Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step40/zero/20.mlp.dense_h_to_4h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step40/zero/21.input_layernorm.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step40/zero/21.input_layernorm.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step40/zero/24.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
- ckpts/universal/global_step40/zero/9.attention.query_key_value.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step40/zero/9.attention.query_key_value.weight/exp_avg_sq.pt +3 -0
- venv/lib/python3.10/site-packages/scipy/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/__pycache__/_distributor_init.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/__pycache__/conftest.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/__pycache__/version.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/__init__.py +0 -0
- venv/lib/python3.10/site-packages/transformers/activations.py +239 -0
- venv/lib/python3.10/site-packages/transformers/activations_tf.py +147 -0
- venv/lib/python3.10/site-packages/transformers/audio_utils.py +825 -0
- venv/lib/python3.10/site-packages/transformers/cache_utils.py +435 -0
- venv/lib/python3.10/site-packages/transformers/configuration_utils.py +1133 -0
- venv/lib/python3.10/site-packages/transformers/convert_graph_to_onnx.py +551 -0
- venv/lib/python3.10/site-packages/transformers/convert_pytorch_checkpoint_to_tf2.py +448 -0
- venv/lib/python3.10/site-packages/transformers/convert_slow_tokenizer.py +1534 -0
- venv/lib/python3.10/site-packages/transformers/convert_slow_tokenizers_checkpoints_to_fast.py +126 -0
- venv/lib/python3.10/site-packages/transformers/convert_tf_hub_seq_to_seq_bert_to_pytorch.py +88 -0
- venv/lib/python3.10/site-packages/transformers/debug_utils.py +346 -0
- venv/lib/python3.10/site-packages/transformers/deepspeed.py +40 -0
- venv/lib/python3.10/site-packages/transformers/dependency_versions_check.py +63 -0
- venv/lib/python3.10/site-packages/transformers/dependency_versions_table.py +92 -0
- venv/lib/python3.10/site-packages/transformers/dynamic_module_utils.py +633 -0
- venv/lib/python3.10/site-packages/transformers/feature_extraction_sequence_utils.py +371 -0
- venv/lib/python3.10/site-packages/transformers/feature_extraction_utils.py +684 -0
- venv/lib/python3.10/site-packages/transformers/file_utils.py +133 -0
- venv/lib/python3.10/site-packages/transformers/hf_argparser.py +424 -0
- venv/lib/python3.10/site-packages/transformers/hyperparameter_search.py +141 -0
- venv/lib/python3.10/site-packages/transformers/image_processing_utils.py +793 -0
- venv/lib/python3.10/site-packages/transformers/image_transforms.py +803 -0
- venv/lib/python3.10/site-packages/transformers/image_utils.py +769 -0
- venv/lib/python3.10/site-packages/transformers/keras_callbacks.py +413 -0
- venv/lib/python3.10/site-packages/transformers/kernels/deformable_detr/ms_deform_attn.h +61 -0
- venv/lib/python3.10/site-packages/transformers/kernels/deta/cpu/ms_deform_attn_cpu.cpp +40 -0
- venv/lib/python3.10/site-packages/transformers/kernels/deta/cpu/ms_deform_attn_cpu.h +32 -0
- venv/lib/python3.10/site-packages/transformers/kernels/deta/cuda/ms_deform_attn_cuda.cu +156 -0
- venv/lib/python3.10/site-packages/transformers/kernels/deta/cuda/ms_deform_attn_cuda.cuh +1467 -0
- venv/lib/python3.10/site-packages/transformers/kernels/deta/cuda/ms_deform_attn_cuda.h +29 -0
- venv/lib/python3.10/site-packages/transformers/kernels/deta/cuda/ms_deform_im2col_cuda.cuh +1327 -0
- venv/lib/python3.10/site-packages/transformers/kernels/deta/ms_deform_attn.h +61 -0
- venv/lib/python3.10/site-packages/transformers/kernels/deta/vision.cpp +16 -0
- venv/lib/python3.10/site-packages/transformers/kernels/yoso/common.h +10 -0
- venv/lib/python3.10/site-packages/transformers/kernels/yoso/common_cuda.h +9 -0
- venv/lib/python3.10/site-packages/transformers/kernels/yoso/common_cuda_device.h +79 -0
- venv/lib/python3.10/site-packages/transformers/kernels/yoso/fast_lsh_cumulation.cu +588 -0
- venv/lib/python3.10/site-packages/transformers/kernels/yoso/fast_lsh_cumulation.h +71 -0
- venv/lib/python3.10/site-packages/transformers/kernels/yoso/fast_lsh_cumulation_cuda.cu +825 -0
ckpts/universal/global_step40/zero/20.mlp.dense_h_to_4h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e1d0c9cb96f2f4f78bc1a2de4f2f085f8358d28e882af40a91f63d1d5bb9bfe6
|
3 |
+
size 33555612
|
ckpts/universal/global_step40/zero/21.input_layernorm.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23a3b6986a1c570a68dbb8be524f72d8d347a423f62f9a34bed6fc5e47fba2b2
|
3 |
+
size 9372
|
ckpts/universal/global_step40/zero/21.input_layernorm.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0325875a882e07bb92bc0358d8f0d73e1528334f94a425df2f6de67d9dc8ea8
|
3 |
+
size 9387
|
ckpts/universal/global_step40/zero/24.mlp.dense_4h_to_h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80c435baca506f968914c996fa87eb126f6751b9ced996886742e9fbb46cc8c6
|
3 |
+
size 33555533
|
ckpts/universal/global_step40/zero/9.attention.query_key_value.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9dceb22235cb446718fdaba61928daffcb6a12d58d08dc88c8485a313892380
|
3 |
+
size 50332828
|
ckpts/universal/global_step40/zero/9.attention.query_key_value.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa70b78cb63a46e3cae1591c64fd0a8d624fb56b4e8148968cd78b9b1f609609
|
3 |
+
size 50332843
|
venv/lib/python3.10/site-packages/scipy/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (3.66 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/__pycache__/_distributor_init.cpython-310.pyc
ADDED
Binary file (808 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/__pycache__/conftest.cpython-310.pyc
ADDED
Binary file (6.39 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/__pycache__/version.cpython-310.pyc
ADDED
Binary file (320 Bytes). View file
|
|
venv/lib/python3.10/site-packages/transformers/__init__.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/transformers/activations.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import math
|
16 |
+
from collections import OrderedDict
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from packaging import version
|
20 |
+
from torch import Tensor, nn
|
21 |
+
|
22 |
+
from .utils import logging
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
|
28 |
+
class PytorchGELUTanh(nn.Module):
|
29 |
+
"""
|
30 |
+
A fast C implementation of the tanh approximation of the GeLU activation function. See
|
31 |
+
https://arxiv.org/abs/1606.08415.
|
32 |
+
|
33 |
+
This implementation is equivalent to NewGELU and FastGELU but much faster. However, it is not an exact numerical
|
34 |
+
match due to rounding errors.
|
35 |
+
"""
|
36 |
+
|
37 |
+
def __init__(self):
|
38 |
+
super().__init__()
|
39 |
+
if version.parse(torch.__version__) < version.parse("1.12.0"):
|
40 |
+
raise ImportError(
|
41 |
+
f"You are using torch=={torch.__version__}, but torch>=1.12.0 is required to use "
|
42 |
+
"PytorchGELUTanh. Please upgrade torch."
|
43 |
+
)
|
44 |
+
|
45 |
+
def forward(self, input: Tensor) -> Tensor:
|
46 |
+
return nn.functional.gelu(input, approximate="tanh")
|
47 |
+
|
48 |
+
|
49 |
+
class NewGELUActivation(nn.Module):
|
50 |
+
"""
|
51 |
+
Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT). Also see
|
52 |
+
the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
|
53 |
+
"""
|
54 |
+
|
55 |
+
def forward(self, input: Tensor) -> Tensor:
|
56 |
+
return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (input + 0.044715 * torch.pow(input, 3.0))))
|
57 |
+
|
58 |
+
|
59 |
+
class GELUActivation(nn.Module):
|
60 |
+
"""
|
61 |
+
Original Implementation of the GELU activation function in Google BERT repo when initially created. For
|
62 |
+
information: OpenAI GPT's GELU is slightly different (and gives slightly different results): 0.5 * x * (1 +
|
63 |
+
torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) This is now written in C in nn.functional
|
64 |
+
Also see the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
|
65 |
+
"""
|
66 |
+
|
67 |
+
def __init__(self, use_gelu_python: bool = False):
|
68 |
+
super().__init__()
|
69 |
+
if use_gelu_python:
|
70 |
+
self.act = self._gelu_python
|
71 |
+
else:
|
72 |
+
self.act = nn.functional.gelu
|
73 |
+
|
74 |
+
def _gelu_python(self, input: Tensor) -> Tensor:
|
75 |
+
return input * 0.5 * (1.0 + torch.erf(input / math.sqrt(2.0)))
|
76 |
+
|
77 |
+
def forward(self, input: Tensor) -> Tensor:
|
78 |
+
return self.act(input)
|
79 |
+
|
80 |
+
|
81 |
+
class FastGELUActivation(nn.Module):
|
82 |
+
"""
|
83 |
+
Applies GELU approximation that is slower than QuickGELU but more accurate. See: https://github.com/hendrycks/GELUs
|
84 |
+
"""
|
85 |
+
|
86 |
+
def forward(self, input: Tensor) -> Tensor:
|
87 |
+
return 0.5 * input * (1.0 + torch.tanh(input * 0.7978845608 * (1.0 + 0.044715 * input * input)))
|
88 |
+
|
89 |
+
|
90 |
+
class QuickGELUActivation(nn.Module):
|
91 |
+
"""
|
92 |
+
Applies GELU approximation that is fast but somewhat inaccurate. See: https://github.com/hendrycks/GELUs
|
93 |
+
"""
|
94 |
+
|
95 |
+
def forward(self, input: Tensor) -> Tensor:
|
96 |
+
return input * torch.sigmoid(1.702 * input)
|
97 |
+
|
98 |
+
|
99 |
+
class ClippedGELUActivation(nn.Module):
|
100 |
+
"""
|
101 |
+
Clip the range of possible GeLU outputs between [min, max]. This is especially useful for quantization purpose, as
|
102 |
+
it allows mapping negatives values in the GeLU spectrum. For more information on this trick, please refer to
|
103 |
+
https://arxiv.org/abs/2004.09602.
|
104 |
+
|
105 |
+
Gaussian Error Linear Unit. Original Implementation of the gelu activation function in Google Bert repo when
|
106 |
+
initially created.
|
107 |
+
|
108 |
+
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 +
|
109 |
+
torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))). See https://arxiv.org/abs/1606.08415
|
110 |
+
"""
|
111 |
+
|
112 |
+
def __init__(self, min: float, max: float):
|
113 |
+
if min > max:
|
114 |
+
raise ValueError(f"min should be < max (got min: {min}, max: {max})")
|
115 |
+
|
116 |
+
super().__init__()
|
117 |
+
self.min = min
|
118 |
+
self.max = max
|
119 |
+
|
120 |
+
def forward(self, x: Tensor) -> Tensor:
|
121 |
+
return torch.clip(gelu(x), self.min, self.max)
|
122 |
+
|
123 |
+
|
124 |
+
class AccurateGELUActivation(nn.Module):
|
125 |
+
"""
|
126 |
+
Applies GELU approximation that is faster than default and more accurate than QuickGELU. See:
|
127 |
+
https://github.com/hendrycks/GELUs
|
128 |
+
|
129 |
+
Implemented along with MEGA (Moving Average Equipped Gated Attention)
|
130 |
+
"""
|
131 |
+
|
132 |
+
def __init__(self):
|
133 |
+
super().__init__()
|
134 |
+
self.precomputed_constant = math.sqrt(2 / math.pi)
|
135 |
+
|
136 |
+
def forward(self, input: Tensor) -> Tensor:
|
137 |
+
return 0.5 * input * (1 + torch.tanh(self.precomputed_constant * (input + 0.044715 * torch.pow(input, 3))))
|
138 |
+
|
139 |
+
|
140 |
+
class MishActivation(nn.Module):
|
141 |
+
"""
|
142 |
+
See Mish: A Self-Regularized Non-Monotonic Activation Function (Misra., https://arxiv.org/abs/1908.08681). Also
|
143 |
+
visit the official repository for the paper: https://github.com/digantamisra98/Mish
|
144 |
+
"""
|
145 |
+
|
146 |
+
def __init__(self):
|
147 |
+
super().__init__()
|
148 |
+
if version.parse(torch.__version__) < version.parse("1.9.0"):
|
149 |
+
self.act = self._mish_python
|
150 |
+
else:
|
151 |
+
self.act = nn.functional.mish
|
152 |
+
|
153 |
+
def _mish_python(self, input: Tensor) -> Tensor:
|
154 |
+
return input * torch.tanh(nn.functional.softplus(input))
|
155 |
+
|
156 |
+
def forward(self, input: Tensor) -> Tensor:
|
157 |
+
return self.act(input)
|
158 |
+
|
159 |
+
|
160 |
+
class LinearActivation(nn.Module):
|
161 |
+
"""
|
162 |
+
Applies the linear activation function, i.e. forwarding input directly to output.
|
163 |
+
"""
|
164 |
+
|
165 |
+
def forward(self, input: Tensor) -> Tensor:
|
166 |
+
return input
|
167 |
+
|
168 |
+
|
169 |
+
class LaplaceActivation(nn.Module):
|
170 |
+
"""
|
171 |
+
Applies elementwise activation based on Laplace function, introduced in MEGA as an attention activation. See
|
172 |
+
https://arxiv.org/abs/2209.10655
|
173 |
+
|
174 |
+
Inspired by squared relu, but with bounded range and gradient for better stability
|
175 |
+
"""
|
176 |
+
|
177 |
+
def forward(self, input, mu=0.707107, sigma=0.282095):
|
178 |
+
input = (input - mu).div(sigma * math.sqrt(2.0))
|
179 |
+
return 0.5 * (1.0 + torch.erf(input))
|
180 |
+
|
181 |
+
|
182 |
+
class ReLUSquaredActivation(nn.Module):
|
183 |
+
"""
|
184 |
+
Applies the relu^2 activation introduced in https://arxiv.org/abs/2109.08668v2
|
185 |
+
"""
|
186 |
+
|
187 |
+
def forward(self, input):
|
188 |
+
relu_applied = nn.functional.relu(input)
|
189 |
+
squared = torch.square(relu_applied)
|
190 |
+
return squared
|
191 |
+
|
192 |
+
|
193 |
+
class ClassInstantier(OrderedDict):
|
194 |
+
def __getitem__(self, key):
|
195 |
+
content = super().__getitem__(key)
|
196 |
+
cls, kwargs = content if isinstance(content, tuple) else (content, {})
|
197 |
+
return cls(**kwargs)
|
198 |
+
|
199 |
+
|
200 |
+
ACT2CLS = {
|
201 |
+
"gelu": GELUActivation,
|
202 |
+
"gelu_10": (ClippedGELUActivation, {"min": -10, "max": 10}),
|
203 |
+
"gelu_fast": FastGELUActivation,
|
204 |
+
"gelu_new": NewGELUActivation,
|
205 |
+
"gelu_python": (GELUActivation, {"use_gelu_python": True}),
|
206 |
+
"gelu_pytorch_tanh": PytorchGELUTanh,
|
207 |
+
"gelu_accurate": AccurateGELUActivation,
|
208 |
+
"laplace": LaplaceActivation,
|
209 |
+
"leaky_relu": nn.LeakyReLU,
|
210 |
+
"linear": LinearActivation,
|
211 |
+
"mish": MishActivation,
|
212 |
+
"quick_gelu": QuickGELUActivation,
|
213 |
+
"relu": nn.ReLU,
|
214 |
+
"relu2": ReLUSquaredActivation,
|
215 |
+
"relu6": nn.ReLU6,
|
216 |
+
"sigmoid": nn.Sigmoid,
|
217 |
+
"silu": nn.SiLU,
|
218 |
+
"swish": nn.SiLU,
|
219 |
+
"tanh": nn.Tanh,
|
220 |
+
}
|
221 |
+
ACT2FN = ClassInstantier(ACT2CLS)
|
222 |
+
|
223 |
+
|
224 |
+
def get_activation(activation_string):
|
225 |
+
if activation_string in ACT2FN:
|
226 |
+
return ACT2FN[activation_string]
|
227 |
+
else:
|
228 |
+
raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACT2FN.keys())}")
|
229 |
+
|
230 |
+
|
231 |
+
# For backwards compatibility with: from activations import gelu_python
|
232 |
+
gelu_python = get_activation("gelu_python")
|
233 |
+
gelu_new = get_activation("gelu_new")
|
234 |
+
gelu = get_activation("gelu")
|
235 |
+
gelu_fast = get_activation("gelu_fast")
|
236 |
+
quick_gelu = get_activation("quick_gelu")
|
237 |
+
silu = get_activation("silu")
|
238 |
+
mish = get_activation("mish")
|
239 |
+
linear_act = get_activation("linear")
|
venv/lib/python3.10/site-packages/transformers/activations_tf.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import math
|
16 |
+
|
17 |
+
import tensorflow as tf
|
18 |
+
from packaging.version import parse
|
19 |
+
|
20 |
+
|
21 |
+
try:
|
22 |
+
import tf_keras as keras
|
23 |
+
except (ModuleNotFoundError, ImportError):
|
24 |
+
import keras
|
25 |
+
|
26 |
+
if parse(keras.__version__).major > 2:
|
27 |
+
raise ValueError(
|
28 |
+
"Your currently installed version of Keras is Keras 3, but this is not yet supported in "
|
29 |
+
"Transformers. Please install the backwards-compatible tf-keras package with "
|
30 |
+
"`pip install tf-keras`."
|
31 |
+
)
|
32 |
+
|
33 |
+
|
34 |
+
def _gelu(x):
|
35 |
+
"""
|
36 |
+
Gaussian Error Linear Unit. Original Implementation of the gelu activation function in Google Bert repo when
|
37 |
+
initially created. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
|
38 |
+
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) Also see
|
39 |
+
https://arxiv.org/abs/1606.08415
|
40 |
+
"""
|
41 |
+
x = tf.convert_to_tensor(x)
|
42 |
+
cdf = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0), x.dtype)))
|
43 |
+
|
44 |
+
return x * cdf
|
45 |
+
|
46 |
+
|
47 |
+
def _gelu_new(x):
|
48 |
+
"""
|
49 |
+
Gaussian Error Linear Unit. This is a smoother version of the GELU. Original paper: https://arxiv.org/abs/1606.0841
|
50 |
+
|
51 |
+
Args:
|
52 |
+
x: float Tensor to perform activation
|
53 |
+
|
54 |
+
Returns:
|
55 |
+
`x` with the GELU activation applied.
|
56 |
+
"""
|
57 |
+
x = tf.convert_to_tensor(x)
|
58 |
+
pi = tf.cast(math.pi, x.dtype)
|
59 |
+
coeff = tf.cast(0.044715, x.dtype)
|
60 |
+
cdf = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi) * (x + coeff * tf.pow(x, 3))))
|
61 |
+
|
62 |
+
return x * cdf
|
63 |
+
|
64 |
+
|
65 |
+
def mish(x):
|
66 |
+
x = tf.convert_to_tensor(x)
|
67 |
+
|
68 |
+
return x * tf.tanh(tf.math.softplus(x))
|
69 |
+
|
70 |
+
|
71 |
+
def gelu_fast(x):
|
72 |
+
x = tf.convert_to_tensor(x)
|
73 |
+
coeff1 = tf.cast(0.044715, x.dtype)
|
74 |
+
coeff2 = tf.cast(0.7978845608, x.dtype)
|
75 |
+
|
76 |
+
return 0.5 * x * (1.0 + tf.tanh(x * coeff2 * (1.0 + coeff1 * x * x)))
|
77 |
+
|
78 |
+
|
79 |
+
def quick_gelu(x):
|
80 |
+
x = tf.convert_to_tensor(x)
|
81 |
+
coeff = tf.cast(1.702, x.dtype)
|
82 |
+
return x * tf.math.sigmoid(coeff * x)
|
83 |
+
|
84 |
+
|
85 |
+
def gelu_10(x):
|
86 |
+
"""
|
87 |
+
Clip the range of possible GeLU outputs between [-10, 10]. This is especially useful for quantization purpose, as
|
88 |
+
it allows mapping 2 negatives values in the GeLU spectrum. For more information on this trick, please refer to
|
89 |
+
https://arxiv.org/abs/2004.09602
|
90 |
+
|
91 |
+
Gaussian Error Linear Unit. Original Implementation of the gelu activation function in Google Bert repo when
|
92 |
+
initially created. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
|
93 |
+
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) Also see
|
94 |
+
https://arxiv.org/abs/1606.08415 :param x: :return:
|
95 |
+
"""
|
96 |
+
return tf.clip_by_value(_gelu(x), -10, 10)
|
97 |
+
|
98 |
+
|
99 |
+
def glu(x, axis=-1):
|
100 |
+
"""
|
101 |
+
Gated Linear Unit. Implementation as defined in the original paper (see https://arxiv.org/abs/1612.08083), where
|
102 |
+
the input `x` is split in two halves across a dimension (`axis`), A and B, returning A * sigmoid(B).
|
103 |
+
|
104 |
+
Args:
|
105 |
+
`x`: float Tensor to perform activation
|
106 |
+
`axis`: dimension across which `x` be split in half
|
107 |
+
|
108 |
+
Returns:
|
109 |
+
`x` with the GLU activation applied (with its size halved across the dimension `axis`).
|
110 |
+
"""
|
111 |
+
a, b = tf.split(x, 2, axis=axis)
|
112 |
+
return a * tf.math.sigmoid(b)
|
113 |
+
|
114 |
+
|
115 |
+
if parse(tf.version.VERSION) >= parse("2.4"):
|
116 |
+
|
117 |
+
def approximate_gelu_wrap(x):
|
118 |
+
return keras.activations.gelu(x, approximate=True)
|
119 |
+
|
120 |
+
gelu = keras.activations.gelu
|
121 |
+
gelu_new = approximate_gelu_wrap
|
122 |
+
else:
|
123 |
+
gelu = _gelu
|
124 |
+
gelu_new = _gelu_new
|
125 |
+
|
126 |
+
|
127 |
+
ACT2FN = {
|
128 |
+
"gelu": gelu,
|
129 |
+
"gelu_10": gelu_10,
|
130 |
+
"gelu_fast": gelu_fast,
|
131 |
+
"gelu_new": gelu_new,
|
132 |
+
"glu": glu,
|
133 |
+
"mish": mish,
|
134 |
+
"quick_gelu": quick_gelu,
|
135 |
+
"relu": keras.activations.relu,
|
136 |
+
"sigmoid": keras.activations.sigmoid,
|
137 |
+
"silu": keras.activations.swish,
|
138 |
+
"swish": keras.activations.swish,
|
139 |
+
"tanh": keras.activations.tanh,
|
140 |
+
}
|
141 |
+
|
142 |
+
|
143 |
+
def get_tf_activation(activation_string):
|
144 |
+
if activation_string in ACT2FN:
|
145 |
+
return ACT2FN[activation_string]
|
146 |
+
else:
|
147 |
+
raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACT2FN.keys())}")
|
venv/lib/python3.10/site-packages/transformers/audio_utils.py
ADDED
@@ -0,0 +1,825 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team and the librosa & torchaudio authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Audio processing functions to extract features from audio waveforms. This code is pure numpy to support all frameworks
|
17 |
+
and remove unnecessary dependencies.
|
18 |
+
"""
|
19 |
+
import warnings
|
20 |
+
from typing import Optional, Tuple, Union
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
|
24 |
+
|
25 |
+
def hertz_to_mel(freq: Union[float, np.ndarray], mel_scale: str = "htk") -> Union[float, np.ndarray]:
|
26 |
+
"""
|
27 |
+
Convert frequency from hertz to mels.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
freq (`float` or `np.ndarray`):
|
31 |
+
The frequency, or multiple frequencies, in hertz (Hz).
|
32 |
+
mel_scale (`str`, *optional*, defaults to `"htk"`):
|
33 |
+
The mel frequency scale to use, `"htk"`, `"kaldi"` or `"slaney"`.
|
34 |
+
|
35 |
+
Returns:
|
36 |
+
`float` or `np.ndarray`: The frequencies on the mel scale.
|
37 |
+
"""
|
38 |
+
|
39 |
+
if mel_scale not in ["slaney", "htk", "kaldi"]:
|
40 |
+
raise ValueError('mel_scale should be one of "htk", "slaney" or "kaldi".')
|
41 |
+
|
42 |
+
if mel_scale == "htk":
|
43 |
+
return 2595.0 * np.log10(1.0 + (freq / 700.0))
|
44 |
+
elif mel_scale == "kaldi":
|
45 |
+
return 1127.0 * np.log(1.0 + (freq / 700.0))
|
46 |
+
|
47 |
+
min_log_hertz = 1000.0
|
48 |
+
min_log_mel = 15.0
|
49 |
+
logstep = 27.0 / np.log(6.4)
|
50 |
+
mels = 3.0 * freq / 200.0
|
51 |
+
|
52 |
+
if isinstance(freq, np.ndarray):
|
53 |
+
log_region = freq >= min_log_hertz
|
54 |
+
mels[log_region] = min_log_mel + np.log(freq[log_region] / min_log_hertz) * logstep
|
55 |
+
elif freq >= min_log_hertz:
|
56 |
+
mels = min_log_mel + np.log(freq / min_log_hertz) * logstep
|
57 |
+
|
58 |
+
return mels
|
59 |
+
|
60 |
+
|
61 |
+
def mel_to_hertz(mels: Union[float, np.ndarray], mel_scale: str = "htk") -> Union[float, np.ndarray]:
|
62 |
+
"""
|
63 |
+
Convert frequency from mels to hertz.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
mels (`float` or `np.ndarray`):
|
67 |
+
The frequency, or multiple frequencies, in mels.
|
68 |
+
mel_scale (`str`, *optional*, `"htk"`):
|
69 |
+
The mel frequency scale to use, `"htk"`, `"kaldi"` or `"slaney"`.
|
70 |
+
|
71 |
+
Returns:
|
72 |
+
`float` or `np.ndarray`: The frequencies in hertz.
|
73 |
+
"""
|
74 |
+
|
75 |
+
if mel_scale not in ["slaney", "htk", "kaldi"]:
|
76 |
+
raise ValueError('mel_scale should be one of "htk", "slaney" or "kaldi".')
|
77 |
+
|
78 |
+
if mel_scale == "htk":
|
79 |
+
return 700.0 * (np.power(10, mels / 2595.0) - 1.0)
|
80 |
+
elif mel_scale == "kaldi":
|
81 |
+
return 700.0 * (np.exp(mels / 1127.0) - 1.0)
|
82 |
+
|
83 |
+
min_log_hertz = 1000.0
|
84 |
+
min_log_mel = 15.0
|
85 |
+
logstep = np.log(6.4) / 27.0
|
86 |
+
freq = 200.0 * mels / 3.0
|
87 |
+
|
88 |
+
if isinstance(mels, np.ndarray):
|
89 |
+
log_region = mels >= min_log_mel
|
90 |
+
freq[log_region] = min_log_hertz * np.exp(logstep * (mels[log_region] - min_log_mel))
|
91 |
+
elif mels >= min_log_mel:
|
92 |
+
freq = min_log_hertz * np.exp(logstep * (mels - min_log_mel))
|
93 |
+
|
94 |
+
return freq
|
95 |
+
|
96 |
+
|
97 |
+
def hertz_to_octave(
|
98 |
+
freq: Union[float, np.ndarray], tuning: Optional[float] = 0.0, bins_per_octave: Optional[int] = 12
|
99 |
+
):
|
100 |
+
"""
|
101 |
+
Convert frequency from hertz to fractional octave numbers.
|
102 |
+
Adapted from *librosa*.
|
103 |
+
|
104 |
+
Args:
|
105 |
+
freq (`float` or `np.ndarray`):
|
106 |
+
The frequency, or multiple frequencies, in hertz (Hz).
|
107 |
+
tuning (`float`, defaults to `0.`):
|
108 |
+
Tuning deviation from the Stuttgart pitch (A440) in (fractional) bins per octave.
|
109 |
+
bins_per_octave (`int`, defaults to `12`):
|
110 |
+
Number of bins per octave.
|
111 |
+
|
112 |
+
Returns:
|
113 |
+
`float` or `np.ndarray`: The frequencies on the octave scale.
|
114 |
+
"""
|
115 |
+
stuttgart_pitch = 440.0 * 2.0 ** (tuning / bins_per_octave)
|
116 |
+
octave = np.log2(freq / (float(stuttgart_pitch) / 16))
|
117 |
+
return octave
|
118 |
+
|
119 |
+
|
120 |
+
def _create_triangular_filter_bank(fft_freqs: np.ndarray, filter_freqs: np.ndarray) -> np.ndarray:
|
121 |
+
"""
|
122 |
+
Creates a triangular filter bank.
|
123 |
+
|
124 |
+
Adapted from *torchaudio* and *librosa*.
|
125 |
+
|
126 |
+
Args:
|
127 |
+
fft_freqs (`np.ndarray` of shape `(num_frequency_bins,)`):
|
128 |
+
Discrete frequencies of the FFT bins in Hz.
|
129 |
+
filter_freqs (`np.ndarray` of shape `(num_mel_filters,)`):
|
130 |
+
Center frequencies of the triangular filters to create, in Hz.
|
131 |
+
|
132 |
+
Returns:
|
133 |
+
`np.ndarray` of shape `(num_frequency_bins, num_mel_filters)`
|
134 |
+
"""
|
135 |
+
filter_diff = np.diff(filter_freqs)
|
136 |
+
slopes = np.expand_dims(filter_freqs, 0) - np.expand_dims(fft_freqs, 1)
|
137 |
+
down_slopes = -slopes[:, :-2] / filter_diff[:-1]
|
138 |
+
up_slopes = slopes[:, 2:] / filter_diff[1:]
|
139 |
+
return np.maximum(np.zeros(1), np.minimum(down_slopes, up_slopes))
|
140 |
+
|
141 |
+
|
142 |
+
def chroma_filter_bank(
|
143 |
+
num_frequency_bins: int,
|
144 |
+
num_chroma: int,
|
145 |
+
sampling_rate: int,
|
146 |
+
tuning: float = 0.0,
|
147 |
+
power: Optional[float] = 2.0,
|
148 |
+
weighting_parameters: Optional[Tuple[float]] = (5.0, 2),
|
149 |
+
start_at_c_chroma: Optional[bool] = True,
|
150 |
+
):
|
151 |
+
"""
|
152 |
+
Creates a chroma filter bank, i.e a linear transformation to project spectrogram bins onto chroma bins.
|
153 |
+
|
154 |
+
Adapted from *librosa*.
|
155 |
+
|
156 |
+
Args:
|
157 |
+
num_frequency_bins (`int`):
|
158 |
+
Number of frequencies used to compute the spectrogram (should be the same as in `stft`).
|
159 |
+
num_chroma (`int`):
|
160 |
+
Number of chroma bins (i.e pitch classes).
|
161 |
+
sampling_rate (`float`):
|
162 |
+
Sample rate of the audio waveform.
|
163 |
+
tuning (`float`):
|
164 |
+
Tuning deviation from A440 in fractions of a chroma bin.
|
165 |
+
power (`float`, *optional*, defaults to 2.0):
|
166 |
+
If 12.0, normalizes each column with their L2 norm. If 1.0, normalizes each column with their L1 norm.
|
167 |
+
weighting_parameters (`Tuple[float]`, *optional*, defaults to `(5., 2.)`):
|
168 |
+
If specified, apply a Gaussian weighting parameterized by the first element of the tuple being the center and
|
169 |
+
the second element being the Gaussian half-width.
|
170 |
+
start_at_c_chroma (`float`, *optional*, defaults to `True`):
|
171 |
+
If True, the filter bank will start at the 'C' pitch class. Otherwise, it will start at 'A'.
|
172 |
+
Returns:
|
173 |
+
`np.ndarray` of shape `(num_frequency_bins, num_chroma)`
|
174 |
+
"""
|
175 |
+
# Get the FFT bins, not counting the DC component
|
176 |
+
frequencies = np.linspace(0, sampling_rate, num_frequency_bins, endpoint=False)[1:]
|
177 |
+
|
178 |
+
freq_bins = num_chroma * hertz_to_octave(frequencies, tuning=tuning, bins_per_octave=num_chroma)
|
179 |
+
|
180 |
+
# make up a value for the 0 Hz bin = 1.5 octaves below bin 1
|
181 |
+
# (so chroma is 50% rotated from bin 1, and bin width is broad)
|
182 |
+
freq_bins = np.concatenate(([freq_bins[0] - 1.5 * num_chroma], freq_bins))
|
183 |
+
|
184 |
+
bins_width = np.concatenate((np.maximum(freq_bins[1:] - freq_bins[:-1], 1.0), [1]))
|
185 |
+
|
186 |
+
chroma_filters = np.subtract.outer(freq_bins, np.arange(0, num_chroma, dtype="d")).T
|
187 |
+
|
188 |
+
num_chroma2 = np.round(float(num_chroma) / 2)
|
189 |
+
|
190 |
+
# Project into range -num_chroma/2 .. num_chroma/2
|
191 |
+
# add on fixed offset of 10*num_chroma to ensure all values passed to
|
192 |
+
# rem are positive
|
193 |
+
chroma_filters = np.remainder(chroma_filters + num_chroma2 + 10 * num_chroma, num_chroma) - num_chroma2
|
194 |
+
|
195 |
+
# Gaussian bumps - 2*D to make them narrower
|
196 |
+
chroma_filters = np.exp(-0.5 * (2 * chroma_filters / np.tile(bins_width, (num_chroma, 1))) ** 2)
|
197 |
+
|
198 |
+
# normalize each column
|
199 |
+
if power is not None:
|
200 |
+
chroma_filters = chroma_filters / np.sum(chroma_filters**power, axis=0, keepdims=True) ** (1.0 / power)
|
201 |
+
|
202 |
+
# Maybe apply scaling for fft bins
|
203 |
+
if weighting_parameters is not None:
|
204 |
+
center, half_width = weighting_parameters
|
205 |
+
chroma_filters *= np.tile(
|
206 |
+
np.exp(-0.5 * (((freq_bins / num_chroma - center) / half_width) ** 2)),
|
207 |
+
(num_chroma, 1),
|
208 |
+
)
|
209 |
+
|
210 |
+
if start_at_c_chroma:
|
211 |
+
chroma_filters = np.roll(chroma_filters, -3 * (num_chroma // 12), axis=0)
|
212 |
+
|
213 |
+
# remove aliasing columns, copy to ensure row-contiguity
|
214 |
+
return np.ascontiguousarray(chroma_filters[:, : int(1 + num_frequency_bins / 2)])
|
215 |
+
|
216 |
+
|
217 |
+
def mel_filter_bank(
|
218 |
+
num_frequency_bins: int,
|
219 |
+
num_mel_filters: int,
|
220 |
+
min_frequency: float,
|
221 |
+
max_frequency: float,
|
222 |
+
sampling_rate: int,
|
223 |
+
norm: Optional[str] = None,
|
224 |
+
mel_scale: str = "htk",
|
225 |
+
triangularize_in_mel_space: bool = False,
|
226 |
+
) -> np.ndarray:
|
227 |
+
"""
|
228 |
+
Creates a frequency bin conversion matrix used to obtain a mel spectrogram. This is called a *mel filter bank*, and
|
229 |
+
various implementation exist, which differ in the number of filters, the shape of the filters, the way the filters
|
230 |
+
are spaced, the bandwidth of the filters, and the manner in which the spectrum is warped. The goal of these
|
231 |
+
features is to approximate the non-linear human perception of the variation in pitch with respect to the frequency.
|
232 |
+
|
233 |
+
Different banks of mel filters were introduced in the literature. The following variations are supported:
|
234 |
+
|
235 |
+
- MFCC FB-20: introduced in 1980 by Davis and Mermelstein, it assumes a sampling frequency of 10 kHz and a speech
|
236 |
+
bandwidth of `[0, 4600]` Hz.
|
237 |
+
- MFCC FB-24 HTK: from the Cambridge HMM Toolkit (HTK) (1995) uses a filter bank of 24 filters for a speech
|
238 |
+
bandwidth of `[0, 8000]` Hz. This assumes sampling rate ≥ 16 kHz.
|
239 |
+
- MFCC FB-40: from the Auditory Toolbox for MATLAB written by Slaney in 1998, assumes a sampling rate of 16 kHz and
|
240 |
+
speech bandwidth of `[133, 6854]` Hz. This version also includes area normalization.
|
241 |
+
- HFCC-E FB-29 (Human Factor Cepstral Coefficients) of Skowronski and Harris (2004), assumes a sampling rate of
|
242 |
+
12.5 kHz and speech bandwidth of `[0, 6250]` Hz.
|
243 |
+
|
244 |
+
This code is adapted from *torchaudio* and *librosa*. Note that the default parameters of torchaudio's
|
245 |
+
`melscale_fbanks` implement the `"htk"` filters while librosa uses the `"slaney"` implementation.
|
246 |
+
|
247 |
+
Args:
|
248 |
+
num_frequency_bins (`int`):
|
249 |
+
Number of frequencies used to compute the spectrogram (should be the same as in `stft`).
|
250 |
+
num_mel_filters (`int`):
|
251 |
+
Number of mel filters to generate.
|
252 |
+
min_frequency (`float`):
|
253 |
+
Lowest frequency of interest in Hz.
|
254 |
+
max_frequency (`float`):
|
255 |
+
Highest frequency of interest in Hz. This should not exceed `sampling_rate / 2`.
|
256 |
+
sampling_rate (`int`):
|
257 |
+
Sample rate of the audio waveform.
|
258 |
+
norm (`str`, *optional*):
|
259 |
+
If `"slaney"`, divide the triangular mel weights by the width of the mel band (area normalization).
|
260 |
+
mel_scale (`str`, *optional*, defaults to `"htk"`):
|
261 |
+
The mel frequency scale to use, `"htk"`, `"kaldi"` or `"slaney"`.
|
262 |
+
triangularize_in_mel_space (`bool`, *optional*, defaults to `False`):
|
263 |
+
If this option is enabled, the triangular filter is applied in mel space rather than frequency space. This
|
264 |
+
should be set to `true` in order to get the same results as `torchaudio` when computing mel filters.
|
265 |
+
|
266 |
+
Returns:
|
267 |
+
`np.ndarray` of shape (`num_frequency_bins`, `num_mel_filters`): Triangular filter bank matrix. This is a
|
268 |
+
projection matrix to go from a spectrogram to a mel spectrogram.
|
269 |
+
"""
|
270 |
+
if norm is not None and norm != "slaney":
|
271 |
+
raise ValueError('norm must be one of None or "slaney"')
|
272 |
+
|
273 |
+
# center points of the triangular mel filters
|
274 |
+
mel_min = hertz_to_mel(min_frequency, mel_scale=mel_scale)
|
275 |
+
mel_max = hertz_to_mel(max_frequency, mel_scale=mel_scale)
|
276 |
+
mel_freqs = np.linspace(mel_min, mel_max, num_mel_filters + 2)
|
277 |
+
filter_freqs = mel_to_hertz(mel_freqs, mel_scale=mel_scale)
|
278 |
+
|
279 |
+
if triangularize_in_mel_space:
|
280 |
+
# frequencies of FFT bins in Hz, but filters triangularized in mel space
|
281 |
+
fft_bin_width = sampling_rate / (num_frequency_bins * 2)
|
282 |
+
fft_freqs = hertz_to_mel(fft_bin_width * np.arange(num_frequency_bins), mel_scale=mel_scale)
|
283 |
+
filter_freqs = mel_freqs
|
284 |
+
else:
|
285 |
+
# frequencies of FFT bins in Hz
|
286 |
+
fft_freqs = np.linspace(0, sampling_rate // 2, num_frequency_bins)
|
287 |
+
|
288 |
+
mel_filters = _create_triangular_filter_bank(fft_freqs, filter_freqs)
|
289 |
+
|
290 |
+
if norm is not None and norm == "slaney":
|
291 |
+
# Slaney-style mel is scaled to be approx constant energy per channel
|
292 |
+
enorm = 2.0 / (filter_freqs[2 : num_mel_filters + 2] - filter_freqs[:num_mel_filters])
|
293 |
+
mel_filters *= np.expand_dims(enorm, 0)
|
294 |
+
|
295 |
+
if (mel_filters.max(axis=0) == 0.0).any():
|
296 |
+
warnings.warn(
|
297 |
+
"At least one mel filter has all zero values. "
|
298 |
+
f"The value for `num_mel_filters` ({num_mel_filters}) may be set too high. "
|
299 |
+
f"Or, the value for `num_frequency_bins` ({num_frequency_bins}) may be set too low."
|
300 |
+
)
|
301 |
+
|
302 |
+
return mel_filters
|
303 |
+
|
304 |
+
|
305 |
+
def optimal_fft_length(window_length: int) -> int:
|
306 |
+
"""
|
307 |
+
Finds the best FFT input size for a given `window_length`. This function takes a given window length and, if not
|
308 |
+
already a power of two, rounds it up to the next power or two.
|
309 |
+
|
310 |
+
The FFT algorithm works fastest when the length of the input is a power of two, which may be larger than the size
|
311 |
+
of the window or analysis frame. For example, if the window is 400 samples, using an FFT input size of 512 samples
|
312 |
+
is more optimal than an FFT size of 400 samples. Using a larger FFT size does not affect the detected frequencies,
|
313 |
+
it simply gives a higher frequency resolution (i.e. the frequency bins are smaller).
|
314 |
+
"""
|
315 |
+
return 2 ** int(np.ceil(np.log2(window_length)))
|
316 |
+
|
317 |
+
|
318 |
+
def window_function(
|
319 |
+
window_length: int,
|
320 |
+
name: str = "hann",
|
321 |
+
periodic: bool = True,
|
322 |
+
frame_length: Optional[int] = None,
|
323 |
+
center: bool = True,
|
324 |
+
) -> np.ndarray:
|
325 |
+
"""
|
326 |
+
Returns an array containing the specified window. This window is intended to be used with `stft`.
|
327 |
+
|
328 |
+
The following window types are supported:
|
329 |
+
|
330 |
+
- `"boxcar"`: a rectangular window
|
331 |
+
- `"hamming"`: the Hamming window
|
332 |
+
- `"hann"`: the Hann window
|
333 |
+
- `"povey"`: the Povey window
|
334 |
+
|
335 |
+
Args:
|
336 |
+
window_length (`int`):
|
337 |
+
The length of the window in samples.
|
338 |
+
name (`str`, *optional*, defaults to `"hann"`):
|
339 |
+
The name of the window function.
|
340 |
+
periodic (`bool`, *optional*, defaults to `True`):
|
341 |
+
Whether the window is periodic or symmetric.
|
342 |
+
frame_length (`int`, *optional*):
|
343 |
+
The length of the analysis frames in samples. Provide a value for `frame_length` if the window is smaller
|
344 |
+
than the frame length, so that it will be zero-padded.
|
345 |
+
center (`bool`, *optional*, defaults to `True`):
|
346 |
+
Whether to center the window inside the FFT buffer. Only used when `frame_length` is provided.
|
347 |
+
|
348 |
+
Returns:
|
349 |
+
`np.ndarray` of shape `(window_length,)` or `(frame_length,)` containing the window.
|
350 |
+
"""
|
351 |
+
length = window_length + 1 if periodic else window_length
|
352 |
+
|
353 |
+
if name == "boxcar":
|
354 |
+
window = np.ones(length)
|
355 |
+
elif name in ["hamming", "hamming_window"]:
|
356 |
+
window = np.hamming(length)
|
357 |
+
elif name in ["hann", "hann_window"]:
|
358 |
+
window = np.hanning(length)
|
359 |
+
elif name in ["povey"]:
|
360 |
+
window = np.power(np.hanning(length), 0.85)
|
361 |
+
else:
|
362 |
+
raise ValueError(f"Unknown window function '{name}'")
|
363 |
+
|
364 |
+
if periodic:
|
365 |
+
window = window[:-1]
|
366 |
+
|
367 |
+
if frame_length is None:
|
368 |
+
return window
|
369 |
+
|
370 |
+
if window_length > frame_length:
|
371 |
+
raise ValueError(
|
372 |
+
f"Length of the window ({window_length}) may not be larger than frame_length ({frame_length})"
|
373 |
+
)
|
374 |
+
|
375 |
+
padded_window = np.zeros(frame_length)
|
376 |
+
offset = (frame_length - window_length) // 2 if center else 0
|
377 |
+
padded_window[offset : offset + window_length] = window
|
378 |
+
return padded_window
|
379 |
+
|
380 |
+
|
381 |
+
# TODO This method does not support batching yet as we are mainly focused on inference.
|
382 |
+
def spectrogram(
|
383 |
+
waveform: np.ndarray,
|
384 |
+
window: np.ndarray,
|
385 |
+
frame_length: int,
|
386 |
+
hop_length: int,
|
387 |
+
fft_length: Optional[int] = None,
|
388 |
+
power: Optional[float] = 1.0,
|
389 |
+
center: bool = True,
|
390 |
+
pad_mode: str = "reflect",
|
391 |
+
onesided: bool = True,
|
392 |
+
preemphasis: Optional[float] = None,
|
393 |
+
mel_filters: Optional[np.ndarray] = None,
|
394 |
+
mel_floor: float = 1e-10,
|
395 |
+
log_mel: Optional[str] = None,
|
396 |
+
reference: float = 1.0,
|
397 |
+
min_value: float = 1e-10,
|
398 |
+
db_range: Optional[float] = None,
|
399 |
+
remove_dc_offset: Optional[bool] = None,
|
400 |
+
dtype: np.dtype = np.float32,
|
401 |
+
) -> np.ndarray:
|
402 |
+
"""
|
403 |
+
Calculates a spectrogram over one waveform using the Short-Time Fourier Transform.
|
404 |
+
|
405 |
+
This function can create the following kinds of spectrograms:
|
406 |
+
|
407 |
+
- amplitude spectrogram (`power = 1.0`)
|
408 |
+
- power spectrogram (`power = 2.0`)
|
409 |
+
- complex-valued spectrogram (`power = None`)
|
410 |
+
- log spectrogram (use `log_mel` argument)
|
411 |
+
- mel spectrogram (provide `mel_filters`)
|
412 |
+
- log-mel spectrogram (provide `mel_filters` and `log_mel`)
|
413 |
+
|
414 |
+
How this works:
|
415 |
+
|
416 |
+
1. The input waveform is split into frames of size `frame_length` that are partially overlapping by `frame_length
|
417 |
+
- hop_length` samples.
|
418 |
+
2. Each frame is multiplied by the window and placed into a buffer of size `fft_length`.
|
419 |
+
3. The DFT is taken of each windowed frame.
|
420 |
+
4. The results are stacked into a spectrogram.
|
421 |
+
|
422 |
+
We make a distinction between the following "blocks" of sample data, each of which may have a different lengths:
|
423 |
+
|
424 |
+
- The analysis frame. This is the size of the time slices that the input waveform is split into.
|
425 |
+
- The window. Each analysis frame is multiplied by the window to avoid spectral leakage.
|
426 |
+
- The FFT input buffer. The length of this determines how many frequency bins are in the spectrogram.
|
427 |
+
|
428 |
+
In this implementation, the window is assumed to be zero-padded to have the same size as the analysis frame. A
|
429 |
+
padded window can be obtained from `window_function()`. The FFT input buffer may be larger than the analysis frame,
|
430 |
+
typically the next power of two.
|
431 |
+
|
432 |
+
Note: This function is not optimized for speed yet. It should be mostly compatible with `librosa.stft` and
|
433 |
+
`torchaudio.functional.transforms.Spectrogram`, although it is more flexible due to the different ways spectrograms
|
434 |
+
can be constructed.
|
435 |
+
|
436 |
+
Args:
|
437 |
+
waveform (`np.ndarray` of shape `(length,)`):
|
438 |
+
The input waveform. This must be a single real-valued, mono waveform.
|
439 |
+
window (`np.ndarray` of shape `(frame_length,)`):
|
440 |
+
The windowing function to apply, including zero-padding if necessary. The actual window length may be
|
441 |
+
shorter than `frame_length`, but we're assuming the array has already been zero-padded.
|
442 |
+
frame_length (`int`):
|
443 |
+
The length of the analysis frames in samples. With librosa this is always equal to `fft_length` but we also
|
444 |
+
allow smaller sizes.
|
445 |
+
hop_length (`int`):
|
446 |
+
The stride between successive analysis frames in samples.
|
447 |
+
fft_length (`int`, *optional*):
|
448 |
+
The size of the FFT buffer in samples. This determines how many frequency bins the spectrogram will have.
|
449 |
+
For optimal speed, this should be a power of two. If `None`, uses `frame_length`.
|
450 |
+
power (`float`, *optional*, defaults to 1.0):
|
451 |
+
If 1.0, returns the amplitude spectrogram. If 2.0, returns the power spectrogram. If `None`, returns
|
452 |
+
complex numbers.
|
453 |
+
center (`bool`, *optional*, defaults to `True`):
|
454 |
+
Whether to pad the waveform so that frame `t` is centered around time `t * hop_length`. If `False`, frame
|
455 |
+
`t` will start at time `t * hop_length`.
|
456 |
+
pad_mode (`str`, *optional*, defaults to `"reflect"`):
|
457 |
+
Padding mode used when `center` is `True`. Possible values are: `"constant"` (pad with zeros), `"edge"`
|
458 |
+
(pad with edge values), `"reflect"` (pads with mirrored values).
|
459 |
+
onesided (`bool`, *optional*, defaults to `True`):
|
460 |
+
If True, only computes the positive frequencies and returns a spectrogram containing `fft_length // 2 + 1`
|
461 |
+
frequency bins. If False, also computes the negative frequencies and returns `fft_length` frequency bins.
|
462 |
+
preemphasis (`float`, *optional*)
|
463 |
+
Coefficient for a low-pass filter that applies pre-emphasis before the DFT.
|
464 |
+
mel_filters (`np.ndarray` of shape `(num_freq_bins, num_mel_filters)`, *optional*):
|
465 |
+
The mel filter bank. If supplied, applies a this filter bank to create a mel spectrogram.
|
466 |
+
mel_floor (`float`, *optional*, defaults to 1e-10):
|
467 |
+
Minimum value of mel frequency banks.
|
468 |
+
log_mel (`str`, *optional*):
|
469 |
+
How to convert the spectrogram to log scale. Possible options are: `None` (don't convert), `"log"` (take
|
470 |
+
the natural logarithm) `"log10"` (take the base-10 logarithm), `"dB"` (convert to decibels). Can only be
|
471 |
+
used when `power` is not `None`.
|
472 |
+
reference (`float`, *optional*, defaults to 1.0):
|
473 |
+
Sets the input spectrogram value that corresponds to 0 dB. For example, use `np.max(spectrogram)` to set
|
474 |
+
the loudest part to 0 dB. Must be greater than zero.
|
475 |
+
min_value (`float`, *optional*, defaults to `1e-10`):
|
476 |
+
The spectrogram will be clipped to this minimum value before conversion to decibels, to avoid taking
|
477 |
+
`log(0)`. For a power spectrogram, the default of `1e-10` corresponds to a minimum of -100 dB. For an
|
478 |
+
amplitude spectrogram, the value `1e-5` corresponds to -100 dB. Must be greater than zero.
|
479 |
+
db_range (`float`, *optional*):
|
480 |
+
Sets the maximum dynamic range in decibels. For example, if `db_range = 80`, the difference between the
|
481 |
+
peak value and the smallest value will never be more than 80 dB. Must be greater than zero.
|
482 |
+
remove_dc_offset (`bool`, *optional*):
|
483 |
+
Subtract mean from waveform on each frame, applied before pre-emphasis. This should be set to `true` in
|
484 |
+
order to get the same results as `torchaudio.compliance.kaldi.fbank` when computing mel filters.
|
485 |
+
dtype (`np.dtype`, *optional*, defaults to `np.float32`):
|
486 |
+
Data type of the spectrogram tensor. If `power` is None, this argument is ignored and the dtype will be
|
487 |
+
`np.complex64`.
|
488 |
+
|
489 |
+
Returns:
|
490 |
+
`nd.array` containing a spectrogram of shape `(num_frequency_bins, length)` for a regular spectrogram or shape
|
491 |
+
`(num_mel_filters, length)` for a mel spectrogram.
|
492 |
+
"""
|
493 |
+
window_length = len(window)
|
494 |
+
|
495 |
+
if fft_length is None:
|
496 |
+
fft_length = frame_length
|
497 |
+
|
498 |
+
if frame_length > fft_length:
|
499 |
+
raise ValueError(f"frame_length ({frame_length}) may not be larger than fft_length ({fft_length})")
|
500 |
+
|
501 |
+
if window_length != frame_length:
|
502 |
+
raise ValueError(f"Length of the window ({window_length}) must equal frame_length ({frame_length})")
|
503 |
+
|
504 |
+
if hop_length <= 0:
|
505 |
+
raise ValueError("hop_length must be greater than zero")
|
506 |
+
|
507 |
+
if waveform.ndim != 1:
|
508 |
+
raise ValueError(f"Input waveform must have only one dimension, shape is {waveform.shape}")
|
509 |
+
|
510 |
+
if np.iscomplexobj(waveform):
|
511 |
+
raise ValueError("Complex-valued input waveforms are not currently supported")
|
512 |
+
|
513 |
+
if power is None and mel_filters is not None:
|
514 |
+
raise ValueError(
|
515 |
+
"You have provided `mel_filters` but `power` is `None`. Mel spectrogram computation is not yet supported for complex-valued spectrogram."
|
516 |
+
"Specify `power` to fix this issue."
|
517 |
+
)
|
518 |
+
|
519 |
+
# center pad the waveform
|
520 |
+
if center:
|
521 |
+
padding = [(int(frame_length // 2), int(frame_length // 2))]
|
522 |
+
waveform = np.pad(waveform, padding, mode=pad_mode)
|
523 |
+
|
524 |
+
# promote to float64, since np.fft uses float64 internally
|
525 |
+
waveform = waveform.astype(np.float64)
|
526 |
+
window = window.astype(np.float64)
|
527 |
+
|
528 |
+
# split waveform into frames of frame_length size
|
529 |
+
num_frames = int(1 + np.floor((waveform.size - frame_length) / hop_length))
|
530 |
+
|
531 |
+
num_frequency_bins = (fft_length // 2) + 1 if onesided else fft_length
|
532 |
+
spectrogram = np.empty((num_frames, num_frequency_bins), dtype=np.complex64)
|
533 |
+
|
534 |
+
# rfft is faster than fft
|
535 |
+
fft_func = np.fft.rfft if onesided else np.fft.fft
|
536 |
+
buffer = np.zeros(fft_length)
|
537 |
+
|
538 |
+
timestep = 0
|
539 |
+
for frame_idx in range(num_frames):
|
540 |
+
buffer[:frame_length] = waveform[timestep : timestep + frame_length]
|
541 |
+
|
542 |
+
if remove_dc_offset:
|
543 |
+
buffer[:frame_length] = buffer[:frame_length] - buffer[:frame_length].mean()
|
544 |
+
|
545 |
+
if preemphasis is not None:
|
546 |
+
buffer[1:frame_length] -= preemphasis * buffer[: frame_length - 1]
|
547 |
+
buffer[0] *= 1 - preemphasis
|
548 |
+
|
549 |
+
buffer[:frame_length] *= window
|
550 |
+
|
551 |
+
spectrogram[frame_idx] = fft_func(buffer)
|
552 |
+
timestep += hop_length
|
553 |
+
|
554 |
+
# note: ** is much faster than np.power
|
555 |
+
if power is not None:
|
556 |
+
spectrogram = np.abs(spectrogram, dtype=np.float64) ** power
|
557 |
+
|
558 |
+
spectrogram = spectrogram.T
|
559 |
+
|
560 |
+
if mel_filters is not None:
|
561 |
+
spectrogram = np.maximum(mel_floor, np.dot(mel_filters.T, spectrogram))
|
562 |
+
|
563 |
+
if power is not None and log_mel is not None:
|
564 |
+
if log_mel == "log":
|
565 |
+
spectrogram = np.log(spectrogram)
|
566 |
+
elif log_mel == "log10":
|
567 |
+
spectrogram = np.log10(spectrogram)
|
568 |
+
elif log_mel == "dB":
|
569 |
+
if power == 1.0:
|
570 |
+
spectrogram = amplitude_to_db(spectrogram, reference, min_value, db_range)
|
571 |
+
elif power == 2.0:
|
572 |
+
spectrogram = power_to_db(spectrogram, reference, min_value, db_range)
|
573 |
+
else:
|
574 |
+
raise ValueError(f"Cannot use log_mel option '{log_mel}' with power {power}")
|
575 |
+
else:
|
576 |
+
raise ValueError(f"Unknown log_mel option: {log_mel}")
|
577 |
+
|
578 |
+
spectrogram = np.asarray(spectrogram, dtype)
|
579 |
+
|
580 |
+
return spectrogram
|
581 |
+
|
582 |
+
|
583 |
+
def power_to_db(
|
584 |
+
spectrogram: np.ndarray,
|
585 |
+
reference: float = 1.0,
|
586 |
+
min_value: float = 1e-10,
|
587 |
+
db_range: Optional[float] = None,
|
588 |
+
) -> np.ndarray:
|
589 |
+
"""
|
590 |
+
Converts a power spectrogram to the decibel scale. This computes `10 * log10(spectrogram / reference)`, using basic
|
591 |
+
logarithm properties for numerical stability.
|
592 |
+
|
593 |
+
The motivation behind applying the log function on the (mel) spectrogram is that humans do not hear loudness on a
|
594 |
+
linear scale. Generally to double the perceived volume of a sound we need to put 8 times as much energy into it.
|
595 |
+
This means that large variations in energy may not sound all that different if the sound is loud to begin with.
|
596 |
+
This compression operation makes the (mel) spectrogram features match more closely what humans actually hear.
|
597 |
+
|
598 |
+
Based on the implementation of `librosa.power_to_db`.
|
599 |
+
|
600 |
+
Args:
|
601 |
+
spectrogram (`np.ndarray`):
|
602 |
+
The input power (mel) spectrogram. Note that a power spectrogram has the amplitudes squared!
|
603 |
+
reference (`float`, *optional*, defaults to 1.0):
|
604 |
+
Sets the input spectrogram value that corresponds to 0 dB. For example, use `np.max(spectrogram)` to set
|
605 |
+
the loudest part to 0 dB. Must be greater than zero.
|
606 |
+
min_value (`float`, *optional*, defaults to `1e-10`):
|
607 |
+
The spectrogram will be clipped to this minimum value before conversion to decibels, to avoid taking
|
608 |
+
`log(0)`. The default of `1e-10` corresponds to a minimum of -100 dB. Must be greater than zero.
|
609 |
+
db_range (`float`, *optional*):
|
610 |
+
Sets the maximum dynamic range in decibels. For example, if `db_range = 80`, the difference between the
|
611 |
+
peak value and the smallest value will never be more than 80 dB. Must be greater than zero.
|
612 |
+
|
613 |
+
Returns:
|
614 |
+
`np.ndarray`: the spectrogram in decibels
|
615 |
+
"""
|
616 |
+
if reference <= 0.0:
|
617 |
+
raise ValueError("reference must be greater than zero")
|
618 |
+
if min_value <= 0.0:
|
619 |
+
raise ValueError("min_value must be greater than zero")
|
620 |
+
|
621 |
+
reference = max(min_value, reference)
|
622 |
+
|
623 |
+
spectrogram = np.clip(spectrogram, a_min=min_value, a_max=None)
|
624 |
+
spectrogram = 10.0 * (np.log10(spectrogram) - np.log10(reference))
|
625 |
+
|
626 |
+
if db_range is not None:
|
627 |
+
if db_range <= 0.0:
|
628 |
+
raise ValueError("db_range must be greater than zero")
|
629 |
+
spectrogram = np.clip(spectrogram, a_min=spectrogram.max() - db_range, a_max=None)
|
630 |
+
|
631 |
+
return spectrogram
|
632 |
+
|
633 |
+
|
634 |
+
def amplitude_to_db(
|
635 |
+
spectrogram: np.ndarray,
|
636 |
+
reference: float = 1.0,
|
637 |
+
min_value: float = 1e-5,
|
638 |
+
db_range: Optional[float] = None,
|
639 |
+
) -> np.ndarray:
|
640 |
+
"""
|
641 |
+
Converts an amplitude spectrogram to the decibel scale. This computes `20 * log10(spectrogram / reference)`, using
|
642 |
+
basic logarithm properties for numerical stability.
|
643 |
+
|
644 |
+
The motivation behind applying the log function on the (mel) spectrogram is that humans do not hear loudness on a
|
645 |
+
linear scale. Generally to double the perceived volume of a sound we need to put 8 times as much energy into it.
|
646 |
+
This means that large variations in energy may not sound all that different if the sound is loud to begin with.
|
647 |
+
This compression operation makes the (mel) spectrogram features match more closely what humans actually hear.
|
648 |
+
|
649 |
+
Args:
|
650 |
+
spectrogram (`np.ndarray`):
|
651 |
+
The input amplitude (mel) spectrogram.
|
652 |
+
reference (`float`, *optional*, defaults to 1.0):
|
653 |
+
Sets the input spectrogram value that corresponds to 0 dB. For example, use `np.max(spectrogram)` to set
|
654 |
+
the loudest part to 0 dB. Must be greater than zero.
|
655 |
+
min_value (`float`, *optional*, defaults to `1e-5`):
|
656 |
+
The spectrogram will be clipped to this minimum value before conversion to decibels, to avoid taking
|
657 |
+
`log(0)`. The default of `1e-5` corresponds to a minimum of -100 dB. Must be greater than zero.
|
658 |
+
db_range (`float`, *optional*):
|
659 |
+
Sets the maximum dynamic range in decibels. For example, if `db_range = 80`, the difference between the
|
660 |
+
peak value and the smallest value will never be more than 80 dB. Must be greater than zero.
|
661 |
+
|
662 |
+
Returns:
|
663 |
+
`np.ndarray`: the spectrogram in decibels
|
664 |
+
"""
|
665 |
+
if reference <= 0.0:
|
666 |
+
raise ValueError("reference must be greater than zero")
|
667 |
+
if min_value <= 0.0:
|
668 |
+
raise ValueError("min_value must be greater than zero")
|
669 |
+
|
670 |
+
reference = max(min_value, reference)
|
671 |
+
|
672 |
+
spectrogram = np.clip(spectrogram, a_min=min_value, a_max=None)
|
673 |
+
spectrogram = 20.0 * (np.log10(spectrogram) - np.log10(reference))
|
674 |
+
|
675 |
+
if db_range is not None:
|
676 |
+
if db_range <= 0.0:
|
677 |
+
raise ValueError("db_range must be greater than zero")
|
678 |
+
spectrogram = np.clip(spectrogram, a_min=spectrogram.max() - db_range, a_max=None)
|
679 |
+
|
680 |
+
return spectrogram
|
681 |
+
|
682 |
+
|
683 |
+
### deprecated functions below this line ###
|
684 |
+
|
685 |
+
|
686 |
+
def get_mel_filter_banks(
|
687 |
+
nb_frequency_bins: int,
|
688 |
+
nb_mel_filters: int,
|
689 |
+
frequency_min: float,
|
690 |
+
frequency_max: float,
|
691 |
+
sample_rate: int,
|
692 |
+
norm: Optional[str] = None,
|
693 |
+
mel_scale: str = "htk",
|
694 |
+
) -> np.array:
|
695 |
+
warnings.warn(
|
696 |
+
"The function `get_mel_filter_banks` is deprecated and will be removed in version 4.31.0 of Transformers",
|
697 |
+
FutureWarning,
|
698 |
+
)
|
699 |
+
return mel_filter_bank(
|
700 |
+
num_frequency_bins=nb_frequency_bins,
|
701 |
+
num_mel_filters=nb_mel_filters,
|
702 |
+
min_frequency=frequency_min,
|
703 |
+
max_frequency=frequency_max,
|
704 |
+
sampling_rate=sample_rate,
|
705 |
+
norm=norm,
|
706 |
+
mel_scale=mel_scale,
|
707 |
+
)
|
708 |
+
|
709 |
+
|
710 |
+
def fram_wave(waveform: np.array, hop_length: int = 160, fft_window_size: int = 400, center: bool = True):
|
711 |
+
"""
|
712 |
+
In order to compute the short time fourier transform, the waveform needs to be split in overlapping windowed
|
713 |
+
segments called `frames`.
|
714 |
+
|
715 |
+
The window length (window_length) defines how much of the signal is contained in each frame, while the hop length
|
716 |
+
defines the step between the beginning of each new frame.
|
717 |
+
|
718 |
+
|
719 |
+
Args:
|
720 |
+
waveform (`np.array` of shape `(sample_length,)`):
|
721 |
+
The raw waveform which will be split into smaller chunks.
|
722 |
+
hop_length (`int`, *optional*, defaults to 160):
|
723 |
+
Step between each window of the waveform.
|
724 |
+
fft_window_size (`int`, *optional*, defaults to 400):
|
725 |
+
Defines the size of the window.
|
726 |
+
center (`bool`, defaults to `True`):
|
727 |
+
Whether or not to center each frame around the middle of the frame. Centering is done by reflecting the
|
728 |
+
waveform on the left and on the right.
|
729 |
+
|
730 |
+
Return:
|
731 |
+
framed_waveform (`np.array` of shape `(waveform.shape // hop_length , fft_window_size)`):
|
732 |
+
The framed waveforms that can be fed to `np.fft`.
|
733 |
+
"""
|
734 |
+
warnings.warn(
|
735 |
+
"The function `fram_wave` is deprecated and will be removed in version 4.31.0 of Transformers",
|
736 |
+
FutureWarning,
|
737 |
+
)
|
738 |
+
frames = []
|
739 |
+
for i in range(0, waveform.shape[0] + 1, hop_length):
|
740 |
+
if center:
|
741 |
+
half_window = (fft_window_size - 1) // 2 + 1
|
742 |
+
start = i - half_window if i > half_window else 0
|
743 |
+
end = i + half_window if i < waveform.shape[0] - half_window else waveform.shape[0]
|
744 |
+
frame = waveform[start:end]
|
745 |
+
if start == 0:
|
746 |
+
padd_width = (-i + half_window, 0)
|
747 |
+
frame = np.pad(frame, pad_width=padd_width, mode="reflect")
|
748 |
+
|
749 |
+
elif end == waveform.shape[0]:
|
750 |
+
padd_width = (0, (i - waveform.shape[0] + half_window))
|
751 |
+
frame = np.pad(frame, pad_width=padd_width, mode="reflect")
|
752 |
+
|
753 |
+
else:
|
754 |
+
frame = waveform[i : i + fft_window_size]
|
755 |
+
frame_width = frame.shape[0]
|
756 |
+
if frame_width < waveform.shape[0]:
|
757 |
+
frame = np.lib.pad(
|
758 |
+
frame, pad_width=(0, fft_window_size - frame_width), mode="constant", constant_values=0
|
759 |
+
)
|
760 |
+
frames.append(frame)
|
761 |
+
|
762 |
+
frames = np.stack(frames, 0)
|
763 |
+
return frames
|
764 |
+
|
765 |
+
|
766 |
+
def stft(frames: np.array, windowing_function: np.array, fft_window_size: int = None):
|
767 |
+
"""
|
768 |
+
Calculates the complex Short-Time Fourier Transform (STFT) of the given framed signal. Should give the same results
|
769 |
+
as `torch.stft`.
|
770 |
+
|
771 |
+
Args:
|
772 |
+
frames (`np.array` of dimension `(num_frames, fft_window_size)`):
|
773 |
+
A framed audio signal obtained using `audio_utils.fram_wav`.
|
774 |
+
windowing_function (`np.array` of dimension `(nb_frequency_bins, nb_mel_filters)`:
|
775 |
+
A array reprensenting the function that will be used to reduces the amplitude of the discontinuities at the
|
776 |
+
boundaries of each frame when computing the STFT. Each frame will be multiplied by the windowing_function.
|
777 |
+
For more information on the discontinuities, called *Spectral leakage*, refer to [this
|
778 |
+
tutorial]https://download.ni.com/evaluation/pxi/Understanding%20FFTs%20and%20Windowing.pdf
|
779 |
+
fft_window_size (`int`, *optional*):
|
780 |
+
Size of the window om which the Fourier transform is applied. This controls the frequency resolution of the
|
781 |
+
spectrogram. 400 means that the fourrier transform is computed on windows of 400 samples. The number of
|
782 |
+
frequency bins (`nb_frequency_bins`) used to divide the window into equal strips is equal to
|
783 |
+
`(1+fft_window_size)//2`. An increase of the fft_window_size slows the calculus time proportionnally.
|
784 |
+
|
785 |
+
Example:
|
786 |
+
|
787 |
+
```python
|
788 |
+
>>> from transformers.audio_utils import stft, fram_wave
|
789 |
+
>>> import numpy as np
|
790 |
+
|
791 |
+
>>> audio = np.random.rand(50)
|
792 |
+
>>> fft_window_size = 10
|
793 |
+
>>> hop_length = 2
|
794 |
+
>>> framed_audio = fram_wave(audio, hop_length, fft_window_size)
|
795 |
+
>>> spectrogram = stft(framed_audio, np.hanning(fft_window_size + 1))
|
796 |
+
```
|
797 |
+
|
798 |
+
Returns:
|
799 |
+
spectrogram (`np.ndarray`):
|
800 |
+
A spectrogram of shape `(num_frames, nb_frequency_bins)` obtained using the STFT algorithm
|
801 |
+
"""
|
802 |
+
warnings.warn(
|
803 |
+
"The function `stft` is deprecated and will be removed in version 4.31.0 of Transformers",
|
804 |
+
FutureWarning,
|
805 |
+
)
|
806 |
+
frame_size = frames.shape[1]
|
807 |
+
|
808 |
+
if fft_window_size is None:
|
809 |
+
fft_window_size = frame_size
|
810 |
+
|
811 |
+
if fft_window_size < frame_size:
|
812 |
+
raise ValueError("FFT size must greater or equal the frame size")
|
813 |
+
# number of FFT bins to store
|
814 |
+
nb_frequency_bins = (fft_window_size >> 1) + 1
|
815 |
+
|
816 |
+
spectrogram = np.empty((len(frames), nb_frequency_bins), dtype=np.complex64)
|
817 |
+
fft_signal = np.zeros(fft_window_size)
|
818 |
+
|
819 |
+
for f, frame in enumerate(frames):
|
820 |
+
if windowing_function is not None:
|
821 |
+
np.multiply(frame, windowing_function, out=fft_signal[:frame_size])
|
822 |
+
else:
|
823 |
+
fft_signal[:frame_size] = frame
|
824 |
+
spectrogram[f] = np.fft.fft(fft_signal, axis=0)[:nb_frequency_bins]
|
825 |
+
return spectrogram.T
|
venv/lib/python3.10/site-packages/transformers/cache_utils.py
ADDED
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Any, Dict, List, Optional, Tuple
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from .configuration_utils import PretrainedConfig
|
7 |
+
from .utils import logging
|
8 |
+
|
9 |
+
|
10 |
+
logger = logging.get_logger(__name__)
|
11 |
+
|
12 |
+
|
13 |
+
@dataclass
|
14 |
+
class Cache:
|
15 |
+
"""
|
16 |
+
Base, abstract class for all caches. The actual data structure is specific to each subclass.
|
17 |
+
"""
|
18 |
+
|
19 |
+
def update(
|
20 |
+
self,
|
21 |
+
key_states: torch.Tensor,
|
22 |
+
value_states: torch.Tensor,
|
23 |
+
layer_idx: int,
|
24 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
25 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
26 |
+
"""
|
27 |
+
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
28 |
+
|
29 |
+
Parameters:
|
30 |
+
key_states (`torch.Tensor`):
|
31 |
+
The new key states to cache.
|
32 |
+
value_states (`torch.Tensor`):
|
33 |
+
The new value states to cache.
|
34 |
+
layer_idx (`int`):
|
35 |
+
The index of the layer to cache the states for.
|
36 |
+
cache_kwargs (`Dict[str, Any]`, `optional`):
|
37 |
+
Additional arguments for the cache subclass. These are specific to each subclass and allow new types of
|
38 |
+
cache to be created.
|
39 |
+
|
40 |
+
Return:
|
41 |
+
A tuple containing the updated key and value states.
|
42 |
+
"""
|
43 |
+
raise NotImplementedError("Make sure to implement `update` in a subclass.")
|
44 |
+
|
45 |
+
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
46 |
+
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
47 |
+
raise NotImplementedError("Make sure to implement `get_seq_length` in a subclass.")
|
48 |
+
|
49 |
+
def get_max_length(self) -> Optional[int]:
|
50 |
+
"""Returns the maximum sequence length of the cached states, if there is any."""
|
51 |
+
raise NotImplementedError("Make sure to implement `get_max_length` in a subclass.")
|
52 |
+
|
53 |
+
def get_usable_length(self, new_seq_length: int, layer_idx: Optional[int] = 0) -> int:
|
54 |
+
"""Given the sequence length of the new inputs, returns the usable length of the cache."""
|
55 |
+
# Cache without size limit -> all cache is usable
|
56 |
+
# Cache with size limit -> if the length cache plus the length of the new inputs is larger the maximum cache
|
57 |
+
# length, we will need to evict part of the cache (and thus not all cache is usable)
|
58 |
+
max_length = self.get_max_length()
|
59 |
+
previous_seq_length = self.get_seq_length(layer_idx)
|
60 |
+
if max_length is not None and previous_seq_length + new_seq_length > max_length:
|
61 |
+
return max_length - new_seq_length
|
62 |
+
return previous_seq_length
|
63 |
+
|
64 |
+
@property
|
65 |
+
def seen_tokens(self):
|
66 |
+
logger.warning_once(
|
67 |
+
"The `seen_tokens` attribute is deprecated and will be removed in v4.41. Use the `cache_position` "
|
68 |
+
"model input instead."
|
69 |
+
)
|
70 |
+
if hasattr(self, "_seen_tokens"):
|
71 |
+
return self._seen_tokens
|
72 |
+
else:
|
73 |
+
return None
|
74 |
+
|
75 |
+
|
76 |
+
class DynamicCache(Cache):
|
77 |
+
"""
|
78 |
+
A cache that grows dynamically as more tokens are generated. This is the default for generative models.
|
79 |
+
|
80 |
+
It stores the Key and Value states as a list of tensors, one for each layer. The expected shape for each tensor is
|
81 |
+
`[batch_size, num_heads, seq_len, head_dim]`.
|
82 |
+
"""
|
83 |
+
|
84 |
+
def __init__(self) -> None:
|
85 |
+
self.key_cache: List[torch.Tensor] = []
|
86 |
+
self.value_cache: List[torch.Tensor] = []
|
87 |
+
self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
|
88 |
+
|
89 |
+
def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]:
|
90 |
+
"""
|
91 |
+
Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the
|
92 |
+
sequence length.
|
93 |
+
"""
|
94 |
+
if layer_idx < len(self):
|
95 |
+
return (self.key_cache[layer_idx], self.value_cache[layer_idx])
|
96 |
+
else:
|
97 |
+
raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
|
98 |
+
|
99 |
+
def __iter__(self):
|
100 |
+
"""
|
101 |
+
Support for backwards-compatible `past_key_value` iteration, e.g. `for x in past_key_value:` to iterate over
|
102 |
+
keys and values
|
103 |
+
"""
|
104 |
+
for layer_idx in range(len(self)):
|
105 |
+
yield (self.key_cache[layer_idx], self.value_cache[layer_idx])
|
106 |
+
|
107 |
+
def __len__(self):
|
108 |
+
"""
|
109 |
+
Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
|
110 |
+
to the number of layers in the model.
|
111 |
+
"""
|
112 |
+
return len(self.key_cache)
|
113 |
+
|
114 |
+
def update(
|
115 |
+
self,
|
116 |
+
key_states: torch.Tensor,
|
117 |
+
value_states: torch.Tensor,
|
118 |
+
layer_idx: int,
|
119 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
120 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
121 |
+
"""
|
122 |
+
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
123 |
+
|
124 |
+
Parameters:
|
125 |
+
key_states (`torch.Tensor`):
|
126 |
+
The new key states to cache.
|
127 |
+
value_states (`torch.Tensor`):
|
128 |
+
The new value states to cache.
|
129 |
+
layer_idx (`int`):
|
130 |
+
The index of the layer to cache the states for.
|
131 |
+
cache_kwargs (`Dict[str, Any]`, `optional`):
|
132 |
+
Additional arguments for the cache subclass. No additional arguments are used in `DynamicCache`.
|
133 |
+
|
134 |
+
Return:
|
135 |
+
A tuple containing the updated key and value states.
|
136 |
+
"""
|
137 |
+
# Update the number of seen tokens
|
138 |
+
if layer_idx == 0:
|
139 |
+
self._seen_tokens += key_states.shape[-2]
|
140 |
+
|
141 |
+
# Update the cache
|
142 |
+
if len(self.key_cache) <= layer_idx:
|
143 |
+
self.key_cache.append(key_states)
|
144 |
+
self.value_cache.append(value_states)
|
145 |
+
else:
|
146 |
+
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
|
147 |
+
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
|
148 |
+
|
149 |
+
return self.key_cache[layer_idx], self.value_cache[layer_idx]
|
150 |
+
|
151 |
+
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
152 |
+
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
153 |
+
if len(self.key_cache) <= layer_idx:
|
154 |
+
return 0
|
155 |
+
return self.key_cache[layer_idx].shape[-2]
|
156 |
+
|
157 |
+
def get_max_length(self) -> Optional[int]:
|
158 |
+
"""Returns the maximum sequence length of the cached states. DynamicCache does not have a maximum length."""
|
159 |
+
return None
|
160 |
+
|
161 |
+
def reorder_cache(self, beam_idx: torch.LongTensor):
|
162 |
+
"""Reorders the cache for beam search, given the selected beam indices."""
|
163 |
+
for layer_idx in range(len(self.key_cache)):
|
164 |
+
device = self.key_cache[layer_idx].device
|
165 |
+
self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
|
166 |
+
device = self.value_cache[layer_idx].device
|
167 |
+
self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
|
168 |
+
|
169 |
+
def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
|
170 |
+
"""Converts the `DynamicCache` instance into the its equivalent in the legacy cache format."""
|
171 |
+
legacy_cache = ()
|
172 |
+
for layer_idx in range(len(self)):
|
173 |
+
legacy_cache += ((self.key_cache[layer_idx], self.value_cache[layer_idx]),)
|
174 |
+
return legacy_cache
|
175 |
+
|
176 |
+
@classmethod
|
177 |
+
def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache":
|
178 |
+
"""Converts a cache in the legacy cache format into an equivalent `DynamicCache`."""
|
179 |
+
cache = cls()
|
180 |
+
if past_key_values is not None:
|
181 |
+
for layer_idx in range(len(past_key_values)):
|
182 |
+
key_states, value_states = past_key_values[layer_idx]
|
183 |
+
cache.update(key_states, value_states, layer_idx)
|
184 |
+
return cache
|
185 |
+
|
186 |
+
|
187 |
+
class SinkCache(Cache):
|
188 |
+
"""
|
189 |
+
A cache that as described in the [Attention Sinks paper](https://arxiv.org/abs/2309.17453). It allows the model to
|
190 |
+
generate beyond the length of its context window, without losing fluency in the conversation. As it discards past
|
191 |
+
tokens, the model will lose the ability to generate tokens that depend on the context that was discarded.
|
192 |
+
|
193 |
+
It stores the Key and Value states as a list of tensors, one for each layer. The expected shape for each tensor is
|
194 |
+
`[batch_size, num_heads, seq_len, head_dim]`.
|
195 |
+
|
196 |
+
Parameters:
|
197 |
+
window_length (`int`):
|
198 |
+
The length of the context window.
|
199 |
+
num_sink_tokens (`int`):
|
200 |
+
The number of sink tokens. See the original paper for more information.
|
201 |
+
"""
|
202 |
+
|
203 |
+
def __init__(self, window_length: int, num_sink_tokens: int) -> None:
|
204 |
+
self.key_cache: List[torch.Tensor] = []
|
205 |
+
self.value_cache: List[torch.Tensor] = []
|
206 |
+
self.window_length = window_length
|
207 |
+
self.num_sink_tokens = num_sink_tokens
|
208 |
+
self.cos_sin_cache = {}
|
209 |
+
self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
|
210 |
+
|
211 |
+
@staticmethod
|
212 |
+
def _rotate_half(x):
|
213 |
+
x1 = x[..., : x.shape[-1] // 2]
|
214 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
215 |
+
return torch.cat((-x2, x1), dim=-1)
|
216 |
+
|
217 |
+
def _apply_key_rotary_pos_emb(
|
218 |
+
self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
|
219 |
+
) -> torch.Tensor:
|
220 |
+
rotated_key_states = (key_states * cos) + (self._rotate_half(key_states) * sin)
|
221 |
+
return rotated_key_states
|
222 |
+
|
223 |
+
def _get_rerotation_cos_sin(
|
224 |
+
self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
|
225 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
226 |
+
if key_states.shape[-2] not in self.cos_sin_cache:
|
227 |
+
# Upcast to float32 temporarily for better accuracy
|
228 |
+
cos = cos.to(torch.float32)
|
229 |
+
sin = sin.to(torch.float32)
|
230 |
+
|
231 |
+
# Compute the cos and sin required for back- and forward-rotating to one position earlier in the sequence
|
232 |
+
original_cos = cos[self.num_sink_tokens + key_states.shape[-2] :]
|
233 |
+
shifted_cos = cos[self.num_sink_tokens : -key_states.shape[-2]]
|
234 |
+
original_sin = sin[self.num_sink_tokens + key_states.shape[-2] :]
|
235 |
+
shifted_sin = sin[self.num_sink_tokens : -key_states.shape[-2]]
|
236 |
+
rerotation_cos = original_cos * shifted_cos + original_sin * shifted_sin
|
237 |
+
rerotation_sin = -original_sin * shifted_cos + original_cos * shifted_sin
|
238 |
+
|
239 |
+
self.cos_sin_cache[key_states.shape[-2]] = (
|
240 |
+
rerotation_cos.to(key_states.dtype).unsqueeze(0),
|
241 |
+
rerotation_sin.to(key_states.dtype).unsqueeze(0),
|
242 |
+
)
|
243 |
+
return self.cos_sin_cache[key_states.shape[-2]]
|
244 |
+
|
245 |
+
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
246 |
+
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
247 |
+
# Workaround to make 'key_states.shape[-2] + past_key_value.get_seq_length(self.layer_idx)' <= window_length
|
248 |
+
if len(self.key_cache) <= layer_idx:
|
249 |
+
return 0
|
250 |
+
return self.key_cache[layer_idx].shape[-2]
|
251 |
+
|
252 |
+
def get_max_length(self) -> Optional[int]:
|
253 |
+
"""Returns the maximum sequence length of the cached states."""
|
254 |
+
return self.window_length
|
255 |
+
|
256 |
+
def update(
|
257 |
+
self,
|
258 |
+
key_states: torch.Tensor,
|
259 |
+
value_states: torch.Tensor,
|
260 |
+
layer_idx: int,
|
261 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
262 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
263 |
+
"""
|
264 |
+
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
265 |
+
|
266 |
+
Parameters:
|
267 |
+
key_states (`torch.Tensor`):
|
268 |
+
The new key states to cache.
|
269 |
+
value_states (`torch.Tensor`):
|
270 |
+
The new value states to cache.
|
271 |
+
layer_idx (`int`):
|
272 |
+
The index of the layer to cache the states for.
|
273 |
+
cache_kwargs (`Dict[str, Any]`, `optional`):
|
274 |
+
Additional arguments for the cache subclass. The following arguments can be used in `SinkCache`: `sin`,
|
275 |
+
`cos` and `partial_rotation_size`. These arguments are used with models using RoPE, to recompute the
|
276 |
+
rotation as the tokens are shifted.
|
277 |
+
|
278 |
+
Return:
|
279 |
+
A tuple containing the updated key and value states.
|
280 |
+
"""
|
281 |
+
# Optional kwargs for `SinkCache` -- needed on models using RoPE. `partial_rotation_size` is used on models
|
282 |
+
# with partially rotated position embeddings, like Phi or Persimmon.
|
283 |
+
sin = cache_kwargs.get("sin")
|
284 |
+
cos = cache_kwargs.get("cos")
|
285 |
+
partial_rotation_size = cache_kwargs.get("partial_rotation_size")
|
286 |
+
using_rope = cos is not None and sin is not None
|
287 |
+
|
288 |
+
# Update the number of seen tokens
|
289 |
+
if layer_idx == 0:
|
290 |
+
self._seen_tokens += key_states.shape[-2]
|
291 |
+
|
292 |
+
# [bsz, num_heads, seq_len, head_dim]
|
293 |
+
if len(self.key_cache) <= layer_idx:
|
294 |
+
# Empty cache
|
295 |
+
self.key_cache.append(key_states)
|
296 |
+
self.value_cache.append(value_states)
|
297 |
+
|
298 |
+
elif key_states.shape[-2] + self.get_seq_length(layer_idx) < self.window_length:
|
299 |
+
# Growing cache
|
300 |
+
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
|
301 |
+
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
|
302 |
+
|
303 |
+
else:
|
304 |
+
# Shifting cache
|
305 |
+
keys_to_keep = self.key_cache[layer_idx][
|
306 |
+
:, :, -self.window_length + self.num_sink_tokens + key_states.shape[-2] :
|
307 |
+
]
|
308 |
+
|
309 |
+
# On RoPE models, we need to recompute the Key rotation as the tokens are shifted
|
310 |
+
if using_rope:
|
311 |
+
rerotation_cos, rerotation_sin = self._get_rerotation_cos_sin(
|
312 |
+
key_states, cos[: self.window_length], sin[: self.window_length]
|
313 |
+
)
|
314 |
+
if partial_rotation_size is not None:
|
315 |
+
keys_to_keep, keys_pass = (
|
316 |
+
keys_to_keep[..., :partial_rotation_size],
|
317 |
+
keys_to_keep[..., partial_rotation_size:],
|
318 |
+
)
|
319 |
+
keys_to_keep = self._apply_key_rotary_pos_emb(keys_to_keep, rerotation_cos, rerotation_sin)
|
320 |
+
if partial_rotation_size is not None:
|
321 |
+
keys_to_keep = torch.cat((keys_to_keep, keys_pass), dim=-1)
|
322 |
+
|
323 |
+
# Concatenate sink tokens, shifted & rotated tokens (if needed), and new tokens
|
324 |
+
sink_keys = self.key_cache[layer_idx][:, :, : self.num_sink_tokens]
|
325 |
+
self.key_cache[layer_idx] = torch.cat([sink_keys, keys_to_keep, key_states], dim=-2)
|
326 |
+
|
327 |
+
sink_values = self.value_cache[layer_idx][:, :, : self.num_sink_tokens]
|
328 |
+
values_to_keep = self.value_cache[layer_idx][
|
329 |
+
:, :, -self.window_length + self.num_sink_tokens + value_states.shape[-2] :
|
330 |
+
]
|
331 |
+
self.value_cache[layer_idx] = torch.cat([sink_values, values_to_keep, value_states], dim=-2)
|
332 |
+
|
333 |
+
return self.key_cache[layer_idx], self.value_cache[layer_idx]
|
334 |
+
|
335 |
+
def reorder_cache(self, beam_idx: torch.LongTensor):
|
336 |
+
"""Reorders the cache for beam search, given the selected beam indices."""
|
337 |
+
for layer_idx in range(len(self.key_cache)):
|
338 |
+
device = self.key_cache[layer_idx].device
|
339 |
+
self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
|
340 |
+
device = self.value_cache[layer_idx].device
|
341 |
+
self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
|
342 |
+
|
343 |
+
|
344 |
+
class StaticCache(Cache):
|
345 |
+
"""
|
346 |
+
Static Cache class to be used with `torch.compile(model)`.
|
347 |
+
|
348 |
+
Parameters:
|
349 |
+
config (`PretrainedConfig):
|
350 |
+
The configuration file defining the `max_position_embeddings`, `hidden_size` and `num_attention_heads`
|
351 |
+
required to initialize the static cache.
|
352 |
+
max_batch_size (`int`):
|
353 |
+
The maximum batch size with which the model will be used.
|
354 |
+
max_cache_len (`int`):
|
355 |
+
The maximum sequence length with which the model will be used.
|
356 |
+
device (`torch.device`):
|
357 |
+
The device on which the cache should be initialized. Should be the same as the layer.
|
358 |
+
dtype (*optional*, defaults to `torch.float32`):
|
359 |
+
The default `dtype` to use when initializing the layer.
|
360 |
+
"""
|
361 |
+
|
362 |
+
def __init__(self, config: PretrainedConfig, max_batch_size: int, max_cache_len: int, device, dtype=None) -> None:
|
363 |
+
super().__init__()
|
364 |
+
self.max_batch_size = max_batch_size
|
365 |
+
self.max_cache_len = config.max_position_embeddings if max_cache_len is None else max_cache_len
|
366 |
+
# Some model define a custom `head_dim` != config.hidden_size // config.num_attention_heads
|
367 |
+
self.head_dim = (
|
368 |
+
config.head_dim if hasattr(config, "head_dim") else config.hidden_size // config.num_attention_heads
|
369 |
+
)
|
370 |
+
|
371 |
+
self.dtype = dtype if dtype is not None else torch.float32
|
372 |
+
self.num_key_value_heads = (
|
373 |
+
config.num_attention_heads if config.num_key_value_heads is None else config.num_key_value_heads
|
374 |
+
)
|
375 |
+
|
376 |
+
cache_shape = (max_batch_size, self.num_key_value_heads, self.max_cache_len, self.head_dim)
|
377 |
+
self.key_cache: torch.Tensor = torch.zeros(cache_shape, dtype=self.dtype, device=device)
|
378 |
+
self.value_cache: torch.Tensor = torch.zeros(cache_shape, dtype=self.dtype, device=device)
|
379 |
+
|
380 |
+
def update(
|
381 |
+
self,
|
382 |
+
key_states: torch.Tensor,
|
383 |
+
value_states: torch.Tensor,
|
384 |
+
layer_idx: int,
|
385 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
386 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
387 |
+
"""
|
388 |
+
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
389 |
+
It is VERY important to index using a tensor, otherwise you introduce a copy to the device.
|
390 |
+
|
391 |
+
Parameters:
|
392 |
+
key_states (`torch.Tensor`):
|
393 |
+
The new key states to cache.
|
394 |
+
value_states (`torch.Tensor`):
|
395 |
+
The new value states to cache.
|
396 |
+
layer_idx (`int`):
|
397 |
+
The index of the layer to cache the states for. Kept for backward compatibility
|
398 |
+
cache_kwargs (`Dict[str, Any]`, `optional`):
|
399 |
+
Additional arguments for the cache subclass. The `StaticCache` just needs the `q_len`
|
400 |
+
to know how much of the cache it should overwrite.
|
401 |
+
|
402 |
+
Return:
|
403 |
+
A tuple containing the updated key and value states.
|
404 |
+
"""
|
405 |
+
new_cache_positions = cache_kwargs.get("cache_position")
|
406 |
+
k_out = self.key_cache
|
407 |
+
v_out = self.value_cache
|
408 |
+
|
409 |
+
k_out[:, :, new_cache_positions] = key_states
|
410 |
+
v_out[:, :, new_cache_positions] = value_states
|
411 |
+
|
412 |
+
return k_out, v_out
|
413 |
+
|
414 |
+
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
415 |
+
"""Returns the sequence length of the cached states that were seen by the model. `layer_idx` kept for BC"""
|
416 |
+
# Occupied cache == any slot in the 3rd dim (sequence length) holds a non-zero value. To save on compute, let's
|
417 |
+
# limit the check to the first batch member and head dimension.
|
418 |
+
# TODO: This is error prone, a filled cache may be `0.0`. Let's use a stateless integer instead, after
|
419 |
+
# https://github.com/pytorch/pytorch/issues/120248 is fixed
|
420 |
+
return (self.key_cache[0, 0].any(dim=-1)).sum()
|
421 |
+
|
422 |
+
def get_max_length(self) -> Optional[int]:
|
423 |
+
"""Returns the maximum sequence length of the cached states. DynamicCache does not have a maximum length."""
|
424 |
+
return self.max_cache_len
|
425 |
+
|
426 |
+
def reorder_cache(self, beam_idx: torch.LongTensor):
|
427 |
+
"""Reorders the cache for beam search, given the selected beam indices."""
|
428 |
+
device = self.key_cache.device
|
429 |
+
self.key_cache = self.key_cache.index_select(0, beam_idx.to(device))
|
430 |
+
device = self.value_cache.device
|
431 |
+
self.value_cache = self.value_cache.index_select(0, beam_idx.to(device))
|
432 |
+
|
433 |
+
def to_legacy_cache(self):
|
434 |
+
"""Dummy function for BC. We have to keep it because otherwise the call in the forward of models will break it"""
|
435 |
+
return None
|
venv/lib/python3.10/site-packages/transformers/configuration_utils.py
ADDED
@@ -0,0 +1,1133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" Configuration base class and utilities."""
|
17 |
+
|
18 |
+
|
19 |
+
import copy
|
20 |
+
import json
|
21 |
+
import os
|
22 |
+
import re
|
23 |
+
import warnings
|
24 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
25 |
+
|
26 |
+
from packaging import version
|
27 |
+
|
28 |
+
from . import __version__
|
29 |
+
from .dynamic_module_utils import custom_object_save
|
30 |
+
from .utils import (
|
31 |
+
CONFIG_NAME,
|
32 |
+
PushToHubMixin,
|
33 |
+
add_model_info_to_auto_map,
|
34 |
+
cached_file,
|
35 |
+
copy_func,
|
36 |
+
download_url,
|
37 |
+
extract_commit_hash,
|
38 |
+
is_remote_url,
|
39 |
+
is_torch_available,
|
40 |
+
logging,
|
41 |
+
)
|
42 |
+
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__)
|
45 |
+
|
46 |
+
_re_configuration_file = re.compile(r"config\.(.*)\.json")
|
47 |
+
|
48 |
+
|
49 |
+
class PretrainedConfig(PushToHubMixin):
|
50 |
+
# no-format
|
51 |
+
r"""
|
52 |
+
Base class for all configuration classes. Handles a few parameters common to all models' configurations as well as
|
53 |
+
methods for loading/downloading/saving configurations.
|
54 |
+
|
55 |
+
<Tip>
|
56 |
+
|
57 |
+
A configuration file can be loaded and saved to disk. Loading the configuration file and using this file to
|
58 |
+
initialize a model does **not** load the model weights. It only affects the model's configuration.
|
59 |
+
|
60 |
+
</Tip>
|
61 |
+
|
62 |
+
Class attributes (overridden by derived classes):
|
63 |
+
|
64 |
+
- **model_type** (`str`) -- An identifier for the model type, serialized into the JSON file, and used to recreate
|
65 |
+
the correct object in [`~transformers.AutoConfig`].
|
66 |
+
- **is_composition** (`bool`) -- Whether the config class is composed of multiple sub-configs. In this case the
|
67 |
+
config has to be initialized from two or more configs of type [`~transformers.PretrainedConfig`] like:
|
68 |
+
[`~transformers.EncoderDecoderConfig`] or [`~RagConfig`].
|
69 |
+
- **keys_to_ignore_at_inference** (`List[str]`) -- A list of keys to ignore by default when looking at dictionary
|
70 |
+
outputs of the model during inference.
|
71 |
+
- **attribute_map** (`Dict[str, str]`) -- A dict that maps model specific attribute names to the standardized
|
72 |
+
naming of attributes.
|
73 |
+
|
74 |
+
Common attributes (present in all subclasses):
|
75 |
+
|
76 |
+
- **vocab_size** (`int`) -- The number of tokens in the vocabulary, which is also the first dimension of the
|
77 |
+
embeddings matrix (this attribute may be missing for models that don't have a text modality like ViT).
|
78 |
+
- **hidden_size** (`int`) -- The hidden size of the model.
|
79 |
+
- **num_attention_heads** (`int`) -- The number of attention heads used in the multi-head attention layers of the
|
80 |
+
model.
|
81 |
+
- **num_hidden_layers** (`int`) -- The number of blocks in the model.
|
82 |
+
|
83 |
+
Arg:
|
84 |
+
name_or_path (`str`, *optional*, defaults to `""`):
|
85 |
+
Store the string that was passed to [`PreTrainedModel.from_pretrained`] or
|
86 |
+
[`TFPreTrainedModel.from_pretrained`] as `pretrained_model_name_or_path` if the configuration was created
|
87 |
+
with such a method.
|
88 |
+
output_hidden_states (`bool`, *optional*, defaults to `False`):
|
89 |
+
Whether or not the model should return all hidden-states.
|
90 |
+
output_attentions (`bool`, *optional*, defaults to `False`):
|
91 |
+
Whether or not the model should returns all attentions.
|
92 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
93 |
+
Whether or not the model should return a [`~transformers.utils.ModelOutput`] instead of a plain tuple.
|
94 |
+
is_encoder_decoder (`bool`, *optional*, defaults to `False`):
|
95 |
+
Whether the model is used as an encoder/decoder or not.
|
96 |
+
is_decoder (`bool`, *optional*, defaults to `False`):
|
97 |
+
Whether the model is used as decoder or not (in which case it's used as an encoder).
|
98 |
+
cross_attention_hidden_size** (`bool`, *optional*):
|
99 |
+
The hidden size of the cross-attention layer in case the model is used as a decoder in an encoder-decoder
|
100 |
+
setting and the cross-attention hidden dimension differs from `self.config.hidden_size`.
|
101 |
+
add_cross_attention (`bool`, *optional*, defaults to `False`):
|
102 |
+
Whether cross-attention layers should be added to the model. Note, this option is only relevant for models
|
103 |
+
that can be used as decoder models within the [`EncoderDecoderModel`] class, which consists of all models
|
104 |
+
in `AUTO_MODELS_FOR_CAUSAL_LM`.
|
105 |
+
tie_encoder_decoder (`bool`, *optional*, defaults to `False`):
|
106 |
+
Whether all encoder weights should be tied to their equivalent decoder weights. This requires the encoder
|
107 |
+
and decoder model to have the exact same parameter names.
|
108 |
+
prune_heads (`Dict[int, List[int]]`, *optional*, defaults to `{}`):
|
109 |
+
Pruned heads of the model. The keys are the selected layer indices and the associated values, the list of
|
110 |
+
heads to prune in said layer.
|
111 |
+
|
112 |
+
For instance `{1: [0, 2], 2: [2, 3]}` will prune heads 0 and 2 on layer 1 and heads 2 and 3 on layer 2.
|
113 |
+
chunk_size_feed_forward (`int`, *optional*, defaults to `0`):
|
114 |
+
The chunk size of all feed forward layers in the residual attention blocks. A chunk size of `0` means that
|
115 |
+
the feed forward layer is not chunked. A chunk size of n means that the feed forward layer processes `n` <
|
116 |
+
sequence_length embeddings at a time. For more information on feed forward chunking, see [How does Feed
|
117 |
+
Forward Chunking work?](../glossary.html#feed-forward-chunking).
|
118 |
+
|
119 |
+
> Parameters for sequence generation
|
120 |
+
|
121 |
+
max_length (`int`, *optional*, defaults to 20):
|
122 |
+
Maximum length that will be used by default in the `generate` method of the model.
|
123 |
+
min_length (`int`, *optional*, defaults to 0):
|
124 |
+
Minimum length that will be used by default in the `generate` method of the model.
|
125 |
+
do_sample (`bool`, *optional*, defaults to `False`):
|
126 |
+
Flag that will be used by default in the `generate` method of the model. Whether or not to use sampling ;
|
127 |
+
use greedy decoding otherwise.
|
128 |
+
early_stopping (`bool`, *optional*, defaults to `False`):
|
129 |
+
Flag that will be used by default in the `generate` method of the model. Whether to stop the beam search
|
130 |
+
when at least `num_beams` sentences are finished per batch or not.
|
131 |
+
num_beams (`int`, *optional*, defaults to 1):
|
132 |
+
Number of beams for beam search that will be used by default in the `generate` method of the model. 1 means
|
133 |
+
no beam search.
|
134 |
+
num_beam_groups (`int`, *optional*, defaults to 1):
|
135 |
+
Number of groups to divide `num_beams` into in order to ensure diversity among different groups of beams
|
136 |
+
that will be used by default in the `generate` method of the model. 1 means no group beam search.
|
137 |
+
diversity_penalty (`float`, *optional*, defaults to 0.0):
|
138 |
+
Value to control diversity for group beam search. that will be used by default in the `generate` method of
|
139 |
+
the model. 0 means no diversity penalty. The higher the penalty, the more diverse are the outputs.
|
140 |
+
temperature (`float`, *optional*, defaults to 1.0):
|
141 |
+
The value used to module the next token probabilities that will be used by default in the `generate` method
|
142 |
+
of the model. Must be strictly positive.
|
143 |
+
top_k (`int`, *optional*, defaults to 50):
|
144 |
+
Number of highest probability vocabulary tokens to keep for top-k-filtering that will be used by default in
|
145 |
+
the `generate` method of the model.
|
146 |
+
top_p (`float`, *optional*, defaults to 1):
|
147 |
+
Value that will be used by default in the `generate` method of the model for `top_p`. If set to float < 1,
|
148 |
+
only the most probable tokens with probabilities that add up to `top_p` or higher are kept for generation.
|
149 |
+
typical_p (`float`, *optional*, defaults to 1):
|
150 |
+
Local typicality measures how similar the conditional probability of predicting a target token next is to
|
151 |
+
the expected conditional probability of predicting a random token next, given the partial text already
|
152 |
+
generated. If set to float < 1, the smallest set of the most locally typical tokens with probabilities that
|
153 |
+
add up to `typical_p` or higher are kept for generation. See [this
|
154 |
+
paper](https://arxiv.org/pdf/2202.00666.pdf) for more details.
|
155 |
+
repetition_penalty (`float`, *optional*, defaults to 1):
|
156 |
+
Parameter for repetition penalty that will be used by default in the `generate` method of the model. 1.0
|
157 |
+
means no penalty.
|
158 |
+
length_penalty (`float`, *optional*, defaults to 1):
|
159 |
+
Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to
|
160 |
+
the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log
|
161 |
+
likelihood of the sequence (i.e. negative), `length_penalty` > 0.0 promotes longer sequences, while
|
162 |
+
`length_penalty` < 0.0 encourages shorter sequences.
|
163 |
+
no_repeat_ngram_size (`int`, *optional*, defaults to 0) -- Value that will be used by default in the
|
164 |
+
`generate` method of the model for `no_repeat_ngram_size`. If set to int > 0, all ngrams of that size can
|
165 |
+
only occur once.
|
166 |
+
encoder_no_repeat_ngram_size (`int`, *optional*, defaults to 0) -- Value that will be used by
|
167 |
+
default in the `generate` method of the model for `encoder_no_repeat_ngram_size`. If set to int > 0, all
|
168 |
+
ngrams of that size that occur in the `encoder_input_ids` cannot occur in the `decoder_input_ids`.
|
169 |
+
bad_words_ids (`List[int]`, *optional*):
|
170 |
+
List of token ids that are not allowed to be generated that will be used by default in the `generate`
|
171 |
+
method of the model. In order to get the tokens of the words that should not appear in the generated text,
|
172 |
+
use `tokenizer.encode(bad_word, add_prefix_space=True)`.
|
173 |
+
num_return_sequences (`int`, *optional*, defaults to 1):
|
174 |
+
Number of independently computed returned sequences for each element in the batch that will be used by
|
175 |
+
default in the `generate` method of the model.
|
176 |
+
output_scores (`bool`, *optional*, defaults to `False`):
|
177 |
+
Whether the model should return the logits when used for generation.
|
178 |
+
return_dict_in_generate (`bool`, *optional*, defaults to `False`):
|
179 |
+
Whether the model should return a [`~transformers.utils.ModelOutput`] instead of a `torch.LongTensor`.
|
180 |
+
forced_bos_token_id (`int`, *optional*):
|
181 |
+
The id of the token to force as the first generated token after the `decoder_start_token_id`. Useful for
|
182 |
+
multilingual models like [mBART](../model_doc/mbart) where the first generated token needs to be the target
|
183 |
+
language token.
|
184 |
+
forced_eos_token_id (`int`, *optional*):
|
185 |
+
The id of the token to force as the last generated token when `max_length` is reached.
|
186 |
+
remove_invalid_values (`bool`, *optional*):
|
187 |
+
Whether to remove possible _nan_ and _inf_ outputs of the model to prevent the generation method to crash.
|
188 |
+
Note that using `remove_invalid_values` can slow down generation.
|
189 |
+
|
190 |
+
> Parameters for fine-tuning tasks
|
191 |
+
|
192 |
+
architectures (`List[str]`, *optional*):
|
193 |
+
Model architectures that can be used with the model pretrained weights.
|
194 |
+
finetuning_task (`str`, *optional*):
|
195 |
+
Name of the task used to fine-tune the model. This can be used when converting from an original (TensorFlow
|
196 |
+
or PyTorch) checkpoint.
|
197 |
+
id2label (`Dict[int, str]`, *optional*):
|
198 |
+
A map from index (for instance prediction index, or target index) to label.
|
199 |
+
label2id (`Dict[str, int]`, *optional*): A map from label to index for the model.
|
200 |
+
num_labels (`int`, *optional*):
|
201 |
+
Number of labels to use in the last layer added to the model, typically for a classification task.
|
202 |
+
task_specific_params (`Dict[str, Any]`, *optional*):
|
203 |
+
Additional keyword arguments to store for the current task.
|
204 |
+
problem_type (`str`, *optional*):
|
205 |
+
Problem type for `XxxForSequenceClassification` models. Can be one of `"regression"`,
|
206 |
+
`"single_label_classification"` or `"multi_label_classification"`.
|
207 |
+
|
208 |
+
> Parameters linked to the tokenizer
|
209 |
+
|
210 |
+
tokenizer_class (`str`, *optional*):
|
211 |
+
The name of the associated tokenizer class to use (if none is set, will use the tokenizer associated to the
|
212 |
+
model by default).
|
213 |
+
prefix (`str`, *optional*):
|
214 |
+
A specific prompt that should be added at the beginning of each text before calling the model.
|
215 |
+
bos_token_id (`int`, *optional*): The id of the _beginning-of-stream_ token.
|
216 |
+
pad_token_id (`int`, *optional*): The id of the _padding_ token.
|
217 |
+
eos_token_id (`int`, *optional*): The id of the _end-of-stream_ token.
|
218 |
+
decoder_start_token_id (`int`, *optional*):
|
219 |
+
If an encoder-decoder model starts decoding with a different token than _bos_, the id of that token.
|
220 |
+
sep_token_id (`int`, *optional*): The id of the _separation_ token.
|
221 |
+
|
222 |
+
> PyTorch specific parameters
|
223 |
+
|
224 |
+
torchscript (`bool`, *optional*, defaults to `False`):
|
225 |
+
Whether or not the model should be used with Torchscript.
|
226 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
|
227 |
+
Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the
|
228 |
+
model has a output word embedding layer.
|
229 |
+
torch_dtype (`str`, *optional*):
|
230 |
+
The `dtype` of the weights. This attribute can be used to initialize the model to a non-default `dtype`
|
231 |
+
(which is normally `float32`) and thus allow for optimal storage allocation. For example, if the saved
|
232 |
+
model is `float16`, ideally we want to load it back using the minimal amount of memory needed to load
|
233 |
+
`float16` weights. Since the config object is stored in plain text, this attribute contains just the
|
234 |
+
floating type string without the `torch.` prefix. For example, for `torch.float16` ``torch_dtype` is the
|
235 |
+
`"float16"` string.
|
236 |
+
|
237 |
+
This attribute is currently not being used during model loading time, but this may change in the future
|
238 |
+
versions. But we can already start preparing for the future by saving the dtype with save_pretrained.
|
239 |
+
|
240 |
+
> TensorFlow specific parameters
|
241 |
+
|
242 |
+
use_bfloat16 (`bool`, *optional*, defaults to `False`):
|
243 |
+
Whether or not the model should use BFloat16 scalars (only used by some TensorFlow models).
|
244 |
+
tf_legacy_loss (`bool`, *optional*, defaults to `False`):
|
245 |
+
Whether the model should use legacy TensorFlow losses. Legacy losses have variable output shapes and may
|
246 |
+
not be XLA-compatible. This option is here for backward compatibility and will be removed in Transformers
|
247 |
+
v5.
|
248 |
+
"""
|
249 |
+
|
250 |
+
model_type: str = ""
|
251 |
+
is_composition: bool = False
|
252 |
+
attribute_map: Dict[str, str] = {}
|
253 |
+
_auto_class: Optional[str] = None
|
254 |
+
|
255 |
+
def __setattr__(self, key, value):
|
256 |
+
if key in super().__getattribute__("attribute_map"):
|
257 |
+
key = super().__getattribute__("attribute_map")[key]
|
258 |
+
super().__setattr__(key, value)
|
259 |
+
|
260 |
+
def __getattribute__(self, key):
|
261 |
+
if key != "attribute_map" and key in super().__getattribute__("attribute_map"):
|
262 |
+
key = super().__getattribute__("attribute_map")[key]
|
263 |
+
return super().__getattribute__(key)
|
264 |
+
|
265 |
+
def __init__(self, **kwargs):
|
266 |
+
# Attributes with defaults
|
267 |
+
self.return_dict = kwargs.pop("return_dict", True)
|
268 |
+
self.output_hidden_states = kwargs.pop("output_hidden_states", False)
|
269 |
+
self.output_attentions = kwargs.pop("output_attentions", False)
|
270 |
+
self.torchscript = kwargs.pop("torchscript", False) # Only used by PyTorch models
|
271 |
+
self.torch_dtype = kwargs.pop("torch_dtype", None) # Only used by PyTorch models
|
272 |
+
self.use_bfloat16 = kwargs.pop("use_bfloat16", False)
|
273 |
+
self.tf_legacy_loss = kwargs.pop("tf_legacy_loss", False) # Only used by TensorFlow models
|
274 |
+
self.pruned_heads = kwargs.pop("pruned_heads", {})
|
275 |
+
self.tie_word_embeddings = kwargs.pop(
|
276 |
+
"tie_word_embeddings", True
|
277 |
+
) # Whether input and output word embeddings should be tied for all MLM, LM and Seq2Seq models.
|
278 |
+
self.chunk_size_feed_forward = kwargs.pop("chunk_size_feed_forward", 0)
|
279 |
+
|
280 |
+
# Is decoder is used in encoder-decoder models to differentiate encoder from decoder
|
281 |
+
self.is_encoder_decoder = kwargs.pop("is_encoder_decoder", False)
|
282 |
+
self.is_decoder = kwargs.pop("is_decoder", False)
|
283 |
+
self.cross_attention_hidden_size = kwargs.pop("cross_attention_hidden_size", None)
|
284 |
+
self.add_cross_attention = kwargs.pop("add_cross_attention", False)
|
285 |
+
self.tie_encoder_decoder = kwargs.pop("tie_encoder_decoder", False)
|
286 |
+
|
287 |
+
# Retrocompatibility: Parameters for sequence generation. While we will keep the ability to load these
|
288 |
+
# parameters, saving them will be deprecated. In a distant future, we won't need to load them.
|
289 |
+
for parameter_name, default_value in self._get_generation_defaults().items():
|
290 |
+
setattr(self, parameter_name, kwargs.pop(parameter_name, default_value))
|
291 |
+
|
292 |
+
# Fine-tuning task arguments
|
293 |
+
self.architectures = kwargs.pop("architectures", None)
|
294 |
+
self.finetuning_task = kwargs.pop("finetuning_task", None)
|
295 |
+
self.id2label = kwargs.pop("id2label", None)
|
296 |
+
self.label2id = kwargs.pop("label2id", None)
|
297 |
+
if self.label2id is not None and not isinstance(self.label2id, dict):
|
298 |
+
raise ValueError("Argument label2id should be a dictionary.")
|
299 |
+
if self.id2label is not None:
|
300 |
+
if not isinstance(self.id2label, dict):
|
301 |
+
raise ValueError("Argument id2label should be a dictionary.")
|
302 |
+
num_labels = kwargs.pop("num_labels", None)
|
303 |
+
if num_labels is not None and len(self.id2label) != num_labels:
|
304 |
+
logger.warning(
|
305 |
+
f"You passed along `num_labels={num_labels}` with an incompatible id to label map: "
|
306 |
+
f"{self.id2label}. The number of labels wil be overwritten to {self.num_labels}."
|
307 |
+
)
|
308 |
+
self.id2label = {int(key): value for key, value in self.id2label.items()}
|
309 |
+
# Keys are always strings in JSON so convert ids to int here.
|
310 |
+
else:
|
311 |
+
self.num_labels = kwargs.pop("num_labels", 2)
|
312 |
+
|
313 |
+
if self.torch_dtype is not None and isinstance(self.torch_dtype, str):
|
314 |
+
# we will start using self.torch_dtype in v5, but to be consistent with
|
315 |
+
# from_pretrained's torch_dtype arg convert it to an actual torch.dtype object
|
316 |
+
if is_torch_available():
|
317 |
+
import torch
|
318 |
+
|
319 |
+
self.torch_dtype = getattr(torch, self.torch_dtype)
|
320 |
+
|
321 |
+
# Tokenizer arguments TODO: eventually tokenizer and models should share the same config
|
322 |
+
self.tokenizer_class = kwargs.pop("tokenizer_class", None)
|
323 |
+
self.prefix = kwargs.pop("prefix", None)
|
324 |
+
self.bos_token_id = kwargs.pop("bos_token_id", None)
|
325 |
+
self.pad_token_id = kwargs.pop("pad_token_id", None)
|
326 |
+
self.eos_token_id = kwargs.pop("eos_token_id", None)
|
327 |
+
self.sep_token_id = kwargs.pop("sep_token_id", None)
|
328 |
+
|
329 |
+
self.decoder_start_token_id = kwargs.pop("decoder_start_token_id", None)
|
330 |
+
|
331 |
+
# task specific arguments
|
332 |
+
self.task_specific_params = kwargs.pop("task_specific_params", None)
|
333 |
+
|
334 |
+
# regression / multi-label classification
|
335 |
+
self.problem_type = kwargs.pop("problem_type", None)
|
336 |
+
allowed_problem_types = ("regression", "single_label_classification", "multi_label_classification")
|
337 |
+
if self.problem_type is not None and self.problem_type not in allowed_problem_types:
|
338 |
+
raise ValueError(
|
339 |
+
f"The config parameter `problem_type` was not understood: received {self.problem_type} "
|
340 |
+
"but only 'regression', 'single_label_classification' and 'multi_label_classification' are valid."
|
341 |
+
)
|
342 |
+
|
343 |
+
# TPU arguments
|
344 |
+
if kwargs.pop("xla_device", None) is not None:
|
345 |
+
logger.warning(
|
346 |
+
"The `xla_device` argument has been deprecated in v4.4.0 of Transformers. It is ignored and you can "
|
347 |
+
"safely remove it from your `config.json` file."
|
348 |
+
)
|
349 |
+
|
350 |
+
# Name or path to the pretrained checkpoint
|
351 |
+
self._name_or_path = str(kwargs.pop("name_or_path", ""))
|
352 |
+
# Config hash
|
353 |
+
self._commit_hash = kwargs.pop("_commit_hash", None)
|
354 |
+
|
355 |
+
# Attention implementation to use, if relevant.
|
356 |
+
self._attn_implementation_internal = kwargs.pop("attn_implementation", None)
|
357 |
+
|
358 |
+
# Drop the transformers version info
|
359 |
+
self.transformers_version = kwargs.pop("transformers_version", None)
|
360 |
+
|
361 |
+
# Deal with gradient checkpointing
|
362 |
+
if kwargs.get("gradient_checkpointing", False):
|
363 |
+
warnings.warn(
|
364 |
+
"Passing `gradient_checkpointing` to a config initialization is deprecated and will be removed in v5 "
|
365 |
+
"Transformers. Using `model.gradient_checkpointing_enable()` instead, or if you are using the "
|
366 |
+
"`Trainer` API, pass `gradient_checkpointing=True` in your `TrainingArguments`."
|
367 |
+
)
|
368 |
+
|
369 |
+
# Additional attributes without default values
|
370 |
+
for key, value in kwargs.items():
|
371 |
+
try:
|
372 |
+
setattr(self, key, value)
|
373 |
+
except AttributeError as err:
|
374 |
+
logger.error(f"Can't set {key} with value {value} for {self}")
|
375 |
+
raise err
|
376 |
+
|
377 |
+
@property
|
378 |
+
def name_or_path(self) -> str:
|
379 |
+
return getattr(self, "_name_or_path", None)
|
380 |
+
|
381 |
+
@name_or_path.setter
|
382 |
+
def name_or_path(self, value):
|
383 |
+
self._name_or_path = str(value) # Make sure that name_or_path is a string (for JSON encoding)
|
384 |
+
|
385 |
+
@property
|
386 |
+
def use_return_dict(self) -> bool:
|
387 |
+
"""
|
388 |
+
`bool`: Whether or not return [`~utils.ModelOutput`] instead of tuples.
|
389 |
+
"""
|
390 |
+
# If torchscript is set, force `return_dict=False` to avoid jit errors
|
391 |
+
return self.return_dict and not self.torchscript
|
392 |
+
|
393 |
+
@property
|
394 |
+
def num_labels(self) -> int:
|
395 |
+
"""
|
396 |
+
`int`: The number of labels for classification models.
|
397 |
+
"""
|
398 |
+
return len(self.id2label)
|
399 |
+
|
400 |
+
@num_labels.setter
|
401 |
+
def num_labels(self, num_labels: int):
|
402 |
+
if not hasattr(self, "id2label") or self.id2label is None or len(self.id2label) != num_labels:
|
403 |
+
self.id2label = {i: f"LABEL_{i}" for i in range(num_labels)}
|
404 |
+
self.label2id = dict(zip(self.id2label.values(), self.id2label.keys()))
|
405 |
+
|
406 |
+
@property
|
407 |
+
def _attn_implementation(self):
|
408 |
+
# This property is made private for now (as it cannot be changed and a PreTrainedModel.use_attn_implementation method needs to be implemented.)
|
409 |
+
if hasattr(self, "_attn_implementation_internal"):
|
410 |
+
if self._attn_implementation_internal is None:
|
411 |
+
# `config.attn_implementation` should never be None, for backward compatibility.
|
412 |
+
return "eager"
|
413 |
+
else:
|
414 |
+
return self._attn_implementation_internal
|
415 |
+
else:
|
416 |
+
return "eager"
|
417 |
+
|
418 |
+
@_attn_implementation.setter
|
419 |
+
def _attn_implementation(self, value):
|
420 |
+
self._attn_implementation_internal = value
|
421 |
+
|
422 |
+
def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
|
423 |
+
"""
|
424 |
+
Save a configuration object to the directory `save_directory`, so that it can be re-loaded using the
|
425 |
+
[`~PretrainedConfig.from_pretrained`] class method.
|
426 |
+
|
427 |
+
Args:
|
428 |
+
save_directory (`str` or `os.PathLike`):
|
429 |
+
Directory where the configuration JSON file will be saved (will be created if it does not exist).
|
430 |
+
push_to_hub (`bool`, *optional*, defaults to `False`):
|
431 |
+
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
|
432 |
+
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
|
433 |
+
namespace).
|
434 |
+
kwargs (`Dict[str, Any]`, *optional*):
|
435 |
+
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
|
436 |
+
"""
|
437 |
+
self._set_token_in_kwargs(kwargs)
|
438 |
+
|
439 |
+
if os.path.isfile(save_directory):
|
440 |
+
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")
|
441 |
+
|
442 |
+
non_default_generation_parameters = {}
|
443 |
+
for parameter_name, default_value in self._get_generation_defaults().items():
|
444 |
+
if hasattr(self, parameter_name) and getattr(self, parameter_name) != default_value:
|
445 |
+
non_default_generation_parameters[parameter_name] = getattr(self, parameter_name)
|
446 |
+
if len(non_default_generation_parameters) > 0:
|
447 |
+
logger.warning(
|
448 |
+
"Some non-default generation parameters are set in the model config. These should go into a "
|
449 |
+
"GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) "
|
450 |
+
"instead. This warning will be raised to an exception in v4.41.\n"
|
451 |
+
f"Non-default generation parameters: {str(non_default_generation_parameters)}"
|
452 |
+
)
|
453 |
+
|
454 |
+
os.makedirs(save_directory, exist_ok=True)
|
455 |
+
|
456 |
+
if push_to_hub:
|
457 |
+
commit_message = kwargs.pop("commit_message", None)
|
458 |
+
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
|
459 |
+
repo_id = self._create_repo(repo_id, **kwargs)
|
460 |
+
files_timestamps = self._get_files_timestamps(save_directory)
|
461 |
+
|
462 |
+
# If we have a custom config, we copy the file defining it in the folder and set the attributes so it can be
|
463 |
+
# loaded from the Hub.
|
464 |
+
if self._auto_class is not None:
|
465 |
+
custom_object_save(self, save_directory, config=self)
|
466 |
+
|
467 |
+
# If we save using the predefined names, we can load using `from_pretrained`
|
468 |
+
output_config_file = os.path.join(save_directory, CONFIG_NAME)
|
469 |
+
|
470 |
+
self.to_json_file(output_config_file, use_diff=True)
|
471 |
+
logger.info(f"Configuration saved in {output_config_file}")
|
472 |
+
|
473 |
+
if push_to_hub:
|
474 |
+
self._upload_modified_files(
|
475 |
+
save_directory,
|
476 |
+
repo_id,
|
477 |
+
files_timestamps,
|
478 |
+
commit_message=commit_message,
|
479 |
+
token=kwargs.get("token"),
|
480 |
+
)
|
481 |
+
|
482 |
+
@staticmethod
|
483 |
+
def _set_token_in_kwargs(kwargs, token=None):
|
484 |
+
"""Temporary method to deal with `token` and `use_auth_token`.
|
485 |
+
|
486 |
+
This method is to avoid apply the same changes in all model config classes that overwrite `from_pretrained`.
|
487 |
+
|
488 |
+
Need to clean up `use_auth_token` in a follow PR.
|
489 |
+
"""
|
490 |
+
# Some model config classes like CLIP define their own `from_pretrained` without the new argument `token` yet.
|
491 |
+
if token is None:
|
492 |
+
token = kwargs.pop("token", None)
|
493 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
494 |
+
|
495 |
+
if use_auth_token is not None:
|
496 |
+
warnings.warn(
|
497 |
+
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
498 |
+
FutureWarning,
|
499 |
+
)
|
500 |
+
if token is not None:
|
501 |
+
raise ValueError(
|
502 |
+
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
|
503 |
+
)
|
504 |
+
token = use_auth_token
|
505 |
+
|
506 |
+
if token is not None:
|
507 |
+
kwargs["token"] = token
|
508 |
+
|
509 |
+
@classmethod
|
510 |
+
def from_pretrained(
|
511 |
+
cls,
|
512 |
+
pretrained_model_name_or_path: Union[str, os.PathLike],
|
513 |
+
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
514 |
+
force_download: bool = False,
|
515 |
+
local_files_only: bool = False,
|
516 |
+
token: Optional[Union[str, bool]] = None,
|
517 |
+
revision: str = "main",
|
518 |
+
**kwargs,
|
519 |
+
) -> "PretrainedConfig":
|
520 |
+
r"""
|
521 |
+
Instantiate a [`PretrainedConfig`] (or a derived class) from a pretrained model configuration.
|
522 |
+
|
523 |
+
Args:
|
524 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`):
|
525 |
+
This can be either:
|
526 |
+
|
527 |
+
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on
|
528 |
+
huggingface.co.
|
529 |
+
- a path to a *directory* containing a configuration file saved using the
|
530 |
+
[`~PretrainedConfig.save_pretrained`] method, e.g., `./my_model_directory/`.
|
531 |
+
- a path or url to a saved configuration JSON *file*, e.g., `./my_model_directory/configuration.json`.
|
532 |
+
cache_dir (`str` or `os.PathLike`, *optional*):
|
533 |
+
Path to a directory in which a downloaded pretrained model configuration should be cached if the
|
534 |
+
standard cache should not be used.
|
535 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
536 |
+
Whether or not to force to (re-)download the configuration files and override the cached versions if
|
537 |
+
they exist.
|
538 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
539 |
+
Whether or not to delete incompletely received file. Attempts to resume the download if such a file
|
540 |
+
exists.
|
541 |
+
proxies (`Dict[str, str]`, *optional*):
|
542 |
+
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
543 |
+
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
|
544 |
+
token (`str` or `bool`, *optional*):
|
545 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
|
546 |
+
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
|
547 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
548 |
+
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
549 |
+
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
550 |
+
identifier allowed by git.
|
551 |
+
|
552 |
+
<Tip>
|
553 |
+
|
554 |
+
To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".
|
555 |
+
|
556 |
+
</Tip>
|
557 |
+
|
558 |
+
return_unused_kwargs (`bool`, *optional*, defaults to `False`):
|
559 |
+
If `False`, then this function returns just the final configuration object.
|
560 |
+
|
561 |
+
If `True`, then this functions returns a `Tuple(config, unused_kwargs)` where *unused_kwargs* is a
|
562 |
+
dictionary consisting of the key/value pairs whose keys are not configuration attributes: i.e., the
|
563 |
+
part of `kwargs` which has not been used to update `config` and is otherwise ignored.
|
564 |
+
subfolder (`str`, *optional*, defaults to `""`):
|
565 |
+
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
|
566 |
+
specify the folder name here.
|
567 |
+
kwargs (`Dict[str, Any]`, *optional*):
|
568 |
+
The values in kwargs of any keys which are configuration attributes will be used to override the loaded
|
569 |
+
values. Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled
|
570 |
+
by the `return_unused_kwargs` keyword parameter.
|
571 |
+
|
572 |
+
Returns:
|
573 |
+
[`PretrainedConfig`]: The configuration object instantiated from this pretrained model.
|
574 |
+
|
575 |
+
Examples:
|
576 |
+
|
577 |
+
```python
|
578 |
+
# We can't instantiate directly the base class *PretrainedConfig* so let's show the examples on a
|
579 |
+
# derived class: BertConfig
|
580 |
+
config = BertConfig.from_pretrained(
|
581 |
+
"google-bert/bert-base-uncased"
|
582 |
+
) # Download configuration from huggingface.co and cache.
|
583 |
+
config = BertConfig.from_pretrained(
|
584 |
+
"./test/saved_model/"
|
585 |
+
) # E.g. config (or model) was saved using *save_pretrained('./test/saved_model/')*
|
586 |
+
config = BertConfig.from_pretrained("./test/saved_model/my_configuration.json")
|
587 |
+
config = BertConfig.from_pretrained("google-bert/bert-base-uncased", output_attentions=True, foo=False)
|
588 |
+
assert config.output_attentions == True
|
589 |
+
config, unused_kwargs = BertConfig.from_pretrained(
|
590 |
+
"google-bert/bert-base-uncased", output_attentions=True, foo=False, return_unused_kwargs=True
|
591 |
+
)
|
592 |
+
assert config.output_attentions == True
|
593 |
+
assert unused_kwargs == {"foo": False}
|
594 |
+
```"""
|
595 |
+
kwargs["cache_dir"] = cache_dir
|
596 |
+
kwargs["force_download"] = force_download
|
597 |
+
kwargs["local_files_only"] = local_files_only
|
598 |
+
kwargs["revision"] = revision
|
599 |
+
|
600 |
+
cls._set_token_in_kwargs(kwargs, token)
|
601 |
+
|
602 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
603 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
604 |
+
logger.warning(
|
605 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
606 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
607 |
+
)
|
608 |
+
|
609 |
+
return cls.from_dict(config_dict, **kwargs)
|
610 |
+
|
611 |
+
@classmethod
|
612 |
+
def get_config_dict(
|
613 |
+
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
|
614 |
+
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
615 |
+
"""
|
616 |
+
From a `pretrained_model_name_or_path`, resolve to a dictionary of parameters, to be used for instantiating a
|
617 |
+
[`PretrainedConfig`] using `from_dict`.
|
618 |
+
|
619 |
+
Parameters:
|
620 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`):
|
621 |
+
The identifier of the pre-trained checkpoint from which we want the dictionary of parameters.
|
622 |
+
|
623 |
+
Returns:
|
624 |
+
`Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the configuration object.
|
625 |
+
|
626 |
+
"""
|
627 |
+
cls._set_token_in_kwargs(kwargs)
|
628 |
+
|
629 |
+
original_kwargs = copy.deepcopy(kwargs)
|
630 |
+
# Get config dict associated with the base config file
|
631 |
+
config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs)
|
632 |
+
if "_commit_hash" in config_dict:
|
633 |
+
original_kwargs["_commit_hash"] = config_dict["_commit_hash"]
|
634 |
+
|
635 |
+
# That config file may point us toward another config file to use.
|
636 |
+
if "configuration_files" in config_dict:
|
637 |
+
configuration_file = get_configuration_file(config_dict["configuration_files"])
|
638 |
+
config_dict, kwargs = cls._get_config_dict(
|
639 |
+
pretrained_model_name_or_path, _configuration_file=configuration_file, **original_kwargs
|
640 |
+
)
|
641 |
+
|
642 |
+
return config_dict, kwargs
|
643 |
+
|
644 |
+
@classmethod
|
645 |
+
def _get_config_dict(
|
646 |
+
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
|
647 |
+
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
648 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
649 |
+
force_download = kwargs.pop("force_download", False)
|
650 |
+
resume_download = kwargs.pop("resume_download", False)
|
651 |
+
proxies = kwargs.pop("proxies", None)
|
652 |
+
token = kwargs.pop("token", None)
|
653 |
+
local_files_only = kwargs.pop("local_files_only", False)
|
654 |
+
revision = kwargs.pop("revision", None)
|
655 |
+
trust_remote_code = kwargs.pop("trust_remote_code", None)
|
656 |
+
subfolder = kwargs.pop("subfolder", "")
|
657 |
+
from_pipeline = kwargs.pop("_from_pipeline", None)
|
658 |
+
from_auto_class = kwargs.pop("_from_auto", False)
|
659 |
+
commit_hash = kwargs.pop("_commit_hash", None)
|
660 |
+
|
661 |
+
if trust_remote_code is True:
|
662 |
+
logger.warning(
|
663 |
+
"The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is"
|
664 |
+
" ignored."
|
665 |
+
)
|
666 |
+
|
667 |
+
user_agent = {"file_type": "config", "from_auto_class": from_auto_class}
|
668 |
+
if from_pipeline is not None:
|
669 |
+
user_agent["using_pipeline"] = from_pipeline
|
670 |
+
|
671 |
+
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
672 |
+
|
673 |
+
is_local = os.path.isdir(pretrained_model_name_or_path)
|
674 |
+
if os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path)):
|
675 |
+
# Special case when pretrained_model_name_or_path is a local file
|
676 |
+
resolved_config_file = pretrained_model_name_or_path
|
677 |
+
is_local = True
|
678 |
+
elif is_remote_url(pretrained_model_name_or_path):
|
679 |
+
configuration_file = pretrained_model_name_or_path
|
680 |
+
resolved_config_file = download_url(pretrained_model_name_or_path)
|
681 |
+
else:
|
682 |
+
configuration_file = kwargs.pop("_configuration_file", CONFIG_NAME)
|
683 |
+
|
684 |
+
try:
|
685 |
+
# Load from local folder or from cache or download from model Hub and cache
|
686 |
+
resolved_config_file = cached_file(
|
687 |
+
pretrained_model_name_or_path,
|
688 |
+
configuration_file,
|
689 |
+
cache_dir=cache_dir,
|
690 |
+
force_download=force_download,
|
691 |
+
proxies=proxies,
|
692 |
+
resume_download=resume_download,
|
693 |
+
local_files_only=local_files_only,
|
694 |
+
token=token,
|
695 |
+
user_agent=user_agent,
|
696 |
+
revision=revision,
|
697 |
+
subfolder=subfolder,
|
698 |
+
_commit_hash=commit_hash,
|
699 |
+
)
|
700 |
+
commit_hash = extract_commit_hash(resolved_config_file, commit_hash)
|
701 |
+
except EnvironmentError:
|
702 |
+
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to
|
703 |
+
# the original exception.
|
704 |
+
raise
|
705 |
+
except Exception:
|
706 |
+
# For any other exception, we throw a generic error.
|
707 |
+
raise EnvironmentError(
|
708 |
+
f"Can't load the configuration of '{pretrained_model_name_or_path}'. If you were trying to load it"
|
709 |
+
" from 'https://huggingface.co/models', make sure you don't have a local directory with the same"
|
710 |
+
f" name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory"
|
711 |
+
f" containing a {configuration_file} file"
|
712 |
+
)
|
713 |
+
|
714 |
+
try:
|
715 |
+
# Load config dict
|
716 |
+
config_dict = cls._dict_from_json_file(resolved_config_file)
|
717 |
+
config_dict["_commit_hash"] = commit_hash
|
718 |
+
except (json.JSONDecodeError, UnicodeDecodeError):
|
719 |
+
raise EnvironmentError(
|
720 |
+
f"It looks like the config file at '{resolved_config_file}' is not a valid JSON file."
|
721 |
+
)
|
722 |
+
|
723 |
+
if is_local:
|
724 |
+
logger.info(f"loading configuration file {resolved_config_file}")
|
725 |
+
else:
|
726 |
+
logger.info(f"loading configuration file {configuration_file} from cache at {resolved_config_file}")
|
727 |
+
|
728 |
+
if "auto_map" in config_dict and not is_local:
|
729 |
+
config_dict["auto_map"] = add_model_info_to_auto_map(
|
730 |
+
config_dict["auto_map"], pretrained_model_name_or_path
|
731 |
+
)
|
732 |
+
return config_dict, kwargs
|
733 |
+
|
734 |
+
@classmethod
|
735 |
+
def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "PretrainedConfig":
|
736 |
+
"""
|
737 |
+
Instantiates a [`PretrainedConfig`] from a Python dictionary of parameters.
|
738 |
+
|
739 |
+
Args:
|
740 |
+
config_dict (`Dict[str, Any]`):
|
741 |
+
Dictionary that will be used to instantiate the configuration object. Such a dictionary can be
|
742 |
+
retrieved from a pretrained checkpoint by leveraging the [`~PretrainedConfig.get_config_dict`] method.
|
743 |
+
kwargs (`Dict[str, Any]`):
|
744 |
+
Additional parameters from which to initialize the configuration object.
|
745 |
+
|
746 |
+
Returns:
|
747 |
+
[`PretrainedConfig`]: The configuration object instantiated from those parameters.
|
748 |
+
"""
|
749 |
+
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
|
750 |
+
# Those arguments may be passed along for our internal telemetry.
|
751 |
+
# We remove them so they don't appear in `return_unused_kwargs`.
|
752 |
+
kwargs.pop("_from_auto", None)
|
753 |
+
kwargs.pop("_from_pipeline", None)
|
754 |
+
# The commit hash might have been updated in the `config_dict`, we don't want the kwargs to erase that update.
|
755 |
+
if "_commit_hash" in kwargs and "_commit_hash" in config_dict:
|
756 |
+
kwargs["_commit_hash"] = config_dict["_commit_hash"]
|
757 |
+
|
758 |
+
# We remove it from kwargs so that it does not appear in `return_unused_kwargs`.
|
759 |
+
config_dict["attn_implementation"] = kwargs.pop("attn_implementation", None)
|
760 |
+
|
761 |
+
config = cls(**config_dict)
|
762 |
+
|
763 |
+
if hasattr(config, "pruned_heads"):
|
764 |
+
config.pruned_heads = {int(key): value for key, value in config.pruned_heads.items()}
|
765 |
+
|
766 |
+
# Update config with kwargs if needed
|
767 |
+
if "num_labels" in kwargs and "id2label" in kwargs:
|
768 |
+
num_labels = kwargs["num_labels"]
|
769 |
+
id2label = kwargs["id2label"] if kwargs["id2label"] is not None else []
|
770 |
+
if len(id2label) != num_labels:
|
771 |
+
raise ValueError(
|
772 |
+
f"You passed along `num_labels={num_labels }` with an incompatible id to label map: "
|
773 |
+
f"{kwargs['id2label']}. Since those arguments are inconsistent with each other, you should remove "
|
774 |
+
"one of them."
|
775 |
+
)
|
776 |
+
to_remove = []
|
777 |
+
for key, value in kwargs.items():
|
778 |
+
if hasattr(config, key):
|
779 |
+
current_attr = getattr(config, key)
|
780 |
+
# To authorize passing a custom subconfig as kwarg in models that have nested configs.
|
781 |
+
if isinstance(current_attr, PretrainedConfig) and isinstance(value, dict):
|
782 |
+
value = current_attr.__class__(**value)
|
783 |
+
setattr(config, key, value)
|
784 |
+
if key != "torch_dtype":
|
785 |
+
to_remove.append(key)
|
786 |
+
for key in to_remove:
|
787 |
+
kwargs.pop(key, None)
|
788 |
+
|
789 |
+
logger.info(f"Model config {config}")
|
790 |
+
if return_unused_kwargs:
|
791 |
+
return config, kwargs
|
792 |
+
else:
|
793 |
+
return config
|
794 |
+
|
795 |
+
@classmethod
|
796 |
+
def from_json_file(cls, json_file: Union[str, os.PathLike]) -> "PretrainedConfig":
|
797 |
+
"""
|
798 |
+
Instantiates a [`PretrainedConfig`] from the path to a JSON file of parameters.
|
799 |
+
|
800 |
+
Args:
|
801 |
+
json_file (`str` or `os.PathLike`):
|
802 |
+
Path to the JSON file containing the parameters.
|
803 |
+
|
804 |
+
Returns:
|
805 |
+
[`PretrainedConfig`]: The configuration object instantiated from that JSON file.
|
806 |
+
|
807 |
+
"""
|
808 |
+
config_dict = cls._dict_from_json_file(json_file)
|
809 |
+
return cls(**config_dict)
|
810 |
+
|
811 |
+
@classmethod
|
812 |
+
def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]):
|
813 |
+
with open(json_file, "r", encoding="utf-8") as reader:
|
814 |
+
text = reader.read()
|
815 |
+
return json.loads(text)
|
816 |
+
|
817 |
+
def __eq__(self, other):
|
818 |
+
return isinstance(other, PretrainedConfig) and (self.__dict__ == other.__dict__)
|
819 |
+
|
820 |
+
def __repr__(self):
|
821 |
+
return f"{self.__class__.__name__} {self.to_json_string()}"
|
822 |
+
|
823 |
+
def to_diff_dict(self) -> Dict[str, Any]:
|
824 |
+
"""
|
825 |
+
Removes all attributes from config which correspond to the default config attributes for better readability and
|
826 |
+
serializes to a Python dictionary.
|
827 |
+
|
828 |
+
Returns:
|
829 |
+
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance,
|
830 |
+
"""
|
831 |
+
config_dict = self.to_dict()
|
832 |
+
|
833 |
+
# get the default config dict
|
834 |
+
default_config_dict = PretrainedConfig().to_dict()
|
835 |
+
|
836 |
+
# get class specific config dict
|
837 |
+
class_config_dict = self.__class__().to_dict() if not self.is_composition else {}
|
838 |
+
|
839 |
+
serializable_config_dict = {}
|
840 |
+
|
841 |
+
# only serialize values that differ from the default config
|
842 |
+
for key, value in config_dict.items():
|
843 |
+
if (
|
844 |
+
isinstance(getattr(self, key, None), PretrainedConfig)
|
845 |
+
and key in class_config_dict
|
846 |
+
and isinstance(class_config_dict[key], dict)
|
847 |
+
):
|
848 |
+
# For nested configs we need to clean the diff recursively
|
849 |
+
diff = recursive_diff_dict(value, class_config_dict[key], config_obj=getattr(self, key, None))
|
850 |
+
if "model_type" in value:
|
851 |
+
# Needs to be set even if it's not in the diff
|
852 |
+
diff["model_type"] = value["model_type"]
|
853 |
+
if len(diff) > 0:
|
854 |
+
serializable_config_dict[key] = diff
|
855 |
+
elif (
|
856 |
+
key not in default_config_dict
|
857 |
+
or key == "transformers_version"
|
858 |
+
or value != default_config_dict[key]
|
859 |
+
or (key in class_config_dict and value != class_config_dict[key])
|
860 |
+
):
|
861 |
+
serializable_config_dict[key] = value
|
862 |
+
|
863 |
+
if hasattr(self, "quantization_config"):
|
864 |
+
serializable_config_dict["quantization_config"] = (
|
865 |
+
self.quantization_config.to_dict()
|
866 |
+
if not isinstance(self.quantization_config, dict)
|
867 |
+
else self.quantization_config
|
868 |
+
)
|
869 |
+
|
870 |
+
# pop the `_pre_quantization_dtype` as torch.dtypes are not serializable.
|
871 |
+
_ = serializable_config_dict.pop("_pre_quantization_dtype", None)
|
872 |
+
|
873 |
+
self.dict_torch_dtype_to_str(serializable_config_dict)
|
874 |
+
|
875 |
+
if "_attn_implementation_internal" in serializable_config_dict:
|
876 |
+
del serializable_config_dict["_attn_implementation_internal"]
|
877 |
+
|
878 |
+
return serializable_config_dict
|
879 |
+
|
880 |
+
def to_dict(self) -> Dict[str, Any]:
|
881 |
+
"""
|
882 |
+
Serializes this instance to a Python dictionary.
|
883 |
+
|
884 |
+
Returns:
|
885 |
+
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
|
886 |
+
"""
|
887 |
+
output = copy.deepcopy(self.__dict__)
|
888 |
+
if hasattr(self.__class__, "model_type"):
|
889 |
+
output["model_type"] = self.__class__.model_type
|
890 |
+
if "_auto_class" in output:
|
891 |
+
del output["_auto_class"]
|
892 |
+
if "_commit_hash" in output:
|
893 |
+
del output["_commit_hash"]
|
894 |
+
if "_attn_implementation_internal" in output:
|
895 |
+
del output["_attn_implementation_internal"]
|
896 |
+
|
897 |
+
# Transformers version when serializing the model
|
898 |
+
output["transformers_version"] = __version__
|
899 |
+
|
900 |
+
for key, value in output.items():
|
901 |
+
# Deal with nested configs like CLIP
|
902 |
+
if isinstance(value, PretrainedConfig):
|
903 |
+
value = value.to_dict()
|
904 |
+
del value["transformers_version"]
|
905 |
+
|
906 |
+
output[key] = value
|
907 |
+
|
908 |
+
if hasattr(self, "quantization_config"):
|
909 |
+
output["quantization_config"] = (
|
910 |
+
self.quantization_config.to_dict()
|
911 |
+
if not isinstance(self.quantization_config, dict)
|
912 |
+
else self.quantization_config
|
913 |
+
)
|
914 |
+
|
915 |
+
# pop the `_pre_quantization_dtype` as torch.dtypes are not serializable.
|
916 |
+
_ = output.pop("_pre_quantization_dtype", None)
|
917 |
+
|
918 |
+
self.dict_torch_dtype_to_str(output)
|
919 |
+
|
920 |
+
return output
|
921 |
+
|
922 |
+
def to_json_string(self, use_diff: bool = True) -> str:
|
923 |
+
"""
|
924 |
+
Serializes this instance to a JSON string.
|
925 |
+
|
926 |
+
Args:
|
927 |
+
use_diff (`bool`, *optional*, defaults to `True`):
|
928 |
+
If set to `True`, only the difference between the config instance and the default `PretrainedConfig()`
|
929 |
+
is serialized to JSON string.
|
930 |
+
|
931 |
+
Returns:
|
932 |
+
`str`: String containing all the attributes that make up this configuration instance in JSON format.
|
933 |
+
"""
|
934 |
+
if use_diff is True:
|
935 |
+
config_dict = self.to_diff_dict()
|
936 |
+
else:
|
937 |
+
config_dict = self.to_dict()
|
938 |
+
return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
|
939 |
+
|
940 |
+
def to_json_file(self, json_file_path: Union[str, os.PathLike], use_diff: bool = True):
|
941 |
+
"""
|
942 |
+
Save this instance to a JSON file.
|
943 |
+
|
944 |
+
Args:
|
945 |
+
json_file_path (`str` or `os.PathLike`):
|
946 |
+
Path to the JSON file in which this configuration instance's parameters will be saved.
|
947 |
+
use_diff (`bool`, *optional*, defaults to `True`):
|
948 |
+
If set to `True`, only the difference between the config instance and the default `PretrainedConfig()`
|
949 |
+
is serialized to JSON file.
|
950 |
+
"""
|
951 |
+
with open(json_file_path, "w", encoding="utf-8") as writer:
|
952 |
+
writer.write(self.to_json_string(use_diff=use_diff))
|
953 |
+
|
954 |
+
def update(self, config_dict: Dict[str, Any]):
|
955 |
+
"""
|
956 |
+
Updates attributes of this class with attributes from `config_dict`.
|
957 |
+
|
958 |
+
Args:
|
959 |
+
config_dict (`Dict[str, Any]`): Dictionary of attributes that should be updated for this class.
|
960 |
+
"""
|
961 |
+
for key, value in config_dict.items():
|
962 |
+
setattr(self, key, value)
|
963 |
+
|
964 |
+
def update_from_string(self, update_str: str):
|
965 |
+
"""
|
966 |
+
Updates attributes of this class with attributes from `update_str`.
|
967 |
+
|
968 |
+
The expected format is ints, floats and strings as is, and for booleans use `true` or `false`. For example:
|
969 |
+
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
|
970 |
+
|
971 |
+
The keys to change have to already exist in the config object.
|
972 |
+
|
973 |
+
Args:
|
974 |
+
update_str (`str`): String with attributes that should be updated for this class.
|
975 |
+
|
976 |
+
"""
|
977 |
+
|
978 |
+
d = dict(x.split("=") for x in update_str.split(","))
|
979 |
+
for k, v in d.items():
|
980 |
+
if not hasattr(self, k):
|
981 |
+
raise ValueError(f"key {k} isn't in the original config dict")
|
982 |
+
|
983 |
+
old_v = getattr(self, k)
|
984 |
+
if isinstance(old_v, bool):
|
985 |
+
if v.lower() in ["true", "1", "y", "yes"]:
|
986 |
+
v = True
|
987 |
+
elif v.lower() in ["false", "0", "n", "no"]:
|
988 |
+
v = False
|
989 |
+
else:
|
990 |
+
raise ValueError(f"can't derive true or false from {v} (key {k})")
|
991 |
+
elif isinstance(old_v, int):
|
992 |
+
v = int(v)
|
993 |
+
elif isinstance(old_v, float):
|
994 |
+
v = float(v)
|
995 |
+
elif not isinstance(old_v, str):
|
996 |
+
raise ValueError(
|
997 |
+
f"You can only update int, float, bool or string values in the config, got {v} for key {k}"
|
998 |
+
)
|
999 |
+
|
1000 |
+
setattr(self, k, v)
|
1001 |
+
|
1002 |
+
def dict_torch_dtype_to_str(self, d: Dict[str, Any]) -> None:
|
1003 |
+
"""
|
1004 |
+
Checks whether the passed dictionary and its nested dicts have a *torch_dtype* key and if it's not None,
|
1005 |
+
converts torch.dtype to a string of just the type. For example, `torch.float32` get converted into *"float32"*
|
1006 |
+
string, which can then be stored in the json format.
|
1007 |
+
"""
|
1008 |
+
if d.get("torch_dtype", None) is not None and not isinstance(d["torch_dtype"], str):
|
1009 |
+
d["torch_dtype"] = str(d["torch_dtype"]).split(".")[1]
|
1010 |
+
for value in d.values():
|
1011 |
+
if isinstance(value, dict):
|
1012 |
+
self.dict_torch_dtype_to_str(value)
|
1013 |
+
|
1014 |
+
@classmethod
|
1015 |
+
def register_for_auto_class(cls, auto_class="AutoConfig"):
|
1016 |
+
"""
|
1017 |
+
Register this class with a given auto class. This should only be used for custom configurations as the ones in
|
1018 |
+
the library are already mapped with `AutoConfig`.
|
1019 |
+
|
1020 |
+
<Tip warning={true}>
|
1021 |
+
|
1022 |
+
This API is experimental and may have some slight breaking changes in the next releases.
|
1023 |
+
|
1024 |
+
</Tip>
|
1025 |
+
|
1026 |
+
Args:
|
1027 |
+
auto_class (`str` or `type`, *optional*, defaults to `"AutoConfig"`):
|
1028 |
+
The auto class to register this new configuration with.
|
1029 |
+
"""
|
1030 |
+
if not isinstance(auto_class, str):
|
1031 |
+
auto_class = auto_class.__name__
|
1032 |
+
|
1033 |
+
import transformers.models.auto as auto_module
|
1034 |
+
|
1035 |
+
if not hasattr(auto_module, auto_class):
|
1036 |
+
raise ValueError(f"{auto_class} is not a valid auto class.")
|
1037 |
+
|
1038 |
+
cls._auto_class = auto_class
|
1039 |
+
|
1040 |
+
@staticmethod
|
1041 |
+
def _get_generation_defaults() -> Dict[str, Any]:
|
1042 |
+
return {
|
1043 |
+
"max_length": 20,
|
1044 |
+
"min_length": 0,
|
1045 |
+
"do_sample": False,
|
1046 |
+
"early_stopping": False,
|
1047 |
+
"num_beams": 1,
|
1048 |
+
"num_beam_groups": 1,
|
1049 |
+
"diversity_penalty": 0.0,
|
1050 |
+
"temperature": 1.0,
|
1051 |
+
"top_k": 50,
|
1052 |
+
"top_p": 1.0,
|
1053 |
+
"typical_p": 1.0,
|
1054 |
+
"repetition_penalty": 1.0,
|
1055 |
+
"length_penalty": 1.0,
|
1056 |
+
"no_repeat_ngram_size": 0,
|
1057 |
+
"encoder_no_repeat_ngram_size": 0,
|
1058 |
+
"bad_words_ids": None,
|
1059 |
+
"num_return_sequences": 1,
|
1060 |
+
"output_scores": False,
|
1061 |
+
"return_dict_in_generate": False,
|
1062 |
+
"forced_bos_token_id": None,
|
1063 |
+
"forced_eos_token_id": None,
|
1064 |
+
"remove_invalid_values": False,
|
1065 |
+
"exponential_decay_length_penalty": None,
|
1066 |
+
"suppress_tokens": None,
|
1067 |
+
"begin_suppress_tokens": None,
|
1068 |
+
}
|
1069 |
+
|
1070 |
+
def _has_non_default_generation_parameters(self) -> bool:
|
1071 |
+
"""
|
1072 |
+
Whether or not this instance holds non-default generation parameters.
|
1073 |
+
"""
|
1074 |
+
for parameter_name, default_value in self._get_generation_defaults().items():
|
1075 |
+
if hasattr(self, parameter_name) and getattr(self, parameter_name) != default_value:
|
1076 |
+
return True
|
1077 |
+
return False
|
1078 |
+
|
1079 |
+
|
1080 |
+
def get_configuration_file(configuration_files: List[str]) -> str:
|
1081 |
+
"""
|
1082 |
+
Get the configuration file to use for this version of transformers.
|
1083 |
+
|
1084 |
+
Args:
|
1085 |
+
configuration_files (`List[str]`): The list of available configuration files.
|
1086 |
+
|
1087 |
+
Returns:
|
1088 |
+
`str`: The configuration file to use.
|
1089 |
+
"""
|
1090 |
+
configuration_files_map = {}
|
1091 |
+
for file_name in configuration_files:
|
1092 |
+
search = _re_configuration_file.search(file_name)
|
1093 |
+
if search is not None:
|
1094 |
+
v = search.groups()[0]
|
1095 |
+
configuration_files_map[v] = file_name
|
1096 |
+
available_versions = sorted(configuration_files_map.keys())
|
1097 |
+
|
1098 |
+
# Defaults to FULL_CONFIGURATION_FILE and then try to look at some newer versions.
|
1099 |
+
configuration_file = CONFIG_NAME
|
1100 |
+
transformers_version = version.parse(__version__)
|
1101 |
+
for v in available_versions:
|
1102 |
+
if version.parse(v) <= transformers_version:
|
1103 |
+
configuration_file = configuration_files_map[v]
|
1104 |
+
else:
|
1105 |
+
# No point going further since the versions are sorted.
|
1106 |
+
break
|
1107 |
+
|
1108 |
+
return configuration_file
|
1109 |
+
|
1110 |
+
|
1111 |
+
def recursive_diff_dict(dict_a, dict_b, config_obj=None):
|
1112 |
+
"""
|
1113 |
+
Helper function to recursively take the diff between two nested dictionaries. The resulting diff only contains the
|
1114 |
+
values from `dict_a` that are different from values in `dict_b`.
|
1115 |
+
"""
|
1116 |
+
diff = {}
|
1117 |
+
default = config_obj.__class__().to_dict() if config_obj is not None else {}
|
1118 |
+
for key, value in dict_a.items():
|
1119 |
+
obj_value = getattr(config_obj, str(key), None)
|
1120 |
+
if isinstance(obj_value, PretrainedConfig) and key in dict_b and isinstance(dict_b[key], dict):
|
1121 |
+
diff_value = recursive_diff_dict(value, dict_b[key], config_obj=obj_value)
|
1122 |
+
if len(diff_value) > 0:
|
1123 |
+
diff[key] = diff_value
|
1124 |
+
elif key not in dict_b or value != dict_b[key] or key not in default or value != default[key]:
|
1125 |
+
diff[key] = value
|
1126 |
+
return diff
|
1127 |
+
|
1128 |
+
|
1129 |
+
PretrainedConfig.push_to_hub = copy_func(PretrainedConfig.push_to_hub)
|
1130 |
+
if PretrainedConfig.push_to_hub.__doc__ is not None:
|
1131 |
+
PretrainedConfig.push_to_hub.__doc__ = PretrainedConfig.push_to_hub.__doc__.format(
|
1132 |
+
object="config", object_class="AutoConfig", object_files="configuration file"
|
1133 |
+
)
|
venv/lib/python3.10/site-packages/transformers/convert_graph_to_onnx.py
ADDED
@@ -0,0 +1,551 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import warnings
|
16 |
+
from argparse import ArgumentParser
|
17 |
+
from os import listdir, makedirs
|
18 |
+
from pathlib import Path
|
19 |
+
from typing import Dict, List, Optional, Tuple
|
20 |
+
|
21 |
+
from packaging.version import Version, parse
|
22 |
+
|
23 |
+
from transformers.pipelines import Pipeline, pipeline
|
24 |
+
from transformers.tokenization_utils import BatchEncoding
|
25 |
+
from transformers.utils import ModelOutput, is_tf_available, is_torch_available
|
26 |
+
|
27 |
+
|
28 |
+
# This is the minimal required version to
|
29 |
+
# support some ONNX Runtime features
|
30 |
+
ORT_QUANTIZE_MINIMUM_VERSION = parse("1.4.0")
|
31 |
+
|
32 |
+
|
33 |
+
SUPPORTED_PIPELINES = [
|
34 |
+
"feature-extraction",
|
35 |
+
"ner",
|
36 |
+
"sentiment-analysis",
|
37 |
+
"fill-mask",
|
38 |
+
"question-answering",
|
39 |
+
"text-generation",
|
40 |
+
"translation_en_to_fr",
|
41 |
+
"translation_en_to_de",
|
42 |
+
"translation_en_to_ro",
|
43 |
+
]
|
44 |
+
|
45 |
+
|
46 |
+
class OnnxConverterArgumentParser(ArgumentParser):
|
47 |
+
"""
|
48 |
+
Wraps all the script arguments supported to export transformers models to ONNX IR
|
49 |
+
"""
|
50 |
+
|
51 |
+
def __init__(self):
|
52 |
+
super().__init__("ONNX Converter")
|
53 |
+
|
54 |
+
self.add_argument(
|
55 |
+
"--pipeline",
|
56 |
+
type=str,
|
57 |
+
choices=SUPPORTED_PIPELINES,
|
58 |
+
default="feature-extraction",
|
59 |
+
)
|
60 |
+
self.add_argument(
|
61 |
+
"--model",
|
62 |
+
type=str,
|
63 |
+
required=True,
|
64 |
+
help="Model's id or path (ex: google-bert/bert-base-cased)",
|
65 |
+
)
|
66 |
+
self.add_argument("--tokenizer", type=str, help="Tokenizer's id or path (ex: google-bert/bert-base-cased)")
|
67 |
+
self.add_argument(
|
68 |
+
"--framework",
|
69 |
+
type=str,
|
70 |
+
choices=["pt", "tf"],
|
71 |
+
help="Framework for loading the model",
|
72 |
+
)
|
73 |
+
self.add_argument("--opset", type=int, default=11, help="ONNX opset to use")
|
74 |
+
self.add_argument(
|
75 |
+
"--check-loading",
|
76 |
+
action="store_true",
|
77 |
+
help="Check ONNX is able to load the model",
|
78 |
+
)
|
79 |
+
self.add_argument(
|
80 |
+
"--use-external-format",
|
81 |
+
action="store_true",
|
82 |
+
help="Allow exporting model >= than 2Gb",
|
83 |
+
)
|
84 |
+
self.add_argument(
|
85 |
+
"--quantize",
|
86 |
+
action="store_true",
|
87 |
+
help="Quantize the neural network to be run with int8",
|
88 |
+
)
|
89 |
+
self.add_argument("output")
|
90 |
+
|
91 |
+
|
92 |
+
def generate_identified_filename(filename: Path, identifier: str) -> Path:
|
93 |
+
"""
|
94 |
+
Append a string-identifier at the end (before the extension, if any) to the provided filepath
|
95 |
+
|
96 |
+
Args:
|
97 |
+
filename: pathlib.Path The actual path object we would like to add an identifier suffix
|
98 |
+
identifier: The suffix to add
|
99 |
+
|
100 |
+
Returns: String with concatenated identifier at the end of the filename
|
101 |
+
"""
|
102 |
+
return filename.parent.joinpath(filename.stem + identifier).with_suffix(filename.suffix)
|
103 |
+
|
104 |
+
|
105 |
+
def check_onnxruntime_requirements(minimum_version: Version):
|
106 |
+
"""
|
107 |
+
Check onnxruntime is installed and if the installed version match is recent enough
|
108 |
+
|
109 |
+
Raises:
|
110 |
+
ImportError: If onnxruntime is not installed or too old version is found
|
111 |
+
"""
|
112 |
+
try:
|
113 |
+
import onnxruntime
|
114 |
+
|
115 |
+
# Parse the version of the installed onnxruntime
|
116 |
+
ort_version = parse(onnxruntime.__version__)
|
117 |
+
|
118 |
+
# We require 1.4.0 minimum
|
119 |
+
if ort_version < ORT_QUANTIZE_MINIMUM_VERSION:
|
120 |
+
raise ImportError(
|
121 |
+
f"We found an older version of onnxruntime ({onnxruntime.__version__}) "
|
122 |
+
f"but we require onnxruntime to be >= {minimum_version} to enable all the conversions options.\n"
|
123 |
+
"Please update onnxruntime by running `pip install --upgrade onnxruntime`"
|
124 |
+
)
|
125 |
+
|
126 |
+
except ImportError:
|
127 |
+
raise ImportError(
|
128 |
+
"onnxruntime doesn't seem to be currently installed. "
|
129 |
+
"Please install the onnxruntime by running `pip install onnxruntime`"
|
130 |
+
" and relaunch the conversion."
|
131 |
+
)
|
132 |
+
|
133 |
+
|
134 |
+
def ensure_valid_input(model, tokens, input_names):
|
135 |
+
"""
|
136 |
+
Ensure inputs are presented in the correct order, without any Non
|
137 |
+
|
138 |
+
Args:
|
139 |
+
model: The model used to forward the input data
|
140 |
+
tokens: BatchEncoding holding the input data
|
141 |
+
input_names: The name of the inputs
|
142 |
+
|
143 |
+
Returns: Tuple
|
144 |
+
|
145 |
+
"""
|
146 |
+
print("Ensuring inputs are in correct order")
|
147 |
+
|
148 |
+
model_args_name = model.forward.__code__.co_varnames
|
149 |
+
model_args, ordered_input_names = [], []
|
150 |
+
for arg_name in model_args_name[1:]: # start at index 1 to skip "self" argument
|
151 |
+
if arg_name in input_names:
|
152 |
+
ordered_input_names.append(arg_name)
|
153 |
+
model_args.append(tokens[arg_name])
|
154 |
+
else:
|
155 |
+
print(f"{arg_name} is not present in the generated input list.")
|
156 |
+
break
|
157 |
+
|
158 |
+
print(f"Generated inputs order: {ordered_input_names}")
|
159 |
+
return ordered_input_names, tuple(model_args)
|
160 |
+
|
161 |
+
|
162 |
+
def infer_shapes(nlp: Pipeline, framework: str) -> Tuple[List[str], List[str], Dict, BatchEncoding]:
|
163 |
+
"""
|
164 |
+
Attempt to infer the static vs dynamic axes for each input and output tensors for a specific model
|
165 |
+
|
166 |
+
Args:
|
167 |
+
nlp: The pipeline object holding the model to be exported
|
168 |
+
framework: The framework identifier to dispatch to the correct inference scheme (pt/tf)
|
169 |
+
|
170 |
+
Returns:
|
171 |
+
|
172 |
+
- List of the inferred input variable names
|
173 |
+
- List of the inferred output variable names
|
174 |
+
- Dictionary with input/output variables names as key and shape tensor as value
|
175 |
+
- a BatchEncoding reference which was used to infer all the above information
|
176 |
+
"""
|
177 |
+
|
178 |
+
def build_shape_dict(name: str, tensor, is_input: bool, seq_len: int):
|
179 |
+
if isinstance(tensor, (tuple, list)):
|
180 |
+
return [build_shape_dict(name, t, is_input, seq_len) for t in tensor]
|
181 |
+
|
182 |
+
else:
|
183 |
+
# Let's assume batch is the first axis with only 1 element (~~ might not be always true ...)
|
184 |
+
axes = {[axis for axis, numel in enumerate(tensor.shape) if numel == 1][0]: "batch"}
|
185 |
+
if is_input:
|
186 |
+
if len(tensor.shape) == 2:
|
187 |
+
axes[1] = "sequence"
|
188 |
+
else:
|
189 |
+
raise ValueError(f"Unable to infer tensor axes ({len(tensor.shape)})")
|
190 |
+
else:
|
191 |
+
seq_axes = [dim for dim, shape in enumerate(tensor.shape) if shape == seq_len]
|
192 |
+
axes.update({dim: "sequence" for dim in seq_axes})
|
193 |
+
|
194 |
+
print(f"Found {'input' if is_input else 'output'} {name} with shape: {axes}")
|
195 |
+
return axes
|
196 |
+
|
197 |
+
tokens = nlp.tokenizer("This is a sample output", return_tensors=framework)
|
198 |
+
seq_len = tokens.input_ids.shape[-1]
|
199 |
+
outputs = nlp.model(**tokens) if framework == "pt" else nlp.model(tokens)
|
200 |
+
if isinstance(outputs, ModelOutput):
|
201 |
+
outputs = outputs.to_tuple()
|
202 |
+
if not isinstance(outputs, (list, tuple)):
|
203 |
+
outputs = (outputs,)
|
204 |
+
|
205 |
+
# Generate input names & axes
|
206 |
+
input_vars = list(tokens.keys())
|
207 |
+
input_dynamic_axes = {k: build_shape_dict(k, v, True, seq_len) for k, v in tokens.items()}
|
208 |
+
|
209 |
+
# flatten potentially grouped outputs (past for gpt2, attentions)
|
210 |
+
outputs_flat = []
|
211 |
+
for output in outputs:
|
212 |
+
if isinstance(output, (tuple, list)):
|
213 |
+
outputs_flat.extend(output)
|
214 |
+
else:
|
215 |
+
outputs_flat.append(output)
|
216 |
+
|
217 |
+
# Generate output names & axes
|
218 |
+
output_names = [f"output_{i}" for i in range(len(outputs_flat))]
|
219 |
+
output_dynamic_axes = {k: build_shape_dict(k, v, False, seq_len) for k, v in zip(output_names, outputs_flat)}
|
220 |
+
|
221 |
+
# Create the aggregated axes representation
|
222 |
+
dynamic_axes = dict(input_dynamic_axes, **output_dynamic_axes)
|
223 |
+
return input_vars, output_names, dynamic_axes, tokens
|
224 |
+
|
225 |
+
|
226 |
+
def load_graph_from_args(
|
227 |
+
pipeline_name: str, framework: str, model: str, tokenizer: Optional[str] = None, **models_kwargs
|
228 |
+
) -> Pipeline:
|
229 |
+
"""
|
230 |
+
Convert the set of arguments provided through the CLI to an actual pipeline reference (tokenizer + model
|
231 |
+
|
232 |
+
Args:
|
233 |
+
pipeline_name: The kind of pipeline to use (ner, question-answering, etc.)
|
234 |
+
framework: The actual model to convert the pipeline from ("pt" or "tf")
|
235 |
+
model: The model name which will be loaded by the pipeline
|
236 |
+
tokenizer: The tokenizer name which will be loaded by the pipeline, default to the model's value
|
237 |
+
|
238 |
+
Returns: Pipeline object
|
239 |
+
|
240 |
+
"""
|
241 |
+
# If no tokenizer provided
|
242 |
+
if tokenizer is None:
|
243 |
+
tokenizer = model
|
244 |
+
|
245 |
+
# Check the wanted framework is available
|
246 |
+
if framework == "pt" and not is_torch_available():
|
247 |
+
raise Exception("Cannot convert because PyTorch is not installed. Please install torch first.")
|
248 |
+
if framework == "tf" and not is_tf_available():
|
249 |
+
raise Exception("Cannot convert because TF is not installed. Please install tensorflow first.")
|
250 |
+
|
251 |
+
print(f"Loading pipeline (model: {model}, tokenizer: {tokenizer})")
|
252 |
+
|
253 |
+
# Allocate tokenizer and model
|
254 |
+
return pipeline(pipeline_name, model=model, tokenizer=tokenizer, framework=framework, model_kwargs=models_kwargs)
|
255 |
+
|
256 |
+
|
257 |
+
def convert_pytorch(nlp: Pipeline, opset: int, output: Path, use_external_format: bool):
|
258 |
+
"""
|
259 |
+
Export a PyTorch backed pipeline to ONNX Intermediate Representation (IR
|
260 |
+
|
261 |
+
Args:
|
262 |
+
nlp: The pipeline to be exported
|
263 |
+
opset: The actual version of the ONNX operator set to use
|
264 |
+
output: Path where will be stored the generated ONNX model
|
265 |
+
use_external_format: Split the model definition from its parameters to allow model bigger than 2GB
|
266 |
+
|
267 |
+
Returns:
|
268 |
+
|
269 |
+
"""
|
270 |
+
if not is_torch_available():
|
271 |
+
raise Exception("Cannot convert because PyTorch is not installed. Please install torch first.")
|
272 |
+
|
273 |
+
import torch
|
274 |
+
from torch.onnx import export
|
275 |
+
|
276 |
+
print(f"Using framework PyTorch: {torch.__version__}")
|
277 |
+
|
278 |
+
with torch.no_grad():
|
279 |
+
input_names, output_names, dynamic_axes, tokens = infer_shapes(nlp, "pt")
|
280 |
+
ordered_input_names, model_args = ensure_valid_input(nlp.model, tokens, input_names)
|
281 |
+
|
282 |
+
export(
|
283 |
+
nlp.model,
|
284 |
+
model_args,
|
285 |
+
f=output.as_posix(),
|
286 |
+
input_names=ordered_input_names,
|
287 |
+
output_names=output_names,
|
288 |
+
dynamic_axes=dynamic_axes,
|
289 |
+
do_constant_folding=True,
|
290 |
+
opset_version=opset,
|
291 |
+
)
|
292 |
+
|
293 |
+
|
294 |
+
def convert_tensorflow(nlp: Pipeline, opset: int, output: Path):
|
295 |
+
"""
|
296 |
+
Export a TensorFlow backed pipeline to ONNX Intermediate Representation (IR)
|
297 |
+
|
298 |
+
Args:
|
299 |
+
nlp: The pipeline to be exported
|
300 |
+
opset: The actual version of the ONNX operator set to use
|
301 |
+
output: Path where will be stored the generated ONNX model
|
302 |
+
|
303 |
+
Notes: TensorFlow cannot export model bigger than 2GB due to internal constraint from TensorFlow
|
304 |
+
|
305 |
+
"""
|
306 |
+
if not is_tf_available():
|
307 |
+
raise Exception("Cannot convert because TF is not installed. Please install tensorflow first.")
|
308 |
+
|
309 |
+
print("/!\\ Please note TensorFlow doesn't support exporting model > 2Gb /!\\")
|
310 |
+
|
311 |
+
try:
|
312 |
+
import tensorflow as tf
|
313 |
+
import tf2onnx
|
314 |
+
from tf2onnx import __version__ as t2ov
|
315 |
+
|
316 |
+
print(f"Using framework TensorFlow: {tf.version.VERSION}, tf2onnx: {t2ov}")
|
317 |
+
|
318 |
+
# Build
|
319 |
+
input_names, output_names, dynamic_axes, tokens = infer_shapes(nlp, "tf")
|
320 |
+
|
321 |
+
# Forward
|
322 |
+
nlp.model.predict(tokens.data)
|
323 |
+
input_signature = [tf.TensorSpec.from_tensor(tensor, name=key) for key, tensor in tokens.items()]
|
324 |
+
model_proto, _ = tf2onnx.convert.from_keras(
|
325 |
+
nlp.model, input_signature, opset=opset, output_path=output.as_posix()
|
326 |
+
)
|
327 |
+
|
328 |
+
except ImportError as e:
|
329 |
+
raise Exception(
|
330 |
+
f"Cannot import {e.name} required to convert TF model to ONNX. Please install {e.name} first. {e}"
|
331 |
+
)
|
332 |
+
|
333 |
+
|
334 |
+
def convert(
|
335 |
+
framework: str,
|
336 |
+
model: str,
|
337 |
+
output: Path,
|
338 |
+
opset: int,
|
339 |
+
tokenizer: Optional[str] = None,
|
340 |
+
use_external_format: bool = False,
|
341 |
+
pipeline_name: str = "feature-extraction",
|
342 |
+
**model_kwargs,
|
343 |
+
):
|
344 |
+
"""
|
345 |
+
Convert the pipeline object to the ONNX Intermediate Representation (IR) format
|
346 |
+
|
347 |
+
Args:
|
348 |
+
framework: The framework the pipeline is backed by ("pt" or "tf")
|
349 |
+
model: The name of the model to load for the pipeline
|
350 |
+
output: The path where the ONNX graph will be stored
|
351 |
+
opset: The actual version of the ONNX operator set to use
|
352 |
+
tokenizer: The name of the model to load for the pipeline, default to the model's name if not provided
|
353 |
+
use_external_format:
|
354 |
+
Split the model definition from its parameters to allow model bigger than 2GB (PyTorch only)
|
355 |
+
pipeline_name: The kind of pipeline to instantiate (ner, question-answering, etc.)
|
356 |
+
model_kwargs: Keyword arguments to be forwarded to the model constructor
|
357 |
+
|
358 |
+
Returns:
|
359 |
+
|
360 |
+
"""
|
361 |
+
warnings.warn(
|
362 |
+
"The `transformers.convert_graph_to_onnx` package is deprecated and will be removed in version 5 of"
|
363 |
+
" Transformers",
|
364 |
+
FutureWarning,
|
365 |
+
)
|
366 |
+
print(f"ONNX opset version set to: {opset}")
|
367 |
+
|
368 |
+
# Load the pipeline
|
369 |
+
nlp = load_graph_from_args(pipeline_name, framework, model, tokenizer, **model_kwargs)
|
370 |
+
|
371 |
+
if not output.parent.exists():
|
372 |
+
print(f"Creating folder {output.parent}")
|
373 |
+
makedirs(output.parent.as_posix())
|
374 |
+
elif len(listdir(output.parent.as_posix())) > 0:
|
375 |
+
raise Exception(f"Folder {output.parent.as_posix()} is not empty, aborting conversion")
|
376 |
+
|
377 |
+
# Export the graph
|
378 |
+
if framework == "pt":
|
379 |
+
convert_pytorch(nlp, opset, output, use_external_format)
|
380 |
+
else:
|
381 |
+
convert_tensorflow(nlp, opset, output)
|
382 |
+
|
383 |
+
|
384 |
+
def optimize(onnx_model_path: Path) -> Path:
|
385 |
+
"""
|
386 |
+
Load the model at the specified path and let onnxruntime look at transformations on the graph to enable all the
|
387 |
+
optimizations possible
|
388 |
+
|
389 |
+
Args:
|
390 |
+
onnx_model_path: filepath where the model binary description is stored
|
391 |
+
|
392 |
+
Returns: Path where the optimized model binary description has been saved
|
393 |
+
|
394 |
+
"""
|
395 |
+
from onnxruntime import InferenceSession, SessionOptions
|
396 |
+
|
397 |
+
# Generate model name with suffix "optimized"
|
398 |
+
opt_model_path = generate_identified_filename(onnx_model_path, "-optimized")
|
399 |
+
sess_option = SessionOptions()
|
400 |
+
sess_option.optimized_model_filepath = opt_model_path.as_posix()
|
401 |
+
_ = InferenceSession(onnx_model_path.as_posix(), sess_option)
|
402 |
+
|
403 |
+
print(f"Optimized model has been written at {opt_model_path}: \N{heavy check mark}")
|
404 |
+
print("/!\\ Optimized model contains hardware specific operators which might not be portable. /!\\")
|
405 |
+
|
406 |
+
return opt_model_path
|
407 |
+
|
408 |
+
|
409 |
+
def quantize(onnx_model_path: Path) -> Path:
|
410 |
+
"""
|
411 |
+
Quantize the weights of the model from float32 to in8 to allow very efficient inference on modern CPU
|
412 |
+
|
413 |
+
Args:
|
414 |
+
onnx_model_path: Path to location the exported ONNX model is stored
|
415 |
+
|
416 |
+
Returns: The Path generated for the quantized
|
417 |
+
"""
|
418 |
+
import onnx
|
419 |
+
import onnxruntime
|
420 |
+
from onnx.onnx_pb import ModelProto
|
421 |
+
from onnxruntime.quantization import QuantizationMode
|
422 |
+
from onnxruntime.quantization.onnx_quantizer import ONNXQuantizer
|
423 |
+
from onnxruntime.quantization.registry import IntegerOpsRegistry
|
424 |
+
|
425 |
+
# Load the ONNX model
|
426 |
+
onnx_model = onnx.load(onnx_model_path.as_posix())
|
427 |
+
|
428 |
+
if parse(onnx.__version__) < parse("1.5.0"):
|
429 |
+
print(
|
430 |
+
"Models larger than 2GB will fail to quantize due to protobuf constraint.\n"
|
431 |
+
"Please upgrade to onnxruntime >= 1.5.0."
|
432 |
+
)
|
433 |
+
|
434 |
+
# Copy it
|
435 |
+
copy_model = ModelProto()
|
436 |
+
copy_model.CopyFrom(onnx_model)
|
437 |
+
|
438 |
+
# Construct quantizer
|
439 |
+
# onnxruntime renamed input_qType to activation_qType in v1.13.1, so we
|
440 |
+
# check the onnxruntime version to ensure backward compatibility.
|
441 |
+
# See also: https://github.com/microsoft/onnxruntime/pull/12873
|
442 |
+
if parse(onnxruntime.__version__) < parse("1.13.1"):
|
443 |
+
quantizer = ONNXQuantizer(
|
444 |
+
model=copy_model,
|
445 |
+
per_channel=False,
|
446 |
+
reduce_range=False,
|
447 |
+
mode=QuantizationMode.IntegerOps,
|
448 |
+
static=False,
|
449 |
+
weight_qType=True,
|
450 |
+
input_qType=False,
|
451 |
+
tensors_range=None,
|
452 |
+
nodes_to_quantize=None,
|
453 |
+
nodes_to_exclude=None,
|
454 |
+
op_types_to_quantize=list(IntegerOpsRegistry),
|
455 |
+
)
|
456 |
+
else:
|
457 |
+
quantizer = ONNXQuantizer(
|
458 |
+
model=copy_model,
|
459 |
+
per_channel=False,
|
460 |
+
reduce_range=False,
|
461 |
+
mode=QuantizationMode.IntegerOps,
|
462 |
+
static=False,
|
463 |
+
weight_qType=True,
|
464 |
+
activation_qType=False,
|
465 |
+
tensors_range=None,
|
466 |
+
nodes_to_quantize=None,
|
467 |
+
nodes_to_exclude=None,
|
468 |
+
op_types_to_quantize=list(IntegerOpsRegistry),
|
469 |
+
)
|
470 |
+
|
471 |
+
# Quantize and export
|
472 |
+
quantizer.quantize_model()
|
473 |
+
|
474 |
+
# Append "-quantized" at the end of the model's name
|
475 |
+
quantized_model_path = generate_identified_filename(onnx_model_path, "-quantized")
|
476 |
+
|
477 |
+
# Save model
|
478 |
+
print(f"Quantized model has been written at {quantized_model_path}: \N{heavy check mark}")
|
479 |
+
onnx.save_model(quantizer.model.model, quantized_model_path.as_posix())
|
480 |
+
|
481 |
+
return quantized_model_path
|
482 |
+
|
483 |
+
|
484 |
+
def verify(path: Path):
|
485 |
+
from onnxruntime import InferenceSession, SessionOptions
|
486 |
+
from onnxruntime.capi.onnxruntime_pybind11_state import RuntimeException
|
487 |
+
|
488 |
+
print(f"Checking ONNX model loading from: {path} ...")
|
489 |
+
try:
|
490 |
+
onnx_options = SessionOptions()
|
491 |
+
_ = InferenceSession(path.as_posix(), onnx_options, providers=["CPUExecutionProvider"])
|
492 |
+
print(f"Model {path} correctly loaded: \N{heavy check mark}")
|
493 |
+
except RuntimeException as re:
|
494 |
+
print(f"Error while loading the model {re}: \N{heavy ballot x}")
|
495 |
+
|
496 |
+
|
497 |
+
if __name__ == "__main__":
|
498 |
+
parser = OnnxConverterArgumentParser()
|
499 |
+
args = parser.parse_args()
|
500 |
+
|
501 |
+
# Make sure output is absolute path
|
502 |
+
args.output = Path(args.output).absolute()
|
503 |
+
|
504 |
+
try:
|
505 |
+
print("\n====== Converting model to ONNX ======")
|
506 |
+
# Convert
|
507 |
+
convert(
|
508 |
+
args.framework,
|
509 |
+
args.model,
|
510 |
+
args.output,
|
511 |
+
args.opset,
|
512 |
+
args.tokenizer,
|
513 |
+
args.use_external_format,
|
514 |
+
args.pipeline,
|
515 |
+
)
|
516 |
+
|
517 |
+
if args.quantize:
|
518 |
+
# Ensure requirements for quantization on onnxruntime is met
|
519 |
+
check_onnxruntime_requirements(ORT_QUANTIZE_MINIMUM_VERSION)
|
520 |
+
|
521 |
+
# onnxruntime optimizations doesn't provide the same level of performances on TensorFlow than PyTorch
|
522 |
+
if args.framework == "tf":
|
523 |
+
print(
|
524 |
+
"\t Using TensorFlow might not provide the same optimization level compared to PyTorch.\n"
|
525 |
+
"\t For TensorFlow users you can try optimizing the model directly through onnxruntime_tools.\n"
|
526 |
+
"\t For more information, please refer to the onnxruntime documentation:\n"
|
527 |
+
"\t\thttps://github.com/microsoft/onnxruntime/tree/master/onnxruntime/python/tools/transformers\n"
|
528 |
+
)
|
529 |
+
|
530 |
+
print("\n====== Optimizing ONNX model ======")
|
531 |
+
|
532 |
+
# Quantization works best when using the optimized version of the model
|
533 |
+
args.optimized_output = optimize(args.output)
|
534 |
+
|
535 |
+
# Do the quantization on the right graph
|
536 |
+
args.quantized_output = quantize(args.optimized_output)
|
537 |
+
|
538 |
+
# And verify
|
539 |
+
if args.check_loading:
|
540 |
+
print("\n====== Check exported ONNX model(s) ======")
|
541 |
+
verify(args.output)
|
542 |
+
|
543 |
+
if hasattr(args, "optimized_output"):
|
544 |
+
verify(args.optimized_output)
|
545 |
+
|
546 |
+
if hasattr(args, "quantized_output"):
|
547 |
+
verify(args.quantized_output)
|
548 |
+
|
549 |
+
except Exception as e:
|
550 |
+
print(f"Error while converting the model: {e}")
|
551 |
+
exit(1)
|
venv/lib/python3.10/site-packages/transformers/convert_pytorch_checkpoint_to_tf2.py
ADDED
@@ -0,0 +1,448 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Convert pytorch checkpoints to TensorFlow"""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import os
|
20 |
+
|
21 |
+
from . import (
|
22 |
+
AlbertConfig,
|
23 |
+
BartConfig,
|
24 |
+
BertConfig,
|
25 |
+
CamembertConfig,
|
26 |
+
CTRLConfig,
|
27 |
+
DistilBertConfig,
|
28 |
+
DPRConfig,
|
29 |
+
ElectraConfig,
|
30 |
+
FlaubertConfig,
|
31 |
+
GPT2Config,
|
32 |
+
LayoutLMConfig,
|
33 |
+
LxmertConfig,
|
34 |
+
OpenAIGPTConfig,
|
35 |
+
RobertaConfig,
|
36 |
+
T5Config,
|
37 |
+
TFAlbertForPreTraining,
|
38 |
+
TFBartForConditionalGeneration,
|
39 |
+
TFBartForSequenceClassification,
|
40 |
+
TFBertForPreTraining,
|
41 |
+
TFBertForQuestionAnswering,
|
42 |
+
TFBertForSequenceClassification,
|
43 |
+
TFCamembertForMaskedLM,
|
44 |
+
TFCTRLLMHeadModel,
|
45 |
+
TFDistilBertForMaskedLM,
|
46 |
+
TFDistilBertForQuestionAnswering,
|
47 |
+
TFDPRContextEncoder,
|
48 |
+
TFDPRQuestionEncoder,
|
49 |
+
TFDPRReader,
|
50 |
+
TFElectraForPreTraining,
|
51 |
+
TFFlaubertWithLMHeadModel,
|
52 |
+
TFGPT2LMHeadModel,
|
53 |
+
TFLayoutLMForMaskedLM,
|
54 |
+
TFLxmertForPreTraining,
|
55 |
+
TFLxmertVisualFeatureEncoder,
|
56 |
+
TFOpenAIGPTLMHeadModel,
|
57 |
+
TFRobertaForCausalLM,
|
58 |
+
TFRobertaForMaskedLM,
|
59 |
+
TFRobertaForSequenceClassification,
|
60 |
+
TFT5ForConditionalGeneration,
|
61 |
+
TFTransfoXLLMHeadModel,
|
62 |
+
TFWav2Vec2Model,
|
63 |
+
TFXLMRobertaForMaskedLM,
|
64 |
+
TFXLMWithLMHeadModel,
|
65 |
+
TFXLNetLMHeadModel,
|
66 |
+
TransfoXLConfig,
|
67 |
+
Wav2Vec2Config,
|
68 |
+
Wav2Vec2Model,
|
69 |
+
XLMConfig,
|
70 |
+
XLMRobertaConfig,
|
71 |
+
XLNetConfig,
|
72 |
+
is_torch_available,
|
73 |
+
load_pytorch_checkpoint_in_tf2_model,
|
74 |
+
)
|
75 |
+
from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging
|
76 |
+
|
77 |
+
|
78 |
+
if is_torch_available():
|
79 |
+
import numpy as np
|
80 |
+
import torch
|
81 |
+
|
82 |
+
from . import (
|
83 |
+
AlbertForPreTraining,
|
84 |
+
BartForConditionalGeneration,
|
85 |
+
BertForPreTraining,
|
86 |
+
BertForQuestionAnswering,
|
87 |
+
BertForSequenceClassification,
|
88 |
+
CamembertForMaskedLM,
|
89 |
+
CTRLLMHeadModel,
|
90 |
+
DistilBertForMaskedLM,
|
91 |
+
DistilBertForQuestionAnswering,
|
92 |
+
DPRContextEncoder,
|
93 |
+
DPRQuestionEncoder,
|
94 |
+
DPRReader,
|
95 |
+
ElectraForPreTraining,
|
96 |
+
FlaubertWithLMHeadModel,
|
97 |
+
GPT2LMHeadModel,
|
98 |
+
LayoutLMForMaskedLM,
|
99 |
+
LxmertForPreTraining,
|
100 |
+
LxmertVisualFeatureEncoder,
|
101 |
+
OpenAIGPTLMHeadModel,
|
102 |
+
RobertaForMaskedLM,
|
103 |
+
RobertaForSequenceClassification,
|
104 |
+
T5ForConditionalGeneration,
|
105 |
+
TransfoXLLMHeadModel,
|
106 |
+
XLMRobertaForMaskedLM,
|
107 |
+
XLMWithLMHeadModel,
|
108 |
+
XLNetLMHeadModel,
|
109 |
+
)
|
110 |
+
from .pytorch_utils import is_torch_greater_or_equal_than_1_13
|
111 |
+
|
112 |
+
|
113 |
+
logging.set_verbosity_info()
|
114 |
+
|
115 |
+
MODEL_CLASSES = {
|
116 |
+
"bart": (
|
117 |
+
BartConfig,
|
118 |
+
TFBartForConditionalGeneration,
|
119 |
+
TFBartForSequenceClassification,
|
120 |
+
BartForConditionalGeneration,
|
121 |
+
),
|
122 |
+
"bert": (
|
123 |
+
BertConfig,
|
124 |
+
TFBertForPreTraining,
|
125 |
+
BertForPreTraining,
|
126 |
+
),
|
127 |
+
"google-bert/bert-large-uncased-whole-word-masking-finetuned-squad": (
|
128 |
+
BertConfig,
|
129 |
+
TFBertForQuestionAnswering,
|
130 |
+
BertForQuestionAnswering,
|
131 |
+
),
|
132 |
+
"google-bert/bert-large-cased-whole-word-masking-finetuned-squad": (
|
133 |
+
BertConfig,
|
134 |
+
TFBertForQuestionAnswering,
|
135 |
+
BertForQuestionAnswering,
|
136 |
+
),
|
137 |
+
"google-bert/bert-base-cased-finetuned-mrpc": (
|
138 |
+
BertConfig,
|
139 |
+
TFBertForSequenceClassification,
|
140 |
+
BertForSequenceClassification,
|
141 |
+
),
|
142 |
+
"dpr": (
|
143 |
+
DPRConfig,
|
144 |
+
TFDPRQuestionEncoder,
|
145 |
+
TFDPRContextEncoder,
|
146 |
+
TFDPRReader,
|
147 |
+
DPRQuestionEncoder,
|
148 |
+
DPRContextEncoder,
|
149 |
+
DPRReader,
|
150 |
+
),
|
151 |
+
"openai-community/gpt2": (
|
152 |
+
GPT2Config,
|
153 |
+
TFGPT2LMHeadModel,
|
154 |
+
GPT2LMHeadModel,
|
155 |
+
),
|
156 |
+
"xlnet": (
|
157 |
+
XLNetConfig,
|
158 |
+
TFXLNetLMHeadModel,
|
159 |
+
XLNetLMHeadModel,
|
160 |
+
),
|
161 |
+
"xlm": (
|
162 |
+
XLMConfig,
|
163 |
+
TFXLMWithLMHeadModel,
|
164 |
+
XLMWithLMHeadModel,
|
165 |
+
),
|
166 |
+
"xlm-roberta": (
|
167 |
+
XLMRobertaConfig,
|
168 |
+
TFXLMRobertaForMaskedLM,
|
169 |
+
XLMRobertaForMaskedLM,
|
170 |
+
),
|
171 |
+
"transfo-xl": (
|
172 |
+
TransfoXLConfig,
|
173 |
+
TFTransfoXLLMHeadModel,
|
174 |
+
TransfoXLLMHeadModel,
|
175 |
+
),
|
176 |
+
"openai-community/openai-gpt": (
|
177 |
+
OpenAIGPTConfig,
|
178 |
+
TFOpenAIGPTLMHeadModel,
|
179 |
+
OpenAIGPTLMHeadModel,
|
180 |
+
),
|
181 |
+
"roberta": (
|
182 |
+
RobertaConfig,
|
183 |
+
TFRobertaForCausalLM,
|
184 |
+
TFRobertaForMaskedLM,
|
185 |
+
RobertaForMaskedLM,
|
186 |
+
),
|
187 |
+
"layoutlm": (
|
188 |
+
LayoutLMConfig,
|
189 |
+
TFLayoutLMForMaskedLM,
|
190 |
+
LayoutLMForMaskedLM,
|
191 |
+
),
|
192 |
+
"FacebookAI/roberta-large-mnli": (
|
193 |
+
RobertaConfig,
|
194 |
+
TFRobertaForSequenceClassification,
|
195 |
+
RobertaForSequenceClassification,
|
196 |
+
),
|
197 |
+
"camembert": (
|
198 |
+
CamembertConfig,
|
199 |
+
TFCamembertForMaskedLM,
|
200 |
+
CamembertForMaskedLM,
|
201 |
+
),
|
202 |
+
"flaubert": (
|
203 |
+
FlaubertConfig,
|
204 |
+
TFFlaubertWithLMHeadModel,
|
205 |
+
FlaubertWithLMHeadModel,
|
206 |
+
),
|
207 |
+
"distilbert": (
|
208 |
+
DistilBertConfig,
|
209 |
+
TFDistilBertForMaskedLM,
|
210 |
+
DistilBertForMaskedLM,
|
211 |
+
),
|
212 |
+
"distilbert-base-distilled-squad": (
|
213 |
+
DistilBertConfig,
|
214 |
+
TFDistilBertForQuestionAnswering,
|
215 |
+
DistilBertForQuestionAnswering,
|
216 |
+
),
|
217 |
+
"lxmert": (
|
218 |
+
LxmertConfig,
|
219 |
+
TFLxmertForPreTraining,
|
220 |
+
LxmertForPreTraining,
|
221 |
+
),
|
222 |
+
"lxmert-visual-feature-encoder": (
|
223 |
+
LxmertConfig,
|
224 |
+
TFLxmertVisualFeatureEncoder,
|
225 |
+
LxmertVisualFeatureEncoder,
|
226 |
+
),
|
227 |
+
"Salesforce/ctrl": (
|
228 |
+
CTRLConfig,
|
229 |
+
TFCTRLLMHeadModel,
|
230 |
+
CTRLLMHeadModel,
|
231 |
+
),
|
232 |
+
"albert": (
|
233 |
+
AlbertConfig,
|
234 |
+
TFAlbertForPreTraining,
|
235 |
+
AlbertForPreTraining,
|
236 |
+
),
|
237 |
+
"t5": (
|
238 |
+
T5Config,
|
239 |
+
TFT5ForConditionalGeneration,
|
240 |
+
T5ForConditionalGeneration,
|
241 |
+
),
|
242 |
+
"electra": (
|
243 |
+
ElectraConfig,
|
244 |
+
TFElectraForPreTraining,
|
245 |
+
ElectraForPreTraining,
|
246 |
+
),
|
247 |
+
"wav2vec2": (
|
248 |
+
Wav2Vec2Config,
|
249 |
+
TFWav2Vec2Model,
|
250 |
+
Wav2Vec2Model,
|
251 |
+
),
|
252 |
+
}
|
253 |
+
|
254 |
+
|
255 |
+
def convert_pt_checkpoint_to_tf(
|
256 |
+
model_type, pytorch_checkpoint_path, config_file, tf_dump_path, compare_with_pt_model=False, use_cached_models=True
|
257 |
+
):
|
258 |
+
if model_type not in MODEL_CLASSES:
|
259 |
+
raise ValueError(f"Unrecognized model type, should be one of {list(MODEL_CLASSES.keys())}.")
|
260 |
+
|
261 |
+
config_class, model_class, pt_model_class, aws_config_map = MODEL_CLASSES[model_type]
|
262 |
+
|
263 |
+
# Initialise TF model
|
264 |
+
if config_file in aws_config_map:
|
265 |
+
config_file = cached_file(config_file, CONFIG_NAME, force_download=not use_cached_models)
|
266 |
+
config = config_class.from_json_file(config_file)
|
267 |
+
config.output_hidden_states = True
|
268 |
+
config.output_attentions = True
|
269 |
+
print(f"Building TensorFlow model from configuration: {config}")
|
270 |
+
tf_model = model_class(config)
|
271 |
+
|
272 |
+
# Load weights from tf checkpoint
|
273 |
+
if pytorch_checkpoint_path in aws_config_map.keys():
|
274 |
+
pytorch_checkpoint_path = cached_file(
|
275 |
+
pytorch_checkpoint_path, WEIGHTS_NAME, force_download=not use_cached_models
|
276 |
+
)
|
277 |
+
# Load PyTorch checkpoint in tf2 model:
|
278 |
+
tf_model = load_pytorch_checkpoint_in_tf2_model(tf_model, pytorch_checkpoint_path)
|
279 |
+
|
280 |
+
if compare_with_pt_model:
|
281 |
+
tfo = tf_model(tf_model.dummy_inputs, training=False) # build the network
|
282 |
+
|
283 |
+
weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {}
|
284 |
+
state_dict = torch.load(
|
285 |
+
pytorch_checkpoint_path,
|
286 |
+
map_location="cpu",
|
287 |
+
**weights_only_kwarg,
|
288 |
+
)
|
289 |
+
pt_model = pt_model_class.from_pretrained(
|
290 |
+
pretrained_model_name_or_path=None, config=config, state_dict=state_dict
|
291 |
+
)
|
292 |
+
|
293 |
+
with torch.no_grad():
|
294 |
+
pto = pt_model(**pt_model.dummy_inputs)
|
295 |
+
|
296 |
+
np_pt = pto[0].numpy()
|
297 |
+
np_tf = tfo[0].numpy()
|
298 |
+
diff = np.amax(np.abs(np_pt - np_tf))
|
299 |
+
print(f"Max absolute difference between models outputs {diff}")
|
300 |
+
assert diff <= 2e-2, f"Error, model absolute difference is >2e-2: {diff}"
|
301 |
+
|
302 |
+
# Save pytorch-model
|
303 |
+
print(f"Save TensorFlow model to {tf_dump_path}")
|
304 |
+
tf_model.save_weights(tf_dump_path, save_format="h5")
|
305 |
+
|
306 |
+
|
307 |
+
def convert_all_pt_checkpoints_to_tf(
|
308 |
+
args_model_type,
|
309 |
+
tf_dump_path,
|
310 |
+
model_shortcut_names_or_path=None,
|
311 |
+
config_shortcut_names_or_path=None,
|
312 |
+
compare_with_pt_model=False,
|
313 |
+
use_cached_models=False,
|
314 |
+
remove_cached_files=False,
|
315 |
+
only_convert_finetuned_models=False,
|
316 |
+
):
|
317 |
+
if args_model_type is None:
|
318 |
+
model_types = list(MODEL_CLASSES.keys())
|
319 |
+
else:
|
320 |
+
model_types = [args_model_type]
|
321 |
+
|
322 |
+
for j, model_type in enumerate(model_types, start=1):
|
323 |
+
print("=" * 100)
|
324 |
+
print(f" Converting model type {j}/{len(model_types)}: {model_type}")
|
325 |
+
print("=" * 100)
|
326 |
+
if model_type not in MODEL_CLASSES:
|
327 |
+
raise ValueError(f"Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys())}.")
|
328 |
+
|
329 |
+
config_class, model_class, pt_model_class, aws_model_maps, aws_config_map = MODEL_CLASSES[model_type]
|
330 |
+
|
331 |
+
if model_shortcut_names_or_path is None:
|
332 |
+
model_shortcut_names_or_path = list(aws_model_maps.keys())
|
333 |
+
if config_shortcut_names_or_path is None:
|
334 |
+
config_shortcut_names_or_path = model_shortcut_names_or_path
|
335 |
+
|
336 |
+
for i, (model_shortcut_name, config_shortcut_name) in enumerate(
|
337 |
+
zip(model_shortcut_names_or_path, config_shortcut_names_or_path), start=1
|
338 |
+
):
|
339 |
+
print("-" * 100)
|
340 |
+
if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name:
|
341 |
+
if not only_convert_finetuned_models:
|
342 |
+
print(f" Skipping finetuned checkpoint {model_shortcut_name}")
|
343 |
+
continue
|
344 |
+
model_type = model_shortcut_name
|
345 |
+
elif only_convert_finetuned_models:
|
346 |
+
print(f" Skipping not finetuned checkpoint {model_shortcut_name}")
|
347 |
+
continue
|
348 |
+
print(
|
349 |
+
f" Converting checkpoint {i}/{len(aws_config_map)}: {model_shortcut_name} - model_type {model_type}"
|
350 |
+
)
|
351 |
+
print("-" * 100)
|
352 |
+
|
353 |
+
if config_shortcut_name in aws_config_map:
|
354 |
+
config_file = cached_file(config_shortcut_name, CONFIG_NAME, force_download=not use_cached_models)
|
355 |
+
else:
|
356 |
+
config_file = config_shortcut_name
|
357 |
+
|
358 |
+
if model_shortcut_name in aws_model_maps:
|
359 |
+
model_file = cached_file(model_shortcut_name, WEIGHTS_NAME, force_download=not use_cached_models)
|
360 |
+
else:
|
361 |
+
model_file = model_shortcut_name
|
362 |
+
|
363 |
+
if os.path.isfile(model_shortcut_name):
|
364 |
+
model_shortcut_name = "converted_model"
|
365 |
+
|
366 |
+
convert_pt_checkpoint_to_tf(
|
367 |
+
model_type=model_type,
|
368 |
+
pytorch_checkpoint_path=model_file,
|
369 |
+
config_file=config_file,
|
370 |
+
tf_dump_path=os.path.join(tf_dump_path, model_shortcut_name + "-tf_model.h5"),
|
371 |
+
compare_with_pt_model=compare_with_pt_model,
|
372 |
+
)
|
373 |
+
if remove_cached_files:
|
374 |
+
os.remove(config_file)
|
375 |
+
os.remove(model_file)
|
376 |
+
|
377 |
+
|
378 |
+
if __name__ == "__main__":
|
379 |
+
parser = argparse.ArgumentParser()
|
380 |
+
# Required parameters
|
381 |
+
parser.add_argument(
|
382 |
+
"--tf_dump_path", default=None, type=str, required=True, help="Path to the output Tensorflow dump file."
|
383 |
+
)
|
384 |
+
parser.add_argument(
|
385 |
+
"--model_type",
|
386 |
+
default=None,
|
387 |
+
type=str,
|
388 |
+
help=(
|
389 |
+
f"Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and "
|
390 |
+
"convert all the models from AWS."
|
391 |
+
),
|
392 |
+
)
|
393 |
+
parser.add_argument(
|
394 |
+
"--pytorch_checkpoint_path",
|
395 |
+
default=None,
|
396 |
+
type=str,
|
397 |
+
help=(
|
398 |
+
"Path to the PyTorch checkpoint path or shortcut name to download from AWS. "
|
399 |
+
"If not given, will download and convert all the checkpoints from AWS."
|
400 |
+
),
|
401 |
+
)
|
402 |
+
parser.add_argument(
|
403 |
+
"--config_file",
|
404 |
+
default=None,
|
405 |
+
type=str,
|
406 |
+
help=(
|
407 |
+
"The config json file corresponding to the pre-trained model. \n"
|
408 |
+
"This specifies the model architecture. If not given and "
|
409 |
+
"--pytorch_checkpoint_path is not given or is a shortcut name "
|
410 |
+
"use the configuration associated to the shortcut name on the AWS"
|
411 |
+
),
|
412 |
+
)
|
413 |
+
parser.add_argument(
|
414 |
+
"--compare_with_pt_model", action="store_true", help="Compare Tensorflow and PyTorch model predictions."
|
415 |
+
)
|
416 |
+
parser.add_argument(
|
417 |
+
"--use_cached_models",
|
418 |
+
action="store_true",
|
419 |
+
help="Use cached models if possible instead of updating to latest checkpoint versions.",
|
420 |
+
)
|
421 |
+
parser.add_argument(
|
422 |
+
"--remove_cached_files",
|
423 |
+
action="store_true",
|
424 |
+
help="Remove pytorch models after conversion (save memory when converting in batches).",
|
425 |
+
)
|
426 |
+
parser.add_argument("--only_convert_finetuned_models", action="store_true", help="Only convert finetuned models.")
|
427 |
+
args = parser.parse_args()
|
428 |
+
|
429 |
+
# if args.pytorch_checkpoint_path is not None:
|
430 |
+
# convert_pt_checkpoint_to_tf(args.model_type.lower(),
|
431 |
+
# args.pytorch_checkpoint_path,
|
432 |
+
# args.config_file if args.config_file is not None else args.pytorch_checkpoint_path,
|
433 |
+
# args.tf_dump_path,
|
434 |
+
# compare_with_pt_model=args.compare_with_pt_model,
|
435 |
+
# use_cached_models=args.use_cached_models)
|
436 |
+
# else:
|
437 |
+
convert_all_pt_checkpoints_to_tf(
|
438 |
+
args.model_type.lower() if args.model_type is not None else None,
|
439 |
+
args.tf_dump_path,
|
440 |
+
model_shortcut_names_or_path=[args.pytorch_checkpoint_path]
|
441 |
+
if args.pytorch_checkpoint_path is not None
|
442 |
+
else None,
|
443 |
+
config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None,
|
444 |
+
compare_with_pt_model=args.compare_with_pt_model,
|
445 |
+
use_cached_models=args.use_cached_models,
|
446 |
+
remove_cached_files=args.remove_cached_files,
|
447 |
+
only_convert_finetuned_models=args.only_convert_finetuned_models,
|
448 |
+
)
|
venv/lib/python3.10/site-packages/transformers/convert_slow_tokenizer.py
ADDED
@@ -0,0 +1,1534 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Utilities to convert slow tokenizers in their fast tokenizers counterparts.
|
17 |
+
|
18 |
+
All the conversions are grouped here to gather SentencePiece dependencies outside of the fast tokenizers files and
|
19 |
+
allow to make our dependency on SentencePiece optional.
|
20 |
+
"""
|
21 |
+
|
22 |
+
import warnings
|
23 |
+
from typing import Dict, List, Tuple
|
24 |
+
|
25 |
+
from packaging import version
|
26 |
+
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, processors
|
27 |
+
from tokenizers.models import BPE, Unigram, WordPiece
|
28 |
+
|
29 |
+
from .utils import is_protobuf_available, requires_backends
|
30 |
+
from .utils.import_utils import PROTOBUF_IMPORT_ERROR
|
31 |
+
|
32 |
+
|
33 |
+
def import_protobuf(error_message=""):
|
34 |
+
if is_protobuf_available():
|
35 |
+
import google.protobuf
|
36 |
+
|
37 |
+
if version.parse(google.protobuf.__version__) < version.parse("4.0.0"):
|
38 |
+
from transformers.utils import sentencepiece_model_pb2
|
39 |
+
else:
|
40 |
+
from transformers.utils import sentencepiece_model_pb2_new as sentencepiece_model_pb2
|
41 |
+
return sentencepiece_model_pb2
|
42 |
+
else:
|
43 |
+
raise ImportError(PROTOBUF_IMPORT_ERROR.format(error_message))
|
44 |
+
|
45 |
+
|
46 |
+
def _get_prepend_scheme(add_prefix_space: bool, original_tokenizer) -> str:
|
47 |
+
if add_prefix_space:
|
48 |
+
prepend_scheme = "always"
|
49 |
+
if hasattr(original_tokenizer, "legacy") and not original_tokenizer.legacy:
|
50 |
+
prepend_scheme = "first"
|
51 |
+
else:
|
52 |
+
prepend_scheme = "never"
|
53 |
+
return prepend_scheme
|
54 |
+
|
55 |
+
|
56 |
+
class SentencePieceExtractor:
|
57 |
+
"""
|
58 |
+
Extractor implementation for SentencePiece trained models. https://github.com/google/sentencepiece
|
59 |
+
"""
|
60 |
+
|
61 |
+
def __init__(self, model: str):
|
62 |
+
requires_backends(self, "sentencepiece")
|
63 |
+
from sentencepiece import SentencePieceProcessor
|
64 |
+
|
65 |
+
self.sp = SentencePieceProcessor()
|
66 |
+
self.sp.Load(model)
|
67 |
+
|
68 |
+
def extract(self, vocab_scores=None) -> Tuple[Dict[str, int], List[Tuple]]:
|
69 |
+
"""
|
70 |
+
By default will return vocab and merges with respect to their order, by sending `vocab_scores` we're going to
|
71 |
+
order the merges with respect to the piece scores instead.
|
72 |
+
"""
|
73 |
+
sp = self.sp
|
74 |
+
vocab = {sp.id_to_piece(index): index for index in range(sp.GetPieceSize())}
|
75 |
+
|
76 |
+
if vocab_scores is not None:
|
77 |
+
vocab_scores, reverse = dict(vocab_scores), True
|
78 |
+
else:
|
79 |
+
vocab_scores, reverse = vocab, False
|
80 |
+
|
81 |
+
# Merges
|
82 |
+
merges = []
|
83 |
+
for merge, piece_score in vocab_scores.items():
|
84 |
+
local = []
|
85 |
+
for index in range(1, len(merge)):
|
86 |
+
piece_l, piece_r = merge[:index], merge[index:]
|
87 |
+
if piece_l in vocab and piece_r in vocab:
|
88 |
+
local.append((piece_l, piece_r, piece_score))
|
89 |
+
local = sorted(local, key=lambda x: (vocab[x[0]], vocab[x[1]]))
|
90 |
+
merges.extend(local)
|
91 |
+
|
92 |
+
merges = sorted(merges, key=lambda val: val[2], reverse=reverse)
|
93 |
+
merges = [(val[0], val[1]) for val in merges]
|
94 |
+
return vocab, merges
|
95 |
+
|
96 |
+
|
97 |
+
class GemmaSentencePieceExtractor(SentencePieceExtractor):
|
98 |
+
def extract(self, vocab_scores=None) -> Tuple[Dict[str, int], List[Tuple]]:
|
99 |
+
"""
|
100 |
+
By default will return vocab and merges with respect to their order, by sending `vocab_scores` we're going to
|
101 |
+
order the merges with respect to the piece scores instead.
|
102 |
+
"""
|
103 |
+
sp = self.sp
|
104 |
+
vocab = {sp.id_to_piece(index): index for index in range(sp.GetPieceSize())}
|
105 |
+
|
106 |
+
# there is a missing token in the vocab. We have to do this to support merges
|
107 |
+
# "<0x09>" is the bytefallback for `\t`
|
108 |
+
vocab["\t"] = vocab.pop("<0x09>")
|
109 |
+
|
110 |
+
if vocab_scores is not None:
|
111 |
+
vocab_scores, reverse = dict(vocab_scores), True
|
112 |
+
else:
|
113 |
+
vocab_scores, reverse = vocab, False
|
114 |
+
|
115 |
+
# Merges
|
116 |
+
merges = []
|
117 |
+
for merge, piece_score in vocab_scores.items():
|
118 |
+
local = []
|
119 |
+
for index in range(1, len(merge)):
|
120 |
+
piece_l, piece_r = merge[:index], merge[index:]
|
121 |
+
if piece_l in vocab and piece_r in vocab:
|
122 |
+
local.append((piece_l, piece_r, piece_score))
|
123 |
+
local = sorted(local, key=lambda x: (vocab[x[0]], vocab[x[1]]))
|
124 |
+
merges.extend(local)
|
125 |
+
|
126 |
+
merges = sorted(merges, key=lambda val: val[2], reverse=reverse)
|
127 |
+
merges = [(val[0], val[1]) for val in merges]
|
128 |
+
return vocab, merges
|
129 |
+
|
130 |
+
|
131 |
+
def check_number_comma(piece: str) -> bool:
|
132 |
+
return len(piece) < 2 or piece[-1] != "," or not piece[-2].isdigit()
|
133 |
+
|
134 |
+
|
135 |
+
class Converter:
|
136 |
+
def __init__(self, original_tokenizer):
|
137 |
+
self.original_tokenizer = original_tokenizer
|
138 |
+
|
139 |
+
def converted(self) -> Tokenizer:
|
140 |
+
raise NotImplementedError()
|
141 |
+
|
142 |
+
|
143 |
+
class BertConverter(Converter):
|
144 |
+
def converted(self) -> Tokenizer:
|
145 |
+
vocab = self.original_tokenizer.vocab
|
146 |
+
tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token)))
|
147 |
+
|
148 |
+
tokenize_chinese_chars = False
|
149 |
+
strip_accents = False
|
150 |
+
do_lower_case = False
|
151 |
+
if hasattr(self.original_tokenizer, "basic_tokenizer"):
|
152 |
+
tokenize_chinese_chars = self.original_tokenizer.basic_tokenizer.tokenize_chinese_chars
|
153 |
+
strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents
|
154 |
+
do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case
|
155 |
+
|
156 |
+
tokenizer.normalizer = normalizers.BertNormalizer(
|
157 |
+
clean_text=True,
|
158 |
+
handle_chinese_chars=tokenize_chinese_chars,
|
159 |
+
strip_accents=strip_accents,
|
160 |
+
lowercase=do_lower_case,
|
161 |
+
)
|
162 |
+
tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
|
163 |
+
|
164 |
+
cls = str(self.original_tokenizer.cls_token)
|
165 |
+
sep = str(self.original_tokenizer.sep_token)
|
166 |
+
cls_token_id = self.original_tokenizer.cls_token_id
|
167 |
+
sep_token_id = self.original_tokenizer.sep_token_id
|
168 |
+
|
169 |
+
tokenizer.post_processor = processors.TemplateProcessing(
|
170 |
+
single=f"{cls}:0 $A:0 {sep}:0",
|
171 |
+
pair=f"{cls}:0 $A:0 {sep}:0 $B:1 {sep}:1",
|
172 |
+
special_tokens=[
|
173 |
+
(cls, cls_token_id),
|
174 |
+
(sep, sep_token_id),
|
175 |
+
],
|
176 |
+
)
|
177 |
+
tokenizer.decoder = decoders.WordPiece(prefix="##")
|
178 |
+
|
179 |
+
return tokenizer
|
180 |
+
|
181 |
+
|
182 |
+
class SplinterConverter(Converter):
|
183 |
+
def converted(self) -> Tokenizer:
|
184 |
+
vocab = self.original_tokenizer.vocab
|
185 |
+
tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token)))
|
186 |
+
|
187 |
+
tokenize_chinese_chars = False
|
188 |
+
strip_accents = False
|
189 |
+
do_lower_case = False
|
190 |
+
if hasattr(self.original_tokenizer, "basic_tokenizer"):
|
191 |
+
tokenize_chinese_chars = self.original_tokenizer.basic_tokenizer.tokenize_chinese_chars
|
192 |
+
strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents
|
193 |
+
do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case
|
194 |
+
|
195 |
+
tokenizer.normalizer = normalizers.BertNormalizer(
|
196 |
+
clean_text=True,
|
197 |
+
handle_chinese_chars=tokenize_chinese_chars,
|
198 |
+
strip_accents=strip_accents,
|
199 |
+
lowercase=do_lower_case,
|
200 |
+
)
|
201 |
+
tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
|
202 |
+
|
203 |
+
cls = str(self.original_tokenizer.cls_token)
|
204 |
+
sep = str(self.original_tokenizer.sep_token)
|
205 |
+
question = str(self.original_tokenizer.question_token)
|
206 |
+
dot = "."
|
207 |
+
cls_token_id = self.original_tokenizer.cls_token_id
|
208 |
+
sep_token_id = self.original_tokenizer.sep_token_id
|
209 |
+
question_token_id = self.original_tokenizer.question_token_id
|
210 |
+
dot_token_id = self.original_tokenizer.convert_tokens_to_ids(".")
|
211 |
+
|
212 |
+
if self.original_tokenizer.padding_side == "right":
|
213 |
+
pair = f"{cls}:0 $A:0 {question} {dot} {sep}:0 $B:1 {sep}:1"
|
214 |
+
else:
|
215 |
+
pair = f"{cls}:0 $A:0 {sep}:0 $B:1 {question} {dot} {sep}:1"
|
216 |
+
|
217 |
+
tokenizer.post_processor = processors.TemplateProcessing(
|
218 |
+
single=f"{cls}:0 $A:0 {sep}:0",
|
219 |
+
pair=pair,
|
220 |
+
special_tokens=[
|
221 |
+
(cls, cls_token_id),
|
222 |
+
(sep, sep_token_id),
|
223 |
+
(question, question_token_id),
|
224 |
+
(dot, dot_token_id),
|
225 |
+
],
|
226 |
+
)
|
227 |
+
tokenizer.decoder = decoders.WordPiece(prefix="##")
|
228 |
+
|
229 |
+
return tokenizer
|
230 |
+
|
231 |
+
|
232 |
+
class FunnelConverter(Converter):
|
233 |
+
def converted(self) -> Tokenizer:
|
234 |
+
vocab = self.original_tokenizer.vocab
|
235 |
+
tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token)))
|
236 |
+
|
237 |
+
tokenize_chinese_chars = False
|
238 |
+
strip_accents = False
|
239 |
+
do_lower_case = False
|
240 |
+
if hasattr(self.original_tokenizer, "basic_tokenizer"):
|
241 |
+
tokenize_chinese_chars = self.original_tokenizer.basic_tokenizer.tokenize_chinese_chars
|
242 |
+
strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents
|
243 |
+
do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case
|
244 |
+
|
245 |
+
tokenizer.normalizer = normalizers.BertNormalizer(
|
246 |
+
clean_text=True,
|
247 |
+
handle_chinese_chars=tokenize_chinese_chars,
|
248 |
+
strip_accents=strip_accents,
|
249 |
+
lowercase=do_lower_case,
|
250 |
+
)
|
251 |
+
tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
|
252 |
+
|
253 |
+
cls = str(self.original_tokenizer.cls_token)
|
254 |
+
sep = str(self.original_tokenizer.sep_token)
|
255 |
+
cls_token_id = self.original_tokenizer.cls_token_id
|
256 |
+
sep_token_id = self.original_tokenizer.sep_token_id
|
257 |
+
|
258 |
+
tokenizer.post_processor = processors.TemplateProcessing(
|
259 |
+
single=f"{cls}:2 $A:0 {sep}:0", # token_type_id is 2 for Funnel transformer
|
260 |
+
pair=f"{cls}:2 $A:0 {sep}:0 $B:1 {sep}:1",
|
261 |
+
special_tokens=[
|
262 |
+
(cls, cls_token_id),
|
263 |
+
(sep, sep_token_id),
|
264 |
+
],
|
265 |
+
)
|
266 |
+
tokenizer.decoder = decoders.WordPiece(prefix="##")
|
267 |
+
|
268 |
+
return tokenizer
|
269 |
+
|
270 |
+
|
271 |
+
class MPNetConverter(Converter):
|
272 |
+
def converted(self) -> Tokenizer:
|
273 |
+
vocab = self.original_tokenizer.vocab
|
274 |
+
tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token)))
|
275 |
+
|
276 |
+
tokenize_chinese_chars = False
|
277 |
+
strip_accents = False
|
278 |
+
do_lower_case = False
|
279 |
+
if hasattr(self.original_tokenizer, "basic_tokenizer"):
|
280 |
+
tokenize_chinese_chars = self.original_tokenizer.basic_tokenizer.tokenize_chinese_chars
|
281 |
+
strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents
|
282 |
+
do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case
|
283 |
+
|
284 |
+
tokenizer.normalizer = normalizers.BertNormalizer(
|
285 |
+
clean_text=True,
|
286 |
+
handle_chinese_chars=tokenize_chinese_chars,
|
287 |
+
strip_accents=strip_accents,
|
288 |
+
lowercase=do_lower_case,
|
289 |
+
)
|
290 |
+
tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
|
291 |
+
|
292 |
+
cls = str(self.original_tokenizer.cls_token)
|
293 |
+
sep = str(self.original_tokenizer.sep_token)
|
294 |
+
cls_token_id = self.original_tokenizer.cls_token_id
|
295 |
+
sep_token_id = self.original_tokenizer.sep_token_id
|
296 |
+
|
297 |
+
tokenizer.post_processor = processors.TemplateProcessing(
|
298 |
+
single=f"{cls}:0 $A:0 {sep}:0",
|
299 |
+
pair=f"{cls}:0 $A:0 {sep}:0 {sep}:0 $B:1 {sep}:1", # MPNet uses two [SEP] tokens
|
300 |
+
special_tokens=[
|
301 |
+
(cls, cls_token_id),
|
302 |
+
(sep, sep_token_id),
|
303 |
+
],
|
304 |
+
)
|
305 |
+
tokenizer.decoder = decoders.WordPiece(prefix="##")
|
306 |
+
|
307 |
+
return tokenizer
|
308 |
+
|
309 |
+
|
310 |
+
class OpenAIGPTConverter(Converter):
|
311 |
+
def converted(self) -> Tokenizer:
|
312 |
+
vocab = self.original_tokenizer.encoder
|
313 |
+
merges = list(self.original_tokenizer.bpe_ranks.keys())
|
314 |
+
unk_token = self.original_tokenizer.unk_token
|
315 |
+
|
316 |
+
tokenizer = Tokenizer(
|
317 |
+
BPE(
|
318 |
+
vocab=vocab,
|
319 |
+
merges=merges,
|
320 |
+
dropout=None,
|
321 |
+
unk_token=str(unk_token),
|
322 |
+
end_of_word_suffix="</w>",
|
323 |
+
fuse_unk=False,
|
324 |
+
)
|
325 |
+
)
|
326 |
+
|
327 |
+
if tokenizer.token_to_id(str(unk_token)) is not None:
|
328 |
+
tokenizer.add_special_tokens([str(unk_token)])
|
329 |
+
|
330 |
+
tokenizer.normalizer = normalizers.BertNormalizer(lowercase=True)
|
331 |
+
tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
|
332 |
+
tokenizer.decoder = decoders.BPEDecoder(suffix="</w>")
|
333 |
+
|
334 |
+
return tokenizer
|
335 |
+
|
336 |
+
|
337 |
+
class GPT2Converter(Converter):
|
338 |
+
def converted(self) -> Tokenizer:
|
339 |
+
vocab = self.original_tokenizer.encoder
|
340 |
+
merges = list(self.original_tokenizer.bpe_ranks.keys())
|
341 |
+
|
342 |
+
tokenizer = Tokenizer(
|
343 |
+
BPE(
|
344 |
+
vocab=vocab,
|
345 |
+
merges=merges,
|
346 |
+
dropout=None,
|
347 |
+
continuing_subword_prefix="",
|
348 |
+
end_of_word_suffix="",
|
349 |
+
fuse_unk=False,
|
350 |
+
)
|
351 |
+
)
|
352 |
+
|
353 |
+
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=self.original_tokenizer.add_prefix_space)
|
354 |
+
tokenizer.decoder = decoders.ByteLevel()
|
355 |
+
if self.original_tokenizer.add_bos_token:
|
356 |
+
bos = self.original_tokenizer.bos_token
|
357 |
+
bos_token_id = self.original_tokenizer.bos_token_id
|
358 |
+
tokenizer.post_processor = processors.TemplateProcessing(
|
359 |
+
single=f"{bos}:0 $A:0",
|
360 |
+
pair=f"{bos}:0 $A:0 $B:1",
|
361 |
+
special_tokens=[
|
362 |
+
(bos, bos_token_id),
|
363 |
+
],
|
364 |
+
)
|
365 |
+
else:
|
366 |
+
# XXX trim_offsets=False actually means this post_processor doesn't
|
367 |
+
# really do anything.
|
368 |
+
tokenizer.post_processor = processors.ByteLevel(trim_offsets=False)
|
369 |
+
return tokenizer
|
370 |
+
|
371 |
+
|
372 |
+
class HerbertConverter(Converter):
|
373 |
+
def converted(self) -> Tokenizer:
|
374 |
+
tokenizer_info_str = "#version:"
|
375 |
+
token_suffix = "</w>"
|
376 |
+
|
377 |
+
vocab = self.original_tokenizer.encoder
|
378 |
+
merges = list(self.original_tokenizer.bpe_ranks.keys())
|
379 |
+
if tokenizer_info_str in merges[0][0]:
|
380 |
+
merges = merges[1:]
|
381 |
+
|
382 |
+
tokenizer = Tokenizer(
|
383 |
+
BPE(
|
384 |
+
vocab,
|
385 |
+
merges,
|
386 |
+
dropout=None,
|
387 |
+
unk_token=self.original_tokenizer.unk_token,
|
388 |
+
end_of_word_suffix=token_suffix,
|
389 |
+
)
|
390 |
+
)
|
391 |
+
|
392 |
+
tokenizer.normalizer = normalizers.BertNormalizer(lowercase=False, strip_accents=False)
|
393 |
+
tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
|
394 |
+
tokenizer.decoder = decoders.BPEDecoder(suffix=token_suffix)
|
395 |
+
tokenizer.post_processor = processors.BertProcessing(
|
396 |
+
sep=(self.original_tokenizer.sep_token, self.original_tokenizer.sep_token_id),
|
397 |
+
cls=(self.original_tokenizer.cls_token, self.original_tokenizer.cls_token_id),
|
398 |
+
)
|
399 |
+
|
400 |
+
return tokenizer
|
401 |
+
|
402 |
+
|
403 |
+
class Qwen2Converter(Converter):
|
404 |
+
def converted(self) -> Tokenizer:
|
405 |
+
vocab = self.original_tokenizer.encoder
|
406 |
+
merges = list(self.original_tokenizer.bpe_ranks.keys())
|
407 |
+
|
408 |
+
tokenizer = Tokenizer(
|
409 |
+
BPE(
|
410 |
+
vocab=vocab,
|
411 |
+
merges=merges,
|
412 |
+
dropout=None,
|
413 |
+
unk_token=None,
|
414 |
+
continuing_subword_prefix="",
|
415 |
+
end_of_word_suffix="",
|
416 |
+
fuse_unk=False,
|
417 |
+
byte_fallback=False,
|
418 |
+
)
|
419 |
+
)
|
420 |
+
|
421 |
+
tokenizer.normalizer = normalizers.NFC()
|
422 |
+
|
423 |
+
tokenizer.pre_tokenizer = pre_tokenizers.Sequence(
|
424 |
+
[
|
425 |
+
pre_tokenizers.Split(
|
426 |
+
Regex(
|
427 |
+
r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
428 |
+
),
|
429 |
+
behavior="isolated",
|
430 |
+
invert=False,
|
431 |
+
),
|
432 |
+
pre_tokenizers.ByteLevel(
|
433 |
+
add_prefix_space=getattr(self.original_tokenizer, "add_prefix_space", False),
|
434 |
+
use_regex=False,
|
435 |
+
),
|
436 |
+
]
|
437 |
+
)
|
438 |
+
|
439 |
+
tokenizer.decoder = decoders.ByteLevel()
|
440 |
+
tokenizer.post_processor = processors.ByteLevel(trim_offsets=False)
|
441 |
+
|
442 |
+
return tokenizer
|
443 |
+
|
444 |
+
|
445 |
+
class RobertaConverter(Converter):
|
446 |
+
def converted(self) -> Tokenizer:
|
447 |
+
ot = self.original_tokenizer
|
448 |
+
vocab = ot.encoder
|
449 |
+
merges = list(ot.bpe_ranks.keys())
|
450 |
+
|
451 |
+
tokenizer = Tokenizer(
|
452 |
+
BPE(
|
453 |
+
vocab=vocab,
|
454 |
+
merges=merges,
|
455 |
+
dropout=None,
|
456 |
+
continuing_subword_prefix="",
|
457 |
+
end_of_word_suffix="",
|
458 |
+
fuse_unk=False,
|
459 |
+
)
|
460 |
+
)
|
461 |
+
|
462 |
+
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=ot.add_prefix_space)
|
463 |
+
tokenizer.decoder = decoders.ByteLevel()
|
464 |
+
tokenizer.post_processor = processors.RobertaProcessing(
|
465 |
+
sep=(ot.sep_token, ot.sep_token_id),
|
466 |
+
cls=(ot.cls_token, ot.cls_token_id),
|
467 |
+
add_prefix_space=ot.add_prefix_space,
|
468 |
+
trim_offsets=True, # True by default on Roberta (historical)
|
469 |
+
)
|
470 |
+
|
471 |
+
return tokenizer
|
472 |
+
|
473 |
+
|
474 |
+
class RoFormerConverter(Converter):
|
475 |
+
def converted(self) -> Tokenizer:
|
476 |
+
from .models.roformer.tokenization_utils import JiebaPreTokenizer
|
477 |
+
|
478 |
+
vocab = self.original_tokenizer.vocab
|
479 |
+
tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token)))
|
480 |
+
|
481 |
+
strip_accents = False
|
482 |
+
do_lower_case = False
|
483 |
+
if hasattr(self.original_tokenizer, "basic_tokenizer"):
|
484 |
+
strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents
|
485 |
+
do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case
|
486 |
+
|
487 |
+
tokenizer.normalizer = normalizers.BertNormalizer(
|
488 |
+
clean_text=True,
|
489 |
+
handle_chinese_chars=False,
|
490 |
+
strip_accents=strip_accents,
|
491 |
+
lowercase=do_lower_case,
|
492 |
+
)
|
493 |
+
tokenizer.pre_tokenizer = pre_tokenizers.PreTokenizer.custom(JiebaPreTokenizer(vocab))
|
494 |
+
|
495 |
+
cls = str(self.original_tokenizer.cls_token)
|
496 |
+
sep = str(self.original_tokenizer.sep_token)
|
497 |
+
cls_token_id = self.original_tokenizer.cls_token_id
|
498 |
+
sep_token_id = self.original_tokenizer.sep_token_id
|
499 |
+
|
500 |
+
tokenizer.post_processor = processors.TemplateProcessing(
|
501 |
+
single=f"{cls}:0 $A:0 {sep}:0",
|
502 |
+
pair=f"{cls}:0 $A:0 {sep}:0 $B:1 {sep}:1",
|
503 |
+
special_tokens=[
|
504 |
+
(cls, cls_token_id),
|
505 |
+
(sep, sep_token_id),
|
506 |
+
],
|
507 |
+
)
|
508 |
+
tokenizer.decoder = decoders.WordPiece(prefix="##")
|
509 |
+
|
510 |
+
return tokenizer
|
511 |
+
|
512 |
+
|
513 |
+
class DebertaConverter(Converter):
|
514 |
+
def converted(self) -> Tokenizer:
|
515 |
+
ot = self.original_tokenizer
|
516 |
+
vocab = ot.encoder
|
517 |
+
merges = list(ot.bpe_ranks.keys())
|
518 |
+
|
519 |
+
tokenizer = Tokenizer(
|
520 |
+
BPE(
|
521 |
+
vocab=vocab,
|
522 |
+
merges=merges,
|
523 |
+
dropout=None,
|
524 |
+
continuing_subword_prefix="",
|
525 |
+
end_of_word_suffix="",
|
526 |
+
fuse_unk=False,
|
527 |
+
)
|
528 |
+
)
|
529 |
+
|
530 |
+
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=ot.add_prefix_space)
|
531 |
+
tokenizer.decoder = decoders.ByteLevel()
|
532 |
+
tokenizer.post_processor = processors.TemplateProcessing(
|
533 |
+
single="[CLS]:0 $A:0 [SEP]:0",
|
534 |
+
pair="[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1",
|
535 |
+
special_tokens=[
|
536 |
+
("[CLS]", self.original_tokenizer.convert_tokens_to_ids("[CLS]")),
|
537 |
+
("[SEP]", self.original_tokenizer.convert_tokens_to_ids("[SEP]")),
|
538 |
+
],
|
539 |
+
)
|
540 |
+
|
541 |
+
return tokenizer
|
542 |
+
|
543 |
+
|
544 |
+
class SpmConverter(Converter):
|
545 |
+
def __init__(self, *args):
|
546 |
+
requires_backends(self, "protobuf")
|
547 |
+
|
548 |
+
super().__init__(*args)
|
549 |
+
|
550 |
+
# from .utils import sentencepiece_model_pb2 as model_pb2
|
551 |
+
model_pb2 = import_protobuf()
|
552 |
+
|
553 |
+
m = model_pb2.ModelProto()
|
554 |
+
with open(self.original_tokenizer.vocab_file, "rb") as f:
|
555 |
+
m.ParseFromString(f.read())
|
556 |
+
self.proto = m
|
557 |
+
|
558 |
+
if self.proto.trainer_spec.byte_fallback:
|
559 |
+
if not getattr(self, "handle_byte_fallback", None):
|
560 |
+
warnings.warn(
|
561 |
+
"The sentencepiece tokenizer that you are converting to a fast tokenizer uses the byte fallback option"
|
562 |
+
" which is not implemented in the fast tokenizers. In practice this means that the fast version of the"
|
563 |
+
" tokenizer can produce unknown tokens whereas the sentencepiece version would have converted these "
|
564 |
+
"unknown tokens into a sequence of byte tokens matching the original piece of text."
|
565 |
+
)
|
566 |
+
|
567 |
+
def vocab(self, proto):
|
568 |
+
return [(piece.piece, piece.score) for piece in proto.pieces]
|
569 |
+
|
570 |
+
def unk_id(self, proto):
|
571 |
+
return proto.trainer_spec.unk_id
|
572 |
+
|
573 |
+
def tokenizer(self, proto):
|
574 |
+
model_type = proto.trainer_spec.model_type
|
575 |
+
vocab_scores = self.vocab(proto)
|
576 |
+
unk_id = self.unk_id(proto)
|
577 |
+
|
578 |
+
if model_type == 1:
|
579 |
+
tokenizer = Tokenizer(Unigram(vocab_scores, unk_id))
|
580 |
+
elif model_type == 2:
|
581 |
+
_, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract()
|
582 |
+
bpe_vocab = {word: i for i, (word, score) in enumerate(vocab_scores)}
|
583 |
+
tokenizer = Tokenizer(
|
584 |
+
BPE(
|
585 |
+
bpe_vocab,
|
586 |
+
merges,
|
587 |
+
unk_token=proto.trainer_spec.unk_piece,
|
588 |
+
fuse_unk=True,
|
589 |
+
)
|
590 |
+
)
|
591 |
+
else:
|
592 |
+
raise Exception(
|
593 |
+
"You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
|
594 |
+
)
|
595 |
+
|
596 |
+
return tokenizer
|
597 |
+
|
598 |
+
def normalizer(self, proto):
|
599 |
+
precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap
|
600 |
+
_normalizers = [
|
601 |
+
normalizers.Strip(left=False, right=True), # stripping is important
|
602 |
+
normalizers.Replace(Regex(" {2,}"), "▁"),
|
603 |
+
]
|
604 |
+
if not precompiled_charsmap:
|
605 |
+
return normalizers.Sequence(_normalizers)
|
606 |
+
else:
|
607 |
+
return normalizers.Sequence([normalizers.Precompiled(precompiled_charsmap)] + _normalizers)
|
608 |
+
|
609 |
+
def pre_tokenizer(self, replacement, add_prefix_space):
|
610 |
+
prepend_scheme = _get_prepend_scheme(add_prefix_space, self.original_tokenizer)
|
611 |
+
return pre_tokenizers.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme)
|
612 |
+
|
613 |
+
def post_processor(self):
|
614 |
+
return None
|
615 |
+
|
616 |
+
def decoder(self, replacement, add_prefix_space):
|
617 |
+
prepend_scheme = _get_prepend_scheme(add_prefix_space, self.original_tokenizer)
|
618 |
+
return decoders.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme)
|
619 |
+
|
620 |
+
def converted(self) -> Tokenizer:
|
621 |
+
tokenizer = self.tokenizer(self.proto)
|
622 |
+
|
623 |
+
# Tokenizer assemble
|
624 |
+
normalizer = self.normalizer(self.proto)
|
625 |
+
if normalizer is not None:
|
626 |
+
tokenizer.normalizer = normalizer
|
627 |
+
|
628 |
+
replacement = "▁"
|
629 |
+
add_prefix_space = True
|
630 |
+
if hasattr(self.original_tokenizer, "add_prefix_space"):
|
631 |
+
add_prefix_space = self.original_tokenizer.add_prefix_space
|
632 |
+
|
633 |
+
pre_tokenizer = self.pre_tokenizer(replacement, add_prefix_space)
|
634 |
+
if pre_tokenizer is not None:
|
635 |
+
tokenizer.pre_tokenizer = pre_tokenizer
|
636 |
+
|
637 |
+
tokenizer.decoder = self.decoder(replacement, add_prefix_space)
|
638 |
+
post_processor = self.post_processor()
|
639 |
+
if post_processor:
|
640 |
+
tokenizer.post_processor = post_processor
|
641 |
+
|
642 |
+
return tokenizer
|
643 |
+
|
644 |
+
|
645 |
+
class AlbertConverter(SpmConverter):
|
646 |
+
def vocab(self, proto):
|
647 |
+
return [
|
648 |
+
(piece.piece, piece.score) if check_number_comma(piece.piece) else (piece.piece, piece.score - 100)
|
649 |
+
for piece in proto.pieces
|
650 |
+
]
|
651 |
+
|
652 |
+
def normalizer(self, proto):
|
653 |
+
list_normalizers = [
|
654 |
+
normalizers.Replace("``", '"'),
|
655 |
+
normalizers.Replace("''", '"'),
|
656 |
+
]
|
657 |
+
if not self.original_tokenizer.keep_accents:
|
658 |
+
list_normalizers.append(normalizers.NFKD())
|
659 |
+
list_normalizers.append(normalizers.StripAccents())
|
660 |
+
if self.original_tokenizer.do_lower_case:
|
661 |
+
list_normalizers.append(normalizers.Lowercase())
|
662 |
+
|
663 |
+
precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap
|
664 |
+
|
665 |
+
if precompiled_charsmap:
|
666 |
+
list_normalizers.append(normalizers.Precompiled(precompiled_charsmap))
|
667 |
+
|
668 |
+
list_normalizers.append(normalizers.Replace(Regex(" {2,}"), " "))
|
669 |
+
return normalizers.Sequence(list_normalizers)
|
670 |
+
|
671 |
+
def post_processor(self):
|
672 |
+
return processors.TemplateProcessing(
|
673 |
+
single="[CLS]:0 $A:0 [SEP]:0",
|
674 |
+
pair="[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1",
|
675 |
+
special_tokens=[
|
676 |
+
("[CLS]", self.original_tokenizer.convert_tokens_to_ids("[CLS]")),
|
677 |
+
("[SEP]", self.original_tokenizer.convert_tokens_to_ids("[SEP]")),
|
678 |
+
],
|
679 |
+
)
|
680 |
+
|
681 |
+
|
682 |
+
class BarthezConverter(SpmConverter):
|
683 |
+
def unk_id(self, proto):
|
684 |
+
unk_id = 3
|
685 |
+
return unk_id
|
686 |
+
|
687 |
+
def post_processor(self):
|
688 |
+
return processors.TemplateProcessing(
|
689 |
+
single="<s> $A </s>",
|
690 |
+
pair="<s> $A </s> </s> $B </s>",
|
691 |
+
special_tokens=[
|
692 |
+
("<s>", self.original_tokenizer.convert_tokens_to_ids("<s>")),
|
693 |
+
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
|
694 |
+
],
|
695 |
+
)
|
696 |
+
|
697 |
+
|
698 |
+
class CamembertConverter(SpmConverter):
|
699 |
+
def vocab(self, proto):
|
700 |
+
vocab = [
|
701 |
+
("<s>NOTUSED", 0.0),
|
702 |
+
("<pad>", 0.0),
|
703 |
+
("</s>NOTUSED", 0.0),
|
704 |
+
("<unk>", 0.0),
|
705 |
+
("<unk>NOTUSED", -100),
|
706 |
+
]
|
707 |
+
# We down-grade the original SentencePiece by -100 to avoid using it and use our added token instead
|
708 |
+
vocab += [(piece.piece, piece.score) for piece in proto.pieces[1:]]
|
709 |
+
vocab += [("<mask>", 0.0)]
|
710 |
+
return vocab
|
711 |
+
|
712 |
+
def unk_id(self, proto):
|
713 |
+
# See vocab unk position
|
714 |
+
return 3
|
715 |
+
|
716 |
+
def post_processor(self):
|
717 |
+
return processors.TemplateProcessing(
|
718 |
+
single="<s> $A </s>",
|
719 |
+
pair="<s> $A </s> </s> $B </s>",
|
720 |
+
special_tokens=[
|
721 |
+
("<s>", self.original_tokenizer.convert_tokens_to_ids("<s>")),
|
722 |
+
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
|
723 |
+
],
|
724 |
+
)
|
725 |
+
|
726 |
+
|
727 |
+
class DebertaV2Converter(SpmConverter):
|
728 |
+
def pre_tokenizer(self, replacement, add_prefix_space):
|
729 |
+
list_pretokenizers = []
|
730 |
+
if self.original_tokenizer.split_by_punct:
|
731 |
+
list_pretokenizers.append(pre_tokenizers.Punctuation(behavior="isolated"))
|
732 |
+
prepend_scheme = _get_prepend_scheme(add_prefix_space, self.original_tokenizer)
|
733 |
+
list_pretokenizers.append(pre_tokenizers.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme))
|
734 |
+
return pre_tokenizers.Sequence(list_pretokenizers)
|
735 |
+
|
736 |
+
def normalizer(self, proto):
|
737 |
+
list_normalizers = []
|
738 |
+
if self.original_tokenizer.do_lower_case:
|
739 |
+
list_normalizers.append(normalizers.Lowercase())
|
740 |
+
list_normalizers.append(normalizers.Strip())
|
741 |
+
|
742 |
+
precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap
|
743 |
+
if precompiled_charsmap:
|
744 |
+
list_normalizers.append(normalizers.Precompiled(precompiled_charsmap))
|
745 |
+
list_normalizers.append(normalizers.Replace(Regex(" {2,}"), " "))
|
746 |
+
|
747 |
+
return normalizers.Sequence(list_normalizers)
|
748 |
+
|
749 |
+
def post_processor(self):
|
750 |
+
return processors.TemplateProcessing(
|
751 |
+
single="[CLS]:0 $A:0 [SEP]:0",
|
752 |
+
pair="[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1",
|
753 |
+
special_tokens=[
|
754 |
+
("[CLS]", self.original_tokenizer.convert_tokens_to_ids("[CLS]")),
|
755 |
+
("[SEP]", self.original_tokenizer.convert_tokens_to_ids("[SEP]")),
|
756 |
+
],
|
757 |
+
)
|
758 |
+
|
759 |
+
|
760 |
+
class MBartConverter(SpmConverter):
|
761 |
+
def vocab(self, proto):
|
762 |
+
vocab = [
|
763 |
+
("<s>", 0.0),
|
764 |
+
("<pad>", 0.0),
|
765 |
+
("</s>", 0.0),
|
766 |
+
("<unk>", 0.0),
|
767 |
+
]
|
768 |
+
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
|
769 |
+
vocab += [
|
770 |
+
("ar_AR", 0.0),
|
771 |
+
("cs_CZ", 0.0),
|
772 |
+
("de_DE", 0.0),
|
773 |
+
("en_XX", 0.0),
|
774 |
+
("es_XX", 0.0),
|
775 |
+
("et_EE", 0.0),
|
776 |
+
("fi_FI", 0.0),
|
777 |
+
("fr_XX", 0.0),
|
778 |
+
("gu_IN", 0.0),
|
779 |
+
("hi_IN", 0.0),
|
780 |
+
("it_IT", 0.0),
|
781 |
+
("ja_XX", 0.0),
|
782 |
+
("kk_KZ", 0.0),
|
783 |
+
("ko_KR", 0.0),
|
784 |
+
("lt_LT", 0.0),
|
785 |
+
("lv_LV", 0.0),
|
786 |
+
("my_MM", 0.0),
|
787 |
+
("ne_NP", 0.0),
|
788 |
+
("nl_XX", 0.0),
|
789 |
+
("ro_RO", 0.0),
|
790 |
+
("ru_RU", 0.0),
|
791 |
+
("si_LK", 0.0),
|
792 |
+
("tr_TR", 0.0),
|
793 |
+
("vi_VN", 0.0),
|
794 |
+
("zh_CN", 0.0),
|
795 |
+
]
|
796 |
+
vocab += [("<mask>", 0.0)]
|
797 |
+
return vocab
|
798 |
+
|
799 |
+
def unk_id(self, proto):
|
800 |
+
return 3
|
801 |
+
|
802 |
+
def post_processor(self):
|
803 |
+
return processors.TemplateProcessing(
|
804 |
+
single="$A </s> en_XX",
|
805 |
+
pair="$A $B </s> en_XX",
|
806 |
+
special_tokens=[
|
807 |
+
("en_XX", self.original_tokenizer.convert_tokens_to_ids("en_XX")),
|
808 |
+
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
|
809 |
+
],
|
810 |
+
)
|
811 |
+
|
812 |
+
|
813 |
+
class MBart50Converter(SpmConverter):
|
814 |
+
def vocab(self, proto):
|
815 |
+
vocab = [
|
816 |
+
("<s>", 0.0),
|
817 |
+
("<pad>", 0.0),
|
818 |
+
("</s>", 0.0),
|
819 |
+
("<unk>", 0.0),
|
820 |
+
]
|
821 |
+
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
|
822 |
+
vocab += [("ar_AR", 0.0), ("cs_CZ", 0.0), ("de_DE", 0.0), ("en_XX", 0.0), ("es_XX", 0.0), ("et_EE", 0.0), ("fi_FI", 0.0), ("fr_XX", 0.0), ("gu_IN", 0.0), ("hi_IN", 0.0), ("it_IT", 0.0), ("ja_XX", 0.0), ("kk_KZ", 0.0), ("ko_KR", 0.0), ("lt_LT", 0.0), ("lv_LV", 0.0), ("my_MM", 0.0), ("ne_NP", 0.0), ("nl_XX", 0.0), ("ro_RO", 0.0), ("ru_RU", 0.0), ("si_LK", 0.0), ("tr_TR", 0.0), ("vi_VN", 0.0), ("zh_CN", 0.0), ("af_ZA", 0.0), ("az_AZ", 0.0), ("bn_IN", 0.0), ("fa_IR", 0.0), ("he_IL", 0.0), ("hr_HR", 0.0), ("id_ID", 0.0), ("ka_GE", 0.0), ("km_KH", 0.0), ("mk_MK", 0.0), ("ml_IN", 0.0), ("mn_MN", 0.0), ("mr_IN", 0.0), ("pl_PL", 0.0), ("ps_AF", 0.0), ("pt_XX", 0.0), ("sv_SE", 0.0), ("sw_KE", 0.0), ("ta_IN", 0.0), ("te_IN", 0.0), ("th_TH", 0.0), ("tl_XX", 0.0), ("uk_UA", 0.0), ("ur_PK", 0.0), ("xh_ZA", 0.0), ("gl_ES", 0.0), ("sl_SI", 0.0)] # fmt: skip
|
823 |
+
vocab += [("<mask>", 0.0)]
|
824 |
+
return vocab
|
825 |
+
|
826 |
+
def unk_id(self, proto):
|
827 |
+
return 3
|
828 |
+
|
829 |
+
def post_processor(self):
|
830 |
+
return processors.TemplateProcessing(
|
831 |
+
single="en_XX $A </s>",
|
832 |
+
pair="en_XX $A $B </s>",
|
833 |
+
special_tokens=[
|
834 |
+
("en_XX", self.original_tokenizer.convert_tokens_to_ids("en_XX")),
|
835 |
+
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
|
836 |
+
],
|
837 |
+
)
|
838 |
+
|
839 |
+
|
840 |
+
class NllbConverter(SpmConverter):
|
841 |
+
def vocab(self, proto):
|
842 |
+
vocab = [
|
843 |
+
("<s>", 0.0),
|
844 |
+
("<pad>", 0.0),
|
845 |
+
("</s>", 0.0),
|
846 |
+
("<unk>", 0.0),
|
847 |
+
]
|
848 |
+
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
|
849 |
+
return vocab
|
850 |
+
|
851 |
+
def unk_id(self, proto):
|
852 |
+
return 3
|
853 |
+
|
854 |
+
def post_processor(self):
|
855 |
+
return processors.TemplateProcessing(
|
856 |
+
single="eng_Latn $A </s>",
|
857 |
+
pair="eng_Latn $A $B </s>",
|
858 |
+
special_tokens=[
|
859 |
+
("eng_Latn", self.original_tokenizer.convert_tokens_to_ids("eng_Latn")),
|
860 |
+
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
|
861 |
+
],
|
862 |
+
)
|
863 |
+
|
864 |
+
|
865 |
+
class SeamlessM4TConverter(SpmConverter):
|
866 |
+
def vocab(self, proto):
|
867 |
+
vocab = [
|
868 |
+
("<pad>", 0.0),
|
869 |
+
("<unk>", 0.0),
|
870 |
+
("<s>", 0.0),
|
871 |
+
("</s>", 0.0),
|
872 |
+
]
|
873 |
+
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
|
874 |
+
return vocab
|
875 |
+
|
876 |
+
def unk_id(self, proto):
|
877 |
+
return self.original_tokenizer.unk_token_id
|
878 |
+
|
879 |
+
def post_processor(self):
|
880 |
+
return processors.TemplateProcessing(
|
881 |
+
single="__eng__ $A </s>",
|
882 |
+
pair="__eng__ $A $B </s>",
|
883 |
+
special_tokens=[
|
884 |
+
("__eng__", self.original_tokenizer.convert_tokens_to_ids("__eng__")),
|
885 |
+
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
|
886 |
+
],
|
887 |
+
)
|
888 |
+
|
889 |
+
|
890 |
+
class XLMRobertaConverter(SpmConverter):
|
891 |
+
def vocab(self, proto):
|
892 |
+
vocab = [
|
893 |
+
("<s>", 0.0),
|
894 |
+
("<pad>", 0.0),
|
895 |
+
("</s>", 0.0),
|
896 |
+
("<unk>", 0.0),
|
897 |
+
]
|
898 |
+
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
|
899 |
+
vocab += [("<mask>", 0.0)]
|
900 |
+
return vocab
|
901 |
+
|
902 |
+
def unk_id(self, proto):
|
903 |
+
unk_id = 3
|
904 |
+
return unk_id
|
905 |
+
|
906 |
+
def post_processor(self):
|
907 |
+
return processors.TemplateProcessing(
|
908 |
+
single="<s> $A </s>",
|
909 |
+
pair="<s> $A </s> </s> $B </s>",
|
910 |
+
special_tokens=[
|
911 |
+
("<s>", self.original_tokenizer.convert_tokens_to_ids("<s>")),
|
912 |
+
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
|
913 |
+
],
|
914 |
+
)
|
915 |
+
|
916 |
+
|
917 |
+
class XLNetConverter(SpmConverter):
|
918 |
+
def vocab(self, proto):
|
919 |
+
return [
|
920 |
+
(piece.piece, piece.score) if check_number_comma(piece.piece) else (piece.piece, piece.score - 100)
|
921 |
+
for piece in proto.pieces
|
922 |
+
]
|
923 |
+
|
924 |
+
def normalizer(self, proto):
|
925 |
+
list_normalizers = [
|
926 |
+
normalizers.Replace("``", '"'),
|
927 |
+
normalizers.Replace("''", '"'),
|
928 |
+
]
|
929 |
+
if not self.original_tokenizer.keep_accents:
|
930 |
+
list_normalizers.append(normalizers.NFKD())
|
931 |
+
list_normalizers.append(normalizers.StripAccents())
|
932 |
+
if self.original_tokenizer.do_lower_case:
|
933 |
+
list_normalizers.append(normalizers.Lowercase())
|
934 |
+
|
935 |
+
precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap
|
936 |
+
|
937 |
+
if precompiled_charsmap:
|
938 |
+
list_normalizers.append(normalizers.Precompiled(precompiled_charsmap))
|
939 |
+
|
940 |
+
list_normalizers.append(normalizers.Replace(Regex(" {2,}"), " "))
|
941 |
+
return normalizers.Sequence(list_normalizers)
|
942 |
+
|
943 |
+
def post_processor(self):
|
944 |
+
return processors.TemplateProcessing(
|
945 |
+
single="$A:0 <sep>:0 <cls>:2",
|
946 |
+
pair="$A:0 <sep>:0 $B:1 <sep>:1 <cls>:2",
|
947 |
+
special_tokens=[
|
948 |
+
("<sep>", self.original_tokenizer.convert_tokens_to_ids("<sep>")),
|
949 |
+
("<cls>", self.original_tokenizer.convert_tokens_to_ids("<cls>")),
|
950 |
+
],
|
951 |
+
)
|
952 |
+
|
953 |
+
|
954 |
+
class ReformerConverter(SpmConverter):
|
955 |
+
pass
|
956 |
+
|
957 |
+
|
958 |
+
class RemBertConverter(SpmConverter):
|
959 |
+
# Inspired from AlbertConverter
|
960 |
+
def normalizer(self, proto):
|
961 |
+
list_normalizers = [
|
962 |
+
normalizers.Replace("``", '"'),
|
963 |
+
normalizers.Replace("''", '"'),
|
964 |
+
normalizers.Replace(Regex(" {2,}"), " "),
|
965 |
+
]
|
966 |
+
if not self.original_tokenizer.keep_accents:
|
967 |
+
list_normalizers.append(normalizers.NFKD())
|
968 |
+
list_normalizers.append(normalizers.StripAccents())
|
969 |
+
if self.original_tokenizer.do_lower_case:
|
970 |
+
list_normalizers.append(normalizers.Lowercase())
|
971 |
+
|
972 |
+
precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap
|
973 |
+
|
974 |
+
if precompiled_charsmap:
|
975 |
+
list_normalizers.append(normalizers.Precompiled(precompiled_charsmap))
|
976 |
+
|
977 |
+
return normalizers.Sequence(list_normalizers)
|
978 |
+
|
979 |
+
def post_processor(self):
|
980 |
+
return processors.TemplateProcessing(
|
981 |
+
single="[CLS]:0 $A:0 [SEP]:0",
|
982 |
+
pair="[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1",
|
983 |
+
special_tokens=[
|
984 |
+
("[CLS]", self.original_tokenizer.convert_tokens_to_ids("[CLS]")),
|
985 |
+
("[SEP]", self.original_tokenizer.convert_tokens_to_ids("[SEP]")),
|
986 |
+
],
|
987 |
+
)
|
988 |
+
|
989 |
+
|
990 |
+
class BertGenerationConverter(SpmConverter):
|
991 |
+
pass
|
992 |
+
|
993 |
+
|
994 |
+
class PegasusConverter(SpmConverter):
|
995 |
+
def vocab(self, proto):
|
996 |
+
vocab = [
|
997 |
+
(self.original_tokenizer.pad_token, 0.0),
|
998 |
+
(self.original_tokenizer.eos_token, 0.0),
|
999 |
+
]
|
1000 |
+
|
1001 |
+
if self.original_tokenizer.mask_token_sent is not None:
|
1002 |
+
vocab += [(self.original_tokenizer.mask_token_sent, 0.0)]
|
1003 |
+
|
1004 |
+
if (
|
1005 |
+
self.original_tokenizer.mask_token is not None
|
1006 |
+
and self.original_tokenizer.mask_token_id < self.original_tokenizer.offset
|
1007 |
+
):
|
1008 |
+
vocab += [(self.original_tokenizer.mask_token, 0.0)]
|
1009 |
+
|
1010 |
+
vocab += [(f"<unk_{i}>", -100.0) for i in range(2, self.original_tokenizer.offset)]
|
1011 |
+
vocab += [(piece.piece, piece.score) for piece in proto.pieces[2:]]
|
1012 |
+
return vocab
|
1013 |
+
|
1014 |
+
def unk_id(self, proto):
|
1015 |
+
return proto.trainer_spec.unk_id + self.original_tokenizer.offset
|
1016 |
+
|
1017 |
+
def pre_tokenizer(self, replacement, add_prefix_space):
|
1018 |
+
prepend_scheme = _get_prepend_scheme(add_prefix_space, self.original_tokenizer)
|
1019 |
+
return pre_tokenizers.Sequence(
|
1020 |
+
[
|
1021 |
+
pre_tokenizers.WhitespaceSplit(),
|
1022 |
+
pre_tokenizers.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme),
|
1023 |
+
]
|
1024 |
+
)
|
1025 |
+
|
1026 |
+
def post_processor(self):
|
1027 |
+
eos = self.original_tokenizer.eos_token
|
1028 |
+
special_tokens = [
|
1029 |
+
(eos, self.original_tokenizer.eos_token_id),
|
1030 |
+
]
|
1031 |
+
return processors.TemplateProcessing(single=["$A", eos], pair=["$A", "$B", eos], special_tokens=special_tokens)
|
1032 |
+
|
1033 |
+
|
1034 |
+
class T5Converter(SpmConverter):
|
1035 |
+
def vocab(self, proto):
|
1036 |
+
num_extra_ids = self.original_tokenizer._extra_ids
|
1037 |
+
vocab = [(piece.piece, piece.score) for piece in proto.pieces]
|
1038 |
+
vocab += [(f"<extra_id_{i}>", 0.0) for i in range(num_extra_ids - 1, -1, -1)]
|
1039 |
+
return vocab
|
1040 |
+
|
1041 |
+
def post_processor(self):
|
1042 |
+
return processors.TemplateProcessing(
|
1043 |
+
single=["$A", "</s>"],
|
1044 |
+
pair=["$A", "</s>", "$B", "</s>"],
|
1045 |
+
special_tokens=[
|
1046 |
+
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
|
1047 |
+
],
|
1048 |
+
)
|
1049 |
+
|
1050 |
+
|
1051 |
+
class UdopConverter(SpmConverter):
|
1052 |
+
def post_processor(self):
|
1053 |
+
return processors.TemplateProcessing(
|
1054 |
+
single=["$A", "</s>"],
|
1055 |
+
pair=["$A", "</s>", "$B", "</s>"],
|
1056 |
+
special_tokens=[
|
1057 |
+
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
|
1058 |
+
],
|
1059 |
+
)
|
1060 |
+
|
1061 |
+
|
1062 |
+
class WhisperConverter(Converter):
|
1063 |
+
def converted(self) -> Tokenizer:
|
1064 |
+
vocab = self.original_tokenizer.encoder
|
1065 |
+
merges = list(self.original_tokenizer.bpe_ranks.keys())
|
1066 |
+
|
1067 |
+
tokenizer = Tokenizer(
|
1068 |
+
BPE(
|
1069 |
+
vocab=vocab,
|
1070 |
+
merges=merges,
|
1071 |
+
dropout=None,
|
1072 |
+
continuing_subword_prefix="",
|
1073 |
+
end_of_word_suffix="",
|
1074 |
+
fuse_unk=False,
|
1075 |
+
)
|
1076 |
+
)
|
1077 |
+
|
1078 |
+
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=self.original_tokenizer.add_prefix_space)
|
1079 |
+
tokenizer.decoder = decoders.ByteLevel()
|
1080 |
+
|
1081 |
+
prefix_token_ids = self.original_tokenizer.prefix_tokens
|
1082 |
+
prefixes = self.original_tokenizer.convert_ids_to_tokens(prefix_token_ids)
|
1083 |
+
eos = self.original_tokenizer.eos_token
|
1084 |
+
eos_token_id = self.original_tokenizer.eos_token_id
|
1085 |
+
prefix_template = " ".join([f"{token}:0" for token in prefixes])
|
1086 |
+
tokenizer.post_processor = processors.TemplateProcessing(
|
1087 |
+
single=f"{prefix_template} $A:0 {eos}:0",
|
1088 |
+
pair=f"{prefix_template} $A:0 $B:1 {eos}:1",
|
1089 |
+
special_tokens=[
|
1090 |
+
(eos, eos_token_id),
|
1091 |
+
*zip(prefixes, prefix_token_ids),
|
1092 |
+
],
|
1093 |
+
)
|
1094 |
+
|
1095 |
+
return tokenizer
|
1096 |
+
|
1097 |
+
|
1098 |
+
class BigBirdConverter(SpmConverter):
|
1099 |
+
def post_processor(self):
|
1100 |
+
return processors.TemplateProcessing(
|
1101 |
+
single="[CLS]:0 $A:0 [SEP]:0",
|
1102 |
+
pair="[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1",
|
1103 |
+
special_tokens=[
|
1104 |
+
("[CLS]", self.original_tokenizer.convert_tokens_to_ids("[CLS]")),
|
1105 |
+
("[SEP]", self.original_tokenizer.convert_tokens_to_ids("[SEP]")),
|
1106 |
+
],
|
1107 |
+
)
|
1108 |
+
|
1109 |
+
|
1110 |
+
class CLIPConverter(Converter):
|
1111 |
+
def converted(self) -> Tokenizer:
|
1112 |
+
vocab = self.original_tokenizer.encoder
|
1113 |
+
merges = list(self.original_tokenizer.bpe_ranks.keys())
|
1114 |
+
unk_token = self.original_tokenizer.unk_token
|
1115 |
+
|
1116 |
+
tokenizer = Tokenizer(
|
1117 |
+
BPE(
|
1118 |
+
vocab=vocab,
|
1119 |
+
merges=merges,
|
1120 |
+
dropout=None,
|
1121 |
+
continuing_subword_prefix="",
|
1122 |
+
end_of_word_suffix="</w>",
|
1123 |
+
fuse_unk=False,
|
1124 |
+
unk_token=str(unk_token),
|
1125 |
+
)
|
1126 |
+
)
|
1127 |
+
|
1128 |
+
tokenizer.normalizer = normalizers.Sequence(
|
1129 |
+
[normalizers.NFC(), normalizers.Replace(Regex(r"\s+"), " "), normalizers.Lowercase()]
|
1130 |
+
)
|
1131 |
+
tokenizer.pre_tokenizer = pre_tokenizers.Sequence(
|
1132 |
+
[
|
1133 |
+
pre_tokenizers.Split(
|
1134 |
+
Regex(r"""'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+"""),
|
1135 |
+
behavior="removed",
|
1136 |
+
invert=True,
|
1137 |
+
),
|
1138 |
+
pre_tokenizers.ByteLevel(add_prefix_space=False),
|
1139 |
+
]
|
1140 |
+
)
|
1141 |
+
tokenizer.decoder = decoders.ByteLevel()
|
1142 |
+
|
1143 |
+
# Hack to have a ByteLevel and TemplaceProcessor
|
1144 |
+
tokenizer.post_processor = processors.RobertaProcessing(
|
1145 |
+
sep=(self.original_tokenizer.eos_token, self.original_tokenizer.eos_token_id),
|
1146 |
+
cls=(self.original_tokenizer.bos_token, self.original_tokenizer.bos_token_id),
|
1147 |
+
add_prefix_space=False,
|
1148 |
+
trim_offsets=False,
|
1149 |
+
)
|
1150 |
+
return tokenizer
|
1151 |
+
|
1152 |
+
|
1153 |
+
class LayoutLMv2Converter(Converter):
|
1154 |
+
def converted(self) -> Tokenizer:
|
1155 |
+
vocab = self.original_tokenizer.vocab
|
1156 |
+
tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token)))
|
1157 |
+
|
1158 |
+
tokenize_chinese_chars = False
|
1159 |
+
strip_accents = False
|
1160 |
+
do_lower_case = True
|
1161 |
+
if hasattr(self.original_tokenizer, "basic_tokenizer"):
|
1162 |
+
tokenize_chinese_chars = self.original_tokenizer.basic_tokenizer.tokenize_chinese_chars
|
1163 |
+
strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents
|
1164 |
+
do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case
|
1165 |
+
|
1166 |
+
tokenizer.normalizer = normalizers.BertNormalizer(
|
1167 |
+
clean_text=True,
|
1168 |
+
handle_chinese_chars=tokenize_chinese_chars,
|
1169 |
+
strip_accents=strip_accents,
|
1170 |
+
lowercase=do_lower_case,
|
1171 |
+
)
|
1172 |
+
tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
|
1173 |
+
|
1174 |
+
cls = str(self.original_tokenizer.cls_token)
|
1175 |
+
sep = str(self.original_tokenizer.sep_token)
|
1176 |
+
cls_token_id = self.original_tokenizer.cls_token_id
|
1177 |
+
sep_token_id = self.original_tokenizer.sep_token_id
|
1178 |
+
|
1179 |
+
tokenizer.post_processor = processors.TemplateProcessing(
|
1180 |
+
single=f"{cls}:0 $A:0 {sep}:0",
|
1181 |
+
pair=f"{cls}:0 $A:0 {sep}:0 $B:1 {sep}:1",
|
1182 |
+
special_tokens=[
|
1183 |
+
(cls, cls_token_id),
|
1184 |
+
(sep, sep_token_id),
|
1185 |
+
],
|
1186 |
+
)
|
1187 |
+
tokenizer.decoder = decoders.WordPiece(prefix="##")
|
1188 |
+
|
1189 |
+
return tokenizer
|
1190 |
+
|
1191 |
+
|
1192 |
+
class BlenderbotConverter(Converter):
|
1193 |
+
def converted(self) -> Tokenizer:
|
1194 |
+
ot = self.original_tokenizer
|
1195 |
+
vocab = ot.encoder
|
1196 |
+
merges = list(ot.bpe_ranks.keys())
|
1197 |
+
|
1198 |
+
tokenizer = Tokenizer(
|
1199 |
+
BPE(
|
1200 |
+
vocab=vocab,
|
1201 |
+
merges=merges,
|
1202 |
+
dropout=None,
|
1203 |
+
continuing_subword_prefix="",
|
1204 |
+
end_of_word_suffix="",
|
1205 |
+
fuse_unk=False,
|
1206 |
+
)
|
1207 |
+
)
|
1208 |
+
|
1209 |
+
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=ot.add_prefix_space)
|
1210 |
+
tokenizer.decoder = decoders.ByteLevel()
|
1211 |
+
tokenizer.post_processor = processors.TemplateProcessing(
|
1212 |
+
single=f"$A:0 {ot.eos_token}:0",
|
1213 |
+
special_tokens=[
|
1214 |
+
(ot.eos_token, ot.eos_token_id),
|
1215 |
+
],
|
1216 |
+
)
|
1217 |
+
|
1218 |
+
return tokenizer
|
1219 |
+
|
1220 |
+
|
1221 |
+
class XGLMConverter(SpmConverter):
|
1222 |
+
def vocab(self, proto):
|
1223 |
+
vocab = [
|
1224 |
+
("<s>", 0.0),
|
1225 |
+
("<pad>", 0.0),
|
1226 |
+
("</s>", 0.0),
|
1227 |
+
("<unk>", 0.0),
|
1228 |
+
]
|
1229 |
+
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
|
1230 |
+
vocab += [("<madeupword0>", 0.0), ("<madeupword1>", 0.0), ("<madeupword2>", 0.0), ("<madeupword3>", 0.0), ("<madeupword4>", 0.0), ("<madeupword5>", 0.0), ("<madeupword6>", 0.0)] # fmt: skip
|
1231 |
+
return vocab
|
1232 |
+
|
1233 |
+
def unk_id(self, proto):
|
1234 |
+
unk_id = 3
|
1235 |
+
return unk_id
|
1236 |
+
|
1237 |
+
def post_processor(self):
|
1238 |
+
return processors.TemplateProcessing(
|
1239 |
+
single="</s> $A",
|
1240 |
+
pair="</s> $A </s> </s> $B",
|
1241 |
+
special_tokens=[
|
1242 |
+
("<s>", self.original_tokenizer.convert_tokens_to_ids("<s>")),
|
1243 |
+
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
|
1244 |
+
],
|
1245 |
+
)
|
1246 |
+
|
1247 |
+
|
1248 |
+
class GemmaConvert(SpmConverter):
|
1249 |
+
handle_byte_fallback = True
|
1250 |
+
|
1251 |
+
""""
|
1252 |
+
split_by_unicode_script: true
|
1253 |
+
split_by_number: true
|
1254 |
+
split_by_whitespace: true
|
1255 |
+
treat_whitespace_as_suffix: false
|
1256 |
+
allow_whitespace_only_pieces: true
|
1257 |
+
split_digits: true
|
1258 |
+
byte_fallback: true
|
1259 |
+
"""
|
1260 |
+
|
1261 |
+
def normalizer(self, proto):
|
1262 |
+
return normalizers.Replace(" ", "▁")
|
1263 |
+
|
1264 |
+
def vocab(self, proto):
|
1265 |
+
vocab = [
|
1266 |
+
(self.original_tokenizer.pad_token, 0.0),
|
1267 |
+
(self.original_tokenizer.eos_token, 0.0),
|
1268 |
+
(self.original_tokenizer.bos_token, 0.0),
|
1269 |
+
]
|
1270 |
+
for piece in proto.pieces[3:]:
|
1271 |
+
if piece.piece == "<0x09>":
|
1272 |
+
vocab += [("\t", piece.score)]
|
1273 |
+
else:
|
1274 |
+
vocab += [(piece.piece, piece.score)]
|
1275 |
+
# vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
|
1276 |
+
return vocab
|
1277 |
+
|
1278 |
+
def pre_tokenizer(self, replacement, add_prefix_space):
|
1279 |
+
return None
|
1280 |
+
|
1281 |
+
def unk_id(self, proto):
|
1282 |
+
unk_id = 3
|
1283 |
+
return unk_id
|
1284 |
+
|
1285 |
+
def decoder(self, replacement, add_prefix_space):
|
1286 |
+
return decoders.Sequence(
|
1287 |
+
[
|
1288 |
+
decoders.Replace("▁", " "),
|
1289 |
+
decoders.ByteFallback(),
|
1290 |
+
decoders.Fuse(),
|
1291 |
+
]
|
1292 |
+
)
|
1293 |
+
|
1294 |
+
def tokenizer(self, proto):
|
1295 |
+
model_type = proto.trainer_spec.model_type
|
1296 |
+
vocab_scores = self.vocab(proto)
|
1297 |
+
if model_type == 1:
|
1298 |
+
import tokenizers
|
1299 |
+
|
1300 |
+
if version.parse(tokenizers.__version__) < version.parse("0.14.0"):
|
1301 |
+
tokenizer = Tokenizer(Unigram(vocab_scores, 0))
|
1302 |
+
else:
|
1303 |
+
tokenizer = Tokenizer(Unigram(vocab_scores, 0, byte_fallback=True))
|
1304 |
+
|
1305 |
+
elif model_type == 2:
|
1306 |
+
_, merges = GemmaSentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
|
1307 |
+
bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
|
1308 |
+
|
1309 |
+
tokenizer = Tokenizer(
|
1310 |
+
BPE(
|
1311 |
+
bpe_vocab,
|
1312 |
+
merges,
|
1313 |
+
unk_token=proto.trainer_spec.unk_piece,
|
1314 |
+
fuse_unk=True,
|
1315 |
+
byte_fallback=True,
|
1316 |
+
dropout=None,
|
1317 |
+
)
|
1318 |
+
)
|
1319 |
+
tokenizer.add_special_tokens(
|
1320 |
+
[
|
1321 |
+
AddedToken("<pad>", normalized=False, special=True),
|
1322 |
+
AddedToken("<eos>", normalized=False, special=True),
|
1323 |
+
AddedToken("<bos>", normalized=False, special=True),
|
1324 |
+
AddedToken("<unk>", normalized=False, special=True),
|
1325 |
+
]
|
1326 |
+
)
|
1327 |
+
else:
|
1328 |
+
raise Exception(
|
1329 |
+
"You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
|
1330 |
+
)
|
1331 |
+
user_defined_symbols = [
|
1332 |
+
AddedToken(token, normalized=False, special=False) for token in proto.trainer_spec.user_defined_symbols
|
1333 |
+
]
|
1334 |
+
tokenizer.add_tokens(user_defined_symbols)
|
1335 |
+
return tokenizer
|
1336 |
+
|
1337 |
+
|
1338 |
+
class LlamaConverter(SpmConverter):
|
1339 |
+
handle_byte_fallback = True
|
1340 |
+
|
1341 |
+
def vocab(self, proto):
|
1342 |
+
vocab = [
|
1343 |
+
(self.original_tokenizer.convert_ids_to_tokens(0), 0.0),
|
1344 |
+
(self.original_tokenizer.convert_ids_to_tokens(1), 0.0),
|
1345 |
+
(self.original_tokenizer.convert_ids_to_tokens(2), 0.0),
|
1346 |
+
]
|
1347 |
+
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
|
1348 |
+
return vocab
|
1349 |
+
|
1350 |
+
def unk_id(self, proto):
|
1351 |
+
unk_id = 0
|
1352 |
+
return unk_id
|
1353 |
+
|
1354 |
+
def decoder(self, replacement, add_prefix_space):
|
1355 |
+
sequence = [
|
1356 |
+
decoders.Replace("▁", " "),
|
1357 |
+
decoders.ByteFallback(),
|
1358 |
+
decoders.Fuse(),
|
1359 |
+
]
|
1360 |
+
if add_prefix_space:
|
1361 |
+
sequence += [decoders.Strip(content=" ", left=1)]
|
1362 |
+
return decoders.Sequence(sequence)
|
1363 |
+
|
1364 |
+
def tokenizer(self, proto):
|
1365 |
+
model_type = proto.trainer_spec.model_type
|
1366 |
+
vocab_scores = self.vocab(proto)
|
1367 |
+
if model_type == 1:
|
1368 |
+
import tokenizers
|
1369 |
+
|
1370 |
+
if version.parse(tokenizers.__version__) < version.parse("0.14.0"):
|
1371 |
+
tokenizer = Tokenizer(Unigram(vocab_scores, 0))
|
1372 |
+
else:
|
1373 |
+
tokenizer = Tokenizer(Unigram(vocab_scores, 0, byte_fallback=True))
|
1374 |
+
|
1375 |
+
elif model_type == 2:
|
1376 |
+
_, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
|
1377 |
+
bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
|
1378 |
+
tokenizer = Tokenizer(
|
1379 |
+
BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True)
|
1380 |
+
)
|
1381 |
+
tokenizer.add_special_tokens(
|
1382 |
+
[
|
1383 |
+
AddedToken(self.original_tokenizer.convert_ids_to_tokens(0), normalized=False, special=True),
|
1384 |
+
AddedToken(self.original_tokenizer.convert_ids_to_tokens(1), normalized=False, special=True),
|
1385 |
+
AddedToken(self.original_tokenizer.convert_ids_to_tokens(2), normalized=False, special=True),
|
1386 |
+
]
|
1387 |
+
)
|
1388 |
+
else:
|
1389 |
+
raise Exception(
|
1390 |
+
"You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
|
1391 |
+
)
|
1392 |
+
|
1393 |
+
return tokenizer
|
1394 |
+
|
1395 |
+
def normalizer(self, proto):
|
1396 |
+
sequence = []
|
1397 |
+
if hasattr(self.original_tokenizer, "add_prefix_space"):
|
1398 |
+
if self.original_tokenizer.add_prefix_space:
|
1399 |
+
sequence += [normalizers.Prepend(prepend="▁")]
|
1400 |
+
sequence += [normalizers.Replace(pattern=" ", content="▁")]
|
1401 |
+
return normalizers.Sequence(sequence)
|
1402 |
+
|
1403 |
+
def pre_tokenizer(self, replacement, add_prefix_space):
|
1404 |
+
return None
|
1405 |
+
|
1406 |
+
def post_processor(self):
|
1407 |
+
# the processor is defined in the LlamaTokenizerFast class.
|
1408 |
+
return None
|
1409 |
+
|
1410 |
+
|
1411 |
+
class MarkupLMConverter(Converter):
|
1412 |
+
def converted(self) -> Tokenizer:
|
1413 |
+
ot = self.original_tokenizer
|
1414 |
+
vocab = ot.encoder
|
1415 |
+
merges = list(ot.bpe_ranks.keys())
|
1416 |
+
|
1417 |
+
tokenizer = Tokenizer(
|
1418 |
+
BPE(
|
1419 |
+
vocab=vocab,
|
1420 |
+
merges=merges,
|
1421 |
+
dropout=None,
|
1422 |
+
continuing_subword_prefix="",
|
1423 |
+
end_of_word_suffix="",
|
1424 |
+
fuse_unk=False,
|
1425 |
+
unk_token=self.original_tokenizer.unk_token,
|
1426 |
+
)
|
1427 |
+
)
|
1428 |
+
|
1429 |
+
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=ot.add_prefix_space)
|
1430 |
+
tokenizer.decoder = decoders.ByteLevel()
|
1431 |
+
|
1432 |
+
cls = str(self.original_tokenizer.cls_token)
|
1433 |
+
sep = str(self.original_tokenizer.sep_token)
|
1434 |
+
cls_token_id = self.original_tokenizer.cls_token_id
|
1435 |
+
sep_token_id = self.original_tokenizer.sep_token_id
|
1436 |
+
|
1437 |
+
tokenizer.post_processor = processors.TemplateProcessing(
|
1438 |
+
single=f"{cls} $A {sep}",
|
1439 |
+
pair=f"{cls} $A {sep} $B {sep}",
|
1440 |
+
special_tokens=[
|
1441 |
+
(cls, cls_token_id),
|
1442 |
+
(sep, sep_token_id),
|
1443 |
+
],
|
1444 |
+
)
|
1445 |
+
|
1446 |
+
return tokenizer
|
1447 |
+
|
1448 |
+
|
1449 |
+
SLOW_TO_FAST_CONVERTERS = {
|
1450 |
+
"AlbertTokenizer": AlbertConverter,
|
1451 |
+
"BartTokenizer": RobertaConverter,
|
1452 |
+
"BarthezTokenizer": BarthezConverter,
|
1453 |
+
"BertTokenizer": BertConverter,
|
1454 |
+
"BigBirdTokenizer": BigBirdConverter,
|
1455 |
+
"BlenderbotTokenizer": BlenderbotConverter,
|
1456 |
+
"CamembertTokenizer": CamembertConverter,
|
1457 |
+
"CLIPTokenizer": CLIPConverter,
|
1458 |
+
"CodeGenTokenizer": GPT2Converter,
|
1459 |
+
"ConvBertTokenizer": BertConverter,
|
1460 |
+
"DebertaTokenizer": DebertaConverter,
|
1461 |
+
"DebertaV2Tokenizer": DebertaV2Converter,
|
1462 |
+
"DistilBertTokenizer": BertConverter,
|
1463 |
+
"DPRReaderTokenizer": BertConverter,
|
1464 |
+
"DPRQuestionEncoderTokenizer": BertConverter,
|
1465 |
+
"DPRContextEncoderTokenizer": BertConverter,
|
1466 |
+
"ElectraTokenizer": BertConverter,
|
1467 |
+
"FNetTokenizer": AlbertConverter,
|
1468 |
+
"FunnelTokenizer": FunnelConverter,
|
1469 |
+
"GPT2Tokenizer": GPT2Converter,
|
1470 |
+
"HerbertTokenizer": HerbertConverter,
|
1471 |
+
"LayoutLMTokenizer": BertConverter,
|
1472 |
+
"LayoutLMv2Tokenizer": BertConverter,
|
1473 |
+
"LayoutLMv3Tokenizer": RobertaConverter,
|
1474 |
+
"LayoutXLMTokenizer": XLMRobertaConverter,
|
1475 |
+
"LongformerTokenizer": RobertaConverter,
|
1476 |
+
"LEDTokenizer": RobertaConverter,
|
1477 |
+
"LxmertTokenizer": BertConverter,
|
1478 |
+
"MarkupLMTokenizer": MarkupLMConverter,
|
1479 |
+
"MBartTokenizer": MBartConverter,
|
1480 |
+
"MBart50Tokenizer": MBart50Converter,
|
1481 |
+
"MPNetTokenizer": MPNetConverter,
|
1482 |
+
"MobileBertTokenizer": BertConverter,
|
1483 |
+
"MvpTokenizer": RobertaConverter,
|
1484 |
+
"NllbTokenizer": NllbConverter,
|
1485 |
+
"OpenAIGPTTokenizer": OpenAIGPTConverter,
|
1486 |
+
"PegasusTokenizer": PegasusConverter,
|
1487 |
+
"Qwen2Tokenizer": Qwen2Converter,
|
1488 |
+
"RealmTokenizer": BertConverter,
|
1489 |
+
"ReformerTokenizer": ReformerConverter,
|
1490 |
+
"RemBertTokenizer": RemBertConverter,
|
1491 |
+
"RetriBertTokenizer": BertConverter,
|
1492 |
+
"RobertaTokenizer": RobertaConverter,
|
1493 |
+
"RoFormerTokenizer": RoFormerConverter,
|
1494 |
+
"SeamlessM4TTokenizer": SeamlessM4TConverter,
|
1495 |
+
"SqueezeBertTokenizer": BertConverter,
|
1496 |
+
"T5Tokenizer": T5Converter,
|
1497 |
+
"UdopTokenizer": UdopConverter,
|
1498 |
+
"WhisperTokenizer": WhisperConverter,
|
1499 |
+
"XLMRobertaTokenizer": XLMRobertaConverter,
|
1500 |
+
"XLNetTokenizer": XLNetConverter,
|
1501 |
+
"SplinterTokenizer": SplinterConverter,
|
1502 |
+
"XGLMTokenizer": XGLMConverter,
|
1503 |
+
"LlamaTokenizer": LlamaConverter,
|
1504 |
+
"CodeLlamaTokenizer": LlamaConverter,
|
1505 |
+
"GemmaTokenizer": GemmaConvert,
|
1506 |
+
}
|
1507 |
+
|
1508 |
+
|
1509 |
+
def convert_slow_tokenizer(transformer_tokenizer) -> Tokenizer:
|
1510 |
+
"""
|
1511 |
+
Utilities to convert a slow tokenizer instance in a fast tokenizer instance.
|
1512 |
+
|
1513 |
+
Args:
|
1514 |
+
transformer_tokenizer ([`~tokenization_utils_base.PreTrainedTokenizer`]):
|
1515 |
+
Instance of a slow tokenizer to convert in the backend tokenizer for
|
1516 |
+
[`~tokenization_utils_base.PreTrainedTokenizerFast`].
|
1517 |
+
|
1518 |
+
Return:
|
1519 |
+
A instance of [`~tokenizers.Tokenizer`] to be used as the backend tokenizer of a
|
1520 |
+
[`~tokenization_utils_base.PreTrainedTokenizerFast`]
|
1521 |
+
"""
|
1522 |
+
|
1523 |
+
tokenizer_class_name = transformer_tokenizer.__class__.__name__
|
1524 |
+
|
1525 |
+
if tokenizer_class_name not in SLOW_TO_FAST_CONVERTERS:
|
1526 |
+
raise ValueError(
|
1527 |
+
f"An instance of tokenizer class {tokenizer_class_name} cannot be converted in a Fast tokenizer instance."
|
1528 |
+
" No converter was found. Currently available slow->fast convertors:"
|
1529 |
+
f" {list(SLOW_TO_FAST_CONVERTERS.keys())}"
|
1530 |
+
)
|
1531 |
+
|
1532 |
+
converter_class = SLOW_TO_FAST_CONVERTERS[tokenizer_class_name]
|
1533 |
+
|
1534 |
+
return converter_class(transformer_tokenizer).converted()
|
venv/lib/python3.10/site-packages/transformers/convert_slow_tokenizers_checkpoints_to_fast.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Convert slow tokenizers checkpoints in fast (serialization format of the `tokenizers` library)"""
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
import os
|
19 |
+
|
20 |
+
import transformers
|
21 |
+
|
22 |
+
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
|
23 |
+
from .utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logging.set_verbosity_info()
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
|
31 |
+
TOKENIZER_CLASSES = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS}
|
32 |
+
|
33 |
+
|
34 |
+
def convert_slow_checkpoint_to_fast(tokenizer_name, checkpoint_name, dump_path, force_download):
|
35 |
+
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
|
36 |
+
raise ValueError(f"Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys())}.")
|
37 |
+
|
38 |
+
if tokenizer_name is None:
|
39 |
+
tokenizer_names = TOKENIZER_CLASSES
|
40 |
+
else:
|
41 |
+
tokenizer_names = {tokenizer_name: getattr(transformers, tokenizer_name + "Fast")}
|
42 |
+
|
43 |
+
logger.info(f"Loading tokenizer classes: {tokenizer_names}")
|
44 |
+
|
45 |
+
for tokenizer_name in tokenizer_names:
|
46 |
+
tokenizer_class = TOKENIZER_CLASSES[tokenizer_name]
|
47 |
+
|
48 |
+
add_prefix = True
|
49 |
+
if checkpoint_name is None:
|
50 |
+
checkpoint_names = list(tokenizer_class.max_model_input_sizes.keys())
|
51 |
+
else:
|
52 |
+
checkpoint_names = [checkpoint_name]
|
53 |
+
|
54 |
+
logger.info(f"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}")
|
55 |
+
|
56 |
+
for checkpoint in checkpoint_names:
|
57 |
+
logger.info(f"Loading {tokenizer_class.__class__.__name__} {checkpoint}")
|
58 |
+
|
59 |
+
# Load tokenizer
|
60 |
+
tokenizer = tokenizer_class.from_pretrained(checkpoint, force_download=force_download)
|
61 |
+
|
62 |
+
# Save fast tokenizer
|
63 |
+
logger.info(f"Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}")
|
64 |
+
|
65 |
+
# For organization names we create sub-directories
|
66 |
+
if "/" in checkpoint:
|
67 |
+
checkpoint_directory, checkpoint_prefix_name = checkpoint.split("/")
|
68 |
+
dump_path_full = os.path.join(dump_path, checkpoint_directory)
|
69 |
+
elif add_prefix:
|
70 |
+
checkpoint_prefix_name = checkpoint
|
71 |
+
dump_path_full = dump_path
|
72 |
+
else:
|
73 |
+
checkpoint_prefix_name = None
|
74 |
+
dump_path_full = dump_path
|
75 |
+
|
76 |
+
logger.info(f"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}")
|
77 |
+
|
78 |
+
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values())[0]:
|
79 |
+
file_path = list(tokenizer.pretrained_vocab_files_map.values())[0][checkpoint]
|
80 |
+
next_char = file_path.split(checkpoint)[-1][0]
|
81 |
+
if next_char == "/":
|
82 |
+
dump_path_full = os.path.join(dump_path_full, checkpoint_prefix_name)
|
83 |
+
checkpoint_prefix_name = None
|
84 |
+
|
85 |
+
logger.info(f"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}")
|
86 |
+
|
87 |
+
file_names = tokenizer.save_pretrained(
|
88 |
+
dump_path_full, legacy_format=False, filename_prefix=checkpoint_prefix_name
|
89 |
+
)
|
90 |
+
logger.info(f"=> File names {file_names}")
|
91 |
+
|
92 |
+
for file_name in file_names:
|
93 |
+
if not file_name.endswith("tokenizer.json"):
|
94 |
+
os.remove(file_name)
|
95 |
+
logger.info(f"=> removing {file_name}")
|
96 |
+
|
97 |
+
|
98 |
+
if __name__ == "__main__":
|
99 |
+
parser = argparse.ArgumentParser()
|
100 |
+
# Required parameters
|
101 |
+
parser.add_argument(
|
102 |
+
"--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files."
|
103 |
+
)
|
104 |
+
parser.add_argument(
|
105 |
+
"--tokenizer_name",
|
106 |
+
default=None,
|
107 |
+
type=str,
|
108 |
+
help=(
|
109 |
+
f"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will "
|
110 |
+
"download and convert all the checkpoints from AWS."
|
111 |
+
),
|
112 |
+
)
|
113 |
+
parser.add_argument(
|
114 |
+
"--checkpoint_name",
|
115 |
+
default=None,
|
116 |
+
type=str,
|
117 |
+
help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.",
|
118 |
+
)
|
119 |
+
parser.add_argument(
|
120 |
+
"--force_download",
|
121 |
+
action="store_true",
|
122 |
+
help="Re-download checkpoints.",
|
123 |
+
)
|
124 |
+
args = parser.parse_args()
|
125 |
+
|
126 |
+
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
|
venv/lib/python3.10/site-packages/transformers/convert_tf_hub_seq_to_seq_bert_to_pytorch.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert Seq2Seq TF Hub checkpoint."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
|
20 |
+
from . import (
|
21 |
+
BertConfig,
|
22 |
+
BertGenerationConfig,
|
23 |
+
BertGenerationDecoder,
|
24 |
+
BertGenerationEncoder,
|
25 |
+
load_tf_weights_in_bert_generation,
|
26 |
+
logging,
|
27 |
+
)
|
28 |
+
|
29 |
+
|
30 |
+
logging.set_verbosity_info()
|
31 |
+
|
32 |
+
|
33 |
+
def convert_tf_checkpoint_to_pytorch(tf_hub_path, pytorch_dump_path, is_encoder_named_decoder, vocab_size, is_encoder):
|
34 |
+
# Initialise PyTorch model
|
35 |
+
bert_config = BertConfig.from_pretrained(
|
36 |
+
"google-bert/bert-large-cased",
|
37 |
+
vocab_size=vocab_size,
|
38 |
+
max_position_embeddings=512,
|
39 |
+
is_decoder=True,
|
40 |
+
add_cross_attention=True,
|
41 |
+
)
|
42 |
+
bert_config_dict = bert_config.to_dict()
|
43 |
+
del bert_config_dict["type_vocab_size"]
|
44 |
+
config = BertGenerationConfig(**bert_config_dict)
|
45 |
+
if is_encoder:
|
46 |
+
model = BertGenerationEncoder(config)
|
47 |
+
else:
|
48 |
+
model = BertGenerationDecoder(config)
|
49 |
+
print(f"Building PyTorch model from configuration: {config}")
|
50 |
+
|
51 |
+
# Load weights from tf checkpoint
|
52 |
+
load_tf_weights_in_bert_generation(
|
53 |
+
model,
|
54 |
+
tf_hub_path,
|
55 |
+
model_class="bert",
|
56 |
+
is_encoder_named_decoder=is_encoder_named_decoder,
|
57 |
+
is_encoder=is_encoder,
|
58 |
+
)
|
59 |
+
|
60 |
+
# Save pytorch-model
|
61 |
+
print(f"Save PyTorch model and config to {pytorch_dump_path}")
|
62 |
+
model.save_pretrained(pytorch_dump_path)
|
63 |
+
|
64 |
+
|
65 |
+
if __name__ == "__main__":
|
66 |
+
parser = argparse.ArgumentParser()
|
67 |
+
# Required parameters
|
68 |
+
parser.add_argument(
|
69 |
+
"--tf_hub_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
|
70 |
+
)
|
71 |
+
parser.add_argument(
|
72 |
+
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
|
73 |
+
)
|
74 |
+
parser.add_argument(
|
75 |
+
"--is_encoder_named_decoder",
|
76 |
+
action="store_true",
|
77 |
+
help="If decoder has to be renamed to encoder in PyTorch model.",
|
78 |
+
)
|
79 |
+
parser.add_argument("--is_encoder", action="store_true", help="If model is an encoder.")
|
80 |
+
parser.add_argument("--vocab_size", default=50358, type=int, help="Vocab size of model")
|
81 |
+
args = parser.parse_args()
|
82 |
+
convert_tf_checkpoint_to_pytorch(
|
83 |
+
args.tf_hub_path,
|
84 |
+
args.pytorch_dump_path,
|
85 |
+
args.is_encoder_named_decoder,
|
86 |
+
args.vocab_size,
|
87 |
+
is_encoder=args.is_encoder,
|
88 |
+
)
|
venv/lib/python3.10/site-packages/transformers/debug_utils.py
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import collections
|
16 |
+
|
17 |
+
from .utils import ExplicitEnum, is_torch_available, logging
|
18 |
+
|
19 |
+
|
20 |
+
if is_torch_available():
|
21 |
+
import torch
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
class DebugUnderflowOverflow:
|
28 |
+
"""
|
29 |
+
This debug class helps detect and understand where the model starts getting very large or very small, and more
|
30 |
+
importantly `nan` or `inf` weight and activation elements.
|
31 |
+
|
32 |
+
There are 2 working modes:
|
33 |
+
|
34 |
+
1. Underflow/overflow detection (default)
|
35 |
+
2. Specific batch absolute min/max tracing without detection
|
36 |
+
|
37 |
+
Mode 1: Underflow/overflow detection
|
38 |
+
|
39 |
+
To activate the underflow/overflow detection, initialize the object with the model :
|
40 |
+
|
41 |
+
```python
|
42 |
+
debug_overflow = DebugUnderflowOverflow(model)
|
43 |
+
```
|
44 |
+
|
45 |
+
then run the training as normal and if `nan` or `inf` gets detected in at least one of the weight, input or output
|
46 |
+
elements this module will throw an exception and will print `max_frames_to_save` frames that lead to this event,
|
47 |
+
each frame reporting
|
48 |
+
|
49 |
+
1. the fully qualified module name plus the class name whose `forward` was run
|
50 |
+
2. the absolute min and max value of all elements for each module weights, and the inputs and output
|
51 |
+
|
52 |
+
For example, here is the header and the last few frames in detection report for `google/mt5-small` run in fp16
|
53 |
+
mixed precision :
|
54 |
+
|
55 |
+
```
|
56 |
+
Detected inf/nan during batch_number=0
|
57 |
+
Last 21 forward frames:
|
58 |
+
abs min abs max metadata
|
59 |
+
[...]
|
60 |
+
encoder.block.2.layer.1.DenseReluDense.wi_0 Linear
|
61 |
+
2.17e-07 4.50e+00 weight
|
62 |
+
1.79e-06 4.65e+00 input[0]
|
63 |
+
2.68e-06 3.70e+01 output
|
64 |
+
encoder.block.2.layer.1.DenseReluDense.wi_1 Linear
|
65 |
+
8.08e-07 2.66e+01 weight
|
66 |
+
1.79e-06 4.65e+00 input[0]
|
67 |
+
1.27e-04 2.37e+02 output
|
68 |
+
encoder.block.2.layer.1.DenseReluDense.wo Linear
|
69 |
+
1.01e-06 6.44e+00 weight
|
70 |
+
0.00e+00 9.74e+03 input[0]
|
71 |
+
3.18e-04 6.27e+04 output
|
72 |
+
encoder.block.2.layer.1.DenseReluDense T5DenseGatedGeluDense
|
73 |
+
1.79e-06 4.65e+00 input[0]
|
74 |
+
3.18e-04 6.27e+04 output
|
75 |
+
encoder.block.2.layer.1.dropout Dropout
|
76 |
+
3.18e-04 6.27e+04 input[0]
|
77 |
+
0.00e+00 inf output
|
78 |
+
```
|
79 |
+
|
80 |
+
You can see here, that `T5DenseGatedGeluDense.forward` resulted in output activations, whose absolute max value was
|
81 |
+
around 62.7K, which is very close to fp16's top limit of 64K. In the next frame we have `Dropout` which
|
82 |
+
renormalizes the weights, after it zeroed some of the elements, which pushes the absolute max value to more than
|
83 |
+
64K, and we get an overlow.
|
84 |
+
|
85 |
+
As you can see it's the previous frames that we need to look into when the numbers start going into very large for
|
86 |
+
fp16 numbers.
|
87 |
+
|
88 |
+
The tracking is done in a forward hook, which gets invoked immediately after `forward` has completed.
|
89 |
+
|
90 |
+
By default the last 21 frames are printed. You can change the default to adjust for your needs. For example :
|
91 |
+
|
92 |
+
```python
|
93 |
+
debug_overflow = DebugUnderflowOverflow(model, max_frames_to_save=100)
|
94 |
+
```
|
95 |
+
|
96 |
+
To validate that you have set up this debugging feature correctly, and you intend to use it in a training that
|
97 |
+
may take hours to complete, first run it with normal tracing enabled for one of a few batches as explained in
|
98 |
+
the next section.
|
99 |
+
|
100 |
+
|
101 |
+
Mode 2. Specific batch absolute min/max tracing without detection
|
102 |
+
|
103 |
+
The second work mode is per-batch tracing with the underflow/overflow detection feature turned off.
|
104 |
+
|
105 |
+
Let's say you want to watch the absolute min and max values for all the ingredients of each `forward` call of a
|
106 |
+
given batch, and only do that for batches 1 and 3. Then you instantiate this class as :
|
107 |
+
|
108 |
+
```python
|
109 |
+
debug_overflow = DebugUnderflowOverflow(model, trace_batch_nums=[1, 3])
|
110 |
+
```
|
111 |
+
|
112 |
+
And now full batches 1 and 3 will be traced using the same format as explained above. Batches are 0-indexed.
|
113 |
+
|
114 |
+
This is helpful if you know that the program starts misbehaving after a certain batch number, so you can
|
115 |
+
fast-forward right to that area.
|
116 |
+
|
117 |
+
|
118 |
+
Early stopping:
|
119 |
+
|
120 |
+
You can also specify the batch number after which to stop the training, with :
|
121 |
+
|
122 |
+
```python
|
123 |
+
debug_overflow = DebugUnderflowOverflow(model, trace_batch_nums=[1, 3], abort_after_batch_num=3)
|
124 |
+
```
|
125 |
+
|
126 |
+
This feature is mainly useful in the tracing mode, but you can use it for any mode.
|
127 |
+
|
128 |
+
|
129 |
+
**Performance**:
|
130 |
+
|
131 |
+
As this module measures absolute `min`/``max` of each weight of the model on every forward it'll slow the training
|
132 |
+
down. Therefore remember to turn it off once the debugging needs have been met.
|
133 |
+
|
134 |
+
Args:
|
135 |
+
model (`nn.Module`):
|
136 |
+
The model to debug.
|
137 |
+
max_frames_to_save (`int`, *optional*, defaults to 21):
|
138 |
+
How many frames back to record
|
139 |
+
trace_batch_nums(`List[int]`, *optional*, defaults to `[]`):
|
140 |
+
Which batch numbers to trace (turns detection off)
|
141 |
+
abort_after_batch_num (`int``, *optional*):
|
142 |
+
Whether to abort after a certain batch number has finished
|
143 |
+
"""
|
144 |
+
|
145 |
+
def __init__(self, model, max_frames_to_save=21, trace_batch_nums=[], abort_after_batch_num=None):
|
146 |
+
self.model = model
|
147 |
+
self.trace_batch_nums = trace_batch_nums
|
148 |
+
self.abort_after_batch_num = abort_after_batch_num
|
149 |
+
|
150 |
+
# keep a LIFO buffer of frames to dump as soon as inf/nan is encountered to give context to the problem emergence
|
151 |
+
self.frames = collections.deque([], max_frames_to_save)
|
152 |
+
self.frame = []
|
153 |
+
self.batch_number = 0
|
154 |
+
self.total_calls = 0
|
155 |
+
self.detected_overflow = False
|
156 |
+
self.prefix = " "
|
157 |
+
|
158 |
+
self.analyse_model()
|
159 |
+
|
160 |
+
self.register_forward_hook()
|
161 |
+
|
162 |
+
def save_frame(self, frame=None):
|
163 |
+
if frame is not None:
|
164 |
+
self.expand_frame(frame)
|
165 |
+
self.frames.append("\n".join(self.frame))
|
166 |
+
self.frame = [] # start a new frame
|
167 |
+
|
168 |
+
def expand_frame(self, line):
|
169 |
+
self.frame.append(line)
|
170 |
+
|
171 |
+
def trace_frames(self):
|
172 |
+
print("\n".join(self.frames))
|
173 |
+
self.frames = []
|
174 |
+
|
175 |
+
def reset_saved_frames(self):
|
176 |
+
self.frames = []
|
177 |
+
|
178 |
+
def dump_saved_frames(self):
|
179 |
+
print(f"\nDetected inf/nan during batch_number={self.batch_number}")
|
180 |
+
print(f"Last {len(self.frames)} forward frames:")
|
181 |
+
print(f"{'abs min':8} {'abs max':8} metadata")
|
182 |
+
print("\n".join(self.frames))
|
183 |
+
print("\n\n")
|
184 |
+
self.frames = []
|
185 |
+
|
186 |
+
def analyse_model(self):
|
187 |
+
# extract the fully qualified module names, to be able to report at run time. e.g.:
|
188 |
+
# encoder.block.2.layer.0.SelfAttention.o
|
189 |
+
#
|
190 |
+
# for shared weights only the first shared module name will be registered
|
191 |
+
self.module_names = {m: name for name, m in self.model.named_modules()}
|
192 |
+
# self.longest_module_name = max(len(v) for v in self.module_names.values())
|
193 |
+
|
194 |
+
def analyse_variable(self, var, ctx):
|
195 |
+
if torch.is_tensor(var):
|
196 |
+
self.expand_frame(get_abs_min_max(var, ctx))
|
197 |
+
if detect_overflow(var, ctx):
|
198 |
+
self.detected_overflow = True
|
199 |
+
elif var is None:
|
200 |
+
self.expand_frame(f"{'None':>17} {ctx}")
|
201 |
+
else:
|
202 |
+
self.expand_frame(f"{'not a tensor':>17} {ctx}")
|
203 |
+
|
204 |
+
def batch_start_frame(self):
|
205 |
+
self.expand_frame(f"\n\n{self.prefix} *** Starting batch number={self.batch_number} ***")
|
206 |
+
self.expand_frame(f"{'abs min':8} {'abs max':8} metadata")
|
207 |
+
|
208 |
+
def batch_end_frame(self):
|
209 |
+
self.expand_frame(f"{self.prefix} *** Finished batch number={self.batch_number-1} ***\n\n")
|
210 |
+
|
211 |
+
def create_frame(self, module, input, output):
|
212 |
+
self.expand_frame(f"{self.prefix} {self.module_names[module]} {module.__class__.__name__}")
|
213 |
+
|
214 |
+
# params
|
215 |
+
for name, p in module.named_parameters(recurse=False):
|
216 |
+
self.analyse_variable(p, name)
|
217 |
+
|
218 |
+
# inputs
|
219 |
+
if isinstance(input, tuple):
|
220 |
+
for i, x in enumerate(input):
|
221 |
+
self.analyse_variable(x, f"input[{i}]")
|
222 |
+
else:
|
223 |
+
self.analyse_variable(input, "input")
|
224 |
+
|
225 |
+
# outputs
|
226 |
+
if isinstance(output, tuple):
|
227 |
+
for i, x in enumerate(output):
|
228 |
+
# possibly a tuple of tuples
|
229 |
+
if isinstance(x, tuple):
|
230 |
+
for j, y in enumerate(x):
|
231 |
+
self.analyse_variable(y, f"output[{i}][{j}]")
|
232 |
+
else:
|
233 |
+
self.analyse_variable(x, f"output[{i}]")
|
234 |
+
else:
|
235 |
+
self.analyse_variable(output, "output")
|
236 |
+
|
237 |
+
self.save_frame()
|
238 |
+
|
239 |
+
def register_forward_hook(self):
|
240 |
+
self.model.apply(self._register_forward_hook)
|
241 |
+
|
242 |
+
def _register_forward_hook(self, module):
|
243 |
+
module.register_forward_hook(self.forward_hook)
|
244 |
+
|
245 |
+
def forward_hook(self, module, input, output):
|
246 |
+
# - input is a tuple of packed inputs (could be non-Tensors)
|
247 |
+
# - output could be a Tensor or a tuple of Tensors and non-Tensors
|
248 |
+
|
249 |
+
last_frame_of_batch = False
|
250 |
+
|
251 |
+
trace_mode = True if self.batch_number in self.trace_batch_nums else False
|
252 |
+
if trace_mode:
|
253 |
+
self.reset_saved_frames()
|
254 |
+
|
255 |
+
if self.total_calls == 0:
|
256 |
+
self.batch_start_frame()
|
257 |
+
self.total_calls += 1
|
258 |
+
|
259 |
+
# count batch numbers - the very first forward hook of the batch will be called when the
|
260 |
+
# batch completes - i.e. it gets called very last - we know this batch has finished
|
261 |
+
if module == self.model:
|
262 |
+
self.batch_number += 1
|
263 |
+
last_frame_of_batch = True
|
264 |
+
|
265 |
+
self.create_frame(module, input, output)
|
266 |
+
|
267 |
+
# if last_frame_of_batch:
|
268 |
+
# self.batch_end_frame()
|
269 |
+
|
270 |
+
if trace_mode:
|
271 |
+
self.trace_frames()
|
272 |
+
|
273 |
+
if last_frame_of_batch:
|
274 |
+
self.batch_start_frame()
|
275 |
+
|
276 |
+
if self.detected_overflow and not trace_mode:
|
277 |
+
self.dump_saved_frames()
|
278 |
+
|
279 |
+
# now we can abort, as it's pointless to continue running
|
280 |
+
raise ValueError(
|
281 |
+
"DebugUnderflowOverflow: inf/nan detected, aborting as there is no point running further. "
|
282 |
+
"Please scroll up above this traceback to see the activation values prior to this event."
|
283 |
+
)
|
284 |
+
|
285 |
+
# abort after certain batch if requested to do so
|
286 |
+
if self.abort_after_batch_num is not None and self.batch_number > self.abort_after_batch_num:
|
287 |
+
raise ValueError(
|
288 |
+
f"DebugUnderflowOverflow: aborting after {self.batch_number} batches due to"
|
289 |
+
f" `abort_after_batch_num={self.abort_after_batch_num}` arg"
|
290 |
+
)
|
291 |
+
|
292 |
+
|
293 |
+
def get_abs_min_max(var, ctx):
|
294 |
+
abs_var = var.abs()
|
295 |
+
return f"{abs_var.min():8.2e} {abs_var.max():8.2e} {ctx}"
|
296 |
+
|
297 |
+
|
298 |
+
def detect_overflow(var, ctx):
|
299 |
+
"""
|
300 |
+
Report whether the tensor contains any `nan` or `inf` entries.
|
301 |
+
|
302 |
+
This is useful for detecting overflows/underflows and best to call right after the function that did some math that
|
303 |
+
modified the tensor in question.
|
304 |
+
|
305 |
+
This function contains a few other helper features that you can enable and tweak directly if you want to track
|
306 |
+
various other things.
|
307 |
+
|
308 |
+
Args:
|
309 |
+
var: the tensor variable to check
|
310 |
+
ctx: the message to print as a context
|
311 |
+
|
312 |
+
Return:
|
313 |
+
`True` if `inf` or `nan` was detected, `False` otherwise
|
314 |
+
"""
|
315 |
+
detected = False
|
316 |
+
if torch.isnan(var).any().item():
|
317 |
+
detected = True
|
318 |
+
print(f"{ctx} has nans")
|
319 |
+
if torch.isinf(var).any().item():
|
320 |
+
detected = True
|
321 |
+
print(f"{ctx} has infs")
|
322 |
+
|
323 |
+
# if needed to monitor large elements can enable the following
|
324 |
+
if 0: # and detected:
|
325 |
+
n100 = var[torch.ge(var.abs(), 100)]
|
326 |
+
if n100.numel() > 0:
|
327 |
+
print(f"{ctx}: n100={n100.numel()}")
|
328 |
+
n1000 = var[torch.ge(var.abs(), 1000)]
|
329 |
+
if n1000.numel() > 0:
|
330 |
+
print(f"{ctx}: n1000={n1000.numel()}")
|
331 |
+
n10000 = var[torch.ge(var.abs(), 10000)]
|
332 |
+
if n10000.numel() > 0:
|
333 |
+
print(f"{ctx}: n10000={n10000.numel()}")
|
334 |
+
|
335 |
+
if 0:
|
336 |
+
print(f"min={var.min():9.2e} max={var.max():9.2e}")
|
337 |
+
|
338 |
+
if 0:
|
339 |
+
print(f"min={var.min():9.2e} max={var.max():9.2e} var={var.var():9.2e} mean={var.mean():9.2e} ({ctx})")
|
340 |
+
|
341 |
+
return detected
|
342 |
+
|
343 |
+
|
344 |
+
class DebugOption(ExplicitEnum):
|
345 |
+
UNDERFLOW_OVERFLOW = "underflow_overflow"
|
346 |
+
TPU_METRICS_DEBUG = "tpu_metrics_debug"
|
venv/lib/python3.10/site-packages/transformers/deepspeed.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""
|
15 |
+
Integration with Deepspeed - kept for backward compatiblity, if you plan to make any edit, make sure to modify the file
|
16 |
+
in `integrations/deepspeed` instead.
|
17 |
+
|
18 |
+
Check: https://github.com/huggingface/transformers/pull/25599
|
19 |
+
"""
|
20 |
+
import warnings
|
21 |
+
|
22 |
+
|
23 |
+
warnings.warn(
|
24 |
+
"transformers.deepspeed module is deprecated and will be removed in a future version. Please import deepspeed modules directly from transformers.integrations",
|
25 |
+
FutureWarning,
|
26 |
+
)
|
27 |
+
|
28 |
+
# Backward compatibility imports, to make sure all those objects can be found in integrations/deepspeed
|
29 |
+
from .integrations.deepspeed import ( # noqa
|
30 |
+
HfDeepSpeedConfig,
|
31 |
+
HfTrainerDeepSpeedConfig,
|
32 |
+
deepspeed_config,
|
33 |
+
deepspeed_init,
|
34 |
+
deepspeed_load_checkpoint,
|
35 |
+
deepspeed_optim_sched,
|
36 |
+
is_deepspeed_available,
|
37 |
+
is_deepspeed_zero3_enabled,
|
38 |
+
set_hf_deepspeed_config,
|
39 |
+
unset_hf_deepspeed_config,
|
40 |
+
)
|
venv/lib/python3.10/site-packages/transformers/dependency_versions_check.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from .dependency_versions_table import deps
|
16 |
+
from .utils.versions import require_version, require_version_core
|
17 |
+
|
18 |
+
|
19 |
+
# define which module versions we always want to check at run time
|
20 |
+
# (usually the ones defined in `install_requires` in setup.py)
|
21 |
+
#
|
22 |
+
# order specific notes:
|
23 |
+
# - tqdm must be checked before tokenizers
|
24 |
+
|
25 |
+
pkgs_to_check_at_runtime = [
|
26 |
+
"python",
|
27 |
+
"tqdm",
|
28 |
+
"regex",
|
29 |
+
"requests",
|
30 |
+
"packaging",
|
31 |
+
"filelock",
|
32 |
+
"numpy",
|
33 |
+
"tokenizers",
|
34 |
+
"huggingface-hub",
|
35 |
+
"safetensors",
|
36 |
+
"accelerate",
|
37 |
+
"pyyaml",
|
38 |
+
]
|
39 |
+
|
40 |
+
for pkg in pkgs_to_check_at_runtime:
|
41 |
+
if pkg in deps:
|
42 |
+
if pkg == "tokenizers":
|
43 |
+
# must be loaded here, or else tqdm check may fail
|
44 |
+
from .utils import is_tokenizers_available
|
45 |
+
|
46 |
+
if not is_tokenizers_available():
|
47 |
+
continue # not required, check version only if installed
|
48 |
+
elif pkg == "accelerate":
|
49 |
+
# must be loaded here, or else tqdm check may fail
|
50 |
+
from .utils import is_accelerate_available
|
51 |
+
|
52 |
+
# Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of
|
53 |
+
# Transformers with PyTorch
|
54 |
+
if not is_accelerate_available():
|
55 |
+
continue # not required, check version only if installed
|
56 |
+
|
57 |
+
require_version_core(deps[pkg])
|
58 |
+
else:
|
59 |
+
raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py")
|
60 |
+
|
61 |
+
|
62 |
+
def dep_version_check(pkg, hint=None):
|
63 |
+
require_version(deps[pkg], hint)
|
venv/lib/python3.10/site-packages/transformers/dependency_versions_table.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# THIS FILE HAS BEEN AUTOGENERATED. To update:
|
2 |
+
# 1. modify the `_deps` dict in setup.py
|
3 |
+
# 2. run `make deps_table_update``
|
4 |
+
deps = {
|
5 |
+
"Pillow": "Pillow>=10.0.1,<=15.0",
|
6 |
+
"accelerate": "accelerate>=0.21.0",
|
7 |
+
"av": "av==9.2.0",
|
8 |
+
"beautifulsoup4": "beautifulsoup4",
|
9 |
+
"codecarbon": "codecarbon==1.2.0",
|
10 |
+
"cookiecutter": "cookiecutter==1.7.3",
|
11 |
+
"dataclasses": "dataclasses",
|
12 |
+
"datasets": "datasets!=2.5.0",
|
13 |
+
"decord": "decord==0.6.0",
|
14 |
+
"deepspeed": "deepspeed>=0.9.3",
|
15 |
+
"diffusers": "diffusers",
|
16 |
+
"dill": "dill<0.3.5",
|
17 |
+
"evaluate": "evaluate>=0.2.0",
|
18 |
+
"faiss-cpu": "faiss-cpu",
|
19 |
+
"fastapi": "fastapi",
|
20 |
+
"filelock": "filelock",
|
21 |
+
"flax": "flax>=0.4.1,<=0.7.0",
|
22 |
+
"fsspec": "fsspec<2023.10.0",
|
23 |
+
"ftfy": "ftfy",
|
24 |
+
"fugashi": "fugashi>=1.0",
|
25 |
+
"GitPython": "GitPython<3.1.19",
|
26 |
+
"hf-doc-builder": "hf-doc-builder>=0.3.0",
|
27 |
+
"huggingface-hub": "huggingface-hub>=0.19.3,<1.0",
|
28 |
+
"importlib_metadata": "importlib_metadata",
|
29 |
+
"ipadic": "ipadic>=1.0.0,<2.0",
|
30 |
+
"isort": "isort>=5.5.4",
|
31 |
+
"jax": "jax>=0.4.1,<=0.4.13",
|
32 |
+
"jaxlib": "jaxlib>=0.4.1,<=0.4.13",
|
33 |
+
"jieba": "jieba",
|
34 |
+
"kenlm": "kenlm",
|
35 |
+
"keras": "keras<2.16",
|
36 |
+
"keras-nlp": "keras-nlp>=0.3.1",
|
37 |
+
"librosa": "librosa",
|
38 |
+
"nltk": "nltk",
|
39 |
+
"natten": "natten>=0.14.6,<0.15.0",
|
40 |
+
"numpy": "numpy>=1.17",
|
41 |
+
"onnxconverter-common": "onnxconverter-common",
|
42 |
+
"onnxruntime-tools": "onnxruntime-tools>=1.4.2",
|
43 |
+
"onnxruntime": "onnxruntime>=1.4.0",
|
44 |
+
"opencv-python": "opencv-python",
|
45 |
+
"optuna": "optuna",
|
46 |
+
"optax": "optax>=0.0.8,<=0.1.4",
|
47 |
+
"packaging": "packaging>=20.0",
|
48 |
+
"parameterized": "parameterized",
|
49 |
+
"phonemizer": "phonemizer",
|
50 |
+
"protobuf": "protobuf",
|
51 |
+
"psutil": "psutil",
|
52 |
+
"pyyaml": "pyyaml>=5.1",
|
53 |
+
"pydantic": "pydantic",
|
54 |
+
"pytest": "pytest>=7.2.0,<8.0.0",
|
55 |
+
"pytest-timeout": "pytest-timeout",
|
56 |
+
"pytest-xdist": "pytest-xdist",
|
57 |
+
"python": "python>=3.8.0",
|
58 |
+
"ray[tune]": "ray[tune]>=2.7.0",
|
59 |
+
"regex": "regex!=2019.12.17",
|
60 |
+
"requests": "requests",
|
61 |
+
"rhoknp": "rhoknp>=1.1.0,<1.3.1",
|
62 |
+
"rjieba": "rjieba",
|
63 |
+
"rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1",
|
64 |
+
"ruff": "ruff==0.1.5",
|
65 |
+
"sacrebleu": "sacrebleu>=1.4.12,<2.0.0",
|
66 |
+
"sacremoses": "sacremoses",
|
67 |
+
"safetensors": "safetensors>=0.4.1",
|
68 |
+
"sagemaker": "sagemaker>=2.31.0",
|
69 |
+
"scikit-learn": "scikit-learn",
|
70 |
+
"sentencepiece": "sentencepiece>=0.1.91,!=0.1.92",
|
71 |
+
"sigopt": "sigopt",
|
72 |
+
"starlette": "starlette",
|
73 |
+
"sudachipy": "sudachipy>=0.6.6",
|
74 |
+
"sudachidict_core": "sudachidict_core>=20220729",
|
75 |
+
"tensorboard": "tensorboard",
|
76 |
+
"tensorflow-cpu": "tensorflow-cpu>=2.6,<2.16",
|
77 |
+
"tensorflow": "tensorflow>=2.6,<2.16",
|
78 |
+
"tensorflow-text": "tensorflow-text<2.16",
|
79 |
+
"tf2onnx": "tf2onnx",
|
80 |
+
"timeout-decorator": "timeout-decorator",
|
81 |
+
"timm": "timm",
|
82 |
+
"tokenizers": "tokenizers>=0.19,<0.20",
|
83 |
+
"torch": "torch",
|
84 |
+
"torchaudio": "torchaudio",
|
85 |
+
"torchvision": "torchvision",
|
86 |
+
"pyctcdecode": "pyctcdecode>=0.4.0",
|
87 |
+
"tqdm": "tqdm>=4.27",
|
88 |
+
"unidic": "unidic>=1.0.2",
|
89 |
+
"unidic_lite": "unidic_lite>=1.0.7",
|
90 |
+
"urllib3": "urllib3<2.0.0",
|
91 |
+
"uvicorn": "uvicorn",
|
92 |
+
}
|
venv/lib/python3.10/site-packages/transformers/dynamic_module_utils.py
ADDED
@@ -0,0 +1,633 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Utilities to dynamically load objects from the Hub."""
|
16 |
+
import filecmp
|
17 |
+
import importlib
|
18 |
+
import os
|
19 |
+
import re
|
20 |
+
import shutil
|
21 |
+
import signal
|
22 |
+
import sys
|
23 |
+
import typing
|
24 |
+
import warnings
|
25 |
+
from pathlib import Path
|
26 |
+
from typing import Any, Dict, List, Optional, Union
|
27 |
+
|
28 |
+
from huggingface_hub import try_to_load_from_cache
|
29 |
+
|
30 |
+
from .utils import (
|
31 |
+
HF_MODULES_CACHE,
|
32 |
+
TRANSFORMERS_DYNAMIC_MODULE_NAME,
|
33 |
+
cached_file,
|
34 |
+
extract_commit_hash,
|
35 |
+
is_offline_mode,
|
36 |
+
logging,
|
37 |
+
)
|
38 |
+
|
39 |
+
|
40 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
41 |
+
|
42 |
+
|
43 |
+
def init_hf_modules():
|
44 |
+
"""
|
45 |
+
Creates the cache directory for modules with an init, and adds it to the Python path.
|
46 |
+
"""
|
47 |
+
# This function has already been executed if HF_MODULES_CACHE already is in the Python path.
|
48 |
+
if HF_MODULES_CACHE in sys.path:
|
49 |
+
return
|
50 |
+
|
51 |
+
sys.path.append(HF_MODULES_CACHE)
|
52 |
+
os.makedirs(HF_MODULES_CACHE, exist_ok=True)
|
53 |
+
init_path = Path(HF_MODULES_CACHE) / "__init__.py"
|
54 |
+
if not init_path.exists():
|
55 |
+
init_path.touch()
|
56 |
+
importlib.invalidate_caches()
|
57 |
+
|
58 |
+
|
59 |
+
def create_dynamic_module(name: Union[str, os.PathLike]):
|
60 |
+
"""
|
61 |
+
Creates a dynamic module in the cache directory for modules.
|
62 |
+
|
63 |
+
Args:
|
64 |
+
name (`str` or `os.PathLike`):
|
65 |
+
The name of the dynamic module to create.
|
66 |
+
"""
|
67 |
+
init_hf_modules()
|
68 |
+
dynamic_module_path = (Path(HF_MODULES_CACHE) / name).resolve()
|
69 |
+
# If the parent module does not exist yet, recursively create it.
|
70 |
+
if not dynamic_module_path.parent.exists():
|
71 |
+
create_dynamic_module(dynamic_module_path.parent)
|
72 |
+
os.makedirs(dynamic_module_path, exist_ok=True)
|
73 |
+
init_path = dynamic_module_path / "__init__.py"
|
74 |
+
if not init_path.exists():
|
75 |
+
init_path.touch()
|
76 |
+
# It is extremely important to invalidate the cache when we change stuff in those modules, or users end up
|
77 |
+
# with errors about module that do not exist. Same for all other `invalidate_caches` in this file.
|
78 |
+
importlib.invalidate_caches()
|
79 |
+
|
80 |
+
|
81 |
+
def get_relative_imports(module_file: Union[str, os.PathLike]) -> List[str]:
|
82 |
+
"""
|
83 |
+
Get the list of modules that are relatively imported in a module file.
|
84 |
+
|
85 |
+
Args:
|
86 |
+
module_file (`str` or `os.PathLike`): The module file to inspect.
|
87 |
+
|
88 |
+
Returns:
|
89 |
+
`List[str]`: The list of relative imports in the module.
|
90 |
+
"""
|
91 |
+
with open(module_file, "r", encoding="utf-8") as f:
|
92 |
+
content = f.read()
|
93 |
+
|
94 |
+
# Imports of the form `import .xxx`
|
95 |
+
relative_imports = re.findall(r"^\s*import\s+\.(\S+)\s*$", content, flags=re.MULTILINE)
|
96 |
+
# Imports of the form `from .xxx import yyy`
|
97 |
+
relative_imports += re.findall(r"^\s*from\s+\.(\S+)\s+import", content, flags=re.MULTILINE)
|
98 |
+
# Unique-ify
|
99 |
+
return list(set(relative_imports))
|
100 |
+
|
101 |
+
|
102 |
+
def get_relative_import_files(module_file: Union[str, os.PathLike]) -> List[str]:
|
103 |
+
"""
|
104 |
+
Get the list of all files that are needed for a given module. Note that this function recurses through the relative
|
105 |
+
imports (if a imports b and b imports c, it will return module files for b and c).
|
106 |
+
|
107 |
+
Args:
|
108 |
+
module_file (`str` or `os.PathLike`): The module file to inspect.
|
109 |
+
|
110 |
+
Returns:
|
111 |
+
`List[str]`: The list of all relative imports a given module needs (recursively), which will give us the list
|
112 |
+
of module files a given module needs.
|
113 |
+
"""
|
114 |
+
no_change = False
|
115 |
+
files_to_check = [module_file]
|
116 |
+
all_relative_imports = []
|
117 |
+
|
118 |
+
# Let's recurse through all relative imports
|
119 |
+
while not no_change:
|
120 |
+
new_imports = []
|
121 |
+
for f in files_to_check:
|
122 |
+
new_imports.extend(get_relative_imports(f))
|
123 |
+
|
124 |
+
module_path = Path(module_file).parent
|
125 |
+
new_import_files = [str(module_path / m) for m in new_imports]
|
126 |
+
new_import_files = [f for f in new_import_files if f not in all_relative_imports]
|
127 |
+
files_to_check = [f"{f}.py" for f in new_import_files]
|
128 |
+
|
129 |
+
no_change = len(new_import_files) == 0
|
130 |
+
all_relative_imports.extend(files_to_check)
|
131 |
+
|
132 |
+
return all_relative_imports
|
133 |
+
|
134 |
+
|
135 |
+
def get_imports(filename: Union[str, os.PathLike]) -> List[str]:
|
136 |
+
"""
|
137 |
+
Extracts all the libraries (not relative imports this time) that are imported in a file.
|
138 |
+
|
139 |
+
Args:
|
140 |
+
filename (`str` or `os.PathLike`): The module file to inspect.
|
141 |
+
|
142 |
+
Returns:
|
143 |
+
`List[str]`: The list of all packages required to use the input module.
|
144 |
+
"""
|
145 |
+
with open(filename, "r", encoding="utf-8") as f:
|
146 |
+
content = f.read()
|
147 |
+
|
148 |
+
# filter out try/except block so in custom code we can have try/except imports
|
149 |
+
content = re.sub(r"\s*try\s*:\s*.*?\s*except\s*.*?:", "", content, flags=re.MULTILINE | re.DOTALL)
|
150 |
+
|
151 |
+
# Imports of the form `import xxx`
|
152 |
+
imports = re.findall(r"^\s*import\s+(\S+)\s*$", content, flags=re.MULTILINE)
|
153 |
+
# Imports of the form `from xxx import yyy`
|
154 |
+
imports += re.findall(r"^\s*from\s+(\S+)\s+import", content, flags=re.MULTILINE)
|
155 |
+
# Only keep the top-level module
|
156 |
+
imports = [imp.split(".")[0] for imp in imports if not imp.startswith(".")]
|
157 |
+
return list(set(imports))
|
158 |
+
|
159 |
+
|
160 |
+
def check_imports(filename: Union[str, os.PathLike]) -> List[str]:
|
161 |
+
"""
|
162 |
+
Check if the current Python environment contains all the libraries that are imported in a file. Will raise if a
|
163 |
+
library is missing.
|
164 |
+
|
165 |
+
Args:
|
166 |
+
filename (`str` or `os.PathLike`): The module file to check.
|
167 |
+
|
168 |
+
Returns:
|
169 |
+
`List[str]`: The list of relative imports in the file.
|
170 |
+
"""
|
171 |
+
imports = get_imports(filename)
|
172 |
+
missing_packages = []
|
173 |
+
for imp in imports:
|
174 |
+
try:
|
175 |
+
importlib.import_module(imp)
|
176 |
+
except ImportError:
|
177 |
+
missing_packages.append(imp)
|
178 |
+
|
179 |
+
if len(missing_packages) > 0:
|
180 |
+
raise ImportError(
|
181 |
+
"This modeling file requires the following packages that were not found in your environment: "
|
182 |
+
f"{', '.join(missing_packages)}. Run `pip install {' '.join(missing_packages)}`"
|
183 |
+
)
|
184 |
+
|
185 |
+
return get_relative_imports(filename)
|
186 |
+
|
187 |
+
|
188 |
+
def get_class_in_module(class_name: str, module_path: Union[str, os.PathLike]) -> typing.Type:
|
189 |
+
"""
|
190 |
+
Import a module on the cache directory for modules and extract a class from it.
|
191 |
+
|
192 |
+
Args:
|
193 |
+
class_name (`str`): The name of the class to import.
|
194 |
+
module_path (`str` or `os.PathLike`): The path to the module to import.
|
195 |
+
|
196 |
+
Returns:
|
197 |
+
`typing.Type`: The class looked for.
|
198 |
+
"""
|
199 |
+
name = os.path.normpath(module_path).replace(".py", "").replace(os.path.sep, ".")
|
200 |
+
module_path = str(Path(HF_MODULES_CACHE) / module_path)
|
201 |
+
module = importlib.machinery.SourceFileLoader(name, module_path).load_module()
|
202 |
+
return getattr(module, class_name)
|
203 |
+
|
204 |
+
|
205 |
+
def get_cached_module_file(
|
206 |
+
pretrained_model_name_or_path: Union[str, os.PathLike],
|
207 |
+
module_file: str,
|
208 |
+
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
209 |
+
force_download: bool = False,
|
210 |
+
resume_download: bool = False,
|
211 |
+
proxies: Optional[Dict[str, str]] = None,
|
212 |
+
token: Optional[Union[bool, str]] = None,
|
213 |
+
revision: Optional[str] = None,
|
214 |
+
local_files_only: bool = False,
|
215 |
+
repo_type: Optional[str] = None,
|
216 |
+
_commit_hash: Optional[str] = None,
|
217 |
+
**deprecated_kwargs,
|
218 |
+
) -> str:
|
219 |
+
"""
|
220 |
+
Prepares Downloads a module from a local folder or a distant repo and returns its path inside the cached
|
221 |
+
Transformers module.
|
222 |
+
|
223 |
+
Args:
|
224 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`):
|
225 |
+
This can be either:
|
226 |
+
|
227 |
+
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on
|
228 |
+
huggingface.co.
|
229 |
+
- a path to a *directory* containing a configuration file saved using the
|
230 |
+
[`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
|
231 |
+
|
232 |
+
module_file (`str`):
|
233 |
+
The name of the module file containing the class to look for.
|
234 |
+
cache_dir (`str` or `os.PathLike`, *optional*):
|
235 |
+
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
|
236 |
+
cache should not be used.
|
237 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
238 |
+
Whether or not to force to (re-)download the configuration files and override the cached versions if they
|
239 |
+
exist.
|
240 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
241 |
+
Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists.
|
242 |
+
proxies (`Dict[str, str]`, *optional*):
|
243 |
+
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
244 |
+
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
|
245 |
+
token (`str` or *bool*, *optional*):
|
246 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
|
247 |
+
when running `huggingface-cli login` (stored in `~/.huggingface`).
|
248 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
249 |
+
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
250 |
+
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
251 |
+
identifier allowed by git.
|
252 |
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
253 |
+
If `True`, will only try to load the tokenizer configuration from local files.
|
254 |
+
repo_type (`str`, *optional*):
|
255 |
+
Specify the repo type (useful when downloading from a space for instance).
|
256 |
+
|
257 |
+
<Tip>
|
258 |
+
|
259 |
+
Passing `token=True` is required when you want to use a private model.
|
260 |
+
|
261 |
+
</Tip>
|
262 |
+
|
263 |
+
Returns:
|
264 |
+
`str`: The path to the module inside the cache.
|
265 |
+
"""
|
266 |
+
use_auth_token = deprecated_kwargs.pop("use_auth_token", None)
|
267 |
+
if use_auth_token is not None:
|
268 |
+
warnings.warn(
|
269 |
+
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
270 |
+
FutureWarning,
|
271 |
+
)
|
272 |
+
if token is not None:
|
273 |
+
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
274 |
+
token = use_auth_token
|
275 |
+
|
276 |
+
if is_offline_mode() and not local_files_only:
|
277 |
+
logger.info("Offline mode: forcing local_files_only=True")
|
278 |
+
local_files_only = True
|
279 |
+
|
280 |
+
# Download and cache module_file from the repo `pretrained_model_name_or_path` of grab it if it's a local file.
|
281 |
+
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
282 |
+
is_local = os.path.isdir(pretrained_model_name_or_path)
|
283 |
+
if is_local:
|
284 |
+
submodule = os.path.basename(pretrained_model_name_or_path)
|
285 |
+
else:
|
286 |
+
submodule = pretrained_model_name_or_path.replace("/", os.path.sep)
|
287 |
+
cached_module = try_to_load_from_cache(
|
288 |
+
pretrained_model_name_or_path, module_file, cache_dir=cache_dir, revision=_commit_hash, repo_type=repo_type
|
289 |
+
)
|
290 |
+
|
291 |
+
new_files = []
|
292 |
+
try:
|
293 |
+
# Load from URL or cache if already cached
|
294 |
+
resolved_module_file = cached_file(
|
295 |
+
pretrained_model_name_or_path,
|
296 |
+
module_file,
|
297 |
+
cache_dir=cache_dir,
|
298 |
+
force_download=force_download,
|
299 |
+
proxies=proxies,
|
300 |
+
resume_download=resume_download,
|
301 |
+
local_files_only=local_files_only,
|
302 |
+
token=token,
|
303 |
+
revision=revision,
|
304 |
+
repo_type=repo_type,
|
305 |
+
_commit_hash=_commit_hash,
|
306 |
+
)
|
307 |
+
if not is_local and cached_module != resolved_module_file:
|
308 |
+
new_files.append(module_file)
|
309 |
+
|
310 |
+
except EnvironmentError:
|
311 |
+
logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}.")
|
312 |
+
raise
|
313 |
+
|
314 |
+
# Check we have all the requirements in our environment
|
315 |
+
modules_needed = check_imports(resolved_module_file)
|
316 |
+
|
317 |
+
# Now we move the module inside our cached dynamic modules.
|
318 |
+
full_submodule = TRANSFORMERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule
|
319 |
+
create_dynamic_module(full_submodule)
|
320 |
+
submodule_path = Path(HF_MODULES_CACHE) / full_submodule
|
321 |
+
if submodule == os.path.basename(pretrained_model_name_or_path):
|
322 |
+
# We copy local files to avoid putting too many folders in sys.path. This copy is done when the file is new or
|
323 |
+
# has changed since last copy.
|
324 |
+
if not (submodule_path / module_file).exists() or not filecmp.cmp(
|
325 |
+
resolved_module_file, str(submodule_path / module_file)
|
326 |
+
):
|
327 |
+
shutil.copy(resolved_module_file, submodule_path / module_file)
|
328 |
+
importlib.invalidate_caches()
|
329 |
+
for module_needed in modules_needed:
|
330 |
+
module_needed = f"{module_needed}.py"
|
331 |
+
module_needed_file = os.path.join(pretrained_model_name_or_path, module_needed)
|
332 |
+
if not (submodule_path / module_needed).exists() or not filecmp.cmp(
|
333 |
+
module_needed_file, str(submodule_path / module_needed)
|
334 |
+
):
|
335 |
+
shutil.copy(module_needed_file, submodule_path / module_needed)
|
336 |
+
importlib.invalidate_caches()
|
337 |
+
else:
|
338 |
+
# Get the commit hash
|
339 |
+
commit_hash = extract_commit_hash(resolved_module_file, _commit_hash)
|
340 |
+
|
341 |
+
# The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the
|
342 |
+
# benefit of versioning.
|
343 |
+
submodule_path = submodule_path / commit_hash
|
344 |
+
full_submodule = full_submodule + os.path.sep + commit_hash
|
345 |
+
create_dynamic_module(full_submodule)
|
346 |
+
|
347 |
+
if not (submodule_path / module_file).exists():
|
348 |
+
shutil.copy(resolved_module_file, submodule_path / module_file)
|
349 |
+
importlib.invalidate_caches()
|
350 |
+
# Make sure we also have every file with relative
|
351 |
+
for module_needed in modules_needed:
|
352 |
+
if not (submodule_path / f"{module_needed}.py").exists():
|
353 |
+
get_cached_module_file(
|
354 |
+
pretrained_model_name_or_path,
|
355 |
+
f"{module_needed}.py",
|
356 |
+
cache_dir=cache_dir,
|
357 |
+
force_download=force_download,
|
358 |
+
resume_download=resume_download,
|
359 |
+
proxies=proxies,
|
360 |
+
token=token,
|
361 |
+
revision=revision,
|
362 |
+
local_files_only=local_files_only,
|
363 |
+
_commit_hash=commit_hash,
|
364 |
+
)
|
365 |
+
new_files.append(f"{module_needed}.py")
|
366 |
+
|
367 |
+
if len(new_files) > 0 and revision is None:
|
368 |
+
new_files = "\n".join([f"- {f}" for f in new_files])
|
369 |
+
repo_type_str = "" if repo_type is None else f"{repo_type}s/"
|
370 |
+
url = f"https://huggingface.co/{repo_type_str}{pretrained_model_name_or_path}"
|
371 |
+
logger.warning(
|
372 |
+
f"A new version of the following files was downloaded from {url}:\n{new_files}"
|
373 |
+
"\n. Make sure to double-check they do not contain any added malicious code. To avoid downloading new "
|
374 |
+
"versions of the code file, you can pin a revision."
|
375 |
+
)
|
376 |
+
|
377 |
+
return os.path.join(full_submodule, module_file)
|
378 |
+
|
379 |
+
|
380 |
+
def get_class_from_dynamic_module(
|
381 |
+
class_reference: str,
|
382 |
+
pretrained_model_name_or_path: Union[str, os.PathLike],
|
383 |
+
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
384 |
+
force_download: bool = False,
|
385 |
+
resume_download: bool = False,
|
386 |
+
proxies: Optional[Dict[str, str]] = None,
|
387 |
+
token: Optional[Union[bool, str]] = None,
|
388 |
+
revision: Optional[str] = None,
|
389 |
+
local_files_only: bool = False,
|
390 |
+
repo_type: Optional[str] = None,
|
391 |
+
code_revision: Optional[str] = None,
|
392 |
+
**kwargs,
|
393 |
+
) -> typing.Type:
|
394 |
+
"""
|
395 |
+
Extracts a class from a module file, present in the local folder or repository of a model.
|
396 |
+
|
397 |
+
<Tip warning={true}>
|
398 |
+
|
399 |
+
Calling this function will execute the code in the module file found locally or downloaded from the Hub. It should
|
400 |
+
therefore only be called on trusted repos.
|
401 |
+
|
402 |
+
</Tip>
|
403 |
+
|
404 |
+
|
405 |
+
|
406 |
+
Args:
|
407 |
+
class_reference (`str`):
|
408 |
+
The full name of the class to load, including its module and optionally its repo.
|
409 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`):
|
410 |
+
This can be either:
|
411 |
+
|
412 |
+
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on
|
413 |
+
huggingface.co.
|
414 |
+
- a path to a *directory* containing a configuration file saved using the
|
415 |
+
[`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
|
416 |
+
|
417 |
+
This is used when `class_reference` does not specify another repo.
|
418 |
+
module_file (`str`):
|
419 |
+
The name of the module file containing the class to look for.
|
420 |
+
class_name (`str`):
|
421 |
+
The name of the class to import in the module.
|
422 |
+
cache_dir (`str` or `os.PathLike`, *optional*):
|
423 |
+
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
|
424 |
+
cache should not be used.
|
425 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
426 |
+
Whether or not to force to (re-)download the configuration files and override the cached versions if they
|
427 |
+
exist.
|
428 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
429 |
+
Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists.
|
430 |
+
proxies (`Dict[str, str]`, *optional*):
|
431 |
+
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
432 |
+
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
|
433 |
+
token (`str` or `bool`, *optional*):
|
434 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
|
435 |
+
when running `huggingface-cli login` (stored in `~/.huggingface`).
|
436 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
437 |
+
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
438 |
+
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
439 |
+
identifier allowed by git.
|
440 |
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
441 |
+
If `True`, will only try to load the tokenizer configuration from local files.
|
442 |
+
repo_type (`str`, *optional*):
|
443 |
+
Specify the repo type (useful when downloading from a space for instance).
|
444 |
+
code_revision (`str`, *optional*, defaults to `"main"`):
|
445 |
+
The specific revision to use for the code on the Hub, if the code leaves in a different repository than the
|
446 |
+
rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for
|
447 |
+
storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git.
|
448 |
+
|
449 |
+
<Tip>
|
450 |
+
|
451 |
+
Passing `token=True` is required when you want to use a private model.
|
452 |
+
|
453 |
+
</Tip>
|
454 |
+
|
455 |
+
Returns:
|
456 |
+
`typing.Type`: The class, dynamically imported from the module.
|
457 |
+
|
458 |
+
Examples:
|
459 |
+
|
460 |
+
```python
|
461 |
+
# Download module `modeling.py` from huggingface.co and cache then extract the class `MyBertModel` from this
|
462 |
+
# module.
|
463 |
+
cls = get_class_from_dynamic_module("modeling.MyBertModel", "sgugger/my-bert-model")
|
464 |
+
|
465 |
+
# Download module `modeling.py` from a given repo and cache then extract the class `MyBertModel` from this
|
466 |
+
# module.
|
467 |
+
cls = get_class_from_dynamic_module("sgugger/my-bert-model--modeling.MyBertModel", "sgugger/another-bert-model")
|
468 |
+
```"""
|
469 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
470 |
+
if use_auth_token is not None:
|
471 |
+
warnings.warn(
|
472 |
+
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
473 |
+
FutureWarning,
|
474 |
+
)
|
475 |
+
if token is not None:
|
476 |
+
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
477 |
+
token = use_auth_token
|
478 |
+
|
479 |
+
# Catch the name of the repo if it's specified in `class_reference`
|
480 |
+
if "--" in class_reference:
|
481 |
+
repo_id, class_reference = class_reference.split("--")
|
482 |
+
else:
|
483 |
+
repo_id = pretrained_model_name_or_path
|
484 |
+
module_file, class_name = class_reference.split(".")
|
485 |
+
|
486 |
+
if code_revision is None and pretrained_model_name_or_path == repo_id:
|
487 |
+
code_revision = revision
|
488 |
+
# And lastly we get the class inside our newly created module
|
489 |
+
final_module = get_cached_module_file(
|
490 |
+
repo_id,
|
491 |
+
module_file + ".py",
|
492 |
+
cache_dir=cache_dir,
|
493 |
+
force_download=force_download,
|
494 |
+
resume_download=resume_download,
|
495 |
+
proxies=proxies,
|
496 |
+
token=token,
|
497 |
+
revision=code_revision,
|
498 |
+
local_files_only=local_files_only,
|
499 |
+
repo_type=repo_type,
|
500 |
+
)
|
501 |
+
return get_class_in_module(class_name, final_module)
|
502 |
+
|
503 |
+
|
504 |
+
def custom_object_save(obj: Any, folder: Union[str, os.PathLike], config: Optional[Dict] = None) -> List[str]:
|
505 |
+
"""
|
506 |
+
Save the modeling files corresponding to a custom model/configuration/tokenizer etc. in a given folder. Optionally
|
507 |
+
adds the proper fields in a config.
|
508 |
+
|
509 |
+
Args:
|
510 |
+
obj (`Any`): The object for which to save the module files.
|
511 |
+
folder (`str` or `os.PathLike`): The folder where to save.
|
512 |
+
config (`PretrainedConfig` or dictionary, `optional`):
|
513 |
+
A config in which to register the auto_map corresponding to this custom object.
|
514 |
+
|
515 |
+
Returns:
|
516 |
+
`List[str]`: The list of files saved.
|
517 |
+
"""
|
518 |
+
if obj.__module__ == "__main__":
|
519 |
+
logger.warning(
|
520 |
+
f"We can't save the code defining {obj} in {folder} as it's been defined in __main__. You should put "
|
521 |
+
"this code in a separate module so we can include it in the saved folder and make it easier to share via "
|
522 |
+
"the Hub."
|
523 |
+
)
|
524 |
+
return
|
525 |
+
|
526 |
+
def _set_auto_map_in_config(_config):
|
527 |
+
module_name = obj.__class__.__module__
|
528 |
+
last_module = module_name.split(".")[-1]
|
529 |
+
full_name = f"{last_module}.{obj.__class__.__name__}"
|
530 |
+
# Special handling for tokenizers
|
531 |
+
if "Tokenizer" in full_name:
|
532 |
+
slow_tokenizer_class = None
|
533 |
+
fast_tokenizer_class = None
|
534 |
+
if obj.__class__.__name__.endswith("Fast"):
|
535 |
+
# Fast tokenizer: we have the fast tokenizer class and we may have the slow one has an attribute.
|
536 |
+
fast_tokenizer_class = f"{last_module}.{obj.__class__.__name__}"
|
537 |
+
if getattr(obj, "slow_tokenizer_class", None) is not None:
|
538 |
+
slow_tokenizer = getattr(obj, "slow_tokenizer_class")
|
539 |
+
slow_tok_module_name = slow_tokenizer.__module__
|
540 |
+
last_slow_tok_module = slow_tok_module_name.split(".")[-1]
|
541 |
+
slow_tokenizer_class = f"{last_slow_tok_module}.{slow_tokenizer.__name__}"
|
542 |
+
else:
|
543 |
+
# Slow tokenizer: no way to have the fast class
|
544 |
+
slow_tokenizer_class = f"{last_module}.{obj.__class__.__name__}"
|
545 |
+
|
546 |
+
full_name = (slow_tokenizer_class, fast_tokenizer_class)
|
547 |
+
|
548 |
+
if isinstance(_config, dict):
|
549 |
+
auto_map = _config.get("auto_map", {})
|
550 |
+
auto_map[obj._auto_class] = full_name
|
551 |
+
_config["auto_map"] = auto_map
|
552 |
+
elif getattr(_config, "auto_map", None) is not None:
|
553 |
+
_config.auto_map[obj._auto_class] = full_name
|
554 |
+
else:
|
555 |
+
_config.auto_map = {obj._auto_class: full_name}
|
556 |
+
|
557 |
+
# Add object class to the config auto_map
|
558 |
+
if isinstance(config, (list, tuple)):
|
559 |
+
for cfg in config:
|
560 |
+
_set_auto_map_in_config(cfg)
|
561 |
+
elif config is not None:
|
562 |
+
_set_auto_map_in_config(config)
|
563 |
+
|
564 |
+
result = []
|
565 |
+
# Copy module file to the output folder.
|
566 |
+
object_file = sys.modules[obj.__module__].__file__
|
567 |
+
dest_file = Path(folder) / (Path(object_file).name)
|
568 |
+
shutil.copy(object_file, dest_file)
|
569 |
+
result.append(dest_file)
|
570 |
+
|
571 |
+
# Gather all relative imports recursively and make sure they are copied as well.
|
572 |
+
for needed_file in get_relative_import_files(object_file):
|
573 |
+
dest_file = Path(folder) / (Path(needed_file).name)
|
574 |
+
shutil.copy(needed_file, dest_file)
|
575 |
+
result.append(dest_file)
|
576 |
+
|
577 |
+
return result
|
578 |
+
|
579 |
+
|
580 |
+
def _raise_timeout_error(signum, frame):
|
581 |
+
raise ValueError(
|
582 |
+
"Loading this model requires you to execute custom code contained in the model repository on your local "
|
583 |
+
"machine. Please set the option `trust_remote_code=True` to permit loading of this model."
|
584 |
+
)
|
585 |
+
|
586 |
+
|
587 |
+
TIME_OUT_REMOTE_CODE = 15
|
588 |
+
|
589 |
+
|
590 |
+
def resolve_trust_remote_code(trust_remote_code, model_name, has_local_code, has_remote_code):
|
591 |
+
if trust_remote_code is None:
|
592 |
+
if has_local_code:
|
593 |
+
trust_remote_code = False
|
594 |
+
elif has_remote_code and TIME_OUT_REMOTE_CODE > 0:
|
595 |
+
prev_sig_handler = None
|
596 |
+
try:
|
597 |
+
prev_sig_handler = signal.signal(signal.SIGALRM, _raise_timeout_error)
|
598 |
+
signal.alarm(TIME_OUT_REMOTE_CODE)
|
599 |
+
while trust_remote_code is None:
|
600 |
+
answer = input(
|
601 |
+
f"The repository for {model_name} contains custom code which must be executed to correctly "
|
602 |
+
f"load the model. You can inspect the repository content at https://hf.co/{model_name}.\n"
|
603 |
+
f"You can avoid this prompt in future by passing the argument `trust_remote_code=True`.\n\n"
|
604 |
+
f"Do you wish to run the custom code? [y/N] "
|
605 |
+
)
|
606 |
+
if answer.lower() in ["yes", "y", "1"]:
|
607 |
+
trust_remote_code = True
|
608 |
+
elif answer.lower() in ["no", "n", "0", ""]:
|
609 |
+
trust_remote_code = False
|
610 |
+
signal.alarm(0)
|
611 |
+
except Exception:
|
612 |
+
# OS which does not support signal.SIGALRM
|
613 |
+
raise ValueError(
|
614 |
+
f"The repository for {model_name} contains custom code which must be executed to correctly "
|
615 |
+
f"load the model. You can inspect the repository content at https://hf.co/{model_name}.\n"
|
616 |
+
f"Please pass the argument `trust_remote_code=True` to allow custom code to be run."
|
617 |
+
)
|
618 |
+
finally:
|
619 |
+
if prev_sig_handler is not None:
|
620 |
+
signal.signal(signal.SIGALRM, prev_sig_handler)
|
621 |
+
signal.alarm(0)
|
622 |
+
elif has_remote_code:
|
623 |
+
# For the CI which puts the timeout at 0
|
624 |
+
_raise_timeout_error(None, None)
|
625 |
+
|
626 |
+
if has_remote_code and not has_local_code and not trust_remote_code:
|
627 |
+
raise ValueError(
|
628 |
+
f"Loading {model_name} requires you to execute the configuration file in that"
|
629 |
+
" repo on your local machine. Make sure you have read the code there to avoid malicious use, then"
|
630 |
+
" set the option `trust_remote_code=True` to remove this error."
|
631 |
+
)
|
632 |
+
|
633 |
+
return trust_remote_code
|
venv/lib/python3.10/site-packages/transformers/feature_extraction_sequence_utils.py
ADDED
@@ -0,0 +1,371 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Sequence feature extraction class for common feature extractors to preprocess sequences.
|
17 |
+
"""
|
18 |
+
from typing import Dict, List, Optional, Union
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
|
22 |
+
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
|
23 |
+
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
|
29 |
+
class SequenceFeatureExtractor(FeatureExtractionMixin):
|
30 |
+
"""
|
31 |
+
This is a general feature extraction class for speech recognition.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
feature_size (`int`):
|
35 |
+
The feature dimension of the extracted features.
|
36 |
+
sampling_rate (`int`):
|
37 |
+
The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
|
38 |
+
padding_value (`float`):
|
39 |
+
The value that is used to fill the padding values / vectors.
|
40 |
+
"""
|
41 |
+
|
42 |
+
def __init__(self, feature_size: int, sampling_rate: int, padding_value: float, **kwargs):
|
43 |
+
self.feature_size = feature_size
|
44 |
+
self.sampling_rate = sampling_rate
|
45 |
+
self.padding_value = padding_value
|
46 |
+
|
47 |
+
self.padding_side = kwargs.pop("padding_side", "right")
|
48 |
+
self.return_attention_mask = kwargs.pop("return_attention_mask", True)
|
49 |
+
|
50 |
+
super().__init__(**kwargs)
|
51 |
+
|
52 |
+
def pad(
|
53 |
+
self,
|
54 |
+
processed_features: Union[
|
55 |
+
BatchFeature,
|
56 |
+
List[BatchFeature],
|
57 |
+
Dict[str, BatchFeature],
|
58 |
+
Dict[str, List[BatchFeature]],
|
59 |
+
List[Dict[str, BatchFeature]],
|
60 |
+
],
|
61 |
+
padding: Union[bool, str, PaddingStrategy] = True,
|
62 |
+
max_length: Optional[int] = None,
|
63 |
+
truncation: bool = False,
|
64 |
+
pad_to_multiple_of: Optional[int] = None,
|
65 |
+
return_attention_mask: Optional[bool] = None,
|
66 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
67 |
+
) -> BatchFeature:
|
68 |
+
"""
|
69 |
+
Pad input values / input vectors or a batch of input values / input vectors up to predefined length or to the
|
70 |
+
max sequence length in the batch.
|
71 |
+
|
72 |
+
Padding side (left/right) padding values are defined at the feature extractor level (with `self.padding_side`,
|
73 |
+
`self.padding_value`)
|
74 |
+
|
75 |
+
<Tip>
|
76 |
+
|
77 |
+
If the `processed_features` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the
|
78 |
+
result will use the same type unless you provide a different tensor type with `return_tensors`. In the case of
|
79 |
+
PyTorch tensors, you will lose the specific device of your tensors however.
|
80 |
+
|
81 |
+
</Tip>
|
82 |
+
|
83 |
+
Args:
|
84 |
+
processed_features ([`BatchFeature`], list of [`BatchFeature`], `Dict[str, List[float]]`, `Dict[str, List[List[float]]` or `List[Dict[str, List[float]]]`):
|
85 |
+
Processed inputs. Can represent one input ([`BatchFeature`] or `Dict[str, List[float]]`) or a batch of
|
86 |
+
input values / vectors (list of [`BatchFeature`], *Dict[str, List[List[float]]]* or *List[Dict[str,
|
87 |
+
List[float]]]*) so you can use this method during preprocessing as well as in a PyTorch Dataloader
|
88 |
+
collate function.
|
89 |
+
|
90 |
+
Instead of `List[float]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors),
|
91 |
+
see the note above for the return type.
|
92 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
|
93 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
94 |
+
index) among:
|
95 |
+
|
96 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
97 |
+
sequence if provided).
|
98 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
99 |
+
acceptable input length for the model if that argument is not provided.
|
100 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
101 |
+
lengths).
|
102 |
+
max_length (`int`, *optional*):
|
103 |
+
Maximum length of the returned list and optionally padding length (see above).
|
104 |
+
truncation (`bool`):
|
105 |
+
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
|
106 |
+
pad_to_multiple_of (`int`, *optional*):
|
107 |
+
If set will pad the sequence to a multiple of the provided value.
|
108 |
+
|
109 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
|
110 |
+
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128.
|
111 |
+
return_attention_mask (`bool`, *optional*):
|
112 |
+
Whether to return the attention mask. If left to the default, will return the attention mask according
|
113 |
+
to the specific feature_extractor's default.
|
114 |
+
|
115 |
+
[What are attention masks?](../glossary#attention-mask)
|
116 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
117 |
+
If set, will return tensors instead of list of python integers. Acceptable values are:
|
118 |
+
|
119 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
120 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
121 |
+
- `'np'`: Return Numpy `np.ndarray` objects.
|
122 |
+
"""
|
123 |
+
# If we have a list of dicts, let's convert it in a dict of lists
|
124 |
+
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
|
125 |
+
if isinstance(processed_features, (list, tuple)) and isinstance(processed_features[0], (dict, BatchFeature)):
|
126 |
+
processed_features = {
|
127 |
+
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
|
128 |
+
}
|
129 |
+
|
130 |
+
# The model's main input name, usually `input_values`, has be passed for padding
|
131 |
+
if self.model_input_names[0] not in processed_features:
|
132 |
+
raise ValueError(
|
133 |
+
"You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`"
|
134 |
+
f" to this method that includes {self.model_input_names[0]}, but you provided"
|
135 |
+
f" {list(processed_features.keys())}"
|
136 |
+
)
|
137 |
+
|
138 |
+
required_input = processed_features[self.model_input_names[0]]
|
139 |
+
return_attention_mask = (
|
140 |
+
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
|
141 |
+
)
|
142 |
+
|
143 |
+
if len(required_input) == 0:
|
144 |
+
if return_attention_mask:
|
145 |
+
processed_features["attention_mask"] = []
|
146 |
+
return processed_features
|
147 |
+
|
148 |
+
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
|
149 |
+
# and rebuild them afterwards if no return_tensors is specified
|
150 |
+
# Note that we lose the specific device the tensor may be on for PyTorch
|
151 |
+
|
152 |
+
first_element = required_input[0]
|
153 |
+
if isinstance(first_element, (list, tuple)):
|
154 |
+
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
|
155 |
+
index = 0
|
156 |
+
while len(required_input[index]) == 0:
|
157 |
+
index += 1
|
158 |
+
if index < len(required_input):
|
159 |
+
first_element = required_input[index][0]
|
160 |
+
|
161 |
+
if return_tensors is None:
|
162 |
+
if is_tf_tensor(first_element):
|
163 |
+
return_tensors = "tf"
|
164 |
+
elif is_torch_tensor(first_element):
|
165 |
+
return_tensors = "pt"
|
166 |
+
elif isinstance(first_element, (int, float, list, tuple, np.ndarray)):
|
167 |
+
return_tensors = "np"
|
168 |
+
else:
|
169 |
+
raise ValueError(
|
170 |
+
f"type of {first_element} unknown: {type(first_element)}. "
|
171 |
+
"Should be one of a python, numpy, pytorch or tensorflow object."
|
172 |
+
)
|
173 |
+
|
174 |
+
for key, value in processed_features.items():
|
175 |
+
if isinstance(value[0], (int, float)):
|
176 |
+
processed_features[key] = to_numpy(value)
|
177 |
+
else:
|
178 |
+
processed_features[key] = [to_numpy(v) for v in value]
|
179 |
+
|
180 |
+
# Convert padding_strategy in PaddingStrategy
|
181 |
+
padding_strategy = self._get_padding_strategies(padding=padding, max_length=max_length)
|
182 |
+
|
183 |
+
required_input = processed_features[self.model_input_names[0]]
|
184 |
+
|
185 |
+
batch_size = len(required_input)
|
186 |
+
if not all(len(v) == batch_size for v in processed_features.values()):
|
187 |
+
raise ValueError("Some items in the output dictionary have a different batch size than others.")
|
188 |
+
|
189 |
+
truncated_inputs = []
|
190 |
+
for i in range(batch_size):
|
191 |
+
inputs = {k: v[i] for k, v in processed_features.items()}
|
192 |
+
# truncation
|
193 |
+
inputs_slice = self._truncate(
|
194 |
+
inputs,
|
195 |
+
max_length=max_length,
|
196 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
197 |
+
truncation=truncation,
|
198 |
+
)
|
199 |
+
truncated_inputs.append(inputs_slice)
|
200 |
+
|
201 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
202 |
+
# make sure that `max_length` cannot be longer than the longest truncated length
|
203 |
+
max_length = max(len(input_slice[self.model_input_names[0]]) for input_slice in truncated_inputs)
|
204 |
+
padding_strategy = PaddingStrategy.MAX_LENGTH
|
205 |
+
|
206 |
+
batch_outputs = {}
|
207 |
+
for i in range(batch_size):
|
208 |
+
# padding
|
209 |
+
outputs = self._pad(
|
210 |
+
truncated_inputs[i],
|
211 |
+
max_length=max_length,
|
212 |
+
padding_strategy=padding_strategy,
|
213 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
214 |
+
return_attention_mask=return_attention_mask,
|
215 |
+
)
|
216 |
+
|
217 |
+
for key, value in outputs.items():
|
218 |
+
if key not in batch_outputs:
|
219 |
+
batch_outputs[key] = []
|
220 |
+
if value.dtype is np.dtype(np.float64):
|
221 |
+
value = value.astype(np.float32)
|
222 |
+
batch_outputs[key].append(value)
|
223 |
+
|
224 |
+
return BatchFeature(batch_outputs, tensor_type=return_tensors)
|
225 |
+
|
226 |
+
def _pad(
|
227 |
+
self,
|
228 |
+
processed_features: Union[Dict[str, np.ndarray], BatchFeature],
|
229 |
+
max_length: Optional[int] = None,
|
230 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
231 |
+
pad_to_multiple_of: Optional[int] = None,
|
232 |
+
return_attention_mask: Optional[bool] = None,
|
233 |
+
) -> dict:
|
234 |
+
"""
|
235 |
+
Pad inputs (on left/right and up to predefined length or max length in the batch)
|
236 |
+
|
237 |
+
Args:
|
238 |
+
processed_features (`Union[Dict[str, np.ndarray], BatchFeature]`):
|
239 |
+
Dictionary of input values (`np.ndarray[float]`) / input vectors (`List[np.ndarray[float]]`) or batch
|
240 |
+
of inputs values (`List[np.ndarray[int]]`) / input vectors (`List[np.ndarray[int]]`)
|
241 |
+
max_length (`int`, *optional*):
|
242 |
+
Maximum length of the returned list and optionally padding length (see below)
|
243 |
+
padding_strategy (`PaddingStrategy`, *optional*, default to `PaddingStrategy.DO_NOT_PAD`):
|
244 |
+
PaddingStrategy to use for padding.
|
245 |
+
|
246 |
+
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
247 |
+
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
248 |
+
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
249 |
+
The feature_extractor padding sides are defined in self.padding_side:
|
250 |
+
|
251 |
+
- 'left': pads on the left of the sequences
|
252 |
+
- 'right': pads on the right of the sequences
|
253 |
+
pad_to_multiple_of (`int`, *optional*):
|
254 |
+
Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to
|
255 |
+
enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta), or on TPUs
|
256 |
+
which benefit from having sequence lengths be a multiple of 128.
|
257 |
+
return_attention_mask (`bool`, *optional*):
|
258 |
+
Set to False to avoid returning attention mask (default: set to model specifics)
|
259 |
+
"""
|
260 |
+
required_input = processed_features[self.model_input_names[0]]
|
261 |
+
|
262 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
263 |
+
max_length = len(required_input)
|
264 |
+
|
265 |
+
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
266 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
267 |
+
|
268 |
+
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) < max_length
|
269 |
+
|
270 |
+
if return_attention_mask and "attention_mask" not in processed_features:
|
271 |
+
processed_features["attention_mask"] = np.ones(len(required_input), dtype=np.int32)
|
272 |
+
|
273 |
+
if needs_to_be_padded:
|
274 |
+
difference = max_length - len(required_input)
|
275 |
+
if self.padding_side == "right":
|
276 |
+
if return_attention_mask:
|
277 |
+
processed_features["attention_mask"] = np.pad(
|
278 |
+
processed_features["attention_mask"], (0, difference)
|
279 |
+
)
|
280 |
+
padding_shape = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
|
281 |
+
processed_features[self.model_input_names[0]] = np.pad(
|
282 |
+
required_input, padding_shape, "constant", constant_values=self.padding_value
|
283 |
+
)
|
284 |
+
elif self.padding_side == "left":
|
285 |
+
if return_attention_mask:
|
286 |
+
processed_features["attention_mask"] = np.pad(
|
287 |
+
processed_features["attention_mask"], (difference, 0)
|
288 |
+
)
|
289 |
+
padding_shape = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
|
290 |
+
processed_features[self.model_input_names[0]] = np.pad(
|
291 |
+
required_input, padding_shape, "constant", constant_values=self.padding_value
|
292 |
+
)
|
293 |
+
else:
|
294 |
+
raise ValueError("Invalid padding strategy:" + str(self.padding_side))
|
295 |
+
|
296 |
+
return processed_features
|
297 |
+
|
298 |
+
def _truncate(
|
299 |
+
self,
|
300 |
+
processed_features: Union[Dict[str, np.ndarray], BatchFeature],
|
301 |
+
max_length: Optional[int] = None,
|
302 |
+
pad_to_multiple_of: Optional[int] = None,
|
303 |
+
truncation: Optional[bool] = None,
|
304 |
+
):
|
305 |
+
"""
|
306 |
+
Truncate inputs to predefined length or max length in the batch
|
307 |
+
|
308 |
+
Args:
|
309 |
+
processed_features(`Union[Dict[str, np.ndarray], BatchFeature]`):
|
310 |
+
Dictionary of input values (`np.ndarray[float]`) / input vectors (`List[np.ndarray[float]]`) or batch
|
311 |
+
of inputs values (`List[np.ndarray[int]]`) / input vectors (`List[np.ndarray[int]]`)
|
312 |
+
max_length (`int`, *optional*):
|
313 |
+
maximum length of the returned list and optionally padding length (see below)
|
314 |
+
pad_to_multiple_of (`int`, *optional*) :
|
315 |
+
Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to
|
316 |
+
enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta), or on TPUs
|
317 |
+
which benefit from having sequence lengths be a multiple of 128.
|
318 |
+
truncation (`bool`, *optional*):
|
319 |
+
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
|
320 |
+
"""
|
321 |
+
if not truncation:
|
322 |
+
return processed_features
|
323 |
+
elif truncation and max_length is None:
|
324 |
+
raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined.")
|
325 |
+
|
326 |
+
required_input = processed_features[self.model_input_names[0]]
|
327 |
+
|
328 |
+
# find `max_length` that fits `pad_to_multiple_of`
|
329 |
+
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
330 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
331 |
+
|
332 |
+
needs_to_be_truncated = len(required_input) > max_length
|
333 |
+
|
334 |
+
if needs_to_be_truncated:
|
335 |
+
processed_features[self.model_input_names[0]] = processed_features[self.model_input_names[0]][:max_length]
|
336 |
+
if "attention_mask" in processed_features:
|
337 |
+
processed_features["attention_mask"] = processed_features["attention_mask"][:max_length]
|
338 |
+
|
339 |
+
return processed_features
|
340 |
+
|
341 |
+
def _get_padding_strategies(self, padding=False, max_length=None):
|
342 |
+
"""
|
343 |
+
Find the correct padding strategy
|
344 |
+
"""
|
345 |
+
|
346 |
+
# Get padding strategy
|
347 |
+
if padding is not False:
|
348 |
+
if padding is True:
|
349 |
+
padding_strategy = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
|
350 |
+
elif not isinstance(padding, PaddingStrategy):
|
351 |
+
padding_strategy = PaddingStrategy(padding)
|
352 |
+
elif isinstance(padding, PaddingStrategy):
|
353 |
+
padding_strategy = padding
|
354 |
+
else:
|
355 |
+
padding_strategy = PaddingStrategy.DO_NOT_PAD
|
356 |
+
|
357 |
+
# Set max length if needed
|
358 |
+
if max_length is None:
|
359 |
+
if padding_strategy == PaddingStrategy.MAX_LENGTH:
|
360 |
+
raise ValueError(
|
361 |
+
f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined"
|
362 |
+
)
|
363 |
+
|
364 |
+
# Test if we have a padding value
|
365 |
+
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
|
366 |
+
raise ValueError(
|
367 |
+
"Asking to pad but the feature_extractor does not have a padding value. Please select a value to use"
|
368 |
+
" as `padding_value`. For example: `feature_extractor.padding_value = 0.0`."
|
369 |
+
)
|
370 |
+
|
371 |
+
return padding_strategy
|
venv/lib/python3.10/site-packages/transformers/feature_extraction_utils.py
ADDED
@@ -0,0 +1,684 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Feature extraction saving/loading class for common feature extractors.
|
17 |
+
"""
|
18 |
+
|
19 |
+
import copy
|
20 |
+
import json
|
21 |
+
import os
|
22 |
+
import warnings
|
23 |
+
from collections import UserDict
|
24 |
+
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union
|
25 |
+
|
26 |
+
import numpy as np
|
27 |
+
|
28 |
+
from .dynamic_module_utils import custom_object_save
|
29 |
+
from .utils import (
|
30 |
+
FEATURE_EXTRACTOR_NAME,
|
31 |
+
PushToHubMixin,
|
32 |
+
TensorType,
|
33 |
+
add_model_info_to_auto_map,
|
34 |
+
cached_file,
|
35 |
+
copy_func,
|
36 |
+
download_url,
|
37 |
+
is_flax_available,
|
38 |
+
is_jax_tensor,
|
39 |
+
is_numpy_array,
|
40 |
+
is_offline_mode,
|
41 |
+
is_remote_url,
|
42 |
+
is_tf_available,
|
43 |
+
is_torch_available,
|
44 |
+
is_torch_device,
|
45 |
+
is_torch_dtype,
|
46 |
+
logging,
|
47 |
+
requires_backends,
|
48 |
+
)
|
49 |
+
|
50 |
+
|
51 |
+
if TYPE_CHECKING:
|
52 |
+
if is_torch_available():
|
53 |
+
import torch # noqa
|
54 |
+
|
55 |
+
|
56 |
+
logger = logging.get_logger(__name__)
|
57 |
+
|
58 |
+
PreTrainedFeatureExtractor = Union["SequenceFeatureExtractor"] # noqa: F821
|
59 |
+
|
60 |
+
|
61 |
+
class BatchFeature(UserDict):
|
62 |
+
r"""
|
63 |
+
Holds the output of the [`~SequenceFeatureExtractor.pad`] and feature extractor specific `__call__` methods.
|
64 |
+
|
65 |
+
This class is derived from a python dictionary and can be used as a dictionary.
|
66 |
+
|
67 |
+
Args:
|
68 |
+
data (`dict`, *optional*):
|
69 |
+
Dictionary of lists/arrays/tensors returned by the __call__/pad methods ('input_values', 'attention_mask',
|
70 |
+
etc.).
|
71 |
+
tensor_type (`Union[None, str, TensorType]`, *optional*):
|
72 |
+
You can give a tensor_type here to convert the lists of integers in PyTorch/TensorFlow/Numpy Tensors at
|
73 |
+
initialization.
|
74 |
+
"""
|
75 |
+
|
76 |
+
def __init__(self, data: Optional[Dict[str, Any]] = None, tensor_type: Union[None, str, TensorType] = None):
|
77 |
+
super().__init__(data)
|
78 |
+
self.convert_to_tensors(tensor_type=tensor_type)
|
79 |
+
|
80 |
+
def __getitem__(self, item: str) -> Union[Any]:
|
81 |
+
"""
|
82 |
+
If the key is a string, returns the value of the dict associated to `key` ('input_values', 'attention_mask',
|
83 |
+
etc.).
|
84 |
+
"""
|
85 |
+
if isinstance(item, str):
|
86 |
+
return self.data[item]
|
87 |
+
else:
|
88 |
+
raise KeyError("Indexing with integers is not available when using Python based feature extractors")
|
89 |
+
|
90 |
+
def __getattr__(self, item: str):
|
91 |
+
try:
|
92 |
+
return self.data[item]
|
93 |
+
except KeyError:
|
94 |
+
raise AttributeError
|
95 |
+
|
96 |
+
def __getstate__(self):
|
97 |
+
return {"data": self.data}
|
98 |
+
|
99 |
+
def __setstate__(self, state):
|
100 |
+
if "data" in state:
|
101 |
+
self.data = state["data"]
|
102 |
+
|
103 |
+
# Copied from transformers.tokenization_utils_base.BatchEncoding.keys
|
104 |
+
def keys(self):
|
105 |
+
return self.data.keys()
|
106 |
+
|
107 |
+
# Copied from transformers.tokenization_utils_base.BatchEncoding.values
|
108 |
+
def values(self):
|
109 |
+
return self.data.values()
|
110 |
+
|
111 |
+
# Copied from transformers.tokenization_utils_base.BatchEncoding.items
|
112 |
+
def items(self):
|
113 |
+
return self.data.items()
|
114 |
+
|
115 |
+
def _get_is_as_tensor_fns(self, tensor_type: Optional[Union[str, TensorType]] = None):
|
116 |
+
if tensor_type is None:
|
117 |
+
return None, None
|
118 |
+
|
119 |
+
# Convert to TensorType
|
120 |
+
if not isinstance(tensor_type, TensorType):
|
121 |
+
tensor_type = TensorType(tensor_type)
|
122 |
+
|
123 |
+
# Get a function reference for the correct framework
|
124 |
+
if tensor_type == TensorType.TENSORFLOW:
|
125 |
+
if not is_tf_available():
|
126 |
+
raise ImportError(
|
127 |
+
"Unable to convert output to TensorFlow tensors format, TensorFlow is not installed."
|
128 |
+
)
|
129 |
+
import tensorflow as tf
|
130 |
+
|
131 |
+
as_tensor = tf.constant
|
132 |
+
is_tensor = tf.is_tensor
|
133 |
+
elif tensor_type == TensorType.PYTORCH:
|
134 |
+
if not is_torch_available():
|
135 |
+
raise ImportError("Unable to convert output to PyTorch tensors format, PyTorch is not installed.")
|
136 |
+
import torch # noqa
|
137 |
+
|
138 |
+
def as_tensor(value):
|
139 |
+
if isinstance(value, (list, tuple)) and len(value) > 0 and isinstance(value[0], np.ndarray):
|
140 |
+
value = np.array(value)
|
141 |
+
return torch.tensor(value)
|
142 |
+
|
143 |
+
is_tensor = torch.is_tensor
|
144 |
+
elif tensor_type == TensorType.JAX:
|
145 |
+
if not is_flax_available():
|
146 |
+
raise ImportError("Unable to convert output to JAX tensors format, JAX is not installed.")
|
147 |
+
import jax.numpy as jnp # noqa: F811
|
148 |
+
|
149 |
+
as_tensor = jnp.array
|
150 |
+
is_tensor = is_jax_tensor
|
151 |
+
else:
|
152 |
+
|
153 |
+
def as_tensor(value, dtype=None):
|
154 |
+
if isinstance(value, (list, tuple)) and isinstance(value[0], (list, tuple, np.ndarray)):
|
155 |
+
value_lens = [len(val) for val in value]
|
156 |
+
if len(set(value_lens)) > 1 and dtype is None:
|
157 |
+
# we have a ragged list so handle explicitly
|
158 |
+
value = as_tensor([np.asarray(val) for val in value], dtype=object)
|
159 |
+
return np.asarray(value, dtype=dtype)
|
160 |
+
|
161 |
+
is_tensor = is_numpy_array
|
162 |
+
return is_tensor, as_tensor
|
163 |
+
|
164 |
+
def convert_to_tensors(self, tensor_type: Optional[Union[str, TensorType]] = None):
|
165 |
+
"""
|
166 |
+
Convert the inner content to tensors.
|
167 |
+
|
168 |
+
Args:
|
169 |
+
tensor_type (`str` or [`~utils.TensorType`], *optional*):
|
170 |
+
The type of tensors to use. If `str`, should be one of the values of the enum [`~utils.TensorType`]. If
|
171 |
+
`None`, no modification is done.
|
172 |
+
"""
|
173 |
+
if tensor_type is None:
|
174 |
+
return self
|
175 |
+
|
176 |
+
is_tensor, as_tensor = self._get_is_as_tensor_fns(tensor_type)
|
177 |
+
|
178 |
+
# Do the tensor conversion in batch
|
179 |
+
for key, value in self.items():
|
180 |
+
try:
|
181 |
+
if not is_tensor(value):
|
182 |
+
tensor = as_tensor(value)
|
183 |
+
|
184 |
+
self[key] = tensor
|
185 |
+
except: # noqa E722
|
186 |
+
if key == "overflowing_values":
|
187 |
+
raise ValueError("Unable to create tensor returning overflowing values of different lengths. ")
|
188 |
+
raise ValueError(
|
189 |
+
"Unable to create tensor, you should probably activate padding "
|
190 |
+
"with 'padding=True' to have batched tensors with the same length."
|
191 |
+
)
|
192 |
+
|
193 |
+
return self
|
194 |
+
|
195 |
+
def to(self, *args, **kwargs) -> "BatchFeature":
|
196 |
+
"""
|
197 |
+
Send all values to device by calling `v.to(*args, **kwargs)` (PyTorch only). This should support casting in
|
198 |
+
different `dtypes` and sending the `BatchFeature` to a different `device`.
|
199 |
+
|
200 |
+
Args:
|
201 |
+
args (`Tuple`):
|
202 |
+
Will be passed to the `to(...)` function of the tensors.
|
203 |
+
kwargs (`Dict`, *optional*):
|
204 |
+
Will be passed to the `to(...)` function of the tensors.
|
205 |
+
|
206 |
+
Returns:
|
207 |
+
[`BatchFeature`]: The same instance after modification.
|
208 |
+
"""
|
209 |
+
requires_backends(self, ["torch"])
|
210 |
+
import torch # noqa
|
211 |
+
|
212 |
+
new_data = {}
|
213 |
+
device = kwargs.get("device")
|
214 |
+
# Check if the args are a device or a dtype
|
215 |
+
if device is None and len(args) > 0:
|
216 |
+
# device should be always the first argument
|
217 |
+
arg = args[0]
|
218 |
+
if is_torch_dtype(arg):
|
219 |
+
# The first argument is a dtype
|
220 |
+
pass
|
221 |
+
elif isinstance(arg, str) or is_torch_device(arg) or isinstance(arg, int):
|
222 |
+
device = arg
|
223 |
+
else:
|
224 |
+
# it's something else
|
225 |
+
raise ValueError(f"Attempting to cast a BatchFeature to type {str(arg)}. This is not supported.")
|
226 |
+
# We cast only floating point tensors to avoid issues with tokenizers casting `LongTensor` to `FloatTensor`
|
227 |
+
for k, v in self.items():
|
228 |
+
# check if v is a floating point
|
229 |
+
if torch.is_floating_point(v):
|
230 |
+
# cast and send to device
|
231 |
+
new_data[k] = v.to(*args, **kwargs)
|
232 |
+
elif device is not None:
|
233 |
+
new_data[k] = v.to(device=device)
|
234 |
+
else:
|
235 |
+
new_data[k] = v
|
236 |
+
self.data = new_data
|
237 |
+
return self
|
238 |
+
|
239 |
+
|
240 |
+
class FeatureExtractionMixin(PushToHubMixin):
|
241 |
+
"""
|
242 |
+
This is a feature extraction mixin used to provide saving/loading functionality for sequential and image feature
|
243 |
+
extractors.
|
244 |
+
"""
|
245 |
+
|
246 |
+
_auto_class = None
|
247 |
+
|
248 |
+
def __init__(self, **kwargs):
|
249 |
+
"""Set elements of `kwargs` as attributes."""
|
250 |
+
# Pop "processor_class" as it should be saved as private attribute
|
251 |
+
self._processor_class = kwargs.pop("processor_class", None)
|
252 |
+
# Additional attributes without default values
|
253 |
+
for key, value in kwargs.items():
|
254 |
+
try:
|
255 |
+
setattr(self, key, value)
|
256 |
+
except AttributeError as err:
|
257 |
+
logger.error(f"Can't set {key} with value {value} for {self}")
|
258 |
+
raise err
|
259 |
+
|
260 |
+
def _set_processor_class(self, processor_class: str):
|
261 |
+
"""Sets processor class as an attribute."""
|
262 |
+
self._processor_class = processor_class
|
263 |
+
|
264 |
+
@classmethod
|
265 |
+
def from_pretrained(
|
266 |
+
cls,
|
267 |
+
pretrained_model_name_or_path: Union[str, os.PathLike],
|
268 |
+
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
269 |
+
force_download: bool = False,
|
270 |
+
local_files_only: bool = False,
|
271 |
+
token: Optional[Union[str, bool]] = None,
|
272 |
+
revision: str = "main",
|
273 |
+
**kwargs,
|
274 |
+
):
|
275 |
+
r"""
|
276 |
+
Instantiate a type of [`~feature_extraction_utils.FeatureExtractionMixin`] from a feature extractor, *e.g.* a
|
277 |
+
derived class of [`SequenceFeatureExtractor`].
|
278 |
+
|
279 |
+
Args:
|
280 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`):
|
281 |
+
This can be either:
|
282 |
+
|
283 |
+
- a string, the *model id* of a pretrained feature_extractor hosted inside a model repo on
|
284 |
+
huggingface.co.
|
285 |
+
- a path to a *directory* containing a feature extractor file saved using the
|
286 |
+
[`~feature_extraction_utils.FeatureExtractionMixin.save_pretrained`] method, e.g.,
|
287 |
+
`./my_model_directory/`.
|
288 |
+
- a path or url to a saved feature extractor JSON *file*, e.g.,
|
289 |
+
`./my_model_directory/preprocessor_config.json`.
|
290 |
+
cache_dir (`str` or `os.PathLike`, *optional*):
|
291 |
+
Path to a directory in which a downloaded pretrained model feature extractor should be cached if the
|
292 |
+
standard cache should not be used.
|
293 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
294 |
+
Whether or not to force to (re-)download the feature extractor files and override the cached versions
|
295 |
+
if they exist.
|
296 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
297 |
+
Whether or not to delete incompletely received file. Attempts to resume the download if such a file
|
298 |
+
exists.
|
299 |
+
proxies (`Dict[str, str]`, *optional*):
|
300 |
+
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
301 |
+
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
|
302 |
+
token (`str` or `bool`, *optional*):
|
303 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
|
304 |
+
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
|
305 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
306 |
+
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
307 |
+
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
308 |
+
identifier allowed by git.
|
309 |
+
|
310 |
+
|
311 |
+
<Tip>
|
312 |
+
|
313 |
+
To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".
|
314 |
+
|
315 |
+
</Tip>
|
316 |
+
|
317 |
+
return_unused_kwargs (`bool`, *optional*, defaults to `False`):
|
318 |
+
If `False`, then this function returns just the final feature extractor object. If `True`, then this
|
319 |
+
functions returns a `Tuple(feature_extractor, unused_kwargs)` where *unused_kwargs* is a dictionary
|
320 |
+
consisting of the key/value pairs whose keys are not feature extractor attributes: i.e., the part of
|
321 |
+
`kwargs` which has not been used to update `feature_extractor` and is otherwise ignored.
|
322 |
+
kwargs (`Dict[str, Any]`, *optional*):
|
323 |
+
The values in kwargs of any keys which are feature extractor attributes will be used to override the
|
324 |
+
loaded values. Behavior concerning key/value pairs whose keys are *not* feature extractor attributes is
|
325 |
+
controlled by the `return_unused_kwargs` keyword parameter.
|
326 |
+
|
327 |
+
Returns:
|
328 |
+
A feature extractor of type [`~feature_extraction_utils.FeatureExtractionMixin`].
|
329 |
+
|
330 |
+
Examples:
|
331 |
+
|
332 |
+
```python
|
333 |
+
# We can't instantiate directly the base class *FeatureExtractionMixin* nor *SequenceFeatureExtractor* so let's show the examples on a
|
334 |
+
# derived class: *Wav2Vec2FeatureExtractor*
|
335 |
+
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
|
336 |
+
"facebook/wav2vec2-base-960h"
|
337 |
+
) # Download feature_extraction_config from huggingface.co and cache.
|
338 |
+
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
|
339 |
+
"./test/saved_model/"
|
340 |
+
) # E.g. feature_extractor (or model) was saved using *save_pretrained('./test/saved_model/')*
|
341 |
+
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("./test/saved_model/preprocessor_config.json")
|
342 |
+
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
|
343 |
+
"facebook/wav2vec2-base-960h", return_attention_mask=False, foo=False
|
344 |
+
)
|
345 |
+
assert feature_extractor.return_attention_mask is False
|
346 |
+
feature_extractor, unused_kwargs = Wav2Vec2FeatureExtractor.from_pretrained(
|
347 |
+
"facebook/wav2vec2-base-960h", return_attention_mask=False, foo=False, return_unused_kwargs=True
|
348 |
+
)
|
349 |
+
assert feature_extractor.return_attention_mask is False
|
350 |
+
assert unused_kwargs == {"foo": False}
|
351 |
+
```"""
|
352 |
+
kwargs["cache_dir"] = cache_dir
|
353 |
+
kwargs["force_download"] = force_download
|
354 |
+
kwargs["local_files_only"] = local_files_only
|
355 |
+
kwargs["revision"] = revision
|
356 |
+
|
357 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
358 |
+
if use_auth_token is not None:
|
359 |
+
warnings.warn(
|
360 |
+
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
361 |
+
FutureWarning,
|
362 |
+
)
|
363 |
+
if token is not None:
|
364 |
+
raise ValueError(
|
365 |
+
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
|
366 |
+
)
|
367 |
+
token = use_auth_token
|
368 |
+
|
369 |
+
if token is not None:
|
370 |
+
kwargs["token"] = token
|
371 |
+
|
372 |
+
feature_extractor_dict, kwargs = cls.get_feature_extractor_dict(pretrained_model_name_or_path, **kwargs)
|
373 |
+
|
374 |
+
return cls.from_dict(feature_extractor_dict, **kwargs)
|
375 |
+
|
376 |
+
def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
|
377 |
+
"""
|
378 |
+
Save a feature_extractor object to the directory `save_directory`, so that it can be re-loaded using the
|
379 |
+
[`~feature_extraction_utils.FeatureExtractionMixin.from_pretrained`] class method.
|
380 |
+
|
381 |
+
Args:
|
382 |
+
save_directory (`str` or `os.PathLike`):
|
383 |
+
Directory where the feature extractor JSON file will be saved (will be created if it does not exist).
|
384 |
+
push_to_hub (`bool`, *optional*, defaults to `False`):
|
385 |
+
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
|
386 |
+
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
|
387 |
+
namespace).
|
388 |
+
kwargs (`Dict[str, Any]`, *optional*):
|
389 |
+
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
|
390 |
+
"""
|
391 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
392 |
+
|
393 |
+
if use_auth_token is not None:
|
394 |
+
warnings.warn(
|
395 |
+
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
396 |
+
FutureWarning,
|
397 |
+
)
|
398 |
+
if kwargs.get("token", None) is not None:
|
399 |
+
raise ValueError(
|
400 |
+
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
|
401 |
+
)
|
402 |
+
kwargs["token"] = use_auth_token
|
403 |
+
|
404 |
+
if os.path.isfile(save_directory):
|
405 |
+
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")
|
406 |
+
|
407 |
+
os.makedirs(save_directory, exist_ok=True)
|
408 |
+
|
409 |
+
if push_to_hub:
|
410 |
+
commit_message = kwargs.pop("commit_message", None)
|
411 |
+
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
|
412 |
+
repo_id = self._create_repo(repo_id, **kwargs)
|
413 |
+
files_timestamps = self._get_files_timestamps(save_directory)
|
414 |
+
|
415 |
+
# If we have a custom config, we copy the file defining it in the folder and set the attributes so it can be
|
416 |
+
# loaded from the Hub.
|
417 |
+
if self._auto_class is not None:
|
418 |
+
custom_object_save(self, save_directory, config=self)
|
419 |
+
|
420 |
+
# If we save using the predefined names, we can load using `from_pretrained`
|
421 |
+
output_feature_extractor_file = os.path.join(save_directory, FEATURE_EXTRACTOR_NAME)
|
422 |
+
|
423 |
+
self.to_json_file(output_feature_extractor_file)
|
424 |
+
logger.info(f"Feature extractor saved in {output_feature_extractor_file}")
|
425 |
+
|
426 |
+
if push_to_hub:
|
427 |
+
self._upload_modified_files(
|
428 |
+
save_directory,
|
429 |
+
repo_id,
|
430 |
+
files_timestamps,
|
431 |
+
commit_message=commit_message,
|
432 |
+
token=kwargs.get("token"),
|
433 |
+
)
|
434 |
+
|
435 |
+
return [output_feature_extractor_file]
|
436 |
+
|
437 |
+
@classmethod
|
438 |
+
def get_feature_extractor_dict(
|
439 |
+
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
|
440 |
+
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
441 |
+
"""
|
442 |
+
From a `pretrained_model_name_or_path`, resolve to a dictionary of parameters, to be used for instantiating a
|
443 |
+
feature extractor of type [`~feature_extraction_utils.FeatureExtractionMixin`] using `from_dict`.
|
444 |
+
|
445 |
+
Parameters:
|
446 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`):
|
447 |
+
The identifier of the pre-trained checkpoint from which we want the dictionary of parameters.
|
448 |
+
|
449 |
+
Returns:
|
450 |
+
`Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the feature extractor object.
|
451 |
+
"""
|
452 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
453 |
+
force_download = kwargs.pop("force_download", False)
|
454 |
+
resume_download = kwargs.pop("resume_download", False)
|
455 |
+
proxies = kwargs.pop("proxies", None)
|
456 |
+
subfolder = kwargs.pop("subfolder", None)
|
457 |
+
token = kwargs.pop("token", None)
|
458 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
459 |
+
local_files_only = kwargs.pop("local_files_only", False)
|
460 |
+
revision = kwargs.pop("revision", None)
|
461 |
+
|
462 |
+
if use_auth_token is not None:
|
463 |
+
warnings.warn(
|
464 |
+
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
465 |
+
FutureWarning,
|
466 |
+
)
|
467 |
+
if token is not None:
|
468 |
+
raise ValueError(
|
469 |
+
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
|
470 |
+
)
|
471 |
+
token = use_auth_token
|
472 |
+
|
473 |
+
from_pipeline = kwargs.pop("_from_pipeline", None)
|
474 |
+
from_auto_class = kwargs.pop("_from_auto", False)
|
475 |
+
|
476 |
+
user_agent = {"file_type": "feature extractor", "from_auto_class": from_auto_class}
|
477 |
+
if from_pipeline is not None:
|
478 |
+
user_agent["using_pipeline"] = from_pipeline
|
479 |
+
|
480 |
+
if is_offline_mode() and not local_files_only:
|
481 |
+
logger.info("Offline mode: forcing local_files_only=True")
|
482 |
+
local_files_only = True
|
483 |
+
|
484 |
+
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
485 |
+
is_local = os.path.isdir(pretrained_model_name_or_path)
|
486 |
+
if os.path.isdir(pretrained_model_name_or_path):
|
487 |
+
feature_extractor_file = os.path.join(pretrained_model_name_or_path, FEATURE_EXTRACTOR_NAME)
|
488 |
+
if os.path.isfile(pretrained_model_name_or_path):
|
489 |
+
resolved_feature_extractor_file = pretrained_model_name_or_path
|
490 |
+
is_local = True
|
491 |
+
elif is_remote_url(pretrained_model_name_or_path):
|
492 |
+
feature_extractor_file = pretrained_model_name_or_path
|
493 |
+
resolved_feature_extractor_file = download_url(pretrained_model_name_or_path)
|
494 |
+
else:
|
495 |
+
feature_extractor_file = FEATURE_EXTRACTOR_NAME
|
496 |
+
try:
|
497 |
+
# Load from local folder or from cache or download from model Hub and cache
|
498 |
+
resolved_feature_extractor_file = cached_file(
|
499 |
+
pretrained_model_name_or_path,
|
500 |
+
feature_extractor_file,
|
501 |
+
cache_dir=cache_dir,
|
502 |
+
force_download=force_download,
|
503 |
+
proxies=proxies,
|
504 |
+
resume_download=resume_download,
|
505 |
+
local_files_only=local_files_only,
|
506 |
+
subfolder=subfolder,
|
507 |
+
token=token,
|
508 |
+
user_agent=user_agent,
|
509 |
+
revision=revision,
|
510 |
+
)
|
511 |
+
except EnvironmentError:
|
512 |
+
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to
|
513 |
+
# the original exception.
|
514 |
+
raise
|
515 |
+
except Exception:
|
516 |
+
# For any other exception, we throw a generic error.
|
517 |
+
raise EnvironmentError(
|
518 |
+
f"Can't load feature extractor for '{pretrained_model_name_or_path}'. If you were trying to load"
|
519 |
+
" it from 'https://huggingface.co/models', make sure you don't have a local directory with the"
|
520 |
+
f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
|
521 |
+
f" directory containing a {FEATURE_EXTRACTOR_NAME} file"
|
522 |
+
)
|
523 |
+
|
524 |
+
try:
|
525 |
+
# Load feature_extractor dict
|
526 |
+
with open(resolved_feature_extractor_file, "r", encoding="utf-8") as reader:
|
527 |
+
text = reader.read()
|
528 |
+
feature_extractor_dict = json.loads(text)
|
529 |
+
|
530 |
+
except json.JSONDecodeError:
|
531 |
+
raise EnvironmentError(
|
532 |
+
f"It looks like the config file at '{resolved_feature_extractor_file}' is not a valid JSON file."
|
533 |
+
)
|
534 |
+
|
535 |
+
if is_local:
|
536 |
+
logger.info(f"loading configuration file {resolved_feature_extractor_file}")
|
537 |
+
else:
|
538 |
+
logger.info(
|
539 |
+
f"loading configuration file {feature_extractor_file} from cache at {resolved_feature_extractor_file}"
|
540 |
+
)
|
541 |
+
|
542 |
+
if "auto_map" in feature_extractor_dict and not is_local:
|
543 |
+
feature_extractor_dict["auto_map"] = add_model_info_to_auto_map(
|
544 |
+
feature_extractor_dict["auto_map"], pretrained_model_name_or_path
|
545 |
+
)
|
546 |
+
|
547 |
+
return feature_extractor_dict, kwargs
|
548 |
+
|
549 |
+
@classmethod
|
550 |
+
def from_dict(cls, feature_extractor_dict: Dict[str, Any], **kwargs) -> PreTrainedFeatureExtractor:
|
551 |
+
"""
|
552 |
+
Instantiates a type of [`~feature_extraction_utils.FeatureExtractionMixin`] from a Python dictionary of
|
553 |
+
parameters.
|
554 |
+
|
555 |
+
Args:
|
556 |
+
feature_extractor_dict (`Dict[str, Any]`):
|
557 |
+
Dictionary that will be used to instantiate the feature extractor object. Such a dictionary can be
|
558 |
+
retrieved from a pretrained checkpoint by leveraging the
|
559 |
+
[`~feature_extraction_utils.FeatureExtractionMixin.to_dict`] method.
|
560 |
+
kwargs (`Dict[str, Any]`):
|
561 |
+
Additional parameters from which to initialize the feature extractor object.
|
562 |
+
|
563 |
+
Returns:
|
564 |
+
[`~feature_extraction_utils.FeatureExtractionMixin`]: The feature extractor object instantiated from those
|
565 |
+
parameters.
|
566 |
+
"""
|
567 |
+
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
|
568 |
+
|
569 |
+
feature_extractor = cls(**feature_extractor_dict)
|
570 |
+
|
571 |
+
# Update feature_extractor with kwargs if needed
|
572 |
+
to_remove = []
|
573 |
+
for key, value in kwargs.items():
|
574 |
+
if hasattr(feature_extractor, key):
|
575 |
+
setattr(feature_extractor, key, value)
|
576 |
+
to_remove.append(key)
|
577 |
+
for key in to_remove:
|
578 |
+
kwargs.pop(key, None)
|
579 |
+
|
580 |
+
logger.info(f"Feature extractor {feature_extractor}")
|
581 |
+
if return_unused_kwargs:
|
582 |
+
return feature_extractor, kwargs
|
583 |
+
else:
|
584 |
+
return feature_extractor
|
585 |
+
|
586 |
+
def to_dict(self) -> Dict[str, Any]:
|
587 |
+
"""
|
588 |
+
Serializes this instance to a Python dictionary. Returns:
|
589 |
+
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
|
590 |
+
"""
|
591 |
+
output = copy.deepcopy(self.__dict__)
|
592 |
+
output["feature_extractor_type"] = self.__class__.__name__
|
593 |
+
if "mel_filters" in output:
|
594 |
+
del output["mel_filters"]
|
595 |
+
if "window" in output:
|
596 |
+
del output["window"]
|
597 |
+
return output
|
598 |
+
|
599 |
+
@classmethod
|
600 |
+
def from_json_file(cls, json_file: Union[str, os.PathLike]) -> PreTrainedFeatureExtractor:
|
601 |
+
"""
|
602 |
+
Instantiates a feature extractor of type [`~feature_extraction_utils.FeatureExtractionMixin`] from the path to
|
603 |
+
a JSON file of parameters.
|
604 |
+
|
605 |
+
Args:
|
606 |
+
json_file (`str` or `os.PathLike`):
|
607 |
+
Path to the JSON file containing the parameters.
|
608 |
+
|
609 |
+
Returns:
|
610 |
+
A feature extractor of type [`~feature_extraction_utils.FeatureExtractionMixin`]: The feature_extractor
|
611 |
+
object instantiated from that JSON file.
|
612 |
+
"""
|
613 |
+
with open(json_file, "r", encoding="utf-8") as reader:
|
614 |
+
text = reader.read()
|
615 |
+
feature_extractor_dict = json.loads(text)
|
616 |
+
return cls(**feature_extractor_dict)
|
617 |
+
|
618 |
+
def to_json_string(self) -> str:
|
619 |
+
"""
|
620 |
+
Serializes this instance to a JSON string.
|
621 |
+
|
622 |
+
Returns:
|
623 |
+
`str`: String containing all the attributes that make up this feature_extractor instance in JSON format.
|
624 |
+
"""
|
625 |
+
dictionary = self.to_dict()
|
626 |
+
|
627 |
+
for key, value in dictionary.items():
|
628 |
+
if isinstance(value, np.ndarray):
|
629 |
+
dictionary[key] = value.tolist()
|
630 |
+
|
631 |
+
# make sure private name "_processor_class" is correctly
|
632 |
+
# saved as "processor_class"
|
633 |
+
_processor_class = dictionary.pop("_processor_class", None)
|
634 |
+
if _processor_class is not None:
|
635 |
+
dictionary["processor_class"] = _processor_class
|
636 |
+
|
637 |
+
return json.dumps(dictionary, indent=2, sort_keys=True) + "\n"
|
638 |
+
|
639 |
+
def to_json_file(self, json_file_path: Union[str, os.PathLike]):
|
640 |
+
"""
|
641 |
+
Save this instance to a JSON file.
|
642 |
+
|
643 |
+
Args:
|
644 |
+
json_file_path (`str` or `os.PathLike`):
|
645 |
+
Path to the JSON file in which this feature_extractor instance's parameters will be saved.
|
646 |
+
"""
|
647 |
+
with open(json_file_path, "w", encoding="utf-8") as writer:
|
648 |
+
writer.write(self.to_json_string())
|
649 |
+
|
650 |
+
def __repr__(self):
|
651 |
+
return f"{self.__class__.__name__} {self.to_json_string()}"
|
652 |
+
|
653 |
+
@classmethod
|
654 |
+
def register_for_auto_class(cls, auto_class="AutoFeatureExtractor"):
|
655 |
+
"""
|
656 |
+
Register this class with a given auto class. This should only be used for custom feature extractors as the ones
|
657 |
+
in the library are already mapped with `AutoFeatureExtractor`.
|
658 |
+
|
659 |
+
<Tip warning={true}>
|
660 |
+
|
661 |
+
This API is experimental and may have some slight breaking changes in the next releases.
|
662 |
+
|
663 |
+
</Tip>
|
664 |
+
|
665 |
+
Args:
|
666 |
+
auto_class (`str` or `type`, *optional*, defaults to `"AutoFeatureExtractor"`):
|
667 |
+
The auto class to register this new feature extractor with.
|
668 |
+
"""
|
669 |
+
if not isinstance(auto_class, str):
|
670 |
+
auto_class = auto_class.__name__
|
671 |
+
|
672 |
+
import transformers.models.auto as auto_module
|
673 |
+
|
674 |
+
if not hasattr(auto_module, auto_class):
|
675 |
+
raise ValueError(f"{auto_class} is not a valid auto class.")
|
676 |
+
|
677 |
+
cls._auto_class = auto_class
|
678 |
+
|
679 |
+
|
680 |
+
FeatureExtractionMixin.push_to_hub = copy_func(FeatureExtractionMixin.push_to_hub)
|
681 |
+
if FeatureExtractionMixin.push_to_hub.__doc__ is not None:
|
682 |
+
FeatureExtractionMixin.push_to_hub.__doc__ = FeatureExtractionMixin.push_to_hub.__doc__.format(
|
683 |
+
object="feature extractor", object_class="AutoFeatureExtractor", object_files="feature extractor file"
|
684 |
+
)
|
venv/lib/python3.10/site-packages/transformers/file_utils.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""
|
15 |
+
File utilities: utilities related to download and cache models
|
16 |
+
|
17 |
+
This module should not be update anymore and is only left for backward compatibility.
|
18 |
+
"""
|
19 |
+
|
20 |
+
from huggingface_hub import get_full_repo_name # for backward compatibility
|
21 |
+
from huggingface_hub.constants import HF_HUB_DISABLE_TELEMETRY as DISABLE_TELEMETRY # for backward compatibility
|
22 |
+
|
23 |
+
from . import __version__
|
24 |
+
|
25 |
+
# Backward compatibility imports, to make sure all those objects can be found in file_utils
|
26 |
+
from .utils import (
|
27 |
+
CLOUDFRONT_DISTRIB_PREFIX,
|
28 |
+
CONFIG_NAME,
|
29 |
+
DUMMY_INPUTS,
|
30 |
+
DUMMY_MASK,
|
31 |
+
ENV_VARS_TRUE_AND_AUTO_VALUES,
|
32 |
+
ENV_VARS_TRUE_VALUES,
|
33 |
+
FEATURE_EXTRACTOR_NAME,
|
34 |
+
FLAX_WEIGHTS_NAME,
|
35 |
+
HF_MODULES_CACHE,
|
36 |
+
HUGGINGFACE_CO_PREFIX,
|
37 |
+
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
|
38 |
+
MODEL_CARD_NAME,
|
39 |
+
MULTIPLE_CHOICE_DUMMY_INPUTS,
|
40 |
+
PYTORCH_PRETRAINED_BERT_CACHE,
|
41 |
+
PYTORCH_TRANSFORMERS_CACHE,
|
42 |
+
S3_BUCKET_PREFIX,
|
43 |
+
SENTENCEPIECE_UNDERLINE,
|
44 |
+
SPIECE_UNDERLINE,
|
45 |
+
TF2_WEIGHTS_NAME,
|
46 |
+
TF_WEIGHTS_NAME,
|
47 |
+
TORCH_FX_REQUIRED_VERSION,
|
48 |
+
TRANSFORMERS_CACHE,
|
49 |
+
TRANSFORMERS_DYNAMIC_MODULE_NAME,
|
50 |
+
USE_JAX,
|
51 |
+
USE_TF,
|
52 |
+
USE_TORCH,
|
53 |
+
WEIGHTS_INDEX_NAME,
|
54 |
+
WEIGHTS_NAME,
|
55 |
+
ContextManagers,
|
56 |
+
DummyObject,
|
57 |
+
EntryNotFoundError,
|
58 |
+
ExplicitEnum,
|
59 |
+
ModelOutput,
|
60 |
+
PaddingStrategy,
|
61 |
+
PushToHubMixin,
|
62 |
+
RepositoryNotFoundError,
|
63 |
+
RevisionNotFoundError,
|
64 |
+
TensorType,
|
65 |
+
_LazyModule,
|
66 |
+
add_code_sample_docstrings,
|
67 |
+
add_end_docstrings,
|
68 |
+
add_start_docstrings,
|
69 |
+
add_start_docstrings_to_model_forward,
|
70 |
+
cached_property,
|
71 |
+
copy_func,
|
72 |
+
default_cache_path,
|
73 |
+
define_sagemaker_information,
|
74 |
+
get_cached_models,
|
75 |
+
get_file_from_repo,
|
76 |
+
get_torch_version,
|
77 |
+
has_file,
|
78 |
+
http_user_agent,
|
79 |
+
is_apex_available,
|
80 |
+
is_bs4_available,
|
81 |
+
is_coloredlogs_available,
|
82 |
+
is_datasets_available,
|
83 |
+
is_detectron2_available,
|
84 |
+
is_faiss_available,
|
85 |
+
is_flax_available,
|
86 |
+
is_ftfy_available,
|
87 |
+
is_g2p_en_available,
|
88 |
+
is_in_notebook,
|
89 |
+
is_ipex_available,
|
90 |
+
is_librosa_available,
|
91 |
+
is_offline_mode,
|
92 |
+
is_onnx_available,
|
93 |
+
is_pandas_available,
|
94 |
+
is_phonemizer_available,
|
95 |
+
is_protobuf_available,
|
96 |
+
is_psutil_available,
|
97 |
+
is_py3nvml_available,
|
98 |
+
is_pyctcdecode_available,
|
99 |
+
is_pytesseract_available,
|
100 |
+
is_pytorch_quantization_available,
|
101 |
+
is_rjieba_available,
|
102 |
+
is_sagemaker_dp_enabled,
|
103 |
+
is_sagemaker_mp_enabled,
|
104 |
+
is_scipy_available,
|
105 |
+
is_sentencepiece_available,
|
106 |
+
is_seqio_available,
|
107 |
+
is_sklearn_available,
|
108 |
+
is_soundfile_availble,
|
109 |
+
is_spacy_available,
|
110 |
+
is_speech_available,
|
111 |
+
is_tensor,
|
112 |
+
is_tensorflow_probability_available,
|
113 |
+
is_tf2onnx_available,
|
114 |
+
is_tf_available,
|
115 |
+
is_timm_available,
|
116 |
+
is_tokenizers_available,
|
117 |
+
is_torch_available,
|
118 |
+
is_torch_bf16_available,
|
119 |
+
is_torch_cuda_available,
|
120 |
+
is_torch_fx_available,
|
121 |
+
is_torch_fx_proxy,
|
122 |
+
is_torch_mps_available,
|
123 |
+
is_torch_tf32_available,
|
124 |
+
is_torch_xla_available,
|
125 |
+
is_torchaudio_available,
|
126 |
+
is_training_run_on_sagemaker,
|
127 |
+
is_vision_available,
|
128 |
+
replace_return_docstrings,
|
129 |
+
requires_backends,
|
130 |
+
to_numpy,
|
131 |
+
to_py_obj,
|
132 |
+
torch_only_method,
|
133 |
+
)
|
venv/lib/python3.10/site-packages/transformers/hf_argparser.py
ADDED
@@ -0,0 +1,424 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import dataclasses
|
16 |
+
import json
|
17 |
+
import os
|
18 |
+
import sys
|
19 |
+
import types
|
20 |
+
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError
|
21 |
+
from copy import copy
|
22 |
+
from enum import Enum
|
23 |
+
from inspect import isclass
|
24 |
+
from pathlib import Path
|
25 |
+
from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints
|
26 |
+
|
27 |
+
import yaml
|
28 |
+
|
29 |
+
|
30 |
+
DataClass = NewType("DataClass", Any)
|
31 |
+
DataClassType = NewType("DataClassType", Any)
|
32 |
+
|
33 |
+
|
34 |
+
# From https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse
|
35 |
+
def string_to_bool(v):
|
36 |
+
if isinstance(v, bool):
|
37 |
+
return v
|
38 |
+
if v.lower() in ("yes", "true", "t", "y", "1"):
|
39 |
+
return True
|
40 |
+
elif v.lower() in ("no", "false", "f", "n", "0"):
|
41 |
+
return False
|
42 |
+
else:
|
43 |
+
raise ArgumentTypeError(
|
44 |
+
f"Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive)."
|
45 |
+
)
|
46 |
+
|
47 |
+
|
48 |
+
def make_choice_type_function(choices: list) -> Callable[[str], Any]:
|
49 |
+
"""
|
50 |
+
Creates a mapping function from each choices string representation to the actual value. Used to support multiple
|
51 |
+
value types for a single argument.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
choices (list): List of choices.
|
55 |
+
|
56 |
+
Returns:
|
57 |
+
Callable[[str], Any]: Mapping function from string representation to actual value for each choice.
|
58 |
+
"""
|
59 |
+
str_to_choice = {str(choice): choice for choice in choices}
|
60 |
+
return lambda arg: str_to_choice.get(arg, arg)
|
61 |
+
|
62 |
+
|
63 |
+
def HfArg(
|
64 |
+
*,
|
65 |
+
aliases: Union[str, List[str]] = None,
|
66 |
+
help: str = None,
|
67 |
+
default: Any = dataclasses.MISSING,
|
68 |
+
default_factory: Callable[[], Any] = dataclasses.MISSING,
|
69 |
+
metadata: dict = None,
|
70 |
+
**kwargs,
|
71 |
+
) -> dataclasses.Field:
|
72 |
+
"""Argument helper enabling a concise syntax to create dataclass fields for parsing with `HfArgumentParser`.
|
73 |
+
|
74 |
+
Example comparing the use of `HfArg` and `dataclasses.field`:
|
75 |
+
```
|
76 |
+
@dataclass
|
77 |
+
class Args:
|
78 |
+
regular_arg: str = dataclasses.field(default="Huggingface", metadata={"aliases": ["--example", "-e"], "help": "This syntax could be better!"})
|
79 |
+
hf_arg: str = HfArg(default="Huggingface", aliases=["--example", "-e"], help="What a nice syntax!")
|
80 |
+
```
|
81 |
+
|
82 |
+
Args:
|
83 |
+
aliases (Union[str, List[str]], optional):
|
84 |
+
Single string or list of strings of aliases to pass on to argparse, e.g. `aliases=["--example", "-e"]`.
|
85 |
+
Defaults to None.
|
86 |
+
help (str, optional): Help string to pass on to argparse that can be displayed with --help. Defaults to None.
|
87 |
+
default (Any, optional):
|
88 |
+
Default value for the argument. If not default or default_factory is specified, the argument is required.
|
89 |
+
Defaults to dataclasses.MISSING.
|
90 |
+
default_factory (Callable[[], Any], optional):
|
91 |
+
The default_factory is a 0-argument function called to initialize a field's value. It is useful to provide
|
92 |
+
default values for mutable types, e.g. lists: `default_factory=list`. Mutually exclusive with `default=`.
|
93 |
+
Defaults to dataclasses.MISSING.
|
94 |
+
metadata (dict, optional): Further metadata to pass on to `dataclasses.field`. Defaults to None.
|
95 |
+
|
96 |
+
Returns:
|
97 |
+
Field: A `dataclasses.Field` with the desired properties.
|
98 |
+
"""
|
99 |
+
if metadata is None:
|
100 |
+
# Important, don't use as default param in function signature because dict is mutable and shared across function calls
|
101 |
+
metadata = {}
|
102 |
+
if aliases is not None:
|
103 |
+
metadata["aliases"] = aliases
|
104 |
+
if help is not None:
|
105 |
+
metadata["help"] = help
|
106 |
+
|
107 |
+
return dataclasses.field(metadata=metadata, default=default, default_factory=default_factory, **kwargs)
|
108 |
+
|
109 |
+
|
110 |
+
class HfArgumentParser(ArgumentParser):
|
111 |
+
"""
|
112 |
+
This subclass of `argparse.ArgumentParser` uses type hints on dataclasses to generate arguments.
|
113 |
+
|
114 |
+
The class is designed to play well with the native argparse. In particular, you can add more (non-dataclass backed)
|
115 |
+
arguments to the parser after initialization and you'll get the output back after parsing as an additional
|
116 |
+
namespace. Optional: To create sub argument groups use the `_argument_group_name` attribute in the dataclass.
|
117 |
+
"""
|
118 |
+
|
119 |
+
dataclass_types: Iterable[DataClassType]
|
120 |
+
|
121 |
+
def __init__(self, dataclass_types: Union[DataClassType, Iterable[DataClassType]], **kwargs):
|
122 |
+
"""
|
123 |
+
Args:
|
124 |
+
dataclass_types:
|
125 |
+
Dataclass type, or list of dataclass types for which we will "fill" instances with the parsed args.
|
126 |
+
kwargs (`Dict[str, Any]`, *optional*):
|
127 |
+
Passed to `argparse.ArgumentParser()` in the regular way.
|
128 |
+
"""
|
129 |
+
# To make the default appear when using --help
|
130 |
+
if "formatter_class" not in kwargs:
|
131 |
+
kwargs["formatter_class"] = ArgumentDefaultsHelpFormatter
|
132 |
+
super().__init__(**kwargs)
|
133 |
+
if dataclasses.is_dataclass(dataclass_types):
|
134 |
+
dataclass_types = [dataclass_types]
|
135 |
+
self.dataclass_types = list(dataclass_types)
|
136 |
+
for dtype in self.dataclass_types:
|
137 |
+
self._add_dataclass_arguments(dtype)
|
138 |
+
|
139 |
+
@staticmethod
|
140 |
+
def _parse_dataclass_field(parser: ArgumentParser, field: dataclasses.Field):
|
141 |
+
field_name = f"--{field.name}"
|
142 |
+
kwargs = field.metadata.copy()
|
143 |
+
# field.metadata is not used at all by Data Classes,
|
144 |
+
# it is provided as a third-party extension mechanism.
|
145 |
+
if isinstance(field.type, str):
|
146 |
+
raise RuntimeError(
|
147 |
+
"Unresolved type detected, which should have been done with the help of "
|
148 |
+
"`typing.get_type_hints` method by default"
|
149 |
+
)
|
150 |
+
|
151 |
+
aliases = kwargs.pop("aliases", [])
|
152 |
+
if isinstance(aliases, str):
|
153 |
+
aliases = [aliases]
|
154 |
+
|
155 |
+
origin_type = getattr(field.type, "__origin__", field.type)
|
156 |
+
if origin_type is Union or (hasattr(types, "UnionType") and isinstance(origin_type, types.UnionType)):
|
157 |
+
if str not in field.type.__args__ and (
|
158 |
+
len(field.type.__args__) != 2 or type(None) not in field.type.__args__
|
159 |
+
):
|
160 |
+
raise ValueError(
|
161 |
+
"Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because"
|
162 |
+
" the argument parser only supports one type per argument."
|
163 |
+
f" Problem encountered in field '{field.name}'."
|
164 |
+
)
|
165 |
+
if type(None) not in field.type.__args__:
|
166 |
+
# filter `str` in Union
|
167 |
+
field.type = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1]
|
168 |
+
origin_type = getattr(field.type, "__origin__", field.type)
|
169 |
+
elif bool not in field.type.__args__:
|
170 |
+
# filter `NoneType` in Union (except for `Union[bool, NoneType]`)
|
171 |
+
field.type = (
|
172 |
+
field.type.__args__[0] if isinstance(None, field.type.__args__[1]) else field.type.__args__[1]
|
173 |
+
)
|
174 |
+
origin_type = getattr(field.type, "__origin__", field.type)
|
175 |
+
|
176 |
+
# A variable to store kwargs for a boolean field, if needed
|
177 |
+
# so that we can init a `no_*` complement argument (see below)
|
178 |
+
bool_kwargs = {}
|
179 |
+
if origin_type is Literal or (isinstance(field.type, type) and issubclass(field.type, Enum)):
|
180 |
+
if origin_type is Literal:
|
181 |
+
kwargs["choices"] = field.type.__args__
|
182 |
+
else:
|
183 |
+
kwargs["choices"] = [x.value for x in field.type]
|
184 |
+
|
185 |
+
kwargs["type"] = make_choice_type_function(kwargs["choices"])
|
186 |
+
|
187 |
+
if field.default is not dataclasses.MISSING:
|
188 |
+
kwargs["default"] = field.default
|
189 |
+
else:
|
190 |
+
kwargs["required"] = True
|
191 |
+
elif field.type is bool or field.type == Optional[bool]:
|
192 |
+
# Copy the currect kwargs to use to instantiate a `no_*` complement argument below.
|
193 |
+
# We do not initialize it here because the `no_*` alternative must be instantiated after the real argument
|
194 |
+
bool_kwargs = copy(kwargs)
|
195 |
+
|
196 |
+
# Hack because type=bool in argparse does not behave as we want.
|
197 |
+
kwargs["type"] = string_to_bool
|
198 |
+
if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING):
|
199 |
+
# Default value is False if we have no default when of type bool.
|
200 |
+
default = False if field.default is dataclasses.MISSING else field.default
|
201 |
+
# This is the value that will get picked if we don't include --field_name in any way
|
202 |
+
kwargs["default"] = default
|
203 |
+
# This tells argparse we accept 0 or 1 value after --field_name
|
204 |
+
kwargs["nargs"] = "?"
|
205 |
+
# This is the value that will get picked if we do --field_name (without value)
|
206 |
+
kwargs["const"] = True
|
207 |
+
elif isclass(origin_type) and issubclass(origin_type, list):
|
208 |
+
kwargs["type"] = field.type.__args__[0]
|
209 |
+
kwargs["nargs"] = "+"
|
210 |
+
if field.default_factory is not dataclasses.MISSING:
|
211 |
+
kwargs["default"] = field.default_factory()
|
212 |
+
elif field.default is dataclasses.MISSING:
|
213 |
+
kwargs["required"] = True
|
214 |
+
else:
|
215 |
+
kwargs["type"] = field.type
|
216 |
+
if field.default is not dataclasses.MISSING:
|
217 |
+
kwargs["default"] = field.default
|
218 |
+
elif field.default_factory is not dataclasses.MISSING:
|
219 |
+
kwargs["default"] = field.default_factory()
|
220 |
+
else:
|
221 |
+
kwargs["required"] = True
|
222 |
+
parser.add_argument(field_name, *aliases, **kwargs)
|
223 |
+
|
224 |
+
# Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added.
|
225 |
+
# Order is important for arguments with the same destination!
|
226 |
+
# We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down
|
227 |
+
# here and we do not need those changes/additional keys.
|
228 |
+
if field.default is True and (field.type is bool or field.type == Optional[bool]):
|
229 |
+
bool_kwargs["default"] = False
|
230 |
+
parser.add_argument(f"--no_{field.name}", action="store_false", dest=field.name, **bool_kwargs)
|
231 |
+
|
232 |
+
def _add_dataclass_arguments(self, dtype: DataClassType):
|
233 |
+
if hasattr(dtype, "_argument_group_name"):
|
234 |
+
parser = self.add_argument_group(dtype._argument_group_name)
|
235 |
+
else:
|
236 |
+
parser = self
|
237 |
+
|
238 |
+
try:
|
239 |
+
type_hints: Dict[str, type] = get_type_hints(dtype)
|
240 |
+
except NameError:
|
241 |
+
raise RuntimeError(
|
242 |
+
f"Type resolution failed for {dtype}. Try declaring the class in global scope or "
|
243 |
+
"removing line of `from __future__ import annotations` which opts in Postponed "
|
244 |
+
"Evaluation of Annotations (PEP 563)"
|
245 |
+
)
|
246 |
+
except TypeError as ex:
|
247 |
+
# Remove this block when we drop Python 3.9 support
|
248 |
+
if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(ex):
|
249 |
+
python_version = ".".join(map(str, sys.version_info[:3]))
|
250 |
+
raise RuntimeError(
|
251 |
+
f"Type resolution failed for {dtype} on Python {python_version}. Try removing "
|
252 |
+
"line of `from __future__ import annotations` which opts in union types as "
|
253 |
+
"`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To "
|
254 |
+
"support Python versions that lower than 3.10, you need to use "
|
255 |
+
"`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of "
|
256 |
+
"`X | None`."
|
257 |
+
) from ex
|
258 |
+
raise
|
259 |
+
|
260 |
+
for field in dataclasses.fields(dtype):
|
261 |
+
if not field.init:
|
262 |
+
continue
|
263 |
+
field.type = type_hints[field.name]
|
264 |
+
self._parse_dataclass_field(parser, field)
|
265 |
+
|
266 |
+
def parse_args_into_dataclasses(
|
267 |
+
self,
|
268 |
+
args=None,
|
269 |
+
return_remaining_strings=False,
|
270 |
+
look_for_args_file=True,
|
271 |
+
args_filename=None,
|
272 |
+
args_file_flag=None,
|
273 |
+
) -> Tuple[DataClass, ...]:
|
274 |
+
"""
|
275 |
+
Parse command-line args into instances of the specified dataclass types.
|
276 |
+
|
277 |
+
This relies on argparse's `ArgumentParser.parse_known_args`. See the doc at:
|
278 |
+
docs.python.org/3.7/library/argparse.html#argparse.ArgumentParser.parse_args
|
279 |
+
|
280 |
+
Args:
|
281 |
+
args:
|
282 |
+
List of strings to parse. The default is taken from sys.argv. (same as argparse.ArgumentParser)
|
283 |
+
return_remaining_strings:
|
284 |
+
If true, also return a list of remaining argument strings.
|
285 |
+
look_for_args_file:
|
286 |
+
If true, will look for a ".args" file with the same base name as the entry point script for this
|
287 |
+
process, and will append its potential content to the command line args.
|
288 |
+
args_filename:
|
289 |
+
If not None, will uses this file instead of the ".args" file specified in the previous argument.
|
290 |
+
args_file_flag:
|
291 |
+
If not None, will look for a file in the command-line args specified with this flag. The flag can be
|
292 |
+
specified multiple times and precedence is determined by the order (last one wins).
|
293 |
+
|
294 |
+
Returns:
|
295 |
+
Tuple consisting of:
|
296 |
+
|
297 |
+
- the dataclass instances in the same order as they were passed to the initializer.abspath
|
298 |
+
- if applicable, an additional namespace for more (non-dataclass backed) arguments added to the parser
|
299 |
+
after initialization.
|
300 |
+
- The potential list of remaining argument strings. (same as argparse.ArgumentParser.parse_known_args)
|
301 |
+
"""
|
302 |
+
|
303 |
+
if args_file_flag or args_filename or (look_for_args_file and len(sys.argv)):
|
304 |
+
args_files = []
|
305 |
+
|
306 |
+
if args_filename:
|
307 |
+
args_files.append(Path(args_filename))
|
308 |
+
elif look_for_args_file and len(sys.argv):
|
309 |
+
args_files.append(Path(sys.argv[0]).with_suffix(".args"))
|
310 |
+
|
311 |
+
# args files specified via command line flag should overwrite default args files so we add them last
|
312 |
+
if args_file_flag:
|
313 |
+
# Create special parser just to extract the args_file_flag values
|
314 |
+
args_file_parser = ArgumentParser()
|
315 |
+
args_file_parser.add_argument(args_file_flag, type=str, action="append")
|
316 |
+
|
317 |
+
# Use only remaining args for further parsing (remove the args_file_flag)
|
318 |
+
cfg, args = args_file_parser.parse_known_args(args=args)
|
319 |
+
cmd_args_file_paths = vars(cfg).get(args_file_flag.lstrip("-"), None)
|
320 |
+
|
321 |
+
if cmd_args_file_paths:
|
322 |
+
args_files.extend([Path(p) for p in cmd_args_file_paths])
|
323 |
+
|
324 |
+
file_args = []
|
325 |
+
for args_file in args_files:
|
326 |
+
if args_file.exists():
|
327 |
+
file_args += args_file.read_text().split()
|
328 |
+
|
329 |
+
# in case of duplicate arguments the last one has precedence
|
330 |
+
# args specified via the command line should overwrite args from files, so we add them last
|
331 |
+
args = file_args + args if args is not None else file_args + sys.argv[1:]
|
332 |
+
namespace, remaining_args = self.parse_known_args(args=args)
|
333 |
+
outputs = []
|
334 |
+
for dtype in self.dataclass_types:
|
335 |
+
keys = {f.name for f in dataclasses.fields(dtype) if f.init}
|
336 |
+
inputs = {k: v for k, v in vars(namespace).items() if k in keys}
|
337 |
+
for k in keys:
|
338 |
+
delattr(namespace, k)
|
339 |
+
obj = dtype(**inputs)
|
340 |
+
outputs.append(obj)
|
341 |
+
if len(namespace.__dict__) > 0:
|
342 |
+
# additional namespace.
|
343 |
+
outputs.append(namespace)
|
344 |
+
if return_remaining_strings:
|
345 |
+
return (*outputs, remaining_args)
|
346 |
+
else:
|
347 |
+
if remaining_args:
|
348 |
+
raise ValueError(f"Some specified arguments are not used by the HfArgumentParser: {remaining_args}")
|
349 |
+
|
350 |
+
return (*outputs,)
|
351 |
+
|
352 |
+
def parse_dict(self, args: Dict[str, Any], allow_extra_keys: bool = False) -> Tuple[DataClass, ...]:
|
353 |
+
"""
|
354 |
+
Alternative helper method that does not use `argparse` at all, instead uses a dict and populating the dataclass
|
355 |
+
types.
|
356 |
+
|
357 |
+
Args:
|
358 |
+
args (`dict`):
|
359 |
+
dict containing config values
|
360 |
+
allow_extra_keys (`bool`, *optional*, defaults to `False`):
|
361 |
+
Defaults to False. If False, will raise an exception if the dict contains keys that are not parsed.
|
362 |
+
|
363 |
+
Returns:
|
364 |
+
Tuple consisting of:
|
365 |
+
|
366 |
+
- the dataclass instances in the same order as they were passed to the initializer.
|
367 |
+
"""
|
368 |
+
unused_keys = set(args.keys())
|
369 |
+
outputs = []
|
370 |
+
for dtype in self.dataclass_types:
|
371 |
+
keys = {f.name for f in dataclasses.fields(dtype) if f.init}
|
372 |
+
inputs = {k: v for k, v in args.items() if k in keys}
|
373 |
+
unused_keys.difference_update(inputs.keys())
|
374 |
+
obj = dtype(**inputs)
|
375 |
+
outputs.append(obj)
|
376 |
+
if not allow_extra_keys and unused_keys:
|
377 |
+
raise ValueError(f"Some keys are not used by the HfArgumentParser: {sorted(unused_keys)}")
|
378 |
+
return tuple(outputs)
|
379 |
+
|
380 |
+
def parse_json_file(
|
381 |
+
self, json_file: Union[str, os.PathLike], allow_extra_keys: bool = False
|
382 |
+
) -> Tuple[DataClass, ...]:
|
383 |
+
"""
|
384 |
+
Alternative helper method that does not use `argparse` at all, instead loading a json file and populating the
|
385 |
+
dataclass types.
|
386 |
+
|
387 |
+
Args:
|
388 |
+
json_file (`str` or `os.PathLike`):
|
389 |
+
File name of the json file to parse
|
390 |
+
allow_extra_keys (`bool`, *optional*, defaults to `False`):
|
391 |
+
Defaults to False. If False, will raise an exception if the json file contains keys that are not
|
392 |
+
parsed.
|
393 |
+
|
394 |
+
Returns:
|
395 |
+
Tuple consisting of:
|
396 |
+
|
397 |
+
- the dataclass instances in the same order as they were passed to the initializer.
|
398 |
+
"""
|
399 |
+
with open(Path(json_file), encoding="utf-8") as open_json_file:
|
400 |
+
data = json.loads(open_json_file.read())
|
401 |
+
outputs = self.parse_dict(data, allow_extra_keys=allow_extra_keys)
|
402 |
+
return tuple(outputs)
|
403 |
+
|
404 |
+
def parse_yaml_file(
|
405 |
+
self, yaml_file: Union[str, os.PathLike], allow_extra_keys: bool = False
|
406 |
+
) -> Tuple[DataClass, ...]:
|
407 |
+
"""
|
408 |
+
Alternative helper method that does not use `argparse` at all, instead loading a yaml file and populating the
|
409 |
+
dataclass types.
|
410 |
+
|
411 |
+
Args:
|
412 |
+
yaml_file (`str` or `os.PathLike`):
|
413 |
+
File name of the yaml file to parse
|
414 |
+
allow_extra_keys (`bool`, *optional*, defaults to `False`):
|
415 |
+
Defaults to False. If False, will raise an exception if the json file contains keys that are not
|
416 |
+
parsed.
|
417 |
+
|
418 |
+
Returns:
|
419 |
+
Tuple consisting of:
|
420 |
+
|
421 |
+
- the dataclass instances in the same order as they were passed to the initializer.
|
422 |
+
"""
|
423 |
+
outputs = self.parse_dict(yaml.safe_load(Path(yaml_file).read_text()), allow_extra_keys=allow_extra_keys)
|
424 |
+
return tuple(outputs)
|
venv/lib/python3.10/site-packages/transformers/hyperparameter_search.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from .integrations import (
|
17 |
+
is_optuna_available,
|
18 |
+
is_ray_tune_available,
|
19 |
+
is_sigopt_available,
|
20 |
+
is_wandb_available,
|
21 |
+
run_hp_search_optuna,
|
22 |
+
run_hp_search_ray,
|
23 |
+
run_hp_search_sigopt,
|
24 |
+
run_hp_search_wandb,
|
25 |
+
)
|
26 |
+
from .trainer_utils import (
|
27 |
+
HPSearchBackend,
|
28 |
+
default_hp_space_optuna,
|
29 |
+
default_hp_space_ray,
|
30 |
+
default_hp_space_sigopt,
|
31 |
+
default_hp_space_wandb,
|
32 |
+
)
|
33 |
+
from .utils import logging
|
34 |
+
|
35 |
+
|
36 |
+
logger = logging.get_logger(__name__)
|
37 |
+
|
38 |
+
|
39 |
+
class HyperParamSearchBackendBase:
|
40 |
+
name: str
|
41 |
+
pip_package: str = None
|
42 |
+
|
43 |
+
@staticmethod
|
44 |
+
def is_available():
|
45 |
+
raise NotImplementedError
|
46 |
+
|
47 |
+
def run(self, trainer, n_trials: int, direction: str, **kwargs):
|
48 |
+
raise NotImplementedError
|
49 |
+
|
50 |
+
def default_hp_space(self, trial):
|
51 |
+
raise NotImplementedError
|
52 |
+
|
53 |
+
def ensure_available(self):
|
54 |
+
if not self.is_available():
|
55 |
+
raise RuntimeError(
|
56 |
+
f"You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}."
|
57 |
+
)
|
58 |
+
|
59 |
+
@classmethod
|
60 |
+
def pip_install(cls):
|
61 |
+
return f"`pip install {cls.pip_package or cls.name}`"
|
62 |
+
|
63 |
+
|
64 |
+
class OptunaBackend(HyperParamSearchBackendBase):
|
65 |
+
name = "optuna"
|
66 |
+
|
67 |
+
@staticmethod
|
68 |
+
def is_available():
|
69 |
+
return is_optuna_available()
|
70 |
+
|
71 |
+
def run(self, trainer, n_trials: int, direction: str, **kwargs):
|
72 |
+
return run_hp_search_optuna(trainer, n_trials, direction, **kwargs)
|
73 |
+
|
74 |
+
def default_hp_space(self, trial):
|
75 |
+
return default_hp_space_optuna(trial)
|
76 |
+
|
77 |
+
|
78 |
+
class RayTuneBackend(HyperParamSearchBackendBase):
|
79 |
+
name = "ray"
|
80 |
+
pip_package = "'ray[tune]'"
|
81 |
+
|
82 |
+
@staticmethod
|
83 |
+
def is_available():
|
84 |
+
return is_ray_tune_available()
|
85 |
+
|
86 |
+
def run(self, trainer, n_trials: int, direction: str, **kwargs):
|
87 |
+
return run_hp_search_ray(trainer, n_trials, direction, **kwargs)
|
88 |
+
|
89 |
+
def default_hp_space(self, trial):
|
90 |
+
return default_hp_space_ray(trial)
|
91 |
+
|
92 |
+
|
93 |
+
class SigOptBackend(HyperParamSearchBackendBase):
|
94 |
+
name = "sigopt"
|
95 |
+
|
96 |
+
@staticmethod
|
97 |
+
def is_available():
|
98 |
+
return is_sigopt_available()
|
99 |
+
|
100 |
+
def run(self, trainer, n_trials: int, direction: str, **kwargs):
|
101 |
+
return run_hp_search_sigopt(trainer, n_trials, direction, **kwargs)
|
102 |
+
|
103 |
+
def default_hp_space(self, trial):
|
104 |
+
return default_hp_space_sigopt(trial)
|
105 |
+
|
106 |
+
|
107 |
+
class WandbBackend(HyperParamSearchBackendBase):
|
108 |
+
name = "wandb"
|
109 |
+
|
110 |
+
@staticmethod
|
111 |
+
def is_available():
|
112 |
+
return is_wandb_available()
|
113 |
+
|
114 |
+
def run(self, trainer, n_trials: int, direction: str, **kwargs):
|
115 |
+
return run_hp_search_wandb(trainer, n_trials, direction, **kwargs)
|
116 |
+
|
117 |
+
def default_hp_space(self, trial):
|
118 |
+
return default_hp_space_wandb(trial)
|
119 |
+
|
120 |
+
|
121 |
+
ALL_HYPERPARAMETER_SEARCH_BACKENDS = {
|
122 |
+
HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend]
|
123 |
+
}
|
124 |
+
|
125 |
+
|
126 |
+
def default_hp_search_backend() -> str:
|
127 |
+
available_backends = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()]
|
128 |
+
if len(available_backends) > 0:
|
129 |
+
name = available_backends[0].name
|
130 |
+
if len(available_backends) > 1:
|
131 |
+
logger.info(
|
132 |
+
f"{len(available_backends)} hyperparameter search backends available. Using {name} as the default."
|
133 |
+
)
|
134 |
+
return name
|
135 |
+
raise RuntimeError(
|
136 |
+
"No hyperparameter search backend available.\n"
|
137 |
+
+ "\n".join(
|
138 |
+
f" - To install {backend.name} run {backend.pip_install()}"
|
139 |
+
for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values()
|
140 |
+
)
|
141 |
+
)
|
venv/lib/python3.10/site-packages/transformers/image_processing_utils.py
ADDED
@@ -0,0 +1,793 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import copy
|
17 |
+
import json
|
18 |
+
import os
|
19 |
+
import warnings
|
20 |
+
from io import BytesIO
|
21 |
+
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
import requests
|
25 |
+
|
26 |
+
from .dynamic_module_utils import custom_object_save
|
27 |
+
from .feature_extraction_utils import BatchFeature as BaseBatchFeature
|
28 |
+
from .image_transforms import center_crop, normalize, rescale
|
29 |
+
from .image_utils import ChannelDimension
|
30 |
+
from .utils import (
|
31 |
+
IMAGE_PROCESSOR_NAME,
|
32 |
+
PushToHubMixin,
|
33 |
+
add_model_info_to_auto_map,
|
34 |
+
cached_file,
|
35 |
+
copy_func,
|
36 |
+
download_url,
|
37 |
+
is_offline_mode,
|
38 |
+
is_remote_url,
|
39 |
+
is_vision_available,
|
40 |
+
logging,
|
41 |
+
)
|
42 |
+
|
43 |
+
|
44 |
+
if is_vision_available():
|
45 |
+
from PIL import Image
|
46 |
+
|
47 |
+
logger = logging.get_logger(__name__)
|
48 |
+
|
49 |
+
|
50 |
+
# TODO: Move BatchFeature to be imported by both image_processing_utils and image_processing_utils
|
51 |
+
# We override the class string here, but logic is the same.
|
52 |
+
class BatchFeature(BaseBatchFeature):
|
53 |
+
r"""
|
54 |
+
Holds the output of the image processor specific `__call__` methods.
|
55 |
+
|
56 |
+
This class is derived from a python dictionary and can be used as a dictionary.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
data (`dict`):
|
60 |
+
Dictionary of lists/arrays/tensors returned by the __call__ method ('pixel_values', etc.).
|
61 |
+
tensor_type (`Union[None, str, TensorType]`, *optional*):
|
62 |
+
You can give a tensor_type here to convert the lists of integers in PyTorch/TensorFlow/Numpy Tensors at
|
63 |
+
initialization.
|
64 |
+
"""
|
65 |
+
|
66 |
+
|
67 |
+
# TODO: (Amy) - factor out the common parts of this and the feature extractor
|
68 |
+
class ImageProcessingMixin(PushToHubMixin):
|
69 |
+
"""
|
70 |
+
This is an image processor mixin used to provide saving/loading functionality for sequential and image feature
|
71 |
+
extractors.
|
72 |
+
"""
|
73 |
+
|
74 |
+
_auto_class = None
|
75 |
+
|
76 |
+
def __init__(self, **kwargs):
|
77 |
+
"""Set elements of `kwargs` as attributes."""
|
78 |
+
# This key was saved while we still used `XXXFeatureExtractor` for image processing. Now we use
|
79 |
+
# `XXXImageProcessor`, this attribute and its value are misleading.
|
80 |
+
kwargs.pop("feature_extractor_type", None)
|
81 |
+
# Pop "processor_class" as it should be saved as private attribute
|
82 |
+
self._processor_class = kwargs.pop("processor_class", None)
|
83 |
+
# Additional attributes without default values
|
84 |
+
for key, value in kwargs.items():
|
85 |
+
try:
|
86 |
+
setattr(self, key, value)
|
87 |
+
except AttributeError as err:
|
88 |
+
logger.error(f"Can't set {key} with value {value} for {self}")
|
89 |
+
raise err
|
90 |
+
|
91 |
+
def _set_processor_class(self, processor_class: str):
|
92 |
+
"""Sets processor class as an attribute."""
|
93 |
+
self._processor_class = processor_class
|
94 |
+
|
95 |
+
@classmethod
|
96 |
+
def from_pretrained(
|
97 |
+
cls,
|
98 |
+
pretrained_model_name_or_path: Union[str, os.PathLike],
|
99 |
+
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
100 |
+
force_download: bool = False,
|
101 |
+
local_files_only: bool = False,
|
102 |
+
token: Optional[Union[str, bool]] = None,
|
103 |
+
revision: str = "main",
|
104 |
+
**kwargs,
|
105 |
+
):
|
106 |
+
r"""
|
107 |
+
Instantiate a type of [`~image_processing_utils.ImageProcessingMixin`] from an image processor.
|
108 |
+
|
109 |
+
Args:
|
110 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`):
|
111 |
+
This can be either:
|
112 |
+
|
113 |
+
- a string, the *model id* of a pretrained image_processor hosted inside a model repo on
|
114 |
+
huggingface.co.
|
115 |
+
- a path to a *directory* containing a image processor file saved using the
|
116 |
+
[`~image_processing_utils.ImageProcessingMixin.save_pretrained`] method, e.g.,
|
117 |
+
`./my_model_directory/`.
|
118 |
+
- a path or url to a saved image processor JSON *file*, e.g.,
|
119 |
+
`./my_model_directory/preprocessor_config.json`.
|
120 |
+
cache_dir (`str` or `os.PathLike`, *optional*):
|
121 |
+
Path to a directory in which a downloaded pretrained model image processor should be cached if the
|
122 |
+
standard cache should not be used.
|
123 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
124 |
+
Whether or not to force to (re-)download the image processor files and override the cached versions if
|
125 |
+
they exist.
|
126 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
127 |
+
Whether or not to delete incompletely received file. Attempts to resume the download if such a file
|
128 |
+
exists.
|
129 |
+
proxies (`Dict[str, str]`, *optional*):
|
130 |
+
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
131 |
+
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
|
132 |
+
token (`str` or `bool`, *optional*):
|
133 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
|
134 |
+
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
|
135 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
136 |
+
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
137 |
+
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
138 |
+
identifier allowed by git.
|
139 |
+
|
140 |
+
|
141 |
+
<Tip>
|
142 |
+
|
143 |
+
To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".
|
144 |
+
|
145 |
+
</Tip>
|
146 |
+
|
147 |
+
return_unused_kwargs (`bool`, *optional*, defaults to `False`):
|
148 |
+
If `False`, then this function returns just the final image processor object. If `True`, then this
|
149 |
+
functions returns a `Tuple(image_processor, unused_kwargs)` where *unused_kwargs* is a dictionary
|
150 |
+
consisting of the key/value pairs whose keys are not image processor attributes: i.e., the part of
|
151 |
+
`kwargs` which has not been used to update `image_processor` and is otherwise ignored.
|
152 |
+
subfolder (`str`, *optional*, defaults to `""`):
|
153 |
+
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
|
154 |
+
specify the folder name here.
|
155 |
+
kwargs (`Dict[str, Any]`, *optional*):
|
156 |
+
The values in kwargs of any keys which are image processor attributes will be used to override the
|
157 |
+
loaded values. Behavior concerning key/value pairs whose keys are *not* image processor attributes is
|
158 |
+
controlled by the `return_unused_kwargs` keyword parameter.
|
159 |
+
|
160 |
+
Returns:
|
161 |
+
A image processor of type [`~image_processing_utils.ImageProcessingMixin`].
|
162 |
+
|
163 |
+
Examples:
|
164 |
+
|
165 |
+
```python
|
166 |
+
# We can't instantiate directly the base class *ImageProcessingMixin* so let's show the examples on a
|
167 |
+
# derived class: *CLIPImageProcessor*
|
168 |
+
image_processor = CLIPImageProcessor.from_pretrained(
|
169 |
+
"openai/clip-vit-base-patch32"
|
170 |
+
) # Download image_processing_config from huggingface.co and cache.
|
171 |
+
image_processor = CLIPImageProcessor.from_pretrained(
|
172 |
+
"./test/saved_model/"
|
173 |
+
) # E.g. image processor (or model) was saved using *save_pretrained('./test/saved_model/')*
|
174 |
+
image_processor = CLIPImageProcessor.from_pretrained("./test/saved_model/preprocessor_config.json")
|
175 |
+
image_processor = CLIPImageProcessor.from_pretrained(
|
176 |
+
"openai/clip-vit-base-patch32", do_normalize=False, foo=False
|
177 |
+
)
|
178 |
+
assert image_processor.do_normalize is False
|
179 |
+
image_processor, unused_kwargs = CLIPImageProcessor.from_pretrained(
|
180 |
+
"openai/clip-vit-base-patch32", do_normalize=False, foo=False, return_unused_kwargs=True
|
181 |
+
)
|
182 |
+
assert image_processor.do_normalize is False
|
183 |
+
assert unused_kwargs == {"foo": False}
|
184 |
+
```"""
|
185 |
+
kwargs["cache_dir"] = cache_dir
|
186 |
+
kwargs["force_download"] = force_download
|
187 |
+
kwargs["local_files_only"] = local_files_only
|
188 |
+
kwargs["revision"] = revision
|
189 |
+
|
190 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
191 |
+
if use_auth_token is not None:
|
192 |
+
warnings.warn(
|
193 |
+
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
194 |
+
FutureWarning,
|
195 |
+
)
|
196 |
+
if token is not None:
|
197 |
+
raise ValueError(
|
198 |
+
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
|
199 |
+
)
|
200 |
+
token = use_auth_token
|
201 |
+
|
202 |
+
if token is not None:
|
203 |
+
kwargs["token"] = token
|
204 |
+
|
205 |
+
image_processor_dict, kwargs = cls.get_image_processor_dict(pretrained_model_name_or_path, **kwargs)
|
206 |
+
|
207 |
+
return cls.from_dict(image_processor_dict, **kwargs)
|
208 |
+
|
209 |
+
def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
|
210 |
+
"""
|
211 |
+
Save an image processor object to the directory `save_directory`, so that it can be re-loaded using the
|
212 |
+
[`~image_processing_utils.ImageProcessingMixin.from_pretrained`] class method.
|
213 |
+
|
214 |
+
Args:
|
215 |
+
save_directory (`str` or `os.PathLike`):
|
216 |
+
Directory where the image processor JSON file will be saved (will be created if it does not exist).
|
217 |
+
push_to_hub (`bool`, *optional*, defaults to `False`):
|
218 |
+
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
|
219 |
+
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
|
220 |
+
namespace).
|
221 |
+
kwargs (`Dict[str, Any]`, *optional*):
|
222 |
+
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
|
223 |
+
"""
|
224 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
225 |
+
|
226 |
+
if use_auth_token is not None:
|
227 |
+
warnings.warn(
|
228 |
+
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
229 |
+
FutureWarning,
|
230 |
+
)
|
231 |
+
if kwargs.get("token", None) is not None:
|
232 |
+
raise ValueError(
|
233 |
+
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
|
234 |
+
)
|
235 |
+
kwargs["token"] = use_auth_token
|
236 |
+
|
237 |
+
if os.path.isfile(save_directory):
|
238 |
+
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")
|
239 |
+
|
240 |
+
os.makedirs(save_directory, exist_ok=True)
|
241 |
+
|
242 |
+
if push_to_hub:
|
243 |
+
commit_message = kwargs.pop("commit_message", None)
|
244 |
+
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
|
245 |
+
repo_id = self._create_repo(repo_id, **kwargs)
|
246 |
+
files_timestamps = self._get_files_timestamps(save_directory)
|
247 |
+
|
248 |
+
# If we have a custom config, we copy the file defining it in the folder and set the attributes so it can be
|
249 |
+
# loaded from the Hub.
|
250 |
+
if self._auto_class is not None:
|
251 |
+
custom_object_save(self, save_directory, config=self)
|
252 |
+
|
253 |
+
# If we save using the predefined names, we can load using `from_pretrained`
|
254 |
+
output_image_processor_file = os.path.join(save_directory, IMAGE_PROCESSOR_NAME)
|
255 |
+
|
256 |
+
self.to_json_file(output_image_processor_file)
|
257 |
+
logger.info(f"Image processor saved in {output_image_processor_file}")
|
258 |
+
|
259 |
+
if push_to_hub:
|
260 |
+
self._upload_modified_files(
|
261 |
+
save_directory,
|
262 |
+
repo_id,
|
263 |
+
files_timestamps,
|
264 |
+
commit_message=commit_message,
|
265 |
+
token=kwargs.get("token"),
|
266 |
+
)
|
267 |
+
|
268 |
+
return [output_image_processor_file]
|
269 |
+
|
270 |
+
@classmethod
|
271 |
+
def get_image_processor_dict(
|
272 |
+
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
|
273 |
+
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
274 |
+
"""
|
275 |
+
From a `pretrained_model_name_or_path`, resolve to a dictionary of parameters, to be used for instantiating a
|
276 |
+
image processor of type [`~image_processor_utils.ImageProcessingMixin`] using `from_dict`.
|
277 |
+
|
278 |
+
Parameters:
|
279 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`):
|
280 |
+
The identifier of the pre-trained checkpoint from which we want the dictionary of parameters.
|
281 |
+
subfolder (`str`, *optional*, defaults to `""`):
|
282 |
+
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
|
283 |
+
specify the folder name here.
|
284 |
+
|
285 |
+
Returns:
|
286 |
+
`Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the image processor object.
|
287 |
+
"""
|
288 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
289 |
+
force_download = kwargs.pop("force_download", False)
|
290 |
+
resume_download = kwargs.pop("resume_download", False)
|
291 |
+
proxies = kwargs.pop("proxies", None)
|
292 |
+
token = kwargs.pop("token", None)
|
293 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
294 |
+
local_files_only = kwargs.pop("local_files_only", False)
|
295 |
+
revision = kwargs.pop("revision", None)
|
296 |
+
subfolder = kwargs.pop("subfolder", "")
|
297 |
+
|
298 |
+
from_pipeline = kwargs.pop("_from_pipeline", None)
|
299 |
+
from_auto_class = kwargs.pop("_from_auto", False)
|
300 |
+
|
301 |
+
if use_auth_token is not None:
|
302 |
+
warnings.warn(
|
303 |
+
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
304 |
+
FutureWarning,
|
305 |
+
)
|
306 |
+
if token is not None:
|
307 |
+
raise ValueError(
|
308 |
+
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
|
309 |
+
)
|
310 |
+
token = use_auth_token
|
311 |
+
|
312 |
+
user_agent = {"file_type": "image processor", "from_auto_class": from_auto_class}
|
313 |
+
if from_pipeline is not None:
|
314 |
+
user_agent["using_pipeline"] = from_pipeline
|
315 |
+
|
316 |
+
if is_offline_mode() and not local_files_only:
|
317 |
+
logger.info("Offline mode: forcing local_files_only=True")
|
318 |
+
local_files_only = True
|
319 |
+
|
320 |
+
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
321 |
+
is_local = os.path.isdir(pretrained_model_name_or_path)
|
322 |
+
if os.path.isdir(pretrained_model_name_or_path):
|
323 |
+
image_processor_file = os.path.join(pretrained_model_name_or_path, IMAGE_PROCESSOR_NAME)
|
324 |
+
if os.path.isfile(pretrained_model_name_or_path):
|
325 |
+
resolved_image_processor_file = pretrained_model_name_or_path
|
326 |
+
is_local = True
|
327 |
+
elif is_remote_url(pretrained_model_name_or_path):
|
328 |
+
image_processor_file = pretrained_model_name_or_path
|
329 |
+
resolved_image_processor_file = download_url(pretrained_model_name_or_path)
|
330 |
+
else:
|
331 |
+
image_processor_file = IMAGE_PROCESSOR_NAME
|
332 |
+
try:
|
333 |
+
# Load from local folder or from cache or download from model Hub and cache
|
334 |
+
resolved_image_processor_file = cached_file(
|
335 |
+
pretrained_model_name_or_path,
|
336 |
+
image_processor_file,
|
337 |
+
cache_dir=cache_dir,
|
338 |
+
force_download=force_download,
|
339 |
+
proxies=proxies,
|
340 |
+
resume_download=resume_download,
|
341 |
+
local_files_only=local_files_only,
|
342 |
+
token=token,
|
343 |
+
user_agent=user_agent,
|
344 |
+
revision=revision,
|
345 |
+
subfolder=subfolder,
|
346 |
+
)
|
347 |
+
except EnvironmentError:
|
348 |
+
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to
|
349 |
+
# the original exception.
|
350 |
+
raise
|
351 |
+
except Exception:
|
352 |
+
# For any other exception, we throw a generic error.
|
353 |
+
raise EnvironmentError(
|
354 |
+
f"Can't load image processor for '{pretrained_model_name_or_path}'. If you were trying to load"
|
355 |
+
" it from 'https://huggingface.co/models', make sure you don't have a local directory with the"
|
356 |
+
f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
|
357 |
+
f" directory containing a {IMAGE_PROCESSOR_NAME} file"
|
358 |
+
)
|
359 |
+
|
360 |
+
try:
|
361 |
+
# Load image_processor dict
|
362 |
+
with open(resolved_image_processor_file, "r", encoding="utf-8") as reader:
|
363 |
+
text = reader.read()
|
364 |
+
image_processor_dict = json.loads(text)
|
365 |
+
|
366 |
+
except json.JSONDecodeError:
|
367 |
+
raise EnvironmentError(
|
368 |
+
f"It looks like the config file at '{resolved_image_processor_file}' is not a valid JSON file."
|
369 |
+
)
|
370 |
+
|
371 |
+
if is_local:
|
372 |
+
logger.info(f"loading configuration file {resolved_image_processor_file}")
|
373 |
+
else:
|
374 |
+
logger.info(
|
375 |
+
f"loading configuration file {image_processor_file} from cache at {resolved_image_processor_file}"
|
376 |
+
)
|
377 |
+
|
378 |
+
if "auto_map" in image_processor_dict and not is_local:
|
379 |
+
image_processor_dict["auto_map"] = add_model_info_to_auto_map(
|
380 |
+
image_processor_dict["auto_map"], pretrained_model_name_or_path
|
381 |
+
)
|
382 |
+
|
383 |
+
return image_processor_dict, kwargs
|
384 |
+
|
385 |
+
@classmethod
|
386 |
+
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
|
387 |
+
"""
|
388 |
+
Instantiates a type of [`~image_processing_utils.ImageProcessingMixin`] from a Python dictionary of parameters.
|
389 |
+
|
390 |
+
Args:
|
391 |
+
image_processor_dict (`Dict[str, Any]`):
|
392 |
+
Dictionary that will be used to instantiate the image processor object. Such a dictionary can be
|
393 |
+
retrieved from a pretrained checkpoint by leveraging the
|
394 |
+
[`~image_processing_utils.ImageProcessingMixin.to_dict`] method.
|
395 |
+
kwargs (`Dict[str, Any]`):
|
396 |
+
Additional parameters from which to initialize the image processor object.
|
397 |
+
|
398 |
+
Returns:
|
399 |
+
[`~image_processing_utils.ImageProcessingMixin`]: The image processor object instantiated from those
|
400 |
+
parameters.
|
401 |
+
"""
|
402 |
+
image_processor_dict = image_processor_dict.copy()
|
403 |
+
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
|
404 |
+
|
405 |
+
# The `size` parameter is a dict and was previously an int or tuple in feature extractors.
|
406 |
+
# We set `size` here directly to the `image_processor_dict` so that it is converted to the appropriate
|
407 |
+
# dict within the image processor and isn't overwritten if `size` is passed in as a kwarg.
|
408 |
+
if "size" in kwargs and "size" in image_processor_dict:
|
409 |
+
image_processor_dict["size"] = kwargs.pop("size")
|
410 |
+
if "crop_size" in kwargs and "crop_size" in image_processor_dict:
|
411 |
+
image_processor_dict["crop_size"] = kwargs.pop("crop_size")
|
412 |
+
|
413 |
+
image_processor = cls(**image_processor_dict)
|
414 |
+
|
415 |
+
# Update image_processor with kwargs if needed
|
416 |
+
to_remove = []
|
417 |
+
for key, value in kwargs.items():
|
418 |
+
if hasattr(image_processor, key):
|
419 |
+
setattr(image_processor, key, value)
|
420 |
+
to_remove.append(key)
|
421 |
+
for key in to_remove:
|
422 |
+
kwargs.pop(key, None)
|
423 |
+
|
424 |
+
logger.info(f"Image processor {image_processor}")
|
425 |
+
if return_unused_kwargs:
|
426 |
+
return image_processor, kwargs
|
427 |
+
else:
|
428 |
+
return image_processor
|
429 |
+
|
430 |
+
def to_dict(self) -> Dict[str, Any]:
|
431 |
+
"""
|
432 |
+
Serializes this instance to a Python dictionary.
|
433 |
+
|
434 |
+
Returns:
|
435 |
+
`Dict[str, Any]`: Dictionary of all the attributes that make up this image processor instance.
|
436 |
+
"""
|
437 |
+
output = copy.deepcopy(self.__dict__)
|
438 |
+
output["image_processor_type"] = self.__class__.__name__
|
439 |
+
|
440 |
+
return output
|
441 |
+
|
442 |
+
@classmethod
|
443 |
+
def from_json_file(cls, json_file: Union[str, os.PathLike]):
|
444 |
+
"""
|
445 |
+
Instantiates a image processor of type [`~image_processing_utils.ImageProcessingMixin`] from the path to a JSON
|
446 |
+
file of parameters.
|
447 |
+
|
448 |
+
Args:
|
449 |
+
json_file (`str` or `os.PathLike`):
|
450 |
+
Path to the JSON file containing the parameters.
|
451 |
+
|
452 |
+
Returns:
|
453 |
+
A image processor of type [`~image_processing_utils.ImageProcessingMixin`]: The image_processor object
|
454 |
+
instantiated from that JSON file.
|
455 |
+
"""
|
456 |
+
with open(json_file, "r", encoding="utf-8") as reader:
|
457 |
+
text = reader.read()
|
458 |
+
image_processor_dict = json.loads(text)
|
459 |
+
return cls(**image_processor_dict)
|
460 |
+
|
461 |
+
def to_json_string(self) -> str:
|
462 |
+
"""
|
463 |
+
Serializes this instance to a JSON string.
|
464 |
+
|
465 |
+
Returns:
|
466 |
+
`str`: String containing all the attributes that make up this feature_extractor instance in JSON format.
|
467 |
+
"""
|
468 |
+
dictionary = self.to_dict()
|
469 |
+
|
470 |
+
for key, value in dictionary.items():
|
471 |
+
if isinstance(value, np.ndarray):
|
472 |
+
dictionary[key] = value.tolist()
|
473 |
+
|
474 |
+
# make sure private name "_processor_class" is correctly
|
475 |
+
# saved as "processor_class"
|
476 |
+
_processor_class = dictionary.pop("_processor_class", None)
|
477 |
+
if _processor_class is not None:
|
478 |
+
dictionary["processor_class"] = _processor_class
|
479 |
+
|
480 |
+
return json.dumps(dictionary, indent=2, sort_keys=True) + "\n"
|
481 |
+
|
482 |
+
def to_json_file(self, json_file_path: Union[str, os.PathLike]):
|
483 |
+
"""
|
484 |
+
Save this instance to a JSON file.
|
485 |
+
|
486 |
+
Args:
|
487 |
+
json_file_path (`str` or `os.PathLike`):
|
488 |
+
Path to the JSON file in which this image_processor instance's parameters will be saved.
|
489 |
+
"""
|
490 |
+
with open(json_file_path, "w", encoding="utf-8") as writer:
|
491 |
+
writer.write(self.to_json_string())
|
492 |
+
|
493 |
+
def __repr__(self):
|
494 |
+
return f"{self.__class__.__name__} {self.to_json_string()}"
|
495 |
+
|
496 |
+
@classmethod
|
497 |
+
def register_for_auto_class(cls, auto_class="AutoImageProcessor"):
|
498 |
+
"""
|
499 |
+
Register this class with a given auto class. This should only be used for custom image processors as the ones
|
500 |
+
in the library are already mapped with `AutoImageProcessor `.
|
501 |
+
|
502 |
+
<Tip warning={true}>
|
503 |
+
|
504 |
+
This API is experimental and may have some slight breaking changes in the next releases.
|
505 |
+
|
506 |
+
</Tip>
|
507 |
+
|
508 |
+
Args:
|
509 |
+
auto_class (`str` or `type`, *optional*, defaults to `"AutoImageProcessor "`):
|
510 |
+
The auto class to register this new image processor with.
|
511 |
+
"""
|
512 |
+
if not isinstance(auto_class, str):
|
513 |
+
auto_class = auto_class.__name__
|
514 |
+
|
515 |
+
import transformers.models.auto as auto_module
|
516 |
+
|
517 |
+
if not hasattr(auto_module, auto_class):
|
518 |
+
raise ValueError(f"{auto_class} is not a valid auto class.")
|
519 |
+
|
520 |
+
cls._auto_class = auto_class
|
521 |
+
|
522 |
+
def fetch_images(self, image_url_or_urls: Union[str, List[str]]):
|
523 |
+
"""
|
524 |
+
Convert a single or a list of urls into the corresponding `PIL.Image` objects.
|
525 |
+
|
526 |
+
If a single url is passed, the return value will be a single object. If a list is passed a list of objects is
|
527 |
+
returned.
|
528 |
+
"""
|
529 |
+
headers = {
|
530 |
+
"User-Agent": (
|
531 |
+
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0"
|
532 |
+
" Safari/537.36"
|
533 |
+
)
|
534 |
+
}
|
535 |
+
if isinstance(image_url_or_urls, list):
|
536 |
+
return [self.fetch_images(x) for x in image_url_or_urls]
|
537 |
+
elif isinstance(image_url_or_urls, str):
|
538 |
+
response = requests.get(image_url_or_urls, stream=True, headers=headers)
|
539 |
+
response.raise_for_status()
|
540 |
+
return Image.open(BytesIO(response.content))
|
541 |
+
else:
|
542 |
+
raise ValueError(f"only a single or a list of entries is supported but got type={type(image_url_or_urls)}")
|
543 |
+
|
544 |
+
|
545 |
+
class BaseImageProcessor(ImageProcessingMixin):
|
546 |
+
def __init__(self, **kwargs):
|
547 |
+
super().__init__(**kwargs)
|
548 |
+
|
549 |
+
def __call__(self, images, **kwargs) -> BatchFeature:
|
550 |
+
"""Preprocess an image or a batch of images."""
|
551 |
+
return self.preprocess(images, **kwargs)
|
552 |
+
|
553 |
+
def preprocess(self, images, **kwargs) -> BatchFeature:
|
554 |
+
raise NotImplementedError("Each image processor must implement its own preprocess method")
|
555 |
+
|
556 |
+
def rescale(
|
557 |
+
self,
|
558 |
+
image: np.ndarray,
|
559 |
+
scale: float,
|
560 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
561 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
562 |
+
**kwargs,
|
563 |
+
) -> np.ndarray:
|
564 |
+
"""
|
565 |
+
Rescale an image by a scale factor. image = image * scale.
|
566 |
+
|
567 |
+
Args:
|
568 |
+
image (`np.ndarray`):
|
569 |
+
Image to rescale.
|
570 |
+
scale (`float`):
|
571 |
+
The scaling factor to rescale pixel values by.
|
572 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
573 |
+
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
574 |
+
image is used. Can be one of:
|
575 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
576 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
577 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
578 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
579 |
+
from the input image. Can be one of:
|
580 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
581 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
582 |
+
|
583 |
+
Returns:
|
584 |
+
`np.ndarray`: The rescaled image.
|
585 |
+
"""
|
586 |
+
return rescale(image, scale=scale, data_format=data_format, input_data_format=input_data_format, **kwargs)
|
587 |
+
|
588 |
+
def normalize(
|
589 |
+
self,
|
590 |
+
image: np.ndarray,
|
591 |
+
mean: Union[float, Iterable[float]],
|
592 |
+
std: Union[float, Iterable[float]],
|
593 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
594 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
595 |
+
**kwargs,
|
596 |
+
) -> np.ndarray:
|
597 |
+
"""
|
598 |
+
Normalize an image. image = (image - image_mean) / image_std.
|
599 |
+
|
600 |
+
Args:
|
601 |
+
image (`np.ndarray`):
|
602 |
+
Image to normalize.
|
603 |
+
mean (`float` or `Iterable[float]`):
|
604 |
+
Image mean to use for normalization.
|
605 |
+
std (`float` or `Iterable[float]`):
|
606 |
+
Image standard deviation to use for normalization.
|
607 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
608 |
+
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
609 |
+
image is used. Can be one of:
|
610 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
611 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
612 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
613 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
614 |
+
from the input image. Can be one of:
|
615 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
616 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
617 |
+
|
618 |
+
Returns:
|
619 |
+
`np.ndarray`: The normalized image.
|
620 |
+
"""
|
621 |
+
return normalize(
|
622 |
+
image, mean=mean, std=std, data_format=data_format, input_data_format=input_data_format, **kwargs
|
623 |
+
)
|
624 |
+
|
625 |
+
def center_crop(
|
626 |
+
self,
|
627 |
+
image: np.ndarray,
|
628 |
+
size: Dict[str, int],
|
629 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
630 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
631 |
+
**kwargs,
|
632 |
+
) -> np.ndarray:
|
633 |
+
"""
|
634 |
+
Center crop an image to `(size["height"], size["width"])`. If the input size is smaller than `crop_size` along
|
635 |
+
any edge, the image is padded with 0's and then center cropped.
|
636 |
+
|
637 |
+
Args:
|
638 |
+
image (`np.ndarray`):
|
639 |
+
Image to center crop.
|
640 |
+
size (`Dict[str, int]`):
|
641 |
+
Size of the output image.
|
642 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
643 |
+
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
644 |
+
image is used. Can be one of:
|
645 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
646 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
647 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
648 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
649 |
+
from the input image. Can be one of:
|
650 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
651 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
652 |
+
"""
|
653 |
+
size = get_size_dict(size)
|
654 |
+
if "height" not in size or "width" not in size:
|
655 |
+
raise ValueError(f"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}")
|
656 |
+
return center_crop(
|
657 |
+
image,
|
658 |
+
size=(size["height"], size["width"]),
|
659 |
+
data_format=data_format,
|
660 |
+
input_data_format=input_data_format,
|
661 |
+
**kwargs,
|
662 |
+
)
|
663 |
+
|
664 |
+
|
665 |
+
VALID_SIZE_DICT_KEYS = ({"height", "width"}, {"shortest_edge"}, {"shortest_edge", "longest_edge"}, {"longest_edge"})
|
666 |
+
|
667 |
+
|
668 |
+
def is_valid_size_dict(size_dict):
|
669 |
+
if not isinstance(size_dict, dict):
|
670 |
+
return False
|
671 |
+
|
672 |
+
size_dict_keys = set(size_dict.keys())
|
673 |
+
for allowed_keys in VALID_SIZE_DICT_KEYS:
|
674 |
+
if size_dict_keys == allowed_keys:
|
675 |
+
return True
|
676 |
+
return False
|
677 |
+
|
678 |
+
|
679 |
+
def convert_to_size_dict(
|
680 |
+
size, max_size: Optional[int] = None, default_to_square: bool = True, height_width_order: bool = True
|
681 |
+
):
|
682 |
+
# By default, if size is an int we assume it represents a tuple of (size, size).
|
683 |
+
if isinstance(size, int) and default_to_square:
|
684 |
+
if max_size is not None:
|
685 |
+
raise ValueError("Cannot specify both size as an int, with default_to_square=True and max_size")
|
686 |
+
return {"height": size, "width": size}
|
687 |
+
# In other configs, if size is an int and default_to_square is False, size represents the length of
|
688 |
+
# the shortest edge after resizing.
|
689 |
+
elif isinstance(size, int) and not default_to_square:
|
690 |
+
size_dict = {"shortest_edge": size}
|
691 |
+
if max_size is not None:
|
692 |
+
size_dict["longest_edge"] = max_size
|
693 |
+
return size_dict
|
694 |
+
# Otherwise, if size is a tuple it's either (height, width) or (width, height)
|
695 |
+
elif isinstance(size, (tuple, list)) and height_width_order:
|
696 |
+
return {"height": size[0], "width": size[1]}
|
697 |
+
elif isinstance(size, (tuple, list)) and not height_width_order:
|
698 |
+
return {"height": size[1], "width": size[0]}
|
699 |
+
elif size is None and max_size is not None:
|
700 |
+
if default_to_square:
|
701 |
+
raise ValueError("Cannot specify both default_to_square=True and max_size")
|
702 |
+
return {"longest_edge": max_size}
|
703 |
+
|
704 |
+
raise ValueError(f"Could not convert size input to size dict: {size}")
|
705 |
+
|
706 |
+
|
707 |
+
def get_size_dict(
|
708 |
+
size: Union[int, Iterable[int], Dict[str, int]] = None,
|
709 |
+
max_size: Optional[int] = None,
|
710 |
+
height_width_order: bool = True,
|
711 |
+
default_to_square: bool = True,
|
712 |
+
param_name="size",
|
713 |
+
) -> dict:
|
714 |
+
"""
|
715 |
+
Converts the old size parameter in the config into the new dict expected in the config. This is to ensure backwards
|
716 |
+
compatibility with the old image processor configs and removes ambiguity over whether the tuple is in (height,
|
717 |
+
width) or (width, height) format.
|
718 |
+
|
719 |
+
- If `size` is tuple, it is converted to `{"height": size[0], "width": size[1]}` or `{"height": size[1], "width":
|
720 |
+
size[0]}` if `height_width_order` is `False`.
|
721 |
+
- If `size` is an int, and `default_to_square` is `True`, it is converted to `{"height": size, "width": size}`.
|
722 |
+
- If `size` is an int and `default_to_square` is False, it is converted to `{"shortest_edge": size}`. If `max_size`
|
723 |
+
is set, it is added to the dict as `{"longest_edge": max_size}`.
|
724 |
+
|
725 |
+
Args:
|
726 |
+
size (`Union[int, Iterable[int], Dict[str, int]]`, *optional*):
|
727 |
+
The `size` parameter to be cast into a size dictionary.
|
728 |
+
max_size (`Optional[int]`, *optional*):
|
729 |
+
The `max_size` parameter to be cast into a size dictionary.
|
730 |
+
height_width_order (`bool`, *optional*, defaults to `True`):
|
731 |
+
If `size` is a tuple, whether it's in (height, width) or (width, height) order.
|
732 |
+
default_to_square (`bool`, *optional*, defaults to `True`):
|
733 |
+
If `size` is an int, whether to default to a square image or not.
|
734 |
+
"""
|
735 |
+
if not isinstance(size, dict):
|
736 |
+
size_dict = convert_to_size_dict(size, max_size, default_to_square, height_width_order)
|
737 |
+
logger.info(
|
738 |
+
f"{param_name} should be a dictionary on of the following set of keys: {VALID_SIZE_DICT_KEYS}, got {size}."
|
739 |
+
f" Converted to {size_dict}.",
|
740 |
+
)
|
741 |
+
else:
|
742 |
+
size_dict = size
|
743 |
+
|
744 |
+
if not is_valid_size_dict(size_dict):
|
745 |
+
raise ValueError(
|
746 |
+
f"{param_name} must have one of the following set of keys: {VALID_SIZE_DICT_KEYS}, got {size_dict.keys()}"
|
747 |
+
)
|
748 |
+
return size_dict
|
749 |
+
|
750 |
+
|
751 |
+
def select_best_resolution(original_size: tuple, possible_resolutions: list) -> tuple:
|
752 |
+
"""
|
753 |
+
Selects the best resolution from a list of possible resolutions based on the original size.
|
754 |
+
|
755 |
+
This is done by calculating the effective and wasted resolution for each possible resolution.
|
756 |
+
|
757 |
+
The best fit resolution is the one that maximizes the effective resolution and minimizes the wasted resolution.
|
758 |
+
|
759 |
+
Args:
|
760 |
+
original_size (tuple):
|
761 |
+
The original size of the image in the format (height, width).
|
762 |
+
possible_resolutions (list):
|
763 |
+
A list of possible resolutions in the format [(height1, width1), (height2, width2), ...].
|
764 |
+
|
765 |
+
Returns:
|
766 |
+
tuple: The best fit resolution in the format (height, width).
|
767 |
+
"""
|
768 |
+
original_height, original_width = original_size
|
769 |
+
best_fit = None
|
770 |
+
max_effective_resolution = 0
|
771 |
+
min_wasted_resolution = float("inf")
|
772 |
+
|
773 |
+
for height, width in possible_resolutions:
|
774 |
+
scale = min(width / original_width, height / original_height)
|
775 |
+
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
|
776 |
+
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
|
777 |
+
wasted_resolution = (width * height) - effective_resolution
|
778 |
+
|
779 |
+
if effective_resolution > max_effective_resolution or (
|
780 |
+
effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution
|
781 |
+
):
|
782 |
+
max_effective_resolution = effective_resolution
|
783 |
+
min_wasted_resolution = wasted_resolution
|
784 |
+
best_fit = (height, width)
|
785 |
+
|
786 |
+
return best_fit
|
787 |
+
|
788 |
+
|
789 |
+
ImageProcessingMixin.push_to_hub = copy_func(ImageProcessingMixin.push_to_hub)
|
790 |
+
if ImageProcessingMixin.push_to_hub.__doc__ is not None:
|
791 |
+
ImageProcessingMixin.push_to_hub.__doc__ = ImageProcessingMixin.push_to_hub.__doc__.format(
|
792 |
+
object="image processor", object_class="AutoImageProcessor", object_files="image processor file"
|
793 |
+
)
|
venv/lib/python3.10/site-packages/transformers/image_transforms.py
ADDED
@@ -0,0 +1,803 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import warnings
|
17 |
+
from typing import Iterable, List, Optional, Tuple, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
from .image_utils import (
|
22 |
+
ChannelDimension,
|
23 |
+
ImageInput,
|
24 |
+
get_channel_dimension_axis,
|
25 |
+
get_image_size,
|
26 |
+
infer_channel_dimension_format,
|
27 |
+
)
|
28 |
+
from .utils import ExplicitEnum, TensorType, is_jax_tensor, is_tf_tensor, is_torch_tensor
|
29 |
+
from .utils.import_utils import (
|
30 |
+
is_flax_available,
|
31 |
+
is_tf_available,
|
32 |
+
is_torch_available,
|
33 |
+
is_vision_available,
|
34 |
+
requires_backends,
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
if is_vision_available():
|
39 |
+
import PIL
|
40 |
+
|
41 |
+
from .image_utils import PILImageResampling
|
42 |
+
|
43 |
+
if is_torch_available():
|
44 |
+
import torch
|
45 |
+
|
46 |
+
if is_tf_available():
|
47 |
+
import tensorflow as tf
|
48 |
+
|
49 |
+
if is_flax_available():
|
50 |
+
import jax.numpy as jnp
|
51 |
+
|
52 |
+
|
53 |
+
def to_channel_dimension_format(
|
54 |
+
image: np.ndarray,
|
55 |
+
channel_dim: Union[ChannelDimension, str],
|
56 |
+
input_channel_dim: Optional[Union[ChannelDimension, str]] = None,
|
57 |
+
) -> np.ndarray:
|
58 |
+
"""
|
59 |
+
Converts `image` to the channel dimension format specified by `channel_dim`.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
image (`numpy.ndarray`):
|
63 |
+
The image to have its channel dimension set.
|
64 |
+
channel_dim (`ChannelDimension`):
|
65 |
+
The channel dimension format to use.
|
66 |
+
input_channel_dim (`ChannelDimension`, *optional*):
|
67 |
+
The channel dimension format of the input image. If not provided, it will be inferred from the input image.
|
68 |
+
|
69 |
+
Returns:
|
70 |
+
`np.ndarray`: The image with the channel dimension set to `channel_dim`.
|
71 |
+
"""
|
72 |
+
if not isinstance(image, np.ndarray):
|
73 |
+
raise ValueError(f"Input image must be of type np.ndarray, got {type(image)}")
|
74 |
+
|
75 |
+
if input_channel_dim is None:
|
76 |
+
input_channel_dim = infer_channel_dimension_format(image)
|
77 |
+
|
78 |
+
target_channel_dim = ChannelDimension(channel_dim)
|
79 |
+
if input_channel_dim == target_channel_dim:
|
80 |
+
return image
|
81 |
+
|
82 |
+
if target_channel_dim == ChannelDimension.FIRST:
|
83 |
+
image = image.transpose((2, 0, 1))
|
84 |
+
elif target_channel_dim == ChannelDimension.LAST:
|
85 |
+
image = image.transpose((1, 2, 0))
|
86 |
+
else:
|
87 |
+
raise ValueError("Unsupported channel dimension format: {}".format(channel_dim))
|
88 |
+
|
89 |
+
return image
|
90 |
+
|
91 |
+
|
92 |
+
def rescale(
|
93 |
+
image: np.ndarray,
|
94 |
+
scale: float,
|
95 |
+
data_format: Optional[ChannelDimension] = None,
|
96 |
+
dtype: np.dtype = np.float32,
|
97 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
98 |
+
) -> np.ndarray:
|
99 |
+
"""
|
100 |
+
Rescales `image` by `scale`.
|
101 |
+
|
102 |
+
Args:
|
103 |
+
image (`np.ndarray`):
|
104 |
+
The image to rescale.
|
105 |
+
scale (`float`):
|
106 |
+
The scale to use for rescaling the image.
|
107 |
+
data_format (`ChannelDimension`, *optional*):
|
108 |
+
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
109 |
+
dtype (`np.dtype`, *optional*, defaults to `np.float32`):
|
110 |
+
The dtype of the output image. Defaults to `np.float32`. Used for backwards compatibility with feature
|
111 |
+
extractors.
|
112 |
+
input_data_format (`ChannelDimension`, *optional*):
|
113 |
+
The channel dimension format of the input image. If not provided, it will be inferred from the input image.
|
114 |
+
|
115 |
+
Returns:
|
116 |
+
`np.ndarray`: The rescaled image.
|
117 |
+
"""
|
118 |
+
if not isinstance(image, np.ndarray):
|
119 |
+
raise ValueError(f"Input image must be of type np.ndarray, got {type(image)}")
|
120 |
+
|
121 |
+
rescaled_image = image * scale
|
122 |
+
if data_format is not None:
|
123 |
+
rescaled_image = to_channel_dimension_format(rescaled_image, data_format, input_data_format)
|
124 |
+
|
125 |
+
rescaled_image = rescaled_image.astype(dtype)
|
126 |
+
|
127 |
+
return rescaled_image
|
128 |
+
|
129 |
+
|
130 |
+
def _rescale_for_pil_conversion(image):
|
131 |
+
"""
|
132 |
+
Detects whether or not the image needs to be rescaled before being converted to a PIL image.
|
133 |
+
|
134 |
+
The assumption is that if the image is of type `np.float` and all values are between 0 and 1, it needs to be
|
135 |
+
rescaled.
|
136 |
+
"""
|
137 |
+
if image.dtype == np.uint8:
|
138 |
+
do_rescale = False
|
139 |
+
elif np.allclose(image, image.astype(int)):
|
140 |
+
if np.all(0 <= image) and np.all(image <= 255):
|
141 |
+
do_rescale = False
|
142 |
+
else:
|
143 |
+
raise ValueError(
|
144 |
+
"The image to be converted to a PIL image contains values outside the range [0, 255], "
|
145 |
+
f"got [{image.min()}, {image.max()}] which cannot be converted to uint8."
|
146 |
+
)
|
147 |
+
elif np.all(0 <= image) and np.all(image <= 1):
|
148 |
+
do_rescale = True
|
149 |
+
else:
|
150 |
+
raise ValueError(
|
151 |
+
"The image to be converted to a PIL image contains values outside the range [0, 1], "
|
152 |
+
f"got [{image.min()}, {image.max()}] which cannot be converted to uint8."
|
153 |
+
)
|
154 |
+
return do_rescale
|
155 |
+
|
156 |
+
|
157 |
+
def to_pil_image(
|
158 |
+
image: Union[np.ndarray, "PIL.Image.Image", "torch.Tensor", "tf.Tensor", "jnp.ndarray"],
|
159 |
+
do_rescale: Optional[bool] = None,
|
160 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
161 |
+
) -> "PIL.Image.Image":
|
162 |
+
"""
|
163 |
+
Converts `image` to a PIL Image. Optionally rescales it and puts the channel dimension back as the last axis if
|
164 |
+
needed.
|
165 |
+
|
166 |
+
Args:
|
167 |
+
image (`PIL.Image.Image` or `numpy.ndarray` or `torch.Tensor` or `tf.Tensor`):
|
168 |
+
The image to convert to the `PIL.Image` format.
|
169 |
+
do_rescale (`bool`, *optional*):
|
170 |
+
Whether or not to apply the scaling factor (to make pixel values integers between 0 and 255). Will default
|
171 |
+
to `True` if the image type is a floating type and casting to `int` would result in a loss of precision,
|
172 |
+
and `False` otherwise.
|
173 |
+
input_data_format (`ChannelDimension`, *optional*):
|
174 |
+
The channel dimension format of the input image. If unset, will use the inferred format from the input.
|
175 |
+
|
176 |
+
Returns:
|
177 |
+
`PIL.Image.Image`: The converted image.
|
178 |
+
"""
|
179 |
+
requires_backends(to_pil_image, ["vision"])
|
180 |
+
|
181 |
+
if isinstance(image, PIL.Image.Image):
|
182 |
+
return image
|
183 |
+
|
184 |
+
# Convert all tensors to numpy arrays before converting to PIL image
|
185 |
+
if is_torch_tensor(image) or is_tf_tensor(image):
|
186 |
+
image = image.numpy()
|
187 |
+
elif is_jax_tensor(image):
|
188 |
+
image = np.array(image)
|
189 |
+
elif not isinstance(image, np.ndarray):
|
190 |
+
raise ValueError("Input image type not supported: {}".format(type(image)))
|
191 |
+
|
192 |
+
# If the channel has been moved to first dim, we put it back at the end.
|
193 |
+
image = to_channel_dimension_format(image, ChannelDimension.LAST, input_data_format)
|
194 |
+
|
195 |
+
# If there is a single channel, we squeeze it, as otherwise PIL can't handle it.
|
196 |
+
image = np.squeeze(image, axis=-1) if image.shape[-1] == 1 else image
|
197 |
+
|
198 |
+
# PIL.Image can only store uint8 values so we rescale the image to be between 0 and 255 if needed.
|
199 |
+
do_rescale = _rescale_for_pil_conversion(image) if do_rescale is None else do_rescale
|
200 |
+
|
201 |
+
if do_rescale:
|
202 |
+
image = rescale(image, 255)
|
203 |
+
|
204 |
+
image = image.astype(np.uint8)
|
205 |
+
return PIL.Image.fromarray(image)
|
206 |
+
|
207 |
+
|
208 |
+
# Logic adapted from torchvision resizing logic: https://github.com/pytorch/vision/blob/511924c1ced4ce0461197e5caa64ce5b9e558aab/torchvision/transforms/functional.py#L366
|
209 |
+
def get_resize_output_image_size(
|
210 |
+
input_image: np.ndarray,
|
211 |
+
size: Union[int, Tuple[int, int], List[int], Tuple[int]],
|
212 |
+
default_to_square: bool = True,
|
213 |
+
max_size: Optional[int] = None,
|
214 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
215 |
+
) -> tuple:
|
216 |
+
"""
|
217 |
+
Find the target (height, width) dimension of the output image after resizing given the input image and the desired
|
218 |
+
size.
|
219 |
+
|
220 |
+
Args:
|
221 |
+
input_image (`np.ndarray`):
|
222 |
+
The image to resize.
|
223 |
+
size (`int` or `Tuple[int, int]` or List[int] or Tuple[int]):
|
224 |
+
The size to use for resizing the image. If `size` is a sequence like (h, w), output size will be matched to
|
225 |
+
this.
|
226 |
+
|
227 |
+
If `size` is an int and `default_to_square` is `True`, then image will be resized to (size, size). If
|
228 |
+
`size` is an int and `default_to_square` is `False`, then smaller edge of the image will be matched to this
|
229 |
+
number. i.e, if height > width, then image will be rescaled to (size * height / width, size).
|
230 |
+
default_to_square (`bool`, *optional*, defaults to `True`):
|
231 |
+
How to convert `size` when it is a single int. If set to `True`, the `size` will be converted to a square
|
232 |
+
(`size`,`size`). If set to `False`, will replicate
|
233 |
+
[`torchvision.transforms.Resize`](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.Resize)
|
234 |
+
with support for resizing only the smallest edge and providing an optional `max_size`.
|
235 |
+
max_size (`int`, *optional*):
|
236 |
+
The maximum allowed for the longer edge of the resized image: if the longer edge of the image is greater
|
237 |
+
than `max_size` after being resized according to `size`, then the image is resized again so that the longer
|
238 |
+
edge is equal to `max_size`. As a result, `size` might be overruled, i.e the smaller edge may be shorter
|
239 |
+
than `size`. Only used if `default_to_square` is `False`.
|
240 |
+
input_data_format (`ChannelDimension`, *optional*):
|
241 |
+
The channel dimension format of the input image. If unset, will use the inferred format from the input.
|
242 |
+
|
243 |
+
Returns:
|
244 |
+
`tuple`: The target (height, width) dimension of the output image after resizing.
|
245 |
+
"""
|
246 |
+
if isinstance(size, (tuple, list)):
|
247 |
+
if len(size) == 2:
|
248 |
+
return tuple(size)
|
249 |
+
elif len(size) == 1:
|
250 |
+
# Perform same logic as if size was an int
|
251 |
+
size = size[0]
|
252 |
+
else:
|
253 |
+
raise ValueError("size must have 1 or 2 elements if it is a list or tuple")
|
254 |
+
|
255 |
+
if default_to_square:
|
256 |
+
return (size, size)
|
257 |
+
|
258 |
+
height, width = get_image_size(input_image, input_data_format)
|
259 |
+
short, long = (width, height) if width <= height else (height, width)
|
260 |
+
requested_new_short = size
|
261 |
+
|
262 |
+
new_short, new_long = requested_new_short, int(requested_new_short * long / short)
|
263 |
+
|
264 |
+
if max_size is not None:
|
265 |
+
if max_size <= requested_new_short:
|
266 |
+
raise ValueError(
|
267 |
+
f"max_size = {max_size} must be strictly greater than the requested "
|
268 |
+
f"size for the smaller edge size = {size}"
|
269 |
+
)
|
270 |
+
if new_long > max_size:
|
271 |
+
new_short, new_long = int(max_size * new_short / new_long), max_size
|
272 |
+
|
273 |
+
return (new_long, new_short) if width <= height else (new_short, new_long)
|
274 |
+
|
275 |
+
|
276 |
+
def resize(
|
277 |
+
image: np.ndarray,
|
278 |
+
size: Tuple[int, int],
|
279 |
+
resample: "PILImageResampling" = None,
|
280 |
+
reducing_gap: Optional[int] = None,
|
281 |
+
data_format: Optional[ChannelDimension] = None,
|
282 |
+
return_numpy: bool = True,
|
283 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
284 |
+
) -> np.ndarray:
|
285 |
+
"""
|
286 |
+
Resizes `image` to `(height, width)` specified by `size` using the PIL library.
|
287 |
+
|
288 |
+
Args:
|
289 |
+
image (`np.ndarray`):
|
290 |
+
The image to resize.
|
291 |
+
size (`Tuple[int, int]`):
|
292 |
+
The size to use for resizing the image.
|
293 |
+
resample (`int`, *optional*, defaults to `PILImageResampling.BILINEAR`):
|
294 |
+
The filter to user for resampling.
|
295 |
+
reducing_gap (`int`, *optional*):
|
296 |
+
Apply optimization by resizing the image in two steps. The bigger `reducing_gap`, the closer the result to
|
297 |
+
the fair resampling. See corresponding Pillow documentation for more details.
|
298 |
+
data_format (`ChannelDimension`, *optional*):
|
299 |
+
The channel dimension format of the output image. If unset, will use the inferred format from the input.
|
300 |
+
return_numpy (`bool`, *optional*, defaults to `True`):
|
301 |
+
Whether or not to return the resized image as a numpy array. If False a `PIL.Image.Image` object is
|
302 |
+
returned.
|
303 |
+
input_data_format (`ChannelDimension`, *optional*):
|
304 |
+
The channel dimension format of the input image. If unset, will use the inferred format from the input.
|
305 |
+
|
306 |
+
Returns:
|
307 |
+
`np.ndarray`: The resized image.
|
308 |
+
"""
|
309 |
+
requires_backends(resize, ["vision"])
|
310 |
+
|
311 |
+
resample = resample if resample is not None else PILImageResampling.BILINEAR
|
312 |
+
|
313 |
+
if not len(size) == 2:
|
314 |
+
raise ValueError("size must have 2 elements")
|
315 |
+
|
316 |
+
# For all transformations, we want to keep the same data format as the input image unless otherwise specified.
|
317 |
+
# The resized image from PIL will always have channels last, so find the input format first.
|
318 |
+
if input_data_format is None:
|
319 |
+
input_data_format = infer_channel_dimension_format(image)
|
320 |
+
data_format = input_data_format if data_format is None else data_format
|
321 |
+
|
322 |
+
# To maintain backwards compatibility with the resizing done in previous image feature extractors, we use
|
323 |
+
# the pillow library to resize the image and then convert back to numpy
|
324 |
+
do_rescale = False
|
325 |
+
if not isinstance(image, PIL.Image.Image):
|
326 |
+
do_rescale = _rescale_for_pil_conversion(image)
|
327 |
+
image = to_pil_image(image, do_rescale=do_rescale, input_data_format=input_data_format)
|
328 |
+
height, width = size
|
329 |
+
# PIL images are in the format (width, height)
|
330 |
+
resized_image = image.resize((width, height), resample=resample, reducing_gap=reducing_gap)
|
331 |
+
|
332 |
+
if return_numpy:
|
333 |
+
resized_image = np.array(resized_image)
|
334 |
+
# If the input image channel dimension was of size 1, then it is dropped when converting to a PIL image
|
335 |
+
# so we need to add it back if necessary.
|
336 |
+
resized_image = np.expand_dims(resized_image, axis=-1) if resized_image.ndim == 2 else resized_image
|
337 |
+
# The image is always in channels last format after converting from a PIL image
|
338 |
+
resized_image = to_channel_dimension_format(
|
339 |
+
resized_image, data_format, input_channel_dim=ChannelDimension.LAST
|
340 |
+
)
|
341 |
+
# If an image was rescaled to be in the range [0, 255] before converting to a PIL image, then we need to
|
342 |
+
# rescale it back to the original range.
|
343 |
+
resized_image = rescale(resized_image, 1 / 255) if do_rescale else resized_image
|
344 |
+
return resized_image
|
345 |
+
|
346 |
+
|
347 |
+
def normalize(
|
348 |
+
image: np.ndarray,
|
349 |
+
mean: Union[float, Iterable[float]],
|
350 |
+
std: Union[float, Iterable[float]],
|
351 |
+
data_format: Optional[ChannelDimension] = None,
|
352 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
353 |
+
) -> np.ndarray:
|
354 |
+
"""
|
355 |
+
Normalizes `image` using the mean and standard deviation specified by `mean` and `std`.
|
356 |
+
|
357 |
+
image = (image - mean) / std
|
358 |
+
|
359 |
+
Args:
|
360 |
+
image (`np.ndarray`):
|
361 |
+
The image to normalize.
|
362 |
+
mean (`float` or `Iterable[float]`):
|
363 |
+
The mean to use for normalization.
|
364 |
+
std (`float` or `Iterable[float]`):
|
365 |
+
The standard deviation to use for normalization.
|
366 |
+
data_format (`ChannelDimension`, *optional*):
|
367 |
+
The channel dimension format of the output image. If unset, will use the inferred format from the input.
|
368 |
+
input_data_format (`ChannelDimension`, *optional*):
|
369 |
+
The channel dimension format of the input image. If unset, will use the inferred format from the input.
|
370 |
+
"""
|
371 |
+
if not isinstance(image, np.ndarray):
|
372 |
+
raise ValueError("image must be a numpy array")
|
373 |
+
|
374 |
+
if input_data_format is None:
|
375 |
+
input_data_format = infer_channel_dimension_format(image)
|
376 |
+
channel_axis = get_channel_dimension_axis(image, input_data_format=input_data_format)
|
377 |
+
num_channels = image.shape[channel_axis]
|
378 |
+
|
379 |
+
# We cast to float32 to avoid errors that can occur when subtracting uint8 values.
|
380 |
+
# We preserve the original dtype if it is a float type to prevent upcasting float16.
|
381 |
+
if not np.issubdtype(image.dtype, np.floating):
|
382 |
+
image = image.astype(np.float32)
|
383 |
+
|
384 |
+
if isinstance(mean, Iterable):
|
385 |
+
if len(mean) != num_channels:
|
386 |
+
raise ValueError(f"mean must have {num_channels} elements if it is an iterable, got {len(mean)}")
|
387 |
+
else:
|
388 |
+
mean = [mean] * num_channels
|
389 |
+
mean = np.array(mean, dtype=image.dtype)
|
390 |
+
|
391 |
+
if isinstance(std, Iterable):
|
392 |
+
if len(std) != num_channels:
|
393 |
+
raise ValueError(f"std must have {num_channels} elements if it is an iterable, got {len(std)}")
|
394 |
+
else:
|
395 |
+
std = [std] * num_channels
|
396 |
+
std = np.array(std, dtype=image.dtype)
|
397 |
+
|
398 |
+
if input_data_format == ChannelDimension.LAST:
|
399 |
+
image = (image - mean) / std
|
400 |
+
else:
|
401 |
+
image = ((image.T - mean) / std).T
|
402 |
+
|
403 |
+
image = to_channel_dimension_format(image, data_format, input_data_format) if data_format is not None else image
|
404 |
+
return image
|
405 |
+
|
406 |
+
|
407 |
+
def center_crop(
|
408 |
+
image: np.ndarray,
|
409 |
+
size: Tuple[int, int],
|
410 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
411 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
412 |
+
return_numpy: Optional[bool] = None,
|
413 |
+
) -> np.ndarray:
|
414 |
+
"""
|
415 |
+
Crops the `image` to the specified `size` using a center crop. Note that if the image is too small to be cropped to
|
416 |
+
the size given, it will be padded (so the returned result will always be of size `size`).
|
417 |
+
|
418 |
+
Args:
|
419 |
+
image (`np.ndarray`):
|
420 |
+
The image to crop.
|
421 |
+
size (`Tuple[int, int]`):
|
422 |
+
The target size for the cropped image.
|
423 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
424 |
+
The channel dimension format for the output image. Can be one of:
|
425 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
426 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
427 |
+
If unset, will use the inferred format of the input image.
|
428 |
+
input_data_format (`str` or `ChannelDimension`, *optional*):
|
429 |
+
The channel dimension format for the input image. Can be one of:
|
430 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
431 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
432 |
+
If unset, will use the inferred format of the input image.
|
433 |
+
return_numpy (`bool`, *optional*):
|
434 |
+
Whether or not to return the cropped image as a numpy array. Used for backwards compatibility with the
|
435 |
+
previous ImageFeatureExtractionMixin method.
|
436 |
+
- Unset: will return the same type as the input image.
|
437 |
+
- `True`: will return a numpy array.
|
438 |
+
- `False`: will return a `PIL.Image.Image` object.
|
439 |
+
Returns:
|
440 |
+
`np.ndarray`: The cropped image.
|
441 |
+
"""
|
442 |
+
requires_backends(center_crop, ["vision"])
|
443 |
+
|
444 |
+
if return_numpy is not None:
|
445 |
+
warnings.warn("return_numpy is deprecated and will be removed in v.4.33", FutureWarning)
|
446 |
+
|
447 |
+
return_numpy = True if return_numpy is None else return_numpy
|
448 |
+
|
449 |
+
if not isinstance(image, np.ndarray):
|
450 |
+
raise ValueError(f"Input image must be of type np.ndarray, got {type(image)}")
|
451 |
+
|
452 |
+
if not isinstance(size, Iterable) or len(size) != 2:
|
453 |
+
raise ValueError("size must have 2 elements representing the height and width of the output image")
|
454 |
+
|
455 |
+
if input_data_format is None:
|
456 |
+
input_data_format = infer_channel_dimension_format(image)
|
457 |
+
output_data_format = data_format if data_format is not None else input_data_format
|
458 |
+
|
459 |
+
# We perform the crop in (C, H, W) format and then convert to the output format
|
460 |
+
image = to_channel_dimension_format(image, ChannelDimension.FIRST, input_data_format)
|
461 |
+
|
462 |
+
orig_height, orig_width = get_image_size(image, ChannelDimension.FIRST)
|
463 |
+
crop_height, crop_width = size
|
464 |
+
crop_height, crop_width = int(crop_height), int(crop_width)
|
465 |
+
|
466 |
+
# In case size is odd, (image_shape[0] + size[0]) // 2 won't give the proper result.
|
467 |
+
top = (orig_height - crop_height) // 2
|
468 |
+
bottom = top + crop_height
|
469 |
+
# In case size is odd, (image_shape[1] + size[1]) // 2 won't give the proper result.
|
470 |
+
left = (orig_width - crop_width) // 2
|
471 |
+
right = left + crop_width
|
472 |
+
|
473 |
+
# Check if cropped area is within image boundaries
|
474 |
+
if top >= 0 and bottom <= orig_height and left >= 0 and right <= orig_width:
|
475 |
+
image = image[..., top:bottom, left:right]
|
476 |
+
image = to_channel_dimension_format(image, output_data_format, ChannelDimension.FIRST)
|
477 |
+
return image
|
478 |
+
|
479 |
+
# Otherwise, we may need to pad if the image is too small. Oh joy...
|
480 |
+
new_height = max(crop_height, orig_height)
|
481 |
+
new_width = max(crop_width, orig_width)
|
482 |
+
new_shape = image.shape[:-2] + (new_height, new_width)
|
483 |
+
new_image = np.zeros_like(image, shape=new_shape)
|
484 |
+
|
485 |
+
# If the image is too small, pad it with zeros
|
486 |
+
top_pad = (new_height - orig_height) // 2
|
487 |
+
bottom_pad = top_pad + orig_height
|
488 |
+
left_pad = (new_width - orig_width) // 2
|
489 |
+
right_pad = left_pad + orig_width
|
490 |
+
new_image[..., top_pad:bottom_pad, left_pad:right_pad] = image
|
491 |
+
|
492 |
+
top += top_pad
|
493 |
+
bottom += top_pad
|
494 |
+
left += left_pad
|
495 |
+
right += left_pad
|
496 |
+
|
497 |
+
new_image = new_image[..., max(0, top) : min(new_height, bottom), max(0, left) : min(new_width, right)]
|
498 |
+
new_image = to_channel_dimension_format(new_image, output_data_format, ChannelDimension.FIRST)
|
499 |
+
|
500 |
+
if not return_numpy:
|
501 |
+
new_image = to_pil_image(new_image)
|
502 |
+
|
503 |
+
return new_image
|
504 |
+
|
505 |
+
|
506 |
+
def _center_to_corners_format_torch(bboxes_center: "torch.Tensor") -> "torch.Tensor":
|
507 |
+
center_x, center_y, width, height = bboxes_center.unbind(-1)
|
508 |
+
bbox_corners = torch.stack(
|
509 |
+
# top left x, top left y, bottom right x, bottom right y
|
510 |
+
[(center_x - 0.5 * width), (center_y - 0.5 * height), (center_x + 0.5 * width), (center_y + 0.5 * height)],
|
511 |
+
dim=-1,
|
512 |
+
)
|
513 |
+
return bbox_corners
|
514 |
+
|
515 |
+
|
516 |
+
def _center_to_corners_format_numpy(bboxes_center: np.ndarray) -> np.ndarray:
|
517 |
+
center_x, center_y, width, height = bboxes_center.T
|
518 |
+
bboxes_corners = np.stack(
|
519 |
+
# top left x, top left y, bottom right x, bottom right y
|
520 |
+
[center_x - 0.5 * width, center_y - 0.5 * height, center_x + 0.5 * width, center_y + 0.5 * height],
|
521 |
+
axis=-1,
|
522 |
+
)
|
523 |
+
return bboxes_corners
|
524 |
+
|
525 |
+
|
526 |
+
def _center_to_corners_format_tf(bboxes_center: "tf.Tensor") -> "tf.Tensor":
|
527 |
+
center_x, center_y, width, height = tf.unstack(bboxes_center, axis=-1)
|
528 |
+
bboxes_corners = tf.stack(
|
529 |
+
# top left x, top left y, bottom right x, bottom right y
|
530 |
+
[center_x - 0.5 * width, center_y - 0.5 * height, center_x + 0.5 * width, center_y + 0.5 * height],
|
531 |
+
axis=-1,
|
532 |
+
)
|
533 |
+
return bboxes_corners
|
534 |
+
|
535 |
+
|
536 |
+
# 2 functions below inspired by https://github.com/facebookresearch/detr/blob/master/util/box_ops.py
|
537 |
+
def center_to_corners_format(bboxes_center: TensorType) -> TensorType:
|
538 |
+
"""
|
539 |
+
Converts bounding boxes from center format to corners format.
|
540 |
+
|
541 |
+
center format: contains the coordinate for the center of the box and its width, height dimensions
|
542 |
+
(center_x, center_y, width, height)
|
543 |
+
corners format: contains the coodinates for the top-left and bottom-right corners of the box
|
544 |
+
(top_left_x, top_left_y, bottom_right_x, bottom_right_y)
|
545 |
+
"""
|
546 |
+
# Function is used during model forward pass, so we use the input framework if possible, without
|
547 |
+
# converting to numpy
|
548 |
+
if is_torch_tensor(bboxes_center):
|
549 |
+
return _center_to_corners_format_torch(bboxes_center)
|
550 |
+
elif isinstance(bboxes_center, np.ndarray):
|
551 |
+
return _center_to_corners_format_numpy(bboxes_center)
|
552 |
+
elif is_tf_tensor(bboxes_center):
|
553 |
+
return _center_to_corners_format_tf(bboxes_center)
|
554 |
+
|
555 |
+
raise ValueError(f"Unsupported input type {type(bboxes_center)}")
|
556 |
+
|
557 |
+
|
558 |
+
def _corners_to_center_format_torch(bboxes_corners: "torch.Tensor") -> "torch.Tensor":
|
559 |
+
top_left_x, top_left_y, bottom_right_x, bottom_right_y = bboxes_corners.unbind(-1)
|
560 |
+
b = [
|
561 |
+
(top_left_x + bottom_right_x) / 2, # center x
|
562 |
+
(top_left_y + bottom_right_y) / 2, # center y
|
563 |
+
(bottom_right_x - top_left_x), # width
|
564 |
+
(bottom_right_y - top_left_y), # height
|
565 |
+
]
|
566 |
+
return torch.stack(b, dim=-1)
|
567 |
+
|
568 |
+
|
569 |
+
def _corners_to_center_format_numpy(bboxes_corners: np.ndarray) -> np.ndarray:
|
570 |
+
top_left_x, top_left_y, bottom_right_x, bottom_right_y = bboxes_corners.T
|
571 |
+
bboxes_center = np.stack(
|
572 |
+
[
|
573 |
+
(top_left_x + bottom_right_x) / 2, # center x
|
574 |
+
(top_left_y + bottom_right_y) / 2, # center y
|
575 |
+
(bottom_right_x - top_left_x), # width
|
576 |
+
(bottom_right_y - top_left_y), # height
|
577 |
+
],
|
578 |
+
axis=-1,
|
579 |
+
)
|
580 |
+
return bboxes_center
|
581 |
+
|
582 |
+
|
583 |
+
def _corners_to_center_format_tf(bboxes_corners: "tf.Tensor") -> "tf.Tensor":
|
584 |
+
top_left_x, top_left_y, bottom_right_x, bottom_right_y = tf.unstack(bboxes_corners, axis=-1)
|
585 |
+
bboxes_center = tf.stack(
|
586 |
+
[
|
587 |
+
(top_left_x + bottom_right_x) / 2, # center x
|
588 |
+
(top_left_y + bottom_right_y) / 2, # center y
|
589 |
+
(bottom_right_x - top_left_x), # width
|
590 |
+
(bottom_right_y - top_left_y), # height
|
591 |
+
],
|
592 |
+
axis=-1,
|
593 |
+
)
|
594 |
+
return bboxes_center
|
595 |
+
|
596 |
+
|
597 |
+
def corners_to_center_format(bboxes_corners: TensorType) -> TensorType:
|
598 |
+
"""
|
599 |
+
Converts bounding boxes from corners format to center format.
|
600 |
+
|
601 |
+
corners format: contains the coordinates for the top-left and bottom-right corners of the box
|
602 |
+
(top_left_x, top_left_y, bottom_right_x, bottom_right_y)
|
603 |
+
center format: contains the coordinate for the center of the box and its the width, height dimensions
|
604 |
+
(center_x, center_y, width, height)
|
605 |
+
"""
|
606 |
+
# Inverse function accepts different input types so implemented here too
|
607 |
+
if is_torch_tensor(bboxes_corners):
|
608 |
+
return _corners_to_center_format_torch(bboxes_corners)
|
609 |
+
elif isinstance(bboxes_corners, np.ndarray):
|
610 |
+
return _corners_to_center_format_numpy(bboxes_corners)
|
611 |
+
elif is_tf_tensor(bboxes_corners):
|
612 |
+
return _corners_to_center_format_tf(bboxes_corners)
|
613 |
+
|
614 |
+
raise ValueError(f"Unsupported input type {type(bboxes_corners)}")
|
615 |
+
|
616 |
+
|
617 |
+
# 2 functions below copied from https://github.com/cocodataset/panopticapi/blob/master/panopticapi/utils.py
|
618 |
+
# Copyright (c) 2018, Alexander Kirillov
|
619 |
+
# All rights reserved.
|
620 |
+
def rgb_to_id(color):
|
621 |
+
"""
|
622 |
+
Converts RGB color to unique ID.
|
623 |
+
"""
|
624 |
+
if isinstance(color, np.ndarray) and len(color.shape) == 3:
|
625 |
+
if color.dtype == np.uint8:
|
626 |
+
color = color.astype(np.int32)
|
627 |
+
return color[:, :, 0] + 256 * color[:, :, 1] + 256 * 256 * color[:, :, 2]
|
628 |
+
return int(color[0] + 256 * color[1] + 256 * 256 * color[2])
|
629 |
+
|
630 |
+
|
631 |
+
def id_to_rgb(id_map):
|
632 |
+
"""
|
633 |
+
Converts unique ID to RGB color.
|
634 |
+
"""
|
635 |
+
if isinstance(id_map, np.ndarray):
|
636 |
+
id_map_copy = id_map.copy()
|
637 |
+
rgb_shape = tuple(list(id_map.shape) + [3])
|
638 |
+
rgb_map = np.zeros(rgb_shape, dtype=np.uint8)
|
639 |
+
for i in range(3):
|
640 |
+
rgb_map[..., i] = id_map_copy % 256
|
641 |
+
id_map_copy //= 256
|
642 |
+
return rgb_map
|
643 |
+
color = []
|
644 |
+
for _ in range(3):
|
645 |
+
color.append(id_map % 256)
|
646 |
+
id_map //= 256
|
647 |
+
return color
|
648 |
+
|
649 |
+
|
650 |
+
class PaddingMode(ExplicitEnum):
|
651 |
+
"""
|
652 |
+
Enum class for the different padding modes to use when padding images.
|
653 |
+
"""
|
654 |
+
|
655 |
+
CONSTANT = "constant"
|
656 |
+
REFLECT = "reflect"
|
657 |
+
REPLICATE = "replicate"
|
658 |
+
SYMMETRIC = "symmetric"
|
659 |
+
|
660 |
+
|
661 |
+
def pad(
|
662 |
+
image: np.ndarray,
|
663 |
+
padding: Union[int, Tuple[int, int], Iterable[Tuple[int, int]]],
|
664 |
+
mode: PaddingMode = PaddingMode.CONSTANT,
|
665 |
+
constant_values: Union[float, Iterable[float]] = 0.0,
|
666 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
667 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
668 |
+
) -> np.ndarray:
|
669 |
+
"""
|
670 |
+
Pads the `image` with the specified (height, width) `padding` and `mode`.
|
671 |
+
|
672 |
+
Args:
|
673 |
+
image (`np.ndarray`):
|
674 |
+
The image to pad.
|
675 |
+
padding (`int` or `Tuple[int, int]` or `Iterable[Tuple[int, int]]`):
|
676 |
+
Padding to apply to the edges of the height, width axes. Can be one of three formats:
|
677 |
+
- `((before_height, after_height), (before_width, after_width))` unique pad widths for each axis.
|
678 |
+
- `((before, after),)` yields same before and after pad for height and width.
|
679 |
+
- `(pad,)` or int is a shortcut for before = after = pad width for all axes.
|
680 |
+
mode (`PaddingMode`):
|
681 |
+
The padding mode to use. Can be one of:
|
682 |
+
- `"constant"`: pads with a constant value.
|
683 |
+
- `"reflect"`: pads with the reflection of the vector mirrored on the first and last values of the
|
684 |
+
vector along each axis.
|
685 |
+
- `"replicate"`: pads with the replication of the last value on the edge of the array along each axis.
|
686 |
+
- `"symmetric"`: pads with the reflection of the vector mirrored along the edge of the array.
|
687 |
+
constant_values (`float` or `Iterable[float]`, *optional*):
|
688 |
+
The value to use for the padding if `mode` is `"constant"`.
|
689 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
690 |
+
The channel dimension format for the output image. Can be one of:
|
691 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
692 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
693 |
+
If unset, will use same as the input image.
|
694 |
+
input_data_format (`str` or `ChannelDimension`, *optional*):
|
695 |
+
The channel dimension format for the input image. Can be one of:
|
696 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
697 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
698 |
+
If unset, will use the inferred format of the input image.
|
699 |
+
|
700 |
+
Returns:
|
701 |
+
`np.ndarray`: The padded image.
|
702 |
+
|
703 |
+
"""
|
704 |
+
if input_data_format is None:
|
705 |
+
input_data_format = infer_channel_dimension_format(image)
|
706 |
+
|
707 |
+
def _expand_for_data_format(values):
|
708 |
+
"""
|
709 |
+
Convert values to be in the format expected by np.pad based on the data format.
|
710 |
+
"""
|
711 |
+
if isinstance(values, (int, float)):
|
712 |
+
values = ((values, values), (values, values))
|
713 |
+
elif isinstance(values, tuple) and len(values) == 1:
|
714 |
+
values = ((values[0], values[0]), (values[0], values[0]))
|
715 |
+
elif isinstance(values, tuple) and len(values) == 2 and isinstance(values[0], int):
|
716 |
+
values = (values, values)
|
717 |
+
elif isinstance(values, tuple) and len(values) == 2 and isinstance(values[0], tuple):
|
718 |
+
values = values
|
719 |
+
else:
|
720 |
+
raise ValueError(f"Unsupported format: {values}")
|
721 |
+
|
722 |
+
# add 0 for channel dimension
|
723 |
+
values = ((0, 0), *values) if input_data_format == ChannelDimension.FIRST else (*values, (0, 0))
|
724 |
+
|
725 |
+
# Add additional padding if there's a batch dimension
|
726 |
+
values = (0, *values) if image.ndim == 4 else values
|
727 |
+
return values
|
728 |
+
|
729 |
+
padding = _expand_for_data_format(padding)
|
730 |
+
|
731 |
+
if mode == PaddingMode.CONSTANT:
|
732 |
+
constant_values = _expand_for_data_format(constant_values)
|
733 |
+
image = np.pad(image, padding, mode="constant", constant_values=constant_values)
|
734 |
+
elif mode == PaddingMode.REFLECT:
|
735 |
+
image = np.pad(image, padding, mode="reflect")
|
736 |
+
elif mode == PaddingMode.REPLICATE:
|
737 |
+
image = np.pad(image, padding, mode="edge")
|
738 |
+
elif mode == PaddingMode.SYMMETRIC:
|
739 |
+
image = np.pad(image, padding, mode="symmetric")
|
740 |
+
else:
|
741 |
+
raise ValueError(f"Invalid padding mode: {mode}")
|
742 |
+
|
743 |
+
image = to_channel_dimension_format(image, data_format, input_data_format) if data_format is not None else image
|
744 |
+
return image
|
745 |
+
|
746 |
+
|
747 |
+
# TODO (Amy): Accept 1/3/4 channel numpy array as input and return np.array as default
|
748 |
+
def convert_to_rgb(image: ImageInput) -> ImageInput:
|
749 |
+
"""
|
750 |
+
Converts an image to RGB format. Only converts if the image is of type PIL.Image.Image, otherwise returns the image
|
751 |
+
as is.
|
752 |
+
Args:
|
753 |
+
image (Image):
|
754 |
+
The image to convert.
|
755 |
+
"""
|
756 |
+
requires_backends(convert_to_rgb, ["vision"])
|
757 |
+
|
758 |
+
if not isinstance(image, PIL.Image.Image):
|
759 |
+
return image
|
760 |
+
|
761 |
+
if image.mode == "RGB":
|
762 |
+
return image
|
763 |
+
|
764 |
+
image = image.convert("RGB")
|
765 |
+
return image
|
766 |
+
|
767 |
+
|
768 |
+
def flip_channel_order(
|
769 |
+
image: np.ndarray,
|
770 |
+
data_format: Optional[ChannelDimension] = None,
|
771 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
772 |
+
) -> np.ndarray:
|
773 |
+
"""
|
774 |
+
Flips the channel order of the image.
|
775 |
+
|
776 |
+
If the image is in RGB format, it will be converted to BGR and vice versa.
|
777 |
+
|
778 |
+
Args:
|
779 |
+
image (`np.ndarray`):
|
780 |
+
The image to flip.
|
781 |
+
data_format (`ChannelDimension`, *optional*):
|
782 |
+
The channel dimension format for the output image. Can be one of:
|
783 |
+
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
784 |
+
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
785 |
+
If unset, will use same as the input image.
|
786 |
+
input_data_format (`ChannelDimension`, *optional*):
|
787 |
+
The channel dimension format for the input image. Can be one of:
|
788 |
+
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
789 |
+
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
790 |
+
If unset, will use the inferred format of the input image.
|
791 |
+
"""
|
792 |
+
input_data_format = infer_channel_dimension_format(image) if input_data_format is None else input_data_format
|
793 |
+
|
794 |
+
if input_data_format == ChannelDimension.LAST:
|
795 |
+
image = image[..., ::-1]
|
796 |
+
elif input_data_format == ChannelDimension.FIRST:
|
797 |
+
image = image[::-1, ...]
|
798 |
+
else:
|
799 |
+
raise ValueError(f"Unsupported channel dimension: {input_data_format}")
|
800 |
+
|
801 |
+
if data_format is not None:
|
802 |
+
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
|
803 |
+
return image
|
venv/lib/python3.10/site-packages/transformers/image_utils.py
ADDED
@@ -0,0 +1,769 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import base64
|
17 |
+
import os
|
18 |
+
from io import BytesIO
|
19 |
+
from typing import TYPE_CHECKING, Dict, Iterable, List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import requests
|
23 |
+
from packaging import version
|
24 |
+
|
25 |
+
from .utils import (
|
26 |
+
ExplicitEnum,
|
27 |
+
is_jax_tensor,
|
28 |
+
is_tf_tensor,
|
29 |
+
is_torch_available,
|
30 |
+
is_torch_tensor,
|
31 |
+
is_vision_available,
|
32 |
+
logging,
|
33 |
+
requires_backends,
|
34 |
+
to_numpy,
|
35 |
+
)
|
36 |
+
from .utils.constants import ( # noqa: F401
|
37 |
+
IMAGENET_DEFAULT_MEAN,
|
38 |
+
IMAGENET_DEFAULT_STD,
|
39 |
+
IMAGENET_STANDARD_MEAN,
|
40 |
+
IMAGENET_STANDARD_STD,
|
41 |
+
OPENAI_CLIP_MEAN,
|
42 |
+
OPENAI_CLIP_STD,
|
43 |
+
)
|
44 |
+
|
45 |
+
|
46 |
+
if is_vision_available():
|
47 |
+
import PIL.Image
|
48 |
+
import PIL.ImageOps
|
49 |
+
|
50 |
+
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
|
51 |
+
PILImageResampling = PIL.Image.Resampling
|
52 |
+
else:
|
53 |
+
PILImageResampling = PIL.Image
|
54 |
+
|
55 |
+
if TYPE_CHECKING:
|
56 |
+
if is_torch_available():
|
57 |
+
import torch
|
58 |
+
|
59 |
+
|
60 |
+
logger = logging.get_logger(__name__)
|
61 |
+
|
62 |
+
|
63 |
+
ImageInput = Union[
|
64 |
+
"PIL.Image.Image", np.ndarray, "torch.Tensor", List["PIL.Image.Image"], List[np.ndarray], List["torch.Tensor"]
|
65 |
+
] # noqa
|
66 |
+
|
67 |
+
|
68 |
+
class ChannelDimension(ExplicitEnum):
|
69 |
+
FIRST = "channels_first"
|
70 |
+
LAST = "channels_last"
|
71 |
+
|
72 |
+
|
73 |
+
class AnnotationFormat(ExplicitEnum):
|
74 |
+
COCO_DETECTION = "coco_detection"
|
75 |
+
COCO_PANOPTIC = "coco_panoptic"
|
76 |
+
|
77 |
+
|
78 |
+
class AnnotionFormat(ExplicitEnum):
|
79 |
+
COCO_DETECTION = AnnotationFormat.COCO_DETECTION.value
|
80 |
+
COCO_PANOPTIC = AnnotationFormat.COCO_PANOPTIC.value
|
81 |
+
|
82 |
+
|
83 |
+
AnnotationType = Dict[str, Union[int, str, List[Dict]]]
|
84 |
+
|
85 |
+
|
86 |
+
def is_pil_image(img):
|
87 |
+
return is_vision_available() and isinstance(img, PIL.Image.Image)
|
88 |
+
|
89 |
+
|
90 |
+
def is_valid_image(img):
|
91 |
+
return (
|
92 |
+
(is_vision_available() and isinstance(img, PIL.Image.Image))
|
93 |
+
or isinstance(img, np.ndarray)
|
94 |
+
or is_torch_tensor(img)
|
95 |
+
or is_tf_tensor(img)
|
96 |
+
or is_jax_tensor(img)
|
97 |
+
)
|
98 |
+
|
99 |
+
|
100 |
+
def valid_images(imgs):
|
101 |
+
# If we have an list of images, make sure every image is valid
|
102 |
+
if isinstance(imgs, (list, tuple)):
|
103 |
+
for img in imgs:
|
104 |
+
if not valid_images(img):
|
105 |
+
return False
|
106 |
+
# If not a list of tuple, we have been given a single image or batched tensor of images
|
107 |
+
elif not is_valid_image(imgs):
|
108 |
+
return False
|
109 |
+
return True
|
110 |
+
|
111 |
+
|
112 |
+
def is_batched(img):
|
113 |
+
if isinstance(img, (list, tuple)):
|
114 |
+
return is_valid_image(img[0])
|
115 |
+
return False
|
116 |
+
|
117 |
+
|
118 |
+
def is_scaled_image(image: np.ndarray) -> bool:
|
119 |
+
"""
|
120 |
+
Checks to see whether the pixel values have already been rescaled to [0, 1].
|
121 |
+
"""
|
122 |
+
if image.dtype == np.uint8:
|
123 |
+
return False
|
124 |
+
|
125 |
+
# It's possible the image has pixel values in [0, 255] but is of floating type
|
126 |
+
return np.min(image) >= 0 and np.max(image) <= 1
|
127 |
+
|
128 |
+
|
129 |
+
def make_list_of_images(images, expected_ndims: int = 3) -> List[ImageInput]:
|
130 |
+
"""
|
131 |
+
Ensure that the input is a list of images. If the input is a single image, it is converted to a list of length 1.
|
132 |
+
If the input is a batch of images, it is converted to a list of images.
|
133 |
+
|
134 |
+
Args:
|
135 |
+
images (`ImageInput`):
|
136 |
+
Image of images to turn into a list of images.
|
137 |
+
expected_ndims (`int`, *optional*, defaults to 3):
|
138 |
+
Expected number of dimensions for a single input image. If the input image has a different number of
|
139 |
+
dimensions, an error is raised.
|
140 |
+
"""
|
141 |
+
if is_batched(images):
|
142 |
+
return images
|
143 |
+
|
144 |
+
# Either the input is a single image, in which case we create a list of length 1
|
145 |
+
if isinstance(images, PIL.Image.Image):
|
146 |
+
# PIL images are never batched
|
147 |
+
return [images]
|
148 |
+
|
149 |
+
if is_valid_image(images):
|
150 |
+
if images.ndim == expected_ndims + 1:
|
151 |
+
# Batch of images
|
152 |
+
images = list(images)
|
153 |
+
elif images.ndim == expected_ndims:
|
154 |
+
# Single image
|
155 |
+
images = [images]
|
156 |
+
else:
|
157 |
+
raise ValueError(
|
158 |
+
f"Invalid image shape. Expected either {expected_ndims + 1} or {expected_ndims} dimensions, but got"
|
159 |
+
f" {images.ndim} dimensions."
|
160 |
+
)
|
161 |
+
return images
|
162 |
+
raise ValueError(
|
163 |
+
"Invalid image type. Expected either PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or "
|
164 |
+
f"jax.ndarray, but got {type(images)}."
|
165 |
+
)
|
166 |
+
|
167 |
+
|
168 |
+
def to_numpy_array(img) -> np.ndarray:
|
169 |
+
if not is_valid_image(img):
|
170 |
+
raise ValueError(f"Invalid image type: {type(img)}")
|
171 |
+
|
172 |
+
if is_vision_available() and isinstance(img, PIL.Image.Image):
|
173 |
+
return np.array(img)
|
174 |
+
return to_numpy(img)
|
175 |
+
|
176 |
+
|
177 |
+
def infer_channel_dimension_format(
|
178 |
+
image: np.ndarray, num_channels: Optional[Union[int, Tuple[int, ...]]] = None
|
179 |
+
) -> ChannelDimension:
|
180 |
+
"""
|
181 |
+
Infers the channel dimension format of `image`.
|
182 |
+
|
183 |
+
Args:
|
184 |
+
image (`np.ndarray`):
|
185 |
+
The image to infer the channel dimension of.
|
186 |
+
num_channels (`int` or `Tuple[int, ...]`, *optional*, defaults to `(1, 3)`):
|
187 |
+
The number of channels of the image.
|
188 |
+
|
189 |
+
Returns:
|
190 |
+
The channel dimension of the image.
|
191 |
+
"""
|
192 |
+
num_channels = num_channels if num_channels is not None else (1, 3)
|
193 |
+
num_channels = (num_channels,) if isinstance(num_channels, int) else num_channels
|
194 |
+
|
195 |
+
if image.ndim == 3:
|
196 |
+
first_dim, last_dim = 0, 2
|
197 |
+
elif image.ndim == 4:
|
198 |
+
first_dim, last_dim = 1, 3
|
199 |
+
else:
|
200 |
+
raise ValueError(f"Unsupported number of image dimensions: {image.ndim}")
|
201 |
+
|
202 |
+
if image.shape[first_dim] in num_channels:
|
203 |
+
return ChannelDimension.FIRST
|
204 |
+
elif image.shape[last_dim] in num_channels:
|
205 |
+
return ChannelDimension.LAST
|
206 |
+
raise ValueError("Unable to infer channel dimension format")
|
207 |
+
|
208 |
+
|
209 |
+
def get_channel_dimension_axis(
|
210 |
+
image: np.ndarray, input_data_format: Optional[Union[ChannelDimension, str]] = None
|
211 |
+
) -> int:
|
212 |
+
"""
|
213 |
+
Returns the channel dimension axis of the image.
|
214 |
+
|
215 |
+
Args:
|
216 |
+
image (`np.ndarray`):
|
217 |
+
The image to get the channel dimension axis of.
|
218 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
219 |
+
The channel dimension format of the image. If `None`, will infer the channel dimension from the image.
|
220 |
+
|
221 |
+
Returns:
|
222 |
+
The channel dimension axis of the image.
|
223 |
+
"""
|
224 |
+
if input_data_format is None:
|
225 |
+
input_data_format = infer_channel_dimension_format(image)
|
226 |
+
if input_data_format == ChannelDimension.FIRST:
|
227 |
+
return image.ndim - 3
|
228 |
+
elif input_data_format == ChannelDimension.LAST:
|
229 |
+
return image.ndim - 1
|
230 |
+
raise ValueError(f"Unsupported data format: {input_data_format}")
|
231 |
+
|
232 |
+
|
233 |
+
def get_image_size(image: np.ndarray, channel_dim: ChannelDimension = None) -> Tuple[int, int]:
|
234 |
+
"""
|
235 |
+
Returns the (height, width) dimensions of the image.
|
236 |
+
|
237 |
+
Args:
|
238 |
+
image (`np.ndarray`):
|
239 |
+
The image to get the dimensions of.
|
240 |
+
channel_dim (`ChannelDimension`, *optional*):
|
241 |
+
Which dimension the channel dimension is in. If `None`, will infer the channel dimension from the image.
|
242 |
+
|
243 |
+
Returns:
|
244 |
+
A tuple of the image's height and width.
|
245 |
+
"""
|
246 |
+
if channel_dim is None:
|
247 |
+
channel_dim = infer_channel_dimension_format(image)
|
248 |
+
|
249 |
+
if channel_dim == ChannelDimension.FIRST:
|
250 |
+
return image.shape[-2], image.shape[-1]
|
251 |
+
elif channel_dim == ChannelDimension.LAST:
|
252 |
+
return image.shape[-3], image.shape[-2]
|
253 |
+
else:
|
254 |
+
raise ValueError(f"Unsupported data format: {channel_dim}")
|
255 |
+
|
256 |
+
|
257 |
+
def is_valid_annotation_coco_detection(annotation: Dict[str, Union[List, Tuple]]) -> bool:
|
258 |
+
if (
|
259 |
+
isinstance(annotation, dict)
|
260 |
+
and "image_id" in annotation
|
261 |
+
and "annotations" in annotation
|
262 |
+
and isinstance(annotation["annotations"], (list, tuple))
|
263 |
+
and (
|
264 |
+
# an image can have no annotations
|
265 |
+
len(annotation["annotations"]) == 0 or isinstance(annotation["annotations"][0], dict)
|
266 |
+
)
|
267 |
+
):
|
268 |
+
return True
|
269 |
+
return False
|
270 |
+
|
271 |
+
|
272 |
+
def is_valid_annotation_coco_panoptic(annotation: Dict[str, Union[List, Tuple]]) -> bool:
|
273 |
+
if (
|
274 |
+
isinstance(annotation, dict)
|
275 |
+
and "image_id" in annotation
|
276 |
+
and "segments_info" in annotation
|
277 |
+
and "file_name" in annotation
|
278 |
+
and isinstance(annotation["segments_info"], (list, tuple))
|
279 |
+
and (
|
280 |
+
# an image can have no segments
|
281 |
+
len(annotation["segments_info"]) == 0 or isinstance(annotation["segments_info"][0], dict)
|
282 |
+
)
|
283 |
+
):
|
284 |
+
return True
|
285 |
+
return False
|
286 |
+
|
287 |
+
|
288 |
+
def valid_coco_detection_annotations(annotations: Iterable[Dict[str, Union[List, Tuple]]]) -> bool:
|
289 |
+
return all(is_valid_annotation_coco_detection(ann) for ann in annotations)
|
290 |
+
|
291 |
+
|
292 |
+
def valid_coco_panoptic_annotations(annotations: Iterable[Dict[str, Union[List, Tuple]]]) -> bool:
|
293 |
+
return all(is_valid_annotation_coco_panoptic(ann) for ann in annotations)
|
294 |
+
|
295 |
+
|
296 |
+
def load_image(image: Union[str, "PIL.Image.Image"], timeout: Optional[float] = None) -> "PIL.Image.Image":
|
297 |
+
"""
|
298 |
+
Loads `image` to a PIL Image.
|
299 |
+
|
300 |
+
Args:
|
301 |
+
image (`str` or `PIL.Image.Image`):
|
302 |
+
The image to convert to the PIL Image format.
|
303 |
+
timeout (`float`, *optional*):
|
304 |
+
The timeout value in seconds for the URL request.
|
305 |
+
|
306 |
+
Returns:
|
307 |
+
`PIL.Image.Image`: A PIL Image.
|
308 |
+
"""
|
309 |
+
requires_backends(load_image, ["vision"])
|
310 |
+
if isinstance(image, str):
|
311 |
+
if image.startswith("http://") or image.startswith("https://"):
|
312 |
+
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
|
313 |
+
# like http_huggingface_co.png
|
314 |
+
image = PIL.Image.open(BytesIO(requests.get(image, timeout=timeout).content))
|
315 |
+
elif os.path.isfile(image):
|
316 |
+
image = PIL.Image.open(image)
|
317 |
+
else:
|
318 |
+
if image.startswith("data:image/"):
|
319 |
+
image = image.split(",")[1]
|
320 |
+
|
321 |
+
# Try to load as base64
|
322 |
+
try:
|
323 |
+
b64 = base64.b64decode(image, validate=True)
|
324 |
+
image = PIL.Image.open(BytesIO(b64))
|
325 |
+
except Exception as e:
|
326 |
+
raise ValueError(
|
327 |
+
f"Incorrect image source. Must be a valid URL starting with `http://` or `https://`, a valid path to an image file, or a base64 encoded string. Got {image}. Failed with {e}"
|
328 |
+
)
|
329 |
+
elif isinstance(image, PIL.Image.Image):
|
330 |
+
image = image
|
331 |
+
else:
|
332 |
+
raise ValueError(
|
333 |
+
"Incorrect format used for image. Should be an url linking to an image, a base64 string, a local path, or a PIL image."
|
334 |
+
)
|
335 |
+
image = PIL.ImageOps.exif_transpose(image)
|
336 |
+
image = image.convert("RGB")
|
337 |
+
return image
|
338 |
+
|
339 |
+
|
340 |
+
def validate_preprocess_arguments(
|
341 |
+
do_rescale: Optional[bool] = None,
|
342 |
+
rescale_factor: Optional[float] = None,
|
343 |
+
do_normalize: Optional[bool] = None,
|
344 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
345 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
346 |
+
do_pad: Optional[bool] = None,
|
347 |
+
size_divisibility: Optional[int] = None,
|
348 |
+
do_center_crop: Optional[bool] = None,
|
349 |
+
crop_size: Optional[Dict[str, int]] = None,
|
350 |
+
do_resize: Optional[bool] = None,
|
351 |
+
size: Optional[Dict[str, int]] = None,
|
352 |
+
resample: Optional["PILImageResampling"] = None,
|
353 |
+
):
|
354 |
+
"""
|
355 |
+
Checks validity of typically used arguments in an `ImageProcessor` `preprocess` method.
|
356 |
+
Raises `ValueError` if arguments incompatibility is caught.
|
357 |
+
Many incompatibilities are model-specific. `do_pad` sometimes needs `size_divisor`,
|
358 |
+
sometimes `size_divisibility`, and sometimes `size`. New models and processors added should follow
|
359 |
+
existing arguments when possible.
|
360 |
+
|
361 |
+
"""
|
362 |
+
if do_rescale and rescale_factor is None:
|
363 |
+
raise ValueError("rescale_factor must be specified if do_rescale is True.")
|
364 |
+
|
365 |
+
if do_pad and size_divisibility is None:
|
366 |
+
# Here, size_divisor might be passed as the value of size
|
367 |
+
raise ValueError(
|
368 |
+
"Depending on moel, size_divisibility, size_divisor, pad_size or size must be specified if do_pad is True."
|
369 |
+
)
|
370 |
+
|
371 |
+
if do_normalize and (image_mean is None or image_std is None):
|
372 |
+
raise ValueError("image_mean and image_std must both be specified if do_normalize is True.")
|
373 |
+
|
374 |
+
if do_center_crop and crop_size is None:
|
375 |
+
raise ValueError("crop_size must be specified if do_center_crop is True.")
|
376 |
+
|
377 |
+
if do_resize and (size is None or resample is None):
|
378 |
+
raise ValueError("size and resample must be specified if do_resize is True.")
|
379 |
+
|
380 |
+
|
381 |
+
# In the future we can add a TF implementation here when we have TF models.
|
382 |
+
class ImageFeatureExtractionMixin:
|
383 |
+
"""
|
384 |
+
Mixin that contain utilities for preparing image features.
|
385 |
+
"""
|
386 |
+
|
387 |
+
def _ensure_format_supported(self, image):
|
388 |
+
if not isinstance(image, (PIL.Image.Image, np.ndarray)) and not is_torch_tensor(image):
|
389 |
+
raise ValueError(
|
390 |
+
f"Got type {type(image)} which is not supported, only `PIL.Image.Image`, `np.array` and "
|
391 |
+
"`torch.Tensor` are."
|
392 |
+
)
|
393 |
+
|
394 |
+
def to_pil_image(self, image, rescale=None):
|
395 |
+
"""
|
396 |
+
Converts `image` to a PIL Image. Optionally rescales it and puts the channel dimension back as the last axis if
|
397 |
+
needed.
|
398 |
+
|
399 |
+
Args:
|
400 |
+
image (`PIL.Image.Image` or `numpy.ndarray` or `torch.Tensor`):
|
401 |
+
The image to convert to the PIL Image format.
|
402 |
+
rescale (`bool`, *optional*):
|
403 |
+
Whether or not to apply the scaling factor (to make pixel values integers between 0 and 255). Will
|
404 |
+
default to `True` if the image type is a floating type, `False` otherwise.
|
405 |
+
"""
|
406 |
+
self._ensure_format_supported(image)
|
407 |
+
|
408 |
+
if is_torch_tensor(image):
|
409 |
+
image = image.numpy()
|
410 |
+
|
411 |
+
if isinstance(image, np.ndarray):
|
412 |
+
if rescale is None:
|
413 |
+
# rescale default to the array being of floating type.
|
414 |
+
rescale = isinstance(image.flat[0], np.floating)
|
415 |
+
# If the channel as been moved to first dim, we put it back at the end.
|
416 |
+
if image.ndim == 3 and image.shape[0] in [1, 3]:
|
417 |
+
image = image.transpose(1, 2, 0)
|
418 |
+
if rescale:
|
419 |
+
image = image * 255
|
420 |
+
image = image.astype(np.uint8)
|
421 |
+
return PIL.Image.fromarray(image)
|
422 |
+
return image
|
423 |
+
|
424 |
+
def convert_rgb(self, image):
|
425 |
+
"""
|
426 |
+
Converts `PIL.Image.Image` to RGB format.
|
427 |
+
|
428 |
+
Args:
|
429 |
+
image (`PIL.Image.Image`):
|
430 |
+
The image to convert.
|
431 |
+
"""
|
432 |
+
self._ensure_format_supported(image)
|
433 |
+
if not isinstance(image, PIL.Image.Image):
|
434 |
+
return image
|
435 |
+
|
436 |
+
return image.convert("RGB")
|
437 |
+
|
438 |
+
def rescale(self, image: np.ndarray, scale: Union[float, int]) -> np.ndarray:
|
439 |
+
"""
|
440 |
+
Rescale a numpy image by scale amount
|
441 |
+
"""
|
442 |
+
self._ensure_format_supported(image)
|
443 |
+
return image * scale
|
444 |
+
|
445 |
+
def to_numpy_array(self, image, rescale=None, channel_first=True):
|
446 |
+
"""
|
447 |
+
Converts `image` to a numpy array. Optionally rescales it and puts the channel dimension as the first
|
448 |
+
dimension.
|
449 |
+
|
450 |
+
Args:
|
451 |
+
image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
|
452 |
+
The image to convert to a NumPy array.
|
453 |
+
rescale (`bool`, *optional*):
|
454 |
+
Whether or not to apply the scaling factor (to make pixel values floats between 0. and 1.). Will
|
455 |
+
default to `True` if the image is a PIL Image or an array/tensor of integers, `False` otherwise.
|
456 |
+
channel_first (`bool`, *optional*, defaults to `True`):
|
457 |
+
Whether or not to permute the dimensions of the image to put the channel dimension first.
|
458 |
+
"""
|
459 |
+
self._ensure_format_supported(image)
|
460 |
+
|
461 |
+
if isinstance(image, PIL.Image.Image):
|
462 |
+
image = np.array(image)
|
463 |
+
|
464 |
+
if is_torch_tensor(image):
|
465 |
+
image = image.numpy()
|
466 |
+
|
467 |
+
rescale = isinstance(image.flat[0], np.integer) if rescale is None else rescale
|
468 |
+
|
469 |
+
if rescale:
|
470 |
+
image = self.rescale(image.astype(np.float32), 1 / 255.0)
|
471 |
+
|
472 |
+
if channel_first and image.ndim == 3:
|
473 |
+
image = image.transpose(2, 0, 1)
|
474 |
+
|
475 |
+
return image
|
476 |
+
|
477 |
+
def expand_dims(self, image):
|
478 |
+
"""
|
479 |
+
Expands 2-dimensional `image` to 3 dimensions.
|
480 |
+
|
481 |
+
Args:
|
482 |
+
image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
|
483 |
+
The image to expand.
|
484 |
+
"""
|
485 |
+
self._ensure_format_supported(image)
|
486 |
+
|
487 |
+
# Do nothing if PIL image
|
488 |
+
if isinstance(image, PIL.Image.Image):
|
489 |
+
return image
|
490 |
+
|
491 |
+
if is_torch_tensor(image):
|
492 |
+
image = image.unsqueeze(0)
|
493 |
+
else:
|
494 |
+
image = np.expand_dims(image, axis=0)
|
495 |
+
return image
|
496 |
+
|
497 |
+
def normalize(self, image, mean, std, rescale=False):
|
498 |
+
"""
|
499 |
+
Normalizes `image` with `mean` and `std`. Note that this will trigger a conversion of `image` to a NumPy array
|
500 |
+
if it's a PIL Image.
|
501 |
+
|
502 |
+
Args:
|
503 |
+
image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
|
504 |
+
The image to normalize.
|
505 |
+
mean (`List[float]` or `np.ndarray` or `torch.Tensor`):
|
506 |
+
The mean (per channel) to use for normalization.
|
507 |
+
std (`List[float]` or `np.ndarray` or `torch.Tensor`):
|
508 |
+
The standard deviation (per channel) to use for normalization.
|
509 |
+
rescale (`bool`, *optional*, defaults to `False`):
|
510 |
+
Whether or not to rescale the image to be between 0 and 1. If a PIL image is provided, scaling will
|
511 |
+
happen automatically.
|
512 |
+
"""
|
513 |
+
self._ensure_format_supported(image)
|
514 |
+
|
515 |
+
if isinstance(image, PIL.Image.Image):
|
516 |
+
image = self.to_numpy_array(image, rescale=True)
|
517 |
+
# If the input image is a PIL image, it automatically gets rescaled. If it's another
|
518 |
+
# type it may need rescaling.
|
519 |
+
elif rescale:
|
520 |
+
if isinstance(image, np.ndarray):
|
521 |
+
image = self.rescale(image.astype(np.float32), 1 / 255.0)
|
522 |
+
elif is_torch_tensor(image):
|
523 |
+
image = self.rescale(image.float(), 1 / 255.0)
|
524 |
+
|
525 |
+
if isinstance(image, np.ndarray):
|
526 |
+
if not isinstance(mean, np.ndarray):
|
527 |
+
mean = np.array(mean).astype(image.dtype)
|
528 |
+
if not isinstance(std, np.ndarray):
|
529 |
+
std = np.array(std).astype(image.dtype)
|
530 |
+
elif is_torch_tensor(image):
|
531 |
+
import torch
|
532 |
+
|
533 |
+
if not isinstance(mean, torch.Tensor):
|
534 |
+
mean = torch.tensor(mean)
|
535 |
+
if not isinstance(std, torch.Tensor):
|
536 |
+
std = torch.tensor(std)
|
537 |
+
|
538 |
+
if image.ndim == 3 and image.shape[0] in [1, 3]:
|
539 |
+
return (image - mean[:, None, None]) / std[:, None, None]
|
540 |
+
else:
|
541 |
+
return (image - mean) / std
|
542 |
+
|
543 |
+
def resize(self, image, size, resample=None, default_to_square=True, max_size=None):
|
544 |
+
"""
|
545 |
+
Resizes `image`. Enforces conversion of input to PIL.Image.
|
546 |
+
|
547 |
+
Args:
|
548 |
+
image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
|
549 |
+
The image to resize.
|
550 |
+
size (`int` or `Tuple[int, int]`):
|
551 |
+
The size to use for resizing the image. If `size` is a sequence like (h, w), output size will be
|
552 |
+
matched to this.
|
553 |
+
|
554 |
+
If `size` is an int and `default_to_square` is `True`, then image will be resized to (size, size). If
|
555 |
+
`size` is an int and `default_to_square` is `False`, then smaller edge of the image will be matched to
|
556 |
+
this number. i.e, if height > width, then image will be rescaled to (size * height / width, size).
|
557 |
+
resample (`int`, *optional*, defaults to `PILImageResampling.BILINEAR`):
|
558 |
+
The filter to user for resampling.
|
559 |
+
default_to_square (`bool`, *optional*, defaults to `True`):
|
560 |
+
How to convert `size` when it is a single int. If set to `True`, the `size` will be converted to a
|
561 |
+
square (`size`,`size`). If set to `False`, will replicate
|
562 |
+
[`torchvision.transforms.Resize`](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.Resize)
|
563 |
+
with support for resizing only the smallest edge and providing an optional `max_size`.
|
564 |
+
max_size (`int`, *optional*, defaults to `None`):
|
565 |
+
The maximum allowed for the longer edge of the resized image: if the longer edge of the image is
|
566 |
+
greater than `max_size` after being resized according to `size`, then the image is resized again so
|
567 |
+
that the longer edge is equal to `max_size`. As a result, `size` might be overruled, i.e the smaller
|
568 |
+
edge may be shorter than `size`. Only used if `default_to_square` is `False`.
|
569 |
+
|
570 |
+
Returns:
|
571 |
+
image: A resized `PIL.Image.Image`.
|
572 |
+
"""
|
573 |
+
resample = resample if resample is not None else PILImageResampling.BILINEAR
|
574 |
+
|
575 |
+
self._ensure_format_supported(image)
|
576 |
+
|
577 |
+
if not isinstance(image, PIL.Image.Image):
|
578 |
+
image = self.to_pil_image(image)
|
579 |
+
|
580 |
+
if isinstance(size, list):
|
581 |
+
size = tuple(size)
|
582 |
+
|
583 |
+
if isinstance(size, int) or len(size) == 1:
|
584 |
+
if default_to_square:
|
585 |
+
size = (size, size) if isinstance(size, int) else (size[0], size[0])
|
586 |
+
else:
|
587 |
+
width, height = image.size
|
588 |
+
# specified size only for the smallest edge
|
589 |
+
short, long = (width, height) if width <= height else (height, width)
|
590 |
+
requested_new_short = size if isinstance(size, int) else size[0]
|
591 |
+
|
592 |
+
if short == requested_new_short:
|
593 |
+
return image
|
594 |
+
|
595 |
+
new_short, new_long = requested_new_short, int(requested_new_short * long / short)
|
596 |
+
|
597 |
+
if max_size is not None:
|
598 |
+
if max_size <= requested_new_short:
|
599 |
+
raise ValueError(
|
600 |
+
f"max_size = {max_size} must be strictly greater than the requested "
|
601 |
+
f"size for the smaller edge size = {size}"
|
602 |
+
)
|
603 |
+
if new_long > max_size:
|
604 |
+
new_short, new_long = int(max_size * new_short / new_long), max_size
|
605 |
+
|
606 |
+
size = (new_short, new_long) if width <= height else (new_long, new_short)
|
607 |
+
|
608 |
+
return image.resize(size, resample=resample)
|
609 |
+
|
610 |
+
def center_crop(self, image, size):
|
611 |
+
"""
|
612 |
+
Crops `image` to the given size using a center crop. Note that if the image is too small to be cropped to the
|
613 |
+
size given, it will be padded (so the returned result has the size asked).
|
614 |
+
|
615 |
+
Args:
|
616 |
+
image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor` of shape (n_channels, height, width) or (height, width, n_channels)):
|
617 |
+
The image to resize.
|
618 |
+
size (`int` or `Tuple[int, int]`):
|
619 |
+
The size to which crop the image.
|
620 |
+
|
621 |
+
Returns:
|
622 |
+
new_image: A center cropped `PIL.Image.Image` or `np.ndarray` or `torch.Tensor` of shape: (n_channels,
|
623 |
+
height, width).
|
624 |
+
"""
|
625 |
+
self._ensure_format_supported(image)
|
626 |
+
|
627 |
+
if not isinstance(size, tuple):
|
628 |
+
size = (size, size)
|
629 |
+
|
630 |
+
# PIL Image.size is (width, height) but NumPy array and torch Tensors have (height, width)
|
631 |
+
if is_torch_tensor(image) or isinstance(image, np.ndarray):
|
632 |
+
if image.ndim == 2:
|
633 |
+
image = self.expand_dims(image)
|
634 |
+
image_shape = image.shape[1:] if image.shape[0] in [1, 3] else image.shape[:2]
|
635 |
+
else:
|
636 |
+
image_shape = (image.size[1], image.size[0])
|
637 |
+
|
638 |
+
top = (image_shape[0] - size[0]) // 2
|
639 |
+
bottom = top + size[0] # In case size is odd, (image_shape[0] + size[0]) // 2 won't give the proper result.
|
640 |
+
left = (image_shape[1] - size[1]) // 2
|
641 |
+
right = left + size[1] # In case size is odd, (image_shape[1] + size[1]) // 2 won't give the proper result.
|
642 |
+
|
643 |
+
# For PIL Images we have a method to crop directly.
|
644 |
+
if isinstance(image, PIL.Image.Image):
|
645 |
+
return image.crop((left, top, right, bottom))
|
646 |
+
|
647 |
+
# Check if image is in (n_channels, height, width) or (height, width, n_channels) format
|
648 |
+
channel_first = True if image.shape[0] in [1, 3] else False
|
649 |
+
|
650 |
+
# Transpose (height, width, n_channels) format images
|
651 |
+
if not channel_first:
|
652 |
+
if isinstance(image, np.ndarray):
|
653 |
+
image = image.transpose(2, 0, 1)
|
654 |
+
if is_torch_tensor(image):
|
655 |
+
image = image.permute(2, 0, 1)
|
656 |
+
|
657 |
+
# Check if cropped area is within image boundaries
|
658 |
+
if top >= 0 and bottom <= image_shape[0] and left >= 0 and right <= image_shape[1]:
|
659 |
+
return image[..., top:bottom, left:right]
|
660 |
+
|
661 |
+
# Otherwise, we may need to pad if the image is too small. Oh joy...
|
662 |
+
new_shape = image.shape[:-2] + (max(size[0], image_shape[0]), max(size[1], image_shape[1]))
|
663 |
+
if isinstance(image, np.ndarray):
|
664 |
+
new_image = np.zeros_like(image, shape=new_shape)
|
665 |
+
elif is_torch_tensor(image):
|
666 |
+
new_image = image.new_zeros(new_shape)
|
667 |
+
|
668 |
+
top_pad = (new_shape[-2] - image_shape[0]) // 2
|
669 |
+
bottom_pad = top_pad + image_shape[0]
|
670 |
+
left_pad = (new_shape[-1] - image_shape[1]) // 2
|
671 |
+
right_pad = left_pad + image_shape[1]
|
672 |
+
new_image[..., top_pad:bottom_pad, left_pad:right_pad] = image
|
673 |
+
|
674 |
+
top += top_pad
|
675 |
+
bottom += top_pad
|
676 |
+
left += left_pad
|
677 |
+
right += left_pad
|
678 |
+
|
679 |
+
new_image = new_image[
|
680 |
+
..., max(0, top) : min(new_image.shape[-2], bottom), max(0, left) : min(new_image.shape[-1], right)
|
681 |
+
]
|
682 |
+
|
683 |
+
return new_image
|
684 |
+
|
685 |
+
def flip_channel_order(self, image):
|
686 |
+
"""
|
687 |
+
Flips the channel order of `image` from RGB to BGR, or vice versa. Note that this will trigger a conversion of
|
688 |
+
`image` to a NumPy array if it's a PIL Image.
|
689 |
+
|
690 |
+
Args:
|
691 |
+
image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
|
692 |
+
The image whose color channels to flip. If `np.ndarray` or `torch.Tensor`, the channel dimension should
|
693 |
+
be first.
|
694 |
+
"""
|
695 |
+
self._ensure_format_supported(image)
|
696 |
+
|
697 |
+
if isinstance(image, PIL.Image.Image):
|
698 |
+
image = self.to_numpy_array(image)
|
699 |
+
|
700 |
+
return image[::-1, :, :]
|
701 |
+
|
702 |
+
def rotate(self, image, angle, resample=None, expand=0, center=None, translate=None, fillcolor=None):
|
703 |
+
"""
|
704 |
+
Returns a rotated copy of `image`. This method returns a copy of `image`, rotated the given number of degrees
|
705 |
+
counter clockwise around its centre.
|
706 |
+
|
707 |
+
Args:
|
708 |
+
image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
|
709 |
+
The image to rotate. If `np.ndarray` or `torch.Tensor`, will be converted to `PIL.Image.Image` before
|
710 |
+
rotating.
|
711 |
+
|
712 |
+
Returns:
|
713 |
+
image: A rotated `PIL.Image.Image`.
|
714 |
+
"""
|
715 |
+
resample = resample if resample is not None else PIL.Image.NEAREST
|
716 |
+
|
717 |
+
self._ensure_format_supported(image)
|
718 |
+
|
719 |
+
if not isinstance(image, PIL.Image.Image):
|
720 |
+
image = self.to_pil_image(image)
|
721 |
+
|
722 |
+
return image.rotate(
|
723 |
+
angle, resample=resample, expand=expand, center=center, translate=translate, fillcolor=fillcolor
|
724 |
+
)
|
725 |
+
|
726 |
+
|
727 |
+
def promote_annotation_format(annotation_format: Union[AnnotionFormat, AnnotationFormat]) -> AnnotationFormat:
|
728 |
+
# can be removed when `AnnotionFormat` is fully deprecated
|
729 |
+
return AnnotationFormat(annotation_format.value)
|
730 |
+
|
731 |
+
|
732 |
+
def validate_annotations(
|
733 |
+
annotation_format: AnnotationFormat,
|
734 |
+
supported_annotation_formats: Tuple[AnnotationFormat, ...],
|
735 |
+
annotations: List[Dict],
|
736 |
+
) -> None:
|
737 |
+
if isinstance(annotation_format, AnnotionFormat):
|
738 |
+
logger.warning_once(
|
739 |
+
f"`{annotation_format.__class__.__name__}` is deprecated and will be removed in v4.38. "
|
740 |
+
f"Please use `{AnnotationFormat.__name__}` instead."
|
741 |
+
)
|
742 |
+
annotation_format = promote_annotation_format(annotation_format)
|
743 |
+
|
744 |
+
if annotation_format not in supported_annotation_formats:
|
745 |
+
raise ValueError(f"Unsupported annotation format: {format} must be one of {supported_annotation_formats}")
|
746 |
+
|
747 |
+
if annotation_format is AnnotationFormat.COCO_DETECTION:
|
748 |
+
if not valid_coco_detection_annotations(annotations):
|
749 |
+
raise ValueError(
|
750 |
+
"Invalid COCO detection annotations. Annotations must a dict (single image) or list of dicts "
|
751 |
+
"(batch of images) with the following keys: `image_id` and `annotations`, with the latter "
|
752 |
+
"being a list of annotations in the COCO format."
|
753 |
+
)
|
754 |
+
|
755 |
+
if annotation_format is AnnotationFormat.COCO_PANOPTIC:
|
756 |
+
if not valid_coco_panoptic_annotations(annotations):
|
757 |
+
raise ValueError(
|
758 |
+
"Invalid COCO panoptic annotations. Annotations must a dict (single image) or list of dicts "
|
759 |
+
"(batch of images) with the following keys: `image_id`, `file_name` and `segments_info`, with "
|
760 |
+
"the latter being a list of annotations in the COCO format."
|
761 |
+
)
|
762 |
+
|
763 |
+
|
764 |
+
def validate_kwargs(valid_processor_keys: List[str], captured_kwargs: List[str]):
|
765 |
+
unused_keys = set(captured_kwargs).difference(set(valid_processor_keys))
|
766 |
+
if unused_keys:
|
767 |
+
unused_key_str = ", ".join(unused_keys)
|
768 |
+
# TODO raise a warning here instead of simply logging?
|
769 |
+
logger.warning(f"Unused or unrecognized kwargs: {unused_key_str}.")
|
venv/lib/python3.10/site-packages/transformers/keras_callbacks.py
ADDED
@@ -0,0 +1,413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
from pathlib import Path
|
4 |
+
from time import sleep
|
5 |
+
from typing import Callable, List, Optional, Union
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import tensorflow as tf
|
9 |
+
from huggingface_hub import Repository, create_repo
|
10 |
+
from packaging.version import parse
|
11 |
+
|
12 |
+
from . import IntervalStrategy, PreTrainedTokenizerBase
|
13 |
+
from .modelcard import TrainingSummary
|
14 |
+
from .modeling_tf_utils import keras
|
15 |
+
|
16 |
+
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
|
20 |
+
class KerasMetricCallback(keras.callbacks.Callback):
|
21 |
+
"""
|
22 |
+
Callback to compute metrics at the end of every epoch. Unlike normal Keras metrics, these do not need to be
|
23 |
+
compilable by TF. It is particularly useful for common NLP metrics like BLEU and ROUGE that require string
|
24 |
+
operations or generation loops that cannot be compiled. Predictions (or generations) will be computed on the
|
25 |
+
`eval_dataset` before being passed to the `metric_fn` in `np.ndarray` format. The `metric_fn` should compute
|
26 |
+
metrics and return a dict mapping metric names to metric values.
|
27 |
+
|
28 |
+
We provide an example of a suitable metric_fn that computes ROUGE scores for a summarization model below. Note that
|
29 |
+
this example skips some post-processing for readability and simplicity, and should probably not be used as-is!
|
30 |
+
|
31 |
+
```py
|
32 |
+
from datasets import load_metric
|
33 |
+
|
34 |
+
rouge_metric = load_metric("rouge")
|
35 |
+
|
36 |
+
|
37 |
+
def rouge_fn(predictions, labels):
|
38 |
+
decoded_predictions = tokenizer.batch_decode(predictions, skip_special_tokens=True)
|
39 |
+
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
|
40 |
+
result = rouge_metric.compute(predictions=decoded_predictions, references=decoded_labels)
|
41 |
+
return {key: value.mid.fmeasure * 100 for key, value in result.items()}
|
42 |
+
```
|
43 |
+
|
44 |
+
The above function will return a dict containing values which will be logged like any other Keras metric:
|
45 |
+
|
46 |
+
```
|
47 |
+
{'rouge1': 37.4199, 'rouge2': 13.9768, 'rougeL': 34.361, 'rougeLsum': 35.0781
|
48 |
+
```
|
49 |
+
|
50 |
+
Args:
|
51 |
+
metric_fn (`Callable`):
|
52 |
+
Metric function provided by the user. It will be called with two arguments - `predictions` and `labels`.
|
53 |
+
These contain the model's outputs and matching labels from the dataset. It should return a dict mapping
|
54 |
+
metric names to numerical values.
|
55 |
+
eval_dataset (`tf.data.Dataset` or `dict` or `tuple` or `np.ndarray` or `tf.Tensor`):
|
56 |
+
Validation data to be used to generate predictions for the `metric_fn`.
|
57 |
+
output_cols (`List[str], *optional*):
|
58 |
+
A list of columns to be retained from the model output as the predictions. Defaults to all.
|
59 |
+
label_cols ('`List[str]`, *optional*'):
|
60 |
+
A list of columns to be retained from the input dataset as the labels. Will be autodetected if this is not
|
61 |
+
supplied.
|
62 |
+
batch_size (`int`, *optional*):
|
63 |
+
Batch size. Only used when the data is not a pre-batched `tf.data.Dataset`.
|
64 |
+
predict_with_generate (`bool`, *optional*, defaults to `False`):
|
65 |
+
Whether we should use `model.generate()` to get outputs for the model.
|
66 |
+
use_xla_generation (`bool`, *optional*, defaults to `False`):
|
67 |
+
If we're generating, whether to compile model generation with XLA. This can massively increase the speed of
|
68 |
+
generation (up to 100X speedup) but will require a new XLA compilation for each input shape. When using XLA
|
69 |
+
generation, it's a good idea to pad your inputs to the same size, or to use the `pad_to_multiple_of`
|
70 |
+
argument in your `tokenizer` or `DataCollator`, which will reduce the number of unique input shapes and
|
71 |
+
save a lot of compilation time. This option has no effect is `predict_with_generate` is `False`.
|
72 |
+
generate_kwargs (`dict`, *optional*):
|
73 |
+
Keyword arguments to pass to `model.generate()` when generating. Has no effect if `predict_with_generate`
|
74 |
+
is `False`.
|
75 |
+
|
76 |
+
"""
|
77 |
+
|
78 |
+
def __init__(
|
79 |
+
self,
|
80 |
+
metric_fn: Callable,
|
81 |
+
eval_dataset: Union[tf.data.Dataset, np.ndarray, tf.Tensor, tuple, dict],
|
82 |
+
output_cols: Optional[List[str]] = None,
|
83 |
+
label_cols: Optional[List[str]] = None,
|
84 |
+
batch_size: Optional[int] = None,
|
85 |
+
predict_with_generate: bool = False,
|
86 |
+
use_xla_generation: bool = False,
|
87 |
+
generate_kwargs: Optional[dict] = None,
|
88 |
+
):
|
89 |
+
super().__init__()
|
90 |
+
self.metric_fn = metric_fn
|
91 |
+
self.batch_size = batch_size
|
92 |
+
if not isinstance(eval_dataset, tf.data.Dataset):
|
93 |
+
if batch_size is None:
|
94 |
+
raise ValueError(
|
95 |
+
"When passing data to KerasMetricCallback that is not a pre-batched tf.data.Dataset "
|
96 |
+
"the batch_size argument must be set."
|
97 |
+
)
|
98 |
+
# Wrap a tf.data.Dataset around it
|
99 |
+
eval_dataset = tf.data.Dataset.from_tensor_slices(eval_dataset).batch(batch_size, drop_remainder=False)
|
100 |
+
self.eval_dataset = eval_dataset
|
101 |
+
self.predict_with_generate = predict_with_generate
|
102 |
+
self.output_cols = output_cols
|
103 |
+
|
104 |
+
# This next block attempts to parse out which elements of the dataset should be appended to the labels list
|
105 |
+
# that is passed to the metric_fn
|
106 |
+
if isinstance(eval_dataset.element_spec, tuple) and len(eval_dataset.element_spec) == 2:
|
107 |
+
input_spec, label_spec = eval_dataset.element_spec
|
108 |
+
else:
|
109 |
+
input_spec = eval_dataset.element_spec
|
110 |
+
label_spec = None
|
111 |
+
if label_cols is not None:
|
112 |
+
for label in label_cols:
|
113 |
+
if label not in input_spec:
|
114 |
+
raise ValueError(f"Label {label} is in label_cols but could not be found in the dataset inputs!")
|
115 |
+
self.label_cols = label_cols
|
116 |
+
self.use_keras_label = False
|
117 |
+
elif label_spec is not None:
|
118 |
+
# If the dataset inputs are split into a 2-tuple of inputs and labels,
|
119 |
+
# assume the second element is the labels
|
120 |
+
self.label_cols = None
|
121 |
+
self.use_keras_label = True
|
122 |
+
elif "labels" in input_spec:
|
123 |
+
self.label_cols = ["labels"]
|
124 |
+
self.use_keras_label = False
|
125 |
+
logging.warning("No label_cols specified for KerasMetricCallback, assuming you want the 'labels' key.")
|
126 |
+
elif "start_positions" in input_spec and "end_positions" in input_spec:
|
127 |
+
self.label_cols = ["start_positions", "end_positions"]
|
128 |
+
self.use_keras_label = False
|
129 |
+
logging.warning(
|
130 |
+
"No label_cols specified for KerasMetricCallback, assuming you want the "
|
131 |
+
"start_positions and end_positions keys."
|
132 |
+
)
|
133 |
+
else:
|
134 |
+
raise ValueError("Could not autodetect label_cols for KerasMetricCallback, please specify them!")
|
135 |
+
if parse(tf.__version__) < parse("2.7"):
|
136 |
+
logging.warning("TF versions less than 2.7 may encounter issues with KerasMetricCallback!")
|
137 |
+
|
138 |
+
self.use_xla_generation = use_xla_generation
|
139 |
+
self.generate_kwargs = {} if generate_kwargs is None else generate_kwargs
|
140 |
+
|
141 |
+
self.generation_function = None
|
142 |
+
|
143 |
+
@staticmethod
|
144 |
+
def _concatenate_batches(batches, padding_index=-100):
|
145 |
+
# If all batches are unidimensional or same length, do a simple concatenation
|
146 |
+
if batches[0].ndim == 1 or all(batch.shape[1] == batches[0].shape[1] for batch in batches):
|
147 |
+
return np.concatenate(batches, axis=0)
|
148 |
+
|
149 |
+
# Welp, they're not the same length. Let's do some padding
|
150 |
+
max_len = max([batch.shape[1] for batch in batches])
|
151 |
+
num_samples = sum([batch.shape[0] for batch in batches])
|
152 |
+
output = np.full_like(
|
153 |
+
batches[0], fill_value=padding_index, shape=[num_samples, max_len] + list(batches[0].shape[2:])
|
154 |
+
)
|
155 |
+
# i keeps track of which part of the concatenated array we're writing the next batch to
|
156 |
+
i = 0
|
157 |
+
for batch in batches:
|
158 |
+
output[i : i + len(batch), : batch.shape[1]] = batch
|
159 |
+
i += len(batch)
|
160 |
+
return output
|
161 |
+
|
162 |
+
def _postprocess_predictions_or_labels(self, inputs):
|
163 |
+
if isinstance(inputs[0], dict):
|
164 |
+
outputs = {}
|
165 |
+
for key in inputs[0].keys():
|
166 |
+
outputs[key] = self._concatenate_batches([batch[key] for batch in inputs])
|
167 |
+
# If it's a dict with only one key, just return the array
|
168 |
+
if len(outputs) == 1:
|
169 |
+
outputs = list(outputs.values())[0]
|
170 |
+
elif isinstance(inputs[0], list) or isinstance(inputs[0], tuple):
|
171 |
+
outputs = []
|
172 |
+
for input_list in zip(*inputs):
|
173 |
+
outputs.append(self._concatenate_batches(input_list))
|
174 |
+
if len(outputs) == 1:
|
175 |
+
outputs = outputs[0] # If it's a list with only one element, just return the array
|
176 |
+
elif isinstance(inputs[0], np.ndarray):
|
177 |
+
outputs = self._concatenate_batches(inputs)
|
178 |
+
elif isinstance(inputs[0], tf.Tensor):
|
179 |
+
outputs = self._concatenate_batches([tensor.numpy() for tensor in inputs])
|
180 |
+
else:
|
181 |
+
raise TypeError(f"Couldn't handle batch of type {type(inputs[0])}!")
|
182 |
+
return outputs
|
183 |
+
|
184 |
+
def on_epoch_end(self, epoch, logs=None):
|
185 |
+
if hasattr(self.model, "config"):
|
186 |
+
ignore_keys = getattr(self.model.config, "keys_to_ignore_at_inference", [])
|
187 |
+
else:
|
188 |
+
ignore_keys = []
|
189 |
+
|
190 |
+
main_input_name = None
|
191 |
+
if self.predict_with_generate:
|
192 |
+
# This dense conditional recognizes the case where we have an encoder-decoder model, but
|
193 |
+
# avoids getting tangled up when we just have a model with a layer called 'encoder'
|
194 |
+
if hasattr(self.model, "encoder") and hasattr(self.model.encoder, "main_input_name"):
|
195 |
+
main_input_name = self.model.encoder.main_input_name
|
196 |
+
else:
|
197 |
+
main_input_name = getattr(self.model, "main_input_name", "input_ids")
|
198 |
+
|
199 |
+
if self.use_xla_generation and self.generation_function is None:
|
200 |
+
|
201 |
+
def generation_function(inputs, attention_mask):
|
202 |
+
return self.model.generate(inputs, attention_mask=attention_mask, **self.generate_kwargs)
|
203 |
+
|
204 |
+
self.generation_function = tf.function(generation_function, jit_compile=True)
|
205 |
+
|
206 |
+
prediction_list = []
|
207 |
+
label_list = []
|
208 |
+
|
209 |
+
# The whole predict/generate loop is handled inside this method
|
210 |
+
for batch in self.eval_dataset:
|
211 |
+
if isinstance(batch, tuple):
|
212 |
+
batch, labels = batch
|
213 |
+
else:
|
214 |
+
labels = None
|
215 |
+
if self.predict_with_generate:
|
216 |
+
if isinstance(batch, dict):
|
217 |
+
generation_inputs = batch[main_input_name]
|
218 |
+
attention_mask = batch.get("attention_mask", None)
|
219 |
+
else:
|
220 |
+
generation_inputs = batch
|
221 |
+
attention_mask = None
|
222 |
+
if self.use_xla_generation:
|
223 |
+
predictions = self.generation_function(generation_inputs, attention_mask=attention_mask)
|
224 |
+
else:
|
225 |
+
predictions = self.model.generate(
|
226 |
+
generation_inputs, attention_mask=attention_mask, **self.generate_kwargs
|
227 |
+
)
|
228 |
+
else:
|
229 |
+
predictions = self.model.predict_on_batch(batch)
|
230 |
+
if isinstance(predictions, dict):
|
231 |
+
# This converts any dict-subclass to a regular dict
|
232 |
+
# Keras REALLY doesn't like it when we pass around a BatchEncoding or other derived class
|
233 |
+
predictions = dict(predictions)
|
234 |
+
if self.output_cols is not None:
|
235 |
+
predictions = {key: predictions[key] for key in self.output_cols}
|
236 |
+
else:
|
237 |
+
predictions = {
|
238 |
+
key: val for key, val in predictions.items() if key not in ignore_keys + ["loss"]
|
239 |
+
}
|
240 |
+
prediction_list.append(predictions)
|
241 |
+
if not self.use_keras_label:
|
242 |
+
labels = {key: batch[key].numpy() for key in self.label_cols}
|
243 |
+
elif isinstance(labels, dict):
|
244 |
+
labels = {key: array.numpy() for key, array in labels.items()}
|
245 |
+
elif isinstance(labels, list) or isinstance(labels, tuple):
|
246 |
+
labels = [array.numpy() for array in labels]
|
247 |
+
elif isinstance(labels, tf.Tensor):
|
248 |
+
labels = labels.numpy()
|
249 |
+
else:
|
250 |
+
raise TypeError(f"Confused by labels of type {type(labels)}")
|
251 |
+
label_list.append(labels)
|
252 |
+
|
253 |
+
all_preds = self._postprocess_predictions_or_labels(prediction_list)
|
254 |
+
all_labels = self._postprocess_predictions_or_labels(label_list)
|
255 |
+
|
256 |
+
metric_output = self.metric_fn((all_preds, all_labels))
|
257 |
+
if not isinstance(metric_output, dict):
|
258 |
+
raise TypeError(
|
259 |
+
f"metric_fn should return a dict mapping metric names to values but instead returned {metric_output}"
|
260 |
+
)
|
261 |
+
# This is the critical bit - Keras passes a dict containing the loss and standard metric values for this epoch
|
262 |
+
# in the logs argument. Ordinarily, this is so the callback can read them, but in this case we write a bunch of
|
263 |
+
# new keys in there, which will then get read by the History callback and treated like any other metric value.
|
264 |
+
# I promise that I have it in writing from Chollet that this is okay.
|
265 |
+
logs.update(metric_output)
|
266 |
+
|
267 |
+
|
268 |
+
class PushToHubCallback(keras.callbacks.Callback):
|
269 |
+
"""
|
270 |
+
Callback that will save and push the model to the Hub regularly. By default, it pushes once per epoch, but this can
|
271 |
+
be changed with the `save_strategy` argument. Pushed models can be accessed like any other model on the hub, such
|
272 |
+
as with the `from_pretrained` method.
|
273 |
+
|
274 |
+
```py
|
275 |
+
from transformers.keras_callbacks import PushToHubCallback
|
276 |
+
|
277 |
+
push_to_hub_callback = PushToHubCallback(
|
278 |
+
output_dir="./model_save",
|
279 |
+
tokenizer=tokenizer,
|
280 |
+
hub_model_id="gpt5-7xlarge",
|
281 |
+
)
|
282 |
+
|
283 |
+
model.fit(train_dataset, callbacks=[push_to_hub_callback])
|
284 |
+
```
|
285 |
+
|
286 |
+
Args:
|
287 |
+
output_dir (`str`):
|
288 |
+
The output directory where the model predictions and checkpoints will be written and synced with the
|
289 |
+
repository on the Hub.
|
290 |
+
save_strategy (`str` or [`~trainer_utils.IntervalStrategy`], *optional*, defaults to `"epoch"`):
|
291 |
+
The checkpoint save strategy to adopt during training. Possible values are:
|
292 |
+
|
293 |
+
- `"no"`: Save is done at the end of training.
|
294 |
+
- `"epoch"`: Save is done at the end of each epoch.
|
295 |
+
- `"steps"`: Save is done every `save_steps`
|
296 |
+
save_steps (`int`, *optional*):
|
297 |
+
The number of steps between saves when using the "steps" `save_strategy`.
|
298 |
+
tokenizer (`PreTrainedTokenizerBase`, *optional*):
|
299 |
+
The tokenizer used by the model. If supplied, will be uploaded to the repo alongside the weights.
|
300 |
+
hub_model_id (`str`, *optional*):
|
301 |
+
The name of the repository to keep in sync with the local `output_dir`. It can be a simple model ID in
|
302 |
+
which case the model will be pushed in your namespace. Otherwise it should be the whole repository name,
|
303 |
+
for instance `"user_name/model"`, which allows you to push to an organization you are a member of with
|
304 |
+
`"organization_name/model"`.
|
305 |
+
|
306 |
+
Will default to the name of `output_dir`.
|
307 |
+
hub_token (`str`, *optional*):
|
308 |
+
The token to use to push the model to the Hub. Will default to the token in the cache folder obtained with
|
309 |
+
`huggingface-cli login`.
|
310 |
+
checkpoint (`bool`, *optional*, defaults to `False`):
|
311 |
+
Whether to save full training checkpoints (including epoch and optimizer state) to allow training to be
|
312 |
+
resumed. Only usable when `save_strategy` is `"epoch"`.
|
313 |
+
"""
|
314 |
+
|
315 |
+
def __init__(
|
316 |
+
self,
|
317 |
+
output_dir: Union[str, Path],
|
318 |
+
save_strategy: Union[str, IntervalStrategy] = "epoch",
|
319 |
+
save_steps: Optional[int] = None,
|
320 |
+
tokenizer: Optional[PreTrainedTokenizerBase] = None,
|
321 |
+
hub_model_id: Optional[str] = None,
|
322 |
+
hub_token: Optional[str] = None,
|
323 |
+
checkpoint: bool = False,
|
324 |
+
**model_card_args,
|
325 |
+
):
|
326 |
+
super().__init__()
|
327 |
+
if checkpoint and save_strategy != "epoch":
|
328 |
+
raise ValueError("Cannot save checkpoints when save_strategy is not 'epoch'!")
|
329 |
+
if isinstance(save_strategy, str):
|
330 |
+
save_strategy = IntervalStrategy(save_strategy.lower())
|
331 |
+
self.save_strategy = save_strategy
|
332 |
+
if self.save_strategy == IntervalStrategy.STEPS and (not isinstance(save_steps, int) or save_steps <= 0):
|
333 |
+
raise ValueError("Please supply a positive integer argument for save_steps when save_strategy == 'steps'!")
|
334 |
+
self.save_steps = save_steps
|
335 |
+
output_dir = Path(output_dir)
|
336 |
+
|
337 |
+
# Create repo and retrieve repo_id
|
338 |
+
if hub_model_id is None:
|
339 |
+
hub_model_id = output_dir.absolute().name
|
340 |
+
self.hub_model_id = create_repo(repo_id=hub_model_id, exist_ok=True, token=hub_token).repo_id
|
341 |
+
|
342 |
+
self.output_dir = output_dir
|
343 |
+
self.repo = Repository(str(self.output_dir), clone_from=self.hub_model_id, token=hub_token)
|
344 |
+
|
345 |
+
self.tokenizer = tokenizer
|
346 |
+
self.last_job = None
|
347 |
+
self.checkpoint = checkpoint
|
348 |
+
self.training_history = None
|
349 |
+
self.model_card_args = model_card_args
|
350 |
+
|
351 |
+
def on_train_begin(self, logs=None):
|
352 |
+
# Although we can access model.history, we have no guarantees that the History callback will fire before this
|
353 |
+
# one, so we keep track of it here too
|
354 |
+
self.training_history = []
|
355 |
+
|
356 |
+
def on_train_batch_end(self, batch, logs=None):
|
357 |
+
if self.save_strategy == IntervalStrategy.STEPS and (batch + 1) % self.save_steps == 0:
|
358 |
+
if self.last_job is not None and not self.last_job.is_done:
|
359 |
+
return # The last upload is still running, don't start another
|
360 |
+
self.model.save_pretrained(self.output_dir)
|
361 |
+
if self.tokenizer is not None:
|
362 |
+
self.tokenizer.save_pretrained(self.output_dir)
|
363 |
+
_, self.last_job = self.repo.push_to_hub(
|
364 |
+
commit_message=f"Training in progress steps {batch}", blocking=False
|
365 |
+
)
|
366 |
+
|
367 |
+
def on_epoch_end(self, epoch, logs=None):
|
368 |
+
logs = logs.copy() # Don't accidentally write things that Keras will read later
|
369 |
+
if "epoch" not in logs:
|
370 |
+
logs["epoch"] = epoch
|
371 |
+
self.training_history.append(logs)
|
372 |
+
if self.save_strategy == IntervalStrategy.EPOCH:
|
373 |
+
if self.last_job is not None and not self.last_job.is_done:
|
374 |
+
return # The last upload is still running, don't start another
|
375 |
+
self.model.save_pretrained(self.output_dir)
|
376 |
+
if self.tokenizer is not None:
|
377 |
+
self.tokenizer.save_pretrained(self.output_dir)
|
378 |
+
if self.checkpoint:
|
379 |
+
checkpoint_dir = os.path.join(self.output_dir, "checkpoint")
|
380 |
+
self.model._save_checkpoint(checkpoint_dir, epoch)
|
381 |
+
train_summary = TrainingSummary.from_keras(
|
382 |
+
model=self.model,
|
383 |
+
model_name=self.hub_model_id,
|
384 |
+
keras_history=self.training_history,
|
385 |
+
**self.model_card_args,
|
386 |
+
)
|
387 |
+
model_card = train_summary.to_model_card()
|
388 |
+
with (self.output_dir / "README.md").open("w") as f:
|
389 |
+
f.write(model_card)
|
390 |
+
_, self.last_job = self.repo.push_to_hub(
|
391 |
+
commit_message=f"Training in progress epoch {epoch}", blocking=False
|
392 |
+
)
|
393 |
+
|
394 |
+
def on_train_end(self, logs=None):
|
395 |
+
# Makes sure the latest version of the model is uploaded
|
396 |
+
if self.last_job is not None and not self.last_job.is_done:
|
397 |
+
logging.info("Pushing the last epoch to the Hub, this may take a while...")
|
398 |
+
while not self.last_job.is_done:
|
399 |
+
sleep(1)
|
400 |
+
else:
|
401 |
+
self.model.save_pretrained(self.output_dir)
|
402 |
+
if self.tokenizer is not None:
|
403 |
+
self.tokenizer.save_pretrained(self.output_dir)
|
404 |
+
train_summary = TrainingSummary.from_keras(
|
405 |
+
model=self.model,
|
406 |
+
model_name=self.hub_model_id,
|
407 |
+
keras_history=self.training_history,
|
408 |
+
**self.model_card_args,
|
409 |
+
)
|
410 |
+
model_card = train_summary.to_model_card()
|
411 |
+
with (self.output_dir / "README.md").open("w") as f:
|
412 |
+
f.write(model_card)
|
413 |
+
self.repo.push_to_hub(commit_message="End of training", blocking=True)
|
venv/lib/python3.10/site-packages/transformers/kernels/deformable_detr/ms_deform_attn.h
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*!
|
2 |
+
**************************************************************************************************
|
3 |
+
* Deformable DETR
|
4 |
+
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
5 |
+
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
**************************************************************************************************
|
7 |
+
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
8 |
+
**************************************************************************************************
|
9 |
+
*/
|
10 |
+
|
11 |
+
#pragma once
|
12 |
+
|
13 |
+
#include "cpu/ms_deform_attn_cpu.h"
|
14 |
+
|
15 |
+
#ifdef WITH_CUDA
|
16 |
+
#include "cuda/ms_deform_attn_cuda.h"
|
17 |
+
#endif
|
18 |
+
|
19 |
+
|
20 |
+
at::Tensor
|
21 |
+
ms_deform_attn_forward(
|
22 |
+
const at::Tensor &value,
|
23 |
+
const at::Tensor &spatial_shapes,
|
24 |
+
const at::Tensor &level_start_index,
|
25 |
+
const at::Tensor &sampling_loc,
|
26 |
+
const at::Tensor &attn_weight,
|
27 |
+
const int im2col_step)
|
28 |
+
{
|
29 |
+
if (value.type().is_cuda())
|
30 |
+
{
|
31 |
+
#ifdef WITH_CUDA
|
32 |
+
return ms_deform_attn_cuda_forward(
|
33 |
+
value, spatial_shapes, level_start_index, sampling_loc, attn_weight, im2col_step);
|
34 |
+
#else
|
35 |
+
AT_ERROR("Not compiled with GPU support");
|
36 |
+
#endif
|
37 |
+
}
|
38 |
+
AT_ERROR("Not implemented on the CPU");
|
39 |
+
}
|
40 |
+
|
41 |
+
std::vector<at::Tensor>
|
42 |
+
ms_deform_attn_backward(
|
43 |
+
const at::Tensor &value,
|
44 |
+
const at::Tensor &spatial_shapes,
|
45 |
+
const at::Tensor &level_start_index,
|
46 |
+
const at::Tensor &sampling_loc,
|
47 |
+
const at::Tensor &attn_weight,
|
48 |
+
const at::Tensor &grad_output,
|
49 |
+
const int im2col_step)
|
50 |
+
{
|
51 |
+
if (value.type().is_cuda())
|
52 |
+
{
|
53 |
+
#ifdef WITH_CUDA
|
54 |
+
return ms_deform_attn_cuda_backward(
|
55 |
+
value, spatial_shapes, level_start_index, sampling_loc, attn_weight, grad_output, im2col_step);
|
56 |
+
#else
|
57 |
+
AT_ERROR("Not compiled with GPU support");
|
58 |
+
#endif
|
59 |
+
}
|
60 |
+
AT_ERROR("Not implemented on the CPU");
|
61 |
+
}
|
venv/lib/python3.10/site-packages/transformers/kernels/deta/cpu/ms_deform_attn_cpu.cpp
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*!
|
2 |
+
**************************************************************************************************
|
3 |
+
* Deformable DETR
|
4 |
+
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
5 |
+
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
**************************************************************************************************
|
7 |
+
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
8 |
+
**************************************************************************************************
|
9 |
+
*/
|
10 |
+
|
11 |
+
#include <vector>
|
12 |
+
|
13 |
+
#include <ATen/ATen.h>
|
14 |
+
#include <ATen/cuda/CUDAContext.h>
|
15 |
+
|
16 |
+
|
17 |
+
at::Tensor
|
18 |
+
ms_deform_attn_cpu_forward(
|
19 |
+
const at::Tensor &value,
|
20 |
+
const at::Tensor &spatial_shapes,
|
21 |
+
const at::Tensor &level_start_index,
|
22 |
+
const at::Tensor &sampling_loc,
|
23 |
+
const at::Tensor &attn_weight,
|
24 |
+
const int im2col_step)
|
25 |
+
{
|
26 |
+
AT_ERROR("Not implement on cpu");
|
27 |
+
}
|
28 |
+
|
29 |
+
std::vector<at::Tensor>
|
30 |
+
ms_deform_attn_cpu_backward(
|
31 |
+
const at::Tensor &value,
|
32 |
+
const at::Tensor &spatial_shapes,
|
33 |
+
const at::Tensor &level_start_index,
|
34 |
+
const at::Tensor &sampling_loc,
|
35 |
+
const at::Tensor &attn_weight,
|
36 |
+
const at::Tensor &grad_output,
|
37 |
+
const int im2col_step)
|
38 |
+
{
|
39 |
+
AT_ERROR("Not implement on cpu");
|
40 |
+
}
|
venv/lib/python3.10/site-packages/transformers/kernels/deta/cpu/ms_deform_attn_cpu.h
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*!
|
2 |
+
**************************************************************************************************
|
3 |
+
* Deformable DETR
|
4 |
+
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
5 |
+
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
**************************************************************************************************
|
7 |
+
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
8 |
+
**************************************************************************************************
|
9 |
+
*/
|
10 |
+
|
11 |
+
#pragma once
|
12 |
+
#include <torch/extension.h>
|
13 |
+
|
14 |
+
at::Tensor
|
15 |
+
ms_deform_attn_cpu_forward(
|
16 |
+
const at::Tensor &value,
|
17 |
+
const at::Tensor &spatial_shapes,
|
18 |
+
const at::Tensor &level_start_index,
|
19 |
+
const at::Tensor &sampling_loc,
|
20 |
+
const at::Tensor &attn_weight,
|
21 |
+
const int im2col_step);
|
22 |
+
|
23 |
+
std::vector<at::Tensor>
|
24 |
+
ms_deform_attn_cpu_backward(
|
25 |
+
const at::Tensor &value,
|
26 |
+
const at::Tensor &spatial_shapes,
|
27 |
+
const at::Tensor &level_start_index,
|
28 |
+
const at::Tensor &sampling_loc,
|
29 |
+
const at::Tensor &attn_weight,
|
30 |
+
const at::Tensor &grad_output,
|
31 |
+
const int im2col_step);
|
32 |
+
|
venv/lib/python3.10/site-packages/transformers/kernels/deta/cuda/ms_deform_attn_cuda.cu
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*!
|
2 |
+
**************************************************************************************************
|
3 |
+
* Deformable DETR
|
4 |
+
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
5 |
+
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
**************************************************************************************************
|
7 |
+
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
8 |
+
**************************************************************************************************
|
9 |
+
*/
|
10 |
+
|
11 |
+
#include <vector>
|
12 |
+
#include "cuda/ms_deform_im2col_cuda.cuh"
|
13 |
+
|
14 |
+
#include <ATen/ATen.h>
|
15 |
+
#include <ATen/cuda/CUDAContext.h>
|
16 |
+
#include <cuda.h>
|
17 |
+
#include <cuda_runtime.h>
|
18 |
+
|
19 |
+
#pragma once
|
20 |
+
#include <torch/extension.h>
|
21 |
+
|
22 |
+
|
23 |
+
at::Tensor ms_deform_attn_cuda_forward(
|
24 |
+
const at::Tensor &value,
|
25 |
+
const at::Tensor &spatial_shapes,
|
26 |
+
const at::Tensor &level_start_index,
|
27 |
+
const at::Tensor &sampling_loc,
|
28 |
+
const at::Tensor &attn_weight,
|
29 |
+
const int im2col_step)
|
30 |
+
{
|
31 |
+
AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous");
|
32 |
+
AT_ASSERTM(spatial_shapes.is_contiguous(), "spatial_shapes tensor has to be contiguous");
|
33 |
+
AT_ASSERTM(level_start_index.is_contiguous(), "level_start_index tensor has to be contiguous");
|
34 |
+
AT_ASSERTM(sampling_loc.is_contiguous(), "sampling_loc tensor has to be contiguous");
|
35 |
+
AT_ASSERTM(attn_weight.is_contiguous(), "attn_weight tensor has to be contiguous");
|
36 |
+
|
37 |
+
AT_ASSERTM(value.type().is_cuda(), "value must be a CUDA tensor");
|
38 |
+
AT_ASSERTM(spatial_shapes.type().is_cuda(), "spatial_shapes must be a CUDA tensor");
|
39 |
+
AT_ASSERTM(level_start_index.type().is_cuda(), "level_start_index must be a CUDA tensor");
|
40 |
+
AT_ASSERTM(sampling_loc.type().is_cuda(), "sampling_loc must be a CUDA tensor");
|
41 |
+
AT_ASSERTM(attn_weight.type().is_cuda(), "attn_weight must be a CUDA tensor");
|
42 |
+
|
43 |
+
const int batch = value.size(0);
|
44 |
+
const int spatial_size = value.size(1);
|
45 |
+
const int num_heads = value.size(2);
|
46 |
+
const int channels = value.size(3);
|
47 |
+
|
48 |
+
const int num_levels = spatial_shapes.size(0);
|
49 |
+
|
50 |
+
const int num_query = sampling_loc.size(1);
|
51 |
+
const int num_point = sampling_loc.size(4);
|
52 |
+
|
53 |
+
const int im2col_step_ = std::min(batch, im2col_step);
|
54 |
+
|
55 |
+
AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)", batch, im2col_step_);
|
56 |
+
|
57 |
+
auto output = at::zeros({batch, num_query, num_heads, channels}, value.options());
|
58 |
+
|
59 |
+
const int batch_n = im2col_step_;
|
60 |
+
auto output_n = output.view({batch/im2col_step_, batch_n, num_query, num_heads, channels});
|
61 |
+
auto per_value_size = spatial_size * num_heads * channels;
|
62 |
+
auto per_sample_loc_size = num_query * num_heads * num_levels * num_point * 2;
|
63 |
+
auto per_attn_weight_size = num_query * num_heads * num_levels * num_point;
|
64 |
+
for (int n = 0; n < batch/im2col_step_; ++n)
|
65 |
+
{
|
66 |
+
auto columns = output_n.select(0, n);
|
67 |
+
AT_DISPATCH_FLOATING_TYPES(value.type(), "ms_deform_attn_forward_cuda", ([&] {
|
68 |
+
ms_deformable_im2col_cuda(at::cuda::getCurrentCUDAStream(),
|
69 |
+
value.data<scalar_t>() + n * im2col_step_ * per_value_size,
|
70 |
+
spatial_shapes.data<int64_t>(),
|
71 |
+
level_start_index.data<int64_t>(),
|
72 |
+
sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size,
|
73 |
+
attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size,
|
74 |
+
batch_n, spatial_size, num_heads, channels, num_levels, num_query, num_point,
|
75 |
+
columns.data<scalar_t>());
|
76 |
+
|
77 |
+
}));
|
78 |
+
}
|
79 |
+
|
80 |
+
output = output.view({batch, num_query, num_heads*channels});
|
81 |
+
|
82 |
+
return output;
|
83 |
+
}
|
84 |
+
|
85 |
+
|
86 |
+
std::vector<at::Tensor> ms_deform_attn_cuda_backward(
|
87 |
+
const at::Tensor &value,
|
88 |
+
const at::Tensor &spatial_shapes,
|
89 |
+
const at::Tensor &level_start_index,
|
90 |
+
const at::Tensor &sampling_loc,
|
91 |
+
const at::Tensor &attn_weight,
|
92 |
+
const at::Tensor &grad_output,
|
93 |
+
const int im2col_step)
|
94 |
+
{
|
95 |
+
|
96 |
+
AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous");
|
97 |
+
AT_ASSERTM(spatial_shapes.is_contiguous(), "spatial_shapes tensor has to be contiguous");
|
98 |
+
AT_ASSERTM(level_start_index.is_contiguous(), "level_start_index tensor has to be contiguous");
|
99 |
+
AT_ASSERTM(sampling_loc.is_contiguous(), "sampling_loc tensor has to be contiguous");
|
100 |
+
AT_ASSERTM(attn_weight.is_contiguous(), "attn_weight tensor has to be contiguous");
|
101 |
+
AT_ASSERTM(grad_output.is_contiguous(), "grad_output tensor has to be contiguous");
|
102 |
+
|
103 |
+
AT_ASSERTM(value.type().is_cuda(), "value must be a CUDA tensor");
|
104 |
+
AT_ASSERTM(spatial_shapes.type().is_cuda(), "spatial_shapes must be a CUDA tensor");
|
105 |
+
AT_ASSERTM(level_start_index.type().is_cuda(), "level_start_index must be a CUDA tensor");
|
106 |
+
AT_ASSERTM(sampling_loc.type().is_cuda(), "sampling_loc must be a CUDA tensor");
|
107 |
+
AT_ASSERTM(attn_weight.type().is_cuda(), "attn_weight must be a CUDA tensor");
|
108 |
+
AT_ASSERTM(grad_output.type().is_cuda(), "grad_output must be a CUDA tensor");
|
109 |
+
|
110 |
+
const int batch = value.size(0);
|
111 |
+
const int spatial_size = value.size(1);
|
112 |
+
const int num_heads = value.size(2);
|
113 |
+
const int channels = value.size(3);
|
114 |
+
|
115 |
+
const int num_levels = spatial_shapes.size(0);
|
116 |
+
|
117 |
+
const int num_query = sampling_loc.size(1);
|
118 |
+
const int num_point = sampling_loc.size(4);
|
119 |
+
|
120 |
+
const int im2col_step_ = std::min(batch, im2col_step);
|
121 |
+
|
122 |
+
AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)", batch, im2col_step_);
|
123 |
+
|
124 |
+
auto grad_value = at::zeros_like(value);
|
125 |
+
auto grad_sampling_loc = at::zeros_like(sampling_loc);
|
126 |
+
auto grad_attn_weight = at::zeros_like(attn_weight);
|
127 |
+
|
128 |
+
const int batch_n = im2col_step_;
|
129 |
+
auto per_value_size = spatial_size * num_heads * channels;
|
130 |
+
auto per_sample_loc_size = num_query * num_heads * num_levels * num_point * 2;
|
131 |
+
auto per_attn_weight_size = num_query * num_heads * num_levels * num_point;
|
132 |
+
auto grad_output_n = grad_output.view({batch/im2col_step_, batch_n, num_query, num_heads, channels});
|
133 |
+
|
134 |
+
for (int n = 0; n < batch/im2col_step_; ++n)
|
135 |
+
{
|
136 |
+
auto grad_output_g = grad_output_n.select(0, n);
|
137 |
+
AT_DISPATCH_FLOATING_TYPES(value.type(), "ms_deform_attn_backward_cuda", ([&] {
|
138 |
+
ms_deformable_col2im_cuda(at::cuda::getCurrentCUDAStream(),
|
139 |
+
grad_output_g.data<scalar_t>(),
|
140 |
+
value.data<scalar_t>() + n * im2col_step_ * per_value_size,
|
141 |
+
spatial_shapes.data<int64_t>(),
|
142 |
+
level_start_index.data<int64_t>(),
|
143 |
+
sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size,
|
144 |
+
attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size,
|
145 |
+
batch_n, spatial_size, num_heads, channels, num_levels, num_query, num_point,
|
146 |
+
grad_value.data<scalar_t>() + n * im2col_step_ * per_value_size,
|
147 |
+
grad_sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size,
|
148 |
+
grad_attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size);
|
149 |
+
|
150 |
+
}));
|
151 |
+
}
|
152 |
+
|
153 |
+
return {
|
154 |
+
grad_value, grad_sampling_loc, grad_attn_weight
|
155 |
+
};
|
156 |
+
}
|
venv/lib/python3.10/site-packages/transformers/kernels/deta/cuda/ms_deform_attn_cuda.cuh
ADDED
@@ -0,0 +1,1467 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*!
|
2 |
+
**************************************************************************************************
|
3 |
+
* Deformable DETR
|
4 |
+
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
5 |
+
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
**************************************************************************************************
|
7 |
+
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
8 |
+
**************************************************************************************************
|
9 |
+
*/
|
10 |
+
|
11 |
+
#include <vector>
|
12 |
+
|
13 |
+
#include <cuda.h>
|
14 |
+
#include <cuda_runtime.h>
|
15 |
+
|
16 |
+
#include <cstdio>
|
17 |
+
#include <algorithm>
|
18 |
+
#include <cstring>
|
19 |
+
|
20 |
+
#include <ATen/ATen.h>
|
21 |
+
#include <ATen/cuda/CUDAContext.h>
|
22 |
+
|
23 |
+
#include <THC/THCAtomics.cuh>
|
24 |
+
|
25 |
+
#define CUDA_KERNEL_LOOP(i, n) \
|
26 |
+
for (int i = blockIdx.x * blockDim.x + threadIdx.x; \
|
27 |
+
i < (n); \
|
28 |
+
i += blockDim.x * gridDim.x)
|
29 |
+
|
30 |
+
|
31 |
+
at::Tensor ms_deform_attn_cuda_forward(
|
32 |
+
const at::Tensor &value,
|
33 |
+
const at::Tensor &spatial_shapes,
|
34 |
+
const at::Tensor &level_start_index,
|
35 |
+
const at::Tensor &sampling_loc,
|
36 |
+
const at::Tensor &attn_weight,
|
37 |
+
const int im2col_step)
|
38 |
+
{
|
39 |
+
AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous");
|
40 |
+
AT_ASSERTM(spatial_shapes.is_contiguous(), "spatial_shapes tensor has to be contiguous");
|
41 |
+
AT_ASSERTM(level_start_index.is_contiguous(), "level_start_index tensor has to be contiguous");
|
42 |
+
AT_ASSERTM(sampling_loc.is_contiguous(), "sampling_loc tensor has to be contiguous");
|
43 |
+
AT_ASSERTM(attn_weight.is_contiguous(), "attn_weight tensor has to be contiguous");
|
44 |
+
|
45 |
+
AT_ASSERTM(value.type().is_cuda(), "value must be a CUDA tensor");
|
46 |
+
AT_ASSERTM(spatial_shapes.type().is_cuda(), "spatial_shapes must be a CUDA tensor");
|
47 |
+
AT_ASSERTM(level_start_index.type().is_cuda(), "level_start_index must be a CUDA tensor");
|
48 |
+
AT_ASSERTM(sampling_loc.type().is_cuda(), "sampling_loc must be a CUDA tensor");
|
49 |
+
AT_ASSERTM(attn_weight.type().is_cuda(), "attn_weight must be a CUDA tensor");
|
50 |
+
|
51 |
+
const int batch = value.size(0);
|
52 |
+
const int spatial_size = value.size(1);
|
53 |
+
const int num_heads = value.size(2);
|
54 |
+
const int channels = value.size(3);
|
55 |
+
|
56 |
+
const int num_levels = spatial_shapes.size(0);
|
57 |
+
|
58 |
+
const int num_query = sampling_loc.size(1);
|
59 |
+
const int num_point = sampling_loc.size(4);
|
60 |
+
|
61 |
+
const int im2col_step_ = std::min(batch, im2col_step);
|
62 |
+
|
63 |
+
AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)", batch, im2col_step_);
|
64 |
+
|
65 |
+
auto output = at::zeros({batch, num_query, num_heads, channels}, value.options());
|
66 |
+
|
67 |
+
const int batch_n = im2col_step_;
|
68 |
+
auto output_n = output.view({batch/im2col_step_, batch_n, num_query, num_heads, channels});
|
69 |
+
auto per_value_size = spatial_size * num_heads * channels;
|
70 |
+
auto per_sample_loc_size = num_query * num_heads * num_levels * num_point * 2;
|
71 |
+
auto per_attn_weight_size = num_query * num_heads * num_levels * num_point;
|
72 |
+
for (int n = 0; n < batch/im2col_step_; ++n)
|
73 |
+
{
|
74 |
+
auto columns = output_n.select(0, n);
|
75 |
+
AT_DISPATCH_FLOATING_TYPES(value.type(), "ms_deform_attn_forward_cuda", ([&] {
|
76 |
+
ms_deformable_im2col_cuda(at::cuda::getCurrentCUDAStream(),
|
77 |
+
value.data<scalar_t>() + n * im2col_step_ * per_value_size,
|
78 |
+
spatial_shapes.data<int64_t>(),
|
79 |
+
level_start_index.data<int64_t>(),
|
80 |
+
sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size,
|
81 |
+
attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size,
|
82 |
+
batch_n, spatial_size, num_heads, channels, num_levels, num_query, num_point,
|
83 |
+
columns.data<scalar_t>());
|
84 |
+
|
85 |
+
}));
|
86 |
+
}
|
87 |
+
|
88 |
+
output = output.view({batch, num_query, num_heads*channels});
|
89 |
+
|
90 |
+
return output;
|
91 |
+
}
|
92 |
+
|
93 |
+
|
94 |
+
std::vector<at::Tensor> ms_deform_attn_cuda_backward(
|
95 |
+
const at::Tensor &value,
|
96 |
+
const at::Tensor &spatial_shapes,
|
97 |
+
const at::Tensor &level_start_index,
|
98 |
+
const at::Tensor &sampling_loc,
|
99 |
+
const at::Tensor &attn_weight,
|
100 |
+
const at::Tensor &grad_output,
|
101 |
+
const int im2col_step)
|
102 |
+
{
|
103 |
+
|
104 |
+
AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous");
|
105 |
+
AT_ASSERTM(spatial_shapes.is_contiguous(), "spatial_shapes tensor has to be contiguous");
|
106 |
+
AT_ASSERTM(level_start_index.is_contiguous(), "level_start_index tensor has to be contiguous");
|
107 |
+
AT_ASSERTM(sampling_loc.is_contiguous(), "sampling_loc tensor has to be contiguous");
|
108 |
+
AT_ASSERTM(attn_weight.is_contiguous(), "attn_weight tensor has to be contiguous");
|
109 |
+
AT_ASSERTM(grad_output.is_contiguous(), "grad_output tensor has to be contiguous");
|
110 |
+
|
111 |
+
AT_ASSERTM(value.type().is_cuda(), "value must be a CUDA tensor");
|
112 |
+
AT_ASSERTM(spatial_shapes.type().is_cuda(), "spatial_shapes must be a CUDA tensor");
|
113 |
+
AT_ASSERTM(level_start_index.type().is_cuda(), "level_start_index must be a CUDA tensor");
|
114 |
+
AT_ASSERTM(sampling_loc.type().is_cuda(), "sampling_loc must be a CUDA tensor");
|
115 |
+
AT_ASSERTM(attn_weight.type().is_cuda(), "attn_weight must be a CUDA tensor");
|
116 |
+
AT_ASSERTM(grad_output.type().is_cuda(), "grad_output must be a CUDA tensor");
|
117 |
+
|
118 |
+
const int batch = value.size(0);
|
119 |
+
const int spatial_size = value.size(1);
|
120 |
+
const int num_heads = value.size(2);
|
121 |
+
const int channels = value.size(3);
|
122 |
+
|
123 |
+
const int num_levels = spatial_shapes.size(0);
|
124 |
+
|
125 |
+
const int num_query = sampling_loc.size(1);
|
126 |
+
const int num_point = sampling_loc.size(4);
|
127 |
+
|
128 |
+
const int im2col_step_ = std::min(batch, im2col_step);
|
129 |
+
|
130 |
+
AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)", batch, im2col_step_);
|
131 |
+
|
132 |
+
auto grad_value = at::zeros_like(value);
|
133 |
+
auto grad_sampling_loc = at::zeros_like(sampling_loc);
|
134 |
+
auto grad_attn_weight = at::zeros_like(attn_weight);
|
135 |
+
|
136 |
+
const int batch_n = im2col_step_;
|
137 |
+
auto per_value_size = spatial_size * num_heads * channels;
|
138 |
+
auto per_sample_loc_size = num_query * num_heads * num_levels * num_point * 2;
|
139 |
+
auto per_attn_weight_size = num_query * num_heads * num_levels * num_point;
|
140 |
+
auto grad_output_n = grad_output.view({batch/im2col_step_, batch_n, num_query, num_heads, channels});
|
141 |
+
|
142 |
+
for (int n = 0; n < batch/im2col_step_; ++n)
|
143 |
+
{
|
144 |
+
auto grad_output_g = grad_output_n.select(0, n);
|
145 |
+
AT_DISPATCH_FLOATING_TYPES(value.type(), "ms_deform_attn_backward_cuda", ([&] {
|
146 |
+
ms_deformable_col2im_cuda(at::cuda::getCurrentCUDAStream(),
|
147 |
+
grad_output_g.data<scalar_t>(),
|
148 |
+
value.data<scalar_t>() + n * im2col_step_ * per_value_size,
|
149 |
+
spatial_shapes.data<int64_t>(),
|
150 |
+
level_start_index.data<int64_t>(),
|
151 |
+
sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size,
|
152 |
+
attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size,
|
153 |
+
batch_n, spatial_size, num_heads, channels, num_levels, num_query, num_point,
|
154 |
+
grad_value.data<scalar_t>() + n * im2col_step_ * per_value_size,
|
155 |
+
grad_sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size,
|
156 |
+
grad_attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size);
|
157 |
+
|
158 |
+
}));
|
159 |
+
}
|
160 |
+
|
161 |
+
return {
|
162 |
+
grad_value, grad_sampling_loc, grad_attn_weight
|
163 |
+
};
|
164 |
+
}
|
165 |
+
|
166 |
+
const int CUDA_NUM_THREADS = 1024;
|
167 |
+
inline int GET_BLOCKS(const int N, const int num_threads)
|
168 |
+
{
|
169 |
+
return (N + num_threads - 1) / num_threads;
|
170 |
+
}
|
171 |
+
|
172 |
+
|
173 |
+
template <typename scalar_t>
|
174 |
+
__device__ scalar_t ms_deform_attn_im2col_bilinear(const scalar_t* &bottom_data,
|
175 |
+
const int &height, const int &width, const int &nheads, const int &channels,
|
176 |
+
const scalar_t &h, const scalar_t &w, const int &m, const int &c)
|
177 |
+
{
|
178 |
+
const int h_low = floor(h);
|
179 |
+
const int w_low = floor(w);
|
180 |
+
const int h_high = h_low + 1;
|
181 |
+
const int w_high = w_low + 1;
|
182 |
+
|
183 |
+
const scalar_t lh = h - h_low;
|
184 |
+
const scalar_t lw = w - w_low;
|
185 |
+
const scalar_t hh = 1 - lh, hw = 1 - lw;
|
186 |
+
|
187 |
+
const int w_stride = nheads * channels;
|
188 |
+
const int h_stride = width * w_stride;
|
189 |
+
const int h_low_ptr_offset = h_low * h_stride;
|
190 |
+
const int h_high_ptr_offset = h_low_ptr_offset + h_stride;
|
191 |
+
const int w_low_ptr_offset = w_low * w_stride;
|
192 |
+
const int w_high_ptr_offset = w_low_ptr_offset + w_stride;
|
193 |
+
const int base_ptr = m * channels + c;
|
194 |
+
|
195 |
+
scalar_t v1 = 0;
|
196 |
+
if (h_low >= 0 && w_low >= 0)
|
197 |
+
{
|
198 |
+
const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr;
|
199 |
+
v1 = bottom_data[ptr1];
|
200 |
+
}
|
201 |
+
scalar_t v2 = 0;
|
202 |
+
if (h_low >= 0 && w_high <= width - 1)
|
203 |
+
{
|
204 |
+
const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr;
|
205 |
+
v2 = bottom_data[ptr2];
|
206 |
+
}
|
207 |
+
scalar_t v3 = 0;
|
208 |
+
if (h_high <= height - 1 && w_low >= 0)
|
209 |
+
{
|
210 |
+
const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr;
|
211 |
+
v3 = bottom_data[ptr3];
|
212 |
+
}
|
213 |
+
scalar_t v4 = 0;
|
214 |
+
if (h_high <= height - 1 && w_high <= width - 1)
|
215 |
+
{
|
216 |
+
const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr;
|
217 |
+
v4 = bottom_data[ptr4];
|
218 |
+
}
|
219 |
+
|
220 |
+
const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
|
221 |
+
|
222 |
+
const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
|
223 |
+
return val;
|
224 |
+
}
|
225 |
+
|
226 |
+
|
227 |
+
template <typename scalar_t>
|
228 |
+
__device__ void ms_deform_attn_col2im_bilinear(const scalar_t* &bottom_data,
|
229 |
+
const int &height, const int &width, const int &nheads, const int &channels,
|
230 |
+
const scalar_t &h, const scalar_t &w, const int &m, const int &c,
|
231 |
+
const scalar_t &top_grad,
|
232 |
+
const scalar_t &attn_weight,
|
233 |
+
scalar_t* &grad_value,
|
234 |
+
scalar_t* grad_sampling_loc,
|
235 |
+
scalar_t* grad_attn_weight)
|
236 |
+
{
|
237 |
+
const int h_low = floor(h);
|
238 |
+
const int w_low = floor(w);
|
239 |
+
const int h_high = h_low + 1;
|
240 |
+
const int w_high = w_low + 1;
|
241 |
+
|
242 |
+
const scalar_t lh = h - h_low;
|
243 |
+
const scalar_t lw = w - w_low;
|
244 |
+
const scalar_t hh = 1 - lh, hw = 1 - lw;
|
245 |
+
|
246 |
+
const int w_stride = nheads * channels;
|
247 |
+
const int h_stride = width * w_stride;
|
248 |
+
const int h_low_ptr_offset = h_low * h_stride;
|
249 |
+
const int h_high_ptr_offset = h_low_ptr_offset + h_stride;
|
250 |
+
const int w_low_ptr_offset = w_low * w_stride;
|
251 |
+
const int w_high_ptr_offset = w_low_ptr_offset + w_stride;
|
252 |
+
const int base_ptr = m * channels + c;
|
253 |
+
|
254 |
+
const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
|
255 |
+
const scalar_t top_grad_value = top_grad * attn_weight;
|
256 |
+
scalar_t grad_h_weight = 0, grad_w_weight = 0;
|
257 |
+
|
258 |
+
scalar_t v1 = 0;
|
259 |
+
if (h_low >= 0 && w_low >= 0)
|
260 |
+
{
|
261 |
+
const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr;
|
262 |
+
v1 = bottom_data[ptr1];
|
263 |
+
grad_h_weight -= hw * v1;
|
264 |
+
grad_w_weight -= hh * v1;
|
265 |
+
atomicAdd(grad_value+ptr1, w1*top_grad_value);
|
266 |
+
}
|
267 |
+
scalar_t v2 = 0;
|
268 |
+
if (h_low >= 0 && w_high <= width - 1)
|
269 |
+
{
|
270 |
+
const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr;
|
271 |
+
v2 = bottom_data[ptr2];
|
272 |
+
grad_h_weight -= lw * v2;
|
273 |
+
grad_w_weight += hh * v2;
|
274 |
+
atomicAdd(grad_value+ptr2, w2*top_grad_value);
|
275 |
+
}
|
276 |
+
scalar_t v3 = 0;
|
277 |
+
if (h_high <= height - 1 && w_low >= 0)
|
278 |
+
{
|
279 |
+
const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr;
|
280 |
+
v3 = bottom_data[ptr3];
|
281 |
+
grad_h_weight += hw * v3;
|
282 |
+
grad_w_weight -= lh * v3;
|
283 |
+
atomicAdd(grad_value+ptr3, w3*top_grad_value);
|
284 |
+
}
|
285 |
+
scalar_t v4 = 0;
|
286 |
+
if (h_high <= height - 1 && w_high <= width - 1)
|
287 |
+
{
|
288 |
+
const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr;
|
289 |
+
v4 = bottom_data[ptr4];
|
290 |
+
grad_h_weight += lw * v4;
|
291 |
+
grad_w_weight += lh * v4;
|
292 |
+
atomicAdd(grad_value+ptr4, w4*top_grad_value);
|
293 |
+
}
|
294 |
+
|
295 |
+
const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
|
296 |
+
*grad_attn_weight = top_grad * val;
|
297 |
+
*grad_sampling_loc = width * grad_w_weight * top_grad_value;
|
298 |
+
*(grad_sampling_loc + 1) = height * grad_h_weight * top_grad_value;
|
299 |
+
}
|
300 |
+
|
301 |
+
|
302 |
+
template <typename scalar_t>
|
303 |
+
__device__ void ms_deform_attn_col2im_bilinear_gm(const scalar_t* &bottom_data,
|
304 |
+
const int &height, const int &width, const int &nheads, const int &channels,
|
305 |
+
const scalar_t &h, const scalar_t &w, const int &m, const int &c,
|
306 |
+
const scalar_t &top_grad,
|
307 |
+
const scalar_t &attn_weight,
|
308 |
+
scalar_t* &grad_value,
|
309 |
+
scalar_t* grad_sampling_loc,
|
310 |
+
scalar_t* grad_attn_weight)
|
311 |
+
{
|
312 |
+
const int h_low = floor(h);
|
313 |
+
const int w_low = floor(w);
|
314 |
+
const int h_high = h_low + 1;
|
315 |
+
const int w_high = w_low + 1;
|
316 |
+
|
317 |
+
const scalar_t lh = h - h_low;
|
318 |
+
const scalar_t lw = w - w_low;
|
319 |
+
const scalar_t hh = 1 - lh, hw = 1 - lw;
|
320 |
+
|
321 |
+
const int w_stride = nheads * channels;
|
322 |
+
const int h_stride = width * w_stride;
|
323 |
+
const int h_low_ptr_offset = h_low * h_stride;
|
324 |
+
const int h_high_ptr_offset = h_low_ptr_offset + h_stride;
|
325 |
+
const int w_low_ptr_offset = w_low * w_stride;
|
326 |
+
const int w_high_ptr_offset = w_low_ptr_offset + w_stride;
|
327 |
+
const int base_ptr = m * channels + c;
|
328 |
+
|
329 |
+
const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
|
330 |
+
const scalar_t top_grad_value = top_grad * attn_weight;
|
331 |
+
scalar_t grad_h_weight = 0, grad_w_weight = 0;
|
332 |
+
|
333 |
+
scalar_t v1 = 0;
|
334 |
+
if (h_low >= 0 && w_low >= 0)
|
335 |
+
{
|
336 |
+
const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr;
|
337 |
+
v1 = bottom_data[ptr1];
|
338 |
+
grad_h_weight -= hw * v1;
|
339 |
+
grad_w_weight -= hh * v1;
|
340 |
+
atomicAdd(grad_value+ptr1, w1*top_grad_value);
|
341 |
+
}
|
342 |
+
scalar_t v2 = 0;
|
343 |
+
if (h_low >= 0 && w_high <= width - 1)
|
344 |
+
{
|
345 |
+
const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr;
|
346 |
+
v2 = bottom_data[ptr2];
|
347 |
+
grad_h_weight -= lw * v2;
|
348 |
+
grad_w_weight += hh * v2;
|
349 |
+
atomicAdd(grad_value+ptr2, w2*top_grad_value);
|
350 |
+
}
|
351 |
+
scalar_t v3 = 0;
|
352 |
+
if (h_high <= height - 1 && w_low >= 0)
|
353 |
+
{
|
354 |
+
const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr;
|
355 |
+
v3 = bottom_data[ptr3];
|
356 |
+
grad_h_weight += hw * v3;
|
357 |
+
grad_w_weight -= lh * v3;
|
358 |
+
atomicAdd(grad_value+ptr3, w3*top_grad_value);
|
359 |
+
}
|
360 |
+
scalar_t v4 = 0;
|
361 |
+
if (h_high <= height - 1 && w_high <= width - 1)
|
362 |
+
{
|
363 |
+
const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr;
|
364 |
+
v4 = bottom_data[ptr4];
|
365 |
+
grad_h_weight += lw * v4;
|
366 |
+
grad_w_weight += lh * v4;
|
367 |
+
atomicAdd(grad_value+ptr4, w4*top_grad_value);
|
368 |
+
}
|
369 |
+
|
370 |
+
const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
|
371 |
+
atomicAdd(grad_attn_weight, top_grad * val);
|
372 |
+
atomicAdd(grad_sampling_loc, width * grad_w_weight * top_grad_value);
|
373 |
+
atomicAdd(grad_sampling_loc + 1, height * grad_h_weight * top_grad_value);
|
374 |
+
}
|
375 |
+
|
376 |
+
|
377 |
+
template <typename scalar_t>
|
378 |
+
__global__ void ms_deformable_im2col_gpu_kernel(const int n,
|
379 |
+
const scalar_t *data_value,
|
380 |
+
const int64_t *data_spatial_shapes,
|
381 |
+
const int64_t *data_level_start_index,
|
382 |
+
const scalar_t *data_sampling_loc,
|
383 |
+
const scalar_t *data_attn_weight,
|
384 |
+
const int batch_size,
|
385 |
+
const int spatial_size,
|
386 |
+
const int num_heads,
|
387 |
+
const int channels,
|
388 |
+
const int num_levels,
|
389 |
+
const int num_query,
|
390 |
+
const int num_point,
|
391 |
+
scalar_t *data_col)
|
392 |
+
{
|
393 |
+
CUDA_KERNEL_LOOP(index, n)
|
394 |
+
{
|
395 |
+
int _temp = index;
|
396 |
+
const int c_col = _temp % channels;
|
397 |
+
_temp /= channels;
|
398 |
+
const int sampling_index = _temp;
|
399 |
+
const int m_col = _temp % num_heads;
|
400 |
+
_temp /= num_heads;
|
401 |
+
const int q_col = _temp % num_query;
|
402 |
+
_temp /= num_query;
|
403 |
+
const int b_col = _temp;
|
404 |
+
|
405 |
+
scalar_t *data_col_ptr = data_col + index;
|
406 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
407 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
408 |
+
const int qid_stride = num_heads * channels;
|
409 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
410 |
+
scalar_t col = 0;
|
411 |
+
|
412 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
413 |
+
{
|
414 |
+
const int level_start_id = data_level_start_index[l_col];
|
415 |
+
const int spatial_h_ptr = l_col << 1;
|
416 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
417 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
418 |
+
const scalar_t *data_value_ptr = data_value + (data_value_ptr_init_offset + level_start_id * qid_stride);
|
419 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
420 |
+
{
|
421 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
422 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
423 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
424 |
+
|
425 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
426 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
427 |
+
|
428 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
429 |
+
{
|
430 |
+
col += ms_deform_attn_im2col_bilinear(data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col) * weight;
|
431 |
+
}
|
432 |
+
|
433 |
+
data_weight_ptr += 1;
|
434 |
+
data_loc_w_ptr += 2;
|
435 |
+
}
|
436 |
+
}
|
437 |
+
*data_col_ptr = col;
|
438 |
+
}
|
439 |
+
}
|
440 |
+
|
441 |
+
template <typename scalar_t, unsigned int blockSize>
|
442 |
+
__global__ void ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1(const int n,
|
443 |
+
const scalar_t *grad_col,
|
444 |
+
const scalar_t *data_value,
|
445 |
+
const int64_t *data_spatial_shapes,
|
446 |
+
const int64_t *data_level_start_index,
|
447 |
+
const scalar_t *data_sampling_loc,
|
448 |
+
const scalar_t *data_attn_weight,
|
449 |
+
const int batch_size,
|
450 |
+
const int spatial_size,
|
451 |
+
const int num_heads,
|
452 |
+
const int channels,
|
453 |
+
const int num_levels,
|
454 |
+
const int num_query,
|
455 |
+
const int num_point,
|
456 |
+
scalar_t *grad_value,
|
457 |
+
scalar_t *grad_sampling_loc,
|
458 |
+
scalar_t *grad_attn_weight)
|
459 |
+
{
|
460 |
+
CUDA_KERNEL_LOOP(index, n)
|
461 |
+
{
|
462 |
+
__shared__ scalar_t cache_grad_sampling_loc[blockSize * 2];
|
463 |
+
__shared__ scalar_t cache_grad_attn_weight[blockSize];
|
464 |
+
unsigned int tid = threadIdx.x;
|
465 |
+
int _temp = index;
|
466 |
+
const int c_col = _temp % channels;
|
467 |
+
_temp /= channels;
|
468 |
+
const int sampling_index = _temp;
|
469 |
+
const int m_col = _temp % num_heads;
|
470 |
+
_temp /= num_heads;
|
471 |
+
const int q_col = _temp % num_query;
|
472 |
+
_temp /= num_query;
|
473 |
+
const int b_col = _temp;
|
474 |
+
|
475 |
+
const scalar_t top_grad = grad_col[index];
|
476 |
+
|
477 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
478 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
479 |
+
const int grad_sampling_ptr = data_weight_ptr;
|
480 |
+
grad_sampling_loc += grad_sampling_ptr << 1;
|
481 |
+
grad_attn_weight += grad_sampling_ptr;
|
482 |
+
const int grad_weight_stride = 1;
|
483 |
+
const int grad_loc_stride = 2;
|
484 |
+
const int qid_stride = num_heads * channels;
|
485 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
486 |
+
|
487 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
488 |
+
{
|
489 |
+
const int level_start_id = data_level_start_index[l_col];
|
490 |
+
const int spatial_h_ptr = l_col << 1;
|
491 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
492 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
493 |
+
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
|
494 |
+
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
|
495 |
+
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
|
496 |
+
|
497 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
498 |
+
{
|
499 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
500 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
501 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
502 |
+
|
503 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
504 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
505 |
+
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
|
506 |
+
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
|
507 |
+
*(cache_grad_attn_weight+threadIdx.x)=0;
|
508 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
509 |
+
{
|
510 |
+
ms_deform_attn_col2im_bilinear(
|
511 |
+
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
|
512 |
+
top_grad, weight, grad_value_ptr,
|
513 |
+
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
|
514 |
+
}
|
515 |
+
|
516 |
+
__syncthreads();
|
517 |
+
if (tid == 0)
|
518 |
+
{
|
519 |
+
scalar_t _grad_w=cache_grad_sampling_loc[0], _grad_h=cache_grad_sampling_loc[1], _grad_a=cache_grad_attn_weight[0];
|
520 |
+
int sid=2;
|
521 |
+
for (unsigned int tid = 1; tid < blockSize; ++tid)
|
522 |
+
{
|
523 |
+
_grad_w += cache_grad_sampling_loc[sid];
|
524 |
+
_grad_h += cache_grad_sampling_loc[sid + 1];
|
525 |
+
_grad_a += cache_grad_attn_weight[tid];
|
526 |
+
sid += 2;
|
527 |
+
}
|
528 |
+
|
529 |
+
|
530 |
+
*grad_sampling_loc = _grad_w;
|
531 |
+
*(grad_sampling_loc + 1) = _grad_h;
|
532 |
+
*grad_attn_weight = _grad_a;
|
533 |
+
}
|
534 |
+
__syncthreads();
|
535 |
+
|
536 |
+
data_weight_ptr += 1;
|
537 |
+
data_loc_w_ptr += 2;
|
538 |
+
grad_attn_weight += grad_weight_stride;
|
539 |
+
grad_sampling_loc += grad_loc_stride;
|
540 |
+
}
|
541 |
+
}
|
542 |
+
}
|
543 |
+
}
|
544 |
+
|
545 |
+
|
546 |
+
template <typename scalar_t, unsigned int blockSize>
|
547 |
+
__global__ void ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2(const int n,
|
548 |
+
const scalar_t *grad_col,
|
549 |
+
const scalar_t *data_value,
|
550 |
+
const int64_t *data_spatial_shapes,
|
551 |
+
const int64_t *data_level_start_index,
|
552 |
+
const scalar_t *data_sampling_loc,
|
553 |
+
const scalar_t *data_attn_weight,
|
554 |
+
const int batch_size,
|
555 |
+
const int spatial_size,
|
556 |
+
const int num_heads,
|
557 |
+
const int channels,
|
558 |
+
const int num_levels,
|
559 |
+
const int num_query,
|
560 |
+
const int num_point,
|
561 |
+
scalar_t *grad_value,
|
562 |
+
scalar_t *grad_sampling_loc,
|
563 |
+
scalar_t *grad_attn_weight)
|
564 |
+
{
|
565 |
+
CUDA_KERNEL_LOOP(index, n)
|
566 |
+
{
|
567 |
+
__shared__ scalar_t cache_grad_sampling_loc[blockSize * 2];
|
568 |
+
__shared__ scalar_t cache_grad_attn_weight[blockSize];
|
569 |
+
unsigned int tid = threadIdx.x;
|
570 |
+
int _temp = index;
|
571 |
+
const int c_col = _temp % channels;
|
572 |
+
_temp /= channels;
|
573 |
+
const int sampling_index = _temp;
|
574 |
+
const int m_col = _temp % num_heads;
|
575 |
+
_temp /= num_heads;
|
576 |
+
const int q_col = _temp % num_query;
|
577 |
+
_temp /= num_query;
|
578 |
+
const int b_col = _temp;
|
579 |
+
|
580 |
+
const scalar_t top_grad = grad_col[index];
|
581 |
+
|
582 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
583 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
584 |
+
const int grad_sampling_ptr = data_weight_ptr;
|
585 |
+
grad_sampling_loc += grad_sampling_ptr << 1;
|
586 |
+
grad_attn_weight += grad_sampling_ptr;
|
587 |
+
const int grad_weight_stride = 1;
|
588 |
+
const int grad_loc_stride = 2;
|
589 |
+
const int qid_stride = num_heads * channels;
|
590 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
591 |
+
|
592 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
593 |
+
{
|
594 |
+
const int level_start_id = data_level_start_index[l_col];
|
595 |
+
const int spatial_h_ptr = l_col << 1;
|
596 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
597 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
598 |
+
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
|
599 |
+
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
|
600 |
+
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
|
601 |
+
|
602 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
603 |
+
{
|
604 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
605 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
606 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
607 |
+
|
608 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
609 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
610 |
+
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
|
611 |
+
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
|
612 |
+
*(cache_grad_attn_weight+threadIdx.x)=0;
|
613 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
614 |
+
{
|
615 |
+
ms_deform_attn_col2im_bilinear(
|
616 |
+
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
|
617 |
+
top_grad, weight, grad_value_ptr,
|
618 |
+
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
|
619 |
+
}
|
620 |
+
|
621 |
+
__syncthreads();
|
622 |
+
|
623 |
+
for (unsigned int s=blockSize/2; s>0; s>>=1)
|
624 |
+
{
|
625 |
+
if (tid < s) {
|
626 |
+
const unsigned int xid1 = tid << 1;
|
627 |
+
const unsigned int xid2 = (tid + s) << 1;
|
628 |
+
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s];
|
629 |
+
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2];
|
630 |
+
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1];
|
631 |
+
}
|
632 |
+
__syncthreads();
|
633 |
+
}
|
634 |
+
|
635 |
+
if (tid == 0)
|
636 |
+
{
|
637 |
+
*grad_sampling_loc = cache_grad_sampling_loc[0];
|
638 |
+
*(grad_sampling_loc + 1) = cache_grad_sampling_loc[1];
|
639 |
+
*grad_attn_weight = cache_grad_attn_weight[0];
|
640 |
+
}
|
641 |
+
__syncthreads();
|
642 |
+
|
643 |
+
data_weight_ptr += 1;
|
644 |
+
data_loc_w_ptr += 2;
|
645 |
+
grad_attn_weight += grad_weight_stride;
|
646 |
+
grad_sampling_loc += grad_loc_stride;
|
647 |
+
}
|
648 |
+
}
|
649 |
+
}
|
650 |
+
}
|
651 |
+
|
652 |
+
|
653 |
+
template <typename scalar_t>
|
654 |
+
__global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v1(const int n,
|
655 |
+
const scalar_t *grad_col,
|
656 |
+
const scalar_t *data_value,
|
657 |
+
const int64_t *data_spatial_shapes,
|
658 |
+
const int64_t *data_level_start_index,
|
659 |
+
const scalar_t *data_sampling_loc,
|
660 |
+
const scalar_t *data_attn_weight,
|
661 |
+
const int batch_size,
|
662 |
+
const int spatial_size,
|
663 |
+
const int num_heads,
|
664 |
+
const int channels,
|
665 |
+
const int num_levels,
|
666 |
+
const int num_query,
|
667 |
+
const int num_point,
|
668 |
+
scalar_t *grad_value,
|
669 |
+
scalar_t *grad_sampling_loc,
|
670 |
+
scalar_t *grad_attn_weight)
|
671 |
+
{
|
672 |
+
CUDA_KERNEL_LOOP(index, n)
|
673 |
+
{
|
674 |
+
extern __shared__ int _s[];
|
675 |
+
scalar_t* cache_grad_sampling_loc = (scalar_t*)_s;
|
676 |
+
scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x;
|
677 |
+
unsigned int tid = threadIdx.x;
|
678 |
+
int _temp = index;
|
679 |
+
const int c_col = _temp % channels;
|
680 |
+
_temp /= channels;
|
681 |
+
const int sampling_index = _temp;
|
682 |
+
const int m_col = _temp % num_heads;
|
683 |
+
_temp /= num_heads;
|
684 |
+
const int q_col = _temp % num_query;
|
685 |
+
_temp /= num_query;
|
686 |
+
const int b_col = _temp;
|
687 |
+
|
688 |
+
const scalar_t top_grad = grad_col[index];
|
689 |
+
|
690 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
691 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
692 |
+
const int grad_sampling_ptr = data_weight_ptr;
|
693 |
+
grad_sampling_loc += grad_sampling_ptr << 1;
|
694 |
+
grad_attn_weight += grad_sampling_ptr;
|
695 |
+
const int grad_weight_stride = 1;
|
696 |
+
const int grad_loc_stride = 2;
|
697 |
+
const int qid_stride = num_heads * channels;
|
698 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
699 |
+
|
700 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
701 |
+
{
|
702 |
+
const int level_start_id = data_level_start_index[l_col];
|
703 |
+
const int spatial_h_ptr = l_col << 1;
|
704 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
705 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
706 |
+
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
|
707 |
+
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
|
708 |
+
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
|
709 |
+
|
710 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
711 |
+
{
|
712 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
713 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
714 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
715 |
+
|
716 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
717 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
718 |
+
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
|
719 |
+
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
|
720 |
+
*(cache_grad_attn_weight+threadIdx.x)=0;
|
721 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
722 |
+
{
|
723 |
+
ms_deform_attn_col2im_bilinear(
|
724 |
+
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
|
725 |
+
top_grad, weight, grad_value_ptr,
|
726 |
+
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
|
727 |
+
}
|
728 |
+
|
729 |
+
__syncthreads();
|
730 |
+
if (tid == 0)
|
731 |
+
{
|
732 |
+
scalar_t _grad_w=cache_grad_sampling_loc[0], _grad_h=cache_grad_sampling_loc[1], _grad_a=cache_grad_attn_weight[0];
|
733 |
+
int sid=2;
|
734 |
+
for (unsigned int tid = 1; tid < blockDim.x; ++tid)
|
735 |
+
{
|
736 |
+
_grad_w += cache_grad_sampling_loc[sid];
|
737 |
+
_grad_h += cache_grad_sampling_loc[sid + 1];
|
738 |
+
_grad_a += cache_grad_attn_weight[tid];
|
739 |
+
sid += 2;
|
740 |
+
}
|
741 |
+
|
742 |
+
|
743 |
+
*grad_sampling_loc = _grad_w;
|
744 |
+
*(grad_sampling_loc + 1) = _grad_h;
|
745 |
+
*grad_attn_weight = _grad_a;
|
746 |
+
}
|
747 |
+
__syncthreads();
|
748 |
+
|
749 |
+
data_weight_ptr += 1;
|
750 |
+
data_loc_w_ptr += 2;
|
751 |
+
grad_attn_weight += grad_weight_stride;
|
752 |
+
grad_sampling_loc += grad_loc_stride;
|
753 |
+
}
|
754 |
+
}
|
755 |
+
}
|
756 |
+
}
|
757 |
+
|
758 |
+
template <typename scalar_t>
|
759 |
+
__global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v2(const int n,
|
760 |
+
const scalar_t *grad_col,
|
761 |
+
const scalar_t *data_value,
|
762 |
+
const int64_t *data_spatial_shapes,
|
763 |
+
const int64_t *data_level_start_index,
|
764 |
+
const scalar_t *data_sampling_loc,
|
765 |
+
const scalar_t *data_attn_weight,
|
766 |
+
const int batch_size,
|
767 |
+
const int spatial_size,
|
768 |
+
const int num_heads,
|
769 |
+
const int channels,
|
770 |
+
const int num_levels,
|
771 |
+
const int num_query,
|
772 |
+
const int num_point,
|
773 |
+
scalar_t *grad_value,
|
774 |
+
scalar_t *grad_sampling_loc,
|
775 |
+
scalar_t *grad_attn_weight)
|
776 |
+
{
|
777 |
+
CUDA_KERNEL_LOOP(index, n)
|
778 |
+
{
|
779 |
+
extern __shared__ int _s[];
|
780 |
+
scalar_t* cache_grad_sampling_loc = (scalar_t*)_s;
|
781 |
+
scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x;
|
782 |
+
unsigned int tid = threadIdx.x;
|
783 |
+
int _temp = index;
|
784 |
+
const int c_col = _temp % channels;
|
785 |
+
_temp /= channels;
|
786 |
+
const int sampling_index = _temp;
|
787 |
+
const int m_col = _temp % num_heads;
|
788 |
+
_temp /= num_heads;
|
789 |
+
const int q_col = _temp % num_query;
|
790 |
+
_temp /= num_query;
|
791 |
+
const int b_col = _temp;
|
792 |
+
|
793 |
+
const scalar_t top_grad = grad_col[index];
|
794 |
+
|
795 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
796 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
797 |
+
const int grad_sampling_ptr = data_weight_ptr;
|
798 |
+
grad_sampling_loc += grad_sampling_ptr << 1;
|
799 |
+
grad_attn_weight += grad_sampling_ptr;
|
800 |
+
const int grad_weight_stride = 1;
|
801 |
+
const int grad_loc_stride = 2;
|
802 |
+
const int qid_stride = num_heads * channels;
|
803 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
804 |
+
|
805 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
806 |
+
{
|
807 |
+
const int level_start_id = data_level_start_index[l_col];
|
808 |
+
const int spatial_h_ptr = l_col << 1;
|
809 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
810 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
811 |
+
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
|
812 |
+
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
|
813 |
+
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
|
814 |
+
|
815 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
816 |
+
{
|
817 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
818 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
819 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
820 |
+
|
821 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
822 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
823 |
+
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
|
824 |
+
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
|
825 |
+
*(cache_grad_attn_weight+threadIdx.x)=0;
|
826 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
827 |
+
{
|
828 |
+
ms_deform_attn_col2im_bilinear(
|
829 |
+
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
|
830 |
+
top_grad, weight, grad_value_ptr,
|
831 |
+
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
|
832 |
+
}
|
833 |
+
|
834 |
+
__syncthreads();
|
835 |
+
|
836 |
+
for (unsigned int s=blockDim.x/2, spre=blockDim.x; s>0; s>>=1, spre>>=1)
|
837 |
+
{
|
838 |
+
if (tid < s) {
|
839 |
+
const unsigned int xid1 = tid << 1;
|
840 |
+
const unsigned int xid2 = (tid + s) << 1;
|
841 |
+
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s];
|
842 |
+
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2];
|
843 |
+
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1];
|
844 |
+
if (tid + (s << 1) < spre)
|
845 |
+
{
|
846 |
+
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + (s << 1)];
|
847 |
+
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2 + (s << 1)];
|
848 |
+
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1 + (s << 1)];
|
849 |
+
}
|
850 |
+
}
|
851 |
+
__syncthreads();
|
852 |
+
}
|
853 |
+
|
854 |
+
if (tid == 0)
|
855 |
+
{
|
856 |
+
*grad_sampling_loc = cache_grad_sampling_loc[0];
|
857 |
+
*(grad_sampling_loc + 1) = cache_grad_sampling_loc[1];
|
858 |
+
*grad_attn_weight = cache_grad_attn_weight[0];
|
859 |
+
}
|
860 |
+
__syncthreads();
|
861 |
+
|
862 |
+
data_weight_ptr += 1;
|
863 |
+
data_loc_w_ptr += 2;
|
864 |
+
grad_attn_weight += grad_weight_stride;
|
865 |
+
grad_sampling_loc += grad_loc_stride;
|
866 |
+
}
|
867 |
+
}
|
868 |
+
}
|
869 |
+
}
|
870 |
+
|
871 |
+
template <typename scalar_t>
|
872 |
+
__global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v2_multi_blocks(const int n,
|
873 |
+
const scalar_t *grad_col,
|
874 |
+
const scalar_t *data_value,
|
875 |
+
const int64_t *data_spatial_shapes,
|
876 |
+
const int64_t *data_level_start_index,
|
877 |
+
const scalar_t *data_sampling_loc,
|
878 |
+
const scalar_t *data_attn_weight,
|
879 |
+
const int batch_size,
|
880 |
+
const int spatial_size,
|
881 |
+
const int num_heads,
|
882 |
+
const int channels,
|
883 |
+
const int num_levels,
|
884 |
+
const int num_query,
|
885 |
+
const int num_point,
|
886 |
+
scalar_t *grad_value,
|
887 |
+
scalar_t *grad_sampling_loc,
|
888 |
+
scalar_t *grad_attn_weight)
|
889 |
+
{
|
890 |
+
CUDA_KERNEL_LOOP(index, n)
|
891 |
+
{
|
892 |
+
extern __shared__ int _s[];
|
893 |
+
scalar_t* cache_grad_sampling_loc = (scalar_t*)_s;
|
894 |
+
scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x;
|
895 |
+
unsigned int tid = threadIdx.x;
|
896 |
+
int _temp = index;
|
897 |
+
const int c_col = _temp % channels;
|
898 |
+
_temp /= channels;
|
899 |
+
const int sampling_index = _temp;
|
900 |
+
const int m_col = _temp % num_heads;
|
901 |
+
_temp /= num_heads;
|
902 |
+
const int q_col = _temp % num_query;
|
903 |
+
_temp /= num_query;
|
904 |
+
const int b_col = _temp;
|
905 |
+
|
906 |
+
const scalar_t top_grad = grad_col[index];
|
907 |
+
|
908 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
909 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
910 |
+
const int grad_sampling_ptr = data_weight_ptr;
|
911 |
+
grad_sampling_loc += grad_sampling_ptr << 1;
|
912 |
+
grad_attn_weight += grad_sampling_ptr;
|
913 |
+
const int grad_weight_stride = 1;
|
914 |
+
const int grad_loc_stride = 2;
|
915 |
+
const int qid_stride = num_heads * channels;
|
916 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
917 |
+
|
918 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
919 |
+
{
|
920 |
+
const int level_start_id = data_level_start_index[l_col];
|
921 |
+
const int spatial_h_ptr = l_col << 1;
|
922 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
923 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
924 |
+
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
|
925 |
+
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
|
926 |
+
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
|
927 |
+
|
928 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
929 |
+
{
|
930 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
931 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
932 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
933 |
+
|
934 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
935 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
936 |
+
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
|
937 |
+
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
|
938 |
+
*(cache_grad_attn_weight+threadIdx.x)=0;
|
939 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
940 |
+
{
|
941 |
+
ms_deform_attn_col2im_bilinear(
|
942 |
+
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
|
943 |
+
top_grad, weight, grad_value_ptr,
|
944 |
+
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
|
945 |
+
}
|
946 |
+
|
947 |
+
__syncthreads();
|
948 |
+
|
949 |
+
for (unsigned int s=blockDim.x/2, spre=blockDim.x; s>0; s>>=1, spre>>=1)
|
950 |
+
{
|
951 |
+
if (tid < s) {
|
952 |
+
const unsigned int xid1 = tid << 1;
|
953 |
+
const unsigned int xid2 = (tid + s) << 1;
|
954 |
+
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s];
|
955 |
+
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2];
|
956 |
+
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1];
|
957 |
+
if (tid + (s << 1) < spre)
|
958 |
+
{
|
959 |
+
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + (s << 1)];
|
960 |
+
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2 + (s << 1)];
|
961 |
+
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1 + (s << 1)];
|
962 |
+
}
|
963 |
+
}
|
964 |
+
__syncthreads();
|
965 |
+
}
|
966 |
+
|
967 |
+
if (tid == 0)
|
968 |
+
{
|
969 |
+
atomicAdd(grad_sampling_loc, cache_grad_sampling_loc[0]);
|
970 |
+
atomicAdd(grad_sampling_loc + 1, cache_grad_sampling_loc[1]);
|
971 |
+
atomicAdd(grad_attn_weight, cache_grad_attn_weight[0]);
|
972 |
+
}
|
973 |
+
__syncthreads();
|
974 |
+
|
975 |
+
data_weight_ptr += 1;
|
976 |
+
data_loc_w_ptr += 2;
|
977 |
+
grad_attn_weight += grad_weight_stride;
|
978 |
+
grad_sampling_loc += grad_loc_stride;
|
979 |
+
}
|
980 |
+
}
|
981 |
+
}
|
982 |
+
}
|
983 |
+
|
984 |
+
|
985 |
+
template <typename scalar_t>
|
986 |
+
__global__ void ms_deformable_col2im_gpu_kernel_gm(const int n,
|
987 |
+
const scalar_t *grad_col,
|
988 |
+
const scalar_t *data_value,
|
989 |
+
const int64_t *data_spatial_shapes,
|
990 |
+
const int64_t *data_level_start_index,
|
991 |
+
const scalar_t *data_sampling_loc,
|
992 |
+
const scalar_t *data_attn_weight,
|
993 |
+
const int batch_size,
|
994 |
+
const int spatial_size,
|
995 |
+
const int num_heads,
|
996 |
+
const int channels,
|
997 |
+
const int num_levels,
|
998 |
+
const int num_query,
|
999 |
+
const int num_point,
|
1000 |
+
scalar_t *grad_value,
|
1001 |
+
scalar_t *grad_sampling_loc,
|
1002 |
+
scalar_t *grad_attn_weight)
|
1003 |
+
{
|
1004 |
+
CUDA_KERNEL_LOOP(index, n)
|
1005 |
+
{
|
1006 |
+
int _temp = index;
|
1007 |
+
const int c_col = _temp % channels;
|
1008 |
+
_temp /= channels;
|
1009 |
+
const int sampling_index = _temp;
|
1010 |
+
const int m_col = _temp % num_heads;
|
1011 |
+
_temp /= num_heads;
|
1012 |
+
const int q_col = _temp % num_query;
|
1013 |
+
_temp /= num_query;
|
1014 |
+
const int b_col = _temp;
|
1015 |
+
|
1016 |
+
const scalar_t top_grad = grad_col[index];
|
1017 |
+
|
1018 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
1019 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
1020 |
+
const int grad_sampling_ptr = data_weight_ptr;
|
1021 |
+
grad_sampling_loc += grad_sampling_ptr << 1;
|
1022 |
+
grad_attn_weight += grad_sampling_ptr;
|
1023 |
+
const int grad_weight_stride = 1;
|
1024 |
+
const int grad_loc_stride = 2;
|
1025 |
+
const int qid_stride = num_heads * channels;
|
1026 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
1027 |
+
|
1028 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
1029 |
+
{
|
1030 |
+
const int level_start_id = data_level_start_index[l_col];
|
1031 |
+
const int spatial_h_ptr = l_col << 1;
|
1032 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
1033 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
1034 |
+
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
|
1035 |
+
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
|
1036 |
+
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
|
1037 |
+
|
1038 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
1039 |
+
{
|
1040 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
1041 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
1042 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
1043 |
+
|
1044 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
1045 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
1046 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
1047 |
+
{
|
1048 |
+
ms_deform_attn_col2im_bilinear_gm(
|
1049 |
+
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
|
1050 |
+
top_grad, weight, grad_value_ptr,
|
1051 |
+
grad_sampling_loc, grad_attn_weight);
|
1052 |
+
}
|
1053 |
+
data_weight_ptr += 1;
|
1054 |
+
data_loc_w_ptr += 2;
|
1055 |
+
grad_attn_weight += grad_weight_stride;
|
1056 |
+
grad_sampling_loc += grad_loc_stride;
|
1057 |
+
}
|
1058 |
+
}
|
1059 |
+
}
|
1060 |
+
}
|
1061 |
+
|
1062 |
+
|
1063 |
+
template <typename scalar_t>
|
1064 |
+
void ms_deformable_im2col_cuda(cudaStream_t stream,
|
1065 |
+
const scalar_t* data_value,
|
1066 |
+
const int64_t* data_spatial_shapes,
|
1067 |
+
const int64_t* data_level_start_index,
|
1068 |
+
const scalar_t* data_sampling_loc,
|
1069 |
+
const scalar_t* data_attn_weight,
|
1070 |
+
const int batch_size,
|
1071 |
+
const int spatial_size,
|
1072 |
+
const int num_heads,
|
1073 |
+
const int channels,
|
1074 |
+
const int num_levels,
|
1075 |
+
const int num_query,
|
1076 |
+
const int num_point,
|
1077 |
+
scalar_t* data_col)
|
1078 |
+
{
|
1079 |
+
const int num_kernels = batch_size * num_query * num_heads * channels;
|
1080 |
+
const int num_actual_kernels = batch_size * num_query * num_heads * channels;
|
1081 |
+
const int num_threads = CUDA_NUM_THREADS;
|
1082 |
+
ms_deformable_im2col_gpu_kernel<scalar_t>
|
1083 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1084 |
+
0, stream>>>(
|
1085 |
+
num_kernels, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight,
|
1086 |
+
batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, data_col);
|
1087 |
+
|
1088 |
+
cudaError_t err = cudaGetLastError();
|
1089 |
+
if (err != cudaSuccess)
|
1090 |
+
{
|
1091 |
+
printf("error in ms_deformable_im2col_cuda: %s\n", cudaGetErrorString(err));
|
1092 |
+
}
|
1093 |
+
|
1094 |
+
}
|
1095 |
+
|
1096 |
+
template <typename scalar_t>
|
1097 |
+
void ms_deformable_col2im_cuda(cudaStream_t stream,
|
1098 |
+
const scalar_t* grad_col,
|
1099 |
+
const scalar_t* data_value,
|
1100 |
+
const int64_t * data_spatial_shapes,
|
1101 |
+
const int64_t * data_level_start_index,
|
1102 |
+
const scalar_t * data_sampling_loc,
|
1103 |
+
const scalar_t * data_attn_weight,
|
1104 |
+
const int batch_size,
|
1105 |
+
const int spatial_size,
|
1106 |
+
const int num_heads,
|
1107 |
+
const int channels,
|
1108 |
+
const int num_levels,
|
1109 |
+
const int num_query,
|
1110 |
+
const int num_point,
|
1111 |
+
scalar_t* grad_value,
|
1112 |
+
scalar_t* grad_sampling_loc,
|
1113 |
+
scalar_t* grad_attn_weight)
|
1114 |
+
{
|
1115 |
+
const int num_threads = (channels > CUDA_NUM_THREADS)?CUDA_NUM_THREADS:channels;
|
1116 |
+
const int num_kernels = batch_size * num_query * num_heads * channels;
|
1117 |
+
const int num_actual_kernels = batch_size * num_query * num_heads * channels;
|
1118 |
+
if (channels > 1024)
|
1119 |
+
{
|
1120 |
+
if ((channels & 1023) == 0)
|
1121 |
+
{
|
1122 |
+
ms_deformable_col2im_gpu_kernel_shm_reduce_v2_multi_blocks<scalar_t>
|
1123 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1124 |
+
num_threads*3*sizeof(scalar_t), stream>>>(
|
1125 |
+
num_kernels,
|
1126 |
+
grad_col,
|
1127 |
+
data_value,
|
1128 |
+
data_spatial_shapes,
|
1129 |
+
data_level_start_index,
|
1130 |
+
data_sampling_loc,
|
1131 |
+
data_attn_weight,
|
1132 |
+
batch_size,
|
1133 |
+
spatial_size,
|
1134 |
+
num_heads,
|
1135 |
+
channels,
|
1136 |
+
num_levels,
|
1137 |
+
num_query,
|
1138 |
+
num_point,
|
1139 |
+
grad_value,
|
1140 |
+
grad_sampling_loc,
|
1141 |
+
grad_attn_weight);
|
1142 |
+
}
|
1143 |
+
else
|
1144 |
+
{
|
1145 |
+
ms_deformable_col2im_gpu_kernel_gm<scalar_t>
|
1146 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1147 |
+
0, stream>>>(
|
1148 |
+
num_kernels,
|
1149 |
+
grad_col,
|
1150 |
+
data_value,
|
1151 |
+
data_spatial_shapes,
|
1152 |
+
data_level_start_index,
|
1153 |
+
data_sampling_loc,
|
1154 |
+
data_attn_weight,
|
1155 |
+
batch_size,
|
1156 |
+
spatial_size,
|
1157 |
+
num_heads,
|
1158 |
+
channels,
|
1159 |
+
num_levels,
|
1160 |
+
num_query,
|
1161 |
+
num_point,
|
1162 |
+
grad_value,
|
1163 |
+
grad_sampling_loc,
|
1164 |
+
grad_attn_weight);
|
1165 |
+
}
|
1166 |
+
}
|
1167 |
+
else{
|
1168 |
+
switch(channels)
|
1169 |
+
{
|
1170 |
+
case 1:
|
1171 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 1>
|
1172 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1173 |
+
0, stream>>>(
|
1174 |
+
num_kernels,
|
1175 |
+
grad_col,
|
1176 |
+
data_value,
|
1177 |
+
data_spatial_shapes,
|
1178 |
+
data_level_start_index,
|
1179 |
+
data_sampling_loc,
|
1180 |
+
data_attn_weight,
|
1181 |
+
batch_size,
|
1182 |
+
spatial_size,
|
1183 |
+
num_heads,
|
1184 |
+
channels,
|
1185 |
+
num_levels,
|
1186 |
+
num_query,
|
1187 |
+
num_point,
|
1188 |
+
grad_value,
|
1189 |
+
grad_sampling_loc,
|
1190 |
+
grad_attn_weight);
|
1191 |
+
break;
|
1192 |
+
case 2:
|
1193 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 2>
|
1194 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1195 |
+
0, stream>>>(
|
1196 |
+
num_kernels,
|
1197 |
+
grad_col,
|
1198 |
+
data_value,
|
1199 |
+
data_spatial_shapes,
|
1200 |
+
data_level_start_index,
|
1201 |
+
data_sampling_loc,
|
1202 |
+
data_attn_weight,
|
1203 |
+
batch_size,
|
1204 |
+
spatial_size,
|
1205 |
+
num_heads,
|
1206 |
+
channels,
|
1207 |
+
num_levels,
|
1208 |
+
num_query,
|
1209 |
+
num_point,
|
1210 |
+
grad_value,
|
1211 |
+
grad_sampling_loc,
|
1212 |
+
grad_attn_weight);
|
1213 |
+
break;
|
1214 |
+
case 4:
|
1215 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 4>
|
1216 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1217 |
+
0, stream>>>(
|
1218 |
+
num_kernels,
|
1219 |
+
grad_col,
|
1220 |
+
data_value,
|
1221 |
+
data_spatial_shapes,
|
1222 |
+
data_level_start_index,
|
1223 |
+
data_sampling_loc,
|
1224 |
+
data_attn_weight,
|
1225 |
+
batch_size,
|
1226 |
+
spatial_size,
|
1227 |
+
num_heads,
|
1228 |
+
channels,
|
1229 |
+
num_levels,
|
1230 |
+
num_query,
|
1231 |
+
num_point,
|
1232 |
+
grad_value,
|
1233 |
+
grad_sampling_loc,
|
1234 |
+
grad_attn_weight);
|
1235 |
+
break;
|
1236 |
+
case 8:
|
1237 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 8>
|
1238 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1239 |
+
0, stream>>>(
|
1240 |
+
num_kernels,
|
1241 |
+
grad_col,
|
1242 |
+
data_value,
|
1243 |
+
data_spatial_shapes,
|
1244 |
+
data_level_start_index,
|
1245 |
+
data_sampling_loc,
|
1246 |
+
data_attn_weight,
|
1247 |
+
batch_size,
|
1248 |
+
spatial_size,
|
1249 |
+
num_heads,
|
1250 |
+
channels,
|
1251 |
+
num_levels,
|
1252 |
+
num_query,
|
1253 |
+
num_point,
|
1254 |
+
grad_value,
|
1255 |
+
grad_sampling_loc,
|
1256 |
+
grad_attn_weight);
|
1257 |
+
break;
|
1258 |
+
case 16:
|
1259 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 16>
|
1260 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1261 |
+
0, stream>>>(
|
1262 |
+
num_kernels,
|
1263 |
+
grad_col,
|
1264 |
+
data_value,
|
1265 |
+
data_spatial_shapes,
|
1266 |
+
data_level_start_index,
|
1267 |
+
data_sampling_loc,
|
1268 |
+
data_attn_weight,
|
1269 |
+
batch_size,
|
1270 |
+
spatial_size,
|
1271 |
+
num_heads,
|
1272 |
+
channels,
|
1273 |
+
num_levels,
|
1274 |
+
num_query,
|
1275 |
+
num_point,
|
1276 |
+
grad_value,
|
1277 |
+
grad_sampling_loc,
|
1278 |
+
grad_attn_weight);
|
1279 |
+
break;
|
1280 |
+
case 32:
|
1281 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 32>
|
1282 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1283 |
+
0, stream>>>(
|
1284 |
+
num_kernels,
|
1285 |
+
grad_col,
|
1286 |
+
data_value,
|
1287 |
+
data_spatial_shapes,
|
1288 |
+
data_level_start_index,
|
1289 |
+
data_sampling_loc,
|
1290 |
+
data_attn_weight,
|
1291 |
+
batch_size,
|
1292 |
+
spatial_size,
|
1293 |
+
num_heads,
|
1294 |
+
channels,
|
1295 |
+
num_levels,
|
1296 |
+
num_query,
|
1297 |
+
num_point,
|
1298 |
+
grad_value,
|
1299 |
+
grad_sampling_loc,
|
1300 |
+
grad_attn_weight);
|
1301 |
+
break;
|
1302 |
+
case 64:
|
1303 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 64>
|
1304 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1305 |
+
0, stream>>>(
|
1306 |
+
num_kernels,
|
1307 |
+
grad_col,
|
1308 |
+
data_value,
|
1309 |
+
data_spatial_shapes,
|
1310 |
+
data_level_start_index,
|
1311 |
+
data_sampling_loc,
|
1312 |
+
data_attn_weight,
|
1313 |
+
batch_size,
|
1314 |
+
spatial_size,
|
1315 |
+
num_heads,
|
1316 |
+
channels,
|
1317 |
+
num_levels,
|
1318 |
+
num_query,
|
1319 |
+
num_point,
|
1320 |
+
grad_value,
|
1321 |
+
grad_sampling_loc,
|
1322 |
+
grad_attn_weight);
|
1323 |
+
break;
|
1324 |
+
case 128:
|
1325 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 128>
|
1326 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1327 |
+
0, stream>>>(
|
1328 |
+
num_kernels,
|
1329 |
+
grad_col,
|
1330 |
+
data_value,
|
1331 |
+
data_spatial_shapes,
|
1332 |
+
data_level_start_index,
|
1333 |
+
data_sampling_loc,
|
1334 |
+
data_attn_weight,
|
1335 |
+
batch_size,
|
1336 |
+
spatial_size,
|
1337 |
+
num_heads,
|
1338 |
+
channels,
|
1339 |
+
num_levels,
|
1340 |
+
num_query,
|
1341 |
+
num_point,
|
1342 |
+
grad_value,
|
1343 |
+
grad_sampling_loc,
|
1344 |
+
grad_attn_weight);
|
1345 |
+
break;
|
1346 |
+
case 256:
|
1347 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 256>
|
1348 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1349 |
+
0, stream>>>(
|
1350 |
+
num_kernels,
|
1351 |
+
grad_col,
|
1352 |
+
data_value,
|
1353 |
+
data_spatial_shapes,
|
1354 |
+
data_level_start_index,
|
1355 |
+
data_sampling_loc,
|
1356 |
+
data_attn_weight,
|
1357 |
+
batch_size,
|
1358 |
+
spatial_size,
|
1359 |
+
num_heads,
|
1360 |
+
channels,
|
1361 |
+
num_levels,
|
1362 |
+
num_query,
|
1363 |
+
num_point,
|
1364 |
+
grad_value,
|
1365 |
+
grad_sampling_loc,
|
1366 |
+
grad_attn_weight);
|
1367 |
+
break;
|
1368 |
+
case 512:
|
1369 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 512>
|
1370 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1371 |
+
0, stream>>>(
|
1372 |
+
num_kernels,
|
1373 |
+
grad_col,
|
1374 |
+
data_value,
|
1375 |
+
data_spatial_shapes,
|
1376 |
+
data_level_start_index,
|
1377 |
+
data_sampling_loc,
|
1378 |
+
data_attn_weight,
|
1379 |
+
batch_size,
|
1380 |
+
spatial_size,
|
1381 |
+
num_heads,
|
1382 |
+
channels,
|
1383 |
+
num_levels,
|
1384 |
+
num_query,
|
1385 |
+
num_point,
|
1386 |
+
grad_value,
|
1387 |
+
grad_sampling_loc,
|
1388 |
+
grad_attn_weight);
|
1389 |
+
break;
|
1390 |
+
case 1024:
|
1391 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 1024>
|
1392 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1393 |
+
0, stream>>>(
|
1394 |
+
num_kernels,
|
1395 |
+
grad_col,
|
1396 |
+
data_value,
|
1397 |
+
data_spatial_shapes,
|
1398 |
+
data_level_start_index,
|
1399 |
+
data_sampling_loc,
|
1400 |
+
data_attn_weight,
|
1401 |
+
batch_size,
|
1402 |
+
spatial_size,
|
1403 |
+
num_heads,
|
1404 |
+
channels,
|
1405 |
+
num_levels,
|
1406 |
+
num_query,
|
1407 |
+
num_point,
|
1408 |
+
grad_value,
|
1409 |
+
grad_sampling_loc,
|
1410 |
+
grad_attn_weight);
|
1411 |
+
break;
|
1412 |
+
default:
|
1413 |
+
if (channels < 64)
|
1414 |
+
{
|
1415 |
+
ms_deformable_col2im_gpu_kernel_shm_reduce_v1<scalar_t>
|
1416 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1417 |
+
num_threads*3*sizeof(scalar_t), stream>>>(
|
1418 |
+
num_kernels,
|
1419 |
+
grad_col,
|
1420 |
+
data_value,
|
1421 |
+
data_spatial_shapes,
|
1422 |
+
data_level_start_index,
|
1423 |
+
data_sampling_loc,
|
1424 |
+
data_attn_weight,
|
1425 |
+
batch_size,
|
1426 |
+
spatial_size,
|
1427 |
+
num_heads,
|
1428 |
+
channels,
|
1429 |
+
num_levels,
|
1430 |
+
num_query,
|
1431 |
+
num_point,
|
1432 |
+
grad_value,
|
1433 |
+
grad_sampling_loc,
|
1434 |
+
grad_attn_weight);
|
1435 |
+
}
|
1436 |
+
else
|
1437 |
+
{
|
1438 |
+
ms_deformable_col2im_gpu_kernel_shm_reduce_v2<scalar_t>
|
1439 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1440 |
+
num_threads*3*sizeof(scalar_t), stream>>>(
|
1441 |
+
num_kernels,
|
1442 |
+
grad_col,
|
1443 |
+
data_value,
|
1444 |
+
data_spatial_shapes,
|
1445 |
+
data_level_start_index,
|
1446 |
+
data_sampling_loc,
|
1447 |
+
data_attn_weight,
|
1448 |
+
batch_size,
|
1449 |
+
spatial_size,
|
1450 |
+
num_heads,
|
1451 |
+
channels,
|
1452 |
+
num_levels,
|
1453 |
+
num_query,
|
1454 |
+
num_point,
|
1455 |
+
grad_value,
|
1456 |
+
grad_sampling_loc,
|
1457 |
+
grad_attn_weight);
|
1458 |
+
}
|
1459 |
+
}
|
1460 |
+
}
|
1461 |
+
cudaError_t err = cudaGetLastError();
|
1462 |
+
if (err != cudaSuccess)
|
1463 |
+
{
|
1464 |
+
printf("error in ms_deformable_col2im_cuda: %s\n", cudaGetErrorString(err));
|
1465 |
+
}
|
1466 |
+
|
1467 |
+
}
|
venv/lib/python3.10/site-packages/transformers/kernels/deta/cuda/ms_deform_attn_cuda.h
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*!
|
2 |
+
**************************************************************************************************
|
3 |
+
* Deformable DETR
|
4 |
+
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
5 |
+
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
**************************************************************************************************
|
7 |
+
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
8 |
+
**************************************************************************************************
|
9 |
+
*/
|
10 |
+
|
11 |
+
#pragma once
|
12 |
+
#include <torch/extension.h>
|
13 |
+
|
14 |
+
at::Tensor ms_deform_attn_cuda_forward(
|
15 |
+
const at::Tensor &value,
|
16 |
+
const at::Tensor &spatial_shapes,
|
17 |
+
const at::Tensor &level_start_index,
|
18 |
+
const at::Tensor &sampling_loc,
|
19 |
+
const at::Tensor &attn_weight,
|
20 |
+
const int im2col_step);
|
21 |
+
|
22 |
+
std::vector<at::Tensor> ms_deform_attn_cuda_backward(
|
23 |
+
const at::Tensor &value,
|
24 |
+
const at::Tensor &spatial_shapes,
|
25 |
+
const at::Tensor &level_start_index,
|
26 |
+
const at::Tensor &sampling_loc,
|
27 |
+
const at::Tensor &attn_weight,
|
28 |
+
const at::Tensor &grad_output,
|
29 |
+
const int im2col_step);
|
venv/lib/python3.10/site-packages/transformers/kernels/deta/cuda/ms_deform_im2col_cuda.cuh
ADDED
@@ -0,0 +1,1327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*!
|
2 |
+
**************************************************************************
|
3 |
+
* Deformable DETR
|
4 |
+
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
5 |
+
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
**************************************************************************
|
7 |
+
* Modified from DCN (https://github.com/msracver/Deformable-ConvNets)
|
8 |
+
* Copyright (c) 2018 Microsoft
|
9 |
+
**************************************************************************
|
10 |
+
*/
|
11 |
+
|
12 |
+
#include <cstdio>
|
13 |
+
#include <algorithm>
|
14 |
+
#include <cstring>
|
15 |
+
|
16 |
+
#include <ATen/ATen.h>
|
17 |
+
#include <ATen/cuda/CUDAContext.h>
|
18 |
+
|
19 |
+
#include <THC/THCAtomics.cuh>
|
20 |
+
|
21 |
+
#define CUDA_KERNEL_LOOP(i, n) \
|
22 |
+
for (int i = blockIdx.x * blockDim.x + threadIdx.x; \
|
23 |
+
i < (n); \
|
24 |
+
i += blockDim.x * gridDim.x)
|
25 |
+
|
26 |
+
const int CUDA_NUM_THREADS = 1024;
|
27 |
+
inline int GET_BLOCKS(const int N, const int num_threads)
|
28 |
+
{
|
29 |
+
return (N + num_threads - 1) / num_threads;
|
30 |
+
}
|
31 |
+
|
32 |
+
|
33 |
+
template <typename scalar_t>
|
34 |
+
__device__ scalar_t ms_deform_attn_im2col_bilinear(const scalar_t* &bottom_data,
|
35 |
+
const int &height, const int &width, const int &nheads, const int &channels,
|
36 |
+
const scalar_t &h, const scalar_t &w, const int &m, const int &c)
|
37 |
+
{
|
38 |
+
const int h_low = floor(h);
|
39 |
+
const int w_low = floor(w);
|
40 |
+
const int h_high = h_low + 1;
|
41 |
+
const int w_high = w_low + 1;
|
42 |
+
|
43 |
+
const scalar_t lh = h - h_low;
|
44 |
+
const scalar_t lw = w - w_low;
|
45 |
+
const scalar_t hh = 1 - lh, hw = 1 - lw;
|
46 |
+
|
47 |
+
const int w_stride = nheads * channels;
|
48 |
+
const int h_stride = width * w_stride;
|
49 |
+
const int h_low_ptr_offset = h_low * h_stride;
|
50 |
+
const int h_high_ptr_offset = h_low_ptr_offset + h_stride;
|
51 |
+
const int w_low_ptr_offset = w_low * w_stride;
|
52 |
+
const int w_high_ptr_offset = w_low_ptr_offset + w_stride;
|
53 |
+
const int base_ptr = m * channels + c;
|
54 |
+
|
55 |
+
scalar_t v1 = 0;
|
56 |
+
if (h_low >= 0 && w_low >= 0)
|
57 |
+
{
|
58 |
+
const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr;
|
59 |
+
v1 = bottom_data[ptr1];
|
60 |
+
}
|
61 |
+
scalar_t v2 = 0;
|
62 |
+
if (h_low >= 0 && w_high <= width - 1)
|
63 |
+
{
|
64 |
+
const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr;
|
65 |
+
v2 = bottom_data[ptr2];
|
66 |
+
}
|
67 |
+
scalar_t v3 = 0;
|
68 |
+
if (h_high <= height - 1 && w_low >= 0)
|
69 |
+
{
|
70 |
+
const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr;
|
71 |
+
v3 = bottom_data[ptr3];
|
72 |
+
}
|
73 |
+
scalar_t v4 = 0;
|
74 |
+
if (h_high <= height - 1 && w_high <= width - 1)
|
75 |
+
{
|
76 |
+
const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr;
|
77 |
+
v4 = bottom_data[ptr4];
|
78 |
+
}
|
79 |
+
|
80 |
+
const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
|
81 |
+
|
82 |
+
const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
|
83 |
+
return val;
|
84 |
+
}
|
85 |
+
|
86 |
+
|
87 |
+
template <typename scalar_t>
|
88 |
+
__device__ void ms_deform_attn_col2im_bilinear(const scalar_t* &bottom_data,
|
89 |
+
const int &height, const int &width, const int &nheads, const int &channels,
|
90 |
+
const scalar_t &h, const scalar_t &w, const int &m, const int &c,
|
91 |
+
const scalar_t &top_grad,
|
92 |
+
const scalar_t &attn_weight,
|
93 |
+
scalar_t* &grad_value,
|
94 |
+
scalar_t* grad_sampling_loc,
|
95 |
+
scalar_t* grad_attn_weight)
|
96 |
+
{
|
97 |
+
const int h_low = floor(h);
|
98 |
+
const int w_low = floor(w);
|
99 |
+
const int h_high = h_low + 1;
|
100 |
+
const int w_high = w_low + 1;
|
101 |
+
|
102 |
+
const scalar_t lh = h - h_low;
|
103 |
+
const scalar_t lw = w - w_low;
|
104 |
+
const scalar_t hh = 1 - lh, hw = 1 - lw;
|
105 |
+
|
106 |
+
const int w_stride = nheads * channels;
|
107 |
+
const int h_stride = width * w_stride;
|
108 |
+
const int h_low_ptr_offset = h_low * h_stride;
|
109 |
+
const int h_high_ptr_offset = h_low_ptr_offset + h_stride;
|
110 |
+
const int w_low_ptr_offset = w_low * w_stride;
|
111 |
+
const int w_high_ptr_offset = w_low_ptr_offset + w_stride;
|
112 |
+
const int base_ptr = m * channels + c;
|
113 |
+
|
114 |
+
const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
|
115 |
+
const scalar_t top_grad_value = top_grad * attn_weight;
|
116 |
+
scalar_t grad_h_weight = 0, grad_w_weight = 0;
|
117 |
+
|
118 |
+
scalar_t v1 = 0;
|
119 |
+
if (h_low >= 0 && w_low >= 0)
|
120 |
+
{
|
121 |
+
const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr;
|
122 |
+
v1 = bottom_data[ptr1];
|
123 |
+
grad_h_weight -= hw * v1;
|
124 |
+
grad_w_weight -= hh * v1;
|
125 |
+
atomicAdd(grad_value+ptr1, w1*top_grad_value);
|
126 |
+
}
|
127 |
+
scalar_t v2 = 0;
|
128 |
+
if (h_low >= 0 && w_high <= width - 1)
|
129 |
+
{
|
130 |
+
const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr;
|
131 |
+
v2 = bottom_data[ptr2];
|
132 |
+
grad_h_weight -= lw * v2;
|
133 |
+
grad_w_weight += hh * v2;
|
134 |
+
atomicAdd(grad_value+ptr2, w2*top_grad_value);
|
135 |
+
}
|
136 |
+
scalar_t v3 = 0;
|
137 |
+
if (h_high <= height - 1 && w_low >= 0)
|
138 |
+
{
|
139 |
+
const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr;
|
140 |
+
v3 = bottom_data[ptr3];
|
141 |
+
grad_h_weight += hw * v3;
|
142 |
+
grad_w_weight -= lh * v3;
|
143 |
+
atomicAdd(grad_value+ptr3, w3*top_grad_value);
|
144 |
+
}
|
145 |
+
scalar_t v4 = 0;
|
146 |
+
if (h_high <= height - 1 && w_high <= width - 1)
|
147 |
+
{
|
148 |
+
const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr;
|
149 |
+
v4 = bottom_data[ptr4];
|
150 |
+
grad_h_weight += lw * v4;
|
151 |
+
grad_w_weight += lh * v4;
|
152 |
+
atomicAdd(grad_value+ptr4, w4*top_grad_value);
|
153 |
+
}
|
154 |
+
|
155 |
+
const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
|
156 |
+
*grad_attn_weight = top_grad * val;
|
157 |
+
*grad_sampling_loc = width * grad_w_weight * top_grad_value;
|
158 |
+
*(grad_sampling_loc + 1) = height * grad_h_weight * top_grad_value;
|
159 |
+
}
|
160 |
+
|
161 |
+
|
162 |
+
template <typename scalar_t>
|
163 |
+
__device__ void ms_deform_attn_col2im_bilinear_gm(const scalar_t* &bottom_data,
|
164 |
+
const int &height, const int &width, const int &nheads, const int &channels,
|
165 |
+
const scalar_t &h, const scalar_t &w, const int &m, const int &c,
|
166 |
+
const scalar_t &top_grad,
|
167 |
+
const scalar_t &attn_weight,
|
168 |
+
scalar_t* &grad_value,
|
169 |
+
scalar_t* grad_sampling_loc,
|
170 |
+
scalar_t* grad_attn_weight)
|
171 |
+
{
|
172 |
+
const int h_low = floor(h);
|
173 |
+
const int w_low = floor(w);
|
174 |
+
const int h_high = h_low + 1;
|
175 |
+
const int w_high = w_low + 1;
|
176 |
+
|
177 |
+
const scalar_t lh = h - h_low;
|
178 |
+
const scalar_t lw = w - w_low;
|
179 |
+
const scalar_t hh = 1 - lh, hw = 1 - lw;
|
180 |
+
|
181 |
+
const int w_stride = nheads * channels;
|
182 |
+
const int h_stride = width * w_stride;
|
183 |
+
const int h_low_ptr_offset = h_low * h_stride;
|
184 |
+
const int h_high_ptr_offset = h_low_ptr_offset + h_stride;
|
185 |
+
const int w_low_ptr_offset = w_low * w_stride;
|
186 |
+
const int w_high_ptr_offset = w_low_ptr_offset + w_stride;
|
187 |
+
const int base_ptr = m * channels + c;
|
188 |
+
|
189 |
+
const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
|
190 |
+
const scalar_t top_grad_value = top_grad * attn_weight;
|
191 |
+
scalar_t grad_h_weight = 0, grad_w_weight = 0;
|
192 |
+
|
193 |
+
scalar_t v1 = 0;
|
194 |
+
if (h_low >= 0 && w_low >= 0)
|
195 |
+
{
|
196 |
+
const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr;
|
197 |
+
v1 = bottom_data[ptr1];
|
198 |
+
grad_h_weight -= hw * v1;
|
199 |
+
grad_w_weight -= hh * v1;
|
200 |
+
atomicAdd(grad_value+ptr1, w1*top_grad_value);
|
201 |
+
}
|
202 |
+
scalar_t v2 = 0;
|
203 |
+
if (h_low >= 0 && w_high <= width - 1)
|
204 |
+
{
|
205 |
+
const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr;
|
206 |
+
v2 = bottom_data[ptr2];
|
207 |
+
grad_h_weight -= lw * v2;
|
208 |
+
grad_w_weight += hh * v2;
|
209 |
+
atomicAdd(grad_value+ptr2, w2*top_grad_value);
|
210 |
+
}
|
211 |
+
scalar_t v3 = 0;
|
212 |
+
if (h_high <= height - 1 && w_low >= 0)
|
213 |
+
{
|
214 |
+
const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr;
|
215 |
+
v3 = bottom_data[ptr3];
|
216 |
+
grad_h_weight += hw * v3;
|
217 |
+
grad_w_weight -= lh * v3;
|
218 |
+
atomicAdd(grad_value+ptr3, w3*top_grad_value);
|
219 |
+
}
|
220 |
+
scalar_t v4 = 0;
|
221 |
+
if (h_high <= height - 1 && w_high <= width - 1)
|
222 |
+
{
|
223 |
+
const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr;
|
224 |
+
v4 = bottom_data[ptr4];
|
225 |
+
grad_h_weight += lw * v4;
|
226 |
+
grad_w_weight += lh * v4;
|
227 |
+
atomicAdd(grad_value+ptr4, w4*top_grad_value);
|
228 |
+
}
|
229 |
+
|
230 |
+
const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
|
231 |
+
atomicAdd(grad_attn_weight, top_grad * val);
|
232 |
+
atomicAdd(grad_sampling_loc, width * grad_w_weight * top_grad_value);
|
233 |
+
atomicAdd(grad_sampling_loc + 1, height * grad_h_weight * top_grad_value);
|
234 |
+
}
|
235 |
+
|
236 |
+
|
237 |
+
template <typename scalar_t>
|
238 |
+
__global__ void ms_deformable_im2col_gpu_kernel(const int n,
|
239 |
+
const scalar_t *data_value,
|
240 |
+
const int64_t *data_spatial_shapes,
|
241 |
+
const int64_t *data_level_start_index,
|
242 |
+
const scalar_t *data_sampling_loc,
|
243 |
+
const scalar_t *data_attn_weight,
|
244 |
+
const int batch_size,
|
245 |
+
const int spatial_size,
|
246 |
+
const int num_heads,
|
247 |
+
const int channels,
|
248 |
+
const int num_levels,
|
249 |
+
const int num_query,
|
250 |
+
const int num_point,
|
251 |
+
scalar_t *data_col)
|
252 |
+
{
|
253 |
+
CUDA_KERNEL_LOOP(index, n)
|
254 |
+
{
|
255 |
+
int _temp = index;
|
256 |
+
const int c_col = _temp % channels;
|
257 |
+
_temp /= channels;
|
258 |
+
const int sampling_index = _temp;
|
259 |
+
const int m_col = _temp % num_heads;
|
260 |
+
_temp /= num_heads;
|
261 |
+
const int q_col = _temp % num_query;
|
262 |
+
_temp /= num_query;
|
263 |
+
const int b_col = _temp;
|
264 |
+
|
265 |
+
scalar_t *data_col_ptr = data_col + index;
|
266 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
267 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
268 |
+
const int qid_stride = num_heads * channels;
|
269 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
270 |
+
scalar_t col = 0;
|
271 |
+
|
272 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
273 |
+
{
|
274 |
+
const int level_start_id = data_level_start_index[l_col];
|
275 |
+
const int spatial_h_ptr = l_col << 1;
|
276 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
277 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
278 |
+
const scalar_t *data_value_ptr = data_value + (data_value_ptr_init_offset + level_start_id * qid_stride);
|
279 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
280 |
+
{
|
281 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
282 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
283 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
284 |
+
|
285 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
286 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
287 |
+
|
288 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
289 |
+
{
|
290 |
+
col += ms_deform_attn_im2col_bilinear(data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col) * weight;
|
291 |
+
}
|
292 |
+
|
293 |
+
data_weight_ptr += 1;
|
294 |
+
data_loc_w_ptr += 2;
|
295 |
+
}
|
296 |
+
}
|
297 |
+
*data_col_ptr = col;
|
298 |
+
}
|
299 |
+
}
|
300 |
+
|
301 |
+
template <typename scalar_t, unsigned int blockSize>
|
302 |
+
__global__ void ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1(const int n,
|
303 |
+
const scalar_t *grad_col,
|
304 |
+
const scalar_t *data_value,
|
305 |
+
const int64_t *data_spatial_shapes,
|
306 |
+
const int64_t *data_level_start_index,
|
307 |
+
const scalar_t *data_sampling_loc,
|
308 |
+
const scalar_t *data_attn_weight,
|
309 |
+
const int batch_size,
|
310 |
+
const int spatial_size,
|
311 |
+
const int num_heads,
|
312 |
+
const int channels,
|
313 |
+
const int num_levels,
|
314 |
+
const int num_query,
|
315 |
+
const int num_point,
|
316 |
+
scalar_t *grad_value,
|
317 |
+
scalar_t *grad_sampling_loc,
|
318 |
+
scalar_t *grad_attn_weight)
|
319 |
+
{
|
320 |
+
CUDA_KERNEL_LOOP(index, n)
|
321 |
+
{
|
322 |
+
__shared__ scalar_t cache_grad_sampling_loc[blockSize * 2];
|
323 |
+
__shared__ scalar_t cache_grad_attn_weight[blockSize];
|
324 |
+
unsigned int tid = threadIdx.x;
|
325 |
+
int _temp = index;
|
326 |
+
const int c_col = _temp % channels;
|
327 |
+
_temp /= channels;
|
328 |
+
const int sampling_index = _temp;
|
329 |
+
const int m_col = _temp % num_heads;
|
330 |
+
_temp /= num_heads;
|
331 |
+
const int q_col = _temp % num_query;
|
332 |
+
_temp /= num_query;
|
333 |
+
const int b_col = _temp;
|
334 |
+
|
335 |
+
const scalar_t top_grad = grad_col[index];
|
336 |
+
|
337 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
338 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
339 |
+
const int grad_sampling_ptr = data_weight_ptr;
|
340 |
+
grad_sampling_loc += grad_sampling_ptr << 1;
|
341 |
+
grad_attn_weight += grad_sampling_ptr;
|
342 |
+
const int grad_weight_stride = 1;
|
343 |
+
const int grad_loc_stride = 2;
|
344 |
+
const int qid_stride = num_heads * channels;
|
345 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
346 |
+
|
347 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
348 |
+
{
|
349 |
+
const int level_start_id = data_level_start_index[l_col];
|
350 |
+
const int spatial_h_ptr = l_col << 1;
|
351 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
352 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
353 |
+
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
|
354 |
+
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
|
355 |
+
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
|
356 |
+
|
357 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
358 |
+
{
|
359 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
360 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
361 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
362 |
+
|
363 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
364 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
365 |
+
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
|
366 |
+
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
|
367 |
+
*(cache_grad_attn_weight+threadIdx.x)=0;
|
368 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
369 |
+
{
|
370 |
+
ms_deform_attn_col2im_bilinear(
|
371 |
+
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
|
372 |
+
top_grad, weight, grad_value_ptr,
|
373 |
+
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
|
374 |
+
}
|
375 |
+
|
376 |
+
__syncthreads();
|
377 |
+
if (tid == 0)
|
378 |
+
{
|
379 |
+
scalar_t _grad_w=cache_grad_sampling_loc[0], _grad_h=cache_grad_sampling_loc[1], _grad_a=cache_grad_attn_weight[0];
|
380 |
+
int sid=2;
|
381 |
+
for (unsigned int tid = 1; tid < blockSize; ++tid)
|
382 |
+
{
|
383 |
+
_grad_w += cache_grad_sampling_loc[sid];
|
384 |
+
_grad_h += cache_grad_sampling_loc[sid + 1];
|
385 |
+
_grad_a += cache_grad_attn_weight[tid];
|
386 |
+
sid += 2;
|
387 |
+
}
|
388 |
+
|
389 |
+
|
390 |
+
*grad_sampling_loc = _grad_w;
|
391 |
+
*(grad_sampling_loc + 1) = _grad_h;
|
392 |
+
*grad_attn_weight = _grad_a;
|
393 |
+
}
|
394 |
+
__syncthreads();
|
395 |
+
|
396 |
+
data_weight_ptr += 1;
|
397 |
+
data_loc_w_ptr += 2;
|
398 |
+
grad_attn_weight += grad_weight_stride;
|
399 |
+
grad_sampling_loc += grad_loc_stride;
|
400 |
+
}
|
401 |
+
}
|
402 |
+
}
|
403 |
+
}
|
404 |
+
|
405 |
+
|
406 |
+
template <typename scalar_t, unsigned int blockSize>
|
407 |
+
__global__ void ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2(const int n,
|
408 |
+
const scalar_t *grad_col,
|
409 |
+
const scalar_t *data_value,
|
410 |
+
const int64_t *data_spatial_shapes,
|
411 |
+
const int64_t *data_level_start_index,
|
412 |
+
const scalar_t *data_sampling_loc,
|
413 |
+
const scalar_t *data_attn_weight,
|
414 |
+
const int batch_size,
|
415 |
+
const int spatial_size,
|
416 |
+
const int num_heads,
|
417 |
+
const int channels,
|
418 |
+
const int num_levels,
|
419 |
+
const int num_query,
|
420 |
+
const int num_point,
|
421 |
+
scalar_t *grad_value,
|
422 |
+
scalar_t *grad_sampling_loc,
|
423 |
+
scalar_t *grad_attn_weight)
|
424 |
+
{
|
425 |
+
CUDA_KERNEL_LOOP(index, n)
|
426 |
+
{
|
427 |
+
__shared__ scalar_t cache_grad_sampling_loc[blockSize * 2];
|
428 |
+
__shared__ scalar_t cache_grad_attn_weight[blockSize];
|
429 |
+
unsigned int tid = threadIdx.x;
|
430 |
+
int _temp = index;
|
431 |
+
const int c_col = _temp % channels;
|
432 |
+
_temp /= channels;
|
433 |
+
const int sampling_index = _temp;
|
434 |
+
const int m_col = _temp % num_heads;
|
435 |
+
_temp /= num_heads;
|
436 |
+
const int q_col = _temp % num_query;
|
437 |
+
_temp /= num_query;
|
438 |
+
const int b_col = _temp;
|
439 |
+
|
440 |
+
const scalar_t top_grad = grad_col[index];
|
441 |
+
|
442 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
443 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
444 |
+
const int grad_sampling_ptr = data_weight_ptr;
|
445 |
+
grad_sampling_loc += grad_sampling_ptr << 1;
|
446 |
+
grad_attn_weight += grad_sampling_ptr;
|
447 |
+
const int grad_weight_stride = 1;
|
448 |
+
const int grad_loc_stride = 2;
|
449 |
+
const int qid_stride = num_heads * channels;
|
450 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
451 |
+
|
452 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
453 |
+
{
|
454 |
+
const int level_start_id = data_level_start_index[l_col];
|
455 |
+
const int spatial_h_ptr = l_col << 1;
|
456 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
457 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
458 |
+
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
|
459 |
+
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
|
460 |
+
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
|
461 |
+
|
462 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
463 |
+
{
|
464 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
465 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
466 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
467 |
+
|
468 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
469 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
470 |
+
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
|
471 |
+
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
|
472 |
+
*(cache_grad_attn_weight+threadIdx.x)=0;
|
473 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
474 |
+
{
|
475 |
+
ms_deform_attn_col2im_bilinear(
|
476 |
+
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
|
477 |
+
top_grad, weight, grad_value_ptr,
|
478 |
+
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
|
479 |
+
}
|
480 |
+
|
481 |
+
__syncthreads();
|
482 |
+
|
483 |
+
for (unsigned int s=blockSize/2; s>0; s>>=1)
|
484 |
+
{
|
485 |
+
if (tid < s) {
|
486 |
+
const unsigned int xid1 = tid << 1;
|
487 |
+
const unsigned int xid2 = (tid + s) << 1;
|
488 |
+
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s];
|
489 |
+
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2];
|
490 |
+
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1];
|
491 |
+
}
|
492 |
+
__syncthreads();
|
493 |
+
}
|
494 |
+
|
495 |
+
if (tid == 0)
|
496 |
+
{
|
497 |
+
*grad_sampling_loc = cache_grad_sampling_loc[0];
|
498 |
+
*(grad_sampling_loc + 1) = cache_grad_sampling_loc[1];
|
499 |
+
*grad_attn_weight = cache_grad_attn_weight[0];
|
500 |
+
}
|
501 |
+
__syncthreads();
|
502 |
+
|
503 |
+
data_weight_ptr += 1;
|
504 |
+
data_loc_w_ptr += 2;
|
505 |
+
grad_attn_weight += grad_weight_stride;
|
506 |
+
grad_sampling_loc += grad_loc_stride;
|
507 |
+
}
|
508 |
+
}
|
509 |
+
}
|
510 |
+
}
|
511 |
+
|
512 |
+
|
513 |
+
template <typename scalar_t>
|
514 |
+
__global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v1(const int n,
|
515 |
+
const scalar_t *grad_col,
|
516 |
+
const scalar_t *data_value,
|
517 |
+
const int64_t *data_spatial_shapes,
|
518 |
+
const int64_t *data_level_start_index,
|
519 |
+
const scalar_t *data_sampling_loc,
|
520 |
+
const scalar_t *data_attn_weight,
|
521 |
+
const int batch_size,
|
522 |
+
const int spatial_size,
|
523 |
+
const int num_heads,
|
524 |
+
const int channels,
|
525 |
+
const int num_levels,
|
526 |
+
const int num_query,
|
527 |
+
const int num_point,
|
528 |
+
scalar_t *grad_value,
|
529 |
+
scalar_t *grad_sampling_loc,
|
530 |
+
scalar_t *grad_attn_weight)
|
531 |
+
{
|
532 |
+
CUDA_KERNEL_LOOP(index, n)
|
533 |
+
{
|
534 |
+
extern __shared__ int _s[];
|
535 |
+
scalar_t* cache_grad_sampling_loc = (scalar_t*)_s;
|
536 |
+
scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x;
|
537 |
+
unsigned int tid = threadIdx.x;
|
538 |
+
int _temp = index;
|
539 |
+
const int c_col = _temp % channels;
|
540 |
+
_temp /= channels;
|
541 |
+
const int sampling_index = _temp;
|
542 |
+
const int m_col = _temp % num_heads;
|
543 |
+
_temp /= num_heads;
|
544 |
+
const int q_col = _temp % num_query;
|
545 |
+
_temp /= num_query;
|
546 |
+
const int b_col = _temp;
|
547 |
+
|
548 |
+
const scalar_t top_grad = grad_col[index];
|
549 |
+
|
550 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
551 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
552 |
+
const int grad_sampling_ptr = data_weight_ptr;
|
553 |
+
grad_sampling_loc += grad_sampling_ptr << 1;
|
554 |
+
grad_attn_weight += grad_sampling_ptr;
|
555 |
+
const int grad_weight_stride = 1;
|
556 |
+
const int grad_loc_stride = 2;
|
557 |
+
const int qid_stride = num_heads * channels;
|
558 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
559 |
+
|
560 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
561 |
+
{
|
562 |
+
const int level_start_id = data_level_start_index[l_col];
|
563 |
+
const int spatial_h_ptr = l_col << 1;
|
564 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
565 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
566 |
+
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
|
567 |
+
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
|
568 |
+
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
|
569 |
+
|
570 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
571 |
+
{
|
572 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
573 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
574 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
575 |
+
|
576 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
577 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
578 |
+
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
|
579 |
+
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
|
580 |
+
*(cache_grad_attn_weight+threadIdx.x)=0;
|
581 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
582 |
+
{
|
583 |
+
ms_deform_attn_col2im_bilinear(
|
584 |
+
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
|
585 |
+
top_grad, weight, grad_value_ptr,
|
586 |
+
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
|
587 |
+
}
|
588 |
+
|
589 |
+
__syncthreads();
|
590 |
+
if (tid == 0)
|
591 |
+
{
|
592 |
+
scalar_t _grad_w=cache_grad_sampling_loc[0], _grad_h=cache_grad_sampling_loc[1], _grad_a=cache_grad_attn_weight[0];
|
593 |
+
int sid=2;
|
594 |
+
for (unsigned int tid = 1; tid < blockDim.x; ++tid)
|
595 |
+
{
|
596 |
+
_grad_w += cache_grad_sampling_loc[sid];
|
597 |
+
_grad_h += cache_grad_sampling_loc[sid + 1];
|
598 |
+
_grad_a += cache_grad_attn_weight[tid];
|
599 |
+
sid += 2;
|
600 |
+
}
|
601 |
+
|
602 |
+
|
603 |
+
*grad_sampling_loc = _grad_w;
|
604 |
+
*(grad_sampling_loc + 1) = _grad_h;
|
605 |
+
*grad_attn_weight = _grad_a;
|
606 |
+
}
|
607 |
+
__syncthreads();
|
608 |
+
|
609 |
+
data_weight_ptr += 1;
|
610 |
+
data_loc_w_ptr += 2;
|
611 |
+
grad_attn_weight += grad_weight_stride;
|
612 |
+
grad_sampling_loc += grad_loc_stride;
|
613 |
+
}
|
614 |
+
}
|
615 |
+
}
|
616 |
+
}
|
617 |
+
|
618 |
+
template <typename scalar_t>
|
619 |
+
__global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v2(const int n,
|
620 |
+
const scalar_t *grad_col,
|
621 |
+
const scalar_t *data_value,
|
622 |
+
const int64_t *data_spatial_shapes,
|
623 |
+
const int64_t *data_level_start_index,
|
624 |
+
const scalar_t *data_sampling_loc,
|
625 |
+
const scalar_t *data_attn_weight,
|
626 |
+
const int batch_size,
|
627 |
+
const int spatial_size,
|
628 |
+
const int num_heads,
|
629 |
+
const int channels,
|
630 |
+
const int num_levels,
|
631 |
+
const int num_query,
|
632 |
+
const int num_point,
|
633 |
+
scalar_t *grad_value,
|
634 |
+
scalar_t *grad_sampling_loc,
|
635 |
+
scalar_t *grad_attn_weight)
|
636 |
+
{
|
637 |
+
CUDA_KERNEL_LOOP(index, n)
|
638 |
+
{
|
639 |
+
extern __shared__ int _s[];
|
640 |
+
scalar_t* cache_grad_sampling_loc = (scalar_t*)_s;
|
641 |
+
scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x;
|
642 |
+
unsigned int tid = threadIdx.x;
|
643 |
+
int _temp = index;
|
644 |
+
const int c_col = _temp % channels;
|
645 |
+
_temp /= channels;
|
646 |
+
const int sampling_index = _temp;
|
647 |
+
const int m_col = _temp % num_heads;
|
648 |
+
_temp /= num_heads;
|
649 |
+
const int q_col = _temp % num_query;
|
650 |
+
_temp /= num_query;
|
651 |
+
const int b_col = _temp;
|
652 |
+
|
653 |
+
const scalar_t top_grad = grad_col[index];
|
654 |
+
|
655 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
656 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
657 |
+
const int grad_sampling_ptr = data_weight_ptr;
|
658 |
+
grad_sampling_loc += grad_sampling_ptr << 1;
|
659 |
+
grad_attn_weight += grad_sampling_ptr;
|
660 |
+
const int grad_weight_stride = 1;
|
661 |
+
const int grad_loc_stride = 2;
|
662 |
+
const int qid_stride = num_heads * channels;
|
663 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
664 |
+
|
665 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
666 |
+
{
|
667 |
+
const int level_start_id = data_level_start_index[l_col];
|
668 |
+
const int spatial_h_ptr = l_col << 1;
|
669 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
670 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
671 |
+
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
|
672 |
+
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
|
673 |
+
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
|
674 |
+
|
675 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
676 |
+
{
|
677 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
678 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
679 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
680 |
+
|
681 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
682 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
683 |
+
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
|
684 |
+
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
|
685 |
+
*(cache_grad_attn_weight+threadIdx.x)=0;
|
686 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
687 |
+
{
|
688 |
+
ms_deform_attn_col2im_bilinear(
|
689 |
+
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
|
690 |
+
top_grad, weight, grad_value_ptr,
|
691 |
+
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
|
692 |
+
}
|
693 |
+
|
694 |
+
__syncthreads();
|
695 |
+
|
696 |
+
for (unsigned int s=blockDim.x/2, spre=blockDim.x; s>0; s>>=1, spre>>=1)
|
697 |
+
{
|
698 |
+
if (tid < s) {
|
699 |
+
const unsigned int xid1 = tid << 1;
|
700 |
+
const unsigned int xid2 = (tid + s) << 1;
|
701 |
+
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s];
|
702 |
+
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2];
|
703 |
+
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1];
|
704 |
+
if (tid + (s << 1) < spre)
|
705 |
+
{
|
706 |
+
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + (s << 1)];
|
707 |
+
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2 + (s << 1)];
|
708 |
+
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1 + (s << 1)];
|
709 |
+
}
|
710 |
+
}
|
711 |
+
__syncthreads();
|
712 |
+
}
|
713 |
+
|
714 |
+
if (tid == 0)
|
715 |
+
{
|
716 |
+
*grad_sampling_loc = cache_grad_sampling_loc[0];
|
717 |
+
*(grad_sampling_loc + 1) = cache_grad_sampling_loc[1];
|
718 |
+
*grad_attn_weight = cache_grad_attn_weight[0];
|
719 |
+
}
|
720 |
+
__syncthreads();
|
721 |
+
|
722 |
+
data_weight_ptr += 1;
|
723 |
+
data_loc_w_ptr += 2;
|
724 |
+
grad_attn_weight += grad_weight_stride;
|
725 |
+
grad_sampling_loc += grad_loc_stride;
|
726 |
+
}
|
727 |
+
}
|
728 |
+
}
|
729 |
+
}
|
730 |
+
|
731 |
+
template <typename scalar_t>
|
732 |
+
__global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v2_multi_blocks(const int n,
|
733 |
+
const scalar_t *grad_col,
|
734 |
+
const scalar_t *data_value,
|
735 |
+
const int64_t *data_spatial_shapes,
|
736 |
+
const int64_t *data_level_start_index,
|
737 |
+
const scalar_t *data_sampling_loc,
|
738 |
+
const scalar_t *data_attn_weight,
|
739 |
+
const int batch_size,
|
740 |
+
const int spatial_size,
|
741 |
+
const int num_heads,
|
742 |
+
const int channels,
|
743 |
+
const int num_levels,
|
744 |
+
const int num_query,
|
745 |
+
const int num_point,
|
746 |
+
scalar_t *grad_value,
|
747 |
+
scalar_t *grad_sampling_loc,
|
748 |
+
scalar_t *grad_attn_weight)
|
749 |
+
{
|
750 |
+
CUDA_KERNEL_LOOP(index, n)
|
751 |
+
{
|
752 |
+
extern __shared__ int _s[];
|
753 |
+
scalar_t* cache_grad_sampling_loc = (scalar_t*)_s;
|
754 |
+
scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x;
|
755 |
+
unsigned int tid = threadIdx.x;
|
756 |
+
int _temp = index;
|
757 |
+
const int c_col = _temp % channels;
|
758 |
+
_temp /= channels;
|
759 |
+
const int sampling_index = _temp;
|
760 |
+
const int m_col = _temp % num_heads;
|
761 |
+
_temp /= num_heads;
|
762 |
+
const int q_col = _temp % num_query;
|
763 |
+
_temp /= num_query;
|
764 |
+
const int b_col = _temp;
|
765 |
+
|
766 |
+
const scalar_t top_grad = grad_col[index];
|
767 |
+
|
768 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
769 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
770 |
+
const int grad_sampling_ptr = data_weight_ptr;
|
771 |
+
grad_sampling_loc += grad_sampling_ptr << 1;
|
772 |
+
grad_attn_weight += grad_sampling_ptr;
|
773 |
+
const int grad_weight_stride = 1;
|
774 |
+
const int grad_loc_stride = 2;
|
775 |
+
const int qid_stride = num_heads * channels;
|
776 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
777 |
+
|
778 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
779 |
+
{
|
780 |
+
const int level_start_id = data_level_start_index[l_col];
|
781 |
+
const int spatial_h_ptr = l_col << 1;
|
782 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
783 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
784 |
+
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
|
785 |
+
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
|
786 |
+
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
|
787 |
+
|
788 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
789 |
+
{
|
790 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
791 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
792 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
793 |
+
|
794 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
795 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
796 |
+
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
|
797 |
+
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
|
798 |
+
*(cache_grad_attn_weight+threadIdx.x)=0;
|
799 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
800 |
+
{
|
801 |
+
ms_deform_attn_col2im_bilinear(
|
802 |
+
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
|
803 |
+
top_grad, weight, grad_value_ptr,
|
804 |
+
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
|
805 |
+
}
|
806 |
+
|
807 |
+
__syncthreads();
|
808 |
+
|
809 |
+
for (unsigned int s=blockDim.x/2, spre=blockDim.x; s>0; s>>=1, spre>>=1)
|
810 |
+
{
|
811 |
+
if (tid < s) {
|
812 |
+
const unsigned int xid1 = tid << 1;
|
813 |
+
const unsigned int xid2 = (tid + s) << 1;
|
814 |
+
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s];
|
815 |
+
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2];
|
816 |
+
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1];
|
817 |
+
if (tid + (s << 1) < spre)
|
818 |
+
{
|
819 |
+
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + (s << 1)];
|
820 |
+
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2 + (s << 1)];
|
821 |
+
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1 + (s << 1)];
|
822 |
+
}
|
823 |
+
}
|
824 |
+
__syncthreads();
|
825 |
+
}
|
826 |
+
|
827 |
+
if (tid == 0)
|
828 |
+
{
|
829 |
+
atomicAdd(grad_sampling_loc, cache_grad_sampling_loc[0]);
|
830 |
+
atomicAdd(grad_sampling_loc + 1, cache_grad_sampling_loc[1]);
|
831 |
+
atomicAdd(grad_attn_weight, cache_grad_attn_weight[0]);
|
832 |
+
}
|
833 |
+
__syncthreads();
|
834 |
+
|
835 |
+
data_weight_ptr += 1;
|
836 |
+
data_loc_w_ptr += 2;
|
837 |
+
grad_attn_weight += grad_weight_stride;
|
838 |
+
grad_sampling_loc += grad_loc_stride;
|
839 |
+
}
|
840 |
+
}
|
841 |
+
}
|
842 |
+
}
|
843 |
+
|
844 |
+
|
845 |
+
template <typename scalar_t>
|
846 |
+
__global__ void ms_deformable_col2im_gpu_kernel_gm(const int n,
|
847 |
+
const scalar_t *grad_col,
|
848 |
+
const scalar_t *data_value,
|
849 |
+
const int64_t *data_spatial_shapes,
|
850 |
+
const int64_t *data_level_start_index,
|
851 |
+
const scalar_t *data_sampling_loc,
|
852 |
+
const scalar_t *data_attn_weight,
|
853 |
+
const int batch_size,
|
854 |
+
const int spatial_size,
|
855 |
+
const int num_heads,
|
856 |
+
const int channels,
|
857 |
+
const int num_levels,
|
858 |
+
const int num_query,
|
859 |
+
const int num_point,
|
860 |
+
scalar_t *grad_value,
|
861 |
+
scalar_t *grad_sampling_loc,
|
862 |
+
scalar_t *grad_attn_weight)
|
863 |
+
{
|
864 |
+
CUDA_KERNEL_LOOP(index, n)
|
865 |
+
{
|
866 |
+
int _temp = index;
|
867 |
+
const int c_col = _temp % channels;
|
868 |
+
_temp /= channels;
|
869 |
+
const int sampling_index = _temp;
|
870 |
+
const int m_col = _temp % num_heads;
|
871 |
+
_temp /= num_heads;
|
872 |
+
const int q_col = _temp % num_query;
|
873 |
+
_temp /= num_query;
|
874 |
+
const int b_col = _temp;
|
875 |
+
|
876 |
+
const scalar_t top_grad = grad_col[index];
|
877 |
+
|
878 |
+
int data_weight_ptr = sampling_index * num_levels * num_point;
|
879 |
+
int data_loc_w_ptr = data_weight_ptr << 1;
|
880 |
+
const int grad_sampling_ptr = data_weight_ptr;
|
881 |
+
grad_sampling_loc += grad_sampling_ptr << 1;
|
882 |
+
grad_attn_weight += grad_sampling_ptr;
|
883 |
+
const int grad_weight_stride = 1;
|
884 |
+
const int grad_loc_stride = 2;
|
885 |
+
const int qid_stride = num_heads * channels;
|
886 |
+
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
|
887 |
+
|
888 |
+
for (int l_col=0; l_col < num_levels; ++l_col)
|
889 |
+
{
|
890 |
+
const int level_start_id = data_level_start_index[l_col];
|
891 |
+
const int spatial_h_ptr = l_col << 1;
|
892 |
+
const int spatial_h = data_spatial_shapes[spatial_h_ptr];
|
893 |
+
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
|
894 |
+
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
|
895 |
+
const scalar_t *data_value_ptr = data_value + value_ptr_offset;
|
896 |
+
scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
|
897 |
+
|
898 |
+
for (int p_col=0; p_col < num_point; ++p_col)
|
899 |
+
{
|
900 |
+
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
|
901 |
+
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
|
902 |
+
const scalar_t weight = data_attn_weight[data_weight_ptr];
|
903 |
+
|
904 |
+
const scalar_t h_im = loc_h * spatial_h - 0.5;
|
905 |
+
const scalar_t w_im = loc_w * spatial_w - 0.5;
|
906 |
+
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
|
907 |
+
{
|
908 |
+
ms_deform_attn_col2im_bilinear_gm(
|
909 |
+
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
|
910 |
+
top_grad, weight, grad_value_ptr,
|
911 |
+
grad_sampling_loc, grad_attn_weight);
|
912 |
+
}
|
913 |
+
data_weight_ptr += 1;
|
914 |
+
data_loc_w_ptr += 2;
|
915 |
+
grad_attn_weight += grad_weight_stride;
|
916 |
+
grad_sampling_loc += grad_loc_stride;
|
917 |
+
}
|
918 |
+
}
|
919 |
+
}
|
920 |
+
}
|
921 |
+
|
922 |
+
|
923 |
+
template <typename scalar_t>
|
924 |
+
void ms_deformable_im2col_cuda(cudaStream_t stream,
|
925 |
+
const scalar_t* data_value,
|
926 |
+
const int64_t* data_spatial_shapes,
|
927 |
+
const int64_t* data_level_start_index,
|
928 |
+
const scalar_t* data_sampling_loc,
|
929 |
+
const scalar_t* data_attn_weight,
|
930 |
+
const int batch_size,
|
931 |
+
const int spatial_size,
|
932 |
+
const int num_heads,
|
933 |
+
const int channels,
|
934 |
+
const int num_levels,
|
935 |
+
const int num_query,
|
936 |
+
const int num_point,
|
937 |
+
scalar_t* data_col)
|
938 |
+
{
|
939 |
+
const int num_kernels = batch_size * num_query * num_heads * channels;
|
940 |
+
const int num_actual_kernels = batch_size * num_query * num_heads * channels;
|
941 |
+
const int num_threads = CUDA_NUM_THREADS;
|
942 |
+
ms_deformable_im2col_gpu_kernel<scalar_t>
|
943 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
944 |
+
0, stream>>>(
|
945 |
+
num_kernels, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight,
|
946 |
+
batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, data_col);
|
947 |
+
|
948 |
+
cudaError_t err = cudaGetLastError();
|
949 |
+
if (err != cudaSuccess)
|
950 |
+
{
|
951 |
+
printf("error in ms_deformable_im2col_cuda: %s\n", cudaGetErrorString(err));
|
952 |
+
}
|
953 |
+
|
954 |
+
}
|
955 |
+
|
956 |
+
template <typename scalar_t>
|
957 |
+
void ms_deformable_col2im_cuda(cudaStream_t stream,
|
958 |
+
const scalar_t* grad_col,
|
959 |
+
const scalar_t* data_value,
|
960 |
+
const int64_t * data_spatial_shapes,
|
961 |
+
const int64_t * data_level_start_index,
|
962 |
+
const scalar_t * data_sampling_loc,
|
963 |
+
const scalar_t * data_attn_weight,
|
964 |
+
const int batch_size,
|
965 |
+
const int spatial_size,
|
966 |
+
const int num_heads,
|
967 |
+
const int channels,
|
968 |
+
const int num_levels,
|
969 |
+
const int num_query,
|
970 |
+
const int num_point,
|
971 |
+
scalar_t* grad_value,
|
972 |
+
scalar_t* grad_sampling_loc,
|
973 |
+
scalar_t* grad_attn_weight)
|
974 |
+
{
|
975 |
+
const int num_threads = (channels > CUDA_NUM_THREADS)?CUDA_NUM_THREADS:channels;
|
976 |
+
const int num_kernels = batch_size * num_query * num_heads * channels;
|
977 |
+
const int num_actual_kernels = batch_size * num_query * num_heads * channels;
|
978 |
+
if (channels > 1024)
|
979 |
+
{
|
980 |
+
if ((channels & 1023) == 0)
|
981 |
+
{
|
982 |
+
ms_deformable_col2im_gpu_kernel_shm_reduce_v2_multi_blocks<scalar_t>
|
983 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
984 |
+
num_threads*3*sizeof(scalar_t), stream>>>(
|
985 |
+
num_kernels,
|
986 |
+
grad_col,
|
987 |
+
data_value,
|
988 |
+
data_spatial_shapes,
|
989 |
+
data_level_start_index,
|
990 |
+
data_sampling_loc,
|
991 |
+
data_attn_weight,
|
992 |
+
batch_size,
|
993 |
+
spatial_size,
|
994 |
+
num_heads,
|
995 |
+
channels,
|
996 |
+
num_levels,
|
997 |
+
num_query,
|
998 |
+
num_point,
|
999 |
+
grad_value,
|
1000 |
+
grad_sampling_loc,
|
1001 |
+
grad_attn_weight);
|
1002 |
+
}
|
1003 |
+
else
|
1004 |
+
{
|
1005 |
+
ms_deformable_col2im_gpu_kernel_gm<scalar_t>
|
1006 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1007 |
+
0, stream>>>(
|
1008 |
+
num_kernels,
|
1009 |
+
grad_col,
|
1010 |
+
data_value,
|
1011 |
+
data_spatial_shapes,
|
1012 |
+
data_level_start_index,
|
1013 |
+
data_sampling_loc,
|
1014 |
+
data_attn_weight,
|
1015 |
+
batch_size,
|
1016 |
+
spatial_size,
|
1017 |
+
num_heads,
|
1018 |
+
channels,
|
1019 |
+
num_levels,
|
1020 |
+
num_query,
|
1021 |
+
num_point,
|
1022 |
+
grad_value,
|
1023 |
+
grad_sampling_loc,
|
1024 |
+
grad_attn_weight);
|
1025 |
+
}
|
1026 |
+
}
|
1027 |
+
else{
|
1028 |
+
switch(channels)
|
1029 |
+
{
|
1030 |
+
case 1:
|
1031 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 1>
|
1032 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1033 |
+
0, stream>>>(
|
1034 |
+
num_kernels,
|
1035 |
+
grad_col,
|
1036 |
+
data_value,
|
1037 |
+
data_spatial_shapes,
|
1038 |
+
data_level_start_index,
|
1039 |
+
data_sampling_loc,
|
1040 |
+
data_attn_weight,
|
1041 |
+
batch_size,
|
1042 |
+
spatial_size,
|
1043 |
+
num_heads,
|
1044 |
+
channels,
|
1045 |
+
num_levels,
|
1046 |
+
num_query,
|
1047 |
+
num_point,
|
1048 |
+
grad_value,
|
1049 |
+
grad_sampling_loc,
|
1050 |
+
grad_attn_weight);
|
1051 |
+
break;
|
1052 |
+
case 2:
|
1053 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 2>
|
1054 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1055 |
+
0, stream>>>(
|
1056 |
+
num_kernels,
|
1057 |
+
grad_col,
|
1058 |
+
data_value,
|
1059 |
+
data_spatial_shapes,
|
1060 |
+
data_level_start_index,
|
1061 |
+
data_sampling_loc,
|
1062 |
+
data_attn_weight,
|
1063 |
+
batch_size,
|
1064 |
+
spatial_size,
|
1065 |
+
num_heads,
|
1066 |
+
channels,
|
1067 |
+
num_levels,
|
1068 |
+
num_query,
|
1069 |
+
num_point,
|
1070 |
+
grad_value,
|
1071 |
+
grad_sampling_loc,
|
1072 |
+
grad_attn_weight);
|
1073 |
+
break;
|
1074 |
+
case 4:
|
1075 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 4>
|
1076 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1077 |
+
0, stream>>>(
|
1078 |
+
num_kernels,
|
1079 |
+
grad_col,
|
1080 |
+
data_value,
|
1081 |
+
data_spatial_shapes,
|
1082 |
+
data_level_start_index,
|
1083 |
+
data_sampling_loc,
|
1084 |
+
data_attn_weight,
|
1085 |
+
batch_size,
|
1086 |
+
spatial_size,
|
1087 |
+
num_heads,
|
1088 |
+
channels,
|
1089 |
+
num_levels,
|
1090 |
+
num_query,
|
1091 |
+
num_point,
|
1092 |
+
grad_value,
|
1093 |
+
grad_sampling_loc,
|
1094 |
+
grad_attn_weight);
|
1095 |
+
break;
|
1096 |
+
case 8:
|
1097 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 8>
|
1098 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1099 |
+
0, stream>>>(
|
1100 |
+
num_kernels,
|
1101 |
+
grad_col,
|
1102 |
+
data_value,
|
1103 |
+
data_spatial_shapes,
|
1104 |
+
data_level_start_index,
|
1105 |
+
data_sampling_loc,
|
1106 |
+
data_attn_weight,
|
1107 |
+
batch_size,
|
1108 |
+
spatial_size,
|
1109 |
+
num_heads,
|
1110 |
+
channels,
|
1111 |
+
num_levels,
|
1112 |
+
num_query,
|
1113 |
+
num_point,
|
1114 |
+
grad_value,
|
1115 |
+
grad_sampling_loc,
|
1116 |
+
grad_attn_weight);
|
1117 |
+
break;
|
1118 |
+
case 16:
|
1119 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 16>
|
1120 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1121 |
+
0, stream>>>(
|
1122 |
+
num_kernels,
|
1123 |
+
grad_col,
|
1124 |
+
data_value,
|
1125 |
+
data_spatial_shapes,
|
1126 |
+
data_level_start_index,
|
1127 |
+
data_sampling_loc,
|
1128 |
+
data_attn_weight,
|
1129 |
+
batch_size,
|
1130 |
+
spatial_size,
|
1131 |
+
num_heads,
|
1132 |
+
channels,
|
1133 |
+
num_levels,
|
1134 |
+
num_query,
|
1135 |
+
num_point,
|
1136 |
+
grad_value,
|
1137 |
+
grad_sampling_loc,
|
1138 |
+
grad_attn_weight);
|
1139 |
+
break;
|
1140 |
+
case 32:
|
1141 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 32>
|
1142 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1143 |
+
0, stream>>>(
|
1144 |
+
num_kernels,
|
1145 |
+
grad_col,
|
1146 |
+
data_value,
|
1147 |
+
data_spatial_shapes,
|
1148 |
+
data_level_start_index,
|
1149 |
+
data_sampling_loc,
|
1150 |
+
data_attn_weight,
|
1151 |
+
batch_size,
|
1152 |
+
spatial_size,
|
1153 |
+
num_heads,
|
1154 |
+
channels,
|
1155 |
+
num_levels,
|
1156 |
+
num_query,
|
1157 |
+
num_point,
|
1158 |
+
grad_value,
|
1159 |
+
grad_sampling_loc,
|
1160 |
+
grad_attn_weight);
|
1161 |
+
break;
|
1162 |
+
case 64:
|
1163 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 64>
|
1164 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1165 |
+
0, stream>>>(
|
1166 |
+
num_kernels,
|
1167 |
+
grad_col,
|
1168 |
+
data_value,
|
1169 |
+
data_spatial_shapes,
|
1170 |
+
data_level_start_index,
|
1171 |
+
data_sampling_loc,
|
1172 |
+
data_attn_weight,
|
1173 |
+
batch_size,
|
1174 |
+
spatial_size,
|
1175 |
+
num_heads,
|
1176 |
+
channels,
|
1177 |
+
num_levels,
|
1178 |
+
num_query,
|
1179 |
+
num_point,
|
1180 |
+
grad_value,
|
1181 |
+
grad_sampling_loc,
|
1182 |
+
grad_attn_weight);
|
1183 |
+
break;
|
1184 |
+
case 128:
|
1185 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 128>
|
1186 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1187 |
+
0, stream>>>(
|
1188 |
+
num_kernels,
|
1189 |
+
grad_col,
|
1190 |
+
data_value,
|
1191 |
+
data_spatial_shapes,
|
1192 |
+
data_level_start_index,
|
1193 |
+
data_sampling_loc,
|
1194 |
+
data_attn_weight,
|
1195 |
+
batch_size,
|
1196 |
+
spatial_size,
|
1197 |
+
num_heads,
|
1198 |
+
channels,
|
1199 |
+
num_levels,
|
1200 |
+
num_query,
|
1201 |
+
num_point,
|
1202 |
+
grad_value,
|
1203 |
+
grad_sampling_loc,
|
1204 |
+
grad_attn_weight);
|
1205 |
+
break;
|
1206 |
+
case 256:
|
1207 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 256>
|
1208 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1209 |
+
0, stream>>>(
|
1210 |
+
num_kernels,
|
1211 |
+
grad_col,
|
1212 |
+
data_value,
|
1213 |
+
data_spatial_shapes,
|
1214 |
+
data_level_start_index,
|
1215 |
+
data_sampling_loc,
|
1216 |
+
data_attn_weight,
|
1217 |
+
batch_size,
|
1218 |
+
spatial_size,
|
1219 |
+
num_heads,
|
1220 |
+
channels,
|
1221 |
+
num_levels,
|
1222 |
+
num_query,
|
1223 |
+
num_point,
|
1224 |
+
grad_value,
|
1225 |
+
grad_sampling_loc,
|
1226 |
+
grad_attn_weight);
|
1227 |
+
break;
|
1228 |
+
case 512:
|
1229 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 512>
|
1230 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1231 |
+
0, stream>>>(
|
1232 |
+
num_kernels,
|
1233 |
+
grad_col,
|
1234 |
+
data_value,
|
1235 |
+
data_spatial_shapes,
|
1236 |
+
data_level_start_index,
|
1237 |
+
data_sampling_loc,
|
1238 |
+
data_attn_weight,
|
1239 |
+
batch_size,
|
1240 |
+
spatial_size,
|
1241 |
+
num_heads,
|
1242 |
+
channels,
|
1243 |
+
num_levels,
|
1244 |
+
num_query,
|
1245 |
+
num_point,
|
1246 |
+
grad_value,
|
1247 |
+
grad_sampling_loc,
|
1248 |
+
grad_attn_weight);
|
1249 |
+
break;
|
1250 |
+
case 1024:
|
1251 |
+
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 1024>
|
1252 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1253 |
+
0, stream>>>(
|
1254 |
+
num_kernels,
|
1255 |
+
grad_col,
|
1256 |
+
data_value,
|
1257 |
+
data_spatial_shapes,
|
1258 |
+
data_level_start_index,
|
1259 |
+
data_sampling_loc,
|
1260 |
+
data_attn_weight,
|
1261 |
+
batch_size,
|
1262 |
+
spatial_size,
|
1263 |
+
num_heads,
|
1264 |
+
channels,
|
1265 |
+
num_levels,
|
1266 |
+
num_query,
|
1267 |
+
num_point,
|
1268 |
+
grad_value,
|
1269 |
+
grad_sampling_loc,
|
1270 |
+
grad_attn_weight);
|
1271 |
+
break;
|
1272 |
+
default:
|
1273 |
+
if (channels < 64)
|
1274 |
+
{
|
1275 |
+
ms_deformable_col2im_gpu_kernel_shm_reduce_v1<scalar_t>
|
1276 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1277 |
+
num_threads*3*sizeof(scalar_t), stream>>>(
|
1278 |
+
num_kernels,
|
1279 |
+
grad_col,
|
1280 |
+
data_value,
|
1281 |
+
data_spatial_shapes,
|
1282 |
+
data_level_start_index,
|
1283 |
+
data_sampling_loc,
|
1284 |
+
data_attn_weight,
|
1285 |
+
batch_size,
|
1286 |
+
spatial_size,
|
1287 |
+
num_heads,
|
1288 |
+
channels,
|
1289 |
+
num_levels,
|
1290 |
+
num_query,
|
1291 |
+
num_point,
|
1292 |
+
grad_value,
|
1293 |
+
grad_sampling_loc,
|
1294 |
+
grad_attn_weight);
|
1295 |
+
}
|
1296 |
+
else
|
1297 |
+
{
|
1298 |
+
ms_deformable_col2im_gpu_kernel_shm_reduce_v2<scalar_t>
|
1299 |
+
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
|
1300 |
+
num_threads*3*sizeof(scalar_t), stream>>>(
|
1301 |
+
num_kernels,
|
1302 |
+
grad_col,
|
1303 |
+
data_value,
|
1304 |
+
data_spatial_shapes,
|
1305 |
+
data_level_start_index,
|
1306 |
+
data_sampling_loc,
|
1307 |
+
data_attn_weight,
|
1308 |
+
batch_size,
|
1309 |
+
spatial_size,
|
1310 |
+
num_heads,
|
1311 |
+
channels,
|
1312 |
+
num_levels,
|
1313 |
+
num_query,
|
1314 |
+
num_point,
|
1315 |
+
grad_value,
|
1316 |
+
grad_sampling_loc,
|
1317 |
+
grad_attn_weight);
|
1318 |
+
}
|
1319 |
+
}
|
1320 |
+
}
|
1321 |
+
cudaError_t err = cudaGetLastError();
|
1322 |
+
if (err != cudaSuccess)
|
1323 |
+
{
|
1324 |
+
printf("error in ms_deformable_col2im_cuda: %s\n", cudaGetErrorString(err));
|
1325 |
+
}
|
1326 |
+
|
1327 |
+
}
|
venv/lib/python3.10/site-packages/transformers/kernels/deta/ms_deform_attn.h
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*!
|
2 |
+
**************************************************************************************************
|
3 |
+
* Deformable DETR
|
4 |
+
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
5 |
+
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
**************************************************************************************************
|
7 |
+
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
8 |
+
**************************************************************************************************
|
9 |
+
*/
|
10 |
+
|
11 |
+
#pragma once
|
12 |
+
|
13 |
+
#include "cpu/ms_deform_attn_cpu.h"
|
14 |
+
|
15 |
+
#ifdef WITH_CUDA
|
16 |
+
#include "cuda/ms_deform_attn_cuda.h"
|
17 |
+
#endif
|
18 |
+
|
19 |
+
|
20 |
+
at::Tensor
|
21 |
+
ms_deform_attn_forward(
|
22 |
+
const at::Tensor &value,
|
23 |
+
const at::Tensor &spatial_shapes,
|
24 |
+
const at::Tensor &level_start_index,
|
25 |
+
const at::Tensor &sampling_loc,
|
26 |
+
const at::Tensor &attn_weight,
|
27 |
+
const int im2col_step)
|
28 |
+
{
|
29 |
+
if (value.type().is_cuda())
|
30 |
+
{
|
31 |
+
#ifdef WITH_CUDA
|
32 |
+
return ms_deform_attn_cuda_forward(
|
33 |
+
value, spatial_shapes, level_start_index, sampling_loc, attn_weight, im2col_step);
|
34 |
+
#else
|
35 |
+
AT_ERROR("Not compiled with GPU support");
|
36 |
+
#endif
|
37 |
+
}
|
38 |
+
AT_ERROR("Not implemented on the CPU");
|
39 |
+
}
|
40 |
+
|
41 |
+
std::vector<at::Tensor>
|
42 |
+
ms_deform_attn_backward(
|
43 |
+
const at::Tensor &value,
|
44 |
+
const at::Tensor &spatial_shapes,
|
45 |
+
const at::Tensor &level_start_index,
|
46 |
+
const at::Tensor &sampling_loc,
|
47 |
+
const at::Tensor &attn_weight,
|
48 |
+
const at::Tensor &grad_output,
|
49 |
+
const int im2col_step)
|
50 |
+
{
|
51 |
+
if (value.type().is_cuda())
|
52 |
+
{
|
53 |
+
#ifdef WITH_CUDA
|
54 |
+
return ms_deform_attn_cuda_backward(
|
55 |
+
value, spatial_shapes, level_start_index, sampling_loc, attn_weight, grad_output, im2col_step);
|
56 |
+
#else
|
57 |
+
AT_ERROR("Not compiled with GPU support");
|
58 |
+
#endif
|
59 |
+
}
|
60 |
+
AT_ERROR("Not implemented on the CPU");
|
61 |
+
}
|
venv/lib/python3.10/site-packages/transformers/kernels/deta/vision.cpp
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*!
|
2 |
+
**************************************************************************************************
|
3 |
+
* Deformable DETR
|
4 |
+
* Copyright (c) 2020 SenseTime. All Rights Reserved.
|
5 |
+
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
**************************************************************************************************
|
7 |
+
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
|
8 |
+
**************************************************************************************************
|
9 |
+
*/
|
10 |
+
|
11 |
+
#include "ms_deform_attn.h"
|
12 |
+
|
13 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
14 |
+
m.def("ms_deform_attn_forward", &ms_deform_attn_forward, "ms_deform_attn_forward");
|
15 |
+
m.def("ms_deform_attn_backward", &ms_deform_attn_backward, "ms_deform_attn_backward");
|
16 |
+
}
|
venv/lib/python3.10/site-packages/transformers/kernels/yoso/common.h
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
#define min(a, b) ((a)<(b)?(a):(b))
|
3 |
+
#define max(a, b) ((a)>(b)?(a):(b))
|
4 |
+
#define ceil_divide(a, b) ((a)/(b)+((a)%(b)!=0))
|
5 |
+
#define select(cond, a, b) ((cond)?(a):(b))
|
6 |
+
#define PI 3.141592
|
7 |
+
#define EPSILON 1e-8
|
8 |
+
#define MAX_VAL 1e12
|
9 |
+
#define MIN_VAL -1e12
|
10 |
+
#define EMPTY_VALUE -1
|
venv/lib/python3.10/site-packages/transformers/kernels/yoso/common_cuda.h
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
#define MAX_THREADS_PER_BLOCK 1024
|
3 |
+
#define OPTIMAL_THREADS_PER_BLOCK 256
|
4 |
+
#define WARP_SIZE 32
|
5 |
+
#define MAX_NUM_BLOCK_X 2147483647
|
6 |
+
#define MAX_NUM_BLOCK_Y 65535
|
7 |
+
#define MAX_NUM_BLOCK_Z 65535
|
8 |
+
#define MAX_SHARED_MEM_PER_BLOCK 48000
|
9 |
+
#define FULL_MASK 0xffffffff
|
venv/lib/python3.10/site-packages/transformers/kernels/yoso/common_cuda_device.h
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
#include "common.h"
|
3 |
+
|
4 |
+
template<typename T>
|
5 |
+
__device__ int set_insert(T *set, int set_size, T value) {
|
6 |
+
int slot = value % set_size;
|
7 |
+
int start_slot = slot;
|
8 |
+
while (true) {
|
9 |
+
T prev = atomicCAS(&set[slot], EMPTY_VALUE, value);
|
10 |
+
if (prev == EMPTY_VALUE || prev == value) {
|
11 |
+
return slot;
|
12 |
+
}
|
13 |
+
slot = (slot + 1) % set_size;
|
14 |
+
if (slot == start_slot) {
|
15 |
+
return -1;
|
16 |
+
}
|
17 |
+
}
|
18 |
+
return -1;
|
19 |
+
}
|
20 |
+
|
21 |
+
template<typename T>
|
22 |
+
__device__ int set_lookup(T *set, int set_size, T value) {
|
23 |
+
int slot = value % set_size;
|
24 |
+
int start_slot = slot;
|
25 |
+
while (true) {
|
26 |
+
if (set[slot] == value) {
|
27 |
+
return slot;
|
28 |
+
}
|
29 |
+
slot = (slot + 1) % set_size;
|
30 |
+
if (slot == start_slot) {
|
31 |
+
return -1;
|
32 |
+
}
|
33 |
+
}
|
34 |
+
return -1;
|
35 |
+
}
|
36 |
+
|
37 |
+
template<typename T>
|
38 |
+
__device__ void init_buffer(T init_value, T *buffer, int buffer_size, int num_threads, int thread_id) {
|
39 |
+
__syncthreads();
|
40 |
+
for (int i = 0; i < buffer_size; i = i + num_threads) {
|
41 |
+
int offset_idx = i + thread_id;
|
42 |
+
if (offset_idx < buffer_size) {
|
43 |
+
buffer[offset_idx] = init_value;
|
44 |
+
}
|
45 |
+
}
|
46 |
+
__syncthreads();
|
47 |
+
}
|
48 |
+
|
49 |
+
template<typename T>
|
50 |
+
__device__ void copy_data(T *src_pt, T *dist_pt, int data_length, int num_threads, int thread_id) {
|
51 |
+
__syncthreads();
|
52 |
+
for (int i = 0; i < data_length; i = i + num_threads) {
|
53 |
+
int offset_idx = i + thread_id;
|
54 |
+
if (offset_idx < data_length) {
|
55 |
+
dist_pt[offset_idx] = src_pt[offset_idx];
|
56 |
+
}
|
57 |
+
}
|
58 |
+
__syncthreads();
|
59 |
+
}
|
60 |
+
|
61 |
+
template<typename T>
|
62 |
+
__device__ void init_buffer_nonblocking(T init_value, T *buffer, int buffer_size, int num_threads, int thread_id) {
|
63 |
+
for (int i = 0; i < buffer_size; i = i + num_threads) {
|
64 |
+
int offset_idx = i + thread_id;
|
65 |
+
if (offset_idx < buffer_size) {
|
66 |
+
buffer[offset_idx] = init_value;
|
67 |
+
}
|
68 |
+
}
|
69 |
+
}
|
70 |
+
|
71 |
+
template<typename T>
|
72 |
+
__device__ void copy_data_nonblocking(T *src_pt, T *dist_pt, int data_length, int num_threads, int thread_id) {
|
73 |
+
for (int i = 0; i < data_length; i = i + num_threads) {
|
74 |
+
int offset_idx = i + thread_id;
|
75 |
+
if (offset_idx < data_length) {
|
76 |
+
dist_pt[offset_idx] = src_pt[offset_idx];
|
77 |
+
}
|
78 |
+
}
|
79 |
+
}
|
venv/lib/python3.10/site-packages/transformers/kernels/yoso/fast_lsh_cumulation.cu
ADDED
@@ -0,0 +1,588 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// File from https://github.com/mlpen/YOSO/blob/main/encoders/backbones/efficient_attentions/yoso/yoso_v1/cuda/fast_lsh_cumulation.cu
|
2 |
+
|
3 |
+
#include <torch/extension.h>
|
4 |
+
#include <ATen/ATen.h>
|
5 |
+
#include "fast_lsh_cumulation.h"
|
6 |
+
#include "fast_lsh_cumulation_cuda.h"
|
7 |
+
#include "common_cuda.h"
|
8 |
+
#include "common.h"
|
9 |
+
#include <vector>
|
10 |
+
//////////////////////////////////////////////////////////////////////////////////////////////////
|
11 |
+
//////////////////////////////////////////////////////////////////////////////////////////////////
|
12 |
+
|
13 |
+
std::vector<at::Tensor> fast_hash_ver1_kernel(
|
14 |
+
at::Tensor query_mask,
|
15 |
+
at::Tensor query_vector,
|
16 |
+
at::Tensor key_mask,
|
17 |
+
at::Tensor key_vector,
|
18 |
+
int num_hash_f,
|
19 |
+
int hash_code_len,
|
20 |
+
bool use_cuda
|
21 |
+
) {
|
22 |
+
|
23 |
+
int batch_size = query_vector.size(0);
|
24 |
+
int num_query = query_vector.size(1);
|
25 |
+
int num_key = key_vector.size(1);
|
26 |
+
int vector_dim = query_vector.size(2);
|
27 |
+
|
28 |
+
int num_hash_per_part = vector_dim / hash_code_len;
|
29 |
+
int num_part = max(1, ceil_divide(num_hash_f, num_hash_per_part));
|
30 |
+
|
31 |
+
at::Tensor Dmat = 2 * at::randint(0, 2, {batch_size, 3, num_part, vector_dim}, query_mask.options()) - 1;
|
32 |
+
at::Tensor query_hash_code = at::zeros({batch_size, num_query, num_hash_f}, query_mask.options());
|
33 |
+
at::Tensor key_hash_code = at::zeros({batch_size, num_key, num_hash_f}, key_mask.options());
|
34 |
+
|
35 |
+
int *query_mask_ptr = query_mask.data_ptr<int>();
|
36 |
+
float *query_vector_ptr = query_vector.data_ptr<float>();
|
37 |
+
int *key_mask_ptr = key_mask.data_ptr<int>();
|
38 |
+
float *key_vector_ptr = key_vector.data_ptr<float>();
|
39 |
+
|
40 |
+
int *Dmat_ptr = Dmat.data_ptr<int>();
|
41 |
+
|
42 |
+
int *query_hash_code_ptr = query_hash_code.data_ptr<int>();
|
43 |
+
int *key_hash_code_ptr = key_hash_code.data_ptr<int>();
|
44 |
+
|
45 |
+
if (use_cuda) {
|
46 |
+
{
|
47 |
+
dim3 threads(vector_dim);
|
48 |
+
dim3 blocks(num_part, num_query, batch_size);
|
49 |
+
int shared_mem = vector_dim * sizeof(float);
|
50 |
+
fast_hash_ver1_cuda_kernel<<<blocks, threads, shared_mem>>>(
|
51 |
+
query_mask_ptr,
|
52 |
+
query_vector_ptr,
|
53 |
+
Dmat_ptr,
|
54 |
+
query_hash_code_ptr,
|
55 |
+
batch_size,
|
56 |
+
num_query,
|
57 |
+
vector_dim,
|
58 |
+
num_part,
|
59 |
+
num_hash_f,
|
60 |
+
hash_code_len
|
61 |
+
);
|
62 |
+
}
|
63 |
+
{
|
64 |
+
dim3 threads(vector_dim);
|
65 |
+
dim3 blocks(num_part, num_key, batch_size);
|
66 |
+
int shared_mem = vector_dim * sizeof(float);
|
67 |
+
fast_hash_ver1_cuda_kernel<<<blocks, threads, shared_mem>>>(
|
68 |
+
key_mask_ptr,
|
69 |
+
key_vector_ptr,
|
70 |
+
Dmat_ptr,
|
71 |
+
key_hash_code_ptr,
|
72 |
+
batch_size,
|
73 |
+
num_key,
|
74 |
+
vector_dim,
|
75 |
+
num_part,
|
76 |
+
num_hash_f,
|
77 |
+
hash_code_len
|
78 |
+
);
|
79 |
+
}
|
80 |
+
}
|
81 |
+
|
82 |
+
return {query_hash_code, key_hash_code};
|
83 |
+
|
84 |
+
}
|
85 |
+
|
86 |
+
at::Tensor lsh_cumulation_ver1_kernel(
|
87 |
+
at::Tensor query_mask,
|
88 |
+
at::Tensor query_hash_code,
|
89 |
+
at::Tensor key_mask,
|
90 |
+
at::Tensor key_hash_code,
|
91 |
+
at::Tensor value,
|
92 |
+
int hashtable_capacity,
|
93 |
+
bool use_cuda
|
94 |
+
) {
|
95 |
+
|
96 |
+
int batch_size = query_hash_code.size(0);
|
97 |
+
int num_hash_f = query_hash_code.size(2);
|
98 |
+
|
99 |
+
int num_query = query_hash_code.size(1);
|
100 |
+
int num_key = key_hash_code.size(1);
|
101 |
+
int value_dim = value.size(2);
|
102 |
+
|
103 |
+
at::Tensor hashtable_value = at::empty({batch_size, num_hash_f, hashtable_capacity, WARP_SIZE}, value.options());
|
104 |
+
at::Tensor cumulation_value = at::zeros({batch_size, num_query, value_dim}, value.options());
|
105 |
+
|
106 |
+
if (use_cuda) {
|
107 |
+
int threads_x = WARP_SIZE;
|
108 |
+
int threads_y = OPTIMAL_THREADS_PER_BLOCK / WARP_SIZE;
|
109 |
+
int block_x_step1 = num_key / threads_y;
|
110 |
+
int block_x_step2 = num_query / threads_y;
|
111 |
+
int block_y = batch_size;
|
112 |
+
|
113 |
+
dim3 threads(threads_x, threads_y);
|
114 |
+
dim3 blocks_step1(block_x_step1, block_y);
|
115 |
+
dim3 blocks_step2(block_x_step2, block_y);
|
116 |
+
|
117 |
+
int *query_mask_ptr = query_mask.data_ptr<int>();
|
118 |
+
int *query_hash_code_ptr = query_hash_code.data_ptr<int>();
|
119 |
+
int *key_mask_ptr = key_mask.data_ptr<int>();
|
120 |
+
int *key_hash_code_ptr = key_hash_code.data_ptr<int>();
|
121 |
+
float *value_ptr = value.data_ptr<float>();
|
122 |
+
float *hashtable_value_ptr = hashtable_value.data_ptr<float>();
|
123 |
+
float *cumulation_value_ptr = cumulation_value.data_ptr<float>();
|
124 |
+
|
125 |
+
for (int value_offset = 0; value_offset < value_dim; value_offset = value_offset + WARP_SIZE) {
|
126 |
+
|
127 |
+
cudaMemset(hashtable_value_ptr, 0, (batch_size * num_hash_f * hashtable_capacity * WARP_SIZE) * sizeof(float));
|
128 |
+
|
129 |
+
lsh_cumulation_ver1_step1_cuda_kernel<<<blocks_step1, threads>>>(
|
130 |
+
key_mask_ptr,
|
131 |
+
key_hash_code_ptr,
|
132 |
+
value_ptr,
|
133 |
+
hashtable_value_ptr,
|
134 |
+
batch_size,
|
135 |
+
num_hash_f,
|
136 |
+
hashtable_capacity,
|
137 |
+
num_key,
|
138 |
+
value_dim,
|
139 |
+
value_offset
|
140 |
+
);
|
141 |
+
|
142 |
+
lsh_cumulation_ver1_step2_cuda_kernel<<<blocks_step2, threads>>>(
|
143 |
+
query_mask_ptr,
|
144 |
+
query_hash_code_ptr,
|
145 |
+
hashtable_value_ptr,
|
146 |
+
cumulation_value_ptr,
|
147 |
+
batch_size,
|
148 |
+
num_hash_f,
|
149 |
+
hashtable_capacity,
|
150 |
+
num_query,
|
151 |
+
value_dim,
|
152 |
+
value_offset
|
153 |
+
);
|
154 |
+
}
|
155 |
+
|
156 |
+
}
|
157 |
+
|
158 |
+
return cumulation_value;
|
159 |
+
|
160 |
+
}
|
161 |
+
|
162 |
+
at::Tensor lsh_weighted_cumulation_ver1_kernel(
|
163 |
+
at::Tensor query_mask,
|
164 |
+
at::Tensor query_hash_code,
|
165 |
+
at::Tensor query_weight,
|
166 |
+
at::Tensor key_mask,
|
167 |
+
at::Tensor key_hash_code,
|
168 |
+
at::Tensor key_weight,
|
169 |
+
at::Tensor value,
|
170 |
+
int hashtable_capacity,
|
171 |
+
bool use_cuda
|
172 |
+
) {
|
173 |
+
|
174 |
+
int batch_size = query_hash_code.size(0);
|
175 |
+
int num_hash_f = query_hash_code.size(2);
|
176 |
+
|
177 |
+
int num_query = query_hash_code.size(1);
|
178 |
+
int num_key = key_hash_code.size(1);
|
179 |
+
int value_dim = value.size(2);
|
180 |
+
int weight_dim = query_weight.size(2);
|
181 |
+
|
182 |
+
at::Tensor hashtable_value = at::zeros({batch_size, num_hash_f, hashtable_capacity, WARP_SIZE}, value.options());
|
183 |
+
at::Tensor cumulation_value = at::zeros({batch_size, num_query, value_dim}, value.options());
|
184 |
+
|
185 |
+
if (use_cuda) {
|
186 |
+
int threads_x = WARP_SIZE;
|
187 |
+
int threads_y = OPTIMAL_THREADS_PER_BLOCK / WARP_SIZE;
|
188 |
+
int block_x_step1 = num_key / threads_y;
|
189 |
+
int block_x_step2 = num_query / threads_y;
|
190 |
+
int block_y = batch_size;
|
191 |
+
|
192 |
+
dim3 threads(threads_x, threads_y);
|
193 |
+
dim3 blocks_step1(block_x_step1, block_y);
|
194 |
+
dim3 blocks_step2(block_x_step2, block_y);
|
195 |
+
|
196 |
+
int *query_mask_ptr = query_mask.data_ptr<int>();
|
197 |
+
int *query_hash_code_ptr = query_hash_code.data_ptr<int>();
|
198 |
+
float *query_weight_ptr = query_weight.data_ptr<float>();
|
199 |
+
int *key_mask_ptr = key_mask.data_ptr<int>();
|
200 |
+
int *key_hash_code_ptr = key_hash_code.data_ptr<int>();
|
201 |
+
float *key_weight_ptr = key_weight.data_ptr<float>();
|
202 |
+
float *value_ptr = value.data_ptr<float>();
|
203 |
+
float *hashtable_value_ptr = hashtable_value.data_ptr<float>();
|
204 |
+
float *cumulation_value_ptr = cumulation_value.data_ptr<float>();
|
205 |
+
|
206 |
+
for (int value_offset = 0; value_offset < value_dim; value_offset = value_offset + WARP_SIZE) {
|
207 |
+
for (int weight_idx = 0; weight_idx < weight_dim; weight_idx++) {
|
208 |
+
|
209 |
+
cudaMemset(hashtable_value_ptr, 0, (batch_size * num_hash_f * hashtable_capacity * WARP_SIZE) * sizeof(float));
|
210 |
+
|
211 |
+
lsh_weighted_cumulation_ver1_step1_cuda_kernel<<<blocks_step1, threads>>>(
|
212 |
+
key_mask_ptr,
|
213 |
+
key_hash_code_ptr,
|
214 |
+
key_weight_ptr,
|
215 |
+
value_ptr,
|
216 |
+
hashtable_value_ptr,
|
217 |
+
batch_size,
|
218 |
+
num_hash_f,
|
219 |
+
hashtable_capacity,
|
220 |
+
num_key,
|
221 |
+
value_dim,
|
222 |
+
weight_dim,
|
223 |
+
value_offset,
|
224 |
+
weight_idx
|
225 |
+
);
|
226 |
+
|
227 |
+
lsh_weighted_cumulation_ver1_step2_cuda_kernel<<<blocks_step2, threads>>>(
|
228 |
+
query_mask_ptr,
|
229 |
+
query_hash_code_ptr,
|
230 |
+
query_weight_ptr,
|
231 |
+
hashtable_value_ptr,
|
232 |
+
cumulation_value_ptr,
|
233 |
+
batch_size,
|
234 |
+
num_hash_f,
|
235 |
+
hashtable_capacity,
|
236 |
+
num_query,
|
237 |
+
value_dim,
|
238 |
+
weight_dim,
|
239 |
+
value_offset,
|
240 |
+
weight_idx
|
241 |
+
);
|
242 |
+
}
|
243 |
+
}
|
244 |
+
|
245 |
+
}
|
246 |
+
|
247 |
+
return cumulation_value;
|
248 |
+
|
249 |
+
}
|
250 |
+
|
251 |
+
at::Tensor lsh_weighted_cumulation_ver2_kernel(
|
252 |
+
at::Tensor query_mask,
|
253 |
+
at::Tensor query_hash_code,
|
254 |
+
at::Tensor query_weight,
|
255 |
+
at::Tensor key_mask,
|
256 |
+
at::Tensor key_hash_code,
|
257 |
+
at::Tensor key_weight,
|
258 |
+
at::Tensor value,
|
259 |
+
int hashtable_capacity,
|
260 |
+
bool use_cuda
|
261 |
+
) {
|
262 |
+
|
263 |
+
int batch_size = query_hash_code.size(0);
|
264 |
+
int num_hash_f = query_hash_code.size(2);
|
265 |
+
|
266 |
+
int num_query = query_hash_code.size(1);
|
267 |
+
int num_key = key_hash_code.size(1);
|
268 |
+
int value_dim = value.size(2);
|
269 |
+
int weight_dim = query_weight.size(2);
|
270 |
+
|
271 |
+
at::Tensor count_sort_table = at::zeros({batch_size, num_hash_f, hashtable_capacity}, query_hash_code.options());
|
272 |
+
at::Tensor key_sorted_idxes = at::zeros({batch_size, num_hash_f, num_key}, query_hash_code.options());
|
273 |
+
at::Tensor query_info = at::zeros({batch_size, num_query, 2, num_hash_f}, query_hash_code.options());
|
274 |
+
at::Tensor cumulation_value = at::zeros({batch_size, num_query, value_dim}, value.options());
|
275 |
+
|
276 |
+
if (use_cuda) {
|
277 |
+
|
278 |
+
int *query_mask_ptr = query_mask.data_ptr<int>();
|
279 |
+
int *query_hash_code_ptr = query_hash_code.data_ptr<int>();
|
280 |
+
float *query_weight_ptr = query_weight.data_ptr<float>();
|
281 |
+
int *key_mask_ptr = key_mask.data_ptr<int>();
|
282 |
+
int *key_hash_code_ptr = key_hash_code.data_ptr<int>();
|
283 |
+
float *key_weight_ptr = key_weight.data_ptr<float>();
|
284 |
+
float *value_ptr = value.data_ptr<float>();
|
285 |
+
|
286 |
+
int *count_sort_table_ptr = count_sort_table.data_ptr<int>();
|
287 |
+
int *key_sorted_idxes_ptr = key_sorted_idxes.data_ptr<int>();
|
288 |
+
int *query_info_ptr = query_info.data_ptr<int>();
|
289 |
+
|
290 |
+
float *cumulation_value_ptr = cumulation_value.data_ptr<float>();
|
291 |
+
|
292 |
+
{
|
293 |
+
dim3 threads_step13(num_hash_f, max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f));
|
294 |
+
dim3 blocks_step13(num_key / max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f), batch_size);
|
295 |
+
dim3 threads_step2(min(hashtable_capacity, OPTIMAL_THREADS_PER_BLOCK));
|
296 |
+
dim3 blocks_step2(num_hash_f, batch_size);
|
297 |
+
int shared_mem = hashtable_capacity * sizeof(float);
|
298 |
+
count_sort_step1_cuda_kernel<<<blocks_step13, threads_step13>>>(
|
299 |
+
key_mask_ptr,
|
300 |
+
key_hash_code_ptr,
|
301 |
+
count_sort_table_ptr,
|
302 |
+
batch_size,
|
303 |
+
num_hash_f,
|
304 |
+
hashtable_capacity,
|
305 |
+
num_key
|
306 |
+
);
|
307 |
+
count_sort_step2_cuda_kernel<<<blocks_step2, threads_step2, shared_mem>>>(
|
308 |
+
count_sort_table_ptr,
|
309 |
+
batch_size,
|
310 |
+
num_hash_f,
|
311 |
+
hashtable_capacity
|
312 |
+
);
|
313 |
+
count_sort_step3_cuda_kernel<<<blocks_step13, threads_step13>>>(
|
314 |
+
key_mask_ptr,
|
315 |
+
key_hash_code_ptr,
|
316 |
+
count_sort_table_ptr,
|
317 |
+
key_sorted_idxes_ptr,
|
318 |
+
batch_size,
|
319 |
+
num_hash_f,
|
320 |
+
hashtable_capacity,
|
321 |
+
num_key
|
322 |
+
);
|
323 |
+
}
|
324 |
+
{
|
325 |
+
dim3 threads(num_hash_f, max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f));
|
326 |
+
dim3 blocks(num_query / max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f), batch_size);
|
327 |
+
extract_query_info_cuda_kernel<<<blocks, threads>>>(
|
328 |
+
query_mask_ptr,
|
329 |
+
query_hash_code_ptr,
|
330 |
+
count_sort_table_ptr,
|
331 |
+
query_info_ptr,
|
332 |
+
batch_size,
|
333 |
+
num_hash_f,
|
334 |
+
hashtable_capacity,
|
335 |
+
num_query
|
336 |
+
);
|
337 |
+
}
|
338 |
+
{
|
339 |
+
dim3 threads(WARP_SIZE, OPTIMAL_THREADS_PER_BLOCK / WARP_SIZE);
|
340 |
+
dim3 blocks(num_query, num_hash_f, batch_size);
|
341 |
+
int shared_mem = (weight_dim + WARP_SIZE) * sizeof(float);
|
342 |
+
lsh_weighted_cumulation_ver2_step2_cuda_kernel<<<blocks, threads, shared_mem>>>(
|
343 |
+
query_mask_ptr,
|
344 |
+
query_info_ptr,
|
345 |
+
key_sorted_idxes_ptr,
|
346 |
+
query_weight_ptr,
|
347 |
+
key_weight_ptr,
|
348 |
+
value_ptr,
|
349 |
+
cumulation_value_ptr,
|
350 |
+
batch_size,
|
351 |
+
num_hash_f,
|
352 |
+
num_query,
|
353 |
+
num_key,
|
354 |
+
value_dim,
|
355 |
+
weight_dim
|
356 |
+
);
|
357 |
+
}
|
358 |
+
}
|
359 |
+
|
360 |
+
return cumulation_value;
|
361 |
+
|
362 |
+
}
|
363 |
+
|
364 |
+
at::Tensor lsh_weighted_cumulation_ver3_kernel(
|
365 |
+
at::Tensor query_mask,
|
366 |
+
at::Tensor query_hash_code,
|
367 |
+
at::Tensor query_weight,
|
368 |
+
at::Tensor key_mask,
|
369 |
+
at::Tensor key_hash_code,
|
370 |
+
at::Tensor key_weight,
|
371 |
+
at::Tensor value,
|
372 |
+
int hashtable_capacity,
|
373 |
+
bool use_cuda
|
374 |
+
) {
|
375 |
+
|
376 |
+
int batch_size = query_hash_code.size(0);
|
377 |
+
int num_hash_f = query_hash_code.size(2);
|
378 |
+
|
379 |
+
int num_query = query_hash_code.size(1);
|
380 |
+
int num_key = key_hash_code.size(1);
|
381 |
+
int value_dim = value.size(2);
|
382 |
+
int weight_dim = query_weight.size(2);
|
383 |
+
|
384 |
+
at::Tensor count_sort_table = at::zeros({batch_size, num_hash_f, hashtable_capacity}, query_hash_code.options());
|
385 |
+
at::Tensor query_sorted_idxes = at::zeros({batch_size, num_hash_f, num_query}, query_hash_code.options());
|
386 |
+
at::Tensor key_info = at::zeros({batch_size, num_key, 2, num_hash_f}, query_hash_code.options());
|
387 |
+
at::Tensor cumulation_value = at::zeros({batch_size, num_query, value_dim}, value.options());
|
388 |
+
|
389 |
+
if (use_cuda) {
|
390 |
+
|
391 |
+
int *query_mask_ptr = query_mask.data_ptr<int>();
|
392 |
+
int *query_hash_code_ptr = query_hash_code.data_ptr<int>();
|
393 |
+
float *query_weight_ptr = query_weight.data_ptr<float>();
|
394 |
+
int *key_mask_ptr = key_mask.data_ptr<int>();
|
395 |
+
int *key_hash_code_ptr = key_hash_code.data_ptr<int>();
|
396 |
+
float *key_weight_ptr = key_weight.data_ptr<float>();
|
397 |
+
float *value_ptr = value.data_ptr<float>();
|
398 |
+
|
399 |
+
int *count_sort_table_ptr = count_sort_table.data_ptr<int>();
|
400 |
+
int *query_sorted_idxes_ptr = query_sorted_idxes.data_ptr<int>();
|
401 |
+
int *key_info_ptr = key_info.data_ptr<int>();
|
402 |
+
|
403 |
+
float *cumulation_value_ptr = cumulation_value.data_ptr<float>();
|
404 |
+
|
405 |
+
{
|
406 |
+
dim3 threads_step13(num_hash_f, max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f));
|
407 |
+
dim3 blocks_step13(num_query / max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f), batch_size);
|
408 |
+
dim3 threads_step2(min(hashtable_capacity, OPTIMAL_THREADS_PER_BLOCK));
|
409 |
+
dim3 blocks_step2(num_hash_f, batch_size);
|
410 |
+
int shared_mem = hashtable_capacity * sizeof(float);
|
411 |
+
count_sort_step1_cuda_kernel<<<blocks_step13, threads_step13>>>(
|
412 |
+
query_mask_ptr,
|
413 |
+
query_hash_code_ptr,
|
414 |
+
count_sort_table_ptr,
|
415 |
+
batch_size,
|
416 |
+
num_hash_f,
|
417 |
+
hashtable_capacity,
|
418 |
+
num_query
|
419 |
+
);
|
420 |
+
count_sort_step2_cuda_kernel<<<blocks_step2, threads_step2, shared_mem>>>(
|
421 |
+
count_sort_table_ptr,
|
422 |
+
batch_size,
|
423 |
+
num_hash_f,
|
424 |
+
hashtable_capacity
|
425 |
+
);
|
426 |
+
count_sort_step3_cuda_kernel<<<blocks_step13, threads_step13>>>(
|
427 |
+
query_mask_ptr,
|
428 |
+
query_hash_code_ptr,
|
429 |
+
count_sort_table_ptr,
|
430 |
+
query_sorted_idxes_ptr,
|
431 |
+
batch_size,
|
432 |
+
num_hash_f,
|
433 |
+
hashtable_capacity,
|
434 |
+
num_query
|
435 |
+
);
|
436 |
+
}
|
437 |
+
{
|
438 |
+
dim3 threads(num_hash_f, max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f));
|
439 |
+
dim3 blocks(num_key / max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f), batch_size);
|
440 |
+
extract_query_info_cuda_kernel<<<blocks, threads>>>(
|
441 |
+
key_mask_ptr,
|
442 |
+
key_hash_code_ptr,
|
443 |
+
count_sort_table_ptr,
|
444 |
+
key_info_ptr,
|
445 |
+
batch_size,
|
446 |
+
num_hash_f,
|
447 |
+
hashtable_capacity,
|
448 |
+
num_key
|
449 |
+
);
|
450 |
+
}
|
451 |
+
{
|
452 |
+
dim3 threads(WARP_SIZE, OPTIMAL_THREADS_PER_BLOCK / WARP_SIZE);
|
453 |
+
dim3 blocks(num_key, num_hash_f, batch_size);
|
454 |
+
int shared_mem = (weight_dim + value_dim + WARP_SIZE) * sizeof(float);
|
455 |
+
lsh_weighted_cumulation_ver3_step2_cuda_kernel<<<blocks, threads, shared_mem>>>(
|
456 |
+
query_sorted_idxes_ptr,
|
457 |
+
key_mask_ptr,
|
458 |
+
key_info_ptr,
|
459 |
+
query_weight_ptr,
|
460 |
+
key_weight_ptr,
|
461 |
+
value_ptr,
|
462 |
+
cumulation_value_ptr,
|
463 |
+
batch_size,
|
464 |
+
num_hash_f,
|
465 |
+
num_query,
|
466 |
+
num_key,
|
467 |
+
value_dim,
|
468 |
+
weight_dim
|
469 |
+
);
|
470 |
+
}
|
471 |
+
}
|
472 |
+
|
473 |
+
return cumulation_value;
|
474 |
+
|
475 |
+
}
|
476 |
+
|
477 |
+
at::Tensor lsh_weighted_cumulation_ver4_kernel(
|
478 |
+
at::Tensor query_mask,
|
479 |
+
at::Tensor query_hash_code,
|
480 |
+
at::Tensor query_weight,
|
481 |
+
at::Tensor key_mask,
|
482 |
+
at::Tensor key_hash_code,
|
483 |
+
at::Tensor key_weight,
|
484 |
+
at::Tensor value,
|
485 |
+
int hashtable_capacity,
|
486 |
+
bool use_cuda
|
487 |
+
) {
|
488 |
+
|
489 |
+
int batch_size = query_hash_code.size(0);
|
490 |
+
int num_hash_f = query_hash_code.size(2);
|
491 |
+
|
492 |
+
int num_query = query_hash_code.size(1);
|
493 |
+
int num_key = key_hash_code.size(1);
|
494 |
+
int value_dim = value.size(2);
|
495 |
+
int weight_dim = query_weight.size(2);
|
496 |
+
|
497 |
+
at::Tensor count_sort_table = at::zeros({batch_size, num_hash_f, hashtable_capacity}, query_hash_code.options());
|
498 |
+
at::Tensor query_sorted_idxes = at::zeros({batch_size, num_hash_f, num_query}, query_hash_code.options());
|
499 |
+
at::Tensor key_info = at::zeros({batch_size, num_key, 2, num_hash_f}, query_hash_code.options());
|
500 |
+
at::Tensor cumulation_value = at::zeros({batch_size, num_query, value_dim}, value.options());
|
501 |
+
|
502 |
+
if (use_cuda) {
|
503 |
+
|
504 |
+
int *query_mask_ptr = query_mask.data_ptr<int>();
|
505 |
+
int *query_hash_code_ptr = query_hash_code.data_ptr<int>();
|
506 |
+
float *query_weight_ptr = query_weight.data_ptr<float>();
|
507 |
+
int *key_mask_ptr = key_mask.data_ptr<int>();
|
508 |
+
int *key_hash_code_ptr = key_hash_code.data_ptr<int>();
|
509 |
+
float *key_weight_ptr = key_weight.data_ptr<float>();
|
510 |
+
float *value_ptr = value.data_ptr<float>();
|
511 |
+
|
512 |
+
int *count_sort_table_ptr = count_sort_table.data_ptr<int>();
|
513 |
+
int *query_sorted_idxes_ptr = query_sorted_idxes.data_ptr<int>();
|
514 |
+
int *key_info_ptr = key_info.data_ptr<int>();
|
515 |
+
|
516 |
+
float *cumulation_value_ptr = cumulation_value.data_ptr<float>();
|
517 |
+
|
518 |
+
{
|
519 |
+
dim3 threads_step13(num_hash_f, max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f));
|
520 |
+
dim3 blocks_step13(num_query / max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f), batch_size);
|
521 |
+
dim3 threads_step2(min(hashtable_capacity, OPTIMAL_THREADS_PER_BLOCK));
|
522 |
+
dim3 blocks_step2(num_hash_f, batch_size);
|
523 |
+
int shared_mem = hashtable_capacity * sizeof(float);
|
524 |
+
count_sort_step1_cuda_kernel<<<blocks_step13, threads_step13>>>(
|
525 |
+
query_mask_ptr,
|
526 |
+
query_hash_code_ptr,
|
527 |
+
count_sort_table_ptr,
|
528 |
+
batch_size,
|
529 |
+
num_hash_f,
|
530 |
+
hashtable_capacity,
|
531 |
+
num_query
|
532 |
+
);
|
533 |
+
count_sort_step2_cuda_kernel<<<blocks_step2, threads_step2, shared_mem>>>(
|
534 |
+
count_sort_table_ptr,
|
535 |
+
batch_size,
|
536 |
+
num_hash_f,
|
537 |
+
hashtable_capacity
|
538 |
+
);
|
539 |
+
count_sort_step3_cuda_kernel<<<blocks_step13, threads_step13>>>(
|
540 |
+
query_mask_ptr,
|
541 |
+
query_hash_code_ptr,
|
542 |
+
count_sort_table_ptr,
|
543 |
+
query_sorted_idxes_ptr,
|
544 |
+
batch_size,
|
545 |
+
num_hash_f,
|
546 |
+
hashtable_capacity,
|
547 |
+
num_query
|
548 |
+
);
|
549 |
+
}
|
550 |
+
{
|
551 |
+
dim3 threads(num_hash_f, max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f));
|
552 |
+
dim3 blocks(num_key / max(1, OPTIMAL_THREADS_PER_BLOCK / num_hash_f), batch_size);
|
553 |
+
extract_query_info_cuda_kernel<<<blocks, threads>>>(
|
554 |
+
key_mask_ptr,
|
555 |
+
key_hash_code_ptr,
|
556 |
+
count_sort_table_ptr,
|
557 |
+
key_info_ptr,
|
558 |
+
batch_size,
|
559 |
+
num_hash_f,
|
560 |
+
hashtable_capacity,
|
561 |
+
num_key
|
562 |
+
);
|
563 |
+
}
|
564 |
+
{
|
565 |
+
dim3 threads(WARP_SIZE, OPTIMAL_THREADS_PER_BLOCK / WARP_SIZE);
|
566 |
+
dim3 blocks(num_key, batch_size);
|
567 |
+
int shared_mem = (weight_dim + value_dim + 2 * num_hash_f) * sizeof(float);
|
568 |
+
lsh_weighted_cumulation_ver4_step2_cuda_kernel<<<blocks, threads, shared_mem>>>(
|
569 |
+
query_sorted_idxes_ptr,
|
570 |
+
key_mask_ptr,
|
571 |
+
key_info_ptr,
|
572 |
+
query_weight_ptr,
|
573 |
+
key_weight_ptr,
|
574 |
+
value_ptr,
|
575 |
+
cumulation_value_ptr,
|
576 |
+
batch_size,
|
577 |
+
num_hash_f,
|
578 |
+
num_query,
|
579 |
+
num_key,
|
580 |
+
value_dim,
|
581 |
+
weight_dim
|
582 |
+
);
|
583 |
+
}
|
584 |
+
}
|
585 |
+
|
586 |
+
return cumulation_value;
|
587 |
+
|
588 |
+
}
|
venv/lib/python3.10/site-packages/transformers/kernels/yoso/fast_lsh_cumulation.h
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <torch/extension.h>
|
2 |
+
#include <ATen/ATen.h>
|
3 |
+
#include <vector>
|
4 |
+
|
5 |
+
std::vector<at::Tensor> fast_hash_ver1_kernel(
|
6 |
+
at::Tensor query_mask,
|
7 |
+
at::Tensor query_vector,
|
8 |
+
at::Tensor key_mask,
|
9 |
+
at::Tensor key_vector,
|
10 |
+
int num_hash_f,
|
11 |
+
int hash_code_len,
|
12 |
+
bool use_cuda
|
13 |
+
);
|
14 |
+
|
15 |
+
at::Tensor lsh_cumulation_ver1_kernel(
|
16 |
+
at::Tensor query_mask,
|
17 |
+
at::Tensor query_hash_code,
|
18 |
+
at::Tensor key_mask,
|
19 |
+
at::Tensor key_hash_code,
|
20 |
+
at::Tensor value,
|
21 |
+
int hashtable_capacity,
|
22 |
+
bool use_cuda
|
23 |
+
);
|
24 |
+
|
25 |
+
at::Tensor lsh_weighted_cumulation_ver1_kernel(
|
26 |
+
at::Tensor query_mask,
|
27 |
+
at::Tensor query_hash_code,
|
28 |
+
at::Tensor query_weight,
|
29 |
+
at::Tensor key_mask,
|
30 |
+
at::Tensor key_hash_code,
|
31 |
+
at::Tensor key_weight,
|
32 |
+
at::Tensor value,
|
33 |
+
int hashtable_capacity,
|
34 |
+
bool use_cuda
|
35 |
+
);
|
36 |
+
|
37 |
+
at::Tensor lsh_weighted_cumulation_ver2_kernel(
|
38 |
+
at::Tensor query_mask,
|
39 |
+
at::Tensor query_hash_code,
|
40 |
+
at::Tensor query_weight,
|
41 |
+
at::Tensor key_mask,
|
42 |
+
at::Tensor key_hash_code,
|
43 |
+
at::Tensor key_weight,
|
44 |
+
at::Tensor value,
|
45 |
+
int hashtable_capacity,
|
46 |
+
bool use_cuda
|
47 |
+
);
|
48 |
+
|
49 |
+
at::Tensor lsh_weighted_cumulation_ver3_kernel(
|
50 |
+
at::Tensor query_mask,
|
51 |
+
at::Tensor query_hash_code,
|
52 |
+
at::Tensor query_weight,
|
53 |
+
at::Tensor key_mask,
|
54 |
+
at::Tensor key_hash_code,
|
55 |
+
at::Tensor key_weight,
|
56 |
+
at::Tensor value,
|
57 |
+
int hashtable_capacity,
|
58 |
+
bool use_cuda
|
59 |
+
);
|
60 |
+
|
61 |
+
at::Tensor lsh_weighted_cumulation_ver4_kernel(
|
62 |
+
at::Tensor query_mask,
|
63 |
+
at::Tensor query_hash_code,
|
64 |
+
at::Tensor query_weight,
|
65 |
+
at::Tensor key_mask,
|
66 |
+
at::Tensor key_hash_code,
|
67 |
+
at::Tensor key_weight,
|
68 |
+
at::Tensor value,
|
69 |
+
int hashtable_capacity,
|
70 |
+
bool use_cuda
|
71 |
+
);
|
venv/lib/python3.10/site-packages/transformers/kernels/yoso/fast_lsh_cumulation_cuda.cu
ADDED
@@ -0,0 +1,825 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// File from https://github.com/mlpen/YOSO/blob/main/encoders/backbones/efficient_attentions/yoso/yoso_v1/cuda/fast_lsh_cumulation_cuda.cu
|
2 |
+
|
3 |
+
#include "fast_lsh_cumulation_cuda.h"
|
4 |
+
#include "common_cuda_device.h"
|
5 |
+
#include "common_cuda.h"
|
6 |
+
#include "common.h"
|
7 |
+
#include <stdio.h>
|
8 |
+
//////////////////////////////////////////////////////////////////////////////////////////////////
|
9 |
+
//////////////////////////////////////////////////////////////////////////////////////////////////
|
10 |
+
|
11 |
+
inline __device__ void fast_hadamard_transform(float *vector_buffer, int vector_dim, int dim_idx) {
|
12 |
+
int stride = vector_dim / 2;
|
13 |
+
while (stride > (WARP_SIZE / 2)) {
|
14 |
+
__syncthreads();
|
15 |
+
int sign = 1 - ((dim_idx / stride) % 2) * 2;
|
16 |
+
float val1 = vector_buffer[dim_idx];
|
17 |
+
float val2 = vector_buffer[dim_idx + sign * stride];
|
18 |
+
__syncthreads();
|
19 |
+
vector_buffer[dim_idx] = float(sign) * val1 + val2;
|
20 |
+
stride = stride / 2;
|
21 |
+
}
|
22 |
+
|
23 |
+
float val = vector_buffer[dim_idx];
|
24 |
+
#pragma unroll
|
25 |
+
for (stride = (WARP_SIZE / 2); stride > 0; stride = stride / 2) {
|
26 |
+
int sign = 1 - ((dim_idx / stride) % 2) * 2;
|
27 |
+
val = float(sign) * val + __shfl_xor_sync(FULL_MASK, val, stride);
|
28 |
+
}
|
29 |
+
vector_buffer[dim_idx] = val;
|
30 |
+
}
|
31 |
+
|
32 |
+
__global__ void fast_hash_ver1_cuda_kernel(
|
33 |
+
int *mask, // [batch_size, num_vector]
|
34 |
+
float *vector, // [batch_size, num_vector, vector_dim]
|
35 |
+
int *Dmat, // [batch_size, 3, num_part, vector_dim]
|
36 |
+
int *hash_code, // [batch_size, num_vector, num_hash_f]
|
37 |
+
int batch_size,
|
38 |
+
int num_vector,
|
39 |
+
int vector_dim,
|
40 |
+
int num_part,
|
41 |
+
int num_hash_f,
|
42 |
+
int hash_code_len
|
43 |
+
) {
|
44 |
+
|
45 |
+
int batch_idx = blockIdx.z;
|
46 |
+
int vector_idx = blockIdx.y;
|
47 |
+
int part_idx = blockIdx.x;
|
48 |
+
|
49 |
+
int dim_idx = threadIdx.x;
|
50 |
+
|
51 |
+
int batch_idx__vector_idx = batch_idx * num_vector + vector_idx;
|
52 |
+
if (mask[batch_idx__vector_idx] == 0) {
|
53 |
+
return;
|
54 |
+
}
|
55 |
+
|
56 |
+
extern __shared__ float buffer[];
|
57 |
+
float *vector_buffer = buffer;
|
58 |
+
|
59 |
+
vector_buffer[dim_idx] = vector[batch_idx__vector_idx * vector_dim + dim_idx];
|
60 |
+
|
61 |
+
vector_buffer[dim_idx] = vector_buffer[dim_idx] * (float)Dmat[((batch_idx * 3 + 0) * num_part + part_idx) * vector_dim + dim_idx];
|
62 |
+
fast_hadamard_transform(vector_buffer, vector_dim, dim_idx);
|
63 |
+
vector_buffer[dim_idx] = vector_buffer[dim_idx] * (float)Dmat[((batch_idx * 3 + 1) * num_part + part_idx) * vector_dim + dim_idx];
|
64 |
+
fast_hadamard_transform(vector_buffer, vector_dim, dim_idx);
|
65 |
+
vector_buffer[dim_idx] = vector_buffer[dim_idx] * (float)Dmat[((batch_idx * 3 + 2) * num_part + part_idx) * vector_dim + dim_idx];
|
66 |
+
fast_hadamard_transform(vector_buffer, vector_dim, dim_idx);
|
67 |
+
|
68 |
+
int num_hash_per_part = vector_dim / hash_code_len;
|
69 |
+
if (hash_code_len == 8 || hash_code_len == 16) {
|
70 |
+
int code = select(vector_buffer[dim_idx] > 0, 1 << (dim_idx % hash_code_len), 0);
|
71 |
+
for (int offset = 1; offset < hash_code_len; offset = offset * 2) {
|
72 |
+
code += __shfl_xor_sync(FULL_MASK, code, offset);
|
73 |
+
}
|
74 |
+
if (dim_idx % hash_code_len == 0) {
|
75 |
+
int hash_f_idx = part_idx * num_hash_per_part + dim_idx / hash_code_len;
|
76 |
+
if (hash_f_idx < num_hash_f) {
|
77 |
+
hash_code[batch_idx__vector_idx * num_hash_f + hash_f_idx] = code;
|
78 |
+
}
|
79 |
+
}
|
80 |
+
} else {
|
81 |
+
vector_buffer[dim_idx] = select(vector_buffer[dim_idx] > 0, 1 << (dim_idx % hash_code_len), 0);
|
82 |
+
__syncthreads();
|
83 |
+
if (dim_idx < num_hash_per_part) {
|
84 |
+
int code = 0;
|
85 |
+
for (int i = 0; i < hash_code_len; i++) {
|
86 |
+
code += vector_buffer[dim_idx * hash_code_len + i];
|
87 |
+
}
|
88 |
+
int hash_f_idx = part_idx * num_hash_per_part + dim_idx;
|
89 |
+
if (hash_f_idx < num_hash_f) {
|
90 |
+
hash_code[batch_idx__vector_idx * num_hash_f + hash_f_idx] = code;
|
91 |
+
}
|
92 |
+
}
|
93 |
+
}
|
94 |
+
}
|
95 |
+
|
96 |
+
__global__ void lsh_cumulation_ver1_step1_cuda_kernel(
|
97 |
+
int *key_mask, // [batch_size, num_key]
|
98 |
+
int *key_hash_code, // [batch_size, num_key, num_hash_f]
|
99 |
+
float *value, // [batch_size, num_key, value_dim]
|
100 |
+
float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, WARP_SIZE]
|
101 |
+
int batch_size,
|
102 |
+
int num_hash_f,
|
103 |
+
int hashtable_capacity,
|
104 |
+
int num_key,
|
105 |
+
int value_dim,
|
106 |
+
int offset_warp
|
107 |
+
) {
|
108 |
+
|
109 |
+
int warp_thread_idx = threadIdx.x;
|
110 |
+
|
111 |
+
int batch_idx = blockIdx.y;
|
112 |
+
int key_idx = blockIdx.x * blockDim.y + threadIdx.y;
|
113 |
+
|
114 |
+
int batch_idx__key_idx = batch_idx * num_key + key_idx;
|
115 |
+
if (key_mask[batch_idx__key_idx] == 0) {
|
116 |
+
return;
|
117 |
+
}
|
118 |
+
|
119 |
+
if (num_hash_f > WARP_SIZE) {
|
120 |
+
float warp_value = value[batch_idx__key_idx * value_dim + offset_warp + warp_thread_idx];
|
121 |
+
for (int hash_f_start = 0; hash_f_start < num_hash_f; hash_f_start = hash_f_start + WARP_SIZE) {
|
122 |
+
int warp_hashcode = key_hash_code[batch_idx__key_idx * num_hash_f + hash_f_start + warp_thread_idx];
|
123 |
+
#pragma unroll
|
124 |
+
for (int hash_f_offset = 0; hash_f_offset < WARP_SIZE; hash_f_offset++) {
|
125 |
+
int current_hashcode = warp_hashcode;
|
126 |
+
current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_offset);
|
127 |
+
int hashtable_idx = (batch_idx * num_hash_f + (hash_f_start + hash_f_offset)) * hashtable_capacity + current_hashcode;
|
128 |
+
atomicAdd(&hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx], warp_value);
|
129 |
+
}
|
130 |
+
}
|
131 |
+
} else {
|
132 |
+
float warp_value = value[batch_idx__key_idx * value_dim + offset_warp + warp_thread_idx];
|
133 |
+
int warp_hashcode = 0;
|
134 |
+
if (warp_thread_idx < num_hash_f) {
|
135 |
+
warp_hashcode = key_hash_code[batch_idx__key_idx * num_hash_f + warp_thread_idx];
|
136 |
+
}
|
137 |
+
for (int hash_f_idx = 0; hash_f_idx < num_hash_f; hash_f_idx++) {
|
138 |
+
int current_hashcode = warp_hashcode;
|
139 |
+
current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_idx);
|
140 |
+
int hashtable_idx = (batch_idx * num_hash_f + hash_f_idx) * hashtable_capacity + current_hashcode;
|
141 |
+
atomicAdd(&hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx], warp_value);
|
142 |
+
}
|
143 |
+
}
|
144 |
+
|
145 |
+
}
|
146 |
+
|
147 |
+
__global__ void lsh_cumulation_ver1_step2_cuda_kernel(
|
148 |
+
int *query_mask, // [batch_size, num_query]
|
149 |
+
int *query_hash_code, // [batch_size, num_query, num_hash_f]
|
150 |
+
float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, WARP_SIZE]
|
151 |
+
float *cumulation_value, // [batch_size, num_query, value_dim]
|
152 |
+
int batch_size,
|
153 |
+
int num_hash_f,
|
154 |
+
int hashtable_capacity,
|
155 |
+
int num_query,
|
156 |
+
int value_dim,
|
157 |
+
int offset_warp
|
158 |
+
) {
|
159 |
+
|
160 |
+
int warp_thread_idx = threadIdx.x;
|
161 |
+
|
162 |
+
int batch_idx = blockIdx.y;
|
163 |
+
int query_idx = blockIdx.x * blockDim.y + threadIdx.y;
|
164 |
+
|
165 |
+
int batch_idx__query_idx = batch_idx * num_query + query_idx;
|
166 |
+
if (query_mask[batch_idx__query_idx] == 0) {
|
167 |
+
return;
|
168 |
+
}
|
169 |
+
|
170 |
+
if (num_hash_f > WARP_SIZE) {
|
171 |
+
float warp_value = 0;
|
172 |
+
for (int hash_f_start = 0; hash_f_start < num_hash_f; hash_f_start = hash_f_start + WARP_SIZE) {
|
173 |
+
int warp_hashcode = query_hash_code[batch_idx__query_idx * num_hash_f + hash_f_start + warp_thread_idx];
|
174 |
+
#pragma unroll
|
175 |
+
for (int hash_f_offset = 0; hash_f_offset < WARP_SIZE; hash_f_offset++) {
|
176 |
+
int current_hashcode = warp_hashcode;
|
177 |
+
current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_offset);
|
178 |
+
int hashtable_idx = (batch_idx * num_hash_f + (hash_f_start + hash_f_offset)) * hashtable_capacity + current_hashcode;
|
179 |
+
warp_value = warp_value + hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx];
|
180 |
+
}
|
181 |
+
}
|
182 |
+
cumulation_value[batch_idx__query_idx * value_dim + offset_warp + warp_thread_idx] = warp_value / float(num_hash_f);
|
183 |
+
} else {
|
184 |
+
float warp_value = 0;
|
185 |
+
int warp_hashcode = 0;
|
186 |
+
if (warp_thread_idx < num_hash_f) {
|
187 |
+
warp_hashcode = query_hash_code[batch_idx__query_idx * num_hash_f + warp_thread_idx];
|
188 |
+
}
|
189 |
+
for (int hash_f_idx = 0; hash_f_idx < num_hash_f; hash_f_idx++) {
|
190 |
+
int current_hashcode = warp_hashcode;
|
191 |
+
current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_idx);
|
192 |
+
int hashtable_idx = (batch_idx * num_hash_f + hash_f_idx) * hashtable_capacity + current_hashcode;
|
193 |
+
warp_value = warp_value + hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx];
|
194 |
+
}
|
195 |
+
cumulation_value[batch_idx__query_idx * value_dim + offset_warp + warp_thread_idx] = warp_value / float(num_hash_f);
|
196 |
+
}
|
197 |
+
|
198 |
+
}
|
199 |
+
|
200 |
+
__global__ void lsh_weighted_cumulation_ver1_step1_cuda_kernel(
|
201 |
+
int *key_mask, // [batch_size, num_key]
|
202 |
+
int *key_hash_code, // [batch_size, num_key, num_hash_f]
|
203 |
+
float *key_weight, // [batch_size, num_key, weight_dim]
|
204 |
+
float *value, // [batch_size, num_key, value_dim]
|
205 |
+
float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, WARP_SIZE]
|
206 |
+
int batch_size,
|
207 |
+
int num_hash_f,
|
208 |
+
int hashtable_capacity,
|
209 |
+
int num_key,
|
210 |
+
int value_dim,
|
211 |
+
int weight_dim,
|
212 |
+
int offset_warp,
|
213 |
+
int weight_idx
|
214 |
+
) {
|
215 |
+
|
216 |
+
int warp_thread_idx = threadIdx.x;
|
217 |
+
|
218 |
+
int batch_idx = blockIdx.y;
|
219 |
+
int key_idx = blockIdx.x * blockDim.y + threadIdx.y;
|
220 |
+
|
221 |
+
int batch_idx__key_idx = batch_idx * num_key + key_idx;
|
222 |
+
if (key_mask[batch_idx__key_idx] == 0) {
|
223 |
+
return;
|
224 |
+
}
|
225 |
+
|
226 |
+
if (num_hash_f > WARP_SIZE) {
|
227 |
+
float warp_value = key_weight[batch_idx__key_idx * weight_dim + weight_idx] * value[batch_idx__key_idx * value_dim + offset_warp + warp_thread_idx];
|
228 |
+
for (int hash_f_start = 0; hash_f_start < num_hash_f; hash_f_start = hash_f_start + WARP_SIZE) {
|
229 |
+
int warp_hashcode = key_hash_code[batch_idx__key_idx * num_hash_f + hash_f_start + warp_thread_idx];
|
230 |
+
#pragma unroll
|
231 |
+
for (int hash_f_offset = 0; hash_f_offset < WARP_SIZE; hash_f_offset++) {
|
232 |
+
int current_hashcode = warp_hashcode;
|
233 |
+
current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_offset);
|
234 |
+
int hashtable_idx = (batch_idx * num_hash_f + (hash_f_start + hash_f_offset)) * hashtable_capacity + current_hashcode;
|
235 |
+
atomicAdd(&hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx], warp_value);
|
236 |
+
}
|
237 |
+
}
|
238 |
+
} else {
|
239 |
+
float warp_value = key_weight[batch_idx__key_idx * weight_dim + weight_idx] * value[batch_idx__key_idx * value_dim + offset_warp + warp_thread_idx];
|
240 |
+
int warp_hashcode = 0;
|
241 |
+
if (warp_thread_idx < num_hash_f) {
|
242 |
+
warp_hashcode = key_hash_code[batch_idx__key_idx * num_hash_f + warp_thread_idx];
|
243 |
+
}
|
244 |
+
for (int hash_f_idx = 0; hash_f_idx < num_hash_f; hash_f_idx++) {
|
245 |
+
int current_hashcode = warp_hashcode;
|
246 |
+
current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_idx);
|
247 |
+
int hashtable_idx = (batch_idx * num_hash_f + hash_f_idx) * hashtable_capacity + current_hashcode;
|
248 |
+
atomicAdd(&hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx], warp_value);
|
249 |
+
}
|
250 |
+
}
|
251 |
+
|
252 |
+
}
|
253 |
+
|
254 |
+
__global__ void lsh_weighted_cumulation_ver1_step2_cuda_kernel(
|
255 |
+
int *query_mask, // [batch_size, num_query]
|
256 |
+
int *query_hash_code, // [batch_size, num_query, num_hash_f]
|
257 |
+
float *query_weight, // [batch_size, num_query, weight_dim]
|
258 |
+
float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, WARP_SIZE]
|
259 |
+
float *cumulation_value, // [batch_size, num_query, value_dim]
|
260 |
+
int batch_size,
|
261 |
+
int num_hash_f,
|
262 |
+
int hashtable_capacity,
|
263 |
+
int num_query,
|
264 |
+
int value_dim,
|
265 |
+
int weight_dim,
|
266 |
+
int offset_warp,
|
267 |
+
int weight_idx
|
268 |
+
) {
|
269 |
+
|
270 |
+
int warp_thread_idx = threadIdx.x;
|
271 |
+
|
272 |
+
int batch_idx = blockIdx.y;
|
273 |
+
int query_idx = blockIdx.x * blockDim.y + threadIdx.y;
|
274 |
+
|
275 |
+
int batch_idx__query_idx = batch_idx * num_query + query_idx;
|
276 |
+
if (query_mask[batch_idx__query_idx] == 0) {
|
277 |
+
return;
|
278 |
+
}
|
279 |
+
|
280 |
+
if (num_hash_f > WARP_SIZE) {
|
281 |
+
float warp_value = 0;
|
282 |
+
for (int hash_f_start = 0; hash_f_start < num_hash_f; hash_f_start = hash_f_start + WARP_SIZE) {
|
283 |
+
int warp_hashcode = query_hash_code[batch_idx__query_idx * num_hash_f + hash_f_start + warp_thread_idx];
|
284 |
+
#pragma unroll
|
285 |
+
for (int hash_f_offset = 0; hash_f_offset < WARP_SIZE; hash_f_offset++) {
|
286 |
+
int current_hashcode = warp_hashcode;
|
287 |
+
current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_offset);
|
288 |
+
int hashtable_idx = (batch_idx * num_hash_f + (hash_f_start + hash_f_offset)) * hashtable_capacity + current_hashcode;
|
289 |
+
warp_value = warp_value + hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx];
|
290 |
+
}
|
291 |
+
}
|
292 |
+
float warp_weight = query_weight[batch_idx__query_idx * weight_dim + weight_idx];
|
293 |
+
cumulation_value[batch_idx__query_idx * value_dim + offset_warp + warp_thread_idx] += warp_weight * warp_value / float(num_hash_f);
|
294 |
+
} else {
|
295 |
+
float warp_value = 0;
|
296 |
+
int warp_hashcode = 0;
|
297 |
+
if (warp_thread_idx < num_hash_f) {
|
298 |
+
warp_hashcode = query_hash_code[batch_idx__query_idx * num_hash_f + warp_thread_idx];
|
299 |
+
}
|
300 |
+
for (int hash_f_idx = 0; hash_f_idx < num_hash_f; hash_f_idx++) {
|
301 |
+
int current_hashcode = warp_hashcode;
|
302 |
+
current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_idx);
|
303 |
+
int hashtable_idx = (batch_idx * num_hash_f + hash_f_idx) * hashtable_capacity + current_hashcode;
|
304 |
+
warp_value = warp_value + hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx];
|
305 |
+
}
|
306 |
+
float warp_weight = query_weight[batch_idx__query_idx * weight_dim + weight_idx];
|
307 |
+
cumulation_value[batch_idx__query_idx * value_dim + offset_warp + warp_thread_idx] += warp_weight * warp_value / float(num_hash_f);
|
308 |
+
}
|
309 |
+
|
310 |
+
}
|
311 |
+
|
312 |
+
__global__ void count_sort_step1_cuda_kernel(
|
313 |
+
int *key_mask, // [batch_size, num_key]
|
314 |
+
int *key_hash_code, // [batch_size, num_key, num_hash_f]
|
315 |
+
int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity]
|
316 |
+
int batch_size,
|
317 |
+
int num_hash_f,
|
318 |
+
int hashtable_capacity,
|
319 |
+
int num_key
|
320 |
+
) {
|
321 |
+
|
322 |
+
int batch_idx = blockIdx.y;
|
323 |
+
int key_idx = blockIdx.x * blockDim.y + threadIdx.y;
|
324 |
+
int hash_f_idx = threadIdx.x;
|
325 |
+
|
326 |
+
int batch_idx__key_idx = batch_idx * num_key + key_idx;
|
327 |
+
if (key_mask[batch_idx__key_idx] == 0) {
|
328 |
+
return;
|
329 |
+
}
|
330 |
+
|
331 |
+
int hash_code = key_hash_code[batch_idx__key_idx * num_hash_f + hash_f_idx];
|
332 |
+
atomicAdd(&count_sort_table[(batch_idx * num_hash_f + hash_f_idx) * hashtable_capacity + hash_code], 1);
|
333 |
+
|
334 |
+
}
|
335 |
+
|
336 |
+
__global__ void count_sort_step2_cuda_kernel(
|
337 |
+
int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity]
|
338 |
+
int batch_size,
|
339 |
+
int num_hash_f,
|
340 |
+
int hashtable_capacity
|
341 |
+
) {
|
342 |
+
|
343 |
+
int batch_idx = blockIdx.y;
|
344 |
+
int hash_f_idx = blockIdx.x;
|
345 |
+
|
346 |
+
int num_threads = blockDim.x;
|
347 |
+
int thread_id = threadIdx.x;
|
348 |
+
|
349 |
+
int batch_idx__hash_f_idx = batch_idx * num_hash_f + hash_f_idx;
|
350 |
+
|
351 |
+
extern __shared__ float buffer[];
|
352 |
+
int *table_buffer = (int*)buffer;
|
353 |
+
|
354 |
+
if (thread_id == 0) {
|
355 |
+
table_buffer[0] = 0;
|
356 |
+
}
|
357 |
+
copy_data<int>(&count_sort_table[batch_idx__hash_f_idx * hashtable_capacity], &table_buffer[1], hashtable_capacity - 1, num_threads, thread_id);
|
358 |
+
|
359 |
+
for (int table_idx_start = 0; table_idx_start < hashtable_capacity; table_idx_start = table_idx_start + num_threads) {
|
360 |
+
int thread_value = table_buffer[table_idx_start + thread_id];
|
361 |
+
int next_thread_value = 0;
|
362 |
+
for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) {
|
363 |
+
next_thread_value = __shfl_up_sync(FULL_MASK, thread_value, offset);
|
364 |
+
if (thread_id % WARP_SIZE >= offset) {
|
365 |
+
thread_value = thread_value + next_thread_value;
|
366 |
+
}
|
367 |
+
}
|
368 |
+
table_buffer[table_idx_start + thread_id] = thread_value;
|
369 |
+
}
|
370 |
+
__syncthreads();
|
371 |
+
|
372 |
+
if (hashtable_capacity > WARP_SIZE) {
|
373 |
+
if (thread_id < WARP_SIZE) {
|
374 |
+
for (int table_idx_start = WARP_SIZE; table_idx_start < hashtable_capacity; table_idx_start = table_idx_start + WARP_SIZE) {
|
375 |
+
table_buffer[table_idx_start + thread_id] += table_buffer[table_idx_start - 1];
|
376 |
+
}
|
377 |
+
}
|
378 |
+
}
|
379 |
+
|
380 |
+
copy_data<int>(table_buffer, &count_sort_table[batch_idx__hash_f_idx * hashtable_capacity], hashtable_capacity, num_threads, thread_id);
|
381 |
+
|
382 |
+
}
|
383 |
+
|
384 |
+
|
385 |
+
__global__ void count_sort_step3_cuda_kernel(
|
386 |
+
int *key_mask, // [batch_size, num_key]
|
387 |
+
int *key_hash_code, // [batch_size, num_key, num_hash_f]
|
388 |
+
int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity]
|
389 |
+
int *key_sorted_idxes, // [batch_size, num_hash_f, num_key]
|
390 |
+
int batch_size,
|
391 |
+
int num_hash_f,
|
392 |
+
int hashtable_capacity,
|
393 |
+
int num_key
|
394 |
+
) {
|
395 |
+
|
396 |
+
int batch_idx = blockIdx.y;
|
397 |
+
int key_idx = blockIdx.x * blockDim.y + threadIdx.y;
|
398 |
+
int hash_f_idx = threadIdx.x;
|
399 |
+
|
400 |
+
int batch_idx__key_idx = batch_idx * num_key + key_idx;
|
401 |
+
if (key_mask[batch_idx__key_idx] == 0) {
|
402 |
+
return;
|
403 |
+
}
|
404 |
+
|
405 |
+
int batch_idx__hash_f_idx = batch_idx * num_hash_f + hash_f_idx;
|
406 |
+
|
407 |
+
int hash_code = key_hash_code[batch_idx__key_idx * num_hash_f + hash_f_idx];
|
408 |
+
int sort_idx = atomicAdd(&count_sort_table[batch_idx__hash_f_idx * hashtable_capacity + hash_code], 1);
|
409 |
+
key_sorted_idxes[batch_idx__hash_f_idx * num_key + sort_idx] = key_idx;
|
410 |
+
|
411 |
+
}
|
412 |
+
|
413 |
+
__global__ void extract_query_info_cuda_kernel(
|
414 |
+
int *query_mask, // [batch_size, num_query]
|
415 |
+
int *query_hash_code, // [batch_size, num_query, num_hash_f]
|
416 |
+
int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity]
|
417 |
+
int *query_info, // [batch_size, num_query, 2, num_hash_f]
|
418 |
+
int batch_size,
|
419 |
+
int num_hash_f,
|
420 |
+
int hashtable_capacity,
|
421 |
+
int num_query
|
422 |
+
) {
|
423 |
+
|
424 |
+
int batch_idx = blockIdx.y;
|
425 |
+
int query_idx = blockIdx.x * blockDim.y + threadIdx.y;
|
426 |
+
int hash_f_idx = threadIdx.x;
|
427 |
+
|
428 |
+
int batch_idx__query_idx = batch_idx * num_query + query_idx;
|
429 |
+
if (query_mask[batch_idx__query_idx] == 0) {
|
430 |
+
return;
|
431 |
+
}
|
432 |
+
|
433 |
+
int hash_code = query_hash_code[batch_idx__query_idx * num_hash_f + hash_f_idx];
|
434 |
+
int batch_idx__hash_f_idx__hash_code = (batch_idx * num_hash_f + hash_f_idx) * hashtable_capacity + hash_code;
|
435 |
+
|
436 |
+
int key_offset = select(hash_code == 0, 0, count_sort_table[batch_idx__hash_f_idx__hash_code - 1]);
|
437 |
+
int key_count = count_sort_table[batch_idx__hash_f_idx__hash_code] - key_offset;
|
438 |
+
|
439 |
+
query_info[batch_idx__query_idx * 2 * num_hash_f + hash_f_idx] = key_offset;
|
440 |
+
query_info[(batch_idx__query_idx * 2 + 1) * num_hash_f + hash_f_idx] = key_count;
|
441 |
+
|
442 |
+
}
|
443 |
+
|
444 |
+
__global__ void lsh_weighted_cumulation_ver2_step2_cuda_kernel(
|
445 |
+
int *query_mask, // [batch_size, num_query]
|
446 |
+
int *query_info, // [batch_size, num_query, 2, num_hash_f]
|
447 |
+
int *key_sorted_idxes, // [batch_size, num_hash_f, num_key]
|
448 |
+
float *query_weight, // [batch_size, num_query, weight_dim]
|
449 |
+
float *key_weight, // [batch_size, num_key, weight_dim]
|
450 |
+
float *value, // [batch_size, num_key, value_dim]
|
451 |
+
float *cumulation_value, // [batch_size, num_query, value_dim]
|
452 |
+
int batch_size,
|
453 |
+
int num_hash_f,
|
454 |
+
int num_query,
|
455 |
+
int num_key,
|
456 |
+
int value_dim,
|
457 |
+
int weight_dim
|
458 |
+
) {
|
459 |
+
|
460 |
+
int batch_idx = blockIdx.z;
|
461 |
+
int hash_f_idx = blockIdx.y;
|
462 |
+
int query_idx = blockIdx.x;
|
463 |
+
|
464 |
+
int num_threads = blockDim.y * blockDim.x;
|
465 |
+
int thread_id = threadIdx.y * blockDim.x + threadIdx.x;
|
466 |
+
|
467 |
+
int num_warps = blockDim.y;
|
468 |
+
int warp_idx = threadIdx.y;
|
469 |
+
int warp_thread_idx = threadIdx.x;
|
470 |
+
|
471 |
+
int batch_idx__query_idx = batch_idx * num_query + query_idx;
|
472 |
+
if (query_mask[batch_idx__query_idx] == 0) {
|
473 |
+
return;
|
474 |
+
}
|
475 |
+
|
476 |
+
int key_offset = query_info[batch_idx__query_idx * 2 * num_hash_f + hash_f_idx];
|
477 |
+
int key_count = query_info[(batch_idx__query_idx * 2 + 1) * num_hash_f + hash_f_idx];
|
478 |
+
|
479 |
+
if (key_count == 0) {
|
480 |
+
return;
|
481 |
+
}
|
482 |
+
|
483 |
+
extern __shared__ float buffer[];
|
484 |
+
|
485 |
+
if (key_count == 1) {
|
486 |
+
if (warp_idx == 0) {
|
487 |
+
int key_idx = key_sorted_idxes[(batch_idx * num_hash_f + hash_f_idx) * num_key + key_offset];
|
488 |
+
int batch_idx__key_idx = batch_idx * num_key + key_idx;
|
489 |
+
float weight = 0;
|
490 |
+
for (int weight_offset = 0; weight_offset < weight_dim; weight_offset = weight_offset + WARP_SIZE) {
|
491 |
+
int weight_dim_idx = weight_offset + warp_thread_idx;
|
492 |
+
float val = query_weight[batch_idx__query_idx * weight_dim + weight_dim_idx] * key_weight[batch_idx__key_idx * weight_dim + weight_dim_idx];
|
493 |
+
#pragma unroll
|
494 |
+
for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) {
|
495 |
+
val += __shfl_xor_sync(FULL_MASK, val, offset);
|
496 |
+
}
|
497 |
+
weight = weight + val;
|
498 |
+
}
|
499 |
+
weight = weight / float(num_hash_f);
|
500 |
+
for (int value_offset = 0; value_offset < value_dim; value_offset = value_offset + WARP_SIZE) {
|
501 |
+
int value_dim_idx = value_offset + warp_thread_idx;
|
502 |
+
float val = value[batch_idx__key_idx * value_dim + value_dim_idx];
|
503 |
+
atomicAdd(&cumulation_value[batch_idx__query_idx * value_dim + value_dim_idx], weight * val);
|
504 |
+
}
|
505 |
+
}
|
506 |
+
} else {
|
507 |
+
float *weight_buffer = buffer;
|
508 |
+
int *key_idxes_buffer = (int*)&buffer[weight_dim];
|
509 |
+
|
510 |
+
copy_data_nonblocking<float>(&query_weight[batch_idx__query_idx * weight_dim], weight_buffer, weight_dim, num_threads, thread_id);
|
511 |
+
|
512 |
+
while (key_count > 0) {
|
513 |
+
int work_size = min(WARP_SIZE, key_count);
|
514 |
+
copy_data_nonblocking<int>(&key_sorted_idxes[(batch_idx * num_hash_f + hash_f_idx) * num_key + key_offset], key_idxes_buffer, work_size, num_threads, thread_id);
|
515 |
+
__syncthreads();
|
516 |
+
for (int work_offset = 0; work_offset < WARP_SIZE; work_offset = work_offset + num_warps) {
|
517 |
+
int work_idx = work_offset + warp_idx;
|
518 |
+
if (work_idx < key_count) {
|
519 |
+
int key_idx = key_idxes_buffer[work_idx];
|
520 |
+
int batch_idx__key_idx = batch_idx * num_key + key_idx;
|
521 |
+
float weight = 0;
|
522 |
+
for (int weight_offset = 0; weight_offset < weight_dim; weight_offset = weight_offset + WARP_SIZE) {
|
523 |
+
int weight_dim_idx = weight_offset + warp_thread_idx;
|
524 |
+
float val = weight_buffer[weight_dim_idx] * key_weight[batch_idx__key_idx * weight_dim + weight_dim_idx];
|
525 |
+
#pragma unroll
|
526 |
+
for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) {
|
527 |
+
val += __shfl_xor_sync(FULL_MASK, val, offset);
|
528 |
+
}
|
529 |
+
weight = weight + val;
|
530 |
+
}
|
531 |
+
weight = weight / float(num_hash_f);
|
532 |
+
for (int value_offset = 0; value_offset < value_dim; value_offset = value_offset + WARP_SIZE) {
|
533 |
+
int value_dim_idx = value_offset + warp_thread_idx;
|
534 |
+
float val = value[batch_idx__key_idx * value_dim + value_dim_idx];
|
535 |
+
atomicAdd(&cumulation_value[batch_idx__query_idx * value_dim + value_dim_idx], weight * val);
|
536 |
+
}
|
537 |
+
}
|
538 |
+
}
|
539 |
+
key_count = key_count - work_size;
|
540 |
+
key_offset = key_offset + work_size;
|
541 |
+
}
|
542 |
+
}
|
543 |
+
|
544 |
+
}
|
545 |
+
|
546 |
+
__global__ void lsh_weighted_cumulation_ver3_step2_cuda_kernel(
|
547 |
+
int *query_sorted_idxes, // [batch_size, num_hash_f, num_query]
|
548 |
+
int *key_mask, // [batch_size, num_key]
|
549 |
+
int *key_info, // [batch_size, num_key, 2, num_hash_f]
|
550 |
+
float *query_weight, // [batch_size, num_query, weight_dim]
|
551 |
+
float *key_weight, // [batch_size, num_key, weight_dim]
|
552 |
+
float *value, // [batch_size, num_key, value_dim]
|
553 |
+
float *cumulation_value, // [batch_size, num_query, value_dim]
|
554 |
+
int batch_size,
|
555 |
+
int num_hash_f,
|
556 |
+
int num_query,
|
557 |
+
int num_key,
|
558 |
+
int value_dim,
|
559 |
+
int weight_dim
|
560 |
+
) {
|
561 |
+
|
562 |
+
int batch_idx = blockIdx.z;
|
563 |
+
int hash_f_idx = blockIdx.y;
|
564 |
+
int key_idx = blockIdx.x;
|
565 |
+
|
566 |
+
int num_threads = blockDim.y * blockDim.x;
|
567 |
+
int thread_id = threadIdx.y * blockDim.x + threadIdx.x;
|
568 |
+
|
569 |
+
int num_warps = blockDim.y;
|
570 |
+
int warp_idx = threadIdx.y;
|
571 |
+
int warp_thread_idx = threadIdx.x;
|
572 |
+
|
573 |
+
int batch_idx__key_idx = batch_idx * num_key + key_idx;
|
574 |
+
if (key_mask[batch_idx__key_idx] == 0) {
|
575 |
+
return;
|
576 |
+
}
|
577 |
+
|
578 |
+
int query_offset = key_info[batch_idx__key_idx * 2 * num_hash_f + hash_f_idx];
|
579 |
+
int query_count = key_info[(batch_idx__key_idx * 2 + 1) * num_hash_f + hash_f_idx];
|
580 |
+
|
581 |
+
if (query_count == 0) {
|
582 |
+
return;
|
583 |
+
}
|
584 |
+
|
585 |
+
extern __shared__ float buffer[];
|
586 |
+
|
587 |
+
if (query_count == 1) {
|
588 |
+
if (warp_idx == 0) {
|
589 |
+
int query_idx = query_sorted_idxes[(batch_idx * num_hash_f + hash_f_idx) * num_query + query_offset];
|
590 |
+
int batch_idx__query_idx = batch_idx * num_query + query_idx;
|
591 |
+
float weight = 0;
|
592 |
+
for (int weight_offset = 0; weight_offset < weight_dim; weight_offset = weight_offset + WARP_SIZE) {
|
593 |
+
int weight_dim_idx = weight_offset + warp_thread_idx;
|
594 |
+
float val = key_weight[batch_idx__key_idx * weight_dim + weight_dim_idx] * query_weight[batch_idx__query_idx * weight_dim + weight_dim_idx];
|
595 |
+
#pragma unroll
|
596 |
+
for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) {
|
597 |
+
val += __shfl_xor_sync(FULL_MASK, val, offset);
|
598 |
+
}
|
599 |
+
weight = weight + val;
|
600 |
+
}
|
601 |
+
weight = weight / float(num_hash_f);
|
602 |
+
for (int value_offset = 0; value_offset < value_dim; value_offset = value_offset + WARP_SIZE) {
|
603 |
+
int value_dim_idx = value_offset + warp_thread_idx;
|
604 |
+
float val = value[batch_idx__key_idx * value_dim + value_dim_idx];
|
605 |
+
atomicAdd(&cumulation_value[batch_idx__query_idx * value_dim + value_dim_idx], weight * val);
|
606 |
+
}
|
607 |
+
}
|
608 |
+
} else {
|
609 |
+
float *weight_buffer = buffer;
|
610 |
+
float *value_buffer = &buffer[weight_dim];
|
611 |
+
int *query_idxes_buffer = (int*)&buffer[weight_dim + value_dim];
|
612 |
+
|
613 |
+
copy_data_nonblocking<float>(&key_weight[batch_idx__key_idx * weight_dim], weight_buffer, weight_dim, num_threads, thread_id);
|
614 |
+
copy_data_nonblocking<float>(&value[batch_idx__key_idx * value_dim], value_buffer, value_dim, num_threads, thread_id);
|
615 |
+
|
616 |
+
while (query_count > 0) {
|
617 |
+
int work_size = min(WARP_SIZE, query_count);
|
618 |
+
copy_data_nonblocking<int>(&query_sorted_idxes[(batch_idx * num_hash_f + hash_f_idx) * num_query + query_offset], query_idxes_buffer, work_size, num_threads, thread_id);
|
619 |
+
__syncthreads();
|
620 |
+
for (int work_offset = 0; work_offset < WARP_SIZE; work_offset = work_offset + num_warps) {
|
621 |
+
int work_idx = work_offset + warp_idx;
|
622 |
+
if (work_idx < query_count) {
|
623 |
+
int query_idx = query_idxes_buffer[work_idx];
|
624 |
+
int batch_idx__query_idx = batch_idx * num_query + query_idx;
|
625 |
+
float weight = 0;
|
626 |
+
for (int weight_offset = 0; weight_offset < weight_dim; weight_offset = weight_offset + WARP_SIZE) {
|
627 |
+
int weight_dim_idx = weight_offset + warp_thread_idx;
|
628 |
+
float val = weight_buffer[weight_dim_idx] * query_weight[batch_idx__query_idx * weight_dim + weight_dim_idx];
|
629 |
+
#pragma unroll
|
630 |
+
for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) {
|
631 |
+
val += __shfl_xor_sync(FULL_MASK, val, offset);
|
632 |
+
}
|
633 |
+
weight = weight + val;
|
634 |
+
}
|
635 |
+
weight = weight / float(num_hash_f);
|
636 |
+
for (int value_offset = 0; value_offset < value_dim; value_offset = value_offset + WARP_SIZE) {
|
637 |
+
int value_dim_idx = value_offset + warp_thread_idx;
|
638 |
+
float val = value_buffer[value_dim_idx];
|
639 |
+
atomicAdd(&cumulation_value[batch_idx__query_idx * value_dim + value_dim_idx], weight * val);
|
640 |
+
}
|
641 |
+
}
|
642 |
+
}
|
643 |
+
query_count = query_count - work_size;
|
644 |
+
query_offset = query_offset + work_size;
|
645 |
+
}
|
646 |
+
}
|
647 |
+
|
648 |
+
}
|
649 |
+
|
650 |
+
__global__ void lsh_weighted_cumulation_ver4_step2_cuda_kernel(
|
651 |
+
int *query_sorted_idxes, // [batch_size, num_hash_f, num_query]
|
652 |
+
int *key_mask, // [batch_size, num_key]
|
653 |
+
int *key_info, // [batch_size, num_key, 2, num_hash_f]
|
654 |
+
float *query_weight, // [batch_size, num_query, weight_dim]
|
655 |
+
float *key_weight, // [batch_size, num_key, weight_dim]
|
656 |
+
float *value, // [batch_size, num_key, value_dim]
|
657 |
+
float *cumulation_value, // [batch_size, num_query, value_dim]
|
658 |
+
int batch_size,
|
659 |
+
int num_hash_f,
|
660 |
+
int num_query,
|
661 |
+
int num_key,
|
662 |
+
int value_dim,
|
663 |
+
int weight_dim
|
664 |
+
) {
|
665 |
+
|
666 |
+
int batch_idx = blockIdx.y;
|
667 |
+
int key_idx = blockIdx.x;
|
668 |
+
|
669 |
+
int num_threads = blockDim.y * blockDim.x;
|
670 |
+
int thread_id = threadIdx.y * blockDim.x + threadIdx.x;
|
671 |
+
|
672 |
+
int num_warps = blockDim.y;
|
673 |
+
int warp_idx = threadIdx.y;
|
674 |
+
int warp_thread_idx = threadIdx.x;
|
675 |
+
|
676 |
+
int batch_idx__key_idx = batch_idx * num_key + key_idx;
|
677 |
+
if (key_mask[batch_idx__key_idx] == 0) {
|
678 |
+
return;
|
679 |
+
}
|
680 |
+
|
681 |
+
extern __shared__ float buffer[];
|
682 |
+
float *weight_buffer = buffer;
|
683 |
+
float *value_buffer = &buffer[weight_dim];
|
684 |
+
int *key_info_buffer = (int*)&buffer[weight_dim + value_dim];
|
685 |
+
|
686 |
+
copy_data_nonblocking<float>(&key_weight[batch_idx__key_idx * weight_dim], weight_buffer, weight_dim, num_threads, thread_id);
|
687 |
+
copy_data_nonblocking<float>(&value[batch_idx__key_idx * value_dim], value_buffer, value_dim, num_threads, thread_id);
|
688 |
+
copy_data_nonblocking<int>(&key_info[batch_idx__key_idx * 2 * num_hash_f], key_info_buffer, 2 * num_hash_f, num_threads, thread_id);
|
689 |
+
|
690 |
+
int *query_offset_buffer = key_info_buffer;
|
691 |
+
int *query_count_buffer = &key_info_buffer[num_hash_f];
|
692 |
+
|
693 |
+
const int hashtable_size = 1024 + OPTIMAL_THREADS_PER_BLOCK;
|
694 |
+
__shared__ int hashtable_query[hashtable_size];
|
695 |
+
__shared__ int hashtable_count[hashtable_size];
|
696 |
+
__shared__ int inserted_query[hashtable_size];
|
697 |
+
__shared__ int query_counter[1];
|
698 |
+
|
699 |
+
int hash_f_idx_base = 0;
|
700 |
+
|
701 |
+
while (true) {
|
702 |
+
|
703 |
+
init_buffer_nonblocking<int>(EMPTY_VALUE, hashtable_query, hashtable_size, num_threads, thread_id);
|
704 |
+
init_buffer_nonblocking<int>(0, hashtable_count, hashtable_size, num_threads, thread_id);
|
705 |
+
init_buffer_nonblocking<int>(EMPTY_VALUE, inserted_query, hashtable_size, num_threads, thread_id);
|
706 |
+
init_buffer_nonblocking<int>(0, query_counter, 1, num_threads, thread_id);
|
707 |
+
__syncthreads();
|
708 |
+
|
709 |
+
while (hash_f_idx_base < num_hash_f) {
|
710 |
+
|
711 |
+
int hash_f_idx = hash_f_idx_base + warp_idx;
|
712 |
+
int batch_idx__hash_f_idx = batch_idx * num_hash_f + hash_f_idx;
|
713 |
+
|
714 |
+
int stop_flag = 0;
|
715 |
+
|
716 |
+
int query_offset = query_offset_buffer[hash_f_idx];
|
717 |
+
int query_count = query_count_buffer[hash_f_idx];
|
718 |
+
|
719 |
+
while (query_count > 0) {
|
720 |
+
|
721 |
+
int work_size = min(query_count, WARP_SIZE);
|
722 |
+
|
723 |
+
// try inserting query to set and check whether the query is new
|
724 |
+
int found_new_query = 0;
|
725 |
+
int query_idx = -1;
|
726 |
+
if (warp_thread_idx < work_size) {
|
727 |
+
query_idx = query_sorted_idxes[batch_idx__hash_f_idx * num_query + query_offset + warp_thread_idx];
|
728 |
+
int slot = set_insert<int>(hashtable_query, hashtable_size, query_idx);
|
729 |
+
if (slot >= 0) {
|
730 |
+
found_new_query = atomicAdd(&hashtable_count[slot], 1) == 0;
|
731 |
+
}
|
732 |
+
}
|
733 |
+
|
734 |
+
// compute cumulative offset
|
735 |
+
int position_offset = found_new_query;
|
736 |
+
int next_position_offset = 0;
|
737 |
+
#pragma unroll
|
738 |
+
for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) {
|
739 |
+
next_position_offset = __shfl_up_sync(FULL_MASK, position_offset, offset);
|
740 |
+
if (thread_id % WARP_SIZE >= offset) {
|
741 |
+
position_offset = position_offset + next_position_offset;
|
742 |
+
}
|
743 |
+
}
|
744 |
+
|
745 |
+
// get the inserted query list end index
|
746 |
+
int inserted_query_base = 0;
|
747 |
+
if (thread_id % WARP_SIZE == WARP_SIZE - 1) {
|
748 |
+
inserted_query_base = atomicAdd(query_counter, position_offset);
|
749 |
+
}
|
750 |
+
inserted_query_base = __shfl_sync(FULL_MASK, inserted_query_base, WARP_SIZE - 1);
|
751 |
+
|
752 |
+
// insert new queries to list
|
753 |
+
int insert_idx = inserted_query_base + position_offset - 1;
|
754 |
+
if (found_new_query) {
|
755 |
+
inserted_query[insert_idx] = query_idx;
|
756 |
+
}
|
757 |
+
|
758 |
+
// remove inserted queries from list
|
759 |
+
query_offset_buffer[hash_f_idx] += work_size;
|
760 |
+
query_count_buffer[hash_f_idx] -= work_size;
|
761 |
+
query_offset += work_size;
|
762 |
+
query_count -= work_size;
|
763 |
+
|
764 |
+
// if list is almost full, stop inserting
|
765 |
+
if (inserted_query_base + OPTIMAL_THREADS_PER_BLOCK > hashtable_size) {
|
766 |
+
stop_flag = 1;
|
767 |
+
break;
|
768 |
+
}
|
769 |
+
|
770 |
+
}
|
771 |
+
|
772 |
+
if (stop_flag) {
|
773 |
+
break;
|
774 |
+
}
|
775 |
+
|
776 |
+
hash_f_idx_base = hash_f_idx_base + num_warps;
|
777 |
+
|
778 |
+
}
|
779 |
+
|
780 |
+
__syncthreads();
|
781 |
+
|
782 |
+
int num_distint_query = query_counter[0];
|
783 |
+
|
784 |
+
if (num_distint_query > 0) {
|
785 |
+
for (int idx_base = 0; idx_base < num_distint_query; idx_base = idx_base + num_warps) {
|
786 |
+
int idx = idx_base + warp_idx;
|
787 |
+
if (idx < num_distint_query) {
|
788 |
+
int query_idx = inserted_query[idx];
|
789 |
+
int batch_idx__query_idx = batch_idx * num_query + query_idx;
|
790 |
+
|
791 |
+
int slot = set_lookup<int>(hashtable_query, hashtable_size, query_idx);
|
792 |
+
int duplicate_count = hashtable_count[slot];
|
793 |
+
|
794 |
+
float weight = 0;
|
795 |
+
for (int weight_idx_base = 0; weight_idx_base < weight_dim; weight_idx_base = weight_idx_base + WARP_SIZE) {
|
796 |
+
int weight_dim_idx = weight_idx_base + warp_thread_idx;
|
797 |
+
float val = weight_buffer[weight_dim_idx] * query_weight[batch_idx__query_idx * weight_dim + weight_dim_idx];
|
798 |
+
#pragma unroll
|
799 |
+
for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) {
|
800 |
+
val += __shfl_xor_sync(FULL_MASK, val, offset);
|
801 |
+
}
|
802 |
+
weight = weight + val;
|
803 |
+
}
|
804 |
+
|
805 |
+
weight = (float)duplicate_count * weight / float(num_hash_f);
|
806 |
+
|
807 |
+
for (int value_idx_base = 0; value_idx_base < value_dim; value_idx_base = value_idx_base + WARP_SIZE) {
|
808 |
+
int value_dim_idx = value_idx_base + warp_thread_idx;
|
809 |
+
float val = value_buffer[value_dim_idx];
|
810 |
+
atomicAdd(&cumulation_value[batch_idx__query_idx * value_dim + value_dim_idx], weight * val);
|
811 |
+
}
|
812 |
+
}
|
813 |
+
}
|
814 |
+
} else {
|
815 |
+
|
816 |
+
// all computation is completed if num_distint_query == 0
|
817 |
+
break;
|
818 |
+
|
819 |
+
}
|
820 |
+
|
821 |
+
__syncthreads();
|
822 |
+
|
823 |
+
}
|
824 |
+
|
825 |
+
}
|