+
checkpoint = torch_nebula.get_latest_checkpoint()
|
91 |
+
logger.warning(f"Unable to find valid checkpoint from Nebula under tag:{tag}.")
|
92 |
+
return None
|
93 |
+
|
94 |
+
tag = checkpoint.tag
|
95 |
+
self.tag_flag = -1
|
96 |
+
partition = checkpoint.load(partition_name, map_location=map_location)
|
97 |
+
logger.info(f"[Nebula] Loaded {path} under tag {tag} from {self.nebula_load_path}.")
|
98 |
+
return partition
|
99 |
+
|
100 |
+
def commit(self, tag):
|
101 |
+
# nebula commit will be call when all files under give tag are ready to be persisted in the async way.
|
102 |
+
logger.info(f"[Nebula] all files for {tag} are saved in tier1. It is ready to start persisting")
|
103 |
+
commit_rls = self.checkpoint.commit()
|
104 |
+
if not commit_rls:
|
105 |
+
logger.error(f"[Nebula] failed to commit the checkpoint, please check the log.")
|
106 |
+
return False
|
107 |
+
return commit_rls
|
venv/lib/python3.10/site-packages/deepspeed/runtime/checkpoint_engine/torch_checkpoint_engine.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from deepspeed.utils import logger, log_dist
|
8 |
+
from deepspeed.runtime.checkpoint_engine.checkpoint_engine import \
|
9 |
+
CheckpointEngine
|
10 |
+
|
11 |
+
|
12 |
+
class TorchCheckpointEngine(CheckpointEngine):
|
13 |
+
|
14 |
+
def __init__(self, config_params=None):
|
15 |
+
super().__init__(config_params)
|
16 |
+
|
17 |
+
def create(self, tag):
|
18 |
+
log_dist(f"[Torch] Checkpoint {tag} is about to be saved!", ranks=[0])
|
19 |
+
|
20 |
+
def save(self, state_dict, path: str):
|
21 |
+
logger.info(f"[Torch] Saving {path}...")
|
22 |
+
torch.save(state_dict, path)
|
23 |
+
logger.info(f"[Torch] Saved {path}.")
|
24 |
+
return None
|
25 |
+
|
26 |
+
def load(self, path: str, map_location=None):
|
27 |
+
logger.info(f"[Torch] Loading checkpoint from {path}...")
|
28 |
+
partition = torch.load(path, map_location=map_location)
|
29 |
+
logger.info(f"[Torch] Loaded checkpoint from {path}.")
|
30 |
+
return partition
|
31 |
+
|
32 |
+
def commit(self, tag):
|
33 |
+
logger.info(f"[Torch] Checkpoint {tag} is ready now!")
|
34 |
+
return True
|
venv/lib/python3.10/site-packages/deepspeed/runtime/compression/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
'''Copyright The Microsoft DeepSpeed Team'''
|
venv/lib/python3.10/site-packages/deepspeed/runtime/compression/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (247 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/runtime/compression/__pycache__/cupy.cpython-310.pyc
ADDED
Binary file (1.22 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/runtime/compression/cupy.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import cupy
|
7 |
+
from torch.utils.dlpack import to_dlpack
|
8 |
+
from torch.utils.dlpack import from_dlpack
|
9 |
+
|
10 |
+
|
11 |
+
class CupyBackend(object):
|
12 |
+
|
13 |
+
def __init__(self):
|
14 |
+
pass
|
15 |
+
|
16 |
+
def torch2cupy(self, tensor):
|
17 |
+
return cupy.fromDlpack(to_dlpack(tensor))
|
18 |
+
|
19 |
+
def cupy2torch(self, cupy_tensor):
|
20 |
+
return from_dlpack(cupy_tensor.toDlpack())
|
21 |
+
|
22 |
+
def compress_by_chunk(self, cupy_bool_tensor, num_chunks):
|
23 |
+
packed_sign = cupy.packbits(cupy_bool_tensor)
|
24 |
+
sign_list_packed = cupy.split(packed_sign, num_chunks)
|
25 |
+
cupy.cuda.get_current_stream().synchronize()
|
26 |
+
return sign_list_packed
|
venv/lib/python3.10/site-packages/deepspeed/runtime/pipe/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from .module import PipelineModule, LayerSpec, TiedLayerSpec
|
7 |
+
from .topology import ProcessTopology
|
venv/lib/python3.10/site-packages/deepspeed/runtime/pipe/engine.py
ADDED
@@ -0,0 +1,1437 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from types import MethodType
|
7 |
+
from collections import OrderedDict
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from deepspeed import comm as dist
|
11 |
+
|
12 |
+
from deepspeed.utils import logger
|
13 |
+
from deepspeed.utils.timer import ThroughputTimer
|
14 |
+
from deepspeed.accelerator import get_accelerator
|
15 |
+
from deepspeed.runtime.bf16_optimizer import BF16_Optimizer
|
16 |
+
|
17 |
+
from ..engine import DeepSpeedEngine, MEMORY_OPT_ALLREDUCE_SIZE
|
18 |
+
from deepspeed.utils.timer import FORWARD_MICRO_TIMER, FORWARD_GLOBAL_TIMER, BACKWARD_MICRO_TIMER, \
|
19 |
+
BACKWARD_GLOBAL_TIMER, BACKWARD_INNER_MICRO_TIMER, BACKWARD_INNER_GLOBAL_TIMER, \
|
20 |
+
BACKWARD_REDUCE_MICRO_TIMER, BACKWARD_REDUCE_GLOBAL_TIMER, \
|
21 |
+
STEP_MICRO_TIMER, STEP_GLOBAL_TIMER
|
22 |
+
|
23 |
+
from ..utils import PartitionedTensor
|
24 |
+
from ..dataloader import RepeatingLoader
|
25 |
+
from ..zero.config import ZeroStageEnum
|
26 |
+
from ..activation_checkpointing import checkpointing as ds_checkpointing
|
27 |
+
|
28 |
+
from .module import PipelineModule, PipelineError
|
29 |
+
from . import p2p
|
30 |
+
from . import schedule
|
31 |
+
|
32 |
+
TARGET_ID = -2
|
33 |
+
LOG_STAGE = -2
|
34 |
+
DATA_PARALLEL_ID = -2
|
35 |
+
|
36 |
+
BATCH_INPUT_TIMER = 'batch_input'
|
37 |
+
TRAIN_BATCH_TIMER = 'train_batch'
|
38 |
+
PIPE_SEND_OUTPUT_TIMER = 'pipe_send_output'
|
39 |
+
PIPE_SEND_GRAD_TIMER = 'pipe_send_grad'
|
40 |
+
PIPE_RECV_INPUT_TIMER = 'pipe_recv_input'
|
41 |
+
PIPE_RECV_GRAD_TIMER = 'pipe_recv_grad'
|
42 |
+
|
43 |
+
|
44 |
+
def is_even(number):
|
45 |
+
return number % 2 == 0
|
46 |
+
|
47 |
+
|
48 |
+
mem_alloced = 0
|
49 |
+
mem_cached = 0
|
50 |
+
|
51 |
+
|
52 |
+
def _tensor_bytes(tensor):
|
53 |
+
return tensor.numel() * tensor.element_size()
|
54 |
+
|
55 |
+
|
56 |
+
class PipelineEngine(DeepSpeedEngine):
|
57 |
+
""" A training engine hybrid pipeline, data, and model parallel training.
|
58 |
+
|
59 |
+
This engine is created by ``deepspeed.initialize()`` when a :class:`PipelineModule`
|
60 |
+
is provided.
|
61 |
+
"""
|
62 |
+
ID_TO_DTYPE = [
|
63 |
+
torch.float32, torch.float64, torch.complex64, torch.complex128, torch.float16, torch.bfloat16, torch.uint8,
|
64 |
+
torch.int8, torch.int16, torch.int32, torch.int64, torch.bool
|
65 |
+
]
|
66 |
+
DTYPE_TO_ID = {dtype: id_ for id_, dtype in enumerate(ID_TO_DTYPE)}
|
67 |
+
|
68 |
+
def __init__(self, has_bool_tensors=False, *super_args, **super_kwargs):
|
69 |
+
super().__init__(*super_args, **super_kwargs)
|
70 |
+
assert isinstance(self.module, PipelineModule) \
|
71 |
+
or (hasattr(self.module, 'wrapped') and isinstance(self.module.wrapped, PipelineModule)), \
|
72 |
+
"model must base PipelineModule"
|
73 |
+
|
74 |
+
assert self.zero_optimization_stage(
|
75 |
+
) < ZeroStageEnum.gradients, "ZeRO-2 and ZeRO-3 are incompatible with pipeline parallelism"
|
76 |
+
|
77 |
+
# We schedule the all-reduces, so disable it in super().backward()
|
78 |
+
self.enable_backward_allreduce = False
|
79 |
+
self.has_bool_tensors = has_bool_tensors
|
80 |
+
self.eval_return_logits = False
|
81 |
+
self.outputs = None
|
82 |
+
# BF16 Optimizer is hardcoded for fp32 gradient accumulation
|
83 |
+
self.using_bf16_optimizer = type(self.optimizer) == BF16_Optimizer
|
84 |
+
|
85 |
+
# used to disable the pipeline all-reduce when used with 1-bit Adam/1-bit LAMB
|
86 |
+
self.pipeline_enable_backward_allreduce = True
|
87 |
+
|
88 |
+
if self.elasticity_enabled():
|
89 |
+
if not self.is_elastic_model_parallel_supported():
|
90 |
+
assert not self.elasticity_enabled(), "Elasticity is not currently supported" \
|
91 |
+
" with pipeline parallelism."
|
92 |
+
|
93 |
+
# pipeline step for logging
|
94 |
+
self.log_batch_step_id = -1
|
95 |
+
|
96 |
+
self.micro_batch_size = self.train_micro_batch_size_per_gpu()
|
97 |
+
self.micro_batches = self.gradient_accumulation_steps()
|
98 |
+
|
99 |
+
# Set Grid and Communication Groups
|
100 |
+
self.grid = self.module._grid
|
101 |
+
if self.grid.get_global_rank() == 0:
|
102 |
+
logger.info(f'CONFIG: micro_batches={self.micro_batches} '
|
103 |
+
f'micro_batch_size={self.micro_batch_size}')
|
104 |
+
|
105 |
+
self.global_rank = self.grid.get_global_rank()
|
106 |
+
|
107 |
+
assert self.dp_world_size == self.grid.data_parallel_size
|
108 |
+
assert self.train_batch_size() == \
|
109 |
+
self.micro_batch_size * self.micro_batches * self.grid.data_parallel_size
|
110 |
+
|
111 |
+
# Set Stage Inf
|
112 |
+
self.num_stages = self.grid.pipe_parallel_size
|
113 |
+
self.stage_id = self.grid.get_stage_id()
|
114 |
+
self.prev_stage = self.stage_id - 1
|
115 |
+
self.next_stage = self.stage_id + 1
|
116 |
+
|
117 |
+
self.data_iterator = None
|
118 |
+
self.batch_fn = None
|
119 |
+
|
120 |
+
self._force_grad_boundary = False
|
121 |
+
|
122 |
+
self.batch_timer = ThroughputTimer(batch_size=self.train_batch_size(),
|
123 |
+
logging_fn=self.tput_log,
|
124 |
+
monitor_memory=False,
|
125 |
+
steps_per_output=self.steps_per_print())
|
126 |
+
|
127 |
+
# PipelineEngine needs to handle data loading specially due to only the first
|
128 |
+
# and last stages loading inputs/labels. We construct a sampler that uses
|
129 |
+
if self.training_data:
|
130 |
+
self._build_data_iter(self.training_data)
|
131 |
+
|
132 |
+
self.is_pipe_parallel = self.grid.pipe_parallel_size > 1
|
133 |
+
self.is_data_parallel = self.grid.data_parallel_size > 1
|
134 |
+
self.is_model_parallel = self.grid.model_parallel_size > 1
|
135 |
+
|
136 |
+
# Partition input/output buffers
|
137 |
+
# XXX temporarily disable while I revert some partition hacks.
|
138 |
+
assert isinstance(self._config.pipeline['pipe_partitioned'], bool)
|
139 |
+
assert isinstance(self._config.pipeline['grad_partitioned'], bool)
|
140 |
+
self.is_pipe_partitioned = self.is_model_parallel and self._config.pipeline['pipe_partitioned']
|
141 |
+
self.is_grad_partitioned = self.is_model_parallel and self._config.pipeline['grad_partitioned']
|
142 |
+
logger.info(f'is_pipe_partitioned= {self.is_pipe_partitioned} '
|
143 |
+
f'is_grad_partitioned= {self.is_grad_partitioned}')
|
144 |
+
|
145 |
+
model_parameters = filter(lambda p: p.requires_grad, self.module.parameters())
|
146 |
+
num_params = sum([p.numel() for p in model_parameters])
|
147 |
+
unique_params = num_params
|
148 |
+
# Subtract tied parameters if we don't own them
|
149 |
+
if self.module.tied_comms:
|
150 |
+
tied_params = 0
|
151 |
+
for key, d in self.module.tied_comms.items():
|
152 |
+
if self.global_rank != min(d['ranks']):
|
153 |
+
tied_params += sum(p.numel() for p in d['module'].parameters())
|
154 |
+
unique_params -= tied_params
|
155 |
+
params_tensor = torch.LongTensor(data=[num_params, unique_params]).to(self.device)
|
156 |
+
dist.all_reduce(params_tensor, group=self.grid.get_model_parallel_group())
|
157 |
+
params_tensor = params_tensor.tolist()
|
158 |
+
total_params = params_tensor[0]
|
159 |
+
unique_params = params_tensor[1]
|
160 |
+
if self.grid.data_parallel_id == 0:
|
161 |
+
logger.info(f'RANK={self.global_rank} '
|
162 |
+
f'STAGE={self.stage_id} '
|
163 |
+
f'LAYERS={self.module._local_stop - self.module._local_start} '
|
164 |
+
f'[{self.module._local_start}, {self.module._local_stop}) '
|
165 |
+
f'STAGE_PARAMS={num_params} ({num_params/1e6:0.3f}M) '
|
166 |
+
f'TOTAL_PARAMS={total_params} ({total_params/1e6:0.3f}M) '
|
167 |
+
f'UNIQUE_PARAMS={unique_params} ({unique_params/1e6:0.3f}M)')
|
168 |
+
|
169 |
+
#initialize peer-2-peer communication and allreduce groups
|
170 |
+
if self.is_pipe_parallel:
|
171 |
+
p2p.init_process_groups(self.grid)
|
172 |
+
|
173 |
+
# Pipeline buffers
|
174 |
+
self.num_pipe_buffers = 0
|
175 |
+
self.pipe_buffers = {
|
176 |
+
'inputs': [], # batch input and received activations
|
177 |
+
'labels': [], # labels from batch input
|
178 |
+
'outputs': [], # activations
|
179 |
+
'output_tensors': [], # tensor object to preserve backward graph
|
180 |
+
}
|
181 |
+
self.pipe_recv_buf = None
|
182 |
+
self.grad_layer = None
|
183 |
+
|
184 |
+
self.meta_buffer = None
|
185 |
+
|
186 |
+
self.first_output_send = True
|
187 |
+
self.first_gradient_send = True
|
188 |
+
self.pipe_partition_input_meta_cache = None
|
189 |
+
self.pipe_partition_output_meta_cache = None
|
190 |
+
self.pipe_partition_grad_meta_cache = None
|
191 |
+
self.grad_partition_grad_layer_meta_cache = None
|
192 |
+
|
193 |
+
#stores the loss for the current micro batch being processed
|
194 |
+
self.loss = torch.tensor(0.0).to(self.device)
|
195 |
+
|
196 |
+
#stores the loss for the entire batch
|
197 |
+
self.total_loss = None
|
198 |
+
self.total_additional_losses = None
|
199 |
+
self.agg_loss = torch.tensor(0.0, requires_grad=False).to(self.device)
|
200 |
+
self.dp_group_loss = torch.tensor(0.0, requires_grad=False).to(self.device)
|
201 |
+
|
202 |
+
# stores aggregated-DP train final loss and aggregated-DP additional losses, if any
|
203 |
+
# additional losses are stored as dict: {loss-name: agg-loss}
|
204 |
+
self.agg_train_loss = None
|
205 |
+
self.agg_additional_losses = None
|
206 |
+
|
207 |
+
if self._config.pipeline['activation_checkpoint_interval'] > 0:
|
208 |
+
self.module.activation_checkpoint_interval = self._config.pipeline['activation_checkpoint_interval']
|
209 |
+
# set use_reentrant default to True.
|
210 |
+
if self._config.pipeline.get('use_reentrant') is None:
|
211 |
+
self._config.pipeline['use_reentrant'] = True
|
212 |
+
if self._config.pipeline['use_reentrant'] is False:
|
213 |
+
# set activation_checkpoint_func to non_reentrant_checkpoint func.
|
214 |
+
self.module.activation_checkpoint_func = ds_checkpointing.non_reentrant_checkpoint
|
215 |
+
if self.grid.get_global_rank() == 0:
|
216 |
+
logger.info(f'CONFIG: activation_checkpoint_func=non_reentrant_checkpoint')
|
217 |
+
|
218 |
+
self.module.checkpoint_parallel_write_pipeline = self._config.checkpoint_parallel_write_pipeline
|
219 |
+
|
220 |
+
if self.is_last_stage():
|
221 |
+
self.loss_model = self.module.loss_fn
|
222 |
+
|
223 |
+
self.has_attention_mask = self.module.__class__.__name__ == 'GPT2ModelPipe'
|
224 |
+
# Initialize pipeline communicators. Just send a 0.
|
225 |
+
if is_even(self.stage_id):
|
226 |
+
if not self.is_last_stage():
|
227 |
+
p2p.send(self.loss, self.next_stage)
|
228 |
+
if not self.is_first_stage():
|
229 |
+
p2p.recv(self.loss, self.prev_stage)
|
230 |
+
else:
|
231 |
+
if not self.is_first_stage():
|
232 |
+
p2p.recv(self.loss, self.prev_stage)
|
233 |
+
if not self.is_last_stage():
|
234 |
+
p2p.send(self.loss, self.next_stage)
|
235 |
+
|
236 |
+
# XXX look into timer reporting timing
|
237 |
+
# Initialize some timers because of early weirdness.
|
238 |
+
if self.wall_clock_breakdown():
|
239 |
+
self.timers(FORWARD_MICRO_TIMER).start()
|
240 |
+
self.timers(FORWARD_MICRO_TIMER).stop()
|
241 |
+
self.timers(BACKWARD_MICRO_TIMER).start()
|
242 |
+
self.timers(BACKWARD_MICRO_TIMER).stop()
|
243 |
+
self.timers(BACKWARD_INNER_MICRO_TIMER).start()
|
244 |
+
self.timers(BACKWARD_INNER_MICRO_TIMER).stop()
|
245 |
+
self.timers(BACKWARD_REDUCE_MICRO_TIMER).start()
|
246 |
+
self.timers(BACKWARD_REDUCE_MICRO_TIMER).stop()
|
247 |
+
self.timers(BACKWARD_REDUCE_GLOBAL_TIMER).start()
|
248 |
+
self.timers(BACKWARD_REDUCE_GLOBAL_TIMER).stop()
|
249 |
+
self.timers(STEP_MICRO_TIMER).start()
|
250 |
+
self.timers(STEP_MICRO_TIMER).stop()
|
251 |
+
|
252 |
+
def set_has_attention_mask(self, value):
|
253 |
+
assert isinstance(value, bool)
|
254 |
+
self.has_attention_mask = value
|
255 |
+
|
256 |
+
def _build_data_iter(self, dataset):
|
257 |
+
sampler = torch.utils.data.distributed.DistributedSampler(dataset,
|
258 |
+
num_replicas=self.dp_world_size,
|
259 |
+
rank=self.mpu.get_data_parallel_rank(),
|
260 |
+
shuffle=False)
|
261 |
+
# Build a loader and make it repeating.
|
262 |
+
pipe_dataloader = self.deepspeed_io(dataset, data_sampler=sampler)
|
263 |
+
pipe_dataloader = RepeatingLoader(pipe_dataloader)
|
264 |
+
self.set_dataloader(pipe_dataloader)
|
265 |
+
|
266 |
+
def _exec_reduce_tied_grads(self):
|
267 |
+
# We need to run this first to write to self.averaged_gradients;
|
268 |
+
# since this class turns `enable_backward_allreduce` off,
|
269 |
+
# `self.overlapping_partition_gradients_reduce_epilogue()` defined in the DeepSpeedEngine
|
270 |
+
# never actually runs. I suspect this is because of efficiency problems; get_flat_partition in
|
271 |
+
# stage2.py might do something expensive; someone will have to look into that later. But
|
272 |
+
# in the meantime, this fixes ZeRO2 + Pipelining enough to run a demo. Further profiling
|
273 |
+
# needed to decide if it actually breaks everything.
|
274 |
+
# (see https://github.com/EleutherAI/gpt-neox/issues/62#issuecomment-761471944)
|
275 |
+
if self.zero_optimization_partition_gradients():
|
276 |
+
self.optimizer.overlapping_partition_gradients_reduce_epilogue()
|
277 |
+
|
278 |
+
weight_group_list = self.module.get_tied_weights_and_groups()
|
279 |
+
for weight, group in weight_group_list:
|
280 |
+
grad = weight._hp_grad if self.using_bf16_optimizer else weight.grad
|
281 |
+
dist.all_reduce(grad, group=group)
|
282 |
+
|
283 |
+
def _exec_reduce_grads(self):
|
284 |
+
self._force_grad_boundary = True
|
285 |
+
if self.pipeline_enable_backward_allreduce:
|
286 |
+
if self.using_bf16_optimizer:
|
287 |
+
# PP+BF16 work for ZeRO Stage 1
|
288 |
+
self._bf16_reduce_grads()
|
289 |
+
else:
|
290 |
+
self.allreduce_gradients(bucket_size=MEMORY_OPT_ALLREDUCE_SIZE)
|
291 |
+
self._force_grad_boundary = False
|
292 |
+
|
293 |
+
def _bf16_reduce_grads(self):
|
294 |
+
self.buffered_allreduce_fallback(grads=None, elements_per_buffer=MEMORY_OPT_ALLREDUCE_SIZE)
|
295 |
+
|
296 |
+
def _reserve_pipe_buffers(self, num_buffers):
|
297 |
+
"""Ensure that each pipeline buffer has at least ``num_buffers`` slots.
|
298 |
+
|
299 |
+
This method only reserves slots and does not allocate tensors.
|
300 |
+
|
301 |
+
Args:
|
302 |
+
num_buffers (int): The number of buffers to reserve.
|
303 |
+
"""
|
304 |
+
if self.num_pipe_buffers >= num_buffers:
|
305 |
+
return
|
306 |
+
|
307 |
+
num_added = num_buffers - self.num_pipe_buffers
|
308 |
+
for key in self.pipe_buffers:
|
309 |
+
self.pipe_buffers[key].extend([None] * num_added)
|
310 |
+
self.num_pipe_buffers = num_buffers
|
311 |
+
|
312 |
+
def reset_activation_shape(self):
|
313 |
+
"""Reset the buffers when the shape of activation and gradient change.
|
314 |
+
For example, for curriculum learning that changes the seqlen of each
|
315 |
+
sample, we need to call this whenever the seqlen is going to change.
|
316 |
+
"""
|
317 |
+
self.first_output_send = True
|
318 |
+
self.pipe_recv_buf = None
|
319 |
+
self.grad_layer = None
|
320 |
+
self.meta_buffer = None
|
321 |
+
|
322 |
+
self.pipe_partition_input_meta_cache = None
|
323 |
+
self.pipe_partition_output_meta_cache = None
|
324 |
+
self.pipe_partition_grad_meta_cache = None
|
325 |
+
self.grad_partition_grad_layer_meta_cache = None
|
326 |
+
|
327 |
+
def train_batch(self, data_iter=None):
|
328 |
+
"""Progress the pipeline to train the next batch of data. The engine will ingest
|
329 |
+
``self.train_batch_size()`` total samples collectively across all workers.
|
330 |
+
|
331 |
+
|
332 |
+
An iterator that over training data should be provided as an argument
|
333 |
+
unless ``deepspeed.initialize()`` was provided a training set. In that event,
|
334 |
+
the training data will automatically be read.
|
335 |
+
|
336 |
+
|
337 |
+
.. warning::
|
338 |
+
A total of ``self.gradient_accumulation_steps()`` entries will be pulled
|
339 |
+
from ``data_iter`` by each pipeline. There must be sufficient
|
340 |
+
data left in ``data_iter`` or else a ``StopIteration`` will halt training.
|
341 |
+
|
342 |
+
DeepSpeed provides a convenience class :class:`deepspeed.utils.RepeatingLoader`
|
343 |
+
that wraps data loaders to automatically restart upon a ``StopIteration``.
|
344 |
+
|
345 |
+
Args:
|
346 |
+
data_iter (Iterator, optional): Iterator of training data.
|
347 |
+
|
348 |
+
Returns:
|
349 |
+
The arithmetic mean of the losses computed this batch.
|
350 |
+
"""
|
351 |
+
if not torch._C.is_grad_enabled():
|
352 |
+
raise RuntimeError(f'train_batch() requires gradients enabled. Use eval_batch() instead.')
|
353 |
+
|
354 |
+
# Curriculum learning could change activation shape
|
355 |
+
if self.curriculum_enabled_legacy():
|
356 |
+
new_difficulty = self.curriculum_scheduler_legacy.update_difficulty( \
|
357 |
+
self.global_steps + 1)
|
358 |
+
if self.global_steps == 0 or self.curriculum_scheduler_legacy.first_step:
|
359 |
+
self.reset_activation_shape()
|
360 |
+
self.curriculum_scheduler_legacy.first_step = False
|
361 |
+
elif new_difficulty != self.curriculum_scheduler_legacy.get_difficulty( \
|
362 |
+
self.global_steps):
|
363 |
+
self.reset_activation_shape()
|
364 |
+
|
365 |
+
if data_iter is not None:
|
366 |
+
self.set_dataiterator(data_iter)
|
367 |
+
|
368 |
+
self.module.train()
|
369 |
+
self.total_loss = None
|
370 |
+
self.total_additional_losses = None
|
371 |
+
self._compute_loss = True
|
372 |
+
|
373 |
+
# Do the work
|
374 |
+
self.timers(TRAIN_BATCH_TIMER).start()
|
375 |
+
sched = schedule.TrainSchedule(micro_batches=self.micro_batches,
|
376 |
+
stages=self.num_stages,
|
377 |
+
stage_id=self.stage_id)
|
378 |
+
self._exec_schedule(sched)
|
379 |
+
|
380 |
+
with torch.no_grad():
|
381 |
+
self.agg_train_loss = self._aggregate_total_loss()
|
382 |
+
|
383 |
+
self.timers(TRAIN_BATCH_TIMER).stop()
|
384 |
+
|
385 |
+
if self.global_steps % self.steps_per_print() == 0:
|
386 |
+
if self.global_rank == 0:
|
387 |
+
elapsed = self.timers(TRAIN_BATCH_TIMER).elapsed(reset=True) / 1000.0
|
388 |
+
iter_time = elapsed / self.steps_per_print()
|
389 |
+
tput = self.train_batch_size() / iter_time
|
390 |
+
log_str = f'steps: {self.global_steps} loss: {self.agg_train_loss:0.4f} '
|
391 |
+
if self.agg_additional_losses is not None:
|
392 |
+
for loss_name, loss_value in self.agg_additional_losses.items():
|
393 |
+
log_str += f'{loss_name}: {loss_value.item():0.4f} '
|
394 |
+
log_str += f'iter time (s): {iter_time:0.3f} samples/sec: {tput:0.3f}'
|
395 |
+
print(log_str)
|
396 |
+
else:
|
397 |
+
self.timers(TRAIN_BATCH_TIMER).elapsed(reset=True)
|
398 |
+
|
399 |
+
# Monitoring
|
400 |
+
if self.global_rank == 0 and self.monitor.enabled:
|
401 |
+
self.summary_events = [(f'Train/Samples/train_loss', self.agg_train_loss.mean().item(),
|
402 |
+
self.global_samples)]
|
403 |
+
self.monitor.write_events(self.summary_events)
|
404 |
+
|
405 |
+
if self.wall_clock_breakdown() and self.global_steps % self.steps_per_print() == 0:
|
406 |
+
self.timers.log([
|
407 |
+
PIPE_SEND_OUTPUT_TIMER,
|
408 |
+
PIPE_SEND_GRAD_TIMER,
|
409 |
+
PIPE_RECV_INPUT_TIMER,
|
410 |
+
PIPE_RECV_GRAD_TIMER,
|
411 |
+
])
|
412 |
+
|
413 |
+
# TODO: should return precisely what loss returned and allow others to be queried?
|
414 |
+
return self.agg_train_loss
|
415 |
+
|
416 |
+
def eval_batch(self,
|
417 |
+
data_iter,
|
418 |
+
return_logits=False,
|
419 |
+
compute_loss=True,
|
420 |
+
reduce_output='avg',
|
421 |
+
bcast_loss=True,
|
422 |
+
num_micro_batches=None):
|
423 |
+
"""Evaluate the pipeline on a batch of data from ``data_iter``. The
|
424 |
+
engine will evaluate ``self.train_batch_size()`` total samples
|
425 |
+
collectively across all workers.
|
426 |
+
|
427 |
+
This method is equivalent to:
|
428 |
+
|
429 |
+
.. code-block:: python
|
430 |
+
|
431 |
+
module.eval()
|
432 |
+
with torch.no_grad():
|
433 |
+
output = module(batch)
|
434 |
+
|
435 |
+
.. warning::
|
436 |
+
A total of ``self.gradient_accumulation_steps()`` entries will be pulled
|
437 |
+
from ``data_iter`` by each pipeline. There must be sufficient
|
438 |
+
data left in ``data_iter`` or else a ``StopIteration`` will halt training.
|
439 |
+
|
440 |
+
DeepSpeed provides a convenience class :class:`deepspeed.utils.RepeatingLoader`
|
441 |
+
that wraps data loaders to automatically restart upon a ``StopIteration``.
|
442 |
+
|
443 |
+
Args:
|
444 |
+
data_iter (Iterator): Iterator of data to evaluate.
|
445 |
+
|
446 |
+
Returns:
|
447 |
+
The arithmetic mean of the losses computed this batch.
|
448 |
+
"""
|
449 |
+
self.eval_return_logits = return_logits
|
450 |
+
self.module.eval()
|
451 |
+
|
452 |
+
# Curriculum learning could change activation shape
|
453 |
+
if self.curriculum_enabled_legacy():
|
454 |
+
new_difficulty = self.curriculum_scheduler_legacy.update_difficulty( \
|
455 |
+
self.global_steps + 1)
|
456 |
+
if self.global_steps == 0 or self.curriculum_scheduler_legacy.first_step:
|
457 |
+
self.reset_activation_shape()
|
458 |
+
self.curriculum_scheduler_legacy.first_step = False
|
459 |
+
elif new_difficulty != self.curriculum_scheduler_legacy.get_difficulty( \
|
460 |
+
self.global_steps):
|
461 |
+
self.reset_activation_shape()
|
462 |
+
|
463 |
+
eval_output = None
|
464 |
+
|
465 |
+
self._compute_loss = compute_loss
|
466 |
+
|
467 |
+
# Use the provided data iterator
|
468 |
+
train_iterator = self.data_iterator
|
469 |
+
self.set_dataiterator(data_iter)
|
470 |
+
|
471 |
+
# set the number micro batches in case the user chose value than training
|
472 |
+
micro_batches = self.micro_batches if num_micro_batches is None else num_micro_batches
|
473 |
+
|
474 |
+
# Do the work
|
475 |
+
sched = schedule.InferenceSchedule(micro_batches=self.micro_batches,
|
476 |
+
stages=self.num_stages,
|
477 |
+
stage_id=self.stage_id)
|
478 |
+
|
479 |
+
# prevent dead-lock with multiple evals sequence
|
480 |
+
dist.barrier()
|
481 |
+
|
482 |
+
with torch.no_grad():
|
483 |
+
self._exec_schedule(sched)
|
484 |
+
|
485 |
+
if self.is_last_stage():
|
486 |
+
eval_output = self._reduce_outputs(self.fwd_outputs, reduce=reduce_output, micro_batches=micro_batches)
|
487 |
+
|
488 |
+
if compute_loss and (bcast_loss or self.monitor.enabled):
|
489 |
+
eval_output = self._bcast_pipe_scalar(eval_output)
|
490 |
+
|
491 |
+
if self.global_rank == 0 and self.monitor.enabled:
|
492 |
+
self.summary_events = [(f'Train/Samples/eval_loss', eval_output.mean().item(), self.global_samples)]
|
493 |
+
self.monitor.write_events(self.summary_events)
|
494 |
+
|
495 |
+
# Restore the training iterator
|
496 |
+
self.set_dataiterator(train_iterator)
|
497 |
+
|
498 |
+
# Reset any buffers that may have been populated during the forward passes.
|
499 |
+
#ds_checkpointing.reset()
|
500 |
+
self.eval_return_logits = False
|
501 |
+
if return_logits:
|
502 |
+
outputs = self.outputs
|
503 |
+
self.outputs = None
|
504 |
+
return eval_output, outputs
|
505 |
+
return eval_output
|
506 |
+
|
507 |
+
def set_train_batch_size(self, train_batch_size):
|
508 |
+
"""Adjust the global batch size by increasing or decreasing the number of
|
509 |
+
micro-batches (i.e., gradient accumulation steps). The size of each micro-batch
|
510 |
+
(i.e., ``train_micro_batch_size_per_gpu``) is not changed.
|
511 |
+
Args:
|
512 |
+
train_batch_size (int): The new global batch size for training.
|
513 |
+
Raises:
|
514 |
+
ValueError: if ``train_batch_size`` is not divisible by the
|
515 |
+
configured micro-batch size and data parallelism.
|
516 |
+
"""
|
517 |
+
super().set_train_batch_size(train_batch_size)
|
518 |
+
self.micro_batches = self.gradient_accumulation_steps()
|
519 |
+
|
520 |
+
def is_first_stage(self):
|
521 |
+
"""True if this process is in the first stage in the pipeline."""
|
522 |
+
return self.stage_id == 0
|
523 |
+
|
524 |
+
def is_last_stage(self):
|
525 |
+
"""True if this process is in the last stage in the pipeline."""
|
526 |
+
return self.stage_id == self.num_stages - 1
|
527 |
+
|
528 |
+
def _reduce_outputs(self, outputs, reduce='avg', reduce_dp=True, micro_batches=None):
|
529 |
+
if reduce is None:
|
530 |
+
return outputs
|
531 |
+
|
532 |
+
if reduce.lower() == 'avg':
|
533 |
+
# first sum over all microbatches
|
534 |
+
if torch.is_tensor(outputs[0]):
|
535 |
+
reduced = sum(outputs)
|
536 |
+
else:
|
537 |
+
assert isinstance(outputs, (list, tuple))
|
538 |
+
reduced = [torch.zeros_like(o) for o in outputs[0]]
|
539 |
+
for idx, out in outputs:
|
540 |
+
reduced[idx] += out
|
541 |
+
|
542 |
+
# Average over the microbatches
|
543 |
+
reduced = self._scale_loss_by_gas(reduced, eval_micro_batches=micro_batches)
|
544 |
+
|
545 |
+
# Average over DP groups
|
546 |
+
if reduce_dp and self.is_data_parallel:
|
547 |
+
if torch.is_tensor(reduced):
|
548 |
+
dist.all_reduce(reduced, group=self.mpu.get_data_parallel_group())
|
549 |
+
reduced /= self.dp_world_size
|
550 |
+
else:
|
551 |
+
for idx in range(len(reduced)):
|
552 |
+
dist.all_reduce(reduced[idx], group=self.mpu.get_data_parallel_group())
|
553 |
+
reduced[idx] /= self.dp_world_size
|
554 |
+
|
555 |
+
return reduced
|
556 |
+
else:
|
557 |
+
raise NotImplementedError(f'reduction type {reduce} not supported.')
|
558 |
+
|
559 |
+
def _bcast_pipe_scalar(self, data, src_rank=None, dtype=torch.float32):
|
560 |
+
# Default to last stage (e.g., for broadcasting loss)
|
561 |
+
if src_rank is None:
|
562 |
+
src_rank = self.grid.stage_to_global(self.num_stages - 1)
|
563 |
+
assert src_rank in self.grid.pp_group
|
564 |
+
|
565 |
+
if self.global_rank == src_rank:
|
566 |
+
result = data.clone().detach().type(dtype).to(self.device)
|
567 |
+
else:
|
568 |
+
result = torch.Tensor([0.]).type(dtype).to(self.device)
|
569 |
+
|
570 |
+
dist.broadcast(tensor=result, src=src_rank, group=self.mpu.get_pipe_parallel_group())
|
571 |
+
|
572 |
+
return result
|
573 |
+
|
574 |
+
def _aggregate_total_loss(self):
|
575 |
+
# Scale loss, average among DP ranks, and bcast loss to the rest of my DP group
|
576 |
+
if self.is_last_stage():
|
577 |
+
# Scale loss and additional losses, if any
|
578 |
+
loss = self._scale_loss_by_gas(self.total_loss)
|
579 |
+
self.agg_additional_losses = self.total_additional_losses
|
580 |
+
if self.agg_additional_losses is not None:
|
581 |
+
self.agg_additional_losses = OrderedDict({
|
582 |
+
loss_name: self._scale_loss_by_gas(_loss.clone().detach())
|
583 |
+
for loss_name, _loss in self.agg_additional_losses.items()
|
584 |
+
})
|
585 |
+
|
586 |
+
self.dp_group_loss = loss.clone().detach()
|
587 |
+
agg_loss = self.dp_group_loss.clone().detach()
|
588 |
+
#print(f'RANK={self.global_rank} bcast SENDER src={self.global_rank} group={self.grid.pp_group}', flush=True)
|
589 |
+
|
590 |
+
# Average loss across all data-parallel groups
|
591 |
+
if self.is_data_parallel:
|
592 |
+
if self.agg_additional_losses is None:
|
593 |
+
dist.all_reduce(agg_loss, group=self.mpu.get_data_parallel_group())
|
594 |
+
agg_loss /= self.dp_world_size
|
595 |
+
else:
|
596 |
+
# use a single reduce op for agg_loss and additional losses, if any
|
597 |
+
assert '__train_loss__' not in self.agg_additional_losses.keys()
|
598 |
+
tensors = OrderedDict({'__train_loss__': agg_loss})
|
599 |
+
tensors.update(self.agg_additional_losses.items())
|
600 |
+
flat_tensor = torch.cat([t.clone().reshape(-1).detach() for t in tensors.values()])
|
601 |
+
dist.all_reduce(flat_tensor, group=self.mpu.get_data_parallel_group())
|
602 |
+
flat_tensor /= self.dp_world_size
|
603 |
+
offset = 0
|
604 |
+
reduced_tensor = {}
|
605 |
+
for name, t in tensors.items():
|
606 |
+
n_elem = t.numel()
|
607 |
+
reduced_tensor[name] = flat_tensor[offset:offset + n_elem].clone().detach().reshape(t.shape)
|
608 |
+
offset += n_elem
|
609 |
+
agg_loss = reduced_tensor['__train_loss__']
|
610 |
+
self.agg_additional_losses = OrderedDict(
|
611 |
+
{name: reduced_tensor[name]
|
612 |
+
for name in self.agg_additional_losses.keys()})
|
613 |
+
|
614 |
+
assert self.global_rank in self.grid.pp_group
|
615 |
+
losses = [self.dp_group_loss, agg_loss]
|
616 |
+
if self.agg_additional_losses is not None:
|
617 |
+
losses += list(self.agg_additional_losses.values())
|
618 |
+
losses = torch.stack(losses).float()
|
619 |
+
if self.is_pipe_parallel:
|
620 |
+
dist.broadcast(tensor=losses, src=self.global_rank, group=self.mpu.get_pipe_parallel_group())
|
621 |
+
else:
|
622 |
+
# Get loss from last stage
|
623 |
+
src_rank = self.grid.stage_to_global(self.num_stages - 1)
|
624 |
+
assert src_rank in self.grid.pp_group
|
625 |
+
# losses to reduce are: dp_group_loss, agg_loss, model additional losses
|
626 |
+
# therefore: 2 + n_additional_losses
|
627 |
+
additional_losses = self.module.get_additional_losses()
|
628 |
+
n_additional_losses = 0 if additional_losses is None else len(additional_losses)
|
629 |
+
losses = torch.Tensor([0.] * (2 + n_additional_losses)).to(self.device)
|
630 |
+
dist.broadcast(tensor=losses, src=src_rank, group=self.grid.get_pipe_parallel_group())
|
631 |
+
self.dp_group_loss = losses[0].clone().detach()
|
632 |
+
agg_loss = losses[1].clone().detach()
|
633 |
+
if additional_losses is not None:
|
634 |
+
self.agg_additional_losses = OrderedDict(
|
635 |
+
{name: losses[2 + i].clone().detach()
|
636 |
+
for i, name in enumerate(additional_losses.keys())})
|
637 |
+
return agg_loss
|
638 |
+
|
639 |
+
def set_dataloader(self, loader):
|
640 |
+
""""""
|
641 |
+
if self.is_first_stage() or self.is_last_stage():
|
642 |
+
self.training_dataloader = loader
|
643 |
+
self.data_iterator = iter(self.training_dataloader)
|
644 |
+
|
645 |
+
def set_dataiterator(self, iterator):
|
646 |
+
""" Store an iterator to sample for training data. """
|
647 |
+
if self.is_first_stage() or self.is_last_stage():
|
648 |
+
self.training_dataloader = None
|
649 |
+
self.data_iterator = iterator
|
650 |
+
|
651 |
+
def set_batch_fn(self, fn):
|
652 |
+
"""Execute a post-processing function on input data.
|
653 |
+
|
654 |
+
Args:
|
655 |
+
fn (function): The function to run.
|
656 |
+
"""
|
657 |
+
self.batch_fn = fn
|
658 |
+
|
659 |
+
def is_gradient_accumulation_boundary(self):
|
660 |
+
"""True if the engine is executing a gradient reduction or optimizer step instruction.
|
661 |
+
|
662 |
+
This is overridden from :class:`DeepSpeedEngine` to force reductions
|
663 |
+
and steps when the pipeline engine is instructed to do so.
|
664 |
+
|
665 |
+
Returns:
|
666 |
+
bool: whether reductions and optimizer steps should occur.
|
667 |
+
"""
|
668 |
+
return self._force_grad_boundary
|
669 |
+
|
670 |
+
def log_for_device(self, *msg):
|
671 |
+
if LOG_STAGE == self.stage_id or LOG_STAGE == -1:
|
672 |
+
if DATA_PARALLEL_ID == self.grid.data_parallel_id or DATA_PARALLEL_ID == -1:
|
673 |
+
print(
|
674 |
+
f'RANK={dist.get_rank()} '
|
675 |
+
f'PIPE-ID={self.stage_id} '
|
676 |
+
f'DATA-ID={self.grid.data_parallel_id} '
|
677 |
+
f'MBATCH-ID={self.microbatch_id} '
|
678 |
+
f'STEP-ID={self.log_batch_step_id} '
|
679 |
+
'::',
|
680 |
+
*msg,
|
681 |
+
flush=True)
|
682 |
+
|
683 |
+
def tput_log(self, *msg):
|
684 |
+
if self.global_rank == 0 and self.global_steps % self.steps_per_print() == 0:
|
685 |
+
print(*msg)
|
686 |
+
|
687 |
+
def _next_batch(self):
|
688 |
+
# If using 3D parallelism, only some first-stage ranks may do IO
|
689 |
+
batch = None
|
690 |
+
if self.data_iterator is not None:
|
691 |
+
batch = next(self.data_iterator)
|
692 |
+
|
693 |
+
# Any post-processing, like broadcasting across a slice-parallel group.
|
694 |
+
if self.batch_fn:
|
695 |
+
batch = self.batch_fn(batch)
|
696 |
+
|
697 |
+
return batch
|
698 |
+
|
699 |
+
def _exec_forward_pass(self, buffer_id):
|
700 |
+
self.tput_timer.start()
|
701 |
+
self.mem_status('BEFORE FWD', reset_max=True)
|
702 |
+
|
703 |
+
if isinstance(self.pipe_buffers['inputs'][buffer_id], tuple):
|
704 |
+
inputs = tuple(t.clone() for t in self.pipe_buffers['inputs'][buffer_id])
|
705 |
+
else:
|
706 |
+
inputs = self.pipe_buffers['inputs'][buffer_id].clone()
|
707 |
+
|
708 |
+
# collect the partitioned input from the previous stage
|
709 |
+
if self.is_pipe_partitioned and not self.is_first_stage():
|
710 |
+
if self.pipe_partition_input_meta_cache is None:
|
711 |
+
self.pipe_partition_input_meta_cache = inputs[0].to('cpu')
|
712 |
+
part_input = PartitionedTensor.from_meta(meta=self.pipe_partition_input_meta_cache,
|
713 |
+
local_part=inputs[1],
|
714 |
+
group=self.grid.get_slice_parallel_group())
|
715 |
+
|
716 |
+
inputs = (part_input.full(), *inputs[2:])
|
717 |
+
inputs[0].requires_grad = True
|
718 |
+
# skip mask
|
719 |
+
#inputs[1].requires_grad = True
|
720 |
+
part_input = None
|
721 |
+
inputs = inputs[0] if len(inputs) == 1 else inputs
|
722 |
+
self.pipe_buffers['inputs'][buffer_id] = inputs
|
723 |
+
|
724 |
+
# inputs has no gradient because it is from a cloned tensor
|
725 |
+
outputs = super().forward(inputs)
|
726 |
+
|
727 |
+
# Reset activation checkpointing buffers.
|
728 |
+
# Need to call this between evaluation iterations
|
729 |
+
if not self.module.training:
|
730 |
+
ds_checkpointing.reset()
|
731 |
+
|
732 |
+
# Partition the outputs if we are not the last stage
|
733 |
+
if self.is_pipe_partitioned and not self.is_last_stage():
|
734 |
+
if isinstance(outputs, tuple):
|
735 |
+
first_output = outputs[0]
|
736 |
+
# TODO: Improve pipe partitioning to pass multiple tensors that require grads
|
737 |
+
assert all([torch.is_tensor(elt) and elt.requires_grad is False for elt in outputs[1:]])
|
738 |
+
outputs_tail = outputs[1:]
|
739 |
+
elif torch.is_tensor(outputs):
|
740 |
+
first_output = outputs
|
741 |
+
outputs_tail = []
|
742 |
+
else:
|
743 |
+
raise ValueError("expecting a tensor or a tuple of tensors")
|
744 |
+
part = PartitionedTensor(tensor=first_output, group=self.grid.get_slice_parallel_group())
|
745 |
+
# Clear the large output data, but save the computation graph
|
746 |
+
first_output.data = torch.zeros(1)
|
747 |
+
self.pipe_buffers['output_tensors'][buffer_id] = first_output
|
748 |
+
# Inject the partitioned tensor into the output before sending
|
749 |
+
outputs = (part.to_meta(), part.data(), *outputs_tail)
|
750 |
+
part = None
|
751 |
+
|
752 |
+
self.pipe_buffers['outputs'][buffer_id] = outputs
|
753 |
+
|
754 |
+
# Optionally compute loss on the last device
|
755 |
+
if self.is_last_stage():
|
756 |
+
if self._compute_loss and self.module.loss_fn is not None:
|
757 |
+
labels = self.pipe_buffers['labels'][buffer_id]
|
758 |
+
self.loss = self.module.loss_fn(outputs, labels)
|
759 |
+
else:
|
760 |
+
# Some models just return loss from forward()
|
761 |
+
self.loss = outputs
|
762 |
+
if self.eval_return_logits:
|
763 |
+
self.outputs = outputs
|
764 |
+
|
765 |
+
if isinstance(self.loss, torch.Tensor):
|
766 |
+
self.fwd_outputs.append(self.loss.detach())
|
767 |
+
else:
|
768 |
+
self.fwd_outputs.append([l.detach() for l in self.loss])
|
769 |
+
|
770 |
+
def add_to_total_loss(_total_loss, _loss):
|
771 |
+
if isinstance(_loss, torch.Tensor):
|
772 |
+
if _total_loss is None:
|
773 |
+
_total_loss = torch.zeros_like(_loss)
|
774 |
+
_total_loss += _loss.detach()
|
775 |
+
else:
|
776 |
+
if _total_loss is None:
|
777 |
+
_total_loss = [torch.zeros_like(_l) for _l in _loss]
|
778 |
+
for _idx, _l in enumerate(_loss):
|
779 |
+
_total_loss[_idx] += _l.detach()
|
780 |
+
return _total_loss
|
781 |
+
|
782 |
+
self.total_loss = add_to_total_loss(self.total_loss, self.loss)
|
783 |
+
|
784 |
+
# aggregate additional losses across gradient accumulation steps
|
785 |
+
additional_losses = self.module.get_additional_losses()
|
786 |
+
if additional_losses is not None:
|
787 |
+
if self.total_additional_losses is None:
|
788 |
+
self.total_additional_losses = OrderedDict()
|
789 |
+
for name, loss in additional_losses.items():
|
790 |
+
total = self.total_additional_losses[name] if name in self.total_additional_losses else None
|
791 |
+
self.total_additional_losses[name] = add_to_total_loss(total, loss)
|
792 |
+
|
793 |
+
def _exec_backward_pass(self, buffer_id):
|
794 |
+
assert self.optimizer is not None, "must provide optimizer during " \
|
795 |
+
"init in order to use backward"
|
796 |
+
|
797 |
+
self.mem_status('BEFORE BWD', reset_max=True)
|
798 |
+
|
799 |
+
# The last stage just runs backward on the loss using DeepSpeed's typical
|
800 |
+
# mechanisms.
|
801 |
+
if self.is_last_stage():
|
802 |
+
super().backward(self.loss)
|
803 |
+
self.mem_status('AFTER BWD')
|
804 |
+
return
|
805 |
+
|
806 |
+
outputs = self.pipe_buffers['outputs'][buffer_id]
|
807 |
+
|
808 |
+
if self.wall_clock_breakdown():
|
809 |
+
self.timers(BACKWARD_MICRO_TIMER).start()
|
810 |
+
self.timers(BACKWARD_GLOBAL_TIMER).start()
|
811 |
+
self.timers(BACKWARD_INNER_MICRO_TIMER).start()
|
812 |
+
self.timers(BACKWARD_INNER_GLOBAL_TIMER).start()
|
813 |
+
|
814 |
+
# Reconstruct if we previously partitioned the output. We must be
|
815 |
+
# careful to also restore the computational graph of the tensors we partitioned.
|
816 |
+
if self.is_pipe_partitioned:
|
817 |
+
if self.is_grad_partitioned:
|
818 |
+
if self.pipe_partition_output_meta_cache is None:
|
819 |
+
self.pipe_partition_output_meta_cache = outputs[0].to('cpu')
|
820 |
+
part_output = PartitionedTensor.from_meta(meta=self.pipe_partition_output_meta_cache,
|
821 |
+
local_part=outputs[1],
|
822 |
+
group=self.grid.get_slice_parallel_group())
|
823 |
+
self.pipe_buffers['output_tensors'][buffer_id].data = part_output.full()
|
824 |
+
outputs = (self.pipe_buffers['output_tensors'][buffer_id], *outputs[2:])
|
825 |
+
else:
|
826 |
+
# Already restored from partition
|
827 |
+
self.pipe_buffers['output_tensors'][buffer_id].data = outputs[0]
|
828 |
+
outputs = (self.pipe_buffers['output_tensors'][buffer_id], *outputs[1:])
|
829 |
+
|
830 |
+
grad_tensors = self.grad_layer
|
831 |
+
if self.is_grad_partitioned:
|
832 |
+
#print(f'RANK={self.global_rank} BEFORE-BWD restoring grad={self.grad_layer[0].size()} {self.grad_layer[1].size()}')
|
833 |
+
if self.grad_partition_grad_layer_meta_cache is None:
|
834 |
+
self.grad_partition_grad_layer_meta_cache = self.grad_layer[0].to('cpu')
|
835 |
+
part_grad = PartitionedTensor.from_meta(meta=self.grad_partition_grad_layer_meta_cache,
|
836 |
+
local_part=self.grad_layer[1],
|
837 |
+
group=self.grid.get_slice_parallel_group())
|
838 |
+
grad_tensors = (part_grad.full(), *grad_tensors[2:])
|
839 |
+
part_grad = None
|
840 |
+
#print(f'RANK={self.global_rank} BEFORE-BWD restored grad={self.grad_layer[0].size()} {self.grad_layer[1].size()}')
|
841 |
+
|
842 |
+
if self.using_bf16_optimizer and not self.is_last_stage():
|
843 |
+
# manually call because we don't call optimizer.backward()
|
844 |
+
self.optimizer.clear_lp_grads()
|
845 |
+
|
846 |
+
# This handles either a single tensor or tuple of tensors.
|
847 |
+
if isinstance(outputs, tuple):
|
848 |
+
out_tensors = [t for t in outputs if t.is_floating_point()]
|
849 |
+
assert len(out_tensors) == len(grad_tensors)
|
850 |
+
torch.autograd.backward(tensors=out_tensors, grad_tensors=grad_tensors)
|
851 |
+
else:
|
852 |
+
torch.autograd.backward(tensors=(outputs, ), grad_tensors=(grad_tensors, ))
|
853 |
+
|
854 |
+
if self.using_bf16_optimizer and not self.is_last_stage():
|
855 |
+
# manually call because we don't call optimizer.backward()
|
856 |
+
self.optimizer.update_hp_grads(clear_lp_grads=False)
|
857 |
+
|
858 |
+
# Free up the memory from the output of forward()
|
859 |
+
self.pipe_buffers['output_tensors'][buffer_id] = None
|
860 |
+
self.pipe_buffers['outputs'][buffer_id] = None
|
861 |
+
grad_tensors = None
|
862 |
+
|
863 |
+
if self.wall_clock_breakdown():
|
864 |
+
self.timers(BACKWARD_INNER_MICRO_TIMER).stop()
|
865 |
+
self.timers(BACKWARD_INNER_GLOBAL_TIMER).stop()
|
866 |
+
self.timers(BACKWARD_MICRO_TIMER).stop()
|
867 |
+
self.timers(BACKWARD_GLOBAL_TIMER).stop()
|
868 |
+
|
869 |
+
self.mem_status('AFTER BWD')
|
870 |
+
|
871 |
+
def _exec_load_micro_batch(self, buffer_id):
|
872 |
+
if self.wall_clock_breakdown():
|
873 |
+
self.timers(BATCH_INPUT_TIMER).start()
|
874 |
+
|
875 |
+
batch = self._next_batch()
|
876 |
+
|
877 |
+
if self.is_first_stage():
|
878 |
+
loaded = None
|
879 |
+
if torch.is_tensor(batch[0]):
|
880 |
+
loaded = batch[0].clone().to(self.device).detach()
|
881 |
+
if self._config.pipeline['activation_checkpoint_interval'] > 0 and self._config.pipeline[
|
882 |
+
'use_reentrant']:
|
883 |
+
loaded.requires_grad = loaded.is_floating_point()
|
884 |
+
else:
|
885 |
+
assert isinstance(batch[0], (tuple, list))
|
886 |
+
# Assume list or tuple
|
887 |
+
loaded = []
|
888 |
+
for x in batch[0]:
|
889 |
+
assert torch.is_tensor(x)
|
890 |
+
mine = x.clone().detach().to(self.device)
|
891 |
+
if self._config.pipeline['activation_checkpoint_interval'] > 0 and self._config.pipeline[
|
892 |
+
'use_reentrant']:
|
893 |
+
mine.requires_grad = mine.is_floating_point()
|
894 |
+
loaded.append(mine)
|
895 |
+
loaded = tuple(loaded)
|
896 |
+
|
897 |
+
self.pipe_buffers['inputs'][buffer_id] = loaded
|
898 |
+
|
899 |
+
if self.is_last_stage():
|
900 |
+
loaded = batch[1]
|
901 |
+
if torch.is_tensor(batch[1]):
|
902 |
+
loaded = batch[1].to(self.device)
|
903 |
+
# XXX: torch 1.6.0 DataLoader will auto convert tuple to list
|
904 |
+
elif isinstance(batch[1], (tuple, list)):
|
905 |
+
loaded = []
|
906 |
+
for x in batch[1]:
|
907 |
+
assert torch.is_tensor(x)
|
908 |
+
x = x.to(self.device).detach()
|
909 |
+
loaded.append(x)
|
910 |
+
loaded = tuple(loaded)
|
911 |
+
|
912 |
+
self.pipe_buffers['labels'][buffer_id] = loaded
|
913 |
+
|
914 |
+
if self.wall_clock_breakdown():
|
915 |
+
self.timers(BATCH_INPUT_TIMER).stop()
|
916 |
+
|
917 |
+
def _send_tensor_meta(self, buffer, recv_stage):
|
918 |
+
""" Communicate metadata about upcoming p2p transfers.
|
919 |
+
|
920 |
+
Metadata is communicated in this order:
|
921 |
+
* type (0: tensor, 1: list)
|
922 |
+
* num_tensors if type=list
|
923 |
+
foreach tensor in buffer:
|
924 |
+
* ndims
|
925 |
+
* shape
|
926 |
+
"""
|
927 |
+
send_bytes = 0
|
928 |
+
if isinstance(buffer, torch.Tensor):
|
929 |
+
type_tensor = torch.LongTensor(data=[0]).to(self.device)
|
930 |
+
p2p.send(type_tensor, recv_stage)
|
931 |
+
send_shape = torch.LongTensor(data=buffer.size()).to(self.device)
|
932 |
+
send_ndims = torch.LongTensor(data=[len(buffer.size())]).to(self.device)
|
933 |
+
p2p.send(send_ndims, recv_stage)
|
934 |
+
p2p.send(send_shape, recv_stage)
|
935 |
+
send_bytes += _tensor_bytes(buffer)
|
936 |
+
elif isinstance(buffer, list):
|
937 |
+
assert (False)
|
938 |
+
type_tensor = torch.LongTensor(data=[1]).to(self.device)
|
939 |
+
p2p.send(type_tensor, recv_stage)
|
940 |
+
count_tensor = torch.LongTensor(data=[len(buffer)]).to(self.device)
|
941 |
+
p2p.send(count_tensor, recv_stage)
|
942 |
+
for tensor in buffer:
|
943 |
+
assert isinstance(tensor, torch.Tensor)
|
944 |
+
send_shape = torch.LongTensor(data=tensor.size()).to(self.device)
|
945 |
+
send_ndims = torch.LongTensor(data=[len(tensor.size())]).to(self.device)
|
946 |
+
p2p.send(send_ndims, recv_stage)
|
947 |
+
p2p.send(send_shape, recv_stage)
|
948 |
+
send_bytes += _tensor_bytes(tensor)
|
949 |
+
elif isinstance(buffer, tuple):
|
950 |
+
type_tensor = torch.LongTensor(data=[2]).to(self.device)
|
951 |
+
p2p.send(type_tensor, recv_stage)
|
952 |
+
count_tensor = torch.LongTensor(data=[len(buffer)]).to(self.device)
|
953 |
+
p2p.send(count_tensor, recv_stage)
|
954 |
+
for idx, tensor in enumerate(buffer):
|
955 |
+
assert isinstance(tensor, torch.Tensor)
|
956 |
+
send_shape = torch.LongTensor(data=tensor.size()).to(self.device)
|
957 |
+
send_ndims = torch.LongTensor(data=[len(tensor.size())]).to(self.device)
|
958 |
+
send_dtype = torch.LongTensor(data=[self.DTYPE_TO_ID[tensor.dtype]]).to(self.device)
|
959 |
+
p2p.send(send_dtype, recv_stage)
|
960 |
+
p2p.send(send_ndims, recv_stage)
|
961 |
+
p2p.send(send_shape, recv_stage)
|
962 |
+
# Useful for performance debugging.
|
963 |
+
'''
|
964 |
+
new_bytes = _tensor_bytes(tensor)
|
965 |
+
send_bytes += _tensor_bytes(tensor)
|
966 |
+
# Useful for performance debugging.
|
967 |
+
if self.grid.data_parallel_id == 0:
|
968 |
+
print(
|
969 |
+
f'STAGE={self.stage_id} pipe-send-volume[{idx}]: shape={send_shape} {new_bytes/1024**2:0.2f}MB'
|
970 |
+
)
|
971 |
+
'''
|
972 |
+
else:
|
973 |
+
raise NotImplementedError(f'Could not send meta type {type(buffer)}')
|
974 |
+
|
975 |
+
# Useful for performance debugging.
|
976 |
+
'''
|
977 |
+
if self.grid.data_parallel_id == 0:
|
978 |
+
print(f'STAGE={self.stage_id} pipe-send-volume: {send_bytes/1024**2:0.2f}MB')
|
979 |
+
'''
|
980 |
+
|
981 |
+
def _recv_tensor_meta(self, send_stage):
|
982 |
+
"""Receive metadata about upcoming p2p transfers and return allocated buffers.
|
983 |
+
|
984 |
+
Metadata is communicated in this order:
|
985 |
+
* type (0: tensor, 1: list)
|
986 |
+
* num_tensors if type=list
|
987 |
+
foreach tensor in buffer:
|
988 |
+
* ndims
|
989 |
+
* shape
|
990 |
+
|
991 |
+
Returns:
|
992 |
+
Allocated buffer for receiving from send_stage.
|
993 |
+
"""
|
994 |
+
|
995 |
+
type_tensor = torch.LongTensor(data=[0]).to(self.device)
|
996 |
+
p2p.recv(type_tensor, send_stage)
|
997 |
+
recv_type = type_tensor.item()
|
998 |
+
|
999 |
+
# A single tensor will be sent.
|
1000 |
+
if recv_type == 0:
|
1001 |
+
recv_ndims = torch.LongTensor(data=[0]).to(self.device)
|
1002 |
+
p2p.recv(recv_ndims, send_stage)
|
1003 |
+
recv_ndims = recv_ndims.item()
|
1004 |
+
recv_shape = torch.LongTensor([1] * recv_ndims).to(self.device)
|
1005 |
+
p2p.recv(recv_shape, send_stage)
|
1006 |
+
recv_shape = recv_shape.tolist()
|
1007 |
+
return self._allocate_buffer(recv_shape, num_buffers=1)[0]
|
1008 |
+
|
1009 |
+
# List or tuple of tensors
|
1010 |
+
elif recv_type == 1 or recv_type == 2:
|
1011 |
+
count_tensor = torch.LongTensor(data=[0]).to(self.device)
|
1012 |
+
p2p.recv(count_tensor, send_stage)
|
1013 |
+
num_tensors = count_tensor.item()
|
1014 |
+
recv_shapes_and_dtypes = []
|
1015 |
+
for idx in range(num_tensors):
|
1016 |
+
recv_dtype = torch.LongTensor(data=[0]).to(self.device)
|
1017 |
+
p2p.recv(recv_dtype, send_stage)
|
1018 |
+
recv_dtype = self.ID_TO_DTYPE[recv_dtype.item()]
|
1019 |
+
recv_ndims = torch.LongTensor(data=[0]).to(self.device)
|
1020 |
+
p2p.recv(recv_ndims, send_stage)
|
1021 |
+
recv_ndims = recv_ndims.item()
|
1022 |
+
recv_shape = torch.LongTensor([1] * recv_ndims).to(self.device)
|
1023 |
+
p2p.recv(recv_shape, send_stage)
|
1024 |
+
recv_shapes_and_dtypes.append((recv_shape.tolist(), recv_dtype))
|
1025 |
+
|
1026 |
+
buffers = self._allocate_buffers(recv_shapes_and_dtypes, num_buffers=1)[0]
|
1027 |
+
# Convert to tuples if requested.
|
1028 |
+
if recv_type == 2:
|
1029 |
+
buffers = tuple(buffers)
|
1030 |
+
return buffers
|
1031 |
+
|
1032 |
+
else:
|
1033 |
+
raise NotImplementedError(f'Could not receive type {type(recv_type)}')
|
1034 |
+
|
1035 |
+
def _exec_send_activations(self, buffer_id):
|
1036 |
+
if self.wall_clock_breakdown():
|
1037 |
+
self.timers(PIPE_SEND_OUTPUT_TIMER).start()
|
1038 |
+
|
1039 |
+
outputs = self.pipe_buffers['outputs'][buffer_id]
|
1040 |
+
|
1041 |
+
# NCCL does not like to send torch.BoolTensor types, so cast the mask to half().
|
1042 |
+
# We could do char, but with half() we can eventually flatten with other fp16
|
1043 |
+
# messages (TODO)
|
1044 |
+
if self.has_attention_mask or self.has_bool_tensors:
|
1045 |
+
outputs = list(outputs)
|
1046 |
+
outputs[-1] = outputs[-1].half()
|
1047 |
+
outputs = tuple(outputs)
|
1048 |
+
|
1049 |
+
if self.first_output_send:
|
1050 |
+
self.first_output_send = False
|
1051 |
+
self._send_tensor_meta(outputs, self.next_stage)
|
1052 |
+
|
1053 |
+
if isinstance(outputs, torch.Tensor):
|
1054 |
+
p2p.send(outputs, self.next_stage)
|
1055 |
+
elif isinstance(outputs, tuple):
|
1056 |
+
for idx, buffer in enumerate(outputs):
|
1057 |
+
p2p.send(buffer, self.next_stage)
|
1058 |
+
else:
|
1059 |
+
raise NotImplementedError('Could not send output of type '
|
1060 |
+
f'{type(outputs)}')
|
1061 |
+
|
1062 |
+
# Restore the boolean tensor
|
1063 |
+
if self.has_attention_mask or self.has_bool_tensors:
|
1064 |
+
outputs = list(outputs)
|
1065 |
+
outputs[-1] = outputs[-1].bool()
|
1066 |
+
outputs = tuple(outputs)
|
1067 |
+
|
1068 |
+
if self.wall_clock_breakdown():
|
1069 |
+
self.timers(PIPE_SEND_OUTPUT_TIMER).stop()
|
1070 |
+
|
1071 |
+
def _exec_send_grads(self, buffer_id):
|
1072 |
+
if self.wall_clock_breakdown():
|
1073 |
+
self.timers(PIPE_SEND_GRAD_TIMER).start()
|
1074 |
+
|
1075 |
+
inputs = self.pipe_buffers['inputs'][buffer_id]
|
1076 |
+
|
1077 |
+
# Partition the gradient
|
1078 |
+
if self.is_grad_partitioned:
|
1079 |
+
if isinstance(inputs, tuple):
|
1080 |
+
first_input = inputs[0]
|
1081 |
+
assert all([torch.is_tensor(elt) for elt in inputs[1:]])
|
1082 |
+
inputs_grad_tail = [elt.grad for elt in inputs[1:]]
|
1083 |
+
elif torch.is_tensor(inputs):
|
1084 |
+
first_input = inputs
|
1085 |
+
inputs_grad_tail = []
|
1086 |
+
else:
|
1087 |
+
raise ValueError("expecting a tensor or a tuple of tensors")
|
1088 |
+
assert torch.is_tensor(first_input)
|
1089 |
+
part = PartitionedTensor(tensor=first_input.grad, group=self.grid.get_slice_parallel_group())
|
1090 |
+
|
1091 |
+
inputs = (part.to_meta(), part.data(), *inputs_grad_tail)
|
1092 |
+
|
1093 |
+
# XXX Terrible hack
|
1094 |
+
# Drop the attention mask from the input buffer here. It does not have
|
1095 |
+
# a grad that needs to be communicated. We free the buffer immediately
|
1096 |
+
# after, so no need to restore it. The receiver also has a hack that skips
|
1097 |
+
# the recv. This is because NCCL does not let us send torch.BoolTensor :-(.
|
1098 |
+
if self.has_attention_mask or self.has_bool_tensors:
|
1099 |
+
inputs = list(inputs)
|
1100 |
+
inputs.pop()
|
1101 |
+
inputs = tuple(inputs)
|
1102 |
+
|
1103 |
+
if isinstance(inputs, torch.Tensor):
|
1104 |
+
assert inputs.grad is not None
|
1105 |
+
p2p.send(inputs.grad, self.prev_stage)
|
1106 |
+
else:
|
1107 |
+
# XXX terrible hacky branch
|
1108 |
+
if self.is_grad_partitioned:
|
1109 |
+
# First two sends are partitioned gradient
|
1110 |
+
p2p.send(inputs[0], self.prev_stage)
|
1111 |
+
p2p.send(inputs[1], self.prev_stage)
|
1112 |
+
else:
|
1113 |
+
for idx, buffer in enumerate(inputs):
|
1114 |
+
# Skip tensors that will not produce a grad
|
1115 |
+
if not buffer.is_floating_point():
|
1116 |
+
assert buffer.grad is None
|
1117 |
+
continue
|
1118 |
+
assert buffer.grad is not None
|
1119 |
+
p2p.send(buffer.grad, self.prev_stage)
|
1120 |
+
|
1121 |
+
# We can free up the input buffer now
|
1122 |
+
self.pipe_buffers['inputs'][buffer_id] = None
|
1123 |
+
|
1124 |
+
if self.wall_clock_breakdown():
|
1125 |
+
self.timers(PIPE_SEND_GRAD_TIMER).stop()
|
1126 |
+
|
1127 |
+
def _exec_recv_activations(self, buffer_id):
|
1128 |
+
if self.wall_clock_breakdown():
|
1129 |
+
self.timers(PIPE_RECV_INPUT_TIMER).start()
|
1130 |
+
|
1131 |
+
recvd = None
|
1132 |
+
|
1133 |
+
# Allocate the buffer if necessary
|
1134 |
+
if self.pipe_recv_buf is None:
|
1135 |
+
self.pipe_recv_buf = self._recv_tensor_meta(self.prev_stage)
|
1136 |
+
|
1137 |
+
if isinstance(self.pipe_recv_buf, torch.Tensor):
|
1138 |
+
p2p.recv(self.pipe_recv_buf, self.prev_stage)
|
1139 |
+
recvd = self.pipe_recv_buf.clone().detach()
|
1140 |
+
recvd.requires_grad = recvd.is_floating_point()
|
1141 |
+
else:
|
1142 |
+
assert isinstance(self.pipe_recv_buf, tuple)
|
1143 |
+
recvd = [None] * len(self.pipe_recv_buf)
|
1144 |
+
for idx, buffer in enumerate(self.pipe_recv_buf):
|
1145 |
+
assert torch.is_tensor(buffer)
|
1146 |
+
# XXX hardcode meta type
|
1147 |
+
if self.is_pipe_partitioned and idx == 0 and buffer.dtype != torch.long:
|
1148 |
+
if self.meta_buffer is None:
|
1149 |
+
self.meta_buffer = torch.zeros(buffer.size(), dtype=torch.long, device=self.device)
|
1150 |
+
buffer = self.meta_buffer
|
1151 |
+
|
1152 |
+
p2p.recv(buffer, self.prev_stage)
|
1153 |
+
recvd[idx] = buffer.clone().detach()
|
1154 |
+
|
1155 |
+
# NCCL does not like to send torch.BoolTensor types, so un-cast the
|
1156 |
+
# attention mask
|
1157 |
+
if self.has_attention_mask or self.has_bool_tensors:
|
1158 |
+
recvd[-1] = recvd[-1].bool()
|
1159 |
+
|
1160 |
+
recvd = tuple(recvd)
|
1161 |
+
|
1162 |
+
for buffer in recvd:
|
1163 |
+
buffer.requires_grad = buffer.is_floating_point()
|
1164 |
+
|
1165 |
+
self.pipe_buffers['inputs'][buffer_id] = recvd
|
1166 |
+
|
1167 |
+
if self.wall_clock_breakdown():
|
1168 |
+
self.timers(PIPE_RECV_INPUT_TIMER).stop()
|
1169 |
+
|
1170 |
+
def _exec_recv_grads(self, buffer_id):
|
1171 |
+
if self.wall_clock_breakdown():
|
1172 |
+
self.timers(PIPE_RECV_GRAD_TIMER).start()
|
1173 |
+
|
1174 |
+
outputs = self.pipe_buffers['outputs'][buffer_id]
|
1175 |
+
# XXX these shapes are hardcoded for Megatron
|
1176 |
+
# Restore partitioned output if it was partitioned and we are sending full gradients
|
1177 |
+
if self.is_pipe_partitioned and not self.is_grad_partitioned:
|
1178 |
+
if self.pipe_partition_grad_meta_cache is None:
|
1179 |
+
self.pipe_partition_grad_meta_cache = outputs[0].to('cpu')
|
1180 |
+
part_output = PartitionedTensor.from_meta(meta=self.pipe_partition_grad_meta_cache,
|
1181 |
+
local_part=outputs[1],
|
1182 |
+
group=self.grid.get_slice_parallel_group())
|
1183 |
+
outputs[0].data = part_output.full()
|
1184 |
+
outputs = (outputs[0], *outputs[2:])
|
1185 |
+
# save for backward
|
1186 |
+
self.pipe_buffers['outputs'][buffer_id] = outputs
|
1187 |
+
|
1188 |
+
# Allocate gradient if necessary
|
1189 |
+
if self.grad_layer is None:
|
1190 |
+
if isinstance(outputs, torch.Tensor):
|
1191 |
+
s = list(outputs.size())
|
1192 |
+
self.grad_layer = self._allocate_buffer(s, dtype=outputs.dtype, num_buffers=1)[0]
|
1193 |
+
else:
|
1194 |
+
# XXX This is a HACK
|
1195 |
+
# When we exchange activations/gradients, the two pipe stages
|
1196 |
+
# need to issue the send/recv with the same buffer sizes or
|
1197 |
+
# else there is a deadlock. The is_floating_point() filter is
|
1198 |
+
# used to avoid sending gradients for tensors that do not
|
1199 |
+
# produce gradients. When TP>1, we partition the first
|
1200 |
+
# activations/gradients across TP ranks to save communication
|
1201 |
+
# volume and memory. That partitioned tensor is represented as
|
1202 |
+
# two tensors: a 1/TPth chunk of the original data and also a
|
1203 |
+
# small LongTensor storing the metadata used to reconstruct on
|
1204 |
+
# the other side. When combined, the floating point filter also
|
1205 |
+
# filtered out the metadata tensor. This quick (hacky) fix just
|
1206 |
+
# branches on is_grad_partitioned so we don't filter out the
|
1207 |
+
# metadata tensor.
|
1208 |
+
if self.is_grad_partitioned:
|
1209 |
+
sizes_and_dtypes = [(list(t.size()), t.dtype)
|
1210 |
+
for t in outputs[:2]] + [(list(t.size()), t.dtype)
|
1211 |
+
for t in outputs[2:] if t.is_floating_point()]
|
1212 |
+
else:
|
1213 |
+
sizes_and_dtypes = [(list(t.size()), t.dtype) for t in outputs if t.is_floating_point()]
|
1214 |
+
self.grad_layer = self._allocate_buffers(sizes_and_dtypes, num_buffers=1)[0]
|
1215 |
+
|
1216 |
+
if isinstance(self.grad_layer, torch.Tensor):
|
1217 |
+
p2p.recv(self.grad_layer, self.next_stage)
|
1218 |
+
else:
|
1219 |
+
assert isinstance(outputs, tuple)
|
1220 |
+
for idx, buffer in enumerate(self.grad_layer):
|
1221 |
+
# XXX GPT-2 hack
|
1222 |
+
if self.is_grad_partitioned and idx == 0 and buffer.dtype != torch.long:
|
1223 |
+
buffer.data = torch.zeros(buffer.size(), dtype=torch.long, device=self.device)
|
1224 |
+
p2p.recv(buffer, self.next_stage)
|
1225 |
+
|
1226 |
+
if self.wall_clock_breakdown():
|
1227 |
+
self.timers(PIPE_RECV_GRAD_TIMER).stop()
|
1228 |
+
|
1229 |
+
def _exec_optimizer_step(self, lr_kwargs=None):
|
1230 |
+
if self.wall_clock_breakdown():
|
1231 |
+
self.timers(STEP_MICRO_TIMER).start()
|
1232 |
+
self.timers(STEP_GLOBAL_TIMER).start()
|
1233 |
+
self.mem_status('BEFORE STEP', reset_max=True)
|
1234 |
+
|
1235 |
+
self._force_grad_boundary = True
|
1236 |
+
self._take_model_step(lr_kwargs)
|
1237 |
+
self._force_grad_boundary = False
|
1238 |
+
|
1239 |
+
self.mem_status('AFTER STEP')
|
1240 |
+
|
1241 |
+
if self.global_rank == 0 and self.monitor.enabled:
|
1242 |
+
self.summary_events = [(f'Train/Samples/lr', self.get_lr()[0], self.global_samples)]
|
1243 |
+
if self.fp16_enabled() and hasattr(self.optimizer, 'cur_scale'):
|
1244 |
+
self.summary_events.append(
|
1245 |
+
(f'Train/Samples/loss_scale', self.optimizer.cur_scale, self.global_samples))
|
1246 |
+
self.monitor.write_events(self.summary_events)
|
1247 |
+
|
1248 |
+
if self.wall_clock_breakdown():
|
1249 |
+
self.timers(STEP_MICRO_TIMER).stop()
|
1250 |
+
self.timers(STEP_GLOBAL_TIMER).stop()
|
1251 |
+
if self.global_steps % self.steps_per_print() == 0:
|
1252 |
+
self.timers.log([
|
1253 |
+
BATCH_INPUT_TIMER,
|
1254 |
+
FORWARD_MICRO_TIMER,
|
1255 |
+
BACKWARD_MICRO_TIMER,
|
1256 |
+
BACKWARD_INNER_MICRO_TIMER,
|
1257 |
+
BACKWARD_REDUCE_MICRO_TIMER,
|
1258 |
+
STEP_MICRO_TIMER,
|
1259 |
+
])
|
1260 |
+
if self.global_steps % self.steps_per_print() == 0:
|
1261 |
+
self.timers.log([
|
1262 |
+
FORWARD_GLOBAL_TIMER,
|
1263 |
+
BACKWARD_GLOBAL_TIMER,
|
1264 |
+
BACKWARD_INNER_GLOBAL_TIMER,
|
1265 |
+
BACKWARD_REDUCE_GLOBAL_TIMER,
|
1266 |
+
STEP_GLOBAL_TIMER,
|
1267 |
+
])
|
1268 |
+
|
1269 |
+
def _allocate_zeros(self, shape, **kwargs):
|
1270 |
+
""" Allocate a tensor of zeros on the engine's device.
|
1271 |
+
|
1272 |
+
Arguments:
|
1273 |
+
shape: the shape of the tensor to allocate
|
1274 |
+
kwargs: passed to torch.zeros()
|
1275 |
+
|
1276 |
+
Returns:
|
1277 |
+
A tensor from torch.zeros() allocated on self.device.
|
1278 |
+
"""
|
1279 |
+
if "dtype" not in kwargs:
|
1280 |
+
if self.fp16_enabled():
|
1281 |
+
kwargs["dtype"] = torch.half
|
1282 |
+
if self.bfloat16_enabled():
|
1283 |
+
kwargs["dtype"] = torch.bfloat16
|
1284 |
+
|
1285 |
+
return torch.zeros(shape, device=self.device, **kwargs)
|
1286 |
+
|
1287 |
+
def _allocate_buffer(self, shape, num_buffers=-1, **kwargs):
|
1288 |
+
buffers = []
|
1289 |
+
if num_buffers == -1:
|
1290 |
+
num_buffers = self.num_pipe_buffers
|
1291 |
+
for count in range(num_buffers):
|
1292 |
+
buffers.append(self._allocate_zeros(shape, **kwargs))
|
1293 |
+
return buffers
|
1294 |
+
|
1295 |
+
def _allocate_buffers(self, shapes_and_dtypes, requires_grad=False, num_buffers=-1):
|
1296 |
+
buffers = []
|
1297 |
+
if num_buffers == -1:
|
1298 |
+
num_buffers = self.num_pipe_buffers
|
1299 |
+
for count in range(num_buffers):
|
1300 |
+
buffer = []
|
1301 |
+
for shape, dtype in shapes_and_dtypes:
|
1302 |
+
buffer.append(self._allocate_zeros(shape, dtype=dtype, requires_grad=requires_grad))
|
1303 |
+
buffers.append(buffer)
|
1304 |
+
return buffers
|
1305 |
+
|
1306 |
+
def forward(self, *args, **kwargs):
|
1307 |
+
"""Disabled for pipeline parallel training. See ``train_batch()``. """
|
1308 |
+
raise PipelineError("Only train_batch() is accessible in pipeline mode.")
|
1309 |
+
|
1310 |
+
def backward(self, *args, **kwargs):
|
1311 |
+
"""Disabled for pipeline parallel training. See ``train_batch()``. """
|
1312 |
+
raise PipelineError("Only train_batch() is accessible in pipeline mode.")
|
1313 |
+
|
1314 |
+
def step(self, *args, **kwargs):
|
1315 |
+
"""Disabled for pipeline parallel training. See ``train_batch()``. """
|
1316 |
+
raise PipelineError("Only train_batch() is accessible in pipeline mode.")
|
1317 |
+
|
1318 |
+
def mem_status(self, msg, print_rank=-1, reset_max=False):
|
1319 |
+
return
|
1320 |
+
global mem_alloced, mem_cached
|
1321 |
+
if not self.global_steps == 0 or not self.global_steps == 9:
|
1322 |
+
#return
|
1323 |
+
pass
|
1324 |
+
if self.mpu.get_data_parallel_rank() != 0:
|
1325 |
+
return
|
1326 |
+
|
1327 |
+
if self.global_rank != 0:
|
1328 |
+
return
|
1329 |
+
|
1330 |
+
rank = self.global_rank
|
1331 |
+
if print_rank != -1 and rank != print_rank:
|
1332 |
+
return
|
1333 |
+
|
1334 |
+
get_accelerator().synchronize()
|
1335 |
+
|
1336 |
+
if reset_max:
|
1337 |
+
get_accelerator().reset_max_memory_cached()
|
1338 |
+
get_accelerator().reset_max_memory_allocated()
|
1339 |
+
|
1340 |
+
new_alloced = get_accelerator().memory_allocated()
|
1341 |
+
new_cached = get_accelerator().memory_cached()
|
1342 |
+
|
1343 |
+
delta_alloced = new_alloced - mem_alloced
|
1344 |
+
delta_cached = new_cached - mem_cached
|
1345 |
+
|
1346 |
+
mem_cached = new_cached
|
1347 |
+
mem_alloced = new_alloced
|
1348 |
+
|
1349 |
+
max_alloced = get_accelerator().max_memory_allocated()
|
1350 |
+
max_cached = get_accelerator().max_memory_cached()
|
1351 |
+
|
1352 |
+
# convert to GB for printing
|
1353 |
+
new_alloced /= 1024**3
|
1354 |
+
new_cached /= 1024**3
|
1355 |
+
delta_alloced /= 1024**3
|
1356 |
+
delta_cached /= 1024**3
|
1357 |
+
max_alloced /= 1024**3
|
1358 |
+
max_cached /= 1024**3
|
1359 |
+
|
1360 |
+
print(
|
1361 |
+
f'RANK={rank} STAGE={self.stage_id} STEP={self.global_steps} MEMSTATS', msg,
|
1362 |
+
f'current alloc={new_alloced:0.4f}GB (delta={delta_alloced:0.4f}GB max={max_alloced:0.4f}GB) '
|
1363 |
+
f'current cache={new_cached:0.4f}GB (delta={delta_cached:0.4f}GB max={max_cached:0.4f}GB)')
|
1364 |
+
|
1365 |
+
def module_state_dict(self, exclude_frozen_parameters=False):
|
1366 |
+
"""Override hack to save a pipe model and return the directory path of the save.
|
1367 |
+
|
1368 |
+
This method should only be called by DeepSpeed's ``save_checkpoint()``. The
|
1369 |
+
recommended way of saving a ``PipelineModule`` outside of ``save_checkpoint()``
|
1370 |
+
is ``save_state_dict()``.
|
1371 |
+
|
1372 |
+
Returns:
|
1373 |
+
None
|
1374 |
+
"""
|
1375 |
+
assert isinstance(self.module, PipelineModule)
|
1376 |
+
assert self._curr_ckpt_path is not None, \
|
1377 |
+
"PipelineEngine expects module_state_dict() to be called from save_checkpoint()"
|
1378 |
+
|
1379 |
+
self.module.save_state_dict(self._curr_ckpt_path,
|
1380 |
+
checkpoint_engine=self.checkpoint_engine,
|
1381 |
+
exclude_frozen_params=exclude_frozen_parameters)
|
1382 |
+
return None
|
1383 |
+
|
1384 |
+
def load_module_state_dict(self, checkpoint, strict=True, custom_load_fn=None, fetch_z3_params=False):
|
1385 |
+
"""Override hack to instead use a directory path.
|
1386 |
+
|
1387 |
+
This is important because pipeline models checkpoint by layer instead of rank.
|
1388 |
+
|
1389 |
+
If ``state_dict`` is not ``None`` or a ``str``, we revert to ``super()`` expecting a ``dict``.
|
1390 |
+
|
1391 |
+
Args:
|
1392 |
+
state_dict (str, None): unused
|
1393 |
+
strict (bool, optional): Strict state loading. Defaults to True.
|
1394 |
+
"""
|
1395 |
+
assert custom_load_fn is None, "custom_load_fn not supported w. pipeline parallelism"
|
1396 |
+
state_dict = checkpoint if self.has_moe_layers else checkpoint['module']
|
1397 |
+
if (state_dict is not None) and (not isinstance(state_dict, str)):
|
1398 |
+
super().load_module_state_dict(state_dict, strict)
|
1399 |
+
return
|
1400 |
+
|
1401 |
+
self.module.load_state_dir(load_dir=self._curr_ckpt_path,
|
1402 |
+
strict=strict,
|
1403 |
+
checkpoint_engine=self.checkpoint_engine)
|
1404 |
+
|
1405 |
+
# A map of PipeInstruction types to methods. Each method will be executed with the
|
1406 |
+
# kwargs provided to the PipeInstruction from the scheduler.
|
1407 |
+
_INSTRUCTION_MAP = {
|
1408 |
+
schedule.OptimizerStep: _exec_optimizer_step,
|
1409 |
+
schedule.ReduceGrads: _exec_reduce_grads,
|
1410 |
+
schedule.ReduceTiedGrads: _exec_reduce_tied_grads,
|
1411 |
+
schedule.LoadMicroBatch: _exec_load_micro_batch,
|
1412 |
+
schedule.ForwardPass: _exec_forward_pass,
|
1413 |
+
schedule.BackwardPass: _exec_backward_pass,
|
1414 |
+
schedule.SendActivation: _exec_send_activations,
|
1415 |
+
schedule.RecvActivation: _exec_recv_activations,
|
1416 |
+
schedule.SendGrad: _exec_send_grads,
|
1417 |
+
schedule.RecvGrad: _exec_recv_grads,
|
1418 |
+
}
|
1419 |
+
|
1420 |
+
def _exec_schedule(self, pipe_schedule):
|
1421 |
+
# Reserve and reset buffers.
|
1422 |
+
self._reserve_pipe_buffers(pipe_schedule.num_pipe_buffers())
|
1423 |
+
self.fwd_outputs = []
|
1424 |
+
|
1425 |
+
# For each step in the schedule
|
1426 |
+
for step_cmds in pipe_schedule:
|
1427 |
+
# For each instruction in the step
|
1428 |
+
for cmd in step_cmds:
|
1429 |
+
if type(cmd) not in self._INSTRUCTION_MAP:
|
1430 |
+
raise RuntimeError(f'{self.__class__.__name__} does not understand instruction {repr(cmd)}')
|
1431 |
+
|
1432 |
+
# Equivalent to: self._exec_forward_pass(buffer_id=0)
|
1433 |
+
self._exec_instr = MethodType(self._INSTRUCTION_MAP[type(cmd)], self)
|
1434 |
+
self._exec_instr(**cmd.kwargs)
|
1435 |
+
|
1436 |
+
def get_additional_losses(self):
|
1437 |
+
return self.agg_additional_losses
|
venv/lib/python3.10/site-packages/deepspeed/runtime/pipe/schedule.py
ADDED
@@ -0,0 +1,494 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from ..utils import call_to_str
|
7 |
+
|
8 |
+
from abc import ABC, abstractmethod
|
9 |
+
|
10 |
+
|
11 |
+
class PipeSchedule(ABC):
|
12 |
+
"""Directs the execution of a pipeline engine by generating sequences of
|
13 |
+
:class:`PipeInstruction`.
|
14 |
+
|
15 |
+
Schedules are generators that yield sequences of
|
16 |
+
:class:`PipeInstruction` to process the micro-batches in one batch.
|
17 |
+
Each yielded step is atomic in the sense that a barrier
|
18 |
+
synchronization can be placed between successive steps without
|
19 |
+
deadlock.
|
20 |
+
|
21 |
+
Below is an example schedule that implements data parallelism with gradient accumulation:
|
22 |
+
|
23 |
+
.. code-block:: python
|
24 |
+
|
25 |
+
class DataParallelSchedule(PipeSchedule):
|
26 |
+
def steps(self):
|
27 |
+
for step_id in range(self.micro_batches):
|
28 |
+
cmds = [
|
29 |
+
LoadMicroBatch(buffer_id=0),
|
30 |
+
ForwardPass(buffer_id=0),
|
31 |
+
BackwardPass(buffer_id=0),
|
32 |
+
]
|
33 |
+
if step_id == self.micro_batches - 1:
|
34 |
+
cmds.extend([
|
35 |
+
ReduceGrads(),
|
36 |
+
OptimizerStep(),
|
37 |
+
])
|
38 |
+
yield cmds
|
39 |
+
|
40 |
+
def num_pipe_buffers(self):
|
41 |
+
return 1
|
42 |
+
|
43 |
+
Args:
|
44 |
+
micro_batches (int): The number of micro-batches that comprise a batch.
|
45 |
+
stages (int): The number of pipeline stages.
|
46 |
+
stage_id (int): The pipe stage that will execute the generated schedule.
|
47 |
+
"""
|
48 |
+
|
49 |
+
def __init__(self, micro_batches, stages, stage_id):
|
50 |
+
super().__init__()
|
51 |
+
self.micro_batches = micro_batches
|
52 |
+
self.stages = stages
|
53 |
+
self.stage_id = stage_id
|
54 |
+
self.prev_stage = self.stage_id - 1
|
55 |
+
self.next_stage = self.stage_id + 1
|
56 |
+
|
57 |
+
@abstractmethod
|
58 |
+
def steps(self):
|
59 |
+
"""Yield a list of :class:`PipeInstruction` for each step in the schedule.
|
60 |
+
|
61 |
+
.. note::
|
62 |
+
Schedules must implement ``steps()`` to define the schedule.
|
63 |
+
|
64 |
+
Returns:
|
65 |
+
Instructions to be executed as one step of the pipeline
|
66 |
+
"""
|
67 |
+
pass
|
68 |
+
|
69 |
+
def num_pipe_buffers(self):
|
70 |
+
"""The number of pipeline buffers that will be used by this stage.
|
71 |
+
|
72 |
+
.. note::
|
73 |
+
Schedules should specialize ``num_pipe_buffers()`` for memory savings at scale.
|
74 |
+
|
75 |
+
Returns:
|
76 |
+
The number of buffers for the engine to allocate.
|
77 |
+
"""
|
78 |
+
return self.micro_batches
|
79 |
+
|
80 |
+
def _valid_micro_batch(self, micro_batch_id):
|
81 |
+
return 0 <= micro_batch_id < self.micro_batches
|
82 |
+
|
83 |
+
def _valid_stage(self, stage_id):
|
84 |
+
return 0 <= stage_id < self.stages
|
85 |
+
|
86 |
+
@property
|
87 |
+
def stage(self):
|
88 |
+
"""Stage index used to configure this schedule."""
|
89 |
+
return self.stage_id
|
90 |
+
|
91 |
+
@property
|
92 |
+
def num_stages(self):
|
93 |
+
"""The number of total pipeline stages used to configure this schedule."""
|
94 |
+
return self.stages
|
95 |
+
|
96 |
+
@property
|
97 |
+
def num_micro_batches(self):
|
98 |
+
"""The number of total micro_batches used to configure this schedule."""
|
99 |
+
return self.micro_batches
|
100 |
+
|
101 |
+
@property
|
102 |
+
def is_first_stage(self):
|
103 |
+
"""True if the configured ``stage_id`` is the first stage in the pipeline."""
|
104 |
+
return self.stage_id == 0
|
105 |
+
|
106 |
+
@property
|
107 |
+
def is_last_stage(self):
|
108 |
+
"""True if the configured ``stage_id`` is the last stage in the pipeline."""
|
109 |
+
return self.stage_id == self.stages - 1
|
110 |
+
|
111 |
+
def _buffer_idx(self, micro_batch_id):
|
112 |
+
"""Map a micro-batch index to a pipeline buffer index.
|
113 |
+
|
114 |
+
This method uses a cyclic allocation strategy.
|
115 |
+
|
116 |
+
Args:
|
117 |
+
micro_batch_id (int): The micro-batch index relative to the beginning of the schedule.
|
118 |
+
|
119 |
+
Returns:
|
120 |
+
int: The index of the buffer that should store data.
|
121 |
+
"""
|
122 |
+
assert self._valid_micro_batch(micro_batch_id)
|
123 |
+
return micro_batch_id % self.num_pipe_buffers()
|
124 |
+
|
125 |
+
def __iter__(self):
|
126 |
+
self.it = None
|
127 |
+
return self
|
128 |
+
|
129 |
+
def __next__(self):
|
130 |
+
if self.it is None:
|
131 |
+
self.it = self.steps()
|
132 |
+
return next(self.it)
|
133 |
+
|
134 |
+
|
135 |
+
class InferenceSchedule(PipeSchedule):
|
136 |
+
"""A schedule for inferencing batches using pipeline parallelism.
|
137 |
+
"""
|
138 |
+
|
139 |
+
def steps(self):
|
140 |
+
""""""
|
141 |
+
prev_micro_batch_id = -1
|
142 |
+
total_steps = self.micro_batches + self.stages - 1
|
143 |
+
for step_id in range(total_steps):
|
144 |
+
cmds = []
|
145 |
+
micro_batch_id = step_id - self.stage_id
|
146 |
+
|
147 |
+
# Alternate send/recv buffers
|
148 |
+
if _is_even(self.stage_id):
|
149 |
+
recv_buf = step_id % 2
|
150 |
+
send_buf = (step_id + 1) % 2
|
151 |
+
else:
|
152 |
+
recv_buf = (step_id + 1) % 2
|
153 |
+
send_buf = step_id % 2
|
154 |
+
|
155 |
+
if self.is_first_stage or self.is_last_stage:
|
156 |
+
if self._valid_micro_batch(micro_batch_id):
|
157 |
+
cmds.append(LoadMicroBatch(recv_buf))
|
158 |
+
|
159 |
+
if _is_even(self.stage_id):
|
160 |
+
if self._valid_stage(self.next_stage):
|
161 |
+
if self._valid_micro_batch(micro_batch_id - 1):
|
162 |
+
cmds.append(SendActivation(send_buf))
|
163 |
+
if self._valid_stage(self.prev_stage):
|
164 |
+
if self._valid_micro_batch(micro_batch_id):
|
165 |
+
cmds.append(RecvActivation(recv_buf))
|
166 |
+
else:
|
167 |
+
if self._valid_stage(self.prev_stage):
|
168 |
+
if self._valid_micro_batch(micro_batch_id):
|
169 |
+
cmds.append(RecvActivation(recv_buf))
|
170 |
+
|
171 |
+
if self._valid_stage(self.next_stage):
|
172 |
+
if self._valid_micro_batch(micro_batch_id - 1):
|
173 |
+
cmds.append(SendActivation(send_buf))
|
174 |
+
|
175 |
+
if self._valid_micro_batch(micro_batch_id):
|
176 |
+
cmds.append(ForwardPass(recv_buf))
|
177 |
+
|
178 |
+
yield cmds
|
179 |
+
|
180 |
+
def num_pipe_buffers(self):
|
181 |
+
"""Only two pipeline buffers are required for inferencing.
|
182 |
+
|
183 |
+
Returns:
|
184 |
+
``2``
|
185 |
+
"""
|
186 |
+
return 2
|
187 |
+
|
188 |
+
|
189 |
+
class TrainSchedule(PipeSchedule):
|
190 |
+
"""A schedule for training a batch using hybrid parallelism.
|
191 |
+
|
192 |
+
Pipeline parallelism is extracted through gradient accumulation and thus
|
193 |
+
convergence follows that of a data parallel approach with the same batch
|
194 |
+
size.
|
195 |
+
"""
|
196 |
+
|
197 |
+
def steps(self):
|
198 |
+
""""""
|
199 |
+
prev_micro_batch_id = -1
|
200 |
+
total_steps = 2 * (self.micro_batches + self.stages - 1)
|
201 |
+
for step_id in range(total_steps):
|
202 |
+
# Map the step of the pipeline to the micro-batch id and also whether it is a
|
203 |
+
# forward or backward pass step.
|
204 |
+
micro_batch_id, is_forward = self._step_to_micro_batch(step_id)
|
205 |
+
|
206 |
+
if self._valid_micro_batch(prev_micro_batch_id):
|
207 |
+
prev_buffer = self._buffer_idx(prev_micro_batch_id)
|
208 |
+
if self._valid_micro_batch(micro_batch_id):
|
209 |
+
curr_buffer = self._buffer_idx(micro_batch_id)
|
210 |
+
|
211 |
+
cmds = []
|
212 |
+
|
213 |
+
# Exchange activations
|
214 |
+
if is_forward:
|
215 |
+
if self._valid_micro_batch(prev_micro_batch_id) and self._valid_stage(self.prev_stage):
|
216 |
+
cmds.append(SendGrad(prev_buffer))
|
217 |
+
if self._valid_micro_batch(micro_batch_id) and self._valid_stage(self.prev_stage):
|
218 |
+
cmds.append(RecvActivation(curr_buffer))
|
219 |
+
else:
|
220 |
+
if self._valid_micro_batch(micro_batch_id) and self._valid_stage(self.next_stage):
|
221 |
+
cmds.append(RecvGrad(curr_buffer))
|
222 |
+
if self._valid_micro_batch(prev_micro_batch_id) and self._valid_stage(self.next_stage):
|
223 |
+
cmds.append(SendActivation(prev_buffer))
|
224 |
+
|
225 |
+
# First/last stage loads
|
226 |
+
if self.stage_id == 0 or self.stage_id == self.stages - 1:
|
227 |
+
if is_forward and self._valid_micro_batch(micro_batch_id):
|
228 |
+
cmds.append(LoadMicroBatch(curr_buffer))
|
229 |
+
|
230 |
+
# Computation
|
231 |
+
if self._valid_micro_batch(micro_batch_id):
|
232 |
+
if is_forward:
|
233 |
+
cmds.append(ForwardPass(curr_buffer))
|
234 |
+
else:
|
235 |
+
cmds.append(BackwardPass(curr_buffer))
|
236 |
+
|
237 |
+
# Model step at the end of the batch
|
238 |
+
if step_id == total_steps - 1:
|
239 |
+
cmds.append(ReduceTiedGrads())
|
240 |
+
cmds.append(ReduceGrads())
|
241 |
+
cmds.append(OptimizerStep())
|
242 |
+
|
243 |
+
# Prepare state for next time
|
244 |
+
prev_micro_batch_id = micro_batch_id
|
245 |
+
yield cmds
|
246 |
+
|
247 |
+
def num_pipe_buffers(self):
|
248 |
+
"""Return the number of pipeline buffers required for this stage.
|
249 |
+
|
250 |
+
This is equivalent to the maximum number of in-flight forward passes,
|
251 |
+
since we need to remember the activations of forward passes in order
|
252 |
+
to run backpropagation. For synchronous 1F1B, this is equivalent to
|
253 |
+
the index difference between this stage and the last stage.
|
254 |
+
"""
|
255 |
+
buffers = min(self.stages - self.stage_id, self.micro_batches)
|
256 |
+
return max(2, buffers)
|
257 |
+
|
258 |
+
def _step_to_micro_batch(self, step_id):
|
259 |
+
if _is_even(step_id) and _is_even(self.stage_id):
|
260 |
+
micro_batch_id = self._even_step_forward_id(step_id)
|
261 |
+
is_forward = True
|
262 |
+
|
263 |
+
elif _is_odd(step_id) and _is_odd(self.stage_id):
|
264 |
+
micro_batch_id = self._odd_step_forward_id(step_id)
|
265 |
+
is_forward = True
|
266 |
+
|
267 |
+
elif _is_even(step_id) and _is_odd(self.stage_id):
|
268 |
+
micro_batch_id = self._even_step_backward_id(step_id)
|
269 |
+
is_forward = False
|
270 |
+
|
271 |
+
elif _is_odd(step_id) and _is_even(self.stage_id):
|
272 |
+
micro_batch_id = self._odd_step_backward_id(step_id)
|
273 |
+
is_forward = False
|
274 |
+
|
275 |
+
else:
|
276 |
+
assert False
|
277 |
+
|
278 |
+
return micro_batch_id, is_forward
|
279 |
+
|
280 |
+
def _even_step_forward_id(self, step_id):
|
281 |
+
base = step_id // 2
|
282 |
+
micro_batch_id = int(base - self.stage_id // 2)
|
283 |
+
return micro_batch_id
|
284 |
+
|
285 |
+
def _odd_step_forward_id(self, step_id):
|
286 |
+
base = (step_id - 1) // 2
|
287 |
+
micro_batch_id = int(base - self.stage_id // 2)
|
288 |
+
return micro_batch_id
|
289 |
+
|
290 |
+
def _even_step_backward_id(self, step_id):
|
291 |
+
base = step_id // 2
|
292 |
+
micro_batch_id = int(base - self.stages + (self.stage_id + 1) // 2)
|
293 |
+
return micro_batch_id
|
294 |
+
|
295 |
+
def _odd_step_backward_id(self, step_id):
|
296 |
+
base = ((step_id - 1) // 2) - self.stages + 1
|
297 |
+
micro_batch_id = int(base + self.stage_id // 2)
|
298 |
+
return micro_batch_id
|
299 |
+
|
300 |
+
|
301 |
+
class DataParallelSchedule(PipeSchedule):
|
302 |
+
"""An example schedule that trains using traditional data parallelism with gradient
|
303 |
+
accumulation.
|
304 |
+
"""
|
305 |
+
|
306 |
+
def steps(self):
|
307 |
+
""""""
|
308 |
+
for step_id in range(self.micro_batches):
|
309 |
+
cmds = [
|
310 |
+
LoadMicroBatch(buffer_id=0),
|
311 |
+
ForwardPass(buffer_id=0),
|
312 |
+
BackwardPass(buffer_id=0),
|
313 |
+
]
|
314 |
+
if step_id == self.micro_batches - 1:
|
315 |
+
cmds.extend([
|
316 |
+
ReduceGrads(),
|
317 |
+
OptimizerStep(),
|
318 |
+
])
|
319 |
+
yield cmds
|
320 |
+
|
321 |
+
def num_pipe_buffers(self):
|
322 |
+
"""Only one pipeline buffer needed.
|
323 |
+
"""
|
324 |
+
return 1
|
325 |
+
|
326 |
+
|
327 |
+
class PipeInstruction:
|
328 |
+
"""Base class for all instructions to be executed by the pipeline engine.
|
329 |
+
|
330 |
+
All keyword arguments are stored as members similar to a ``namedtuple``. These are
|
331 |
+
then accessible to the :class:`PipeEngine` during execution.
|
332 |
+
|
333 |
+
Args:
|
334 |
+
kwargs (optional): keyword arguments to store as members
|
335 |
+
"""
|
336 |
+
|
337 |
+
def __init__(self, **kwargs):
|
338 |
+
self.name = self.__class__.__name__
|
339 |
+
self.kwargs = kwargs
|
340 |
+
for key, val in kwargs.items():
|
341 |
+
setattr(self, key, val)
|
342 |
+
|
343 |
+
def __repr__(self):
|
344 |
+
return call_to_str(self.name, **self.kwargs)
|
345 |
+
|
346 |
+
|
347 |
+
class OptimizerStep(PipeInstruction):
|
348 |
+
"""Performs one step with the optimizer and zeros gradients.
|
349 |
+
|
350 |
+
.. note:: Should be issued after :class:`ReduceGrads` and :class:`ReduceTiedGrads`.
|
351 |
+
|
352 |
+
.. note:: Can be a synchronization point among data-parallel ranks.
|
353 |
+
"""
|
354 |
+
pass
|
355 |
+
|
356 |
+
|
357 |
+
class ReduceGrads(PipeInstruction):
|
358 |
+
"""Reduce the computed gradients among data-parallel processes within the stage.
|
359 |
+
"""
|
360 |
+
pass
|
361 |
+
|
362 |
+
|
363 |
+
class ReduceTiedGrads(PipeInstruction):
|
364 |
+
"""Reduce the computed gradients of tied modules within a pipeline-parallel group.
|
365 |
+
|
366 |
+
.. warning::
|
367 |
+
The stages included in this synchronization point are not known until
|
368 |
+
the model is partitioned among pipeline stages. In the worst case, it
|
369 |
+
includes all pipeline stages. This instruction should be scheduled
|
370 |
+
carefully to avoid deadlocks.
|
371 |
+
"""
|
372 |
+
pass
|
373 |
+
|
374 |
+
|
375 |
+
class BufferOpInstruction(PipeInstruction):
|
376 |
+
"""A pipeline instruction that operates on pipeline buffer(s).
|
377 |
+
|
378 |
+
Args:
|
379 |
+
buffer_id (int): the index of the pipeline buffer() to modify.
|
380 |
+
"""
|
381 |
+
|
382 |
+
def __init__(self, buffer_id, **kwargs):
|
383 |
+
super().__init__(buffer_id=buffer_id, **kwargs)
|
384 |
+
|
385 |
+
|
386 |
+
# IO
|
387 |
+
class LoadMicroBatch(BufferOpInstruction):
|
388 |
+
"""Load a micro-batch into a buffer.
|
389 |
+
|
390 |
+
Roughly:
|
391 |
+
|
392 |
+
.. code-block:: python
|
393 |
+
|
394 |
+
buffers['inputs'][buffer_id] = next(data_iter)
|
395 |
+
"""
|
396 |
+
pass
|
397 |
+
|
398 |
+
|
399 |
+
# Compute
|
400 |
+
class ForwardPass(BufferOpInstruction):
|
401 |
+
"""Compute a forward pass.
|
402 |
+
|
403 |
+
Roughly:
|
404 |
+
|
405 |
+
.. code-block:: python
|
406 |
+
|
407 |
+
buffers['outputs'][buffer_id] = forward(buffers['inputs'][buffer_id])
|
408 |
+
"""
|
409 |
+
pass
|
410 |
+
|
411 |
+
|
412 |
+
class BackwardPass(BufferOpInstruction):
|
413 |
+
"""Compute a backward pass and accumulate gradients.
|
414 |
+
|
415 |
+
Roughly:
|
416 |
+
|
417 |
+
.. code-block:: python
|
418 |
+
|
419 |
+
outputs = buffers['outputs'][buffer_id]
|
420 |
+
gradients = buffers['gradients'][buffer_id]
|
421 |
+
torch.autograd.backward(tensors=outputs,
|
422 |
+
grad_tensors=gradients)
|
423 |
+
"""
|
424 |
+
pass
|
425 |
+
|
426 |
+
|
427 |
+
# Communication
|
428 |
+
class SendActivation(BufferOpInstruction):
|
429 |
+
"""Send activations to the next stage in the pipeline.
|
430 |
+
|
431 |
+
Roughly:
|
432 |
+
|
433 |
+
.. code-block:: python
|
434 |
+
|
435 |
+
send(buffers['outputs'][buffer_id])
|
436 |
+
|
437 |
+
.. note::
|
438 |
+
The communication is blocking and must be paired with a :class:`RecvActivation`
|
439 |
+
on the next pipeline stage to avoid deadlock.
|
440 |
+
"""
|
441 |
+
pass
|
442 |
+
|
443 |
+
|
444 |
+
class RecvActivation(BufferOpInstruction):
|
445 |
+
"""Receive activations from the previous stage in the pipeline.
|
446 |
+
|
447 |
+
Roughly:
|
448 |
+
|
449 |
+
.. code-block:: python
|
450 |
+
|
451 |
+
buffers['inputs'][buffer_id] = recv()
|
452 |
+
|
453 |
+
.. note::
|
454 |
+
The communication is blocking and must be paired with a :class:`SendActivation`
|
455 |
+
on the previous pipeline stage to avoid deadlock.
|
456 |
+
"""
|
457 |
+
pass
|
458 |
+
|
459 |
+
|
460 |
+
class SendGrad(BufferOpInstruction):
|
461 |
+
"""Send computed gradients to the previous pipeline stage.
|
462 |
+
with respect to the received activations
|
463 |
+
|
464 |
+
.. note::
|
465 |
+
Only received tensors with ``requires_grad==True`` will produce gradients.
|
466 |
+
Missing gradients will be replaced with ``None`` on the receiving stage.
|
467 |
+
|
468 |
+
.. note::
|
469 |
+
The communication is blocking and must be paired with a :class:`RecvGrad`
|
470 |
+
on the previous pipeline stage to avoid deadlock.
|
471 |
+
"""
|
472 |
+
pass
|
473 |
+
|
474 |
+
|
475 |
+
class RecvGrad(BufferOpInstruction):
|
476 |
+
"""Receive computed gradients the next pipeline stage.
|
477 |
+
|
478 |
+
.. note::
|
479 |
+
Only activations with ``requires_grad==True`` will produce gradients.
|
480 |
+
Missing gradients will be replaced with ``None``.
|
481 |
+
|
482 |
+
.. note::
|
483 |
+
The communication is blocking and must be paired with a :class:`SendGrad`
|
484 |
+
on the next pipeline stage to avoid deadlock.
|
485 |
+
"""
|
486 |
+
pass
|
487 |
+
|
488 |
+
|
489 |
+
def _is_even(x):
|
490 |
+
return x % 2 == 0
|
491 |
+
|
492 |
+
|
493 |
+
def _is_odd(x):
|
494 |
+
return x % 2 != 0
|
venv/lib/python3.10/site-packages/deepspeed/runtime/pipe/topology.py
ADDED
@@ -0,0 +1,456 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from deepspeed import comm as dist
|
7 |
+
|
8 |
+
from collections import namedtuple
|
9 |
+
from itertools import product as cartesian_product
|
10 |
+
|
11 |
+
|
12 |
+
class ProcessTopology:
|
13 |
+
""" Manages the mapping of n-dimensional Cartesian coordinates to linear
|
14 |
+
indices. This mapping is used to map the rank of processes to the grid
|
15 |
+
for various forms of parallelism.
|
16 |
+
|
17 |
+
Each axis of the tensor is accessed by its name. The provided ordering
|
18 |
+
of the axes defines the layout of the topology. ProcessTopology uses a "row-major"
|
19 |
+
layout of the tensor axes, and so axes=['x', 'y'] would map coordinates (x,y) and
|
20 |
+
(x,y+1) to adjacent linear indices. If instead axes=['y', 'x'] was used, coordinates
|
21 |
+
(x,y) and (x+1,y) would be adjacent.
|
22 |
+
|
23 |
+
Some methods return ProcessCoord namedtuples.
|
24 |
+
"""
|
25 |
+
|
26 |
+
def __init__(self, axes, dims):
|
27 |
+
"""Create a mapping of n-dimensional tensor coordinates to linear indices.
|
28 |
+
|
29 |
+
Arguments:
|
30 |
+
axes (list): the names of the tensor axes
|
31 |
+
dims (list): the dimension (length) of each axis of the topology tensor
|
32 |
+
"""
|
33 |
+
|
34 |
+
self.axes = axes # names of each topology axis
|
35 |
+
self.dims = dims # length of each topology axis
|
36 |
+
|
37 |
+
# This is actually a class that lets us hash {'row':3, 'col':2} mappings
|
38 |
+
self.ProcessCoord = namedtuple('ProcessCoord', axes)
|
39 |
+
|
40 |
+
self.mapping = {}
|
41 |
+
ranges = [range(d) for d in dims]
|
42 |
+
# example: 1, (0,0,1)
|
43 |
+
for global_rank, coord in enumerate(cartesian_product(*ranges)):
|
44 |
+
key = {axis: coord[self.axes.index(axis)] for axis in self.axes}
|
45 |
+
key = self.ProcessCoord(**key)
|
46 |
+
# for example, {ProcessCoord(row=0, col=1) : 1}
|
47 |
+
self.mapping[key] = global_rank
|
48 |
+
|
49 |
+
def get_rank(self, **coord_kwargs):
|
50 |
+
"""Return the global rank of a process via its coordinates.
|
51 |
+
|
52 |
+
Coordinates are specified as kwargs. For example:
|
53 |
+
|
54 |
+
>>> X = ProcessTopology(axes=['x', 'y'], dims=[2,3])
|
55 |
+
>>> X.get_rank(x=0, y=1)
|
56 |
+
1
|
57 |
+
"""
|
58 |
+
if len(coord_kwargs) != len(self.axes):
|
59 |
+
raise ValueError('get_rank() does not support slices. Use filter_match())')
|
60 |
+
|
61 |
+
key = self.ProcessCoord(**coord_kwargs)
|
62 |
+
assert key in self.mapping, f'key {coord_kwargs} invalid'
|
63 |
+
return self.mapping[key]
|
64 |
+
|
65 |
+
def get_axis_names(self):
|
66 |
+
"""Return a list of the axis names in the ordering of the topology. """
|
67 |
+
return self.axes
|
68 |
+
|
69 |
+
def get_rank_repr(self, rank, omit_axes=['data', 'pipe'], inner_sep='_', outer_sep='-'):
|
70 |
+
"""Return a string representation of a rank.
|
71 |
+
|
72 |
+
This method is primarily used for checkpointing model data.
|
73 |
+
|
74 |
+
For example:
|
75 |
+
>>> topo = Topo(axes=['a', 'b'], dims=[2, 2])
|
76 |
+
>>> topo.get_rank_repr(rank=3)
|
77 |
+
'a_01-b_01'
|
78 |
+
>>> topo.get_rank_repr(rank=3, omit_axes=['a'])
|
79 |
+
'b_01'
|
80 |
+
|
81 |
+
Args:
|
82 |
+
rank (int): A rank in the topology.
|
83 |
+
omit_axes (list, optional): Axes that should not be in the representation. Defaults to ['data', 'pipe'].
|
84 |
+
inner_sep (str, optional): [description]. Defaults to '_'.
|
85 |
+
outer_sep (str, optional): [description]. Defaults to '-'.
|
86 |
+
|
87 |
+
Returns:
|
88 |
+
str: A string representation of the coordinate owned by ``rank``.
|
89 |
+
"""
|
90 |
+
omit_axes = frozenset(omit_axes)
|
91 |
+
axes = [a for a in self.get_axis_names() if a not in omit_axes]
|
92 |
+
names = []
|
93 |
+
for ax in axes:
|
94 |
+
ax_rank = getattr(self.get_coord(rank=rank), ax)
|
95 |
+
names.append(f'{ax}{inner_sep}{ax_rank:02d}')
|
96 |
+
return outer_sep.join(names)
|
97 |
+
|
98 |
+
def get_dim(self, axis):
|
99 |
+
"""Return the number of processes along the given axis.
|
100 |
+
|
101 |
+
For example:
|
102 |
+
>>> X = ProcessTopology(axes=['x', 'y'], dims=[2,3])
|
103 |
+
>>> X.get_dim('y')
|
104 |
+
3
|
105 |
+
"""
|
106 |
+
if axis not in self.axes:
|
107 |
+
return 0
|
108 |
+
return self.dims[self.axes.index(axis)]
|
109 |
+
|
110 |
+
def get_coord(self, rank):
|
111 |
+
"""Return the coordinate owned by a process rank.
|
112 |
+
|
113 |
+
The axes of the returned namedtuple can be directly accessed as members. For
|
114 |
+
example:
|
115 |
+
>>> X = ProcessTopology(axes=['x', 'y'], dims=[2,3])
|
116 |
+
>>> coord = X.get_coord(rank=1)
|
117 |
+
>>> coord.x
|
118 |
+
0
|
119 |
+
>>> coord.y
|
120 |
+
1
|
121 |
+
"""
|
122 |
+
for coord, idx in self.mapping.items():
|
123 |
+
if idx == rank:
|
124 |
+
return coord
|
125 |
+
raise ValueError(f'rank {rank} not found in topology.')
|
126 |
+
|
127 |
+
def get_axis_comm_lists(self, axis):
|
128 |
+
""" Construct lists suitable for a communicator group along axis ``axis``.
|
129 |
+
|
130 |
+
Example:
|
131 |
+
>>> topo = Topo(axes=['pipe', 'data', 'model'], dims=[2, 2, 2])
|
132 |
+
>>> topo.get_axis_comm_lists('pipe')
|
133 |
+
[
|
134 |
+
[0, 4], # data=0, model=0
|
135 |
+
[1, 5], # data=0, model=1
|
136 |
+
[2, 6], # data=1, model=0
|
137 |
+
[3, 7], # data=1, model=1
|
138 |
+
]
|
139 |
+
|
140 |
+
Returns:
|
141 |
+
A list of lists whose coordinates match in all axes *except* ``axis``.
|
142 |
+
"""
|
143 |
+
|
144 |
+
# We don't want to RuntimeError because it allows us to write more generalized
|
145 |
+
# code for hybrid parallelisms.
|
146 |
+
if axis not in self.axes:
|
147 |
+
return []
|
148 |
+
|
149 |
+
# Grab all axes but `axis`
|
150 |
+
other_axes = [a for a in self.axes if a != axis]
|
151 |
+
|
152 |
+
lists = []
|
153 |
+
|
154 |
+
# Construct all combinations of coords with other_axes
|
155 |
+
ranges = [range(self.get_dim(a)) for a in other_axes]
|
156 |
+
for coord in cartesian_product(*ranges):
|
157 |
+
other_keys = {a: coord[other_axes.index(a)] for a in other_axes}
|
158 |
+
# now go over all ranks in `axis`.
|
159 |
+
sub_list = []
|
160 |
+
for axis_key in range(self.get_dim(axis)):
|
161 |
+
key = self.ProcessCoord(**other_keys, **{axis: axis_key})
|
162 |
+
sub_list.append(self.mapping[key])
|
163 |
+
lists.append(sub_list)
|
164 |
+
|
165 |
+
return lists
|
166 |
+
|
167 |
+
def filter_match(self, **filter_kwargs):
|
168 |
+
"""Return the list of ranks whose coordinates match the provided criteria.
|
169 |
+
|
170 |
+
Example:
|
171 |
+
>>> X = ProcessTopology(axes=['pipe', 'data', 'model'], dims=[2, 2, 2])
|
172 |
+
>>> X.filter_match(pipe=0, data=1)
|
173 |
+
[2, 3]
|
174 |
+
>>> [X.get_coord(rank) for rank in X.filter_match(pipe=0, data=1)]
|
175 |
+
[ProcessCoord(pipe=0, data=1, model=0), ProcessCoord(pipe=0, data=1, model=1)]
|
176 |
+
|
177 |
+
Arguments:
|
178 |
+
**filter_kwargs (dict): criteria used to select coordinates.
|
179 |
+
|
180 |
+
Returns:
|
181 |
+
The list of ranks whose coordinates match filter_kwargs.
|
182 |
+
"""
|
183 |
+
|
184 |
+
def _filter_helper(x):
|
185 |
+
for key, val in filter_kwargs.items():
|
186 |
+
if getattr(x, key) != val:
|
187 |
+
return False
|
188 |
+
return True
|
189 |
+
|
190 |
+
coords = filter(_filter_helper, self.mapping.keys())
|
191 |
+
return [self.mapping[coord] for coord in coords]
|
192 |
+
|
193 |
+
def get_axis_list(self, axis, idx):
|
194 |
+
"""Returns the list of global ranks whose coordinate in an axis is idx.
|
195 |
+
|
196 |
+
For example:
|
197 |
+
>>> X = ProcessTopology(axes=['x', 'y'], dims=[2,3])
|
198 |
+
>>> X.get_axis_list(axis='x', idx=0)
|
199 |
+
[0, 1, 2]
|
200 |
+
>>> X.get_axis_list(axis='y', idx=0)
|
201 |
+
[0, 3]
|
202 |
+
"""
|
203 |
+
|
204 |
+
# This could be faster by generating the desired keys directly instead of
|
205 |
+
# filtering.
|
206 |
+
axis_num = self.axes.index(axis)
|
207 |
+
ranks = [self.mapping[k] for k in self.mapping.keys() if k[axis_num] == idx]
|
208 |
+
return ranks
|
209 |
+
|
210 |
+
def world_size(self):
|
211 |
+
return len(self.mapping)
|
212 |
+
|
213 |
+
def __str__(self):
|
214 |
+
return str(self.mapping)
|
215 |
+
|
216 |
+
|
217 |
+
def _prime_factors(N):
|
218 |
+
""" Returns the prime factorization of positive integer N. """
|
219 |
+
if N <= 0:
|
220 |
+
raise ValueError("Values must be strictly positive.")
|
221 |
+
|
222 |
+
primes = []
|
223 |
+
while N != 1:
|
224 |
+
for candidate in range(2, N + 1):
|
225 |
+
if N % candidate == 0:
|
226 |
+
primes.append(candidate)
|
227 |
+
N //= candidate
|
228 |
+
break
|
229 |
+
return primes
|
230 |
+
|
231 |
+
|
232 |
+
class PipeDataParallelTopology(ProcessTopology):
|
233 |
+
""" A topology specialization for hybrid data and pipeline parallelism.
|
234 |
+
|
235 |
+
Uses data parallelism on the last dimension to encourage gradient
|
236 |
+
reductions to use high-bandwidth intra-node links and lower-volume
|
237 |
+
pipeline communications to use low-bandwidth inter-node links.
|
238 |
+
"""
|
239 |
+
|
240 |
+
def __init__(self, num_pp, num_dp):
|
241 |
+
super().__init__(axes=['pipe', 'data'], dims=[num_pp, num_dp])
|
242 |
+
|
243 |
+
|
244 |
+
class PipeModelDataParallelTopology(ProcessTopology):
|
245 |
+
""" A topology for hybrid pipeline, model, and data parallelism. """
|
246 |
+
|
247 |
+
def __init__(self, num_pp, num_mp, num_dp):
|
248 |
+
super().__init__(axes=['pipe', 'data', 'model'], dims=[num_pp, num_dp, num_mp])
|
249 |
+
|
250 |
+
|
251 |
+
class PipelineParallelGrid:
|
252 |
+
"""Implements a grid object that stores the data parallel ranks
|
253 |
+
corresponding to each of the model parallel stages
|
254 |
+
|
255 |
+
The grid object organizes the processes in a distributed pytorch job
|
256 |
+
into a 2D grid, of stage_id and data_parallel_id.
|
257 |
+
|
258 |
+
self.stage_id and self.data_parallel_id stores the stage id
|
259 |
+
and the data parallel id of current process.
|
260 |
+
|
261 |
+
self.dp_group groups the processes by stage_id.
|
262 |
+
self.dp_group[i], is a list containing all process ranks whose
|
263 |
+
stage_id is i.
|
264 |
+
|
265 |
+
self.p2p_groups stores a list of tuple, where each tuple
|
266 |
+
stores process ranks of adjacent stages for a given data_parallel_id.
|
267 |
+
For example if num_stage is 5 then a tuple [7,8] represents stages [3, 4],
|
268 |
+
with data_parallel id = 1. A stage wrap around will appear as non-adjacent ranks,
|
269 |
+
for example tuple [4,0] with representing wrap-around stage 4 and 0, for
|
270 |
+
data_parallel_id = 0, or similarly [9,5] represents wrapped around stages [4,0]
|
271 |
+
for data_parallel_id = 1.
|
272 |
+
"""
|
273 |
+
|
274 |
+
def __init__(self, topology=None, process_group=None):
|
275 |
+
# TODO use process_group if provided
|
276 |
+
self.global_rank = dist.get_rank()
|
277 |
+
self.world_size = dist.get_world_size()
|
278 |
+
if topology is not None:
|
279 |
+
if self.global_rank == 0:
|
280 |
+
print('Using topology:', topology)
|
281 |
+
self._topo = topology
|
282 |
+
else:
|
283 |
+
num_pp = 1
|
284 |
+
num_dp = 1
|
285 |
+
for idx, prime in enumerate(_prime_factors(self.world_size)):
|
286 |
+
if idx % 2 == 0:
|
287 |
+
num_pp *= prime
|
288 |
+
else:
|
289 |
+
num_dp *= prime
|
290 |
+
self._topo = PipeDataParallelTopology(num_dp=num_dp, num_pp=num_pp)
|
291 |
+
self.data_parallel_size = max(self._topo.get_dim('data'), 1)
|
292 |
+
self.pipe_parallel_size = max(self._topo.get_dim('pipe'), 1)
|
293 |
+
self.model_parallel_size = max(self._topo.get_dim('model'), 1)
|
294 |
+
self.slice_parallel_size = self.model_parallel_size
|
295 |
+
assert self._is_grid_valid(), "Invalid Grid"
|
296 |
+
|
297 |
+
self.stage_id = self.get_stage_id()
|
298 |
+
self.data_parallel_id = self.get_data_parallel_id()
|
299 |
+
|
300 |
+
# Create new ProcessGroups for all model parallelism. DeepSpeedLight uses these
|
301 |
+
# to detect overflow, etc.
|
302 |
+
self.ds_model_proc_group = None
|
303 |
+
self.ds_model_rank = -1
|
304 |
+
for dp in range(self.data_parallel_size):
|
305 |
+
ranks = sorted(self._topo.get_axis_list(axis='data', idx=dp))
|
306 |
+
if self.global_rank == 0:
|
307 |
+
#print(f'RANK={self.global_rank} building DeepSpeed model group: {ranks}')
|
308 |
+
pass
|
309 |
+
proc_group = dist.new_group(ranks=ranks)
|
310 |
+
if self.global_rank in ranks:
|
311 |
+
self.ds_model_proc_group = proc_group
|
312 |
+
self.ds_model_world_size = len(ranks)
|
313 |
+
self.ds_model_rank = ranks.index(self.global_rank)
|
314 |
+
assert self.ds_model_rank > -1
|
315 |
+
assert self.ds_model_proc_group is not None
|
316 |
+
|
317 |
+
# Create new ProcessGroup for gradient all-reduces - these are the data parallel groups
|
318 |
+
self.dp_group = []
|
319 |
+
self.dp_groups = self._topo.get_axis_comm_lists('data')
|
320 |
+
for g in self.dp_groups:
|
321 |
+
proc_group = dist.new_group(ranks=g)
|
322 |
+
if self.global_rank in g:
|
323 |
+
self.dp_group = g
|
324 |
+
self.dp_proc_group = proc_group
|
325 |
+
|
326 |
+
self.is_first_stage = (self.stage_id == 0)
|
327 |
+
self.is_last_stage = (self.stage_id == (self.pipe_parallel_size - 1))
|
328 |
+
|
329 |
+
self.p2p_groups = self._build_p2p_groups()
|
330 |
+
|
331 |
+
# Create new ProcessGroup for pipeline collectives - these are pipe parallel groups
|
332 |
+
self.pp_group = []
|
333 |
+
self.pp_proc_group = None
|
334 |
+
self.pipe_groups = self._topo.get_axis_comm_lists('pipe')
|
335 |
+
for ranks in self.pipe_groups:
|
336 |
+
if self.global_rank == 0:
|
337 |
+
#print(f'RANK={self.global_rank} building pipeline group: {ranks}')
|
338 |
+
pass
|
339 |
+
proc_group = dist.new_group(ranks=ranks)
|
340 |
+
if self.global_rank in ranks:
|
341 |
+
self.pp_group = ranks
|
342 |
+
self.pp_proc_group = proc_group
|
343 |
+
assert self.pp_proc_group is not None
|
344 |
+
|
345 |
+
# Create new ProcessGroup for model (tensor-slicing) collectives
|
346 |
+
|
347 |
+
# Short circuit case without model parallelism.
|
348 |
+
# TODO: it would be nice if topology had bcast semantics to avoid this branching
|
349 |
+
# case?
|
350 |
+
if self.model_parallel_size == 1:
|
351 |
+
for group_rank in range(self.world_size):
|
352 |
+
group_rank = [group_rank]
|
353 |
+
group = dist.new_group(ranks=group_rank)
|
354 |
+
if group_rank[0] == self.global_rank:
|
355 |
+
self.slice_group = group_rank
|
356 |
+
self.slice_proc_group = group
|
357 |
+
return
|
358 |
+
else:
|
359 |
+
self.mp_group = []
|
360 |
+
self.model_groups = self._topo.get_axis_comm_lists('model')
|
361 |
+
for g in self.model_groups:
|
362 |
+
proc_group = dist.new_group(ranks=g)
|
363 |
+
if self.global_rank in g:
|
364 |
+
self.slice_group = g
|
365 |
+
self.slice_proc_group = proc_group
|
366 |
+
|
367 |
+
def get_stage_id(self):
|
368 |
+
return self._topo.get_coord(rank=self.global_rank).pipe
|
369 |
+
|
370 |
+
def get_data_parallel_id(self):
|
371 |
+
return self._topo.get_coord(rank=self.global_rank).data
|
372 |
+
|
373 |
+
def _build_p2p_groups(self):
|
374 |
+
"""Groups for sending and receiving activations and gradients across model
|
375 |
+
parallel stages.
|
376 |
+
"""
|
377 |
+
comm_lists = self._topo.get_axis_comm_lists('pipe')
|
378 |
+
p2p_lists = []
|
379 |
+
for rank in range(self.world_size):
|
380 |
+
for l in comm_lists:
|
381 |
+
assert len(l) == self.pipe_parallel_size
|
382 |
+
if rank in l:
|
383 |
+
idx = l.index(rank)
|
384 |
+
buddy_rank = l[(idx + 1) % self.pipe_parallel_size]
|
385 |
+
p2p_lists.append([rank, buddy_rank])
|
386 |
+
break # next global rank
|
387 |
+
assert len(p2p_lists) == self.world_size
|
388 |
+
return p2p_lists
|
389 |
+
|
390 |
+
def _is_grid_valid(self):
|
391 |
+
ranks = 1
|
392 |
+
for ax in self._topo.get_axis_names():
|
393 |
+
ranks *= self._topo.get_dim(ax)
|
394 |
+
return ranks == dist.get_world_size()
|
395 |
+
|
396 |
+
#returns the global rank of the process with the provided stage id
|
397 |
+
#which has the same data_parallel_id as caller process
|
398 |
+
def stage_to_global(self, stage_id, **kwargs):
|
399 |
+
me = self._topo.get_coord(self.global_rank)
|
400 |
+
transform = me._replace(pipe=stage_id, **kwargs)._asdict()
|
401 |
+
return self._topo.get_rank(**transform)
|
402 |
+
|
403 |
+
def topology(self):
|
404 |
+
return self._topo
|
405 |
+
|
406 |
+
# MPU functions for DeepSpeed integration
|
407 |
+
def get_global_rank(self):
|
408 |
+
return self.global_rank
|
409 |
+
|
410 |
+
def get_pipe_parallel_rank(self):
|
411 |
+
""" The stage of the pipeline this rank resides in. """
|
412 |
+
return self.get_stage_id()
|
413 |
+
|
414 |
+
def get_pipe_parallel_world_size(self):
|
415 |
+
""" The number of stages in the pipeline. """
|
416 |
+
return self.pipe_parallel_size
|
417 |
+
|
418 |
+
def get_pipe_parallel_group(self):
|
419 |
+
""" The group of ranks within the same pipeline. """
|
420 |
+
return self.pp_proc_group
|
421 |
+
|
422 |
+
def get_data_parallel_rank(self):
|
423 |
+
""" Which pipeline this rank resides in. """
|
424 |
+
return self.data_parallel_id
|
425 |
+
|
426 |
+
def get_data_parallel_world_size(self):
|
427 |
+
""" The number of pipelines. """
|
428 |
+
return self.data_parallel_size
|
429 |
+
|
430 |
+
def get_data_parallel_group(self):
|
431 |
+
""" The group of ranks within the same stage of all pipelines. """
|
432 |
+
return self.dp_proc_group
|
433 |
+
|
434 |
+
# These are model parallel groups across all types of model parallelism.
|
435 |
+
# Deepspeed uses them to detect overflow, etc.
|
436 |
+
def get_model_parallel_rank(self):
|
437 |
+
return self.ds_model_rank
|
438 |
+
|
439 |
+
def get_model_parallel_world_size(self):
|
440 |
+
return self.ds_model_world_size
|
441 |
+
|
442 |
+
def get_model_parallel_group(self):
|
443 |
+
return self.ds_model_proc_group
|
444 |
+
|
445 |
+
# For Megatron-style tensor slicing
|
446 |
+
def get_slice_parallel_rank(self):
|
447 |
+
if 'model' in self._topo.get_axis_names():
|
448 |
+
return self._topo.get_coord(rank=self.global_rank).model
|
449 |
+
else:
|
450 |
+
return 0
|
451 |
+
|
452 |
+
def get_slice_parallel_world_size(self):
|
453 |
+
return self.slice_parallel_size
|
454 |
+
|
455 |
+
def get_slice_parallel_group(self):
|
456 |
+
return self.slice_proc_group
|
venv/lib/python3.10/site-packages/deepspeed/runtime/zero/__init__.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from .partition_parameters import ZeroParamType
|
7 |
+
from .partition_parameters import ZeroParamStatus
|
8 |
+
from .partition_parameters import Init
|
9 |
+
from .partition_parameters import GatheredParameters
|
10 |
+
from .partition_parameters import register_external_parameter
|
11 |
+
|
12 |
+
from .tiling import TiledLinear
|
13 |
+
from .tiling import TiledLinearReturnBias
|
14 |
+
|
15 |
+
from .mics import MiCS_Init
|
venv/lib/python3.10/site-packages/deepspeed/runtime/zero/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (528 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/runtime/zero/__pycache__/config.cpython-310.pyc
ADDED
Binary file (6.28 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/runtime/zero/__pycache__/contiguous_memory_allocator.cpython-310.pyc
ADDED
Binary file (7.76 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/runtime/zero/__pycache__/linear.cpython-310.pyc
ADDED
Binary file (5.46 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/runtime/zero/__pycache__/mics.cpython-310.pyc
ADDED
Binary file (16.3 kB). View file
|
|