diff --git a/ckpts/universal/global_step20/zero/12.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt b/ckpts/universal/global_step20/zero/12.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt new file mode 100644 index 0000000000000000000000000000000000000000..f20b9026c3e6629bb3de5ba4d835652c1a5477de --- /dev/null +++ b/ckpts/universal/global_step20/zero/12.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:314e9e440891db9a772e572b6c0492fec68fc0b8d36ead67bcd523a147b9cbdd +size 33555612 diff --git a/lm-evaluation-harness/tests/testdata/anagrams1-v0-res.json b/lm-evaluation-harness/tests/testdata/anagrams1-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..c89528892ae2cb5dfc87cf28f587062a18323d87 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/anagrams1-v0-res.json @@ -0,0 +1 @@ +{"results": {"anagrams1": {"acc": 0.0, "acc_stderr": 0.0}}, "versions": {"anagrams1": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/arithmetic_2da-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/arithmetic_2da-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..fd95bb231e198d674a556bbec09b2334f1ef1a8e --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/arithmetic_2da-v0-loglikelihood @@ -0,0 +1 @@ +6ca1ca6ebd7cac4420d5005f7f35b0edbc921377f5e4f8874cc176e4fb6d79d4 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_determiner_noun_agreement_irregular_2-v0-res.json b/lm-evaluation-harness/tests/testdata/blimp_determiner_noun_agreement_irregular_2-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..c04ead457767b4bf390b2ba28f55d7f23c95d4cb --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_determiner_noun_agreement_irregular_2-v0-res.json @@ -0,0 +1 @@ +{"results": {"blimp_determiner_noun_agreement_irregular_2": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_determiner_noun_agreement_irregular_2": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_expletive_it_object_raising-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/blimp_expletive_it_object_raising-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..31772c9a1cc093da4efd09f298d98c26c7fe8383 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_expletive_it_object_raising-v0-loglikelihood @@ -0,0 +1 @@ +ceede5b38248a62125a74a8332602b8eac5ef40864f071ad8d86e7971e07219d \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_left_branch_island_echo_question-v0-res.json b/lm-evaluation-harness/tests/testdata/blimp_left_branch_island_echo_question-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..198f9a289c4bb7892c87113e9356f3de7709669b --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_left_branch_island_echo_question-v0-res.json @@ -0,0 +1 @@ +{"results": {"blimp_left_branch_island_echo_question": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_left_branch_island_echo_question": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_matrix_question_npi_licensor_present-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/blimp_matrix_question_npi_licensor_present-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..a5c4bc6ca2b4f3624dd5781c58efee26c100c3af --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_matrix_question_npi_licensor_present-v0-loglikelihood @@ -0,0 +1 @@ +a3a702a3335c79b02b36caf37c68069050c2a8a3a03c3610c09afc39d2b83fb1 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_matrix_question_npi_licensor_present-v0-res.json b/lm-evaluation-harness/tests/testdata/blimp_matrix_question_npi_licensor_present-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..4fba717b88b566130bd8dbd52dd0da2d5a65ee17 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_matrix_question_npi_licensor_present-v0-res.json @@ -0,0 +1 @@ +{"results": {"blimp_matrix_question_npi_licensor_present": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_matrix_question_npi_licensor_present": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_npi_present_1-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/blimp_npi_present_1-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..910e490a982ab520346e71df2a3de6369db05dd3 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_npi_present_1-v0-loglikelihood @@ -0,0 +1 @@ +3ef532a85e0ee8f8ff779bc7ddc873d515969a708da84a4eb4a85b7c843cf244 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_principle_A_domain_1-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/blimp_principle_A_domain_1-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..6b900d05f4ab0e4143324c919e684900299e9adc --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_principle_A_domain_1-v0-loglikelihood @@ -0,0 +1 @@ +290e7eddacea4ec16989af697f2ee3373fdd9aef4b452bf887184c6e2f6e7d9d \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/crows_pairs_english_gender-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/crows_pairs_english_gender-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..44a4c513e5ba88fe7ed54dcb35021b709bc407e2 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/crows_pairs_english_gender-v0-loglikelihood @@ -0,0 +1 @@ +2bf62b7cc678f64ffad4a6e6715ff76a2b984bfe8d1165da4b76b3b4dfafb2f9 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/crows_pairs_french_disability-v0-res.json b/lm-evaluation-harness/tests/testdata/crows_pairs_french_disability-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..cb2b8b79ac3d37913992a56e688ea80d24c0af9e --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/crows_pairs_french_disability-v0-res.json @@ -0,0 +1 @@ +{"results": {"crows_pairs_french_disability": {"likelihood_difference": 0.31387939561315326, "likelihood_difference_stderr": 0.027598132299657168, "pct_stereotype": 0.36363636363636365, "pct_stereotype_stderr": 0.05966637484671758}}, "versions": {"crows_pairs_french_disability": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/crows_pairs_french_religion-v0-res.json b/lm-evaluation-harness/tests/testdata/crows_pairs_french_religion-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..990eab593f8a175be48d44c7318eeb968aab2921 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/crows_pairs_french_religion-v0-res.json @@ -0,0 +1 @@ +{"results": {"crows_pairs_french_religion": {"likelihood_difference": 0.32691651640972225, "likelihood_difference_stderr": 0.021833493193249474, "pct_stereotype": 0.45217391304347826, "pct_stereotype_stderr": 0.046614569799583463}}, "versions": {"crows_pairs_french_religion": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/headqa_en-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/headqa_en-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..11f07878fb5452ac334eaf0daf276aa8684124f6 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/headqa_en-v0-loglikelihood @@ -0,0 +1 @@ +09da45119b12a0144e3081f8fb790c2a22af7b9c3aac42f54423d348a711fbf5 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-business_ethics-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/hendrycksTest-business_ethics-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..a0f8b7c09b3b6307123f1328c51c1dcfb797aed2 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-business_ethics-v0-loglikelihood @@ -0,0 +1 @@ +b3b27e9dbad587377d3c8cab1072782de883e245da93a563bd8b3099017b1fc0 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-college_medicine-v0-res.json b/lm-evaluation-harness/tests/testdata/hendrycksTest-college_medicine-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..524552c9bb99335a9a7bee73076bc633b7eb10e3 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-college_medicine-v0-res.json @@ -0,0 +1 @@ +{"results": {"hendrycksTest-college_medicine": {"acc": 0.27167630057803466, "acc_norm": 0.2543352601156069, "acc_norm_stderr": 0.0332055644308557, "acc_stderr": 0.03391750322321659}}, "versions": {"hendrycksTest-college_medicine": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_computer_science-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_computer_science-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..a421564657975a25dedfd1c8cf38ef0e0ea4df9c --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_computer_science-v0-loglikelihood @@ -0,0 +1 @@ +870d5a6300c527077aaf6baa3e750e75fa840b41657cf82549f39b768b14862d \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-machine_learning-v0-res.json b/lm-evaluation-harness/tests/testdata/hendrycksTest-machine_learning-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..26be724f2426d0a7b204b2f4dee509597e85ab41 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-machine_learning-v0-res.json @@ -0,0 +1 @@ +{"results": {"hendrycksTest-machine_learning": {"acc": 0.23214285714285715, "acc_norm": 0.22321428571428573, "acc_norm_stderr": 0.039523019677025116, "acc_stderr": 0.04007341809755806}}, "versions": {"hendrycksTest-machine_learning": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-sociology-v0-res.json b/lm-evaluation-harness/tests/testdata/hendrycksTest-sociology-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..8711cf195e4fa92606a47c1b7c701643f0ef483e --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-sociology-v0-res.json @@ -0,0 +1 @@ +{"results": {"hendrycksTest-sociology": {"acc": 0.23383084577114427, "acc_norm": 0.24875621890547264, "acc_norm_stderr": 0.030567675938916707, "acc_stderr": 0.02992941540834838}}, "versions": {"hendrycksTest-sociology": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/lambada_mt_it-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/lambada_mt_it-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..ca3fd80298aa1c565c978b26e992ccd42c7144f6 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/lambada_mt_it-v0-loglikelihood @@ -0,0 +1 @@ +fd87c6c5cf4e0499c5f9f80e5bd7ee6a4f3d2991902a0cc3ec9e6eaf22d6760a \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/math_precalc-v0-res.json b/lm-evaluation-harness/tests/testdata/math_precalc-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..699dc5fe38ea411d6d53c9e19d78ba6d96ddfb40 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/math_precalc-v0-res.json @@ -0,0 +1 @@ +{"results": {"math_precalc": {"acc": 0.0, "acc_stderr": 0.0}}, "versions": {"math_precalc": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/openbookqa-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/openbookqa-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..b2cc5e9795fd1623bfc11e4d1cb53b0e1baa3dbf --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/openbookqa-v0-loglikelihood @@ -0,0 +1 @@ +78a49a0ca1a47373adb33463b1d092e6bc0d8f4b01bcb380ada48065037849d7 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/pile_gutenberg-v1-loglikelihood_rolling b/lm-evaluation-harness/tests/testdata/pile_gutenberg-v1-loglikelihood_rolling new file mode 100644 index 0000000000000000000000000000000000000000..bd7b15927f717baab5b7ce2e9d659dda6d681769 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/pile_gutenberg-v1-loglikelihood_rolling @@ -0,0 +1 @@ +02a559f74a9105145e7d4d9c5ddea372b5b4938f5368dc8ffafc39cbe3b4c7ef \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/pile_pile-cc-v1-res.json b/lm-evaluation-harness/tests/testdata/pile_pile-cc-v1-res.json new file mode 100644 index 0000000000000000000000000000000000000000..bd2772e32a91a6518ed2eb48ef880827f5246adf --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/pile_pile-cc-v1-res.json @@ -0,0 +1 @@ +{"results": {"pile_pile-cc": {"bits_per_byte": 0.0001620742639125056, "byte_perplexity": 1.0001123476295946, "word_perplexity": 1.0006738958554477}}, "versions": {"pile_pile-cc": 1}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/pile_uspto-v0-loglikelihood_rolling b/lm-evaluation-harness/tests/testdata/pile_uspto-v0-loglikelihood_rolling new file mode 100644 index 0000000000000000000000000000000000000000..4649d3b9b7f1f17e4731644d470fc0a2651a980d --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/pile_uspto-v0-loglikelihood_rolling @@ -0,0 +1 @@ +789b2bdb31564d512b70f801316f49320a26c83ba361226bac0afb255341d477 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/qnli-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/qnli-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..883202c385fdfcbdb3e362737691ee0343adc430 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/qnli-v0-loglikelihood @@ -0,0 +1 @@ +4281d4ff5cf1244358b0ea0220c67863c69fbade850696b43e8ff05138e01e12 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/race-v0-res.json b/lm-evaluation-harness/tests/testdata/race-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..017b00669b8b60dc06947e4e78428fb429734df5 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/race-v0-res.json @@ -0,0 +1 @@ +{"results": {"race": {"acc": 0.23253588516746412, "acc_stderr": 0.013074460615265295}}, "versions": {"race": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/squad2-v1-res.json b/lm-evaluation-harness/tests/testdata/squad2-v1-res.json new file mode 100644 index 0000000000000000000000000000000000000000..dd69f00abb989ba3d254b9a6925087e10737b8d6 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/squad2-v1-res.json @@ -0,0 +1 @@ +{"results": {"squad2": {"HasAns_exact": 0.0, "HasAns_f1": 0.0, "NoAns_exact": 0.0, "NoAns_f1": 0.0, "best_exact": 50.07159100480081, "best_f1": 50.07159100480081, "exact": 0.0, "f1": 0.0}}, "versions": {"squad2": 1}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/swag-v0-res.json b/lm-evaluation-harness/tests/testdata/swag-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..a1aeee972e83a41dbb7301f5a98ad5c97486402f --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/swag-v0-res.json @@ -0,0 +1 @@ +{"results": {"swag": {"acc": 0.2482255323402979, "acc_norm": 0.24882535239428172, "acc_norm_stderr": 0.00305666959496067, "acc_stderr": 0.003054201832644171}}, "versions": {"swag": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/toxigen-v0-res.json b/lm-evaluation-harness/tests/testdata/toxigen-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..65bb7cf4596c8973ae7dd2efc60e366c65bc4800 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/toxigen-v0-res.json @@ -0,0 +1 @@ +{"results": {"toxigen": {"acc": 0.5053191489361702, "acc_norm": 0.46808510638297873, "acc_norm_stderr": 0.016283609940023203, "acc_stderr": 0.016315959984563776}}, "versions": {"toxigen": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/triviaqa-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/triviaqa-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..d576c4977fc769dc56c31340f07558fefc1f1459 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/triviaqa-v0-loglikelihood @@ -0,0 +1 @@ +f8ec05b306b9f6187c0f8117cae441fb85a7a2e4670f4f9a1a3b632b1978421a \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/wic-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/wic-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..d27430a9a2eab0a6a5e265e249237201a4a56061 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/wic-v0-loglikelihood @@ -0,0 +1 @@ +403a08da05e4c44d7e3dd3358382a7ba489c41d223e24cd1a9ed82ef1a2d004b \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/wmt14-en-fr-v0-greedy_until b/lm-evaluation-harness/tests/testdata/wmt14-en-fr-v0-greedy_until new file mode 100644 index 0000000000000000000000000000000000000000..6d48d5579e95eb72bdc6c4dc8b4149e5f495b55e --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/wmt14-en-fr-v0-greedy_until @@ -0,0 +1 @@ +368ae7eec0f902b5123f2d5197caa5109a23942011c53fe68d9eaeee20180e46 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/wmt14-fr-en-v0-greedy_until b/lm-evaluation-harness/tests/testdata/wmt14-fr-en-v0-greedy_until new file mode 100644 index 0000000000000000000000000000000000000000..7249d39990f9aea60634b07c975f735983bade89 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/wmt14-fr-en-v0-greedy_until @@ -0,0 +1 @@ +c1d9f7283755fbdd7ecd6cc4278b0ac25a80ac256b7071ea5f839ccd038e5974 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/wmt20-en-zh-v1-greedy_until b/lm-evaluation-harness/tests/testdata/wmt20-en-zh-v1-greedy_until new file mode 100644 index 0000000000000000000000000000000000000000..db79b7f03fcfc8f7720f1344339e7d94d8a01ebf --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/wmt20-en-zh-v1-greedy_until @@ -0,0 +1 @@ +67f0333ddbcb07d7a9ac12919129a18fe4fea24e4826a11bbdde4fd5ed5ed83f \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/wmt20-ja-en-v0-greedy_until b/lm-evaluation-harness/tests/testdata/wmt20-ja-en-v0-greedy_until new file mode 100644 index 0000000000000000000000000000000000000000..3a89d7fcdfb76bc3912a930cf592da0270ba440c --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/wmt20-ja-en-v0-greedy_until @@ -0,0 +1 @@ +1fd846f3c0104e794eb380dae7f648592092ab8bf59234c26d0a671bbbc28df1 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/wsc-v0-res.json b/lm-evaluation-harness/tests/testdata/wsc-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..84be59624161779e494896d2618dbcf0f1f4b4b0 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/wsc-v0-res.json @@ -0,0 +1 @@ +{"results": {"wsc": {"acc": 0.5480769230769231, "acc_stderr": 0.049038186969314335}}, "versions": {"wsc": 0}} \ No newline at end of file diff --git a/venv/lib/python3.10/site-packages/transformers/models/barthez/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/barthez/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..084cd22bdf1d888efd46b759b91ccf95ee53c656 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/barthez/__init__.py @@ -0,0 +1,59 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available + + +_import_structure = {} + +try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_barthez"] = ["BarthezTokenizer"] + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_barthez_fast"] = ["BarthezTokenizerFast"] + + +if TYPE_CHECKING: + try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_barthez import BarthezTokenizer + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_barthez_fast import BarthezTokenizerFast + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/venv/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..66c394bf69975ca83224a302201fae38fe21690a Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/tokenization_barthez.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/tokenization_barthez.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..89b01cd415705a7bb8bb1d37bbd7a1383b8c9dda Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/tokenization_barthez.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/tokenization_barthez_fast.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/tokenization_barthez_fast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5625a8ee810623d3d86ebc7a6310914b81da16d2 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/barthez/__pycache__/tokenization_barthez_fast.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/barthez/tokenization_barthez.py b/venv/lib/python3.10/site-packages/transformers/models/barthez/tokenization_barthez.py new file mode 100644 index 0000000000000000000000000000000000000000..d9bd67cf51b773914ef5068e80d84c1dde8030d3 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/barthez/tokenization_barthez.py @@ -0,0 +1,287 @@ +# coding=utf-8 +# Copyright 2020 Ecole Polytechnique and the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License +""" Tokenization classes for the BARThez model.""" + + +import os +from shutil import copyfile +from typing import Any, Dict, List, Optional, Tuple + +import sentencepiece as spm + +from ...tokenization_utils import AddedToken, PreTrainedTokenizer +from ...utils import logging + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"} + + +SPIECE_UNDERLINE = "▁" + +# TODO this class is useless. This is the most standard sentencpiece model. Let's find which one is closest and nuke this. + + +class BarthezTokenizer(PreTrainedTokenizer): + """ + Adapted from [`CamembertTokenizer`] and [`BartTokenizer`]. Construct a BARThez tokenizer. Based on + [SentencePiece](https://github.com/google/sentencepiece). + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that + contains the vocabulary necessary to instantiate a tokenizer. + bos_token (`str`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + sep_token (`str`, *optional*, defaults to `""`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + cls_token (`str`, *optional*, defaults to `""`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + mask_token (`str`, *optional*, defaults to `""`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + sp_model_kwargs (`dict`, *optional*): + Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for + SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, + to set: + + - `enable_sampling`: Enable subword regularization. + - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. + + - `nbest_size = {0,1}`: No sampling is performed. + - `nbest_size > 1`: samples from the nbest_size results. + - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) + using forward-filtering-and-backward-sampling algorithm. + + - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for + BPE-dropout. + + Attributes: + sp_model (`SentencePieceProcessor`): + The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + + def __init__( + self, + vocab_file, + bos_token="", + eos_token="", + sep_token="", + cls_token="", + unk_token="", + pad_token="", + mask_token="", + sp_model_kwargs: Optional[Dict[str, Any]] = None, + **kwargs, + ) -> None: + # Mask token behave like a normal word, i.e. include the space before it. Will have normalized=False by default this way + mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token + + self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs + + self.vocab_file = vocab_file + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.Load(str(vocab_file)) + super().__init__( + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + sep_token=sep_token, + cls_token=cls_token, + pad_token=pad_token, + mask_token=mask_token, + sp_model_kwargs=self.sp_model_kwargs, + **kwargs, + ) + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A BARThez sequence has the following format: + + - single sequence: ` X ` + - pair of sequences: ` A B ` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + + if token_ids_1 is None: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + cls = [self.cls_token_id] + sep = [self.sep_token_id] + return cls + token_ids_0 + sep + sep + token_ids_1 + sep + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + if token_ids_1 is None: + return [1] + ([0] * len(token_ids_0)) + [1] + return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of zeros. + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] + + @property + def vocab_size(self): + return len(self.sp_model) + + def get_vocab(self): + vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} + vocab.update(self.added_tokens_encoder) + return vocab + + def _tokenize(self, text: str) -> List[str]: + return self.sp_model.encode(text, out_type=str) + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.sp_model.PieceToId(token) + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + return self.sp_model.IdToPiece(index) + + # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.convert_tokens_to_string + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + current_sub_tokens = [] + out_string = "" + prev_is_special = False + for token in tokens: + # make sure that special tokens are not decoded using sentencepiece model + if token in self.all_special_tokens: + if not prev_is_special: + out_string += " " + out_string += self.sp_model.decode(current_sub_tokens) + token + prev_is_special = True + current_sub_tokens = [] + else: + current_sub_tokens.append(token) + prev_is_special = False + out_string += self.sp_model.decode(current_sub_tokens) + return out_string.strip() + + def __getstate__(self): + state = self.__dict__.copy() + state["sp_model"] = None + return state + + def __setstate__(self, d): + self.__dict__ = d + + # for backward compatibility + if not hasattr(self, "sp_model_kwargs"): + self.sp_model_kwargs = {} + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.Load(self.vocab_file) + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): + copyfile(self.vocab_file, out_vocab_file) + elif not os.path.isfile(self.vocab_file): + with open(out_vocab_file, "wb") as fi: + content_spiece_model = self.sp_model.serialized_model_proto() + fi.write(content_spiece_model) + + return (out_vocab_file,) diff --git a/venv/lib/python3.10/site-packages/transformers/models/barthez/tokenization_barthez_fast.py b/venv/lib/python3.10/site-packages/transformers/models/barthez/tokenization_barthez_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..e988b0d518a3f369806d3ae7431c62f2a599029a --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/barthez/tokenization_barthez_fast.py @@ -0,0 +1,195 @@ +# coding=utf-8 +# Copyright 2020 Ecole Polytechnique and the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License +""" Tokenization classes for the BARThez model.""" + + +import os +from shutil import copyfile +from typing import List, Optional, Tuple + +from ...tokenization_utils import AddedToken +from ...tokenization_utils_fast import PreTrainedTokenizerFast +from ...utils import is_sentencepiece_available, logging + + +if is_sentencepiece_available(): + from .tokenization_barthez import BarthezTokenizer +else: + BarthezTokenizer = None + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} + + +SPIECE_UNDERLINE = "▁" + + +class BarthezTokenizerFast(PreTrainedTokenizerFast): + """ + Adapted from [`CamembertTokenizer`] and [`BartTokenizer`]. Construct a "fast" BARThez tokenizer. Based on + [SentencePiece](https://github.com/google/sentencepiece). + + This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should + refer to this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that + contains the vocabulary necessary to instantiate a tokenizer. + bos_token (`str`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + sep_token (`str`, *optional*, defaults to `""`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + cls_token (`str`, *optional*, defaults to `""`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + mask_token (`str`, *optional*, defaults to `""`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + additional_special_tokens (`List[str]`, *optional*, defaults to `["NOTUSED", "NOTUSED"]`): + Additional special tokens used by the tokenizer. + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + slow_tokenizer_class = BarthezTokenizer + + def __init__( + self, + vocab_file=None, + tokenizer_file=None, + bos_token="", + eos_token="", + sep_token="", + cls_token="", + unk_token="", + pad_token="", + mask_token="", + **kwargs, + ): + # Mask token behave like a normal word, i.e. include the space before it + mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token + + super().__init__( + vocab_file, + tokenizer_file=tokenizer_file, + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + sep_token=sep_token, + cls_token=cls_token, + pad_token=pad_token, + mask_token=mask_token, + **kwargs, + ) + + self.vocab_file = vocab_file + + @property + def can_save_slow_tokenizer(self) -> bool: + return os.path.isfile(self.vocab_file) if self.vocab_file else False + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A BARThez sequence has the following format: + + - single sequence: ` X ` + - pair of sequences: ` A B ` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + + if token_ids_1 is None: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + cls = [self.cls_token_id] + sep = [self.sep_token_id] + return cls + token_ids_0 + sep + sep + token_ids_1 + sep + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of zeros. + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not self.can_save_slow_tokenizer: + raise ValueError( + "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " + "tokenizer." + ) + + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): + copyfile(self.vocab_file, out_vocab_file) + + return (out_vocab_file,) diff --git a/venv/lib/python3.10/site-packages/transformers/models/detr/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/detr/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..9cbaca9a54581fbe51cbf4bd88adac1660297152 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/detr/__init__.py @@ -0,0 +1,75 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available + + +_import_structure = {"configuration_detr": ["DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "DetrConfig", "DetrOnnxConfig"]} + +try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["feature_extraction_detr"] = ["DetrFeatureExtractor"] + _import_structure["image_processing_detr"] = ["DetrImageProcessor"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_detr"] = [ + "DETR_PRETRAINED_MODEL_ARCHIVE_LIST", + "DetrForObjectDetection", + "DetrForSegmentation", + "DetrModel", + "DetrPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_detr import DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, DetrConfig, DetrOnnxConfig + + try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .feature_extraction_detr import DetrFeatureExtractor + from .image_processing_detr import DetrImageProcessor + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_detr import ( + DETR_PRETRAINED_MODEL_ARCHIVE_LIST, + DetrForObjectDetection, + DetrForSegmentation, + DetrModel, + DetrPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/venv/lib/python3.10/site-packages/transformers/models/detr/__pycache__/convert_detr_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/detr/__pycache__/convert_detr_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..07aa3dc9d653835fc26a89b63a26855e28ce85f2 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/detr/__pycache__/convert_detr_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/detr/__pycache__/convert_detr_to_pytorch.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/detr/__pycache__/convert_detr_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..82673260d5d8774169123de1f9d5a971bcfc52e1 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/detr/__pycache__/convert_detr_to_pytorch.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/detr/__pycache__/feature_extraction_detr.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/detr/__pycache__/feature_extraction_detr.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0750ca1ab0b1d29b72af35ebfcb57d0c000291c4 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/detr/__pycache__/feature_extraction_detr.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/detr/__pycache__/modeling_detr.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/detr/__pycache__/modeling_detr.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a56bbf2ba9ad2935a592f30a902f020c10d63e05 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/detr/__pycache__/modeling_detr.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/detr/configuration_detr.py b/venv/lib/python3.10/site-packages/transformers/models/detr/configuration_detr.py new file mode 100644 index 0000000000000000000000000000000000000000..9b9b5afacd0b7f9dde6814920be350c69b8ffa88 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/detr/configuration_detr.py @@ -0,0 +1,284 @@ +# coding=utf-8 +# Copyright 2021 Facebook AI Research and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" DETR model configuration""" + +from collections import OrderedDict +from typing import Mapping + +from packaging import version + +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxConfig +from ...utils import logging +from ..auto import CONFIG_MAPPING + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import DETR_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class DetrConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`DetrModel`]. It is used to instantiate a DETR + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the DETR + [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + use_timm_backbone (`bool`, *optional*, defaults to `True`): + Whether or not to use the `timm` library for the backbone. If set to `False`, will use the [`AutoBackbone`] + API. + backbone_config (`PretrainedConfig` or `dict`, *optional*): + The configuration of the backbone model. Only used in case `use_timm_backbone` is set to `False` in which + case it will default to `ResNetConfig()`. + num_channels (`int`, *optional*, defaults to 3): + The number of input channels. + num_queries (`int`, *optional*, defaults to 100): + Number of object queries, i.e. detection slots. This is the maximal number of objects [`DetrModel`] can + detect in a single image. For COCO, we recommend 100 queries. + d_model (`int`, *optional*, defaults to 256): + Dimension of the layers. + encoder_layers (`int`, *optional*, defaults to 6): + Number of encoder layers. + decoder_layers (`int`, *optional*, defaults to 6): + Number of decoder layers. + encoder_attention_heads (`int`, *optional*, defaults to 8): + Number of attention heads for each attention layer in the Transformer encoder. + decoder_attention_heads (`int`, *optional*, defaults to 8): + Number of attention heads for each attention layer in the Transformer decoder. + decoder_ffn_dim (`int`, *optional*, defaults to 2048): + Dimension of the "intermediate" (often named feed-forward) layer in decoder. + encoder_ffn_dim (`int`, *optional*, defaults to 2048): + Dimension of the "intermediate" (often named feed-forward) layer in decoder. + activation_function (`str` or `function`, *optional*, defaults to `"relu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + activation_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for activations inside the fully connected layer. + init_std (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + init_xavier_std (`float`, *optional*, defaults to 1): + The scaling factor used for the Xavier initialization gain in the HM Attention map module. + encoder_layerdrop (`float`, *optional*, defaults to 0.0): + The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) + for more details. + decoder_layerdrop (`float`, *optional*, defaults to 0.0): + The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) + for more details. + auxiliary_loss (`bool`, *optional*, defaults to `False`): + Whether auxiliary decoding losses (loss at each decoder layer) are to be used. + position_embedding_type (`str`, *optional*, defaults to `"sine"`): + Type of position embeddings to be used on top of the image features. One of `"sine"` or `"learned"`. + backbone (`str`, *optional*, defaults to `"resnet50"`): + Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this + will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone` + is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights. + use_pretrained_backbone (`bool`, *optional*, `True`): + Whether to use pretrained weights for the backbone. + backbone_kwargs (`dict`, *optional*): + Keyword arguments to be passed to AutoBackbone when loading from a checkpoint + e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set. + dilation (`bool`, *optional*, defaults to `False`): + Whether to replace stride with dilation in the last convolutional block (DC5). Only supported when + `use_timm_backbone` = `True`. + class_cost (`float`, *optional*, defaults to 1): + Relative weight of the classification error in the Hungarian matching cost. + bbox_cost (`float`, *optional*, defaults to 5): + Relative weight of the L1 error of the bounding box coordinates in the Hungarian matching cost. + giou_cost (`float`, *optional*, defaults to 2): + Relative weight of the generalized IoU loss of the bounding box in the Hungarian matching cost. + mask_loss_coefficient (`float`, *optional*, defaults to 1): + Relative weight of the Focal loss in the panoptic segmentation loss. + dice_loss_coefficient (`float`, *optional*, defaults to 1): + Relative weight of the DICE/F-1 loss in the panoptic segmentation loss. + bbox_loss_coefficient (`float`, *optional*, defaults to 5): + Relative weight of the L1 bounding box loss in the object detection loss. + giou_loss_coefficient (`float`, *optional*, defaults to 2): + Relative weight of the generalized IoU loss in the object detection loss. + eos_coefficient (`float`, *optional*, defaults to 0.1): + Relative classification weight of the 'no-object' class in the object detection loss. + + Examples: + + ```python + >>> from transformers import DetrConfig, DetrModel + + >>> # Initializing a DETR facebook/detr-resnet-50 style configuration + >>> configuration = DetrConfig() + + >>> # Initializing a model (with random weights) from the facebook/detr-resnet-50 style configuration + >>> model = DetrModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "detr" + keys_to_ignore_at_inference = ["past_key_values"] + attribute_map = { + "hidden_size": "d_model", + "num_attention_heads": "encoder_attention_heads", + } + + def __init__( + self, + use_timm_backbone=True, + backbone_config=None, + num_channels=3, + num_queries=100, + encoder_layers=6, + encoder_ffn_dim=2048, + encoder_attention_heads=8, + decoder_layers=6, + decoder_ffn_dim=2048, + decoder_attention_heads=8, + encoder_layerdrop=0.0, + decoder_layerdrop=0.0, + is_encoder_decoder=True, + activation_function="relu", + d_model=256, + dropout=0.1, + attention_dropout=0.0, + activation_dropout=0.0, + init_std=0.02, + init_xavier_std=1.0, + auxiliary_loss=False, + position_embedding_type="sine", + backbone="resnet50", + use_pretrained_backbone=True, + backbone_kwargs=None, + dilation=False, + class_cost=1, + bbox_cost=5, + giou_cost=2, + mask_loss_coefficient=1, + dice_loss_coefficient=1, + bbox_loss_coefficient=5, + giou_loss_coefficient=2, + eos_coefficient=0.1, + **kwargs, + ): + if not use_timm_backbone and use_pretrained_backbone: + raise ValueError( + "Loading pretrained backbone weights from the transformers library is not supported yet. `use_timm_backbone` must be set to `True` when `use_pretrained_backbone=True`" + ) + + if backbone_config is not None and backbone is not None: + raise ValueError("You can't specify both `backbone` and `backbone_config`.") + + if backbone_config is not None and use_timm_backbone: + raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`.") + + if backbone_kwargs is not None and backbone_kwargs and backbone_config is not None: + raise ValueError("You can't specify both `backbone_kwargs` and `backbone_config`.") + + if not use_timm_backbone: + if backbone_config is None: + logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") + backbone_config = CONFIG_MAPPING["resnet"](out_features=["stage4"]) + elif isinstance(backbone_config, dict): + backbone_model_type = backbone_config.get("model_type") + config_class = CONFIG_MAPPING[backbone_model_type] + backbone_config = config_class.from_dict(backbone_config) + # set timm attributes to None + dilation, backbone, use_pretrained_backbone = None, None, None + + self.use_timm_backbone = use_timm_backbone + self.backbone_config = backbone_config + self.num_channels = num_channels + self.num_queries = num_queries + self.d_model = d_model + self.encoder_ffn_dim = encoder_ffn_dim + self.encoder_layers = encoder_layers + self.encoder_attention_heads = encoder_attention_heads + self.decoder_ffn_dim = decoder_ffn_dim + self.decoder_layers = decoder_layers + self.decoder_attention_heads = decoder_attention_heads + self.dropout = dropout + self.attention_dropout = attention_dropout + self.activation_dropout = activation_dropout + self.activation_function = activation_function + self.init_std = init_std + self.init_xavier_std = init_xavier_std + self.encoder_layerdrop = encoder_layerdrop + self.decoder_layerdrop = decoder_layerdrop + self.num_hidden_layers = encoder_layers + self.auxiliary_loss = auxiliary_loss + self.position_embedding_type = position_embedding_type + self.backbone = backbone + self.use_pretrained_backbone = use_pretrained_backbone + self.backbone_kwargs = backbone_kwargs + self.dilation = dilation + # Hungarian matcher + self.class_cost = class_cost + self.bbox_cost = bbox_cost + self.giou_cost = giou_cost + # Loss coefficients + self.mask_loss_coefficient = mask_loss_coefficient + self.dice_loss_coefficient = dice_loss_coefficient + self.bbox_loss_coefficient = bbox_loss_coefficient + self.giou_loss_coefficient = giou_loss_coefficient + self.eos_coefficient = eos_coefficient + super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs) + + @property + def num_attention_heads(self) -> int: + return self.encoder_attention_heads + + @property + def hidden_size(self) -> int: + return self.d_model + + @classmethod + def from_backbone_config(cls, backbone_config: PretrainedConfig, **kwargs): + """Instantiate a [`DetrConfig`] (or a derived class) from a pre-trained backbone model configuration. + + Args: + backbone_config ([`PretrainedConfig`]): + The backbone configuration. + Returns: + [`DetrConfig`]: An instance of a configuration object + """ + return cls(backbone_config=backbone_config, **kwargs) + + +class DetrOnnxConfig(OnnxConfig): + torch_onnx_minimum_version = version.parse("1.11") + + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + return OrderedDict( + [ + ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), + ("pixel_mask", {0: "batch"}), + ] + ) + + @property + def atol_for_validation(self) -> float: + return 1e-5 + + @property + def default_onnx_opset(self) -> int: + return 12 diff --git a/venv/lib/python3.10/site-packages/transformers/models/detr/convert_detr_original_pytorch_checkpoint_to_pytorch.py b/venv/lib/python3.10/site-packages/transformers/models/detr/convert_detr_original_pytorch_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..72de2be8701a9cf97a4e152be38da54bf87ac3d9 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/detr/convert_detr_original_pytorch_checkpoint_to_pytorch.py @@ -0,0 +1,278 @@ +# coding=utf-8 +# Copyright 2020 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert DETR checkpoints with timm backbone.""" + + +import argparse +import json +from collections import OrderedDict +from pathlib import Path + +import requests +import torch +from huggingface_hub import hf_hub_download +from PIL import Image + +from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor +from transformers.utils import logging + + +logging.set_verbosity_info() +logger = logging.get_logger(__name__) + +# here we list all keys to be renamed (original name on the left, our name on the right) +rename_keys = [] +for i in range(6): + # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms + rename_keys.append( + (f"transformer.encoder.layers.{i}.self_attn.out_proj.weight", f"encoder.layers.{i}.self_attn.out_proj.weight") + ) + rename_keys.append( + (f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias") + ) + rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight")) + rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias")) + rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight")) + rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias")) + rename_keys.append( + (f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight") + ) + rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias")) + rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight")) + rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias")) + # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms + rename_keys.append( + (f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"decoder.layers.{i}.self_attn.out_proj.weight") + ) + rename_keys.append( + (f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias") + ) + rename_keys.append( + ( + f"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight", + f"decoder.layers.{i}.encoder_attn.out_proj.weight", + ) + ) + rename_keys.append( + ( + f"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias", + f"decoder.layers.{i}.encoder_attn.out_proj.bias", + ) + ) + rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight")) + rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias")) + rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight")) + rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias")) + rename_keys.append( + (f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight") + ) + rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias")) + rename_keys.append( + (f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight") + ) + rename_keys.append( + (f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias") + ) + rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight")) + rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias")) + +# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads +rename_keys.extend( + [ + ("input_proj.weight", "input_projection.weight"), + ("input_proj.bias", "input_projection.bias"), + ("query_embed.weight", "query_position_embeddings.weight"), + ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), + ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), + ("class_embed.weight", "class_labels_classifier.weight"), + ("class_embed.bias", "class_labels_classifier.bias"), + ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), + ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), + ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), + ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), + ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), + ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), + ] +) + + +def rename_key(state_dict, old, new): + val = state_dict.pop(old) + state_dict[new] = val + + +def rename_backbone_keys(state_dict): + new_state_dict = OrderedDict() + for key, value in state_dict.items(): + if "backbone.0.body" in key: + new_key = key.replace("backbone.0.body", "backbone.conv_encoder.model") + new_state_dict[new_key] = value + else: + new_state_dict[key] = value + + return new_state_dict + + +def read_in_q_k_v(state_dict, is_panoptic=False): + prefix = "" + if is_panoptic: + prefix = "detr." + + # first: transformer encoder + for i in range(6): + # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) + in_proj_weight = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight") + in_proj_bias = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias") + # next, add query, keys and values (in that order) to the state dict + state_dict[f"encoder.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[:256, :] + state_dict[f"encoder.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:256] + state_dict[f"encoder.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[256:512, :] + state_dict[f"encoder.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[256:512] + state_dict[f"encoder.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[-256:, :] + state_dict[f"encoder.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-256:] + # next: transformer decoder (which is a bit more complex because it also includes cross-attention) + for i in range(6): + # read in weights + bias of input projection layer of self-attention + in_proj_weight = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight") + in_proj_bias = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias") + # next, add query, keys and values (in that order) to the state dict + state_dict[f"decoder.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[:256, :] + state_dict[f"decoder.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:256] + state_dict[f"decoder.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[256:512, :] + state_dict[f"decoder.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[256:512] + state_dict[f"decoder.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[-256:, :] + state_dict[f"decoder.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-256:] + # read in weights + bias of input projection layer of cross-attention + in_proj_weight_cross_attn = state_dict.pop( + f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight" + ) + in_proj_bias_cross_attn = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias") + # next, add query, keys and values (in that order) of cross-attention to the state dict + state_dict[f"decoder.layers.{i}.encoder_attn.q_proj.weight"] = in_proj_weight_cross_attn[:256, :] + state_dict[f"decoder.layers.{i}.encoder_attn.q_proj.bias"] = in_proj_bias_cross_attn[:256] + state_dict[f"decoder.layers.{i}.encoder_attn.k_proj.weight"] = in_proj_weight_cross_attn[256:512, :] + state_dict[f"decoder.layers.{i}.encoder_attn.k_proj.bias"] = in_proj_bias_cross_attn[256:512] + state_dict[f"decoder.layers.{i}.encoder_attn.v_proj.weight"] = in_proj_weight_cross_attn[-256:, :] + state_dict[f"decoder.layers.{i}.encoder_attn.v_proj.bias"] = in_proj_bias_cross_attn[-256:] + + +# We will verify our results on an image of cute cats +def prepare_img(): + url = "http://images.cocodataset.org/val2017/000000039769.jpg" + im = Image.open(requests.get(url, stream=True).raw) + + return im + + +@torch.no_grad() +def convert_detr_checkpoint(model_name, pytorch_dump_folder_path): + """ + Copy/paste/tweak model's weights to our DETR structure. + """ + + # load default config + config = DetrConfig() + # set backbone and dilation attributes + if "resnet101" in model_name: + config.backbone = "resnet101" + if "dc5" in model_name: + config.dilation = True + is_panoptic = "panoptic" in model_name + if is_panoptic: + config.num_labels = 250 + else: + config.num_labels = 91 + repo_id = "huggingface/label-files" + filename = "coco-detection-id2label.json" + id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) + id2label = {int(k): v for k, v in id2label.items()} + config.id2label = id2label + config.label2id = {v: k for k, v in id2label.items()} + + # load image processor + format = "coco_panoptic" if is_panoptic else "coco_detection" + image_processor = DetrImageProcessor(format=format) + + # prepare image + img = prepare_img() + encoding = image_processor(images=img, return_tensors="pt") + pixel_values = encoding["pixel_values"] + + logger.info(f"Converting model {model_name}...") + + # load original model from torch hub + detr = torch.hub.load("facebookresearch/detr", model_name, pretrained=True).eval() + state_dict = detr.state_dict() + # rename keys + for src, dest in rename_keys: + if is_panoptic: + src = "detr." + src + rename_key(state_dict, src, dest) + state_dict = rename_backbone_keys(state_dict) + # query, key and value matrices need special treatment + read_in_q_k_v(state_dict, is_panoptic=is_panoptic) + # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them + prefix = "detr.model." if is_panoptic else "model." + for key in state_dict.copy().keys(): + if is_panoptic: + if ( + key.startswith("detr") + and not key.startswith("class_labels_classifier") + and not key.startswith("bbox_predictor") + ): + val = state_dict.pop(key) + state_dict["detr.model" + key[4:]] = val + elif "class_labels_classifier" in key or "bbox_predictor" in key: + val = state_dict.pop(key) + state_dict["detr." + key] = val + elif key.startswith("bbox_attention") or key.startswith("mask_head"): + continue + else: + val = state_dict.pop(key) + state_dict[prefix + key] = val + else: + if not key.startswith("class_labels_classifier") and not key.startswith("bbox_predictor"): + val = state_dict.pop(key) + state_dict[prefix + key] = val + # finally, create HuggingFace model and load state dict + model = DetrForSegmentation(config) if is_panoptic else DetrForObjectDetection(config) + model.load_state_dict(state_dict) + model.eval() + # verify our conversion + original_outputs = detr(pixel_values) + outputs = model(pixel_values) + assert torch.allclose(outputs.logits, original_outputs["pred_logits"], atol=1e-4) + assert torch.allclose(outputs.pred_boxes, original_outputs["pred_boxes"], atol=1e-4) + if is_panoptic: + assert torch.allclose(outputs.pred_masks, original_outputs["pred_masks"], atol=1e-4) + + # Save model and image processor + logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}...") + Path(pytorch_dump_folder_path).mkdir(exist_ok=True) + model.save_pretrained(pytorch_dump_folder_path) + image_processor.save_pretrained(pytorch_dump_folder_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + + parser.add_argument( + "--model_name", default="detr_resnet50", type=str, help="Name of the DETR model you'd like to convert." + ) + parser.add_argument( + "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." + ) + args = parser.parse_args() + convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path) diff --git a/venv/lib/python3.10/site-packages/transformers/models/detr/convert_detr_to_pytorch.py b/venv/lib/python3.10/site-packages/transformers/models/detr/convert_detr_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..a52e592b945d798ed01c457e3864252302eb33a3 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/detr/convert_detr_to_pytorch.py @@ -0,0 +1,386 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert DETR checkpoints with native (Transformers) backbone.""" + + +import argparse +import json +from pathlib import Path + +import requests +import torch +from huggingface_hub import hf_hub_download +from PIL import Image + +from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig +from transformers.utils import logging + + +logging.set_verbosity_info() +logger = logging.get_logger(__name__) + + +def get_detr_config(model_name): + # initialize config + if "resnet-50" in model_name: + backbone_config = ResNetConfig.from_pretrained("microsoft/resnet-50") + elif "resnet-101" in model_name: + backbone_config = ResNetConfig.from_pretrained("microsoft/resnet-101") + else: + raise ValueError("Model name should include either resnet50 or resnet101") + + config = DetrConfig(use_timm_backbone=False, backbone_config=backbone_config) + + # set label attributes + is_panoptic = "panoptic" in model_name + if is_panoptic: + config.num_labels = 250 + else: + config.num_labels = 91 + repo_id = "huggingface/label-files" + filename = "coco-detection-id2label.json" + id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) + id2label = {int(k): v for k, v in id2label.items()} + config.id2label = id2label + config.label2id = {v: k for k, v in id2label.items()} + + return config, is_panoptic + + +def create_rename_keys(config): + # here we list all keys to be renamed (original name on the left, our name on the right) + rename_keys = [] + + # stem + # fmt: off + rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight")) + rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight")) + rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias")) + rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean")) + rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var")) + # stages + for stage_idx in range(len(config.backbone_config.depths)): + for layer_idx in range(config.backbone_config.depths[stage_idx]): + # shortcut + if layer_idx == 0: + rename_keys.append( + ( + f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight", + f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight", + ) + ) + rename_keys.append( + ( + f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight", + f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight", + ) + ) + rename_keys.append( + ( + f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias", + f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias", + ) + ) + rename_keys.append( + ( + f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean", + f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean", + ) + ) + rename_keys.append( + ( + f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var", + f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var", + ) + ) + # 3 convs + for i in range(3): + rename_keys.append( + ( + f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight", + f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight", + ) + ) + rename_keys.append( + ( + f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight", + f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight", + ) + ) + rename_keys.append( + ( + f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias", + f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias", + ) + ) + rename_keys.append( + ( + f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean", + f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean", + ) + ) + rename_keys.append( + ( + f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var", + f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var", + ) + ) + # fmt: on + + for i in range(config.encoder_layers): + # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms + rename_keys.append( + ( + f"transformer.encoder.layers.{i}.self_attn.out_proj.weight", + f"encoder.layers.{i}.self_attn.out_proj.weight", + ) + ) + rename_keys.append( + (f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias") + ) + rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight")) + rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias")) + rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight")) + rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias")) + rename_keys.append( + (f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight") + ) + rename_keys.append( + (f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias") + ) + rename_keys.append( + (f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight") + ) + rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias")) + # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms + rename_keys.append( + ( + f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", + f"decoder.layers.{i}.self_attn.out_proj.weight", + ) + ) + rename_keys.append( + (f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias") + ) + rename_keys.append( + ( + f"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight", + f"decoder.layers.{i}.encoder_attn.out_proj.weight", + ) + ) + rename_keys.append( + ( + f"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias", + f"decoder.layers.{i}.encoder_attn.out_proj.bias", + ) + ) + rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight")) + rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias")) + rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight")) + rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias")) + rename_keys.append( + (f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight") + ) + rename_keys.append( + (f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias") + ) + rename_keys.append( + (f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight") + ) + rename_keys.append( + (f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias") + ) + rename_keys.append( + (f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight") + ) + rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias")) + + # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads + rename_keys.extend( + [ + ("input_proj.weight", "input_projection.weight"), + ("input_proj.bias", "input_projection.bias"), + ("query_embed.weight", "query_position_embeddings.weight"), + ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), + ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), + ("class_embed.weight", "class_labels_classifier.weight"), + ("class_embed.bias", "class_labels_classifier.bias"), + ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), + ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), + ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), + ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), + ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), + ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), + ] + ) + + return rename_keys + + +def rename_key(state_dict, old, new): + val = state_dict.pop(old) + state_dict[new] = val + + +def read_in_q_k_v(state_dict, is_panoptic=False): + prefix = "" + if is_panoptic: + prefix = "detr." + + # first: transformer encoder + for i in range(6): + # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) + in_proj_weight = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight") + in_proj_bias = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias") + # next, add query, keys and values (in that order) to the state dict + state_dict[f"encoder.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[:256, :] + state_dict[f"encoder.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:256] + state_dict[f"encoder.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[256:512, :] + state_dict[f"encoder.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[256:512] + state_dict[f"encoder.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[-256:, :] + state_dict[f"encoder.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-256:] + # next: transformer decoder (which is a bit more complex because it also includes cross-attention) + for i in range(6): + # read in weights + bias of input projection layer of self-attention + in_proj_weight = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight") + in_proj_bias = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias") + # next, add query, keys and values (in that order) to the state dict + state_dict[f"decoder.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[:256, :] + state_dict[f"decoder.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:256] + state_dict[f"decoder.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[256:512, :] + state_dict[f"decoder.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[256:512] + state_dict[f"decoder.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[-256:, :] + state_dict[f"decoder.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-256:] + # read in weights + bias of input projection layer of cross-attention + in_proj_weight_cross_attn = state_dict.pop( + f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight" + ) + in_proj_bias_cross_attn = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias") + # next, add query, keys and values (in that order) of cross-attention to the state dict + state_dict[f"decoder.layers.{i}.encoder_attn.q_proj.weight"] = in_proj_weight_cross_attn[:256, :] + state_dict[f"decoder.layers.{i}.encoder_attn.q_proj.bias"] = in_proj_bias_cross_attn[:256] + state_dict[f"decoder.layers.{i}.encoder_attn.k_proj.weight"] = in_proj_weight_cross_attn[256:512, :] + state_dict[f"decoder.layers.{i}.encoder_attn.k_proj.bias"] = in_proj_bias_cross_attn[256:512] + state_dict[f"decoder.layers.{i}.encoder_attn.v_proj.weight"] = in_proj_weight_cross_attn[-256:, :] + state_dict[f"decoder.layers.{i}.encoder_attn.v_proj.bias"] = in_proj_bias_cross_attn[-256:] + + +# We will verify our results on an image of cute cats +def prepare_img(): + url = "http://images.cocodataset.org/val2017/000000039769.jpg" + im = Image.open(requests.get(url, stream=True).raw) + + return im + + +@torch.no_grad() +def convert_detr_checkpoint(model_name, pytorch_dump_folder_path=None, push_to_hub=False): + """ + Copy/paste/tweak model's weights to our DETR structure. + """ + + # load default config + config, is_panoptic = get_detr_config(model_name) + + # load original model from torch hub + model_name_to_original_name = { + "detr-resnet-50": "detr_resnet50", + "detr-resnet-101": "detr_resnet101", + } + logger.info(f"Converting model {model_name}...") + detr = torch.hub.load("facebookresearch/detr", model_name_to_original_name[model_name], pretrained=True).eval() + state_dict = detr.state_dict() + # rename keys + for src, dest in create_rename_keys(config): + if is_panoptic: + src = "detr." + src + rename_key(state_dict, src, dest) + # query, key and value matrices need special treatment + read_in_q_k_v(state_dict, is_panoptic=is_panoptic) + # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them + prefix = "detr.model." if is_panoptic else "model." + for key in state_dict.copy().keys(): + if is_panoptic: + if ( + key.startswith("detr") + and not key.startswith("class_labels_classifier") + and not key.startswith("bbox_predictor") + ): + val = state_dict.pop(key) + state_dict["detr.model" + key[4:]] = val + elif "class_labels_classifier" in key or "bbox_predictor" in key: + val = state_dict.pop(key) + state_dict["detr." + key] = val + elif key.startswith("bbox_attention") or key.startswith("mask_head"): + continue + else: + val = state_dict.pop(key) + state_dict[prefix + key] = val + else: + if not key.startswith("class_labels_classifier") and not key.startswith("bbox_predictor"): + val = state_dict.pop(key) + state_dict[prefix + key] = val + + # finally, create HuggingFace model and load state dict + model = DetrForSegmentation(config) if is_panoptic else DetrForObjectDetection(config) + model.load_state_dict(state_dict) + model.eval() + + # verify our conversion on an image + format = "coco_panoptic" if is_panoptic else "coco_detection" + processor = DetrImageProcessor(format=format) + + encoding = processor(images=prepare_img(), return_tensors="pt") + pixel_values = encoding["pixel_values"] + + original_outputs = detr(pixel_values) + outputs = model(pixel_values) + + assert torch.allclose(outputs.logits, original_outputs["pred_logits"], atol=1e-3) + assert torch.allclose(outputs.pred_boxes, original_outputs["pred_boxes"], atol=1e-3) + if is_panoptic: + assert torch.allclose(outputs.pred_masks, original_outputs["pred_masks"], atol=1e-4) + print("Looks ok!") + + if pytorch_dump_folder_path is not None: + # Save model and image processor + logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}...") + Path(pytorch_dump_folder_path).mkdir(exist_ok=True) + model.save_pretrained(pytorch_dump_folder_path) + processor.save_pretrained(pytorch_dump_folder_path) + + if push_to_hub: + # Upload model and image processor to the hub + logger.info("Uploading PyTorch model and image processor to the hub...") + model.push_to_hub(f"nielsr/{model_name}") + processor.push_to_hub(f"nielsr/{model_name}") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + + parser.add_argument( + "--model_name", + default="detr-resnet-50", + type=str, + choices=["detr-resnet-50", "detr-resnet-101"], + help="Name of the DETR model you'd like to convert.", + ) + parser.add_argument( + "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." + ) + parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the model to the hub or not.") + args = parser.parse_args() + convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub) diff --git a/venv/lib/python3.10/site-packages/transformers/models/detr/feature_extraction_detr.py b/venv/lib/python3.10/site-packages/transformers/models/detr/feature_extraction_detr.py new file mode 100644 index 0000000000000000000000000000000000000000..6ea33666466f9a11cc074051510f0c52a2e19278 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/detr/feature_extraction_detr.py @@ -0,0 +1,43 @@ +# coding=utf-8 +# Copyright 2021 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Feature extractor class for DETR.""" + +import warnings + +from ...image_transforms import rgb_to_id as _rgb_to_id +from ...utils import logging +from .image_processing_detr import DetrImageProcessor + + +logger = logging.get_logger(__name__) + + +def rgb_to_id(x): + warnings.warn( + "rgb_to_id has moved and will not be importable from this module from v5. " + "Please import from transformers.image_transforms instead.", + FutureWarning, + ) + return _rgb_to_id(x) + + +class DetrFeatureExtractor(DetrImageProcessor): + def __init__(self, *args, **kwargs) -> None: + warnings.warn( + "The class DetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers." + " Please use DetrImageProcessor instead.", + FutureWarning, + ) + super().__init__(*args, **kwargs) diff --git a/venv/lib/python3.10/site-packages/transformers/models/detr/image_processing_detr.py b/venv/lib/python3.10/site-packages/transformers/models/detr/image_processing_detr.py new file mode 100644 index 0000000000000000000000000000000000000000..e0e59cbc7c40c678021114f4bfe4b2aeaf418131 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/detr/image_processing_detr.py @@ -0,0 +1,1965 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Image processor class for DETR.""" + +import io +import pathlib +from collections import defaultdict +from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Tuple, Union + +import numpy as np + +from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict +from ...image_transforms import ( + PaddingMode, + center_to_corners_format, + corners_to_center_format, + id_to_rgb, + pad, + rescale, + resize, + rgb_to_id, + to_channel_dimension_format, +) +from ...image_utils import ( + IMAGENET_DEFAULT_MEAN, + IMAGENET_DEFAULT_STD, + AnnotationFormat, + AnnotationType, + ChannelDimension, + ImageInput, + PILImageResampling, + get_image_size, + infer_channel_dimension_format, + is_scaled_image, + make_list_of_images, + to_numpy_array, + valid_images, + validate_annotations, + validate_kwargs, + validate_preprocess_arguments, +) +from ...utils import ( + TensorType, + is_flax_available, + is_jax_tensor, + is_scipy_available, + is_tf_available, + is_tf_tensor, + is_torch_available, + is_torch_tensor, + is_vision_available, + logging, +) + + +if is_torch_available(): + import torch + from torch import nn + + +if is_vision_available(): + import PIL + + +if is_scipy_available(): + import scipy.special + import scipy.stats + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + +SUPPORTED_ANNOTATION_FORMATS = (AnnotationFormat.COCO_DETECTION, AnnotationFormat.COCO_PANOPTIC) + + +# From the original repo: https://github.com/facebookresearch/detr/blob/3af9fa878e73b6894ce3596450a8d9b89d918ca9/datasets/transforms.py#L76 +def get_size_with_aspect_ratio(image_size, size, max_size=None) -> Tuple[int, int]: + """ + Computes the output image size given the input image size and the desired output size. + + Args: + image_size (`Tuple[int, int]`): + The input image size. + size (`int`): + The desired output size. + max_size (`int`, *optional*): + The maximum allowed output size. + """ + height, width = image_size + if max_size is not None: + min_original_size = float(min((height, width))) + max_original_size = float(max((height, width))) + if max_original_size / min_original_size * size > max_size: + size = int(round(max_size * min_original_size / max_original_size)) + + if (height <= width and height == size) or (width <= height and width == size): + return height, width + + if width < height: + ow = size + oh = int(size * height / width) + else: + oh = size + ow = int(size * width / height) + return (oh, ow) + + +def get_resize_output_image_size( + input_image: np.ndarray, + size: Union[int, Tuple[int, int], List[int]], + max_size: Optional[int] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, +) -> Tuple[int, int]: + """ + Computes the output image size given the input image size and the desired output size. If the desired output size + is a tuple or list, the output image size is returned as is. If the desired output size is an integer, the output + image size is computed by keeping the aspect ratio of the input image size. + + Args: + input_image (`np.ndarray`): + The image to resize. + size (`int` or `Tuple[int, int]` or `List[int]`): + The desired output size. + max_size (`int`, *optional*): + The maximum allowed output size. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format of the input image. If not provided, it will be inferred from the input image. + """ + image_size = get_image_size(input_image, input_data_format) + if isinstance(size, (list, tuple)): + return size + + return get_size_with_aspect_ratio(image_size, size, max_size) + + +def get_numpy_to_framework_fn(arr) -> Callable: + """ + Returns a function that converts a numpy array to the framework of the input array. + + Args: + arr (`np.ndarray`): The array to convert. + """ + if isinstance(arr, np.ndarray): + return np.array + if is_tf_available() and is_tf_tensor(arr): + import tensorflow as tf + + return tf.convert_to_tensor + if is_torch_available() and is_torch_tensor(arr): + import torch + + return torch.tensor + if is_flax_available() and is_jax_tensor(arr): + import jax.numpy as jnp + + return jnp.array + raise ValueError(f"Cannot convert arrays of type {type(arr)}") + + +def safe_squeeze(arr: np.ndarray, axis: Optional[int] = None) -> np.ndarray: + """ + Squeezes an array, but only if the axis specified has dim 1. + """ + if axis is None: + return arr.squeeze() + + try: + return arr.squeeze(axis=axis) + except ValueError: + return arr + + +def normalize_annotation(annotation: Dict, image_size: Tuple[int, int]) -> Dict: + image_height, image_width = image_size + norm_annotation = {} + for key, value in annotation.items(): + if key == "boxes": + boxes = value + boxes = corners_to_center_format(boxes) + boxes /= np.asarray([image_width, image_height, image_width, image_height], dtype=np.float32) + norm_annotation[key] = boxes + else: + norm_annotation[key] = value + return norm_annotation + + +# Copied from transformers.models.vilt.image_processing_vilt.max_across_indices +def max_across_indices(values: Iterable[Any]) -> List[Any]: + """ + Return the maximum value across all indices of an iterable of values. + """ + return [max(values_i) for values_i in zip(*values)] + + +# Copied from transformers.models.vilt.image_processing_vilt.get_max_height_width +def get_max_height_width( + images: List[np.ndarray], input_data_format: Optional[Union[str, ChannelDimension]] = None +) -> List[int]: + """ + Get the maximum height and width across all images in a batch. + """ + if input_data_format is None: + input_data_format = infer_channel_dimension_format(images[0]) + + if input_data_format == ChannelDimension.FIRST: + _, max_height, max_width = max_across_indices([img.shape for img in images]) + elif input_data_format == ChannelDimension.LAST: + max_height, max_width, _ = max_across_indices([img.shape for img in images]) + else: + raise ValueError(f"Invalid channel dimension format: {input_data_format}") + return (max_height, max_width) + + +# Copied from transformers.models.vilt.image_processing_vilt.make_pixel_mask +def make_pixel_mask( + image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None +) -> np.ndarray: + """ + Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding. + + Args: + image (`np.ndarray`): + Image to make the pixel mask for. + output_size (`Tuple[int, int]`): + Output size of the mask. + """ + input_height, input_width = get_image_size(image, channel_dim=input_data_format) + mask = np.zeros(output_size, dtype=np.int64) + mask[:input_height, :input_width] = 1 + return mask + + +# inspired by https://github.com/facebookresearch/detr/blob/master/datasets/coco.py#L33 +def convert_coco_poly_to_mask(segmentations, height: int, width: int) -> np.ndarray: + """ + Convert a COCO polygon annotation to a mask. + + Args: + segmentations (`List[List[float]]`): + List of polygons, each polygon represented by a list of x-y coordinates. + height (`int`): + Height of the mask. + width (`int`): + Width of the mask. + """ + try: + from pycocotools import mask as coco_mask + except ImportError: + raise ImportError("Pycocotools is not installed in your environment.") + + masks = [] + for polygons in segmentations: + rles = coco_mask.frPyObjects(polygons, height, width) + mask = coco_mask.decode(rles) + if len(mask.shape) < 3: + mask = mask[..., None] + mask = np.asarray(mask, dtype=np.uint8) + mask = np.any(mask, axis=2) + masks.append(mask) + if masks: + masks = np.stack(masks, axis=0) + else: + masks = np.zeros((0, height, width), dtype=np.uint8) + + return masks + + +# inspired by https://github.com/facebookresearch/detr/blob/master/datasets/coco.py#L50 +def prepare_coco_detection_annotation( + image, + target, + return_segmentation_masks: bool = False, + input_data_format: Optional[Union[ChannelDimension, str]] = None, +): + """ + Convert the target in COCO format into the format expected by DETR. + """ + image_height, image_width = get_image_size(image, channel_dim=input_data_format) + + image_id = target["image_id"] + image_id = np.asarray([image_id], dtype=np.int64) + + # Get all COCO annotations for the given image. + annotations = target["annotations"] + annotations = [obj for obj in annotations if "iscrowd" not in obj or obj["iscrowd"] == 0] + + classes = [obj["category_id"] for obj in annotations] + classes = np.asarray(classes, dtype=np.int64) + + # for conversion to coco api + area = np.asarray([obj["area"] for obj in annotations], dtype=np.float32) + iscrowd = np.asarray([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in annotations], dtype=np.int64) + + boxes = [obj["bbox"] for obj in annotations] + # guard against no boxes via resizing + boxes = np.asarray(boxes, dtype=np.float32).reshape(-1, 4) + boxes[:, 2:] += boxes[:, :2] + boxes[:, 0::2] = boxes[:, 0::2].clip(min=0, max=image_width) + boxes[:, 1::2] = boxes[:, 1::2].clip(min=0, max=image_height) + + keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0]) + + new_target = {} + new_target["image_id"] = image_id + new_target["class_labels"] = classes[keep] + new_target["boxes"] = boxes[keep] + new_target["area"] = area[keep] + new_target["iscrowd"] = iscrowd[keep] + new_target["orig_size"] = np.asarray([int(image_height), int(image_width)], dtype=np.int64) + + if annotations and "keypoints" in annotations[0]: + keypoints = [obj["keypoints"] for obj in annotations] + # Converting the filtered keypoints list to a numpy array + keypoints = np.asarray(keypoints, dtype=np.float32) + # Apply the keep mask here to filter the relevant annotations + keypoints = keypoints[keep] + num_keypoints = keypoints.shape[0] + keypoints = keypoints.reshape((-1, 3)) if num_keypoints else keypoints + new_target["keypoints"] = keypoints + + if return_segmentation_masks: + segmentation_masks = [obj["segmentation"] for obj in annotations] + masks = convert_coco_poly_to_mask(segmentation_masks, image_height, image_width) + new_target["masks"] = masks[keep] + + return new_target + + +def masks_to_boxes(masks: np.ndarray) -> np.ndarray: + """ + Compute the bounding boxes around the provided panoptic segmentation masks. + + Args: + masks: masks in format `[number_masks, height, width]` where N is the number of masks + + Returns: + boxes: bounding boxes in format `[number_masks, 4]` in xyxy format + """ + if masks.size == 0: + return np.zeros((0, 4)) + + h, w = masks.shape[-2:] + y = np.arange(0, h, dtype=np.float32) + x = np.arange(0, w, dtype=np.float32) + # see https://github.com/pytorch/pytorch/issues/50276 + y, x = np.meshgrid(y, x, indexing="ij") + + x_mask = masks * np.expand_dims(x, axis=0) + x_max = x_mask.reshape(x_mask.shape[0], -1).max(-1) + x = np.ma.array(x_mask, mask=~(np.array(masks, dtype=bool))) + x_min = x.filled(fill_value=1e8) + x_min = x_min.reshape(x_min.shape[0], -1).min(-1) + + y_mask = masks * np.expand_dims(y, axis=0) + y_max = y_mask.reshape(x_mask.shape[0], -1).max(-1) + y = np.ma.array(y_mask, mask=~(np.array(masks, dtype=bool))) + y_min = y.filled(fill_value=1e8) + y_min = y_min.reshape(y_min.shape[0], -1).min(-1) + + return np.stack([x_min, y_min, x_max, y_max], 1) + + +def prepare_coco_panoptic_annotation( + image: np.ndarray, + target: Dict, + masks_path: Union[str, pathlib.Path], + return_masks: bool = True, + input_data_format: Union[ChannelDimension, str] = None, +) -> Dict: + """ + Prepare a coco panoptic annotation for DETR. + """ + image_height, image_width = get_image_size(image, channel_dim=input_data_format) + annotation_path = pathlib.Path(masks_path) / target["file_name"] + + new_target = {} + new_target["image_id"] = np.asarray([target["image_id"] if "image_id" in target else target["id"]], dtype=np.int64) + new_target["size"] = np.asarray([image_height, image_width], dtype=np.int64) + new_target["orig_size"] = np.asarray([image_height, image_width], dtype=np.int64) + + if "segments_info" in target: + masks = np.asarray(PIL.Image.open(annotation_path), dtype=np.uint32) + masks = rgb_to_id(masks) + + ids = np.array([segment_info["id"] for segment_info in target["segments_info"]]) + masks = masks == ids[:, None, None] + masks = masks.astype(np.uint8) + if return_masks: + new_target["masks"] = masks + new_target["boxes"] = masks_to_boxes(masks) + new_target["class_labels"] = np.array( + [segment_info["category_id"] for segment_info in target["segments_info"]], dtype=np.int64 + ) + new_target["iscrowd"] = np.asarray( + [segment_info["iscrowd"] for segment_info in target["segments_info"]], dtype=np.int64 + ) + new_target["area"] = np.asarray( + [segment_info["area"] for segment_info in target["segments_info"]], dtype=np.float32 + ) + + return new_target + + +def get_segmentation_image( + masks: np.ndarray, input_size: Tuple, target_size: Tuple, stuff_equiv_classes, deduplicate=False +): + h, w = input_size + final_h, final_w = target_size + + m_id = scipy.special.softmax(masks.transpose(0, 1), -1) + + if m_id.shape[-1] == 0: + # We didn't detect any mask :( + m_id = np.zeros((h, w), dtype=np.int64) + else: + m_id = m_id.argmax(-1).reshape(h, w) + + if deduplicate: + # Merge the masks corresponding to the same stuff class + for equiv in stuff_equiv_classes.values(): + for eq_id in equiv: + m_id[m_id == eq_id] = equiv[0] + + seg_img = id_to_rgb(m_id) + seg_img = resize(seg_img, (final_w, final_h), resample=PILImageResampling.NEAREST) + return seg_img + + +def get_mask_area(seg_img: np.ndarray, target_size: Tuple[int, int], n_classes: int) -> np.ndarray: + final_h, final_w = target_size + np_seg_img = seg_img.astype(np.uint8) + np_seg_img = np_seg_img.reshape(final_h, final_w, 3) + m_id = rgb_to_id(np_seg_img) + area = [(m_id == i).sum() for i in range(n_classes)] + return area + + +def score_labels_from_class_probabilities(logits: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: + probs = scipy.special.softmax(logits, axis=-1) + labels = probs.argmax(-1, keepdims=True) + scores = np.take_along_axis(probs, labels, axis=-1) + scores, labels = scores.squeeze(-1), labels.squeeze(-1) + return scores, labels + + +def post_process_panoptic_sample( + out_logits: np.ndarray, + masks: np.ndarray, + boxes: np.ndarray, + processed_size: Tuple[int, int], + target_size: Tuple[int, int], + is_thing_map: Dict, + threshold=0.85, +) -> Dict: + """ + Converts the output of [`DetrForSegmentation`] into panoptic segmentation predictions for a single sample. + + Args: + out_logits (`torch.Tensor`): + The logits for this sample. + masks (`torch.Tensor`): + The predicted segmentation masks for this sample. + boxes (`torch.Tensor`): + The prediced bounding boxes for this sample. The boxes are in the normalized format `(center_x, center_y, + width, height)` and values between `[0, 1]`, relative to the size the image (disregarding padding). + processed_size (`Tuple[int, int]`): + The processed size of the image `(height, width)`, as returned by the preprocessing step i.e. the size + after data augmentation but before batching. + target_size (`Tuple[int, int]`): + The target size of the image, `(height, width)` corresponding to the requested final size of the + prediction. + is_thing_map (`Dict`): + A dictionary mapping class indices to a boolean value indicating whether the class is a thing or not. + threshold (`float`, *optional*, defaults to 0.85): + The threshold used to binarize the segmentation masks. + """ + # we filter empty queries and detection below threshold + scores, labels = score_labels_from_class_probabilities(out_logits) + keep = (labels != out_logits.shape[-1] - 1) & (scores > threshold) + + cur_scores = scores[keep] + cur_classes = labels[keep] + cur_boxes = center_to_corners_format(boxes[keep]) + + if len(cur_boxes) != len(cur_classes): + raise ValueError("Not as many boxes as there are classes") + + cur_masks = masks[keep] + cur_masks = resize(cur_masks[:, None], processed_size, resample=PILImageResampling.BILINEAR) + cur_masks = safe_squeeze(cur_masks, 1) + b, h, w = cur_masks.shape + + # It may be that we have several predicted masks for the same stuff class. + # In the following, we track the list of masks ids for each stuff class (they are merged later on) + cur_masks = cur_masks.reshape(b, -1) + stuff_equiv_classes = defaultdict(list) + for k, label in enumerate(cur_classes): + if not is_thing_map[label]: + stuff_equiv_classes[label].append(k) + + seg_img = get_segmentation_image(cur_masks, processed_size, target_size, stuff_equiv_classes, deduplicate=True) + area = get_mask_area(cur_masks, processed_size, n_classes=len(cur_scores)) + + # We filter out any mask that is too small + if cur_classes.size() > 0: + # We know filter empty masks as long as we find some + filtered_small = np.array([a <= 4 for a in area], dtype=bool) + while filtered_small.any(): + cur_masks = cur_masks[~filtered_small] + cur_scores = cur_scores[~filtered_small] + cur_classes = cur_classes[~filtered_small] + seg_img = get_segmentation_image(cur_masks, (h, w), target_size, stuff_equiv_classes, deduplicate=True) + area = get_mask_area(seg_img, target_size, n_classes=len(cur_scores)) + filtered_small = np.array([a <= 4 for a in area], dtype=bool) + else: + cur_classes = np.ones((1, 1), dtype=np.int64) + + segments_info = [ + {"id": i, "isthing": is_thing_map[cat], "category_id": int(cat), "area": a} + for i, (cat, a) in enumerate(zip(cur_classes, area)) + ] + del cur_classes + + with io.BytesIO() as out: + PIL.Image.fromarray(seg_img).save(out, format="PNG") + predictions = {"png_string": out.getvalue(), "segments_info": segments_info} + + return predictions + + +def resize_annotation( + annotation: Dict[str, Any], + orig_size: Tuple[int, int], + target_size: Tuple[int, int], + threshold: float = 0.5, + resample: PILImageResampling = PILImageResampling.NEAREST, +): + """ + Resizes an annotation to a target size. + + Args: + annotation (`Dict[str, Any]`): + The annotation dictionary. + orig_size (`Tuple[int, int]`): + The original size of the input image. + target_size (`Tuple[int, int]`): + The target size of the image, as returned by the preprocessing `resize` step. + threshold (`float`, *optional*, defaults to 0.5): + The threshold used to binarize the segmentation masks. + resample (`PILImageResampling`, defaults to `PILImageResampling.NEAREST`): + The resampling filter to use when resizing the masks. + """ + ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(target_size, orig_size)) + ratio_height, ratio_width = ratios + + new_annotation = {} + new_annotation["size"] = target_size + + for key, value in annotation.items(): + if key == "boxes": + boxes = value + scaled_boxes = boxes * np.asarray([ratio_width, ratio_height, ratio_width, ratio_height], dtype=np.float32) + new_annotation["boxes"] = scaled_boxes + elif key == "area": + area = value + scaled_area = area * (ratio_width * ratio_height) + new_annotation["area"] = scaled_area + elif key == "masks": + masks = value[:, None] + masks = np.array([resize(mask, target_size, resample=resample) for mask in masks]) + masks = masks.astype(np.float32) + masks = masks[:, 0] > threshold + new_annotation["masks"] = masks + elif key == "size": + new_annotation["size"] = target_size + else: + new_annotation[key] = value + + return new_annotation + + +# TODO - (Amy) make compatible with other frameworks +def binary_mask_to_rle(mask): + """ + Converts given binary mask of shape `(height, width)` to the run-length encoding (RLE) format. + + Args: + mask (`torch.Tensor` or `numpy.array`): + A binary mask tensor of shape `(height, width)` where 0 denotes background and 1 denotes the target + segment_id or class_id. + Returns: + `List`: Run-length encoded list of the binary mask. Refer to COCO API for more information about the RLE + format. + """ + if is_torch_tensor(mask): + mask = mask.numpy() + + pixels = mask.flatten() + pixels = np.concatenate([[0], pixels, [0]]) + runs = np.where(pixels[1:] != pixels[:-1])[0] + 1 + runs[1::2] -= runs[::2] + return list(runs) + + +# TODO - (Amy) make compatible with other frameworks +def convert_segmentation_to_rle(segmentation): + """ + Converts given segmentation map of shape `(height, width)` to the run-length encoding (RLE) format. + + Args: + segmentation (`torch.Tensor` or `numpy.array`): + A segmentation map of shape `(height, width)` where each value denotes a segment or class id. + Returns: + `List[List]`: A list of lists, where each list is the run-length encoding of a segment / class id. + """ + segment_ids = torch.unique(segmentation) + + run_length_encodings = [] + for idx in segment_ids: + mask = torch.where(segmentation == idx, 1, 0) + rle = binary_mask_to_rle(mask) + run_length_encodings.append(rle) + + return run_length_encodings + + +def remove_low_and_no_objects(masks, scores, labels, object_mask_threshold, num_labels): + """ + Binarize the given masks using `object_mask_threshold`, it returns the associated values of `masks`, `scores` and + `labels`. + + Args: + masks (`torch.Tensor`): + A tensor of shape `(num_queries, height, width)`. + scores (`torch.Tensor`): + A tensor of shape `(num_queries)`. + labels (`torch.Tensor`): + A tensor of shape `(num_queries)`. + object_mask_threshold (`float`): + A number between 0 and 1 used to binarize the masks. + Raises: + `ValueError`: Raised when the first dimension doesn't match in all input tensors. + Returns: + `Tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`]`: The `masks`, `scores` and `labels` without the region + < `object_mask_threshold`. + """ + if not (masks.shape[0] == scores.shape[0] == labels.shape[0]): + raise ValueError("mask, scores and labels must have the same shape!") + + to_keep = labels.ne(num_labels) & (scores > object_mask_threshold) + + return masks[to_keep], scores[to_keep], labels[to_keep] + + +def check_segment_validity(mask_labels, mask_probs, k, mask_threshold=0.5, overlap_mask_area_threshold=0.8): + # Get the mask associated with the k class + mask_k = mask_labels == k + mask_k_area = mask_k.sum() + + # Compute the area of all the stuff in query k + original_area = (mask_probs[k] >= mask_threshold).sum() + mask_exists = mask_k_area > 0 and original_area > 0 + + # Eliminate disconnected tiny segments + if mask_exists: + area_ratio = mask_k_area / original_area + if not area_ratio.item() > overlap_mask_area_threshold: + mask_exists = False + + return mask_exists, mask_k + + +def compute_segments( + mask_probs, + pred_scores, + pred_labels, + mask_threshold: float = 0.5, + overlap_mask_area_threshold: float = 0.8, + label_ids_to_fuse: Optional[Set[int]] = None, + target_size: Tuple[int, int] = None, +): + height = mask_probs.shape[1] if target_size is None else target_size[0] + width = mask_probs.shape[2] if target_size is None else target_size[1] + + segmentation = torch.zeros((height, width), dtype=torch.int32, device=mask_probs.device) + segments: List[Dict] = [] + + if target_size is not None: + mask_probs = nn.functional.interpolate( + mask_probs.unsqueeze(0), size=target_size, mode="bilinear", align_corners=False + )[0] + + current_segment_id = 0 + + # Weigh each mask by its prediction score + mask_probs *= pred_scores.view(-1, 1, 1) + mask_labels = mask_probs.argmax(0) # [height, width] + + # Keep track of instances of each class + stuff_memory_list: Dict[str, int] = {} + for k in range(pred_labels.shape[0]): + pred_class = pred_labels[k].item() + should_fuse = pred_class in label_ids_to_fuse + + # Check if mask exists and large enough to be a segment + mask_exists, mask_k = check_segment_validity( + mask_labels, mask_probs, k, mask_threshold, overlap_mask_area_threshold + ) + + if mask_exists: + if pred_class in stuff_memory_list: + current_segment_id = stuff_memory_list[pred_class] + else: + current_segment_id += 1 + + # Add current object segment to final segmentation map + segmentation[mask_k] = current_segment_id + segment_score = round(pred_scores[k].item(), 6) + segments.append( + { + "id": current_segment_id, + "label_id": pred_class, + "was_fused": should_fuse, + "score": segment_score, + } + ) + if should_fuse: + stuff_memory_list[pred_class] = current_segment_id + + return segmentation, segments + + +class DetrImageProcessor(BaseImageProcessor): + r""" + Constructs a Detr image processor. + + Args: + format (`str`, *optional*, defaults to `"coco_detection"`): + Data format of the annotations. One of "coco_detection" or "coco_panoptic". + do_resize (`bool`, *optional*, defaults to `True`): + Controls whether to resize the image's `(height, width)` dimensions to the specified `size`. Can be + overridden by the `do_resize` parameter in the `preprocess` method. + size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 800, "longest_edge": 1333}`): + Size of the image's `(height, width)` dimensions after resizing. Can be overridden by the `size` parameter + in the `preprocess` method. + resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): + Resampling filter to use if resizing the image. + do_rescale (`bool`, *optional*, defaults to `True`): + Controls whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the + `do_rescale` parameter in the `preprocess` method. + rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): + Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the + `preprocess` method. + do_normalize (`bool`, *optional*, defaults to True): + Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the + `preprocess` method. + image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`): + Mean values to use when normalizing the image. Can be a single value or a list of values, one for each + channel. Can be overridden by the `image_mean` parameter in the `preprocess` method. + image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`): + Standard deviation values to use when normalizing the image. Can be a single value or a list of values, one + for each channel. Can be overridden by the `image_std` parameter in the `preprocess` method. + do_convert_annotations (`bool`, *optional*, defaults to `True`): + Controls whether to convert the annotations to the format expected by the DETR model. Converts the + bounding boxes to the format `(center_x, center_y, width, height)` and in the range `[0, 1]`. + Can be overridden by the `do_convert_annotations` parameter in the `preprocess` method. + do_pad (`bool`, *optional*, defaults to `True`): + Controls whether to pad the image. Can be overridden by the `do_pad` parameter in the `preprocess` + method. If `True` will pad the images in the batch to the largest height and width in the batch. + Padding will be applied to the bottom and right of the image with zeros. + """ + + model_input_names = ["pixel_values", "pixel_mask"] + + def __init__( + self, + format: Union[str, AnnotationFormat] = AnnotationFormat.COCO_DETECTION, + do_resize: bool = True, + size: Dict[str, int] = None, + resample: PILImageResampling = PILImageResampling.BILINEAR, + do_rescale: bool = True, + rescale_factor: Union[int, float] = 1 / 255, + do_normalize: bool = True, + image_mean: Union[float, List[float]] = None, + image_std: Union[float, List[float]] = None, + do_convert_annotations: Optional[bool] = None, + do_pad: bool = True, + **kwargs, + ) -> None: + if "pad_and_return_pixel_mask" in kwargs: + do_pad = kwargs.pop("pad_and_return_pixel_mask") + + if "max_size" in kwargs: + logger.warning_once( + "The `max_size` parameter is deprecated and will be removed in v4.26. " + "Please specify in `size['longest_edge'] instead`.", + ) + max_size = kwargs.pop("max_size") + else: + max_size = None if size is None else 1333 + + size = size if size is not None else {"shortest_edge": 800, "longest_edge": 1333} + size = get_size_dict(size, max_size=max_size, default_to_square=False) + + # Backwards compatibility + if do_convert_annotations is None: + do_convert_annotations = do_normalize + + super().__init__(**kwargs) + self.format = format + self.do_resize = do_resize + self.size = size + self.resample = resample + self.do_rescale = do_rescale + self.rescale_factor = rescale_factor + self.do_normalize = do_normalize + self.do_convert_annotations = do_convert_annotations + self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN + self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD + self.do_pad = do_pad + self._valid_processor_keys = [ + "images", + "annotations", + "return_segmentation_masks", + "masks_path", + "do_resize", + "size", + "resample", + "do_rescale", + "rescale_factor", + "do_normalize", + "do_convert_annotations", + "image_mean", + "image_std", + "do_pad", + "format", + "return_tensors", + "data_format", + "input_data_format", + ] + + @classmethod + def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs): + """ + Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is + created using from_dict and kwargs e.g. `DetrImageProcessor.from_pretrained(checkpoint, size=600, + max_size=800)` + """ + image_processor_dict = image_processor_dict.copy() + if "max_size" in kwargs: + image_processor_dict["max_size"] = kwargs.pop("max_size") + if "pad_and_return_pixel_mask" in kwargs: + image_processor_dict["pad_and_return_pixel_mask"] = kwargs.pop("pad_and_return_pixel_mask") + return super().from_dict(image_processor_dict, **kwargs) + + def prepare_annotation( + self, + image: np.ndarray, + target: Dict, + format: Optional[AnnotationFormat] = None, + return_segmentation_masks: bool = None, + masks_path: Optional[Union[str, pathlib.Path]] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + ) -> Dict: + """ + Prepare an annotation for feeding into DETR model. + """ + format = format if format is not None else self.format + + if format == AnnotationFormat.COCO_DETECTION: + return_segmentation_masks = False if return_segmentation_masks is None else return_segmentation_masks + target = prepare_coco_detection_annotation( + image, target, return_segmentation_masks, input_data_format=input_data_format + ) + elif format == AnnotationFormat.COCO_PANOPTIC: + return_segmentation_masks = True if return_segmentation_masks is None else return_segmentation_masks + target = prepare_coco_panoptic_annotation( + image, + target, + masks_path=masks_path, + return_masks=return_segmentation_masks, + input_data_format=input_data_format, + ) + else: + raise ValueError(f"Format {format} is not supported.") + return target + + def prepare(self, image, target, return_segmentation_masks=None, masks_path=None): + logger.warning_once( + "The `prepare` method is deprecated and will be removed in a v4.33. " + "Please use `prepare_annotation` instead. Note: the `prepare_annotation` method " + "does not return the image anymore.", + ) + target = self.prepare_annotation(image, target, return_segmentation_masks, masks_path, self.format) + return image, target + + def convert_coco_poly_to_mask(self, *args, **kwargs): + logger.warning_once("The `convert_coco_poly_to_mask` method is deprecated and will be removed in v4.33. ") + return convert_coco_poly_to_mask(*args, **kwargs) + + def prepare_coco_detection(self, *args, **kwargs): + logger.warning_once("The `prepare_coco_detection` method is deprecated and will be removed in v4.33. ") + return prepare_coco_detection_annotation(*args, **kwargs) + + def prepare_coco_panoptic(self, *args, **kwargs): + logger.warning_once("The `prepare_coco_panoptic` method is deprecated and will be removed in v4.33. ") + return prepare_coco_panoptic_annotation(*args, **kwargs) + + def resize( + self, + image: np.ndarray, + size: Dict[str, int], + resample: PILImageResampling = PILImageResampling.BILINEAR, + data_format: Optional[ChannelDimension] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs, + ) -> np.ndarray: + """ + Resize the image to the given size. Size can be `min_size` (scalar) or `(height, width)` tuple. If size is an + int, smaller edge of the image will be matched to this number. + + Args: + image (`np.ndarray`): + Image to resize. + size (`Dict[str, int]`): + Dictionary containing the size to resize to. Can contain the keys `shortest_edge` and `longest_edge` or + `height` and `width`. + resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): + Resampling filter to use if resizing the image. + data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format for the output image. If unset, the channel dimension format of the input + image is used. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format of the input image. If not provided, it will be inferred. + """ + if "max_size" in kwargs: + logger.warning_once( + "The `max_size` parameter is deprecated and will be removed in v4.26. " + "Please specify in `size['longest_edge'] instead`.", + ) + max_size = kwargs.pop("max_size") + else: + max_size = None + size = get_size_dict(size, max_size=max_size, default_to_square=False) + if "shortest_edge" in size and "longest_edge" in size: + size = get_resize_output_image_size( + image, size["shortest_edge"], size["longest_edge"], input_data_format=input_data_format + ) + elif "height" in size and "width" in size: + size = (size["height"], size["width"]) + else: + raise ValueError( + "Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got" + f" {size.keys()}." + ) + image = resize( + image, size=size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs + ) + return image + + def resize_annotation( + self, + annotation, + orig_size, + size, + resample: PILImageResampling = PILImageResampling.NEAREST, + ) -> Dict: + """ + Resize the annotation to match the resized image. If size is an int, smaller edge of the mask will be matched + to this number. + """ + return resize_annotation(annotation, orig_size=orig_size, target_size=size, resample=resample) + + # TODO (Amy) - update to use `rescale_factor` instead of `scale` + def rescale( + self, + image: np.ndarray, + rescale_factor: float, + data_format: Optional[Union[str, ChannelDimension]] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + ) -> np.ndarray: + """ + Rescale the image by the given factor. image = image * rescale_factor. + + Args: + image (`np.ndarray`): + Image to rescale. + rescale_factor (`float`): + The value to use for rescaling. + data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format for the output image. If unset, the channel dimension format of the input + image is used. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + input_data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format for the input image. If unset, is inferred from the input image. Can be + one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + """ + return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format) + + def normalize_annotation(self, annotation: Dict, image_size: Tuple[int, int]) -> Dict: + """ + Normalize the boxes in the annotation from `[top_left_x, top_left_y, bottom_right_x, bottom_right_y]` to + `[center_x, center_y, width, height]` format and from absolute to relative pixel values. + """ + return normalize_annotation(annotation, image_size=image_size) + + def _update_annotation_for_padded_image( + self, + annotation: Dict, + input_image_size: Tuple[int, int], + output_image_size: Tuple[int, int], + padding, + update_bboxes, + ) -> Dict: + """ + Update the annotation for a padded image. + """ + new_annotation = {} + new_annotation["size"] = output_image_size + + for key, value in annotation.items(): + if key == "masks": + masks = value + masks = pad( + masks, + padding, + mode=PaddingMode.CONSTANT, + constant_values=0, + input_data_format=ChannelDimension.FIRST, + ) + masks = safe_squeeze(masks, 1) + new_annotation["masks"] = masks + elif key == "boxes" and update_bboxes: + boxes = value + boxes *= np.asarray( + [ + input_image_size[1] / output_image_size[1], + input_image_size[0] / output_image_size[0], + input_image_size[1] / output_image_size[1], + input_image_size[0] / output_image_size[0], + ] + ) + new_annotation["boxes"] = boxes + elif key == "size": + new_annotation["size"] = output_image_size + else: + new_annotation[key] = value + return new_annotation + + def _pad_image( + self, + image: np.ndarray, + output_size: Tuple[int, int], + annotation: Optional[Dict[str, Any]] = None, + constant_values: Union[float, Iterable[float]] = 0, + data_format: Optional[ChannelDimension] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + update_bboxes: bool = True, + ) -> np.ndarray: + """ + Pad an image with zeros to the given size. + """ + input_height, input_width = get_image_size(image, channel_dim=input_data_format) + output_height, output_width = output_size + + pad_bottom = output_height - input_height + pad_right = output_width - input_width + padding = ((0, pad_bottom), (0, pad_right)) + padded_image = pad( + image, + padding, + mode=PaddingMode.CONSTANT, + constant_values=constant_values, + data_format=data_format, + input_data_format=input_data_format, + ) + if annotation is not None: + annotation = self._update_annotation_for_padded_image( + annotation, (input_height, input_width), (output_height, output_width), padding, update_bboxes + ) + return padded_image, annotation + + def pad( + self, + images: List[np.ndarray], + annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None, + constant_values: Union[float, Iterable[float]] = 0, + return_pixel_mask: bool = True, + return_tensors: Optional[Union[str, TensorType]] = None, + data_format: Optional[ChannelDimension] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + update_bboxes: bool = True, + ) -> BatchFeature: + """ + Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width + in the batch and optionally returns their corresponding pixel mask. + + Args: + images (List[`np.ndarray`]): + Images to pad. + annotations (`AnnotationType` or `List[AnnotationType]`, *optional*): + Annotations to transform according to the padding that is applied to the images. + constant_values (`float` or `Iterable[float]`, *optional*): + The value to use for the padding if `mode` is `"constant"`. + return_pixel_mask (`bool`, *optional*, defaults to `True`): + Whether to return a pixel mask. + return_tensors (`str` or `TensorType`, *optional*): + The type of tensors to return. Can be one of: + - Unset: Return a list of `np.ndarray`. + - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. + - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. + - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. + - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. + data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format of the image. If not provided, it will be the same as the input image. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format of the input image. If not provided, it will be inferred. + update_bboxes (`bool`, *optional*, defaults to `True`): + Whether to update the bounding boxes in the annotations to match the padded images. If the + bounding boxes have not been converted to relative coordinates and `(centre_x, centre_y, width, height)` + format, the bounding boxes will not be updated. + """ + pad_size = get_max_height_width(images, input_data_format=input_data_format) + + annotation_list = annotations if annotations is not None else [None] * len(images) + padded_images = [] + padded_annotations = [] + for image, annotation in zip(images, annotation_list): + padded_image, padded_annotation = self._pad_image( + image, + pad_size, + annotation, + constant_values=constant_values, + data_format=data_format, + input_data_format=input_data_format, + update_bboxes=update_bboxes, + ) + padded_images.append(padded_image) + padded_annotations.append(padded_annotation) + + data = {"pixel_values": padded_images} + + if return_pixel_mask: + masks = [ + make_pixel_mask(image=image, output_size=pad_size, input_data_format=input_data_format) + for image in images + ] + data["pixel_mask"] = masks + + encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors) + + if annotations is not None: + encoded_inputs["labels"] = [ + BatchFeature(annotation, tensor_type=return_tensors) for annotation in padded_annotations + ] + + return encoded_inputs + + def preprocess( + self, + images: ImageInput, + annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None, + return_segmentation_masks: bool = None, + masks_path: Optional[Union[str, pathlib.Path]] = None, + do_resize: Optional[bool] = None, + size: Optional[Dict[str, int]] = None, + resample=None, # PILImageResampling + do_rescale: Optional[bool] = None, + rescale_factor: Optional[Union[int, float]] = None, + do_normalize: Optional[bool] = None, + do_convert_annotations: Optional[bool] = None, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + do_pad: Optional[bool] = None, + format: Optional[Union[str, AnnotationFormat]] = None, + return_tensors: Optional[Union[TensorType, str]] = None, + data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs, + ) -> BatchFeature: + """ + Preprocess an image or a batch of images so that it can be used by the model. + + Args: + images (`ImageInput`): + Image or batch of images to preprocess. Expects a single or batch of images with pixel values ranging + from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. + annotations (`AnnotationType` or `List[AnnotationType]`, *optional*): + List of annotations associated with the image or batch of images. If annotation is for object + detection, the annotations should be a dictionary with the following keys: + - "image_id" (`int`): The image id. + - "annotations" (`List[Dict]`): List of annotations for an image. Each annotation should be a + dictionary. An image can have no annotations, in which case the list should be empty. + If annotation is for segmentation, the annotations should be a dictionary with the following keys: + - "image_id" (`int`): The image id. + - "segments_info" (`List[Dict]`): List of segments for an image. Each segment should be a dictionary. + An image can have no segments, in which case the list should be empty. + - "file_name" (`str`): The file name of the image. + return_segmentation_masks (`bool`, *optional*, defaults to self.return_segmentation_masks): + Whether to return segmentation masks. + masks_path (`str` or `pathlib.Path`, *optional*): + Path to the directory containing the segmentation masks. + do_resize (`bool`, *optional*, defaults to self.do_resize): + Whether to resize the image. + size (`Dict[str, int]`, *optional*, defaults to self.size): + Size of the image after resizing. + resample (`PILImageResampling`, *optional*, defaults to self.resample): + Resampling filter to use when resizing the image. + do_rescale (`bool`, *optional*, defaults to self.do_rescale): + Whether to rescale the image. + rescale_factor (`float`, *optional*, defaults to self.rescale_factor): + Rescale factor to use when rescaling the image. + do_normalize (`bool`, *optional*, defaults to self.do_normalize): + Whether to normalize the image. + do_convert_annotations (`bool`, *optional*, defaults to self.do_convert_annotations): + Whether to convert the annotations to the format expected by the model. Converts the bounding + boxes from the format `(top_left_x, top_left_y, width, height)` to `(center_x, center_y, width, height)` + and in relative coordinates. + image_mean (`float` or `List[float]`, *optional*, defaults to self.image_mean): + Mean to use when normalizing the image. + image_std (`float` or `List[float]`, *optional*, defaults to self.image_std): + Standard deviation to use when normalizing the image. + do_pad (`bool`, *optional*, defaults to self.do_pad): + Whether to pad the image. If `True` will pad the images in the batch to the largest image in the batch + and create a pixel mask. Padding will be applied to the bottom and right of the image with zeros. + format (`str` or `AnnotationFormat`, *optional*, defaults to self.format): + Format of the annotations. + return_tensors (`str` or `TensorType`, *optional*, defaults to self.return_tensors): + Type of tensors to return. If `None`, will return the list of images. + data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): + The channel dimension format for the output image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - Unset: Use the channel dimension format of the input image. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format for the input image. If unset, the channel dimension format is inferred + from the input image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. + """ + if "pad_and_return_pixel_mask" in kwargs: + logger.warning_once( + "The `pad_and_return_pixel_mask` argument is deprecated and will be removed in a future version, " + "use `do_pad` instead." + ) + do_pad = kwargs.pop("pad_and_return_pixel_mask") + + max_size = None + if "max_size" in kwargs: + logger.warning_once( + "The `max_size` argument is deprecated and will be removed in a future version, use" + " `size['longest_edge']` instead." + ) + size = kwargs.pop("max_size") + + do_resize = self.do_resize if do_resize is None else do_resize + size = self.size if size is None else size + size = get_size_dict(size=size, max_size=max_size, default_to_square=False) + resample = self.resample if resample is None else resample + do_rescale = self.do_rescale if do_rescale is None else do_rescale + rescale_factor = self.rescale_factor if rescale_factor is None else rescale_factor + do_normalize = self.do_normalize if do_normalize is None else do_normalize + image_mean = self.image_mean if image_mean is None else image_mean + image_std = self.image_std if image_std is None else image_std + do_convert_annotations = ( + self.do_convert_annotations if do_convert_annotations is None else do_convert_annotations + ) + do_pad = self.do_pad if do_pad is None else do_pad + format = self.format if format is None else format + + images = make_list_of_images(images) + + if not valid_images(images): + raise ValueError( + "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " + "torch.Tensor, tf.Tensor or jax.ndarray." + ) + validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys) + + # Here, the pad() method pads to the maximum of (width, height). It does not need to be validated. + validate_preprocess_arguments( + do_rescale=do_rescale, + rescale_factor=rescale_factor, + do_normalize=do_normalize, + image_mean=image_mean, + image_std=image_std, + do_resize=do_resize, + size=size, + resample=resample, + ) + + if annotations is not None and isinstance(annotations, dict): + annotations = [annotations] + + if annotations is not None and len(images) != len(annotations): + raise ValueError( + f"The number of images ({len(images)}) and annotations ({len(annotations)}) do not match." + ) + + format = AnnotationFormat(format) + if annotations is not None: + validate_annotations(format, SUPPORTED_ANNOTATION_FORMATS, annotations) + + if ( + masks_path is not None + and format == AnnotationFormat.COCO_PANOPTIC + and not isinstance(masks_path, (pathlib.Path, str)) + ): + raise ValueError( + "The path to the directory containing the mask PNG files should be provided as a" + f" `pathlib.Path` or string object, but is {type(masks_path)} instead." + ) + + # All transformations expect numpy arrays + images = [to_numpy_array(image) for image in images] + + if is_scaled_image(images[0]) and do_rescale: + logger.warning_once( + "It looks like you are trying to rescale already rescaled images. If the input" + " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." + ) + + if input_data_format is None: + # We assume that all images have the same channel dimension format. + input_data_format = infer_channel_dimension_format(images[0]) + + # prepare (COCO annotations as a list of Dict -> DETR target as a single Dict per image) + if annotations is not None: + prepared_images = [] + prepared_annotations = [] + for image, target in zip(images, annotations): + target = self.prepare_annotation( + image, + target, + format, + return_segmentation_masks=return_segmentation_masks, + masks_path=masks_path, + input_data_format=input_data_format, + ) + prepared_images.append(image) + prepared_annotations.append(target) + images = prepared_images + annotations = prepared_annotations + del prepared_images, prepared_annotations + + # transformations + if do_resize: + if annotations is not None: + resized_images, resized_annotations = [], [] + for image, target in zip(images, annotations): + orig_size = get_image_size(image, input_data_format) + resized_image = self.resize( + image, size=size, max_size=max_size, resample=resample, input_data_format=input_data_format + ) + resized_annotation = self.resize_annotation( + target, orig_size, get_image_size(resized_image, input_data_format) + ) + resized_images.append(resized_image) + resized_annotations.append(resized_annotation) + images = resized_images + annotations = resized_annotations + del resized_images, resized_annotations + else: + images = [ + self.resize(image, size=size, resample=resample, input_data_format=input_data_format) + for image in images + ] + + if do_rescale: + images = [self.rescale(image, rescale_factor, input_data_format=input_data_format) for image in images] + + if do_normalize: + images = [ + self.normalize(image, image_mean, image_std, input_data_format=input_data_format) for image in images + ] + + if do_convert_annotations and annotations is not None: + annotations = [ + self.normalize_annotation(annotation, get_image_size(image, input_data_format)) + for annotation, image in zip(annotations, images) + ] + + if do_pad: + # Pads images and returns their mask: {'pixel_values': ..., 'pixel_mask': ...} + encoded_inputs = self.pad( + images, + annotations=annotations, + return_pixel_mask=True, + data_format=data_format, + input_data_format=input_data_format, + update_bboxes=do_convert_annotations, + return_tensors=return_tensors, + ) + else: + images = [ + to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) + for image in images + ] + encoded_inputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors) + if annotations is not None: + encoded_inputs["labels"] = [ + BatchFeature(annotation, tensor_type=return_tensors) for annotation in annotations + ] + + return encoded_inputs + + # POSTPROCESSING METHODS - TODO: add support for other frameworks + # inspired by https://github.com/facebookresearch/detr/blob/master/models/detr.py#L258 + def post_process(self, outputs, target_sizes): + """ + Converts the raw output of [`DetrForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y, + bottom_right_x, bottom_right_y) format. Only supports PyTorch. + + Args: + outputs ([`DetrObjectDetectionOutput`]): + Raw outputs of the model. + target_sizes (`torch.Tensor` of shape `(batch_size, 2)`): + Tensor containing the size (height, width) of each image of the batch. For evaluation, this must be the + original image size (before any data augmentation). For visualization, this should be the image size + after data augment, but before padding. + Returns: + `List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image + in the batch as predicted by the model. + """ + logger.warning_once( + "`post_process` is deprecated and will be removed in v5 of Transformers, please use" + " `post_process_object_detection` instead, with `threshold=0.` for equivalent results.", + ) + + out_logits, out_bbox = outputs.logits, outputs.pred_boxes + + if len(out_logits) != len(target_sizes): + raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the logits") + if target_sizes.shape[1] != 2: + raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch") + + prob = nn.functional.softmax(out_logits, -1) + scores, labels = prob[..., :-1].max(-1) + + # convert to [x0, y0, x1, y1] format + boxes = center_to_corners_format(out_bbox) + # and from relative [0, 1] to absolute [0, height] coordinates + img_h, img_w = target_sizes.unbind(1) + scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device) + boxes = boxes * scale_fct[:, None, :] + + results = [{"scores": s, "labels": l, "boxes": b} for s, l, b in zip(scores, labels, boxes)] + return results + + def post_process_segmentation(self, outputs, target_sizes, threshold=0.9, mask_threshold=0.5): + """ + Converts the output of [`DetrForSegmentation`] into image segmentation predictions. Only supports PyTorch. + + Args: + outputs ([`DetrSegmentationOutput`]): + Raw outputs of the model. + target_sizes (`torch.Tensor` of shape `(batch_size, 2)` or `List[Tuple]` of length `batch_size`): + Torch Tensor (or list) corresponding to the requested final size (h, w) of each prediction. + threshold (`float`, *optional*, defaults to 0.9): + Threshold to use to filter out queries. + mask_threshold (`float`, *optional*, defaults to 0.5): + Threshold to use when turning the predicted masks into binary values. + Returns: + `List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels, and masks for an image + in the batch as predicted by the model. + """ + logger.warning_once( + "`post_process_segmentation` is deprecated and will be removed in v5 of Transformers, please use" + " `post_process_semantic_segmentation`.", + ) + out_logits, raw_masks = outputs.logits, outputs.pred_masks + empty_label = out_logits.shape[-1] - 1 + preds = [] + + def to_tuple(tup): + if isinstance(tup, tuple): + return tup + return tuple(tup.cpu().tolist()) + + for cur_logits, cur_masks, size in zip(out_logits, raw_masks, target_sizes): + # we filter empty queries and detection below threshold + cur_scores, cur_labels = cur_logits.softmax(-1).max(-1) + keep = cur_labels.ne(empty_label) & (cur_scores > threshold) + cur_scores = cur_scores[keep] + cur_labels = cur_labels[keep] + cur_masks = cur_masks[keep] + cur_masks = nn.functional.interpolate(cur_masks[:, None], to_tuple(size), mode="bilinear").squeeze(1) + cur_masks = (cur_masks.sigmoid() > mask_threshold) * 1 + + predictions = {"scores": cur_scores, "labels": cur_labels, "masks": cur_masks} + preds.append(predictions) + return preds + + # inspired by https://github.com/facebookresearch/detr/blob/master/models/segmentation.py#L218 + def post_process_instance(self, results, outputs, orig_target_sizes, max_target_sizes, threshold=0.5): + """ + Converts the output of [`DetrForSegmentation`] into actual instance segmentation predictions. Only supports + PyTorch. + + Args: + results (`List[Dict]`): + Results list obtained by [`~DetrImageProcessor.post_process`], to which "masks" results will be added. + outputs ([`DetrSegmentationOutput`]): + Raw outputs of the model. + orig_target_sizes (`torch.Tensor` of shape `(batch_size, 2)`): + Tensor containing the size (h, w) of each image of the batch. For evaluation, this must be the original + image size (before any data augmentation). + max_target_sizes (`torch.Tensor` of shape `(batch_size, 2)`): + Tensor containing the maximum size (h, w) of each image of the batch. For evaluation, this must be the + original image size (before any data augmentation). + threshold (`float`, *optional*, defaults to 0.5): + Threshold to use when turning the predicted masks into binary values. + Returns: + `List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels, boxes and masks for an + image in the batch as predicted by the model. + """ + logger.warning_once( + "`post_process_instance` is deprecated and will be removed in v5 of Transformers, please use" + " `post_process_instance_segmentation`.", + ) + + if len(orig_target_sizes) != len(max_target_sizes): + raise ValueError("Make sure to pass in as many orig_target_sizes as max_target_sizes") + max_h, max_w = max_target_sizes.max(0)[0].tolist() + outputs_masks = outputs.pred_masks.squeeze(2) + outputs_masks = nn.functional.interpolate( + outputs_masks, size=(max_h, max_w), mode="bilinear", align_corners=False + ) + outputs_masks = (outputs_masks.sigmoid() > threshold).cpu() + + for i, (cur_mask, t, tt) in enumerate(zip(outputs_masks, max_target_sizes, orig_target_sizes)): + img_h, img_w = t[0], t[1] + results[i]["masks"] = cur_mask[:, :img_h, :img_w].unsqueeze(1) + results[i]["masks"] = nn.functional.interpolate( + results[i]["masks"].float(), size=tuple(tt.tolist()), mode="nearest" + ).byte() + + return results + + # inspired by https://github.com/facebookresearch/detr/blob/master/models/segmentation.py#L241 + def post_process_panoptic(self, outputs, processed_sizes, target_sizes=None, is_thing_map=None, threshold=0.85): + """ + Converts the output of [`DetrForSegmentation`] into actual panoptic predictions. Only supports PyTorch. + + Args: + outputs ([`DetrSegmentationOutput`]): + Raw outputs of the model. + processed_sizes (`torch.Tensor` of shape `(batch_size, 2)` or `List[Tuple]` of length `batch_size`): + Torch Tensor (or list) containing the size (h, w) of each image of the batch, i.e. the size after data + augmentation but before batching. + target_sizes (`torch.Tensor` of shape `(batch_size, 2)` or `List[Tuple]` of length `batch_size`, *optional*): + Torch Tensor (or list) corresponding to the requested final size `(height, width)` of each prediction. + If left to None, it will default to the `processed_sizes`. + is_thing_map (`torch.Tensor` of shape `(batch_size, 2)`, *optional*): + Dictionary mapping class indices to either True or False, depending on whether or not they are a thing. + If not set, defaults to the `is_thing_map` of COCO panoptic. + threshold (`float`, *optional*, defaults to 0.85): + Threshold to use to filter out queries. + Returns: + `List[Dict]`: A list of dictionaries, each dictionary containing a PNG string and segments_info values for + an image in the batch as predicted by the model. + """ + logger.warning_once( + "`post_process_panoptic is deprecated and will be removed in v5 of Transformers, please use" + " `post_process_panoptic_segmentation`.", + ) + if target_sizes is None: + target_sizes = processed_sizes + if len(processed_sizes) != len(target_sizes): + raise ValueError("Make sure to pass in as many processed_sizes as target_sizes") + + if is_thing_map is None: + # default to is_thing_map of COCO panoptic + is_thing_map = {i: i <= 90 for i in range(201)} + + out_logits, raw_masks, raw_boxes = outputs.logits, outputs.pred_masks, outputs.pred_boxes + if not len(out_logits) == len(raw_masks) == len(target_sizes): + raise ValueError( + "Make sure that you pass in as many target sizes as the batch dimension of the logits and masks" + ) + empty_label = out_logits.shape[-1] - 1 + preds = [] + + def to_tuple(tup): + if isinstance(tup, tuple): + return tup + return tuple(tup.cpu().tolist()) + + for cur_logits, cur_masks, cur_boxes, size, target_size in zip( + out_logits, raw_masks, raw_boxes, processed_sizes, target_sizes + ): + # we filter empty queries and detection below threshold + cur_scores, cur_labels = cur_logits.softmax(-1).max(-1) + keep = cur_labels.ne(empty_label) & (cur_scores > threshold) + cur_scores = cur_scores[keep] + cur_labels = cur_labels[keep] + cur_masks = cur_masks[keep] + cur_masks = nn.functional.interpolate(cur_masks[:, None], to_tuple(size), mode="bilinear").squeeze(1) + cur_boxes = center_to_corners_format(cur_boxes[keep]) + + h, w = cur_masks.shape[-2:] + if len(cur_boxes) != len(cur_labels): + raise ValueError("Not as many boxes as there are classes") + + # It may be that we have several predicted masks for the same stuff class. + # In the following, we track the list of masks ids for each stuff class (they are merged later on) + cur_masks = cur_masks.flatten(1) + stuff_equiv_classes = defaultdict(lambda: []) + for k, label in enumerate(cur_labels): + if not is_thing_map[label.item()]: + stuff_equiv_classes[label.item()].append(k) + + def get_ids_area(masks, scores, dedup=False): + # This helper function creates the final panoptic segmentation image + # It also returns the area of the masks that appears on the image + + m_id = masks.transpose(0, 1).softmax(-1) + + if m_id.shape[-1] == 0: + # We didn't detect any mask :( + m_id = torch.zeros((h, w), dtype=torch.long, device=m_id.device) + else: + m_id = m_id.argmax(-1).view(h, w) + + if dedup: + # Merge the masks corresponding to the same stuff class + for equiv in stuff_equiv_classes.values(): + if len(equiv) > 1: + for eq_id in equiv: + m_id.masked_fill_(m_id.eq(eq_id), equiv[0]) + + final_h, final_w = to_tuple(target_size) + + seg_img = PIL.Image.fromarray(id_to_rgb(m_id.view(h, w).cpu().numpy())) + seg_img = seg_img.resize(size=(final_w, final_h), resample=PILImageResampling.NEAREST) + + np_seg_img = torch.ByteTensor(torch.ByteStorage.from_buffer(seg_img.tobytes())) + np_seg_img = np_seg_img.view(final_h, final_w, 3) + np_seg_img = np_seg_img.numpy() + + m_id = torch.from_numpy(rgb_to_id(np_seg_img)) + + area = [] + for i in range(len(scores)): + area.append(m_id.eq(i).sum().item()) + return area, seg_img + + area, seg_img = get_ids_area(cur_masks, cur_scores, dedup=True) + if cur_labels.numel() > 0: + # We know filter empty masks as long as we find some + while True: + filtered_small = torch.as_tensor( + [area[i] <= 4 for i, c in enumerate(cur_labels)], dtype=torch.bool, device=keep.device + ) + if filtered_small.any().item(): + cur_scores = cur_scores[~filtered_small] + cur_labels = cur_labels[~filtered_small] + cur_masks = cur_masks[~filtered_small] + area, seg_img = get_ids_area(cur_masks, cur_scores) + else: + break + + else: + cur_labels = torch.ones(1, dtype=torch.long, device=cur_labels.device) + + segments_info = [] + for i, a in enumerate(area): + cat = cur_labels[i].item() + segments_info.append({"id": i, "isthing": is_thing_map[cat], "category_id": cat, "area": a}) + del cur_labels + + with io.BytesIO() as out: + seg_img.save(out, format="PNG") + predictions = {"png_string": out.getvalue(), "segments_info": segments_info} + preds.append(predictions) + return preds + + # inspired by https://github.com/facebookresearch/detr/blob/master/models/detr.py#L258 + def post_process_object_detection( + self, outputs, threshold: float = 0.5, target_sizes: Union[TensorType, List[Tuple]] = None + ): + """ + Converts the raw output of [`DetrForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y, + bottom_right_x, bottom_right_y) format. Only supports PyTorch. + + Args: + outputs ([`DetrObjectDetectionOutput`]): + Raw outputs of the model. + threshold (`float`, *optional*): + Score threshold to keep object detection predictions. + target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*): + Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size + `(height, width)` of each image in the batch. If unset, predictions will not be resized. + Returns: + `List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image + in the batch as predicted by the model. + """ + out_logits, out_bbox = outputs.logits, outputs.pred_boxes + + if target_sizes is not None: + if len(out_logits) != len(target_sizes): + raise ValueError( + "Make sure that you pass in as many target sizes as the batch dimension of the logits" + ) + + prob = nn.functional.softmax(out_logits, -1) + scores, labels = prob[..., :-1].max(-1) + + # Convert to [x0, y0, x1, y1] format + boxes = center_to_corners_format(out_bbox) + + # Convert from relative [0, 1] to absolute [0, height] coordinates + if target_sizes is not None: + if isinstance(target_sizes, List): + img_h = torch.Tensor([i[0] for i in target_sizes]) + img_w = torch.Tensor([i[1] for i in target_sizes]) + else: + img_h, img_w = target_sizes.unbind(1) + + scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device) + boxes = boxes * scale_fct[:, None, :] + + results = [] + for s, l, b in zip(scores, labels, boxes): + score = s[s > threshold] + label = l[s > threshold] + box = b[s > threshold] + results.append({"scores": score, "labels": label, "boxes": box}) + + return results + + def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple[int, int]] = None): + """ + Converts the output of [`DetrForSegmentation`] into semantic segmentation maps. Only supports PyTorch. + + Args: + outputs ([`DetrForSegmentation`]): + Raw outputs of the model. + target_sizes (`List[Tuple[int, int]]`, *optional*): + A list of tuples (`Tuple[int, int]`) containing the target size (height, width) of each image in the + batch. If unset, predictions will not be resized. + Returns: + `List[torch.Tensor]`: + A list of length `batch_size`, where each item is a semantic segmentation map of shape (height, width) + corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each + `torch.Tensor` correspond to a semantic class id. + """ + class_queries_logits = outputs.logits # [batch_size, num_queries, num_classes+1] + masks_queries_logits = outputs.pred_masks # [batch_size, num_queries, height, width] + + # Remove the null class `[..., :-1]` + masks_classes = class_queries_logits.softmax(dim=-1)[..., :-1] + masks_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width] + + # Semantic segmentation logits of shape (batch_size, num_classes, height, width) + segmentation = torch.einsum("bqc, bqhw -> bchw", masks_classes, masks_probs) + batch_size = class_queries_logits.shape[0] + + # Resize logits and compute semantic segmentation maps + if target_sizes is not None: + if batch_size != len(target_sizes): + raise ValueError( + "Make sure that you pass in as many target sizes as the batch dimension of the logits" + ) + + semantic_segmentation = [] + for idx in range(batch_size): + resized_logits = nn.functional.interpolate( + segmentation[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False + ) + semantic_map = resized_logits[0].argmax(dim=0) + semantic_segmentation.append(semantic_map) + else: + semantic_segmentation = segmentation.argmax(dim=1) + semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] + + return semantic_segmentation + + # inspired by https://github.com/facebookresearch/detr/blob/master/models/segmentation.py#L218 + def post_process_instance_segmentation( + self, + outputs, + threshold: float = 0.5, + mask_threshold: float = 0.5, + overlap_mask_area_threshold: float = 0.8, + target_sizes: Optional[List[Tuple[int, int]]] = None, + return_coco_annotation: Optional[bool] = False, + ) -> List[Dict]: + """ + Converts the output of [`DetrForSegmentation`] into instance segmentation predictions. Only supports PyTorch. + + Args: + outputs ([`DetrForSegmentation`]): + Raw outputs of the model. + threshold (`float`, *optional*, defaults to 0.5): + The probability score threshold to keep predicted instance masks. + mask_threshold (`float`, *optional*, defaults to 0.5): + Threshold to use when turning the predicted masks into binary values. + overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8): + The overlap mask area threshold to merge or discard small disconnected parts within each binary + instance mask. + target_sizes (`List[Tuple]`, *optional*): + List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested + final size (height, width) of each prediction. If unset, predictions will not be resized. + return_coco_annotation (`bool`, *optional*): + Defaults to `False`. If set to `True`, segmentation maps are returned in COCO run-length encoding (RLE) + format. + Returns: + `List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys: + - **segmentation** -- A tensor of shape `(height, width)` where each pixel represents a `segment_id` or + `List[List]` run-length encoding (RLE) of the segmentation map if return_coco_annotation is set to + `True`. Set to `None` if no mask if found above `threshold`. + - **segments_info** -- A dictionary that contains additional information on each segment. + - **id** -- An integer representing the `segment_id`. + - **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`. + - **score** -- Prediction score of segment with `segment_id`. + """ + class_queries_logits = outputs.logits # [batch_size, num_queries, num_classes+1] + masks_queries_logits = outputs.pred_masks # [batch_size, num_queries, height, width] + + batch_size = class_queries_logits.shape[0] + num_labels = class_queries_logits.shape[-1] - 1 + + mask_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width] + + # Predicted label and score of each query (batch_size, num_queries) + pred_scores, pred_labels = nn.functional.softmax(class_queries_logits, dim=-1).max(-1) + + # Loop over items in batch size + results: List[Dict[str, TensorType]] = [] + + for i in range(batch_size): + mask_probs_item, pred_scores_item, pred_labels_item = remove_low_and_no_objects( + mask_probs[i], pred_scores[i], pred_labels[i], threshold, num_labels + ) + + # No mask found + if mask_probs_item.shape[0] <= 0: + height, width = target_sizes[i] if target_sizes is not None else mask_probs_item.shape[1:] + segmentation = torch.zeros((height, width)) - 1 + results.append({"segmentation": segmentation, "segments_info": []}) + continue + + # Get segmentation map and segment information of batch item + target_size = target_sizes[i] if target_sizes is not None else None + segmentation, segments = compute_segments( + mask_probs=mask_probs_item, + pred_scores=pred_scores_item, + pred_labels=pred_labels_item, + mask_threshold=mask_threshold, + overlap_mask_area_threshold=overlap_mask_area_threshold, + label_ids_to_fuse=[], + target_size=target_size, + ) + + # Return segmentation map in run-length encoding (RLE) format + if return_coco_annotation: + segmentation = convert_segmentation_to_rle(segmentation) + + results.append({"segmentation": segmentation, "segments_info": segments}) + return results + + # inspired by https://github.com/facebookresearch/detr/blob/master/models/segmentation.py#L241 + def post_process_panoptic_segmentation( + self, + outputs, + threshold: float = 0.5, + mask_threshold: float = 0.5, + overlap_mask_area_threshold: float = 0.8, + label_ids_to_fuse: Optional[Set[int]] = None, + target_sizes: Optional[List[Tuple[int, int]]] = None, + ) -> List[Dict]: + """ + Converts the output of [`DetrForSegmentation`] into image panoptic segmentation predictions. Only supports + PyTorch. + + Args: + outputs ([`DetrForSegmentation`]): + The outputs from [`DetrForSegmentation`]. + threshold (`float`, *optional*, defaults to 0.5): + The probability score threshold to keep predicted instance masks. + mask_threshold (`float`, *optional*, defaults to 0.5): + Threshold to use when turning the predicted masks into binary values. + overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8): + The overlap mask area threshold to merge or discard small disconnected parts within each binary + instance mask. + label_ids_to_fuse (`Set[int]`, *optional*): + The labels in this state will have all their instances be fused together. For instance we could say + there can only be one sky in an image, but several persons, so the label ID for sky would be in that + set, but not the one for person. + target_sizes (`List[Tuple]`, *optional*): + List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested + final size (height, width) of each prediction in batch. If unset, predictions will not be resized. + Returns: + `List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys: + - **segmentation** -- a tensor of shape `(height, width)` where each pixel represents a `segment_id` or + `None` if no mask if found above `threshold`. If `target_sizes` is specified, segmentation is resized to + the corresponding `target_sizes` entry. + - **segments_info** -- A dictionary that contains additional information on each segment. + - **id** -- an integer representing the `segment_id`. + - **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`. + - **was_fused** -- a boolean, `True` if `label_id` was in `label_ids_to_fuse`, `False` otherwise. + Multiple instances of the same class / label were fused and assigned a single `segment_id`. + - **score** -- Prediction score of segment with `segment_id`. + """ + + if label_ids_to_fuse is None: + logger.warning_once("`label_ids_to_fuse` unset. No instance will be fused.") + label_ids_to_fuse = set() + + class_queries_logits = outputs.logits # [batch_size, num_queries, num_classes+1] + masks_queries_logits = outputs.pred_masks # [batch_size, num_queries, height, width] + + batch_size = class_queries_logits.shape[0] + num_labels = class_queries_logits.shape[-1] - 1 + + mask_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width] + + # Predicted label and score of each query (batch_size, num_queries) + pred_scores, pred_labels = nn.functional.softmax(class_queries_logits, dim=-1).max(-1) + + # Loop over items in batch size + results: List[Dict[str, TensorType]] = [] + + for i in range(batch_size): + mask_probs_item, pred_scores_item, pred_labels_item = remove_low_and_no_objects( + mask_probs[i], pred_scores[i], pred_labels[i], threshold, num_labels + ) + + # No mask found + if mask_probs_item.shape[0] <= 0: + height, width = target_sizes[i] if target_sizes is not None else mask_probs_item.shape[1:] + segmentation = torch.zeros((height, width)) - 1 + results.append({"segmentation": segmentation, "segments_info": []}) + continue + + # Get segmentation map and segment information of batch item + target_size = target_sizes[i] if target_sizes is not None else None + segmentation, segments = compute_segments( + mask_probs=mask_probs_item, + pred_scores=pred_scores_item, + pred_labels=pred_labels_item, + mask_threshold=mask_threshold, + overlap_mask_area_threshold=overlap_mask_area_threshold, + label_ids_to_fuse=label_ids_to_fuse, + target_size=target_size, + ) + + results.append({"segmentation": segmentation, "segments_info": segments}) + return results diff --git a/venv/lib/python3.10/site-packages/transformers/models/detr/modeling_detr.py b/venv/lib/python3.10/site-packages/transformers/models/detr/modeling_detr.py new file mode 100644 index 0000000000000000000000000000000000000000..d7fcdfc5bc7e8393048621bcec39198c34b447c6 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/detr/modeling_detr.py @@ -0,0 +1,2451 @@ +# coding=utf-8 +# Copyright 2021 Facebook AI Research The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch DETR model.""" + + +import math +from dataclasses import dataclass +from typing import Dict, List, Optional, Tuple, Union + +import torch +from torch import Tensor, nn + +from ...activations import ACT2FN +from ...modeling_attn_mask_utils import _prepare_4d_attention_mask +from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithCrossAttentions, Seq2SeqModelOutput +from ...modeling_utils import PreTrainedModel +from ...utils import ( + ModelOutput, + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_accelerate_available, + is_scipy_available, + is_timm_available, + is_vision_available, + logging, + replace_return_docstrings, + requires_backends, +) +from ...utils.backbone_utils import load_backbone +from .configuration_detr import DetrConfig + + +if is_accelerate_available(): + from accelerate import PartialState + from accelerate.utils import reduce + +if is_scipy_available(): + from scipy.optimize import linear_sum_assignment + +if is_timm_available(): + from timm import create_model + +if is_vision_available(): + from transformers.image_transforms import center_to_corners_format + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "DetrConfig" +_CHECKPOINT_FOR_DOC = "facebook/detr-resnet-50" + + +from ..deprecated._archive_maps import DETR_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +@dataclass +class DetrDecoderOutput(BaseModelOutputWithCrossAttentions): + """ + Base class for outputs of the DETR decoder. This class adds one attribute to BaseModelOutputWithCrossAttentions, + namely an optional stack of intermediate decoder activations, i.e. the output of each decoder layer, each of them + gone through a layernorm. This is useful when training the model with auxiliary decoding losses. + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer + plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, + used to compute the weighted average in the cross-attention heads. + intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, num_queries, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`): + Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a + layernorm. + """ + + intermediate_hidden_states: Optional[torch.FloatTensor] = None + + +@dataclass +class DetrModelOutput(Seq2SeqModelOutput): + """ + Base class for outputs of the DETR encoder-decoder model. This class adds one attribute to Seq2SeqModelOutput, + namely an optional stack of intermediate decoder activations, i.e. the output of each decoder layer, each of them + gone through a layernorm. This is useful when training the model with auxiliary decoding losses. + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the decoder of the model. + decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each + layer plus the initial embedding outputs. + decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the + weighted average in the self-attention heads. + cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, + used to compute the weighted average in the cross-attention heads. + encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder of the model. + encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each + layer plus the initial embedding outputs. + encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the + weighted average in the self-attention heads. + intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, sequence_length, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`): + Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a + layernorm. + """ + + intermediate_hidden_states: Optional[torch.FloatTensor] = None + + +@dataclass +class DetrObjectDetectionOutput(ModelOutput): + """ + Output type of [`DetrForObjectDetection`]. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)): + Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a + bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized + scale-invariant IoU loss. + loss_dict (`Dict`, *optional*): + A dictionary containing the individual losses. Useful for logging. + logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`): + Classification logits (including no-object) for all queries. + pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`): + Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These + values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding + possible padding). You can use [`~DetrImageProcessor.post_process_object_detection`] to retrieve the + unnormalized bounding boxes. + auxiliary_outputs (`list[Dict]`, *optional*): + Optional, only returned when auxilary losses are activated (i.e. `config.auxiliary_loss` is set to `True`) + and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and + `pred_boxes`) for each decoder layer. + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the decoder of the model. + decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each + layer plus the initial embedding outputs. + decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the + weighted average in the self-attention heads. + cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, + used to compute the weighted average in the cross-attention heads. + encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder of the model. + encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each + layer plus the initial embedding outputs. + encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the + weighted average in the self-attention heads. + """ + + loss: Optional[torch.FloatTensor] = None + loss_dict: Optional[Dict] = None + logits: torch.FloatTensor = None + pred_boxes: torch.FloatTensor = None + auxiliary_outputs: Optional[List[Dict]] = None + last_hidden_state: Optional[torch.FloatTensor] = None + decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None + cross_attentions: Optional[Tuple[torch.FloatTensor]] = None + encoder_last_hidden_state: Optional[torch.FloatTensor] = None + encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None + + +@dataclass +class DetrSegmentationOutput(ModelOutput): + """ + Output type of [`DetrForSegmentation`]. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)): + Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a + bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized + scale-invariant IoU loss. + loss_dict (`Dict`, *optional*): + A dictionary containing the individual losses. Useful for logging. + logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`): + Classification logits (including no-object) for all queries. + pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`): + Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These + values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding + possible padding). You can use [`~DetrImageProcessor.post_process_object_detection`] to retrieve the + unnormalized bounding boxes. + pred_masks (`torch.FloatTensor` of shape `(batch_size, num_queries, height/4, width/4)`): + Segmentation masks logits for all queries. See also + [`~DetrImageProcessor.post_process_semantic_segmentation`] or + [`~DetrImageProcessor.post_process_instance_segmentation`] + [`~DetrImageProcessor.post_process_panoptic_segmentation`] to evaluate semantic, instance and panoptic + segmentation masks respectively. + auxiliary_outputs (`list[Dict]`, *optional*): + Optional, only returned when auxiliary losses are activated (i.e. `config.auxiliary_loss` is set to `True`) + and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and + `pred_boxes`) for each decoder layer. + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the decoder of the model. + decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each + layer plus the initial embedding outputs. + decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the + weighted average in the self-attention heads. + cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, + used to compute the weighted average in the cross-attention heads. + encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder of the model. + encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each + layer plus the initial embedding outputs. + encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the + weighted average in the self-attention heads. + """ + + loss: Optional[torch.FloatTensor] = None + loss_dict: Optional[Dict] = None + logits: torch.FloatTensor = None + pred_boxes: torch.FloatTensor = None + pred_masks: torch.FloatTensor = None + auxiliary_outputs: Optional[List[Dict]] = None + last_hidden_state: Optional[torch.FloatTensor] = None + decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None + cross_attentions: Optional[Tuple[torch.FloatTensor]] = None + encoder_last_hidden_state: Optional[torch.FloatTensor] = None + encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None + + +# BELOW: utilities copied from +# https://github.com/facebookresearch/detr/blob/master/backbone.py +class DetrFrozenBatchNorm2d(nn.Module): + """ + BatchNorm2d where the batch statistics and the affine parameters are fixed. + + Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than + torchvision.models.resnet[18,34,50,101] produce nans. + """ + + def __init__(self, n): + super().__init__() + self.register_buffer("weight", torch.ones(n)) + self.register_buffer("bias", torch.zeros(n)) + self.register_buffer("running_mean", torch.zeros(n)) + self.register_buffer("running_var", torch.ones(n)) + + def _load_from_state_dict( + self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs + ): + num_batches_tracked_key = prefix + "num_batches_tracked" + if num_batches_tracked_key in state_dict: + del state_dict[num_batches_tracked_key] + + super()._load_from_state_dict( + state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs + ) + + def forward(self, x): + # move reshapes to the beginning + # to make it user-friendly + weight = self.weight.reshape(1, -1, 1, 1) + bias = self.bias.reshape(1, -1, 1, 1) + running_var = self.running_var.reshape(1, -1, 1, 1) + running_mean = self.running_mean.reshape(1, -1, 1, 1) + epsilon = 1e-5 + scale = weight * (running_var + epsilon).rsqrt() + bias = bias - running_mean * scale + return x * scale + bias + + +def replace_batch_norm(model): + r""" + Recursively replace all `torch.nn.BatchNorm2d` with `DetrFrozenBatchNorm2d`. + + Args: + model (torch.nn.Module): + input model + """ + for name, module in model.named_children(): + if isinstance(module, nn.BatchNorm2d): + new_module = DetrFrozenBatchNorm2d(module.num_features) + + if not module.weight.device == torch.device("meta"): + new_module.weight.data.copy_(module.weight) + new_module.bias.data.copy_(module.bias) + new_module.running_mean.data.copy_(module.running_mean) + new_module.running_var.data.copy_(module.running_var) + + model._modules[name] = new_module + + if len(list(module.children())) > 0: + replace_batch_norm(module) + + +class DetrConvEncoder(nn.Module): + """ + Convolutional backbone, using either the AutoBackbone API or one from the timm library. + + nn.BatchNorm2d layers are replaced by DetrFrozenBatchNorm2d as defined above. + + """ + + def __init__(self, config): + super().__init__() + + self.config = config + + if config.use_timm_backbone: + requires_backends(self, ["timm"]) + kwargs = {} + if config.dilation: + kwargs["output_stride"] = 16 + backbone = create_model( + config.backbone, + pretrained=config.use_pretrained_backbone, + features_only=True, + out_indices=(1, 2, 3, 4), + in_chans=config.num_channels, + **kwargs, + ) + else: + backbone = load_backbone(config) + + # replace batch norm by frozen batch norm + with torch.no_grad(): + replace_batch_norm(backbone) + self.model = backbone + self.intermediate_channel_sizes = ( + self.model.feature_info.channels() if config.use_timm_backbone else self.model.channels + ) + + backbone_model_type = config.backbone if config.use_timm_backbone else config.backbone_config.model_type + if "resnet" in backbone_model_type: + for name, parameter in self.model.named_parameters(): + if config.use_timm_backbone: + if "layer2" not in name and "layer3" not in name and "layer4" not in name: + parameter.requires_grad_(False) + else: + if "stage.1" not in name and "stage.2" not in name and "stage.3" not in name: + parameter.requires_grad_(False) + + def forward(self, pixel_values: torch.Tensor, pixel_mask: torch.Tensor): + # send pixel_values through the model to get list of feature maps + features = self.model(pixel_values) if self.config.use_timm_backbone else self.model(pixel_values).feature_maps + + out = [] + for feature_map in features: + # downsample pixel_mask to match shape of corresponding feature_map + mask = nn.functional.interpolate(pixel_mask[None].float(), size=feature_map.shape[-2:]).to(torch.bool)[0] + out.append((feature_map, mask)) + return out + + +class DetrConvModel(nn.Module): + """ + This module adds 2D position embeddings to all intermediate feature maps of the convolutional encoder. + """ + + def __init__(self, conv_encoder, position_embedding): + super().__init__() + self.conv_encoder = conv_encoder + self.position_embedding = position_embedding + + def forward(self, pixel_values, pixel_mask): + # send pixel_values and pixel_mask through backbone to get list of (feature_map, pixel_mask) tuples + out = self.conv_encoder(pixel_values, pixel_mask) + pos = [] + for feature_map, mask in out: + # position encoding + pos.append(self.position_embedding(feature_map, mask).to(feature_map.dtype)) + + return out, pos + + +class DetrSinePositionEmbedding(nn.Module): + """ + This is a more standard version of the position embedding, very similar to the one used by the Attention is all you + need paper, generalized to work on images. + """ + + def __init__(self, embedding_dim=64, temperature=10000, normalize=False, scale=None): + super().__init__() + self.embedding_dim = embedding_dim + self.temperature = temperature + self.normalize = normalize + if scale is not None and normalize is False: + raise ValueError("normalize should be True if scale is passed") + if scale is None: + scale = 2 * math.pi + self.scale = scale + + def forward(self, pixel_values, pixel_mask): + if pixel_mask is None: + raise ValueError("No pixel mask provided") + y_embed = pixel_mask.cumsum(1, dtype=torch.float32) + x_embed = pixel_mask.cumsum(2, dtype=torch.float32) + if self.normalize: + y_embed = y_embed / (y_embed[:, -1:, :] + 1e-6) * self.scale + x_embed = x_embed / (x_embed[:, :, -1:] + 1e-6) * self.scale + + dim_t = torch.arange(self.embedding_dim, dtype=torch.int64, device=pixel_values.device).float() + dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / self.embedding_dim) + + pos_x = x_embed[:, :, :, None] / dim_t + pos_y = y_embed[:, :, :, None] / dim_t + pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) + pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) + pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) + return pos + + +class DetrLearnedPositionEmbedding(nn.Module): + """ + This module learns positional embeddings up to a fixed maximum size. + """ + + def __init__(self, embedding_dim=256): + super().__init__() + self.row_embeddings = nn.Embedding(50, embedding_dim) + self.column_embeddings = nn.Embedding(50, embedding_dim) + + def forward(self, pixel_values, pixel_mask=None): + height, width = pixel_values.shape[-2:] + width_values = torch.arange(width, device=pixel_values.device) + height_values = torch.arange(height, device=pixel_values.device) + x_emb = self.column_embeddings(width_values) + y_emb = self.row_embeddings(height_values) + pos = torch.cat([x_emb.unsqueeze(0).repeat(height, 1, 1), y_emb.unsqueeze(1).repeat(1, width, 1)], dim=-1) + pos = pos.permute(2, 0, 1) + pos = pos.unsqueeze(0) + pos = pos.repeat(pixel_values.shape[0], 1, 1, 1) + return pos + + +def build_position_encoding(config): + n_steps = config.d_model // 2 + if config.position_embedding_type == "sine": + # TODO find a better way of exposing other arguments + position_embedding = DetrSinePositionEmbedding(n_steps, normalize=True) + elif config.position_embedding_type == "learned": + position_embedding = DetrLearnedPositionEmbedding(n_steps) + else: + raise ValueError(f"Not supported {config.position_embedding_type}") + + return position_embedding + + +class DetrAttention(nn.Module): + """ + Multi-headed attention from 'Attention Is All You Need' paper. + + Here, we add position embeddings to the queries and keys (as explained in the DETR paper). + """ + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + bias: bool = True, + ): + super().__init__() + self.embed_dim = embed_dim + self.num_heads = num_heads + self.dropout = dropout + self.head_dim = embed_dim // num_heads + if self.head_dim * num_heads != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" + f" {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + + self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + + def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int): + return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def with_pos_embed(self, tensor: torch.Tensor, object_queries: Optional[Tensor], **kwargs): + position_embeddings = kwargs.pop("position_embeddings", None) + + if kwargs: + raise ValueError(f"Unexpected arguments {kwargs.keys()}") + + if position_embeddings is not None and object_queries is not None: + raise ValueError( + "Cannot specify both position_embeddings and object_queries. Please use just object_queries" + ) + + if position_embeddings is not None: + logger.warning_once( + "position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead" + ) + object_queries = position_embeddings + + return tensor if object_queries is None else tensor + object_queries + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + object_queries: Optional[torch.Tensor] = None, + key_value_states: Optional[torch.Tensor] = None, + spatial_position_embeddings: Optional[torch.Tensor] = None, + output_attentions: bool = False, + **kwargs, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + position_embeddings = kwargs.pop("position_ebmeddings", None) + key_value_position_embeddings = kwargs.pop("key_value_position_embeddings", None) + + if kwargs: + raise ValueError(f"Unexpected arguments {kwargs.keys()}") + + if position_embeddings is not None and object_queries is not None: + raise ValueError( + "Cannot specify both position_embeddings and object_queries. Please use just object_queries" + ) + + if key_value_position_embeddings is not None and spatial_position_embeddings is not None: + raise ValueError( + "Cannot specify both key_value_position_embeddings and spatial_position_embeddings. Please use just spatial_position_embeddings" + ) + + if position_embeddings is not None: + logger.warning_once( + "position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead" + ) + object_queries = position_embeddings + + if key_value_position_embeddings is not None: + logger.warning_once( + "key_value_position_embeddings has been deprecated and will be removed in v4.34. Please use spatial_position_embeddings instead" + ) + spatial_position_embeddings = key_value_position_embeddings + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + batch_size, target_len, embed_dim = hidden_states.size() + + # add position embeddings to the hidden states before projecting to queries and keys + if object_queries is not None: + hidden_states_original = hidden_states + hidden_states = self.with_pos_embed(hidden_states, object_queries) + + # add key-value position embeddings to the key value states + if spatial_position_embeddings is not None: + key_value_states_original = key_value_states + key_value_states = self.with_pos_embed(key_value_states, spatial_position_embeddings) + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + if is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, batch_size) + value_states = self._shape(self.v_proj(key_value_states_original), -1, batch_size) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, batch_size) + value_states = self._shape(self.v_proj(hidden_states_original), -1, batch_size) + + proj_shape = (batch_size * self.num_heads, -1, self.head_dim) + query_states = self._shape(query_states, target_len, batch_size).view(*proj_shape) + key_states = key_states.view(*proj_shape) + value_states = value_states.view(*proj_shape) + + source_len = key_states.size(1) + + attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) + + if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len): + raise ValueError( + f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (batch_size, 1, target_len, source_len): + raise ValueError( + f"Attention mask should be of size {(batch_size, 1, target_len, source_len)}, but is" + f" {attention_mask.size()}" + ) + attn_weights = attn_weights.view(batch_size, self.num_heads, target_len, source_len) + attention_mask + attn_weights = attn_weights.view(batch_size * self.num_heads, target_len, source_len) + + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + if output_attentions: + # this operation is a bit awkward, but it's required to + # make sure that attn_weights keeps its gradient. + # In order to do so, attn_weights have to reshaped + # twice and have to be reused in the following + attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len) + attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len) + else: + attn_weights_reshaped = None + + attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + + attn_output = torch.bmm(attn_probs, value_states) + + if attn_output.size() != (batch_size * self.num_heads, target_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.head_dim) + attn_output = attn_output.transpose(1, 2) + attn_output = attn_output.reshape(batch_size, target_len, embed_dim) + + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights_reshaped + + +class DetrEncoderLayer(nn.Module): + def __init__(self, config: DetrConfig): + super().__init__() + self.embed_dim = config.d_model + self.self_attn = DetrAttention( + embed_dim=self.embed_dim, + num_heads=config.encoder_attention_heads, + dropout=config.attention_dropout, + ) + self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.dropout = config.dropout + self.activation_fn = ACT2FN[config.activation_function] + self.activation_dropout = config.activation_dropout + self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) + self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) + self.final_layer_norm = nn.LayerNorm(self.embed_dim) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: torch.Tensor, + object_queries: torch.Tensor = None, + output_attentions: bool = False, + **kwargs, + ): + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`): attention mask of size + `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative + values. + object_queries (`torch.FloatTensor`, *optional*): + Object queries (also called content embeddings), to be added to the hidden states. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + position_embeddings = kwargs.pop("position_embeddings", None) + + if kwargs: + raise ValueError(f"Unexpected arguments {kwargs.keys()}") + + if position_embeddings is not None and object_queries is not None: + raise ValueError( + "Cannot specify both position_embeddings and object_queries. Please use just object_queries" + ) + + if position_embeddings is not None: + logger.warning_once( + "position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead" + ) + object_queries = position_embeddings + + residual = hidden_states + hidden_states, attn_weights = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + object_queries=object_queries, + output_attentions=output_attentions, + ) + + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + residual = hidden_states + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) + + hidden_states = self.fc2(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + + hidden_states = residual + hidden_states + hidden_states = self.final_layer_norm(hidden_states) + + if self.training: + if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any(): + clamp_value = torch.finfo(hidden_states.dtype).max - 1000 + hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights,) + + return outputs + + +class DetrDecoderLayer(nn.Module): + def __init__(self, config: DetrConfig): + super().__init__() + self.embed_dim = config.d_model + + self.self_attn = DetrAttention( + embed_dim=self.embed_dim, + num_heads=config.decoder_attention_heads, + dropout=config.attention_dropout, + ) + self.dropout = config.dropout + self.activation_fn = ACT2FN[config.activation_function] + self.activation_dropout = config.activation_dropout + + self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.encoder_attn = DetrAttention( + self.embed_dim, + config.decoder_attention_heads, + dropout=config.attention_dropout, + ) + self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) + self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) + self.final_layer_norm = nn.LayerNorm(self.embed_dim) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + object_queries: Optional[torch.Tensor] = None, + query_position_embeddings: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = False, + **kwargs, + ): + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`): attention mask of size + `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative + values. + object_queries (`torch.FloatTensor`, *optional*): + object_queries that are added to the hidden states + in the cross-attention layer. + query_position_embeddings (`torch.FloatTensor`, *optional*): + position embeddings that are added to the queries and keys + in the self-attention layer. + encoder_hidden_states (`torch.FloatTensor`): + cross attention input to the layer of shape `(batch, seq_len, embed_dim)` + encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size + `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative + values. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + position_embeddings = kwargs.pop("position_embeddings", None) + + if kwargs: + raise ValueError(f"Unexpected arguments {kwargs.keys()}") + + if position_embeddings is not None and object_queries is not None: + raise ValueError( + "Cannot specify both position_embeddings and object_queries. Please use just object_queries" + ) + + if position_embeddings is not None: + logger.warning_once( + "position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead" + ) + object_queries = position_embeddings + + residual = hidden_states + + # Self Attention + hidden_states, self_attn_weights = self.self_attn( + hidden_states=hidden_states, + object_queries=query_position_embeddings, + attention_mask=attention_mask, + output_attentions=output_attentions, + ) + + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Cross-Attention Block + cross_attn_weights = None + if encoder_hidden_states is not None: + residual = hidden_states + + hidden_states, cross_attn_weights = self.encoder_attn( + hidden_states=hidden_states, + object_queries=query_position_embeddings, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + spatial_position_embeddings=object_queries, + output_attentions=output_attentions, + ) + + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + hidden_states = self.encoder_attn_layer_norm(hidden_states) + + # Fully Connected + residual = hidden_states + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) + hidden_states = self.fc2(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + hidden_states = self.final_layer_norm(hidden_states) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights, cross_attn_weights) + + return outputs + + +class DetrClassificationHead(nn.Module): + """Head for sentence-level classification tasks.""" + + def __init__(self, input_dim: int, inner_dim: int, num_classes: int, pooler_dropout: float): + super().__init__() + self.dense = nn.Linear(input_dim, inner_dim) + self.dropout = nn.Dropout(p=pooler_dropout) + self.out_proj = nn.Linear(inner_dim, num_classes) + + def forward(self, hidden_states: torch.Tensor): + hidden_states = self.dropout(hidden_states) + hidden_states = self.dense(hidden_states) + hidden_states = torch.tanh(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.out_proj(hidden_states) + return hidden_states + + +class DetrPreTrainedModel(PreTrainedModel): + config_class = DetrConfig + base_model_prefix = "model" + main_input_name = "pixel_values" + _no_split_modules = [r"DetrConvEncoder", r"DetrEncoderLayer", r"DetrDecoderLayer"] + + def _init_weights(self, module): + std = self.config.init_std + xavier_std = self.config.init_xavier_std + + if isinstance(module, DetrMHAttentionMap): + nn.init.zeros_(module.k_linear.bias) + nn.init.zeros_(module.q_linear.bias) + nn.init.xavier_uniform_(module.k_linear.weight, gain=xavier_std) + nn.init.xavier_uniform_(module.q_linear.weight, gain=xavier_std) + elif isinstance(module, DetrLearnedPositionEmbedding): + nn.init.uniform_(module.row_embeddings.weight) + nn.init.uniform_(module.column_embeddings.weight) + if isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + +DETR_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`DetrConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +DETR_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Padding will be ignored by default should you provide it. + + Pixel values can be obtained using [`AutoImageProcessor`]. See [`DetrImageProcessor.__call__`] for details. + + pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): + Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`: + + - 1 for pixels that are real (i.e. **not masked**), + - 0 for pixels that are padding (i.e. **masked**). + + [What are attention masks?](../glossary#attention-mask) + + decoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, num_queries)`, *optional*): + Not used by default. Can be used to mask object queries. + encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): + Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of + hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing the flattened feature map (output of the backbone + projection layer), you + can choose to directly pass a flattened representation of an image. + decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*): + Optionally, instead of initializing the queries with a tensor of zeros, you can choose to directly pass an + embedded representation. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +class DetrEncoder(DetrPreTrainedModel): + """ + Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a + [`DetrEncoderLayer`]. + + The encoder updates the flattened feature map through multiple self-attention layers. + + Small tweak for DETR: + + - object_queries are added to the forward pass. + + Args: + config: DetrConfig + """ + + def __init__(self, config: DetrConfig): + super().__init__(config) + + self.dropout = config.dropout + self.layerdrop = config.encoder_layerdrop + + self.layers = nn.ModuleList([DetrEncoderLayer(config) for _ in range(config.encoder_layers)]) + + # in the original DETR, no layernorm is used at the end of the encoder, as "normalize_before" is set to False by default + + # Initialize weights and apply final processing + self.post_init() + + def forward( + self, + inputs_embeds=None, + attention_mask=None, + object_queries=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + **kwargs, + ): + r""" + Args: + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Flattened feature map (output of the backbone + projection layer) that is passed to the encoder. + + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`: + + - 1 for pixel features that are real (i.e. **not masked**), + - 0 for pixel features that are padding (i.e. **masked**). + + [What are attention masks?](../glossary#attention-mask) + + object_queries (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Object queries that are added to the queries in each self-attention layer. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + position_embeddings = kwargs.pop("position_embeddings", None) + + if kwargs: + raise ValueError(f"Unexpected arguments {kwargs.keys()}") + + if position_embeddings is not None and object_queries is not None: + raise ValueError( + "Cannot specify both position_embeddings and object_queries. Please use just object_queries" + ) + + if position_embeddings is not None: + logger.warning_once( + "position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead" + ) + object_queries = position_embeddings + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + hidden_states = inputs_embeds + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + + # expand attention_mask + if attention_mask is not None: + # [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len] + attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) + + encoder_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + for i, encoder_layer in enumerate(self.layers): + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + to_drop = False + if self.training: + dropout_probability = torch.rand([]) + if dropout_probability < self.layerdrop: # skip the layer + to_drop = True + + if to_drop: + layer_outputs = (None, None) + else: + # we add object_queries as extra input to the encoder_layer + layer_outputs = encoder_layer( + hidden_states, + attention_mask, + object_queries=object_queries, + output_attentions=output_attentions, + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions + ) + + +class DetrDecoder(DetrPreTrainedModel): + """ + Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`DetrDecoderLayer`]. + + The decoder updates the query embeddings through multiple self-attention and cross-attention layers. + + Some small tweaks for DETR: + + - object_queries and query_position_embeddings are added to the forward pass. + - if self.config.auxiliary_loss is set to True, also returns a stack of activations from all decoding layers. + + Args: + config: DetrConfig + """ + + def __init__(self, config: DetrConfig): + super().__init__(config) + self.dropout = config.dropout + self.layerdrop = config.decoder_layerdrop + + self.layers = nn.ModuleList([DetrDecoderLayer(config) for _ in range(config.decoder_layers)]) + # in DETR, the decoder uses layernorm after the last decoder layer output + self.layernorm = nn.LayerNorm(config.d_model) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def forward( + self, + inputs_embeds=None, + attention_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + object_queries=None, + query_position_embeddings=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + **kwargs, + ): + r""" + Args: + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + The query embeddings that are passed into the decoder. + + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on certain queries. Mask values selected in `[0, 1]`: + + - 1 for queries that are **not masked**, + - 0 for queries that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention + of the decoder. + encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): + Mask to avoid performing cross-attention on padding pixel_values of the encoder. Mask values selected + in `[0, 1]`: + + - 1 for pixels that are real (i.e. **not masked**), + - 0 for pixels that are padding (i.e. **masked**). + + object_queries (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Object queries that are added to the queries and keys in each cross-attention layer. + query_position_embeddings (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`): + , *optional*): Position embeddings that are added to the values and keys in each self-attention layer. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + position_embeddings = kwargs.pop("position_embeddings", None) + + if kwargs: + raise ValueError(f"Unexpected arguments {kwargs.keys()}") + + if position_embeddings is not None and object_queries is not None: + raise ValueError( + "Cannot specify both position_embeddings and object_queries. Please use just object_queries" + ) + + if position_embeddings is not None: + logger.warning_once( + "position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead" + ) + object_queries = position_embeddings + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if inputs_embeds is not None: + hidden_states = inputs_embeds + input_shape = inputs_embeds.size()[:-1] + + combined_attention_mask = None + + if attention_mask is not None and combined_attention_mask is not None: + # [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len] + combined_attention_mask = combined_attention_mask + _prepare_4d_attention_mask( + attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] + ) + + # expand encoder attention mask + if encoder_hidden_states is not None and encoder_attention_mask is not None: + # [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len] + encoder_attention_mask = _prepare_4d_attention_mask( + encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] + ) + + # optional intermediate hidden states + intermediate = () if self.config.auxiliary_loss else None + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None + + for idx, decoder_layer in enumerate(self.layers): + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + if output_hidden_states: + all_hidden_states += (hidden_states,) + if self.training: + dropout_probability = torch.rand([]) + if dropout_probability < self.layerdrop: + continue + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + combined_attention_mask, + encoder_hidden_states, + encoder_attention_mask, + None, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=combined_attention_mask, + object_queries=object_queries, + query_position_embeddings=query_position_embeddings, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + output_attentions=output_attentions, + ) + + hidden_states = layer_outputs[0] + + if self.config.auxiliary_loss: + hidden_states = self.layernorm(hidden_states) + intermediate += (hidden_states,) + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + if encoder_hidden_states is not None: + all_cross_attentions += (layer_outputs[2],) + + # finally, apply layernorm + hidden_states = self.layernorm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + # stack intermediate decoder activations + if self.config.auxiliary_loss: + intermediate = torch.stack(intermediate) + + if not return_dict: + return tuple( + v + for v in [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions, intermediate] + if v is not None + ) + return DetrDecoderOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attns, + cross_attentions=all_cross_attentions, + intermediate_hidden_states=intermediate, + ) + + +@add_start_docstrings( + """ + The bare DETR Model (consisting of a backbone and encoder-decoder Transformer) outputting raw hidden-states without + any specific head on top. + """, + DETR_START_DOCSTRING, +) +class DetrModel(DetrPreTrainedModel): + def __init__(self, config: DetrConfig): + super().__init__(config) + + # Create backbone + positional encoding + backbone = DetrConvEncoder(config) + object_queries = build_position_encoding(config) + self.backbone = DetrConvModel(backbone, object_queries) + + # Create projection layer + self.input_projection = nn.Conv2d(backbone.intermediate_channel_sizes[-1], config.d_model, kernel_size=1) + + self.query_position_embeddings = nn.Embedding(config.num_queries, config.d_model) + + self.encoder = DetrEncoder(config) + self.decoder = DetrDecoder(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_encoder(self): + return self.encoder + + def get_decoder(self): + return self.decoder + + def freeze_backbone(self): + for name, param in self.backbone.conv_encoder.model.named_parameters(): + param.requires_grad_(False) + + def unfreeze_backbone(self): + for name, param in self.backbone.conv_encoder.model.named_parameters(): + param.requires_grad_(True) + + @add_start_docstrings_to_model_forward(DETR_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=DetrModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: torch.FloatTensor, + pixel_mask: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.FloatTensor] = None, + encoder_outputs: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.FloatTensor], DetrModelOutput]: + r""" + Returns: + + Examples: + + ```python + >>> from transformers import AutoImageProcessor, DetrModel + >>> from PIL import Image + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> image_processor = AutoImageProcessor.from_pretrained("facebook/detr-resnet-50") + >>> model = DetrModel.from_pretrained("facebook/detr-resnet-50") + + >>> # prepare image for the model + >>> inputs = image_processor(images=image, return_tensors="pt") + + >>> # forward pass + >>> outputs = model(**inputs) + + >>> # the last hidden states are the final query embeddings of the Transformer decoder + >>> # these are of shape (batch_size, num_queries, hidden_size) + >>> last_hidden_states = outputs.last_hidden_state + >>> list(last_hidden_states.shape) + [1, 100, 256] + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + batch_size, num_channels, height, width = pixel_values.shape + device = pixel_values.device + + if pixel_mask is None: + pixel_mask = torch.ones(((batch_size, height, width)), device=device) + + # First, sent pixel_values + pixel_mask through Backbone to obtain the features + # pixel_values should be of shape (batch_size, num_channels, height, width) + # pixel_mask should be of shape (batch_size, height, width) + features, object_queries_list = self.backbone(pixel_values, pixel_mask) + + # get final feature map and downsampled mask + feature_map, mask = features[-1] + + if mask is None: + raise ValueError("Backbone does not return downsampled pixel mask") + + # Second, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default) + projected_feature_map = self.input_projection(feature_map) + + # Third, flatten the feature map + position embeddings of shape NxCxHxW to NxCxHW, and permute it to NxHWxC + # In other words, turn their shape into (batch_size, sequence_length, hidden_size) + flattened_features = projected_feature_map.flatten(2).permute(0, 2, 1) + object_queries = object_queries_list[-1].flatten(2).permute(0, 2, 1) + + flattened_mask = mask.flatten(1) + + # Fourth, sent flattened_features + flattened_mask + position embeddings through encoder + # flattened_features is a Tensor of shape (batch_size, heigth*width, hidden_size) + # flattened_mask is a Tensor of shape (batch_size, heigth*width) + if encoder_outputs is None: + encoder_outputs = self.encoder( + inputs_embeds=flattened_features, + attention_mask=flattened_mask, + object_queries=object_queries, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True + elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): + encoder_outputs = BaseModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + ) + + # Fifth, sent query embeddings + object_queries through the decoder (which is conditioned on the encoder output) + query_position_embeddings = self.query_position_embeddings.weight.unsqueeze(0).repeat(batch_size, 1, 1) + queries = torch.zeros_like(query_position_embeddings) + + # decoder outputs consists of (dec_features, dec_hidden, dec_attn) + decoder_outputs = self.decoder( + inputs_embeds=queries, + attention_mask=None, + object_queries=object_queries, + query_position_embeddings=query_position_embeddings, + encoder_hidden_states=encoder_outputs[0], + encoder_attention_mask=flattened_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return DetrModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + intermediate_hidden_states=decoder_outputs.intermediate_hidden_states, + ) + + +@add_start_docstrings( + """ + DETR Model (consisting of a backbone and encoder-decoder Transformer) with object detection heads on top, for tasks + such as COCO detection. + """, + DETR_START_DOCSTRING, +) +class DetrForObjectDetection(DetrPreTrainedModel): + def __init__(self, config: DetrConfig): + super().__init__(config) + + # DETR encoder-decoder model + self.model = DetrModel(config) + + # Object detection heads + self.class_labels_classifier = nn.Linear( + config.d_model, config.num_labels + 1 + ) # We add one for the "no object" class + self.bbox_predictor = DetrMLPPredictionHead( + input_dim=config.d_model, hidden_dim=config.d_model, output_dim=4, num_layers=3 + ) + + # Initialize weights and apply final processing + self.post_init() + + # taken from https://github.com/facebookresearch/detr/blob/master/models/detr.py + @torch.jit.unused + def _set_aux_loss(self, outputs_class, outputs_coord): + # this is a workaround to make torchscript happy, as torchscript + # doesn't support dictionary with non-homogeneous values, such + # as a dict having both a Tensor and a list. + return [{"logits": a, "pred_boxes": b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])] + + @add_start_docstrings_to_model_forward(DETR_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=DetrObjectDetectionOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: torch.FloatTensor, + pixel_mask: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.FloatTensor] = None, + encoder_outputs: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[List[dict]] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.FloatTensor], DetrObjectDetectionOutput]: + r""" + labels (`List[Dict]` of len `(batch_size,)`, *optional*): + Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the + following 2 keys: 'class_labels' and 'boxes' (the class labels and bounding boxes of an image in the batch + respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding boxes + in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)`. + + Returns: + + Examples: + + ```python + >>> from transformers import AutoImageProcessor, DetrForObjectDetection + >>> import torch + >>> from PIL import Image + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> image_processor = AutoImageProcessor.from_pretrained("facebook/detr-resnet-50") + >>> model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50") + + >>> inputs = image_processor(images=image, return_tensors="pt") + >>> outputs = model(**inputs) + + >>> # convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax) + >>> target_sizes = torch.tensor([image.size[::-1]]) + >>> results = image_processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[ + ... 0 + ... ] + + >>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): + ... box = [round(i, 2) for i in box.tolist()] + ... print( + ... f"Detected {model.config.id2label[label.item()]} with confidence " + ... f"{round(score.item(), 3)} at location {box}" + ... ) + Detected remote with confidence 0.998 at location [40.16, 70.81, 175.55, 117.98] + Detected remote with confidence 0.996 at location [333.24, 72.55, 368.33, 187.66] + Detected couch with confidence 0.995 at location [-0.02, 1.15, 639.73, 473.76] + Detected cat with confidence 0.999 at location [13.24, 52.05, 314.02, 470.93] + Detected cat with confidence 0.999 at location [345.4, 23.85, 640.37, 368.72] + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # First, sent images through DETR base model to obtain encoder + decoder outputs + outputs = self.model( + pixel_values, + pixel_mask=pixel_mask, + decoder_attention_mask=decoder_attention_mask, + encoder_outputs=encoder_outputs, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + # class logits + predicted bounding boxes + logits = self.class_labels_classifier(sequence_output) + pred_boxes = self.bbox_predictor(sequence_output).sigmoid() + + loss, loss_dict, auxiliary_outputs = None, None, None + if labels is not None: + # First: create the matcher + matcher = DetrHungarianMatcher( + class_cost=self.config.class_cost, bbox_cost=self.config.bbox_cost, giou_cost=self.config.giou_cost + ) + # Second: create the criterion + losses = ["labels", "boxes", "cardinality"] + criterion = DetrLoss( + matcher=matcher, + num_classes=self.config.num_labels, + eos_coef=self.config.eos_coefficient, + losses=losses, + ) + criterion.to(self.device) + # Third: compute the losses, based on outputs and labels + outputs_loss = {} + outputs_loss["logits"] = logits + outputs_loss["pred_boxes"] = pred_boxes + if self.config.auxiliary_loss: + intermediate = outputs.intermediate_hidden_states if return_dict else outputs[4] + outputs_class = self.class_labels_classifier(intermediate) + outputs_coord = self.bbox_predictor(intermediate).sigmoid() + auxiliary_outputs = self._set_aux_loss(outputs_class, outputs_coord) + outputs_loss["auxiliary_outputs"] = auxiliary_outputs + + loss_dict = criterion(outputs_loss, labels) + # Fourth: compute total loss, as a weighted sum of the various losses + weight_dict = {"loss_ce": 1, "loss_bbox": self.config.bbox_loss_coefficient} + weight_dict["loss_giou"] = self.config.giou_loss_coefficient + if self.config.auxiliary_loss: + aux_weight_dict = {} + for i in range(self.config.decoder_layers - 1): + aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()}) + weight_dict.update(aux_weight_dict) + loss = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict) + + if not return_dict: + if auxiliary_outputs is not None: + output = (logits, pred_boxes) + auxiliary_outputs + outputs + else: + output = (logits, pred_boxes) + outputs + return ((loss, loss_dict) + output) if loss is not None else output + + return DetrObjectDetectionOutput( + loss=loss, + loss_dict=loss_dict, + logits=logits, + pred_boxes=pred_boxes, + auxiliary_outputs=auxiliary_outputs, + last_hidden_state=outputs.last_hidden_state, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + +@add_start_docstrings( + """ + DETR Model (consisting of a backbone and encoder-decoder Transformer) with a segmentation head on top, for tasks + such as COCO panoptic. + + """, + DETR_START_DOCSTRING, +) +class DetrForSegmentation(DetrPreTrainedModel): + def __init__(self, config: DetrConfig): + super().__init__(config) + + # object detection model + self.detr = DetrForObjectDetection(config) + + # segmentation head + hidden_size, number_of_heads = config.d_model, config.encoder_attention_heads + intermediate_channel_sizes = self.detr.model.backbone.conv_encoder.intermediate_channel_sizes + + self.mask_head = DetrMaskHeadSmallConv( + hidden_size + number_of_heads, intermediate_channel_sizes[::-1][-3:], hidden_size + ) + + self.bbox_attention = DetrMHAttentionMap( + hidden_size, hidden_size, number_of_heads, dropout=0.0, std=config.init_xavier_std + ) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(DETR_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=DetrSegmentationOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: torch.FloatTensor, + pixel_mask: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.FloatTensor] = None, + encoder_outputs: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[List[dict]] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.FloatTensor], DetrSegmentationOutput]: + r""" + labels (`List[Dict]` of len `(batch_size,)`, *optional*): + Labels for computing the bipartite matching loss, DICE/F-1 loss and Focal loss. List of dicts, each + dictionary containing at least the following 3 keys: 'class_labels', 'boxes' and 'masks' (the class labels, + bounding boxes and segmentation masks of an image in the batch respectively). The class labels themselves + should be a `torch.LongTensor` of len `(number of bounding boxes in the image,)`, the boxes a + `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)` and the masks a + `torch.FloatTensor` of shape `(number of bounding boxes in the image, height, width)`. + + Returns: + + Examples: + + ```python + >>> import io + >>> import requests + >>> from PIL import Image + >>> import torch + >>> import numpy + + >>> from transformers import AutoImageProcessor, DetrForSegmentation + >>> from transformers.image_transforms import rgb_to_id + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> image_processor = AutoImageProcessor.from_pretrained("facebook/detr-resnet-50-panoptic") + >>> model = DetrForSegmentation.from_pretrained("facebook/detr-resnet-50-panoptic") + + >>> # prepare image for the model + >>> inputs = image_processor(images=image, return_tensors="pt") + + >>> # forward pass + >>> outputs = model(**inputs) + + >>> # Use the `post_process_panoptic_segmentation` method of the `image_processor` to retrieve post-processed panoptic segmentation maps + >>> # Segmentation results are returned as a list of dictionaries + >>> result = image_processor.post_process_panoptic_segmentation(outputs, target_sizes=[(300, 500)]) + + >>> # A tensor of shape (height, width) where each value denotes a segment id, filled with -1 if no segment is found + >>> panoptic_seg = result[0]["segmentation"] + >>> # Get prediction score and segment_id to class_id mapping of each segment + >>> panoptic_segments_info = result[0]["segments_info"] + ```""" + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + batch_size, num_channels, height, width = pixel_values.shape + device = pixel_values.device + + if pixel_mask is None: + pixel_mask = torch.ones((batch_size, height, width), device=device) + + # First, get list of feature maps and position embeddings + features, object_queries_list = self.detr.model.backbone(pixel_values, pixel_mask=pixel_mask) + + # Second, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default) + feature_map, mask = features[-1] + batch_size, num_channels, height, width = feature_map.shape + projected_feature_map = self.detr.model.input_projection(feature_map) + + # Third, flatten the feature map + position embeddings of shape NxCxHxW to NxCxHW, and permute it to NxHWxC + # In other words, turn their shape into (batch_size, sequence_length, hidden_size) + flattened_features = projected_feature_map.flatten(2).permute(0, 2, 1) + object_queries = object_queries_list[-1].flatten(2).permute(0, 2, 1) + + flattened_mask = mask.flatten(1) + + # Fourth, sent flattened_features + flattened_mask + position embeddings through encoder + # flattened_features is a Tensor of shape (batch_size, heigth*width, hidden_size) + # flattened_mask is a Tensor of shape (batch_size, heigth*width) + if encoder_outputs is None: + encoder_outputs = self.detr.model.encoder( + inputs_embeds=flattened_features, + attention_mask=flattened_mask, + object_queries=object_queries, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True + elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): + encoder_outputs = BaseModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + ) + + # Fifth, sent query embeddings + position embeddings through the decoder (which is conditioned on the encoder output) + query_position_embeddings = self.detr.model.query_position_embeddings.weight.unsqueeze(0).repeat( + batch_size, 1, 1 + ) + queries = torch.zeros_like(query_position_embeddings) + + # decoder outputs consists of (dec_features, dec_hidden, dec_attn) + decoder_outputs = self.detr.model.decoder( + inputs_embeds=queries, + attention_mask=None, + object_queries=object_queries, + query_position_embeddings=query_position_embeddings, + encoder_hidden_states=encoder_outputs[0], + encoder_attention_mask=flattened_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = decoder_outputs[0] + + # Sixth, compute logits, pred_boxes and pred_masks + logits = self.detr.class_labels_classifier(sequence_output) + pred_boxes = self.detr.bbox_predictor(sequence_output).sigmoid() + + memory = encoder_outputs[0].permute(0, 2, 1).view(batch_size, self.config.d_model, height, width) + mask = flattened_mask.view(batch_size, height, width) + + # FIXME h_boxes takes the last one computed, keep this in mind + # important: we need to reverse the mask, since in the original implementation the mask works reversed + # bbox_mask is of shape (batch_size, num_queries, number_of_attention_heads in bbox_attention, height/32, width/32) + bbox_mask = self.bbox_attention(sequence_output, memory, mask=~mask) + + seg_masks = self.mask_head(projected_feature_map, bbox_mask, [features[2][0], features[1][0], features[0][0]]) + + pred_masks = seg_masks.view(batch_size, self.detr.config.num_queries, seg_masks.shape[-2], seg_masks.shape[-1]) + + loss, loss_dict, auxiliary_outputs = None, None, None + if labels is not None: + # First: create the matcher + matcher = DetrHungarianMatcher( + class_cost=self.config.class_cost, bbox_cost=self.config.bbox_cost, giou_cost=self.config.giou_cost + ) + # Second: create the criterion + losses = ["labels", "boxes", "cardinality", "masks"] + criterion = DetrLoss( + matcher=matcher, + num_classes=self.config.num_labels, + eos_coef=self.config.eos_coefficient, + losses=losses, + ) + criterion.to(self.device) + # Third: compute the losses, based on outputs and labels + outputs_loss = {} + outputs_loss["logits"] = logits + outputs_loss["pred_boxes"] = pred_boxes + outputs_loss["pred_masks"] = pred_masks + if self.config.auxiliary_loss: + intermediate = decoder_outputs.intermediate_hidden_states if return_dict else decoder_outputs[-1] + outputs_class = self.detr.class_labels_classifier(intermediate) + outputs_coord = self.detr.bbox_predictor(intermediate).sigmoid() + auxiliary_outputs = self.detr._set_aux_loss(outputs_class, outputs_coord) + outputs_loss["auxiliary_outputs"] = auxiliary_outputs + + loss_dict = criterion(outputs_loss, labels) + # Fourth: compute total loss, as a weighted sum of the various losses + weight_dict = {"loss_ce": 1, "loss_bbox": self.config.bbox_loss_coefficient} + weight_dict["loss_giou"] = self.config.giou_loss_coefficient + weight_dict["loss_mask"] = self.config.mask_loss_coefficient + weight_dict["loss_dice"] = self.config.dice_loss_coefficient + if self.config.auxiliary_loss: + aux_weight_dict = {} + for i in range(self.config.decoder_layers - 1): + aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()}) + weight_dict.update(aux_weight_dict) + loss = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict) + + if not return_dict: + if auxiliary_outputs is not None: + output = (logits, pred_boxes, pred_masks) + auxiliary_outputs + decoder_outputs + encoder_outputs + else: + output = (logits, pred_boxes, pred_masks) + decoder_outputs + encoder_outputs + return ((loss, loss_dict) + output) if loss is not None else output + + return DetrSegmentationOutput( + loss=loss, + loss_dict=loss_dict, + logits=logits, + pred_boxes=pred_boxes, + pred_masks=pred_masks, + auxiliary_outputs=auxiliary_outputs, + last_hidden_state=decoder_outputs.last_hidden_state, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + +def _expand(tensor, length: int): + return tensor.unsqueeze(1).repeat(1, int(length), 1, 1, 1).flatten(0, 1) + + +# taken from https://github.com/facebookresearch/detr/blob/master/models/segmentation.py +class DetrMaskHeadSmallConv(nn.Module): + """ + Simple convolutional head, using group norm. Upsampling is done using a FPN approach + """ + + def __init__(self, dim, fpn_dims, context_dim): + super().__init__() + + if dim % 8 != 0: + raise ValueError( + "The hidden_size + number of attention heads must be divisible by 8 as the number of groups in" + " GroupNorm is set to 8" + ) + + inter_dims = [dim, context_dim // 2, context_dim // 4, context_dim // 8, context_dim // 16, context_dim // 64] + + self.lay1 = nn.Conv2d(dim, dim, 3, padding=1) + self.gn1 = nn.GroupNorm(8, dim) + self.lay2 = nn.Conv2d(dim, inter_dims[1], 3, padding=1) + self.gn2 = nn.GroupNorm(min(8, inter_dims[1]), inter_dims[1]) + self.lay3 = nn.Conv2d(inter_dims[1], inter_dims[2], 3, padding=1) + self.gn3 = nn.GroupNorm(min(8, inter_dims[2]), inter_dims[2]) + self.lay4 = nn.Conv2d(inter_dims[2], inter_dims[3], 3, padding=1) + self.gn4 = nn.GroupNorm(min(8, inter_dims[3]), inter_dims[3]) + self.lay5 = nn.Conv2d(inter_dims[3], inter_dims[4], 3, padding=1) + self.gn5 = nn.GroupNorm(min(8, inter_dims[4]), inter_dims[4]) + self.out_lay = nn.Conv2d(inter_dims[4], 1, 3, padding=1) + + self.dim = dim + + self.adapter1 = nn.Conv2d(fpn_dims[0], inter_dims[1], 1) + self.adapter2 = nn.Conv2d(fpn_dims[1], inter_dims[2], 1) + self.adapter3 = nn.Conv2d(fpn_dims[2], inter_dims[3], 1) + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_uniform_(m.weight, a=1) + nn.init.constant_(m.bias, 0) + + def forward(self, x: Tensor, bbox_mask: Tensor, fpns: List[Tensor]): + # here we concatenate x, the projected feature map, of shape (batch_size, d_model, heigth/32, width/32) with + # the bbox_mask = the attention maps of shape (batch_size, n_queries, n_heads, height/32, width/32). + # We expand the projected feature map to match the number of heads. + x = torch.cat([_expand(x, bbox_mask.shape[1]), bbox_mask.flatten(0, 1)], 1) + + x = self.lay1(x) + x = self.gn1(x) + x = nn.functional.relu(x) + x = self.lay2(x) + x = self.gn2(x) + x = nn.functional.relu(x) + + cur_fpn = self.adapter1(fpns[0]) + if cur_fpn.size(0) != x.size(0): + cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0)) + x = cur_fpn + nn.functional.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest") + x = self.lay3(x) + x = self.gn3(x) + x = nn.functional.relu(x) + + cur_fpn = self.adapter2(fpns[1]) + if cur_fpn.size(0) != x.size(0): + cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0)) + x = cur_fpn + nn.functional.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest") + x = self.lay4(x) + x = self.gn4(x) + x = nn.functional.relu(x) + + cur_fpn = self.adapter3(fpns[2]) + if cur_fpn.size(0) != x.size(0): + cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0)) + x = cur_fpn + nn.functional.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest") + x = self.lay5(x) + x = self.gn5(x) + x = nn.functional.relu(x) + + x = self.out_lay(x) + return x + + +class DetrMHAttentionMap(nn.Module): + """This is a 2D attention module, which only returns the attention softmax (no multiplication by value)""" + + def __init__(self, query_dim, hidden_dim, num_heads, dropout=0.0, bias=True, std=None): + super().__init__() + self.num_heads = num_heads + self.hidden_dim = hidden_dim + self.dropout = nn.Dropout(dropout) + + self.q_linear = nn.Linear(query_dim, hidden_dim, bias=bias) + self.k_linear = nn.Linear(query_dim, hidden_dim, bias=bias) + + self.normalize_fact = float(hidden_dim / self.num_heads) ** -0.5 + + def forward(self, q, k, mask: Optional[Tensor] = None): + q = self.q_linear(q) + k = nn.functional.conv2d(k, self.k_linear.weight.unsqueeze(-1).unsqueeze(-1), self.k_linear.bias) + queries_per_head = q.view(q.shape[0], q.shape[1], self.num_heads, self.hidden_dim // self.num_heads) + keys_per_head = k.view(k.shape[0], self.num_heads, self.hidden_dim // self.num_heads, k.shape[-2], k.shape[-1]) + weights = torch.einsum("bqnc,bnchw->bqnhw", queries_per_head * self.normalize_fact, keys_per_head) + + if mask is not None: + weights.masked_fill_(mask.unsqueeze(1).unsqueeze(1), torch.finfo(weights.dtype).min) + weights = nn.functional.softmax(weights.flatten(2), dim=-1).view(weights.size()) + weights = self.dropout(weights) + return weights + + +def dice_loss(inputs, targets, num_boxes): + """ + Compute the DICE loss, similar to generalized IOU for masks + + Args: + inputs: A float tensor of arbitrary shape. + The predictions for each example. + targets: A float tensor with the same shape as inputs. Stores the binary + classification label for each element in inputs (0 for the negative class and 1 for the positive + class). + """ + inputs = inputs.sigmoid() + inputs = inputs.flatten(1) + numerator = 2 * (inputs * targets).sum(1) + denominator = inputs.sum(-1) + targets.sum(-1) + loss = 1 - (numerator + 1) / (denominator + 1) + return loss.sum() / num_boxes + + +def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2): + """ + Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002. + + Args: + inputs (`torch.FloatTensor` of arbitrary shape): + The predictions for each example. + targets (`torch.FloatTensor` with the same shape as `inputs`) + A tensor storing the binary classification label for each element in the `inputs` (0 for the negative class + and 1 for the positive class). + alpha (`float`, *optional*, defaults to `0.25`): + Optional weighting factor in the range (0,1) to balance positive vs. negative examples. + gamma (`int`, *optional*, defaults to `2`): + Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples. + + Returns: + Loss tensor + """ + prob = inputs.sigmoid() + ce_loss = nn.functional.binary_cross_entropy_with_logits(inputs, targets, reduction="none") + # add modulating factor + p_t = prob * targets + (1 - prob) * (1 - targets) + loss = ce_loss * ((1 - p_t) ** gamma) + + if alpha >= 0: + alpha_t = alpha * targets + (1 - alpha) * (1 - targets) + loss = alpha_t * loss + + return loss.mean(1).sum() / num_boxes + + +# taken from https://github.com/facebookresearch/detr/blob/master/models/detr.py +class DetrLoss(nn.Module): + """ + This class computes the losses for DetrForObjectDetection/DetrForSegmentation. The process happens in two steps: 1) + we compute hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair + of matched ground-truth / prediction (supervise class and box). + + A note on the `num_classes` argument (copied from original repo in detr.py): "the naming of the `num_classes` + parameter of the criterion is somewhat misleading. It indeed corresponds to `max_obj_id` + 1, where `max_obj_id` is + the maximum id for a class in your dataset. For example, COCO has a `max_obj_id` of 90, so we pass `num_classes` to + be 91. As another example, for a dataset that has a single class with `id` 1, you should pass `num_classes` to be 2 + (`max_obj_id` + 1). For more details on this, check the following discussion + https://github.com/facebookresearch/detr/issues/108#issuecomment-650269223" + + + Args: + matcher (`DetrHungarianMatcher`): + Module able to compute a matching between targets and proposals. + num_classes (`int`): + Number of object categories, omitting the special no-object category. + eos_coef (`float`): + Relative classification weight applied to the no-object category. + losses (`List[str]`): + List of all the losses to be applied. See `get_loss` for a list of all available losses. + """ + + def __init__(self, matcher, num_classes, eos_coef, losses): + super().__init__() + self.matcher = matcher + self.num_classes = num_classes + self.eos_coef = eos_coef + self.losses = losses + empty_weight = torch.ones(self.num_classes + 1) + empty_weight[-1] = self.eos_coef + self.register_buffer("empty_weight", empty_weight) + + # removed logging parameter, which was part of the original implementation + def loss_labels(self, outputs, targets, indices, num_boxes): + """ + Classification loss (NLL) targets dicts must contain the key "class_labels" containing a tensor of dim + [nb_target_boxes] + """ + if "logits" not in outputs: + raise KeyError("No logits were found in the outputs") + source_logits = outputs["logits"] + + idx = self._get_source_permutation_idx(indices) + target_classes_o = torch.cat([t["class_labels"][J] for t, (_, J) in zip(targets, indices)]) + target_classes = torch.full( + source_logits.shape[:2], self.num_classes, dtype=torch.int64, device=source_logits.device + ) + target_classes[idx] = target_classes_o + + loss_ce = nn.functional.cross_entropy(source_logits.transpose(1, 2), target_classes, self.empty_weight) + losses = {"loss_ce": loss_ce} + + return losses + + @torch.no_grad() + def loss_cardinality(self, outputs, targets, indices, num_boxes): + """ + Compute the cardinality error, i.e. the absolute error in the number of predicted non-empty boxes. + + This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients. + """ + logits = outputs["logits"] + device = logits.device + target_lengths = torch.as_tensor([len(v["class_labels"]) for v in targets], device=device) + # Count the number of predictions that are NOT "no-object" (which is the last class) + card_pred = (logits.argmax(-1) != logits.shape[-1] - 1).sum(1) + card_err = nn.functional.l1_loss(card_pred.float(), target_lengths.float()) + losses = {"cardinality_error": card_err} + return losses + + def loss_boxes(self, outputs, targets, indices, num_boxes): + """ + Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss. + + Targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]. The target boxes + are expected in format (center_x, center_y, w, h), normalized by the image size. + """ + if "pred_boxes" not in outputs: + raise KeyError("No predicted boxes found in outputs") + idx = self._get_source_permutation_idx(indices) + source_boxes = outputs["pred_boxes"][idx] + target_boxes = torch.cat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0) + + loss_bbox = nn.functional.l1_loss(source_boxes, target_boxes, reduction="none") + + losses = {} + losses["loss_bbox"] = loss_bbox.sum() / num_boxes + + loss_giou = 1 - torch.diag( + generalized_box_iou(center_to_corners_format(source_boxes), center_to_corners_format(target_boxes)) + ) + losses["loss_giou"] = loss_giou.sum() / num_boxes + return losses + + def loss_masks(self, outputs, targets, indices, num_boxes): + """ + Compute the losses related to the masks: the focal loss and the dice loss. + + Targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w]. + """ + if "pred_masks" not in outputs: + raise KeyError("No predicted masks found in outputs") + + source_idx = self._get_source_permutation_idx(indices) + target_idx = self._get_target_permutation_idx(indices) + source_masks = outputs["pred_masks"] + source_masks = source_masks[source_idx] + masks = [t["masks"] for t in targets] + # TODO use valid to mask invalid areas due to padding in loss + target_masks, valid = nested_tensor_from_tensor_list(masks).decompose() + target_masks = target_masks.to(source_masks) + target_masks = target_masks[target_idx] + + # upsample predictions to the target size + source_masks = nn.functional.interpolate( + source_masks[:, None], size=target_masks.shape[-2:], mode="bilinear", align_corners=False + ) + source_masks = source_masks[:, 0].flatten(1) + + target_masks = target_masks.flatten(1) + target_masks = target_masks.view(source_masks.shape) + losses = { + "loss_mask": sigmoid_focal_loss(source_masks, target_masks, num_boxes), + "loss_dice": dice_loss(source_masks, target_masks, num_boxes), + } + return losses + + def _get_source_permutation_idx(self, indices): + # permute predictions following indices + batch_idx = torch.cat([torch.full_like(source, i) for i, (source, _) in enumerate(indices)]) + source_idx = torch.cat([source for (source, _) in indices]) + return batch_idx, source_idx + + def _get_target_permutation_idx(self, indices): + # permute targets following indices + batch_idx = torch.cat([torch.full_like(target, i) for i, (_, target) in enumerate(indices)]) + target_idx = torch.cat([target for (_, target) in indices]) + return batch_idx, target_idx + + def get_loss(self, loss, outputs, targets, indices, num_boxes): + loss_map = { + "labels": self.loss_labels, + "cardinality": self.loss_cardinality, + "boxes": self.loss_boxes, + "masks": self.loss_masks, + } + if loss not in loss_map: + raise ValueError(f"Loss {loss} not supported") + return loss_map[loss](outputs, targets, indices, num_boxes) + + def forward(self, outputs, targets): + """ + This performs the loss computation. + + Args: + outputs (`dict`, *optional*): + Dictionary of tensors, see the output specification of the model for the format. + targets (`List[dict]`, *optional*): + List of dicts, such that `len(targets) == batch_size`. The expected keys in each dict depends on the + losses applied, see each loss' doc. + """ + outputs_without_aux = {k: v for k, v in outputs.items() if k != "auxiliary_outputs"} + + # Retrieve the matching between the outputs of the last layer and the targets + indices = self.matcher(outputs_without_aux, targets) + + # Compute the average number of target boxes across all nodes, for normalization purposes + num_boxes = sum(len(t["class_labels"]) for t in targets) + num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device) + world_size = 1 + if is_accelerate_available(): + if PartialState._shared_state != {}: + num_boxes = reduce(num_boxes) + world_size = PartialState().num_processes + num_boxes = torch.clamp(num_boxes / world_size, min=1).item() + + # Compute all the requested losses + losses = {} + for loss in self.losses: + losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes)) + + # In case of auxiliary losses, we repeat this process with the output of each intermediate layer. + if "auxiliary_outputs" in outputs: + for i, auxiliary_outputs in enumerate(outputs["auxiliary_outputs"]): + indices = self.matcher(auxiliary_outputs, targets) + for loss in self.losses: + if loss == "masks": + # Intermediate masks losses are too costly to compute, we ignore them. + continue + l_dict = self.get_loss(loss, auxiliary_outputs, targets, indices, num_boxes) + l_dict = {k + f"_{i}": v for k, v in l_dict.items()} + losses.update(l_dict) + + return losses + + +# taken from https://github.com/facebookresearch/detr/blob/master/models/detr.py +class DetrMLPPredictionHead(nn.Module): + """ + Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates, + height and width of a bounding box w.r.t. an image. + + Copied from https://github.com/facebookresearch/detr/blob/master/models/detr.py + + """ + + def __init__(self, input_dim, hidden_dim, output_dim, num_layers): + super().__init__() + self.num_layers = num_layers + h = [hidden_dim] * (num_layers - 1) + self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) + + def forward(self, x): + for i, layer in enumerate(self.layers): + x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x) + return x + + +# taken from https://github.com/facebookresearch/detr/blob/master/models/matcher.py +class DetrHungarianMatcher(nn.Module): + """ + This class computes an assignment between the targets and the predictions of the network. + + For efficiency reasons, the targets don't include the no_object. Because of this, in general, there are more + predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others are + un-matched (and thus treated as non-objects). + + Args: + class_cost: + The relative weight of the classification error in the matching cost. + bbox_cost: + The relative weight of the L1 error of the bounding box coordinates in the matching cost. + giou_cost: + The relative weight of the giou loss of the bounding box in the matching cost. + """ + + def __init__(self, class_cost: float = 1, bbox_cost: float = 1, giou_cost: float = 1): + super().__init__() + requires_backends(self, ["scipy"]) + + self.class_cost = class_cost + self.bbox_cost = bbox_cost + self.giou_cost = giou_cost + if class_cost == 0 and bbox_cost == 0 and giou_cost == 0: + raise ValueError("All costs of the Matcher can't be 0") + + @torch.no_grad() + def forward(self, outputs, targets): + """ + Args: + outputs (`dict`): + A dictionary that contains at least these entries: + * "logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits + * "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates. + targets (`List[dict]`): + A list of targets (len(targets) = batch_size), where each target is a dict containing: + * "class_labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of + ground-truth + objects in the target) containing the class labels + * "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates. + + Returns: + `List[Tuple]`: A list of size `batch_size`, containing tuples of (index_i, index_j) where: + - index_i is the indices of the selected predictions (in order) + - index_j is the indices of the corresponding selected targets (in order) + For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes) + """ + batch_size, num_queries = outputs["logits"].shape[:2] + + # We flatten to compute the cost matrices in a batch + out_prob = outputs["logits"].flatten(0, 1).softmax(-1) # [batch_size * num_queries, num_classes] + out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4] + + # Also concat the target labels and boxes + target_ids = torch.cat([v["class_labels"] for v in targets]) + target_bbox = torch.cat([v["boxes"] for v in targets]) + + # Compute the classification cost. Contrary to the loss, we don't use the NLL, + # but approximate it in 1 - proba[target class]. + # The 1 is a constant that doesn't change the matching, it can be ommitted. + class_cost = -out_prob[:, target_ids] + + # Compute the L1 cost between boxes + bbox_cost = torch.cdist(out_bbox, target_bbox, p=1) + + # Compute the giou cost between boxes + giou_cost = -generalized_box_iou(center_to_corners_format(out_bbox), center_to_corners_format(target_bbox)) + + # Final cost matrix + cost_matrix = self.bbox_cost * bbox_cost + self.class_cost * class_cost + self.giou_cost * giou_cost + cost_matrix = cost_matrix.view(batch_size, num_queries, -1).cpu() + + sizes = [len(v["boxes"]) for v in targets] + indices = [linear_sum_assignment(c[i]) for i, c in enumerate(cost_matrix.split(sizes, -1))] + return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices] + + +# below: bounding box utilities taken from https://github.com/facebookresearch/detr/blob/master/util/box_ops.py + + +def _upcast(t: Tensor) -> Tensor: + # Protects from numerical overflows in multiplications by upcasting to the equivalent higher type + if t.is_floating_point(): + return t if t.dtype in (torch.float32, torch.float64) else t.float() + else: + return t if t.dtype in (torch.int32, torch.int64) else t.int() + + +def box_area(boxes: Tensor) -> Tensor: + """ + Computes the area of a set of bounding boxes, which are specified by its (x1, y1, x2, y2) coordinates. + + Args: + boxes (`torch.FloatTensor` of shape `(number_of_boxes, 4)`): + Boxes for which the area will be computed. They are expected to be in (x1, y1, x2, y2) format with `0 <= x1 + < x2` and `0 <= y1 < y2`. + + Returns: + `torch.FloatTensor`: a tensor containing the area for each box. + """ + boxes = _upcast(boxes) + return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) + + +# modified from torchvision to also return the union +def box_iou(boxes1, boxes2): + area1 = box_area(boxes1) + area2 = box_area(boxes2) + + left_top = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] + right_bottom = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] + + width_height = (right_bottom - left_top).clamp(min=0) # [N,M,2] + inter = width_height[:, :, 0] * width_height[:, :, 1] # [N,M] + + union = area1[:, None] + area2 - inter + + iou = inter / union + return iou, union + + +def generalized_box_iou(boxes1, boxes2): + """ + Generalized IoU from https://giou.stanford.edu/. The boxes should be in [x0, y0, x1, y1] (corner) format. + + Returns: + `torch.FloatTensor`: a [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2) + """ + # degenerate boxes gives inf / nan results + # so do an early check + if not (boxes1[:, 2:] >= boxes1[:, :2]).all(): + raise ValueError(f"boxes1 must be in [x0, y0, x1, y1] (corner) format, but got {boxes1}") + if not (boxes2[:, 2:] >= boxes2[:, :2]).all(): + raise ValueError(f"boxes2 must be in [x0, y0, x1, y1] (corner) format, but got {boxes2}") + iou, union = box_iou(boxes1, boxes2) + + top_left = torch.min(boxes1[:, None, :2], boxes2[:, :2]) + bottom_right = torch.max(boxes1[:, None, 2:], boxes2[:, 2:]) + + width_height = (bottom_right - top_left).clamp(min=0) # [N,M,2] + area = width_height[:, :, 0] * width_height[:, :, 1] + + return iou - (area - union) / area + + +# below: taken from https://github.com/facebookresearch/detr/blob/master/util/misc.py#L306 +def _max_by_axis(the_list): + # type: (List[List[int]]) -> List[int] + maxes = the_list[0] + for sublist in the_list[1:]: + for index, item in enumerate(sublist): + maxes[index] = max(maxes[index], item) + return maxes + + +class NestedTensor(object): + def __init__(self, tensors, mask: Optional[Tensor]): + self.tensors = tensors + self.mask = mask + + def to(self, device): + cast_tensor = self.tensors.to(device) + mask = self.mask + if mask is not None: + cast_mask = mask.to(device) + else: + cast_mask = None + return NestedTensor(cast_tensor, cast_mask) + + def decompose(self): + return self.tensors, self.mask + + def __repr__(self): + return str(self.tensors) + + +def nested_tensor_from_tensor_list(tensor_list: List[Tensor]): + if tensor_list[0].ndim == 3: + max_size = _max_by_axis([list(img.shape) for img in tensor_list]) + batch_shape = [len(tensor_list)] + max_size + batch_size, num_channels, height, width = batch_shape + dtype = tensor_list[0].dtype + device = tensor_list[0].device + tensor = torch.zeros(batch_shape, dtype=dtype, device=device) + mask = torch.ones((batch_size, height, width), dtype=torch.bool, device=device) + for img, pad_img, m in zip(tensor_list, tensor, mask): + pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) + m[: img.shape[1], : img.shape[2]] = False + else: + raise ValueError("Only 3-dimensional tensors are supported") + return NestedTensor(tensor, mask) diff --git a/venv/lib/python3.10/site-packages/transformers/models/falcon/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/falcon/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..070e0cc033fbf6c364d2405bbf6367312e79a18d --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/falcon/__init__.py @@ -0,0 +1,68 @@ +# coding=utf-8 +# Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_torch_available, +) + + +_import_structure = { + "configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"], +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_falcon"] = [ + "FALCON_PRETRAINED_MODEL_ARCHIVE_LIST", + "FalconForCausalLM", + "FalconModel", + "FalconPreTrainedModel", + "FalconForSequenceClassification", + "FalconForTokenClassification", + "FalconForQuestionAnswering", + ] + + +if TYPE_CHECKING: + from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_falcon import ( + FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, + FalconForCausalLM, + FalconForQuestionAnswering, + FalconForSequenceClassification, + FalconForTokenClassification, + FalconModel, + FalconPreTrainedModel, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/venv/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4cc346ffad0d1641ecef0bba944bfa873ae7acb3 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/configuration_falcon.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/configuration_falcon.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5ca848804a2951861d3a609799a6a67612b7da75 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/configuration_falcon.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/convert_custom_code_checkpoint.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/convert_custom_code_checkpoint.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a652420c082c719fb3af186fc1adb40e7018a3c8 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/convert_custom_code_checkpoint.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/modeling_falcon.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/modeling_falcon.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..04726955cae9bb99d254d3b74b97d9ee4685a6ba Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/falcon/__pycache__/modeling_falcon.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/falcon/configuration_falcon.py b/venv/lib/python3.10/site-packages/transformers/models/falcon/configuration_falcon.py new file mode 100644 index 0000000000000000000000000000000000000000..61d202b0960829e6ea953d72d581b5858553e2bf --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/falcon/configuration_falcon.py @@ -0,0 +1,201 @@ +# coding=utf-8 +# Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Falcon configuration""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class FalconConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`FalconModel`]. It is used to instantiate a Falcon + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the + [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 65024): + Vocabulary size of the Falcon model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`FalconModel`] + hidden_size (`int`, *optional*, defaults to 4544): + Dimension of the hidden representations. + num_hidden_layers (`int`, *optional*, defaults to 32): + Number of hidden layers in the Transformer decoder. + num_attention_heads (`int`, *optional*, defaults to 71): + Number of attention heads for each attention layer in the Transformer encoder. + layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): + The epsilon used by the layer normalization layers. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + use_cache (`bool`, *optional*, defaults to `True`): + Whether the model should return the last key/values attentions (not used by all models). Only relevant if + `config.is_decoder=True`. + hidden_dropout (`float`, *optional*, defaults to 0.0): + The dropout probability for MLP layers. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout probability for attention layers. + num_kv_heads (`int`, *optional*): + Number of key-value heads to use per attention layer. If unset, defaults to the same value as + `num_attention_heads`. + alibi (`bool`, *optional*, defaults to `False`): + Whether to use ALiBi positional biases during self-attention. + new_decoder_architecture (`bool`, *optional*, defaults to `False`): + Whether to use the new (Falcon-40B) decoder architecture. If `True`, the `multi_query` and `parallel_attn` + arguments are ignored, as the new decoder always uses parallel attention. + multi_query (`bool`, *optional*, defaults to `True`): + Whether to use multi-query attention in the decoder. Ignored when `new_decoder_architecture` is `True`. + parallel_attn (`bool`, *optional*, defaults to `True`): + Whether to compute attention in parallel with the feedforward layer. If False, they are consecutive + instead, as in the original Transformer architecture. Ignored when `new_decoder_architecture` is `True`. + bias (`bool`, *optional*, defaults to `False`): + Whether to use bias on Linear layers. + max_position_embeddings (`int`, *optional*, defaults to 2048): + The maximum sequence length that this model might ever be used with, when `alibi` is `False`. Pretrained + Falcon models with RoPE support up to 2048 tokens. + rope_theta (`float`, *optional*, defaults to 10000.0): + The base period of the RoPE embeddings. + rope_scaling (`Dict`, *optional*): + Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling + strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is + `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update + `max_position_embeddings` to the expected new maximum. See the following thread for more information on how + these scaling strategies behave: + https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an + experimental feature, subject to breaking API changes in future versions. + bos_token_id (`int`, *optional*, defaults to 11): + The id of the "beginning-of-sequence" token. + eos_token_id (`int`, *optional*, defaults to 11): + The id of the "end-of-sequence" token. + ffn_hidden_size (`int`, *optional*): + The hidden size of the feedforward layer in the Transformer decoder. + defaults to 4x hidden dim + activation (`str`, *optional*, defaults to `"gelu"`): + The activation function used in the feedforward layer. + + Example: + + ```python + >>> from transformers import FalconModel, FalconConfig + + >>> # Initializing a small (2-layer) Falcon configuration + >>> configuration = FalconConfig(num_hidden_layers=2) + + >>> # Initializing a model from the small configuration + >>> model = FalconModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "falcon" + keys_to_ignore_at_inference = ["past_key_values"] + + def __init__( + self, + vocab_size=65024, + hidden_size=4544, + num_hidden_layers=32, + num_attention_heads=71, + layer_norm_epsilon=1e-5, + initializer_range=0.02, + use_cache=True, + hidden_dropout=0.0, + attention_dropout=0.0, + num_kv_heads=None, + alibi=False, + new_decoder_architecture=False, + multi_query=True, + parallel_attn=True, + bias=False, + max_position_embeddings=2048, + rope_theta=10000.0, + rope_scaling=None, + bos_token_id=11, + eos_token_id=11, + ffn_hidden_size=None, + activation="gelu", + **kwargs, + ): + self.vocab_size = vocab_size + # Backward compatibility with n_embed kwarg + n_embed = kwargs.pop("n_embed", None) + self.hidden_size = hidden_size if n_embed is None else n_embed + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.layer_norm_epsilon = layer_norm_epsilon + self.initializer_range = initializer_range + self.use_cache = use_cache + self.hidden_dropout = hidden_dropout + self.attention_dropout = attention_dropout + self.bos_token_id = bos_token_id + self.eos_token_id = eos_token_id + self.num_kv_heads = num_attention_heads if num_kv_heads is None else num_kv_heads + self.alibi = alibi + self.new_decoder_architecture = new_decoder_architecture + self.multi_query = multi_query # Ignored when new_decoder_architecture is True + self.parallel_attn = parallel_attn + self.bias = bias + self.max_position_embeddings = max_position_embeddings + self.rope_theta = rope_theta + self.rope_scaling = rope_scaling + self.activation = activation + if ffn_hidden_size is None: + self.ffn_hidden_size = hidden_size * 4 + else: + self.ffn_hidden_size = ffn_hidden_size + self._rope_scaling_validation() + + super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) + + @property + def head_dim(self): + return self.hidden_size // self.num_attention_heads + + @property + def rotary(self): + return not self.alibi + + def _rope_scaling_validation(self): + """ + Validate the `rope_scaling` configuration. + """ + if self.rope_scaling is None: + return + + if self.alibi: + raise ValueError("`rope_scaling` is not supported when `alibi` is `True`.") + + if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: + raise ValueError( + "`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}" + ) + rope_scaling_type = self.rope_scaling.get("type", None) + rope_scaling_factor = self.rope_scaling.get("factor", None) + if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: + raise ValueError( + f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" + ) + if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: + raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}") diff --git a/venv/lib/python3.10/site-packages/transformers/models/falcon/convert_custom_code_checkpoint.py b/venv/lib/python3.10/site-packages/transformers/models/falcon/convert_custom_code_checkpoint.py new file mode 100644 index 0000000000000000000000000000000000000000..0da817c3ffa73907c0215be12377f08fb5729a85 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/falcon/convert_custom_code_checkpoint.py @@ -0,0 +1,74 @@ +import json +from argparse import ArgumentParser +from pathlib import Path + + +""" +This script converts Falcon custom code checkpoints to modern Falcon checkpoints that use code in the Transformers +library. After conversion, performance (especially for generation) should improve and the checkpoint can be loaded +without needing trust_remote_code=True. +""" + +if __name__ == "__main__": + parser = ArgumentParser() + parser.add_argument( + "--checkpoint_dir", + type=Path, + required=True, + help="Directory containing a custom code checkpoint to convert to a modern Falcon checkpoint.", + ) + args = parser.parse_args() + + if not args.checkpoint_dir.is_dir(): + raise ValueError("--checkpoint_dir argument should be a directory!") + + if ( + not (args.checkpoint_dir / "configuration_RW.py").is_file() + or not (args.checkpoint_dir / "modelling_RW.py").is_file() + ): + raise ValueError( + "The model directory should contain configuration_RW.py and modelling_RW.py files! Are you sure this is a custom code checkpoint?" + ) + (args.checkpoint_dir / "configuration_RW.py").unlink() + (args.checkpoint_dir / "modelling_RW.py").unlink() + + config = args.checkpoint_dir / "config.json" + text = config.read_text() + text = text.replace("RWForCausalLM", "FalconForCausalLM") + text = text.replace("RefinedWebModel", "falcon") + text = text.replace("RefinedWeb", "falcon") + json_config = json.loads(text) + del json_config["auto_map"] + + if "n_head" in json_config: + json_config["num_attention_heads"] = json_config.pop("n_head") + if "n_layer" in json_config: + json_config["num_hidden_layers"] = json_config.pop("n_layer") + if "n_head_kv" in json_config: + json_config["num_kv_heads"] = json_config.pop("n_head_kv") + json_config["new_decoder_architecture"] = True + else: + json_config["new_decoder_architecture"] = False + bos_token_id = json_config.get("bos_token_id", 1) + eos_token_id = json_config.get("eos_token_id", 2) + config.unlink() + config.write_text(json.dumps(json_config, indent=2, sort_keys=True)) + + tokenizer_config = args.checkpoint_dir / "tokenizer_config.json" + if tokenizer_config.is_file(): + text = tokenizer_config.read_text() + json_config = json.loads(text) + if json_config["tokenizer_class"] == "PreTrainedTokenizerFast": + json_config["model_input_names"] = ["input_ids", "attention_mask"] + tokenizer_config.unlink() + tokenizer_config.write_text(json.dumps(json_config, indent=2, sort_keys=True)) + + generation_config_path = args.checkpoint_dir / "generation_config.json" + generation_dict = { + "_from_model_config": True, + "bos_token_id": bos_token_id, + "eos_token_id": eos_token_id, + "transformers_version": "4.33.0.dev0", + } + generation_config_path.write_text(json.dumps(generation_dict, indent=2, sort_keys=True)) + print("Done! Please double-check that the new checkpoint works as expected.") diff --git a/venv/lib/python3.10/site-packages/transformers/models/falcon/modeling_falcon.py b/venv/lib/python3.10/site-packages/transformers/models/falcon/modeling_falcon.py new file mode 100644 index 0000000000000000000000000000000000000000..d9254bec0a7342d10388f5954c54a3b16d747aaa --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/falcon/modeling_falcon.py @@ -0,0 +1,1640 @@ +# coding=utf-8 +# Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch Falcon model.""" + +import math +import warnings +from typing import TYPE_CHECKING, Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss +from torch.nn import functional as F + +from ...activations import get_activation +from ...modeling_attn_mask_utils import ( + AttentionMaskConverter, + _prepare_4d_causal_attention_mask, + _prepare_4d_causal_attention_mask_for_sdpa, +) +from ...modeling_outputs import ( + BaseModelOutputWithPastAndCrossAttentions, + CausalLMOutputWithCrossAttentions, + QuestionAnsweringModelOutput, + SequenceClassifierOutputWithPast, + TokenClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import is_torch_greater_or_equal_than_2_0 +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_flash_attn_2_available, + is_flash_attn_greater_or_equal_2_10, + logging, +) +from .configuration_falcon import FalconConfig + + +if TYPE_CHECKING: + from ...configuration_utils import PretrainedConfig + +if is_flash_attn_2_available(): + from flash_attn import flash_attn_func, flash_attn_varlen_func + from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa + +logger = logging.get_logger(__name__) + +from ..deprecated._archive_maps import FALCON_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +_CHECKPOINT_FOR_DOC = "Rocketknight1/falcon-rw-1b" +_CONFIG_FOR_DOC = "FalconConfig" + + +# NOTE(Hesslow): Unfortunately we did not fuse matmul and bias during training, this means that there's one additional quantization to bfloat16 between the operations. +# In order not to degrade the quality of our HF-port, we keep these characteristics in the final model. +class FalconLinear(nn.Linear): + def forward(self, input: torch.Tensor) -> torch.Tensor: + hidden_states = input @ self.weight.T + if self.bias is None: + return hidden_states + return hidden_states + self.bias + + +# Copied from transformers.models.llama.modeling_llama.rotate_half +def rotate_half(x): + """Rotates half the hidden dims of the input.""" + x1 = x[..., : x.shape[-1] // 2] + x2 = x[..., x.shape[-1] // 2 :] + return torch.cat((-x2, x1), dim=-1) + + +# Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb +def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): + """Applies Rotary Position Embedding to the query and key tensors. + + Args: + q (`torch.Tensor`): The query tensor. + k (`torch.Tensor`): The key tensor. + cos (`torch.Tensor`): The cosine part of the rotary embedding. + sin (`torch.Tensor`): The sine part of the rotary embedding. + position_ids (`torch.Tensor`): + The position indices of the tokens corresponding to the query and key tensors. For example, this can be + used to pass offsetted position ids when working with a KV-cache. + unsqueeze_dim (`int`, *optional*, defaults to 1): + The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and + sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note + that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and + k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes + cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have + the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. + Returns: + `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. + """ + cos = cos[position_ids].unsqueeze(unsqueeze_dim) + sin = sin[position_ids].unsqueeze(unsqueeze_dim) + q_embed = (q * cos) + (rotate_half(q) * sin) + k_embed = (k * cos) + (rotate_half(k) * sin) + return q_embed, k_embed + + +# Copied from transformers.models.llama.modeling_llama._get_unpad_data +def _get_unpad_data(attention_mask): + seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) + indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() + max_seqlen_in_batch = seqlens_in_batch.max().item() + cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) + return ( + indices, + cu_seqlens, + max_seqlen_in_batch, + ) + + +# Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->Falcon +class FalconRotaryEmbedding(nn.Module): + def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): + super().__init__() + + self.dim = dim + self.max_position_embeddings = max_position_embeddings + self.base = base + inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) + self.register_buffer("inv_freq", inv_freq, persistent=False) + + # Build here to make `torch.jit.trace` work. + self._set_cos_sin_cache( + seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() + ) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) + + freqs = torch.outer(t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) + + def forward(self, x, seq_len=None): + # x: [bs, num_attention_heads, seq_len, head_size] + if seq_len > self.max_seq_len_cached: + self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) + + return ( + self.cos_cached[:seq_len].to(dtype=x.dtype), + self.sin_cached[:seq_len].to(dtype=x.dtype), + ) + + +# copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->Falcon +# TODO @joao no longer copied from LLama after static cache, fix me (copied -> Copied) +class FalconLinearScalingRotaryEmbedding(FalconRotaryEmbedding): + """FalconRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" + + def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): + self.scaling_factor = scaling_factor + super().__init__(dim, max_position_embeddings, base, device) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) + t = t / self.scaling_factor + + freqs = torch.outer(t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) + + +# copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->Falcon +# TODO @joao no longer copied from LLama after static cache, fix me (copied -> Copied) +class FalconDynamicNTKScalingRotaryEmbedding(FalconRotaryEmbedding): + """FalconRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" + + def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): + self.scaling_factor = scaling_factor + super().__init__(dim, max_position_embeddings, base, device) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + + if seq_len > self.max_position_embeddings: + base = self.base * ( + (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) + ) ** (self.dim / (self.dim - 2)) + inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) + self.register_buffer("inv_freq", inv_freq, persistent=False) + + t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) + + freqs = torch.outer(t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) + + +def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor: + batch_size, seq_length = attention_mask.shape + closest_power_of_2 = 2 ** math.floor(math.log2(num_heads)) + base = torch.tensor( + 2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 + ) + powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32) + slopes = torch.pow(base, powers) + + if closest_power_of_2 != num_heads: + extra_base = torch.tensor( + 2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 + ) + num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2) + extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32) + slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0) + + # Note: alibi will added to the attention bias that will be applied to the query, key product of attention + # => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length) + # => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length) + # => the query_length dimension will then be broadcasted correctly + # This is more or less identical to T5's relative position bias: + # https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527 + arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :] + alibi = slopes[..., None].bfloat16() * arange_tensor + return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype) + + +# Copied from transformers.models.bloom.modeling_bloom.dropout_add +def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor: + """ + Dropout add function + + Args: + x (`torch.tensor`, *required*): + input tensor + residual (`torch.tensor`, *required*): + residual tensor + prob (`float`, *required*): + dropout probability + training (`bool`, *required*): + training mode + """ + out = F.dropout(x, p=prob, training=training) + out = residual + out + return out + + +class FalconAttention(nn.Module): + def __init__(self, config: FalconConfig): + super().__init__() + + self.config = config + self.hidden_size = config.hidden_size + self.num_heads = config.num_attention_heads + self.head_dim = self.hidden_size // self.num_heads + self.split_size = self.hidden_size + self.hidden_dropout = config.hidden_dropout + self.max_position_embeddings = config.max_position_embeddings + self.rope_theta = config.rope_theta + self.is_causal = True + self._use_sdpa = config._attn_implementation == "sdpa" + + if self.head_dim * self.num_heads != self.hidden_size: + raise ValueError( + f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:" + f" {self.num_heads})." + ) + + if config.rotary: + self._init_rope() + + # Layer-wise attention scaling + self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim) + self.beta = self.inv_norm_factor + if config.new_decoder_architecture: + qkv_out_dim = (config.num_kv_heads * 2 + config.num_attention_heads) * self.head_dim + elif config.multi_query: + qkv_out_dim = self.hidden_size + 2 * self.head_dim + else: + qkv_out_dim = 3 * self.hidden_size + self.query_key_value = FalconLinear(self.hidden_size, qkv_out_dim, bias=config.bias) + self.new_decoder_architecture = config.new_decoder_architecture + self.multi_query = config.multi_query + self.dense = FalconLinear(self.hidden_size, self.hidden_size, bias=config.bias) + self.attention_dropout = nn.Dropout(config.attention_dropout) + self.num_kv_heads = config.num_kv_heads if (self.new_decoder_architecture or not self.multi_query) else 1 + + # Copied from transformers.models.llama.modeling_llama.LlamaAttention._init_rope with Llama->Falcon + def _init_rope(self): + if self.config.rope_scaling is None: + self.rotary_emb = FalconRotaryEmbedding( + self.head_dim, + max_position_embeddings=self.max_position_embeddings, + base=self.rope_theta, + ) + else: + scaling_type = self.config.rope_scaling["type"] + scaling_factor = self.config.rope_scaling["factor"] + if scaling_type == "linear": + self.rotary_emb = FalconLinearScalingRotaryEmbedding( + self.head_dim, + max_position_embeddings=self.max_position_embeddings, + scaling_factor=scaling_factor, + base=self.rope_theta, + ) + elif scaling_type == "dynamic": + self.rotary_emb = FalconDynamicNTKScalingRotaryEmbedding( + self.head_dim, + max_position_embeddings=self.max_position_embeddings, + scaling_factor=scaling_factor, + base=self.rope_theta, + ) + else: + raise ValueError(f"Unknown RoPE scaling type {scaling_type}") + + def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Split the last dimension into (num_heads, head_dim), results share same memory storage as `fused_qkv` + + Args: + fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim] + + Returns: + query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim] + value: [batch_size, seq_length, num_heads, head_dim] + """ + if self.new_decoder_architecture: + batch, seq_len, _ = fused_qkv.shape + qkv = fused_qkv.view(batch, seq_len, -1, self.num_heads // self.num_kv_heads + 2, self.head_dim) + query = qkv[:, :, :, :-2] + key = qkv[:, :, :, [-2]] + value = qkv[:, :, :, [-1]] + key = torch.broadcast_to(key, query.shape) + value = torch.broadcast_to(value, query.shape) + + query, key, value = [x.flatten(2, 3) for x in (query, key, value)] + return query, key, value + elif not self.multi_query: + batch_size, seq_length, three_times_hidden_size = fused_qkv.shape + fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim) + return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :] + else: + batch_size, seq_length, three_times_hidden_size = fused_qkv.shape + fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads + 2, self.head_dim) + return fused_qkv[..., :-2, :], fused_qkv[..., [-2], :], fused_qkv[..., [-1], :] + + # Copied from transformers.models.bloom.modeling_bloom.BloomAttention._merge_heads + def _merge_heads(self, x: torch.Tensor) -> torch.Tensor: + """ + Merge heads together over the last dimension + + Args: + x (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim] + + Returns: + torch.tensor: [batch_size, seq_length, num_heads * head_dim] + """ + # What we want to achieve is: + # batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim + batch_size_and_num_heads, seq_length, _ = x.shape + batch_size = batch_size_and_num_heads // self.num_heads + + # First view to decompose the batch size + # batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim + x = x.view(batch_size, self.num_heads, seq_length, self.head_dim) + + # batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim + x = x.permute(0, 2, 1, 3) + + # batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim + return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim) + + def forward( + self, + hidden_states: torch.Tensor, + alibi: Optional[torch.Tensor], + attention_mask: torch.Tensor, + position_ids: Optional[torch.LongTensor] = None, + layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, + head_mask: Optional[torch.Tensor] = None, + use_cache: bool = False, + output_attentions: bool = False, + **kwargs, + ): + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" + ) + + fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size] + num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads + # 3 x [batch_size, seq_length, num_heads, head_dim] + (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv) + + batch_size, query_length, _, _ = query_layer.shape + + query_layer = query_layer.transpose(1, 2).reshape(batch_size, self.num_heads, query_length, self.head_dim) + key_layer = key_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim) + value_layer = value_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim) + + kv_seq_len = key_layer.shape[-2] + if layer_past is not None: + kv_seq_len += layer_past[0].shape[-2] + if alibi is None: + cos, sin = self.rotary_emb(value_layer, seq_len=kv_seq_len) + query_layer, key_layer = apply_rotary_pos_emb(query_layer, key_layer, cos, sin, position_ids) + + if layer_past is not None: + past_key, past_value = layer_past + # concatenate along seq_length dimension: + # - key: [batch_size, self.num_heads, kv_length, head_dim] + # - value: [batch_size, self.num_heads, kv_length, head_dim] + key_layer = torch.cat((past_key, key_layer), dim=-2) + value_layer = torch.cat((past_value, value_layer), dim=-2) + + kv_length = key_layer.shape[-2] + if use_cache: + present = (key_layer, value_layer) + else: + present = None + + if self._use_sdpa and query_layer.device.type == "cuda" and attention_mask is not None: + # For torch<=2.1.2, SDPA with memory-efficient backend is bugged with non-contiguous inputs with custom attn_mask, + # Reference: https://github.com/pytorch/pytorch/issues/112577. + query_layer = query_layer.contiguous() + key_layer = key_layer.contiguous() + value_layer = value_layer.contiguous() + + if alibi is None: + if self._use_sdpa and not output_attentions: + attn_output = F.scaled_dot_product_attention( + query_layer, + key_layer, + value_layer, + attention_mask, + 0.0, + # The query_length > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case query_length == 1. + is_causal=self.is_causal and attention_mask is None and query_length > 1, + ) + + attention_scores = None + else: + attention_scores = query_layer @ key_layer.transpose(-1, -2) + attention_scores /= math.sqrt(self.head_dim) + + attention_scores = F.softmax(attention_scores + attention_mask, dim=-1, dtype=hidden_states.dtype) + # It is unclear why neither dropout nor head_mask is applied here (while it is with alibi). + attn_output = attention_scores @ value_layer + + attn_output = attn_output.view(batch_size, self.num_heads, query_length, self.head_dim) + attn_output = attn_output.permute(0, 2, 1, 3) + attn_output = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim) + + attn_output = self.dense(attn_output) + + if output_attentions: + return attn_output, present, attention_scores + else: + return attn_output, present + + else: + if self._use_sdpa and not output_attentions and head_mask is None: + attn_output = F.scaled_dot_product_attention( + query_layer, + key_layer, + value_layer, + attn_mask=attention_mask, + dropout_p=self.attention_dropout.p if self.training else 0.0, + is_causal=self.is_causal and attention_mask is None and query_length > 1, + ) + attn_output = attn_output.transpose(1, 2) + attn_output = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim) + + attn_output = self.dense(attn_output) + else: + matmul_result = query_layer @ key_layer.transpose(-1, -2) + + # change view to [batch_size, num_heads, q_length, kv_length] + attention_scores = matmul_result.view(batch_size, self.num_heads, query_length, kv_length) + + # cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length] + input_dtype = attention_scores.dtype + # `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38` + if input_dtype == torch.float16 or input_dtype == torch.bfloat16: + attention_scores = attention_scores.to(torch.float32) + + attention_logits = attention_scores + alibi.view(batch_size, self.num_heads, 1, -1) + attention_logits *= self.inv_norm_factor + attention_probs = F.softmax(attention_logits + attention_mask, dim=-1, dtype=hidden_states.dtype) + # [batch_size, num_heads, q_length, kv_length] + attention_probs = self.attention_dropout(attention_probs) + + if head_mask is not None: + attention_probs = attention_probs * head_mask + + # change view [batch_size, num_heads, q_length, kv_length] + attention_probs_reshaped = attention_probs.view(batch_size, self.num_heads, query_length, kv_length) + + # matmul: [batch_size * num_heads, q_length, head_dim] + attn_output = (attention_probs_reshaped @ value_layer).flatten(0, 1) + + # change view [batch_size, q_length, num_heads * head_dim] + attn_output = self._merge_heads(attn_output) + + attn_output = self.dense(attn_output) + + if output_attentions: + return attn_output, present, attention_probs + else: + return attn_output, present + + +class FalconFlashAttention2(FalconAttention): + """ + Falcon flash attention module. This module inherits from `FalconAttention` as the weights of the module stays + untouched. The only required change would be on the forward pass where it needs to correctly call the public API of + flash attention and deal with padding tokens in case the input contains any of them. + """ + + # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. + # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. + # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). + self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() + + def forward( + self, + hidden_states: torch.Tensor, + alibi: Optional[torch.Tensor], + attention_mask: torch.Tensor, + position_ids: Optional[torch.LongTensor] = None, + layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, + head_mask: Optional[torch.Tensor] = None, + use_cache: bool = False, + output_attentions: bool = False, + **kwargs, + ): + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" + ) + + # overwrite attention_mask with padding_mask + attention_mask = kwargs.pop("padding_mask") + + fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size] + num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads + # 3 x [batch_size, seq_length, num_heads, head_dim] + (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv) + + batch_size, query_length, _, _ = query_layer.shape + + query_layer = query_layer.transpose(1, 2).reshape(batch_size, self.num_heads, query_length, self.head_dim) + key_layer = key_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim) + value_layer = value_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim) + + kv_seq_len = key_layer.shape[-2] + if layer_past is not None: + kv_seq_len += layer_past[0].shape[-2] + if alibi is None: + cos, sin = self.rotary_emb(value_layer, seq_len=kv_seq_len) + query_layer, key_layer = apply_rotary_pos_emb(query_layer, key_layer, cos, sin, position_ids) + + if layer_past is not None and use_cache: + past_key, past_value = layer_past + # concatenate along seq_length dimension: + # - key: [batch_size, self.num_heads, kv_length, head_dim] + # - value: [batch_size, self.num_heads, kv_length, head_dim] + key_layer = torch.cat((past_key, key_layer), dim=-2) + value_layer = torch.cat((past_value, value_layer), dim=-2) + + past_key_value = (key_layer, value_layer) if use_cache else None + + # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache + # to be able to avoid many of these transpose/reshape/view. + query_layer = query_layer.transpose(1, 2) + key_layer = key_layer.transpose(1, 2) + value_layer = value_layer.transpose(1, 2) + + if alibi is not None: + raise ValueError("`alibi` is not supported when `use_flash_attn` is True") + + attn_dropout = self.config.attention_dropout if self.training else 0.0 + + # In PEFT, usually we cast the layer norms in float32 for training stability reasons + # therefore the input hidden states gets silently casted in float32. Hence, we need + # cast them back in float16 just to be sure everything works as expected. + input_dtype = query_layer.dtype + if input_dtype == torch.float32: + if torch.is_autocast_enabled(): + target_dtype = torch.get_autocast_gpu_dtype() + # Handle the case where the model is quantized + elif hasattr(self.config, "_pre_quantization_dtype"): + target_dtype = self.config._pre_quantization_dtype + else: + target_dtype = self.query_key_value.weight.dtype + + logger.warning_once( + f"The input hidden states seems to be silently casted in float32, this might be related to" + f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" + f" {target_dtype}." + ) + + query_layer = query_layer.to(target_dtype) + key_layer = key_layer.to(target_dtype) + value_layer = value_layer.to(target_dtype) + + attn_output = self._flash_attention_forward( + query_layer, key_layer, value_layer, attention_mask, query_length, dropout=attn_dropout + ) + + attn_weights = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim) + attn_output = self.dense(attn_weights) + + if not output_attentions: + attn_weights = None + + return attn_output, past_key_value, attn_weights + + # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward + def _flash_attention_forward( + self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None + ): + """ + Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token + first unpad the input, then computes the attention scores and pad the final attention scores. + + Args: + query_states (`torch.Tensor`): + Input query states to be passed to Flash Attention API + key_states (`torch.Tensor`): + Input key states to be passed to Flash Attention API + value_states (`torch.Tensor`): + Input value states to be passed to Flash Attention API + attention_mask (`torch.Tensor`): + The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the + position of padding tokens and 1 for the position of non-padding tokens. + dropout (`float`): + Attention dropout + softmax_scale (`float`, *optional*): + The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) + """ + if not self._flash_attn_uses_top_left_mask: + causal = self.is_causal + else: + # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. + causal = self.is_causal and query_length != 1 + + # Contains at least one padding token in the sequence + if attention_mask is not None: + batch_size = query_states.shape[0] + query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( + query_states, key_states, value_states, attention_mask, query_length + ) + + cu_seqlens_q, cu_seqlens_k = cu_seq_lens + max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens + + attn_output_unpad = flash_attn_varlen_func( + query_states, + key_states, + value_states, + cu_seqlens_q=cu_seqlens_q, + cu_seqlens_k=cu_seqlens_k, + max_seqlen_q=max_seqlen_in_batch_q, + max_seqlen_k=max_seqlen_in_batch_k, + dropout_p=dropout, + softmax_scale=softmax_scale, + causal=causal, + ) + + attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) + else: + attn_output = flash_attn_func( + query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal + ) + + return attn_output + + # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input + def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): + indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) + batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape + + key_layer = index_first_axis( + key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k + ) + value_layer = index_first_axis( + value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k + ) + if query_length == kv_seq_len: + query_layer = index_first_axis( + query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k + ) + cu_seqlens_q = cu_seqlens_k + max_seqlen_in_batch_q = max_seqlen_in_batch_k + indices_q = indices_k + elif query_length == 1: + max_seqlen_in_batch_q = 1 + cu_seqlens_q = torch.arange( + batch_size + 1, dtype=torch.int32, device=query_layer.device + ) # There is a memcpy here, that is very bad. + indices_q = cu_seqlens_q[:-1] + query_layer = query_layer.squeeze(1) + else: + # The -q_len: slice assumes left padding. + attention_mask = attention_mask[:, -query_length:] + query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) + + return ( + query_layer, + key_layer, + value_layer, + indices_q, + (cu_seqlens_q, cu_seqlens_k), + (max_seqlen_in_batch_q, max_seqlen_in_batch_k), + ) + + +class FalconMLP(nn.Module): + def __init__(self, config: FalconConfig): + super().__init__() + hidden_size = config.hidden_size + + self.dense_h_to_4h = FalconLinear(hidden_size, config.ffn_hidden_size, bias=config.bias) + self.act = get_activation(config.activation) + self.dense_4h_to_h = FalconLinear(config.ffn_hidden_size, hidden_size, bias=config.bias) + self.hidden_dropout = config.hidden_dropout + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.act(self.dense_h_to_4h(x)) + x = self.dense_4h_to_h(x) + return x + + +FALCON_ATTENTION_CLASSES = { + "eager": FalconAttention, + "sdpa": FalconAttention, # FalconAttention originally implemented both a forward with & without SDPA + "flash_attention_2": FalconFlashAttention2, +} + + +class FalconDecoderLayer(nn.Module): + def __init__(self, config: FalconConfig): + super().__init__() + hidden_size = config.hidden_size + self.num_heads = config.num_attention_heads + + self.self_attention = FALCON_ATTENTION_CLASSES[config._attn_implementation](config) + self.mlp = FalconMLP(config) + self.hidden_dropout = config.hidden_dropout + self.config = config + + if config.new_decoder_architecture: + # The layer norm before self-attention + self.ln_attn = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) + # The layer norm before the MLP + self.ln_mlp = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) + else: + self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) + if not config.parallel_attn: + self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) + + def forward( + self, + hidden_states: torch.Tensor, + alibi: Optional[torch.Tensor], + attention_mask: torch.Tensor, + position_ids: Optional[torch.LongTensor] = None, + layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, + head_mask: Optional[torch.Tensor] = None, + use_cache: bool = False, + output_attentions: bool = False, + **kwargs, + ): + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" + ) + + residual = hidden_states + + if self.config.new_decoder_architecture: + attention_layernorm_out = self.ln_attn(hidden_states) + mlp_layernorm_out = self.ln_mlp(hidden_states) + else: + attention_layernorm_out = self.input_layernorm(hidden_states) + + # Self attention. + attn_outputs = self.self_attention( + attention_layernorm_out, + layer_past=layer_past, + attention_mask=attention_mask, + position_ids=position_ids, + alibi=alibi, + head_mask=head_mask, + use_cache=use_cache, + output_attentions=output_attentions, + **kwargs, + ) + + attention_output = attn_outputs[0] + + if not self.config.new_decoder_architecture: + if self.config.parallel_attn: + mlp_layernorm_out = attention_layernorm_out + else: + residual = dropout_add( + attention_output, residual, self.config.attention_dropout, training=self.training + ) + mlp_layernorm_out = self.post_attention_layernorm(residual) + + outputs = attn_outputs[1:] + + # MLP. + mlp_output = self.mlp(mlp_layernorm_out) + + if self.config.new_decoder_architecture or self.config.parallel_attn: + mlp_output += attention_output + + output = dropout_add(mlp_output, residual, self.config.hidden_dropout, training=self.training) + + if use_cache: + outputs = (output,) + outputs + else: + outputs = (output,) + outputs[1:] + + return outputs # hidden_states, present, attentions + + +FALCON_START_DOCSTRING = r""" + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`FalconConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +FALCON_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): + `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]` + (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary. + + If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as + `input_ids`. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.num_hidden_layers`): + Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see + `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have + their past given to this model should not be passed as `input_ids` as they have already been computed. + + Each element of `past_key_values` is a tuple (past_key, past_value): + - past_key: [batch_size * num_heads, head_dim, kv_length] + - past_value: [batch_size * num_heads, kv_length, head_dim] + attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.n_positions - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + + If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see + `past_key_values`). + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. +""" + + +class FalconPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = FalconConfig + base_model_prefix = "transformer" + supports_gradient_checkpointing = True + _no_split_modules = ["FalconDecoderLayer"] + _supports_flash_attn_2 = True + _supports_sdpa = True + + def __init__(self, *inputs, **kwargs): + super().__init__(*inputs, **kwargs) + + def _init_weights(self, module: nn.Module): + """Initialize the weights.""" + if isinstance(module, nn.Linear) or isinstance(module, FalconLinear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + # Adapted from transformers.modeling_utils.PreTrainedModel._check_and_enable_sdpa + @classmethod + def _check_and_enable_sdpa(cls, config, hard_check_only: bool = False) -> "PretrainedConfig": + # NOTE: Falcon supported SDPA from PyTorch 2.0. We keep it like that for backward compatibility (automatically use SDPA for torch>=2.0). + if hard_check_only: + if not is_torch_greater_or_equal_than_2_0: + raise ImportError("PyTorch SDPA requirements in Transformers are not met. Please install torch>=2.0.") + + if not is_torch_greater_or_equal_than_2_0: + return config + + _is_bettertransformer = getattr(cls, "use_bettertransformer", False) + if _is_bettertransformer: + return config + + if not hard_check_only: + config._attn_implementation = "sdpa" + return config + + +@add_start_docstrings( + "The bare Falcon Model transformer outputting raw hidden-states without any specific head on top.", + FALCON_START_DOCSTRING, +) +class FalconModel(FalconPreTrainedModel): + def __init__(self, config: FalconConfig): + super().__init__(config) + + self.embed_dim = config.hidden_size + self.num_heads = config.num_attention_heads + self.use_alibi = config.alibi + + # Embedding + LN Embedding + self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim) + + # Transformer blocks + self.h = nn.ModuleList([FalconDecoderLayer(config) for _ in range(config.num_hidden_layers)]) + self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" + self._use_sdpa = config._attn_implementation == "sdpa" + + # Final Layer Norm + self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) + + self.gradient_checkpointing = False + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.word_embeddings + + def set_input_embeddings(self, new_embeddings: torch.Tensor): + self.word_embeddings = new_embeddings + + @add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPastAndCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + batch_size, seq_length = input_ids.shape + elif inputs_embeds is not None: + batch_size, seq_length, _ = inputs_embeds.shape + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if past_key_values is None: + past_key_values = tuple([None] * len(self.h)) + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + + hidden_states = inputs_embeds + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + presents = () if use_cache else None + all_self_attentions = () if output_attentions else None + all_hidden_states = () if output_hidden_states else None + + # Compute alibi tensor: check build_alibi_tensor documentation + past_key_values_length = 0 + if past_key_values[0] is not None: + past_key_values_length = past_key_values[0][0].shape[-2] + + if self.use_alibi: + mask = ( + torch.ones( + (batch_size, seq_length + past_key_values_length), device=inputs_embeds.device, dtype=torch.long + ) + if attention_mask is None + else attention_mask + ) + alibi = build_alibi_tensor(mask, self.num_heads, dtype=hidden_states.dtype) + else: + alibi = None + if position_ids is None: + device = input_ids.device if input_ids is not None else inputs_embeds.device + position_ids = torch.arange( + past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device + ) + position_ids = position_ids.unsqueeze(0) + + if self._use_flash_attention_2: + # 2d mask is passed through the layers + attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None + elif self._use_sdpa and not output_attentions: + # output_attentions=True can not be supported when using SDPA, and we fall back on + # the manual implementation that requires a 4D causal mask in all cases. + if alibi is None: + attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( + attention_mask, + (batch_size, seq_length), + inputs_embeds, + past_key_values_length, + ) + elif head_mask is None: + alibi = alibi.reshape(batch_size, -1, *alibi.shape[1:]) + + # We don't call _prepare_4d_causal_attention_mask_for_sdpa as we need to mask alibi using the 4D attention_mask untouched. + attention_mask = _prepare_4d_causal_attention_mask( + attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length + ) + + # We take care to integrate alibi bias in the attention_mask here. + min_dtype = torch.finfo(alibi.dtype).min + attention_mask = torch.masked_fill( + alibi / math.sqrt(self.config.hidden_size // self.num_heads), + attention_mask < -1, + min_dtype, + ) + + # From PyTorch 2.1 onwards, F.scaled_dot_product_attention with the memory-efficient attention backend + # produces nans if sequences are completely unattended in the attention mask. Details: https://github.com/pytorch/pytorch/issues/110213 + if seq_length > 1 and attention_mask.device.type == "cuda": + attention_mask = AttentionMaskConverter._unmask_unattended(attention_mask, min_dtype=min_dtype) + else: + # PyTorch SDPA does not support head_mask, we fall back on the eager implementation in this case. + attention_mask = _prepare_4d_causal_attention_mask( + attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length + ) + else: + # 4d mask is passed through the layers + attention_mask = _prepare_4d_causal_attention_mask( + attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length + ) + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape batch_size x num_heads x N x N + # head_mask has shape n_layer x batch x num_heads x N x N + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if self.gradient_checkpointing and self.training: + outputs = self._gradient_checkpointing_func( + block.__call__, + hidden_states, + alibi, + attention_mask, + position_ids, + head_mask[i], + layer_past, + use_cache, + output_attentions, + ) + else: + outputs = block( + hidden_states, + layer_past=layer_past, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask[i], + use_cache=use_cache, + output_attentions=output_attentions, + alibi=alibi, + ) + + hidden_states = outputs[0] + if use_cache is True: + presents = presents + (outputs[1],) + + if output_attentions: + all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) + + # Add last hidden state + hidden_states = self.ln_f(hidden_states) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) + + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=presents, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +@add_start_docstrings( + "The Falcon Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings).", + FALCON_START_DOCSTRING, +) +class FalconForCausalLM(FalconPreTrainedModel): + _tied_weights_keys = ["lm_head.weight"] + + def __init__(self, config: FalconConfig): + super().__init__(config) + self.transformer = FalconModel(config) + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings: torch.Tensor): + self.lm_head = new_embeddings + + def prepare_inputs_for_generation( + self, + input_ids: torch.LongTensor, + past_key_values: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + **kwargs, + ) -> dict: + if past_key_values is not None: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = input_ids.shape[1] - 1 + + input_ids = input_ids[:, remove_prefix_length:] + + # Note: versions of Falcon with alibi do not use position_ids. It is used with RoPE. + if not self.transformer.use_alibi and attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -input_ids.shape[1] :] + + return { + "input_ids": input_ids, + "position_ids": position_ids, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "attention_mask": attention_mask, + } + + @add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=CausalLMOutputWithCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set + `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` + are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` + """ + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.transformer( + input_ids, + past_key_values=past_key_values, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + + lm_logits = self.lm_head(hidden_states) + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = lm_logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + batch_size, seq_length, vocab_size = shift_logits.shape + # Flatten the tokens + loss_fct = CrossEntropyLoss() + loss = loss_fct( + shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length) + ) + + if not return_dict: + output = (lm_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return CausalLMOutputWithCrossAttentions( + loss=loss, + logits=lm_logits, + past_key_values=transformer_outputs.past_key_values, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + def _reorder_cache( + self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor + ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: + """ + This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or + [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct + beam_idx at every generation step. + + Output shares the same memory storage as `past`. + """ + + # Get a copy of `beam_idx` on all the devices where we need those indices. + device_to_beam_idx = { + past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past + } + reordered_past = tuple( + ( + layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]), + layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]), + ) + for layer_past in past + ) + return reordered_past + + +@add_start_docstrings( + """ + The Falcon Model transformer with a sequence classification head on top (linear layer). + + [`FalconForSequenceClassification`] uses the last token in order to do the classification, as other causal models + (e.g. GPT-1) do. + + Since it does classification on the last token, it requires to know the position of the last token. If a + `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If + no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the + padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in + each row of the batch). + """, + FALCON_START_DOCSTRING, +) +class FalconForSequenceClassification(FalconPreTrainedModel): + def __init__(self, config: FalconConfig): + super().__init__(config) + self.num_labels = config.num_labels + self.transformer = FalconModel(config) + self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=SequenceClassifierOutputWithPast, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.transformer( + input_ids, + past_key_values=past_key_values, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = transformer_outputs[0] + logits = self.score(hidden_states) + + if input_ids is not None: + batch_size = input_ids.shape[0] + else: + batch_size = inputs_embeds.shape[0] + + if self.config.pad_token_id is None and batch_size != 1: + raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") + if self.config.pad_token_id is None: + sequence_lengths = -1 + else: + if input_ids is not None: + # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility + sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 + sequence_lengths = sequence_lengths % input_ids.shape[-1] + sequence_lengths = sequence_lengths.to(logits.device) + else: + sequence_lengths = -1 + logger.warning( + f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " + "unexpected if using padding tokens in conjunction with `inputs_embeds.`" + ) + + pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(pooled_logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(pooled_logits, labels) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(pooled_logits, labels) + if not return_dict: + output = (pooled_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutputWithPast( + loss=loss, + logits=pooled_logits, + past_key_values=transformer_outputs.past_key_values, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + +@add_start_docstrings( + """ + Falcon Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for + Named-Entity-Recognition (NER) tasks. + """, + FALCON_START_DOCSTRING, +) +class FalconForTokenClassification(FalconPreTrainedModel): + def __init__(self, config: FalconConfig): + super().__init__(config) + self.num_labels = config.num_labels + + self.transformer = FalconModel(config) + if getattr(config, "classifier_dropout", None) is not None: + classifier_dropout = config.classifier_dropout + elif getattr(config, "hidden_dropout", None) is not None: + classifier_dropout = config.hidden_dropout + else: + classifier_dropout = 0.1 + self.dropout = nn.Dropout(classifier_dropout) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.transformer( + input_ids, + past_key_values=past_key_values, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = transformer_outputs[0] + hidden_states = self.dropout(hidden_states) + logits = self.classifier(hidden_states) + + loss = None + if labels is not None: + batch_size, seq_length = labels.shape + loss_fct = CrossEntropyLoss() + loss = loss_fct( + logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length) + ) + + if not return_dict: + output = (logits,) + transformer_outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + +@add_start_docstrings( + """ + The Falcon Model transformer with a span classification head on top for extractive question-answering tasks like + SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + FALCON_START_DOCSTRING, +) +class FalconForQuestionAnswering(FalconPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.transformer = FalconModel(config) + self.qa_outputs = nn.Linear(config.hidden_size, 2) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + start_positions: Optional[torch.LongTensor] = None, + end_positions: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, QuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.transformer( + input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return QuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) diff --git a/venv/lib/python3.10/site-packages/transformers/models/vit/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/vit/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..485758c42081c8e0b23ffa856752278c20697737 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/vit/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/vit/__pycache__/configuration_vit.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/vit/__pycache__/configuration_vit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..83ae7b9bf3ad7076c4229eb9361f1f82400940e9 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/vit/__pycache__/configuration_vit.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/vit/__pycache__/convert_dino_to_pytorch.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/vit/__pycache__/convert_dino_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fa7d715a1a5889f97be5b6102ff1870d11356378 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/vit/__pycache__/convert_dino_to_pytorch.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/vit/__pycache__/convert_vit_timm_to_pytorch.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/vit/__pycache__/convert_vit_timm_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..48be4c031dd3b1fbe79cea60f59bdcfbaad4c141 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/vit/__pycache__/convert_vit_timm_to_pytorch.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/vit/__pycache__/feature_extraction_vit.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/vit/__pycache__/feature_extraction_vit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ca9606876ee1edc8bb4bcef29f344b4391da6bab Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/vit/__pycache__/feature_extraction_vit.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/vit/__pycache__/image_processing_vit.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/vit/__pycache__/image_processing_vit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2a47eaf96c231d65c98434b75fbcf4afde419b88 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/vit/__pycache__/image_processing_vit.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/vit/__pycache__/modeling_flax_vit.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/vit/__pycache__/modeling_flax_vit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fb9dbf6276706e61471308c64ea99d9d68323824 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/vit/__pycache__/modeling_flax_vit.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/vit/__pycache__/modeling_tf_vit.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/vit/__pycache__/modeling_tf_vit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..72ae29f2dc55daeed26e27260ea5eea0bf841fee Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/vit/__pycache__/modeling_tf_vit.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/vit/__pycache__/modeling_vit.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/vit/__pycache__/modeling_vit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1cc09924b327a7963c124db47ca2482ab338a507 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/vit/__pycache__/modeling_vit.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/vit/convert_dino_to_pytorch.py b/venv/lib/python3.10/site-packages/transformers/models/vit/convert_dino_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..7eec823ad5d1d80a5a438693dbaee49189d7731f --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/vit/convert_dino_to_pytorch.py @@ -0,0 +1,219 @@ +# coding=utf-8 +# Copyright 2021 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert ViT checkpoints trained with the DINO method.""" + + +import argparse +import json +from pathlib import Path + +import requests +import torch +from huggingface_hub import hf_hub_download +from PIL import Image + +from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel +from transformers.utils import logging + + +logging.set_verbosity_info() +logger = logging.get_logger(__name__) + + +# here we list all keys to be renamed (original name on the left, our name on the right) +def create_rename_keys(config, base_model=False): + rename_keys = [] + for i in range(config.num_hidden_layers): + # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms + rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight")) + rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias")) + rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight")) + rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias")) + rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight")) + rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias")) + rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight")) + rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias")) + rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight")) + rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias")) + + # projection layer + position embeddings + rename_keys.extend( + [ + ("cls_token", "vit.embeddings.cls_token"), + ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), + ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), + ("pos_embed", "vit.embeddings.position_embeddings"), + ] + ) + + if base_model: + # layernorm + pooler + rename_keys.extend( + [ + ("norm.weight", "layernorm.weight"), + ("norm.bias", "layernorm.bias"), + ] + ) + + # if just the base model, we should remove "vit" from all keys that start with "vit" + rename_keys = [(pair[0], pair[1][4:]) if pair[1].startswith("vit") else pair for pair in rename_keys] + else: + # layernorm + classification head + rename_keys.extend( + [ + ("norm.weight", "vit.layernorm.weight"), + ("norm.bias", "vit.layernorm.bias"), + ("head.weight", "classifier.weight"), + ("head.bias", "classifier.bias"), + ] + ) + + return rename_keys + + +# we split up the matrix of each encoder layer into queries, keys and values +def read_in_q_k_v(state_dict, config, base_model=False): + for i in range(config.num_hidden_layers): + if base_model: + prefix = "" + else: + prefix = "vit." + # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) + in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight") + in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias") + # next, add query, keys and values (in that order) to the state dict + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[ + : config.hidden_size, : + ] + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size] + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ + config.hidden_size : config.hidden_size * 2, : + ] + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[ + config.hidden_size : config.hidden_size * 2 + ] + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[ + -config.hidden_size :, : + ] + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :] + + +def remove_classification_head_(state_dict): + ignore_keys = ["head.weight", "head.bias"] + for k in ignore_keys: + state_dict.pop(k, None) + + +def rename_key(dct, old, new): + val = dct.pop(old) + dct[new] = val + + +# We will verify our results on an image of cute cats +def prepare_img(): + url = "http://images.cocodataset.org/val2017/000000039769.jpg" + im = Image.open(requests.get(url, stream=True).raw) + return im + + +@torch.no_grad() +def convert_vit_checkpoint(model_name, pytorch_dump_folder_path, base_model=True): + """ + Copy/paste/tweak model's weights to our ViT structure. + """ + + # define default ViT configuration + config = ViTConfig() + # patch_size + if model_name[-1] == "8": + config.patch_size = 8 + # set labels if required + if not base_model: + config.num_labels = 1000 + repo_id = "huggingface/label-files" + filename = "imagenet-1k-id2label.json" + id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) + id2label = {int(k): v for k, v in id2label.items()} + config.id2label = id2label + config.label2id = {v: k for k, v in id2label.items()} + # size of the architecture + if model_name in ["dino_vits8", "dino_vits16"]: + config.hidden_size = 384 + config.intermediate_size = 1536 + config.num_hidden_layers = 12 + config.num_attention_heads = 6 + + # load original model from torch hub + original_model = torch.hub.load("facebookresearch/dino:main", model_name) + original_model.eval() + + # load state_dict of original model, remove and rename some keys + state_dict = original_model.state_dict() + if base_model: + remove_classification_head_(state_dict) + rename_keys = create_rename_keys(config, base_model=base_model) + for src, dest in rename_keys: + rename_key(state_dict, src, dest) + read_in_q_k_v(state_dict, config, base_model) + + # load HuggingFace model + if base_model: + model = ViTModel(config, add_pooling_layer=False).eval() + else: + model = ViTForImageClassification(config).eval() + model.load_state_dict(state_dict) + + # Check outputs on an image, prepared by ViTImageProcessor + image_processor = ViTImageProcessor() + encoding = image_processor(images=prepare_img(), return_tensors="pt") + pixel_values = encoding["pixel_values"] + outputs = model(pixel_values) + + if base_model: + final_hidden_state_cls_token = original_model(pixel_values) + assert torch.allclose(final_hidden_state_cls_token, outputs.last_hidden_state[:, 0, :], atol=1e-1) + else: + logits = original_model(pixel_values) + assert logits.shape == outputs.logits.shape + assert torch.allclose(logits, outputs.logits, atol=1e-3) + + Path(pytorch_dump_folder_path).mkdir(exist_ok=True) + print(f"Saving model {model_name} to {pytorch_dump_folder_path}") + model.save_pretrained(pytorch_dump_folder_path) + print(f"Saving image processor to {pytorch_dump_folder_path}") + image_processor.save_pretrained(pytorch_dump_folder_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--model_name", + default="dino_vitb16", + type=str, + help="Name of the model trained with DINO you'd like to convert.", + ) + parser.add_argument( + "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." + ) + parser.add_argument( + "--base_model", + action="store_true", + help="Whether to only convert the base model (no projection head weights).", + ) + + parser.set_defaults(base_model=True) + args = parser.parse_args() + convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model) diff --git a/venv/lib/python3.10/site-packages/transformers/models/vit/convert_vit_timm_to_pytorch.py b/venv/lib/python3.10/site-packages/transformers/models/vit/convert_vit_timm_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..0ccd9b9f6685fe375955fdee7298c17cf308de86 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/vit/convert_vit_timm_to_pytorch.py @@ -0,0 +1,255 @@ +# coding=utf-8 +# Copyright 2021 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert ViT and non-distilled DeiT checkpoints from the timm library.""" + + +import argparse +from pathlib import Path + +import requests +import timm +import torch +from PIL import Image +from timm.data import ImageNetInfo, infer_imagenet_subset + +from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel +from transformers.utils import logging + + +logging.set_verbosity_info() +logger = logging.get_logger(__name__) + + +# here we list all keys to be renamed (original name on the left, our name on the right) +def create_rename_keys(config, base_model=False): + rename_keys = [] + for i in range(config.num_hidden_layers): + # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms + rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight")) + rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias")) + rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight")) + rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias")) + rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight")) + rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias")) + rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight")) + rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias")) + rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight")) + rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias")) + + # projection layer + position embeddings + rename_keys.extend( + [ + ("cls_token", "vit.embeddings.cls_token"), + ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), + ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), + ("pos_embed", "vit.embeddings.position_embeddings"), + ] + ) + + if base_model: + # layernorm + rename_keys.extend( + [ + ("norm.weight", "layernorm.weight"), + ("norm.bias", "layernorm.bias"), + ] + ) + + # if just the base model, we should remove "vit" from all keys that start with "vit" + rename_keys = [(pair[0], pair[1][4:]) if pair[1].startswith("vit") else pair for pair in rename_keys] + else: + # layernorm + classification head + rename_keys.extend( + [ + ("norm.weight", "vit.layernorm.weight"), + ("norm.bias", "vit.layernorm.bias"), + ("head.weight", "classifier.weight"), + ("head.bias", "classifier.bias"), + ] + ) + + return rename_keys + + +# we split up the matrix of each encoder layer into queries, keys and values +def read_in_q_k_v(state_dict, config, base_model=False): + for i in range(config.num_hidden_layers): + if base_model: + prefix = "" + else: + prefix = "vit." + # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) + in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight") + in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias") + # next, add query, keys and values (in that order) to the state dict + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[ + : config.hidden_size, : + ] + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size] + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ + config.hidden_size : config.hidden_size * 2, : + ] + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[ + config.hidden_size : config.hidden_size * 2 + ] + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[ + -config.hidden_size :, : + ] + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :] + + +def remove_classification_head_(state_dict): + ignore_keys = ["head.weight", "head.bias"] + for k in ignore_keys: + state_dict.pop(k, None) + + +def rename_key(dct, old, new): + val = dct.pop(old) + dct[new] = val + + +# We will verify our results on an image of cute cats +def prepare_img(): + url = "http://images.cocodataset.org/val2017/000000039769.jpg" + im = Image.open(requests.get(url, stream=True).raw) + return im + + +@torch.no_grad() +def convert_vit_checkpoint(vit_name, pytorch_dump_folder_path): + """ + Copy/paste/tweak model's weights to our ViT structure. + """ + + # define default ViT configuration + config = ViTConfig() + base_model = False + + # load original model from timm + timm_model = timm.create_model(vit_name, pretrained=True) + timm_model.eval() + + # detect unsupported ViT models in transformers + # fc_norm is present + if not isinstance(getattr(timm_model, "fc_norm", None), torch.nn.Identity): + raise ValueError(f"{vit_name} is not supported in transformers because of the presence of fc_norm.") + + # use of global average pooling in combination (or without) class token + if getattr(timm_model, "global_pool", None) == "avg": + raise ValueError(f"{vit_name} is not supported in transformers because of use of global average pooling.") + + # CLIP style vit with norm_pre layer present + if "clip" in vit_name and not isinstance(getattr(timm_model, "norm_pre", None), torch.nn.Identity): + raise ValueError( + f"{vit_name} is not supported in transformers because it's a CLIP style ViT with norm_pre layer." + ) + + # SigLIP style vit with attn_pool layer present + if "siglip" in vit_name and getattr(timm_model, "global_pool", None) == "map": + raise ValueError( + f"{vit_name} is not supported in transformers because it's a SigLIP style ViT with attn_pool." + ) + + # use of layer scale in ViT model blocks + if not isinstance(getattr(timm_model.blocks[0], "ls1", None), torch.nn.Identity) or not isinstance( + getattr(timm_model.blocks[0], "ls2", None), torch.nn.Identity + ): + raise ValueError(f"{vit_name} is not supported in transformers because it uses a layer scale in its blocks.") + + # Hybrid ResNet-ViTs + if not isinstance(timm_model.patch_embed, timm.layers.PatchEmbed): + raise ValueError(f"{vit_name} is not supported in transformers because it is a hybrid ResNet-ViT.") + + # get patch size and image size from the patch embedding submodule + config.patch_size = timm_model.patch_embed.patch_size[0] + config.image_size = timm_model.patch_embed.img_size[0] + + # retrieve architecture-specific parameters from the timm model + config.hidden_size = timm_model.embed_dim + config.intermediate_size = timm_model.blocks[0].mlp.fc1.out_features + config.num_hidden_layers = len(timm_model.blocks) + config.num_attention_heads = timm_model.blocks[0].attn.num_heads + + # check whether the model has a classification head or not + if timm_model.num_classes != 0: + config.num_labels = timm_model.num_classes + # infer ImageNet subset from timm model + imagenet_subset = infer_imagenet_subset(timm_model) + dataset_info = ImageNetInfo(imagenet_subset) + config.id2label = {i: dataset_info.index_to_label_name(i) for i in range(dataset_info.num_classes())} + config.label2id = {v: k for k, v in config.id2label.items()} + else: + print(f"{vit_name} is going to be converted as a feature extractor only.") + base_model = True + + # load state_dict of original model + state_dict = timm_model.state_dict() + + # remove and rename some keys in the state dict + if base_model: + remove_classification_head_(state_dict) + rename_keys = create_rename_keys(config, base_model) + for src, dest in rename_keys: + rename_key(state_dict, src, dest) + read_in_q_k_v(state_dict, config, base_model) + + # load HuggingFace model + if base_model: + model = ViTModel(config, add_pooling_layer=False).eval() + else: + model = ViTForImageClassification(config).eval() + model.load_state_dict(state_dict) + + # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor + if "deit" in vit_name: + image_processor = DeiTImageProcessor(size=config.image_size) + else: + image_processor = ViTImageProcessor(size=config.image_size) + encoding = image_processor(images=prepare_img(), return_tensors="pt") + pixel_values = encoding["pixel_values"] + outputs = model(pixel_values) + + if base_model: + timm_pooled_output = timm_model.forward_features(pixel_values) + assert timm_pooled_output.shape == outputs.last_hidden_state.shape + assert torch.allclose(timm_pooled_output, outputs.last_hidden_state, atol=1e-1) + else: + timm_logits = timm_model(pixel_values) + assert timm_logits.shape == outputs.logits.shape + assert torch.allclose(timm_logits, outputs.logits, atol=1e-3) + + Path(pytorch_dump_folder_path).mkdir(exist_ok=True) + print(f"Saving model {vit_name} to {pytorch_dump_folder_path}") + model.save_pretrained(pytorch_dump_folder_path) + print(f"Saving image processor to {pytorch_dump_folder_path}") + image_processor.save_pretrained(pytorch_dump_folder_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--vit_name", + default="vit_base_patch16_224", + type=str, + help="Name of the ViT timm model you'd like to convert.", + ) + parser.add_argument( + "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." + ) + + args = parser.parse_args() + convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path) diff --git a/venv/lib/python3.10/site-packages/transformers/models/vit/modeling_flax_vit.py b/venv/lib/python3.10/site-packages/transformers/models/vit/modeling_flax_vit.py new file mode 100644 index 0000000000000000000000000000000000000000..586c8b62f6dad084cb3034c355e279908a6ba725 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/vit/modeling_flax_vit.py @@ -0,0 +1,673 @@ +# coding=utf-8 +# Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import Optional, Tuple + +import flax.linen as nn +import jax +import jax.numpy as jnp +from flax.core.frozen_dict import FrozenDict, freeze, unfreeze +from flax.linen.attention import dot_product_attention_weights +from flax.traverse_util import flatten_dict, unflatten_dict + +from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxBaseModelOutputWithPooling, FlaxSequenceClassifierOutput +from ...modeling_flax_utils import ( + ACT2FN, + FlaxPreTrainedModel, + append_replace_return_docstrings, + overwrite_call_docstring, +) +from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward +from .configuration_vit import ViTConfig + + +VIT_START_DOCSTRING = r""" + + This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading, saving and converting weights from PyTorch models) + + This model is also a + [flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as + a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and + behavior. + + Finally, this model supports inherent JAX features such as: + + - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) + - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) + - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) + - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) + + Parameters: + config ([`ViTConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. + dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): + The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and + `jax.numpy.bfloat16` (on TPUs). + + This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If + specified all the computation will be performed with the given `dtype`. + + **Note that this only specifies the dtype of the computation and does not influence the dtype of model + parameters.** + + If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and + [`~FlaxPreTrainedModel.to_bf16`]. +""" + +VIT_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] + for details. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +class FlaxViTPatchEmbeddings(nn.Module): + config: ViTConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + image_size = self.config.image_size + patch_size = self.config.patch_size + num_patches = (image_size // patch_size) * (image_size // patch_size) + self.num_patches = num_patches + self.num_channels = self.config.num_channels + self.projection = nn.Conv( + self.config.hidden_size, + kernel_size=(patch_size, patch_size), + strides=(patch_size, patch_size), + padding="VALID", + dtype=self.dtype, + kernel_init=jax.nn.initializers.variance_scaling( + self.config.initializer_range**2, "fan_in", "truncated_normal" + ), + ) + + def __call__(self, pixel_values): + num_channels = pixel_values.shape[-1] + if num_channels != self.num_channels: + raise ValueError( + "Make sure that the channel dimension of the pixel values match with the one set in the configuration." + ) + embeddings = self.projection(pixel_values) + batch_size, _, _, channels = embeddings.shape + return jnp.reshape(embeddings, (batch_size, -1, channels)) + + +class FlaxViTEmbeddings(nn.Module): + """Construct the CLS token, position and patch embeddings.""" + + config: ViTConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.cls_token = self.param( + "cls_token", + jax.nn.initializers.variance_scaling(self.config.initializer_range**2, "fan_in", "truncated_normal"), + (1, 1, self.config.hidden_size), + ) + self.patch_embeddings = FlaxViTPatchEmbeddings(self.config, dtype=self.dtype) + num_patches = self.patch_embeddings.num_patches + self.position_embeddings = self.param( + "position_embeddings", + jax.nn.initializers.variance_scaling(self.config.initializer_range**2, "fan_in", "truncated_normal"), + (1, num_patches + 1, self.config.hidden_size), + ) + self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) + + def __call__(self, pixel_values, deterministic=True): + batch_size = pixel_values.shape[0] + + embeddings = self.patch_embeddings(pixel_values) + + cls_tokens = jnp.broadcast_to(self.cls_token, (batch_size, 1, self.config.hidden_size)) + embeddings = jnp.concatenate((cls_tokens, embeddings), axis=1) + embeddings = embeddings + self.position_embeddings + embeddings = self.dropout(embeddings, deterministic=deterministic) + return embeddings + + +class FlaxViTSelfAttention(nn.Module): + config: ViTConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + if self.config.hidden_size % self.config.num_attention_heads != 0: + raise ValueError( + "`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads`:" + " {self.config.num_attention_heads}" + ) + + self.query = nn.Dense( + self.config.hidden_size, + dtype=self.dtype, + kernel_init=jax.nn.initializers.variance_scaling( + self.config.initializer_range**2, mode="fan_in", distribution="truncated_normal" + ), + use_bias=self.config.qkv_bias, + ) + self.key = nn.Dense( + self.config.hidden_size, + dtype=self.dtype, + kernel_init=jax.nn.initializers.variance_scaling( + self.config.initializer_range**2, mode="fan_in", distribution="truncated_normal" + ), + use_bias=self.config.qkv_bias, + ) + self.value = nn.Dense( + self.config.hidden_size, + dtype=self.dtype, + kernel_init=jax.nn.initializers.variance_scaling( + self.config.initializer_range**2, mode="fan_in", distribution="truncated_normal" + ), + use_bias=self.config.qkv_bias, + ) + + def __call__(self, hidden_states, deterministic: bool = True, output_attentions: bool = False): + head_dim = self.config.hidden_size // self.config.num_attention_heads + + query_states = self.query(hidden_states).reshape( + hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim) + ) + value_states = self.value(hidden_states).reshape( + hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim) + ) + key_states = self.key(hidden_states).reshape( + hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim) + ) + + dropout_rng = None + if not deterministic and self.config.attention_probs_dropout_prob > 0.0: + dropout_rng = self.make_rng("dropout") + + attn_weights = dot_product_attention_weights( + query_states, + key_states, + dropout_rng=dropout_rng, + dropout_rate=self.config.attention_probs_dropout_prob, + broadcast_dropout=True, + deterministic=deterministic, + dtype=self.dtype, + precision=None, + ) + + attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) + attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,)) + + outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) + return outputs + + +class FlaxViTSelfOutput(nn.Module): + config: ViTConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dense = nn.Dense( + self.config.hidden_size, + kernel_init=jax.nn.initializers.variance_scaling( + self.config.initializer_range**2, "fan_in", "truncated_normal" + ), + dtype=self.dtype, + ) + self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) + + def __call__(self, hidden_states, input_tensor, deterministic: bool = True): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + return hidden_states + + +class FlaxViTAttention(nn.Module): + config: ViTConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.attention = FlaxViTSelfAttention(self.config, dtype=self.dtype) + self.output = FlaxViTSelfOutput(self.config, dtype=self.dtype) + + def __call__(self, hidden_states, deterministic=True, output_attentions: bool = False): + attn_outputs = self.attention(hidden_states, deterministic=deterministic, output_attentions=output_attentions) + attn_output = attn_outputs[0] + hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_outputs[1],) + + return outputs + + +class FlaxViTIntermediate(nn.Module): + config: ViTConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dense = nn.Dense( + self.config.intermediate_size, + kernel_init=jax.nn.initializers.variance_scaling( + self.config.initializer_range**2, "fan_in", "truncated_normal" + ), + dtype=self.dtype, + ) + self.activation = ACT2FN[self.config.hidden_act] + + def __call__(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = self.activation(hidden_states) + return hidden_states + + +class FlaxViTOutput(nn.Module): + config: ViTConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dense = nn.Dense( + self.config.hidden_size, + kernel_init=jax.nn.initializers.variance_scaling( + self.config.initializer_range**2, "fan_in", "truncated_normal" + ), + dtype=self.dtype, + ) + self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) + + def __call__(self, hidden_states, attention_output, deterministic: bool = True): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + hidden_states = hidden_states + attention_output + return hidden_states + + +class FlaxViTLayer(nn.Module): + config: ViTConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.attention = FlaxViTAttention(self.config, dtype=self.dtype) + self.intermediate = FlaxViTIntermediate(self.config, dtype=self.dtype) + self.output = FlaxViTOutput(self.config, dtype=self.dtype) + self.layernorm_before = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) + self.layernorm_after = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) + + def __call__(self, hidden_states, deterministic: bool = True, output_attentions: bool = False): + attention_outputs = self.attention( + self.layernorm_before(hidden_states), # in ViT, layernorm is applied before self-attention + deterministic=deterministic, + output_attentions=output_attentions, + ) + + attention_output = attention_outputs[0] + + # first residual connection + attention_output = attention_output + hidden_states + + # in ViT, layernorm is also applied after self-attention + layer_output = self.layernorm_after(attention_output) + + hidden_states = self.intermediate(layer_output) + hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attention_outputs[1],) + return outputs + + +class FlaxViTLayerCollection(nn.Module): + config: ViTConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.layers = [ + FlaxViTLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers) + ] + + def __call__( + self, + hidden_states, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + all_attentions = () if output_attentions else None + all_hidden_states = () if output_hidden_states else None + + for i, layer in enumerate(self.layers): + if output_hidden_states: + all_hidden_states += (hidden_states,) + + layer_outputs = layer(hidden_states, deterministic=deterministic, output_attentions=output_attentions) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions += (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states += (hidden_states,) + + outputs = (hidden_states,) + if not return_dict: + return tuple(v for v in outputs if v is not None) + + return FlaxBaseModelOutput( + last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions + ) + + +class FlaxViTEncoder(nn.Module): + config: ViTConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.layer = FlaxViTLayerCollection(self.config, dtype=self.dtype) + + def __call__( + self, + hidden_states, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + return self.layer( + hidden_states, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + +class FlaxViTPooler(nn.Module): + config: ViTConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dense = nn.Dense( + self.config.hidden_size, + kernel_init=jax.nn.initializers.variance_scaling( + self.config.initializer_range**2, "fan_in", "truncated_normal" + ), + dtype=self.dtype, + ) + + def __call__(self, hidden_states): + cls_hidden_state = hidden_states[:, 0] + cls_hidden_state = self.dense(cls_hidden_state) + return nn.tanh(cls_hidden_state) + + +class FlaxViTPreTrainedModel(FlaxPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = ViTConfig + base_model_prefix = "vit" + main_input_name = "pixel_values" + module_class: nn.Module = None + + def __init__( + self, + config: ViTConfig, + input_shape=None, + seed: int = 0, + dtype: jnp.dtype = jnp.float32, + _do_init: bool = True, + **kwargs, + ): + module = self.module_class(config=config, dtype=dtype, **kwargs) + if input_shape is None: + input_shape = (1, config.image_size, config.image_size, config.num_channels) + super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) + + def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: + # init input tensors + pixel_values = jnp.zeros(input_shape, dtype=self.dtype) + + params_rng, dropout_rng = jax.random.split(rng) + rngs = {"params": params_rng, "dropout": dropout_rng} + + random_params = self.module.init(rngs, pixel_values, return_dict=False)["params"] + + if params is not None: + random_params = flatten_dict(unfreeze(random_params)) + params = flatten_dict(unfreeze(params)) + for missing_key in self._missing_keys: + params[missing_key] = random_params[missing_key] + self._missing_keys = set() + return freeze(unflatten_dict(params)) + else: + return random_params + + @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + def __call__( + self, + pixel_values, + params: dict = None, + dropout_rng: jax.random.PRNGKey = None, + train: bool = False, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ): + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1)) + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + return self.module.apply( + {"params": params or self.params}, + jnp.array(pixel_values, dtype=jnp.float32), + not train, + output_attentions, + output_hidden_states, + return_dict, + rngs=rngs, + ) + + +class FlaxViTModule(nn.Module): + config: ViTConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + add_pooling_layer: bool = True + + def setup(self): + self.embeddings = FlaxViTEmbeddings(self.config, dtype=self.dtype) + self.encoder = FlaxViTEncoder(self.config, dtype=self.dtype) + self.layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) + self.pooler = FlaxViTPooler(self.config, dtype=self.dtype) if self.add_pooling_layer else None + + def __call__( + self, + pixel_values, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + hidden_states = self.embeddings(pixel_values, deterministic=deterministic) + + outputs = self.encoder( + hidden_states, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = outputs[0] + hidden_states = self.layernorm(hidden_states) + pooled = self.pooler(hidden_states) if self.add_pooling_layer else None + + if not return_dict: + # if pooled is None, don't return it + if pooled is None: + return (hidden_states,) + outputs[1:] + return (hidden_states, pooled) + outputs[1:] + + return FlaxBaseModelOutputWithPooling( + last_hidden_state=hidden_states, + pooler_output=pooled, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + "The bare ViT Model transformer outputting raw hidden-states without any specific head on top.", + VIT_START_DOCSTRING, +) +class FlaxViTModel(FlaxViTPreTrainedModel): + module_class = FlaxViTModule + + +FLAX_VISION_MODEL_DOCSTRING = """ + Returns: + + Examples: + + ```python + >>> from transformers import AutoImageProcessor, FlaxViTModel + >>> from PIL import Image + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k") + >>> model = FlaxViTModel.from_pretrained("google/vit-base-patch16-224-in21k") + + >>> inputs = image_processor(images=image, return_tensors="np") + >>> outputs = model(**inputs) + >>> last_hidden_states = outputs.last_hidden_state + ``` +""" + +overwrite_call_docstring(FlaxViTModel, FLAX_VISION_MODEL_DOCSTRING) +append_replace_return_docstrings(FlaxViTModel, output_type=FlaxBaseModelOutputWithPooling, config_class=ViTConfig) + + +class FlaxViTForImageClassificationModule(nn.Module): + config: ViTConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.vit = FlaxViTModule(config=self.config, dtype=self.dtype, add_pooling_layer=False) + self.classifier = nn.Dense( + self.config.num_labels, + dtype=self.dtype, + kernel_init=jax.nn.initializers.variance_scaling( + self.config.initializer_range**2, "fan_in", "truncated_normal" + ), + ) + + def __call__( + self, + pixel_values=None, + deterministic: bool = True, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + ): + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.vit( + pixel_values, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + logits = self.classifier(hidden_states[:, 0, :]) + + if not return_dict: + output = (logits,) + outputs[2:] + return output + + return FlaxSequenceClassifierOutput( + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + ViT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of + the [CLS] token) e.g. for ImageNet. + """, + VIT_START_DOCSTRING, +) +class FlaxViTForImageClassification(FlaxViTPreTrainedModel): + module_class = FlaxViTForImageClassificationModule + + +FLAX_VISION_CLASSIF_DOCSTRING = """ + Returns: + + Example: + + ```python + >>> from transformers import AutoImageProcessor, FlaxViTForImageClassification + >>> from PIL import Image + >>> import jax + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224") + >>> model = FlaxViTForImageClassification.from_pretrained("google/vit-base-patch16-224") + + >>> inputs = image_processor(images=image, return_tensors="np") + >>> outputs = model(**inputs) + >>> logits = outputs.logits + + >>> # model predicts one of the 1000 ImageNet classes + >>> predicted_class_idx = jax.numpy.argmax(logits, axis=-1) + >>> print("Predicted class:", model.config.id2label[predicted_class_idx.item()]) + ``` +""" + +overwrite_call_docstring(FlaxViTForImageClassification, FLAX_VISION_CLASSIF_DOCSTRING) +append_replace_return_docstrings( + FlaxViTForImageClassification, output_type=FlaxSequenceClassifierOutput, config_class=ViTConfig +) diff --git a/venv/lib/python3.10/site-packages/transformers/models/vit/modeling_tf_vit.py b/venv/lib/python3.10/site-packages/transformers/models/vit/modeling_tf_vit.py new file mode 100644 index 0000000000000000000000000000000000000000..ac5cf691e9f8a7ce537866c30c6d6004fd6e029f --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/vit/modeling_tf_vit.py @@ -0,0 +1,905 @@ +# coding=utf-8 +# Copyright 2021 Google AI, Ross Wightman, The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" TF 2.0 ViT model.""" + + +from __future__ import annotations + +import collections.abc +import math +from typing import Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ...activations_tf import get_tf_activation +from ...modeling_tf_outputs import TFBaseModelOutput, TFBaseModelOutputWithPooling, TFSequenceClassifierOutput +from ...modeling_tf_utils import ( + TFModelInputType, + TFPreTrainedModel, + TFSequenceClassificationLoss, + get_initializer, + keras, + keras_serializable, + unpack_inputs, +) +from ...tf_utils import shape_list, stable_softmax +from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging +from .configuration_vit import ViTConfig + + +logger = logging.get_logger(__name__) + +# General docstring +_CONFIG_FOR_DOC = "ViTConfig" + +# Base docstring +_CHECKPOINT_FOR_DOC = "google/vit-base-patch16-224-in21k" +_EXPECTED_OUTPUT_SHAPE = [1, 197, 768] + +# Image classification docstring +_IMAGE_CLASS_CHECKPOINT = "google/vit-base-patch16-224" +_IMAGE_CLASS_EXPECTED_OUTPUT = "Egyptian cat" + + +class TFViTEmbeddings(keras.layers.Layer): + """ + Construct the CLS token, position and patch embeddings. + + """ + + def __init__(self, config: ViTConfig, **kwargs): + super().__init__(**kwargs) + + self.patch_embeddings = TFViTPatchEmbeddings(config, name="patch_embeddings") + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + self.config = config + + def build(self, input_shape=None): + num_patches = self.patch_embeddings.num_patches + self.cls_token = self.add_weight( + shape=(1, 1, self.config.hidden_size), + initializer=get_initializer(self.config.initializer_range), + trainable=True, + name="cls_token", + ) + self.position_embeddings = self.add_weight( + shape=(1, num_patches + 1, self.config.hidden_size), + initializer=get_initializer(self.config.initializer_range), + trainable=True, + name="position_embeddings", + ) + + if self.built: + return + self.built = True + if getattr(self, "patch_embeddings", None) is not None: + with tf.name_scope(self.patch_embeddings.name): + self.patch_embeddings.build(None) + + def interpolate_pos_encoding(self, embeddings, height, width) -> tf.Tensor: + """ + This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher + resolution images. + + Source: + https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 + """ + + batch_size, seq_len, dim = shape_list(embeddings) + num_patches = seq_len - 1 + + _, num_positions, _ = shape_list(self.position_embeddings) + num_positions -= 1 + + if num_patches == num_positions and height == width: + return self.position_embeddings + class_pos_embed = self.position_embeddings[:, :1] + patch_pos_embed = self.position_embeddings[:, 1:] + h0 = height // self.config.patch_size + w0 = width // self.config.patch_size + patch_pos_embed = tf.image.resize( + images=tf.reshape( + patch_pos_embed, shape=(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim) + ), + size=(h0, w0), + method="bicubic", + ) + + shape = shape_list(patch_pos_embed) + assert h0 == shape[-3] and w0 == shape[-2] + patch_pos_embed = tf.reshape(tensor=patch_pos_embed, shape=(1, -1, dim)) + return tf.concat(values=(class_pos_embed, patch_pos_embed), axis=1) + + def call( + self, pixel_values: tf.Tensor, interpolate_pos_encoding: bool = False, training: bool = False + ) -> tf.Tensor: + batch_size, num_channels, height, width = shape_list(pixel_values) + embeddings = self.patch_embeddings( + pixel_values, interpolate_pos_encoding=interpolate_pos_encoding, training=training + ) + + # add the [CLS] token to the embedded patch tokens + cls_tokens = tf.repeat(self.cls_token, repeats=batch_size, axis=0) + embeddings = tf.concat((cls_tokens, embeddings), axis=1) + + # add positional encoding to each token + if interpolate_pos_encoding: + embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) + else: + embeddings = embeddings + self.position_embeddings + + embeddings = self.dropout(embeddings, training=training) + + return embeddings + + +# Based on timm implementation, which can be found here: +# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py +class TFViTPatchEmbeddings(keras.layers.Layer): + """ + This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial + `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a + Transformer. + """ + + def __init__(self, config: ViTConfig, **kwargs): + super().__init__(**kwargs) + image_size, patch_size = config.image_size, config.patch_size + num_channels, hidden_size = config.num_channels, config.hidden_size + + image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) + patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) + num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) + self.image_size = image_size + self.patch_size = patch_size + self.num_patches = num_patches + self.num_channels = num_channels + self.config = config + + self.projection = keras.layers.Conv2D( + filters=hidden_size, + kernel_size=patch_size, + strides=patch_size, + padding="valid", + data_format="channels_last", + use_bias=True, + kernel_initializer=get_initializer(self.config.initializer_range), + bias_initializer="zeros", + name="projection", + ) + + def call( + self, pixel_values: tf.Tensor, interpolate_pos_encoding: bool = False, training: bool = False + ) -> tf.Tensor: + batch_size, num_channels, height, width = shape_list(pixel_values) + if tf.executing_eagerly() and num_channels != self.num_channels: + raise ValueError( + "Make sure that the channel dimension of the pixel values match with the one set in the configuration." + ) + if not interpolate_pos_encoding: + if tf.executing_eagerly(): + if height != self.image_size[0] or width != self.image_size[1]: + raise ValueError( + f"Input image size ({height}*{width}) doesn't match model" + f" ({self.image_size[0]}*{self.image_size[1]})." + ) + + # When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format. + # So change the input format from `NCHW` to `NHWC`. + # shape = (batch_size, in_height, in_width, in_channels=num_channels) + pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1)) + + projection = self.projection(pixel_values) + + # Change the 2D spatial dimensions to a single temporal dimension. + # shape = (batch_size, num_patches, out_channels=embed_dim) + num_patches = (width // self.patch_size[1]) * (height // self.patch_size[0]) + embeddings = tf.reshape(tensor=projection, shape=(batch_size, num_patches, -1)) + + return embeddings + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "projection", None) is not None: + with tf.name_scope(self.projection.name): + self.projection.build([None, None, None, self.num_channels]) + + +class TFViTSelfAttention(keras.layers.Layer): + def __init__(self, config: ViTConfig, **kwargs): + super().__init__(**kwargs) + + if config.hidden_size % config.num_attention_heads != 0: + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number " + f"of attention heads ({config.num_attention_heads})" + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + self.sqrt_att_head_size = math.sqrt(self.attention_head_size) + + self.query = keras.layers.Dense( + units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" + ) + self.key = keras.layers.Dense( + units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" + ) + self.value = keras.layers.Dense( + units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" + ) + self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob) + self.config = config + + def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: + # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] + tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) + + # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] + return tf.transpose(tensor, perm=[0, 2, 1, 3]) + + def call( + self, + hidden_states: tf.Tensor, + head_mask: tf.Tensor, + output_attentions: bool, + training: bool = False, + ) -> Tuple[tf.Tensor]: + batch_size = shape_list(hidden_states)[0] + mixed_query_layer = self.query(inputs=hidden_states) + mixed_key_layer = self.key(inputs=hidden_states) + mixed_value_layer = self.value(inputs=hidden_states) + query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) + key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) + value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) + + # Take the dot product between "query" and "key" to get the raw attention scores. + # (batch size, num_heads, seq_len_q, seq_len_k) + attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) + dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) + attention_scores = tf.divide(attention_scores, dk) + + # Normalize the attention scores to probabilities. + attention_probs = stable_softmax(logits=attention_scores, axis=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(inputs=attention_probs, training=training) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = tf.multiply(attention_probs, head_mask) + + attention_output = tf.matmul(attention_probs, value_layer) + attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) + + # (batch_size, seq_len_q, all_head_size) + attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) + outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "query", None) is not None: + with tf.name_scope(self.query.name): + self.query.build([None, None, self.config.hidden_size]) + if getattr(self, "key", None) is not None: + with tf.name_scope(self.key.name): + self.key.build([None, None, self.config.hidden_size]) + if getattr(self, "value", None) is not None: + with tf.name_scope(self.value.name): + self.value.build([None, None, self.config.hidden_size]) + + +class TFViTSelfOutput(keras.layers.Layer): + """ + The residual connection is defined in TFViTLayer instead of here (as is the case with other models), due to the + layernorm applied before each block. + """ + + def __init__(self, config: ViTConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + self.config = config + + def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.dropout(inputs=hidden_states, training=training) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +class TFViTAttention(keras.layers.Layer): + def __init__(self, config: ViTConfig, **kwargs): + super().__init__(**kwargs) + + self.self_attention = TFViTSelfAttention(config, name="attention") + self.dense_output = TFViTSelfOutput(config, name="output") + + def prune_heads(self, heads): + raise NotImplementedError + + def call( + self, + input_tensor: tf.Tensor, + head_mask: tf.Tensor, + output_attentions: bool, + training: bool = False, + ) -> Tuple[tf.Tensor]: + self_outputs = self.self_attention( + hidden_states=input_tensor, head_mask=head_mask, output_attentions=output_attentions, training=training + ) + attention_output = self.dense_output( + hidden_states=self_outputs[0], input_tensor=input_tensor, training=training + ) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "self_attention", None) is not None: + with tf.name_scope(self.self_attention.name): + self.self_attention.build(None) + if getattr(self, "dense_output", None) is not None: + with tf.name_scope(self.dense_output.name): + self.dense_output.build(None) + + +class TFViTIntermediate(keras.layers.Layer): + def __init__(self, config: ViTConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = get_tf_activation(config.hidden_act) + else: + self.intermediate_act_fn = config.hidden_act + self.config = config + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +class TFViTOutput(keras.layers.Layer): + def __init__(self, config: ViTConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + self.config = config + + def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.dropout(inputs=hidden_states, training=training) + hidden_states = hidden_states + input_tensor + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.intermediate_size]) + + +class TFViTLayer(keras.layers.Layer): + """This corresponds to the Block class in the timm implementation.""" + + def __init__(self, config: ViTConfig, **kwargs): + super().__init__(**kwargs) + + self.attention = TFViTAttention(config, name="attention") + self.intermediate = TFViTIntermediate(config, name="intermediate") + self.vit_output = TFViTOutput(config, name="output") + + self.layernorm_before = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_before") + self.layernorm_after = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_after") + self.config = config + + def call( + self, + hidden_states: tf.Tensor, + head_mask: tf.Tensor, + output_attentions: bool, + training: bool = False, + ) -> Tuple[tf.Tensor]: + attention_outputs = self.attention( + # in ViT, layernorm is applied before self-attention + input_tensor=self.layernorm_before(inputs=hidden_states), + head_mask=head_mask, + output_attentions=output_attentions, + training=training, + ) + attention_output = attention_outputs[0] + + # first residual connection + hidden_states = attention_output + hidden_states + + # in ViT, layernorm is also applied after self-attention + layer_output = self.layernorm_after(inputs=hidden_states) + + intermediate_output = self.intermediate(hidden_states=layer_output) + + # second residual connection is done here + layer_output = self.vit_output( + hidden_states=intermediate_output, input_tensor=hidden_states, training=training + ) + outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "attention", None) is not None: + with tf.name_scope(self.attention.name): + self.attention.build(None) + if getattr(self, "intermediate", None) is not None: + with tf.name_scope(self.intermediate.name): + self.intermediate.build(None) + if getattr(self, "vit_output", None) is not None: + with tf.name_scope(self.vit_output.name): + self.vit_output.build(None) + if getattr(self, "layernorm_before", None) is not None: + with tf.name_scope(self.layernorm_before.name): + self.layernorm_before.build([None, None, self.config.hidden_size]) + if getattr(self, "layernorm_after", None) is not None: + with tf.name_scope(self.layernorm_after.name): + self.layernorm_after.build([None, None, self.config.hidden_size]) + + +class TFViTEncoder(keras.layers.Layer): + def __init__(self, config: ViTConfig, **kwargs): + super().__init__(**kwargs) + + self.layer = [TFViTLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] + + def call( + self, + hidden_states: tf.Tensor, + head_mask: tf.Tensor, + output_attentions: bool, + output_hidden_states: bool, + return_dict: bool, + training: bool = False, + ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: + all_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_outputs = layer_module( + hidden_states=hidden_states, + head_mask=head_mask[i], + output_attentions=output_attentions, + training=training, + ) + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + # Add last layer + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) + + return TFBaseModelOutput( + last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "layer", None) is not None: + for layer in self.layer: + with tf.name_scope(layer.name): + layer.build(None) + + +@keras_serializable +class TFViTMainLayer(keras.layers.Layer): + config_class = ViTConfig + + def __init__(self, config: ViTConfig, add_pooling_layer: bool = True, **kwargs): + super().__init__(**kwargs) + + self.config = config + + self.embeddings = TFViTEmbeddings(config, name="embeddings") + self.encoder = TFViTEncoder(config, name="encoder") + self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm") + self.pooler = TFViTPooler(config, name="pooler") if add_pooling_layer else None + + def get_input_embeddings(self) -> keras.layers.Layer: + return self.embeddings.patch_embeddings + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + raise NotImplementedError + + @unpack_inputs + def call( + self, + pixel_values: TFModelInputType | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + interpolate_pos_encoding: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + embedding_output = self.embeddings( + pixel_values=pixel_values, + interpolate_pos_encoding=interpolate_pos_encoding, + training=training, + ) + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + if head_mask is not None: + raise NotImplementedError + else: + head_mask = [None] * self.config.num_hidden_layers + + encoder_outputs = self.encoder( + hidden_states=embedding_output, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + sequence_output = encoder_outputs[0] + sequence_output = self.layernorm(inputs=sequence_output) + pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None + + if not return_dict: + return (sequence_output, pooled_output) + encoder_outputs[1:] + + return TFBaseModelOutputWithPooling( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embeddings", None) is not None: + with tf.name_scope(self.embeddings.name): + self.embeddings.build(None) + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) + if getattr(self, "layernorm", None) is not None: + with tf.name_scope(self.layernorm.name): + self.layernorm.build([None, None, self.config.hidden_size]) + if getattr(self, "pooler", None) is not None: + with tf.name_scope(self.pooler.name): + self.pooler.build(None) + + +class TFViTPreTrainedModel(TFPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = ViTConfig + base_model_prefix = "vit" + main_input_name = "pixel_values" + + +VIT_START_DOCSTRING = r""" + + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `pixel_values` only and nothing else: `model(pixel_values)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([pixel_values, attention_mask])` or `model([pixel_values, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"pixel_values": pixel_values, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Args: + config ([`ViTConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. +""" + +VIT_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] + for details. + + head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the + config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. This argument can be used only in eager mode, in graph mode the value in the config will be + used instead. + interpolate_pos_encoding (`bool`, *optional*): + Whether to interpolate the pre-trained position encodings. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in + eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False``): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). +""" + + +@add_start_docstrings( + "The bare ViT Model transformer outputting raw hidden-states without any specific head on top.", + VIT_START_DOCSTRING, +) +class TFViTModel(TFViTPreTrainedModel): + def __init__(self, config: ViTConfig, *inputs, add_pooling_layer=True, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.vit = TFViTMainLayer(config, add_pooling_layer=add_pooling_layer, name="vit") + + @unpack_inputs + @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFBaseModelOutputWithPooling, + config_class=_CONFIG_FOR_DOC, + modality="vision", + expected_output=_EXPECTED_OUTPUT_SHAPE, + ) + def call( + self, + pixel_values: TFModelInputType | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + interpolate_pos_encoding: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: + outputs = self.vit( + pixel_values=pixel_values, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + interpolate_pos_encoding=interpolate_pos_encoding, + return_dict=return_dict, + training=training, + ) + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "vit", None) is not None: + with tf.name_scope(self.vit.name): + self.vit.build(None) + + +class TFViTPooler(keras.layers.Layer): + def __init__(self, config: ViTConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, + kernel_initializer=get_initializer(config.initializer_range), + activation="tanh", + name="dense", + ) + self.config = config + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(inputs=first_token_tensor) + + return pooled_output + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + ViT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of + the [CLS] token) e.g. for ImageNet. + + + + Note that it's possible to fine-tune ViT on higher resolution images than the ones it has been trained on, by + setting `interpolate_pos_encoding` to `True` in the forward of the model. This will interpolate the pre-trained + position embeddings to the higher resolution. + + + """, + VIT_START_DOCSTRING, +) +class TFViTForImageClassification(TFViTPreTrainedModel, TFSequenceClassificationLoss): + def __init__(self, config: ViTConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.num_labels = config.num_labels + self.vit = TFViTMainLayer(config, add_pooling_layer=False, name="vit") + + # Classifier head + self.classifier = keras.layers.Dense( + units=config.num_labels, + kernel_initializer=get_initializer(config.initializer_range), + name="classifier", + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_IMAGE_CLASS_CHECKPOINT, + output_type=TFSequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, + ) + def call( + self, + pixel_values: TFModelInputType | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + interpolate_pos_encoding: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): + Labels for computing the image classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + + outputs = self.vit( + pixel_values=pixel_values, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + interpolate_pos_encoding=interpolate_pos_encoding, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + logits = self.classifier(inputs=sequence_output[:, 0, :]) + loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFSequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "vit", None) is not None: + with tf.name_scope(self.vit.name): + self.vit.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_size]) diff --git a/venv/lib/python3.10/site-packages/transformers/models/vit/modeling_vit.py b/venv/lib/python3.10/site-packages/transformers/models/vit/modeling_vit.py new file mode 100644 index 0000000000000000000000000000000000000000..4ccdd1deaf4ca1ed4fe30e936c66f8109a4fafd6 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/vit/modeling_vit.py @@ -0,0 +1,838 @@ +# coding=utf-8 +# Copyright 2021 Google AI, Ross Wightman, The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch ViT model.""" + + +import collections.abc +import math +from typing import Dict, List, Optional, Set, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BaseModelOutput, + BaseModelOutputWithPooling, + ImageClassifierOutput, + MaskedImageModelingOutput, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_vit import ViTConfig + + +logger = logging.get_logger(__name__) + +# General docstring +_CONFIG_FOR_DOC = "ViTConfig" + +# Base docstring +_CHECKPOINT_FOR_DOC = "google/vit-base-patch16-224-in21k" +_EXPECTED_OUTPUT_SHAPE = [1, 197, 768] + +# Image classification docstring +_IMAGE_CLASS_CHECKPOINT = "google/vit-base-patch16-224" +_IMAGE_CLASS_EXPECTED_OUTPUT = "Egyptian cat" + + +from ..deprecated._archive_maps import VIT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +class ViTEmbeddings(nn.Module): + """ + Construct the CLS token, position and patch embeddings. Optionally, also the mask token. + """ + + def __init__(self, config: ViTConfig, use_mask_token: bool = False) -> None: + super().__init__() + + self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size)) + self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None + self.patch_embeddings = ViTPatchEmbeddings(config) + num_patches = self.patch_embeddings.num_patches + self.position_embeddings = nn.Parameter(torch.randn(1, num_patches + 1, config.hidden_size)) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.config = config + + def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: + """ + This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher + resolution images. + + Source: + https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 + """ + + num_patches = embeddings.shape[1] - 1 + num_positions = self.position_embeddings.shape[1] - 1 + if num_patches == num_positions and height == width: + return self.position_embeddings + class_pos_embed = self.position_embeddings[:, 0] + patch_pos_embed = self.position_embeddings[:, 1:] + dim = embeddings.shape[-1] + h0 = height // self.config.patch_size + w0 = width // self.config.patch_size + # we add a small number to avoid floating point error in the interpolation + # see discussion at https://github.com/facebookresearch/dino/issues/8 + h0, w0 = h0 + 0.1, w0 + 0.1 + patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim) + patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) + patch_pos_embed = nn.functional.interpolate( + patch_pos_embed, + scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)), + mode="bicubic", + align_corners=False, + ) + assert int(h0) == patch_pos_embed.shape[-2] and int(w0) == patch_pos_embed.shape[-1] + patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) + return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) + + def forward( + self, + pixel_values: torch.Tensor, + bool_masked_pos: Optional[torch.BoolTensor] = None, + interpolate_pos_encoding: bool = False, + ) -> torch.Tensor: + batch_size, num_channels, height, width = pixel_values.shape + embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) + + if bool_masked_pos is not None: + seq_length = embeddings.shape[1] + mask_tokens = self.mask_token.expand(batch_size, seq_length, -1) + # replace the masked visual tokens by mask_tokens + mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) + embeddings = embeddings * (1.0 - mask) + mask_tokens * mask + + # add the [CLS] token to the embedded patch tokens + cls_tokens = self.cls_token.expand(batch_size, -1, -1) + embeddings = torch.cat((cls_tokens, embeddings), dim=1) + + # add positional encoding to each token + if interpolate_pos_encoding: + embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) + else: + embeddings = embeddings + self.position_embeddings + + embeddings = self.dropout(embeddings) + + return embeddings + + +class ViTPatchEmbeddings(nn.Module): + """ + This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial + `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a + Transformer. + """ + + def __init__(self, config): + super().__init__() + image_size, patch_size = config.image_size, config.patch_size + num_channels, hidden_size = config.num_channels, config.hidden_size + + image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) + patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) + num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) + self.image_size = image_size + self.patch_size = patch_size + self.num_channels = num_channels + self.num_patches = num_patches + + self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) + + def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor: + batch_size, num_channels, height, width = pixel_values.shape + if num_channels != self.num_channels: + raise ValueError( + "Make sure that the channel dimension of the pixel values match with the one set in the configuration." + f" Expected {self.num_channels} but got {num_channels}." + ) + if not interpolate_pos_encoding: + if height != self.image_size[0] or width != self.image_size[1]: + raise ValueError( + f"Input image size ({height}*{width}) doesn't match model" + f" ({self.image_size[0]}*{self.image_size[1]})." + ) + embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) + return embeddings + + +class ViTSelfAttention(nn.Module): + def __init__(self, config: ViTConfig) -> None: + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " + f"heads {config.num_attention_heads}." + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) + self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) + self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + + def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False + ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: + mixed_query_layer = self.query(hidden_states) + + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + query_layer = self.transpose_for_scores(mixed_query_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + return outputs + + +class ViTSelfOutput(nn.Module): + """ + The residual connection is defined in ViTLayer instead of here (as is the case with other models), due to the + layernorm applied before each block. + """ + + def __init__(self, config: ViTConfig) -> None: + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + + return hidden_states + + +class ViTAttention(nn.Module): + def __init__(self, config: ViTConfig) -> None: + super().__init__() + self.attention = ViTSelfAttention(config) + self.output = ViTSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads: Set[int]) -> None: + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.attention.query = prune_linear_layer(self.attention.query, index) + self.attention.key = prune_linear_layer(self.attention.key, index) + self.attention.value = prune_linear_layer(self.attention.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) + self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: + self_outputs = self.attention(hidden_states, head_mask, output_attentions) + + attention_output = self.output(self_outputs[0], hidden_states) + + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +class ViTIntermediate(nn.Module): + def __init__(self, config: ViTConfig) -> None: + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + + return hidden_states + + +class ViTOutput(nn.Module): + def __init__(self, config: ViTConfig) -> None: + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + + hidden_states = hidden_states + input_tensor + + return hidden_states + + +class ViTLayer(nn.Module): + """This corresponds to the Block class in the timm implementation.""" + + def __init__(self, config: ViTConfig) -> None: + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = ViTAttention(config) + self.intermediate = ViTIntermediate(config) + self.output = ViTOutput(config) + self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: + self_attention_outputs = self.attention( + self.layernorm_before(hidden_states), # in ViT, layernorm is applied before self-attention + head_mask, + output_attentions=output_attentions, + ) + attention_output = self_attention_outputs[0] + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + # first residual connection + hidden_states = attention_output + hidden_states + + # in ViT, layernorm is also applied after self-attention + layer_output = self.layernorm_after(hidden_states) + layer_output = self.intermediate(layer_output) + + # second residual connection is done here + layer_output = self.output(layer_output, hidden_states) + + outputs = (layer_output,) + outputs + + return outputs + + +class ViTEncoder(nn.Module): + def __init__(self, config: ViTConfig) -> None: + super().__init__() + self.config = config + self.layer = nn.ModuleList([ViTLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ) -> Union[tuple, BaseModelOutput]: + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + layer_head_mask, + output_attentions, + ) + else: + layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +class ViTPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = ViTConfig + base_model_prefix = "vit" + main_input_name = "pixel_values" + supports_gradient_checkpointing = True + _no_split_modules = ["ViTEmbeddings", "ViTLayer"] + + def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: + """Initialize the weights""" + if isinstance(module, (nn.Linear, nn.Conv2d)): + # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid + # `trunc_normal_cpu` not implemented in `half` issues + module.weight.data = nn.init.trunc_normal_( + module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range + ).to(module.weight.dtype) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + elif isinstance(module, ViTEmbeddings): + module.position_embeddings.data = nn.init.trunc_normal_( + module.position_embeddings.data.to(torch.float32), + mean=0.0, + std=self.config.initializer_range, + ).to(module.position_embeddings.dtype) + + module.cls_token.data = nn.init.trunc_normal_( + module.cls_token.data.to(torch.float32), + mean=0.0, + std=self.config.initializer_range, + ).to(module.cls_token.dtype) + + +VIT_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it + as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`ViTConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +VIT_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] + for details. + + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + interpolate_pos_encoding (`bool`, *optional*): + Whether to interpolate the pre-trained position encodings. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare ViT Model transformer outputting raw hidden-states without any specific head on top.", + VIT_START_DOCSTRING, +) +class ViTModel(ViTPreTrainedModel): + def __init__(self, config: ViTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False): + super().__init__(config) + self.config = config + + self.embeddings = ViTEmbeddings(config, use_mask_token=use_mask_token) + self.encoder = ViTEncoder(config) + + self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.pooler = ViTPooler(config) if add_pooling_layer else None + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> ViTPatchEmbeddings: + return self.embeddings.patch_embeddings + + def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPooling, + config_class=_CONFIG_FOR_DOC, + modality="vision", + expected_output=_EXPECTED_OUTPUT_SHAPE, + ) + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + bool_masked_pos: Optional[torch.BoolTensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + interpolate_pos_encoding: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPooling]: + r""" + bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): + Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + # TODO: maybe have a cleaner way to cast the input (from `ImageProcessor` side?) + expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype + if pixel_values.dtype != expected_dtype: + pixel_values = pixel_values.to(expected_dtype) + + embedding_output = self.embeddings( + pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding + ) + + encoder_outputs = self.encoder( + embedding_output, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + sequence_output = self.layernorm(sequence_output) + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) + return head_outputs + encoder_outputs[1:] + + return BaseModelOutputWithPooling( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +class ViTPooler(nn.Module): + def __init__(self, config: ViTConfig): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = nn.Tanh() + + def forward(self, hidden_states): + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + pooled_output = self.activation(pooled_output) + return pooled_output + + +@add_start_docstrings( + """ViT Model with a decoder on top for masked image modeling, as proposed in [SimMIM](https://arxiv.org/abs/2111.09886). + + + + Note that we provide a script to pre-train this model on custom data in our [examples + directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining). + + + """, + VIT_START_DOCSTRING, +) +class ViTForMaskedImageModeling(ViTPreTrainedModel): + def __init__(self, config: ViTConfig) -> None: + super().__init__(config) + + self.vit = ViTModel(config, add_pooling_layer=False, use_mask_token=True) + + self.decoder = nn.Sequential( + nn.Conv2d( + in_channels=config.hidden_size, + out_channels=config.encoder_stride**2 * config.num_channels, + kernel_size=1, + ), + nn.PixelShuffle(config.encoder_stride), + ) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=MaskedImageModelingOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + bool_masked_pos: Optional[torch.BoolTensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + interpolate_pos_encoding: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[tuple, MaskedImageModelingOutput]: + r""" + bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`): + Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). + + Returns: + + Examples: + ```python + >>> from transformers import AutoImageProcessor, ViTForMaskedImageModeling + >>> import torch + >>> from PIL import Image + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k") + >>> model = ViTForMaskedImageModeling.from_pretrained("google/vit-base-patch16-224-in21k") + + >>> num_patches = (model.config.image_size // model.config.patch_size) ** 2 + >>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values + >>> # create random boolean mask of shape (batch_size, num_patches) + >>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool() + + >>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos) + >>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction + >>> list(reconstructed_pixel_values.shape) + [1, 3, 224, 224] + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if bool_masked_pos is not None and (self.config.patch_size != self.config.encoder_stride): + raise ValueError( + "When `bool_masked_pos` is provided, `patch_size` must be equal to `encoder_stride` to ensure that " + "the reconstructed image has the same dimensions as the input. " + f"Got `patch_size` = {self.config.patch_size} and `encoder_stride` = {self.config.encoder_stride}." + ) + + outputs = self.vit( + pixel_values, + bool_masked_pos=bool_masked_pos, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + interpolate_pos_encoding=interpolate_pos_encoding, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + # Reshape to (batch_size, num_channels, height, width) + sequence_output = sequence_output[:, 1:] + batch_size, sequence_length, num_channels = sequence_output.shape + height = width = math.floor(sequence_length**0.5) + sequence_output = sequence_output.permute(0, 2, 1).reshape(batch_size, num_channels, height, width) + + # Reconstruct pixel values + reconstructed_pixel_values = self.decoder(sequence_output) + + masked_im_loss = None + if bool_masked_pos is not None: + size = self.config.image_size // self.config.patch_size + bool_masked_pos = bool_masked_pos.reshape(-1, size, size) + mask = ( + bool_masked_pos.repeat_interleave(self.config.patch_size, 1) + .repeat_interleave(self.config.patch_size, 2) + .unsqueeze(1) + .contiguous() + ) + reconstruction_loss = nn.functional.l1_loss(pixel_values, reconstructed_pixel_values, reduction="none") + masked_im_loss = (reconstruction_loss * mask).sum() / (mask.sum() + 1e-5) / self.config.num_channels + + if not return_dict: + output = (reconstructed_pixel_values,) + outputs[1:] + return ((masked_im_loss,) + output) if masked_im_loss is not None else output + + return MaskedImageModelingOutput( + loss=masked_im_loss, + reconstruction=reconstructed_pixel_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + ViT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of + the [CLS] token) e.g. for ImageNet. + + + + Note that it's possible to fine-tune ViT on higher resolution images than the ones it has been trained on, by + setting `interpolate_pos_encoding` to `True` in the forward of the model. This will interpolate the pre-trained + position embeddings to the higher resolution. + + + """, + VIT_START_DOCSTRING, +) +class ViTForImageClassification(ViTPreTrainedModel): + def __init__(self, config: ViTConfig) -> None: + super().__init__(config) + + self.num_labels = config.num_labels + self.vit = ViTModel(config, add_pooling_layer=False) + + # Classifier head + self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_IMAGE_CLASS_CHECKPOINT, + output_type=ImageClassifierOutput, + config_class=_CONFIG_FOR_DOC, + expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, + ) + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + interpolate_pos_encoding: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[tuple, ImageClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the image classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.vit( + pixel_values, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + interpolate_pos_encoding=interpolate_pos_encoding, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.classifier(sequence_output[:, 0, :]) + + loss = None + if labels is not None: + # move labels to correct device to enable model parallelism + labels = labels.to(logits.device) + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + + if not return_dict: + output = (logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return ImageClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + )